Heart rate and ventilation in Antarctic fishes are largely determined by ecotype
Campbell, H.; Davison, W.; Fraser, K.P.P. ORCID: https://orcid.org/0000-0001-5491-8376; Peck, L.S. ORCID: https://orcid.org/0000-0003-3479-6791; Egginton, S.. 2009 Heart rate and ventilation in Antarctic fishes are largely determined by ecotype. Journal of Fish Biology, 74 (3). 535-552. https://doi.org/10.1111/j.1095-8649.2008.02141.x
Full text not available from this repository. (Request a copy)Abstract/Summary
Extrinsic neural and humoral influences on heart rate (fH) and ventilation frequency (fV) were examined following varying periods of post-surgical recovery in eight related Antarctic fish species inhabiting an array of inshore niches. Resting fH after recovery from handling was lower than previous reports, and the novel measurement of routine fH in free-swimming Dissostichus mawsoni (6.14 beats min(-1), bpm) is the lowest recorded for any fish. The extent of cardio-depressive cholinergic (vagal) tonus explained the large range of fH among species and varied with behavioural repertoire, being lower in the more active species, apart from Notothenia coriiceps. Adrenergic tonus was low compared with cholinergic tonus, with the exception of Trematomus newnesi. Hence, high cardiac cholinergic tonus may be a genotypic trait of the notothenioids that diverged with ecotype. Power spectral analysis showed that the vagal influence produced comparable spectra among species of similar morphology and ecotype. Removal of autonomic tonus resulted in a remarkably similar intrinsic fH between species. Simultaneous measurements of cardio-respiratory variables and oxygen consumption ((M) over dot O-2) were made in the benthic Trematomus bernacchii and cryopelagic Pagothenia borchgrevinki. The slopes of the relationship between fH and (M) over dot O-2 were similar. Trematomus bernacchii, however, had a higher (M) over dot O-2 for a given fH than P. borchgrevinki, and P. borchgrevinki required a two-fold larger range in fH to reach a similar maximum (M) over dot O-2, suggesting that there is a difference in cardiovascular fitness between the two species. Overall, the data suggest that cardio-respiratory control in Antarctic nototheniids is largely determined by activity levels associated with a given ecotype. (C) 2009 The Authors
Item Type: | Publication - Article |
---|---|
Digital Object Identifier (DOI): | https://doi.org/10.1111/j.1095-8649.2008.02141.x |
Programmes: | BAS Programmes > Global Science in the Antarctic Context (2005-2009) > Biodiversity, Functions, Limits and Adaptation from Molecules to Ecosystems |
ISSN: | 0022-1112 |
Additional Keywords: | hear rate variability; oxygen consumption; power spectral analysis |
NORA Subject Terms: | Marine Sciences Biology and Microbiology Ecology and Environment |
Date made live: | 20 Oct 2010 08:40 +0 (UTC) |
URI: | https://nora.nerc.ac.uk/id/eprint/10780 |
Actions (login required)
View Item |
Document Downloads
Downloads for past 30 days
Downloads per month over past year