Smith, D.J.; Bentham, M.; Holloway, S.; Noy, D.J.; Chadwick, R.A.. 2010 The impact of boundary conditions on CO2 capacity estimation in aquifers. In: 9th Annual Conference on Carbon Capture and Sequestration, Pittsburgh, USA, 10-13 May 2010.
Abstract
The boundary conditions of an aquifer determine the extent to which fluids (including formation water
and CO2) and pressure can be transferred into adjacent geological formations, either laterally or vertically.
Aquifer boundaries can be faults, lithological boundaries, formation pinch-outs, salt walls, or outcrop. In
many cases compliance with regulations preventing CO2 storage influencing areas outside artificial
boundaries defined by non-geological criteria (international boundaries; license limits) may be necessary.
A bounded aquifer is not necessarily a closed aquifer.
The identification of an aquifer’s boundary conditions determines how CO2 storage capacity is estimated
in the earliest screening and characterization stages. There are different static capacity estimation methods
in use for closed systems and open systems. The method used has a significant impact on the final
capacity estimate.
The recent EU Directive (2009/31/EC) stated that where more than one storage site within a single
“hydraulic unit” (bounded aquifer volume) is being considered, the characterization process should
account for potential pressure interactions. The pressure interplay of multiple sites (or even the pressure
footprint of just one site) is heavily influenced by boundary conditions.
Documents
10695:6365
Information
Programmes:
UNSPECIFIED
Library
Statistics
Downloads per month over past year
Share
![]() |
