nerc.ac.uk

Understanding spatial variability of methane fluxes in Arctic wetlands through footprint modelling

Reuss-Schmidt, Kassandra ORCID: https://orcid.org/0000-0002-8382-5547; Levy, Peter ORCID: https://orcid.org/0000-0002-8505-1901; Oechel, Walter; Tweedie, Craig; Wilson, Cathy; Zona, Donatella. 2019 Understanding spatial variability of methane fluxes in Arctic wetlands through footprint modelling. Environmental Research Letters, 14 (12), 125010. 10, pp. https://doi.org/10.1088/1748-9326/ab4d32

Before downloading, please read NORA policies.
[img]
Preview
Text
N527234JA.pdf - Published Version
Available under License Creative Commons Attribution.

Download (1MB) | Preview

Abstract/Summary

The Arctic is warming at twice the rate of the global mean. This warming could further stimulate methane (CH4) emissions from northern wetlands and enhance the greenhouse impact of this region. Arctic wetlands are extremely heterogeneous in terms of geochemistry, vegetation, microtopography, and hydrology, and therefore CH4 fluxes can differ dramatically within the metre scale. Eddy covariance (EC) is one of the most useful methods for estimating CH4 fluxes in remote areas over long periods of time. However, when the areas sampled by these EC towers (i.e. tower footprints) are by definition very heterogeneous, due to encompassing a variety of environmental conditions and vegetation types, modelling environmental controls of CH4 emissions becomes even more challenging, confounding efforts to reduce uncertainty in baseline CH4 emissions from these landscapes. In this study, we evaluated the effect of footprint variability on CH4 fluxes from two EC towers located in wetlands on the North Slope of Alaska. The local domain of each of these sites contains well developed polygonal tundra as well as a drained thermokarst lake basin. We found that the spatiotemporal variability of the footprint, has a significant influence on the observed CH4 fluxes, contributing between 3% and 33% of the variance, depending on site, time period, and modelling method. Multiple indices were used to define spatial heterogeneity, and their explanatory power varied depending on site and season. Overall, the normalised difference water index had the most consistent explanatory power on CH4 fluxes, though generally only when used in concert with at least one other spatial index. The spatial bias (defined here as the difference between the mean for the 0.36 km2 domain around the tower and the footprint-weighted mean) was between mid51mid% and mid18mid% depending on the index. This study highlights the need for footprint modelling to infer the representativeness of the carbon fluxes measured by EC towers in these highly heterogeneous tundra ecosystems, and the need to evaluate spatial variability when upscaling EC site-level data to a larger domain.

Item Type: Publication - Article
Digital Object Identifier (DOI): https://doi.org/10.1088/1748-9326/ab4d32
UKCEH and CEH Sections/Science Areas: Atmospheric Chemistry and Effects (Science Area 2017-)
ISSN: 1748-9326
Additional Information. Not used in RCUK Gateway to Research.: Open Access paper - full text available via Official URL link.
Additional Keywords: eddy covariance, footprint modelling, heterogeneity, permafrost, wetlands, Arctic, ecosystem feedbacks
NORA Subject Terms: Ecology and Environment
Atmospheric Sciences
Date made live: 12 Mar 2020 16:40 +0 (UTC)
URI: https://nora.nerc.ac.uk/id/eprint/527234

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...