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Abstract
TheArctic iswarming at twice the rate of the globalmean. Thiswarming could further stimulate
methane (CH4) emissions fromnorthernwetlands and enhance the greenhouse impact of this region.
Arcticwetlands are extremely heterogeneous in termsof geochemistry, vegetation,microtopography,
andhydrology, and thereforeCH4fluxes can differ dramaticallywithin themetre scale. Eddy covariance
(EC) is one of themost usefulmethods for estimatingCH4fluxes in remote areas over longperiods of
time.However,when the areas sampledby these EC towers (i.e. tower footprints) are by definition very
heterogeneous, due to encompassing a variety of environmental conditions and vegetation types,
modelling environmental controls of CH4 emissions becomes evenmore challenging, confounding
efforts to reduce uncertainty in baselineCH4 emissions from these landscapes. In this study, we
evaluated the effect of footprint variability onCH4fluxes from twoEC towers located inwetlands on the
North Slope ofAlaska. The local domain of eachof these sites containswell developed polygonal tundra
aswell as a drained thermokarst lake basin.We found that the spatiotemporal variability of the footprint,
has a significant influence on the observedCH4fluxes, contributing between3%and33%of the
variance, depending on site, timeperiod, andmodellingmethod.Multiple indiceswere used todefine
spatial heterogeneity, and their explanatory power varieddependingon site and season.Overall, the
normalised differencewater indexhad themost consistent explanatorypower onCH4fluxes, though
generally onlywhenused in concertwith at least one other spatial index. The spatial bias (definedhere as
the difference between themean for the 0.36 km2domain around the tower and the footprint-weighted
mean)was between |51|%and |18|%depending on the index. This studyhighlights theneed for
footprintmodelling to infer the representativeness of the carbonfluxesmeasuredby EC towers in these
highly heterogeneous tundra ecosystems, and the need to evaluate spatial variabilitywhenupscalingEC
site-level data to a larger domain.

1. Introduction

Methane (CH4) emissions from Arctic permafrost soils
are a major source of uncertainty in the region’s future
global warming potential (Schuur and Abbott 2011,
IPCC 2013). The Arctic is warming at twice the rate of
the globalmean (BlundenandArndt 2019) and its frozen

permafrost soils store 1300–1370 Pg of organic carbon
(Hugelius et al 2014), twice the current atmospheric
stock (IPCC2013). By the year 2300, thawingpermafrost
could release between 381 and 616 Pg of carbon to the
atmosphere (Schuur et al 2013); and it is imperative to
know how much of this carbon will be released as CH4,
which on a per-molecule basis has a global warming
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potential 25–28 times greater than carbon dioxide (CO2)
(Forster et al 2007, Etminan et al 2016). One method of
measuring trace gas fluxes central to understanding the
current and future carbon budget is the eddy covariance
(EC) technique, as it can bridge the gap between smaller
plot scale chamber measurements and larger regional
scale remotely sensed (RS)data fromaircraft and satellite
(Baldocchi 2003, Chen et al 2009). There are, however,
challenges to using this technique in the Arctic’s hetero-
geneous landscapes (Davidson et al 2016) as it assumes a
uniform sampling area (Foken andWichura 1996). One
approach used to address this issue is footprint model-
ling (Vesala et al2008).

The spatial heterogeneity of Arctic wetlands is
often related to the presence of cryogenic processes,
where the formation and degradation of ice wedges,
leads to patterned ground formations such as poly-
gonal tundra (Brown 1967). The polygons consist of
distinct microtopographic features, namely rims,
troughs and polygon centres, which each have distinct
CH4 emission rates (Sachs et al 2010, Lara et al 2015,
Davidson et al 2016, Vaughn et al 2016). These features
have differential water drainage and soil moisture, a
well-established driver of CH4 production and con-
sumption, with water-logged anaerobic areas produ-
cing CH4 and dry areas sometimes acting as slight CH4

sinks (Valentine et al 1994, Segers 1998, Sachs et al
2010, Von Fischer et al 2010, Lipson et al 2012). Typi-
cally, rims are well-drained, while troughs are inun-
dated, with polygon centres being either convex (high-
centres) or concave (low-centres), depending on age,
and thus dry or wet respectively. Microtopography
also influences plant (Joabsson et al 1999, Von Fischer
et al 2010) and even microbe (Taş et al 2018) distribu-
tions which likewise impact CH4 production and
efflux. Sedges grow in water logged areas and release
organic acid root exudate that increases CH4 produc-
tion, furthermore, a number of species have aerenchy-
mal tissue which allows CH4 to avoid oxidation
by passing through the plant (McEwing et al 2015,
Andresen et al 2017). Additionally, Arctic wetlands are
further mosaiced due to the thermokarst thaw lake
cycle (Zona et al 2009, Sturtevant and Oechel 2013).
These lakes periodically drain, leaving depressions and
drainage channels that vary in the same factors affect-
ing CH4 emission in polygonal tundra. In addition to
spatial variation, CH4 fluxes vary over time, as water
table, thaw depth, soil temperature, plant productiv-
ity, and the available carbon pool, all major controls
on CH4 production, change throughout the year
(Zona et al 2009, Lipson et al 2012, Zheng et al 2018).

A flux tower footprint defines the area being sam-
pled by the EC tower (Leclerc and Thurtell 1990,Horst
andWeil 1994). Footprint modelling has been used to
enable the interpretation of EC data in variable land-
scapes (Schmid and Lloyd 1999, Göckede et al 2006,
Parmentier et al 2011, Tuovinen et al 2018), by assign-
ing relative flux contribution to specific areas based
on tower height, wind speed and direction, and

turbulence (Leclerc and Thurtell 1990, Schuepp et al
1990, Burba and Anderson 2010). There are a few dif-
ferent types of footprint models including one- and
two-dimensional analytic models, Lagrangian, large
eddy simulations, and closure models (Vesala et al
2008). Of these, the most commonly used are the ana-
lytical models, specifically the Kormann and Meixner
(2001), Kljun et al (2004), and Hsieh et al (2000)mod-
els, due to having relatively low computational com-
plexity and their applicability in a wide array of
experiments (Vesala et al 2008, Leclerc and
Foken 2014).

Footprint modelling has been utilised in several
ways to interpret flux variability in the Arctic. One way
footprint modelling can be used is to relate EC mea-
surements to chamber measurements by upscaling
them to the EC footprint. In a sub-Arctic mire site in
Finland, the Kormann and Meixner (2001) footprint
model was applied to get half-hourly footprint-weigh-
ted spatial indices, these were used as in-put for a pro-
cess-based model and improved the correlation
between growing season upscaled chamber CH4 fluxes
and EC flux estimates, with an increase in r2 from 0.41
to 0.72 (Hartley et al 2015). Budishchev et al (2014)
also used a footprint model to upscale the chamber
measurements to the EC scale, improving the r2 corre-
lation coefficient from 0.14 to 0.7, in a Russian poly-
gonal tundra. Davidson et al (2017) show a 20%–30%
improvement and an r2 of 0.88, across several tundra
sites in Alaska by using footprint modelling to upscale
chamber measurements to the EC tower fluxes. One
can also use footprint modelling when upscaling
fluxes to estimate sensor location bias (Schmid and
Lloyd 1999). This metric is the percent difference of a
spatial variable’s mean within the footprint and the
mean of the user-defined area to which one is upscal-
ing. In a study across the entire Canadian flux network
(Chen et al 2011), sensor bias was assessed through the
distribution of enhanced vegetation index and nor-
malised difference vegetation index (NDVI) showing
that four out of twelve sites presented a difference
higher than 5% between the EC tower annual foot-
prints (with 90% of the footprint generally within a
1 km2 radius) and the surrounding area (measured at
1, 2, and 3 km2 centred at the tower base). Importantly
the sites with the highest bias, ranging from −14% to
9%, were classifies as ombrotrophic bog (Chen et al
2011), a vegetation type similar to sites evaluated in
this study.More recently, in Siberian tundra Tuovinen
et al (2018) used footprint modelling on a half-hourly
time scale to parse CH4 sources and sinks by vegeta-
tion type, they also looked at the sites sensor location
bias and found a 14% when looking at leaf area index
regarding the wider 6.3 km2 around the base of the
tower.

The aim of this study is to evaluate the effect of
spatial heterogeneity on the CH4 fluxes measured by
EC method at two tundra sites located on a large wet-
land area in the North Slope of Alaska. First, we
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assessed whether the area sampled by the ECmeasure-
ment, as characterised by the footprint, was repre-
sentative of the 0.36 km2 domain around the tower.
This was done to determine if the area around the base
of the tower was suitable to link to RS data for the pur-
pose of upscaling. We then used statistical modelling,
to separate the variability in the measured flux arising
from the (i) temporal variability in the environmental
controls on the CH4 fluxes (temperature, soil moisture
etc), and (ii) the variability in the footprint, which
sampled different parts of the surrounding landscape
at different times. We expect the spatial variability in
the landscape to have a substantial influence on the
fluxes. We also expect that there may be significant
sensor bias between the tower footprint and the
domain around the tower, due to the inherent hetero-
geneity of polygonal tundra, which would need to be
considered for upscaling thefluxes.

2.Methods

2.1. Study sites
Two EC towers located near Barrow (Utqiaġvik), on
the North Slope of Alaska, were used in this study
(figure 1). Average annual temperature and precipita-
tion measured at the Barrow weather station, between
1948 and 2013, were−11.3 °C and 72 mm respectively
(Zona et al 2016). The two tower sites utilised for this
study include the and Biocomplexity Experiment
South (BES) and barrow environmental observatory
(BEO). BES and BEO are less than 1 km apart and have
similar environmental conditions. The sites share
similar vegetation cover, namely sedges (Eriophorum
russeolum, Carex aquatilis), grasses (Poa arctica), and
mosses (Dicranum spp.)with heights well below 40 cm
(Davidson et al 2016). A portion of the footprint area
for each of these sites takes the form of well-developed
polygonal tundra. Additionally, a substantial part of
the footprint in BES is occupied by a drained lake basin
(figures 1, 2). The water table within these sites is
highly variable given the very different microtopogra-
phy. Polygon rims are well-drained, while the polygon
centres and the drained lake areas have high variability
in water table (∼20 cm seasonal range), with some
troughs and particularly low-lying areas remaining
inundated through most of the summer (Zona et al
2009).

2.2. ECmeasurements and footprintmodelling
EC data were collected at 10 Hz with a Campbell
Scientific CSAT-3 sonic anemometer and a closed-path
LGR analysers (FGGA, Los Gatos Research, Mountain
View, CA, USA) at a height of ∼2–3 m (BES: 2.20 m,
BEO: 3.12 m). Fluxes were calculated with the EddyPro
software package (LI-COR) based on the methodology
described in Zona et al (2016). Data were filtered to
remove spikes and data unsuitable for footprint
modelling as described in Goodrich et al (2016) and

Foken et al (2004). Measurement of CH4 at these sites
between July of 2013 andNovember 2015 is used in this
study. TheECdata used in this study can be accessed via
theArcticDataCentre (Zona 2019).

The model of (Kormann and Meixner 2001) was
applied on a 600×600 m (0.36 km2) grid around the
towers to calculate the flux footprint for each half-
hourly period (equation (1)). This domain size was
chosen based on the assumption that most of the
measured fluxes originates within a radius equal to
100 times the height of the tower (Burba and
Anderson 2010). During stable atmospheric condi-
tions footprints are elongated and diffuse, leading to
some of footprint falling outside of the 0.36 km2

around the base of the tower. This was tolerated up to
the point where>15%of the footprint was outside the
0.36 km2 area, after which footprints were excluded
from the analysis. The grid spatial resolution was set to
1 m2, so that the small-scale variability of the polygon
troughs was represented. With this model, the prob-
ability of a grid cell with co-ordinates x, y contributing
to themeasured flux is:
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where sv is the standard deviation of lateral wind
speed, L is theMonin–Obukov length, u* is the friction
velocity, h is the height of the sensor, and u(h) is the
horizontal wind velocity at the measurement height.
Thus, w represents the relative contribution of each
grid cell to the measured flux. The raster grid of each
half-hourly footprint, w, can then be used as a
weighting factor to calculate the footprint-weighted
average of each of the spatial variables, such as
elevation orNDVI.

2.3. Temporal and spatial variables
At our towers, several variables used to explain CH4

variation were collected. Photosynthetically active
radiation (PAR) was measured at both sites with the
LI-190 LI-COR quantum sensors. A soil temperature
(TS) profile wasmeasured with thermocouples (type-T
or type E; Omega Engineering, OMEGA Engineering)
at 0, −10, −20 cm at BES and BEO. A soil moisture
profile recording soil water content (SWC) was
measured at BES with sensors at −10, −20, and
−30 cm using Campbell Scientific Water Content
Reflectors (CS616). Air temperature (TA) was mea-
sured using a Vaisala HMP 45 at the height of the
tower at all sites. The Campbell Scientific CSAT-3
sonic anemometer recorded atmospheric stability
(Zol), friction velocity (u*), and air pressure (PA). In
addition, one RS temporal data set was derived from
the MODIS satellite 16 d composite max NDVI
product (MOD13Q1, Collection-5), which has a
resolution of 250 m, and was extracted from the pixel
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containing BES and themajority of BEO’s footprint. It
was obtained from the NASA data portal for the
duration of the study period (Didan 2015). A LOcally
Estimated Scatterplot Smoothing (LOESS) curve was
fitted to MODIS data to provide a continuous time
series forNDVI

=
-
+

R

R
NDVI

NIR

NIR
. 2( )

The spatial metrics used in this study were
obtained as follows. High resolution topographic data
was derived from an airborne LiDAR survey con-
ducted on 12 July 2013 (Wilson and Altmann 2015).
The LiDAR derived digital elevationmodel (DEM) has
a horizontal resolution of 0.25 and a 0.143 m vertical
resolution. A WorldView-2 (WV2) multispectral
satellite image collected on the 6th of July 2013 was
used to calculate NDVI and normalised difference
water index (NDWI)

=
-
+
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G
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This image consists of 8 spectral bands with a
1.84 m horizontal resolution. Only this image was
used in this study, as it is the onlyWV2 image collected
during the study period, June 2013 to Dec 2015, free of
clouds and snow. Sedge cover was obtained from the
wetlands map created by the BAID project (Barrow
Area InformationDatabase) (Andresen et al 2017), this
product is also derived from WV2 data and classifies
the Barrow area according to the US Fish andWildlife
Service National Wetlands Inventory Code. For this
study, we reclassified the map to presence/absence
data for sedge cover, with classes PEM1A–PEM1F
indicating sedge cover (where PEM stands for palus-
trine area with emergent vegetation and the 1A–1F
relates to the duration of annual inundation). From
these datasets, four indices were calculated to char-
acterise spatial heterogeneity (figure 2). These inclu-
ded elevation (Elev), derived from the LiDAR DEM,

Figure 1. Left: the study sites are located on theNorth Slope of Alaska near the town of Barrow, a.k.a. Utqiaġvik. The EC towers used in
this study are Biocomplexity Experiment South (BES) and barrow environmental observatory (BEO). Their locations are indicated
with the triangles. The base image is a true colourGeoeye image fromDigitalGlobe. Right: the 50%, 80%, and 90%flux footprint
isolines for the study period are shown for each towerwith the LiDARdigital elevationmodel as a base layer.
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sedge cover, and the NDVI, equation (2) and NDWI,
equation (3), (Gao 1996), which are band ratios mea-
suring greenness and wetness respectively calculated
from theWV2 image.

For each of the four spatial indices (Elevation,
NDWI, NDVI, and Sedge Cover), we weighted the
values of the index (Î t) on the spatial grid with the
footprint probabilities wt (equation (5)), at each half-
hourly time step t of ECdata

å=I Iw . 5t t ( )

This yielded a time series of the spatial indices I ,( ˆ)
which show the changes in ecosystem properties sam-
pled by the tower footprint as it responded to shifts in
wind speed and direction. For the metrics of NDVI
and NDWI, it should be noted that only a single image

was available, so we assume the values reflect a pattern
of spatial variability which stays consistent over time.

The footprint-weighted spatial indices I( ˆ) were
compared with their mean value in the 0.36 km2

domain around the base of the tower. This domain
was chosen because we aimed to examine whether
tower footprints were representative of area from
which RS data would typically be extracted, as a gen-
eral assumption for EC towers is that the majority of
flux occurs within a radius of 100 times the height of
the tower (Burba and Anderson 2010).Thus, one
would normally expect the footprint values and the
local domain to be very similar. As a summary statistic,
we calculated the sensor location bias (sigma, d) devel-
oped by Schmid and Lloyd (1999) and Chen et al
(2011)

Figure 2. Four remotely sensed indices were used to define spatial heterogeneity. They are shown for the two sites, BES andBEO, over
the extent of the local domain, 0.36 km2, around the base of the EC towers. The 50%and 80% isolines are shown for the full period and
each season, to illustrate how the footprint shifts over time.
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d =
-I I

I
, 6

ˆ
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where Î is the footprint-weighted spatial index, and I
is the mean value of that index over the 0.36 km2

domain. Therefore, δ characterises the difference
between the spatial properties that are sampled by the
flux tower and the localmean.

2.4. Statistical analysis
We used linear regression modelling to evaluate the
explanatory power of the spatial and temporal vari-
ables on CH4 flux. First, we included all terms (i.e. the
temporal variables and the spatial indexes) into a full
model of the CH4 fluxes. The temporal variables used
were air temperature (TA), soil temperature (TS),
SWC, PAR, atmospheric stability (Zol), friction velo-
city (u*), air pressure (PA), andNDVI from theMODIS
satellite (NDVIMODIS). While the spatial variables

were Elev, NDVI, NDWI, and Sedge. Model selection
used a stepwise regression based on the Akaike
information criterion, a widely used goodness of fit
criteria. The adjusted R-squared was used to assess the
model’s explanatory power. To test collinearity in the
explanatory variables, the variance inflation factor
(VIF) was also calculated and variables that were
collinear (VIF>10) were not included in the same
model. The variables retained in themodel would thus
be significant with regards to influencing CH4 flux
variability. Analysis of variance (ANOVA) was used to
ensure that model iterations of the model where
statistically different from one another. The same
model selection process described here for the full
model was applied in all subsequent models. Further-
more, we separated the data by site and season, as well
as, modelling CH4 fluxes, using only either the
temporal or spatial variables.

Additionally, to more fully isolate the impact of
spatial variability in the footprint (i.e. difference
between true temporal variability and spatial varia-
bility), a two-step analysis was performed as follows.
Firstly, we fitted a linear model of CH4 flux as function
of the temporal variables. This thereby accounted for
the temporal variation in the fluxes. We then fitted a
model to the residuals of this linear model, including
only the footprint-weighted spatial indices to examine
whether some of the remaining variation could be
accounted for by the spatial heterogeneity.

We also examined seasonal and site influences on
flux by including them as factors in the full model.
Both season and site were significant in explaining the
variability in CH4 fluxes. Three seasonal periods were
defined based on the CH4 flux rates. The snow melt
period began with the first non-zero CH4 flux mea-
surement of the year and ending when NDVIMODIS

reached a value of 0.3, which corresponds to a produc-
tive grassland (Didan 2015). From that point the grow-
ing season period lasted until NDVIMODIS again went
below 0.3. Then came the post-growing season, which

consistedmostly of the ‘zero curtain’ period, when soil
remains unfrozen around zero degrees, was char-
acterised by stable and substantial CH4 emissions
rates, though lower than those during summer (Zona
et al 2016).

3. Results

3.1. Spatial variability and sensor location bias
The footprint modelling showed that there was
substantial variability in the footprint-weighted spatial
indices (figure 3). Themeans of the footprint-weighted
spatial indices deviated substantially from the means
for the 0.36 km2 domain; the magnitude of the sensor
location bias sigma, d, varied among sites and the
indices considered, ranging from |18|% to |51|%
(table 1, figure 3). BES was more inundated than BEO,
with generally higher sedge cover. BES presented a
more defined bi-modal distribution of the spatial
variables (figure 3), consistent with two very different
ecosystem typesmeasured: a drained lake basin (where
the EC tower was located), surrounded by polygonised
upland tundra. A wet meadow prevails east of the EC
tower within the drained lake basin and is charac-
terised by a lower elevation and higher sedge cover. A
drier ecosystem prevails west of the tower, with a
higher elevation and lower sedge cover (figure 2). The
δwas between |18|%and |32|%for nearly all the spatial
variables, except for NDWI at BES, which showed a δ
of more than |50|% (table 1). The lowest δ was in the
sedge cover and elevation in BES (table 1).

3.2. Temporal and spatial controls onCH4fluxes
Using a linear model, we could explain 60% of the
CH4 flux variability for the full methane flux dataset
(table 2). This model retained the temporal variables,
soil temperature (TS), SWC, and PAR, as well as, the
spatial indexes, NDVI and NDWI. Themodel includ-
ing only spatial variables, was able to explain 33% of
the variability in CH4 emissions; when the model was
limited to temporal variables, 53% of the variability in
CH4 emissions was explained, with soil temperature
(TS) having the largest explanatory power (51%)
(table 2). In the residual analysis and when the
temporal variation in the CH4 fluxes was accounted
for, the footprint-weighted spatial indices were able to
explain 7%of the remaining variability inCH4fluxes.

Table 1. Sensor location bias sigma (d), as defined byChen
et al (2011) as the normalised difference between the
footprint-weighted spatial index, and themean value of
that index over the area of interest, in this case the 0.36 km2

domain around the tower.

%δ Elevation Sedge NDVI NDWI

BES −18 18 −26 51

BEO −21 −32 −25 24
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In all periods, the single temporal variable with the
most explanatory power was soil temperature (TS),
except for the snow melt period at BEO, where
NDVIMODIS performed better. Generally, when sites
and seasons were modelled separately, the explanatory
power of the spatial indices doubled formost time per-
iods to ∼20% (table 2). During the curtain period at
BES the spatial indexes seemed to have little relevance
(table 2). There was, however, little consistency in
terms of which spatial index had explanatory power
and they often only achieved moderate explanatory
power evenwhen used together.

4.Discussion

The results of this study support the importance of
footprint modelling in heterogeneous environments,

as found in earlier studies (Budishchev et al 2014,
Tuovinen et al 2018). In previous work, Wang et al
(2016) used a threshold for δ of 10%, i.e. %d<|10|,
when evaluating flux towers in the Canadian flux
network, to determine if tower data would be suitable
for upscaling fluxes to the regional scale. The lowest
observed value of d in this study was |18|% spatial bias
and in the case of NDWI, one of the spatial metrics
that helped explain methane flux, had a bias of 51%
(table 1). In another recent study, Treat et al (2018)
found a 20%–65% underestimation of CH4 emissions
flux from a Siberian wetland site unless a high
resolution wetland classification was used. While
Tuovinen et al (2018), observed a somewhat contrast-
ing result, in a Siberian shrub tundra site, where
despite seeing a significant spatial bias (14%) and
formally showing a 13% overestimation of methane
flux for a 35.8 km2 area, the results were not

Figure 3.Variability in the spatialmetrics sampled by the EC towers, due to temporal variation in the footprint data from2013 to
2015, are shown by the grey bars. The y axis represents the frequency of footprint-weightedmeans of the spatial index over all half-
hourly observations. The footprint-weightedmean is shown by the solid thin black line and themean for the 0.36 km2 around the base
of the tower is shown by the dashed thick blue line.
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statistically significant. However, in this study they
attributed fluxes to specific land cover classes and
upscaled by using a single methane emission value for
each class, that were calculated bases onmeasurements
taken over one growning season. They acknowledged
their results are heavily dependent on the landcover
maps used and it could be a coincidence that the tower
footprint was similar to the area to their area of
interest. Additionally, they still concluded that in these
heterogeneous sites, detailed footprint analysis is
necessary, as they observed significant variability
within their shrub tundra site. Our results suggest a
similar over or underestimation of the CH4 emissions
could be generated if coarse-resolution data is used to
upscale the EC data without accounting for footprint
variability.

Our results indicate that variability in measured
CH4 flux can partially be attributed to changing foot-
print areas, in line with previous studies (Sachs et al
2010, Tagesson et al 2013). Overall, when site and sea-
son were accounted for, the explanatory power of the
spatial indexes varied between 3% and 33% (table 2).
During each season, different spatial metrics were bet-
ter flux predictors for each of the sites. This highlights
how polygonal tundra and the drained thermokarst
are somewhat distinct habitats. In terms of seasonal
variability, during the curtain period at BES the spatial
indexes had relatively lower explanatory power, per-
haps due to this area freezing up more uniformly. No
one spatial index proved to be the most reliable CH4

flux predictor, as the best results are often achieved
whenmultiple indexes are used concurrently. Even the
best spatial model left at least 40% of the variability in

CH4 fluxes unexplained. This could be linked to the
complex influence of these variables on CH4 release
not necessarily being captured by the simple models
used in this study (Sebacher et al 1983, Herbst et al
2011, Matthes et al 2014). For example, Göckede et al
(2019) found that 3%–4% of methane emissions in
their wetland study site in the Russian Arctic were in
the form of sporadic bursts; a linear model might not
be ideal to capture this type of emission pattern. Fur-
thermore, the snow melt season it is a period of rapid
transition, where NDVI and NDWI would vary
greatly. Subsequent research might significantly
improve the explanatory power of the spatial indices
by utilising drones to collect high-resolution time ser-
ies of these metrics. With appropriate development,
these results could further develop upscaling methods
and improve the extrapolation of the site-level data to
the regional scale.

5. Conclusions

The overarching result from this study is to highlight
the necessity of high-resolution footprint modelling
when interpreting EC data from heterogeneous envir-
onments. One cannot assume that the tower footprint
is representative of the even the immediate domain
around the tower. Our analysis also shows that the area
sampled by the towers differs from the surrounding
local domain by |18|% to |51|%, depending on the
spatial index used. The results of this study also show
that spatial variability in the EC tower footprint in
these Arctic wetlands sites accounts for a significant

Table 2.Results from linearmodelling. The ‘Explanatory Variables’ column indicates which variables were included as
follows: temporal: air temperature (TA), soil temperature (TS), soil water content (SWC), photosynthetically active
radiation (PAR), atmospheric stability (Zol), friction velocity (u*), air pressure (PA), NDVI from theMODIS satellite

(NDVIMODIS), Spatial: Elev, NDVI, NDWI, Sedge (half-hourly footprint weightedmeans), remotely sensed (RS):
NDVIMODIS.Y is the dependent variable beingmodelled, either CH4 emissions or the residuals from the temporal
models (RT) and the next two columns show the selected explanatory variables and the resulting adjusted r2 value, for
the indicated site, and season. All regressions shown are significantwith p-values<0.05.

Site Season Explanatory variables Y Model Adj. r2

Both All All CH4 NDVI+NDWI +TS+SWC+PAR 0.60

Temporal CH4 TS+SWC+PAR 0.53

Temporal CH4 TS 0.51

Spatial CH4 Elev+Sedge 0.33

RS CH4 NDVIMODIS 0.35

Spatial RT Elev+ NDVI+ +NDWI Sedge 0.07

BES Melt Temporal CH4 TS 0.20

Spatial RT Sedge 0.10

Growing Temporal CH4 TS 0.20

Spatial RT NDWI+Sedge 0.15

Curtain Temporal CH4 TS 0.27

Spatial RT Elev + NDVI+NDWI+Sedge 0.03

BEO Melt Temporal CH4 NDVIMODIS 0.27

Spatial RT NDVI+ NDWI 0.20

Growing Temporal CH4 TS 0.30

Spatial RT Elev + NDVI+ NDWI 0.22

Curtain Temporal CH4 TS 0.38

Spatial RT Sedge 0.17

8

Environ. Res. Lett. 14 (2019) 125010



amount of the half-hourly variance in the measured
CH4 flux. Models derived using high-resolution data
should not be directly applied to lower resolution RS
data, such as MODIS data, unless one accounts for
footprint variability. The explanatory power of the
spatial metrics varies, between 3% and 33%, depend-
ing on the site, time period and the modelling
approach. Recognising this potential source of error is
particularly valuable given that EC data are used to
estimate regional and global CH4 budgets.

To test the larger scale applicability of the results,
this analysis should be expanded to include data from
additional years and a variety of tundra sites across the
Arctic. One might also evaluate whether using differ-
ent footprint models, such as Vesala et al (2008) or
Kljun et al (2004), would help refine the footprint ana-
lysis. These steps would help develop an improved
methodology for upscalingCH4 fluxes in the Arctic.
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