Chiwa, Masaaki; Sheppard, Lucy J.; Leith, Ian D.; Leeson, Sarah R.; Tang, Y. Sim
ORCID: https://orcid.org/0000-0002-7814-3998; Cape, J. Neil
ORCID: https://orcid.org/0000-0002-5538-588X.
2019
P and K additions enhance canopy N retention and accelerate the associated leaching.
Biogeochemistry, 142 (3).
413-423.
10.1007/s10533-019-00543-y
Abstract
This study evaluated the interactive effects of combined phosphorus (P) and potassium (K) additions on canopy nitrogen (N) retention (CNR) and subsequent canopy leaching at a long-term N manipulation site on Whim bog in south Scotland. Ambient deposition is 8 kg N ha-1 year-1 and an additional 8, 24, and 56 kg N ha-1 year-1 of either ammonium (NH4+) or nitrate (NO3-) with or without P and K has been applied over 11 years. Throughfall N deposition below Calluna vulgaris and foliar N and P concentrations were assessed. Results showed that 60% for low dose and 53% for high dose of NO3- contrasting with 80% for low dose and 38% for high dose of NH4+ onto Calluna was retained by Calluna canopy. The CNR was enhanced by P and K addition in which 84% of NO3 - and 83% of NH4+ for high dose were retained.
CNR for NO3- increased the canopy leaching of dissolved organic N (DON) and associated organic anions. NH4+ retention increased canopy leaching of magnesium and calcium through ion exchange. Even over 11-years N exposure without P and K, foliage 29 N:P ratio of Calluna did not increase, suggesting that N exposure did not lead to N saturation of Calluna at Whim bog. Our study concluded that increases in P and K availability enhance CNR of Calluna, but accelerate the associated canopy leaching of DON and base cations, depending on foliar N status.
Information
Programmes:
UKCEH and CEH Science Areas 2017-24 (Lead Area only) > Atmospheric Chemistry and Effects
Library
Statistics
Downloads per month over past year
Metrics
Altmetric Badge
Dimensions Badge
Share
![]() |
