

Article (refereed) - postprint

Chiwa, Masaaki; Sheppard, Lucy J.; Leith, Ian D.; Leeson, Sarah R.; Tang, Y. Sim; Cape, J. Neil. 2019. **P and K additions enhance canopy N retention and accelerate the associated leaching.**

© Springer Nature Switzerland AG 2019

This version available http://nora.nerc.ac.uk/522093/

NERC has developed NORA to enable users to access research outputs wholly or partially funded by NERC. Copyright and other rights for material on this site are retained by the rights owners. Users should read the terms and conditions of use of this material at http://nora.nerc.ac.uk/policies.html#access

This is a post-peer-review, pre-copyedit version of an article published in *Biogeochemistry*, 142 (3). 413-423. The final authenticated version is available online at: <u>https://doi.org/10.1007/s10533-019-00543-y</u>.

There may be differences between this version and the publisher's version. You are advised to consult the publisher's version if you wish to cite from this article.

Contact CEH NORA team at <u>noraceh@ceh.ac.uk</u>

The NERC and CEH trademarks and logos ('the Trademarks') are registered trademarks of NERC in the UK and other countries, and may not be used without the prior written consent of the Trademark owner.

1	
2	
3	P and K additions enhance canopy N retention and accelerate
4	the associated leaching
5	
6	Masaaki Chiwa ¹ , Lucy J. Sheppard ² , Ian D. Leith ² , Sarah R. Leeson ² , Sim
7	Tang ² , J. Neil Cape ²
8	¹ Kyushu University Forest, Kyushu University, 394 Tsubakuro, Sasaguri, Fukuoka, 811-
9	2415, Japan
10	² Centre for Ecology & Hydrology (CEH) Edinburgh, Bush Estate, Penicuik, EH26 0QB,
11	UK
12	
13	Correspondence: Masaaki Chiwa
14	mchiwa@forest.kyushu-u.ac.jp

15 Abstract

16 This study evaluated the interactive effects of combined phosphorus (P) and potassium (K) additions on canopy nitrogen (N) retention (CNR) and subsequent canopy leaching 17at a long-term N manipulation site on Whim bog in south Scotland. Ambient deposition 18is 8 kg N ha⁻¹ yr⁻¹ and an additional 8, 24, and 56 kg N ha⁻¹ yr⁻¹ of either ammonium 19 (NH_4^+) or nitrate (NO_3^-) with or without P and K has been applied over 11 years. 2021Throughfall N deposition below *Calluna vulgaris* and foliar N and P concentrations were assessed. Results showed that 60 % for low dose and 53 % for high dose of NO₃⁻ and 222380 % for low dose and 38 % for high dose of NH4⁺ onto *Calluna* was retained by *Calluna* canopy. The CNR was enhanced by P and K addition in which 84 % of NO₃⁻ and 83 % of 24 NH_4^+ for high dose were retained. CNR for NO_3^- increased the canopy leaching of 25dissolved organic N (DON) and associated organic anions. NH4⁺ retention increased 2627canopy leaching of magnesium and calcium through ion exchange. Even over 11-years N 28exposure without P and K, foliage N:P ratio of Calluna did not increase, suggesting that N exposure did not lead to N saturation of Calluna at this study site. Our study concluded 29that increases in P and K availability enhance CNR of Calluna but accelerate the 30 associated canopy leaching of DON and base cations, depending on foliar N status. 31Keywords: Manipulation experiment; peatland; Calluna vulgaris; dissolved organic 32nitrogen; base cations; long-term study 33

34 Introduction

Atmospheric nitrogen (N) deposition has been increasing on a global scale (Galloway et 35al. 2008) and may affect peatland ecosystems which are sensitive to increased N 36deposition (Bobbink et et al. 1998). Calluna vulgaris, one of the dominant canopy-37forming species on many peatlands, can modify throughfall deposition (Bobbink et al., 381992). Understanding of canopy nitrogen (N) retention (CNR) and which factors affect 39retention is essential to quantifying total atmospheric N deposition and to evaluate its 40 41 ecological effects. CNR has been widely observed in throughfall measurements (Lovett 42and Lindberg 1993; Lovett et al., 1996; Staelens et al. 2008; Aguillaume et al., 2017; Avila et al., 2017; Pinkalski et al., 2018). In N manipulation experiments, the application 4344 of aliquots of N directly to the canopy (Cape et al. 2001; Chiwa et al. 2004; Gaige et al. 2007), has shown that CNR can lead to underestimation of total atmospheric N deposition. 45CNR often exceeded 75% of total N deposition to coniferous forests during the growing 46 season in the Niwot Forest with low (3 kg N ha⁻¹ during the growing season) atmospheric 47N deposition (Tomaszewski et al. 2003; Sievering et al. 2007). Even at a site with 48moderate or high (17–96 kg N ha⁻¹ year⁻¹) atmospheric N deposition, the canopy may 49

50	retain up to 40% (Lovett and Lindberg 1993; Chiwa et al. 2004) and 70% of total N
51	deposition (Gaige et al. 2007), respectively. CNR is an important factor affecting the
52	impact of elevated atmospheric N deposition on forest C sequestration (Tomaszewski and
53	Sievering, 2007; Dezi et al., 2010; Chiwa et al., 2012), suggesting the likelihood of an
54	important link with C sequestration in Calluna, a key component of peatland canopies.
55	Several researchers have explored factors affecting CNR including tree species
56	(Brumme et al., 1992; Eilers et al., 1992), canopy leaf area (Lovett et al., 1996; Wuyts et
57	al., 2008), leaf phenology (Houle et al., 1999; Hagen-Thorn et al., 2006), and leaf surface
58	condition (Boyce et al., 1991; Sase et al., 2008; Adriaenssens et al., 2011). However, little
59	information exists concerning the interactive effect of the availability of other nutrients
60	such as phosphorus (P) and potassium (K). Our first hypothesis is that increases in P and
61	K availability enhance the CNR, because P and K are also limiting in wetlands in addition
62	to N (Venterink et al., 2002).
63	The process of CNR remains elusive, especially for NO ₃ ⁻ . Chiwa et al. (2016)
64	showed that NO ₃ ⁻ retention by <i>Sphagnum</i> moss caused the leaching of DON and organic
65	anions from Sphagnum. However, it remains to be shown whether this process can be

66	applied to vascular plants. Canopy retention of NH_4^+ is usually accompanied by base
67	cation leaching (Bobbink et al., 1992; Krupa, 2003; Li et al., 2013; Staelens et al., 2008;
68	Stevens et al., 2011) and hydrogen ion (H ⁺) leaching (Krupa, 2003; Liu et al., 2013;
69	Manninen et al., 2011; Paulissen et al., 2004; Stevens et al., 2011; Tomassen et al., 2003).
70	Our second hypothesis is that the enhanced CNR by P and K addition accelerates canopy
71	leaching including DON and base cations.
72	To test these two hypotheses, this study aimed to 1) quantify CNR of Calluna
73	exposed with/without P and K addition and 2) explore the leaching from the canopy when
74	NO_3^- and NH_4^+ are taken up by a <i>Calluna</i> canopy with/without P and K. These objectives
75	were addressed using the N manipulation experiment on Whim bog in SE Scotland where
76	the theoretical input to the Calluna canopy can be calculated using known concentrations
77	and volumes of N treatments, giving us information about the input-output balances of
78	ions through a canopy and the possibility of exploring the processing of nitrogen retention
79	in the Calluna canopy.
80	

81 Materials and Methods

82 Study site

This study was conducted at an N manipulation experiment on 3-6 m of deep peatland 83 (282m a.s.l., 3°16'W, 55° 46'N) at Whim bog located c. 30 km south of Edinburgh in 84 Scotland. No active management has been conducted for at least 70 years. The vegetation 85is dominated by Calluna vulgaris, Eriophorum vaginatum, Sphagnum capillifolium, 86 Hypnum jutlandicum, Pleurozium schreberi and Cladonia portentosa which occur widely 87 on similar habitats through the northern hemisphere (Gore, 1983). Ambient N deposition 88 is 8 kg N ha⁻¹ yr⁻¹, consisting of wet deposition for NH_4^+ (*ca.* 3 kg N ha⁻¹ yr⁻¹) and NO_3^- 89 (ca. 3 kg N ha⁻¹ yr⁻¹), and dry deposition for NH₃ (2 kg N ha⁻¹ yr⁻¹) (Leith et al., 2004; 90 Sheppard et al., 2004; Sheppard et al., 2014). Mean annual values (and corresponding 91ranges) of temperature and precipitation between 2003 and 2013 were 7.9 (5.9 – 9.0) °C 92and 1,124 (734 - 1,486) mm, respectively. 93

94

95 Treatments

96 The experimental peatland area was divided into four replicated blocks each containing
 97 eleven 12.8 m² circular plots. To avoid contamination from adjacent plots, plots are 3 m

98	apart. The eleven different N treatments (Table 1), replicated in four plots, have been
99	supplied to each plot from a central spinning disc generating fine rain droplets all year
100	round since June 2002 (Sheppard et al., 2004). The wet N treatments are in addition to
101	the estimated ambient deposition of ca . 8 kg N ha ⁻¹ yr ⁻¹ and supply 10 % additional
102	rainwater (Sheppard et al., 2014). Potassium hydrogen phosphate (K ₂ HPO ₄) adjusted in
103	a 1:14 molar ratio (1:14 and 1:7 for P and K, respectively) to N was used as the P and K
104	treatments. Treatments are applied automatically when weather conditions meet the
105	following criteria: sufficient rainfall in the holding tanks, air temperature > 0 °C and wind
106	speed < 5 m s ⁻¹ simulating a much more realistic frequency scenario <i>ca</i> . 120 applications
107	yr ⁻¹ (Sheppard <i>et al.</i> , 2014).
108	

109 Sampling and chemical analysis

Six samplings were conducted for throughfall under *Calluna vulgaris* between July and October 2013 (Table 2). During the sampling period, 35 individual rainfall events, defined as > 1 mm of continuous precipitation over 6 hours, occurred, of which, 63%, 22 rainfall events were collected in this study (Table 2). The six samplings were

also typical events in terms of rainfall intensity (Table 2). 114

115	Before the sampling occurred the Calluna which is mostly in the
116	mature/degenerate phase (Sheppard et al., 2011; Carfrae et al., 2007) had already received
117	11 years of N treatment. Throughfall collectors for Calluna were made of a silicone tube
118	cut lengthwise (width 2.8-3.2 mm × length $150 - 200$ mm: c. 50 cm ²) draining into a 150
119	ml square polyethylene bottle. Prior to sampling, the sample bottles (100 mL HDPE) and
120	tubes were placed into a 1% Decon solution (Decon 90, Decon Laboratories Limited, East
121	Sussex, UK) for at least 24 h and then washed with distilled water. After drying, the tube
122	was connected to the polyethylene bottle using duct tape. The projected area of the tube
123	was measured with a ruler.
124	One throughfall collector was randomly placed under green Calluna vulgaris
125	shrubs (height 30-50 cm) in control and N treated plots prior to a rain event. Precipitation
126	was also collected in the open area at the study site using three collectors, each with a 20
127	cm diameter polyethylene funnel mounted 1.5 m above ground, draining to a 2 litre
128	polyethylene bottle.

Collected water samples were immediately transported back to the nearby

129

laboratory where aliquots were filtered through a 0.45 µm membrane filter (PuradiscTM, 130Whatman Inc., NJ, USA), and stored in the dark at 4°C. The following chemical 131determinations were carried out on the filtered pore water samples: pH by glass electrode 132(MP220, Mettler Toledo, Leicester, UK), major ions (Cl⁻, NO₃⁻, SO₄²⁻, Na⁺, K⁺, Ca²⁺, and 133Mg²⁺) by ion chromatography (CH-9101, Metrohm, Herisau, Swizerland), NH₄⁺ by 134AMmonia Flow Injection Analyser (AMFIA, ECN; Wyers et al. 1993), and dissolved 135total nitrogen by HPLC with a nitrogen specific detector (Model 8060, Antek Instruments, 136137Houston, USA). Dissolved inorganic N (DIN) concentrations were calculated as the sum of NO₃⁻ and NH₄⁺. The concentrations of dissolved organic nitrogen (DON) were 138calculated by subtracting DIN from the total N concentrations. Anion deficits were 139calculated by subtracting total anion ($Cl^2 + NO_3^2 + SO_4^{2-}$) concentration from total cation 140 $(H^+ + Na^+ + NH_4^+ + K^+ + Mg^{2+} + Ca^{2+})$ concentration. 141

142

143 Foliage sampling

To evaluate the nutrient status of *Calluna* in control and N treated plots, *Calluna*foliage (current year) was collected at the beginning of December 2013. One sample of

146	foliage was collected in each plot from similar green Calluna shoots. Collected foliage
147	samples were transported to the laboratory, then dried at 70 °C for 72 h, and ball milled.
148	Total N in foliage was determined by the combustion method (CN Corder MT-700;
149	Yanaco Co., Ltd., Tokyo, Japan). For P, the dried samples were heated at 550 °C for 2 h,
150	then digested using potassium peroxodisulfate (K ₂ S ₂ O ₈), and the P content was measured
151	using the molybdenum blue (ascorbic acid) spectrophotometric method (UV mini-1240;
152	Shimadzu, Kyoto, Japan). Standard reference material (NIST Apple Leaves 1515;
153	National Institute of Standards and Technology, Gaithersburg, MD, USA) was analyzed
154	along with leaf samples to ensure accuracy within 5% of known N and P concentrations.

155

156 Calculation and statistical analysis

157 CNR of NO_3^- and NH_4^+ by *Calluna* was calculated using the following 158 equations:

159
$$NO_3^-$$
 uptake_{plot x} = $(Na_{plot x}^+ - Na_{control}^+) - NO_3^-$ _{plot x}

160
$$NH_4^+$$
 uptake_{plot y} = $(Cl_{plot y}^- - Cl_{control}^-) - NH_4^+$ plot y

161 where the unit is μ mol m⁻² for the ions in throughfall. Na⁺_{control} and Cl⁻_{control} concentrations

162 were averaged over the 4 control plots.

163	In calculating the retention of N from the treatments in each plot, it was
164	assumed that the counter ions (ions of opposite charge in a solution) of oxidized and
165	reduced N treatments (<i>i.e.</i> Na ⁺ for NO ₃ ⁻ and Cl ⁻ for NH ₄ ⁺) were not retained by <i>Calluna</i> ,
166	but acted as conservative tracers, allowing the total amount of applied N to be estimated
167	from the throughfall of the counter ions. This assumption is based on the premise that Na ⁺
168	and Cl ⁻ in pore water are derived only from atmospheric deposition, such as rainfall, and
169	the treatment supplied in this study. Conservative tracer behaviour has been shown for
170	both Na ⁺ (Eppinga et al., 2008; Staelens et al., 2008) and Cl ⁻ (Appelo and Postma, 1994;
171	Bragazza et al., 2005).
172	Spearman's rank correlation coefficient (r) was used to examine the
173	relationships between CNR of NO_3^- or NH_4^+ and DON and the sum of Mg^{2+} and
174	Ca ²⁺ deposition. Statistical differences in deposition of DON, Mg ²⁺ and Ca ²⁺ , and anion
175	deficit among the plot were determined using Tukey's honest significant difference test
176	followed by analysis of variance. Statistical analyses were carried out using SPSS 22.0J
177	(SPSS Japan Inc., Tokyo, Japan).

179 **Results**

180	Throughfall deposition of NO_3^- and NH_4^+ below the <i>Calluna</i> canopy was 3.5 and 5.5
181	times respectively lower than bulk precipitation to the canopy (Figure 1). Figure 2 shows
182	the relationship between throughfall NO_3^- and counter ions of Na^+ (conservative tracer)
183	(Figure 2a) and NH_4^+ and counter ions of Cl ⁻ (conservative tracer) (Figure 2b). There
184	were linear relationships with slope value of 0.40 and 0.47 for NO_3^- of lower (8-32 kg N
185	ha ⁻¹ yr ⁻¹) and higher (16-64 kg N ha ⁻¹ yr ⁻¹) dose respectively (Figure 2a) and I still don't
186	understand why low is designated 8-32 and high 16=64 what do these values represent
187	why not 16 1nd 64 \ref{lower} 2.20 and 0.62 and for NH_4^+ of lower (8-32 kg N ha^{-1} yr^{-1}) and
188	higher (16-64 kg N ha ⁻¹ yr ⁻¹) dose respectively (Figure 2b). Calculating from the slope
189	values, 60 % for low dose and 53 % for high dose and 80 % for low dose of NO_3^- and
190	38 % for high dose of NH_4^+ total (ambient deposition plus fertilization) inputs onto
191	Calluna were retained by Calluna.

192 Slope values with P and K addition were lower for NO_3^- (0.16, Figure 2a) and 193 NH_4^+ (0.17, Figure 2b) for the higher N doses (16-64 kg N ha⁻¹ yr⁻¹) than those without P

194	and K, indicating the positive effects of P and K additions on CNR. Based on the slope
195	values, 84 % of NO_3^- and 83 % of NH_4^+ total (ambient deposition plus fertilization) inputs
196	onto the Calluna canopy were retained. Therefore, PK addition increased CNR by 31%
197	(53 \rightarrow 84%) and 45% (38 % \rightarrow 83%) for NO ₃ ⁻ and NH ₄ ⁺ , respectively. There were
198	significant differences in water depth, amount of deposition collected, of throughfall
199	among treatments (Figure 3).
200	There was a significant positive relationship between NO3 ⁻ retention by the
201	Calluna canopy and the concentration of DON in throughfall (Figure 4a), but there was
202	no increase in throughfall DON with retention of NH_4^+ by the <i>Calluna</i> canopy (Figure
203	4b). There was a significant positive relationship, with slope value of 0.49, between NH_4^+
204	retention by the <i>Calluna</i> canopy and the sum of magnesium (Mg ²⁺) and calcium (Ca ²⁺)
205	in throughfall (Figure 4d). There was a significant positive relationship between anion
206	deficit and DON concentration (Figure 5a). DON deposition (Figure 6a) and deposition
207	of anion deficits (Figure 6c) were significantly higher for Nox 56PK and Mg^{2+} and Ca^{2+}
208	deposition (Figure 6b) was significantly higher for Nred 56PK, indicating significance of
209	P and K addition. Figure 7 illustrates the total amount of N deposition collected under the

210	canopy exposed to N with and without P and K addition. P and K addition substantially
211	increased CNR for both Nox and Nred and DON leaching for Nox affecting the total N
212	deposition under the Calluna canopy.
213	Foliar N:P ratio in Calluna exposed to different levels of N addition did not
214	increase even after 11-years exposure without P and K (Figure 8a) and with P and K
215	(Figure 8b). Foliar N (Figure 8cd) and P (Figure 8ef) concentrations of Calluna increased
216	with increasing N deposition.
217	
218	Discussion
219	Calluna CNR
220	The presence of a Calluna canopy in peatlands will modify throughfall N deposition
221	(Figure 1), as suggested by Bobbink et al. (1992). Lower throughfall deposition of NO_3^-
222	
	and NH4 ⁺ than bulk precipitation indicates CNR by the Calluna canopy. In contrast,
223	and NH4 ⁺ than bulk precipitation indicates CNR by the <i>Calluna</i> canopy. In contrast, higher throughfall deposition of DON could be due to canopy leaching of dissolved
223 224	and NH4 ⁺ than bulk precipitation indicates CNR by the <i>Calluna</i> canopy. In contrast, higher throughfall deposition of DON could be due to canopy leaching of dissolved organic matter (DOM) and canopy processing of wet or dry-deposited inorganic nitrogen

226	atmospheric deposition of pollutants using throughfall collection. CNR has been widely
227	observed in throughfall measurements (Lovett and Lindberg 1993; Staelens et al. 2008;
228	Aguillaume et al., 2017; Avila et al., 2017; Pinkalski et al., 2018) and in N manipulation
229	experiments applied directly to the tree canopy (Cape et al. 2001; Chiwa et al. 2004;
230	Gaige et al. 2007). However, these studies mostly focused on trees in upland forests,
231	althoughCNR has also been observed in heathland (Bobbink et al., 1992; Limpens et al.,
232	2004). Bobbink et al (1992) recorded N retention of between 40-90% of net throughfall.
233	Here we discriminated between the N forms and against a background of 11 years of
234	known deposition and measured similar amounts of retention. Our results for retention,
235	even after 11 years' N applications (Figure 2) were 60 % for low dose and 53 % for high
236	dose of NO_3^- and 80 % for low dose and 38% for the high dose of NH_4^+ total (ambient
237	deposition plus fertilization). Different slope values between high and low doses of $\rm NH_4^+$
238	(Figure 2b) indicate that the capacity for canopy NH_4^+ retention varies with the dose of
239	atmospheric NH_4^+ deposition.

240

Increased CNR by P and K addition 241

242	Lower slope values with P and K addition than those without P and K (Figure
243	2) suggest that P and K additions enhance CNR of Calluna, supporting the first hypothesis.
244	84 % of NO_3^- and 83 % of NH_4^+ total (ambient plus fertilization) inputs onto <i>Calluna</i> was
245	retained by <i>Calluna</i> canopy, exceeding the 53 and 38 % of retention for NO_3^- and NH_4^+
246	by the Calluna canopy without P and K addition.
247	The reason for the increased CNR by P and K addition cannot be established
248	from this study, but it may have to do with enhanced N demand of Calluna exposed to P
249	and K treatment. Enhanced CNR could be caused by increased canopy area resulting from
250	increased biomass production and/or increased physiological activity per unit of surface
251	area. Canopy area is an important contributor to CNR (Lovett 1996 et al., 1996). However,
252	we have no evidence that the Calluna canopy area increased in response to P and K
253	addition. Although the morphology of the Calluna canopies exposed to various
254	treatments was not estimated in this study, water depth of throughfall (Figure 3) indicates
255	that the canopy area of Calluna exposed to N treatment with P and K addition does not
256	exceed the control or those without P and K addition, because throughfall volume is
257	inversely proportional to canopy area under the same meteorological condition, reflecting

258	canopy interception loss (Levia et al., 2006). It is possible that physiological activity per
259	unit of canopy area increased in response to P and K addition. The increased physiological
260	activity of the canopy may be the result of increased physiological activity of the shoots,
261	but also of any epiphytes living on the leaves which may be responsible for some of the
262	canopy exchange reactions observed. Measurements of photosynthesis made around the
263	same time, LICOR in the field, did not reveal significant treatment differences (Owen S.
264	pers comm). P and K addition did have positive effects on N assimilation of Sphagnum
265	moss, non-vascular plant (Limpens et al., 2004). However, to our knowledge, this is the
266	first study showing that increases in P and K availability enhance canopy N retention by
267	vascular plants.
268	
269	Increased DON and cation leaching with NO_3^- and NH_4^+ canopy retention by P and K
270	addition
271	The significant positive relationship between NO3 ⁻ retention by the Calluna
272	canopy and DON deposition in throughfall (Figure 4a) but no increase in DON deposition
273	with NH4 ⁺ retention by the <i>Calluna</i> canopy (Figure 4b) indicates the link between DON

274	leaching and <i>Calluna</i> canopy NO ₃ ⁻ retention, as found for <i>Sphagnum</i> moss (Chiwa et al.
275	2016). DON leaching appears to be associated with the leaching of organic N anions to
276	retain the charge balance when NO ₃ ⁻ is taken up, as suggested by the significant positive
277	relationship between anion deficit and DON concentration (Figure 5a).
278	The significant positive relationship with a slope value of 0.49 between NH_4^+
279	retention by Calluna canopy and the sum of Mg^{2+} and Ca^{2+} deposition of throughfall
280	(Figure 4d) indicates that NH4 ⁺ retention by <i>Calluna</i> canopy can be partly explained by
281	the leaching of Mg^{2+} and Ca^{2+} through ion exchange. We did not include potassium (K ⁺)
282	and hydrogen ion (H^+) to evaluate canopy leaching because K_2HPO_4 mist solution was
283	used for P and K addition. Canopy retention of NH4 ⁺ is usually accompanied by cation
284	leaching (Bobbink et al., 1992; Krupa, 2003; Li et al., 2013; Staelens et al., 2008; Stevens
285	et al., 2011) and hydrogen ion (H ⁺) leaching (Krupa, 2003; Liu et al., 2013; Manninen et
286	al., 2011; Paulissen et al., 2004; Stevens et al., 2011; Tomassen et al., 2003). Our result
287	was consistent with those of Bobbink et al (1992) for Calluna.

288 Significantly higher DON deposition for Nox 56PK (Figure 6a), higher Mg^{2+} 289 and Ca²⁺ deposition for Nred 56PK (Figure 6b), and higher deposition of anion deficits

290	for Nox 56PK (Figure 6c) indicate that P and K addition increased the DON and cations
291	leaching from the canopy associated with the increased canopy retention of NO_3^- and
292	NH4 ⁺ . Therefore, it is suggested that P and K additions accelerate the nutrient cycling of
293	substances leaching from the canopy. These results demonstrate that PK availability can
294	influence the cycling of N by the Calluna canopy (Figure 7).
295	

Effects of N status of Calluna on enhanced CNR and the associated canopy leaching with P and K addition

298	Foliar N concentrations of Calluna increased with increasing N deposition
299	(Figure 8cd), which is consistent with the study of Pitcairn et al. (1995) which found
300	significant increases in tissue N concentration of Calluna along a N deposition range from
301	15 to 30 kg N ha ⁻¹ yr ⁻¹ throughout Europe. Although there were not significant differences
302	for foliar P concentrations among the treatments, the stable N:P ratio (Figure 8a) must be
303	caused by increases in the foliar P concentration (Figure 8e). One plausible explanation
304	for the increases in P concentration is that Calluna may upregulate its P aquisition in order
305	to utilise the N, incorporate it into amino acids, rather than allow it to accumulate in toxic

306	forms, in response to increased N deposition. It is known that terrestrial plants allocate
307	excess N to proteins for enzyme production enabling increased enzyme activity, e.g. the
308	phosphatase enzymes, to enhance P availability, thus delaying the onset of P limitation
309	(Marklein and Houlton 2012; Maistry et al. 2015). If a higher leaf N:P ratio is indicative
310	of N saturation diagnosed from the leaf stoichiometry in wetlands (Koerselman and
311	Meuleman 1996; Gu ewell 2004; Chiwa et al., 2018), then the small increases in foliar
312	N:P ratio of Calluna exposed to different levels of N addition without P and K even after
313	11-years exposure (Figure 8a) and decreases in the N:P ratio with P and K (Figure 8b),
314	suggest that N exposure at this site does not cause N saturation in Calluna even for the
315	high N dose without P and K addition.
316	Chiwa et al. (2018) showed that Sphagnum tissue N concentration at this same
317	site also increased, whereas tissue P concentrations did not, in response to N dose.
318	Subsequently, Sphagnum N:P ratio did increase and Sphagnum exposed to NH4 ⁺ addition
319	of 56 kg N ha ⁻¹ yr ⁻¹ for 11 years became N-saturated. Therefore, it is suggested that
320	Calluna could have lower sensitivity than Sphagnum to elevated N deposition because
321	Calluna could enhance P acquisition via increased enzyme activity.

323 Conclusions

324	This study has provided the first results of enhanced canopy N retention by
325	increases in P and K availability. This study has advanced our understanding of canopy
326	N retention and the factors controlling its variation, improving our ability to evaluate
327	atmospheric N deposition and its ecological effects. It was found that DON and base
328	cation leaching are accelerated by the enhancement of canopy N retention, in which
329	canopy retention of NO_3^- and NH_4^+ was accompanied by leaching of DON and base
330	cations, respectively. Importantly this study has distinguished between the effects of
331	reduced versus oxidised N. More intensive measurements will be required to investigate
332	the seasonal effects of P and K addition on the CNR and the associated leaching.

333

334 Acknowledgements

This study was financially supported by NERC (CEH project NEC04591, Defra (CPEA
18), the EU projects NitroEurope IP (017841 (GOCE)) and ÉCLAIRE (FP7-ENV-2011
Grant 282910), and JSPS KAKENHI (JP26450198 and JP17H03833).

338

339 References

- 340 Adriaenssens S, Staelens J, Wuyts K, de Schrijver A, Van Wittenberghe S, Wuytack T, Kardel F,
- 341 Verheyen K, Samson R, Boeckx P (2011) Foliar nitrogen uptake from wet deposition and the relation
- with leaf wettability and water storage capacity. Water Air and Soil Pollution 219(1-4): 43-57
- 343 Aguillaume L, Izquieta-Rojano S, García-Gómez H, Elustondo D, Santamaría JM, Alonso R, Avila A
- 344 (2017) Dry deposition and canopy uptake in Mediterranean holm-oak forests estimated with a canopy
- budget model: A focus on N estimations. Atmospheric Environment 152: 191-200
- 346 Appelo CAJ, Postma D (1994) Geochemistry, Groundwater and Pollution. AA Balkema.
- 347 Avila A, Aguillaume L, Izquieta-Rojano S, Garcia-Gomez H, Elustondo D, Santamaria JM, Alonso R
- 348 (2017) Quantitative study on nitrogen deposition and canopy retention in Mediterranean evergreen
- 349 forests. Environ Sci Pollut Res Int 24(34): 26213-26226
- 350 Bobbink R, Heil GW, Raessen M (1992) Atmospheric deposition and canopy exchange processes in
- heathland ecosystems. Environmental Pollution 75(1): 29-37
- Bobbink R, Hornung M, Roelofs JGM (1998) The effects of air-borne nitrogen pollutants on species
 diversity in natural and semi-natural European vegetation. Journal of Ecology 86(5): 717-738
- Boyce RL, Mccune DC, Berlyn GP (1991) A comparison of foliar wettability of red spruce and balsam
 fir growing at high elevation. New Phytologist 117:543–555.
- 356 Bragazza L, Limpens J, Gerdol R, Grosvernier P, Hajek M, Hajek T, Hajkova P, Hansen I, Iacumin P,
- 357 Kutnar L, Rydin H, Tahvanainen T (2005) Nitrogen concentration and delta¹⁵N signature of
- ombrotrophic Sphagnum mosses at different N deposition levels in Europe. Global Change Biology
 11(1): 106-114
- Brumme R, Leimcke U, and Matzner E (1992) Interception and uptake of NH₄⁺ and NO₃⁻ from wet
 deposition by aboveground parts of young beech (*Fagus sylvatica* L) trees. Plant and Soil 142: 273–
- 362 279
- 363 Cape JN, Dunster A, Crossley A, Sheppard LJ, Harvey FJ (2001) Throughfall chemistry in a Sitka
- spruce plantation in response to six different simulated polluted mist treatments. Water Air and Soil
 Pollution 130(1-4): 619-624
- Cape JN, Sheppard LJ, Crossley A, van Dijk N, Tang YS (2010) Experimental field estimation of
 organic nitrogen formation in tree canopies. Environmental Pollution 158(9): 2926-2933
- 368 Carfrae JA, Sheppard LJ, Raven JA, Leith ID, Crossley A (2007) Potassium and phosphorus additions
- 369 modify the response of Sphagnum capillifolium growing on a Scottish ombrotrophic bog to enhanced
- 370 nitrogen deposition. Applied Geochemistry 22(6): 1111-1121

371 Chiwa M, Crossley A, Sheppard LJ, Sakugawa H, Cape JN (2004) Throughfall chemistry and canopy

interactions in a Sitka spruce plantation sprayed with six different simulated polluted mist treatments.
Environmental Pollution 127(1): 57-64

- 374 Chiwa M, Matsuda T, Nakatani N, Kobayashi T, Kume A, Sakugawa H (2012) Effects of canopy N
- 375 uptake on foliar CO₂ assimilation rates and biomass production and allocation in Japanese red pine
- seedlings. Canadian Journal of Forest Research 42(7): 1395-1403
- Chiwa M, Sheppard LJ, Leith ID, Leeson SR, Tang YS, Cape JN (2016) *Sphagnum* can 'filter' N
 deposition, but effects on the plant and pore water depend on the N form. Sci Total Environ 559:
- 379 113-120
- 380 Chiwa M, Sheppard LJ, Leith ID, Leeson SR, Tang YS, Cape JN (2018) Long-term interactive effects
- of N addition with P and K availability on N status of *Sphagnum*. Environmental Pollution 237: 468 472
- 383 Dezi S, Medlyn BE, Tonon G, Magnani F (2010) The effect of nitrogen deposition on forest carbon
- 384 sequestration: a model-based analysis. Global Change Biology 16(5): 1470-1486
- Eilers G, Brumme R, Matzner E (1992) Aboveground N-uptake from wet deposition by norway spruce
 (*Picea-abies* karst). Forest Ecology and Management 51(1-3): 239-249
- Eppinga MB, Rietkerk M, Borren W, Lapshina ED, Bleuten W, Wassen MJ (2008) Regular surface
 patterning of peatlands: confronting theory with field data. Ecosystems 11(4): 520-536
- 389 Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai ZC, Freney JR, Martinelli LA, Seitzinger
- 390 SP, Sutton MA (2008) Transformation of the nitrogen cycle: Recent trends, questions, and potential
- 391 solutions. Science 320(5878): 889-892
- 392 Gaige E, Dail DB, Hollinger DY, Davidson EA, Fernandez IJ, Sievering H, White A, Halteman W
- (2007) Changes in canopy processes following whole-forest canopy nitrogen fertilization of a mature
 spruce-hemlock forest. Ecosystems 10(7): 1133-1147
- 395 Gore AJP. 1983. Ecosystems of the world 4A mires: Swamp, bog, fen and moor. Elsevier, Amsterdam.
- 396 Güsewell S (2004) N : P ratios in terrestrial plants: variation and functional significance. New
- 397 Phytologist 164(2): 243-266
- 398 Hagen-Thorn A, Varnagiryte I, Nihlgard B, and Armolaitis K (2006). Autumn nutrient resorption and
- losses in four deciduous forest tree species. Forest Ecology and Management 228: 33–39.
- 400 Houle D, Ouimet R, Paquin R, Laflamme JG (1999) Interactions of atmospheric deposition with a
- 401 mixed hardwood and a coniferous forest canopy at the Lake Clair Watershed (Duchesnay, Quebec).
- 402 Canadian Journal of Forest Research 29(12): 1944-1957

- 403 Koerselman W, Meuleman AFM (1996) The vegetation N:P ratio: A new tool to detect the nature of
- 404 nutrient limitation. Journal of Applied Ecology 33(6): 1441-1450
- 405 Krupa SV (2003) Effects of atmospheric ammonia (NH₃) on terrestrial vegetation: a review.
 406 Environmental Pollution 124(2): 179-221
- 407 Leith I, Sheppard L, Fowler D, Cape JN, Jones M, Crossley A, Hargreaves K, Tang YS, Theobald M,
- 408 Sutton M (2004) Quantifying Dry NH₃ Deposition to an Ombrotrophic Bog from an Automated NH₃
- 409 Field Release System. Water, Air, & Soil Pollution: Focus 4(6): 207-218
- 410 Levia DF, Frost EE (2006) Variability of throughfall volume and solute inputs in wooded ecosystems.
- 411 Progress in Physical Geography 30(5): 605-632
- 412 Li W, Gao F, Liao X (2013) Estimating chemical exchange between atmospheric deposition and forest
- 413 canopy in Guizhou, China. J Environ Qual 42(2): 332-340
- Limpens J, Berendse F, Klees H (2004) How phosphorus availability affects the impact of nitrogen
- deposition on Sphagnum and vascular plants in Bogs. Ecosystems 7(8): 793-804
- 416 Liu XY, Koba K, Makabe A, Li XD, Yoh M, Liu CQ (2013) Ammonium first: natural mosses prefer
- 417 atmospheric ammonium but vary utilization of dissolved organic nitrogen depending on habitat and
- 418 nitrogen deposition. New Phytologist 199(2): 407-419
- Lovett GM, Lindberg SE (1993) Atmospheric deposition and canopy interactions of nitrogen in forests.
 Canadian Journal of Forest Research 23(8): 1603-1616
- 421 Lovett GM, Nolan SS, Driscoll CT, Fahey TJ (1996) Factors regulating throughfall flux in a new New-
- 422 Hampshire forested landscape. Canadian Journal of Forest Research 26(12): 2134-2144
- 423 Maistry PM, Muasya AM, Valentine AJ, Chimphango SBM (2015) Increasing nitrogen supply
- 424 stimulates phosphorus acquisition mechanisms in the fynbos species Aspalathus linearis. Funct.
- 425 Plant Biol. 42(1): 52-62
- 426 Manninen S, Woods C, Leith ID, Sheppard LJ (2011) Physiological and morphological effects of
- 427 long-term ammonium or nitrate deposition on the green and red (shade and open grown) Sphagnum
- 428 capillifolium. Environmental and Experimental Botany 72(2): 140-148
- 429 Marklein AR, Houlton BZ (2012) Nitrogen inputs accelerate phosphorus cycling rates across a wide
- 430 variety of terrestrial ecosystems. New Phytologist 193(3): 696-704
- 431 Paulissen MPCP, Van Der Ven PJM, Dees AJ, Bobbink R (2004) Differential effects of nitrate and
- 432 ammonium on three fen bryophyte species in relation to pollutant nitrogen input. New Phytologist433 164(3): 451-458
- 434 Pinkalski C, Jensen K-MV, Damgaard C, Offenberg J, McCulley R (2018) Foliar uptake of nitrogen
- from ant faecal droplets: An overlooked service to ant-plants. Journal of Ecology 106(1): 289-295

- 436 Pitcairn, C.E.R., Fowler, D., Grace, J., 1995. Deposition of fixed atmospheric nitrogen and foliar
- 437 nitrogen-content of bryophytes and *Calluna-vulgaris* (L) Hull. Environmental Pollution 88, 193-205.
- 438 Sase H, Takahashi A, Sato M, Kobayashi H, Nakata M, Totsuka T (2008) Seasonal variation in the
- 439 atmospheric deposition of inorganic constituents and canopy interactions in a Japanese cedar forest.

440 Environmental Pollution 152(1): 1-10

- 441 Sheppard LJ, Crossley A, Leith ID, Hargreaves KJ, Carfrae JA, van Dijk N, Cape JN, Sleep D, Fowler
- D, Raven JA (2004) An automated wet deposition system to compare the effects of reduced and
- 443 oxidised N on ombrotrophic bog species: Practical considerations. Water, Air, & Soil Pollution:
 444 Focus 4(6): 197-205
- 445 Sheppard LJ, Leith ID, Mizunuma T, Leeson S, Kivimaki S, Neil Cape J, van Dijk N, Leaver D, Sutton
- 446 MA, Fowler D, Van den Berg LJ, Crossley A, Field C, Smart S (2014) Inertia in an ombrotrophic
- 447 bog ecosystem in response to 9 years' realistic perturbation by wet deposition of nitrogen, separated
- 448 by form. Global Change Biology 20(2): 566-580
- Sheppard LJ, Leith ID, Mizunuma T, Cape JN, Crossley A, Leeson S, Sutton MA, van Dijk N, Fowler
 D (2011) Dry deposition of ammonia gas drives species change faster than wet deposition of
 ammonium ions: evidence from a long-term field manipulation. Global Change Biology 17(12):
 3589-3607
- 453 Sievering H, Tomaszewski T, Torizzo J (2007) Canopy uptake of atmospheric N deposition at a
 454 conifer forest: part I -canopy N budget, photosynthetic efficiency and net ecosystem exchange. Tellus
 455 B 59(3): 483-492
- 456 Staelens J, Houle D, De Schrijver A, Neirynck J, Verheyen K (2008) Calculating dry deposition and
 457 canopy exchange with the canopy budget model: Review of assumptions and application to two
 458 deciduous forests. Water Air and Soil Pollution 191(1-4): 149-169
- 459 Stevens CJ, Manning P, van den Berg LJ, de Graaf MC, Wamelink GW, Boxman AW, Bleeker A,
- 460 Vergeer P, Arroniz-Crespo M, Limpens J, Lamers LP, Bobbink R, Dorland E (2011) Ecosystem
- responses to reduced and oxidised nitrogen inputs in European terrestrial habitats. Environ Pollut159(3): 665-676
- 463 Tomassen HBM, Smolders AJP, Leon PML, Roelofs JGM (2003) Stimulated growth of Betula
- 464 pubescens and Molinia caerulea on ombrotrophic bogs: role of high levels of atmospheric nitrogen
- deposition. Journal of Ecology 91(3): 357-370
- 466 Tomaszewski T, Boyce RL, Sievering H (2003) Canopy uptake of atmospheric nitrogen and new
- 467 growth nitrogen requirement at a Colorado subalpine forest. Canadian Journal of Forest Research
- 468 33(11): 2221-2227

- 469 Tomaszewski T, Sievering H (2007) Canopy uptake of atmospheric N deposition at a conifer forest:
- 470 Part II response of chlorophyll fluorescence and gas exchange parameters. Tellus Series B 59(3):
 471 493-501
- 472 Venterink HO, Pieterse NM, Belgers JDM, Wassen MJ, De Ruiter PC (2002) N, P, and K Budgets
- along Nutrient Availability and Productivity Gradients in Wetlands. Ecological Applications 12(4):
- 474 1010-1026
- 475 Wuyts K, De Schrijver A, Staelens J, Gielis M, Geudens G, and Verheyen K (2008) Patterns of
- throughfall deposition along a transect in forest edges of silver birch and Corsican pine. Canadian
- 477 Journal of Forest Research 38: 449–461.
- 478 Wyers GP, Otjes RP, Slanina J (1993) A continuous flow denuder for the measurement of ambient
- 479 concentrations and surface fluxes of ammonia. Atmos. Environ. 27A: 2085–2090
- 480
- 481

482 Figure Captions

Figure 1 Effect of *Calluna* canopy on nitrate (NO₃⁻), ammonium (NH₄⁺), and dissolved organic nitrogen (DON) deposition. Bars represent standard deviation (n = 3 for rainfall and n = 4 for throughfall).

Figure 2 Relationship between a) throughfall sodium (Na⁺) deposition and throughfall nitrate (NO₃⁻) deposition and between b) throughfall chloride (Cl⁻) deposition and throughfall ammonium (NH₄⁺) deposition.

490

491 **Figure 3** Rainfall and throughfall depth (mm). Bars represent standard deviation (n = 3

492 for rainfall and n = 4 for throughfall).

493

Figure 4 Relationship between throughfall deposition of dissolved organic nitrogen (DON) and retention of a) NO_3^- and b) NH_4^+ . Relationship between throughfall deposition of magnesium (Mg²⁺) and calcium (Ca²⁺) and retention of c) NO_3^- and d) NH_4^+ .

497

Figure 5 Relationship between throughfall deposition of anion deficits and dissolved
organic nitrogen (DON) for a) Nox and b) Nred.

500

Figure 6 Throughfall deposition of a) dissolved organic nitrogen (DON), b) magnesium (Mg²⁺) + calcium (Ca²⁺), and c) anion deficit. Bars represent standard deviation (n = 4).

Figure 7 Effect of P and K addition on throughfall deposition of nitrate (NO₃⁻), ammonium (NH₄⁺), and dissolved organic nitrogen (DON) deposition. Bars represent standard deviation (n = 4).

507

Figure 8 Relationship of nitrogen (N) deposition (the sum of ambient N deposition and
applied N) with *Calluna* foliage of N:P ratio, N concentration, and phosphorus (P)
concentration. Background N deposition is *ca*. 8 kg N ha⁻¹ yr⁻¹ (Leith *et al.*, 2004;
Sheppard *et al.*, 2004).

Figure 1 Chiwa et al.

Figure 2 Chiwa et al.

Figure 3 Chiwa et al.

Figure 4 Chiwa et al.

Figure 5 Chiwa et al

Figure 6 Chiwa et al.

Figure 7 Chiwa et al.

Figure 8 Chiwa et al

Treatment	Components	Concentration	Total annual input	
		$(mmol L^{-1})$	$(kg ha^{-1} yr^{-1})$	
Control			8 kg N ha ⁻¹ yr ⁻¹	
Nox 8	NaNO ₃	0.57	16 kg N ha ⁻¹ yr ⁻¹	
Nox 24	NaNO ₃	1.71	32 kg N ha ⁻¹ yr ⁻¹	
Nox 56 Nred 8	NaNO ₃ NH4Cl	4.0	64 kg N ha ⁻¹ yr ⁻¹	
		0.57	16 kg N ha ⁻¹ yr ⁻¹	
Nred 24	NH ₄ Cl	1.71	32 kg N ha ⁻¹ yr ⁻¹	
Nred 56	NH4Cl	4.0	64 kg N ha ⁻¹ yr ⁻¹ 8 kg N ha ⁻¹ yr ⁻¹	
Nox 8PK	NaNO ₃	0.57		
	K ₂ HPO ₄	0.018	0.57 kg P ha ⁻¹ yr ⁻¹	
			1.4 kg K ha ⁻¹ yr ⁻¹	
Nox 56PK	NaNO ₃	4.0	64 kg N ha ⁻¹ yr ⁻¹	
	K ₂ HPO ₄	0.13	4 kg P ha ⁻¹ yr ⁻¹	
			10 kg K ha ⁻¹ yr ⁻¹	
Nred 8PK	NH ₄ Cl	0.57	16 kg N ha ⁻¹ yr ⁻¹	
	K ₂ HPO ₄	0.018	0.57 kg P ha ⁻¹ yr ⁻¹	
			1.4 kg K ha ⁻¹ yr ⁻¹	
Nred 56PK	NH ₄ Cl	4.0	64 kg N ha ⁻¹ yr ⁻¹	
	K ₂ HPO ₄	0.13	4 kg P ha ⁻¹ yr ⁻¹	
			10 kg K ha ⁻¹ yr ⁻¹	

Table 1 Composition of the artificial mist treatments applied to the Whim bog peatland in each of the 11 different treatment plots. The total annual input is the cumulative application from *ca.* 120 treatments.

				-			-	
TF control	Air Temp	Rainfall	Rainfall	Rainfall	Number	Collection	Setup	Sampling
volume	(°C)	intensity	duration	depth	of rainfall			
(mm)		(mm/h)	(h)	(mm)	events			
8.4	11.7	1.0	20	18.0	2	4 Jul	1 Jul	1
12.2	16.5	4.3	8	25.0	2	25 Jul	22 Jul	2
5.6	12.5	1.5	25	14.8	4	13 Aug	5 Aug	3
4.7	13.4	1.3	60	15.2	5	2 Sep	19 Aug	4
9.9	9.6	0.7	34	24.8	4	17 Sep	10 Sep	5
10.1	11.5	0.5	52	21.6	5	8 Oct	24 Sep	6
38.6	12.2	1.6	199	114	22	llected period	Col	
NA	13.1	1.5	351	250	35	All period (1 Jul - 8 Oct)		

Table 2 Meteorological condition at each event for throughfall (TF) collection