nerc.ac.uk

Tuning without over-tuning: parametric uncertainty quantification for the NEMO ocean model

Williamson, Daniel; Blaker, Adam T. ORCID: https://orcid.org/0000-0001-5454-0131; Sinha, Bablu. 2017 Tuning without over-tuning: parametric uncertainty quantification for the NEMO ocean model. Geoscientific Model Development, 10 (4). 1789-1816. https://doi.org/10.5194/gmd-10-1789-2017

Before downloading, please read NORA policies.
[img]
Preview
Text (Open Access paper)
gmd-10-1789-2017.pdf - Published Version
Available under License Creative Commons Attribution.

Download (16MB) | Preview
[img] Archive (Open Access paper - Supplement)
gmd-10-1789-2017-supplement.zip - Published Version
Available under License Creative Commons Attribution.

Download (109MB)

Abstract/Summary

In this paper we discuss climate model tuning and present an iterative automatic tuning method from the statistical science literature. The method, which we refer to here as iterative refocussing (though also known as history matching), avoids many of the common pitfalls of automatic tuning procedures that are based on optimisation of a cost function; principally the over-tuning of a climate model due to using only partial observations. This avoidance comes by seeking to rule out parameter choices that we are confident could not reproduce the observations, rather than seeking the model that is closest to them (a procedure that risks over-tuning). We comment on the state of climate model tuning and illustrate our approach through 3 waves of iterative refocussing of the NEMO ORCA2 global ocean model run at 2° resolution. We show how at certain depths the anomalies of global mean temperature and salinity in a standard configuration of the model exceeds 10 standard deviations away from observations and show the extent to which this can be alleviated by iterative refocussing without compromising model performance spatially. We show how model improvements can be achieved by simultaneously perturbing multiple parameters, and illustrate the potential of using low resolution ensembles to tune NEMO ORCA configurations at higher resolutions.

Item Type: Publication - Article
Digital Object Identifier (DOI): https://doi.org/10.5194/gmd-10-1789-2017
ISSN: 1991-959X
Date made live: 24 Feb 2017 09:44 +0 (UTC)
URI: https://nora.nerc.ac.uk/id/eprint/516367

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...