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Abstract. In this paper we discuss climate model tuning and
present an iterative automatic tuning method from the sta-
tistical science literature. The method, which we refer to
here as iterative refocussing (though also known as history
matching), avoids many of the common pitfalls of automatic
tuning procedures that are based on optimisation of a cost
function, principally the over-tuning of a climate model due
to using only partial observations. This avoidance comes by
seeking to rule out parameter choices that we are confident
could not reproduce the observations, rather than seeking the
model that is closest to them (a procedure that risks over-
tuning). We comment on the state of climate model tuning
and illustrate our approach through three waves of iterative
refocussing of the NEMO (Nucleus for European Modelling
of the Ocean) ORCA?2 global ocean model run at 2° resolu-
tion. We show how at certain depths the anomalies of global
mean temperature and salinity in a standard configuration of
the model exceeds 10 standard deviations away from obser-
vations and show the extent to which this can be alleviated
by iterative refocussing without compromising model perfor-
mance spatially. We show how model improvements can be
achieved by simultaneously perturbing multiple parameters,
and illustrate the potential of using low-resolution ensembles
to tune NEMO ORCA configurations at higher resolutions.

1 Introduction

The development of ocean, atmosphere, and coupled climate
models represents a huge scientific undertaking that is hap-
pening simultaneously and relatively separately throughout
the world’s modelling centres and within the many univer-

sities that collaborate with them. Recently, with increasing
importance placed on the comparison of models through
Model Inter-comparison Projects (MIPs), such as the Cou-
pled Model Inter-comparison Projects (CMIP3 and CMIP5,
Meehl et al., 2007; Taylor et al., 2012), development of these
models has entered cycles in which a few years of devel-
opment of the models led up to the submission of a set of
globally organised experiments, wherein the performance of
each model can be compared and projections of the mod-
els under different future forcing scenarios and in different
modes (e.g. atmosphere only) can be studied in order to ex-
plore, in some sense, uncertainty in future climate change
due to differences in the models (we do not comment on
the validity of this practice here). The next such experiment
is CMIP6, which will be completed in 2017. Initially, the
model development cycle may involve an increase in resolu-
tion and the replacement, improvement, or inclusion of new
features or sub-gridscale parameterisation schemes that char-
acterise the physical behaviour of the code when it is run.
When improvements are made to the model, which are based
on an improved physical understanding of the world and/or
improved computer power that enables a similar model to
be run at a higher resolution, the performance of the model
can be assessed by comparing the output to observations or
reanalyses. Invariably, the model will not initially perform
as well as its predecessor, by which we mean “be as close
to” many of the observations that the modellers care about.
This is only to be expected as many of the new parameterisa-
tions will have “free parameters”, numbers that may or may
not have a physical interpretation but are needed in order to
run the model, and whose values are unknown. Additionally,
carefully “optimised” values of free parameters in schemes
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that have survived the improvements in resolution and pro-
cess representation are unlikely to still be optimal and may
even force the model climate into very unphysical regimes.
The next phase of the model development is now increas-
ingly known as a “tuning” phase (Mauritsen et al., 2012;
Gent et al., 2011; Hourdin et al., 2016), whereby changes
are made either to the parameters or to schemes in order to
bring the model “closer” to observations. Currently, tuning is
a highly subjective process and the experiments done in or-
der to tune the model will vary greatly between the different
centres. Mauritsen et al. (2012) argued for tuning procedures
to be documented and published at the end of a development
cycle. What they described as tuning involved many phases,
some revisiting and potentially changing parameterisations.
Furthermore, any tuning method characterised in this way
is and must be subjective, requiring a great deal of physical
insight into the processes being parameterised and the lim-
itations of the physical description given. However, there is
a part of the procedure that can and should be more auto-
matic. Once suitable physical descriptions have been fixed
(the parameterisations), we must choose the free parameters
of these parameterisations so that, to the extent that the fun-
damental limitations of the parametric description and res-
olution of the model allow, the model adequately represents
the physical processes we know and the observations of them
that we have. Stated in this way, tuning of the free parame-
ters is an optimisation problem and, furthermore, there is no
reason that this should be done by hand.

It is easy to cast tuning (of the free parameters at least) as
an optimisation problem, but in fact viewing it as such has in-
herent limitations and ignores much of what we know about
the capability of the models and the nature of the observa-
tions we are using to benchmark them. There are a number of
problems with optimisation in ocean, atmosphere, and cou-
pled climate model tuning and we will devote more space
to the discussion of this in Sect. 3.4. Concisely, the main is-
sues are that, first, any observational metrics that we would
use have uncertainty associated with them so that, for any
given metric, we would expect a region of parameter space,
rather than a single value of the parameters, will be consistent
with the data (and choosing only one representative value
risks over-tuning) and, second, that optimising the model to-
wards one set of observational metrics is likely (perhaps al-
most certain) to lead to models that have unacceptable values
for metrics that have not been used in automatic tuning. This
last limitation has meant that modelling centres have been
cautious in using optimisation procedures suggested by other
academic communities, such as statistics, preferring instead
to change a small number (e.g. one or two) of parameters at a
time by hand and investigating a large number of metrics “by
eye” to ensure no major new biases are introduced (see e.g.
Johns et al., 2006; Megann et al., 2014). Throughout this pa-
per we will argue for automatic tuning methods, but against
tuning as an optimisation problem.
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Instead, we will argue that in the presence of uncertainty in
either observation or process-based metrics and in the pres-
ence of inherent limitations (structural errors) in the repre-
sentation of the physics, tuning should be an exercise in lo-
cating regions of parameter space wherein the model is pre-
dicted to be consistent with the observations and the rel-
evant uncertainties. The behaviour of the model through-
out this region represents a source of uncertainty in our
inference about the real world termed parametric uncer-
tainty. This parametric uncertainty can be particularly per-
tinent for studies of complex problems such as the stabil-
ity of the Atlantic meridional overturning circulation (MOC)
(Williamson et al., 2013) and, furthermore, it should be quan-
tified and, at least representative models, reported as the final
step in a tuning exercise.

Even tuning methods such as Bayesian calibration
(Kennedy and O’Hagan, 2001; Rougier, 2007; Sexton et al.,
2011), which explicitly quantify parametric uncertainty in
the form of a probability distribution for model parameters,
can also be described as forms of optimisation (they assume
the existence of a single optimum or “best input” and perform
inference for it) and hence suffer from some of the draw-
backs stated above. For example, one such drawback is that
the Bayesian solution always gives a “most likely” value of
this best parameter setting, which, in the context of climate
models that are tuned and submitted to CMIP, can represent a
property of the analysis that is easy to misuse or misinterpret
(e.g. in the ways we discussed above with respect to using a
single “optimal” value when only optimising the partial state
vector).

The method we describe in this paper is different in that
we do not push the parameter settings towards those that are
close to the metrics we are tuning with, or weight them with
respect to how close they are given the uncertainty in those
metrics. We avoid this for the reasons given above. Instead
we use the tuning metrics to rule out regions of the parameter
space that are too far from these, refocussing our search in the
remaining parameter space with new insight into the model
behaviour in the key regions and with new metrics.

The method we advocate is known more widely as “his-
tory matching and iterative refocussing” (Craig et al., 1996;
Vernon et al., 2010; Williamson et al., 2013); however, here
we will refer to it as iterative refocussing, as this name lends
itself more naturally to climate model tuning. We believe it-
erative refocussing is a very natural and automatic mimic of
the way that models are currently tuned by hand. We make
the most of physical insight and leave the decision about the
final model (if there is only to be one) or representative set of
models (more ideally) to the modellers when they have been
given a set that have passed the tests they have been submit-
ted to.

Iterative refocussing has other benefits too, allowing us to
formally define and locate structural errors as well as offering
the modellers insight into the way the model responds to the
perturbation of multiple parameters at the same time. Such

www.geosci-model-dev.net/10/1789/2017/



D. B. Williamson et al.: Tuning without over-tuning

insight can lead to focus on improving particular parameter-
isations or work on particular parts of the model; thus, our
method represents a tool that can be used within a model de-
velopment program.

In this paper we present the first application of itera-
tive refocussing (or multi-wave history matching) to a GCM
(general circulation model) tuning problem and discuss the
unique aspects of applying this methodology to such prob-
lems within modelling centres. In Sect. 2 we describe the
numerical model and experimental protocol we use for this
study. Section 3 describes the method, and Sect. 4 the ap-
plication of the method to our chosen numerical model. We
then present a comparison of a model representative of the
“tuned” parameter space with both observations and the nu-
merical model’s standard configuration (Sect. 5), and con-
clude with a comment on and an example of the application
of iterative refocussing to high-resolution models (Sect. 6)
and a discussion (Sect. 7).

2 NEMO-ORCA2
2.1 Model description

We use NEMO (Nucleus for European Modelling of the
Ocean) ORCA2 (Madec, 2008) v3.5 in the global ORCA2
(2°) configuration. The model grid is tripolar isotropic mer-
cator, with enhanced meridional resolution in the tropics and
31 z coordinate vertical levels increasing in thickness from
10 m at the surface to 500 m in the abyssal ocean. It is forced
with the CORE-2 normal year forcing (Large and Yeager,
2004, 2008). Ice is represented by the Louvain-la-Neuve Ice
Model version 2 (LIM2) sea ice model (Timmermann et al,
2005). Climatological initial conditions for temperature and
salinity were taken in January from PHC2.1 (Steele et al.,
2001) at high latitudes, MEDATLAS (Jourdan et al., 1998) in
the Mediterranean, and elsewhere (Levitus et al., 1998). Con-
figurations of ORCA?2 have been widely used for scientific
studies (e.g. Friocourt et al., 2005; Timmermann et al, 2005),
and have also participated in coordinated ocean ice reference
experiments (Griffies et al., 2009). NEMO is the ocean com-
ponent of a large number of the world’s climate models (He-
witt et al., 2011; Dufresne et al., 2013; Fogli et al., 2009;
Voldoire et al., 2013; Hazeleger et al., 2012). We obtained
the source code from http://www.nemo-ocean.eu, along with
an ORCA?2 “reference” configuration and namelist contain-
ing a default set of values for each parameter and switch.

2.2 Parameter space elicitation

Following discussions with Gurvan Madec (personal com-
munication, 2013) we chose to vary parameters and switches
for the numerical ocean model, which were of most interest
to the community, deliberately avoiding schemes that were
at the time under development, known to be a poor choice or
to have stability issues, or were soon to be deprecated in a
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future release. We then elicited plausible ranges for each of
the parameters of interest (Table 1). A new parameter con-
trolling the shape of the turbulent kinetic energy penetration
below the mixed layer, rn_htau, was added to the code to
examine the sensitivity of the model to the fixed parameter
choice of 30 m.

For the purpose of this study we do not consider uncertain-
ties in the model domain (bathymetry) or initial conditions,
the surface forcing data or the bulk formulae through which
the surface fluxes are derived, or the parameter choices made
for the reference configuration of the LIM2 sea ice model.
As part of a comprehensive tuning of NEMO within a mod-
elling centre, each of these additional uncertainties might be
taken into consideration, though this is not current practice.
To ensure that it would be possible to complete the study
with the available computational resources, we chose to con-
sider only the parameter space of the numerical ocean model
component.

2.3 Ensemble design and experimental protocol

We use a method involving Latin hypercubes detailed in
Sect. 3.3 to construct an initial ensemble of 400 integra-
tions of ORCA2. Each ensemble member was integrated on
ARCHER, the UK National High Performance Computing
Service. Output was processed and transferred to disk stor-
age at the National Oceanography Centre.

We chose to integrate each ensemble member for
150 years starting from rest. In choosing this length of inte-
gration, we considered several factors, including the compu-
tational cost of the simulations, the desire to achieve a steady
state (or at least a state where the effects of spin up, or model
drift, are small), and our desire to be able to realistically
achieve similar lengths of integration at higher resolutions
in future. A 150-year integration is sufficiently long for the
upper ocean to reach a quasi-equilibrated state, although the
deep ocean will continue to drift for several thousand years,
with consequent effects on the upper ocean.

As part of a tuning procedure based on optimisation, the
length of integration is a crucial decision, particularly for
ocean-only or coupled GCMs. This is because the ocean can-
not reach equilibrium in a time frame compatible with tun-
ing. Hence any optimisation procedure potentially fixes the
parameters of a drifting model so that at the exact time we
halt the integration (in our application, after 150 years and
in high-resolution examples, 30 years; Megann et al., 2014)
the drift has met the observations. We also note that the real
ocean has never been in equilibrium and hence a tuning pro-
cedure that works by comparison to observations may not
require an equilibrated ocean.

Figure 1 shows the global mean potential temperature, and
Fig. 2 the global mean salinity, each as a function of depth,
for the 400 members of our ensemble.
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Table 1. Parameters varied during the study, the process they are attributed to, and a brief description of the physical process they control.
Column 5 shows the values assigned to each parameter in the “standard” namelist. Columns 4 and 6 show the lower and upper bounds that

were elicited.

Parameter Process Description Low Standard High
rn_sil Penetr. solar rad. shortest depth of extinction 10 23 30
rn_deds Surface bdy cond.  salinity damping —166.67

rn_shlat Lat. momentum boundary slip condition 0 2 2
rn_bfril Bottom friction bottom drag coefficient 1x1073 4x10~% 1x1073
rn_ahtbbl Bottom bdy layer  lateral-mixing coef 1000 1000 10000
rn_gambbl Bottom bdy layer  advective coef 0 10 100
In_traldf_grif =~ Lat. diffusion (tr.)  use griffies triads TRUE

rn_aeiv_0 Lat. diffusion (tr.) 1 in ORCA2/1 (switch) 1

rn_aht_0 Lat. diffusion (tr.)  Horizontal eddy diffusivity 400 2000 4000
rn_ahm_0_lap Lat. diff. (mom.) Horizontal eddy diffusivity 10000 40000 100000
rn_avmQ Vert. physics eddy viscosity (m2 s 1x1075  12x107% 15x1074
rn_avt0 Vert. physics eddy diffusivity (m?2s~1 1x107® 12x1075 15x107
rn_ediff TKE vert. diff. eddy coef 0.05 0.1 0.5
rn_ediss TKE vert. diff. Kolmogorov dissipation coef 0.1 0.7 0.7
rn_ebb TKE vert. diff. surface input coef 4.75 67.83 100
rn_emin TKE vert. diff. minimum value 1x1077 1x1076 1x1076
nn_mxl TKE vert. diff. mixing length scale switch 2 switch(2) 3
rn_mxl0 TKE vert. diff. surf. buoy. length scale min value 0.01 0.04 0.5
m_lc TKE vert. diff. Langmuir cell coef 0.05 0.15 0.5
rn_efr TKE vert. diff. fraction of surf. TKE which 0 0.05 0.1

penetrates below ML
rn_htau TKE vert. diff. exponential decrease of 0.5 30 50
TKE below ML

rn_htmx Tidal mixing turbulence decay scale 100 500 1000
rn_tfe Tidal mixing dissipation efficiency 0.1 0.333 0.9
rm_me Tidal mixing mixing efficiency 0.1 0.2 0.4

3 Tuning with iterative refocussing

The procedure we describe here will be referred to as itera-
tive refocussing. It is most commonly referred to as history
matching (Craig et al., 1996; Vernon et al., 2010; Williamson
et al., 2013) and has also been called “history matching and
iterative refocussing” (Craig et al., 1997) and “precalibra-
tion” (Edwards et al., 2011). We prefer to focus on the “it-
erative refocussing” term rather than history matching when
applying these methods to numerical model tuning in this
paper, as we want to highlight the importance of the iterative
nature of the procedure and how it compliments model tun-
ing. The idea is based on running ensembles in a pre-defined
parameter space, using them to train statistical emulators that
predict the key metrics from the model output (reporting with
it the uncertainty on the prediction), and then using the emu-
lator to rule out regions of parameter space that are “too far”
from observations. We formalise the procedure below.

Geosci. Model Dev., 10, 1789-1816, 2017

Though history matching has been applied to GCM class
models before by Williamson et al. (2013) and Williamson
et al. (2015), they only performed this analysis for one
“wave” due to their ensemble being one of opportunity.
The method is most powerful when refocussing steps are
taken. Having cut the parameter space down, a new per-
turbed physics ensemble is run within the remaining parame-
ter space, and the procedure is repeated. This is aptly termed
refocussing because with each new ensemble in a reduced
space, we increase the density of our ensemble, thus improv-
ing the performance of our statistical emulators and refining
the search for potentially good models.

3.1 Selection of metrics

Typical tuning procedures are examples of optimisation
(Yang et al., 2012; Zou et al., 2014; Zhang et al., 2015),
where the goal is to find the setting of the model parame-
ters that represents the model that is somehow “closest” to
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Figure 1. Global mean potential temperature as a function of depth
from EN3 (red, with error bounds indicated by red dashed lines),
all wave 1 ensemble members (grey), standard ORCA?2 (dark blue),
World Ocean Atlas (pink; Locarnini et al., 2013), the initial state
(gold), and GOS5 averaged over years 19962005 (Megann et al.,
2014) (blue dotted). (a) shows a vertical zoom of the top 800 m,
whilst (b) shows the full depth.

a set of pre-chosen observations or metrics. Tuning by iter-
ative refocussing represents a completely different philoso-
phy and approach to the problem. Instead of looking for the
best model, we look to rule out entire regions of parameter
space as inconsistent with reproducing the metrics of interest
to within an acceptable tolerance to error. This tolerance to
error is certainly subjective, in one sense, as tolerance to a
model’s ability to reproduce certain metrics will depend on
the requirements of the modelling centre. For example, a cen-
tre concerned with forecasting or climate projections for Eu-
rope will be far more intolerant to error in European temper-
atures and in processes around the North Atlantic than will
an Asian modelling centre concerned with projections of the
monsoon. However, the tolerance to error must be bounded
below by the uncertainty in the observations, which must be
quantified and included in order to avoid over-tuning, and
therefore there is an objective minimum tolerance to error.
When tuning a model or a model sub-component, a suite of
diagnostics will be observed by the modellers. The choice of
diagnostics is often based on readily available observational
datasets, therefore typically surface quantities, although it
can also include more qualitative diagnostics based on ex-
pert judgement. Typical types of quantities used will include
zonal, area, or volume-integrated means, key volume, heat
and salt transport metrics, and two-dimensional (2-D) spatial
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Figure 2. Global mean salinity as a function of depth from EN3
(red, with error bounds indicated by red dashed lines), all wave 1 en-
semble members (grey), standard ORCA?2 (dark blue), World Ocean
Atlas (pink; Zweng et al., 2013), the initial state (gold), and GOS av-
eraged over years 1996-2005 (Megann et al., 2014) (blue dotted).
(a) shows a vertical zoom of the top 800 m, whilst (b) shows the full
depth.

anomaly fields. The most fundamental question when com-
paring a model to observations in this way is “what does
close mean?” For example, how can we judge whether an
area-integrated mean-depth profile is “close” to a similar
curve derived from a data product?

Uncertainty in the observations is a minimum starting
point. To illustrate this further, we take as an example the
Atlantic MOC. If we observe the mean MOC to be around
17.5Sv with a standard error of 1.5 (Cunningham et al.,
2007), we might use that to construct a 95 % confidence in-
terval, say [14.5, 20.5] (using 2 standard errors around the
mean as a guide). If we had a perfect model, it would then
be reasonable to observe a model result of 22 Sv and to think
that this was too far from the observations, hence leading to
a requirement for tuning. But a model result of 15 Sv would
be perfectly consistent with the data and there could be no
justification for tuning to get it closer to 17.5 Sv, because
“close” is defined by our uncertainty and we are already close
enough. Indeed, the uncertainty stated in this way makes it
clear that the observations themselves could be 15 Sv. If they
could not, our uncertainty is misspecified and is too large.

Whilst having a quantification of observation uncertainty
is a crucial minimum starting point when tuning, we must
also have some idea of the structural error present in the
model. Structural error, also called model discrepancy, repre-
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sents the inherent limitations of the model description of the
relevant metrics due to resolution, unresolved sub-gridscale
processes, misspecified parameterisations, lack of complete
physical knowledge, and error in numerical solvers. For ex-
ample, we could not expect to get the position of the gulf
stream right in a 2° ocean model for anything other than the
wrong physical reasons. Since “structural error” is “real”, for
any given metric, we might think of this as a random quan-
tity that could be estimated using a combination of expert
modeller judgement and information from dynamic observa-
tions and process-based high-resolution simulations. Despite
much reference to structural error in the literature (Kennedy
and O’Hagan, 2001; Sexton et al., 2011; Bryjarsdottir and
O’Hagan, 2014), quantification of the uncertainty for the ran-
dom quantity within climate science remains as far away as
ever, particularly in the modelling centres and at the tuning
phase.

In fact, part of the point of the tuning phase is to learn
about structural error and to find out whether or not limita-
tions of the current version of the model are due to the pa-
rameterisations or to the choice of free parameters. If errors
can be “tuned out” with better choices of the free parame-
ters, they may not be not structural at all, they may be para-
metric and the goal of tuning is to find and remove errors
due to poor choices of the free parameters. For this reason,
Williamson et al. (2013) suggested that instead of thinking of
the underlying structural error, we consider our tolerance to
model error. We can then think about the minimum distance
a model metric would have to be from the observations be-
fore we would be prepared to use it in future projections or as
part of a coupled simulation. This is a more natural descrip-
tion of the way models are tuned anyway, with focus given to
those metrics or processes that the modellers feel they need
to get right (and how near they need to be in order to have
confidence in the model) during the tuning.

When selecting metrics for tuning, the following ingredi-
ents are crucial:

1. It is judged physically reasonable/desirable and impor-
tant to use the proposed metric to constrain the model
by the developers.

2. We have a quantification of the uncertainty in the met-
rics. Without this, we do not know how close we are nor
when we have succeeded.

3. The metric actually provides sufficient constraint on the
parameter space: certain metrics may be physically im-
portant, but do not vary sufficiently as the model param-
eters are varied to make them useful in tuning (McNeall
et al., 2013).

3.2 Emulators

When we have selected the metrics we would like to use to
constrain the model, the principle of our method is to cut
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any region of parameter space where the model metric is not
close enough to the observations. If the model were inex-
pensive (of the order 1 s to evaluate), we could do this using
it directly (Gladstone et al., 2012). However, this would re-
quire hundreds of thousands, or even millions of model eval-
uations, which is not feasible. The solution to this is to run
a carefully designed smaller ensemble of the model, chang-
ing all parameters simultaneously, and using that ensemble to
train an “emulator” that can take the place of the full model
when exploring and cutting parameter space.

An emulator is a statistical model that can predict some of
the output of our climate model (the metrics we have chosen)
as a function of the model parameters, quantifying our uncer-
tainty in the prediction. Furthermore, we can use it as a tool
to assist in tuning, using the emulator to point to regions of
parameter space that are of more interest so that we can then
further interrogate the climate model there.

Let the free parameters or inputs of the climate model
be denoted by the vector x, where each x is a point in d-
dimensional parameter space X'. Let the climate model itself
be f(x), a vector-valued function of those inputs. We ac-
knowledge here that numerical models also have forcing in-
puts; for example, the NEMO ocean GCM we use in this
study receives surface fluxes of momentum and buoyancy
through a set of bulk formulae, which interpret a dataset of
observed quantities such as air temperatures and wind speeds
at a distance of a few metres above the ocean. We could in-
clude both the bulk formulae and the observational dataset in
x, or we could consider them to be part of the functional form
f (). In our application, they are considered part of f(-), but
we discuss forcing in Sect. 7.

An emulator for f(x) can then usually be written as

i) =D B;g;(x)+e€(x), (1)
J
€ (x) ~GP(0,Ci(,;¢))).,

where the vector g(x) contains specified basis functions in
X, the matrix B is a set of coefficients to be fitted, GP stands
for “Gaussian process”, an infinite-dimensional extension of
the normal distribution, the C;s are pre-specified covariance
functions, and the ¢;s are their parameters. The basis func-
tions can be anything from simple monomials to complex
non-linear expressions in x and allow us to add physical in-
sight into the emulator where we have it. We can think of
the left-hand term in Eq. (1) as a mean function, capturing
“global” or large-scale relationships (those that occur across
the whole parameter space).

The Gaussian process can be thought of as a residual term,
capturing “local” variability around our global mean func-
tion. The covariance function and its parameters specify how
much variability there is and how smooth the residual pro-
cess is as we move through parameter space by quantifying
the correlation between the residual from our mean function
at any two points in parameter space. A common choice, for
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example, is the separable exponential power covariance func-
tion

Cx,x';¢) = 2
d

02(vl(x =x).+1-v) Hexp{—9k|xk —X//C|Kk})v
k=1

¢ ={o,v,0,k}

(where we assume that x = x” implies that the model runs
are identical and there are no perturbations to initial condi-
tions). Note that in this formulation, setting the correlation
parameters @ and the nugget term v (the proportion of resid-
ual variability due to internal variability) to O leads to the
more familiar regression equation with uncorrelated indepen-
dent errors. This is often used as a fast and approximate emu-
lator for climate models and has been seen as “good enough”
in a number of studies for calibration and history matching
(Rougier et al., 2009; Sexton et al., 2011; Williamson et al.,
2013). However, Salter and Williamson (2016) show that re-
taining correlation between input parameter choices in the
Gaussian process is important in iterative refocussing as the
amount of space reduction at each wave can be significantly
affected, as can the final inference.

The emulators we describe are Bayesian models, though
emulators that do not require probability distributions at all
are used by, e.g., Williamson et al. (2013). Our emulators
can be completed by specifying a prior distribution 7 (8, ¢)
and then updated using an ensemble of runs of the climate
model. Let our ensemble be run at n points in X, Xy,..., X,
(collected into matrix X) and denote ( f(X1),..., f(X,)) by
F. We discuss details of emulator parameter estimation for
NEMO in Sect. 4, but we show the update for f(x) by F
given B and ¢ here to illustrate how model simulations affect
our uncertainty. The posterior distribution f(x)|F, {8, ¢} is

JiG)|F.{B.¢;} ~ GP(m™(x),C* (-, ¢;))

with

m*(x) = Z,Bijgj(x) + K(X)V_I(F - Zﬂijgj(x))
J J
C*(x,x';¢)=C(x,x';¢) — K(x)V'K(x"T,

where V is the n x n matrix with i jth element C(X;, X;; ¢),
and K (x) is the vector with jth element C(x,X;; ¢). The
same equations are used in Kalman filtering and in optimal
interpolation for producing data-based reanalyses (Ingleby
and Huddlestone, 1997) (because each can be seen as an up-
date of a Gaussian process, but that is beyond the scope of
this paper).

A great deal of free software exists (in R and other plat-
forms) for fitting Gaussian processes (building emulators),
and estimating the parameters. However, we include the up-
dating equations for the process to highlight two important
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features that are relevant for tuning. The first is that the mean
function m*(x) will interpolate the ensemble if v =0, and
will be pulled towards the ensemble members (to within the
amount of internal variability specified or estimated) if not.
The second is that the uncertainty as characterised by the
posterior variance C*(x, x; ¢) shrinks to the internal vari-
ability, vo2, at the ensemble design points in X. The larger
the ensemble the lower our uncertainty in the prediction of
the climate model and the closer our prediction will be to the
true values of the model output. Though this can be inter-
preted as an argument for very large ensembles, it is actually
an argument for a high density of ensemble members in those
regions of parameter space where the model performs most
like reality, and this reason forms a principal motivation for
our approach to cutting parameter space in waves. We com-
ment further on ensemble design in the next subsection.

3.3 Ensemble design

The design of ensembles for iterative refocussing (or multi-
wave history matching) is a relatively new area of research.
The general principles are similar to those of one-off design
of computer experiments. Namely, attempt to “fill” parame-
ter space as uniformly as possible, and, if possible, aim for
minimal correlation between the parameters in the design.
The first goal leads to designs that are classed as “space fill-
ing” and the second to designs that are “orthogonal”. There
is a large literature on space filling and orthogonal designs
for computer experiments, largely based on the Latin hyper-
cube (Morris and Mitchell, 1995). A Latin hypercube for an
N-member ensemble divides the margins of each model pa-
rameter into N intervals and ensures that there is exactly one
representative of each interval in the ensemble. Computer ex-
periment design usually then comes down to a question of
which “flavour” of Latin hypercube to use and how large N
should be.

The principles of space filling and orthogonal designs are
important as they aim to allow us to build emulators that are
as accurate as possible throughout parameter space, and thus,
in our context, to rule out as much space in one wave as pos-
sible. Similarly, guidelines on how large N needs to be are
mainly heuristic and aimed at making sure the estimates of
the parameters in the emulator (particularly the correlation
parameters) are accurate. The principle guideline used in the
literature is N = 10p where p is the number of model param-
eters (Loeppky et al., 2009). However, the size of the ensem-
ble can be significantly reduced without impacting emulator
accuracy if data from lower-resolution models are available
(Kennedy and O’Hagan, 2000; Williamson et al., 2012; Le
Gratiet, 2014, also see Sect. 6).

Our wave 1 ensemble was designed using an orthogonal
maximin 24-extended Latin hypercube of size 400. This is a
Latin hypercube of size 16 that is extended 24 times, each
time adding a Latin hypercube of size 16 so that the result is
also a Latin hypercube and in a way that maximises cover-
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age and minimises correlation of parameters in the ensemble
design. By designing a Latin hypercube that has a number
of component Latin hypercubes, we have a number of sub-
designs that fill space optimally in a way that allows us to val-
idate our emulators and insures against model crashes when
the experiments are running. This design element also en-
ables additional smaller future experiments, which are con-
sistent with the original ensemble to be conducted, such as
initial condition ensembles, or ensembles with different forc-
ing datasets. Note that our ensemble size is larger than the
principle guidelines suggest is necessary, but this was cho-
sen deliberately to allow for scope for future studies on en-
semble design size, for example when linking to ensembles
at higher spatial resolution. The design method is developed
in Williamson (2015) and specific merits of designs of this
type for this ensemble are discussed therein. Code to gener-
ate these designs is publicly available to download as part of
the supplementary material to Williamson (2015).

3.4 Implausibility

Having constructed an emulator for a computationally expen-
sive climate model, we can now use it to search for values
of the model parameters that lead to “close enough” models
(as defined by our uncertainties). Arguably, the most obvious
approach to this would be to formally define a distance be-
tween the model and the observations and to find the choice
of parameters that minimised this distance using the emu-
lator. Suppose our vector of metrics is denoted z, then this
would mean that tuning represented the optimisation prob-
lem: find x* with

x* = argmin||z — f ()],

where the norm || - || y represents an appropriate measure that
accounts for the sources of uncertainty discussed above. For
example, using a Mahalanobis distance-type function, a nat-
ural choice would be

llz— f@)Ilf =@~ f)Varlz— f()]7 z = f(x)).

However, there are two problems with this. First, we cannot
observe every single element of the climate model state vec-
tor as part of z and, even for those observations that we do
have, we do not tune to them all. Hence, by minimising this
distance and fixing our climate model at that setting of the
model parameters, we may be artificially close to our tun-
ing metrics in a way that unacceptably biases other metrics
that we have not included in our set (perhaps because we
do not have observations for them, for example). We refer
to this throughout as “over-tuning”. Second, we cannot op-
timise f(x) directly, so would need to use the emulator ex-
pectation E[ f (x)] = m*(x).

Though the distance we must consider will contain the
emulator in practice, it becomes clear why this is an issue
for optimisation-based approaches to tuning when we look at
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the distance function. The term Var[z — f(x)], when f(x) is
also unknown and hence contributes to our uncertainty, will
increase, and thus decrease ||z — f(x)|| s, when we are very
uncertain regarding the model. This happens when the con-
tribution from C(x, x; ¢) is large, which occurs when x is
far from any of the design points. This says that perhaps the
optimum value of ||z — f (x)|| r occurs at a choice of x where
we are least sure what the model is doing.

To formalise this we would require a statistical model that
provides a relationship between the observations z and the
climate model f(x). Such a model will enable us to derive
Var[z — f(x)] and thus the scaled distance between the ob-
servations and the model output. To illustrate our point, we
choose a model that leads to a simple, interpretable expres-
sion for this variance, though Goldstein and Rougier (2009)
and Williamson et al. (2013) present alternative and more
complex forms. Our model assumes that the truth, y, is ob-
served with independent measurement error e with variance
matrix V, so that z = y + e. We then assume that the model,
at the “optimally tuned” parameter values, x*, is sufficient
for the climate information available from the given paramet-
ric description so that y = f(x*) + 5, with mean-zero struc-
tural error 5 independent of the climate model and with vari-
ance matrix V.

As we must use the emulator, our distance is ||z —
E[f (x)]l| s and, supposing the above form for our distance
norm at x*, we would have

llz — ELf ()]l
=(z—m*(x*)" Var[z — E[f 517! (z — m* (%))
=(z—m*@)" Var[(z — y) + (y — £ ()
F(FEH) —ELf D] (2 — m* (")
=(z—m*(x") (Vo +V, + C*x*, x*; ¢)) "
(z - m*(x*)) .

If this distance is large for some x*, we are confident that
the model output is too far from the observations, even given
all of the uncertainties. Put another way, that value of x*
would be inconsistent with our uncertainty specification and
our statistical model so that we would find it implausible
that x* were the optimal setting of the parameters. How-
ever, small values of ||z —E[ f (x*)]|| s can either occur when
z—m™*(x*) is small, or when C*(x*, x*; ¢) is large. In other
words, small distances do not necessarily imply good mod-
els. Any optimiser of ||z — E[ f (x)]|| might find models that
are extremely close (perhaps too close) to our observations
if they exist, but will also favour models where our emulator
is extremely uncertain, with no guarantee that the model is
close to the observations there.

It follows then that whilst the search for models with small
distance from the observations does not necessarily corre-
spond to the search for good models and that minimising this
distance does not necessarily find a model acceptably close to
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the observations at all, the search for models with large dis-
tance does correspond to the search for “bad” models. The
approach we advocate here is to locate and rule out all of the
bad models by ruling out regions of the parameter space X’
because they correspond to large values of ||z — E[ f(x)]|| f.
To do this we must decide what “too large” means.

3.5 “Not ruled out yet” space

Let the implausibility function be Z(x) = ||z —E[f(x)]|| 7.
We define a threshold a for which a parameter choice x is
ruled out of parameter space if Z(x) > a for some value of a.
If z is a scalar, /Z (x) behaves like a standardised distance so
that we can use the 3 sigma rule (Pukelsheim, 1994), which
says that, for any unimodal distribution, 95 % of the prob-
ability density is within 3 standard deviations of the mean,
which sets a = 9. If z represents multiple metrics, we may
emulate the joint distribution of those metrics from the model
and specify covariance matrices for the error on the observa-
tions and the structural error. In this case we can compare
Z(x) to a Chi-squared random variable and set a so that, e.g.,
95 or 99 % of the probability density would be less than a.
The value of a in this case would then depend on the num-
ber of metrics. This is particularly appropriate if z is a spatial
field, where correlations in the observation error are impor-
tant. However, if we are unwilling or unable to specify these
correlations in the observation error, we can evaluate sepa-
rate implausibilities for each metric and then rule out any pa-
rameter settings that fail to meet either all of these targets or
most. This is the most often taken approach and we present
an example of it in our refocussing of the ORCA2 parameter
space.

Suppose we have set a threshold a and defined our im-
plausibility function Z(x). Having chosen the initial ensem-
ble design X[i) € & and built an emulator that depends on
the data from this design, F[j}, we define the subset of X’
that is not ruled out yet (NROY) to be the subset for which
Z(x; F{11) < a. Mathematically, NROY space is

X'={x e X:T(x; Fy) <a).

Finding NROY space X! by designing an ensemble, emu-
lating f(x), and forming 7 (x; Fj1}) is called wave I. Refo-
cussing is the process of repeating this multiple times, each
time, in wave k, beginning with the parameter space X%~
Specifically

X ={(x e X1 T(x; Fy) < a),

where Z(x; Fx)) can be evaluated by running an ensemble
Xk € X*~! and using the output Fjg to build an emulator
for f(x) inside X%~

The process of refocussing: running ensembles, building
emulators, and using implausibility to further cut down pa-
rameter space by improving emulators, provides a lot of flex-
ibility of approach. For example, we may not choose to use
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the same 7 (x) at every wave. Usually, and in our application
to NEMO, this is because we might find that having reduced
parameter space with one set of metrics, additional sets be-
come natural secondary metrics to include. We might also
feel that the inclusion of complex metrics, such as spatial
fields or time series, might wait until some of the very non-
physical regions of parameter space have been removed in
earlier waves.

The question of how many waves to run when refocussing
or, rather, when to stop, is often a pragmatic one. If the en-
tire parameter space is ruled out using a certain metric and
we trust our uncertainty specification for the observations
and emulator, a structural error has been located. Williamson
et al. (2015) discussed this in more detail. Otherwise, if all
metrics of interest have been used and the emulator uncer-
tainty has been reduced to the level of the internal variability
in the model, then there is little point continuing to refocus.
However, both of these cases are extreme. In fact, either time
or computational budget are the limiting factors for the num-
ber of waves of refocussing in this way when tuning climate
models. It may also be the case that all models are sufficiently
similar (say in their transient response to CO, forcing), and
that there is little point trying to further reduce the parameter
space and refine the parametric uncertainty.

Having completed the exercise, the final NROY space con-
tains all models that could not be ruled out by comparison to
observations or to process based knowledge. By rights, any
model within this space is worthy of study and a representa-
tive set should be submitted to any MIP-type exercise if this
is possible, or at least the results of having done that sum-
marised for the benefit of the wider field. A set of models
representing all of the physical behaviours in NROY space is
also worthy of study from a model development perspective
and can focus decision making on those features of the cur-
rent parameterisations that do not behave as the developers
would wish and to enable the modellers to better understand
the response of the model to different yet reasonable choices
of its free parameters.

3.6 Multi-wave ensemble design

The difficulties with multi-wave design when refocussing by
history matching arise because, at least after the first wave,
it is no longer possible to use Latin hypercubes as NROY
space is not conformable with the unit p-dimensional hy-
percube. Put simply, NROY space has a typically non-linear
shape and may not even be simply connected. It may also be
tiny so that even finding a point within NROY space is very
difficult. Williamson and Vernon (2014) developed a way of
generating candidate points for multi-wave designs for tiny
NROY spaces of the order of 10~ the volume of the orig-
inal parameter space. However, how one selects which de-
sign points to use (and how many) is not yet well studied. In
Sect. 4 we present a new method of choosing the location of
points within NROY space for each wave.
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The number of points one should use and how one divides
a budget of runs between multiple waves of analysis are both
interesting questions for further research. Beck and Guillas
(2015) showed how sequential designs (where the optimal
next point in parameter space is selected by the algorithm and
then that ensemble (size 1) is run and folded into the emula-
tors before choosing the next point) can improve calibration.
When designing ensembles for OGCMs, which must be run
using supercomputers, a sequence of single member ensem-
bles is not practical as it would require too much scientist
time and does not take full advantage of parallel computing.
Automating the design, run, update iterative process would
enable the computational cost of tuning to be minimised but
is beyond the scope of this study. For convenience we choose
the ensemble size to be the same as wave 1, namely 400.

4 Tterative refocussing of NEMO-ORCA2

The metrics we will use will be derived from 1960 to 1990
climatological mean depth profiles of global mean temper-
ature and salinity computed from the EN3 climatology (In-
gleby and Huddlestone, 1997). Global means are computed
for the EN3 grid and then interpolated onto the 30 depth lev-
els in ORCA2. Unfortunately, uncertainty on the climatolog-
ical means is not available as part of the dataset. This is a very
common issue in the reporting of uncertainty, meaning that
tuning to even very well observed global metrics is challeng-
ing. Even in the case of EN4 (Good et al., 2013), the latest
dataset published, which includes point standard errors, the
correlations in the observation errors that would allow us to
accurately construct the required distance function for tuning
are not reported even though they are likely derived as part
of the derivation of the data.

To obtain observation error variances for each depth level
for the climatology, we use the data for the observation stan-
dard deviation given as o, in Table 3 of Ingleby and Hud-
dlestone (1997). This is an average observation error for use
in data assimilation at each depth level of the EN3 grid and
hence is an observation error that would apply to individ-
ual observations and not the whole climatology we are deriv-
ing. These average estimates in the table are based on a large
number of observations from ocean stations, CTDs (measur-
ing conductivity, temperature and depth), and Argo floats,
where the number of observations varies with depth. We in-
terpolate the number of observations at each depth onto the
ORCA grid to give Ny, ..., N3p.

To scale each oy 1, ..., 00 30 to be consistent with a clima-
tological estimate, we use Rayner et al. (2003) to estimate
the given uncertainty in global mean sea surface temperature
(SST) at 0.1°. Converting this to a standard deviation s, we
can derive a scaling factor A1 to apply to 0,1 so that our es-
timated standard deviation of the observation error variance
at the surface is 01 =0,,1/A1 and is equivalent to s. We do
not apply the same scaling factor to each depth as we want
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Table 2. Observations or temperature zT, and salinity zg, with ob-
servation standard deviations o1 and og used for our tuning of
NEMO ORCA2.

Depth (m) 21 (°C) ot zs (PSU) os
5 18.15 0.051 34.56 0.0131
15 18.04 0.057 34.66 0.0133
25 17.86  0.060 3473 0.0131
35 17.58 0.070 34.79 0.0143
45 17.20 0.072 34.83 0.0143
55 16.79 0.075 34.87 0.0143
65 16.37 0.078 3491 0.0145
75 1595 0.081 34.94 0.0148
85 1526 0.081 3497 0.0152
95 15.11 0.081 35.00 0.0158
106 14.70  0.082 35.01 0.0163
117 14.30 0.091 35.02 0.0157
129 13.88 0.095 35.03 0.0152
142 13.43 0.082 35.03 0.0148
159 12.92 0.075 35.03 0.0143
182 12.24  0.070 35.01 0.0136
217 11.42  0.067 3497 0.0131
272 10.38  0.064 3492 0.0125
364 8.99 0.058 34.82 0.0113
512 7.31 0.054 3470  0.0098
732 5.56 0.052 34.63 0.0083
1033 4.09 0.038 34.64 0.0055
1405 3.09 0.031 3470 0.0051
1830 240 0.024 34.74  0.0059
2290 1.97 0.024 34.75 0.0063
2768 1.64 0.031 3475 0.0072
3257 1.39 0.034 34.74  0.0085
3752 1.15 0.036 34.74  0.0092
4250 0.98 0.040 34.73  0.0090
4750 0.88 0.049 34.73  0.0082

to account for the fact that the surface is better observed than
other depth levels. We use a standard Monte Carlo argument
that a standard error estimate is scaled by 1/+/N where N is
the number of observations, to adjust the surface scaling to
different depths. We therefore set o; =0, ; /A; with

5. — G0V Ni
' ' Nis ’

The derived observations and uncertainties (as standard
deviations) that we use for tuning are given in Table 2. We
use the same scaling process for salinity observation errors.
Though we acknowledge that our point-wise observation er-
ror estimates are very unlikely to be accurate, we are insured
against over-tuning by two factors. The first is that we add
a tolerance to error (which we might interpret as an upper
bound on the structural error) and the second is that we will
have a separate implausibility for each level and force the
model to be “too far” from the observations at least 3 lev-
els before it is ruled out (see below). This being said, the
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paucity of reported uncertainty for observations that are used
as metrics for comparing models is a major issue for climate
science. As argued in Sect. 3, the similarity for a spatial field
such as SST as output from a model and from observations
can only be judged with reference to this uncertainty (by, e.g.,
scaling the difference by the observation error variance ma-
trix).

As we do not have correlations between errors on our ob-
servations at different depths for temperature and salinity, we
define an implausibility function that gives a separate scaled
distance for each depth. In wave 1 we will only use tempera-
ture to rule out regions of parameter space and observe what
happens to model realisations of salinity. Using the notation
of Sect. 3, let Z; (x) be the scaled distance at depth level i with
Var[z; — E[f; (x)]] = UT2,i +Vi+ Cl?“ (x, x) with the emulator
variance for each depth constructed as described below. We
define Z(x) for a whole temperature profile to be the third
largest Z;(x) for i =1,...,30. We then set wave 1 NROY
space to be

X'={xeX: VI(x)<3)

so that if 3 or more metrics are more than 3 standard devia-
tions away from the observations for some parameter choice
x, the choice is ruled out. Our standard deviation here con-
tains a component from the observations in Table 2, a com-
ponent from emulators of each chosen depth (explained be-
fore), and a tolerance to error in the form of V;, indicating
the amount of structural error we are prepared to tolerate at
depth i. We allow the model to be out by as much as the ob-
servation error at each depth in the absence of any particular
judgment as to structural errors that would lead to a global-
mean depth-level bias. This sets V; = 0’%’ ;- For wave 1 we
will consider only eight representative depth levels in order
to reduce the burden in statistical modelling with emulators.
We discuss this further below.

4.1 Refocussing NEMO
Wave 1

We emulate global mean temperature only at eight depth lev-
els corresponding to 5, 25, 55, 106, 1033, 2290, 3257, and
4250 m. These eight temperatures will represent our wave
1 metrics. We use the technology described in Sect. 3.2 to
build each emulator using the following method. First we se-
lect simple functions to regress the model output on by en-
tering them into the vector g(x) in Eq. (1). We use a for-
wards and backwards stepwise selection routine for this that
first searches for the most important model parameters to en-
ter into g(x) individually, entering all interactions between
newly entering parameters and parameters already in g(x) at
each step. Reduction in the residual sum of squares (RSS)
from a standard least-squares fit is used to guide selection.
Higher-order polynomials in the parameters are also avail-
able for selection, with the appropriate interactions included

www.geosci-model-dev.net/10/1789/2017/

1799

as per standard model selection rules in regression (see, for
example Draper and Smith, 1998). Once significant reduc-
tion in RSS is no longer available or half of the degrees of
freedom have been spent (the number of terms in g(x) is
greater than 200), backwards elimination, whereby one at a
time the single term in g(x) that contributes the least to the
RSS is removed, is used to reduce the number of terms in
g(x) to (at most) 10 % of the number of degrees of freedom.
The procedure for this selection is given in further detail in
Williamson et al. (2013).

For the Gaussian process covariance function, we only al-
low parameters that were selected into g (x) prior to the back-
wards elimination step be correlated in the residual, hence
setting the 6y in Eq. (2) for any unselected parameters to be
zero. We follow Bayarri et al. (2007) in setting each k to 1.9
as opposed to the more typical 2 that leads to infinite differ-
entiability of the emulator (as this is typically too smooth for
climate models). With these choices in place, the only other
things required to build the emulator are prior distributions
for 8,0, v, and 6; (for j such that x; € g(x)). We choose the
reference prior given by Haylock and O’Hagan (1996),

T(B,0,0,v) x izn(O)n(v),
o

and use ‘“half-length correlations” to elicit an informative
prior on the correlation lengths 7 (#). By considering half-
length correlations to elicit a distribution for 6, we form the
prior elicitation question as one of considering judgements
for the correlation between €(x1) and €(xp) when all ele-
ments of x; and x; are equal aside from that element cor-
responding to the parameter in question, and where the dis-
tance between x| and x» is equal to half of the range of that
parameter. By considering a prior for the half-length corre-
lation for each parameter, we can derive a prior for 6 (see
Williamson and Blaker, 2014, for further details).

We used a Beta prior for the half-length correlations of
each parameter and used the MATCH elicitation tool, an on-
line tool that effectively allows the user to draw the shape of
distribution they require and to obtain the relevant parameters
of simple probability distributions (Morris et al., 2014), to set
the prior for each half-length correlation to be Beta(2.9,5).
Our prior for the nugget v was obtained using the MATCH
tool and was set to be Beta(3.8, 1.7).

The posterior distribution defined by our prior modelling
and by the form of the emulator must be sampled using
Markov Chain Monte Carlo; therefore, whenever we evaluate
the emulator to explore parameter space using history match-
ing, we would have to use a potentially expensive sampling
algorithm. To avoid this, we use an initial sample to fix the
correlation parameters # and the nugget parameter v at their
maximum a posteriori (MAP) estimates. These parameters
are often fixed in computationally expensive applications in-
volving emulators (as suggested by Kennedy and O’Hagan,
2001, for example). We obtain MAP estimates using simu-
lated annealing.
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Figure 3. LOLHO (leave one latin hypercube out) diagnostic plots for each of the 25 16-member sub-LHCs that made up our ocean model
design. Each panel is constructed by removing a sub-LHC from the design, refitting our emulator using the same basis functions and
correlation parameters, and predicting the model output for the 16 simulations in the sub-LHC that have not been seen by the emulator. The
predictions and 2 standard deviation prediction intervals are in black. The true values are in either green (smaller dots), if they are within 2
standard deviations of the prediction, or red (larger dots) otherwise. The x axis in each plot is the parameter rn_ediff, an eddy-mixing
parameter in the TKE mixed-layer scheme. The y axis is potential temperature at 5 m.

Having fit the emulator, we run diagnostic checks to assess tive parameter during wave 1. As 2 standard deviations repre-
its performance before using it to rule out parameter space. sent an approximate 95 % confidence interval, we would still
Figure 3 presents such a diagnostic plot for the emulator at expect around 5 % of our dots to be red if our emulator were
5 m, obtained by leaving each of the sub-Latin hypercubes good, and we see this here.

(LHC) in the design out of the ensemble, refitting the em- The third panel of the 2nd row highlights a potential is-
ulator using the preselected g(x), v, and 6, then predicting sue, having too many red dots for one sub-LHC. Howeyver,
the temperature for each sub-design. Each panel represents as these are clustered around high values of the eddy diffu-
one left-out LHC predicted using the emulator. Black points sivity, we might suspect that these points are also extreme in
and error bars (£2 standard deviation prediction intervals) one or more other crucial parameters and are hence impor-
are from the emulator mean and variance, whilst green/red tant for tying down the emulator behaviour in that corner of
dots are the true model output coloured and sized by whether parameter space in the final model. This was the case here
or not the truth lies within the error bar. Each panel represents as 3 also had the smallest values for the Langmuir cells pa-
SST plotted against the parameter rn_edi £ £, our most ac- rameter (our second-most important parameter) and the other

Geosci. Model Dev., 10, 1789-1816, 2017 www.geosci-model-dev.net/10/1789/2017/
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Figure 4. Global mean potential temperature as a function of depth
from EN3 (red, with error bounds indicated by red dashed lines),
wave 1 NROY ensemble members (cyan) and RO ensemble mem-
bers (grey), standard ORCA2 (dark blue), WOA (pink), the initial
state (gold), and GOS5 averaged over years 1996-2005 (Megann
et al., 2014) (blue dotted). (a) shows a vertical zoom of the top
800 m, whilst (b) shows the full depth.

had the most extreme value of the coefficient for Langmuir
cells. This suggests that the inclusion of this sub-LHC is cru-
cial to the fit of the emulator, giving us some confidence that
the emulator based on the full design represents the model
behaviour in the full space.

Applying the implausibility metric described above, we
rule out 77.5 % of the elicited NEMO ORCA2 model pa-
rameter space. We can view the effect of the history match
on our ensemble for global mean 7 and S in Figs. 4 and 5.
Each figure shows the T or S depth profiles for each ensem-
ble member, coloured by whether that ensemble member was
ruled out (grey) or is NROY (cyan). We note that though
we have constrained the model using temperature only, the
global mean salinity profiles are far more consistent with
the data in NROY space, suggesting that much of the space
ruled out was subject to either density compensated errors
or excessive/insufficient mixing. We also note that standard
ORCAZ2 is NROY at this point.

Wave 2 and wave 3
We design a further ensemble of 400 runs in NROY space.
We can obtain a uniform sample from NROY space by ran-

domly generating points in the original parameter space and
using rejection sampling (rejecting those not in NROY) to

www.geosci-model-dev.net/10/1789/2017/
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Figure 5. Global mean salinity as a function of depth from EN3
(red, with error bounds indicated by red dashed lines), wave 1
NROY ensemble members (cyan) and RO ensemble members
(grey), standard ORCA?2 (dark blue), WOA (pink), the initial state
(gold), and GOS averaged over years 1996-2005 (Megann et al.,
2014) (blue dotted). (a) shows a vertical zoom of the top 800 m,
whilst (b) shows the full depth.

leave a uniform sample. Whilst this might be considered a
reasonable approach, there are two issues with it. Firstly,
there is no guarantee that the design will “fill” NROY space,
which is the reason for using Latin hypercubes as opposed
to uniform sampling for the first wave. The second is that
this procedure will generally return 400 parameter choices
with implausibilities over 2-2.5 and near 3, as this space is
vast compared to any regions of space with very low implau-
sibility. Though, philosophically, we do not believe at this
point that regions of parameter space with low implausibil-
ity are necessarily good, because the emulator uncertainty
may be large there and hence driving the implausibility low
there, we would like to evaluate the model in these regions as
this will reduce emulator uncertainty there, hence establish-
ing whether or not the distance between the model and the
observations really is low.

We stratify our sampling of NROY space so that roughly
5% of the design has implausibility less than 1 and that
regions with implausibility less than 1.5, 2 and 3 are sam-
pled according to their relative volumes. These volumes are
assessed and large sets of uniformly distributed candidate
points from each subspace of NROY space are generated
using an algorithm for uniformly sampling of tiny NROY
spaces described in Williamson and Vernon (2014). The vol-
ume of the subspace with implausibility less than 1 is 0.4 %

Geosci. Model Dev., 10, 1789-1816, 2017
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Figure 6. Global-mean depth profiles of temperature (a), temperature RMSE (b), and temperature depth profiles cast as departure from the
EN3 global mean profile in units of o. Colours represent W3 NROY (purple), W2 NROY (yellow), W1 NROY (cyan), and W1 RO (grey).
The standard configuration is shown in solid blue, GO5 (ORCA025) as dotted blue, the initial conditions in magenta, and WOA in gold.

of the size of the original space. Having decided how many
points of each subspace are required and having generated
a large number of uniformly designed candidates in each
space, we use simulated annealing to generate an optimally
space filling design from the available candidates by max-
imising the same coverage criterion maximised during the
generation of the first wave design (described in detail in
Williamson, 2015).

We add additional metrics to our implausibility criterion
for wave 2, including 2 extra temperature depths at 216 and
1406 m, and 5 salinity depths at 106, 512, 1033, 1406, and
2290 m. Re-emulating the model in NROY space for each
of the temperature depths and using the same implausibility
criterion as in wave 1 (where 3 metrics must fail in order
for a point to be removed from NROY), we rule out 96 % of
the original space, including 87 % of our wave 2 ensemble
members and the standard settings of ORCA2.

We repeat the process for a 3rd wave of history matching,
adding no further metrics but designing a new 400-member
ensemble in the new NROY space using the same method as
for wave 2 and this time, due to the improved performance
of our emulators in this space, allowing models that fail 2 or
more of our constraints to be ruled out. This final wave ruled
out 75 % of our wave 3 ensemble, leaving our final NROY
space at 1.5 % of the original parameter space.

We plot the depth profiles for all 3 waves as the left-most
panel in Figs. 6 and 7, with runs that were ruled out in wave
2 coloured in cyan along with the wave 1 NROY ensem-
ble members, wave 2 NROY ensemble members and wave
3 ruled out members in yellow and wave 3 NROY in pur-

Geosci. Model Dev., 10, 1789-1816, 2017

ple. We describe our final NROY space in some detail in the
next section. The centre panels in Figs. 6 and 7 show the root
mean square error (RMSE) for temperature and salinity re-
spectively, whilst the right-most panels of each plot show the
global-mean temperature/salinity depth profiles standardised
by the observation and structural uncertainties (as given in
Table 2, so that the observations would lie on the O line). The
RMSE figures show that improvements to global mean 7" and
S through each refocussing step do not generally come at the
price of large compensating spatial biases (as these would
increase RMSE). The standardised plots show that by wave
3 most ensemble members perform reasonably well at most
depths, though certain biases near the mixed layer remain
difficult to remove.

5 ORCA 2 NROY space

Whilst calibration at each wave was performed against global
mean profiles of 7 and S, global mean root mean square er-
ror (RMSE) provides a sanity check to ensure that plausi-
ble global mean values of T and § are not being achieved
by averaging large biases of opposite sign (e.g. strong pos-
itive biases in the tropics balanced by strong negative bi-
ases at high latitudes). We stress here that the goal is not to
achieve zero RMSE. Uncertainty in the observations arising
from measurement error and representativeness error mean
that we should accept/expect a certain level of RMSE.

The global mean profiles of temperature and salinity al-
ready reveal several interesting features about ORCA?2. Start-
ing with temperature (Fig. 6), we notice immediately that

www.geosci-model-dev.net/10/1789/2017/
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Figure 7. Global-mean depth profiles of salinity (a), salinity RMSE (b), and salinity depth profiles cast as departure from the EN3 global
mean profile in units of o. Colours represent W3 NROY (purple), W2 NROY (yellow), W1 NROY (cyan), and W1 RO (grey). The standard
configuration is shown in solid blue, GO5 (ORCAO025) as dotted blue, the initial conditions in magenta, and WOA in gold.

even within the vast parameter space we are searching it
is difficult to find models that exhibit a cold bias in the
mixed layer (0-300 m depth range). Almost the entire pa-
rameter space is biased warm, and the same bias is visible
in the ORCA025 GOS5 configuration (Megann et al., 2014).
This warm bias is indicative of excessive deepening of the
mixed layer, with the standard configuration exceeding 8 o
warmer than the EN3 climatological profile at 300 m. The
most active parameters for the 7' emulators in the upper
300m are rn_ediff, rn_1lc, rn_ediss, and rn_ebb,
all of which are part of the turbulent kinetic energy (TKE)
mixed-layer scheme. This may indicate a structural bias in
the model, which could be addressed with improvements in
the representation of the mixed layer. Figure 8 provides in-
sight into the structure of NROY space, and may indicate
which elements of the TKE mixed-layer scheme could be
targeted for improvement. Choosing values of rn_ediff,
rn_lc and rn_ebb towards the lower end of their elicited
parameter ranges is more likely to result in acceptable model
solutions. In contrast higher values of rn_ediss are more
likely to yield acceptable solutions.

The model tends to exhibit a cold bias in the 800-2000 m
depth range, with the cold bias in the standard configura-
tion peaking at 12 o in the 1500—1800 m depth range. Below
1000 m we are generally able to constrain the temperature
bias to within 5 ¢ inside W3 NROY.

Global mean profiles of salinity reveal further interesting
characteristics. At the surface we identify a very large range
of values. The standard configuration has a salty bias in ex-
cess of 12 o, but W3 NROY is readily able to identify con-

www.geosci-model-dev.net/10/1789/2017/

figurations with sea surface salinity (SSS) much closer to
observed values. Almost all of the model configurations fol-
low a pattern of preferring a neutral to positive salinity bias
around 500-1000m and then a negative to neutral bias be-
low 1300 m (the standard configuration reaches a fresh bias
of 7o at this depth). Below 2000 m we find almost no regions
of parameter space able to produce a salty bias. This could
potentially indicate a structural error in the model since it is
unable to achieve solutions in which the ocean could quite
plausibly be located. A tendency to freshen the deep ocean
will weaken the density structure and reduce vertical density
gradients (and therefore transports) within the model.

The dominant parameter for the emulators in the deep
ocean is the horizontal eddy tracer diffusivity, rn_aht_0.
Figure 8 shows that acceptable models are only found for
lower values of this parameter. Simultaneously, low values
of either rn_ebb or rn_htau are more likely to lead to
NROY models.

Whilst it is possible to improve significantly on global
mean 7 and S errors, this does not equate to improvements
everywhere. It is also of interest to examine similarities and
differences between the spatial distribution of biases in the
ensemble. We present spatial plots of the 7 and S anomalies
for a selection of depth layers for the standard simulation and
simulation 3jl, which is representative of the NROY space
identified in the wave 3 ensemble (Figs. 9-14).

At the surface both the standard configuration and 3jl
shows cold anomalies of up to 2°C over the North At-
lantic, Labrador, and GIN (Greenland, Iceland and Norwe-
gian) seas as well as to the south of New Zealand. The South-

Geosci. Model Dev., 10, 1789-1816, 2017
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Figure 8. NROY density plots (upper triangle) and minimum implausibility plots (lower triangle) for 2-D projections of NROY space. Each
panel plots either NROY density or minimum implausibility for a pair of NEMO parameters. NROY densities, for each pixel on any panel in
the upper triangle, represent the proportion of points behind that pixel in the remaining 19 dimensions of NEMO’s parameter space that are
NROY and are indicated by the colour whose scale is indicated on the right. Minimum implausibilities, for each pixel on any panel on the
lower triangle of the picture, represent the smallest implausibility found by fixing the two parameters at the plotted location and searching
the other 19 dimensions of the NEMO parameter space. These plots are orientated the same way as those on the upper triangle, for ease of
visual comparison. Standard ORCA?2 is depicted on each panel as the square point. Two of the ensemble members discussed in the text are

depicted with a circle (3i6) and a triangle (3;l).

ern Ocean contains the strongest warm anomalies reaching
1.5-2°. There is a fairly uniform weak warm bias in the trop-
ics and weak cold bias in the extratropical and subpolar re-
gions (Fig. 9). It is worth noting that the geographical dis-
tribution and sign of the surface biases are broadly consis-
tent throughout our ensembles, indicating that they are not
determined by parameter choice but that they arise either
from structural deficiencies in NEMO or from external fac-
tors that we have not yet tested, such as the bulk formulae,
surface forcing, and the ice model. The relatively small-scale
(of the order of 1000 km) surface temperature biases along

Geosci. Model Dev., 10, 1789-1816, 2017

the northern flank of the Antarctic Circumpolar Current arise
because the models do not represent these details, which are
present in the EN3 surface temperature field, adequately. We
are able to achieve modest improvements in surface salinity
over much of the global domain. Surface salinity on average
remains too high, with the strongest biases in the Arctic. The
salty surface bias in the Arctic quickly becomes a fresh bias
subsurface, indicating that this may be a problem with repre-
sentation of the near-surface mixing in this region.

Dynamic features dominate the anomalies in 7 and S at
216 m (Fig. 10). Biases at this depth, where the vertical gra-

www.geosci-model-dev.net/10/1789/2017/
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Figure 9. T (left) and S (right) anomalies at 4 m depth from EN3 1960-1990 climatology for simulation 3;jl (top) and the standard ORCA2
configuration (middle). A metric of improvement is computed for grid cells where both are more than 3¢ away from EN3 climatology
(bottom). Negative values (blue) indicate the simulation with alternative parameter choices is performing better, whilst positive values (red)
indicate the standard parameter choices are performing better. A value of —2 indicates the bias has halved compared with the standard

simulation, whilst a value of +2 indicates that the bias has doubled.

dients in 7 and S are large, are particularly sensitive to mod-
est vertical displacements of the water column. Many of the
biases present are density compensating, with anomalies ap-
pearing as cold and fresh or warm and salty. Again, the
general pattern of these anomalies remains fairly consistent
throughout our ensemble. All simulations within our wave
3 NROY perform better than the standard configuration for
global average 7', and for global average S our wave 3 NROY
the global mean error is of similar magnitude but fresh in-
stead of salty.

www.geosci-model-dev.net/10/1789/2017/

Descending to 732 m (Fig. 11), where the global mean T
in the standard configuration is within 1 standard deviation of
EN3, but global mean S is biased salty by around 4 standard
deviations, we again see broad agreement in the geograph-
ical distribution of errors across our ensemble. The salinity
biases in the standard configuration are largest in the north-
ern tropical and eastern North Atlantic. Simulation 3jl shows
substantial improvement in both the S and 7 biases in this re-
gion, although the biases in the Southern Hemisphere 7 and
S worsen slightly.

Geosci. Model Dev., 10, 1789-1816, 2017
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Comparison between 3jl and standard at 216 m
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Figure 10. As Fig. 9 but showing T (left) and S (right) anomalies at 216 m depth from EN3 1960-1990 climatology.

We next look at 1405 m depth (Fig. 13) where, in terms
of global-mean T and S biases, the standard configuration
is performing particularly poorly. The S bias in the eastern
North Atlantic exceeds —0.3 PSU in the standard configura-
tion, with a corresponding cold bias exceeding —0.6 °C. Both
biases are substantially improved in simulation 3jl. Biases
in the Southern Hemisphere are reduced but remain slightly
worse than the standard configuration, one exception being
an improvement in the warm bias in the Weddell Gyre, which
extends along the Antarctic coast to 100° E. Anomalies at
1830 m (not shown) are similar to those at 1405 m.

At 3km depth the T and S biases reflect a drift in the wa-
ter masses indicative of a bias in the circulation. The Atlantic
and Southern Ocean show warm and fresh biases, whilst bi-

Geosci. Model Dev., 10, 1789-1816, 2017

ases in the Pacific are very small and of the opposite sign.
Improvements made in the biases at 3 km depth (Fig. 14) also
appear to be density compensating, with 7'(S) biases in sim-
ulation 3jl improved (worsened) in the Atlantic and Indian
sectors of the Southern Ocean as well as the North Atlantic
and parts of the Pacific.

In another NROY wave 3 ensemble member (316), we find
characteristics very similar to the standard configuration over
most of the global ocean. However, this ensemble member
shows substantial improvement in 7 (and to a lesser extent
S) throughout the Indian Ocean at 1830 m depth (Fig. 15),
albeit at the cost of an increase in the warm bias around the
Atlantic and Indian sectors of the Southern Ocean. It is not
known whether it would be possible to obtain the improve-

www.geosci-model-dev.net/10/1789/2017/
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Figure 11. As Fig. 9 but showing T (left) and S (right) anomalies at 732 m depth from EN3 1960-1990 climatology.

ments in the Indian Ocean without incurring the increase in
the Southern Ocean warm bias. The most efficient way to
investigate this would be to introduce regional-average (or
two-dimensional) metrics, but that is beyond the scope of the
current work.

One of the metrics of particular interest in ocean and
climate models is that of the Atlantic meridional over-
turning circulation (AMOC). It is frequently reported at
26° N to align with the RAPID/MOCHA observational ar-
ray (McCarthy et al., 2015). The maximum value at this lat-
itude is typically close to 1000 m depth. We stress that com-
parisons of the transport should be made with caution for
a number of reasons. One of the main reasons for this is
that the RAPID time series is computed as the sum of three

www.geosci-model-dev.net/10/1789/2017/

transports derived from different observations of wind stress,
basin-wide density gradients, and cable measurements of the
Florida Straits transport. Model AMOC calculations are most
commonly reported as the zonal- and depth-integrated merid-
ional velocity. Sampling a numerical model in a manner con-
sistent with the observational method can be problematic,
particularly where the ocean model grid is coarse. Neverthe-
less, we present the AMOC at 26° N and 1000 m from each
of the ORCA?2 simulations (Fig. 16).

Geosci. Model Dev., 10, 1789-1816, 2017
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Comparison between 3jl and standard at 1033 m
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Figure 12. As Fig. 9 but showing T (left) and S (right) anomalies at 1033 m depth from EN3 1960-1990 climatology.

6 Higher resolution models: ORCA 1

We present an important and available tool for the tuning of
complex ocean and climate models that we believe should
be used by model developers developing a wide range of
Earth system model components and by modelling centres
developing models for CMIP6. However, a key distinction
between models developed for CMIP6 and the 2° version of
NEMO we have explored here is the available ensemble size.
It might be argued, for example, that we were only able to
focus our search for good models on 1.5 % of the original
parameter space because we were able to use 400-member
ensembles and 150-year integrations. Such an argument may
lead to the dismissal of the method for high-resolution mod-

Geosci. Model Dev., 10, 1789-1816, 2017

els where very few integrations can be done to assist in tun-
ing.

However, the method has two key features that make it
powerful and applicable at any resolution. The first is that
it takes whatever information we do have and uses it to say
which parts of parameter space can be ruled out, given all of
our uncertainties. This contrasts it starkly with optimisation
methods that require us to find a good region or, typically, the
single best parameter choice. If small ensembles mean that
we rule out less parameter space, then this does not preclude
us from using the method to cut out what parameter space we
can and our results will still be valid. The second feature is
that the only thing we require is an emulator of the model in

www.geosci-model-dev.net/10/1789/2017/
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Figure 13. As Fig. 9 but showing T (left) and S (right) anomalies at 1405 m depth from EN3 1960-1990 climatology.

order to begin cutting out space and large ensembles do not
provide the only means of building emulators.

Two examples of the flexibility are pertinent here. First,
dynamic emulators of time series (Conti et al., 2009; Liu
and West, 2008; Williamson and Blaker, 2014) allow us
to construct emulators for the way a model is evolving
in time. This is one method of using ensembles of short
integrations to build emulators for long integrations that
could be used to refocus parameter space. Second, for
most models, hierarchies of complexity are available that
allow for lower-resolution versions or versions with simpler
physics to be used to run large ensembles that can help
develop informative priors for many of the emulator param-
eters discussed in Sect. 3.2 (Kennedy and O’Hagan, 2000;
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Cumming and Goldstein, 2009; Williamson et al., 2012;
Le Gratiet, 2014). Highly informative priors developed
using lower resolutions can dramatically reduce the size of
ensemble required to build useful emulators for refocussing.

We illustrate this in Fig. 17 using the 1° version of our
model, ORCAL1. The left panel shows ORCA1 temperature
at 216 m depth (green dots) for a 32-member ensemble. The
black dots and error bars are the diagnostic plots of a stan-
dard emulator for ORCAL built using the methods we used
to build ORCA2 emulators, but using only the 32 runs to
select the model parameters. The predicted run has been left
out of the emulator fit for each error bar in the diagnostic plot
(therefore, this is the one-point-at-a-time version of Fig. 3).
The red solid horizontal line and the dashed lines on either

Geosci. Model Dev., 10, 1789-1816, 2017
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Comparison between 3jl and standard at 2768 m
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Figure 14. As Fig. 9 but showing T (left) and S (right) anomalies at 2768 m depth from EN3 1960-1990 climatology.

side represent the global mean temperature in EN3 at 216 m
and the relevant uncertainty. What we see from this picture
is that we are able to predict ORCA1 well with the emula-
tor using an ensemble of only 32 members, in so far as each
model run lies within our emulator uncertainty. However, our
uncertainty is such that our emulator hardly helps us to rule
out parameter space at all. We are so uncertain that almost
the whole parameter space is NROY. Alone, a 32-member
ensemble is insufficient to rule out a considerable amount of
the 21-dimensional parameter space.

The panel on the right uses the emulator for ORCA?2 as
a starting point for an ORCA1 emulator and uses the 32-
member ensemble to effectively model differences between
the models at the two resolutions. The result is a substantial

Geosci. Model Dev., 10, 1789-1816, 2017

reduction in our emulator uncertainty for ORCA1. We can
see that relative to the size of the errors on the observational
constraint, our emulator is sufficiently accurate to enable us
to rule out a considerable amount of parameter space using
this model.

We build emulators for ORCA1 temperature at all depths
used for refocussing in this paper using just the ORCAI1
ensemble and using the ORCA2-informed emulators for
ORCALI and compare the reduction in parameter space if
we were to treat this analysis as wave 1 of a history match.
The history match using only the 32-member ensemble of
ORCALI lead to removing 37 % of the ORCA1l parame-
ter space explored, whereas the history match using the
ORCAZ2-informed emulators removed double that at 74 % of
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Figure 15. As Fig. 9 but for ensemble member 3i6 and showing 7 (left) and S (right) anomalies at 1830 m depth from EN3 1960-1990

climatology.

space cut out. In this example then, we can halve the volume
of the parameter space we are searching with a small ensem-
ble if we also use information from a low-resolution model
to help build emulators, and consequently there is potential
to achieve satisfactory levels of calibration with far less com-
putational resource and hence to apply this methodology to
higher (i.e. more costly to run) resolutions. Note also that
our wave 1 ORCAL space reduction is similar to our wave 1
space reduction for ORCAZ2 (77.5 %).

We have not presented a full example of tuning of ORCA1
due to resource limitations. We used this test ensemble to il-
lustrate that the tuning method we advocate here is not only
applicable if we have access to large ensembles. We do not

www.geosci-model-dev.net/10/1789/2017/

provide details of tuning using model hierarchies, as we be-
lieve this subject is worthy of another paper.

7 Discussion

We have described and illustrated iterative refocussing for
the ocean model NEMO run at 2° resolution and argued for
the method to be used for tuning complex numerical models
of the ocean, atmosphere, and climate. Iterative refocussing
(also referred to as history matching in the statistics litera-
ture) is a method of automatic tuning that allows for each of
the different sources of uncertainty present when comparing

Geosci. Model Dev., 10, 1789-1816, 2017
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Figure 16. Atlantic meridional overturning circulation at 26° N and 1000 m depth for waves 1, 2, and 3.
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Figure 17. Leave one out plots for emulators of ORCA 1 trained
using only a 32-member ensemble of ORCA1 (a) and using both
the wave 1 ORCA2 ensemble and the same 32-member ORCA1
ensemble to build the emulator (b).

climate models to data to define a region of model parame-
ter space, which is consistent with the data we are using and
allows us to focus the search for good models only in those
subspaces. Though it could be used to find just one setting of
the model parameters to represent the model in a MIP-type
experiment (e.g. CMIP6), we argue that it should be used to
return a representative set of models that cannot be ruled out
by comparison to observations, thus quantifying an important
source of uncertainty in climate model inter-comparison.

In our application with NEMO we have shown that itera-
tive refocussing is effective as a means to reduce biases in
metrics of interest, such as global mean T and S proper-
ties. However, is it also apparent that regional biases can be
large and persistent across large regions of parameter space,
indicating that either there are structural deficiencies in the
model, or that they arise as a result of external forcings or
untested elements of the model. Some regional biases, for
example those arising from the Mediterranean outflow into

Geosci. Model Dev., 10, 1789-1816, 2017

the northeast Atlantic presented earlier, may be sensitive to
parameter choices, and it may be appropriate for the scien-
tist to choose “preferred” solutions from those within NROY
space.

To obtain improved representations of the global ocean
additional metrics targeted towards reducing biases in crit-
ical regions can be applied. Ideally observations with suit-
able measures of uncertainty should exist for each metric.
Metrics and associated tolerances for error based on expert
judgement can be defined but should be used with caution.
Without observations the risk of over-tuning a model (or
worse, fitting it to an unrealistic value) is significant. Whilst
we have demonstrated that it is possible to find parameter
choices for ORCA?2 that substantially improve the represen-
tation of global mean 7" and S, we caution than many features
of the ocean properties, dynamics, and variability in simu-
lations inside wave 3 NROY have not been examined here.
Prior to using models within wave 3 NROY, the character-
istics of features important to the study should be assessed
and where necessary metrics targeted towards reducing bi-
ases in key regions of interest should be introduced, but this
is beyond the scope of this study. In comparison the reference
configuration available through the NEMO website has been
extensively tested and studied. We have also demonstrated in
Sect. 6 that small ensembles can be used, in tandem with
large ensembles of lower-resolution models, to tune high-
resolution models.

Though we are advocating for an automatic method of
model tuning, we are not arguing that the method is a panacea
for the expert judgement of model developers. Not only is
the choice of metrics and parameters to vary crucial, but also
the tolerance to model error present for each chosen metric
and the range of each chosen parameter to search for good
models. Each wave of our procedure allows the modellers to
assess the impact of the applied constraints and to use emu-
lators to suggest alternative metrics to use or regions of pa-
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rameter space that might be of special interest for the next
wave of the experiment. The emulators themselves may also
suggest unforeseen interaction of different parameterisations
and potential re-parameterisations that may lead to signifi-
cant improvement of the model. Tuning currently is a very
manual, labour-intensive process, and iterative refocussing
does not remove that altogether but does bring important and
powerful tools to bear on the problem.

Throughout the paper we have been careful not to say that
the NROY parameter space contains “plausible” climates or
even good models of any kind. We are so careful to do this so
that we avoid over-tuning (what statisticians might call over-
fitting). Tuning to partial observations always risks pushing
the model too close to the observations you have at the ex-
pense of processes (elements of the climate model state vec-
tor) to which you have not tuned and may only partially un-
derstand. However, if the model is “too far” from one set of
observations, we can say that model is unacceptable and not
risk falling into the trap of over-tuning. This is our approach
here.

Also crucial to the avoidance of over-tuning is the knowl-
edge of how much tuning is required. “How close is close
enough”? The uncertainty in the observations defines a lower
bound on this distance; however, for many metrics for which
we might have observations that we want to use, these un-
certainties are not reported. Routine reporting of these uncer-
tainties across the field would make the task of tuning models
more transparent and robust. The quantification of structural
uncertainty, even in the form of tolerance to error as we have
described it in the paper, remains a challenge for the climate
modelling community and for statisticians working with it.

We note that our approach in this paper has been to use
only area-integrated quantities averaged over time. More dis-
cretised forms of the data, for example, constraining param-
eter space using 2-D fields as metrics, would provide larger
constraint on parameter space. Certainly emulators for spa-
tial fields are available (Higdon et al., 2008; Sexton et al.,
2011); however, the specification of observation and struc-
tural uncertainty becomes even further complicated. Tuning
to 2-D and 3-D fields will be one of the next steps we take
with the NEMO model.

Code and data availability. The NEMO source code can be
obtained from http://www.nemo-ocean.eu. The output required
for emulation throughout the paper is provided in R format along
with all emulators fitted and the R file “FindNROYandPlots.R” that
demonstrates use of the emulators for history matching in R. Code
is provided to alter emulator parameters and refit the model, and
the first 30 lines of the R source file explains what the tuneable
statistical parameters are and provides a commented out working
example for interested readers. The R file reproduces Figs. 6 and 7
and similar plots for the ensemble by recomputing NROY space us-
ing the emulators; 2-D and 3-D fields for reproducing other figures
are available on request from the authors. Figure 8 was constructed
using 1.6 M emulator evaluations per panel and requiring the sub-
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mission to the condor cluster at Exeter of a large number of calls to
the provided R function ManyImplausibilities() in the same way as
demonstrated in the provided code. We do not provide code to run
the emulators on a cluster, as each cluster’s architecture is different.

There are a number of formal R packages available to down-
load for building and using emulators, for example, the R library
DiceKriging. The customised code provided here should not
be seen as an exemplar for the optimal fitting of Gaussian
Processes (both from an efficiency or a model selection point
of view), nor is it in submission for review as such. The fit-
ting of statistical models requires judgement, and the provided
emulators represent the judgements/uncertainties of the lead
author at the time of analysis. We provide code so that inter-
ested readers may explore the methodology and for illustrative
purposes. Readers wishing to fit emulators to their own models
are invited to explore the code to see how the authors have
implemented the technology, but are advised to use a more
robust public package such as DiceKriging in the first instance.

We strongly advise that these emulators are not re-used to
tune a custom version of NEMO. The model response is likely to
be sensitive to a great many things in addition to the parameters
we have varied here, and a different set-up or forcing is highly
likely to lead to model output that is sufficiently different from that
which trained the emulators. The authors welcome enquiries on
any aspect of the methods and the analysis in this paper.

The Supplement related to this article is available online
at doi:10.5194/gmd-10-1789-2017-supplement.
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