Increasing the detectability of external influence on precipitation by correcting feature location in GCMs
Levy, Adam A.L.; Jenkinson, Mark; Ingram, William; Lambert, F. Hugo; Huntingford, Chris ORCID: https://orcid.org/0000-0002-5941-7770; Allen, Myles. 2014 Increasing the detectability of external influence on precipitation by correcting feature location in GCMs. Journal of Geophysical Research: Atmospheres, 119 (22). 12466-12478. https://doi.org/10.1002/2014JD022358
Before downloading, please read NORA policies.
|
Text
©2014. American Geophysical Union. All Rights Reserved. N513159JA.pdf - Published Version Download (1MB) | Preview |
Abstract/Summary
Understanding how precipitation varies as the climate changes is essential to determining the true impact of global warming. This is a difficult task not only due to the large internal variability observed in precipitation but also because of a limited historical record and large biases in simulations of precipitation by general circulation models (GCMs). Here we make use of a technique that spatially and seasonally transforms GCM fields to reduce location biases and investigate the potential of this bias correction to study historical changes. We use two versions of this bias correction—one that conserves intensities and another that conserves integrated precipitation over transformed areas. Focussing on multimodel ensemble means, we find that both versions reduce RMS error in the historical trend by approximately 11% relative to the Global Precipitation Climatology Project (GPCP) data set. By regressing GCMs' historical simulations of precipitation onto radiative forcings, we decompose these simulations into anthropogenic and natural time series. We then perform a simple detection and attribution study to investigate the impact of reducing location biases on detectability. A multiple ordinary least squares regression of GPCP onto the anthropogenic and natural time series, with the assumptions made, finds anthropogenic detectability only when spatial corrections are applied. The result is the same regardless of which form of conservation is used and without reducing the dimensionality of the fields beyond taking zonal means. While “detectability” is dependent both on the exact methodology and the confidence required, this nevertheless demonstrates the potential benefits of correcting location biases in GCMs when studying historical precipitation, especially in cases where a signal was previously undetectable.
Item Type: | Publication - Article |
---|---|
Digital Object Identifier (DOI): | https://doi.org/10.1002/2014JD022358 |
Programmes: | CEH Topics & Objectives 2009 - 2012 > Biogeochemistry > BGC Topic 2 - Biogeochemistry and Climate System Processes > BGC - 2.3 - Determine land-climate feedback processes to improve climate model predictions |
UKCEH and CEH Sections/Science Areas: | Reynard |
ISSN: | 0148-0227 |
Additional Keywords: | precipitation,location,detection, attribution, bias, registration |
NORA Subject Terms: | Hydrology Meteorology and Climatology Atmospheric Sciences |
Date made live: | 02 Mar 2016 10:56 +0 (UTC) |
URI: | https://nora.nerc.ac.uk/id/eprint/513159 |
Actions (login required)
View Item |
Document Downloads
Downloads for past 30 days
Downloads per month over past year