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Abstract Understanding how precipitation varies as the climate changes is essential to determining the
true impact of global warming. This is a difficult task not only due to the large internal variability observed
in precipitation but also because of a limited historical record and large biases in simulations of precipitation
by general circulation models (GCMs). Here we make use of a technique that spatially and seasonally
transforms GCM fields to reduce location biases and investigate the potential of this bias correction to
study historical changes. We use two versions of this bias correction—one that conserves intensities and
another that conserves integrated precipitation over transformed areas. Focussing on multimodel ensemble
means, we find that both versions reduce RMS error in the historical trend by approximately 11% relative to
the Global Precipitation Climatology Project (GPCP) data set. By regressing GCMs’ historical simulations of
precipitation onto radiative forcings, we decompose these simulations into anthropogenic and natural time
series. We then perform a simple detection and attribution study to investigate the impact of reducing
location biases on detectability. A multiple ordinary least squares regression of GPCP onto the
anthropogenic and natural time series, with the assumptions made, finds anthropogenic detectability only
when spatial corrections are applied. The result is the same regardless of which form of conservation is used
and without reducing the dimensionality of the fields beyond taking zonal means. While “detectability” is
dependent both on the exact methodology and the confidence required, this nevertheless demonstrates
the potential benefits of correcting location biases in GCMs when studying historical precipitation,
especially in cases where a signal was previously undetectable.

1. Introduction

To evaluate the true impacts of climate change, we must understand how different regions of the globe
are affected at different seasons by various climate variables—most crucially temperature and mois-
ture availability. While past and projected changes in temperature have been robustly evaluated, it
has been more difficult to quantify changes in precipitation and, consequently, other properties of the
hydrological cycle.

In particular, it has proved difficult to detect an external effect on precipitation, let alone determine whether
it is attributable to human influence. There are a number of reasons for this. Precipitation distributions vary
over much shorter length scales than temperature. Unlike temperature, which in the past century has
increased almost everywhere [Hartmann et al., 2013, Figure 2.21], climate change is expected to increase
the contrast between wet and dry regions [Chou et al., 2009] as well as shifting climatological features
[Scheff and Frierson, 2012], and so any forced changes in precipitation will also vary over small length scales.
Exacerbating this problem is the limited observational record for precipitation. Studies aiming to detect and
attribute an external influence on historical precipitation generally have to choose between relatively sparse
land-based data sets [e.g., Polson et al., 2013a; Zhang et al., 2007] or relatively short satellite-based observa-
tions that began in 1979 [Huffman et al., 1997] as used by Marvel and Bonfils [2013] and Polson et al. [2013b].

Precipitation also has much larger internal (i.e., unforced) variability than temperature, with large fluctua-
tions up to decades in length [Dai, 2013], dominated by the El Niño–Southern Oscillation (ENSO). As ENSO
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will not be correlated between observations and the coupled general circulation models (GCMs) used to
simulate climate, on decadal time scales, any signal can be masked by noise. To increase the signal-to-noise
ratio, ENSO can be removed, especially from observations [Polson et al., 2013b] where ENSO indexes have
been defined [Wolter and Timlin, 2011], and ensemble means can be taken across GCM simulations to
smooth out the variability [Zhang et al., 2007; Polson et al., 2013a, 2013b]. It is also possible to use fin-
gerprints onto which ENSO projects poorly [e.g., Marvel and Bonfils, 2013]. Other studies have detected
intensification of the hydrological cycle indirectly, as in Durack et al. [2012] where sea surface salinities are
used as a proxy for the time-integrated difference between precipitation and evaporation.

Comparisons between simulated and observed precipitation are not only limited by uncorrelated variabil-
ity. GCMs also have large and diverse biases in their simulated mean climate [Dai, 2013], which can create
artificially large disagreements with each other and with observations on precipitation changes [Allen and
Ingram, 2002]. Further, while GCM simulations of the mean climatology improve with each phase of the
Coupled Model Intercomparison Project (CMIP) [Taylor et al., 2011], as shown in Knutti et al. [2013], this has
not given rise to better agreement on precipitation changes [Knutti and Sedlacek, 2013].

When comparing GCM-simulated precipitation changes, to other GCMs or to observations, it is therefore
potentially valuable to remove underlying biases, where possible. While many techniques exist to correct
simulated intensity distributions for each grid point [e.g., Piani et al., 2010], such local techniques are limited
where a climatological feature is simulated not just with the wrong intensity but also at the wrong location
or season [Haerter et al., 2011; White and Toumi, 2013]. To circumvent such disagreements in spatial and
seasonal location of features, previous studies have averaged over latitude bands and analyzed each season
independently [Zhang et al., 2007; Polson et al., 2013a].

It is possible, however, that image transformation tools could be used to correct the location and season
of climatological features in GCMs. Such tools have been used to study atmospheric variables previously,
though these applications have until recently been limited to numerical weather prediction, specifically
validation [Gilleland et al., 2009] and data assimilation [e.g., Nehrkorn et al., 2013]. As such techniques are
designed for regional scales, they tend not to be tailored to fields of the same complexity as climatolog-
ical precipitation or the correct geometry (e.g., longitudinal and seasonal periodicity). As a result, we are
only aware of one attempt to use such techniques to study a climate-scale precipitation feature—the
South-Pacific Convergence Zone [Brown et al., 2012].

Similar image transformation techniques are also used in brain image registration, where anatomical
features in magnetic resonance imaging (MRI) images of different subjects’ brains are aligned, so that
comparisons can be made. While these techniques also tend to operate in a Cartesian geometry, the com-
plexity of the fields studied is more comparable to climatological precipitation. Brain image registration
operates by transforming, or “warping,” input brain images so that they closer resemble a reference image
[Ashburner, 2007; Andersson et al., 2010]. Levy et al. [2013] applied these tools to the study of precipita-
tion, deriving transformations by comparing simulated precipitation to reanalysis of observations and
applying these same transformations to projected changes under a particular forcing scenario. While this
study demonstrated that a group of CMIP5 GCMs were brought into closer agreement using this tech-
nique, analysis of idealized projections does not allow for the validation of results, as the “true” changes
cannot be known. Further, the investigation made use of medical registration software that is designed for
transforming 3-D MRI images and so was not tailored to the specifics of precipitation climatology.

We have now developed a tool specifically for the correction of precipitation climatology [Levy et al., 2014].
Not only does it respect the geometry of the problem (spatially spherical with cyclic seasons to allow for
bias correction of features’ timing) but it also allows for either grid point intensities or integrated amounts
over transformed areas to be conserved upon warping. These two approaches are equivalent to preserving
precipitation fluxes, or mass, upon warping.

We now investigate the potential of this technique to improve simulated historical changes in precipitation.
We derive a set of transformations for 21 CMIP5 GCMs to correct errors of location relative to an observa-
tional data set. We then apply these transformations to the GCMs’ historical changes and investigate the
effect that this has on agreement with observed changes. While the optimal transformation will vary with
time, if GCM location biases are large compared to the shifts in the climatology over time, these transforma-
tions will tend to reduce model error. By decomposing the GCM historical simulations into anthropogenic
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and natural time series, we then analyze whether observed changes can be attributed to either of these
external forcings and the impact that warping has on this analysis. We repeat all studies with both the inten-
sity and the integrated precipitation conserving transformations. We do not reduce the dimensionality of
the monthly precipitation fields, except to match resolution to observations and to take zonal means.

This paper is organized as follows. Section 2 outlines the process of deriving and selecting transformations,
and section 3 describes the application of these transformations to historical CMIP5 simulations. Section 4
discusses the results of this study.

2. Deriving and Selecting Transformations

We wish to remove spatial and seasonal biases from GCM-simulated precipitation so that we can evaluate
the impact that this has on agreement with observed changes. To do this, we apply the tool described in
[Levy et al., 2014], which is based on medical image registration (or “warping”) techniques.

In general, there are two approaches used to warp MRI brain images—the small and large deforma-
tion frameworks [Sotiras et al., 2013]. Within the small deformation framework, intensities are translated
only once, and so deformations must be “small” in order to avoid introducing tears or folds to an image
[Andersson et al., 2010]. Within the large deformation framework, it is common to displace intensities
through a succession of small vectors that effectively comprise a velocity field [Ashburner, 2007; Christensen
et al., 1994]. This allows more accurate transformations but more computational resources to calculate.

The technique used here operates within the small deformation framework for simplicity [Levy et al., 2014].
Though a tool developed in the large deformation framework could offer further improvements, [Levy et al.,
2014] found that the tool built in the small deformation framework provides the potential to remove more
than half of climatological error. Within this framework, transformations are generally found by minimizing
an objective function:

O = C(W(I), R) + 𝜆̄K(W) (1)

where I and R are the input and reference images, respectively, and W is the warp. C is a cost function that
evaluates how similar the warped input image is to the reference image, and K is a regularization term that
penalizes warps that are less spatially and seasonally smooth. Here C is a sum of squared differences, and K
is based on “linear elastic energy” [Atanackovic and Guran, 2000]; 𝜆̄ is a tuneable parameter that determines
how smoothly the warp vectors vary. Although there are other parameters internal to K and C, we keep
them fixed here, having found they make little difference to the goodness of fit achieved [Levy et al., 2014].

When warping MRI images of brains, image intensities are conserved, and so integrated image brightness is
not. However, it is not clear whether this is the most appropriate property to conserve when warping precip-
itation. The technique therefore includes an option to conserve total integrated precipitation upon warping
[Levy et al., 2014]. Preserving total integrated precipitation may seem the more appropriate option in that
it maintains consistency with the energy and moisture budgets. However, as it changes precipitation flux
values, it is further from the basic intention of merely correcting errors of location. We therefore use both
algorithms to compare their abilities to improve simulated historical precipitation changes, regardless of
how flux conservation may affect consistency with other simulated fields.

As we aim to remove location biases from each GCM’s mean climate, we use the GCM’s mean monthly clima-
tology as the input “image,” I. The satellite-based observation data set GPCP [Huffman et al., 1997] is used as
the reference “image,” R, as it provides global, gridded precipitation values. The GCM’s climatology is derived
from its historical simulation, and only the years where the model and observations overlap (1979–2005) are
used to form monthly means. Where more than one historical simulation is available for a GCM, we take a
mean across these ensemble members.

Warps are derived with both forms of conservation and with values of 𝜆̄ ranging from 0.25 to 100 (mm/d)2,
which includes warps that strike a balance between goodness of fit and smoothness [Levy et al., 2014].
Generally, goodness of fit improves as 𝜆̄ decreases, except at very low values. Warps that are selected purely
on their goodness of fit will have little applicability, however, as they will take no account of how physical
the warp process is [Rohlfing, 2012]. We therefore select warps based both on their goodness of fit and a
measure of how severely they distort the GCM’s field.
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Table 1. List of GCMs Used in Study, With the Number of Ensemble Members for Each

Model Name(s) Modeling Group No. of Runs

BCC Program for Beijing Climate Center 6
CCSM4 University Corporation for Atmospheric Research 6
CNRM-CM5 Centre National de Recherches Meteorologiques 10
CSIRO-ACCESS 1.0 Commonwealth Scientific and Industrial Research Organisation 1
GFDL-CM3 NOAA Geophysical Fluid Dynamics Laboratory 5
GFDL-ESM2G NOAA Geophysical Fluid Dynamics Laboratory 1
GFDL-ESM2M NOAA Geophysical Fluid Dynamics Laboratory 1
GISS-E2-R 1.0 National Aeronautics and Space Administration 6
HadGEM2-AO Met Office Hadley Centre 1
HadGEM2-CC Met Office Hadley Centre 1
HadGEM2-ES Met Office Hadley Centre 4
INM-CM4 Institute for Numerical Mathematics 1
IPSL-CM5A-LR Institut Pierre-Simon Laplace 4
IPSL-CM5A-MR Institut Pierre-Simon Laplace 1
MIROC-ESM-CHEM Japan Agency for Marine-Earth Science and Technology 1
MIROC-ESM Japan Agency for Marine-Earth Science and Technology 3
MIROC5 Japan Agency for Marine-Earth Science and Technology 3
MPI-ESM-LR Max Planck Institute for Meteorology 3
MPI-ESM-P Max Planck Institute for Meteorology 2
MRI-CGCM3 Meteorological Research Institute 5
NorESM1-M Norwegian Climate Centre 3

To quantify deformations in the warp, we use its Jacobian determinants. The Jacobian determinant quan-
tifies the extent to which volumes change upon warping, and so a very high or low Jacobian implies
the introduction of folds or tears into the field. A Jacobian determinant of 1 implies no compression
or expansion.

Levy et al. [2013] selected warps to maximize the improvements seen, while also requiring that all the values
of the Jacobian lay between 0.1 and 10. While this requirement prevents extreme distortions, it does not
take into account the mean effect of the warp (only the extremal values). In order to allow a more complete
diagnostic, we require warps to satisfy

⎡⎢⎢⎢⎣

∑
i Ai max

(
1
Ji
, Ji

)n

∑
i Ai

⎤⎥⎥⎥⎦

1
n

≤ X (2)

where the sum is over all grid points and Ai and Ji are the area weighting and Jacobian determinant of a grid
point, i. This diagnostic imposes a limit on a root mean nth power of the Jacobian, and the higher we choose
n, the more we emphasize extremal values. If we set our threshold, X , to 10 and take the limit n → ∞, this
formula reduces to the requirement in previous work. A threshold of 1 requires a transformation consisting
solely of a uniform translation or rotation.

Here we set n to 6 and the limit, X , to 1.5. This puts some emphasis on extreme areas of distortion, while
requiring that the overall deviation from a zero transformation is not large. While any choice is somewhat
subjective, we found that this choice of n and X effectively ruled out transformations with visible discontinu-
ities and those where 𝜆̄ was low enough that transformations were unconstrained and goodness of fit was
sacrificed. Further, we found that varying the limits did not qualitatively change the nature of the warps, as
transformations of the same model with varying values of 𝜆̄ transformed in qualitatively similar ways [Levy
et al., 2014].

We derive and select warps in this way for 21 GCMs from 13 different institutions (Table 1). The warps
selected reduced RMS error in the GCMs’ climatologies by an average of 44% and 55% in the intensity and
integrated precipitation conserving cases, respectively. This has the effect of reducing RMS error in the
intermodel ensemble means by 31% and 47%, respectively, relative to the GPCP climatology.

Figure 1 shows the ensemble mean spatial component of the transformation process for 1 month (January).
The warp vectors (shown in Figures 1c and 1d) vary smoothly, and both transformations reduce the
error in the ensemble mean effectively (as shown by the reduction in color in Figures 1g and 1h, relative
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Figure 1. Figures showing mean historical precipitation climatology for January. They show the precipitation patterns (a) for GPCP and (c and d) for the GCM
ensemble means before and (e and f) after warping. To highlight changes, difference plots are shown (b) before and (g and h) after warping. For each GCM, we
derive transformations to remove spatial and seasonal biases relative to the GPCP climatology. We derive several transformations each with different values of
the smoothness parameter 𝜆̄ (while conserving either intensities or integrated precipitation amounts, i.e., fluxes or mass), and an optimal warp is selected for
each model under both regimes using equations (1) and (2). The ensemble mean vectors (Figures 1c and 1d) are displayed above for both forms of warp. All units
are in mm d−1, and ensemble means are across 21 GCMs. Historical means are taken over the period of overlap of the CMIP5 historical simulations and GPCP
(1979–2005).

to Figure 1b). The integrated precipitation conserving transformations are able to reduce more of the
small-scale errors than the intensity conserving case, especially for superfluous features, such as the spu-
rious southern Intertropical Convergence Zone (ITCZ), which the integrated precipitation conserving
transformation is able to dilute through expansion.

To explore how sampling uncertainty affects the warps derived, we examine differences in the derived
warps when different ensemble members of the same GCM (IPSL-CM5A-LR) are used as input fields. These
different ensemble members constitute different samplings of the GCM’s variability. This allows us to esti-
mate the sensitivity of the technique both to initial conditions (i.e., the input fields) and to limitations with
regards to optimization, which result from a finite number of iterations and becoming “stuck” in local rather
than global minima. We find the mean lengths of the three vector components (longitude, latitude, and
season) and the mean standard deviation in these three directions. For the flux conserving warps, these
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are
(

0.22 ± 0.02, 0.49 ± 0.03, (7.9 ± 0.8) × 10−3
)

, and for integrated precipitation conserving warps we find(
1.4 ± 0.1, 1.2 ± 0.1, (4.6 ± 0.5) × 10−2

)
, with units of the first two dimensions in degrees and the third in

months. The large size of the vector lengths relative to the uncertainty demonstrates the robustness of the
derived warps to sampling uncertainty both in the input fields and the algorithm.

3. Historical Precipitation Changes

The usefulness of the derived transformations for understanding historical precipitation rests on the
assumption that precipitation changes are tied to the underlying climatology so that correcting the seasonal
and geographical location of climatological precipitation features will also correct the location of precipita-
tion changes. This would be expected, as some climatological precipitation changes can be characterized
as an intensification of the mean distribution [Chou et al., 2009; Held and Soden, 2006]. Although shifts are
also expected to take place over time [Yin, 2005], provided these are small relative to location biases, and
the transformation is smooth, the derived warps should still serve to reduce errors. To evaluate the benefit
of correcting mean feature location, we now apply the transformations to statistical measures that evaluate
historical changes.

The simplest measure of change is the trend. We therefore create trend patterns by taking the trend of each
grid point for each month of the year independently. These trend patterns are created for all the GCMs and
for the observational data set, GPCP, for years with data from both the observations and the GCMs’ historical
simulations (1979–2005). We then apply our (intensity and integrated precipitation conserving) transfor-
mations to each GCM’s trend pattern and investigate the effect on the RMS difference from the GPCP trend
pattern. RMS error is reduced for all GCMs, using either form of transformation. On average, the error is
reduced by 11% for either method of conservation.

While this confirms that location corrections can improve GCM agreement with observed precipitation
changes, it is of limited use for detection and attribution of these changes. While the anthropogenic radia-
tive forcing for this period was indeed close to linear, there has also been a substantial natural forcing
(see Figure 2). These are most obvious in the form of volcanoes, which have strong time dependence and
asymmetry over the time period of interest, and so will affect the trends.

We therefore decompose our GCM fields into two patterns, representing projections onto the natural and
anthropogenic forcings. To achieve this, we perform a multiple regression [Crooks and Gray, 2005] of each
GCM onto the two global annual mean radiative forcings [Meinshausen et al., 2011] shown in Figure 2. As
with the trend, this is repeated for each grid point, for each month of the year, independently. Though radia-
tive forcings vary with both latitude and season, the responses to them are spread out by heat transport and
storage by atmosphere and ocean and so depend more on the physics of the climate system than the distri-
bution of the forcing [Boer and Yu, 2003]. Precipitation also depends on the surface temperature response to
forcings, which will further reduce the temporal and spatial specificity of precipitation responses [Lambert et
al., 2011]. We therefore use annual global mean values for these forcings.

We can again apply our two types of conserving warps to these patterns. The ensemble means are dis-
played in Figure 3 for both the anthropogenic and natural patterns. Note that these ensemble means are
taken across all GCMs, each of which is itself a mean over that model’s available historical simulations. As
can be seen, the GCMs’ time variation projects much more strongly onto the anthropogenic forcing pattern
(effectively a trend pattern). For both components, and for both types of transformation, warping reduces
the small-scale features in the ensemble mean, while maintaining the broad structure of the original pat-
terns. This is especially clear for the ITCZ and the South Pacific Convergence Zone, where the anthropogenic
pattern is much smoother after warping.

3.1. Detection and Attribution Case Study
Detection and attribution studies aim to identify whether an external effect on a climatological field
can be detected and if this effect can be attributed to a particular cause (e.g., anthropogenic or natural).
This is achieved by projecting observed patterns onto expected patterns (fingerprints). Generally, these
fingerprints are derived using GCMs. This process takes the form [Allen and Stott, 2003]

y =
∑

i

[
𝛽i

(
X i + vi

)]
+ v0 (3)
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Figure 2. Annual mean, globally averaged radiative forcings, estimated for
anthropogenic and natural components (blue). Also shown is the monthly
MEI Index, which can be used to characterize ENSO [Wolter and Timlin,
2011]. The forcing time series are used to decompose GCM simulations
into anthropogenic and natural components, and the MEI index is used to
remove ENSO variability from observations (GPCP).

where y is the observed pattern and
X i is the ith fingerprint, v0 and vi rep-
resent estimates of the variability of
the system and of the fingerprints,
respectively, and 𝛽i is the ith regres-
sion coefficient and so indicates a
potential link between observations
and the fingerprints. Characterizing
the noise allows confidence limits
to be estimated, and a signal is gen-
erally considered to be detected if
zero lies below the 5–95% limits for
an individual 𝛽i . When more than
one fingerprint is used, detectabil-
ity for some combination of these
fingerprints enables changes to be
attributed to particular causes.

In many studies, the noise of the
fingerprint is low, and so vi can be
neglected [Stott et al., 2001]. As we
take our ensemble mean over 21

GCMs, each of which averaged over the available runs (Table 1), the model contribution to internal variabil-
ity will be small compared to that of the observations. While there will be a substantial contribution to vi

from differences between models, the effect of reducing this noise through warping is precisely what we
wish to investigate. We therefore neglect fingerprint noise for simplicity. We note that this may bias the
best estimate and upper bounds of 𝛽 toward zero, though Tett et al. [1999] found that it did not affect the
lower bounds.

In order to attribute observed changes to an external signal, we derive fingerprints from our simulated natu-
ral and anthropogenic patterns. To improve detectability, the component of internal variability due to ENSO
can be removed before performing the detection study [Polson et al., 2013b]. We remove ENSO variability
from GPCP by performing a multivariate regression onto the anthropogenic and natural forcings, as well as
the Multivariate ENSO Index (MEI) [Wolter and Timlin, 2011], shown in Figure 2. The outer product of the MEI
time series and the MEI component of GPCP is then subtracted from GPCP’s historical simulation, except
when the result would imply negative precipitation (fewer than 1% of values). We use a multivariate (as
opposed to single) regression in an attempt to reduce the impact of the ENSO removal on the natural and
anthropogenic components. We refer to the resulting field as the “ENSO-free” GPCP precipitation field. While
ENSO variability exists within the models, its impact will be minimal in the ensemble mean.

Previously, internal variability and GCM biases have meant that studies that aim to detect and attribute
an external signal in precipitation changes have been required to greatly reduce the dimensionality of
the field. Approaches include taking annual or seasonal means, latitude bands [Allen and Ingram, 2002;
Zhang et al., 2007; Polson et al., 2013a], and characterizing changes in terms of shifts and intensifications of
extremal zonal values [Marvel and Bonfils, 2013]. While studies that attempt to attribute changes of a partic-
ular nature (e.g., intensification of the contrast between wet and dry regions) have been able to make use
of shorter satellite-based observational data sets [Polson et al., 2013b; Marvel and Bonfils, 2013], studies that
attempt to identify a signal in the entire field generally require longer time series and so have been limited
to precipitation over land.

Here we attempt to detect and attribute a signal using the entire year, without limiting our findings to land.
It remains, however, desirable to reduce the dimensionality of the field partially to reduce the impact of
internal variability. As we wish to determine the potential impact of warping techniques on such studies, we
first investigate whether reducing the dimensionality in each dimension impacts on the improvements we
see from warping. Naturally, if we took a global, annual mean, the effect of the warp would be reduced to
near zero, as there can be no location biases in such a field.
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Figure 3. Plots showing ensemble mean regressed patterns for January, with (left) anthropogenic and (right) natural components. These patterns are derived by
performing a multiple ordinary least squares regression of each GCM’s historical run (for 1979–2005) onto global annual mean radiative forcings, independently
for each grid point, for each month of the year. The ensemble means are taken of the 21 GCMs before and after applying intensity or integrated precipitation
conserving warps (labeled flux and mass above, respectively). Units are in mm d−1(W m−2)−1.

While smoothing east-west does not substantially sacrifice improvements seen from warping, north-south
or seasonal smoothing greatly reduces the effect of the warp. This is to be expected, as there is far more
structure in precipitation climatology in the latitudinal and seasonal directions. We therefore take zonal
means for this study, without reducing dimension in the seasonal or latitudinal dimensions, except to match
the GCMs’ latitudinal resolution to that of GPCP (2.5◦ spacing).

For the observed climate pattern, therefore, we simply take the zonally averaged ENSO-free GPCP time
series, with the monthly mean subtracted, so that it forms a time series of monthly anomalies. We project
this onto anthropogenic and natural fingerprints. These are composed by taking the outer product of the
GCM ensemble mean coefficient patterns (described above and shown in Figure 3) with the relevant forcing
time series (Figure 2). The fingerprints are therefore a simulated estimation of the natural and anthropogenic
components of the historical time series.

Performing an ordinary least squares regression requires an estimate of the external noise. Here we derive
90% confidence intervals by replacing the GPCP field with sections of preindustrial control runs of the same
length. We use the control runs of the same 21 GCMs used to simulate historical precipitation, which provide
us with a distribution of 463 correlation coefficients. This large sample size allows us to approximate the dis-
tribution as Gaussian and so can derive confidence bands from the standard deviation of these coefficients.
Note that by using climate model control simulations in computing confidence intervals, the covariance
structure of internal climate variability will be taken into account.
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Figure 4. Regression coefficients (“𝛽”) from regressing GPCP anomalies onto (top) anthropogenic and (bottom) natural
components of CMIP5 ensemble mean. The observed patterns are taken from GPCP, with ENSO variability removed by
regression as described in the text (section 33.1). The error bars represent the 90% confidence range, derived using GCM
control runs to capture the variability. The best guess values for the regression coefficients are shown by crosses. Shown
are results without warping (blue), with warped historical runs (red), and with warped historical and control runs (green).
Detection is marginally achieved in all anthropogenic cases where warping is applied but in none of the natural cases
(where the best guess is slightly negative). The GCMs were warped using (left) intensity conserving and (right) integrated
precipitation conserving warps.

We make no attempt to remove ENSO from these control runs, since each one will be different, and any
attempt to derive a suitable index for each one would necessarily be both onerous and subjective. Thus, the
model simulations that give our estimate of natural variability will contain extra noise, which will tend to
make tests conservative. In order to test the impact of correcting location biases, we repeat this experiment
with warped historical runs and with both historical and control runs warped, with both forms of conserving
warp. By applying our warps to simulated internal variability as well as the fingerprint signals, we hope to
address model-model differences in climate variability.

The results of these regressions are shown in Figure 4. As can be seen, with or without warping, no signal
is detected when projecting onto the natural component. Indeed, in all cases the best guess is a slightly
negative correlation coefficient. For the anthropogenic component, on the other hand, there is consistency
with one in all cases. Before warping, there is marginal consistency with zero, indicating that a signal cannot
be detected in this case. With either intensity or integrated precipitation conserving warps (with or with-
out warped control runs), however, the 90% error bars no longer cross the x axis, indicating that the
anthropogenic signal is detected at the 5% level by this particular analysis.

While 95% confidence bands are the standard used, they reflect an arbitrary choice. It is therefore more
useful to consider the change in confidence of the detection rather than the binary of whether or not a sig-
nal has been detected under a particular criterion. Here an anthropogenic signal was detected with 93%
confidence before warping. After warping both historical and control runs, the confidence in the result is
increased to 98% and 96% in the intensity and integrated precipitation conserving cases, respectively.

To verify that these improvements are not an artefact of the removal of ENSO from GPCP, we also consider
results where ENSO is not removed from GPCP. Figure 5 shows the results obtained through this process, and
same results without ENSO removal from GPCP. While detection is not achieved with 95% confidence, we
can see that warping again improves the detectability of the anthropogenic component. Here confidence is
increased from 84% before warping to 90% and 89% in the intensity and integrated precipitation conserving
cases, respectively. Again, warping does not substantially affect the detectability of the natural component,
although not removing ENSO from GPCP provides better consistency with 1 for this component.
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Figure 5. As with Figure 4 but without ENSO variability removed from GPCP. The error bars represent the 90% confi-
dence range, derived using GCM control runs to capture the variability. Shown are results without warping (blue), with
warped historical runs (red), and with warped historical and control runs (green). Detection at the 95% level is no longer
achieved in the anthropogenic case, though warping the models still results in improved detectability. Improvements in
the natural component are negligible.

4. Discussion and Conclusion

This result demonstrates that our ability to detect and attribute a human influence on historical precip-
itation changes can be enhanced by correcting the location of features in GCMs. In the case presented
here, these changes are attributable only where location correction techniques are used. While this attri-
bution relies on an arbitrary threshold, we have also demonstrated that the probability of a nonpositive
regression coefficient is reduced from 7% to 2% with intensity conservation or to 4% with integrated
precipitation conservation.

There are several reasons why correcting the location of features enhances the detectability of the signal.
By transforming the GCMs’ historical runs, features are lined up better before taking ensemble means so
that the signal is not smoothed out before the fields are merged. More importantly, the ensemble mean
changes are then better aligned with the observed patterns, improving our chances of detecting a signal.
Further, correcting feature location in control runs allows a better estimate of the variability of the system
to be made, which is not artificially inflated by climatological differences between GCMs. The improvements
in detectability support our expectation that both intermodel agreement and agreement between models
and observations on precipitation changes are partially masked by the various location biases in the GCMs’
underlying climatologies.

This does not apply for the natural signal, where the best guess correlation coefficient is found to be small
and negative in all cases. This is an artefact of the ENSO removal technique, as when this study is repeated
without removing ENSO variability; the best guess, indicated by the crosses in Figure 5, is found to be
close to one for both natural and anthropogenic coefficients (detection with a 95% confidence is lost for
the anthropogenic correlation coefficient, however). Further, as shown in Figure 5, the result that warping
improves detectability is resilient to whether or not ENSO is removed from the observations.

This negative effect on the natural component due to ENSO removal is due to the known negative cor-
relation in recent decades between the natural forcing and ENSO variability, though there is no evidence
that this relationship is causal [Self et al., 1997]. For the time period used here (1979–2005), the correlation
coefficient between these two time series is −0.4. As a result, in spite of removing the ENSO signal using a
multiple regression that incorporates both the anthropogenic and natural forcings, we have reduced our
ability to attribute a component of observed changes to natural forcing. While future work could attempt
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to better decouple the ENSO and natural signals, we are primarily concerned with investigating the effect of
warping on the anthropogenic signal here.

It is important to note the sensitivity of the method presented here. The detection of the anthropogenic sig-
nal with 95% confidence is only marginal, as suggested by the loss of detectability when ENSO variability is
not removed from GPCP. Although leaving ENSO variability in the control runs will have increased the size of
our confidence bars, other factors could imply that the error bars are an underestimate. Most importantly,
model-simulated variability may underestimate the true natural variability of precipitation in the climate
system. Further, by using an ordinary least squares rather than a total least squares regression, we have
neglected the noise internal to the climate models. Although taking an ensemble mean across 21 GCMs
(most of which are comprised of several ensemble members) reduces the size of this noise, there remains
model noise through differences in model climatologies and underlying physics, though this will primarily
bias only the central and upper estimates [Tett et al., 1999].

Nevertheless, the increases in confidence (with or without ENSO removal) demonstrate that correcting fea-
ture location reduces model error in simulated historical changes, which in turn improves the possibility of
detecting and attributing changes to external forcings. We find that in spite of substantial differences in the
behavior of the transformations, both the intensity and integrated precipitation conserving warps enhance
detectability. The reduction of RMS error with the observed trend patterns, using either technique, also indi-
cates that more than a tenth of the error in simulated historical precipitation changes can be attributed to
errors in location, which in previous studies have gone uncorrected.

Further, in spite of the ability of the integrated precipitation conserving technique to better reduce errors in
the climatology, both conservation approaches removed a similar amount of RMS error from GCM trend pat-
terns. This indicates that the applicability of a particular transformation cannot be exclusively determined
based on its success at removing errors from a GCM’s mean historical climate. We note that the flux conserv-
ing technique improves the consistency of GCM-simulated precipitation changes with observations, in spite
of introducing inconsistency between precipitation and other GCM-simulated fields. This provides evidence
that bias correction of feature location is a valuable tool regardless of its precise form (though one form
may be more appropriate than others for a particular application). Examining the warps derived for different
ensemble members of the same GCM, we find that the standard deviations are substantially smaller than
the mean vector lengths, demonstrating the transformations’ robustness to sampling uncertainty. Uncer-
tainty in the warping technique could be explored further in future work by, for example, using a different
form for the regularization term (R in equation (1)) or criteria for selecting warps (see equation (2)).

Note that in this study, we have not considered errors in our observation data set, GPCP. Climatological
biases in the observations will tend to be due to errors in precipitation intensity, not location [Huffman et al.,
2009]. However, land-sea contrast may be affected by differences in satellite retrieval algorithms for these
two contexts, which may introduce biases into the warps derived for GCMs . Further, introductions of new
satellites may introduce biases in the GPCP trend [Polson et al., 2013b]. Any source of error that is uncorre-
lated between observations and GCMs will tend to obscure any common signal that is present and so serves
to reduce the detectability of a signal, with or without warping. Future work could therefore seek to quan-
tify these sources of uncertainty by using other precipitation observations, both in deriving warps and in
comparing observations to fingerprints.

Similarly, we do not explicitly consider the effect of aerosols on precipitation, which are resolved to varying
extents in modern GCMs. Errors in the mean response to aerosols are one of the sources of location biases
that our technique hopes to reduce and so are dealt with implicitly. However, there will also be a precipita-
tion response to aerosol forcing over the time period studied, though there remains substantial uncertainty
both in the observed [Stocker et al., 2013] and simulated [Forster et al., 2013] radiative forcing. Aerosol micro-
physics may of course have further influence on precipitation than from their radiative effect, and GCMs’
varying abilities to resolve these processes will further reduce our ability to detect a signal. The techniques
used in this paper, however, could help quantify such effects by separating climatological and trend biases
that result from limitations in the simulation of aerosols.

There have been several efforts previously to detect and attribute precipitation changes by increasing the
signal to noise in the observations and fingerprints being studied. This may be achieved, for example, by
reducing the dimensionality [Marvel and Bonfils, 2013] or by using a longer, land-limited observational data
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set [Polson et al., 2013a]. By correcting spatial and seasonal biases in GCMs, we have demonstrated that
the agreement between observed and fingerprint patterns can be improved, further enhancing our ability
to attribute observed changes to external forcings. This allows more robust understanding of changes in
observed precipitation records and builds confidence in model-simulated projections.

It would therefore be of interest to apply this technique where a signal has previously been unde-
tectable or only marginally detectable. We hope to also make use of the location correction technique
developed by [Levy et al., 2014] to improve precipitation projections under various forcing scenarios.
While Levy et al. [2013] found improvements in intermodel agreement on precipitation change, an ide-
alized forcing experiment was used, and changes were evaluated over a long period to improve signal
to noise. We therefore hope to investigate the potential of warping techniques to improve near-term
precipitation projections.

For such analyses, further care must be taken to ensure that the transformation derived for the historical
period still applies to the GCM’s future climatology (i.e., shifts of features in the climatology are small relative
to the scale of the error corrections applied). Indeed, in this study, the intensity conserving warps are able to
remove slightly more error from the preindustrial control runs than the integrated precipitation conserving
warps, despite correcting the historical (1979–2005) climatology less accurately.

In addition, techniques such as these could be applied to fields besides precipitation. Further, improved esti-
mates of precipitation could be fed into other models to improve simulation of other hydrological fields,
such as runoff. It is also our hope that transformations such as these could serve as a useful diagnostic
tool for the evaluation of model errors. Through such feedback, we hope to assist in the development of
future GCMs.
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