nerc.ac.uk

Surface/atmosphere exchange and chemical interaction of gases and aerosols over oilseed rape

Nemitz, Eiko ORCID: https://orcid.org/0000-0002-1765-6298; Sutton, Mark A. ORCID: https://orcid.org/0000-0002-6263-6341; Wyers, G. Paul; Otjes, Rene P.; Schjorring, Jan K.; Gallagher, Martin W.; Parrington, Judith; Fowler, David; Choularton, Thomas W.. 2000 Surface/atmosphere exchange and chemical interaction of gases and aerosols over oilseed rape. Agricultural and Forest Meteorology, 105 (4). 427-445. https://doi.org/10.1016/S0168-1923(00)00207-0

Full text not available from this repository.

Abstract/Summary

Measurements of NH3, HCl, HNO3 and HNO2 gas as well as NH4+, NO3−, Cl− and SO42− aerosol are used to investigate their surface exchange fluxes and the potential for gas–particle interactions at a clean coastal Scottish site. Mean concentrations of HNO3 and HCl were small at 0.68 and 0.32 μg m−3, respectively. At relative humidities (h)<85% measured gas concentration products (Km) were smaller than the predicted dissociation constants (Ke), suggesting potential for aerosol evaporation, but at high h, Ke of NH4Cl was exceeded at the mean canopy height. Above the canopy, small aerosol concentrations resulted in estimated chemical time-scales of >3 min. Thus, chemical reactions should not have affected NH3 flux measurements by aerodynamic gradient methods (AGMs), except for very low turbulence when AGM is not applicable. Within the canopy, however, the diffusive transport provided enough time for NH4Cl to be generated. This was substantiated by measurements of NH4+ emission and high Cl− aerosol concentrations within the canopy. Micrometeorological measurements above the canopy indicated that gaseous Cl compounds were emitted for most of the time, and this was supported by the source/sink distributions of gaseous and aerosol Cl compounds calculated from in-canopy profiles as well as high apoplastic Cl− concentrations. Although emission of CH3Cl has been reported for other Brassica species, an unrealistically large emission would be necessary to cause the observed above-canopy gradients. Emission of HCl liberated from unidentified water pools of high Cl− or leaf surface reactions is a more likely source of gaseous Cl compounds.

Item Type: Publication - Article
Digital Object Identifier (DOI): https://doi.org/10.1016/S0168-1923(00)00207-0
Programmes: CEH Programmes pre-2009 publications > Biogeochemistry
UKCEH and CEH Sections/Science Areas: _ Biogeochemistry & Ecosystem Function
ISSN: 0168-1923
Additional Keywords: Gas-to-particle conversion, Ammonia, Ammonium, Brassica napus, Aerosol deposition, Chloromethane, Inverse Lagrangian technique, HCl emission
NORA Subject Terms: Ecology and Environment
Atmospheric Sciences
Date made live: 12 Sep 2008 08:03 +0 (UTC)
URI: https://nora.nerc.ac.uk/id/eprint/3796

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...