Methane release at the top of the gas hydrate stability zone of the Hikurangi margin, New Zealand

Faure, K.; Greinert, J.; Pecher, I.A.; Graham, I.J.; Massoth, G.A.; de Ronde, C.E.J.; Wright, I.C.. 2006 Methane release at the top of the gas hydrate stability zone of the Hikurangi margin, New Zealand. New Zealand Journal of Geology and Geophysics, 49 (4). 503-516.

Full text not available from this repository.


Dissolved methane and high resolution bathymetry surveys were conducted over the Rock Garden region of Ritchie Ridge, along the Hikurangi margin, eastern New Zealand. Multibeam bathymetry reveals two prominent, northeast trending ridges, parallel to subduction along the margin, that are steep sided and extensively slumped. Elevated concentrations of methane (up to 10 nM, 10× background) within the water column are associated with a slump structure at the southern end of Eastern Rock Garden. The anomalous methane concentrations were detected by a methane sensor (METS) attached to a conductivity-temperature-depth-optical backscatter device (CTDO) and are associated with elevated light scattering and flare-shaped backscatter signals revealed by the ship’s echo sounder. Increased particulate matter in the water column, possibly related to the seepage and/or higher rates of erosion near slump structures, is considered to be the cause of the increased light scattering, rather than bubbles in the water column. Methane concentrations calculated from the METS are in good agreement with concentrations measured by gas chromatography in water samples collected at the same time. However, there is a c. 20 min (c. 900 m) delay in the METS signal reaching maximum CH4 concentrations. The maximum methane concentration occurs near the plateau of Eastern Rock Garden close to the edge of a slump, at 610 m below sea level (mbsl). This is close to the depth (c. 630 mbsl) where a bottom simulating reflector (BSR) pinches out at the seafloor. Fluctuating water temperatures observed in previous studies indicate that the stability zone for pure methane hydrate in the ocean varies between 630 and 710 mbsl. However, based on calculations of the geothermal gradients from BSRs, we suggest gas hydrate in the study area to be more stable than hydrate from pure methane in sea water, moving the phase boundary in the ocean upward. Small fractions of additional higher order hydrocarbon gases are the most likely cause for increased hydrate stability. Relatively high methane concentrations have been measured down to c. 1000 mbsl, most likely in response to sediment slumping caused by gas hydrate destabilisation of the sediments and/or marking seepage through the gas hydrate zone.

Item Type: Publication - Article
ISSN: 0028-8306
Additional Keywords: Hikurangi margin; Ritchie Ridge; methane; hydrate; multibeam bathymetry; slumping
Date made live: 24 Jul 2008 +0 (UTC)

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...