Comparing rates of recrystallisation and the potential preservation of biomolecules from the distribution of trace elements in fossil bones
Trueman, Clive N.; Palmer, Martin R.; Field, Judith; Privat, Karen; Ludgate, Natalie; Chavagnac, Valerie; Eberth, David A.; Cifelli, Richard; Rogers, Raymond R.. 2008 Comparing rates of recrystallisation and the potential preservation of biomolecules from the distribution of trace elements in fossil bones. Comptes Redus Palevol, 7 (2-3). 145-158. https://doi.org/10.1016/j.crpv.2008.02.006
Full text not available from this repository.Abstract/Summary
Preservation of intact macromolecules and geochemical signals in fossil bones is mainly controlled by the extent of post-mortem interaction between bones and sediment pore waters. Trace elements such as lanthanum are added to bone post-mortem from pore waters, and where uptake occurs via a simple process of diffusion and adsorption, the elemental distribution can be used to assess the relative extent of bone-pore water interaction and rate of recrystallisation. Distribution profiles can be parameterised effectively using simple exponential equations, and the extent of bone–water interaction compared within and between sites. In this study, the distribution of lanthanum within bone was determined by laser ablation ICP–MS in 60 archaeological and fossil bones from Pleistocene and Cretaceous sites. The rates of recrystallisation and potential for preservation of intact biogeochemical signals vary significantly within and between sites. Elemental profiles within fossil bones hold promise as a screening technique to prospect for intact biomolecules and as a taphonomic tool.
Item Type: | Publication - Article |
---|---|
Digital Object Identifier (DOI): | https://doi.org/10.1016/j.crpv.2008.02.006 |
ISSN: | 1631-0683 |
Date made live: | 09 Jun 2008 +0 (UTC) |
URI: | https://nora.nerc.ac.uk/id/eprint/142346 |
Actions (login required)
View Item |
Document Downloads
Downloads for past 30 days
Downloads per month over past year