nerc.ac.uk

Seismic volcanostratigraphy of the Norwegian Margin: constraints on tectono-magmatic break-up processes

Berndt, C.; Planke, S.; Alvestad, E.; Tsikalas, F.; Rasmussen, T.. 2001 Seismic volcanostratigraphy of the Norwegian Margin: constraints on tectono-magmatic break-up processes. Journal of the Geological Society, 158 (3). 413-426.

Before downloading, please read NORA policies.
[img] PDF
413.pdf
Restricted to NORA staff only

Download (4MB) | Request a copy

Abstract/Summary

Voluminous volcanism characterized Early Tertiary continental break-up on the mid-Norwegian continental margin. The distribution of the associated extrusive rocks derived from seismic volcanostratigraphy and potential field data interpretation allows us to divide the Møre, Vøring and Lofoten–Vesterålen margins into five segments. The central Møre Margin and the northern Vøring Margin show combinations of volcanic seismic facies units that are characteristic for typical rifted volcanic margins. The Lofoten–Vesterålen Margin, the southern Vøring Margin and the area near the Jan Mayen Fracture Zone show volcanic seismic facies units that are related to small-volume, submarine volcanism. The distribution of subaerial and submarine deposits indicates variations of subsidence along the margin. Vertical movements on the mid-Norwegian margin were primarily controlled by the amount of magmatic crustal thickening, because both the amount of dynamic uplift by the Icelandic mantle plume and the amount of subsidence due to crustal stretching were fairly constant along the margin. Thus, subaerial deposits indicate a large amount of magmatic crustal thickening and an associated reduction in isostatic subsidence, whereas submarine deposits indicate little magmatic thickening and earlier subsidence. From the distribution of volcanic seismic facies units we infer two main reasons for the different amounts of crustal thickening: (1) a general northward decrease of magmatism due to increasing distance from the hot spot and (2) subdued volcanism near the Jan Mayen Fracture Zone as a result of lateral lithospheric heat transport and cooling of the magmatic source region. Furthermore, we interpret small lateral variations in the distribution of volcanic seismic facies units, such as two sets of Inner Seaward Dipping Reflectors on the central Vøring Margin, as indications of crustal fragmentation.

Item Type: Publication - Article
ISSN: 0016-7649
Related URLs:
Date made live: 30 Jun 2006 +0 (UTC)
URI: https://nora.nerc.ac.uk/id/eprint/139311

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...