nerc.ac.uk

Dry deposition of reactive nitrogen to European ecosystems: a comparison of inferential models across the NitroEurope network

Flechard, C.R.; Nemitz, E. ORCID: https://orcid.org/0000-0002-1765-6298; Smith, R.I.; Fowler, D.; Vermeulen, A.T.; Bleeker, A.; Erisman, J.W.; Simpson, D.; Zhang, L.; Tang, Y.S.; Sutton, M.A. ORCID: https://orcid.org/0000-0002-6263-6341. 2011 Dry deposition of reactive nitrogen to European ecosystems: a comparison of inferential models across the NitroEurope network. Atmospheric Chemistry and Physics, 11. 2703-2728. https://doi.org/10.5194/acp-11-2703-2011

Full text not available from this repository.

Abstract/Summary

Inferential models have long been used to determine pollutant dry deposition to ecosystems from measurements of air concentrations and as part of national and regional atmospheric chemistry and transport models, and yet models still suffer very large uncertainties. An inferential network of 55 sites throughout Europe for atmospheric reactive nitrogen (Nr) was established in 2007, providing ambient concentrations of gaseous NH3, NO2, HNO3 and HONO and aerosol NH4+ and NO3− as part of the NitroEurope Integrated Project. Network results providing modelled inorganic Nr dry deposition to the 55 monitoring sites are presented, using four existing dry deposition routines, revealing inter-model differences and providing ensemble average deposition estimates. Dry deposition is generally largest over forests in regions with large ambient NH3 concentrations, exceeding 30–40 kg N ha−1 yr−1 over parts of the Netherlands and Belgium, while some remote forests in Scandinavia receive less than 2 kg N ha−1 yr−1. Turbulent Nr deposition to short vegetation ecosystems is generally smaller than to forests due to reduced turbulent exchange, but also because NH3 inputs to fertilised, agricultural systems are limited by the presence of a substantial NH3 source in the vegetation, leading to periods of emission as well as deposition. Differences between models reach a factor 2–3 and are often greater than differences between monitoring sites. For soluble Nr gases such as NH3 and HNO3, the non-stomatal pathways are responsible for most of the annual uptake over many surfaces, especially the non-agricultural land uses, but parameterisations of the sink strength vary considerably among models. For aerosol NH4+ and NO3− discrepancies between theoretical models and field flux measurements lead to much uncertainty in dry deposition rates for fine particles (0.1–0.5 μm). The validation of inferential models at the ecosystem scale is best achieved by comparison with direct long-term micrometeorological Nr flux measurements, but too few such datasets are available, especially for HNO3 and aerosol NH4+ and NO3−.

Item Type: Publication - Article
Digital Object Identifier (DOI): https://doi.org/10.5194/acp-11-2703-2011
Programmes: CEH Topics & Objectives 2009 - 2012 > Biogeochemistry > BGC Topic 1 - Monitoring and Interpretation of Biogeochemical and Climate Changes > BGC - 1.1 - Monitor concentrations, fluxes, physico-chemical forms of current and emerging pollutants ...
UKCEH and CEH Sections/Science Areas: Billett (to November 2013)
ISSN: 1680-7316
Additional Information. Not used in RCUK Gateway to Research.: Atmospheric Chemistry and Physics is an Open Access journal - to access full text of article, please click on the OFFICIAL URL link
NORA Subject Terms: Atmospheric Sciences
Related URLs:
Date made live: 30 Mar 2011 11:33 +0 (UTC)
URI: https://nora.nerc.ac.uk/id/eprint/13844

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...