Anthropogenic and biophysical contributions to increasing atmospheric CO2 growth rate and airborne fraction
Raupach, M.R.; Canadell, J.G.; Le Quéré, Corinne. 2008 Anthropogenic and biophysical contributions to increasing atmospheric CO2 growth rate and airborne fraction. Biogeosciences, 5 (6). 1601-1613. 10.5194/bg-5-1601-2008
Before downloading, please read NORA policies.
Text
bg-5-1601-2008.pdf - Published Version Restricted to NERC registered users only Download (605kB) | Request a copy |
Abstract/Summary
We quantify the relative roles of natural and anthropogenic influences on the growth rate of atmospheric CO2 and the CO2 airborne fraction, considering both interdecadal trends and interannual variability. A combined ENSO-Volcanic Index (EVI) relates most (similar to 75%) of the interannual variability in CO2 growth rate to the El-Nino-Southern-Oscillation (ENSO) climate mode and volcanic activity. Analysis of several CO2 data sets with removal of the EVI-correlated component confirms a previous finding of a detectable increasing trend in CO2 airborne fraction (defined using total anthropogenic emissions including fossil fuels and land use change) over the period 1959-2006, at a proportional growth rate 0.24% y(-1) with probability similar to 0.9 of a positive trend. This implies that the atmospheric CO2 growth rate increased slightly faster than total anthropogenic CO2 emissions. To assess the combined roles of the biophysical and anthropogenic drivers of atmospheric CO2 growth, the increase in the CO2 growth rate (1.9% y(-1) over 1959-2006) is expressed as the sum of the growth rates of four global driving factors: population (contributing + 1.7% y(-1)); per capita income (+ 1.8% y(-1)); the total carbon intensity of the global economy (-1.7% y(-1)); and airborne fraction (averaging + 0.2% y(-1) with strong interannual variability). The first three of these factors, the anthropogenic drivers, have therefore dominated the last, biophysical driver as contributors to accelerating CO2 growth. Together, the recent (post-2000) increase in growth of per capita income and decline in the negative growth (improvement) in the carbon intensity of the economy will drive a significant further acceleration in the CO2 growth rate over coming decades, unless these recent trends reverse.
Item Type: | Publication - Article |
---|---|
Digital Object Identifier (DOI): | 10.5194/bg-5-1601-2008 |
Programmes: | BAS Programmes > Other Special Projects |
ISSN: | 1726-4170 |
NORA Subject Terms: | Meteorology and Climatology Atmospheric Sciences Chemistry |
Date made live: | 19 Jan 2011 11:19 +0 (UTC) |
URI: | https://nora.nerc.ac.uk/id/eprint/11592 |
Actions (login required)
View Item |
Document Downloads
Downloads for past 30 days
Downloads per month over past year