Contrasting atmospheric boundary layer chemistry of methylhydroperoxide (CH3OOH) and hydrogen peroxide (H2O2) above polar snow
Frey, Markus M. ORCID: https://orcid.org/0000-0003-0535-0416; Hutterli, Manuel A.; Chen, G.; Sjostedt, S. J.; Burkhart, J. F.; Friel, D. K.; Bales, R. C.. 2009 Contrasting atmospheric boundary layer chemistry of methylhydroperoxide (CH3OOH) and hydrogen peroxide (H2O2) above polar snow. Atmospheric Chemistry and Physics, 9 (10). 3261-3276. https://doi.org/10.5194/acp-9-3261-2009
Before downloading, please read NORA policies.
Text
acp-9-3261-2009.pdf - Published Version Restricted to NERC registered users only Download (1MB) | Request a copy |
Abstract/Summary
Atmospheric hydroperoxides (ROOH) were measured at Summit, Greenland (72.97 degrees N, 38.77 degrees W) in summer 2003 (SUM03) and spring 2004 (SUM04) and South Pole in December 2003 (SP03). The two dominant hydroperoxides were H2O2 and CH3OOH (from here on MHP) with average (+/- 1 sigma) mixing ratios of 1448 (+/- 688) pptv, 204 (+/- 162) and 278 (+/- 67) for H2O2 and 578 (+/- 377) pptv, 139 (+/- 101) pptv and 138 (+/- 89) pptv for MHP, respectively. In early spring, MHP dominated the ROOH budget and showed night timemaxima and daytime minima, out of phase with the diurnal cycle of H2O2, suggesting that the organic peroxide is controlled by photochemistry, while H2O2 is largely influenced by temperature driven exchange between the atmosphere and snow. Highly constrained photochemical box model runs yielded median ratios between modeled and observed MHP of 52%, 148% and 3% for SUM03, SUM04 and SP03, respectively. At Summit firn air measurements and model calculations suggest a daytime sink of MHP in the upper snow pack, which decreases in strength through the spring season into the summer. Up to 50% of the estimated sink rates of 1-5 x 10(11) molecules m(-3) s(-1) equivalent to 24-96 pptv h(-1) can be explained by photolysis and reaction with the OH radical in firn air and in the quasi-liquid layer on snow grains. Rapid processing of MHP in surface snow is expected to contribute significantly to a photochemical snow pack source of formaldehyde (CH2O). Conversely, summer levels of MHP at South Pole are inconsistent with the prevailing high NO concentrations, and cannot be explained currently by known photochemical precursors or transport, thus suggesting a missing source. Simultaneous measurements of H2O2, MHP and CH2O allow to constrain the NO background today and potentially also in the past using ice cores, although it seems less likely that MHP is preserved in firn and ice.
Item Type: | Publication - Article |
---|---|
Digital Object Identifier (DOI): | https://doi.org/10.5194/acp-9-3261-2009 |
Programmes: | BAS Programmes > Global Science in the Antarctic Context (2005-2009) > Climate and Chemistry - Forcings and Phasings in the Earth System |
ISSN: | 1680-7316 |
NORA Subject Terms: | Glaciology Chemistry Atmospheric Sciences |
Date made live: | 26 Oct 2010 12:22 +0 (UTC) |
URI: | https://nora.nerc.ac.uk/id/eprint/10881 |
Actions (login required)
View Item |
Document Downloads
Downloads for past 30 days
Downloads per month over past year