1	Magma hybridisation and diffusive exchange recorded in heterogeneous
2	glasses from Soufrière Hills Volcano, Montserrat
3	
4	Humphreys, M.C.S. ^{1*} , Edmonds, M. ^{1,2} Christopher, T. ³ & Hards, V. ⁴
5	1 Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, UK
6	2 COMET+, National Centre for Earth Observation
7	3 Montserrat Volcano Observatory, Flemmings, Montserrat, West Indies
8	4 British Geological Survey, Keyworth, Nottingham, NG12 5GG
9	
10	* Corresponding author: Tel: +44 (0)1223 333433; Email: mcsh2@cam.ac.uk
11	
12	Running title: Magma hybridisation at Soufrière Hills Volcano
13	
14	
15	Special issue: Montserrat - CALIPSO
16	
17	
18	ABSTRACT
19	Arc volcanoes commonly show evidence of mixing between mafic and silicic magma.
20	Melt inclusions and matrix glasses in andesite erupted from Soufrière Hills Volcano
21	include an anomalously K ₂ O-rich population which shows close compositional
22	overlap with residual glass from mafic inclusions. We suggest that these glasses
23	represent the effects of physical mixing with mafic magma, either during ascent or by
24	diffusive exchange during the formation of mafic inclusions. Many glasses are
25	enriched only in K_2O , suggesting diffusive contamination by high-K mafic inclusion
26	glass; others are also enriched in TiO ₂ , suggesting physical mixing of remnant glass.
27	Some mafic inclusion glasses have lost K_2O . The preservation of this K-rich melt
28	component in the andesite suggests short timescales between mixing and ascent.
29	Diffusive timescales are consistent with independent petrological estimates of magma
30	ascent time.
31	
32	INTRODUCTION
33	Many arc volcanoes are dominated by interaction between mafic and silicic magmas
	,

35 transfer of volatiles may be important in both promoting mixing (e.g. *Eichelberger*, 36 1980) and advecting heat into, and remobilising, the overlying crystal-rich silicic 37 magma (*Bachmann and Bergantz*, 2006). Magma mingling (incomplete mixing) 38 produces quenched magmatic enclaves, crystal clusters and other clear disequilibrium 39 textures (Anderson, 1976; Bacon, 1986; Clynne, 1999). Recognising the products of 40 magma hybridisation (complete mixing) is important for understanding the relative 41 proportions and compositions of the end-member magmas, the likely impact of 42 repeated recharge, and the processes causing mass transfer between magmas. 43

44 Recent studies have shown that microlites of anomalously An-rich plagioclase (as 45 well as clinopyroxene and Mg-rich orthopyroxene) in intermediate arc magmas 46 originate in mafic magmatic enclaves or 'mafic inclusions' (Martel et al., 2006; 47 Humphreys et al., 2009a). The microlites are transferred into the andesite either 48 during mixing in the chamber (Martel et al. 2006) or by physical break-up and 49 disaggregation of mafic inclusions by shearing during ascent (Humphreys et al., 50 2009a). This physical transfer of crystals will increase magma viscosity in the conduit 51 and therefore has implications for eruption dynamics, as well as the potential to be 52 used as a tracer of the mafic component. With effective mixing, one might also expect 53 to see a mafic melt component. Melt inclusions and matrix glasses are commonly 54 used to track magma evolution paths and assess magma storage conditions (e.g. 55 Sisson and Layne, 1993; Wallace et al., 1995; Blundy et al., 2006), so it is vital to 56 determine whether melt derived from the mafic magma is entering the andesite, and if 57 so, in what proportions and with what chemical signature. Quantifying the extent and 58 timescale of interaction between andesitic and mafic magma, which is thought to 59 drive the eruption, would also be invaluable for volcano monitoring and hazard 60 assessment. Here we examine evidence that magma mingling does involve transfer of 61 mafic-derived melt, preserved as heterogeneity in plagioclase-hosted melt inclusions 62 and matrix glasses.

- 63
- 64

GEOLOGICAL BACKGROUND AND SAMPLES STUDIED

The Soufrière Hills Volcano on Montserrat lies in the Lesser Antilles subduction zone and has been active for approximately ~300 ka (*Harford et al.*, 2002). The most recent eruption started in 1995, with a series of pulses of dome growth and explosive activity, interrupted by long pauses when no magma was erupted. Major dome

collapses occurred in December 1997, July 1999, July 2001, July 2003 and May 2006.
Currently (September 2009) activity is limited to low-level residual activity, although

- 71 with continuing significant gas emissions (www.mvo.ms).
- 72

12	
73	Products from the current eruption are porphyritic andesite, with phenocrysts of
74	hornblende, plagioclase, orthopyroxene and Fe-Ti oxides plus rhyolite glass or
75	groundmass. Disequilibrium crystal textures are common, including rare, resorbed
76	quartz phenocrysts, oscillatory zoning in plagioclase and hornblende, reversely zoned
77	orthopyroxene and sieve-textured plagioclase (Murphy et al., 2000). The groundmass
78	contains microlites of plagioclase, orthopyroxene, clinopyroxene and Fe-Ti oxides as
79	well as rhyolitic glass, and may show extensive crystallisation, incipient
80	devitrification and deposits of cristobalite. Macroscopic mafic inclusions have been
81	described in detail (Murphy et al., 1998; 2000) and contain plagioclase,
82	clinopyroxene, orthopyroxene, Fe-Ti oxides and rhyolitic interstitial glass; larger
83	inclusions also crystallise pargasitic amphibole (Murphy et al., 1998). Many of the
84	microlites in the andesite are derived from mafic inclusions, as are crystal clusters, i.e.
85	mafic-derived fragments that can be recognised by texture and mineral compositions
86	(Humphreys et al., 2009a).
87	
88	RESULTS
89	We analysed plagioclase-hosted melt inclusions, matrix glass and residual mafic
90	inclusion glass from 23 samples erupted between July 2001 and July 2008 (see
91	supplementary table 1). Most of the samples represent typical andesite. Sample
92	MVO1532d is a heterogeneous mixture of nearly microlite-free rhyolite glass
93	containing euhedral quartz, plagioclase and hornblende, with fine-grained, crystal-rich
94	patches with very little remaining glass. Sample preparation and analytical methods,
95	together with the procedure used to correct for post-entrapment crystallisation (PEC)
96	of melt inclusions, are described in the auxiliary material.
97	
98	Melt inclusions
99	Melt inclusions are rhyolitic, with 71-79 wt% SiO_2 (see supplementary data table 2;
100	figures show PEC-corrected values, normalised to 100% anhydrous). Compositions
101	
	are similar to those reported by Edmonds et al. (2001), Harford et al. (2003) and

- 103 contents (figure 1). Most inclusions have 2–3 wt% K₂O, increasing with SiO₂ and Cl
- 104 contents, but a minority of inclusions has up to 6 wt% K₂O. For the low-K population,
- 105 Al₂O₃, CaO and Na₂O show a scattered negative relationship with SiO₂. FeO, MgO
- and TiO₂ subtly increase with SiO₂, and also correlate with each other (e.g. figure 1d).
- 107 The high-K inclusion population has lower CaO than the low-K glasses, and slightly
- 108 lower Cl (figure 1). Two inclusions have high TiO₂ but low K₂O (figure 2). High-K
- 109 glasses were not present in pumiceous samples.
- 110

111 Matrix glasses

- 112 Matrix glass was analysed in samples without significant groundmass crystallisation
- 113 (supplementary table 1). Matrix glasses are rhyolitic, clustering at the SiO₂-rich end of
- 114 the melt inclusion trends (75-79 wt% SiO_2 , figure 1). There are four groups of matrix
- 115 glasses: (i) high-K, low-Ti, (ii) low-K, low-Ti, (iii) high-K, high-Ti, and (iii) low-K,
- 116 high-Ti compositions (figure 2). High-K matrix glasses extend to lower CaO contents
- 117 than low-K glasses (figure 1b). Some glasses have anomalously low MgO. High-K
- 118 glasses were not present in the pumice samples.
- 119

120 Mafic inclusion glass

- Residual mafic inclusion glasses are also rhyolitic (72-78 wt% SiO₂). In Si, Al, Fe and
 Na composition they are indistinguishable from the melt inclusions. However, they
 have distinctive high-Ti, high-K compositions (figure 2) and also show low CaO
 contents, similar to the other high-K glasses. Many of the residual glasses also have
 low MgO contents. Cl concentrations are variable but tend to be lower than in the
 melt inclusions (figure 1).
 DISCUSSION
- 129 In general, the negative correlations of Al₂O₃, CaO and Na₂O with SiO₂ in the melt
- 130 inclusions indicate decompression crystallisation dominated by plagioclase (e.g.
- 131 Buckley et al., 2006). The positive correlation between FeO and MgO, and slight
- 132 increase of both MgO and FeO with SiO₂ suggests minor crystallisation of
- 133 orthopyroxene or hornblende as observed in the andesite. Ti-Fe variations are
- 134 consistent with crystallisation of minor Ti-magnetite. The low-K matrix glasses
- 135 follow mainly the same compositional trends as the low-K melt inclusions but tend
- 136 towards higher K₂O and higher SiO₂, as K is enriched in the melt during groundmass

- 137 crystallisation (Harford et al., 2003). Low-K matrix glasses show decreasing MgO
- 138 with increasing SiO₂, consistent with groundmass crystallisation of orthopyroxene.
- 139 The trend of decreasing Cl with increasing K₂O in the matrix glass (figure 1f)
- 140 indicates degassing of Cl during decompression crystallisation (*Edmonds et al.*, 2001;
- 141 Harford et al., 2003; Humphreys et al., 2009b).
- 142The low-Ca, low-Mg compositions of the mafic inclusion residual glasses are
- 143 consistent with significant crystallisation of clinopyroxene in the mafic inclusions.
- 144 The very high K₂O contents of mafic inclusion glasses are consistent with the lower
- 145 proportions of amphibole in the mafic inclusions and their lower bulk SiO₂ contents
- relative to the andesite; their high TiO_2 may be related to the high TiO_2 of the bulk
- 147 mafic inclusions.
- 148

149 Origin of high-K glass

- 150 While the main compositional characteristics of the glass suite are consistent with
- 151 near-surface processes (see above), the K-rich signature of some glasses is not. The
- 152 occasional high TiO₂, high-K₂O, low MgO and low CaO contents are also seen in
- previously reported matrix glasses (*Edmonds et al.*, 2001; 2002; *Harford et al.*, 2003;
- 154 Buckley et al., 2006; see figure 1). These compositional features are largely shared by
- 155 the residual mafic inclusion glasses.
- 156 The anomalous glass compositions cannot be caused by boundary layer effects 157 during melt inclusion entrapment (*Baker*, 2008) because only slowly diffusing
- 158 incompatible elements should be enriched in the melt boundary layer, whereas K^+
- 159 diffusivities are rapid (Jambon, 1983). Similarly, post-entrapment crystallisation of
- 160 host plagioclase should result in coupled increases of MgO, TiO₂ and K₂O with
- 161 decreasing CaO, which are not observed, and cannot account for anomalous matrix
- 162 glass compositions.
- K-rich glasses or crystalline products have been ascribed to grain-boundary
 partial melting of mafic cumulate nodules (*Dungan and Davidson*, 2004; *Heliker*,
- 165 1995) or assimilation of biotite-rich cumulates (*Reubi and Blundy*, 2008), with K-rich
- and host melts mixing during subsequent nodule break-up. However, cumulate
- 167 nodules are relatively rare in Soufrière Hills andesite and were not observed in any of
- 168 the samples studied, while the high-K glasses are texturally indistinguishable from
- 169 'normal' glasses and their host crystals are not obviously xenocrystic. Finally, K-rich

- 170 glasses are also found in mafic inclusions, which are widely agreed to form by rapid
- 171 quenching against a cooler host (e.g. Wager and Bailey 1953; Yoder 1973).
- 172 Buckley et al. (2006) ascribed the high-K compositions to hornblende 173 breakdown during slow magma ascent and mixing between more- and less-evolved 174 melts. Mass balance between the dissolving hornblende and the observed rims (cpx + 175 opx + plag + oxides) indicated that melts modified by hornblende breakdown should 176 thus be compositionally variable, with high TiO₂ and MgO but low SiO₂ and FeO. 177 The melts should all have high K₂O, Na₂O and Cl (Buckley et al., 2006). Neither of 178 their predicted trends fits with all the observed compositional variations (figure 1). 179 Interstitial melts in hornblende breakdown rims (Buckley et al., 2006) actually show 180 both high-K and low-K compositions (figure 1a), not just high-K compositions as 181 expected. We therefore conclude that decompression breakdown of hornblende cannot 182 adequately describe the high-K glasses.
- 183

184 Magma hybridisation and diffusive contamination

185 We propose that the K-rich melts are derived from, or affected by mixing with

186 intruding mafic magma. The K-rich compositions are similar to those of mafic

187 inclusion residual glass, and incorporation of K-rich melt into the host matrix is

188 consistent with transfer of microlites into the andesite groundmass by disaggregation

189 of mafic inclusions (*Humphreys et al.*, 2009a). However, K₂O-TiO₂ concentrations

190 demonstrate the presence of four distinct glass compositions (see earlier; figure 2): (i)

191 low-K, low-Ti; (ii) low-K, high-Ti; (iii) high-K, high-Ti; and (iv) high-K, low-Ti.

192 This indicates that the mafic inclusion glasses are, for the most part, not being

193 transferred unmodified into the host andesite, and suggests diffusive modification.

194 Breaking open partially crystalline mafic inclusions would allow interaction between

195 host (rhyolite) melt from the andesite and residual rhyolite from the interior of the

196 mafic inclusions. Similarly, complete disaggregation of mafic inclusions would result

197 in physical transfer of K-rich, Ti-rich residual rhyolite, which can be modified by

198 diffusive re-equilibration with the host melt. Diffusion of TiO₂ is much slower than

199 that of K_2O (see later), so residual mafic glass that has lost K_2O by diffusion still

200 retains its high-Ti signature, whereas the high-K host rhyolite cannot gain TiO_2 by

- 201 diffusion (figure 2). The result is anomalously K-rich (but Ti-poor) host rhyolite melt,
- and K-poor (but Ti-rich) residual mafic inclusion glasses. This process explains the
- 203 lack of ubiquitous Ti-enrichment of high-K melt inclusions and matrix glasses

compared with mafic inclusion glass. Once a pocket of K-rich melt is present in the
matrix of the andesite, it can be incorporated into melt inclusions by sealing of protoinclusions during ascent-driven crystallisation (see *Humphreys et al.*, 2008, figure 11).

208 Timescales of between mixing and eruption

209 The glass compositions and distribution can give further insight into the physical 210 processes involved in transfer of material. For example, the lack of K-rich glasses in 211 pumiceous samples (see earlier) implies that K-enrichment occurs during slow ascent. 212 Many of the K-rich compositions are matrix glass, with relatively few high-K melt 213 inclusions. This also suggests that transfer occurs primarily during low-pressure 214 ascent and crystallisation, and could be explained by lower shear stresses in the 215 conduit during rapid ascent of less viscous, less crystalline magma (e.g. Melnik and 216 Sparks 2005) compared with the highly viscous, strongly crystalline magma that 217 erupts slowly during dome growth.

218 Elemental diffusivities can be used to assess the timescales of this process 219 (Sparks et al. 1977; Baker, 1991). Alkali and alkaline earth diffusivities (D) in anhydrous rhyolite are $D_{\text{Na}} \sim 1.6 \times 10^{-6} \text{ cm}^2/\text{s}$, $D_{\text{K}} \sim 8.9 \times 10^{-8} \text{ cm}^2/\text{s}$, and $D_{\text{Ca}} \sim 4.0 \times 10^{-5} \text{ cm}^2/\text{s}$ 220 10 cm²/s at 900 °C (*Jambon* 1983). A first-order approximation of timescales (*t*) can 221 222 be made, ignoring the effects of possible differences in melt H₂O content, from $\chi \sim$ 223 $2\sqrt{Dt}$, where x is the diffusion lengthscale, here taken to be 1 cm. Diffusive timescales are 43 hours (Na⁺), 32 days (K⁺) and 20 years (Ca²⁺). In other words, 224 225 alkaline earth diffusion is slow relative to alkalis; diffusion of highly charged ions 226 (e.g. Ti^{4+}) should be even slower than the alkaline earths (*Henderson et al.* 1985). 227 Diffusive contamination of alkalis should therefore be rapid, but modification of other 228 elements would be prohibitively slow (Baker, 1991). The K-enrichment of the 229 rhyolite matrix of the host and esite must therefore have occurred ~ 1 month or less 230 prior to eruption of the magma at the surface, in order to preserve the high-K 231 signature. This is consistent with timescales estimated by preservation of Fe-Ti oxide 232 zoning (Devine et al. 2003) and decompression breakdown rims on hornblende 233 (Rutherford and Devine 2003). The few high-Ti, low-K glasses, and the wide range of 234 K₂O contents of residual mafic inclusion glasses (figure 2) may reflect a spread to 235 longer timescales, allowing complete or partial re-equilibration of K₂O with the host 236 rhyolite. We also note that the K₂O contents of mafic inclusion and high-K host melts

are similar, whereas a diffusion couple should give slightly lower K₂O contents in the
host melt. There are two possible explanations for this: (i) the mafic inclusion glasses
are already diffused and their observed compositions are not primary, or (ii) the high
K₂O in the host rhyolite represents an uphill diffusion 'spike' similar to that observed
in experimental diffusion couples (*Bindeman and Davis* 1999; *van der Laan et al.*1994). In either case, this observation reinforces the short timescales between mixing
and eruption.

244 The estimated diffusion timescales also suggest that Na2O contents would 245 quickly be homogenised by diffusion between host andesite and mafic inclusions, 246 while original CaO contents should be preserved. We would also anticipate rapid 247 diffusion of volatiles (e.g. CO₂ and H₂O), particularly in more H₂O-rich melt (*Baker* 248 et al. 2005). It is difficult to assess the effects of mixing and diffusion on Ca and Na 249 as these elements are compatible in the crystallising assemblage and therefore 250 strongly affected by fractionation of plagioclase, whereas K is strongly incompatible. 251 However, the K-enriched glasses are slightly depleted in CaO relative to the normal 252 glasses, as is the mafic inclusion residual glass. The different diffusivities of CaO and 253 K₂O are not consistent with diffusive contamination of both elements: timescales long 254 enough for significant Ca diffusion would also eliminate any K₂O signature. The 255 lower CaO contents cannot be produced by crystallisation of quartz, or diffusion 256 gradients around growing plagioclase or pyroxene grains, as discussed earlier. We 257 suggest that the lower CaO might be related to continued crystallisation of 258 plagioclase.

259

260

CONCLUSIONS

261 Glass compositional heterogeneity from Soufrière Hills Volcano, Montserrat, is 262 interpreted as the result of mingling between hotter, mafic magma and the host 263 andesite. High-K₂O melt inclusions and matrix glasses in the andesite overlap with 264 the compositions of residual glass from mafic inclusions. However, K₂O and TiO₂ 265 contents are decoupled: many high-K melt inclusions do not show high Ti as seen in 266 residual mafic inclusion glasses. This can be explained by diffusive exchange between 267 disaggregated mafic inclusion melt and host matrix melt. The host rhyolite gains K₂O 268 from mafic inclusions, but the original low TiO₂ contents are unchanged. Conversely, 269 high-Ti glasses with normal K₂O contents probably represent residual mafic inclusion 270 glass that has lost K_2O by diffusion. The preservation of such heterogeneity can be

271	used to estimate the timescales between mingling and magma ascent to the surface.
272	The timescales necessary to preserve K heterogeneity are on the order of a month,
273	which is consistent with magma ascent times estimated from hornblende breakdown
274	and Fe-Ti oxides.
275	
276	ACKNOWLEDGEMENTS
270	MCSH acknowledges a Junior Research Fellowshin from Trinity College Cambridge
277	ME a law and a set the NEBC National Control for Earth Observation (Thomas (
278	ME acknowledges the NERC National Centre for Earth Observation (Theme 6:
279	Dynamic Earth) grant NE/F001487/1. VH publishes with the permission of the
280	Executive Director of the British Geological Survey (NERC). This work was partly
281	supported by the British Geological Survey. We thank Chiara Petrone for assistance
282	with electron microprobe analysis.
283	
284	REFERENCES
285	Anderson A.T. (1976) Magma mixing: Petrological process and volcanological tool
285 286 287	J Volcanol Geotherm Res 1, 3-33
288 289 290	Bachmann, O. & Bergantz, G.W. (2006). Gas percolation in upper-crustal silicic mushes as a mechanism for upward heat advection and rejuvenation of near-solidus magma bodies. <i>J Volcanol Geotherm Res</i> 149 , 85-102
291 292 293	Bacon, C.R. (1986). Magmatic inclusions in silicic and intermediate volcanic rocks. <i>Journal of Geophysical Research</i> 91 , 6091-6112
294 295 296 297	Baker, D.R. (1991). Interdiffusion of hydrous dacitic and rhyolitic melts and the efficacy of rhyolite contamination of dacitic enclaves. <i>Contrib Mineral Petrol</i> 106 , 462-473
298 299 300 301	Baker, D.R., Freda, C., Brooker, R.A. & Scarlato, P. (2005). Volatile diffusion in silicate melts and its effects on melt inclusions. <i>Annals Geophys</i> 48 , 699-717
302 303 304	Baker, D.R. (2008). The fidelity of melt inclusions as records of melt composition. <i>Contrib Mineral Petrol</i> 156 , 377-395
305 306 307	Bindeman, I.N. & Davis, A.M. (1999). Convection and redistribution of alkalis and trace elements during the mingling of basaltic and rhyolite melts. <i>Petrology</i> 7 , 91-101
308 309 310	Blundy, J., Cashman, K & Humphreys, M. (2006). Magma heating by decompression- driven crystallization beneath andesite volcanoes. <i>Nature</i> 443 , 76-80
311312313	Buckley, V.J.E., Sparks, R.S.J. & Wood, B.J. (2006). Hornblende dehydration reactions during magma ascent at Soufrière Hills Volcano, Montserrat. <i>Contrib Mineral Petrol</i> 151 , 121-140

314	
315	Clynne, M.A. (1999). A complex magma mixing origin for rocks erupted in 1915,
316	Lassen Peak, California. J Petrol 40, 105-132
317	
318	Devine ID Gardner IE Brack HP Lavne GD & Rutherford MJ (1995)
319	Comparison of microanalytical methods for estimating H_2O contents of silicic
320	volcanic glasses Amer Mineral 80 319-328
320	Volcanic glasses. Amer Mineral 60, 519-526
222	Daving ID Dutherford MI Newton CE & Young SD (2002) Magna starage
222	Devine, J.D., Kutheriold, M.J., Norton, G.E. & Foung, S.K. (2003). Magnia storage
323	region processes inferred from geochemistry of Fe-11 oxides in andesitic magina,
324	Southere Hills Volcano, Montserrat, W.I Journal of Petrology 44, 1375-1400
325	
326	Dungan, M.A. & Davidson, J. (2004). Partial assimilative recycling of the mafic
327	plutonic roots of arc volcanoes: An example from the Chilean Andes. <i>Geology</i> 32 ,
328	773-776
329	
330	Edmonds, M.E., Pyle, D. & Oppenheimer, C. (2001). A model for degassing at the
331	Soufrière Hills Volcano, Montserrat, West Indies, based on geochemical data. Earth
332	<i>Plan Sci Lett</i> 186 , 159-173
333	
334	Edmonds, M., Pyle, D. & Oppenheimer, C. (2002). HCl emissions at Soufrière Hills
335	Volcano, Montserrat, West Indies, during a second phase of dome building:
336	November 1999 to October 2000, Bull Volcanol 64, 21-30
337	
338	Fichelberger I.C. (1980) Vesiculation of matic magma during replenishment of
339	silicic magma reservoirs Nature 788 446-450
3/0	
3/1	Harford CI Pringle MS Sparks RSI & Voung SR (2002) In The Fruntian of
342	the Soufrière Hills Volcano Montserret from 1005 to 1000 T H Druitt B D
3/2	Kokalaar Eds (Goological Society Memoir London 2002) vol 21 pp 03 113
244	Kokeiaai, Eds. (Ocological Society Memoli, London, 2002), vol. 21, pp. 95-115.
544 245	Hanford C.L. Snarks D.S.L. & Fallials A.F. (2002) Decessing at the Confident Hills
545 246	Hallord, C.L., Sparks, K.S.J. & Fallick, A.E. (2005). Degassing at the Southere Hills
340	voicano, Montserrat, recorded in matrix glass compositions. J Petrol 44, 1503-1523
347	
348	Heliker, C. (1995). Inclusions in Mount St. Helens dacite erupted from 1980 through
349	1983. J Volcanol Geotherm Res 66 , 115-135
350	
351	Henderson, P., Nolan, J., Cunningham, G.C. & Lowry, R.K. (1985). Structural
352	controls and mechanisms of diffusion in natural silicate melts. Contrib Mineral Petrol
353	89 , 263-272
354	
355	Humphreys, M.C.S., Kearns, S.L. & Blundy, J.D. (2006). SIMS investigation of
356	electron-beam damage to hydrous, rhyolitic glasses: Implications for melt inclusion
357	analysis. Amer Mineral 91, 667-679
358	•
359	Humphreys, M.C.S., Blundy, J.D. & Sparks, R.S.J. (2008). Shallow-level
360	decompression crystallisation and deep magma supply at Shiveluch Volcano. <i>Contrib</i>
361	Mineral Petrol 155, 45-61
201	

363 Humphreys, M.C.S., Christopher, T. & Hards, V. (2009a). Microlite transfer by 364 disaggregation of mafic inclusions following magma mixing at Soufrière Hills 365 volcano, Montserrat. Contrib Mineral Petrol 157, 609-624 366 Humphreys, M.C.S., Edmonds, M., Christopher, T. & Hards, V. (2009b). Chlorine 367 368 variations in the magma of Soufrière Hills Volcano, Montserrat: Insights from Cl in hornblende and melt inclusions. Geochim Cosmochim Acta 73, 5693-5708 369 370 371 Jambon, A. (1983). Diffusion dans les silicates fondues: un bilan des connaissances 372 actualles. Bull Mineral 106, 229-246 373 374 Martel, C., Radadi Ali, A., Poussineau, S., Gourgaud, A. & Pichavant, M. (2006). 375 Basalt-inherited microlites in silicic magmas: Evidence from Mount Pelée 376 (Martinique, French West Indies). Geology 34, 905-908 377 378 Melnik, O. & Sparks, R.S.J. (2005). Controls on conduit magma flow dynamics 379 during lava dome building eruptions. J Geophys Res 110, B02209 380 381 Murphy, M.D., Sparks, R.S.J., Barclay, J., Carroll, M.R., Lejeune, A.-M., Brewer, 382 T.S., Macdonald, R., Black, S. & Young, S. (1998). The role of magma mixing in 383 triggering the current eruption of the Soufrière Hills volcano, Montserrat, West Indies. 384 Geophys Res Letters 25, 3433-3436 385 386 Murphy, M.D., Sparks, R.S.J., Barclay, J., Carroll, M.R. & Brewer, T.S. (2000). 387 Remobilization of andesite magma by intrusion of mafic magma at the Soufrière Hills 388 Volcano, Montserrat, West Indies. J Petrol 41, 21-42 389 390 Reubi, O. & Blundy, J. (2008). Assimilation of plutonic roots, formation of high-K 391 'exotic' melt inclusions and genesis of andesitic magmas at Volcano de Colima, 392 Mexico. J Petrol 49, 2221-2243 393 394 Rutherford, M.J. & Devine, J.D. (2003). Magmatic conditions and magma ascent as 395 indicated by hornblende phase equilibria and reactions in the 1995-2002 Soufrière 396 Hills magma. J Petrol 44, 1433-1454 397 398 Saito, G., Uto, L., Kazahaya, KK., Shinohara, H., Kawanabe, Y. & Satoh, H. (2005). 399 Petrological characteristics and volatile content of magma from the 2000 eruption of 400 Miyakejima Volcano, Japan. Bull Volcanol 67, 268-280 401 402 Sisson, T.W. & Layne, G.D. (1993). H₂O in basalt and basaltic andesite glass 403 inclusions from four subduction-related volcanoes. Earth Plan Sci Letts 117, 619-635 404 405 Sparks, R.S.J., Sigurdsson, H. & Wilson, L. (1977). Magma mixing: a mechanism for 406 triggering acid explosive eruptions. Nature 267, 315-318 407 408 Van der Laan, S., Zhang, Y., Kennedy, A.K. & Wyllie, P.J. (1994). Comparison of 409 element and isotope diffusion of K and Ca in multicomponent silicate melts. Earth Plan Sci Letts 123, 155-166 410 411

412 413 414	Wager, L.R. & Bailey, E.B. (1953). Basic magma chilled against acid magma. <i>Nature</i> 172 , 68-69
415 416 417	Wallace, P.J., Anderson, A.T. & Davis, A.M. (1995). Quantification of pre-eruptive exsolved gas contents in silicic magmas. <i>Nature</i> 377 , 612-616
418 419 420	Yoder, H.S. (1973). Contemporaneous basaltic and rhyolitic magmas. <i>Amer Mineral</i> 58 , 153-171
421	Figures
422	Figure 1
423	Compositions of melt inclusions, matrix glasses and mafic inclusion residual glasses.
424	Melt inclusions (diamonds) and matrix glasses (circles) are divided into high-K (open
425	symbols) and low-K (filled symbols) compositions. Crosses represent mafic inclusion
426	glasses. Grey symbols represent previously published glasses from Soufrière Hills
427	(pluses, Edmonds et al., 2001, 2002; squares, Harford et al., 2003; triangles, Buckley
428	et al., 2006). Grey dashes: glasses in hornblende breakdown rims (Buckley et al.,
429	2006). Large arrows indicate the schematic effects of hornblende breakdown reactions
430	(reactions 2 and 3, Buckley et al., 2006), or the effect of 5% post-entrapment
431	crystallisation of plagioclase (pl).
432	
433	Figure 2
434	Decoupled compositional variations in K_2O and TiO_2 for all glasses. Thick grey

- 435 arrows indicate how diffusive contamination of K₂O affects melt compositions. TiO₂
- 436 is unaffected because of its very low diffusivity. Symbols as for figure 1.

Figure 1

