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Abstract 

 

In this study, correlation analyses were applied to quantitatively characterise the 

indicative value of mosses as biomonitors of atmospheric nitrogen (N) deposition and 

to identify factors which explain best the total N concentration in mosses. 

Correlations between the total N concentration in mosses and atmospheric N 

depositions and air concentrations were examined for the first time at a European 

scale. In addition, predictors such as urban and agricultural land uses, population 

and livestock density were integrated in the analyses to account for emission-related 

influences of land use. The analyses included data from mosses collected from 2781 

sites across Europe within the framework of the European moss survey 2005/6, 

which was coordinated by the International Cooperative Programme on Effects of Air 

Pollution on Natural Vegetation and Crops (ICP Vegetation). Modelled atmospheric N 

deposition and air concentration data were calculated using the Unified EMEP Model 

of the European Monitoring and Evaluation Programme (EMEP) of the Long-range 

Transboundary Air Pollution Convention. The modelled deposition and concentration 

data encompass various N compounds. In order to assess the correlations between 

moss tissue total N concentrations and the chosen predictors, Spearman rank 

correlation analysis and Classification and Regression Trees (CART) were applied. 

The Spearman rank correlation analysis showed that the total N concentration in 

mosses and modelled N depositions and air concentrations are significantly 

correlated (0.55 rs 0.68, p < 0.001). Correlations with other predictors were lower 

than 0.55. The CART analysis indicated that the variation in the total N concentration 
+ 

in mosses was best explained by the variation in NH4 concentrations in air, followed 
 

by NO2 concentrations in air, sampled moss species and total dry N deposition. The 

total N concentration in mosses appears to mirror land use-related atmospheric 

concentrations and depositions of N across Europe to a high degree. The total N 

concentration in mosses is a valuable tool in identifying areas with high atmospheric 

N concentration and deposition at a high spatial resolution across Europe. 
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1 Background and goal 

 
 
 
Preindustrial atmospheric levels of nitrous oxide (N2O) measured in bubbles in 

glacier ice were around 285 ppm for many thousands of years. Human activity in the 

last 200 years has raised the N2O level in the atmosphere which meanwhile 

approximates 310 ppm. The main anthropogenic sources for oxidised forms of N are 

transport, industry and energy production, estimated to contribute up to 70% of 

oxidised N (NOx) emissions (Bragazza et al., 2005). Additional sources include soil 

emission, particularly under high N inputs for example in agricultural areas. Emission 

sources of reduced N (NHy) compounds are primarily related to agricultural activities 

such as animal husbandry and the production and application of fertilizers. Forest 

fires are another important source of N emissions (Jovan and Carlberg, 2007). 

Deposition occurs when such emissions undergo complex chemical reactions in the 

atmosphere and get in contact with the earth´s surface (vegetation, soils) as wet 

deposition (rain, snow), occult deposition (cloud, fog) or dry deposition (dry particles, 

gas). There, they may accumulate in soils and plants such as mosses. Airborne 

chemicals can travel long distances from their sources and can therefore affect 

ecosystems over broad spatial scales and at locations far from the sources of 

emissions. Given European conditions, NHy may be transported up to 500 km and 

NOx effectively more than 1,000 to 1,500 km. Nitrate (NO -) can have a transport 
 

range of up to 2,000 km (Slanina and Wayne, 2008). 
 
 
 
Enhanced deposition of both NOx and NHy may be associated with acidification and 

eutrophication of ecosystems as well as changes in biodiversity (Erisman and de 

Vries, 2000; Galloway et al., 2008; Gundersen and Rasmussen, 1990; Pitcairn et al., 

1998). Control of reactive N emissions to air is regulated under several European 

Union directives, such as the National Emission Ceilings Directive and Nitrates 

Directive and protocols of the Long-range Transboundary Air Pollution (LRTAP) 

Convention, such as the Gothenburg Protocol. The LRTAP Convention established a 

broad framework for co-operative action on reducing the impact of air pollution and 



set up a process for negotiating concrete measures to control emissions of air 

pollutants through legally binding protocols. In this process, the main objective of the 

European Monitoring and Evaluation Programme (EMEP) is to regularly provide 

governments and subsidiary bodies under the LRTAP Convention with qualified 

scientific information to support the development and further evaluation of the 

international protocols on emission reduction negotiated within the Convention. 

EMEP focuses on four main tasks: 1) collection of emission data, 2) measurements 

of concentrations in air and precipitation, 3) modelling of atmospheric transport and 

deposition of air pollutions and 4) integrated assessment. The storage and 

distribution of information on emissions and emission projections on N is the task of 

the Centre on Emission Inventories and Projections (CEIP). The Meteorological 

Synthesizing Centre West (MSC-W) is responsible for the modelling of sulphur (S), 

N, photo-oxidants and atmospheric particles. 
 
 
Parties to the LRTAP Convention perform wet deposition monitoring at 70 regional 

monitoring sites across Europe within the framework of EMEP. The deposition 

measurement sites of the EMEP Chemical Coordinating Centre (EMEP-CCC) are 

spread over a large geographical area, so that, e.g. in the year 2000 Germany was 

represented by only eight measurement stations (Simpson et al., 2006b). In addition, 

deposition measurements sites are under-represented in southern and Eastern 

Europe. Depositions associated with acidification and eutrophication, as well as 

ozone are currently calculated by use of the EMEP MSC-W Unified Eulerian chemical 

transport model with a broad grid-size of 50 × 50 km2 (Simpson et al., 2006a). 
 
 
The EMEP depositions and air concentration models are each year validated against 

all the EMEP measurement data available throughout Europe. Furthermore, data 

outside the EMEP network are compared to the EMEP model in order to extend the 

data basis for the evaluation of the EMEP models. For instance, Simpson et al. 

(2006b) supplemented the EMEP deposition data by deposition measurements from 

the International Co-operative Programme on Assessment and Monitoring of Air 

Pollution Effects on Forests (ICP Forests). The ICP-Forests Level II monitoring 

network started operations in 1994 and encompasses about 860 sites. However, 

applying quality assurance criteria Simpson et al. (2006b) had to exclude data from 

many sites and countries from the comparison with EMEP deposition data. Data from 



160 ICP-Forests monitoring sites distributed over seven European countries and 140 
 

EMEP grids fulfilled the quality assurance criteria. Regarding the 89 German ICP 

Level II-sites, 26 were in agreement with the respective quality criteria. The variability 

of the data quality from the ICP Forest sites proved to be considerable and the sites 

are not always representative for a larger area. 
 
 
Even if Simpson et al. (2006b) concluded that the EMEP model performs rather well 

in reproducing patterns of N deposition in European forests, it is clear that an 

enhanced spatial resolution of the model results would be an advantage, e.g. when 

used for calculating exceedances of critical loads of acidification and eutrophication. 

At present, the EMEP model can be run on 10 km resolution, and emission data sets 

that can be used on this resolution are emerging. However, a dense network of 

observations is needed in order to validate whether the model results really improve 

on finer resolution. One step towards reaching this aim is to compare the calculated 

depositions and concentrations with observations from networks monitoring a 

phenomenon closely related to deposition and operating at a high spatial resolution. 
 
 
Carpet-forming ectohydric mosses have successfully been used as biomonitors of 

atmospheric heavy metal deposition since the late 1960s (Rühling and Tyler, 1968, 

1969, 1970). The moss technique is based on the fact that carpet-forming ectohydric 

mosses obtain most trace elements and nutrients directly from wet and dry 

deposition with little uptake from the substrate. Heavy metals accumulate in mosses 

and their concentration in moss tissue provides a surrogate, time-integrated measure 

of element deposition from the atmosphere to terrestrial systems (Harmens et al., 

2008a). It is easier and cheaper than conventional deposition analysis as it avoids 

the need for deploying large numbers of deposition collectors with an associated 

long-term programme of routine sample collection and analysis. Hence, a much 

higher sampling density can be achieved than with conventional deposition analysis. 
 
 
Carpet-forming ectohydric mosses might potentially be used as biomonitors of 

atmospheric N deposition as well (Pitcairn et al., 1995, 2006; Poikolainen et al. 2009; 

Salemaa et al., 2008; Solga et al., 2005; Zechmeister et al. 2008). A pilot-study in 

Scandinavian countries showed a strong linear relationship between the total N 

concentration in mosses and EMEP-modelled atmospheric N deposition rates 



(Harmens et al., 2005). Therefore, for the first time in the European heavy metals in 

mosses survey the total N concentration was also determined in naturally-growing 

mosses in about 60% of the participating countries in 2005/6 (Harmens et al., 

2008b). The European moss survey is currently coordinated by the International 

Cooperative Programme on Effects of Air Pollution on Natural Vegetation and Crops 

(ICP Vegetation) and has been conducted every five years since 1990 (Harmens et 

al., 2008a). The total N concentration in mosses was measured at almost 3,000 sites 

in 16 European countries (Harmens et al., 2008b), providing a higher spatial 

resolution than the EMEP monitoring sites. 
 
 
The aim of this study was to investigate whether ectohydric mosses can be used to 

monitor atmospheric air concentration and / or deposition of N at a high spatial 

resolution. Therefore, the correlations between N concentrations in mosses and 

modelled atmospheric concentrations and depositions of different N forms were 

examined. In addition, the influence of other predictors on the variation of the N 

concentration in mosses was investigated, including altitude, precipitation, distance 

to the sea, population and agricultural density, as well as urban, forested and 

agricultural land uses. 
 
 
2 Materials and Methods 

 
 
 
2.1 Total N concentration in mosses 

 
 
 
Moss samples were collected during the European survey 2005/6 in Austria, 

Belgium, Bulgaria, Czech Republic, Estonia, Finland, France, Germany, Italy 

(Bolzano region), Latvia, Slovakia, Slovenia, Spain (Navarra), Switzerland, Turkey, 

and the United Kingdom at 2781 sites, which were representative in terms of a 

multivariate statistical ecoregionalisation of Europe (Hornsmann et al., 2008). As in 

previous European moss surveys, field sampling was conducted according to the 

guidelines set out in the monitoring manual for the 2005/6 survey (ICP Vegetation, 

2005). These guidelines specify the moss species to collect as well as how and where 

to perform the sampling. In order to document whether these criteria could be reached 

the comprehensive WebGIS MossMet was used in the German moss survey 

2005 (Pesch et al., 2007a). MossMet contains sampling site-specific information in 



terms of a check list concerning the mandatory specifications of the experimental 

protocol, detailed topographical and ecological site descriptions, and the 

measurement values of up to 40 metal elements recorded in 1990, 1995, 2000, and 

2005. Furthermore, the surroundings of each sampling site are described by surface 

data on climate, altitude and land use (Pesch et al., 2007b). This approach is 

intended to be adopted by more participants of the European moss survey in 2010. In 

the current study, the N concentration in mosses were only related to a smaller set of 

site-specific and regional predictors such as EMEP modelled N deposition data and 

land use parameters (see Section 2.3). 
 
 
Pleurozium schreberi was the most frequently sampled species (43.4%), followed by 

Hylocomium splendens (20.1%), Hypnum cupressiforme (18.9%), 

Pseudoscleropodium purum (11.8%) and other species (5.7%). For the determination 

of N, the moss samples were dried at 40° C and concentrations were determined 

according to either the Kjeldahl method (Kjeldahl, 1883) or via elemental analysis 

following the Dumas method (Dumas, 1831). N concentrations were expressed as 

percentage N based on dry weight. A quality control exercise was conducted to 

assess the analytical performance of the participating laboratories. The moss 

reference materials M2 and M3, first prepared for the 1995/6 European moss survey 

(Steinnes et al., 1997), were distributed amongst participating laboratories. In 

addition, some laboratories used certified reference material for quality assurance. 

For determination of the elemental concentrations in the reference materials, 

laboratories followed the same analytical procedure as used for the sampled mosses. 

The results indicated good agreement between laboratories and analytical 

techniques, and recommended values for the total N concentrations were established 

for the reference material (Harmens et al., 2008a). The accuracy of data submitted to 

the Programme Coordination Centre was assessed by inspecting them for extremes 

and by sending summarised data and draft maps to individual contributors for 

checking and approval before incorporating the final data into the database for further 

processing. To investigate whether mosses can be used as biomonitors of 

atmospheric N deposition and air concentration, the spatial variation in the N 

concentration in mosses was statistically compared (see Section 2.4) with EMEP 

modelled N deposition and air concentration data (see Section 2.2) and other 

potential predictors such as land use (see Section 2.3). 



 
2.2 EMEP Unified model calculation of N depositions and air concentrations 

 
The Unified EMEP model was developed at the Norwegian Meteorological Institute 

under the EMEP programme. The Unified EMEP model is a development of earlier 

EMEP models (Berge and Jakobsen, 1998; Jonson et al., 1998; fully documented in 

Fagerli et al., 2004; Simpson et al., 2003). The model has been extensively validated 

against measurements (Fagerli and Aas, 2008; Fagerli et al., 2003, 2007; Jonson et 

al., 2006; Simpson et al., 2006a,b, 2007; Tsyro et al., 2007). The EMEP Unified 

Eulerian Chemical Transport Model is a multi-layer atmospheric dispersion model 

designed for simulating the long-range transport of air pollution over several years. 

The EMEP model domain is centred over Europe and also includes most of the North 

Atlantic and the polar region (Fagerli et al., 2004; Simpson et al., 2003)1. The model 
 

comprises 20 vertical layers and is primarily intended for use with a horizontal 

resolution of ca. 50 × 50 km2 (at 60° N) in the EMEP polar stereographic grid. The 

anthropogenic emission input data are generally based as far as possible upon 

emissions per sector and grid officially reported to the LRTAP Convention (Vestreng 

et al., 2004). The chemical scheme uses about 140 reactions between 70 species. 

The model allows for calculations of depositions to different types of land-cover within 

each grid cell. 
 
 
2.3 Additional geodata 

 
In addition to the modelled EMEP deposition and air concentration data, the N 

 

concentration in mosses was investigated for correlations with other geodata (Table 
 

1). These other geodata include four site-specific characteristics and 19 regional 

characteristics which might influence the N concentration in mosses (Böhlmann et al., 

2005; Bytnerowicz et al., 2002; Bytnerowicz and Fenn, 1996; Fenn et al., 2007; Fenn 

and Kiefer, 1999; Fernandez and Carballeira, 2002; Fowler et al. 1998; Frati et al., 

2007; Jovan and Carlberg, 2007; Jovan and Mccune, 2006; Luo et al., 2003; 

Neirynck et al., 2007; Pesch et al., 2007b; Pitcairn et al., 2006). Together with the 

EMEP data the site-specific and regional characteristics are referred to as predictors 

in the CART-analysis (see Section 2.4). Raster information from surface maps were 

intersected with the monitoring sites and included in the correlation analysis. To 

account for the influence of the precipitation amount on the moss N loads, long-term 
 

1 http://www.emep.int/OpenSource/UniEMEPopenSource_documentation.html 

http://www.emep.int/OpenSource/UniEMEPopenSource_documentation.html


monthly means (1961- 1990) were provided by the Global Climate Dataset (CL 2.0) 
 

in a resolution of 12.5 x 12.5 km². To supplement the site-specific data with regard to 

information on N emissions, proportions of land use were derived from the Corine 

Land Cover map 2000 (Keil et al., 2005). The area percentage of urban, forest and 

agricultural land use categories in a radius of 1, 5, 10 and 25 km (for forests), 1, 5, 

10, 25 and 50 km (for agriculture) or 1, 5, 10, 25, 50, 75 and 100 km (for urban 

areas) around each raster cell was calculated and then projected onto either the 1 x 

1 or 2 x 2 km² grid cells (Table 1). The sea spray-effect was assessed in terms of the 

distances of the monitoring sites to the coastlines of the Atlantic Ocean and the 

Baltic, Black and Mediterranean Sea. Further data used as predictors include the 

population density in a resolution of 100 x 100 m2 as well as livestock density 
provided by EUROSTAT2. The latter was only available in terms of country averages. 

 
 
 
Table 1: Predictors used for correlation analyses 

 
 
 
2.4 Statistical analysis 

 
Prior to the bi- and multivariate statistical analyses the moss and modelled deposition 

 

/ air concentrations as well as additional land characteristics were intersected in a GIS 

environment. Regarding the EMEP modelling data the correlation analyses was 

performed with two sets of modelled N data: (1) one data set containing only those 

values representing the year of sampling and (2) one data set representing the whole 

three year accumulation period in terms of the mean deposition / air concentration. 

The three year accumulation period represents the moss tissue that was selected for 

total N analysis, i.e. the recent three years of moss growth. 
 
 
Bivariate correlation coefficients were computed to indicate the strength and direction 

of the statistical relationship between the total N concentrations in mosses and 

EMEP modelled N depositions and air concentrations and additional influencing 

factors. There are several coefficients, measuring the degree of correlation, adapted 

to the levels of measurement according to Stevens (1946) or to the statistical 

distribution of the data. In this investigation, we decided to compute the Spearman 

rank correlation coefficient rs because the total N concentration in mosses and most 

of the predicting variables proved to be not normally distributed. Such non-parametric 
 
 

2 http://epp.eurostat.ec.europa.eu/portal/page/portal/eurostat/home/ (June 2009) 

http://epp.eurostat.ec.europa.eu/portal/page/portal/eurostat/home/


correlation methods are less powerful than parametric methods if the assumptions 

underlying the latter are met, but are less likely to give distorted results when the 

assumptions fail. The coefficient rs measures the correspondence between two 

rankings and assesses its statistical significance. An increasing rank correlation 

coefficient implies increasing agreement between rankings. The correlation 

coefficient rs amounts for -1 if the two rankings are completely in opposite agreement, 

rs equals 0 if the rankings are completely independent and +1 if the agreement 

between the two rankings is perfectly the same. Within this interval [-1, +1] the 
strength of correlation was classified according to Hagl (2008); rs values < │0.2│ are 

very low, between │0.2│ and │0.5│ low, from │0.5│ to │0.7│ moderate, between 

│0.7│ and │0.9│ high and > │0.9│ very high. Statistical significance refers to the 

generality of the relationship and the likelihood the observed relationship occurred by 

chance. 
 
 
In addition to non-parametric correlation analysis, classification and regression trees 

(CART) as introduced by Breimann et al. (1984) were applied to analyse the 

multivariate correlations between the tissue N concentration of mosses and 

characteristics of the surroundings of the 2781 sampling sites such as modelled air 

concentrations and depositions of N and land cover. CART does not make any 

assumptions regarding the distribution of the data and can use an explanatory 

variable more than once, so it is able to work with multiple-interrelated data. CART 

can reveal hierarchical and non-linear relationships among one dependent variable 

(tissue N concentration of mosses) and several descriptive variables (regional 

characteristics of the sampling sites such as N depositions and proportion of land 

cover) by sub-dividing a heterogeneous data set into more homogeneous sub-sets 

(classes, groups, nodes) by a series of nested binary ‘if-then-else’ splits. Each split 

maximises the homogeneity of the dependent variable. Each possible binary split for 

all variables is evaluated recursively for the best class separation until homogeneous 

end points (nodes) are reached. The predictor selected is the one for which the two 

new classes have the greatest within-group similarity for the response variable. The 

two new classes are then examined separately, with respect to each of the predictor 

variables, to see if they can be split again. The resulting dendrogram can have 

multiple branches, each of which represents a path to a particular combination of 

independent variables defining variable sub-spaces. 



 
3 Results 

 
The Spearman rank correlations coefficients rs were computed to identify the 

relations between the different N depositions (dry and wet oxidised and reduced N 

deposition, total dry and total wet N deposition and total N deposition) and air 
 

- + 
concentrations (NO2, HNO3, NO3 , NH3, NH4  ) as well as site-specific and regional 

 

land characteristics on the one hand and the N concentration in mosses on the other 

hand. Figure 1 shows the rank correlation coefficients between the total N 

concentration in mosses and the modelled EMEP depositions and air concentrations 

and table 2 lists the rank correlation coefficients between the total N concentration in 

mosses and site-specific or regional characteristics. The correlation coefficients are 

only depicted with regard to the three years mean of all EMEP components since 

only minor differences exist to those correlation coefficients calculated for depositions 
 

/ air concentration representing the year of sampling. The highest correlations (rs = 
+ 

0.64 – 0.68) exist between the N concentrations in mosses and NH4 concentrations 
 

in air, wet and dry deposition of oxidised N, the total wet N deposition and the total N 

deposition. Regarding the regional land characteristics, the proportion of urban land 

uses in a radius of 75 - 100 km and agricultural land uses in a radius of 50 km around 

the monitoring sites showed the highest correlations with the total N concentration in 

mosses (rs = 0.55 and rs = 0.54, respectively). Low correlations (rs < 0.5) were 

observed for altitude, precipitation, distance to sea, forested land use and population 

and livestock density. 
 
 
Figure 1: Spearman rank correlation coefficients between N concentration in mosses 

and EMEP modelled air concentration and deposition of various N forms (three year 

mean) 
 
 
Table 2: Spearman rank correlation coefficients between N concentration in mosses 

and site-specific and regional characteristics 
 
 
Multivariate relations between the tissue N concentrations of mosses and modelled 

EMEP N depositions / air concentrations and potential site-specific and regional land 

characteristics (Table 1) were analysed using CART. The respective results are 

shown for the first three levels of the CART dendrogram in Figure 2. According to the 
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root node of the dendrogram, the mean N concentration in mosses amounts to 
 

+ 
1.22% N. As can be seen, the modelled NH4 concentration in air is the most 

 

+ 
powerful predictor for the total N concentration in mosses: at sites with NH4 

concentrations below 0.63 mg m-3 the mean tissue N concentration of mosses equals 
 

0.88% (node 1) whereas at sites with NH +
 

 

concentrations above 0.63 mg m-3
 
 

the 
 

mean is 1.41% (node 2). The sampling sites classified in node 1 are further 
differentiated by the NO2 concentrations in air: in mosses sampled at sites with NO2 

concentrations below 0.53 mg m-3 the N concentration in mosses is lower (0.65%) 

(node 3) than at locations where the concentrations exceed 0.53 mg m-3 (0.96%) 
 

(node 4). Node 2 is sub-divided by the sampled moss species: at sampling sites 

where Abietinella abietina (Aa), Hylocomium splendens (Hs), Pleurozium schreberi 

(Ps), Rhytidiadelphus squarrosus (Rs) or mosses of the genus Scleropodium (Scl. 

sp.) other than Scleropodium purum were sampled lower N concentrations in mosses 

were measured (1.29 %) (node 5) than at sites where Brachythecium rutabulum (Br), 

Hylocomium splendens (Hs), Pseudoscleropodium purum* (Pp), Scleropodium 

Purum  (Sp), Thuidium abietinum (Ta), Thuidium tamariscinum (Tt) or mosses of the 

genus Brachythecium (Bra. sp.), Dicranum (Dic. sp.) and Homalothecium (Hom. sp.) 

were sampled (1.52%) (node 6). Level 3 nodes 5 and 6 are furthermore split 

according to the total dry N deposition and the air concentration of ammonium. The 

CART dendrogram depicted in Figure 2 accounts for up to 44.8% of the total 

variance of the total N concentration in mosses measured at the 2781 sites. 
 
 
Figure 2: CART-dendrogram of factors associated with N concentrations in mosses, 

explaining 44.8% of the total N concentration in mosses. 
 
 
4 Discussion 

 
This study reveals that mosses can potentially be used as biomonitors of total 

atmospheric deposition of N at a high spatial resolution. The highest, albeit 

moderate, bivariate correlations were found between EMEP modelled air 

concentrations and deposition of different N forms and the total N concentrations in 
+ 

mosses. Multivariate analysis identified modelled NH4 concentrations in air as the 
 

most powerful predictor of the total N concentration in mosses. The total N 
 

concentration in mosses appears to mirror land use-related atmospheric 
 
 

Now collectively called Pseudoscleropodium purum (Hill et al. 2006). 



concentrations and depositions of N across Europe as moderate bivariate 

correlations were also observed between the proportion of urban land uses (in a 

radius of 75 - 100 km) and the proportion of agricultural land uses (in a radius of 50 

km). Correlations with other site-specific or regional characteristics were lower. 
 
 
The applied statistical techniques are robust against skewed distribution of the data 

and the influence of potential outliers. Autocorrelations for the N concentrations in 

mosses exist but are rather weak (nugget / sill ratios of above 0.7 for four sub- 

regions in Europe). The assumption of independence for the target variable was 

therefore not violated. Furthermore, the existing co-linearities between the predicting 

variables are not a problem since each variable was investigated separately and not 

altogether as done in multivariate approaches like cluster or regression analyses. By 

applying CART, each predicting variable is examined separately with regard to the 

improvement of homogeneity they result in. Only the best predictor is chosen for 

each split. 
 
 
This study may be regarded as a cross validation of European moss data and EMEP 

model data for N, but is complicated by both potential limitations in the of mosses as 

monitors of atmospheric N deposition (Harmens et al., 2008b; Zechmeister et al., 

2008) and the uncertainties in the modelled nitrogen deposition, including 

uncertainties in emissions (Lieven et al., 2009). The moss technique provides a tool 

for validating the spatial pattern for modelled EMEP air concentrations and 

depositions of nitrogen compounds at a higher spatial resolution than can be 

achieved using the EMEP measurement stations throughout Europe. Atmospheric N 

input to terrestrial ecosystems is spatially variable due to e.g. distance to emission 

sources, variations in the aerodynamic roughness of vegetation, microclimate, 

canopy drip or orographic effects. As a result, site-specific inputs of N vary 

considerably from the mean annual deposition of a region. Indeed, when the total N 

concentration in mosses was plotted against site-specific bulk N deposition in 

Switzerland, a strong positive linear relationship (r = 0.95) was observed (Thöni et al., 
 

2008). Nevertheless, previous studies in selected Scandinavian countries have also 

shown strong positive linear relationships between the total N concentration in 

mosses and EMEP modelled N deposition data (Harmens et al., 2005), which might 
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be due to the absence of significant local pollutions sources in many of these parts of 
 

Scandinavia. 
 
 
 
In  Germany,  the  N  concentrations  in  mosses  (Pleurozium  schreberi)  and  pine 

needles were compared with N deposition rates and N concentrations in precipitation 

(Mohr, 1999). The study covered 23 forest sites in northern Germany sampled 

between 1996 and 1998. The correlation (r) between the N concentration in mosses 

and pine needles was 0.87 (p < 0.001) and between the N concentration in mosses 

and N concentration in precipitation (measured in the year before the sampling) was 

0.9 (p < 0.001). In 1998, the correlation between the N concentration in mosses and 
 

the annual N (NO -
 

 

+ NH +) deposition rate was 0.93 (p < 0.01). There is a need to 
 

measure  atmospheric  N  deposition  at  selected  moss  sampling  sites  in  other 

countries too in order to further investigate the robustness of the relationship with 

total N concentration in mosses. 
 
 
In the current study, bivariate correlations between N concentrations in mosses and 

air concentration and / or deposition of different N species were quite similar for 
+ 

some N species, with multivariate analysis identifying NH4 concentrations in air as 
 

the most powerful predictor of the total N concentration in mosses. However, Pitcairn 

et al. (2006) have shown that N concentration in mosses can respond differently to 

wet and dry deposited N. They concluded that N concentrations in mosses provide a 

good indication for N deposition at sites where deposition is dominated by NH3, and 
+ 

is also valuable in identifying vegetation exposed to large concentrations of NH4 

NO -, in wet deposition dominated areas, such as hilltops and wind exposed 

woodland edges. In line with these findings, Pearce and Van der Wal (2008) 

suggested that tissue N concentration in mosses is more sensitive to N 

concentrations rather than deposition dose. It is therefore vital to gain a better 

understanding of the role concentration and dose and the various N forms play in 

and 

 

threatening the survival of sensitive species and their habitats (Nordin et al., 2009). It 

should be noted that in general the EMEP model results agree better with 

measurements for the secondary components such as ammonium and nitrate in air. 

NH3 concentrations differ greatly within small distances, which is impossible to 

reproduce with a model with a resolution of 50*50km. Moreover, whilst wet 

depositions are regularly validated against measurements, measurement data on dry 



deposition of nitrogen are scarce. Furthermore, the data that exists have been used 

to develop the dry deposition parametrisations that are used in the model – thus an 

independent validation is difficult. 
 
 
As biomonitors of atmospheric N depositions, mosses can potentially be used for 

identifying areas at risk from high N deposition (Harmens et al., submitted). Increased 

deposition of atmospheric N is affecting biodiversity and the composition of natural 

and semi-natural vegetation in Europe (Bobbink et al., in press). The European Union 

Habitats Directive (92/43/EEC) promotes the maintenance of biodiversity and 

requires member states to take measures to maintain or restore natural habitats at a 

favourable conservation status. The Directive established the Natura 2000 network 

with the aim to assure the long-term survival of Europe's most valuable and 

threatened species and habitats. The provisions of the Directive require strict site 

protection measures, avoidance of deterioration and introduce a precautionary 

approach. Mosses and lichens are already routinely sampled in Denmark to assist 

with the assessment of Natura 2000 sites (Anderson et al., 2006). However, most 

likely a combination of the bioindicators / biomonitors will best describe the state on 

Natura 2000 sites (Nordin et al., 2009). It would be very useful if bioindicators / 

biomonitors could be applied throughout Europe to provide detailed information on 

the spatial patterns of N deposition and localise spatially varying exceedance of the 

critical N load values (Pitcairn et al., 2006). The conversion of the N concentrations in 

mosses to spatially highly resolved N deposition maps could be done by applying 

regression kriging as described by Hengl et al. (2007). 
 
 
Recent pilot studies in Germany and France had already shown strong positive 

correlations between the N concentration in mosses and the proportion of agricultural 

land use around the moss sampling sites (Holy et al., 2008; Pesch et al., 2007b; 

Pesch et al., 2008). Although other factors such as urban land use, canopy drip and 

moss species were also identified as main factors determining the spatial variation in 

N concentration in mosses, modelled air concentrations and depositions were not yet 

included in those studies. The outcome of those studies is in agreement with other 

studies (Bytnerowicz et al., 2002; Frati et al., 2007; Jovan and Carlberg, 2007; Jovan 

and Mccune, 2006), which identified agriculture, especially the application of animal 

manure, animal feedlots and mast farms, as the major source of N in the 



environment. Further important sources are road traffic (Jovan and Mccune, 2006; 

Luo et al., 2003), urban emissions (Bytnerowicz and Fenn, 1996) and forest fires 

(Jovan and Carlberg, 2007). 
 
 
5 Conclusions 

 

The total N concentration in mosses mirrors land use-related atmospheric 

concentrations and depositions of N to a considerable degree and is therefore a 

valuable  tool  in  identifying  areas  with  high  atmospheric  N  concentration  and 

deposition at a high spatial resolution across Europe. The high number of 

measurement sites in the moss surveys can improve the evaluation of the EMEP N 

deposition and air concentration modelling. Studies are currently ongoing to cross- 

validate the N concentration in mosses with EMEP modelled air concentrations and 

depositions of N at a higher spatial resolution, i.e. 10 x 10 and 25 x 25 km2  grids. 
 

Correlations between the two datasets can help to improve the spatial resolution of 

air  concentration  and  deposition  maps  of  N  by  means  of  a  regression  kriging 

approach based on surface maps of N concentrations in mosses (Hengl et al., 2007). 

The resulting high-resolution N deposition maps could potentially be used to assess 

atmospheric N inputs into protected areas like e.g. Natura 2000 areas. In order to 

enhance the robustness of the relationship between total N deposition and total N 

concentration in mosses, more measurements of site-specific air concentrations and 

depositions of N and other site-specific characteristics are required. 
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Table  1: Predictors used for correlation analyses. 
 

Predictor Resolution Data Source 
Moss species site-specific  
Altitude site-specific  
Analytical method site-specific  
Sea distance site-specific  
Precipitation 12.5 km x 12.5 km CRU 
Population density 100mx100m EEA2 
Agricultural land uses (1, 5, 10, 25, 50 km radius) 1 km x 1 km EEA2 
Forested land uses (1, 5, 10, 25 km radius) 1 km x 1 km EEA2 
Urban land uses (1, 5, 10, 25, 50 km radius) 1 km x 1 km EEA2 
Urban land uses (75, 100 km radius) 2 km x 2 km EEA2 
Livestock density Country-specific EUROSTAT' 
Wet deposition of oxidised nitroqen compounds 50 km x 50 km MSC-West 
Dry deposition of oxidised nitrogen compounds 50 km x 50 km MSC-West4 
Wet deposition of reduced nitrogen compounds 50 km x 50 km MSC-West4 
Dry deposition of reduced nitror: en compounds 50 km x 50 km MSC-West4 
Total wet deposition (oxidised +reduced) 50 km x 50 km MSC-West4 
Total dry deposition (oxidised +reduced) 50 km x 50 km MSC-West4 
Total N deposition (total dry+ total wet) 50 km x 50 km MSC-West4 
N02  concentration in air 50 km x 50 km MSC-West 
HN03 concentration in air 50 km x 50 km MSC-West 
NOc;oncentration in air 50 km x 50 km MSC-West 
NH3  concentration in air 50 km x 50 km MSC-West 
NH4    concentration in air 50 km x 50 km Mo;c-vvest 

Cl1mat1c Research Un1t, www.cru.uea.ac.uk 
2  European Environment Agency, http://www.eea.europa.eu/ 
3 Statistical Office of the European Communities,  http://epp.eurostat.ec.europa.eu 
4  Meteorological Synthesizing Centre-West  of EMEP, http://met.no 

http://www.cru.uea.ac.uk/
http://www.eea.europa.eu/
http://epp.eurostat.ec.europa.eu/
http://met.no/


Table 2: Spearman  rank correlation coefficients between N concentration in mosses 

and site-specific and regional  characteristics. 
 
 

Predictor r. (p < 0.001) 
Altitude -0.10 
Population density 0.48 
Precipitation 0.25 
Livestock density (EUROSTAT) 0.42 
Distance to the sea 0.25 
Agricultural land use (1 km radius) 0.36 
Agricultural land use (5 km radius) 0.49 
Agricultural land use (10 km radius) 0.51 
Agricultural land use (25 km radius) 0.52 
Agricultural land use (50 km radius) 0.53 
Forestal land use (1 km radius) -0.11 
Forestal land use (5 km radius) -0.21 
Forestal land use (10 km radius) -0.23 
Forestal land use (25 km radius) -0.23 
Urban land use (1 km radius) 0.15 
Urban land use (5 km radius) 0.41 
Urban land use (10 km radius) 0.49 
Urban land use (25 km radius) 0.51 
Urban land use (50 km radius) 0.54 
Urban land use (75 km radius) 0.55 
Urban land use (100 km radius) 0.55 
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Figure 1: Spearman rank correlation coefficients between N concentration in mosses 

and EMEP modelled air concentration and deposition of various N forms (three year 

mean). 
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Figure 2: CART-dendrogram of factors associated with N concentrations in mosses, 

explaining 44.8% of the total N concentration in mosses. 

 
 
Abietinella abietina (Aa), Brachythecium (Bra. sp.), Brachythecium rutabulum (Br), 
Dicranum (Dic. sp.), Homalothecium (Hom. sp.), Hylocomium splendens (Hs), 
Pleurozium schreberi (Ps), Pseudoscleropodium purum* (Pp), Rhytidiadelphus 
squarrosus (Rs), Scleropodium (Scl. sp.), Scleropodium purum* (Sp), Thuidium 
abietinum (Ta), Thuidium tamariscinum (Tt) 

 
*Species classification is according to the nomenclature used during the 2005/6 
European moss survey. Scleropodium purum and Pseudoscleropodium purum are 
now collectively called Pseudoscleropodium purum (Hill et al., 2006) 


