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Abstract 24 

Traditional field-based lithological mapping can be a time-consuming, costly and challenging 25 

endeavour when large areas need to be investigated, where terrain is remote and difficult to 26 

access and where the geology is highly variable over short distances. Consequently, rock units 27 

are often mapped at coarse-scales, resulting in lithological maps that have generalised contacts 28 

which in many cases are inaccurately located. Remote sensing data, such as aerial photographs 29 

and satellite imagery are commonly incorporated into geological mapping programmes to obtain 30 

geological information that is best revealed by overhead perspectives. However, spatial and 31 

spectral limitations of the imagery and dense vegetation cover can limit the utility of traditional 32 

remote sensing products. The advent of Airborne Light Detection And Ranging (LiDAR) as a 33 

remote sensing tool offers the potential to provide a novel solution to these problems because 34 

accurate and high-resolution topographic data can be acquired in either forested or non-forested 35 

terrain, allowing discrimination of individual rock types that typically have distinct topographic 36 

characteristics. This study assesses the efficacy of airborne LiDAR as a tool for detailed 37 

lithological mapping in the upper section of the Troodos ophiolite, Cyprus. Morphometric 38 

variables (including slope, curvature and surface roughness) were derived from a 4 m digital 39 

terrain model in order to quantify the topographic characteristics of four principal lithologies 40 

found in the area. An artificial neural network (the Kohonen Self-Organizing Map) was then 41 

employed to classify the lithological units based upon these variables. The algorithm presented 42 

here was used to generate a detailed lithological map which defines lithological contacts much 43 

more accurately than the best existing geological map. In addition, a separate map of 44 

classification uncertainty highlights potential follow-up targets for ground-based verification. 45 

The results of this study demonstrate the significant potential of airborne LiDAR for lithological 46 
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discrimination and rapid generation of detailed lithological maps, as a contribution to 47 

conventional geological mapping programmes. 48 

  49 
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1. Introduction 50 

Geological mapping is traditionally carried out by employing field strategies that are best 51 

suited to a specific area, including following azimuthal traverses, cross-strike transects, stream 52 

sections, ridgetops, bedrock contacts, or moving between individual isolated outcrops (Barnes & 53 

Lisle, 2004). However, field mapping in complex and poorly accessible terrain can be 54 

challenging, time-consuming and costly (Gad & Kusky, 2007; Grunsky et al., 2009; Rogge et al., 55 

2009). As a consequence, lithologies are often mapped coarsely at reconnaissance (e.g., 56 

1:250,000) or more local scales (e.g., 1:40,000), potentially resulting in geological 57 

simplifications and inaccuracies (Roy et al., 2009).  58 

Remote sensing data including aerial photographs, and multi- and hyperspectral imagery 59 

are also used for lithological mapping (e.g., Drury, 1987; Rothery, 1987; Van der Meer et al., 60 

1997; Rowan & Mars, 2003; Bedini, 2009; Roy et al., 2009). One of the primary benefits of 61 

using remote sensing data for lithological mapping is the ability to map areas that are poorly 62 

accessible in the field. Although high-resolution aerial photographs can be manually interpreted 63 

to help produce detailed lithological maps, the visual discrimination and mapping of surface 64 

materials can be subjective, difficult and time-consuming (Crouvi et al., 2006). Multi- and 65 

hyperspectral imagery can be automatically classified to rapidly generate lithological maps over 66 

large areas, but spatial and spectral limitations of the data may affect the ability to resolve small 67 

outcrops or discriminate units with similar spectral properties (Rowan & Mars, 2003; Dong & 68 

Leblon, 2004). Dense vegetation cover, such as forests, can also be a hindrance to both field and 69 

remote sensing mapping techniques. Whilst making field mapping logistically difficult, dense 70 

vegetation also obscures the ground surface and conceals some of the terrain attributes required 71 
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for photogeological mapping. Additionally, dense vegetation may also obstruct or completely 72 

mask the spectral signature of the underlying substrate (Carranza & Hale, 2002).  73 

 Airborne Light Detection And Ranging (LiDAR) is an emerging active remote sensing 74 

technique. It offers a potential solution for overcoming the obscuring effects that dense 75 

vegetation has on discrimination of ground materials, as it has the capability of acquiring 76 

accurate and high-resolution (ca. 1–4 m) topographic data, even through forest cover (Kraus & 77 

Pfeifer, 1998). This is important because individual rock and soil types respond differently to 78 

surface processes, such as weathering and erosion, based on their combined mineralogical, 79 

petrological and textural characteristics, and thus they typically have distinct topographic 80 

characteristics (Kühni & Pfiffner, 2001; Belt & Paxton, 2005). Laser reflections (or returns) from 81 

the ground can be separated from vegetation returns to virtually deforest the terrain, enabling the 82 

generation of digital terrain models (DTMs; Haugerud & Harding, 2001). The ability to identify 83 

subtle topographic features in high-resolution DTMs makes LiDAR an important tool for 84 

geosciences research in both vegetated and non-vegetated terrain. Previous geological 85 

applications of airborne LiDAR include fault mapping (Harding & Berghoff, 2000; Haugerud et 86 

al., 2003; Prentice et al., 2003; Cunningham et al., 2006), mapping and characterisation of 87 

landslide morphology (McKean & Roering, 2004; Glenn et al., 2006; ) and the characterisation 88 

of alluvial fan morphology (Staley et al., 2006; Frankel & Dolan, 2007). 89 

 Lithological mapping using topographic data is highly dependent upon the recognition of 90 

differences in the topographic characteristics between lithologies. Despite its potential for 91 

detecting subtle topographic features in vegetated terrain, few studies have assessed the use of 92 

airborne LiDAR for lithological mapping. Webster et al. (2006a, 2006b) visually identified 93 

subtle topographic differences in a LiDAR-derived DTM and used these to help map three basalt 94 
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flow units in Nova Scotia, Canada. In comparison to other sources of topographic data, only the 95 

LiDAR DTM had the resolution required to identify the subtle contacts between the units. 96 

Wallace (2005) quantitatively discriminated three distinct lithological units in the Sudbury Basin, 97 

Ontario, Canada, using elevation and morphometric variables of slope and plan, profile, 98 

minimum and maximum curvatures derived from a LiDAR DTM. Several lithological maps 99 

were also generated through the classification of elevation and slope using a number of 100 

conventional classifiers, including the Maximum Likelihood Classification algorithm. In the 101 

same study area, Wallace et al. (2006) used fractal dimension analysis to discriminate three 102 

lithological units according to differences in topographic roughness. These studies demonstrate 103 

the potential of airborne LiDAR for both qualitative and quantitative lithological discrimination 104 

and mapping in areas with relatively simple lithological distributions. The use of airborne 105 

LiDAR for mapping in more geologically complex terrain, where the spatial distribution of 106 

lithologies is more heterogeneous and distinction of different rock units is potentially 107 

problematic in itself, has not been demonstrated.  108 

The aim of this study is to assess the efficacy of airborne LiDAR for the detailed 109 

lithological mapping of a section of the Troodos ophiolite, Cyprus. Given the lithological 110 

heterogeneity of the study area, the intention was to develop a semi-automated algorithm to 111 

increase the speed and objectivity of the mapping process in comparison to traditional field 112 

surveys and visual image interpretation. The algorithm is based on the identification and 113 

classification of an optimal set of morphometric variables that were chosen for their ability to 114 

discriminate four principal lithological units within the study area. The mapping performance of 115 

this algorithm is assessed using conventional classification accuracy statistics and is spatially 116 

revealed by mapping the classification uncertainty. 117 
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 118 

2. Study area 119 

The Troodos ophiolite has long been recognised as an uplifted slice of oceanic crust and 120 

mantle that was created through sea-floor spreading (Gass, 1968; Moores & Vine, 1971). 121 

Forming the central region of the eastern Mediterranean island of Cyprus, the ophiolite displays 122 

a dome-like structure centred on Mt Olympus (1,952 m; Fig. 1). The ophiolite stratigraphy 123 

includes a mantle sequence consisting of harzburgites, dunites and a serpentinite diapir exposed 124 

at the highest elevations. Along the north slope of the range, the mantle sequence is 125 

stratigraphically overlain by a largely gabbroic plutonic complex, a sheeted dyke complex, 126 

extrusive lavas and oceanic sediments (Varga & Moores, 1985).   127 

The study area is located on the northern flank of the Troodos ophiolite (Fig. 1) and 128 

comprises a 16 km
2
 area with topographic relief on the order of 200 m. The area has a complex 129 

landscape in terms of geology and both natural and anthropogenic influences on topography. The 130 

area consists of four main lithological units — the Basal Group lavas and dykes, pillow lavas 131 

(Upper and Lower), Lefkara Formation chalky marls and alluvium–colluvium. Conventional 132 

field and photogeological mapping, together with some ambiguity in defining the units, is 133 

apparently responsible for some considerable differences between the two existing geological 134 

maps of this study area (Fig. 2). Despite having a coarser scale, the 1:250,000-scale map is the 135 

most recent version and considered to be the most geologically accurate.   136 

Stratigraphically, the Basal Group is the lowest unit in the study area. This unit represents 137 

a transition from the underlying sheeted dyke complex (100% dykes) to the overlying pillow 138 

lavas. Consisted of both dykes and screens of pillow lavas, the definition of the Basal Group is 139 

somewhat subjective. In general it contains at least 50% dykes, but more commonly has a dyke 140 
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abundance of 80–90% dykes (Bear, 1960). Typical Basal Group outcrops can usually be 141 

identified in the field according to their relatively high topography and steep relief (Fig. 3a). 142 

The pillow lavas are divided into the Upper Pillow Lavas and the Lower Pillow Lavas 143 

according to mineralogy, colour and dyke abundance (Wilson 1959; Gass, 1960). However, this 144 

division is difficult to apply in the field (Govett & Pantazis, 1971) and an unconformable or 145 

transitional boundary between the two lava units has led to uncertainty over this division (Boyle 146 

& Robertson, 1984). Due to this ambiguity, the pillow lavas are treated as one unit in this study. 147 

In the field, pillow lava terrain is characterised by undulating, hummocky topography (Fig. 3b). 148 

Accurate mapping of this unit is crucial to volcanogenic massive sulphide (VMS) mineral 149 

exploration on Cyprus, as the Troodos VMS deposits are predominantly confined to the pillow 150 

lavas (Constantinou, 1980). 151 

Two types of sedimentary cover are present within the study area: the Lefkara Formation 152 

and alluvium–colluvium. The Lefkara Formation represents part of the early oceanic 153 

sedimentation that was deposited during the late Cretaceous to early Miocene (Kähler & Stow, 154 

1998). This formation, which comprises marls, chalks and cherts, directly overlays pillow lavas 155 

to form gently rolling hills (Fig. 3c). Alluvium–colluvium refers to Quaternary sediments, such 156 

as sand, silts, soils and gravels that were deposited fluvially or through erosion. Alluvial–157 

colluvial cover is characterised by its relatively flat and smooth topography (Fig. 3d), which 158 

regularly fills depressions in pillow lava terrain. Alluvial–colluvial cover is frequently exploited 159 

for agricultural purposes throughout the study area.  160 

Major anthropogenic features are quite scarce and include the Mathiati VMS mine with 161 

spoil tips and the village of Agia Varvara Lefkosias in the north. Land disturbances due to 162 

agricultural activity are confined to alluvial–colluvial areas and although these occur throughout 163 
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the study area, they are most commonly found in the north-west. The study area has a semi-arid 164 

environment and vegetation cover is relatively dense and widespread, resulting in only small 165 

areas of completely exposed rock outcrops. Vegetation cover consists of crops, patchy forests, 166 

shrubbery, grasses and lichen. The combination of variable geology, vegetation cover and land-167 

use makes this a particularly complex area for evaluating the application of airborne LiDAR to 168 

lithological mapping. 169 

 170 

3. Airborne LiDAR data and pre-processing 171 

3.1 Data acquisition 172 

Airborne LiDAR data were acquired on the 14
th

 May, 2005 by the Natural Environment 173 

Research Council Airborne Research and Survey Facility (NERC ARSF). The survey was 174 

undertaken at an average flying altitude of 2550 m above sea level, using a Dornier aircraft 175 

mounted with an Optech ALTM-3033 system. The aircraft–ground distance ranged between 176 

2100–2300 m due to topographic relief within the study area. Operating with a laser pulse 177 

repetition rate of 33 kHz and half-scan angle of ±19.4° either side of nadir, approximately 178 

7,600,000 points were acquired for the study area with an average point density of 0.48 m
-2

. The 179 

dataset contains point data from five overlapping flight lines, each with a swath width of 1400–180 

1500 m and an overlap of 20%–50% between adjacent swaths. 181 

Initial data processing was undertaken by the Unit for Landscape Modelling at the 182 

University of Cambridge, UK. This involved combining Global Positioning System (GPS) data 183 

with the aircraft orientation — recorded using an Inertial Navigation System (INS) — to determine 184 

the 3-dimensional coordinates of each laser return (Wehr & Lohr, 1999). The LiDAR point data 185 

were delivered as ASCII files containing the x-y-z coordinates and intensity values of all first 186 
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and last returns in the WGS84 Universal Transverse Mercator (UTM) zone 36-North coordinate 187 

system. Information regarding the absolute accuracy of the processed point data was not 188 

provided, however the relative vertical accuracy was found to be less than 8 cm as determined 189 

from the standard deviation of returns from a flat water surface (Glenn et al., 2006). 190 

 191 

3.2. Digital terrain model (DTM) generation 192 

The LiDAR dataset originally contained returns from both ground and non-ground 193 

objects, such as trees and buildings. In order to generate a DTM it is necessary to remove all 194 

non-ground features from the dataset. Point data were classified as either ground or non-ground 195 

returns using a triangulated irregular network (TIN) densification algorithm (Axelsson, 2000), 196 

implemented in the TerraScan software (www.terrasolid.fi/en). This algorithm iteratively 197 

classifies returns as either ground or non-ground according to angle and distance thresholds 198 

applied to TIN facets. Due to the relatively high degree of topographic variability within the 199 

study area, the data in individual flight lines were classified separately. In each case the 200 

classification parameters and threshold were determined experimentally. The maximum terrain 201 

angle and iteration distance threshold were kept constant throughout, at 88° and 1.40 m, 202 

respectively. The appropriate maximum building size and iteration angle threshold were found to 203 

be more scene-dependent. In general, the maximum building size and iteration angle varied from 204 

20 m and 14° for flight lines dominated by relatively high relief, to 60 m and 6° for flight lines 205 

acquired over relatively flat terrain. To verify the results of the classification process, several 206 

cross-sections were extracted from each flight line and inspected to ensure the point data were 207 

assigned to the correct return class. Wherever necessary, misclassified points were manually re-208 



Page 11 of 37 
 

assigned to the correct class. Following classification, non-ground returns were discarded, while 209 

points classified as ground returns were used in the generation of the DTM. 210 

The accuracy of gridded LiDAR data products is affected by the choice of interpolation 211 

algorithm and spatial resolution (Smith et al., 2005; Palamara et al., 2007; Bater & Coops, 2009). 212 

It is therefore important to select an appropriate algorithm and resolution in order to avoid errors 213 

in the DTM having a significant effect on subsequent morphometric analysis. To determine the 214 

most appropriate algorithm and resolution, DTMs were generated at 1, 2, 3, 4 and 5 m 215 

resolutions using a range of popular interpolation algorithms. The interpolation algorithms 216 

evaluated were inverse distance weighted, block kriging, nearest neighbour, cubic polynomial, 217 

modified Shepard’s and triangulation with linear interpolation. Interpolation errors associated 218 

with each algorithm and resolution were assessed quantitatively using statistics generated 219 

through split-sample validation (Smith et al., 2005). This involved the random selection and 220 

omission of approximately 9% of the ground returns, while the remaining 91% were used to 221 

generate DTMs. The residuals between all omitted data points and their predicted values in the 222 

DTM were calculated and used to generate interpolation error statistics, such as the mean error 223 

(indicating the magnitude and direction of any bias) and mean absolute error (Bater & Coops, 224 

2009). The DTMs were also visually inspected for interpolation artefacts (e.g., null and spurious 225 

elevations) using shaded relief images with varying illumination directions and vertical 226 

exaggeration. The DTM generation, along with both visual and quantitative interpolation 227 

analysis were all undertaken using Surfer 8.0 (Golden Software, Inc.).  228 

The split-sample validation results showed that all of the interpolation algorithms tended 229 

to underestimate the actual elevation (mean errors ranging from -0.10 m to -0.12 m), with the 230 

exception of the triangulation with linear interpolation which slightly overestimated elevation 231 
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(mean errors ranging from 0.01 m to 0.04 m). Mean absolute errors were generally consistent 232 

between the interpolation algorithms and spatial resolutions (ranging from 0.23 m to 0.28 m), 233 

except for the triangulation with linear interpolation algorithm for which mean absolute error 234 

increased significantly with increasing spatial resolution (from 0.23 m at 1 m resolution to 0.49 235 

m at 5 m). 236 

During visual inspection, a ―ridge and trough‖ pattern was observed in all DTMs at the 237 

extreme edges of areas where adjacent flight lines overlap. Cross-sectional profiles extracted 238 

from the flight lines revealed that elevation exhibited an upward concavity error with increasing 239 

scan angle towards the edges of swaths — a phenomenon often referred to as ―smiley face error‖ 240 

(Lohani & Mason, 2005). Such parabolic vertical error has been attributed to vertical beam 241 

misalignment or systematic range errors (Latypov, 2005). The observed DTM artefact is 242 

generated when data from multiple flight lines are merged and measurements from large scan 243 

angles do not coincide with corresponding measurements from smaller scan angles. The effect of 244 

―ridge and trough‖ artefact on the quantitative analysis was isolated by recalculating the split-245 

sample error statistics using only a subset of residuals selected from outside the areas of overlap 246 

(corresponding to ~3% of the total ground returns). As a result, mean errors were reduced to 247 

underestimations of between 0.01 m and 0.03 m for all interpolation algorithms except 248 

triangulation with linear interpolation, for which the overestimation increased to between 0.02 m 249 

and 0.09 m. Also, the choice of interpolation algorithm was found to have a greater effect on 250 

mean absolute errors than the spatial resolution, again with the exception of triangulation with 251 

linear interpolation. Nevertheless, the mean absolute error showed a significant decrease in all 252 

cases when calculated using residuals from outside the areas of overlap. Kriging, modified 253 

Shepard’s and cubic polynomial interpolation resulted in the smallest mean absolute errors 254 
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(ranging from 0.09 m to 0.13 m for all resolutions), followed by the inverse distance weighted 255 

and nearest neighbour algorithms (0.15 m to 0.17 m). Triangulation with linear interpolation was 256 

the worst performing algorithm, with mean absolute error increasing from 0.12 m at 1 m 257 

resolution to 0.43 m at 5 m.  258 

As the ―ridge and trough‖ pattern was solely confined to the areas of overlap where the 259 

point density is greater, it was possible to almost completely eradicate this artefact from the 260 

DTMs using a simple point spacing based filter prior to interpolation. The filter discarded the 261 

point with the highest elevation (i.e., the point most affected by ―smiley face error‖) when 262 

multiple ground returns were present within a given radius. The size of the radius was chosen so 263 

that the filter only operated on data points within the areas of overlap (in this case a point spacing 264 

≤ 2 m). In addition to removing this artefact, the filter also generates a dataset with a globally 265 

uniform point density. The most appropriate interpolation algorithm and spatial resolution for the 266 

final DTM was selected as that which minimised the mean and mean absolute errors, and the 267 

appearance of interpolation artefacts in the DTM. Consequently, 100% of the ground returns 268 

were used to generate the final DTM at a spatial resolution of 4 m, by applying the point-spacing 269 

filter prior to interpolation with the kriging algorithm. 270 

 271 

 272 

4. Methods       273 

The efficacy of airborne LiDAR topographic data for detailed lithological mapping is 274 

assessed using the methodological approach presented in Fig. 4. Following the generation of the 275 

DTM, the method consists of five major steps, which are discussed in the following section. 276 

 277 
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4.1. Training and validation data  278 

 Two independent sets of pixels were selected for the purpose of training and validating 279 

the results of the algorithm developed herein. Using knowledge of the study area, QuickBird 280 

imagery (0.70 m resolution) and the existing geological maps, four training areas (i.e., regions of 281 

interest; ROIs) were carefully selected in ENVI 4.3 (Research Systems, Inc.) to represent the 282 

four lithological classes. All pixels located within these four training areas were included in the 283 

training dataset.  The validation pixels were selected using a random stratified sampling protocol 284 

to ensure that each class was represented proportionately and to avoid spatial autocorrelation 285 

within the dataset (Chini et al., 2008; Pacifici et al., 2009). To do this, several ROIs were 286 

identified for each lithological class in the same way as that used to identify the training areas. 287 

Validation pixels were then randomly sampled from these according to the total area of the ROIs 288 

associated with each lithological class. Table 1 shows the number of pixels, the equivalent area 289 

and the proportion of the study area selected for each lithological class for use in training and 290 

validation. In order to determine their effect on the mapping performance, it was decided not to 291 

mask-out or treat anthropogenic features as a separate class. 292 

 293 

4.2. Morphometric variables 294 

 The correlation between lithology and topography that is apparent in the field is also 295 

clearly evident in the 4 m DTM of the study area (Fig. 5). In order to automatically classify and 296 

map lithology using LiDAR data, it is first necessary to numerically quantify the topographic 297 

characteristics of the lithologies using variables that enable adequate discrimination. After 298 

considering the observed topographic characteristics, seven candidate morphometric variables 299 

were derived from the DTM for this purpose (Table 2).  300 
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Morphometric variables like slope, plan and profile curvature are typical examples of 301 

basic first and second order derivatives of elevation. These three variables were derived using a 302 

standard routine in ENVI 4.3, which calculates the derivatives from a quadratic surface fitted to 303 

elevations within a moving window (or kernel) that is passed over the DTM (Wood, 1996). 304 

Absolute values of plan and profile curvature were used to avoid an alternating pattern of 305 

convexity and concavity in highly undulating such as that of the pillow lavas. Morphometric 306 

variables such as these are scale-dependent; therefore, in order to identify the most suitable 307 

scales for maximum lithological discrimination, each variable was derived using fifteen different 308 

moving window sizes ranging from 3 × 3 pixels (12 m × 12 m) to 31 × 31 pixels (124 m × 124 309 

m). Moving window sizes were limited to 31 × 31 pixels as larger windows were found to reflect 310 

more regional-scale topographic information, rather than the local-scale information which is 311 

more relevant to detailed lithological discrimination. 312 

Relief, hypsometric integral and the two LiDAR-derived measures of surface roughness 313 

were derived in Surfer 8.0. Hypsometry describes the elevation distribution within a given area 314 

(Strahler, 1952) and can be estimated using the hypsometric integral (Pike & Wilson, 1971). The 315 

hypsometric integral (HI) is calculated as: 316 

  (1) 

where hmean, hmin and hmax are the average, minimum and maximum elevations within a moving 317 

window, respectively. This hypsometric integral variable was also derived at multiple scales 318 

using the same set of fifteen moving window sizes detailed above. 319 

Surface roughness can be measured using the standard deviation of slope within a 320 

moving window (Frankel & Dolan, 2007). This variable — referred to here as slope roughness —321 

was derived at multiple scales by first determining slope within a 3 × 3 pixel window (i.e., 12 m 322 

minmax

minmeanHI
hh

hh
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× 12 m) and then calculating the standard deviation of slope within each of the fifteen moving 323 

windows. The second measure of surface roughness (known here as residual roughness) is 324 

defined as the standard deviation of residual topography (Cavalli et al., 2008). First, a 100 m 325 

mean DTM was created by smoothing the 4 m DTM using a 25 × 25 pixel moving average filter. 326 

A residual topographic surface was then calculated by subtracting the 100 m mean DTM from 327 

the 4 m DTM. Finally, the standard deviation of this residual topographic surface was calculated 328 

within each of the fifteen different sized moving windows. 329 

In general, good discrimination and classification performance relies upon homogeneity 330 

within classes and dissimilarity between classes (Li et al., 2009). The morphometric 331 

homogeneity of the lithologies can be maximised by identifying the optimal scale for each 332 

candidate variable. The optimal scales can be determined statistically by identifying the moving 333 

windows size which minimises the spread of morphometric data within the training areas (Prima 334 

et al., 2006). Here, using the standard deviation of each training area as a measure of its spread, 335 

the most suitable moving window size for each candidate variable was defined as that which 336 

minimised the average data spread within the training areas. More specifically, for each of the 337 

fifteen moving window sizes, the standard deviations within each of the four training areas were 338 

calculated and then averaged. The moving window size resulting in the smallest average was 339 

deemed to represent the most suitable scale for that variable. This procedure was applied 340 

separately to each candidate variable, thus enabling multi-scale topographic information to be 341 

utilised. The optimal moving window size for each candidate variable is shown in Table 2. 342 

 343 

4.3. Variable selection 344 
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Classification using all available variables might not necessarily produce the highest 345 

mapping accuracy. Some of these variables may be highly correlated, noisy, redundant or 346 

irrelevant (Pacifici et al., 2009). Better classification results may be achieved when such input 347 

variables are discarded and classification is performed using a smaller set of informative 348 

variables (Kavzoglu & Mather, 2002; Verikas & Bacauskiene, 2002). An optimal set of variables 349 

can be determined independently of the classification algorithm, based on statistical criteria such 350 

as class separability (the filter approach), or in conjunction with the chosen classifier (the 351 

wrapper approach). Despite using a non-parametric classifier, a filter approach was adopted as 352 

this enabled an exhaustive evaluation of all possible variable combinations to be conducted more 353 

efficiently than with a wrapper approach.  354 

The number of candidate variables was initially reduced by identifying and discarding 355 

linearly correlated and therefore redundant variables through the calculation of Pearson’s 356 

Product Moment Correlation Coefficients. The optimal set of variables for lithological 357 

discrimination was then determined from the remaining candidates through class separability 358 

analysis (Dong & Leblon, 2004). To do this, the morphometric separability between pairs of 359 

lithological classes (i.e., training areas) was calculated for every combination of two or more 360 

variables using the Jeffries-Matusita (JM) distance (Richards, 1994). For four lithologies, there 361 

are six possible pairs of classes and therefore six JM distances for each combination of variables. 362 

The JM distance ranges from 0–2, with pairs classes being inseparable for JM distances of 0 but 363 

completely separable for distances close to 2. The combination of variables resulting in both the 364 

largest minimum and largest average JM distances is selected as the optimum for lithological 365 

discrimination. 366 

 367 
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4.4. Classification 368 

A lithological map was generated using the optimal set of morphometric variables as 369 

inputs to a topologically preserving artificial neural network classifier; the Kohonen Self-370 

Organizing Map (SOM) (Kohonen, 1982, 2001). Artificial neural networks possess many 371 

advantages over conventional statistical classifiers, since they are non-parametric, robust in 372 

handling noisy data and can learn complex patterns (Ji, 2000). Applications of the SOM to 373 

remote sensing data include land-use classification (Ji, 2000; Bagan et al., 2005; Jianwen & 374 

Bagan, 2005), lithological mapping (Mather et al., 1998; Bedini, 2009) and geomorphometric 375 

feature analysis (Ehsani & Quiel, 2008a, 2008b).  376 

The SOM network consists of an input layer and an output layer. The input layer contains 377 

one neuron for each of the input variables, whereas the output layer is a two-dimensional array of 378 

neurons. Neurons in the output layer are connected to those in the input layer via synaptic 379 

weights. Random synaptic weights, ranging from 0 to 1, are initially assigned to the output 380 

neurons. These weights are then adjusted during learning to best describe patterns in the input 381 

data (Mather et al., 1998). Network learning is an iterative process and involves two stages: 382 

unsupervised coarse tuning and supervised fine tuning. The SOM algorithm in IDRISI Andes 383 

was used in this study (Li & Eastman, 2006). 384 

An input vector (a pixel in morphometric space) is represented by the vector x = {x1, 385 

x2…, xn}, where n is the number of input variables (and input neurons) used in the classification. 386 

During coarse tuning, input vectors are presented to the network and in each case the output 387 

neuron with the minimum Euclidean distance between its weight vector and the input vector is 388 

selected as the winner: 389 
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(2) 

where xi(t) is the input to neuron i at iteration t and wji(t) is the synaptic weight connecting output 390 

neuron j to the input neuron i at iteration t. The weight vector of the winner and output neurons 391 

within a neighbourhood of radius γ of the winner are then adjusted in the direction of the input 392 

vector: 393 

  (3) 

where wji(t +1) is the adjusted weight vector and α(t) is the learning rate at iteration t. The 394 

weights of neurons outside the neighbourhood remain unadjusted. The learning rate decreases 395 

gradually during the coarse tuning stage from an initial learning rate (αmax) to a final learning rate 396 

(αmin) , after the total number of iterations (tmax): 397 

 
 (4) 

 Similarly, the radius of the neighbourhood also decreases steadily during the coarse 398 

tuning stage:  399 

  

(5) 

A large initial neighbourhood is usually chosen, resulting in widespread adjustments to the 400 

weight vectors of neurons in the output layer. As learning progresses, γ decreases until the 401 

weight of only the winning neuron is adjusted.  402 

n

i

jii
j

twtxarg
1

2 

))()((minwinner

)](-)()[(+)(=)1+( twtxtαtwtw jiijiji

max

max

min
max)(

t
t

α

α
αtα

max

max

min
max)(

t
t

γ

γ
γtγ



Page 20 of 37 
 

 The SOM network parameters used in this study are based on experimentation guided 403 

using the existing literature (e.g., Ji, 2000; Jianwen & Bagan, 2005; Bedini, 2009). An output 404 

layer consisting of 10 × 10 neurons was chosen, with αmax = 0.05, αmin = 0.01 and γmax = 12. 405 

Coarse tuning was performed using all input vectors, therefore tmax was equal to the number of 406 

pixels in each input variable image (i.e., 1,012,841 iterations). Prior to learning, the input 407 

variables were normalised to the range 0–1 using a logistic (softmax) function. This function 408 

performs a nearly linear transformation on most of the data whilst also acting to reduce the 409 

influence of any outliers in each variable (Priddy & Keller, 2005). Normalisation increases the 410 

learning efficiency and also ensures that the input variable with the largest range does not 411 

dominate the calculation of the Euclidean distances and the organisation of the output layer 412 

(Ehsani & Quiel, 2008a).  413 

 Before fine tuning commences, neurons in the output layer must be preliminarily labelled 414 

using input vectors with known class identities. To achieve this, pixels from the training areas 415 

were presented to the coarsely tuned network and in each case the output neuron with the closest 416 

matching weights was triggered. Output neurons were labelled according to the training pixel 417 

class they were triggered by most frequently — a procedure known as majority voting. 418 

 Fine tuning was performed using the type-one Learning Vector Quantization (LVQ1) 419 

algorithm (Kohonen, 1990). The aim of fine tuning is to improve the classification accuracy by 420 

defining the class boundaries in the output layer more precisely. Pixels within the training areas 421 

were again presented to the SOM and the output neuron with the minimum Euclidean distance 422 

between a training pixel and its weight vector was selected as the Best Matching Unit (BMU). 423 

The weights of the BMU were adjusted accordingly: 424 

                                                                             if x is correctly labelled (6) )],t()()[()()1( cicc wtxtδtwtw
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 425 

                                                                              if x is incorrectly labelled (7) 

  426 

                                               if i ≠ c (8) 

where wc is the weight vector of the BMU, wc(t + 1) is the adjusted BMU weight vector and δ(t) 427 

is a scalar gain term, which decreases with each iteration like the learning rate during coarse 428 

tuning. Consequently, if the class identity of a training pixel matches the label of its BMU, the 429 

weight vector of the BMU is adjusted in the direction of the training vector, but is moved away if 430 

not. Fine tuning was performed using δmax = 0.005, which decreases to δmin = 0.001 after 200 431 

iterations. Output neurons were re-labelled following fine tuning. In order to classify lithology, 432 

all input vectors were presented again to the trained network and assigned the class identity of 433 

their corresponding BMU.  434 

 435 

4.5. Accuracy assessment 436 

 The classification accuracy was assessed by determining the overall (OA), user’s (UA) 437 

and producer’s (PA) accuracies and the Kappa coefficient (K) from a confusion matrix 438 

(Congalton, 1991).  The OA is the percentage of validation data correctly classified, whereas the 439 

UA and PA detail the commission and omission errors, respectively. The K is considered a more 440 

reliable measure of classification accuracy because, unlike the OA, it takes into account the 441 

possibility of agreements occurring by chance in a random classification (Brown et al., 1998; 442 

Pignatti, 2009).  443 

In addition to the lithological map, a second map was generated to analyse the spatial 444 

context of classification uncertainties. To do this, the degree of commitment that each pixel has 445 

to its assigned lithological class was determined using the SOM Commitment (SOM-C) (Li & 446 

)],t()()[()()1( cicc wtxtδtwtw

),()1( twtw ii
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Eastman, in press). Calculated from the triggering proportion of classes on output neurons during 447 

labelling, SOM-C essentially provides an indication of classification uncertainty. Values range 448 

from 0 to 1, with SOM-C values close to 1 indicating little uncertainty in the class identity of a 449 

pixel, whereas values close to 0 indicate high classification uncertainty. 450 

 451 

5. Results and discussion 452 

5.1. Variable selection for lithological discrimination 453 

 The Pearson’s Product Moment Correlation Coefficients revealed that the relief variable 454 

was highly linearly correlated (r > 0.80) with both the slope and the residual roughness variables. 455 

Also, slope roughness showed moderate-to-high positive correlation (r > 0.54) with almost all 456 

candidate variables. Consequently, the relief and slope roughness variables were deemed to be 457 

redundant and discarded, reducing the number of candidate variables from seven to five.  458 

Minimum and average JM distances for pairs of lithological classes were computed for 459 

all twenty-six combinations of two or more of the five remaining candidate variables (Fig. 6). 460 

The minimum and average JM distances are generally smallest when separability is calculated 461 

using only pairs of variables and increases when additional variables are included. The slope 462 

variable appears to have the greatest influence on the separability, since its exclusion results in at 463 

least a 20% and 50% decrease in the minimum and average JM distances, respectively. In terms 464 

of the pair-wise class separability, the Lefkara Formation and pillow lavas were consistently the 465 

least separable lithological units and were responsible for the minimum JM distance for almost 466 

all variable combinations. The lack of morphometric separabilty between these two units can be 467 

attributed to their stratigraphic relationship, where the Lefkara Formation has been deposited 468 

directly on top of the pillow lavas. This results in the Lefkara Formation displaying some 469 
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topographic characteristics of the subdued pillow lava terrain that it drapes. Conversely, the 470 

Basal Group and alluvium–colluvium were consistently the most separable units with JM 471 

distances typically exceeding 1.90. Such separability is expected due to their contrasting 472 

topographic characteristics. Large JM distances were also usually observed between alluvium–473 

colluvium and both the pillow lavas and Lefkara Formation.  474 

The combination which includes all five remaining candidate variables is the optimum 475 

for lithological discrimination, as this combination resulted in both the largest minimum and 476 

largest average JM distances (1.20 and 1.69, respectively). Furthermore, this combination of 477 

variables results in the largest JM distances for all six pairs of classes. For this optimal 478 

combination, the Lefkara Formation and pillow lavas were the least separable lithologies, 479 

followed successively by the Lefkara Formation and Basal Group (JM distance of 1.22), pillow 480 

lavas and Basal Group (1.70) and alluvium–colluvium versus all other units (all with JM 481 

distances of 2.00). The relative importance of each variable to the separability of lithologies was 482 

evaluated by examining the decrease in the JM distances after each variable was removed (Table 483 

3). Removing the slope variable produced the largest decrease in the JM distances for all six 484 

pairs of lithological classes and the minimum and mean JM distances. This suggests that slope 485 

contributes most to the separability of the lithologies in the study area. Apparently, absolute plan 486 

curvature is also an important variable; particularly for separating the morphometric 487 

characteristics of the Lefkara Formation, Basal Group and pillow lavas. The absolute profile 488 

curvature variable is arguably the least important as its removal resulted in the smallest decrease 489 

in the minimum, mean and the majority of pair-wise JM distances. Removing the residual 490 

roughness and hypsometric integral variables produced a similar decrease in all JM distances, 491 

suggesting these are of equal importance. This optimal set of morphometric variables — slope, 492 
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absolute profile curvature, absolute plan curvature, residual roughness and the hypsometric 493 

integral (Fig. 7) — was subsequently used in the classification stage.  494 

 495 

5.2. Lithological mapping and accuracy assessment 496 

A lithological map displaying the four principal units and a SOM-C map, indicating the 497 

classification uncertainty, were generated using the LiDAR-derived topographic data (Fig. 8). 498 

Following classification, a small amount of noise in the classified image was reduced using a 3 × 499 

3 mode filter.  500 

The accuracy of the lithological map was assessed using the validation pixels and the 501 

results were summarised using a confusion matrix (Table 4). The lithological map has an overall 502 

accuracy of 65.4% and a K of 0.53. Alluvium–colluvium is the best mapped unit with a 503 

producer’s accuracy of 87.9% and a user’s accuracy of 98.8%, while the Lefkara Formation was 504 

mapped with the least accuracy. A good producer’s classification accuracy was achieved for the 505 

pillow lavas (66.8%), however more than 50% of all validation pixels mapped as pillow lavas 506 

actually belong to other classes. Only 50.4% of Basal Group validation pixels were mapped 507 

correctly, but with a commission error of just 29.7%. The most classification confusion occurs 508 

between the Lefkara Formation, pillow lavas and Basal Group, which corroborates the results of 509 

the separability analysis. Although the majority of this confusion can be explained by their 510 

stratigraphic relationships or natural deviations from the typical topographic characteristics of 511 

each unit, anthropogenic activity is also responsible for a significant component. An obvious 512 

example of this can be found proximal to Mathiati mine and spoil tips where the natural 513 

topographic characteristics have been destroyed, leading to misclassification (Fig. 8).  514 
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Through comparison with the QuickBird imagery, it is clear that the algorithm is capable 515 

of defining lithological contacts more accurately than the best existing geological map (Fig. 9). 516 

Furthermore, the algorithm can be used to generate a more detailed lithological map by 517 

identifying lithologies in areas that have not been mapped previously. The SOM-C map is useful 518 

for highlighting areas of uncertainty in the lithological map. In general, SOM-C values less than 519 

0.75 correspond to areas with a high degree of classification uncertainty, as clearly illustrated by 520 

the portion of Lefkara Formation incorrectly classified as pillow lavas (Fig. 9). In this particular 521 

case, the confusion is related to the difficulty in detecting the ground beneath some types of low-522 

lying vegetation using airborne LiDAR. The class containing SOM-C values of 0–0.7 consists 523 

solely of SOM-C values of 0. These values are due to unlabelled neurons in the output layer 524 

which were not triggered by any of the training pixels (Li & Eastman, in press). For the purpose 525 

of classification, unlabelled neurons were assigned class labels using a minimum distance 526 

auxiliary labelling algorithm (Li & Eastman, 2006), resulting in no unclassified pixels in the 527 

lithological map. Pixels in the lithological map with corresponding SOM-C values of 0 do not 528 

necessarily possess a higher degree of uncertainty than pixels associated with larger SOM-C 529 

values. The uncertainty of pixels classified using the auxiliary labelling algorithm is case 530 

specific. Examples where such SOM-C values correspond to both correct and incorrect 531 

classification are evident throughout the study area and therefore each case should be considered 532 

individually. Frequent misclassifications occurring at the contacts between agricultural 533 

alluvium–colluvium and upstanding Lefkara Formation outcrops are highlighted by SOM-C 534 

values of 0. Ploughing proximal to the contacts is responsible for pixels with atypical 535 

topographic characteristics, which results in them being incorrectly classified as pillow lavas 536 

through the auxiliary labelling algorithm.  537 
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The accuracy of the lithological map produced in this study is higher than the accuracies 538 

reported by Wallace (2005) who investigated an area with a simpler lithological outcrop pattern. 539 

In contrast to Wallace’s (2005) study, our analysis involves a larger number of morphometric 540 

variables and a more complex classification algorithm. In addition, the distribution of the pillow 541 

lavas, Basal Group and overlying sediments is more complex because they are separated by low-542 

angle contacts and are differentially eroded. Therefore, there is no simple strike-belt pattern. 543 

Given the geological complexity and anthropogenic factors affecting the topography in this study 544 

area, we consider the results of our algorithm to be good. Additionally, the algorithm was 545 

implemented using minimal a priori knowledge of the spatial distribution of each lithological 546 

unit. However, higher mapping accuracies can be achieved using more a priori knowledge. 547 

Doubling the total number of training pixels (to approximately 2% of the total number of pixels 548 

within the study area) increases the overall accuracy to 67.3% and K to 0.56 when the same 549 

SOM network parameters are used. The ability to produce good mapping results given limited 550 

knowledge regarding the spatial distribution of units makes this algorithm particularly relevant to 551 

mapping relatively unexplored terrain. 552 

 553 

6. Conclusions 554 

This study assesses the efficacy of airborne LiDAR topographic data for detailed 555 

lithological mapping of a geologically complex area of the Troodos ophiolite, Cyprus. Typical 556 

topographic characteristics associated with each of the lithologies were recognised in a 4 m 557 

LiDAR DTM and quantified using a morphometric approach. An optimal set of morphometric 558 

variables for lithological discrimination were identified and used in conjunction with a SOM 559 

classifier to produce a lithological map. The resulting map achieved an overall accuracy of 560 
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65.4% and a K of 0.53, which is considered good given the complexity of the study area and the 561 

lack of a priori knowledge. The lithological map is more detailed than the best existing 562 

geological map and the lithological contacts are more accurately defined. The results of this 563 

study demonstrate the significant potential of airborne LiDAR as a tool for generating detailed 564 

lithological maps over large areas of either forested or non-forested terrain, where conventional 565 

methods are of limited use. Furthermore, the SOM-C map highlights areas with high 566 

classification uncertainty, therefore providing information regarding follow-up targets for 567 

efficient ground-based verification.  568 

Further studies are required to assess whether improvements in the lithological mapping 569 

accuracy can be made through the integration of airborne LiDAR data with high-resolution 570 

multispectral imagery. It is anticipated that the multispectral imagery will help to reduce 571 

misclassification in non-vegetated areas where the natural topographic characteristics of the 572 

various rock types have been destroyed by anthropogenic activity. 573 

The detailed lithological map generated in this study represents a valuable aid to VMS 574 

mineral exploration in the Troodos ophiolite because the mapped distribution of potential host 575 

rocks is now much better resolved than on previous maps. In addition, the efficacy of this 576 

algorithm extends to other geological settings where lithology and topography are positively 577 

correlated, with exciting implications beyond mineral exploration. In particular, the relative ease 578 

with which basement rocks and sedimentary cover can be discriminated at high-resolution could 579 

be useful in all terrains from open ground to densely forested landscapes for: 1) identifying local 580 

areas for groundwater extraction, 2) locating areas with enhanced agricultural potential, and 3) 581 

for general infrastructure planning where it is important to know construction site substrates. 582 
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Thus the methods presented here may have widespread utility for a range of applications, 583 

especially in areas of mixed basement and sedimentary cover exposure. 584 
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Figure captions 786 

Fig. 1. Location of the study area (dashed box) and simplified geology of the Troodos ophiolite. 787 
Digital geology was provided by the Geological Survey Department of Cyprus. 788 
 789 

Fig. 2. Existing geological maps of the study area shown in Fig. 1. (a) 1:250,000 and (b) 790 
1:31,680-scale maps adapted from the digital geology provided by Geological Survey 791 
Department of Cyprus. M–Mathiati mine and A–Agia Varvara Lefkosias. 792 
 793 

Fig. 3. Field photographs showing the four main lithological units: (a) Basal Group, (b) pillow 794 
lavas, (c) quarry exposure of the Lefkara Formation overlying pillow lavas (LF and PL, 795 
respectively) and (d) alluvium–colluvium (AC). 796 
 797 

Fig. 4. Flow diagram presenting the methodological approach implemented to assess the efficacy 798 

of airborne LiDAR for detailed lithological mapping. 799 
 800 

Fig. 5. Shaded relief DTM of the study area displaying the distinct topographic characteristics of: 801 
(a) alluvium–colluvium, (b) Basal Group, (c) Lefkara Formation and (d) pillow lavas.  802 
 803 

Fig. 6. Minimum and average separability (JM distance) for combinations of the slope (s), 804 
absolute profile curvature (pr), absolute plan curvature (pl), residual roughness (r) and 805 

hypsometric integral (h) variables. 806 
 807 

Fig. 7. Optimal set of (normalised) morphometric variables selected as inputs to the SOM 808 

classification: (a) slope, (b) absolute profile curvature, (c) absolute plan curvature, (d) residual 809 
roughness and (e) hypsometric integral. 810 
 811 

Fig. 8. (a) Lithological map of the study area generated using LiDAR-derived topographic data. 812 
The dashed black box indicates the spatial extent of Fig. 9. (b) SOM-C map depicting 813 

classification uncertainty.  814 

 815 

Fig. 9. Detailed view of the mapping performance for the area shown in Fig. 8. (a) QuickBird 816 

image, (b) lithological map generated using LiDAR-derived topographic data and (c) SOM-C 817 
map. The white dashed line represents the pillow lava–Lefkara Formation contact from the 818 

1:250,000-scale geological map in Fig. 2a. 819 

 820 

 821 



Table 1. Number of pixels, the equivalent area and the proportion of the study area (PS) 

selected for each lithological class for training and validation purposes. 

Lithological class 
Training  Validation 

Pixels Area (m
2
) PS (%)  Pixels Area (m

2
) PS (%) 

Alluvium–colluvium 1712 27,392 0.17  4087 65,392 0.40 

Basal Group 1780 28,480 0.18  3200 51,200 0.32 

Lefkara Formation 2769 44,304 0.27  2451 39,216 0.24 

Pillow lavas 3095 49,520 0.31  3208 51,328 0.32 

 

Table 1



Table 2. Candidate morphometric variables for lithological discrimination. 

Morphometric variable Description 

Optimal moving 

window size 

(pixels) 

Slope (°) Magnitude of the steepest gradient 15 × 15 

Relief (m) Elevation range within a given area 3 × 3 

|Profile curvature| (1/m) 
Absolute value of vertical curvature 

component in aspect direction 
21 × 21 

|Plan curvature| (1/m) 
Absolute value of horizontal curvature 

component in aspect direction 
31 × 31 

Slope roughness (°) Standard deviation of slope 31 × 31 

Residual roughness (m) Standard deviation of residual topography 3 × 3 

Hypsometric integral Elevation distribution within a given area 11 × 11 

 

 

Table 2



Table 3. The relative importance of variables to the separability of lithologies, determined by 

individually removing each variable from the pair-wise JM distance calculations. 

 JM distance 

Variable 

removed 

LF vs. 

PL 

LF vs. 

BG 

PL vs. 

BG 

LF vs. 

AC 

PL vs. 

AC 

BG vs. 

AC 
Min. Mean 

None 1.20 1.22 1.70 2.00 2.00 2.00 1.20 1.69 

Slope 0.27 0.50 0.41 1.92 1.95 1.94 0.27 1.17 

|Profile 

curvature| 
1.17 1.14 1.67 2.00 1.99 2.00 1.14 1.66 

|Plan 

curvature| 
0.81 1.02 1.59 2.00 1.99 2.00 0.81 1.57 

Residual 

roughness 
1.09 1.10 1.67 2.00 1.97 2.00 1.09 1.64 

Hypsometric 

integral 
1.05 1.13 1.65 2.00 1.99 2.00 1.05 1.64 

LF, Lefkara Formation; PL, pillow lavas; BG, Basal Group; AC, alluvium–colluvium. 
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Table 4. Confusion matrix for SOM classification using the optimal set of morphometric 

variables. 

 Validation data  

 
 

Alluvium–

colluvium 

Basal 

Group 

Lefkara 

Formation 

Pillow 

lavas 

Row 

total 

User’s 

accuracy (%) Mapped as 

Alluvium–

colluvium 
 3594 1 30 11 3636 98.8 

Basal Group  0 1614 299 383 2296 70.3 

Lefkara 

Formation 
 2 816 1114 672 2604 42.8 

Pillow lavas  491 769 1008 2142 4410 48.6 

Column total  4087 3200 2451 3208   

Producer’s 

accuracy (%) 
 87.9 50.4 45.4 66.8 

 
 

      

Overall accuracy = 65.4%     

K = 0.53      

 

Table 4
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