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Abstract

Determining the response of sites within the Arctic Circle to long-term climatic change remains an essential  

pre-requisite  for  assessing  the  susceptibility  of  these  regions  to  future  global  warming  and  Arctic  

amplification.  To  date,  existing  records  from  North  East  Russia  have  demonstrated  significant  spatial  

variability across the region during the late Quaternary. Here we present diatom δ18O and δ30Si data from 

Lake  El'gygytgyn,  Russia,  and  suggest  environmental  changes  that  would  have  impacted  across  West 

Beringia from the Last Glacial Maximum to the modern day. In combination with other records, the results  

raise the potential for climatic teleconnections to exist between the region and sites in the North Atlantic. The  

presence of a series of 2-3‰ decreases in δ18Odiatom during both the last glacial and the Holocene indicates the 

sensitivity  of  the  region  to  perturbations  in  the  global  climate  system.  Evidence  of  an  unusually  long 

Holocene thermal maximum from 11.4-7.6 ka BP is followed by a cooling trend through the remainder of the 

Holocene  in  response  to  changes  in  solar  insolation.  This  is  culminated  over  the  last  900  years  by  a  

significant decrease in δ18Odiatom of 2.3‰, which may be related to a strengthening and easterly shift of the 

Aleutian Low in addition to possible changes in precipitation seasonality.
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1 Introduction

Understanding the long-term response and climatic variability of high latitude system becomes critical as the 

vulnerability of these regions to future climate change becomes increasing understood. Whilst considerable  

attention is now focused on marine environments such as the Southern Ocean (e.g., Ragueneau et al., 2002)  

as well as lacustrine sequences from Northern Europe and North America (e.g., Smol et al., 2005), there  

remains  a  scarcity  of  similar  records  from  more  remote  regions  within  the  Arctic  Circle.  Developing 

improved constraints as to the natural climatic and environmental stability of these regions remains essential,  

not only for improving our understanding of their long-term, decadal-centennial scale, palaeoclimatic history 

(e.g.,  Overpeck et  al.,  1997)  but  also for  developing more accurate  climate  models  that  include Arctic  

amplification. In particular, existing attempts to understand the environmental and climatic history of west  

Beringia have been hindered by evidence of significant spatial climatic variability across the region over the  

last glacial and Holocene with conflicting evidence emerging with regards to the teleconnections that exist  

with other parts of the globe (e.g., Kokorowski et al., 2008 a,b).

Lake El'gygytgyn (altitude = 492 m asl) is a cold-monomictic and ultra-oligotrophic high-latitude crater lake 

situated on the Chukchi Peninsula, Russia, at 67.30oN, 172.00oE (Fig. 1). Formed following an impact event 

at 3.6 Ma (Layer, 2000), the lake covers an area of 110 km 2, extends to a maximum depth of 177 m, and is 

fed by 50 streams with a single outflow, the Enmyvaam River, located to the south east of the basin (Nolan 

and Brigham-Grette, 2007). An important feature of the lake is the prolonged annual ice-cover with open-

water conditions today typically lasting from July to October (Nolan et al., 2003). The catchment, 293 km 2, 

is  small  relative  to  the  lake  surface  area  with  vegetation  characterised  by  discontinuous  lichen  and 

herbaceous taxa and permafrost extending down to depths of 100-300 m (Glushkova, 1993; Lozhkin et al.,  

2007). Importantly, there is  strong evidence that  neither Lake El'gygytgyn nor the catchment have been  

glaciated since the lake's formation, with the nearest evidence of glacial activity located c. 40 km to the west 

of the catchment (Glushkova, 2001; Glushkova and Smirnov, 2007). Accordingly, this remote lake is well  

positioned to document past environmental change in the region and further our understanding as to the long-

term natural variability of high-latitude, Arctic, systems.

Existing sediment cores, dating back to 300 ka BP, were collected from Lake El'gygytgyn in 1998, 2000 and 

2003.  Geochemical  and  mineralogical  measurements  on  these  have  provided  an  initial  framework  for 

understanding the palaeoenvironmental history of the site (Brigham-Grette et al., 2007; Nowaczyk et al., 

2007;  Juschus  et  al.  2007).  In  particular,  marked  changes  in  the  lake  biogeochemistry  have  been 

demonstrated over glacial-interglacial cycles in response to the duration of annual ice-cover over the lake 

(Melles et al., 2007). Interglacial conditions, for example, have been associated with a reduced ice-cover,  

increase nutrient mixing and input to the photic zone, and an associated increase in primary productivity and 
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the oxygenation of bottom waters (Melles et al., 2007). Such conditions are believed to have peaked during 

the last interglacial, in agreement with pollen records from the lake which suggest that the Holocene Thermal  

Maximum and MIS 5e were the warmest periods over the core intervals studied to date (Lozhkin et al.,  

2007). In addition to geochemistry other proxy records, including those from inorganic chemistry and clay 

mineralogy, show clear changes over glacial-interglacial cycles, occurring both in response to changes in  

lake/catchment hydrology and atmospheric circulation (Asikainen et al.. 2007; Minyuk et al., 2007). These  

proxy  records  also  show  clear  evidence  of  rapid  short-term  fluctuations,  in  agreement  with  magnetic  

susceptibility measurements which display high frequency changes tentatively linked to Heinrich/Dansgaard-

Oeschger  events  in the  Greenland/North Atlantic  region during the last  glacial  (Nowaczyk et  al.,  2002,  

2007). Most relevant to this study are the observation that these changes appear to have continued from MIS 

2  through  both  the  Younger  Dryas  and  the  Holocene.  Indeed,  whilst  not  widely  discussed,  records  of  

nitrogen, organic carbon, opal concentrations as well as organic δ13C measurements indicate marked changes 

of a similar magnitude during both the Holocene as well as the last glacial (Melles et al., 2007).

Whilst the number of palaeoenvironmental reconstructions covering the time interval from the Last Glacial 

Maximum (LGM) to the modern day will undoubtedly increase in response to further work on core material 

collected at Lake El'gygytgyn, records from the lake currently contrast with the wealth of data available from 

other sites in both East and West Beringia as well as other high latitude sites within the Arctic circle (e.g.,  

Brigham-Grette et al., 2004; Kaufman et al., 2004; Kokorowski et al., 2008a and references within). Isotope  

records, in particular that of δ18O, provide a potentially powerful tool by which to extend existing research 

and to develop additional insights into both local and regional scale environmental and climatic changes  

(e.g., von Grafenstein et al., 1999). Due to the absence of lacustrine carbonates (authigenic or biogenic), thus 

far no  δ18O data has been obtained from the Lake El'gygytgyn sediment record. By generating an oxygen 

isotope record from diatom fossils (δ18Odiatom), which are both abundant and exceptionally well preserved in 

Lake El'gygytgyn, it becomes possible to complement existing and ongoing research on the lake as well as to  

extend palaeoclimate records from elsewhere in West Beringia  that have largely relied upon palynological 

data (e.g., Anderson et al., 2002 Lozhkin et al., 2007). Such a record will ultimately permit comparisons with 

existing  Holocene  δ18Odiatom records  from  Siberia/Alaska,  allowing  issues  of  continentality  (e.g.,  Lake 

El'gygytgyn v Lake Baikal)  and  spatial  variability  in  Beringian  climatology to be  addressed.  A unique 

advantage of Lake El'gygytgyn, compared to other sites containing glacial aged sediments such as Lake  

Baikal, is the excellent preservation of diatom frustules beyond the last deglaciation with no evidence of  

increased dissolution or diagenesis (Fig. 2; Cremer et al., 2005; Cherapanova et al., 2007 ). Accordingly, the 

potential exist to extend records of δ18Odiatom into the last glacial to develop a unique lacustrine insight into 

regional climatic changes during MIS 2, over the last deglaciation and into MIS 1.
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A recent  advance is  the development of a method to analyse  δ30Sidiatom on the same samples as that  for 

δ18Odiatom (Leng and Sloane, 2008) to provide information on the biological community, nutrient input and 

export  production  of  the  lake.  Whilst  measurements  of  δ30Sidiatom have  yet  to  be  fully  utilised  in 

palaeolimnology,  the information from δ30Sidiatom may provide additional context for interpreting records of 

δ18Odiatom as well as itself generating important information with regards to catchment/lake environmental  

changes. Accordingly, records of δ18Odiatom and δ30Sidiatom are presented here from Lake El'gygytgyn for the last 

23,000 years (LGM through to the present  day) to further investigate  both the local  and regional,  West 

Beringian, scale changes that have occurred over this timeframe.

2 Methodology

2.1 Coring Site

A gravity (Lz1029-5) and piston (Lz1029-9) core were taken in July 2003 at core site Lz1029 (Latitude:  

67o39.37'N, Longitude: 172o08.23'E) from the central eastern part of Lake El'gygytgyn at a water depth of  

177 m (Fig. 1). The location of this site is the same as that for core PG1351, cored in 1998 which forms the 

basis of existing work published on Lake El'gygytgyn (see Brigham-Grette et al., 2007). Core chronology for  

Lz1029 is based upon five radiocarbon dates calibrated using CalPal (2007), incorporating a reservoir effect 

of 1.3 ka (unpublished data), using linear interpolation between age control points (Fig. 3). All samples were 

dated at the Leibniz Laboratory for Radiometric Dating and Isotope Research (Kiel,  Germany).  The  14C 

reservoir effect for Lake El'gygytgyn is calculated from three radiocarbon measurements on surface sediment 

material from different cores collected from the lake. Whilst the estimated reservoir age of 1.3 ka is likely to  

be representative of the Holocene, Late Glacial and MIS 3, its accuracy may be less valid for MIS 2 when a  

perennial ice cover could have increased the lake reservoir age (Melles et al., 2007). Whilst this, combined 

with the absence of age constraints between 16.4 ka BP and 4.8 ka BP, limits the ability to chronologically  

relate events in Lake El'gygytgyn to other locations during MIS 2, the sediment record remains an important 

and valid tool for understand the nature of palaeoclimatic and palaeoenvironmental changes in the region  

during this interval.

2.2 Isotope measurements

Continuous 0.5 cm samples from cores Lz1029-5 and Lz1029-9 were prepared for diatom isotope analysis 

using previously published techniques in a series of steps designed to physically and chemically remove non-

diatom material (Morley et al., 2004; Swann et al., 2006). Samples were initially treated with 30% H2O2 to 

disaggregate the material. Following centrifuge washing to removal remaining H2O2, samples were mixed 

with sodium polytungstate (SPT) at 2,500 rpm for 20 minutes using a series of specific gravities from 2.10-

2.25 g/ml to separate diatoms from clays. Following further treatment in 30% H2O2 and 5% HCl to remove 

remaining organic matter and carbonates, samples were sieved using cellulose nitrate membrane filters and 
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conventional stainless steel woven wire mesh sieves with the 5-75 μm fraction retained for analysis. All 

samples were visually checked for diatom purity and species biovolume composition using SEM and x1000 

magnification light microscopy prior to isotope analysis. Sample purity was estimated following the semi-

quantitative approach of Morley et al. (2004) in which the proportion of diatom to non-diatom material is 

calculated  on  30  quadrants  of  a  100  μm by  100  μm grid  graticule  under  light  microscopy  at  x1000 

magnification. Whilst the uppermost sections of cores from Lake El'gygytgyn above the redox boundary are  

likely  characterised  by  incomplete  oxygenation  of  organic  matter  (Melles  et  al.,  2007),  this  does  not  

influence the diatom isotope records as organic matter around the frustules are chemically removed prior to  

analysis.  In  addition visual  analyses  of  the  extracted diatoms confirms that  the  frustules  have not  been  

subject to dissolution or other processes that may alter their isotopic composition (Fig. 2).

Samples were analysed for δ18Odiatom and δ30Sidiatom using a step-wise fluorination technique at NIGL (Leng 

and Sloane, 2008). All 74 purified samples were analysed for δ18Odiatom with a subset of 28 samples also 

analysed for δ30Sidiatom. For each sample 6.5-7 mg of purified diatoms were loaded into nickel reaction vessels 

and outgassed  for  two hours  at  250oC to remove  surficial  water.  Diatom -Si-OH layers,  which contain 

exchangeable oxygen, were stripped using BrF5 at 250oC for six minutes. Oxygen and silicon from the -Si-O-

Si  layer  were  subsequently  dissociated  overnight  using  an  excess  of  reagent  at  550 oC  with  oxygen 

subsequently  converted  to  CO2 following  the  methodology  of  Clayton  and  Mayeda  (1963)  and  silicon 

collected as SiF4. Following extraction, gases were analysed for δ18O and δ30Si using a Finnegan MAT 253. 

Values  were converted to the SMOW or NBS28 scale,  for  δ18O and δ30Si respectively,  using the NIGL 

within-run laboratory diatom standard (BFCmod)  calibrated against  NBS28.  Replicate  analyses  indicate  a 

mean analytical reproducibility (1σ) of 0.34‰ (range = 0.03 to 0.54‰, n = 17) and 0.06‰ (range = 0.01 to 

0.13‰,  n  =  4)  for  δ18Odiatom and  δ30Sidiatom respectively  in  the  sample  material.  Yield  measurements  for 

δ18Odiatom varied from 62% to 74% whilst those for δ30Sidiatom indicated 100% collection of all silicon.

3. Results

Diatoms  represent  the  sole  siliceous  microfossil  within  the  analysed  material  with  the  predominant 

contaminant  comprising  small,  5-10  μm,  sized  clay  particles  which are  of  a  similar  size  to  the  diatom 

frustules. Levels of contamination are minimal throughout the core (mean sample purity as calculated under 

light microscopy is 95.9% [1σ = 1.9%]) with no relationship between changes in sample purity and δ 18Odiatom 

or δ30Sidiatom (Fig. 2, 3). Extracted diatoms across all samples show excellent fossilised preservation with no 

evidence of dissolution or diagenesis (Fig. 2).

From 22.6 ka BP to 20.5 ka BP measurements reveal frequent, c. 1.5-3.0‰, changes in δ18Odiatom with values 

reaching a maxima of +25.1‰ at 21.9 ka BP (Fig. 3). By comparison, changes from 19.0 ka BP to 16.9 ka 
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BP are more gradual, though the range of δ18Odiatom values remains high. From 13.6 ka BP measurements of 

δ18Odiatom increase by 2.1‰ through the deglaciation albeit for a reversal of 0.6‰ at 12.4 ka BP. Through the 

Holocene δ18Odiatom display a long-term decrease of c. 4.0‰ punctuated by, often prolonged, decreases of 1.0-

2.0‰ during the early- and mid-Holocene starting at 10.2 ka BP, 8.1 ka BP, 7.5 ka BP, 5.6 ka BP and 4.6 ka 

BP. After 1.9 ka BP fluctuations of c. 1.0‰ are apparent in the δ18Odiatom record until  0.9 ka BP when a 

progressive decrease in  δ18Odiatom occurs  from +25.5‰ to +23.2‰ in the surface sediments.  Changes in 

δ30Sidiatom vary by 0.46‰ through the analytical interval and can be split into five groups: 1) a progressive  

0.3‰ increase between 22.6-21.9 ka BP and subsequent decrease to +1.2‰ at 17.1 ka BP during the last  

glacial; 2) a period of elevated, +1.2‰, values from 12.5-11.4 ka BP at the end of the last glacial; 3) an  

interval of reduced <+1.0‰ values from 9.3-7.8 ka BP during the early Holocene; 4) oscillations of c. 0.15‰ 

during the mid-Holocene from 7.5-4.3 ka BP; 5) further changes of c. 0.2‰ during the last 1.4 ka. The  

relative diatom species biovolume of the analysed material is dominated throughout by Cyclotella ocellata 

Pantocsek and  Pliocaenicus costatus var.  sibiricus (Skabitchevsky) Flower, Ozornina et Kuzmina (Fig.  3) 

with changes largely following those within the uncleaned sediment material (Cherapanova et al., 2007).

4. Discussion

4.1 Isotope controls

Sections 4.1.1 and 4.1.2 below discuss the current interpretation of  δ18Odiatom and  δ30Sidiatom from lacustrine 

sequences. This is particularly important for δ30Sidiatom with currently only one published down-core record in 

palaeolimnology.

4.1.1 δ  18  O  diatom

Recent  work has increasingly focused on the role  of  isotope vital  effects,  diatom dissolution and silica  

maturation in altering  δ18Odiatom.  Whilst  much remains unknown about these separate processes, evidence 

exists to suggest that none of the above are influential in altering the Lake El'gygytgyn δ18Odiatom record. With 

regards to δ18Odiatom vital effects, although evidence of such a process has been documented in marine diatoms 

(Swann et al., 2007, 2008), evidence from culture, sediment trap and fossilised taxa suggests that such effects  

are  either  non-existent  or  within analytical  error for lacustrine taxa (Binz,  1987;  Brandriss  et  al.,  1998; 

Moschen et al., 2005; Schiff et al., 2009). The potential issue of vital effects in the Lake El'gygytgyn record 

is further eliminated by analysed samples being dominated by only two taxa (Fig.  3). Although there are 

significant correlations between C. ocellata/P. costatus var. sibiricus and δ18Odiatom (r = –0.77/0.76), given the 

similarity between the purified and original, uncleaned, diatom sediment assemblages this likely indicates 

that a similar environmental process is controlling both the isotope and diatom assemblage record rather than 

being evidence of an isotope vital/species effect.  With regards to dissolution, which may lead to isotope  

fractionation, experiments following the removal of the frustule organic coating using H 2O2 have failed to 
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indicate any isotopic alteration in either acidic or neutral pH waters (Schmidt et al., 2001; Moschen et al.,  

2006). With the pH in Lake El'gygytgyn c. 6.5-7 and the analysed diatoms well preserved and showing no 

signs of dissolution or diagenesis (Fig.  2), it appears safe to conclude that the  δ18O signature within the 

diatoms has not been altered by these processes. 

A key assumption in using  δ18Odiatom for palaeoenvironmental reconstructions, is that no isotopic exchange 

occurs  between the  inner,  –Si–O–Si,  and  outer  hydroxyl  layer,  –Si–OH,  during  or  after  sedimentation. 

Observations, however, have indicated that silica maturation during sedimentation/early burial leads to 18O 

from the –Si–OH layer forming isotopically enriched -Si-O-Si bonds (Schmidt et al., 1997, 2001; Brandriss 

et al., 1998; Moschen et al., 2006):

Si–18OH + Si–16OH → Si–18O–Si + H2
16O

(Eq. 1)

The extent to which these changes influences palaeoenvironmental reconstructions from  δ18Odiatom remains 

unknown. In conjunction with other evidence,  a number of studies have documented strong correlations  

between records of  δ18Odiatom and other  δ18O/proxy data that would not be expected were silica maturation 

significantly altering the fossilised  δ18Odiatom record (see summaries in Leng and Barker, 2006; Tyler et al.,  

2008; Swann and Leng, 2009). Consequently, whilst issues of silica maturation may instigate small scale  

variations in δ18Odiatom, evidence primarily points towards δ18Odiatom being safe for use in palaeoenvironmental 

reconstructions (Swann and Leng, 2009). On this basis, a number of studies have successfully used lacustrine 

records of  δ18Odiatom to reconstruct palaeoenvironmental and palaeoclimatic changes from both high (e.g., 

Rosqvist et al., 1999, 2004; Jones et al., 2004) and low latitude localities (Hernández et al 2008; Barker et 

al., 2001, 2007). The former includes a number of studies over the deglaciation/Holocene from both Lake 

Baikal (Morley et al., 2005; Mackay et al., In Prep) and sites in Alaska (e.g., Hu and Shemesh, 2003; Schiff  

et al., 2009). In such studies, the interpretation of  δ18Odiatom is similar to that of biogenic carbonates (e.g., 

ostracods) with the controls dependent on the residence time of the lake and, consequently, whether the lake 

is open or closed (Leng and Marshall, 2004; Leng and Barker, 2006). Whilst uncertainty remains over the  

true relationship between δ18Odiatom and temperature, increasing evidence exists to suggest that the coefficient  

is close to 0.2‰/oC (Brandriss et al., 1998; Moschen et al., 2005).

In order to accurately determine the palaeoenvironmental variables governing changes in δ18Odiatom from Lake 

El'gygtgyn, a modern day calibration is ideally required between the δ18O of precipitation (δp), lake ice, lake 

water (δ18Olake) and δ18Odiatom. In the absence of such work, assumptions must be made as to the controls on 

δ18Odiatom. While δ18O records from large lakes with long residence times are usually interpreted in terms of  

the balance between precipitation/evaporation, here this can be disregarded because there is evidence of only  
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minimal evaporation and changes in the rate of precipitation both today and in the past (Brigham-Grette et  

al.,  2004; Melles et al.,  2007; Nolan and Brigham-Grette,  2007). Similarly the impact of other localised  

processes  in  controlling  δ18Odiatom,  such  as  changes  in  permafrost  melting,  direct  changes  in  lake  water 

temperature and changes in lake level, can also be eliminated. Firstly, whilst permafrost melting may lead to 

large influxes of water, values of c.  −19‰ to −20‰ in the top 3.5 m of the permafrost are similar to lake 

water and so unlikely to significantly alter δ18Odiatom (Schwamborn et al., 2006, 2008; pers. comm. Chapligin). 

Secondly, with modern lake water temperatures of less than 4oC (Nolan and Brigham-Grette,  2007) any 

change in temperature is likely to be less than ±2oC due to the high latitudinal position of Lake El'gygytgyn. 

Such a change would cause δ18Odiatom to vary only marginally outside the limits of analytical reproducibility 

(0.34‰) when using a diatom temperature coefficient of −0.2‰/oC (Brandriss et al., 1998; Moschen et al., 

2005). Finally, whilst the lake level has undergone a c. 11 m decrease since the late Pleistocene in response 

to increased erosion (Glushkova and. Smirnov, 2007), such changes are not excessive given modern day lake 

depths of 170 m. As such, changes in lake level are unlikely to have significantly altered water residence  

time or δ18Odiatom.

Having discounted the above processes in controlling the δ18O record in Lake El'gygytgyn, we suggest that 

the dominant controls on δ18Odiatom are changes in δp. Understanding the isotope meteorology of the region 

around Lake El'gygytgyn is complicated by the presence of multiple possible source regions of precipitation 

and the recycling of precipitation over the continents (Numaguti, 1999; Ichiyanagi et al., 2003; Kurita et al.,  

2003, 2004, 2005; Schwamborn et al., 2006). With levels of precipitation low, it is unlikely that changes in 

the moisture source region or the δ18O of the source have the capacity to cause the large changes observed in 

δ18Odiatom given the volume and long residence time of water within the lake. Instead, the only process which 

has the capability of instigating these shifts in δ18Odiatom are changes in atmospheric temperature at the point of 

condensation (dT). Air temperatures are highly variable in this region ranging in 2002 from −40oC to +26oC 

(Nolan and Brigham-Grette,  2007), although no suitable observational δp data exists to test whether this 

variability is transported to precipitation. If, however, we assume that a high latitude Dansgaard relationship  

(δp/dT) of +0.6‰/oC (Dansgaard, 1964) applies for the region around Lake El'gygytgyn and use a daily 

average NCEP reanalysis record for the region which show temperatures ranging from c. −25oC to c. +10oC 

(Kalnay et al., 1996; Nolan and Brigham-Grette, 2007) then changes in dT can be estimated to result in δp 

variations through the year of 21‰. During glacial intervals it can be expected that intra-annual variations in  

δp will be significantly reduced in response to the colder values of dT during summer months. Whilst these 

calculations are subject to assumptions with regards to the Dansgaard relationship for the region and are  

certainly tempered by the multiple moisture sources that contribute to precipitation in Lake El'gygytgyn, 

such calculations indicate the potential for dT to impact lake water and so δ18Odiatom.
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Further evidence to support the suggestion that changes in δ18Olake and so δ18Odiatom are a function of dT can be 

found by considering the extent to which  δp may have altered in response to changes in dT over the last 

deglaciation.  By  taking  a  modern  day/interglacial  mean  annual  air  temperature  of  10.3oC  (Nolan  and 

Brigham-Grette, 2007) and estimating that mean annual air temperatures for glacials are close to the NCEP 

daily reanalysis minimum of −25oC, long-term inter-decadal/centennial changes in δp due to changes in dT 

can be estimated to vary by c. 9‰ when applying a Dansgaard relationship of +0.6‰/oC. If it is further 

assumed that these δp/dT changes are controlling similar long-term changes in lake water δ18O, values of 

δ18Odiatom can be calculated to vary by c. 6‰ over glacial-interglacial cycles when using a lacustrine diatom-

temperature coefficient of −0.2‰/oC which results in a δ18Odiatom/dT relationship of +0.4‰ (Leng and Barker, 

2006). This calculated δ18Odiatom range of 6‰ over glacial-interglacial cycles is similar in magnitude to that 

observed in  the  Lake  El'gygytgyn δ18Odiatom record  between the  LGM and the  early  Holocene  (Fig.  3), 

supporting our assumption that long-term changes in δ18Odiatom are primarily controlled by dT over both short, 

intra-annual, and more importantly long, decadal-centennial, timescales. However, separating the extent to  

which  a  changes  in  δ18Odiatom reflects  a  change  in  precipitation  seasonality  or  a  long-term  inter-

annual/decadal/centennial  change,  both  of  which  will  alter  the  mean  annual  dT of  precipitation  is 

problematic. For example, any inter-annual/decadal/centennial change in temperature will lead to a change in 

mean annual values of dT and  δp and so alter  δ18Odiatom either with or without any associated changes in 

precipitation seasonality and vice-versa.  Consequently both processes must  be considered together when  

attempting to interpret the δ18Odiatom record form Lake El'gygytgyn.

4.1.2 δ  30  Si  diatom

Three stable isotopes of silicon exist, 28Si, 29Si and 30Si. Whilst isotope measurement are commonly reported 

as  δ30Si (30Si/28Si),  values are occasionally reported as  δ29Si (29Si/28Si) due to analytical  limitations (e.g., 

Cardinal  et  al.,  2003).  The  processes  by  which  diatoms  uptake  Dissolved  Silicic  acid  (DSi)  during  

biomineralisation and deposit silicon within the cell wall are relatively well understood (Leng et al. In Press).  

Research has demonstrated that 28Si is preferentially incorporated into the frustule over 29Si and 30Si with an 

enrichment factor in the open ocean of  −0.6‰ to −1.9‰ (de la Rocha et al., 1997, 2000; Milligan et al.,  

2004;  Varela  et  al.,  2004;  Cardinal  et  al.,  2005;  2007;  Reynolds  et  al.,  2006;  Beucher  et  al.,  2008) 

independent of temperature,  pCO2 and other vital effects (de la Rocha et al., 1997; Milligan et al., 2004). 

With increased silicic acid usage resulting in a progressive increase in both the  δ30Si of DSi (δ30SiDSi) and 

diatoms,  δ30Sidiatom can  be  used  as  a  record  of  silicic  acid  utilisation,  which  in  turn  is  controlled  by 

diatom/siliceous productivity within the photic zone (e.g., de la Rocha et al., 1998).  Under this rationale, 

δ30Sidiatom has been used to investigate the role of the marine biological  pump in regulating atmosphere pCO2 

(e.g., Brzezinski et al., 2002; Reynolds et al., 2008). In addition to productivity, however, consideration is 

also required over changes in the availability and delivery of silicic acid and other nutrient to the photic zone, 
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all of which can trigger a change in the δ30SiDSi substrate and/or the biological demand for silicon without a 

corresponding change in productivity (Reynolds et al., 2006; Pichevin et al 2009).

In contrast to the oceans, measurements of δ30Sidiatom have yet to been widely applied in palaeolimnology. To 

date there is a single published study of very low resolution recording changes in Si cycling of a Kenyan lake  

during the last  glacial (Street-Perrott  et  al.,  2008).  In addition to the above ocean controls on  δ30Sidiatom, 

additional consideration is required over to the extent to which lacustrine  δ30SiDSi and DSi concentrations 

may vary  as  a  function  of  catchment  weathering,  river/aeolian  inputs,  water  residence  time  as  well  as  

changes in the stratification/overturning or other physical characteristics of an individual lake. Whilst the 

individual role of these processes in altering the δ30SiDSi and so δ30Sidiatom will vary in each lake depending on 

the volume/surface area and other characteristics of both the lake and its catchment, δ30Si research over the 

past  decade has  increasingly  focused on  understanding  the  terrestrial  and continental  component  of  the 

global δ30Si cycle (e.g., De La Rocha et al., 2000; Ding et al., 2004; Basile-Doelsch et al 2005; Ziegler et al  

2005a,  b;  Georg  et  al.,  2006,  2007,  2009).  Within  the  context  of  the  ultra-oligotrophic  status  of  Lake 

El'gygytgyn, changes in δ30Sidiatom are likely to be driven by changes in the rate of nutrient supply to the  

photic  zone  with  any  increase/decrease  initiating  a  decrease/increase  in  silicic  acid  utilisation  and  so 

δ30Sidiatom due to the alleviation of nutrient limitation. Changes in nutrient input to the lake are likely to be  

primarily  driven  by  catchment  chemical  weathering,  which  is  predominantly  formed  of  igneous  rock 

including  ignimbrites,  basalts  and tuffs.  Accordingly,  increases/decreases  in  temperature  will  result  in  a  

corresponding change in the availability of nutrients,  including DSi (Struyf et al.,  In Press),  that can be 

transported to the lake either as surface/riverine flow or through the active layer of the permafrost which 

extend to  depths of c.  0.8 m (Schwamborn et al.,  2006). Research has increasingly revealed the role of  

vegetation in both altering both rates of weathering (Drever, 1994) and acting as a major component of the  

terrestrial  silicon cycle  by taking up DSi  from soils  to  form phytoliths,  the  silicon of  which is  rapidly  

recycled back into the soils as DSi during decomposition (Alexandre et al., 1997; Conley, 2002; Derry et al.,  

2005; Street-Perrott and Barker, 2008). Such changes would  also alter the terrestrial δ30Si cycle (e.g., Ding et 

al., 2008a,b; Hodson et al. 2008). Accordingly, over glacial-interglacial cycles it would typically be expected 

for changes in vegetation to have a marked impact on the flux of nutrients and δ30SiDSi to lakes. The long-

term impact of vegetation around Lake El'gygytgyn on δ30SiDSi, however, remain unclear with the catchment 

today marked by discontinuous lichen and herbaceous taxa (Lozhkin et al., 2007). Pollen records from Lake  

El'gygytgyn are distorted by the influx of exotic taxa,  preventing an insight as to past vegetation patterns 

across the catchment (ibid). However with snow and ice covering both the lake/catchment in the modern day  

for all but c. 3 months of the year (Nolan et al., 2003), it is difficult to envisage that the tundra vegetation 

altered sufficiently over the Holocene to significantly alter the  δ30SiDSi flux to the lake. Whilst it remains 

likely that an increase in lichen and herbaceous taxa may have accompanied the shift to warmer conditions 
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following the last deglaciation,  it  is not  possible at  this  time to estimate whether this altered catchment 

nutrient fluxes to the lake beyond the limits of δ30Sidiatom analytical reproducibility.

Further changes in nutrient availability and so δ30Sidiatom may have originated from lake mixing which has the 

potential to deliver nutrients from bottom waters to the photic zone (Melles et al., 2007). Under this scenario  

warmer intervals, marked by prolonged ice-free conditions, would have been characterised by extended lake  

mixing and increased nutrient supply to the photic zone, lowering the relative rate of biogenic silicic acid  

demand and so decreasing δ30Sidiatom. Conversely, reduced mixing combined with a lowering of catchment 

weathering  during  cooler  intervals  would  decrease  nutrient  supply,  increasing  δ30Sidiatom and  the  relative 

biological demand for silicon. Such a mechanisms, however, is only valid for the Holocene with evidence of 

minimal mixing during the last glacial (Melles et al., 2007). Whilst the presence of anoxic bottom waters, as  

inferred from total sulphur measurements, indicates a perennial ice-cover over the lake during the last glacial 

(Melles  et  al.,  2007),  nutrient  supply to  the  photic  zone  must  have occurred to  maintain  the  relatively 

consistent levels of siliceous microfossil productivity inferred from diatom and biogenic silica measurements  

over glacial-interglacial  cycles (Cherapanova et al.,  2007;  Melles et  al.,  2007;  Vogel  et al.,  2008).  With  

permafrost in the catchment extending to depths of 100-300 m (Glushkova, 1993), it is difficult to envisage 

groundwater being the main carrier of nutrients to the lake during the last glacial, particularly if the depth of  

the  active  layer  was  significantly  reduced  from the  modern  day  value  of  0.8  m in  response  to  cooler  

conditions (Schwamborn et al., 2006). However, since the lake itself is underlain by bedrock, the role of  

groundwater fed nutrient can not be completely eliminated. Whilst it has been documented that small ice-free  

moats may have developed around the edge of the lake during summer months during the last glacial (Nolan 

and  Brigham-Grette,  2007),  these  were  restricted  in  number  and  limited  to  the  near-shore  localities.  

Accordingly, although nutrient inputs to the lake may have occurred via these moats, their limited size and 

spatial coverage is unlikely to have significant impacted the nutrient budget at open water sites such as 

Lz1029. Consequently we propose that nutrient and DSi supply to the photic zone, either from catchment  

weathering or aeolian deposition, must have primarily occurred via gravitational transportation and basal 

melting of the ice, permitting measurements of δ30Sidiatom during MIS 2 to be interpreted in terms of nutrient 

utilisation similar to the Holocene. Whilst  this would suggest a lag in MIS 2 between the deposition of  

nutrients on the ice and their delivery to the photic zone, this lag is likely to be on the order of a couple of  

years and should not distort our interpretations given that each analysed 0.5 cm sediment sample represent c.  

100-200 years.

Two additional processes are capable of providing supplementary changes in δ30Sidiatom: 1) the direct impact 

of changes in snow cover on biological productivity; 2) diatom dissolution and the associated release of 

silicon into the water column. Today significant blooms of diatoms occur in Lake El'gygytgyn under the ice 
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(Cremer et al., 2005). It has been shown in other lakes that extensive and prolonged ice-cover, as well as the  

thickness of snow cover, can limit diatom productivity via light limitation (e.g., Granin et al., 2000). For  

example  in  Lake Baikal,  Russia,  between 4% and 11% of  solar  radiation  can  reach  the surface  waters 

through clear ice whilst at snow depths of 5 cm any light penetration is reduced by a factor of 50 (Kelley 

1997). Measurements from Lake El'gygytgyn indicate that a snow cover of up to c. 50 cm can develop in the  

modern day during the winter months before rapidly melting at the beginning of June (Nolan et al., 2003). It  

is therefore reasonable to assume that any increase in the annual duration of thick snow cover over the lake 

during the Holocene, either in response to increased precipitation or decreases in air temperature, would also 

be capable of constraining diatom productivity and so biological silicic acid utilisation in Lake El'gygytgyn 

through  light  limitation,  leading  to  a  reduction  in  δ30Sidiatom.  However,  with  only  minimal  levels  of 

precipitation occurring over the lake during MIS 2 (Brigham-Grette et al., 2004; Melles et al., 2007; Nolan 

and Brigham-Grette, 2007), it is likely that levels of snow accumulation were only sufficient to cause light  

limitation and so alter δ30Sidiatom during the Holocene. With regards to dissolution, it has been demonstrated 

that 28Si is preferentially released during diatom dissolution, potentially altering measured values of δ30Sidiatom 

when dissolution varies by >20% between individual samples (Demarest et al.,  2009). Whilst no diatom 

dissolution index exists for Lake El'gygytgyn, the excellent preservation of diatoms and presence of ultra-

oligotrophic conditions in both the isotope samples and sediment diatom assemblages (Fig. 2; Cremer et al., 

2005; Cherapanova et al., 2007) suggests that inter-sample differences in dissolution are significantly less the 

20% threshold over the analysed interval.

4.2 Palaeoenvironmental reconstructions

4.2.1 Last glacial

High, +1.2 to +1.4‰ values of δ30Sidiatom from 22.6 ka BP to 17.1 ka BP indicate enhanced levels of nutrient 

utilisation during the last glacial in response to low rates of nutrient influx to the photic zone due an absence 

of water column mixing and minima in catchment weathering. Accordingly the increase in δ 30Sidiatom from 

22.6-20.5 ka BP indicates a progressive deterioration in nutrient availability as conditions became gradually 

colder towards the LGM, increasing overall rates of silicic acid utilisation. Large, up to 3‰, variations in  

δ18Odiatom through MIS 2 reflect the presence of significant climatic changes during the last glacial. Such  

fluctuations could either represent centennial scale changes in dT or alterations in precipitation seasonality. If 

the changes in Lake El'gygytgyn are predominantly a function of long-term changes in air temperature rather 

than precipitation seasonality, variations in δ18Odiatom would suggest dT changes of c. 4-8oC (using 0.4‰/oC): 

typically  half  the  temperature  change  experienced  in  Greenland  over  stadials-interstadials  transitions  

(Severinghaus and Brook,  1999;  Johnsen et  al.,  2001;  Grachev and Severinghaus,  2003;  Landais  et  al.,  

2004a,b). At this time insufficient diatom material exists to study the δ30Sidiatom record over this interval and 

so assess the lake's ecosystem response to these events. Similarly, the absence of a high resolution δ18Odiatom 

12/27

384

386

388

390

392

394

396

398

400

402

404

406

408

410

412

414

416

418



Uncorrected copy

record for Lake El'gygytgyn limits investigations into the nature and regional/hemispheric significance of  

these  oscillations.  However,  previous  work  in  Lake  El'gygytgyn  has  tentatively  linked  millennial  scale 

fluctuations in magnetic susceptibility to equivalent events in the Greenland δ18Oice records (Nowaczyk et al., 

2002, 2007) whilst teleconnections with the North Atlantic region have been documented for other regions of 

Arctic Russia during the last glacial (c.f. Voelker and Workshop Participants, 2002; Clement and Peterson, 

2008). It therefore remains possible that climatic changes in the North Atlantic region could be manifested in 

the Lake El'gygytgyn  δ18Odiatom record through expansion/contraction of the polar front and its associated 

impact on dT. Confirmation as to the timing and frequency of the climatic fluctuations in the δ18Odiatom record 

could verify this as well as provide further insight as to the sensitivity of disparate polar regions to global  

climatic processes.

4.2.2 Deglaciation

Increases in δ18Odiatom from 13.7 ka BP, particularly from 12.0 ka BP, reflect a progressive warming of the  

climate which again corresponds with similar changes in the Greenland ice core records (NGRIP Project  

Members, 2004) (Fig 3).  However, the continuing presence of relatively high δ 30Sidiatom until  10.7 ka BP 

indicates that while primary productivity may have increased, overall rates of nutrient influx to the lake must 

have remained limited by the cold conditions, inhibiting both lake mixing and rates of weathering/nutrient 

input. Whether the 0.9‰ decrease in δ18Odiatom from 12.7-12.4 ka BP (δ18Odiatom = +26.6 to +25.7‰) represents 

a climate reversal similar to the Younger Dryas/Greenland Stadial 1 (GS-1) and/or a short lived increase in 

the relative amount of winter precipitation remains to be seen given the brevity of this interval compared to  

the longer, 1.2 ka, duration of the GS-1 event in the Greenland ice cores (Rasmussen et al., 2006). However,  

the presence of a possible GS-1 signal in δ18Odiatom would be in agreement with similar trends observed in 

magnetic susceptibility, clay mineralogy and grain size measurements from Lake El'gygytgyn (Nowaczyk et  

al., 2002; Asikainen et al., 2007), re-emphasising the possible existence of strong climatic teleconnection  

between the region and the North Atlantic during the last glacial. Since measurements of δ18Odiatom in Lake 

El'gygytgyn do not  return to  glacial  equivalent  values,  however,  it  can be assumed that  any change in  

climatic deterioration associated with this event was similar in magnitude to the reversal experienced in East  

Beringia/Alaska (Hu and Shemesh, 2003) as well as elsewhere in North East Siberia (Müller et al 2009) 

rather than the return to near-glacial conditions that occurred in Europe (c.f. von Grafenstein et al., 1999). 

Evidence of a GS-1 event in Lake El'gygytgyn would, however, contrast with a number of other records from 

North  East  Siberia  arguing  for  a  warmer  climate  during  this  interval  (Kokorowski  et  al.,  2008a  and 

references within),  making it  clear that the region may be marked by significant  spatial variability over  

Termination I.

4.2.3 Holocene thermal maximum
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The direction and magnitude of change in δ18Odiatom during the Holocene is significantly different in Lake 

El'gygytgyn  to  the  mass-balanced  corrected  δ18Odiatom record  for  Lake  Baikal,  Russia,  situated  in  the 

continental interior of Central Siberia (Morley et al., 2005; Mackay et al., In Prep), highlighting the different  

climatic controls between these two regions. A period of high, +26‰ to +27‰, δ18Odiatom in Lake El'gygytgyn 

from the end of the deglaciation until 7.6 ka BP suggests a prolonged interval of warmer climatic conditions 

similar to the early Holocene thermal maximums seen elsewhere across the globe including Central Siberia  

and North East  Siberia  (e.g.,  Koshkarova and Koshkarov,  2004;  Müller  et  al  2009),  the  western Arctic 

(Kaufman et al., 2004) and the Lake El'gygytgyn catchment (Schwamborn et al., 2006; Lozhkin et al., 2007). 

Although we believe that evaporation did not play a significant role in controlling long-term changes in 

δ18Odiatom (Section 4.1.1),  it  is  possible  that  increased evaporation during this  warmer  interval  may have 

assisted in driving the upward trend in δ18Odiatom by increasing δ18Olake.

A transition to warmer climatic conditions through this period is also reflected by the shift in  δ30Sidiatom to 

values of <1.0‰. Whilst a relative increase in summer precipitation alone would have increased catchment  

weathering and rates of nutrient delivery to the lake, δ30Sidiatom values of <1.0‰ indicate a marked reduction 

in photic zone nutrient limitation. Given the ultra-oligotrophic status of Lake El'gygytgyn, it is proposed that  

such an alleviation could only arise by maximising nutrient supply to the photic zone. This may have been 

achieved by a marked shift to warmer climatic conditions which, in addition to increasing catchment nutrient  

inputs, would increase water column mixing and so the recycling of bottom water nutrients to the photic 

zone as well as prolonging the annual ice-free conditions which would increase the duration over which 

allochthonous nutrients could have been delivered to the lake. Although palaeoclimatic conditions around the 

lake likely remained favourable following this thermal optima, a progressive long-term decrease in δ18Odiatom 

begins from 7.5 ka BP through to the modern day. In particular, increases in δ30Sidiatom from 7.5-4.3 ka BP 

suggest the emergence of an increasingly unstable climate marked by reductions in nutrient input to the 

photic zone and a return to increasingly silicon limited surface waters.

As with GS-1, evidence of a thermal maximum signal in both the δ18Odiatom and δ30Sidiatom records from Lake 

El'gygytgyn (11.4-7.6 ka BP) contrasts with pollen data from other regional sites arguing against a maximum 

in West Beringia (Lozhkin et al., 1995, 1998; Shilo et al., 2001). In addition, compared to other Arctic sites 

displaying evidence of a thermal maximum (Kaufman et al., 2004), the duration and impact of this warm 

interval at Lake El'gygytgyn appears to have prevailed significantly longer than elsewhere with δ30Sidiatom 

implying relatively warm conditions and high levels of nutrient input until c. 7.6 ka BP. On the one hand the 

long  duration  of  the  Holocene  Thermal  Maximum  in  Lake  El'gygytgyn  may  reflect  that  the  region 

immediately around the lake is unusually sensitive to any environmental perturbation, making the sediment  

record particularly apt  for reconstructing changes across the region.  Alternatively,  these differences may  
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reflect the separate environmental controls on individual proxy records. Whereas changes in δ 18Odiatom and 

δ30Sidiatom are largely a direct function of dT and rates of nutrient utilisation, the pollen and plant macrofossils 

records which form the majority of existing data from the Arctic may be additionally controlled by a series of  

non-climatic processes including dispersal, competition and other local-scale processes. Whilst neither set of 

techniques can be regarded as superior to the other, it is conceivable in this instance that pollen/macrofossil  

records from the region are biased towards reflecting the impact and timing of local-scale catchment changes  

whilst the isotope records better reflect regional changes and their impact on the lake ecosystem. Deriving an 

improved understanding of the different  environmental  controls on individual  techniques is  therefore an  

essential  step  that  is  needed  before  attempts  can  be  made  to  fully  understand  the  divergent 

palaeoenvironmental signals being observed across the Arctic.

4.2.4 Mid-Late Holocene climatic variability

The gradual 1-2‰ decrease in δ18Odiatom from 7.6 ka to c. 1.5 ka BP reflects a progressive cooling signal seen 

across Holocene sediment records from the Northern Hemisphere caused by changes in orbital insolation 

(Berger and Loutre, 1991). Throughout this interval several reversals are apparent in the δ18Odiatom record 

from 7.5-6.8 ka BP, 5.6-5.1 ka BP and at 4.6 ka BP which are marked by similar decreases in δ 30Sidiatom (Fig. 

3). Whilst values of δ30Sidiatom initially increase at the beginning of the 7.5 ka BP event, this may simply 

reflect the recovery of the lake ecosystem from the lower rates of silicic acid utilisation that prevailed during  

the preceding thermal  maximum. The late  Holocene interval  is  further  marked by a series of 0.5-1.0‰ 

δ18Odiatom oscillations from 1.7-0.9 ka BP for which no  δ30Sidiatom data exists but which may be related to 

associated changes over Northern Europe (Seppä et al., 2009). Whilst changes on the order of this magnitude 

from 1.7-0.9 ka BP are not unusual in the context of the rest of the δ18Odiatom record and are close to the 

analytical reproducibility of δ18Odiatom (0.34‰), their frequency, as with the earlier Holocene reversals in the 

diatom isotope records, suggests the operation of some forcing mechanism. 

These  decreases  in  δ18Odiatom may  reflect  a  short-term  change  in  local/regional  atmospheric  circulation 

patterns which led to a marked cooling in the region. Interpreting the changes in δ18Odiatom purely in terms of 

climatic cooling is in disagreement with low values of δ30Sidiatom during these intervals, which suggest high 

rates of nutrient delivery to the photic zone that would be unexpected in a shift to cooler conditions. Since 

the decrease in δ30Sidiatom can only indicate lower rates of silicic acid utilisation caused by an increase of both 

nutrient inputs and water column mixing we suggest that these changes actually reflect a shift to warmer, not  

cooler, climatic conditions. Under this scenario, decreases in  δ18Odiatom are proposed to primarily reflect a 

relative increase in winter/early spring precipitation. This would not only lower the net annual value of δp 

entering Lake El'gygytgyn, due to reduced dT, but also potentially increase the transportation of catchment 

derived nutrients into the lake leading to the observed decrease in δ30Sidiatom.
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A number of studies have documented abrupt climatic changes during the Holocene (Mayewski et al., 2004 

and references  within),  related  to  changes  in  both  solar  variability  (Bond et  al.,  2001;  Hu  et  al  2003; 

Dergachev et al., 2007), volcanic aerosols in the atmosphere (Robock, 2000; Shindell et al., 2003) and ocean 

circulation (Bond et al., 1997, 2001; Denton and Broecker, 2008). However, significant debate exists as to 

the exact timing and spatial variability of these events and the extent to which these intervals are controlled  

by the aforementioned processes (see Bard and Frank (2006), Wanner et al., (2008) and references within  

both manuscripts). In the absence of a higher-resolution record, additional 14C dates and improved constraints 

on  the  14C reservoir  effect  in  Lake  El'gygytgyn,  the  nature  of  these  fluctuations  with  regards  to  their  

regularity,  duration and timing can not  be conclusively established or  related to  similar  events  in other  

terrestrial/marine sequences. However, the observed transitions in the δ18Odiatom and δ30Sidiatom records could, 

for example, be associated with variations in atmospheric circulation patterns such as short-term migrations 

of the polar front.  Regardless of the mechanism, this section  illustrates the benefits gained by interpreting 

δ30Sidiatom in conjunction with δ18Odiatom in lacustrine systems. 

4.2.5 Last 1,000 years

The overall decrease in δ18Odiatom from 0.9 ka BP through to the modern day is in marked contrast to the rest  

of the Holocene interval implying, at face value, a return to glacial equivalent conditions. Whilst a small, up  

to c. 1oC, decrease in temperature has occurred across the Northern Hemisphere from c. 0.9-0.4 ka BP and 

from 2.0 ka BP in the Arctic (Jones and Mann, 2004; Moberg et al., 2005; Kaufman et al., 2009), such  

change are not consistent with the 2.3‰ decrease here which is equivalent to a reduction of c. 6oC when 

assuming the isotope variation is purely a dT dependent function. In particular, the potential “cooling” trend 

indicated by changes in  δ18Odiatom over  this  interval  contrast  markedly with the  warming trend observed 

elsewhere at other sites in the Northern Hemisphere during the last c. 200 years (e.g., Mann, 2007; Kaufman 

et al., 2009). Large and variable changes in δ30Sidiatom from 1.4 ka BP onwards suggests the decoupling of the 

δ18Odiatom and  δ30Sidiatom environmental  signals  and  the  emergence  of  a  dynamic  ecosystem  marked  by 

pronounced changes in ice cover/duration and nutrient delivery to the photic zone. As such, interpretation of  

the δ18Odiatom decrease can not be aided by the δ30Sidiatom data. Increased permafrost melting is unlikely to 

significantly alter lake water δ18Odiatom given that upper permafrost isotope values are similar to that of lake 

water (Schwamborn et al., 2006, 2008). However, it is conceivable that melting of deeper (>3 m) permafrost,  

which has  a  slightly lower  δ18O values  of  −21‰ to  −20‰, may be making minor  contributions  to  the 

decreases in δ18Odiatom. In conjunction with cooling trends observed at other sites in North East Russia (Popp 

et al., 2006) and the Arctic Circle (Bjune et al., 2009), we propose that the region around Lake El'gygytgyn 

has undergone a significant cooling over the past millennia, for example in response to a strengthening and 

easterly  shift  of  the  Aleutian  Low (Mock et  al,  1998).  Understanding  why this  apparent  cooling  trend 
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continues through to the modern day, δ18Odiatom decreases by 0.5‰ during the last 200 years, is problematic. 

Although a similar shift in the Aleutian Low, bringing cooler conditions to West Beringia, has been invoked 

to explain 20th Century changes in  δ18Odiatom from a lake from Southern Alaska (Schiff et al., 2009),  both 

satellite observations and NCEP reanalysis data suggests a marked increase in mean annual  temperature  

around Lake El'gygytgyn in recent decades (Comiso, 2003; Nolan and Brigham-Grette, 2007). Whilst NCEP 

reanalysis suggests that this trend is caused by warmer winters over the last 15 years, this is disputed by  

satellite observations that reveal a cooling signal in winter months from 1981-2001 with warmer trends only 

prevailing from spring-autumn (ibid).  Accordingly the continuing decrease in δ18Odiatom in the uppermost 

samples from Lake El'gygytgyn may be associated with a relative change in precipitation seasonality toward 

the winter months. Such a mechanism may have altered δ18Olake and so δ18Odiatom sufficiently to counteract any 

mean annual increase in temperatures over the last 200 years. Deriving a better understand of these and other  

“irregularities” in the Arctic palaeoclimate record is likely essential for furthering our understanding as to the  

future response of these regions to a globally warming climate.

5. Conclusions

Results here provide further insights into the variability of palaeoclimatic events across Beringia indicating 

that the region around Lake El'gygytgyn has undergone significant climatic and environmental changes both 

during the last glacial and the Holocene. By combining measurements of δ18Odiatom and δ30Sidiatom it has proven 

possible to extract a more detailed perspective into both regional climatic events as well as the internal  

response of the lake and its ecosystem to these changes. Such records, as demonstrated when interpreting the  

reversals that characterise the mid-late Holocene provide a further means of separating the different signals  

that  can  alter  records  of  δ18O.  Without  this,  changes  in  δ18Odiatom through  this  section  may  have  been 

misinterpreted in terms of dT rather than changes in precipitation seasonality. Whilst there are currently no 

other laboratories analysing δ18Odiatom and δ30Sidiatom on the same sample, the development of new δ18Odiatom and 

δ30Sidiatom techniques capable of analysing small, c. 0.5-1.5 mg, samples (e.g., Lücke et al., 2005; Reynolds et 

al., 2008) raise the potential for future diatom isotope lacustrine studies to routinely obtain both  δ18O and 

δ30Si records.

Observations of large changes in δ18Odiatom of up to 2-3‰ through both MIS 2 and the Holocene, combined 

with evidence of a marked cooling trend over the last 900 years, highlights the sensitivity of the sediment 

record to environmental change and suggest evidence of possible teleconnections between the North Atlantic  

region and West Beringia. Without a higher resolution diatom isotope record and improved chronological  

constraints,  it  is  not  possible  to  fully  link  these  changes  with  existing  hemispheric  or  global  records. 

However, with evidence of potential spatial variability between Lake El'gygytgyn and other sites across West 

Beringia and the Arctic, there is a need for further research in the region in order for these findings to be  
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integrated into climate  predictions  and models.  Recent  drilling of  Lake El'gygytgyn has  resulted in  the 

collection of cores to depths of 312 m below the lake floor, enabling future investigations to study the long-

term, glacial-interglacial, environmental changes back to the date of the lake's formation at c. 3.6 Ma. By  

combining diatom isotope measurements with other proxy records, it is expected that further insights will be 

achieved with regards to understanding the palaeoclimatic and palaeoenvironmental history of this region.
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Figures

Figure 1: Location of Lake El'gygytgyn, Russia, and coring site Lz1209.

Figure 2: Light microscopy (2.9 ka BP) (A) and SEM (17.0 ka BP) (B) images of cleaned diatom material 

from Lake El'gygytgyn showing the excellent preservation of the diatoms and the absence of any significant 

contamination.

Figure  3: Changes in δ30Sidiatom and δ18Odiatom in Lake El'gygytgyn with Greenland, NGRIP, δ18Oice (NGRIP 

Project Members 2004), diatom species biovolumes, diatom sample purity in the analysed material and 14C 

age  model  for  site  Lz1029.  Grey  line  for  δ18Oice indicates  the  original  NGRIP  data 

(http://www.glaciology.gfy.ku.dk/data/GICC05_NGRIP_GRIP_20y_27nov2006.txt),  black  line  is  a  Local 
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Polynomial Regression (Loess) used to predict comparable values of δ18Oice for the δ18Odiatom data using a 

smoothing window to reflect the mean temporal resolution of the Lake El'gygytgyn samples. Age model uses  

a  linear  interpolation  between  calibrated  14C  dates  (plotted)  that  incorporate  a  1.3  ka  reservoir  effect 

correction. HTM on zonation indicates duration of Holocene Thermal Maximum in Lake El'gygytgyn. GS-1 

indicates the short period of climatic cooling in Lake El'gygytgyn that occurs during the GS-1 event in the 

Greenland ice core record.

Tables

Table 1: Radiocarbon ages for site Lz1029. Errors are 1σ.

Depth 
(cm)

Uncalibrated 14C 
date (yr BP)

Calibrated 14C date with 1.3 ka 
reservoir effect (yr BP)

Kiel Laboratory sample no.

5.75 3235 ± 40 1888 ± 43 KIA24666

17.25 5521 ± 45 4753 ± 83 KIA24667

51.75 14800 ± 110 16435 ± 428 KIA24668

59.75 15140 ± 100 17060 ± 205 KIA24669

83.25 22670 ± 170 25512 ± 366 KIA24670

Supplementary Data

Supplementary  table  1:  δ18Odiatom and  δ30Sidiatom from  Lake  El'gygytgyn  core   Lz1029  (attached  file: 

“lz1029_diatom_isotopes.xls”).
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