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Abstract 

 
This paper reviews historical changes in the total phosphorus (TP) inputs to Loch 

Leven, Scotland, UK.  Data derived from palaeolimnological records suggest  that 

inputs in the early 1900s were about 6 t TP y
-1 

(0.45 g TP m
-2 

y
-1

). By 1985, this had 

risen to about 20 t TP y
-1 

(1.5 g TP m
-2 

y
-1

) due to increases in runoff from agricultural 

land and discharges from point sources. By the late 1970s, increased TP inputs were 

causing serious degradation of lake water quality. Most noticeably, there had been an 

increase in cyanobacterial blooms. A catchment management plan was implemented 

in the early 1990s. This resulted in a 60% reduction in the annual TP input between 

1985 (20 t TP y
-1

/1.5 g TP m
-2  

y
-1

) and 1995 (8 t TP y
-1

/0.6 g TP m
-2  

y
-1

). The main 

reduction was associated with better control of point source discharges, but attempts 

were also made to reduce inputs from diffuse sources. The reduction in external TP 

loading to the lake led to a marked decline in TP retention by the lake each year. 



3  

Introduction 

 
External nutrient loading has long been recognised as one the most important factors 

controlling the productivity or trophic state of a lake (Vollenweider, 1968; Dillon & 

Rigler, 1974; Jeppesen et al., 2005). Under natural conditions, nutrient inputs to lakes 

are generally low and cause few water quality problems. However, anthropogenic 

activity within the catchment can increase nutrient inputs to waterbodies to a level that 

degrades water quality (Gulati & Van Donk, 2002) and promotes troublesome, and 

sometimes toxic, cyanobacterial blooms (Codd, 1995; Schindler, 2006; Leigh et al., 

2010). This process is known as eutrophication. Such activities include fertiliser 

applications to farmland, animal husbandry, population increases and industrial 

development (Harper, 1992; Jeppesen et al., 2007). 

 
Eutrophication is the most widespread water-quality problem in many parts of the 

world (Carpenter et al., 1998) and dealing with it can be costly. For example, Pretty et 

al.  (2003)  estimated  that  responding to  eutrophication problems  in  England  and 

Wales, alone, cost c. USD 89M y
-1

, with associated social and ecological damage 

estimated to be a further USD 121M - 232M y
-1

. In addition to these short-term costs, 

there are also enormous additional costs associated with the restoration of lakes that 

have undergone cultural eutrophication to achieve the “good” or “high” ecological 

status required by the EU Water Framework Directive (European Parliament, 2000). 

For this reason, it is important that the most cost effective solutions to lake 

eutrophication problems are used and these need to be derived from the results of 

well-documented, previous, restoration projects (Sondergaard & Jepessen, 2007 ). 

 
Loch Leven (Scotland, UK) is a good example of a large, shallow lake with a long, 

and well documented, history of water quality problems caused by anthropogenic 

eutrophication. The most noticeable symptom of these problems was an increase in 

the frequency of cyanobacterial blooms from 1963 onwards (Morgan, 1974; Holden 

& Caines, 1974). By the mid 1980s, these blooms had become so serious that they 

threatened the high conservation, recreational and economic value of the lake (May & 

Spears, this volume a). As early as the 1970s, it was broadly recognised that this 

degradation in water quality was closely related to increases in nutrient-laden 

agricultural runoff  and  elevated levels of  discharges from waste water treatment 

works (WWTWs) and industrial sources (Holden & Caines, 1974). 

 
By the 1980s, it was generally believed that phosphorus (P) was the main nutrient 

limiting phytoplankton production and biomass accumulation in most shallow lakes 

(e.g. Schindler, 1977). Long term water quality records from Loch Leven were 

examined and these showed a close, positive relationship between algal abundance 

(expressed as chlorophyll a concentration) and total P (TP) availability (Figure 1). It 

was, therefore, concluded that reducing TP inputs to the lake would improve water 

quality and this became the focus of a range of catchment management activities 

undertaken in the late 1980s and early 1990s (LLCMP, 1999). 

 
Increased TP input associated with anthropogenic development within the catchment 

seemed to be the main cause of the eutrophication problems at Loch Leven. Initial 

estimates suggested that, between 1967 and 1976, the external TP input to the lake 

ranged between 7 and 17 t y
-1 

(0.53 – 1.28 g m
-2  

y
-1

), with up to 70% of that input 

coming from a single industrial source (Holden & Caines, 1974; Holden et al., 1975; 
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Caines & Harriman, 1976). By 1985, the overall TP input had risen to about 20 t y
-1 

(1.5 g m
-2  

y
-1

), 57% of which could be attributed to point source discharges from 

WWTWs and industry (Bailey-Watts & Kirika, 1987; Bailey-Watts et al., 1987). 

 
Between 1985 and 1995, controls imposed on industrial discharges from a local 

woollen mill (D’Arcy, 1991) and improvements in local sewage treatment facilities 

(Bailey-Watts & Kirika, 1996, 1999) reduced the TP input to the lake from point 

sources by about 70% (Bailey-Watts & Kirika, 1996, 1999). However, a 53% fall in 

TP transported by runoff between 1985 and 1995 also reduced the overall TP load 

(Bailey-Watts & Kirika, 1999). At the end of this period, the external TP load to the 

lake was estimated to be about 8 t y
-1 

(0.6 g m
-2 

y
-1

). It should be noted, however, that 

the reduction in runoff may have been caused by inter-annual variation in rainfall, 

which was about 30% lower in 1995 than in 1985, rather than changes in catchment 

management activities (Bailey-Watts & Kirika, 1996, 1999). 

 
Management activities aimed at reducing the TP input to the lake continued beyond 

1995 as a part of a long term strategy for its restoration (LLCMP, 1999). Although at 

a much lower level than before, and focusing on reducing TP losses from diffuse 

sources rather than point sources, these activities aimed to provide a sustainable future 

for the lake. Most activities were focused on one particular feeder stream, the Pow 

Burn, and its catchment (Figure 2). Although only accounting for about 10% of the 

lake’s catchment, this stream had been shown to be the source of about 30% of the 

total river-borne P entering the lake during 1985 (Bailey-Watts & Kirika, 1987). 

Fields within this sub-catchment had also been identified as being at high risk of soil 

erosion (Frost, 1994). 

 
In-field  land  management techniques were  introduced to  reduce  the  risk  of  soil 

erosion at source within the Pow Burn catchment and a series of grass or grass/tree 

buffer strips up to 20 m wide were installed along the banks of this inflow and its 

feeder streams to intercept eroded material and prevent it from entering the 

watercourses (Castle et al., 1999). Although there is little evidence that these buffer 

strips significantly reduced P runoff from this area under ‘normal’ conditions, Vinten 

et al. (2004) concluded that they may have been at least partially effective during high 

runoff events. In addition to these specific management activities, local farmers were 

encouraged to control livestock grazing, fertiliser usage, and slurry/manure spreading 

across the whole of the catchment (Castle et al., 1999). 

 
The main aim of this paper is to review recent historical changes in the external TP 

input to Loch Leven, using data compiled from published records for the period 1965 

to 1995 and new data from 2005, and compare them to ‘baseline’ data derived from 

palaeolimnological records. Changes in the annual TP balance of the lake between 

1975 and 2005 are explored and the effectiveness of catchment management measures 

at  reducing  the  TP  input  to  the  lake  is  considered.  This  paper  also  provides 

background information and  context  for  the  series  of  papers  that  follow,  which 

describe the ecological response of the lake to these historical changes in nutrient 

conditions (Carss et al., this volume; Carvalho et al., this volume; Dudley et al., this 

volume; Elliott & Defew, this volume; Gunn et al., this volume; May & Spears, this 

volume b; Spears et al., this volume; Winfield et al., this volume;). 

 
Site description 
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Loch Leven is a shallow lake situated in the lowlands of Scotland, UK. The structure 

and physical environment of the lake are described in detail by Smith (1974). In 

summary, the lake lies at a latitude of 56°10’N, a longitude of 3°30’W and an altitude 

of 107 m.a.o.d. It has a surface area of 13.3 km
2
, and mean and maximum depths of 

3.9 m and 25.5 m, respectively (Kirby, 1971). 
 

The catchment of the lake (Figure 2) covers an area of about 145 km
2
, which rises to 

an altitude of 482 m.a.o.d. About two-thirds of the catchment is drained by four main 

rivers  (North  Queich,  South  Queich,  Gairney  Water  and  Pow  Burn),  and  the 

remainder is drained by several minor inflows and some small areas of land along the 

shoreline that drain directly into the lake (Figure 2). The catchment is mainly rural 

and intensively farmed, with about 80% being used for agricultural production 

(LLCMP, 1999). Currently, the land use in this area is dominated by mixed farmland 

with the best land being used for high-value potato and vegetable crops, cereals and 

oilseed rape (Castle et al., 1999). There is some livestock rearing, but this is mainly 

restricted to the more upland areas, which tend to be further away from the lake 

(LLCMP, 1999). A further 11% of the catchment is woodland and about 2% is used 

for habitation. High levels of P-laden runoff enter the lake from areas of intensive 

agriculture within the catchment. 

 
Population density in this area is low, with only about 11,000 people living within the 

catchment (Frost, 1996). About 60% of these live in the towns of Kinross, Milnathort 

and Kinnesswood (Perth & Kinross Council, 2004), which are served by mains 

sewerage networks that are connected to WWTWs. However, it is estimated that 

about 650 households in the more remote parts of the catchment rely upon private 

sewage treatment systems, such as septic tank systems, for managing their domestic 

waste (Dudley & May, 2007). In the past, high levels of P have entered the lake in the 

form of WWTW effluent (Bailey-Watts & Kirika, 1999) and septic tanks discharges 

(Frost, 1996). 

 
Although there is little industry within the catchment, there have been one or more 

woollen mills on the banks of one of the South Queich since 1840 (Munro, 1994). 

These mills have discharged large quantities of P-laden effluent into the lake in the 

past, but the introduction and enforcement of strict discharge limits in the late 1980s 

reduced TP discharges from the one remaining mill from about 6 t TP y
-1 

(0.45 g TP 

m
-2  

y
-1

) in 1985 to about 0.4 t TP y
-1  

(0.03 g TP m
-2  

y
-1

) by 1988 (D’Arcy, 1991; 

D’Arcy et al., 2006). More recently, processing methods at the mill have changed and 

there is no longer any discharge of TP to the lake from this source (D’Arcy, 1991). 

 
Methods 

 
Historical TP loads, 1905 – 1965 

 
Inputs of TP to the lake for the period 1905 to 1965 were derived from 

palaeolimnological records,  because  no  measured  values  were  available  for  this 

period. This was achieved by, first, inferring in-lake TP concentrations from the 

diatom assemblages in a 90 cm sediment core (LEVE11) that was taken with a mini- 

Mackereth corer (Mackereth, 1969) on 5-5-1999. The core was collected at a water 

depth of 4 m near to the Reed Bower site and extruded at 1 cm intervals. 
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The core was radiometrically dated using standard gamma assay procedures (Appleby 

et al., 1986; Appleby et al., 1992) and the chronology was calculated based on 
210

Pb 

using the constant rate of supply model (Appleby & Oldfield, 1978).   Sediment 

accumulation rates of 0.12-0.15 cm yr
-1  

were estimated for this core for the period 

~1930-1970, and a rate of 0.12 cm yr
-1 

was assumed for the period prior to 1930. The 

errors associated with the dating were relatively small, with errors of ±5-10 years for 

the period 1950-1970, and ±10-14 years for the period 1930-1950. Sixteen sub- 

samples were prepared and analysed for diatoms using standard procedures (Battarbee 

et al., 2001). 

 
The reconstruction of diatom-inferred TP (DI-TP) was produced using a northwest 

European training set of 152 relatively small, shallow lakes (< 10 m maximum depth) 

with a median value for the data of 104 µg TP l
-1  

and a root mean squared error of 

prediction  (RMSEP)  of  0·22 log10   µg  TP  l
-1   

for  the  weighted  averaging  model 

(Bennion et al., 1996; Bennion et al., 2004). The reconstructions were implemented in 

C2 (Juggins, 2003), following taxonomic harmonization between the training set and 

the fossil data. 

 
The DI-TP values were used to back-calculate the corresponding TP load to the lake 

using the equation of Dillon & Rigler (1974) and annual flushing rates calculated 

from daily outflow records (Sargent & Ledger, 1992; Loch Leven Trustees, pers. 

comm.). The resultant annual TP loading values were averaged over five 10-year 

periods, i.e. 1900-1909, 1910-1919, 1930-1939, 1950-1959 and 1960-1969, to take 

account of uncertainties in the core chronology. Each derived value was assigned to 

the 5
th 

year of each decade, i.e. 1905, 1915, 1935, 1955 and 1965. 

 
TP load for 2005 

 
The TP load to Loch Leven in 2005 was estimated from measured in-stream nutrient 

concentrations and measured or derived flows determined for each of the 12 major 

inflows and the outflow at 8-day intervals between 18 January 2005 and 17 January 

2006 (Figure 2). Water samples were collected with 250 ml plastic sample bottles that 

had been pre-washed in Decon 90®, rinsed with distilled water and then rinsed again 

with stream water prior to sample collection. 

 
Duplicate stream water samples were collected at each site by submerging the sample 

bottles to about 20 cm below the water surface. Samples were analysed for TP content 

using the methods of Murphy & Riley (1962), as modified by Eisenreich et al. (1975), 

on samples that had been subjected to an acid hydrolysis reaction prior to colorimetric 

analysis. This was achieved by mixing the sample with a solution of sulphuric acid 

(H2SO4) and potassium persulfate (K2S2O8) and then autoclaving at 121°C for 30 

minutes. The intensity of colour formed was quantified by measuring absorbance with 

a Philips PU8620 Series UV/VIS/NIR single beam spectrophotometer, using a 4 cm 

flow cell and a wavelength of 882 nm. The concentration of TP within each sample 

was determined from this value using a linear calibration equation generated from the 

measured absorbance values of known TP standards. All analyses were performed in 

triplicate to ensure accuracy and quality of the results. The TP detection limit was 

estimated to be 2 μg l
-1

. 
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Flow data from continuous recording devices located on the Pow Burn (Pb), South 

Queich (Sc) and North Queich (Ne) were provided by the Scottish Environment 

Protection Agency (SEPA). This information was supplemented by water height 

measurements recorded from gauging boards on the smaller streams, i.e. Camel Burn 

(Cc), Gairney Water (Gb) and the Hatton Burn (Nh), on each sampling date. Stream 

flows were estimated from these water height measurements using ratings curves that 

had been constructed from a range of measured in-stream flows across known gauge 

heights (Defew, 2008). 

 
Two small streams flowing into the lake, i.e. Ury Burn and Kinnesswood Burn, were 

not  included  in  the  field  survey.  Phosphorus  concentrations  at  these  sites  were 

assumed to be similar to those of the nearest sampled sub-catchment, i.e. the North 

Queich and the Pow Burn, respectively. Stream flow at these un-gauged sites was 

assumed to be directly proportional to the measured stream flows at the nearby North 

Queich and the Pow Burn in terms of relative catchment area, because Bailey-Watts 

and Kirika (1987a,b) had previously found strong correlations (r = 0.97, TP < 0.05) 

between mean discharge and drainage area at these sites. This proportional method 

was also used to account for additional stream flow downstream of sampling sites that 

were not close to the confluence of the stream with the lake, and for water draining 

directly into the lake from areas outside the sampled sub-catchments. 

 
The  annual TP  load  to  the  lake  from each  inflow or  area  of  direct runoff  was 

calculated using the method of Stevens & Smith (1978), as follows: 

 

⎛   n ⎞
 

TotalLoad = K ⎜ ∑ (CcQc )⎜ 
⎝ i =1 ⎠ 

 
Where: 

 

 

K = conversion factor to convert from time period of record to annual 

value 

n = number of samples. 

Cc = estimate of TP concentration from continuous stream flow value 

Qc = measured or estimated flow (m
3 
s

-1
) 

 

The estimated TP loads were corrected statistically following the method of Ferguson 

(1986) and the final values were summed to give an overall annual TP load to the lake 

from its catchment. Further details of these methods are given by Defew (2008). 

 
As P loads to the lake also include inputs from non-catchment sources such as excreta 

from over-wintering geese and rain falling directly onto the surface of the lake, these 

were  also  estimated.  Phosphorus  inputs  from  geese  were  calculated  from  data 

provided by Scottish Natural Heritage which suggested that, on average, 12,656 pink- 

footed geese per day roosted on the lake from January to March and between 

September and December, 2005. Assuming that these geese were feeding, primarily, 

on grass, the input per goose was estimated to be c. 172 mg TP d
-1 

(Hancock, 1982). 

Direct inputs from rainfall were calculated from the total amount of rain falling onto 

the lake surface each year (data provided by Kinross Estates) and the estimated TP 

content of rain in this area, i.e. c. 25 mg TP m
-3 

y
-1 

(Bailey-Watts et al., 1987). 
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Phosphorus retention rates 

 
Annual TP retention rates for Loch Leven were calculated at ten-yearly intervals for 

the years for which detailed TP loading data were available, i.e. 1975, 1985, 1995 and 

2005, using a mass balance approach. This involved calculating the annual discharge 

of TP from the lake for each year from the TP concentrations measured at or near the 

outflow at  roughly weekly intervals (Caines &  Harriman, 1976; Bailey-Watts & 

Kirika, 1987, 1996, 1999; Bailey-Watts et al., 1987; this study) and the corresponding 

rates of hydraulic discharge (data provided by the Loch Leven Trustees). In outline, 

discharges of TP from the outflow on each sampling occasion (kg day
-1

) were 

estimated as the product of the corresponding concentration and flow values outlined 

above. The average of these daily values was then multiplied by 365 to estimate the 

annual discharge of TP from the lake in each year. The TP retention coefficient for the 

lake was then calculated by subtracting the annual TP discharge value from the 

corresponding annual TP loading value for each year, dividing the result by the annual 

TP loading and then expressing the result as a percentage. 

 
Results 

 
The diatom inferred TP concentration (DI-TP) in Loch Leven was relatively stable for 

the period 1905-1965 at ~65-75 µg TP l
-1

. The DI-TP values for the uppermost part of 

the  core  were  in  very  good  agreement  with  the  measured  3-year  mean  TP 

concentration of the lake for 1997-1999 suggesting that the reconstructions are likely 

to be reliable. Furthermore, comparison of DI-TP values from a more recent core with 

measured annual mean TP concentrations for the period 1969-2005 shows that the DI- 

TP reconstruction agrees well with the time series of measured values in terms of both 

the overall trend and the actual TP values (Bennion et al., unpublished). 

 
The annual TP inputs to Loch Leven between 1905 and 1965, as estimated from the 

palaeolimnological record, are shown in Figure 3. Although the data suggest that the 

TP load was relatively stable over this period, i.e. about 6 t y
-1 

(0.45 g m
-2

), it should 

be noted that this apparent stability may be an artefact generated by the decadal 

averaging method applied to the palaeolimnological data. 

 
Measured data for the period between 1965 and 1995 showed that the annual TP load 

to the lake varied significantly over that period (Figure 3), ranging from about 7.5 t y
-1 

(0.56 g m
-2 

y
-1

) in the 1970s to about 20.5 t y
-1 

(1.54 g m
-2 

y
-1

) by 1985, then falling to 

about 8 t y
-1 

(0.6 g m
-2 

y
-1

) by 1995. 

 
The most recent loading survey suggested that the TP load to the lake in 2005 was 

about 8.2 t y
-1 

(0.62 g m
-2 

y
-1

) (Figure 3), with less than 6% of the external load being 

attributable to inputs from over-wintering geese and less than 5% being accounted for 

by rain falling directly onto the surface of the lake. This overall value was only about 

2 t y
-1 

(0.15 g m
-2 

y
-1

) greater than the average historical load that had been estimated 

for 1905 to 1965 and was, essentially, the same as that measured in 1995. 

 
Changes  in  the  calculated  annual  TP  balance  of  the  lake  at  10-yearly  intervals 

between 1975 and 2005 are shown in Figure 4. Varying proportions of the TP entering 

the lake were retained in all of the years examined. In 1975, 44% of the external TP 

input (3 t y
-1

/0.23 g m
-2  

y
-1

) was retained. By 1985, this had risen to 61% (12.5 t y
-
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1
/0.94 g m

-2  
y

-1
) of the TP input. Once external inputs from the catchment had been 

reduced by about 60%, TP retention rates fell dramatically to 12% (1 t y
-1

/0.08 g 

m
-2 

y
-1

) in 1995 and 15% (1.25 t y
-1

/0.09 g m
-2 

y
-1

) in 2005. In contrast, however, the 

actual amount of TP discharged via the outflow was relatively constant each year, i.e. 

1975: 4 t y
-1 

(0.3 g m
-2 

y
-1

); 1985: 8 t y
-1 

(0.6 g m
-2 

y
-1

); 1995: 7 t y
-1 

(0.53 g m
-2 

y
-1

); 

2005: 7 t y
-1 

(0.53 g m
-2 

y
-1

). 

 
Discussion 

 
The survey data from the studies reviewed above, and the additional data presented 

from this study, show that the TP load to Loch Leven increased from about 6 t y
-1 

(0.45 g m
-2 

y
-1

) to about 20 t y
-1 

(1.5 g m
-2 

y
-1

)  over the main period of enrichment. 

When catchment management measures were introduced in the late 1980s and early 

1990s, this external load fell by about 12 t P y
-1  

(0.9 g P m
-2  

y
-1

), or 60%. This 

reduction comprised about 8.5 t P y
-1 

(0.64 g P m
-2 

y
-1

) from point sources and about 

3.5 t P y
-1 

(0.26 g P m
-2 

y
-1

) from diffuse sources, although the latter is believed to be 

better explained by the lower rainfall in 1995 compared to 1985 (Bailey-Watts & 

Kirika, 1999) than by any improvements in catchment management. Since 1995, strict 

controls have continued to be enforced within this P sensitive catchment and, in 2005, 

P inputs to the lake were still low (i.e. 8 t y
-1

/0.6 g m
-2 

y
-1

). This value is lower than 

the target value of 10 t y
-1  

(0.75 g m
-2  

y
-1

) set by the catchment management group 

(LLCMP, 1999) and seems to be approaching that estimated for the early 1900s (i.e. 

6 t y
-1

/0.45 g m
-2  

y
-1

). The level of reduction of P input to Loch Leven is similar to 

that of other lakes that have undergone nutrient input reductions as part of lake 

restoration  strategies.  These  include  a  50%  reduction  in  P  load  to  Muggelsee, 

Germany (Kohler et al., 2005) and a 55% reduction in P load to Lake Apopka, USA 

(Coveney et al., 2005). An improvement in water quality followed in many of these 
lakes, albeit often following a significant time lag (i.e. 10-15 years: Jeppesen et al., 

2005; Jeppesen et al., 2007). However, this is not always the case. Gulati & van Donk 

(2002), in their review of the eutrophication of Dutch lakes and the restoration 

techniques applied, found that decreasing P inputs did not always result in an 

improvement in water quality. 

 
When reducing the P input to a lake, it is important to identify the main sources of 

those inputs. At Loch Leven, when inputs were high, 56% of those inputs came from 

point source discharges with less than 44% coming from diffuse sources (Bailey- 

Watts & Kirika, 1987). Of the diffuse sources, P entering from rain falling directly 

onto the surface of the lake was generally low, i.e. about 0.3 – 0.4 t y
-1

, which equated 

to about 2% of the external TP load in 1985 and 5% in 1995 and 2005. Inputs from 

geese over-wintering at the lake were also low, i.e. 0.5 t P y
-1

, or about 3% of the 

external TP load in 1985 and about 6% of that load in 1995 and 2005. This is in 

contrast to the situation in many other shallow lakes where P inputs from wildfowl are 

relatively high (e.g. 70%: Manny et al., 1994; 88-92%: Ronicke et al., 2008; 73%: 

Chaichana et al., 2010). It is also likely that P inputs from geese to Loch Leven have 

changed very little in recent years because, although the proportion of greylag and 

pink footed has changed over time, the total number of geese has remained fairly 

stable (Carss et al., this volume). 

 
There have been varying levels of TP retention within the lake over the period of 

available data, 1975  to 2005.  However,  on  an annual timescale, P  retention has 
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remained positive, suggesting that TP continues to accumulate in the lake sediments. 

Such accumulations are important in terms of lake recovery because, when external 

TP loads are reduced, these internal sources tend to release P into the water column 

causing a considerable delay in recovery (Sas, 1989; Gulati & van Donk, 2002; 

Søndergaard et al., 2003; Nürnberg & LaZerte, 2004; Jeppesen et al., 2005; 

Søndergaard et al., 2007; Spears et al., this volume). That said, in most lakes, P 

release from the sediments also promotes recovery because it increases the rate at 

which TP from internal sources can be exported from the system, especially during 

the summer months (Sondergaard et al., 2001). In Loch Leven, however, hydrological 

discharge from the outflow is restricted during the summer months by the use of 

sluice gates that are employed to maintain a constant water supply for downstream 

users (May & Spears, this volume b). So, it is likely that P leaves this system more 

slowly than in naturally flushed lakes, thus slowing down the recovery process. 

 
Data from Loch Leven for 1975 and 1985 show that, prior to the 60% reduction in 

external TP load, the TP retention rate was about 50%. After the reduction in external 

input, the TP retention rate fell to about 15%. Given that TP retention in lakes tends to 

be negatively correlated with hydraulic retention time (Brett & Benjamin, 2008), and 

that the latter two years were much drier than the earlier years, this suggests that that 

the lake is now retaining significantly less TP from external sources than it was in the 

1970s and 1980s. However, total (rather than relative) export of TP from the lake has 

changed very little from year to year. This is probably because the rate of flow in the 

outflow, which is managed to ensure a constant flow of water to downstream industry 

over the summer period (May & Carvalho, 2010; May & Spears, this volume b), and 

in-lake annual average TP concentrations have remained fairly constant over this 

period (Carvalho et al, this volume). Although similar in terms of values, however, it 

should be noted that in-lake TP concentrations in the earlier years were driven by 

external TP  loads,  while  those  from  1995  onwards  were  increasingly driven  by 

internal TP loads (Spears et al., this volume). 

 
Although some relatively minor point source upgrades were implemented between 

1995  and  2005,  improvements in  catchment  management over  that  period  were 

mainly focused on reducing TP inputs from agricultural (diffuse) sources through the 

better management of farm nutrient budgets and the installation of buffer strips along 

the banks of some of the inflows to reduce stream contamination by nutrient laden 

runoff. Although a comparison of the TP inputs to the lake in 1995 and 2005 seems to 

suggest that these activities had little effect, the real impact of these measures cannot 

be  determined by  simply comparing these  values directly. Source apportionment 

needs to be taken into account before conclusions are reached. This is not possible 

with the existing data, because the less detailed survey that was carried out in 2005 

did not include sampling up- and down-stream of point source discharges. 

Nevertheless, it seems likely that the implementation of buffer strips, lower fertiliser 

application rates and other agricultural initiatives implemented across the catchment 

to  reduce P  losses  from  agriculture were  probably  more  effective than  the  data 

suggest. This is because any resultant reduction in TP delivery to the lake from diffuse 

sources was probably masked by parallel increases in P-laden sewage effluent 

associated with recent population growth in this area. Government census statistics 

suggest that the resident population in the area around Loch Leven has grown rapidly 

in recent years, with an increase of about 22% occurring between 1981 and 1991 and 

16% between 1991 and 2001 (Perth & Kinross Council, pers. comm.). 
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Conclusion 

 
This study shows that the implementation of a catchment management plan in the late 

1980s and early 1990s reduced the external TP load to Loch Leven by about 60%. 

Most of this reduction was due to better control of point source discharges rather than 

reductions in nutrient laden runoff from the surrounding farmland. Very little of the 

observed reduction could be attributed directly to the implementation of best 

management practices on agricultural land or the installation of buffer strips next to 

drainage channels. However, this does not necessarily mean that these measures were 

ineffective. It is possible that any decreases in P-laden runoff from agricultural 

activities may have been masked by concurrent increases in population density and, 

consequently, higher TP discharges from WWTWs. This highlights the importance of 

obtaining good source apportionment data when assessing the effectiveness of 

catchment management activities in reducing nutrient loads to waterbodies. 

 
When the input of TP to the lake from external sources was reduced by 60%, the 

overall TP retention rate fell from about 50% to about 15%. This was because the rate 

of hydraulic discharge rate was unchanged and in-lake P concentrations remained 

high (Carvalho et al., this volume) as a result of increased P release from the 

sediments. This seemed to be ‘compensating’ for the reduction in TP load from the 

catchment  (Spears  et  al.,  this  volume)  as  has  been  observed  in  other  lakes 

(Søndergaard et al., 2003; Nürnberg & LaZerte, 2004). This suggests that, while 

internal recycling appears to delay recovery in terms of in-lake water quality 

parameters, it also promotes recovery in terms of increasing the rate at which TP from 

internal sources is exported from the system. This should be taken into account when 

assessing the success of reductions in external load on the long term recovery of 

eutrophic lakes. 
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Tables 

 
Table 1 Point sources of total phosphorus (TP), and the size and timing of significant 

reductions in their respective output, within the catchment of Loch Leven between 

1985 and 2005 (after LLCMP, 1999). WWTW = waste water treatment works. 
 
 
 

 

Point source 

Anticipated reduction 

in TP output 

(t y
-1 

/ g m
-2

) 

 

 

Date achieved by 

 
 

Woollen mill 6.3 / 0.47 1987 
 

 
 

Kinross WWTW 1.7 / 0.13 1993 
 

 
 

Kinross WWTW 0.4 / 0.03 1997 
 

 
 

Milnathort WWTW 0.6 / 0.05 1995 
 

 
 

Kinnesswood WWTW 0.6 / 0.05 1997 
 
 
 

Total reduction 9.6/0.72 1997 
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Figure captions 

 
Fig. 1 The relationship between annual mean in-lake total phosphorus (TP) 

concentration and annual mean algal abundance (expressed as chlorophylla 

concentration) in Loch Leven, 1964 to 1985 (p<0.001) 

 
Fig. 2 Map of the Loch Leven catchment showing sampling sites on the main inflows 

(Pow Burn [P], North Queich [N], South Queich [S], Gairney Water [G]) and at the 

outflow [L] in 2005 and corresponding catchments for each stream; the position of 

point source discharges in 1985 are indicated (waste water treatment works: triangles; 

industry: inverted triangle) 

 
Fig. 3 Historical changes in the external input of total phosphorus (TP) to Loch Leven 

between 1905 and 2005. Open squares are values calculated from palaeolimnological 

data (see text for details); filled triangles are measured values 

 
Fig. 4 Total phosphorus (TP) input and retention at Loch Leven estimated at decadal 

intervals from 1975 to 2005 
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Figure 3  

 

T
o

ta
l 

p
h

o
s
p

h
o

ru
s

 
-1

 
(t

 y
  
) 

T
P

 i
n
p
u

t 
(t

o
n
n
e
s

 y
-1
) 

 
 
 
 
 
 

25 

Palaeo 
 

Measured 
20 

 
 

15 

 
 

10 

 
 

5 

 
 

0 

 
 
 

Year 
 
 
 
 

 

Figure 4 
 

 
 
 
 

25 
 

Total input 
 

20  Amount retained 
 

 
 

15 
 

 
10 

 

 
 

5 
 

 
0 

1975  1985  1995  2005 
 

Year 


