1	Palaeoenvironment reconstruction, volcanic evolution and geochronology of the Cerro Blanco
2	subcomplex, Nevados de Chillán Volcanic Complex, central Chile.
3	^{1*} Katy Mee, ¹ Jennie S. Gilbert, ² David W. McGarvie, ³ José A. Naranjo, and ⁴ Malcolm S. Pringle.
4	
5	¹ Lancaster Environment Centre, Faculty of Science and Technology, Lancaster University, Lancaster, LA1
6	4YQ, UK
7	² Department of Earth Science and Environmental Sciences, The Open University, Walton Hall, Milton
8	Keynes, MK7 6AA, UK
9	³ Servicio Nacional de Geología y Minería, Avenida Santa María 0104, Providencia, Santiago, Chile, e-mail:
10	jnaranjo@sernageomin.cl
11	⁴ Department of Earth, Atmospheric and Planetary Sciences, 77 Massachusetts Avenue, Massachusetts Institute
12	of Technology, Cambridge, MA, 02139-4307, USA
13	* Now at: British Geological Survey, Keyworth, Nottingham, UK, NG12 5GG, Tel: + 44 (0)115 936 3100, Fax:
14	+44 (0)115 936 3200, E-mail: katy@bgs.ac.uk
15	
16	Abstract
17	Nevados de Chillán Volcanic Complex, central Chile, has been active for at least 640 ka – a period spanning a
18	number of glacial and interglacial periods. Geologic mapping, radiometric dating and geochemical analysis
19	have identified six new volcanic units and produced five new ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ ages for Cerro Blanco, the northern
20	subcomplex of Nevados de Chillán volcano. Compositions range from dacite to basaltic-andesite and a new

21 geologic map is presented.

Examination of lava fracture structures on both newly mapped lavas and those mapped during previous studies has enabled interpretations of former eruptive environments. Palaeoenvironment reconstructions, combined with ⁴⁰Ar/³⁹Ar ages and comparison with the marine oxygen isotope record, show that at least three phases of volcanic activity have occurred during the evolution of Cerro Blanco: (1) a constructive, pre-caldera collapse period; (2) a period of caldera formation and collapse; and (3) a constructive period of dome growth forming the modern day volcanic centre. This style of volcanic evolution, whereby large-scale caldera collapse is followed by growth of a new stratocone is common at Andean volcanoes.

29

30 Keywords: volcano-ice interaction, Nevados de Chillán, Cerro Blanco, palaeoenvironment reconstruction,

31 snow-contact, caldera-collapse, ⁴⁰Ar/³⁹Ar dating

32

33

Introduction

Nevados de Chillán Volcanic Complex (NCVC) is situated at 36°S, 71°W in the Southern Volcanic Zone (SVZ) of the Andean cordillera, central Chile. It is a large stratovolcano composed of two volcanic centres situated 6 km apart along a NNW-SSE trending axis (Fig. 1) (Dixon et al., 1999).

37 The two subcomplexes of Nevados de Chillán, Cerro Blanco and Las Termas, lie at the NW and SE 38 ends of the axis, respectively (Fig. 2). The Las Termas subcomplex is predominantly dacitic, whilst Cerro 39 Blanco is predominantly basaltic-andesite to andesite in composition (Dixon et al., 1999). Volcanic products 40 include subaerial, subglacial and snow-contact lavas, pyroclastic flow deposits, tephras, lahar deposits and scoria cones (Dixon et al., 1999; Mee et al., 2006). High precision ⁴⁰Ar/³⁹Ar and ¹⁴C analysis reveals that the 41 42 volcano has been active since at least 640 ka, with the eruption of the subglacial Los Pincheira lavas, which 43 have an estimated remaining volume of 10 km³ (Dixon et al., 1999). Activity continues to the present day, with 44 recent eruptions occurring during September 2003 from the Las Termas subcomplex (Naranjo and Lara, 2004) 45 and then in January 2009 (http://www.volcanolive.com/chillan.html).

46 Cerro Blanco is composed of several volcanic cones, each with their associated lavas. The most recent 47 of these lavas, the Santa Gertrudis scoria cone and lava, was erupted between 1861 and 1865 (Dixon et al., 48 1999; Mee et al., 2006) and dominates the northwestern flank of Cerro Blanco. To the north and west of Cerro 49 Blanco are curved cliff sections interpreted by Déreulle and Déreulle (1974) as remnants of two caldera walls 50 (Fig. 1). Although this theory is now generally accepted, evidence is restricted to the morphological structure 51 of the cliff scarps, clearly visible in the field and on aerial photographs. The inner cliff sections are thought to 52 represent a younger caldera approximately 5 km in diameter, with the outer cliffs suggesting an older caldera of 53 approximately 10 km in diameter (Fig. 1).

54 Geologic mapping by Dixon et al. in 1999 concentrated on the cone and flanks of the Cerro Blanco 55 and Las Termas subcomplexes and the surrounding valleys, with volcanic products being assigned to the 56 appropriate subcomplex on the basis of geochemistry. The highly complex caldera wall areas were thus 57 grouped together as CB1 (the Lanalhue Lavas of Dixon et al., 1999), covering an area of ~ 15 km². Since much 58 of the area is dominated by steep-sided and scree covered slopes, interpretation of stratigraphic relationships are 59 mostly confined to the caldera wall cliffs, hence field mapping for this project was concentrated in these 60 localities. Detailed mapping during 12 weeks of fieldwork in 2001 and 2002, have allowed us to identify three 61 new volcanic units along the outer caldera wall (OCW) and upper Santa Gertrudis valley and three new 62 volcanic units along the inner caldera wall (ICW) and these are presented in a new geologic map (Fig. 3). Volcanic facies from each of these units are described in two sections: (1) the outer caldera wall and upper
Santa Gertrudis valley (SGV) units and facies, and (2) the inner caldera wall units and facies.

We interpret the palaeoenvironment of emplacement of each of these facies. These interpretations are combined with geochemical data, ⁴⁰Ar/³⁹Ar dates and evidence from the marine oxygen isotope record (MOIR) to evaluate the volcanic evolution of Cerro Blanco. It must be noted that accessibility to most of the exposed rock around the outer caldera wall and Santa Gertrudis valley is severely limited due to the extreme topography, and although access can be gained via the foot of the Santa Gertrudis valley to the north, this was beyond the scope of this project. Geochemical and radiometric analyses are therefore limited for these units but observations are included for completeness.

- 72
- 73

Field observations and petrography

Field observations for each of the newly mapped units are described below. Table 1 summarises the field observations and Table 2 gives a summary of the geochemistry and petrology for each newly mapped unit. Further geochemical data are provided with the online version of this article. The distributions of newly mapped and existing units at Cerro Blanco are provided in Figure 3.

78

79 **1. Santa Gertrudis valley and the outer caldera wall**

The upper reaches of the Santa Gertrudis valley (SGV) begin ~ 2.5 km to the north of the Cerro Blanco summit, where several tributaries collect runoff from the north and western flanks of Cerro Blanco, the ICW and the OCW before deflecting north into the Río Santa Gertrudis and the Santa Gertrudis valley proper. From Cerro Blanco, only the tops of the cliffs can be accessed. Here, the valley is ~ 30 m wide with near vertical cliff faces of 100-200 m in height. The north and south sides of the valley appear to be comprised of two entirely different lithologic units (SGV1 and SGV2, respectively), with the outer caldera wall unit (OC1) making up the third newly mapped unit in this locality.

87

88 SGV1 – North Santa Gertrudis valley lava

Bespite earlier mapping by Dixon et al. (1999) identifying the lavas in this area as the 81.5 ka old CB1 Lanalhue Lavas, it is clear from the much greater degree of weathering and alteration, that the lava on the north side of the Santa Gertrudis valley is much older and must be considered as a separate unit (SGV1). The SGV1 lava exhibits a mixture of chaotic, hackly joints and irregular columnar joints. The latter are ~ 10-20 cm in width and sometimes up to 1 m in length, although are generally much less than this. Since the cliff face was 94 inaccessible, detailed measurements of column orientation and geometry was not possible. The lava itself is
95 dark orange-brown and heavily weathered in appearance and geochemical analysis reveals this unit to be
96 andesitic in composition (69 wt % SiO₂) (Table 2).

97

98 SGV2 – South Santa Gertrudis valley sequence

99 The SGV2 unit on the south side of the valley is, by contrast, much more complex with four separate facies 100 identified (Fig. 4). It is likely that each of these facies represents a separate geologic unit but since detailed 101 studies of the cliffs were prevented by poor accessibility the facies have been grouped together for simplicity. 102 The base of the cliffs is comprised of ~ 100 m thickness of massive, slightly weathered lava with no obvious 103 fracture patterns or bedding (Zone 1). Above this, lies a 10-70 m thick section of pale grey, fine-grained and 104 bedded material (Zone 2). This becomes thinner towards the west where it comes into contact with a 40 m 105 thick lens of columnar jointed lava (Zone 3). The succession is complete by the IC2 lava lobes (discussed later), 106 which is the only part of the cliff face that can be accessed from the cliff tops and hence no samples of the 107 SGV2 unit could be collected for geochemical or radiometric analysis.

108

109 OC1 – Outer caldera wall lavas and breccias

110 Overlying the SGV1 lava on the north side of the valley is the outer caldera wall (Fig. 1). It is ~ 2.5 km long 111 and comprises at least 10 separate, andesite (60 wt % SiO₂) lavas flow deposits, each 5-10 m thick and inter-112 bedded with irregular layers (< 3 m thick) of red scoriaceous material (Fig. 5). Towards the western end of the 113 OCW where the upper elevation is ~ 50 m lower than the eastern end, the lava is extremely polished and 114 exhibits two sets of striae with variable orientations. The first set of striae is broad and deep and has the same 115 weathered surfaces of the surrounding rocks. The second set, which cuts through the first, is much sharper and 116 narrower, with fresher grey surfaces. On both the west and east sides of the Santa Gertrudis valley, small 117 patches of breccia are banked up against the OC1 lavas. The east side of the valley was inaccessible but 118 observations through binoculars reveal that the breccia is bedded, dips gently ($< 10^{\circ}$) to the south and contacts 119 unconformably with the adjacent OC1 lava.

120

121 **2.** Inner caldera wall units and facies

122 The inner caldera wall (ICW) is also ~ 2.5 km long and curves around the northwestern flank of Cerro Blanco 123 (Figs. 1 and 3). It is characterised by a topographic high at each end: Lanalhue at the southern extremity and 124 the North Ridge at the northern extremity (Fig. 1). Three different volcanic units have been identified along the 125

ICW, each with characteristic facies: the inner caldera wall lavas (IC1), the inner caldera wall vent facies (IC2)

126 and a series of lava lobes, sills and dykes (IC3).

127

128 IC1 – Inner caldera wall lavas

129 The inner caldera wall lavas are best exposed at the southern end of the ICW, where at least six individual lava 130 flow deposits can be observed in the south-facing cliffs (Figs. 6 and 7). The near vertical caldera wall scarp 131 cuts through the IC1 lavas to the east and a 25 m wide band of the lava is exposed half-way up the cliff face, 132 with scree obscuring the lower 20-30 m and the IC2 Lanalhue vent topping the sequence (Fig. 6). Each layer is 133 3-8 m thick and extends westwards (away from Cerro Blanco) for 10-100 m. Whilst the two upper and two 134 lower lava flows dip gently westwards ($\sim 5^{\circ}$), the two central lavas are much less uniform and in places the lava 135 has draped over the underlying lavas forming several bulbous and hackly jointed lobes (Fig. 7). The two upper 136 and two lower lavas exhibit broad columnar jointing and scoriaceous upper margins, whilst the two central 137 lavas are bulbous in places, with glassy texture and hackly or pseudopillow fractures (Mee et al., 2006). 138 Individual lava flows are separated by irregular patches of breccia, which is comprised of 5-40 cm angular 139 clasts of lava in a pale grey and fine-grained matrix. The geochemical composition of the lava flows range 140 from basaltic-andesite (54 SiO₂ wt %) to dacite (65 SiO₂ wt %).

141

142 IC2 – Inner caldera wall vent facies

143 The topographic highpoints at either end of the ICW (Lanalhue and the North Ridge) are characterised by 144 remnants of volcanic vents. At the southern Lanalhue end, a 50 m thick cross-section through the vent facies is 145 exposed towards the top of the inner caldera wall cliffs (Fig. 8). Several facies can be identified at the Lanalhue 146 and North Ridge vent locations, ranging in composition from basaltic andesite (55 wt % SiO₂) to andesite (59 147 wt % SiO₂). The main constituent, present at both localities, is a series of bedded and welded breccia and 148 spatter deposits. Secondly is a vesicular, andesitic body, which is exposed in the Lanalhue vent cross-section at 149 the southern end of the inner caldera wall. Thirdly, is the Upper Santa Gertrudis valley (USGV) lava, which 150 first crops out on the eastern flanks of the North Ridge and is exposed eastwards to the top of the Santa 151 Gertrudis valley. These facies are described in more detail below and in Tables 1 and 2, with the exception of 152 the USGV lava, which is the subject of a more detailed study by Mee et al. (2006) and hence is only 153 summarised here.

154

155 Welded breccia and spatter

156 A cross-section through the Lanalhue vent exposes an ~ 20 m think sequence of andesitic, bedded breccia and 157 spatter, displaying varying degrees of welding. Figure 9 summarises the typical structure and composition of 158 the vent. The beds can be traced southwards for up to 70 m, where they form a fanned array with the thickness 159 of the beds increasing from 25 cm to 3 m with distance from the centre of the vent. The dip of the beds 160 increases upwards through the succession from near horizontal to 45° S (i.e. back towards the centre of the 161 vent). The structure of each bed becomes more chaotic towards the centre of the vent and, in places, exhibits 162 substantial brecciation, slumping and faulting (Fig. 9). Contacts between the beds are often unconformable, 163 particularly close to the centre of the vent. Clast-supported, polymict breccia containing angular to heavily 164 smeared glassy lithics and scoria bombs, fills the centre of the vent (Fig. 9). A grey, platy dyke from the IC3 165 unit (described below) cuts through this breccia at an angle of ~ 85° S. Small, 2-3 cm clasts of the dyke have 166 been incorporated into the adjacent breccia (Fig. 9).

To the north, any beds that were deposited are now obscured by a 50 m wide and up to 15 m high andesitic body. The texture is massive and vesicular with no bedding or fracturing. Vesicles are roughly spherical and range in size from 0.1-2 cm, with large vesicle accumulations of > 45 cm in diameter also present. The contact between the andesite body and the surrounding breccia is gradational over ~ 30 cm, with clasts of breccia being incorporated into the andesite.

To the north, the highest point along the ICW reaches 2456 m at the top of the North Ridge. Here, a small plateau of ~ 0.5 km² that slopes gently to the NW (away from the summit of Cerro Blanco) also exhibits a series of welded breccia and spatter beds (Fig. 10). The beds form a curved, semi-circular array at the southern end of the North Ridge (nearest to the Cerro Blanco summit) and exhibit similar features and structures as the welded breccia and spatter beds of the Lanalhue vent (Fig. 9). As the North Ridge slopes away from Cerro Blanco, dropping in elevation from 2456 m to 2375 m, the vent facies become increasingly polished and eroded and is marked by one set of striations.

179

180 Upper Santa Gertrudis valley (USGV) lava

The andesitic, USGV lava can be divided into three textural and geomorphological zones, each occurring at different elevations (Table 1): autobrecciated and elongate lava lobes with pseudopillow fractures at the upper elevations; interconnected, hackly-jointed lava lobes and hyaloclastite at the mid-elevations; and glassy, columnar-jointed lava at the lower elevations. Detailed descriptions and palaeoenvironment interpretations for these facies and the Santa Gertrudis lava are given in Mee et al. (2006).

187 ICW3 – Subglacial lobes, sills and dykes

This unit can be divided into two facies: (1) a series of grey platy sills and dykes cutting through the inner caldera wall vent sequence and in places cropping out onto the current topographic surface; and (2) glassy lava lobes situated on the col to the south of the Lanalhue vent sequence (Fig. 6) and on the north and eastern flanks of the North Ridge (Fig. 10).

192

193 Platy sills and dyke

The sills and dykes are 1-3 m thick, with narrow (> 1-2cm) platy fractures aligned parallel to the flow surfaces. Several platy sills cut below the IC2 and esite intrusion and in places have breached the ground surface on and above the col to the north of the Lanalhue sequence (Fig. 8). In one case, a sill has breached the ground surface at an elevation of ~2375 m in the col region to the north of the Lanalhue vent (Fig. 11). The lava can be followed laterally for less than 2 m before being reduced to scree and has a 10-15 cm thick, red scoriaceous upper surface (Fig. 11). The scree is estimated to cover an area of at least 100 m².

A 2 m wide dyke also cuts through the IC1 cliffs and is exposed on the volcano-facing scarp (Fig. 8). It appears to feed a small laccolith at its top, which is exposed below the southern end of the IC2 welded breccia and spatter beds. Poor accessibility meant that detailed observations of this structure were limited. However, a sample collected by Dixon et al. (1999) during their 1996 expedition, is now known to have come from base of this dyke (Jennie Gilbert, oral communication 2006).

205

206 Glassy lava lobes

207 Several bulbous and glassy lava lobes crop out on the col that separates the Lanalhue ridge from the central 208 regions of the ICW and on the north and eastern flanks of the North Ridge. The best examples of these lobes 209 are two steep-sided lava lobes on the col to the north of the Lanalhue vent (Figs. 6 and 11). The more easterly 210 of the two lobes is 7 m high and 14 m wide, whilst the more westerly of the two lobes is 12 m high and 8 m 211 wide. Both are bulbous in shape and have steep (> 45° to near vertical) outer margins, particularly those facing 212 down-slope. In between these two larger lobes are several smaller (~ 1 m diameter), interconnected lobes (Fig. 213 11). The outer margins of the lobes are 25-50 cm thick and dominated by narrow (8-15 cm in diameter with 4-8 214 sides), glassy hackly joints. The interior of the lobes is, by contrast, holocrystalline with 10-30 cm thick 215 concentric fractures that break around phenocrysts. Irregular patches of yellow, clast-supported and unbedded 216 breccia is observed at the bases of the two larger lobes and surrounding the smaller lobes in the scree (Figure 217 11). In places, finger-like structures of the breccia curve upwards into the overlying lava lobe (Fig. 11).

218

219

⁴⁰Ar/³⁹Ar analysis

220 By determining the ages of volcanic units that have been interpreted as having erupted under certain conditions 221 (e.g. subglacially, in contact with snow/ice or subaerially), we are able to: (1) confirm their stratigraphic 222 position at Cerro Blanco and, (2) compare ages with the record of global temperature (marine oxygen isotope 223 record) in order to confirm that the interpreted conditions would have been likely at the time of eruption. 224 Alternatively, if field observations suggest that a lava was cooled under a substantial thickness of ice, yet 225 radiometric dates suggest that the volcano should not have been covered by snow or ice at the time of eruption, 226 then this would trigger further study of either the volcanic fracture patterns and stratigraphic relationships or 227 radiometric dates to ensure that the most confident interpretations were reached.

228

229 Sample selection

After establishing stratigraphic relationships in the field, eight samples were selected for 40 Ar/ 39 Ar analysis. All of these samples came from the inner caldera wall units, since poor accessibility to the outer caldera wall and Santa Gertrudis valley made it impossible to obtain samples suitable for dating. Samples were chosen on the basis of:

- Palaeoclimatic importance a mixture of subaerial, subglacial and snow-contact lavas were chosen to
 enable correlation of the inferred eruptive environment with the marine oxygen isotope record. It was
 anticipated that the ages of these samples would span a glacial/interglacial transition.
- 237
 2. Stratigraphic importance i.e. those units that displayed key stratigraphic relationships with other
 238
 units not chosen for analysis; and
- Compositional/petrographic suitability for ⁴⁰Ar/³⁹Ar dating thin sections of all samples were studied
 to select samples with the least amount of chemical alteration or other possible sources of
 contamination.

Following petrographic analysis, it was obvious that many of the more glassy rocks (and therefore those most likely to have erupted during subglacial conditions) would be unsuitable for 40 Ar/ 39 Ar analysis and hence fewer of these units were analysed than was originally intended. Whole rock and groundmass separates were analysed at the Scottish Universities Research and Reactor Centre (SURRC), East Kilbride, Scotland, using the same 40 Ar/ 39 Ar incremental-heating procedures as Dixon et al., (1999), which are more fully described in Singer and Pringle (1996) and Harford et al., (2002). To deem these dates acceptable, the following criteria were used (Pringle, 1993; Singer and Pringle, 1996):

- At least 3 contiguous high-temperature steps representing 50 % of the ³⁹Ar must be used in the age
 calculation.
- 251 2. These steps must be below the F-variate critical value (Pringle, 1993; Taylor, 1982; Harford et al.,
 252 2002; York, 1969).
- 253
 3. The plateau and isochron ages (Pringle, 1993; Singer and Pringle, 1996) must be concordant with one
 another (i.e. their errors should overlap).
- 255 4. The isochron ⁴⁰Ar/³⁶Ar intercept should not be significantly different from the atmospheric argon value
 256 of 295.

257

258 Results

In total, 8 samples from Cerro Blanco were selected for analysis, each representing different volcanic facies. Two samples (from IC1 and OC1) did not produce a full data set to enable age calculations and two others (from IC1 and IC3) produced high errors and should, at best, be considered reconnaissance age estimates. The remaining four samples have yielded acceptable ages, although they represent only two of the newly mapped units (IC2 and IC3). Table 3 gives a full summary of both the new and published (Dixon et al., 1999) ⁴⁰Ar/³⁹Ar analyses for Cerro Blanco and the complete data repository is available from the journal's electronic archive.

- The IC2 unit has yielded three acceptable ages: 92.4 ± 3.5 ka for the andesite intrusion located to the north of the Lanalhue vent; 90.0 ± 0.6 ka for the upper Santa Gertrudis Valley lava; and 88.9 ± 1.0 ka for the welded breccia and spatter beds of the North Ridge. A sample of the IC3 lava lobes, sills and dykes has produced two acceptable ages from different splits of the same sample. Specifically, this sample comes from the sill that has breached the ground surface above the col region at the southern end of the ICW. This unit has been dated at 80.0 ± 0.6 ka and 79.9 ± 0.6 ka.
- 271
- 272

Discussion

In recent years Cerro Blanco has had a permanent icecap and an even larger distribution of seasonal snow (Fig.
Fracture structures associated with snow and/or ice contact appear to be common features of the volcanic
units on Cerro Blanco. The distribution and extent of these fractures is vital for interpretation of the local
climatic conditions at the time of eruption.

The following sections use field observations and stratigraphic relationships to help interpret the eruptive settings of volcanic units at Cerro Blanco, particularly in terms of the presence or absence of snow and ice at the time of eruption. We consider the various phases of volcanic evolution of Cerro Blanco and draw

- comparisons with other Andean volcanoes. Finally, where 40 Ar/ 39 Ar analysis has been successful, the ages are compared with the marine oxygen isotope record (MOIR) to confirm that field and stratigraphic observations of each unit are concordant with climatic conditions at the time of eruption, i.e. if a lava is interpreted as having
- erupted under a large thickness of ice, this should be supported by global ice volumes according to the MOIR.
- 284

285 Palaeoenvironment interpretations

286 The Santa Gertrudis valley and outer caldera wall

287 At depths of nearly 200 m, the Santa Gertrudis valley is likely to have been an important runoff channel for 288 several hundred thousands of years. The presence of narrow, hackly and chaotic columnar joints on the SGV1 289 lavas on the north side of the valley supports the presence of water during their emplacement, although the lack 290 of pillow structures suggests that this was not entirely subaqueous. The chaotic nature of the columns is 291 therefore interpreted as the upper, entablature zone of a two-tiered lava flow (Degraff et al., 1989). This is 292 similar in structure to the upper zone of the Los Pincheira lavas (Dixon et al., 1999), which was interpreted by 293 Dixon et al. to have cooled against glacial ice with meltwater causing the fine-scale penetrative jointing of the 294 entablature zone (Lescinsky and Sisson, 1998). Whether the entablature zone of the SGV1 lava was caused by 295 glacial meltwater or runoff from the volcano is unclear since the lower portions of the cliffs were inaccessible.

296 The outer caldera wall cliffs, which lie stratigraphically above the SGV1 lavas, have been interpreted 297 by Déreulle and Déreulle (1974) as remnants of an ancient caldera wall on account of the abrupt cliff faces 298 separating the recent volcanic cones at the centre of the complex from the older, shallow-dipping lavas to the 299 west and north. The broad, columnar joints, holocrystalline texture and scoriaceous upper surfaces of the lava 300 flows are indicative of slow cooling and hence the OC1 lavas are inferred to be subaerial (Cas and Wright, 301 1987). Deep glacial striae and polishing to the upper surfaces of the cliffs at the western end of the OCW, 302 suggest that the cliffs have been subjected to repeated glaciations. By contrast, the eastern end of the OCW, 303 where elevation is 50-100 m higher, does not exhibit the same degree of polishing, suggesting that snow, ice 304 and water in this area were diverted into the Santa Gertrudis valley.

The complex mixture of facies on the south side of the Santa Gertrudis valley (SGV2) are clearly not part of the SGV1 or OC1 units on the north side of the valley. Since detailed observations of the cliffs could not be made, it is not possible to make meaningful interpretations of the different facies that make up SGV2. It is possible, however, to make inferences about relative ages of the units despite the lack of 40 Ar/ 39 Ar ages, since the high levels of weathering to the north side of the valley (SGV1 and OC1), suggest they are much older than 310 the SGV2 unit on the south side of the valley. This adds further support to the interpretation of OC1 as caldera 311 wall cliffs, with the SGV2 unit representing the downthrown side of a caldera wall fault.

312

313 The inner caldera wall

The northern extremity of the inner caldera wall is 'overlapped' by the outer caldera wall cliffs, which form an amphitheatre around the north and western flanks of the North Ridge. This, along with the presence of two sets of glacial striae and a greater degree of weathering on the outer caldera wall lavas compared to one set of glacial striae on the inner caldera wall units, leads us to believe that the inner caldera wall cliffs and their associated geologic units are younger than those of the outer caldera wall and Santa Gertrudis valley.

The IC1 lavas are the most extensive, covering an area of at least 1 km², although it is likely that they extend up to a further 2 km north, through the central region of the inner caldera wall (Figs. 3 and 4). It is also likely that the IC1 lavas were, at one time, more extensive to the east but have since been cut by the inner caldera wall fault with any remnants now obscured by scree and the more recent Colcura cone and lavas (Dixon et al., 1999).

324 Each layer of the IC1 unit is thought to represent a separate pulse of lava that flowed west away from 325 the current Cerro Blanco stratocone. The two upper and two lower lava flows, with their crystalline interiors 326 and scoriaceous tops, exhibit characteristics typical of subaerial lavas (Cas and Wright, 1987). Although the 327 overall dip of the lavas is west, away from Cerro Blanco, in places the two central lavas appear to have 328 followed topographic depressions causing the morphology to be bulbous in places (Figs. 5 and 6). Hackly and 329 pseudopillow fractures on the lava in these locations, along with their glassy texture, suggest that these lobes 330 were cooled rapidly, either by steam, water or snow (Lescinsky and Fink, 2000; Mee et al., 2006). The lack of 331 fragmental material (and the local distribution of ice-contact features) indicates that water did not accumulate in 332 any great volume, hence it is unlikely that a thick ice sheet was present during the time of eruption (Lescinsky 333 and Fink, 2000; Lescinsky and Sisson, 1998). Since snow and ice are persistent throughout the year at 334 elevations of ~ 2300 m and upwards (i.e. the approximate elevation at which the IC1 lavas are exposed) it is 335 more likely that portions of the lava flowed over or into snow and ice that had accumulated in topographic 336 depressions, with steam and water from the melting snow causing hackly and pseudopillow fractures.

The IC2 vent facies is best exposed at the southern end of the ICW with the cross-section through the Lanalhue vent. Several beds of welded breccia and spatter represent successive pulses of a small ($< 0.25 \text{ km}^2$) eruption. The increasing dip of the beds towards the centre of the vent, suggests that material tended to accumulate at distances of 50-70 m from the vent. The presence of unconformable contacts, brecciation and 341 faulting within the deposits at the mouth of the vent suggests a greater degree of instability with proximity to 342 the vent. Slumping within the beds has produced rheomorphic structures indicating that material flowed back 343 towards the vent after initial deposition (Sumner and Branney, 2002). Finally, the small andesitic body was 344 intruded to the north side of the vent. It is suggested that the breccia that now fills the vent was part of the lava 345 intrusion and that the high level of oxidation is due to contact with either snow or water during intrusion 346 (Naranjo et al., 1992). Since the dyke was well insulated from the breccia, its high temperature was preserved, 347 enabling the formation of the platy, welded and sheared structure during the high-pressure intrusion (Fig. 9). 348 The final facies associated with the IC2 unit is the Upper Santa Gertrudis valley (USGV) lava, which is exposed 349 on the eastern flanks of the North Ridge and in the upper reaches of the Santa Gertrudis valley. The gradation 350 from one textural zone to another has led to the interpretation of a multi-phase cooling history of the lava, 351 consisting of subaerial, snow-contact and then ice-constraint cooling environments at successively lower 352 elevations (Mee et al., 2006).

The youngest unit associated with the inner caldera wall is IC3, a series of platy sills and dykes and glassy lava lobes. Where one of the dykes has breached the ground surface, the scoriaceous and vesicular top suggest it cooled subaerially (Cas and Wright, 1987) yet the glassy texture and polygonal, pseudopillow fractures on the base are indicative of snow-contact (Mee et al., 2006). Although the preserved lava only persists for 2 m, the large volume of scree (~ 0.1 km^2) suggests that, at one time, the lava was much more extensive. It is likely that melting snow at the base of the lava combined with the heavily fractured and extremely brittle lava interior caused the lava to collapse.

360 Several pieces of evidence suggest that the glassy lava lobes, which are exposed at a lower elevation in 361 the col to the north of the Lanalhue vent, were glacially cooled. Firstly, the glassy and hackly jointed outer 362 carapaces, which protect the more crystalline interior, imply quenching of the lava and fracture by steam 363 penetration (Lescinsky and Fink, 2000). Since the lobe interiors are relatively crystalline compared to their 364 glassy outer carapaces, quenching and solidification of the carapace must have allowed the fluid lava of the 365 interior to cool more slowly and develop a larger crystal size (Lescinsky and Fink, 2000). Secondly, cooling 366 fractures can be used to infer the palaeo-cooling surface of a fractured lava body since they form perpendicular 367 to the cooling surface (Lescinsky and Sisson, 1998). Although the chaotic nature of hackly joints means that 368 measurement of individual fracture surfaces would be unlikely to give true orientations of any former cooling 369 surfaces, the presence of the quenched carapaces surrounding the remaining body of lava suggests they were 370 entirely enveloped by the cooling surface at the time of emplacement.

371 The presence of hyaloclastite breccia around the base of the lobes would suggest that some degree of 372 interaction with water occurred (Tuffen et al., 2001; Tuffen et al., 2002a, 2002b). However, since there is a 373 lack of any ash-grade fragmental material (produced by phreatomagmatic activity) it seems unlikely that a large 374 amount of water was present. In addition to this, there are several factors that suggest that the 375 palaeotopography was similar to that of today and hence that water would have constantly drained down slope. 376 Firstly, part of the breccia beneath the more westerly of the two lobes has been folded upwards (Fig. 11c and d) 377 into the base of the lobe, suggesting that some degree of post-emplacement gravitational slumping occurred. 378 Secondly, the steep, sub-vertical front surfaces of the lobes suggest that they were constrained down-slope by a 379 near vertical, robust cooling surface, such as ice (Fig. 11). Finally, the more easterly of the two IC3 lobes 380 drapes either side of the existing col (Fig. 11a and b), suggesting that a similar topography to that of today was 381 present during the time of emplacement. All these factors favour down-slope drainage of water away from the 382 lava lobes, thus making it virtually impossible for significant volumes of water to have accumulated. It is, 383 therefore, more likely that the surrounding breccia was caused by intrusion of the sills through a waterlogged 384 substrate (Tuffen et al., 2001; Tuffen et al., 2002a, 2002b) followed by disaggregation and brecciation. Breccia 385 at the base of the lobes is most likely to have been caused by further quenching and brecciation of the lava as it 386 slumped downwards.

387 Since the base of one of the sills that breached the ground surface appears to have been cooled by 388 snow-contact (Mee et al., 2006) rather than subglacially, it may be used in conjunction with the subglacial lava 389 lobes at a lower elevation on the col to estimate the approximate upper level of ice at the time of emplacement 390 (Fig. 12). For example, we know that the sill penetrated the ground surface above the Lanalhue col at the 391 current altitude of ~ 2325 m. The glassy, quenched texture on the base of the lava suggests that it was rapidly 392 cooled, most likely due to snow-contact given the presence of pseudopillow fractures (Mee et al., 2006). It is 393 thought that as the ice and snow retreated, any lava that had flowed over the snow and cooled would have 394 collapsed, resulting in the large volume of scree that remains in the vicinity today. In this case, 2325 m would 395 have been the approximate upper limit of ice (Fig. 12). Sills lower down in the col region (at ~ 2250 m 396 elevation) were emplaced subglacially causing constraint of the lava, which enabled quenching and 397 solidification of the outer carapace and resulted in the steep front surfaces observed on the lobes today. In 398 addition, the subglacial lobes on the north and eastern flanks of the North Ridge also appear to have been 399 emplaced subglacially at 2275m, further supporting the inference of the upper level of ice between 2275m and 400 2325m. Figure 12 shows our interpretation of the palaeoenvironment into which the IC3 sills and lobes were

401 emplaced. From our interpretation we think that a valley glacier was present on Cerro Blanco approximately 80

402 ka ago and that the IC3 lobes were ice-constrained.

403

404 Volcanic evolution and caldera formation

405 Since detailed geochemical analyses have not been conducted during this study, the magmatic evolution of 406 Cerro Blanco is not discussed and to do so would require further investigation. Instead, we focus on the 407 chronology of eruptive events at Cerro Blanco and discuss caldera formation.

408 Volcanic units at Cerro Blanco appear to fall into two categories: (1) those that erupted from a central 409 vent (or vents) producing voluminous (up to 10 km³) lava flows that dip and radiate away from the current 410 volcanic centre; and (2) those which erupted from smaller vents along the caldera wall faults and tend to be 411 localised and less voluminous (< 1 km³). The oldest known units to be associated with Nevados de Chillán 412 volcano are the Los Pincheira lavas at 640 ka old, which are thought to be part of the early development of the 413 volcanic complex due to their radial distribution around the volcano before either caldera was formed (Dixon et 414 al., 1999). The next oldest units are those that make up the Santa Gertrudis valley and caldera wall lavas 415 (SGV1, SGV2, OC1 and IC1). These all fall into the former category of lavas erupted from a central vent and 416 we believe these to be part of an older complex for the following reasons:

417 The lavas all dip away from the caldera wall and therefore appear to have originated from much higher up 1. 418 the volcano, towards the current summit of Cerro Blanco. Although their exact sources are unknown, they 419 show no evidence of having erupted along a caldera wall fault.

420 They are estimated to be at least twice the (preserved) volume of the IC2 and IC3 units, which extend for 2. 421 only a short distance (20-200 m) away from the caldera wall. By contrast, the inner and outer caldera wall 422 lavas are 50-150 m in thickness and extend up to 1 km away from the volcano. The Santa Gertrudis valley 423 sequences are 100-200 m in thickness and occupy the entire Santa Gertrudis valley. All appear to be much 424 more weathered and altered than the IC2 and IC3 units.

425 The age constraints for this older complex are rather loose (640-90 ka old) but they are dissected by at least two 426 caldera-forming events. A lack of detailed study of the outer caldera wall makes it impossible to infer the 427 timing of caldera formation, unlike the inner caldera where ages of both pre- and post-caldera collapse units 428 provide a relatively tight timescale for caldera formation. The cross-section through the Lanalhue vent at the 429 southern end of the inner caldera wall is clear evidence that the vent facies (IC2) were emplaced prior to caldera 430 formation, since the caldera fault cuts through this unit. By contrast, the IC3 unit crops out on the col region to 431 the south of the Lanalhue vent where it has draped down the caldera wall fault, suggesting that the palaeotopography was similar to present day and hence suggesting IC3 was emplaced post-caldera formation.
This would put the caldera collapse event that produced the inner caldera wall at between 90 and 80 ka BP,
which agrees with the Pleistocene age interpreted by Naranjo et al. (1994) and Dixon et al. (1999).

435 Several volcanic facies have been identified along the inner caldera wall, all of which have been 436 assigned to the IC2 vent unit. Since three of these ages $(92.4 \pm 3.5 \text{ ka}, 90.0 \pm 0.6 \text{ ka} \text{ and } 88.9 \pm 1.0 \text{ ka})$ are 437 statistically indistinguishable, the exact order of eruptions at either end of the caldera wall is uncertain, although 438 they are likely to have been simultaneous. The strong lithological and chronological correlation between the 439 vent sequences at each end of the inner caldera wall facies suggests that volcanic activity was occurring along 440 the entire length of the inner caldera wall at ca. 90 ka. It is quite possible that eruption of the IC2 vent facies 441 created the initial fracture lines along which caldera collapse ultimately occurred, with subsequent eruptions 442 over the following millennia (i.e. of the IC3 unit) continuing to exploit these structural weaknesses.

Some time after eruption along the caldera fault, volcanism switched to the modern Cerro Blanco and Las Termas subcomplexes with lavas being erupted from several vents located around either stratocone (Dixon et al., 1999). At the latest, this would have occurred at 23.9 ka ago given the age of the oldest known lava to have erupted from the modern Cerro Blanco cone (i.e. CB2a of Dixon et al., 1999). This stratocone has been active as recently as 1865 with the eruption of the Santa Gertrudis lava (Dixon et al., 1999; Mee et al., 2006).

448 The combination of extreme topography and large accumulations of snow and ice make access to all 449 remnants of the caldera walls (inner and outer) very difficult. Since this project has focussed primarily on the 450 Cerro Blanco subcomplex it is not possible to make any accurate interpretations of caldera forming 451 mechanisms, which of course would apply to the entire Nevados de Chillán Volcanic Complex and not just the 452 Cerro Blanco subcomplex. It is unclear by what mechanism the calderas at Cerro Blanco (and hence Nevados 453 de Chillán) formed but there are many models that have been applied to Andean volcanoes. Through the 454 Central Volcanic Zone (CVZ) and the northern sector of the Southern Volcanic Zone (SVZ), caldera collapse is 455 often attributed to large-magnitude explosive volcanism, characterised by plinian fall deposits and ignimbrites 456 (Gilbert et al., 1996). Such deposits do occur at Nevados de Chillán, particularly to the south and west of the 457 Las Termas subcomplex (Dixon et al., 1999), but these have not been studied or mapped in detail and thus it is 458 unknown whether they are related to any caldera-forming process. By contrast, caldera formation at the 459 predominantly mafic volcanoes of the southern SVZ, show less evidence to suggest they formed by explosive 460 volcanism (Gilbert et al., 1996).

461 At Sollipulli, Gilbert et al. (1996) describe how the caldera was filled with a large body of ice (volume 462 $> 6 \text{ km}^3$) soon after caldera collapse and that subsequent volcanic eruptions occurred along the caldera margins 463 rather than under the greatest thickness of ice (i.e. towards the centre of the caldera). This is, at least in part, 464 similar to the eruption of the IC3 subglacial lobes, dykes and sills along the inner caldera wall after caldera 465 collapse, and it is certain that the caldera was at least partially filled with ice (up to ~ 2325 m; Fig. 12) during 466 this time. However, it must be noted that if any volcanism had occurred towards the centre of the caldera, the 467 modern Cerro Blanco complex would now cover these units.

468 Volcanic units erupted from the Cerro Blanco subcomplex can be assigned to three periods of volcanic 469 activity: (1) the older, pre-caldera collapse complex; (2) caldera formation and eruption along the inner caldera 470 wall fault and (3) the modern volcanic complex. This type of evolution whereby caldera collapse is followed 471 by growth of a new stratocone is common at many Andean volcanoes. At Nevado del Tolima, Colombia, 472 Thouret et al. (1995) describe four periods of eruptive activity. The early period produced Quaternary age 473 basement lava flows, followed by the formation of an ancient stratovolcano, which has since been cut by 474 caldera formation. A second stratovolcano was subsequently formed and is now overlain by the modern Tolima 475 complex. The early constructive phase of volcanism at Puyehue, Chile, is estimated to comprise 80 % of the 476 total volume and is characterised by two broad shields (Singer et al., 2008). The modern Puyehue stratovolcano 477 has since been built on the more southerly of these two shields (Singer et al., 2008). Clavero et al. (2004) have 478 identified four stages of volcanic evolution at Parinacota volcano, Chile: (1) the early formation of dome 479 complexes and associated pyroclastic deposits; (2) formation of a steep-sided stratocone on top of this dome 480 complex; (3) partial collapse of the volcanic edifice; and (4) formation of a new steep-sided stratocone and 481 several flank cones.

At Cerro Blanco, the early, constructive phase of volcanism is characterised by the eruption of multiple, shallow-dipping lava flows that make up the Santa Gertrudis valley and both the outer and inner caldera wall units (i.e. SGV1, SGV2, OC1 and IC1). The more localised eruptions along the inner caldera wall, that produced the vent facies (IC2) and subglacial lava lobes (IC3), coincide with a period of caldera formation and collapse when volcanism was restricted to the caldera wall fault. Finally, volcanism switched to the centre of the complex with the production of the modern Cerro Blanco stratocone.

488

489 Comparison with the marine oxygen isotope record

Figure 13 shows the chronology of eruptions at Cerro Blanco over the past ca. 120 ka, alongside the marine oxygen isotope record (MOIR) where oxygen isotope variations are used as a proxy for global ice volumes. The lack of ⁴⁰Ar/³⁹Ar ages for the older Cerro Blanco subcomplex makes it difficult to assign them to a particular stage of the MOIR and although we know a minimum age of 92.4 ka, they are likely to be much 494 older. Prior to 92.4 ka, early volcanic activity at Cerro Blanco produced the inner and outer caldera wall lavas 495 (OC1 and IC1), the platform on which the modern volcanic subcomplex is built. A large amount of volcanic 496 activity occurred between ca. 80-92.4 ka during the second half of marine oxygen isotope stage (MOIS) 5, 497 when eruptions were apparently confined to the edges of the caldera. The eruption of the IC2 vent facies at ca. 498 90 ka is thought to coincide with the initial formation of the inner caldera wall fault, and subaerial textures on 499 the vent facies suggest that, locally at least, ice was lower than 2300 m. By ca. 80 ka, when the IC3 dykes, sills 500 and subglacial lobes were emplaced, the inner caldera was formed and was likely to have been filled with ice. 501 The upper level of the ice can be constrained to between 2275 m and 2325 m (the approximate elevation of the 502 caldera rim) given the presence of subaerial, snow-contact and subglacial features on the same unit (Fig. 12) 503 (Mee et al., 2006). It is likely that a combination of an ice-filled caldera and the presence of the inner caldera 504 wall fault caused the eruption of the IC3 unit to be confined to the rim of the caldera (Gilbert et al., 1996).

505 An apparent hiatus in volcanic activity at Cerro Blanco occurred between 80 and 25 ka, although 506 eruptions were taking place elsewhere on Nevados de Chillán (Dixon et al., 1999). When volcanism returned to 507 Cerro Blanco, focus had shifted to the centre of the complex with the eruption of the CB2 Colcura and eastern 508 units, which Dixon et al. (1999) suggest are remnants of a probable post-caldera collapse shield volcano, 509 overlain by remnants of a steep-sided andesitic stratocone. Ages for this unit suggest it would have been 510 erupted during the last glacial maxima in the area, which occurred between 33.5-14 ka according to Lowell et 511 al. (1995). It is unknown, however, if this unit exhibits any subglacial or ice-contact features that would be 512 consistent with widespread glaciation. Subsequent eruptions at Cerro Blanco, up to and including the eruption 513 of the Santa Gertrudis (CB4) lava between 1861-1865 (Dixon et al., 1999) have continued to build the modern 514 stratocone.

- 515
- 516

Conclusions

517

518 1. Identification of volcanic facies characteristic of subaerial, subaqueous, subglacial, ice-constraint and 519 snow-contact activity is important for establishing past eruptive environments and particularly for 520 establishing palaeoclimate conditions at the time of an eruption. Ages of glacially-cooled lavas can be 521 compared with the marine oxygen isotope record to confirm whether or not large amounts of snow and ice 522 were likely to have been present on the volcano at the time of an eruption. Volcanic facies are, therefore, 523 powerful tools for palaeoclimate reconstruction as well as for interpreting past eruptive environments.

Six new volcanic units, each displaying a wide range of volcanic facies, have been identified along the
 inner caldera wall, the outer caldera wall and in the upper Santa Gertrudis valley of Cerro Blanco and a
 new geologic map has been produced.

528

The North and South Santa Gertrudis valley units, and the outer and inner caldera wall units (SGV1,
 SGV2, OC1 and IC1, respectively) are thought to represent an older volcanic complex, characterised by
 voluminous (> 10 km³), constructional volcanism; a feature which is typical of many Andean volcanoes.

532

4. The inner caldera wall fault was an important location for volcanism between 100 and 80 ka BP, during which time it is thought that the inner caldera wall was formed. At ca. 90 ka BP, volcanism was occurring at both ends of the inner caldera walls producing welded breccia and spatter beds on the ridge tops and subglacial lavas (USGV lava) in the valleys, suggesting that a small valley glacier was present at the time of eruption. At ca. 80 ka BP, after the inner caldera wall had been formed, a series of sills and dykes was intruded along the inner caldera wall, some of which were intruded into ice below a level of ~ 2325 m, producing subglacial lobes.

540

541 5. Volcanic evolution at Cerro Blanco can be divided into three periods of eruptive activity: (1) constructive,
542 pre-caldera collapse volcanism; (2) caldera formation and collapse; and (3) formation of the modern Cerro
543 Blanco stratocone. This volcanic cycle is typical at many Andean volcanoes.

544

545 Acknowledgements

The authors would like to thank Hugh Tuffen and Mike James for their valuable contributions in the field, along with Holly Frey and Charles Stern for their thorough reviews, all of which have considerably improved this manuscript. KM was funded by a NERC Studentship; JSG acknowledges receipt of a 2001 Lancaster University Small Grant; DM received support from the OU Science Staff Tutor research fund; and JAN would like to thank Sernageomin's PRV and Fondecyt Project No. 1960186.

551

- 552 **References**
- 553

```
554 Broecker WS and Denton GH (1990) What drives glacial cycles? Scientific American 262:42-50
```

556	Cas RAF and Wright JV (1987) Volcanic Successions - Modern and Ancient. Allen & Unwin, London
557	
558	Clavero JE, Sparks SJ, Polanco E and Pringle MS (2004) Evolution of Parinacota volcano, Central Andes,
559	Northern Chile. Revista Geológica de Chile 31(2):317-347
560	
561	DeGraff JM, Long PE and Aydin A (1989) Use of joint-growth directions and rock textures to infer thermal
562	regimes during solidification of basaltic lava flows. J Volcanol Geotherm Res 38:309-324
563	
564	Déreulle B and Déreulle J (1974) Los volcanes Cuaternarios de los Nevados de Chillán y reseña sobre el
565	volcanismo Cuaternario de los Andes Chilenos. Estudios Geológicos 30:91-108
566	
567	Dixon HJ, Murphy MD, Sparks RSJ, Chávez R, Naranjo JA, Dunkley PN, Young SR, Gilbert JS and Pringle
568	MR (1999) The geology of Nevados de Chillán volcano, Chile. Revista Geológica de Chile 26(2):227-
569	253
570	
571	Gilbert JS, Stasiuk MV, Lane SJ, Adam CR, Murphy MD, Sparks RSJ and Naranjo JA (1996) Non-explosive,
572	constructional evolution of the ice-filled caldera at Volcán Sollipulli, Chile. Bull Volcanol 58:67-83
573	
574	Harford CL, Pringle MS, Sparks RSJ and Young SR (2002) The volcanic evolution of Montserrat using
575	⁴⁰ Ar/ ³⁹ Ar geochronology. In: Druitt TH and Kokelaar BP (eds) The eruption of Soufrière Hills Volcano,
576	Montserrat, from 1995 to 1999. Geol Soc London Mem 21
577	
578	Lescinsky DT and Fink JH (2000) Lava and ice interaction at stratovolcanoes: Use of characteristic features to
579	determine past glacial extents and future volcanic hazards. J Geophys Res 105(B10):23,711-23,726
580	
581	Lescinsky DT and Sisson TW (1998) Ridge-forming, ice-bounded lava flows at Mount Rainier, Washington.
582	Geology 26(4):351-354
583	
584	Lowe JJ and Walker MJC (1997) Reconstructing Quaternary Environments (2nd Edition), Pearson Prentice
585	Hall, England
586	

587	Lowell TV, Heusser CJ, Andersen BG, Moreno PI, Hauser A, Heusser LE, Schlüchter C, Marchant DR and
588	Denton GH (1995) Interhemispheric Correlation of Late Pleistocene Glacial Events. Science
589	269(5230):1541-1549
590	
591	Mee K, Tuffen H and Gilbert JS (2006) Snow-contact volcanic facies and their use in determining past eruptive
592	environments at Nevados de Chillán volcano, Chile. Bull Volcanol 68:363-376
593	
594	Naranjo JA and Lara LE (2004) August-September 2003 small vulcanian eruption at the Nevados de Chillán
595	Volcanic Complex (36°50'S), Southern Andes, Chile. Revista Geologica de Chile 31(2):359-366
596	
597	Naranjo JA, Chávez R, Sparks RSJ, Gilbert JS and Dunkley P (1994) Nuevos antecedentes sobre la evolución
598	cuaternaria del complejo volcánico Nevados de Chillán. Congreso Geológico Chileno 7, Concepción,
599	Chile, 1994 1:342-345
600	
601	Naranjo JA, Sparks RSJ, Stasiuk MV, Moreno H and Ablay GJ (1992) Morphological, structural and textural
602	variations in the 1988 - 1990 andesite lava of Lonquimay Volcano, Chile (38°S). Geol Magazine
603	129:657-678
604	
605	Pringle MS (1993) Age progressive volcanism in the Musicians Seamounts: A test of the Hot Spot Hypothesis
606	for the Late Cretaceous Pacific. In: Pringle MS, Sager WW, Sliter VW and Stein S (eds) The Mesozoic
607	Pacific: Geology, Tectonics and Volcanism. AGU Geophysical Monograph Series 77:187-215
608	
609	Singer BS and Pringle MS (1996) Age and duration of the Matuyama-Brunhes geomagnetic polarity reversal
610	from ⁴⁰ Ar/ ³⁹ Ar incremental heating analyses of lavas. Ear Planet Sci Lett 139:47-61
611	
612	Singer BS, Jicha BR, Harper MA, Naranjo JA, Lara LE and Moreno-Roa H (2008) Eruptive history,
613	geochronology and magmatic evolution of the Puyehue-Cordon Caulle volcanic complex, Chile. Geol
614	Soc Am Bull 120(5-6):599-618

616	Sumner JM and Branney MJ (2002) The emplacement history of a remarkable heterogeneous, chemically
617	zoned, rheomorphic and locally lava-like ignimbrite: 'TL' on Gran Canaria. J Volcanol Geotherm Res
618	115(1-2):109-138
619	
620	Taylor JR (1982) An introduction to error analysis. University Science Books, Mill Valley, California
621	
622	Thouret JC, Cantagrel J-M, Robin C, Murcia A, Salinas R and Cepeda H (1995) Quaternary eruptive history
623	and hazard-zone model at Nevado del Tolima and Cerro Machin volcanoes, Colombia. J Volcanol
624	Geotherm Res 66(1-4):397-426
625	
626	Tuffen H, Gilbert JS and McGarvie DW (2001) Products of an effusive subglacial eruption: Bláhnúkur,
627	Torfajökull, Iceland. Bull Volcanol 63:179-190
628	
629	Tuffen H, McGarvie DW, Gilbert JS and Pinkerton H (2002a) Physical volcanology of a subglacial-to-
630	emergent rhyolitic tuya at Rauðufossafjöll, Torfajökull, Iceland. In: Smellie JL and Chapman MG (eds)
631	Volcano-ice interaction on Earth and Mars. Geol Soc London Spec Pub 202:213-236
632	
633	Tuffen H, Pinkerton H, McGarvie DW and Gilbert JS (2002b) Melting of a glacier base during a small-volume
634	subglacial rhyolite eruption: evidence from Bláhnúkur, Iceland. Sediment Geol 149:183-198
635	
636	York D (1969) Least squares fitting of a straight line with correlated errors. Ear Planet Sci Lett 5:320-324

Figure/Table Captions (Parentheses indicates approximate placement of Tables and Figures)

Table 1 (Line 77)

Summary of field observations for newly mapped units at Cerro Blanco.

Table 2 (Line 77, below Table 1)

Selected representative geochemical and petrologic analyses of newly mapped units at Cerro Blanco .

Table 3 (Line 264)

Summary of new and existing ⁴⁰Ar/³⁹Ar analyses from Cerro Blanco.

Figure 1 (Line 36)

Location map of the northwestern region of Nevados de Chillán Volcanic Complex, showing the locations around the Cerro Blanco subcomplex referred to throughout this paper. Base map: Nevados de Chillán Sheet 3645-7115, Instituto Geográphico Militar de Chile. Inset shows location of Nevados de Chillán within Chile.

Figure 2 (Line 45)

Nevados de Chillán Volcanic Complex, with the Cerro Blanco subcomplex (NW) at left and Las Termas subcomplex (SE) at right (viewed looking east). The two subcomplexes are approximately 6 km apart.

Figure 3 (**Line 62**) Geologic map of the Cerro Blanco subcomplex.

Figure 4 (Line 107) Schematic diagram showing the southern cliffs of the Upper Santa Gertrudis valley.

Figure 5 (Line 119)

The inter-bedded lava and scoria layers that comprise the outer caldera wall cliffs (OC1); viewed from the North Ridge and looking N.

Figure 6 (Line 130)

Southern section of the inner caldera wall, showing the distribution of the newly mapped IC1, IC2 and IC3 units. The view is looking SW from the top of the North Ridge and the field of view is approximately 1 km wide.

Figure 7 (Line 140)

Schematic diagram of IC1 inner caldera wall lavas at the southern end of the inner caldera wall. At least six individual lava flows are observed and can be traced laterally for ~ 100 m, although irregularities on the cliff face make it difficult to trace all of the flows along the entire length of the cliff section (~ 500 m). Not to scale.

Figure 8 ((Line 145)

Relationship between the IC1, IC2 and IC3 units in the volcano-facing scarp at the southern end of the inner caldera wall. The view is looking W, away from the summit of Cerro Blanco and the field of view is approximately 200 m wide. [* Ar^{40}/Ar^{39} age is from Dixon et al., 1999].

Figure 9 (Line 166)

Schematic diagram showing the structure of the IC2 vent at the southern end of the inner caldera wall. Inset 1 shows the typical structure of an individual bed and Inset 2 shows the contact between the vent-fill breccia and the underlying andesitic intrusion.

Figure 10 (Line 178)

Photograph and sketch of the North Ridge at the northern end of the inner caldera wall: (a) showing the dimensions of the North Ridge, with inset showing part of the IC3 subglacial lobes; (b) showing the distribution of different facies on the North Ridge. View is looking S, from the outer caldera wall.

Figure 11 (Line 200)

The IC3 unit at the southern end of the inner caldera wall: (a) distribution of the subglacial lava lobes on the col region of the inner caldera wall and the sills that breached the ground surface above the col (inset); (b) the two larger subglacial lobes on the col; (c) detailed view of one of the lobes, showing a partial cross-section through

the centre of the lobe; and (d) annotated sketch of the lobe in (c), showing the general structure of the subglacial lobes.

Figure 12 (Line 387)

Palaeoenvironment reconstruction showing the approximate level of ice at the time of emplacement of the IC3 sills, dykes and subglacial lobes.

Figure 13 (Line 492)

Chronology of volcanic activity at Cerro Blanco compared with oxygen isotope variations over the past 120 ka. Isotopically light values (warmer conditions) to the left and isotopically heavier values (cooler conditions) to the right. Marine oxygen isotope stages (MOIS) are given on the right. The isotopic signal is interpreted as a proxy for extent of global palaeoglaciation. The vertical line represents the isotope ratio that corresponds to the limited ice cover typical of the Holocene. Modified after Broecker and Denton (1990) and Lowe and Walker (1997).

Table 1

Unit	Unit Name / Facies	Geomorphology / Structure	Texture / Fracture Types
SGV1	North Santa Gertrudis Valley (SGV) Lavas	150-200m high cliffs – upper regions comprise: 10-20cm wide columns, <1m length, variable orientation	Reddish-brown, strongly altered, massive lava (NB: Poor accessibility meant only upper parts of cliffs could be seen through binoculars)
SGV2	South Santa Gertrudis Valley (SGV) Lavas	150m high cliffs comprising zones of massive/weathered lava, columnar jointed lava and fine-grained, bedded deposits (see Fig. 4)	Huge complexity in textures and fracture types – detailed observations limited due to access
SCV2	Outer Caldera Wall Lavas	50-100m high cliffs, 2.5km long; 10 lava flow deposits, 5- 10m thick, inter-bedded with lens-shaped patches of red oxidised scoria	Smooth/striated upper surfaces at western end; broad vertical joints towards eastern end; holocrystalline, devitrified
3673	Outer Caldera Wall Breccias	20m v-shaped patch at base of OCW lavas to west of SGV; 50m v-shaped patch on east side of SGV (observations through binoculars only)	No detailed observations due to limited access
IC1	Inner Caldera Wall Lavas	6 lava flow deposits (see Fig. 7), each 3-8m thick, extend laterally 10-100m; dip 5-10° W away from Cerro Blanco summit	Lavas 1, 2, 5 and 6: porphyritic, broad columnar jointing, scoriaceous upper margins. Lavas 3 and 4: some bulbous lobes, glassy/hackly-jointed exterior. Lavas separated by irregular patches of breccia, clasts up to 40cm diameter in fine-grained matrix (Fig. 7)
	Lanalhue Vent Facies: Welded breccia and spatter	Multiple beds to south of vent, increasing dip from near horizontal at base to 45° N at top of succession. Beds are 0.25-3m thickness.	See Fig. 9
	Lanalhue Vent Facies: Massive andesite body	8m thick, andesite intrusion, exposed at base and to north side of centre of Lanalhue Vent	Massive, crystal-rich, highly vesicular: vesicles sub-mm to >45 cm diameter accumulations. Gradational contact between intrusion and breccia (see Fig. 9)
IC2	North Ridge Vent Facies: <i>North Ridge Lavas</i> North Ridge Vent	Several lava flow deposits, form bedded semi-circle at southern end of North Ridge (2400m elevation); lava strongly eroded/polished with 2 sets of striae to N 3 geomorphologic zones: Zone 1 (2300-2260m elevation)	Lavas have red scoriaceous tops, platy centre; to north (2350m elevation), lava shows greater degree of welding and no scoriaceous top Zone 1: Autobreccia and pseudopillow fractures; Zone 2:
	Facies: Upper Santa Gertrudis Valley (USGV) lavas (See Mee et al., 2006)	2 (2250m) Several interconnected bulbous lobes on plateau; Zone 3 (2250-220m) Steep-sided lava	Glassy outer carapace, crystalline interiors, hyaloclastite around base; <i>Zone 3:</i> Glassy outer carapace, narrow columnar joints orthogonal to outer surface and hyaloclastite

Table 2

Unit Name	SGV1	OC1		(IC1) La	analhue Ca	aldera Wa	ll Lavas		(IC2)	ICW Vent I	(IC3) Glassy Lava Lobes		
Facies and Sub-facies Names	North SGV Iavas	Outer Caldera Wall Lavas	Lava 1	Lava 2	Lava 3	Lava 4	Lava 5	Lava 6	Welded breccia/ spatter	Vesicular Intrusion	USGV Lava	Lava Lobes	Platy sills/ dykes
Sample No.	CB53	CB59	CB23	CB24	CB48	CB26	CB27	CB30	CB35	CB74	CB55	CB02	CB43
SiO ₂	60.96	60.17	55.15	54.07	59.12	58.17	62.94	65.33	59.03	58.92	58.37	57.52	60.58
TiO2	1.36	1.64	1.00	0.99	1.09	1.25	0.94	0.92	1.39	1.42	1.07	1.28	1.44
	16.33	15.20	18.01	17.57	17.34	16.17	16.33	15.71	16.53	16.02	17.11	17.00	16.85
Fe ₂ O ₃	7.13	8.00	8.22	8.21	6.61	7.63	5.97	5.23	7.21	8.02	7.15	7.92	6.72
MnO	0.13	0.14	0.13	0.14	0.12	0.13	0.10	0.09	0.14	0.14	0.11	0.14	0.13
MgO	2.09	2.40	4.42	4.93	3.06	3.42	2.27	1.70	2.26	2.62	3.32	3.24	1.93
CaO	4.66	4.85	8.66	8.65	5.96	6.66	4.76	3.81	4.37	5.70	6.67	6.75	4.12
Na₂O	5.00	4.74	3.86	3.71	4.55	4.06	4.45	4.48	5.58	4.71	4.19	4.36	5.54
K ₂ O	2.15	1.75	0.68	0.71	1.78	1.42	1.91	2.35	1.95	1.44	1.43	1.17	1.94
P ₂ O ₅	0.35	0.54	0.19	0.19	0.23	0.27	0.20	0.20	0.43	0.36	0.25	0.39	0.47
SO3	0.01	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.01	0.00	0.00	0.00	0.01
Rb	64.50	36.70	68.91	96.84	54.38	41.13	45.49	67.17	54.68	68.11	50.26	42.33	54.50
Sr	395.2	535.3	360.02	333.63	451.09	509.68	476.24	378.69	395.77	385.40	433.82	471.25	388.70
Y	30.5	18.9	35.78	40.31	22.68	26.34	30.45	32.61	38.51	31.50	30.57	27.64	35.90
Zr	242.7	129.7	270.08	299.61	182.75	169.82	189.02	246.59	221.61	246.81	215.86	169.61	239.20
Rock Type	A	A	BA	BA	A	A	A	D	A	A	A	B-A	A
Phenocrysts %	7	10	5-10	5-10	5-10	5-10	5-10	5-10	<5	n/a	<5	5	15
Dhamaamust	ficenyi	ficeny	fionvi	fionvi	f L opy L		ficeny	fionvi	ficenyi	filopyi	fiony	fiony	
Phenocryst	1 + cpx + ores	1 + cpx + ol + o	1 + cpx + ol + o	1 + cpx + ol + o	1 + Cpx + 0res	+ 0 res +	1 + Cpx + 0res	1 + Cpx + 0res	1 + Cpx + Oree	1 + cpx + ol + o	1 + cpx + ol + o	1 + cpx + ol + o	f + opy +
assemblage		ores	ores	ores		ap		+ atz + an	opx + 0163	ores	ores	ores	cpx + ores
Key: A = A	ndesite; BA =	= Basaltic-and	lesite; f = feld	spar; cpx = cl	linopyroxene;	opx = orthop	yroxene; ol =	olivine; amp =	amphibole;	ap = apatite; (qtz = quartz; o	pres = Fi-Ti ox	kides

All samples from Nevados de Chillán collected for this project between 02/2001 and 04/2002 and analysed at the XRF Facility at the University Leicester. Samples were numbered in order of collection and prefixed "CB" for Cerro Blanco.

New Ar	/ ³⁹ Ar An	alyses										
			То	tal Gas Age		Ag	e Spectr	um		Isoc	hron An	alysis
Sample	Unit	Sample	K/Ca	Age ± 2 s.d.	No. of	Furnace	³⁹ Ar	Age ± 2 s.d.	MSWD	Age ± 2 s.d.	MSWD	⁴⁰ Ar/ ³⁶ Ar
No.		Туре		(ka)	steps*	Power	(%)	(ka)	#	(ka)	#	Intercept
CB14 ¹	IC3	wr core	0.546	75.6 + 0.7	7 of 15	8.0 to 11.0	71.8	80.0 + 0.6	1.75	80.9 + 1.4	2.06	291.7 + 4.7
CB14 ²	IC3	wr core	0.538	73.9 <u>+</u> 1.0	8 of 14	7.0 to 12.0	91.3	79.9 <u>+</u> 0.6	1.20	79.6 <u>+</u> 1.2	1.35	297.2 <u>+</u> 4.2
CB74	IC2	gr mass	0.533	103.0 + 3.5	8 of 17	6.6 to 8.7	62.4	92.4 + 3.5	2.38	95.6 <u>+</u> 16.6	3.86	294.5 + 4.5
CB55	IC2	wr core	0.322	76.3 + 2.3	7 of 16	8.0 to 10.5	55.8	90.0 + 0.6	0.57	90.7 + 1.2	0.54	293.7 + 2.5
CB83	IC2	wr core	0.327	87.0 <u>+</u> 1.5	10 of 14	6.2 to 13.5	83.0	88.9 <u>+</u> 1.0	1.04	88.5 <u>+</u> 1.5	1.17	295.6 <u>+</u> 0.9
Publishe	d ⁴⁰ Ar/ ^{3§}	⁹ Ar Analyse	s (Dixon To	et al., 1999) tal Gas Age		Αα	e Spectr	um		Isoc	hron An	alvsis
Publishe Sample	d ⁴⁰ Ar/ ^{3§} Unit	⁹ Ar Analyse Sample	s (Dixon To K/Ca	et al., 1999) tal Gas Age Age ± 2 s.d.	No. of	Ag	e Spectr ³⁹ Ar	um Aqe ± 2 s.d.	MSWD	Isoc Age ± 2 s.d.	hron An	alysis ⁴⁰ Ar/ ³⁶ Ar
Publishe Sample No.	d ⁴⁰ Ar/ ^{3§} Unit	⁹ Ar Analyse Sample Type	s (Dixon To K/Ca	et al., 1999) tal Gas Age Age ± 2 s.d. (ka)	No. of steps*	Ag Increments used (°C)	e Spectr ³⁹ Ar _(%)	um Age ± 2 s.d. (ka)	MSWD #	lsoc Age ± 2 s.d. (ka)	hron An MSWD #	alysis ⁴⁰ Ar/ ³⁶ Ar Intercept
Publishe Sample No. C-9	d ⁴⁰ Ar/ ³⁶ Unit CB2b	³ Ar Analyse Sample Type wr core	s (Dixon To K/Ca	et al., 1999) tal Gas Age Age ± 2 s.d. (ka) 19.0 <u>+</u> 2.6	No. of steps* 10 of 12	Ag Increments used (°C) 600-1150	e Spectr ³⁹ Ar <u>(%)</u> 86.5	um Age ± 2 s.d. (ka) 14.9 <u>+</u> 0.9	MSWD # 0.78	Isoc Age ± 2 s.d. (ka) 14.2 <u>+</u> 1.1	hron An MSWD 	alysis ⁴⁰ Ar/ ³⁶ Ar Intercept 296.5 <u>+</u> 1.3
Publishe Sample No. C-9 C-27	Unit CB2b CB2a	⁹ Ar Analyse Sample Type wr core wr core wr core	s (Dixon To K/Ca 0.940 0.312	et al., 1999) tal Gas Age Age ± 2 s.d. (ka) 19.0 <u>+</u> 2.6 53.1 <u>+</u> 5.1	No. of steps* 10 of 12 7 of 11	Ag Increments used (°C) 600-1150 525-1350	e Spectr ³⁹ Ar (%) 86.5 86.8	um Age ± 2 s.d. (ka) 14.9 <u>+</u> 0.9 26.2 <u>+</u> 2.5	MSWD # 0.78 0.73	Isoc Age ± 2 s.d. (ka) 14.2 <u>+</u> 1.1 23.9 <u>+</u> 2.7	hron An MSWD # 0.71 0.74	alysis ⁴⁰ Ar/ ³⁶ Ar Intercept 296.5 <u>+</u> 1.3 296.8 <u>+</u> 0.8
Publishe Sample No. C-9 C-27 C-90	d ⁴⁰ Ar/ ³⁵ Unit CB2b CB2a CB1 ³	⁹ Ar Analyse Sample Type wr core wr core wr core wr core	s (Dixon To K/Ca 0.940 0.312 0.614	et al., 1999) tal Gas Age Age ± 2 s.d. (ka) 19.0 ± 2.6 53.1 ± 5.1 93.3 ± 1.7	No. of steps* 10 of 12 7 of 11 4 of 9	Ag Increments used (°C) 600-1150 525-1350 825-1100	e Spectr ³⁹ Ar (%) 86.5 86.8 53.8	um Age ± 2 s.d. (ka) 14.9 ± 0.9 26.2 ± 2.5 82.9 ± 1.8	MSWD # 0.78 0.73 0.37	Isoc Age ± 2 s.d. (ka) 14.2 ± 1.1 23.9 ± 2.7 81.5 ± 4	hron An MSWD # 0.71 0.74 0.56	alysis ⁴⁰ Ar/ ³⁶ Ar Intercept 296.5 <u>+</u> 1.3 296.8 <u>+</u> 0.8 296.8 <u>+</u> 3.2

* Number of increments used in regression

[#]F Variate Critical Value i.e. the MSWD value should be less than this number for the age to be accurate at the 99% confidence level

Analytical methods and data reduction are summarised in Singer and Pringle (1996) All ages relative to 28.34 Ma for Taylor Creek Rhyolite sanidine TCR-2a (85G0033)

¹ First split of sample

² Second split of sample

³ Field mapping during this study has confirmed this sample to be from the IC3 unit)

⁴Low-precision results from subglacial lavas, generally caused by large 'trapped-gas' components - included primarily for completeness

Figure 12

Figure 13

