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Abstract 

This paper presents the results of an isotopic investigation of population and dietary 

diversity in Roman Gloucester, focusing on individuals found in a late 2nd century AD mass 

burial pit at London Road, and comparing them to those found in the nearby cemetery.  There 

were no statistical differences in isotopic composition between mass grave and cemetery 

burials, suggesting, in agreement with the osteological evidence, that the mass burial was the 

result of a catastrophic event, probably an epidemic disease. Strontium and oxygen isotope 

analysis demonstrated considerable diversity in the origins of the Gloucester population, with 

evidence for both UK and non-UK individuals. Diet was predominately terrestrial and similar 

to that of other Romano-British populations. Elevated 
13

Cdentine ratios in some individuals are 

correlated with raised 
18

Op values and are therefore probably due to childhoods spent in 

warmer climates, rather than dietary variation.  

Given the geological complexity of the Gloucester area, this study also provides new 

biosphere 
87

Sr/
86

Sr data for the wider region. A technical appendix gives details on the 

analytical methods employed by the NERC Isotope Geoscience Laboratory (NIGL) in the 

measurement of oxygen stable isotope ratios of biogenic phosphate (
18

Op) and evaluates 

different phosphate oxygen-meteoric water conversion equations using data from Britain. 

Keywords: isotopes, strontium, oxygen, carbon, nitrogen, bone, Roman, method 

1. Introduction  

Britain under Rome was a multi-cultural society, with historical and epigraphic 

evidence recording the voluntary and forced migration of Gaulish, Germanic and North 

African individuals into the British provinces (Birley, 1979).  This paper presents the results 

of an isotopic investigation of population and dietary diversity in Roman Gloucester, focusing 

on individuals found in a late 2nd century mass burial pit at London Road, and comparing 

them to those found in nearby discrete burials.   

Mass burials are rare in the archaeological record, but offer potential for the 

investigation of specific events and cultural behavior within a narrow time frame. Mass 

burials are often explained in terms of casualties of war and small scale conflicts, or ethnic 
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cleansing (Fiorato et al., 2007; Wahl and König, 1987); epidemics (Grainger et al., 2008; 

Shoesmith and Stone, 1995); or for the disposal of the community’s poor. For example, 

outside the City of Rome, ‘puticuli’ – or grave pits containing the bodies of slaves and 

paupers, are attested (Toynbee, 1971: 49).   

The 2
nd

 century mass burial from Roman Gloucester (Glevum) offers the opportunity 

to test, whether it was the result of a catastrophic event, possibly a disease, affecting all 

members of the community. Alternatively, if the individuals within the pit were different to 

the 'regular' inhabitants of Gloucester, in their geographic origin or diet, other explanations for 

their mode of burial would have to be sought. More generally and as part of a larger project 

exploring diversity in Roman Britain, this study also allows us to explore diet and mobility at 

one of Britain's four colonia towns.  

Various recent studies have combined strontium (
87

Sr/
86

Sr) and phosphate oxygen 

isotope (
18

Op) analysis of tooth enamel to characterize the local and non-local components of 

cemetery populations (e.g. Müller et al., 2003; Budd et al., 2004; Evans et al., 2006a, 2006b). 

However, these methods depend upon our ability to characterize ‘local’ isotope values which 

is not always straightforward (see Bentley et al., 2004). . In order to achieve this and given the 

complex geology of the Gloucester area, we have conducted a survey of biosphere 
87

Sr/
86

Sr 

values within a 30km radius around the city, using modern vegetation samples.   

2. Roman Gloucester (Glevum) 

The city of Gloucester is located in SW England on the east bank of the river Severn, 

near the Welsh border (Fig. 1). Roman activity began around AD 49, with the construction of 

a fortress at Kingsholm (Hurst, 1985), located next to a thriving pre-Roman settlement (Hurst, 

1999).  In the mid to late 60s AD, a new legionary fortress was built 0.5km to the south, 

which eventually became a colonia, a settlement designed for retired legionaries and their 

families, at the end of the 1st century AD (Hassall and Hurst, 1999; Hurst, 1999, 2005; 

Wacher, 1974). At the close of the 1st century AD, the origin of the veteran population would 

still have been, for the most part, from outside Britain (Fulford, 1999). At that time, most 

came from Italy, Southern Gaul and Spain (Mann, 1983; Millett, 1999), with only a few born 

to citizens living in Britain. The latter would have gradually increased throughout the Roman 

period. The hinterland of Gloucester is difficult to define (Hurst, 1999; Reece, 1999), but 

probably included areas west of the River Severn, east of the Cotswold escarpment, and north 

and south along the Vale of Gloucester. While the epigraphic record hints at migration into 

and away from the site and surrounding areas (Birley, 1979; McWhirr, 1981), the limited 

number of Romano-British inscriptions makes the examination of human remains a far more 

promising avenue for research. 

Excavations at 120-122 London Road, Gloucester (2004-2006) revealed part of a 

Roman cemetery containing cremations and inhumations dating from the 1st to the 4th 

century AD (Simmonds et al., 2008).  The most striking feature uncovered by the excavation 

was a 2nd century mass burial pit containing the remains of at least 91 individuals, thought to 

have been placed, somewhat haphazardly, into the pit in a single event. Osteological analysis 

suggests no significant differences between the individuals buried in the pit and those in 

discrete graves in the cemetery in terms of the incidence of disease or trauma, or sex, although 

there was an excess of young adults in the mass burial pit (Márquez-Grant and Loe, 2008). 
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The excavators interpreted the pit individuals as “victims of a catastrophic occurrence that 

resulted in the need to dispose of large numbers of corpses with no opportunity for the normal 

formalities…” (Simmonds et al., 2008: 140), most likely a serious epidemic. This study 

examines whether the isotopic evidence supports this interpretation, and more broadly, asks 

how diverse in terms of their geographical origins and diet, the population of 2nd century 

Gloucester really was. 

3. Isotopic analysis of human remains 

The main principle of isotope analysis of human remains for reconstructing residential 

mobility or diet is that the natural abundance of different isotopes in items of food or drink 

varies systematically, according to the environments they are produced in.  These "isotopic 

signatures" contained in food are incorporated into the skeletal tissues of consumers which, on 

analysis, allow the reconstruction of main dietary sources and, provided that foodstuffs are 

predominantly sourced locally and not imported, the characterisation of the places of 

residence of individuals at the time of tissue formation (Sealy, 2001). 

3.1. Dietary reconstruction: carbon and nitrogen isotope analysis. 

Carbon stable isotope ratios (
13

C) are used in dietary reconstruction to distinguish between 

major types of food, in particular between plants following the C3 and C4 photosynthetic 

pathways and the products of animals feeding on these plants, or, especially in areas of 

temperate climate where C4 plants are rare, between terrestrial, C3-plant based, and marine 

foods.  
13

C data are complemeted by nitrogen stable isotope ratios (
15

N) which give an 

indication of the trophic level an organism is feeding at and therefore allow an estimation of 

the relative importance of plant and animal products in the diet (Ambrose, 1993; Schwarcz & 

Schoeninger, 1991; Sealy, 2001).  Carbon and nitrogen stable isotope analysis for dietary 

reconstruction is usually conducted on bone or dentine collagen.  Most collagen is synthesised 

directly from dietary protein ("protein routing") and its isotopic composition is therefore 

biased towards the main protein sources, rather than reflecting diet as a whole (see Jim et al., 

2006).  Different types of bone have different collagen turnover times, and reflect diet at 

different stages in an individual's life. Dentine preserves the isotopic signature of diet at the 

time of tooth formation in childhood, while the collagen in the shafts of long bones has been 

formed over several decades with a significant proportion laid down in adolescence. Ribs, 

which are relatively thin and contain a greater proportion of cancellous bone give a shorter-

term record of diet – still likely several years, although good empirical data is scarce (Sealy et 

al., 1995; Wild et al., 2000; Hedges et al., 2007).  Carbon and nitrogen stable isotope analysis 

has been previously used to reconstruct the diet of Roman populations in Britain (Richards et 

al., 1998; Fuller et al., 2006; Müldner and Richards, 2007), Italy (Prowse et al., 2004, 2005; 

Craig et al., 2009) and elsewhere (Keenleyside, 2009; Dupras and Tocheri, 2007).  The results 

illustrate not only the environmental diversity across the Roman Empire but also that 

contributions of animal and marine protein to the diet varied according to sex, age or social 

status.   
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3.2. Reconstructing Mobility: strontium and oxygen isotope analysis  

Strontium and oxygen form two independent isotopic systems, reflecting local geology and 

climate, respectively.  Provided that an individual’s diet is dominated by local food and drink, 

strontium and oxygen isotope ratios can be used to characterise their place of childhood 

residence..  Biosphere 
87

Sr/
86

Sr vary mainly according to the type and age of the underlying 

bedrock, although contributions from sources such as geological drift, dust or rainwater, can 

be significant (Bentley, 2006; Montgomery et al., 2007). The 
87

Sr/
86

Sr of tooth enamel reflect 

the average isotope composition of childhood food intake (Montgomery, 2002; Bentley, 

2006).  In humans, the 
18

O of skeletal phosphate is controlled by the isotope compostion of 

the drinking water, although water contained in food and atmospheric oxygen are known to 

make smaller contributions (Longinelli 1984; Luz et al. 1984; see White et al. 1998, 2004; 

Daux et al. 2008).  Virtually all drinking water is derived from precipitation (as rain or snow).  

The isotopic composition of precipitation depends on the source water of the precipitation, the 

distance from the coast, altitude, temperature of precipitation and local climate conditions 

(Darling, 2004; Darling et al., 2006), Therefore in Western Europe the mean 
18

O of 

precipitation decreases from west to east  and to a lesser degree from south to north (Lecolle 

1885).  The preferred analyte for strontium and oxygen isotope analysis of archaeological 

samples is dental enamel, which preserves the isotopic signature of the environment at the 

time of tooth formation in childhood, and is largely resistant to diagenetic change (Hillson, 

1996, Hoppe et al., 2003). Most previous applications of these methods for Roman 

archaeology have used either oxygen (Prowse et al., 2007) or strontium isotopes (Schweissing 

and Grupe, 2003; Perry et al., 2008) to investigate mobility. A combined approach by Evans 

et al. (2006a) on the cemetery of Lankhills (Hants., U.K.) established considerable diversity 

of geographic origins which, interestingly, did not always correlate with expectations based 

on the archaeological evidence.  
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3.3. Establishing a ‘local’ strontium signature. 

The geology of the Gloucester is complex, both in terms of outcrop patterns and geological 

age.  The city of Gloucester lies within the Vale of Gloucester (Fig. 2), a broad expanse of 

early Jurassic, Lower Lias, mudstones which are overlain, in part, by Quaternary alluvia, 

undifferentiated river terrace deposits and Holocene to recent tidal flat deposits. The Vale is 

bordered by three geographic and geologically distinct areas: the Cotswold Hills to the south 

and southeast (dominated by early Jurassic limestones and subordinate mudstones), the Forest 

of Dean to the west (Palaeozoic (Silurian to Carboniferous) sandstones and mudstones), and 

the Malvern Hills to the north (Precambrian and Cambrian igneous and meta-igneous rocks 

and Palaeozoic sediments).  The Malverns are separated from the Vale of Gloucester by an 

expanse of Triassic mudstones which are, in parts, covered by a "head" of post-glacial rubble 

drift.  The bedrock substrates of the region within a 30 km radius of Gloucester (~2823 km
2
), 

therefore, range from Precambrian (>545 Ma) Malvern meta-igneous to the Oxford Clay of 

Jurassic age (~154 Ma). 

This complex geology is a strong indication that the strontium isotope signatures 

within the study area will vary widely.  Strontium isotope measurements of waters in the 

general Gloucester area, though sparse, provide a guide for the biosphere values derived from 

the different lithologies.  Mineral water data from aquifers in the Cotswold limestone gave a 

value of 0.7084 (Montgomery et al., 2006).  
87

Sr/
86

Sr from water samples from the Malverns 

range from 0.7094 to 0.7133 (Spiro et al., 2001; Montgomery et al., 2006).   

Various approaches have been used to constrain the bio accessible 
87

Sr/
86

Sr regions of 

interest for population origins and movement.  These include direct measurements of water, 

soil, rock, human and faunal remains or vegetation (Price et al., 2002; Bentley et.al., 2004, 

Bentley and Knipper, 2005 and Evans et.al. 2009), and estimations based on published values 

for geological substrates of similar age and rock type (Beard and Johnson 2000).   While 

measurements of archaeological fauna may be suited to determining the local strontium range 

they are not always readily available. 
87

Sr/
86

Sr in vegetation provides a direct biosphere 

measurement, are readily available and samples can be targeted easily in areas of interest, in 

this case the different lithologies encountered in the Gloucester region.  Assuming that a 

given population is likely to resource most of its food within a single days travel, a study area 

within 30km of Gloucester city centre was chosen for vegetation sampling.  

3.4 Establishing a UK oxygen isotope range 

The oxygen isotope composition of modern freshwater in the UK is relatively well 

known, with 
18

O between -9.0‰ and -4.5‰, with the highest values (>~ -5.0‰) being 

isolated to the Outer Hebrides and the extreme west coast of Cornwall (Darling and Talbot, 

2003; Darling et al., 2003). Gloucester itself is within Darling et al.'s (2003) -7.0 to -7.5‰ 

contour. Drinking waters measured in the area gave mean values of -7.0‰ (Darling, pers. 

comm.). On the European continent and around the Mediterranean coast, 
18

O values for 

precipitation range from <-10.0‰ to c. -3.0‰ (Bentley and Knipper, 2005; IAEA/WISER, 

2008; Lecolle et al., 1985; Longinelli and Selmo, 2003; Lykoudis and Argiriou, 2007).  
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Oxygen undergoes fractionation through metabolic processes and relating the isotopic 

composition of skeletal phosphate (
18

Op) directly to climate regions requires conversion to 

approximate drinking water values (
18

Odw) using one of the available regression equations 

(Longinelli 1984; Luz et al. 1984; Levinson et al. 1987; Daux et al. 2008). Since there is no 

general agreement over which of these equations is the most appropriate, and also because of 

the relatively large statistical error associated with each (see Daux et al., 2008), we have 

derived a current best estimate for 
18

Op values of humans growing up in Britain from 

available oxygen isotope data for individuals with "local" 
87

Sr/
86

Sr from various sites across 

the UK (see appendix below for details). The 2σ range of these data is 16.8‰ to 18.6‰ 

(mean 17.7±0.9‰ for 57 individuals from nine sites), giving a broad UK baseline. To further 

aid in the interpretation of our data, we are using 
18

Odw values calculated by the equation of 

Levinson et al. (1987) with a method bias correction of 1.4, as we have found that drinking 

water values computed in this way for probable locals from various UK sites provided a very 

good match with "expected" (modern) freshwater values for the same area (see appendix 

below for details).  

The balance of palaeoclimate evidence indicates that Roman Britain was somewhat 

warmer than today, before a climatic downturn, probably from the 5
th

 century AD (Dark, 

2000: 19ff.). Increased temperatures may translate into higher oxygen isotope ratios of 

meteoric water and, by implication, more positive 
18

Op of humans growing up in Roman 

Britain than in other, cooler, time periods. However, the significance of relatively minor 

temporal shifts in climate for mobility studies is currently difficult to gauge. In a diachronic 

study of humans living in Lorraine (northeast France) from the 4
th

 century AD to the present 

day, Daux et al. (2005) found no significant differences in 
18

Op between time periods, not 

even in relation to the "Little Ice Age", the most significant cooling event of the late 

Holocene. They suggest that oxygen isotope levels in skeletal phosphate are either not 

sensitive to small variations in surface temperature, or that temperature-induced changes are 

offset by other factors, such as shifts in seasonal rainfall patterns (see Fricke & O'Neil, 1999). 

Indeed, extended periods of dry summers as they are suggested for Roman Britain from 

documentary sources and peatland evidence (Dark, 2000: 19f.; Swindles et al., 2009) could 

have had just such an effect (see Daux et al., 2005; Fricke & O'Neil, 1999). While the issue of 

climate fluctuations for human mobility studies is therefore far from solved, for the moment 

and with caution we make the assumption that modern water values and human 
18

Op from 

other time-periods (see Appendix) are valid comparisons for our Romano-British data.   

4. Materials and Methods 

4.1 Bone and tooth sample preparation 

The London Road site comprised 64 individuals from inhumation graves in the main 

cemetery, and a minimum of 91 individuals in the mass burial pit.  Of these, 73 were 

articulated skeletons (Márquez-Grant and Loe, 2008). Fifty human bones (rib or long bones) 

and 11 faunal remains were sampled for carbon and nitrogen isotope analysis. Dentinal 

collagen, usually from the root immediately below the cemento-enamel junction, was also 

extracted from the teeth sampled for oxygen and strontium isotope determinations. For these, 

the teeth of 21 individuals were selected, 10 were from the main cemetery, and 11 from the 
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mass grave (Table 1).  Permanent second or third molars were sampled, representing an age at 

crown formation of 3-7 years (M2) and 9-13 years (M3), respectively. Root formation occurs 

between c. 7 to c. 14 years (M2) and c. 13 to c. 19 years (M3) (Hillson, 1996; Smith, 1991).   

Collagen was extracted using a modified Longin (1971) method as described by 

Britton et al. (2008).  Collagen preservation at the site and particularly in bones from the 

mass-grave was very poor. Only 11 human and nine faunal bone yielded products for 

analysis. Dentinal collagen was much better preserved, with 20 dentine samples providing 

data with acceptable quality indicators (see DeNiro, 1985; van Klinken, 1999). Enamel 

samples were prepared for strontium and oxygen isotope analysis following methods by 

Montgomery (2002) and O'Neil et al. (1994), as described in Evans et al. (2006a). Two 

samples of dentine were also processed for determination of 
87

Sr/
86

Sr by the same method as 

the enamel. No attempt was made to remove diagenetic strontium from the dentine samples as 

these are used in order to help characterize the isotope composition of the local burial soil (see 

Montgomery et al., 2007 and below). 

4.2. Establishing strontium isotope parameters: plant sample preparation 

Grass and/or herbaceous plants were sampled at 34 sites from around the Gloucester 

area, to provide a comprehensive representation of the geologic periods, and major rock and 

drift types. Assuming that most foods available in Roman Gloucester were sourced from 

within one day's travel of the town, all samples were obtained from within a 30km radius of 

the modern city (Fig. 2, Table 2). Two litres of vegetation were collected at each site over 

several square meters.  In order to avoid potential anthropogenic contamination, the sampling 

sites were chosen away from major roads, at least 10m away from small roads or track ways, 

and avoiding currently cultivated fields.  All vegetation samples were dried at 40ºC for 36 

hours. Approximately 25% of the dried plant material was sub-sampled.  Stems were removed 

and leaves were hand-crushed, coarsely sieved and stored in clean plastic bags for later 

analysis.  The resulting samples ranged in weight from c.25 to c.50g. In a clean laboratory, 

approximately 0.2 grams of crushed and sieved plant material was placed into clean, dry PFA 

Teflon vessels to which 6ml Teflon distilled 3M HNO3 was added.  The samples were left 

uncovered to allow release of early gas production before tightly sealing.  The vessels were 

placed in a MARSXpress
TM

 low pressure microwave digestion unit, set to ramp up to and 

hold the sample at 170 ºC for 10 minutes.  Once cooled, the dissolved plant solution was 

transferred into 22ml clean Savillex beakers and taken to dryness over a hotplate.  To 

complete the dissolution, 1ml 8M HNO3 was added to the sample and taken to dryness.  The 

sample was then converted to chloride form with 1 ml of 6M HCl and taken up in 2.5M HCl.  

Strontium was collected using conventional, Dowex® resin ion exchange methods.   

4.3 Isotope-ratio mass spectrometry 

Isotopic measurements of 
13

C and 
15

N were performed in duplicates by Continuous 

Flow Isotope Ratio Mass Spectrometry (CF-IRMS).  Analytical error (±0.2‰, 1σ) was 

calculated from repeat measurements of internal standards and internationally certified 

reference material (USGS-40). Analysis of 
18

Op was by CF-IRMS using the method of 

Venneman et al. (2002).  Each sample was analysed in triplicate. Sample reproducibility 

averaged at ±0.25‰ (2σ) (see Table 1 for individual samples).  External batch reproducibility 
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was 0.15‰ (n=6, 1 ). All data were corrected to an internal value of +21.7‰ VSMOW for 

NBS120C (see Appendix for further information).  

The strontium isotope composition and concentrations were determined by Thermal 

Ionisation Mass spectrometry (TIMS) using a ThermoFinnigan Triton multi-collector mass 

spectrometer.  Samples were run using single Re filaments loaded with TaF activator (after 

the method of Birck, 1986). All samples were determined to an internal precision of better 

than ± 0.000012 (2σ). The reproducibility of the international standard for 
87

Sr/
86

Sr, NBS987, 

was ±0.00006 (1 , n=5).  All strontium isotope ratios were corrected to a NBS 987 standard 

value of 0.710250.  Strontium procedural blanks were between 20-250pg (the higher values 

were from the plant microwave dissolution) and hence, provided a negligible contribution. 

5. Results  

Isotopic measurements for bone and dental tissues of humans and animals are 

presented in Tables 1 and 3. Strontium isotope data for the biosphere plant samples are given 

in Table 2.  All individuals with sample numbers greater than 1500 are from the mass burial 

pit. 

5.1 Carbon and nitrogen stable isotope evidence for diet 

he
13

C ratios for human bone samples (n=11) range between -20.5‰ and -18.8‰ 

(mean -19.7 ± 0.5‰), 1σ).  Nitrogen isotope ratios ranged between 10.2‰ and 12.5‰ with a 

mean of 11.1 ± 0.7‰.  Results from the dentine samples are very similar (
13

C range: -20.3‰ 

to -18.8‰; mean: -19.8 ± 0.5‰; 
15

N: 8.8‰ to 12.6‰, mean: 11.3 ± 1.0‰). Herbivore 

carbon and nitrogen isotope data average at -21.6±0.3‰ and 6.4±0.6‰ (1σ) (Table 3; Fig. 3). 

There are no significant differences in 
15

N ratios between dentinal and bone collagen (t(29)= -

4.6, p=0.65), or between data from second and third molars (t(18)= -1.69, p=0.11), suggesting 

that in all cases weaning had occurred before tooth formation commenced (see Wright and 

Schwarcz, 1998). 

The dietary data from Gloucester are directly comparable to the Romano-British data-

set from York, another colonia town in Roman Britain (Müldner & Richards, 2007). In 

keeping with other evidence for diet in the British provinces (Dobney et al., 1999; Cool, 

2006), these data can be interpreted in terms of a terrestrial (C3-based) diet, probably with a 

relatively large contribution from animal protein (see Müldner & Richards, 2007 for 

discussion). A number of individuals in the Gloucester assemblage have 
13

C values that are 

elevated by more than 2‰ over the herbivore baseline (
13

C >19.6‰), an offset which is 

unusually large for a single trophic level effect, especially when bone collagen values are 

compared directly (see Bocherens and Drucker, 2003). At York, and with the benefit of a 

larger sample size, similar values were interpreted as reflecting a small contribution of marine 

protein to the diet (Müldner & Richards, 2007). For Gloucester, however, comparison with 

the available oxygen isotope evidence suggests a different explanation (see discussion below). 

There are no significant differences in dentinal collagen isotope composition between 

individuals buried in discrete graves or the mass-grave (independent sample t-test: t(18)= -0.46, 

p=0.65 for 
13

C; t(18)= -0.38, p=0.71 for 
15

N), between males and females (t(15)= -1.21, 

p=0.24 for 
13

C; t(15)= -1.74, p=0.10 for 
15

N) or different age groups (One-way ANOVA: 
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F(3,17)= 1.75, p=0.19 for 
13

C; F(3,17)= 0.36, p=0.78 for 
15

N).  No statistical tests were carried 

out on the bone collagen data due to small sample sizes.  

5.2 Strontium and oxygen isotope evidence for mobility 

5.2.1 Biosphere 
87

Sr/
86

Sr data 

Strontium isotope data for modern vegetation samples range from 0.7077 to 0.7162, 

with a mean of 0.7109 ± 0.0045 (2σ, n=34) for plants growing within a 30km radius of the 

site, demonstrating a very wide range of
87

Sr/
86

Sr for such a small area (c.2,820 km
2
).  For 

comparison, the strontium isotope range measured for mineral water from 26 sites across 

England and Wales (not Scotland) was 0.7077 to 0.7139 (Montgomery et al., 2006). 

The 
87

Sr/
86

Sr data for the plant samples in comparison with geological substrates are 

shown in Figure 2.  Although there is the expected trend of increasing biosphere 
87

Sr/
86

Sr 

values with the age of the underlying bedrock, there is substantial variation among rock types 

within and between geologic time-periods.  
87

Sr/
86

Sr values for vegetation growing over 

sandstone tend to be the most radiogenic, with decreasing values in the order mudstones 

/argillaceous rocks, limestones with an argillaceous component and limestones without an 

argillaceous component.  
87

Sr/
86

Sr data for the area around Malvern Hills are spread most 

widely (Fig. 5) and reveal the effects of land slip and drainage over geologically complex, 

steeply sloping terrain.  Where plants grow on or close to rubble drift (‘Head’) their isotopic 

values are strongly influenced by the source of the drift.   

Although the overlap between different areas is considerable, the modern biosphere 

samples allow us to broadly characterize strontium isotope ranges typical for different parts of 

the study region (Figs. 2 and 5).  Values within the Vale of Gloucester and on tidal flood 

deposits of the river Severn gave a mean of 0.7095 ± 0.0012 (2σ, n=8).  
87

Sr/
86

Sr values for 

the two dentine samples (GLR1216, 1560), which are expected to have taken up diagenetic 

strontium from the burial environment and therefore to reflect the isotopic composition of the 

local soil (see Budd, et al., 2000; Montgomery et al., 2007), are in agreement with these data 

(0.7093 and 0.7092, see Table 1).  Vegetation from the Cotswolds gave an overall mean of 

0.7088 ± 0.0025 (2 , n=8).  However, the mean value for plants growing on the dominating 

Jurassic Limestone, 0.7080 ± 0.0005 (2σ, n=5) differed from those on limestones with an 

argillaceous component (G-V-009 and G-V-010, 0.7098, 0.7090), with the latter values more 

similar to those measured for the Vale of Gloucester. To the west of the River Severn and 

around the Forest of Dean, isotope ratios for bio-accessible strontium over Carboniferous and 

Devonian sandstones gave a mean of 0.7123 ± 0.0015 (2 , n=4).  This contrasts with a value 

of 0.7098 (G-V-13) for vegetation growing on Triassic mudstone near-by. The Malvern Hills 

area to the north produced the most variable biosphere values.  They range between 0.7101 

(Palaeozoic silt- and mudstone; G-V-032) and 0.7162 (Precambrian meta-igneous rock; G-V-

026).  Overall, the vegetation samples from this area gave a mean of 0.7128 ± 0.0040 (2σ, 

n=13).   

5.2.2. Human 
87

Sr/
86

Sr data 

The enamel 
87

Sr/
86

Sr ratios cover a broad range from 0.7088 to 0.7134 (Table 1; Fig. 

5).  All strontium isotope ratios fall within the range of bio-accessible strontium within 30 km 

of Gloucester.  The majority of the individuals (16 out of 21), plot within the 
87

Sr/
86

Sr (0.7077 

to 0.7109) range for vegetation growing over the Jurassic terrains of the Vale of Gloucester 
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and the Cotswolds, although three of these (GLR1181, 1328, 1546), display values that also 

overlap between Jurassic Mudstones and Palaeozoic sandstones (0.7106, 0.7106 and 0.7109, 

respectively).  
87

Sr/
86

Sr values for the remaining six individuals are more radiogenic and 

compatible with coming from older Palaeozoic, Precambrian or rubidium rich, igneous 

terrains.  Three individuals (GLR1131, 1364, 1541) have values compatible with bio-

accessible strontium measured for the Palaeozoic terrains to the west of the River Severn, and 

with bottled water from Silurian mudrocks in Wales (Montgomery et al., 2006). The very 

high values for GLR1518 and GLR1561 (0.7130, 0.7135) are both compatible with the values 

reported for the Malverns or similar Precambrian volcanic rocks, as well as head deposits 

down-slope to the east of the Malvern Hills.   

Statistical comparison between individuals from discrete burials with those from the 

mass grave revealed no significant differences in strontium isotope composition (independent 

sample t-test: t(19)= -0.926; p=0.368).  Similarly, no significant differences were observed 

between males and females (t(13) = -0.799, p=0.134), or different age groups (One-way 

ANOVA F(3,17)=0.54, p=0.66).   

5.2.3 Human 
18

O data. 

The enamel phosphate oxygen isotope ratios (
18

Op) in the study sample range from 

17.1‰ to 19.2‰.  Equivalent drinking water values (
18

Odw) calculated using Levinson et 

al.'s (1987) equation and taking into account analytical method bias (see appendix), range 

from -8.1‰ to -3.5‰. Based on kernel density estimations (RSC, 2006; see Fig. 4), these data 

can be split into two groups, at 18.4‰ (-5.1‰): into a larger group (n=14) with 
18

Op ratios 

between 17.1‰ and 18.4‰ (mean 17.7±0.9‰, 2σ) and a smaller group (n=7) with higher 
18

Op signatures between 18.6‰ to 19.2‰ (mean 18.9 ± 0.4‰), suggesting origins in a 

warmer, more coastal or possibly more arid climate. The differences between these two 

groups are statistically significant (Mann-Whitney test: U(19)<0.001, Z= -3.66, p<0.001). All 

individuals in the first group fall within the 
18

Op range of 16.8-18.6‰ which we use as a 

current best estimate for the range of values expected for individuals growing up in the UK 

(see above and appendix). The individuals in the second group are outside this range, with the 

exception of GLR1520 which is at the cut-off point of 18.6‰. Using the corrected Levinson 

equation to calculate drinking water values, only four individuals in this second group 

(GLR1360, 1565, 1546, 1216) fall strictly outside the expected range for UK water (>-4.5‰); 

however, the remaining individuals (GLR1520, 1561, 1560) if from the UK, are only 

consistent with water values from extreme western Britain (>-5.0‰; see Darling et al., 2003).  

When the oxygen stable isotope data are compared with 
13

Cdentine values from the 

same teeth, it is apparent that individuals from the second group (with higher 
18

Op) are also 

enriched in 
13

C over the others, with GLR1520 (the individual at the cut-off point for 
18

Op) 

displaying marginally lower 
13

C than the others (Figure 6). Again, the difference between the 

two groups is significant (Mann-Whitney test: U(18)=1.50, Z= -3.39, p<0.001) This pattern 

may be best explained by the climate-driven gradient in the carbon isotope composition of C3 

plants across Europe, which gives individuals on terrestrial C3 diets in, for instance, the 

Mediterranean on average 1-2‰ higher 
13

C ratios than humans eating the same foods in the 

UK (van Klinken et al., 2000). The positive correlation between carbon and oxygen isotope 
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ratios (r=0.68, p=0.001) therefore lends further support to the argument that several 

individuals buried in Roman Gloucester spent their childhood in a warmer climate.  

Statistical comparison of oxygen isotope ratios between individuals from the cemetery 

and the mass-grave show no significant differences (t(19) = -0.621, p=0.542), neither do 

comparison between males and females (t(13) = 1.153; p=0.270) or different age groups (One-

way ANOVA: F(3,17) = 0.58, p=0.64).   

6. Discussion 

6.1 Purpose of the Mass-Grave 

Statistical analyses revealed no differences between mass-grave and cemetery burials, age or 

sex for any of the isotopes tested, suggesting that the individuals in the mass-grave were a 

random sample of the population of Roman Gloucester.  Our results are therefore consistent 

with the conclusions drawn by Simmonds et al. (2008) based on osteological evidence, that 

the mass-grave was constructed after a catastrophic event, such as an epidemic.   

Historical sources report a number of epidemic diseases that afflicted the Roman 

Empire in the first centuries AD, but they do not state if the British provinces were affected.  

The dating of the mass burial pit to the late 2
nd

 century AD places it later than the main 

cemetery and corresponds with the Antonine Plague, that began in AD165 in Mesopotamia, 

but quickly spread to Rome, the Rhine and Gaul (Cartwright and Biddiss, 2004; Gilliam, 

1961; Jackson, 1988; McNeill, 1977).  The plague may have been an outbreak of smallpox 

(Littman and Littman, 1973), and its impact on the Roman world is still debated (Greenburg, 

2003).  Although a connection between the Antonine Plague and the mass-grave from London 

Road is by no means certain, it seems very likely that it was an epidemic of a similar nature 

which afflicted the population of Glevum. 

6.2 Childhood origins of the people of Gloucester 

Identifying migrants through strontium and oxygen isotope data requires the definition 

of the range of values that are consistent with a local upbringing (Bentley et al., 2004). This is 

generally more difficult for oxygen isotopes. Unlike strontium, oxygen is fractionated by 

metabolic processes and the different fluxes of oxygen into and out of the body which 

ultimately determine the oxygen isotope composition of skeletal phosphate are complex and 

variable between individuals (Luz et al., 1984; Luz and Kolodny, 1985; Bryant and Froelich, 

1995; Kohn, 1996; White et al., 2004). The range of "natural" variation in 
18

Op that can be 

expected in a stationary population consuming drinking water of the same isotopic 

composition is, therefore, currently unknown. In the absence of a baseline at Gloucester 

derived from human 
18

O values of probable locals (see Evans et al., 2006a; Prowse et al., 

2007), we currently do not attempt constraining the oxygen isotope data beyond what we 

suggest as the current best estimate of a UK range (17.7± 0.9 ‰, see appendix). Nevertheless, 

plotting the range of modern drinking water values for the Gloucester area (-6.5‰ to -7.5‰; 

Darling et al., 2003; Darling pers. comm.) with calculated 
18

Odw for the human samples 

gives at least a broad indication of where local human values would be expected (Figure 5). 

This approach allows some relative statements about the human data (see below). 
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Since oxygen isotopes mainly work on broad geographical scales, strontium isotopes 

are often employed to define local values in more detail (for example Evans et al., 2006a). 

Because of the complex geology of the Gloucester area, however, these also proved difficult 

to use: Biosphere 
87

Sr/
86

Sr within 30 km of Gloucester encompass the entire range of 

strontium isotope values previously measured for mineral waters from England and Wales 

(Montgomery et al., 2006). It is therefore unsurprising that the 
87

Sr/
86

Sr of all 21 individuals 

in the sample can be found within this 30 km radius. This does not, of course, mean that they 

are local, as they could have equally moved from other places with consistent strontium 

values. When assessing the hinterland of Glevum, it is apparent that the majority of 

individuals (10 out of 14 with "UK-range" 
18

Op ratios, see above) have 
87

Sr/
86

Sr that are 

consistent with foods derived from the Vale of Gloucester and the Cotswolds, within ~10 km 

around the city (Figs. 2 and 5) and it seems likely that these areas provided the bulk of the 

food supply for Roman Gloucester. Consequently, it may be the simplest explanation for 

individuals with higher 
87

Sr/
86

Sr (>0.7110) that they did not spend their childhood in 

Gloucester, rather than that they just happened to predominantly consume foods which came 

into town from further afield.  

The 
18

O of the four individuals in question (GLR1131, 1364, 1518, 1541) fall either 

side of the projected Gloucester drinking water range (Fig. 5). Although it is difficult to assess 

whether these data are still consistent with an upbringing in the Gloucester area, we can at 

least derive from this that origins for individuals GLR1518 and 1364, with more enriched 
18

O, should be sought, if not in the radiogenic terrains around Gloucester, then in "warmer" 

areas to the West (i.e. Wales) and southwest (areas in modern Somerset, Devon or Cornwall). 

Accordingly, GLR1131 and 1541, with more depleted 
18

O, would have moved from older 

rocks in "cooler" areas to the north and east, i.e. central and Northern England or even 

Scotland (see Darling et al., 2003; Montgomery et al., 2006; BGS Map, 2007). Alternatively, 

there are of course many other areas on the European continent or even further afield, within 

the confines of the Roman Empire, that could match the observed isotope data (Asch, 2005; 

IAEA/WISER, 2008).  

More diverse origins for the Gloucester population are indeed suggested by the oxygen 

isotope data. Six individuals have 
18

Op ratios that are outside our current estimate for a UK 

range.  Although two of these (GLR1560, 1561) fall only just out of this range, kernel density 

estimations and the evidence from carbon stable isotope analysis independently suggest they 

should be seen as one group with the remaining four (GRL1216, 1360, 1546, 1565) which 

have values ≥ 19‰. A seventh individual (GLR1520) could also be included on the basis of 

the kernel density estimations, though not, perhaps, the carbon isotope evidence (see above 

and Figs. 4 and 6). The 
18

Odw of these seven individuals are consistent only with the 

westernmost parts of Cornwall or Scotland or are even more 
18

O enriched (Figure 5; Darling 

et al., 2003). Given the areas of Roman influence in the British Isles, the probability of these 

being from Britain is small and an origin abroad is more likely.  

Our ability to constrain the possible geographical origin of these individuals is 

currently hampered by the scarcity of directly comparable human isotope data from possible 

regions of origin, the availability and spatial resolution of data on drinking water 
18

O and 
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biosphere 
87

Sr/
86

Sr for these areas, as well as the error associated with available phosphate 

oxygen to drinking water conversion equations (see Daux et al, 2008). The suggested places 

of origin given below are therefore based on ‘best matches’ with currently available data. 

Despite its latitude, much of Britain enjoys a relatively mild and coastal climate, largely 

because of the Gulf Stream. Average drinking water 
18

O for Britain therefore overlap not 

only with geographically close areas such as northern France, the Low Countries and 

northwest Germany, but also with those of other European regions that are commonly thought 

of as "warmer", such as Southern Europe and the Mediterranean (IAEA/WISER, 2008; 

Longinelli and Selmo, 2003; Prowse et al., 2007; Lykoudis and Argiriou, 2007). Calculated 
18

Odw ratios of the suggested non-UK individuals range from -4.7‰ to -3.5‰ which are 

consistent with many areas of the Mediterranean coast. With a maximum 
18

Op of 19.2‰, 

however, they are still significantly lower than values reported for humans from a hot and arid 

region like the Nile Valley, most of which are in excess of 21‰ (Iacumin et al., 1996; White 

et al., 2004 [although these data were produced using different methods and it is therefore 

unclear how they compare to our own in absolute terms, see appendix]). Origins in relative 

proximity to the coast would also be consistent with the strontium isotope evidence for most 

of the seven suggested non-UK individuals. Five (GLR1216, 1360, 1520, 1560, 1565) have 
87

Sr/
86

Sr between 0.7090 and 0.7097 which are close to the value for modern seawater 

(~0.7092). These data are compatible with terrains over Mesozoic sediments of marine origin 

or, more generally, with foods derived from coastal zones where marine strontium has a 

significant effect on biosphere 
87

Sr/
86

Sr (Montgomery et al., 2007). The remaining two 

individuals (GLR1546, 1561) have more radiogenic values, both in excess of 0.7100 but 

relatively far apart (0.7109 and 0.7135, respectively). These suggest childhoods in different 

areas of Palaeozoic rocks. Within the Roman Empire and limited to areas of warm/coastal 

climates such geologies can be found in the southern or western Iberian Peninsula, the 

Mediterranean coast of Algeria and Morocco, or western Turkey (Asch, 2005).  

7. Conclusions 

Strontium and oxygen isotope analysis for reconstructing geographic origin are relatively new 

techniques and applying them to the Roman period, where it is known that not only people 

but also foods moved over large distances, and in an area of significant geological diversity 

like Gloucestershire, is certainly ambitious. Our case-study has not only provided new 

evidence for diet and population composition at Roman Gloucester, but has also highlighted 

important issues regarding the reconstruction of migration in the past that need to be 

addressed by future research. It is clear that more work and human reference data are needed, 

not only from potential regions of origin, in this case the wider area of the Roman Empire, but 

also from (in comparison) already relatively well-studied places like Britain, in order to gauge 

the "normal" variation expected in stationary populations as well as to assess oxygen isotope 

variation through time due to climatic changes (see Daux et al., 2005). In order to achieve 

these things, future work will need to target not only sites where a large degree of population 

mobility is likely (such as a major Roman town and veteran settlement like Gloucester) but 

also nominally "less interesting" rural populations, where it may be expected that both 

humans and foodstuffs moved only within a relatively limited area. 
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We have made a start at addressing these issues by surveying the available oxygen isotope 

evidence to derive a current best estimate for a human 
18

Op UK-range (see appendix). Our 

suggested upper limit of ~18.6‰ appears to be independently supported in the Gloucester 

data-set by the results of statistical analysis (kernel density estimations), and the carbon 

isotope evidence. Future work will show how robust this estimate is. The results suggest that 

six (28%), possibly seven of the 21 individuals tested from Gloucester spent their childhoods 

in a warmer/more coastal climate than Roman Britain. Our results therefore demonstrate 

considerable diversity among the population of Roman Gloucester, even after the initial wave 

of incomers following the conquest of Britain.  
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Tables & Figures  

Main Text 

Table 1.  Carbon and nitrogen stable isotope data and collagen quality indicators (see van Klinken 1999) for dentine samples and strontium isotope data and elemental 

concentrations as well as oxygen stable isotope data from enamel phosphate (
18

Op) and converted drinking water values using the equation by xx (
18

Odw) with basic 

archaeological and anthropological information for the sampled individuals. 

Sample Tooth 3C  %C %N C/N %coll. 87Sr/86Sr Sr/ppm p ±2σ dw ±2σ Sex Age 

Discrete Burials           

GLR1103 M3 -20.1 12.2 42.8 15.4 3.2 11.6 0.70944 114 18.4 0.3 -5.1 0.5 F YMA 

GLR1127 M3 -20.0 10.4 42.6 15.2 3.3 5.1 0.70967 121 17.2 0.3 -7.8 0.6 ?M YA 

GLR1131 M3 -19.3 12.6 43.0 15.4 3.3 12.2 0.71143 133 17.1 0.3 -8.1 0.6 F YA 

GLR1181 M2 -20.1 10.8 41.3 14.9 3.2 10.2 0.71057 76 17.6 0.3 -6.9 0.7 F YMA 

GLR1216 M3 -19.2 10.9 41.9 15.1 3.2 7.1 0.70941 93 19.2 0.3 -3.5 0.7 M OMA 

GLR1216 Dentine -- -- -- -- -- -- 0.70931 98 -- -- -- --   

GLR1238 M3 -20.3 10.7 43 14.9 3.4 6.7 0.70891 52 17.1 0.1 -7.9 0.2 ?M OMA 

GLR1328 M3 -19.5 12.0 42.5 15.3 3.2 6.6 0.71056 57 18.0 0.3 -6.1 0.6 M YMA 

GLR1340 M2 -20.1 10.3 41.6 15.0 3.2 6.4 0.70958 104 17.9 0.3 -6.3 0.7 ND OA 

GLR1360 M2 -19.2 9.9 43.1 15.7 3.2 11.8 0.70900 133 19.0 0.4 -3.9 0.8 F YA 

GLR1364 M3 -20.3 12.0 42.5 15.3 3.2 8.4 0.71138 104 18.2 0.2 -5.6 0.4 ?F YA 

Mass Burial                

GLR1518 M2 -20.1 10.2 42.5 15.5 3.2 6.8 0.71298 72 17.9 0.3 -6.3 0.7 M? YMA 

GLR1520 M3 -19.5 12.2 42.4 15.3 3.2 7.3 0.70971 130 18.6 0.1 -4.7 0.3 F YA 

GLR1539 M3 -20.3 10.7 42.9 15.4 3.3 6.4 0.70878 66 17.5 0.1 -7.2 0.2 F YMA 

GLR1541 M3 -20.3 8.8 42.3 15.2 3.2 5.1 0.71217 51 17.1 0.2 -8.1 0.4 M YA 

GLR1544 M3 -20.3 11.9 42.6 15.3 3.3 7.1 0.70994 102 18.2 0.2 -5.7 0.4 M YMA 

GLR1546 M3 -18.8 11.9 42.1 15.1 3.3 5.0 0.71086 177 19.1 0.1 -3.8 0.3 ND OMA 

GLR1553 M3 -20.1 12.6 42.6 15.5 3.2 7.6 0.70924 84 17.4 0.4 -7.3 0.9 M YMA 

GLR1560 M3 -18.9 12.3 42.4 15.4 3.2 6.2 0.70946 114 18.7 0.4 -4.5 0.9 F YA 

GLR1560 Dentine -- -- -- -- -- -- 0.70921 349 -- -- -- --   

GLR1561 M3 -- -- -- -- -- -- 0.71344 67 18.7 0.2 -4.5 0.5 M YA 

GLR1565 M2 -19.0 11.7 42.8 15.5 3.2 6.7 0.70975 104 19.0 0.3 -3.9 0.6 F YA 

GLR1596 M2 -19.7 11.3 42.8 15.7 3.2 10.1 0.70904 105 17.7 0.3 -6.7 0.6 F YMA 

Key: cem= cemetery burial; mb=mass-burial pit; F=female, ?F = probably female; M = male; ?M = probably male; ND = not determined; A = adult (age-at-death c. 18 - >45 

years); YA = Young Adult (c. 18-25 years); YMA = Young Middle Adult (c. 26-35 years); OMA = Old Middle Adult (c. 36-45 years); OA = Old Adult (>c.45 years).  
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Table 2.  Location, vegetation type, geology and 
87

Sr/
86

Sr values for bio-accessible Sr from vegetation  

Geologic Era/Period Sample Latitude Longitude Vegetation Type 

Superficial 

deposits Bedrock Geology 

87
Sr/

86
Sr 

Ratio 

PROTEROZOIC             

Precambrian              

  G-V-026 52.03020 -2.35129 Herbs    Hornblend Gneiss 0.71622 

PALAEOZOIC             

Lower Cambrian              

  G-V-025 52.03065 -2.35332 Herbs   Sandstone 0.71038 

  G-V-027 52.03129 -2.35517 Grass & Herbs   Sandstone 0.71202 

  G-V-028 52.02890 -2.35497 Grass & Herbs   Sandstone 0.71352 

  G-V-029 52.02779 -2.35856 Bramble Head
1
 Sandstone 0.71201 

Lower Ordovician              

  G-V-030 52.02739 -2.36220 Herbs Head Mudstone 0.71508 

Lower Silurian              

  G-V-031 52.02799 -2.37398 Grass Head
1
 Sandstone 0.71292 

  G-V-032 52.04640 -2.40285 Grass   Siltstone + Mudstone 0.71010 

  G-V-033 52.02395 -2.43141 Grass   Siltstone + Mudstone 0.71206 

Early Devonian              

  G-V-015 51.82224 -2.46547 Grass & Herbs   Sandstone + Mudstone 0.71133 

  G-V-016 51.81370 -2.47524 Grass & Herbs   Sandstone + Mudstone 0.71293 

Upper Carboniferous              

 G-V-017 51.83878 -2.54159 Herbs   Sandstone 0.71285 

  G-V-018 51.80259 -2.62067 Grass & Herbs   Sandstone 0.71185 

MESOZOIC             

Early Permian             

  G-V-034 51.99873 -2.38201 Grass & Herbs   Sandstone 0.71060 

Late Triassic              

  G-V-023 52.00281 -2.22317 Grass Head
1
 Mudstone 0.71546 

  G-V-024 52.02729 -2.32340 Grass Head
1
 Mudstone 0.71418 

  G-V-035 51.98775 -2.36629 Grass   Sandstone 0.71163 

  G-V-013 51.86250 -2.35389 Grass & Herbs 

Tidal flat 

deposits Mudstone 0.70979 

Early Jurassic              

  G-V-009 51.76471 -2.21472 Grass & Herbs Landslip Limestone + Mudstone 0.70982 

  G-V-010 51.79165 -2.22313 Grass & Herbs Landslip Limestone + Mudstone 0.70901 

  G-V-021 51.92102 -2.14143 Grass & Herbs Alluvium Mudstone 0.70936 

  G-V-022 51.90726 -2.14167 Grass & Herbs   Mudstone 0.70923 

  G-V-001 51.85597 -2.13270 Herbs 

River Terrace 

Deposits Mudstone 0.70925 
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  G-V-002 51.85981 -2.12531 Grass & Herbs 

River Terrace 

Deposits Mudstone 0.70916 

  G-V-011 51.80265 -2.24166 Grass & Herbs   Mudstone 0.71099 

  G-V-012 51.86084 -2.25038 Grass & Herbs 

Tidal flat 

deposits Mudstone 0.70952 

  G-V-014 51.79634 -2.37385 Grass & Herbs 

Tidal flat 

deposits Mudstone 0.70934 

  G-V-020 51.90494 -2.15949 Grass & Herbs   Mudstone + Limestone 0.70902 

  G-V-006 51.78573 -2.05608 Herbs & Grass   Limestone 0.70817 

  G-V-008 51.76160 -2.15329 Grass & Herbs   Sandstone 0.71132 

  G-V-003 51.84497 -2.07768 Herbs   Oolitic Limestone 0.70792 

  G-V-004 51.83532 -2.10376 Grass & Herbs Landslip Oolitic Limestone 0.70800 

  G-V-005 51.81699 -2.08156 Herbs & Grass   Oolitic Limestone 0.70767 

  G-V-007 51.78592 -2.11550 Grass & Herbs   Oolitic Limestone 0.70832 

(
1
 glacial head deposits in the vicinity, but not dominating the sampling area.). 

 

Table 3.  Carbon and nitrogen stable isotope data and bone collagen quality indicators for London Road faunal remains. 

Sample Species 13
C 

15
 %C %N C/N %Coll Context 

GLR-F-1 cattle -22 6.6 30.7 11 3.3 7.7 1044 

GLR-F-2 cattle -21.7 6.2 41.5 14.8 3.3 3.5 1106 

GLR-F-3 cattle -21.7 7.1 38.4 13.8 3.2 4.5 1212 

GLR-F-4 cattle -21.2 6.6 30.3 10.9 3.3 4.2 1300 

GLR-F-10 sheep/goat -21.4 5.4 42.3 15 3.3 2.9 1106 

GLR-F-5 domestic fowl -20.7 8.8 30 10.5 3.3 5.2 1171 

GLR-F-6 horse -22.3 7.2 27.5 10 3.2 5 1106 

GLR-F-7 horse -21.7 4.7 34.7 12.2 3.3 5.9 1318 

GLR-F-8 pig -21.4 5.5 20.8 7.2 3.4 1.2 1142 
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Technical Appendix 

18O Drinking Water Calculations 
The isotope composition of water varies across the world in relation to climate, latitude 

and distance from the coast (see Darling et al., 2006). Since the oxygen stable isotope 

composition of skeletal phosphate is controlled by that of drinking water, measurements of 18Op 

in tooth enamel provide a record of the climate in which an individual was raised, thus offering a 

method for isotope "fingerprinting" of people. However, since oxygen is fractionated within the 

body, a conversion has to be applied to translate the measured 18Op ratios in tooth enamel into 

the corresponding drinking water values ( 18Odw). 

Phosphate oxygen/drinking water equations have been produced by Levinson et al. 

(1987), Luz et al. (1984), Longinelli (1984) and more recently by Daux et al. (2008), (Table A1). 

These equations are based on different sample sets, different estimates of comparative drinking 

water 18O, different analytical methods and standards, and each give different calculated 

drinking water values. As a result, there remains some controversy as to which equation is most 

appropriate. For several years now, NIGL have been using the equation by Levinson et al. 

(1987), corrected for a method bias accounting for differences in analytical methodology 

between laboratories, as we have found that 18Odw ratios calculated this way provide the best fit 

for "expected" values derived from analyses of UK drinking water (see Budd et al. 2004; Evans 

et al. 2006a,b). It is the aim of this appendix to explain our 

methodology and rationale for this approach. 

When deriving their phosphate/drinking water equations, Longinelli (1984), Luz et al. 

(1984) and Levinson et al. (1987) converted bio-phosphate to BiPO4 and extracted oxygen by 

conventional fluorination using BrF5 (for methods see Longinelli, 1965, 1984; Kolodny, 1983). 

The recent work by Daux et al. (2008) analysed phosphate as Ag3PO4 using the sealed tube 

graphite reduction method (Lécuyer et al.,1993, 1996; O’Neil,1994). NIGL also analyses 

Ag3PO4 but uses the method described by Vennemann et al. (2002), involving hightemperature 

carbon reduction and continuous flow isotope ratio mass spectrometry. O’Neil (1994) observed 

that oxygen isotope analysis of phosphate converted to Ag3PO4 gave higher 18O values than 

those converted to BiPO4 and stressed the need for a common standardization across laboratories. 

Fox and Fisher (2001) also reported difficulties in comparing data produced from BiPO4 and 

Ag3PO4 and derived their own equation to rectify the problem. Venneman et al. (2002) analysed 

NBS120C and a number of other phosphates by a variety of methods, and noted that analytical 

results varied not only for samples analysed by different methods in the same laboratory but also 

for samples analysed by the same methods in different laboratories. Consequently, it is necessary 

to correct for laboratory and method bias before any of the available phosphate/drinking water 

equations can be applied to data produced in other labs. 

Both Luz et al. (1984) and Levinson et al. (1987) employed the analytical method of 

Kolodny et al. (1983), with most of the analysis carried out in the Hebrew University, Jerusalem. 

Neither the Luz nor Levinson papers name or provide values for reference materials/controls, 

however other papers from the Jerusalem laboratory, published around that time and using the 

same procedures, provide 18O values for NBS120B (Florida phosphate rock) of +20.1 ± 0.3‰ 

and +19.91 ±0.39‰ (Shemesh et al., 1988 and Bryant et al., 1994, respectively). The average of 

these data is 20.0 ± 0.3 (2 ). 
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NBS120 is not certified for oxygen isotope values, however many laboratories use it as 

an in-house reference, as its matrix is more closely matched to bio-phosphate than other 

commercially available reference materials. Stocks of NBS120B are no longer commercially 

available and many laboratories now use NBS120C. As a result, few laboratories have published 

data for both NBS120B and NBS120C analysed by the same method. We compared values for 

(B) and (C) from the literature with measurements at NIGL (Table A1). The results confirm 

O’Neil et al.'s (1994) finding that the 18O value of C is higher than B, but also that the 

difference between the two materials varies significantly with the analytical methodology. 

Using the Ag3PO4-TC/EA method routinely employed by NIGL to analyse NBS120B, we 

obtained +21.4‰ ±0.1 (n=13) (Table A2). Before using the Luz et al. (1984) or Levinson et al. 

(1987) calibration equations with NIGL data, we therefore apply a method bias correction of -1.4 

to the measured 
18

Op value, which is derived from the difference between the mean 18O value 

for NBS120B analysed in the Jerusalem laboratory (+20.0‰, see above) and our own result of 

+21.4‰. Longinelli (1984) used a similar method to Luz et al. (1984) and Levinson et al. 

(1987). It is therefore likely that a similar correction should be applied when using his 

conversion equation; however, we cannot estimate the size of the offset as there are no directly 

comparable data for the reference materials he used from our own laboratory. Daux et al.'s 

(2008) equation 4 does not require an offset correction as they report values for NBS120C which 

are within experimental error of our own. 

NBS120C has routinely been used at NIGL as an in-house reference to normalize 

phosphate 18O during oxygen stable isotope analysis. Our own 18O calibration for NBS120C 

(as Ag3PO4) against NBS28 (quartz) by conventional fluorination using ClF3 as well as against 

NBS127 (barium sulphate) by TC/EA gave 18O values of +21.70 ± 0.15 (2 n=2) and +21.68 ± 

0.38‰ (2 , n=5) respectively. From these we derived our internal value for NBS120C of +21.7. 

This value is in agreement with the average of published values for NBS120C, which is +21.7 

±0.5‰ VSMOW (1σ; n=20) (see Table A3 for references).  

We are fortunate in the UK to have a well-documented drinking water isotope map 

(Darling, 2003) and have therefore, been able to monitor and compare the results we obtain from 

UK populations with the known drinking water values in that area. Using this approach, we 

calculated 18Odw values for humans from UK data sets using each of the available 

phosphate/drinking water equations, and the method bias offsets as described above, and 

compared them with expected local drinking water values derived from Darling et al. (2003) 

(Table A4, Figure A1). The 18Op values come from nine archaeological sites across the UK, 

ranging in age from Neolithic to Mediaeval (Table A4). From each data-set, we used only those 

humans which were defined as 'local' by their strontium isotope signature, resulting in 56 

individuals in total. From the results, we conclude that the 18Odw values calculated using the 

equation by Levinson et al. (1987) (with 1.4 correction) provide overall the best fit with expected 

local drinking water values. They are also very similar to values computed using the two 

equations recently published by Daux et al. (2008) (see Figure A1). We therefore choose to 

continue using the corrected Levinson et al. (1987) equation to aid in the interpretation of our 

human 18Op data. 

The 2σ range of the data in Table A4 also provide the current best estimate for the 

range of oxygen isotope data in archaeological tooth enamel that can be used to define 



Chenery et al., 2010 

31 
 

individuals growing up in the UK. The population mean is 17.7 ± 0.9 ‰ (2 , n=9). Using the 

corrected Levinson et al. (1987) formula, this equates to -6.7 ± 2.0‰ (2 , n=9) for UK drinking 

water, which, with a 2σ range of -8.7‰ to -4.75, is a good fit with the range of modern UK 

fresh waters reported by Darling et al. (2003), ~ -9.0‰ to -4.5‰. 
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Figure A1: Mean 
18

Odw ratios for "locals" from nine UK sites calculated using the available 

phosphate/drinking water equations in comparison with expected local drinking water values. 

For data and references see Table A4. 

Table A1: Published 
18

O phosphate to water conversion equations. 

Author Equation 

Levinson et al., 1987 18
Ow = (

18
Op -19.4) / 0.46 

Longinelli et al., 1984 18
Ow = (

18
Op -22.37) / 0.64 

Luz et al., 1984 18
Ow = (

18
Op -22.7) / 0.78 

Daux et al., 2008 (eq. 4) 18
Ow = 1.73 

18
Op - 37.25 

Daux et al., 2008 (eq. 6) 18
Ow = 1.54 

18
Op - 33.72 
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Table A2: Comparison of published and NIGL values for NBS120B and NBS120C using 

different analytical methods.   
 

Author Phosphate 

Preparation 

B               C 

Oxygen 

extraction 

18
O 

NBS120B 

(‰ VSMOW) 

18
O 

NBS120C 

(‰ VSMOW) 

Stephan, 2000 Ag3PO4 Ag3PO4 ST/GC +19.97±0.34, 

n=4  

+21.74±0.37, 

n=4  

Wright and Hoering, 1989 Ag3PO4 Ag3PO4 CF-BrF5 +19.81±0.80, 

n=12 

+19.94±0.60, 

n=7  

NIGL none none LAF-ClF3 +20.97±0.22, 

n=12 

+21.56±0.29, 

n=8  

NIGL Ag3PO4 Ag3PO4 TC/EA +21.39±0.09, 

n=13 

+21.75±0.17, 

n=6  

Bryant et al., 1994, 1996 BiPO4 Ag3PO4 CF-BrF5 +19.91±0.39, 

n=2  

+21.36±0.18, 

n=13 
 

CF= conventional fluorination, ST/GC = sealed tube graphite combustion, LAF = Laser assisted fluorination, 

TC/EA = high-temperature carbon reduction and continuous flow mass spectrometry.  With the exception of values 

from Bryant et al., each entry represents the same method of analysis carried out in the same laboratory.  The NIGL 

TC/EA results were analysed in the same run and corrected against the internal value of NBS120C of +21.7‰. 

 

Table A3: 
18

O values for 21 NBS120C (Ag3PO4) analysis from 19 publications.   

Author Method 18O‰ 

VSMOW 

(1 ) n 

Bryant et al., 1996  CF-BrF5 21.4 0.2 13 

Crowson et al., 1991  CF-BrF5 21.3 0.1 15 

Daux et al., 2008  ST/GC 21.7 0.1 21 

Daux et al., 2005  ST/GC 21.8 0.2 17 

Dufour et al., 2007  TC/EA 22.2 0.2 15 

Evans et al., 2006b  CF-ClF3 21.7 0.2 2 

Fox and Fisher, 2001  ST/GC 21.9 0.4 6 

Fricke et al., 1995  CF-BrF5 21.8 0.2  

Fricke et al., 1998  ST/GC 21.8 0.3  

Lécuyer et al., 2003  CF-BrF5 21.7 0.2  

Lécuyer et al., 2007  ST/GC 21.7 0.1 21 

Lecuyer et al., 1993  CF-BrF5 21.7 0.2  

O'Neil et al., 1994  CF-BrF5 21.8 0.2  

Sharma et al., 2004  TC/EA 22.3 0.2 3 

Stephan, 2000  ST/GC 21.7 0.4 4 

Tütken et al., 2006  TC/EA 21.6 0.4 25 

Vennemann et al., 2002  ST/GC 21.3 0.0 2 

Vennemann et al., 2002  TC/EA 22.1 0.5 18 

Vennemann et al., 2002  CF-BrF5 22.6 0.1 3 

Wright and Hoering , 1989  CF-BrF5 19.9 0.6 7 

Zazzo et al., 2004  ST/GC 21.7 0.2  

Mean ± 1σ  21.7 0.5  
 

CF= conventional fluorination, ST/GC = sealed tube graphite combustion, LAF = Laser assisted fluorination, 

TC/EA = TC/EA continuous flow mass spectrometry.  Mean 
18

O = +21.7±0.5‰ VSMOW 
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Table A4: Mean 
18

O of phosphate for individuals with "local" 
87

Sr/
86

Sr ratios and drinking water values calculated using the five published 

equations ± 2  (where applicable with 1.4 method bias correction) compared to 
18

O of expected drinking water values (Darling et al., 2003 and 

Darling pers. comm. (*)).   

Location Period n 
18

Op 

measured 

18
Odw 

Luz  

(corr.)

18
Odw 

Longinelli 

(no corr.) 

18
Odw 

Luz  

(no corr.)

18
Odw 

Daux 

(eq. 6)

18
Odw  

Daux  

(eq. 4) 

18
Odw 

Levinson 

(corr.) 

Expected 

drinking water 

range 

West Heslerton 

Yorkshire
1
 

Neolithic to Iron 

Age 
6 17.1 ± 0.4 -9.0 ± 0.4 -8.3 ± 0.4 -7.2 ± 0.4 -7.5 ± 0.4 -7.7 ± 0.5 -8.1 ± 0.6 -7.3 to -8.5* 

Repton, Derbyshire
1
 Norse 2 17.2 ± 0.2 -8.8 ± 0.2 -8.1 ± 0.3 -7.1 ± 0.2 -7.2 ± 0.3 -7.5 ± 0.3 -7.8 ± 0.4 -7.5 to -8.0 

Stonehenge, Wiltshire
,2,,

 Bronze Age  3 17.6 ± 0.2 -8.4 ± 0.3 -7.5 ± 0.4 -6.5 ± 0.3 -6.7 ± 0.4 -6.8 ± 0.4 -7.0 ± 0.5 -6.5 to -7.5 

Chelsea, London
3
 17

th
 Century 22 17.5 ± 1 -8.5 ± 1.3 -7.6 ± 1.6 -6.7 ± 1.3 -6.8 ± 1.6 -7.0 ± 1.8 -7.2 ± 2.3 -6.7 to -7.5 

Mangotsfield 

Gloucestershire 
1
 

Romano-British 2 17.7 ± 0.2 -8.2 ± 0.2 -7.3 ± 0.3 -6.4 ± 0.2 -6.5 ± 0.2 -6.6 ± 0.3 -6.7 ± 0.4 -6.5 to -7.0 

Winchester, 

Hampshire
4
  

Romano-British 7 17.7 ± 1 -8.2 ± 1.2 -7.3 ± 1.5 -6.4 ± 1.2 -6.4 ± 1.5 -6.6 ± 1.7 -6.7 ± 2.1 -5.9 to -7.3* 

Arran, Scotland
5
 Medieval 1 18.0 ± 0.2 -7.8 ± 0.3 -6.8 ± 0.4 -6.0 ± 0.3 -5.9  ± 0.4 -6.0 ± 0.4 -6.0 ± 0.5 -6.0 to -6.5 

St Thomas Kirk 

Orkney
6
 

Medieval 8 18.3 ± 0.8 -7.3 ± 1.0 -6.4 ± 1.3 -5.6 ± 1.0 -5.5 ± 1.2 -5.5 ± 1.4 -5.3 ± 1.8 -6.0 to -6.5 

Cladh Hallan S. Uist
5
  Bronze Age 6 18.4 ± 0.6 -7.3 ± 0.8 -6.2 ± 0.9 -5.4 ± 0.8 -5.4 ± 0.9 -5.4 ± 1 -5.2 ± 1.3 -4.5 to -5.0 

Site Mean (n=9) ± 2   57 17.7 ± 0.9      -6.7 ± 2.0  

 

All data are expressed in ‰ (VSMOW) ±2  Columns of drinking water values are arranged in order of agreement with expected values, poorest to best.  All the above data was 

produced at NIGL. An analytical bias correction of -1.4 was applied to 
18

Op values before using the Luz and Levinson equations; for the Longinelli equation, the size of the 

appropriate offset to NIGL data cannot currently be estimated and 
18

Odw were calculated using the original formula; no bias corrections were needed for the Daux equations (see 

text). Data references: 
1
Budd et.al 2004 (data for West Heslerton recalculated from published values that were derived using -1.0 correction); 

2
Evans et.al, 2006b,

3
Tricket, 2008, 

4
Evans et.al., 2006a, 

5
Montgomery pers. comm. 

6 
Toolis, submitted.  
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