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Executive Summary 
Three-dimensional electrical resistivity tomography (3D ERT) is a geophysical imaging 
technique that has developed rapidly in recent years. The great strength of the technique is that it 
is a relatively low cost non-invasive method of providing high-resolution spatial information that 
reveals the structure of the subsurface. Despite its obvious suitability, 3D ERT has not yet been 
applied by the minerals industry to the investigation of sand and gravel deposits. The 
DRAGNET project was therefore established to begin the process of researching and developing 
3D ERT for sand and gravel reserve assessment. More specifically, we have demonstrated the 
technique at UK extraction sites, we have sought to establish procedures to integrate 3D ERT 
with conventional investigation methods, we have developed best practice guidance for the 
future use of the technique in this area, and we have begun to consider the economics of the 3D 
ERT for minerals surveys.  

The DRAGNET demonstration studies were carried out at Marfield Quarry, North Yorkshire, 
and Bull’s Lodge Quarry, Essex. These sites were selected due to their challenging geologies. 
The Marfield Quarry site comprised extremely coarse gravels, which have proved to be nearly 
impossible to drill, whilst the Bull’s Lodge test area had overburden to mineral thickness ratios 
of as much as 2:1, with in excess of 10 m of till overburden. Integrated models were generated 
for both sites to demonstrate our methodology for 3D data fusion, visualisation and interpretation 
using combined 3D ERT and conventional data sets. 

The 3D ERT model of the Marfield Quarry site was used to identify the distribution of 
overburden, depth to bedrock and quality variations within the gravels. Operationally relevant 
information derived from the Marfield 3D ERT model was presented in a form that could be 
directly used by minerals industry geologists for reserve calculations. 

The Bull’s Lodge 3D ERT model successfully defined the overburden, but was not able to 
resolve the base of the mineral. The failure of ERT in this case was due to the unfavourable 
overburden to mineral ration, and the very low resistivity of the till, and highlights the limitations 
of the technique. Synthetic modelling studies carried out as part of this project were used to 
determine the range of overburden to mineral rations over which 3D ERT would be successful, 
and to trial a new survey strategy that has the potential to resolve thin mineral layers buried 
beneath thick overburden. The results from the synthetic modelling and the case studies 
represent an invaluable resource with which to inform the planning of future minerals surveys, 
and have provided a foundation on which to begin developing best practice guidance.  

The key elements of our best practice guidance for 3D ERT mineral reserve assessment surveys 
are as follows: (1) Overview of ERT; (2) Limitations of ERT; (3) Survey planning and design 
(including array type, vertical and lateral resolution); (4) Data collection; (5) Data processing 
and interpretation (including inversion and visualisation); (6) Data quality assessment; (7) Case 
studies. 

Based on our experience during the project, and other published sources, we assess the likely 
cost benefits of applying 3D ERT to sand and gravel investigations. Due to the limited scope and 
resources available to us this assessment is necessarily qualitative. We consider the relative costs 
of ERT (particularly compared to drilling), its effectiveness for sand and gravel deposit 
investigations, and the added value that it can provide to site operators. It is probable that 3D 
ERT will be most suited both to the investigation of complex deposits with significant lateral 
heterogeneity, and those sites that are difficult to drill. In such situations 3D ERT can be used to 
reveal the structure of the deposit between intrusive sample points, it can provide targets for 
drilling, and can potentially reduce the number of intrusive sample points required. 
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1 Introduction 

1.1 PROJECT OBJECTIVES 
The objectives of the project were: 

1. To design and carry out controlled field-tests at two well-characterised aggregate 
extraction sites to prove the suitability of electrical resistivity tomography (ERT) 
technology as a rapid, cost effective tool for non-invasive 3D volumetric imaging of sand 
and gravel deposits. 

2. To evaluate in consultation with major aggregate producers the suitability of 3D ERT for 
accurate quantification of workable reserve (product) and overburden volumes and as an 
aid for targeting extraction work more accurately, thereby minimising waste, and reducing 
the amount of drilling required.   

3. To build on the state-of-the-art in aggregate evaluation and determine how ERT methods 
can be integrated effectively with existing methodologies.  

4. To estimate the likely cost benefits to industry, regulatory bodies and other site planners of 
using ERT. 

5. To disseminate the results of the research widely on a pre-competitive basis to the UK 
aggregates industry and research and regulatory organisations so that they can evaluate the 
usefulness of ERT and improve best practice where necessary. 

The project results are also expected to help realise further medium to long-term objectives: 

6. To increase the efficiency of sand and gravel resource assessment and extraction 
programme planning at site and regional level. 

7. To minimise any adverse environmental impacts of aggregate extraction, including waste 
generation and damage to ecosystems. 

1.2 PROJECT PARTNERS 

1.2.1 Research provider and lead partner 

Partner 1: British Geological Survey (BGS) 

BGS provided the technical lead for the project through its Electrical Tomography Programme 
(ETP), which was set up within the BGS Environment and Hazards Directorate to provide a 
research-led consultancy service to industry. BGS has an outstanding record of innovation and 
pioneering research in the field of ERT (see www.bgs.ac.uk/etp). This coupled with extensive BGS 
resources, including state-of-the-art laboratories, IT infrastructure and broad corporate experience 
across all of the geoscientific disciplines, means BGS was well qualified to undertake the proposed 
research. 

1.2.2 Sponsors and steering group 

Partner 2: Lafarge Aggregates Ltd  

Lafarge is the world leader in building materials and holds top-ranking positions in all three of its 
divisions: Cement, Aggregates & Concrete, and Gypsum. A majority share in the former Roofing 
division was recently divested. Cement is the largest of these worldwide and the Group places much 
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importance on research and technical innovation of this material through a dedicated research centre 
near Lyon. 

In the UK all three divisions are represented. Gypsum with a modern plasterboard factory in 
Avonmouth and a new site at Cotham in Nottinghamshire; Aggregates and Concrete through the 
former Redland Aggregates and Ennemix; and Cement by the acquisition in 2001 of Blue Circle 
Cement. 

Bulk construction materials are not often seen as being prime areas for research but Lafarge 
Aggregates Ltd have participated in several valuable MIRO coordinated research projects in recent 
years. The technical circumstances surrounding resource identification, environmentally acceptable 
quarrying and the quest for production efficiencies are areas where there is still room for greater 
knowledge. 

Lafarge employs 80,000 people in 76 countries and posted sales of €16.0 billion in 2005.  

 

Partner 3: Hanson. 

Hanson is one of the world's largest suppliers of heavy building materials to the construction 
industry. Its products fall into two categories: aggregates (crushed rock, sand and gravel, ready-
mixed concrete,asphalt and cement related products) and building products (concrete pipes, precast 
products, concrete pavers, tiles and clay bricks). They employ over 27,000 people, primarily in 
North America, the UK and Australia, with further operations in Asia Pacific and Continental 
Europe. 

Their UK aggregates division produces crushed rock, sand and gravel, asphalt, slag cement and 
ready-mixed concrete from over 400 sites and has an annual turnover in excess of £850 million. 

 

Partner 4: CEMEX UK Operations Ltd 

CEMEX is a leading global producer of cement, readymix concrete, aggregates and other building 
materials. It combines a deep knowledge of local markets with a global network and information 
technology systems to provide world-class products and services to its customers, from individual 
homebuilders to large industrial contractors. In the UK, through its acquisition in 2005 of RMC, 
CEMEX is the leading producer of readymix concrete and the second-largest manufacturer of 
aggregates. It is the third-largest cement and asphalt producer, with a significant share of the roof 
tile, concrete-block paver and concrete block markets. CEMEX is the leading supplier of concrete 
sleepers to the UK's rail industry and a dominant supplier of PFA cement additives. CEMEX 
operates more than 300 readymix concrete plants, over 130 quarries, four cement plants, seven 
terminals and more than 150 other operating units ranging from asphalt, mortar and recycling plants 
to pre-cast concrete and specialist product factories. It also operates a fleet of dredgers through its 
marine aggregates business. 

 

Partner 5: Tarmac  

Tarmac Limited is the leading supplier of aggregates in England. Tarmac operates 82 quarries 
throughout the country supplying sand & gravel and crushed rock aggregates. Production of sand & 
gravel in England is in the order of 12m tonnes per annum. Tarmac also produces secondary 
aggregates from iron and steel slag and recycled aggregates from construction and demolition 
waste. Marine dredged sand & gravel is supplied through a joint venture company.  

As well as the extraction and supply of aggregates Tarmac has significant related manufacturing 
interests. Tarmac Limited is one of only four companies in England producing cement, from a new 
£100m+ state-of-the art plant at Buxton, Derbyshire and is also the single largest producer of lime 
for industrial and environmental uses in the UK.  Tarmac Limited is also the biggest producer of 
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asphalt in England and is amongst the top three suppliers of ready mixed concrete. Tarmac also has 
a market leading presence in the manufacture of concrete products – blocks, pre-cast structures, 
flooring, railway sleepers and paving materials. 

1.2.3 Project administration 

Partner 6: MIRO 

MIRO, the Mineral Industry Research Organisation is a UK-based international CLG set up by 
major minerals industry companies to manage innovative R&D for its members with external 
funding and is staffed by minerals industry experts with successful R&D management records. 
MIRO provided day to day administration for the project, controlling work cost and time limits as 
required by DEFRA and the industrial partners and providing material for dissemination of the 
project findings. It acted as Project Contact Point, submitted progress and final reports on behalf of 
the team partners and compiled and published this Final Project Technical Report and organised the 
dissemination of the project results. 

1.3 PROJECT WORK PLAN 
The key tasks of the work plan can be summarised as: 

Task 1: Test Site Data Review (BGS, Lafarge, Hanson, MIRO) 

Two sites have been chosen to demonstrate the use of 3D ERT as a means of providing 
operationally relevant survey information on known aggregate resources. These two sites 
contain features which limit the reliability of current intrusive methods for predicting the 
content and extent of the aggregate resource and for accurate planning of extraction 
operations. 

Marfield near Masham, North Yorkshire, is a sand and gravel quarry, operated by Lafarge, 
where production started in 1961 and has been in continuous operation ever since. In the 
1980s, plans were formulated to move extraction to land north of Marfield Wood. Several 
attempts were made to determine the form of the complex deposit by conventional 
borehole drilling. These attempts were both expensive and of only limited success, and in 
no case was the full thickness of the glacial deposits penetrated. The gravel deposit at 
Marfield displays a very wide range of particle sizes from small boulders to fine sand, it 
can be excess of 30 metres thick, and is complicated by the presence of a stiff glacial till 
with further granular material beneath. Limited trial pits identified that this latter material 
appeared to act as a confined or semi-confined aquifer. An accurate assessment of the 
volume and nature of a sand and gravel deposit is necessary for several reasons. To the 
commercial operator it is important to determine the financial viability of an extraction 
site, to design a safe and practical mining operation, and to design a suitable and 
deliverable restoration scheme. To the students of geology it is important to elucidate a 
complex and multi-episode glacial history in this part of Yorkshire. 

Bull's Lodge near Colchester in Essex, is a sand and gravel deposit over London clay and 
covered by boulder clay. The site is operated by Hanson. High geological variability 
towards the edge of the deposit has previously led to poor production. A previous MIST 
project (MA/3/1/001) has been conducted at an area of this site to demonstrate the use of a 
mobile magnetometer array for survey work. Extensive data therefore already exists for 
parts of the site and use within this project will provide a lead-on from this previous work. 
Hanson has conducted a close spaced pre-production drilling operation within the study 
area; these data have allowed us to make a comparison between 3D ERT and the best 
achievable results from intrusive surveying. 

The industrial partners provided access to these test sites so that the ability of the ERT 
method to image lithological structures and hydrogeological properties could be tested 
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against existing geological ‘ground truth’ data. Hence, the geology at each site had already 
have been investigated in some detail and was represented by borehole and grading data. 
The industrial partner will make this site data available to the project as an in-kind 
contribution.  

Task 2: Design of Field-Testing Programme (BGS, Lafarge, Hanson) 

An individual survey plan was designed for each test site, which was controlled by site-
specific factors such as lateral extent, cover, vertical and lateral heterogeneity and depth of 
investigation, as determined from the data review for each site. In addition survey design 
drew upon existing BGS expertise developed over many years of research in the field of 
ERT, and design parameters determined from the synthetic modelling studies. Electrical 
data have been collected along surface grid lines to provide high-resolution ERT data sets.
  

Task 3: ET Field Surveys and Intrusive Sampling  (BGS, Lafarge, Hanson) 

Electrical surveys were carried out consecutively at the two field sites. The field crew 
consisted of three people, and the measurements were undertaken using a highly portable 
multi-channel resistivity imaging instrument. 

Additional intrusive samples were collected at one of the sites with the aim of providing 
improved geological control and ground-truth data sets that were contemporaneous with 
the ET surveys. In addition to conventional drilling and trial pitting, cone penetration tests 
were undertaken. This method is relatively cheap and rapid, and can provide direct 
resistivity measurements of the subsurface that will be enormously beneficial for validating 
the ERT models. 

Task 4: 3D Modelling, Data Integration and Interpretation  

Electrical models were generated using state-of-the-art 3D forward modelling and 
inversion software. BGS has developed procedures to display ERT data in a virtual 3D GIS 
environment alongside other relevant site-specific contextual information, such as 
lithological and geophysical borehole logs. BGS has considerable expertise in this area and 
has many relevant datasets that could be integrated with the electrical and intrusive site 
data.  

Integration of 3D ERT images alongside other ground-truth data was used to constrain the 
interpretation and provide a robust assessment of model accuracy. Key indicators of ET 
model quality as assessed against ground-truth included overburden thickness, product 
thickness, depth to bedrock, depth to water table, and sand and gravel properties (grain 
size, clay content). This component of the project drew upon the findings of a parallel DTI 
Technology Progamme funded project (started in November 2006) which aimed to develop 
a software system capable of providing knowledge from ET images in a form that is easily 
usable by non-specialist quarry operators and is compatible with existing minerals industry 
software (e.g. LSS). 

Task 5: Compilation of Best Practice Guidance Document and Cost Benefit Analysis 

BGS has produced a ‘best practice’ guidance document and a ‘cost benefit analysis’ in 
consultation with all other project partners. These documents were be reviewed at a project 
workshop attended by project partners (BGS, Lafarge, Hanson, CEMEX, Tarmac, MIRO).    
  

Task 6: Final Reporting and Dissemination of Results 

BGS was responsible for final reporting in conjunction with MIRO, who were responsible 
for hard copy distribution and web publication. Dissemination activities will be undertaken 
by MIRO and BGS. 
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2 Context 

2.1 OVERVIEW OF ERT 

2.1.1 Background & rationale 
ERT is probably the most significant geophysical methodology to have emerged in the last decade. 
It is used to generate models of subsurface electrical property distributions, from which subsurface 
geological structure and hydrogeological variations can be identified. This technique is analogous to 
medical imaging techniques, such as MRI and CT, which are used to image the internal structure of 
the body. In unconsolidated materials, such as sand and gravel, there is generally a relationship 
between grainsize and resistivity (with coarser materials being more resistive), and between water 
content and resistivity (with saturated materials being less resistive). 

 

Figure 1.  ERT imaging targets associated with sand and gravel deposits. 

 

ERT is increasingly being used for environmental and engineering site investigations, but despite its 
suitability and potential benefits it has yet to be applied by the minerals industry to sand and gravel 
resource definition and assessment. The principal benefits of ERT are that it is a cost-effective non-
invasive method that can provide fully 3D spatial models of the subsurface at the site scale. This is 
in contrast to intrusive sampling methods, which typically provide information only at discrete 
intervals, and other geophysical mapping techniques such as the EM31/34 or RM15, which cannot 
provide detailed depth information. The additional 3D spatial information provided by ERT will 
therefore enable an improved understanding of the deposit to be mined. We anticipate that 3D ERT 
has the potential to provide information of the thickness of overburden and the mineral deposit (if a 
sufficient resistivity contrast exists between the overburden, sand and gravel, and bedrock), quality 
variations within the body of the deposit, and information on the level and quality of groundwater 
(Figure 1). 

2.1.2 Data collection & processing 
Examples of ERT data collection and processing methodologies are given by Chambers et al. 
(2006), Slater et al. (2002), Chambers et al. (2002), and Dahlin et al. (2002), so only a brief 
description is provided here. ERT surveys involve making a large number of four-point electrical 
measurements (consisting of a current, C1-C2, and a potential, P1-P2, dipole) using computer 
controlled automated measurement systems and multi-electrode arrays (e.g. Figure 2). These data 
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are used to produce 2D and 3D models of subsurface electrical property distributions, from which 
subsurface geological structure and hydrogeological variations can be identified. ERT surveys are 
entirely scaleable, and can be used to cover areas ranging from a few square meters to many 
hectares. For site-scale surveys (e.g. hectares) a typical field crew will consist of between two and 
five people. The equipment is lightweight and portable and can be deployed from an estate car or 
4×4 vehicle. Most of the costs associated with ERT field surveys are due to staff time.  

 

Figure 2.  Schematic illustration showing the basic components of an ERT surface survey. 

To generate resistivity models, or images, from the field measurements data inversion is 
undertaken; this is typically achieved by using regularised nonlinear least-squares algorithms (Loke 
and Barker, 1996) in which the forward problem is solved using either finite element or finite 
difference methods. In brief, the aim of the inversion process is to calculate a model that satisfies 
the observed data. A starting model is produced, e.g. a homogeneous half-space, for which a 
response is calculated and compared to the measured data. The starting model is then modified in 
such a way as to reduce the differences between the model response and the measured data; these 
differences are quantified a misfit error value. This process continues iteratively until acceptable 
convergence between the calculated and measured data is achieved, or until the change between 
misfit values calculated for consecutive iterations becomes insignificant. 

2.1.3 Application to sand & gravel 
Prior to the development of ERT, DC resistivity investigations of sand and gravel deposits were 
undertaken using 1D resistivity soundings and traverses. Auton (1992) and Crimes et al (1994) 
provide examples of 1D resistivity methods. Auton (1992) describes the use of 1D soundings for 
studying drift sequences in northeast Scotland, for which he concluded that the technique was a 
useful adjunct to conventional sampling. Crimes et al (1994), however, concluded that the accuracy 
of the technique was too poor to be of general use for sand and gravel exploration; they studied a 
range of sites in England and Wales and found that overburden thickness and depth to bedrock were 
overestimated by 39 % and 34 % respectively, and mineral thickness was underestimated by 29 %. 
In general, 1D resistivity methods have not been widely adopted by the minerals industry due to the 
significant uncertainties associated with data interpretation; in particular, 1D soundings tend to be 
more severely affected by the problems of non-uniqueness, three-dimensional features and small-
scale heterogeneities described in Section 2.3. 

It is curious to note that despite significant development in ERT over the past two decades, 1D 
soundings and traverses are still referred to in Smith and Collis (2001) and the most recent code of 
practice for site investigation (British Standards Institution, 1999) as being the principal DC 
resistivity methods for site investigation; ERT is mentioned only in passing, and in the case of 
Smith and Collis (2001) is described as being “almost completely superseded by electromagnetic 
conductivity surveying”. It is clear in this instance that there is a significant lag between 
developments in the research community and awareness and take-up by both industry and 
geoscientists from other disciplines. This problem has probably been compounded by the relative 
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lack of published case studies; this is perhaps been due to the focus of ERT research tending 
towards environmental, archaeological and engineering applications, rather than minerals. 

One of the earliest references to the use of 2D ERT for sand and gravel resource studies is by 
Barker (1997), in which he describes a survey from the Trent Valley, UK. Baines et al. (2002) 
applied 2D ERT with the stated aim of assessing its use for investigating aggregate resources, and 
in particular sand and gravel channel belts and valley fills. They considered sites in the Netherlands, 
United States and Canada. Beresnev et al. (2002) also sought to develop 2D ERT for sand and 
gravel prospecting, and used test sites in Iowa, United States to study glacio-fluvial deposits 
occurring as terraces and point bars. More recently the USGS have released a report titled “An 
Introduction to Using Surface Geophysics to Characterize Sand and Gravel Deposits (Lucius et al., 
2006), which includes a brief assessment of ERT for deposit evaluation; examples of 2D ERT 
models are presented. 

In addition to work focussed specifically on sand and gravel aggregate resource assessment, a 
number of researchers have considered ERT for the more general, but nevertheless relavent, 
application of investigating unconsolidated Quaternary deposits (e.g. Froese et al., 2005; Kilner et 
al., 2005; Revil et al., 2005; Turesson et al., 2005) 

2.2 UK SAND AND GRAVEL 

2.2.1 Types & occurrence 
Information relating to UK sand and gravel deposits can be gathered from a wealth of sources. Of 
particular interest is the Geological Society publication, titled ‘Aggregates: Sand, gravel and 
crushed rock aggregates for contruction purposes’ edited by Smith and Collis (2001), in which can 
be found a thorough overview of the types and occurrences of sand and gravel resources of the UK; 
much of the information in section is based on this publication. Other useful reviews at a regional 
and national level are given by Merritt (1992), and are contained in the British Geological Survey 
(BGS) sheet memoirs (e.g. Bristow, 1990) and regional geology series (e.g. Sumbler, 1996). More 
detailed descriptions at the 1:25,000 scale are provided in the ‘Sand and Gravel Resources – 
Mineral Assessment Report’ series (e.g. Hawkins, 1981), which covers the key sand and gravel 
extraction areas in the UK and contains information regarding the quality and quantity of deposits. 
The more recent ‘Mineral Resource Information in Support of National, Regional and Local 
Planning’ series (e.g. Harrison et al, 2003) also contains useful summary information of sand and 
gravel deposits, in this case at a county level. 

The most significant on-shore sand and gravel sources are found within unconsolidated superficial 
drift deposits, and in particular, those of a fluvial origin, such as alluvial and river terrace deposits. 
Glacial drift is also a crucial source of aggregates in certain areas. Coastal deposits such as beach 
gravel or raised beaches are of lesser importance. Likewise, solid formations, though being of local 
importance, contribute relatively little to the overall UK supply of sand and gravel aggregates. 

Sand and gravel is a low value bulk mineral; consequent local sources will be used whenever 
possible to reduce transport costs. Fortunately, UK sand and gravel aggregate deposits are 
widespread, as summarised in following paragraphs and in Figure 3. 

2.2.1.1 FLUVIAL DEPOSITS 

Fluvial deposits include river channel or alluvial deposits, river terraces and alluvial fans. In general 
these deposits have relatively little overburden, and are more consistent with lower fines content 
than glacial deposits. Water levels will vary depending on their location, e.g. those in existing river 
valleys typically have high water tables. 
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Perhaps the most significant river channel deposit in the UK is the Kesgrave Formation, which 
extends across large areas of Suffolk. Strategically important river terrace deposits include those of 
the Thames and Trent valleys.  
 

 

Figure 3.  Distribution of sand and gravel in the UK (BGS © NERC 2008). 

2.2.1.2 GLACIAL DEPOSITS 

Glacial deposits are typically heterogeneous, with greater potential for variations in particle size, 
shape and composition, and in deposit thickness and extent. Glacial deposits from outwash plains 
(sandars) and kames, eskers and kame terraces tend to provide the most significant opportunities for 
sand and gravel extraction. Till and morainic drift are of lesser importance. 

Examples of economically significant esker and kame systems are found in the Carstairs area, 
Lanarkshire, whilst glaciodeltaic deposits are found throughout the Scottish Highlands (e.g. 
Brackletter, near Fort William). Glaciofluvial sandar and fans can be found in upland (e.g. 
Wrexham, Clwyd) and lowland areas such as the Midlands and East Anglia. Moreover, the large 
spreads of ‘Plateau Gravel’ in central southern England probably includes a glaciofluvial 
component. Other glacial sand and gravel sources worthy of note are periglacial deposits, which are 
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generally found beyond the southern limits of the Devensian glaciation, and head deposits, such as 
the Downwash Gravel, near Aldershot and the gravely head near Chelmsford, Essex. 

2.2.1.3 COASTAL DEPOSITS 

Coastal deposits are defined as having been laid down between low tide and the storm beach of 
permanent water bodies. Existing deposits, such as ridges and bars, must be exploited with extreme 
caution to prevent unwanted consequences, such as an acceleration or deleterious change in 
prevailing patterns of coastal erosion.  

Raised beaches and deltas, no longer associated with the present day coastal system, are less 
problematic and can present useful sources of aggregates. Raised beaches are particularly common 
in Scotland, due to the uplift of the landmass resulting from the melting of the glacial ice. Late 
glacial beaches can be found in the firths of Tay and Forth, Ayrshire, whilst deltaic deposits are 
found in areas such as Beauly, Inverness-shire. In England, examples of raised beach deposits are 
found in the Fens, e.g. Market Deeping, Lincolnshire and March, Cambridgeshire.  

2.2.1.4 SOLID FORMATIONS 

The most useful solid formation sources of sand and gravel aggregate come from deposits laid 
down during periods of regression and transgression, and from deltas and fans. Transgressive 
episodes have produced basal pebble beds, such as the Tertiary Blackheath Beds, North Surrey. On 
the other hand, beach plain gravels as exemplified by the Pliocene Westleton Beds, Suffolk, were 
laid down during periods of regression. Other significant solid formation aggregate sources include 
the ‘Bunter’ Pebble Beds of the north Midlands, and the Budleigh Salterton Beds of Devon, both of 
which are Triassic in age and were formed as deltas or fans.  

2.2.2 Thickness 
Information on sand and gravel thickness is contained in the individual reports of the ‘Sand and 
Gravel Resources – Mineral Assessment Report’ and ‘Mineral Resource Information in Support of 
National, Regional and Local Planning’ series, as well as numerous publications including journal 
papers, BGS memoirs and site investigation reports. However, to the best of our knowledge there is 
no summary of deposit thickness variations for UK sand and gravel deposits. Therefore, we have 
conducted a review of the reports comprising the ‘Mineral Resource Information in Support of 
National, Regional and Local Planning’ series to extract and summarise thickness variations for the 
various deposit types found in the UK by region (Appendix 1). In brief, of those deposits for which 
depth information was collected 70 % were less than 10 m thick, and 92 % were less than 20 m 
thick. River terrace deposits fall almost entirely within the ‘less than 10 m’ thickness range. 
Glaciofluvial deposits are generally thicker, with a majority of deposits being characterized by 
thicknesses in the ‘10 to 20 m’ range, with a lower occurrence of those in ‘0 to 10 m’ range. Only a 
few deposits fell within the ‘20 to 30 m’ and ‘greater than 30 m’ ranges. 

2.2.3 Electrical properties 
In his paper on the application of electrical methods to sand and gravel resource assessment in 
Scotland Auton (1992) makes the very valuable point that for the correct interpretation of resistivity 
data good geological control is required. Indeed, it is likely that the resistivity values of sand and 
gravel deposits across the country will vary significantly depending on the geology of the source 
area. Auton’s own results demonstrate that sand and gravel from southern Britain often tends to be 
less resistive “…being derived from ice that moved across ground underlain by soft argillaceous 
bedrock, rather than hard gritty igneous and metamorphic rocks as in Grampian region” (Auton, 
1992, p26). 
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Data for the UK linking the geology and electrical properties of sand and gravel deposits with 
economic potential are relatively sparse, and so at present we have relatively little information to 
help us determine the likely resistivity ranges that we are likely to encounter for sand and gravel, 
bedrock and overburden material in different parts of the country. This information is critical in 
helping us predict the likely usefulness of ERT as a tool for sand and gravel resource assessment. 
To bring together the currently available information we have undertaken a review of published and 
unpublished literature that deals with the resistivity sand and gravel. Our review is however limited 
to those references concerned with UK deposits of known economic potential; in general these 
deposits will consist of relatively clean sand and gravel with a low fines/clay content; uneconomic 
deposits with high fines contents would generally be characterized by lower resistivities and are not 
considered in this report. Due to the paucity of resistivity data for many important sand and gravel 
resources in the UK we have also undertaken a number of pre-validation field trials to assist us in 
validation site selection, and to increase our knowledge base of UK sand and gravel electrical 
properties.  

2.2.4 Conventional evaluation 
Potential sand and gravel reserves are evaluated by the minerals industry using conventional 
methods, which include desk studies, direct investigation using boreholes and trial pits, and material 
testing to establish particle size distribution and lithology. 

The aim is to provide an accurate geological model of the site which details: 

• The thickness and type of overburden 

• The thickness and type of mineral 

• The depth to the base of the mineral 

• The quality of the mineral 

• The position of the watertable 

Overburden and mineral thickness are normally modelled to provide isopachyte maps and the 
accuracy of these, and therefore subsequent volume calculations, depends upon the quality of the 
information used to provide the base data. Direct methods, such as boreholes provide accurate 
depths to the relevant lithological interfaces at widely spaced points. Current practice is to provide 
borehole data on a 100 m grid, with additional boreholes in some cases. However the modelling 
usually assumes a consistent gradient on the interface between the data points. This can provide an 
oversimplified or at worst inaccurate model of the interfaces and lateral variations across the site. 
Consequently the essential volume calculations based on these models can be unreliable. 

An accurate assessment of the volume of overburden and mineral, and their distribution across the 
potential extraction area, is an essential pre-requisite for a mineral reserve assessment and therefore 
additional information to improve the accuracy and reliability of the geological model can be 
invaluable. 

2.3 PREVIOUS STUDIES 

2.3.1 1D soundings 
Resistivity data from the Grampian region of Scotland, produced from the interpretation of 1D 
resistivity soundings, are presented by Auton (1992) and Auton et al. (1988). The bedrock in the 
study area consisted of Dalradian metasediments and Old Red Sandstone sediments. These were 
characterized by resistivities of 400 to 10 000 Ωm, with mean resistivities of between 1000 and 
2000 Ωm. The fluvio-glacial and glacial sand and gravel of the area displayed a similar resistivity 
range, with a mean resistivity of approximately 2000 Ωm. The till/morainic drift had saturated 
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resistivities of 18 to 60 Ωm, and unsaturated resistivities of 100 to 300 Ωm. Auton (1992) also 
presented data from a number of unspecificied locations in the West Midlands (Wolstonian in age) 
and in East Anglia (Anglian in age). The data showed for both areas a significant difference, of 
approximately one order of magnitude, between the sand and gravel and the associated till; sand and 
gravel resistivities were generally a few hundred Ωm, whilst till resistivities were a few tens of Ωm. 

Crimes et al. (1994) described resistivity sounding data collected in the Warwick-Leamington area. 
Model resistivity values interpreted from 1D sounding curves for the sand and gravel were 
generally above 100 Ωm; the marl bedrock was characterized by resistivities of less than 25 Ωm. 

A geophysical investigation of a potential sand and gravel site is described in a University of 
Leicester MSc thesis by Chambers (1997). The site was situated between Fairford and Cricklade in 
the Thames Valley. A typical geological section through the site consisted of less than a metre of 
soil overlying 1 to 3 m of River Thames sand and gravel, which rested on Oxford Clay. The First, 
Second and Third Terrace sand and gravel were present within the study area. The water table was 
observed to vary between 0.8 and 1.9 m below ground level across the site. Overburden resistivities 
ranged from 16 to 61 Ωm, with an average of 37 Ωm. Sand and gravel resistivities varied between 
69 and 325 Ωm, with an average of 183 Ωm. The Oxford Clay displayed a narrow range of 
resistivities of 8.6 to 14.5 Ωm, with an average of 12 Ωm.  

2.3.2 2D ERT 
Barker (1997), in his review of a number of applications of ERT, presented a 2D ERT section 
through a sand and gravel deposit at Hoveringham in the Trent Valley. The ERT line was located 
adjacent to an operational sand and gravel quarry. Borehole data indicated a local sand and gravel 
thickness of approximately 6 m, below which was an indeterminate thickness of Triassic Mercia 
Mudstone bedrock. Sand and gravel resistivities varied from approximately 150 to more than 500 
Ωm; Mercia Mudstone resistivities were generally below 100 Ωm.  

2D resistivity surveys of a site a few kilometres to the north of Chelmsford are described by Hill 
(2004) and Jeffrey et al. (2005); this work was funded by the ‘Mineral Industry Sustainable 
Technologies’ fund and industrial partners. The site was adjacent to an operational sand and gravel 
quarry. The sand and gravel, which was between 5 and 10 m thick, was covered by 0 to 15 m of 
Boulder Clay, and was underlain by London Clay. No information was provided on the depth to the 
water table. The 2D resistivity sections indicated that sand and gravel resistivities varied from 150 
to 500 Ωm. The Boulder Clay and London Clay displayed very similar resistivities, both less than 
50 Ωm, with an average of approximately 20 Ωm. 

Several 2D ERT surveys were conducted by the BGS as part of TARGET, a parallel project to 
develop a non-invasive visualisation and evaluation technique for complex sand and gravel 
deposits. This was funded by a grant from the DTI Technology Programme and contributions from 
industrial partners. Five different sites were chosen throughout East Anglia and the East Midlands 
that represented a range of geologies associated with typical UK sand and gravel deposits 
(Chambers et al., 2008a). The results of the surveys are summarised below. 

2.3.2.1 INGHAM, SUFFOLK 

The Ingham Sand and Gravel (pre-Anglian) is underlain by the Upper Chalk and overlain by 
Boulder Clay (Anglian), glacial sand and cover sand. This site represents a relatively complex 
geology for an economic aggregate deposit, with overburden and mineral thickness varying 
substantially over small distance. Furthermore, the level of Chalk bedrock surface varies 
significantly within the site. Borehole logs indicate that the water table is located somewhere within 
the sand and gravel. 

The resistivity of the sand and gravel varies from 150 to 300 Ωm (Figure 4). The Boulder Clay 
resistivity ranges from 15 to 50 Ωm, whilst the Upper Chalk displays resistivities of 50 to 100 Ωm. 
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Figure 4.  Ingham 2D ERT section, misfit error 0.9 % rms (TARGET project). 

2.3.2.2 NORTON DISNEY, LINCOLNSHIRE 

The Norton Disney site is underlain by Lower Lias Clay bedrock (Late Triassic / Early Jurassic), 
over which are Quaternary River Terrace Sand and Gravel deposits. The site represents an ideal 
sand and gravel deposit, due to its regular nature. Groundwater level data from nearby boreholes 
indicate that the water table at the site is likely to be towards the base of the sand and gravel. 

The 2D ERT section (Figure 5) reveals a bedrock resistivity of 15 to 30 Ωm, whilst the sand and 
gravel shows a range of resistivities from 500 to 1200 Ωm. 
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Figure 5.  Norton Disney 2D ERT section, misfit error 2.5 % rms (TARGET project). 

2.3.2.3 BROOM, BEDFORDSHIRE 

The Broom sand and gravel (Pleistocene) is glacio-fluvial in origin, with little variation in thickness 
across the survey area. The overburden consists of a few tens of centimetres of topsoil. The sand 
and gravel is underlain by an indeterminate thickness, thought to be several meters, of Oxford Clay 
(mid-late Jurassic), which in turn is underlain by the early Cretaceous Woburn Sands Formation 
(previously referred to as ‘Lower Greensand’). The water table recorded nearby boreholes is within 
the sand and gravel at between 2 and 4 m below ground level. 

Bedrock resistivities ranged between 12 and 25 Ωm, indicating that the model resistivities are 
dominated by the response of the Oxford Clay, rather than the Woburn Sands. Sand and gravel 
resistivities vary from 100 to 400 Ωm. 
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Figure 6.  Broom 2D ERT section, misfit error 2.7 % rms (TARGET project). 
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2.3.2.4 WIMBLINGTON FEN, CAMBRIDGESHIRE 

The Wimblington Fen site was covered by a few tens of centimetres of peat, underneath which is 
the March Gravel (Quaternary), and the Ampthill Clay (Jurassic). The water table at the site was 
less than 1.5 m below ground level, as indicated by the water levels in the drains. The 2D ERT 
section indicated an undulating bedrock surface. 

The Ampthill Clay bedrock was characterized by very low resistivities of 5 to 10 Ωm. Likewise, the 
sand and gravel also displayed low resistivities of 30 to 85 Ωm, possible indicating the presence of 
a significant proportion of clay minerals. 
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Figure 7.  Wimblington Fen 2D ERT section, misfit error 0.9 % rms (TARGET project). 

2.3.2.5 TRAFFORD ESTATE, NORFOLK 

The Trafford Estate is underlain by Upper Chalk (Cretaceous) bedrock. The sand and gravel 
consists of Pleistocene glacial-fluvial deposits with Norwich Brickearth interburden. Part of the 
survey area has a cover clays silts and sands described as Quaternary Brickearth deposits. The water 
table at the site is thought to be within the Chalk, below the level of the sand and gravel. 

Upper Chalk resistivities ranged from 50 to 100 Ωm. The sand and gravel displayed a range of 
resistivities from 200 to 700 Ωm. The overburden was characterized by resistivities of 15 to 100 
Ωm. 
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Figure 8.  Trafford Estate 2D ERT section, misfit error 2.8 % rms (TARGET project). 

 

2.3.3 3D ERT 

2.3.3.1 HOLME PIERREPONT, NOTTINGHAM 

The BGS undertook a number of ERT surveys at a sand and gravel quarry, near Holme Pierrepont, 
Nottingham during 2003; the investigations were designed to assess the usefulness of ERT for 
determining sand and gravel thickness at the site. The surveys were located in an area of the quarry 
where the overburden had already been stripped. Due to pumping at the site, the water table was 
known to be below the level of the sand and gravel. The sand and gravel were Trent Valley river 
terrace deposits, and were underlain by Triassic Mercia Mudstone bedrock. Sand and gravel 
resistivities ranged from approximately 500 to 2000 Ωm. Bedrock resistivities were generally less 
than 50 Ωm.   
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2.3.3.2 TARGET VALIDATION SURVEYS 

Under the recently completed TARGET project two 3D ERT surveys (Chambers et al., 2008c) were 
undertaken to validate the TARGET visualisation methodology (see Section 5.4.2). The TARGET 
visualisation procedure accommodates two approaches, one of which is tailored to the investigation 
of simple geologies, and the other is designed for use when investigating more complex and 
heterogeneous subsurface conditions. A site with relatively simple geology (Norton Disney) and a 
site with significant geological complexity (Ingham) were investigated during the validation phase; 
hence, both aspects of the visualisation procedure were demonstrated. For both sites visual output in 
the form of 2D surfaces that defined bedrock/mineral interfaces (and also in the case of Ingham, 
mineral/overburden interface) was generated in a form that could be directly input into the industry 
standard terrain modelling software (i.e. LSS).  

 

Figure 9.  Integrated Norton Disney 3D ERT model. 

The Norton Disney survey (Figure 9) was successful in demonstrating the simple TARGET 
methodology and the use of an automated bedrock detection approach using borehole information 
to calibrate the electrical model. 

Ingham (Figure 10) was a site on which the TARGET approach to the investigation of complex 
deposits proved to be particularly valuable. Four phases of drilling were required to adequately 
characterise the geological complexity of the site. The early application of 3D ERT could have 
significantly reduced the number of holes needed, and would have permitted more effective 
targeting of any holes that were drilled. We also demonstrated that 3D ERT was able to detect 
significant structures and quality variations (e.g. channels) that were not detectable using boreholes 
alone. 

The resistivity properties for the deposits at the Ingham and Norton Disney sites are summarised in 
the descriptions of the 2D ERT reconnaissance surveys described in Sections 2.3.2.1 and 2.3.2.2 
respectively. 

 



CR/08/040; Draft 0.1  Last modified: 2008/05/23 16:22 

 15 

 

Figure 10.  Integrated Ingham 3D ERT model. 
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3 Case Study – Marfield Quarry, North Yorkshire 

3.1 SITE DESCRIPTION 

3.1.1 Location and Background 
The site is located 2.5 km to the northwest of the village of Masham, North Yorkshire, and is 
bounded to the east by existing Lafarge sand and gravel workings. The grid reference of the site is 
421030 E, 482740 N. The site is currently used as arable land, but forms part of the reserves of 
Marfield Quarry; consequently, sand and gravel extraction is due to begin at the site in the near 
future. 

 

 

Figure 11.  Aerial view of the Marfield Quarry ERT survey area (© UKP/Getmapping Licence No. UKP2008/01). 

3.1.2 Intrusive Investigations 
The land immediately adjacent to the survey area has been worked for sand and gravel for many 
years, and consequently ground truth data collected in the vicinity of the site, in the form of 
borehole logs, has been made available to us. This area has posed a particular problem for drilling 
due to the prevalence of large cobbles and boulders, which often lead to refusals. As a result 
borehole data is relatively sparse and of variable quality. Nevertheless, drilling of the site has been 
carried out in a number of phases over the lifetime of the quarry, and includes a location (BB1) a 
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short distance to the northwestern corner of the survey area. Borehole BB1 (Figure 11) reveals the 
presence of 4.5 m of overburden, beneath which gravel extends to a depth of at least 17 m below 
ground level; bedrock is not proven. In addition, inspection of the working faces of the quarry a 
short distance (~20 m) to the east the site has been possible (Figure 12). 

A mineral assessment reports also covers the area of the survey (Giles, 1982), and includes 
additional borehole information. 

Cone penetration tests (CPT) were commissioned under the DRAGNET project. These tests were 
unsuccessful due to extremely poor weather and ground conditions, and refusals caused by cobbles 
and boulders. 

Figure 12.  Marfield Quarry working face adjacent to ERT survey area (see Figure 1). 

3.1.3 Geology 
The bedrock in the area of the survey consists of Namurian sandstone or mudstone formations 
(Carboniferous). The bedrock is likely to be overlain by a few meters of either till or glacial lake 
deposits of clay and silt; these deposits are not laterally continuous and so could be absent within 
our survey area. Nearby boreholes (Giles, 1982, boreholes SW9 and SW11), within 600 m of the 
ERT survey area, encountered between 2.6 and 3.4 m of tills overlying Namurian Sandstone. 
Fluvio-glacial sand and gravel overlies the lake deposits and bedrock. In the area of the quarry they 
appear as pebble and cobble sized gravels with a sand matrix. Giles (1982) reports than sand lenses, 
cross bedding and channel structures are common within these deposits. The gravels are overlain by 
a variable cover of clay till. Topsoil appears to be only a few tens of centimetres thick.   

3.1.4 Hydrogeology 
At the time of drilling BB1 (Figure 11) was recorded as a dry hole, indicating a water level below 
17 m below ground level. Communications with the Lafarge geologist for Marfield Quarry (K. 
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Blackburn) have indicated that in the area of the ERT survey water levels were likely to coincide 
with the base of the sand and gravel, with flow following the dip of bedrock from west to east.  

3.2 FIELD SURVEY 

3.2.1 Surface Conditions 
At the time of the 3D ERT survey the surface of the site (Figure 13) was covered in turnip stubble, 
and the site was clear of trees and established bushes. The topsoil was moist and was ideal for the 
installation of ERT electrodes. 

3.2.2 Survey Design 
The 3D ERT survey was carried out within an area of 120 m by 260 m (2.27 hectares); we refer to 
the short axis of the survey area as x, and the long axis as y. A summary diagram of the survey grid 
is shown in Figure 11, with the ERT lines shown in blue. The origin (x = 0 m, y = 0 m) of our local 
ERT survey area was located in the top eastern corner of the field (Figure 11). The survey lines 
were 260 m long, striking in a southeasterly direction, and were positioned at 10 m intervals, 
resulting in a total of thirteen lines. An along-line electrode separation of 5 m was used for all 
survey lines.  

The dipole-dipole array with dipole sizes (a) of 5, 10, 15, 20 and 25 m, and dipole separations (n) of 
1a to 8a was used; full sets of reciprocal measurements were collected for each line. 

 

 

 

 

 

 

 

Figure 13.  Photograph of Marfield 
Quarry site during the November 
2007 ERT survey. Looking north-
north-west. 

3.2.3 Field Operations 
A pre-survey visit to the site was completed on the 31st October. The purpose of the visit was to 
establish the corner points of the grid, which were marked using wooden stakes, and to undertake a 
high resolution topographic survey (i.e. 20 m grid) of the area. A Leica SmartRover GPS was used 
for this survey work. 

The field survey was completed on the 5th and the 6th November 2007, with a field crew of three (J 
E Chambers, A L Weller and J Williams). Tape measures strung between the stakes were used to 
mark out our survey lines. Individual electrode positions were read directly from the tape measures. 
The field procedure can be summarised as follows: 

(a) Position tape measure for survey line 1 (L1); 
(b) Install electrodes at 5 m intervals;  
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(c) Connect multi-core cable to electrodes; 
(d) Connect multi-core cable to AGI Sting ERT instrument; 
(e) Perform contact resistance test to identify electrodes with poor contact with ground; 
(f) Check electrodes with poor ground contact (i.e. reposition electrode or re-clip electrode); 
(g) Run predefined measurement set; 
(h) Whilst measurement set for L1 is being collected position tape measure for line 2 (L2); 
(i) Upon completion of measurement set for L1, move line (cable & electrodes) to  position L2; 
(j) Repeat stages (e) to (i) until survey is completed. 

Weather conditions were good during the survey with no significant rainfall and moderate wind. 

The field ERT survey time (i.e. total time on site) was 16 hours. The measurement time (i.e. time 
taken for ERT instrument to collect the data) was 10 hours. The difference between the field survey 
time and the measurement time is due to the time taken to survey in the survey area, set up ERT 
survey lines and to run contact resistance tests. Field survey time for this survey design could be 
slightly reduced by using a larger field crew (e.g. four members) and additional cable sets, although 
efficiency in terms of area covered per man day would not be improved; measurement time could 
only be reduced by using a different ERT system with more than eight measurement channels, of 
which there are very few on the market, or by altering measurement parameters, which would 
reduce data quality. 

3.3 DATA PROCESSING 

3.3.1 Data Editing 
The combined dataset from the thirteen survey lines comprised a total of 17 420 reciprocal pairs. 
Reciprocal measurements provide the most effective means of assessing data quality and 
determining reliable and quantitative data editing criteria. Reciprocal error is particularly effective 
for assessing error due to high contact resistances, random errors arising from the resistivity 
instrument and sporadic errors due to background noise (Slater et al., 2000). For a normal 4-
electrode measurement of transfer resistance (Rn) the reciprocal (Rr) is found by interchanging the 
current and potential dipoles. Reciprocal error |e| is defined here as the percentage difference 
between the normal and reciprocal measurement. 

rn

rn

RR
RR

e
+

−
×=

2
100  

Analysis of the reciprocal errors showed that more than 94 % of the normal and reciprocal 
measurement pairs had an associated error of less than 5 %. Measurements with a reciprocal error 
of more than 5 % were removed; the remaining reciprocal pairs were averaged prior to inversion. 

Contact resistances recorded during the field survey typically ranged from 1 to 5 kΩ. These 
represent relatively high contact resistances. The consequence of high contact resistances is that less 
current can be injected into the subsurface, which can reduce signal-to-noise.   

3.3.2 Numerical Inversion 
Edited survey data collected from the individual lines were concatenated into a single data set 
comprising 16 362 individual apparent resistivity measurements. 

The 3D ERT field data were inverted using the L1-norm implementation (Loke and Lane, 2002) of 
the regularized least-squares optimization method (Loke and Barker, 1996), in which the forward 
problem was solved using the finite element method, so that topographic data could be incorporated 
into the inversion process.. The L1-norm (robust) optimization method minimizes the sum of 
absolute values of the changes in model resistivity and was used in preference to the L2-norm 
(smoothness constrained) method, which minimizes the sum of squares, as it provides significantly 
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better results for situations where there are sharp boundaries (Loke et al., 2003). In this case the 
geology was dominated by the relatively sharp interface between the resistive sand and gravel and 
the more conductive basal deposits and bedrock. 

The final resistivity model consisted of 24 cells in the x-direction, 52 cells in the y-direction and 11 
layers in the z-direction, resulting in a total of 13 728 model cells. Good convergence between the 
observed and model data was achieved after 6 iterations, as indicated by absolute error of 1.7 %. 

3.4 VISUALISATION & INTERPRETATION 

3.4.1 Integrated 3D Display 

The Marfield Quarry 3D resistivity model output from RES3DINV has been gridded using a node 
spacing of 1.25 m in the x, y and z directions, resulting in a model comprising 885 900 voxels. 
Interpolation was carried out using an inverse-distance method, by which a weighted average of the 
closest data point from each 90o sector around each node was calculated. 

RockWorks2006 has been used to display the gridded and interpolated 3D model. A 3D view of the 
model, with cut-outs and annotation is shown in Figure 14. Aerial photographs and site plans have 
not been included, because in this case they would not assist in the analysis and interpretation of the 
model. Similarly, groundwater level data has not been shown as not enough sample points were 
available with which to plot a groundwater surface.  

 

 

Figure 14.  Integrated Marfield Quarry 3D ERT model. 
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We have also included a number of figures showing sections through the 3D model:  a surface 
drape and horizontal sections at 95 and 80 m below ground level are shown in Figure 15; vertical 
sections that are parallel to the y-axis, are shown in Figure 16. These sections have been selected to 
display key features of the model, which are discussed in Section 3.4.2 ‘Analysis and 
Interpretation’. 

Figure 15.  Horizontal sections through the Marfield Quarry 3D ERT model



CR/08/040; Draft 0.1  Last modified: 2008/05/23 16:22 

 22 

 

Figure 16.  Vertical sections, parallel to the y-axis, through the Marfield Quarry 3D ERT model. 

3.4.2 Analysis & Interpretation 
The principal geological units known to underlie the site are clearly reflected in the 3D ERT 
model. The resistive gravels dominate the upper part of the model (red to yellow), before giving 
way to more conductive tills, lake sediments and Namurian Sandstone (blue). The good 
resistivity contrast between the gravels and the underlying material allow us to clearly identify 
the base of the mineral. The methods by which we calculate the position this interface are 
discussed in Section 3.4.3.  

The uppermost layers of the model reveal a patchy distribution of resistivities across the surface. 
We have interpreted the more conductive areas as till, whereas the more resistive zones are likely 
to indicate the absence of till cover, with gravel at the surface. The relatively high contact 
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resistance from the survey indicates that the till and top soils are not particularly rich in clay: 
instead silt and fine sand probably dominate. 

The fluvio-glacial gravel is seen as an essentially tabular structure, though significant internal 
structures are apparent. The most obvious of these is a pipe-like feature centred on x = 18 m, y = 
147 m. This feature is persistent with depth and displays a markedly lower resistivity than the 
surrounding gravels, indicating the presence of a more conductive material such as clay or peat. 
Other channel-like features (e.g. Figure 15, x = 80 m, y = 30 m) also be observed, again 
distinguishable as resistivity lows relative to the main body of the gravels. 

 

 

Figure 17.  Marfield Quarry 3D ERT model: opaque volume defined by the 600 Ωm iso-surface. 

 

Beneath the gravel, low resistivity dominates indicating more clay rich materials. Moreover, it is 
likely that the formations below the gravels are saturated. The low resistivities lend weight to the 
hypothesis that the lake deposits are present, due to their expected relatively high clay content. 
Moreover, given that the Namurian deposits in this area are likely to be sandstones, which would 
generally be expected to be more resistive, the presence of lake sediment is even more likely. 

3.4.3 Determination of Geological Boundaries 
Resistivity data, ρ, were extracted from the 3D model as a function of elevation, z, for each 
surface position (x, y). Following previous work on vertical resolution in ERT images of layered 
structures (Chambers et al., 2008a), an interpolating curve was fitted through ρ(z) for each (x, y) 
point. In that study, each ρ(z) curve had only eight data points, and so a shape-preserving 
interpolant was used to represent the form of the data more accurately near the sharp bedrock 
interface. But this type of interpolation does not generally have a smooth first derivative, a fact 
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which has since been found to cause unrealistic discontinuities between the steepest gradients at 
neighbouring (x, y) points. For this reason, and also since there are eleven data points per curve 
in this case, smoother cubic spline curves were used instead. An example set of ρ(z) data and its 
interpolating spline function is shown in Figure 18. 

 

 

Figure 18.  Resistivity data (circles) and interpolating curve (blue line) as a function of 
elevation. The points of steepest gradient and where the curve crosses the interface resistivity 
value are indicated. 

 

Two methods were used to determine the elevation of the bedrock interface for each (x, y) point 
across the survey area (see Figure 18). The first involves finding the elevation where the 
resistivity varies most rapidly (the steepest gradient). This approach can be used in the absence 
of any prior information, such as borehole logs. The second method uses a known bedrock 
elevation from a borehole log. The average model resistivity at this elevation in the vicinity of 
borehole is denoted ρi. The second method finds the bedrock elevation simply by calculating 
where each curve crosses the line ρ = ρi. 

The results of each approach are shown in Figure 19. Despite using a smooth interpolant, the 
steepest gradient method still gives an interface surface which, in places, varies sharply by up to 
5 m in elevation over 2 m horizontally (Figure 19a). Compared to the bedrock elevation of 
~83 m, estimated from the borehole at (x = 160 m, y = -2 m), this method has significantly 
overestimated the interface elevation by ~7 m. This is consistent with the results of previous 
synthetic and field studies (Chambers et al., 2008a). 

The average interface resistivity value at an elevation of 83 m was estimated from four vertical 
resistivity curves in the region of (x = 95 m, y = 25 m). Although these are not the closest curves 
to the borehole, care had to be taken to avoid the corners of the resistivity model where the 
image resolution is poor. The interface resistivity was found to be ρi = 357 Ωm. The results of 
the interface resistivity method using this value are shown in Figure 19b. Here the elevation of 
the bedrock varies much less rapidly with position. This layer is shown in the 3D model in 
Figure 20. It is worth noting that sharp unrealistic changes occur at the corners of the bedrock 
interface layer when using either method. This is because the data density, and hence the image 
resolution, is lowest in the corners, leading to unrealistic vertical resistivity profiles in these 
areas. 
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Figure 19.  Elevation of bedrock determined by a) the steepest gradient method, and b) the 
known interface method. 

Figure 20.  Marfield Quarry 3D ERT model showing bedrock surface calculated using the 
known interface method. 
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3.5 CONCLUSIONS 
The Marfield Quarry site geology was relatively simple, but was essentially unproven due to the 
failure of conventional drilling methods to prove bedrock. The 3D ERT survey was successful in 
identifying the distribution of overburden across the area and revealing the thickness of the 
gravel deposit. A 2D surface defining the base of the gravel was calculated from the ERT model; 
this surface was in a form that could be directly incorporated into terrain modelling packages, 
such as LSS, for reserve calculation. The uncertainties associated with our interpretation of the 
3D ERT model could be very significantly reduced with calibration data from even one 
successful intrusive sample point. 
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4 Case Study – Bull’s Lodge 

4.1 SITE DESCRIPTION 

4.1.1 Location and background 
The Bull’s Lodge site is located 6 km to the north east of Chelmsford, Essex. The grid reference 
of the site is 573600 E, 212100 N. The site, which is a former airfield, is bounded to the south by 
Bull’s Lodge Quarry, and to the east, west and north by agricultural land. The survey area forms 
part of the reserves at the site, and is due to be quarried. 

 

 

Figure 21.  Aerial view of the Bull’s Lodge ERT survey area (© UKP/Getmapping Licence No. UKP2008/01). 

4.1.2 Intrusive Investigations 

Three phases of drilling have been undertaken in and around the 3D ERT survey area in 1987, 
2002, and 2007 (Tucker, 2004). The locations of some of these holes are shown in Figure 21. 

Geophysical (2D ERT and EM31) surveys were undertaken by Terradat in 2003 in the south-
western quadrant of the airfield, directly to the south of the DRAGNET 3D ERT survey. These 
surveys revealed a good contrast in electrical properties between mineral and overburden, and 
mineral and bedrock (Tucker, 2004 – Appendix C).  
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Hill (2004) describes geophysical surveys of the land directly to the south of our survey area 
using a multi-sensor platform (MSP) survey system, with EM31, EM34 and EM38 sensors. In 
addition, 2D ERT surveys were undertaken to provide calibration for the EM data. The 2D ERT 
surveys were particularly successful in identifying the distribution and thickness of overburden 
and mineral. The sand and gravel was seen to have resistivities of hundreds of Ωm, whilst the 
bedrock and overburden had resistivities of a few tens of Ωm. 

The site also falls within the area of report number 6 of the Assessment of British Sand and 
Gravel Resources series (Eaton, 1973). This report describes a number of boreholes from the 
land adjacent to the site. 

As with the Marfield Quarry site, a CPT survey was commissioned under the DRAGNET 
project. Again, testing was unsuccessful due to extremely poor weather and ground conditions. 

 

 

Figure 22.  3D geological model of the Bull's Lodge 3D ERT survey area. 

4.1.3 Geology 
The general geology of the Bull’s Lodge site and surrounding areas is described by Eaton (1973) 
and Tucker (2004) as consisting of London Clay bedrock overlain by sand and gravel, with a 
Boulder Clay overburden. A 3D geological model of our survey area that has been produced 
from borehole data is shown in Figure 22. 

BEDROCK (LONDON CLAY) 

The London Clay is stiff bluish-grey silty clay. Its thickness in the area of the survey is not 
known. 
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SAND AND GRAVEL (CHELMSFORD GRAVELS) 

The sand and gravel was formed from glacial outwash deposits from the same ice-sheet that 
deposited the overlying Boulder Clays. In this area they are known as the Chelmsford Gravels 
(Clayton, 1957) and consist of angular to sub-rounded flint, quartz and quartzite. Grain size and 
thickness varies significantly in and around the Bull’s Lodge quarry. 

BOULDER CLAY (SPRINGFIELD TILL) 

The Boulder Clay in the area of the 3D ERT survey consists of the Springfield Till (Clayton, 
1957), which is a stiff clay that contains abundant fragments of flint and other erratics. 

4.1.4 Hydrogeology 
No groundwater data relating to our survey area is currently available. However, the close 
proximity of the working quarry face and moisture content from borehole from previous drilling 
campaigns leads us to suspect that much of the sand and gravel is unsaturated. 

4.2 FIELD SURVEY 

4.2.1 Surface Conditions 
The field survey was carried out within an area of stripped overburden. The ground was firm and 
moist, and electrode emplacement was straightforward; no preparation of electrodes was 
required, and they could all be installed by hand. The surface conditions at the site were ideal for 
ERT. We encountered some periods of rain during the survey, but these did not slow survey 
progress.  

 

 

 

 

 

 

 

Figure 23.  Photograph 
of the Bull’s Lodge 
northern quarry 
extension area during 
the 2007 3D ERT 
survey. Looking south-
east. 

4.2.2 Survey Design 
The 3D ERT survey was carried out within an area of 315 m (x-axis) by 120 m (y-axis) (3.8 
hectares). A summary diagram of the survey grid is shown in Figure 21, with the ERT lines 
shown in blue. The main survey lines were 315 m long, striking in a west-north-westerly 
direction, and were positioned at 10 m intervals, resulting in a total of thirteen lines. Two 
additional survey lines, which were 315 m long, were positioned at y = 20 and 295 m to improve 



CR/08/040; Draft 0.1  Last modified: 2008/05/23 16:22 

 30 

data density at the eastern and western margins of the survey. An along-line electrode separation 
of 5 m was used for all survey lines.  

The dipole-dipole array with dipole sizes (a) of 5, 10, 15, 20 and 25 m, and dipole separations 
(n) of 1a to 8a was used; full sets of reciprocal measurements were collected for each line. 

4.2.3 Field Operations 
The survey was completed in a three day period between the 7th and 9th November 2007. The 
field party consisted of three people (A L Weller, J E Chambers, and J D O Williams). The field 
procedure was similar to that described from the Masham survey (Section 3.2.3).  

For the Bull’s Lodge survey the total time on site was 19 hours and the total measurement time 
was 12.3 hours. 

4.3 DATA PROCESSING 

4.3.1 Data Editing 

The combined dataset from the fifteen survey lines comprised a total of 23 569 reciprocal pairs. 
Analysis of the reciprocal errors showed that more than 98.8 % of the normal and reciprocal 
measurement pairs had an associated error of less than 5 %. Measurements with a reciprocal 
error of more than 5 % were removed; the remaining reciprocal pairs were averaged prior to 
inversion. 

Average contact resistances recorded during the field survey were an order of magnitude lower 
than those recorded during the Marfield Quarry survey. The lower contact resistances are 
certainly a significant factor in the extremely low reciprocal error of the Bull’s Lodge ERT data, 
and can be attributed to the very low resistivity of the stripped overburden. 

4.3.2 Numerical Inversion 
Edited survey data collected from the individual lines were concatenated into a single data set 
comprising approximately 23 279 individual apparent resistivity measurements. 

The 3D ERT field data were again inverted using the L1-norm implementation of the regularized 
least-squares optimization method (Loke and Barker, 1996), and the forward problem was solved 
using the finite difference method.  

The final resistivity model consisted of 63 cells in the x-direction, 24 cells in the y-direction and 
11 layers in the z-direction, resulting in a total of 16 632 model cells. Excellent convergence 
between the observed and model data was achieved after 6 iterations, as indicated by RMS error 
of 2.1 %. 

4.4 VISUALISATION & INTERPRETATION 

4.4.1 Integrated 3D Display 
The Bull’s Lodge 3D resistivity model output from RES3DINV has been gridded using a node 
spacing of 1.25 m in the x, y and z directions, resulting in a model comprising 1.1 million voxels. 
Interpolation was carried out using an inverse-distance method, by which a weighted average of 
the closest data point from each 90o sector around each node was calculated. 

RockWorks2006 has been used to display the gridded and interpolated 3D model. A 3D view of 
the model, with cut-outs, annotation and borehole logs is shown in Figure 24. As with Marfield 



CR/08/040; Draft 0.1  Last modified: 2008/05/23 16:22 

 31 

Quarry, aerial photographs and site plans have not been included, because in this case they 
would not have assisted in the analysis and interpretation of the model. 

We have also included figures showing sections through the 3D model:  horizontal sections at z 
= -5 and -10 m are shown in shown in Figure 25; a vertical section, parallel to the x-axis at y = 
40 m, is shown in Figure 26. 

 

Figure 24.  Integrated Bull's Lodge Quarry 3D ERT model. 

4.4.2 Analysis & Interpretation 

The three main geological units known to underlie the site are distinguishable from the 3D ERT 
model. The Boulder Clay overburden appears as a homogeneous layer of low resistivity material 
(< 10 Ωm, blue). The underlying sand and gravel appears as a more resistive feature 
characterized by resistivities of hundreds of Ωm (red). Towards the base of the model bedrock 
resistivities appear to be lower than those of the sand and gravel, as would be expected of the 
London Clay. 

The interface between the overburden and mineral appears to be well resolved. The horizontal 
sections at z = -10 m in Figure 25 shows that the variations in thickness of overburden, as 
indicated from the borehole data, are broadly reflected in the 3D ERT model. In particular the 
high resistivity zones from x = 0 to 130 m, and the wedge shaped feature at x = 200 to 280 m and 
y = 20 to 120 m are areas in which overburden is thinnest. 

Inspection of Figure 24 and Figure 26 reveals that the lower interface, between the mineral and 
bedrock, has not been adequately resolved in the model. The thickness of the relatively thin layer 
of sand and gravel appears from the 3D ERT model to be grossly overestimated when compared 
to the geological model and borehole data. We have attributed this to the presence of the thick 
conductive overburden, a hypothesis that we discuss in detail in the following section.   
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Figure 25.  Horizontal sections through the Bull's Lodge 3D ERT model. 
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Figure 26.  Vertical section through  the Bull's Lodge 3D geological model (top) and 3D ERT 
model (bottom) at x = 40 m. 

4.4.3 Effect of conductive overburden on bedrock interface determination 
To help understand the poor resolution of the bedrock interface in the Bull’s Lodge model, the 
effect of a conductive (e.g. clay) overburden of varying thickness was simulated. Figure 27a 
shows the resistivity model that was used, which comprised a clay overburden of thickness h1 
and resistivity ρ1 = 15 Ωm, an aggregate layer of thickness h2 = 6.6 m and resistivity ρ2 = 500 
Ωm, and an infinitely thick bedrock of resistivity ρ3 = 10 Ωm. There were 64 electrodes in the 
model at 5 m spacings, giving an overall length of 315 m. Synthetic data for a dipole-dipole 
array, with dipole lengths a = 5 m – 25 m and dipole spacings of n = 1 – 8, were calculated from 
an analytic expression for the potential on the surface of a three-layered earth (Wait, 1982). The 
data were inverted using Res2DInv with an L1 smoothness constraint preferentially weighted by 
a factor of 3 to favour horizontal features. The results of the inversions for each value of h1 are 
shown in Figure 27b. When the overburden thickness is ≤ 7 m, the aggregate layer is reasonably 
well resolved. But for h1 > 7 m, there is a rapid decrease in the sharpness of the bedrock 
interface. This is quantified in Figure 27c by comparing the depth to bedrock determined by the 
maximum gradient method (see Section 3.4.3) against the actual interface depth (h1 + h2). This 
shows that the maximum gradient depth is with 1-2 m of the actual depth if h1 ≤ 7 m. If the 
interface is deeper than this, the error in the depth increases rapidly. Therefore it seems that, in 
general, surface ERT will be unable to recover the depth to bedrock accurately if there is a 
conductive overburden which is significantly thicker than the electrode spacing.  

This failure to delineate the bedrock interface is due to current flowing preferentially in the 
conductive overburden. A possible way to improve the results would be to include data where 
the current is injected directly into the bedrock. This could be achieved by placing extra current 
electrodes in boreholes beneath the interface and measuring potentials at the surface. Figure 28 
shows an inversion of dipole-dipole data as above, augmented by data measured between all 
surface potential dipoles of length 5 m when current was injected between the two sub-surface 
electrodes (shown by white dots in the bedrock at a depth of 20 m). The data were generated 
from a Res2DMod model with h1 = 10 m, and inverted as above but with extra 0.5 m thick model 
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layers included between depths of 18 m and 22 m so that the currents from the borehole 
electrodes could be accurately represented. Although the results show considerable artificial 
variation in the structure of the bedrock, the maximum gradient depth for the image in Figure 28 
is 18.0 m, much closer to the actual depth of 16.6 m than was found using surface data only 
(23.9 m, see Figure 27c). Although this technique needs further study before it can be 
recommended, if suitable boreholes were already available at the site of interest, it could provide 
valuable data at little extra cost. 

Figure 27.  a) Three-layer resistivity model representing a clay overburden, aggregate deposit 
and bedrock. b) Resulting resistivity images for overburden thickness h1 = 3 m – 10 m. c) 
Comparison of actual depth and depth determined by the maximum gradient method. 
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Figure 28.  Resistivity image obtained for an overburden thickness h1 = 10 m using surface 
dipole-dipole data combined with gradient data from currents injected at two subsurface 
electrodes (white dots). 

4.5 CONCLUSIONS 

The Bull’s Lodge site geology was relatively simple with good available ground truth data. All 
the relevant data streams were combined in virtual 3D space, and our approach to data 
integration, 3D display and interpretation have been demonstrated. In this case 3D ERT was 
effective in determining the thickness of the Boulder Clay overburden, but failed to resolve the 
base of the sand and gravel. This failure was due to the unfavourable overburden to mineral 
thickness ratio within the survey area, and the highly conductive nature of the overburden, which 
caused current to be channelled and focussed in the upper layer, resulting in poor resolution of 
the sand and gravel. The overburden to mineral ratio at which 3D ERT would be effective at the 
Bull’s Lodge site has been determined from synthetic modelling studies, thereby providing a 
useful resource with which to inform survey design for future surveys at similar sites. 
Furthermore, a new survey design concept involving the use of a buried current dipole has been 
trialled, again using synthetic models, that has the potential to resolve even relatively thin 
mineral layers beneath thick conductive overburden.  
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5 Best Practice Guidance 
The application of 3D ERT to sand and gravel resource assessment is still in its infancy; 
consequently, best practice guidance is currently unavailable. Moreover, to the best of our 
knowledge such guidance has not been developed for any application of 3D ERT. Although 
specific guidance for this application has not been developed we can turn in the first instance to a 
number of sources that provide more general guidance on the role of geophysics in ground 
investigations. Sources include the Geological Society of London, the Construction Industry 
Research and Information Association (CIRIA), the US Geological Survey (USGS) and the 
British Standards Institution (BSI). We have described some of the most significant publications 
in the following paragraphs, in order of increasing significance. 

In 1988 a working group of the Geological Society Engineering Group published a report titled 
‘Engineering Geophysics’ (McDowell et al., 1988). The report covered general topics such as the 
planning of surveys, the applicability of geophysical methods, as well as specifics targets and 
applications. This publication predates the advent of electrical imaging, but mention was made of 
sand and gravel prospecting using 1D resistivity soundings. An updated version of the report, 
titled ‘Geophysics in Engineering Investigations’, was published in 2002 (McDowell et al, 
2002). This report benefited from an increased focus the professional use of geophysical 
techniques, and contained a wider range of potential applications. Again, sand and gravel 
investigations were considered, and on this occasion, with a fleeting mention of the use of 
resistivity imaging. However, the report did not include guidance on the application of 3D ERT 
to this or any other application. 

Smith and Collis (2001) in their ‘Aggregates: sand, gravel and crushed rock aggregates for 
construction purposes’ have useful chapter on the ‘Field investigation of deposits’. This section 
provides a detailed overview of the main stages of deposit evaluation, from desk study through 
to presentation of field and test results. Within this chapter ground geophysics are discussed, 
including resistivity soundings and traverses. Resistivity imaging is only obliquely referred to in 
the section on resistivity traverses in the form of a reference to the paper on 2D ERT by Griffiths 
and Barker (1989), and is dismissed as having been ‘almost completely superseded by 
electromagnetic [EM] conductivity surveying’. This comment is unfortunate given that EM 
mapping and ERT are complimentary techniques that provide very different types of subsurface 
information. EM mapping is useful for rapidly mapping the near surface, and provides little 
depth information; ERT is more time consuming, but can provide 2D and 3D images of the 
subsurface to depths of tens of meters. Needless to say, Smith and Collis (2001) provide no 
guidance as to the correct use of ERT for sand and gravel surveys.   

Of perhaps most relevance to this work is the CIRIA publication “Rapid characterization of 
contaminated sites using electrical imaging” (Onions et al., 1996). Although the authors are 
concerned with 2D rather than 3D imaging and they assess its use for contaminated land rather 
than minerals, their general approach is useful. Furthermore, this document appears to be almost 
unique in that it is exclusively focussed on the use of ERT and not other geophysical techniques; 
consequently, we are provided with a more thorough assessment of the use of ERT than can be 
found in the documents mentioned in the preceding paragraphs. It should also be mentioned that 
many of the site investigation concerns of those investigating contaminated sites are similar to 
those of the minerals geological, e.g. depth to bedrock, water table, and deposit heterogeneity. 
The report comprises sections on ERT theory, survey design and site conditions, interpretation 
and case studies.  

The scope and resources of this project do not permit us to develop a comprehensive guidance 
document for the application of ERT for sand and gravel resource assessment. Instead we 
propose a framework, consisting of the key considerations for the geophysicist engaged in this 
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type of survey. The structure of this framework is as follows: (i) technique overview; (ii) benefits 
and limitations; (iii) survey design and execution; (iv) data processing and interpretation; (v) 
quality control; (vi) case studies. Although this project is primarily concerned with 3D ERT, we 
have also included 2D ERT in our framework. This is because the two techniques are very 
closely related, and it is clear that 2D ERT is also potentially useful technique for sand and 
gravel assessment. 

5.1 OVERVIEW OF ERT 
Resistivity has long been used as a prospecting method by geophysicists. Consequently, basic 
resistivity theory is covered in many text books (e.g. Telford et al., 1990). The extension of the 
technique to 2D imaging has just about made it into the text books (e.g. Reynolds, 1997), but is 
dealt with at a relatively superficial level. We must therefore turn to other sources of 
information. One of the most comprehensive overviews of 2D and 3D ERT is provided by Dr M 
H Loke in his ‘Tutorial: 2-D amd 3-D electrical imaging surveys’ (Loke, 2004). Other published 
sources include journal papers, conference proceedings, and reports (e.g. Onions et al., 1996; 
Dahlin and Bernstone, 1997; Chambers et al., 2002). Given the wealth of information on basic 
resistivity theory and the fundamentals of electrical imaging we will not repeat it here. 

5.1.1 Limitations 

Any introduction or overview of ERT should consider the limitations of the technique for the 
desired application. These must be taken into account when designing surveys and interpreting 
resistivity models: 

1. Data quality: Models are only ever as good as the quality of the electrical measurements. 
Measured data is subject to error from a variety of sources including that introduced by 
the measurement device, poor electrode contact or electrode polarization, and other 
indeterminate external effects. 

2. Non-uniqueness & resolution: A range of theoretically equivalent models can always be 
obtained from field data. The problem of non-uniqueness is exacerbated with increasing 
depth of investigation since the model in deeper regions is less well constrained by the 
data. The model that best satisfies the smoothness criterion is therefore chosen. However, 
smoothness constrained (and even L1-norm) inversion produces models characterized by 
smoothed and gradational changes in resistivity, even when the data arises from 
situations where sharp changes in resistivity occur in the subsurface; the ERT models 
can, therefore, provide only an approximate guide to the true resistivity and geometry of 
subsurface features (Olayinka and Yaramanci, 2000). 

3. Three-dimensional features: Resistivity variations in the regions adjacent to each side of 
2D ERT lines, and along the boundaries of 3D ERT survey arrays, can affect the 
resistivity model even though these features may be offset from the survey line or outside 
the survey area. This is because 3D structures cannot be accurately modelled by 2D 
inversion or at the boundaries of 3D models. 

4. Small scale heterogeneities: High-contrast heterogeneities in the subsurface that are small 
compared to the model cell-size cannot be accurately modelled, and so can hinder 
convergence between measured data and the resistivity model [image] during the 
inversion process. 

5. Calibration: ERT provides direct information on only the resistivity of the subsurface, 
and not lithological variation. Calibration is required for the resistivity images to be 
meaningfully interpreted. Consequently, ground truth data or some other form of a priori 
information is required. 3D ERT is therefore complimentary to conventional intrusive 
methods, and will never entirely replace them. 
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5.2 SURVEY PLANNING & DESIGN 
At the centre of any ERT survey design strategy is the trade-off between image resolution and 
survey time (i.e. cost). Clearly, the best resolution is achieved using small electrode separations, 
and very dense measurement sets. However, as electrode separations reduce and the number of 
electrode configurations increases, costs increase and the survey becomes less and less 
economically viable due to the increased time that is required to deploy the electrodes, and 
undertake the electrical measurements. The art of survey design is to devise a strategy that 
provides sufficient resolution for the problem in hand, whilst using the largest electrode 
separation and smallest set of measurement configurations possible. 

In this section we seek to determine broad guidelines and approaches to ERT survey design of 
sand and gravel investigation. To undertake this task we consider all available relevant 
information (Figure 29), including the preceding review data (which outlines deposit types and 
characteristics), the results of synthetic modelling studies, and published ERT survey design 
research.  
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Figure 29.  Survey design – input parameters and methodologies 

5.2.1 Electrode array types 
There are many arrangements of current and potential electrodes that have been used 
successfully for resistivity imaging. Each type of arrangement has specific strengths and 
weaknesses (Dahlin & Zhou, 2004). The dipole-dipole type has been used throughout this study. 
It exhibits lower signal strengths than most of the other commonly used types, and therefore the 
data it returns can be prone to contamination by environmental noise. However, most modern 
resistivity instruments have very good noise rejection circuitry and so, providing that reliable 
electrical contact can be made with the ground, very good results can be obtained. The 
advantages of the dipole-dipole array include: excellent image resolution (comparable to that 
obtained by specially optimised arrays, Wilkinson et al, 2006); efficient usage of multi-channel 
systems; and efficient collection of reciprocal data to obtain noise statistics for QA purposes.  If 
noise does cause a problem at a particular site, then the gradient array (Dahlin & Zhou, 2004) is 
a useful alternative that provides similar image resolution with better signal-to-noise 
characteristics. However, it is much less efficient to collect reciprocal data for the gradient array 
than for the dipole-dipole. 

5.2.2 Vertical Resolution (or Depth of Investigation) 
The dipole-dipole array is characterised by an intra-dipole spacing, a, and an inter dipole 
spacing, na. (see Figure 30a). In general the depth that the current flows into the earth, and 
therefore the depth of investigation, increases as the spacing of the electrodes increases. It has 
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been shown (Edwards, 1977) that unique median depths of investigation, z, can be defined for 
each combination of spacings a and na, and that these can be used to determine the rough depth 
of a subsurface resistivity feature. For the dipole-dipole array the depths of investigation are 
given in Table 1 as multiples of a. If these tabulated values are not available, it is worth noting 
that the depths are given approximately by the expression z ≈ (n + 1) a / 4. 

Synthetic modelling studies were used to find out how accurately the depth to a horizontal 
interface (e.g. between a sand / gravel layer and the bedrock) can be determined from a typical 
dipole-dipole survey. The simulated electrode array had 48 electrodes at 5 m spacings, and 
dipole-dipole configurations with a = 5 m, 10 m & 15 m, and n = 1 → 8 were used. The sand / 
gravel layer was assumed to have a resistivity ρ = 100 Ωm, and the bedrock had ρ = 10 or 20 
Ωm, giving resistivity contrasts of 10:1 and 5:1 respectively (Figure 30a). The synthetic dipole-
dipole data were inverted to produce electrical images of the interface (Figure 30b). 

Resistivity data were obtained from each image and plotted as functions of depth (Figure 30c). 
The position of the interface was assumed to be at the maximum slope of the resistivity-depth 
curve. A cubic spline curve was fitted to the resistivity data, and then differentiated to find the 
point of maximum slope. The differentiated curves also give an estimate of the degree of 
blurring of the interface (and therefore the uncertainty its depth). The results are summarised in 
Table 2. 

 

n z / a 
1 0.416
2 0.697
3 0.962
4 1.220
5 1.476
6 1.730
7 1.983
8 2.236

Table 1.  Median depth of investigation z, as a function of inter-dipole spacing na. 

 

 

 

 

 

 

 

 

 
Table 2.  Estimated vs actual interface depth for resistivity contrasts of 5:1 and 10:1. 

 

In all cases the estimated depth is within the uncertainty bound of the actual depth. This 
uncertainty increases with the depth of investigation. At depths less than the electrode separation 
(5 m), the interface depth is overestimated. Conversely at depths greater than the electrode 
separation, the interface depth is underestimated. 

Actual Interface 
Depth (m) 

5:1 Maximum 
Slope Depth (m) 

10:1 Maximum 
Slope Depth (m) 

2.5 2.9 ± 0.6 2.7 ± 0.7 
3.5 3.8 ± 0.9 3.6 ± 1.0 
5.0 4.3 ± 1.1 4.3 ± 1.1 
7.0 6.6 ± 1.2 6.6 ± 1.2 
10.0 9.5 ± 1.7 9.5 ± 1.7 
14.0 12.9 ± 2.2 12.7 ± 2.2 
20.0 17.8 ± 3.1 17.4 ± 3.1 
30.0 28.2 ± 4.4 27.8 ± 4.5 
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Figure 30. (a) Synthetic model with a resistive sand / gravel layer overlying more conductive 
bedrock. Also shows an example dipole-dipole electrode arrangement with a = 10 m and n = 3. 
(b) Inverted image of synthetic data generated from the model. The interface is at a depth of 
10 m. (c) Resistivity data as a function of depth (blue circles) taken from the centre of the model 
(white dashed line). The fitted curve (blue) is differentiated (red) to find the point of maximum 
slope and to estimate the uncertainty in the estimated interface depth. 

5.2.3 Lateral Resolution 
3D ERT site investigation surveys are generally carried out using discrete ‘2D lines’ that are 
migrated across a site at regular intervals (e.g. Bentley and Gharibi, 2004; Chambers et al., 2002; 
Dahlin et al., 2002). Datasets are then merged and inverted using 3D inversion algorithms. This 
staged approach is adopted primarily due to limitations associated with the survey equipment and 
instrumentation. For example, the cable lengths required to address a 3D surface survey grid 
across an area of several hectares would be unmanageable. In addition, most commercially 
available ERT instruments are designed to address tens to a few hundred ERT electrodes; again 
for a single-stage survey covering several hectares many more electrodes would be required. The 
arguments for undertaking these 3D surveys using a multi-stage line-by-line approach are 
overwhelming, and this method of undertaking 3D ERT surveys is unlikely to change in the 
foreseeable future. Given that this is the survey strategy that will be used it is important to 
determine suitable along-line electrode spacing and line separations. These will depend on the 
scale of the deposit under investigation. The review in Section 2.2 indicates that economically 
viable UK sand and gravel is typically relatively shallow with a thickness of < 20 m; the scale of 
operations is generally many hectares. 
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5.2.3.1 ALONG-LINE ELECTRODE SEPARATION 

The electrode spacing and vertical and lateral resolution are closely linked. Vertical resolution 
(and depth of investigation) is considered in Section 5.2.2, so here we will focus on lateral 
coverage. For a 64-electrode system (which is typical of those currently on the market) electrode 
separations of 2.5 m, 5.0 m and 10 m would give line lengths of 157.5 m, 315 m, and 630 m 
respectively. Cell sizes in the inverted model typically range between 0.25 to 1.0 electrode 
spacings; lateral resolution will not be better than the minimum model cell width. For most sand 
and gravel surveys a line length of 157.5 m may be relatively short compared to the survey area; 
and a sub-metre lateral resolution will probably be excessive. On the other hand, a line length of 
630 m will be practically difficult to handle in the field, and so therefore may not be always 
feasible, although a lateral resolution of 2.5 to 10 m would probably be sufficient in most cases. 
It is likely that an along line electrode separation of 5 m will be the preferred option in many 
cases. 

5.2.3.2 LINE SEPARATION AND ORIENTATION 

Studies have shown that a significant decrease in resolution can be avoided by using line 
separations of less than four along-line electrode separations (Chambers et al., 2002; Gharibi and 
Bentley, 2005; Kuras et al., 2002); e.g. for an along-line electrode separation of 5 m a line 
separation of 20 m or less should be employed. For sand and gravel surveys it is unlikely that 
more than one line orientation will be required, as in most cases a single line orientation will 
resolve features of interest. It is only for very narrow linear features, e.g. a buried pipeline or 
foundation, that two line orientations may be required. However, a few strategically placed tie-
lines (i.e. those line positioned perpendicular to the main survey direction) may be useful in 
improving resolution at the ends of the survey lines comprising the 3D survey area – this is 
because resolution diminishes at the end of survey lines due to the decreased coverage, 
particularly at depth (e.g. Figure 2). 

Table 3.  Examples of survey parameters and timings for hypothetical ERT surveys. 

5.3 DATA COLLECTION 
Very often the majority of ERT survey costs are due to the field component of the work. Field 
surveys should therefore be designed for maximum efficiency. The goal here is to maximize the 
coverage rate per man day of effort expended. Survey logs should be kept, detailing line 
position, array type used (e.g. dipole-dipole, Wenner, etc…) dataset names, measurement 
parameters (e.g. current level; pulse duration), and any other relevant site specific or operation 
information. Missing or faulty electrode positions should be recorded; these can arise due to 
human error, or difficult ground conditions that prevent the installation of electrodes. 

Example 1 Example 2 Example 3
No. of Crew: 3 3 5
Instrument: AGI Sting R8 ABEM SAS4000 AGI Sting R8
No. of electrodes/line: 64 64 64
Electrode separation: 5 m 5 m 7.5 m
Line length: 315 m 315 m 472.5 m
Line separation: 10 m 10 m 15 m
Electrode configuration: Dipole-dipole        

a = 1-4, n = 1-8
Dipole-dipole        

a = 1-4, n = 1-8
Dipole-dipole        

a = 1-2, n  = 1-8
Initial setup: 30 mins 30 mins 30 mins
Measurement time/line: 45 mins 75 mins 25 mins
Changeover time/line: 12 mins 12 mins 10 mins
Lines/8hr day: 8 5 13
Hectares/8hr day: 2.2 1.3 8.5
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Inversion and modelling software for 2D ERT data now operates very rapidly (i.e. a maximum of 
a few minute for a line comprising 64 electrodes), thereby allowing preliminary processing and 
inversion of datasets in the field. Given that 3D ERT datasets are typically made up of a number 
of 2D lines this is applicable to both 2D and 3D field surveys. This should be done routinely to 
assess data quality and to identify problems due to human error (i.e. wrongly connected or 
disconnected cables and electrodes) or difficult ground conditions (i.e. high contact resistances). 
If data quality issues are detected remedial actions can undertaken, such as adjusting instrument 
settings, repositioning and watering electrodes, and repeating measurement sets. 

Cable deployment procedures will vary depending on survey design, ground conditions, and the 
type of field equipment being deployed. Examples of detailed field procedure are given Section 
3.2.3 and by Chambers et al. (2008c).  

5.3.1 Survey Time 
Survey time is influenced by a number of factors: 

a. Ground conditions – surface obstacles, such as boggy ground, vegetation, and man-made 
structures can impede the deployment of cables and electrodes. Very hard or dry ground 
may require the electrodes to be hammered into the ground and watered to ensure good 
electrical contact. 

b. Field crew – in general the addition of crewmembers will lead to a reduction of survey 
time. It is likely that crews will typically consist of between 2 to 5 members. Crew size 
should be determined to maximize survey efficiency, and will have to be determined on a 
case-by-case basis. For example, in some situations the addition of one person to a two-
person crew could increase survey speed by more than 33 % and should therefore be 
considered; conversely, depending on survey design the addition of one person to a five-
person crew could lead to no improvement in efficiency, in which case a five-person crew 
would be preferable. Large crews are particularly useful for long line lengths (i.e. > 300m), 
or where additional electrode preparation is required.  

c. Instrumentation – a number of ERT systems are available on the market. The most 
significant consideration for reducing survey time is the number of measurement channels; 
the more channels a system has the more rapid the data collection will be. For example the 
ABEM SAS4000 system has 4-channels, whilst the AGI Sting system has 8-channels; 
therefore, the measurement speed of the AGI system has the potential to be twice that of 
the ABEM system. Care should also be taking in selecting appropriate instrument settings 
for the conditions, again with the aim of reducing survey time. For example, in relatively 
benign conditions with low contact resistances and good signal strengths it may be 
appropriate to reduce the injected current pulse duration or to reduce the number of current 
cycles per measurement. 

d. Survey design parameters – the design of the survey (in terms of line length, electrode and 
line separation, and electrode configuration) exerts the most significant control on survey 
time. Therefore, particular attention should be given to determining optimal survey design 
parameters to ensure that redundant data is not collected. Synthetic modelling studies and 
measurement simulations should be employed when appropriate to refine survey design 
prior to field measurements. 

e. Weather – ERT surveys can be undertaken in most weather conditions encountered in the 
UK, with relatively little effect on survey time. However, ERT surveys have to pause 
during electrical storms to prevent damage to equipment and operators. 

f. Access – although ERT equipment is portable, survey time is kept to a minimum if 
vehicular access to the survey area can be achieved. 
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Three examples of survey parameters and timings for hypothetical ERT surveys are given in 
Table 3. These are intended to illustrate realistic for scenarios that could reasonably be expected 
for sand and gravel reconnaissance surveys.  

 

Figure 31.  TARGET imaging procedure. 

5.4 DATA PROCESSING AND INTERPRETATION 

5.4.1 Inversion 
Several 2D and 3D resistivity inversion packages are available on the market. Whilst these 
products may vary slightly in their functionality, the underlying algorithms all work on broadly 
similar principles. The software used should always be identified in the report, alongside 
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inversion settings, such as model discretisation, types of forward modelling and optimization 
methods, and types of constraints. All these factors influence the result of the inversion, and 
must be considered by the geophysicist when interpreting the model. Geophysical model 
interpretation consequently requires expert input from the geophysicist; this is particularly 
crucial when identifying artefacts of the inversion process within electrical models, which could 
easily be interpreted as real properties of the subsurface by a non-specialist. 

5.4.2 Visualisation 
The imaging procedure used in this report was developed as part of the parallel TARGET 
project. An overview is given here, and more details can be found in Chambers (2008b). The 
procedure is divided into five stages. The first three stages and the final stage are common; 
however, the approach taken in Stage 4 will vary depending on the complexity of the deposit. A 
flowchart of the procedure is shown in Figure 31. Stage 1 involves representing the 3D model in 
the form of a regular grid or iso-surfaces. Stage 2 integrates the ERT model with other available 
site data. At Stage 3, the geophysicist and geologist will be able to assess the heterogeneity of the 
site, and determine the range of overburden and mineral thickness. This will involve calibrating 
the model against the available ground truth. If the geology of the site is found to be relatively 
simple then the depths to key geological boundaries can be determined directly from the 
calibrated model (Stage 4) and exported directly to LSS, the minerals industry standard package 
for terrain modelling and 3D visualisation. If the deposit is more complex, the 3D ERT model is 
used to refine a geological model of the site. The boundaries are then exported from the 
geological modelling package to LSS. In Stage 5, a descriptive report of the deposit imaging 
procedure is compiled including calibrated and interpreted 3D images and sections and a 
description of the methods that were used. 

 

Figure 32.  Integrated 3D visualisation of ERT model and conventional investigation data for an 
old landfill site. 
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For Stage 2, a range of options for ERT model visualisation are available. The simplest option is 
to present vertical or horizontal sections displayed within the inversion software. For 3D datasets 
a more effective option is to use a visualisation package, such as Voxler, RockWorks2006 or 
GOCAD, to display the model alongside other relevant groundtruth data in virtual 3D space. An 
example of this type of integrated data visualisation is shown in Figure 32. A 3D ERT image of 
an old landfill site has been combined with other data, such as the water table surface, historic 
maps and borehole logs to produce an integrated 3D model that can be interrogated and viewed 
from any angle. 

5.5 DATA QUALITY  
Effective quality control touches on all aspects of ERT survey planning, execution and reporting. 
Of crucial importance is the thorough recording of all aspects of the work. Survey design should 
be clearly described, and explained and justified based on previous research findings and case 
histories. Likewise measurement settings should be appropriate for the problem at hand. 

A suitable measure of data quality should be selected, and used to quantify the error associated 
with the measured data. Reciprocal error is a particularly good indicator of data quality. Simply 
put, the reciprocity theorem implies that if the current and potential dipoles are interchanged then 
the same apparent resistivity value will be measured. This powerful result holds in very general 
circumstances, so any differences between data obtained using a particular configuration and its 
reciprocal are highly likely to be due to noise (either from the environment, the instrument, or 
both). The percentage reciprocal error between a forward measurement (ρf) and its reciprocal (ρr) 
is given by  

( )rf2
1

rf100
ρρ
ρρ
+
−

× . 

The distribution of percentage reciprocal errors gives a good indicator of data quality, and can be 
used for QA purposes. Typically, if the large majority of data have reciprocal errors < 1 %, the 
data quality is usually regarded as excellent. Between 1 % and 3 % is good, 3 % – 5 % is 
acceptable, and > 5 % is likely to cause problems with resolving detail in the associated inverted 
images. 

The inversion process seeks to determine a model with a response that best satisfies the 
measured data. The level of agreement between the two is quantified as a misfit error. This is a 
useful indicator of the quality of the model and of the confidence that can be placed in it; good 
convergence between the modelled and observed data should result in misfit errors comparable 
with the level of random noise in the data (e.g. the mean reciprocal error). For these reasons, 
misfit error values should therefore always be displayed alongside ERT models.  

5.6 CASE STUDIES 

Sand and gravel resource assessment surveys have the potential to encounter a large range of 
geological settings and ground conditions. Furthermore, the scope and aims of a particular 
survey will be entirely defined by the specific needs of the client. Given the potential range of 
ERT survey types, targets and designs, case histories are essential to the geophysicist; they can 
assist in identifying pitfalls, illustrate the strengths and weaknesses of design strategies, and add 
to our knowledge of the electrical properties of deposits. 

We have noted previously the dearth of good case histories in this area of application. The 
DRAGNET case studies described above, and those from the parallel TARGET project, have 
gone someway to addressing this through the work done during the data collection phases of the 
projects. 
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6 Cost Benefit Analysis 
The application of 3D ERT for sand and gravel resource assessment is still at an early stage of 
development. This situation presents a number of challenges when trying to quantify the benefits 
of ERT for this application. In particular the main obstacles are: 

1. Lack of other published case studies - to the best of our knowledge no other case studies 
describing the use of ERT for sand and gravel assessment appear in the literature. Case 
studies are essential for assessing how site conditions, deposits types and survey designs 
can affect the progress, efficacy, and hence, costs of ERT minerals surveys. 

2. Service provision - as yet it appears that the service sector (i.e. geophysical 
consultancies) do not routinely offer or advertise 3D ERT surveys. This situation will 
almost certainly change in the near future as demand rises, and take-up of commercially 
available instrumentation and software increases. 

3. High end modelling and visualisation - the integrated modelling and visualisation of 3D 
ERT and geological models is still very much at a research and development stage, and 
consequently cannot be considered a ‘near market’ component of this project. This aspect 
of the work is included in Stage 4 of the imaging procedure. Quantification of costs 
associated with this part of the project is particularly difficult; we have therefore limited 
our discussion here to the use of Stages 1, 2, 3 and 5 of the imaging methodology, which 
would include the use of 3D ERT to produce an interpreted 3D geophysical model and 
descriptive report. 

4. Unfamiliarity of the 3D ERT to the minerals industry - given that this is the case it will 
take time before we can robustly assess the value that the industry place upon this type of 
new information. Effective dissemination of results from this project is essential to begin 
this process. 

In view of these challenges we present a general discussion and qualitative assessment of the 
benefit of ERT for sand and gravel reconnaissance. The three key elements that we consider are 
the relative costs of ERT surveying, the general efficacy of the technique, and the added value 
that it can provide relative to conventional methods. 

6.1 RELATIVE COSTS 
The primary tool for sand and gravel resource assessment is drilling. We have therefore sought 
to discuss ERT survey costs in relation to drilling. Costs associated with 3D ERT surveys can be 
divided into those arising from the field component and those due to office based processing and 
interpretation. In both cases the main cost is staff time. Mobilisation and demobilisation costs are 
low. 

Field costs will depend primarily on survey design, and to a lesser extent ground conditions. Site 
coverage, in hectares per day (see previous case studies), are at least competitive with drilling; 
moreover ERT daily rates are likely to be less than that for drilling. 

Data processing and interpretation is not strongly dependent on survey size. By employing semi-
automated data processing and inversion software large data sets would not ordinarily take 
longer to analyse than very small data sets. Economies of scale for data processing and 
interpretation are significant. The production of electrical images (2D or 3D models) and a 
descriptive report for a typical site would take in the order of 5 to 10 days. 

In some cases the cost of an ERT survey could be offset against a reduction in drilling costs due 
to the information provided by geophysical images. When using boreholes alone, in some cases 
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many tens of boreholes could be necessary to understand the geological heterogeneity of a site. 
The use of ERT could significantly reduce the number of boreholes required by providing targets 
for drilling. 

6.2 EFFICACY 
For ERT to be a viable tool for routine use by the minerals industry there must be evidence to 
show that in a significant proportion of cases it will provide economically valuable information 
regarding the structure of the deposit. This will depend primarily on whether a sufficient contrast 
in resistivity exists between the mineral and overburden, and the mineral and bedrock. These 
factors are ultimately controlled by the geological setting. Results from both the TARGET and 
DRAGNET project have indicated that in six out of the seven sites considered 3D ERT is would 
be a suitable and effective investigative technique. 

6.3 ADDED VALUE 

Conventional sand and gravel investigations are carried out using drilling. This is a tried and 
tested method and in many cases provides a cost effective means for robustly assessing the 
economic potential of the deposit under investigation. This is particularly true for relatively 
simple deposits that display only limited lateral and vertical heterogeneity. It is our assertion that 
3D ERT will provide greater added value for complex deposits where mineral and overburden 
thickness and quality can vary substantially between even relatively closely spaced boreholes 
(i.e. 50 to 100 m). In such cases ERT can be an effective means of filling in the gaps between 
intrusive sample points. 
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7 Future Research, Development & Exploitation 

Future Work 

Four key interdependent research and development priorities arising from the DRAGNET 
project have been identified in consultation with industry partners; these are (1) additional case 
studies, (2) exploitation of existing data, (3) a full demonstration study in which 3D ERT is 
incorporated into the reserve calculation process from start to finish, and (4) a detailed 
quantitative cost benefit analysis. 

Further case studies are required to demonstrate the capabilities of 3D ERT for a greater range of 
geological settings. This will allow us to refine survey design strategies, gain additional 
knowledge of the electrical properties of key deposits (e.g. Thames Valley sands and gravels), 
and will develop a broader knowledge base from which to develop best practice guidance and 
better assess the ‘value’ of ERT for this application. 

During the DRAGNET project we have carried out two 3D ERT surveys on sites that will in the 
near future be excavated as quarry extensions, thereby providing us with a superb opportunity for 
follow up ground truth that would be impossible for most geophysical surveys. Geological 
logging of working quarry faces within the 3D ERT survey areas should be undertaken to assess 
the quality of the electrical models. These additional datasets would provide us with an 
opportunity to investigate the relationship between mineral grade and resistivity, with the aim of 
developing 3D ERT of a means of investigating quality variations within deposits. 

The TARGET and DRAGNET project have demonstrated ‘proof of concept’ for the use of 3D 
ERT as a tool for providing operationally relevant information. However, we have worked on 
sites where the decision to quarry had already been made, and we have only developed the 
technique to the point where we can deliver information to minerals geologists. The next step 
will be to identify a site where the decision to quarry has not yet been taken, and an intrusive 
investigation program has not yet begun. At such a site we would have the opportunity to fully 
integrate 3D ERT into the site investigation procedure from the start, thereby allowing a truly 
integrated approach with the conventional methods. We would then seek to work with minerals 
geologists to import geophysically derived operationally relevant information into reserve 
calculation and quarry planning packages such as LSS, and fully assess the added value gained 
from use 3D ERT. 

Improved quantification of the costs associated with 3D ERT surveys is required before it will be 
considered by the industry as a routine site investigation option. At present we know the 
indicative BGS costs for the research surveys undertaken during the TARGET and DRAGNET 
projects, but these do not represent competitive commercial rates.  

Dissemination & Exploitation 

A number of dissemination options are currently being pursued. An abstract has been submitted 
to the Extractive Industry Geology Conference, which is an excellent forum for raising 
awareness of the DRAGNET project amongst the wider end-user community. The paper seeks to 
provide a general overview of the application of ERT to sand and gravel prospecting. The 
conference paper will be extended and developed for submission to an appropriate journal. By 
choosing suitable journals we will ensure knowledge transfer to the geophysical consultancies 
that will utilise the methodologies and guidance that we have developed under DRAGNET. An 
article is also in preparation for a minerals industry trade magazine; the goal of this article will 
be to raise awareness amongst end-users of the technology. 
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Additional funding options for this work are being explored. Preferential routes include the 
Minerals Industry Sustainable Technologies (MIST) Programme, the Technology Strategy Board 
(TSB), and EPSRC (in collaboration with an academic partner).  
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8 Conclusions 

8.1 CASE STUDIES 

• 3D ERT surveys have been undertaken on two quarry extension sites, at Marfield Quarry, 
near Masham, North Yorkshire, and at Bull’s Lodge, near Chelmsford, Essex. 

• The results from these studies were integrated with other pre-existing information and 
exploration datasets in virtual 3D space to aid analysis and interpretation. 

Marfield Quarry 

• The Marfield ERT model successfully resolved the key lithologies at the site and was 
used to identify the depth to bedrock, distribution of overburden, and grain size variations 
within the deposit. 

• Depth to bedrock data was calculated from the ERT model and exported as a 2D surface. 
The format of this depth to bedrock surface is entirely compatible with industry standard 
terrain modelling software such as LSS, thereby demonstrating a means of integrating 3D 
ERT with existing approaches to aggregate reserve assessment. 

• Previous investigations at Marfield Quarry met with only very limited success due to the 
high number of refusals resulting from the extremely coarse nature of the gravels. The 
success of 3D ERT in this case provides the minerals industry with an alternative 
approach to the investigation of these types of deposits. 

Bull’s Lodge Quarry 

• The Bull’s Lodge 3D ERT model was successful in resolving the thickness of overburden 
at the site, but failed to adequately resolve the base of the mineral. 

• The overburden to mineral thickness ratio within the survey area was approximately 2:1, 
which due to the conductive nature of the overburden presented too much of a challenge 
to 3D surface ERT. This case study has therefore been valuable in highlighting the 
limitations of the technique. 

• We have undertaken synthetic modelling studies that have shown the range of conductive 
overburden to mineral thickness ratios at which ERT is likely to be effective, which will 
be invaluable for the planning of future sand and gravel 3D ERT surveys. Furthermore, 
we have proposed a methodology, employing buried electrodes, which could potentially 
allow 3D ERT to resolve the bedrock interface at the Bull’s Lodge site and at other sites 
with similarly thick conductive overburden.   

8.2 BEST PRACTICE GUIDANCE 

• A framework for best practice guidance has been established, based on previously 
published studies and site investigation guidance, and from the findings and experience 
gained during the DRAGNET project. 

• We consider that guidance on the use of ERT for sand and gravel resource assessment 
should cover the following subjects: 

o Overview of ERT 

o Limitations of ERT 

o Survey planning and design 
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o Data collection 

o Data processing and interpretation 

o Quality control 

o Case studies 

• The framework that we have proposed is designed as an initial step, which will be 
developed and refined as more 3D ERT work is undertaken in this field. 

8.3 COST BENEFIT ANALYSIS 

• Significant challenges still exist before a robust and quantitative cost benefit analysis can 
be undertaken. These include: a lack of published case histories; limited service provision 
for both 3D data collection and high-end modelling and visualisation; and unfamiliarity 
on the part of the minerals industry with 3D ERT. The DRAGNET project has clearly 
taken significant steps in addressing all of these challenges. 

• Despite the afore mentioned challenges we have identified three areas in which we are 
able to qualitatively assess the benefits of ERT: 

o ERT survey costs are likely to be broadly similar to those of drilling. 

o ERT has been shown to be an effective ground investigation technique for all of 
the sites considered during the project, which increases our confidence that it will 
be more generally applicable to UK sand and gravel resources. 

o The potential for 3D ERT to provide ‘added value’ for end-users (i.e. minerals 
companies) has been demonstrated at the Ingham site, where geological 
complexity not apparent from borehole data was imaged. 

o The use of 3D ERT has the potential to reduce drilling costs. 

8.4 FUTURE DEVELOPMENT AND EXPLOITATION 

• Additional case studies are required to demonstrate the capabilities of 3D ERT for a 
greater range of geological settings. 

• Ground truth of completed 3D ERT surveys during quarrying is required to better assess 
the quality of the existing electrical models. 

• A cradle-to-grave demonstration study is required to demonstrate the use of 3D ERT 
from initial site investigation through to reserve calculation and quarry planning. 

• A quantitative cost benefit analysis is required before the minerals industry can determine 
whether 3D ERT is a viable tool for sand and gravel investigations. 

• Knowledge transfer is being actively pursued through the preparation of conference 
presentations, journal papers, and articles. 

• Additional funding will be sought from sources such as MIST, TSB and EPSRC. 
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