Hydrological Summary for the United Kingdom

General

November was a singular month in hydrological terms; it was notably warm but with very boisterous weather conditions and exceptionally high rainfall across most of the country. The UK registered its wettest November on record (in a series from 1914) and, more remarkably, a new 24 -hr maximum rainfall for the UK was established in the Lake District. Severe flooding affected Cumbria and parts of Scotland and floodplain inundations were both common and widespread. The sustained high runoff rates generated an exceptionally high ($>10 \%$) monthly increase in overall reservoir stocks for England \& Wales, leaving them at their $4^{\text {th }}$ highest early-December level in a series from 1988. Below average early-winter stocks in index reservoirs are restricted to a few reservoirs in the English Lowlands (e.g. Rutland and Bewl). November runoff totals exceeded previous maxima in many catchments and, with soil moisture deficits rapidly eliminated, the belated seasonal onset of aquifer recharge gathered considerable momentum through the month; some dramatic increases in groundwater levels were reported. Entering the winter, the water resources outlook is notably healthy in almost all regions but, with catchments generally saturated, many river basins are very vulnerable to further significant rainfall.

Rainfall

In contrast to much of 2009, November saw a relentless sequence of low pressure systems crossing the British Isles. The persistently cyclonic conditions resulted in rainfall on all but 2 or 3 days in most regions and in mid-month a nearstationary weather system allowed an exceptionally warm and moist subtropical airflow to track SSW-NNE across parts of the UK. This, together with substantial orographic enhancement, produced many storm totals of $>50 \mathrm{~mm}$ and culminated in extreme rainfall totals across high ground in the Lake District. A new UK 24-hr record was established at Seathwaite Farm, Borrowdale with 316.4mm up to 00:00 on the 20th (provisional return period 2000 years); the site also recorded remarkable totals of 402 mm over 37 hrs and 495 mm over 4 raindays (provisionally $4000 \& 3000$ years). Apart from the far north-west of Scotland, November rainfall totals exceeded the average, commonly by wide margins and many individual raingauge totals were outstanding. Existing monthly rainfall maxima were widely eclipsed e.g. Inveruglas (Strathclyde) notched 561.4 mm and Glencaple (Dumfries \& Galloway) exceeded, by 80 mm , its previous maximum for any month in a $45-\mathrm{yr}$ series. The exceptional late autumn rainfall considerably moderated medium and long term rainfall deficiencies: regional rainfall totals for the last 12 months are in the normal range across England \& Wales, and considerably above average for Northern Ireland and Scotland.

River flows

Many responsive rivers remained in spate for much of November with an associated high flood risk across a substantial proportion of the country. Early in the month a rotating low pressure system caused gales and widespread flooding across Banff and Aberdeenshire (e.g. in Huntly and Stonehaven). The peak flow on the Deveron (at Muiresk) exceeded its previous maximum (registered in September) in a 50-yr record. By the third week, brisk (but seasonally-late) runoff recoveries were well established across the English Lowlands in both responsive and groundwater-fed streams; there were a few exceptions e.g. in East Anglia. Over the latter half of November flood warnings were very widespread. With catchments saturated and most responsive rivers in high spate, the extreme rainfall over the $17-20^{\text {th }}$ triggered a devastating flood episode in Cumbria (and extending into south west

Scotland). Many rivers in the Lake District (including the Derwent, Cocker and St Johns Beck) exceeded their previous maximum flow by a wide margin as did outflows from Windermere (in a 70-year series). Very exceptional flows were also reported in a broad band from north Wales to well into Scotland; the Nith eclipsed its previous November maximum in a 53 -year series. Flooding was also severe in Northern Ireland (Lough Earn spilled causing extensive agricultural flooding). Floodplain inundations were both extensive and sustained with very severe impacts on communities (Cockermouth and Workington particularly). Collapsed bridges and landslips contributed to severe transport disruption (services on the West Coast Main Line were briefly suspended). The November outflows for the UK were the highest on record (in a series from 1961) and index rivers eclipsing previous November runoff maxima show a very wide distribution. Runoff accumulations, relatively depressed throughout much of 2009 in southern Britain, are now - for the year thus far - generally within, or above, average.

Groundwater

After meagre recharge since the early spring of 2009 in lowland aquifers, the sustained November rainfall eliminated residual soil moisture deficits in most areas and abundant infiltration characterised the latter half of the month, continuing into December. The recording schedules for the index boreholes (and the time taken for recharge to traverse the unsaturated zone) means that the groundwater level response is not captured in some of the featured hydrographs. Nonetheless, exceptionally steep groundwater level recoveries were recorded in parts of the southern Chalk (see, for example, the West Woodyates and Chilgrove hydrographs). This pattern is replicated in most of the index limestone wells which reported late in the month - see the hydrograph for Ampney Crucis in the Jurassic Limestone of the Cotswolds. In south west Scotland, the exceptional November rainfall resulted in the highest recorded level at the Newbridge borehole in a $16-\mathrm{yr}$ series. The full effect of the late-autumn infiltration will not be evident until later in the year but the outstanding late-autumn recharge has transformed the general groundwater resources outlook; strong groundwater level recoveries are now well established across most major aquifer outcrop areas.

Centre for
Ecology \& Hydrology
NATURAL ENVIRONMENT RESEARCH COUNCIL

Rainfall. . . Rainfall .

Rainfall accumulations and return period estimates

Area	Rainfall	$\begin{array}{r} \text { Nov } \\ 2009 \end{array}$	Sep 09 - Nov 09		Jun 09 - Nov 09		Mar 09 - Nov 09		Dec 08 - Nov 09	
England \& Wales	$\underset{\%}{\mathrm{~mm}}$	$\begin{aligned} & 196 \\ & 214 \end{aligned}$	$\begin{aligned} & 306 \\ & 119 \end{aligned}$	2-5	$\begin{aligned} & 574 \\ & 125 \end{aligned}$	5-10	$\begin{aligned} & 723 \\ & 110 \end{aligned}$	2-5	$\begin{aligned} & 930 \\ & 103 \end{aligned}$	2-5
North West	mm	292	450		857		1082		1346	
	\%	233	121	$5-10$	132	10-20	121	15-25	111	5-10
Northumbrian	mm	199	317		643		774		965	
	\%	230	134	$5-10$	143	30-40	121	5-15	111	2-5
Severn Trent	mm	138	218		473		605		762	
	\%	192	108	2-5	122	2-5	107	2-5	99	2-5
Yorkshire	mm	180	288		548		681		862	
	\%	220	127	$5-10$	129	5-10	111	2-5	103	2-5
Anglian	mm	95	158		326		413		546	
	\%	164	99	2-5	103	2-5	90	2-5	90	2-5
Thames	mm	152	223		405		511		685	
	\%	232	118	2-5	115	2-5	99	2-5	98	2-5
Southern	mm	211	309		447		564		772	
	\%	247	131	2-5	113	2-5	100	2-5	98	2-5
Wessex	mm	202	311		547		672		898	
	\%	238	130	2-5	131	5-10	111	2-5	105	2-5
South West	mm	244	397		731		952		1283	
	\%	191	117	2-5	129	5-10	118	5-10	108	2-5
Welsh	mm	315	486		881		1109		1395	
	\%	218	121	2-5	132	5-15	117	5-10	104	2-5
Scotland	mm	262	554		976		1328		1714	
	\%	167	120	5-15	129	60-90	126	> 100	117	20-30
Highland	mm	259	636		1060		1510		1982	
	\%	131	114	$5-10$	119	10-20	122	50-80	114	10-20
North East	mm	165	432		755		963		1222	
	\%	159	145	20-30	141	> 100	127	60-90	119	20-30
Tay	mm	269	529		925		1227		1558	
	\%	211	138	10-20	144	50-80	135	>100	121	15-25
Forth	mm	232	425		793		1034		1288	
	\%	200	122	$5-10$	133	20-30	124	20-35	112	5-10
Tweed	mm	224	370		751		917		1159	
	\%	233	129	$5-10$	145	40-60	125	10-20	116	5-15
Solway	mm	325	534		1075		1405		1793	
	\%	223	119	$5-10$	144	80-120	136	>100	125	50-80
Clyde	mm	341	654		1183		1626		2068	
	\%	184	116	$5-10$	129	30-50	130	>100	118	15-25
Northern Ireland	mm	211	357		705		981		1234	
	\%	197	111	2-5	126	10-20	124	25-40	112	5-10

Important note: Figures in the above table may be quoted provided their source is acknowledged (see page 12). Where appropriate, specific mention must be made of the uncertainties associated with the return period estimates. The RP estimates are based on data provided by the Met Office and derived following the method described in: Tabony, R. C. 1977, The variability of long duration rainfall over Great Britain. Met Office Scientific Paper no. 37. The estimates reflect climatic variability since 1913 and assume a stable climate. The timespans featured do not purport to represent the critical periods for any particular water resource management zone. For hydrological or water resources assessments of drought severity, river flows and/or groundwater levels normally provide a better guide than return periods based on regional rainfall totals. All monthly rainfall totals since May 2009 are provisional.

Rainfall... Rainfall...

November 2009

December 2008-November 2009

September - November 2009

Forecast for Winter 2009/10:
Issued 27 November 2009

Temperature

For northern Europe, including the UK, there is a 20% chance of a colder winter, a 30% chance of an average winter and a 50% chance of a milder winter.

Rainfall

For northern Europe, including the UK, signals for precipitation are weak, with near equal chances for each of the three categories. There is a 30% chance of a drier winter, a 35% chance of an average winter and a 35% chance of a wetter winter.

Updates and reviews of the forecast

An update to the winter forecast will be issued in December A monthly appraisal of the winter will start in early February 2010.

For further details please visit:
http://www.metoffice.gov.uk/weather/seasonal/2009/winter/

River flow . . . River flow

Based on ranking of the monthly flow*

November 2009

River flows

*Comparisons based on percentage flows alone can be misleading. A given percentage flow can represent extreme drought conditions in permeable catchments where flow patterns are relatively stable but be well within the normal range in impermeable catchments where the natural variation in flows is much greater. Note: the period of record on which these percentages are based varies from station to station. Percentages may be omitted where flows are under review.

River flow ... River flow

River flow hydrographs

The river flow hydrographs show the daily mean flows together with the maximum and minimum daily flows prior to December 2008 (shown by the shaded areas). Daily flows falling outside the maximum/minimum range are indicated where the bold trace enters the shaded areas.

River flow . . . River flow

Notable runoff accumulations (a) July - November 2009, (b) May - November 2009

a) | River | \%lta | Rank |
| :--- | ---: | ---: |
| Ness | 139 | $37 / 37$ |
| Spey (Boat o'Garten) | 141 | $57 / 58$ |
| Tay | 167 | $57 / 57$ |
| Tweed (Norham) | 169 | $48 / 50$ |
| Tyne (Bywell) | 168 | $48 / 51$ |
| Little Ouse | 54 | $4 / 39$ |
| Tawe | 166 | $50 / 51$ |

	River	\%lta	Rank		River	\%lta
a)	Rank					
Teifi	171	$48 / 50$	b)	Dee (Woodend)	136	$76 / 80$
Lune	159	$47 / 49$		Earn	159	$62 / 62$
Eden	197	$42 / 42$		Forth	160	$28 / 28$
Cree	161	$46 / 46$	Nith	180	$52 / 52$	
Mourne	173	$28 / 28$		Clyde (Blairston)	157	$50 / 50$
			Camowen	177	$38 / 38$	
			Annacloy	154	$28 / 30$	

Groundwater . . . Groundwater

Groundwater levels normally rise and fall with the seasons, reaching a peak in the spring following replenishment through the winter (when evaporation losses are low and soil moist). They decline through the summer and early autumn. This seasonal variation is much reduced when the aquifer is confined below overlying impermeable strata. The monthly mean and the highest and lowest levels recorded for each month are displayed in a similar style to the river flow hydrographs. Note that most groundwater levels are not measured continuously - the latest recorded levels are listed overleaf.

Groundwater . . . Groundwater

Groundwater levels November / December 2009

Borehole Dalton Holme Washpit Farm Stonor Park Dial Farm Rockley Well House Inn West Woodyates

Level	Date	Nov. av.
12.97	$13 / 11$	14.83
42.57	$01 / 12$	43.34
69.73	$02 / 12$	72.32
25.30	$11 / 11$	25.43
130.57	$02 / 12$	131.68
88.69	$30 / 11$	93.00
94.98	$30 / 11$	80.86

Level	Date	Nov. av.	Borehole	Level	Date	Nov. av.
43.83	$30 / 11$	46.52	Brick House Farm	12.47	$25 / 11$	12.33
117.12	$30 / 11$	115.83	Llanfair DC	79.72	$15 / 11$	79.70
9.95	$30 / 11$	12.31	Heathlanes	61.94	$26 / 11$	61.89
103.10	$02 / 12$	101.22	Weeford Flats	89.81	$06 / 11$	89.70
12.23	$29 / 11$	10.10	Bussels No.7a	24.21	$25 / 11$	23.63
130.83	$30 / 11$	130.05	Alstonfield	195.29	$16 / 11$	186.73
83.06	$19 / 11$	82.46		Levels in metres above Ordnance Datum		

Groundwater . . Groundwater

Groundwater levels - November 2009

The rankings are based on a comparison between the average level in the featured month (but often only single readings are available) and the average level in each corresponding month on record. They need to be interpreted with caution especially when groundwater levels are changing rapidly or when comparing wells with very different periods of record. Rankings may be omitted where they are considered misleading.
Notes:
i. The outcrop areas are coloured according to British Geological Survey conventions.
ii. Yew Tree Farm levels are now received quarterly.

Reservoirs . . . Reservoirs

Guide to the variation in overall reservoir stocks for England and Wales

Comparison between overall reservoir stocks for England and Wales in recent years

These plots are based on the England and Wales figures listed below.
Percentage live capacity of selected reservoirs at start of month

Area	Reservoir	Capacity (MI)	$\begin{array}{r} 2009 \\ \text { Oct } \end{array}$	Nov	Dec	Dec Anom.	Min Dec	Year* of min	$\begin{array}{r} 2008 \\ \text { Dec } \end{array}$	$\begin{array}{r} \text { Diff } \\ 09-08 \end{array}$
North West	N Command Zone	- 124929	87	90	99	23	44	1993	95	4
	Vyrnwy	55146	75	72	99	18	33	1995	93	6
Northumbrian	Teesdale	- 87936	81	92	98	19	39	1995	91	7
	Kielder	(199175)	(87)	(88)	(97)	13	55	2007	88	9
Severn Trent	Clywedog	44922	87	79	98	19	43	1995	79	19
	Derwent Valley	39525	76	67	100	22	9	1995	95	5
Yorkshire	Washburn	22035	78	77	93	21	16	1995	94	-1
	Bradford supply	- 41407	76	74	100	20	20	1995	97	3
Anglian	Grafham	(55490)	(84)	(81)	(84)	2	47	1997	93	-9
	Rutland	(116580)	(73)	(69)	(70)	-9	57	1995	88	-18
Thames	London	- 196628	84	80	94	13	52	1990	95	-1
	Farmoor	13822	84	85	81	-9	52	1990	93	-12
Southern	Bewl	28170	51	45	54	-10	34	1990	75	-21
	Ardingly	4685	64	55	72	-3	23	2003	93	-21
Wessex	Clatworthy	5364	83	72	100	23	16	2003	100	0
	BristolWW	- (38666)	(65)	(57)	(80)	13	27	1990	94	-14
South West	Colliford	28540	94	95	100	29	42	1995	100	0
	Roadford	34500	89	86	98	25	19	1995	97	1
	Wimbleball	21320	87	81	100	26	34	1995	100	0
	Stithians	4967	78	75	91	27	29	2001	88	3
Welsh	Celyn and Brenig	- 131155	88	85	95	8	50	1995	96	-1
	Brianne	62140	96	95	100	5	72	1995	98	2
	Big Five	69762	91	89	91	10	49	1990	96	-5
	Elan Valley	99106	96	93	100	7	47	1995	100	0
Scotland(E)	Edinburgh/Mid Lothian	97639	88	92	100	16	45	2003	97	3
	East Lothian	10206	100	97	99	12	38	2003	99	0
Scotland(W)	Loch Katrine	- 111363	94	93	100	10	65	2007	95	5
	Daer	22412	97	93	98	2	73	2003	99	-1
	Loch Thom	- 11840	95	95	96	3	72	2003	96	0
Northern	Total ${ }^{+}$	- 56920	91	96	99	16	59	2003	90	9
Ireland	Silent Valley	- 20634	92	95	99	23	43	2001	89	10

() figures in parentheses relate to gross storage

- denotes reservoir groups +excludes Lough Neagh
*last occurrence

Location map . . . Location map

National Hydrological Monitoring Programme

The National Hydrological Monitoring Programme (NHMP) was instigated in 1988 and is undertaken jointly by the Centre for Ecology and Hydrology Wallingford (formerly the Institute of Hydrology - IH) and the British Geological Survey (BGS). Financial support for the production of the monthly Hydrological Summaries is provided by the Department for Environment, Food and Rural Affairs (Defra), the Environment Agency (EA), the Scottish Environment Protection Agency (SEPA), the Rivers Agency (RA) in Northern Ireland, and the Office of Water Services (OFWAT).

Data Sources

River flow and groundwater level data are provided by the Environment Agency, the Environment Agency Wales, the Scottish Environment Protection Agency and, for Northern Ireland, the Rivers Agency and the Northern Ireland Environment Agency. In all cases the data are subject to revision following validation (flood and drought data in particular may be subject to significant revision). Reservoir level information is provided by the Water Service Companies, the EA, Scottish Water and Northern Ireland Water.

The National River Flow Archive (maintained by CEH Wallingford) and the National Groundwater Level Archive (maintained by BGS) provide the historical perspective within which to examine contemporary hydrological conditions.

Rainfall

Most rainfall data are provided by the Met Office (see opposite). To allow better spatial differentiation the rainfall data for Britain are presented for the regional divisions of the precursor organisations of the EA and SEPA. Following the discontinuation of the Met Office's CARP system in July 1998, the areal rainfall figures have been derived using several procedures, including initial estimates based on MORECS*. Recent figures have been produced by the Met Office, National Climate Information Centre (NCIC), using a technique similar to CARP. A significant number of additional monthly raingauge totals are provided by the EA and SEPA to help derive the contemporary regional rainfalls. Revised monthly national and regional rainfall totals for the post-1960 period (together with revised 1961-90 averages) were made available by the Met Office in 2004; these have been adopted by the NHMP. As with all regional figures based on limited raingauge networks the monthly tables and accumulations (and the return periods associated with them) should be regarded as a guide only.
The monthly rainfall figures are provided by the Met Office (National Climate Information Centre) and are Crown Copyright and may not be passed on to, or published by, any unauthorised person or organisation.
*MORECS is the generic name for the Met Office services involving the routine calculation of evaporation and soil moisture throughout Great Britain.

For further details please contact:
The Met Office
FitzRoy Road
Exeter
Devon
EX1 3PB
Tel.: 08709000100
Fax: 08709005050
E-mail: enquiries@metoffice.com
The National Hydrological Monitoring Programme depends on the active cooperation of many data suppliers. This cooperation is gratefully acknowledged; the November Summary, in particular, stands as a testament to the assistance provided by many hydrometric personnel working in exceptionally challenging circumstances.

Subscription

Subscription to the Hydrological Summaries costs $£ 48$ per year. Orders should be addressed to:

Hydrological Summaries
CEH Wallingford
Maclean Building
Crowmarsh Gifford
Wallingford
Oxfordshire
OX10 8BB
Tel.: 01491838800
Fax: 01491692424
E-mail: nrfa@ceh.ac.uk

Selected text and maps are available on the WWW at http://www.nerc-wallingford.ac.uk/ih/nrfa/index.htm Navigate via Water Watch

Some of the features displayed on the maps contained in this report are based on the following data with permission of the controller of HMSO.
(i) Ordnance Survey data. © Crown copyright and/or database right 2005. Licence no. 100017897.
(ii) Land and Property Services data. © Crown copyright and database right, S\&LA 145.
(iii) Met Office rainfall data. © Crown copyright.

All rights reserved. Unauthorised reproduction infringes crown copyright and may lead to prosecution or civil proceedings.

Text and maps in this document are © NERC (CEH) 2009 unless otherwise stated and may not be reproduced without permission.

