

The fate of diffuse Pb pollution in urban soil; a case study from Sheffield, UK.

Joanna Wragg, Barry Rawlins & Mark Cave

British Geological Survey jwrag @bgs.ac.uk

Introduction

Lead (Pb): probable human carcinogen; damages nervous system, brain and kidneys

It is widely dispersed across urban soils in industrialised nations

Sheffield: diffuse Pb pollution* in topsoil estimated around 100 mg kg⁻¹ (Rawlins et al., 2005).

We do not know: i) where this diffuse Pb resides in the soil or, ii) how mobile it is?

We have investigated this using in and around Sheffield

^{*} from an anthropogenic, not a geogenic or pedogeochemical, source

Background

Rural topsoil survey (Rawlins et al., 2002)

Locations of topsoil samples (depth 0-15 cm; <2mm)

Two parent material types which occur in Sheffield:

Lower Coal Measures (n=415) Middle Coal Measures (n=413)

© NERC All rights reserved

Urban topsoil survey: Sheffield (n=569; 0-15cm depth, <2mm) Same parent material: urban survey has larger proportion of sites over Lower Coal Measures

Contour maps of Pb concentrations (mg kg⁻¹) based on punctually kriged estimates with spatial outliers (hotspots) removed from the original data (Rawlins et al., 2005).

Cumulative distributions of topsoil iron (Fe2O3) and Pb: urban (n=569) and rural (n=818) Similar native Fe; larger urban Pb

Objectives:

By selecting 10 samples from rural and urban sites and applying a sequential extraction procedure we can investigate:

- 1. Whether extra components of urban soil are present?
- 2. What soil components is the Pb associated with?
- 3. Whether the associated Pb is mobile and therefore potentially available to human receptors?

Sample selection

Urban: aim large range diffuse Pb

- 1. Lower Coal Measures only
- 2. Remove samples at hotspots
- 3. Remove samples below mean: lowest diffuse pollution
- Order remaining samples by total Pb
- Select one randomly from each decile of the Pb distribution

Rural: aim small range diffuse Pb

- 1. Lower Coal Measures only
- Remove samples in areas of higher population (>diffuse poll)
- 3. Remove samples above mean (greatest diffuse pollution)
- 4. Order remaining samples by total Pb
- 5. Select one randomly from each decile of the Pb distribution

10 urban samples total Pb range: 205 – 534 mg kg⁻¹

10 rural samples total Pb range: 21 – 90 mg kg⁻¹

Analytical Methodologies

- •<2mm fraction, dried and homogenised</p>
- Pressed powder pellet XRF analysis
 - Total Elements
- Chemometric Identification of Substrates and Element Distributions
 - Solid Phase Distribution
 - 6 Rural, 6 Urban
 - Aqua Regia = non-specific extractant
 - •DI 5.0M
 - ICP-AES determination 23 major and trace elements

N.B: All 10 of each type were further assessed for human bioaccessibility – not presented here

Data modelling

- Each CISED from each rural and urban locations produces a data matrix of 23 elements by 14 extracts
- The data matrices were grouped for the urban and rural locations
 - Based on same parent material
- Number of soil components and element distributions for each location type were modelled using SMMR based on the method of Cave 2008*
- •Components from the two location types were compared wrt to composition to identify differences in source, natural or anthropogenic, if any.

What components were identified?

- Example of similar components, with similar composition in both land use types
- Ca dominated component probably Carbonate
 - •All soils contain the component, but at different concentrations
 - •Likely to be a function of different activities at the individual sites e.g. soil liming etc.,

Extract Number

Differences in observed components

50

% Composition

100

Pb distribution and mobility

Increasing mobility

Component Type	Urban	Rural
	Pb association across the soil type	
	mg kg ⁻¹	
Residual PW	0	0
Organic	0	0
Exchangeable	0	0
Carbonate	<50	<50
Al/Mn oxide	c. 250	c. 200
Al oxide	600	n/a
Fe oxide	c. 800	<50

Similar distribution for the easily extractable components

Fe oxide component overlapping extraction
gives rise to larger
uncertainty

Al oxide - significant Pb distribution - the sum of all 6 soils Relatively mobile therefore the Pb is potentially available for human uptake

© NERC All rights reserved

Interpretation

Two explanatory hypotheses:

- There is an extra mineral component in urban soil (introduced through development/human activity) with which the extra Pb is associated
 - ? ettringite from widely dispersed cements
- Soil formation or weathering processes are different in the urban soils – accounting for the different Al-oxide component

Future investigations

- Interrogation of the solid phase distribution data
 - Determine the Pb distribution at the individual locations within each component and each location type
 - •Further investigate the source of the unidentified Pb bearing component in the urban soils
 - On a sample by sample basis, including previous land use data
- Complete the measurement of human availability of Pb on each sample
 - By in vitro bioaccessibility test using a gastro-intestinal simulation
- Identify relationships (if any) between the solid phase distribution and bioaccessibility of Pb

© NERC All rights reserved