Regional lead isotope study of a polluted river 1 catchment: River Wear, Northern England, UK 2 3 Thomas J. Shepherd ^{a*}, Simon R.N.Chenery ^b, Vanessa Pashley ^c, Richard 4 A. Lord^d, Louise E. Ander^b, Neil Breward^b, Susan F. Hobbs^b, Matthew 5 Horstwood ^c, Benjamin A. Klinck ^b, Fred Worrall^a 6 7 8 ^a Department of Earth Sciences, University of Durham, Science Laboratories, Durham DH1 3LE, UK 9 ^b British Geological Survey, Nicker Hill, Keyworth, Nottingham NG12 5GG, UK 10 ^c NERC Isotope Geosciences Laboratory, Kingsley Dunham Centre, Keyworth, Nottingham NG12 11 5GG, UK 12 ^d School of Science and Technology, University of Teesside, Middlesbrough, Tees Valley TS1 3BA, UK 13

14 Abstract

15

16 High precision, lead isotope analyses of archived stream sediments from the River Wear catchment, 17 northeast England (1986-88), provide evidence for three main sources of anthropogenic lead pollution; 18 lead mining, industrial lead emissions and leaded petrol. In the upper catchment, pollution is totally 19 controlled and dominated by large lead discharges from historic mining centres in the North Pennine Orefield (²⁰⁸Pb/²⁰⁶Pb, ²⁰⁷Pb/²⁰⁶Pb ratios range from 2.0744 - 2.0954 and 0.8413 - 0.8554 respectively). 20 21 In the lower catchment, co-extensive with the Durham Coalfield and areas of high population density, 22 pollution levels are lower and regionally more uniform. Isotope ratios are systematically higher than in 23 the upper catchment (208Pb/206Pb, 207Pb/206Pb ratios range from 2.0856 -2.1397 and 0.8554 - 0.8896 24 respectively) and far exceed values determined for the geogenic regional background. Here, the 25 pollution is characterised by the atmospheric deposition of industrial lead and petrol lead. Lead derived 26 from the combustion of coal, although present, is masked by the other two sources. Recent sediments 27 from the main channel of the River Wear are isotopically indistinguishable from older, low order 28 stream sediments of the North Pennine Orefield, indicating that contamination of the river by lead 29 mining waste (up to several 1000 mg/kg Pb at some locations) continues to pose an environmental 30 problem; a pattern that can be traced all the way to the tidal reach. Using within-catchment isotope 31 variation and sediment lead concentrations, estimates can be made of the discharges from discrete 32 mines or groups of mines to the overall level of lead pollution in the River Wear. As well as providing 33 information pertinent to source apportionment and on-going catchment remediation measures, the 34 database is a valuable resource for epidemiologists concerned with the health risks posed by 35 environmental lead.

Keywords: Lead isotopes; Stream sediments; Pollution; Mining; Industrial emissions Leaded petrol; Source apportionment; England: Laser ablation-ICP-MS

38 Englan39

40 **1. Introduction**

41

36 37

42 Using the catchment of the River Wear (Fig. 1), a study was undertaken to 43 examine regional variation in the isotopic composition of lead in stream sediments in 44 order to establish the principal sources of lead pollution in northeast England. 45 Northeast England, like many other industrial and highly populated regions of the UK, is synonymous with coal and has a long history of underground and opencast 46 mining, especially during the 19th and 20th centuries. Geologically the eastern part of 47 48 the region encompasses the onshore Durham Coalfield and its North Sea offshore 49 extensions. During the same period, the western part of the region, referred to as the 50 North Pennine Orefield, was the UK's main producer of lead and zinc (Dunham 51 1990). Coal and non-metalliferous mining have now effectively ceased and other 52 industries are in sharp decline. Despite ongoing remediation measures, centuries of 53 intense industrial activity (steel making, ship building, mining, chemical processing) 54 have left a legacy of environmental pollution. Streams and rivers in former lead 55 mining areas have fine-grained sediments that contain more than 600 mg/kg Pb (British Geological Survey, 1996; Macklin et al., 1997; Hudson-Edwards et al., 1997; 56 57 Lord & Morgan, 2003; Robson & Neal, 1997). Extensive areas in both the orefield and coalfield have soils with 100-300 mg/kg Pb and locally > 400 mg/kg Pb 58 59 (McGrath & Loveland, 1992). Geochemical data for the city/urban areas of northeast 60 England are less comprehensive but in Newcastle upon Tyne for example (population 61 250,000), lead in soils frequently exceeds UK Soil Guideline Values for residential 62 (450 mg/kg Pb) and commercial land-use (750 mg/kg Pb) (Rimmer et al., 2006; 63 DEFRA 2005). As yet the implications for public health, especially the concerns of 64 low level lead neurotoxicity in young children (Canfield et al., 2003; Lanphear et al., 65 2005), have not been fully evaluated. However, one of the fundamental problems in 66 determining health risk is source apportionment. In the case of lead, lead isotopes have proved extremely valuable in identifying the sources and pathways by which this 67 68 metal enters the environment (Farmer et al., 1999; Gulson et al., 1994; Hansmann et 69 al., 2000; Labonne et al., 2001; Monna et al., 1997). Potential anthropogenic sources

in northeast England (past and present) are numerous; the most important of which
include local lead ores, leaded petrol, industrial emissions and coal combustion.

72 Previous lead isotope studies have focussed almost exclusively on the 73 historically important North Pennine Orefield, either to elucidate the origin of the ores 74 (Moorbath, 1962) or to provide information for archaeological investigations (Rohl, 75 1996). With the exception of two coal analyses for the Durham Coalfield (Farmer et al., 1999), there are no lead isotope data for areas of the River Wear catchment 76 77 outside the confines of the North Pennine Orefield. The overall aim of this study 78 therefore was to use high precision lead isotope analysis of stream sediments to 79 identify the principal sources of lead pollution. In creating a lead isotope database, it 80 was hoped the information would be a resource for future epidemiological studies 81 where regional variation might provide a basis for assessing lead body burdens for 82 people living in area.

- 83
- 84 **2. Materials and Methods**
- 85

87

The River Wear has a catchment area of approximately 1300km² and is one of several major river systems in northeast England (Fig. 1). It comprises (1) a western, upper catchment that includes part of the more extensive North Pennine Orefield (1600km²) and is characterised by substantial pollution from historical lead mining activities, and (2) a multi-sourced, polluted lower catchment that drains the highly populated, heavily industrialised Durham Coalfield to the east.

94

95 2.1.1 Upper catchment 'Orefield'

96

97 The upper catchment is underlain by the Carboniferous Limestone Series 98 (limestones, shales, sandstones) and overlying Millstone Grit Series (predominantly 99 sandstones) that rest unconformably upon an older, Lower Palaeozoic granite 100 'Weardale Granite'. The granite is not exposed at the surface but has been proved by 101 drilling and geophysics (Dunham et al., 1961). A distinctive feature of the orefield is

^{86 2.1} Study area

102 the spatial zoning of ores, with an inner zone of lead, zinc and fluorspar located over 103 the top of the granite (Fig. 1) surrounded by an outer zone of barite and lead 104 (Dunham, 1990). Though disputed evidence exists for Roman mining, the upper Wear 105 valley has been a centre of mining activity for the last 400 years (1665-1985) and 106 accounts for 30% of the total recorded North Pennine Orefield production of 2.9 Mt 107 lead. The ores were worked primarily from sub-vertical mineral veins of which 108 several hundred are recorded. The range of fine-grained, stream sediment lead 109 concentrations is extremely large (60 to 20,000 mg/kg Pb) with most streams having >250 mg/kg Pb which is several times greater than the expected geological 110 111 background. Typical regional background concentrations for fine-grained sediment in 112 streams draining unmineralised Carboniferous limestones are <35 mg/kg Pb and ≈ 100 113 mg/kg Pb for shales and sandstones (British Geological Survey, 1993, 1996).

114

115 2.1.2 Lower catchment 'Coalfield'

116

117 Downstream, the lower catchment is underlain by the Coal Measures; a thick 118 sequence of shales, sandstones and coal seams that lie stratigraphically above the 119 Carboniferous lithologies referred to above. This is the Durham Coalfield sensu 120 stricto. As in the upper catchment, centuries of mining have left their environmental 121 scar. Fine-grained stream sediment values range from ~60 to ~600 mg/kg Pb. 122 However, in contrast to the highly variable lead concentrations in streams draining the 123 orefield, there is a more even but nevertheless significantly elevated level of 100-200 124 mg/kg Pb in streams across most of the coalfield. Only in the relatively unworked, 125 western fringe of the Durham Coalfield, where industrial activity has been least, is there a preponderance of streams with values <90 mg/kg Pb. In the absence of other 126 127 evidence, the least contaminated streams are taken to be a good approximation of the 128 regional lead background. The regional scale distribution of streams with fine-grained 129 sediment containing 100-220mg/kg Pb is consistent with the concept of diffuse 130 anthropogenic pollution (D'Arcy et al., 2000).

131

132 2.2 Samples

133

134 Use was made of 118 archived stream sediment samples collected from low 135 order streams by the British Geological Survey during 1986-88 (British Geological 136 Survey, 1996) and supplemented by 27 sediment samples (this study 1999-2001) from 137 the main channel of the River Wear (Fig. 2; Table 1). Low order stream sediments 138 (i.e. the fine-grained, $<150 \mu m$ size clay and fine silt fractions) have the advantage 139 over soil samples in averaging the lead over a much greater area. They comprise a 140 well-mixed composite of eroded soil, weathered bedrock and chemical precipitates 141 and, although the sampled area may vary from stream to stream, they tend to 142 minimise the influence of very localised soil anomalies. The sampling methods used 143 were those described by Plant (1971) and Plant and Moore (1979), and subsequently 144 incorporated into the international standard for geochemical mapping (Darnley et al., 145 1995). Stream sediments collected using these protocols were considered satisfactory 146 for revealing regional scale variation without recourse to a high-density soil survey 147 involving 1000s samples. Moreover, the density of archived low order stream 148 sediments was considered robust enough to detect important within-catchment 149 variation. For completeness, the sampled area was extended to include adjacent parts 150 of the Tyne and Tees river catchments. Samples from the main channel of the River 151 Wear were taken by sediment suction pump (Lord & Morgan, 2003). This method 152 was adopted because it facilitates the sampling of wider, more slowly flowing rivers 153 in water depths up to 1m. It does not however take into account sediment 154 accumulation rates, so the time span of contamination (years or decades) represented 155 by the sample is unknown. In faster flowing, low order streams, the accumulation of 156 fine-grained sediment is minimal and subject to shorter time scale changes. No 157 attempt was made to take water samples or to recover suspended particulate matter for 158 analysis.

To validate the isotopic composition of lead entering the streams from abandoned lead mines, 44 galena samples (lead ores) were collected from individual, well-documented, mineral veins in the North Pennine Orefield (Fig. 2; Table 1). Sampling was based on geological criteria relating to vein orientation and the relative age of mineral deposition (Dunham, 1990) to give a broader perspective on isotopic variation than had been possible from previous studies (Moorbath, 1962; Rohl, 1996).

165 To supplement the limited coal data (Farmer et al., 1999) and provide better 166 control on the lead isotope composition of coal waste, use was made of unpublished 167 data for coal and shale samples from the Durham Coalfield (Pearson & Worrall168 pers.comm.).

169 The study benefited greatly in having total lead concentrations for all of the 170 archived samples prior to isotopic analysis (British Geological Survey, 1996). 171 Chemical analysis of the additional River Wear samples was carried out at the 172 University of Sunderland and at a commercial laboratory (ACME, Canada).

- 173
- 174 2.3 Analytical procedures
- 175

176 High precision lead isotope analysis was performed by laser ablation, multi-177 collector, ICP mass spectrometry (LA-MC-ICP-MS). The sediment samples were prepared as 1cm diameter pressed powder discs using a styrene-wax binder (van Zyl, 178 179 1982). This provided a flat, even surface for laser ablation with the minimum degree 180 of spalling. Ablation was carried out using a one-pass raster pattern over an area of 181 25mm² and a spot size of 300 μ m. For the galenas, ablation was carried out on fresh, 182 cleavage fragments using the lowest possible laser fluence and a spot size of 30µm. 183 To reduce fluctuations in ion intensities and signal spikes caused by variable degrees 184 of vapourisation, a particle trap was mounted between the ablation cell and ICP.

Isotope ratio analysis was carried out using either a VG Elemental Axiom or
P54 multi-collector ICP MS linked to a New Wave Research Microprobe II, 266 nm
Nd:YAG laser ablation system. Instrumental mass bias was determined by
simultaneous aspiration of a thallium solution through the laser cell (Longerich et al.,
1987; Ketterer et al., 1991). Isobaric interference of ²⁰⁴Hg on ²⁰⁴Pb was corrected by
reference to ²⁰²Hg.

191 For each analytical session (by day), multiple analyses of the Standard Reference Material NBS981 (in solution) were used to monitor instrument 192 193 performance and allow normalization to internationally accepted values (Thirwell, 194 2002). Repeatability and overall uncertainty were assessed by laser analysis of an in-195 house reference material (urban soil: 407 mg/kg Pb) before and after each analytical 196 session. Total, combined, overall uncertainties $(2\sigma \%)$ for the period of analysis (2001-2005) after quadratic error propagation are as follows: ²⁰⁶Pb/²⁰⁴Pb 0.113%; 197 ²⁰⁷Pb/²⁰⁴Pb 0.087%; ²⁰⁸Pb/²⁰⁴Pb 0.095%; ²⁰⁷Pb/²⁰⁶Pb 0.070%; ²⁰⁸Pb/²⁰⁶Pb 0.033%. 198

6

199 Analyses provided by Pearson & Worrall (pers. comm.) were acquired using a 200 Nu Plasma MC-ICP mass spectrometer in solution mode. All analyses were corrected 201 for mass bias and Hg isobaric interference as described above, and normalized to 202 NBS981 (Todt et al., 1996). Overall uncertainties (2σ %) for the period of analysis 203 (May 1999-January 2000) are estimated as follows: ²⁰⁶Pb/²⁰⁴Pb 0.030%; ²⁰⁷Pb/²⁰⁴Pb 204 0.032%; ²⁰⁸Pb/²⁰⁴/Pb 0.032%.

205

206 **3. Results and Discussion**

207

Lead isotope analyses for the stream sediments and galenas are summarised in Table 1 and shown in Figs. 3 to 7. Also included in Table 1 are the unpublished data (Pearson & Worrall) for coal and shale samples from northeast England. Throughout the following discussion the terms 'upper catchment and Orefield' and 'lower catchment and Coalfield' are used synonymously. Absolute uncertainty errors (2 sigma) on the isotope ratios shown in Figures 3 to 7 are ± 0.0005 for ²⁰⁷Pb/²⁰⁶/Pb and ± 0.0006 for ²⁰⁸Pb/²⁰⁶/Pb.

215

216 3.1 Spatial Variation

217

The foremost feature of the stream sediment data is the strong lead isotope contrast between the Orefield and Coalfield (Fig. 3). Over the Orefield, ²⁰⁸Pb/²⁰⁶Pb and ²⁰⁷Pb/²⁰⁶Pb ratios range from 2.0744 to 2.0954 and 0.8413 to 0.8554 respectively, thereafter increasing to 2.1397 and 0.8896 over the Coalfield. Given the large range of lead concentrations considered, this pattern is independent of lead concentration and represents a true picture of regional variation.

A second, equally significant feature is the degree of variation seen within the upper catchment. Here, the lowest ²⁰⁸Pb/²⁰⁶Pb ratios (<2.083) are located within the inner zone of the North Pennine Orefield, directly above the top of the concealed Weardale Granite (see Fig. 1). Streams in the Rookhope and Stanhope valleys, in particular, define a cluster of noticeably low values. Outside this cluster, the stream sediments have higher ²⁰⁸Pb/²⁰⁶Pb ratios typical of the outer zones of the North Pennine Orefield. Within the outer zone, samples from the lower section of the 231 Bollihope valley, immediately downstream of mining activity, show a marked enrichment in ²⁰⁸Pb and have unusually high ²⁰⁸Pb/²⁰⁶Pb ratios >2.091. In both cases 232 (Rookhope and Bollihope), the anomalously low and high ²⁰⁸Pb/²⁰⁶Pb ratios are a 233 direct measure of the locally mined lead ores. Throughout the orefield there is 234 235 excellent isotopic agreement between stream sediments and lead ores and, where 236 mines have worked several veins with different isotope compositions, the sediments 237 provide an average value (see section 3.2 for discussion). Because the upper 238 catchment is wholly within the North Pennine Orefield, no stream can be regarded as 239 being outside the influence of mineralization and hence the natural 'geogenic' 240 background could not be unequivocally established.

241 Whilst considered outside the scope of this paper, the isotope data make an 242 important contribution to theories concerning the origin of the lead ores. The apparent 243 zonation noted above is in accordance with current metallogenic models for the North 244 Pennine Orefield (Cann & Banks, 2001; Bouch et al., 2006). These invoke a 245 channelling of lead-rich fluids (originating in adjacent sedimentary basins) inwards and upwards through the Weardale Granite. The development of galenas with low 246 ²⁰⁸Pb/²⁰⁶Pb ratios in the upper Wear valley adds support to the assertion that the 247 248 mineralizing fluids responsible for the deposition of these ores have leached part of 249 their lead from the high U-Th, radiogenic, sub-surface granite (Brown et al., 1980; 250 Bouch et al., 2006).

For the Coalfield, within-catchment variation (²⁰⁸Pb/²⁰⁶Pb 2.0856-2.1397, 251 ²⁰⁷Pb/²⁰⁶Pb 0.8554-0.8896) shows no obvious spatial correlation with opencast coal 252 253 sites or the extensive spoil tips from underground coal workings. Many stream sediments have extremely high ²⁰⁸Pb/²⁰⁶Pb ratios (>2.100) that fall well outside the 254 255 regional background (~2.088-2.098) as estimated for samples with lead concentrations 256 <90mg/kg Pb, for streams on the western fringes of the Coalfield where coal extraction has been least. Neither does the range of ²⁰⁸Pb/²⁰⁶Pb ratios for stream 257 sediments overlap with the range of ²⁰⁸Pb/²⁰⁶Pb ratios (2.058-2.085; Table 1) 258 259 determined for Carboniferous coals or shales from NE England (Farmer et al., 1999; 260 Pearson & Worrall pers.comm.). Thus the elevated levels of lead are not solely a 261 function of the fluvial dispersal of finely ground coal waste from abandoned mine 262 sites, and implies one or more additional anthropogenic sources. Given the diffuse 263 nature of the regional distribution of lead, the most likely source of pollution is

264 atmospheric deposition (dry and wet aerosols) linked to industrial lead emissions and 265 petrol lead, but also including a contribution of lead from centuries of coal 266 combustion. A more detailed discussion of source apportionment is presented below.

267

268 3.2 River Wear Pollution Profile

269

270 Variation in the lead content of the River Wear sediments (Fig. 4, Table 1), from 271 the highest sampling point on the river at Wearhead (Site 1) to the tidal reach near 272 Sunderland (Site 27), a distance of 87km, suggests an exponential decrease in 273 concentration due to the dilution of lead-rich mine waste by relatively uncontaminated 274 sediment. At Wearhead (Site 1), mine waste from a large cluster of abandoned mines 275 and associated smelt mills charges the river sediment with more than 6000 mg/kg Pb. 276 Within 7 km downstream (Site 5), the lead concentration has fallen to less than 1000 277 mg/kg Pb. Such a sharp fall in concentration is attributed to a combination of dilution 278 and the density settling of finely milled lead ore that gives exceptionally high levels of 279 lead in the <150 µm sediment fraction at Sites 1 and 2. From Site 5 to Site 9, the Wear 280 is joined by two major tributaries; Rookhope Burn and Stanhope Burn. Both valleys 281 were the loci of extensive mining and smelting, and their contaminated sediment input 282 raises the lead concentration in the main channel of the River Wear to >3500 mg/kg283 Pb. After an initial rapid fall in concentration downstream from Site 9, similar to that 284 shown at Site 1, the lead concentration remains fairly constant at about 1200-1500 285 mg/kg Pb for a further 18km until Site 14. Thereafter there is a progressive decrease 286 in concentration as the river flows through the Coalfield to a value of about 350 287 mg/kg Pb near the tidal reach (Site 27).

288 Combining the isotope and total lead data, important detail is revealed 289 concerning the effect of specific tributaries on the source and level of lead pollution in 290 the River Wear. Fig. 4 shows the co-variation in lead concentration and ²⁰⁸Pb/²⁰⁶Pb 291 ratios for five consecutive river sections.

292

293 Section I (Sites 1-5: 0-7km)

294 Site 1, as mentioned above, reflects an intense level of pollution from a plexus of 295 veins and mines around the old processing plant and waste dumps at Kilhope, where it is estimated that more than 60,000 tonnes of lead concentrate were treated (Dunham, 1990). The isotopic composition (²⁰⁸Pb/²⁰⁶Pb 2.0865) is characteristic of the outer zone of the orefield in having a high ²⁰⁸Pb/²⁰⁶Pb ratio. Downstream from Site 1, the lead concentration continues to decrease as a result of sediment dilution but the isotope composition remains fairly constant. Thus Site 5 (²⁰⁸Pb/²⁰⁶Pb 2.0834) may be regarded as the end member isotope component of lead pollution in the River Wear from mines in the western, outer zone of the orefield.

303

304 Section II (Sites 6-9: 7-15km)

305 Between Sites 6 and 9, although there is a marked rise in lead concentration due to 306 fresh inputs of mine waste from the Rookhope and Stanhope valleys, there is a steady fall in the ²⁰⁸Pb/²⁰⁶Pb ratio. This is a result of the mixing between lead, as measured at 307 Site 5 (²⁰⁸Pb/²⁰⁶Pb 2.0834), with lead from mines in the inner zone of the orefield 308 characterised by lower ²⁰⁸Pb/²⁰⁶Pb ratios. The mean ratio for mine waste released into 309 310 the Rookhope and Stanhope streams is 2.0783 (Table 1, samples 323486, 323461, 311 Rh8 and Rh9). Using these two end member components, lead in the River Wear at Site 10 (1610 mg/kg Pb) comprises about 50% lead from mines in the Rookhope and 312 313 Stanhope valleys.

314

315 Section III (Sites 10-14: 15-28km)

316 Between Sites 10 and 11 the Wear is joined by Bollihope Beck; a stream that brings in additional lead from an important cluster of mines close to its confluence with the 317 River Wear. The mean Bollihope component (²⁰⁸Pb/²⁰⁶Pb 2.0920) as defined by 318 samples BB2 and BB3 (Table 1) mixes with lead in the Wear to raise the ²⁰⁸Pb/²⁰⁶Pb 319 320 ratio to 2.0828 (Site 11). Applying similar reasoning, the Bollihope mine waste at this 321 point on the River Wear constitutes ~18% of the total lead (1226 mg/kg Pb). Below 322 Site 11 there is no further input of anthropogenic lead from the North Pennine orefield and the ²⁰⁸Pb/²⁰⁶Pb ratio can be used as the isotopic end member component of mine-323 324 related pollution in the River Wear before it enters the Coalfield. Any changes further 325 downstream are due to other anthropogenic sources. For the next 6.6km until Site 14, the ²⁰⁸Pb/²⁰⁶Pb ratio remains relatively unchanged. 326

327

329 From Site 15 to Site 22, the sediment lead concentration slowly decreases to about 700 mg/kg Pb. This is accompanied however by a steady increase in the ²⁰⁸Pb/²⁰⁶Pb 330 331 ratio to approximately 2.0845. If this were due to dilution by relatively uncontaminated, local sediments (i.e. derived from the weathering of Coal Measure 332 shales and sandstones), one would have expected the ²⁰⁸Pb/²⁰⁶Pb ratio to remain fairly 333 constant. This is not observed and suggests an increasing contribution from another 334 335 source having a higher ²⁰⁸Pb/²⁰⁶Pb ratio. Given the regional pattern of isotopic variation shown by streams in the lower catchment, it is thought the ²⁰⁸Pb/²⁰⁶Pb 336 increase is due to a steady input of diffuse anthropogenic pollution from tributaries 337 338 throughout the abandoned Coalfield.

339

340 Section V (Sites 24-27: 65-87km)

For the final section of the Wear, there is a very sudden rise in the ²⁰⁸Pb/²⁰⁶Pb ratio to 341 342 2.0882 (Site 24), followed by an equally sharp fall (Site 27) to a value similar to that 343 of Site 23. The rise occurs as the River Wear enters the city of Durham. This could be 344 due to either (1) an increased input of diffuse pollution or, (2) contamination by 345 locally high levels of tetra-ethyl lead (TEL). TEL, the principal lead additive to UK petrol prior to it being phased out in the late 1990s, had an average ²⁰⁸Pb/²⁰⁶Pb 346 composition of ~2.189 for the period 1989-91 (based on ²⁰⁷Pb/²⁰⁶Pb data from Sugden 347 et al. (1993) recalculated according Haack et al. (2004)). Only 2-3 % of this lead 348 would be needed to raise the ²⁰⁸Pb/²⁰⁶Pb ratio to 2.088. Since the rate of river 349 350 sedimentation is unknown, older inputs of TEL may also be present. However, taking an even lower ²⁰⁸Pb/²⁰⁶Pb ratio of ~2.16 for French-UK petrol for the period 1980-87 351 (based on ²⁰⁷Pb/²⁰⁶Pb data from Veron et al. (1999) recalculated according Haack et 352 353 al. (2004)), the same shift is evident. During this earlier period, the European 354 manufacturer of TEL (Octel Co.) supplied both the UK and French markets (Monna et al., 1997). By contrast, in all cases, at least 10-20% of anthropogenic lead with a 355 ²⁰⁸Pb/²⁰⁶Pb range of ~2.10-2.12, typical of the Coalfield, would be required to create 356 357 the same isotopic shift. Whilst it is not possible to discriminate between these two 358 hypotheses, a higher petrol lead component seems most probable in that it does not 359 require a major change in sediment influx.

360

361 *3.3 Source Apportionment*

362

363 The following interpretation is based on information for the Wear catchment 364 (this study), unpublished data for coal and shale from the Durham Coalfield 365 (pers.comm. Pearson & Worrall), data for North Pennine lead ores (Rohl, 1996), UK 366 coals (Farmer et al., 1999), peat and freshwater sediments (Farmer et al., 1997), 367 industrial/urban aerosols in the UK and Western Europe (Sugden et al., 1993; Monna 368 et al., 1997; Bollhöfer et al., 1999; Veron et al., 1999; Farmer et al., 2002; Haack et 369 al., 2003; Noble et al., 2007) and UK leaded petrol (Sugden et al., 1993; Monna et al., 370 1997; Veron et al., 1999).

371

372 *3.3.1 Orefield*

373

Fig. 5 shows the co-variation in ²⁰⁸Pb/²⁰⁶/Pb and ²⁰⁷Pb/²⁰⁶Pb for stream 374 375 sediments and galenas (lead ores) in the upper Wear catchment 'Orefield'. It is 376 evident that pollution of upper catchment streams is determined by the discharge of lead-rich waste from abandoned mines. The degree of correspondence in ²⁰⁸Pb/²⁰⁶/Pb, 377 ²⁰⁷Pb/²⁰⁶Pb ratios between stream sediments and galenas is very high and there is no 378 379 apparent indication of mixing with other sources. Theoretically one would expect to 380 detect, albeit minor, a component of airborne pollution (petrol lead and/or coal lead) 381 as observed by Farmer et al. (2002) for localities in Scotland or a component of global 382 anthropogenic lead (Boutron et al., 1994). This is not observed. In the absence of such 383 evidence we conclude that the archival stream sediments for the period 1986-88 only 384 record the dominant North Pennine lead ore component. Weaker anthropogenic 385 sources, if present, are masked. To detect and quantify the contribution of airborne pollution to the upper Wear catchment it will be necessary to use other media such as 386 herbage, peat or undisturbed lake sediments. Galena samples with ²⁰⁸Pb/²⁰⁶/Pb ratios 387 388 <2.070 are from mineralised veins intersected by the Weardale borehole (Dunham et 389 al., 1961). Although of geological interest, these veins were never economically exploited. Thus their ²⁰⁶Pb-enriched isotopic signature is not reflected in the mine 390 391 waste-polluted stream sediments of Rookhope Beck or other streams in the upper

Weardale valley that sit topographically above the sub-surface Weardale Granite (Fig. 1). With regard to the extent and significance of mine-related pollution, comparison of Figs. 4 and 5 clearly indicates that the environmental lead loadings of present day river sediments in the lower reaches of the River Wear (main channel) are dominated by discharges from abandoned mines in the North Pennine Orefield; up to 70km upstream.

398

399 3.3.2 Coalfield

400

401 Fig. 6 shows the corresponding co-variation in ²⁰⁸Pb/²⁰⁶/Pb and ²⁰⁷Pb/²⁰⁶Pb for stream sediments in the lower Wear catchment 'Coalfield'. Previous work by Farmer 402 403 et al. (1997, 1999, 2002) has shown that notwithstanding the withdrawal of leaded petrol and decreased coal consumption, the contribution from coal continues to affect 404 the content and ²⁰⁷Pb/²⁰⁶Pb ratios of atmospheric lead in Scotland and, by inference, 405 the rest of the UK. Even allowing for scatter in the coal-shale data, streams in the 406 407 Coalfield are not dominated by a coal lead component. Instead, excluding those few measurements that fall within the regional background (²⁰⁸Pb/²⁰⁶/Pb 2.088-2098), they 408 define a linear array (²⁰⁸Pb/²⁰⁶/Pb ~2.100-2.1398; ²⁰⁷Pb/²⁰⁶Pb ~0.8265-0.8896) that 409 410 shows very little overlap with representative samples of coal and shale from the 411 Durham Coalfield.

The Coalfield array (Fig 7) does however extend to higher ²⁰⁸Pb/²⁰⁶/Pb, 412 ²⁰⁷Pb/²⁰⁶Pb ratios indicative of UK leaded petrol and includes the field for UK 413 414 airborne particulate matter (Southampton and London) reported by Monna et al. (1997) for 1994-96 (²⁰⁸Pb/²⁰⁶/Pb 2.100-2.175, ²⁰⁷Pb/²⁰⁶Pb 0.865-0.911) and Veron et 415 al. (1999) for 1968-96 (²⁰⁷Pb/²⁰⁶Pb ~0.882-0.907). Similar ratios have been found for 416 417 present day airborne pollution in Germany, Japan and the UK (Monna et al., 1997; 418 Noble et al., 2007). Such pollution is interpreted as a mixture of industrial lead, petrol 419 lead and lead from the combustion of coal. As noted by Monna et al. (1997), the trend 420 to lower ratios in the 1994-96 data probably reflects the withdrawal of leaded petrol 421 allowing industrial sources to become more evident.

422 Discriminating between these three anthropogenic sources is far from easy. The 423 problem is especially difficult for industrial lead for which there is no unique endmember isotope composition and which varies from region to region depending upon local inputs. Data for industrial emissions, specifically for northeast England, are lacking but by comparability with airborne pollution in southern England for 1994-96 (Monna et al., 1997; Veron et al., 1999), industrial emissions in northern France for 1993-94 (Monna et al., 1997) and atmospheric deposition in Scotland for 1980-89 using an archival moss record (Farmer et al., 2002), it is reasonable to infer a similar range of values.

431 With regard to the petrol lead component, Fig. 7 shows the composition of UK 432 leaded petrol for 1994-95 (Monna et al., 1997), the composition for 1989-91 (Sugden et al., 1993) and, for reference, the average of French-UK petrol for 1980-87 (Veron 433 et al., 1999). In the case of data from Sugden et al. and Veron et al., ²⁰⁸Pb/²⁰⁶Pb ratios 434 435 were estimated from measured ²⁰⁷Pb/²⁰⁶Pb ratios using parameters for the 'European 436 Leaded Gasolines' regression given by Haack et al. (2004). For the period of interest 437 therefore, UK leaded petrol lies on a linear extension of the Coalfield array at higher ²⁰⁸Pb/²⁰⁶Pb, ²⁰⁷Pb/²⁰⁶Pb ratios. 438

439 The coal combustion end-member component is similarly hard to define. 440 Individual UK coalfields show significant variation in the lead isotope composition of 441 coal (Farmer et al., 1999). This complicates any attempt to assign a degree of 442 certainty to the isotopic composition of resultant pollution. The data reported by 443 Pearson and Worrall (this study) are the most comprehensive to date for the Durham 444 Coalfield but do not account for the more radiogenic nature (i.e. higher ratios) of the 445 stream sediment samples. We infer therefore that any contribution from coal 446 combustion in the stream sediments is isotopically masked by contributions from 447 industrial and petrol lead. As a consequence, the contribution of lead from the 448 commercial and domestic burning of coal is difficult to estimate.

There remains the question of the geogenic component and its contribution to total lead isotope composition. Fine grained stream sediment is the product of soil erosion and surface weathering and will always carry a finite component of natural lead. In the case of the lower Wear catchment, the regional background provides an approximation of natural lead and, based on streams in areas with little history of coal mining, is unlikely to exceed 100mg/kg Pb and have a ²⁰⁸Pb/²⁰⁶/Pb ratio <2.100 and ²⁰⁷Pb/²⁰⁶Pb ratio <0.865. 456 The best interpretation is that the Coalfield array is a mixing array between a 457 coal lead component, comprising coal combustion lead and regional background lead, 458 and a petrol lead component that includes an inferred but unknown proportion of 459 industrial lead. The exact amount of petrol lead in any one stream sediment sample 460 will depend upon many factors, not least, the proximity of the local catchment to 461 major roads or urban centres. Thus, elevated levels of lead in the lower Wear 462 catchment are considered to be a mixture of geogenic lead and three principal 463 components of anthropogenic lead (petrol lead, industrial lead, coal combustion lead).

- 464
- 465 **4. Conclusions**
- 466

467 The study successfully demonstrates that stream sediments are a very effective 468 sampling medium for determining regional variation in the isotope composition of 469 environmental lead. As a result of differences in industrial activity, the upper and 470 lower catchments of the River Wear are isotopically distinctive, allowing different 471 sources of anthropogenic pollution to be identified and characterised. As expected, 472 pollution in the upper catchment is controlled and dominated by waste from 473 abandoned mines and smelter sites in the North Pennine Orefield. Furthermore, 474 within-catchment variation due to natural variation in the isotope composition of the 475 lead ores, allows one to trace the fluvial dispersal of lead from specific mines or groups of mines into the River Wear. In the lower catchment, the dispersal of finely 476 477 divided coal/shale waste from abandoned coal workings does not appear to be a major 478 source of lead pollution, either in terms of total concentration or isotope composition. 479 Lead levels across the Durham Coalfield are lower than those of the upper catchment 480 and display a more uniform, regional distribution. However they are significantly 481 elevated above background levels, indicating a major source of anthropogenic 482 pollution. Isotope ratios suggest that the pollution, as represented by the archival 483 stream sediments, is dominated by variable amounts of petrol lead and lead from 484 diverse industrial emissions. The presence of both components is attributed to the 485 deposition of airborne particulate matter over extended periods of time. Because of 486 their dominance they tend to mask the contribution of other anthropogenic sources. 487 Since the stream sediment samples (as distinct from the River Wear samples) were 488 collected prior to the phasing out of leaded petrol, the data must be interpreted 489 cautiously with respect to present day lead loadings. Nevertheless, the close isotopic 490 agreement between 1999-2001 and pre-1990 sediment samples provides compelling 491 evidence that contamination of the River Wear by lead mining waste continues to 492 pose an environmental problem. Even at its tidal reach, the river carries an 493 overwhelming lead isotope signature of the North Pennine Orefield. Given the 494 similarity of northeast England to other regions of the world with long histories of 495 coal and non-metalliferous mining, there is considerable scope for extending this type 496 of work. The pollution of rivers by mine waste is a worldwide problem and source 497 apportionment is an important factor in achieving effective remediation. Finally, it is 498 hoped the data will stimulate more informed discussion by health authorities 499 concerning lead in the environment and the use of stable lead isotopes in 500 epidemiological studies.

501

502 Acknowledgements

503

504 The authors wish to acknowledge numerous BGS and NIGL colleagues who 505 have given valuable technical support throughout this study. Brian Young (University 506 Durham) and David Banks (University Leeds) are especially thanked for providing 507 samples of galena ores from the North Pennine Orefield. We are especially grateful to 508 Graham Pearson (University Durham) for generously allowing use of unpublished 509 coal and coal shale lead isotope data. Our appreciation is also extended to the two 510 anonymous referees who did much to improve the paper and steer our interpretation. 511 Publication for SRNC, LEA, NB, SFH and BAK is by permission of the Director, 512 British Geological Survey, NERC.

513

514 **References**

515

516 Bouch JE, Naden J, Shepherd TJ, McKervey JA, Young B, Benham AJ, Sloane HJ. Direct evidence 517 of fluid mixing in the formation of stratabound Pb–Zn–Ba–F mineralisation in the Alston Block, North

518 Pennine Orefield (England). Miner Deposita 2006; 41: 821–835.

Boutron CF, Candelone JP, Hong S. The changing occurrence of natural and man-derived heavy-metals
in Antarctic and Greenland ancient ice and recent snow. Int J Environ 1994; 55: 203-209.

520 In Antarctic and Greenhand ancient fee and recent show. Int J Environ 1994, 55. 265-26

521 Bollhöfer A, Chisholm W, Rosman KJR. Sampling aerosols for lead isotopes on a global scale. Anal

522 Chim Acta 1999; 390: 227-235.

- 523 British Geological Survey. Regional geochemistry of southern Scotland and part of northern England.
- 524 (Keyworth, Nottingham: British Geological Survey) 1993.
- 525 British Geological Survey. Regional geochemistry of north-east England. (Keyworth, Nottingham:
 526 British Geological Survey) 1996.
- 527 Brown GC, Cassidy J, Oxburgh ER, Plant J, Sabine PA, Watson JV. Basement heat flow and 528 metalliferous mineralization in England and Wales. Nature 1980; 288: 18-25.
- 529 Canfield RL, Henderson CR, Cory-Slechta DA, Cox C, Jusko TA, Lanphear BP. Intellectual
- 530 impairment in children with blood lead concentrations below 10 µg per decilitre. New England J
- 531 Medicine 2003; 348: 1517-1526.
- 532 Cann JR, Banks DA. Constraints on the genesis of the mineralization of the Alston Block, Northern
- 533 Pennine Orefield, northern England. Proc Yorkshire Geol Soc 2001; 53: 187-196.
- 534 D'Arcy BJ, Ellis JB, Ferrier RC, Jenkins A, Dils R. Diffuse pollution Impacts: The Environmental
- and Economic Impacts of Diffuse pollution. Chartered Institution of Water and Environmental
- 536 Management, London 2000. ISBN: 1 870752 46 5
- 537 Darnley AG, Börklund A, Bølviken B, Gustavsson N, Koval P V, Plant J A, Steenfelt A, Tauchid M,
- 538 Xuejing, X. A global geochemical database for environmental and resource management:
- 539 recommendations for international geochemical mapping. Final report of Project IGCP 259, (Ottowa:
- 540 UNESCO Publishing) 1995.
- 541 DEFRA (Department for Environment, Food and Rural Affairs). Soil Guideline Values and the 542 Determination of Land as Contaminated Land under Part IIA. 2005; CLAN 2/05.
- 543 Dunham KC. Geology of the Northern Pennine Orefield Vol.1: Tyne to Stainmore. Econ Mem British544 Geol Surv 1990.
- 545 Dunham KC, Bott MHP, Johnson GAL, Hodge BL. Granite beneath the Northern Pennines. Nature546 1961; 190: 899-900.
- 547 Farmer JG, MacKenzie AB, Sugden CL, Edgar PJ, Eades LJ. A comparison of the historical lead
- 548 pollution records in peat and freshwater lake sediments from Central Scotland. Water, Air and Soil
- 549 Pollution 1997; 100: 253-270.
- 550 Farmer JG, Eades LJ, Graham M. The lead content and isotopic composition of British coals and their
- implications for past and present releases of lead to the UK environment. Environ Geochem Health1999; 21: 257-272.
- 553 Farmer JG, Eades LJ, Atkins H, Chamberlain, DF. Historical trends in the lead isotopic composition of
- archival *Sphagnum* mosses from Scotland (1838-2000). Environ Sci Technol 2002; 36: 152-157.
- 555 Gulson BL, Mizon KJ, Law AJ, Korsch MJ, Davis JJ. Source and pathways of lead in humans from the
- 556 Broken Hill mining community an alternative use of exploration methods. Econ Geol 1994; 89: 889–
- 557 908.

- 558 Haack U, Kienholz B, Reimann C, Schneider J, Stumpfl EF. Isotopic composition of lead in moss and
- soil of the European Arctic. Geochim Cosmochim Acta 2004; 68: 2613-2622.
- Hansmann W, Köppel V. Lead isotopes as tracers of pollutants in soils. Chem Geol 2000; 171: 123-144.
- Hudson-Edwards K, Macklin M, Taylor M. Historic metal mining inputs to Tees river sediment. Sci
 Total Environ 1997; 194/195: 437-445.
- 564 Ketterer ME, Peters MJ, Tisdale PJ. Verification of a correction procedure for measurement of lead 565 isotope ratios by inductively coupled plasma mass spectrometry. J Anal Atom Spect 1991; 6: 439-443.
- Labonne M, Othman, DB, Luck J-M. Pb isotopes in mussels as tracers of metal sources and water movements in a lagoon (Thau Basin, S. France). Chem Geol 2001; 181: 181-191.
- 568 Lanphear BP, Hornung R, Khoury J, Yolton K, Baghurst P, Bellinger DC. Low-level environmental
- 569 lead exposure and children's intellectual function: an international pooled analysis. Environ Health
- 570 Perspect 2005; 113: 894-899.
- Longerich HP, Fryer BJ, Strong DF. Determination of lead isotope ratios by inductively coupled
 plasma-mass spectrometry (ICP-MS). Spectrochim Acta, Part B 1987; 42, 39-48.
- 573 Lord RA, Morgan PA. Metal contamination of active stream sediments in Upper Weardale, northern
- 574 Pennine orefield, UK. Environ Geochem Health 2003; 25: 95-104.
- 575 Macklin MG, Hudson-Edwards KA, Dawson EJ. The significance of pollution from historic metal
- 576 mining in the Pennine ore fields on river sediment contaminant fluxes to the North Sea. Sci Total
- 577 Environ 1997; 194/195: 391-297.
- 578 McGrath SP, Loveland PJ. The Soil Geochemical Atlas of England and Wales. Blackie Academic and
 579 Professional, Glasgow 1992.
- 580 Monna F, Lancelot J, Croudace IW, Cundy AB, Lewis JT. Pb isotopic composition of airborne 581 particulate material from France and the southern United Kingdom: implications for Pb pollution 582 sources in urban areas. Environ Sci Technol 1997; 31: 2277-2286.
- 583 Moorbath S. Lead isotope abundance studies on mineral occurrences in the British Isles and their 584 geological significance. Phil Trans Roy Soc Lond 1962; A254: 295-360.
- 585 Noble SR, Horstwood MSA, Davy P, Pashley V, Spiro B, Smith S. Evolving Pb isotope signatures of
- 586 London Airborne Particulate Matter (PM_{10}) constraints from on-filter and solution-mode MC-ICP-587 MS. J Environ Monit 2008; 10: 830-836.
- 588 Plant JA. Orientation studies on stream sediment sampling for a regional geochemical survey in
- northern Scotland. Trans Inst Min Metall (Section B Applied Earth Science) 1971; 80: B324-345.
- 590 Plant JA, Moore PJ. Regional geochemical mapping and interpretation in Britain. Phil Trans Roy Soc
- 591 London 1979; 288: B95-112.

- 592 Rimmer DL, Vizard CG, Pless-Mulloli T, Singleton I, Air VS, Keatinge AF. Metal contamination of
- urban soils in the vicinity of a municipal waste incinerator: one source among many. Sci Total Environ
- 5942006; 356: 207-216.
- Robson AJ, Neal C. A summary of regional water quality for eastern UK rivers. Sci Total Environ
 1997; 194/195: 15-37.
- 597 Rohl BM. Lead isotope data from the Isotrace Laboratory, Oxford: Archaeometry data base 2, galena
- from Britain and Ireland. Archaeometry 1996; 38: 165-180.
- 599 Stacey JS, Kramers JD. Approximation of terrestrial Pb isotope evolution by a two-stage model. Earth600 Planet Sci Lett 1975; 16: 207-221.
- Sugden CL, Farmer JG, MacKenzie AB. Isotopic ratios of lead in contemporary environmental
 material from Scotland. Environ Geochem Health 1993; 15(2/3): 59-65.
- 603 Thirlwall MF. Multicollector ICP-MS analysis of Pb isotopes using a ²⁰⁷Pb-²⁰⁴Pb double spike
- demonstrates up to 400 ppm/amu systematic errors in Tl-normalization. Chem Geol 2002; 184: 255-279.
- 606 Todt W, Cliff RA, Hanser A, Hofmann AW. Evaluation of a ²⁰²Pb-²⁰⁵Pb double spike for high-
- precision lead isotope analysis. In: Basu A, Hart SR, editors. Earth Processes: Reading the Isotopic
 Code, Geophysical Monograph 95, Am Geophys Union, 1996, pp. 429-437.
- 609 van Zyl C. Rapid preparation of robust pressed powder briquettes containing a styrene and wax mixture
- 610 as binder. X-Ray Spectrom 1982; 11: 29-31.
- 611 Veron A, Flament P, Bertho ML, Alleman L, Flegal R, Hamelin B. Isotopic evidence of pollutant lead
- 612 sources in Northwestern France. Atmos Environ 1999; 33: 3377-3388.

Figure 1 STOTEN-D-08-01278R1

Figure 2 STOTEN-D-08-01278R1

Figure 3 STOTEN-D-08-01278R1

Figure 5 STOTEN-D-08-01278R1

207Pb/206Pb

208Pb/206Pb

Figure Captions and Table STOTEN-D-08-01278R1

- Fig. 1 Simplified geological map of northeast England showing the River Wear catchment. The lower catchment 'Coalfield' is defined as that area underlain by Coal Measures (Durham Coalfield). The upper catchment 'Orefield' is underlain by the Millstone Grit and Carboniferous Limestone Series and occupies part of the more extensive North Pennine Orefield. Also shown is the sub-surface top of the Weardale Granite that delimits the central 'inner' zone of the orefield (see text for details).
- Fig. 2 River Wear catchment showing the location of sediment sampling points for 1st and 2nd order streams, lead ores (galenas) and sediments collected from the main channel of the River Wear (numbered 1-27). Sample points are also shown for sediments and lead ores collected in the contiguous catchments of the Rivers Tyne and Tees.
- Fig. 3 Regional variation in ²⁰⁸Pb/²⁰⁶Pb for stream sediments from 1st and 2nd order streams with respect to the upper and lower catchments of the River Wear (excluding data for the River Wear main channel samples). Geological legend as for Fig. 1. Note the anomalously high ratios for the Bollihope area and clustering of very low ratios in the Stanhope and Rookhope valley areas (see text for details).
- Fig. 4 Profile along the River Wear showing co-variation in lead concentration and ²⁰⁸Pb/²⁰⁶Pb ratios for sediments taken from the main river channel. Numbers 1 to 27 along the ordinal axis are the sediment sample sites shown in Fig.2 and described in Table 1. Site 1 represents the highest point on the Wear and Site 27 the lowest point on the Wear a total distance of 86.5km. Ordinal axis is not linear. Filled circles refer to lead concentrations; open circles to ²⁰⁸Pb/²⁰⁶Pb ratios. Vertical error bar indicates the 2σ absolute uncertainty assigned to the ²⁰⁸Pb/²⁰⁶Pb measurements.
- Fig. 5 $^{208}\text{Pb}/^{206}/\text{Pb}-^{207}\text{Pb}/^{206}\text{Pb}$ co-variation for archival stream sediments (1986-88) and lead ores from the upper catchment of the River Wear 'Orefield' indicating their close relationship to more recent sediment samples (1999-2001) taken from the main channel of the River Wear. Also shown are the data of Rohl (1996) for North Pennine galenas (lead ores). 2σ analytical uncertainties for $^{208}\text{Pb}/^{206}/\text{Pb}$ and $^{207}\text{Pb}/^{206}\text{Pb}$ are 0.033% and 0.070% respectively (grey filled circles stream sediments; black filled circles recent River Wear sediments; open circles lead ores; crosses galenas (Rohl 1996).
- Fig. 6 208 Pb/ 206 /Pb- 207 Pb/ 206 Pb co-variation for archival stream sediments (1986-88) from the lower catchment of the River Wear 'Coalfield'. Also shown, for reference, are data for the upper catchment sediments and the lead isotope composition of Carboniferous coals and shales (data from Pearson & Worrall pers.comm.). See text for 2σ analytical uncertainties (inverted filled triangles lower catchment stream sediments; grey open circles upper catchment stream sediments; filled triangles coal (this study and Farmer et al., 1999); open triangles shale).
- Fig. 7 ²⁰⁸Pb/²⁰⁶/Pb-²⁰⁷Pb/²⁰⁶Pb co-variation showing the relationships between stream sediments for the lower catchment of the River Wear 'Coalfield' (1986-88), coal and shale from the Durham Coalfield, UK leaded petrol and UK airborne particulates (inverted open triangles stream sediments; filled triangles coal (this study and Farmer et al., 1999); open triangles shale; solid squares petrol England 1994 (Monna et al., 1997); open squares petrol Scotland 1981-91 (Sugden et al., 1993); crossed square mean UK-French petrol 1980-87 (Veron et al., 1999); open circles airborne particulates Scotland 1994-95 (Bollhöfer et al., 1999), half filled circles airborne particulates England 1996-98 (Veron et al., 1999; Bollhöfer et al., 1999); small filled

circles industrial emissions France 1993-94 (Monna et al., 1997). Bar 'a' is the range of UK airborne particulates 1968-96 (Veron et al., 1999). Bar 'b' is the range of airborne particulates for Scotland 1980-89 using archival mosses (Farmer et al., 2002). Bar 'c' is the range of airborne particulates for England 1994-96 (Monna et al., 1997). All ranges are with respect to ²⁰⁷Pb/²⁰⁶Pb.

Table 1Location and lead isotope composition of samples from the River Wear catchment
and adjacent areas, Northern England.

Table 1STOTEN-D-08-01278R1

Table 1. Location and lead isotope composition of samples from the River Wear catchment and adjacent areas, Northern England.

 ~ .	20(=: 204=:	207-1 204-1	202-1 204-1	207-1 20(-1	20051 20(51		~			~
 Sample no	²⁰⁰ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/ ²⁰⁴ Pb	²⁰⁸ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/ ²⁰⁶ Pb	²⁰⁸ Pb/ ²⁰⁶ Pb	Pb ppm	Grid Ref	Eastings	Northings	Regional Location
300012	17.9608	15.5501	37.8764	0.8658	2.1091	139	NZ	425150	551900	Coalfield
300033	17.7578	15.5361	37.6210	0.8749	2.1185	169	NZ	423230	543910	Coalfield
300048	18.1552	15.5699	38.0976	0.8575	2.0983	93	NZ	422170	546500	Coalfield
300073	18.3576	15.5949	38.3454	0.8495	2.0888	112	NZ	415500	558200	Coalfield
300077	18.0431	15.5193	37.8878	0.8601	2.0998	104	NZ	421400	541530	Coalfield
300087	17.8004	15.5533	37.7095	0.8738	2.1186	393	NZ	419400	555100	Coalfield
300088	18.0460	15.5497	37.9641	0.8616	2.1038	190	NZ	416990	543010	Coalfield
300092	17.8727	15.4977	37.6929	0.8672	2.1091	78	NZ	423520	549660	Coalfield
300093	18.2213	15.5123	38.1123	0.8514	2.0921	99	NZ	417510	546350	Coalfield
300101	17.6690	15.5273	37.5159	0.8788	2.1231	179	NZ	422990	549980	Coalfield
300111	17.9945	15.5299	37.8564	0.8629	2.1038	108	NZ	421060	551800	Coalfield
300112	18.1315	15.5560	38.0998	0.8580	2.1011	124	NZ	416300	560500	Coalfield
300118	17.7744	15.5488	37.6878	0.8748	2.1205	255	NZ	415700	559100	Coalfield
300136	17.8577	15.5525	37.7814	0.8709	2.1159	169	NZ	414200	560800	Coalfield
300142	18.0526	15.4818	37.8737	0.8576	2.0980	156	NZ	413600	559600	Coalfield
300146	18.2218	15.5942	38.2071	0.8558	2.0969	227	NZ	414800	554100	Coalfield
300154	17.7859	15.5537	37.6942	0.8745	2.1194	196	NZ	427570	547930	Coalfield
300185	17.8667	15.5675	37.8061	0.8714	2.1160	236	NZ	415200	555200	Coalfield
300224	18.2060	15.5764	38.1734	0.8556	2.0970	112	NZ	412700	554000	Coalfield
300226	17.7281	15.5529	37.6284	0.8773	2.1226	164	NZ	419100	558600	Coalfield
300234	17.4550	15.5254	37.3497	0.8896	2.1398	163	NZ	416200	557400	Coalfield
300255	18.2735	15.5955	38.2828	0.8535	2.0956	109	NZ	414400	557500	Coalfield
300271	17.6034	15.5461	37.5061	0.8831	2.1305	181	NZ	417200	558200	Coalfield
300281	18.0478	15.5561	38.0100	0.8619	2.1061	189	NZ	412700	552700	Coalfield
300305	18.3906	15.5992	38.3531	0.8483	2.0856	246	NZ	419290	538120	Coalfield
300312	18.3964	15.6135	38.3708	0.8487	2.0858	879	NZ	400200	548740	Orefield

Sediments: 1st and 2nd order streams

300316	17.9182	15.5565	37.8568	0.8682	2.1128	110	NZ	426460	529890	Coalfield
300321	18.1596	15.5476	38.0836	0.8562	2.0982	83	NZ	422900	537390	Coalfield
300341	17.6826	15.5186	37.5035	0.8776	2.1211	128	NZ	425480	538600	Coalfield
300364	18.2131	15.5636	38.1631	0.8543	2.0955	72	NZ	422700	534500	Coalfield
300374	18.2218	15.5369	38.0939	0.8527	2.0907	62	NZ	433400	538900	Coalfield
300381	18.1472	15.5617	38.0925	0.8575	2.0990	373	NZ	428650	537200	Coalfield
300533	18.3738	15.5911	38.3498	0.8486	2.0872	197	NZ	409100	544500	Orefield
300534	17.7733	15.5658	37.7083	0.8758	2.1216	805	NZ	423420	530410	Coalfield
300542	18.2120	15.5298	38.0717	0.8526	2.0904	90	NZ	405890	543250	Orefield
300548	18.4032	15.6202	38.3892	0.8488	2.0861	1771	NZ	404740	548210	Orefield
300595	18.0228	15.5444	37.9268	0.8625	2.1044	166	NZ	405690	541790	Orefield
300623	17.7328	15.5206	37.6392	0.8750	2.1222	444	NZ	433410	553100	Coalfield
300624	18.0365	15.5560	37.9036	0.8624	2.1016	147	NZ	432040	544180	Coalfield
300629	18.0247	15.5341	37.8978	0.8618	2.1021	117	NZ	432110	547830	Coalfield
300674	17.9087	15.5277	37.7370	0.8671	2.1072	76	NZ	430340	540390	Coalfield
300684	18.2489	15.5305	38.1402	0.8510	2.0901	119	NZ	432290	541600	Coalfield
300685	17.9671	15.5513	37.8611	0.8656	2.1074	127	NZ	427400	540400	Coalfield
300694	17.9521	15.5745	37.8911	0.8676	2.1113	269	NZ	433060	549730	Coalfield
300739	18.3161	15.5848	38.2731	0.8509	2.0896	204	NZ	408500	545200	Orefield
300764	18.1154	15.5812	38.0290	0.8602	2.0993	11160	NZ	407210	549200	Coalfield
301914	17.9728	15.5587	37.8759	0.8656	2.1073	146	NZ	418870	528570	Coalfield
301925	17.8433	15.5376	37.7163	0.8708	2.1135	104	NZ	417210	525150	Coalfield
301933	18.2086	15.5034	38.0526	0.8215	2.0899	91	NZ	413140	529950	Coalfield
301943	18.1331	15.5404	38.0380	0.8570	2.0976	107	NZ	419280	526000	Coalfield
301972	18.2155	15.5380	38.1048	0.8529	2.0921	127	NZ	414620	537740	Coalfield
302104	18.2967	15.5829	38.2821	0.8516	2.0918	184	NZ	405930	528500	Orefield
302132	18.4499	15.6269	38.4657	0.8470	2.0850	1097	NZ	406040	531450	Orefield
302146	18.4547	15.6305	38.4768	0.8470	2.0852	3227	NZ	405530	529950	Orefield
302155	18.4149	15.6245	38.4200	0.8486	2.0864	644	NZ	410750	532360	Orefield
302169	17.8733	15.5282	37.7158	0.8688	2.1101	156	NZ	424910	524100	Coalfield
302506	18.2660	15.5557	38.2104	0.8517	2.0918	102	NZ	414510	526480	Coalfield
302517	18.3011	15.6095	38.2809	0.8529	2.0917	11295	NZ	400220	534120	Orefield
302541	18.4316	15.6205	38.4473	0.8475	2.0859	1428	NZ	403360	535860	Orefield
302562	18.2837	15.6037	38.2576	0.8534	2.0922	1473	NZ	401290	534400	Orefield
320209	18.4256	15.6309	38.4684	0.8483	2.0878	4064	NY	378150	541550	Orefield
320222	18.4755	15.6331	38.5501	0.8462	2.0864	2725	NY	376700	537700	Orefield

320270	18.4482	15.6282	38.4691	0.8471	2.0855	3220	NY	377000	537200	Orefield
320276	18.4076	15.6114	38.3929	0.8482	2.0857	140	NY	375600	537800	Orefield
320293	18.4252	15.6176	38.4320	0.8476	2.0856	413	NY	376100	536600	Orefield
320305	18.3084	15.6214	38.3019	0.8531	2.0918	1743	NY	379500	542250	Orefield
320622	18.4117	15.6259	38.4381	0.8490	2.0882	15392	NY	376700	542350	Orefield
320627	18.3311	15.5815	38.2904	0.8501	2.0888	194	NY	375600	532700	Orefield
320647	18.3078	15.5978	38.2666	0.8520	2.0900	138	NY	377000	530200	Orefield
320691	18.3521	15.6086	38.3367	0.8505	2.0890	496	NY	379400	531400	Orefield
320693	18.3748	15.6162	38.3866	0.8498	2.0891	6359	NY	378400	532200	Orefield
320806	18.3252	15.5826	38.2610	0.8504	2.0879	115	NY	388700	529350	Orefield
320824	18.4419	15.6272	38.4489	0.8474	2.0848	1372	NY	384990	533190	Orefield
321039	18.4037	15.6229	38.4069	0.8489	2.0870	469	NY	394290	529500	Orefield
321041	18.3822	15.6140	38.3840	0.8495	2.0884	391	NY	379200	533800	Orefield
321099	18.4175	15.6231	38.4260	0.8483	2.0864	3024	NY	390310	529780	Orefield
321230	18.4765	15.6251	38.4548	0.8456	2.0810	672	NY	376300	523200	Orefield
321249	18.6125	15.6479	38.5943	0.8408	2.0736	nr	NY	379600	520600	Orefield
321254	18.2305	15.5937	38.2006	0.8553	2.0954	200	NY	379400	522800	Orefield
321273	18.3208	15.6049	38.2900	0.8518	2.0901	166	NY	381500	523600	Orefield
321279	18.3075	15.6064	38.2688	0.8525	2.0905	nr	NY	376300	522700	Orefield
321281	18.3774	15.6036	38.3327	0.8491	2.0858	105	NY	376700	520800	Orefield
321454	18.4132	15.6264	38.4112	0.8487	2.0860	4096	NY	385080	549960	Orefield
321460	18.4117	15.6205	38.3953	0.8484	2.0854	1401	NY	385910	548410	Orefield
322463	18.2816	15.5910	38.2547	0.8283	2.0921	211	NY	390150	549400	Orefield
322488	18.3028	15.5610	38.2265	0.8502	2.0888	124	NY	387890	551380	Orefield
322607	18.3389	15.5605	38.2500	0.8485	2.0857	103	NY	393210	547480	Orefield
322672	18.5042	15.6362	38.4936	0.8450	2.0799	14867	NY	395600	548140	Orefield
322808	18.6047	15.6432	38.5798	0.8408	2.0743	6509	NY	394510	542450	Orefield
322812	18.3360	15.5767	38.2676	0.8494	2.0872	142	NY	399050	547910	Orefield
322820	18.4622	15.6213	38.4607	0.8461	2.0832	327	NY	393620	541400	Orefield
322840	18.5329	15.6362	38.5353	0.8437	2.0794	2647	NY	399150	542900	Orefield
322841	18.4139	15.6208	38.4232	0.8483	2.0866	716	NY	389490	542980	Orefield
322858	18.3490	15.5775	38.2847	0.8490	2.0866	131	NY	391790	546890	Orefield
322872	18.4318	15.6229	38.4129	0.8475	2.0840	2714	NY	394400	540010	Orefield
322877	18.4385	15.6223	38.4059	0.8473	2.0829	7803	NY	394250	540700	Orefield
322880	18.4877	15.6099	38.4702	0.8443	2.0813	96	NY	394150	543610	Orefield
322881	18.4519	15.6201	38.4463	0.8465	2.0836	530	NY	389490	543800	Orefield

322886	18.4563	15.6287	38.4858	0.8468	2.0852	212	NY	390800	542660	Orefield
322887	18.4125	15.6198	38.4084	0.8483	2.0860	163	NY	391610	543870	Orefield
323026	18.4430	15.6253	38.4599	0.8472	2.0853	5694	NY	380490	538000	Orefield
323031	18.4799	15.6228	38.4675	0.8454	2.0816	2045	NY	398100	543100	Orefield
323038	18.4756	15.6331	38.4949	0.8461	2.0837	1118	NY	382430	541000	Orefield
323056	18.4067	15.6186	38.4045	0.8485	2.0864	2402	NY	383180	542380	Orefield
323080	18.4550	15.6259	38.4676	0.8467	2.0844	1364	NY	384890	542470	Orefield
323086	18.4264	15.6224	38.4435	0.8478	2.0863	6910	NY	381600	537280	Orefield
323201	18.4598	15.6286	38.4770	0.8466	2.0844	2536	NY	384380	536460	Orefield
323246	18.4655	15.6359	38.4977	0.8468	2.0848	18538	NY	399360	529850	Orefield
323257	18.4234	15.6189	38.4310	0.8478	2.0860	338	NY	385920	538310	Orefield
323264	18.4920	15.6333	38.4975	0.8454	2.0818	6029	NY	389070	540580	Orefield
323281	18.4057	15.6229	38.4083	0.8488	2.0868	4622	NY	384390	536830	Orefield
323283	18.4559	15.6276	38.4553	0.8467	2.0836	1777	NY	390760	540210	Orefield
323295	18.3526	15.6191	38.3449	0.8511	2.0893	1230	NY	392100	534420	Orefield
323419	18.4473	15.6279	38.4495	0.8471	2.0840	4656	NY	389780	539190	Orefield
323423	18.4249	15.6240	38.4384	0.8480	2.0862	280	NY	393140	536380	Orefield
323434	18.5874	15.6389	38.5585	0.8413	2.0744	1520	NY	392390	538260	Orefield
323457	18.4322	15.6259	38.4268	0.8478	2.0846	4879	NY	388280	536770	Orefield
323458	18.4776	15.6281	38.4583	0.8457	2.0815	2848	NY	398100	535610	Orefield
323461	18.5298	15.6330	38.5223	0.8435	2.0788	1353	NY	396980	539880	Orefield
323474	18.5237	15.6295	38.5148	0.8438	2.0792	1609	NY	398080	541110	Orefield
323486	18.5475	15.6370	38.5395	0.8431	2.0779	2078	NY	398430	541730	Orefield
323652	18.3635	15.6117	38.3682	0.8502	2.0893	234	NY	398600	534510	Orefield
323665	18.4378	15.6246	38.4095	0.8474	2.0832	9723	NY	395600	534030	Orefield
323808	18.3382	15.6096	38.3160	0.8512	2.0894	184	NY	380400	526400	Orefield
323814	18.2704	15.5993	38.2663	0.8538	2.0946	202	NY	379300	526100	Orefield
323849	18.2400	15.6025	38.2201	0.8554	2.0954	146	NY	378000	525500	Orefield
323870	18.2874	15.6156	38.2945	0.8539	2.0940	460	NY	378600	530000	Orefield
323871	18.2537	15.6006	38.2150	0.8544	2.0933	273	NY	378800	528000	Orefield
324038	18.2661	15.5978	38.2378	0.8540	2.0938	218	NY	375900	526900	Orefield
324093	18.3533	15.6078	38.3375	0.8504	2.0888	123	NY	377300	526800	Orefield
324408	18.3709	15.6069	38.3507	0.8496	2.0877	413	NY	377800	539600	Orefield
324425	18.4256	15.6103	38.4472	0.8472	2.0866	222	NY	377600	535500	Orefield
324441	18.3359	15.6186	38.3562	0.8518	2.0918	503	NY	375200	539700	Orefield
BB2	18.3196	15.6177	38.3132	0.8525	2.0914	2131	NZ	403100	536100	Orefield

BB3	18.3138	15.6183	38.3258	0.8528	2.0927	4054	NZ	402000	535400	Orefield
BB5	18.4265	15.6250	38.4527	0.8480	2.0868	3134	NZ	400000	535000	Orefield
BB7	18.3776	15.6144	38.4131	0.8496	2.0902	572	NY	398100	535000	Orefield
DS1	18.4887	15.6418	38.4877	0.8460	2.0817	267	NY	389300	537500	Orefield
HB1	18.4344	15.6246	38.4297	0.8476	2.0847	213	NY	397500	538400	Orefield
HB4	18.4636	15.6290	38.4741	0.8465	2.0838	131	NY	395800	537100	Orefield
KB02	18.4435	15.6197	38.4510	0.8469	2.0848	262	NY	381100	543200	Orefield
KB06	18.4342	15.6282	38.4716	0.8478	2.0870	1561	NY	382800	542900	Orefield
KB09	18.4233	15.6217	38.4287	0.8479	2.0859	1834	NY	383300	542300	Orefield
KB11	18.4093	15.6222	38.4203	0.8486	2.0870	7832	NY	383800	541500	Orefield
KB13	18.4028	15.6251	38.4126	0.8491	2.0873	2118	NY	384900	541000	Orefield
KB14	18.4283	15.6288	38.4533	0.8481	2.0866	4060	NY	385400	540400	Orefield
MhB2	18.4639	15.6415	38.5186	0.8471	2.0862	1145	NY	390200	540800	Orefield
MhB7	18.4728	15.6405	38.5079	0.8467	2.0846	5432	NY	390600	538600	Orefield
Rh2	18.4473	15.6224	38.4495	0.8445	2.0815	183	NY	388000	544600	Orefield
Rh3	18.4683	15.6300	38.4791	0.8463	2.0835	279	NY	389300	544200	Orefield
Rh4	18.5196	15.6402	38.5484	0.8445	2.0815	811	NY	389700	543800	Orefield
Rh5	18.4939	15.6330	38.5076	0.8453	2.0819	2030	NY	391000	542800	Orefield
Rh7	18.4383	15.6237	38.4311	0.8472	2.0843	1128	NY	393500	542900	Orefield
Rh8	18.5476	15.6413	38.5579	0.8433	2.0789	1811	NY	394400	541500	Orefield
Rh9	18.5572	15.6478	38.5603	0.8432	2.0779	9518	NY	395300	538600	Orefield
SeB2	18.4833	15.6452	38.5203	0.8465	2.0820	3806	NY	385800	541000	Orefield
StB1	18.4592	15.6318	38.5120	0.8469	2.0864	105	NY	399000	539300	Orefield
SwB2	18.5994	15.6342	38.7269	0.8406	2.0822	56	NY	390700	536700	Orefield
WhB2	18.3862	15.6198	38.3737	0.8495	2.0871	495	NY	393500	536900	Orefield
WhB4	18.4049	15.6188	38.3905	0.8486	2.0859	303	NY	392700	535200	Orefield

Sediments: Main Channel River Wear

 Sample no	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/ ²⁰⁴ Pb	²⁰⁸ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/ ²⁰⁶ Pb	²⁰⁸ Pb/ ²⁰⁶ Pb	Pb ppm	Grid Ref	Eastings	Northings	Regional Location
1	18.4360	15.6333	38.4695	0.8480	2.0865	6225	NY	385600	539700	River Wear
2	18.4596	15.6381	38.4922	0.8471	2.0852	4417	NY	386800	538800	River Wear
3	18.4503	15.6355	38.4762	0.8474	2.0854	2259	NY	387500	538500	River Wear
4	18.4467	15.6348	38.4819	0.8476	2.0861	2319	NY	389000	538000	River Wear

5	18.4661	15.6351	38.4736	0.8467	2.0834	905	NY	392000	537900	River Wear
6	18.4664	15.6286	38.4640	0.8464	2.0828	3927	NY	395000	538500	River Wear
7	18.4869	15.6352	38.4954	0.8458	2.0826	5085	NY	397000	538500	River Wear
8	18.4891	15.6312	38.4776	0.8454	2.0811	3648	NY	399000	539100	River Wear
9	18.5014	15.6380	38.5110	0.8454	2.0815	5742	NZ	400000	538500	River Wear
10	18.5003	15.6332	38.4961	0.8450	2.0808	1610	NZ	403000	536800	River Wear
11	18.4788	15.6357	38.4882	0.8461	2.0828	1226	NZ	405000	537100	River Wear
12	18.4786	15.6368	38.4977	0.8462	2.0834	1320	NZ	407000	537000	River Wear
13	18.4693	15.6366	38.4706	0.8466	2.0829	1265	NZ	409000	536400	River Wear
14	18.4836	15.6404	38.4975	0.8462	2.0828	1584	NZ	411000	535400	River Wear
15	18.4611	15.6354	38.4698	0.8471	2.0836	1177	NZ	412872	532314	River Wear
16	18.4491	15.6359	38.4584	0.8474	2.0843	1559	NZ	417038	530861	River Wear
17	18.4561	15.6348	38.4674	0.8471	2.0841	955	NZ	420714	530367	River Wear
18	18.4469	15.6287	38.4521	0.8472	2.0845	727	NZ	420078	534205	River Wear
19	18.4454	15.6307	38.4478	0.8474	2.0841	710	NZ	423583	535481	River Wear
20	18.4339	15.6295	38.4738	0.8478	2.0849	632	NZ	425488	537164	River Wear
21	18.4480	15.6303	38.4593	0.8473	2.0845	662	NZ	426585	537778	River Wear
22	18.4506	15.6334	38.4576	0.8472	2.0842	927	NZ	426823	539427	River Wear
23	18.4376	15.6288	38.4322	0.8476	2.0845	658	NZ	428563	542105	River Wear
24	18.3907	15.6277	38.3933	0.8497	2.0873	596	NZ	427331	542847	River Wear
25	18.3885	15.6240	38.3874	0.8497	2.0882	557	NZ	429932	545484	River Wear
26	18.4068	15.6228	38.3966	0.8488	2.0859	262	NZ	428606	547842	River Wear
27	18.4283	15.6248	38.4167	0.8479	2.0845	365	NZ	428224	551193	River Wear

Galenas: North Pennine Orefield

 Sample no	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/ ²⁰⁴ Pb	²⁰⁸ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/ ²⁰⁶ Pb	²⁰⁸ Pb/ ²⁰⁶ Pb	Grid Ref	Eastings	Northings	Location
NE-02-14	18.4547	15.6530	38.4460	0.8482	2.0833	NY	49375	54279	Rookhope Borehole
NE-02-15	18.4333	15.6336	38.4076	0.8481	2.0836	NY	49375	54279	Rookhope Borehole
NE-02-16	18.4414	15.6528	38.4279	0.8488	2.0838	NY	49375	54279	Rookhope Borehole
NE-02-17	18.6797	15.6582	38.6639	0.8383	2.0698	NY	49375	54279	Rookhope Borehole
NE-02-19	18.4807	15.6473	38.3370	0.8467	2.0744	NY	49375	54279	Rookhope Borehole
NE-02-21	18.7080	15.6516	38.7023	0.8366	2.0687	NY	4927	55433	Rookhope
NE-02-22	18.8987	15.6674	38.8456	0.8290	2.0555	NY	4944	5425	Rookhope

NE-02-23	18.6921	15.6458	38.6584	0.8370	2.0683	NY	3868	5390	Ireshopeburn
NE-02-24	18.6292	15.6425	38.6636	0.8396	2.0755	NY	48896	54432	Rookhope
NE-02-25	18.6292	15.6490	38.6458	0.8401	2.0748	NY	48896	54432	Rookhope
NE-02-26	18.4813	15.6292	38.5055	0.8457	2.0835	NY	38100	5432	Killhopehead
NE-02-27	18.8338	15.6614	38.7943	0.8316	2.0598	NY	39470	53675	Eastgate
NE-02-28	18.5722	15.6359	38.5693	0.8420	2.0768	NZ	40080	53648	Frosterley
NE-02-29	18.4651	15.6453	38.4358	0.8473	2.0826	NY	38590	54235	Cowshill
NE-02-30	18.4238	15.6204	38.3950	0.8478	2.0840	NY	3905	5400	Westgate
NE-02-31	18.6733	15.6444	38.6322	0.8378	2.0689	NY	3985	5378	Stanhope
NE-02-32	18.4251	15.6221	38.4171	0.8479	2.0852	NY	3861	5379	Ireshopeburn
NE-02-33	18.3672	15.5855	38.2699	0.8486	2.0838	NZ	40663	54348	Wolsingham
NE-02-34	18.4972	15.6312	38.5234	0.8450	2.0826	NY	38218	54325	Killhope
NE-02-35	18.5374	15.6421	38.5783	0.8438	2.0811	NY	38505	54534	Allenheads
NE-02-36	18.3724	15.6181	38.3850	0.8501	2.0893	NY	37520	54575	Nenthead
NE-02-37	18.4331	15.6295	38.4320	0.8479	2.0849	NY	38515	54876	East Allendale
NE-02-38	18.3033	15.6130	38.3048	0.8530	2.0929	NY	40056	54888	Edmundbyers
NE-02-39	18.3691	15.5991	38.3289	0.8492	2.0866	NY	586	606	Brampton
NE-02-40	18.3155	15.5875	38.2575	0.8511	2.0888	NY	8260	6610	Haydon Bridge
NE-02-41	18.3731	15.6193	38.3844	0.8501	2.0891	NY	37790	54797	West Allendale
NE-02-43	18.3919	15.6189	38.3764	0.8492	2.0866	NY	39690	54703	Edmundbyers
NE-02-44	18.3063	15.6155	38.3115	0.8530	2.0928	NZ	40320	54566	Muggleswick
NE-02-45	18.3899	15.6172	38.3836	0.8492	2.0872	NY	3826	5466	Allenheads
NE-02-46	18.4443	15.6358	38.4660	0.8477	2.0855	NY	38569	54532	Allenheads
NE-02-47	18.3776	15.6203	38.3887	0.8500	2.0889	NY	37812	54534	Nenthead
NE-02-48	18.3738	15.6150	38.3650	0.8498	2.0880	NY	37410	54730	Nenthead
NE-02-49	18.3944	15.6230	38.3933	0.8493	2.0872	NY	39266	54750	Hunstanworth
NE-02-50	18.4454	15.6312	38.4391	0.8474	2.0839	NY	39590	55102	Blanchland
NE-02-51	18.3062	15.4938	38.2714	0.8518	2.0906	NY	37775	54525	Nenthead
NE-04-02	18.3247	15.5807	38.2477	0.8503	2.0870	NY	3855	5688	Stonecroft
NE-04-03	18.3579	15.5999	38.3031	0.8498	2.0865	NY	3790	5420	Smallcleugh
NE-04-05	18.3858	15.6223	38.4008	0.8497	2.0886	NY	3954	5488	East Allendale
NE-04-06	18.3700	15.6152	38.3725	0.8500	2.0888	NY	3765	5452	Nentsbury
NE-04-07	18.4022	15.6225	38.3930	0.8489	2.0862	NY	3860	5455	Allenheads
NE-04-08	18.3788	15.6115	38.3648	0.8494	2.0873	NY	3915	5313	Flushiemere
NE-04-09	18.4064	15.6160	38.3791	0.8483	2.0846	NY	3808	5311	Cow Green
NE-04-11	18.4615	15.6364	38.4662	0.8469	2.0836	NY	3880	5445	Frazers Hush

112 10, 120 10, 120 10, 120 0, 1020 0, 0100 2, 0070 111 0, 000 0, 0100 111 0, 000 0,	NE-04-12	18.4258	15.6301	38.4528	0.8483	2.0870	NY	3900	5310	Pike Law
--	----------	---------	---------	---------	--------	--------	----	------	------	----------

Carboniferous Coal and Shale: Durham-Northumberland Coalfield (Pearson & Worrall pers. comm.)

 Sample no	206Pb/204Pb	$^{207}{\rm Pb}/^{204}{\rm Pb}$	²⁰⁸ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/ ²⁰⁶ Pb	²⁰⁸ Pb/ ²⁰⁶ Pb	Pb ppm	Sample Type/Age
GP1	18.5773	15.6072	38.7031	0.8401	2.0834	nr	Shale (Westphalian)
GP2	18.6317	15.6376	37.4515	0.8393	2.0638	nr	Shale (Westphalian)
GP4	18.6511	15.6225	38.5512	0.8376	2.0670	nr	Shale (Westphalian)
GP8	18.4722	15.6036	38.4765	0.8447	2.0829	nr	Shale (Westphalian)
GP10	18.6379	15.6231	38.7396	0.8382	2.0785	nr	Shale (Westphalian)
GP14	18.8721	15.6304	38.8432	0.8282	2.0582	nr	Shale (Westphalian)
GP20	18.6116	15.6327	38.7576	0.8399	2.0824	nr	Shale (Westphalian)
GP21	18.7124	15.5946	38.5482	0.8334	2.0600	nr	Shale (Westphalian)
GP26	18.6489	15.6358	38.8328	0.8384	2.0823	nr	Shale (Westphalian)
GP5	18.5461	15.6121	38.3950	0.8418	2.0702	nr	Coal (Westphalian)
GP6	18.5787	15.6116	38.4594	0.8403	2.0701	nr	Coal (Westphalian)
GP9	18.5924	15.6340	38.4266	0.8409	2.0668	nr	Coal (Westphalian)
GP12	18.6467	15.6203	38.5249	0.8377	2.0660	nr	Coal (Westphalian)
GP13	18.5564	15.6196	38.4569	0.8417	2.0724	nr	Coal (Westphalian)
GP17	18.4302	15.6119	38.4217	0.8471	2.0847	nr	Coal (Westphalian)
GP18	18.4063	15.5973	38.3624	0.8474	2.0842	nr	Coal (Westphalian)
GP22	18.4323	15.5895	38.3415	0.8458	2.0801	nr	Coal (Westphalian)
GP24	18.5130	15.6019	38.3824	0.8428	2.0733	nr	Coal (Westphalian)
GP27	18.4495	15.5985	38.3527	0.8455	2.0788	nr	Coal (Westphalian)
GP29	18.4682	15.5832	38.3781	0.8438	2.0781	nr	Coal (Westphalian)

nr not reported. Further details relating to all samples can be obtained from the Corresponding Author.