

GRoundwater And Soil Pollutants (GRASP)

A screening tool applying soil geochemical data to assess threats to groundwater

> Brighid Ó Dochartaigh, Fiona Fordyce, Louise Ander and Helen Bonsor

> > **British Geological Survey**

EGU 22 April 2009

SSS32: Pedogeochemical mapping of potentially toxic elements

Simple downward infiltration of water and contaminants through permeable soil and soil parent material

More complex water flows and contaminant migration through variably permeable material

Predicting threats to shallow groundwater quality from the downward leaching of soil metal contaminants

Glasgow, UK

- Scotland's largest city
- Post-industrial
- Urban regeneration
- Main stakeholders: Glasgow City Council, Scottish Environment Protection Agency

Why GRASP? Why Glasgow?

- City-wide scale
- First-pass screening: highlights greater or lesser threat
- Basis is a soil leaching model: BS-ISO 15175 (2004)
- New high quality geochemical soil survey data available
- Groundwater is **pathway** for contaminants
- Water Framework Directive / Groundwater Directive: protect whole-water system and ecological status.

BGS <u>Clyde</u> <u>Urban</u> <u>Super</u> <u>Project</u> (CUSP)

GRASP Methodology

		Cd
Step 1:	Attenuation properties of unsaturated	Cr
	soil & Quaternary deposits)	-
		Cu
Step 2:	Climatic water balance SS-ISO soil	Fe
	leaching model	Mn
Step 3:	Depth to groundwater metals	Ni
Step 4:	Measured metal concentrations in soil	Pb
•	for each of 10 metals	Zn
Step 5:	Combined GRASP prioritisation / GRASP	
	assessment for all 10 metals additiona	
	factors	
© NERC All rights reserved		1835

A

As

Input data (i): Geochemical Soil Survey

(BGS Geochemical Baseline Survey of the Environment: G-BASE)

- Soil chemistry at 0.2 m and 0.5 m depths for 1622 sites.
- Total concentrations of 46 elements; pH; Loss On Ignition; soil texture; and colour.

Input data (ii)

Steps 1 - 3: BS-ISO 15175:2004

End Step 3: Leaching Potential Maps

For 10 metals, e.g.:

Cr leaching potential map

Step 4: Incorporating soil metal concentrations

End Step 4: Prioritisation Ranking Maps

For 10 metals, e.g.:

Step 5: Combined prioritisation ranking

Precautionary: combined prioritisation category is determined by the highest ranking for any metal at that site

Individual Metal Rankings (Step 4)	Combined GRASP Priority Category (Step 5)	
All 10 are Low	Low	
One or more is Moderate; the rest are Low	Moderate	
One or more is High; the rest are Low or Moderate	High	

Interpreting GRASP outputs

- GRASP highlights key areas at greatest threat of metals leaching to shallow groundwater
- Main control on the location of these high priority sites is depth to groundwater
- Metal concentrations have a big influence on the location of moderate priority sites, but not on high priority sites
- Many highlighted areas coincide with known industrial areas

Future developments

- Collect new groundwater level data
- Refine how GRASP combines leaching potential with metal concentrations
- Collect new groundwater quality data for validation
- Apply to different issues: e.g. Sustainable Urban Drainage Systems

Thankyou

GRoundwater And Soil Pollutants (GRASP)

Brighid Ó Dochartaigh (<u>beod@bgs.ac.uk</u>), Fiona Fordyce (<u>fmf@bgs.ac.uk</u>), Louise Ander and Helen Bonsor

British Geological Survey Murchison House, West Mains Road, Edinburgh EH9 3LA, United Kingdom