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ABSTRACT 

Genetic variability is an important condition for species to successfully face present 

challenges and survive while adapting and reproducing to meet future environmental changes. 

Another crucial aspect of conservation genetics for Neotropical species in fragmented 

landscapes is their mating systems strategies such as outcrossing and inbreeding, and 

conservation genetics then deals with how to maintain these systems. Cedrela odorata also 

known as Spanish cedar is an important tropical timber tree species which distributes widely 

across the continent and it‘s considered one of the main species for timber production. The 

objectives of the present study were: i) to assess the genetic diversity of C. odorata in primary 

forests and human dominated landscapes in Mesoamerica; ii) to determine and compare 

outcrossing rates and levels of inbreeding for the species among different levels of human 

dominated landscapes; and iii) to evaluate the impact of fragmentation and mother tree 

isolation on the genetic diversity and outcrossing parameters. Microsatellite markers for the 

species were developed to assess the genetic diversity and mating systems. Leave samples 

were collected from provenance and progeny trials established at CATIE, Turrialba. High 

gene diversity estimates were found for C. odorata progeny arrays, although no significant 

differences were found between the northern and central lineages, neither the progeny arrays 

of isolated mother trees nor the ones in groups or clusters. Average observed heterozigosity 

was 0.78 and 20.56 was the average number of alleles overall the samples. High multi-locus 

outcrossing rates (tm) were obtained for both isolation levels, 1.00 ± 0.08 and 1.06 ± 0.06 for 

isolation level 1 and 3, respectively, suggesting absence of self-fertilization. Isolation level 

analysis revealed significant differences for correlation of paternity and single locus 

inbreeding coefficient of maternal parents, which was higher for isolated families. An average 

of 5.0 mature trees donated pollen to isolated mother trees, while 7.7 pollen donors were 

found for mother trees within a ratio of 100 meters. C. odorata progenies from isolated trees 

have higher levels of bi-parental inbreeding, fewer pollen donors, potentially leading to a 

reduction of mechanisms for selective abortion among different pollen donors, and leading to 

a decrease in vigor of progenies. This information is significant for decision makers of the 

management and conservation of the species, since fertility of individual trees will depend on 
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the degree of isolation, human dominated habitats and availability of pollinators that may 

flight long distances between trees. Habitat degradation caused by selective logging has 

reduced the species density at natural forests, leading to common scenarios with small 

fragmented forests with few remnant C. odorata trees. Importance of isolated trees as 

stepping stones connectors between fragmented forests must be taken into account for future 

harvesting permits, where landscape management might be a priority for the species.  

 

Key words: Spanish cedar, microsatellites, SSRs, heterozigosity, outcrossing rates, 

inbreeding, isolation levels, isolated trees.  
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RESUMEN 

La variabilidad genética es una condición importante para las especies, ya que les permite 

enfrentar los retos presentes y sobrevivir, además les da capacidad de adaptación a cambios 

ambientales futuros. Los sistemas de cruzamiento son también un aspecto crucial para la 

genética de la conservación en especial para especies en paisajes fragmentados, por lo que 

esta ciencia debe tratar de mantener estos procesos a largo plazo. Cedrela odorata también 

conocida como cedro amargo es una especie tropical maderable de gran importancia  la cual 

tiene un amplio rango de distribución en el continente, y es considerada una de las especies 

principales para producción de madera. Los objetivos del presente estudio fueron: i) evaluar 

la diversidad genética de C. odorata en bosques primarios y paisajes intervenidos en 

Mesoamérica; ii)  determinar y comparar  tasas de exocruza y niveles de endogamia para la 

especie entre diferentes niveles de aislamiento en paisajes intervenidos; iii) evaluar el impacto 

de la fragmentación y aislamiento de árboles madre sobre la diversidad genética y parámetros 

de exocruza. Se desarrollaron marcadores de microsatélites para evaluar la diversidad 

genética y los sistemas de cruzamiento. Se colectaron muestras de hojas de diferentes ensayos 

de proveniencia y progenie establecidos en CATIE, Turrialba. Se estimó una alta diversidad 

genética para los arreglos de progenies de la especie, sin embargo no se encontraron 

diferencias significativas entre los linajes del norte y centro, así como tampoco se encontraron 

diferencias significativas para arboles madre aislados y aquellos organizados en grupos o 

clusters. La heterocigocidad promedio observada fue de 0,78 y el promedio de alelos en todas 

las muestras fue de 20,56. Se encontraron altas tasas de exocruza para los multilocus (tm) 

entre ambos niveles de aislamiento, 1,00 ± 0,08 y 1,06 ± 0,06 para niveles de aislamiento de 1 

y 3 respectivamente, lo cual sugiere ausencia de autofertilización. El análisis de aislamiento 

reveló diferencias significativas en la correlación de paternidad y el coeficiente de endogamia 

de single locus (ts) de progenitores maternos, el cual a su vez fue mayor para familias 

aisladas. Un promedio de 5.0 arboles maduros donaron polen a árboles madres aislados, 

mientras que 7.7 donadores fueron determinados para arboles madre dentro de un radio de 

100 m. Las progenies de C. odorata de árboles aislados tiene mayores niveles de endogamia 

biparental y pocos donadores de polen, conduciendo potencialmente a una reducción de 



 XII 

mecanismos para abortos selectivos dentro de los diferentes donadores de polen, y a la vez a 

una disminución del vigor de las progenies. Esta información resulta importante para 

tomadores de decisiones sobre el manejo y conservación de esta especie, ya que la fertilidad 

de árboles individuales va a depender de los niveles de aislamiento, hábitats intervenidos y 

disponibilidad de polinizadores que podrían volar grandes distancias entre árboles. La 

degradación de hábitat causada por la tala selectiva ha reducido la densidad de la especie en 

bosques naturales, generando que los escenarios comunes sean bosques pequeños 

fragmentados con pocos individuos remanentes de la especie. La importancia de los árboles 

aislados como ―stepping stones‖ para la conectividad entre bosques fragmentados deben ser 

tomados en cuenta para futuros permisos de aprovechamiento, donde el manejo del paisaje 

debe ser una prioridad para las especies.  

 

Palabras clave: Cedro amargo, microsatélites, SSRs, heterocigosidad, estimadores de 

exocruza, endogamia, niveles de aislamiento, árboles aislados. 
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1 INTRODUCTION 

Loss of biological diversity in humid tropical forests is mainly caused by the impact of 

different human activities (Kattan 2002). The situation in Mesoamerican forests is the same as 

that for the rest of Latin America, where livestock, agriculture, management of forest 

resources and demographic growth have played a very important role in the processes of 

deforestation. Fragmented forests and isolated trees are now so abundant and frequent that 

they practically dominate Latin American landscapes, with the exception of Tikal National 

Park in Guatemala and the Amazon Forest in South America, which are the only remaining 

large areas of continuous forests. 

Kattan (2002) mentions that one of the main consequences of deforestation is the 

creation of fragmented landscapes, where some remnants of the original forest with variable 

forms and sizes, are immersed in a diverse number of human dominated habitats. Large scale 

fragmentation of ecosystems could affect the physical environment and climate at a local and 

regional scale. Besides physical effects, fragmentation of habitats could also result in loss of 

genetic diversity both at the species and population levels. In the worst scenario, species 

extinction can occur. In the long term, Namkoong et al. (2002) affirm that genetic erosion 

induces species extinction and ecosystem loss, and also reduces the possibility of using genetic 

variability for economic benefits and ecological restoration. 

Species need genetic variability to successfully face present challenges and survive 

while adapting and reproducing to meet future environmental changes. Genetic diversity is 

necessary for maintenance of evolutionary potential and adaptability of local populations and 

species in general. Conservation of genetic diversity is an essential element for the 

maintenance of all levels of biodiversity, which are valued because of their existence and 

utility. However, genetic variability is difficult to measure directly, and its scale may vary 

depending on the size and connectivity between populations along with their history and 

landscape context. Furthermore, genetic variability in ecosystem dynamics makes levels of 

genetic diversity difficult to predict (Namkoong et al. 2002). 

Genetic consequences of population fragmentation are strongly influenced by gene 

flow between the forest fragments. In general, restrictions in gene flow produce higher levels 

of inbreeding and genetic diversity loss between fragments. Furthermore, gene flow might be 

affected by the number of fragments, population structure, distance between fragments and the 
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dispersion characteristics of the species. In the long term, genetic differentiation and major 

risk of extinctions may occur (Young and Boyle 2000, Frankham et al. 2003). 

Reductions in density of mature forests will directly decrease a species‘ population 

size, and potentially affect gene dispersal, and its mating system. Thus, genetic drift is a threat 

to the maintenance of genetic variation, particularly for small and isolated populations if many 

trees are removed during harvesting of mature forests. Special attention should be given to 

tropical forests, since the consequences of silvicultural management practices on genetic 

structures of tree populations apparently are most severe and detrimental in these forests 

(Finkeldey and Ziehe 2004). 

Cloutier et al. (2007) categorize the directly measurable population genetic effects of 

selective logging into three: i) selective harvesting may cause an immediate loss of genetic 

diversity as a consequence of removal of adult trees; or a loss in the seed progeny generation 

as a consequence of reduced availability of pollen donors, ii) a reduction in the number of 

individuals available to donate pollen, iii) harvesting could modify the genetic structure of 

reproductive trees, possibly leading to an increased proportion of mating among unrelated 

individuals in the population.    

Boshier (2000) highlights the importance of reducing the possibility of inbreeding and 

maintaining diversity in naturally outcrossing tree species for their long term viability. 

However, maintenance of breeding system flexibility will be a priority for species that 

naturally combine outcrossing and inbreeding.   

Genetic-marker based estimates of mating systems in tropical trees have shown that 

they are predominantly outcrossing with extensive gene flow (Hall et al. 1994, Boshier et al. 

1995, Hall et al. 1996, James et al. 1998, Rocha and Aguilar 2001, Muluvi et al. 2004). 

However, temporal variation in flowering within and among breeding seasons may restrict the 

levels of outcrossing and gene flow (Murawski and Hamrick 1991). Such variability may 

further aggravate the effects of deforestation, forest fragmentation (Hall et al. 1996), and tree 

isolation.  

The mating system in plant populations is influenced by a variety of genetic and 

environmental factors (Clegg 1980) over a hierarchy of levels (e.g. seed, fruit inflorescence, 

and tree) (Boshier 2000). Furthermore, in many cases, the observed mating patterns are likely 

to result from diverse interactions between several factors, rather than one particular factor 

(Boshier 2000).  
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Plant mating systems are also affected by changes in the landscape, such as selective 

logging, deforestation and habitat destruction, all of which can modify the population density, 

demographic structure, phenology and abundance, diversity and behavior of the pollinator 

community (Lowe et al. 2004, Ward et al. 2005).   

Most outcrossing angiosperms have bisexual flowers, a condition from which self-

pollination can evolve directly through the modification of self-incompatibility or other floral 

traits that prevent self-pollination (Schoen et al. 1997 cited by Muluvi et al. 2004). As well as 

floral morphology, mating systems may be sensitive to spatial and temporal structure within 

tree populations (Boshier 2000), plant density, population size (Clegg 1980, Boshier 2000), 

type and abundance of pollination vector (Boshier 2000), flower color, size of floral displays, 

and anther-stigma separation (Muluvi et al. 2004). 

Accurate fine-scale measures of the mating system can be obtained using molecular 

markers. Most recent studies have estimated outcrossing rates as population averages (Ritland 

2002), while in this study estimates of outcrossing rates will be focused as averages for 

progeny arrays derived from mother trees under different levels of human dominated 

landscapes: continuous forests and isolated trees.  

This study focused on the determination of estimates of outcrossing and other 

population genetic parameters for the tropical tree species Cedrela odorata in primary forests 

and different man-made landscapes. Also known as Spanish cedar, Cedrela odorata is one of 

the most commercially important species of the Meliaceae family in the neotropics. It is a 

semi-deciduous tree, native from northern México to South America and also found in the 

Antilles (Holdridge et al. 1997). Broadly valued for its high quality wood, C. odorata has been 

used for construction, furnishings and handcrafts, among other things. Wild populations have 

been severely reduced because of selective logging (Zamora 2000) to the point that the species 

is now threatened at a provenance level (Patiño 1997). 
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1.1 Objectives of the study 

1.1.1 General objective 

The goal of this project is to evaluate the genetic variability, and mating systems of C. 

odorata trees growing in different levels of isolation: i) isolated mother trees (no trees of the 

same species closer than 500 m) ii) and mother trees in clusters or associated with more than 

two trees within a radius of less than 100 m. 

1.1.2 Specific objectives 

To accomplish the general objective, the project had these three specific objectives: 

 To assess the genetic diversity of C. odorata in primary forests and different man-

made landscapes in México, Guatemala, Honduras, and Costa Rica.  

 To determine and compare outcrossing rates and levels of inbreeding for the species 

among different levels of human dominated landscapes. 

 To evaluate the impact of fragmentation and mother tree isolation on the genetic 

diversity and outcrossing parameters of the species. 

1.2 Hypotheses 

H1: The molecular marker technique, simple sequence repeats (SSRs) allows the 

determination of genetic diversity, outcrossing rates and levels of inbreeding for C. odorata.  

H2: There are significant differences in the genetic variability estimates between the 

populations of C. odorata at different levels of isolation.  

H3: There are significant differences in the outcrossing rates between the 

populations of C. odorata at different levels of isolation. 
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2 LITERATURE REVIEW 

2.1 Description of Cedrela odorata and its habitat 

Mesoamerica is home to more than 5000 endemic plants, around 1.7% of the world‘s 

plant species (Myers et al. 2000) which, as it is also experiencing an accelerated rate of habitat 

loss, make it one of the world‘s biodiversity hotspots. Cedrela odorata is widely distributed 

throughout Mesoamerica, and is found naturally in these Life Zones: tropical moist forest, 

subtropical moist forest and tropical dry forest. Its natural distribution range goes from 

northern Mexico to Bolivia and northern Argentina, and the Caribbean (Cordero and Boshier 

2003). Although the species is widespread geographically, it is not common throughout moist 

tropical forests. In Mesoamerica, it continues to be severely impacted by exploitation (Cintron 

1990, cited in Navarro 2002), particularly because of the substantial loss of tropical dry forest. 

Tropical dry forest is a highly threatened habitat in Mesoamerica, and has been lost through 

extensive forest destruction during recent decades, mainly for the establishment of cattle 

ranching and agriculture activities. 

Cedrela odorata L., Meliaceae (Spanish cedar) is a large, semi-deciduous, tropical tree, 

up to 40 meters in height and 2 meters in diameter at breast height (dbh), with its crown, 

ample and sparse, emerging above the main forest canopy. Leaves are paripinnate, with 5-11 

pairs of leaflets, lanceolate to ovate, measuring 5-16 cm long (Figure 1). It is a functionally 

monoecious species, with small, pale, unisexual green flowers with a garlic odor, grouped 

together in racemes of 30-50 cm at the end of the branches (Holdridge et al. 1997, Zamora 

2000, Cordero and Boshier 2003). Flowers have small, white petals and are probably 

pollinated by small moths (Bawa et al. 1995). In Costa Rica, flowering occurs annually from 

November to December, and fruits are mature between January and March. Meanwhile in 

Mesoamerica, phenology varies through the region, in general flowering occurs between 

November and February, and fruits are mature between January and April. Fruits are dehiscent 

woody capsules with five divisions, each containing 30-40 seeds, green at the beginning and 

dark brown at maturity. The seed is plane, oval–shaped, around half centimeter long, brown 

color and wing-shaped at the end (Asociación Costarricense para el Estudio de Especies 

Forestales Nativas 1994, Cordero and Boshier 2003). The species is light-demanding and 

exhibits rapid seedling growth in areas of high light such as roadsides or gaps in the forest.  
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Source: Cordero and Boshier (2003) 

Figure 1. Morphology of C. odorata Top left: Fruit capsule, closed and opened. Center: 

compound paripinnate leaf with florescence. 

Tree plantations are an alternative for sustainable production of the species. It has great 

potential in reforestation because of characteristics like fast growth, easy management in the 

nursery, adaptability to different soils, climatic conditions and high growth rate in agroforestry 

systems (Navarro 2002). 

The attack of the shoot-borer Hypsipyla grandella is a serious problem in nurseries and 

plantations of Spanish cedar. The problem increases during the rainy season (Cordero and 
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Boshier 2003), mainly because trees are in a growing period and new fresher shoots are 

available. This pest reduces growth, increases costs of maintenance and weeding, and induces 

bifurcations with consequent loss of apical dominance of the tree and value of the timber 

(Hilje and Cornelius 2001). 

The most well known product from C. odorata is a very attractive and valuable high 

quality wood, which has several uses: construction, interior decorations, furniture, and boat 

construction, among others (Cordero and Boshier 2003). Spanish cedar wood is reddish, 

durable, with a density of 0.37 – 0.45 gr/cm3, easy to work, and without problems during the 

drying processes. It possesses an excellent dimensional stability and durability; it is 

categorized as slightly light to slightly heavy (Asociación Costarricense para el Estudio de 

Especies Forestales Nativas 1994).  

The wood price is one of the highest in the wood market in all countries from Central 

America. The prices fluctuate considerably through the different stages of the 

commercialization chain. The highest price is reached when the wood is sawn or has an 

aggregated value, which in the first case has a price of 400-700 US$ (Cordero and Boshier 

2003). 

The genomic size of C. odorata is around 90 Mb, estimated by flow cytometry (Wilson 

et al. 2001). Chromosome number can be either 50 or 56 (2n) for different chromosome races 

(Styles and Koshla 1976, cited in Patiño 1997). 

2.2 Phylogeography, molecular and quantitative variability 

Several studies assessing different aspects of the genetic structure across the wide-

ranging populations of C. odorata facilitated important findings for the development of the 

present research. Information from chloroplast, total genome, and quantitative characters 

helped to establish the sampling strategy of this study, which at the end will provide important 

additional information about the outcrossing rates of the species at different levels of human 

disturbance and lineages.     

Cavers et al. (2003b) studied the chloroplast DNA phylogeography of C. odorata in 

Mesoamerica with samples from 29 populations in México, Guatemala, Honduras, Nicaragua, 

Costa Rica, and Panama. They characterized five haplotypes which were phylogenetically 

grouped into three lineages: Northern, Central, and Southern (Figure 2).  Northern and Central 
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lineages were the most genetically distant from each other (nine mutations), followed by 

Northern and Southern with six mutations, and Central and Southern with three mutations. 

This pattern probably reflects ancient colonization processes that have occurred over 

thousands to millions of years, where Central lineages are genetically more related to Southern 

populations and more differentiated from Northern populations. 

 

 

        Source: Cavers et al. 2003a  

Figure 2. Map of the populations and distributions of haplotypes of Cedrela odorata sampled 

in Mesoamerica. At the top: minimum spanning tree for the five haplotypes identified. 

Populations of Northern and Central lineages are located in regions with longer periods 

of dry season, five to seven dry months (Table 1) and showed quantitative variation in 

provenance trials when they were compared to the Southern lineage (Figure 3). The map 

shows geographic origin of provenances, circle color (black/white) indicates grouping of 

provenance in cluster analysis. The cluster diagram shows the divisions of provenances into 

two major clusters-populations from west Panamá and southeast Costa Rica (Southern 

lineage), and those from México, Guatemala, Honduras and northwest Costa Rica (Northern 

and Central lineages). A standardized measure of among-population differentiation, QST, was 
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estimated using quantitative genetic characters, resulting in differentiation of Northern and 

Central populations from Southern populations (Navarro 2002). 

 

 

  Source: Cavers et al. 2004 

Figure 3. Distribution of quantitative variation based on 17 trials measured on seedlings 

grown in a common garden.  

Similar findings emerged from a comparison between morphological variation and site 

of population origin in mesic and dry habitats in Costa Rica (Navarro et al. 2002). Genetic 

diversity within and between populations of this species in Costa Rica was identified with 

morphological divergence between northern and southern populations. 

RAPD and AFLP analyses were done for Costa Rica and also found significant 

differentiation between populations (Gillies et al. 1997, Cavers et al. 2003a). Estimates of 

variance components from RAPDs analysis indicated highly significant differentiation 

between populations from North Pacific and Atlantic/South Pacific regions (35.3%), while 

most of the total variance was attributed to variation within populations (65.1%). On the other 

hand, AFLP analysis identified differentiation between populations from the northwest region 

and those from the east/southwest of Costa Rica as the principal source of variation (83.5%), 

although within these groupings most variation was also distributed within populations. An 
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additional subdivision between eastern and southwestern populations, indicating restricted 

gene flow across the Costa Rica‘s central mountain ranges (52.6%) was found. Although 

analysis was not carried out for populations from all Mesoamerica, a part-analysis for AFLP 

variation of a population in Mexico showed similarities with northwest populations of Costa 

Rica. 

Table 1. Passport data of Cedrela odorata populations established in 1999 at CATIE’s farm in 

association with coffee (coordinates with associated climatic variables) 

Country Location Altitude Rain NDM
 

Latitude Longitude Families 

  Masl Mm Start End  (°N) (°W)  

México Xpujil 150 1094.0 Jun Oct 7 18.54 90.14 11, 112, 115 

México 
Reforma 

Bacalar 
15 1094.0 Jun Oct 7 18.85 88.67 

134, 139,187, 192, 

194 

México 
Tres 

Garantías 
300 1094.0 Jun Oct 7 18.12 89.14 144, 146, 147 

México Tulum-FCP 30 1094.0 Jun Oct 7 19.35 88.01 
168, 170, 171, 175 - 
177, 180, 182, 185 

Guatemala Los Esclavos 737 2834.0 May Oct 6 14.25 90.28 
32, 33, 35, 36, 38, 39, 

312, 314, 317, 319 

Guatemala Tikal 250 1366.7 May Nov 5 17.22 89.61 
341, 343 - 346, 349, 

351 – 355 

Honduras La Paz 726 891.0 May Oct 6 14.15 87.61 
44 – 46, 48, 410, 412 

– 414 

Honduras Taulabe 633 912.0 May Oct 6 14.83 88.10 422, 423, 426 – 430 

Honduras Cedros 555 912.0 May Oct 6 14.66 87.30 
446 - 449, 451, 454, 

456, 457, 459 

Honduras Meambar 595 912.0 May Oct 6 14.83 88.10 467, 469, 470, 472 

Costa Rica Cañas 100 2273.6 May Nov 5 10.32 85.04 662, 663, 699, 6270 

Costa Rica Upala 250 2558.3 May Jan 3 10.86 85.02 6177, 6189 

Costa Rica San Carlos 90 4574.1 April Feb 1 10.47 84.58 683 

Costa Rica Cóbano 20 2896.8 May Nov 5 9.65 85.12 6110, 6112, 6114 

Costa Rica Talamanca 20 2812.0 April Nov 4 9.65 82.79 6121, 6123, 6125 

Costa Rica Guápiles 250 4465.8 May April 0 10.19 83.79 6141, 6145 

Costa Rica Hojancha 350 2232.3 May Nov 5 10.07 85.40 
6105, 6108, 6166, 
6176, 6101, 6103 

Costa Rica Pacífico Sur 40 4817.7 May April 0 8.61 82.88 6207, 6213 

Costa Rica 
Pérez 

Zeledón 
600 2934.5 April Nov 4 9.34 83.65 6232, 6240, 6274 

Panamá Almirante 10 3319.0 April Dec 3 9.39 82.56 71-715 

Panamá Guanaca 150 2620.0 April Nov 4 8.59 82.23 
745, 747, 752, 766, 

768 
 
NDM = number of dry months 

    Grey rows represent populations with high number of dry months 

   Source: Navarro et al. (2004) 
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2.3 Genetic diversity 

Population genetics can be understood as the study of naturally occurring genetic 

differences between organisms; these differences are known as genetic variation. Genetic 

variation can occur at three hierarchical levels: i) within populations, ii) between populations 

of the same species, and iii) between different species (Conner and Hartl 2004). Similarly, 

Lowe et al. (2004) separate genetic variation in three components: i) genetic diversity (the 

amount of genetic variation); ii) genetic differentiation (the distribution of genetic variation 

among populations); and iii) genetic distance (the amount of genetic variation between pairs of 

populations).  

Understood as the heritable variation of genes within biological organisms, genetic 

diversity may be measured at the individual, population, and species level (Lowe et al. 2004). 

At the individual level, genetic diversity is defined by the relative allele frequencies, also 

known as allelic richness (A), which are the different expressions of the same gene (locus), 

that are inherited from the father and the mother. The allelic diversity is the mean number of 

alleles per locus, and may be calculated per population or per species. Genetic diversity is also 

described using polymorphism, and average heterozygosity. The proportion of polymorphic 

loci (P) is calculated dividing the number of polymorphic loci between the total number of 

loci sampled. Whereas the average heterozygosity (H) is the sum of the proportions of 

heterozygotes at all loci, divided between the total number of loci sampled. In the case of 

populations, genetic diversity is defined by the type of alleles present, and the relative 

frequencies, and is expressed at a population level or between different populations (Nason 

2002, Frankham et al. 2004). 

Genetic diversity preserves a reservoir of response conditions to the changing 

environment, allowing adaptation and survival. Species maintain genetic variation as a product 

of survival and reproduction under the challenges of a heterogeneous landscape and past 

environmental changes. Conservation of genetic diversity is a necessary precondition for 

future evolution and adaptation of populations and entire species, and is therefore a key 

element in the maintenance of all other levels of biodiversity (Namkoong et al. 2002).  

Loss of genetic variation threatens the capacity of species and ecosystems to adapt to 

changing environments. In general, loss of genetic variation is difficult to measure directly, 

and its effect on population and ecosystem dynamics is often very difficult to understand, 

consequently its loss is easily ignored until it is too late to recover or restore (Namkoong et al.  
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2002). More drastically, genetic erosion induces species extinctions and ecosystem loss, 

discarding the chance of using genetic variation for economic gain and ecological restoration. 

Commonly, social and economic pressures on the forests prevail over the ecological needs, 

having a direct influence over the genetic diversity at all its levels. Forest management 

practices, fire, grazing and unintended side effects of climate change may result in reductions 

of genetic variation, due to changes in basic evolutionary processes such as selection, drift, 

migration and mating.  

2.4 Mating systems 

In plants, the term mating system refers to the degree to which individuals are self 

fertilizing, outcrossing, clonal, or a combination of this systems. Studies of plant mating 

systems had been developed frequently, mainly because mating is directly or indirectly related 

to genetic changes in space and time (Clegg 1980). Research on plant mating attempts to 

determine which plant mates with which other plant, and the causes and reasons that 

determine why mating patterns become modified. Most theoretical models of mating-system 

evolution have focused on the fitness consequences of selfing and outcrossing (Barrett and 

Harder 1996). The mating system determines the composition of the male and female pools, 

the extent to which germplasm is exchanged between individuals (outcrossing rates), and the 

rates of immigration and emigration (Namkoong et al. 2002).  

Outbreeding, self-fertilization, and clonal reproduction are three different mating 

systems that plants have for reproduction. Species with different mating systems typically 

require different genetic management strategies: for this reason it is very important to define 

the mating system for each species (Frankham et al. 2004). 

To understand mating systems, it is necessary to study the categorization of the species 

sexual system. Trees can be classified in three main groups: i) dioecious: all individuals in a 

population are male or female; ii) hermaphrodite: individuals have both male and female 

function, and may have either monoecious (single sex) or hermaphrodite (both sexes) flowers; 

iii) monoecious: hermaphrodite individuals in which anthers and gynoecia occur in different 

flowers, male and female functions are separated. These mechanisms reduce the proportion of 

self-pollination, therefore the probability that inbreeding may occur (Boshier 2000). 
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2.4.1 Functions of mating systems 

The mating system is of great importance for plants in determining the genetic 

structure and evolutionary potential of natural populations, mainly because it establishes the 

pattern of uniting gametes forming the next generation (Allard 1975 in Liengsiri et al. 1998). 

Gregorius (2002) cites three fundamental functions of mating systems: i) generative 

reproduction; ii) selection for participation in generative reproduction; iii) combination of 

genetic information (genes) into genotypes. These functions determine the adaptational 

capacities of populations which can be realized during the transition from one generation to 

the next (Gregorius 2002). 

2.4.2 Major determinants of plant mating systems 

There are several factors that in conjunction may affect mating systems, varying the 

outcrossing rates of individual trees and/or populations. A short list of categories of factors 

that affect plant mating systems is presented as follows (Boshier 2000, Gregorius 2002): 

i) Spatial relations: Spatial distribution of individuals, consequence of their pollen 

dispersal characteristics. Genetic structuring within populations is common, especially for taxa 

with wind-dispersed seed.   

ii) Temporal relations: refers to temporally varying spatial distribution patterns and 

activities or behavior, age of sexual maturity, timing of flowering and time-dependent 

expressions of reproductively relevant phenotypes of males and females. Flower synchrony 

between neighbors may increase the predisposition towards inbreeding.        

iii) Phenotypic relations: some examples are prezygotic incompatibility or isolation 

mechanisms, including biochemical or physiological agents, and morphological barriers such 

as flowering phenology.  

iv) Ecological conditions: availability and selectivity of pollinators, physical barriers to 

pollen dispersal, species composition. Mating patterns may vary depending on the particular 

characteristics of pollen vector; this variation can take place not only from tree to tree but also 

within the tree canopy. 

v) Genealogical relations: with the exception of self-fertilization, such relations are 

rarely direct determinants of mating systems. 
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vi) Density relations: changes in local flowering densities and the spatial patterns of 

flowering individuals could produce annual variation and differences between the outcrossing 

rates of several tree species. 

2.4.3 Outcrossing rate estimates and assumptions of the mixed mating model 

Evolutionary genetics includes three main study areas: adaptation studies, 

measurement and description of variation, and research of the processes of genetic 

combination at a population level (Clegg 1980). Combination and transmission of genetic 

information is mediated through the mating systems, which are an important determinant of 

the genetic structure and evolutionary potential of natural populations because they establish 

the pattern of uniting gametes forming the next generation (Allard 1975, Clegg 1980). 

The mixed mating model separates progeny into those resulting from inbreeding (both 

selfing and related mating) and those produced by outcrossing with a random sample of pollen 

from the total population. Assumptions of the mixed mating model are: i) outcrossing rate is 

uniform for all maternal parents, and pollen genotypes are distributed uniformly over all eggs; 

ii) for each maternal parent, progeny genotype classes are independent, identically distributed 

and multinomial random variables; iii) alleles at different loci segregate independently; iv) 

genetic markers are not affected by selection or mutation between the time of mating and 

progeny evaluation (Clegg 1980, Schoen and Clegg 1984). 

Departures of the assumption of a uniform pollen genotype distribution may occur due 

to different reasons, for example, temporal or spatial heterogeneity in the distribution of 

genotypes in the population, and correlation among the outcrossed pollen types received by 

individual maternal parents (Schoen and Clegg 1984). In insect pollinated plants like C. 

odorata, correlation could be a factor if the families assayed for marker genotyped are 

collected from one or a limited number of multi-seeded fruit, specially, if the pollen deposited 

on a stigma derives from few previously visited trees, resulting in many full sibs progenies. 

This was not the case for the present study, since seed collection was done from high numbers 

of fruits (>50). Spatial structuring of genotypes in the population may also contribute to 

correlation among mating events if it modifies the fertilization probabilities by the various 

pollen types (Schoen and Clegg 1984).      

Outcrossing rates theoretically range from t = 0 (complete selfing) to t = 1 (outcrossed 

to a random sample of the populations pollen pool). Values significantly lower than t = 1 
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indicates a degree of inbreeding, which may be caused by selfing or mating between 

individuals that are related (effective selfing). When selfing occurs, all loci are affected 

equally, while in mating between relatives, mean single locus value (ts) significantly lower 

than the multilocus estimate (tm) indicates effective, rather than actual selfing (Boshier 2000).  
 

Mating parameters are estimated based on the assumption that each seed crop of a tree 

is made up of a proportion, t, of outcrossed seeds, and a proportion, 1 - t = s, of self fertilized 

seeds. It also assumes that each tree receives a sample of pollen with the allele frequencies 

representative of the population. Another assumption is that gene frequencies and outcrossing 

rates in the pollen pool are constant from one tree to another in the same population (Rocha 

and Aguilar 2001).  

Any increment in the number of homozygotes in the progeny, in relation to the totally 

outcrossed progeny, is due to selfing. For this reason s is an estimator of the effective selfing 

rate, which includes true selfing and biparental inbreeding (Ritland 1989). 

2.5 Molecular marker technique: Microsatellites (SSR’s) 

New technological developments have expanded the range of DNA polymorphism 

assays for genetic mapping, marker assisted plant breeding, genome fingerprinting, and for 

investigating genetic relatedness. These technologies include restriction fragment length 

polymorphisms (RLFP), random amplified polymorphic DNA (RAPD), amplified fragment 

length polymorphisms (AFLP), and simple sequence repeat polymorphisms or microsatellites 

(SSR). These methods detect polymorphism by assaying subsets of the total amount of DNA 

sequence variation in a genome (Powell et al. 1996). 

These markers differ in the type and amount of variability they express, suitability for 

each particular question, and in the ease and costs of their development and application. 

Molecular markers display different amounts of variation, and different modes of inheritance: 

they may be either codominant or dominant (meaning heterozygotes can or cannot be 

distinguished, respectively), and may or may not be subjected to genetic recombination 

(Ouborg et al. 1999). 

A comparison of these four markers done by Powell et al. (1996) demonstrated that all 

four types of marker assays have different properties: microsatellites have the highest expected 

heterozygosity, while AFLP are characterized by a very high multiplex ratio, RAPDs are 
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intermediate in heterozygosity and multiplex ratio, while RFLPs have moderate 

heterozygosity. Depending on the type of research that will be developed, determining the 

molecular marker used will depend on the level of information gathered from the marker, the 

ease of genotyping, and the genomic coverage. 

Data on levels of polymorphism based on SSRs have dominated mammalian genome 

research. Microsatellites are likely to have major positive impact on plant genetics since they 

provide a highly informative, codominant, PCR-based assay which is compatible with the 

requirements of plant breeding and population genetic analyses. 

The methodology to obtain SSR markers briefly includes the following steps. First, 

build a library of small genomic fragments (300 to 500 bp) for the organism of interest, by 

digestion of total genomic DNA by restriction enzymes. These fragments are selected for the 

presence of microsatellites (library enrichment), using synthetic probes that are 

complementary to the more common repetitive elements (i.e. poli-GT for mammals where 

elements CA are more common, or poli-AT for plants where the more common elements are 

TA). Individual fragments are then copied by cloning and sequenced. For each unique 

sequence, specific pair of primers is designed, which are carefully selected at each side of the 

microsatellite (usually using computer programs). Finally, the sequence is amplified by PCR 

to verify ease of amplification, the clarity of the fingerprint and the level of polymorphism 

(Ferreira and Grattapaglia 1998). 

Microsatellites are recognized for their great utility in population and conservation 

biology studies. In the case of population studies, by looking at the variation of microsatellites 

in populations, inferences can be made about population structures and differences, genetic 

drift, genetic bottlenecks and gene flow. On the other hand for conservation biology, 

microsatellites can be used to detect sudden changes in population, effects of population 

fragmentation and interaction of different populations. Microsatellites are useful in 

identification of new and incipient populations. 

2.5.1 Definition of microsatellites 

Microsatellites, alternatively known as simple sequence repeats (SSR), short tandem 

repeats (STR), or variable number tandem repeats, are short repeated sequence motifs 

generally consisting of repeat units of 1-6 base pairs (bp) in length, e.g. (TG)n or (AAT)n 
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(Hoelzel 1998). In other words, a microsatellite consist of a specific sequence of DNA base or 

nucleotides, which contains mono, di, tri, or tetra repeats. For example,  

 AAAAAAAAAAA would be referred to as (A)11 

 GTGTGTGTGTGT would be referred to as (GT)6 

 CTGCTGCTGCTG would be referred to as (CTG)4 

 ACTCACTCACTC would be referred to as (ACTC)3 

Originally microsatellites were used as tandem repeat units, although at the present 

time higher repeat units of 3 or 4 bp are commonly used (Cavers 2008, personal 

communication) as in the current study.     

They are highly abundant in eukaryotic genomes, but also occur in prokaryotes at 

lower frequencies. They seldom include more than about 70 repeat units and are distributed 

throughout the genome (Schlötterer 1998). Microsatellites are hypervariable and, as they are 

codominant (both alleles seen) and highly reproducible, they are ideal for population genetic 

studies, as well as more advanced applications such as genome mapping (Dayanandan et al. 

1998). 

The most frequent repetitive elements in mammals are extensions of dinucleotides CA 

and TG (Hamada et al. 1982, cited by Ferreira and Grattapaglia 1998). In plants, presence of 

microsatellites was observed in 34 species, where the most common repetitive element was the 

dinucleotide AT (Ferreira and Grattapaglia 1998). Nowadays molecular markers based on 

microsatellites have been developed to create genetic maps for some annual crops like 

soybean, corn, and wheat. There are many studies of microsatellites in trees, including not 

only boreal, but also tropical species (Chase et al. 1996, White and Powell 1997a, Lowe et al. 

2002, Roth et al. 2003). 

2.5.2 Microsatellite polymorphisms 

Microsatellite sequences change (mutate) over time, observed as variation in the 

number of repeat units. For example, one allele may have seven repeats of a CT motif, whilst 

another allele has eight repeats. In a population there may exist many alleles (up to 70 or 80) 

at a single locus, with each allele having a different length. An individual who is homozygous 

for a locus will have the same number of repeats on both chromosomes, whereas a 

heterozygous individual will have a different number of repeats on each chromosome. The 

regions surrounding the microsatellite locus, called the flanking regions, may still have the 
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same sequence. This is important because the flanking regions can therefore be used to design 

PCR primers when amplifying microsatellite loci, and can be conserved across genera or 

sometimes even families. 

Changes in repeat numbers caused by an intra-molecular mutation mechanism are 

called DNA slippage. The most common mutations are changes of a single repeat unit, which 

allows microsatellite mutations to be interpreted as a very good approximation of a stepwise 

mutation process (Schlötterer 1998). 

Slippage occurs during DNA replication, when the polymerase either leaves out or 

adds too many repeat units. The result is that the new strand has a different number of repeats 

than the parent strand. This might explain small changes in numbers of repeats (adding or 

subtracting one or just a few repeats). It also explains how microsatellite loci could be 

generated in the first place; it is likely that sequences including two or three repeats are 

randomly distributed throughout the genome. Slippage could them amplify these short repeat 

sequences into many repeats over successive generations. Certainly, the effectiveness of the 

mismatch repair system would also play an important role in microsatellite mutation rate 

(Schlötterer 1998).   

Another hypothesis that explains how microsatellites mutate is the unequal crossing-

over during meiosis, which is thought to explain more drastic changes in numbers of repeats. 

In this case, one of the chromosomes obtains too many repeats during the crossing-over, while 

the other chromosome obtains too few repeats. 

2.5.3 Detection of microsatellite markers 

Regions that contain repetitive simple sequences are amplified individually with PCR 

technique, using two specific primers (20-30 bp), which are complementary to the unique 

sequences that the microsatellite targets. The amplified segments are highly polymorphic, due 

to the presence of different number of simple repetitive elements. This way, each ―isle‖ 

microsatellite, independent from the repetitive element (CA, TG, ATG, etc.), is a highly 

variable, multiallelic, genetic locus with a great amount of informative content. Each 

amplified segment of different size (generally of several tens to hundreds of base pairs) 

represents one allele different of the same locus (Ferreira and Grattapaglia 1998).  

Detection of the microsatellite sequences via PCR is done with polyacrylamide or high 

resolution agarose gels, because significant resolving power is necessary to separate segments 
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that differ in small number of base pairs, depending in the amount of nucleotides of the 

repetitive element in the microsatellite. Bands could be visualized directly by staining with 

ethidium bromide or silver nitrate, via x-rays using marked primers with radioisotopes in the 

PCR reaction, or by laser-induced fluorescence using a fluorescence sequencer and 

appropriately tagged primers. 

Each microsatellite locus is analysed individually. It is possible to evaluate more than 

one locus at the time when the alleles of each locus have different sizes and migrate to 

separate zones of the gel. This method (named multiplex) uses more than one pair of primers 

simultaneously in the same PCR reaction (Ferreira and Grattapaglia 1998). 

2.5.4 Advantages and disadvantages 

Microsatellite markers possess the highest polymorphism information content, due to 

their codominant expression and the multiallelic properties (Ferreira and Grattapaglia 1998). 

Microsatellites are very frequent and distributed randomly, allowing a complete covering of 

any eukaryote genome, although processing of large numbers of loci is extremely time-

consuming, both in the identification and optimisation of loci and in their screening, 

differently to ALFP, which covers the whole genome very easily without needing to know 

information sequence en advance.     

The great advantage of microsatellite analysis is the large number of polymorphisms 

that the method reveals. Furthermore, the ability of the method to differentiate individuals 

when a combination of loci is examined makes the technique very useful for gene-flow 

assessments, cultivar identification, and paternity analyses (Gillet 1999). Since the method is 

DNA-based, this brings advantages such as the facility to use dried leaf or cambium material.  

Once microsatellite primers have been identified, screening of material using the 

technique is fairly inexpensive. Furthermore, cross-species amplification of microsatellites 

means that identification of suitable microsatellite primers may not be necessary in closely 

related taxa (Gillet 1999). For example White and Powell (1997b) tested cross-species 

amplification for 11 microsatellite loci with DNA from 11 Meliaceae species, where 

successful amplification of microsatellite loci indicates that a high level of sequence 

conservation exists within the primer regions of these Meliaceae species. However, transfer 

between species often results in reduced levels of polymorphism. 
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The major limitation of the microsatellites technique is the great effort necessary for 

development of the markers. Specialized personal and sophisticated equipment are needed for 

the technique, although as new molecular strategies for isolation of carrier clones for 

microsatellites become increasingly available, and as methodologies for sequencing become 

easier, automatic, and economically accessible, this technique will be used more frequently for 

a larger number of species.  

Gillet (1999) mentions some problems associated to microsatellites into three broad 

categories, practical, data, and analysis problems (which in our case will be treated as genetic 

population analysis problems), which are summarized as follows: 

i) Practical problems 

Screening for microsatellites: Unless useful primers have been designed in previous 

studies, it is necessary to screen an organism for microsatellites.  

Slippage: This can be a significant problem when analysing mono- and di-nucleotide 

repeats. During the amplification process the thermo-polymerase can "slip", leading to 

production of differently sized products that differ by approximately 1-5 repeat units from the 

expected product. Such products are usually less intense than the desired product, so in 

practice can usually be discounted. However, if the products of a heterozygous individual 

overlap then it is sometimes difficult to differentiate the true and slippage products (Ciofi et al. 

1998 in Gillet 1999). 

Additional practical problems: Haberl and Tautz (1999) and Chavarriaga et al. (1998) 

highlight a potential problem with microsatellites run on automatic sequencing gels and 

automatically sized. They found that the "called" product sizes differed from the exact product 

sizes. They recommended that exact sizes could only be determined by allele sequencing, 

determining "real size" and then using these as internal standards on a gel. Inaccurate allele 

identification may also be caused by the tendency of Taq polymerase to add an adenosine 

nucleotide to the 3'-end of the amplified product (Ciofi et al. 1998). The addition is 

determined in a template- and marker-specific manner, which may not be a problem if the 

extra nucleotide is always or never added.  

ii) Data problems 

Homology: This is the greatest problem facing the use of SSRs in phylogenetic 

analysis. Microsatellite analyses assume that co-migrating fragments are homologous, whereas 

there are few a priori reasons to assume this. Furthermore, non-homology can be divided into 
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that which occurs within the SSR flanking and the SSR repeat regions. Since no large-scale 

tests of SSR homology have taken place in plants, it is difficult to estimate the percentage of 

bands in a microsatellite survey that are non-homologous. However, there is the potential for a 

serious problem, and the inclusion of non-homologous fragments in an analysis is likely to 

bias the results and break the assumptions of a phylogenetic analysis.  

Ujino et al. (1998) pointed out another homology problem that occurs when analyzing 

compound repeats. If a SSR with the sequence 5'-(CT)10CA(CT)8-3' is considered and a 

second allele is 2 bp longer, without sequencing, it is impossible to tell which repeat has 

increased in size, i.e. 5'-(CT)11CA(CT)8-3' or 5'-(CT)10CA(CT)9-3'. One would expect a 

greater percentage of fragments to be non-homologous if the repeat being analyzed were 

compound. Ujino et al. (1998) recommend that only simple repeats be used in order to limit 

errors in genotype identification.  

The third and most problematic homology uncertainty is within the repeat unit. That is, 

whether two fragments that co-migrate are identical by descent or just identical in state. To 

some extent, this problem depends upon the mutation rate of the repeats. If it is low then the 

probability that a mutation is unique and similar alleles are identical by descent is high. In 

contrast if mutation rate is high then the probability increases that two co-migrating alleles are 

just identical in state and non-homologous. There is no simple answer to this issue; generally it 

is simply assumed that the stepwise mutation model (SMM) is a good way of describing the 

evolution of the SSRs, when studying closely related populations.  

Null Alleles: Mutations in the binding region of one or both of the microsatellite 

primers may inhibit annealing that may result in the reduction or loss of the PCR product. 

Such products are termed null alleles and are comparable to the null alleles identified by 

allozymes in their effects.  

Null alleles may be manifested as fewer heterozygotes than expected in a randomly 

mating population or by the appearance of "empty" lanes. That is, in a heterozygote of two 

different microsatellite alleles, if one of these alleles cannot be amplified due to primer 

annealing difficulties, then the phenotype (on the SSR gel) will appear as a single banded 

homozygote. Null alleles are also responsible for mismatches between parent-offspring pairs, 

i.e. the offspring do not amplify an allele that is present in the parents. However, good 

analytical approaches to identifying the presence of null alleles have now been developed and 

are widely used. 
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iii) Population genetic problems 

The high number of alleles per locus of microsatellite markers may cause some bias in 

the diversity and differentiation estimates, mainly due to increased heterozygosity estimates 

(Lowe et al. 2004). Differences between expected and observed heterozygosity estimates 

indicates deviations from Hardy-Weinberg equilibrium genotype frequencies, which are 

highly informative since allow to detect inbreeding, population fragmentation, migration, am 

selection in natural populations. Allele frequencies may also be affected by linkage 

disequilibrium, or null allele presence, it is therefore important that both are identified and 

accounted for in calculations of FST and related statistics. 

Deviations from Hardy-Weinberg Equilibrium: When genotypic frequencies in a real 

population differ significantly from HWE, it suggests that one or more assumptions of HWE 

have been violated and therefore potentially important evolutionary or ecological process 

caused the deviation (Conner and Hartl 2004).  Immigration, selection and non-random mating 

will all lead to deviations from HWE. For example, inbreeding is one form of non-random 

mating that reduces the frequency of heterozygotes compared to random mating. Other forms 

of non-random mating are the assortive and dissortive mating, which lead to increased 

homozygosity compared to HWE frequencies, and increased heterozygosity, respectively.   

Allele frequencies also diverge in isolated populations due to chance and selection, for 

example, fragmented populations with restricted gene flow may show deficiencies of 

heterozygotes compared to the expected estimates. Similarly genotype frequencies may 

change under selection, when a genotype is at selective disadvantage it contributes 

proportionally less offspring to the next generation than other genotypes, known as loss of 

fitness (Yeh 2000, Frankham et al. 2002, Conner and Hartl 2004).     

Null allele treatment: As mentioned previously null alleles are the result of mutations 

that prevent PCR amplification, such as sequence changes within one of the primer binding 

sites. Genotyping errors are caused when null allele presence is not properly detected. Null 

alleles could only be detected when they are frequent enough to occur in homozygous forms. 

Nowadays there are programs available to check microsatellite data for null alleles, Micro-

Checker is one of those. It helps to detect when one or more alleles fail to amplify during PCR 

reaction (null alleles), errors that occur during the interpretation of sequence of microsatellite 

allele data. Detection of null alleles may help the researcher to initially explain deviations 

from HWE different from the ones mentioned above.  
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Linkage disequilibrium: It occurs when two alleles from different genes on the same 

chromosome are associated in different individuals at a greater frequency than the one 

expected at random association, where the fate of an allele will be affected by that of 

neighboring loci. When analyzing microsatellites loci, it is important that they are in different 

chromosomes or at least very distant (well dispersed across the genome) to insure the absence 

of linkage disequilibrium between loci. 

2.5.5 Gel interpretation 

Schlötterer (1998) determined that the most common picture of a PCR-amplification 

microsatellite allele is not a single band, but a ladder of bands. Usually, the most intense band 

is observed at the expected size of the allele. The additional bands, called stutter bands, are 

usually smaller than the original allele and different in length by multiple repeat units. Most 

likely, stutter bands are the result of in vitro DNA slippage during PCR amplification. The 

decreasing intensity of stutter bands on the gel is a reflection of the probability distribution of 

DNA slippage events, with larger size deviations being less likely. Rates of in vitro DNA 

slippage have been shown to decrease with repeat unit length: more stutter bands occur for 

dinucleotide repeats than for trinucleotide or tetranucleotide repeats.  

In addition to stutter bands, many microsatellites show an additional band above the 

expected allele size. This is the result of the terminal transference activity of Taq DNA 

polymerase, which adds an A to the PCR product. However, this terminal transference activity 

is polymerase and PCR primer dependent. It is important to take into account that secondary 

products of various types can produce more complex patterns than the ones described above. 

2.5.6  Specialized software for microsatellite analysis 

Freely available population genetics software are downloadable for internet to perform 

most (if not all) statistical analyses necessary to the ecological interpretation of molecular 

marker data in plants. A search in the web for ―population genetics software‖ will lead to 

some very useful pages, i.e. http://www.biology.lsu.edu/general/software.html. Some of the 

programs that can be used for these studies are: GENEPOP, FSTAT, GENETIX, POPGENE, 

GDA, Alerquin, TFPGA, GenAlex, Micro-Checker, among others (Bacles 2004, personal 

http://www.biology.lsu.edu/general/software.html
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communication
1
, Cavers 2005, personal communication

2
). Test for genetic diversity 

(Heterozygosity, allelic diversity), independence of loci and population structure in subdivided 

populations (F-statistics) could be obtained from these programs. 

                                                
1 Bacles, C. 2004. Software for molecular genetic analysis (interview). Edinburgh, UK, Centre for Ecology and 

Hydrology.  
2 Cavers, S. 2005. Software to analyse genetic diversity (e-mail). Edinburgh, UK, Centre for Ecology and 

Hydrology. 
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3 MATERIAL AND METHODS 

Present work methodology has been divided into four phases: sampling strategy, field 

sampling, laboratory analyses, and data analyses. A description of these phases is presented.  

3.1 Sampling strategy 

Phylogeographic, molecular, and quantitative data obtained in previous studies for      

C. odorata was used to determine the sampling strategy. Due to the wide range of distribution 

of the species, its high genetic variability for growth rates and morphological characteristics 

between mesic and xeric provenances, and significant molecular differentiation in 

Mesoamerica the study only used populations of the Northern and Central lineage of the 

species, which includes populations from México, Guatemala, Honduras Nicaragua and 

northern pacific region of Costa Rica. 

A total of 12 C. odorata populations from Northern and Central lineages were chosen 

to be assessed with microsatellite markers, in particular six populations from the Northern 

lineage and six from the Central lineage (Figure 4).  

Populations considered in this study are representative of drier Mesoamerican regions 

(Table 2).  

Each population was composed of C. odorata families under two levels of isolation: 

i) isolated mother trees: no trees of the same species closer than 500 m, also 

called isolation level 1. 

ii) mother trees in clusters: trees in clusters or associated with more than two trees 

       within a radius of less than 100 m, also called isolation level 3. 

A third isolation level was discarded, semi-isolated trees also called isolation level 2 

(more than two trees within a radius of 100 m and 500 m), since none of the evaluated families 

was included in that category. 
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Figure 4. Map of the populations and distributions of haplotypes of Cedrela odorata families 

sampled in Mesoamerica. Map shows geographic origin of provenances, white circles indicate 

Northern lineage and black triangles indicate Central lineage. 

3.2 Field sampling 

Leaf collections were completed at the progeny and provenance trial of C. odorata 

located at CATIE's farm in Turrialba, Costa Rica. This trial was established in October 1999 

in combination with coffee plantations by the personnel of the Forest Genetic Diversity 

project, which was financed by the USDA (United States Department of Agriculture). Seed 

materials were collected from México, Guatemala, Honduras, Costa Rica and Panamá during 

1999 by members of the project, as a conservation strategy for the species in Mesoamerica. 

DNA genetic studies, conservation germplasm banks and provenance and progeny trials were 

carried out by the project.  



 27 

Table 2.  Passport data of Cedrela odorata populations and families included in this study 

Country Location Altitude Rain NDM 
 

Latitude Longitude Families 

  Masl Mm Start End  (°N) (°W)  

México Xpujil 150 1094.0 Jun Oct 7 18.54 90.14 11, 112, 115 

México 
Reforma 
Bacalar 

15 1094.0 Jun Oct 7 18.85 88.67 139 

México 
Tres 

Garantías 
300 1094.0 Jun Oct 7 18.12 89.14 144, 146, 147 

México Tulum 30 1094.0 Jun Oct 7 19.35 88.01 
168, 170, 176, 177, 

182, 185 

Guatemala Los Esclavos 737 2834.0 May Oct 6 14.25 90.28 
32, 33, 35, 36, 38, 39, 

312, 314, 317, 319 

Guatemala Tikal 250 1366.7 May Nov 5 17.22 89.61 
341, 343, 344, 345,  
346, 349, 352, 353, 

354, 355, 356 

Honduras La Paz 726 891.0 May Oct 6 14.15 87.61 
44, 45, 46, 48, 412, 

413, 414 

Honduras Taulabe 633 912.0 May Oct 6 14.83 88.10 
422, 423, 426, 427, 

428, 429, 430 

Honduras Cedros 555 912.0 May Oct 6 14.66 87.30 
446, 447, 448, 449, 
451, 454, 456, 457, 

459 

Honduras Meambar 595 912.0 May Oct 6 14.83 88.10 467, 469, 470, 472 

Costa Rica Cañas 100 2273.6 May Nov 5 10.32 85.04 662, 663, 699, cr 227 

Costa Rica Hojancha 350 2232.3 May Nov 5 10.07 85.40 
6101, 6103, 6105, 

6108, 6176 

NDM = number of dry months  

 

The provenance and progeny trial was established in combination with coffee under 

three coffee conditions: i) just planted (1-month old); ii) with total pruning (10 years old) and 

iii) coffee in production (5 years old). Two systems of cultivation were used: i) Spanish cedar 

planted between coffee rows and ii) Spanish cedar within coffee row planting. The 

experimental design of the trial was made with 115 selected families from a collection 

(progenies from single trees) of 21 provenances. The families were distributed randomly in 17 

blocks, in plots of one or two trees (Navarro 2002). 

Leaves from individual trees were collected and dried with silica gel to prevent DNA 

degradation. Ideally, sampling consisted of: 10 progenies per family; 20 families per 

population, out of a total of 12 populations; six populations from the Northern lineage and six 

from the Central lineage. Nevertheless, the final number of progenies and families collected 

was inferior, due to mortality and leafless trees during the collection at the progeny and 

provenance trials (Table 3). 

  

 



 28 

Table 3. Number of families and progenies per population, grouped by isolation level  

  Families per Population Progenies per population 

Population Lineage Isolation 1 Isolation 3 Total Families Isolation 1 Isolation 3 Total Progenies 

Cañas Central 4 0 4 27 0 27 

Cedros Central 0 9 9 0 87 87 

Hojancha Central 5 0 5 37 0 37 

La Paz Central 7 0 7 54 0 54 

Los Esclavos Northern 10 0 10 72 0 72 

Meambar Central 1 3 4 5 28 33 

Reforma Northern 1 0 1 10 0 10 

Taulabe Central 7 0 7 65 0 65 

Tikal Northern 0 11 11 0 89 89 

Tres Garantías Northern 3 0 3 27 0 27 

Tulum Northern 5 1 6 41 10 51 

Xpujil Northern 3 0 3 29 0 29 

Total  46 24 70 367 214 581 

 

The number of progenies per family ranged between ten and five trees (Table 4). 

Families with less than five progeny samples were discarded from the study.  

Table 4. Number of progenies per family collected at the provenance and progeny trial of 

Cedrela odorata during February 2006 

Progenies Families Families 

10 23 
112, 115, 139, 144, 176, 182, 414, 422, 426, 427, 429, 430, 

446, 447,448, 449, 456, 457, 459, 469, 341, 343, 344 

9 14 
11, 146, 170, 412, 428, 454, 470, 472, 32, 317, 346, 354, 

cr227, 6108 

8 10 147, 177, 45, 48, 451, 35, 312, 314, 352, 355 

7 13 168, 185, 44, 46, 33, 36, 345, 349, 662, 6101, 6103, 6105, 6176 

6 4 423, 39, 353, 663 

5 6 413, 467, 319, 38, 356, 699 

 

Although the seed collection for the establishment of the provenance and progeny trials 

was carried out in 1999, as background and statistical support of the current research the 

methodology and data collected is presented.   

C. odorata seeds were collected from different types of sites chosen according to 

geographical and socioeconomic criteria including: topography, geology, soil type, vegetation, 

land use, human population density, agricultural activity, transportation, and infrastructure 

facilities. This information was used by the researchers to define the sampling sites and 

estimate the likely extent of within-species variation, based on their heterogeneity. Optimal 

time for seed collection was determined with local informants and field visits (Navarro 2002).  
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Pollination biology and seed dispersal information were taken into account to 

determine the minimum distance between trees and populations that reduces the possibility of 

collecting seed from related or inbred trees. The minimum collecting distance between trees in 

a population was set at 100 m, which is the distance of maximum flight recorded for Spanish 

cedar seeds (Navarro 2002). 

The spatial coordinates of each tree were recorded during the collection using a hand 

held GPS. Additional information was recorded: population name, collector‘s name, date of 

collection, country, province, address, climatic data (precipitation, temperature, number of dry 

months), slope percentage, site position (valley, slope, top of the slope, etc.) altitude, 

Holdridge life zone, land uses (primary forest, secondary forest, pasture, agroforestry system), 

associated species, and characteristics related to the trees (dap, height, form and phenological 

data). 

3.3 Laboratory analyses 

Molecular biology work with microsatellites was done at Edinburgh, Scotland, in the 

laboratory of the Centre for Ecology and Hydrology (CEH), while genetic diversity and 

mating systems analysis of microsatellite datasets was carried out at CATIE, Costa Rica. 

DNA was extracted using DNeasy Plant mini kits (QIAGEN), from silica-gel-dried 

leaf material. Specific C. odorata microsatellites were developed by A. Buonamici and B. 

Vendramin at the Plant Genetic Institute, Consiglio Nazionale delle Ricerche (CNR), in 

Florence, Italy. Primary screening for polymorphism and optimization of PCR conditions was 

carried out using leaf material from four families of 10 half-sib saplings by G. Hernández, K. 

Walker and S. Cavers at the NERC Centre for Ecology and Hydrology, in Edinburgh, 

Scotland, described in Hernandez et al 2008 (Annex 1). During screening, to maximise the 

potential for detection of polymorphism, families were chosen from different, widely-

separated provenances: i) Tulum and Xpujil from Mexico; ii) Cedros from Honduras and iii) 

Hojancha from Costa Rica. 

All microsatellites were amplified using 25.0 ul PCR reactions consisting of the 

following: 2.0 ul template DNA, 17.9 ul H2O, 2.0 ul primers, 2.0 ul 10X buffer, 0.5 ul dNTPs, 

0.4 ul BSA, 0.2 ul Taq DNA polymerase (New England Biolabs). Reactions were run on a 

Hybaid MBS thermocycler to the following protocol: 1 min at 94 °C, then 30 cycles of 1 min 
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at 94 °C, 1 min at 55 °C, and 1min at 72 °C, and finally 5 min at 72 °C.  Optimal PCR reaction 

conditions for each of the polymorphic pairs were determined by testing a range of annealing 

temperatures (55.0 up to 70.3 °C) and different template DNA concentrations (1:5, 1:10, 1:20 

and 1:1). The sequencer (LI-COR 4800 IR2) is capable of screening samples at two 

fluorescence wavelengths, so in general, PCR reactions included two microsatellites from each 

channel, one from IRD 700 and the other from IRD 800, however in the case of multiplexing 

the total aliquot of primer reaction was double since four microsatellite primers were included 

in the same PCR reaction (e.g. Ced41-Ced44 + Ced61a-Ced65). The proportion of each primer 

in the total primer reaction was not always 50:50, in the case of multiplex Ced41-44 it was 

30:70, with 1.4 ul of Ced44 and 0.6 ul of Ced41 in the PCR reaction. For combination Ced131 

(IRD 700) and Ced95 (IRD 800), 1.4 ul of Ced95 and 0.6 ul of Ced131 were included. In all 

cases the forward primer was labelled with either IRD 700 or 800 fluorescent labels. 

PCR products were separated on 6% polyacrylamide gel (25 cm, MWG Biotech), and 

visualized using a LI-COR 4800 IR2 automated genotyper. PCR products were run out 

alongside a microSTEP DNA size standard (Microzone Limited) and fragment sizes of five 

microsatellites were scored using SAGA™ software, while four microsatellites were scored 

using Gene Profiler.  

Polymorphic loci were initially chosen for the PCR amplification, while separation of 

fragments with polyacrylamide gels and visualization using LICOR 4800 IR2 automated 

genotyper was done for the total samples of the study. For the selection of polymorphic loci 

three characteristics were considered: ease in scoring, high standing allelic diversity, and 

easiness for multiplexing. 

A total of 9 microsatellite loci with high levels of polymorphism were selected from a 

battery of 26 microsatellite loci (Table 5). A quality control screening step was carried out to 

validate the data obtained from the microsatellites, resulting in the final selection of nine loci 

for the analysis: Ced2, Ced18, Ced41, Ced44, Ced54, Ced61a, Ced65, Ced95 and Ced131. 

The allele size of the 9 selected loci ranged from 70 to 270 bp, with a minimum difference per 

locus of 20 bp at Ced131a, and a maximum difference of 60 bp at locus Ced61b and Ced95 

(Annex 2). The quality control screening step consisted in re-scoring a subset of genotypes, 

checking scoring (Microchecker v2.2.3, van Oosterhout et al. 2004), testing for homozygote 

excess patterns consistent with null alleles (MICRO-CHECKER), indirect evidence and explicit 

tests for null alleles (MICRO-CHECKER and GENALEX), checking for evidence of linkage 
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disequilibrium (Genepop v3.3, Raymond & Rousset), and checking that populations were in 

Hardy-Weinberg Equilibrium (GenAlex and Genepop). 

Locus Ced131a was discarded from the analysis because of linkage disequilibrium 

association with locus Ced131. The left primer sequence for Ced131 was the same as the right 

primer sequence of Ced131a, resulting in two neighboring microsatellite sites. Ced131 was 

selected over Ced131a because Ced131 presented more polymorphism and ease scoring. For 

the complete set of loci, no linkage disequilibria between loci were observed (P>0.05), 

assuming only a single individual per family across all populations.    

Table 5. Primer sequences and characterization of 9 microsatellite markers isolated from 

Cedrela odorata 

Locus Repeat motif Primer Sequences (5' - 3') Allele Size 

Range (bp) 

Tann  

 (°C) 

GenBank 

Accession 

no. 

      

Ced2 (GA)20 F:TTTGCTTTGAGAAACCTTGT* 

R:AACTTTCGAATTGGTTAAGG 
130-170 55 EF413962 

Ced18 (GA)23 F:CAAAGACCAAGATTTGATGC* 

R:ACTATGGGTGGCACAACTAC 

130-150 55 EF413963 
  

Ced41 (TC)18 F:TCATTCTTGGATCCTGCTAT* 

R:GTGGGAAAGATTGTGAAGAA 

120-160 55.5 EF413964 

 

Ced44 (TG)14(AG)17 F:ACTCCATTAACTGCCATGAA* 

R:ATTTTCATTCCCTTTTAGCC 
180-240 55.5 EF413965 

Ced54 (GA)15(AG)6G(GA)5 F:GATCTCACCCACTTGAAAAA* 

R:GCTCATATTTGAGAGGCATT 
180-230 55 EF413966 

Ced61a (TG)10 F:CAATCAAACCAAAAATGGAT* 

R:GCAAATTAACCAGAAAAACG 

240-270 55.5 EF413967 
  

Ced65 (GA)7(CA)14 F:GAGTGAGAAGAAGAATCGTGATAGC* 

R:GAGGTTCGATCAGGTCTTGG 

160-200 55.5 EF413968 

 

Ced95 (CT)17(AC)13 F:ATTTTCATTCCCTTTTAGCC* 

R:TTATCATCTCCCTCACTCCA 
190-250 55 EF413969 

Ced131 (CT)16 
F:CTCGTAATAATCCCATTCCA* 

R:GGAGATATTTTTGGGGTTTT 
80-120 55 EF413970 

* Indicates fluorescently labelled primer. Abbreviations are: base pairs (bp), Annealing temperature (Tann). 

3.4 Data analyses 

For the data analyses each isolation level was composed of different populations from 

the Northern and Central lineage. Ideally a minimum of 20 families per population and 10 

progenies per family was target for the analysis, although phenology of the species during the 

collection of leaves, number of families per population established at the trials, and DNA 

amplification at progeny level limited the final sampling.  

Populations were characterized on the level of human disturbance of the site where the 

mother trees were collected. Isolated remnant trees and those located in fragmented forest 
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Number of polymorphic loci 

Total number of loci sampled   

landscapes with no trees of the same species closer than 500 m were grouped as isolation level 

1, while families located in conserved primary forests and mother trees in clusters or 

associated with more than two trees within a radius of less than 100 m were grouped as 

isolation level 3. No mother trees in the intermediate category were used in the current study, 

which correspond to semi-isolated trees (isolation level 2), which grouped mother trees where 

the nearest tree of the same species was located within a radius of more than 100 m but less 

than 500 m.   

Levels of diversity, outcrossing rates and inbreeding parameters will be calculated for 

the species to determine the effects of landscape context and tree isolation degree (continuous 

forest, fragmented forests, isolated trees) on mating systems. 

3.4.1 Genetic diversity analyses 

Standard genetic diversity parameters were estimated for the species using the 

complete dataset; isolation and lineage levels estimates were also estimated. Numbers of 

alleles (Na) were calculated, while numbers of effective alleles (Ne), observed heterozygosity 

(Ho) and expected heterozygosity (He), exclusion probability (Pr) were estimated with 

Genepop and GenAlex, while null allele rate was estimated with Microchecker v2.2.3 (van 

Oosterhout et al. 2004).  

 

Proportion of polymorphic loci (P) 

Genetic diversity was quantified in terms of proportion of polymorphic loci; where 

 

        P =   

          

A gene (locus) was considered polymorphic if the frequency of the more common 

allele was less than 0.95.  

It is important to consider that the parameter of polymorphism is based on allele 

distribution, and not of genotypes, in this way a population may have all the homozygous 

genotypes for a locus but the locus may still be polymorphic. 
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Expected heterozygosity 

This parameter refers to the expected frequency of heterozygous genotypes at a certain 

locus (monomorphic and polymorphic), assuming Hardy-Weinberg equilibrium. Nei (1973) 

was the first to use the term gene diversity, and calculated the expected heterozygosity across 

the total species (HT), measured as follows:  

  HT = 1-
ki

i
p

1

2   

where pi is the frequency of the ith of K alleles across all populations of the study. Genetic 

diversity at a population level is calculated for each locus and population as follows: 

   Hep = 1-
ki

i

p
1

2
 

where p is the frequency of the ith allele at the kth locus in each population and the value is 

averaged over all populations. Average of Hep values is calculated across all loci among all 

populations to obtain a mean estimate of the genetic diversity at a population level. For a locus 

with two alleles at frequencies p and q, the expected herozygosity is calculated as: 

    He = 2pq 

If allele frequency is constant through all the populations, genetic diversity measures at 

a species and population level must be the same. However, populations vary in their allele 

frequency, hence each population has a unique subgroup of the total diversity observed at the 

species level. For this reason, genetic diversity is frequently lower at a population level than at 

a species level. 

Deviations of the observed distribution of genotypes from the expected distribution 

under Hardy-Weinberg equilibrium assumptions will be tested using a χ
2
 (chi-squared) 

statistic, in this way deviations could be expressed as a fixation index: 

  F = 
e

o

H

H
1  

where Ho is the observed number of heterozygotes (Wright 1969 cited by Hall et al. 

1994). The number of alleles needed within a locus to maintain the level of heterozygosity will 

be determined as:  

  Ae = 

p
2

1
    (Hall et al. 1994) 
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3.4.2 Mating system analyses 

The mating system was analyzed under the mixed mating model, using the program 

MLTR version 3.1 of Ritland (2002). The default settings were used since there were no initial 

values a priori estimated for the species. From progeny array data, the program simultaneously 

estimates the multilocus outcrossing rates (tm), the mean single locus outcrossing rate (ts), the 

mating among relatives rate (tm-ts), the single locus inbreeding coefficient (Wright‘s fixation 

index) of the maternal parents (F), the multilocus correlation of paternity (fraction of siblings 

that share the same father) (rp), the correlation of selfing among families (normalized variance 

of selfing) (rs), and variances of the above parameters using the bootstrap method, where the 

progeny array (within families) was the unit of sampling. Standard errors for the parameters 

were calculated from 1000 bootstraps. The program calculates for each locus a χ
2
 statistic to 

test the null hypothesis that the number of observed progeny individuals for each genotype 

class from each maternal genotype plant did not differ from the expected number under the 

mixed mating model. 

Two mating system analyses from progeny arrays were performed: i) the first consisted 

in contrasting progeny arrays from isolated mother trees at pasture lands (isolation level 1) vs. 

those sampled from mother trees in groups or clustered at natural forests (isolation level 3); ii) 

the second consisted in obtaining mating system estimates at a family level.  
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4 RESULTS 

4.1 Data validation 

Several genotyping errors are potential sources of deviation from the Hardy-Weinberg 

proportions, for example: allelic dropout, short allele dropout, stuttering caused by slippage 

during PCR-amplification, and null alleles (van Oosterhout et al. 2004). Population genetic 

analyses could be biased due to genotyping errors, since they lead to heterozygote deficiency 

estimates. Data validation checks for these possible genotyping errors to control for their 

influence on the estimation of deviations from panmixia because of deficiencies or excesses of 

particular genotypes. 

A total of 9 polymorphic loci were chosen to analyze all samples in the study. 

Selection of polymorphic loci was based on three characteristics: ease scoring, high standing 

allelic diversity, and easiness for multiplexing. A quality control screening step was carried 

out to validate the data obtained from the microsatellites, resulting in the final selection of nine 

loci for the analysis: Ced2, Ced18, Ced41, Ced44, Ced54, Ced61a, Ced65, Ced95 and 

Ced131. Furthermore, null allele presence, linkage disequilibrium, and inbreeding were tested 

to validate the data obtained. 

 

Null allele presence 

Null allele presence is caused by changes in the microsatellite primer sequence, 

resulting in the reduction or loss of the PCR product. Presence of null alleles is reflected as 

lower values of observed heterozygosity (Ho). Across all samples, null allele presence was 

detected in all loci, but only at rates > 0.05 at Ced65, Ced61a, and Ced41, with an average of 

0.06 for the nine loci. The analysis indicated homozygote excess at all loci, except for Ced2. 

There was no evidence for large allele dropout at any locus. In addition, stuttering was 

detected for the majority of the locus, as indicated by the highly significant shortage of 

heterozygote genotypes with alleles of one repeat unit difference. Only Ced54 and Ced2 did 

not display stuttering. 

A Wahlund effect (due to combination of samples from differentiated populations) 

may explain the homozygote excess across loci, since the analysis combined samples from 
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different widely-distributed sites from Southern México to Northern Costa Rica. When the 

null allele analysis was done at a population level, scoring errors, and null alleles presence 

were only present at some particular loci, in some particular populations.      

But, these results might be treated cautiously due to the sampling unit of the present 

study. Different from most population genetic studies that deal with adult trees from native 

populations of a single species, our sampling consisted of progeny arrays from different adult 

mother trees, at different populations, through the wide range of distribution of the species 

studied, which are basically characterized by the isolation level of the mother trees. Due to the 

sampling unit of this work, population inferences from our results should be treated cautiously 

since we are dealing with neither established regeneration, nor a sample of adult trees from 

different populations. 

Knowing this, when analyzing at a population level, no large allele dropout was found 

for any of the locus, in any population. Scoring errors due to stuttering were present mainly at 

two loci: Ced65 and Ced61a (Table 6). The population with most loci with stuttering problems 

was Tikal, at Ced65 and Ced61. On the other hand, Reforma, Cedros, Taulabe, Cañas, and 

Hojancha did not display scoring errors due to stuttering. 

Table 6. Presence of scoring errors due to stuttering at nine microsatellite markers of Cedrela 

odorata in 12 populations from México, Guatemala, Honduras and Costa Rica 

Population Ced65 Ced2 Ced54 Ced18 Ced44 Ced41 Ced131 Ced61a Ced95 

Xpujil      X    

Reforma          

Tres Garantías         X 

Tulum X         

La Paz X         

Taulabe          

Cedros          

Meambar X         

Los Esclavos        X  

Tikal X       X  

Cañas          

Hojancha          
X represent presence of scoring errors due to stuttering.  

 

Homozygote excess was detected in almost all populations but not at all loci, two loci 

presented higher proportion of populations with homozygote excess, Ced65 and Ced61a 
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(Table 7), the same two loci with the lowest observed heterozygote coefficients (Table 6). 

Presence of null alleles was detected in five of the nine loci, Ced65, Ced54, Ced41, Ced61a, 

and Ced95. 

Table 7. Presence of homozygote excess and null alleles at each locus of Cedrela odorata in 

12 populations from México, Guatemala, Honduras and Costa Rica 

 Ced65 Ced2 Ced54 Ced18 Ced44 Ced41 Ced131 Ced61a Ced95 

Xpujil      X  X  

Reforma          

Tres Garantías      X  X X 

Tulum X         

La Paz X       X  

Taulabe   X       

Cedros        X  

Meambar X  X       

Los Esclavos      X  X  

Tikal X       X  

Cañas        X  

Hojancha X       X  

X represent presence of homozygote excess and null alleles. 

 

Deviations from HWE that were not explained by the presence of stuttering, 

homozygote excess, and null alleles may then be explained by heterozygote deficiencies 

caused by subpopulation structure, also known as Wahlund effect (Hernández et al. 2007), or 

by other genetic forces, for example mating system changes. 

 

Linkage disequilibrium 

Referred to as the non-random association of alleles among loci, linkage disequilibrium 

becomes a consideration in the analysis of genetic data when genes are very close together at 

the same chromosome or when recombination rates are very low (Frankham et al. 2002; Lowe 

2004). No linkage disequilibria were observed between the nine loci used for the current study 

(Table 8). [In fact, one case of linkage disequilibrium was observed but this was at the 

microsatellite development phase, when 10 polymorphic microsatellites where initially chosen 

(Annex 2). At this stage, loci Ced131 and Ced131a presented linkage disequilibria because 

they were sharing a primer sequence, therefore were located in the same chromosome and 

very close together, causing linkage disequilibrium. Locus Ced131a was discarded from the 
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analysis, although it is important to point out that for this test only one individual per family 

was used. An interpretation error may occur when analysis includes the complete progeny 

arrays, linkage disequilibrium occurs because different loci are expected to behave similarly, 

since half sibs share at least 25% of loci on average (one of two alleles from the mother) 

(Annex 3).   

If microsatellites are mapped in the genome, one may easily discard linked loci by 

selecting genes that are located on different chromosomes. However, although C. odorata 

microsatellites were not mapped, they were randomly derived from whole genome digests, and 

the absence of linkage disequilibria indicates that loci are located on different chromosomes or 

scattered enough to be independent. 

Table 8. Genotypic disequilibrium test for all populations including one individual per family, 

P-value for each locus pair across all the populations (Fisher method) 

Chi Square df P-value Chi Square df P-value

Ced131 - Ced95 0.00 2 1.00 Ced61a - Ced18 2.02 4 0.73

Ced131 - Ced65 0.00 10 1.00 Ced41 - Ced18 6.04 4 0.20

Ced95 - Ced65 0.00 2 1.00 Ced44 - Ced18 3.77 4 0.44

Ced131 - Ced61a 0.79 4 0.94 Ced131 - Ced54 0.00 4 1.00

Ced95 - Ced61a 0.00 2 1.00 Ced95 - Ced54 0.00 2 1.00

Ced65 - Ced61a 0.00 6 1.00 Ced65 - Ced54 4.04 6 0.67

Ced131 - Ced41 0.00 4 1.00 Ced61a - Ced54 Not possible

Ced95 - Ced41 0.00 2 1.00 Ced41 - Ced54 7.14 4 0.13

Ced65 - Ced41 2.66 4 0.62 Ced44 - Ced54 4.52 2 0.10

Ced61a - Ced41 0.00 2 1.00 Ced18 - Ced54 6.70 8 0.57

Ced131 - Ced44 0.00 2 1.00 Ced131 - Ced2 0.00 6 1.00

Ced95 - Ced44 Not possible Ced95 - Ced2 0.00 2 1.00

Ced65 - Ced44 0.00 2 1.00 Ced65 - Ced2 4.81 8 0.78

Ced61a - Ced44 0.00 2 1.00 Ced61a - Ced2 0.00 6 1.00

Ced41 - Ced44 0.00 2 1.00 Ced41 - Ced2 0.00 4 1.00

Ced131 - Ced18 1.50 8 0.99 Ced44 - Ced2 0.00 4 1.00

Ced95 - Ced18 Not possible Ced18 - Ced2 0.00 6 1.00

Ced65 - Ced18 0.22 8 1.00 Ced54 - Ced2 0.00 6 1.00

Locus pair Locus pair

 

The null hypothesis (H0) is: "Genotypes at one locus are independent from genotypes at the other locus". H0 is 

rejected for small p-values (< 0.05). 
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Inbreeding 

Single locus F-statistics were estimated to evaluate if deviations from Hardy-Weinberg 

equilibrium may be explained by inbreeding, or non random mating due to population 

structure. Moderate genetic differentiation (FST) was found for all loci, with a mean value of 

0.08 (Table 9). Low values for inbreeding coefficient (FIS) were obtained for the majority of 

the loci, except Ced65 and Ced61a, which presented higher values; similarly occurred for the 

overall inbreeding coefficient (FIT). 

Table 9.  Singlelocus F-statistics estimates for Cedrela odorata in 12 populations from 

México, Guatemala, Honduras and Costa Rica 

Locus FIS FST FIT 

Ced131 0.00 0.10 0.11 

Ced95 0.01 0.07 0.08 

Ced65 0.14 0.08 0.21 

Ced61a 0.26 0.06 0.30 

Ced41 0.09 0.08 0.16 

Ced44 -0.03 0.08 0.05 

Ced18 0.00 0.07 0.07 

Ced54 0.04 0.08 0.11 

Ced2 -0.02 0.07 0.05 

Mean 0.06 0.08 0.13 
F-statistics were estimated as in Weir and Cockerham 1984. 

 

Low inbreeding coefficient estimates indicate small reductions in heterozygosity due to 

non-random mating within populations. When expected heterozygosity equals observed 

heterozygosity, population will be panmitic and FST and FIS values will be zero (Balloux and 

Lugon-Moulin 2002). Mean F-statistic estimates are useful since among a group of 

populations each locus may segregate and drift in frequency independently and differently 

from the other loci. 

The mean overall inbreeding coefficient (FIT) was of 0.13, which describes the 

reduction of heterozygosity within individuals relative to the total population due to non-

random mating within populations and effects of random drift among populations. 
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4.2 Genetic diversity and heterozygosity 

A total of nine highly polymorphic microsatellites were used to study the genetic 

diversity of C. odorata. The number of individuals genotyped at each locus varied between 

468 and 381 progenies (Table 10). Allelic diversity (Na) across loci was 20.56, which 

corresponds to the number of alleles averaged across loci. The number of alleles per locus 

varied between loci, ranging from 12 alleles at locus Ced131 up to 30 alleles at locus Ced44. 

Three markers were very informative to genotype the species presenting the highest number of 

alleles, Ced54 and Ced95 with 28 alleles, and Ced44 with 30 alleles; and presenting the 

highest probabilities of paternity exclusion (Pr (Ex1) > 0.70). The proportion of polymorphic 

loci at the species level was 0.81, which corresponds to 21 polymorphic loci from 26 loci 

sampled (Annex 2). 

Means of observed heterozygosity (Ho) and expected heterozygosity (He) were 0.78 

and 0.88, respectively. Average levels of observed heterozygosity (Ho) (0.78) were consistent 

across loci, although slightly different for three loci, Ced44 with a higher value (0.90), and 

Ced61a and Ced65 with smaller values (0.62 and 0.64, respectively). Expected heterozygosity 

(He) coefficients were always relatively higher than the observed (Ho) in all loci.  

Table 10. Basic descriptive statistics of nine microsatellite markers isolated from Neotropical 

tree Cedrela odorata 

Locus N Na Ne Ho He F Pr (Ex1) Pr (Ex2) Null rate 

Ced2 396 17 8.15 0.85 0.88 0.03 0.60 0.75 0.01 

Ced18 401 19 6.40 0.80 0.84 0.05 0.54 0.71 0.03 

Ced41 438 21 10.96 0.78 0.91 0.14 0.69 0.82 0.07 

Ced44 451 30 13.99 0.90 0.93 0.03 0.75 0.86 0.02 

Ced54 405 28 15.64 0.85 0.94 0.09 0.77 0.87 0.05 

Ced61a 420 13 7.54 0.62 0.87 0.29 0.58 0.73 0.14 

Ced65 468 17 4.99 0.64 0.80 0.20 0.45 0.63 0.10 

Ced95 381 28 11.60 0.86 0.91 0.06 0.70 0.83 0.04 

Ced131 415 12 5.80 0.75 0.83 0.10 0.50 0.68 0.05 

Average  20.56 9.45 0.78 0.88 0.11 0.62 0.76 0.06 

Abbreviations are: number of individuals (N), number of alleles (NA), effective alleles (Ne), observed (HO) and 
expected (HE) heterozygosity, fixation index (F), and exclusion probability Pr(Ex - for first parent 1 and second 

parent 2). 

 

The pattern of allele frequency distribution was uniform in almost all the 

microsatellites evaluated (Figure 5). Allele frequency distributions of loci Ced18, Ced65, and 

Ced131 showed a low number of alleles with high frequencies. On the other hand, the rest of 

the loci presented more than two alleles sharing the highest frequencies. In general, 
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frequencies for individual alleles at all loci were generally low, with only 1.6% of the alleles 

having values greater than 0.25 at a locus, which is the case for loci Ced18, Ced65 and 

Ced131.  

Average values of heterozygosity were not significantly different between Northern 

and Central lineages, indicating similar gene diversity in both lineages. Means of observed 

multilocus heterozygosity (Ho) and expected multilocus heterozygosity (He) in the Northern 

lineage were 0.79 and 0.87, respectively, while for the Central lineage were 0.78 and 0.86 

(Table 11). Number of alleles shows the same pattern at Northern and Central lineages, 18 and 

17, respectively. 

Table 11. Basic descriptive average statistics of nine microsatellite markers isolated from 

populations of Cedrela odorata from Northern and Central lineages 

Lineage N Na Ne Ho He 

Northern 213 18 8.83 0.79 0.87 

Central  206 17 8.55 0.78 0.86 

Abbreviations are: number of individuals (N), number of alleles (Na), effective alleles (Ne), observed (Ho) and 

expected (He) heterozygosity. 

 

When comparing genetic diversity between the isolation levels, results were almost 

identical (no significant differences) to the ones found from comparing Northern and Central 

lineages (Table 12). Observed heterozygosity (Ho) was the same for both isolation levels, 

0.77, while expected heterozygosity (He) was 0.88 and 0.87. Higher numbers of alleles were 

found for families under isolation level 1 (isolated mother trees), which is explained by the 

difference of individuals between isolation levels. 

Table 12. Basic descriptive average statistics of nine microsatellite markers isolated from 

populations of Cedrela odorata from populations with different levels of isolation 

Isolation level N Na Ne Ho He 

Isolation 1 268 20 9.34 0.77 0.88 

Isolation 3 157 17 8.42 0.77 0.87 

Abbreviations are: number of individuals (N), number of alleles (Na), effective alleles (Ne), observed (Ho) and 

expected (He) heterozygosity. 
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Figure 5. Patterns of allele frequency distribution for nine microsatellite loci of Cedrela 

odorata. X axes, are the allele sizes in base pairs; Y axes, are the allele frequencies. 
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4.3 Mating system analysis  

High multilocus outcrossing rates (tm) were obtained for both isolation levels, 1.00 ± 

0.08 and 1.06 ± 0.06 for isolation level 1 and 3, respectively, suggesting absence of self-

fertilization (Figure 6). Singlelocus outcrossing rates (ts) were of 0.84 ± 0.02 and 0.88 ± 0.02 

for isolation level 1 and 3, respectively. No significant differences for mating system estimates 

were found between C. odorata families growing under different isolation levels. In both 

isolation levels singlelocus outcrossing estimates were smaller than multilocus estimates, 

therefore single locus selfing rates are higher than the multilocus selfing rates, indicating 

apparent biparental inbreeding (mating between close related parents).   

The proportion of self fertilized (s) trees was zero for both isolation levels which is 

calculated as 1 - t = s. Singlelocus selfing rates do not have error bars because they are derived 

from the outcrossing rates provided by the program MLTR. Correlation of paternity (rp) 

estimates were significantly different between the isolation levels, a trend of higher values was 

found for isolated mother trees (0.20 ± 0.03) when compared to mother trees in groups or 

clustered at natural forests (0.13 ± 0.03). Similarly for estimates of singlelocus inbreeding 

coefficient of maternal parents (F), which was higher for the isolation level 1 (0.14 ± 0.04) 

compared to isolation level 3 (0.08 ± 0.04) although not statistically different.  

An estimate of the number of fathers contributing to the fertilization of gametes and 

viable siblings is obtained with the inverse function of the correlation of paternity rp (notation: 

rp
-1

). Thus, for the isolation level 1 there is an average of five trees donating pollen to the 

isolated mother trees, while for the isolation level 3, there is an average of 7.7 trees. 

The correlation of selfing among families (rs) indicates the extent of variation among 

families at each isolation level for the selfing rate. In other words, if selfing occurred in a 

group of families or in the other extreme, if it is generalized at all families. In this case, since 

no apparent selfing occurred, rs estimates do not apply.  
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Figure 6. Mating system estimates of isolation level 1 and 3 of Cedrela odorata. Error bars 

are presented for each parameter with 1.96 standard errors. Abbreviations are: multilocus 

outcrossing rate (tm), singlelocus outcrossing rate (ts), singlelocus selfing rate (ss), singlelocus inbreeding 

coefficient of maternal parents (F), correlation of paternity (rp), and correlation of selfing among families (rs).  

Estimates for C. odorata mating system using overall data were very similar to the 

ones presented by isolation level (Table 13). Since singlelocus selfing rate (ss) was higher than 

multilocus selfing rate (sm), biparental inbreeding might be occurring at C. odorata 

populations. 

Table 13. Mating system estimates for overall data of C. odorata 

tm  1.00   (0.08) 

 ts  0.84   (0.02) 

 sm  0.00   

 ss  0.16   

 tm-ts  0.16   (0.08) 

 F  0.13   (0.03) 

 rp  0.18   (0.02) 

 rs  0.23   (0.04) 

 

Family level estimates of multilocus and singlelocus outcrossing rates were calculated 

for the data set, results are presented for each isolation level (Figure 7 and Figure 8). 

Multilocus outcrossing rates were higher than singlelocus rates for the majority of the families.  
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Figure 7. Family level estimates of single and multi locus outcrossing for Cedrela odorata 

families with isolation level 1.  

Multilocus outcrossing mean values for families under isolation level 1 were not 

consistently close to 1.0, except for families from Xpujil, La Paz, Taulabe and Meambar 

(Figure 7). On the other hand, singlelocus outcrossing values were distributed more widely 

across families. Families under isolation level 3 presented higher numbers of families with 

multilocus outcrossing rates closer to 1.0, while singlelocus outcrossing rates ranged from 0.3 

to 1.0 (Figure 8).  
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Figure 8. Family level estimates of single and multi locus outcrossing for Cedrela odorata 

families with isolation level 3. 

Mating system analysis at a lineage level did not showed differences between Northern 

and Central lineage (Figure 9). On the other hand, when mating system analysis was 

performed at a regional level for each isolation level, important differences were observed 

between and among regions for the isolation level estimates (Table 14). Isolated families 

(isolation 1) presented similar high estimates of multilocus and singlelocus outcrossing rates, 

corroborating no selfing for the species when trees are no closer than 500 meters at a regional 

level. A similar result was found for trees grouped in clusters or within 100 meters ratio 

(Isolation 3) at Guatemala and Honduras-Costa Rica families; although multilocus outcrossing 

rate was 0.90 for Mexico, it is explained due to a small number of families under the category 

isolation 3 for that region, only 1. Costa Rican and Honduran populations were grouped in the 

same region since there were no families with the isolation level 3 in Costa Rican populations. 

Inbreeding levels for maternal parents are higher at isolated families for the three regional 

groups, and smaller for Mexican families when compared to other regions, despite the 
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isolation level. Interestingly, Mexican families presented higher correlation of paternity 

estimates and lesser number of pollen donors for both isolation levels. 

 

 

Figure 9. Mating system estimates of isolation level 1 and 3 of Cedrela odorata. Error bars 

are presented for each parameter with 1.96 standard errors. Abbreviations are: multilocus 

outcrossing rate (tm), singlelocus outcrossing rate (ts), singlelocus selfing rate (ss), singlelocus inbreeding 

coefficient of maternal parents (F), correlation of paternity (rp), and correlation of selfing among families (rs). 

 

Table 14. Mating system estimates of isolation level 1 and 3 of Cedrela odorata families 

grouped at a regional level 

Regional Level Mexico  Guatemala Honduras-Costa Rica 

  Isolation 1 Isolation 3 Isolation 1 Isolation 3 Isolation 1 Isolation 3 

 tm  0.98 (0.07) 0.90 (0.00) 1.20 (0.00) 1.01 (0.08) 1.20 (0.05) 1.20 (0.00) 

 ts  0.84 (0.04) 0.96 (0.01) 0.94 (0.03)  0.92 (0.03) 0.87 (0.03) 0.95 (0.03) 

 sm  0.02 0.10 -0.20 -0.01 -0.20  -0.20 

 ss  0.16 0.04 0.06 0.08 0.13 0.06 

 tm-ts  0.15 (0.06) 0.06 (0.00) 0.26 (0.03) 0.09 (0.08) 0.33 (0.06) 0.26 (0.03) 

 F  0.06 (0.05) -0.06 (0.00) 0.20 (0.13) 0.04 (0.07) 0.11 (0.05) 0.03 (0.06) 

 rp  0.20 (0.05) 0.20 (0.01) 0.12 (0.05) 0.10 (0.03) 0.13 (0.03) 0.12 (0.04) 

 rs  0.25 (0.07) 0.20 (0.01) 0.13 (0.04) 0.08 (0.04) 0.03 (0.03) 0.12 (0.04) 

 Number of pollen donors  4.88 5.00 8.33 10.10 7.81 8.55 

Values between parentheses are the standard deviations. Abbreviations are the same as Figure 9. 
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5 DISCUSSION 

5.1 Impact of tree isolation on genetic diversity and heterozygosity 

The high diversity levels observed for C. odorata match the expected diversity levels 

for an outcrossing, widespread tropical tree species, although at a population level, these 

results could be higher from the ones expected in natural C. odorata populations, since 

progeny arrays should represent a very wide sample of the natural gene pool relative to that 

normally sampled for population studies of adult trees. No significant differences were found 

between the Northern and Central lineage genetic diversity estimates, indicating that lineage is 

not a factor that may affect findings at the isolation level analysis.  

Progeny arrays from isolated mother trees presented the same observed heterozygosity 

estimate (0.77) as the ones from mother trees growing in groups or near other trees from the 

same species at natural forest. From this, it could be said that there is no loss of genetic 

diversity for populations where trees are scattered in pasture lands, agricultural lands, or other 

human dominated landscapes, for minimum distances of 500 meters between isolated trees. 

Apparently, natural pollinators from the species are capable of flying long distances, and are 

still present in human dominated landscapes. C. odorata flowering events are frequented by 

small moths, bees and many other kind of small insects (personal observation), and possibly 

effective pollination might be carried out by insects capable of flying long distances. 

Pollination studies for the species should be developed to understand the complex ecological 

interactions that generate gene diversity and mating patterns. 

Allele frequencies were not significantly different between the two isolation levels, 

except for the number of private alleles (Figure 10). Progeny arrays from isolated trees 

presented a higher number of private alleles due to a higher number of families and progenies 

sampled for this isolation level. For example all Costa Rican families are under the category of 

isolation level 1, consequently all private alleles from Costa Rican population will be assigned 

to this level.  

When comparing current results with previous genetic studies using microsatellite 

markers for different species of the Meliaceae family, C. odorata shows higher genetic 

diversity than other species, gauged by higher values for expected and observed 

heterozygosity, and allelic diversity (Table 15), again the fact that progeny arrays have been 

sampled for the present study must be taken into consideration. C. odorata populations from 
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Northern and Central Mesoamerica have higher genetic diversity than related Meliaceae 

species, Swietenia macrophylla, Swietenia humilis, and Carapa guianensis. High diversity 

levels could be associated with dry ecotype populations, which are well represented in the 

study by northern and central lineage provenances, both with five or more dry months. 

According to Chase et al. (1995), dry ecotype populations may have higher diversity levels 

than humid ecotypes possibly because of a greater variety of habitats in dry ecosystems, where 

variable availability of water resources creates higher habitat heterogeneity.  

    

 

Figure 10. Allelic patterns of Cedrela odorata across the different isolation levels. 

Previous AFLP study of C. odorata had shown differences between dry and humid 

provenances of Costa Rica, while similar findings were observed with Cordia alliodora 

(Chase et al. 1995) and Swietenia macrophylla (Lowe et al.2003), also in Costa Rican 

populations. According to these studies, future surveys in southern lineage populations might 

present lower levels of diversity from the ones observed in the present study.  

Similar heterozygosity values and numbers of alleles were found when compared with 

the African Meliaceae, Entandrophragma cylindricum (Garcia et al. 2004), which could 

validate the idea that dry populations may have high genetic diversity levels, since E. 

cylindricum is also found in this kind of habitat. On the other hand, Swietenia macrophylla 

from Brazilian Amazon, a humid ecotype, also had similar heterozygosity values to the ones 

obtained for C. odorata, but in this case, different from the reasoning that genetic diversity is 
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higher in dry ecotypes than in humid ecotypes, since populations from Swietenia macrophylla 

from the north region and west coast of Costa Rica and Mesoamerica have lower genetic 

diversity values. Probably, range-edge effects. overexploitation, selective logging, and habitat 

loss in Mesoamerican populations of Swietenia macrophylla are the main factors influencing 

this reduction of genetic diversity.  

Table 15. Basic descriptive statistics for isolated microsatellite markers (SSRs) in Meliaceae 

family studies of Latin America and one in Africa 

Species Region 
No 

SSRs 
N Na Ho He Reference 

Swietenia macrophylla Mesoamerica 7 287 13.0 0.56 0.66 
Novick et 

al.(2003) 

Swietenia macrophylla Costa Rica: North Region 3 72 2.67 0.15 0.31 Lowe et al. 

 Costa Rica: West Coast 3 74 5.00 0.52 0.52 (2003) 

Swietenia macrophylla Brazilian Amazon 8 194 9.50 0.75 0.78 
Lemes et al. 

(2003) 

Swietenia humilis Honduras Pacific Coast 10 171 9.70 0.49 0.45 
White and 

Powell (1997) 

Carapa guianensis Brazilian Amazon 5 12 4.20 0.57 0.69 
Vinson et al. 

(2005) 

Carapa guianensis Brazilian Amazon 6 1241 9.33 0.67 0.71 
Cloutier et al. 

(2007) 

Cedrela odorata 

(Current study) 

Northen and Central 

Mesoamerica 
9 451 20.56 0.78 0.88 From Table 8 

Entandrophragma 

cylindricum 
Cameroon 7 186 22.10 0.77 0.85 

García et al. 

(2004) 

Abbreviations are: number of individuals (N), number of alleles (NA), observed (HO) and expected (HE) 
heterozygosities. 

 

High levels of genetic variation are also expected in species with large distribution 

ranges, high levels of outcrossing, high fecundities, wind pollination systems, long generation 

times and that occur in habitats representing later stages of succession (Hamrick et al. 1979, 

cited by Ratnam and Boyle 2000). Such characteristics describe C. odorata species except for 

wind pollinated, since the species is pollinated by small moths (Bawa et al. 1995) and its seeds 

are wind dispersed. 

Low genetic diversity is associated with endangered species and populations when 

compared to non-endangered species with large population sizes. A comparison of 

microsatellite genetic diversity levels between these two categories suggests that endangered 

species posses about half the genetic diversity of non-endangered species (Frankham et al. 

2002). Considering that C. odorata is included in the IUCN Red List of Threatened Species as 
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vulnerable, and the population size of the species has been severely reduced because of 

selective logging, habitat loss and degradation, and extraction for wood and charcoal, the low 

genetic diversity does not apply. However, this does not deny the fact that the species has been 

overexploited for its high quality wood through its distribution range. Probably characteristics 

of the species such as wide distribution range, fast growth, pollination by insects capable of 

flying long distances, wind dispersed seeds, and outcrossing, combined with social and 

economical factors such as people valuing C. odorata trees, letting natural regeneration of the 

species take place, sowing in live fences, and establishing plantations and agroforestry 

systems, may explain such high genetic diversity levels.  

Lowe et al. (2004), recommend treating cautiously the diversity measures when 

microsatellites markers are used, since the high number of alleles per locus obtained may 

cause some bias, due to increased levels of heterozygosity.  A large number of microsatellites 

(nine) were used to counteract the possibility of diversity estimates bias. Comparison of 

diversity levels between different tree tropical species (Table 15) all assessed with 

microsatellite marker technique shows that C. odorata posses a higher genetic diversity over 

the other species, indicating that its high diversity is not due only because of the type of 

molecular marker used. To corroborate this, a further study with the current microsatellite 

markers should be done, using adult trees from the studied populations. 

Significant phylogenetic divergence between northern and central lineages was 

observed in analysis of chloroplast DNA variation (Cavers et al. 2003) although no 

quantitative divergence was detectable between these two regions: the diversity (phylogenetic 

and quantitative)  was mainly between populations of these two areas and the southern 

lineages (Navarro et al. 2005). For microsatellite data, means of observed heterozygosity (Ho) 

and the average number of alleles in Northern and Central lineage were very similar, 

suggesting no gene flow isolation between lineages, supporting Navarro et al. (2005) findings 

for quantitative data, and denoting that chloroplast DNA variation may be explaining ancient 

colonization events. 

Considering the dataset as a whole, both lineages presented at all loci relatively higher 

expected heterozygosity (He) coefficients when compared to observed heterozygosity (Ho). 

Deficiency of heterozygotes in populations indicates that populations are not mating randomly 

(Frankham et al. 2002), as might be expected of the Central American Cedrela odorata 

population given the great distances involved.    
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5.2 Impact of tree isolation on mating system 

The impact of changes in the landscapes on the reproductive biology and population 

genetics of C. odorata populations was assessed through the isolation level analysis. Habitat 

loss, landscape fragmentation and over exploitation of C. odorata trees are the main threats to 

reproductive patterns of the species throughout its natural growth range. Should it occur, 

reproductive isolation may have serious consequences on the fitness of populations, and may 

contribute to loss of genetic diversity at the population and species level, and cause increased 

inter-population structure. Furthermore, reproductive isolation is associated with reduction in 

the size of plant populations, reduced gene flow, elevated inbreeding, and inbreeding 

depression (Young et al. 1996; Young and Boyle 2000). 

Estimates from mating system analysis confirm that C. odorata is an obligate 

outcrosser through all Northern and Central lineage populations, and possibly through 

Southern lineage as well. Analysis of the impact of isolation level gave more information 

about the mating structure of the populations and how environmental factors and the number 

of reproductive individuals affect the mating patterns. 

Complete outcrossing was found for both  isolation levels, indicating self-fertilization 

of C. odorata trees occurs very rarely if at all, and seedlings are the product of crossed 

pollination. 

The number of pollen donor trees contributing to the fertilization did differ between the 

isolation levels, as indicated by the difference between the correlations of paternity estimates 

(rp). A mean number of 5.0 trees are effectively contributing with pollen to mother trees 

separated at least 500 meters from another C. odorata tree (isolation 1), while mother trees 

within groups or close to another C. odorata tree within a ratio of 100 meters, receive pollen 

contribution from at least 7.7 trees (isolation 3).  

Similar findings were observed by Rocha and Aguilar (2001) between Enterolobium 

cyclocarpum trees from pastures and trees from continuous forests, where no significant 

difference in the outcrossing rates (tm) were observed. Differently from our results, they 

detected lower correlation of paternity estimates for progeny arrays from trees in pastures, 

indicating higher amount of pollen donors in pasturelands. Additionally, they found that 

progeny from continuous forests were more vigorous than progeny from pasture trees, 

suggesting that the mechanisms that regulate progeny vigor are disrupted in trees from 

pastures, lacking of the conditions for selective abortion among different pollen donors.  
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Quantitative studies for C. odorata in different isolation levels, indicates higher vigor 

for progenies from not isolated mother trees from continuous forests (Navarro et al. 2008). 

Probably for isolated trees, the higher levels of biparental inbreeding, lesser amount of pollen 

donors, and the reduction of mechanisms for selective abortion among different pollen donors, 

leads to a decrease in vigor of progeny.        

Although C. odorata occurs at low densities in natural forests, sampled forest 

population of Tikal was characterized by a high density of mature trees. Cedros was another 

population with mother trees clustered or with trees within a ratio of 100 meter, but differently 

from Tikal, mother trees were located in fragmented forests, pasture lands, and even in the 

backyards of houses at a community. Forest site condition differences between Tikal and 

Cedros did not lead to differences of gene diversity or mating systems estimates between 

populations, which indicates that pollination events occurred normally at both sites, despite the 

fact that Cedros population was not a continuous forest. On the other hand, populations from 

isolated mother trees were all located mainly in pasturelands, cultivated lands, fragmented 

forests, or near communities, but families did present differences in mating system estimates, 

indicating that isolation level and degree of disturbance may be affecting mating process.         

Other studies had revealed differences in outcrossing rates in different habitats, for 

example, Liengsiri et al. (1998) found differences in the single and multilocus outcrossing 

rates for populations of Pterocarpus macrocarpus, revealing a geographic pattern with 

western populations having higher outcrossing than eastern populations. They attribute low 

estimates of outcrossing rates in eastern populations to habitat characteristics, like degree of 

disturbance, density, and the distribution of flowering mature trees.  

Comparisons between populations of Mesic and Xeric habitats of several grass species 

showed differences in the outcrossing rates (Table 16), mainly explained by environmental 

factors that influence the mating structure of the population (Clegg 1980). Very different from 

C. odorata, these species are annual grass plants, and predominantly selfing with very low 

rates of outcrossing. It is important to recognize that there are differences between primarily 

selfing and outcrossing species, for example that selfers usually express inbreeding depression 

late, while outcrossed species exhibit earlier inbreeding depression with recessive lethals that 

can be purged through selection (Husband and Schemske, 1996). The intention of presenting 

these results was to highlight how environmental factors may affect the outcrossing rates of 
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plant species, rather than making a comparison of outcrossing magnitudes between grasses 

and trees. 

Table 16. Environmental influences on outcrossing rates (t) for several species  

  Habitat 

  Mesic Xeric 

Species Research          T (SE) T (SE) 

Avena barbata Marshall and Allard (1970) 0.075 (0.012) 0.014 (0.004) 

Bromus mollus Hamrick and Allard (1972) 0.021  0.005  

 Brown et al (1974) 0.110 (0.027) 0.007 (0.027) 

Hordeum spontaneum Brown et al (1978) 0.021 (0.0001) 0.004 (0.0002) 

Source: Clegg (1980) 

 

Populations were grouped and analyzed under lineages since phylogenetic studies with 

chloroplast DNA revealed haplotypes differentiation between three regions in Mesoamerica: 

northern, central, and southern lineage. Phylogenetic associations with the mating system were 

considered in this study, since anatomical and biochemical aspects of self incompatibility 

systems could be restricted phylogenetically (Gribel et al, 1999). Also, considering that 

outcrossing rates are under genetic control, and that the mating structure of most plant species 

is variable and subject to environmental influences (Clegg 1980), mating system at the lineage 

level was analyzed. 

Populations from Northern lineage have higher annual precipitations and number of 

dry months than Central lineage populations (Table 2). Lineages also differ considerably at the 

landscape level, where Northern lineage populations (excluding Los Esclavos) could be 

characterized as an area of highland consisting of a flat surface, also known as plateau, while 

Central lineage populations are in lower lands but with an irregular topography. Other 

dissimilarities between the lineages are the incidence of deforestation and degree of 

disturbance of landscapes, which is higher in Central lineage populations (Navarro 2008 pers. 

comm.). However, despite environmental differences between sites, all populations were fully 

outcrossing (tm ranged between 1.0 and 1.2) regardless of lineage. 

C. odorata northern lineage presented higher estimates of correlation of paternity (rp) 

and correlation of selfing among families (rs), than central lineage, indicating that fewer 

number of trees are contributing on average as pollen donors in northern lineage populations 

(5.26), compared to central lineage (6.66). These differences might be explained by individual 

population or regional characteristics of the family arrays, rather than lineage level or by 
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population isolation levels, since each lineage had a similar amount of family arrays with 

isolation level 1 and isolation level 3. In the case of isolation level 1 Northern and Central 

lineages were represented with 22 and 24 family arrays, respectively, while both lineages had 

12 family arrays with isolation level 3 (Table 3).  

To gain a better understanding of the latter, a further mating analysis between 

geographically related populations was done to probe consistency with lineage analysis 

results. Populations were grouped by countries in three main groups: Mexico, Guatemala and 

Honduras-Costa Rica. Differences in the correlation of paternity and correlation of selfing 

among families were significant between Mexican populations and Guatemalan and 

Honduran-Costa Rican populations (Table 14). These differences might be reconsidered for 

further studies of C. odorata, since probably phylogenetic lineages might not explain mating 

patterns for the species, while regional environmental patterns might explain partially of the 

mating system differences among populations.  

Multilocus estimations are statistically more efficient than singlelocus because 

multilocus data sets contain more info about outcrossing than is available at any one 

singlelocus (Muluvi et al. 2004). Singlelocus estimations are more sensitive to related mating 

other than selfing, which explain why higher singlelocus selfing rates over multilocus selfing 

rates indicate biparental inbreeding. When analyzing close relatives, there is a higher 

probability of homozygosity at some loci, which is the reason why singlelocus estimates can 

give additional information of how closely related a progeny array might be. For singlelocus 

estimates, all loci are used but individual locus estimates are obtained separately (one by one), 

whereas multilocus estimates consider all loci at the same time. 

Although it was low, some apparent biparental inbreeding was observed in both 

lineages, 0.34 for Central lineage, but a lower estimate for Northern lineage, 0.15 (tm-ts). 

Difference between lineages was because Central lineage had a multilocus outcrossing rate of 

1.20, which is higher than the expected (1.0) for any estimation. Ruter et al. (2000) explain 

that several factors may cause higher outcrossing estimates: first, can suggest obligate 

outcrossing or self incompatibility; second, may be caused by violations of the mixed mating 

model assumptions. There are three important assumptions: i) mating events are due to 

random outcrossing (with probability t) or self fertilization (with probability s =1 - t); ii) gene 

frequency distribution among pollen should be identical over all maternal plants; and iii) the 

rate of outcrossing is independent of maternal genotype (Clegg, 1980).  
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The analysis of the mating system at a family level revealed higher multi and single 

locus outcrossing rates within families from isolation level 3, which confirms less biparental 

inbreeding in natural forests and sites where C. odorata trees are more abundant. Differences 

among site environmental conditions, conservation status of the landscapes at each population, 

and relation between local pollinators and C. odorata trees might be favoring families of 

isolation 3. High variance of singlelocus outcrossing rates were found for isolated families, 

which is due to mating between related parents and due to a sampling error, since there were 

less number of progenies per family, at isolation level 1.  

One of the main factors that may be causing estimates above 1.0 could be self 

incompatibility of the species. Regarding the assumptions of the mixed mating model there are 

also violations due to sampling and population characteristics. The assumption of identical 

gene frequency distribution among pollen was not identical over all maternal trees since we 

are working with different isolation levels of mother trees, which lead to heterogeneous pollen 

pools. 

5.3 Implication for conservation 

Outcrossing rate estimates of 1 indicates that the species is completely outcrossing. 

Our results indicate that C. odorata is an obligately outcrossing species. This information is 

significant for decision makers of the management and conservation of the species, since 

fertility of individual trees will depend on the degree of isolation, human disturbance habitats 

and availability of pollinators that may flight long distances between trees. 

Habitat degradation caused by selective logging has reduced the species density at 

natural forests, leading to common scenarios with small fragmented forests with few remnant 

C. odorata trees. Knowing that the species is completely outcrossing, if these trees are at an 

isolation level where pollinators are unable to visit another tree, ‗living dead‘ (alive but 

reproductively redundant) trees are likely to be occurring in natural forests. The same situation 

will be happening for populations with isolated trees in pasture lands or other human 

dominated landscapes, where harvesting permissions are easy to obtain and do not consider 

any ecological, biological or genetic information of the species. 

Differences determined at a regional level indicate that management and conservation 

of the species should also be considered at a regional level. For example, establishing 
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harvesting permits for isolated trees in pasturelands that consider minimum distance between 

trees to guarantee gene flow, might take into account that pollinators in Mexican populations 

apparently have lower flying distances than pollinators from Guatemalan populations, or that 

climate conditions and human dominated landscapes affect the local pollinators differently. 

Climate change could also be considered as a possible menace for species, especially 

for populations in degraded landscapes with isolated trees. Changes in temperatures may 

affect the pollinator behavior, or in a worse scenario may increase fire frequencies that could 

affect directly isolated trees or pollinators.    

5.4 Applications of Cedrela odorata microsatellite markers 

For all loci paternity exclusion probabilities Pr(Ex1) and Pr(Ex2) were high, with a 

mean value of 0.62 and 0.76, respectively, indicating the potential of these microsatellites for 

future parentage analysis studies. As expected, in general Pr(Ex2) was higher than Pr(Ex1) 

since the probability of excluding the second parent increases when the first parent is known 

(Table 6). The successful application of microsatellite genotyping to paternity exclusion is 

based on the detection of high levels of genetic variation in C. odorata. The combination of 

different microsatellites could lead to a complete paternity exclusion, for example: an 

exclusion probability of 0.999 for the first parent could be obtained combining five 

microsatellites (C131, C95, C65, C61a, and C41), on the other hand, an exclusion probability 

of 0.999 for the second parent could be obtained combining four microsatellites (C131, C95, 

C65, and C61a). 

Considering the work of cross-species amplification of SSR loci in the Meliaceae 

family by White and Powell (1997), where they found high levels of sequence conservation 

within the primer regions of Meliaceae species, the nine polymorphic microsatellites (Table 5) 

could be used with other closely related species like Swietenia humilis, Swietenia 

macrophylla, or Carapa guianensis. 
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6 CONCLUSIONS 

1. Microsatellite markers developed for C. odorata were very informative and useful 

to determine the gene diversity and mating system estimates of the species. 

 

2. High gene diversity estimates were found for C. odorata progeny arrays, although 

no significant differences were found between the northern and central lineages, 

neither the progeny arrays of isolated mother trees and the ones in groups or 

clusters.  

 

3. C. odorata is an obligately outcrossed species, where no selfing occurrence was 

observed when adult trees were within a maximum distance of 500 meters. 

 

4. Isolation level analysis revealed that although the species‘ outcrossing rates (tm) 

were not significantly different from 1 at both isolation levels, significant 

differences were observed for correlation of paternity and single locus inbreeding 

coefficient of maternal parents, which was higher for isolated families.  

 

5. It was estimated an average of five trees donated pollen to the isolated mother 

trees, while for the mother trees within a ratio of 100 meters, an average of 7.7 

adult trees was found to be contributing with pollen. 

 

6. Biparental inbreeding was found for both isolation levels, indicating that 

approximately 16% of the progenies resulted from mating between closely related 

parents at both isolation levels. 

 

7. The analysis of the mating system at a family level revealed higher multi and single 

locus outcrossing rates within families from isolation level 3, which confirms less 

biparental inbreeding in natural forests and sites where C. odorata trees are more 

abundant. Differences among site environmental conditions, conservation status of 

the landscapes at each population, and relation between local pollinators and C. 

odorata trees might be favoring families of isolation 3. 
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8. C. odorata progenies from isolated trees have higher levels of biparental 

inbreeding, fewer pollen donors, potentially leading to a reduction of mechanisms 

for selective abortion among different pollen donors and leading to a decrease in 

vigor of progenies. 
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7 RECOMMENDATIONS 

1. Further studies of genetic diversity and genetic differentiation with adult trees from 

natural populations of C. odorata should be assessed with the nine microsatellite 

markers developed for the present study. 

 

2. Acknowledging the importance of isolated C. odorata trees  in pastures, agriculture 

lands, and other human dominated landscapes, in the movement of pollinators in 

fragmented forests, harvesting permits of isolated trees in this type of landscapes 

should be more regulated and based on scientific and ecological information as the 

one generated in the present and latter studies. 

 

3. Research on gene flow analysis of the species would be important to determine the 

minimum distance where pollinators could effective pollinate the isolated trees.  

 

4. Further analysis with southern lineage families of C. odorata should be done to 

generate a complete understanding of the tree isolation and forest fragmentation 

implications on mating systems and genetic diversity of the species. 

 

5. Variation of quantitative traits analyses of C. odorata at different isolation levels 

should be done to know if there is correlation between the microsatellite markers 

information and the quantitative data.    
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9 ANNEXES 

Annex 1. Technical note:  
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Annex 2. Total of 26 microsatellite markers isolated from Cedrela odorata and tested for amplification 
and polymorphism. 

Locus Allele Size Range (bp) Channel Polymorphic/Monomorphic Ease scoring Multiplexing 

Ced2 130-170 700 Polymorphic yes Ced131a+Ced2 

Ced4 200-220 700 Polymorphic yes  

Ces15 140-160 800 Monomorphic yes  

Ced18 130-150 700 Polymorphic yes  

Ced22 120-140 700 Polymorphic yes  

Ced26 140-160 700 Polymorphic no  

Ced27 200-240 700 Polymorphic yes  

Ced36 160-200 800 Polymorphic no  

Ced41a 180-200 700 Monomorphic yes  

Ced41 120-160 700 Polymorphic yes Ced41+Ced44 

Ced44 180-240 700 Polymorphic yes Ced41+Ced44 

Ced48 180-220 700 Polymorphic no  

Ced50 120-140 700 Polymorphic no  

Ced54 180-230 800 Polymorphic yes  

Ced56 100-120 800 Monomorphic no  

Ced61a 240-270 800 Polymorphic yes Ced61a+Ced65 

Ced61b 180-240 800 Polymorphic yes  

Ced64 160-180 800 Polymorphic yes  

Ced65 160-200 800 Polymorphic no Ced61a+Ced65 

Ced72 140-160 800 Polymorphic no  

Ced80 240-260 800 Monomorphic yes  

Ced89 100-140 800 Monomorphic yes  

Ced95 190-250 800 Polymorphic yes  

Ced120 120-180 800 Polymorphic no  

Ced131 80-120 700 Polymorphic yes  

Ced131a 70-90 700 Polymorphic yes Ced131a+Ced2 

    Grey rows represent the 10 loci chosen for the genetic and mating system study with Cedrela odorata populations. 
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Annex 3. Genotypic disequilibrium test for all data including complete families (half sib individuals) of 

C. odorata. P-value for each locus pair across all the populations (Fisher method). 

Locus pair Chi Square df P-value 

Ced131 - Ced95 45.435 24 0.005 

Ced131 - Ced65 40.565 22 0.009 

Ced95 - Ced65 32.776 22 0.065 

Ced131 - Ced61a Infinity 24 Highly significant 

Ced95 - Ced61a Infinity 22 Highly significant 

Ced65 - Ced61a Infinity 22 Highly significant 

Ced131 - Ced41 Infinity 24 Highly significant 

Ced95 - Ced41 Infinity 24 Highly significant 

Ced65 - Ced41 Infinity 22 Highly significant 

Ced61a - Ced41 Infinity 24 Highly significant 

Ced131 - Ced44 54.493 22 0 

Ced95 - Ced44 Infinity 22 Highly significant 

Ced65 - Ced44 Infinity 22 Highly significant 

Ced61a - Ced44 Infinity 22 Highly significant 

Ced41 - Ced44 Infinity 22 Highly significant 

Ced131 - Ced18 Infinity 22 Highly significant 

Ced95 - Ced18 Infinity 22 Highly significant 

Ced65 - Ced18 Infinity 22 Highly significant 

Ced61a - Ced18 Infinity 22 Highly significant 

Ced41 - Ced18 44.505 22 0.003 

Ced44 - Ced18 Infinity 22 Highly significant 

Ced131 - Ced54 Infinity 24 Highly significant 

Ced95 - Ced54 Infinity 24 Highly significant 

Ced65 - Ced54 Infinity 22 Highly significant 

Ced61a - Ced54 Infinity 24 Highly significant 

Ced41 - Ced54 37.312 24 0.041 

Ced44 - Ced54 Infinity 22 Highly significant 

Ced18 - Ced54 46.609 22 0.002 

Ced131 - Ced2 52.377 24 0.001 

Ced95 - Ced2 Infinity 22 Highly significant 

Ced65 - Ced2 23.02 22 0.401 

Ced61a - Ced2 Infinity 24 Highly significant 

Ced41 - Ced2 Infinity 24 Highly significant 

Ced44 - Ced2 Infinity 22 Highly significant 

Ced18 - Ced2 39.676 22 0.012 

Ced54 - Ced2 28.613 24 0.235 
The null hypothesis (H0) is: "Genotypes at one locus are independent from genotypes at the other locus". H0 is 

rejected for small p-values, usually < 0.05. 
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Annex 4. Summary by locus of tests for Hardy-Weinberg Equilibrium for all populations. 

Summary by locus for Xpujil Summary by locus for Tulum Summary by locus for Cedros Summary by locus for Tikal

Locus ChiSquare DF Prob Locus ChiSquare DF Prob Locus ChiSquare DF Prob Locus ChiSquare DF Prob

Ced131 21.495 28 0.804 ns Ced131 39.123 36 0.331 ns Ced131 60.663 28 0.000 *** Ced131 52.729 45 0.200 ns

Ced95 30.564 36 0.725 ns Ced95 53.511 66 0.865 ns Ced95 80.534 105 0.964 ns Ced95 142.863 120 0.076 ns

Ced65 27.921 21 0.142 ns Ced65 42.615 28 0.038 * Ced65 36.509 15 0.001 ** Ced65 160.797 66 0.000 ***

Ced61a 50.156 21 0.000 *** Ced61a 33.915 28 0.204 ns Ced61a 34.088 21 0.035 * Ced61a 117.051 36 0.000 ***

Ced41 41.279 28 0.051 ns Ced41 47.972 78 0.997 ns Ced41 56.711 78 0.967 ns Ced41 65.298 55 0.161 ns

Ced44 72.483 55 0.057 ns Ced44 87.166 66 0.042 * Ced44 45.612 105 1.000 ns Ced44 151.357 136 0.174 ns

Ced18 17.447 15 0.293 ns Ced18 49.587 66 0.934 ns Ced18 10.092 36 1.000 ns Ced18 118.085 120 0.532 ns

Ced54 50.600 45 0.262 ns Ced54 126.451 120 0.326 ns Ced54 94.552 136 0.997 ns Ced54 264.509 231 0.064 ns

Ced2 32.486 28 0.255 ns Ced2 49.312 36 0.069 ns Ced2 35.791 45 0.835 ns Ced2 67.797 66 0.416 ns

Summary by locus for Reforma Summary by locus for La Paz Summary by locus for Meambar Summary by locus for Cañas

Locus ChiSquare DF Prob Locus ChiSquare DF Prob Locus ChiSquare DF Prob Locus ChiSquare DF Prob

Ced131 12.833 10 0.233 ns Ced131 22.060 36 0.967 ns Ced131 9.078 15 0.873 ns Ced131 1.345 3 0.719 ns

Ced95 2.880 10 0.984 ns Ced95 108.336 78 0.013 * Ced95 59.852 66 0.689 ns Ced95 37.250 36 0.411 ns

Ced65 19.556 15 0.190 ns Ced65 37.718 28 0.104 ns Ced65 12.566 6 0.050 ns Ced65 9.366 21 0.986 ns

Ced61a 0.426 3 0.935 ns Ced61a 73.566 45 0.005 ** Ced61a 42.502 28 0.039 * Ced61a 12.195 6 0.058 ns

Ced41 6.415 6 0.378 ns Ced41 80.434 78 0.403 ns Ced41 50.639 55 0.642 ns Ced41 43.902 36 0.172 ns

Ced44 7.531 15 0.941 ns Ced44 107.898 91 0.109 ns Ced44 94.506 66 0.012 * Ced44 27.977 36 0.828 ns

Ced18 2.064 6 0.914 ns Ced18 40.098 36 0.293 ns Ced18 29.013 28 0.412 ns Ced18 14.750 21 0.835 ns

Ced54 15.000 28 0.978 ns Ced54 125.205 105 0.087 ns Ced54 60.864 55 0.273 ns Ced54 6.949 10 0.730 ns

Ced2 6.528 15 0.969 ns Ced2 146.399 66 0.000 *** Ced2 35.833 36 0.476 ns Ced2 23.063 15 0.083 ns

Summary by locus for Tres Garantias Summary by locus for Taulabe Summary by locus for Los Esclavos Summary by locus for Hojancha

Locus ChiSquare DF Prob Locus ChiSquare DF Prob Locus ChiSquare DF Prob Locus ChiSquare DF Prob

Ced131 28.030 21 0.139 ns Ced131 33.210 36 0.602 ns Ced131 56.202 21 0.000 *** Ced131 9.889 15 0.827 ns

Ced95 35.542 21 0.025 * Ced95 77.446 78 0.496 ns Ced95 127.599 120 0.300 ns Ced95 64.276 66 0.537 ns

Ced65 29.423 15 0.014 * Ced65 40.639 28 0.058 ns Ced65 48.032 36 0.087 ns Ced65 32.863 36 0.619 ns

Ced61a 45.770 21 0.001 ** Ced61a 110.154 66 0.001 *** Ced61a 56.430 28 0.001 ** Ced61a 52.499 28 0.003 **

Ced41 55.200 21 0.000 *** Ced41 94.819 120 0.957 ns Ced41 93.076 66 0.016 * Ced41 57.977 45 0.093 ns

Ced44 58.407 55 0.351 ns Ced44 136.213 153 0.831 ns Ced44 212.463 153 0.001 ** Ced44 87.018 91 0.599 ns

Ced18 51.276 55 0.618 ns Ced18 47.116 45 0.386 ns Ced18 55.380 45 0.138 ns Ced18 61.447 55 0.256 ns

Ced54 33.861 21 0.038 * Ced54 67.829 91 0.967 ns Ced54 184.282 136 0.004 ** Ced54 23.570 28 0.704 ns

Ced2 10.874 15 0.762 ns Ced2 38.470 36 0.358 ns Ced2 54.764 45 0.151 ns Ced2 79.333 66 0.126 ns  
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Annex 5. Singles and multi locus outcrossing rates for Cedrela odorata families.  

Family Mean SE Mean SE Progenies Isolation level 

Xpujil_1 0.74 0.14 1.00 0.00 6 Isolation level 1

Xpujil_2 0.84 0.06 1.00 0.00 8 Isolation level 1

Xpujil_3 0.59 0.22 1.00 0.00 9 Isolation level 1

Reforma_4 0.64 0.15 0.83 0.16 10 Isolation level 1

Tres Garantias_5 0.38 0.15 0.68 0.16 8 Isolation level 1

Tres Garantias_6 0.26 0.06 0.92 0.09 9 Isolation level 1

Tres Garantias_7 1.03 0.06 1.00 0.04 8 Isolation level 1

Tulum_8 0.84 0.17 0.83 0.16 6 Isolation level 1

Tulum_9 0.90 0.07 1.00 0.05 8 Isolation level 1

Tulum_10 0.90 0.12 0.90 0.10 9 Isolation level 1

Tulum_11 1.14 0.17 1.14 0.16 2 Isolation level 1

Tulum_12 0.82 0.13 0.90 0.10 10 Isolation level 3

Tulum_13 0.86 0.15 0.85 0.15 6 Isolation level 1

La Paz_14 0.95 0.07 1.00 0.06 7 Isolation level 1

La Paz_15 0.65 0.11 1.00 0.03 8 Isolation level 1

La Paz_16 0.34 0.19 1.00 0.03 6 Isolation level 1

La Paz_17 0.90 0.06 1.00 0.02 8 Isolation level 1

La Paz_18 0.26 0.27 1.00 0.02 9 Isolation level 1

La Paz_19 1.01 0.07 1.00 0.02 8 Isolation level 1

La Paz_60 0.87 0.11 1.00 0.03 4 Isolation level 1

Taulabe_20 0.79 0.09 1.00 0.02 9 Isolation level 1

Taulabe_21 0.77 0.08 1.00 0.01 10 Isolation level 1

Taulabe_22 0.49 0.11 1.00 0.02 8 Isolation level 1

Taulabe_23 0.98 0.07 1.00 0.02 7 Isolation level 1

Taulabe_24 0.92 0.09 1.03 0.03 8 Isolation level 1

Taulabe_25 0.90 0.09 1.00 0.03 5 Isolation level 1

Taulabe_61 0.81 0.18 1.01 0.06 3 Isolation level 1

Cedros_26 0.89 0.09 1.02 0.03 10 Isolation level 3

Cedros_27 0.78 0.14 1.00 0.03 6 Isolation level 3

Cedros_28 0.88 0.11 1.02 0.03 8 Isolation level 3

Cedros_29 0.61 0.10 1.00 0.02 7 Isolation level 3

Cedros_30 0.73 0.10 1.00 0.03 5 Isolation level 3

Cedros_31 0.84 0.12 1.01 0.03 7 Isolation level 3

Cedros_32 0.65 0.11 1.01 0.02 10 Isolation level 3

Cedros_33 0.70 0.16 0.93 0.09 10 Isolation level 3

Cedros_34 0.61 0.15 1.00 0.03 9 Isolation level 3

Meambar_35 0.65 0.19 0.73 0.26 7 Isolation level 3

Meambar_36 0.85 0.14 1.00 0.06 8 Isolation level 3

Meambar_37 0.35 0.08 0.93 0.08 9 Isolation level 3

Meambar_62 0.74 0.19 1.00 0.06 5 Isolation level 1

Los Esclavos_38 0.70 0.20 0.90 0.19 8 Isolation level 1

Los Esclavos_39 0.49 0.14 0.88 0.14 6 Isolation level 1

Los Esclavos_40 0.91 0.15 0.90 0.15 8 Isolation level 1

Los Esclavos_41 0.58 0.22 0.75 0.24 4 Isolation level 1

Los Esclavos_42 0.79 0.13 0.88 0.13 8 Isolation level 1

Los Esclavos_43 0.80 0.08 1.00 0.05 8 Isolation level 1

Los Esclavos_45 0.83 0.15 1.00 0.03 7 Isolation level 1

Los Esclavos_57 0.54 0.12 1.00 0.04 5 Isolation level 1

Los Esclavos_58 0.62 0.16 0.80 0.18 5 Isolation level 1

Los Esclavos_59 0.82 0.18 1.00 0.14 3 Isolation level 1

Tikal_46 1.02 0.07 1.00 0.04 10 Isolation level 3

Tikal_47 0.55 0.33 1.01 0.03 6 Isolation level 3

Tikal_48 0.86 0.09 1.00 0.02 9 Isolation level 3

Tikal_49 0.56 0.14 0.94 0.08 7 Isolation level 3

Tikal_50 0.84 0.11 1.01 0.04 7 Isolation level 3

Tikal_51 0.58 0.12 1.00 0.04 5 Isolation level 3

Tikal_52 0.86 0.13 0.89 0.11 7 Isolation level 3

Tikal_53 0.96 0.15 1.02 0.07 5 Isolation level 3

Tikal_54 0.76 0.12 0.89 0.11 9 Isolation level 3

Tikal_55 0.72 0.19 1.00 0.05 7 Isolation level 3

Tikal_56 0.68 0.09 1.00 0.04 5 Isolation level 3

Cañas_63 0.39 0.13 0.74 0.22 3 Isolation level 1

Cañas_64 0.82 0.12 1.00 0.12 4 Isolation level 1

Cañas_65 0.67 0.18 1.00 0.09 4 Isolation level 1

Hojancha_66 0.73 0.18 0.85 0.15 5 Isolation level 1

Hojancha_67 0.88 0.15 1.01 0.10 4 Isolation level 1

Hojancha_68 0.70 0.16 1.02 0.06 5 Isolation level 1

Hojancha_69 0.78 0.09 0.97 0.04 8 Isolation level 1

Hojancha_70 1.00 0.06 1.00 0.04 5 Isolation level 1

ts tm

 

 


