

Statistical analysis to produce master hydrographs for aquifers in England and Wales

Groundwater Management Programme Open Report OR/07/009

BRITISH GEOLOGICAL SURVEY

GROUNDWATER MANAGEMENT PROGRAMME OPEN REPORT OR/07/009

Statistical analysis to produce master hydrographs for aquifers in England and Wales

I Neumann, H. Rutter

The National Grid and other Ordnance Survey data are used with the permission of the Controller of Her Majesty's Stationery Office. Ordnance Survey licence number Licence No:100017897/2004.

Keywords

Hydrograph, time series, statistical analysis, seasonality, trend analysis, aquifers

Front cover

Examples of normalised water level hydrographs

Bibliographical reference

NEUMANN, I., RUTTER, H. 2007. Statistical analysis to produce master hydrographs for aquifers in England and Wales. *British Geological Survey Open Report*, OR/07/009. 206pp.

Copyright in materials derived from the British Geological Survey's work is owned by the Natural Environment Research Council (NERC) and/or the authority that commissioned the work. You may not copy or adapt this publication without first obtaining permission Contact the BGS Intellectual Property Rights Section, British Geological Survey, Keyworth, e-mail ipr@bgs.ac.uk You may quote extracts of a reasonable length without prior permission, provided a full acknowledgement is given of the source of the extract.

© NERC 2007. All rights reserved

Keyworth, Nottingham British Geological Survey 2007

BRITISH GEOLOGICAL SURVEY

The full range of Survey publications is available from the BGS Sales Desks at Nottingham, Edinburgh and London; see contact details below or shop online at www.geologyshop.com

The London Information Office also maintains a reference collection of BGS publications including maps for consultation.

The Survey publishes an annual catalogue of its maps and other publications; this catalogue is available from any of the BGS Sales Desks.

The British Geological Survey carries out the geological survey of Great Britain and Northern Ireland (the latter as an agency service for the government of Northern Ireland), and of the surrounding continental shelf, as well as its basic research projects. It also undertakes programmes of British technical aid in geology in developing countries as arranged by the Department for International Development and other agencies.

The British Geological Survey is a component body of the Natural Environment Research Council.

British Geological Survey offices

Keyworth, Nottingham NG12 5GG

Participation of the second state of the se

Murchison House, West Mains Road, Edinburgh EH9 3LA

0131-667 1000	Fax 0131-668 2683
e-mail: scotsales@bgs.ac.uk	

London Information Office at the Natural History Museum (Earth Galleries), Exhibition Road, South Kensington, London SW7 2DE

20-7589 4090	Fax 020-7584 8270
20-7942 5344/45	email: bgslondon@bgs.ac.uk

Forde House, Park Five Business Centre, Harrier Way, Sowton, Exeter, Devon EX2 7HU

The arrow of the a

Geological Survey of Northern Ireland, Colby House, Stranmillis Court, Belfast BT9 5BF

© 028-9038 8462
 e-mail: gsni@detini.gov.uk

Fax 028-9066 2835

Maclean Building, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB

☎ 01491-838800 Fax 01491-692345
e-mail: hydro@bgs.ac.uk

Sophia House, 28 Cathedral Road, Cardiff, CF11 9LJ ☎ 029–2066 0147 Fax 029–2066 0159

Parent Body

Natural Environment Research Council, Polaris House, North Star Avenue, Swindon, Wiltshire SN2 1EU

☎ 01793-411500 www.nerc.ac.uk Fax 01793-411501

Contents

Co	ntents	i
1	Introduction	1
2	Methodology to create master hydrographs	2
3	Aquifers investigated	5
4	Magnesian Limestone	7
5	Hasting Beds	15
6	Middle Jurassic	19
7	Upper Jurassic	23
8	Chalk –Hampshire and Wiltshire	27
9	Chalk – South Downs	32
10	Chalk – Lincolnshire and Yorkshire	37
11	Chalk – Berkshire Downs and East Anglia	42
12	Chalk – North Downs	47
13	Confined Chalk – London Basin	49
14	Lower Greensand	50
15	Millstone Grit	55
16	Permo-Triassic Sandstone	60
17	Conclusions and Recommendations	62
18	References	65
Ap	pendix 1 Magnesian Limestone	64
	Water levels above ordnance datum with linear regression curve	64
	Normalised water level data with moving averages smoothing lines	68
	Autocorrelation function plots	72
	Sample frequency plots	75
	Wellmaster look-up table – GROUP1	79
	Wellmaster look-up table – GROUP2	82
Ap	pendix 2 Hasting Beds	85
	Water levels above ordnance datum with linear regression curve	85

Normalised water level data with moving averages smoothing lines	88
Autocorrelation function plots	
Sample frequency plots	
Wellmaster look-up table	96
Appendix 3 Middle Jurassic	98
Water levels above ordnance datum with linear regression curve	98
Normalised water level data with moving averages smoothing lines	100
Autocorrelation function plots	102
Sample frequency plots	103
Wellmaster look-up table	105
Appendix 4 Upper Jurassic	109
Water levels above ordnance datum with linear regression curve	109
Normalised water level data with moving averages smoothing lines	111
Autocorrelation function plots	113
Sample frequency plots	114
Wellmaster look-up table	116
Appendix 5 Chalk – Hampshire and Wiltshire	119
Water levels above ordnance datum with linear regression curve	119
Normalised water level data with moving averages smoothing lines	123
Autocorrelation function plots	127
Sample frequency plots	130
Wellmaster look-up table	134
Appendix 6 Chalk – South Downs	138
Water levels above ordnance datum with linear regression curve	138
Normalised water level data with moving averages smoothing lines	141
Autocorrelation function plots	144
Sample frequency plots	146
Wellmaster look-up table	149
Appendix 7 Chalk – Lincolnshire and Yorkshire	153
Water levels above ordnance datum with linear regression curve	153
Normalised water level data with moving averages smoothing lines	157
Autocorrelation function plots	161
Sample frequency plots	164
Wellmaster look-up table	168
Appendix 8 Chalk – Berkshire Downs and East Anglia	171
Water levels above ordnance datum with linear regression curve	171
Normalised water level data with moving averages smoothing lines	174
Autocorrelation function plots	177

Sample frequency plots	179
Wellmaster look-up table	181
Appendix 9 Lower Greensand	185
Water levels above ordnance datum with linear regression curve	185
Normalised water level data with moving averages smoothing lines	188
Autocorrelation function plots	191
Sample frequency plots	193
Wellmaster look-up table	196
Appendix 10 Millstone Grit	199
Water levels above ordnance datum with linear regression curve	199
Normalised water level data with moving averages smoothing lines	201
Autocorrelation funtion plots	203
Sample frequency plots	204
Wellmaster look-up table	206

FIGURES

Figure 2.1	Normalized water levels of similar time series
Figure 2.2	Similar time series are accumulated into one group. A monthly averaging smoothing line is calculated on the basis of the aggregated data, i.e the master hydrograph4
Figure 2.3	Averaged monthly values are divided into five categories, ranging from "Very low" to "Very high". Categories are determined on the basis of the 0.2, 0.4, 0.6 and 0.8 percentiles
Figure 3.1	Investigated aquifers in England and Wales and location of boreholes with detailed water level time series
Figure 4.1	a) normalized data of the water level records used to establish the master hydrograph for the shallow Magnesian Limestone aquifer (Group 1); b) aggregated normalized water level data together with the master hydrograph and moving averages smoothing line to show long term trends (Group 1); c) master hydrograph and respective water level categories (Group 1)9
Figure 4.2	Categories used to tag monthly data of the master hydrograph (Group 1) 10
Figure 4.3	Frequency of water level categories per month based on established monthly look-up table (Group 1)
Figure 4.4	Master hydrograph for the shallow Magnesian Limestone aquifer (Group 1).11
Figure 4.5	a) normalized data of the water level records used to establish the master hydrograph for boreholes of medium depth in the Magnesian Limestone aquifer (Group 2); b) aggregated normalized water level data together with the master hydrograph, and moving averages smoothing line to show long term trends (Group 2); c) master hydrograph and respective water level categories (Group 2)

Figure 4.6	Categories used to tag monthly data of the master hydrograph (Group 2)13
Figure 4.7	Frequency of water level categories per monthly period based on the established monthly look-up table (Group 2)
Figure 4.8	Master hydrograph for boreholes of medium depths in the Magnesian Limestone
Figure 5.1	a) normalised water level data of the 7 records used to establish the master hydrograph for the Hasting Beds aquifer; b) aggregated normalised water level data together with the master hydrograph, and a moving averages smoothing line to show long term trends; c) master hydrograph and respective water level categories
Figure 5.2	Categories used to tag monthly data of the master hydrograph17
Figure 5.3	Frequency of water level categories per monthly period based on the established monthly look-up table
Figure 5.4	Master hydrograph for the Hasting Beds aquifer
Figure 6.1	a) normalised water level data of the five records used to establish the master hydrograph for the Middle Jurassic aquifer; b) aggregated normalised water level data together with the master hydrograph, and moving averages smoothing line to show long term trends; c) master hydrograph and respective water level categories
Figure 6.2	Categories used to tag monthly data of the master hydrograph21
Figure 6.3	Frequency of water level categories per monthly period based on the developed monthly look-up table
Figure 6.4	Master hydrograph for shallow the Middle Jurassic aquifers
Figure 7.1	a) normalised water level data of the five records used to establish the master hydrograph for the Upper Jurassic aquifer; b) aggregated normalised water level data together with the master hydrograph, and moving averages smoothing line to show long term trends; c) master hydrograph and respective water level categories
Figure 7.2	Categories used to tag monthly data of the master hydrograph
Figure 7.3	Frequency of water level categories per monthly period based on the developed monthly look-up table
Figure 7.4	Master hydrograph for shallow the Upper Jurassic aquifers
Figure 8.1	a) normalised water level data of the 16 records used to establish the master hydrograph for the Chalk aquifer in Hampshire and Wiltshire; b) aggregated normalised water level data together with the master hydrograph, and moving averages smoothing line to show long term trends; c) master hydrograph and respective water level categories
Figure 8.2	Categories used to tag monthly data of the master hydrograph
Figure 8.3	Frequency of water level categories per monthly period based on the developed monthly look-up table
Figure 8.4	Master hydrograph for the Chalk aquifer in Hampshire and Wiltshire

Figure 9.1	a) normalised water level data of the 7 records used to establish the master hydrograph for the Chalk aquifer in the South Downs; b) aggregated normalised water level data together with the master hydrograph, and moving averages smoothing line to show long term trends; c) master hydrograph and respective water level categories
Figure 9.2	Categories used to tag monthly data of the master hydrograph35
Figure 9.3	Frequency of water level categories per monthly period based on the developed monthly look-up table
Figure 9.4	Master hydrograph for the Chalk aquifer in the South Downs
Figure 10.1	a) normalised water level data of the 12 records used to establish the master hydrograph for the Chalk aquifer in Lincolnshire and Yorkshire; b) aggregated normalised water level data together with the master hydrograph, and moving averages smoothing line to show long term trends; c) master hydrograph and respective water level categories
Figure 10.2	Categories used to tag monthly data of the master hydrograph
Figure 10.3	Frequency of water level categories per monthly period based on the developed monthly look-up table
Figure 10.4	Master hydrograph for the Chalk aquifer in Lincolnshire and Yorkshire41
Figure 11.1	Location of randomly selected sites for the Chalk of the Berkshire Downs and East Anglia
Figure 11.2	a) normalised water level data of the nine records used to establish the master hydrograph for the Chalk aquifer in the Berkshire Downs and East Anglia; b) aggregated normalised water level data together with the master hydrograph, and moving averages smoothing line to show long term trends; c) master hydrograph and respective water level categories
Figure 11.3	Categories used to tag monthly data of the master hydrograph45
Figure 11.4	Frequency of water level categories per monthly period based on the developed monthly look-up table
Figure 11.5	Master hydrograph for the Chalk aquifer of the Berkshire Downs and East Anglia
Figure 12.1	Hydrographs from the North Downs Chalk aquifer, which show similar water level responses over time
Figure 12.2	The majority of long term hydrographs from the North Downs Chalk aquifer show unique water level responses
Figure 13.1	Normalised long term hydrographs from the Chalk aquifer in the London Basin
Figure 14.1	TR23/32B and SU84/8A show water level responses, not repeated in other boreholes
Figure 14.2	TL45/19 and TL45/14 show similar water level responses, which are distinct from other records
Figure 14.3	a) normalised water level data of the four records used to establish the master hydrograph for the shallow Lower Greensand aquifer; b) aggregated

normalised water level data together with the master hydrograph, and a moving averages smoothing line to show long term trends; c) master hydrograph and Figure 14.4 Figure 14.5 Frequency of water level categories per monthly period based on the Master hydrograph for shallow boreholes in the shallow Lower Greensand Figure 14.6 SE27/8 and SE24/2B show water level responses distinct from other boreholes Figure 15.1 Figure 15.2 a) normalised water level data of the 6 records used to establish the master hydrograph for the Millstone Grit aquifer; b) aggregated normalised water level data together with the master hydrograph, and moving averages smoothing line to show long term trends; c) master hydrograph and respective Figure 15.3 Frequency of water level categories per monthly period based on the Figure 15.4 Figure 15.5 Figure 16.1 Seasonality and underlying trend observed in some of the long term hydrographs available for the Permo-Triassic sandstone (water levels are Normalised water levels of three long-term hydrographs exhibiting no Figure 16.2 Figure 16.3 Normalised water levels of boreholes exhibiting strong seasonality without any Figure 16.4 Normalised water level data of boreholes assumed to be influenced by pumping

TABLES

Table 3.1	List of aquifers investigated
Table 3.2	List of aquifers not investigated due to limited data availability
Table 4.1	Summary statistics on water level time series data from the Magnesian Limestone (water levels in m AOD)
Table 4.2	Summary statistics of the data used to produce the master hydrograph for the shallow Magnesian Limestone aquifer (Group 1)10
Table 4.3	Summary statistics of the data used to produce the master hydrograph (Group 2)
Table 5.1	Summary statistics for time series from the Hasting Beds (water levels in m AOD)

Table 5.2	Summary statistics of the data used to produce the master hydrograph for the Hastings Bed aquifer
Table 6.1	Summary statistics of long term hydrographs from the Middle Jurassic aquifers (water levels in m AOD)
Table 6.2	Summary statistics of the data used to produce the master hydrograph for the Middle Jurassic aquifers
Table 7.1	Summary statistics of long term hydrographs from the Upper Jurassic aquifers (water levels in m AOD)
Table 7.2	Summary statistics of the data used to produce the master hydrograph for the Upper Jurassic aquifers
Table 8.1	Summary statistics of long term hydrographs from the Chalk aquifer in Hampshire and Wiltshire (water levels in m AOD)
Table 8.2	Summary statistics of the data used to produce the master hydrograph for the Chalk aquifer in Hampshire and Wiltshire
Table 9.1	Summary statistics of long term hydrographs from the Chalk aquifer in the South Downs(water levels in m AOD)
Table 9.2	Summary statistics of the data used to produce the master hydrograph for the Chalk aquifer in the South Downs
Table 10.1	Summary statistics of long term hydrographs from the Chalk aquifer in Lincolnshire and Yorkshire (water levels in m AOD)
Table 10.2	Summary statistics of the data used to produce the master hydrograph for the Chalk aquifer in Lincolnshire and Yorkshire
Table 11.1	Summary statistics of long term hydrographs from the Chalk aquifer in Berkshire and East Anglia Downs (water levels in m AOD)
Table 11.2	Summary statistics of the data used to produce the master hydrograph for the Chalk aquifer of the Berkshire Downs and East Anglia
Table 12.1	Summary statistics of long term hydrographs from the Chalk of the North Downs (water levels in m AOD)
Table 13.1	Summary statistics of long term hydrographs from the confined Chalk aquifer in the London Basin (water levels in m AOD)
Table 14.1	Summary statistics of time series from the Lower Greensand aquifer
Table 14.2	Summary statistics of the data used to produce the master hydrograph for the shallow Lower Greensand aquifer
Table 15.1	Summary statistics of long term hydrographs from the Millstone Grit
Table 15.2	Summary statistics of the data used to produce the master hydrograph for the Millstone Grit

1 Introduction

Groundwater level data are a primary resource for all hydrogeological work, from sitespecific enquiries to regional numerical modelling studies. However, groundwater level data held at the British Geological Survey is varied in detail. Information is not evenly distributed to cover major aquifers, but is often concentrated in limited areas, that have been mapped in detail or where boreholes have been drilled. The current water level database "Wellmaster", includes rest water level data for more than 40 000 boreholes across the UK. The data ranges from high frequency measurements over long time periods (ca. 5% of the total data) to oneoff measurements. While these raw data are useful for point determination of water level for site-specific investigations, it is not an adequate basis for any spatial coverage. There is, though, a need to provide improved spatial coverage of water level data, allowing some estimate of the likely groundwater level across wide areas. In order to provide such coverage, interpolation of water level data, including one-off point level measurements, is needed.

To include point water level measurements in interpolations, the data need to be categorised as to whether the given reading is likely to represent very low, low, average, high or very high levels for the respective aquifer. This is done by establishing long term hydrographs deemed typical for the aquifer on the basis of boreholes with long time series data, here called master hydrographs. Comparison of point data with the master hydrograph will allow the point data to be tagged within the database as belonging to one of the five categories ranging from "very low" to "very high". This will allow the selection of, for example, "average" water levels before interpolation is carried out to obtain spatial coverage of level data for a wider area.

This report outlines a basic methodology to process long term hydrographs in order to obtain master hydrographs for the various aquifers in England and Wales. Master hydrographs are established for aquifers with sufficient long-term water level records and findings are detailed in the respective aquifer sections. If, within one aquifer, different response patterns are observed, master hydrographs were developed if a majority of boreholes could be associated with a particular water level response. If this was not the case, it was deemed not feasible to establish a master hydrograph. It was beyond the scope of this present study, to investigate aquifers showing diverse water level responses in more detail to establish the likely causes for particular water level responses over time.

2 Methodology to create master hydrographs

The water level data used to create master hydrographs were derived from the 170 sites across England and Wales for which detailed long-term time series are available. The datasets have been used as received from "Wellmaster". The data have been analysed using the S-PLUS statistical software and Excel.

The methodology employed involves the following steps:

- 1. Identifying all available detailed time series for the aquifer under investigation.
- 2. Plotting available data as time series, referenced to Ordnance Datum, including a linear regression curve using ordinary least squares (OLS) to provide a visual indication of trend.
- 3. Normalising water level data, so that the mean becomes zero and the standard deviation becomes one. Normalised data are plotted as a time series, including a moving average smoothing line through the data to provide a visual indication of seasonality and long-term trend.
- 4. The frequency of the water level measurements is analysed, sorting the data into date order and then calculating the interval between successive measurements in days. The sample frequency in days is plotted against time. Median and mean sample frequencies are determined.
- 5. To check for seasonality, data are autocorrelated using the autocorrelation function (acf). The acf gives the correlation between measurements at different separations in time, with one separation, i.e 'lag', representing the time between water level measurements, e.g. weekly. At zero lag, the acf plot has always a value of one, as data are perfectly correlated with themself. With increasing lags, values diminish, indicating the data are less correlated. With highly correlated data, a high correlation would be expected every 12 months or so. If the data are sampled irregularly, the seasonal effect may not be apparent in the acf.
- 6. Boreholes are grouped on the basis of the analysis described under points 1) to 5) identifying time series showing the same seasonal response and/or trend (Figure 2.1).
- 7. The normalized water level measurements for the grouped bores are then aggregated to obtain a single time series, which forms the basis for the master hydrograph (Figure 2.2).
- 8. The time series established under 7) is plotted together with moving averages smoothing lines. To establish the master hydrograph, normalized water levels over an approximately monthly separation in time are averaged. The number of data points that need to be used in order to obtain a monthly time step is calculated on the basis of the median sample frequency of the amalgamated dataset; thus if there are approximately 15 data points per months, then the moving average is calculated using a sample frequency of 15. A second moving average smoothing line is drawn, based on normalized water levels over an approximately yearly separation in time to visualize long-term trends (Figure 2.2).
- 9. The master hydrograph, i.e. the monthly averages smoothing line, is plotted as a cumulative frequency plot to establish five categories ranging from "Very high" to "Very low" water levels. Water levels in the 0 to 20% category are classed as "very low", in the 20% to 40% category as "low", in the 40 to 60% category as "average", in

the 60 to 80% category as "high" and in the 80% to 100% category as "very high" (Figure 2.3).

10. Arithmetic water level means are calculated for every month based on the available master hydrograph time series, i.e. the monthly averages smoothing line, to establish a monthly look-up table for the "Wellmaster" database. The months are tagged according to the five water level categories established in step 9).

Limitations of the methodology described above and conditions of use of data:

It is likely that assessing water level responses over time at a particular borehole might not be representative for level responses in the entire aquifer. Water levels in one location might be influenced by local conditions such as pumping. Hence, boreholes in the same aquifer, which show broadly the same response over time are grouped. Grouping, however, of boreholes into similar time series in terms of seasonality and/or trend is somewhat subjective. Within this study, grouping is based on trend and seasonality analysis as described under points 1) to 5), but other groupings might be feasible and could alter the shape of the master hydrograph to some degree.

Grouping might be improved if known hydrogeological criteria, such as thickness of the unsaturated zone, proximity to surface water courses, etc are taken into account. This however, is beyond the scope of this present study, and groupings were based purely on statistical analysis. Master hydrographs were only established, if more than two boreholes showed similar time series and could be grouped together. Remaining boreholes were discarded, even though they might be representative for specific hydrogeological conditions within the aquifer. For this to be established, additional data besides the here available long-term hydrographs would have to be sought.

Besides seasonal trend analysis, datasets are additionally tested for linear trends using ordinary least squares (OLS) linear regression, a parametric method, which assumes data to be normally distributed, following the Gaussian distribution. It was beyond the scope of this study to introduce other methods of data analysis for trend detection, e.g non-parametric procedures.

The master hydrograph is based on a moving average smoothing line. Ideally, such data smoothing should be carried out on observations taken at regular intervals. Many of the time series records include irregularly spaced data, as the sample frequency plots reveal. As a consequence, the number of data points used to calculate the average, chosen on the basis of the median sample frequency, spans not necessarily over monthly periods, but in some cases over longer or shorter than monthly time periods.

Classical time series analysis, i.e. autocorrelation, assumes regularly spaced measurement, which is not always strictly true in the datasets used, as sampling frequencies often changed over time.

Ideally, master hydrographs should be cross checked with long term time series datasets from the same aquifer, which were not part of the initial study, in order to check for the graphs representativeness. This however, is beyond the scope of this present study.

Before single point data is tagged using the respective master hydrographs developed in this study, allowance should ideally be made for identifying records where water levels are influenced by local or regional pumping or other known local hydrogeological effects.

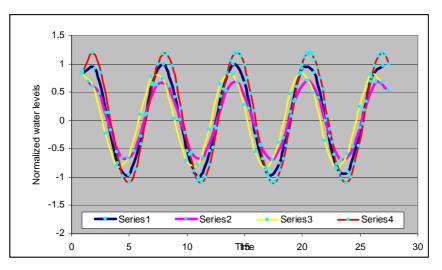


Figure 2.1 Normalized water levels of similar time series

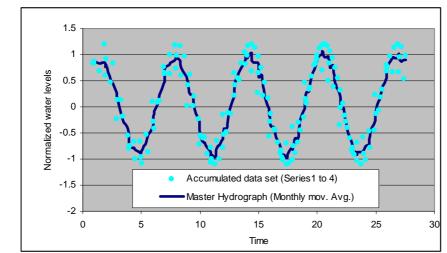


Figure 2.2 Similar time series are accumulated into one group. A monthly averaging smoothing line is calculated on the basis of the aggregated data, i.e the master hydrograph.

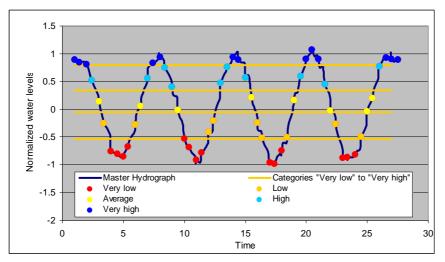


Figure 2.3 Averaged monthly values are divided into five categories, ranging from "Very low" to "Very high". Categories are determined on the basis of the 0.2, 0.4, 0.6 and 0.8 percentiles.

3 Aquifers investigated

Figure 3.1 shows the investigated aquifers in England and Wales together with the borehole locations, for which detailed water level time series data are available for the respective aquifers.

Figure 3.1 Investigated aquifers in England and Wales and location of boreholes with detailed water level time series.

Table 3.1 list the aquifers investigated during this study, their available number of time series records and the number of hydrographs produced per aquifer. Further details are provided in the sections dedicated to the respective aquifers.

Aquifer	No. of time series records available	No. of records discarded due to sparse/erroneous measurements	No. of records discarded due to their unique time series, not mirrored in other boreholes	No. of master hydrographs developed
Magnesian Limestone	14	-	6	2
Millstone Grit	8	-	2	1
Hasting Beds	10	3	-	1
Lower Greensand	9	1	4	1
Middle Jurassic	8	1	2	1
Upper Jurassic	6	-	-	1
Chalk – Berkshire and East Anglia	52	1	-	1
Chalk – South Downs	9	1	1	1
Chalk – Hampshire and Wiltshire	17	-	1	1
Chalk – Lincolnshire and Yorkshire	14	-	2	1
Chalk – North Downs	16	n.a.	n.a.	0
Chalk – London Basin	7	n.a.	n.a.	0
Permo Triassic Sandstone	62	n.a.	n.a	0

Table 3.1List of aquifers investigated

The following aquifers were not investigated, due to the limited number of long-term hydrographs available:

Table 3.2	List of aquifers not investigated due to limited data availability

Aquifer	No of time series records available
Lincolnshire Limestone	4
Coal Measures	3
Fell Sandstone	2
Upper Greensand	1
Superficial deposits	3
Carb. Limestone	5
Carboniferous	1

4 Magnesian Limestone

A total of 14 long term water level records are available for the Magnesian Limestone aquifer. Basic statistics on the dataset are provided in Table 4.1. The raw data, together with a linear regression curve is provided in Appendix 1, as are the normalized datasets together with moving average smoothing lines, the sampling frequency plots, the autocorrelation function plots and the developed monthly master hydrograph look-up table.

Table 4.1Summary statistics on water level time series data from the Magnesian Limestone(water levels in m AOD)

	Min	Max	Mean	Median	Standard	No.	Median sample		i	Depth of borehole
	water level [m]	water level [m]	water level [m]	water level [m]	Dev.	Observation	frequency [d]	From	to	[m]
NZ 33/20	67.42	88.86	80.09	79.20	3.52	2821	1	8-Jan-74	31-Dec-01	73.20
NZ 32/19	27.48	45.26	37.74	37.58	4.48	2083	6	21-Feb-68	21-Feb-01	112.70
SE 43/14	33.41	34.61	34.01	34.06	0.24	356	30	1-Jan-71	19-Dec-01	27.00
NZ 36/22	1.40	2.63	2.01	2.05	0.24	658	7	24-Jul-78	14-Apr-96	61.00
NZ 32/57	59.25	65.41	61.44	60.98	1.46	979	7	23-Oct-69	11-May-94	4 79.50
NZ 32/1b	19.01	41.67	29.10	28.52	7.40	598	7	8-Apr-67	13-Apr-85	106.70
SK 58/43	81.45	94.71	85.05	84.32	2.71	707	7	8-Jan-73	8-Apr-02	21.30
SK 46/71	167.41	170.49	168.63	168.57	0.54	674	8	23-Jan-73	13-Jun-02	9.90
SE 28/28	64.89	72.09	67.58	67.31	1.53	267	30	13-Jan-72	10-May-94	4 19.20
SE 35/4	35.48	37.52	36.54	36.52	0.41	368	30	10-Feb-70	17-Dec-01	53.30
SE 51/2	9.58	14.74	12.48	12.53	0.88	338	30	4-Mar-71	12-Feb-01	38.10
SE 43/9	31.10	37.75	34.26	34.35	1.52	423	30	30-Jan-68	28-May-02	2 55.40
NZ 22/22	64.77	77.90	74.99	75.95	2.87	2480	1	1-Nov-67	31-Dec-01	62.50
NZ 21/29	78.07	90.10	84.38	84.39	2.75	1637	7	23-Oct-69	24-Jun-04	32.00

Of the 14 time series records available, 4 datasets (NZ36/22, NZ32/57, NZ32/1b and NZ22/22) showed water level responses different to any other borehole records in the same aquifer. These water levels may be influenced by pumping and have been discarded. The remaining 10 time series can be grouped into three distinct water level response groups, based on bore depth.

Group 1 comprises shallow bores (the deepest borehole is 32 metres deep) and include bores SE43/14, SK58/43, SK46/71, SE28/28 and NZ21/29 (Figure 4.1). The time series records show no long term trend, but strong seasonality. The autocorrelation function (acf) plots show evidence of seasonality with a periodicity of about 12 lag units for boreholes with a median monthly sampling frequency and about 50 lag units for boreholes with a median weekly sampling frequency, i.e. a periodicity of about one year (Appendix 1). The five time series were aggregated to produce one master hydrograph for the shallow Magnesian Limestone aquifer from January 1974 to June 2002 (Figure 4.4).

Group 2 is based on three boreholes, i.e. SE51/2, SE43/9 and SE35/4, all showing similar level response patterns over time (Figure 4.5). The group 2 time series show long term trends in water levels. From the late 1960's levels fall sharply until around 1976, when recovery started at the end of the 1976 drought. A second distinct decline is recorded from about 1980 to 1993, when the decline was again arrested by recovery at the end of the 1988 to 1992 drought. On top of this trend, seasonality in water levels is observed but is subdued in comparison with records from Group 1. Time series of these boreholes, all of medium depth (between 38m and 55.4 metres), were amalgamated to produce a master hydrograph for medium depth boreholes in the Magnesian Limestone for the period from May 1971 to February 2001.

The two remaining boreholes (NZ33/20 and NZ32/19) have similar water level time series, which are distinct from Group 1 and Group 2. Both boreholes are with 73.2 m and 112.7 m relatively deep. They are located in close proximity, close to the northern margin of the aquifer. Further work is required to establish, if the response seen is typical for the deep Magnesian Limestone aquifer, or if these records display local hydrogeological effects such as pumping.

Time series plots of Group 1 and Group 2 are shown in Figure 4.1 and Figure 4.5. Both figures display:

- (a) the normalized data of the water level records, which form the basis for the respective master hydrographs;
- (b) the aggregated normalized water level data, together with the master hydrograph. The master hydrograph is produced by averaging water levels over approximately monthly separations in time. The number of data points to be averaged in order to obtain a monthly time step is thereby calculated on the basis of the median sample frequency of the amalgamated dataset. A second moving average smoothing line is drawn, based on an approximately yearly separation in time to visualize long term trends;
- (c) the master hydrograph, i.e. the monthly moving average smoothing line, and the respective threshold lines for the five categories into which water levels are being subdivided. These are calculated on the basis of the cumulative frequency plot of the master hydrograph. Water levels in the 0 to 20% category represent "very low" levels, data in the 20% to 40% category represent "low" levels, data in the 40 to 60% category represent "average" levels, data in the 60 to 80% category represent "high" levels and data in the 80% to 100% category represent "very high" levels.

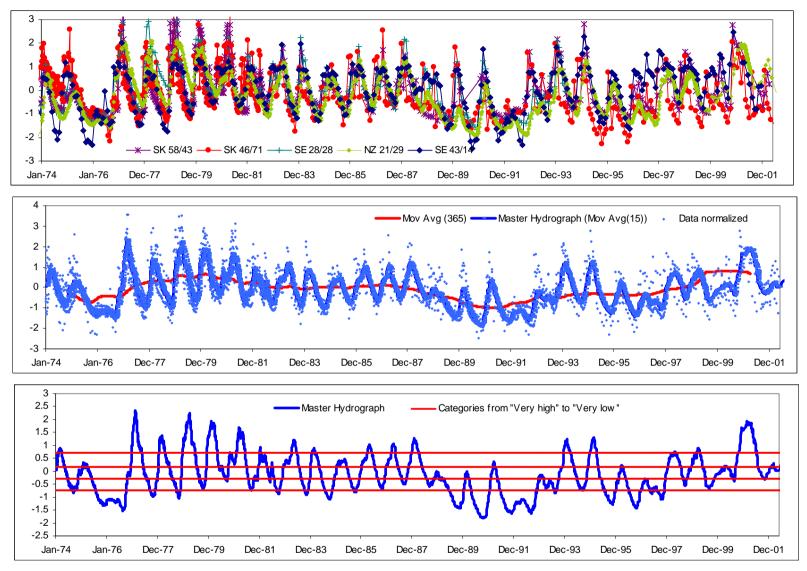


Figure 4.1 a) normalized data of the water level records used to establish the master hydrograph for the shallow Magnesian Limestone aquifer (Group 1); b) aggregated normalized water level data together with the master hydrograph and moving averages smoothing line to show long term trends (Group 1); c) master hydrograph and respective water level categories (Group 1)

Table 4.2Summary statistics of the data used to produce the master hydrograph for the shallowMagnesian Limestone aquifer (Group 1)

	Magnesium Limestone Master Hydrograph to be applied to boreholes of 0 to 35 metres depth							
Boreholes	Master Hydrograph =	Moving average (15)						
grouped together:	No of observations	3454						
SK 58/43;	From	Jan-74						
NZ 21/29;	То	Jun-02						
SE 28/28;	Median sample frequency	2 days						
SK 46/71;	Sample gaps >month	no						
SE 43/14	Trend	no						
	Seasonality							

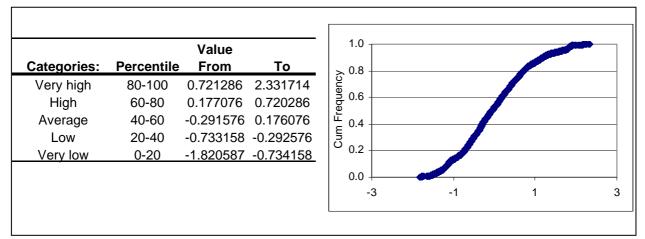


Figure 4.2 Categories used to tag monthly data of the master hydrograph (Group 1)

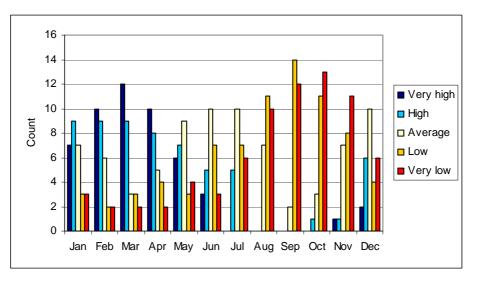


Figure 4.3 Frequency of water level categories per month based on established monthly look-up table (Group 1)

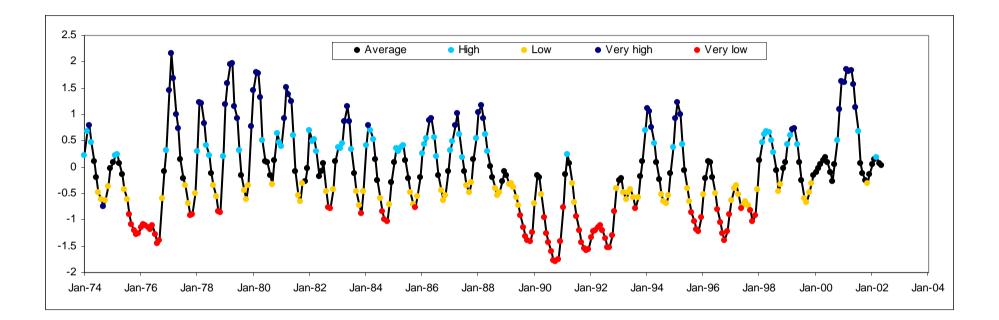


Figure 4.4 Master hydrograph for the shallow Magnesian Limestone aquifer (Group 1)

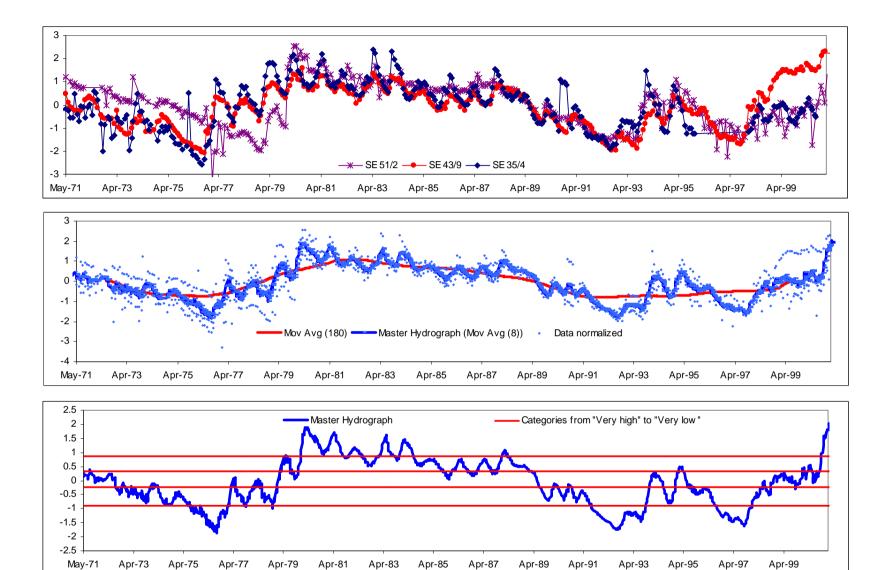


Figure 4.5 a) normalized data of the water level records used to establish the master hydrograph for boreholes of medium depth in the Magnesian Limestone aquifer (Group 2); b) aggregated normalized water level data together with the master hydrograph, and moving averages smoothing line to show long term trends (Group 2); c) master hydrograph and respective water level categories (Group 2)

Table 4.3Summary statistics of the data used to produce the master hydrograph (Group 2)

Summary st	Summary statistics - Master Hydrograph								
Aquifer: Condition: Comment:	Magnesium Limestone Borehole depth 30 to 60m Seasonality and distinct trend								
Boreholes		Master Hydrograph =	Moving average (8)						
grouped toge	ether:	No of observations	1129						
SE 35/4		From	May-71						
SE 51/2		То	February-01						
SE 43/9		Median sample frequency	4 days						
		Sample gaps >month	yes						
		Trend	yes						
		Seasonality	yes						

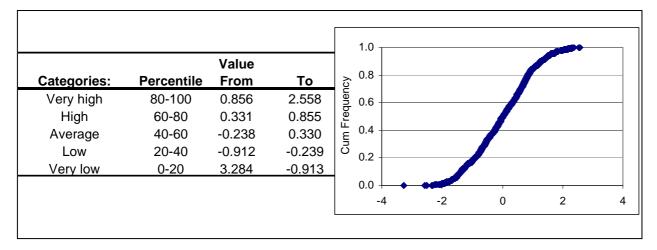


Figure 4.6 Categories used to tag monthly data of the master hydrograph (Group 2)

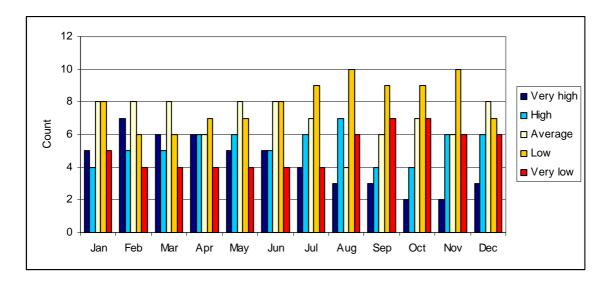


Figure 4.7 Frequency of water level categories per monthly period based on the established monthly look-up table (Group 2)

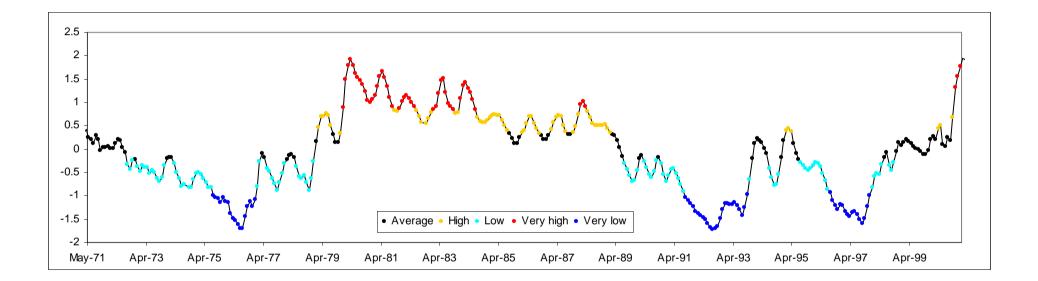
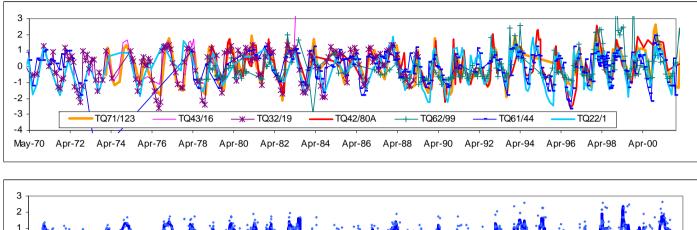
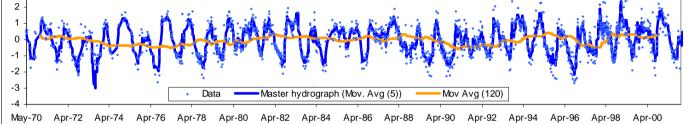


Figure 4.8 Master hydrograph for boreholes of medium depths in the Magnesian Limestone

5 Hasting Beds

A total of 10 long term water level records were available for the Hasting Beds aquifer. Basic statistics on the dataset is provided in Table 5.1. The raw data, together with a linear regression curve are provided in Appendix 2, as are the normalised datasets together with moving averages smoothing lines, the sampling frequency plots, the autocorrelation function plots and the master hydrograph look-up table.


TT 1 1 7 1	a		с ,•	· c	1 TT /	$\mathbf{D} 1 1 1$	1 1
Table 5.1	Summary	statistics 1	for time	series from	the Hasting	Beds (water	levels in m AOD)


	Min	Max	Mean	Median	Standard	No.	Median sample			Depth
	water level [m]] water level [m]	water level [m]	water level [m]	Dev.	Observation	frequency [d]	From	to	of borehole [n
TQ43/16	167.94	181.31	170.87	169.85	2.59	98	32	14-Mar-73	16-May-83	39.6
TQ61/47	30.83	33.75	32.32	32.11	1.02	48	48	29-Oct-65	24-Oct-73	22
TQ42/10	130.26	139.67	135.11	133.81	3.52	25	34	07-Sep-66	05-Dec-77	14.4
ГQ71/123	23.53	30.46	26.63	26.57	1.46	239	31	24-Jan-74	13-May-02	17.9
TQ62/89	84.76	90.43	89.40	90.38	1.84	25	36	19-Mar-73	12-Dec-77	7.1
TQ22/1	86.55	89.77	88.36	88.58	0.74	331	28	04-Sep-64	24-Dec-01	5.5
TQ32/19	67.22	74.37	71.92	72.44	1.80	177	35	14-Jun-68	19-Jul-89	13.5
FQ42/80A	169.67	183.44	176.51	176.18	2.70	181	32	13-Mar-79	15-Apr-02	38.5
TQ62/99	133.48	145.14	137.83	137.44	1.46	198	31	07-Sep-78	09-May-02	19
TQ61/44	109.19	119.68	117.03	117.36	1.38	307	31	31-Jan-64	19-Dec-01	11.2

Of the 10 time series records available, 3 datasets were discarded due to their limited observation periods. These are TQ62/89, TQ42/10 and TQ61/47, all records with less than 50 water level records. The remaining data stets were aggregated into one group to establish one master hydrograph for the Hastings aquifer. These records show an approximately monthly sampling frequency, however data gaps of several months are present. No significant long-term trend is observed, but the data exhibits strong seasonality (Appendix 2). The autocorrelation function (acf) plots show evidence of seasonality with a periodicity of about 12 lag units or about one year. The master hydrograph was established for the period May 1970 to December 2001.

Figure 5.1 shows:

- (a) the normalised water level data of the 7 records used to establish the Master Hydrograph, for the period 1970 to 2001;
- (b) the aggregated normalised water level data from 1970 to 2001 together with the master hydrograph. The master hydrograph is produced by averaging water levels over approximately monthly separations in time. The number of data points to be averaged in order to obtain a monthly time step is thereby calculated on the basis of the median sample frequency. A second moving average smoothing line is drawn, based on an approximately yearly separation in time to visualise long term trends.
- (c) the master hydrograph, i.e. the monthly moving average smoothing line, and the respective threshold lines for the five categories in which water levels are being subdivided. These are calculated on the basis of the cumulative frequency plot of the master hydrograph. Water levels in the 0 to 20% category represent "very low" levels, data in the 20% to 40% category represent "low" levels, data in the 40 to 60% category represent "average" levels, data in the 60 to 80% category represent "high" levels and data in the 80% to 100% category represent "very high" levels.

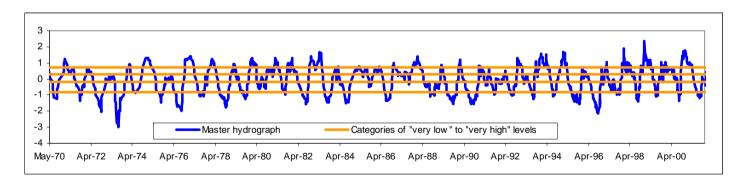


Figure 5.1 a) normalised water level data of the 7 records used to establish the master hydrograph for the Hasting Beds aquifer; b) aggregated normalised water level data together with the master hydrograph, and a moving averages smoothing line to show long term trends; c) master hydrograph and respective water level categories

Table 5.2Summary statistics of the data used to produce the master hydrograph for the HastingsBed aquifer

Summary se Aquifer: Condition:	Hasting Beds	er Hydrograph graph to be applied to all borehole	25
Boreholes		Master Hydrograph =	Mov. Average (5)
grouped tog	ether:	No of observations	1502
TQ43/16	TQ62/99	From	May-70
TQ71/123		То	December-01
TQ22/1		Median sample frequency	6 days
TQ32/19		Sample gaps > month	Yes
TQ42/80A		Trend	no
TQ61/44		Seasonality	yes

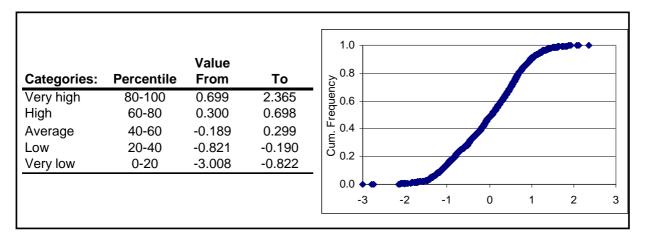


Figure 5.2 Categories used to tag monthly data of the master hydrograph

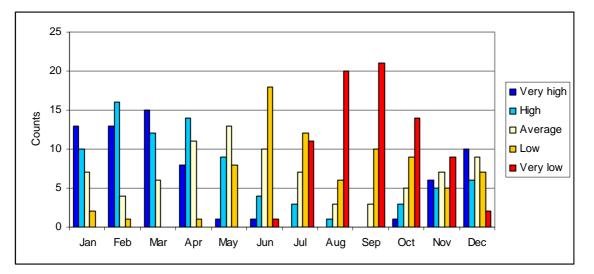


Figure 5.3 Frequency of water level categories per monthly period based on the established monthly look-up table

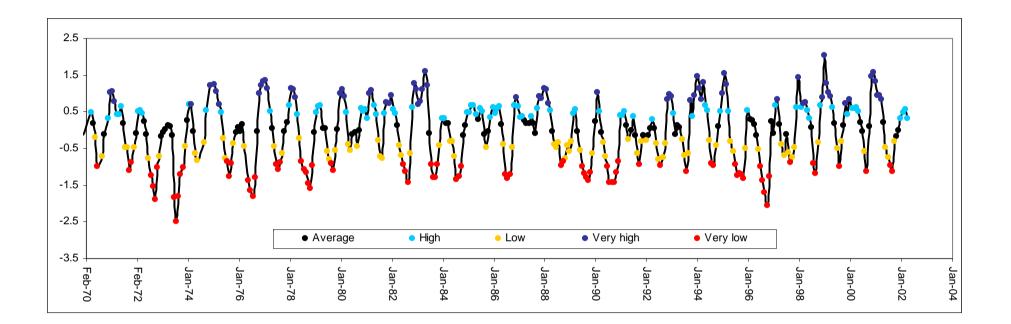


Figure 5.4 Master hydrograph for the Hasting Beds aquifer

6 Middle Jurassic

A total of 8 long term water level records are available for the Middle Jurassic aquifers. Basic statistics on the datasets is provided in Table 6.1. The raw data, together with a linear regression curve is provided in Appendix 3, as are the normalised datasets together with moving averages smoothing lines, the sampling frequency plots, the autocorrelation function plots and the master hydrograph look-up table.

Table 6.1Summary statistics of long term hydrographs from the Middle Jurassic aquifers (waterlevels in m AOD)

	Min water level [m]	Max water level [m]	Mean water level [m]	Median water level [m]	Standard Dev.	No. Observation	Median sample frequency [d]	From	to	Depth of borehole [m]
ST89/32A	85.68	118.11	99.62	97.84	6.64	2254	7	15-May-32	22-Jun-88	41.8
ST51/57	54.99	59.68	57.43	57.24	1.27	1306	1	22-Sep-71	01-Jan-02	7.2
ST77/8	104.48	128.58	117.47	118.28	4.91	225	21	02-Oct-73	26-Jun-86	58.0
SP33/41	139.70	144.16	142.04	142.15	1.11	413	7	09-Aug-64	29-Sep-74	54.4
SP20/114	89.50	91.81	90.65	90.56	0.70	28	33	23-Mar-79	19-Nov-81	65.2
SP00/62	97.38	103.45	101.23	101.15	1.10	1778	7	05-Dec-58	02-Nov-04	61.0
SP20/113	80.73	91.41	87.68	87.67	2.70	560	1	20-Jan-83	31-Dec-01	65.8
ST88/62A	60.30	96.19	80.85	82.37	8.71	323	28	03-Oct-77	20-Dec-01	112.1

The median sample frequency of the available eight long term hydrographs is monthly, weekly and daily, respectively. One time series was discarded due to the limited amount of data (SP20/114). Five of the remaining time series data show similar water level responses over time (SP00/62, ST88/62A, ST89/32A, ST51/57, ST77/8) (Figure 6.1). Water levels show strong seasonality, but exhibit no long-term trend. These boreholes, which span depths from 7.2 metres to 112m, were aggregated into one group to produce one master hydrograph for the Middle Jurassic aquifers. The master hydrograph was established from September 1958 to May 2001. The two remaining time series records (SP33/41 and SP20/113) show also strong seasonality, however step changes in water levels over time, which are not observed in any of the other time series records, suggest these boreholes to be influenced by local hydrological factors, such as pumping. The data has not been included in any data manipulation.

Figure 6.1 shows:

- (a) the normalised water level data of the five water level records used to establish the master hydrograph;
- (b) the aggregated normalised water level data from 1958 to 2001 together with the master hydrograph. The master hydrograph is produced by averaging water levels over approximately monthly separations in time. The number of data points to be averaged in order to obtain a monthly time step is thereby calculated on the basis of the median sample frequency. A second moving average smoothing line is drawn, based on an approximately yearly separation in time to visualise long term trends.
- (c) the master hydrograph, i.e. the monthly moving average smoothing line, and the respective threshold lines for the five categories in which water levels are being subdivided. These are calculated on the basis of the cumulative frequency plot of the master hydrograph. Water levels in the 0 to 20% category represent "very low" levels, data in the 20% to 40% category represent "low" levels, data in the 40 to 60% category represent "average" levels, data in the 60 to 80% category represent "high" levels and data in the 80% to 100% category represent "very high" levels.

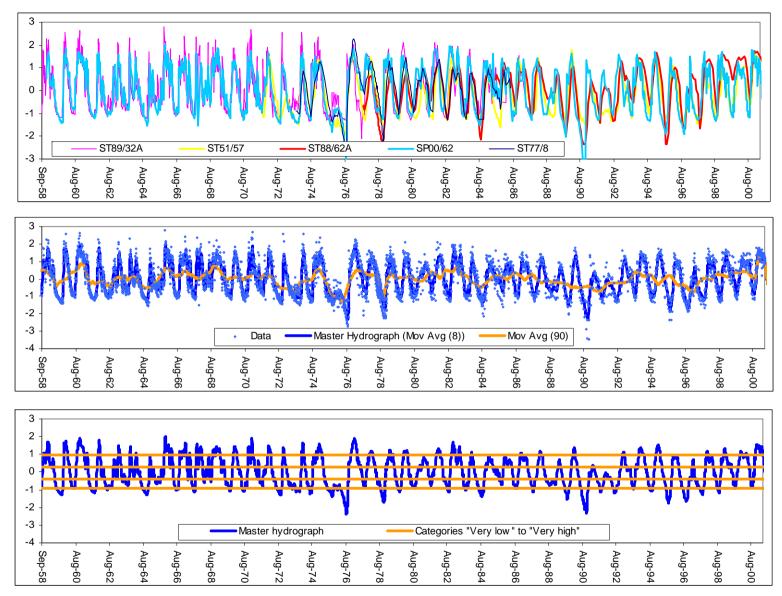


Figure 6.1 a) normalised water level data of the five records used to establish the master hydrograph for the Middle Jurassic aquifer; b) aggregated normalised water level data together with the master hydrograph, and moving averages smoothing line to show long term trends; c) master hydrograph and respective water level categories

Table 6.2Summary statistics of the data used to produce the master hydrograph for the MiddleJurassic aquifers

Summary statistics - Master Hydrograph Aquifer: Middle Jurassic Condition: Master Hydrograph to be applied to all boreholes							
Boreholes	Master Hydrograph =	Mov. Average (8)					
grouped together:	No of observations	4722					
SP00/62	From	September-58					
ST77/8	То	May-01					
ST51/57	Median sample frequen	4 days					
ST89/32A	Sample gaps > month	No					
ST88/62A	Trend	no					
	Seasonality	yes					

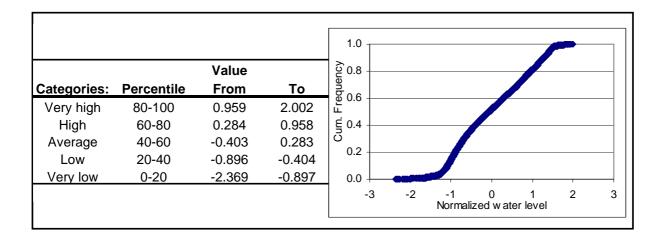


Figure 6.2 Categories used to tag monthly data of the master hydrograph

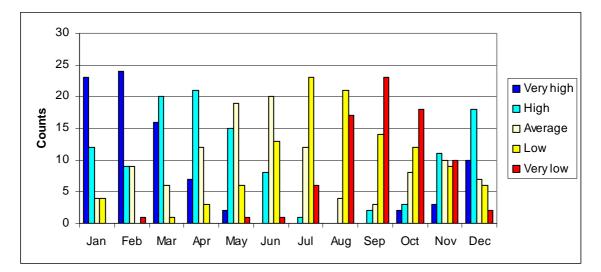
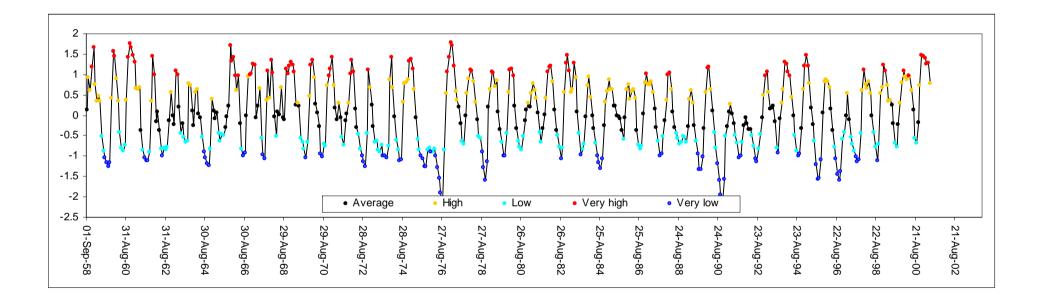
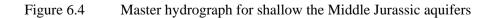
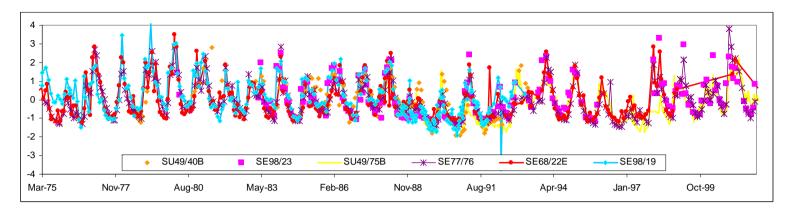
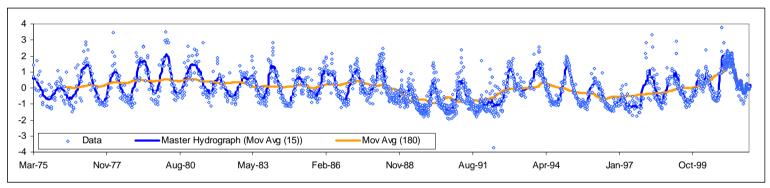




Figure 6.3 Frequency of water level categories per monthly period based on the developed monthly look-up table

7 Upper Jurassic

A total of 6 long term water level records are available for the Upper Jurassic aquifers. Basic statistics on the datasets is provided in Table 7.1. The raw data, together with a linear regression curve is provided in Appendix 4, as are the normalised datasets together with moving averages smoothing lines, the sampling frequency plots, the autocorrelation function plots and the master hydrograph look-up table.


Table 7.1	Summary statistics of long term hydrographs from the Upper Jurassic aquifers (water
levels in m AO	D)


	Min	Max	Mean	Median	Standard	No.	Median sample			Depth of
	water level [n	n] water level [m]	water level [m]	water level [m]	Dev.	Observation	frequency [d]	From	to	borehole [m]
SE98/23	31.91	35.86	33.04	32.85	0.85	201	28	27-Mar-80	19-Dec-01	35.00
SU49/75B	58.34	59.50	58.84	58.83	0.28	936	6	12-Jan-88	31-Dec-01	9.50
SE68/22E	37.70	41.34	38.65	38.41	0.77	296	28	20-Jan-75	17-Dec-01	24.30
SU49/40B	59.03	59.85	59.36	59.35	0.17	132	28	13-Sep-78	11-May-93	30.50
SE77/76	15.46	22.75	17.48	17.19	1.39	357	28	14-Apr-75	17-Dec-01	70.00
SE98/19	27.19	36.68	31.71	31.60	1.21	342	28	28-Apr-71	1-Apr-93	45.70

The median sample frequency of the available 6 long term hydrographs is monthly and weekly, respectively. Similar water level responses over time are observed for all 6 time series (Figure 7.1). Water levels show seasonality, but exhibit no long-term trend. The strong seasonal periodicity in water levels is displayed in the acf plots (Appendix 4). All boreholes, which span depths from 9.5 metres to 70 m, were aggregated into one group to produce one master hydrograph for the Upper Jurassic aquifers. The master hydrograph was established from March 1975 to December 2001.

Figure 7.1 shows:

- (a) the normalised water level data of the five water level records used to establish the master hydrograph;
- (b) the aggregated normalised water level data from 1975 to 2001 together with the master hydrograph. The master hydrograph is produced by averaging water levels over approximately monthly separations in time. The number of data points to be averaged in order to obtain a monthly time step is thereby calculated on the basis of the median sample frequency. A second moving average smoothing line is drawn, based on an approximately yearly separation in time to visualise long term trends.
- (c) the master hydrograph, i.e. the monthly moving average smoothing line, and the respective threshold lines for the five categories in which water levels are being subdivided. These are calculated on the basis of the cumulative frequency plot of the master hydrograph. Water levels in the 0 to 20% category represent "very low" levels, data in the 20% to 40% category represent "low" levels, data in the 40 to 60% category represent "average" levels, data in the 60 to 80% category represent "high" levels and data in the 80% to 100% category represent "very high" levels.

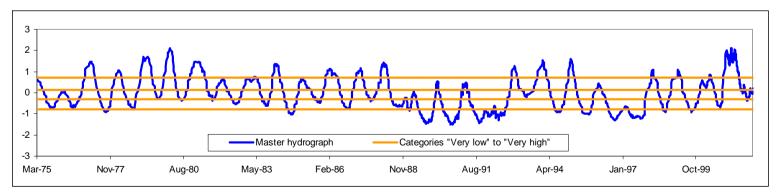


Figure 7.1 a) normalised water level data of the five records used to establish the master hydrograph for the Upper Jurassic aquifer; b) aggregated normalised water level data together with the master hydrograph, and moving averages smoothing line to show long term trends; c) master hydrograph and respective water level categories

Table 7.2Summary statistics of the data used to produce the master hydrograph for the UpperJurassic aquifers

Aquifer: Up	s - Master Hydrograph per Jurassic ster Hydrograph to be applied to all	boreholes
Boreholes	Master Hydrograph =	Mov. Avg. (15)
grouped together:	No of observations	2245
SE98/23	From	Mar/75
SU49/75B	То	Dec/01
SE68/22E	Median sample frequency	2 days
SU49/40B	Sample gaps > month	yes
SE77/76	Trend	no
SE98/19	Seasonality	yes

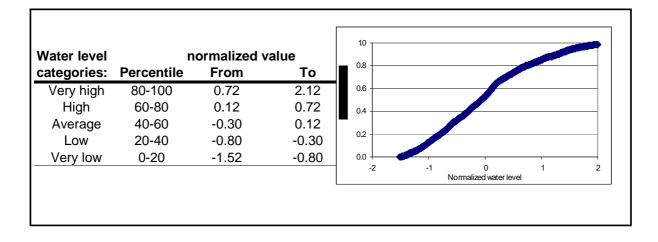


Figure 7.2 Categories used to tag monthly data of the master hydrograph

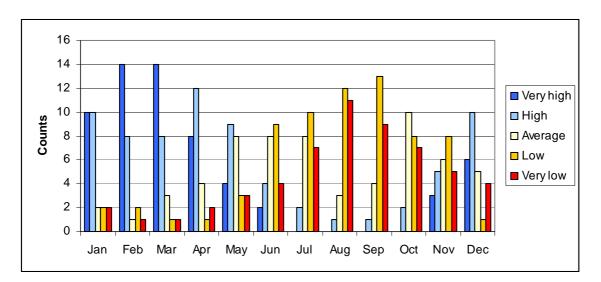
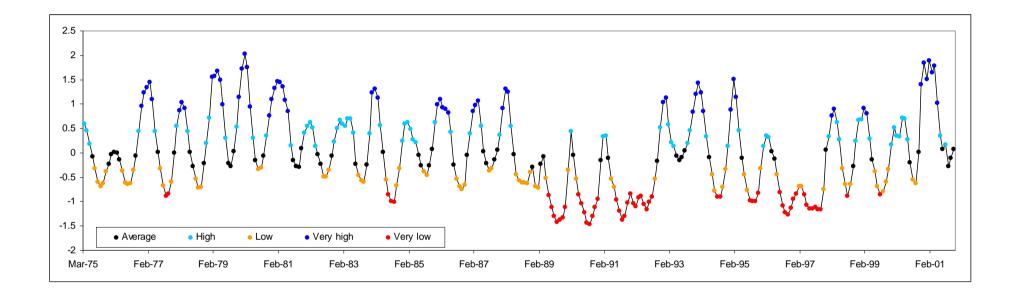



Figure 7.3 Frequency of water level categories per monthly period based on the developed monthly look-up table

8 Chalk – Hampshire and Wiltshire

A total of 17 long term water level records are available for the Chalk aquifer in Hampshire and Wiltshire. Basic statistics on the datasets is provided in Table 8.1. The raw data, together with a linear regression curve is provided in Appendix 5, as are the normalised datasets together with moving averages smoothing lines, the sampling frequency plots, the autocorrelation function plots and the master hydrograph look-up table.

Table 8.1	Summary statistics of long term hydrographs from the Chalk aquifer in Hampshire
and Wiltshire ((water levels in m AOD)

	Min	Max	Mean	Median	Standard	No.	Median sample			Depth
	water level [m]	water level [m]	water level [m]	water level [m]	Dev.	Observation	frequency [d]	From	to	of boreholes [m]
SU61/28B	42.83	78.83	53.24	50.46	7.14	443	28	04-Feb-53	26-Mar-84	62.80
SU35/14	93.27	130.40	105.72	104.66	7.16	447	29.5	15-Mar-59	23-Oct-01	43.60
SU73/8	92.25	120.70	102.30	101.61	6.37	1434	7	01-May-66	25-Dec-01	28.30
SU04/2	78.25	99.59	87.80	87.36	6.25	461	11	21-Jan-66	10-Feb-89	21.72
SU01/5B	67.62	109.40	83.34	82.58	9.79	2049	7	12-Jan-42	31-Oct-04	45.10
SU61/46	33.39	76.54	43.31	42.28	6.33	638	28	25-Nov-52	14-Jun-99	111.20
SU51/10	39.87	45.20	42.61	42.48	1.08	340	28	23-Mar-65	11-Nov-93	121.90
SY68/34	63.10	71.52	67.78	67.86	2.26	1084	7	23-Feb-74	31-Oct-04	11.70
SU17/57	128.78	144.11	134.48	133.78	3.45	3612	7	26-Mar-33	02-Nov-04	17.60
SU32/3	32.67	66.63	40.63	39.10	5.59	1896	7	19-Feb-64	19-Dec-01	59.10
SU64/28	90.25	103.65	95.84	95.73	1.76	640	27	15-Oct-58	17-Dec-01	76.00
SU61/32	63.59	92.44	74.08	73.42	6.22	567	28	05-Nov-58	19-Dec-01	41.20
SU34/8A	72.33	90.40	81.03	81.19	2.93	1380	7	19-Mar-63	01-Dec-95	35.10
SU53/94	65.19	67.79	65.85	65.83	0.32	401	28	13-Apr-76	17-Dec-01	85.00
SU14/5C	84.59	91.61	87.29	87.07	1.60	121	28	10-Jan-67	09-Aug-78	183.80
SU34/8D	73.65	92.00	82.33	82.12	4.32	311	7	04-Jan-96	31-Dec-01	
SU51/1	43.88	48.90	45.03	44.69	1.13	163	32	23-Mar-65	18-Jul-01	49.40

The median sample frequency of the 17 long term hydrographs ranges from weekly to monthly. However, some of the sampling was quite irregular. Of the 17 hydrographs available, one was discarded (SU51/1). This showed a response that was anomalous compared with the other hydrographs, particularly during 1992 and 1998 (Appendix 5).

Similar water level responses over time are observed for the remaining 16 time series (Figure 8.1). Water levels show seasonality, and an underlying trend of relatively lower levels around the years 1973 and 1976, and from 1989 to 1992 and around 1997. Extreme high events are seen in the winters of 1993/94 and 2000/2001. Most show little or no long term trend, with the exception of borehole SU34/8D which exhibits a strong upward trend in water level. The acf plots for most boreholes reveal a strong seasonality with a periodicity of about 12 lags for boreholes with monthly median sample frequency and about 50 lags for boreholes with median weekly sample frequency, i.e. about one year. Sixteen boreholes, which span depths from 11.7 metres to 183.8 metres (no depth was available for SU34/8D), were aggregated into one group to produce one master hydrograph for the Chalk aquifer across Hampshire and Wiltshire. The master hydrograph was established from March 1953 to October 2004 and appears similar to the master hydrograph established for the Chalk in the South Downs (section 9).

Figure 8.1 shows:

(a) the normalised water level data of the 16 water level records used to establish the master hydrograph;

- (b) the aggregated normalised water level data from 1953 to 2004 together with the master hydrograph. The master hydrograph is produced by averaging water levels over approximately monthly separations in time. The number of data points to be averaged in order to obtain a monthly time step is thereby calculated on the basis of the median sample frequency. A second moving average smoothing line is drawn, based on an approximately yearly separation in time to visualise long term trends.
- (c) the master hydrograph, i.e. the monthly moving average smoothing line, and the respective threshold lines for the five categories in which water levels are being subdivided. These are calculated on the basis of the cumulative frequency plot of the master hydrograph. Water levels in the 0 to 20% category represent "very low" levels, data in the 20% to 40% category represent "low" levels, data in the 40 to 60% category represent "average" levels, data in the 60 to 80% category represent "high" levels and data in the 80% to 100% category represent "very high" levels.

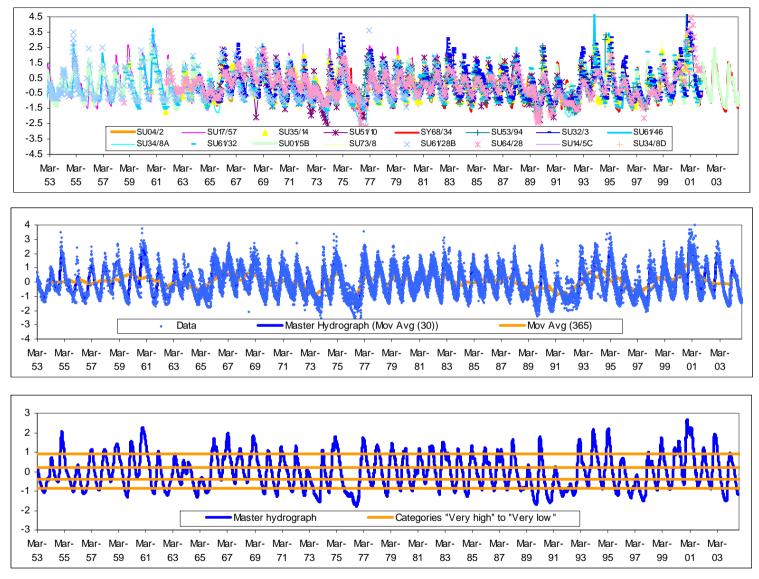


Figure 8.1 a) normalised water level data of the 16 records used to establish the master hydrograph for the Chalk aquifer in Hampshire and Wiltshire; b) aggregated normalised water level data together with the master hydrograph, and moving averages smoothing line to show long term trends; c) master hydrograph and respective water level categories

Table 8.2Summary statistics of the data used to produce the master hydrograph for the Chalkaquifer in Hampshire and Wiltshire

Summary s	Summary statistics - Master Hydrograph									
Aquifer:Chalk - Hamshire and WiltshireCondition:Master Hydrograph to be applied to all boreholes										
Boreholes			Master Hydrograph	Mov Avg (30)						
grouped tog	ether:		No of observations	14516						
SU35/14	SY68/34	SU53/94	From	Mar-53						
SU73/8	SU17/57	SU14/5C	То	Oct-04						
SU04/2	SU32/3	SU34/8D	Median sample frequency	1 days						
SU01/5B	SU64/28	SU61/28B	Sample gaps > month	no						
SU61/46	SU61/32		Trend	no						
SU51/10	SU34/8A		Seasonality	Yes						

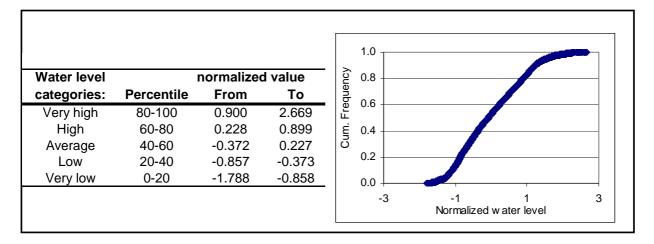
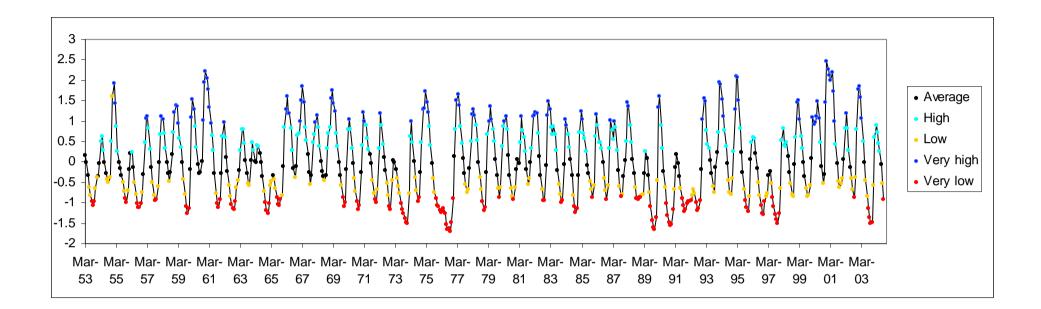



Figure 8.2 Categories used to tag monthly data of the master hydrograph

Figure 8.3 Frequency of water level categories per monthly period based on the developed monthly look-up table

Figure 8.4 Master hydrograph for the Chalk aquifer in Hampshire and Wiltshire

9 Chalk – South Downs

A total of 9 long term water level records are available for the Chalk aquifer in the South Downs (taken to be the extent of the Chalk in East and West Sussex). Basic statistics on the datasets is provided in Table 9.1. The raw data, together with a linear regression curve is provided in Appendix 6, as are the normalised datasets together with moving averages smoothing lines, the sampling frequency plots, the autocorrelation function plots and the master hydrograph look-up table.

Table 9.1Summary statistics of long term hydrographs from the Chalk aquifer in the South
Downs(water levels in m AOD)

	Min	Max	Mean	Median	Standard	No.	Median sample			Depth
	water level [m]	water level [m]	water level [m]	water level [m]	Dev.	Observation	frequency [d]	From	to	of boreholes [m]
TQ41/79	10.34	12.60	11.46	11.52	0.53	45	36.5	06-Oct-69	27-Sep-77	15.20
TQ31/50	58.59	100.80	73.72	71.45	7.45	231	31	09-Nov-79	27-Jun-02	149.96
TQ21/11A	68.68	83.34	72.49	71.73	2.12	576	28	23-Apr-58	27-Jun-02	39.10
TQ50/7	29.87	43.52	34.72	34.49	2.68	387	29	15-Oct-65	19-Dec-01	35.84
SU81/1	34.44	76.51	49.41	46.63	9.70	773	31	31-Jan-00	05-Nov-60	62.48
TV59/7C	1.01	5.03	1.82	1.67	0.52	2947	7	15-Apr-40	28-Nov-97	24.99
SU71/23	27.64	73.37	39.86	37.81	8.50	2510	7	31-Jan-00	31-Oct-04	53.85
TQ40/45B	0.10	5.28	1.14	0.97	0.64	329	31	30-Jan-70	21-Dec-01	66.75
TQ01/133	92.75	117.38	100.95	101.20	4.43	285	30	07-Jan-77	05-Jul-02	143.30

Of the original 9 boreholes, two were removed from analysis. TQ41/79 was not included due to the fact that it was located on Upper Greensand Formation to the north of the Chalk scarp slope. TQ21/11a was not included due to its water level response which was anomalous when compared to the other hydrographs: in particular, the hydrograph frequently seemed to reach a "base level", when other hydrographs showed recessions for months afterwards. The non-normalised hydrograph shows that there is little response, with normal annual fluctuations being within a few metres, and the hydrograph usually responding then returning to its base level within 3 or 4 months.

The median sample frequency of the remaining 7 long term hydrographs was monthly, with the exception of TV59/7C which was weekly. Similar water level responses over time are observed for the remaining 7 time series (Figure 9.1). The acf plots for most boreholes reveal some seasonality with a periodicity of about 12 lags for boreholes with monthly median sample frequency and about 50 lags for boreholes with median weekly sample frequency, i.e. about one year. The acf's for some boreholes (TQ21/11A, TQ31/50, SU71/23, and TQ 40/45B) suggest there is a year-on-year dependence in addition to the seasonal effect. The seven boreholes, which span depths from 24.99 metres to 149.96 metres, were aggregated into one group to produce one master hydrograph for the Chalk aquifer across the South Downs. The master hydrograph was established from January 1959 to October 2004 and appears reasonably similar to the master hydrograph established for the Chalk in the Hampshire and Wiltshire (see section 8). It is interesting to note that, although there are years when there is little or no recovery in water levels, the minimum winter level does not vary as much as in other areas; seasonality is more obvious than any long-term trend. As a result, the "Low" and "Very Low" water level limits are close (see Figure 9.1). This means that the drought years that are obvious in other master hydrographs are only notable by the lack of recovery, rather than a decline in minimum water level. These years include the winters of 1972/73, 1975/76, 1991/92, 1995/96 and 1996/97. In contrast, the high recharge winters are very apparent, including 1987/88, 1993/94, 1994/95 and 2000/01.

Figure 9.1 shows:

- (a) the normalised water level data of the 7 water level records used to establish the master hydrograph;
- (b) the aggregated normalised water level data from 1959 to 2004 together with the master hydrograph. The master hydrograph is produced by averaging water levels over approximately monthly separations in time. The number of data points to be averaged in order to obtain a monthly time step is thereby calculated on the basis of the median sample frequency. A second moving average smoothing line is drawn, based on an approximately yearly separation in time to visualise long term trends.
- (c) the master hydrograph, i.e. the monthly moving average smoothing line, and the respective threshold lines for the five categories in which water levels are being subdivided. These are calculated on the basis of the cumulative frequency plot of the master hydrograph. Water levels in the 0 to 20% category represent "very low" levels, data in the 20% to 40% category represent "low" levels, data in the 40 to 60% category represent "average" levels, data in the 60 to 80% category represent "high" levels and data in the 80% to 100% category represent "very high" levels.

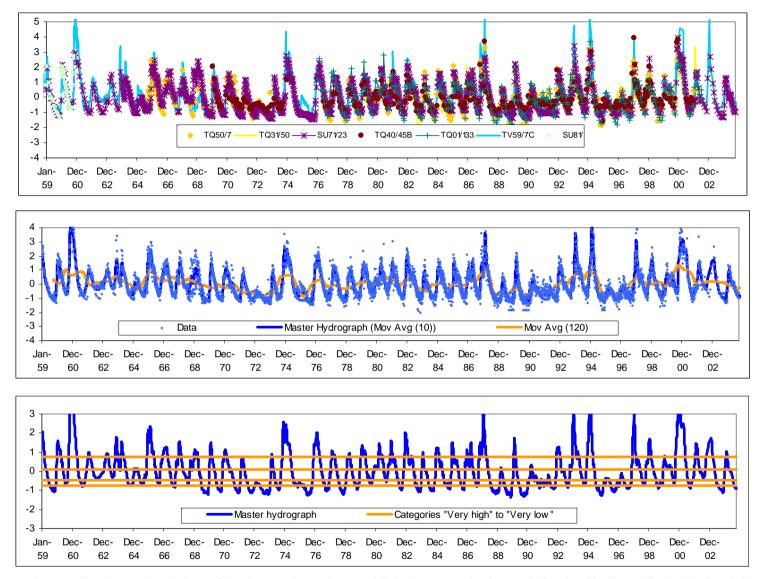


Figure 9.1 a) normalised water level data of the 7 records used to establish the master hydrograph for the Chalk aquifer in the South Downs; b) aggregated normalised water level data together with the master hydrograph, and moving averages smoothing line to show long term trends; c) master hydrograph and respective water level categories

Table 9.2Summary statistics of the data used to produce the master hydrograph for the Chalkaquifer in the South Downs

Summary statistics - Master Hydrograph									
Aquifer: Condition:	Chalk - South Do Master Hydrogra	owns ph to be applied to all boreholes							
Boreholes		Master Hydrograph	Mov Avg (10)						
grouped tog	ether:	No of observations	5070						
TQ31/50	TQ40/45B	From	Jan-59						
TQ01/133		То	Oct-04						
TQ50/7		Median sample frequency	3 days						
SU81/1		Sample gaps > month	no						
TV59/7C		Trend	no						
SU71/23		Seasonality	Yes						

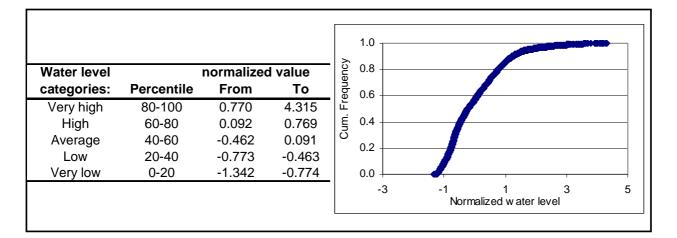


Figure 9.2 Categories used to tag monthly data of the master hydrograph

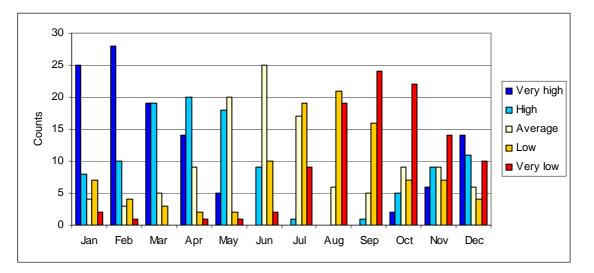
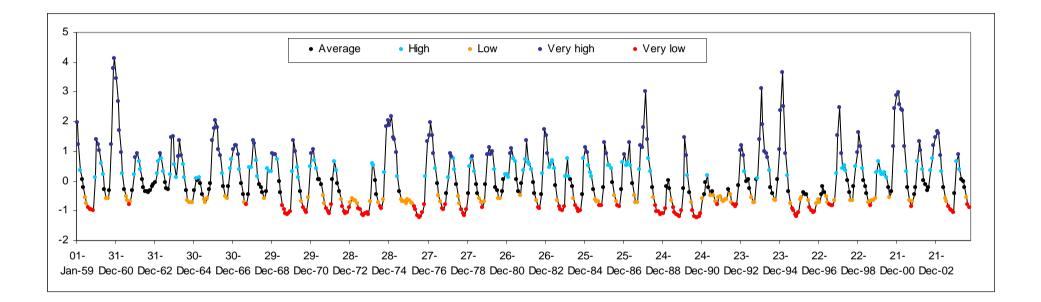
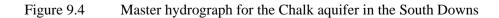




Figure 9.3 Frequency of water level categories per monthly period based on the developed monthly look-up table

10 Chalk – Lincolnshire and Yorkshire

A total of 14 long term water level records are available for the Chalk aquifer in Lincolnshire and Yorkshire. Basic statistics on the datasets is provided in Table 10.1. The raw data, together with a linear regression curve is provided in Appendix 7, as are the normalised datasets together with moving averages smoothing lines, the sampling frequency plots, the autocorrelation function plots and the master hydrograph look-up table.

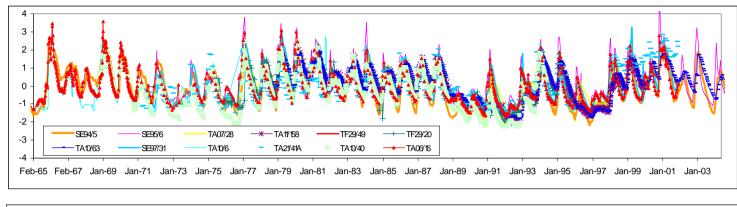
and Yorks		-		-			 		
	М.	N	N	M P	0, 1, 1	N		D	.1

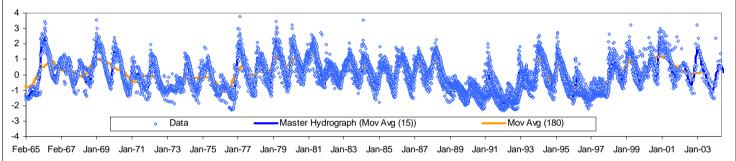
Summary statistics of long term hydrographs from the Chalk aquifer in Lincolnshire

	Min	Max	Mean	Median	Standard	No.	Median sample			Depth
	water level [m]	water level [m]	water level [m]	water level [m]	Dev.	Observation	frequency [d]	From	to	of boreholes [m]
SE93/4	42.41	57.66	48.40	48.41	1.56	334	26	15-Jan-71	30-Dec-91	43.00
TA07/28	23.53	39.69	31.08	31.57	4.00	452	22	4-Mar-76	11-Nov-01	85.60
TA06/16	16.15	27.90	19.88	19.28	2.25	911	10	16-Aug-64	27-Dec-01	81.10
SE94/5	9.64	23.82	16.89	16.74	3.13	5540	7	1-Jan-00	11-Oct-04	28.50
TA10/40	4.53	25.15	13.38	13.32	3.89	1798	7	4-Jun-26	9-Jun-94	56.40
SE97/31	54.43	80.72	62.56	61.05	5.59	481	27	10-Oct-71	12-Dec-01	76.20
TA11/158	3.45	19.70	10.76	11.14	4.04	374	16	14-Feb-80	17-Jan-00	67.00
TF29/49	4.47	23.17	12.70	12.89	4.45	1051	7	28-Oct-77	17-Dec-01	84.00
SE95/6	16.66	37.37	21.83	20.71	3.51	755	14	10-Oct-71	11-Oct-04	45.72
TA10/63	5.65	22.12	13.78	14.31	4.46	975	7	18-Oct-78	7-Oct-04	101.47
TA10/36	11.16	33.56	19.27	17.96	5.19	1087	8	1-Jan-26	29-Dec-95	52.90
TA21/41A	0.73	2.15	1.22	1.12	0.33	347	29	20-Apr-71	18-Dec-01	49.00
TA10/6	8.67	33.89	16.10	15.20	4.52	1796	7	2-Jan-29	14-Dec-00	74.70
TF29/20	1.63	7.94	4.77	4.78	1.49	246	29	30-Jul-75	3-Nov-95	19.00

The median sample frequency of the 14 long term hydrographs ranges from weekly to monthly. Gaps of several years are present in several time series (Appendix 7). Of the 14 hydrographs available, two were discarded (SE93/4 and TA 10/36). SE93/4 shows a consistent seasonal pattern in water levels from 1979 onwards, however, before 1979 water levels change rapidly and appear to be influenced by local hydrogeological conditions, possibly pumping. The same accounts for TA10/36, which also displays unique changes in water levels not repeated in any other borehole.

Similar water level responses over time are observed for the remaining 12 time series (Figure 10.1). Water levels show seasonality, and an underlying trend of relatively lower levels around the years 1973 and 1976, and from 1989 to 1992 and around 1997. This is observed for deep as well as shallow boreholes. The acf plots reveal for several boreholes strong seasonality with a periodicity of about 12 lags for boreholes with monthly median sample frequency and about 50 lags for boreholes with median weekly sample frequency, i.e. about one year. The twelve boreholes, which span depths from 19.0 metres to 101.5 metres, were aggregated into one group to produce one master hydrograph for the Chalk aquifer in Lincolnshire and Yorkshire. The master hydrograph was established from February 1965 to July 2004 and appears similar to the master hydrograph established for the Chalk in the Berkshire Downs and East Anglia (see section 11).


Figure 10.1 shows:


Table 10.1

- (a) the normalised water level data of the nine water level records used to establish the master hydrograph;
- (b) the aggregated normalised water level data from 1965 to 2004 together with the master hydrograph. The master hydrograph is produced by averaging water levels over

approximately monthly separations in time. The number of data points to be averaged in order to obtain a monthly time step is thereby calculated on the basis of the median sample frequency. A second moving average smoothing line is drawn, based on an approximately yearly separation in time to visualise long term trends.

(c) the master hydrograph, i.e. the monthly moving average smoothing line, and the respective threshold lines for the five categories in which water levels are being subdivided. These are calculated on the basis of the cumulative frequency plot of the master hydrograph. Water levels in the 0 to 20% category represent "very low" levels, data in the 20% to 40% category represent "low" levels, data in the 40 to 60% category represent "average" levels, data in the 60 to 80% category represent "high" levels and data in the 80% to 100% category represent "very high" levels.

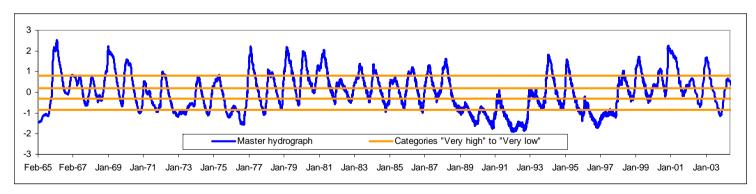


Figure 10.1 a) normalised water level data of the 12 records used to establish the master hydrograph for the Chalk aquifer in Lincolnshire and Yorkshire; b) aggregated normalised water level data together with the master hydrograph, and moving averages smoothing line to show long term trends; c) master hydrograph and respective water level categories

Table 10.2Summary statistics of the data used to produce the master hydrograph for the Chalkaquifer in Lincolnshire and Yorkshire

Summary statistics - Master Hydrograph								
Aquifer: Condition:		hire and Yorkshire ph to be applied to all boreholes						
Boreholes		Master Hydrograph	Mov Avg (15)					
grouped tog	ether:	No of observations	14725					
TA07/28	TF29/49	From	Feb-65					
TA06/16	SE95/6	То	Jul-04					
SE94/5	TA10/63	Median sample frequency	2 days					
TA10/40	TA21/41A	Sample gaps > month	no					
SE97/31	TA10/6	Trend	yes					
TA11/158	TF29/20	Seasonality	Yes					

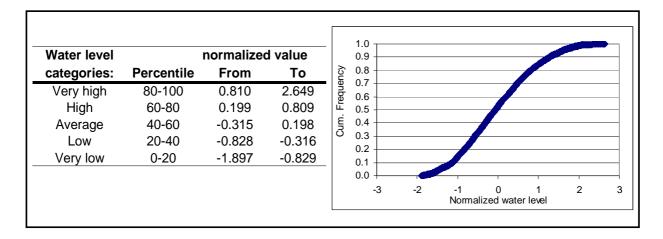


Figure 10.2 Categories used to tag monthly data of the master hydrograph

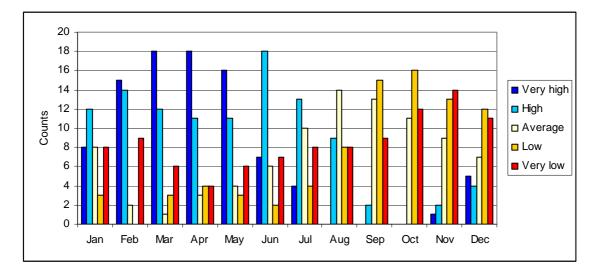


Figure 10.3 Frequency of water level categories per monthly period based on the developed monthly look-up table

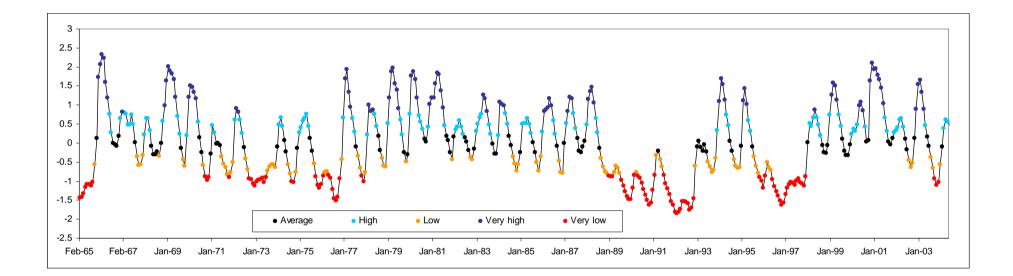


Figure 10.4 Master hydrograph for the Chalk aquifer in Lincolnshire and Yorkshire

11 Chalk – Berkshire Downs and East Anglia

A total of 52 long term water level records are available for the Chalk aquifer stretching from the Berkshire Downs to East Anglia. Due to time constraints, it was not possible to include all records in the statistical evaluation, but 10 records were selected randomly from the entire set. The geographic distribution of these, and location of the remaining boreholes, is shown in Figure 11.1. The area is widely covered with superficial deposits, and 7 out of the 10 boreholes sampled are located on superficial drift. As discussed below, this appears to have little influence on the hydrograph characteristics. Basic statistics on the selected dataset is provided in Table 11.1. The raw data, together with a linear regression curve is provided in Appendix 8, as are the normalised datasets together with moving averages smoothing lines, the sampling frequency plots, the autocorrelation function plots and the master hydrograph look-up table.

Table 11.1Summary statistics of long term hydrographs from the Chalk aquifer in Berkshire and
East Anglia Downs (water levels in m AOD)

	Min	Max	Mean	Median	Standard	No.	Median sample			Depth of
	water level [m]	water level [m]	water level [m]	water level [m]	Dev.	Observation	frequency [d]	From	to	borehole [m]
TL66/2	20.62	35.22	25.48	25.16	3.24	740	7	15-Mar-64	8-Sep-88	64.6
TL84/6	25.21	29.17	26.34	26.17	0.75	1955	7	7-May-63	5-Dec-01	30.1
TF80/33	30.64	43.29	34.94	34.82	1.57	343	31	1-Feb-71	18-Apr-02	40.0
TM26/95	26.51	27.42	26.90	26.89	0.18	293	30	21-May-74	7-Nov-01	45.7
TL33/4	70.69	99.05	79.57	79.16	5.68	1648	30	1-Jan-00	2-Nov-04	83.2
TL11/9	83.87	92.41	87.44	87.29	1.95	1048	7	18-Aug-64	14-Aug-00	80.8
TG12/7	40.08	42.62	41.43	41.50	0.53	310	30	31-May-74	5-Apr-01	61.0
TL42/8	33.10	74.14	56.26	68.42	17.41	936	7	2-Jul-64	31-Dec-01	37.2
SU68/49	54.27	77.38	68.78	69.45	5.15	1492	7	24-Oct-76	31-Dec-01	63.5
SU17/57	128.59	144.38	134.48	133.68	3.45	3612	7	26-Mar-33	2-Nov-04	17.6

The median sample frequency of the randomly selected 10 long term hydrographs is monthly or weekly. Similar water level responses over time are observed for all 10 time series (Figure 11.2), however the water level record from borehole TL42/8 appears to contain faulty data and the series was discarded (Appendix 8). Water levels show seasonality, and an underlying trend of relatively lower levels around the years 1973, 1991 and 1997. This is observed for deep as well as shallow boreholes. The shallowest borehole (SU17/57) reveals the strongest seasonality, with the autocorrelation function plots (ACF) showing a periodicity of about 50 to 60 lags, which equates, based on the median sample frequency, to one year (Appendix 8). The nine boreholes, which span depths from 17.6 metres to 83.2 metres, were aggregated into one group to produce one master hydrograph for the Chalk aquifer of the Berkshire Downs and East Anglia. The master hydrograph was established from November 1963 to April 2002.

Figure 11.2 shows:

- (a) the normalised water level data of the nine water level records used to establish the master hydrograph;
- (b) the aggregated normalised water level data from 1963 to 2002 together with the master hydrograph. The master hydrograph is produced by averaging water levels over approximately monthly separations in time. The number of data points to be averaged in order to obtain a monthly time step is thereby calculated on the basis of the median sample frequency. A second moving average smoothing line is drawn, based on an approximately yearly separation in time to visualise long term trends.

(c) the master hydrograph, i.e. the monthly moving average smoothing line, and the respective threshold lines for the five categories in which water levels are being subdivided. These are calculated on the basis of the cumulative frequency plot of the master hydrograph. Water levels in the 0 to 20% category represent "very low" levels, data in the 20% to 40% category represent "low" levels, data in the 40 to 60% category represent "average" levels, data in the 60 to 80% category represent "high" levels and data in the 80% to 100% category represent "very high" levels.

As due to time constrains within this study, only ten randomly selected hydrographs could be investigated, it is deemed advisable to examine the remaining long-term hydrographs in any future study.

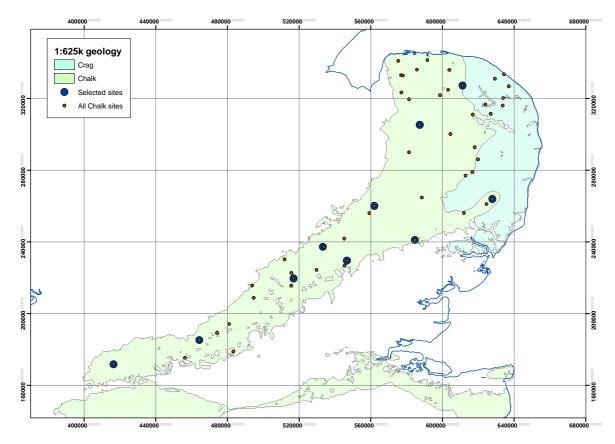


Figure 11.1 Location of randomly selected sites for the Chalk of the Berkshire Downs and East Anglia

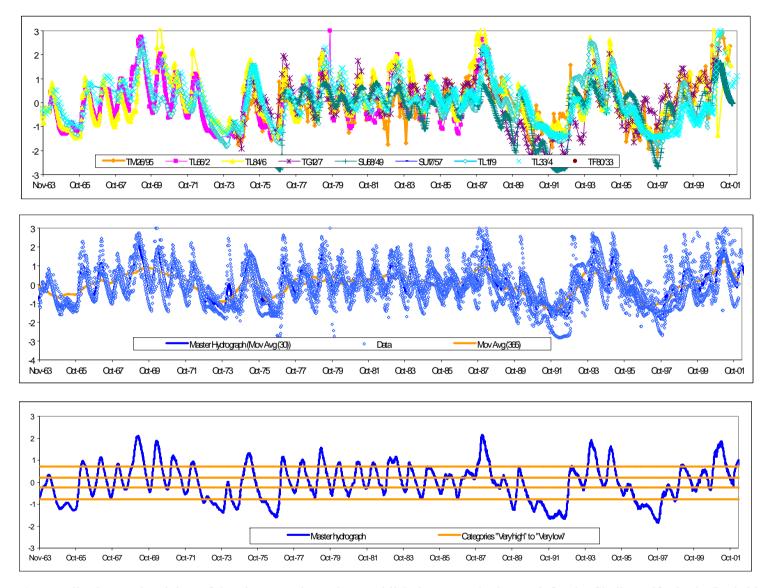


Figure 11.2 a) normalised water level data of the nine records used to establish the master hydrograph for the Chalk aquifer in the Berkshire Downs and East Anglia; b) aggregated normalised water level data together with the master hydrograph, and moving averages smoothing line to show long term trends; c) master hydrograph and respective water level categories

Table 11.2Summary statistics of the data used to produce the master hydrograph for the Chalkaquifer of the Berkshire Downs and East Anglia

Summary statistics - Master Hydrograph								
Aquifer: Condition:		hire and East Anglia graph to be applied to all bo	preholes					
Boreholes		Master Hydrograph	Mov Avg (30)					
grouped together:		No of observations	11439					
TL66/2	TG12/7	From	Nov-63					
TL84/6	SU68/49	То	Apr-02					
TF80/33	SU17/57	Median sample freque	ncy 1 day					
TM26/95		Sample gaps >month	no					
TL33/4		Trend	yes					
TL11/9		Seasonality	yes					

Water level		normalized	l value	0.9	
categories:	Percentile	From	То	0.7	
Very high	80-100	0.719	2.765	0.6	
High	60-80	0.194	0.718	0.4	
Average	40-60	-0.243	0.193	0.3	
Low	20-40	-0.771	-0.244	0.2	
Very low	0-20	-1.851	-0.772	0.0	
				-3	-1 1 3 Normalized water level

Figure 11.3 Categories used to tag monthly data of the master hydrograph

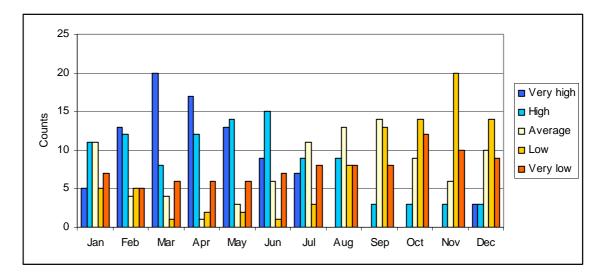
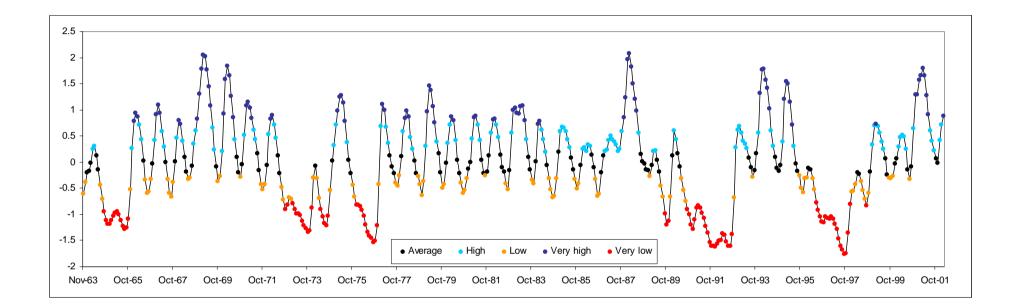



Figure 11.4 Frequency of water level categories per monthly period based on the developed monthly look-up table

Figure 11.5 Master hydrograph for the Chalk aquifer of the Berkshire Downs and East Anglia

12 Chalk – North Downs

A total of 16 long-term water level records are available for the Chalk aquifer in the North Downs. Basic statistics on the datasets is provided in Table 12.1.

Table 12.1Summary statistics of long term hydrographs from the Chalk of the North Downs(water levels in m AOD)

	Min water level [1	Max mvater level [m	Mean vater level [m	Median vater level [m	Standard Dev.	No. Observation	From	to	Depth of borehole [m]
TQ35/5	60.81	87.50	78.65	79.49	6.97	1295.00	16-May-1876	19-Dec-02	27.00
TQ56/19	79.95	102.95	85.02	84.76	2.31	779.00	20-Apr-61	23-May-02	90.50
TR34/81	17.24	23.68	20.07	19.60	1.28	185.00	6-May-71	14-Oct-88	62.25
TR15/58	38.87	54.16	47.16	47.29	4.35	181.00	6-Aug-70	22-Apr-87	19.90
TR05/6	4.12	10.13	6.24	6.06	1.50	107.00	30-Jun-70	18-Jan-82	34.00
TR14/42	89.32	111.78	95.69	93.91	5.57	157.00	8-Jan-71	28-Oct-86	82.30
TR24/13	24.22	33.44	28.83	29.13	2.18	158.00	2-Mar-64	6-Sep-77	38.30
TR36/62	2.05	8.01	3.57	3.34	1.01	537.00	4-Nov-69	14-Feb-02	43.10
TQ86/55	24.83	40.88	32.04	31.60	3.84	183.00	23-Feb-65	8-Jul-85	51.80
TQ66/48	23.56	26.86	24.98	24.95	0.64	247.00	27-Aug-68	6-Aug-89	68.90
TR05/11	10.03	19.71	13.54	13.80	1.92	195.00	27-Jan-64	21-Jun-88	40.23
TR14/50	83.02	99.51	93.71	93.84	2.51	265.00	2-Oct-70	29-Apr-02	15.60
TR35/49	8.67	13.45	10.32	10.19	1.13	167.00	5-Jan-71	13-Jan-94	10.96
TR14/9	56.77	87.16	68.48	67.74	7.40	859.00	7-Jan-71	31-Oct-04	31.33
TR24/36	30.48	53.42	35.56	33.12	4.67	261.00	5-Feb-71	22-Mar-02	109.72
TQ86/44	22.33	45.57	27.79	27.55	4.59	337.00	20-Jul-82	13-May-02	56.00

The North Downs Chalk long term hydrographs all show some degree of seasonality. However, in contrast to all other Chalk regions examined during this study (except for the London Basin) their water level responses are generally quite diverse. Of the 16 available hydrographs, six show a reasonably similar water level response over time (Figure 12.1). On the other hand, the majority, i.e. ten hydrographs exhibit unique water level responses not mirrored in other boreholes (Figure 12.2). Some appear to be influenced by pumping (e.g. TR14/50 and TR34/81), while others indicate that water levels do not decline below a set elevation (e.g. TR24/36), possibly due to a highly permeable horizon at that level. The boreholes that show a similar response (with the exception of TR36/62) are located in the base of valleys, though others that are also in valley axes do not as easily fit into this pattern.

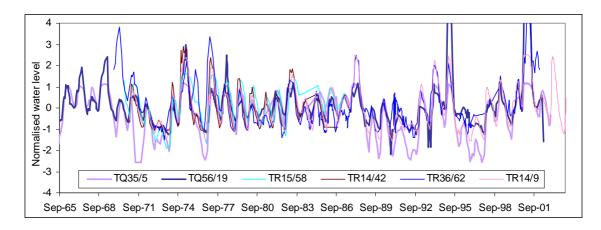


Figure 12.1 Hydrographs from the North Downs Chalk aquifer, which show similar water level responses over time

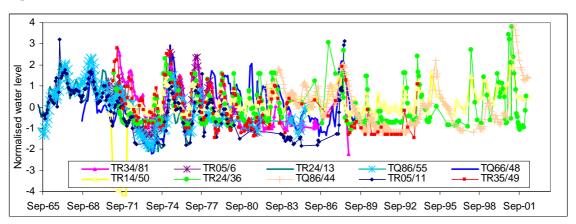


Figure 12.2 The majority of long term hydrographs from the North Downs Chalk aquifer show unique water level responses.

Previous studies (Bloomfield et al, 2001, Low et al, 2004) suggest that water level responses in the Chalk of the North Downs are frequently anomalous. Bloomfield et al. (2001) described eight broad geographical areas, each with its own characteristic features. Many sites on the main interfluve in the area were characterised by relatively little annual range in groundwater levels apart from during extreme recharge events; a similar response was observed by Low et al. in the interfluve boreholes between the Rivers Medway and Great Stour. For example, Church Wood varies by around 1 metre during most years, but in response to exceptional recharge at the end of 1987, increased by around 13 m. Other sites, for example, near the River Medway had poorly defined annual hydrographs with little consistency with any of the other hydrographs investigated. Overall, previous studies suggest there are unusual hydrograph responses in this area. Low et al. suggest the low amplitude variations on the interfluve could be due to large scale lateral flow of recharge in the unsaturated zone.

Overall, it is considered necessary to further investigate the possible reasons for this wide range of water level responses over time in the North Downs Chalk aquifer, before a master hydrograph can be developed with any confidence. This however, is not within the scope of this present study. Previous studies have been carried out, and more detailed data are available for parts of the area; this work would be continued to try to identify the controls on hydrograph response, and so develop a series of master hydrographs.

13 Confined Chalk – London Basin

A total of 7 long-term water level records are available for the confined Chalk aquifer in the London Basin. Basic statistics on the datasets is provided in Table 13.1.

Table 13.1Summary statistics of long term hydrographs from the confined Chalk aquifer in the
London Basin (water levels in m AOD)

	Min	Max	Mean	Median	Standard	No.	Median sample			Depth of
	water level [m]	water level [m]	water level [m]	water level [m]	Dev.	Observation	frequency [d]	From	to	borehole [m]
TQ58/2	-19.83	31.61	9.29	31.24	23.60	688	1	9-May-67	31-Dec-01	182.90
SU76/46	28.71	41.80	35.67	35.35	2.10	1395	7	5-Jan-75	31-Dec-01	131.00
TL92/1	-6.31	14.83	1.19	1.53	2.51	1624	7	23-Jul-61	6-Dec-01	121.90
TQ28/119	-87.59	-34.21	-56.63	-60.95	16.55	3254	7	1-Jan-00	6-Jun-02	116.70
TL72/54	8.96	48.48	17.87	15.24	5.97	14	1	29-Oct-68	6-Dec-01	103.60
TQ99/11B	-34.76	-14.96	-23.79	-23.00	4.92	1020	7	12-Feb-75	26-Nov-01	199.00
TQ38/9B	-29.45	38.94	-25.36	-25.92	3.33	1192	7	13-Jan-53	31-Dec-01	122.20

Every single long-term hydrograph available for the confined Chalk of the London Basin reveals a unique water level response not mirrored in any other borehole (Figure 13.1). All appear to be influenced by pumping, with levels changing rapidly in an apparently random fashion or water levels increasing steadily in accordance to the reduced pumping volumes in the London Basin during the last decades. It was therefore not regarded feasible to establish a master hydrograph for this part of the Chalk aquifer.

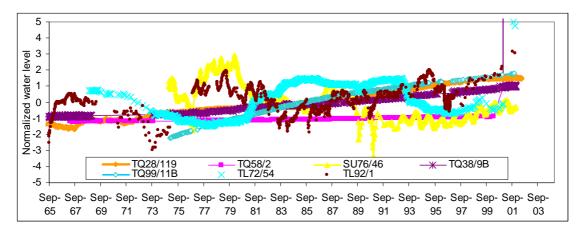


Figure 13.1 Normalised long term hydrographs from the Chalk aquifer in the London Basin.

14 Lower Greensand

A total of 9 long term water level records were available for the Lower Greensand aquifer. Basic statistics on the datasets is provided in Table 14.1. The raw data, together with a linear regression curve is provided in Appendix 9, as are the normalised datasets together with moving averages smoothing lines, sampling frequency plots, the autocorrelation function plots and the master hydrograph look-up table.

	Min	Max	Mean	Standard	No.	Median sample			Depth of borehole
	water level [m]	water level [m]	water level [m]	Dev.	Observation	frequency [d]	From	to	[m]
TQ75/86	39.76	41.30	40.47	0.35	107	29	08-Jan-73	15-Dec-81	2.8
TR13/21	71.98	80.59	74.34	1.62	223	31	21-Mar-72	16-Jun-95	11.1
TR23/32B	38.62	42.01	40.09	0.54	237	33	24-Mar-72	29-Apr-02	16.7
SU84/8A	54.00	58.29	56.41	1.01	1758	7	02-May-71	31-Dec-01	90.2
TL45/19	6.78	12.43	8.69	0.88	441	7	17-May-73	19-Aug-92	44.5
SU72/47	52.45	54.96	53.43	0.46	161	31	03-Aug-70	04-Jun-85	6.1
TQ41/82	10.05	13.65	11.06	0.53	312	30	15-Apr-75	24-Dec-01	8.3
TL45/14	8.15	13.15	9.43	0.93	113	35	30-Aug-77	08-Jul-93	62.0
SU82/63	106.68	108.29	107.68	0.25	141	35	25-Jan-84	28-May-02	16.8

Table 14.1Summary statistics of time series from the Lower Greensand aquifer

Of the 9 time series available, 1 dataset was discarded due to its limited observation period (TQ75/86). The median sample frequency for the remaining data stets is monthly and weekly respectively, however data gaps of several month are present in some series. The eight remaining boreholes show distinct differences in their long term water level records:

Borehole SU84/8A shows water level patterns not repeated in any other available time series (Figure 14.1). The borehole is with 90 metres by far the deepest hole of the set, which might explain its very different response. The borehole was not included in any further data manipulation. Borehole TR23/32B was also excluded, due to its unique water level response, not repeated in other datasets (Figure 14.1). Further work is required to establish if those time series could be representative for specific hydrogeological conditions in the aquifer.

Boreholes TL45/19 and TL45/14 show similar time series (Figure 14.2). Both boreholes are of medium depth, i.e. 44.5m and 62 metres respectively, and are in close proximity. Both boreholes show seasonality, and show a sharp rise in water levels from December 1990 onwards, which is not repeated in any of the other available level time series records. Further work is required to establish, if the water level record of these two boreholes is a local effect, e.g. pumping, or representative for a certain hydrogeological setting.

The remaining four borehole records (TR13/21, TQ41/82, SU72/47, SU82/63) show similar water level time series (Figure 14.3). All boreholes are shallow, with the deepest being 16.7 metres. These datasets show no significant long-term trend, but strong seasonality (Appendix 9), especially TR13/21 and SU72/47, which show seasonality in the autocorrelation function with a periodicity of about 11 lag units or about one year. These time series were aggregated into one group to produce a master hydrograph for shallow boreholes in the Lower Greensand. The master hydrograph was established for the period June 1975 to June 2001 (Figure 14.3).

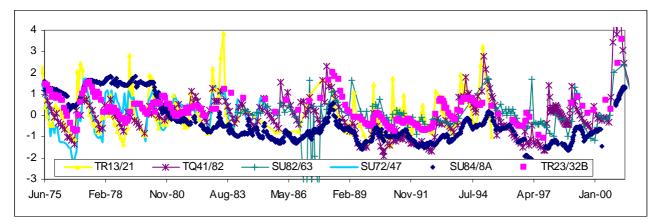


Figure 14.1 TR23/32B and SU84/8A show water level responses, not repeated in other boreholes

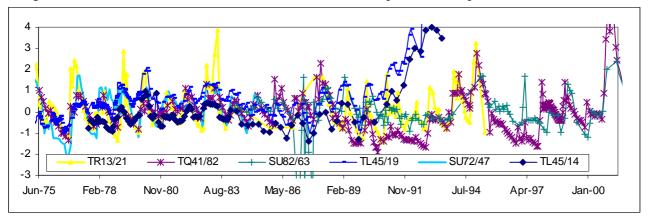


Figure 14.2 TL45/19 and TL45/14 show similar water level responses, which are distinct from other records.

Figure 14.3 shows:

- (a) the normalised water level data of the four level records used to establish the master hydrograph;
- (b) the aggregated normalised water level data from 1975 to 2001 together with the master hydrograph. The master hydrograph is produced by averaging water levels over approximately monthly separations in time. The number of data points to be averaged in order to obtain a monthly time step is thereby calculated on the basis of the median sample frequency. A second moving average smoothing line is drawn, based on an approximately yearly separation in time to visualise long term trends.
- (c) the master hydrograph, i.e. the monthly moving average smoothing line, and the respective threshold lines for the five categories in which water levels are being subdivided. These are calculated on the basis of the cumulative frequency plot of the master hydrograph. Water levels in the 0 to 20% category represent "very low" levels, data in the 20% to 40% category represent "low" levels, data in the 40 to 60% category represent "average" levels, data in the 60 to 80% category represent "high" levels and data in the 80% to 100% category represent "very high" levels.

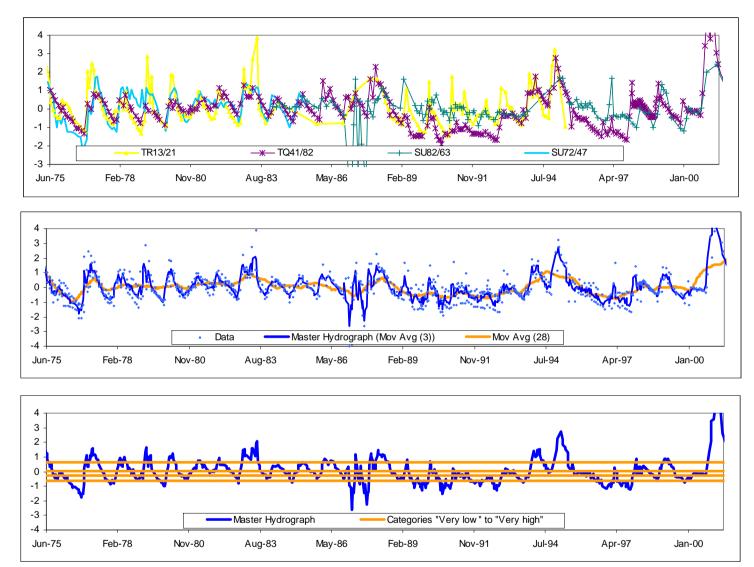


Figure 14.3 a) normalised water level data of the four records used to establish the master hydrograph for the shallow Lower Greensand aquifer; b) aggregated normalised water level data together with the master hydrograph, and a moving averages smoothing line to show long term trends; c) master hydrograph and respective water level categories

Table 14.2Summary statistics of the data used to produce the master hydrograph for the shallowLower Greensand aquifer

Summary statistics - Master Hydrograph									
Aquifer:	quifer: Lower Greensand								
Condition:	Master Hydrograph to be appli	ed to boreholes <35 m	etres de						
Boreholes	Master Hydrograph =	Mov. Average (3)							
grouped together:	No of observations	837							
TR13/21	From	June-75							
TQ41/82	То	June-01							
SU72/47	Median sample frequency	12.5 days							
SU82/63	Sample gaps > month	Yes							
	Trend	no							
	Seasonality	yes							

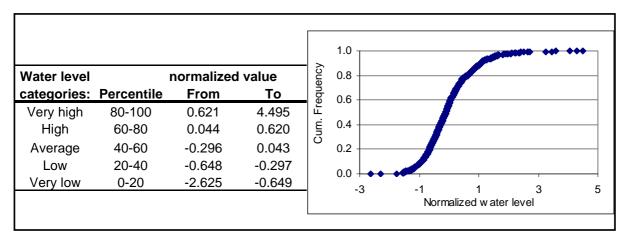


Figure 14.4 Categories used to tag monthly data of the master hydrograph

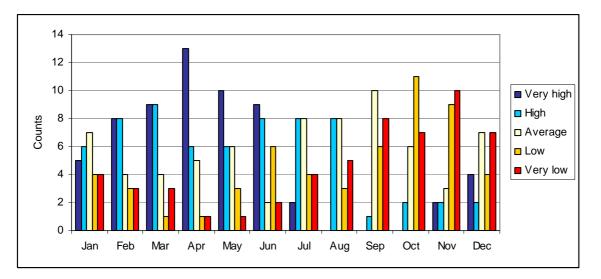
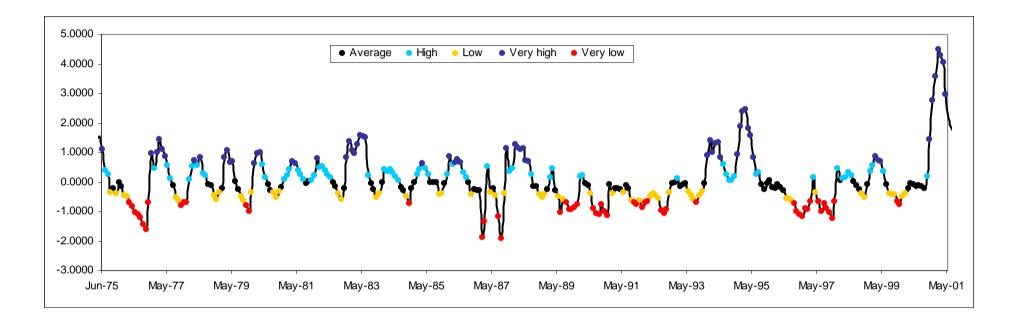



Figure 14.5 Frequency of water level categories per monthly period based on the established monthly look-up table

Figure 14.6 Master hydrograph for shallow boreholes in the shallow Lower Greensand aquifer

15 Millstone Grit

A total of 8 long term water level records is available for the Lower Greensand aquifer. Basic statistics on the datasets is provided in Table 15.1. The raw data, together with a linear regression curve is provided in Appendix 10, as are the normalised datasets together with moving averages smoothing lines, the sampling frequency plots, the autocorrelation function plots and the master hydrograph look-up table.

Table 15.1	Summary statistics of long term hydrographs from the Millstone Grit
------------	---

Summary Statistics

	Min	Max	Mean	Median	Standard	No.	Median sample			Depth of borehole
	water level [m]	water level [m]	water level [m]	water level [m]	Dev.	Observation	frequency [d]	From	to	[m]
SD83/111	130.00	133.52	132.67	132.71	0.47	85	34	11-Feb-74	07-Jun-89	44.8
SD55/5	147.32	148.31	147.74	147.76	0.18	118	32	21-Jul-72	07-Jun-89	30.0
SE04/7	249.34	256.76	254.76	254.94	0.92	291	30	25-Mar-71	20-Dec-00	76.2
SE02/46	193.08	201.97	195.92	195.88	1.37	251	28	05-Apr-77	19-Dec-01	62.0
SE27/8	147.58	157.66	153.07	153.59	1.41	337	30	24-Mar-71	23-Oct-00	45.7
SD92/8	197.20	214.86	205.83	206.18	2.84	167	29	25-Mar-71	16-Nov-87	76.2
SD75/6	208.73	220.30	215.71	215.54	1.94	48	34	11-Apr-73	12-Sep-89	61.0
SE24/2B	114.62	144.17	130.90	130.60	5.56	312	30	25-Mar-71	20-Dec-00	169.2

The median sample frequency of the available long-term hydrographs is monthly, however data gaps of several months are present in several series. Three datasets show data gaps of several years (SD75/6, SD55/5, SD83/111) and half of all records terminate before the year 1990.

The dataset is not consistent between the different boreholes. Two boreholes, SE24/2B and SE27/8, exhibit a distinct rise in water levels between 1973 and 1980, not observed in any other borehole (Figure 15.1). Further work is required to establish, if both boreholes are representative for water level responses under specific hydrogeological conditions, or if these boreholes are possibly affected by local pumping.

The other six of the eight water level time series available show seasonality, but no discernable trend (Figure 15.2). These time series records, which include deep as well as shallow boreholes, were aggregated into one group to produce one master hydrograph for the Millstone Grit. It has to be noted however, that even these six water level responses correspond only marginally well. As such, the master hydrograph is regarded as a good first pass, but in any future study, the Millstone Grit aquifer should be re-visited and the divers water level responses investigated in more detail. Due to the limit data available, the master hydrograph could only be established for the period March 1974 to June 1989.

Figure 15.2 shows:

- (a) the normalised water level data of the six records used to establish the master hydrograph;
- (b) the aggregated normalised water level data from 1974 to 1989 together with the master hydrograph. The master hydrograph is produced by averaging water levels over approximately monthly separations in time. The number of data points to be averaged in order to obtain a monthly time step is thereby calculated on the basis of the median sample frequency. A second moving average smoothing line is drawn, based on an approximately yearly separation in time to visualise long term trends.

(c) the master hydrograph, i.e. the monthly moving average smoothing line, and the respective threshold lines for the five categories in which water levels are being subdivided. These are calculated on the basis of the cumulative frequency plot of the master hydrograph. Water levels in the 0 to 20% category represent "very low" levels, data in the 20% to 40% category represent "low" levels, data in the 40 to 60% category represent "average" levels, data in the 60 to 80% category represent "high" levels and data in the 80% to 100% category represent "very high" levels.

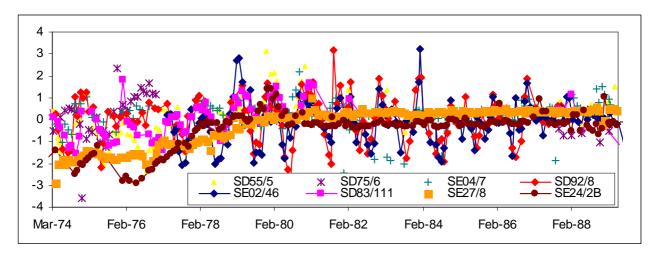


Figure 15.1 SE27/8 and SE24/2B show water level responses distinct from other boreholes

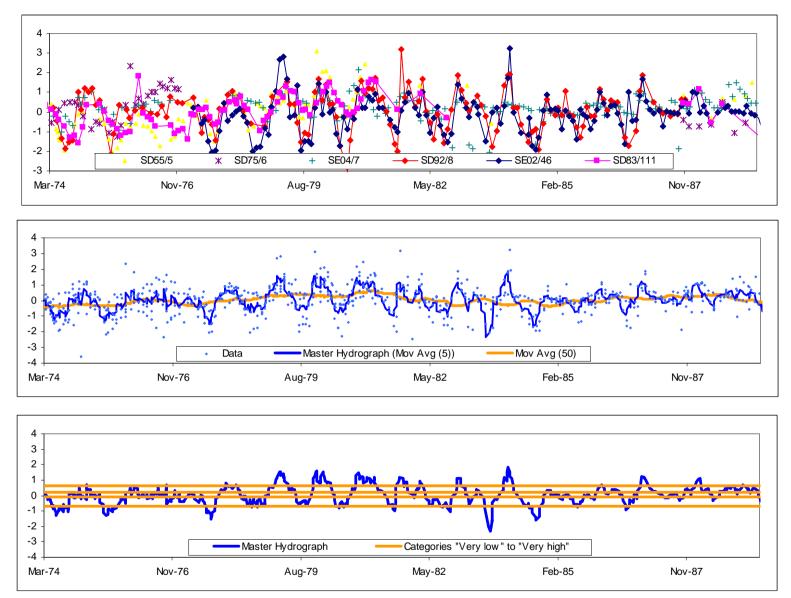


Figure 15.2 a) normalised water level data of the 6 records used to establish the master hydrograph for the Millstone Grit aquifer; b) aggregated normalised water level data together with the master hydrograph, and moving averages smoothing line to show long term trends; c) master hydrograph and respective water level categories

Table 15.2Summary statistics of the data used to produce the master hydrograph for theMillstone Grit

Summary statistics - Master Hydrograph Aquifer: Millstone Grit Condition: Master Hydrograph to be applied to all boreholes							
Boreholes	Master Hydrograph =	Mov. Average (3)					
grouped together:	No of observations	960					
SE02/46	From	March-74					
SD83/111	То	June-89					
SE04/7	Median sample frequend	7 days					
SD75/6	Sample gaps > month	no					
SD92/8	Trend	no					
SD55/5	Seasonality	yes					

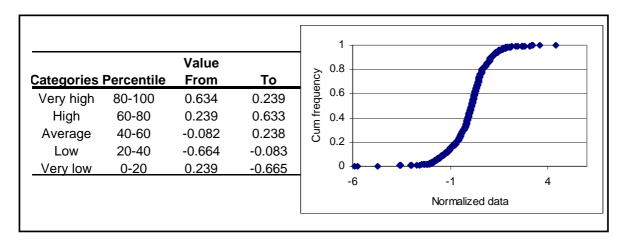


Figure 15.3 Categories used to tag monthly data of the master hydrograph

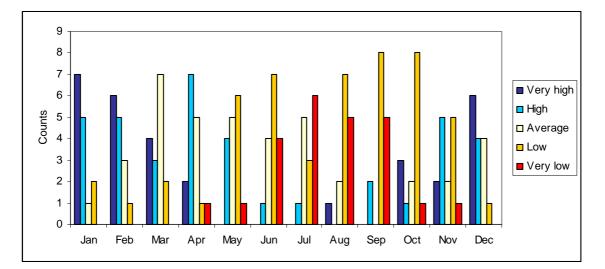


Figure 15.4 Frequency of water level categories per monthly period based on the developed monthly look-up table

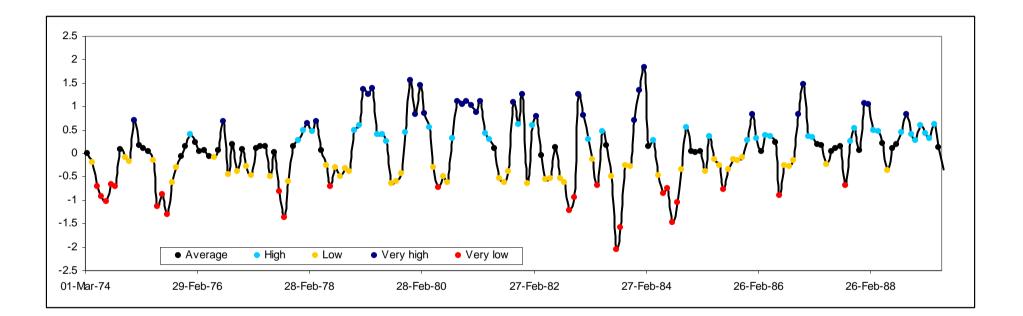


Figure 15.5 Master hydrograph for the Millstone Grit aquifer

16 Permo-Triassic Sandstone

A total of 62 long-term time series are available for the Permo-Triassic Sandstone aquifer. These show stark contrasts in water level responses, with a consistent response pattern not distinguishable. It should be noted that the hydrographs are from a very wide geographical range of settings, stretching from the Otter Sandstone and Exmouth Sandstone in the southwest, to the Sherwood Sandstone Group aquifers of the Midlands, eastern England, and northwest England. There is no Appendix including all 62 long-term time series, rather are examples of some of the response patterns observed given below.

Ten out of 62 hydrographs show seasonality with an underlying trend of relatively low water levels around 1974, 1991 and 1996 (Figure 16.1). These responses are observed in the southern Permo-Triassic aquifer in boreholes ranging in depth from 3.9 metres to 121.9 metres.

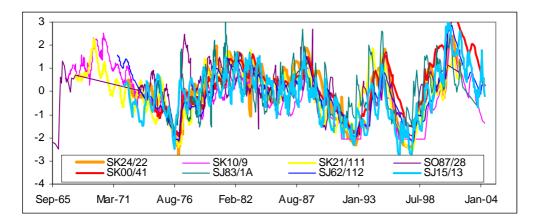


Figure 16.1 Seasonality and underlying trend observed in some of the long term hydrographs available for the Permo-Triassic sandstone (water levels are normalised).

A very similar trend is observed in a further three boreholes, however, the water level response does not exhibit seasonality to any degree (Figure 16.2). The boreholes range in depth between 36 metres and 47 metres and are situated along the eastern margin of the aquifer.

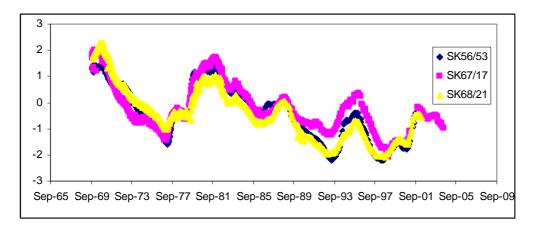


Figure 16.2 Normalised water levels of three long-term hydrographs exhibiting no seasonality but an underlying trend.

Another two boreholes show strong seasonality without any underlying trend (Figure 16.3). Both boreholes are shallow (max. 12 metres).

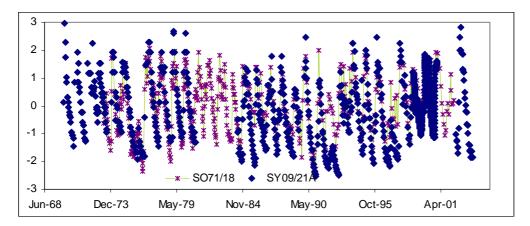


Figure 16.3 Normalised water levels of boreholes exhibiting strong seasonality without any underlying trend.

A large number of long-term hydrographs are unique in their response pattern. Some exhibit gradual increases or decreases in water levels suggesting levels to be influenced by pumping. Others show rapid, but apparently random changes in water levels also likely to induced by pumping (Figure 16.4).

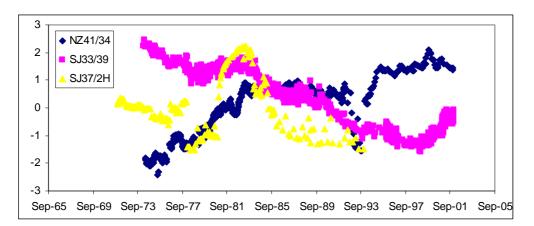


Figure 16.4 Normalised water level data of boreholes assumed to be influenced by pumping

In other boreholes, which also exhibit unique time series, it is unclear, if the response is due to pumping, or if the time series represents a natural, possibly very local hydrogeolgical effect.

In conclusion, the 62 long-term hydrographs of the Permo-Triassic sandstone are a collection of very different water level responses. Based on the available data, no consistent response patterns can be established for which master hydrographs could be developed. However, it is likely, that a detailed survey, which takes other factors, such as depth of the unsaturated zone, regional geographic location, topography etc. into account, could establish groups of boreholes, to which specific hydrogeological conditions apply and for which a typical response pattern could be established. However, due to time constraints this is beyond the scope of this present study.

17 Conclusions and Recommendations

The British Geological Survey has outlined the need to provide improved spatial coverage of water level data, allowing some estimate of the likely groundwater level across aquifers in England and Wales. In order to provide such coverage interpolation of water level data is needed. However, water levels are dynamic, responding to seasonal and longer-term effects. Therefore, in order to include one off measurements when interpolating surfaces, they need to be categorised whether the reading is likely to represent "Low", "Average" or "High" levels. This report has described a method to do this, by establishing long-term hydrographs deemed typical for the respective aquifer, here called master hydrographs.

It is considered that master hydrographs are a suitable means to categorise one off point level measurements, if the available long-term water level time series for the aquifer are in good agreement. It is then likely, that the assessed water level responses at various locations are representative for level responses in the entire aquifer, i.e. one master hydrograph can be established, representative for the entire aquifer.

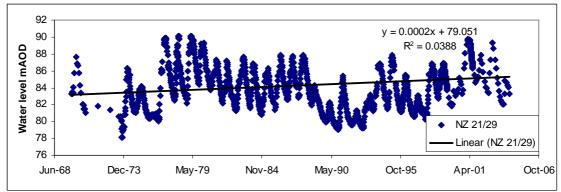
This study outlines a methodology to establish master hydrographs based on statistical analysis of long-term water level time series. Master hydrographs were established for ten aquifers in England and Wales, namely:

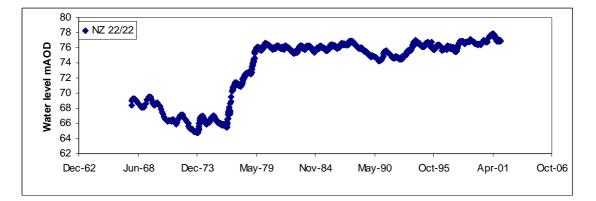
- Magnesian Limestone: different response patterns are observed that appear to be correlated with depth of the borehole. One single master hydrograph for the entire aquifer is hence not suitable, but two master hydrographs, one for the shallow and one the deeper aquifer, were developed. From Figures ?? and ??, it can be seen that the shallow boreholes have a much more "flashy" or rapid response than the deeper ones, suggesting the response is strongly correlated with yearly recharge. The deeper boreholes still show seasonal response to recharge, but this is relatively insignificant compared to the long-term (5 to 10 year) response, which is indicative of accumulated recharge over several years. Thus the drought of 1976 is shown not just as an absence of recharge during the winter of 1975/76, but as a consequence of low recharge and declining water levels from 1970 onwards. Similarly, high water levels caused by the extreme recharge event of 2000/2001 are shown to be the culmination of high recharge from 1998 onwards. This long-term signal can still be observed in the shallow boreholes, but it is masked by the seasonal response.
- Millstone Grit: the master hydrograph covers a relatively short period of time (around 15 years), however, from this limited time-period, the hydrograph appears to show little long-term trend, with seasonal fluctuations being predominant. Drought events are marked by a much reduced minimum to maximum amplitude, but there is still recovery, even during years such as 1976.
- Hasting Beds: the master hydrograph shows a very strong seasonal response, with very little longer-term trend. Drought events and high recharge events are not clearly shown in the hydrograph response.
- Lower Greensand: again there is a strong seasonal response with generally little longer-term trend (2 to 3 year) observed in the hydrograph, apart from the response to high recharge years and extreme drought. Thus in 1976, there was little recovery followed by continuing recession. However, the drought between 1988 and 1992 is only shown by a reduced magnitude of the recovery each year. The high recharge years of 1994 and 95, and also the exceptional events during the winter of 2000/01, are clearly shown, although they are almost entirely a response to each individual

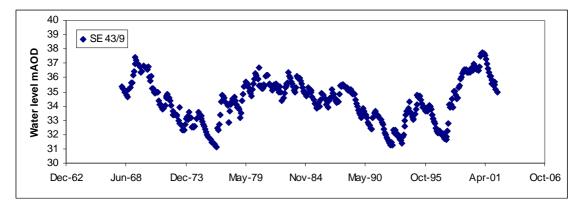
event; there is little year-on-year accumulation as seen in some other aquifers. The low levels during 1987 are caused by one borehole, and these may be anomalous. It should be noted that the hydrograph was constructed from only four boreholes, and may not be representative of the Lower Greensand as a whole.

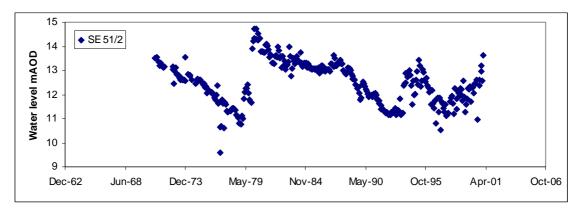
- Middle Jurassic: the hydrograph shows strong seasonality and little long term trend. The drought of 1976, however, is very marked, with minimal recovery of water levels. In addition, while there was still recovery every year during the 1988 to 1992 drought, this was much reduced compared with normal. High recharge years, including 2000/01 are barely noticeable on the hydrograph.
- Upper Jurassic: again there is strong seasonality, but with slightly more long-term trend than observed for the Middle Jurassic. Thus 1988 to 1992 are shown as years with generally lower groundwater levels, with 1991/92 particularly showing little recovery and water levels being defined as "very low" for the whole year. Similarly, high water levels can be seen, caused by the extreme recharge event of 2000/2001, but the year-on-year increase from 1998 leading up to this event is not as marked as for other aquifers.
- Chalk aquifer in
 - Berkshire and East Anglia (Group 1)
 - Lincolnshire and Yorkshire (Group 1)
 - Hampshire and Wiltshire (Group 2)
 - South Downs (Group 2)
- All four chalk master hydrographs show a strong seasonal response. However, there are distinct differences between the Group 1 and Group 2 areas above. The Group 1 areas, show a strong seasonal response, but this is overwritten by a longer-term signal. Thus the low recharge years from 1998 to 1992 are shown by a year-on-year decline in groundwater levels, a pattern which is repeated to a slightly less significant extent between 1995 and 1997. Similarly, for Berkshire/East Anglia, and to a lesser degree Lincolnshire/Yorkshire, the high water levels during 2000/01 can be seen to be partly due to cumulative increases in water levels from the end of 1997 onwards. Group 2 boreholes show a much stronger seasonal response compared to the long term signal. As a result, although the low recharge years are marked by limited recovery of water levels, there is little longer-term trend.
- Thus, the Group 2 hydrographs suggests a more responsive (flashy) aquifer compared with the Group 1 hydrographs, in which the response in any one year appears to be the cumulative effect of several years' recharge. The reasons for the differences between the Chalk areas are not immediately obvious; however, they are not likely to be due to meteorological differences between the areas. In the South Downs, the Chalk is divided into blocks separated by rivers at sea level, and therefore the catchments are limited in size. In addition, transmissivity is high. It is possible that this combination of factors means that response to recharge events is rapid, with little long-term trend. The sea to the south, and the rivers between catchments may act as constant head boundaries, and control the minimum level to which water levels can decline.
- The reasons for the different responses are worth investigating, as they might reflect catchment characteristics, and could aid in understanding resource issues during drought, or groundwater flooding issues during extreme recharge events. However, further discussion is outside the remit of this project.

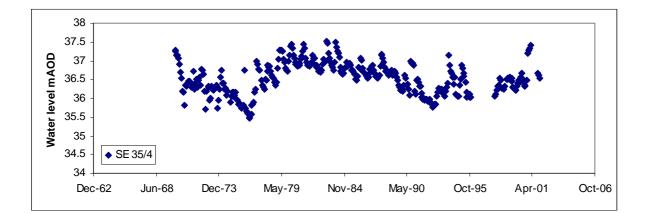
Long-term hydrographs collected for the other aquifers, show diverse water level responses, and it was not possible to derive master hydrographs. In the cases of the Lower Greensand, Millstone Grit, the Middle Jurassic, the confined Chalk in the London Basin, the Chalk in the North Downs region and the Permo-Triassic Sandstone different response patterns are evident, which cannot be correlated simply to the depth of the borehole. Other hydrogeological conditions such as distance to surface water courses, depth of the unsaturated zone, the influence of local pumping, or a combination of many factors may result in these diverse time series, however, it was beyond the scope of this study, to investigate the problem cases in further detail. While the established hydrographs are regarded as a good "first pass", aquifers with diverse water level responses should be re-examined in any future study to establish if responses are a result of local pumping or if they could be representative for specific hydrogeological conditions in the aquifer, in which case additional master hydrographs could be developed.

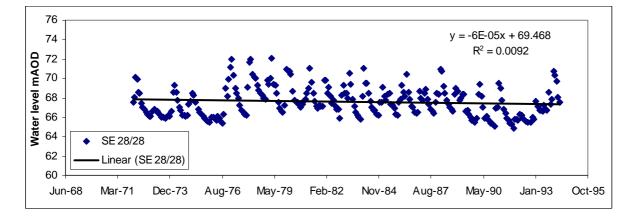

It is also advisable in any future study, to test the established master hydrographs against any water level time series, which were not included in the initial statistical study. This would allow testing of whether the established master hydrographs are representative of the aquifer.

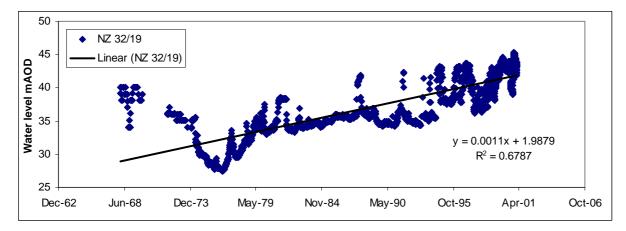

18 References

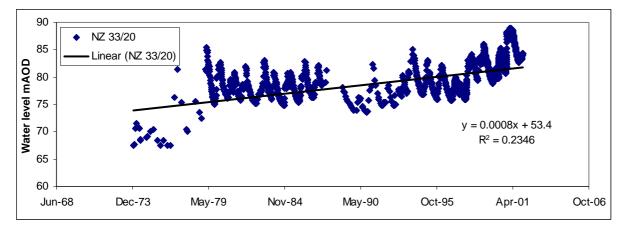

Bloomfield et al 2001 Low et al 2001

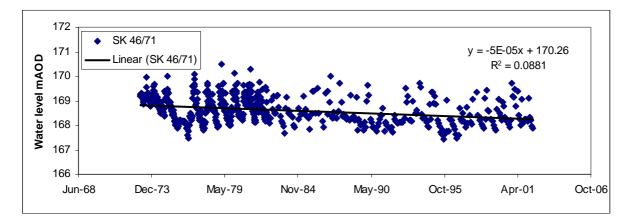

Appendix 1 Magnesian Limestone

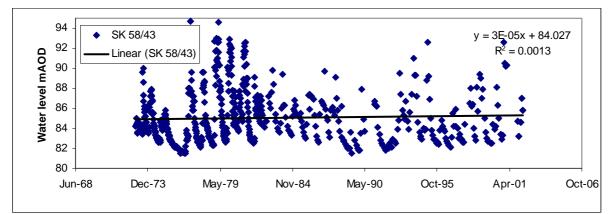

WATER LEVELS ABOVE ORDNANCE DATUM WITH LINEAR REGRESSION CURVE

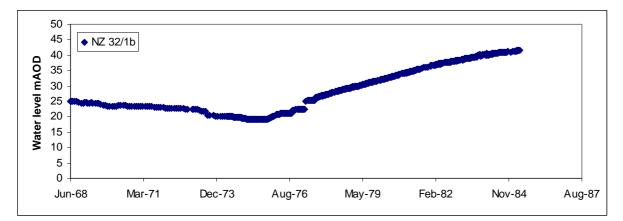


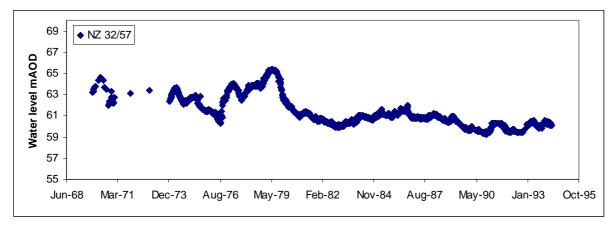


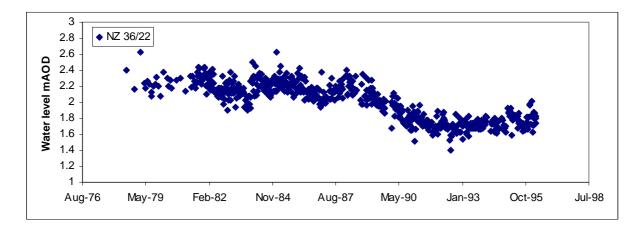


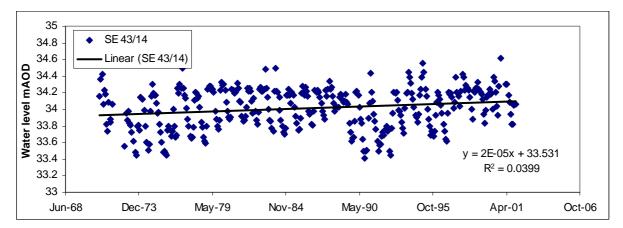


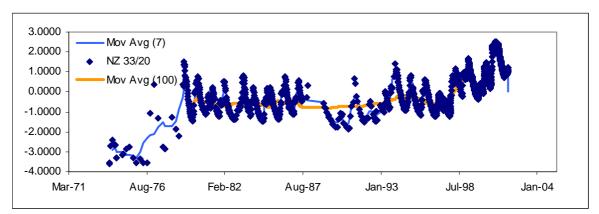


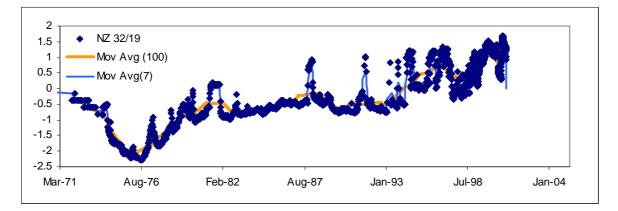


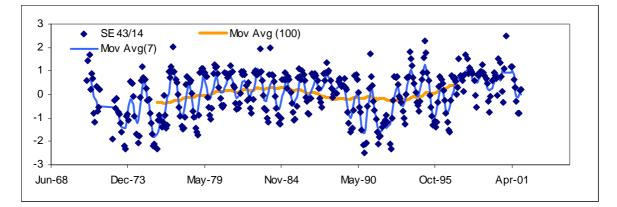


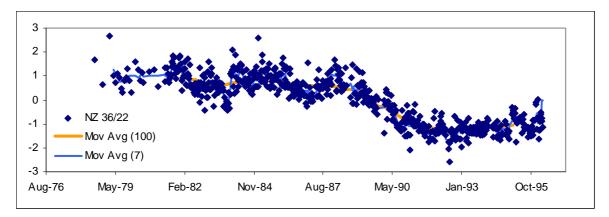


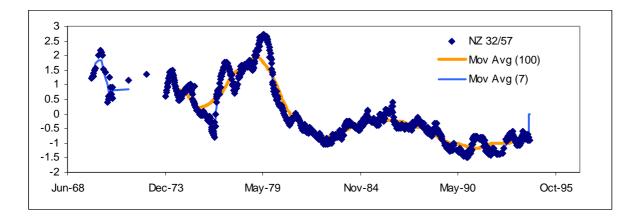


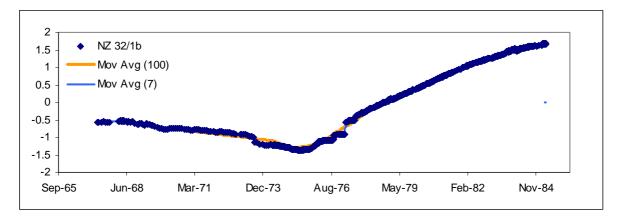


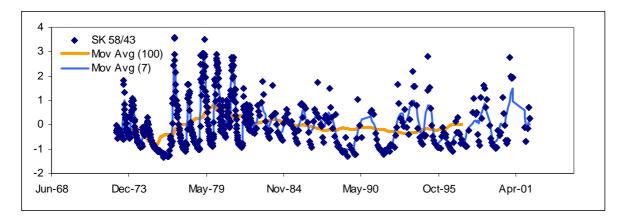


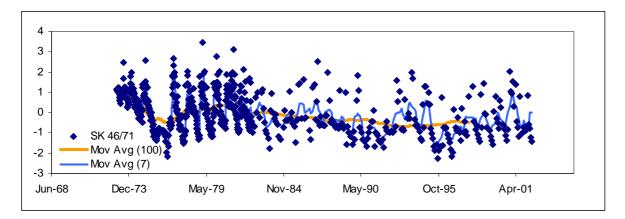


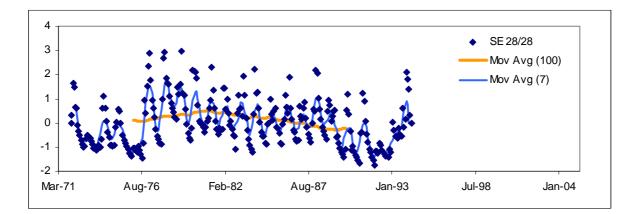


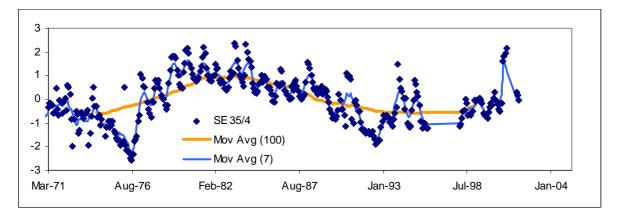

NORMALISED WATER LEVEL DATA WITH MOVING AVERAGES SMOOTHING LINES

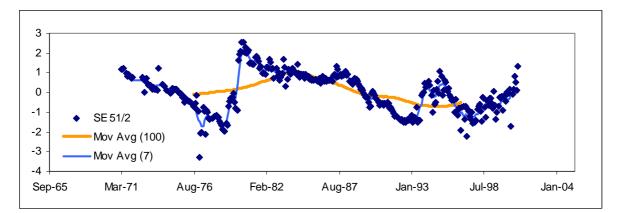


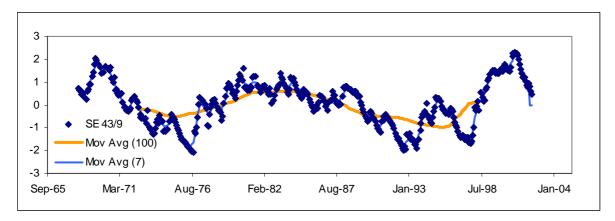


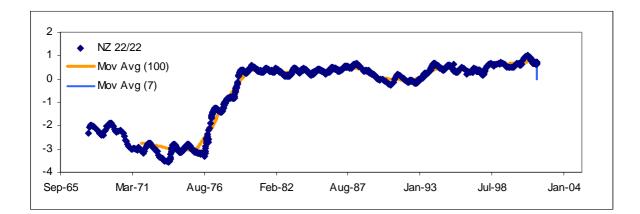


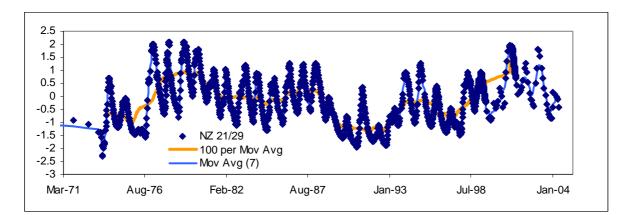


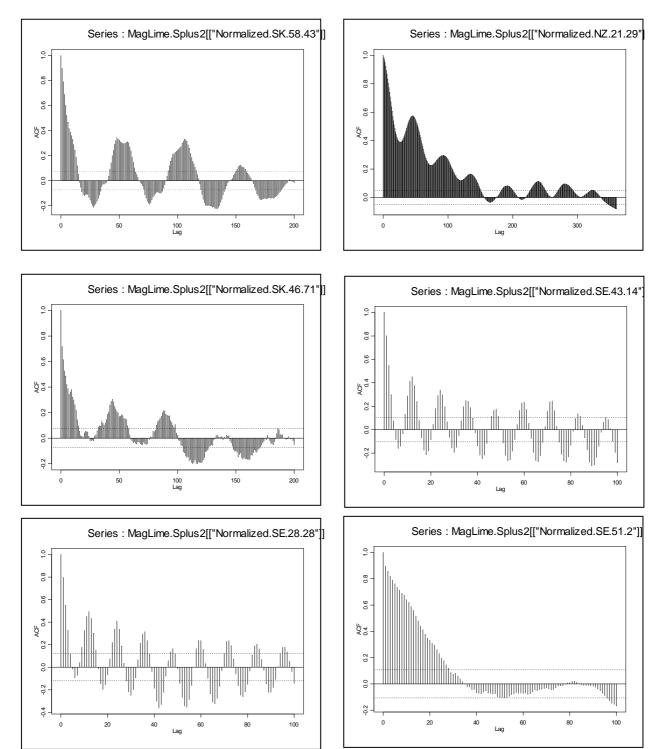


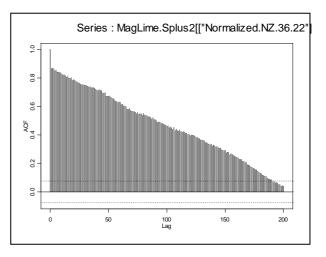


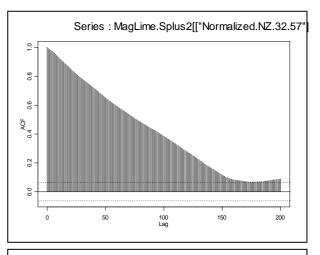


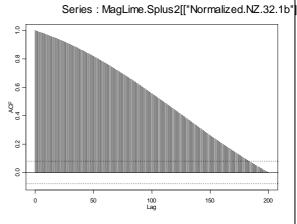


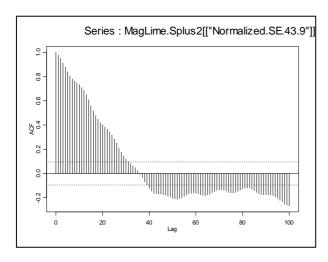


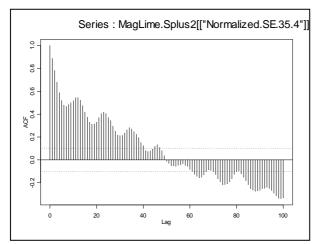


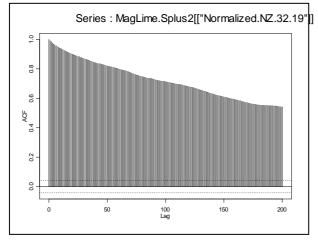


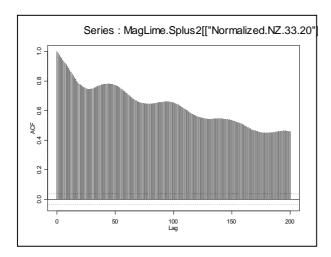


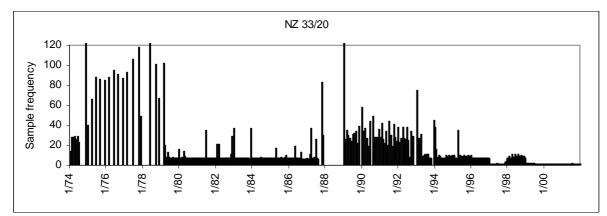


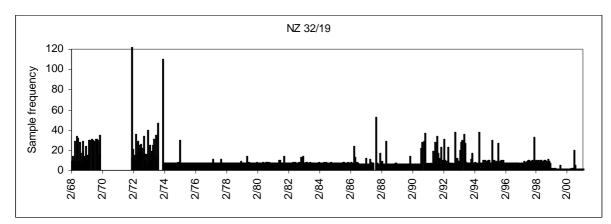

AUTOCORRELATION FUNTION PLOTS

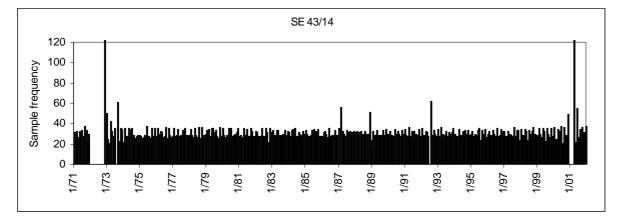


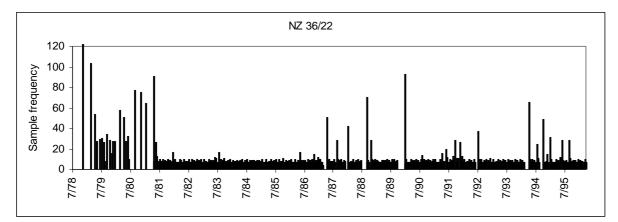




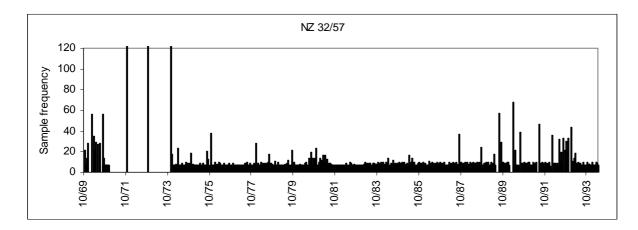


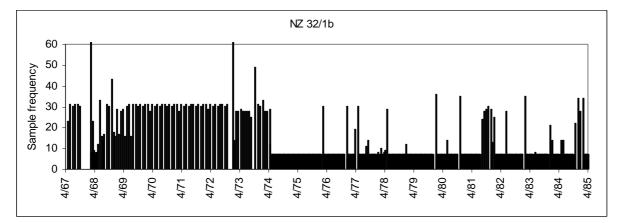


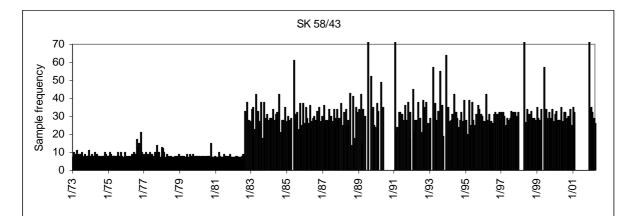


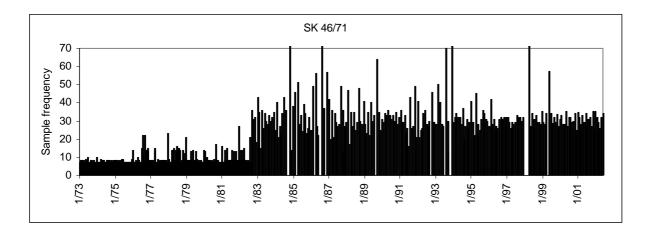


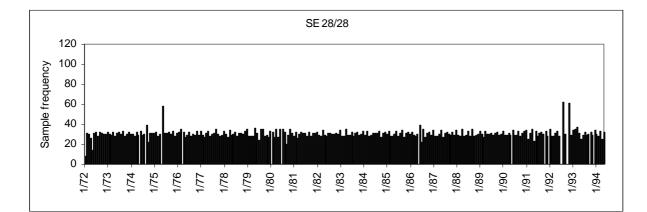
SAMPLE FREQUENCY PLOTS

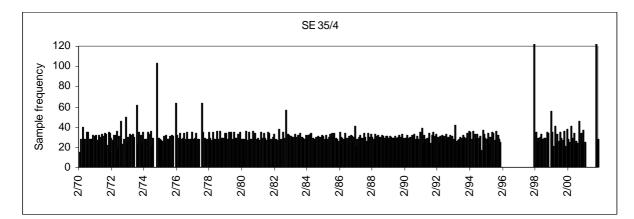


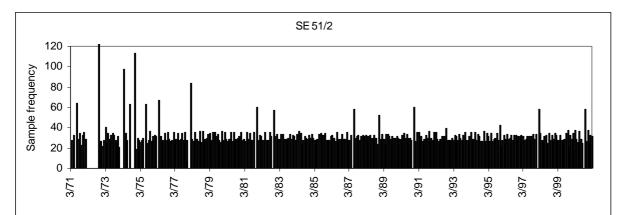


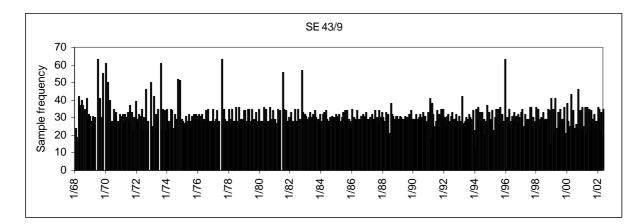


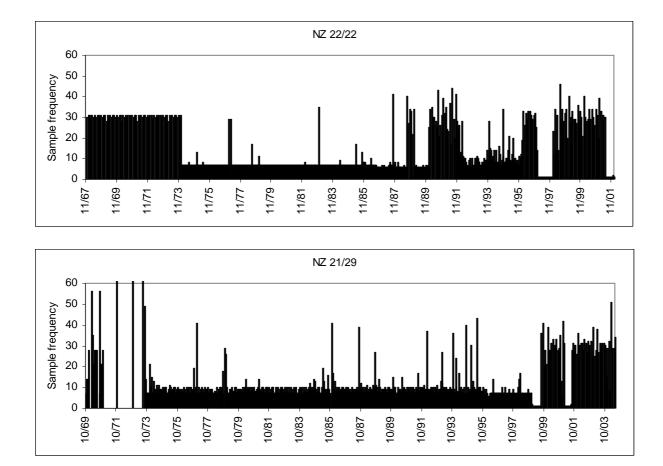



75









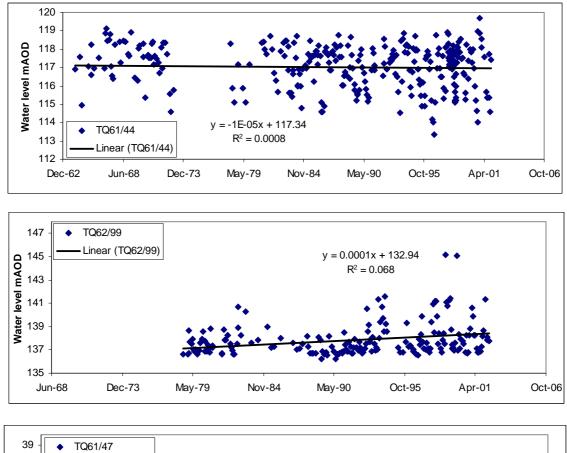
WELLMASTER LOOK-UP TABLE – GROUP1

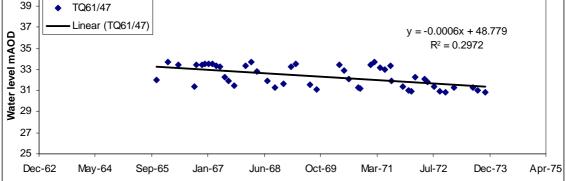
Jan	1974 High	Feb	1978 Very high	Mar	1982 High
Feb	1974 High	Mar	1978 Very high	Apr	1982 High
Mar	1974 Very high	Apr	1978 Very high	May	1982 Average
Apr	1974 High	May	1978 High	Jun	1982 Average
May	1974 Average	Jun	1978 High	Jul	1982 Average
Jun	1974 Average	Jul	1978 Average	Aug	1982 Low
Jul	1974 Low	Aug	1978 Low	Sep	1982 Very low
Aug	1974 Low	Sep	1978 Low	Oct	1982 Very low
Sep	1974 Very low	Oct	1978 Very low	Nov	1982 Low
Oct	1974 Low	Nov	1978 Very low	Dec	1982 Average
Nov	1974 Low	Dec	1978 High	Jan	1983 High
Dec	1974 Average	Jan	1979 Very high	Feb	1983 High
Jan	1975 Average	Feb	1979 Very high	Mar	1983 High
Feb	1975 High	Mar	1979 Very high	Apr	1983 Very high
Mar	1975 High	Apr	1979 Very high	May	1983 Very high
Apr	1975 Average	May	1979 Very high	Jun	1983 Very high
May	1975 Average	Jun	1979 Very high	Jul	1983 High
Jun	1975 Low	Jul	1979 High	Aug	1983 Average
Jul	1975 Low	Aug	1979 Average	Sep	1983 Low
Aug	1975 Very low	Sep	1979 Low	Oct	1983 Low
Sep	1975 Very low	Oct	1979 Low	Nov	1983 Very low
Oct	1975 Very low	Nov	1979 Low	Dec	1983 Low
Nov	1975 Very low	Dec	1979 Very high	Jan	1984 High
Dec	1975 Very low	Jan	1980 Very high	Feb	1984 Very high
Jan	1976 Very low	Feb	1980 Very high	Mar	1984 High
Feb	1976 Very low	Mar	1980 Very high	Apr	1984 High
Mar	1976 Very low	Apr	1980 Very high	May	1984 Average
Apr	1976 Very low	May	1980 High	Jun	1984 Average
May	1976 Very low	Jun	1980 Average	Jul	1984 Low
Jun	1976 Very low	Jul	1980 Average	Aug	1984 Very low
Jul	1976 Very low	Aug	1980 Average	Sep	1984 Very low
Aug	1976 Very low	Sep	1980 Low	Oct	1984 Very low
Sep	1976 Very low	Oct	1980 Average	Nov	1984 Low
Oct	1976 Low	Nov	1980 High	Dec	1984 Average
Nov	1976 Average	Dec	1980 High	Jan	1985 Average
Dec	1976 High	Jan	1981 High	Feb	1985 High
Jan	1977 Very high	Feb	1981 Very high	Mar	1985 High
Feb	1977 Very high	Mar	1981 Very high	Apr	1985 High
Mar	1977 Very high	Apr	1981 Very high	May	1985 High
Apr	1977 Very high	May	1981 Very high	Jun	1985 Average
May	1977 Very high	Jun	1981 High	Jul	1985 Average
Jun	1977 Average	Jul	1981 Average	Aug	1985 Low
Jul	1977 Average	Aug	1981 Low	Sep	1985 Low
Aug	1977 Low	Sep	1981 Low	Oct	1985 Very low
Sep	1977 Low	Oct	1981 Low	Nov	1985 Low
Oct	1977 Very low	Nov	1981 Average	Dec	1985 Average
Nov	1977 Very low	Dec	1981 Average	Jan	1986 High
Dec	1977 Low	Jan	1982 High	Feb	1986 High
Jan	1978 High	Feb	1982 High	Mar	1986 High
				-	····a··

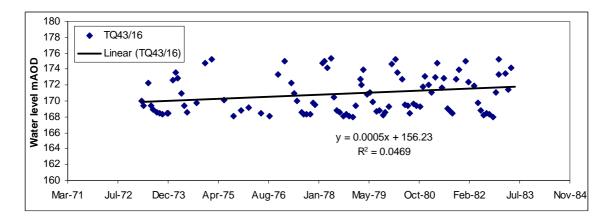
•	4000 14 14 1		4000.14	1	4004
Apr	1986 Very high	May	1990 Very low	Jun	1994 Average
May	1986 Very high	Jun	1990 Very low	Jul	1994 Low
Jun	1986 High	Jul	1990 Very low	Aug	1994 Low
Jul	1986 High	Aug	1990 Very low	Sep	1994 Low
Aug	1986 Average	Sep	1990 Very low	Oct	1994 Low
Sep	1986 Low	Oct	1990 Very low	Nov	1994 Average
Oct	1986 Low	Nov	1990 Very low	Dec	1994 High
Nov	1986 Low	Dec	1990 Very low	Jan Feb	1995 Very high
Dec	1986 Average	Jan	1991 Very low		1995 Very high
Jan Feb	1987 High	Feb Mar	1991 Average	Mar	1995 Very high
Mar	1987 High		1991 High	Apr May	1995 High
	1987 Very high	Apr Mov	1991 Average 1991 Low	May Jun	1995 Average 1995 Low
Apr Mov	1987 Very high	May Jun	1991 Low	Jul	1995 Low
May	1987 High	Jul			
Jun Jul	1987 High		1991 Very low	Aug Sep	1995 Very low
	1987 Average	Aug	1991 Very low	•	1995 Very low
Aug	1987 Low	Sep	1991 Very low	Oct Nov	1995 Very low
Sep	1987 Low	Oct	1991 Very low		1995 Very low
Oct	1987 Low	Nov	1991 Very low	Dec	1995 Very low
Nov	1987 Average	Dec	1991 Very low	Jan Feb	1996 Low
Dec	1987 High	Jan Feb	1992 Very low		1996 Average
Jan Feb	1988 Very high		1992 Very low	Mar	1996 Average
	1988 Very high	Mar	1992 Very low	Apr May	1996 Average
Mar	1988 Very high	Apr	1992 Very low	May	1996 Average
Apr Mov	1988 High	May	1992 Very low	Jun Jul	1996 Low
May Jun	1988 High	Jun Jul	1992 Very low		1996 Very low
Jul	1988 Average		1992 Very low	Aug	1996 Very low
	1988 Average 1988 Low	Aug	1992 Very low	Sep Oct	1996 Very low
Aug	1988 Low	Sep Oct	1992 Very low	Nov	1996 Very low
Sep Oct	1988 Low	Nov	1992 Very low	Dec	1996 Very low
Nov		Dec	1992 Very low 1992 Low	Jan	1996 Very low 1997 Low
Dec	1988 Average 1988 Average	Jan	1992 Low 1993 Average	Feb	1997 Low
Jan	1989 Average	Feb	1993 Average	Mar	1997 Low
Feb	1989 Low	Mar	1993 Low	Apr	1997 Low
Mar	1989 Low	Apr	1993 Low	May	1997 Very low
Apr	1989 Low	May	1993 Low	Jun	1997 Low
May	1989 Low	Jun	1993 Low	Jul	1997 Low
Jun	1989 Low	Jul	1993 Low	Aug	1997 Low
Jul	1989 Very low	Aug	1993 Very low	Sep	1997 Very low
Aug	1989 Very low	Sep	1993 Low	Oct	1997 Very low
Sep	1989 Very low	Oct	1993 Average	Nov	1997 Very low
Oct	1989 Very low	Nov	1993 Average	Dec	1997 Low
Nov	1989 Very low	Dec	1993 High	Jan	1997 Low 1998 Average
Dec	1989 Very low	Jan	1994 Very high	Feb	1998 High
Jan	1990 Low	Feb	1994 Very high	Mar	1998 High
Feb	1990 Average	Mar	1994 Very high	Apr	1998 High
Mar	1990 Average	Apr	1994 High	May	1998 High
Apr	1990 Low	May	1994 Average	Jun	1998 High
·		inay	Aterage	Jun	

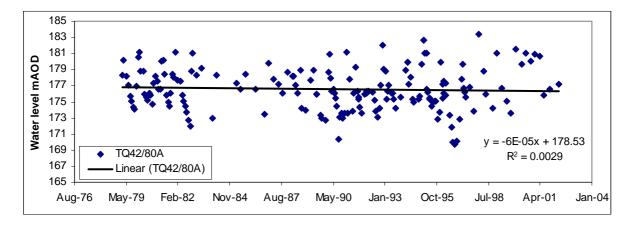
Jul	1998 High
Aug	1998 Average
Sep	1998 Low
Oct	1998 Low
Nov	1998 Average
Dec	1998 Average
Jan	1999 High
Feb	1999 High
Mar	1999 Very high
Apr	1999 Very high
May	1999 High
Jun	1999 Average
Jul	1999 Average
Aug	1999 Low
Sep	1999 Low
Oct	1999 Low
Nov	1999 Low
Dec	1999 Average
Jan	2000 Average
Feb	2000 Average
Mar	2000 Average
Apr	2000 Average
May	2000 Average
Jun	2000 Average
Jul	2000 Average
Aug	2000 Average
Sep	2000 Average
Oct	2000 High
Nov	2000 Very high
Dec	2000 Very high
Jan	2001 Very high
Feb	2001 Very high
Mar	2001 Very high
Apr	2001 Very high
May	2001 Very high
Jun	2001 Very high
Jul	2001 High
Aug	2001 Average
Sep	2001 Average
Oct	2001 Average
Nov	2001 Low
Dec	2001 Average
Jan	2002 Average
Feb	2002 Average
Mar	2002 High
Apr	2002 Average
Мау	2002 Average

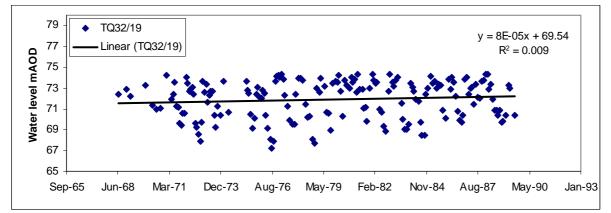
WELLMASTER LOOK-UP TABLE – GROUP2

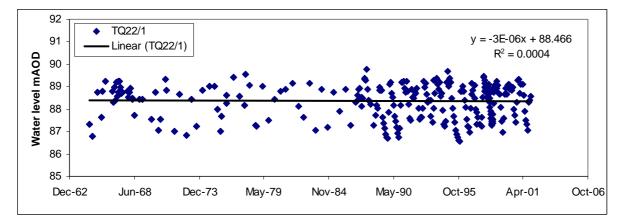

May	1971 Average	Oct	1975 Very low	Mar	1980 Very high
Jun	1971 Average	Nov	1975 Very low	Apr	1980 Very high
Jul	1971 Average	Dec	1975 Very low	May	1980 Very high
Aug	1971 Average	Jan	1976 Very low	Jun	1980 Very high
Sep	1971 Average	Feb	1976 Very low	Jul	1980 Very high
Oct	1971 Average	Mar	1976 Very low	Aug	1980 Very high
Nov	1971 Average	Apr	1976 Very low	Sep	1980 Very high
Dec	1971 Average	May	1976 Very low	Oct	1980 Very high
Jan	1972 Average	Jun	1976 Very low	Nov	1980 Very high
Feb	1972 Average	Jul	1976 Very low	Dec	1980 Very high
Mar	1972 Average	Aug	1976 Very low	Jan	1981 Very high
Apr	1972 Average	Sep	1976 Very low	Feb	1981 Very high
May	1972 Average	Oct	1976 Very low	Mar	1981 Very high
Jun	1972 Average	Nov	1976 Very low	Apr	1981 Very high
Jul	1972 Average	Dec	1976 Very low	May	1981 Very high
Aug	1972 Average	Jan	1977 Very low	Jun	1981 Very high
Sep	1972 Average	Feb	1977 Low	Jul	1981 Very high
Oct	1972 Low	Mar	1977 Low	Aug	1981 Very high
Nov	1972 Low 1972 Low			•	
Dec		Apr Mov	1977 Average	Sep Oct	1981 Very high
Jan	1972 Average 1973 Low	May	1977 Average	Nov	1981 High
Feb		Jun Jul	1977 Low		1981 High
	1973 Low		1977 Low	Dec	1981 Very high
Mar	1973 Low	Aug	1977 Low	Jan	1982 Very high
Apr	1973 Low	Sep	1977 Low	Feb	1982 Very high
May	1973 Low	Oct	1977 Low	Mar	1982 Very high
Jun	1973 Low	Nov	1977 Low	Apr	1982 Very high
Jul	1973 Low	Dec	1977 Low	May	1982 Very high
Aug	1973 Low	Jan	1978 Low	Jun	1982 Very high
Sep	1973 Low	Feb	1978 Average	Jul	1982 High
Oct	1973 Low	Mar	1978 Average	Aug	1982 High
Nov	1973 Low	Apr	1978 Average	Sep	1982 High
Dec	1973 Low	May	1978 Average	Oct	1982 High
Jan	1974 Average	Jun	1978 Low	Nov	1982 High
Feb	1974 Average	Jul	1978 Low	Dec	1982 High
Mar	1974 Average	Aug	1978 Low	Jan	1983 High
Apr	1974 Low	Sep	1978 Low	Feb	1983 Very high
May	1974 Low	Oct	1978 Low	Mar	1983 Very high
Jun	1974 Low	Nov	1978 Low	Apr	1983 Very high
Jul	1974 Low	Dec	1978 Low	May	1983 Very high
Aug	1974 Low	Jan	1979 Low	Jun	1983 Very high
Sep	1974 Low	Feb	1979 Average	Jul	1983 Very high
Oct	1974 Low	Mar	1979 High	Aug	1983 Very high
Nov	1974 Low	Apr	1979 High	Sep	1983 Very high
Dec	1974 Low	May	1979 High	Oct	1983 Very high
Jan	1975 Low	Jun	1979 High	Nov	1983 High
Feb	1975 Low	Jul	1979 High	Dec	1983 High
Mar	1975 Low	Aug	1979 High	Jan	1984 Very high
Apr	1975 Low	Sep	1979 Average	Feb	1984 Very high
May	1975 Low	Oct	1979 Average	Mar	1984 Very high
Jun	1975 Low	Nov	1979 Average	Apr	1984 Very high
Jul	1975 Low	Dec	1979 High	May	1984 Very high
Aug	1975 Very low	Jan	1980 Very high	Jun	1984 Very high
Sep	1975 Very low	Feb	1980 Very high	Jul	1984 Very high

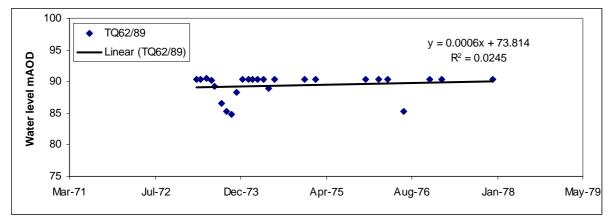

Aug	1984 High	Jan	1989 High	Jun	1993 Very low
Sep	1984 High	Feb	1989 High	Jul	1993 Very low
Oct	1984 High	Mar	1989 Average	Aug	1993 Very low
Nov	1984 High	Apr	1989 Average	Sep	1993 Very low
Dec	1984 High	May	1989 Average	Oct	1993 Very low
Jan	1985 High	Jun	1989 Average	Nov	1993 Low
Feb	1985 High	Jul	1989 Average	Dec	1993 Average
Mar	1985 High	Aug	1989 Low	Jan	1994 Average
Apr	1985 High	Sep	1989 Low	Feb	1994 Average
May	1985 High	Oct	1989 Low	Mar	1994 Average
Jun	1985 High	Nov	1989 Low	Apr	1994 Average
Jul	1985 High	Dec	1989 Low	May	1994 Average
Aug	1985 High	Jan	1990 Low	Jun	1994 Average
Sep	1985 Average	Feb	1990 Average	Jul	1994 Low
Oct	1985 Average	Mar	1990 Average	Aug	1994 Low
Nov	1985 Average	Apr	1990 Low	Sep	1994 Low
Dec	1985 Average	May	1990 Low	Oct	1994 Low
Jan	1986 Average	Jun	1990 Low	Nov	1994 Low
Feb	1986 High	Jul	1990 Low	Dec	1994 Average
Mar	1986 High	Aug	1990 Low	Jan	1995 Average
Apr	1986 High	Sep	1990 Low	Feb	1995 High
May	1986 High	Oct	1990 Average	Mar	1995 High
Jun	1986 High	Nov	1990 Low	Apr	1995 High
Jul	1986 High	Dec	1990 Low	May	1995 Average
Aug	1986 High	Jan	1991 Low	Jun	1995 Average
Sep	1986 High	Feb	1991 Low	Jul	1995 Average
Oct	1986 Average	Mar	1991 Low	Aug	1995 Low
Nov	1986 Average	Apr	1991 Low	Sep	1995 Low
Dec	1986 Average	May	1991 Low	Oct	1995 Low
Jan	1987 Average	Jun	1991 Low	Nov	1995 Low
Feb	1987 High	Jul	1991 Low	Dec	1995 Low
Mar	1987 High	Aug	1991 Low	Jan	1996 Low
Apr	1987 High	Sep	1991 Very low	Feb	1996 Low
May	1987 High	Oct	1991 Very low	Mar	1996 Low
Jun	1987 High	Nov	1991 Very low	Apr	1996 Low
Jul	1987 High	Dec	1991 Very low	May	1996 Low
Aug	1987 High	Jan	1992 Very low	Jun	1996 Low
Sep	1987 Average	Feb	1992 Very low	Jul	1996 Low
Oct	1987 Average	Mar	1992 Very low	Aug	1996 Very low
Nov	1987 High	Apr	1992 Very low	Sep	1996 Very low
Dec	1987 High	May	1992 Very low	Oct	1996 Very low
Jan	1988 High	Jun	1992 Very low	Nov	1996 Very low
Feb	1988 Very high	Jul	1992 Very low	Dec	1996 Very low
Mar	1988 Very high	Aug	1992 Very low	Jan	1997 Very low
Apr	1988 Very high	Sep	1992 Very low	Feb	1997 Very low
May	1988 High	Oct	1992 Very low	Mar	1997 Very low
Jun	1988 High	Nov	1992 Very low	Apr	1997 Very low
Jul	1988 High	Dec	1992 Very low	May	1997 Very low
Aug	1988 High	Jan	1993 Very low	Jun	1997 Very low
Sep	1988 High	Feb	1993 Very low	Jul	1997 Very low
Oct	1988 High	Mar	1993 Very low	Aug	1997 Very low
Nov	1988 High	Apr	1993 Very low	Sep	1997 Very low
Dec	1988 High	May	1993 Very low	Oct	1997 Very low
	5		•		

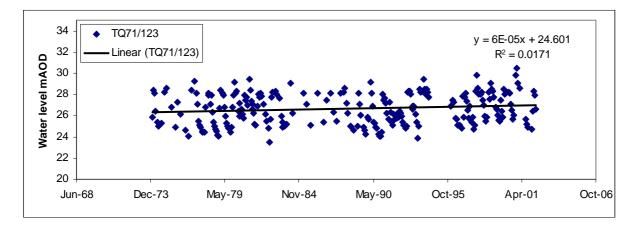

Nov	1997 Very low
Dec	1997 Very low
Jan	1998 Low
Feb	1998 Low
Mar	1998 Low
Apr	1998 Low
May	1998 Low
Jun	1998 Average
Jul	1998 Average
Aug	1998 Low
Sep	1998 Low
Oct	1998 Low
Nov	1998 Average
Dec	1998 Average
Jan	1999 Average
Feb	1999 Average
Mar	1999 Average
Apr	1999 Average
May	1999 Average
Jun	1999 Average
Jul	1999 Average
Aug	1999 Average
Sep	1999 Average
Oct	1999 Average
Nov	1999 Average
Dec	1999 Average
Jan	2000 Average
Feb	2000 Average
Mar	2000 Average
Apr	2000 High
May	2000 High
Jun	2000 Average
Jul	2000 Average
Aug	2000 Average
Sep	2000 Average
Oct	2000 High
Nov	2000 Very high
Dec	2000 Very high
Jan	2001 Very high
Feb	2001 Very high

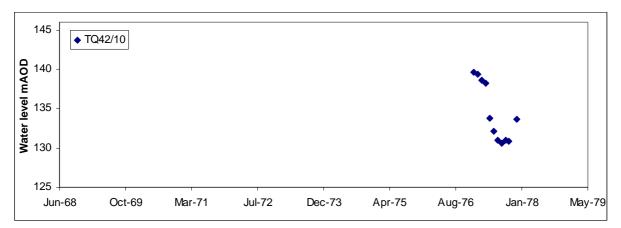

Appendix 2 Hasting Beds

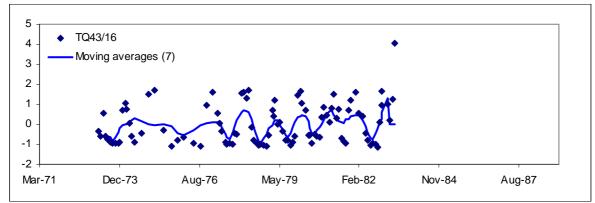

WATER LEVELS ABOVE ORDNANCE DATUM WITH LINEAR REGRESSION CURVE

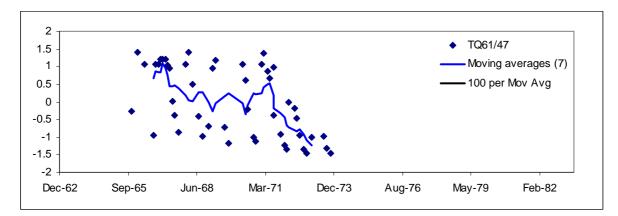


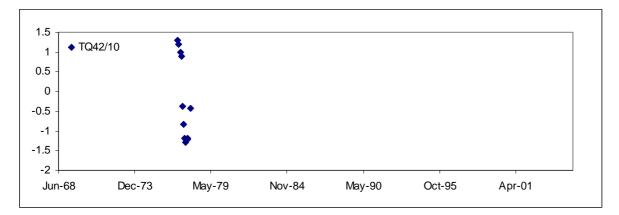


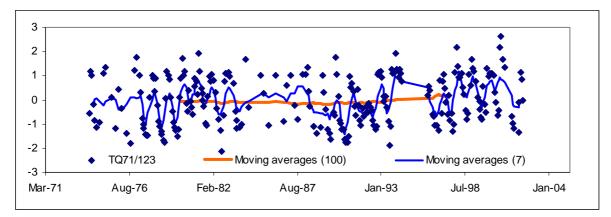


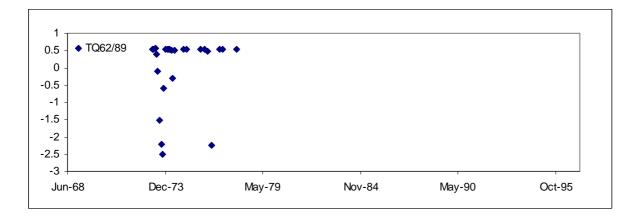


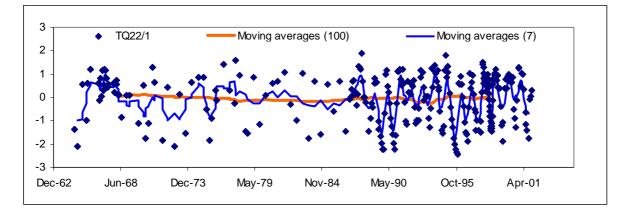


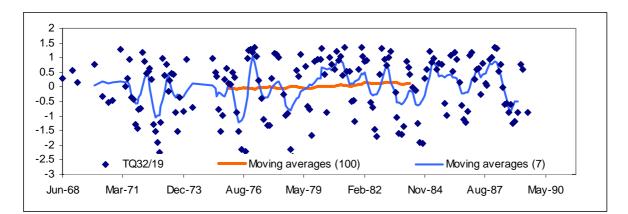


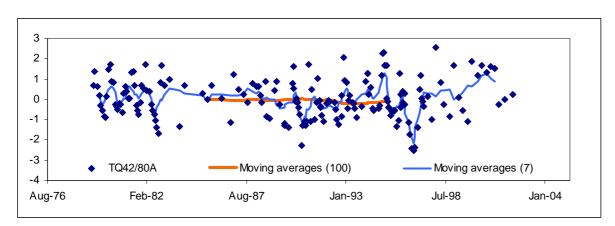


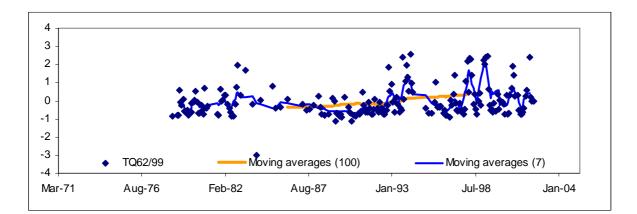


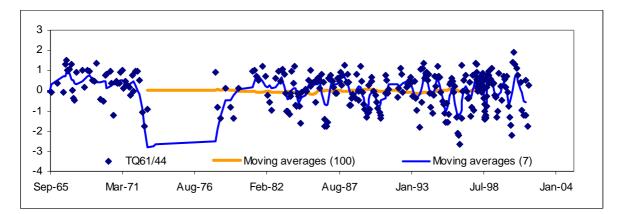

NORMALISED WATER LEVEL DATA WITH MOVING AVERAGES SMOOTHING LINES

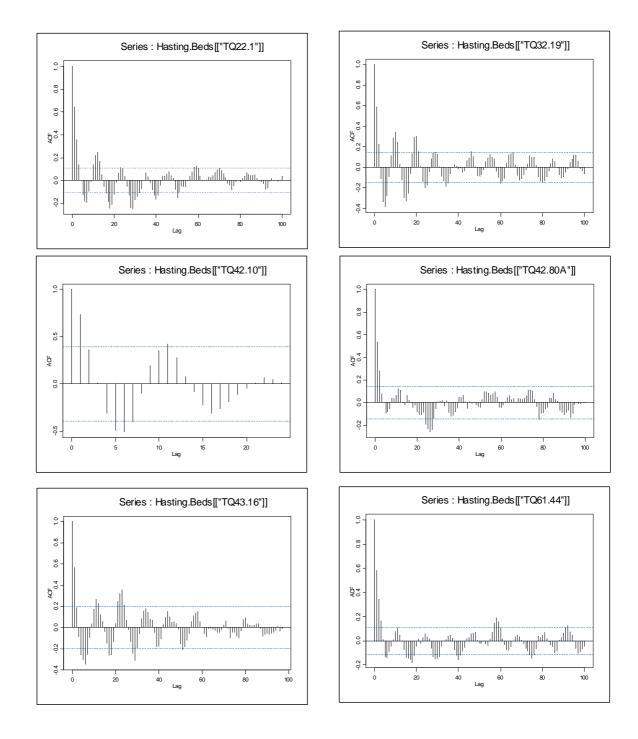


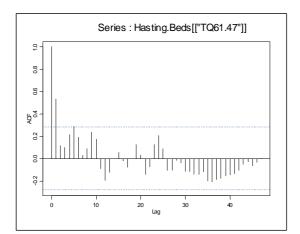


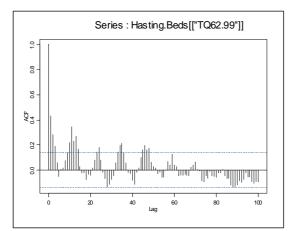


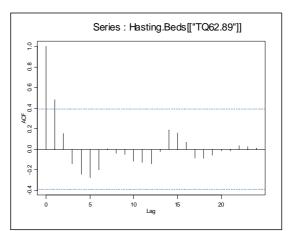


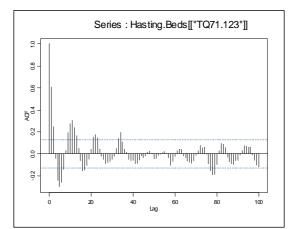


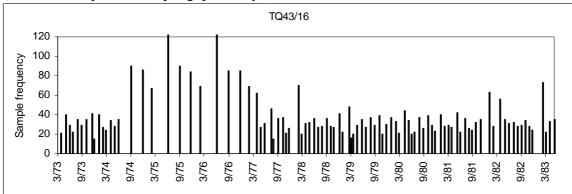


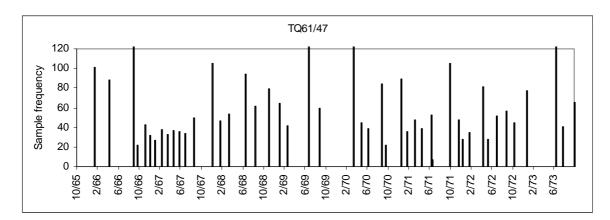


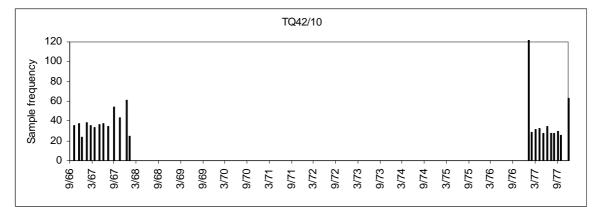


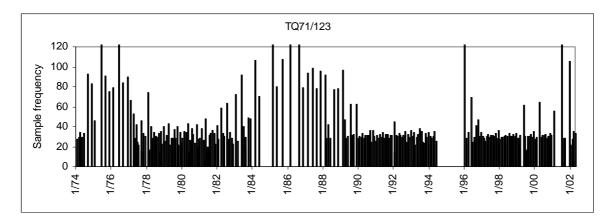


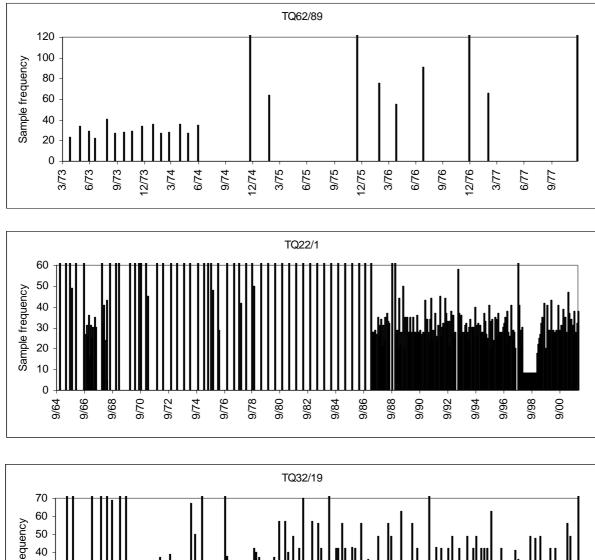

AUTOCORRELATION FUNTION PLOTS

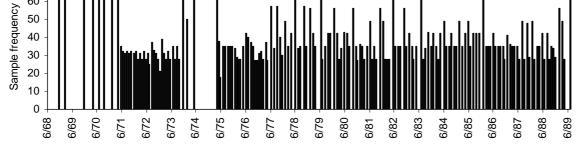


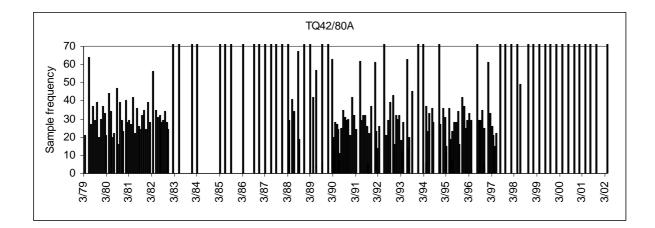


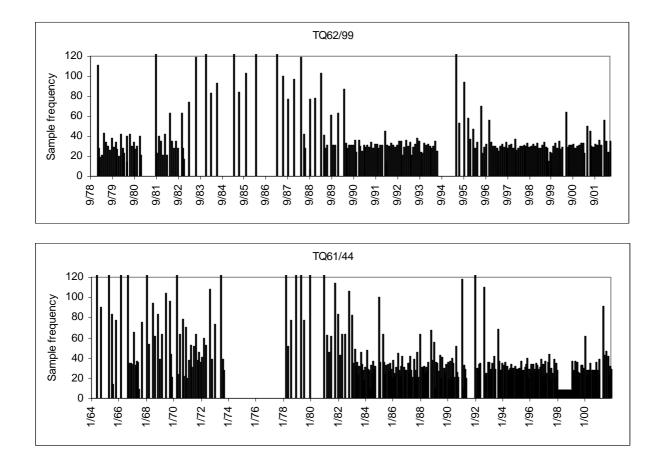



SAMPLE FREQUENCY PLOTS


(x axis: time; y axis: sample gaps in days)







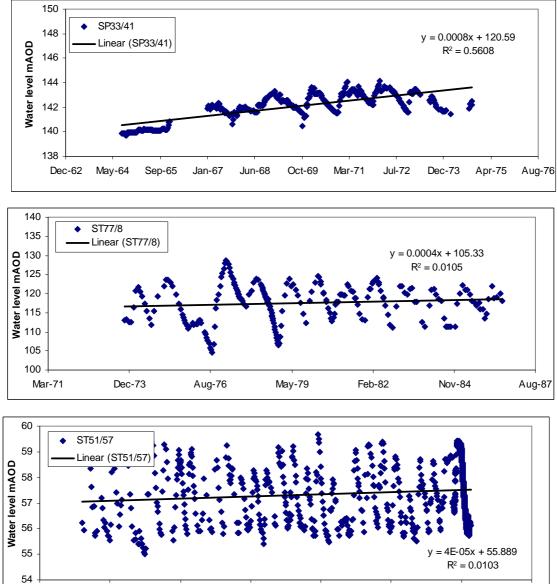
WELLMASTER LOOK-UP TABLE

May 15, 1970 Average June 15, 1970 Low July 15. 1970 Very low August 15, 1970 Very low September 15, 1970 Low October 15, 1970 Average November 14, 1970 Average December 15, 1970 High January 15, 1971 Very high February 15, 1971 Very high March 15, 1971 Very high April 15, 1971 High May 15, 1971 High June 15, 1971 High July 15, 1971 Average August 15, 1971 Low September 15, 1971 Low October 15, 1971 Very low November 15, 1971 Very low December 15, 1971 Low January 15, 1972 Average February 15, 1972 High March 15, 1972 High April 15, 1972 High May 15, 1972 Average June 15, 1972 Average July 15, 1972 Low August 15, 1972 Very low September 15, 1972 Very low October 15, 1972 Very low November 15, 1972 Very low December 15, 1972 Low January 15, 1973 Average February 15, 1973 Average March 15, 1973 Average April 15, 1973 Average May 15, 1973 Average June 15, 1973 Average July 15, 1973 Very low August 15, 1973 Very low September 15, 1973 Very low October 15, 1973 Very low November 15, 1973 Very low December 15, 1973 Low January 15, 1974 Average February 15, 1974 High March 15, 1974 Very high April 15, 1974 Average May 15, 1974 Low June 15, 1974 Low July 15, 1974 Low August 15, 1974 Low September 15, 1974 Low

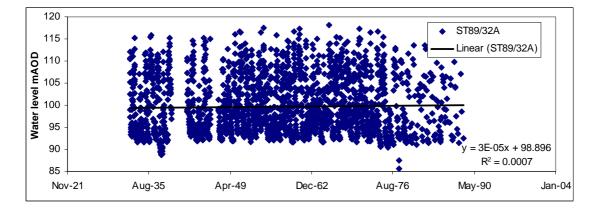
October 15, 1974 High November 14, 1974 Very high December 15, 1974 Very high January 15, 1975 Very high February 15, 1975 Very high March 15, 1975 Very high April 15, 1975 Very high May 15, 1975 High June 15, 1975 Low July 15, 1975 Low August 15, 1975 Very low September 15, 1975 Very low October 15, 1975 Very low November 15, 1975 Low December 15, 1975 Average January 15, 1976 Average February 15, 1976 Average March 15, 1976 Average April 15, 1976 Low May 15, 1976 Very low June 15, 1976 Very low July 15, 1976 Very low August 15, 1976 Very low September 15, 1976 Very low October 15, 1976 Average November 15, 1976 Very high December 15, 1976 Very high January 15, 1977 Very high February 15, 1977 Very high March 15, 1977 Very high April 15, 1977 High May 15, 1977 Average June 15, 1977 Low July 15, 1977 Very low August 15, 1977 Very low September 15, 1977 Very low October 15, 1977 Low November 15, 1977 Average December 15, 1977 Average January 15, 1978 High February 15, 1978 Very high March 15, 1978 Very high April 15, 1978 Very high May 15, 1978 High June 15, 1978 Low July 15, 1978 Very low August 15, 1978 Very low September 15, 1978 Very low October 15, 1978 Very low November 15, 1978 Very low December 15, 1978 Very low January 15, 1979 Average February 15, 1979 High

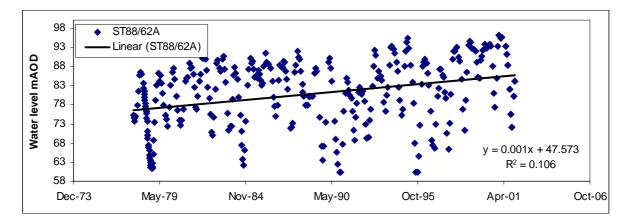
March 15, 1979 High April 15, 1979 High May 15, 1979 Average June 15, 1979 Average July 15, 1979 Low August 15, 1979 Low September 15, 1979 Very low October 15, 1979 Very low November 15, 1979 Low December 15, 1979 Average January 15, 1980 Very high February 15, 1980 Very high March 15, 1980 Very high April 15, 1980 High May 15, 1980 Low June 15, 1980 Low July 15, 1980 Average August 15, 1980 Average September 15, 1980 Low October 15, 1980 Average November 15, 1980 High December 15, 1980 High January 15, 1981 High February 15, 1981 High March 15, 1981 Very high April 15, 1981 Very high May 15, 1981 High June 15, 1981 High July 15, 1981 Low August 15, 1981 Low September 15, 1981 Low October 15, 1981 High November 15, 1981 Very high December 15, 1981 Very high January 15, 1982 Very high February 15, 1982 High March 15, 1982 High April 15, 1982 Average May 15, 1982 Low June 15, 1982 Low July 15, 1982 Very low August 15, 1982 Very low September 15, 1982 Very low October 15, 1982 Low November 15, 1982 High December 15, 1982 Very high January 15, 1983 Very high February 15, 1983 Very high March 15, 1983 Very high April 15, 1983 Very high May 15, 1983 Very high June 15, 1983 Very high July 15, 1983 Average

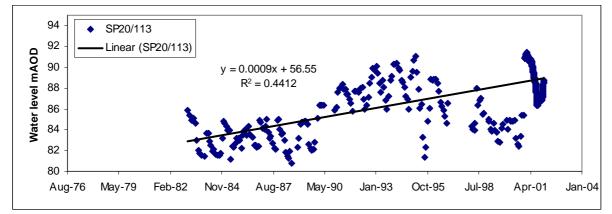
August 15, 1983 Very low September 15, 1983 Very low October 15, 1983 Very low November 15, 1983 Very low December 15, 1983 Low January 15, 1984 High February 15, 1984 High March 15, 1984 Average April 15, 1984 Average May 15, 1984 Low June 15, 1984 Low July 15, 1984 Low August 15, 1984 Very low September 15, 1984 Very low October 15, 1984 Very low November 15, 1984 Average December 15, 1984 Average January 15, 1985 High February 15, 1985 High March 15, 1985 High April 15, 1985 High May 15, 1985 High June 15, 1985 Average July 15, 1985 High August 15, 1985 High September 15, 1985 Average October 15, 1985 Low November 15, 1985 Average December 15, 1985 High January 15, 1986 High February 15, 1986 High March 15, 1986 High April 15, 1986 High May 15, 1986 Average June 15, 1986 Low July 15, 1986 Very low August 15, 1986 Very low September 15, 1986 Very low October 15, 1986 Low November 15, 1986 High December 15, 1986 Very high January 15, 1987 High February 15, 1987 High March 15, 1987 High April 15, 1987 Average May 15, 1987 Average June 15, 1987 Average July 15, 1987 High August 15, 1987 Average September 15, 1987 Average October 15, 1987 High November 15, 1987 Very high December 15, 1987 Very high

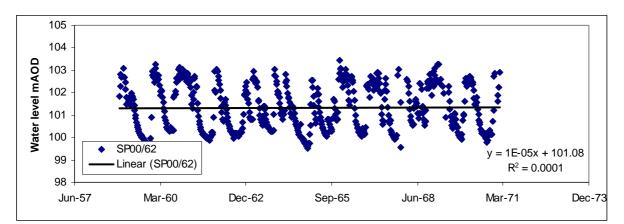

January 15, 1988 Very high February 15, 1988 Very high March 15, 1988 Very high April 15, 1988 High May 15, 1988 Average June 15, 1988 Low July 15, 1988 Low August 15, 1988 Low September 15, 1988 Very low October 15, 1988 Very low November 15, 1988 Low December 15, 1988 Low January 15, 1989 Low February 15, 1989 Low March 15, 1989 High April 15, 1989 High May 15, 1989 Average June 15, 1989 Low July 15, 1989 Very low August 15, 1989 Very low September 15, 1989 Very low October 15, 1989 Very low November 15, 1989 Verv low December 15, 1989 Low January 15, 1990 Average February 15, 1990 Very high March 15, 1990 High April 15, 1990 Average May 15, 1990 Low June 15, 1990 Low July 15, 1990 Very low August 15, 1990 Very low September 15, 1990 Very low October 15, 1990 Very low November 15, 1990 Very low December 15, 1990 Very low January 15, 1991 High February 15, 1991 High March 15, 1991 High April 15, 1991 Average May 15, 1991 Low June 15, 1991 Average July 15, 1991 High August 15, 1991 Average September 15, 1991 Low October 15, 1991 Very low November 15, 1991 Low December 15, 1991 Average January 15, 1992 Low February 15, 1992 Average March 15, 1992 Average April 15, 1992 High May 15, 1992 Average

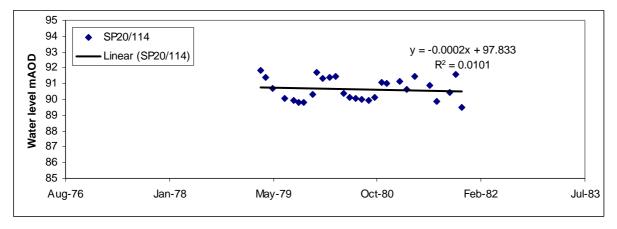
June 15, 1992 Low July 15, 1992 Low August 15, 1992 Very low September 15, 1992 Low October 15, 1992 Low November 15, 1992 Very high December 15, 1992 Very high January 15, 1993 Very high February 15, 1993 High March 15, 1993 Average April 15, 1993 Average May 15, 1993 Average June 15, 1993 Low July 15, 1993 Low August 15, 1993 Very low September 15, 1993 Low October 15, 1993 Very high November 15, 1993 High December 15, 1993 Very high January 15, 1994 Very high February 15, 1994 Very high March 15, 1994 Very high April 15, 1994 Very high May 15, 1994 High June 15, 1994 High July 15, 1994 Low August 15, 1994 Very low September 15, 1994 Very low October 15, 1994 Low November 15, 1994 Average December 15, 1994 High January 15, 1995 Very high February 15, 1995 Very high March 15, 1995 Very high April 15, 1995 High May 15, 1995 Low June 15, 1995 Low July 15, 1995 Very low August 15, 1995 Very low September 15, 1995 Very low October 15, 1995 Very low November 15, 1995 Very low December 15, 1995 Low January 15, 1996 High February 15, 1996 Average March 15, 1996 Average April 15, 1996 Average May 15, 1996 Average June 15, 1996 Low July 15, 1996 Very low August 15, 1996 Very low September 15, 1996 Very low October 15, 1996 Very low

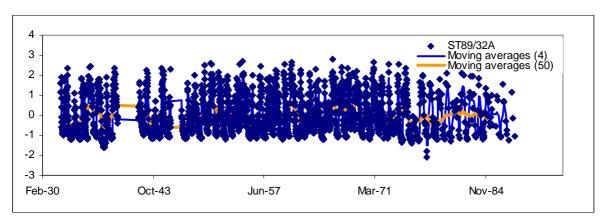

November 15, 1996 Very low December 15, 1996 Average January 15, 1997 Average February 15, 1997 High March 15, 1997 Very high April 15, 1997 Average May 15, 1997 Low June 15, 1997 Low July 15, 1997 Average August 15, 1997 Low September 15, 1997 Very low October 15, 1997 Low November 15, 1997 Low December 15, 1997 High January 15, 1998 Very high February 15, 1998 High March 15, 1998 Very high April 15, 1998 Very high May 15, 1998 High June 15, 1998 High July 15, 1998 Average August 15, 1998 Very low September 15, 1998 Very low October 15, 1998 Low November 15, 1998 High December 15, 1998 Very high January 15, 1999 Very high February 15, 1999 Very high March 15, 1999 Very high April 15, 1999 Very high May 15, 1999 High June 15, 1999 Average July 15, 1999 Low August 15, 1999 Very low September 15, 1999 Low October 15, 1999 Average November 15, 1999 Verv high December 15, 1999 High January 15, 2000 Very high February 15, 2000 High March 15, 2000 High April 15, 2000 High May 15, 2000 High June 15, 2000 Average July 15, 2000 Average August 15, 2000 Low September 15, 2000 Very low October 15, 2000 Average November 15, 2000 Very high December 15, 2000 Very high January 15, 2001 Very high February 15, 2001 Very high March 15, 2001 Very high April 15, 2001 Very high May 15, 2001 Average June 15, 2001 Low July 15, 2001 Low August 15, 2001 Very low September 15, 2001 Very low October 15, 2001 Low November 15, 2001 Average December 15, 2001 Average

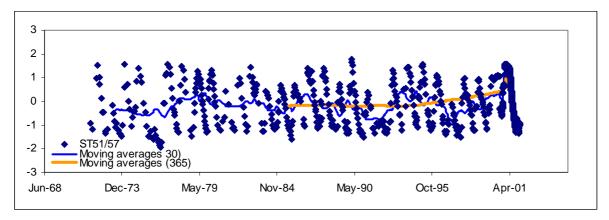

Appendix 3 Middle Jurassic

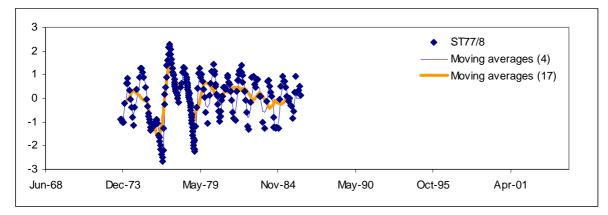

WATER LEVELS ABOVE ORDNANCE DATUM WITH LINEAR REGRESSION CURVE

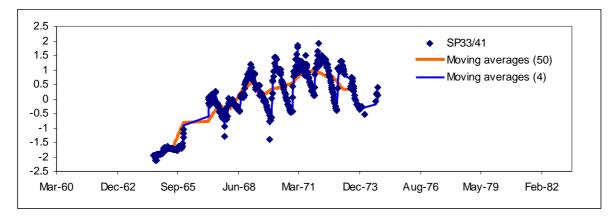


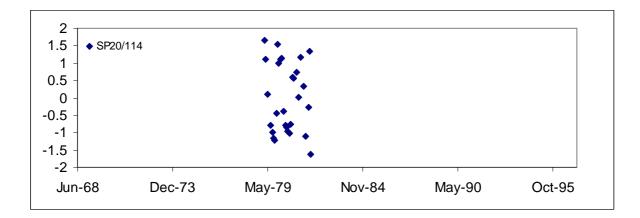


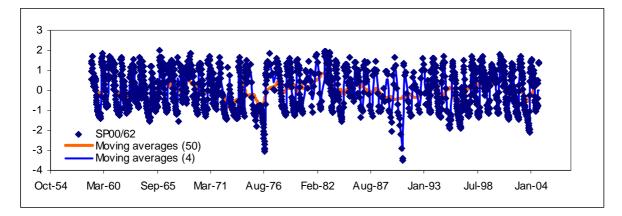


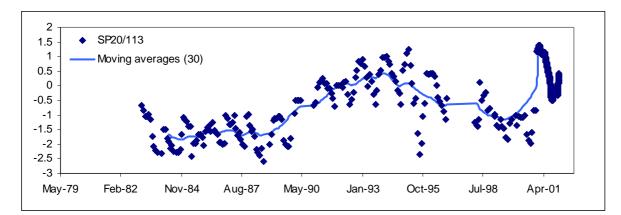


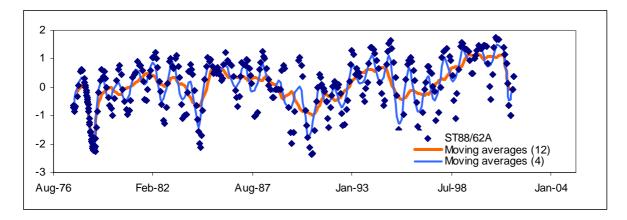


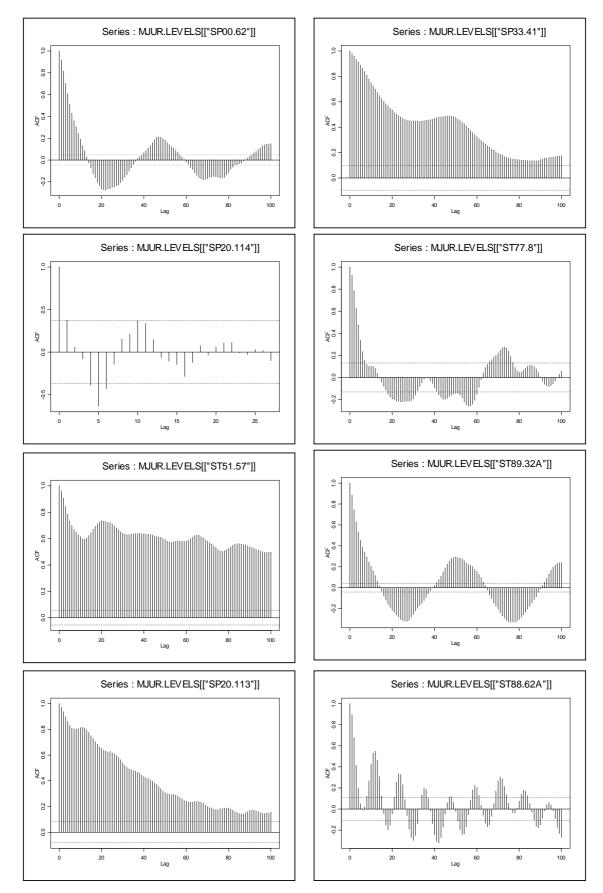


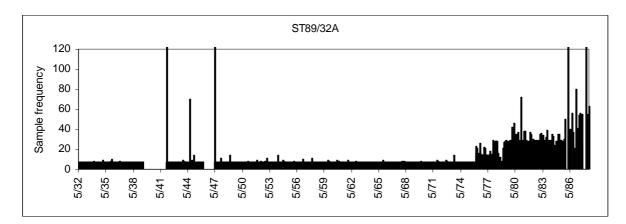

NORMALISED WATER LEVEL DATA WITH MOVING AVERAGES SMOOTHING LINES

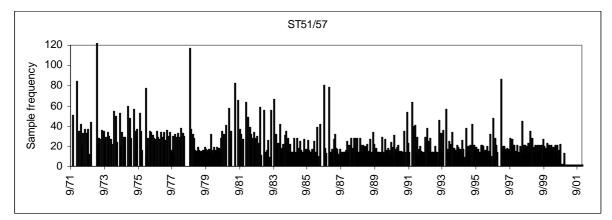


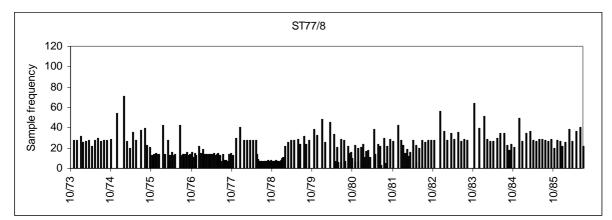


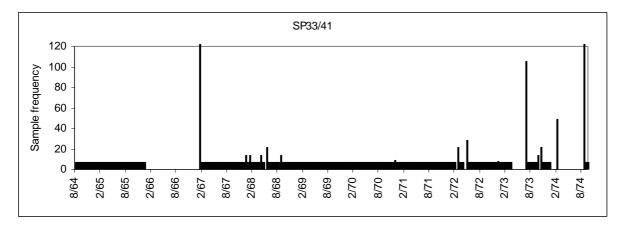


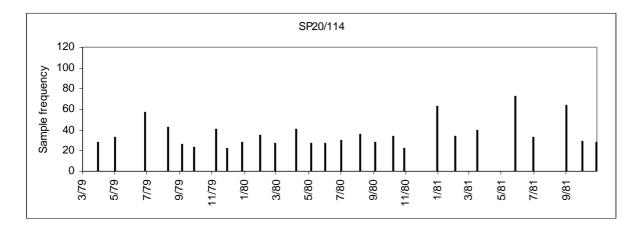


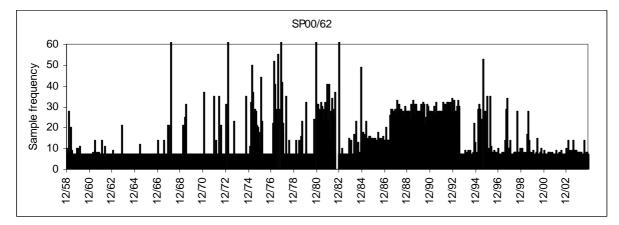


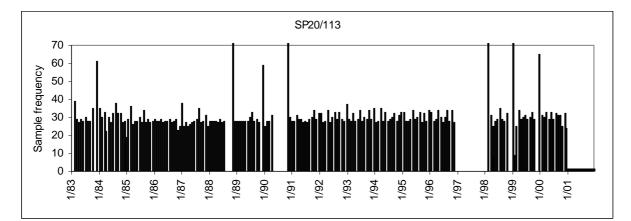


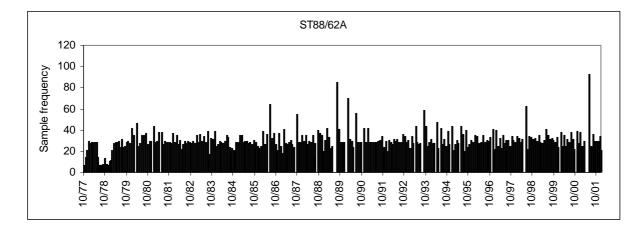

AUTOCORRELATION FUNTION PLOTS




SAMPLE FREQUENCY PLOTS

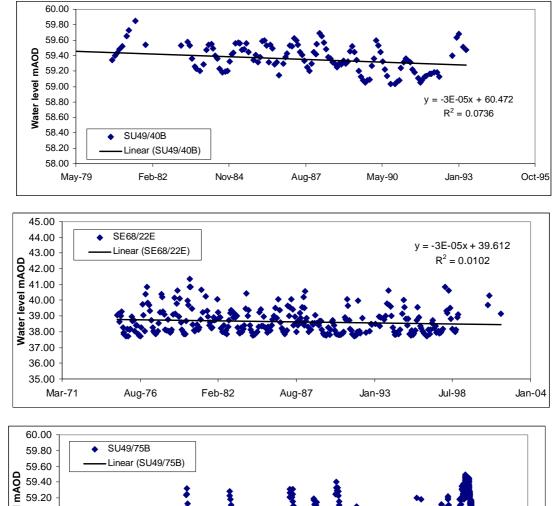


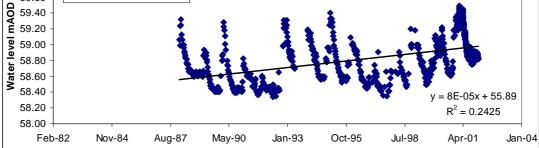


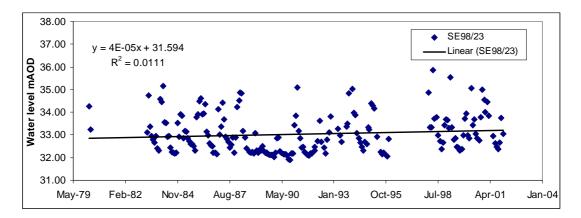


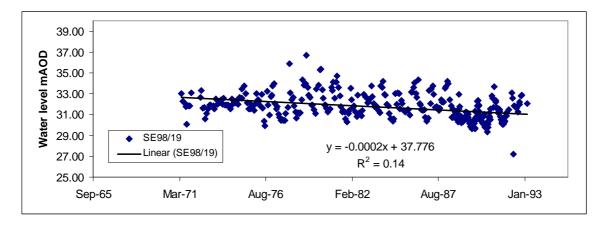
WELLMASTER LOOK-UP TABLE

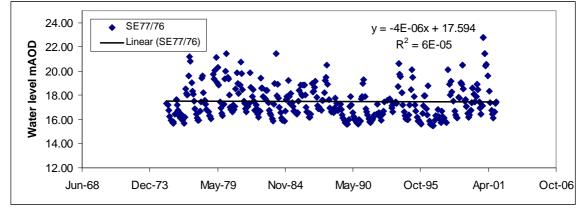
o .	1050 4		1000 -		1007 1
Sept	1958 Average	Feb	1963 Average	Jul	1967 Low
Oct	1958 High	Mar	1963 Very high	Aug	1967 Very low
Nov	1958 High	Apr	1963 Very high	Sep	1967 Very low
Dec Jan	1958 Very high	May Jun	1963 Average	Oct Nov	1967 High
Feb	1959 Very high 1959 High	Jul	1963 Low 1963 Average	Dec	1967 Very high 1967 High
Mar	1959 High	Aug	1963 Low	Jan	1968 Very high
Apr	1959 High	Sep	1963 Low	Feb	1968 Very high
May	1959 High	Oct	1963 Low	Mar	1968 Average
Jun	1959 Low	Nov	1963 High	Apr	1968 Low
Jul	1959 Low	Dec	1963 High	May	1968 Average
Aug	1959 Very low	Jan	1964 Average	Jun	1968 Average
Sep	1959 Very low	Feb	1964 Average	Jul	1968 High
Oct	1959 Very low	Mar	1964 High	Aug	1968 Average
Nov	1959 Very low	Apr	1964 High	Sep	1968 Average
Dec	1959 High	May	1964 Average	Oct	1968 Very high
Jan	1960 Very high	Jun	1964 Average	Nov	1968 Very high
Feb	1960 Very high	Jul	1964 Low	Dec	1968 Very high
Mar	1960 High	Aug	1964 Very low	Jan	1969 Very high
Apr	1960 High	Sep	1964 Very low	Feb	1969 Very high
May	1960 Low	Oct	1964 Very low	Mar	1969 Very high
Jun	1960 Low	Nov	1964 Very low	Apr	1969 Average
Jul	1960 Low	Dec	1964 Low	May	1969 High
Aug	1960 Low	Jan	1965 High	Jun	1969 Average
Sep	1960 High	Feb	1965 Average	Jul	1969 Low
Oct	1960 Very high	Mar	1965 Average	Aug	1969 Low
Nov	1960 Very high	Apr	1965 Average	Sep	1969 Low
Dec	1960 Very high	May	1965 Low	Oct	1969 Very low
Jan	1961 Very high	Jun	1965 Low	Nov	1969 Low
Feb	1961 Very high	Jul	1965 Low	Dec	1969 High
Mar	1961 High	Aug	1965 Low	Jan	1970 Very high
Apr	1961 High	Sep	1965 Average	Feb	1970 Very high
May	1961 High	Oct	1965 Average	Mar	1970 High
Jun	1961 Average	Nov	1965 Average	Apr	1970 Average
Jul	1961 Low	Dec	1965 Very high	May	1970 Average
Aug	1961 Very low	Jan	1966 Very high	Jun	1970 Average
Sep	1961 Very low	Feb	1966 Very high	Jul	1970 Very low
Oct	1961 Very low	Mar	1966 Very high	Aug	1970 Very low
Nov	1961 Low	Apr	1966 High	Sep	1970 Low
Dec	1961 High	May	1966 Very high	Oct	1970 Low
Jan	1962 Very high	Jun	1966 Average	Nov	1970 High
Feb	1962 Very high	Jul	1966 Low	Dec	1970 Very high
Mar	1962 Average	Aug	1966 Very low	Jan	1971 Very high
Apr	1962 Average	Sep	1966 Very low	Feb	1971 Very high
May	1962 Average	Oct	1966 Average	Mar	1971 High
Jun	1962 Low	Nov	1966 High	Apr	1971 Average
Jul	1962 Very low	Dec	1966 Very high	May	1971 Average
Aug	1962 Low	Jan	1967 Very high	Jun	1971 High
Sep	1962 Low	Feb	1967 Very high	Jul	1971 Average
Oct	1962 Low	Mar	1967 Very high	Aug	1971 Low
Nov	1962 Average	Apr	1967 Average	Sep	1971 Low
Dec	1962 High	May	1967 Average	Oct	1971 Average
Jan	1963 Average	Jun	1967 High	Nov	1971 Average

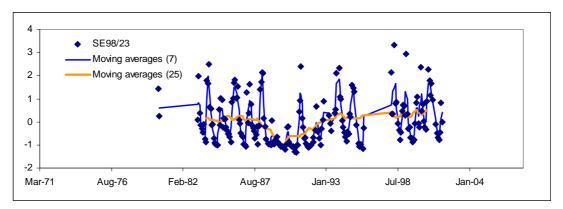

Dec	1971 High	May	1976 Very low	Oct	1980 Low
Jan	1972 Very high	Jun	1976 Very low	Nov	1980 Average
Feb	1972 Very high	Jul	1976 Very low	Dec	1980 Average
Mar	1972 Very high	Aug	1976 Very low	Jan	1981 High
Apr	1972 Average	Sep	1976 Very low	Feb	1981 Average
May	1972 Average	Oct	1976 Low	Mar	1981 High
Jun	1972 Low	Nov	1976 High	Apr	1981 High
Jul	1972 Low	Dec	1976 Very high	May	1981 High
Aug	1972 Very low	Jan	1977 Very high	Jun	1981 High
Sep	1972 Very low	Feb	1977 Very high	Jul	1981 Average
Oct	1972 Very low	Mar	1977 Very high	Aug	1981 Low
Nov	1972 Low	Apr	1977 Very high	Sep	1981 Low
Dec	1972 Very high	May	1977 High	Oct	1981 Average
Jan	1973 High	Jun	1977 High	Nov	1981 Average
Feb	1973 Average	Jul	1977 Average	Dec	1981 High
Mar	1973 Average	Aug	1977 Average	Jan	1982 Very high
Apr	1973 Low	Sep	1977 Low	Feb	1982 Very high
May	1973 Low	Oct	1977 Low	Mar	1982 Very high
Jun	1973 Low	Nov	1977 Average	Apr	1982 High
Jul	1973 Low	Dec	1977 High	May	1982 Average
Aug	1973 Low	Jan	1978 High	Jun	-
Sep	1973 Very low	Feb	-	Jul	1982 Average
Oct	-	Mar	1978 Very high	Aug	1982 Low
	1973 Very low		1978 Very high	•	1982 Low
Nov	1973 Very low	Apr	1978 High	Sep	1982 Very low
Dec	1973 Low	May	1978 High	Oct	1982 Low
Jan Tab	1974 High	Jun	1978 Average	Nov	1982 High
Feb	1974 Very high	Jul	1978 Low	Dec	1982 Very high
Mar	1974 High	Aug	1978 Low	Jan	1983 Very high
Apr	1974 Average	Sep	1978 Very low	Feb	1983 Very high
May	1974 Low	Oct	1978 Very low	Mar	1983 High
Jun	1974 Low	Nov	1978 Very low	Apr	1983 High
Jul	1974 Very low	Dec	1978 Very low	May	1983 Very high
Aug	1974 Very low	Jan	1979 Average	Jun	1983 High
Sep	1974 High	Feb	1979 High	Jul	1983 Average
Oct	1974 High	Mar	1979 Very high	Aug	1983 Low
Nov	1974 High	Apr	1979 Very high	Sep	1983 Very low
Dec	1974 High	May	1979 High	Oct	1983 Low
Jan	1975 Very high	Jun	1979 High	Nov	1983 Low
Feb	1975 Very high	Jul	1979 Average	Dec	1983 Average
Mar	1975 Very high	Aug	1979 Average	Jan	1984 High
Apr	1975 High	Sep	1979 Low	Feb	1984 High
May	1975 Average	Oct	1979 Very low	Mar	1984 High
Jun	1975 Low	Nov	1979 Very low	Apr	1984 Average
Jul	1975 Low	Dec	1979 Low	May	1984 Average
Aug	1975 Very low	Jan	1980 High	Jun	1984 Low
Sep	1975 Very low	Feb	1980 Very high	Jul	1984 Very low
Oct	1975 Very low	Mar	1980 Very high	Aug	1984 Very low
Nov	1975 Very low	Apr	1980 Very high	Sep	1984 Very low
Dec	1975 Low	May	1980 Average	Oct	1984 Very low
Jan	1976 Low	Jun	1980 Average	Nov	1984 Average
Feb	1976 Very low	Jul	1980 Low	Dec	1984 High
Mar	1976 Low	Aug	1980 Low	Jan	1985 High
Apr	1976 Low	Sep	1980 Low	Feb	1985 High

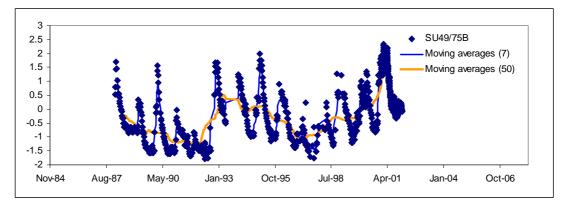

Mar	1985 High	Aug	1989 Very low	Jan	1994 Very high
Apr	1985 High	Sep	1989 Very low	Feb	1994 Very high
May	1985 Average	Oct	1989 Very low	Mar	1994 Very high
Jun	1985 Average	Nov	1989 Very low	Apr	1994 Very high
Jul	1985 Average	Dec	1989 Average	May	1994 High
Aug	1985 Average	Jan	1990 High	Jun	1994 Average
Sep	1985 Average	Feb	1990 Very high	Jul	1994 Low
Oct	1985 Average	Mar	1990 Very high	Aug	1994 Low
Nov	1985 Low	Apr	1990 High	Sep	1994 Very low
Dec	1985 Average	May	1990 Average	Oct	1994 Very low
Jan	1986 High	Jun	1990 Low	Nov	1994 Average
Feb	1986 High	Jul	1990 Low	Dec	1994 High
Mar	1986 High	Aug	1990 Very low	Jan	1995 Very high
Apr	1986 High	Sep	1990 Very low	Feb	1995 Very high
May	1986 High	Oct	1990 Very low	Mar	1995 Very high
Jun	1986 High	Nov	1990 Very low	Apr	1995 High
Jul	1986 Average	Dec	1990 Very low	May	1995 Average
Aug	1986 Low	Jan	1991 Low	Jun	1995 Average
Sep	1986 Low	Feb	1991 Average	Jul	1995 Low
Oct	1986 Low	Mar	1991 Average	Aug	1995 Very low
Nov	1986 Average	Apr	1991 High	Sep	1995 Very low
Dec	1986 High	May	1991 Average	Oct	1995 Very low
Jan	1987 Very high	Jun	1991 Average	Nov	1995 Very low
Feb	1987 High	Jul	1991 Low	Dec	1995 Average
Mar	1987 High	Aug	1991 Low	Jan	1996 High
Apr	1987 High	Sep	1991 Very low	Feb	1996 High
May	1987 High	Oct	1991 Very low	Mar	1996 High
Jun	1987 Average	Nov	1991 Low	Apr	1996 High
Jul	1987 Average	Dec	1991 Average	May	1996 Average
Aug	1987 Low	Jan	1992 Average	Jun	1996 Average
Sep	1987 Very low	Feb	1992 Average	Jul	1996 Low
Oct	1987 Very low	Mar	1992 Average	Aug	1996 Very low
Nov	1987 Low	Apr	1992 Average	Sep	1996 Very low
Dec	1987 Average	May	1992 Low	Oct	1996 Very low
Jan	1988 High	Jun	1992 Low	Nov	1996 Very low
Feb	1988 Very high	Jul	1992 Very low	Dec	1996 Low
Mar	1988 Very high	Aug	1992 Very low	Jan	1997 Low
Apr	1988 High	Sep	1992 Low	Feb	1997 Average
May	1988 Average	Oct	1992 Low	Mar	1997 High
Jun	1988 Average	Nov	1992 Average	Apr	1997 Average
Jul	1988 Low	Dec	1992 High	May	1997 Low
Aug	1988 Low	Jan	1993 Very high	Jun	1997 Low
Sep	1988 Low	Feb	1993 Very high	Jul	1997 Low
Oct	1988 Low	Mar	1993 High	Aug	1997 Very low
Nov	1988 Low	Apr	1993 Average	Sep	1997 Very low
Dec	1988 Low	May	1993 Average	Oct	1997 Very low
Jan	1989 Low	Jun	1993 Average	Nov	1997 Low
Feb	1989 Average	Jul	1993 Average	Dec	1997 High
Mar	1989 High	Aug	1993 Low	Jan	1998 Very high
Apr	1989 High	Sep	1993 Very low	Feb	1998 High
May	1989 High	Oct	1993 Average	Mar	1998 High
Jun	1989 Average	Nov	1993 High	Apr	1998 High
Jul	1989 Low	Dec	1993 High	May	1998 High

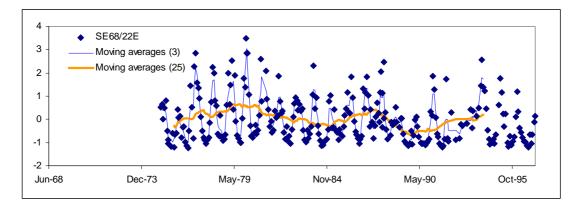

Jun	1998 Average
Jul	1998 Low
Aug	1998 Low
Sep	1998 Very low
Oct	1998 Low
Nov	1998 High
Dec	1998 High
Jan	1999 Very high
Feb	1999 Very high
Mar	1999 High
Apr	1999 High
May	1999 High
Jun	1999 Average
Jul	1999 Average
Aug	1999 Low
Sep	1999 Low
Oct	1999 Average
Nov	1999 High
Dec	1999 High
Jan	2000 Very high
Feb	2000 High
Mar	2000 High
Apr	2000 Very high
May	2000 High
Jun	2000 High
Jul	2000 Average
Aug	2000 Low
Sep	2000 Low
Oct	2000 Average
Nov	2000 High
Dec	2000 Very high
Jan	2001 Very high
Feb	2001 Very high
Mar	2001 Very high
Apr	2001 Very high
Мау	2001 High

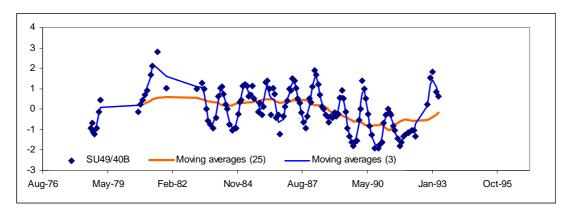

Appendix 4 Upper Jurassic

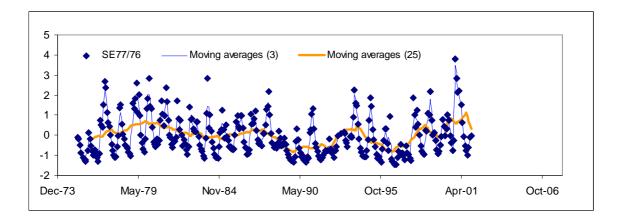


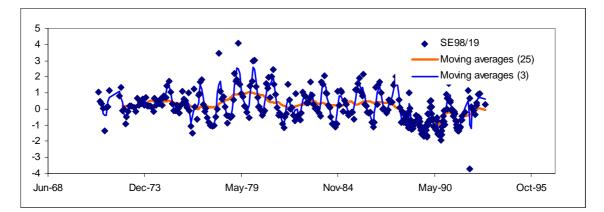


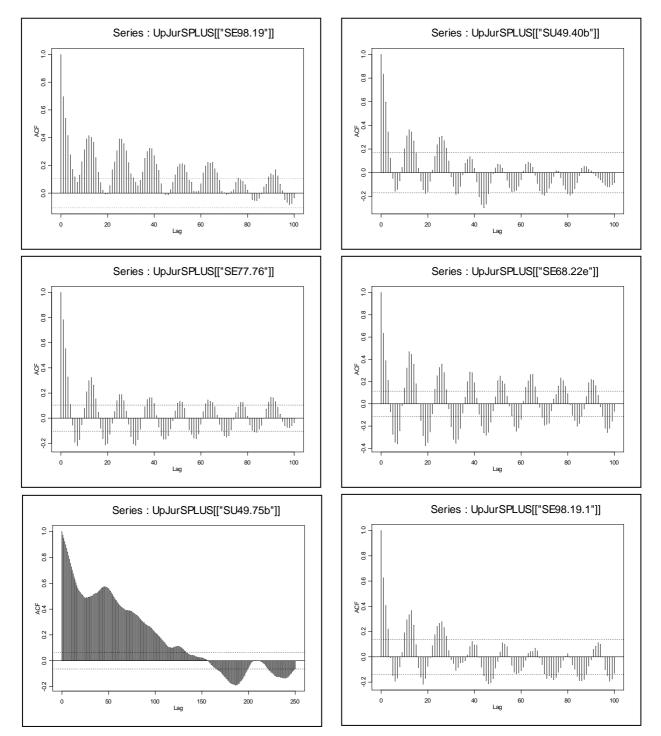


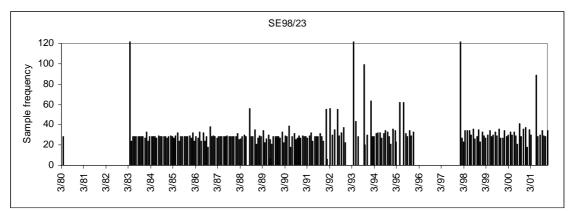


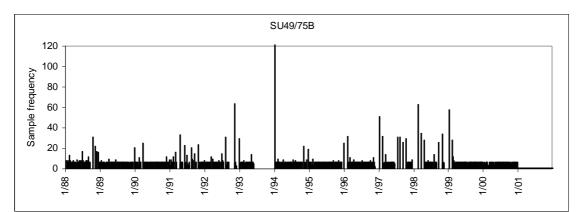


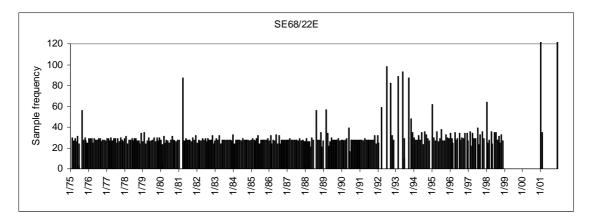

NORMALISED WATER LEVEL DATA WITH MOVING AVERAGES SMOOTHING LINES

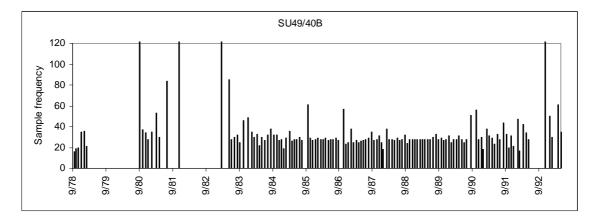


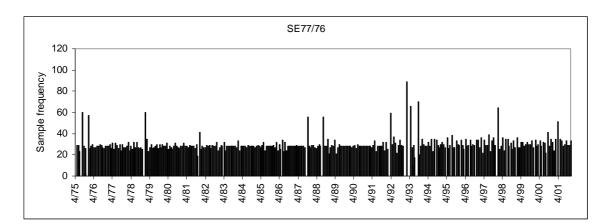


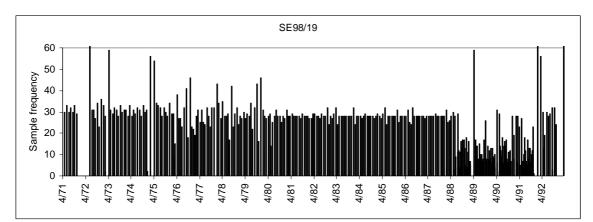




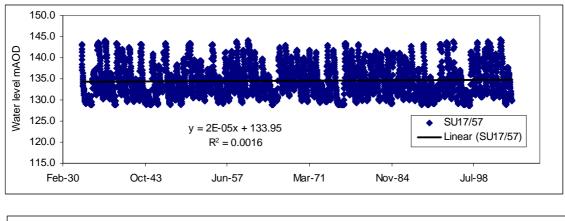

AUTOCORRELATION FUNTION PLOTS

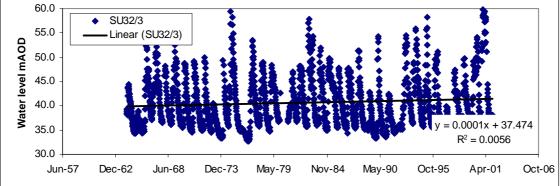


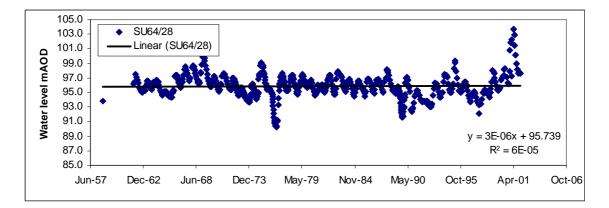

SAMPLE FREQUENCY PLOTS

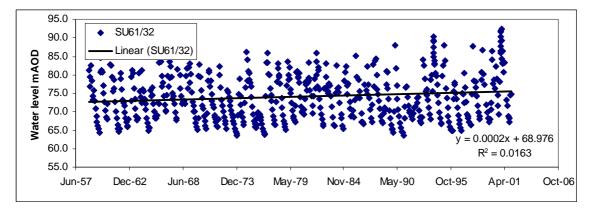


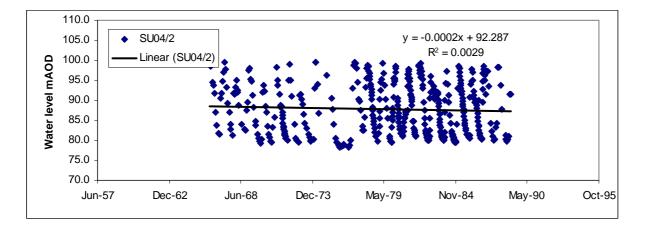
WELLMASTER LOOK-UP TABLE

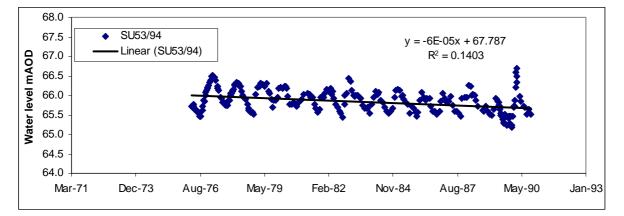

Mar	1975 High	Jul	1979 High	Nov	1983 Average
Apr	1975 High	Aug	1979 Average	Dec	1983 High
May	1975 High	Sep	1979 Average	Jan	1984 Very high
Jun	1975 Average	Oct	1979 Average	Feb	1984 Very high
Jul	1975 Low	Nov	1979 High	Mar	1984 Very high
Aug	1975 Low	Dec	1979 Very high	Apr	1984 High
Sep	1975 Low	Jan	1980 Very high	May	1984 Average
Oct	1975 Low	Feb	1980 Very high	Jun	1984 Low
Nov	1975 Low	Mar	1980 Very high	Jul	1984 Very low
Dec	1975 Average	Apr	1980 Very high	Aug	1984 Very low
Jan	1976 Average	May	1980 High	Sep	1984 Very low
Feb	1976 Average	Jun	1980 Average	Oct	1984 Low
Mar	1976 Average	Jul	1980 Low	Nov	1984 Low
Apr	1976 Average	Aug	1980 Low	Dec	1984 High
May	1976 Low	Sep	1980 Average	Jan	1985 High
Jun	1976 Low	Oct	1980 High	Feb	1985 High
Jul	1976 Low	Nov	1980 Very high	Mar	1985 High
Aug	1976 Low	Dec	1980 Very high	Apr	1985 High
Sep	1976 Low	Jan	1981 Very high	May	1985 High
Oct	1976 Average	Feb	1981 Very high	Jun	1985 Average
Nov	1976 High	Mar	1981 Very high	Jul	1985 Average
Dec	1976 Very high	Apr	1981 Very high	Aug	1985 Low
Jan	1977 Very high	May	1981 Very high	Sep	1985 Low
Feb	1977 Very high	Jun	1981 Very high	Oct	1985 Average
Mar	1977 Very high	Jul	1981 High	Nov	1985 Average
Apr	1977 Very high	Aug	1981 Average	Dec	1985 High
May	1977 High	Sep	1981 Average	Jan	1986 Very high
Jun	1977 Average	Oct	1981 Average	Feb	1986 Very high
Jul	1977 Low	Nov	1981 Average	Mar	1986 Very high
Aug	1977 Low	Dec	1981 High	Apr	1986 Very high
Sep	1977 Very low	Jan	1982 High	May	1986 Very high
Oct	1977 Very low	Feb	1982 High	Jun	1986 High
Nov	1977 Low	Mar	1982 High	Jul	1986 Average
Dec	1977 Average	Apr	1982 High	Aug	1986 Low
Jan	1978 High	May	1982 Average	Sep	1986 Low
Feb	1978 Very high	Jun	1982 Average	Oct	1986 Low
Mar	1978 Very high	Jul	1982 Low	Nov	1986 Low
Apr	1978 Very high	Aug	1982 Low	Dec	1986 Average
May	1978 High	Sep	1982 Low	Jan	1987 High
Jun	1978 Average	Oct	1982 Average	Feb	1987 Very high
Jul	1978 Average	Nov	1982 High	Mar	1987 Very high
Aug	1978 Low	Dec	1982 High	Apr	1987 Very high
Sep	1978 Low	Jan	1983 High	May	1987 High
Oct	1978 Low	Feb	1983 High	Jun	1987 Average
Nov	1978 Average	Mar	1983 High	Jul	1987 Average
Dec	1978 High	Apr	1983 High	Aug	1987 Low
Jan	1979 High	May	1983 High	Sep	1987 Low
Feb	1979 Very high	Jun	1983 High	Oct	1987 Average
Mar	1979 Very high	Jul	1983 Average	Nov	1987 Average
Apr	1979 Very high	Aug	1983 Low	Dec	1987 High
May	1979 Very high	Sep	1983 Low	Jan	1988 Very high
Jun	1979 Very high	Oct	1983 Low	Feb	1988 Very high

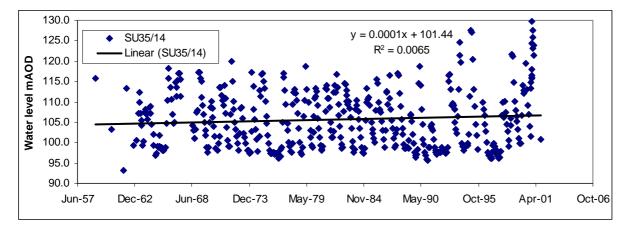

Mar	1988 Very high	Jul	1992 Very low	Nov	1996 Very low
Apr	1988 High	Aug	1992 Very low	Dec	1996 Very low
May	1988 Average	Sep	1992 Low	Jan	1997 Very low
Jun	1988 Low	Oct	1992 Average	Feb	1997 Low
Jul	1988 Low	Nov	1992 High	Mar	1997 Low
Aug	1988 Low	Dec	1992 Very high	Apr	1997 Very low
Sep	1988 Low	Jan	1993 Very high	May	1997 Very low
Oct	1988 Low	Feb	1993 High	Jun	1997 Very low
Nov	1988 Low	Mar	1993 High	Jul	1997 Very low
Dec	1988 Average	Apr	1993 High	Aug	1997 Very low
Jan	1989 Low	May	1993 Average	Sep	1997 Very low
Feb	1989 Low	Jun	1993 Average	Oct	1997 Very low
Mar	1989 Average	Jul	1993 Average	Nov	1997 Low
Apr	1989 Average	Aug	1993 Average	Dec	1997 Average
May	1989 Low	Sep	1993 High	Jan	1998 High
Jun	1989 Very low	Oct	1993 High	Feb	1998 Very high
Jul	1989 Very low	Nov	1993 Very high	Mar	1998 Very high
Aug	1989 Very low	Dec	1993 Very high	Apr	1998 High
Sep	1989 Very low	Jan	1994 Very high	May	1998 High
Oct	1989 Very low	Feb	1994 Very high	Jun	1998 Low
Nov	1989 Very low	Mar	1994 Very high	Jul	1998 Low
Dec	1989 Very low	Apr	1994 High	Aug	1998 Very low
Jan	1990 Low	May	1994 Average	Sep	1998 Low
Feb	1990 High	Jun	1994 Low	Oct	1998 Average
Mar	1990 Average	Jul	1994 Low	Nov	1998 High
Apr	1990 Low	Aug	1994 Very low	Dec	1998 High
May	1990 Very low	Sep	1994 Very low	Jan	1999 High
Jun	1990 Very low	Oct	1994 Low	Feb	1999 Very high
Jul	1990 Very low	Nov	1994 Low	Mar	1999 Very high
Aug	1990 Very low	Dec	1994 High	Apr	1999 High
Sep	1990 Very low	Jan	1995 Very high	May	1999 Average
Oct	1990 Very low	Feb	1995 Very high	Jun	1999 Low
Nov	1990 Very low	Mar	1995 Very high	Jul	1999 Low
Dec	1990 Very low	Apr	1995 High	Aug	1999 Very low
Jan	1991 Average	May	1995 Average	Sep	1999 Low
Feb	1991 High	Jun	1995 Low	Oct	1999 Low
Mar	1991 High	Jul	1995 Low	Nov	1999 Low
Apr	1991 Average	Aug	1995 Very low	Dec	1999 High
May	1991 Low	Sep	1995 Very low	Jan	2000 High
Jun	1991 Low	Oct	1995 Very low	Feb	2000 High
Jul	1991 Very low	Nov	1995 Very low	Mar	2000 High
Aug	1991 Very low	Dec	1995 Low	Apr	2000 High
Sep	1991 Very low	Jan	1996 High	May	2000 High
Oct	1991 Very low	Feb	1996 High	Jun	2000 High
Nov	1991 Very low	Mar	1996 High	Jul	2000 Average
Dec	1991 Very low	Apr	1996 Average	Aug	2000 Low
Jan	1992 Very low	May	1996 Average	Sep	2000 Low
Feb	1992 Very low	Jun	1996 Low	Oct	2000 Average
Mar	1992 Very low	Jul	1996 Very low	Nov	2000 Very high
Apr	1992 Very low	Aug	1996 Very low	Dec	2000 Very high
May	1992 Very low	Sep	1996 Very low	Jan	2001 Very high
Jun	1992 Very low	Oct	1996 Very low	Feb	2001 Very high

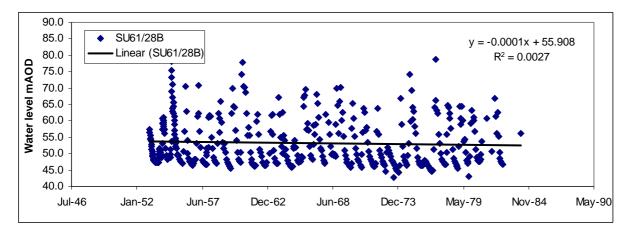

Mar	2001 Very high
Apr	2001 Very high
May	2001 Very high
Jun	2001 High
Jul	2001 Average
Aug	2001 High
Sep	2001 Average
Oct	2001 Average
Nov	2001 Average
	-

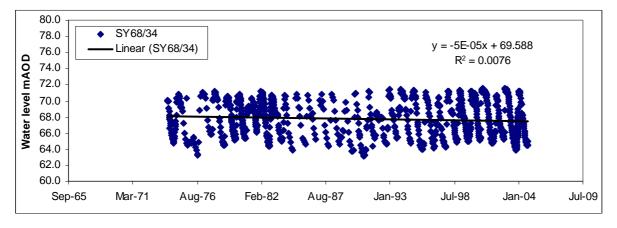

Appendix 5 Chalk – Hampshire and Wiltshire

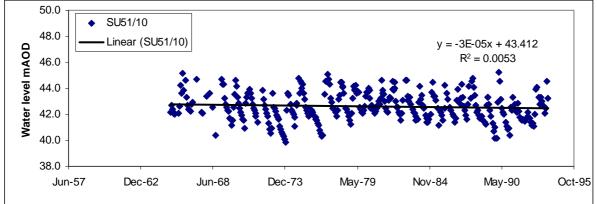

WATER LEVELS ABOVE ORDNANCE DATUM WITH LINEAR REGRESSION CURVE



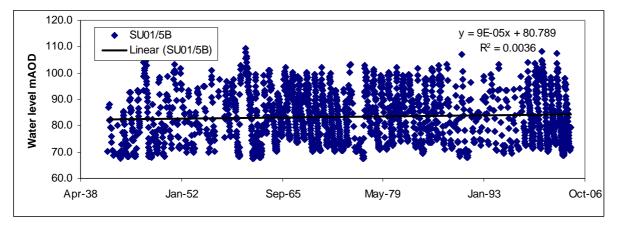


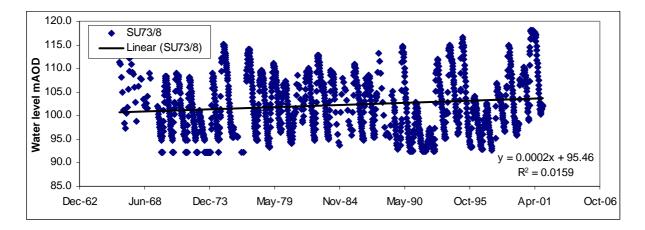


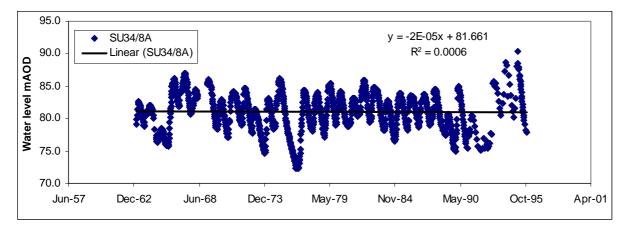


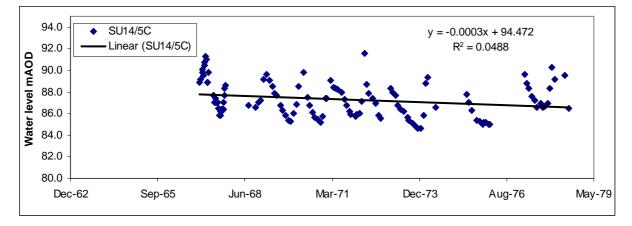


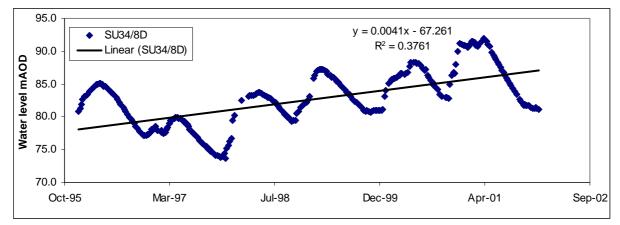


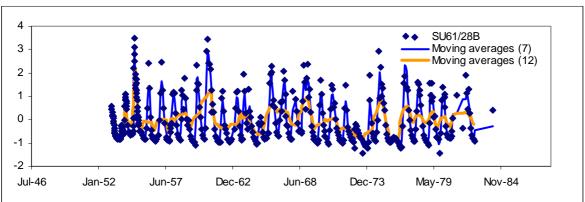


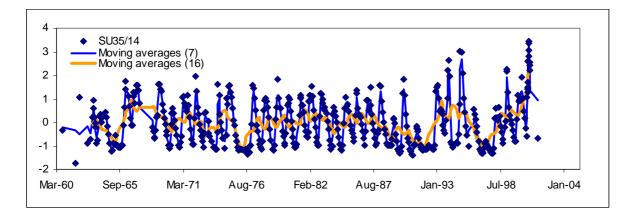


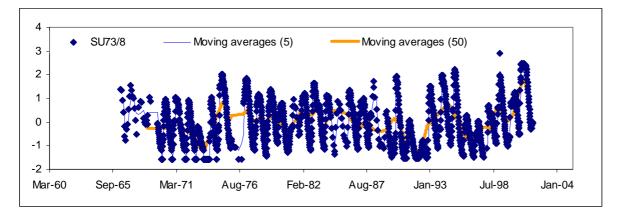


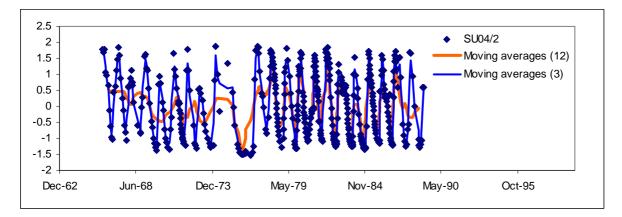


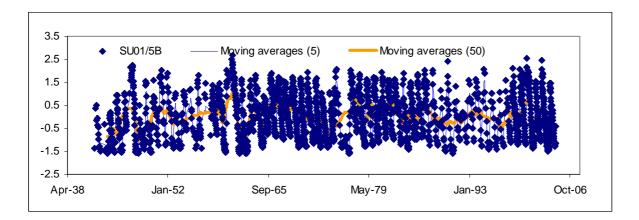


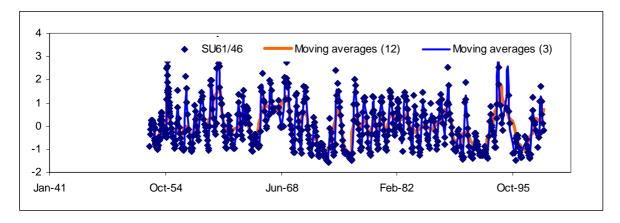


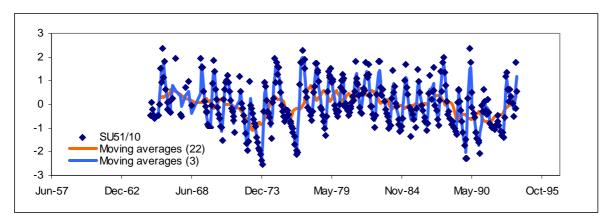


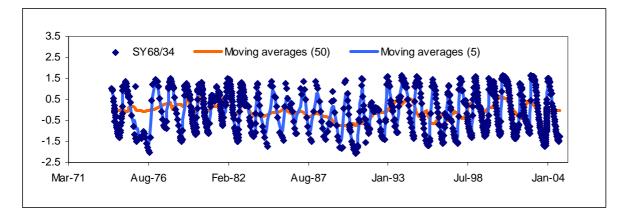


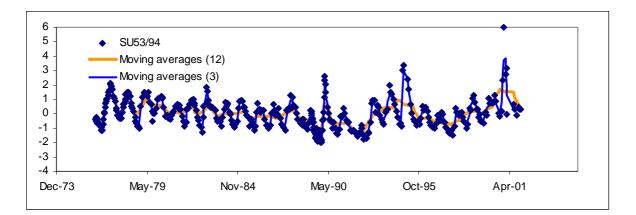


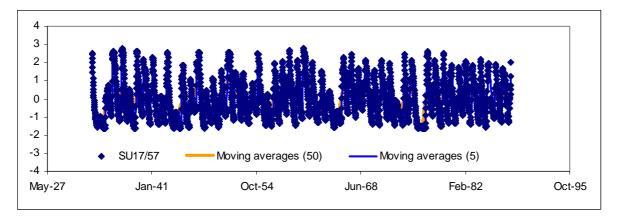

NORMALISED WATER LEVEL DATA WITH MOVING AVERAGES SMOOTHING LINES

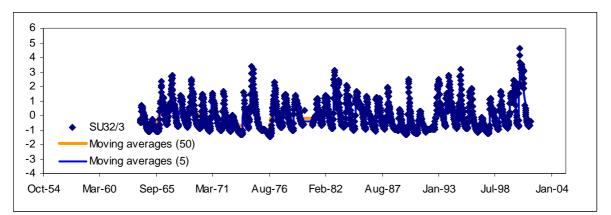


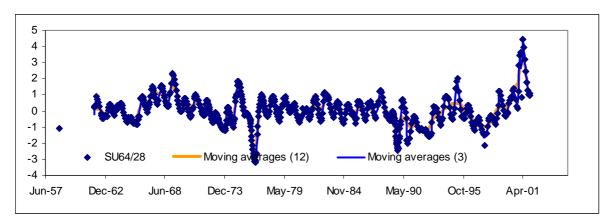


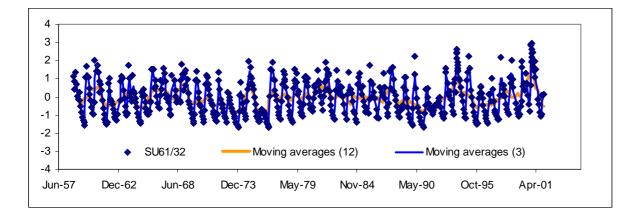


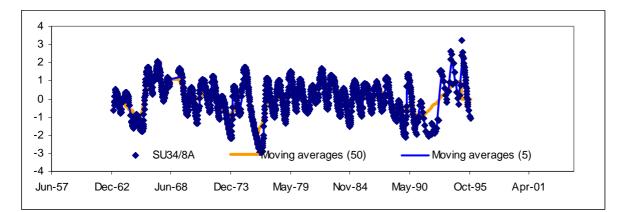


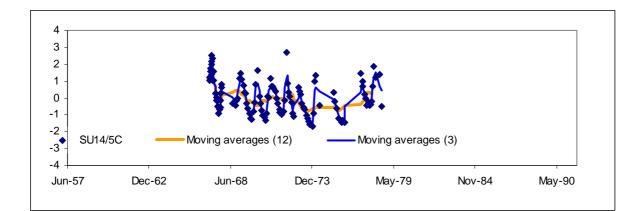


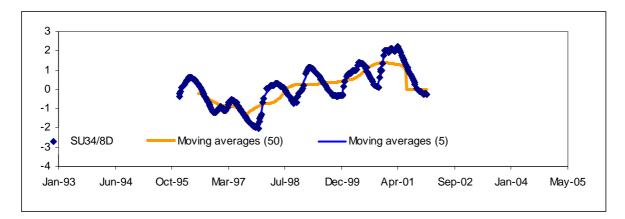


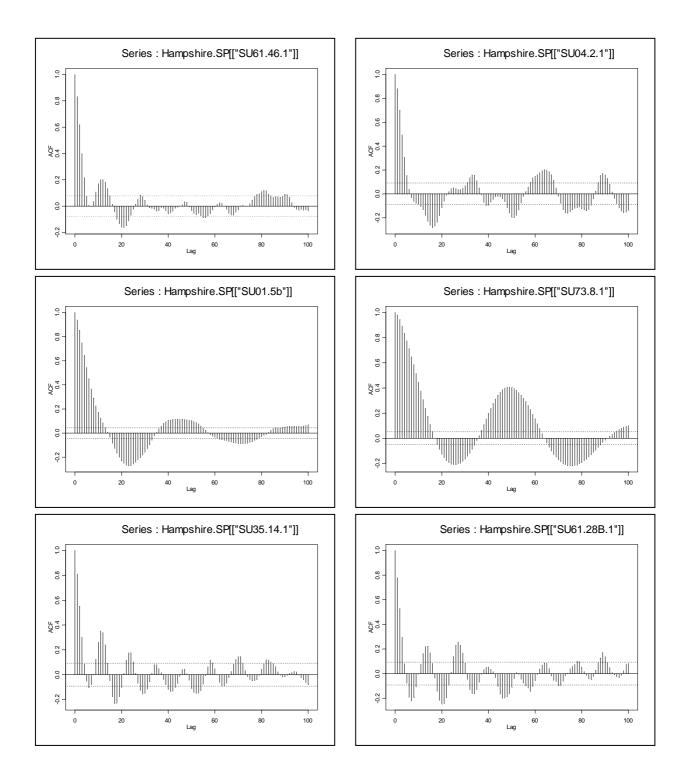




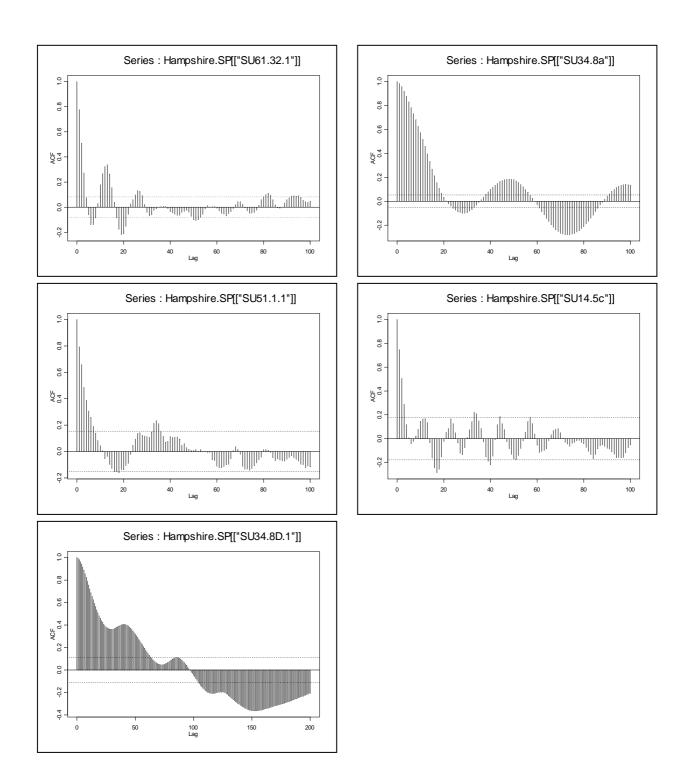


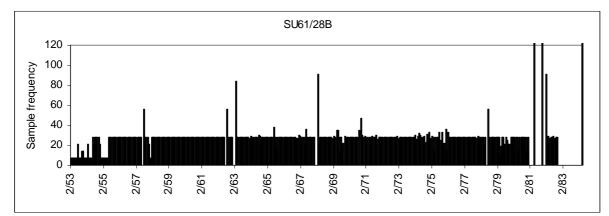


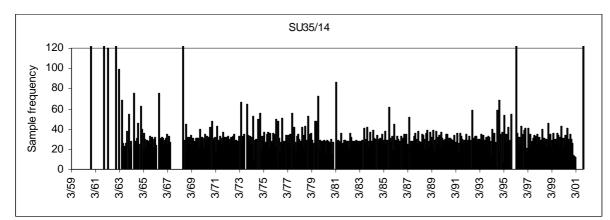


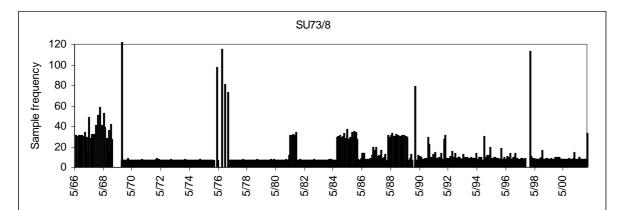


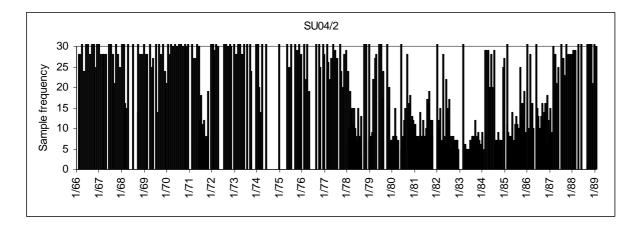


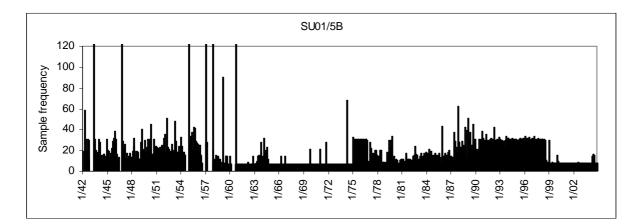


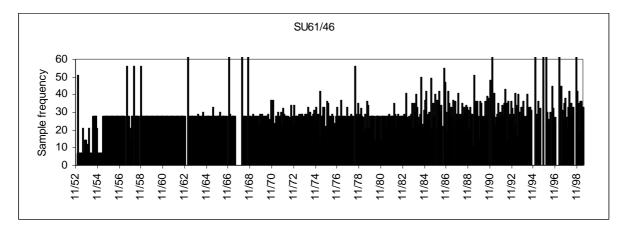

AUTOCORRELATION FUNTION PLOTS

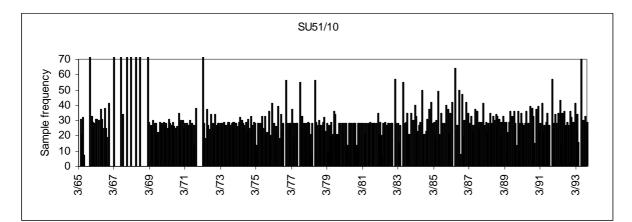


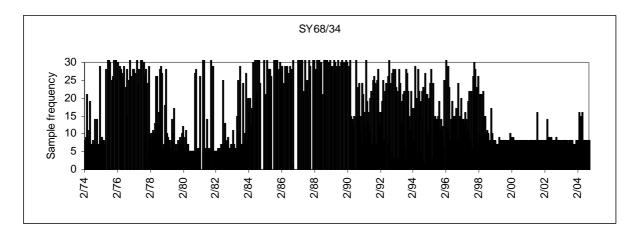


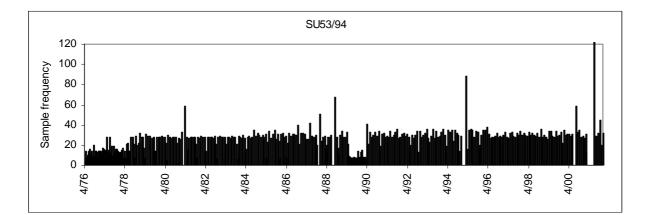


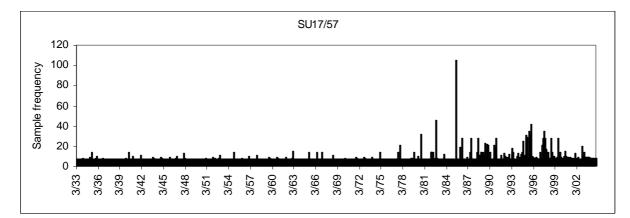

SAMPLE FREQUENCY PLOTS

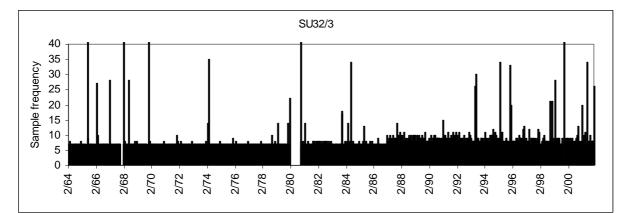


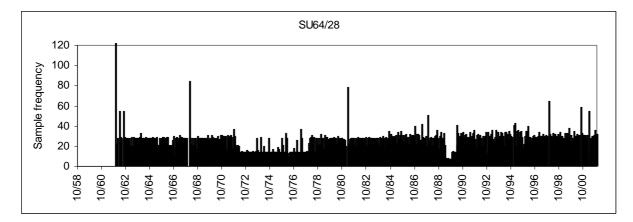


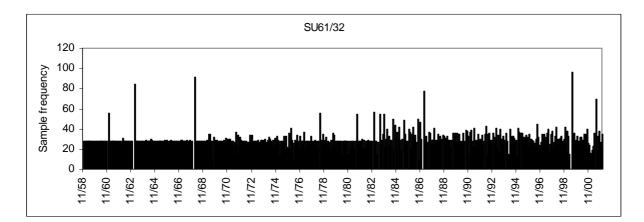


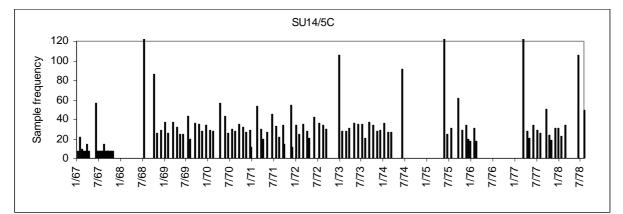


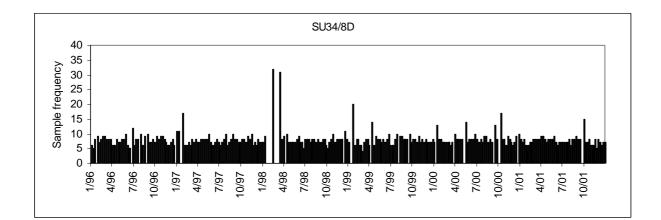


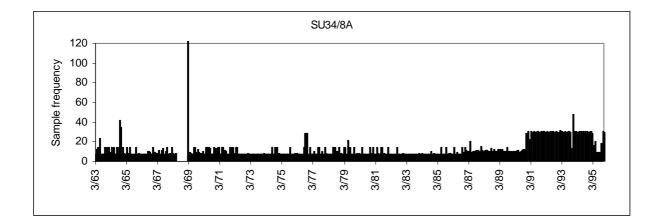








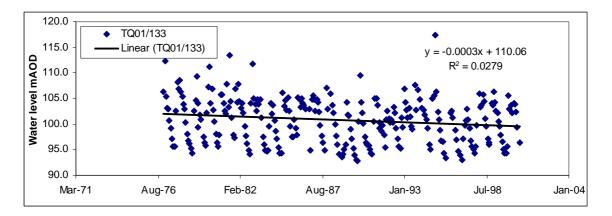


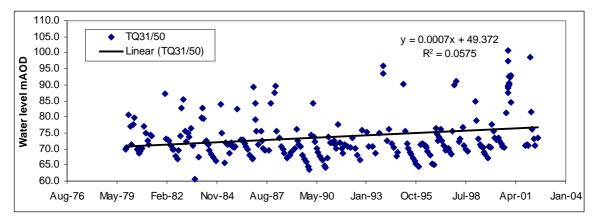


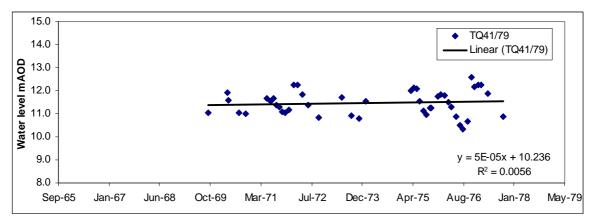
WELLMASTER LOOK-UP TABLE

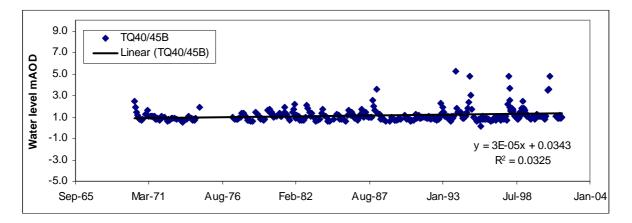
Mar	1953	Average	Nov	1957	Low	Jul	1962	Low
Apr	1953	Average	Dec	1957	Average	Aug	1962	Very low
May	1953	Average	Jan	1958	High	Sep	1962	Very low
Jun	1953	Low	Feb	1958	Very high	Oct	1962	Very low
Jul	1953	Low	Mar	1958	Very high	Nov	1962	Very low
Aug	1953	Very low	Apr	1958	High	Dec	1962	Low
Sep	1953	Very low	May	1958	High	Jan	1963	Low
Oct	1953	Very low	Jun	1958	Average	Feb	1963	Average
Nov	1953	Low	Jul	1958	Average	Mar	1963	High
Dec	1953	Low	Aug	1958	Low	Apr	1963	High
Jan	1954	Average	Sep	1958	Average	May	1963	High
Feb	1954	Average	Oct	1958	Average	Jun	1963	High
Mar	1954	High	Nov	1958	High	Jul	1963	Average
Apr	1954	High	Dec	1958	Very high	Aug	1963	Average
May	1954	High	Jan	1959	Very high	Sep	1963	Low
Jun	1954	Average	Feb	1959	Very high	Oct	1963	Low
Jul	1954	Average	Mar	1959	Very high	Nov	1963	Average
Aug	1954	Low	Apr	1959	High	Dec	1963	High
	1954	Low	May	1959	High	Jan	1963	
Sep			•					High
Oct	1954	Low	Jun	1959	Average	Feb	1964	Average
Nov	1954	High	Jul	1959	Low	Mar	1964	Average
Dec	1954	Very high	Aug	1959	Low	Apr	1964	High
Jan	1955	Very high	Sep	1959	Very low	May	1964	High
Feb	1955	Very high	Oct	1959	Very low	Jun	1964	Average
Mar	1955	High	Nov	1959	Very low	Jul	1964	Average
Apr	1955	High	Dec	1959	Average	Aug	1964	Average
May	1955	Average	Jan	1960	Very high	Sep	1964	Low
Jun	1955	Average	Feb	1960	Very high	Oct	1964	Very low
Jul	1955	Average	Mar	1960	Very high	Nov	1964	Very low
Aug	1955	Low	Apr	1960	High	Dec	1964	Very low
Sep	1955	Low	May	1960	High	Jan	1965	Very low
Oct	1955	Very low	Jun	1960	Average	Feb	1965	Low
Nov	1955	Very low	Jul	1960	Average	Mar	1965	Low
Dec	1955	Low	Aug	1960	Average	Apr	1965	Average
Jan	1956	Average	Sep	1960	Average	May	1965	Low
Feb	1956	Average	Oct	1960	Very high	Jun	1965	Low
Mar	1956	High	Nov	1960	Very high	Jul	1965	Very low
Apr	1956	Average	Dec	1960	Very high	Aug	1965	Very low
May	1956	Low	Jan	1961	Very high	Sep	1965	Very low
Jun	1956	Low	Feb	1961	Very high	Oct	1965	Very low
Jul	1956	Very low	Mar	1961	Very high	Nov	1965	Low
Aug	1956	Very low	Apr	1961	Very high	Dec	1965	Average
Sep	1956	Very low	May	1961	High	Jan	1966	High
Oct	1956	Very low	Jun	1961	High	Feb	1966	Very high
Nov	1956	Low	Jul	1961	Average	Mar	1966	Very high
					-			, ,
Dec	1956	Average	Aug	1961	Low	Apr	1966	Very high
Jan Fab	1957	High	Sep	1961	Very low	May	1966	Very high
Feb	1957	Very high	Oct	1961	Very low	Jun	1966	High
Mar	1957	Very high	Nov	1961	Very low	Jul	1966	High
Apr	1957	High	Dec	1961	Average	Aug	1966	Average
May	1957	High	Jan	1962	High	Sep	1966	Low
Jun	1957	Average	Feb	1962	Very high	Oct	1966	Average
Jul	1957	Low	Mar	1962	High	Nov	1966	High
Aug	1957	Low	Apr	1962	Average	Dec	1966	High
Sep	1957	Very low	May	1962	Average	Jan	1967	Very high
Oct	1957	Very low	Jun	1962	Low	Feb	1967	Very high

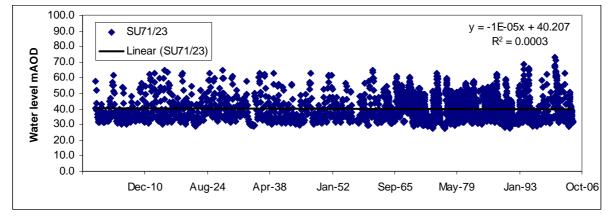

Mar	1967	Very high	Nov	1971	Very low	Jul	1976	Very low
Apr	1967	Very high	Dec	1971	Very low	Aug	1976	Very low
May	1967	High	Jan	1972	Low	Sep	1976	Very low
Jun	1967	High	Feb	1972	High	Oct	1976	Very low
Jul	1967	Average	Mar	1972	Very high	Nov	1976	Very low
Aug	1967	Average	Apr	1972	High	Dec	1976	Average
Sep	1967	Low	May	1972	High	Jan	1977	High
Oct	1967	Average	Jun	1972	Average	Feb	1977	Very high
Nov	1967	High	Jul	1972	Average	Mar	1977	Very high
Dec	1967	High	Aug	1972	Low	Apr	1977	Very high
Jan	1968	Very high	Sep	1972	Low	May	1977	High
Feb	1968	Very high	Oct	1972	Very low	Jun	1977	High
Mar	1968	High	Nov	1972	Very low	Jul	1977	Average
Apr	1968	High	Dec	1972	Low	Aug	1977	Average
May	1968	Average	Jan	1973	Average	Sep	1977	Low
Jun	1968	Average	Feb	1973	Average	Oct	1977	Low
Jul	1968	Average	Mar	1973	Average	Nov	1977	Low
Aug	1968	Low	Apr	1973	Low	Dec	1977	Average
Sep	1968	Average	May	1973	Low	Jan	1978	High
Oct	1968	High	Jun	1973	Low	Feb	1978	Very high
Nov	1968	High	Jul	1973	Very low	Mar	1978	Very high
	1968	-		1973			1978	Very high
Dec		High	Aug		Very low	Apr Mar		, 0
Jan Tab	1969	Very high	Sep	1973	Very low	May	1978	High
Feb	1969	Very high	Oct	1973	Very low	Jun	1978	High
Mar	1969	Very high	Nov	1973	Very low	Jul	1978	Average
Apr	1969	Very high	Dec	1973	Very low	Aug	1978	Low
May	1969	High	Jan	1974	Low	Sep	1978	Low
Jun	1969	High	Feb	1974	High	Oct	1978	Very low
Jul	1969	Average	Mar	1974	Very high	Nov	1978	Very low
Aug	1969	Average	Apr	1974	High	Dec	1978	Very low
Sep	1969	Low	May	1974	Average	Jan	1979	Average
Oct	1969	Very low	Jun	1974	Low	Feb	1979	High
Nov	1969	Very low	Jul	1974	Low	Mar	1979	Very high
Dec	1969	Very low	Aug	1974	Very low	Apr	1979	Very high
Jan	1970	Average	Sep	1974	Very low	May	1979	Very high
Feb	1970	High	Oct	1974	Average	Jun	1979	High
Mar	1970	Very high	Nov	1974	High	Jul	1979	High
Apr	1970	High	Dec	1974	Very high	Aug	1979	Average
May	1970	High	Jan	1975	Very high	Sep	1979	Average
Jun	1970	Average	Feb	1975	Very high	Oct	1979	Low
Jul	1970	Low	Mar	1975	Very high	Nov	1979	Very low
Aug	1970	Low	Apr	1975	Very high	Dec	1979	Low
Sep	1970	Very low	May	1975	High	Jan	1980	High
Oct	1970	Very low	Jun	1975	High	Feb	1980	High
Nov	1970	Very low	Jul	1975	Average	Mar	1980	Very high
Dec	1970	Average	Aug	1975	Low	Apr	1980	Very high
Jan	1971	High	Sep	1975	Low	May	1980	High
Feb	1971	Very high	Oct	1975	Very low	Jun	1980	Average
Mar	1971	Very high	Nov	1975	Very low	Jul	1980	Average
Apr	1971	High	Dec	1975	Very low	Aug	1980	Low
May	1971	High	Jan	1975	Very low	Sep	1980	Low
Jun	1971	High	Feb	1976	Very low	Oct	1980	Very low
Jul	1971	Average	Mar	1976	Very low	Nov	1980	Low
	1971	Average		1976	•		1980	
Aug	1971	0	Apr May	1976	Very low	Dec	1980	Average
Sep		Low	May		Very low	Jan		Average
Oct	1971	Low	Jun	1976	Very low	Feb	1981	Average

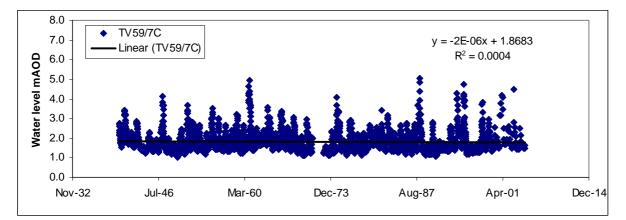

Mar	1981	High	Nov	1985	Very low	Jul	1990	Low
Apr	1981	Very high	Dec	1985	Low	Aug	1990	Very low
May	1981	High	Jan	1986	High	Sep	1990	Very low
Jun	1981	High	Feb	1986	Very high	Oct	1990	Very low
Jul	1981	High	Mar	1986	High	Nov	1990	Very low
Aug	1981	Average	Apr	1986	High	Dec	1990	Very low
Sep	1981	Low	May	1986	High	Jan	1991	Very low
Oct	1981	Low	Jun	1986	High	Feb	1991	Low
Nov	1981	Average	Jul	1986	Average	Mar	1991	Average
Dec	1981	High	Aug	1986	Low	Apr	1991	Average
Jan	1982	Very high	Sep	1986	Low	May	1991	Average
Feb	1982	Very high	Oct	1986	Very low	Jun	1991	Average
Mar	1982	Very high	Nov	1986	Low	Jul	1991	Low
Apr	1982	Very high	Dec	1986	High	Aug	1991	Very low
May	1982	High	Jan	1987	Very high	Sep	1991	Very low
Jun	1982	Average	Feb	1987	High	Oct	1991	Very low
Jul	1982	Average	Mar	1987	High	Nov	1991	Very low
Aug	1982	Low	Apr	1987	Very high	Dec	1991	Very low
Sep	1982	Very low	May	1987	High	Jan	1992	Very low
Oct	1982	Very low	Jun	1987	High	Feb	1992	Very low
Nov	1982	Average	Jul	1987	Average	Mar	1992	Very low
Dec	1982	Very high	Aug	1987	Low	Apr	1992	Low
Jan	1983	Very high	Sep	1987	Very low	May	1992	Low
Feb	1983	Very high	Oct	1987	Low	Jun	1992	Low
Mar	1983	High	Nov	1987	Average	Jul	1992	Very low
Apr	1983	High	Dec	1987	Average	Aug	1992	Very low
May	1983	High	Jan	1988	High	Sep	1992	Very low
Jun	1983	High	Feb	1988	Very high	Oct	1992	Very low
Jul	1983	High	Mar	1988	Very high	Nov	1992	Average
Aug	1983	Average	Apr	1988	High	Dec	1992	Very high
Sep	1983	Low	May	1988	High	Jan	1993	Very high
Oct	1983	Low	Jun	1988	Average	Feb	1993	Very high
Nov	1983	Very low	Jul	1988	Average	Mar	1993	High
Dec	1983	Very low	Aug	1988	Low	Apr	1993	High
Jan	1984	Average	Sep	1988	Very low	May	1993	High
Feb	1984	Very high	Oct	1988	Very low	Jun	1993	Average
Mar	1984	Very high	Nov	1988	Very low	Jul	1993	Average
Apr	1984	High	Dec	1988	Very low	Aug	1993	Low
May	1984	High	Jan	1989	Low	Sep	1993	Low
Jun	1984	Average	Feb	1989	Low	Oct	1993	Average
Jul	1984	Average	Mar	1989	Average	Nov	1993	Average
Aug	1984	Low	Apr	1989	High	Dec	1993	High
Sep	1984	Very low	May	1989	Average	Jan	1994	Very high
Oct	1984	Very low	Jun	1989	Average	Feb	1994	Very high
Nov	1984	Very low	Jul	1989	Low	Mar	1994	Very high
Dec	1984	Average	Aug	1989	Very low	Apr	1994	Very high
Jan	1985	High	Sep	1989	Very low	May	1994	High
Feb	1985	Very high	Oct	1989	Very low	Jun	1994	High
Mar	1985	Very high	Nov	1989	Very low	Jul	1994	Average
Apr	1985	High	Dec	1989	Very low	Aug	1994	Low
May	1985	High	Jan	1990	Low	Sep	1994	Low
Jun	1985	High	Feb	1990	Very high	Oct	1994	Low
Jul	1985	Average	Mar	1990	Very high	Nov	1994	Low
Aug	1985	Average	Apr	1990	High	Dec	1994	High
Sep	1985	Low	May	1990	High	Jan	1995	Very high
Oct	1985	Low	Jun	1990	Average	Feb	1995	Very high
					-			-

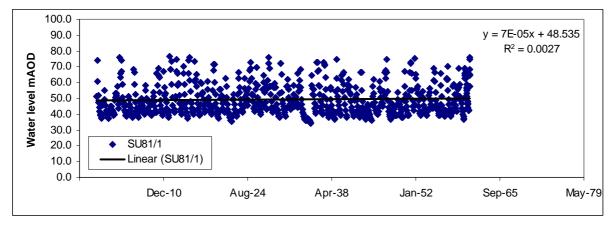

Mar	1995	Very high	Nov	1999	Low
Apr	1995	Very high	Dec	1999	Average
May	1995	High	Jan	2000	Very high
Jun	1995	Average	Feb	2000	Very high
Jul	1995	Average	Mar	2000	Very high
Aug	1995	Low	Apr	2000	Very high
Sep	1995	Very low	May	2000	Very high
Oct	1995	Very low	Jun	2000	Very high
					• • • •
Nov	1995	Very low	Jul	2000	High
Dec	1995	Low	Aug	2000	Average
Jan	1996	Average	Sep	2000	Low
Feb	1996	High	Oct	2000	Average
Mar	1996	High	Nov	2000	Very high
		-			
Apr	1996	High	Dec	2000	Very high
May	1996	Average	Jan	2001	Very high
Jun	1996	Average	Feb	2001	Very high
Jul	1996	Low	Mar	2001	Very high
Aug	1996	Low	Apr	2001	Very high
			•		
Sep	1996	Very low	May	2001	Very high
Oct	1996	Very low	Jun	2001	Very high
Nov	1996	Very low	Jul	2001	High
Dec	1996	Very low	Aug	2001	Average
Jan	1997	Low	Sep	2001	Low
Feb	1997	Low	Oct	2001	Low
Mar	1997	Average	Nov	2001	Low
Apr	1997	Average	Dec	2001	Low
May	1997	Low	Jan	2002	Average
Jun	1997	Very low	Feb	2002	High
Jul	1997	Very low	Mar	2002	Very high
Aug	1997	Very low	Apr	2002	High
Sep	1997	Very low	May	2002	High
Oct	1997	Very low	Jun	2002	Average
Nov	1997	Very low	Jul	2002	Low
Dec	1997	Low	Aug	2002	Low
Jan	1998	High	Sep	2002	Very low
Feb	1998	High	Oct	2002	Low
Mar	1998	High	Nov	2002	High
Apr	1998	High	Dec	2002	Very high
	1998	High	Jan	2003	Very high
May					
Jun	1998	Average	Feb	2003	Very high
Jul	1998	Average	Mar	2003	Very high
Aug	1998	Low	Apr	2003	High
Sep	1998	Low	May	2003	Average
Oct	1998	Low	Jun	2003	Low
Nov	1998	Average	Jul	2003	Low
Dec	1998	High	Aug	2003	Very low
Jan	1999	Very high	Sep	2003	Very low
Feb	1999	Very high	Oct	2003	Very low
Mar	1999	Very high	Nov	2003	Very low
Apr	1999	High	Dec	2003	Low
May	1999	High	Jan	2004	High
Jun	1999	Average	Feb	2004	High
Jul	1999	Average	Mar	2004	High
Aug	1999	Low	Apr	2004	High
Sep	1999	Low	May	2004	High
•			•		
Oct	1999	Low	Jun	2004	Average
			Jul	2004	Low
			Aug	2004	Very low
			-		

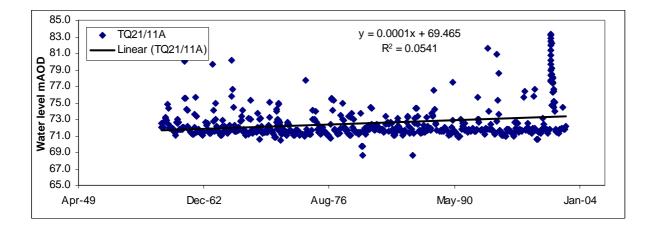

Appendix 6 Chalk - South Downs

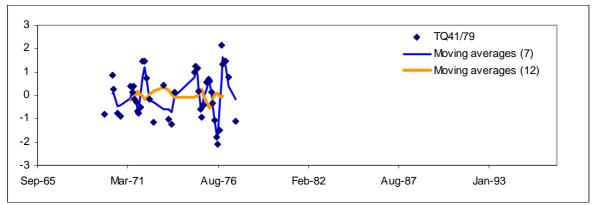

WATER LEVELS ABOVE ORDNANCE DATUM WITH LINEAR REGRESSION CURVE

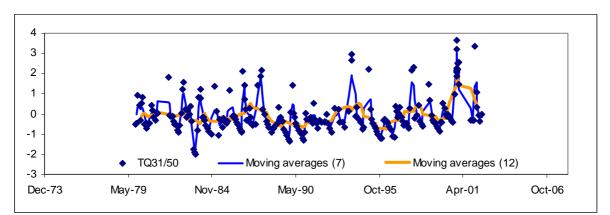


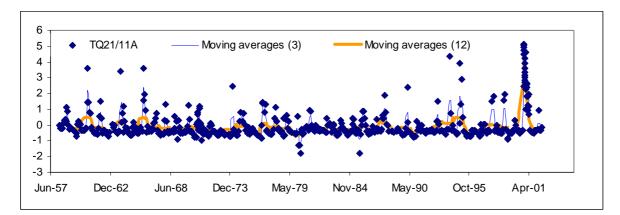


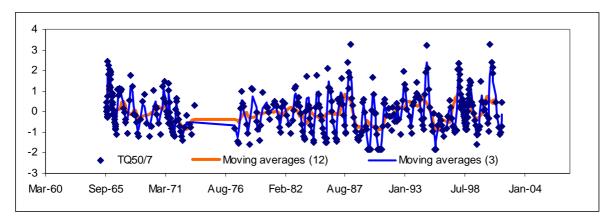


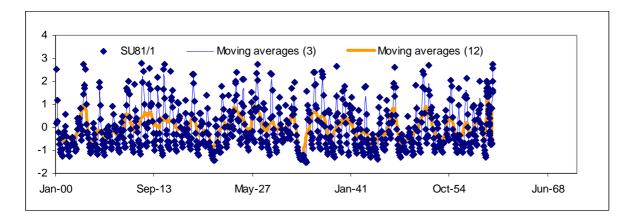


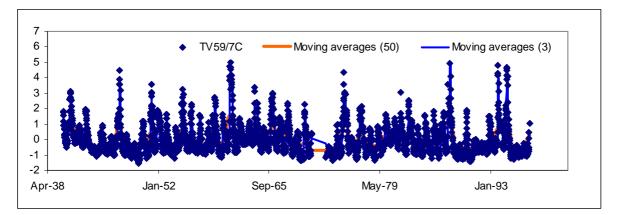


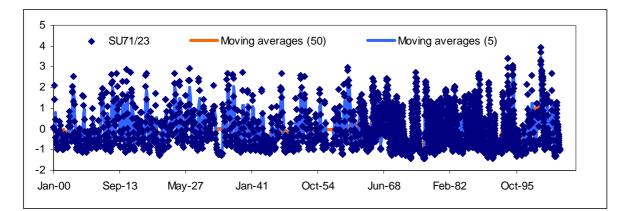


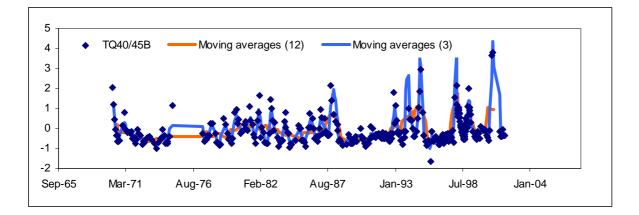


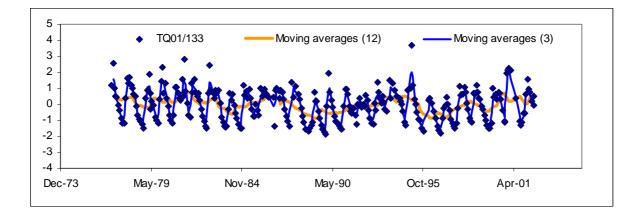


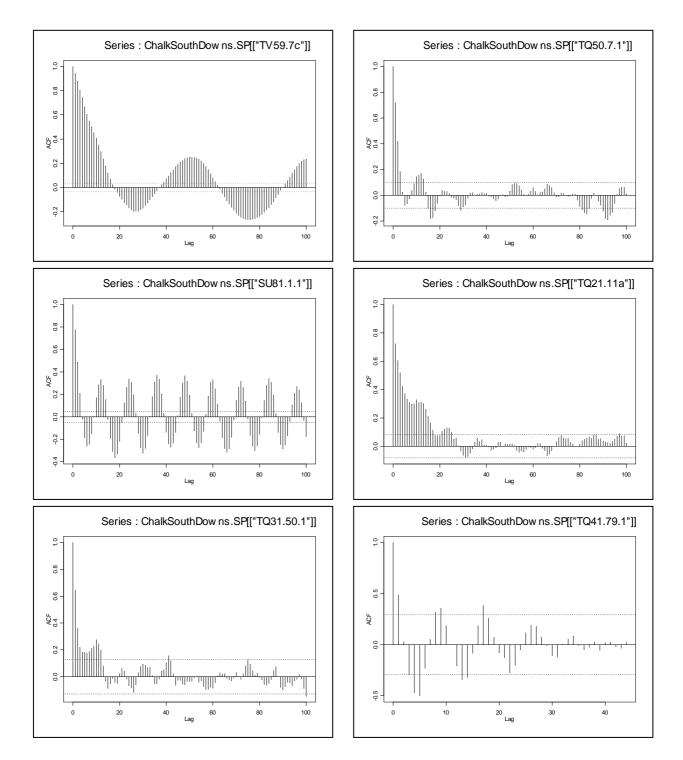

NORMALISED WATER LEVEL DATA WITH MOVING AVERAGES SMOOTHING LINES

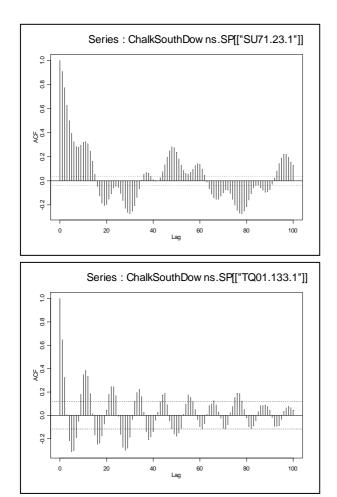


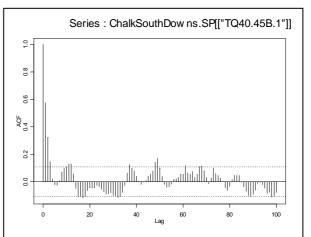


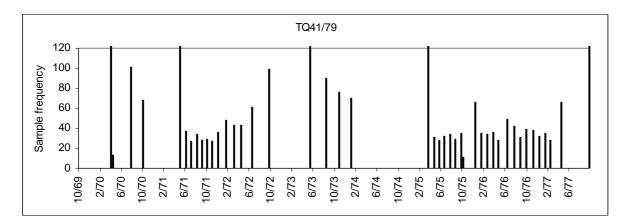


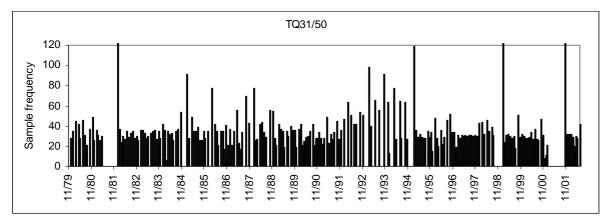


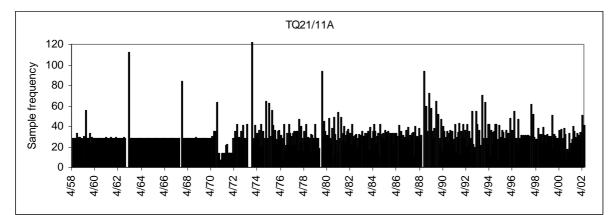


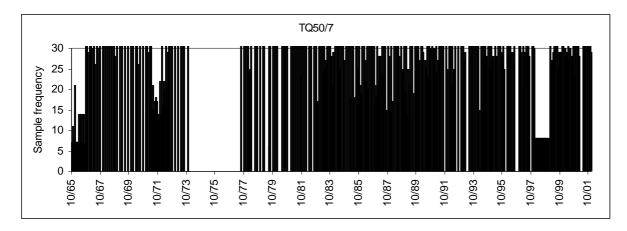


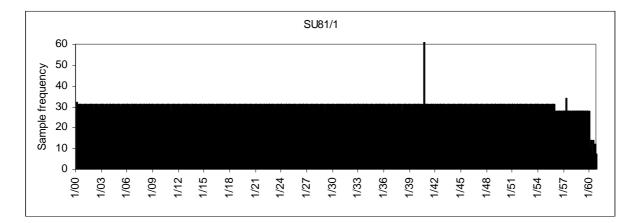


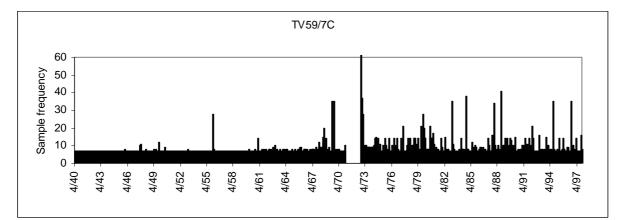

AUTOCORRELATION FUNTION PLOTS

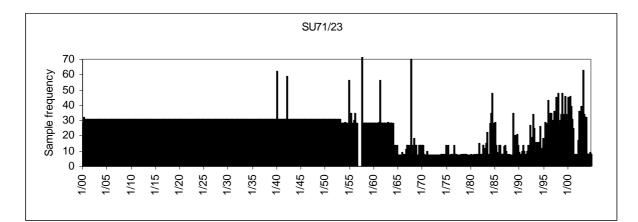


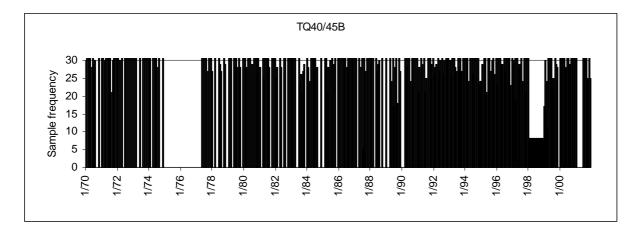


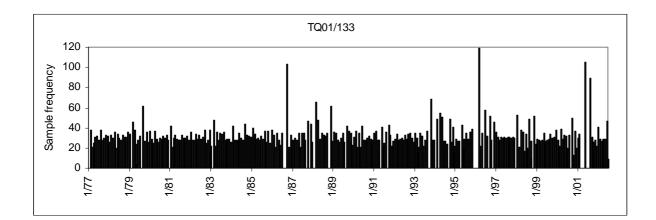



SAMPLE FREQUENCY PLOTS



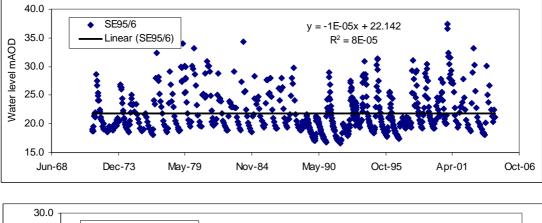


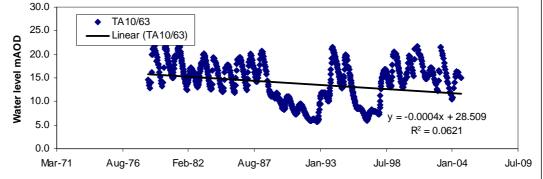


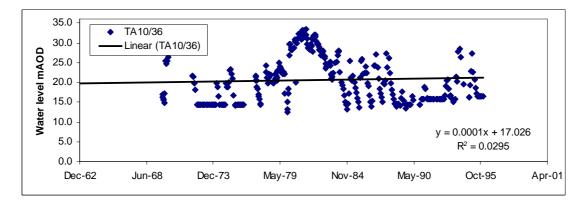


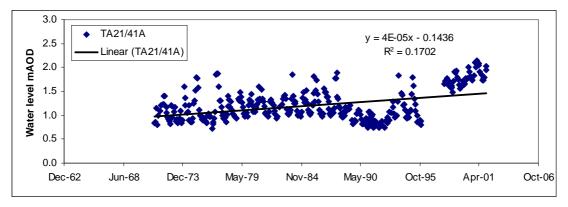
WELLMASTER LOOK-UP TABLE

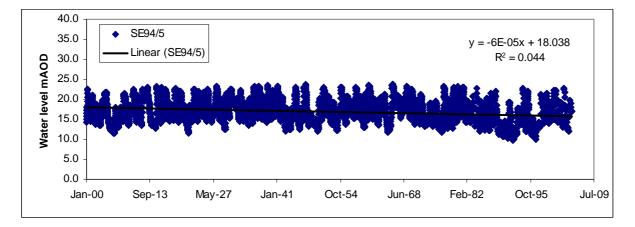
Jan	1959 Very high	Sep	1963 Average	May	1968 Average
Feb	1959 Very high	Oct	1963 High	Jun	1968 Average
Mar	1959 High	Nov	1963 Very high	Jul	1968 Average
Apr	1959 Average	Dec	1963 Very high	Aug	1968 Low
May	1959 Average	Jan	1964 High	Sep	1968 Average
Jun	1959 Low	Feb	1964 High	Oct	1968 High
Jul	1959 Low	Mar	1964 Very high	Nov	1968 High
Aug	1959 Very low	Apr	1964 Very high	Dec	1968 High
Sep	1959 Very low	May	1964 Very high	Jan	1969 Very high
Oct	1959 Very low	Jun	1964 High	Feb	1969 Very high
Nov	1959 Very low	Jul	1964 High	Mar	1969 Very high
Dec	1959 High	Aug	1964 Average	Apr	1969 High
Jan	1960 Very high	Sep	1964 Low	May	1969 Average
Feb	1960 Very high	Oct	1964 Low	Jun	1969 Average
Mar	1960 Very high	Nov	1964 Low	Jul	1969 Very low
Apr	1960 High	Dec	1964 Low	Aug	1969 Very low
May	1960 High	Jan	1965 Average	Sep	1969 Very low
Jun	1960 Average	Feb	1965 High	Oct	1969 Very low
Jul	1960 Low	Mar	1965 Average	Nov	1969 Very low
Aug	1960 Low	Apr	1965 High	Dec	1969 Very low
Sep	1960 Average	May	1965 Average	Jan	1970 High
Oct	1960 Very high	Jun	1965 Average	Feb	1970 Very high
Nov	1960 Very high	Jul	1965 Low	Mar	1970 Very high
Dec	1960 Very high	Aug	1965 Low	Apr	1970 High
Jan	1961 Very high	Sep	1965 Low	May	1970 High
Feb	1961 Very high	Oct	1965 Average	Jun	1970 Average
Mar	1961 Very high	Nov	1965 Average	Jul	1970 Low
Apr	1961 Very high	Dec	1965 Very high	Aug	1970 Very low
May	1961 High	Jan	1966 Very high	Sep	1970 Very low
Jun	1961 Average	Feb	1966 Very high	Oct	1970 Very low
	1961 Low	Mar	1966 Very high	Nov	1970 Very low 1970 Low
Jul			, ,		
Aug	1961 Low	Apr	1966 Very high	Dec Jan	1970 High
Sep	1961 Very low	May	1966 Very high	Feb	1971 Very high
Oct	1961 Low	Jun Jul	1966 High	Mar	1971 Very high
Nov	1961 Average		1966 Average		1971 High
Dec	1961 High	Aug	1966 Low	Apr	1971 High
Jan Tab	1962 Very high	Sep	1966 Low	May	1971 Average
Feb	1962 Very high	Oct	1966 Average	Jun	1971 Average
Mar	1962 High 1962 High	Nov	1966 High	Jul	1971 Average 1971 Low
Apr	•	Dec	1966 High	Aug	
May	1962 Average	Jan Feb	1967 Very high	Sep	1971 Low
Jun	1962 Average		1967 Very high	Oct	1971 Very low
Jul	1962 Average	Mar	1967 Very high	Nov	1971 Very low
Aug	1962 Average	Apr	1967 Very high	Dec	1971 Very low
Sep	1962 Average	May	1967 High	Jan	1972 Very low
Oct	1962 Average	Jun	1967 Average	Feb	1972 Average
Nov	1962 Average	Jul	1967 Average	Mar	1972 High
Dec	1962 Average	Aug	1967 Low	Apr	1972 High
Jan Tab	1963 Average	Sep	1967 Very low	May	1972 Average
Feb	1963 High	Oct	1967 Average	Jun	1972 Average
Mar	1963 High	Nov	1967 High	Jul	1972 Low
Apr	1963 Very high	Dec	1967 High	Aug	1972 Very low
May	1963 High	Jan	1968 Very high	Sep	1972 Very low
Jun	1963 High	Feb	1968 Very high	Oct	1972 Very low
Jul	1963 Average	Mar	1968 High	Nov	1972 Very low
Aug	1963 Average	Apr	1968 High	Dec	1972 Very low

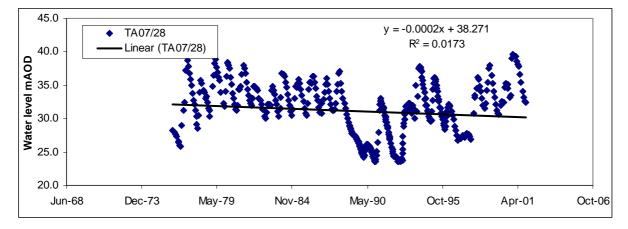

	1070 1	•	1077		4000
Jan	1973 Low	Sep	1977 Very low	May	1982 Average
Feb	1973 Low	Oct	1977 Very low	Jun	1982 Average
Mar	1973 Low	Nov	1977 Very low	Jul	1982 Low
Apr	1973 Low	Dec	1977 Average	Aug	1982 Very low
May	1973 Low	Jan	1978 High	Sep	1982 Very low
Jun	1973 Very low	Feb	1978 Very high	Oct	1982 Average
Jul	1973 Very low	Mar	1978 Very high	Nov	1982 High
Aug	1973 Very low	Apr	1978 High	Dec	1982 Very high
Sep	1973 Very low	May	1978 High	Jan	1983 Very high
Oct	1973 Very low	Jun	1978 Average	Feb	1983 Very high
Nov	1973 Very low	Jul	1978 Low	Mar	1983 High
Dec	1973 Very low	Aug	1978 Low	Apr	1983 High
Jan	1974 Low	Sep	1978 Very low	May	1983 High
Feb	1974 High	Oct	1978 Very low	Jun	1983 High
Mar	1974 High	Nov	1978 Very low	Jul	1983 Average
Apr	1974 Average	Dec	1978 Very low	Aug	1983 Low
May	1974 Average	Jan	1979 Average	Sep	1983 Very low
Jun	1974 Low	Feb	1979 High	Oct	1983 Very low
Jul	1974 Very low	Mar	1979 High	Nov	1983 Very low
Aug	1974 Very low	Apr	1979 Very high	Dec	1983 Very low
Sep	1974 Low	May	1979 High	Jan	1984 High
Oct	1974 High	Jun	1979 Average	Feb	1984 High
Nov	1974 Very high	Jul	1979 Average	Mar	1984 High
Dec	1974 Very high	Aug	1979 Low	Apr	1984 Average
Jan	1975 Very high	Sep	1979 Low	May	1984 Average
Feb	1975 Very high	Oct	1979 Very low	Jun	1984 Low
Mar	1975 Very high	Nov	1979 Low	Jul	1984 Very low
Apr	1975 Very high	Dec	1979 Average	Aug	1984 Very low
May	1975 Very high	Jan	1980 Very high	Sep	1984 Very low
Jun	1975 High	Feb	1980 Very high	Oct	•
Jul	•	Mar			1984 Very low
	1975 Average		1980 Very high	Nov	1984 Average
Aug	1975 Low	Apr	1980 Very high	Dec	1984 High
Sep	1975 Low	May	1980 High	Jan Fab	1985 Very high
Oct	1975 Low	Jun	1980 Average	Feb	1985 Very high
Nov	1975 Low	Jul	1980 Average	Mar	1985 High
Dec	1975 Low	Aug	1980 Low	Apr	1985 High
Jan	1976 Low	Sep	1980 Low	May	1985 High
Feb	1976 Low	Oct	1980 Average	Jun	1985 Average
Mar	1976 Low	Nov	1980 Average	Jul	1985 Low
Apr	1976 Very low	Dec	1980 High	Aug	1985 Low
May	1976 Very low	Jan	1981 High	Sep	1985 Low
Jun	1976 Very low	Feb	1981 High	Oct	1985 Very low
Jul	1976 Very low	Mar	1981 Very high	Nov	1985 Very low
Aug	1976 Very low	Apr	1981 Very high	Dec	1985 Average
Sep	1976 Very low	Мау	1981 High	Jan	1986 Very high
Oct	1976 Very low	Jun	1981 High	Feb	1986 Very high
Nov	1976 High	Jul	1981 Average	Mar	1986 High
Dec	1976 Very high	Aug	1981 Average	Apr	1986 High
Jan	1977 Very high	Sep	1981 Low	May	1986 High
Feb	1977 Very high	Oct	1981 Average	Jun	1986 Average
Mar	1977 Very high	Nov	1981 High	Jul	1986 Low
Apr	1977 Very high	Dec	1981 High	Aug	1986 Low
May	1977 High	Jan	1982 Very high	Sep	1986 Very low
Jun	1977 Average	Feb	1982 High	Oct	1986 Very low
Jul	1977 Low	Mar	1982 High	Nov	1986 Average
Aug	1977 Low	Apr	1982 High	Dec	1986 High
-			-		-

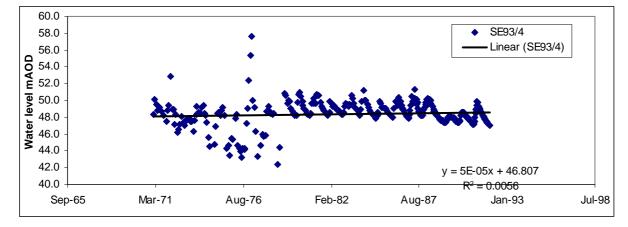

Jan	1987 Very high	Sep	1991 Low	May	1996 Average
Feb	1987 High	Oct	1991 Very low	Jun	1996 Low
Mar	1987 High	Nov	1991 Low	Jul	1996 Very low
Apr	1987 Very high	Dec	1991 Low	Aug	1996 Very low
May	1987 High	Jan	1992 Low	Sep	1996 Very low
Jun	1987 Average	Feb	1992 Low	Oct	1996 Very low
Jul	1987 Low	Mar	1992 Low	Nov	1996 Low
Aug	1987 Low	Apr	1992 Low	Dec	1996 Low
Sep	1987 Low	May	1992 Average	Jan	1997 Low
Oct	1987 High	Jun	1992 Low	Feb	1997 Average
Nov	1987 Very high	Jul	1992 Low	Mar	1997 Average
Dec	1987 Very high	Aug	1992 Very low	Apr	1997 Average
Jan	1988 Very high	Sep	1992 Very low	May	1997 Low
Feb	1988 Very high	Oct	1992 Very low	Jun	1997 Low
Mar	1988 Very high	Nov	1992 Average	Jul	1997 Very low
Apr	1988 Very high	Dec	1992 Very high	Aug	1997 Very low
May	1988 High	Jan	1993 Very high	Sep	1997 Very low
Jun	1988 Average	Feb	1993 Very high	Oct	1997 Low
Jul	1988 Low	Mar	1993 High	Nov	1997 High
Aug	1988 Very low	Apr	1993 Average	Dec	1997 Very high
Sep	1988 Very low	May	1993 Average	Jan	1998 Very high
Oct	1988 Very low	Jun	1993 Average	Feb	1998 Very high
Nov	1988 Very low	Jul	1993 Low	Mar	1998 High
Dec	1988 Very low	Aug	1993 Low	Apr	1998 High
	1988 Very low	-	1993 Low	•	-
Jan Feb	•	Sep Oct		May Jun	1998 High 1998 Average
Mar	1989 Very low	Nov	1993 Average 1993 High	Jul	•
	1989 Average		-		1998 Average
Apr	1989 Average	Dec	1993 Very high	Aug	1998 Low
May	1989 Average	Jan Tab	1994 Very high	Sep	1998 Low
Jun	1989 Low	Feb	1994 Very high	Oct	1998 Average
Jul	1989 Very low	Mar	1994 Very high	Nov	1998 High
Aug	1989 Very low	Apr	1994 Very high	Dec	1998 Very high
Sep	1989 Very low	May	1994 Very high	Jan	1999 Very high
Oct	1989 Very low	Jun	1994 High	Feb	1999 Very high
Nov	1989 Very low	Jul	1994 Average	Mar	1999 High
Dec	1989 Very low	Aug	1994 Average	Apr	1999 Average
Jan	1990 Average	Sep	1994 Low	May	1999 Average
Feb	1990 Very high	Oct	1994 Low	Jun	1999 Average
Mar	1990 Very high	Nov	1994 Average	Jul	1999 Low
Apr	1990 High	Dec	1994 Very high	Aug	1999 Very low
May	1990 Average	Jan	1995 Very high	Sep	1999 Low
Jun	1990 Low	Feb	1995 Very high	Oct	1999 Low
Jul	1990 Very low	Mar	1995 Very high	Nov	1999 Low
Aug	1990 Very low	Apr	1995 Very high	Dec	1999 High
Sep	1990 Very low	May	1995 High	Jan	2000 High
Oct	1990 Very low	Jun	1995 Average	Feb	2000 High
Nov	1990 Very low	Jul	1995 Low	Mar	2000 High
Dec	1990 Very low	Aug	1995 Very low	Apr	2000 High
Jan	1991 Low	Sep	1995 Very low	May	2000 High
Feb	1991 Average	Oct	1995 Very low	Jun	2000 High
Mar	1991 Average	Nov	1995 Very low	Jul	2000 Average
Apr	1991 High	Dec	1995 Very low	Aug	2000 Low
May	1991 Average	Jan	1996 Low	Sep	2000 Average
Jun	1991 Low	Feb	1996 Low	Oct	2000 Very high
Jul	1991 Average	Mar	1996 Average	Nov	2000 Very high
Aug	1991 Low	Apr	1996 Average	Dec	2000 Very high

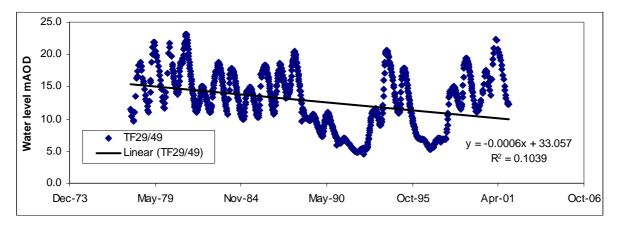

Jan	2001 Very high
Feb	2001 Very high
Mar	2001 Very high
	2001 Very high
Apr	2001 Very high
May	
Jun	2001 High
Jul	2001 Average
Aug	2001 Low
Sep	2001 Very low
Oct	2001 Low
Nov	2001 Average
Dec	2001 Average
Jan	2002 High
Feb	2002 Very high
Mar	2002 Very high
Apr	2002 High
May	2002 Average
Jun	2002 Average
Jul	2002 Average
Aug	2002 Average
Sep	2002 High
Oct	2002 High
Nov	2002 Very high
Dec	2002 Very high
	2002 Very high
Jan	
Feb	2003 Very high
Mar	2003 Very high
Apr	2003 High
May	2003 Average
Jun	2003 Low
Jul	2003 Low
Aug	2003 Very low
Sep	2003 Very low
Oct	2003 Very low
Nov	2003 Very low
Dec	2003 Average
Jan	2004 High
Feb	2004 Very high
Mar	2004 High
Apr	2004 Average
May	2004 Average
Jun	2004 Average
Jul	2004 Low
Aug	2004 Very low
Sep	2004 Very low
Cop	LOUT TOILION

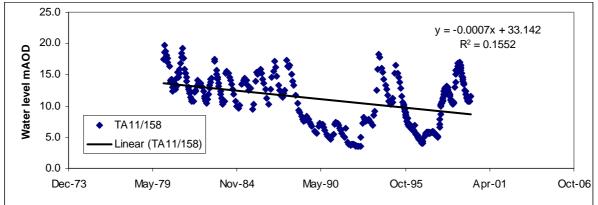

Appendix 7 Chalk – Lincolnshire and Yorkshire

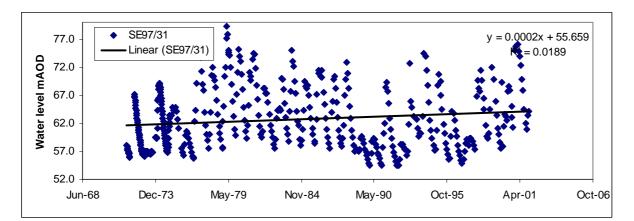


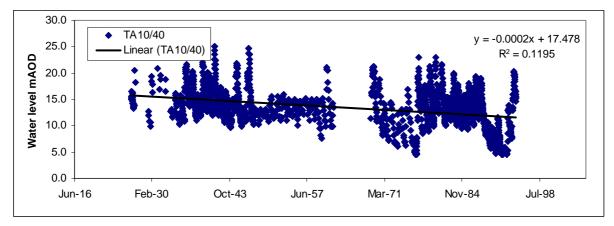


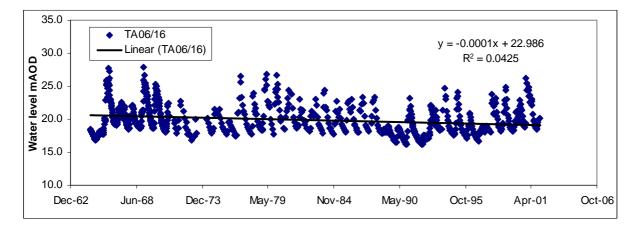


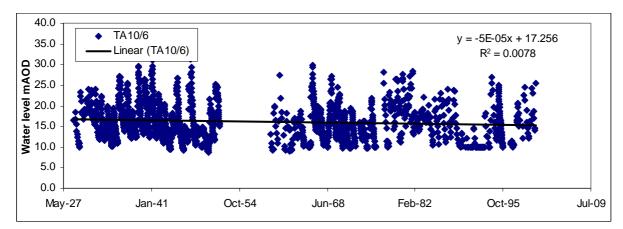


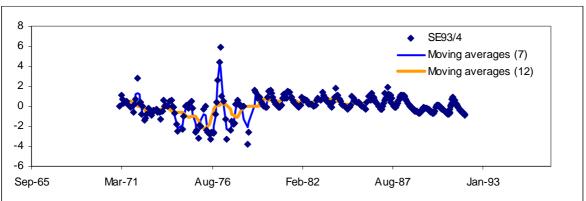


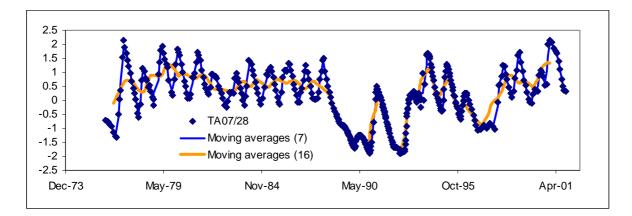


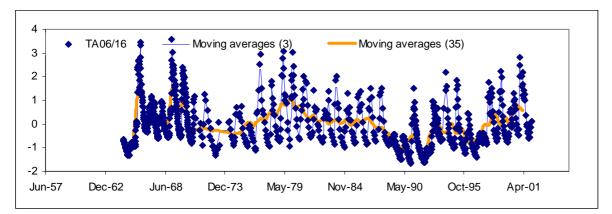


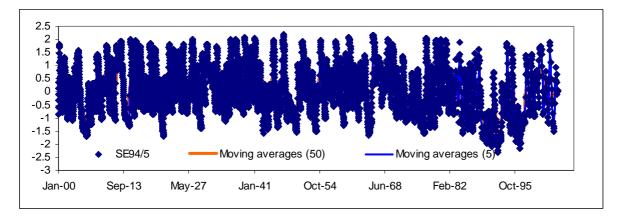


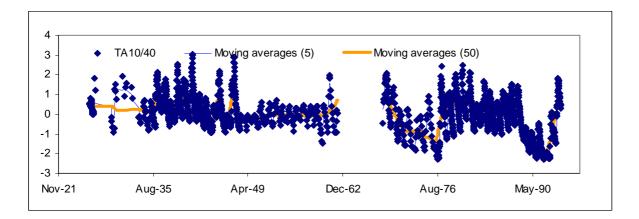


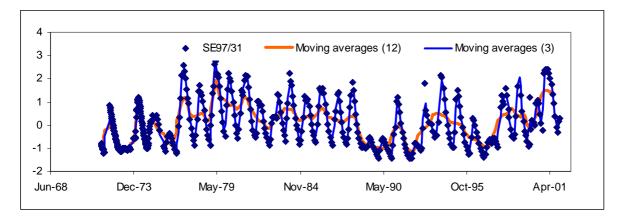


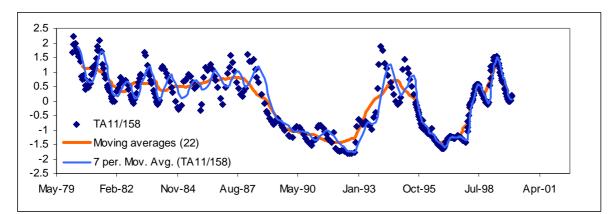


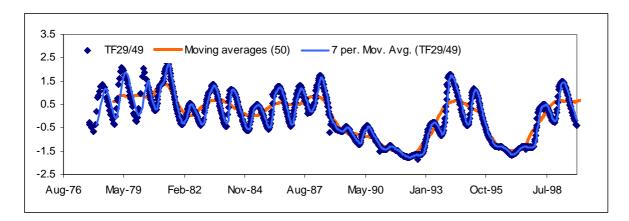


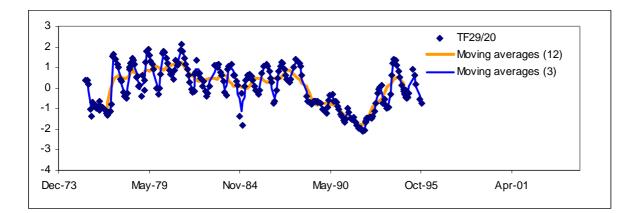


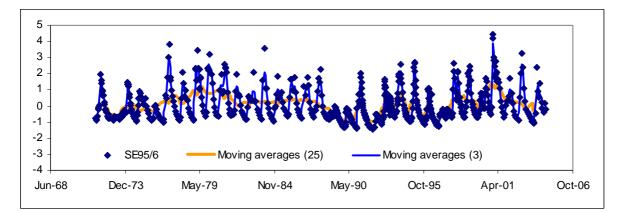

NORMALISED WATER LEVEL DATA WITH MOVING AVERAGES SMOOTHING LINES

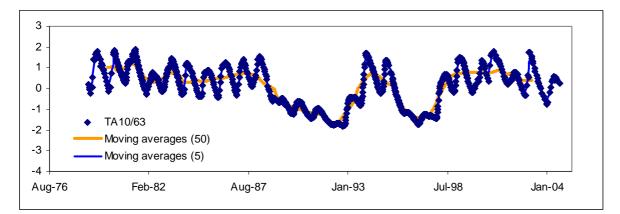


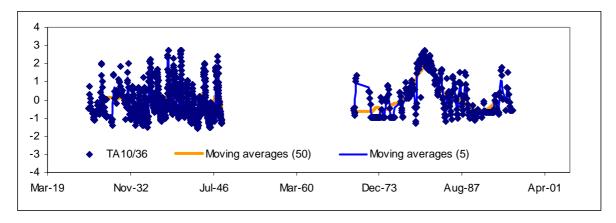


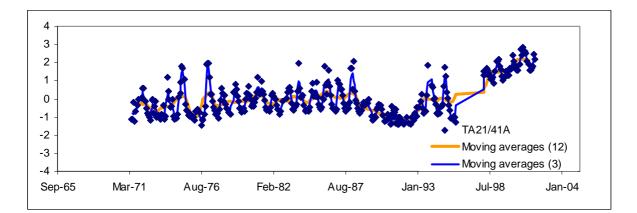


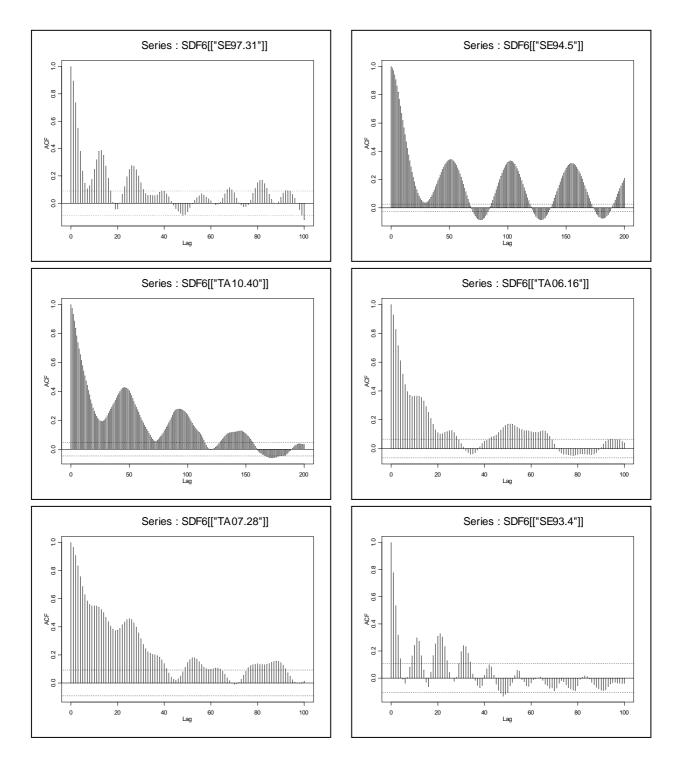


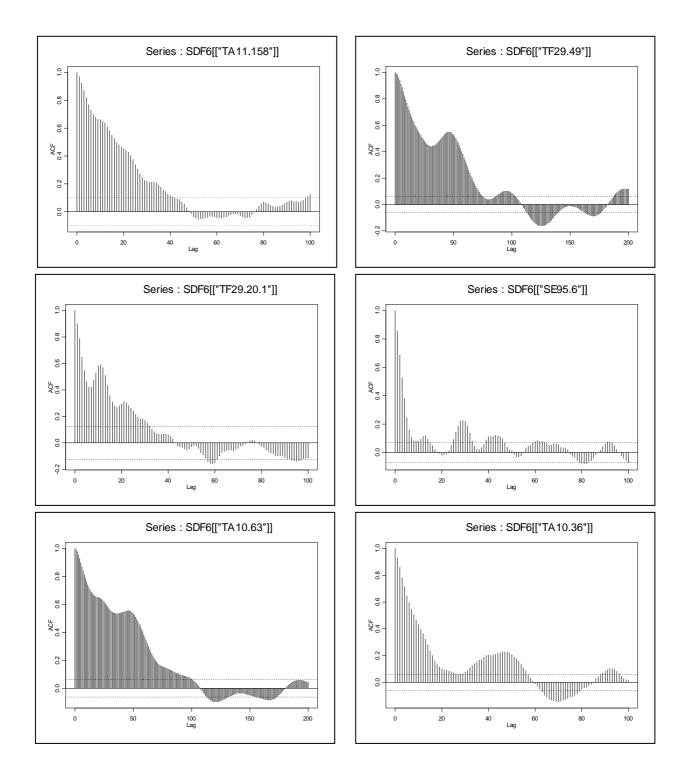


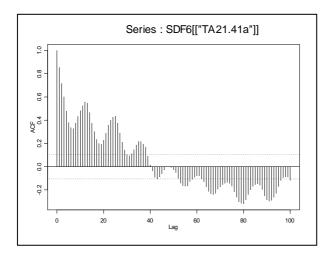


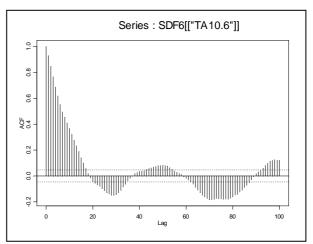




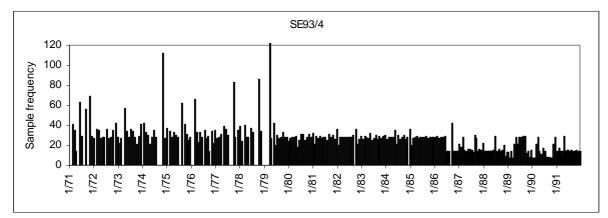


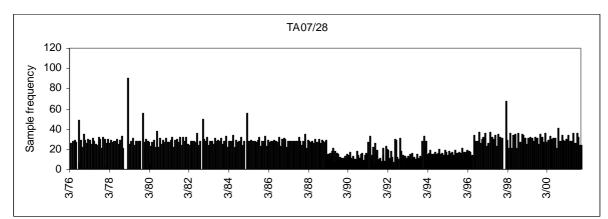


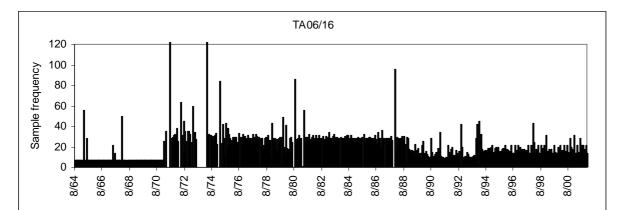


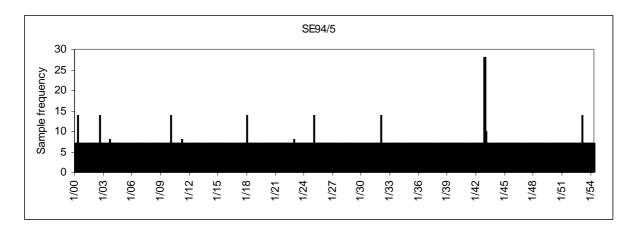


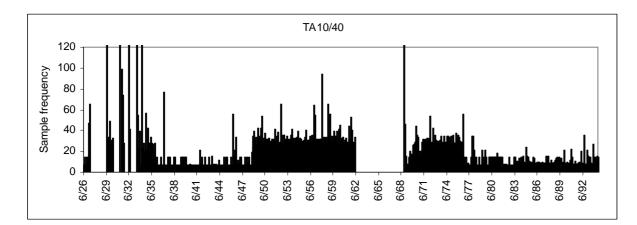
AUTOCORRELATION FUNTION PLOTS

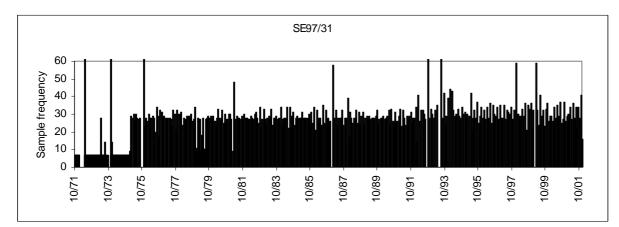


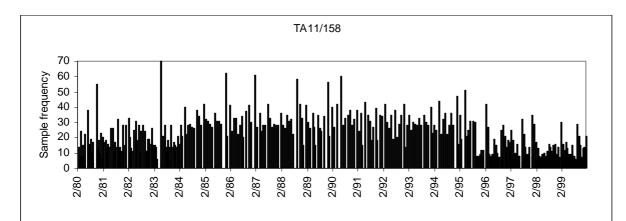


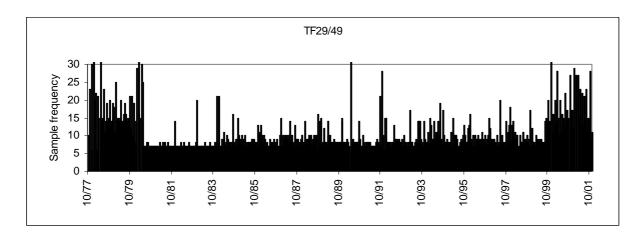


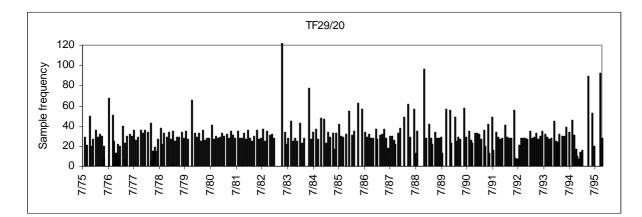


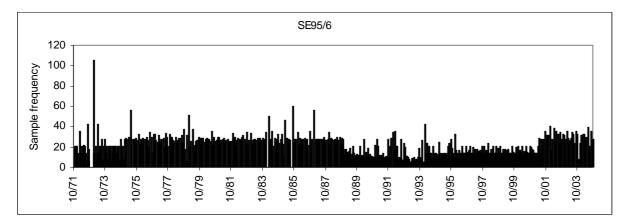

SAMPLE FREQUENCY PLOTS

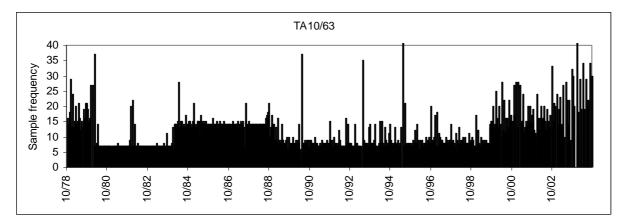


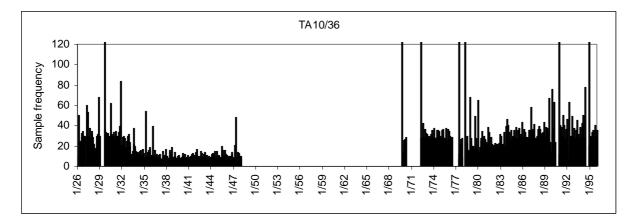


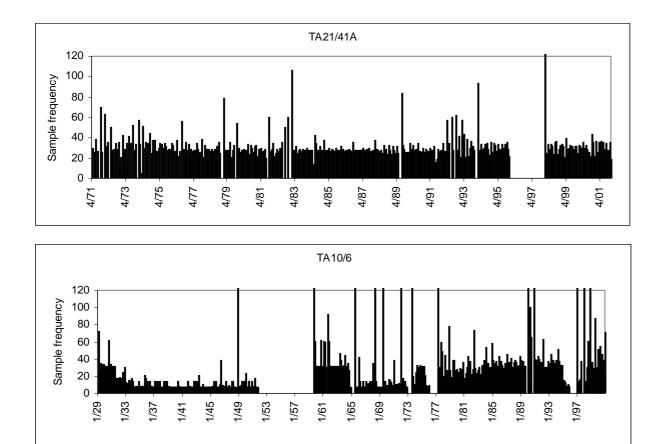


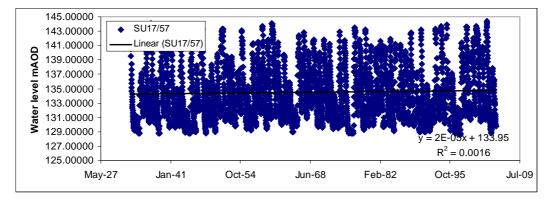


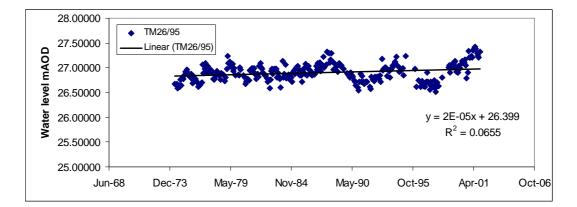


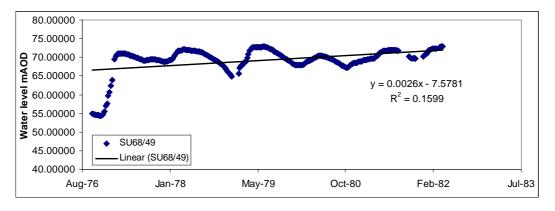


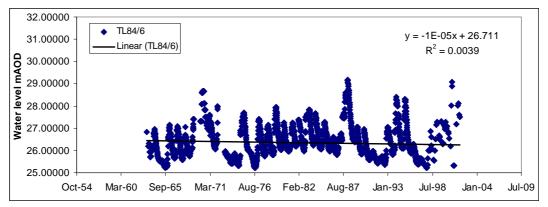


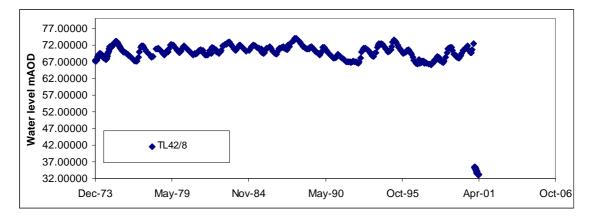


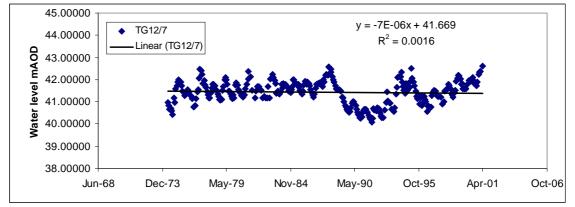

Feb	1965 Very low	Oct	1969 Low	Jun	1974 Average
Mar	1965 Very low	Nov	1969 Low	Jul	1974 Low
Apr	1965 Very low	Dec	1969 High	Aug	1974 Low
May	1965 Very low	Jan	1970 Very high	Sep	1974 Very low
Jun	1965 Very low	Feb	1970 Very high	Oct	1974 Very low
Jul	1965 Very low	Mar	1970 Very high	Nov	1974 Low
Aug	1965 Very low	Apr	1970 Very high	Dec	1974 Average
Sep	1965 Very low	May	1970 Very high	Jan	1975 High
Oct	1965 Low	Jun	1970 High	Feb	1975 High
Nov	1965 Average	Jul	1970 Average	Mar	1975 High
Dec	1965 Very high	Aug	1970 Average	Apr	1975 High
Jan	1966 Very high	Sep	1970 Low	May	1975 High
Feb	1966 Very high	Oct	1970 Very low	Jun	1975 High
Mar	1966 Very high	Nov	1970 Very low	Jul	1975 Average
Apr	1966 Very high	Dec	1970 Very low	Aug	1975 Average
May	1966 Very high	Jan	1971 Average	Sep	1975 Low
Jun	1966 High	Feb	1971 High	Oct	1975 Very low
Jul	1966 High	Mar	1971 High	Nov	1975 Very low
Aug	1966 Average	Apr	1971 Average	Dec	1975 Very low
Sep	1966 Average	May	1971 Average	Jan	1976 Very low
Oct	1966 Average	Jun	1971 Average	Feb	1976 Very low
Nov	1966 Average	Jul	1971 Low	Mar	1976 Low
Dec	1966 High	Aug	1971 Low	Apr	1976 Low
Jan	1967 Very high	Sep	1971 Low	May	1976 Very low
Feb	1967 High	Oct	1971 Low	Jun	1976 Very low
Mar	1967 High	Nov	1971 Very low	Jul	1976 Very low
Apr	1967 High	Dec	1971 Low	Aug	1976 Very low
May	1967 High	Jan	1972 Low	Sep	1976 Very low
Jun	1967 High	Feb	1972 High	Oct	1976 Very low
Jul	1967 High	Mar	1972 Very high	Nov	1976 Very low
Aug	1967 Average	Apr	1972 Very high	Dec	1976 Low
Sep	1967 Low	May	1972 High	Jan	1977 High
Oct	1967 Low	Jun	1972 High	Feb	1977 Very high
Nov	1967 Low	Jul	1972 Average	Mar	1977 Very high
Dec	1967 Low	Aug	1972 Low	Apr	1977 Very high
Jan	1968 High	Sep	1972 Low	May	1977 Very high
Feb	1968 High	Oct	1972 Very low	Jun	1977 High
Mar	1968 High	Nov	1972 Very low	Jul	1977 High
Apr	1968 High	Dec	1972 Very low	Aug	1977 Average
May	1968 Average	Jan	1973 Very low	Sep	1977 Low
Jun	1968 Average	Feb	1973 Very low	Oct	1977 Low
Jul	1968 Average	Mar	1973 Very low	Nov	1977 Very low
Aug	1968 Average	Apr	1973 Very low	Dec	1977 Very low
Sep	1968 Low	May	1973 Very low	Jan	1978 Low
Oct	1968 Average	Jun	1973 Very low	Feb	1978 High
Nov	1968 High	Jul	1973 Very low	Mar	1978 Very high
Dec	1968 Very high	Aug	1973 Low	Apr	1978 Very high
Jan	1969 Very high	Sep	1973 Low	May	1978 Very high
Feb	1969 Very high	Oct	1973 Low	Jun	1978 Very night 1978 High
Mar	1969 Very high	Nov	1973 Low	Jul	1978 High
Apr	1969 Very high	Dec	1973 Low 1973 Low	Aug	1978 Average
May	1969 Very high	Jan	1973 Low 1974 Average	Sep	1978 Average
		Feb	1974 Average 1974 High	Oct	1978 Low
Jun	1969 Very high		•	Nov	
Jul	1969 High	Mar	1974 High		1978 Low
Aug	1969 High	Apr	1974 High	Dec	1978 Low
Sep	1969 Average	May	1974 Average	Jan	1979 High

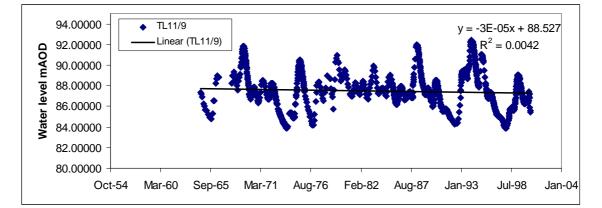

Feb	1979 Very high	Oct	1983 Average	Jun	1988 High
Mar	1979 Very high	Nov	1983 Average	Jul	1988 High
Apr	1979 Very high	Dec	1983 Average	Aug	1988 Average
May	1979 Very high	Jan	1984 High	Sep	1988 Low
Jun	1979 Very high	Feb	1984 Very high	Oct	1988 Low
Jul	1979 Very high	Mar	1984 Very high	Nov	1988 Low
Aug	1979 High	Apr	1984 Very high	Dec	1988 Low
Sep	1979 High	May	1984 High	Jan	1989 Very low
Oct	1979 Average	Jun	1984 High	Feb	1989 Very low
Nov	1979 Low	Jul	1984 Average	Mar	1989 Very low
Dec	1979 Average	Aug	1984 Average	Apr	1989 Low
Jan	1980 High	Sep	1984 Low	May	1989 Low
Feb	1980 Very high	Oct	1984 Low	Jun	1989 Low
Mar	1980 Very high	Nov	1984 Low	Jul	1989 Low
Apr	1980 Very high	Dec	1984 Low	Aug	1989 Very low
May	1980 Very high	Jan	1985 Average	Sep	1989 Very low
Jun	1980 High	Feb	1985 High	Oct	1989 Very low
Jul	1980 High	Mar	1985 High	Nov	1989 Very low
Aug	1980 High	Apr	1985 High	Dec	1989 Very low
Sep	1980 Average	May	1985 High	Jan	1990 Very low
Oct	1980 Average	Jun	1985 High	Feb	1990 Very low
Nov	1980 High	Jul	1985 High	Mar	1990 Very low
Dec	1980 Very high	Aug	1985 Average	Apr	1990 Low
Jan	1981 Very high	Sep	1985 Average	May	1990 Very low
Feb	1981 Very high	Oct	1985 Low	Jun	1990 Very low
Mar	1981 Very high	Nov	1985 Low	Jul	1990 Very low
Apr	1981 Very high	Dec	1985 Low	Aug	1990 Very low
May	1981 Very high	Jan	1986 High	Sep	1990 Very low
Jun	1981 Very high	Feb	1986 Very high	Oct	1990 Very low
Jul	1981 Very high	Mar	1986 Very high	Nov	1990 Very low
Aug	1981 High	Apr	1986 Very high	Dec	1990 Very low
Sep	1981 Average	May	1986 Very high	Jan	1990 Very low
Oct	1981 Average	Jun	1986 Very high	Feb	1991 Very low
Nov	1981 Average	Jul	1986 High	Mar	1991 Low
Dec	1981 Low	Aug	1986 High	Apr	1991 Average
Jan		°	-	•	1991 Low
Feb	1982 Average 1982 High	Sep Oct	1986 Average 1986 Low	May Jun	1991 Low
Mar	•	Nov	1986 Low		
	1982 High	Dec		Jul	1991 Very low
Apr	1982 High		1986 Low	Aug	1991 Very low
May	1982 High	Jan Feb	1987 Average	Sep	1991 Very low
Jun	1982 High		1987 High	Oct	1991 Very low
Jul	1982 Average	Mar	1987 Very high	Nov	1991 Very low
Aug	1982 Average	Apr	1987 Very high	Dec	1991 Very low
Sep	1982 Average	May	1987 Very high	Jan Fab	1992 Very low
Oct	1982 Low	Jun	1987 High	Feb	1992 Very low
Nov	1982 Low	Jul	1987 High	Mar	1992 Very low
Dec	1982 Average	Aug	1987 Average	Apr	1992 Very low
Jan	1983 High	Sep	1987 Average	May	1992 Very low
Feb	1983 High	Oct	1987 Average	Jun	1992 Very low
Mar	1983 High	Nov	1987 Average	Jul	1992 Very low
Apr	1983 High	Dec	1987 Average	Aug	1992 Very low
May	1983 Very high	Jan	1988 High	Sep	1992 Very low
Jun	1983 Very high	Feb	1988 Very high	Oct	1992 Very low
Jul	1983 Very high	Mar	1988 Very high	Nov	1992 Very low
Aug	1983 High	Apr	1988 Very high	Dec	1992 Low
Sep	1983 High	May	1988 Very high	Jan	1993 Average

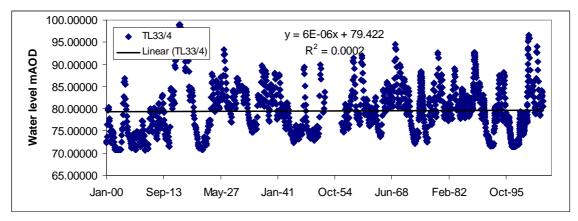

Feb	1993 Average	Oct	1997 Very low	Jun	2002 Average
Mar	1993 Average	Nov	1997 Very low	Jul	2002 Average
Apr	1993 Average	Dec	1997 Very low	Aug	2002 Low
May	1993 Average	Jan	1998 Average	Sep	2002 Low
Jun	1993 Average	Feb	1998 High	Oct	2002 Low
Jul	1993 Low	Mar	1998 High	Nov	2002 Average
Aug	1993 Low	Apr	1998 High	Dec	2002 Very high
Sep	1993 Low	May	1998 Very high	Jan	2003 Very high
Oct	1993 Low	Jun	1998 High	Feb	2003 Very high
Nov	1993 Low	Jul	1998 High	Mar	2003 Very high
Dec	1993 High	Aug	1998 High	Apr	2003 Very high
Jan	1994 Very high	Sep	1998 Average	May	2003 High
Feb	1994 Very high	Oct	1998 Average	Jun	2003 Average
Mar	1994 Very high	Nov	1998 Average	Jul	2003 Average
Apr	1994 Very high	Dec	1998 Average	Aug	2003 Low
May	1994 High	Jan	1999 High	Sep	2003 Low
Jun	1994 High	Feb	1999 Very high	Oct	2003 Very low
Jul	1994 Average	Mar	1999 Very high	Nov	2003 Very low
Aug	1994 Average	Apr	1999 Very high	Dec	2003 Very low
Sep	1994 Low	May	1999 Very high	Jan	2004 Low
Oct	1994 Low	Jun	1999 High	Feb	2004 Average
Nov	1994 Low	Jul	1999 High	Mar	2004 High
Dec	1994 Low	Aug	1999 Average	Apr	2004 High
Jan	1995 Average	Sep	1999 Average	May	2004 High
Feb	1995 Very high	Oct	1999 Average	Jun	2004 High
Mar	1995 Very high	Nov	1999 Average		
Apr	1995 Very high	Dec	1999 Average		
May	1995 High	Jan	2000 High		
Jun	1995 High	Feb	2000 High		
Jul	1995 Average	Mar	2000 High		
Aug	1995 Low	Apr	2000 High		
Sep	1995 Low	May	2000 Very high		
Oct	1995 Low	Jun	2000 Very high		
Nov	1995 Very low	Jul	2000 Very high		
Dec	1995 Very low	Aug	2000 High		
Jan Feb	1996 Very low	Sep	2000 Average		
Mar	1996 Very low	Oct Nov	2000 Average		
Apr	1996 Low 1996 Low	Dec	2000 Very high 2000 Very high		
May	1996 Low	Jan	2000 Very high		
Jun	1996 Very low	Feb	2001 Very high		
Jul	1996 Very low	Mar	2001 Very high		
Aug	1996 Very low	Apr	2001 Very high		
Sep	1996 Very low	May	2001 Very high		
Oct	1996 Very low	Jun	2001 Very high		
Nov	1996 Very low	Jul	2001 High		
Dec	1996 Very low	Aug	2001 High		
Jan	1997 Very low	Sep	2001 Average		
Feb	1997 Very low	Oct	2001 Average		
Mar	1997 Very low	Nov	2001 Average		
Apr	1997 Very low	Dec	2001 High		
May	1997 Very low	Jan	2002 High		
Jun	1997 Very low	Feb	2002 High		
Jul	1997 Very low	Mar	2002 High		
Aug	1997 Very low	Apr	2002 High		
Sep	1997 Very low	May	2002 High		

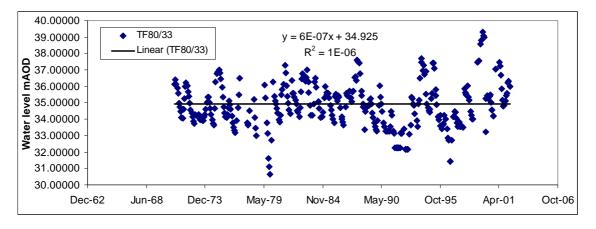

Appendix 8 Chalk - Berkshire Downs and East Anglia

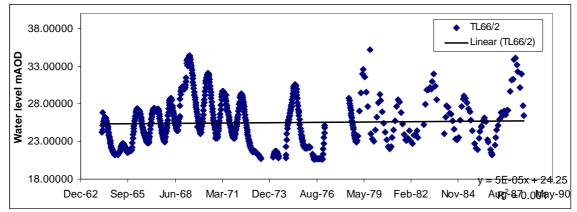

WATER LEVELS ABOVE ORDNANCE DATUM WITH LINEAR REGRESSION CURVE

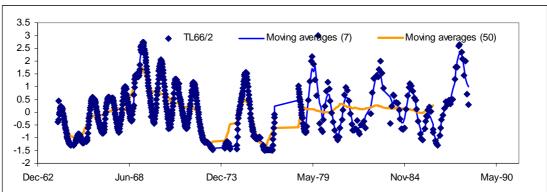


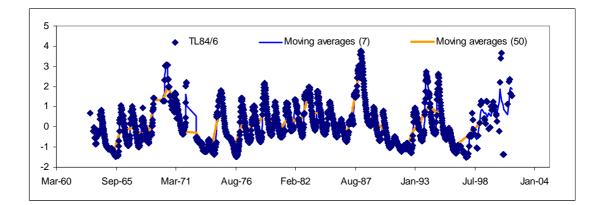


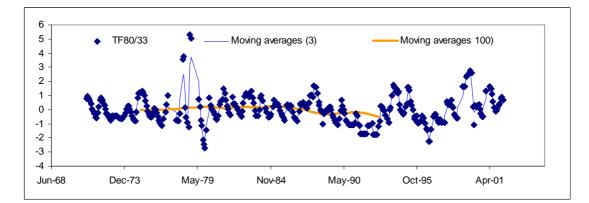


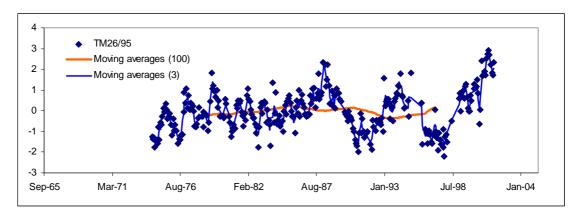


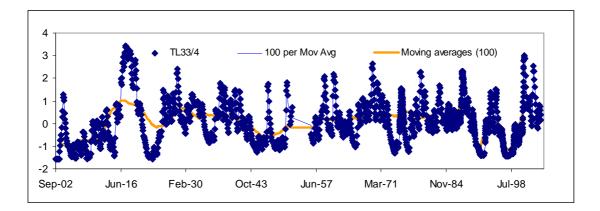


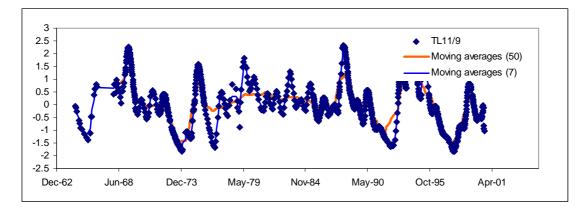


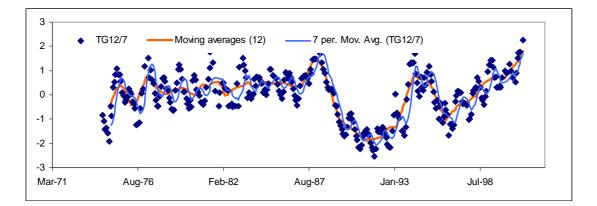


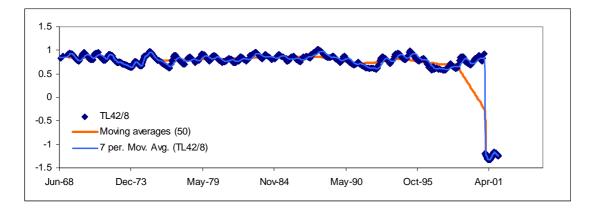


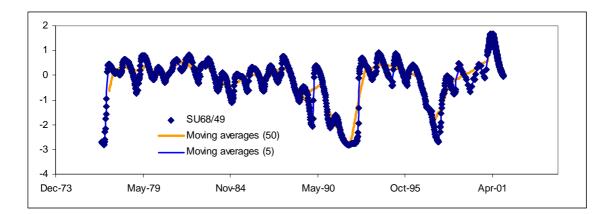


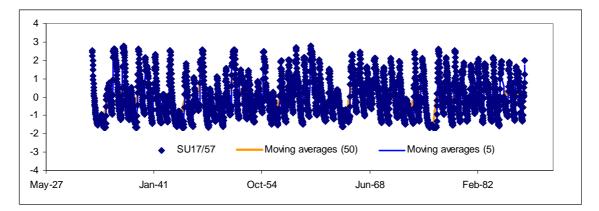

NORMALISED WATER LEVEL DATA WITH MOVING AVERAGES SMOOTHING LINES

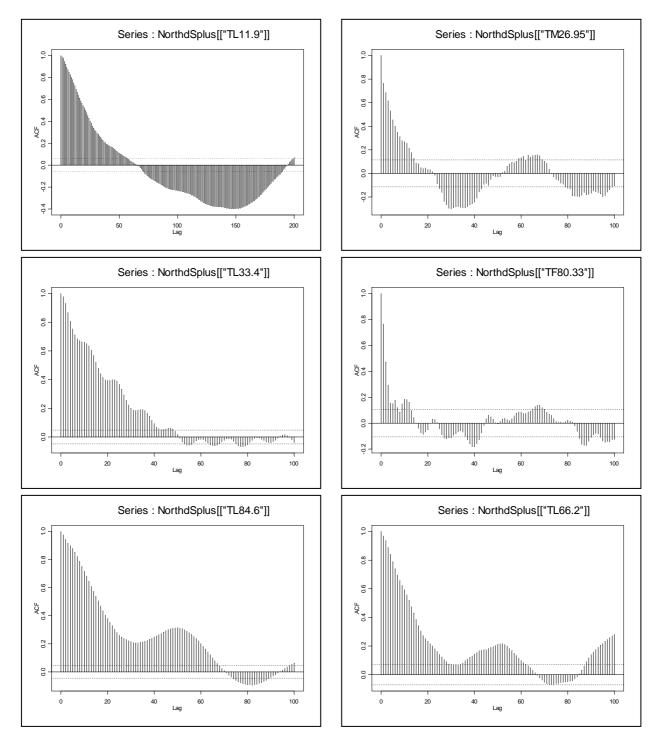


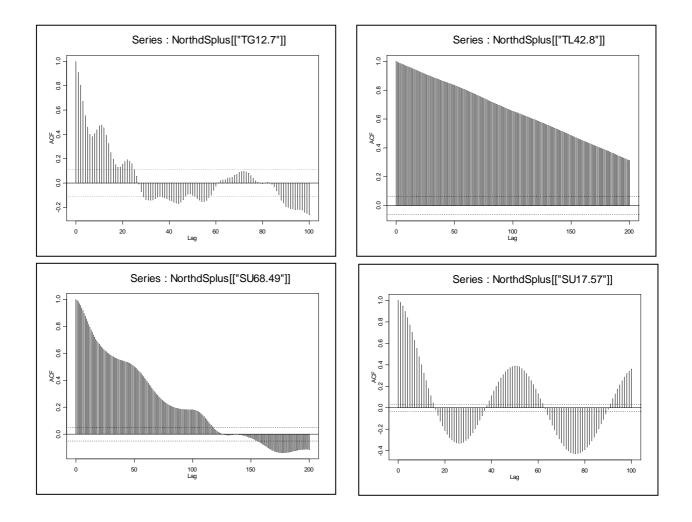


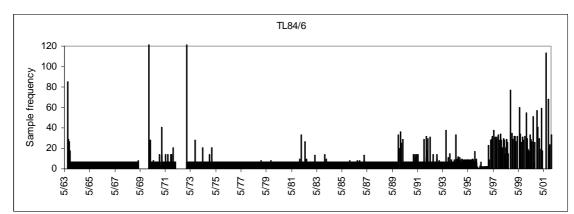


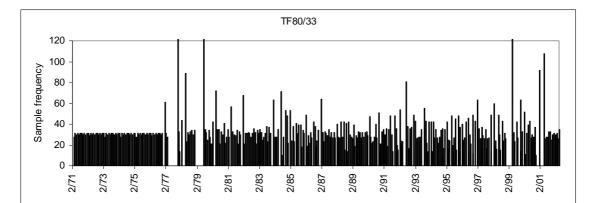


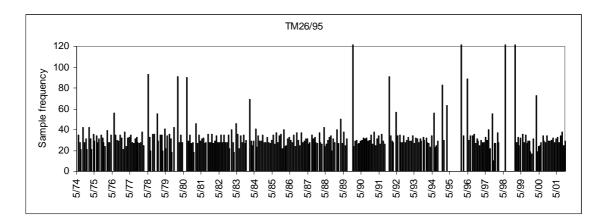


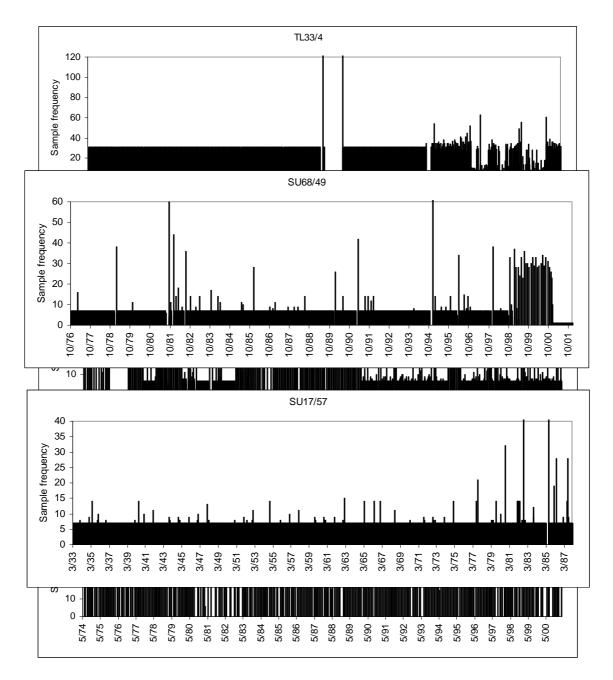


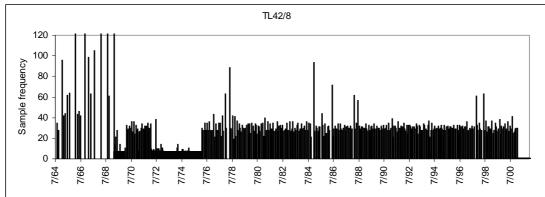


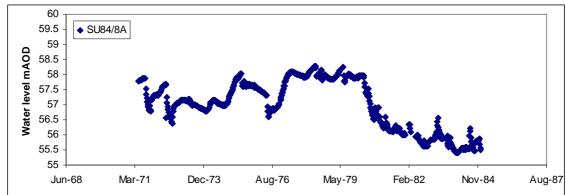

AUTOCORRELATION FUNTION PLOTS

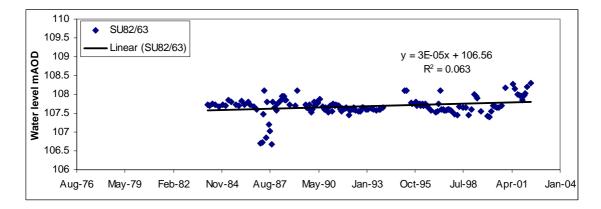


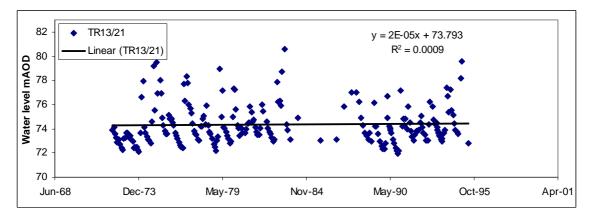


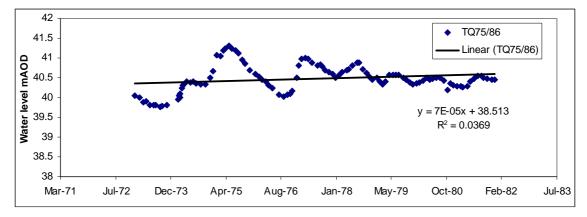

SAMPLE FREQUENCY PLOTS

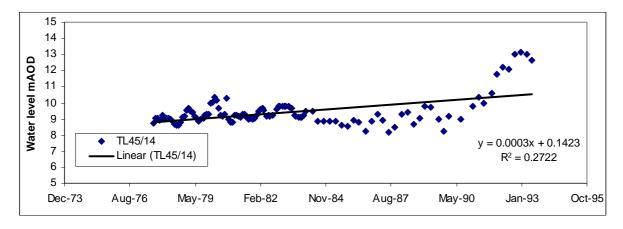


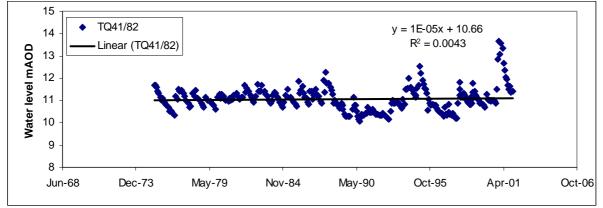

	4000				1070 1
Nov	1963 Low	Mar	1968 Very high	Jul	1972 Average
Dec	1963 Low	Apr	1968 High	Aug	1972 Average
Jan	1964 Average	May	1968 Average	Sep	1972 Low
Feb	1964 Average	Jun	1968 Average	Oct	1972 Low
Mar	1964 Average	Jul	1968 Low	Nov	1972 Very low
Apr	1964 High	Aug	1968 Low	Dec	1972 Very low
May	1964 High	Sep	1968 Average	Jan Fab	1973 Low
Jun	1964 Average	Oct	1968 High	Feb	1973 Low
Jul	1964 Average	Nov	1968 High	Mar	1973 Very low
Aug	1964 Low	Dec	1968 Very high	Apr May	1973 Very low
Sep	1964 Low	Jan Feb	1969 Very high	May	1973 Very low
Oct	1964 Very low		1969 Very high	Jun	1973 Very low
Nov	1964 Very low	Mar	1969 Very high	Jul	1973 Very low
Dec	1964 Very low	Apr Max	1969 Very high	Aug	1973 Very low
Jan Feb	1965 Very low	May	1969 Very high	Sep	1973 Very low
	1965 Very low	Jun	1969 Very high	Oct	1973 Very low
Mar	1965 Very low	Jul	1969 Very high	Nov	1973 Very low
Apr	1965 Very low	Aug	1969 High	Dec	1973 Very low
May	1965 Very low	Sep	1969 High	Jan Fab	1974 Very low
Jun Jul	1965 Very low	Oct Nov	1969 Average	Feb Mar	1974 Low
	1965 Very low		1969 Low		1974 Average
Aug	1965 Very low	Dec	1969 Low	Apr May	1974 Low 1974 Low
Sep	1965 Very low	Jan Fab	1970 High	May	
Oct Nov	1965 Very low	Feb Mar	1970 Very high 1970 Very high	Jun Jul	1974 Very low
Dec	1965 Very low 1965 Low		1970 Very high	Aug	1974 Very low 1974 Very low
Jan	1965 Low 1966 High	Apr May	1970 Very high	Sep	1974 Very low
Feb	-	Jun	1970 Very high	Oct	1974 Very low
Mar	1966 Very high 1966 Very high	Jul	1970 Very high	Nov	1974 Very low
Apr	1966 Very high	Aug	1970 High	Dec	1974 Low 1974 Average
May	1966 High	Sep	1970 Average	Jan	1975 High
Jun	1966 High	Oct	1970 Average	Feb	1975 High
Jul	1966 Average	Nov	1970 Low	Mar	1975 Very high
Aug	1966 Low	Dec	1970 Average	Apr	1975 Very high
Sep	1966 Low	Jan	1971 High	May	1975 Very high
Oct	1966 Low	Feb	1971 Very high	Jun	1975 Very high
Nov	1966 Low	Mar	1971 Very high	Jul	1975 Very high
Dec	1966 Average	Apr	1971 Very high	Aug	1975 High
Jan	1967 High	May	1971 Very high	Sep	1975 Average
Feb	1967 Very high	Jun	1971 High	Oct	1975 Average
Mar	1967 Very high	Jul	1971 High	Nov	1975 Low
Apr	1967 Very high	Aug	1971 Average	Dec	1975 Low
May	1967 High	Sep	1971 Average	Jan	1976 Very low
Jun	1967 High	Oct	1971 Low	Feb	1976 Very low
Jul	1967 Average	Nov	1971 Low	Mar	1976 Very low
Aug	1967 Low	Dec	1971 Low	Apr	1976 Very low
Sep	1967 Low	Jan	1972 Average	May	1976 Very low
Oct	1967 Low	Feb	1972 High	Jun	1976 Very low
Nov	1967 Low	Mar	1972 Very high	Jul	1976 Very low
Dec	1967 Average	Apr	1972 Very high	Aug	1976 Very low
Jan	1968 High	May	1972 High	Sep	1976 Very low
Feb	1968 Very high	Jun	1972 High	Oct	1976 Very low

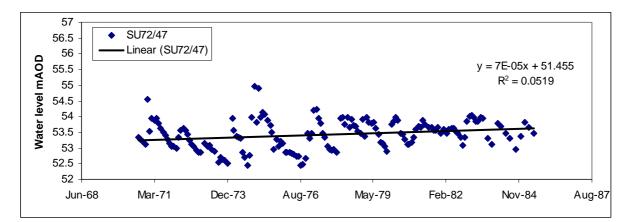

Nov	1976 Very low	Mar	1981 High	Jul	1985 High
Dec	1976 Very low	Apr	1981 Very high	Aug	1985 Average
Jan	1977 Low	May	1981 Very high	Sep	1985 Average
Feb	1977 High	Jun	1981 High	Oct	1985 Low
Mar	1977 Very high	Jul	1981 High	Nov	1985 Low
Apr	1977 Very high	Aug	1981 Average	Dec	1985 Low
May	1977 High	Sep	1981 Average	Jan	1986 Average
Jun	1977 High	Oct	1981 Low	Feb	1986 High
Jul	1977 Average	Nov	1981 Average	Mar	1986 High
Aug	1977 Average	Dec	1981 Average	Apr	1986 High
Sep	1977 Average	Jan	1982 High	May	1986 High
Oct	1977 Low	Feb	1982 Very high	Jun	1986 High
Nov	1977 Low	Mar	1982 Very high	Jul	1986 Average
Dec	1977 Low	Apr	1982 High	Aug	1986 Average
Jan	1978 Average	May	1982 High	Sep	1986 Low
Feb	1978 High	Jun	1982 Average	Oct	1986 Low
Mar	1978 Very high	Jul	1982 Average	Nov	1986 Low
Apr	1978 Very high	Aug	1982 Average	Dec	1986 Average
May	1978 Very high	Sep	1982 Low	Jan	1987 Average
Jun	1978 High	Oct	1982 Low	Feb	1987 High
Jul	1978 High	Nov	1982 Average	Mar	1987 High
Aug	1978 Average	Dec	1982 High	Apr	1987 High
Sep	1978 Average	Jan	1983 Very high	May	1987 High
Oct	1978 Low	Feb	1983 Very high	Jun	1987 High
Nov	1978 Low	Mar	1983 Very high	Jul	1987 High
Dec	1978 Low	Apr	1983 Very high	Aug	1987 High
Jan	1979 Low	May	1983 Very high	Sep	1987 High
Feb	1979 High	Jun	1983 Very high	Oct	1987 High
Mar	1979 Very high	Jul	1983 Very high	Nov	1987 High
Apr	1979 Very high	Aug	1983 High	Dec	1987 Very high
May	1979 Very high	Sep	1983 Average	Jan	1988 Very high
Jun	1979 Very high	Oct	1983 Average	Feb	1988 Very high
Jul	1979 Very high	Nov	1983 Low	Mar	1988 Very high
Aug	1979 High	Dec	1983 Low	Apr	1988 Very high
Sep	1979 Average	Jan	1984 Average	May	1988 Very high
Oct	1979 Average	Feb	1984 Very high	Jun	1988 Very high
Nov	1979 Low	Mar	1984 Very high	Jul	1988 Very high
Dec	1979 Low	Apr	1984 High	Aug	1988 High
Jan	1980 Average	May	1984 High	Sep	1988 Average
Feb	1980 High	Jun	1984 High	Oct	1988 Average
Mar	1980 High	Jul	1984 Average	Nov	1988 Average
Apr	1980 Very high	Aug	1984 Low	Dec	1988 Average
May	1980 Very high	Sep	1984 Low	Jan	1989 Average
Jun	1980 High	Oct	1984 Low	Feb	1989 Low
Jul	1980 Average	Nov	1984 Low	Mar	1989 Average
Aug	1980 Average	Dec	1984 Low	Apr	1989 High
Sep	1980 Low	Jan	1985 Average	May	1989 High
Oct	1980 Low	Feb	1985 High	Jun	1989 Average
Nov	1980 Low	Mar	1985 High	Jul	1989 Average
Dec	1980 Low	Apr	1985 High	Aug	1989 Low
Jan	1981 Average	May	1985 High	Sep	1989 Low
Feb	1981 Average	Jun	1985 High	Oct	1989 Very low

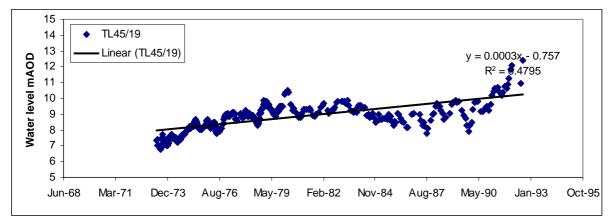

Nov	1989 Very low	Mar	1994 Very high	Jul	1998 Low
Dec	1989 Very low	Apr	1994 Very high	Aug	1998 Low
Jan	1989 Very low 1990 Low	May	1994 Very high	Sep	1998 Low
Feb	1990 Average	Jun	1994 Very high	Oct	1998 Very low
Mar	1990 Average 1990 High	Jul	1994 High	Nov	1998 Low
Apr	1990 High	Aug	1994 High	Dec	1998 Average
May	1990 Average	Sep	1994 Average	Jan	1999 High
Jun	1990 Average	Oct	1994 Average	Feb	1999 High
Jul	1990 Low	Nov	1994 Average	Mar	1999 Very high
Aug	1990 Low	Dec	1994 Average	Apr	1999 High
Sep	1990 Low	Jan	1995 High	May	1999 High
Oct	1990 Very low	Feb	1995 Very high	Jun	1999 High
Nov	1990 Very low	Mar	1995 Very high	Jul	1999 High
Dec	1990 Very low	Apr	1995 Very high	Aug	1999 Average
Jan	1991 Very low	May	1995 Very high	Sep	1999 Average
Feb	1991 Very low	Jun	1995 Very high	Oct	1999 Low
Mar	1991 Very low	Jul	1995 High	Nov	1999 Low
Apr	1991 Very low	Aug	1995 Average	Dec	1999 Low
May	1991 Very low	Sep	1995 Average	Jan	2000 Average
Jun	1991 Very low	Oct	1995 Low	Feb	2000 Average
Jul	1991 Very low	Nov	1995 Low	Mar	2000 High
Aug	1991 Very low	Dec	1995 Low	Apr	2000 High
Sep	1991 Very low	Jan	1996 Low	May	2000 High
Oct	1991 Very low	Feb	1996 Low	Jun	2000 High
Nov	1991 Very low	Mar	1996 Average	Jul	2000 High
Dec	1991 Very low	Apr	1996 Average	Aug	2000 Average
Jan	1992 Very low	May	1996 Low	Sep	2000 Low
Feb	1992 Very low	Jun	1996 Low	Oct	2000 Average
Mar	1992 Very low	Jul	1996 Very low	Nov	2000 High
Apr	1992 Very low	Aug	1996 Very low	Dec	2000 Very high
May	1992 Very low	Sep	1996 Very low	Jan	2001 Very high
Jun	1992 Very low	Oct	1996 Very low	Feb	2001 Very high
Jul	1992 Very low	Nov	1996 Very low	Mar	2001 Very high
Aug	1992 Very low	Dec	1996 Very low	Apr	2001 Very high
Sep	1992 Very low	Jan	1997 Very low	May	2001 Very high
Oct	1992 Very low	Feb	1997 Very low	Jun	2001 Very high
Nov	1992 Low	Mar	1997 Very low	Jul	2001 Very high
Dec	1992 High	Apr	1997 Very low	Aug	2001 High
Jan	1993 High	May	1997 Very low	Sep	2001 High
Feb	1993 High	Jun	1997 Very low	Oct	2001 High
Mar	1993 High	Jul	1997 Very low	Nov	2001 Average
Apr	1993 High	Aug	1997 Very low	Dec	2001 Average
May	1993 High	Sep	1997 Very low	Jan	2002 High
Jun	1993 High	Oct	1997 Very low	Feb	2002 High
Jul	1993 Average	Nov	1997 Very low	Mar	2002 Very high
Aug	1993 Average	Dec	1997 Very low		
Sep	1993 Low	Jan	1998 Very low		
Oct	1993 Average	Feb	1998 Low		
Nov	1993 Average	Mar	1998 Low		
Dec	1993 High	Apr	1998 Low		
Jan	1994 Very high	May	1998 Average		
Feb	1994 Very high	Jun	1998 Average		
			-		

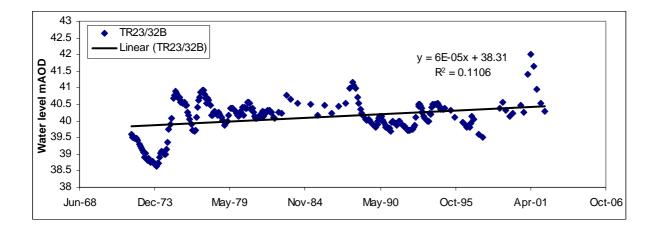

Appendix 9 Lower Greensand

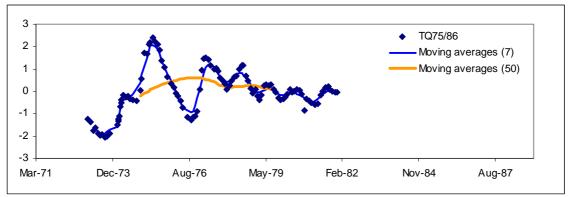

WATER LEVELS ABOVE ORDNANCE DATUM WITH LINEAR REGRESSION CURVE

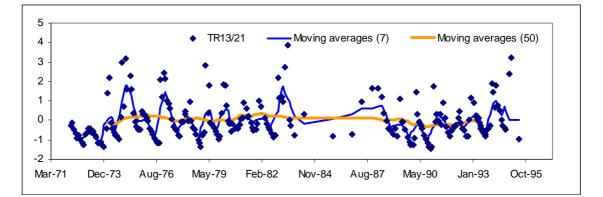


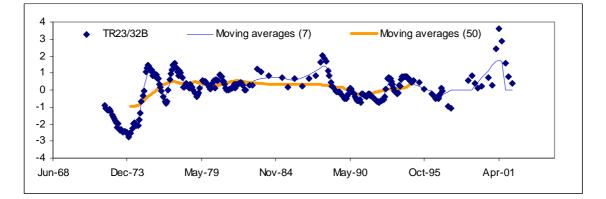


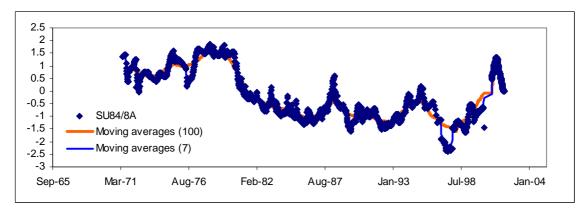


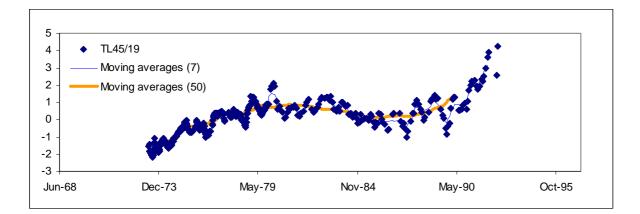


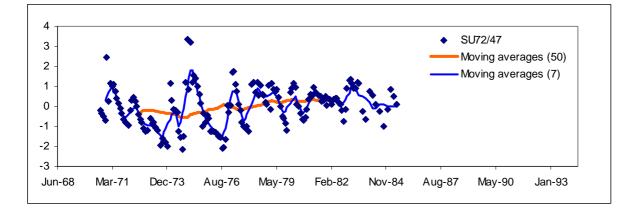


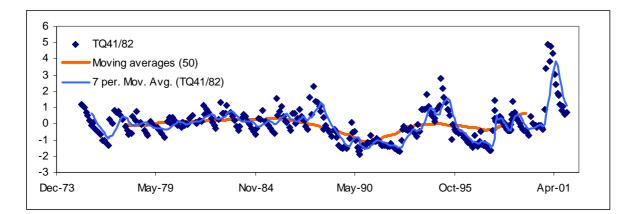


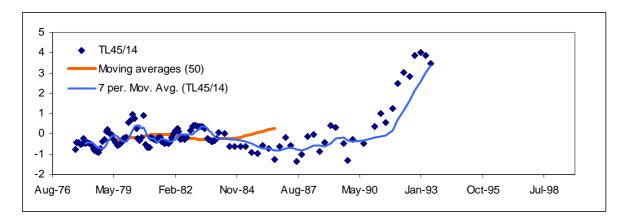


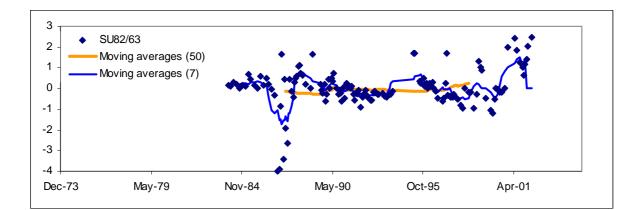


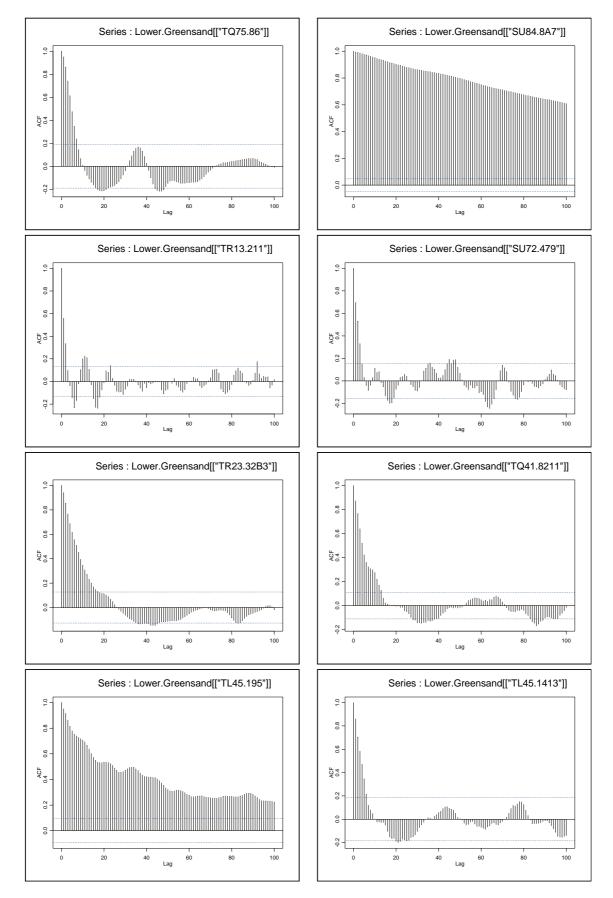

NORMALISED WATER LEVEL DATA WITH MOVING AVERAGES SMOOTHING LINES

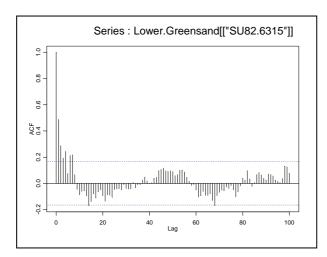


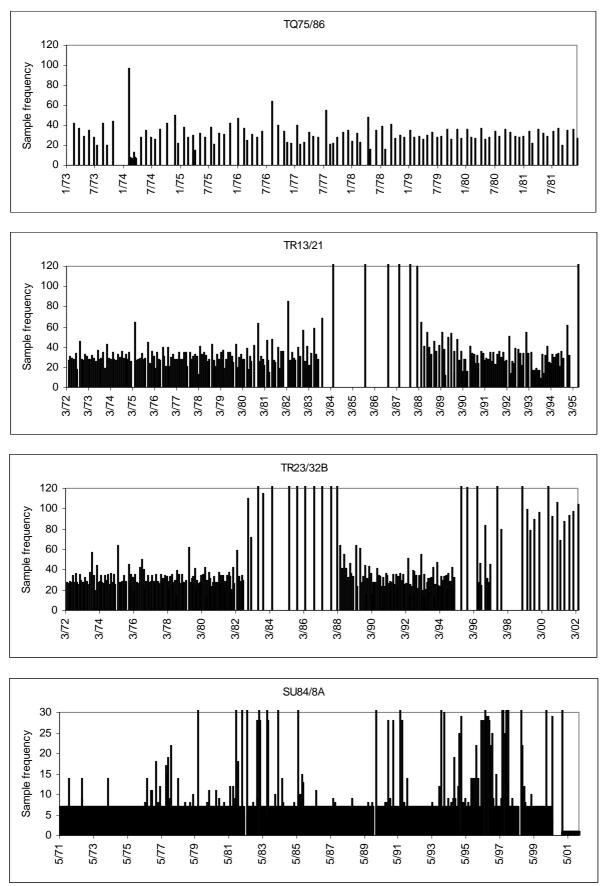


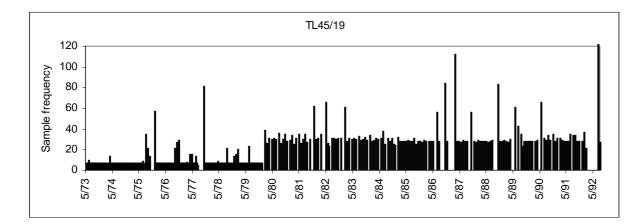


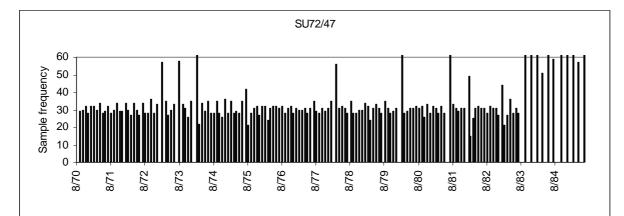


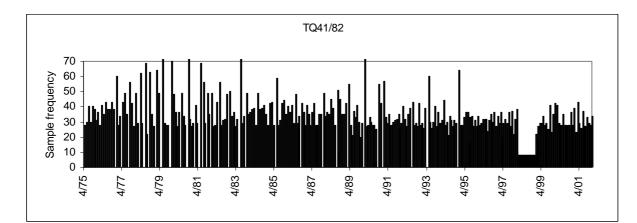


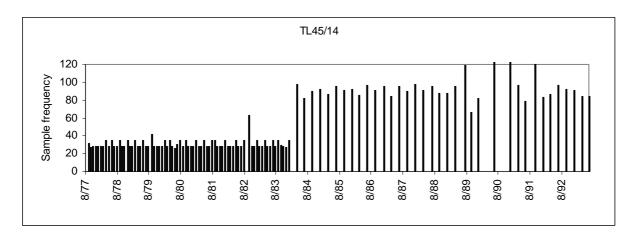


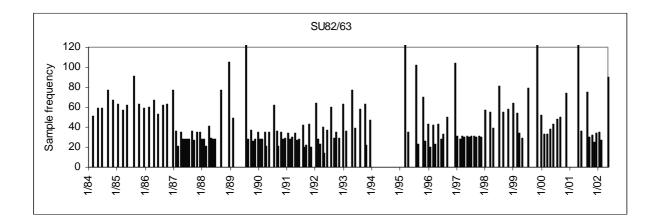



AUTOCORRELATION FUNTION PLOTS






SAMPLE FREQUENCY PLOTS

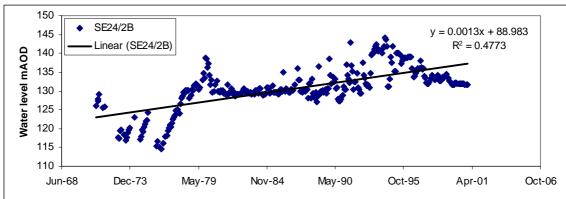


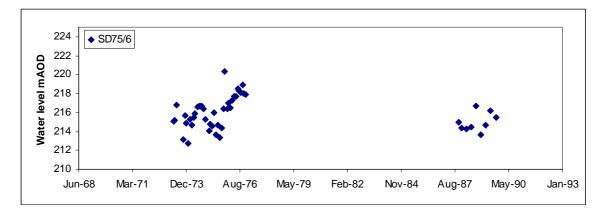
October 15, 1970 Low November 15, 1970 Average December 15, 1970 High January 15, 1971 Very high February 15, 1971 Very high March 15, 1971 Very high April 15, 1971 Very high May 15, 1971 Very high June 15, 1971 Very high July 15, 1971 High August 15, 1971 High September 15, 1971 Average October 15, 1971 Low November 15, 1971 Low December 15, 1971 Very low January 15, 1972 Very low February 15, 1972 Very low March 15, 1972 Average April 15, 1972 High May 15, 1972 Average June 15, 1972 Average July 15, 1972 Low August 15, 1972 Very low September 15, 1972 Very low October 15, 1972 Very low November 15, 1972 Very low December 15, 1972 Very low January 15, 1973 Very low February 15, 1973 Low March 15, 1973 Low April 15, 1973 Low May 15, 1973 Very low June 15, 1973 Very low July 15, 1973 Very low August 15, 1973 Very low September 15, 1973 Very low October 15, 1973 Very low November 15, 1973 Very low December 15, 1973 Very low January 15, 1974 Very low February 15, 1974 High March 15, 1974 Very high April 15, 1974 Very high May 15, 1974 Average June 15, 1974 Low July 15, 1974 Very low August 15, 1974 Very low September 15, 1974 Very low October 15, 1974 Very low November 15, 1974 Very high December 15, 1974 Very high January 15, 1975 Very high February 15, 1975 Very high

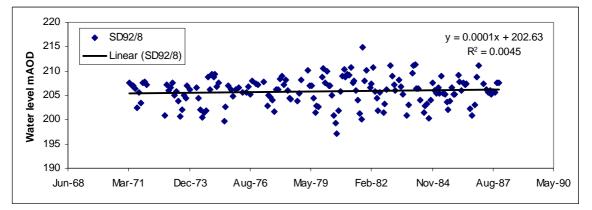
March 15, 1975 Very high April 15, 1975 Very high May 15, 1975 Very high June 15, 1975 Very high July 15, 1975 High August 15, 1975 High September 15, 1975 Low October 15, 1975 Average November 15, 1975 Low December 15, 1975 Average January 15, 1976 Average February 15, 1976 Low March 15, 1976 Low April 15, 1976 Very low May 15, 1976 Very low June 15. 1976 Verv low July 15, 1976 Very low August 15, 1976 Very low September 15, 1976 Very low October 15, 1976 Very low November 15, 1976 Very low December 15, 1976 Very high January 15, 1977 High February 15, 1977 Very high March 15, 1977 Very high April 15, 1977 Very high May 15, 1977 Very high June 15, 1977 High July 15, 1977 High August 15, 1977 Average September 15, 1977 Low October 15, 1977 Low November 15, 1977 Very low December 15, 1977 Very low January 15, 1978 Very low February 15, 1978 High March 15, 1978 High April 15, 1978 Very high May 15, 1978 High June 15, 1978 Very high July 15, 1978 High August 15, 1978 High September 15, 1978 Average October 15, 1978 Average November 15, 1978 Low December 15, 1978 Low January 15, 1979 Low February 15, 1979 Average March 15, 1979 Very high April 15, 1979 Very high May 15, 1979 Very high June 15, 1979 Very high July 15, 1979 Average

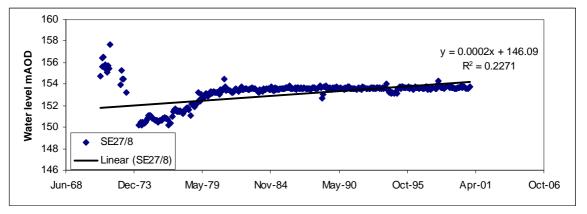
August 15, 1979 Average September 15, 1979 Low October 15, 1979 Low November 15, 1979 Very low December 15, 1979 Very low January 15, 1980 Low February 15, 1980 Very high March 15, 1980 Very high April 15, 1980 Very high May 15, 1980 High June 15, 1980 High July 15, 1980 Average August 15, 1980 Average September 15, 1980 Low October 15, 1980 Low November 15 1980 Low December 15, 1980 Average January 15, 1981 High February 15, 1981 High March 15, 1981 High April 15, 1981 Very high May 15, 1981 Very high June 15, 1981 High July 15, 1981 High August 15, 1981 High September 15, 1981 Average October 15, 1981 Average November 15, 1981 High December 15, 1981 High January 15, 1982 Very high February 15, 1982 High March 15, 1982 High April 15, 1982 High May 15, 1982 High June 15, 1982 High July 15, 1982 Average August 15, 1982 Average September 15, 1982 Low October 15, 1982 Low November 15, 1982 Average December 15, 1982 Very high January 15, 1983 Very high February 15, 1983 Very high March 15, 1983 Very high April 15, 1983 Very high May 15, 1983 Very high June 15, 1983 Very high July 15, 1983 Very high August 15, 1983 High September 15, 1983 Average October 15, 1983 Average November 15, 1983 Low December 15, 1983 Low

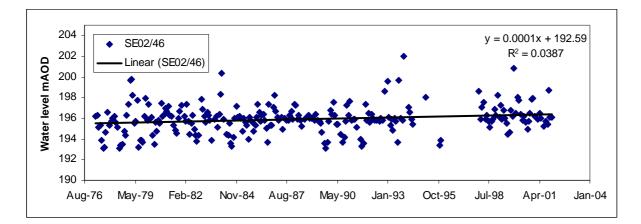
January 15, 1984 Average February 15, 1984 High March 15, 1984 High April 15, 1984 High May 15, 1984 High June 15, 1984 High July 15, 1984 High August 15, 1984 Average September 15, 1984 Average October 15, 1984 Low November 15, 1984 Very low December 15, 1984 Average January 15, 1985 Average February 15, 1985 High March 15, 1985 High April 15, 1985 Very high May 15, 1985 High June 15 1985 High July 15, 1985 Average August 15, 1985 Average September 15, 1985 Average October 15, 1985 Low November 15, 1985 Low December 15, 1985 Average January 15, 1986 High February 15, 1986 Very high March 15, 1986 High April 15, 1986 Very high May 15, 1986 Very high June 15, 1986 Very high July 15, 1986 High August 15, 1986 High September 15, 1986 Average October 15, 1986 Low November 15, 1986 Average December 15, 1986 Average January 15, 1987 Average February 15, 1987 Very low March 15, 1987 Very low April 15, 1987 High May 15, 1987 Low June 15, 1987 Average July 15, 1987 Low August 15, 1987 Very low September 15, 1987 Very low October 15, 1987 Low November 15, 1987 Very high December 15, 1987 High January 15, 1988 High February 15, 1988 Very high March 15, 1988 Very high April 15, 1988 Very high May 15, 1988 Very high

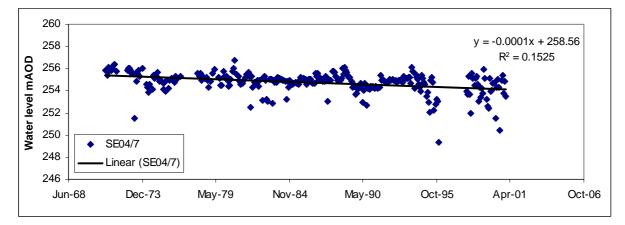

June 15, 1988 Very high July 15, 1988 Very high August 15, 1988 High September 15, 1988 Average October 15, 1988 Average November 15, 1988 Low December 15, 1988 Low January 15, 1989 Low February 15, 1989 Average March 15, 1989 High April 15, 1989 High May 15, 1989 Average June 15, 1989 Low July 15, 1989 Very low August 15, 1989 Low September 15, 1989 Very low October 15, 1989 Very low November 15, 1989 Very low December 15, 1989 Very low January 15, 1990 Very low February 15, 1990 High March 15, 1990 High April 15, 1990 Average May 15, 1990 Average June 15, 1990 Low July 15, 1990 Very low August 15, 1990 Very low September 15, 1990 Very low October 15, 1990 Very low November 15, 1990 Very low December 15, 1990 Very low January 15, 1991 Average February 15, 1991 Low March 15, 1991 Average April 15, 1991 Average May 15, 1991 Average June 15, 1991 Low July 15, 1991 Average August 15, 1991 Average September 15, 1991 Low October 15, 1991 Very low November 15, 1991 Very low December 15, 1991 Low January 15, 1992 Very low February 15, 1992 Very low March 15, 1992 Very low April 15, 1992 Low May 15, 1992 Low June 15, 1992 Low July 15, 1992 Low August 15, 1992 Very low September 15, 1992 Very low October 15, 1992 Very low

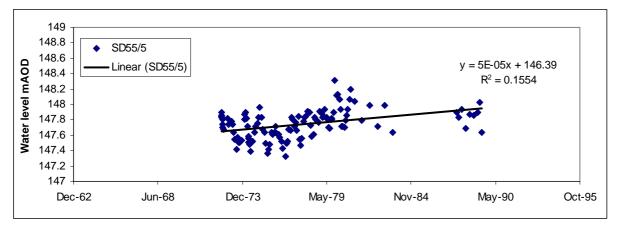

November 15, 1992 Low December 15, 1992 Average January 15, 1993 Average February 15, 1993 High March 15, 1993 Average April 15, 1993 Average May 15, 1993 Average June 15, 1993 Low July 15, 1993 Low August 15, 1993 Low September 15, 1993 Very low October 15, 1993 Low November 15, 1993 Low December 15, 1993 Average January 15, 1994 Very high February 15, 1994 Very high March 15, 1994 Very high April 15, 1994 Very high May 15, 1994 Very high June 15, 1994 Very high July 15, 1994 High August 15, 1994 High September 15, 1994 High October 15, 1994 High November 15, 1994 High December 15, 1994 Very high January 15, 1995 Very high February 15, 1995 Very high March 15, 1995 Very high April 15, 1995 Very high May 15, 1995 Very high June 15, 1995 Very high July 15, 1995 High August 15, 1995 High September 15, 1995 Average October 15, 1995 Average November 15, 1995 Average December 15, 1995 Average January 15, 1996 Average February 15, 1996 Average March 15, 1996 Average April 15, 1996 Average May 15, 1996 Average June 15, 1996 Low July 15, 1996 Low August 15, 1996 Low September 15, 1996 Very low October 15, 1996 Very low November 15, 1996 Very low December 15, 1996 Very low January 15, 1997 Very low February 15, 1997 Very low March 15, 1997 Very low

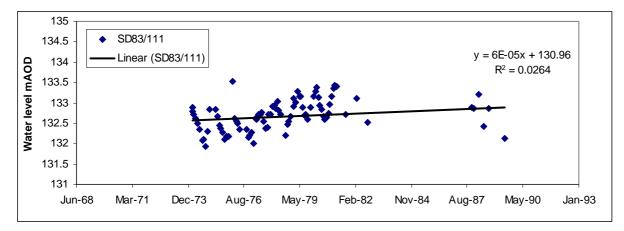

April 15, 1997 High May 15, 1997 Low June 15, 1997 Very low July 15, 1997 Very low August 15, 1997 Very low September 15, 1997 Very low October 15, 1997 Very low November 15, 1997 Very low December 15, 1997 Very low January 15, 1998 High February 15, 1998 Average March 15, 1998 High April 15, 1998 High May 15, 1998 High June 15, 1998 High July 15, 1998 Average August 15, 1998 Average September 15, 1998 Average October 15, 1998 Low November 15, 1998 Low December 15, 1998 Average January 15, 1999 High February 15, 1999 High March 15, 1999 Very high April 15, 1999 Very high May 15, 1999 Very high June 15, 1999 High July 15, 1999 Average August 15, 1999 Low September 14, 1999 Low October 15, 1999 Low November 15, 1999 Very low December 15, 1999 Very low January 15, 2000 Low February 15, 2000 Low March 15, 2000 Average April 15, 2000 Average May 15, 2000 Average June 15, 2000 Average July 15, 2000 Average August 15, 2000 Average September 15, 2000 Average October 15, 2000 High November 15, 2000 Very high December 15, 2000 Very high January 15, 2001 Very high February 15, 2001 Very high March 15, 2001 Very high April 15, 2001 Very high May 15, 2001 Very high June 15, 2001 Very high July 15, 2001 Very high August 15, 2001 Very high September 15, 2001 Very high October 15, 2001 Very high November 15, 2001 Very high December 15, 2001 Very high January 15, 2002 Very high February 15, 2002 Very high March 16, 2002 Very high April 15, 2002 Very high May 15, 2002 Very high

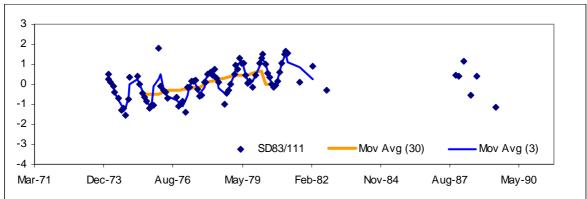

Appendix 10 Millstone Grit

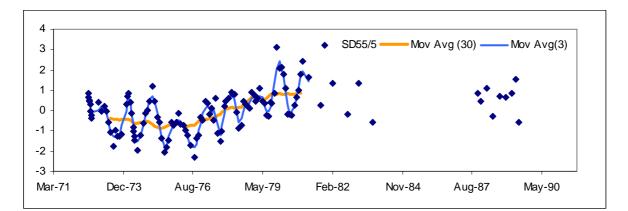

WATER LEVELS ABOVE ORDNANCE DATUM WITH LINEAR REGRESSION CURVE

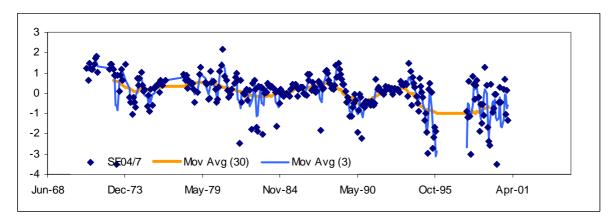


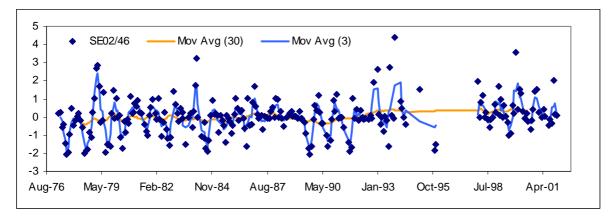


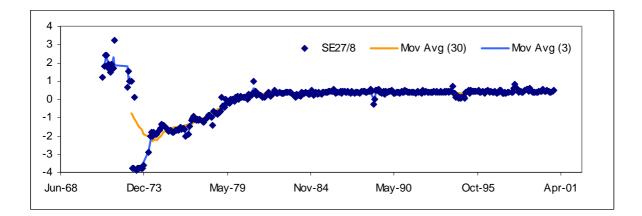


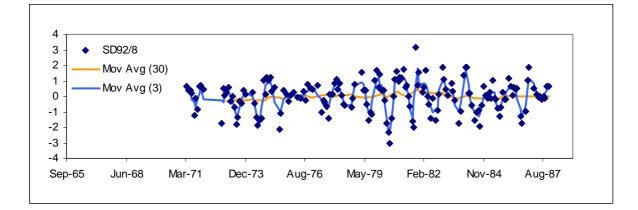


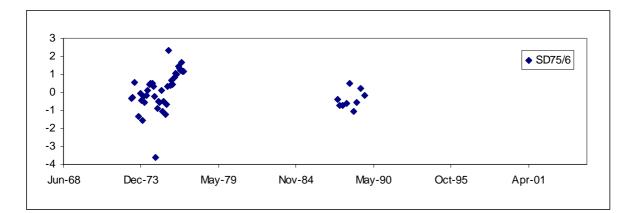


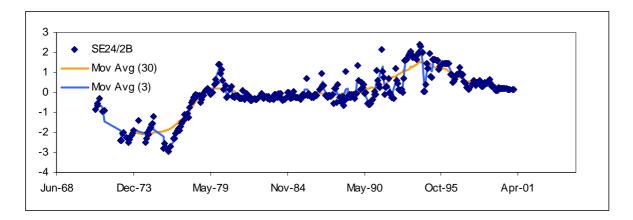


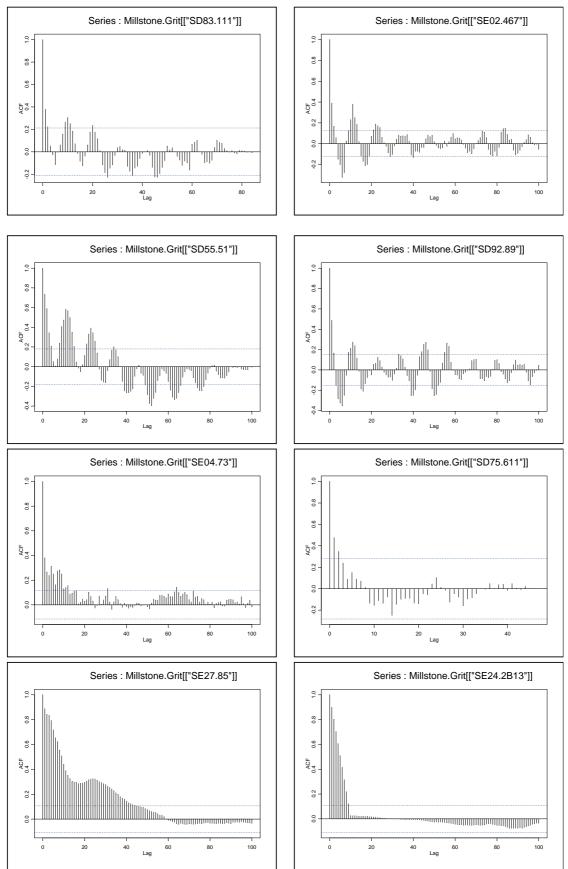


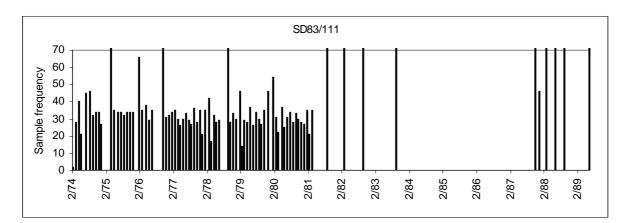

NORMALISED WATER LEVEL DATA WITH MOVING AVERAGES SMOOTHING LINES

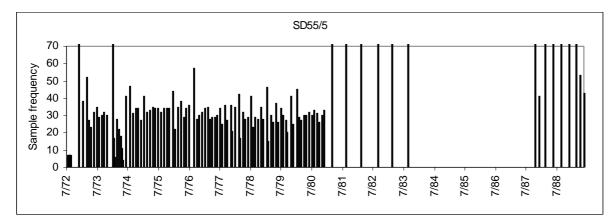


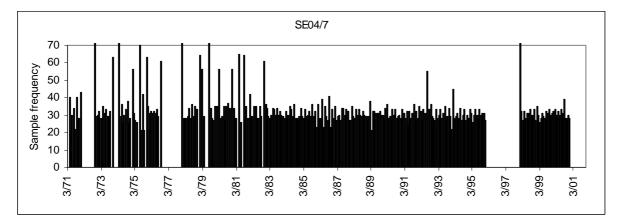


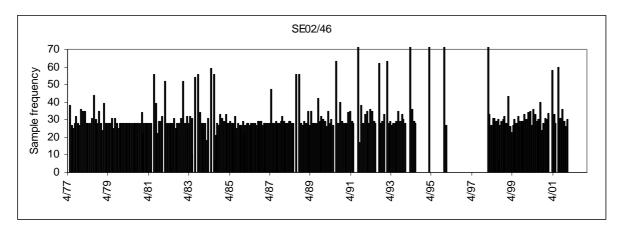




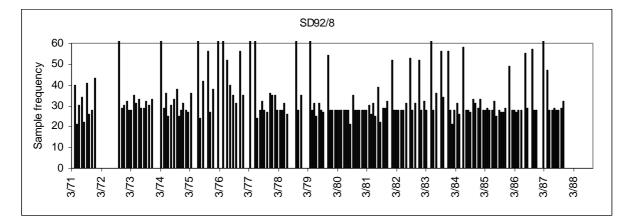


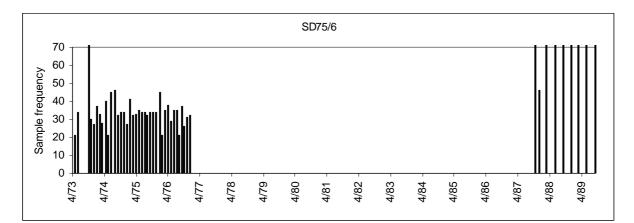


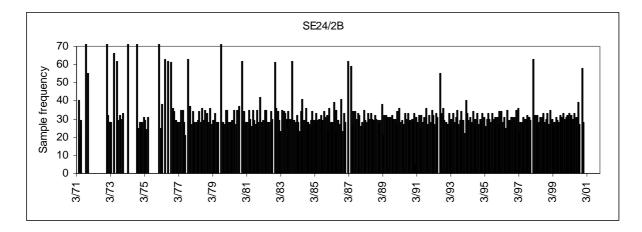

AUTOCORRELATION FUNTION PLOTS



SAMPLE FREQUENCY PLOTS







Mar	1974	Average	Aug	1978	Low	Jan	1983	Very high	Jun	1987	Average
Apr	1974	Low	Sep	1978	Low	Feb	1983	High	Jul	1987	Average
May	1974	Very low	Oct	1978	Low	Mar	1983	Low	Aug	1987	Average
Jun	1974	Very low	Nov	1978	Low	Apr	1983	Very low	Sep	1987	Very low
Jul	1974	Very low	Dec	1978	High	May	1983	High	Oct	1987	High
Aug	1974	Very low	Jan	1979	High	Jun	1983	Average	Nov	1987	High
Sep	1974	Very low	Feb	1979	Very high	Jul	1983	Low	Dec	1987	Average
Oct	1974	Average	Mar	1979	Very high	Aug	1983	Very low	Jan	1988	Very high
Nov	1974	Low	Apr	1979	Very high	Sep	1983	Very low	Feb	1988	Very high
Dec	1974	Low	May	1979	High	Oct	1983	Low	Mar	1988	High
Jan	1975	Very high	Jun	1979	High	Nov	1983	Low	Apr	1988	High
Feb	1975	Average	Jul	1979	High	Dec	1983	Very high	May	1988	Average
Mar	1975	Average	Aug	1979	Low	Jan	1984	Very high	Jun	1988	Low
Apr	1975	Average	Sep	1979	Low	Feb	1984	Very high	Jul	1988	Average
May	1975	Low	Oct	1979	Low	Mar	1984	Average	Aug	1988	Average
Jun	1975	Very low	Nov	1979	High	Apr	1984	High	Sep	1988	High
Jul	1975	Very low	Dec	1979	Very high	May	1984	Low	Oct	1988	Very high
Aug	1975	Very low	Jan	1980	Very high	Jun	1984	Very low	Nov	1988	High
Sep	1975	Low	Feb	1980	Very high	Jul	1984	Very low	Dec	1988	High
Oct	1975	Low	Mar	1980	Very high	Aug	1984	Very low	Jan	1989	High
Nov	1975	Average	Apr	1980	High	Sep	1984	Very low	Feb	1989	High
Dec	1975	Average	May	1980	Low	Oct	1984	Low	Mar	1989	High
Jan	1976	High	Jun	1980	Very low	Nov	1984	High	Apr	1989	High
Feb	1976	Average	Jul	1980	Low	Dec	1984	Average	May	1989	Average
Mar	1976	Average	Aug	1980	Low	Jan	1985	Average	Jun	1989	Low
Apr	1976	Average	Sep	1980	High	Feb	1985	Average			
May	1976	Average	Oct	1980	Very high	Mar	1985	Low			
Jun	1976	Low	Nov	1980	Very high	Apr	1985	High			
Jul	1976	Average	Dec	1980	Very high	May	1985	Low			
Aug	1976	Very high	Jan	1981	Very high	Jun	1985	Low			
Sep	1976	Low	Feb	1981	Very high	Jul	1985	Very low			
Oct	1976	Average	Mar	1981	Very high	Aug	1985	Low			
Nov	1976	Low	Apr	1981	High	Sep	1985	Low			
Dec	1976	Average	May	1981	High	Oct	1985	Low			
Jan	1977	Low	Jun	1981	Average	Nov	1985	Low			
Feb	1977	Low	Jul	1981	Low	Dec	1985	High			
Mar	1977	Average	Aug	1981	Low	Jan Tab	1986	Very high			
Apr	1977 1977	Average	Sep	1981 1981	Low	Feb Mar	1986 1986	High			
May Jun	1977	Average	Oct Nov	1981	Very high	Apr	1986	Average			
Jul	1977	Low Average	Dec	1981	High Very high	May	1986	High High			
Aug	1977	Very low	Jan	1981	Low	Jun	1986	Average			
Sep	1977	Very low	Feb	1982	High	Jul	1986	Very low			
Oct	1977	Low	Mar	1982	Very high	Aug	1986	Low			
Nov	1977	Average	Apr	1982	Average	Sep	1986	Low			
Dec	1977	High	May	1982	Low	Oct	1986	Low			
Jan	1978	High	Jun	1982	Low	Nov	1986	Very high			
Feb	1978	Very high	Jul	1982	Average	Dec	1986	Very high			
Mar	1978	High	Aug	1982	Low	Jan	1987	High			
Apr	1978	Very high	Sep	1982	Low	Feb	1987	High			
May	1978	Average	Oct	1982	Very low	Mar	1987	Average			
Jun	1978	Low	Nov	1982	Very low	Apr	1987	Average			
Jul	1978	Very low	Dec	1982	Very high	May	1987	Low			
		-				-					