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In this letter we examine the relationship between the North Atlantic Merid-

ional Overturning Circulation (MOC) and sea level (SL) along the east coast

of North America. In the eddy permitting ocean model OCCAM we find a

distinctive, topography-following pattern of SL variability in the western North

Atlantic that is closely linked with the changing strength of the MOC, with

a 2cm drop in SL along the US east coast corresponding to a 1Sv increase

in the MOC. We find a similar pattern of SL variability in the altimetry record

and show that this meridionally coherent SL mode dominates interannual

SL variability at tide gauges along the North American east coast between

40–50 ◦N. Hence we conclude that North American coastal sea-level may in-

deed be a useful indicator of MOC variability on interannual timescales, al-

lowing an observationally-based estimate of the likely range of interannual

MOC fluctuations to be determined.
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1. Introduction

Previous studies have raised the possibility of using SL observations to diagnose the

North Atlantic MOC. In response to a diminished MOC, both Levermann et al. [2005]

and Vellinga and Wood [2007] find that SL rises in the North Atlantic reducing the north-

south SL gradient associated with the primarily zonal North Atlantic Current (NAC).

Landerer et al. [2007] also finds that average SL rises in the North Atlantic in response to

an MOC slowdown, but as part of a more complex tri-pole pattern which is attributed to

a northward shift in the NAC. This conflicts with [Hakkinen, 2001] who finds SL decreases

along the path of the NAC due to decreased heat advection by a weakened MOC. These

results, while showing the potential of SL as an indicator of MOC variability, also point

to the difficulty of untangling the many ways a changing MOC may affect regional SL

variability.

According to geostrophy, a more direct relationship exists between the MOC, or, more

precisely, the zonal integral of the meridional transport (MT) at a given latitude, and the

pressure difference between the east and west boundaries. In fact, in an eddy permitting

ocean model, Bingham and Hughes [2008] (henceforth BH) find that north of the Gulf

Stream (at 42◦N) the eastern boundary pressure can be neglected such that the interannual

MT variability within a given depth interval is closely approximated by:

T ≈ − 1

ρ0f0

∫ z1

z2

pwdz, (1)

where pw is the bottom pressure (BP) anomaly on the western boundary, ρ0 is the mean

density of seawater, and f0 is the Coriolis parameter. (Although somewhat counter-
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intuitive, a depth-integral of BP is reasonable since the ocean boundaries have finite

gradients so BP is defined at every depth.)

Of course, BP is not as readily observed as SL. This leads us to consider in this letter

the relationship between BP and SL along the North Atlantic western boundary. We show

how in the eddy-permitting ocean model OCCAM SL on the shelf is closely related to

the western boundary BP signal and can therefore be used to determine interannual MT

variability. Observational evidence is presented showing how interannual fluctuations in

coastal SL north of the Gulf Stream tend to be meridionally coherent, consistent with the

model results. This leads us to conclude that North American coastal SL may indeed be

a useful indicator of MOC variability.

2. MOC and coastal sea level in OCCAM

[Bingham et al., 2007] have shown that in OCCAM interannual MOC variability north of

the Gulf Stream is dominated by single overturning cell with an upper layer above 1300m

balanced by a lower layer from 1300m to about 3000m. From 1987 this cell gradually

weakens before beginning a recovery in 1994 that persists over the remainder of the model

run. (For details of OCCAM see [Bingham et al., 2007] and references therein.)

Given (1), the leading EOF (Empirical Orthogonal Function) of interannual BP vari-

ability along the western boundary of the North Atlantic in OCCAM, Ep, is consistent

with the variability of the MOC just described. (Figure 1a and the blue curve in 1e).

Note how Ep changes sign along the 1300m isobath (the inshore contour in each of the

maps) from 35N to the northern limit of the analysis at 55N. The BP amplitude below

1300m is less than it is above because the upper layer transport is balanced by flow in a
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thicker lower layer. (To isolate interannual variability all fields referred to in this paper

were filtered by removing the mean seasonal cycle and applying a 13 month box car filter.)

The leading EOF of SL variability, Eh, (Figure 1b and the red curve in 1e) also varies

in phase with the MOC and accounts for over 80% of the SL variability on the shelf north

of 35◦N (Figure 1d). Like Ep, south of 45◦N, Eh changes sign along the continental slope,

though not as definitely. Unlike Ep, the amplitude of Eh over the deep ocean is similar to

that on the shelf. Yet, tellingly, it still contributes negligibly to the deep ocean variance.

This points to a suppression of baroclinic variability by the continental slope.

In OCCAM there is a clear linear relationship between the anomalous MT at 50◦N in the

upper layer (100-1300m) and coastal SL variability (Figure 2), with a positive (negative)

SL anomaly of 2cm corresponding to a 1Sv reduction (increase) in transport (the exact

slope is -0.59 Sv/cm). This simple linear regression model of anomalous MT in the upper

layer as a function of coastal SL captures 85% of the variance.

As mentioned previously, BH find that in OCCAM the MT variability in the upper

layer is balanced by opposing variability in a lower layer. Therefore, it must be the case

that the BP anomaly on the western boundary changes sign at 1300m, the depth of the

interface between the two layers. This is seen clearly in Ep (Figure 1a). Assuming that pw

changes linearly from some value Pw on the shelf edge at z1 = 100m to zero at z2 = 1300m,

from (1) we obtain

T ≈ −103Pw

2ρ0f0

= −10ghcm
w

2f0

≈ −hcm
w

2
Sv (2)

where we have expressed the pressure Pw in terms of an equivalent water thickness in

centimetres hcm
w using Pw = (ρ0ghcm

w )/100 and used the approximate values g = 10ms−2
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and f0 = 10−4s−1. As Figure 1 reveals, on the shelf, BP expressed in equivalent centimetres

of water thickness is approximately equal to the change coastal SL. Thus, (2) states that

for each sverdrup increase (decrease) in meridional transport, coastal SL falls (rises) by

2cm, in close agreement with the regression model.

3. Observed sea level variability

So far we have established a close link between interannual MOC and coastal SL vari-

ability in OCCAM. We now seek to provide evidence for this link in reality. For this

purpose we use altimetry SL anomalies produced by Ssalto/Duacs and distributed by

Aviso, with support from CNES. We also use monthly mean tide gauge (TG) records

from the Permanent Service for Mean Sea Level (PSMSL) to which we applied an inverse

barometer (IB) correction. Within the latitude range 40–55◦N, excluding those in the St

Lawrence river which is not resolved by OCCAM, we found 21 records (inverted triangles

in Figure 3a and specified in Figure 4b) covering the 1985 to 2003 period spanned by

the OCCAM run. As before, both sets of data were filtered to isolate the interannual

variability.

The spatial pattern of the leading EOF, Ea, of the detrended altimetry timeseries (Fig-

ures 3a and 3b), is in many respects similar to Eh (Figure 1b). SL on the shelf varies

coherently and is in (out of) phase with SL in the deep ocean north (south) of 45◦N. Also

in agreement with OCCAM, Ea accounts for the majority of the variability on the shelf

but little in the interior. However, on the shelf, Ea does not prevail as completely as does

Eh. This may reflect the reduced coastal performance of altimetry, or the absence of some

small scale processes from OCCAM, or both.
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The spatial function of the leading TG EOF, Et, provides further evidence for a merid-

ionally coherent mode of SL variability along the North American east coast (Figure 3c,

red). The amplitude of Et tends to decrease poleward, as does the fraction of the total

variance it accounts for. Yet, Et still accounts for more then 50% of the variance between

Atlantic City at 39◦N to Lower Escuminac at 47◦N (black and grey inverted triangles

in Figure 3a). Repeating the analysis using an equivalent set of data from OCCAM we

obtain a leading EOF, Eoc
t , whose spatial form resembles that of Et. However, whereas

Et only accounts for a small part of the variance at the four most northerly stations,

Eoc
t accounts for the majority of the variance at these stations. Again, this suggests that

OCCAM misses some smaller scale influences on SL at these locations.

The greatest difference between OCCAM and the observations of coastal SL lie in their

temporal evolution. Et and Eoc
t show a similar decline in coastal SL from a high in 1986/87

to a low in 1989/90 (see Figure 3d). Then, according to Et, coastal SL rises between 1990

and 1994 before falling again by several centimetres. Coastal SL in OCCAM also shows

something of a rise and fall over this period but it is much less pronounced. After 1994,

the evolution of coastal sea level in OCCAM differs markedly from reality. Most notably,

the abrupt rise in sea level during 1995/96 followed by a similarly steep fall during 1998

is captured by both Et and Ea, but does not occur in OCCAM. We return to a possible

reason for this discrepancy in Section 4.

From Figure 3c we see that the coherent SL mode is most clearly expressed at 10 TGs

from New York to Yarmouth (black inverted triangles in Figure 3a). Given the consistency

of these records (see Figure 4a), an estimate of past variability of the coherent mode of

D R A F T December 10, 2008, 2:50pm D R A F T



X - 8 BINGHAM ET AL.: MOC SEA LEVEL SIGNATURE

coastal SL is given by their composite (Figure 4b). We see that the 1995/96 SL fluctuation

is fairly typical of the variability of SL along the North American coast, which has a

range of 10cm peak to peak, and a standard deviation of 2.5cm. Note the generally poor

correspondence between changes in coastal SL and anomalous sea surface temperature

[Rayner et al., 2003] on the shelf averaged over the latitude range spanned by the TGs

(Figure 4, blue curve). This supports our view that interannual coastal SL variability is

generally not steric.

4. Discussion and conclusions

In OCCAM, interannual MOC variability is well determined by BP on the western

boundary. And since the western boundary BP is closely related to SL on the shelf, MOC

variations can be inferred from SL alone using a linear relationship of 2cm/Sv. MOC

related SL variations have a particular spatial pattern, constrained by topography, and

meridionally coherent. The similarity between the leading SL EOFs from the model and

from altimetry suggest similar underlying dynamics. If so, the abrupt rise of coastal SL

during 1994-96 reflects an sudden but temporary slowdown of the MOC. In support of

this, Hakkinen [2001] describe an abrupt slowdown of the MOC during this period in their

model. Yet, OCCAM fails to reproduce this abrupt change. This may be because the

model has not reached full equilibrium due to a short spin-up period of only four years,

resulting from the computational demands of running a high resolution model.

Without the full spatial information provided by altimetry, we can be less certain of

MOC inferences based on the TG data. However, for the altimetry period, the TG records

are dominated by the meridionally coherent mode of SL seen in the altimetry data. In
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addition, the coherent nature of the interannual SL fluctuations over many decades is

clear. If we assume the underlying spatial pattern given by altimetry then the interannual

fluctuations seen in the composite TG record primarily reflect MOC variability, then

using the 2cm/Sv relationship given by OCCAM we can estimate of the likely range of

interannual MOC variability to have a standard deviation of 1.25Sv, with changes of up

to 5Sv occurring over a few years.

However, caution is required in applying our simple relationship between MOC strength

and coastal SL at longer timescales since it is not clear if the assumption that BP vari-

ability on the eastern boundary is negligible will remain sound. On the one hand, results

from Greatbatch and Peterson [1996] (Figs. 3 and 4) and Landerer et al. [2007] (Figs. 3

and 6) suggests that western boundary pressure remains dominant. On the other hand,

it is possible that significant pressure changes across the basin may be caused by eustatic

changes in SL due to mass fluxes or by circulation changes. This is illustrated by Lever-

mann et al. [2005] where SL (and by inference BP) is seen to increase on both east and

west coasts due to MOC slowdown. Because the SL change is uniform across the basin it

is not directly associated with changes in meridional transport, but under our assumption

of zero change on the eastern boundary it would be interpreted as such. (This explains

why Levermann et al. [2005] find a 5cm/Sv relationship between MOC strength coastal

SL, much larger than our 2cm/Sv rate. Differencing their east and west coast SL values

gives a dependency closers to ours.) Ocean warming may also lead to global SL changes

without a corresponding BP change. Therefore, further work is need to establish to what

extent our relationship holds at longer timescales.
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Having said this, unless balanced by a factor causing a drop in coastal SL, we would

expect an 8Sv MOC reduction between 1950 and 2004, as claimed by Bryden et al. [2005],

to have some signature in SL. Under our interpretation it would imply a 16cm rise in

coastal SL, and even more according to Levermann et al. [2005]. Yet, our composite TG

record of SL has a small downward trend, amounting to a 1cm drop over the same period.

Interestingly, the implied slight increase in overturning of 0.5Sv is in line with a number

of other recent studies [e.g Wu et al., 2004].
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Figure 1. The leading EOFs of model interannual bottom pressure (BP) variability (a) and

(e, blue) and sea level (SL) variability (b) and (e, red) on the western boundary of the North

Atlantic. The spatial functions are scaled by the standard deviation of the temporal function

and the temporal function has been normalised by its standard deviation. (c) The percent of

interannual BP variance accounted for the leading EOF. (d) Repeating (c) for interannual sea-

surface height. Bathymetry is contoured at 1300m and 3000m.

Figure 2. (a) A scatter plot of interannual coastal SL variability against the upper layer

transport variability at 50N. (b) The upper layer meridional transport interannual variability at

50N (red), and reconstructed from a linear regression model relating sea level (SL) variability at

the coast with the upper layer transport (blue).

Figure 3. (a) The spatial function of the leading interannual sea level (SL) EOF from altimetry,

after detrending and low pass filtering. (b) The percent of interannual SL variance accounted

for the leading EOF. (c) The spatial function of the leading EOF of tide gauges along the east

coast of North America (solid red) and the percent of total variance accounted for at each tide

gauge by the leading mode (broken red). A repeat of this analysis using OCCAM SL (blue). (d)

The temporal functions of the tide gauge EOF (red), the leading OCCAM tide gauge equivalent

EOF (blue), and the leading altimetry EOF (green).

Figure 4. (a) Low-pass filtered timeseries at the 10 tide gauges which are most sensitive to

the meridionally coherent sea level mode. (b) A composite timeseries of the selected tide gauges

(black) and the trend in this composite over the period 1950–2005 (red). The mean sea surface

temperature on the shelf over the latitude range spanned by the selected tide gauges (blue).
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