
UNIFIED THEORY OF GLOBAL AND SQUIRT FLOWIN CRACKED POROUS MEDIAMorten Jakobsen1 and Mark Chapman21University of Bergen, Department of Earth Siene andCentre for Integrated Petroleum Researh2British Geologial Survey, Edinburgh Anistropy ProjetABSTRACTApproximations for the frequeny-dependent and omplex-valued e�etive sti�-ness tensors of raked porous media (that are ompletely saturated with a singleuid) are developed here on the basis of an inlusion-based model [the T-matrix ap-proah of Jakobsen et al. (2003a)℄ and an uni�ed treatment of the global and squirtmehanisms. Essentially, the present paper represents a orretion of an inonsisteny(related to the oupling that exists between the proesses of global and squirt ow,due to uid mass onservation) in the inlusion-based model wave-indued uid owdeveloped by Jakobsen et al. (2003b); whih ontains the frequently ited theoryof non-idential raks (haraterized by di�erent orientations and/or aspet ratios)developed by Hudson et al. (1996), and Tod (2001) as a speial ase. Our resultssuggest that global ow may be far more important than we have previously believed,and numerial experiments and attempts at analysing experimental data based on theabove theories may be partially wrong.If the uni�ed model is applied to the speial ase of a model involving a single setof avities (having the same orientation and aspet ratio), the results beome identialwith those obtained by using a speial theory of global ow (whih ignores squirt ow)presented in an appendix to this paper. This is in stark ontrast to the relationship1



that exists between the theories of idential and non-idential (interonneted) raksdeveloped by Hudson et al. (1996) and Tod (2001). Sine the new theory of global andsquirt ow only di�ers form the one of Jakobsen et al. (2003b) by a orretion termwhih goes to zero in the low-frequeny limit, an earlier demonstration of Gassmannonsisteny given by Jakobsen et al. (2003) and Jakobsen (2004) remains valid. In thelimit of extremely high frequenies, however, it appears that ommuniating avitiesgenerally behave neither as isolated nor as dry. Numerial experiments show thatthe high-frequeny limit lies somewhere between the isolated result [assoiated withsquirt ow by Tod (2001)℄ and the dry result (assoiated with the speial theory ofglobal ow, for the ase of a single avity set). In other words, there is a ompetetionbetween the proesses of global and squirt ow whih is diÆult to predit, unlessone employes a uni�ed theory like the one presented here.INTRODUCTIONWhen an aousti wave propagates in a raked porous medium, the wavelength isoften muh larger than the sale-size of the mirostruture, so that the wave annot`see' the individual pores and raks, but only an averaged or homogenized stru-ture. For the purpose of aousti or seismi modelling, therefore, the raked porousmedium an be replaed by a long-wavelength equivalent homogeneous medium,whih an be both anisotropi and visoelasti due to mirostrutural alignmentsand wave-indued uid ow, respetively. In models of real media that are bothanisotropi and viso-elasti, the stress tensor is given by a onvolution of the (time-dependent) e�etive sti�ness tensor with the strain tensor (see Carione, 2007). Ifwe take the Fourier transform of this onvolution integral, we obtain the usual stress-strain relation (Hookes law), but with a frequeny-dependent and omplex-valuede�etive sti�ness tensor (see Carione, 2007). In this paper, approximations for thefrequeny-dependent and omplex-valued e�etive sti�ness tensors of raked porous2



media (that are ompletely saturated with a single uid) are developed on the ba-sis of an inlusion-based model [the T-matrix approah of Jakobsen et al. (2003a)℄and a uni�ed treatment of the global and squirt mehanisms whih allows for mi-rostrutural alignments. Essentially, the present paper represents a orretion of anerror or inonsisteny (related to the oupling whih exist between the proesses ofglobal and squirt ow, due to uid mass onservation) in the inlusion-based modelwave-indued uid ow developed by Jakobsen et al. (2003b). The existene of anerror in the theory of Jakobsen et al. (2003b) is quite serious, beause it ontainsthe frequently ited theory of non-idential interonneted raks (haraterized bydi�erent orientations and/or shapes/aspet ratios) developed by Hudson et al. (1996)and Tod (2001) as a speial ase (see also Pointer et al., 2001). Before we start tobeome more and more tehnial, let us �rst disuss the phenomenon of wave-indueduid ow (at di�erent sales) in a more more `hand-waving manner.Global ow is aused by pressure gradients at the sale of the aousti wavelength(in the diretion of wave propagation), whereas squirt ow is aused by pressuregradients at the sale of the mirostruture (in diretions that may be di�erent fromthe diretion of wave propagation). As illustrated in Figure 1, squirt ow ourswithin a representative volume element (ontaining many pores and raks), andthe RVE appears as a point at the marosale (in aordane with the ontinuumhypothesis). If the RVE ontains a single set of avities (haraterized by the sameshape and orientation) then all the di�erent avities will have the same wave-induedhange in pore uid pressure and, onsequently, only global ow will our. As soonas loal pressure gradients are generated by the introdution small perturbations inthe mirostruture, squirt ow in the diretion of the loal pressure gradients (e.g.,from raks to pores and/or between raks of di�erent orientations) will our withinthe RVE, in addition to the global ow (in the diretion of wave-propagation) in andout of the RVE. The proesses of global and squirt ow are assoiated with di�erentharateristi times, but oupled to eah other via uid mass onservation, suggesting3



that one needs to orret for the e�ets of global ow (in and out of the RVE), beforeone tries to model the hange in uid mass within a partiular set of avities (poresor raks) inside RVE.Historially, there have been many attempts to develop speial theories of globalow (e.g., Biot, 1956, 1962; Hudson et al., 1996), speial theories of squirt ow (e.g.,Mavko, 1975; O'Connel and Budiansky, 1977; Dvorkin et al., 1995; Chapman, 2003)and uni�ed theories of global and squirt ow (Dvorkin and Nur, 1993; Hudson etal., 1996; Chapman et al., 2002; Jakobsen et al., 2003b; Jakobsen and Hudson, 2003;Jakobsen, 2004). Existing theories of global and/or squirt ow may be divided intotwo ategories: (1) phenomenologial theories where the model parameters are em-pirial and not diretly related to the details of the mirostruture (Biot, 1956, 1962;Dvorkin and Nur, 1993; Dvorkin et al., 1995) and (2) inlusion-based models typi-ally based on the result of Eshelby (1977) or Mura (1982) for the response of a singleellipsoidal inlusion within an in�nite homogeneous matrix due to a homogeneousapplied stress at in�nity (e.g., Mavko, 1975; O'Connell and Budianski, 1977; Hud-son et al., 1996; Jakobsen et al., 2003b; Jakobsen and Hudson, 2003; Chapman etal., 2002; Chapman, 2003). The phenomenologial approah pioneered by Biot maybe attrative when dealing with global ow only, but as soon as we inlude squirtow (whih represents an example of a oupled proess sensitive to the details of themirostruture), the inlusion-based approah beomes more attrative.All the di�erent theories listed above are based on ertain simplifying assumptionsthat tend to restrit their range of validity; and some of them ontains inonsisten-ies or errors. The theories of Biot (1956), Mavko (1975), O'Connel and Budiansky(1977), Dvorkin et al. (1995), Dvorkin and Nur (1993), Chapman et al. (2002) arefor example based on the assumption of (poro)elasti isotropy, whereas the theoriesof Biot (1962), Hudson et al. (1996), Chapman (2003), Jakobsen et al. (2003b),Jakobsen and Hudson (2003), Jakobsen (2004) allow for anisotropy (mirostruturalalignments). The so-alled BISQ model of Dvorkin et al. (1995) is not onsistent4



with the relations of Gassman (1951) between the dry and undrained elasti mod-uli. Among the inlusion-based models referred to above, the T-matrix approahof Jakobsen et al. (2003a,b) represents the most general model, beause it allowsnon-dilute onentrations of interonneted avities (pores, raks) having all sorts ofshapes, orientations and spatial distributions. In other words, the T-matrix approahof Jakobsen et al. (2003a,b) represents a generalization of the model for interon-neted raks developed by Hudson et al. (1996), beause the T-matrix approah(but not Hudson's rak model) allows for a �nite storage porosity and non-dilute(higher) rak densities. In addition, an expansion of the T-matrix approah to �rstorder in the inlusion onentrations gives the same result as the speial theory ofsquirt ow in models fratured reservoirs involving spherial pores, randomly orientedmiroraks and fully aligned mesoraks developed by Chapman (2003), if the globalow e�ets are ignored and the harateristi times for squirt ow at the di�erentsales are modi�ed as disussed by Aagersborg et al. (2007). [The theory of Jakobsenand Hudson (2003) is in priniple more general than the theory of Jakobsen et al.(2003b) beause it takes into aount sattering attenuation as well as attenuationdue to wave-indued uid ow. However, the theory of Jakobsen and Hudson (2003)have so far only been evaluated in the long wavelength limit, where it produes thesame results as the theory of Jakobsen et al. (2003b).℄Jakobsen et al. (2003b) [and Jakobsen and Hudson (2003)℄ followed Hudson etal. (1996) in using an ansatz for the mass ow out of eah avity set whih wasoriginally believed to be onsistent with uid mass onservation. However, that fatthat the theories for a single set and multiple sets of (non-idential) interonnetedraks developed by Hudson et al. (1996) are not onsistent with eah other (aspointed out by Tod (2001) and Chapman (2002)) suggest that this may not be thease. It is lear that at least one of these theories must be wrong, sine they giveompletely di�erent results when they both are applied to the speial ase of a singleset of interonneted (fully aligned) raks. In the ase of a single set of raks, all5



raks will (per de�nition) have the same shape and orientation, so that there anbe no squirt ow, due to a lak of loal pressure gradients. Nevertheless, the theoryfor multiple sets (but not the one for a single set) of raks predits that the veloitydispersion depends on the harateristi time for squirt ow (see page 253, Tod, 2001).Both theories (of single and multiple sets of raks referred to above) predits thatthe raks (in a model involving a single set of fully aligned raks only) will behave asisolated with respet to wave-indued uid ow at very low frequenies. However thetheory for a single set (multiple sets) of raks predits that the raks behave as dry(isolated) at high frequenies. Unlike Tod (2001), we do not think that it is strangethat the raks (within a model involving a single set of raks) behave as isolated atvery low frequenies. After all, the wave-indued pressure hanges in the uid insidethe raks will be the same for all raks if they have the same shape and orientation,suggesting that this kind of behaviour is onsistent with the (anisotropi Gassmann)relations of Brown and Korringa (1975). The `dry' behaviour at high frequeniesof the raks in the theory for a single set of interonneted raks is more diÆultto understand, but Hudson et al. (1996) and Tod (2001) have atually provideda plausible explination for this (negative veloity dispersion). Beause the raksare idential (haraterized by the same orientation and aspet ratio), the pressuregradient driving uid ow one rak to another varies on the sale of a wavelength,inversely proportional to the frequeny !; the di�usion length (de�ned by Hudson etal., 1996), on the other hand, varies as !�1=2. Thus, as the frequeny tends to in�nity,the di�usion beomes more and more e�etive, with the opposite e�et as ! ! 0.Tod (2001) found that the raks within a system of nearly aligned interonnetedraks behave in a manner onsistent with the Brown-Korringa relation at low fre-quenies and as isolated with respet to uid ow at high frequenies. This impliesthat the e�etive properties predited by the above theories will hange in a highlydisontinuous manner, if one goes from an idential to a nearly idential system ofinteronneted raks (via a small perturbation in the parameters of the raks). In6



what follows, we hope to larify all these issues adressed by Tod (2001), and alsoto present a more general model of raked porous media based on the T-matrixapproah (disussed above).The outline of this paper is as follows. In the next setion alled `E�etive sti�-nesses and uid pressure polarizations, we disuss how to estimate the e�etive sti�-ness tensor of a raked porous medium in terms of the so-alled uid pressure polar-ization tensors (whih determines the wave-indued uid pressure within eah set ofavities) for the di�erent sets of avities (pores and raks). In the setion alled `Fluidmass onservation and wave-indued e�ets, we present the evolution law for the totaluid mass onentration within the RVE, and disuss the di�erene between stressedand unstressed porosity (for the di�erent sets of avities). This setion ontains onlywell-known results, but the formulae are required to make the paper readable; andthe topi of uid mass onservation is very entral in this study. The setion alled`Modi�ed oupling between global and squirt ow ontains new formulae and repre-sents the main ontribution of this paper. First, we argue here that ansatz for themass ow out of a partiular avity set used by Hudson et al. (1996), Tod (2001)and Jakobsen et al. (2003b) is not onsistent with the evolution law for the totaluid mass onentration disussed earlier. Then, we show how this ansatz an bemodi�ed so that this inonsisteny disappears. In the setion alled `Modi�ed uidpressure polarization tensors, we essentially repeate the alulation of Jakobsen etal. (2003b), but this time using a more orret ansatz for the oupling between theproesses of global and squirt ow, whih is onsistent with the priniple of uidmass onservation. When the uid pressure polarization tensors are known, so arethe soalled t-matries and the e�etive (frequeny-dependent and omplex-valued)sti�ness tensors. In the setion alled `The speial ase of a single set of avities, weshow that the new uni�ed theory of global and squirt ow in raked porous mediadeveloped in this paper is onsistent with the speial theory of global ow in modelsinvolving a single set of avities only (developed in an appendix to this paper); in7



stark ontrast to the relationship that exists between the theories for idential andnon-idential raks developed by Hudson et al. (1996) and Tod (2001). In the setionalled `Numerial results and disussion, we illustrate many of the problems referredto above, and disuss the e�ets of mirostruture on the relative importane of globaland squirt ow in raked porous media.EFFECTIVE STIFFNESSES AND FLUID PRESSURE POLARIZATIONWe onsider a solid ontaining a population of avities having a distribution ofshapes and orientations. The population of avities is divided into families of in-lusions having the same shape/orientation, t-matrix t(n) (de�ned below), and (un-stressed) porosity �(n), labelled by n = 1; :::; N . The e�etive sti�ness tensor C� isgiven by (Jakobsen et al., 2003a; Jakobsen and Hudson, 2003)C� = C(0) +C1 : �I4 +C�11 : C2��1 ; (1)C1 = NXr=1�(r)t(r); (2)C2 = NXr=1 NXs=1�(r)t(r) : G(rs)d : t(s)�(s); (3)where the ` : -symbol denotes the double salar produt (see Auld, 1990). Here C(0)is the sti�ness tensor for a homogeneous referene medium whih (an be seletedrather arbitrarily but) is here taken to be the sti�ness tensor of the solid matrixmaterial; I4 is the (symmetri) identity for fourth-rank tensors; G(rs)d is given bythe strain Green's funtion (for a material with properties given by C(0)) integratedover a harateristi ellipsoid having the same aspet ratio as p(sjr)(x� x0) whih, inturn, gives the probability density for �nding an inlusion of type s at point x0 giventhat there is an inlusion of type r at point x. Ponte Castaneda and Willis (1995)have illustrated the fat that the aspet ratio(s) of the orrelation funtion(s) an be8



seleted independent of the aspet ratio(s) desribing the (ellipsoidal) shapes of theavities.The t-matrix for a dry avity of type n is given byt(n)d = �C(0) : �I4 +G(n) : C(0)��1 ; (4)where G(n) is a fourth-rank tensor (depending only on C(0) and the shape/orientationof the nth inlusion type) that an be alulated by using the formulae given in Ap-pendix A for the speial ase of fully aligned spheroids. The t-matrix for a singleavity of type n whih is fully saturated with a homogeneous uid is given by (Jakob-sen et al., 2003b) t(n) = t(n)d + t(n)d : S(0) : �I2 
  (n)� : C(0); (5)where S(0) = (C(0))�1 is the ompliane tensor of the homogeneous referene medium,I2 is the identity for seond-rank tensors, the symbol 
 denotes the dyadi tensorprodut (see Jakobsen et al., 2003b), and (n) is a seond-rank tensor whih relates theuid pressure p(n)f in the nth avity set to the applied stress �(0) by p(n)f =  (n) : �(0).After a modi�ation of the uid dynamial onsiderations of Jakobsen et al. (2003b),we shall evaluate the so-alled uid pressure polarization tensor  (n) for the aseof a ommuniating avity; that is, a single avity whih is fully saturated with ahomogeneous uid, but allowed to exhange uid mass with other avities, due toglobal and/or loal pressure gradients, assoiated with the passage of a long viso-elasti wave (see Figure 1).FLUID MASS CONSERVATION AND WAVE-INDUCED EFFECTSIn order to evaluate the (soalled) uid pressure polarization tensor  (n) in thease of a ommuniating avity, we shall follow Jakobsen et al. (2003b) in usinga ombination of uid dynamial and miromehanial onsiderations, but ensuring9



this time that the total uid mass onentration mf within a representative volumeelement of the raked porous medium is indeed onserved. If ~�(n) and �(n)f is the(stressed) porosity and density of the nth avity set, respetively, mf is given bymf = NXr=1m(r)f (6)where m(n)f = ~�(n)�(n)f (7)is the mass of the uid inside avities of type n within the RVE. Following Hudsonet al. (1996) and Jakobsen et al. (2003b), we obtain a di�erential equation for thetime evolution of the total uid mass onentration mf by ombining the ontinuityequation (for the onservation of uid mass) with Dary's law (for wave-indued uidow at the sale of the wavelength):�mf�t = r �  �f�f � � rpf! ; (8)where pf is the average uid pressure (within the RVE), �f is the average uid massdensity, �f is the visosity of the uid, and � is the (anisotropi) e�etive permeabilitytensor of the raked porous medioum (see Jakobsen, 2007). The pressure and densityof the uid inside the nth avity set are related by (Hudson et al., 1996; Jakobsen etal., 2003b) �0�(n)f = 1� p(n)f�f ; (9)where �0 is the density of the unstressed uid, and �f is the uid bulk modulus. Asimilar relation holds between the average uid pressure pf and density �f .If a quasi-stati (wave-indued) stress �eld is imposed on a representative volumeelement of a raked porous medium, the uid pressure of the nth avity set willhange due both to uid ow and a hange in porosity. Jakobsen et al. (2003a) gavethe following �rst-order expression for the (wave-indued) hange in porosity:10



~�(n) � �(n)�(n) = I2 : K(n)d : (�(0) + I2p(n)f )� I2 : S(0) : I2p(n)f ; (10)where K(n)d = (I4 +G(n) : C(0))�1 : S(0); (11)is a fourth-tank tensor whih give us the strain in dry avities of type n if multipliedby the applied stress from the right (see Figure 2). [Note that I2 : �(n) = Tr �(n) =(~�(n) � �(n))=�(n):℄MODIFIED COUPLING BETWEEN GLOBAL AND SQUIRT FLOWIn their study of the general ase with non-dilute onentrations of interonnetedellipsoidal avities having any orientation and aspet ratio(s), Jakobsen et al. (2003b)assumed that the mass ow out of the nth avity set was given by�m(n)f�t = ��0�(n)�f� (p(n)f � pf ); n = 1; :::; N; (12)where � is a relaxation parameter of loal pressure relaxation or squirt ow (Jakobsenet al., 2003b; Aagersborg et al., 2007). The ansatz (12) is essentially similar to theansatz used by Hudson et al. (1996) in their studies of the speial ase with diluteonentrations of raks having any orientation but a very small aspet ratio (nostorage porosity). Also, a similar ansatz was used by Tod (2001) in his (misleading)attempt to larify some of the issues (related to the fat that the models for fullyaligned and non-aligned raks developed by Hudson et al. (1996) are not onsistentwith eah other) disussed in this paper. Therefore, we shall refer to equation (12)as the Tod-ansatz in what follows.The oupling between the proesses of global and squirt ow implied by the Tod-ansatz (12) is not onsistent with the priniple of uid mass onservation. To see this,onsider the simple ase of a model struture involving a single set of avities. Sinethis speial ase orresponds with N = 1, the mean pressure pf is now equal to the11



pressure p(1)f in the uid inside the 1th (and only) set of avities; so that the mass owout of the avities is always zero (aording to the Tod-ansatz). Sine �(1)f �(1) is alsoequal to the total uid mass mf (de�ned in equation 6), the Tod-ansatz (12) impliesthat the hange in the total uid mass onentration is zero, whereas the evolutionlaw (8) predits that pressure gradients at the sale of the wavelength should leadto a non-zero hange in the total uid mass onentration. In other words, the Tod-ansatz (12) is not onsistent with the evolution law (8). The Tod-ansatz (12) preditsthat there is no global ow in models involving a single set of fully aligned raks(were we do not have any loal pressure gradients and, onsequently, no squirt oweither). This means that wave-indued uid ow is not possible at any sale in modelsinvolving a single avity set only (aording to the Tod-ansatz). Clearly, this kind ofbehaviour is in ontrast with ommon sense as well as the speial theories of globalow in models involving fully aligned raks developed by Hudson et al. (1996) andmodels involving fully aligned ellipsoidal avities developed in Appendix B.The Tod-ansatz (12) implies that�m̂(m)�t � �m̂(n)�t = � �0�f� (p(m)f � p(n)f ); (13)where the normalized mass densities m̂(r) are de�ned bym̂(r) = m(r)f =�(r); r = 1; :::; N ; (14)and N is still arbitrary. The above expression desribes the exhange of uid massbetween two avities within a representative volume element of the raked porousmedium, nearly like in the network model of Chapman (2002). In what follows, weshall therefore refer to equation (13) as the network-ansatz. It is important to notethat the the network-ansatz (13) does not imply that the Tod-ansatz (12) is true.In other words, the Tod-ansatz (12) ontains an error (related to global ow) whihdisappears when it is used to study the exhange of uid mass between two avitytypes within a representative volume element.12



In order to transform the network-ansatz (13) into an equivalent form whih in-volves the average uid pressure pf , we �rst write it down more expliitely as�m̂(1)�t � �m̂(1)�t = � �0�f� (p(1)f � p(1)f );:::�m̂(1)�t � �m̂(N)�t = � �0�f� (p(1)f � p(N)f ): (15)In the above array of N di�erent equations, we multiply the equation labelled byr = 1; :::; N with �(r), sum the N di�erent resulting equations and make use of thede�nition of the total uid mass mf in equation (6). This gives�m(1)f�t � �(1)� �mf�t = ��0�(0)0�f� (p(1)f � pf ); (16)where we have related the total porosity � to the average uid pressure pf by�pf � NXr=1�(r)p(r)f ; (17)suggesting that the (arti�ial) weight funtions disussed in Appendix A in the pa-per by Tod (2001) are no longer needed. [Tod (2001) derived a formula for pf byonsidering the mass ow out of a partiular set of raks (in a model with multiplesets of raks). In our opinion, it does not make sense that pf in the theory of Tod(2001) is given by a weighed avarage over all rak types exluding the one underonsideration, beause when N = 1 one then exludes the only set of raks involvedin the model.℄ Sine the labelling of di�erent avities is arbitrary, it must be generallytrue that �m(n)f�t � �(n)� �mf�t = ��0�(n)0�f� (p(n)f � pf); n = 1; :::; N: (18)Beause the uid mass ow out of the nth avity set is now orreted for the frationof the hange in the total uid mass onentration whih it is responsible for (viathe seond term on the left-hand side of the above equation), we think that thetransformed network-ansatz (18) makes more physial sense than the Tod-ansatz13



(12). To verify this, let us again onsider the speial ase of a single avity. SineN = 1 for this speial ase, we now get zero on the left-hand side as well as theright-hand side (aording to the network-ansatz given above), suggesting that thenetwork-ansatz (in ontrast with the Tod-ansatz) does not prohibit global ow to takeplae in models where we do not have any squirt ow (due to a lak of loal pressuregradients). In what follows, we shall explore the e�ets of the modi�ations we havedone on the Tod-ansatz on the polarization tensors and the orresponding t-matries,sti�nesses and anelasti wave-harateristis of models involving single and multiplesets of interonneted avities (at �nite onentration).MODIFIED FLUID PRESSURE POLARIZATION TENSORSFollowing Jakobsen et al. (2003b), we now introdue a seond-rank tensor  ,whih relates the applied stress �(0) to the average uid pressure pf by pf =  : �(0).By working to �rst order in the small quantities p(n)f =�f and (~�(n) � �(n))=�(n), andassuming that the propagating plane harmoni wave has angular frequeny ! andwave vetor k (see equation B.11), we get (n) = (1��) � i!��fI2 : K(n)d1 + i!(n)� ; (19)(n) = 1 + �fI2 : (K(n) � S(0)) : I2; (20)where � � �f���f �ijkikj; (21)is a new term related with the oupling we have introdued between the proesses ofglobal and squirt ow in equation (18).To �nd the  tensor for substitution into equation (19), we �rst derive an expres-sion for mf by ombining equations (9) and (10). The resulting expression for mf isinserted into a Fourier representation of the evolution law (8). It follows that14



 = �� NXr=1 �(r)I2 : K(r)d1 + i(r)� ; (22)where � = �f " NXr=1 �(r)(r)1 + i!(r)� (1��)� i�f�ijkikj�f! #�1 : (23)It follows from equations (19), (22) and (23) that (n) = � ~�Pr �(r)I2:K(r)d1+i!(r)� + i!��fI2 : K(n)d1 + i!(n)� ; (24)where ~� � �(1��) = �f " NXr=1 �(r)(r)1 + i!(r)� + i�f�ijkikj�f!(1��)#�1 : (25)If and only if � << 1 then the above expression for the avity uid pressure polariza-tion tensor degenerates to the one derived by Jakobsen et al. (2003b), in onnetionwith their generalization of the theory for interoneted non-aligned raks developedby Hudson et al. (1996) and Tod (2001). If the above expression for  (n) is insertedinto the expression (5) for the t-matrix of a ommuniating avity, we get the sameexpressions as in Jakobsen et al. (2003b), but with a modi�ed � term, denoted by~�. THE SPECIAL CASE OF A SINGLE SET OF CAVITIESIn the speial ase of a single set of avities, when N = 1, the avererage pressurepf is equal to the pressure p(1)f in the uid inside the 1st and only avity set, so that (n)jn=N=1 =  jN=1 �  s: (26)The above equation follows diretly from the de�nition of the average uid pressurepf in equation (17), but we have also veri�ed this by using equations (22), (23), (24)and (25). 15



From the de�nition of  in equation (22), we get s = ��s�(1)I2 : K(1)d1 + i!(1)� ; (27)where �s = �f " �(1)(1)1 + i!(1)� (1��) + i�f�ijkikj�f! # ; (28)By using the de�nition of � in equation (21), we an rewrite the above equations(27) and (28) exatly as s = �f  �(1)(1) � ikikj�ij�f�f! !�1 �(1)I2 : K(1)d : (29)The above equation is idential with equation (B-14) in appendix B, whih was wasobtained by using a proedure whih ignores squirt ow. In other words, the uni�edtheory of global and squirt ow developed in this paper (for models involving anarbitrary number of avity sets) is onsistent with the speial theory of global forderived in Appendix B (for models involving a single set of avities only). This is instark ontrast to the relationship that exists between the theories of idential non-idential raks developed by Hudson et al. (1996) and Tod (2001) (see also Pointeret al., 2001).. In the ase of a single set of avities (haraterized by the same shapeand orientation), all raks will have the same wave-indued hange in uid pressure,so that there are not any loal pressure gradients and, onsequently, no squirt oweither. Therefore, it is not surprising that the expression for pf in equation (29)does not ontain the harateristi time � for squirt ow. If the original versionof the T-matrix approah developed by Jakobsen et al. (2003b), whih representsa generalization of the theory for non-aligned interonneted raks developed byHudson et al. (1996), is applied to the speial ase when N = 1, the � -parameterwill not disappear from the resulting equation for pf . For many reasons, therefore,we think that the modi�ations we have done on the oupling that exists betweenthe proesses of global and squirt ow, due to uid mass onservation, makes goodphysial sense. 16



NUMERICAL RESULTS AND DISCUSSIONThe next step is to perform some numerial experiments in order to investigatethe e�ets of mirostruture on the relative importane of global and squirt ow inidealized models raked porous media. But �rst we need to disuss how to obtain(real-valued) phase veloities and attenuation spetra from the (frequeny-dependentand omplex-valued) e�etive sti�ness tensor C�. In general, the sti�ness tensor C�depends on the wave vetor k as well as the angular frequeny !. Following Hud-son et al. (1996), Tod (2001), Pointer et al. (2001) and Jakobsen et al. (2003b),however, we elimiate the dependeny of C� on the (e�etive) wave vetor k by us-ing the approximation k � !=V (0), where V (0) is the speed of the wave mode underonsideration in the solid matrix. We then alulate the frequeny-dependent andomplex-valued phase veloity V in the diretion l of wave propagation by insertingthe e�etive sti�ness tensor into the well-known Christo�el equation whih an besolved by using the method eigenvetors/eigenvalues (Jakobsen et al., 2003b; Car-ione, 2007). Real-valued phase veloities and attenuation (inverse quality) fatorsan then be obtained from Vp = �Re � 1V ���1 l̂: (30)and Q = Re[V 2℄Im[V 2℄ : (31)as disussed by Carione (2007).Figure 3 shows the veloity and attenuation spetra we have estimated for the spe-ial ase of a solid ontaining a single set of fully aligned low-aspet ratio spheroidalraks. The solid and non-solid urves represents the preditions of the new and oldversions of the T-matrix approah, respetively. The new theory predits that theveloity dispersion is always non-positive, just like in the model of idential inter-onneted raks developed by Hudson et al. (1996). The veloity and attenuation17



spetra of the old (but not the new) theory depends on the harateristi time forsquirt ow. Sine loal pressure gradients does not exist in this model, this depen-deny on the � -parameter (in the old version of the T-matrix approah) does notmake good physial sense. It is interesting to note that the old as well as the newtheory predits a negative veloity dispersion. The main di�erene between the oldand new theories lies in the behaviour in the limit of very high frequenies; the oldtheory predits that the raks in this model will behave as isolated with respet touid ow at high frequenies, whereas the new theory predits that they will behaveas ompletely drained (or dry) when the frequeny approahes in�nity. As disussedin the introdution to this paper, the `dry behaviour of the new theory at very highfrequenies is onsistent with the theory for fully aligned interonneted raks de-veloped by Hudson et al. (1996), and makes good physial sense. At the same time,we must admit that a negative veloity dispersion is not ommonly observed. Aswe shall see below, the reason for this ould be that loal pressure gradients and,therefore, squirt ow e�ets, are always present to some degree in real roks (see Kli-mentos and MCann, 1988), sine they always ontain more than one set of avities.Another possibility is that the global ow part of the present theory is inomplete,or that, the preditions will hange if we inlude the non-loal e�ets assoiated withthe fat that the e�etive sti�ness tensor is a funtion of the e�etive wave vetor kin addition to the angular frequeny !. An investigation of this topi, in onjuntionwith a test of onsisteny with the Kramers-Kronig relations and non-negative workriterion from the theory of viso-elasti waves (see Carione, 2007) will be reportedelsewhere in following paper.Figure 4 represents the results of an interesting `gedanken' experiment where aportion of the raks in the above model (representing half of the total rak density)are replaed by a set of av ities haraterized by the same orientation by a di�erentaspet ratio. As expeted, we see that the introdution of loal pressure gradients(by perturbation in the aspet ratios) leads to squirt ow in addition to global ow.18



One an see that small perturbations in the aspet ratios leads to small hanges inthe veloity and attenuation spetra. As expeted, the e�et of hanging the aspetratio (for half of the fully aligned avities) from 1/100 to 1/1 is to go from a globalow dominated to a squirt ow dominated system. It is interesting to see that theattenuation spetra for the model onsisting of fully aligned raks and spherialpores has two attenuation peaks, orresponding with squirt ow (at relatively lowfrequenies) and global ow (at relatively high frequenies). Similar plots have beenmade for other values of the permeability and squirt ow onstants. We have seen thatthe e�ets of inreasing the permeability is to move the attenuation peak assoiatedwith global ow to the left, whereas the e�et of derease the squirt ow onstant �and/or the  onstant(s) is to move the attenuation peak assoiated with squirt owto the left. In other words, global and squirt ow may dominate within a partiularfrequeny range, depending on a range of onstants.Figure 5 illustrates more or less the same things as �gure 4, but now we keepthe aspet ratio of the raks (originally introdued in Figure 3) onstant and varythe orientations of the raks. The main points is that a small perturbation in theorientation of the raks leads to squirt (in addition to global) ow e�ets, but thesee�ets will be small, unless the perturbations are large. In other words, there will bea ontinuous hange in behaviour of a raked solid, from the ompletely global owdominated to the more squirt ow dominated, as the rak system hanges from beingfully aligned to randomly oriented (the standard deviation of the rak orientationdistribution funtion hanges from zero to in�nity). The results in Figure 5 are instark ontrast to the relationship beteween the fully aligned and partially alignedrak models disussed by Hudson et al. (1996) and Tod (2001), but make muhmore physial sense.
19



CONCLUDING REMARKSWe have developed a uni�ed theory of global and squirt ow in raked porousmedia whih is onsistent with the priniple of uid mass onservation. Sine thepresent theory of wave-indued uid ow di�ers from the one developed by Jakobsenet al. (2003b) only by a term whih goes to zero in the limit of zero frequeny, anearlier demonstration of Brown-Korringa (or Gassmann) onsisteny remains valid.Our analysis and numerial results suggest that global ow is far more important thanwe have previously believed, and numerial experiments and attempts at analysingexperimental data based on the work of Hudson et al. (1996), Tod (2001) or Jakobsenet al. (2003b) may be partially wrong. By partially, we mean that the orretion termalso beomes negligible when the permeability is very small, as in the ase of manyarbonate roks (e.g., Aagersborg et al., 2008), but in stark ontrast to the (high-permeability) study of Tod (2002).If the uni�ed model is applied to the speial ase of a model involving a singleset of avities (haraterized by the shape orientation and shape), the results beomeidential with those obtained by using a speial theory of global ow (developed inAppendix B by using a method whih ignores squirt ow). This is in stark ontrastwith the relationship that exists between the theories of idential and non-identialraks developed by Hudson et al. (1996) and Tod (2001). However, we are still notsure that this paper represents the last word in the disussion about the relative im-portane of global and squirt ow (whih depends on the mirostruture). It ould bethat the method we used to develop the speial theory of global ow in models involv-ing a single set of avities is inomplete or based on approximations that beomesmore inaurate at higher frequenies (smaller wavelengths, larger global pressuregradients). After all, the wave vetor k entered the formula for the e�etive sti�nesstensor via a linearization of the evolution law for the total uid mass onentrationmf , and the global pressure gradient was taken to be �ik (after a four-dimensional20



Fourier transformation). It is also possible that di�erent numerial results would havebeen obtained if we had not followed Hudson et al. (1996), Tod (2001) and Pointeret al. (2001) in ignoring non-loal e�ets assoiated with the fat that the e�etivesti�ness tensor C� depends on the e�etive wave number k (in addition to the angu-lar frequeny !), rather than the referene (unperturbed) wave vetor k(0) assoiatedwith the solid matrix. A related paper whih fous on these issues (related with theslow P-wave of Biot, 1962) is urrently under preperation. In any ase, we think thatthis paper represents a step forward, sine the uni�ed theory of global and squirt owin models involving an arbitrary number of avity sets is onsistent with the speialtheory of global ow in models involving a single set of avities only.ACKNOWLEDGEMENTSThe �rst-author would like to thank the British Geologial Survey for providinga stimulating working environment during his sabbatial period when this work wasdone.
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APPENDIX A{EVALUATION OF THE G-TENSORThe tensor G(r) is given by (Jakobsen and Johansen, 2005)G(r) = �S(r) : S(0); (A-1)where S(r) is the so-alled Eshelby tensor of the ellipsoid. Eshelby's tensor is gener-ally given in terms of ellipti integrals of the �rst and seond kinds (see Jakobsen etal., 2003a; Jakobsen and Johansen, 2005). In the ase an isotropi matrix materialontaining spheroidal inlusions with semiaxes a(r)1 = a(r)2 = ar and a(r)3 = br andwhose symmetry axis is aligned in the x3-diretion, the ellipti integrals an be eval-uated analytially (Jakobsen et al., 2003a). If the matrix material is isotropi thenthe omponents of S(r)ijkl are given by (Jakobsen and Johanhsen, 2005)S(r)1111 = S(r)2222 = 38(1� �) �2r�2r � 1 + 14(1� �) "1� 2� � 94(�2r � 1)# q;S(r)3333 = 12(1� �) (1� 2� + 3�2r � 1�2r � 1 � "1� 2� + 3�2r�2r � 1# q) ;S(r)1122 = S(r)2211 = 14(1� �) ( �2r2(�2 � 1) � "1� 2� + 34(�2r � 1)# q) ; (A-2)S(r)1133 = S(r)2233 = 12(1� �) ( ��2r�2r � 1 + 12 " 3�2r�2r � 1 � (1� 2�)# q) ;S(r)3311 = S3322 = 12(1� �) (2� � 1� 1�2r � 1 + "1� 2� + 32(�2r � 1)# q) ;S(r)1212 = 14(1� �) ( �2r2(�2r � 1) + "1� 2� � 34(�2r � 1)# q) ;S(r)1313 = S(r)2323 = 14(1� �) (1� 2� � �2r + 1�2r � 1 � 12 "1� 2� � 3(�2r + 1)�2r � 1 # q) ;where � is the Poisson ratio of the matrix, �r = br=ar is the aspet ratio of the rthspheroid, and q is given byq = �r(1� �2r)3=2 [os�1 �r � �r(1� �2r)1=2℄; (A-3)when �r � 1.From these results, we see that for spheres (�r = 1, q = 2=3),25



S(r)ijkl = 5� � 115(1� �)ÆijÆkl + 4� 5�15(1� �)(ÆikÆjl + ÆilÆjk): (A-4)If r refers to a typial at ompliant Hudson-rak (haraterized by �r ! 0, q ! 0)then the only nonvanishing omponents areS(r)3333 = 1; S(r)3311 = S(r)3322 = �1� � ; S(r)1313 = S(r)2323 = 12 : (A-5)
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APPENDIX B{SPECIAL THEORY OF GLOBAL FLOWThis appendix essentially represents a generalization the speial theory of globalow developed by Hudson et al. (1996) for the simple ase of a solid ontaining a diluteonentration of spheroidal raks that are interonneted by haraterized by thesame (low) aspet ratio and orientation. By generalization, we mean that our speialtheory of global ow (represented by a ombination of the T-matrix approximationsdisussed in setion 2 with the expression for the wave-indued hange in uid pressurederived in this setion) is valid for non-dilute onentrations of ellipsoidal avitiesharaterized by arbitrary aspet ratios and orientations.If a stati stress �eld �(0) is imposed on a representative volume element (ontain-ing a large number of interonneted avities haraterized by the same shape andorientation), the pressure in the uid hanges, due to both a hange in porosity andto uid ow. In the absene of the uid, the porosity hanges aording to~�� �� = I2 : Kd : �(0); (B-1)where Kd = (I4 +G : S(0))�1 : S(0): (B-2)If uid is present, we may write~�� �� = I2 : Kd : (�(0) + I2pf )� I2 : S(0) : I2pf ; (B-3)where pf is the indued uid pressure (see Figure 2). The above equation representsan appliation of the linear superposition priniple used in the textbook of Gueguenand Paliauskas (1994), and an be rewritten exatly as~� = �+ �I2 : Kd : �(0) + � � 1�f pf : (B-4)where 27



 = 1 + �fI2 : (Kd � S(0)) : I2: (B-5)Under the assumption that the wavelengths are long ompared with the sale-sizeof the heterogeneities within the representative volume element, we may apply thestati result to dynami situations, orresponding with the passage of an aousti orseismi wave. However, the total uid mass onentration will now hange due toglobal ow, and so the the uid pressure pf will depend on time or frequeny (afterFourier transformation). In what follows, we shall use a ombination of the aboveformulae and the evolution law for mf given in equation (8) to �nd an expression forthe wave-indued uid pressure in the frequeny domain.The total uid mass onentration mf is given bymf = �f ~�: (B-6)From the onstitutive relation for the uid;�0�f = 1� pf�f ; (B-7)and equation (B-4), we getmf = �0  1 + pf�f ! �+ �I2 : Kd : �(0) + � � 1�f pf! ; (B-8)or mf = �0� 1 + I2 : Kd : �(0) + pf�f ! ; (B-9)to �rst order in pf=�f .We now assume that we are dealing with a plane harmoni plane wave, so thatthe wave-indued hange in uid pressure pressure pf is given bypf = p0 exp i(!t� k � x); (B-10)where p0 is the amplitude, ! is the angular frequeny and k is the wave (number)vetor. It follows from equations (B-9) and (B-10) that28



�mf�t = i!�0� I2 : Kd : �(0) + pf�f ! : (B-11)Also, the evolution law (8) implies that�mf�t = i2�0�f �ijkikjpf ; (B-12)to �rst order in pf=�f . It follows from the above equations thatpf =  s : �(0); (B-13)where  s = �f  � � ikikj�ij�f�f! !�1 �I2 : Kd: (B-14)If one approximate the e�etive wave number k by its unperturbed value (k(0) = !=V ,where V is the wave-speed in the unraked solid matrix), it an be shown thatpf ! 0 when ! ! 1. Also, one an show (both analytially and numerially)that the low-frequeny limit orresponds to avities that are isolated with respet towave-indued (global) uid-ow, just like in the model of fully aligned interonnetedraks developed by Hudson et al. (1996).
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FIGURESFIG. 1. The phenomenon of wave-indued uid ow illustrated for a time-harmoniplane wave propagating in a raked porous medium.FIG. 2. Stress deomposition by linear superposition of small deformations.FIG. 3. The ase of fully aligned raks revisited: Comparison of new (solid urve)and old (non-solid urves) T-matrix estimates of the veloity and attenuation spetraof a plane wave propagating normal to the raks in a model with a single set of iden-tial (spheroidal) raks, haraterized by an aspet ratio equal to 0.005. The dashedand dotted urves orrespond with � = 10�7 s and � = 10�5 s, respetively. The solidmatrix was haraterized by elasti moduli � = 37 MPa and � = 44 MPa and density� = 2500 kg/m3, respetively. The red and blu urves orrespond with raks thatare fully drained (dry) and ompletely isolated with respet to wave-indued uidow, respetively.FIG. 4. The e�ets of avity aspet ratio illustrated: Comparison of new T-matrixestimates of the veloity and attenuation spetra of a plane wave propagating normalto the avities in model with two sets of avities haraterized by the same orienta-tion but aspet ratios that may or may not be equal. The solid, dashed and dottedurves orrespond with (�(1) = �(2) = 0:005), (�(1) = 0:005 and �(2) = 0:01) and(�(1) = 0:005 and �(2) = 1), respetively. The properties of the solid matrix are thesame as in Figure 3.FIG. 5. The e�ets of rak orientation illustrated: Comparison of new T-matrixestimates of the veloity and attenuation spetra of a plane wave propagating alongthe symmetry axis of a transversely isotropi medium with a vertial symmetry axis(along the x3-axis) omposed of raks that are haraterized by the same aspet ratio30



(� = 0:005) but neessarily the same orientation. Following Jakobsen et al. (2003b),we have here employed a Gaussian orientation distribution funtion, haraterized bythe standard deviation �. The solid blue, solid blak, dashed blak, dashed-dottedblak and dotted blak urve orrespond with fully aligned raks (� = 0), nearlyaligned raks (� = �=16), partially aligned raks (� = �=8), weakly aligned raks(� = �=4) and randomly oriented raks (� =1), respetively. The properties of thesolid matrix are the same as in Figure 3.
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FIG. 1. The phenomenon of wave-indued uid ow illustrated for a time-harmoniplane wave propagating in a raked porous medium. Blue arrows in the diretion of wavepropagation or in other diretions denote global and squirt ow, respetively. The squirt owwill disappear if all avities (pores and raks within the Representative Volume Element,whih appears as a point at the marosopi sale) are idential; that is, haraterized bythe same shape and orientation. Also, the pressure inside eah avity (within eah setof avities) need to be equal, to ensure statistial homogeneity (required to use e�etivemedium theory.
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FIG. 2. Stress deomposition by linear superposition of small deformations.
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FIG. 3. The ase of fully aligned raks revisited: Comparison of new (solid urve)and old (non-solid urves) T-matrix estimates of the veloity and attenuation spetra ofa plane wave propagating normal to the raks in a model with a single set of idential(spheroidal) raks, haraterized by an aspet ratio equal to 0.005. The dashed and dottedurves orrespond with � = 10�7 s and � = 10�5 s, respetively. The solid matrix washaraterized by elasti moduli � = 37 MPa and � = 44 MPa and density � = 2500 kg/m3,respetively. The red and blu urves orrespond with raks that are fully drained (dry)and ompletely isolated with respet to wave-indued uid ow, respetively.

34



10
0

10
2

10
4

10
6

10
8

4000

5000

6000

V
p 

(m
/s

)

10
2

10
4

10
6

10
8

0.85

0.9

0.95

1

1.05

V
p/

V
p i

10
0

10
2

10
4

10
6

10
8

0

50

100

Frequency (Hz)

10
00

/Q
p

FIG. 4. The e�ets of avity aspet ratio illustrated: Comparison of new T-matrixestimates of the veloity and attenuation spetra of a plane wave propagating normal tothe avities in model with two sets of avities haraterized by the same orientation butaspet ratios that may or may not be equal. The solid, dashed and dotted urves orrespondwith (�(1) = �(2) = 0:005), (�(1) = 0:005 and �(2) = 0:01) and (�(1) = 0:005 and �(2) = 1),respetively. The properties of the solid matrix are the same as in Figure 3.
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FIG. 5. The e�ets of rak orientation illustrated: Comparison of new T-matrix es-timates of the veloity and attenuation spetra of a plane wave propagating along thesymmetry axis of a transversely isotropi medium with a vertial symmetry axis (along thex3-axis) omposed of raks that are haraterized by the same aspet ratio (� = 0:005)but neessarily the same orientation. Following Jakobsen et al. (2003b), we have here em-ployed a Gaussian orientation distribution funtion, haraterized by the standard deviation�. The solid blue, solid blak, dashed blak, dashed-dotted blak and dotted blak urveorrespond with fully aligned raks (� = 0), nearly aligned raks (� = �=16), partiallyaligned raks (� = �=8), weakly aligned raks (� = �=4) and randomly oriented raks(� =1), respetively. The properties of the solid matrix are the same as in Figure 3.
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