

Geochemical baseline data for the urban area of Mansfield

Urban Geoscience and Geological Hazards Programme Internal Report IR/02/082

BRITISH GEOLOGICAL SURVEY

INTERNAL REPORT IR/02/082

Geochemical baseline data for the urban area of Mansfield

S.E. Freestone, K.E. O'Donnell, S.E. Brown

Contributor/editor

N. Breward and C.C. Johnson

The National Grid and other Ordnance Survey data are used with the permission of the Controller of Her Majesty's Stationery Office. Ordnance Survey licence number 100017897/2004

Key words

G-BASE, geochemistry, urban.

Front cover

Copper in surface soils from the Mansfield area

Bibliographical reference

FREESTONE, S.E.; O'DONNELL, K.E.; BROWN, S.E. 2004. Geochemical baseline data for the urban area of Mansfield. *British Geological Survey Internal Report*, IR/02/082. 74 pp.

© NERC 2004

Keyworth, Nottingham British Geological Survey 2004

BRITISH GEOLOGICAL SURVEY

The full range of Survey publications is available from the BGS Sales Desks at Nottingham and Edinburgh; see contact details below or shop online at www.thebgs.co.uk

The London Information Office maintains a reference collection of BGS publications including maps for consultation.

The Survey publishes an annual catalogue of its maps and other publications; this catalogue is available from any of the BGS Sales Desks.

The British Geological Survey carries out the geological survey of Great Britain and Northern Ireland (the latter as an agency service for the government of Northern Ireland), and of the surrounding continental shelf, as well as its basic research projects. It also undertakes programmes of British technical aid in geology in developing countries as arranged by the Department for International Development and other agencies.

The British Geological Survey is a component body of the Natural Environment Research Council.

Keyworth, Nottingham NG12 5GG

a 0115-936 3241 Fax 0115-936 3488

e-mail: sales@bgs.ac.uk

www.bgs.ac.uk

Shop online at: www.thebgs.co.uk

Murchison House, West Mains Road, Edinburgh EH9 3LA

a 0131-667 1000 Fax 0131-668 2683

e-mail: scotsales@bgs.ac.uk

London Information Office at the Natural History Museum (Earth Galleries), Exhibition Road, South Kensington, London SW7 2DE

a 020-7589 4090 Fax 020-7584 8270

2 020-7942 5344/45 email:

bgslondon@bgs.ac.uk

Forde House, Park Five Business Centre, Harrier Way, Sowton, Exeter, Devon EX2 7HU

a 01392-445271 Fax 01392-445371

Geological Survey of Northern Ireland, 20 College Gardens, Belfast BT9 6BS

2 028-9066 6595 Fax 028-9066 2835

Maclean Building, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB

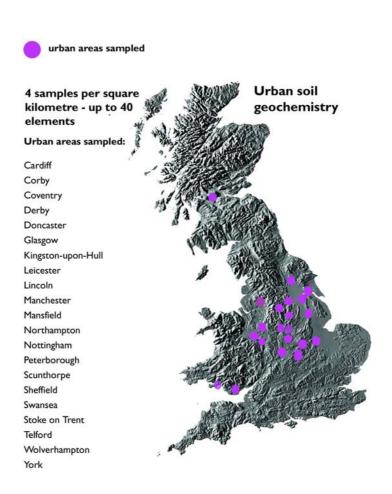
☎ 01491-838800 Fax 01491-692345

Parent Body

Natural Environment Research Council, Polaris House, North Star Avenue, Swindon, Wiltshire SN2 1EU

2 01793-411500

Fax 01793-411501


www.nerc.ac.uk

The soil geochemical data presented in this report (and other urban reports from this series) are from individual sites which were sampled as part of a baseline geochemical survey. The results should only be used to set a regional context, not as the basis for interpretations concerning specific sites. Interpretations relating to specific sites should be based on follow-up investigations. The data in this report, in addition to all geochemical data held by BGS, are available under licence. Its use is subject to the terms of a licensing agreement.

Foreword

This report is a product of the British Geological Survey's (BGS) Geochemical Surveys of the Urban Environment (GSUE) project. Work is funded by the Office of Science and Technology and is part of the national Geochemical Baseline Survey of the Environment (G-BASE) project. The report forms part of a series, which seeks to make GSUE urban data publicly available with a minimum of interpretation, displaying the data as a series of proportional symbol maps.

A number of urban centres have been surveyed using the same sampling procedures; the status of completed sampling is indicated by the figure below. Wolverhampton, Manchester and Glasgow have been sampled as part of larger multi-disciplinary projects.

Map showing urban areas that have been soil sampled (end of 2003)

Contents

Fo	reword	li
Co	ntents	ii
Su	mmary	y1
1	Intro	duction2
2	Study	y area4
	2.1	Historical land use
	2.2	Area sampled4
	2.3	Solid and drift geology5
	2.4	Soil type
3	Meth	odology
	3.1	Soil sampling
	3.2	Sample preparation
	3.3	Error control procedures
	3.3.1	Random numbering of samples
	3.3.2	Duplicate and sub-samples
	3.3.3	Standards
	3.4	Analytical procedures
	3.5	Data interpretation
4	Geoc	hemical Interpretation16
	4.1	Background levels
	4.2	Key geochemical characteristics of the Mansfield dataset
	4.2.1	Kirkby in Ashfield and Sutton in Ashfield
	4.2.2	Clipstone
	4.2.3	Mansfield City Centre
Re	ferenc	es
Ap	pendix	A: Examples of urban surface and profile field cards from Mansfield26
-	-	x C: Proportional symbol geochemical maps for Mansfield surface and profile soils28
Δh	henan	S. C. 1 roportional symbol geochemical maps for manisticia surface and prome souszo

Figures

Figure 1 Location map for Mansfield
Figure 2 Map of Mansfield sampling area
Figure 3 Topographical map of sampling area
Figure 4 Drift cover of Mansfield and surrounding area
Figure 5 Underlying solid geology of Mansfield and surrounding area9
Figure 6 ((a) - (i)). Box and Whisker Plots for selected elements in surface soils from six urban areas in the Humber-Trent region presented with the regional Humber-Trent data
Tables
Table 1 Summary of Mansfield soil sampling information
Table 2 Percentage of variance in surface and profile soils attributable to between-site, between sample and residual variance
Table 3 Comparison of G-BASE bulk soil standards
Table 4 Lower limits of detection (LLD) and upper reporting limit (URL) values for XRFS analysis of G-BASE urban soil samples, Humber-Trent region
Table 5 Comparison of median concentrations in regional surface soil samples, Humber-Trent atlas area and in Mansfield surface soil samples
Table 6 Comparison of median concentrations in regional profile soil samples, Humber-Trent atlas area and in Mansfield profile soil samples

Summary

This report describes and interprets the results of a systematic urban geochemical baseline survey carried out in the Mansfield area.

The concentrations of trace elements vary widely over different rock types. Baseline geochemical data enables natural concentrations to be determined and these provide a benchmark with which to compare the levels of contaminants in industrialised and urban areas.

Soil samples were taken at a density of four per square kilometre. Sampling was carried out on the least disturbed area of unbuilt ground, such as domestic gardens, allotments, parks or (in the worst instance) road verges or made ground. Details of the sampling and analysis of Mansfield soils are summarised in Table 1.

Preliminary interpretation of the data can then be carried out and related back to the past and present industrial history of the Mansfield area.

Table 1 Summary of Mansfield soil sampling information

Date Sampled:	Summer 1997
Area Sampled:	42 km ² (min E 446000; max E 460000; min N 354000; and max N 366000)
Number of Samples:	257 surface and 256 profile soils
Elements determined by XRFS:	Al ₂ O ₃ , CaO, K ₂ O, TiO ₂ , MgO, Fe ₂ O ₃ , MnO, P ₂ O ₅ , SiO ₂ , Cr, Mo, Pb, Zn, As, Cd, Cu, Ni, Sb, U, Ba, Co, Sn, V.

1 Introduction

This report summarises the results and methodology of a soil geochemical survey of the urban area of Mansfield, undertaken by the British Geological Survey as part of the Geochemical Surveys of the Urban Environment Programme (GSUE), which is funded by the Office of Science and Technology. The project is part of a much wider national survey known as the Geochemical Baseline Survey of the Environment Project (G-BASE).

The G-BASE Programme is undertaking a systematic regional geochemical survey of soils, stream sediments and stream waters of the British Isles. The data obtained provide information on the surface chemical environment, which can be used to define the soil geochemical baseline and the extent of surface contamination. The data has a range of applications, including the modelling of risk to human health, with respect to potentially harmful elements through environmental exposure.

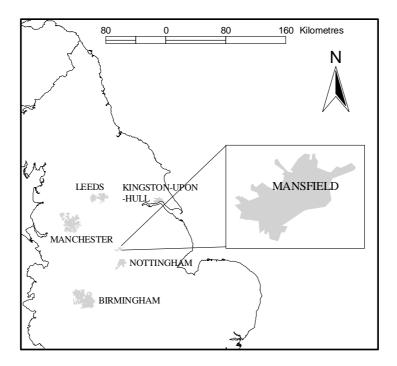


Figure 1 Location map for Mansfield

Mansfield is situated to the north of the city of Nottingham (Figure 1). It has had a varied industrial history related to coal mining, iron smelting, and quarrying of aggregates.

The distributions of trace metals in the surface environment of Mansfield are described in this report in the context of present and historical land use. The concentrations of the trace metals are also considered in relation to the underlying geology and placed in context with respect to the typical background concentrations obtained from G-BASE regional data sets.

2 Study area

2.1 HISTORICAL LAND USE

The industrial importance of Mansfield and the surrounding area is based on its mineral wealth. Lead mining in the Carboniferous Limestone dates back to Roman times, but it was the ironstones, coals and fireclays of the Coal Measures that were prevalent mineral resources used during the Industrial Revolution. Lead is still found as a by-product with fluorite, although coal was the major product until the late 20th century when economic conditions led to the closure of many pits. The first record of coal mining in the area dates from 1315, but it didn't become widely used until the 16th century. In the late 18th century industrial applications of coal were widened as it was used in the iron smelting process. By the early 19th century, there were 245 collieries in the county of Derbyshire; the number was increased due to the expanding rail network. With the railways came the ability to export and transport coal and other mineral products to a wider market.

Along with coal, clay was worked from the Crawshaw Sandstone for use in brick production. Sandstone from the Millstone Grit series and the Coal Measures was quarried for use in buildings, walls and as paving stones; however, most quarries are now abandoned. Limestone and dolomite from the Carboniferous Limestone series and the Magnesium Limestone, is used for road-building, manufacture of glass and as a component in agricultural and chemical products. Lead mining around Mansfield reached a peak in the 18th century, when up to 6000 tonnes per year were produced; however, then the mining declined due to economic conditions. Zinc was less important than lead in this area; 40 tonnes per year were produced in 1720, with production reaching a peak in 1781 at 1500 tonnes per year. Silver was mined near Mansfield in small quantities, but was not economic. Other minerals mined or quarried in the area included fluorite, barite, sand, gravel and peat.

From the British Geological Survey Geoscience Data Index¹ it can be seen that Mansfield has many abandoned and active quarries owned by local collieries and aggregate companies. There are also many waste disposal sites around the city and its suburbs (Clipstone, Kirkby and Sutton in Ashfield); many of the sites have the potential to be a risk to groundwater. Opencast coal mines exist to the west of the city centre, north of Sutton in Ashfield and west of Kirkby in Ashfield.

2.2 AREA SAMPLED

An area of 42 km² was surveyed during the summer of 1997, in which a total of 257 surface soil sites and 256 profile soils were sampled (Table 1). This extends from grid references 446000 m east to 460000 m east and from 354000 m north to 366000 m north, and includes the areas of Mansfield, Clipstone, Mansfield Woodhouse, Sutton in Ashfield and Kirkby in Ashfield. The survey area is shown in Figure 2. The shaded urban area represents the boundary between the built up area and open countryside.

-

http://www.bgs.ac.uk/geoindex

2.3 SOLID AND DRIFT GEOLOGY

Geological information for the Mansfield area was obtained from the BGS memoirs for the area (Smith et al., 1967) and BGS DigmapGB data². The area sampled is underlain by four main rock types. Furthest east in the sampling area is the Jurassic age New Red Sandstone Nottingham Castle Sandstone Formation. The slightly younger Upper Permian age Lenton Sandstone Formation occurs striking in a northeast-southwest direction across the area. Across the middle of the sampling area the Upper Permian Cadeby Formation occurs, this is composed mainly of dolomite, and is part of the Zechstein Group. Between the Cadeby Formation and the Coal Measures, a thin band of Upper Permian mudstone occurs, called the Edlington Formation. To the west of the sampling area, the Carboniferous Middle Coal Measures Formation outcrops; this is Westphalian in age, and is composed of interbedded mud and sandstone. The succession generally increases in age towards the west (younging direction towards the east). The drift and solid geology can be seen on Figure 4 and Figure 5 respectively.

Approximately 10 % of Mansfield is covered by Quaternary deposits; predominantly comprising alluvium, river terrace deposits, Diamicton till and glaciofluvial deposits (mainly sand and gravel). The majority of Quaternary deposits here are by products of river formation, such as river alluvium and river terrace deposits, there are no coastal effects of tidal deposition as appear in other areas, for example, in Kingston-upon-Hull.

-

² Ew112_chesterfield; Ew113_ollerton. Drift and solid geology.

Figure 2 Map of Mansfield sampling area (Grid squares shown at 6 km intervals)

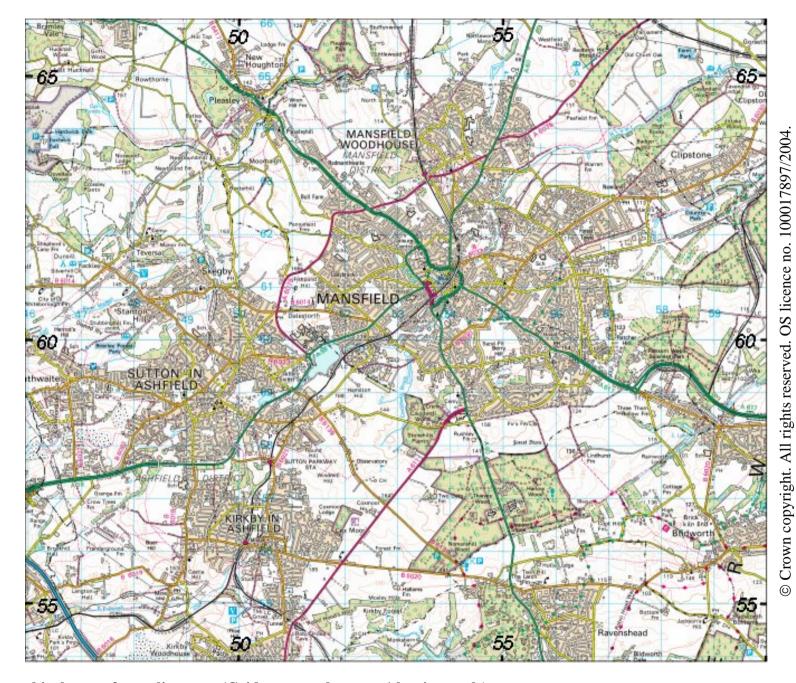


Figure 3 Topographical map of sampling area (Grid squares shown at 1 km intervals)

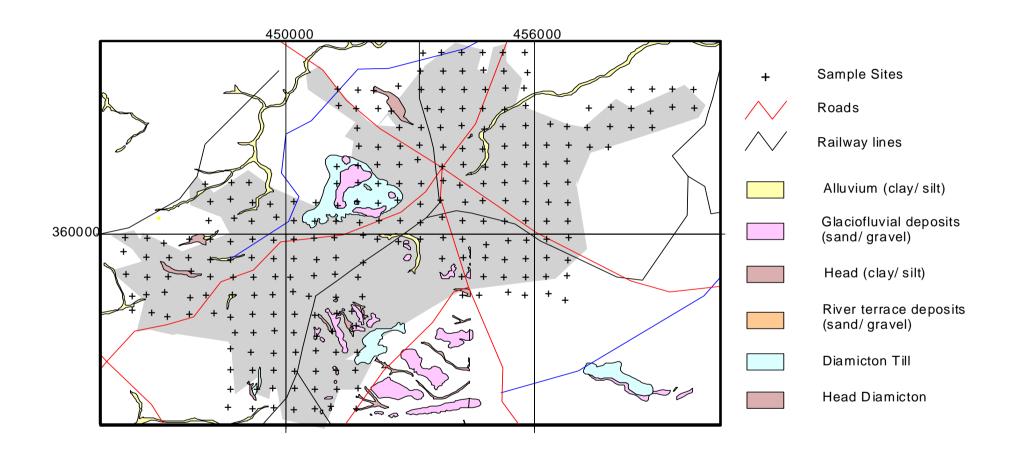


Figure 4 Drift cover of Mansfield and surrounding area (Grid squares shown at 6 km intervals)

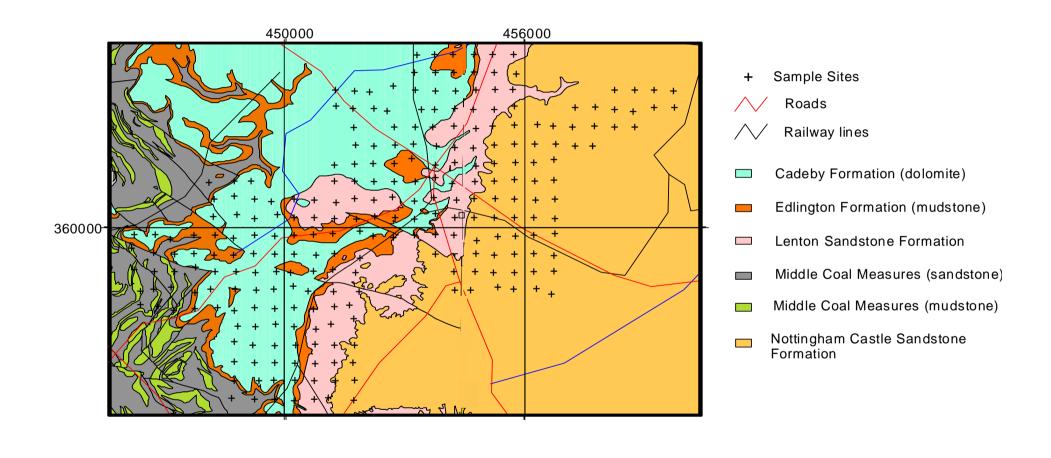


Figure 5 Underlying solid geology of Mansfield and surrounding area (Grid squares shown at 6 km intervals)

2.4 SOIL TYPE

Urban and industrial areas have not been surveyed for soil type by the Soil Survey and Land Research Centre (formally the Soil Survey of England and Wales). No information therefore exists on soil type for the main city area of Mansfield, although limited data is available for the outskirts of the urban area. This was obtained from a map of the "Soils of the Midlands and Western England" (Soil Survey of England and Wales, 1983).

Basic information for the urban soils of Mansfield is available from the G-BASE field cards (see appendix A), which are filled in "on-site" during sampling. These contain data such as soil colour, texture, sample depth, clasts that are contained in the soil, as well as land use and any physical contamination that is observed. The field codes used were extracted from Harris and Coats (1992).

The area around Clipstone village, to the northeast of Mansfield is characterised by sandy soils grading to coarse loam, belonging to the Brown Earth soil classification. To the north and west of the sampling area Brown Earths are also present; this soil type usually occurs in well-drained areas. Brown Earth soils are also found around the towns of Kirkby and Sutton in Ashfield.

3 Methodology

3.1 SOIL SAMPLING

Sample sites were arranged on a regular grid pattern at a density of 4 samples per km². Sample spacing was kept as regular as possible, namely 500 m apart, but was constrained by the actual conditions that were encountered on the ground (such as buildings and other constructions). Soil samples were collected from the closest area of open ground to the allocated sample point. Care was taken to avoid contamination from roads, buildings, fences, pylon lines, etc., an ideal sample being collected at least 50 m from any of these contaminating sources. In urban areas it is often difficult to find sample sites that obey this ideal, but wherever possible samples were taken so as to preserve as near as possible the regular sampling grid.

Soil samples were collected using a Dutch style hand auger with a 3 cm bore. Two samples were collected at different depths at each site. Surface samples were labelled "A" and were collected from a depth of 0-15 cm. They were made up of a three point composite sample based on a 2 x 2 m square. The deeper "profile" samples were labelled "S" and collected at a standard depth of 30-45 cm. These were composed of 3 sub-samples from the same 2 x 2 m square as the "A" sample. Duplicate sampling is described in section 3.3.2.

Information from the field cards are entered onto a database and sample positions recorded onto a stable base and archived. This data is then stored in the corporate geochemical database (Harris and Coats, 1992).

3.2 SAMPLE PREPARATION

Samples were dried in an oven at temperatures below 20 °C and then sieved. Surface soils were sieved to obtain the <2 mm fraction and profile soils to obtain the <150 μ m fraction. The sieved material was coned and quartered and a split of the sample was ground using an agate ball mill until 95 % reached a grain size finer than 53 μ m. A 12 g split of the ground material was combined with 3 g of elvacite binder and pressed into a pellet for analysis by X-Ray Fluorescence Spectrometry analysis (XRFS) (see section 3.4).

Excess sieved and ground sample material is retained in the National Geoscience Records Centre sample store at the BGS.

3.3 ERROR CONTROL PROCEDURES

The accuracy and precision of the geochemical data was monitored using the methods of Plant et al (1975), which are briefly described below.

3.3.1 Random numbering of samples

Samples were allocated numbers according to a random numbering system (Plant, 1973), but were analysed in numerical order. This allows any systematic error in either sampling or analytical methodologies to be identified and attributed to the appropriate process. At each site the A and the S samples were assigned unique numbers according to the random number lists. Therefore, within each batch of one hundred samples there were 50 A and 50 S samples.

3.3.2 Duplicate and sub-samples

Within each batch of one hundred samples, a pair of sample numbers were assigned to a sampling duplicate, resulting in a duplicate pair for both A and S samples. Duplicate samples were collected using identical sampling methodology adjacent to the original sample. At the sample preparation stage each of the duplicate samples were split to obtain a sub-sample. Each sub-sample was assigned a different number and treated as a separate sample for analytical purposes.

The collection of duplicate samples enables the sampling error, or sampling variation, to be estimated, thus providing a measure of the between-sample variance. Sub-sampling allows the analytical error or variance to be estimated. The variation in the results between original and sub-sample gives an indication of the variation introduced by sample preparation and analysis.

The components of variance were estimated using analysis of variance (ANOVA). statistical technique is used to determine the residual variance (introduced by sub-sampling, sample preparation and chemical analysis); the between-sample variance (attributed to withinsite variation and variability introduced during sample collection); and between-site variance (representing the natural variation in element concentrations across the survey area). All of the analyses form part of a single randomised dataset and a random nested model of ANOVA was therefore used (Snedecor and Cochran, 1989). Due to the relatively low number of duplicate samples collected in a single urban area, the ANOVA calculations were performed using replicate soils collected from 11 different urban centres: Cardiff, Swansea, Stoke, Telford, York, Hull, Doncaster, Mansfield, Scunthorpe, Lincoln and Sheffield (Lister, 2002; Lister, In Prep). A total of 50 replicate sets were measured for urban profile soils, while up to 37 were measured for urban surface soils. All elements except Cd and U (both horizons) and TiO₂ (surface soils) were log transformed to produce a distribution approaching the required Gaussian. The ANOVA calculations were performed using the NESTED procedure from the statistical software package, MINITABTM. The results of the ANOVA indicate that for most elements the between-site variability is greater than 80% of the total variance (Table 2). This suggests that geochemical variation is the principal control over element concentrations in urban areas. The between-site variance of cadmium is significantly lower than the other elements, with nearly half the variation in the surface soils attributed to residual factors. This is an indication of analytical error, most likely to result from low overall concentrations with respect to the detection limit.

The ANOVA analysis was not carried out on Al₂O₃, CaO, K₂O, P₂O₅, SiO₂ or MgO, as these major elements were not analysed routinely in the urban sampling programme.

3.3.3 Standards

G-BASE internal reference standards were analysed within each batch of field samples in order to monitor analytical instrument performance, and to provide continuity of data between different analytical campaigns. Internal standards were assigned unique sample ID's and inserted into each batch of field samples. In the case of Mansfield, G-BASE internal reference standards S13, S15, S24 and S3B were inserted during the analysis of surface (A) and profile (S) soil samples. The concentrations obtained for all elements in each standard are illustrated in Table 3 (the values given for S15 and S3B are mean values, as these standards were measured in duplicate in each analytical run).

The inclusion of G-BASE internal reference standards throughout all G-BASE and GSUE projects maintains data integrity between such projects. Mansfield lies within the Humber-Trent regional atlas area, and it is therefore essential that data for the urban centre of Mansfield is compatible with that of the surrounding regional dataset, which consists of the XRFS analyses of A and S soils from approximately 7000 sample sites (British Geological Survey, In Prep). A number of G-BASE standards were routinely analysed throughout the entire duration of analysis of samples from the Humber-Trent area. Element concentrations determined for standards S13, S15, S24 and S3B during analysis of Mansfield urban samples may be compared with the mean concentrations generated for these standards during analysis of Humber-Trent regional samples (Table 3).

Where values differed significantly, conditioning of the data was carried out. Simple X-Y plots and regression calculations were generated in Excel in order to carry out this task.

Table 2 Percentage of variance in surface and profile soils attributable to between-site, between sample and residual variance.

Surface	Soils	Vai	riance		Profile S	Soils	Varia	ance	
Element	Number of Replicate Sets	Between Site (%)	Between Sample (%)	Residual (%)	Element	Number of Replicate Sets	Between Site (%)	Between Sample (%)	Residual (%)
Sb	16	88.03	1.15	10.82	Sb	50	87.68	3.05	9.27
As	37	97.69	2.02	0.29	As	50	97.87	1.82	0.31
Ba	37	97.63	1.79	0.58	Ba	50	97.39	2.56	0.05
Cd	27	47.88	6.77	45.35	Cd	50	65.44	3.95	30.61
Cr	37	94.14	3.07	2.79	Cr	50	93.46	5.55	0.99
Co	37	96.35	0.00	3.65	Co	50	94.00	5.62	0.38
Cu	37	97.63	1.66	0.72	Cu	50	98.87	1.08	0.06
Fe_2O_3	37	97.69	2.06	0.25	Fe_2O_3	50	96.62	3.36	0.01
Pb	27	97.48	2.23	0.29	Pb	50	96.51	3.43	0.06
MnO	37	98.28	1.39	0.33	MnO	50	96.03	3.92	0.05
Mo	33	94.24	0.71	5.05	Mo	50	93.59	3.23	3.17
Ni	37	98.06	1.59	0.34	Ni	50	95.96	3.83	0.21
Sn	36	93.45	2.91	3.63	Sn	50	95.77	2.42	1.81
TiO_2	37	96.58	2.65	0.77	TiO_2	-	-	-	-
U	37	85.95	1.24	12.81	U	47	76.92	10.99	12.09
V	37	97.89	1.79	0.32	V	50	97.85	2.09	0.06
Zn	37	94.77	5.16	0.07	Zn	50	92.64	7.34	0.02

Table 3 Comparison of G-BASE bulk soil standards.

Sample	Units	Humber-	Mansfield	Mansfield	Humber-	Mansfield	Mansfield
Type		Trent	A	S	Trent	A	S
Standard		S13	S13	S13	S15	S15	S15
Cd	ppm	<1	<1	1	<1	<1	<1
Sn	ppm	3	3	2	5	4	4
Sb	ppm	<1	<1	<1	1	<1	<1
TiO_2	%	0.817	0.882	0.896	0.392	0.434	0.445
MnO	%	0.128	0.11	0.121	0.082	0.061	0.072
Fe_2O_3	%	6.88	6.91	7.12	1.90	1.92	2.02
V	ppm	97	85	94	35	23	33
Cr	ppm	98	97	97	41	31	39
Co	ppm	29	23	23	9	5	6
Ba	ppm	1704	1813	1812	291	380	374
Ni	ppm	36	34	35	12	10	10
Cu	ppm	17	14	15	6	3	3
Zn	ppm	113	111	113	30	28	29
As	ppm	15	15	15	9	8	9
Mo	ppm	1.6	1.6	<1	<1	1.1	<1
Pb	ppm	109	108	110	24	25	24
U	ppm	2.5	2.8	3.1	1.2	1.5	2.2
Al_2O_3	%	-	18	-	-	6.8	-
CaO	%	0.35	0.34	-	0.20	0.18	-
K_2O	%	2.2	2.2	-	2.3	2.2	-
MgO	%	1.2	1.1	-	0.6	0.6	-
P_2O_5	%	0.13	0.13	-	0.09	0.10	-
SiO_2	%	-	56.3	-	-	74.15	-

Sample	Units	Humber-	Mansfield	Mansfield	Humber-	Mansfield	Mansfield
Type		Trent	A	S	Trent	Α	S
Standard		S24	S24	S24	S3B	S3B	S3B
Cd	ppm	3	<1	5	9	9	9
Sn	ppm	6	5	5	2	<1	-
Sb	ppm	7.9	6.5	7	<1	<1	<1
TiO_2	%	1.122	1.225	1.259	0.727	0.782	0.831
MnO	%	0.458	0.429	0.489	3.773	3.615	4.024
Fe_2O_3	%	10.22	10.23	10.51	13.45	13.51	13.6
V	ppm	140	129	137	76	66	75
Cr	ppm	123	122	126	28	23	27
Co	ppm	97	85	84	51	43	43
Ba	ppm	983	1049	1029	10183	9387	9788
Ni	ppm	45	44	43	30	28	28
Cu	ppm	64	63	64	47	46	46
Zn	ppm	387	392	397	776	779	794
As	ppm	124	127	128	<1	<1	<1
Mo	ppm	1.9	1.8	<1	145.8	145.9	147.4
Pb	ppm	1070	1011	1040	2075	1859	1913
U	ppm	1.7	1.8	2.1	84.1	81.7	81.4
Al_2O_3	%	-	23.1	-	-	10.4	-
CaO	%	0.32	0.32	-	1.21	1.19	-
K_2O	%	3.40	3.44	-	2.74	2.79	-
MgO	%	1.1	1	-	0.5	0.5	-
P_2O_5	%	0.18	0.19	-	0.19	0.19	-
SiO_2	%	-	45.5	-	-	39.4	-

3.4 ANALYTICAL PROCEDURES

All samples were analysed at the BGS laboratories for a range of elements by Wavelength Dispersive X-ray Fluorescence Spectrometry (Ingham and Vrebos, 1994). Three sequential XRF spectrometers were used. A Philips PW1480 fitted with a 216 position sample changer and a 3 kW/ 100 kV tungsten anode X-ray tube was used to determine Cd, Sn and Sb. Two Philips PW2400 spectrometers fitted with 102 position sample changers and with 3 kW/ 60 kV rhodium anode x-ray tubes were used to determine Al₂O₃, CaO, K₂O, MgO, P₂O₅, SiO₂, TiO₂, MnO, Fe₂O₃, V, Cr, Co, and Ba in one suite and Ni, Cu, Zn, As, Mo, Pb, and U in another. The results for trace elements are reported in parts per million (ppm). One part per million is equivalent to one microgram per gram (µg/g or µg g⁻¹) or one milligram per kilogram (mg/kg or mg kg⁻¹). Major elements are reported as weight percent of the element in its oxide form (WT % oxide).

The elements determined and the lower limits of detection (LLD) and upper and lower reporting limits (URL and LLR) for each analyte are shown in Table 4.

The quoted LLDs are theoretical values for the concentration equivalent to three standard deviations above the background count rate for the analyte in a pure silica matrix. High instrumental stability results in practical values for these materials approaching the theoretical.

Table 4 Lower limits of detection (LLD) and upper reporting limit (URL) values for XRFS analysis of G-BASE urban soil samples, Humber-Trent region

Analyte	LLD (ppm)	LLD (%)	URL (ppm)	URL (%)
	(PP)	(70)	(PPIII)	(70)
TiO_2	-	0.01	-	100.0
MnO	-	0.01	-	10.0
Fe_2O_3	-	0.01	-	100.0
V	2.4	-	20000	-
Cr	3	-	250000	-
Co	1.9	-	10000	-
Ni	0.9	-	4000	-
Cu	0.9	-	6500	-
Zn	1	-	10000	-
As	0.9	-	10000	-
Mo	0.3	-	1000	-
Cd	0.9	-	500	-
Sn	1.1	-	10000	-
Sb	1.2	-	10000	-
Ba	2.9	-	600000	-
Pb	1.2	-	10000	-
U	0.5	-	650	-
$\text{Al}_2\text{O}_3^{\ *}$	-	0.1	-	100.0
CaO [*]	-	0.05	-	60.0
K_2O^*	-	0.05	-	15.0
${ m MgO}^*$	-	0.1	-	50.0
$P_2O_5^*$	_	0.05	-	1.5
SiO_2^*	-	0.1	-	100.0

^{*} A horizon only.

3.5 DATA INTERPRETATION

Once full error control and data quality procedures were completed, the Mansfield geochemical and location data were loaded into Arcview© GIS software package. Proportional symbol geochemical maps for surface and profile soils were then generated (see Appendix C).

4 Geochemical Interpretation

A total of 23 major and trace elements were measured in the surface soils collected in Mansfield; aluminium (expressed as Al₂O₃), antimony (Sb), arsenic (As), barium (Ba), cadmium (Cd), calcium (expressed as CaO), chromium (Cr), cobalt (Co), copper (Cu), iron (expressed as Fe₂O₃), lead (Pb), magnesium (expressed as MgO), manganese (expressed as MnO), molybdenum (Mo), nickel (Ni), phosphorous (expressed as P₂O₅), potassium (expressed as K₂O), silicon (expressed as SiO₂), tin (Sn), titanium (expressed as TiO₂), uranium (U), vanadium (V) and zinc (Zn). All elements except Al₂O₃, CaO, MgO, P₂O₅, K₂O and SiO₂ were additionally measured in the profile soils.

4.1 BACKGROUND LEVELS

In order to aid the interpretation of the geochemical data for Mansfield it is useful to be aware of typical background soil concentrations in order to put the results from Mansfield into context. The median elemental concentrations for 6561 surface soil samples from the Humber-Trent region are shown in Table 5. The median elemental concentrations for 6877 profile soil samples from the Humber-Trent region are shown in Table 6; these data can be used to give an indication of the typical magnitude of the elemental concentrations throughout the region as a whole (British Geological Survey, In Prep).

Table 5 Comparison of median concentrations in regional surface soil samples, Humber-Trent atlas area and in Mansfield surface soil samples

Analyte Units Regional Mansfield Al_2O_3 wt% 11.5 8.4 As 13 11 ppm Ba 376 344 ppm CaO 2.12 1.17 wt% Cd ppm 1 1 19 Co 14 ppm Cr 71 54 ppm 24 Cu ppm 18 Fe_2O_3 4.66 3.12 wt% K_2O wt% 1.8 MgO 1.1 wt% 1 0.080 MnO 0.099 wt% 2.2 Mo 1.6 ppm 22 Ni ppm 16 Pb 43 76 ppm P_2O_5 0.29 0.27 wt% Sb ppm 0.5 2 63.1 SiO₂ wt% 4 Sn 6 ppm TiO₂ 0.680 0.457 wt% U 2.1 1.3 ppm V 83 57 ppm Zn 72 112 ppm

Table 6 Comparison of median concentrations in regional profile soil samples, Humber-Trent atlas area and in Mansfield profile soil samples

Analyte	Units	Regional	Mansfield
Al_2O_3	wt%	-	-
As	ppm	12	13
Ba	ppm	388	379
CaO	wt%	2.89	-
Cd	ppm	0.35	1
Co	ppm	21	18
Cr	ppm	83	66
Cu	ppm	20	25
Fe_2O_3	wt%	5.04	4.06
K_2O	wt%	1.98	-
MgO	wt%	1.3	-
MnO	wt%	0.104	0.128
Mo	ppm	1.8	1.2
Ni	ppm	27	21
Pb	ppm	38	73
P_2O_5	wt%	0.25	-
Sb	ppm	3	2
SiO_2	wt%	-	-
Sn	ppm	4	7
TiO_2	wt%	0.735	0.590
U	ppm	2.5	1.9
V	ppm	88	63
Zn	ppm	77	109

4.2 KEY GEOCHEMICAL CHARACTERISTICS OF THE MANSFIELD DATASET

The majority of analytes are found in higher concentrations in the profile soils than in the surface soils. This could be due to the fact that during sample preparation the two horizons are sieved to a different size fraction. The surface soils are sieved to <2 mm whilst the profile soils are sieved to <150 μ m. This means that the sieved profile soil has a much larger surface area and will contain more clay particles. Clay minerals possess the ability to attract and bind heavy metal ions (Brady and Weil, 1999).

There may also be other explanations why the profile soils show elevated levels of heavy metals. For example, in areas of contamination fresh topsoil could have been brought in for a remediation exercise, resulting in the contaminated soil being buried. Certain soil properties such as pH and redox potential (Eh) can affect the mobility of potentially toxic elements, such as As and Cd. Under appropriate conditions, elements can dissolve into solution and leach downwards, taking elements from the upper A horizon soil and re-precipitating them into the deeper B horizon, or into groundwater in the underlying strata. Leaching may also reach surface waters, i.e. rivers.

In the surface soils, Cu, Pb, Sb, Sn, and Zn have median values that are above the median elemental values for the Humber-Trent Atlas area (by 6 ppm, 33 ppm, 1.5 ppm, 2 ppm and 40 ppm, respectively). In the profile soils, As, Cu, Pb, Sn and Zn have median values that are above the median elemental values for the Humber-Trent Atlas area (by 1 ppm, 5 ppm, 35 ppm, 3 ppm and 32 ppm, respectively). This would suggest that these elements are potential contaminants in the soils around Mansfield.

The results for selected elements from surface soils in Mansfield are presented in Figure 6 in the context of six other urban areas from the Humber-Trent region (Doncaster, Hull, Lincoln, Scunthorpe, Sheffield and York) and the results from the regional survey for the Humber-Trent region. Eight elements that may be affected by anthropogenic contamination in urban areas (As, Cd, Cu, Pb, Mo, Sn, Sb and Zn) were selected, while TiO₂ was included to represent the closest approximation to a conservative element, unaffected by contamination.

While concentrations of TiO_2 are normally distributed in each urban area and fall within the range in concentration found on the regional scale, the levels of the other selected elements are in general positively skewed (indicated by a mean value significantly exceeding the median) and are higher than the regional values. This may reflect the influence of anthropogenic contamination, elevating the concentrations of certain elements above the typical regional levels and generating anomalously high values, which create skewed distributions. In the case of Mo, however, this pattern is only observed in Sheffield.

The main controls over variation in concentrations between different urban areas include population and past and present industrial activities. Recent work carried out by the British Geological Survey (Rawlins et al., 2003) has also identified the importance of parent material type in determining the geochemical composition of soils. This work is, however, largely outside the scope of this report.

Soil Guideline Values (SGV) produced by the Contaminated Land Exposure Assessment (CLEA) model (Department of the Environment Food and Rural Affairs and the Environment Agency, 2002a, Department of the Environment Food and Rural Affairs and the Environment Agency, 2002b) for residential areas with plant uptake are shown on Figure 6 for Cd and As. From the 75th percentile, Cadmium concentrations in Mansfield are above the SGV value for soils with a pH of 6, but are largely below the level given for pH 7 soils. The levels are comparable with Sheffield and York, but are higher than the remaining four urban areas, which are very low in Cd. Levels of As in Mansfield are generally below the 20 ppm SGV for residential areas and are slightly lower than the levels found in the regional Humber-Trent data for surface soils. This suggests that As is derived largely from natural sources in Mansfield

soils. It is also possible, however, that the average regional levels are lower over the parent materials that underlie Mansfield, than over the Humber-Trent region as a whole. Areas in which soil concentrations exceed 20 ppm may be of concern to human health, although, it should be noted that the regional levels indicate high levels of background As in the Humber-Trent region.

According to Figure 6, the main contaminants in Mansfield soils appear to be Pb, Cd and Zn; however, concentrations of the selected elements are not generally high in relation to other urban areas in the Humber-Trent region.

There is a strong association between soil geochemistry and underlying geology in Mansfield (Figure 5). Well-defined changes in the concentrations of many elements coincide with the dolomite Cadeby Formation to the west of the area (Kirkby in Ashfield and Sutton in Ashfield), the sandstone of the Lenton Formation through the centre (including part of Mansfield city centre) and the Nottingham Castle Sandstone Formation to the east of the area (including Clipstone). For example, the major element silicon is found in higher concentrations in soils to the centre and east of the area, reflecting the high content of this element in the composition of sandstones.

4.2.1 Kirkby in Ashfield and Sutton in Ashfield.

Smelting factories for Fe ore were located to the west and southwest of the city centre, around the towns of Kirkby in Ashfield and Sutton in Ashfield. These areas show high levels of Fe, and other major elements such as Mg, Mn, Ti and Al. The factories also left a legacy of a great many spoil tips. As a result many of the analytes that are associated with metal smelting such as Mo, Pb and As, also show anomalies running along this area.

Coal mining also played a substantial part in the industry of Mansfield, over to the west and southwest of the city centre. Many trace metals, such as Ni, Cu and Pb, occur at naturally elevated levels in the Coal Measures, which could explain their elevated levels in soils. The combustion products of coal and other fossil fuels have more trace metals (e.g. Sn, Cr, Co) associated with them and therefore could also contribute to the high level through atmospheric deposition (Alloway, 1995).

4.2.2 Clipstone

To the East of the city centre lies the village of Clipstone; here the underlying geology is dominated by sandstone. All major elements except K_2O and SiO_2 are relatively very low in concentration in surface soils overlying the Nottingham Castle Sandstone Formation, as are the majority of the trace elements analysed. In the profile soils, however, the relative trace element concentrations are generally higher. In particular, Sn appears to be enriched in the profile soils of this area and depleted in the surface soils. As the profile soils are sieved to a finer fraction than the surface soils, this suggests that most elements are bound to the clay fraction. The low concentrations observed in the surface soils are likely to reflect a high sand content in these soils (derived from the underlying parent material). These particles may be deficient in a number of chemical elements as a result of low concentrations in the parent material and a weak ability to bind heavy metal ions.

4.2.3 Mansfield City Centre.

High levels of elements such as Cu, Pb, Sn and Zn are concentrated around the city centre. These enrichments are likely to be anthropogenic signatures, related to the concentrated transport networks in this area, as well as from industry and the high human population density. Prior to 2000, tetra-ethyl Pb was added to petrol as an anti-knocking agent and was widely released in vehicle emissions. Other heavy elements are present as impurities in petroleum products and may be released through combustion. Historically, iron ore and coal were transported by railway

through Mansfield, leading to spillage when loading and offloading the cargo. This may have left an additional legacy of contamination.

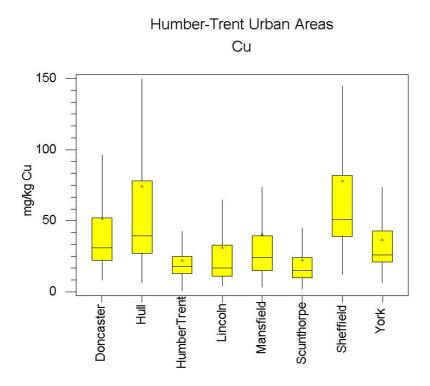


Figure 6: (a) Copper in surface soil

Figure 1 ((a) - (i)). Box and Whisker Plots for selected elements in surface soils from six urban areas in the Humber-Trent region presented with the regional Humber-Trent data. Soil Guideline Values (SGVs) for soils in residential areas involving plant uptake (derived using the CLEA model) are shown in red for As and Cd. Note that for Pb (450 mg/kg) and Cd (pH = 8, 8 mg/kg) SGV values are outside plot area (boxes show inter-quartile range, median is a straight line and the mean value a cross)

Humber-Trent Urban Areas Pb 350 300 250 200 By 150 150 100 50 0 HumberTrent Lincoln_ Sheffield -Mansfield-Scunthorpe-Doncaster-York Ī

Figure 6: (b) Lead in surface soil

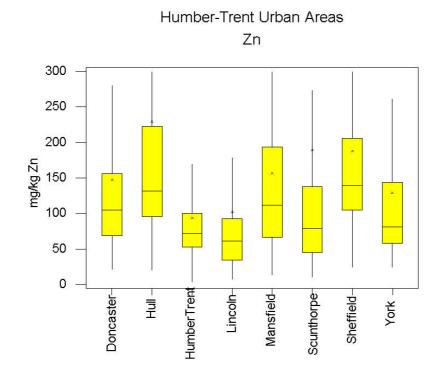


Figure 6: (c) Zinc in surface soil

Humber-Trent Urban Areas As

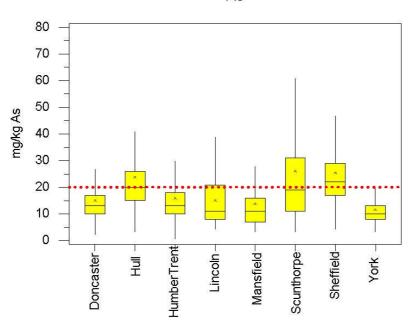


Figure 6: (d) Arsenic in surface soil

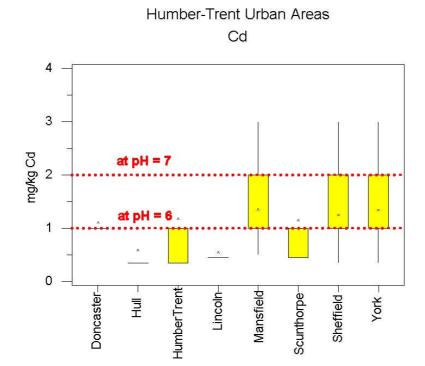


Figure 6: (e) Cadmium in surface soil

Humber-Trent Urban Areas Mo

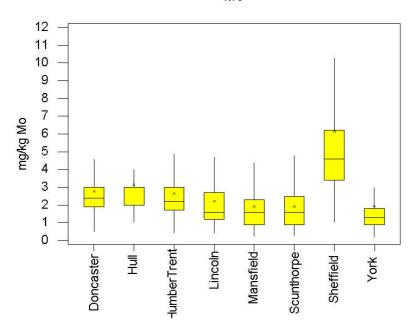


Figure 6: (f) Molybdenum in surface soil

Humber-Trent Urban Areas Sn

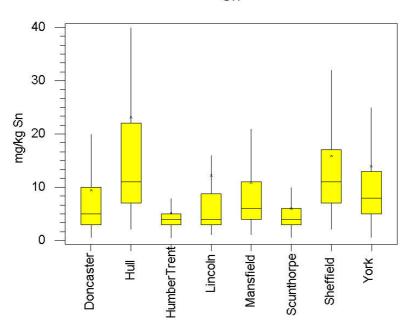


Figure 6: (g) Tin in surface soil

1

Doncaster

Humber-Trent Urban Areas

Figure 6: (h) Antimony in surface soil

Mansfield-

Lincoln –

-lumberTrent

Sheffield-

York

Scunthorpe-

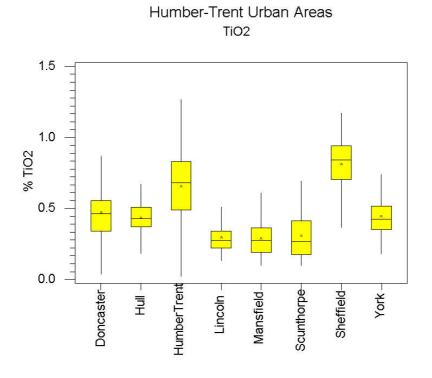


Figure 6: (i) Titanium oxide in surface soil

References

ALLOWAY, B J, (editor) 1995. *Heavy metals in soils*. (London: Blackie Academic and Professional.)

BRADY, N, C, and WEIL, R, R. 1999. *The nature and properties of soils.* (New Jersey: Prentice Hall.)

British Geological Survey. In Prep. Regional Geochemistry of the Humber-Trent Region. (Keyworth, Nottingham: NERC.)

DEPARTMENT OF THE ENVIRONMENT FOOD AND RURAL AFFAIRS AND THE ENVIRONMENT AGENCY. 2002a. The Contaminated Land Exposure Assessment (CLEA) Model: Technical Basis and algorithms. *Environment Agency*, R&D Publication CLR 10.

DEPARTMENT OF THE ENVIRONMENT FOOD AND RURAL AFFAIRS AND THE ENVIRONMENT AGENCY. 2002b. Assessment of Risks to Human Health from Land Contamination: An Overview of the Development of Soil Guideline Values and Related Research. *Environment Agency*, R&D Publication CLR 7.

HARRIS, J R, and COATS, J S. 1992. Geochemistry database: data analysis and proposed design. *British Geological Survey*, Technical Report WF/92/5 (BGS Mineral Reconnaissance Programme Report 125).

INGHAM, M N, and VREBOS, B A R. 1994. High productivity geochemical XRF analysis. *Advances in X-ray Analysis*, Vol. 37, 717-724.

LISTER, T R. 2002. Analysis of Variance (ANOVA) of G-BASE Sub-Surface Soil Data from 11 Urban Centres in England and Wales. *British Geological Survey Internal Report*, IR/02/009.

LISTER, T R. In Prep. Analysis of Variance (ANOVA) of G-BASE Surface Soil Data from 11 Urban Centres in England and Wales. *British Geological Survey Internal Report*.

PLANT, J A. 1973. A random numbering system for geochemical samples. *Transactions of the Institution of Mining and Metallurgy (Section B: Applied earth science)*, Vol. 82, B63-B66.

PLANT, J A, JEFFREY, K, GILL, E, and FAGE, C. 1975. The systematic determination of error, accuracy and precision in geochemical exploration data. *Journal of Geochemical Exploration*, Vol. 4, 467-486.

RAWLINS, B G, WEBSTER, R, and LISTER, T R. 2003. The influence of parent material on top soil geochemistry in eastern England. *Earth Surface Processes and Landforms*, Vol. 28, 1389-1409.

SMITH, E G, RHYS, G H, EDEN, R A, CALVER, M A, DUFF, P M D, HARRISON, R K, and RAMSBOTTOM, W H C. 1967. *The Geology of the Country around Chesterfield, Matlock and Mansfield Explanation of Sheet 112*. Memoir (Sheet) Geological Survey of GB (England and Wales) - New Series (112). (London: British Geological Survey.)

SNEDECOR, G W, and COCHRAN, W G. 1989. *Statistical Methods* (8th edition). (Ames, Iowa, USA: Iowa State University Press.)

SOIL SURVEY OF ENGLAND AND WALES. 1983. Sheet 3, Soils of the Midlands and Western England. 1:250 000. (Southampton: Ordnance Survey.)

Appendix A: Examples of urban surface and profile field cards from Mansfield.

	URBA	AN SOIL/WATER		
CODE SAMPLE NO TYPE A DUPLICATE SAMPLE NO.	EASTING 6	NORTHING Ø772	O/S MAP COLL	ECTORS DAY MONTH YEAR SNDA BOK97
CODE SAMPLE NO WEA 7	LAND USE	<u> </u>	B C	DEFG H
O/B DRIFT		Si	TE LOCALITY DETAILS	
	BACKGAR	DENO	F NO 2	NORTHFIELD
DRIVE				
SOIL DATA		BEDROCK	1:50,000 Geo Sheet o	odes
colour TEX	HORIZON DEPTH	3300	Hajor N	linor
SOIL CLAST LITHOLOGY				
419 60 30 30				
STM DRN DRN WATER COLOUR		SOIL GASES	Pot: 919	Û
ORD TYP CON C Y B SS DRAINAGE	CLAST LITHOLOGY B	3 G Count 1	Count 2 Coun	CO2 OXYGEN METHANE
		3 43	4-11 1	HO + + +
FIELD DATA COMMENTS	., , , , , , , , , , , , , , , , , , ,			
SMALL FRAGO	nents of	Beic	K DN S	JIL SURFACE
			MHSt, APPLIED GEOCHEMIST	RY GROUP, BRITISH GEOLOGICAL SURVEY, 1996.

URE	RBAN SOIL/WATER
CODE SAMPLE NO 6 0 6 1 2 7 DUPLICATE SAMPLE NO.	NORTHING O/S MAP COLLECTORS DAY MONTH YEAR CONTAMINATION SITEMPAINAGE CONTAMINATION
CODE SAMPLE NO WEA LAND USE 7 DDØØ	A B C DEFGH
O/B DRIFT	SITE LOCALITY DETAILS
U CIIIII BACKGAI	RDEN OF NOZII NORTHELLICO
ORIVE	THE PROPERTY OF THE PARTY OF TH
SOIL DATA	BEDROCK 1:50,000 Geo Sheet codes
COLOUR TEX HORIZON DEPTH	LITHOLOGY Major Minor
757/R4/14M J B 8/S10	3 3 ¢ ¢ 4 2
SOIL CLAST LITHOLOGY	
3088 4988	
WATER SAMPLE DATA	SOIL GASES
	RADON: Unit: Pot:
ORD TYP CON C Y B SS DRAINAGE CLAST LITHOLOGY	B G Count 1 Count 2 Count 2 CO2 OXYGEN METHANE
	┖┧╂┼┼┼ ╋╇┸╢╏┆╎╏╏┥╏╎┥╏╎┥
FIELD DATA COMMENTS	
SMALL FRAGMENTS OF	F BRICK ON SOIL SURFACE
	MHSt, APPLIED GEOCHEMISTRY GROUP, BRITISH GEOLOGICAL SURVEY, 1996.

Appendix B: Percentile calculations for Mansfield soil

percentiles	Al_2O_3	CaO	Cr	Cr	K ₂ O	Mo*	Mo*	Pb	Pb	TiO ₂	TiO ₂	Zn	Zn	As	As	Cd*	Cd*	Cu	Cu	
	WT %	WT %	ppm	ppm	WT %	ppm	ppm	ppm	ppm	WT %	WT %	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
5%	5.9	0.17	27	40	1.3	0.5	0.15	19	21	0.209	0.399	31	43	5	7	0.35	0.35	6	10	
10%	6.3	0.26	30	45	1.4	0.7	0.4	25	28	0.244	0.430	40	52	6	9	0.35	0.35	8	12	
15%	6.5	0.33	31	48	1.5	0.8	0.5	33	33	0.269	0.448	46	56	6	9	1	0.35	10	13	
25%	7.0	0.47	37	54	1.6	0.9	0.8	43	45	0.321	0.503	69	71	7	11	1	0.35	15	17	
50%	8.4	1.17	54	66	1.8	1.6	1.2	76	73	0.457	0.590	112	109	11	13	1	1	24	25	
75%	10.2	3.05	74	81	2.1	2.3	1.8	141	135	0.606	0.698	194	170	16	18	2	1	39	43	
90%	12.3	5.45	90	97	2.3	3.4	2.45	249	251	0.770	0.820	309	323	25	29	2	2	67	96	
95%	14.2	7.36	103	112		4.3	3.63	322	348	0.906	0.867	454	449	36	45	3	3		151	
99%	16.5	10.14	140	177	2.6	8.5	15.19	521	684	1.002	0.953	739	919	61	70	6	6.8	212	328	
Max	20.2	14.35	250	397	3.5	14.0	25.3	1319	1500	1.116	1.045	1153	4126	71	212	9	34	1731	595	
Min	4.1	0.03	18	33		0.15	0.15	1	11	0.158	0.244	13	22	3	6	0.35	0.35	3	5	
Mean	8.9	2.17	59	71	1.8	1.9	1.71	114	119	0.484	0.605	157	172	14	17	1.34	1.21	41	45	
Median	8.4	1.17	54	66	1.8	1.6	1.2	76	73	0.457	0.590	112	109	11	13	1	1	24	25	
iviculari	0.1			00						0.101	0.000				_					
	MgO			Sb*	Sb*	U*			Ва	Со	Со	Fe ₂ O ₃	Fe ₂ O ₃		MnO	P ₂ O ₅	Sn	Sn		V
	MgO WT %	Ni		Sb*	Sb* ppm	U* ppm	U* ppm	Ba ppm	Ba ppm		Co ppm	Fe ₂ O ₃ WT %	Fe ₂ O ₃ WT %	WT %	MnO WT %	P ₂ O ₅ WT %	Sn ppm	Sn ppm	V	ppm
5%	MgO WT %	Ni ppm 5	Ni ppm 9	Sb* ppm 0.5	Sb* ppm 0.5	U* ppm 0.5	U* ppm 1.0	Ba ppm 229	Ba ppm 221	Co ppm 5	Co ppm 10	Fe ₂ O ₃ WT % 1.38	Fe ₂ O ₃ WT % 2.45	WT % 0.038	MnO WT % 0.047	P ₂ O ₅ WT % 0.12	ppm 3	ppm 2	V ppm 31	ppm 41
5% 10%	MgO WT % 0.3 0.4	Ni ppm 5	Ni ppm 9	Sb* ppm 0.5 0.5	Sb* ppm 0.5	U* ppm 0.5 0.6	U* ppm 1.0 1.1	Ba ppm 229 261	Ba ppm 221 251	Co ppm 5	Co ppm 10 12	Fe ₂ O ₃ WT % 1.38 1.50	Fe ₂ O ₃ WT % 2.45 2.74	WT % 0.038 0.046	MnO WT % 0.047 0.057	P ₂ O ₅ WT % 0.12 0.16	ppm 3 3	ppm 2 3	V ppm 31 33	ppm 41 45
5% 10% 15%	MgO WT % 0.3 0.4 0.4	Ni ppm 5 7	Ni ppm 9 11	Sb* ppm 0.5 0.5	Sb* ppm 0.5 1	U* ppm 0.5 0.6 0.7	U* ppm 1.0 1.1 1.2	Ba ppm 229 261 277	Ba ppm 221 251 278	Co ppm 5 7	Co ppm 10 12 12	Fe ₂ O ₃ WT % 1.38 1.50 1.66	Fe ₂ O ₃ WT % 2.45 2.74 2.95	WT % 0.038 0.046 0.052	MnO WT % 0.047 0.057 0.063	P ₂ O ₅ WT % 0.12 0.16 0.18	ppm 3 3 3	ppm 2 3	V ppm 31 33 36	ppm 41 45 48
5% 10% 15% 25%	MgO WT % 0.3 0.4 0.4	Ni ppm 5 7 7	Ni ppm 9 11 13	Sb* ppm 0.5 0.5 1	Sb* ppm 0.5 1 1	U* ppm 0.5 0.6 0.7 0.9	U* ppm 1.0 1.1 1.2 1.4	Ba ppm 229 261 277 303	Ba ppm 221 251 278 304	Co ppm 5 7 8	Co ppm 10 12 12 15	Fe ₂ O ₃ WT % 1.38 1.50 1.66 2.05	Fe ₂ O ₃ WT % 2.45 2.74 2.95 3.29	WT % 0.038 0.046 0.052 0.062	MnO WT % 0.047 0.057 0.063 0.078	P ₂ O ₅ WT % 0.12 0.16 0.18 0.20	ppm 3 3 3 4	ppm 2 3 3 4	V ppm 31 33 36 42	ppm 41 45 48 52
5% 10% 15% 25% 50%	MgO WT % 0.3 0.4 0.4 0.5 1.0	Ni ppm 5 7 7 9	Ni ppm 9 11 13 16 21	Sb* ppm 0.5 0.5 1 1	Sb* ppm 0.5 1 1 1	U* ppm 0.5 0.6 0.7 0.9	U* ppm 1.0 1.1 1.2 1.4 1.9	Ba ppm 229 261 277 303 344	Ba ppm 221 251 278 304 379	Co ppm 5 7 8 9	Co ppm 10 12 12 15	Fe ₂ O ₃ WT % 1.38 1.50 1.66 2.05 3.12	Fe ₂ O ₃ WT % 2.45 2.74 2.95 3.29 4.06	WT % 0.038 0.046 0.052 0.062 0.099	MnO WT % 0.047 0.057 0.063 0.078 0.128	P ₂ O ₅ WT % 0.12 0.16 0.18 0.20	9pm 3 3 3 4 6	ppm 2 3 3 4 7	V ppm 31 33 36 42 57	ppm 41 45 48 52 63
5% 10% 15% 25% 50% 75%	MgO WT % 0.3 0.4 0.4 0.5 1.0	Ni ppm 5 7 7 9 16	Ni ppm 9 11 13 16 21	Sb* ppm 0.5 0.5 1 1 2	Sb* ppm 0.5 1 1 1 2	U* ppm 0.5 0.6 0.7 0.9 1.3	U* ppm 1.0 1.1 1.2 1.4 1.9 2.33	Ba ppm 229 261 277 303 344 464	Ba ppm 221 251 278 304 379 518	Co ppm 5 7 8 9 14 23	Co ppm 10 12 12 15 18 25	Fe ₂ O ₃ WT % 1.38 1.50 1.66 2.05 3.12 4.68	Fe ₂ O ₃ WT % 2.45 2.74 2.95 3.29 4.06 5.08	WT % 0.038 0.046 0.052 0.062 0.099 0.208	MnO WT % 0.047 0.057 0.063 0.078 0.128 0.224	P ₂ O ₅ WT % 0.12 0.16 0.18 0.20 0.27 0.37	9pm 3 3 3 4 6 11	ppm 2 3 3 4 7 11	V ppm 31 33 36 42 57 74	ppm 41 45 48 52 63 75
5% 10% 15% 25% 50% 75% 90%	MgO WT % 0.3 0.4 0.5 1.0 1.7 2.6	Ni ppm 5 7 7 9 16 25 34	Ni ppm 9 11 13 16 21 28 39	Sb* ppm 0.5 0.5 1 1 2 4	Sb* ppm 0.5 1 1 2 3 4	U* ppm 0.5 0.6 0.7 0.9 1.3 1.8 2.6	U* ppm 1.0 1.1 1.2 1.4 1.9 2.33 2.8	Ba ppm 229 261 277 303 344 464 742	Ba ppm 221 251 278 304 379 518	Co ppm 5 7 8 9 14 23	Co ppm 10 12 12 15 18 25	Fe ₂ O ₃ WT % 1.38 1.50 1.66 2.05 3.12 4.68 5.76	Fe ₂ O ₃ WT % 2.45 2.74 2.95 3.29 4.06 5.08 6.18	WT % 0.038 0.046 0.052 0.062 0.099 0.208 0.303	MnO WT % 0.047 0.057 0.063 0.078 0.128 0.224 0.328	P ₂ O ₅ WT % 0.12 0.16 0.18 0.20 0.27 0.37	3 3 3 4 6 11	ppm 2 3 3 4 7 11 23	V ppm 31 33 36 42 57 74 99	ppm 41 45 48 52 63 75 102
5% 10% 15% 25% 50% 75% 90%	MgO WT % 0.3 0.4 0.5 1.0 1.7 2.6 3.4	Ni ppm 5 7 7 9 16 25 34 39	Ni ppm 9 11 13 16 21 28 39	Sb* ppm 0.5 0.5 1 1 2 2 4 6	Sb* ppm 0.5 1 1 2 3 4	U* ppm 0.5 0.6 0.7 0.9 1.3 1.8 2.6 3.0	U* ppm 1.0 1.1 1.2 1.4 1.9 2.33 2.8 3.43	Ba ppm 229 261 277 303 344 464 742 983	Ba ppm 221 251 278 304 379 518 786	Co ppm 5 7 8 9 14 23 29 32	Co ppm 10 12 12 15 18 25 29	Fe ₂ O ₃ WT % 1.38 1.50 1.66 2.05 3.12 4.68 5.76 6.80	Fe ₂ O ₃ WT % 2.45 2.74 2.95 3.29 4.06 5.08 6.18 7.22	WT % 0.038 0.046 0.052 0.062 0.099 0.208 0.303 0.352	MnO WT % 0.047 0.057 0.063 0.078 0.128 0.224 0.328 0.403	P ₂ O ₅ WT % 0.12 0.16 0.18 0.20 0.27 0.37 0.54 0.67	ppm 3 3 4 6 11 22 35	2 3 3 4 7 11 23	V ppm 31 33 36 42 57 74 99 111	ppm 41 45 48 52 63 75 102
5% 10% 15% 25% 50% 75% 90% 95%	MgO WT % 0.3 0.4 0.5 1.0 1.7 2.6 3.4 5.2	Ni ppm 5 7 7 9 16 25 34 39 54	Ni ppm 9 11 13 16 21 28 39 53	Sb* ppm 0.5 0.5 1 1 2 4 6 10.4	Sb* ppm 0.5 1 1 2 3 4 7 34.4	U* ppm 0.5 0.6 0.7 0.9 1.3 1.8 2.6 3.0 4.1	U* ppm 1.0 1.1 1.2 1.4 1.9 2.33 2.8 3.43 4.85	Ba ppm 229 261 277 303 344 464 742 983 2082	Ba ppm 221 251 278 304 379 518 786 1029 2877	Co ppm 5 7 8 9 14 23 29 32 49	Co ppm 10 12 12 15 18 25 29 35 59	Fe ₂ O ₃ WT % 1.38 1.50 1.66 2.05 3.12 4.68 5.76 6.80 8.34	Fe ₂ O ₃ WT % 2.45 2.74 2.95 3.29 4.06 5.08 6.18 7.22 12.88	WT % 0.038 0.046 0.052 0.062 0.099 0.208 0.303 0.352 0.491	MnO WT % 0.047 0.057 0.063 0.078 0.128 0.224 0.328 0.403 0.534	P ₂ O ₅ WT % 0.12 0.16 0.20 0.27 0.37 0.54 0.67 0.91	ppm 3 3 4 6 11 22 35 62	2 3 3 4 7 11 23 35 84	V ppm 31 33 36 42 57 74 99 111	ppm 41 45 48 52 63 75 102 126 175
5% 10% 15% 25% 50% 75% 90% 95% 99% Max	MgO WT % 0.3 0.4 0.5 1.0 1.7 2.6 3.4 5.2 7.0	Ni ppm 5 7 7 9 16 25 34 39 54	Ni ppm 9 11 13 16 21 28 39 53 144 564	Sb* ppm 0.5 0.5 1 1 2 2 4 6 10.4 35	Sb* ppm 0.5 1 1 1 2 3 4 7 34.4 79	U* ppm 0.5 0.6 0.7 0.9 1.3 1.8 2.6 3.0 4.1 4.7	U* ppm 1.0 1.1 1.2 1.4 1.9 2.33 2.8 3.43 4.85 5.5	Ba ppm 229 261 277 303 344 464 742 983 2082 4303	Ba ppm 221 251 278 304 379 518 786 1029 2877 9549	Co ppm 5 7 8 9 14 23 29 32 49 58	Co ppm 10 12 12 15 18 25 29 35 59 95	Fe ₂ O ₃ WT % 1.38 1.50 1.66 2.05 3.12 4.68 5.76 6.80 8.34 15.11	Fe ₂ O ₃ WT % 2.45 2.74 2.95 3.29 4.06 5.08 6.18 7.22 12.88 17.56	WT % 0.038 0.046 0.052 0.062 0.099 0.208 0.303 0.352 0.491 0.642	MnO WT % 0.047 0.057 0.063 0.078 0.128 0.224 0.328 0.403 0.534 1.261	P ₂ O ₅ WT % 0.12 0.16 0.18 0.20 0.27 0.37 0.54 0.67 0.91 1.21	ppm 3 3 4 6 11 22 35	ppm 2 3 3 4 7 11 23 35 84 536	V ppm 31 33 36 42 57 74 99 111 149 257	ppm 41 45 48 52 63 75 102 126 175 264
5% 10% 15% 25% 50% 75% 90% 95% 99% Max Min	MgO WT % 0.3 0.4 0.5 1.0 1.7 2.6 3.4 5.2 7.0	Ni ppm 5 7 7 9 16 25 34 39 54 102	Ni ppm 9 11 13 16 21 28 39 53 144 564	Sb* ppm 0.5 0.5 1 1 2 2 4 6 10.4 35 0.5	Sb* ppm 0.5 1 1 1 2 3 4 7 34.4 79 0.5	U* ppm 0.5 0.6 0.7 0.9 1.3 1.8 2.6 3.0 4.1 4.7 0.25	U* ppm 1.0 1.1 1.2 1.4 1.9 2.33 2.8 3.43 4.85 5.5 0.25	Ba ppm 229 261 277 303 344 464 742 983 2082 4303 146	Ba ppm 221 251 278 304 379 518 786 1029 2877 9549 125	Co ppm 5 7 8 9 14 23 29 32 49 58	Co ppm 10 12 15 18 25 29 35 59 95	Fe ₂ O ₃ WT % 1.38 1.50 1.66 2.05 3.12 4.68 5.76 6.80 8.34 15.11 0.77	Fe ₂ O ₃ WT % 2.45 2.74 2.95 3.29 4.06 5.08 6.18 7.22 12.88 17.56 1.85	WT % 0.038 0.046 0.052 0.062 0.099 0.208 0.303 0.352 0.491 0.642 0.022	MnO WT % 0.047 0.057 0.063 0.078 0.128 0.224 0.328 0.403 0.534 1.261 0.026	P ₂ O ₅ WT % 0.12 0.16 0.18 0.20 0.27 0.37 0.54 0.67 0.91 1.21 0.05	9pm 3 3 4 6 11 22 35 62 209	7 11 23 35 84 536	V ppm 31 33 36 42 57 74 99 111 149 257 24	ppm 41 45 48 52 63 75 102 126 175 264 33
5% 10% 15% 25% 50% 75% 90% 95% 99% Max	MgO WT % 0.3 0.4 0.5 1.0 1.7 2.6 3.4 5.2 7.0	Ni ppm 5 7 7 9 16 25 34 39 54	Ni ppm 9 11 13 16 21 28 39 53 144 564	Sb* ppm 0.5 0.5 1 1 2 2 4 6 10.4 35	Sb* ppm 0.5 1 1 1 2 3 4 7 34.4 79 0.5 3.2	U* ppm 0.5 0.6 0.7 0.9 1.3 1.8 2.6 3.0 4.1 4.7	U* ppm 1.0 1.1 1.2 1.4 1.9 2.33 2.8 3.43 4.85 5.5	Ba ppm 229 261 277 303 344 464 742 983 2082 4303	Ba ppm 221 251 278 304 379 518 786 1029 2877 9549	Co ppm 5 7 8 9 14 23 29 32 49 58	Co ppm 10 12 12 15 18 25 29 35 59 95	Fe ₂ O ₃ WT % 1.38 1.50 1.66 2.05 3.12 4.68 5.76 6.80 8.34 15.11	Fe ₂ O ₃ WT % 2.45 2.74 2.95 3.29 4.06 5.08 6.18 7.22 12.88 17.56	WT % 0.038 0.046 0.052 0.062 0.099 0.208 0.303 0.352 0.491 0.642	MnO WT % 0.047 0.057 0.063 0.078 0.128 0.224 0.328 0.403 0.534 1.261	P ₂ O ₅ WT % 0.12 0.16 0.18 0.20 0.27 0.37 0.54 0.67 0.91 1.21	ppm 3 3 4 6 11 22 35 62	ppm 2 3 3 4 7 11 23 35 84 536	V ppm 31 33 36 42 57 74 99 111 149 257	ppm 41 45 48 52 63 75 102 126 175 264

Surface soils in yellow. *Minimum value reported as half detection limit

Appendix C: Proportional symbol geochemical maps for Mansfield surface and profile soils

Aluminium (not determined in profile soils)

Antimony

Arsenic

Barium

Cadmium

Calcium

Chromium

Cobalt

Copper

Iron

Lead

Magnesium (not determined in profile soils)

Manganese

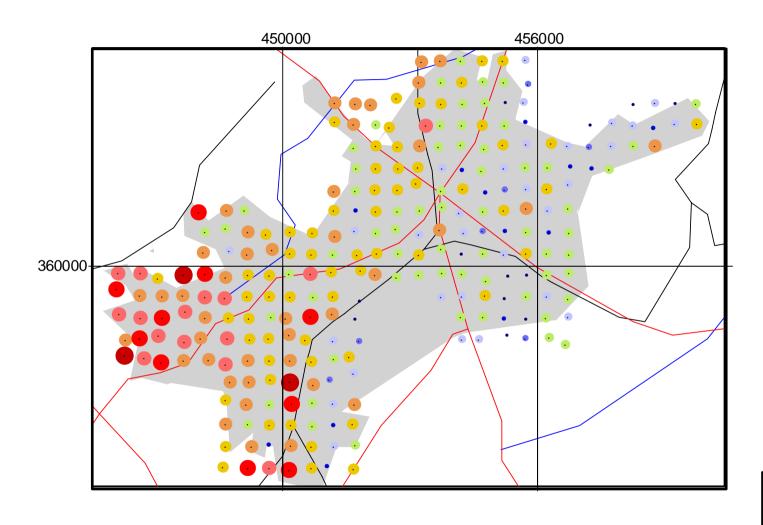
Molybdenum

Nickel

Phosphorous (not determined in profile soils)

Potassium (not determined in profile soils)

Silicon (not determined in profile soils)


Tin (not determined in profile soils)

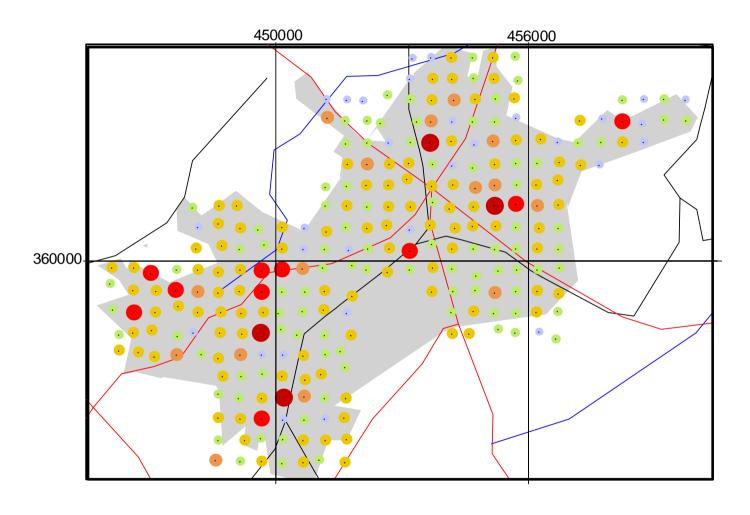
Titanium

Uranium

Vanadium

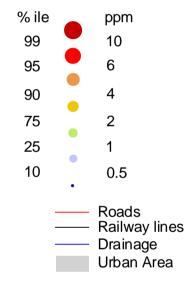
Zinc

Mansfield

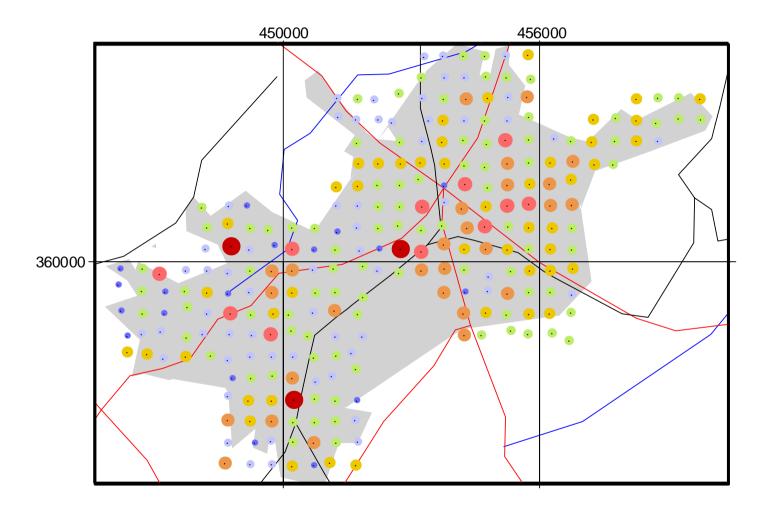

Surface Soils

Aluminium

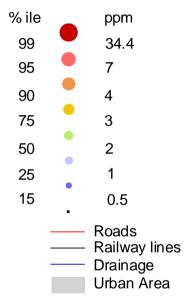
% ile	WT %
99	16.5
95	14.2
90	12.3
75	10.2
50	8.4
25	7.0
15	6.5
10	6.3
5	5.9
	RoadsRailway linesDrainageUrban Area


surface soil	Al ₂ O ₃ (%)
number	257
minimum	4.1
maximum	20.2
median	8.4
mean	8.9

Aluminium was not determined in the profile soils

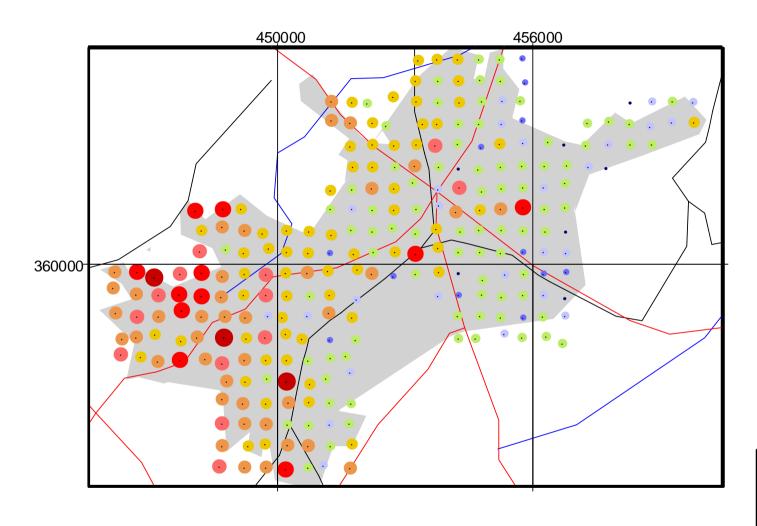

Mansfield Surface Soils

Antimony

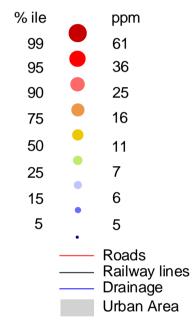


surface soil	Sb (ppm)
number	257
minimum	0.5*
maximum	35
median	2
mean	2.2

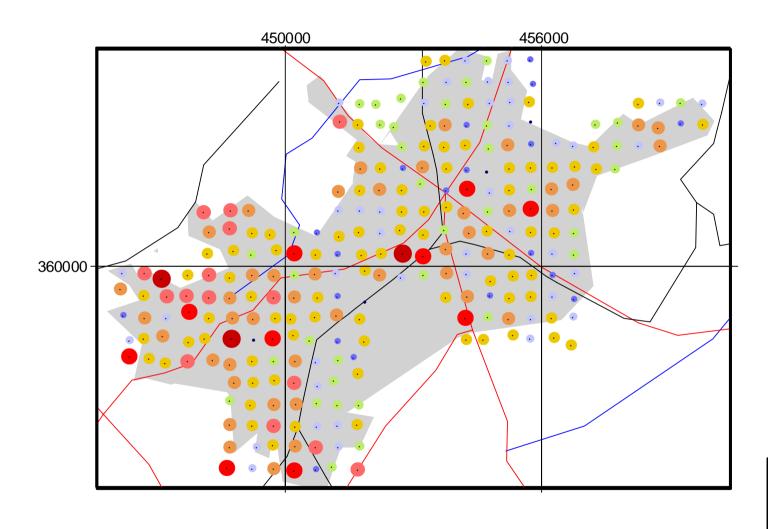
^{*} minimum value reported as half detection limit



Mansfield Profile Soils Antimony


profile soil	Sb (ppm)
number	256
minimum	0.5*
maximum	79
median	2
mean	3.2

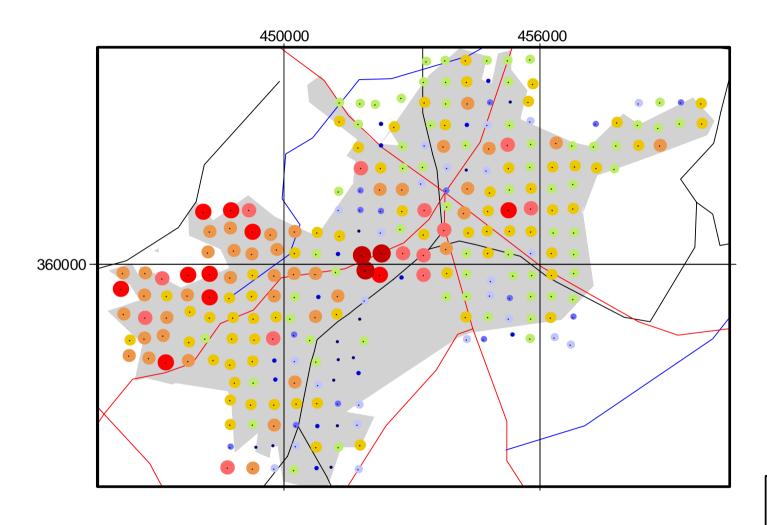
^{*} minimum value reported as half detection limit



Surface Soils

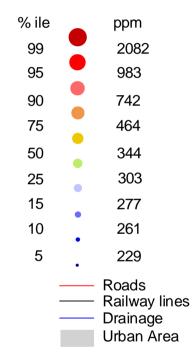
Arsenic

surface soil	As (ppm)
number	257
minimum	3
maximum	71
median	11
mean	14

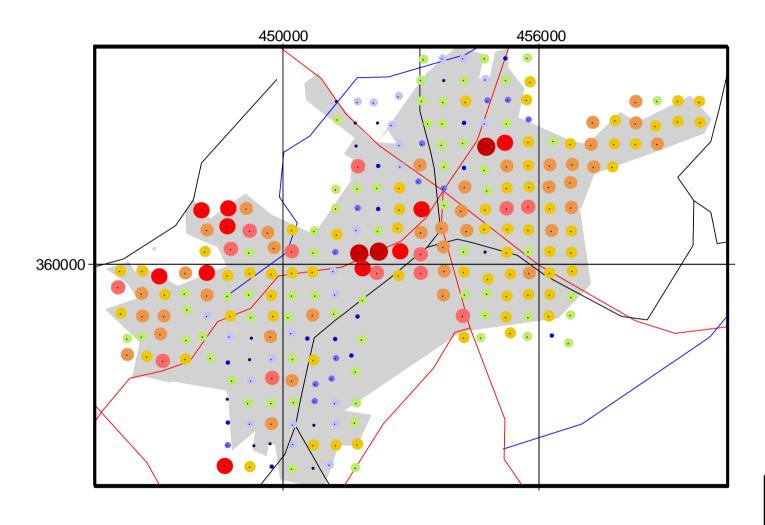


Profile Soils

Arsenic

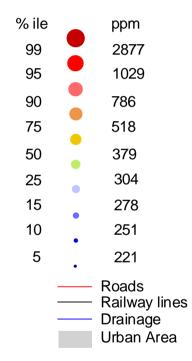


profile soil	As (ppm)
number	256
minimum	6
maximum	212
median	13
mean	17

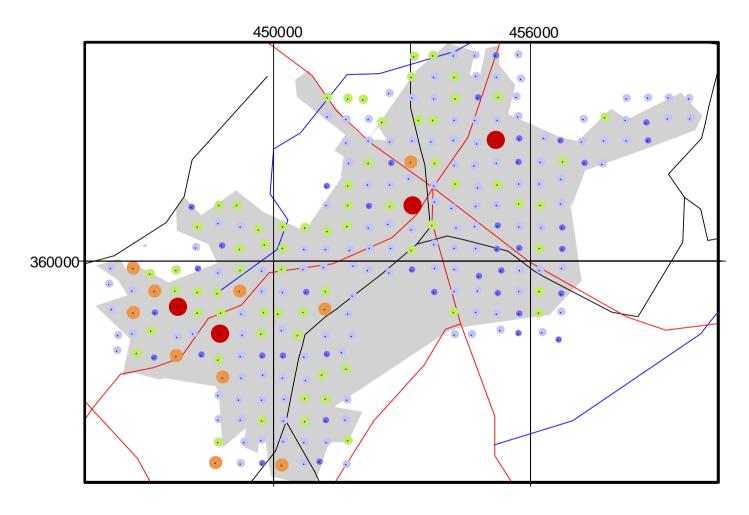


Mansfield Surface Soils

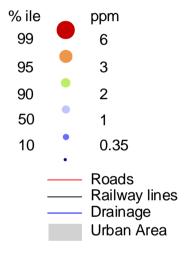
Barium



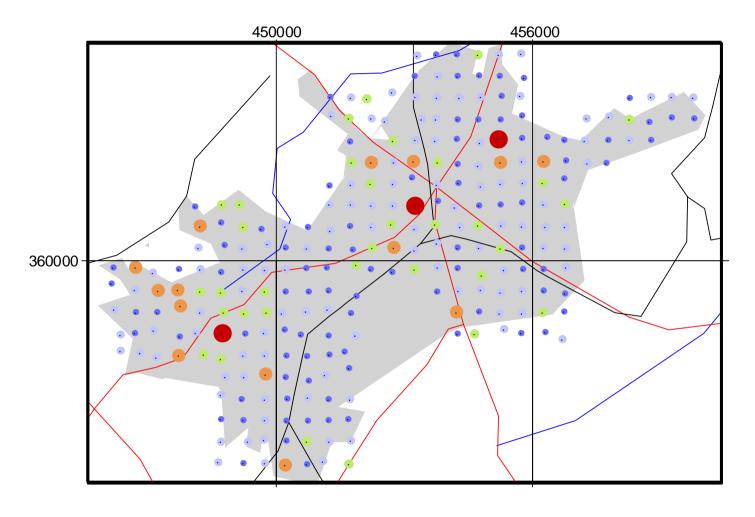
surface soil	Ba(ppm)
number	257
minimum	146
maximum	4303
median	344
mean	461



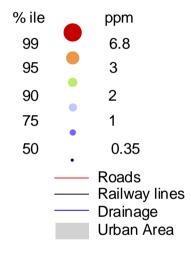
Profile Soils


Barium

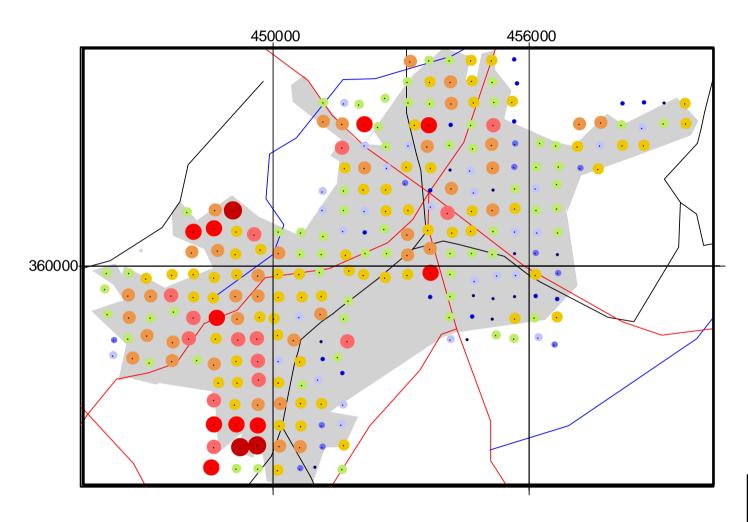
profile soil	Ba (ppm)
number	256
minimum	125
maximum	9549
median	379
mean	525



Mansfield Surface Soils Cadmium


surface soil	Cd(ppm)
number	257
minimum	0.35*
maximum	9
median	1
mean	1.34

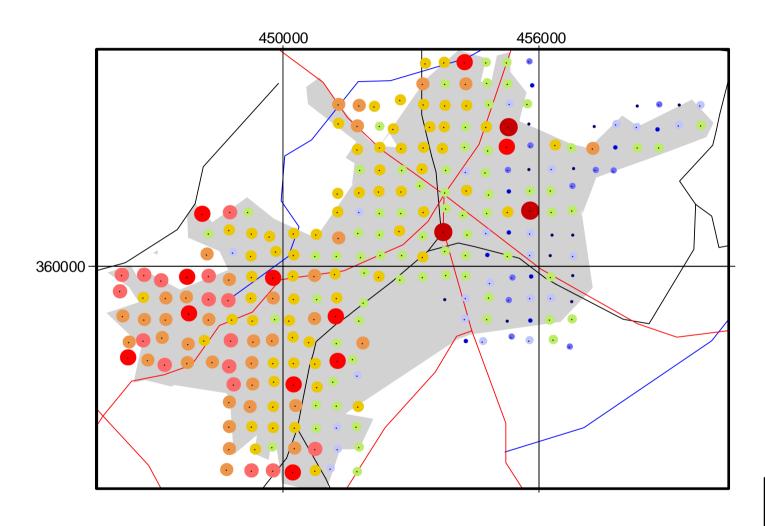
^{*} minimum value reported as half detection limit


Mansfield Profile Soils

Cadmium

profile soil	Cd(ppm)
number	256
minimum	0.35*
maximum	34
median	1
mean	1.21

^{*} minimum value reported as half detection limit

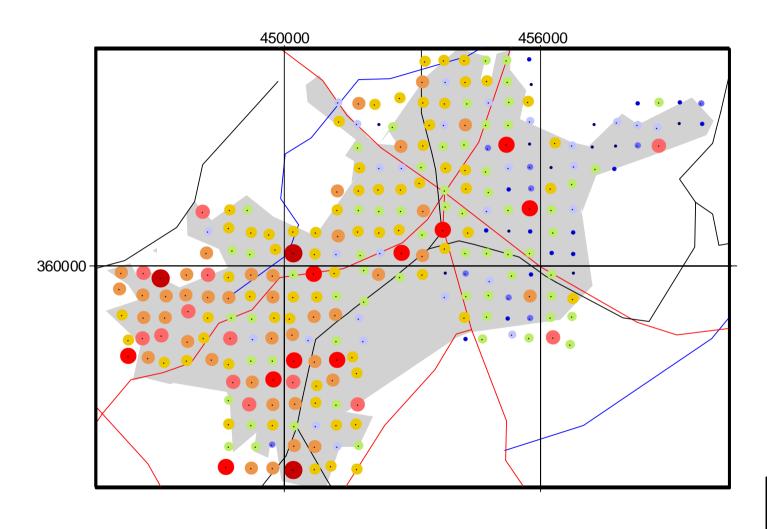

Surface Soils

Calcium

% ile	WT %
99	10.14
95	7.36
90	5.45
75	3.05
50	1.17
25	0.47
15	0.33
10	0.26
5	0.17
	RoadsRailway linesDrainageUrban Area

surface soil	CaO(%)
number	257
minimum	0.03
maximum	14.35
median	1.17
mean	2.17

Calcium was not determined in the profile soils

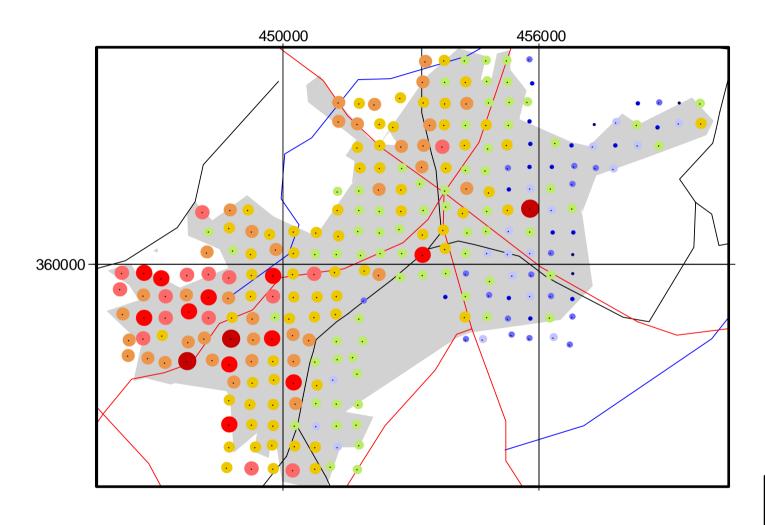


Surface Soils

Chromium

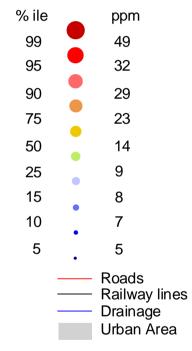
% ile	ppm
99	140
95	103
90	90
75	74
50	54
25	37
15	31
10	30
5	. 27
	RoadsRailway linesDrainageUrban Area

surface soil	Cr (ppm)
number	257
minimum	18
maximum	250
median	54
mean	59

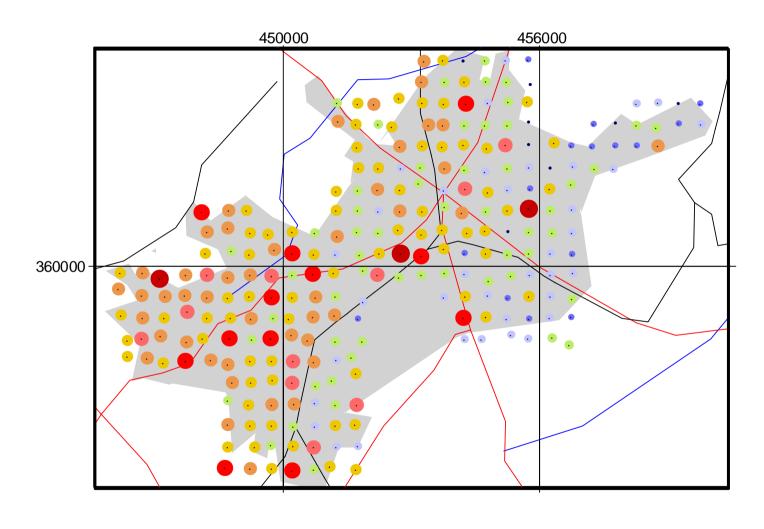


Profile Soils

Chromium

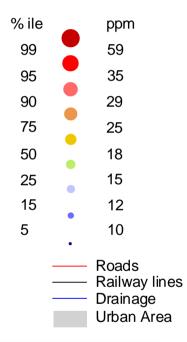

% ile	ppm
99	177
95	112
90	97
75	81
50	66
25	54
15	48
10	45
5	. 40
	RoadsRailway linesDrainageUrban Area

profile soil	Cr (ppm)
number	256
minimum	33
maximum	397
median	66
mean	71

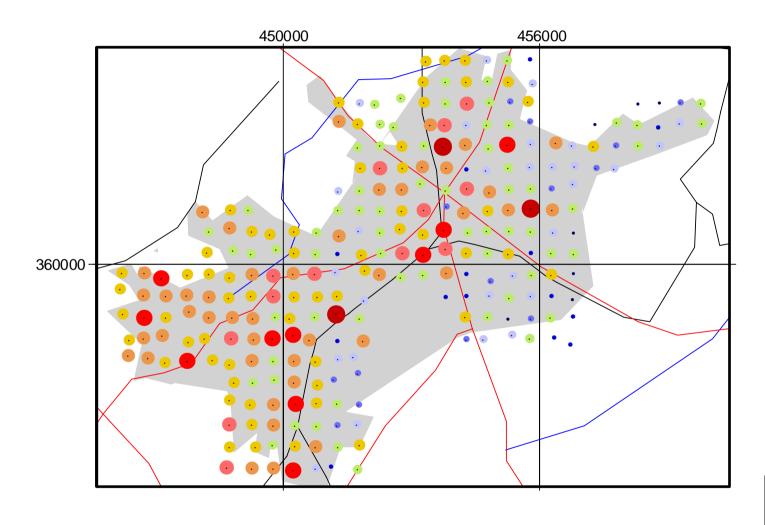


Mansfield Surface Soils

Cobalt

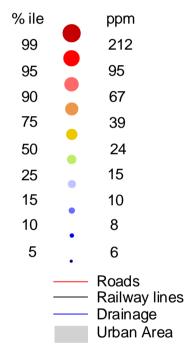


surface soil	Co(ppm)
number	257
minimum	3
maximum	58
median	14
mean	16

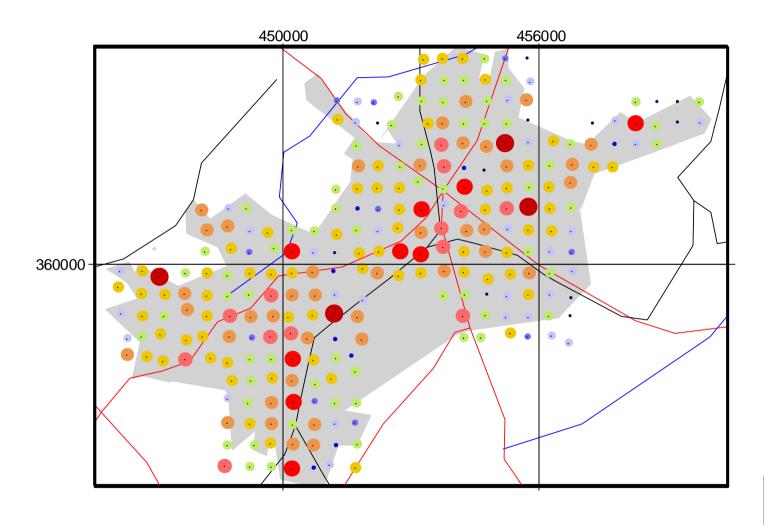


Profile Soils

Cobalt

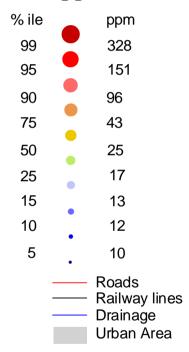


profile soil	Co (ppm)
number	256
minimum	8
maximum	95
median	18
mean	21

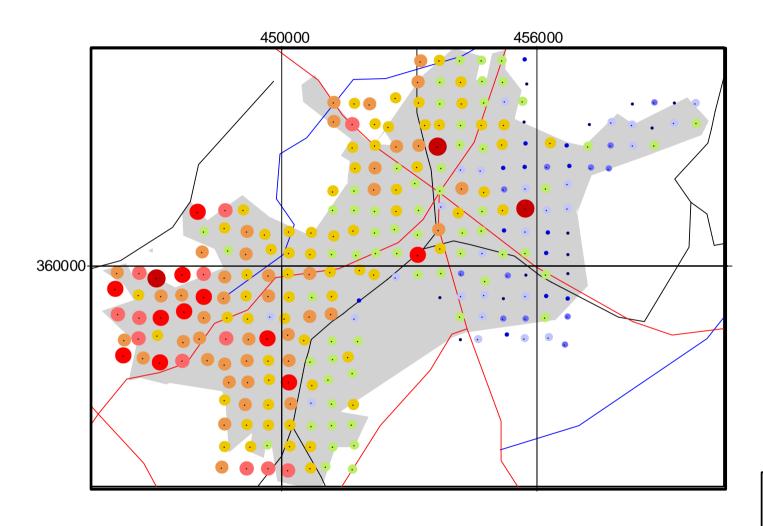


Surface Soils

Copper

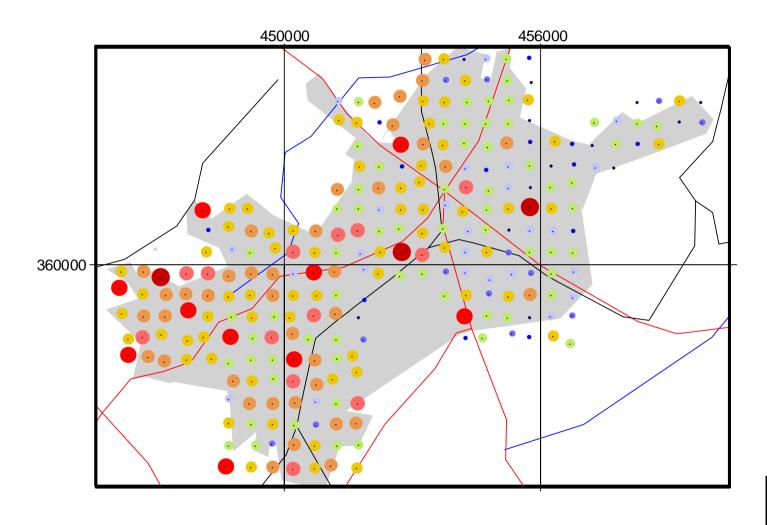


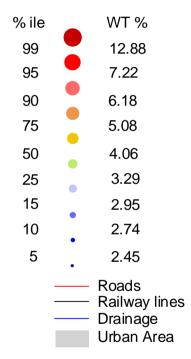
surface soil	Cu (ppm)
number	257
minimum	3
maximum	1731
median	24
mean	41



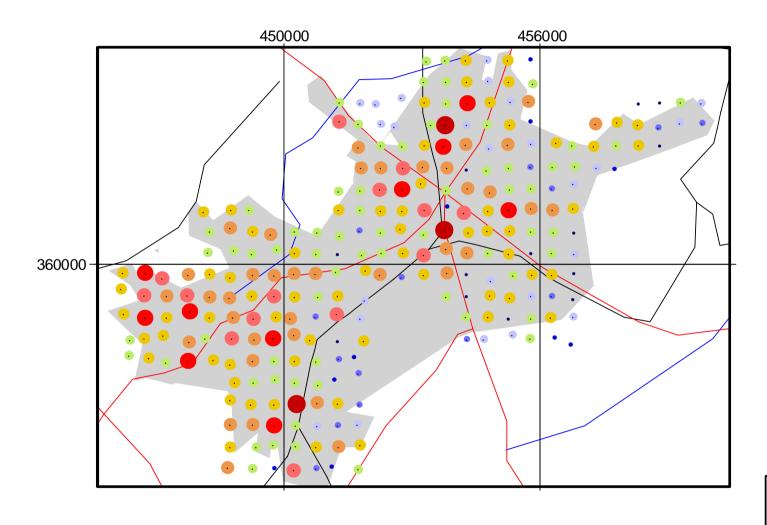
Profile Soils

Copper


profile soil	Cu (ppm)
number	256
minimum	5
maximum	595
median	25
mean	45

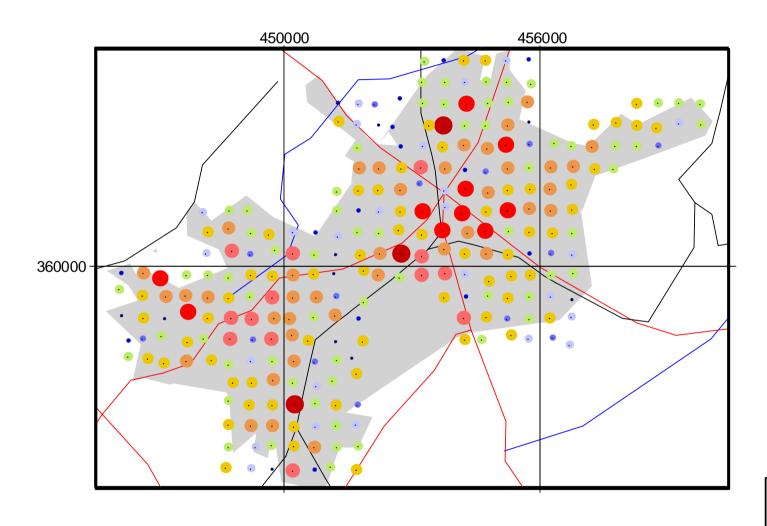

Surface Soils

Ir	on
% ile	WT %
99	8.34
95	6.80
90	5.76
75	4.68
50	3.12
25	2.05
15	1.66
10	1.50
5	1.38
=	RoadsRailway linesDrainageUrban Area


surface soil	Fe ₂ O ₃ (%)
number	257
minimum	0.77
maximum	15.11
median	3.12
mean	3.52

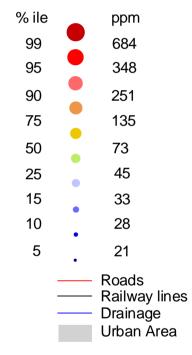
Profile Soils

profile soil	Fe ₂ O ₃ (%)
number	256
minimum	1.85
maximum	17.56
median	4.06
mean	4.42

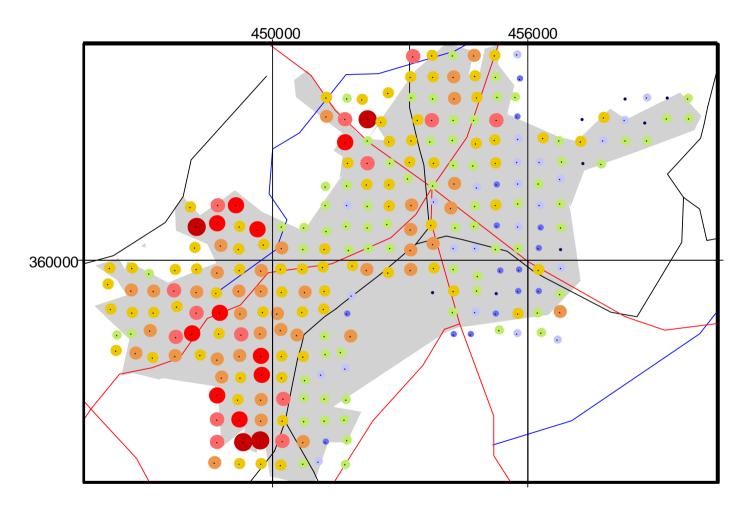


Mansfield Surface Soils

Lead


% ile	ppm
99	521
95	322
90	249
75	141
50	76
25	43
15	33
10	25
5	. 19
	RoadsRailway linesDrainageUrban Area

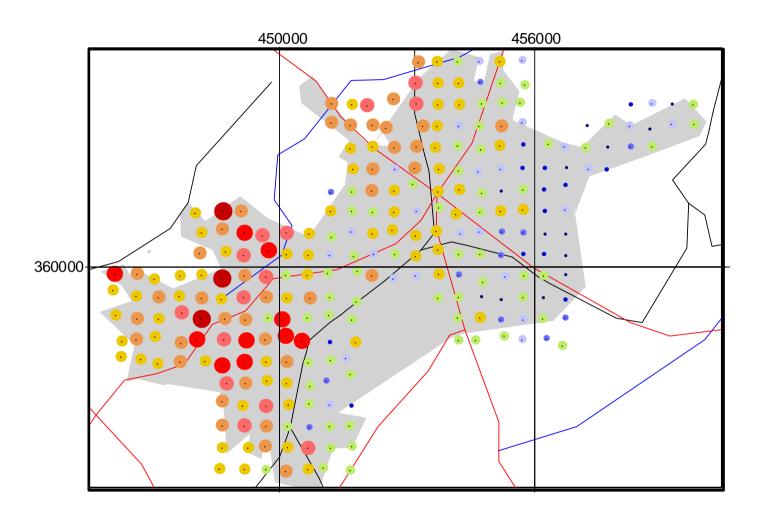
surface soil	Pb (ppm)
number	257
minimum	1
maximum	1319
median	76
mean	114



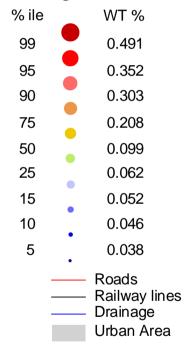
Profile Soils

Lead

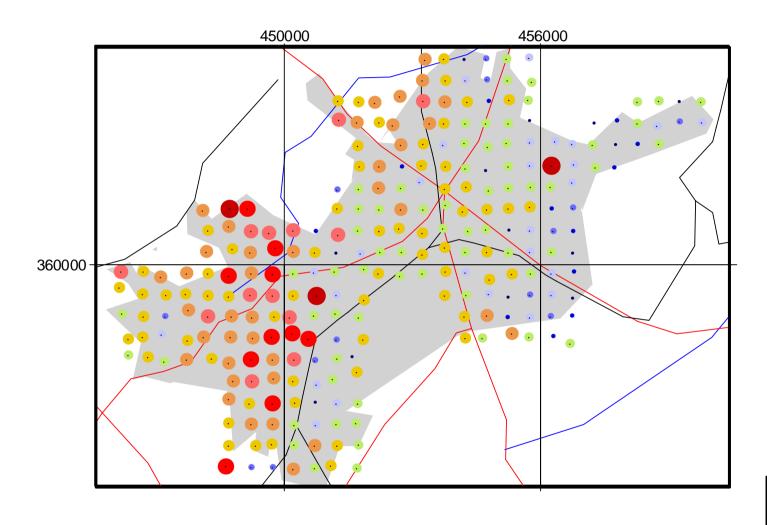
profile soil	Pb (ppm)
number	256
minimum	11
maximum	1500
median	73
mean	119


Surface Soils

Magnesium


surface soil	MgO(%)
number	257
minimum	0.1
maximum	7
median	1.0
mean	1.3

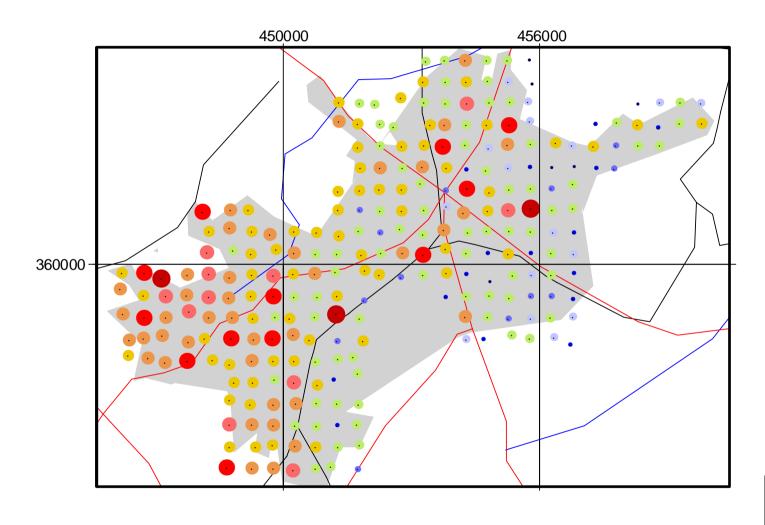
Magnesium was not determined in the profile soils.



Surface Soils

Manganese

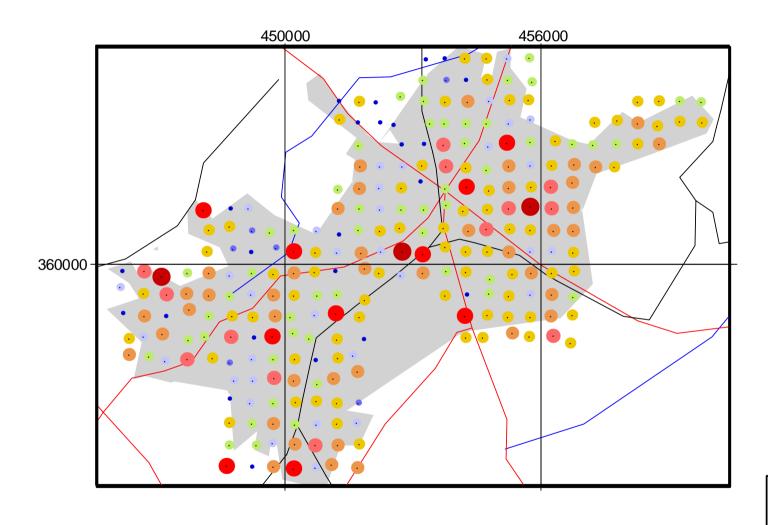
surface soil	MnO(%)
number	257
minimum	0.022
maximum	0.642
median	0.099
mean	0.144



Profile Soils

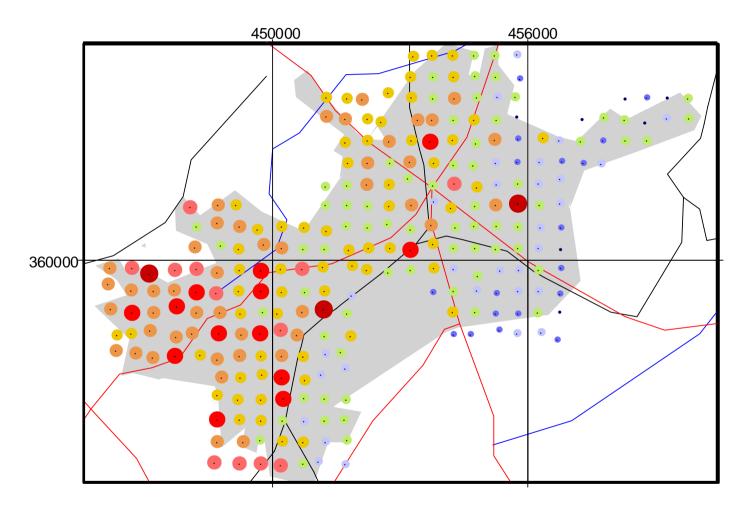
Manganese

WT %
0.534
0.403
0.328
0.224
0.128
0.078
0.063
0.057
0.047
RoadsRailway linesDrainageUrban Area

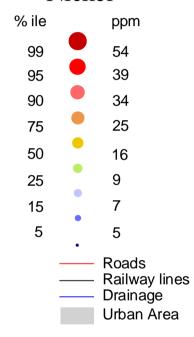

profile soil	MnO (%)
number	256
minimum	0.026
maximum	1.261
median	0.128
mean	0.168

Surface Soils Molybdenum

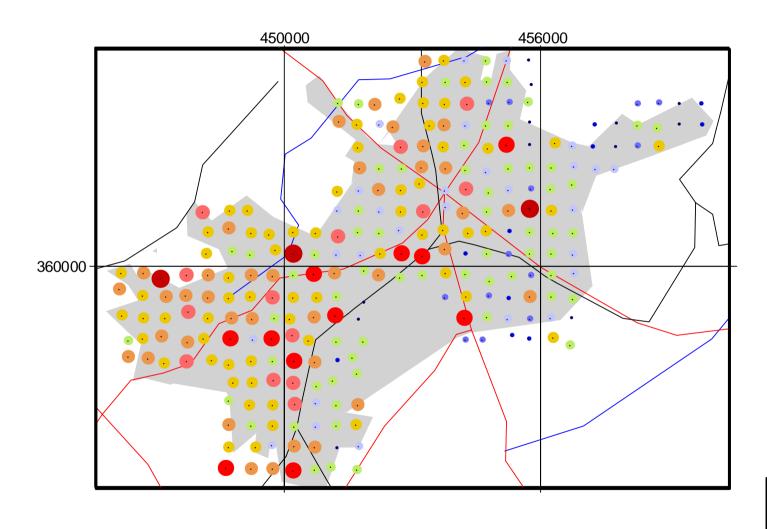
99 8.5 95 4.3 90 3.4 75 2.3 50 1.6 25 0.9 15 0.8 10 0.7 5 0.5 Roads Railway lines Drainage Urban Area	% ile	ppm
90 3.4 75 2.3 50 1.6 25 0.9 15 0.8 10 0.7 5 0.5 Roads Railway lines Drainage	99	8.5
75 2.3 50 1.6 25 0.9 15 0.8 10 0.7 5 0.5 Roads Railway lines Drainage	95	4.3
50 1.6 25 0.9 15 0.8 10 0.7 5 0.5 Roads Railway lines Drainage	90	3.4
50	75	
15 0.8 10 0.7 5 0.5	50	
10 0.7 5 0.5 — Roads — Railway lines — Drainage	25	0.9
5 0.5	15	0.8
Roads Railway lines Drainage	10	0.7
Railway linesDrainage	5	. 0.5
		Railway linesDrainage


surface soil	Mo (ppm)
number	257
minimum	0.15
maximum	14.0
median	1.6
mean	1.9

Profile Soils Molybdenum

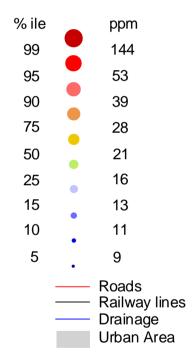

% ile	ppm
99	15.19
95	3.63
90	2.45
75	1.80
50	1.20
25	0.80
15	0.50
10	0.40
5	0.15

profile soil	Mo (ppm)
number	256
minimum	0.15
maximum	25.30
median	1.20
mean	1.71

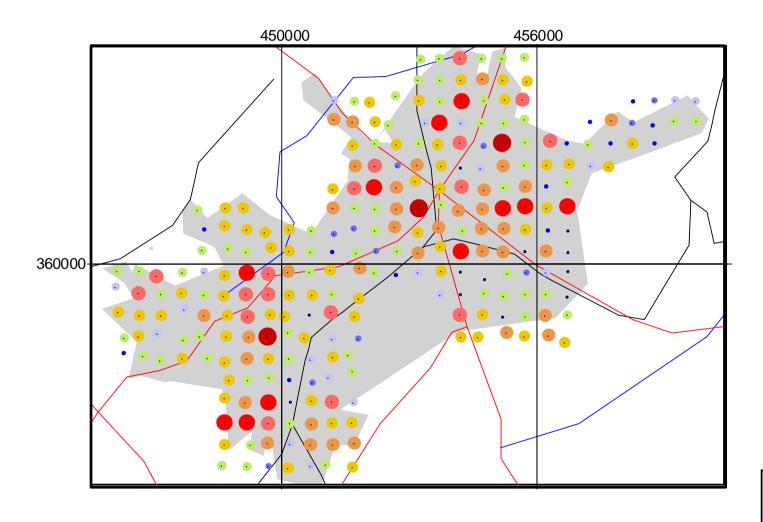


Surface Soils

Nickel

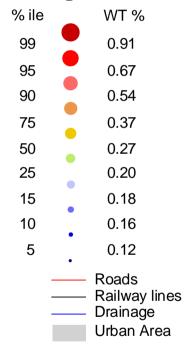


surface soil	Ni (ppm)
number	257
minimum	4
maximum	102
median	16
mean	19

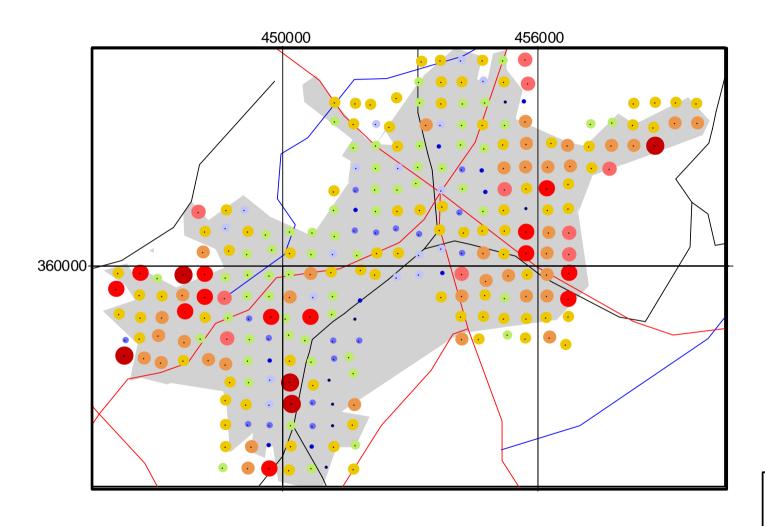


Profile Soils

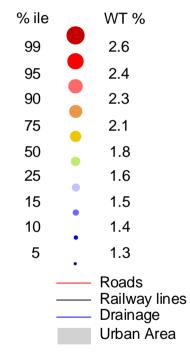
Nickel



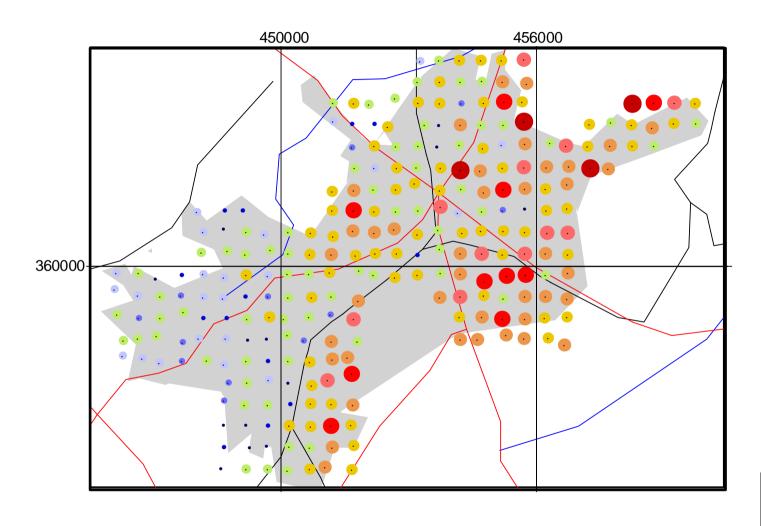
_profile soil	Ni (ppm)
number	256
minimum	5
maximum	564
median	21
mean	27


Surface Soils

Phosphorus


surface soil	P ₂ O ₅ (%)
number	257
minimum	0.05
maximum	1.21
median	0.27
mean	0.32

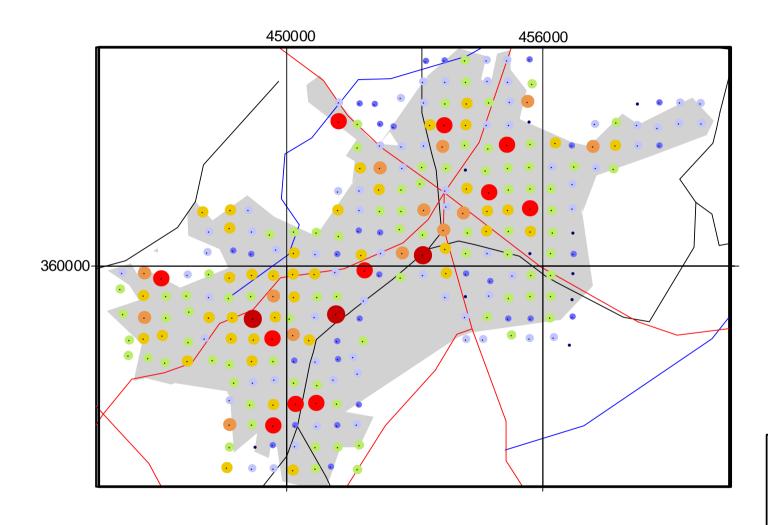
Phosphorus was not determined in the profile soils


Surface Soils

Potassium

surface soil	K ₂ O (%)
number	257
minimum	1.1
maximum	3.5
median	1.8
mean	1.8

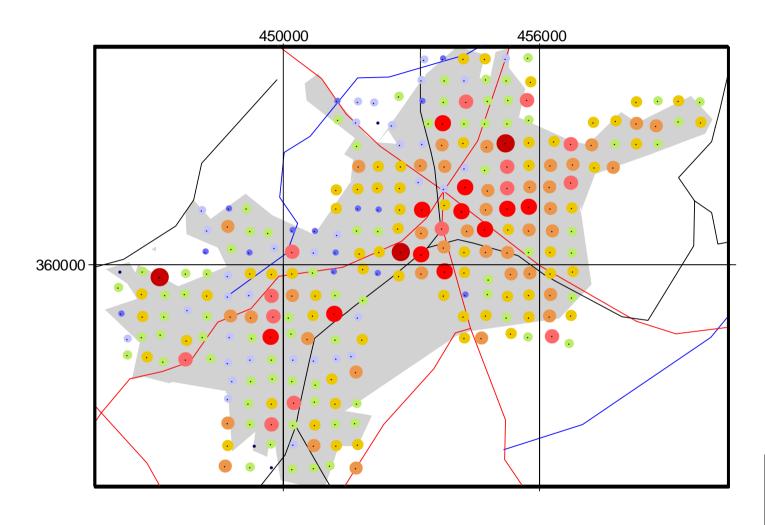
Potassium was not determined in the profile soils



Surface Soils Silicon

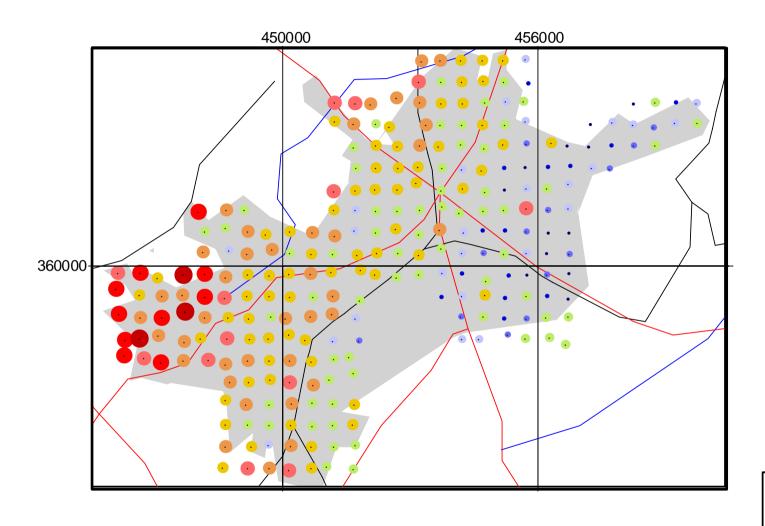
% ile	WT %
99	77.0
95	73.9
90	72.5
75	69.0
50	63.1
25	54.1
15	51.5
10	49.8
5	. 44.9
	RoadsRailway linesDrainageUrban Area

surface soil	SiO ₂ (%)
number	257
minimum	26.2
maximum	79.2
median	63.1
mean	61.5


Silicon was not determined in the profile soils

Surface Soils

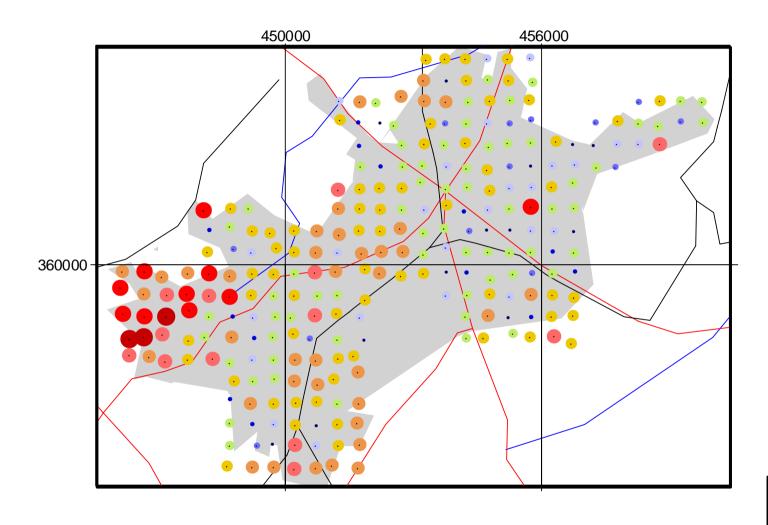
Tin	
ppm	
62	
35	
22	
11	
6	
4	
. 3	
—— Roads —— Railway lines —— Drainage Urban Area	3
	ppm 62 35 22 11 6 4 3 . Roads Railway lines Drainage


surface soil	Sn (ppm)
number	257
minimum	1
maximum	209
median	6
mean	11

Profile Soils

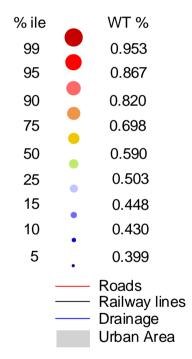
	Tin
% ile	ppm
99	84
95	35
90	23
75	11
50	7
25	4
15	3
5	. 2
	—— Roads —— Railway lines —— Drainage Urban Area

_profile soil	Sn (ppm)
number	256
minimum	1
maximum	536
median	7
mean	13

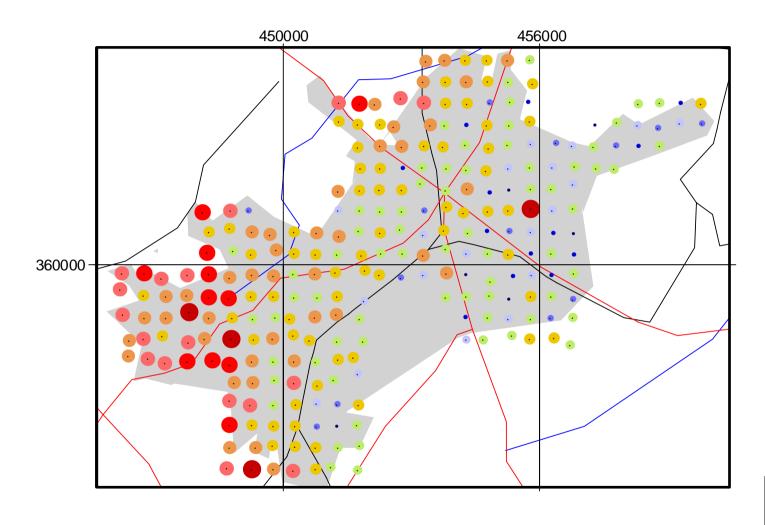


Surface Soils

Titanium


% ile	WT %
99	1.002
95	0.906
90	0.770
75	0.606
50	0.457
25	0.321
15	0.269
10	0.244
5	0.209
	RoadsRailway linesDrainageUrban Area

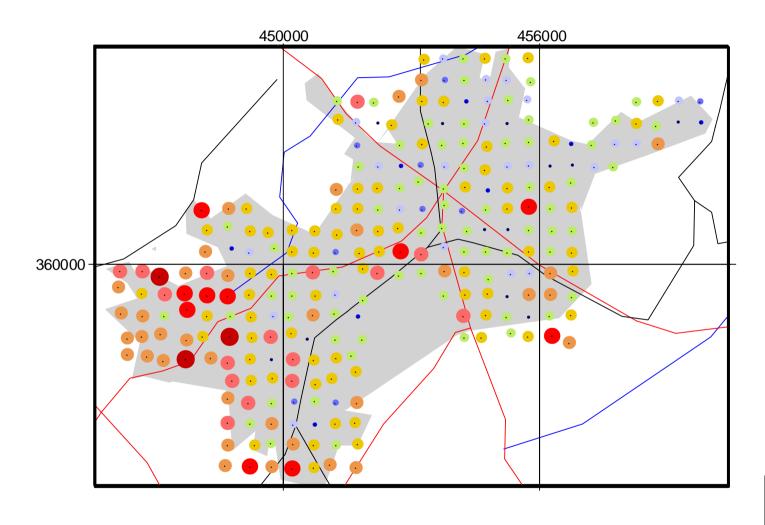
surface soil	TiO ₂ (%)
number	257
minimum	0.158
maximum	1.116
median	0.457
mean	0.484



Profile Soils

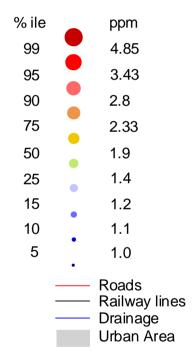
Titanium

profile soil	TiO ₂ (%)
number	256
minimum	0.244
maximum	1.045
median	0.590
mean	0.605

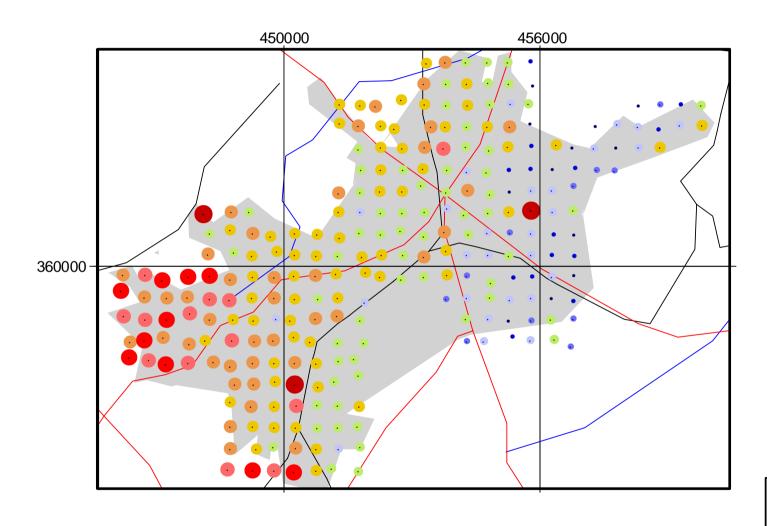


Mansfield Surface Soils Uranium

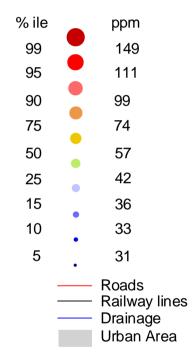
% ile		ppm
99		4.14
95		3.0
90		2.6
75		1.8
50	•	1.3
25		0.9
15		0.74
10	•	0.6
5	•	0.5
		Roads Railway lines Drainage Urban Area


profile soil	U(ppm)
number	256
minimum	0.25*
maximum	4.7
median	1.3
mean	1.48

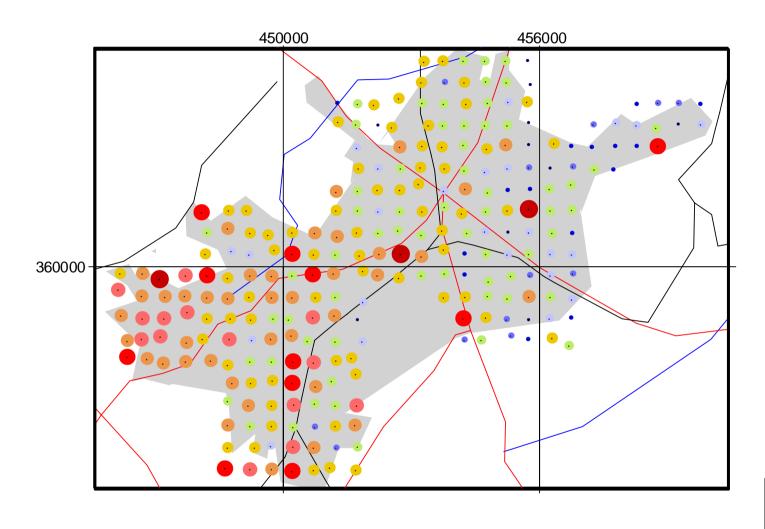
^{*} minimum value reported as half detection limit


Mansfield Profile Soils

Uranium


_profile soil	U (ppm)
number	256
minimum	0.25*
maximum	5.5
median	1.9
mean	1.95

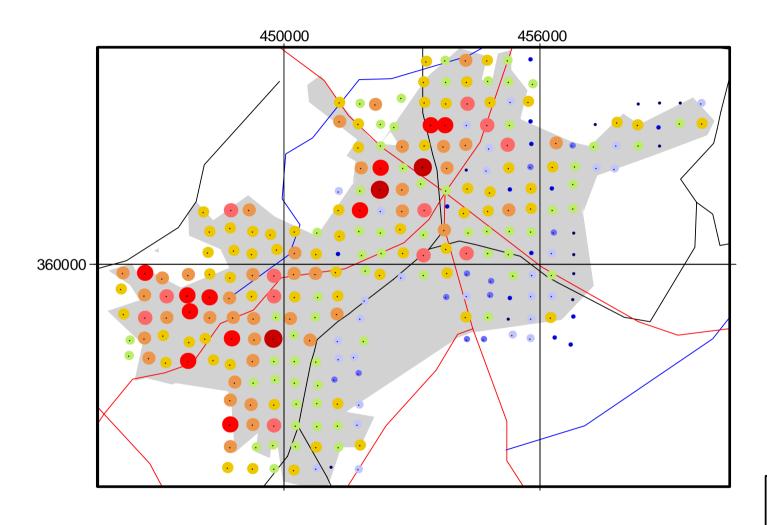
^{*} minimum value reported as half detection limit



Surface Soils

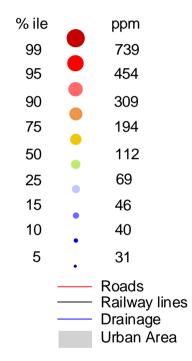
Vanadium

surface soil	V (ppm)
number	257
minimum	24
maximum	257
median	57
mean	62

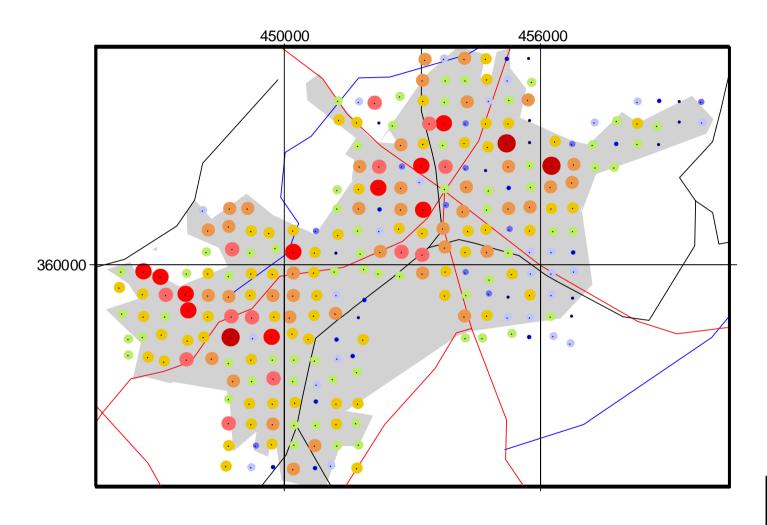


Profile Soils

Vanadium

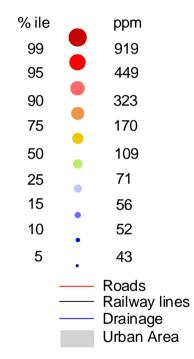

% ile	ppm
99	175
95	126
90	102
75	75
50	63
25	52
15	48
10	45
5	. 41
	RoadsRailway linesDrainageUrban Area

profile soil	V (ppm)
number	256
minimum	33
maximum	264
median	63
mean	70



Surface Soils

Zinc



surface soil	Zn (ppm)
number	257
minimum	13
maximum	1153
median	24
mean	41

Profile Soils

Zinc

_profile soil	Zn(ppm)
number	256
minimum	22
maximum	4126
median	109
mean	172