ih
 Hydrological data UK

1995 YEARBOOK

INSTITUTE OF HYDROLOGY•BRITISH GEOLOGICAL SURVEY

HYDROLOGICAL DATA UNITED KINGDOM

1995
 YEARBOOK

Published by the Institute of Hydrology, Wallingford, Oxon OX10 8BB

ISBN 0948540788

Editor Hydrological data UK series : T J Marsh

Assistant Editor: S Green

The acquisition, archiving and validation of the bulk of the hydrological data featured in this Yearbook is undertaken as part of the National Water Archive (NWA) project at the Institute of Hydrology. Supervision of the data acquisition and liaison with the measuring authorities is coordinated by M L Lees (NWA Manager). R Scarrott, J Carr and F J Sanderson collated and checked the datasets featured in this Yearbook. and assisted with the preparation of figures and tables. J M Dixon acted as the regional representative for Northern Ireland.

The style and contents of the Yearbook, and the scope of the data retrieval service which complements it, reflects more than a decade of archive system development supervised by D G Morris. Recent enhancements to the retrieval and data presentation facilities have largely been undertaken by O Swain and $\mathbf{R W}$ Flavin.

The British Geological Survey is responsible for the acquisition and archiving of the featured groundwater level data. The Groundwater Level Archive is managed by A A McKenzie; data acquisition and measuring authority liaison duties are undertaken by P Doorgakant.

Preparation of the text was undertaken by H J Turner and S Black (who supervises the sale and distribution of the Hydrological data UK publications through the National Water Archive Office at the Institute of Hydrology).

Design: P A Benoist

Graphics: J J Carr
Typeset and printed in the United Kingdom by Wace Journals (formerly Burgess).
The materials used in the production of this volume are made from the pulp of softwood trees in managed Scandinavian forests, in which every tree cut down is replaced by at least one more, thus replenishing the Earth's resources.

Cover: Stocks Reservoir (north-west England), August 1995
Photograph: Mark Robinson

HYDROLOGICAL DATA UNITED KINGDOM

1995 YEARBOOK

An account of
rainfall, river flows, groundwater
levels and river water quality
January to December 1995

FOREWORD

Floods and droughts in the UK do not pose the threat to lives and livelihoods that they do in many parts of the world. Nonetheless, the impact of hitherto very atypical climatic conditions over the last decade has underlined our continuing vulnerability to unusual weather patterns. Stimulated by the recent protracted periods of alternately very wet or very dry conditions, and by speculation concerning the impact of climate change in the UK, public and scientific interest in hydrological issues has never been greater. Correspondingly, demand for hydrological information and hydrometric data is also at an unprecedented level. The principal aim of the Hydrological data UK series - and the National Water Archive project of which it is a major component - is to increase accessibility both to validated records of river flows and groundwater level data and to the associated information and expertise necessary to exploit the basic data effectively.

The Hydrological data UK series was launched jointly by the Institute of Hydrology and the British Geological Survey in 1983. Over the ensuing period 20 Yearbooks and reports have been published. These, together with the data retrieval facilities of the National River Flow Archive (NRFA) and the National Groundwater Level Archives (NGLA) provide a comprehensive data and information dissemination service. In order to further increase the utility of this service, and to address the needs of a broadening spectrum of users, a review of the structure and contents of the Hydrological data $U K$ series has recently been completed. As a result, future Yearbook material and datasets will be released through the Internet whilst maintaining a comprehensive data retrieval service and a continuing publication programme. Details of the new arrangements are given on page 3.

It is appropriate therefore, in this, the last paper Yearbook of its kind, to pay tribute to the many organisations and individuals who have contributed to establishing the Hydrological data UK series as one of the most authoritative in the world. The value of such publications is heavily dependent on the quality of the data they contain. The nature of UK rivers places a premium on high standards of gauging station maintenance and hydrometric data acquisition procedures. Equally, the increasingly pervasive influence of man on river regimes and groundwater level behaviour underlines the need to capitalise on spatial and reference information in order to exploit fully the basic hydrometric data. By harnessing developments in information technology to the more traditional virtues of national archive stewardship, the Institute of Hydrology and British Geological Survey will continue to ensure that NRFA and NGLA - important national resources in their own right - will contribute fully to meeting the water management challenges of the 21 st century.

Dr 9.S. Wallace
Director, Institute of Hydrology

CONTENTS

Page
INTRODUCTION 1
SCOPE AND SOURCES OF INFORMATION 2
Rainfall and climatological data 2
HYPROLOGICAL DATA UK SERIES - The future 3
HYDROLOGICAL REVIEW OF 1995 5
Summary 5
Rainfall 9
Evaporation and soil moisture deficits 11
Runoff 13
Groundwater 20
1995 Hydrological Diary 23
THE 1995 DROUGHT 25
RIVER FLOW DATA 35
Computation and accuracy of gauged flows 35
Scope of the flow data tabulations 35
Gauging station location map 42
Daily flow tables 44
Monthly flow tables 94
THE NATIONAL RIVER FLOW ARCHIVE DATA RETRIEVAL SERVICE 135
The National Water Archive 135
List of surface water retrieval options 137
Concise Register of Gauging Stations 139
GROUNDWATER LEVEL DATA 145
Background 145
The observation borehole network 145
Measurement and recording of groundwater levels 145
Index borehole location map 147
Observation well hydrographs 1991-95 148
Register of selected groundwater observation wells 148
Network changes 148
Hydrographs of groundwater level fluctuations 150
The Register 154
THE NATIONAL GROUNDWATER LEVEL ARCHIVE DATA RETRIEVAL SERVICE 157
List of groundwater retrieval options 158
SURFACE WATER QUALITY DATA 159
Background 159
Data retrieval 160
Scope of the water quality data tabulations 160
Water quality data tables 162
List of Harmonised Monitoring Stations 170
DIRECTORY OF MEASURING AUTHORITIES 172
PUBLICATIONS in the Hydrological data UK series 174
ABBREVIATIONS 176

The 1995 Yearbook is the seventh edition since responsibility for the publication of data, upon which assessments of water resources in England and Wales may be made, was transferred (under the Water Act 1989) from the Department of the Environment to the National Rivers Authority (now the Environment Agency). It is the fifteenth Yearbook in the Hydrological data UK series and the final volume in the third five-year publication cycle (1991-95).

The 1995 Yearbook represents the thirty-sixth edition in the series of surface water publications which began with the 1935-36 Surface Water Yearbook. As a result of the incorporation of groundwater data in the Yearbook, this volume is also the twentieth edition in the series of groundwater data publications which began with the 1964-66 Groundwater Yearbook.

Apart from summary information, river flow and groundwater level data were published separately on a national basis prior to the introduction of the Hydrological data UK series. In common with the earlier editions, the 1995 Yearbook brings together the principal data sets relating to river flow, groundwater levels and areal rainfall throughout the United Kingdom. Also included are water quality data for a selection of monitoring sites throughout the UK. A comprehensive hydrological review of the year is included together with a feature article which examines the intense 1995 drought conditions in the context of the atypical weather patterns experienced over the recent past.

An outline description is given of the National River Flow and Groundwater Level Archives and the data retrieval facilities which complement them. Introductory details are also provided of the range of facilities and datasets available through the National Water Archive - one of the Natural Environment Research : Council's (NERC) Designated Data Centres.

Publication of river flow data for Great Britain started with the series of Surface Water Yearbooks. The first edition, which was published in 1938 for the water-year (October-September) 1935-36, also included selected data for the previous fifteen years; the edition for 1936-37 followed in 1939. Both these publications were prepared under the direction of the Inland Water Survey Committee. Assisted by the Scottish Office, the Committee continued to publish hydrological data after the Second World War; the Yearbook for the period 1937-45 was published as a single volume in 1952. Due to economic stringency, the Survey was suspended in 1952 for a period of two years but was then reformed as the Surface Water Survey Centre of Great Britain. A Yearbook covering the years 1945-53 was published in 1955.

In 1964 the Survey was transferred to the Water Resources Board where it remained until the Board was disbanded in 1974. The work of collecting and
publishing surface water information in England and Wales then passed to the newly created Water Data Unit of the Department of the Environment (DoE). Yearbooks were published jointly each year by these organisations and the Scottish Office for ${ }_{4}$ the water years 1953-54 to 1965-66; thereafter information for the five calendar years 1966 to 1970 was published in one volume in 1974. Following editions were renamed 'Surface Water: United Kingdom' to mark the inclusion of the first records from Northern Ireland and in recognition of the move away from single year volumes. Two volumes of Surface Water: United Kingdom, covering the years 1971-73 and 1974-76 were published jointly by the Water Data Unit, the Scottish Development Department (now The Scottish Office Environment Department) and the Department of the Environment for Northern Ireland (now The Environment and Heritage Service).

Following the transfer of the Surface Water Archive to the NERC in 1982, the final edition of Surface Water: United Kingdom, for the years 1977-80, was prepared by the Institute of Hydrology at the request of the W ater Directorate of the Department of the Environment, and published in 1983.

The 1981 and 1982 Yearbooks were prepared concurrently and were, in 1985, the first Yearbooks published by the Natural Environment Research Council. Further Yearbooks - the editions for 1983 to 1994 - were published over the following ten years.

A compilation of 'Groundwater levels in England during 1963' produced by the Geological Survey of Great Britain (prior to its incorporation into the Institute of Geological Sciences), was the precursor to the publication of groundwater level data on a national basis. The more formal Groundwater Yearbook series was instigated by the Water Resources Board which published the inaugural edition, and a further volume for 1967, both covering England and Wales. In 1975 a third Yearbook, for 1968-70, was published by the Water Data Unit. The Groundwater: United Kingdom series was introduced in 1978 with the production of the 1971-73 volume, also published by the Water Data Unit.

Following the transfer of the Groundwater Archive to the Institute of Geological Sciences (now the British Geological Survey), the second edition of Groundwater: United Kingdom, covering the period 1974-80, was prepared by the Institute of Hydrology at the request of the Water Directorate of the Department of the Environment. Subsequently, groundwater level data have been included in the Hydrological data UK publications.

Water quality tables, a selection from the Harmonised Monitoring Scheme network, were first published in the Yearbook for 1986 and routinely thereafter.

The format of the 1995 Yearbook follows that of the recent editions in the Hydrological data UK series. The Hydrological Review examines rainfall, evaporation, soil moisture, river flow and groundwater conditions throughout the year. The following data sections provide detailed coverage for the featured year and, for comparison purposes, period of record reference statistics are also given.

Emphasis is placed upon ready access to basic data both within the Yearbook and through the complementary data retrieval facilities.

A companion publication to the individual Yearbooks - the 'Hydrometric Register and Statistics' volume - provides a comprehensive reference source for hydrometric information which does not change materially from year to year; the second edition, for 1986-90 (see page 174), was published in 1992 and the 1991-95 edition will be published early in 1997.

The Yearbook contents have been abstracted primarily from the National River Flow Archive and National Groundwater Level Archive. Water quality data for Great Britain have been provided from the Harmonised Monitoring Archive which is currently maintained by the Environment Protection Statistics Division of the Department of the Environment (DoE). Similar data for Northern Ireland have been provided by the Environment and Heritage Service of the Department of the Environment (NI).

Until April 1996, responsibility for the initial collection and processing of most river flow and groundwater level data rested with the National Rivers Authority in England and Wales, and the seven River Purification Boards in Scotland; thence responsibility transferred to the Environment

Agency and the Scottish Environment Protection Agency respectively (see page 172). Following the 1989 Water Act, the new Water Service PLCs assumed responsibility for a small number of important monitoring sites for which historical - and a few contemporary - data sets are held on the National River Flow and Groundwater Level Archives. In Northern Ireland responsibility is shared currently between the Departments of Environment (NI) and Agriculture. The above organisations also supplied valuable material relating to significant hydrological events during 1995. Additional hydrometric material has been provided by water supply companies, various research bodies and public undertakings.

The majority of the rainfall data, and some of the material incorporated in the Hydrological Review, has been provided by the Meteorological Office. For historical comparisons of the rainfall over England and Wales, a data set based upon the homogeneous series derived by the Climatic Research Unit of the University of East Anglia has been used.

Most of the rainfall data published in the Hydrological data UK series are in the form of monthly rainfall totals for catchment areas (see page 37). The Met. Office (address below) can provide details of the availability of daily and monthly rainfall data associated with individual raingauges. Brief details of the rainfall and other climatological data sets published by the Met. Office, are given below.

The Natural Environment Research Council acknowledges and extends its appreciation to all who have assisted in the collection of information for this publication.

Rainfall and Climatological Data

The Meteorological Office maintains the national archives of rainfall and climatological data at its headquarters at Bracknell. Specific rainfall data such as daily and hourly rainfalls from gauges and radar, other climatological data and details of other services and publications may be obtained from the address opposite:

MORECS (Meteorological Office Rainfall and Evapotranspiration Calculation System). This is a weekly issue of maps and tables of rainfall, evapotranspiration, soil moisture deficit, effective rainfall, and the meteorological variables used to calculate them. The data are used to provide values for 40 km squares and various sets of maps and tables are available according to customer requirements. Enquiries to (01344) 856858.

Met. Office Commercial Services Rainfall Section Johnson House
London Road
BRACKNELL RG12 2SY
Tel: (01344) 856849
Fax: (01344) 854906

UK weather information can now be found on the Met. Office Web Site:
http://www.meto.gov.uk/
The site provides a range of free weather information and details of subscription services. Available products include inland and international forecasts, pressure charts, satellite images and weather reports from around the UK.

THE HYDROLOGICAL DATA UK SERIES - The future

Background

The 60-year history of hydrological Yearbook publication in the UK has seen many changes in style, format and content to match the perceived needs of the sponsoring organisations and the wider audience for basic hydrometric information.

The first Surface Water Yearbook, that for the 1935/36 water-year (October-September) contained monthly data for 28 gauging stations spread very unevenly throughout Great Britain. Thirty years later, the 1963/64 edition again featured only monthly figures but included data for over 340 stations. A compendium edition for the years 1966-70 represented a major departure: it consisted, principally, of a register of UK gauging stations together with details of the recently developed national data retrieval service which capitalised on the newly-created computer archive of daily river flow data. An increasing emphasis on computerbased data retrieval facilities over the ensuing two decades was accompanied by a reduction in the amount of raw data presented in individual Yearbooks. However, the introduction of the Hydrological data UK series (in 1983) saw a return to the presentation of basic data - both daily and monthly for a representative selection of monitoring sites. For the first time, nationally-archived data relating to river flow, groundwater levels and, beginning with the 1986 edition, river water quality were brought together in a single Yearbook format. In order to provide reference and statistical information relating to all national surface water and groundwater level monitoring sites the five-yearly Hydrometric Register and Statistics volumes were introduced in 1988 (see page 174).

Over the last decade, usage of the national hydrometric archives has grown by more than an order of magnitude and an increasing proportion of data retrievals have utilised magnetic media or, more recently, electronic data transfer. Large volumes of data are now routinely transferred over the Internet as a rapidly growing community of archive users capitalise on the accessibility it provides (see page 135).

The opportunities afforded by advances in information technology prompted the circulation of a questionnaire with the 1994 Yearbook to gauge the future requirements of the user community. A majority of those responding endorsed the continuing need for the dissemination of nationally archived hydrological data but supported the view that technological change was making traditional publication and data dissemination methods obsolete. In considering the results of this exercise it was recognised that some existing and some potential
users of publications in the Hydrological data UK series would not have access to Internet facilities or, for particular applications, would prefer hard copy documentation of hydrological conditions in the UK.

Following the completion of the user consultation exercise, the structure of the Hydrological data UK series was reviewed with the objective of ensuring that nationally archived datasets achieve a greater degree of accessibility than hitherto and that validated datasets are made available in a more timely manner. Accordingly, it was decided that publication of Yearbooks in their traditional form will be discontinued. They will be superseded by the release, of representative daily and monthly flow series - and groundwater level data - via the Internet. The future publication and data dissemination programme of the National Water Archive (NWA) can be expected to include:

- The Hydrometric Register and Statistics publication issued at five-yearly intervals - these reference volumes will incorporate a review of hydrological conditions over the featured timespan
- The monthly Hydrological Summaries for Great Britain
- The release over the Internet of an annual summary of hydrological conditions together with river flow and groundwater level data for a representative network of UK gauging stations and boreholes
- Documentation of notable hydrological events
- Continuation and extension of the comprehensive data retrieval services associated with the National River Flow Archive (NRFA) and National Groundwater Level Archives (NGLA).
In addition, a CD-ROM of NRFA data is scheduled for release in the spring of 1997; over 25000 station years of daily and monthly flow data for more than 800 gauging stations will be included. The latest information on the range of data and information dissemination services available through the Na tional Water Archive may be obtained via the NWA Web Site:
http://www.nwl.ac.uk/~nrfadata/nwa.html
Detailed guidance relating to the availability of groundwater data and hydrogeological information may be obtained via the British Geological Survey's Web Site:
http://www.nkw.nw.uk/bgs/index.html
Any enquiries regarding the future contents of the Hydrological data UK series can be addressed to the National Water Archive Office (see page 135) or be Emailed to: nwamail@ioh.ac.uk

Summary

The major hydrological feature of 1995 was a dramatic transformation from an exceptionally wet winter to severe and widespread drought conditions by the late summer. There are few, if any, modern parallels to the rapid deterioration in the water resources outlook from the early spring. 1995 was the seventh warmest year in the 337-year Central England Temperature (CET) series ${ }^{1}$ and record evaporative demands contributed to the rapid decline in runoff and recharge rates. Substantial stress on water supplies was experienced through the summer half-year and, again, as drought conditions re-intensified following a wet September. Apart from severe floodplain inundation in north-east Scotland during September there were few outstanding flood events in 1995. Very low river flows typified the late summer and runoff rates in most regions remained depressed over much of the latter half of the year. Groundwater resources were exceptionally healthy at the end of the 1994/95 winter and thereafter helped to mitigate the impact of the drought. By year-end, however, water-tables had declined very substantially - generally to well below average levels.

The start of the year was dominated by the passage of a succession of active frontal systems, mostly on a mild, south-westerly airstream. Nationwide, January and February were the wettest months of the year and, in many regions, rainfall over the two months constituted more than 30% of the annual total - rising to greater than 40% in parts of Wales. From mid-March a rapid decline in the frequency of Atlantic frontal systems triggered the development of rainfall deficiencies in all regions. Generally these increased through the spring and summer, were moderated in September, and increased again through the late autumn. The overall effect of the very unusual distribution of rainfall through the year was to produce 1995 rainfall totals close to the 1961-90 average for the UK as a whole - but appreciably below average for England and Wales. In the April-August timeframe rainfall deficiencies were outstanding in almost all regions. The 5 -month rainfall total was the lowest for the UK in a record from 1900. More remarkably, it is the driest 5 -month sequence in the 229 -year England and Wales series (further details are given on page 27). The dramatic contrast between the winter rainfall and that for the following summer half-year is consistent with the exaggerated seasonal contrasts that have been a feature of UK climate patterns in the recent past. However, the marked accentuation in the north-west to south-east rainfall gradient also a persistent characteristic over the previous decade - was barely detectable in 1995 when the lowest percentage rainfall totals, for the year, were
found in a broad belt across central and northern England.

Persistent northerly airflows towards year-end produced very cold conditions, with significant snowfall. Prior to this cold interlude, monthly temperature anomalies were consistently high, typically in the $0.5^{\circ}-1.0^{\circ} \mathrm{C}$ range. The high temperatures and very notable sunshine hour totals ensured that evaporation demands were well above average throughout most of 1995. Correspondingly, many areas established new annual maximum potential evaporation (PE) totals. Throughout the greater part of the UK, PE totals were more than 15% above average, continuing the sequence of years with well above average evaporative demands. Actual evaporation (AE) losses presented a more complex and less regionally coherent picture. In a few, mostly western areas, annual AE losses for 1995 were also unprecedented. More generally however, the exceptionally high soil moisture deficits through the summer inhibited transpiration rates and, in parts of the eastern lowlands, 1995 AE totals were similar to the minima established in the drought years of 1976 and 1990.

One consequence of the elevated evaporation demands was that catchments generating runoff totals substantially above the 1961-90 average were limited in geographical extent. Annual average river flows in 1995 were mostly within the normal range but monthly and daily flows showed very marked departures from the seasonal average. Runoff was abundant early in the year and, as in 1994, many record monthly runoff totals were established in January and February. However, recessions through the spring and summer were steep and protracted in most regions. As a result the August runoff totals established new monthly minima in a significant proportion of catchments (see page 18). The autumn seasonal recovery was notably weak throughout most of Britain and accumulated runoff totals - for periods in excess of four months - were amongst the lowest on record by year-end.

In most major aquifers, the 1987-94 period was one of exceptional variability in groundwater resources. This volatile phase continued through 1995 when, as with runoff, aquifer recharge rates departed markedly from the seasonal norm. Water-tables remained at very healthy levels throughout most of 1993 and 1994; heavy recharge over the 1994/95 winter then boosted groundwater levels to close to their seasonal maxima. From late-March infiltration rates declined steeply and in some eastern areas there was virtually no recharge thereafter. The overall water-table fall during 1995 was outstanding in many aquifers, matched in much of the Chalk over the last 50 years only by the declines in 1990 and 1975. However, the 1995 recessions commenced from such high spring peaks that most summer levels

Figure 1 Annual rainfall in 1995 as a percentage of the 1961-90 average
Data source: The Meteorological Office

Figure 2 Annual rainfall in 1995

TABLE 1995 RAINFALL IN MM AND AS A PERCENTAGE OF THE 1961-90 AVERAGE

1995													D	Year	Oct- Mar	Apr- Sep
United	mm	182	144	94	41	61	30	57	18	139	120	101	73	1060	804	346
Kingdom	\%	165	189	104	63	85	42	78	20	140	109	92	65	98	132	73
England and	mm	161	115	67	27	49	23	40	10	113	58	83	84	830	668	262
Wales	\%	183	183	93	45	77	35	65	13	147	68	92	89	93	136	65
Scotland	mm	227	205	143	67	84	43	86	34	198	228	126	55	1496	1086	512
	\%	150	201	114	88	98	50	91	29	139	146	83	36	104	130	85
Northern	mm	151	122	109	37	53	32	78	13	84	173	150	64	1066	691	297
Ireland	\%	136	156	124	58	75	45	116	14	86	153	146	62	101	116	64
North West	mm	208	165	107	28	65	39	65	18	97	105	76	42	1015	946	312
	$\%$	172	212	113	39	87	48	76	17	84	82	62	34	84	141	58\%
Northumbria	mm	121	108	59	38	53	30	29	12	111	57	118	79	815	580	273
	\%	144	183	84	68	85	50	45	15	152	75	137	98	96	127	69
Severn-Trent	mm	131	89	51	20	49	13	35	9	94	39	65	81	676	527	220
:	\%	187	165	84	36	83	22	66	13	147	61	92	105	90	133	62
Yorkshire	mm	133	100	65	27	44	23	29	9	96	29	65	70	690	583	228
	$\%$	168	172	96	46	73	38	49	12	141	40	81	84	84	132	60
Anglian	mm	98	62.	51	16	30	25	25	8	101	15	42	69	542	372	205
	\%	196	168	109	35	63	49	51	15	206	29	72	125	91	125	69
Thames	mm	137	82	51	18	37	16	31	4	117	34	64	96	687	501	223
	\%	214	182	91	36	66	29	63	7	198	55	98	137	100	138	68
Southern	mm	163	112	59	18	23	20	31	5	140	33	65	95	764	641	237
	\%	204	207	94	34	43	37	65	9	203	41	76	116	98	144	71
Wessex	mm	184	111	57	35	53	14	26	10	144	68	124	104	930	702	282
	\%	211	171	81	66	87	25	50	15	200	86	149	112	111	147	78
South West	mm	233	165	93	50	55	19	47	16	136	104	134	126	1178	972	323
	\%	169	163	94	72	76	28	68	19	146	90°	107	91	100	135	71
Welsh	mm	238	182	88	37	77	27	69	14	125	115	133	103	1208	1036	349
	$\%$	166	188	82	46	94	34	90	14	109	84	94	67	92	133	65
Highland	mm	299	271	177	97	89	47	101	45	251	246	160	48	1831	1336	630
	\%	159	213	109	.107	97	48	95	35	147	124	79	24	104	124	92
North East	mm	134	83	74	68	80	53	45	27	297	103	100	70	1134	560	570
	\%	135	128	95	113	116	80	62	31	341	106	101	75	117	105	129
Tay	mm	184	185	110	39	96	32	67	20	178	220	120	68	1319	944	432
	\%	128	195	101	63	116	44	87	21	156	169	99	54	107	130	86
Forth	mm	154	171	92	35	71	31	70	21	136	199	90	54	1124	851	364
	\%	131	216	98	59	96	45	93	22	124	173	80	49	101	136	76
Clyde	mm	257	251	196	66	83	44	125	40	$138{ }^{\circ}$	324	119	47	1690	1343	496
	\%	136	213	133	79	91	47	115	30	77	168	66	26	100	133	72
Tweed	mm	129	109	75	36	65	35	43	23	123	134	97	64	933	684	325
	\%	129	163	95	. 63	92	54	59	26	138	141	104	69	96	130	73
Solway	mm	222	173	145	40	84	44	79	23	102	249	113	52	1326	1087	372
	\%	142	171	124	52	99	52	88	19	71	159	78	35	93	132	62
Western Isles	mm	210	169	180	68	63	33	87	47	135	200	133	82	1407	1019	433
Orkney and Shetland	\%	167	201	178	110	107	54	124	55	113	149	101	64	121	145	95

remained within the normal range; only when the onset of normal autumn recovery was substantially delayed in most areas did water-tables decline to seasonally depressed levels.

The historically very unusual mix of hydrological conditions experienced in 1995 and over the recent past, including: record evaporative demands, a more distinct partitioning of rainfall between the winter and summer, and exaggerated seasonal contrasts in runoff and recharge rates displayed a broad but incomplete consistency with a number of favoured climate change scenarios.

Rainfall

Figure 1 shows 1995 rainfall expressed as a percentage of the 1961-90 average for the UK; Figure 2 maps the actual totals. Modest positive rainfall anomalies typify most of Scotland, north of the Borders, but annual rainfall totals greater than 120% of the 1961-90 average were restricted to parts of the north-east (largely the result of a very wet September). A similarly wet year was experienced in some central southern and south-western areas of England. By contrast, rainfall was well below average in a broad zone encompassing most of central Britain. Maximum annual rainfall deficiencies - exceeding 30% - can be found in districts close to the southern Pennine divide; this had important implications for water resources in 1995.

Figure 2 serves to emphasise that drought severity reflects departures from the average rather than the absolute amount of rainfall. Comparison with Figure 1 illustrates that the maximum annual deficiencies, in percentage terms, were found in some of the normally wetter regions of the country (e.g. parts of North Wales and the Pennines). The map of actual 1995 rainfall totals reveals the normal close association with relief but not the exaggerated contrast between the western uplands and the eastern lowlands which has been a common feature of the recent past. As usual, maximum annual rainfall totals occurred in the Scottish Highlands but in 1995 the area enclosed by the 2000 mm isohyet was smaller than in many recent years. Nonetheless; several raingauges recorded over 3500 mm . Conversely, large parts of the East Midlands registered annual totals of below 500 mm .

Table 1 lists the annual, half-yearly and monthly actual and percentage rainfall totals for the major administrative divisions of the water industry (as in 1995); the original 10 regions of the National Rivers Authority (now the Environment Agency) have been retained to maintain a consistency with earlier Yearbooks and allow better spatial differentiation.

With the exception of northern Scotland and northern England all regions recorded 1995 rainfall totals within about 10% of the 1961-90 average. For Scotland, the January-December total was only a
little above the mean but 1995 continued a notable cluster of relatively wet years; only in 1988 has below average rainfall been recorded in the last 19 years*. The highest accumulated rainfall totals for sequences of 12 months or more all end in the 1990 s and rainfall over the 1989-95 period has been around 12% greater than the 1961-90 mean. Principally, this persistent anomaly is a consequence of a number of outstandingly wet winters - five of the highest December-February precipitation totals have been in the post-1988 period.

This tendency towards wetter winters has been coupled with an increased frequency of below average summer rainfall, especially in the east. Notwithstanding the wet September, the summer half-year in 1995 was the driest for Scotland since 1984. The winter/summer contrast was equally marked in Northern Ireland: the winter was the third wettest in a series from 1900 (1993/94 was wetter) and the June-August rainfall total was the second lowest on record. A longer historical perspective is available for England and Wales and, again, the distribution of rainfall over the 1994/95 period was very unusual: the ratio of the winter half-year rainfall to that of the following summer half-year is 2.6, the highest in the entire 229-year national series, approached only by 1989/90. The more distinct partitioning of annual rainfall totals in the recent past is explored further on pages 30 to 31 .

The UK climate entered a particularly wet phase over the latter half of 1992 and with weather patterns again dominated by active Atlantic frontal systems, the 1994/95 winter (December-February) produced rainfall totals more than 50% above average in many regions. New maximum winter rainfall totals were established for the majority of catchments on the National River Flow Archive. Following three successive wet winters, long term accumulated rainfall totals in early 1995 were also the highest, or close to the highest, on record in many catchments. Boosted by January and February rainfall totals, which exceeded twice the 1961-90 average in each month in parts of southern England, 24 -month and 30month periods ending in February 1995 were the wettest this century for England and Wales.

The mild, wet conditions continued until late March. April began a sequence of dry, or relatively dry, months that was to last to the end of the year in parts of northern England, and to September in other regions. May like April was a warm month but less dry, nonetheless rainfall totals were significantly below the long term mean in most regions. The third wettest winter on record for England and Wales was followed by the third driest spring since 1976. Thereafter, high temperatures and very limited rainfall led to a rapid intensification in drought conditions. Over much of England rainfall was below

[^0]TABLE 2 DAILY RAINFALLS IN 1995 WITH RETURN PERIODS EQUAL TO OR EXCEEDING 50 YEARS

Date (Rain-day)	Raingauge Number	Name	County/Region	Grid Reference	Amount (0,0)	Return Period*
10.07.95	544145	Glan-Yr-Afon Farm	Gwynedd	SJ025425	77.0	60
02.08.95	492010	Cowbridge, S.wks	South Glamorgan	SS997737	80.0	60
02.08.95	492325	Rhoose	South Glamorgan	ST066677	85.3	100
02.08 .95	492326	Rhoose Met. Office SSER	South Glamorgan	ST066678	85.4	100
01.09 .95	824396	Dipple	Grampian	NJ331584	68.5	60
02.09.95	856988	Montrose Harbour	Tayside	NO709567	76.6	120
07.09.95	64425	Cawood	North Yorkshire	SE561372	66.8	60
07.09 .95	784613	Oldtown	Highland	NH596896	72.8	90
07.09.95	785171	Morangie	Highland	NH760832	60.8	60
07.09.95	826789	Lumsden, Boghead Farm	Grampian	NJ482224	81.8	80
07.09.95	838226	Cushnie, Westfield	Grampian	NJ528072	80.0	70
07.09.95	847427	Inchmarlo	Grampian	NO672967	72.2	50
07.09.95	847846	Strachan, Glendye Filter St. No. 2	Grampian	NO652937	76.7	60
07.09 .95	850201	Netherley	Grampian	NO855928	88.3	140
07.09 .95	848960	Midmar, Bethlin	Grampian	NJ688073	78.0	70
09.09 .95	821305	Tomintoul, St Micheal's Centre	Grampian	NJ169184	78.2	60
10.09 .95	268991	Priors Court	Berkshire	SU487739	72.2	70
11.09 .95	811394	Kinloss Met. Office	Grampian	NJ067627	68.9	100
11.09 .95	811540	Lossiemouth Met. Office	Grampian	NJ213699	76.7	200
11.09 .95	811541	Lossiemouth Met.Office SAMOS P	Grampian	NJ213699	76.5	190
11.09 .95	812566	Elgin, Kirkhill	Grampian	NJ249628	66.5	60
11.09 .95	812785	Newton No. 2	Grampian	NJ160636	79.0	150
11.09 .95	824396	Dipple	Grampian	NJ331584	66.6	50
11.09 .95	824978	Rochomic Resr	Grampian	NJ441633	90.3	180
11.09 .95	825489	Bogmuchalls	Grampian	NJ537584	80.1	100
11.09 .95	827441	Huntly S. wks	Grampian	NJ535403	78.1	80
11.09 .95	827515	Avochie House	Grampian	NJ533465	89.0	130
11.09 .95	830566	Banff, Golf Course	Grampian	NJ690635	70.1	120
11.09 .95	825663	Boyndie, Scotsmill	Grampian	NJ610655	71.8	140
11.09 .95	836445	Potterton	Grampian	NJ942151	75.8	50
16.10 .95	725398	Skye: Edinbane No. 2	Highland	NG348506	89.8	60
15.11.95	953020	Broughsbane Filters	Antrim, N Ireland	ID164089	84.2	150
15.11 .95	953598	Lowtown	Antrim, N Ireland	ID279999	86.2	70
15.11 .95	953635	Killylane Resr	Antrim, N Ireland	ID284983	86.0	70
23.11 .95	714597	Poolewe	Highland	NG861818	83.2	50
23.11 .95	719901	Skye: Flodigarry	Highland	NG464720	75.6	50
24.12 .95	763886	Shetland:Lerwick Observatory No. 2	Shetland	HU453397	67.8	60
24.12 .95	763888	Shetland:Lerwick Observatory SSER	Shetland	HU453397	68.0	60

* Based on the methods and findings of the Flood Studies Report as implemented by the Met. Office whereby a return period can be assigned to the catch at a particular raingauge.

The return periods in Table 2 have been rounded to the nearest ten years.
half the average in each of the summer months and rainfall for the June-August period for the UK as a whole closely matched the corresponding 1976 total - these two summers are the driest on record by a considerable margin.

Following a summer dominated by anticyclonic conditions, low pressure systems on a south-westerly airflow produced plentiful rainfall across southern Britain in early September - many catchments in southern England recorded monthly rainfall totals around twice the monthly average. Nationally, September was a wet month - the fourth wettest since 1976 for England and Wales - at a crucial time for water resources (see page 29), but the synoptic patterns were complex and the spatial distribution of rainfall was very uneven. Rainfall totals were below average in parts of northern England but, remarkably, more than three time the average in large parts of the Grampian Region. Many monthly rainfall records were eclipsed and, partly as a consequence of the relative rarity of severe thunderstorms during

1995, September daily rainfall totals for raingauges in north-east Scotland feature prominently in the list of outstanding daily rainfalls given in Table 2; rainfalls with return periods in excess of 50 years are featured. Unusually, there were very few daily rainfall totals classified as 'Very Rare' (return periods >160 years) in 1995 .

October was a wet month in much of Scotland but dry throughout most of England and Wales, in the east especially. The dry and exceptionally mild conditions signalled the beginning of a second phase of the drought. Spatial variations in rainfall totals were large in November and December but rainfall deficiencies continued to build in England and Wales. In Scotland, a relatively rare north-easterly airflow resulted in very low precipitation totals in the west. Despite significant snowfall, December was the second driest on record (in a 127 -year series) for Scotland as a whole.

By year-end, rainfall deficiencies since March exceeded 25% throughout most of England and

Wales and approached 50% in a few districts in the North-West. The drought was of extreme intensity in such areas and severe across much of the Midlands and East Anglia.

Evaporation and Soil Moisture Deficits

The average temperature in 1995 was around $1^{\circ} \mathrm{C}$ higher than the 1961-90 mean, continuing a compelling warming trend over the recent past (see page 25). Taken together, the 1990-95 period experienced average temperatures around $0.9^{\circ} \mathrm{C}$ above the preceding Central England Temperature mean and four of the 14 warmest years group in the last eight years. Temperatures were particularly high over the January-October period, only 1990 was comparably warm in this timeframe in at least the last 300 years. Heatwave conditions over the summer ensured that the June-August period in 1995 was outstanding the second warmest summer, after 1826, in the CET series.

The high temperatures and exceptional sunshine hours produced annual potential evaporation (PE) totals among the highest on record in many parts of the UK. 1995 PE totals were over 20% above the 1961-90 mean for most of Great Britain with the greatest anomalies in southern England and parts of western Scotland. Annual PE totals - derived by the Meteorological Office's Rainfall and Evaporation Calculation System (MORECS - see page 2) - are mapped on Figure 3. The PE losses reflect the normal influences exerted by latitude and elevation, and range from below 500 mm in a band across northern Scotland and parts of north-eastern England, to above 700 mm across much of England totals exceeding 750 mm , which have hitherto been rare in the UK, could be found in parts of southern England. In such areas the August PE total was commonly the highest monthly total on record.

Relative to the seasonal average, actual evaporation (AE) losses were also very high throughout the early months of 1995 in all regions. Over the January-April period AE totals were typically 25% above the 1961-90 mean. However, evaporative demands are generally very modest at this time of the year and these positive anomalies had less impact on the annual AE totals than the parched summer soil conditions. In most regions these greatly moderated transpiration rates over the summer half-year, in July and August especially. Some similarities with evaporation patterns in 1994 could be recognised but the annual shortfall of AE relative to PE was generally much higher in 1995. This shortfall was the highest on record in much of southern Britain and very notable also in a band across the north Midlands; over wide areas it exceeded 200 mm and shortfalls were close to, or greater than, any annual shortfall in the MORECS series.

Figure 3 Potential evaporation (for a grass cover) in 1995 Data source: MORECS

The net result of the outstanding evaporative demands and the inhibiting effect of the sustained high soil moisture deficits was to produce significant geographical variations in annual AE totals although, as usual, the spatial variation was muted compared with that for rainfall. In the wetter western and northern catchments annual AE totals fell only a little short of the corresponding PE values and were commonly close to the highest on record. Throughout much of Scotland 1995 AE losses were unprecedented in the MORECS series. By contrast, AE totals in much of eastern England were particularly low and in some places, for example in the lower Thames Valley, approached the lowest on record.

Figure 4 shows the variation in PE, AE and Soil Moisture Deficits (SMDs)* for five representative MORECS squares for 1995. The location of the squares is shown on Figure 3. The normal strong seasonality in evaporative demands and soil moisture status is clearly evident but the overall PE totals, the persistence in notable SMDs and the decline in lowland AE losses through the summer, sets 1995 apart from the other featured years.

[^1]

Figure 4 The variation in potential evaporation, actual evaporation and soil moisture deficits for five MORECS squares

SMDs developed very briskly from late March in the east and generally became firmly established in April following the onset of dry, warm conditions. By the end of May, SMDs exceeded the late-July deficit for a normal year over parts of the English lowlands. Deficits peaked in late summer and, in the Midlands and eastern lowlands, the extended periods over which large deficits were maintained produced significant crop stress.

Previous maximum SMDs were widely exceeded in western and northern Britain during August and, in.those parts of the English lowlands which missed the heaviest September rainfall, SMD's exceeded 100 mm for over three months (five months in a few districts). End-of-August SMDs were greater than 100 mm throughout more than 75% of the UK - this represents a truly exceptional spread of parched soil conditions.

Much of the Midlands and East Anglia experienced lengthier periods with SMDs in excess of 80 mm than in recent years and substantially longer than would be expected in a year with rainfall and temperatures much closer to the average. In parts of Scotland maximum SMDs were above 80 mm for the first time in the 35 -year MORECS series (changes in the method of computation may have been marginally influential). Most other regions of the UK 'registered several months with SMDs greater than 80 mm - although the heavy September rainfall in the south meant that the periods with exceptionally dry soils was less protracted than in 1989 or 1990.

Rapidly decreasing evaporative demands boosted the hydrological effectiveness of the limited rainfall through the late autumn and SMDs declined briskly. Nonetheless, end-of-November deficits were the highest on record for parts of north-western and south-eastern England. Soils in most western areas were close to saturation in December but in the eastern lowlands significant deficits remained at year-end, bringing the prospect of a much truncated winter infiltration season.

Runoff

Runoff for the UK as a whole in 1995 was about 10% above the 1961-90 average. The apparent inconsistency - in percentage terms - with the national rainfall figure reflects the contribution to the 1995 runoff total resulting from the heavy rainfall over the last quarter of 1994. The corresponding abundant groundwater recharge significantly augmented runoff from spring-fed rivers in 1995. Of less overall significance, but locally important in reducing 1995 runoff totals for some rivers in northern Britain, was the significant snowpack storage at the end of 1995 the meltwater will have contributed to runoff in 1996.

The above average UK runoff for 1995 adds to a cluster of years - 13 out of the last 17 - with
relatively high runoff totals. As with rainfall, the national runoff anomaly is largely a consequence of heavy runoff from Scotland, the Highlands especially.

Figure 5 provides a guide to 1995 runoff totals expressed as a percentage of the 1961-90 average. The gauging station network in the UK is being steadily extended but areas remain where the available flow data are insufficient to properly characterise the spatial variations in runoff. Uncertainties associated with the annual runoff assessments are greatest in parts of north-western Scotland, the Welsh mountains and the coastal lowlands of eastern England (where pumped drainage predominates). In such areas, and in Northern Ireland, estimates of residual rainfall were used to help delineate isopleths on Figure 5. No attempt was made to draw isopleths in areas such as the Orkneys and Shetlands or Anglesey where little or no direct flow data have been provided for 1995.

Figure 5 exhibits a broad consistency with the percentage rainfall map although the effect of evaporation losses is to widen the contrasts between the wetter and drier areas. In addition, the impact of the enhancement of runoff totals in permeable catchments resulting from the lagged response to the late-1994 rainfall can be readily discerned in a few areas, e.g. the Yorkshire Wolds and parts of East Anglia. Most of northern England, and parts of Wales and southern Scotland, registered annual runoff deficiencies for 1995 in the ' $15-25 \%$ range. This is modest for a drought year and reflects the contribution to the annual totals of the abundant runoff early in the year. Substantial positive anomalies were confined largely to northern Scotland where September runoff was influential - and central southern England. In the latter region runoff totals for some ephemeral streams, which can exhibit large year-on-year variability in the headwaters, were several times the long term average.

Figure 6 presents monthly river flow hydrographs for 16 representative rivers. The monthly mean flows (blue trace) over the 1991-95 period are shown, together with the monthly maxima and minima for the period of record prior to 1991, and the pre-1991 monthly average (black trace). The flows for the Thames at Kingston are naturalised that is, adjusted to take account of the major upstream abstractions for London's public water supply.

A strong seasonal recovery in flow rates following the late-summer minima recorded in 1994 is a feature of most of the index hydrographs, as is the contrast between the flow rates early in 1995 and those that characterised the latter half of the year. For a few rivers in north-western Britain, the highest 6 -month winter half-year (ending in March) runoff on record was followed by the lowest summer total. Remarkably, the January-March runoff totals were double those for the ensuing nine months in some

Figure 5 A guide to 1995 runoff expressed as a percentage of the 1961-90 average

Figure 6 1991-95 monthly flow hydrographs

Figure 6-(continued)
catchments and, in extreme cases like the River Ure (Yorkshire), approached three times - a partitioning of annual runoff which is rare for major UK rivers. By year-end, flows were very depressed in the north and in the west, where a number of new low runoff records were established for December. After a more gentle but sustained decline in flow rates, groundwater-fed rivers in the lowlands were also mostly well below average entering 1996.

There was widespread flooding at the start of the year especially in north-eastern England and southern Scotland. Floodplain inundations were also common in the English lowlands though less extensive than in February 1990. River flow patterns in early 1995 were notable for the persistence of spate conditions rather than the magnitude of individual flood events. Many new monthly maxima were established in January and February, particularly in Yorkshire and southern England. For many rivers in England and western Scotland the October-March runoff totals approached, or eclipsed, the previous maxima; examples include the River Lune at Caton and the River Clyde at Daldowie. In the south and west the January to March runoff totals were commonly also the highest on record. March saw the start of recessions across the whole of the country. Generally, the contrast between flows early and late in the spring was dramatic and the continuation of the recessions produced notably low runoff for many areas across the UK later in the year. Early summer flows were especially low in responsive catchments in northern England, and elsewhere, but much less notable in parts of Scotland and in some Chalk rivers, e.g. the Mimram, where baseflow support maintained flows close to, or above, the seasonal average.

The continuing hot and dry weather - exacerbated in some catchments by significant direct abstraction - resulted in unusually steep recessions through July and August. As a consequence, many new monthly minima runoff totals were established across the UK. The River Wear and also the Dean Water in the Tay basin, for example, recorded their lowest monthly runoff total since September 1959. August flows were less than half the monthly average in most catchments and, away from the South-East, generally ranked amongst the three lowest August runoff totals on record.

In most regions recessions were arrested in September, and dramatically reversed in north-east Scotland where many gauging stations recorded new maximum September runoff totals (see page 18). This hydrological transformation achieved an extreme expression in the River Divie catchment (Grampian Region) - the Dunphail gauging station recording its lowest and highest monthly runoff totals in successive months. September mean flows
were above average in many impermeable catchments but the recovery was short-lived. Runoff totals for October to December were well below average and in some areas the accumulated runoff approached the lowest on record especially in northwestern England and western Scotland. Many new December minimum runoff totals were established in northern Britain (see below).

Table 3 lists new river flow and runoff records established during 1995; only stations with more than 20 years of sensibly complete flow are featured. By their nature, flows in the more extreme flow ranges are subject to considerable uncertainty and future revisions may be made as stage-discharge relations are reviewed in the light of recent very high or very low flows. Relatively few new annual maxima and minima runoff totals were established during 1995 but many monthly and daily extremes were eclipsed - continuing the extension in the range of recorded variability which has been a feature of the 1990s thus far.

Flow duration curves for four index gauging stations are shown on Figure 7; discharge is plotted against the percentage of time a flow is exceeded. Flow duration curves allow the proportion of time that flows fall above or below a given threshold to be identified - they also provide a means of comparing the regime in a particular year with that for the previous record. The spatial variation in runoff during 1995 and, particularly, the variation in the intensity of the drought, imply that individual duration curves may be only locally representative. Nonetheless, the increased flow range evident on the River Teme hydrograph typifies many impermeable catchments. In those regions most effected by the drought, the 1995 percentiles were generally below the average throughout the flow range (see for example, the River Ribble) and particularly depressed over the 70-90 percentile range. The springfed Mimram provides an example of a high baseflow river where the 1995 duration curve plots well above that for the preceding record; however, the depressed water-table levels in December (see below) suggest that the 1996 curve will indicate a substantial regime change.

Generally, flows exceeded 95% of the time were below the period of record mean in western and northern Britain but notably above average in many permeable lowland catchments, albeit often not as high as in 1994. Particularly high 95 percentiles (for 1995) characterised several rivers included in the Alleviation of Low Flows programme (initiated by the National Rivers Authority) - low flows in the River Ver, for example, were substantially above those that characterised much of the pre-1993 period - when runoff was considerably reduced by heavy groundwater abstractions.

TABLE 3 RIVER FLOW AND RUNOFF RECORDS ESTABLISHED IN 1995

Lower Mouchly Renof!							
3002	Carroo	Spaderavil	1974	8.56	aug	10.3	JUN 1992
7002	Findbors	Forter	1958	8.45	AUG	8.49	AUG 1976
8010	$\mathrm{s}_{\text {ck }}$	Gratovi	1953	10.8	aug	11.1	AUG 1955
12001	Dee	wooceed	1929	9.13	aug	10.1	AUG 1984
13007	Nortb Eak	Lopie Mill	1976	8.55	aug	9.35	AUG 1976
15008	Dean Werer	Cookrtan	1958	6.39	aug	7.54	SEP 1959
15010	tale	Wester Cardeap	1972	7.01	aug	9.16	JUL 1989
20001	Tyne	Eart Linton	1961	3.74	aug	3.89	SEP 1973
20002	Weat Peffer Bura	Luffeer	1966	0.17	aug	0.22	JUL 1989
20006	Biel Water	Betion House	1973	6.37	aug	6.52	SEP 1973
21008	Teviot	Ormiston Mill	1950	${ }^{4.63}$	AUG	4.88	AUG 1984
21009	Tweed	Nortem	1960	5.63	aug	${ }^{6.03}$	AUG 1976
21012	Terios	Haswick	1961	4.50	aug	5.60	JL. 1989
21013	Gula weter	Galabicts	1964	3.80	aug	5.24	AUG 1976
21015	Leaser Water	Eartsoa	196	3.26	aug	3.87	AUG 1976
21016	Eye Wacer	Eyemouth Mill	1967	1.19	AUG	2.17	AUG 1976
21021	Tveed	Sproution	1969	6.20	AUG	6.54	SEP 1972
21023	Leet Wetee	Colduruam	1970	0.17	AUG	${ }^{0.25}$	AUG 1976
21025	As Water	Aоcrum	1972	1.90	AUG	2.19	AUG 1976
21027	Blackedder Water	Mourb Bridge	1973	2.69	${ }_{\text {aug }}$	2.94	AUG 1976
22001	Coquet	Morwick	1963	4.21	AUG	5.09	OCT 1972
22009	Coquer	Rothbury	1972	4.30	aug	4.41	AUG 1990
23004	South Tyac	Haydoa Bridge	1962	${ }^{4.95}$	AUG	${ }^{9.38}$	AUG 1976
23006	Soutb Tyac	Featertane	1966	7.39	AUG	7.99	AUG 1976
23008	Rede	Rece Bridge	1968	3.49	Aug	3.64	AUG 1976
23011	Kiedider Burn	Kieder	1970	10.0 4.34	${ }_{\text {aug }}^{\text {aug }}$	11.1 4.61	AUG ${ }_{\text {SEP }} 1959$
24003 24004	Wear	${ }_{\text {Stentope }}^{\text {Bedbura }}$	1959	2.97 2.9	aug	3.81	SEPP 1991
22004	${ }^{\text {Beatburn Beck }}$	Mioer Houre	1957	4.36	aug	4.98	MAY 1980
25006	Greta	Rutberfiord Bridge	1960	1.56	aug	2.85	JUL 1984
25012	Hawrood Beck	Hamrood	1969	3.70	aug	4.57	AUG 1976
27034	Ure	Kilytran Bridge	1967	1.56	AUG	2.94	AUG 1976
27035	Aire	Kildmikk Bradge	1988	2.33	${ }_{\text {AUG }}$	${ }^{2.74}$	AUG 1976
27042	Dove	Kirkby Mills	1972	6.64 206	${ }_{\text {aug }}^{\text {aug }}$	7.29 5.63	AUG 1976
27047	Sasizebolme Beck	Low Houng	1972			3.63 1.00	
27751 27053	Crimple	Bura Bridge Birtwidh	1972 1975	0.34 5.08	${ }_{\text {aUg }}^{\text {aug }}$	6.23	SEP 1991
27053 28068	${ }_{\text {Nole }}^{\text {Nidd }}$	${ }_{\text {cole }}$ Colebill	1973	3.42	Aug	4.19	jut 1976
32004	Ine Brook	Herowden old Mill	1943	1.28	aug	1.52	AUG 1944
33029	Striugrick	White Bridge	1965	0.34	AUG	${ }^{0.35}$	AUG 1990
37001	Roding	Realtridge	1950	1.49 0.33	${ }_{\text {AUG }}$	1.68 0.51 0.51	
${ }^{38021}$	Turtey Brook	${ }^{\text {Abeny }}$ Part	1971 1961	0.33 0.01	${ }_{\text {aug }}$	0.23	AUG 1976
39054	Mok	Garvick Airpors	1961	1.01	Aug	0.23	
41014	Arun	Patlinguen Puy	1970	1.45	${ }_{\text {AUG }}$	1.45	AUG 1976
41025	Lormood Stream	Drasgewick	1971 1966	0.38 2.38	${ }_{\text {AUG }}$	2.77	KUG ${ }_{\text {SEP }} 1998$
55013	${ }_{\text {Arow }}$	${ }_{\text {Titley }}$ Mill	1981	2.38 0.60	aug	1.83	OCT 1991
55002	${ }_{\text {Ebobe }}^{\text {Frome }}$		1957	11.5	aug	13.0	AUG 1990
56007	Senni	Pool Hea Hefod	1967	8.48	aug	${ }^{8.888}$	AUG 1976
57004	Cymon	Abercynon	1957	8.90	AUG	9.76	AUG 1976
57008	Rhymory	L.anedeym	1973	${ }^{6.71}$	aug	${ }_{979} 679$	AUG 1990
${ }_{5}^{580008}$	Duler	${ }_{\text {colfrem }}^{\text {Clow }}$	1971	8.73 4.02	${ }_{\text {aug }}$	4.47	AUG 1984 AUG 1978
${ }_{60006}$	Gwili	Glangwili	1968	4.26	aug	4.43	Jl 1984

TABLE 3-(continued)

67025	Clyeesos	Bowliay Bank	1976		6.15 aug	7.18	AUG 1994
70007	Esten	Sbeepanoust	1967		7.85 AUG	8.23	AUG 1976
76011	Coal Bara	Coalleura	197		0.00 AUG	0.69	JUN 1992
77003	Liddel Whter	Rowneternfor	1973		7.02 AUG	7.30	AUG 1976
79003	Nith	Hell Pridur	1959		3.92 AUG	4.65	SEP 1972
79004	Scar Wrater	Capeosot	1963		3.0 AUG	3.16	JUL 1984
80001	Ur	Dalbeatic	1963		1.16 AUG	1.84	JUL, 1989
82001	Girrs	Rockrose	196		2.19 AUG	2.79	Jul 1989
83005	1 Irine	Sbewiton	1972		2.20 AUG	2.31	AUG 1984
a4003	Clyde	Hiarelbank	1956		8.03 Aug	8.95	JUL 1989
84004	Cayde	Silto	1957		8.09 Aug	${ }^{8.22}$	AUG 1984
84007	Soutb Culder Wu	Forgewood	1965		18.5 aug	18.8	SEP 1973
84009	Nethes	Kirkmuirhill	1966		4.74 AUG	5.83	AUG 1976
84011	Gryfe	Craizeod	1963		5.55 AUG	5.95	JUL 1984
84012	White Can Water	Hawkhead	1963		4.75 AUG	6.63	JUL 1984
86014	Avon Weter	Pairholm	1964		2.72 AUG	2.86	JUL 1984
84019	North Calder Wit	Calderpark	1963		2.11 AUG	8.44	juL. 1984
Station Number	River	Station Name	First Record		$\underset{\text { Manth }}{\text { Dion }}$	Pre-1995 Record $\left(\mathrm{m}^{3} \mathrm{a}^{-1}\right)$	Day/Moatb/
Highese Ganyd Daily Mitan Flown							
10002	Ugie	Iaverugie	1971	77.37	12 SEP	76.05	23 FEB 1978
11001	Doo	Pataill	1969	259.3	12 SEP	219.0	17 AUG 1970
12004	Girmoct Burn	Linterill	1969	28.17	9 SEP	12.03	15 OCT 1976
2004	Souct Tyoe	Hagdoa Bridge	192	456.9	31 JAN	382.8	23 FEE 1991
23006	South Type	Festbertioar	1966	209.4	31 Jan	177.2	21 SEP 1985
2000	Werr	Stanbope	1958	155.1	31 JAN	122.6	23 MAR 1968
25001	Ten	Broken Sar	1956	436.9	31 jan	420.7	23 FES 1991
25012	Hrwood Beck	Herwood	1969	28.83	31 JAN	24.57	17 JUL 1983
25018	Teen	Midderoo in Teedsle	1971	206.7	31 JAN	179.8	23 FEB 1991
27035	Aire	Kildwick Bridge	1968	67.95	1 FEB	67.64	22 DEC 1991
37024	Cothe	Eeth Colne	1971	18.49	29 JAN	17.23	22 Nov 1974
39004	Wande	Beeddington Park	1938	1.460	21 JAN	1.210	50 CT 1984
3019	Lembourn	Shaw	1962	5.210	7 MAR	4.530	3 FEB 1994
41017	Combehuren	Crowbury	1969	8.329	26 JAN	7.029	20 DEC 1993
42008	Cheriton Stream	Sewneds Bridge	1970	2.285	22 FEB	2.071	15 JAN 1994
42010	Itchen	Higblbridge + Allbrook	1958	12.84	23 FEB	12.80	29 JAN 1969
42012	Anton	Fullerion	1975	5.538	1 PEB	5.058	7 FEB 1990
43004	Bourne	Leventeck Mill	1965	7.000	4 FEB	3.874	4 MAR 1960
43008	wylye	South Newton	1967	29.43	1 FEB	21.52	a FEB 1990
43012	Wylye	Noton Bavant	1971	6.788	29 JAN	6.643	7 FEB 1990
Lowvat Gaured Daily Mian Floes							
3002	Carron	Spodecheit	1974	0.353	22 aug	0.359	15 AUG 1994
8000	Dutanio	Belanen Bridge	1952	0.593	21 aug	0.619	26 AUG 1984
14002	Dishis Weter	Balmostic Mill	1969	0.102	17 aug	0.133	8 JUL 1989
15010	lale	Weter Crantena	1972	0.835	17 Aug	0.977	4 AUG 1989
20002	Weat Peffer Bura	Luftioce	196	0.000	${ }^{26}$ aug	0.001	15 SEP 1990
21013	Gale Wrater	Gialehiels	1864	0.243	22 aug	0.306	7 SEP 1976
21015	Leades Wuter	Eerissa	196	0.252	18 aug	0.274	26 Aug 1976
21016	Eye Water	Eyemouth Mill	1967	0.041	17 aug	0.081	15 SEP 1990
21021	Treed	Sprocation	1969	0.341	2 SEP	6.547	7 SEF 1976
21025	Ale Water	Ancrom	1972	0.096	is aug	0.105	7 SEP 1976
21027	Bleckadder Water	Moutb Bridge	1973	0.139	22 aUg	0.144	7 SEF 1976
24004	Bedturn Beck	Bedbura	1959	0.072	23 aug	0.091	10 SEP 1991
25021	Skerse	Bradteng	1973	0.004	2 aUg	0.020	11 SEP 1990
27034	Une	Kilgram Bridge	1967	0.160	24 aug	0.276	25 AUG 1976
27042	Dove	Kirtty Mills	1972	0.131	23 Aug	0.133	26 AUG 1976
27047	Sauizebotme Beck	Low House	1972	0.007	22 aug	0.008	25 JUN 1989
27051	Crimple	Burn Bridge	1972	0.001	5 SEP	0.002	20 SEP 1991
28000	Dover Beck	Lomdham	1972	0.025	${ }_{22} 2$ Aug	0.029	9 AUG 1990
35029	Stringide	White Bridge	1965	0.000	27 avg	0.008	6 SEP 1990
34014	Weorum	Swentoo Morley Toual	1969	0.067	28 aug	0.097	29 AUG 1994
36004	Cand Irook	Long Melford	1965	0.000	7 aug	0.008	24 Aug 1994
37021	Roman	Bronutend Bridge	1970	0.019	20.0 CT	0.035	50.11978
30054	Mole	Gurwick Airpon	1961	0.000	5 SEP	0.001	27 AUG 1984
41002	Ais Bourse	Henmer Wood Bridge	1951	0.020	13 SEP	0.022	17 SEP 1988
41025	Loswood Stream	Drungewick	1971	0.005	25 AUG	0.010	2 SEP 1976
48010	Senton	Trebrownbridge	1957	0.123	22 SEP	0.127	26 AUG 1976
58021	${ }_{\text {Luts }}$	Hutre Bridge	1969	0.373	20 aUg	0.439	15 AUG 1976
\$5029	Llyas	Tbree Cocki	1970	${ }^{0.036}$	15 aUg	0.040	27 AUG 1976
55028	Frome	Bishope Frome	1971	0.012	21 aug	0.036	20 AUG 1993
64002	Dyrrai	Poot-y-Garth	1960	0.143	31 aug	0.185	7 SEP 1976
67025	Clywedot	Bowling Aank	1976	0.201	${ }_{25} 5$ aug	0.222	28 AUG 1994
${ }^{79003}$	Nith	Hall Bridge	1959	0.116	23 AUG	0.134	28 AUG 1976
80001	Urin	Dulbeatic	1963	0.045	21 AUG	0.058	24 JUL. 1989
84011	Grfe	Craigend	1963	0.082	17 Aug	0.088	1 JUL 1974
${ }^{2} 8012$	White Cart Water	Havkiced	1963	0.148	17 AUG	0.324	25 AUG 1984
${ }^{35003}$	Pulloch	Glea Fatloch	1970	0.020	21 aug	0.032	12 JUL 197
Hishor /nidamanooss Fioers							
10002	Upie	loverugie	1971	107.0	12 SEP	99.28	4 NOV 1984
11001	Don	Parthill	1969	301.4	12 SEP	277.4	17 AUG 1970
12004	Girrock Burn	Littemill	1970	100.1	9 SEP	42.82	9 JAN 1994
23004	Souch Tyxe	Haydon Bridge	1962	760.9	bidan	718.2	21 DEC 1991
25006	South Type	Peatbersose	1966	384.3	31 jan	308.9	3 NOV 1984
24003	Wear	Suabope	1958	297.0	${ }^{3} \mathrm{~J}$ JAN	237.9	23 MAR 1968
25001	Tert	Groken Scar	1956	710.6	31 Jan	709.8	26 AUG 1986
25000	Tete	Low Moor	1969	464.5	31 Jan	458.3	26 AUG 1986
25018	Teet	Middleton in Teeedale	1971	389.1	31 Jan	300.2	21 DEC 1991
27002	Wharfe	Flint Mill Weir	1955	368.3	1 FEB	362.8	3 JAN 1982
27007	Ure	Wentwick Lock	1958	628.6	${ }^{1}$ FEB	625.9	24 FEB 1991
27034	Ure	Kilgrem Bridge	1967	407.3	31 Jan	382.6	23 FEB 1991
27047	Snaizelolme Beck	Low House	1972	16.39	31 JAN	16.10	10 NOV 1991
28048	Amber	Wingfied Park	1971	32.00	25 JAN	30.94	25 Aug 1977
37017	Bluckwater	Stirted	1969	18.68	29 JAN	17.74	10 OCT 1987
37022	Holland Brook	Thorpe ie Soken	1970	13.48	29 JAN	13.35	16 OCT 1987
39019	Lemmbour	Sbam	1862	5.350	2 MAR	5.020	13 NOV 1974
41017	Combehaven	Crowburst	1969	9.140	26 JAN	7.765	15 OCT 1987
42008	Cheritoa Stream	Semarda Bridge	1975	2.488	3 MAR	2.114	15 JAN 1994
418008	Wrye	South Nevtoo	1967	29.77 .	2 FEg	21.52	1 AUG 1990
09002	trwell	Adetpri Weir	1949	$486.4{ }^{\text {* }}$	31 JAN	485.1	27 OCT 1980

Figure 7 Flow duration curves for 1995 and the preceding record

Groundwater

Following notably high recharge to most major aquifers over the preceding two winters, the autumn recovery in groundwater levels in 1994 began from a relatively healthy position. This was true even of the slow responding confined Permo-Triassic sandstones aquifer where levels did not return to the normal range following the 1988-92 drought until the latter half of 1994. Although soil moisture deficits at the end of the summer in 1994 were well above average throughout the outcrop areas of most major aquifers, substantial autumn rainfall ensured an early start to the winter recharge season in the west; considerable recharge then occurred in each month from November to February. Significant recharge to most of the Chalk aquifer did not begin until the late autumn. Although abundant recharge took place during the abnormally wet December-February period the late onset of infiltration in the autumn of 1995, as in other recent years, was a constraint on overall replenishment - in some areas the lack of significant infiltration from early April 1996 was also a factor.

Soils close to saturation and sustained rainfall in December 1994 contributed to substantial infiltra-
tion and, in January, recharge was especially heavy across most aquifer units. Water levels in the Chalk of the South Downs did not rise as dramatically as in the 1993/94 recharge season when a number of wells overflowed but, in early 1995, high level springs were flowing strongly and observation wells over wide areas recorded levels close to the seasonal maximum. Alstonfield (in the Carboniferous Limestone of Derbyshire) recorded its highest level in a 21-year record whilst, in the southern Chalk, the exceptional January levels recorded in 1994 were exceeded in many wells and boreholes. The heavy recharge in January continued into February and more notably high groundwater levels were recorded. At Compton, in the Chalk of the South Downs, levels peaked at their second highest level in a 102year series - the 1994 peak was marginally higher. Rockley (near Swindon) and Little Bucket (north Kent) were amongst other index wells in the Chalk registering near-record peaks in successive years; at Ashton Farm (Dorset) previous peak levels have been eclipsed each year from 1993. Long term borehole records in the Chalk suggest that there are few 20th century precedents, aside from 1911-15, to the clustering of three winters with very healthy

TABLE 4 ANNUAL REPLENISHMENT TO THE MORE IMPORTANT AQUIFERS IN ENGLAND AND WALES FOR THE YEAR 1994/95

Region	Mean annual replenishment $\left(\mathrm{m}^{3} \times 10^{6}\right)$	$1994-95$ replenishment $\left(\mathrm{m}^{3} \times 10^{6}\right)$
Chalk aquifer		
Anglian	955	$1080(130)$
Southern	1230	$1850(150)$
South West	1150	$1520(130)$
Thames	975	$1350(140)$
North East	320	$410(130)$
Total	4630	$6210(135)$
Lincolnshire Limestone aquifer		
Anglian	85	$75(85)$
Permo-Triassic sandstones aquifer		
North East	310	$430(140)$
North West	330	$250(75)$
Midland	530	$670(125)$
South West		
Welsh	245	$330(135)$
Total	30	$20(70)$
Magnesian Limestone aquifers	1445	$1700(120)$
North East	205	$230(110)$
Midland	40	$30(75)$
Total	245	$260(105)$

Values have been rounded to reflect uncertainty in source data and recharge calculation.
Percentages of the annual mean are shown in parentheses.
(The format of the table has been revised to coincide with the revised EA regions.)
recharge. In the late-winter new maximum recorded levels were reported for the Skirwith and Yew Tree Farm boreholes in the Permo-Triassic sandstones of north-west England.

Accelerating evaporation rates and brisk increases in SMDs produced a rapid termination to infiltration in most areas during April 1995. Estimated groundwater replenishment over the 1994/5 recharge season expressed as a percentage of the long term average for each borehole in the national network is given in the Register of Selected Groundwater Observation Wells (see pages 154 to 156); details of the method of assessing recharge are also given. Although spatial variations were large, recharge to most aquifer units was substantially above average for the third successive winter and, in the east, provided a marked contrast to the paucity of recharge during the 1989-92 period.

Table 4 is constructed from data presented in the Register and presents estimates of overall recharge to the principal aquifers in England and Wales, divided into the major administrative units (post April1996) in the water industry. Overall recharge to the most important aquifers for water supply purposes the Chalk, Upper Greensand and the Permo-Triassic
sandstones - was significantly above average. Figure 8 maps the variation in replenishment for 1994/95 across the outcrop of the Chalk aquifer. The nature of the Chalk aquifer - where fewer fissures and more compaction at depth imply that the relationship between recharge and the resultant rise in groundwater levels is non-linear - is such that the percentage recharge figures for 1994/95 need to be treated with caution. The wetness of the preceding winters created a situation whereby levels were already high within the aquifer before the start of the 1994/5 recharge season. There was less scope for an ensuing rise through the winter than would be expected if the water-tables had been depressed in the autumn of 1994. One consequence of this, and also of the methodology used to estimate recharge (see page 149), is that overall recharge may have been appreciably underestimated in a number of areas.

The variation in groundwater levels throughout 1995 - and the four preceding years - is illustrated in Figure 11 (pages 150 to 153) which show groundwater level hydrographs for 32 representative boreholes.

Groundwater level recessions gathered momentum through April, although in the deeper and less responsive Chalk wells, and in the confined PermoTriassic sandstones, levels continued to rise until the late spring. Dry and warm conditions in May and, especially, June reinforced the recessions and, by

Figure 8 Generalised percentage of the mean annual replenishment to the main outcrops of the Chalk aquifer for 1994-95

TABLE 5 GROUNDWATER LEVELS IN SELECTED OBSERVATION BOREHOLES

Borehole Number	Site	Aquifer	Records commence	Maximum levels			Minimum levels		
				Pre-1995	1995	Rank	Pre-1995	1995	Rank
SE94/5	Dalton Holme	CHK	1889	23.82	22.10	41/107	9.64	12.18	18/107
SE95/6	Wetwang	CHK	1971	35.15	19.01	5/25	16.66	17.80	5/25
TA11/158	Keelby Grange	CHK	1980	19.70	16.48	7/16	3.45	7.12	6/16
TF81/2	Washpit Farm	CHK	1950	49.90	46.83	16/46	40.30	42.83	24/46
TL11/9	The Holt	CHK	1964	92.41	91.04	4/31	83.90	86.82	21/31
TL44/12	Redlands Hall	CHK	1963	54.50	51.00	8/33	32.29	36.09	10/33
SU17/57	Rockley*	CHK	1933	144.11	143.90	3/63	128.78	129.18	20/63
TR14/9	Little Bucket Farm	CHK	1971	86.87	86.56	2/25	56.77	58.30	5/25
SU71/23	Compton House	CHK	1894	68.75	66.10	2/102	27.64	28.74	7/102
TV59/7C	Westdean No. 3	CHK	1940	5.03	4.76	3/55	1.01	1.15	8/55
ST30/7	Lime Kiln Way	UGS	1969	126.23	126.48	1/27	123.70	125.23	27/27
SY68/34	Ashton Farm	CHK	1974	71.48	71.35	2/22	63.10	63.98	6/22
SU01/5B	West Woodyates Manor	CHK	1942	109.40	103.45	5/54	67.62	69.54	14/54
ID30/1.	Killyglen	CHK	1985	119.52	118.42	8/11	113.11	112.60	1/11
TF03/37	New Red Lion	LLST	1964	23.69	20.82	9/32	3.29	7.44	6/32
SP00/62	Ampney Crucis	MJUR	1958	103.45	103.12	8/38	97.38	99.14	4/38
NX97/1	Redbank	PTS	1981	9.45	8.60	13/15	7.45	7.14	1/15
NY63/2	Skirwith	PTS	1978	131.01	131.70	1/18	129.51	129.91	10/18
SD41/32	Yew Tree Farm	PTS	1972	13.97	14.01	1/23	8.43	12.67	3/23
SJ15/15	Llanfair DC	PTS	1972	80.63	80.42	7/24	78.85	79.40	9/24
SJ83/1A	Stone	PTS	1974	91.66	91.47	3/22	89.34	89.91	13/22
SX99/37B	Bussels No.7A	PTS	1971	25.28	24.99	5/25	22.90	23.43	14/25
SE43/9	Peggy Ellerton Farm	MGLST	1968	37.39	34.78	17/28	31.10	33.67	15/28
SK15/16	Alstonfield	CLST	1974	215.15	216.18	1/22	174.22	174.96	7/22
CHK	Chalk			MGLST			Magnesian Limestone		
UGS	Upper Greensand			PTS			Permo-Triassic sandstones		
MJUR	Middle Jurassic Limestone			CLST			Carboniferous Limestone		
LLST	Lincolnshire Limestone								

*Minimum level recorded represents a dry borehole
early summer, water-tables in most areas had fallen to well within the normal seasonal range. Exceptions included some southern Chalk wells where levels remained relatively high, and a number of boreholes in the northern Permo-Triassic sandstones (e.g. Redbank near Dumfries) where, by May, levels were below any previously recorded. Arid conditions in July and August produced unusually steep summer declines in water levels. In September, heavy rain triggered recoveries in a few fissured aquifers (e.g. the Jurassic Limestone of the Cotswolds) but was generally insufficient to satisfy the very high early autumn SMDs; groundwater recessions therefore continued in most aquifers. By November, the very healthy groundwater resources outlook at the end of the 1994/5 recharge season had been transformed to a much more fragile situation. The Chilgrove House borehole (West Sussex) experienced its greatest within-year decline - on the basis of archived levels - in a 159-year record and, at Alstonfield (Derbyshire) a new minimum December level was registered, a new maximum in a 22 -year record having been established in January.

The maximum and minimum groundwater levels recorded during 1995 are compared with the corre-
sponding long term extremes for a selection of index wells and boreholes in Table 5. The exceptional range of levels in 1995 is clearly evident; in many areas within-year ranges approaching those of 1995 were registered in 1988 and 1990 but declines of a similar magnitude are rare in the historical records.

In November 1995, minor recöveries were evident in a few aquifers (e.g. the south-western extremities of the Chalk outcrop). By December, levels had benefitted from significant infiltration and recoveries were recorded in some of the responsive Permo-Triassic sandstones outcrops in southern England. However, most index wells in the Chalk showed little sign of recovery by year-end.

References

1. Manley, G. (1974) Central England Temperatures; monthly means 1659 to 1973. Quart. Jour. Royal. Met. Soc., 100, 389-405.
2. Smith, K. (1995) Precipitation over Scotland, 1757-1992: some aspects of temporal variability. Int. Jour. Clim. Vol. 15, 543-556.

1995 HYDROLOGICAL DIARY

Compiled by F. J. Sanderson

January

A mild and exceptionally wet month in most regions as an unremitting sequence of mainly south-westerly frontal systems brought heavy rain and gales and caused prolonged flooding in many areas of the United Kingdom.
25th-31st: In the Severn-Trent region, a peak flow of $23.3 \mathrm{~m}^{3} \mathrm{~s}^{-1}$ was registered on the Dove at Izaak Walton on the 25th (return period: 20-25 years). There was extensive washland inundation in the catchments of the Soar, Wye and the Trent. Heavy snow over high ground in Lancashire and Yorkshire - 24 cms fell in Leeds on the 26th - caused severe disruption to Trans-Pennine routes; more than five thousand motorists were stranded overnight and several deaths were attributed to the weather as drivers left the shelter of their vehicles. A near-stationary belt of heavy rain over northern Britain on the 29th-31st produced a rapid thaw; with rivers already approaching bankfull, widespread flooding resulted. In Yorkshire, the raingauge at Tow Hill, near Snaizeholme, recorded 136.8 mm in 24 bours on the 31 st (estimated return period: 100 years). The storm resulted in new maximum peak flows, in records of 30 years or more, at Kilgram Bridge ($407.3 \mathrm{~m}^{3} \mathrm{~s}^{-1}$) and Westwick Lock ($602.2 \mathrm{~m}^{3} \mathrm{~s}^{-1}$) on the River Ure. Floodwaters cut off the village of Dunsforth, Yorkshire and the army was called in to assist the police with evacuating local residents. High flows in Northumbrian rivers, the South Tyne, Tyne and Wear especially, led to the flooding of over 120 properties, $25000 \mathrm{~m}^{2}$ of commercial property and up to 3000 hectares of agricultural land. The peak flows on the 31st on the South Tyne at Featherstone ($384.3 \mathrm{~m}^{3} \mathrm{~s}^{-1}$) and on the Wear at Stanhope ($297.0 \mathrm{~m}^{3} \mathrm{~s}^{-1}$) exceeded previous maxima and were ascribed return periods of more than 100 years. In Cumbria, 24-hour rainfall totals in the Lune, Greta and Eden catchments at the end of January ranged between 100 and 160 mm , with return periods of $70-80$ years. Peak flows for the Lune at Caton ($1182 \mathrm{~m}^{3} \mathrm{~s}^{-1}$ on the 31 st) and the Eden at Warwick Bridge ($631 \mathrm{~m}^{3} \mathrm{~s}^{-1}$) were the highest in records from 1959 and 1966 respectively. Seventy properties were inundated at Appleby, Cumbria, when the Eden exceeded bankfull and several business premises were flooded by the Lune at Hawkshead. In Greater Manchester 25 properties were flooded when a tributary of the River Roch overtopped its banks. In the Wyre catchment, flood basins at Catterall and at Garstang were successful in protecting premises on the floodplain. Red Alerts were issued for many rivers in Wales and approximately fifty properties were affected for more than two days when the Severn inundated its flood plain between Worcester and Upton. Numerous roads and over 20 vulnerable properties were flooded when a combination of high spring tides and a fluvial peak at Gloucester resulted in flood alerts extending across five tidal cycles. In Hampshire, after a month of very high rainfall, a total of 130 properties experienced protracted cellar or ground floor flooding in late January (extending, in some districts, to March), the flooding resulted primarily from high groundwater levels although additional factors such as obstructions in streams and poorly maintained drainage channels were locally significant. The groundwater-induced flooding was especially severe in the River Till catchment and locations downstream of Salisbury where a Red Warning was in place for seven days and a Yellow Alert for over two months. Return periods for the peak flows on the 30th at Amesbury on the Avon ($27.5 \mathrm{~m}^{3} \mathrm{~s}^{-1}$) were estimated in the region of $20-40$ years; the Rivers $\mathbf{W y l y e}$ and Bourne responded similarly and their levels were generally higher in 1994/95 than the notable spates in early 1990.

February

Another notably wet and, northern Scotland aside, very mild month with weather patterns dominated by a south-westerly airflow. Many spring-fed rivers in southern England remained in spate throughout most of February and significant tidal flooding (in the lower Severn basin particularly) occurred in the third week.
1st: The January flooding continued into February - on the 1st the River Wharfe at Flint Mill registered its highest flow ($368.3 \mathrm{~m}^{3} \mathrm{~s}^{-1}$) in a record from 1955 and the outstanding peak of the previous month was eclipsed on the Ure at Westwick Lock ($628.6 \mathrm{~m}^{3} \mathrm{~s}^{-1}$).

March

A cool (cold at times) but very sunny month with a wide variety of weather conditions and precipitation types. Regional rainfall totals were close to average but new monthly maximum runoff totals were established in a number of Chalk catchments (e.g. the Lambourn and Itchen).

April

A dry, warm and relatively sunny month throughout most of Britain; mild and cool conditions alternated through the month and diurnal temperature variations were marked. Evaporation losses were notably high.

May

A month of contrasts. Heatwave conditions gave way to much lower temperatures as a northerly airflow became established; cloudy and showery conditions predominated over the latter half of the month.

June

June was initially cool and cloudy but temperatures climbed steeply through the month and were notably high over the last week. High pressure was dominant and the virtual absence of Atlantic frontal systems resulted in regional rainfall totals mostly below 50\% of the 1961-90 average.

July
An exceptionally hot month - the second warmest July this century. Also very dry with few rain-bearing low pressure systems crossing the British Isles and little notable thundery activity. With high pressure dominant over most of the latter half of the month, heatwave conditions created very high evaporative demands.

11 th: Severe thunderstorms reported in a belt from the Midlands (where localised urban flooding was common) to North Wales. Precipitation totals exceeded 70 mm at Much Wenlock (Shropshire) and near Llangollen, Clwyd.

August

A remarkably arid month with heatwave conditions predominating until the end of the fourth week. Nationwide, only August 1947 has been drier this century. Much of southern Britain recorded less than 10 mm and parts of Sussex received less than 1 mm . In the Tweed basin, controlled releases of water from St. Mary's Loch, Talla/Fruid Reservoirs and from Megget helped disperse downstream algal blooms and allowed water quality, which had been in a critical condition, to improve - reducing the period of stress to which stream flora and fauna were exposed. New minimum flows were recorded for the Lyne, Gala, Leader, Ale, Jed, Blackadder and Eye catchments in August.
2nd: Thunderstorms widely reported in southern Britain. At Rhoose Airport (near Cardiff) 46 mm was recorded in one hour (and 75 mm in three); the daily total of 85 mm corresponds to a 100 -year event.

September

A dramatic contrast to August in most regions - mild and very wet in most areas, especially early in the month when the remnant of Hurricane Iris brought heavy rainfall to southern Britain and a succession of active frontal systems affected north-eastern Britain.
1st-2nd: Sustained heavy rainfall in eastern Scotland (e.g. 76 mm at Montrose harbour) resulting in many raingauges exceeding the September average in the first two days of the month.
5th: Thunderstorms centred on the Wirral produced notable precipitation totals (Liverpool: 46 mm in two hours) and localised urban flooding.
7-12th: A near-stationary frontal system brought heavy rainfall to north-east Scotland. The torrential downpours and associated flooding, which mostly affected the Grampian Region, inundated homes, damaged road and rail bridges and ruined crops to an estimated value of $£ 30$ million. Residents in caravan parks in Banff and Portsoy had to be evacuated. Kinloss recorded a 271 mm 11-day rainfall total, contributing to the wettest September in a record from 1951. Similarly, Aberdeen received over 225 mm in 12 days and was briefly cut off by flood water as many roads were inundated. The first twelve days of the month produced more than three times the long term monthly average for a number of catchments in the region. Although the resulting floods affected almost all catchments in the north-east of Scotland, the most severe conditions were restricted to the low-lying coastal districts. New maxima flows were set for the Rivers Ugie (at Inverugie), Don (at Parkhill) and Urie (at Pitcaple) and for the Deveron which exceeded bankfull three times in four days. At the Muiresk gauging station the levels in the Deveron were over half a metre higher than any in at least the last 25 years. Estimated return periods for the peak flows were around 90 years for the Deveron at Cabrach, and in excess of 100 years for the Isla at Grange and the Bogie at Redcraig. The Rivers Dee, Spey and Findhorn were amongst a very large number which also exceeded bankfull.

14-15th: Torrential rain disrupted traffic in parts of southern England. Southampton registered 58 mm in 12 hours and the towns of Havant and Waterlooville were also badly affected when more rain fell in twelve hours than in the previous three months.

October

A very sunny month with exceptional temperatures for the autumn - the warmest October on record. Very dry also in southern Britain - over the latter half of the month precipitation in southern Britain was largely restricted to fog-drip.
26th: Frontal systems brought plentiful rain to western Scotland; flooding occurred in Glasgow, as the city recorded its wettest October in over a century. The Luss Water registered a new October maximum runoff total in a record from 1976 and the Marnock Water rose rapidly, inundating premises in Kilmarnock and causing residents to be evacuated when the depth of water exceeded one metre in the streets.

November

November continued the sequence of notably mild months. Nationwide rainfall totals were close to the 1961-90 average but spatial variations were large - much of northern England was again relatively dry.
15th: Prolonged and heavy frontal rainfall affected much of central Britain and Northern Ireland - at Broughshane Filters (Antrim) an 84.2 mm rainfall day total was recorded (estimated return period: 150 years). River flows in the Province increased briskly and the River Ballinderry recorded its highest November daily mean flow in a 25 -year record.

December

December provided a very atypical end to the third warmest year in the Central England Temperature series. The ingress of continental air around the 4th heralded persistent wintry conditions, very depressed temperatures characterised much of the latter half of the month. In northern Britain, snow constituted a substantial proportion of the December precipitation total.
24-28th: Severe blizzards and freezing temperatures affected northern Britain. Shetland experienced particularly severe conditions: over, 350 mm of snow with an exceptional 68 mm (water equivalent) total was reported for Lerwick on the 24th. Large areas were isolated for a considerable time; road, flight and railway transport was interrupted for several days. The River Clyde in Glasgow froze for the first time in over thirty years. The subsequent thaw revealed significant water distribution problems in several cities. Supply difficulties were estimated to have affected over half a million households with particularly severe difficulties encountered in Belfast where one hundred thousand properties were briefly affected by water rationing.

T. J. MARSH
Institute of Hydrology

Abstract

Extreme rainfall deficiencies and very high temperatures throughout the spring and summer of 1995 produced considerable stress on water supplies and river systems. The drought attracted substantial public, political and scientific interest fuelled, in part, by speculation regarding the likely impact of climate change on the UK. In this article the drought's extent and severity is examined in a water resources perspective - and within the context of the very unusual climatic conditions which have characterised much of the last 20 years.

Introduction

Taken together, the two decades ending in 1995 have seen both an exaggeration in the north-west to southeast rainfall gradient across the British Isles and a more distinct partitioning of annual rainfall totals between the winter and summer periods ${ }^{1}$. In addition, most of the recent past has been remarkably mild encouraging exceptionally high rates of evaporation. These tendencies, which show a broad consistency with a number of favoured climate change scenarios, have raised questions regarding the resilience of existing water resource management strategies and the sensitivity of aquatic habitats to relatively modest changes in runoff patterns.

The United Kingdom's continuing vulnerability to hitherto unusual weather patterns has been underlined by a number of notable drought episodes over the 1988-94 period ${ }^{2,3}$. They varied in spatial extent and severity but none matched the intensity of the $1975 / 76$ drought ${ }^{4}$. The relatively modest impact of this extreme rainfall deficiency on water consumers and the aquatic environment provided a vindication of existing water management strategies. An intense but relatively short-lived drought in the spring and summer of 1984^{5} provided a further test of water management arrangements especially in northern and western Britain but generally, water resources remained healthy over the ensuing 12 years. However, the privatisation of the water industry in England and Wales in 1989 coincided with the early stages of a notably volatile period for weather patterns. Sustained periods of very wet or very dry conditions characterised most regions of the UK; these were associated with an extension in the recorded range of river flow and aquifer recharge rates in a number of regions ${ }^{3}$. When considered in the context of historical rainfall and temperature data, the recent drought episodes may legitimately be considered as rare events. However, the clustering of
rainfall deficiencies, over a range of timeframes, and the persistently high temperatures over the last 20 years, raises important questions regarding the ability of historical hydrometric data to provide an appropriate basis for the design and development of improved water management strategies. Such problems, which assume a particular significance given the increasing evidence of global warming, were brought into sharp focus during a remarkably dry five-month spell beginning in the early spring of 1995.

Overture to the 1995 Drought

The 10 -year period ending in 1986 was, at the time, the wettest on record for the UK as a whole and, for most regions, mild wet conditions continued through the winter of $1987 / 88$. Following a wet July in 1988 , modest rainfall deficiencies developed through the autumn which heralded widespread and severe drought conditions in 1989 and 1990^{3}. Exceptionally high temperatures were a major contributory factor in both years. Each year ranks amongst the four warmest in the 337 -year Central England Temperature series ${ }^{6}$. The following two years were less outstanding but in the English lowlands the drought persisted (especially in groundwater terms) into the autumn of 1992.
.By late August 1992 soil moisture deficits (SMDs) were relatively modest and a notably wet September triggered brisk recoveries in river flows and; subsequently, groundwater levels. These wère sustained by a sequence of active low pressure systems through the late autumn and, by December, the focus of hydrological concern had switched decisively to the threat of flooding. The persistence of Atlantic frontal systems over the ensuing two years helped establish very high accumulated rainfall totals nationally and regionally. For England and

Wales the driest 28 -month sequence (ending in the summer of 1992) since the 1850 s was directly followed by the wettest 32 -month sequence this century - ending in February 1995. The wet phase culminated in the 1994/95 winter (DecemberFebruary) - the wettest for Britain in a series from 1869. Correspondingly, winter runoff accumulations were amongst the highest on record in most catchments, many reported runoff in the $120-170 \%$ range, higher for many eastern rivers (see page 18).

Groundwater recharge was very healthy also and, from late-1992, groundwater levels in most major aquifers registered their greatest two-year recovery since at least 1976-77 (see hydrographs on pages 150 to 153). The water resources outlook in late February 1995 was exceptionally healthy. Reservoirs were at capacity and groundwater levels close to seasonal maxima over wide areas - the UK appeared very well placed to withstand any spring and summer rainfall deficiency.

TABLE 1 RAINFALL ACCUMULATIONS FOR SELECTED PERIODS WITH ESTIMATES OF RETURN PERIODS

		$\begin{gathered} \text { Apr-Aug } \\ 1976 \end{gathered}$	$\begin{gathered} \text { Apr-Aug } \\ 1995 \end{gathered}$	Est. Return Period ${ }^{1}$	$\begin{gathered} \text { Apr-Oct } \\ 1995 \end{gathered}$	Est. Return Period ${ }^{1}$
England and Wales	mm \%LTA	155	$\begin{array}{r} 149 \\ 46 \end{array}$	>200	$\begin{array}{r} 315 \\ 64 \end{array}$	60-90
Scotland	mm \%LTA	$\begin{array}{r} 332 \\ 72 \end{array}$	$\begin{array}{r} 314 \\ 68 \end{array}$	$35-50$	$\begin{array}{r} 737 \\ 97 \end{array}$	2-5
Regions*						
North West	mm \%LTA	$\begin{array}{r} 262 \\ 63 \end{array}$	$\begin{array}{r} 215 \\ 51 \end{array}$	120-170	$\begin{array}{r} 395 \\ 60 \end{array}$	80-120
Northumbria	$\operatorname{mm}_{\text {\%LTA }}$	$\begin{array}{r} 204 \\ 63 \end{array}$	$\begin{array}{r} 162 \\ 50 \end{array}$	>200	$\begin{array}{r} 329 \\ 70 \end{array}$	25-40
Severn-Trent	mm \%LTA	$\begin{array}{r} 141 \\ 48 \end{array}$	$\begin{array}{r} 126 \\ 43 \end{array}$	>200	$\begin{array}{r} 257 \\ 61 \end{array}$	50-80
Yorkshire	mm \%LTA	$\begin{array}{r} 180 \\ 58 \end{array}$	$\begin{array}{r} 132 \\ 42 \end{array}$	>200	$\begin{array}{r} 258 \\ 57 \end{array}$	120-170
Anglian	mm \%LTA	$\begin{array}{r} 130 \\ 52 \end{array}$	$\begin{array}{r} 104 \\ 42 \end{array}$	>200	$\begin{array}{r} 221 \\ 63 \end{array}$	35-50
Thames	mm \%LTA	$\begin{array}{r} 110 \\ 41 \end{array}$	$\begin{array}{r} 106 \\ 40 \end{array}$	>200	$\begin{array}{r} 255 \\ 66 \end{array}$	20-35
Southern	mm \%LTA	$\begin{aligned} & 91 \\ & 34 \end{aligned}$	$\begin{aligned} & 97 \\ & 36 \end{aligned}$	>200	$\begin{array}{r} 271 \\ 65 \end{array}$	20-35
Wessex	mm \%LTA	$\begin{array}{r} 106 \\ 37 \end{array}$	$\begin{gathered} 138 \\ \hline \end{gathered}$	80-120	$\begin{array}{r} 350 \\ 80 \end{array}$	5-10
South West	mm \%LTA	$\begin{array}{r} 131 \\ 36 \end{array}$	$\begin{array}{r} 187 \\ 52 \end{array}$	70-100	$\begin{array}{r} 426 \\ 74 \end{array}$	10-15
Welsh	mm \%LTA	199	$\begin{array}{r} 224 \\ 53 \end{array}$	70-100	$\begin{array}{r} 459 \\ 68 \end{array}$	25-40
Highland	mm \%LTA	$\begin{array}{r} 394 \\ 77 \end{array}$	$\begin{array}{r} 379 \\ 74 \end{array}$	10-20	$\begin{array}{r} 873 \\ 99 \end{array}$	2-5
North East	mm \%LTA	$\begin{array}{r} 188 \\ 53 \end{array}$	$\begin{array}{r} 273 \\ 77 \end{array}$	5-15	$\begin{aligned} & 670 \\ & 124 \end{aligned}$	10-20
Tay	mm \%LTA	$\begin{array}{r} 308 \\ 79 \end{array}$	$\begin{array}{r} 254 \\ 65 \end{array}$	20-35	$\begin{aligned} & 651 \\ & 103 \end{aligned}$	2-5
Forth	mm \%LTA	$\begin{array}{r} 313 \\ 84 \end{array}$	$\begin{array}{r} 228 \\ 61 \end{array}$	40-60	$\begin{array}{r} 560 \\ 94 \end{array}$	2-5
Tweed	mm \%LTA	$\begin{array}{r} 243 \\ 69 \end{array}$	$\begin{array}{r} 202 \\ 57 \end{array}$	70-100	$\begin{array}{r} 458 \\ 85 \end{array}$	5-10
Solway	mm \%LTA	$\begin{array}{r} 341 \\ 75 \end{array}$	$\begin{array}{r} 270 \\ 59 \end{array}$	50-80	$\begin{array}{r} 623 \\ 83 \end{array}$	5-10
Clyde	mm \%LTA	$\begin{array}{r} 441 \\ 86 \end{array}$	$\begin{array}{r} 358 \\ 70 \end{array}$	15-25	$\begin{array}{r} 814 \\ 92 \end{array}$	2-5

[^2]
The 1995 Drought

The frequency of westerly and south-westerly airstreams declined markedly through the early spring of 1995 as a northward extension of the Azores high pressure cell deflected most rain-bearing frontal systems to the north, allowing subtropical air-masses to penetrate across much of the British Isles. Rainfall deficiencies built-up quickly through April and May and a heatwave during much of July and August produced a marked intensification in drought conditions. Much of the late-spring and summer rainfall in 1995 resulted from patchy showers or localised thunderstorms. Some areas, including parts of West Yorkshire, failed to benefit from the spatially highly variable rainfall and experienced particularly intense drought conditions. Substantially below average rainfall was recorded for each of the five months to August 1995 in most regions. Conditions were especially arid in the late summer: August rainfall totals were less than 15% of average throughout much of England and a few localities in the SouthEast registered zero monthly totals (e.g. in the Brighton and Eastbourne areas). The mean temperature established August 1995 as the second warmest, after July 1983, in the CET series. For England and Wales, the June-August period in 1995 marginally eclipsed 1976 as the driest summer in the 229-year homogenised England and Wales rainfall series ${ }^{7}$. With Scotland registering its second driest summer on record, the June-August rainfall total for Britain also established a new summer minimum in a series from 1869.

Rainfall deficiencies were even more notable in the April-August timeframe; a guide to the regional variation in the rainfall deficiencies, and a comparison with the same period during the 1976 drought, is given in Table 1. The April-August rainfall totals expressed as a percentage of the 1961-90 average are illustrated in Figure 1. The map is based on a 1 km grid of interpolated percentage rainfall values - this degree of resolution helps reveal the substantial regional, and important local variations in drought intensity. Precipitation totals over the five months were below half of the average in most regions with the greatest deficiencies found in a broad zone embracing the greater part of northern England and the English lowlands; the area around Newry and the Mourne Mountains in Northern Ireland was also notably dry. Pockets of extreme rainfall deficiency less than 20% of the 1961-90 average - could be found in south Derbyshire.

For England and Wales as a whole, the AprilAugust rainfall total is the lowest for any five-month sequence in over 200 years; only during the 1921 drought have five-month rainfall totals approaching the 1976 and 1995 minima been registered (see Table 2). Analyses, using standard rainfall frequency tables based on rainfall variability over the 1911-70 period ${ }^{8}$, indicate return periods of 150 years or more

TABLE 2 5-MONTH MINIMUM RAINFALL TOTALS FOR ENGLAND AND WALES, 1800-1995

Rank	Rainfall (mm)	\% of 1800-1995 average	End month/yr	
1	149	43.1	08	1995
2	155	44.8	08	1976
3	159	50.7	06	1921
4	184	58.7	06	1938
5	185	56.7	07	1826
6	185	59.0	06	1929
7	186	59.3	06	1887
8	187	52.4	04	1854
9	188	57.6	07	1870
10	191	48.8	03	1858
11	191	52.1	09	1959
12	193	59.1	07	1990

for the April-August rainfall deficiency for most regions of England. The large spatial variations evident in Figure 1 confirm that the regionally aggregated rainfall figures presented in Table 1 may not be representative across the regions - this is especially true of the Yorkshire and Severn-Trent regions. In addition, caution should be exercised in interpreting the return periods quoted in Table 1 (see footnotes); the assumption of a stable climate, in particular, may prove unrealistic (see below).

The exceptionally low rainfall, coupled with hot, sunny conditions which resulted in evaporation demands exceeding the average, typically by 20%, meant that some stress on water resources and river systems was unavoidable during 1995. River flows and groundwater levels generally remained well within the normal range through the spring but, by May, steep and protracted recessions had produced well below average flows in most regions. A clear distinction could, however, be drawn between rivers draining impervious western and northern catchments and rivers in the English lowlands supported principally from groundwater. In the latter, baseflows kept summer runoff rates well above drought extremes; most 1995 minima were not registered until late in the year (see page 18). In more responsive catchments, however, exceptionally low runoff rates were reported during the summer. For instance, in Scotland during the latter half of August unprecedented minima were registered on the Dulnain (Highland Region) and the West Peffer Burn (Lothian Region) reported a zero flow for the first time in a record from 1966. New minimum monthly runoff totals were established at around 20% of primary gauging stations in the UK with 15 or more years of record. Their distribution - from northern Scotland to Cornwall testifies to the spatial extent of severe drought conditions. Flows in some Pennine rivers were especially depressed: the Coalburn (Cumbria) registered its first zero monthly runoff in a 30-year record and the August flow on the River Ure (Yorkshire) was only around 60% of the previous minima (established during the 1976 drought).

Figure 1 April-August rainfall in 1995-as a percentage of the 1961-90 average

Water Resources Impacts

Although relatively healthy groundwater levels provided a valuable buffer against the effects of the dry spring and summer in 1995, unprecedented water demands began to reveal weaknesses in the water distribution networks as the drought developed. Peak summer demands in recent years have been exceptional ${ }^{9}$. In eastern England particularly, this results in part from the growth in water use for irrigation ${ }^{10}$ but a more significant factor, nationally, during 1995 was the surge in demand - normally concentrated in the evening - caused by garden watering during extended hot, dry spells. The patchy response to publicity campaigns to moderate water usage resulted in a number being quickly followed by the introduction of hosepipe bans; these extended over an ever increasing area. At this stage of the drought's development, local - and mostly temporary - water distribution problems created the illusion of national water resources stress and posed considerable public relations difficulties for the water industry, at a time when overall resources were relatively healthy.

Around mid-July, the drought entered a transitional phase as the mismatch between resource depletion and replenishment produced rapidly dwindling reservoir stocks. This was most evident in those areas supplied from small reservoirs or those not yet fully integrated into regional networks (e.g. in Cornwall and West Yorkshire). By late August the drought had intensified markedly and in some, mostly western and northern, areas stocks in a number of major reservoirs (for example in the Pennines and the Lake District) had declined to below 20\% of capacity; a real threat to resources thus became established. Hosepipe bans were extended over an ever increasing area through the summer and entering the autumn almost 20 million people were affected.

Rainfall deficiencies over the April-August period were more exceptional in parts of the English lowlands than in the north, but the water resources outlook was of less immediate concern because groundwater levels in the Chalk, England's most important aquifer, remained mostly within the normal range - a consequence of the abundant rainfall throughout the winter of 1994/95. The groundwater level variation at The Holt and Washpit Farm boreholes (see page 150) provides a representative confirmation of the generally healthy state of groundwater resources through the spring and summer of 1995, the hydrographs also illustrate the remarkable range experienced over an eight-year period characterised by wide and sustained departures from the normal seasonal variation.

A Modest Droughtbreak followed by Re-intensification

Early September witnessed a further marked change in weather patterns with a sequence of active frontal
systems sweeping across most regions. Several southern areas recorded more rainfall over the first 10 days of September than in the preceding 10 weeks and localised flooding was widely reported. A repetition of the dramatic end to the droughts of 1976 and 1984 seemed possible as the second driest August on record, for the UK as a whole, was followed in parts of southern England by the second wettest September. This encouraging transformation - and the decline in evaporation demands as the growing season came to an end - greatly eased the water supply stress. However, a number of strategically important reservoir systems, including those in the Pennines and the Lake District, failed to benefit from the early autumn rainfall and, with soils still dry in most catchments, the seasonal recovery in runoff and recharge rates was weak and patchy.

Throughout most of England and Wales, October was relatively dry and remarkably mild concluding the warmest 12 -month sequence in the entire CET series. The synoptic pattern began to change again in November as persistently anticyclonic conditions to the north of the British Isles allowed airflows from the north-easterly quadrant to become dominant. These brought cold and dry conditions which were to continue through much of the 1995/96 winter. The paucity of rain-bearing frontal systems through the late autumn of 1995 produced a re-intensification in the drought. Particularly severe drought conditions again affected the southern Pennines where, for some reservoired catchments, the accumulated rainfall deficiencies since March - in a timeframe critical for water resource management - were the highest on record. Stocks in a few West Yorkshire reservoirs fell to below 15% of capacity and tankering was required to counteract the rapid drawdown and to maintain supplies in parts of the region: For England and Wales as a whole, overall stocks declined to below the minima registered in the drought years of 1989 and 1990. By early December the drought had significantly increased its range - extending down into East Anglia and north Wales, but the focus remained in northern England, the North-West especially. Some Pennine raingauges had recorded 10 successive months with below average rainfall by year-end and accumulated totals were the lowest in 100 years or more ${ }^{11}$. A cold December with substantial snowfall moderated the drought but thereafter the winter remained cool and dry and rainfall deficiencies again increased in 1996.

River flow recessions continued through much of October and November in most areas resulting in exceptionally low accumulated runoff totals for timespans exceeding about two months. The flow frequency diagram for the River Wharfe (Figure 2) illustrates the increase in drought intensity over the longer timeframes. The 199560 -day minima is notable but appreciably above those established in 1976 and 1959. When 120 -day minima are consi-

Figure 2 Flow frequency diagram for the River Wharfe
dered, only 1959 produced lower runoff and for 240day accumulations the 1995 minima is unprecedented; Figure 2 indicates that such flows may be expected on average only once in $80-120$ years (assuming a sensibly stable climate). Away from northern England, 1995 runoff deficiencies were less extreme but April-November runoff totals were the lowest on record throughout much of northern Britain and the Midlands.

By December, water-table recessions had commonly extended over nine months and early winter groundwater levels testified to an exceptional decline since the late winter of 1994/95. In some areas - for example the South Downs where groundwater levels at the Chilgrove House borehole had fallen more than 40 metres since February - drought minima were being approached by year-end and concern focused on the general water supply prospects for 1996*.

The Recent Past

Water management in the United Kingdom, as elsewhere, is underpinned by the lack of trend in long term river flow and groundwater level series, some of which extend back 150 years. In a climate as

[^3]variable as that of the UK any short term deviation from the average needs to be treated with considerable caution particularly as the clustering of wet or dry years is known to be a feature of the climate of western Europe ${ }^{12}$. Nonetheless, the hydrological characteristics of the last 25 years - and their broad consistency with a number of favoured climate change scenarios ${ }^{13,14}$-imply that any assumptions of a continuing stationarity in runoff and aquifer recharge series need to be kept under continuing review.

Average temperatures over the seven years ending in 1995 are the highest on record and for the last 20 years, taken together, mean temperatures have been around $0.5^{\circ} \mathrm{C}$ greater than the preceding average. Correspondingly, evaporation losses have been notably high; lower relative humidities and increased average wind speeds may also have enhanced evaporation rates in recent years. Potential evaporation losses for the 1990s have been substantially greater than those which typified the $1960 \mathrm{~s}^{1}$. This is of particular significance in eastern and southern England where, on average, annual potential evaporation totals exceed rainfall, and concentrations of population, commercial activity and intensive agriculture generate the greatest demand. However, it is also important in western and northern catchments where increased actual evaporation losses could significantly reduce reservoir yields.

During most recent years one consequence of the elevated evaporative demands has been the persistence of substantial soil moisture deficits well into the autumn. Commonly, end-of-October SMDs have exceeded 70 mm in much of the English lowlands. In a normal year such deficits would require around two months average rainfall to be satisfied in the east. If the ensuing winter is dry, runoff rates recover only sluggishly and the window of opportunity for aquifer recharge can be narrowed down to a matter of weeks. Such circumstances prevailed in eastern England during successive winters in the extended drought of 1988-92 (and again in 1995/96). Over the full compass of the 1988-92 drought the combination of very dry autumn soils, limited winter rainfall and enhanced evaporation losses was to translate a 20% rainfall deficiency into a 50% reduction in recharge to the Chalk and Upper Greensand aquifers ${ }^{3}$.

A contributory factor to the dryness of summer soils has been the recent tendency for a more distinct partitioning of rainfall between the winter and summer half-years. Normally rainfall in Britain is fairly evenly distributed through the year and the ratio of October-March rainfall totals to those of the following summer half-year displays no overall trend over the first 100 years of the series. Since the early 1970s however, the ratio has increased significantly ${ }^{15}$. In part this reflects the cluster of record winter rainfall totals for Scotland; seven of the wettest eight October-March periods have occurred

Figure 3 Gan-Mar and yuly-Sept rainfall for England and Wales (10-year running means)
since 1986/87 (but see footnote on page 9) and the precipitation totals for the Highlands have been outstanding. A tendency towards wetter winters and drier summers is also clearly evident in the England and Wales series. Figure 3 compares January-March rainfall totals for England and Wales with those for July-September. Both traces show compelling but opposing trends. However, in the eighteenth and early nineteenth century inadequacies in the raingauge network (e.g. the very sparse initial coverage in the western uplands) limit the reliability of the seasonal totals - the winter especially. Latterly, it has also been confirmed ${ }^{16}$ that artifacts in the series result from the manner in which the national dataset has been computed. However, the divergence of the running mean plots from the early 1960 s is based on consistently derived monthly totals and has no modern parallel.

The very unusual temporal distribution of rainfall in the recent past have been accompanied by an equally marked change in spatial patterns. A clear exaggeration in the north-west/south-east rainfall gradient across the UK may be demonstrated ${ }^{15,17}$. Figure 4 illustrates the relationship between annual precipitation totals for Fort William and Kew. The preferred tracks of Atlantic low pressure systems over the post-1970 period (until late-1995) contributed to a sharp increase in the relative wetness of Fort William; this tendency is confirmed by regional rainfall comparisons. Generally, the effect of evapo-

Figure 4 Ratio of the annual rainfall at Fort William to annual rainfall at Kew (10-year running mean)
ration losses has been to further accentuate regional contrasts in rates of runoff and aquifer recharge.

The unusual nature of the climate of England and Wales over the 1976-95 period is encapsulated in Figure 5 which shows rainfall and temperature anomalies for the post-1844 period. The AprilAugust and November-March periods were chosen to reflect the importance of the two periods in relation to the replenishment and depletion of water resources; coincidentally they help to emphasise the singular nature of the hydrological transformation over the 1994/96 period. Recent autumn/winter periods exhibit wide departures from the average and a modest tendency to cluster in the warm/wet quadrant. The April-August data exhibits much more marked clustering; the 1976 and 1995 spring/summer periods are outstanding but most group in the warm/dry quadrant - over the last 20 years summer rainfall is 10% below, and temperatures $0.6^{\circ} \mathrm{C}$ above the preceding average. Examination of the full England and Wales rainfall series reveals a few precedents to the recent volatility in rainfall patterns, for example in the 1850 s. However, once account is taken of temperatures and evaporative demands, there are no close analogues in the hydrological record to the recent past.

The interplay of rainfall amounts, evaporative losses, catchment geology and the evolving pattern of water utilisation in individual catchments has resulted in complex variations in flow regimes over the last 20 years, the recent past especially. Nonetheless, flow regimes for many rivers echo - in many cases accentuate - the increased seasonality exhibited by rainfall. This regime variation is superimposed on changes in overall runoff totals which display a clear regional pattern. Figure 6 shows the change in monthly runoff since 1987 relative to the preceding record for four catchments with relatively minor disturbance to the natural flow regimes. For the River Clyde overall runoff over the 1988-95 period is substantially above average with significantly increased flows through much of the winter. This contrasts with catchments in eastern and southern England. Overall runoff has been well below average on the Rivers Lymington and Waveney and JulyOctober runoff totals have been notably low contributing to enhanced seasonality. For the springfed Mimram (see page 17) which drains a Chalk catchment in Hertfordshire, above average winter rainfall over the 1988-95 period has resulted in increased baseflows to support summer discharge and thus only a very muted change in seasonality is evident on Figure 6. Whilst these results show broad similarities with postulated regime changes associated with global warming ${ }^{14}$, regime variation over short runs of years are common and a more comprehensive and ongoing analysis will be required to determine whether the last decade represents the beginning of a real departure from the seasonality captured in the historical record.

Figure 5 England and Wales rainfall and Central England Temperature anomalies 1845-1995

Conclusion

Hydrologically, the wide departures from average seasonal conditions which have been a feature of the 1990s achieved an extreme expression over the 1994/95 period when temperatures and rainfall patterns were more typical of western France. Whilst rainfall, temperature and soil moisture interactions can have subtle water resource implications, enhanced winter rainfall will generally bring obvious benefits. Importantly however, 1995 and 1990 have both demonstrated how rapidly runoff rates can decline and water supply prospects deteriorate. 1995 saw almost 20 million people affected by hose/ sprinkler bans and, in a few areas, the threatened introduction of rota cuts or standpipes (which, in the event, were not required). This produced considerable consumer resentment and political comment. The use of measures to restrict demand during 1995 was, however, unsurprising given the inordinate nature of the spring and summer rainfall deficiency. In the perspective provided by lengthy historical rainfall and temperature records (up to the mid1970s), the level of risk adopted for resource management purposes in the UK appears to be of the right order - and was largely vindicated during the droughts of 1976 and 1984. But consumer willingness to reduce their water demand may well be changing; importantly so also may the climate. Singular as the conditions experienced in the 1995 summer were, notably hot and dry periods also
occurred in 1994 (briefly), 1990, 1989, 1984 and 1983. This suggests that the historical rarity of drought events may no longer be a reliable guide to their contemporary frequency. It is too early to incorporate projections of the impact of global warming into detailed national or regional water resource management strategies; but to continue to give equal weight to modern and historical hydrometric data when indexing the rarity of contemporary droughts may no longer retain scientific and public credibility. Recent data suggest that return periods based on standard historical periods may no longer be fully representative and that water management contingency planning should focus on a substantially higher incidence of periods of water resources stress.

Acknowledgments

This paper is largely based on data assembled as part of the national hydrological monitoring programme maintained jointly by the Institute of Hydrology and the British Geological Survey on behalf of the Department of the Environment and the Environment Agency (financial support for the production of the monthly reports is also received from the Scottish Environment Protection Agency and from OFWAT). River flow and groundwater level data for these reports are provided principally by the

Figure 6 Change in monthly runoff since 1987 relative to the preceding record expressed as a percentage difference
regional divisions of the Environment Agencies. Reservoir contents data are provided by water companies and regional authorities and most of the rainfall data (and updates of the CET series) is supplied by the Met. Office. For historical comparisons the homogenised England and Wales rainfall series derived by the Climatic Research Unit, University of East Anglia ${ }^{7}$ was used. The level of cooperation sustained by the data producers is gratefully acknowledged.

The help of Samantha Green and Felicity Sanderson in the compilation of this paper is also gratefully acknowledged.

References

1. Marsh, T.J. (1996) The 1995 drought - a signal of climatic instability. Proc. Instn. Civ. Engrs. Wat., Marit. \& Energy, 118, Sept., 189-195
2. Anon. (1993) 1992 Yearbook, Hydrological data UK series Institute of Hydrology, 184pp.
3. Marsh, T.J., Monkhouse, R.A., Arnell, N.W., Lees, M.L. and Reynard, N.S. (1994) The 1988-92 Drought. Hydrological data UK series. Institute of Hydrology, 82 pp .
4. Hamlin, M.J. and Wright, C.E. (1978) The effects of drought on the river systems. In: Scientific aspects of the 1975-6 drought in England and Wales. Proc. Roy. Soc. London, Series A, Vol. 363, 69-96.
5. Marsh, T.J. and Lees, M.L. (1986) The 1984 Drought. Hydrological data UK series. Institute of Hydrology, 72 pp .
6. Manley, G. (1974) Central England Temperatures: monthly means 1659 to 1973. Quart. Jour. Royal. Met. Soc., 100, 389-405.
7. Wigley, T.M., Lough, T.M. and Jones, P.D. (1984) Spatial patterns of precipitation in England and Wales and a revised, homogeneous England and Wales precipitation series. Jour. Clim. Vol. 4, 1-25.
8. Tabony, R.G. (1977) The variability of long duration rainfall over Great Britain. Met. Office Scientific Paper No. 37.
9. Anon. (1995) Demand for water hits new peaks. Demand Management Bulletin, No.12, August 1995. National Rivers Authority Demand Management Centre.
10. National Rivers Authority. (1994) Water Nature's Precious Resource. HMSO, 26-27.
11. Anon. Monthly rainfall report. Environmental Agency NW Region.
12. Arnell, N.W. and Reynard, N.S. (1993) Impacts of climate change on river flow regimes in the United Kingdom. Report to the Dept. of the Environment.
13. Rowntree, P.R., Murphy, J.M. and Mitchell, J.F.B. (1993) Climatic change and future rainfall predictions. Journ. I.W.E.M., 7, 464-470.
14. Arnell, N.W and Reynard, N.S. (1996) The effects of climate change due to global warming on river flows in Great Britain. Jour. of Hydrology (in press).
15. Green, S., Sanderson, F.J. and Marsh, T.J. (1996) Evidence for recent instability in rainfall and runoff patterns in the Celtic regions of western Europe. Proc. Inter-Celtic Colloquium, Rennes, July 1996 (in press).
16. Woodley, M.R. (1996) A review of two national rainfall series. Int. Jour. Clim. Vol. 16, 677-687.
17. Mayes, J.C. (1995) Changes in the distribution of annual rainfall in the British Isles. Journ. CIWEM, 9, 531-539.

Computation and Accuracy of Gauged Flows

Gauged flows are generally calculated by the conversion of the record of stage, or water level, using a stage-discharge relation, often referred to as the rating or calibration. Stage is measured and recorded against time by instruments usually actuated by a float in a stilling well. The instrument records the level either digitally, on a solid state logger, less commonly on punched tape, or continuously by pen and chart. At the majority of the gauging stations in the United Kingdom provision is made for the routine transmission of river levels directly to the processing centre, by telephone line or, less gener'ally, by radio; on occasions satellites have been used to receive and re-transmit the radio signal. The rapid growth in the use of the public telephone network for the transmission of river level and flow data is enabling hydrometric data acquisition to proceed on a near real-time basis in most areas. Typically, the levels are recorded at 15 -minute intervals and stored on-site for over-night transmission to allow the initial processing to be completed on the following day. Generally, both digital and analogue recording devices are deployed at gauging stations to provide a measure of security against loss of record caused by instrument malfunction.

The stage-discharge relation is obtained either by installing a gauging structure, usually a weir or flume with known hydraulic characteristics, or by measuring the stream velocity and cross-sectional area at points throughout the range of flow at a site characterised by its ability to maintain the relationship.

The accuracy of the processed gauged flows therefore depends upon several factors:
accuracy and reliability in measuring and recording water levels,
ii. accuracy and reliability of the derived stagedischarge relation, and
iii. concurrency of revised ratings and the stage record with respect to changes in the station control.

Flow data from ultrasonic gauging stations are computed on-site where the times are measured for acoustic pulses to traverse a river section along an oblique path in both directions. The mean river velocity is related to the difference in the two timings and the flow is then assessed using the river's cross-sectional area. Accurate computed flows can be expected for stable river sections and within a range in stage that permits good estimates of mean channel velocity to be derived from a velocity traverse set at a series of fixed depths.

Flow data from electromagnetic gauging stations may also be computed on-site. The technique requires the measurement of the electromotive force (emf) induced in flowing water as it cuts a vertical magnetic field generated by means of a large coil buried beneath the river bed, or constructed above it. This emf is sensed by electrodes at each side of the river and is directly proportional to the average velocity in the cross-section.

British and International Standards are followed as far as possible in the design, installation and operation of gauging stations. Most of these Standards include a section devoted to accuracy, which results in recommendations for reducing uncertainties in discharge measurements and for estimating the extent of the uncertainties which do arise.

The National River Flow Archive (NRFA) exists to provide not only a central database and retrieval service but also an extra level of hydrological validation. To further this aim, project staff at the Institute of Hydrology liaise with their counterparts in the water industry on a regional basis and, by visiting gauging stations and data processing centres, endeavour to maintain the necessary knowledge of local conditions and problems which is essential to help identify and rectify anomalous flow data.

The NRFA is principally a database of daily flow values. Monthly peak flows are archived to provide a guide to overall flow variability but their precision can vary widely. The primary sources of nationally archived flood event data are the UK Flood Event Archive, the Peaks-over-Threshold (POT) database and the Flood Studies Report (see page 136).

Scope of the Flow Data Tabulations

River flow data are presented in two parts. In the first, daily mean gauged flows are tabulated for 49 gauging stations; daily naturalised flows (see page 66) are also tabulated for the River Thames at Kingston. Monthly flow data for a further 160 gauging stations are given in the second part. The featured gauging stations have been selected to give a broad geographical coverage and to typify a wide range of catchment types found throughout the United Kingdom. A map (Figure 9) is provided on page 42 to assist in locating the gauging stations featured in this section.

For each gauging station, basic reference information is given together with comparative average and extreme river flow and rainfall figures based upon the archived record.

Explanatory notes precede the two sets of tables and are provided to assist in the interpretation of particular items. The notes relating to the daily flow tables are given in the following section; those relating to the monthly data are given on page 93 .

Part (i) - the daily mean flow tabulations

Station Number

The gauging station number is a unique six-digit reference number which serves as the primary identifier of the station record on the National River Flow Archive. The first digit is a regional identifier being 0 for mainland Britain, 1 for the islands around Britain and 2 for Ireland. This is followed by the hydrometric area number given in the second and third digits. Hydrometric areas are either integral river catchments having one or more outlets to the sea or tidal estuary or, for convenience, they may include several contiguous river catchments having topographical similarity with separate tidal outlets. In Britain they are numbered from 1 to 97 in clockwise order around the coastline commencing in north-east Scotland. Ireland has a unified numbering system from 1 to 40 , commencing with the River Foyle catchment and circulating clockwise; not all Irish hydrometric areas, however, have an outlet directly on the coast.

The numbers and boundaries of the United Kingdom hydrometric areas are shown in the frontispiece.

The fourth, fifth and sixth digits comprise the number, usually allocated chronologically, of the gauging station within the hydrometric area. Where the leading digit, or digits, are zero they may be omitted giving rise to apparent four or five-digit reference numbers.

Measuring Authority

An abbreviation referencing the organisation responsible for the provision of river flow data to the National River Flow Archive. A list of measuring authority codes together with the corresponding names and addresses for organisations currently contributing data to the National River Flow Archive appears on pages 172 and 173.

Grid Reference

The initial two-letter and two-figure codes each designate the relevant 100 kilometre National Grid square or Irish Grid square; the standard six-figure map reference follows.
Note: Irish Grid references - which are italicised have only one prefix letter but it is common practice to precede it with the letter I to make the identification clear.

Catchment Area

The surface catchment area, in the horizontal plane, draining to the gauging station in square kilometres. There are a few gauging stations where, because of geological considerations, or as a result of water transfers - for instance, the use of catchwaters to increase reservoir yields - the actual contributing area may differ appreciably from that defined by the
topographical boundary. In consequence, the river flows, whether augmented or diminished, may cause the runoff values to appear anomalous.

First Year

The year in which the station started producing daily mean flow data, usually the first year for which data are held on the National River Flow Archive. Earlier data, often of a sporadic nature or of poorer quality, may occasionally be available from the measuring authorities or other sources.

Level of Station

The level of the station is, generally, the level of the gauge zero in metres above Ordnance Datum, or above Malin Head Datum for stations in Northern Ireland. Although gauge zero is usually closely related to zero discharge, it is the practice in a few areas for an arbitrary height, typically one metre, to be added to the level of the lowest crest of a measuring structure to avoid the possibility of false recording of negative values by some digital recorders. Station levels are stored to the nearest 0.1 metre on the Archive.

Maximum Altitude

The level to the nearest metre of the highest point in the catchment area.

Table of daily mean gauged (or naturalised) discharges

The mean flow in cubic metres per second (abbreviated to $\mathrm{m}^{3} \mathrm{~s}^{-1}$ and sometimes also referred to as 'cumecs') in a water-day, (09.00 to 09.00) or, where indicated, a calendar day. The naturalised discharge is the gauged discharge adjusted to take account of net abstractions and discharges upstream of the gauging station. Throughout the River Flow Data section flows are given to four significant figures.

Peak Flow: The highest flow in cubic metres per second for each month. The day of peak generally refers to the water-day but the calendar day has also been used, particularly in Scotland. Normally the peak flow corresponds to the highest fifteen-minute flow where water levels are recorded digitally, or the highest instantaneous flow associated with maximum stage where analogue recorders are used.

Runoff: The notional depth of water in millimetres over the catchment equivalent to the mean flow for the month as measured at the gauging station. It is computed using the relationship:

[^4]where n is the number of days in the month. The runoff total is rounded to the nearest millimetre.

Runoff is computed on the basis of naturalised flows (see 'Factors Affecting Runoff') for the minority of catchments where daily, or monthly, naturalised flows are available.

Rainfall: The rainfall over the catchment in millimetres for each month. Each areal rainfall total is derived from a one kilometre square grid of rainfall values generated from all available daily and monthly rainfall data. A computer program calculates catchment rainfall by averaging the values at the grid points lying within the digitised catchment boundary.

Validation procedures allow for the rejection of obviously erroneous raingauge observations prior to the gridding exercise. The bulk of the rainfall data are provided by the Meteorological Office*.

Where, as for instance in some small mountainous catchments, raingauges are few and their siting and exposure are not ideal, great precision in the areal rainfall estimates cannot be expected.

Statistics of monthly data for previous record

Only complete monthly records are used in the derivation of the average, low and high values of river flow, runoff and rainfall. The rainfall and runoff statistics are normally directly comparable but full equivalence will not apply where the pattern of missing data differs between the archived rainfall and runoff data sets.

Where applicable, a guide to the amount of missing data is given following the section heading. Some slight variations from the statistics held by the measuring authorities may occur; these may be due to different methods of computation or the need for uniformity in presentation.

Summary statistics

Current year flow statistics are tabulated alongside the corresponding values for the previous record. Where appropriate, the current year figures are expressed as a percentage \dagger of the preceding average.

Mean Flow: The average of all available daily mean flows during the term indicated.

Lowest Daily Mean: The value and date of occurrence of the lowest mean flow in cubic metres per second in a water-day during the term indicated. In a record in which the value recurs, the date is that of the last occasion.

River flow measurement tends to become more imprecise at very low discharges. Very low velocities,

[^5]heavy weed growth and the insensitivity of stagedischarge relations combine with the difficulty of accurately measuring limited water depths to reduce the accuracy of computed flows. The reliability of both the lowest daily mean flow and the 95 percent exceedance flow (see below) as representative measures of low flow must be considered carefully and the values used with caution in view of the increasing proportional variability between the natural flow and the artificial influences, such as abstractions, discharges and storage changes as the river flow diminishes.

Peak: The peak flow in cubic metres per second during the term indicated. The date of occurrence, normally the water-day, is also indicated. Generally, the peak flows are derived from the record of monthly instantaneous maximum flows stored on the National River Flow Archive*. As a result of particular flow measurement difficulties in the flood range, this peak flow series is often incomplete. Consequently the peak for the period of record may be omitted but, in some cases, the peak flow from the previous period of record has been abstracted from Volume IV of the Flood Studies Report ${ }^{1}$. Reference to this report should be made to check for historical flood events which may exceed the peak falling within the gauged flow record.
10% exceedance: The flow in cubic metres per second which was equalled or exceeded for 10 per cent of the specified term - a high flow parameter which, when compared with the mean may give a measure of the variability, or 'flashiness', of the flow regime. The 10 per cent exceedance value is computed using daily flow data only for those years with ten days, or less, missing on the National River Flow Archive.
50% exceedance: The flow in cubic metres per second which was equalled or exceeded for 50 per cent of the specified term - the median value. The same conditions for completeness of the annual records apply as for the 10 per cent exceedance flow.

95\% exceedance: The flow in cubic metres per second which was equalled or exceeded for 95 per cent of the specified term - a significant low flow parameter relevant in the assessment of river water quality consent conditions. The same conditions for completeness of the annual records apply as for the 10 per cent exceedance flow.

Factors Affecting Runoff (FAR)

An indication of the various types of abstractions from, and discharges to, the river operating within

[^6]CODE EXPLANATION
N Natural, i.e., there are no significant abstractions and discharges or the variation due to them is so limited that the gauged flow is within 10 per cent of the natural flow at, or in excess of, the 95 per cent exceedance flow.

Storage or impounding reservoir. Natural river flows will be affected by water stored in a reservoir situated in, and supplied from, the catchment above the gauging station.

R Regulated river. Under certain flow conditions the river will be augmented from surface water and/or groundwater storage upstream of the gauging station.

Public water supplies. Natural river flows are reduced by the quantity abstracted from a reservoir or by a river intake if the water is conveyed outside the gauging station's catchment area.

Groundwater abstraction. Natural river flow may be reduced or augmented by groundwater abstraction or recharge. This category includes catchments where minewater discharges influence the flow regime.

Effluent return. Outflows from sewage treatment works will augment the river flow if the effluents originate from outside the catchment.

Industrial and agricultural abstractions. Direct industrial and agricultural abstractions from surface water and from groundwater may reduce the natural river flow.

H Hydro-electric power. The river flow is regulated to suit the need for power generation.

ABBREVIATED DESCRIPTION

Natural within 10 per cent at the 95 per cent exceedance flow.

Reservoirs in catchment.

Augmentation from surface water

 and/or groundwater.Abstraction for public water supply.

Flows influenced by groundwater abstraction and/or recharge.

Augmentation from effluent returns.

Flow reduced by industrial and/or agricultural abstraction.

Regulation for HEP.
the catchment which alter the natural flow is given by a standard set of abbreviated descriptions. In Part (ii) - the monthly flow data - each description is shortened to a code letter. An explanation of the abbreviated descriptions and the code letters is given above. With the exception of the induced loss in surface flow resulting from underlying groundwater abstraction, these codes and descriptions refer to quantifiable variations and do not include the progressive, and difficult to measure, modifications in the regime related to land-use changes. Except for a small set of gauging stations for which the net variation, i.e. reservoir storage changes and/or the balance between imports and exports of water to, or from, the catchment, is assessed in order to derive
the 'naturalised' flow from the gauged flow, (see page 36), the record of individual abstractions, discharges and changes in storage as indicated in the code above is not held centrally.

Station and catchment description

A comprehensive set of gauging station and catchment descriptions is provided in the 'Hydrometric Register and Statistics 1986-90' (see page 174). Further details of the net impact of abstractions and discharges on river flow patterns are given in: Estimating Low River Flows in the United Kingdom ${ }^{2}$.

Comment

A summary of any important factors influencing the accuracy of the current year's flow data specifically; for instance, the reconstruction of a gauging station or the use of extrapolated stage-discharge relations during periods of very low or very high flows. A short commentary providing a guide to the characteristics of the station, its flow record and the catchment it commands; refer to page 176 for an explanatory listing of the abbreviations and acronyms used. The principal objectives of this summary information are to assist data users in the selection of gauging station records appropriate to their needs and to assist in the interpretation of flow variability at individual gauging stations particularly where the natural flow pattern is significantly disturbed by artificial influences.

Growth of the network

The national gauging station network now comprises around 1200 flow measurement stations. There has been a steady increase in monitoring sites in the 1990s following the significant decommissioning associated with a number of regional network reviews in the 1980s. Full commissioning of a newly constructed gauging station can take several years whilst a full range stage-discharge relation is developed. Normally data are not submitted to the National River Flow Archive until the measuring authority has critically reviewed its hydrometric performance. For some new stations - for instance those immediately downstream of reservoirs - the flow data may be judged to be of limited hydrological value and therefore not be stored on the NRFA.

Summary details of the stations for which data are held on the NRFA are given on pages 139 to 144 and comprehensive reference information for all primary gauging stations will appear in the forthcoming 1991-95 Hydrometric Register and Statistics publication (see page 174).

Network additions in 1995

Notification has been received of new, or refurbished, gauging stations commissioned in 1995, see opposite.

The gauging station on the Carradale Water (88001) is the first ultrasonic station commissioned in Scotland. The ultrasonic technique (see page 35) was introduced in the UK during the $1970 \mathrm{~s}^{3}$ primarily to address flow measurement problems at sites where no unique stage-discharge relations existed (e.g. in tidal reaches). Initially problems were encountered with weed growth interrupting the acoustic pulses and doubts were expressed concerning the representativeness of average velocities derived from a limited number of transducers. A few early ultrasonic gauging stations failed to produce satisfactory results but most practical problems - for
-Gauging Stations Commissioned in 1995

River	Station	Measuring Authority
Wick		Tarroul
Usway Burn	Shillmoor	SEPA-N
Aire	Lemonroyd Weir	EA-NE*
Blithe	Hamstall Ridware	EA-NE
Congham	Manor Farm	EA-A
Alconbury Brook	Brampton New Weir	EA-A*
Gipping	Ipswich West	EA-A
Windrush	Bourton on the Water	EA-T
Dikler	Bourton on the Water	EA-T
Ray	Islip	EA-T
Sor Brook	Bodicote	EA-T
Shell Brook	Shell Brook P.S.	EA-S*
Ouse	Ardingly	EA-S
Yeo	Collard Bridge	EA-SW
Stour	Prestwood	EA-M
Severn	Deerhurst	EA-M
Garren	Marstow Mill	EA-WEL
Bran	Llandovery	EA-WEL*
Clywd	Pont David	EA-WEL
Irk	Collyhurst Weir	EA-NW
Irwell	Irwell Vale	EA-NW
Irwell	Bury Grounds	EA-NW
Keekle	St Leonards	EA-NW
Eden	Sheepmount	EA-NW*
Evan	Beattock	SEPA-W
Carradale	Dippen	SEPA-W
Shiel	Shielfoot	SEPA-N

See page 172 for list of Measuring Authorities.
*Reconstructed or refurbished gauging station.
example coping with skew flow by the use of crosspath transducer configurations - were overcome, helped by the operational experience gained using a number of innovative installations in the 1980s. Continuing research and field experimentation produced a robust and reliable means of flow measurement which is now finding increasing application throughout the world. In the UK, ultrasonic stations are becoming competitive in cost and accuracy terms with more traditional methods and have provided a viable solution to flow measurement in an increasing variety of field conditions.

The ultrasonic technique is now a mature technology and represents a major UK hydrometric achievement. There are now more than 50 operational US installations throughout the UK, including seven on the River Thames (see list on page 40).

References

1. Anon. (1975). Flood Studies Report. Natural Environment Research Council (5 vols. reprinted 1993).
2. Gustard, A., Bullock, A. and Dixon, J.M. (1992). Estimating Low River Flows in the United Kingdom. Institute of Hydrology Report No. 108.
3. Herchy, R.W. and Loosemore, W.R. (1974). The ultrasonic method of river flow measurement. Water Research Centre and DoE Water Data Unit Symposium on River Gauging by Ultrasonic and Electromagnetic Methods, University of Reading, UK.

ULTRASONIC GAUGING STATIONS IN THE UNITED KINGDOM

NRFA Number \dagger	River	Location	Configuration	Transducer Paths	Site factors**	Tidal	Navigation, Lockage	Previous Configurations	Operational Status
27079	Calder	Methley	Cross	Multiple	MB U		Y		Open
27088	Calder	Caldene Bridge	Cross	Multiple	A C				Open
27089	Wharfe	Tadcaster	Cross	Multiple	LV				Open
27090	Swale	Catterick Bridge	Uni	Multiple	MB U				Open
	Esk	Briggswath	Cross	Multiple	A E				Open
28007	Trent	Shardlow	Cross	Multiple	BW				Open
28022	Trent	North Muskham	Cross	Multiple	LFP				Open
28027	Erewash	Sandiacre	Cross	Multiple	U				Open
28035	Leen	Nottingham	Cross	Multiple	U				Open
28036:	Poulter	Twyford Bridge	Cross	2 paths	BW				Open
28074:	Soar	Kegworth	Uni	Multiple	BW			Uni Single	Open
28081	Tame	Bescot	Cross	Multiple	WG BW				Open
28083	Trent	Darlaston	Cross	Multiple	LFP				Open
28085	Derwent	St. Marys Bridge	Cross	Multiple	LFP				Open
28093	Soar	Pillings Lock	Cross	Multiple	U				Open
31009	Glen	Shillingthorpe	Cross	Multiple	LFP LV				Open
32001	Nene	Orton Lock	Uni	Single	BW LV				Closed
32010	Nene	Wansford	Cross	Multiple	LFP LV				Open
33020	Alconbury Brook	Brampton New Weir	Cross + compound weir	Multiple	BW				Open
33360	Kings Dyke	Stanground	Cross	Multiple	LFP LV				Open
	Gipping	Ipswich West	Cross	Multiple	BW LV				Open
- 38027	Stort	Glen Faba	Cross	Multiple	BW LV			Uni Single	Open
38031	Lee	Rye Bridge	Cross	Multiple	BW LV				Open
38032	Lee	Lea Bridge	Cross	Multiple	BW LV				Open
39001	Thames	Kingston	Two Uni	Multiple	BW LFP EV	Y	Y		Open
39046	Thames	Sutton Courtenay	Uni	Multiple	BW U		\mathbf{Y}	Uni Single	Open
39072	Thames	Royal Windsor Park	Uni	Multiple	BW U		Y		Open
39079	Wey	Weybridge	Uni	Single	BW U		Y		Open
39087	Ray	Water Eaton	Crass	Multiple	BW U				Open
39138	Loddon	Twyford	Cross	Multiple	BW U				Open
39139	Cherwell,	Oxford	Cross	Multiple	BW U	1			Open
39140	Ray '	Islip	Cross	Multiple	BW U				Open
39076	Windrush	Worsham	Cross	Multiple	BW U				Open
39141	Wey	Guilford	Cross	Multiple	BW	Y			Open
39103	Kennet	Newbury	Cross	Multiple	BW U				Open
39105	Thame	Wheatley	Cross	Multiple	BW U				Open
39104	Mole	Esher	Cross	Multiple	BW U				Open
39111	Thames	Staines	Cross	Multiple	BW U				Open
39121	Thames	Walton	Cross	Multiple	BW U				Open
39122	Cranleigh Waters	Bramley	Cross	Multiple	A				Open
39129	Thames	Farmoor	Cross	Multiple	BW U		Y		Open
39130	Thames	Reading	Cross	Multiple	BW U		Y		Open
40026	Rother	Blackwall Bridge	Cross	Multiple	U	Y			Open
	Ouse	Barcombe	Cross	Multiple	E LV LFP	\mathbf{Y}			T/E
	Wallers Haven	Boreham	Cross	Multiple	E BW LV LFP				T/E
42023	Itchen	Riverside Park	Reflective	Multiple	E BW				Open
43021	Avon	Knapp Mill	Cross	Single	EW LFP			Uni Single	Open Open
45007	Exe,	Trews Weir	Uni	Single	E LFP				Open
- 52023	Parrett	Langport	Uni	Single	BW U				Closed
52024	Tone	Taunton	Uni	Single	BW U				Closed
	Brue	Westhay Bridge	Uni	Single	WG				Closed
53022	Avon	Bath	Uni	Multiple	E			Uni Single	Open
54001 .	Severn	Bewdley	Cross + Reflective	Multiple	LFP WG				Open
54005	Severn	Montford	Cross	Multiple	LFP WG				Open
54006	Stour	Kidderminster ${ }^{\text {' }}$	Cross	Multiple	U LFP				Open
54032 .	Severa.	Saxons Lode	Cross	Multiple	LFP BW	\mathbf{Y}	Y		Open
54057	Severn	\cdots Haw Bridge/Deerhurst	Cross	Multiple	- U LFP BW	\mathbf{Y}	Y		Open
54071.	Severn	Ashleworth	Cross	Multiple	U	\mathbf{Y}	\mathbf{Y}		Closed
54089 :	Avon	Bredon	Cross	Multiple	BW LFP		Y	Uni Single	Open
54095	Severn	Buildwas	Cross	Multiple	LFP WG				Open
68019	Weaver	Pickerings Cut	Cross	Multiple	BW				Open
69037	Mersey	Westy	Cross	Multiple	LFP				Open
69038	Manchester Ship Canal	Latchford	Cross	Multiple	BW				Open
55036	Garren	Marstow Mill	Cross	Multiple	LFP				Open
60005	Bran	Llandovery	Cross + flat vee weir	Multiple					Open
88001	Carradale Water	\cdots, Dippen	Cross	Multiple					Open

T/E Temporary/Experimental Uni Unidirectional

* A No afflux desirable	\checkmark BW Backwater effects	E Environmental acceptibility
V Low velocities	MB Mobile bed	U Unstable stage discharge relation
WG Severe weed growth downstream	LFP Low flow precision	
NRFA National River Flow Archive		
+ Numbers have yet to be assigned for a	monitoring sites	

STATIONS FOR WHICH DAILY OR MONTHLY DATA ARE GIVEN IN THE RIVER FLOW SECTION

station river name and station name number		see
		page
3002	CARron at sgodachail	94
D 3003	oykel at easter turnaig	44
4001	CONON AT MOY bridge	94
6008	Enrick at mill of tore.	94
D 7002	FINDHORN AT FORRES	45
D 8006	SPEY At boat o brig	46
8007	Spey at invertruim	94
9001	deveron at avochie	95
10002	UGIE at inverugie	95
11001	DON AT PARKHILL	95
D 12001	dee at woodend	47
12006	gairn at invergairn	95
13007	NORTH ESK AT LOGIE MILL	96
14001	eden at kemback	96
D 15006	tay at ballathie	48
15011	LYON AT COMRIE BRIDGE	96
16003	RUCHILL Water at cultybraggan	96
16004	earn at forteviot bridge	97
17001	Carron at headswood	97
17002	leven at leven	97
18003	teith at bridge of teith	97
18005	allan water at bridge of allan	98
18018	KIRKTON BURN AT BALQUHIDDER	98
D 19001	almond at craigiehall	49
20001	tyne at east linton	98
21006	Tweed at boleside	98
D 21009	tweed at norham	50
21012	teviot at hawick	99
21018	lyne water at lyne station	99
21022	whiteadder water at hutton	
	Castle	99
21024	jed water at jedburgh	99
D 22001	COQUET AT MORWICK	51
22006	blyth at hartford bridge	100
23001	TYNE AT BYWELL	100
23006	SOUTH TYNE AT Featherstone	00
23011	Kielder burn at kielder	100
24004	bedburn beck at bedburn	01
24009	wear at chester le street	01
25001	tees at broken scar	101
D 25006	greta at rutherford bridge	52
25019	leven at easby	101
26003	FOSTON BECK AT FOSTON MILL	102
26005	gypsey race at boynton	102
D 27002	wharfe at flint mill wear	53
27007	URE AT WESTWICK LOCK	02
27025	ROTHER AT WOODHOUSE MILL	102
D 27035	aire at kildwick bridge	54
D 27041	derwent at buttercrambe	55
27042	DOVE AT KIRKby mills	103
27047	SNaizeholme beck at low houses	103
27050	esk at sleights	03
27053	NIDD AT BIRSTwITH	103
27071	Swale at crakehill	104
D 28009	TRENT AT COLWICK	56
28015	idle at mattersey	104

Figure 9 Gauging station location map

Station	RIVER NAME AND Station name	SEE	STATION	river name and station name	SEE
Number		PAGE	Number		page
41006	UCK AT ISFIELD	114	60010	TYWI AT NANTGAREDIG	125
41019	ARUN AT ALFOLDEAN	115	D 62001	TEIFI AT GLAN TEIFI	80
41027	ROTHER AT PRINCES MARSH	115	63001	YSTWYTH AT PONT LLOLWYN	125
42003	LYMINGTON AT BROCKENHURST		64001	DYFI AT DYFI BRIDGE	125
	PARK	115	64002	DYSYNNI AT PONT-Y-GARTH	125
42004	TEST AT BROADLANDS	115	65005	ERCH AT PENCAENEWYDD	126
42006	MEON AT MISLINGFORD	116	66006	ELWY AT PONT-Y-GWYDDEL	126
D 42010	ITCHEN AT HIGHBRIDGE AND		67008	ALYN AT PONT-Y-CAPEL	126
	ALLBROOK	70	D 67015	dee at manley hall	81
D 43005	AVON AT AMESBURY	71	67018	DEE AT NEW INN	126
43006	NADDER AT WILTON PARK	116	D 68001	WEAVER AT ASHBROOK	82
43007	STOUR AT THROOP BRIDGE	116	68004	WISTȦTON BROOK AT MARSHFIELD	
43012	WYLE AT NORTON BAVANT	116		BRIDGE	127
44002	PIDDLE AT BAGGS MILL	117	69006	BOLLIN AT DUNHAM MASSEY	127
44009	WEY AT BROADWAY	117	69007	MERSEY AT ASHTON WEIR	127
D 45001	EXE AT THORVERTON	72	70004	Yarrow at croston mill	127
45003	CULM AT WOODMILL	117	71001	RIBBLE AT SAMLESBURY	128
45004	AXE AT WHITFORD	117	71004	Calder at whalley weir	128
45005	OTTER AT DOTTON	118	D 72004	Lune at caton	83
46003	DART AT AUSTINS BRIDGE	118	73005	KENT AT SEDGWICK	128
47001	TAMAR AT GUNNISLAKE	118	D 73010	LEVEN AT NEWBY BRIDGE	84
47008	THRUSHEL AT TINHAY	118	74005	EHEN AY BRAYSTONES	128
48005	KENWYN AT TRURO	119	75002	DERWENT AT CAMERTON	129
48011	FOWEY AT RESTORMEL	119	76005	EDEN AT TEMPLE SOWERBY	129
49001	CAMEL AT DENBY	119	D 76007	EDEN AT SHEEPMOUNT	85
D 50001	TAW AT UMBERLEIGH	73	76010	PETTERIL AT HARRABY GREEN	129
50002	TORRIDGE AT TORRINGTON	119	77003	LIDDEL WATER AT ROWANBURNFOOT	129
D 52005	TONE AT BISHOPS HULL	74	78003	ANNAN AT BRYDEKIRK	130
52007	Parrett at chisleborough	120	78004	KINNEL WATER AT REDHILL	130
52010	brUe AT LOVINGTON	120	D 79006	NITH AT DRUMLANRIG	86
53004	CHEW AT COMPTON DANDO	120	80001	URR AT DALBEATTIE	130
53006	FROME (BRISTOL) AT FRENCHAY	120	81002	CREE AT NEWTON STEWART	130
D 53018	AVON AT BATHFORD	75	81003	LUCE AT AIRYHEMMING	131
D 54001	SEVERN AT BEWDLEY	76	82002	DOON AT AUCHENDRANE	131
D 54002	AVON AT EVESHAM	77	83005	IRVINE AT SHEWALTON	131
D 54008	TEME AT TENBURY	78	D 84005	CLYDE AT BLAIRSTON	87
54016	RODEN AT RODINGTON	121	84016	LUGGIE WATER AT CONDORRAT	131
54019	AVON AT STARETON	121	85001	LEvEn AT Linnbrane	132
54020	PERRY AT YEATON	121	D 85003	Falloch at glen falloch	88
54022	SEVERN AT PLYNLIMON FLUME	121	90003	NEVIS AT CLAGGAN	132
54024	WORFE AT BURCOT	122	D 93001	Carron at new kelso	89
54034	DOWLES BROOK AT DOWLES	122	94001	EWE AT POOLEWE	132
54038	TANAT AT LLLANYBLODWEL	122	95001	INVER AT LITTLE ASSYNT	132
55008	WYE AT CEFN BRWYN	122	96001	Halladale at halladale	133
55013	ARROW AT TITLEY MILL	123	101002	MEDINA AT UPPER SHIDE	133
55014	LUGG AT BYTON	123	D 201005	Camowen at camowen terrace	90
55018	FROME AT YARKHILL	123	201007	BURN DENNET AT BURNDENNET BR	133
55023	WYE AT REDBROOK	123	D 203010	BLACKWATER AT MAYDOWN BRIDGE	91
D 56001	USK AT CHAIN BRIDGE	79	203012	BALLINDERRY AT BALLINDERRY BR	133
56013	YSCIR AT PONTARYSCIR	124	203020	MOYOLA AT MOYOLA NEW BRIDGE	134
57008	RHYMNEY AT LLLANEDERYN	124	D 203028	AGIVEY AT White hill	92
58009	EWENNY AT KEEPERS LODGE	124	205004	LAGAN AT NEWFORGE	134
60002	COTHI AT FELIN MYNACHDY	124	205005	Ravernet at ravernet	134

003003 Oykel at Easter Turnaig

Measuring authority: SEPA-N First year: 1977

Grid reference: 29 (NC) 40300 Level stn. (m OD): 15.60

Catchment area (sq km): 330.7
Max alt. (m OD): 998

DAY	JAN	FEB	MAF	APA	MAY	JuN	Jut	AUG	SEP	OCT	Nov	DEC
1	5.761	50.850	17.270	17.810	3.565	9.046	0.594	0.690	3.796	40.070	14.390	4.871
2	5.000	26.850	8.648	59.440	4.117	7.229	0.654	0.610	14.630	24.340	9.486	5.516
3	5.024	53.590	6.124	34.030	3.317	17.300	0.692	0.566	11.250	12.750	6.653	7.172
4	12.000	31.070	4.701	18.390	2.753	9.999	0.653	0.519	5.671	7.808	4.928	5.505
5	50.730	40.450	4.578	15.350	2.243	4.863	2.028	0.477	6.443	27.530	4.189	4.265
6	25.460	149.900	4.651	32.230	1.943	4.113	5.033	0.453	4.084	12.800	3.705	3.507
7	48.290	25.660	3.854	31.790	2.224	6.076	2.706	0.451	48.920	8.808	10.030	2.996
8	44.090	9.375	3.880	9.960	7.946	6.895	2.067	0.425	80.230	7.091	23.740	2.558
9	101.200	5.142	6.427	8.806	18.760	3.847	1.528	0.409	29.660	4.859	16.020	3.927
10	27.110	4.136	37.190	8.269	7.180	3.179	1.164	0.392	41.470	4.974	7.864	3.854
11	11.070	32.860	29.140	7.059	4.201	3.246	0.959	0.369	72.670	4.373	17.480	3.006
12	43.080	27.620	20.100	5.211	3.503	2.359	0.899	0.377	100.300	4.041	12.100	2.675
13	30.340	21.300	25.390	3.945	3.017	1.868	1.088	0.427	20.510	9.470	6.668	2.482
14	37.720	70.100	16.380	4.757	2.923	1.565	1.129	0.407	9.223	7.400	5.491	2.356
15	28.120	117.300	10.720	10.930	2.730	1.398	1.547	0.379	5.662	5.125	7.025	2.393
16	41.450	33.060	18.770	30.030	3.778	1.310	1.835	0.370	4.175	4.453	6.202	2.818
17	19.280	17.450	12.960	26.410	5.298	1.747	1.730	0.367	3.372	22.190	5.627	2.465
18	24.950	16.550	17.770	21.970	5.463	3.499	1.674	0.355	2.794	40.250	56.670	2.219
19	10.230	18.420	10.070	27.690	17.090	2.593	11.000	0.355	2.376	35.080	42.240	2.029
20	16.230	10.590	7.741	32.060	9.416	2.288	6.966	0.366	2.032	17.480	17.300	2.245
21	38.900	22.660	31.370	30.510	6.901	3.056	3.784	0.350	2.002	10.430	15.280	3.406
22	77.190	20.540	46.870	19.180	17.000	1.860	3.846	0.360	17.940	14.730	57.210	5.510
23	116.000	35.410	45.710	24.100	5.104	1.431	2.639	0.363	60.950	11.220	115.300	4.133
24	35.970	15.650	79.560	11.850	3.329	1.219	2.660	0.498	61.470	22.980	55.220	3.434
25	11.910	9.320	27.640	8.163	3.176	1.060	1.938	4.477	92.540	73.220	23.200	3.791
26	6.550	15.160	21.530	5.116	2.285	0.914	1.438	3.024	50.260	33.070	48.900	6.048
27	4.864	217.200	10.950	3.741	2.028	0.800	1.137	11.860	48.470	24.670	31.990	8.131
28	8.283	50.680	7.449	3.028	1.845	0.725	1.025	4.581	27.680	18.130	15.340	7.696
29	6.176		8.880	2.596	7.634	0.666	1.031	3.561	18.150	9.600	9.152	6.969
30	8.823		78.480	3.013	22.420	0.634	0.911	2.952	33.410	37.790	6.409	6.506
31	80.480		28.400		16.640		0.798	2.862		22.600		5.302
Average	31.690	41.030	21.070	17.250	6.446	3.560	2.166	1.408	29.400	18.690	21.860	4.187
L.owest	4.864	4.136	3.854	2.596	1.845	0.634	0.594	0.350	2.002	4.041	3.705	2.029
Highest	116.000	217.200	79.560	59.440	22.420	17.300	11.000	11.860	100.300	73.220	115.300	8.131
Peak flow	237.90	441.30	162.80	158.40	34.26	42.41	29.18	23.86	251.90	104.90	165.90	9.71
Day of peak Monthly total	23	27	30	2	30	3	19	27	11	25	23	3
(million cu m)	84.87	99.26	56.44	44.71	17.27	9.23	5.80	3.77	76.22	50.05	56.66	11.21
Runoff (mm)	257	300	171	135	52.	28	18	11	230	151	171	34
Rainfall (mm)	335	288	195	137	104.	43	74	55	313	181	181	39

Statistics of monthly data for previous record (Nov 1977 to Dec 1994)

Station and catchment description
40 m wide river section. Flows fully contained except in extreme circumstances (e.g. October 1978). Construction of gabion groynes immediately downstream, in February 1986, has rendered the low flow rating less stable. 100\% natural flow regime with little loch storage. Catchment is typical Highland mix of rough grazing and moorland with some afforestation in the middle reaches.

Station and catchment description
50 m wide river section in a mobile gravel reach which necessitates frequent recalibration of low flow rating. Flows contained under cableway up to 3.8 m . Adequately gauged to bankfull. 100% natural catchment with minimal surface storage. Other than a narrow agricultural coastal plain the catchment drains the Monadhliath Mountains with an extensive blanket peat cover.

008006 Spey at Boat o Brig

Measuring authority: SEPA-N First year: 1952

Grid reference: 38 (NJ$) 318518$
Leval stn. (m OD); 43.10

Catchment area (sq km): 2861.2 Max alt. (m OD): 1309

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	56.690	145.300	148.100	120.400	66.800	95.710	24.340	15.810	18.480	59.740	83.380	60.920
2	46.590	107.000	101.300	136.400	80.400	103.600	24.360	15.300	179.600	67.750	66.170	55.020
3	40.510	198.500	72.270	138.400	81.940	97.100	24.430	14.770	160.600	90.800	55.260	56.430
4	42.030	170.000	59.330	112.900	73.840	98.150	23.070	14.500	89.910	77.170	48.970	58.680
5	91.890	167.900	53.550	85.740	64.470	72.260	24.240	14.200	127.700	80.630	44.960	52.520
6	87.740	270.600	49.560	84.660	52.370	58.690	23.550	14.010	86.120	76.930	42.420	48.630
7	77.470	220.100	45.910	99.980	49.480	84.460	22.590	13.890	165.800	78.600	40.650	46.270
8	103.800	158.000	43.340	82.770	70.030	171.700	21.770	13.600	363.500	64.570	39.830	43.220
9	119.100	100.500	41.920	63.230	97.210	95.820	21.290	13.300	356.500	53.780	39.340	41.690
10	132.300	72.900	59.100	61.100	76.310	72.230	20.830	12.960	361.500	47.010	37.210	45.780
11	93.940	73.210	189.100	62.290	56.880	72.210	20.400	12.690	285.800	43.440	37.040	42.170
12	70.560	90.930	130.500	59.220	59.550	63.230	20.800	12.870	284.900	41.850	44.280	39.520
13	101.900	85.620	138.800	52.440	59.470	52.250	20.540	12.950	131.600	47.950	39.420	39.450
14	100.800	83.770	141.100	48.970	63.490	47.030	20.410	12.780	95.290	49.800	36.790	38.870
15	74.430	112.800	99.380	49.660	61.070	43.890	23.460	12.490	77.890	49.750	58.620	37.630
16	134.000	86.410	74.390	51.170	53.670	41.480	25.390	12.290	66.610	54.430	57.880	37.330
17	119.200	68.420	68.670	71.510	54.220	39.720	24.390	12.090	60.140	52.830	48.140	36.580
18	119.700	59.860	63.070	79.690	57.080	38.240	22.420	12.000	53.440	59.590	48.770	35.660
19	91.140	66.100	55.760	79.900	60.690	36.390	22.200	12.090	48.430	48.510	92.450	36.180
20	72.980	66.300	49.530	91.900	58.340	34.870	32.230	12.030	44.530	43.780	87.740	31.940
21	73.970	61.370	46.930	93.910	51.070	32.730	39.270	11.890	41.170	40.880	106.700	27.390
22	99.490	69.360	56.070	92.000	53.870	31.140	29.330	12.060	38.730	41.000	80.790	34.100
23	123.000	72.210	79.510	147.000	53.680	29.690	24.820	12.420	36.950	46.300	71.810	31.910
24	103.000	62.270	102.000	111.300	51.100	28.720	22.560	12.540	47.940	48.720	87.570	29.640
25	78.930	55.320	114.600	101.500	53.750	27.890	21.330	12.690	52.350	105.300	87.150	25.860
26	63.600	49.820	82.890	81.860	51.390	26.880	19.770	13.220	50.240	170.000	84.050	21.740
27	53.840	95.590	68.870	64.100	47.530	26.050	19.240	14.950	50.790	133.100	137.100	18.070
28	52.120	200.700	58.500	54.650	61.710	25.430	20.560	15.470	61.140	97.250	124.600	17.220
29	51.880		51.880	50.450	70.120	24.870	18.300	15.610	53.130	74.140	86.090	16.670
30	44.550		92.090	53.080	63.210	24.710	17.230	15.830	47.930	60.310	70.210	18.070
31	82.660		140.700		75.570		16.480	15.190		94.720		18.660
Average	83.990	109.700	83.180	82.740	62.270	56.570	22.950	13.500	118.000	67.760	66.180	36.900
Lowest	40.510	49.820	41.920	48.970	47.530	24.710	16.480	11.890	18.480	40.880	36.790	16.670
Highest	134.000	270.600	189.100	147.000	97.210	171.700	39.270	15.830	363.500	170.000	137.100	60.920
Peak flow	170.80	312.80	217.00	174.70	111.80	204.60	45.53	16.17	700.10	196.60	183.20	65.35
Day of peak	16	6	11	23	9	8	21	1	10	26	27	1
Monthly total (million cu m)	225.00	265.30	222.80	214.50	166.80	146.60	61.48	36.16	305.70	181.50	171.50	98.83
Runoff (mm)	79	93	78	75	58	51	21	13	107	63	60	35
Rainfall (mm)	167	129	93	62	92	51	55	29	257	139	83	39

Statistics of monthly data for previous record (Oct 1952 to Dec 1994)

Station and catchment description
Lowest station currently operating on the Spey. Cableway rated 65 m wide section with natural control, extreme floods bypass station on left bank. 380 sa km developed for hydro-power with diversions and storage; limited net impact on annual runoff (small loss). Rating change ongoing. Mainly granites and Moinian metamorphics. Geology: Dalradian with a little Old Red Sandstone. Catchment is mixed with mountain (includes all northern slopes of Cairngorms), moorland, hill grazing, arable and forestry.

Measuring authority: SEPA.N
Grid reference: 37 (NO) 635956 ... Level stn. (m OD): 70.50. .

Catchment area (sq km): 1370.0
Max alt. (m OD): 1309

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	Jul	AUG	SEP	OCT	NoV	DEC
1	19.440	76.450	50.720	B0.150	36.280	60.900	9.736	5.573	6.603	45.390	45.380	61.040
2	17.560	47.530	34.150	87.190	50.110	50.270	9.769	5.288	120.200	39.180	37.840	53.440
3	16.970	170.600	27.240	82.310	48.210	47.690	10.140	5.154	78.230	65.460	32.950	71.690
4	21.390	91.990	24.920	50.810	44.290	46.640	9.022	5.038	42.060	75.520	29.570	63.210
5	60.030	113.400	24.690	45.530	37.400	35.810	9.259	4.842	49.140	67.730	27.410	53.970
6	37.960	223.300	22.240	47.930	29.000	31.370	9.442	4.742	34.270	117.800	25.850	48.390
7	34.230	114.100	21.560	66.550	29.130	34.610	8.747	4.665	140.300	66.750	24.490	47.010
8	46.510	59.220	21.000	41.740	38.250	72.940	8.102	4.620	242.400	56.870	23.180	40.990
9	57.650	42.480	20.420	34.000	42.400	44.930	7.792	4.499	280.200	42.670	21.970	43.220
10	41.130	35.900	93.950	36.830	33.930	36.160	7.612	4.244	276.100	36.950	21.140	63.510
11	28.200	45.850	190.600	36.880	26.520	34.550	7.157	4.108	171.200	32.280	31.610	45.940
12	24.410	62.500	79.450	32.910	24.580	29.580	7.487	4.165	125.200	33.240	50.370	40.080
13	45.100	55.580	126.500	30.580	23.250	25.530	7.816	4.271	82.490	53.770	34.280	39.700
14	50.410	61.260	94.020	30.050	23.810	23.780	7.264	4.227	62.010	39.970	28.410	36.370
15	36.710	69.840	53.650	31.120	22.840	22.310	7.809	4.031	50.070	41.520	40.480	35.140
16	132.300	43.360	42.980	29.000	20.220	20.950	9.063	3.872	42.280	39.670	36.300	40.510
17	104.500	36.290	39.480	41.060	20.130	19.620	8.137	3.781	37.970	49.550	31.020	35.510
18	85.710	33.300	33.210	34.860	23.960	18.530	7.518	3.704	33.230	41.150	31.460	32.180
19	56.030	43.270	28.870	31.700	27.810	17.480	7.635	4.225	29.630	32.520	61.480	30.340
20	47.150	33.590	25.250	28.390	25.420	17.310	24.860	4.454	26.710	28.940	61.140	24.450
21	52.390	30.850	25.480	28.350	21.150	15.590	15.680	3.924	23.970	25.960	114.600	20.970
22	52.620	37.290	31.850	34.480	22.630	14.430	10.820	4.312	21.850	27.410	82.290	27.200
23	49.240	30.170	51.820	76.430	25.430	13.440	9.250	4.145	20.490	41.140	73.350	24.650
24	42.260	27.510	68.770	59.530	25.960	12.920	8.900	4.237	27.460	85.600	89.710	22.370
25	35.880	25.420	51.940	58.680	36.220	12.580	8.141	4.351	24.760	102.800	88.180	18.530
26	30.760	23.090	34.960	44.740	30.360	11.930	7.459	4.803	22.430	230.000	112.600	18.740
27	27.130	70.050	30.250	33.900	38.960	11.180	6.946	5.134	21.370	94.590	163.600	18.430
28	28.400	114.700	26.600	28.800	81.300	10.560	7.942	5.816	28.190	63.190	133.200	16.390
29	26.130		23.960	25.810	55.420	10.130	6.787	5.959	23.770	49.810	91.960	13.580
30	21.550		41.070	25.660	46.600	9.916	6.285	6.594	21.590	42.380	75.380	13.880
31	52.900		103.900		57.880		5.936	6.016		61.880		15.110
Average	44.600	64.960	49.850	43.870	34.500	27.120	8.984	4.671	72.210	59.090	57.370	36.020
Lowast	16.970	23.090	20.420	25.660	20.130	9.916	5.936	3.704	6.603	25.960	21.140	13.580
Highest	132.300	223.300	190.600	87.190	81.300	72.940	24.860	6.594	280.200	230.000	163.600	71.690
Peak flow	208.50	257.70	248.50	109.20	94.64	86.60	34.50	7.19	498.30	357.40	209.70	94.64
Day of peak Monthly total	16	6	11	1	28	8	20	30	9	26	27	3
(million cu m)	119.50	157.20	133.50	113.70	92.40	70.30	24.06	12.51	187.20	158.30	148.70	96.47
Runof (mm)	87	115	97	83	67	51	18	9	137	116	109	70
Rainfall (mm)	167	98	99	S5	90	36	42	31	277	149	118	73

Statistics of monthly data for previous record (Oct 1929 to Dec 1994)

Station and catchment description
Cableway rated, fairly stable natural control. Present station, built in 1972, replaced earlier station (flow records from 1929 , chart records from 1934) on same reach. Cairnton; c/m measurements at Woodend established by Capt. McClean. Earlier staff gauge record dates from 1911 . No regulation, little natural storage, minor abstractions. Dalradian and Moinian metamorphic along most of the valley, flanked by igneous intrusive. Mountain, moorland, forestry, pastoral and some arable in the valley bottom.

015006 Tay at Ballathie

Measuring authority: SEPA-E First year: 1952

Grid reference: 37 (NO) 147367 Level stn. (m OD): 26.30

Catchment area (sq km): 4587.1 Max alt. (m OD): 1214

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	MAY	JuN	JUL	AUG	SEP	OCT	NOV	DEC
1	309.100	441.700	422.900	304.200	96.430	187.600	37.470	42.980	29.850	140.400	293.100	230.000
2	279.200	380.500	350.300	302.700	100.400	158.800	39.340	42.180	84.870	168.800	263.600	196.800
3	249.300	646.400	313.900	295.400	98.180	159.500	37.130	41.660	89.330	277.400	245.200	230.300
4	221.300	492.100	291.100	270.400	86.630	141.500	35.950	42.340	52.010	303.700	211.000	203.700
5	321.100	468.300	277.500	275.100	84.820	141.300	35.520	42.550	64.750	324.400	187.000	189.800
6	266.500	697.700	231.800	274.000	86.820	119.200	38.470	40.570	58.270	454.100	188.700	183.500
7	282.900	540.200	209.300	278.000	86.590	115.000	37.940	38.540	78.170	350.100	176.400	178.100
8	325.200	381.400	191.500	225.200	83.000	108.500	35.400	37.600	216.500	312.900	168.500	169.200
9	378.800	334.600	221.000	182.800	82.930	95.870	35.040	36.970	163.100	254.500	147.100	159.600
10	350.300	307.100	405.400	212.400	71.410	86.510	34.560	36.070	198.700	229.800	132.900	180.800
11	305.000	349.000	570.000	213.200	68.250	77.240	33.960	35.020	136.100	208.100	145.500	170.200
12	273.200	418.600	411.700	184.500	63.750	83.140	35.740	34.870	78.070	219.200	249.700	166.800
13	283.800	397.000	454.100	170.800	67.820	68.630	36.780	34.590	78.130	250.100	182.300	149.500
14	289.900	437.500	429.400	173.900	62.060	68.730	37.150	33.520	71.710	214.100	162.300	143.400
15	263.000	458.000	342.700	181.500	62.070	64.040	46.180	32.110	56.000	236.200	161.200	133.900
16	408.200	392.500	324.600	168.800	58.310	62.190	44.110	30.060	52.080	233.700	160.800	127.100
17	326.000	366.200	332.600	184.700	56.820	62.900	42.530	34.420	56.460	310.000	136.300	118.400
18	386.500	351.900	290.300	167.900	63.840	57.770	41.860	35.710	53.880	246.300	123.600	111.900
19	329.900	396.100	238.200	170.700	75.410	57.670	45.950	31.240	54.880	196.300	118.000	110.400
20	328.200	369.700	228.900	148.800	65.010	57.650	129.200	31.610	59.770	208.900	130.800	107.300
21	336.200	366.500	224.200	147.700	59.010	55.010	80.070	30.070	58.120	184.600	177.800	102.900
22	344.800	411.100	249.900	140.000	61.130	51.130	61.640	31.170	55.330	239.300	204.100	107.400
23	321.000	370.700	276.500	140.800	59.940	49.540	77.280	30.240	50.450	276.700	253.200	89.340
24	303.800	333.700	338.000	141.300	57.780	50.460	90.790	28.750	85.000	490.800	334.200	73.460
25	277.200	300.800	290.500	135.100	66.210	48.330	76.750	29.280	83.410	558.600	372.700	63.820
26	255.800	262.400	255.100	121.600	59.530	46.170	59.250	29.410	101.400	819.000	365.900	59.530
27	239.000	366.400	254.000	119.100	100.100	44.460	52.680	29.320	109.800	555.900	401.700	55.500
28	223.100	512.000	238.000	114.200	216.000	42.880	51.830	28.790	87.010	428.500	358.600	57.180
29	203.200		181.300	102.600	184.900	40.510	48.310	29.840	103.800	358.400 ,	325.400	57.500
30	214.000		225.400	91.090	146.800	38.100	46.110	30.080	103.300	322.600 ,	282.900	89.430
31	359.900		307.300		149.600		44.680	29.580		334.100 ,		81.500
Average	298.600	412.500°	302.500	187.900	86.500	81.340	49.990	34.230	85.680	313.100	222.000	132.200
Lowest	203.200	262.400	181.300	91.090	56.820	38.100	33.960	28.750	29.850	140.400	118.000	55.500
Highest	408.200	697.700	570.000	304.200	216.000	187.600	129.200	42.980	216.500	819.000	401.700	230.300
Peak flow	472.30	764.30	634.40	326.50	241.50	216.00	163.70	44.60	275.40	953.90	421.70	294.80
Day of peak	16	6	11	1	28	1	20	4	10	26	26	3
Monthly total (million cu m)	799.70	997.90	810.20	487.20	231.70	210.80	133.90	91.68	222.10	838.70	575.50	354.10
Runoff (mm)	174	218	177	106	51	46	29	20	48	183	125	77
Rainfall (mm)	225	221	144	41	97	30	82	23	168	261	115	57

Statistics of monthly data for previous record (Oct 1952 to Dec 1994)

Station and catchment description
Velocity-area station with cableway. 90 m wide. The most d / s station on the Tay, records highest mean flow in UK. Since end of 1957,1980 sq. $\mathrm{km}(43 \%)$ controlled for HEP; there was some control prior to this. $73 \mathrm{sq} . \mathrm{km}$ controlled for water supply. Catchment is mostly steep, comprising mountains and moorland; exceptions are lower valleys. Mainly rough grazing and forestry. Geology: mainly metamorphics and granite, but lower 20\% (Isla Valley) is Otd Red Sandstone

Moasuring authority: SEPA-E First year: 1957

Grid reference: 36 (NT) 165752 Leval stn. (m OD): 22.90

Catchment area (sq km): 369.0 Max alt. (m OD): 518

Daily mean gauged discharges (cubic matrea'per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	7.292	25.840	18.520	4.987	1.904	2.704	1.235	1.031	1.505	2.506	6.934	3.492
2	5.195	15.660	11.160	4.435	1.731	2.193	1.407	0.999	18.210	3.833	5.244	3.105
3	4.221	33.180	7.880	3.576	1.642	2.214	1.334	0.992	17.470	7.653	4.211	3.122
4	4.075	19.880	7.090	3.107	1.965	1.931	1.221	0.968	5.512	7.243	3.584	2.937
5	6.455	12.700	11.630	6.213	1.943	1.966	1.199	0.934	11.510	5.863	3.244	2.868
6	5.830°	12.250	8.599	4.687	1.864	1.878	1.210	0.938	5.632	4.730	3.067	2.735
7	6.373	8.252	7.006	3.636	1.904	2.025	1.145	0.969	7.451	6.506	3.014	2.844
8	6.522	6.330	5.842	2.894	2.084	1.752	1.015	0.987	8.167	4.430	2.918	2.466
9	24.760	5.141	6.908	2.876	2.138	1.468	1.022	1.000	4.602	2.994	2.684	2.265
10	16.600	4.779	9.336	2.631	2.006	1.399	1.056	0.960	3.333	2.256	2.885	2.338
11	10.190	21.860	9.150	2.455	2.326	1.356	1.280	0.973	6.038	2.080	6.662	2.321
12	6.540	17.050	5.925	2.175	3.959	1.433	1.475	0.958	4.383	9.804	6.724	2.235
13	6.413	12.290	4.929	1.984	3.179	1.407	1.089	0.966	2.966	28.950	4.750	2.203
14	5.852	14.890	5.621	1.997	2.491	1.399	4.529	1.040	2.378	8.771	4.100	2.429
15	5.673	11.860	8.035	1.872	2.101	1.418	3.185	1.040	2.056	5.586	106.700	2.953
16	13.720	16.420	13.480	1.841	2.074	1.422	2.248	0.974	1.854	4.184	46.850	3.396
17	14.370	12.070	31.130	2.770	1.980	1.442	1.827	0.973	1.702	5.155	14.410	2.989
18	13.060	12.180	18.860	2.539	2.388	1.447	1.346	0.952	1.704	3.969	8.698	3.161
19	11.990	13.530	11.830	2.167	2.054	1.986	1.146	1.016	1.711	3.036	6.816	3.117
20	10.390	10.830	7.630	1.941	1.749	2.101	2.514	0.941	1.596	3.022	5.975	2.619
21	12.100	14.470	6.023	1.842	1.627	1.579	2.420	0.941	1.486	2.636	5.532	2.509
22	22.660	43.550	5.048	4.972	1.699	1.531	1.385	0.999	1.427	39.970	4.797	9.261
23	21.640	28.060	4.605	9.091	1.764	1.383	1.397	0.971	2.662	30.980	5.312	10.540
24	11.840	14.000	7.329	4.482	2.511	1.237	1.218	1.120	4.121	13.140	7.800	5.855
25	9.935	10.350	7.294	3.425	2.402	1.196	1.101	1.301	2.572	11.880	6.186	3.998
26	8.451	7.629	8.329	2.725	1.928	1.211	1.000	1.538	2.430	101.700	8.207	2.805
27	7.193	10.540	8.472	2.363	2.052	1.221	1.003	1.118	3.933	32.540	6.287	3.936
28	25.160	24.320	7.225	2.162	2.365	1.314	1.001	0.975	2.768	12.520	4.994	5.371
29	16.370		5.621	1.989	2.906	1.290	0.950	1.230	2.081	7.993	4.456	5.555
30	11.100		5.762	1.904	2.565	1.276	1.233	1.030	2.034	7.833	3.895	3.378
31	52.520		5.469		2.171		1.116	0.962		8.465		2.668
Avorage	12.400	15.710	9.088	3.191	2.177	1.606	1.494	1.026	4.510	12.650	10.230	3.596
Lowast	4.075	4.779	4.605	1.841	1.627	1.196	0.950	0.934	1.427	2.080	2.684	2.203
Highast	52.520	43.550	31.130	9.091	3.959	2.704	4.529	1.538	18.210	101.700	106.700	10.540
Pank flow	95.21	54.12	39.31	16.79	5.19	3.20	8.58	2.20	45.22	134.70	154,40	14.21
Day of poak Monthly total	31	3	17	22	12	1	14	26	2	26	15	22
(million cu m)	33.22	38.01	24.34	8.27	5.83	4.16	4.00	2.75	11.69	33.89	26.52	9.63
Runoff (mm)	90	103	66	22	16	11	11	7	32	92	72	26
Rainfall (mm)	116	127	80	37	55	24	66	25	137	166	83	38

Statistics of monthly data for previous record (Jan 1957 to Dec 1994)

Station and catchment description
The recorder is well sited on a straight even reach with steep banks which have contained all recorded floods. Stable rating over the period of record. Weed growth in surmmer - some adjustment to stage is required. Low flows substantially affected by sewage effluent especially from Mid Calder. Abstraction at Almondell to feed a canal. A number of storage reservoirs are situated in the catchment. Geology - predominantly Carboniferous rocks. Land use - mainly rural. Livingston new town and several small mining towns in catchment.

Measuring authority: SEPA-E First year: 1962

Grid reference: 36 (NT) 898477 Level 5 tn. (m OD): 4.30

Catchment area (sq km): 4390.0

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APA	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	156.800	416.400	219.600	75.040	27.480	31.480	11.530	9.426	12.290	17.270	72.760	68.650
2	120.100	215.900	139.700	67.430	25.950	32.900	10.990	9.266	12.420	24.790	62.260	62.050
3.	100.300	258.300	114.100	61.420	24.710	27.970	10.600	9.418	12.290	65.700	54.690	59.060
4	91.240	205.200	98.390	60.140	23.640	33.080	10.270	9.808	19.900	69.950	48.810	66.970
5	135.500	157.200	103.100	56.950	24.250	35.200	9.956	9.575	19.500	62.810	44.470	62.380
6	114.900	144.300	100.800	63.200	23.920	28.630	10.750	8.367	33.240	91.770	41.480	60.280
7	98.640	124.200	89.790	55.250	21.790	26.680	16.260	8.245	28.960	108.100	38.810	67.210
8	104.100	104.800	83.190	49.900	22.650	27.160	12.760	8.097	88.010	81.200	37.030	62.830
9	104.300	90.580	77.840	45.740	24.320	25.160	11.820	8.222	114.000	58.880	35.560	53.780
10	119.800	83.410	137.900	43.480	22.940	21.710	11.420	8.335	57.460	48.280	34.250	60.470
11	118.900	104.400	324.200	39.910	23.940	21.700	11.000	10.450	41.740	40.620	36.840	57.310
12	89.770	181.800	167.200	37.600	23.330	23.460	11.170	9.442	35.910	51.270	121.700	50.570
13	85.160	161.200	125.100	35.260	21.190	21.140	12.630	8.357	29.340	162.600	73.060	48.410
14	84.810	152.000	112.100	33.280	20.410	18.300	15.630	8.287	24.580	88.290	57.880	50.860
15	81.100	192.900	104.100	32.030	20.000	18.970	18.290	8.228	21.220	67.550	175.800	50.760
16	118.200	134.600	103.200	30.940	19.240	18.910	15.630	8.458	18.890	61.080	381.600	52.570
17	153.600	117.600	158.900	32.260	19.170	16.750	13.750	8.489	17.450	55.910	216.400	51.820
18	198.200	110.100	125.600	36.780	21.980	16.410	13.890	9.674	16.550	55.200	145.600	48.030
19	154.200	191.900	107.500	35.410	23.990	16.040	15.330	9.887	15.820	45.380	123.200	56.100
20	174.300	186.200	89.320	33.720	20.960	22.480	13.060	9.525	15.170	43.730	113.800	53.560
21	175.300	177.300	79.330	31.620	18.570	27.470	12.400	8.757	15.000	40.780	110.400	44.260
22	242.500	338.600	72.640	34.360	17.800	21.020	13.370	7.843	15.120	56.330	101.100	100.100
23	176.100	270.900	70.880	64.700	17.880	18.270	11.940	7.574	14.940	152.200	86.240	140.900
24	155.100	191.200	69.470	48.930	17.540	15.020	11.360	9.930	23.700	92.860	149.000	89.680
25	131.800	154.200	82.180	41.570	21.590	14.550	11.000	10.790	28.810	132.800	148.600	68.260
26	118.100	125.200	76.370	37.680	23.560	13.860	10.750	10.660	34.020	253.300	131.500	48.090
27	101.600	115.200	96.660	34.350	19.740	12.830	10.800	10.730	27.400	247.200	108.100	39.810
28	141.500	148.100	81.890	31.380	53.540	12.140	12.570	10.690	25.180	140.100	91.010	35.200
29	190.700		73.070	29.490	54.890	12.620	10.510	10.260	20.830	104.800	84.830	32.960
30	146.100		73.810	28.420	45.600	14.270	10.240	9.793	18.220	86.800	78.090	32.320
3 !	597.900		85.840		36.330		10.010	9.529		76.980		32.260
Average	147.800	173.300	111.100	43.610	25.250	21.540	12.310	9.229	28.600	86.600	100.200	58.310
Lowest	81.100	83.410	69.470	28.420	17.540	12.140	9.956	7.574	12.290	17.270	34.250	32.260
Highest	597.900	416.400	324.200	75.040	54.890	35.200	18.290	10.790	114.000	253.300	381.600	140.900
Peak flow	850.20	739.10	374.10	81.82	87.12	38.36	22.59	10.92	163.50	356.90	472.40	170.00
Day of peak	31	1	11	1	28	4	15	11	8	27	15	22
Monthly total (million cu m)	395.80	419.40	297.50	113.00	67.64	55.83	32.98	24.72	74.13	231.90	259.60	156.20
Runoff (mm)	90	96	68	26	15	13	8	6	17	53	59	36
Rainfall (mm)	126	107	75	35	61	33	42	23	120	125	97	62

Statistics of monthly data for previous record (Jan 1962 to Dec 1994)

Station and catchment description
Lowest station on River Tweed. Velocity-area station at very wide natural section. Complex control. Moderate seasonal weed growth effects on rating. Reservoirs in headwaters have only a small impact on the flow regime - monthly naturalised flows available. Geology: mixed but rating. Reservoirs in headwaters have only a small impact on the flow regime - mond Palaeozoic formations. Moorland and hill pasture predominates; improved grasslands and arable farming below Melrose.

022001 Coquet at Morwick

Measuring authority: EA-NE First year: 1963

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	10.670	31.420	9.440	5.395	3.154	2.667	1.291	0.947	0.942	1.487	2.067	7.964
2	8.005	16.200	8.080	4.610	2.952	2.899	1.252	0.906	0.989	1.519	2.155	7.059
3	7.072	15.540	7.298	4.247	2.776	2.993	1.270	0.892	1.034	2.016	1.957	9.552
4	6.411	12.260	6.716	4.407	2.640	2.766	1.275	0.902	1.183	5.011	1.852	16.190
5	7.526	9.883	8.658	4.219	2.498	3.050	1.279	0.920	2.196	3.631	1.761	11.390
6	7.929	8.845	8.338	3.882	2.475	2.480	1.282	0.899	2.500	8.324	1.764	11.920
7	7.011	7.906	7.283	3.533	2.520	2.599	1.338	0.894	5.196	9.072	1.762	15.380
8	7.819	7.002	6.715	3.307	2.590	2.933	1.359	0.885	35.200	5.687	1.808	10.910
9	7.033	6.321	6.258	3.224	2.865	2.885	1.267	0.876	19.190	4.119	1.954	8.669
10	7.527	10.410	9.965	3.233	2.583	2.348	1.189	0.887	7.768	3.346	2.368	13.110
11	8.431	35.470	10.080	3.041	2.483	2.591	1.163	0.867	6.049	2.894	9.521	10.090
12	6.115	23.010	7.286	2.849	2.379	3.675	1.266	0.891	4.545	2.661	16.300	8.395
13	6.145	18.270	6.288	2.736	2.351	2.995	1.289	0.930	3.472	3.198	7.081	8.122
14	6.304	16.380	6.000	2.673	2.366	2.355	1.226	0.961	2.841	3.219	5.255	9.258
15	5.786	23.950	5.889	2.605	2.475	2.082	1.359	0.933	2.460	2.745	49.130	8.988
16	5.761	16.780	5.508	2.562	2.263	1.973	1.402	0.859	2.193	2.505	78.170	10.390
17	6.372	12.000	7.233	2.752	2.299	1.913	1.316	0.856	2.006	2.354	35.200	8.846
18	8.310	10.490	7.243	3.587	2.348	1.899	1.321	0.792	1.897	2.247	22.090	7.743
19	17.530	21.180	6.094	3.673	2.469	1.812	1.316	0.846	1.780	2.120	26.330	9.229
20	18.840	24.230	5.129	3.454	2.368	1.786	1.954	0.838	1.690	2.057	22.810	7.574
21	32.500	21.790	4.633	3.225	2.165	1.734	0.897	0.828	1.601	2.078	32.190	6.376
22	27.650	76.950	4.429	8.946	2.084	1.641	0.818	0.824	1.524	1.989	26.780	68.930
23	14.600	29.810	4.223	15.750	2.104	1.553	1.003	0.814	1.471	2.227	17.440	33.750
24	11.780	17.320	4.097	7.254	2.096	1.516	0.916	0.817	1.656	2.409	14.530	15.250
25	10.090	13.130	4.074	5.749	2.199	1.517	1.065	0.857	1.891	2.168	11.040	11.050
26	14.390	10.500	4.455	4.800	2.140	1.453	1.040	0.969	1.848	2.038	10.900	8.666
27	9.427	9.789	6.094	4.190	2.238	1.371	1.035	1.026	1.854	1.958	10.190	7.086
28	29.960	9.071	5.490	3.776	2.867	1.313	1.025	1.014	1.679	1.966	9.049	5.536
29	25.550		5.257	3.502	2.533	1.289	0.965	0.951	1.546	1.873	10.870	6.105
30	15.200		6.648	3.322	2.219	1.274	0.952	0.944	1.490	1.804	9.867	6.987
31	72.010		7.397		2.629		0.970	0.951		1.851		9.277
Average	13.860	18.430	6.526	4.350	2.456	2.179	1.197	0.896	4.056	2.986	14.810	12.250
Lowest	5.761	6.321	4.074	2.562	2.084	1.274	0.818	0.792	0.942	1.487	1.761	5.536
Highest	72.010	76.950	10.080	15.750	3.154	3.675	1.954	1.026	35.200	9.072	78.170	68.930
Peak flow	102.50	115.70	14.44	27.95	3.38	4.59	6.29	1.24	58.35	18.63	149.20	113.10
Day of peak Monthly total	31	22	10	23	1	12	20	14	8	6	15	22
(million cu m)	37.13	44.57	17.48	11.28	6.58	5.65	3.20	2.40	10.51	8.00	38.38	32.81
Runoff (mm)	65	78	31	20	12	10	6	4	18	14	67	58
Rainfall (mm)	97	95	45	40	49	30	23	12	133	58	130	97

Statistics of monthly data for previous record (Nov 1963 to Dec 1994 -incomplete or missing months total 0.2 years)

Station and catchment description
Velocity-area station with 34 m wide concrete Flat V weir (informal design, approx. 1:20 cross-slope) made with pre-cast segments (installed 1973). Cableway. Fairly straight section with high banks. Replaced earlier station at Guyzance. Responsive natural regime, occasional impoundment by landowner. A predominantly upland catchment draining from the Cheviots with some afforestation. Largely Carboniferous Limestone and Devonian Igneous series.

025006 Greta at Rutherford Bridge

Measuring authority: EA-NE First year: 1960

Grid reference: 45 (NZ) 034122 Level sin. (m OD): 223.00

Catchment area (sq kmi): 86.1
Max alt. (m OD): 596
Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	2.322	6.421	5.613	2.110	0.295	0.317	0.085	0.062	0.056	0.246	0.274	0.872
2	1.551	2.860	2.475	1.296	0.261	0.262	0.089	0.054	0.060	0.442	0.245	0.765
3	1.238	3.718	1.693	0.937	0.238	0.263	0.092	0.050	0.103	0.840	0.215	0.994
4	2.860	2.120	1,449	0.820	0.219	0.265	0.088	0.048	0.122	2.425	0.193	2.172
5	11.130	1.626	4.662	0.740	0.207	0.235	0.085	0.049	0.083	1.063	0.181	1.449
6	2.942	1.389	2.896	0.643	0.198	0.232	0.085	0.049	0.076	5.781	0.190	1.278
7	2.328	1.848	1.976	0.548	0.194	0.234	0.098	0.048	0.234	1.644	0.213	1.217
8	3.809	1.699	1.615	0.483	0.203	0.227	0.100	0.049	0.322	1.068	0.236	1.037
9	3.163	1.162	2.565	0.446	0.232	0.196	0.083	0.047	0.173	0.601	0.328	2.254
10	8.506	0.983	11.510	0.425	0.209	0.183	0.076	0.046	0.241	0.449	3.346	6.392
11	2.698	19.470	8.110	0.374	0.200	0.195	0.085	0.045	0.832	0.369	13.890	2.262
12	1.533	10.360	2.681	0.346	0.194	0.191	0.096	0.045	0.409	0.320	3.666	1.555
13	1.533	8.879	2.011	0.320	0.189	0.170	0.087	0.053	0.357	0.283	1.832	1.422
14	2.110	9.448	1.835	0.301	0.200	0.155	0.081	0.056	0.215	0.253	1.213	1.475
15	2.215	13.770	1.464	0.286	0.224	0.147	0.078	0.052	0.165	0.237	11.510	1.365
16	2.510	7.477	5.319	0.277	0.260	0.141	0.080	0.050	0.135	0.231	5.812	1.339
17	9.580	4.582	7.473	0.374	1.176	$0.146 *$ *	0.108	0.046	0.119	0.347	1.960	1.011
18	3.805	13.010	8.091	0.576	1.157	0.139	0.106	0.045	0.110	0.371	1.191	0.833
19	3.919	7.122	3.774	0.498	1.264	0.133	0.086	0.045	0.100	- -0.260	0.994	1.012
20	4.771	11.340	2.188	0.396	0.528	0.143	0.073	0.046	0.091	0.233	0.827	0.723
21	18.750	7.479	1.585	0.336	0.384	0.131	0.072	0.045	0.083	0.202	1.583	0.708
22	5.335	37.310	1.583	3.269	0.318	0.116	0.070	0.044	0.079	0.188	1.330	10.460
23	9.266	8.390	1.266	2.353	0.280	0.105	0.071	0.045	0.089	0.189	2.119	3.287
24	5.314	3.288	2.463	2.855	1.421	0.105	0.077	0.045	0.895	0.361	5.593	1.672
25	2.568	2.130	5.169	1.192	1.485	0.112	0.072	0.050	0.361	1.106	2.698	1.042
26	1.787	1.507	11.270	0.667	0.556	0.105	0.062	0.057	0.257	0.615	2.382	0.820
27	3.332	2.188	3.803	0.491	0.986	0.091	0.061	0.060	0.353	0.558	1.719	0.612
28	21.270	9.147	1.885	0.411	1.366	0.087	0.061	0.054	0.330	0.388	1.633	0.528
29	8.199		2.484	0.364	0.804	0.086	0.058	0.056	0.220	0.307	1.603	0.450
30	9.264		6.274	0.329	0.605	0.084	0.061	0.058	0.182	0.269	1.129	0.452
31.	52.180		3.605		0.416		0.086	0.057		0.252		0.491
Average	6.832	7.169	3.896	0.815	0.525	0.167	0.081	0.050	0.228	0.706	2.337	1.676
Lowest	1.238	0.983	1.266	0.277	0.189	0.084	0.058	0.044	0.056	0.188	0.181	0.450
Highest	52.180	37.310	11.510	3.269	1.485	0.317	0.108	0.062	0.895	5.781	13.890	10.460
Peak flow	88.30	93.66	31.83	9.54	4.30	0.37	0.13	0.07	1.88	13.49	35.85	24.10
Day of peak	31	22	26	22	24	1	17	27	24	6	15	22
Monthly total (million cu m)	18.30	17.34	10.44	2.11	1.41	0.43	0.22	0.13	0.59	1.89	6.06	4.49
Runoff (mm)	213	201	121	25	16	5	3	2	7	22	70 109	52
Rainfall (mm)	232	198	115	38	62	16	32	10	95	61	109	67

Statistics of monthly data for previous record (Oct 1960 to Dec 1994\}

Station and catchment description
Station and catchment description 19.2 m , low flow crest 3 m broad. Theoretical rating with check gaugings. Responsive, natural regime. An eastward-draining Pennine catchment developed largely on Millstone Grit.

Measuring authority: EA-NE First year: 1936

Grid reference: 44 (SE) $\mathbf{4 2 2 : 4 7 3}$ \therefore Level stn. (m OD): $13.70_{\mathrm{ca}} \therefore$:

Catchment area (sq km): 758.9 Max alt. (m OD): 704

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	${ }_{\text {FE8 }}^{\text {fer }}$	MAR	APR	MAY	JUN	Jut	AUG	SEP	OCT	NOV	DEC
1	29.950	165.600	69.160	29.350	4.270	3.880	2.207	2.095	1.741	2.571	2.014	3.469
2	19.990	54.640	35.670	17.690	4.107	3.499	2.203	2.025	1.931	3.946	1.994	3.058
3	16.070	36.150	25.350	12.640	4.041	3.609	2.229	1.981	1.757	3.370	1.968	3.430
4	14.240	27.760	19.570	10.430	3.856	5.134	2.241	1.996	1.748	7.479	2.061	6.553
5	62.450	21.630	41.270	9.040	3.663	5.442	2.264	2.007	1.758	9.068	1.997	5.836
6	40.920	21.170	36.830	8.096	3.526	4.002	2.223	1.997	1.809	13.940	2.143	4.500
7	23.390	18.060	24.700	7.390	3.405	3.566	2.225	1.999	3.951	17.420	2.197	4.064
8	32.080	21.420	21.140	6.718	3.288	3.222	2.210	1.905	4.749	9.331	2.219	3.509
9	. 35.120	17.630	17.640	6.800	3.267	2.946	2.359	1.843	3.035	6.476	2.192	3.021
10	56.290	20.680	27.560	6.584	3.202	2.837	2.346	1.807	2.466	4.287	2.251	4.029
11	48.550	84.670	55.140	6.159	3.078	2.786	2.372	1.802	3.011	3.402	3.140	9.123
12	23.350	73.500	33.000	5.702	3.053	2.711	3.145	1.854	3.696	2.969	18.440	5.459
13	18.330	64.100	20.490	5.399	2.969	2.658	3.035	1.880	3.527	2.619	6.417	4.284
14	21.950	41.540	19.220	5.047	2.913	2.592	2.715	1.943	2.863	2.363	3.902	3.703
15	24.590	39.010	17.060	4.915	3.070	2.521	2.501	1.951	2.494	2.311	3.996	3.385
16	18.030	50.210	13.900	5.084	3.111	2.488	2.399	1.912	2.273	2.359	32.620	3.130
17	25.450	67.900	23.510	5.164	3.907	2.479	2.681	1.876	2.183	2.560	12.730	2.820
18	32.020	43.760	30.280	6.078	3.374	2.665	7.899	1.900	2.174	4.464	6.406	2.564
19	22.750	68.010	21.500	5.636	3.398	2.814	7.788	1.901	2.166	3.676	4.334	2.404
20	28.020	42.190	16.520	5.399	3.155	3.634	4.205	1.877	2.044	3.224	3.457	2.551
21	50.350	48.620	13.190	5.118	3.156	5.700	3.379	1.921	1.967	3.786	3.193	2.410
22	50.900	93.770	11.790	5.933	2.930	3.541	2.911	1.870	1.892	2.984	4.852	15.120
23	42.630	74.390	11.100	10.600	2.854	2.877	2.690	1.754	1.836	2.532	5.026	19.400
24	43.930	41.030	10.400	7.214	3.197	2.613	2.522	1.744	1.933	2.495	14.480	8.805
25	29.800	27.840	23.380	5.516	3.343	2.506	2.384	1.746	3.771	3.530	22.730	5.515
26	28.720	19.860	29.060	5.250	3.261	2.445	2.312	1.873	17.530	4.845	9.173	3.802
27	22.820	21.150	45.400	4.740	3.508	2.322	2.190	1.813	7.168	3.280	6.663	2.748
28	147.700	26.980	19.510	4.382	5.684	2.297	2.094	1.802	5.056	3.440	5.056	3.098
29	117.500		14.790	4.493	7.117	2.234	1.971	1.847	3.782	3.125	4.457	2.707
30	48.910		18.210	4.381	4.973	2.180	2.075	1.792	2.998	2.502	4.015	2.172
31	194.300		30.140		4.395		2.296	1.741		2.177		3.132
Average	44.230	47.620	25.690	7.565	3.647	3.140	2.841	1.886	3.310	4.598	6.537	4.832
Lowest	14.240	17.630	10.400	4.381	2.854	2.180	1.971	1.741	1.741	2.177	1.968	2.172
Highest	194.300	165.600	69.160	29.350	7.117	5.700	7.899	2.095	17.530	17.420	32.620	19.400
Peak flow	360.50	368.30	120.50	34.92	9.23	8.33	16.80	2.27	31.18	29.13	57.78	42.39
Day of peak Monthly total	31	1	1	1	29	20	18	1	26	6	24	
(million cu m)	118.50	115.20	68.81	19.61	9.77	8. 14	7.61	5.05	8.58	12.31	16.95	12.94
Runoff (mm)	156	152	91	26	13	11	10	7	11	16	22	17
Rainfall (mm)	206	162	106	27	54	23	41	12	96	50	66	61

Statistics of monthly data for previous record (Oct 1955 to Dec 1994)

Station and catchment description

Broad-crested masonry weir 47 m wide with a current meter cableway $1.5 \mathrm{~km} \mathrm{u} / \mathrm{s}$ (moved to new US station at Tadcaster in 1990). Insensitive at low flows. Level data only from 1936 to 1955. Recalibration (from 1965) completed but flows reprocessed from 1982 only. Pre-1965 data less reliable. Regulation effect of headwater reservoirs evident at low flows. Small net export of water (inc. Bradford supply). Mixed geology - mainly Carboniferous Limestone, grits and Coal Measures. Predominantly rural catchment with moorland headwaters.

Measuring authority: EA-NE First year: 1968				Grid reference: 44 (SE) 013457 Level stn. (m OD): 87.30						Catchment area (sq km): 282.3 Max alt. (m OD): 593		
Daily mean gauged discharges (cubic metres per second)												
DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL.	AUG	SEP	OCT	NOV	DEC
1	17.670	67.950	23.920	11.020	1.191	1.027	0.375	0.330	0.246	0.576	0.513	0.947
2	11.680	34.680	16.190	6.911	1.080	0.857	0.391	0.294	0.398	0.576	0.489	0.876
3	8.262	27.910	12.340	5.260	1.029	1.153	0.408	0.291	0.305	0.469	0.481	1.556
4	7.206	15.570	10.600	4.437	0.998	1.489	0.379	0.265	0.298	0.663	0.466	1.992
5	23.000	10.700	34.090	3.921	1.004	1.099	0.378	0.260	0.262	0.653	0.471	1.413
6	12.750	8.888	16.240	3.433	0.975	0.925	0.366	0.266	0.255	1.526	0.469	1.342
7	11.180	7.769	13.030	3.006	0.959	0.828	0.368	0.280	0.555	1.480	0.476	1.393
B	11.100	8.388	11.280	2.704	0.953	0.715	0.349	0.282	0.550	1.215	0.505	1.222
9	12.360	6.240	9.838	2.514	0.944	0.630	0.333	0.287	0.356	0.854	0.496	1.056
10	22.320	8.249	11.520	2.343	0.933	0.601	0.339	0.257	0.532	0.689	0.523	1.347
11	15.190	36.170	16.620	2.154	0.915	0.576	0.706	0.233	0.654	0.616	1.835	1.318
12	8.879	25.220	10.130	2.014	0.859	0.538	0.540	0.245	0.491	0.551	2.113	1.152
13	9.382	24.930	7.721	1.892	0.853	0.504	0.458	0.325	0.383	0.495	1.197	0.961
14	9.798	15.050	6.692	1.785	0.924	0.498	0.506	0.291	0.322	0.476	1.023	0.821
15	8.425	13.950	6.539	1.729	0.867	0.487	0.660	0.252	0.300	0.452	2.438	0.765
16	8.128	20.290	6.590	1.621	0.954	0.501	0.548	0.252	0.293	0.443	5.469	0.708
17	14.710	25.760	13.600	2.088	1.227	0.574	0.795	0.238	0.281	0.577	2.264	0.659
18	10.220	23.340	12.310	2.252	0.977	0.513	0.921	0.213	0.287	0.561	1.464	0.617
19	10.560	24.660	9.270	1.945	0.916	0.512	0.688	0.202	0.268	0.533	1.197	0.574
20	11.220	18.350	6.793	1.842	0.809	0.506	0.538	0.208	0.266	0.521	0.921	0.538
21	23.100	17.690	5.599	1.682	0.795	0.482	0.539	0.201	0.269	0.497	1.405	0.516
22	18.980	39.530	4.759	2.246	0.797	0.446	0.457	0.214	0.270	0.481	1.682	8.184
23	19.060	25.580	4.145	2.305	0.773	0.415	0.435	0.191	0.324	0.463	1.454	4.247
24	14.430	14.780	3.998	2.069	0.973	0.416	0.417	0.195	0.612	0.646	2.157	2.312
25	11.530	10.100	4.808	1.759	0.895	0.442	0.377	0.181	0.508	0.634	2.672	1.424
26	12.420	7.634	9.841	1.560	0.799	0.411	0.366	0.220	0.594	0.585	1.812	1.168
27	12.460	7.708	9.484	1.395	1.023	0.383	0.348	0.235	0.602	0.650	1.431	0.847
28	57.960	12.150	7.579	1.332	1.331	0.379	0.346	0.220	0.644	0.687	1.277	0.838
29	45.340		8.151	1.299	1.957	0.393	0.327	0.220	0.470	0.610 :	1.167	0.739
30	25.450		8.360	1.245	1.572	0.382	0.351	0.238	0.448	0.574^{\prime}	1.050	0.737
31	64.680		11.940		1.141		0.397	0.240		0.533		0.847
	$401 \quad 0.654$ 1364 1391											
Average	17.720	19.970	10.770	2.725	1.014	0.623	0.465	0.246	0.401	0.654	1.364	1.391
Lowest	7.206	6.240	3.998	1.245	0.773	0.379	0.327	0.181	0.246	0.443	0.466	0.516
Highest	64.680	67.950	34.090	11.020	1.957	1.489	0.921	0.330	0.654	1.526	5.469	8.184
Peak flow	85.76	85.87	47.08	13.54	2.84	1.67	1.53	0.37	0.87	2.23	7.85	13.78
Day of peak	31	1	5	1	29	4	11	13	11	6	16	22
Monthly total (million cu m)	47.47	48.32	28.86	7.06	2.71	1.61	1.25	0.66	1.04	1.75	3.54	3.72
Runoff (mm)	168	171	102	25	10	6	4	2	4	6	13	13
Rainfall (mm)	190	150	113	26	44	23	45	14	75	46	58	47

Statistics of monthly data for previous record (Dec 1968 to Dec 1994 -incomplete or missing months total 0.1 years)

Station and catchment description
Velocity-area station rated by current meter cableway 150 m downstream. The bridge sills provide the low flow control. Very low and very high flows underestimated - recalibration scheduled. Washland storage, minor reservoirs, and the Leeds-Liverpool Canal can influence the flow pattern but small overall impact; minor net export. Geology is mainly Carboniferous Limestone with some Millstone Grit series. Rural catchment draining part of the eastern Pennines.

Measuring authority: EA-NE First year: 1973

Grid reference: 44 (SE) 731587 $\because \quad \therefore \quad . \quad$ Level stn. (m OD): 9.50

Catchrment area (sq km): 1586.0
Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	MAY	JuN	JUL	AUG	SEP	OCT	NOV	DEC
1	41.510	65.540	30.700	25.440	9.921	8.228	4.678	3.638	3.618	4.406	3.789	8.561
2	30.380	65.480	30.940	19.170	9.798	7.839	4.637	3.532	3.645	4.401	3.785	7.887
3	23.580	51.090	27.690	17.330	9.723	7.853	4.624	3.413	3.770	4.358	3.808	9.977
4	21.080	42.580	25.820	16.090	9.120	8.634	4.647	3.447	3.849	4.388	3.768	31.090
5	26.170	35.520	26.570	15.300	9.228	8.224	4.608	3.451	3.807	4.228	3.733	27.610
6	40.120	30.090	28.590	14.770	9.057	7.627	4.567	3.457	3.784	4.426	3.727	20.680
7	33.730	27.590	24.700	14.130	8.935	7.439	4.572	3.450	4.502	5.339	3.780	28.430
8	32.520	28.290	23.160	13.450	8.838	7.566	4.551	3.460	9.535	5.537	3.796	25.150
9	31.190	25.950	21.810	13.180	8.856	7.718	4.435	3.436	11.260	4.822	3.877	19.200
10	30.710	27.310	21.150	13.230	8.727	7.959	4.405	3.419	9.307	4.395	4.164	16.050
11	44.160	38.180	20.400	12.760	8.612	7.537	4.469	3.380	9.041	4.284	4.879	14.980
12	36.010	50.920	19.850	12.260	8.493	7.524	4.593	3.375	10.730	4.215	7.591	14.980 15.540
13	27.390	43.680	18.770	11.880	8.445	8.128	4.641	3.372	7.741	4.125	6.666	21.650
14	24.540	37.690	18.340	11.640	8.582	7.460	4.735	3.462	6.459	4.088	5.416	18.640
15	23.240	36.050	18.180	11.570	9.389	6.953	5.325	3.484	5.651	4.088	5.537	17.530
16	22.440	40.600	17.350	11.520	9.032	6.697	5.248	3.452	5.123	4.065	12.830	15.270
17	24.660	41.340	17.170	11.670	8.759	6.606	5.002	3.379	4.907	4.072	19.170	13.690
18	30.930	35.060	17.900	12.260	8.921	6.417	4.934	3.338	5.448	3.967	13.480	12.650
19	27.300	31.490	16.860	12.840	8.759	6.189	4.614	3.317	5.736	3.939	10.480	11.760
20	29.310	29.020	15.530	12.260	8.280	6.123	4.283	3.305	5.117	3.935	11.840	12.110
21	31.230	26.860	14.680	12.200	7.959	6.039	4.237	3.307	4.869	3.846	13.910	11.620
22	40.140	29.750	14.430	12.090	7.825	5.800	4.205	3.336	4.637	3.793	13.100	21.880
23	33.040	36.960	14.230	14.210	7.778	5.607	4.161	3.389	4.483	3.787	9.870	37.700
24	26.200	30.210	13.970	13.000	7.728	5.507	4.138	3.372	4.661	3.738	8.921	27.140
25	25.570	26.210	13.730	12.000	7.898	5.529	4.105	3.354	4.870	3.771	8.604	19.080
26	45.300	23.630	13.890	11.280	7.829	5.464	4.001	3.387	5.034	3.969	8.816	15.760
27	43.770	23.120	16.000	10.880	7.520	5.297	3.949	3.483	4.930	3.985	12.480	13.730
28	42.040	24.080	19.200	10.560	7.702	5.083	3.894	3.581	4.857	3.788	13.770	12.620
29	47.960 .		22.530	10.270	8.248	4.905	3.826	3.669	4.575	3.712	10.860	10.490
30	47.510		24.060	10.070	8.784	4.759	3.730	3.629	4.468	3.757	9.378	11.390
31	54.080		32.040		8.623		3.678	3.605		3.788		12.640
Average	33.480	35.870	20.650	13.310	8.625	6.757	4.435	3.441	5.680	4.162	8.194	17.500
Lowost	21.080	23.120	13.730	10.070	7.520	4.759	3.678	3.305	3.618	3.712	3.727	7.887
Highest	54.080	65.540	32.040	25.440	9.921	8.634	5.325	3.669	11.260	5.537	19.170	37.700
Peak flow	64.90	69.11	34.51	31.66	10.01	9.00	5.53	10.46	12.48			
Day of peak Monthly total	31	2	31	1	1	4	15	2	9	24	$\begin{gathered} 21 . \\ 17 \end{gathered}$	23
(million cu m)	89.67	86.77	55.32	34.50	23.10	17.51	11.88	9.22	14.72	11.15	21.24	46.87
Runoff (mm)	57	55	35	22	15	11	7	6	9	7	13	
Rainfall (mm)	102	70	54	25	44	26	32	9	107	24	84	88

Statistics of monthly data for previous record (Jan 1973 to Dec 1994)

Maan	Avg.	26.720	24.540	23.670	19.150	13.490	9.530	7.698	7.592	8.324	12.740	15.120	24.340
flows:	Low	9.596	8.606	6.254	6.640	5.282	4.778	3.882	3.126	3.077	3.929	5.472	
	(year)	1992	1973	1973	1990	1990	1992	1976	1990	1990	1991	1989	1991
	High	48.820	49.280	56.110	37.540	29.840	21.260	17.120	15.430	23.520	36.820	25.220	42.740
	(year).	1994	1978	1979	1986	1979	1979	1973	1980	1993	1976	1980	1978
Runoff:	Avg.	45	38	40	31	23	16	13	13	14	22	25	41
	Low	16	13	11	11	9	8	7	5	5	7	9	14
	High	82	75	95	61	50	35	29	26	38	62	41	72
Rainfall:	Avg.	72	51	66	53	53	55	59	65	71	77	68	80
	Low	20	5	7	11	13	11	18	10	18	21	28	24
	High	132	101	143	113	142	149	138	126	192	158	111	180
Summ	ary sta	tics								affe	runo		
				1995		or record eding 19		As \% of pre-1995		rraction reduced	public by indus	ter sup and/or	
Mean flo	($\mathrm{mm}^{3} \mathrm{~s}$							pre-1995		ultural	traction	and/or	
Lowest	yearly m						1989			mentati	from sur	wat	d/or
Highest	yearly m				25.		1979			ndwate	.	wat	
Lowest	monthly	cean					1990						
Highest	monthly	Iean			56.		1979						
Lowest	daity me			520 A		23	1976						
Highest	daily me				121.		1978						
Peak				- 2 F	124.		1982						
10\% exc	ceedanc				33.			93					
50\% exc	ceedanc				11.7			74					
95\% exc	ceedanc							86					
Annual t	otal $\langle\mathrm{mi}$	cum)			506			83					
Annual r	unoff (m		26		31			83					
Annual ras	ainfall		66		77			86					
1961	-90 rain	average			76								

Station and catchment description

Crump weir, 20rn wida; high flow rating derived from limited number of gaugings. Pre-October 1973 data (monthly only) of poorer quality; derives from Stamford Br. ($27015 \mathrm{C} . \mathrm{A}: 1634.3 \mathrm{sq} \mathrm{km}$) Peak flows from the headwaters upstrearn of Forge Valley (8% catchment) are diverted down the Sea Cut (27033). Minor net impact of artificial influences (spray irrigation is appreciable). Mixed geology of clays, shales and limestone.

Measuring authority: EA-M First year: 1958

Grid reference: 43 (SK) 620399 Level stn. (m OD): 16.00

Catchment area (sq km): 7486.0 Max alt. (m OD): 636
Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	161.800	316.600	172.600	78.570	46.350	40.820	27.620	25.730	24.490	28.290	27.980	32.820
2	130.500	287.100	184.500	71.360	45.210	39.960	27.350	25.850	24.720	27.880	26.940	31.700
3	113.200	215.000	165.700	68.320	44.080	39.670	26.800	25.710	27.150	27.350	27.900	37.160
4	104.000	176.300	179.200	65.970	43.180	47.440	27.580	24.140	27.750	29.700	26.810	69.530
5	155.100	151.500	167.000	62.570	41.550	43.050	27.310	24.730	28.080	30.810	25.870	54.710
6	222.100	139.100	169.100	60.770	40.410	38.450	27.230	25.100	29.040	31.200	26.150	45.110
7	167.500	129.200	164.100	57.530	42.500	37.350	26.400	23.470	37.620	39.260	26.420	39.690
8	135.900	149.100	164.700	56.330	41.350	39.710	26.670	24.210	50.060	33.410	27.210	37.540
9	122.800	154.000	140.900	53.640	38.660	36.260	26.600	24.240	33.750	28.780	30.100	35.130
10	130.300	222.300	124.600	52.470	41.240	35.340	25.350	24.730	41.580	27.650	45.300	32.090
11	292.700	297.900	129.700	53.750	42.580	36.560	34.660	25.270	73.100	26.700	61.720	31.190
12	263.200	329.500	131.200	50.120	40.250	34.810	52.050	24.370	54.560	27.050	66.920	31.100
13	169.300	264.800	113.600	49.260	43.020	34.100	35.350	23.470	36.650	27.070	46.970	31.820
14	135.900	223.600	101.500	47.720	42.010	32.850	30.650	23.930	33.440	27.020	53.140^{\prime}	33.820
15	123.700	203.400	100.700	47.720	36.720	33.170	30.280	23.500	36.580	25.270	45.480	32.500
16	119.400	221.600	97.410	46.740	41.930	34.170	32.350	23.660	47.440	26.000	40.260	32.170
17	186.200	267.400	115.500	48.610	70.940	33.350	30.600	24.370	47.520	26.690	40.160	31.160
18	303.200	220.200	116.000	61.680	75.120	33.200	32.620	23.940	47.900	27.900	32.530	35.680
19	285.600	196.200	101.600	59.660	51.900	32.140	31.610	23.420	40.620	25.940	28.830	39.750
20	314.600	194.000	93.580	52.400 '	45.740	32.280	28.460	23.050	32.650	26.190	30.180	85.080
21	315.600	169.000	83.310	50.690	42.170	31.570	27.580	22.130	30.330	26.390	31.510	87.760
22	322.500	161.500	78.350	55.210	41.080	30.770	26.420	23.050	27.890	25.560	30.920	175.300
23	289.500	189.800	75.110	65.390	40.910	31.350	26.620	23.890	28.390	25.660	28.840	262.100
24	236.300	169.100	71.930	54.980	39.830	31.360	25.580	25.600	30.990	30.900	28.640	213.500
25	243.200	189.000	69.480	52.450	45.750	30.740	25.460	23.520	35.120	50.120	32.940	124.800
26	467.500	181.500	67.430	50.970	40.380	29.110	26.050	23.850	33.540	41.750	38.870	81.880
27	522.600	145.600	79.240	47.070	40.760	28.880	25.680	25.200	34.660	36.030	39.680	61.450
28	530.000.	133.400	87.370	45.180	47.010	28.570	25.740	22.810	32.060	30.300	37.910	51.090
29	577.700		120.300	43.960	50.560	27.560	25.760	21.870	30.570	28.850	40.140	44.870
30.	451.300		93.390	44.120	45.550	27.030	25.310	26.310	29.720	27.130	38.160	42.650
31	297.900		85.810		45.290		24.930	25.700		28.140		43.830
Average	254.600	203.500	117.600	- 55.170	44.970	34.390	28.800	24.220	36.270	29.710	36.150	64.160
Lowest	104.000	129.200	67.430	43.960	36.720	27.030	24.930	21.870	24.490	25.270	25.870	31.100
Highest	577.700	329.500	184.500	78.570	75.120	47.440	52.050	26.310	73.100	50.120	66.920	262.100
Peak fiow	586.90	342.00	209.30	84.65	92.57	51.33	61.11	30.84	78.61	64.72	77.93	268.10
Day of peak	29	12	1	1	18	4	12	9	11	25	12	23
Monthly total (million cu m)	681.80	492.30	314.90	143.00	120.40	89.13	77.13	64.87	94.00	79.57	93.70	171.80
Runoff (mmi)	91	66	42	- 19	16	12	10	9	13	11	13	23
Rainfall (mm)	131	79	51	19	40	13	25	12	91	32	54	75

Statistics of monthly data for previous record (Oct 1958 to Dec 1994)

Station and catchment description
Velocity-area station in the navigable Trent. Main channel approx. 62 m ; cableway span 99 m . Holme sluices $750 \mathrm{~m} u / \mathrm{s}$ affect water levels up to medium flows. Bypassed at high flows on rb when gravel workings inundated. Very substantial flow modifications owing to imports, WRW's, cooling water and industrial usage. Predominantly impervious - glacial clay and Triassic Marl, but some sandstone and limestone. Extensive terrace gravels and alluvium maintain baseflow.

028085 Derwent at St. Marys Bridge

Measuring outhority: EA-M First yoar: 1936

Grid reference: 43 (SK) 355368 Level stn. (m OD): 44.00

Catchment area (sq km): 1054.0 Max alt. (m OD): 636

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAA	APR	MAY	JUN	Jul	AUG	SEP	OCT	NOV	DEC
1	32.790	82.340	38.870	19.230	7.127	5.607	4.558	4.432	4.111	4.494	4.583	3.928
2	27.420	56.030	31.650	16.830	6.685	5.743	4.373	4.102	4.160	3.957	4.088	4.071
3	26.050	46.120	29.930	15.700	6.700	5.214	4.351	4.129	4.066	4.294	3.979	5.579
4	25.150	38.390	27.770	14.860	6.388	5.339	4.430	4.243	4.458	4.598	4.163	7.917
5	39.060	33.730	28.850	13.970	6.356	4.945	4.366	4.185	4.865	4.079	4.072	5.839
6	32.900	30.460	28.190	13.300	6.026	4.794	4.015	4.110	4.322	6.229	4.407	5.433
7	28.010	28.220	30.400	12.290	5.865	4.788	3.986	4.194	4.939	4.207	4.172	5.257
8	26.670	29.040	27.250	11.570	5.773	4.972	4.844	4.191	4.105	3.936	4.104	4.990
9	25.510	27.800	26.420	11.230	5.722	5.145	3.982	4.321	4.009	4.025	4.845	4.477
10	50.400	45.090	29.890	10.790	5.657	5.688	3.969	5.602	5.952	3.990	4.422	4.139
11	72.940	62.170	35.450	11.270	6.105	5.757	7.118	4.760	6.076	3.979	7.739	4.048
12	39.870	56.700	28.660	9.372	5.674	4.688	6.280	4.575	3.029	4.020	6.884	4.641
13	32.680	49.800	23.610	9.531	5.554	4.132	4.367	4.505	4.257	3.869	5.544	5.026
14	29.000	41.640	22.080	8.818	5.463	4.288	4.289	4.791	4.106	3.930	6.508	5.057
15	27.350	36.370	21.710	8.784	5.515	4.693	4.157	4.622	4.169	4.054	5.915	4.805
16	26.640	45.760	20.950	8.804	6.523	4.213	5.438	4.415	4.088	4.024	5.468	4.606
17	44.500	53.790	25.740	9.929	13.310	4.282	4.842	4.623	4.042	4.215	5.067	4.579
18	49.050	44.320	22.950	12.590	7.728	4.012	5.037	4.417	4.125	4.058	4.204	4.568
19	43.970	47.300	23.230	10.560	6.449	4.140	4.052	4.283	3.989	3.902	4.059	5.227
20	48,170	47.210	21.660	9.519	5.804	4.254	3.875	4.201	4.164	4.183	5.877	6.231
21	49.620	42.590	19.160	9.124	5.650	3.987	3.873	4.227	4.232	4.315	5.768	5.469
22	46.330	42.170	18.190	10.400	5.890	4.110	3.815	4.270	4.091	4.163	4.763	25.550
23	41.920	41.310	17.290	10.440	5.641	4.114	4.250	4.234	4.194	4.170	4.062	23.260
24	47.780	38,460	16.340	9.324	6.402	4.083	4.086	4.262	4.566	5.590	4.078	12.160
25	79.120	34.310	16.590	9.571	6.749	4.142	3.878	3.832	4.396	4.463	4.135	10.090
26	119.400	29.180	15.620	9.494	5.980	4.077	4.042	3.983	4.272	4.024	4.249	8.166
27	72.510	26.360	20.890	7.915	6.197	3.990	3.996	4.024	4.325	4.083	4.089	7.323
28	159.400	26.110	20.870	7.374	6.294	4.160	4.063	4.111	4.345	4.153	4.394	6.401
29	153.800		20.130	7.420	6.829	3.801	4.027	4.316	4.231	4.399	4.267	5.958
30	80.510		19.970	8.570	6.322	4.075	4.549	4.486	4.592	4.051	4.149	6.162
31	78.040		22.650		5.875		4.539	4.228		4.148		6.509
Avoraga	53.440	42.240	24.290	10.950	6.395	4.574	4.434	4.344	4.343	4.245	4.802	7.015
Lowost	25.150	26.110	15.620	7.374	5.463	3.801	3.815	3.832	3.029	3.869	3.979	3.928
Highest	159.400	82.340	38.870	19.230	13.310	5.757	7.118	5.602	6.076	6.229	7.739	25.550
Poak flow	173.60	107.60	42.01	21.07	15.97	6.77	11.02	7.38	8.19	8.81	12.50	29.98
Day of peak	28	1	11	1	17	15	11	14	10	6	3	22
Monthly total (million cu m)	143.10	102.20	65.06	28.39	17.13	11.86	11.88	11.64	11.26	11.37	12.45	18.79
Runoff (mm)	136	97	62	27	16	11	11	11	11	11	12	18
Rainfall (mm)	197	116	79	31	55	19	46	12	87	40	62	74

Statistics of monthly data for previous record (Oct 1935 to Dec 1994)

Mean	Avg.	29.560	27.780	22.760	18.020	12.370	9.966	8.678	8.697	10.170	13.560	22.050	26.610
flows:	Low	9.749	8.084	7.361	7.253	4.710	4.647	4.211	3.647	3.955	4.155	4.304	8.480
	(yoar)	1963	1963	1993	1990	1990	1990	1976	1976	1959	1959	1975	1975
	High	67.000	76.780	69.530	39.590	26.410	20.240	28.660	33.840	32.940	35.130	54.320	88.690
	(yoar)	1939	1977	1947	1966	1967	1987	1958	1956	1946	1960	1940	1965
Runoff:	Avg.	75	64	58	44	31.	25	22	22	25	34	54	68
	Low	25	19	19	18	12	11	11	9	10	11	11	22
	High	170	176	177	97	67	50	73	86	81	89	134	225
Rainfall:	Avg.	104	77	77	67	67	71	76	82	82	92	105	105
	Low	33	8	16	8	13	15	16	10	3	17	16	20
	Migh	215	236	185	132	163	188	158	185	199	178	232	246
Summ	ary 8	tics								s affec	runof		
								1995					
				1995		or record ading 19		$\begin{aligned} & \text { As \% of } \\ & \text { pre- } 1995 \end{aligned}$		ervoir(s) influenc	catchm by gro	water	action
Mean flo	w (3							81		or rech	e.		
Lowest	yoarly						1976			traction	public	ter sup	
Mighest	yearly				25.		1954		- F	reduce	y indus	l and/or	
Lowest	monthly	nean					1978			ultura!	traction		
Highast	monthly	nean			88.		1965		-	mentatio	from su	ce wat	nd/or
Lowest	daily m			12			1952			ndwater			
Highost	daily m		159	28	334.		1965		- A	mentatio	from ef	nt retur	
Poak			173	28									
10\% ex	ceedan							107					
50\% exc	coedan				11.			46					
95\% ex	ceodan							86					
Annual	total (t)	On cum)			551			81					
Annual r	runoff				52			81					
Annual 1	rainfall				100			81					
1961	. 90 rai	averag			101								

Station and catchment description
Ton-channel, interleaved cross-path US gauge in the centre of Derby, 1.75 km ds of Longbridge Weir (28010). Record continuous with 28010.
Peaks from 1976 only. Derby may flood but bypassing small. Substantial flow modification owing to Derwent reservoirs, milling and PWS
Peaks from 1976 only. Derby may flood but bypassing small. Substantial flow modification owing to Derwent reservoirs, milling and PWS
abstractions. Large, predominantly upland catchment draining Millstone Grit and Carb. Lst. Lower reaches drain Coal Measures on the lb and abstractions. Large, predominantly upland catchment draining Millstone Grit and Carb. Lst. Lower reaches
Triassic sandstones and marls on the rb. Peat moorland headwaters; forestry, pasture and some arable.

030001 Witham at Claypole Mill

Measuring authority: EA-A First year: 1959

Grid reference: 43 (SK) 842480 Level stn. (m OD): 16.90

Catchment area (sq km): 297.9 Max alt. (m OD): 158

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL ${ }^{\prime}$	AUG	SEP	OCT	NOV	DEC
1	3.555	8.974	5.504	2.112	1.156	0.894	0.480	0.340	0.307	0.511	0.503	0.587
2	3.241	6.567	4.469	2.070	1.196	0.783	0.456	0.323	0.313	0.496	0.488	0.569
3	3.138	5.690	4.474	2.032	1.106	0.805	0.493	0.349	0.312	0.471	0.492	0.609
4	3.043	5.149	4.437	1.950	1.029	0.884	0.503	0.356	0.287	0.465	0.486	1.043
5	3.951	4.871	4.257	1.988	1.108	0.772	0.503	0.380	0.342	0.485	0.495	0.852
6	4.040	4.621	3.658	1.961	1.120	0.764	0.444	0.383	0.351	0.538	0.649	0.780
7	3.487	4.406	3.954	1.886	1.105	0.779	0.375	0.311	0.570	0.579	0.508	0.712
8	3.420	4.542	3.998	1.860	1.022	0.846	0.352	0.313	0.801	0.510	0.536	0.683
9	3.378	4.419	3.470	1.860	1.019	0.797	0.335^{\prime}	0.297	0.459	0.477	0.683	0.626
10	3.707	6.303	3.263	1.832	1.120	0.816	0.357	0.274	0.687	0.438	0.834	0.603
11	4.470	6.983	3.365	1.796	1.063	0.831	0.365	0.271	1.152	0.455	0.995	0.571
12	3.529	5.971	3.286	1.733	0.897	0.795	0.360	0.270	0.573	0.465	0.565	0.635
13	3.144	4.937	3.159	1.749	0.900	0.754	0.379	0.278	0.543	0.447	0.731	0.789
14	3.033	4.356	3.146	1.793	0.853	0.707	0.522	0.290	0.499	0.428	1.287	0.824
15	2.885	4.907	3.124	1.768	0.816	0.706	0.414	0.269	0.630	0.433	0.788	0.754
16	2.885	5.206	2.988	1.733	0.889	0.660	0.406	0.249	0.613	0.433	0.762	0.703
17	3.763	4.824	3.025	1.600	1:964	0.628	0.407	0.254	0.582	0.434	0.643	0.652
18	4.485	4.164	2.787	1.547	1.095	0.600	0.360	0.281	0.624	0.454	0.586	0.710
19	4.840	3.896	2.684	1.511	1.019	0.540	0.339	0.257	0.678	0.435	0.548	0.701
20	9.332	3.620	2.471	1.459	1.005	0.494	0.319	0.280	0.575	0.456	0.516	1.416
21	8.594	3.543	2.461	1.374	0.948	0.492	0.307	0.269	0.546	0.454	0.580	1.276
22	7.638	3.859	2.417	1.622	0.900	0.475	0.294	0.318	0.544	0.443	0.566	3.801
23	5.645	4.148	2.396	1.418	0.851	0.457	0.319	0.269	0.526	0.417	0.529	4.037
24	4.553	3.741	2.371	1.425	0.841	0.504	0.356	0.301	0.581	0.462	0.527	2.484
25	7.871	4.981	2.326	1.307	0.855	0.547	0.317	0.316	0.543	0.615	0.544	1.646
26	14.310	4.217	2.231	1.232	0.783	0.541	0.326 -	0.296	0.562	0.571	0.624	1.332
27	10.640	4.002	2.406	1.232	0.830	0.514	0.310	0.312	0.523	0.692	1.196	1.116
28	11.430	4.001	2.552	1.202	1.114	0.509	0.320	0.384	0.471	0.533	0.838	0.926
29	7.707		2.315	1.160	0.857	0.453	0.351	0.327	0.486	0.503	0.618	0.730
30	6.178		2.202	1.153	0.809	0.475	0.313	0.301	0.486	0.501	0.549	0.886
31	6.703		2.162		- 0.981		0.321	0.313		0.501		0.928
Average	5.439	4.889	3.141	1.645	1.008	0.661	0.377	0.304	0.539	0.487	0.655	1.096
Lowest	2.885	3.543	2.162	1.153	0.783	0.453	0.294	0.249	0.287	0.417	0.486	0.569
Highest	14.310	8.974	5.504	2.112	.1.964	0.894	0.522	0.384	1.152	0.692	1.287	4.037
Peak flow	15.39	10.03	6.62	2.15	3.54	0.99	0.68	0.46	2.69	1.00	2.24	5.67
Day of peak	26	1	1	1	17	3	14	28	10	26	27	22
Monthly total (million cu m)	14.57	11.83	8.41	4.26	2.70	1.71	1.01	0.81	1.40	1.31	1.70	2.94
Runoff (mm)	49	40	28	14	9	6	3	3	5	4	6	10
Rainfall (mm)	91	54	34	13	36	14	7	8	71	19	60	69

Statistics of monthly data for previous record (May 1959 to Dec 1994)

Station and catchment description
An old weir at three levels with a total width of 24.99 m converted into a standard Lea designed broad-crested weir. It is rated theoretically and there is no bypassing or drowning. Low flows moderately influenced by transfer of water from Rutland Water (Feb. 1977 to Apr. 1986). Abstractions for public supply at Saltersford. The catchment is clay (50%) with limestone (40%) and gravel, and is largely rural.

032004 Ise Brook at Harrowden Old Mill

Moasuring authority: EA-A First year: 1943

Grid reference: 42 (SP) 898715 Level stn. (m OD): 45.30 -"

Catchment area (sq km): 194.0 Max alt. (m OD): 197

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	2.107	9.645	3.395	1.168	0.517	0.436	0.189	0.121	0.119	0.240	0.222	0.681
2	1.748	6.343	3.064	0.991	0.501	0.432	0.199	0.093	0.192	0.210	0.217	0.650
3	1.585	4.144	3.946	1.103	0.494	0.437	0.205	0.084	0.141	0.209	0.207	0.749
4	1.550	3.424	5.144	1.057	0.464	0.435	0.198	0.085	0.131	0.299	0.200	0.884
5	2.775	3.056	6.110	1.039	0.449	0.442	0.192	0.088	0.152	0.218	0.196	1.037
6	3.163	2.796	3.970	0.990	0.479	0.378	0.170	0.092	0.208	0.247	0.211	0.673
7	2.169	2.556	4.462	0.945	0.458	0.356	0.152	0.090	0.674	0.286	0.208	0.746
8	1.992	2.502	3.694	0.940	0.419	0.305	0.152	0.091	0.304	0.234	0.213	0.617
9	1.924	2.514	2.983	0.876	0.414	0.285	0.153	0.093	0.195	0.216	0.560	0.479
10	2.402	5.868	1.783	0.896	0.416	0.325	0.147	0.094	0.539	0.201	0.687	0.445
11	3.075	6.701	2.408	1.167	0.419	0.358	0.517	0.092	0.489	0.203	0.826	0.435
12	2.086	5.357	2.346	0.553	0.415	0.317	0.224	0.097	0.335	0.202.	0.585	0.447
13	1.824	3.659	2.187	0.727	0.408	0.294	0.202	0.085	0.269	0.200	0.577	0.466
14	1.747	3.579	1.854	0.667	0.405	0.273	0.174	0.092	0.275	0.195	0.531	0.456
15	1.677	4.512	2.371.	0.665	0.402	0.272	0.281	0.094	0.967	0.190	0.447	0.468
16	1.684	4.840	1.838	0.668	0.473	0.263	0.216	0.088	0.640	0.188	0.391	0.462
17	3.067	4.048	1.653	0.692	0.932	0.268	0.173	0.085	0.685	0.196	0.354	0.478
18	3.522	3.072	1.976	0.997	0.531	0.259	0.185	0.088	0.537	0.186	0.323	0.464
19	3.226	2.771	1.368	0.847	0.468	0.252	0.165	0.083	0.459	0.477	0.298	0.922
20	7.901	2.693	1.697	0.571	0.441	0.261	0.153	0.083	0.376	0.212	0.281	2.004
21	5.965	2.734	1.407	0.513	0.407	0.229	0.152	0.078	0.290	0.186	0.297	2.356
22	8.369	3.655	1.555	0.759	0.391	0.224	0.139	0.074	0.255	0.189	0.274	6.946
23	5.022	4.135	1.498	0.690	0.385	0.210	0.128	0.094	0.235	0.186	0.268	8.032
24	3.340	3.791	1.130	0.647	0.380	0.223	0.130	0.077	0.389	0.474	0.270	4.138
25	3.737	5.466	1.266	0.654	0.375	0.348	0.130	0.083	0.243	0.319	0.392	2.329
26	8.622	3.663	1.289	0.620	0.375	0.229	0.130	0.071	0.391	0.606	0.528	1.611
27	7.904	2.907	1.314	0.566	0.369	0.210	0.140	0.106	0.275	0.412	2.199	1.280
28	8.424	2.889	1.693	0.539	0.364	0.258	0.140	0.114	0.246	0.284	1.232	1.081
29	5.679		0.971	0.535	0.364	0.196	0.134	0.115	0.229	0.261	0.922	0.957
30	4.391		1.334	0.527	0.690	0.182	0.122	0.125	0.231	0.252	0.774	0.929
31	4.092		1.228		0.458		0.144	0.120		0.233		1.016
Avorage	3.702	4.047	2.353	0.787	0.454	0.299	0.179	0.093	0.349	0.258	0.490	1.433
Lowest	1.550	2.502	0.971	0.513	0.364	0.182	0.122	0.071	0.119	0.186	0.196	0.435
Highast	8.622	9.645	6.110	1.168	0.932	0.442	0.517	0.125	0.967	0.606	2.199	8.032
Poak flow	10.00	10.15	7.29	1.95		0.54	1.54	0.20	1.48	1.35	3.82	10.15
Day of peak	27	1	5	11		25	11	27	15	26	27	23
Monthly total (million cu m)	9.92	9.79	6.30	2.04	1.22	0.77	0.48	0.25	0.90	0.69	1.27	3.84
Runoff (mm)	51	50	32	11	6	4	2	1	5	4	7	20
Rainfall (mm)	95	67	43	18	34	10	14	6	108	32	68	76

Statistics of monthly data for previous record (Dec 1943 to Doc 1994 - incomplete or missing months total 0.8 yaars)

Station and catchment description

Flume with low flow notch and side weir to 1965 , compound Crump profile weir to April 1976, and theoretically-rated Flat V weir with 5.94 m crest since. Crump weir modular to 15.6 cumecs, but bypassed at 14.2 m . Flat V also bypassed. Two small storage reservoirs with minor influence on low flows. Underlain by clay (59\%) and sandstone (24\%), mostly rural but includes Kettering.

033002 Bedford Ouse at Bedford

Grid reference: 52 (TL 055495 Level stn. (m OD): 24.70

Catchment area (sq km): 1460.0 Max alt. (m OD): 247

Daily mean gauged discharges (cubic metres per second)

Station and catchment description
3 broad-crested weirs, $30 \mathrm{~m} ; 20 \mathrm{~m}$ and 12 m wide supplemented by 3 vertical sluice gates which are either fully open or shut. High flow rating confirmed by current meter measurements. Records before 1959 based on daily gauge board readings and gate openings. flmproved flow record, from 1972, d/s at 33039). Significant surface and groundwater abstractions in catchment for PWS, Milton Keynes effluent now significant. Geology - predominantly clay. Land use - agricultural with substantial urban development over last 15 years.

033034 Little Ouse at Abbey Heath

Moasuring authority: EA-A
First year: 1968

Grid reference: 52 (TL) 851844 Level stn. (m OD): 7.20

Catchrnent area (sq km): 699.3 Max att. (m OD): 98

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APA	MAY	JUN	Jul	AUG	SEP	OCT	Nov	DEC
1	3.588	11.270	8.875	5.840	3.610	2.641	1.629	1.000	1.337	1.670	1.609	1.549
2	3.283	14.950	8.458	5.528	3.476	2.460	1.771	0.959	1.497	1.673	1.599	1.504
3	3.044	13.510	12.380	5.475	3.432	2.582	1.701	0.941	1.395	1.638	1.605	1.541
4	2.900	9.556	16.330	5.313	3.364	2.837	1.762	0.939	1.481	1.568	1.551	1.532
5	3.109	7.944	15.480	5.145	3.282	2.638	1.692	0.964	1.419	1.352	1.509	1.543
6	3.206	7.062	13.210	5.098	3.211	2.476	1.630	0.967	1.490	1.225	1.497	1.646
7	3.318	6.900	11.280	5.004	3.146	2.485	1.507	0.985	1.592	1.202	1.566	1.915
8	3.600	7.794	12.980	4.825	3.136	2.465	1.454	0.986	1.513	1.244	1.667	1.615
9	3.713	8.510	11.400	4.801	3.033	2.827	1.431	1.178	1.473	1.159	1.881	1.527
10	4.445	8.239	9.471	4.786	2.994	2.746	1.446	1.236	1.570	1.411	1.768	1.541
11	7.091	10.010	8.303	4.653	2.798	2.425	1.446	1.314	1.454	1.243	1.776	1.533
12	7.943	10.720	7.753	4.501	2.955	2.443	1.445	1.428	1.829	1.011	1.753	1.602
13	5.450	9.469	7.249	4.218	2.989	2.442	1.546	1.488	1.479	1.100	1.823	1.358
14	4.852	8.932	7.479	4.141	2.780	2.424	1.458	1.440	1.453	1.160	1.760	1.542
15	4.244	8.639	7.897	4.161	2.815	2.441	1.478	1.407	1.922	1.171	1.754	1.609
16	3.855	8.411	7.436	4.169	2.887	2.440	1.475	1.390	1.794	1.195	1.830	1.611
17	3.856	8.597	7.121	4.214	3.120	2.443	1.581	1.387	2.324	1.203	1.761	1.647
18	4.144	7.922	6.597	4.569	3.134	2.429	1.598	1.383	2.403	1.170	1.725	1.851
19	3.971	7.617	6.052	4.379	2.960	2.291	1.475	1.360	2.082	1.159	1.809	1.973
20	5.325	7.669	5.704	4.141	2.856	2.155	1.463	1.338	1.797	1.164	1.796	2.011
21	6.942	9.067	5.673	4.127	2.769	2.056	1.405	1.331	1.724	1.143	1.683	2.420
22	10.250	9.356	5.559	4.373	2.712	1.960	1.310	1.347	1.627	1.114	1.717	2.788
23	13.270	10.160	5.678	4.347	2.671	1.891	1.255	1.352	1.625	1.128	1.708	3.786
24	12.300	9.709	5.699	4.199	2.588	1.904	1.232	1.341	1.742	1.046	1.668	4.029
25	7.944	11.400	5.642	4.228	2.593	1.904	1.171	1.287	1.701	1.047	1.723	3.479
26	9.470	14.910	5.781	4.071	2.473	1.883	1.163	1.352	1.847	1.141	1.752	2.853
27	13.230	12.030	6.084	3.902	2.437	1.783	1.157	1.348	1.731	1.397	1.726	2.324
28	14.650	9.715	6.787	3.817	2.412	1.742	1.145	1.362	1.618	1.528	1.800	2.308
29	14.900		6.791	3.774	2.365	1.709	1.263	1.394	1.636	1.566	1.740	2.148
30	12.370		6.126	3.688	2.480	1.650	1.136	1.375	1.652	1.561	1.632	2.195
31	10.040		5.825		2.769		1.069	1.417		1.557		2.467
Average	6.784	9.645	8.294	4.516	2.911	2.286	1.429	1.258	1.674	1.289	1.706	2.047
Lowest	2.900	6.900	5.559	3.688	2.365	1.650	1.069	0.939	1.337^{\prime}	1.011	1.497	1.358
Highost	14.900	14.950	16.330	5.840	3.610	2.837	1.771	1.488	2.403	1.673	1.881	4.029
Peak flow	15.73	15.87	16.78	5.99	3.73	3.32	2.20	1.54	4.03	1.78	2.16	4.13
Day of peak	28	2	4	1	1	3	2	14	12	1	13	24
Montily total (million cu m)	18.17	23.33	22.21	11.71	7.80	5.92	3.83	3.37	4.34	3.45	4.42	5.48
Runoft (mm)	26	33	32	17	11	8	5	5	6	5	6	8
Rainfall (mm)	101	72	56	19	26	34	30	10	109	9	30	68

Statistics of monthly data for previous record (Apr 1968 to Dec 1994)

Station and catchment description
Rectongular section Crump profile weir with crest tapping. Replaced 33008 in 1968 . Weir subject to drowning and spills on rare occasions.
Since the late 1980 s , low flows augmented from groundwater in drought conditions. Geology - Chalk with approx. 85% Boulder Clay cover. Land use - predominately agricultural with large areas of forest and heathland.

Measuring authority: EA-A First year: 1963

Grid reference: 62 (TM) 229811 Level stn. (m OD): 16.50

Catchment area ($\mathbf{s q} \mathbf{~ k m}$): $\mathbf{3 7 0 . 0}$
Max alt. (m OD): 65

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	OEC
1	1.728	1.276	5.503	1.417	0.651	0.679	0.366	0.333	0.369	0.420	0.360	0.388
2	1.306	0.890	5.702	1.320	0.652	0.530	0.375	0.318	0.441	0.403	0.377	0.384
3	1.094	0.883	14.730	1.296	0.630	0.496	0.449	0.318	0.440	0.430	0.396	0.366
4	1.002	0.893	16.030	1.226	0.612	0.590	0.448	0.318	0.397	0.429	0.407	0.374
5	1.183	0.880	9.482	1.044	0.592	0.756	0.422	0.313	0.387	0.421	0.343	0.422
6	2.025	0.990	6.025	0.987	0.565	0.572	0.407	0.296	0.375	0.410	0.338	0.400
7	1.944	1.110	7.964	0.925	0.558	0.523	0.382	0.281	0.412	0.415	0.366	0.408
8	2.257	1.975	11.760	0.868	0.543	0.519	0.363	0.283	0.474	0.394	0.382	0.406
9	3.125	1.521	6.498	0.828	0.530	0.637	0.358	0.288	0.439	0.380	0.404	0.387
10	4.549	1.230	4.493	0.815	0.543	0.701	0.602	0.281	0.397	0.395	0.497	0.373
11	11.340	1.111	3.653	0.836	0.554	0.600	0.788	0.274	0.411	0.393	0.394	0.357
12	6.285	0.928	2.997	0.778	0.522	0.556	0.703	0.246	$\cdot 0.427$	0.385	0.358	0.405
13	3.557	0.795	2.650	0.752	0.470	0.544	0.514	0.264	0.383	0.365	0.352	0.454
14	2.703	0.769	2.829	0.724	0.457	0.516	0.502	0.284	0.333	0.366	0.383	0.467
15	2.362	0.764	3.348	0.730	0.473	0.505	0.517	0.281	0.560	0.349	0.396	0.455
16	2.117	0.771	2.754	0.755	0.498	0.499	0.482	0.286	0.692	0.349	0.399	0.428
17	2.035	0.701	2.609	0.792	0.595	0.501	0.598	0.300	0.681	0.379	0.417	0.410
18	1.901	0.692	2.002	1.045	0.592	0.467	0.577	0.295	0.681	0.354	0.387	0.407
19	1.884	0.665	1.706	0.955	0.545	0.435	0.497	0.289	0.556	0.353	0.363	0.453
20	6.345	0.622	1.463	0.823	0.496	0.416	0.448	0.280	0.450	0.363	0.356	1.070
21	7.387	0.613	1.274	0.764	0.483	0.383	0.419	0.272	0.402	0.335	0.382	1.006
22	18.320	0.763	1.249	0.973	0.475	0.377	0.383	0.280	0.392	0.302	0.387	1.630
23	18.590	0.770	1.261	0.959	0.475	0.382	0.356	0.290	0.377	0.301	0.371	3.059
24	11.730	0.691	1.319	0.839	0.488	0.401	0.345	0.304	0.386	0.304	0.372	2.055
25	6.507	0.652	1.281	0.821	0.466	0.400	0.341	0.308	0.391	0.301	- 0.375	1.286
26	14.630	0.604	1.226	0.785	0.442	0.394	0.352	0.315	0.406	0.311	0.382	0.906
27	18.460	0.569	1.410	0.735	0.424	0.388	0.366	0.314	0.443	0.336	0.392	0.758
28	20.820	0.563	1.967	0.702	0.398	0.372	0.350	0.330	0.412	0.328	0.398	0.651
29	14.910		2.209	0.669	0.403	0.370	0.347	0.334	0.408	0.318	0.391	0.566
30	10.990		1.528	0.651	0.450	0.377	0.379	0.334	0.415	0.354	0.389	0.544
31	8.241		1.427		1.020		0.329	0.355		0.353		0.755
Average	6.817	0.882	4.205	0.894	0.535.	0.496	0.444	0.299	0.444	0.364	0.384	0.711
Lowest	1.002	0.563	1.226	0.651	$0.398{ }^{\circ}$	0.370	0.329	0.246	0.333	0.301	0.338	0.357
Highest	20.820	1.975	16.030	1.417	1.020	0.756	0.788	0.355	0.692	0.430	0.497	3.059
Peak flow	23.70	9.16	17.78	1.50	1.20	0.86	1.15	0.37	0.76	0.50	0.69	3.38
Day of peak Monthly total	22	1	4	1	31	1	10	31	17	3	10	23
(million cu m)	18.26	2.13	11.26	2.32	1.43	1.29	1.19	0.80	1.15	0.98	0.99	1.90
Runoff (mm)	49	6	30	6	4	3	3	2	3	3	3	5
Rainfall (mm)	105	68	53	18	22	32	52	12	87	6	27	69

Statistics of monthly data for previous record (Dec 1963 to Dec 1994 -incomplate or missing months total 0.2 years)

Station and catchment description
A compound Crump weir 8.5 m wide in the main channel with a single crested Crump in the mill bypass. Sluice action at a mill 2.4 km upstream is infrequent but is evident in flow records. Surface water abstractions, and the use of river gravels as an aquifer, influence flows but the overall impact is minimal. Record affected by the Waveney Groundwater Scheme between 1975 and 1979. Predominantly a Boulder Clay catchment with targely rural land use.

038001 Lee at Feildes Weir

Daily mean naturalised discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	May	JUN	Jul.	AUG	SEP	OCT	NOV	DEC
1	7.310	42.100	10.500	6.860	5.740	4.460	3.560	2.080	2.110	2.980	2.020	2.210
2	5.220	24.200	11.400	6.840	5.680	4.320	4.270	1.970	2.810	2.780	2.090	2.170
3	5.380	13.200	21.500	6.900	5.770	5.140	4.420	1.930	2.610	2.580	1.970	2.290
4	5.440	10.600	18.400	6.860	5.450	5.850	3.700	2.170	2.290	3.210	1.980	3.070
5	6.380	9.480	32.000	6.660	5.200	4.520	3.570	1.860	2.330	3.070	1.970	2.470
6	7.280	9.100	20.700	6.740	5.100	4.400	2.920	2.060	2.490	2.990	1.910	2.280
7	6.290	8.770	24.700	6.710	4.980	4.340	2.880	2.090	3.480	3.060	1.920	2.250
8	6.130	8.840	21.900	6.780	4.790	4.320	2.770	2.140	2.860	2.820	1.950	2.170
9	6.660	8.210	14.200	6.450	4.970	4.510	2.730	1.930	2.210	2.680	1.970	2.070
10	6.230	11.100	11.300	6.410	4.960	4.300	2.740	1.980	2.730	2.610	2.520	2.050
11	7.190	17.700	10.100	6.420	5.090	4.530	2.910	2.020	3.430	2.640	2.470	2.040
12	6.150	14.500	9.520	6.350	5.100	4.580	3.290	2.050	3.010	2.580	2.330	2.020
13	5.480	16.000	9.190	6.180	4.980	4.190	2.320	1.950	2.940	2.190	2.150	2.130
14	5.170	17.900	9.620	6.130	4.920	3.890	2.820	1.830	2.810	2.200	2.080	2.260
15	5.000	13.700	9.630	6.100	4.710	4.010	$2.940{ }^{\circ}$	1.810	2.870	2.060	2.130	2.200
16	4.970	15.300	8.580	6.010	5.120	4.000	3.030	1.810	4.830	2.130	2.080	2.110
17	8.330	16.000	9.730	6.040	7.610	4.060	2.700	1.700	5.810	2.070	2.050	2.070
18	14.300	10.900	9.970	5.960	5.950	4.110	2.530	1.770	4.250	1.960	1.930	2.160
19	17.100	10.600	8.550	6.050	5.170	3.930	2.520	1.810	4.180	1.860	1.940	3.700
20	26.200	10.900	7.980	5.940	4.990	4.000	2.510	1.800	3.530	1.750	1.970	8.740
21	31.600	14.600	7.780	5.820	4.990	3.840	2.390	1.780	3.310	1.720	1.990	5.710
22	47.700	16.400	7.720	6.430	4.970	3.800	2.330	1.930	3.070	1.740	2.020	11.300
23	28.400	19.600	7.720	6.350	4.740	3.670	2.420	2.000	2.920	1.920	2.000	14.200
24	12.400	16.400	7.900	6.290	4.730	3.780	2.400	2.000	3.350	2.040	1.990	6.800
25	13.300	19.800	7.820	6.080	4.840	3.750	2.400	1.980	3.010	2.270	2.130	5.300
26	40.600	13.300	7.610	6.440	4.550	3.770	2.640	2.010	3.740	2.250	3.160	4.630
27	35.900	10.500	7.630	6.220	4.420	3.680	2.590	2.000	5.000	2.240	3.470	3.740
28	29.700	9.520	9.720	5.870	4.540	3.690	2.380	1.900	3.730	2.090	3.120	3.510
29	38.300		8.680	5.770	4,400	3.510	2.220	1.990	3.250	2.110	2.500	3.320
30	28.900		7.310	5.780	4.510	3.600	2.170	2.030	3.150	2.070	2.280	3.460
31	15.300		7.030		4.640		2.160	2.020		2.060		4.970
Averago	15.620	14.610	11.820	6.315	5.078	4.152	2.814	1.948	3.270	2.346	2.203	3.852
Lowest	4.970	8.210	7.030	5.770	4.400	3.510	2.160	1.700	2.110	1.720	1.910	2.020
Highost	47.700	42.100	32.000	6.900	7.610	5.850	4.420	2.170	5.810	3.210	3.470	14.200
Monthly total (million cu m)	41.84	35.36	31.66	16.37	13.60	10.76	7.54	5.22	8.48	6.28	5.71	10.32
Nat'ised runoff (mm)	40	34	31	16	13	10	7	5	8	6	6	10
Rainfall (mm)	125	71	58	13	24	23	28	4	106	20		83

Statistics of monthly data for previous record (Oct 1883 to Dec 1994 -incomplate or miseing months total 2.2 years)

Mean	Avg.	8.431	8.348	7.507	6.051	4.967	3.787	3.127	2.917	2.894	3.929	5.433	7.024
nat'ised	Low	1.718	1.525	1.607	1.640	1.408	1.072	1.019	0.801	0.840	1.074	1,369	1.564
Hows:	(year)	1992	1992	1944	1944	1944	1949	1949	1949	1949	1934	1934	1991
	High	22.830	25.730	30.700 .	19.270	13.810	9.592	7.420	8.707	8.218	17.320	16.730	19.130
	(year)	1928	1919	1947	1919	1919	1903	1889	1917	1968	1903	1916	1929
Nat'ined	Avg.	22	20	19	15	13	9	8	8	7	10	14	18
runoff:	Low	4	4	4	4	4	3	3	2	2	3	3	4
	High	59	60	79	48	36	24	19	23	21	45	42	49
Rainfall:	Avg.	58	41	46	45	50	51	55	57	55	62	64	58
(1936-	Low	10	3	3	5	7	5	8	3	3	4	8	15
1994)	High	132	117	135	104	112	137	104	124	129	157	173	129

Summary statistics (nsturalised flows)	For 1995		For record preceding 1995		1995	Factors affecting runoff		
			As \% of pre-1995	- Flow influenced by groundwater abstraction and/or recharge.				
Mean flow [m³ $^{3}-1 /$	6.124				5.355		114	- Abstraction for public water supplies.
Lowest yoarly mean			1.617	1934		- Flow reduced by industrial and/or		
Highest yearly mean			11.510	1919		agricultural abstractions.		
Lowest monthly moan	1.948	Aug	0.801	Aug 1949		- Augmentation from effluent returns.		
Highast monthly moan	15.620	Jan	30.700	Mar 1947				
Lowost daily mean	1.700	17 Aug	0.579	4 Sep 1949				
Highest daily mean	47.700	22 Jan	119.000	17 Mar 1947				
10\% excoedance	13.140		9.387		140			
50\% exceedance	4.000		3.721		107			
95\% exceedance	1.923		1.595		121			
Annual total (million cu m)	193.10		169.00		114			
Annual runoff (mm)	186		163		114			
Annual rainfald (mm)	586		642		91			
1961-90 rainfall average (mm)			630					

Station and catchment description
Thin-plate weir (insensitive - 29m wide) and 3 vertical-lift sluices; completed 1978 to improve range and precision of flow measurement. Model rated. All flows (bar lockages) now contained but Ryemeads STW effluent bypasses. Pre-1978: barrage of gates/sluices; no peak flows prior to 1965, low flows probably under-estimated. Gauging instigated by Beardsmore in 1850s. Significant $9 / \mathbf{w}$ abstraction; net export from catchment. Naturalised flows (New Gauge abstraction only) from 1883. A mainly pervious (Chalk) catchment. Predominantly rural headwaters significant urban growth in lower valleys.

038003 Mimram at Panshanger Park

Grid reference: 52 (TL) 282133
Level stn. (m OD): 47.10
\qquad
Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APA	MAY	JUN	JuL	AUG	SEP	OCT	NOV	DEC
1	0.578	1.300	1.150	1.080	0.894	0.779	0.575	0.452	0.407	0.418	0.373	0.358
2	0.557	0.982	1.190	1.050	0.884	0.768	0.650	0.444	0.585	0.412	0.370	0.357
3	0.551	0.955	1.340	1.040	0.856	0.893	0.605	0.438	0.432	0.414	0.368	0.442
4	0.560	0.931	1.210	1.040	0.847	0.889	0.581	0.429	0.424	0.581	0.364	0.403
5	0.624	0.933	1.270	1.030	0.846	0.740	0.579	0.427	0.432	0.449	0.359	0.369
6	0.566	0.936	1.170	1.020	0.826	0.728	0.581	0.422	0.483	0.512	0.364	0.358
7	0.550	0.961	1.340	1.010	0.796	0.710	0.566	0.428	0.502	0.436	0.366	0.363
8	0.568	0.945	1.190	0.996	0.788	0.700	0.564	0.429	0.435	0.415	0.364	0.359
9	0.554	0.954	1.160	0.989	0.794	0.687	0.557.	0.424	0.416	0.409	0.428	0.350
10	0.598	1.090	1.150	0.983	0.795	0.688	0.560	0.425	0.558	0.404	0.419	0.347
11	- 0.560	1.080	1.160	0.980	0.792	0.721	0.562	0.420	0.449	0.402	0.407	0.349
12	0.548	0.977	1. 130	0.963	0.782	0.698	0.548	0.418	0.445	0.396	0.372	0.354
13	0.547	1.140	1. 140	0.956	0.773	0.681	0.555	0.410	0.415	0.396	0.370	0.372
14	0.542	1.020	1.160	0.949 .	0.768	0.679	0.548	0.407	0.453	0.397	0.374	0.357
15	0.538	1.050	1.190	0.946	0.774	0.682	0.529	0.410	0.421	0.395	0.370	$0.355^{\text { }}$
16	0.543	1.160	1.200	0.946	0.876	0.675	0.534	0.409	0.830	0.389	0.363	0.349
17	0.809	1.030	1.250	0.951	0.988	0.701	0.537	0.409	0.657	0.389	0.361	0.363
18	0.627	1.040	1.170	0.958	0.813	0.677	0.526	0.407	0.626	0.385	0.356	0.344
19	0.966	1.040	1.170	0.946	0.802	0.665	0.524	0.409	0.473	0.385	0.356	0.757
20	0.752	1.090	1.140	0.933	0.785	0.666	0.525	0.411	0.453	0.387	0.350	0.525
21	1.060	1.060	1.140	0.927	0.792	0.651	0.520	0.411	0.441	0.388	0.343	0.616
22	0.960	1.240	1.140	0.982	0.791	0.636	0.520	0.418	0.433	0.386	0.347	0.882
23	0.774	1.120	1.140	0.956	0.790	0.614	0.513	0.416	0.432	0.388	0.345	0.640
24	0.746	1.170	1.140	0.928	0.791	0.621	0.514	0.415	0.534	0.441	0.344	0.477
25	0.853	1.080	1.150	0.911	0.790	0.615	0.512	0.410	0.437	0.391	0.369	0.452
26	0.965	1.040	1.130	0.913	0.788	0.610	0.505	0.423	0.657	0.422	0.411	0.435
27	1.050	1.050	1.130	0.905	0.794	0.598	0.492	0.405	0.490	0.386	- 0.544	0.425
28	0.868	1.050	1.270	0.884	0.804	0.590	0.490	0.404	0.430	0.379	0.390	0.413
29	1.360		1.130	0.878	0.791	0.570	0.477	0.408	0.424	0.375	0.368	0.408
30	0.953		1.110	0.872	0.799	0.567	0.465	0.405	0.430	0.374	0.361	0.502
31	0.959		1.100		0.788		0.462	0.404		0.372		0.499
Average	0.732	1.051	1.176	0.964	0.813	0.683	0.538	0.418	0.487	0.409	0.376	0.438
Lowest	0.538	0.931	1.100	0.872	0.768	0.567	0.462	0.404	0.407	0.372	0.343	0.344 .
Highest	1.360	1.300	1.340	1.080	0.988	0.893	0.650	0.452	0.830	0.581	0.544	0.882
Peak flow	1.92	1.81	1.73	1.14	1.47	1.27	0.77	0.52	1.64	1.14	0.83	1.58
Day of peak Monthly total	29	1	7	22	17	4	2	26	16	4	27	19
(million cu m)	1.96	2.54	3.15	2.50	2.18	1.77	1.44	1.12	1.26	1.10	0.97	1.17
Runoff (mm)	15	19	24	19	16	13	11	8	9	8	7	9
Rainfall (mm)	126	73	57	14	27	23	22	3	106	26	44	86

Statistics of monthly data for previous record (Dec 1952 to Dec 1994)

Station and catchment description
Critical-depth flume;'5m overall width. Theoretical calibration confirmed by gaugings. All flows contained. Appreciable net export of water (considerable groundwater abstraction in headwaters). Very high baseflow component. A predominantly permeable catchment (Upper Chalk overlain by glacial deposits near headwaters); mainly rural but some urbanisation in the lower valley.

039001 Thames at Kingston

1995

Measuring authority: EA-T
First year: 1883

Grid reference: 51 (TA) 177698 Level stn. (m OD): 4.70

Catchment area (sq km): 9948.0
Max alt. (m OD): 330

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	155.000	351.000	166.000	70.500	40.200	28.300	8.370	6.950	4.630	7.840	3.920	28.600
2	118.000	364.000	175.000	68.900	41.100	26.700	13.300	4.960	5.100	5.710	4.950	16.400
3	90.000	320.000	210.000	69.200	39.800	28.800	30.400	4.990	6.910	5.710	6.990	26.200
4	84.300	308.000	216.000	69.800	34.200	31.100	22.900	5.040	7.450	9.850	5.690	49.500
5	89.500	289.000	225.000	69.200	31.000	29.000	9.090	6.100	5.200	8.580	6.230	49.500
6	104.000	277.000	213.000	69.200	29.300	23.500	9.060	6.490	4.750	7.170	7.610	39.100
7	113.000	242.000	227.000	66.800	33.000	23.200	8.850	7.830	12.000	7.450	7.280	26.200
$8{ }^{\circ}$	100.000	213.000	263.000	64.300	29.200	20.600	9.620	7.910	8.640	9.200	6.170	22.400
9.	95.100	204.000	234.000	66.400	26.700	22.600	8.250	13.100	6.550	8.520	15.500	19.200
10	93.600	189.000	190.000	58.600	26.300	25.700	7.790	13.200	8.820	8.110	14.700	16.000
11	95.500	' 220.000	162.000	55.200	25.800	24.700	8.810	13.200	26.400	9.270	16.600	21.400
12	84.100	257.000	146.000	54.500	26.300	29.100	7.530	10.000	11.600	10.200	15.800	23.900
13	72.300	242.000	132.000	51.400	25.200	21.300	7.210	10.000	10.500	8.750	18.400	17.700
14	70.500	270.000	128.000	49.900	25.400	19.900	8.670	8.170	7.090	6.570	16.800	16.700
15	60.500	257.000	128.000	45.900	24.300	15.900	9.370	9.400	9.650	5.740	10.600	12.800
16	69.300	242.000	120.000	48.800	26.400	12.100	9.900	9.350	8.650	6.050	13.800	15.100
17	95.100	251.000	129.000	52.300	41.900	14.200	6.520	8.060	8.090	5.640	5.100	15.800
18	217.000	239.000	134.000	53.000	49.800	15.700	7.320	8.400	6.920	6.340	9.160	17.900
19	247.000	255.000	127.000	52.500	38.400	14.400	6.640	7.750	12.600	6.320	5.670	25.200
20	289.000	268.000	102.000	48.800	32.500	10.900	7.070	7.670	10.900	5.190	9.270	135.000
21	309.000	258.000	93.900	47.700	21.300	9.860	7.030	8.500	8.490	4.800	10.100	176.000
22	341.000	244.000	92.500	51.200	27.000	9.350	5.850	9.000	6.400	5.750	18.000	209.000
23	344.000	269.000	90.500	56.700	27.000	8.630	6.770	9.310	5.540	5.640	7.480	260.000
24	303.000	255.000	83.100	63.200	24.600	10.200	5.860	5.960	6.440	5.170	6.210	244.000
25	305.000	239.000	88.900	57.400	22.700	8.960	4.690	4.750	5.450	8.770	15.800	219.000
26	328.000	228.000	87.100	58.700	23.400	8.860	7.510	4.420	9.680	5.910	40.900	198.000
27	335.000	194.000	85.100	51.200	23.500	8.490	7.400	4.660	16.200	5.020	72.900	181.000
28	344.000	168.000	82.900	48.100	25.500	8.570	7.440	4.460	15.200	5.220	76.500	145.000
29	343.000		90.100	37.600	26.600	8.370	6.740	4.970	9.210	5.250	51.200	95.100
30.	355.000		86.100	39.900	33.100	7.890	7.770	6.980	8.570	5.430	50.800	89.000
31	319.000		79.100		32.700		7.140	5.060		4.680		105.000
Average	192.500	254.000	141.500	56.560	30.140	17.560	9.060	7.634	9.121	6.769	18.340	81.150
Lowest	60.500	168.000	79.100	37.600	21.300	7.890	4.690	4.420	4.630	4.680	3.920	12.800
Highost	355.000	364.000	263.000	70.500	49.800°	31.100	30.400	13.200	26.400	10.200	76.500	260.000
Peak flow	379.00	383.00	278.00	107.00	105.00	57.30	66.40	39.10	72.10	83.50	102.00	
Day of peak Monthly total	30	2	8	18	17	14	4	13	27	8	28	23
(million cu m)	515.70	614.60	379.00	146.60	80.71	45.52	24.27	20.45	23.64	18.13	47.53	217.40
Runoff (mm)	52	62	38	15	8	5	2	2	2	2	5	22
Rainfall (mm)	136	83	49	20	40	14	31	4	118	40	74	96

Statistics of monthly data for previous record (Jan 1883 to Dec 1994)

Mean flows:	Avg.	126.600	122.700	102.800	74.960	52.780	36.580	23.050	21.410	23.080	38.640	71.380	101.200		
	Low	18.570	12.290	9.426	8.975	4.391	3.302	2.079	1.912	0.688	3.144	4.248	8.350		
	(year)	1976	1976	1976	1976	1976	. 1976	1921	1976	1976	1934	1990	1990		
	High	325.300	342.000	359.500	188.800	171.700	171.600	72.290	79.330	123.900	179.800	- 334.000	333.900		
	(year)	1915	1904	1947	1916	1932	1903	1968	1931	1927	1903	1894	1929		
Runoff:	Avg.	34	30	28	20	14	10	6	6	6	10	19	27		
	Low	5	3	3	2	1	1	1	1	0	1	1	2		
	High	88	86	97	49	46	45	19	21	32	48	87	90		
Rainfall:	Avg.	65	49	52	49	54	52	58	63	58	73	72	73		
	Low	14	3	3	3	7	3	8	3	3	5	8	13		
	High	137	127	142	104	137	137	130	147	157	188	188	185		
Summary statistics									Factors affecting runoff				$\bullet \cdots$		
			For 1995		For record preceding 1995 65.990			$\begin{gathered} 1995 \\ \text { As \% of } \\ \text { pre-1995 } \\ 103 \end{gathered}$							
				rvoir(s) influenc				catchm d by grou	nt.						
Mean flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)					67.650		/or rech		e.		traction				
Lowest	yearly	oan							1934		- Abstraction for puiblic water supplies.				
Highest yearly mean					120.		1951			- Flow reduced by industrial and/or					
Lowest monthly mean							Sep 1976			cicultural	straction				
Highest monthly mean			254		359.		Mar 1947			gmentation	from su	face wate	d/or		
Lowest daily mean							Oct 1976			undwate					
Highest daily mean			364		b 1059.	0018	Nov 1894		- Augmentation from effluent returns.						
Peak			383												
10\% excesdance			235.		160.			147							
50\% excreadance					41.			57							
95\% exceedance								59							
Annual total (million cu m)			213		2082			102							
Annual'runoff (mm)			214		209			102							
Annual rainfall (mm)$1961-90$ fainfall average			m) 705		718			98							
			706												

Station and catchment description
Ultrasonic station commissioned in 1974; multi-path operation from 1986. Full range. No peak flows pre-1974 when dmfs derived from Teddington weir complex (70 m wide); significant structural improvements since 1883. Some underestimation of pre-1951 low flows. Baseflow sustained mainly from the Chalk and the Oolites. Runoff decreased by major PWS abstractions - naturalised flows available. Diverse topography geology and land use which - together with the pattern of water utilisation - has undergone important historical changes.

039001 Thames at Kingston

Measuring authority: EA-T First year: 1883

Grid reference: 51 (TQ) 177698
Level stn. (m OD): 4.70

Catchment area (sq km): 9948.0 Max alt. (m OD): 330

Daily mean naturalised discharges (cubic metres per second

DAY	JAN	FEB	MAR	APA	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	176.000	371.000	190.000	92.900	63.700	53.800	25.800	27.300	20.500	31.500	26.600	63.800
2	138.000	385.000	199.000	93.400	63.900	50.600	29.400	25.700	21.400	27.300	26.100	50.800
3	110.000	343.000	231.000	92.800	63.000	51.000	46.900	23.000	23.100	24.400	26.500	61.200
4	107.000	328.000	237.000	93.200	61.400	52.800	31.700	22.900	25.300	32.400	25.800	81.600
5	114.000	307.000	241.000	89.700	57.800	50.500	32.200	22.900	22.600	34.400	25.400	78.500
6	132.000	295.000	237.000	88.700	57.200	45.100	32.200	23.500	23.100	32.200	28.100	74.300
7	140.000	262.000	252.000	85.800	53.000	45.500	30.400	23.200	32.000	35.400	27.900	60.900
8	125.000	235.000	288.000	84.200	54.400	43.000	31.000	22.000	34.800	40.100	26.700	59.300
9	116.000	225.000	259.000	86.100	53.900	40.100	29.900	24.300	28.900	34.700	35.900	54.200
10	\$15.000	212.000	214.000	81.700	53.000	42.200	29.100	22.400	27.800	32.900	40.100	51.000
11	116.000	243.000	187.000	78.100	51.900	41.600	29.900	23.100	51.900	27.200	46.200	50.700
12	107.000	282.000	171.000	78.400	51.600	50.200	30.000	20.200	40.600	29.200	48.900	52.000
13	100.000	262.000	159.000	74.700	51.000	41.500	29.700	23.500	37.000	28.600	47.600	49.700
14	98.500	295.000	154.000	73.800	51.200	39.300	30.500	22.000	33.700	29.500	45.000	49.200
15	88.100	278.000	161.000	70.000	50.500	40.300	33.200	23.400	36.900	27.500	42.500	47.600
16	93.200	263.000	145.000	72.100	52.200	37.200	37.600	23.400	35.400	27.800	42.400	48.600
17	120.000	273.000	150.000	73.800	67.300	38.200	32.300	21.600	34.100	26.100	31.300	49.100
18	241.000	261.000	153.000	74.700	74.400	39.100	27.900	21.600	33.600	26.200	35.700	49.500
19	271.000	277.000	142.000	73.800	63.300	39.500	29.600	20.800	39.200	25.600	33.500	56.800
20	313.000	286.000	125.000	71.100	56.600	39.200	29.800	20.500	40.500	25.100	26.300	167.000
21	331.000	278.000	120.000	70.200	44.800	32.600	27.800	20.700	30.700	25.000	32.600	207.000
22	361.000	264.000	116.000	73.100	50.700	35.400	25.400	21.300	31.000	25.100	43.700	244.000
23	362.000	289.000	114.000	78.000	51.500	31.500	24.800	21.800	29.400	25.600	32.700	296.000
24	322.000	281.000	108.000	85.600	47.700	31.600	25.300	20.800	30.200	25.800	32.300	278.000
25	325.000	263.000	110.000	80.100	47.500	31.500	23.900	20.900	29.900	30.700	46.200	250.000
26	349.000	242.000	109.000	76.900	46.200	31.300	26.400	20.500	31.500	30.300	74.400	229.000
27	357.000	214.000	107.000	72.500	46.200	30.100	27.900	20.800	42.700	28.600	106.000	215.000
28	365.000	192.000	104.000	68.900	48.000	30.800	30.700	20.100	48.500	30.000	113.000	176.000
29	363.000		110.000	59.700	49.200	29.600	27.700	20.100	35.700	29.900	75.900 .	123.000
30	374.000		106.000	63.800	58.700	28.200	26.300	20.100	31.400	30.100	85.300	117.000
31	341.000		100.000		58.700		28.500	21.100		27.800		133.000
Average	215.200	275.200	164.500	78.590	54.850	39.780	29.800	22.110	32.780	29.260	44.350	113.700
Lowest	88.100	192.000	100.000	59.700	44.800	28.200.	23.900	20.100	20.500	24.400	25.400	47.600
Highest	374.000	385.000	288.000	93.400	74.400	53.800°	46.900	27.300	51.900	40.100	113.000	296.000
Monthly total (million cu m)	576.40	665.80	440.60	203.70	146.90	103.10	79.82	59.23	84.97	78.36	115.00	304.50
Nat'ised runoff (mm)	58	67	44	20	15	10	8	6	9	8	12	31
Rainfatl (mm)	136	83	49	20	40	14			118	40	74	96

Statistics of monthly data for previous record (Jan 1883 to Dec 1994)

Mean	Avg.	138.200	134.300	114.500	86.500	64.660	48.600	35.190	32.460	34.470	50.330	82.980	112.600
nat ised	Low	32.210	25.100	27.320	26.510	18.200	13.470 .	10.760	11.040	11.230	15.120	17.750	22.480
flows:	(year)	1905	1905	1944	1976	1944	1944	1921	1976	1898	1934	1921	1921
	High	332.900	348.100	370.900	199.800	181.300	178.700	88.840	88.780	139.400	185.300	339.600	343.900
	(year)	1915	1904	1947	1951	1932	1903	1968	1931	1968	1903	1894	1929
Nat'ised	Avg.	37	33	31	23	17	13	9	9	9	14	22	30
runoff:	Low	9	6	7	7	5	4	3	3	3	4	5	6
	High	90	88	100	52	49	47	24	24	36	50	88	93
Rainfall:	Avg.	65	49	52	49	54	52	58	63	58	73	72	73
(1883)	Low	14	3	3	3	7	3	8	3	3	5	8	13
1994)	High	137	127	142	104	137	137	130	147	157	188	188	185

[^7]Measuring authority: EA-T First year: 1963
Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	2.340	4.440	3.890	2.160	1.170	0.801	0.623	0.513	0.465	0.439	0.408	0.747
2	2.420	4.500	3.850	2.120	1.150	0.778	0.638	0.496	0.465	0.432	0.412	0.776
3	2.460	4.620	3.760	2.090	1.120	0.784	0.600	0.496	0.470	0.435	0.410	0.830
4	2.490	4.630	3.680	2.050	1.100	0.786	0.606	0.492	0.463	0.446	0.412	0.862
5	2.590	4.570	3.620	2.000	1.080	0.742	0.603	0.491	0.469	0.437	0.412	0.875
6	2.540	4.450	3.530	1.950	1.090	0.748	0.601	0.491	0.476	0.461	0.406	0.909
7	2.520	4.370	3.550	1.900	1.060	0.742	0.611	0.501	0.498	0.457	0.405	0.931
8	2.510	4.220	3.520	1.820	1.040	0.733	0.600	0.496	0.450	0.462	0.407	0.915
9	2.510	4.130	3.480	1.830	1.010	0.727	0.595	0.504	0.456	0.451	0.417	0.935
10	2.520	4.040	3.440	1.800	1.020	0.745	0.585	0.497	0.474	0.442	0.432	0.913
11	2.480	4.040	3.420	1.750	0.997	0.755	0.583	0.496	0.466	0.437	0.463	0.926
12	2.420	3.900	3.340	1.710	0.981	0.742	0.582	0.488	0.462	0.430	0.483	0.928
13	2.390	3.980	3.280	1.670	0.966	0.731	0.580	0.481	0.461	0.421	0.465	0.918
14	2.350	4.040	3.220	1.660	0.955	0.728	0.559	0.483	0.478	0.426	0.470	0.892
15	2.300	4.170	3.160	1.630	0.939	0.708	0.580	0.472	0.475	0.418	0.470	0.891
16	2.280	4.220	3.110	1.570	0.958	0.712	0.577	0.474	0.463	0.411	0.458	0.870
17	2.360	4.230	3.050	1.590	1.080	0.722	0.574	0.470	0.458	0.402	0.458	0.864
18	2.350	4.390	2.960	1.560	0.996	0.708	0.568	0.462	0.467	0.410	0.462	0.858
19	2.380	4.490	2.870	1.430	0.937	0.698	0.567	0.462	0.473	0.411	0.466	0.949
20	2.440	4.470	2.790	1.400	0.917	0.694	0.548	0.464	0.468	0.409	0.473	1.080
21	2.580	4.370	2.720	1.360	0.904	0.685	0.545	0.469	0.455	0.409	0.493	1.170
22	2.720	4.380	2.680	1.420	0.880	0.675	0.540	0.468	0.449	0.415	0.496	1.550
23	2.890	4.300	2.630	1.370	0.880	0.667	0.534	0.467	0.450	0.417	0.495	1.800
24	3.060	4.240	2.570	1.340	0.869	0.672	0.537	0.472	0.449	0.416	0.498	2.230
25	3.220	4.160	2.530	1.310	0.874	0.667	0.532	0.465	0.454	0.419	0.520	2.540
26	3.250	4.060	2.490	1.280	0.856	0.661	0.528	0.468	0.461	0.445	0.564	2.720
27	3.410	3.990	2.420	1.260	0.883	0.635	0.539	0.463	0.443	0.439	0.612	2.720
28	3.470	3.920	2.410	1.230	0.924	0.630	0.537	0.465	0.448	0.442	0.656	2.670
29	3.760		2.330	1.220	0.881	0.626	0.531	0.466	0.443	0.431	0.715	2.580
30	3.880		2.250	1.200	0.860	0.612	0.524	0.462	0.439	0.414	0.725	2.520
31	4.180		2,200		0.815		0.514	0.468		0.412		2.450
Averaga	2.744	4.261	3.056	1.623	0.974	0.711	0.569	0.479	0.462	0.429	0.485	1.381
Lowest	2.280	3.900	2.200	1.200	0.815	0.612	0.514	0.462	0.439	0.402	0.405	0.747
Highest	4.180	4.630	3.890	2.160	1.170	0.801	0.638	0.513	0.498	0.462	0.725	2.720
Peak flow	4.60	4.65	3.95	2.22	1.21	1.15	0.70	0.60	0.79	0.79	0.87	2.99
Day of peak Monthly total	31	3	1	1	1	1	2	3	19	24	26	26
(million cu ml)	7.35	10.31	8.19	4.21	2.61	1.84	1.52	1.28	1.20	1.15	1.26	3.70
Runoff (mm)	69	97	77	39	24	17	14	12	11	11	12	35
Rainfall (mm)	143	94	42	26	62	11	23	3	136	73	91	102

Statistics of monthly data for previous record (Oct 1963 to Dec 1994)

Station and catchment description
Crump weir (9.1 m broad). Modular throughout the range. Some overspill onto floodplain before design capacity reached. Limited impact of artificial influences on river flows - net impor (sewage effluent). Baseflow dominated flow regime. Pervious (Oolitic Limestone) catchment on the artificial influences on river flows - net import (sew
dip-slope of the Cotswolds; predominantly rural.

040003 Medway at Teston

Daily mean gauged discharges (cubic matres per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	19.220	83.200	21.560	7.848	5.274	3.462	2.105	2.393	1.666	2.645	2.044	2.661
2	14.490	62.300	22.270	7.860	3.461	3.042	2.703	2.315	2.789	2.604	2.085	3.281
3	12.000	36.640	25.000	8.296	4.049	3.320	5.128	1.920	2.525	3.175	1.934	3.766
4	11.050	30.730	19.110	7.156	3.997	3.906	2.965	1.948	1.702	5.010	1.701	3.947
5	11.980	25.090	18.880	6.951	4.045	-3.625	2.625	1.920	1.535	3.685	1.788	4.152
6	16.310	21.650	15.940	6.177	4.074	3.157	2.399	1.997	1.837	2.455	1.969	3.669
7	12.750	20.250	63.460	5.619	3.851	3.216	2.320	1.483	3.229	2.695	1.920	3.465
8	15.260	43.230	127.000	6.521	3.795	3.080	2.316	1.878	3.071	2.946	2.066	2.951
9	17.790	36.990	67.730	5.864	3.768	2.936	2.419	1.819	2.189	2.085	2.457	2.618
10	15.270	44.620	32.660	5.853	4.520	2.904	2.442	1.832	2.265	2.219	2.982	2.763
11	16.700	72.990	22.560	5.874	3.394	3.622	2.314	1.757	3.080	2.278	2.616	2.942
12	11.730	73.170	18.620	5.549	3.857	3.367	2.275	1.848	3.250	2.155	2.285	3.264
13	10.100	62.810	16.270	5.288	3.947	3.166	2.280	1.815	2.821	2.135	2.256	3.110
14	9.783	83.820	15.320	5.419	3.624	3.305	2.241	1.705	2.433	2.104	2.280	3.198
15	9.526	79.090	14.800	5.514	3.629	2.974	2.263	1.334	3.385	1.953	2.747	3.213
16	9.212	61.140	13.430	5.400	4.419	2.711	2.281	2.138	6.979	2.025	3.574	2.988
17	27.830	52.940	21.780	5.377	5.577	3.056	2.112	1.624	3.909	1.995	3.210	3.078
18	85.000	31.150	16.270°	5.521	4.662	3.063	2.374	1.816	5.183	2.064	2.564	3.315
19	121.100	61.640	13.280	S. 101	4.083	2.932	2.093	1.711	6.300	2.117	2.254	6.594
20	168.800	57.370	10.800	5.575	3.818	2.393	1.979	1.653	3.481	2.021	2.243	45.310
21	153.500	47.670	10.760	4.896	3.865	2.344	2.000	1.588	2.825	2.263	2.413	25.480
22	153.400	38.710	8.490	6.115	3.871	2.163	2.018	1.678	2.060	1.612	2.386	73.090
23	127.000	41.310	9.304	4.563	3.695	2.302	2.064	1.781	2.317	2.013	2. 163	92.180
24	72.590	35.710	8.589	5.497	3.721	2.320	1.873	1.784	3.657	2.095	2.181	53.850
25	59.240	27.310	8.571	5.079	3.454	2.345	1.859	1.732	3.824	2.416	2.347	25.890
26	115.000	21.030	8.351	5.141	3.250	1.934	2.718	1.812	4.353	2.317	3.737	9.380
27	115.500	18.610	8.645	4.747	3.188	2.155	3.331	1.686	12.210	2.211	4.618	4.701
28	105.900	18.590	11.680	4.497	3.430	2.127	2.794	1.741	5.343	2.095	4.091	4.291
29	108.600		11.470	4.643	3.313	2.040	2.288	1.577	2.258	2.066	3.133	3.844
30	79.020		8.060	4.503	4.600	2.056	2.350	1.690	2.713	1.840	2.852	3.886
31	44.830		8.396		4.254		2.371	1.669		2.026		4.995
Average	56.470	46.060	. 21.910	5.748	3.951	2.834	2.429	1.795	3.506	2.365	2.563	13.290
Lowest	9.212	18.590	8.060	4.497	3.188	1.934	1.859	1.334	1.535	1.612	1.701	2.618
Highest	168.800	83.820	127.000	8.296	5.577	3.906	5.128	2.393	12.210	5.010	4.618	92.180
Peak flow Day of peak Monthly total (million cu m)												
	151.20	111.40	58.67	14.90	10.58	7.35	6.51	4.81	9.09	6.34	6.64	35.59
Runoff (mm)	120	89	47	12	8	6	5	4	7	5	5	28
Rainfall (mm)	157	99	61	13	22	21	33	3	138	23	37	102

Statistics of monthly data for previous record (Oct 1956 to Dec 1994 -incomplete or miasing months total 1.5 years)

Station and catchment description
Crump profile weir plus sharp-crested weir superseded insensitive broad-crested weir. Flows greater than 27 cumecs measured at well calibrated river section $2 \mathrm{~km} \mathrm{~d} / \mathrm{s}$ (East Farleigh), updating of primary record incomplete. Responsive regime. Complex water utilisation. Significant artificial disturbance; low flow augmentation from Bewl Water (via River Teise): >20 yrs of naturalised flows available. Mixed geology; impervious formations constitute up to 50% of the catchment. Diverse land use with significant areas' of woodland and orchard.

040011 Great Stour at Horton

1995

Measuring authority: EA-S First year: 1964

Grid reference: 61 (TR) 116554
Level stn. (m OD): 12.50
Daily mean gauged discharges (cubic metres por second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	5.162	13.060	5.475	4.255	2.663	2.090	1.590	1.147	1.254	1.366	1.117	1.067
2	4.194	11.950	5.652	4.189	2.613	2.036	1.593	1.186	1.402	1.383	1.125	1.129
3	3.787	9.669	6.180	4.192	2.572	2.172	2.147	1.162	1.569	1.725	1.117	1.239
4	3.750	8.883	5.193	4.180	2.537	2.304	2.183	1.136	1.298	2.331	1.109	1.640
5	4.056	7.325	5.244	4.156	2.557	2.235	1.908	1.147	1.099	1.880	1.081	1.498
6	5.068	6.141	4.938	4.088	2.359	2.070	1.752	1.115	1.120	1.530	1.094	1.430
7	4.120	5.825	9.080	4.024	2.391	2.059	1.765	1.167	1.530	1.398	1.113	1.359
8	4.378	8.907	17.700	3.810	2.387	2.034	1.709	1.178	1.743	1.337	1.111	1.287
9	4.745	8.445	11.670	3.733	2.468	2.050	1.649	1.184	1.430	1.138	1.212	1.244
10	4.302	9.980	8.703	3.819	2.465	1.991	1.585	1.165	1.336	1.330	1.256	1.223
11	4.113	11.040	7.293	3.721	2.407	1.995	1.639	1.153	1.630	1.289	1.193	1.232
12	3.599	10.630	6.681	3.571	2.431	2.107	1.497	1.120	$1.629^{\text {* }}$	1.247	1.118	1.218
13	3.373	10.150	5.554	3.548	2.360	2.111	1.415	1.090	1.502	1.248	1.068	1.326
14	3.410	12.120	5.362	3.490	2.344	1.992	1.448	1.104	1.343	1.246	1.117	1.518
15	3.318	11.500	5.278	3.528	2.397	1.913	1.456	1.113	1.396	1.182	1.459	1.431
16	3.268	10.110	4.972	3.496	2.466	1.881	1.436	1.119	1.776	1.209	1.872	1.325
17	3.469	9.150	5.466	3.551	2.897	1.868	1.390	1.134	1.850	1.262	1.469	1.280
18	5.244	7.305	4.979	3.526	2.536	1.872	1.381	1.081	1.627	1.154	1.257	1.274
19	11.170	8.372	4.706	3.464	2.317	1.922	1.366	1.077	1.615	1.211	1.174	1.439
20	15.710	8.591	4.611	2.949	2.299	1.771	1.342	1.057	1.454	1.140	1.057	6.684
21	14.480	8.051	4.460	2.847	2.165	1.752	1.324	1.063	1.326	1.000	1.171	5.062
22	17.670	6.869	4.415	3.141	2.210	1.710	1.269	1.109	1.126	1.273	1.143	7.935
23	17.540	8.798	4.306	2.904	2.174	1.659	1.238	2.340	1.166	1.151	1.154	8.179
24	11.270	7.591	4.313	2.916	2.212	1.638	1.216	1.031	1.467	1.170	1.100	6.399
25	11.940	8.525	4.315	2.936	2.221	1.651	1.234	1.080	1.545	1.179	1.145	4.175
26	17.440	5.675	4.507	2.900	2.092	1.602	1.288	1.065	1.850	1.181	1.284	2.813
27	18.580	5.316	4.463	2.754	2.035	1.624	1.294	1.034	3.346	1.150	1.329	2.387
28	16.080	5.281	5.040	2.677	1.966	1.639	1.344	1.045	2.244	1.142	1.229	2.083
29	13.600		4.930	2.693	1.997	1.600	1.321	1.108	1.627	1.114	1.180	1.803
30	12.830		4.400	2.710	2.215	1.548	1.093	1.185	1.454	1.117	1.233	1.679
31	10.640		4.354		2.321		1.274	1.162		1.125		1.719
Averago	8.397	8.616	5.943	3.459	2.357.	1.897	1.489	1.157	1.558	1.297	1.203	2.454
Lowest	3.268	5.281	4.306	2.677	1.966°	1.548	1.093	1.031	1.099	1.000	1.057	1.067
Highest	17.670	13.060	17.700	4.255	2.897	2.304	2.183	2.340	3.346	2.331	1.872	8.179
Poak flow	20.80	15.85	19.11	4.85	3.73	3.18	2.52	3.98	4.28	3.10	3.38	9.38
Day of peak Monthly total	26	1	8	4	10	16	3	23	27	4	30	
(million cu m)	22.49	20.84	15.92	8.97	6.31	4.92	3.99	3.10	4.04	3.47	3.12	6.57
Runaff (mm)	65	60	46	26	18	14	12	9	12	10	9	19
Rainfall (mm)	142	88	64	16	26	27	26	11	120	23	30	93

Statistics of monthly data for previous record (Oct 1964 to Dec 1994 -incomplete or missing months total 0.2 years)

Station and catchment description

Broad-crested weir (width: 10.7 m , insensitive) in trapezoidal section plus a VA section for flows >20 cumecs. EM installed 1992 . All flows ontained. Minor impact of artificial influences on runoff (import of 0.03 cumecs in 1988), modest PWS and irrigation abstractions in lower valley. Flood storage reservoirs above Ashford (constructed 1990-2). U/s mill regulation evident on the hydrographs. The E.\& W. branches of the Stour flow over Weald Clay; below the confluence (at Ashford) Chalk dominates. A rural catchment with mixed land use.

042010 Itchen at Highbridge + Allbrook

Station and catchment description
Crump weir 7.75 m broad (which can drown), superseded, in 1971 , a rated section with weedgrowth problems. Plus thin-plate weir (Allbrook). All flows contained (rare bypassing resulted from wrong sluice settings). Flows for Allbrook for Nov/Dec 1993 were estimated due to construction of a fish path. Flow augmentation from GW during droughts. GW catchment exceeds topographical catchment. Artificial influences have minor, but increasing, impact on baseflow dominated regime; small net export of water. Very permeable catchment (90% Chalk). Land use is mainly arable with scattered settlements.

043005 Avon at Amesbury

Measuring authority: EA-SW First year: 1965

Grid reference: 41 (SU) 151413 Level stn. (m OD): 67.10

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAA	APR	MAY	JUN	Jul	AUG	SEP	OCT	NOV	DEC
1	6.860	23.190	12.140	6.604	4.164	2.735	1.746	1.269	0.979	1.297	1.296	2.607
2	6.199	23.050	12.600	6.516	4.045	2.700	1.707	1.212	1.045	1.259	1.254	2.472
3	5.867	19.960	13.850	6.498	3.733	2.742	1.912	1.191	1.032	1.259	1.276	2.464
4	5.904	18.530	12.810	6.360	3.624	2.839	1.803	1.172	1.035	1.346	1.276	2.541
5	6.764	17.440	12.710	6.286	3.565	2.721	1.764	1.146	1.023	1.338	1.282	2.478
6	7.168	16.580	11.600	6.174	3.491	2.639	1.726	1.150	1.106	1.414	1.280	2.401
7	6.463	15.870	12.730	6.053	3.439	2.578	1.738	1.150	1.416	1.608	1.228	2.286
8	6.428	15.360	13.580	5.967	3.394	2.531	1.721	1.112	1.363	1.541	1.225	2.231
9	6.314	14.440	11.620	5.862	3.340	2.472	1.707	1.116	1.243	1.432	1.293	2.139
10	6.238	14.750	10.930	5.816	3.311	2.412	1.597	1.116	1.653	1.369	1.621	2.128
11	6.142	15.340	10.300	5.635	3.288	2.418	1.599	1.143	2.378	1.333	1.996	2.129
12	5.943	15.330	9.926	5.494	3.303	2.396	1.615	1.118	1.928	1.321	2.069	2.115
13	5.909	13.410	9.614	5.356	3.249	2.373	1.599	1.125	1.692	1.322	2.110	2.107
14	5.931	14.280	9.576	5.204	3.210	2.328	1.621	1.114	1.534	1.307	1.975	2.100
15	5.888	14.630	9.439	5.093	3.190	2.285	1.857	1.067	1.487	1.300	1.860	2.102
16	5.891	13.640	9.116	5.084	3.226	2.234	1.837	1.047	1.408	1.281	1.740	2.087
17	6.929	13.170	9.905	5.084	3.504	2.238	1.725	1.033	1.387	1.289	1.633	2.089
18	8.418	13.290	9.122	5.065	3.404	2.229	1.707	1.040	1.398	1.325	1.547	2.087
19	8.551	13.780	8.683	4.924	3.231	2.189	1.660	1.013	1.393	1.286	1.513	2.371
20	11.210	13.880	8.361	4.860	3.159	2.143	1.584	0.992	1.389	1.277	1.520	4.458
21	11.610	13.450	8.142	4.703	3.104	2.111	1.544	0.985	1.332	1.276	1.476	4.927
22	15.270	13.890	7.973	5.101	3.054	2.036	1.493	0.972	1.299	1.268	1.476	6.316
23	17.150	15.340	7.897	5.131	3.008	1.980	1.464	1.026	1.272	1.275	1.428	6.665
24	15.940	15.200	7.763	4.897	2.899	1.984	1.454	1.018	1.275	1.342	1.499	5.699
25	18.080	13.590	7.576	4.749	2.867	1.957	1.409	1.056	1.274	1.358	2.062	4.794
26	18.980	12.080	7.492	4.602	2.818	1.948	1.416	1.052	1.322	1.425	2.803	4.458
27	17.230	12.490	7.307	4.490	2.847	1.888	1.391	1.036	1.526	1.506	2.766	4.111
28	19.450	11.680	7.251	4.354	2.970	1.875	1.386	1.015	1.454	1.475	2.735	4.010
29	21.580		7.066	4.313	2.933	1.819	1.386	1.020	1.372	1.427	3.336	3.868
30	25.670		6.856	4.248	2.854	1.775	1.356	0.992	1.314	1.352	2.983	4.027
31	23.900		6.742		2.798		1.326	0.980		1.305		4.785
Average	10.830	15,270	9.699	5.351	3.259	2.286	1.608	1.080	1.378	1.352	1.785	3.260
Lowest	5.867	11.680	6.742	4.248	2.798	1.775	1.326	0.972	0.979	1.259	1.225	2.087
Highest	25.670	23.190	13.850	6.604	4.164	2.839	1.912	1.269	2.378	1.608	3.336	6.665
Peak flow	27.49	24.29	14.61	6.68	4.19	2.91	2.33	1.31	2.92	1.69	3.42	6.89
Day of peak Monthly total	30	2	8	1	1	4	3	1	11	7	29	22
(million cu m)	29.02	36.95	25.98	13.87	8.73	5.92	4.31	2.89	3.57	3.62	4.63	8.73
Runoff (mm)	90	114	80	43	27	18	13	9	11	11	14	27
Plainfall (mm)	169	87	49	25	40	16	39	7	130	45	109	93

Statistics of monthly data for previous record (Feb 1965 to Dec 1994)

Station and catchment description
Crump profile weir (crest 9.14 m broad) flanked by broad-crested weirs. Small bypass channel approx. $2 \mathrm{~m} \mathbf{u} / \mathrm{s}$ of weir - included in rating. Full range station. Bankfull is 1.37 m . During summer flows are naturally augmented from groundwater draining from northern half of River Bourne catchment. Some groundwater pumping also takes place within the catchment. Predominantly permeable (Chalk) catchment with a small inlier of Upper Greensand and Gault. Land use - rural. Topographical and groundwater catchments do not coincide.

Measuring authority: EA-SW
First year: 1956

Grid reference: 21 (SS) 936016 Level stn. (m OD): $\mathbf{2 5 . 9 0}$

Catchment area (sq km): 600.9 Max alt. (m OD): 519

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	Jul	AUG	SEP	OCT	NOV	DEC
1	55.030	77.040	30.310	8.377	6.367	3.323	2.018	1.652	1.068	5.507	7.966	31.090
2	41.480	52.920	31.720	8.004	6.003	3.343	2.056	1.518	1.105	4.592	7.234	26.640
3	34.710	42.890	32.070	7.715	5.668	3.893	2.110	1.464	1.181	4.408	6.630	24.120
4	42.320	34.130	32.710	7.275	5.346	4.254	2.092	1.408	2.038	4.988	5.960	20.400
5	48.690	28.810	45.010	6.906	5.074	3.543	2.102	1.392	2.159	4.230	5.511	17.660
6	42.170	24.190	37.540	6.740	4.843	3.307	2.013	1.378	3.036	8.457	5.143	15.490
7	36.700	22.150	39.820	6.273	4.562	3.223	1.966	1.332	3.085	17.710	4.851	13.850
8	33.880	21.190	33.580	5.884	4.320	3.170	1.896	1.328	2.260	15.930	4.669	12.390
9	27.710	29.110	29.810	5.663	4.146	3.062	1.786	1.309	1.986	13.010	4.662	10.690
10	24.570	31.170	25.840	5.512	4.064	2.922	1.828	1.279	4.938	10.670	5.950	9.658
11	22.220	45.260	28.490	5.464	4.115	2.990	1.941	1.268	4.278	9.520	33.330	8.920
12	17.970	38.510	22.480	5.666	4.791	2.921	1.837 *	1.274	2.995	8.359	37.590	8.274
13	16.400	40.630	20.180	5.249	4.158	2.921	1.813	1.300	2.444	7.352	28.920	7.839
14	15.930	65.080	18.710	4.599	3.847	2.831	2.017	1.244	3.771	6.580	27.670	7.223
15.	17.320	52.770	17.710	4.500	3.745	2.726	2.197	1.254	3.655	5.972	23.830	6.865
16	17.110	54.840	19.250	4.411	4.794	2.656	2.258	1.204	2.896	5.459	20.890	6.912
17	35.090	51.530	30.690	4.704	7.608	2.950	2.104	1.172	2.521	5.520	16.940	13.080
18	29.400	55.260	23.590	4.988	4.709	3.060	2.034	1.156	2.523	4.935	14.610	9.900
19	54.620	56.370	22.190	4.354	4.090	2.730	1.995	1.154	4.645	4.493	13.030	34.400
20	50.890	49.310	20.010	4.153	3.752	2.696	1.850	1.139	3.471	4.209	12.830	60.620
21	73.460	45.400	18.300	3.989	3.556	2.593	1.717	1.160	3.093	3.983	24.230	74.300
22	87.940	46.870	16.640	12.000	3.499	2.433	1.659	1.623	2.873	3.784	16.850	126.900
23	73.240	51.340	15.070	9.241	3.523	2.362	1.565	1.735	2.790	3.595	15.220	92.260
24	79.440	46.830	13.510	11.310	3.491	2.387	1.632	1.588	3.050	6.736	16.570	58.320
25	93.670	39.960	12.210	10.130	3.794	2.357	1.522	1.544	2.781	10.850	15.190	41.190
26	71.680	- 33.510	11.270	8.086	4.129	2.253	1.617	1.422	7.446	12.120	15.160	31.410
27	142.600	29.120	10.990	7.594	4.854	2.144	1.662	1.376	9.229	12.270	16.150	24.360
28	101.600	24.670	14.380	7.237	4.772	2.090	1.670	1.363	6.621	11.240	27.800	19.500
29	129.200		10.690	7.285	4.479	2.149	1.637	1.363	5.892	10.640	29.290	16.310
30	76.980		9.226	6.777	3.994	2.073	2.079	1.171	5.407	9.664	28.550	15.160
31	66.650		8.789	,	3.462		2.123	1.161		8.669		15.460
Average	53.570	42.530	22.670	6.670	4.502	2.845	1.897	1.346	3.508	7.918	16.440	27.780
Lowest	15.930	21.190	8.789	3.989	3.462	2.073	1.522	1.139	1.068	3.595	4.662	6.865
Highest	142.600	77.040	45.010	12.000	7.608	4.254	2.258	1.735	9.229	17.710	37.590	126.900
Peak flow	217.90	132.00	56.80	19.23	10.43	4.51	2.69	2.01	11.55	28.01	61.91	143.20
Day of peak	28	1	5	25	17	4	31	23	27	7	12	22
Monthly total (million cu m)	143.50	102.90	60.72	17.29	12.06	7.38	5.08	3.61	9.09	21.21	42.61	74.41
Runotf (mm)	- 239	171	101	29	20	12	8	6	15	35	71	124
Rainfall (mm)	265	164	101	58	67	19	40	16	172	97	146	138

Statistics of monthly data for previous record (May 1956 to Dec 1994)

Station and catchment description

Velocity-area station with cableway. Flat V Crump profile weir constructed in 1973 due to unstable bed condition. Minor culvert flow through mill u/s of station included in rating. Wimbleball Reservoir has significant effect upon low flows. Station is control point for Wimbleball Reservoir operational releases. Headwaters drain Exmoor. Geology predominantly Devonian sandstones and Carboniferous Culrn Measures, with subordinate Permian sandstones in the east. Moorland, forestry and a range of agriculture.

Measuring authority: EA-SW First year: 1958

Grid reference: 21 (SS) 608237
Level sin. (m OD): 14.10

Catchment area (sq km): 826.2 Max alt. (m OD): 604

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL.	AUG	SEP	OCT	Nov	DEC
1	59.600	111.300	37.310	9.920	5.058	2.242	1.079	1.365	0.717	2.558	5.776	36.120
2	44.380	61.220	50.450	9.493	4.777	2.247	1.105	1.116	0.807	2.232	5.231	28.810
3	35.300	47.030	51.310	9.104	4.461	3.160	1.141	1.014	0.820	2.302	4.759	26.290
4	53.370	35.880	46.040	8.429	4.182	3.382	1.101	0.917	0.844	2.314	4.244	21.870
5	58.870	29.100	52.070	7.750	3.980	2.606	1.116	0.864	0.981	2.703	3.854	18.840
6	47.970	24.600	41.540	7.752	3.822	2.277	1.100	0.872	0.888	5.778	3.604	16.510
7	38.620	23.070	53.940	7.075	3.652	2.201	1.130	0.856	1.203	11.030	3.451	14.660
8	35.930	23.170	44.560	6.463	3.492	2.087	1.125	0.820	1.484	8.600	3.367	13.320
9	28.400	32.810	36.150	6.080	3.356	1.978	1.081	0.798	1.289	6.367	3.451	11.160
10	25.860	40.890	30.660	5.795	3.278	1.937	1.130	0.800	2.950	5.359	3.740	9.922
11	26.180	53.400	28.810	5.427	3.279	1.963	1.180	0.785	2.930	4.703	26.540	9.181
12	19.930	40.370	22.810	5.087	3.541	1.922	1.045	0.784	1.710	4.251	49.880	8.238
13	18.410	42.340	19.540	4.772	3.296	1.822	0.988	0.798	1.710	3.817	28.720	7.499
14	17.700	71.800	17.900	4.537	3.040	1.736	1.235	0.709	3.170	3.487	24.040	6.870
15	17.370	57.800	17.570	4.425	2.949	1.659	1.606	0.766	2.672	3.201	21.640	6.415
16	21.870	62.280	18.930	4.266	3.386	1.603	1.489	0.751	1.727	2.955	19.510	6.207
17	51.050	56.100	32.300	4.960	7.006	1.852	1.275	0.733	1.375	2.917	15.350	11.520
18	36.780	62.270	23.590	6.937	4.046	1.990	1.184	0.715	1.285	2.731	13.130	9.095
19	80.250	66.530	21.800	4.899	3.343	1.733	1.152	0.709	1.601	2.498	11.640	29.930
20	75.340	53.850	18.860	4.315	2.926	1.697	1.083	0.692	1.382	2.457	10.700	61.110
21	88.750	51.860	17.150	3.964	2.701	1.618	0.992	0.700	1.212	2.365	27.950	87.220
22	110.300	61.790	15.610	8.926	2.614	1.469	0.948	0.882	1.136	2.278	20.140	152.400
23	91.870	65.310	14.160	9.160	2.508	1.372	0.911	1.095	1.094	2.171	17.400	104.400
24	97.870	81.440	12.650	11.810	2.617	1.313	0.907	0.904	1.225	7.261	18.150	69.210
25	156.000	53.020	11.350	11.480	2.731	1.314	0.879	0.844	1.254	12.900	16.480	47.310
26	91.020	38.870	10.620	7.314	2.710	1.265	0.931	0.801	3.476	10.260	17.080	33.640
27	152.700	32.930	11.120	6.234	2.875	1.200	1.120	0.772	7.308	12.160	23.270	25.160
28	111.000	28.090	22.830	5.693	3.905	1.152	1.045	0.733	3.953	9.295	32.070	19.880
29	148.900		13.370	5.967	3.112	1.125	1.169	0.754	2.945	8.279	36.600	16.420
30	79.540		10.870	5.587	2.766	1.059	4.422	0.737	2.503	7.305	29.760	16.200
31	69.430		10.390		2.475		2.333	0.701		6.437		20.310
Average	64.210	49.610	26.330	6.787	3.480	1.833	1.258	0.832	1.922	5.257	16.720	30.510
Lowest	17.370	23.070	10.390	3.964	2.475	1.059	0.879	0.692	0.717	2.171	3.367	6.207
Highest	156.000	111.300	53.940	11.810	7.006	3.382	4.422	1.365	7.308	12.900	49.880	152.400
Peak flow	244.50	171.60	70.91	28.18	10.44	3.70	6.59	2.03	9.74	21.77	69.40	173.70
Day of peak Monthly total	28	1	2	25	17	4	30	1	27	25	12	23
(million cu m)	172.00	120.00	70.52	17.59	9.32	4.75	3.37	2.23	4.98	14.08	43.33	81.71
Runoff (mm)	208	145	85	21	11	6	4	3	6	17	52	99
Rainfall (mm)	236	144	94	51	51	21	58	18	133	87	119	109

Statistics of monthly data for previous record (Oct 1958 to Dec 1994)

Station and catchment description
Velocity-ares station, main channel 34 m wide, cableway span 54.9 m . Rock step downstream forms control. Bypassing begins at about 3.7 m on right bank, but a good rating accommodates this. Significant modification to flows owing to PWS abstraction. Some naturalised flow data available. Large rural catchment - drains Dartmoor (granite) in south and Devonian shales and sandstones of Exmoor in north. Central area underlain mainly by Culm shales and sandstones (Carboniferous). Agriculture conditioned by grade 3 and 4 soils.

052005 Tone at Bishops Hull

Grid reference: 31 (ST) 206250 Level stn. (m OD): 16.20

Catchment area (sq km): 202.0 Max alt. (m OD): 409

Daily mean gauged discharges (cubic metres per second)

DAY	Jan	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	10.410	20.460	6.381	2.382	1.576	1.218	0.653	0.574	0.488	- 0.606	0.900	4.792
2	8.283	10.010	8.683	2.323	1.563	1.217	0.687	0.514	0.619	0.587	0.893	4.145
3	7.283	8.884	8.961	2.277	1.534	1.378	0.654	0.463	0.623	0.642	0.848	3.674
4	10.410	7.542	7.545	2.220	1.495	1.229	0.637	0.471	0.707	0.963	0.815	3.338
5	10.540	6.603	7.469	2.153	1.473	1.150	0.609	0.474	0.600	0.749	0.797	3.013
6	8.638	5.907	6.244	2.134	1.437	1.145	0.629	0.471	1.028	2.278	0.838	2.787
7	7.292	5.696	7.790	2.039	1.385	1.128	0.645	0.451	1.251	1.937	0.828	2.606
8	6.644	5.310	6.353	2.012	1.334	1.037	0.608	0.471	0.768	1.214	0.790	2.438
9	5.956	9.030	5.617	1.971	1.309	1.036	0.602	0.520	0.693	0.973	0.852	2.214
10	5.487	9.099	5.121	1.976	1.317	1.050	1.108	0.502	2.947	0.848	2.752	2.151
11	4.803	12.280	6.416	1.880	1.401	1.031	0.802	0.480	1.179	0.798	10.010	1.987
12	4.260	7.759	5.158	1.809	1.453	1.030	0.667	0.491	0.977	0.766	7.650	1.867
13	4.006	10.170	4.558	1.764	1.353	0.992	0.665	0.490	0.800	0.738	4.519	1.836
14	3.813	16.720	4.299	1.780	1.310	0.942	0.736	0.490	1.011	0.720	3.920	1.665
15	3.595	10.180	4.234	1.776	1.308	0.912	0.701	0.492	0.798	0.701	3.338	1.572
16	4.228	12.510	4.759	1.759	1.959	0.939	0.738	0.477	0.684	0.689	2.670	1.580
17	22.920	10.270	6.611	1.821	3.001	0.991	0.642	0.474	0.626	0.690	2.193	6.061
18	6.983	12.730	5.276	1.802	1.528	0.936	0.613	0.475	0.665	0.668	1.975	3.158
19	22.930	12.080	4.565	1.697	1.345	0.884	0.604	0.459	0.722	0.648	1.858	8.460
20	11.200	9.732	4.097	1.734	1.249	0.868	0.574	0.470	0.599	0.704	1.767	15.590
	-											
21	24.450	9.559	3.886	1.624	1.241	0.803	0.611	0.467	0.608	0.672	2.164	17.140
22	22.320	12.340	3.689	3.552	1.231	0.801	0.545	0.465	0.619	0.676	1.826	34.980
23	13.960	11.810	3.511	2.190	1.204	0.735	0.540	0.813	0.554	0.665	1.719	13.340
24	17.520	9.754	3.384	3.368	1.235	0.754	0.532	0.621	0.556	1.604	2.040	8.841
25	28.200	8.143	3.167	2.503	1.269	0.754	0.515	0.570	0.548	1.346	2.158	6.760
26	13.360	6.880	3.056	1.887	1.359	0.747	0.588	0.533	0.861	2.182	2.979	5.402
27	47.790	6.181	2.864	1.728	1.811	0.719	0.585	0.527	0.998	1.620	4.119	4.541
28	34.030	5.712	3.000	1.641	1.623	0.707	0.587	0.500	0.670	1.126	8.191	3.933
29	41.590		2.636	1.740	1.346	0.651	0.564	0.481	0.596	0.998	5.529	3.541
30	15.980		2.476	1.615	1.236	0.621	0.574	0.501	0.638	0.960	3.972	3.638
31	12.430		2.445		1.187		0.571	0.489		0.922		4.097
Average	14.240	9.763	4.976	2.039	1.454	0.947	0.638	0.506	0.814	0.990	2.830	5.843
Lowest	3.595	5.310	2.445	1.615	1.187	0.621	0.515	0.451	0.488	0.587	0.790	1.572
Highest	47.790	20.460	8.961	3.552	3.001	1.378	1.108	0.813	2.947	2.278	10.010	34.980
Peak flow	72.55	39.06	13.35	5.99	5.36	1.54	1.91	1.35	5.36	4.07	15.03	55.08
Day of peak	27	1	2	24	17	7	10	23	10	6	11	22
Monthly total (million cu m)	38.13	23.62	13.33	5.28	3.89	2.45	1.71	1.35	2.11	2.65	7.34	15.65
Runoff (mm)	189	117	66	26	19	12	8	7	10	13	36	77 114
Rainfall (mm)	214	133	75	46	67	11	31		140	80	128	114

Statistics of monthly data for previous record (Feb 1961 to Dec 1994)

Mean flows:	Avg.	6.080	5.977	4.201	3.055	2.021	1.352	1.125	0.911	1.179	2.016	3.433	5.327
	Low	1.246	1.746	1.355	1.176	0.734	0.456	0.326	0.266	0.501	0.580	0.651	1.821
	(year)	1976	1965	1993	1976	1976	1976	1976	1976	1964	1978	1978	1975
	High	14.560	14.160	9.259	6.655	6.562	2.770	5.628	1.685	4.892	9.873	7.611	11.280
	(year)	1984	1990	1981	1966	1983	1972	1968	1965	1974	1976	1982	1965
Runoff:	Avg.	81	72	56	39	27	17	15	12	15	27	44	71
	Low	17	21	18	15	10	6	4	4	6	8	8	24
	High	193	170	123	85	87	36	75	22	63	131	98	150
Rainfall:	Avg.	113	82	82	64	63	59	59	68	82	95	98	116
	Low	25	6	5	6	9	8	16	19	8	8	31	34
	High	250	194	170	150	137	147	144	131	202	249	192	231

Summary statistics

	For 1995		For record preceding 1995		1995 As \% of pre-1995
Mean flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	3.727		3.043		122
Lowest yearly mean			1.600	1964	
Highest yearly mean			4.416	1994	
Lowest monthly mean	0.506	Aug	0.266	Aug 1976	
Highest monthly mean	14.240	Jan	14.560	Jan 1984	
Lowest daily mean	0.451	7 Aug	0.179	22 Aug 1976	
Highest daily mean	47.790	27 Jan	84.200	23 Feb 1978	
Peak	72.550	27 Jan	112.700	11 Jul 1968	
10\% exceedance	9.469		6.564		144
50\% exceedance	1.567		1.763		89
95\% exceerdance	0.488		0.601		81
Annual total (million cu m)	117.50		96.03		122
Annual runoff (mm)	582		475		122
Annual rainfall (mm)	1050		981		107
1961-90 rainfall average (mm)			966		-

Factors affecting runoff

- Reservoir(s) in catchment.
- Abstraction for public water supplies.

Station and catchment description

Crump profile weir (breadth 12.2 m) with crest tapping (not operational). Prior to March 1968 velocity area station (flows were unreliable below 1.42 cumecs). Full range station. Clatworthy and smaller Luxhay Reservoir in headwaters. Compensation flow maintains low flows. Reservoirs not targe enough to influence fairly rapid response to rainfall. Minor surface water abstractions for PWS. Catchment geology - predominantly sandstones and marls. Land use - rural.

Measuring authority: EA-SW First year: 1969

Grid reference: 31 (ST) 785670 Leval stn. (m OD): 18.00

Catchment area (sq km): 1552.0 Max alt. (m OD): 305

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	Nov	DEC
1	53.720	117.500	37.020	11.500	8.656	6.547	3.990	2.877	2.674	8.051	5.766	23.600
2	41.780	87.150	51.350	11.300	8.302	6.027	4.540	2.551	3.812	4.365	5.339	20.660
3	34.280	62.540	56.970	10.690	8.263	7.327	4.444	2.833	3.197	4.569	5.382	19.910
4	36.390	53.030	48.080	11.300	7.777	7.351	4.074	2.744	3.849	6.724	5.041	20.080
5	62.890	47.600	52.600	11.720	7.646	5.961	4.089	2.412	4.838	5.766	4.917	17.910
6	48.320	44.260	39.440	11.320	7.194	5.842	4.210	2.593	5.813	9.536	4.808	16.160
7	35.720	41.040	45.560	10.120	6.952	5.984	4.287	2.084	8.636	12.380	4.836	14.620
8	34.590	41.310	38.400	9.766	6.525	5.669	3.572	2.326	7.040	9.687	5.097	13.610
9	32.160	38.380	32.080	9.673	6.804	5.323	3.611	2.586	6.858	7.980	6.288	12.200
10	28.120	43.850	28.670	9.477	7.031	5.690	3.726	2.616	9.939	6.751	13.990	11.630
11	26.160	70.150	27.360	9.365	7.243	5.860	4.417	2.262	10.420	6.079	20.170	11.340
12	22.910	56.180	25.620	9.100	7.453	5.613	3.775	1.882	7.817	6.122	27.510	10.930
13	21.210	43.930	22.910	9.017	7.220	5.611	3.900	2.703	6.861	5.413	26.200	10.690
14	20.240	58.040	21.930	9.122	7.019	5.311	3.731	2.543	7.345	5.182	19.680	10.570
15	19.390	62.500	20.980	9.044	7.146	4.954	3.499	2.294	7.502	5.278	19.080	10.140
16	19.730	69.310	25.260	8.917	8.256	5.087	4.073	1.983	6.811	4.901	15.910	10.050
17	56.470	64.440	28.200	8.891	12.250	5.677	4.283	1.963	6.274	5.207	13.170	12.670
18	55.650	55.810	23.530	9.230	9.762	5.265	4.144	2.314	6.784	5.161	11.070	12.890
19	64.270	68.340	20.250	9.349	8.247	5.165	3.793	2.168	8.125	4.690	10.300	27.760
20	78.410	61.180	18.340	9.375	7.842	4.923	3.120	2.311	7.578	4.223	9.790	99.210
21	106.100	58.170	17.380	9.145	7.435	4.701	3.536	2.041	6.899	4.155	10.010	98.230
22	162.600	66.160	16.170	14.480	7.424	4.581	2.980	1.987	6.833	4.175	10.060	160.800
23	128.900	71.380	15.810	12.350	7.339	4.321	3.152	2.584	6.343	4.555	9.416	186.700
24	69.340	59.700	14.960	10.510	7.279	4.072	3.003	3.211	7.422	6.629	9.812	108.800
25	91.380	46.520	14.210	10.360	7.398	4.397	2.548	3.161	7.394	7.236	15.360	54.140
26	87.920	38.830	13.310	10.220	6.894	4.414	3.519	3.002	8.154	8.702	23.960	37.600
27	128.800	34.620	12.120	9.288	8.409	4.304	3.445	2.588	11.700	11.390	34.470	30.420
28	185.000	32.320	13.180	9.232	10.130	3.920	3.327	2.604	10.260	8.369	51.040	25.720
29	200.900		12.320	9.256	9.895	4.095	3.084	2.478	8.720	6.657	43.220	22.410
30	164.300		12.240	8.951	9.012	3.875	3.107	2.596	7.811	6.497	27.930	23.150
31	100.300		11.590		8.445		3.247	2.539		5.568		28.560
Average	71.550	56.940	26.380	10.070	7.976	5.262	3.685	2.479	7.124	6.516	15.650	37.520
Lowest	19.390	32.320	11.590	8.891	6.525	3.875	2.548	1.882	2.674	4.155	4.808	10.050
Highest	200.900	117.500	56.970	14.480	12.250	7.351	4.540	3.211	11.700	12.380	51.040	186.700
Peak flow	213.60	131.30	64.84	16.44	13.25	8.30	5.47	4.17	12.90	15.34	55.36	202.00
Day of peak Monthly total	29	1	2	22	17	3	16	25	11	27	28	23
(million cu m)	191.60	137.70	70.66	26.10	21.36	13.64	9.87	6.64	18.46	17.45	40.58	100.50
Runof (mm)	123	89	46	17	14	9	6	4	12	11	26	65
Rainfall (mm)	170	93	55	28	58	16	22	\cdots	127	67	104	104

Statistics of monthly data for previous record (Dec 1969 to Dec 1994)

Moan	Avg.	33.060	30.560	24.010	16.890	11.250	8.718	5.409	5.246	6.373	11.050	19.440	29.770
flows:	Low	9.227	11.370	7.216	7.719	5.048	3.289	2.410	1.715	2.699	3.115	4.406	10.290
	(year)	1976	1976	1993	1976	1976	1992	1976	1976	1990	1978	1978	1991
	High	59.840	67.120	54.230	26.520	31.020	30.110	9.956	13.830	25.450	28.180	44.240	50.080
	(year)	1994	1990	1981	1987	1983	1971	1973	1985	1974	1976	1992	1992
Runoff:	Avg.	57	48	41	28	19	15	9	9	11	19	32	51
	Low	16	18	12	13	9	5	4	3	5	5	7	18
	High	103	105	94	44	54	50	17	24	43	49	74	86
Rainfall:	Avg.	88	59	73	51	56	64	55	65	74	77	79	92
(1970.		18	7	17	2	7	5	25	17	15	6	35	20
1994)		148	143	163	110	142	151	115	141	178	149	178	155
Summ	ary 8	tics								s affec	runof		
								1995					
				1995		or record eding 199		As \% of pre-1995		influen or rech	by gro e.	water	action
Masn flo	W (m^{3}							124		traction	public	ter supp	
Lowest	yearly				10.		1973		- A	mentati	from su	ce wate	andor
Highest	yearly				22.		1977			ndwater			
Lowest	monthly	mean					1976		- A	mentati	rom eff	retur	
Highost	monthly	mean			67.		1990						
Lowest	daily m			212		27	1976						
Highest	daily m		200	- 29	253.		1979						
Peak			213	- 29	300.		1979						
10\% oxc	coodan				36.			153					
50\% exc	coodan							85					
95\% oxc	coedan							88					
Annual tor	total (m	n cum)			528			124					
Annual r	funoff				34			124					
Annual ras	rainfall				83			102					
1961	-90 rai	llaverag			8								

Station and catchment description
Velocity-brea station with cableway next to a railway bridge 4 km upstream of Bath (replacement for Bath St James). Situated immediately d/s of confluence with the Bybrook. Widely inundated in flood conditions, but all flows contained through bridge. Deep section and low velocities render flows below 5 cumec inaccurate - use Bath Utrasonic. Flows augmented by groundwater scheme in catchment. Mixed geology predominantly clays and limestone with eastern tributaries rising from Chalk. Land use - mainly rural, some urbanisation.

054001 Severn at Bewdley

Measuring authority: EA-M First year: 1921

Grid reference: 32 (SO) 782762 Level stn. (m OD): 17.00

Catchment area (sq km); 4325.0 Max alt. (m OD): 827

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	MAY	JuN	JUL	AUG	SEP	OCT	NOV	DEC
1	321.200	250.000	142.500	44.900	20.420	19.210	9.895	11.040	10.670	10.090	10.090	39.380
2	252.900	240.800	183.700	42.150	19.480	18.210	9.597	10.400	12.500	9.086	9.756	31.400
3	169.600	204.500	163.500	40.260	17.900	17.310	11.040	10.180	11.800	10.260	9.839	30.330
4	136.400	172.100	146.700	37.260	16.030	17.290	11.270	9.272	12.380	11.910	9.806	28.940
5	135.200	146.100	142.200	34.940	15.550	18.310	11.100	8.296	15.260	12.230	9.754	27.550
6	157.800	118.900	169.000	33.230	14.430	17.380	10.800	11.080	16.500	14.010	9.470	24.630
7	138.200	103.500	173.500	31.160	15.170	16.330	10.040	11.600	15.910	15.210	10.480	23.570
8	113.900	88.070	176.600	29.670	14.940	13.990	9.980	8.645	13.520	25.210	10.200	21.230
9	$109.40{ }^{\text {. }}$	92.420	158.400	28.760	14.380	13.450	9.528	9.996	10.670	33.190	10.030	18.980
10	104.200	114.200	127.500	28.190	13.900	12.350	16.050	9.570	10.850	22.830	11.900	17.520
11	146.600	146.300	122.200	27.620	14.230	12.140	26.350	9.533	15.440	17.170	16.510	16.970
12	169.900	183.100	119.300	25.080	14.070	13.290	33.170	11.210	12.420	14.480	18.750	15.710
13	118.100	211.600	98.400	24.340	12.750	12.340	18.890	10.070	11.760	12.600	33.590	14.700
14	99.310	240.000	82.360	23.320	13.700	11.950	13.190	10.030	10.350	12.060	43.840	14.550
15	95.710	248.900	73.710	22.370	12.900	10.850	12.310	10.200	10.730	10.950	34.590	15.740
16	99.580	239.100	69.590	22.430	14.670	11.140	12.770	10.160	10.480	9.894	28.100	13.880
17	146.500	243.900	68.160	22.150	25.550	11.260	14.390	10.270	12.050	10.000	37.410	14.450
18	186.200	254.100	90.510	22.390	35.830	10.860	13.730	10.070	12.910	10.320	33.440	15.330
19	196.200	242.200	74.930	29.730	33.510	10.980	31.160	10.400	11.570	10.800	25.600	21.080
20	190.100	254.400	67.520	26.740	23.610	12.050	32.920	10.730	11.130	11.190	22.000	37.520
21	214.000	271.300	59.310	23.840	21.090	11.010	19.590	9.941	10.580	10.380	20.410	50.070
22	237.100	255.100	54.890	25.730	18.870	10.310	15.190	10.130	10.340	10.820	22.910	97.760
23	227.900	236.800	51.610	28.980	17.640	10.580	13.510	10.490	9.876	11.560	33.210	182.400
24	195.500	226.100	47.710	34.850	17.210	10.230	12.740	11.390	9.749	13.880	26.530	227.400
25	203.600	206.900	44.850	28.690	17.830	10.290	11.120	11.960	10.300	18.150	30.170	224.600
26	243.700	187.800	43.590	24.550	18.160	11.560	10.400	11.640	12.780	18.140	43.240	140.700
27	290.300	154.700	42.230	22.400	18.300	11.290	10.380	12.190	15.190	19.710	34.020	88.630
28	335.300	128.400	50.370	21.600	18.310	11.730	11.040	9.975	21.720	13.630	30.430	60.410
29	348.300		71.490	20.270	19.760	10.620	10.730	10.700	13.760	11.310	34.820	48.900 ,
30	381.100		70.590	19.690	20.000	10.370	9.705	10.350	10.990	10.870	39.150	39.760
31	316.100		49.830		19.750		10.210	10.660		10.440		35.560
Average	196.100	195.000	97.960	28.240	18.390	12.960	14.610	10.390	12.470	13.950	23.670	52.890
Lowest	95.710	88.070	42.230	19.690	12.750	10.230	9.528	8.296	9.749	9.086	9.470	13.880
Highest	381.100	271.300	183.700	44.900	35.830	19.210	33.170	12.190	21.720	33.190	43.840	227.400
Peak flow	388.90	277.80	193.30	47.92	42.01	20.72	47.34	13.89	25.81	37.27	47.11	241.90
Day of peak	30	21	2	1	18	1	19	27	28	9	14	25
Monthly total (million cu m)	525.30	471.90	262.40	73.21	49.24	33.58	39.12	27.84	32.33	37.36	61.35	141.70
Runoff (mm)	121	109	61	17	11	8	9	6	7	9	14	33
Rainfall (mm)	160	133	66	23	60	14	65	9	88	47	66	88

Statistics of monthly data for previous record (Apr 1921 to Dec 1994)

Station and catchment description
Since 1988 , 20-path US gauge. Orig. V/A station with rock control. Peak flows available from 1972. Stage monitoring site relocated in 1950 and 1968; lowest flows reprocessed in 1976 for 1921-68. Pre-1968 records of modest precision. Sig. exports for PWS and power gen.; min. flow maintained by releases from Clywedog and Vyrnwy Res. and Shropshire Groundwater Scheme. Naturalised flow series, from 1968 only, accommodates major usages other than groundwater support. Some earlier records adjusted for Vyrnwy (1966-7). Diverse catchment; wet western 50% from impermeable Palaeozoic rocks and river gravels; drier northern 50% from Drift covered Carboniferous to Liassic s'st and marls. Moorland, forestry, mixed farming.

Measuring authority: EA-M First year: 1936

Grid reference: 42 (SP) 040438 Level str. (m OD): 19.50

Catchment area (sq km): $\mathbf{2 2 1 0 . 0}$ Max att. (m OD): 320

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	Jul	AUG	SEP	OCT	NOV	DEC
1	32.590	81.120	36.830	. 14.060	8.795	10.090	4.568	4.644	4.455	5.199	4.851	7.573
2	27.630	74.820	36.870	13.300	8.593	7.780	4.615	4.621	4.771	5.080	4.794	6.984
3	22.750	50.360	53.990	13.130	8.264	8.099	4.666	4.574	4.637	5.011	4.815	8.061
4	20.250	38.270	58.850	12.500	8.412	9.553	4.715	4.134	4.812	5.119	4.712	12.830
5	33.080	33.110	70.770	12.290	8.249	7.677	4.728	4.038	6.417	4.961	4.594	12.650
6	46.130	30.700	61.390	12.130	7.702	7.027	4.676	4.057	5.760	5.413	4.715	11.060
7	36.670	29.050	59.250	11.710	7.776	7.870	4.653	4.062	13.210	7.192	4.745	8.677
8	29.060	29.430	56.920	10.860	7.237	7.564	4.507	4.116	17.600	6.168	4.838	7.690
9	25.440	29.700	42.700	10.620	7.103	6.636	4.418	4.146	8.311	5.420	7.156	6.891
10	22.410	52.480	35.250	10.840	7.299	6.324	5.220	4.105	11.930	5.093	15.610	6.315
11	29.640	71.290	33.160	10.460,	7.355	6.389	5.650	4.077	20.940	5.006	19.180	5.974
12	28.290	78.770°	36.210	9.941^{\prime}	7.189	6.090	5.146	4.091	11.170	4.967	15.540	6.005
13	23.520	58.970	32.230	9.608	7.235	5.854	4.763	4.139	10.520	4.876	9.982	6.092
14	21.370	48.450	28.680	9.557	6.982	5.744	5.968	4.164	7.247	4.910	7.904	6.246
15	20.960	62.220	27.160	9.600	6.862	5.768	6.108	4.188	8.324	4.813	7.155	6.202
16	20.820	72.870	25.180	10.320	7.553	5.749	6.054	4.149	11.220	4.802	7.159	6.049
17	42.150	62.580	26.040	10.530	19.770	5.844	6.399	4.022	9.141	4.899	6.999	6.156
18	64.260	44.690	25.280	11.150	16.610	5.669	5.585	4.079	10.230	4.778	6.088	6.829
19	57.210	37.090	22.320	10.340	10.730	5.440	5.010	3.996	8.138	4.710	5.697	12.660
20	92.240	33.300	19.860	9.747	8.735	5.411	4.878	4.073	6.808	4.705	5.540	45.880
21	101.000	31.860	18.490	9.914	7.976	5.226	4.725	4.067	5.835	4.659	6.573	41.470
22	111.200	36.990	17.740	13.570	7.828	5.076	4.533	4.051	5.337	4.627	6.591	100.600
23	80.550	49.310	17.580	15.170	7.539	4.859	4.454	4.273	5.179	4.676	5.929	94.260
24	51.060	45.560	17.540	12.310	7.523	4.860	4.395	4.365	6.203	5.719	5.824	62.610
25	49.780	51.660	17.090	11.110	7.109	4.832	4.328	4.329	5.829	7.348	6.254	36.190
28	88.140	48.010	16.520	10.550	6.711	4.881	4.304	4.199	6.075	6.618	8.598	24.010
27	94.240	37.210	17.960	10.150	7.322	4.772	4.419	4.170	7.007	7.111	11.140	17.960
28	100.400	32.160	19.020	9.568	11.270	4.766	4.355	4.053	5.887	6.341	11.920	14.380
29	95.080		18.930	9.189	9.808	4.665	4.406	4.233	5.734	5.715	12.940	11.800
30	67.720		16.150	8.890	11.860	4.670	4.392	4.755	5.309	5.276	9.442	11.240
31	49.190		14.810		14.410		4.320	4.491		4.959		12.200
Average	51.120	48.290	31.640	11.100	8.962	6.173	4.870	4.208	8.135	5.360	7.909	20.110
Lowest	20.250	29.050	14.810	8.890	6.711	4.665	4.304	3.996	4.455	4.627	4.594	5.974
Highest	111.200	81.120	70.770	15.170	19.770	10.090	6.399	4.755	20.940	7.348	19.180	100.600
Poak flow	124.30	91.15	72.21	18.28	24.92	12.19	8.51	5.45	25.77	8.34	20.63	113.90
Day of peak	22	1	5	23	17	1	14	1	11	24	11	22
Monthly total (mitlion cu m)	136.90	116.80	84.74	28.78	24.00	16.00	13.04	11.27	21.08	14.36	20.50	53.87
Runotf (mm)	62	53	38	13	11	7	6	5	10	7	9	24
Rainfall (mm)	97	64	46	18	46	11	17	7	104	31	61	79

Statiatics of monthly data for previous record (Dec 1936 to Dec 1994)

Station and catchment description
Velocity-area station. Recording site, control and gauging site are widely separated; recording at a site where all flows contained. Gauge site can measure out-of-bank flows. Extensive modification to flow regime from abstractions and returns. Large catchment of low relief, draining argillaceous rocks almost exclusively. Contains many large towns, but chief land use is agriculture.

054008 Teme at Tenbury

 First year: 1956Grid reference: 32 (SO) 597686 Level stn. (m OD): 48.00

Catchment area (sq km): 1134.4 Max alt. (m OD): 546

Daily mean gauged discharges (cubic motres per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	JuL	AUG	SEP	OCT	NOV	DEC
1	40.940	54.920	36.210	8.929	4.587	3.699	1.753	1.424	1.073	1.329	1.642	12.150
2	31.830	42.960	32.630	8.574	4.473	3.443	1.782	1.363	1.245	1.258	1.596	10.580
3	25.950	37.250	37.030	8.338	4.377	3.553	1.796	1.279	1.196	1.301	1.579	9.605
4	28.900	31.190	36.960	7.988	4.288	3.904	1.776	1.256	1.180	1.426	1.544	9.200
5	46.810	27.250	64.690	7.680	4.248	3.484	1.729	1.239	1.362	1.405	1.534	8.579
6	36.950	24.420	57.160	7.388	4.467	3.241	1.681	1.199	1.339	1.546	1.464	8.087
7	30.080	22.270	55.680	7.069	4.076	3.132	1.630	1.191	1.493	1.988	1.490	7.651
8	27.820	22.230	45.950	6.777	3.987	2.984	1.572	1.200	1.374	1.955	1.532	7.038
9	24.810	22.600	36.970	6.663	3.896	2.870	1.504	1.206	1.220	1.645	1.943	6.418
10	23.800	40.210	36.790	6.658	3.812	2.837	2.519	1.191	1.583	1.491	2.232	5.873
11	27.670	46.330	34.640	6.250	3.811	2.911	3.139	1.146	2.240	1.397	3.307	5.509
12	21.860	43.030	28.790	5.974	3.776	2.870	2.377	1.121	1.692	1.390	10.050	5.250
13	20.200	50.360	24.570	5.800	3.688	2.767	1.910	1.123	1.385	1.387	13.980	5.251
14	19.110	44.440	22.340	5.661	3.512	2.676	1.866	1.111	1.399	1.363	11.190	5.240
15	18.680	53.900	20.580	5.611	3.437	2.620	2.547	1.107	1.657	1.371	9.384	5.067
16	23.260	68.960	18.790	5.506	3.670	2.525	2.529	1.086	1.631	1.348	8.553	4.839
17	70.340	70.130	21.720	5.576	7.901	2.543	2.058	1.072	1.547	1.344	7.740	4.778
18	67.460	60.950	18.970	5.705	6.268	2.470	2.011	1.068	1.980	1.322	6.514	5.774
19	75.810	65.030	18.100	5.470	4.742	2.342	2.151	1.068	1.799	1.296	5.797	6.964
20	78.020	56.710	16.190	5.525	4.163	2.320	1.873	1.037	1.498	1.293	5.311	17.080
21	93.270	51.260	15.220	5.232	3.857	2.201	1.716	1.026	1.356	1.290	5.598	15.370
22	88.250	56.180	14.460	6.951	3.712	2.099	1.654	1.010	1.294	1.289	6.288	69.880
23	69.930	56.630	13.840	7.500	3.595	2.008	1.592	1.070	1.282	1.304	5.571	89.000
24	59.860	49.380	13.020	5.991	3.492	1.976	1.563	1.101	1.395	1.570	6.000	62.250
25	68.250	48.560	12.320	5.560	3.614	1.988	1.508	1.079	1.448	2.562	8.228	37.810
26	79.590	36.760	11.730	5.170	3.795	1.982	1.443	1.034	1.473	2.385	7.741	24.650
27	87.600	30.650	11.160	4.947	3.793	1.958	1.450	1.005	1.530	1.958	7.644	18.590
28	116.800	28.600	11.440	4.826	4.071	1.856	1.456	0.990	1.419	1.787	8.584	15.260
29	91.230		10.800	4.775	3.809	1.803	1.454	1.011	1.320	1.730	13.860	12.720
30	67.060		9.781	4.713	3.779	1.754	1.396	1.057	1.318	1.696	14.480	11.720
31	62.540		9.370		3.792		1.411	1.083		1.660		10.970
Average	52.410	44.400	25.740	6.294	4.145	2.627	1.834	1.128	1.458	1.551	6.079	16.750
Lowest	18.680	22.230	9.370	4.713	3.437	1.754	1.396	0.990	1.073	1.258	1.464	4.778
Highest	116.800	70.130	64.690	8.929	7.901	3.904	3.139	1.424	2.240	2.562	14.480	89.000
Peak flow	129.40	89.43	74.80	9.17	9.71	4.15	4.00	1.53	2.47	2.82	16.32	97.08
Day of peak	28	16	5	22	17	4	10	1	10	25	29	23
Monthly total (million cu m)	140.40	107.40	68.94	16.31	11.10	6.81	4.91	3.02	3.78	4.15	15.76	44.85
Runoff (mm)	124	95	61	14	10	6	4	3	3	4	14	40
Rainfall (mm)	153	110	64	24	63	13	60	8	94	53	87	90

Statistics of monthly data for previous record (Oct 1956 to Dec 1994)

Mean flows:	Avg.	28.800	24.660	20.770	14.940	9.876	6.041	4.017	4.051	5.960	10.670	16.670	25.740
	Low	6.281	7.267	4.349	4.599	2.569	1.558	1.010	0.744	1.075	1.347	3.087	5.567
	(year)	1964	1992	1993	1990	1976	1976	1976	1976	1990	1959	1975	1975
	High	51.630	58.150	51.940	32.850	35.380	13.090	21.920	16.680	29.650	43.130	50.140	57.290
	(year)	1960	1990	1981	1987	1969	1969	1968	1957	1958	1960	1960	1965
Runoff:	Avg.	68	53	49	34	23	14	9	10	14	25	38	61
	Low	15	16	10	11	6	4	2	2	2	3	7	13
	High	122	124	123	75	84	30	52	39	68	102	115	135
Rainfall:	Avg.	87	63	68	60	62	58	58	72	79	75	82	94
	Low	23	7	5	7	9	12	15	23	3	17	33	23
	High	157	138	146	132	174	125	122	170	211	183	169	183

Summary statistics	For 1995		For record preceding 1995				Factors affecting runoff			
			$\begin{gathered} 1995 \\ \text { As \% of } \\ \text { pre- } 1995 \end{gathered}$	Augmentation from effluent returns.						
Mean flow ($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$)	13.550					14.310			95	- Natural to within 10\% at 95 percentile flow.
Lowest yearly mean			7.279		1964					
Highest yearly mean			23.490		1960					
Lowest monthly mean	1.128	Aug	0.744		1976					
Highest monthly mean	52.410	Jan	58.150		1990					
Lowest daily mean	0.990	28 Aug	0.647	27 Al	1976					
Highest daily mean	116.800	28 Jan	248.900	4 D	1960					
Peak	129.400	28 Jan	266.500	4 D	1960					
10\% exceedance	46.270		34.340			135				
50\% exceedance	3.954		8.427			47				
95\% exceedance	1.110		1.558			71				
Annual total (mitlion cu m)	427.30		451.60			95				
Annual runoff (mm)	377		398			95				
Annual rainfall (mm)	819		858			95				
1961-90 rainfall average (mm)			841							

Station and catchment description
Velocity-area station with a gravel control. Upstream shoaling may render low flow rating variable from year to year, Rarely goes out of bank. Adjustments small and dispersed; natural catchment. Left bank characterised by high relief hills and broad valleys. Steep and narrow on the right bank. Geology mainly Palaeozoic sediments with Pre-Cambrian crystalline rocks of the Longmynd. Relatively Drift free; some valley gravel and Boulder Clay in the lower reaches. Forestry, grazing.

056001 Usk at Chain Bridge

Moasuring authority: EA-WEL
First year: 1957

Grid reference: 32 (SO) 345056 Level stn, (m OD): $\mathbf{2 2 . 6 0}$

Catchment area (sq km): 911.7 Max alt. (m OD): 886

Daily mean gauged discharges (cubic matres per second)

DAY	JAN	FEB	MAR	APA	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	58.230	132.700	76.490	13.570	6.928	8.937	3.518	5.794	3.156	4.597	11.260	47.850
2	46.440	77.540	52.240	12.950	6.641	7.969	3.506	5.053	3.148	4.732	10.580	41.450
3	40.700	71.630	47.290	12.460	6.710	8.367	3.489	3.827	3.134	5.373	9.847	36.440
4	75.750	54.820	43.540	12.000	6.601	11.430	3.411	2.839	3.126	15.640	9.147	32.020
5	93.450	47.980	59.410	11.510	6.465	8.496	3.368	3.374	3.112	13.710	- 8.503	28.430
6	59.100	42.620	54.950	11.250	6.407	7.498	3.325	4.246	3.706	69.640	8.127	25.820
7	47.450	37.670	63.060	10.730	5.938	7.197	3.316	4.293	5.708	62.020	7.838	23.690
8	43.000	39.100	50.750	10.290	5.702	7.063	3.328	4.199	4.339	39.070	7.747	21.590
9	37.870	38.420	46.560	9.987	5.654	6.674	3.186	4.254	3.041	22.170	10.860	19.460
10	42.230	52.270	50.130	9.692	5.724	6.400	3.100	4.289	4.549	16.340	15.830	17.800
11	44.820	128.000	43.310	9.348	6.213	6.312	3.300	4.292	7.340	13.320	53.140	16.710
12	34.550	73.410	35.740	8.889	6.524	6.165	4.121	4.297	5.248	11.530	65.150	15.830
13	32.090	76.690	31.140	8.597	6.128	5.874	4.399	4.364	4.440	10.230	52.440	15.430
14	32.310	67.990	28.940	8.403	5.818	5.669	5.420	4.420	5.105	9.289	38.310	14.690
15	38.820	81.130	27.470	8.194	5.555	5.347	8.462	4.470	6.816	8.594	40.370	13.960
16	38.020	126.800	27.230	8.005	6.127	5.225	6.948	4.431	5.660	8.276	42.410	13.220
17	112.400	84.880	37.310	8.162	11.430	5.271	6.091	4.319	4.454	8.129	30.660	14.370
18	83.180	103.400	26.890	9.514	9.086	5.338	6.177	4.234	4.133	9.618	25.400	15.000
19	138.300	113.300	24.870	8.513	6.953	4.914	7.080	4.160	3.822	7.584	22.590	34.180
20	117.900	71.670	22.610	8.008	6.283	4.753	6.174	4.124	3.492	6.982	20.570	71.370
21	211.900	63.630	20.580	7.535	5.943	4.506	5.700	4.100	3.300	6.641	39.280	55.160
22	118.000	95.710	19.490	9.638	5.731	4.185	5.437	3.624	3.187	6.297	30.870	190.700
23	82.040	72.590	18.580	14.690	5.501	4.111	5.333	2.793	3.123	6.096	25.700	98.570
24	65.430	64.270	17.320	10.530	5.434	4.039	5.246	2.728	4.271	18.500	60.630	63.800
25	112.200	58.960	16.200	9.091	5.713	4.111	5.093	2.705	4.228	50.650	51.440	47.480
26	133.300	47.580	16.060	8.269	6.201	4.039	5.038	2.696	4.764	27.380	40.450	37.580
27	151.200	45.170	16.200	7.748	10.930	3.905	4.822	2.681	8.777	23.910	57.760	31.740
28	131.600	46.710	17.950	7.510	16.250	3.804	4.934	2.652	6.999	18.310	67.620	27.800
29	173.400		17.910	7.402	17.750	3.698	4.863	2.652	5.611	15.670	71.830	24.380
30	95.050		14.630	7.353	14.270	3.578	6.923	2.932	5.004	13.740	49.100	23.140
31	146.900		14.140		10.480		6.474	3.171		12.260		22.130
Avorage	85.080	72.020	33.520	9.661	7.648	5.829	4.890	3.807	4.560	17.620	32.850	36.830
Lowest	32.090	37.670	14.140	7.353	5.434	3.578	3.100	2.652	3.041	4.597	7.747	13.220
Highest	211.900	132.700	76.490	14.690	17.750	11.430	8.462	5.794	8.777	69.640	71.830	190.700
Poak flow	349.30	255.00	121.70	16.12	20.88	14.33	11.62	6.48	9.76	136.60	105.80	
Doy of peak Monthly total	21	11	1	23	29	4	15	1	27	6	24	22
(million cu m)	227.90	174.20	89.77	25.04	20.48	15.11	13.10	10.20	11.82	47.20	85.14	98.65
Runoff (mm)	250	191	98	27	22	17	14	11	13	52	93	108
Rainfall (mm)	259	175	74	36	84	18	59	9	136	134	163	113

Statistics of monthly data for previous record (Mar 1957 to Dec 1994)

Station and catchment description
Velocity-area station; permanent cableway. Refer to complementary station $\mathrm{d} / \mathrm{s} \mathbf{(5 6 0 1 0}$. Trostrey weir) for flows <21 cumecs. There is a partial impact on flows resulting from three large existing public water supply reservoirs in upper catchment. Intake to canal upstream of gauge Some naturalised flows available. Geology - mainly Old Red Sandstone. Hill farming in upper areas, with dairy or livestock farming below; forest 3\%. Peaty soils in uplands, seasonally wet.

Measuring authority: EA-WEL First year: 1959

Grid reference: 22 (SN) 244416 Level stn. (m OD): 5.20

Catchment area (sq km): 893.6 Max alt. (m OD): 593

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APA	MAY	JUN	Jut	AUG	SEP	OCT	NOV	DEC
1	65.670	102.000	68.190	14.390	6.815	8.165	2.626	2.138	1.424	3.312	11.050	45.340
2	53.560	75.880	58.620	13.510	6.544	7.321	2.624	1.947	1.537	3.198	10.360	39.210
3	46.980	63.960	54.410	12.930	6.312	9.353	2.526	1.836	1.770	3.693	9.754	36.340
4	54.420	50.030	67.840	12.410	6.098	11.500	2.515	1.733	4.284	8.747	9.032	32.130
5	64.170	43.340	104.700	11.920	5.936	9.254	2.515	1.674	4.159	9.234	8.480	27.700
6	53.360	38.910	87.130	12.410	5.791	7.760	2.515	1.638	3.326	36.120	8.099	24.650
7	44.730	35.610	88.410	12.080	5.647	8.942	2.515	1.606	3.407	40.920	7.816	23.320
8	44.320	34.450	63.390	11.030	5.522	9.862	2.499	1.586	3.164	29.400	7.797	22.160
9	39.970	32.640	51.120	10.490	5.417	7.745	2.467	1.548	2.715	18.450	8.787	19.470
10	44.360	33.950	49.930	10.110	5.344	7.085	2.436	1.505	2.476	13.920	9.404	17.770
11	58.440	72.860	44.270	9.684.	5.626	6.964	2.435.	1.459	2.514	11.490	25.650	16.510
12	48.490	77.180	37.950	9.227	5.648	6.712	2.432	1.483	3.112	9.920	40.770	15.420
13	38.640	166.500	33.180	8.846	5.445	6.159	2.485	1.541	3.868	8.898	33.140	14.590
14	38.160	107.500	30.080	8.552	5.308	5.746	3.098	1.514	3.822	8.062	27.820	13.770
15	38.740	88.410	28.050	8.332	5.131	5.476	3.619	1.471	4.823	7.447	34.340	12.990
16	57.280	87.520	26.480	8.159	5.244	5.306	3.737	1.418	4.125	7.008	37.600	12.930
17	94.550	72.420	27.370	8.964	7.238	5.484	3.459	1.355	3.321	8.239	31.420	19.300
18	90.870	83.250	26.100	12.340	7.246	5.714	4.269	1.328	2.909	7.443	25.890	15.650
19	107.900	87.230	22.980	12.590	6.188	5.210	5.148	1.316	2.646	6.807	22.820	38.010
20	82.020	85.240	20.640	11.610	6.228	4.361	4.080	1.304	2.477	6.438	20.790	66.780
21	121.200	83.940	18.790	10.450	5.608	4.150	3.431	1.256	2.345	6.142	28.880	68.110
22	92.430	92.540	17.370	10.430	5.236	3.943	3.021	1.239	2.247	5.911	25.730	128.700
23	73.360	79.420	16.240	11.960	4.988	3.727	2.807	1.315	2.214	5.762	23.410	115.100
24	56.160	67.650	15.180	11.400	4.957	3.627	2.663	1.347	2.581	18.830	72.390	80.450
25	67.990	61.130	14.330	9.414	4.615	3.570	2.527	1.385	3.178	23.060	69.190	57.380
26	81.670	59.880	13.730	8.443	5.329	3.522	2.461	1.408	3.670	18.530	67.760	42.890
27	111.700	52.510	14.750	7.849	9.912	3.171	2.381	1.419	6.672	16.640	85.740	35.790
28	97.650	54.180	22.890	7.369	11.240	2.795	2.348	1.390	5.371	15.410	67.030	30.810
29	145.700		25.910	7.185	11.310	2.711	2.291	1.422	4.156	14.350	64.210	25.520
30	106.900		16.790	7.042	11.170	2.652	2.262	1.495	3.628	12.930	50.420	23.620
31	119.500		15.170		9.906		2.200	1.461		11.800		24.110
Average	72.290	71.080	38.130	10.370	6.548	5.933	2.851	1.501	3.265	12.840	31.520	36.980
Lowest	38.160	32.640	13.730	7.042	4.615	2.652	2.200	1.239	1.424	3.198	7.797	12.930
Highest	145.700	166.500	104.700	14.390	11.310	11.500	5.148	2.138	6.672	40.920	85.740	128.700
Peak flow	162.50	190.10	117.20	14.95	12.68	11.80	5.53	2.17	7.36	49.91	99.78	141.30
Day of peak	29	13	5	1	28	4	19	1	27	6	27	22
Monthly total (million cu m)	193.60	171.90	102.10	26.88	17.54	15.38	7.64	4.02	8.46	34.40.	81.70	99.06
Runotf (mm)	217	192	. 114	30	20	17	9	5	9	38	91	111
Rainfall (mm)	238	198	97	37	72	33	50	12	126	126	149	113

Statistics of monthly data for previous record (Jul 1959 to Dec 1994 -incomplete or missing months total 0.2 years)

Station and catchment description
Velocity-area station. Straight reach (width: 35 m), natural control. Flood flows spill over right bank. Public water supply impounding reservoirs in upland area where there is mostly hill farming. Tregaron bog (10 sq . km .) has partial effect on flows; sensibly natural regime. Geology - mainly
Ordovician and Silurian deposits. Dairy farming predominates in southern area. Forest: 5%. Peaty soils on hills, seasonally wet. Apart from Ordovician and Silurian deposits. Dairy farming predominates in southern area.
Tregaron bog, most of the lower areas have soils with permeable substrate.

067015 Dee at Manley Hall

Maasuring authority: EA-WEL
First year: 1937

Grid reference: 33 (Sل) 348415. Level stn, (m OD): 25.40

Catchment area (sq km): 1019.3 Max alt. (m OD): 884

Daily mean gauged discharges (cubic motres per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	Jut.	AUG	SEP	OCT	NOV	DEC
1	101.000	120.200	94.150	22.000	8.831	11.730	11.380	12.900	10.820	9.735	9.831	18.450
2	74.500	104.800	78.590	20.880	9.225	11.060	11.730	12.840	11.350	9.243	9.558	17.490
3	59.430	84.470	69.230	18.900	9.789	10.980	11.520	13.180	10.660	9.644	9.412	16.570
4	59.420	65.200	60.960	14.910	9.858	11.890	11.370	13.240	11.540	13.640	9.188	15.660
5	76.480	54.610	65.630	11.980	9.654	11.090	11.270	14.030	11.480	10.300	9.104	13.010
6	69.730	49.410	60.980	11.110	9.679	10.470	11.150	13.950	10.010	17.410	9.415	12.140
7	61.130	42.530	60.500	10.510	10.040	10.150	11.070	13.960	10.130	18.890	9.405	11.520
8	60.700	46.440	53.940	10.230	10.080	9.705	11.060	13.940	8.797	21.850	9.382	10.590
9	53.830	44.360	50.700	10.410	9.885	9.582	11.010	13.610	8.177	20.010	9.668	10.060
10	70.180	48.360	59.050	9.962	9.881	9.699	25.610	12.850	9.341	13.960	9.681	9.561
11	85.420	72.590	56.750	9.304	9.791	10.240	28.910	12.650	10.520	11.020	13.480	9.126
12	70.810	85.480	47.760	8.941	9.717	10.230	14.050	12.670	8.528	10.250	18.100	8.801
13	57.090	109.500	40.070	8.992	9.949	9.633	11.130	12.620	9.229	9.613	12.100	8.874
14	53.750	100.300	35.370	9.049	9.867	9.986	11.030	12.350	9.695	9.578	10.670	8.733
15	52.840	85.120	32.330	9.067	10.120	10.120	11.090	12.340	9.791	9.675	12.460	8.263
16	48.950	97.630	28.600	9.143	12.090	10.490	10.500	12.200	10.150	9.775	23.210	7.932
17	66.940	97.280	30.130	9.402	21.800	10.660	10.750	12.130	9.884	10.240	26.090	7.760
18	75.730	101.900	27.630	11.150	15.750	10.680	15.660	12.280	9.741	10.190	23.510	8.501
19	90.260	123.500	26.460	10.220	12.590	10.430	20.120	12.660	9.468	9.618	21.090	9.109
20	89.750	110.000	22.920	9.903	10.910	10.240	18.260	13.170	9.362	9.290	17.950	10.650
21	111.800	101.600	17.190	9.515	10.760	10.350	15.780	13.410	9.564	9.811	21.720	9.668
22	101.500	116.500	15.400	12.380	10.470	10.380	11.650	13.460	9.790	9.763	20.730	51.430
23	88.650	106.000	14.150	15.290	9.892	10.620	8.964	12.700	9.884	9.760	19.480	61.980
24	85.910	86.780	13.510	11.810	9.796	10.810	9.183	11.360	10.970	10.800	40.530	50.740
25	119.700	79.130	13.040	9.635	10.370	10.970	10.310	11.160	10.260	14.350	53.280	41.570
26	131.900	65.720	12.830	8.810	9.696	10.910	10.950	10.840	10.400	10.270	44.660	34.160
27	143.200	63.480	15.280	9.121	10.680	10.690	12.820	10.700	10.240	9.666	36.860	26.070
28	178.300	70.060	22.220	9.202	14.010	10.920	13.150	10.580	9.230	- 9.805	29.240	20.060
29	144.900		26.110	9.010	14.050	11.120	13.090	10.720	8.472	9.496	24.870	16.680
30	118.400		24.590	8.859	13.890	11.130	13.210	10.670	9.075	9.837	19.430	16.000
31	131.500		23.160		12.470		13.060	10.610		9.960		15.780
Avarage	88.180	83.320	38.680	11.320	11.150	10.570	13.250	12.440	9.885	11.530	19.470	18.290
Lowest	48.950	42.530	12.830	8.810	8.831	9.582	8.964	10.580	8.177	9.243	9.104	7.760
Highest	178.300	123.500	94.150	22.000	21.800	11.890	28.910	14.030	11.540	21.850	53.280	61.980
Poak flow	217.20	153.90	109.10	22.59	25.05	12.22	82.46	14.12	12.34	25.97	57.76	73.48
Day of peak Monthly total	27	1	1	1	17	4	10	5	5	6	24	22
(million cu m)	236.20	201.60	103.60	29.35	29.86	27.39	35.50	33.33	25.62	30.88	50.47	48.98
Runotf (mm)	232	198	102	29	29	27	35	33	25	30	50	48
Rainfall (mm)	261	216	93	41	82	20	92	17	103	81	106	79

Statistics of monthly data for previous record (Oct 1937 to Dec 1994)

Mean	Avg.	52.270	44.330	33.960	25.170	17.270	13.920	12.960	17.100	23.180	32.630	46.670	53.540
Hows:	Low	13.460	7.858	8.128	7.841	4.273	3.742	3.113	3.288	3.052	4.216	11.580	18.610
	(year)	1964	1963	1943	1938	1938	1961	1949	1955	1949	1947	1937	1963
	High	109.300	106.700	103.700	61.030	41.940	31.240	40.270	59.400	69.470	92.470	103.000	105.200
	(year)	1948	1946	1947	1970	1969	1972	1957	1957	1950	1967	1960	1965
Runoff:	Avg.	137	106	89	64	45	35	34	45	59	86	119	141
	Low	35	19	21	20	11	10	8	9	8	11	29	49
	High	287	253	273	155	110	79	106	156	177	243	262	277
Rainfall:	Avg.	153	109	106	86	90	82	92	108	119	139	157	184
	Low	41	14	28	10	18	13	20	9	13	25	15	36
	High	338	252	251	182	197	168	244	211	306	317	300	373
Summ	ary st	istics							Fa	affec	runo		
								1995					
				1995		or record		As \% of -		voir(s)	catchm		
						eding 199		$\text { pre- } 1995$		traction	public	ater sup	
Mean flo	w lm^{3}							87	- F	reduce	by indu	al and/	
Lowest	yearly	*an					1964			cultural a	ractio		
Highest	yearly	ean					1954		- A	mentatio	from s	ce wat	nd/or
Lowast	monthl	mean					- 1949			ndwater			
Highost	monthl	mean			109.		ก 1948						
Lowast	daily m			6017			ul 1949						
Highest	daily m		178	200 28	521.		-c 1964						
Paek			217	27	665		Oc 1964						
10\% exc	coedan							106	Com	ment			
50\% exc	ceedan							62	The	aturalised	unoff to	for 199	
95\% exc	coedan							167	is 7				
Annual tis	cotal (m	ion cu m)			979			87					
Annual r	unotf				96			87					
Annual r	ainfall	(1)	- 119		140			85					
1961	-90 rai	all averag	mm)		136								

Station and catchment description
Asymmetrical compound Crump profile weir, checked by current meter. Drowns at flows above 200 cumecs. Low flows maintained by releases from major river regulating res. (Celyn and Brenig). Data prior to February 1970 is poorer quality-based on d/s Erbistock (67002 , area: 1040.0 sq. km .) flow record. D/s flood attenuation is notable. Geology is 75% shales, slates, mudstones and palaeozoic grits; 25% extrusive igneous and Carboniferous rocks. 80% grazed open moorland, 12% forestry, remainder arable, urban negligible.

Measuring authority: EA-NW First year: 1937

Grid reference: 33 (S.) 670633 Level stn. (m OD): 16.30

Catchment area (sq km): 622.0
Max alt. (m OD): 222

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	Nov	DEC
1	17.190	37.220	31.850	5.550	2.587	2.133	1.238	0.938	0.883	1.704	1.366	1.683
2	13.800	23.940	20.770	5.114	2.527	2.066	1.283	0.921	1.734	1.461	1.346	1.548
3	10.720	17.140	16.070	4.888	2.470	2.666	1.321	0.872	1.290	1.360	1.310	2.014
4	11.540	14.020	13.460	4.826	2.449	2.420	1.323	0.834	1.576	1.832	1.221	2.127
5	18.830	12.250	12.640	4.579	2.410	2.160	1.334	0.852	3.555	1.464	1.199	1.928
6	23.070	11.190	18.510	4.362	2.349	2.274	1.301	0.879	2.494	1.770	1.234	1.763
7	16.640	10.030	20.660	4.200	2.288	2.343	1.243	0.825	2.691	1.693	1.303	1.660
8	14.260	12.060	18.060	3.984	2.244	2.095	1.153	0.910	1.887	1.435	1.342	1.598
9	12.460	13.560	13.170	3.892	2.229	1.985	1.131	1.009	1.445	1.308	1.573	1.525
10	21.700	21.180	10.960	3.852	2.170	1.916	1.221	0.910	2.403	1.290	1.633	1.482
11	29.200	24.780	10.970	3.699	2.282	2.016	2.883	0.930	4.811	1.236	2.364	1.458
12	15.820	26.170	11.220	3.271	2.293	1.890	1.704	1.183	2.430	1.232	2.337	1.456
13	11.900	32.110	10.010	3.175	2.206	1.878	1.308	1.146	1.661	1.273	1.851	1.520
14	10.950	26.340	9.381	3.108	2.112	1.893	1.570	0.919	1.395	1.271	1.721	1.541
15	10.010	17.830	9.007	3.087	2.155	1.873	1.387	0.891	1.332	1.273	1.781	1.508
16	16.010	22.940	8.790	3.032	2.656	1.880	1.696	0.838	1.283	1.212	1.881	1.551
17	33.420	32.040	8.573	4.022	6.508	1.929	1.552	0.911	1.208	1.217	1.655	1.485
18	29.950	21.670	7.365	4.784	3.976	1.784	2.272	0.827	1.214	1.175	1.435	1.492
19	21.670	25.500	7.411	3.647	3.299	1.727	1.666	0.786	1.144	1.156	1.389	2.172
20	21.400	24.900	6.661	3.616	2.634	1.668	1.430	0.782	1.124	1.149	1.431	4.022
21	25.240	18.870	6.016	3.349	2.424	1.581	1.416	0.701	1.122	1.157	1.811	2.972
22	26.140	21.520	5.798	3.475	2.396	1.471	1.306	0.768	1.146	1.183	1.664	8.359
23	18.440	22.330	5.591	3.634	2.194	1.497	1.221	0.767	1.141	1.204	1.605	10.160
24	16.250	15.740	5.427	3.421	2.697	1.427	1.143	0.755	1.745	1.894	1.552	6.487
25	33.010	18.570	5.249	3.257	2.659	1.437	1.233	0.805	1.395	2.433	1.599	3.544
26	49.680	18.070	5.285	3.054	2.473	1.443	1.095	0.807	1.929	1.710	1.542	2.605
27	40.450	15.480	6.137	2.876	2.845	1.384	1.105	0.803	2.077	1.471	1.547	2.341
28	47.350	16.560	16.380	2.759	2.595	1.356	1.097	0.829	2.807	1.333	1.597	2.386
29	38.970		12.300	2.661	2.645	1.301	1.090	0.991	2.227	1.422 ${ }^{1}$	1.766	2.571
30	24.420		7.748	2.617	2.433	1.286	1.020	0.926	1.635	1.4111.	1.641	2.417
31	26.120		6.513		2.219		0.973	0.933		1.379		2.123
Average	22.790	20.500	11.230	3.726	2.627	1.826	1.378	0.879	1.826	1.423	1.590	2.629
Lowest	10.010	10.030	5.249	2.617	2.112	1.286	0.973	0.701	0.883	1.149	1.199	1.456
Highest	49.680	37.220	31.850	5.550	6.508	2.666	2.883	1.183	4.811	2.433	2.364	10.160
Peak flow	52.42	40.28	34.35	5.89	8.66	3.33	4.47	1.95	7.37	3.60	2.90	11.34
Day of peak	26	1	1	1	17	3	11	12	11	24	11	23
Monthly total (million cu m)	61.05	49.59	30.07	9.66	7.03	4.73	3.69	2.35	4.73	3.81	4.12	7.04
Runoff (mm)	98	80	48	16	11	8	6	4	8	$\begin{array}{r}6 \\ \hline\end{array}$	7 30	11 55
Rainfall (mm)	120	90	51	21	53	16	29	12	90	29	30	55

Statistics of monthly data for previous record (Oct 1937 to Dec 1994 -incomplete or missing months total 0.6 years)

Station and catchment description
Initially a river section (from 1937). Early gaugings lost; rating accuracy unknown. Mobile control. Data before 1972, particularly low flows unreliable. Unstable low flow rating led to relocation $400 \mathrm{~m} \mathrm{d/s}$ with an informal Flat V control and cableway in $8 / 78$. Prone to weed and algal growth. Re-rated from 1/12/77. Flat catchment includes western half of Crewe. Post glacial deposits over (mostly) Keuper Marl.

072004 Lune at Caton

Measuring authority: EA-NW First year: 1959
Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAA	APR	MAY	JUN	JUL	AUG	SEP	OCT	Nov	DEC
1	44.300	148.600	120.400	50.190	5.087	5.984	3.051	4.053	1.901	15.250	8.390	10.990
2	30.370	70.310	63.920	28.700	4.843	6.178	2.838	3.118	1.924	20.620	7.566	10.050
3	25.160	78.620	45.940	22.640	4.422	10.240	2.739	2.916	1.904	84.220	6.880	12.890
4	32.650	47.360	39.180	19.520	4.201	15.540	2.670	2.703	2.020	64.750	6.465	14.850
5	143.700	42.970	102.200	18.050	4.000	9.087	2.586	2.636	2.155	47.480	6.243	10.920
6	52.950	37.840	56.350	18.920	3.793	6.425	2.879	2.576	1.897	100.800	5.926	9.592
7	58.530	34.690	44.100	15.280	3.813	5.577	19.440	2.471	1.944	45.820	5.758	9.778
8	88.150	40.200	40.680	13.190	3.542	4.650	12.360	2.399	2.161	35.870	5.813	8.779
9	95,380	27.180	48.210	12.030	3.509	3.948	6.653	2.213	2.286	19.980	7.111	8.559
10	114.300	30.840	95.250	11.310	3.446	3.511	4.526	2.085	2.385	15.130	6.572	12.870
11	59.340	218.100	87.770	10.270	3.372	3.384	4.271	2.038	4.453	12.390	15.660	10.310
12	34.540	133.400	40.080	9.516	3.592	3.223	4.179	2.313	7.369	11.980	20.300	8.708
13	38.570	106.300	30.500	8.875	3.395	3.064	3.842	2.588	4.298	10.870	10.960	8.110
14	43.360	81.280	32.880	8.316	3.467	2.941	4.570	2.573	3.059	8.965	9.027	7.591
15	38.340	86.320	30.320	7.986	3.439	2.859	6.126	2.400	2.530	9.271	58.880	7.234
16	59.190	90.350	31.050	7.551	3.669	2.883	5.409	2.130	2.239	12.250	72.560	6.901
17	80.320	99.280	59.230	11.320	5.530	6.860	11.560	1.949	2.062	36.440	25.390	6.514
18	55.770	162.300	49.630	12.990	5.050	5.658	31.230	1.876	1.962	21.790	17.060	6.009
19	48.560	112.400	36.820	10.270	4.721	25.570	16.680	1.773	1.831	14.790	14.000	5.699
20	66.250	123.700	26.560	10.420	4.435	67.460	9.594	1.739	1.742	14.530	11.880	5.655
21	167.400	98.800	21.400	9.984	3.936	19.780	10.480	1.859	1.700	10.970	27.730	5.357
22	77.540	278.500	18.750	8.800	3.583	10.870	7.605	1.608	1.713	9.898	31.190	41.010
23	79.450	108.900	17.400	9.580	3.173	7.645	6.090	1.603	2.450	17.510	28.680	22.740
24	60.800	60.230	26.750	8.788	4.055	6.113	7.439	1.826	31.580	12.000	87.100	13.110
25	44.480	43.090	52.390	8.654	7.409	5.304	5.787	2.137	33.550	32.820	43.650	9.413
26	39.010	31.740	106.400	7.047	6.587	4.566	4.634	2.209	29.650	24.270	29.120	6.291
27	62.780	56.730	58.690	6.350	12.880	4.116	4.277	2.059	13.880	22.440	20.850	4.950
28	205.500	125.700	37.380	5.844	16.320	3.745	3.895	1.943	11.280	16.060	16.640	5.240
29	95.580		30.300	5.488	10.540	3.219	3.682	1.783	8.879	12.620	14.250	5.084
30	58.370		41.960	5.308	10.030	2.919	3.609	1.807	6.875	10.600	12.560	6.866
31	811.300		64.440		7.131		7.424	1.885		9.336		7.160
Average	93.930	91.990	50.220	12.770	5.386	8.777	7.165	2.234	6.456	25.220	21.140	9.975
Lowest	25.160	27.180	17.400	5.308	3.173	2.859	2.586	1.603	1.700	8.965	5.758	4.950
Highest	811.300	278.500	120.400	50.190	16.320	67.460	31.230	4.053	33.550	100.800	87.100	41.010
Poak flow	1182.00	519.40	299.00	67.29	24.35	114.10	45.32	4.88	82.07	169.70	204.90	81.21
Day of peak Monthly total	31	22	1	1	27	20	18	1	25	3	15	22
(million cu m)	251.60	222.50	134.50	33.11	14.43	22.75	19.19	5.99	16.73	67.54	54.80	26.72
Runoff (mm)	256	226	137	34	15	23	20	6	17	69	56	27
Rainfall (mm)	285	228	136	27	59	59	80	21	99	118	86	39.

Statistics of monthly data for previous record fian 1959 to Dec 1994 -incomplete or missing months total 4.0 years)

Station and catchment description
Bazin type compound broad-crested weir operated after 10/6/77 as full-range station. Previously used for low/medium flows; high flows from Halton 3 km downstream. High flows inundate wide floodplain. Transfers to River Wyre under Lancs. Conjunctive Use Scheme. Major abstractions for PWS. Headwaters rise from Shap Fell and the Pennines. Mixed geology: Carboniferous Limestone; Silurian shales; Millstone Grit and Coal Measures, substantial Drift cover. Agriculture in valleys; grassland rising to peat moss in highest areas.

073010 Leven at Newby Bridge

Measuring authority: EA-NW First year: 1939

Grid reference: 34 (SD) 367863 Lavel stn. (m OD): 37.30

Catchment area (sq km): 247.0
Max alt. (m OD): 873

Daily mean gauged discharges (cubic metres per second)												
DAY	JAN	FEB	MAR	APR	MAY	JUN	Jul	AUG	SEP	OCT	NOV	OEC
1	43.070	99.840	27.390	19.740	1.606	9.975	1.408	1.871	0.804	5.907	12.770	9.489
2	34.800	76.250	26.250	18.220	1.603	8.580	1.235	1.612	0.806	9.813	10.070	7.984
3	26.980	65.650	21.880	16.380	1.611	8.095	0.977	1.333	0.804	33.270	7.954	8.257
4	23.270	54.230	19.200	14.490	1.514	7.944	0.862	1.045	0.795	47.130	6.210	8.453
5	33.880	44.170	19.680	13.430	1.485	6.891	0.935	0.792	0.791	44.360	4.777	7.856
6	36.520	36.800	19.970	12.760	1.448	6.025	1.422	0.688	0.791	49.040	3.800	6.967
7	33.030	31.320	19.280	11.710	1.371	5.295	3.447	0.879	0.787	51.070	3.256	5.955
8	31.100	24.680	18.820	10.170	1.399	4.215	4.105	1.000	0.711	45.000	2.838	5.171
9	30.590	20.710	18.190	8.691	1.305	3.470	3.602	0.884	0.609	36.820	2.620	4.449
10	34.380	18.500	20.780	7.631	1.353	2.875	2.800	1.205	0.571	29.640	2.477	3.888
11	35.400	24.140	26.730	6.726	1.135	2.898	2.838	1.297	0.571	23.750	3.749	3.560
12	29.460	33.450	26.610	6.053	1.140	2.384	3.548	1.289	0.572	21.220	5.502	3.247
13	24.670	34.640	23.810	5.254	0.878	2.221	3.490	1.278	0.570	20.070	5.403	2.846
14	21.890	34.190	21.340	4.486	0.821	1.922	3.309	1.182	0.569	17.300	5.141	2.554
15	19.400	36.680	19.380	4.275	0.938	1.582	3.396	1.170	0.565	15.240	11.900	2.249
16	20.190	36.420	17.270	3.584	1.340	1.383	3.483	1.161	0.562	13.980	22.130	2.076
17	21.810	34.320	18.880	4.094	1.476	1.947	3.595	1.152	0.566	17.250	21.440	1.184
18	22.340	33.550	20.640	4.578	1.279	2.075	6.614	1.136	0.559	18.650	18.560	1.229
19	21.880	39.260	19.870	4.199	1.381	3.749	7.559	1.122	0.555	17.620	16.010	1.231
20	22.640	38.830	17.930	3.759	1.622	10.820	6.770	1.118	0.549	16.730	13.740	0.967
21	27.350	38.190	15.680	3.519	1.546	11.360	5.579	1.097	0.544	14.490	15.000	1.118
22	34.970	46.690	13.640	3.703	1.553	9.603	4.242	1.078	0.543	14.050	18.080	2.063
23	33.960	49.850	11.800	2.844	1.574	7.856	3.852	1.062	0.552	19.080	18.490	2.601
24	31.770	42.990	12.730	3.006	2.129	6.327	4.522	0.839	0.632	19.960	21.420	2.812
25	28.630	35.970	18.320	3.024	3.227	4.682	3.994	0.819	1.450	23.670	22.280	2.732
26	24.870	29.820	22.870	2.327	3.892	3.777	3.434	0.814	4.440	30.240	20.940	2.284
27	19.990	26.250	26.950	2.018	8.537	2.611	2.611	0.805	5.526	30.750	18.630	1.948
28	23.830	25.270	25.350	1.863	12.620	2.011	2.264	0.793	5.958	27.070	16.190	1.665
29	28.790		22.120	1.741	13.840	1.782	2. 183	0.790	5.491	22.710	13.900	1.556
30	27.380		19.980	1.706	13.720	1.899	2.124	0.808	4.691	18.770	11.550	1.481
31	80.630		19.920		11.790		1.997	0.807		15.520		0.940
Average	29.980	39.740	20.430	6.866	3.262	4.875	3.297	1.062	1.431	24.840	11.890	3.575
Lowest	19.400	18.500	11.800	1.706	0.821	1.383	0.862	0.688	0.543	5.907	2.477	0.940
Highest	80.630	99.840	27.390	19.740	13.840	11.360	7.559	1.871	5.958	51.070	22.280	9.489
Peak flow	-109.30	109.30	28.51	20.15	14.65	12.20	7.85	2.08	6.40	54.20	23.28	10.25
Day of peak	31	1	27	1	29	21	18	1	28	6	16	1
Monthly total (million cu m)	80.31	96.13	54.71	17.80	8.74	12.64	8.83	2.85	3.71	66.54	30.83	9.57
Runoff (mm)	325	389	222	72	35	51	36 120	12	15	269	125	39
Rainfall (mm)	424	330	234	39	111	76	120	26	126	365	173	56

Statistics of monthly data for previous record (Jan 1939 to Dec 1994)

Station and catchment description
Level record since 1939 from four different sites at Newby Bridge. All flow records from 1939 to 1974 combined into a single sequence. Since 5/5/71 compound Crump profile weir. Full-range. Just d/s of Lake Windermere - highly regulated, compensation flow - occasional very low flows (e.g. autumn' 1972) when u / s fish pass closed. Major abstractions for PWS, sewage effluent from Ambleside. Predominantly impervious Borrowdale Volcanics in north and Silurian slate in south. Boulder Clay along river valleys. Mainly grassland, very wooded in lower reaches.

Measuring authority: EA-NW First year: 1967
Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	- APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	120.100	441.000	194.000	70.020	16.280	26.090	9.697	9.238	7.100	11.300	27.040	26.940
2	84.640	157.900	111.400	53.950	15.760	26.290	9.671	8.445	7.660	12.920	23.550	24.670
3	68.870	159.100	88.040	46.310	15.380	22.240	9.672	7.977	7.773	102.800	20.490	24.010
4	63.850	119.400	75.520	43.010	15.040	25.240	9.450	7.757	7.931	101.400	18.270	27.710
5	155.300	98.570	122.400	44.080	14.720	23.500	9.477	7.723	8.741	81.010	16.690	25.400
6	98.400	89.060	97.320	42.080	14.510	20.120	9.819	7.617	8.667	125.100	15.620	23.290
7	77.590	85.960	79.470	35.440	14.810	22.520	18.720	7.410	9.141	105.600	15.120	24.740
8	94.850	73.270	73.020	31.750	14.500	19.060	17.020	7.423	12.120	74.790	15.680	23.120
9	83.920	59.860	79.160	29.620	14.510	16.520	12.750	7.467	13.200	54.570	21.260	20.910
10	128.500	54.550	129.000	28.290	14.020	15.210	10.550	7.373	10.160	42.290	17.970	27.560
11	106.300	164.100	136.000	26.660	13.720	14.620	10.280	7.202	13.310	33.830	34.920	27.990
12	68.410	203.700	86.600	25.060	13.690	13.990	10.840	7.383	13.400	31.570	64.500	21.910
13	61.280	167.500	70.720	23.830	13.400	13.390	10.370	7.722	10.630	30.990	33.650	20.040
14	58.290	139.600	67.490	22.890	16.420	12.870	10.800	7.652	9.342	24.620	26.400	19.390
15	57.200	210.800	63.610	22.220	17.970	12.560	10.760	7.620	8.361	20.970	101.000	18.810
16	84.800	186.300	58.570	21.620	15.070	12.530	11.100	7.471	7.900	19.790	196.500	18.620
17	146.600	121.300	102.900	23.620	15.880	12.910	10.990	7.342	7.612	22.260	79.140	18.250
18	131.700	141.600	104.100	28.390	16.340	12.480	11.650	7.139	7.291	32.290	53.410	17.120
19	122.300	234.800	78.120	24.690	16.700	12.890	12.170	7.045	7.072	27.330	43.690	16.290
20	126.900	193.000	60.820	22.470	16.190	44.990	11.900	6.929	6.958	33.420	38.270	15.680
21	250.000	206.800	51.390	21.310	14.660	24.160	11.140	6.765	6.883	23.520	37.660	14.940
22	197.200	543.400	46.260	20.840	14.100	16.860	10.710	6.652	7.010	23.670	46.600	72.290
23	157.600	295.900	45.350	27.210	13.760	14.360	10.890	6.616	8.089	46.850	42.520	62.220
24	116.500	142.200	49.550	32.800	15.350	13.070	10.820	7.025	20.310	40.920	90.210	35.740
25	88.900	104.700	68.720	26.150	18.600	12.380	10.490	7.140	19.050	60.230	76.910	26.720
26	74.620	82.480	125.400	21.890	18.560	11.640	9.898	7.598	22.480	82.050	60.060	19.650
27	72.780	84.010	114.500	19.860	18.220	10.980	9.542	7.413	18.480	-78.740	48.810	18.480
28	171.700	126.600	78.170	18.080	29.420	10.620	9.573	7.075	16.410	57.420	39.780	27.420
29	139.100		64.740	17.320	26.720	10.380	9.535	7.092	12.950	44.460	34.100	43.770
30	89.260		65.190	16.830	27.220	9.996	9.204	7.463	11.430	36.050	29.960	49.860
31	587.500		75.510		27.070		10.510	7.134		30.010		41.710
Averago	125.300	167.400	85.900	29.610	17.050	17.150	10.970	7.416	10.920	48.800	45.660	27.590
Lowest	57.200	54.550	45.350	16.830	13.400	9.996	9.204	6.616	6.883	11.300	15.120	14.940
Highast	587.500	543.400	194.000	70.020	29.420	44.990	18.720	9.238	22.480	125.100	196.500	72.290
Paak flow	896.20	894.60	297.90	77.69	32.79	62.79	25.68	8.85	28.53	188.60	294.40	127.70
Day of peak Monthly total	31	1	1	1	28	20	7	1	24	6	16	22
(mitlion cu m)	335.70	405.00	230.10	76.75	45.67	44.45	29.38	19.86	28.29	130.70	118.30	73.89
Runoff (mm)	147	177	101	34	20	19	13	9	12	57	52	32
Rainfatl (mm)	209	193	112	27	66	34	53	15	84	157	97	39

Statistics of monthly data for previous record (Oct 1967 to Dec 1994)

Moan	Avg.	87.360	67.650	64.020	43.440	28.000	21.990	21.600	27.150	37.770	58.610	78.020	87.230
flows:	Low	39.260	26.630	23.020	13.070	10.880	10.420	8.351	7.023	9.216	7.961	23.110	32.490
	(yoar)	1985	1986	1993	1974	1980	1973	1984	1976	1972	1972	1993	1971
	High	151.200	219.000	119.700	71.490	68.460	50.380	60.380	93.790	108.300	225.000	130.500	151.700
	(year)	1975	1990	1968	1993	1983	1972	1988	1985	1985	1967	1984	1979
Runoff:	Avg.	102	72	75	49	33	25	25	32	43	69	88	102
	Low	46	28	27	15	13	12	10	8	10	9	26	38
	High	177	- 232	140	81	80	57	71	110	123	264	148	178
Rainfall:	Avg.	131	81	106	68	68	73	82	96	107	124	128	140
	Low	44	13	43	B	19	21	22	19	25	31	54	43
	High	232	279	179	142	135	168	221	211	231	307	208	371
Summ	ry 8	istics								rs affe	g runof		
								1995					
				1995		or record eding 199		As \% of pre-1995		ervoir(s) straction	catchm public	ater sup	
Mean flow	\% [m 3							pras 94					
Lowest	yearly	8an			28.		1973						
Highast	vearly	ean			60.		1982						
Lowast	montht	mean		16			1976						
Highest	month	mean	167		225.		1987						
Lowest	daily m			1623			1976						
Highest	daily m		587		772.		1968						
Poak			896	00 31	1357.		1968						
10\% exc	ceedanc		120		113.			106					
50\% oxc	ceodan				31.			74					
95\% exc	coedanc			86				74					
Annual t	total (m)	ion cump	153		1637			94					
Annual r	runotf t		6		71			94					
Annual r	rainfald	m)	108		120			90					
1961	-90 rai	all average	(mm)		118								

Station and catchment description

Velocity-area station. Permanent cableway. Full-range. Most floods contained in immediate channel. Pre-1970 (when floodbanks constructed) bypassed via Caldew floodplain. Highly influenced by Ullswater, Haweswater and Wet Sleddale especially at low flows. Periodic recalibration Rural except for Carlisie. Penrith and Appleby. Headwaters in Carboniferous Limestone of Pennines to east, impervious Lower Palaeozoics of Lake District massif to west; moorland. Extensive Boutder Clay covered Permo-Triassic sandstone in Vale of Eden. Arable and grazing.

Measuring authority: SEPA-W First year: 1967

Grid reference: 25 (NX) 858994 Level stn. (m OD): 52.20

Catchment area (sq km): 471.0
Max alt. (m OD): 725

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	gs*OCT	NOV	DEC
1	16.240	48.330	41.910	19.130	3.052	6.434	1.281	-1.102	1.071	12.530^{\prime}	16.660	9.690
2	11.810	63.370	23.900	12.380	2.790	5.281	1.332	1.107	1.422	41.440 -	13.200	9.286
3	9.905	63.680	17.380	13.740	2.622	9.551	1.348	0.948	2.078	37.660	10.800	23.300
4	21.840	40.130	14.500	15.390	2.507	9.233	1.302	0.883	2.100	43.720	8.753	14.010
5	53.320	44.620	26.640	32.950	2.372	5.850	1.434	0.843	4.714	19.250	7.711	10.370
6	20.790	31.730	17.420	16.480	2.301	5.053	1.513	0.819	3.701	85.470	6.943	8.905
7	23.880	25.160	13.920	11.280	2.501	4.257	1.539	0.813	2.256	30.710	6.574	7.968
8	21.590	15.980	12.430	9.059	2.333	3.534	1.456	0.837	2.143	18.770	6.181	7.133
9	100.800	12.310	43.480	8.088	2.198	3.063	1.345	0.833	1.881	13.200	6.003	6.937
10	65.150	11.100	261.900	8.143	2.113	2.751	1.236	0.815	1.620	10.170	5.681	6.686
11	30.730	34.930	113.500	6.694	2.053	2.552	1.340	0.802	1.902	9.045	12.760	6.210
12	19.290	33.390	40.500	5.957	2.620	2.377	1.887	0.828	1.785	31.290	16.750	5.672
13	16.600	38.870	29.510	5.201	2.447	2.214	1.667	0.882	1.520	33.560	9.648	5.336
14	14.920	58.040	24.960	4.728	2.964	2.144	1.625	0.901	1.406	17.190	8.071	4.7 .16
15	22.550	30.100	20.670	4.309	2.680	2.027	1.861	0.910	1.277	21.120	44.540	4.507
16	143.300	20.440	36.330	4.046	2.211	1.995	1.824	0.887	1.199	15.200	29.630	4.406
17	79.540	30.310	35.040	5.792	2.165	2.159	1.731	0.862	1.155	27.010	15.780	4.166
18	51.950	54.060	25.280	6.869	2.219	2.124	1.946	0.868	1.131	14.970	12.310	3.848
19	32.150	37.070	18.620	5.189	2.174	2.941	1.828	0.903	1.092	13.510	11.120	3.680
20	23.720	31.300	13.890	4.400	2.077	6.509	1.732	0.842	1.070	17.040	9.691	2.587
21	53.530	26.160	11.590	4.468	1.958	3.086	1.699	0.812	1.072	11.640	11.680	3.107
22	45.280	57.560	15.210	5.634	1.980	2.258	1.513	0.801	1.081	68.400	12.740	11.560
23	62.480	53.670	14.780	7.573	1.965	1.995	1.469	0.820	2.823	50.280	22.380	8.690
24	49.910	29.750	51.780	11.960	2.926	1.803	1.580	0.925	11.360	73.550	48.750	6.053
25	30.290	22.100	39.560	6.843	4.834	1.681	1.463	1.280	9.353	77.220	45.570	5.549
26	19.360	16.470	70.500	4.851	2.921	1.535	1.263	1.487	10.430	175.300	29.100	5.785
27	15.300	46.970	32.770	4.151	38.790	1.472	1.590	1.525	11.290	69.700	18.440	5.634
28	43.440	69.630	19.290	3.610	38.200	1.421	1.537	1.278	7.775	43.830	14.170	5.531
29	30.980		14.200	3.386	24.500	1.372	1.350	1.247	5.038	26.570 :	12.180	5.454
30	54.240		22.000	3.275	13.600	1.327	1.175	1.147	4.257	23.2400	10.490	5.400
31	135.300		20.760		8.210		1.073	1.091		20.040		5.343
Average	42.590	37.400	36.910	8.519	6.074	3.333	1.514	0.971	3.367	37.180	16.140	7.017
Lowest	9.905	11.100	11.590	3.275	1.958	1.327	1.073	0.801	1.070	9.045	5.681	2.587
Highest	143.300	69.630	261.900	32.950	38.790	9.551	1.946	1.525	11.360	175.300	48.750	23.300
Peak flow	345.80	176.10	356.20	44.32	73.23	12.53	2.55	1.65	21.22	273.70	72.49	35.27
Day of peak	16	2	10	5	27	3	12	26	25	26	15	3
Monthly total (million cu m)	114.10	90.48	98.86	22.08	16.27	8.64	4.06	2.60	8.73	99.59	41.84	18.79
Runoff (mm)	242	192	210	47	35	18	9	6	19	211	89	40
Rainfall (mm)	266	207	199	51	97	38	61	33	118	308	107	48

Statistics of monthly data for previous record (Jun 1967 to Dec 1994)

[^8]Velocity-area station on long straight reach at particularly well confined site. Cableway. Gravel and rock bed. Natural channel control. Sensibly natural flow regime. Afton Reservoir has small influence.

084005 Clyde at Blairston

Measuring authority: SEPA-W
First yoar: 1958

Grid reference: 26 (NS) 704579 Level stn. (m OD): 17.60

Catchment area (sq km): 1704.2
Max alt. (m OD): 732

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	63.570	178.900	147.700	50.730	14.360	17.030	6.720	7.330	7.619	20.530	56.100	27.260
2	47.500	107.900	82.380	42.580	13.860	16.380	6.514	6.499	22.590	33.920	42.320	25.110
3	41.360	204.600	60.470	36.170	13.440	14.550	6.519	6.295	35.790	75.830	36.730	25.470
4	37.410	138.700	52.590	41.120	12.350	16.440	6.741	5.988	19.540	60.700	31.440	27.190
5	64,570	110.100	81.670	84.650	11.840	15.860	6.751	5.378	23.000	53.320	27.830	23.500
6	62.070	104.500	60.570	57.770	10.710	13.890	6.727	5.359	24.040	62.970	26.330	21.470
7	61.840	71.530	52.810	41.140	11.530	13.160	7.346	5.342	22.670	67.700	24.770	20.680
8	64.800	54.010	46.650	33.660	11.770	12.340	7.594	5.437	22.640	42.650	23.280	18.450
9	199.300	45.020	55.360	30.090	12.030	11.290	7.562	5.342	19.640	30.670	21.750	17.380
10	149.200	40.540	178.700	28.630	12.420	10.310	7.499	5.356	14.580	25.770	20.540	18.000
11	95.970	73.670	299.900	26.610	11.720	10.370	8.499	5.231	11.650	24.790	23.520	17.550
12	56.380	101.400	123.200	24.320	16.080	9.854	8.942	5.605	9.086	51.670	39.470	16.690
13	50.540	95.930	78.350	22.830	16.380	8.734	7.914	5.971	9.027	135.100	28.520	15.770
14	46.820	106.300	70.930	21.190	14.100	8.690	20.010	5.871	8.588	60.370	24.390	15.920
15	48.180	98.010	74.110	20.810	12.950	8.624	13.110	5.473	8.411	43.610	107.100	15.890
16	152.300	89.100	117.800	19.250	12.130	8.371	10.480	5.160	8.202	37.460	138.400	15.870
17	141.400	100.800	169.500	20.380	11.810	8.225	9.542	5.241	7.775	67.590	61.640	15.290
18	149.800	93.780	117.700	22.090	11.600	8.778	8.944	6.021	7.388	45.860	43.400	14.520
19	84.090	106.100	81.890	20.760	11.950	9.374	8.443	6.003	6.615	34.460	37.000	14.480
20	67.470	85.530	58.600	19.030	11.700	11.090	13.840	5.830	6.654	32.750	33.720	13.210
21	82.040	90.170	48.050	18.190	11.010	11.920	14.100	5.762	6.644	33.430	31.840	11.780
22	175.400	155.300	45.830	19.100	11.010	9.358	10.150	5.503	6.728	214.300	32.090	25.490
23	165.600	152.100	47.290	28.010	11.050	8.919	9.080	5.467	10.470	144.700	47.280	31.970
24	109.800	95.450	107.700	29.100	13.650	8.390	8.616	6.651	22.620	106.300	71.380	22.270
25	79.880	74.160	95.180	28.010	16.130	8.349	8.315	6.670	26.520	158.600	68.790	16.430
26	57.720	54.900	92.660	21.090	14.000	7.247	7.514	10.190	23.860	288.400	58.810	11.990
27	47.570	119.300	91.880	18.490	12.400	6.819	7.497	8.083	29.460	219.700	46.200	14.150
28	108.900	191.700	58.170	17.000	28.860	8.201	7.405	6.807	21.160	123.600	37.990	16.820
29	100.400		47.760	15.590	32.890	7.579	6.875	6.747	15.200	83.030	32.780	18.390
30	76.930		44.760	14.850	28.340	7.449	7.215	6.485	12.890	69.580	28.930	23.840
31	293.200		51.500		20.750		7.744	6.366		65.750	28.930	26.020
Average	96.190	105.000	88.440	29.110	14.670	10.590	8.845	6.112	15.700	81.130	43.480	19.320
Lowest	37.410	40.540	44.760	14.850	10.710	6.819	6.514	5.160	6.615	20.530	20.540	11.780
Highast	293.200	204.600	299.900	84.650	32.890	17.030	20.010	10.190	35.790	288.400	138.400	31.970
Pask flow Day of peak Monthly total	310.80 31	$\begin{gathered} 286.90 \\ 1 \end{gathered}$	$\begin{gathered} 329.80 \\ 11 \end{gathered}$	$\begin{gathered} 95.69 \\ 5 \end{gathered}$	$\begin{aligned} & 39.96 \\ & 29 \end{aligned}$	$\begin{gathered} 19.03 \\ 1 \end{gathered}$	$\begin{aligned} & 28.92 \\ & 14 \end{aligned}$	$\begin{aligned} & 12.18 \\ & 26 \end{aligned}$	$\begin{gathered} 46.68 \\ 3 \end{gathered}$	$\begin{gathered} 333.80 \\ 26 \end{gathered}$	$\begin{gathered} 197.50 \\ 16 \end{gathered}$	
(million cu m)	257.60	254.00	236.90	75.45	39.30	27.44	23.69	16.37	40.70	217.30	112.70	51.74
Runoff (mm)	151	149	139	44	23	16	14	10	24	128	66	30
Rainfall (mm)	168	164	133	44	66	29	66	33	119	230	69	33

Statistics of monthly data for previous record (Oct 1958 to Dec 1994)

Station and catchment description
Recorder moved to present position in Nov, 1974 from opposite bank. Section is natural with steep grass and tree covered banks. Velocity profile slightly uneven due to upstream bend. Control - piers of redundant rail bridge, $300 \mathrm{~m} \mathrm{~d} / \mathrm{s}$. Section rated by current meter to 3.4 m , just below max. recorded stage. Some naturalised flows available. Very mixed geology with the ofder formations (Ordovician/Silurian) to the south. below max. recorded stage. Some naturalised flows available. Very mixed geology with the order formations (Ordovician
Hill pasture and moorland predominates but some mixed farming and urban development is found in the lower valley.

085003 Falloch at Glen Falloch

Measuring authority: SEPA-W First year: 1970

Grid reference: 27 (NN) 321197 Level stn. (m OD): 9.50

Catchment area (sq km): 80.3 Max alt. (m OD): 1130

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	Nov	DEC
1	1.106	11.580	4.405	13.920	1.296	2.226	0.054	0.142	1.731	19.910	2.610	1.834
2	1.252	40.400	2.524	13.120	6.481	1.514	0.073	0.095	6.306	30.220	1.781	3.763
3	0.866	36.160	2.076	9.466	1.703	5.050	0.077	0.095	2.105	9.172	1.377	12.090
4	13.350	8.751	1.781	9.515	1.118	1.542	0.066	0.082	1.022	32.750	1.130	2.355
5	15.600	34.150	1.911	17.800	0.620	1.566	3.671	0.071	1.592	34.370	1.008	1.692
6	4.861	54.640	1.558	8.338	0.583	1.196	1.820	0.061	0.910	35.080	1.000	1.483
7	25.760	4.132	1.346	4.817	0.921	0.693	0.560	0.051	2.974	7.255	5.674	1.286
8	19.430	1.627	1.710	1.984	0.695	0.538	0.291	0.047	2.695	3.866	5.066	0.928
9	41.850	1.143	15.040	3.278	0.477	0.404	0.407	0.042	1.187	3.431	2.726	1.760
10	4.339	0.855	61.570	2.888	0.403	0.360	0.194	0.034	0.742	5.706	1.829	1.478
11	1.767	13.430	14.830	4.522	0.325	0.317	3.486	0.031	0.576	17.130	7.885	1.073
12	2.704	15.590	10.560	2.051	0.276	0.196	1.528	0.041	0.505	8.685	3.987	0.868
13	6.659	18.110	21.480	1.615	0.276	0.174	0.453	0.066	1.749	7.771	1.944	0.728
14	6.362	23.160	6.714	1.881	0.318	0.178	4.936	0.062	1.075	3.548	1.469	0.643
15	26.860	14.180	3.869	1.536	0.243	0.150	6.103	0.051	0.583	11.950	4.106	0.617
16	27.320	10.680	11.730	1.681	0.216	0.182	1.504	0.039	0.415	38.910	1.642	0.725
17	17.790	5.255	4.789	3.238	0.216	0.614	2.073	0.031	0.319	15.540	1.115	0.552
18	7.118	16.440	3.080	1.627	0.617	1.945	1.967	0.027	0.262	5.423	1.007	0.502
19	3.160	8.379	2.271	0.955	0.880	5.035	21.810	0.026	0.230	6.096	1.223	0.415
20	4.179	4.983	1.804	0.665	0.757	1.675	16.650	0.023	0.186	2.996	7.213	0.255
21	6.608	20.680	2.663	0.613	0.433	0.622	2.988	0.020	0.171	29.550	19.710	0.294
22	9.082	11.620	6.740	1.039	0.613	0.363	4.358	0.023	0.336	15.120	16.720	0.581
23	6.173	5.686	51.200	1.438	0.544	0.240	13.640	0.024	20.690	17.010	42.120	0.562
24	4.096	2.877	7.322	1.611	1.690	0.188	2.187	1.043	5.181	64.160	40.500	0.417
25	1.964	1.762	7.322	2.063	1.581	0.151	1.120	1.007	29.320	39.390	10.320	0.319
26	1.162	2.627	7.398	0.751	2.566	0.115	0.581	0.523	6.785	21.010	6.085	0.299
27	1.116	90.960	2.540	0.518	37.490	0.086	0.393	0.270	5.711	10.010	2.762	0.334
28	9.691	22.660	2.020	0.425	23.170	0.072	0.616	0.155	2.374	4.121	2.226	0.391
29	3.967		1.802	0.395	15.210	0.062	0.590	0.165	1.472	2.826	2.092	0.529
30	16.940		21.240	0.689	3.756	0.056	0.306	0.139	10.220	9.626	1.455	0.654
31	35.800		13.330		2.486		0.198	0.097		7.286		1.232
Average	10.610	17.230	9.633	3.815	3.483	0.917	3.055	0.148	3.647	16.770	6.659	1.312
Lowest	0.866	0.855	1.346	0.395	0.216	0.056	0.054	0.020	0.171	2.826	1.000	0.255
Highest	41.850	90.960	61.570	17.800	37.490	5.050	21.810	1.043	29.320	64.160	42.120	12.090
Peak flow	141.80	184.00	136.00	38.87	64.79	7.74	84.53	2.72	113.20	179.30	76.13	45.69
Day of peak	9	27	23	3	27	3	20	24	25	6	23	3
Monthly total (million cu m)	28.42	41.69	25.80	9.89	9.33	2.38	8.18	0.40	9.45	44.92	17.26	3.51
Runotf (mm)	354	519	321	123	116	30	102	5	118	559	215	44
Rainfall (mm)	474	524	354	89	158	53	201	40	216	563	223	69

Statistics of monthly data for previous record (Oct 1970 to Dec 1994 -incomplete or missing months total 0.3 years)

Mean flows:	Avg.	9.685	5.884	7.932	3.736	2.723	2.350	2.735	4.123	6.373	7.009	8.265	8.816	
	Low	1.926	0.489	0.854	0.408	0.133	0.284	0.634	0.339	0.751	1.362	2.875	1.416	
	(year)	1985	1986	1975	1974	1980	1992	1984	1983	1972	1974	1993	1981	
	High	20.620	18.500	21.400	9.346	10.980	6.369	7.402	10.810	11.210	16.050	14.670	17.150	
	(year)	1993	1990	1990	1991	1986	1994	1988	1992	1981	1983	1986	1994	
Runoff:	Avg.	323	179	265	121	91	76	91	138	206	234	267	294	
	Low	64	15	28	13	4	9	21	11	24	45	93	47	
	High	688	557	714	302	366	206	247	361	362	535	474	572	
Rainfall: Avg. Low High		389	230	306	145	133	137	164	205	287	304	339	365	
		. 93	11	100	15	19	42	66	42	40	89	117	111	
		739	675	696	357	439	252	365	507	468	645	614	666	
Summary statistics									Factors affecting runoff					
			'For 1995		For record aceding 1995			$\begin{gathered} 1995 \\ \text { As \% of } \\ \text { pre-1995 } \\ 110 \end{gathered}$						
			- Natural to within 10\% at 95 percentile flow.											
Mean flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)			6.381					5.809						
Lowest yearly mean					4.440		1972							
Highest yearly mean					7.905		1994							
Lowest monthly mean					0.133		1980							
Highest monthly mean					21.400		1990							
Lowest daily mean				O 21	0.032		1977							
Highest daily mean					$123.600 \quad 10$		1994							
Peak			184	- 27	226.7002		1971							
10\% exceedance					16.210			115						
50\% exceedance					2.214			BO						
95\% exceedance					0.268									
Annual total (million cu m)					183.30			110						
Annual runoff (mm)			25		2283			110						
Annual rainfall (mm)			29		3004			99						
1961.90 rainfall average (mm)					2842									

Station and catchment description

Velocity-area station with artificial low flow control (long broad-crested weir with rectangular low flow notch) - installed 1975. Damage to part of the high flow crest results in a small discharge bypassing the central notch. All but very high flows contained. No significant abstractions or discharges. Very responsive flow regime. A very wet mountainous catchment developed on ancient metamorphic formations - some Drift cover.

Massuring authority: SEPA-N First year: 1979

Grid reference: 18 (NG) 942429 Level stn. (m OD): 5.60

Catchment area (sq km): 137.8 Max alt. (m OD): 1053

Daily mean gauged discharges (cubic metrea per second)

DAY	JAN	FEB	MAR	APA	MAY	JUN	Jul	AUG	SEP	OCT	Nov	DEC
1	4.520	24.110	12.230	12.080	3.625	4.317	0.713	1.069	3.239	35.390	6.246	3.294
2	3.407	16.740	6.221	23.140	7.328	5.607	0.705	0.949	3.913	34.130	4.691	2.957
3	2.873	48.400	4.251	23.420	4.996	10.650	0.810	0.857	4.693	21.220	3.545	5.289
4	9.701	21.110	3.402	14.780	3.712	6.971	0.886	0.750	3.167	12.210	2.814	4.193
5	35.080	44.280	3.480	15.300	3.076	4.451	12.630	0.657	2.807	24.950	2.447	3.246
6	13.310	104.700	3.008	14.990	2.498	3.715	10.580	0.617	2.699	13.890	3.060	2.765
7	28.610	19.400	2.571	14.970	5.134	5.248	5.753	0.590	2.362	8.911	14.380	2.441
8	25.920	6.672	3.186	7.099	9.135	6.307	3.410	0.542	9.453	6.302	15.190	2.220
9	52.340	3.910	3.895	7.212	6.415	3.972	2.373	0.522	5.118	4.148	7.231	2.142
10	17.040	2.832	20.210	7.021	4.217	3.026	1.789	0.515	3.435	4.157	4.481	2.255
11	7.094	15.860	22.890	9.765	3.042	2.542	1.435	0.475	5.344	5.257	3.492	2.193
12	19.010	25.430	21.000	6.182	2.525	2.047	1.299	0.587	19.180	6.331	2.971	2.039
13	30.940	14.230	36.720	4.583	2.641	1.738	1.341	1.276	7.244	6.241	2.467	1.917
14	25.600	35.580	19.460	4.805	2.712	1.552	1.586	1.095	3.946	4.787	2.328	1.773
15	40.810	60.310	9.294	6.141	2.301	1.397	3.032	0.902	2.631	3.806	2.482	1.693
16	44.240	16.910	14.400	11.910	2.152	1.346	2.878	0.838	2.058	20.460	2.121	1.631
17	14.780	10.170	9.117	15.170	2.187	6.489	2.414	0.776	1.725	31.240	1.834	1.556
18	22.950	12.810	6.366	9.309	4.437	8.707	2.612	0.717	1.414	49.370	5.612	1.500
19	7.634	18.980	4.379	9.953	6.813	4.744	36.460	0.640	1.237	23.160	6.303	1.409
20	8.979	9.221	3.500	12.240	5.671	3.520	16.100	0.682	1.125	9.767	4.529	1.274
21	12.550	13.570	6.786	15.510	3.414	2.666	7.502	0.706	1.210	15.840	6.985	1.211
22	33.360	13.650	24.840	12.620	3.122	1.976	6.868	1.082	2.413	17.170	62.620	1.245
23	33.680	10.890	39.390	16.340	2.604	1.599	13.020	1.089	36.780	13.040	70.120	1.193
24	25.810	6.375	49.680	11.670	2.326	1.394	7.351	5.537	35.490	24.420	47.030	1.263
25	8.229	4.958	17.240	9.442	2.271	1.221	3.909	8.336	47.360	36.670	15.330	1.286
26	4.382	5.525	17.350	5.698	1.974	1.080	2.617	5.215	19.480	24.090	15.000	1.261
27	3.278	103.800	7.473	3.930	1.807	0.956	1.977	5.510	17.960	14.910	9.908	1.252
28	4.887	38.880	4.921	3.159	1.975	0.865	1.813	4.319	12.230	9.260	6.658	1.468
29	4.098		3.412	2.692	5.667	0.816	2.148	5.956	7.016	6.647	4.955	1.319
30	10.980		53.470	2.828	10.100	0.795	1.703	3.986	8.127	19.750	4.015	1.282
31	54.960		27.320		6.317		1.429	2.832		11.060		1.191
Average	19.710	25.330	14.890	10.470	4.071	3.390	5.134	1.923	9.162	16.730	11.360	1.992
Lowest	2.873	2.832	2.571	2.692	1.807	0.795	0.705	0.475	1.125	3.806	1.834	1.191
Highast	54.960	104.700	53.470	23.420	10.100	10.650	36.460	8.336	47.360	49.370	70.120	5.289
Poak flow	86.89	173.90	91.11	47.56	12.66	14.36	66.26	12.59	105.10	91.91	126.70	7.00
Day of peak	9	6	30	2	29	17	19	25	25	18	23	3
(million cu m)	52.79	61.28	39.87	27.13	10.90	8.79	13.75	5.15	23.75	44.81	29.45	5.34
Runoff (mm)	383	445	289	197	79	64	100	37	172	325	214	39
Rainfall (mm)	498	444	300	177	113	76	164	92	289	323	218	43

Statistics of monthly data for previous record (Jan 1979 to Dec 1994)

Station and catchment description
40 m wide river section with floodbank on right. Any bypassing in extreme floods will be over 30m wide floodplain on left bank. Unstable gravel control requires regular calibration of low flow range. Adequately gauged to bankfult. Computed flows are 100% natural, 70% of catchment drains through Loch Dughaill with little additional surface storage. Typical mix of rough grazing and moorland. One of the wetter Highland catchments currently gauged.

201005 Camowen at Camowen Terrace

Measuring authority: DOEN First year: 1972

Grid reference: 23 (IH) 460730
Level stn. (m OD): 66.00

Catchment area (sq km): 274.6 Max alt. (m OD): 539

Daily mean gauged discharges (cubic metres per second)												
DAY	JAN	FEB	MAR	-APR	MAY'	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	11.420	11.810	19.750	5.874	2.199	2.086	1.181	1.155	1.101	2.149	4.092	9.265
2	9.275	9.126	13.350	4.925	2.167	2.017	1.165	1.006	1.494	4.778	3.578	8.518
3	12.380	9.840	10.410	4.436	2.174	1.955	1.295	0.944	1.116	5.748	3.241	10.990
4	10.500	10.170	13.060	4.287	2.048	1.946	1.306	0.950	1.641	3.437	3.043	7.344
5	10.120	7.976	24.810	4.463	1.980	1.878	1.289	0.952	1.340	4.090	2.749	6.159
6	7.917	7.167	14.880	4.266	1.944	1.796	1.322	0.919	1.045	12.470	2.541	5.500
7	9.583	10.960	14.230	3.947	1.798	1.743	1.247	0.929	0.898	5.165	2.451	5.040
8	8.929	11.310	20.490	3.684	1.822	1.581	1.327	0.902	0.801	3.310	2.414	4.445
9	8.866	8.284	46.380	3.595	1.715	1.576	1.421	0.842	0.812	2.222	2.394	4.112
10	37.350	16.130	35.450	3.396	1.744	1.553	1.247	0.723	0.877	1.847	2.227	3.838
11	12.870	46.290	13.360	3.222	1.704	1.582	1.543	0.695	0.904	1.637	9.485	3.578
12	8.466	13.280	9.836	3.056	1.702	1.596	1.473	0.721	0.985	1.976	24.020	3.216
13	7.315	9.847	8.206	2.702	1.696	1.465	1.921	0.729	0.918	3.560	14.680	3.114
14	6.986	12.490	8.050	2.532	1.727	1.459	2.225	0.845	0.816	2.640	12.840	3.008
15	9.382	18.510	10.510	2.448	1.664	1.433	1.862	0.749	0.748	3.190	30.550	2.896
16	42.560	19.720	8.707	2.553	1.733	1.430	1.971	0.661	0.697	5.126	13.040	2.755
17	28.850	15.970	17.630°	3.772	1.751	1.494	2.328	0.653	0.701	10.640	7.705	2.604
18	22.380	19.240	12.430	3.769	1.735	1.547	2.567	0.554	0.704	4.186	5.922	2.542
19	11.070	15.740	9.720	3.445	1.766	1.879	1.877	0.581	0.645	3.383	5.275	2.482
20	11.390	16.060	7.575	3.905	1.706	1.945	5.401	0.555	0.630	3.822	6.408	2.411
21	56.030	13.540	6.289	3.124	1.747	1.603	3.339	0.555	0.608	2.878	11.500	7.898
22	19.450	26.570	5.561	2.843	1.978	1.385	2.074	0.579	0.586	14.200	6.301	21.660
23	38.370	14.050	5.287	4.604	1.843	1.338	1.867	0.684	0.856	18.880	5.354	8.935
24	20.930	9.931	5.222	3.722	1.783	1.272	1.815	0.700	1.278	87.550	18.700	6.575
25	12.190	9.539	5.126	3.000	1.811	1.320	1.502	0.656	0.967	39.910	18.320	4.931
26	' 9.246	9.295	7.661	2.628	1.752	1.268	1.241	0.777	1.397	57.530	18.950	4.095
27	42.150	9.542	6.930	2.408	2.333	1.149	1.242	0.769	1.594	15.640	20.290	3.320
28	26.350	23.830	19.340	2.449	2.632	1.070	1.718	0.737	1.536	9.585	18.760	3.460
29	13.440		7.308	2.364	3.906	1.157	1.515	0.771	1.450	6.925	22.960	3.918
30	15.470		6.393	2.339	2.948	1.180	1.384	0.730	1.412	5.456	14.930	4.138
31	25.330		6.009		2.377		1.271	0.781		4.806		11.380
Average	18.280	14.510	12.900	3.459	1.996	1.557	1.772	0.768	1.019	11.250	10.490	5.617
Lowest	6.986	7.167	5.126	2.339	1.664	1.070	1.165	0.554	0.586	1.637	2.227	2.411
Highest	56.030	46.290	46.380	5.874	3.906	2.086	5.401	1.155	1.641	87.550	30.550	21.660
Peak flow	98.90	68.87	102.60	6.18	4.64	2.18	9.96	1.23	2.04	112.40	46.04	33.17
Day of peak	21	11	9	1	29	1	20	1	4	24	11	22
Monthly total (million cu m)	48.95	35.10	34.56	8.97	5.35	4.03	4.75	2.06	2.64	30.13	27.19	15.04
Runoff (mm)	178	128	126	33	19	15	17	7	10	110	99	55
Rainfall (mm)	184	142	120	35	51	25	87	14	82	192	132	62

Statistics of monthly data for previous record (May 1972 to Dec 1994)

Station and catchment description
Velocity-area station with cableway and weir control - informal broad-crested structure (for angling enhancement), dimensions not known. The net effect of abstractions for public water supply and augmentations from effluent returns is minor. Catchment geology: mixed impermeable rocks (granite, schist and gneiss, and sandstone) overlain by substantial deposits of till, sand and gravel. Largely upland given over mainly to grassland or heath.

203010 Blackwater at Maydown Bridge

Measuring authority: DOEN
First year: 1970

Grid reference: 23 (IH) 820519
Level stn. (m OD): 15.00
Daily mean gauged discharges (cubic metres per socond)

Day	JAN	FEB	MAR	APP	MAY	Jun	Jut	AUG	SEP	OCT	NOV	DEC
1	41.060	55.120	59.570	11.940	4.178	3.409	1.143	1.125	0.638	1.823	11.850	58.390
2	29.040	29.460	37.470	10.520	4.069	2.785	1.038	1.040	0.704	2.876	10.270	34.880
3	24.070	26.140	28.910	9.178	4.014	2.666	1.017	0.985	0.902	9.157	8.999	34.660
4	24.190	23.100	27.720	8.621	3.942	2.678	1.056	0.890	1.018	6.149	8.122	27.250
5	23.230	20.790	50.780	8.423	3.916	2.414	1.037	0.853	1.540	4.127	7.255	21.500
6	20.240	18.240	42.220	8.220	3.828	2.161	1.026	0.820	1.481	16.110	6.672	18.120
7	20.280	18.540	39.110	7.585	3.622	2.065	1.133	0.792	1.230	11.640	6.448	16.060
8	22.410	29.450	38.440	7.067	3.494	1.959	1.218	0.780	1.059	6.457	6.109	14.080
9	20.420	21.840	35.630	6.772	3.453	1.808	1.272	0.740	0.954	4.324	6.073	12.350
10	40.680	35.490	105.900	6.940	3.347	1.728	1.096	0.734	0.925	3.268	5.733	11.290
11	46.610	91.670	57.440	6.395	3.228	1.667	1.182	0.712	1.030	2.687	9.446	10.430
12	23.460	89.430	28.170	6.026	3.086	1.849	1.273	0.696	1.176	3.370	58.040	9.664
13	19.040	34.350	22.670	5.800	3.068	1.574	1.167	0.721	1.145	11.060	63.290	8.966
14	17.410	41.750	20.510	5.573	2.957	1.532	2.174	0.721	1.149	7.227	37.320	8.505
15	18.250	48.960	24.900	5.262	2.902	1.487	3.516	0.788	1.021	5.369	101.700	8.085
16	57.780	49.310	25.970	5.165	2.790	1.461	2.498	0.812	0.965	6.970	82.080	7.733
17	50.040	34.210	36.300	6.044	2.748	1.495	2.907	0.775	0.921	19.780	37.700	7.332
18	57.740	34.870	34.520	7.849	2.630	1.560	4.289	0.770	0.881	10.620	23.180	6.764
19	29.350	40.710	28.680	6.469	2.552	1.703	3.583	0.731	0.844	6.450	18.430	6.184
20	25.610	36.540	22.560	5.425	2.461	3.344	3.398	0.689	0.789	5.761	15.910	5.791
21	80.310	32.370	18.250	4.928	2.487	2.749	6.283	0.638	0.782	4.919	22.750	11.270
22	78.870	100.900	15.710	4.752	2.524	2.048	3.251	0.625	0.755	9.397	18.740	45.300
23	83.280	71.760	14.270	7.955	2.478	1.701	2.281	0.643	0.809	40.680	15.670	31.790
24	98.940	36.000	13.400	8.503	2.371	1.527	1.998	0.649	0.987	79.470	33.230	26.100
25	53.690	26.120	12.870	6.569	2.340	1.370	1.882	0.631	1.500	112.400	82.180	17.750
28	33.640	22.130	13.040	5.424	2.275	1.307	1.698	0.656	1.861	126.200	69.360	13.430
27	82.000	21.430	17.260	4.720	2.432	1.277	1.464	0.643	2.080	106.500	104.900	10.380
28	87.540	39.810	31.650	4.432	3.687	1.289	1.363	0.643	1.805	59.600	102.800	8.113
29	44.830		21.210	4.411	5.756	1.275	1.357	0.611	1.686	28.270	107.200	10.380
30	32.480		14.730	4.322	6.639	1.245	1.340	0.606	1.503	18.110	100.700	9.570
31	102.200		13.040		4.670		1.246	0.600		14.130		15.430
Avorage	44.800	39.660	30.740	6.710	3.353	1.898	1.974	0.746	1.138	24.030	39.410	17.020
Lowast	17.410	18.240	12.870	4.322	2.275	1.245	1.017	0.600	0.638	1.823	5.733	5.791
Highest	102.200	100.900	105.900	11.940	6.639	3.409	6.283	1.125	2.080	126.200	107.200	58.390
Poak flow	117.70	115.30	112.90	12.35	7.75	4.17	8.04	1.18	2.45	130.70	114.70	
Day of peak	27	11	10	1	30	1	21	1	26	26	15	1
Monthly total (million cu m)	120.00	95.95	82.32	17.39	8.98	4.92	5.29	2.00	2.95	64.36	102.10	45.58
Runoff (mm)	126	101	87	18	9	5	6	2	3	68	107	48
Rainfall (mm)	145	125	93	32	43	29	75	11	72	186	153	54

Statistics of monthly data for previous record (Jul 1970 to Dec 1994)

Mesn	Avg.	33.240	26.860	23.610	15.140	7.928	6.022	4.250	8.347	10.240	17.090	25.070	31.770
flows:	Low	18.050	7.188	8.772	3.441	1.306	0.973	0.859	0.596	1.920	2.163	6.882	10.570
	(year)	1971	1986	1973	1974	1984	1975	1984	1975	1972	1972	1993	1971
	High	56.780	66.170	43.250	33.100	19.810	17.540	13.260	32.480	30.110	33.770	51.680	58.120
	(year)	1984	1990	1981	1989	1983	1981	1993	1985	1985	1988	1970	1993
Runotf:	Avg.	94	69	66	41	22	18	12	23	28	48	68	89
	Low	51	18	25	9	4	3	2	2	5	6	19	30
	High	160	168	122	90	56	48	37	91	82	95	141	164
Rainfall:	Avg.	111	77	90	64	58	63	66	85	83	94	93	101
	Low	46	4	33	14	8	19	17	15	7	36	36	30
	High	185	177	142	123	124	111	129	165	153	178	146	185

Summary statistics	For 1995		For record preceding 1995			$\begin{gathered} 1995 \\ \text { As \% of } \\ \text { pre-1995 } \\ 100 \end{gathered}$	Factors affecting runoff - Flow influenced by groundwater abstraction and/or recharge.
Mean flow ($\mathrm{m}^{\mathbf{3}} \mathbf{s}^{-1}$)	17.500		17.430				
Lowast yearly mean			9.712		1975		- Natural to within 10% at 95 percentile flow.
Highost yearly mean			23.860		1988		
Lowest monthly mean	0.746	Aug	0.596		1975		
Highest monthly mean	44.800	Jan	66.170		1990		
Lowest daily mean	0.600	31 Aug	0.043	6 S	1975		
Highost daily mean	126.200	26 Oct	172.000	22 D	1991		
Poak	130.700	26 Oct	174.200	31 D	1991		
10\% exceedance	49.030		44.100			111	
50\% exceedance	6.368		10.190			62	
95\% exceedance	0.731		1.171			62	
Annual total (million cum)	551.90		550.00			100	
Annual runotf (mm)	580		578			100	
Annual rainfall (mm)	1018		985			103	
1961-90 rainfall average (mm)			1008				

Station and catchment description
Velocity-area station with cableway and natural control. Flows influenced by major arterial drainage scheme - started in 1983/4. A substantial portion of the catchment is in the Irish Republic where some groundwater may be abstracted but its hydrological significance is uncertain. Geology: Carboniferous Limestone and Millstone Grit with sandstones overlain by substantial amounts of till. A predominantly rural catchment with limited afforestation. Monaghan Town (pop. 5,000) - in the Irish Republic - is the only significant urban centre.

203028 Agivey at White Hill

Measuring authority: DOEN First year: 1972

Grid reference: 24 (IC) 883193 Level stn. (m OD): 17.00

Catchment area (sq km): 98.9 Max alt. (m OD): 461

Daily mean gauged discharges (cubic metres per second)

Station and catchment description
Velocity-area station with cableway. Geology: mainly basalt overlain by till with some peat. Significant proportion of upland, predominantly grassland or heath. No urban areas or major industry.

Part (ii) - The monthly flow data

The introductory information (measuring authority etc.) is as described in Part (i).

Hydrometric statistics for the year

The monthly average, peak flow, runoff and rainfall figures are equivalent to the summary information following the daily mean gauged discharges in Part (i). Because of the rounding of monthly runoff values the runoff for the year may differ slightly from the sum of the individual monthly totals.

Monthly and yearly statistics for previous record

Monthly mean flows (Average, Low and High) and the monthly rainfall and runoff figures are equivalent to those presented in Part (i). Again, due to the rounding of monthly runoff values, the average runoff for the year derived from the previous record may differ slightly from the sum of the individual monthly totals. The peak flow is the highest discharge, in cubic metres per second, for each month. For many stations the archived series of monthly instantaneous maximum flows, from which the preceding record peak is abstracted, is incomplete, particularly for the earlier years, and certain of the peak flows are known to be of limited accuracy. Where the peak value - in an incomplete series - is exceeded by the highest daily mean flow on record, the latter is substituted; such substitutions are indicated by a ' d ' flag. An examination of the quality of the peak flow figures is continuing and significant revision may be expected as this review proceeds. The figures are published primarily to provide a guide to the range of river flows experienced throughout the year at the featured gauging stations (see footnote on page 138).

Factors Affecting Runoff

Code letters are used as described in Part (i). FAR codes have yet to be determined for a few catchments; their absence does not imply a natural flow regime.

Station type

The station type is coded by the list of abbreviations given below - two abbreviations may be applied to each station relating to the measurement of lower or higher flows. Where total flow is a summation of the flows measured in several component channels a ' + ' separates the code for the principal monitoring station from that for the subsidiary site(s).

B Broad-crested weir
C Crump (triangular profile) single crest weir
CB Compound broad-crested weir. The compounding may include a mixture of types such as rectangular profiles, flumes and shal-low-Vs and with or without divide walls
CC Compound Crump weir
EM Electromagnetic gauging station
EW Essex weir (simple Crump weir modified with angled, sloping, triangular profile flanking crests) in trapezoidal channel
FL Flume
FV Flat-V triangular profile weir
MIS Miscellaneous method
TP Rectangular thin-plate weir
US Ultrasonic gauging station
VA Velocity-area gauging station
VN Triangular (V notch) thin-plate weir

Comment

A note clarifying or qualifying data featured in the Hydrometric statistics section; for instance to indicate that the runoff values have been derived from naturalised flows.

Measuring authority: SEPA-N
First year: 1973
Grid reference: $28(\mathrm{NH}) 49092$
Lavel stn, (m OD): 70.70
Catchment area (sq km): 241.1

Hydrometric statistics for 1995

	JAN	FEB	MAA	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	18.550	28.540	13.370	11.330	5.699	2.514	0.986	0.771	19.940	8.394	13.330	2.383	0.32
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	136.10	197.90	-81.53	60.16	32.88	13.53	3.71	9.87	192.70	68.97	99.83	4.82	197.90
Runoff (mm)	206	286	149	122	63	27	11	9	214	93	143	26	1350
Rainfall (mm)	371	312	217	127	96	48	64	49	333	171	177	52	2017
Monthly and yearly statistics for previous record (Jan 1974 to Dec 1994)													
Mean Avg.	15.050	9.946	12.270	7.853	4.781	3.984	3.563	4.439	8.525	11.790	12.520	13.470	9.019
flows Low	7.226	1.944	3.680	1.294	1.020	0.957	1.142	0.983	3.117	3.963	2.390	5.595	6.846
$\left(m^{3} s^{-1}\right) \quad$ High	29.740	25.850	33.120	17.950	10.110	10.270	9.481	10.680	17.670	29.670	25.410	28.120	12.192
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	281.80	264.70	225.00	127.90	101.20	140.40	165.20	207.30	340.30	288.90	219.10	255.70	340.30
Runoff (mm)	167	101	136	84	53	43	40	49	92	131	135	150	1181
Rainfall (mm)* -(1981-1994)	276	159	244	105	91	96	91	125	196	233	217	250	2083
Factors affecting runoff: H										1995 runoff is 114% of previous mean rainfall 97%			

Station type: VA

004001 Conon at Moy Bridge

Measuring authority: SEPA-N
First year: 1947
Grid reference: 28 (NH) 482547
Level stn. (m OD): 10.00
Catchment area (sq km): 961.8
Hydrometric statistics for 1995

		JAN	$\stackrel{\text { FEB }}{ }$	MAR	APR 68.970	MAY	JUN 26.330	JUL 17.480	AUG 19.000	$\begin{aligned} & \text { SEP } \\ & 49.020 \end{aligned}$	$\begin{aligned} & \text { OCT } \\ & 68.180 \end{aligned}$	$\begin{aligned} & \text { NOV } \\ & 67.520 \end{aligned}$	$\begin{aligned} & \text { DEC } \\ & 44.780 \end{aligned}$	$\begin{aligned} & \text { Year } \\ & 57.433 \end{aligned}$
Flows	Avg.	100.300	116.600	81.280	68.970	34.880	26.330	17.480	19.000	49.020	68.180	67.520	44.780	57.433
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$:	Peak	215.20	318.70	145.40	125.70	76.31	66.61	63.02	67.85	184.80	166.70	201.20	111.00	318.70
Runoff (mm)		279	293	226	186	97	71	49	53	132	190	182	125	1883
Rainfall (mm)		353	310	180	109	80	46	82	47	265	204	154	37	1867

Monthly and yearly statistics for previous record (Oct 1947 to Dec 1994 -incomplate or missing months total 5.7 years)

Mean	Avg.	71.810	62.060	62.190	44.000	31.960	22.390	21.620	27.830	40.750	55.330	64.620	73.220	48.100
flows	Low	31.690	25.810	18.670	13.940	10.940	8.861	2.959	8.162	12.510	23.090	23.200	27.970	29.991
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$	High	138.300	164.600	191.500	94.150	55.480	48.190	40.010	45.140	94.870	94.030	121.700	165.100	77.536
Peak flow	$\left.\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$	617.00	703.90	507.00	203.90	232.20	165.20	247.40	254.90	223.70	324.80	411.80	1076.00	1076.00
Runoff (mm		200	158	173	119	89	60	60	78	110	154	174	204	1578
$\begin{aligned} & \text { Rainfall (min } \\ & \bullet(1953-19) \end{aligned}$		205	139	179	105	99	94	104	126	165	207	201	230	1854
Factors affecting runoff: H											1995 runoff is $\mathbf{1 1 9 \%}$ of previous mean rainfall 101\%			

Station type: VA

Grid reference: 28 (NH) 450300
Level stn. (m OD): 109.40
Measuring authority: SEPA-N
First year: 1979
Hydrometric statistics for 1995

Factors affecting runoff: N
Station type: VA
Catchment area (sq km): 105.9 Max alt. (m OD): 678

008007 Spey at Invertruim

1995

Measuring authority: SEPA-N First year: 1952
Hydrometric statistics for 1995

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	9.685	16.070	8.309	4.812	3.113	2.845	1.944	0.881	4.156	9.925	4.856	2.979	5.731
$\left(m^{3} s^{-1}\right):$ Peak	64.74	84.74	54.77	24.32	11.36	12.31	8.77	1.39	15.95	109.90	10.45	5.58	109.90
Runoff (mm)	65	97	56	31	21	18	13	6	27	66	31	20	451
Rainfall (mm)	259	257	152	48	89	43	80	24	190	259	100	26	1527
Monthly and yearly statistics for previous record (Oct 1952 to Dec 1994)													
Mean Avg.	9.991	7.457	8.022	4.420	3.602	2.965	2.841	3.291	4.662	6.720	7.498	9.520	5.915
flows Low	3.314	1.953	2.722	2.075	1.413	1.123	1.042	0.852	1.454	1.638	2.516	3.518	3.935
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	27.710	39.990	42.630	12.360	6.210	6.269	5.021	7.545	14.650	14.830	15.960	24.970	11.121
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	264.50	269.10	274.50	95.77	92.03	45.93	72.83	75.00	108.00	106.90	170.60	259.50	274.50
Runoff (mm)	67	45	54	29	24	19	19	22	30	45	49	64	486
Rainfall (mm)	176	112	137	76	85	76	84	104	133	163	160	183	1489
Factors affecting runoff: H Station type: VA										1995 runoff is 97% of previous mean rainfall 103\%			

009001 Deveron at Avochie

Measuring authority: SEPA-N
First yoar: 1959
Hydrometric statistics for 1995

	JAN	FEB	MAR	APR	MAY	JUN	Jul	AUG	SEP	ОСт	NOV	DEC	Year
Flows Avg.	9.841	12.850	6.916	9.626	6.504	8.390	3.234	2.081	29.890	6.241	12.580	8.813	9.683
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	37.01	43.89	23.66	54.44	20.01	67.75	4.88	2.47	228.90	12.33	78.22	19.23	228.90
Runotf (mm)	60	70	42	57	39	49	20	13	175	38	74	53	690
Rainfall (mm)	135	53	62	100	83	73	38	31	350	58	129	83	1195
Monthly and yearly statistics for previous record (Oct 1959 to Dec 1994)													
Moan Avg.	11.990	10.220	11.500	9.838	7.422	5.063	4.511	5.613	5.648	9.261	10.470	10.900	8.533
flows Low	3.527	3.052	3.391	4.314	3.274	2.610	1.766	1.621	2.092	1.934	2.668	3.504	4.051
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{High}$	24.440	19.720	22.230	21.500	21.930	11.130	9.841	19.110	16.040	28.210	29.790	23.590	12.437
Poak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	120.50	84.90	118.00	76.13	183.70	153.10	146.40	236.50	155.70	221.90	177.70	157.10	236.50
Runoff (mm)	73	57	70	58	45	30	27	34	33	56	61	66	610
Rainfall (mm)	90	64	76	69	72	68	73	90	85	104	100	87	978

Factors affecting runoff: N
Station typo: VA

Grid reference: 38 (NJ) 532464
Level stn. (m OD): 81.80

Catchment area (sq km): 441.6 Max alt. (m OD): 775

010002 Ugie at Inverugie

Measuring outhority: SEPA-N
First year: 1971
Hydrometric statistics for 1995

		JAN	FEB	MAR	APR	MAY	JUN
Flows	Avg.	6.550	6.126	4.746	4.469	2.567	2.553
$\left(\mathrm{~m}^{3}{ }^{-1}\right):$	Poak	22.90	26.00	9.59	14.16	4.40	6.73
Runoff (mm)	54	46	39	36	21	20	
Rainfall (mm)	77	48	58	69	62	57	

Monthly and yearty statistics for previous record (Feb 1971 to Dec 1994)

Moan	Avg.	7.438	6.274	5.732	4.096	3.272	2.242	1.952	2.096	2.391
flows	Low	2.085	2.088	1.791	1.624	1.467	1.200	0.927	0.858	0.912
$\left(\mathrm{~m}^{3} \mathrm{~s}^{-1}\right)$	High	11.300	14.620	9.751	7.785	8.103	4.296	4.901	6.225	7.052
Poak flow $\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$	66.40	96.74	70.49	40.26	35.57	13.29	23.66	21.24	36.25	
Runoff (mm)	61	47	47	33	27	18	16	17	19	
Rainfall (mm)	74	50	63	51	49	54	56	63	77	

Factors affecting runoff: N
Station type: VA

Grid reference: 48 (NK) 101485
Level stn. (m OD): 8.50

Catchment ares (sq km): 325.0 Max alt. (m OD): 234
runoff is 113% of previous mean
rainfall 122%
\square NOV

OCT	NOV	DEC	Year
4.466	5.523	5.951	4.686
10.36	18.39	21.74	107.00
37	44	49	453
66	71	88	876
4.926	6.305	6.951	4.487
0.894	1.531	1.360	2.069
9.785	18.230	13.320	6.505
94.52	99.28	87.75	99.28
41	50	57	434
88	87	74	786
1995 runoff is 104%	of previous mean		

rainfall 111\%

011001 Don at Parkhill

Moasuring authority: SEPA-N
First year: 1969
Grid reference: 38 (NJ) 887141
Level stn. (m OD): 9.90

Hydrometric statistics for 1995

		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	22.790	28.690	17.500	17.680	13.540	15.280	6.759	4.899	59.860	17.300	30.190	32.080	22.067
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) :	Peok	50.19	62.06	34.40	50.12	20.20	47.73	8.93	6.50	301.40	27.41	98.05	52.16	301.40
Runoff (mm)		48	55	37	36	28	31	14	10	122	36	61	68	547
Rainfall (mm)		105	44	50	70	68	57	37	28	282	66	106	85	998

Monthly and yearly statistics for previous record (Dec 1969 to Dec 1994)

Maan	Avg.	29.160	26.360	27.870	23.920	16.170	11.700	10.400
flows	Low	8.070	6.557	6.274	8.487	7.514	6.424	5.128
($\left.^{3} s^{-1}\right)$	High	52.260	52.240	50.410	44.750	34.770	27.560	27.530
Poak flow $\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$	185.90	131.00	159.30	107.50	92.06	101.60	118.10	
Runotf (mm)	61	51	59	49	34	24	22	
Rainfall (mm)	90	59	71	62	62	62		

Factors affecting runoff: N
Station type: VA

Catchment area (sq km): 1273.0
Catchment area (sq km): 1273.0
Max alt. (m OD): 872

	11.230	11.000
28	4.644	5.019
30	40.150	36.470
10	277.40	107.20
	24	22
	72	74

19.

46
56
273.
4

1995 runoff is 112% of previous mean rainfall 115%

JUL	AUG	SEP
1.442	0.932	10.970
2.12	1.24	107.00
12	8	87
34	22	224
1.952	2.096	2.391
0.927	0.858	0.912
4.901	6.225	7.052
23.66	21.24	36.25
16	17	19
56	63	77

012006 Gairn at Invergairn

Moasuring authority: SEPA-N
First yoar: 1978
Hydrometric statistics for 1995

	JAN	FE日	MAR	APA	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	3.943	6.250	4.108	4.376	3.742	3.263	1.040	0.666	7.442	3.541	5.904	3.329	3.934
($\mathrm{m}^{3} \mathrm{~s}^{-1}$): Poak	17.51	27.79	14.17	12.42	9.52	17.81	2.98	1.00	95.06	22.94	29.42	7.91	95.08
Runoff (mm)	70	101	73	76	67	56	19	12	129	63	102	59	827
Rainfall (mm)	133	66	70	52	71	39	41	39	237	108	99	66	1021
Monthly and yearly statistics for previous record (Nov 1978 to Dec 1994)													
Mean Avg.	4.873	4.245	5.724	5.169	3.732	2.594	1.748	1.962	2.588	4.649	4.324	4.571	3.847
flows Low	2.698	1.548	3.535	2.110	1.732	0.952	0.743	0.612	0.999	1.319	1.257	1.832	2.338
$\left.{ }_{(m)^{3}}{ }^{-1}\right) \mathrm{High}$	8.758	7.692	9.570	9.595	7.605	5.608	3.036	5.057	6.389	12.420	12.420	7.661	4.871
Poak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	85.37	38.88	88.91	37.34	28.98	47.25	24.92	65.69	58.09	95.09	61.22	48.55	95.09
Runolf (mm)	87	69	102	89	67	45	31	35	45	83	75	82	810
Rainfall (mm) ${ }^{0}$ $\cdot(1981-1994)$	105	74	90	58	62	68	59	76	92	120	95	85	984
Factors affocting runoff: N Station type: VA										1995 runoff is 102% of previous mean rainfall 104\%			
Comment: Ratin	nge	g, tr	ept.	1995	data	caut							

013007 North Esk at Logic Mill

Measuring authority: SEPA-E First year: 1976
Hydrometric statistics for 1995

Catchment area (sq km): 730.0
rid reference: 37 (NO) 699640 Level stn. (m OD): 10.60 Max alt. (m OD): 939

014001 Eden at Kemback

Measuring authority: SEPA-E
first year: 1967
Hydrometric statistics for 1995

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP 1.805	$\begin{aligned} & \text { OCT } \\ & 3.409 \end{aligned}$	NOV 6.539	DEC 4.669	Year 3.812
Flows Avg.	5.170	10.400	4.783	2.623	2.088	2.978	1.154	0.725	1.805	3.409	6.539	4.669	3.812
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	27.16	28.10	8.69	5.92	14.44	15.64	2.91	0.94	6.16	19.93	40.68	11.66	40.68
Runoff (mm)	45	82	42	22	18	25	10	6	15	30	55	41	391
Rainfall (mm)	85	111	47	33	91	33	30	11	123	118	88	58	828
Monthly and yearly statistics for previous record (Oct 1967 to Dec 1994)													
Mean Avg.	7.450	6.256	5.133	3.885	3.033	2.172	1.518	1.640	1.978	3.250	4.384	5.611	3.849
flows Low	2.546	2.170	1.408	1.199	1.406	1.077	0.861	0.799	0.749	0.833	0.830	1.731	1.446
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{High}$	18.380	19.460	9.205	7.243	8.335	6.651	3.390	6.038	11.260	8.162	14.440	12.390	5.634
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	59.05	71.31	64.71	62.06	47.48	41.93	26.20	17.19	53.64	47.78	39.37	47.82	71.31
Runoff (mm)	65	50	45	33	26	18	13	14	17	28	37	49	395
Rainfall (mm)	89	57	67	48	61	57	57	62	72	78	73	74	795
Factors affecting runoff: S GEI 199													

Station type: VA

Grid reference: 37 (NO) 415158 Level stn. (m OD): 6.20

Catchment area (sq km): 307.4 Max alt. (m OD): 522 rainfall 104\%

015011 Lyon at Comrie Bridge

Measuring authority: SEPA-E
First year: 1958
Grid reference: 27 (NN) 786486 Level stn. (m OD): 92.10

Catchment area (sq kmi): 391.1 Max alt. (m OD): 1215

Hydrómetric statistics for 1995

1	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows. Avg.	17.630	27. 100	17.820	9.405	8.235	4.906	4.534	2.549	6.453	26.180	15.600	7.185	12.213
$\left(m^{3} s^{-1}\right)$: Peak	154.10	128.10	112.00	35.88	56.18	17.77	68.58	5.90	47.92	249.00	76.31	34.71	249.00
Runoff (mm)	121	168	122	62	56	33	31	17	43	179	103	49	985
Rainfat (mm)	332	332	224	51	114	37	130	25	162	388	164	43	2002
Monthly and yearly statistics for previous record (Jan 1958 to Dec 1994)													
Mean Avg.	18.500	14.700	16.550	10.570	9.326	6.414	6.044	7.430	10.220	14.660	14.600	16.150	12.096
flows Low	3.596	3.198	4.219	4.002	3.537	3.470	3.062	2.221	2.843	3.662	5.320	6.182	8.330
$\left(m^{3} s^{-1}\right\}$ High	43.920	54.190	67.160	19.610	24.520	18.870	20.800	28.940	28.120	29.930	30.550	32.780	19.871
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	370.90	377.90	311.30	129.00	181.70	109.70	154.70	128.70	145.10	191.90	271:30	206.30	377.90
Runoff (mm)	127	92	113	70	64	43	41	51	68	100	97'	111	976
Rainfall (mm)* $*(1971-1994)$	285	158	227	95	100	90	103	127	180	210	227	247	2049
Factors affecting runoff: H Station type: VA										1995 runoff is 101% of previous mean rainfall 98\%			

016003 Ruchill Water at Cultybraggan

Measuring authority: SEPA-E First year: 1970

Hydrometric statistics for 1995

	Jan	FEB	MAR	APR	MAY	JUN	JuL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	8.479	14.270	6.628	1.713	1.819	0.830	1.573	0.324	2.176	13.190	6.120	2.052	4.879
$\left(m^{3} s^{-1}\right)$: Peak	80.12	125.50	53.26	7.34	34.97	7.43	35.26	. 0.74	29.93	120.40	77.40	30.94	125.50
Runoff (mm)	228	347	178	45	49	22	42	9	57	355	159	55	1546
Rainfall (mm)	343	344	182	33	113	31	132	26	170	402	167	78	2021
Monthly and yearly statistics for previous record foct 1970 to Dec 1994-incomplete or missing months total 0.1 years)													
Mean Avg.	8.622	6.360	7.412	3.527	2.620	1.840	1.809	2.690	4.649	6.071	7.260	7.677	5.043
flows Low	2.263	1.050	1.802	0.758	0.304	0.381	0.239	0.164	0.345	0.789	2.306	1.630	3.281
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \quad \mathrm{High}$	19.720	20.280	16.630	8.053	10.120	4.562	5.739	9.246	10.260	12.130	16.550	12.390	6.586
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	250.40	189.20	189.00	90.24	165.00	221.30	160.00	143.00	227.30	176.50	183.30	174.50	250.40
Runoff (mm)	232	156	200	92	71	48	49	72	121	163	189	207	1600
Rainfall (mm)	263	166	205	101	110	97	114	137	188	205	225	237	2048
Factors affecting runoff: \mathbf{N} Station type: VA										1995 runoff is 97% of provious mean rainfall 99\%			

016004 Earn at Forteviot Bridge

1995
Measuring authority: SEPA-E First year: 1972
Hydrometric statistics for 1995

	Jan	FEB	MAR	APR	MAY	Jun	JuL	AUG	SEP	OCT	NOV	OEC	Ye
Flows Avg.	55.860	84.220	46.900	14.100	9.536	7.432	6.688	3.052	7.397	58.510	38.500	19.810	29.019
($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$): Poak	161.70	228.00	116.10	31.17	46.19	26.15	37.60	4.35	29.39	255.60	123.50	61.91	255.60
Runoff (mm)	191	260	161	47	33	25	23	10	25	200	128	68	1170
Rainfall (mm)	231	235	118	28	91	27	88	22	147	299	115	64	1465
Monthly and yearly statistics for previous record (Oct 1972 to Dec 1994)													
Moan - Avg.	52.870	40.290	41.450	24.540	15.170	9.575	8.282	11.450	20.550	31.180	39.820	44.140	28.236
flows Low	19.630	16.070	12.310	8.389	4.906	4.095	2.658	2.456	5.302	5.984	15.120	15.060	15.508
$\left(m^{3} \mathrm{~s}^{-\dagger}\right)$ High	116.500	127.100	79.410	51.570	47.200	20.070	24.620	46.660	55.680	61.980	89.750	79.160	34.597
Poak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	415.00	337.00	289.70	209.40	186.50	114.90	142.30	169.70	271.80	241.20	328.60	238.70	415.00
Runoff (mm)	181	126	142	81	52	32	28	39	68	107	132	151	1139
Rainfals (mm)	188	114	154	69	78	75	84	104	142	148	157	168	1481
Factors affecting runoff: $\mathbf{P H}$ Station typo: VA										1995 runoff is 103% of previous mean rainfall 99%			

017001 Carron at Headswood

Measuring authority: SEPA-E
First yoar: 1969
Hydrometric statistics for 1995

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
Flows Avg.	7.478	11.920	5.222	1.285	0.716	0.684	0.672	0.472	1.090
$\left(\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}\right)$: Poak	95.65	45.62	28.46	5.69	1.47	2.18	4.53	1.29	6.57
Runoff (mm)	164	236	114	27	16	15	15	10	23
Rainfall (mm)	271	293	151	46	70	51	89	31	156
Monthly and yearly statistics for previous record (Aug 1969 to Dec 1994)									
Moan Avg.	6.542	4.313	4.703	2.262	1.513	1.160	1.109	1.636	2.877
flows Low	1.943	1.018	1.232	0.807	0.590	0.580	0.549	0.557	0.467
$\left(m^{3} \mathrm{~s}^{-1}\right) \quad \mathrm{High}$	15.330	14.130	14.480	4.616	5.724	2.834	4.650	8.092	16.720
Poak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	138.10	147.70	132.90	43.62	51.35	33.74	65.38	84.48	124.30
Runoff (mm)	143	86	103	48	33	25	24	36	61
Rainfall (mm)	189	117	157	82	84	88	89	118	150

Factors affecting runoff: S E
Station type: VA

Grid reference: 26 (NS) 832820 Level stn. (m OD): 17.10

Grid reference: 37 (NO) 043184 Level stn. (m OD): 7.80

Catchment area (sq km): $\mathbf{7 8 2 . 2}$
Max alt. (m OD): 985

NOV DEC Yest 170 28.236 15.508
34.597 34.597
1139 1481

Catchment area (sq km): 122.3 Max alt. (m OD): 570

017002 Leven at Leven

1995

Measuring authority: SEPA-E
Grid reference: 37 (NO) 369006
Level stn. (m OD): 4.10
Catchment area (sq km): 424.0 Max alt. (m OD): 522

Hydrometric statistics for 1995

	JAN	FEE	MAR	APA	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	11.220	18.100	10,490	3.355	2.638	2.881	1.668	0.826	2.457	5.613	9.681	9.023	6.421
$\left(\mathrm{m}^{3} \mathrm{a}^{-1}\right)$: Peak	22.75	34.34	17.73	5.38	8.45	16.21	4.15	1.52	7.45	21.62	25.33	14.11	34.34
Runoff (mm)	71	103	66	21	17	18	11	5	15	35	59	57	478
Rainfall (mm)	102	144	60	31	76	35	46	15	108	162	88	59	926
Monthly and yearly statistics for previous record (Aug 1969 to Dec 1994)													
Moan Avg.	12.280	10.390	8.202	5.603	3.873	3.146	2.072	3.189	3.872	5.941	8.208	10.130	6.393
flows Low	4.786	2.882	1.543	1.413	2.012	1.166	0.902	0.820	0.970	0.795	0.972	3.462	2.269
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \quad \mathrm{High}$	26.030	22.660	17.120	10.630	12.050	7.044	5.300	11.840	21.040	13.170	26.510	19.200	9.294
Paak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	85.42	128.00	69.64	70.96	44.54	26.93	28.83	25.69	84.25	48.50	56.76	62.69	128.00
Runoff (mm)	78	60	52	34	24	19	13	20	24	38	50	64	476
Rainfall (mm)	103	65	84	52	59	67	64	75	87	90	94	95	935
Factors affecting runoff: SR EI Station typo: VA										1995 runoff is 100% of previous mean rainfall 99\%			

018003 Teith at Bridge of Teith

1995

Moasuring authority: SEPA-E
First year: 1957
Hydrometric statistics for 1995

		JAN	FEB	MAR	APR	MAY	JuN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	48.900	73.910	42.630	12.930	9.113	6.210	8.647	3.694	9.341	54,900	28.190	9.803	25.419
$\left(m^{3} s^{-1}\right):$	Peak	105.40	176.80	105.80	32.01	39.83	17.59	45.58	6.39	32.45	169.50	118.60	38.64	176.80
Runotf (mm)		253	345	220	65	47	31	45	19	47	284	141	51	1548
Rainfall (mm)		321	339	215	46	112	48	128	32	169	420	154	74	2058

Monthly and yearly statistics for previous record (Jan 1957 to Dec 1994 -incomplate or missing months total 0.1 years)

Moan	Avg.	38.890	30.020	31.060	17.760	14.220	9.340	9.651	13.570	20.190	27.120	31.240	35.720	23.220
flows	Low	9.608	5.743	6.589	5.612	4.017	3.953	3.781	3.135	3.635	5.897	9.842	11.790	15.094
($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	High	99.850	109.100	81.670	44.110	55.000	21.520	26.390	54.210	51.510	66.410	70.650	72.370	32.716
Poak flow	$\mathrm{H}^{\mathbf{3}} \mathrm{s}^{-1}$	378.30	361.80	220.80	182.40	158.00	161.70	118.30	174.40	184.10	242.60	245.10	312.20	378.30
Punotf (mm		201	141	161	89	74	47	50	70	101	140	156	185	. 1414
Rainfall (m		252	155	200	103	114	104	111	138	195	214	219	230	2035
Factors affecting runoff: S P I Station type: VA											1995 runotf is 109% of previous mean rainfall 101\%			

018005 Allan Water at Bridge of Allan

Measuring authority: SEPA-E First year: 1971
Hydrometric statistics for 1995

	JAN	FEB	MAA	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	14.400	22.490	10.440	3.034	2.035	1.629	1.844	0.819	2.913	15.060	8.159	3.739	24
($\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	93.16	107.90	52.35	6.89	11.63	5.73	25.55	1.12	24.40	83.94	64.60	8.55	107.90
Runoff (mm)	184	259	133	37	26	20	24	10	36	192	101	48	1070
Rainfall (mm)	201	232	111	31	71	35	91	21	145	248	105	60	1351
Monthly and yearly statistics for previous record (Jul 1971 to Dec 1994)													
Mean Avg.	12.440	8.879	10.100	5.343	3.799	2.624	2.279	3.122	5.050	7.065	8.990	10.550	6.683
flows Low	4.751	3.631	3.152	1.654	1.189	0.945	0.726	0.648	0.907	0.971	3.642	3.709	4.269
$\left(m^{3} s^{-1}\right)$ High	28.570	22.270	24.460	10.410	15.430	5.423	6.309	12.390	15.180	12.420	17.760	22.420	9.091
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	194.30	102.50	118.20	69.63	72.11	61.86	66.37	67.48	105.60	111.00	97.89	158.80	194.30
Runoff (mm)	159	103	129	66	48	32	29	40	62	90	111	135	1005
Rainfall (mm)	165	99	135	69	75	74	82	96	123	130	136	150	1334
Factors affecting runoff: 1 Station type: VA										1995 runoff is 107% of previous mean rainfall 101\%			

atchment area (sq km): 210.0
d reference: 26 (NS) 786980
Catchment area (sq k $)$: 033 Level stn. (m OD): 11.20 ,

Max alt. (m OD): 633

018018 Kirkton Burn at Balquhidder

Measuring authority: IH
First year: 1983
First year: 1983
Hydrometric statistics for 1995

Rainfall (mm) 332 (Jandy 1983 to Dec 1994 -incompleto or missing months total 0.2 years)

Mean	Avg.	0.694	0.503	0.664	0.392	0.218	0.148	0.195	0.321	0.367	0.560	0.507	0.665	0.437
flows	Low	0.178	0.105	0.214	0.190	0.066	0.055	0.047	0.031	0.070	0.242	0.178	0.339	0.346
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$	High	1.280	1.489	1.215	0.687	0.847	0.261	0.539	0.767	0.726	0.906	1.028	1.052	0.509
Peak flow	$\mathrm{n}^{3} \mathrm{~s}^{-1}$	13.57	7.66	10.37	4.01	8.51	2.56	5.98	10.90	7.45	12.20	9.25	10.09	13.57
Runoff (mm)		271	180	260	148	85	56	76	126	139	219	192	260	2012
Rainfall (m		359	222	326	140	104	99	125	180	170	238	221	305	2489

Factors affecting runoff: N
Station type: C

Grid reference: 27 (NN) 532219
Level stn. (m OD): 246.00

Catchment area (sq km): 6.8 Max alt. (m OD): 852

Comment: Period of record rainfall statistics derived from a network of ground flush raingauges.

020001 Tyne at East Linton

Measuring authority: SEPA-E
First year: 1961
Hydrometric statistics for 1995

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	4.167	4.154	2.292	1.501	1.074	0.941	0.581	0.428	1.049	0.852	2.810	2.573	1.853
($\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	' 19.68	11.28	5.54	5.88	1.59	2.25	0.96	0.58	4.93	1.68	31.95	11.26	31.95
Runoff (mm)	36	33	20	13	9	8	5	4	9	7	24	22	190
Rainfall (mm)	79	57	38	34	58	27	32	14	127	67	65	53	651
Monthly and yearly statistics for previous record (Jan 1961 to Dec 1994)													
Mean Avg.	4.783	3.856	3.875	2.906	2.368	1.419	1.239	1.544	1.666	2.454	3.377	3.836	2.774
flows Low	1.032	0.783	0.531	0.644	0.781	0.586	0.500	0.468	0.461	0.451	0.524	0.582	0.709
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{High}$	11.540	8.625	8.789	7.824	11.600	6.142	4.393	9.855	8.490	9.421	11.210	9.447	4.146
Peak flow ($\mathrm{m}^{3} 5^{-1}$)	93.02	53.51	118.80	143.00	119.70	59.12	70.18	112.70	90.84	148.50	127.50	52.02	148.50
Runoff (mm)	42	31	34	25	21	12	11	13	14	21	29	33	285
Rainfall (mm)	65	44	58	48	57	54	59	75	68	71	68	62	729
Factors affecting runoff: EI Station type: VA										1995 runoff is 67% of previous mean rainfall 89\%			

Grid reference: 36 (NT) 591768
Level stn. (m OD): 16.50

021006 Tweed at Boleside

Measuring authority: SEPA-E

First year: 1961

1995

Catchment area (sq km): 307.0 Max alt. (m OD): 528
95 runotf is 91% of previous mean rainfall 91%

021012 Teviot at Hawick

1995
Moasuring authority: SEPA-E
First yoar: 1963
Hydrometric statistics for 1995

021018 Lyne Water at Lyne Station

Measuring authority: SEPA-E
First year: 1968
Hydrometric statistics for 1995

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	6.779	7.444	5.401	2.337	1.136	0.767	0.644	0.500	1.911	4.419	3.731	1.798	3.046
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Poak	28.90	18,44	13.72	4.40	1.66	1.40	1.64	0.98	5.08	19.65	19.19	2.95	28.90
Runotf (mm)	104	103	83	35	17	11	10	8	28	68	55	28	550
Rainfall (mm)	124	118	82	36	52	27	61	32	143	138	64	36	913
Monthly and yearly statistics for previous record (Wan 1968 to Dec 1994)													
Mean Avg.	5.182	4.228	4.025	2.938	2.066	1.503	1.340	1.721	2.467	3.477	4.494	4.875	3.189
flows Low	1.668	1.416	1.491	1.197	0.881	0.795	0.609	0.522	0.542	0.540	1.100	1.756	1.599
$\left(m^{3} s^{-1}\right)$ High	8.991	11.260	8.294	6.084	4.907	2.738	4.433	5.606	10.660	11.320	9.053	10.350	4.304
Poak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	52.31	41.55	41.21	41.08	23.97	16.46	31.72	20.77	58.74	73.75	53.60	83.46	83.46
Runoff (mm)	79	59	62	44	32	22	20	26	36	53	67	75	575
Rainfall (mm)	98	64	85	56	60	64	68	80	92	97	96	98	958
Factors affecting runoff: S P Station type: VA										1995 runotf is 96% of previous mean rainfall 94\%			
Comment: Monthly naturalised flows used.													

021022 Whiteadder Water at Hutton Castle

Measuring authority: SEPA-E First year: 1969
Hydrometric statistics for 1995

021024 Jed Water at Jedburgh

Moasuring authority: SEPA-E
First year: 1971

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	OEC	Year
Flows Avg.	5.083	6.345	2.712	1.008	0.790	0.724	0.373	0.314	0.762	1.883	2.767	1.386	1.984
($\mathrm{m}^{3} \mathrm{~s}^{-1}$): Poak	66.80	40.76	9.23	1.72	4.64	2.76	0.97	0.77	9.05	15.31	26.81	9.02	66.80
Runoff (mm)	98	110	52	19	15	14	7	6	14	36	52	27	450
Rainfall (mm)	116	120	59	31	61	36	29	17	116	108	89	47	829
Monthly and yearly statistics for previous record (Jan 1971 to Dec 1994)													
Moan Avg.	4.108	3.084	2.967	2.081	1.607	1.072	1.003	1.244	1.484	2.080	3.086	3.269	2.285
flows Low	1.482	0.997	0.782	0.733	0.635	0.444	0.352	0.312	0.346	0.327	0.698	0.967	1.068
$\left(\mathrm{m}^{3} \mathrm{~s}^{-\dagger}\right)$ High	7.748	9.041	7.398	4.556	4.990	2.346	4.770	4.329	6.868	5.002	9.432	6.962	3.091
Poak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	106.30	74.82	84.94	68.83	38.25	58.35	66.25	63.76	50.94	71.65	167.10	85.25	167.10
Runoff (mm)	79	54	57	39	31	20	19	24	28	40	58	70	519
Rainfall (mm)	96	63	82	57	64	61	69	79	70	89	88	101	919

Factors affecting runoff: N
Station typa: VA

Grid reference: 36 (NT) 655214
Level stn. (m OD): 67.50

Catchment area (sq km): 139.0
Max alt. (m OD): 553

Hydrometric statistics for 1995

Comment: Monthly naturalised flows used.

022006 Blyth at Hartford Bridge

Measuring authority: EA-NE
First year: 1966
Hydrometric statistics for 1995

Monthly and yearly statistics for previous record (Oct 1966 to Dec 1994 -incomplete or missing months total 0.4 years)

Mean	Avg.	4.315	3.607	3.415	2.527	1.389	0.556	0.406	0.591	0.667	1.526	2.366	3.598	2.075
flows	Low	0.587	0.398	0.245	0.359	0.212	0.161	0.096	0.067	0.107	0.111	0.162	0.274	0.537
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$	High	10.150	7.997	11.090	10.360	5.502	1.895	1.800	2.963	2.695	9.680	5.735	12.500	3.410
Peak flow	${ }^{3} \mathrm{~s}^{-1}$	146.60	59.52	150.20	162.80	101.50	31.54	21.52	61.09	30.02	56.84	69.20	122.30	162.80
Runatf (mm)		43	33	34	24	14	5	4	6	6	15	23	36	243
Rainfall (m)		64	47	60	48	54	50	55	69	62	61	65	64	699

Factors affecting runoff: E
Station type: FV

Grid reference: 45 (NZ) 243800
Level stn. (m OD): 24.60

Catchment area (sq km): 269.4
Max alt. (m OD): 259

023001 Tyne at Bywell

Hydrometric statistics for 1995

		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV 50.270	${ }^{\text {DEC }}$	Year 41.382
Flows	Avg.	118.200	131.000	62.990	24.610	13.390	11.140	7.890	6.911	11.970	28.950	50.270	35.760	41.382
($\mathrm{m}^{3} \mathrm{~s}^{-1}$):	Peak	1188.00	1091.00	279.70	- 90.02	34.96	26.81	23.55	13.52	57.17	235.90	664.10	301.80	1188.00
Runoff (mm)		146	146	78	129 !	$16{ }^{3}$	13	10	9	14	36	60	44	600
Rainfall (mm)		166	157	76	38	64	35	40	13	103	96	105	61	954

Monthly and yearly statistics for previous record (Oct 1956 to Dec 1994 -incomplete or missing months total 0.3 years)

Mean Avg.	74.920	60.890	57.200	39.160	24.880°	17.450	18.790	27.690	33.600	45.540	62.190	71.820	44.458
flows Low	19.220	14.360	18.450	8.461	:7.246.	4.910	5.199	3.403	4.155	4.727	18.090	23.080	25.849
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \quad \mathrm{High}$	150.800	162.800	150.900	75.620	60.650:	50.010	58.000	77.360	106.600	147.200	147.000	123.000	63.834
Peak flow ($\mathrm{m}^{\mathbf{3}} \mathbf{s}^{-1}$)	1525.00	1198.00	1472.00	905.60	550.90	440.30	1105.00	1561.00	1243.00	1586.00	1382.00	1317.00	1586.00
Runotf (mm)	92	68	70	$47 \stackrel{3}{5}$	31^{1} \%	21	23	34	40	56	74	88	645
Rainfall (mm)	105	75	88	66 ?	-67*	67	81	95	89	95	104	110	1042
Factors affecting Station typa: VA	noff: S			榢,	-					1995	moff is 93 infall 92	\% of pre \%	ious mean

Comment: During June-September 1995 Kielder releases supporied low flows.
023006 South Tyne at Featherstone
1995

Measuring authority: EA-NE
First year: 1966
Hydrometric statistics for 1995

Monthly and yearly statistics for previous record (Oct 1966 to Dec 1994 -incomplate or missing months total 0.2 years)

Mean	Avg.	16.240	12.460	13.850	9.447	6.062	4.835	4.996	6.602	9.187	12.240	15.310	16.440															
flows	Low	6.606	3.380	4.733	1.850	1.311	1.465	1.123	0.960	1.467	1.181	5.895	5.110		$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$	High	25.510	33.950	30.210	17.380	13.850	12.740	17.170	19.240	23.670	30.330	24.670	28.810
:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:															
Peak flow $\left\{\mathrm{m}^{3} \mathrm{~s}^{-1}\right\}$	292.10	255.30	260.80	178.00	131.30	16.915								$\begin{array}{lcc}\text { Peak fow (m) } \\ \text { Runoff }(\mathrm{mm}) & 135 & 95\end{array}$ Rainfatl (mm)														

Factors affecting runoff: N
Station type: CC

Grid referance: 35 (NY) 672611
Level stn:(m OD): 131.70

Catchment area (sq km): 321.9 Max alt. (m OD): 893
\qquad

023011 Kielder Burn at Kielder

Measuring authority: EA-NE
First year: 1970
First year: 1970
Hydrometric statistics for 1995

	JAN	FEB	MAR ${ }^{-}$	APR	MAY	JUN ${ }^{\text {² }}$	JuL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	3.877	4.372	2.056	0.817	$\therefore 0.668$	0.684	0.306	0.220	0.816	2.511	2.288	1.300	1.641
($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$): Peak	81.37	33.78	11.87	2.41	2.49	10.36	0.43	0.28	10.66	20.30	33.83	10.05	81.37
Runoff (mm)	177	180	$94{ }^{4}$	36	30	\% 29	14	10	36	114	101	59	880
Rainfall (mm)	184	186	93	31	71	42\%	36	16	124	161	118	66	1128
Monthly and yearly statistics for previous record (Jul 1970 to Dec 1994 -incomplete or missing months total 2.2 years)													
Mean Avg.	3.082	2.352	2.512	1.628	1.169	0.994	0.829	1.217	1.345	2.012	2.662	2.993	1.899
flows' Low	1.646	0.722	0.945	0.389	0.331	0.316	0.302	0.243	0.316	0.247	0.694	1.011	1.201
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	4.893	6.677	4.882	3.209	2.605	2.134	2.632	4.407	3.296	3.589	6.000	5.113	2.470
Peak flow $\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$	+95.31	73.28	57.88	35.55	60.14	95.07	39.21	138.90	56.86	128.80	118.70	67.89	138.90
Runoff (mm)	140	98	114	72' $=$	53	${ }^{4} 44$	38	55	59	92	117	136	1019
Rainfall (mm)	141	97	117	75	:75	473 ?	88	103	100	123	133	149	1274
Factors affecting runoff: N Station type: FVVA					\because "	花				1995 runoff is 86% of previous mean rainfall 89\%			

024004 Bedburn Beck at Bedburn

Moasuring authority: EA-NE
First year: 1959
Hydrometric statistics for 1995

		JAN	FE日	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	3.309	3.944	1.692	0.604	0.327	0.199	0.122	0.083	0.218	0.198	1.440	1.609	1.128
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$:	Peak	35.95	31.91	4.74	2.01	0.74	0.29	0.16	0.10	1.33	0.84	19.91	14.98	35.95
Runoff (mm)		118	127	61	21	12	7	4	3	8	7	50	58	475
Rainfall (mm)		155	148	75	33	54	14	22	6	97	47	121	90	862

Monthly and yearly statistics for previous record (Oct 1959 to Dec 1994 -incomplete or missing months totat 0.2 years)

Mean	Avg.	2.111	1.777	1.786	1.384	0.876	0.513	0.423	0.534	0.599	1.161	1.532	1.901	1.214
flows	Low	0.515	0.472	0.436	0.316	0.270	0.191	0.152	0.120	0.110	0.146	0.244	0.444	0.667
($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	High	4.341	4.011	5.128	2.986	2.231	1.524	1.522	1.465	1.790	4.346	3.722	4.488	1.842
Poak flow	$\mathrm{n}^{3} \mathrm{~s}^{-3}$	34.67	39.16	38.51	35.09	33.41	21.66	27.72	46.19	32.30	38.06	34.26	42.93	46.19
Runotf (mm		75	58	64	48	31	18	15	19	21	41	53	68	512
Rainfall (mm		91	66	74	62	62	56	62	78	72	81	88	89	879
Factors affecting runoff: N Station type: CC											1995 runoff is 93% of previous mean rainfall 98%			

024009 Wear at Chester le Street

Measuring authority: EA-NE
Grid reference: 45 (NZ) 283512 Level stn. (m OD): 5.50

Catchment area (sq km): 1008.3 Max alt. (m OD): 747
First year: 1977
Hydrometric statistics for 1995

		JAN	FEB	MAA	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	35.240	42.890	18.900	8.098	5.283	3.966	3.310	3.054	4.140	4.211	14.810	17.530	13.273
($\mathrm{m}^{3} \mathrm{~s}^{-1}$):	Poak	326.90	309.30	65.53	22.53	7.60	5.70	4.85	4.52	13.99	17.42	210.70	175.20	326.90
Runotf (mm)		94	103	50	21	14	10	9	8	11	11	38	47	415
Rainfall (mm)		129	115	66	35	48	22	23	10	95	44	125	84	796

Monthly and yearly statistics for previous record (Sep 1977 to Dec 1994 -incomplete or missing montha total 0.1 years)

Mean Avg.	24.980	21.190	22.670	17.430	10.200	6.600	5.436	6.392	6.900	11.050	16.840	25.010	14.537
flows Low	8.610	7.302	6.215	4.738	3.941	3.447	2.948	3.057	3.054	4.563	4.812	12.780	8.661
\{ $\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	40.980	39.880	64.200	36.800	30.170	14.650	14.010	19.300	23.480	27.060	.av2	-	85
Poak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	309.80	263.70	349.60	277.60	314.40	200.60	226.50	354.40	203.70	273.40	254.10	353.10	354.40
Runotf (mm)	66	51	60	45	27	17	14	17	18	29	43	66	455
Rainfall (mm)	87	62	81	62	58	58	55	77	69	82	87	100	878

Factors affecting runoff: R G
Station type: FV
Comment: During July-October 1995 Kielder releases supported low flows.
5 runoff is 91% of previous mean
rainfall 91%

1995

Moasuring authority: EA-NE
first year: 1956
Hydrometric statistics for 1995

		JAN	FE, ${ }^{\text {B }}$	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	52.580	59.580	33.260	9.811	6.624	4.794	4.598	4.176	4.891	8.285	13.720	11.690	17.595
$\left(m^{3} \mathbf{s}^{-1}\right)$:	Peak	710.60	605.80	184.60	49.30	22.28	12.10	8.09	5.70	23.88	66.07	218.90	121.50	710.60
Runoff (mm)		172	176	109	31	22	15	15	14	15	27	43	38	678
Rainfall (mm)		213	192	117	40	61	25	31	12	104	69	109	77	1050

Monthly and yaarly statistics for previous record (Oct 1956 to Dec 1994 -incomplate or missing months total 0.1 years)

Moan Avg.	30.420	24.700	24.070	18.880	10.300	6.574	6.685	9.682	11.130	17.520	22.510	29.580	17.649
flows Low	2.906	2.804	5.482	2.539	2.007	0.502	1.794	0.458	0.638	2.707	4.060	5.778	9.383
$\left(\mathrm{m}^{3} \mathrm{~s}^{-t}\right) \mathrm{High}$	57.570	64.770	68.660	60.870	27.020	15.270	25.100	28.520	25.800	53.940	51.580	50.040	25.161
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	590.80	521.10	679.30	350.90	311.50	191.90	380.70	709.80	331.30	525.80	416.30	565.10	709.80
Runoff (mm)	100	74	79	60	34	21	22	32	35	57	71	97	681
Rainfall (mm)	123	88	97	78	75	71	80	99	96	105	112	128	1152
Factors affecting Station type: CC	off: SR									$1995 \mathrm{r}$	ff is 100 fall 91	$6 \text { of pr }$	ous mean

025019 Leven at Easby

Moasuring authority: EA-NE
First year: 1971
Hydrometric statistics for 1995

	JAN	FEB	MAA	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	0.460	0.296	0.184	0.138	0.091	0.073	0.049	0.039	0.216	0.060	0.218	0.312	0.177
($\mathrm{m}^{3} \mathrm{~s}^{-1}$): Poak	1.85	0.77	0.81	0.44	0.19	0.12	0.11	0.05	5.09	0.08	3.15	1.49	5.09
Runotf (mm)	83	48	33	24	16	13	9	7	38	11	38	56	377
Rainfall (mm)	122	59	50	34	51	43	29	17	120	24	106	93	748
Monthly and yearly statistics for previous record (May 1971 to Dec 1994)													
Mean Avg.	0.289	0.275	0.267	0.237	0.164	0.117	0.098	0.118	0.127	0.164	0.193	0.267	0.193
flows Low	0.082	0.094	0.076	0.066	0.069	0.058	0.044	0.038	0.039	0.049	0.058	0.129	0.083
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	0.630	0.729	0.821	0.771	0.544	0.239	0.189	0.427	0.532	0.556	0.507	0.543	0.305
Poak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	3.56	4.38	5.68	9.36	7.56	1.99	3.14	15.53	16.01	6.11	5.20	7.66	16.01
Runaff (mm)	52	45	48	42	30	21	18	21	22	30	34	48	411
Rainfall (mm)	75	51	67	59	56	59	60	75	75	79	76	78	810

actors affocting runoff: N
Station type: FV

Grid reference: 45 (NZ) 259137
Level stn. (m OD): 37.20

Catchment area (sq km): 818.4 Max alt. (m OD): 893

025001 Tees at Broken Scar

rainfall 91\%

026003 Foston Beck at Foston Mill

Measuring authority: EA-NE
First year: 1959
Hydrometric statistics for 1995

Factors affecting runoff: NG
Station type: TP

Grid reference: 54 (TA) 093548 Level stn. (m OD): 6.40

Catchment area (sq km): 57.2
Max alt. (m OD): 164
Max alt. (m OD): 164 rainfall 88%

026005 Gypsey Race at Boynton

1995

Measuring authority: EA-NE
First year: 1981
Hydrometric statistics for 1995

	JAN	FEB	MAR	APR	MAY	JUN	${ }^{\text {JUL }}$	AUG 0.000	SEP 0.001	OCT 0.001	NOV 0.003	$\begin{aligned} & \text { DEC } \\ & 0.013 \end{aligned}$	Year 0.158
Flows Avg.	0.059	0.463	0.605	0.414	0.236	0.110	0.023	0.000	0.001	0.001	0.003		
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	- 0.22	0.60	0.66	0.56	0.31	0.17	0.06	0.01	0.01	0.00	0.01 0	0.05 0	0.66 21
Runoff (mm)	1	5	7	4	3	1	0	0	0	0	0	0	21
Rainfall (mm)	99	67	61	27	37	25	36	5	95	22	71	84	629
Monthly and yearly statistics for previous record (Feb 1981 to Dec 1994)													
Mean Avg.	0.241	0.329	0.365	0.413	0.360	0.217	0.119	0.052	0.026	0.013	0.013	0.044	0.182
flows Low	0.006	0.005	0.005	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.003	0.004
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	1.324	0.937	1.172	1.585	1.217	0.623	0.351	0.184	-0.098	0.055	0.033	0.190	0.385
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	2.44	1.19	1.86	1.87	1.58	0.86	0.60	0.28	0.29	0.14	0.10	0.91	2.44
Runoff (mm)	3	3	4	4	4	2	1	1	0	0	0	0	24
Rainfall (mm)	64	49	62	55	44	49	54	58	66	64	68	69	702
Factors affecting runoff: G I 1995 runoff is 878 Station type: FV rainfall 9													

027007 Ure at Westwick Lock

Measuring authority: EA-NE
First year: 1958
Hydrometric statistics for 1995

Station type: B VA

Grid reference: 44 (SE) 356671 Level stn. (m OD): 14.20

Catchment area (sq km): 914.6 Max alt. (m OD): 713

027025 Rother at Woodhouse Mill

Measuring authority: EA-NE
First year: 1961
Hydrometric statistics for 1995

	JAN	FE8	MAR	APR	MAY	JUN	H2	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	13.930	9.212	4.270	2.137	1.870	1.357	1.160	0.865	1.262	1.079	1.355	2.340	3.376
($\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	72.86	29.06	10.21	6.23	10.97	2.96	2.93	1.28	6.23	4.18	8.99	17.48	72.86
Runoff (mm)	106	63	32	16	14	10	9	7	9	8	10	18	302
Rainfall (mm)	141	79	49	22	54	15	18	7	62	27	59	69	602
Monthly and yearty statistics for previous record (Oct 1961 to Dec 1994-incomplete or missing months total 2.6 years)													
Mean Avg.	6.883	6.532	5.961	4.988	3.492	2.928	1.960	1.924	2.241	2.932	4.575	6.598	4.240
flows Low	1.287	1.424	1.500	1.400	1.257	1.166	0.934	0.760	0.712	0.693	1.023	2.393	2.540
$\left(\mathrm{m}^{3} \mathrm{~s}^{-3}\right)$ High	13.000	22.440	14.330	13.160	10.110	10.840	4.907	3.323	7.786	7.600	8.200	18.140	6.364
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	60.30	78.80	53.21	78.14	61.40	105.40	45.63	33.55	45.59	41.74	50.55	91.46	105.40
Runoff (mm)	52	45	45	37	27	22	15	15	16	22	34	50	380
Rainfall (mm)	71	57	64	62	59	64	54	60	65	65	74	79	774
Factors affecting runoff: SRPGEI Station type: VA										1995 runoff is 80% of previous mean rainfall 78\%			

027042 Dove at Kirkby Mills

1995

Measuring authority: EA-NE
First year: 1972
Hydrometric statistics for 1995

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
Flows Avg.	2.255	1.935	1.281	0.745	0.435	0.345	0.209	0.147	0.385
($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$): Peak	15.25	7.66	4.35	1.70	1.38	0.86	1.98	0.40	2.00
Runoff (mm)	102	79	58	33	20	15	9	7	17
Rainfall (mm)	121	88	63	26	58	22	33	10	112
Monthly and yearly statistics for previous record (Feb 1972 to Dec 1994)									
Maan Avg.	1.653	1.564	1.561	1.206	0.769	0.580	0.473	0.522	0.688
flows Low	0.589	0.541	0.347	0.376	0.329	0.257	0.211	0.161	0.170
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	2.909	3.180	4.701	2.915	1.702	1.099	1.021	1.397	2.743
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	37.45	41.51	40.93	27.63	30.01	7.43	19.33	32.36	56.38
Runoff (mm)	75	65	71	53	35	25	21	24	30
Rainfall (mm)	91	62	82	63	60	82	66	75	85

Factors affecting runoff: N
Station type: FV

Grid reference: 44 (SE) 705855 Level stn. (m OD): 35.60

Catchment area (sq km): 59.2
Max alt. (m OD): 433

027047 Snaizeholme Beck at Low Houses

Measuring authority: EA-NE
First yoar: 1972
Hydrometric statistics for 1995

	JAN	FEB	MAR	APR	MAY	JUN	JU1	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	1.399	1.326	0.718	0.126	0.094	0.109	0.058	0.011	0.163	0.468	0.480	0.252	0.429
$\left(\mathrm{m}^{3} \mathbf{s}^{-1}\right)$: Peak	16.39	12.97	9.52	0.87	0.94	1.28	1.01	0.03	4.55	5.29	11.83	3.34	16.39
Runotf (mm)	367	314	189	32	25	28	15	3	41	123	122	66	1325
Rainfall (mm)	361	278	175	34	71	57	69	21	132	116	135	51	1500
Monthly and yearly statistics for previous record (Aug 1972 to Dec 1994 -incomplote or missing months total 1.0 years)													
Moan Avg.	0.955	0.717	0.746	0.385	0.252	0.197	0.221	0.340	0.495	0.649	0.854	1.022	0.569
flows Low	0.428	0.110	0.186	0.047	0.024	0.025	0.021	0.029	0.049	0.153	0.226	0.376	0.425
	1.498	1.774	1.689	0.720	0.758	0.510	0.798	0.738	0.995	1.124	1.365	1.611	0.661
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	14.82	15.46	14.45	12.66	14.67	11.58	10.47	14.90	15.74	12.22	16.10	14.85	16.10
Runaff (mm)	251	172	196	98	66	50	58	89	126	170	217	268	1761
Rainfall (mm)	204	132	170	94	90	93	104	140	152	168	207	232	1786
Factors affecting runoff: \mathbf{N} Station type: FV										1995 runoff is 75% of previous mean rainfall 84\%			

027050 Esk at Sleights

1995

Measuring authority: EA-NE
First yoar: 1970
Hydrometric statistics for 1995

		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	14.270	8.570	4.963	2.705	1.661	1.687	0.813	0.606	2.077	1.009	6.179	10.420	4.563
$\left(m^{3} \mathrm{~s}^{-1}\right)$:	Pork	63.22	47.99	24.62	10.48	3.35	3.96	1.30	0.75	15.69	2.78	47.78	83.11	83.11
Runoff (mm)		124	67	43	23	14	14	7	5	17	9	52	91	467
Rainfall (mm)		121	76	57	36	58	40	26	13	127	31	111	121	817

Monthly and yearly statistics for previous record (Oct 1970 to Dec 1994 -incomplate or missing months total 1.6 years)

Mean	Avg.	8.243	7.059	7.079	5.135	3.153	2.047	1.795	2.497	2.536	3.818	5.913	8.643	4.820
flows	Low	1.823	1.917	1.497	1.041	1.004	0.749	0.453	0.268	0.446	0.675	1.794	2.539	2.228
$\left(m^{3} s^{-1}\right)$	High	15.910	21.220	30.470	19.380	9.565	5.231	6.585	8.767	18.030	11.350	13.140	18.770	7.574
Pook flow	$\mathrm{n}^{3} \mathrm{~s}^{-1}$	159.30	198.10	358.70	191.70	144.00	106.80	165.70	276.00	347.90	156.80	199.70	350.10	358.70
Runoff (mm)		72	56	62	43	27	17	16	22	21	33	50	75	494
Rainfall (m $\cdot 11980.19$		75	61	76	63	46	68	63	84	73	102	83	88	882
Factors affecting runoff: N Station type: B VA											1995 runoff is 95% of previous mean rainfall 93\%			

027053 Nidd at Birstwith

1995

Measuring authority: EA-NE
First year: 1975
Hydrometric statistics for 1995

	JAN	FEB	MAR	APR	MAY	JUN	Jul	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	16.780	16.460	5.468	1.833	1.025	0.749	0.470	0.413	0.563	0.629	0.914	1.887	3.861
$\left(\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}\right)$: Peak	248.00	121.60	15.53	4.29	2.59	0.94	0.73	0.44	2.18	2.20	5.59	9.43	248.00
Runoff (mm)	207	183	67	22	13	9	6	5	7	8	11	23	560
Rainfall (mm)	222	201	101	31	59	17	30	10	118	56	82	70	997
Monthly and yearly statistics for previous record (Apr 1975 to Dec 1994-incomplete or missing months total 0.1 years)													
Mean Avg.	10.080	7.982	7.702	4.411	2.699	1.651	1.210	1.736	2.479	4.377	6.564	9.996	5.067
flows Low	3.073	2.591	1.159	1.363	0.837	0.771	0.808	0.531	0.523	0.743	1.893	3.612	3.642
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) Migh	16.110	18.220	21.140	12.770	7.061	3.131	2.164	5.690	11.310	15.120	12.830	20.280	7.148
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	204.40	282.80	203.40	154.70	96.48	38.77	29.50	67.77	221.10	113.60	83.49	196.00	282.80
Runoff (mm)	124	90	95	53	33	20	15	21	30	54	78	123	735
Rainfall (mm)*	145	98	125	81	76	74	64	101	110	128	127	161	1290

Factors affecting runoff: SRP
Station type: VA

Grid reference: 44 \{SE\} 230603
Level stn. (m OD): 67.40
rainfall 93%

027071 Swale at Crakehill
Measuring authority: EA-NE
First year: 1980
Hydrometric statistics for 1995

Monthly and yearly statistics for previous record (Nov 1955 to Dec 1994 -incomplete or missing months total 0.2 years)

Station type: CVA

028015 Idle at Mattersey

1995

Measuring authority: EA-M
First year: 1961
Hydrometric statistics for 1995

028018 Dove at Marston on Dove

Measuring authority: EA-M

First year: 1961
Hydrometric statistics for 1995

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	43.670	32.470	20.180	10.630	6.454	4.983	4.043	3.034	3.610	3.533	4.582	8.530	12.044
$\left(m^{3} \mathrm{~s}^{-1}\right)$: Peak	146.90	79.02	44.37	16.26	10.28	6.60	9.37	3.92	5.27	5.35	9.03	59.12	146.90
Runoff (mm)	132	89	61	31	20	15	12	9	11	11	13	26	430
Rainfall (mm)	180	101	68	26	50	17	39	22	85	39	58	76	761
Monthly and yearly statistics for previous record (Oct 1961 to Dec 1994)													
Mean Avg.	22.850	19.650	17.880	14.830	11.060	8.616	7.094	7.220	8.101	10.840	18.660	22.330	13.904
flows Low	7.822	4.615	5.959	6.130	4.755	3.380	2.377	1.873	2.705	3.110	5.622	7.907	7.838
($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$) High	35.980	59.880	38.890	25.720	22.480	16.560	15.530	14.630	29.350	23.490	31.070	56.460	19.411
Peak flow (m) $\mathrm{m}^{3} \mathrm{~s}^{-1}$)	202.30	215.20	122.60	118.10	120.90	84.48	77.10	104.00	113.90	132.10	130.80	205.10	215.20
Runoff (mm)	69	54	54	44	34	25	22	22	24	33	49	68	497
Rainfall (mm)	91	66.	77	67	69	75	67	79	80	83	93	99	946
Factors affecting runoff: SRPG 1995 runoff is 87% of pravious mean													

Factors affecting runoff: SRPG
Station type: FVVA,
Comment: October and November contain estimated daily flows

Grid reference: 43 (SK) 235288 Level str. (m OD): 47.20

Catchment area (sq km): 883.2 Max alt. (m OD): 555
enter

$$
028024 \text { Wreake at Syston Mill }
$$

Measuring authority: EA-M
First year: 1967
Hydrometric statistics for 1995

	JAN	FEB	MAR	APA	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	10.730	7.700	3.877	1.011	0.638	0.472	0.262	0.213	0.539	0.289	0.622	2.512	2.381
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	42.71	20.60	11.30	2.20	3.40	1.43	0.49	0.35	4.54	0.69	1.81	17.94	42.71
Runoff (mm)	69	45	25	6	4	3	2	1	3	2	4	16	181
Rainfall (mm)	95	60	33	16	38	13	10	8	96	23	59	66	517
Monthly and yearly statistics for previous record (Aug 1967 to Dec 1994 -incomplate or missing months total 1.1 years)													
Mean Avg.	5.720	5.696	4.525	3.431	1.985	1.187	0.966	0.824	1.015	1.650	2.719	4.680	2.854
flows Low	0.959	0.619	. 0.494	0.358	0.286	0.222	0.138	0.122	0.254	0.264	0.418	0.745	0.923
$\left(m^{3} \mathrm{~s}^{-1}\right)$ High	10.150	21.740	12.630	8.772	8.117	2.918	4.547	3.230	5.367	6.897	7.618	11.910	4.396
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	43.11	73.37	99.82	97.07	51.83	39.17	26.88	30.44	32.52	32.41	50.25	52.95	99.82
Runoff (mm)	37	34	29	21	13	7	6	5	6	11	17	30	218
Rainfall (mm)* -(1971-1994)	55	44	52	48	49	58	51	57	58	54	52	58	636
Factors affecting runoff: GE Station type: EM										1995 runoff is 83% of previous mean rainfall 81\%			
Comment: October and November 1995 contain estimated daily flows.													

Measuring outhority: EA-M
First year: 1966
Hydrometric statistics for 1995

	JAN	FEB	MAR	APR	MAY	JuN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	9.260	6.999	4.258	1.831	1.416	1.109	0.848	0.759	1.957	1.197	1.627	3.523	2.879
$\left(\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}\right)$: Poak	38.34	16.00	12.07	2.67	3.67	2.60	1.09	1.09	5.53	2.19	5.24	22.26	38.34
Runoff (mm)	67	46	31	13	10	8	6	6	14	9	11	26	247
Alainfall (mm)	101	64	40	19	32	11	16	15	115	25	51	72	561
Monthly and yearly statistics for previous record (Sep 1966 to Dec 1994 -incomplete or missing months total 0.2 years)													
Moan Avg.	5.404	5.030	4.051	3.007	2.247	1.884	1.352	1.381	1.419	2.077	3.030	4.614	2.949
flows Low	1.298	0.953	0.813	0.657	0.686	0.484	0.343	0.405	0.711	0.728	0.855	1.175	1.213
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	9.572	16.200	9.233	6.629	8.389	4.650	5.580	4.173	3.363	8.109	7.309	$\mathbf{9 . 4 7 3}$	4.114
Pook flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	75.63	73.18	56.09	45.84	59.77	52.68	59.34	45.03	37.59	42.46	68.52	74.01	75.63
Runoff (mm)	39	33	29	21	16	13	10	10	10	15	21	34	253
$\begin{aligned} & \text { Rainfoll (mm)* } \\ & *(1971-1994) \end{aligned}$	59	46	52	47	52	61	51	58	59	57	56	65	683
Factors affocting runoff: GE Station type: C VA										1995 runoff is 98% of previous mean rainfall 85\%			

1995

Messuring authority: EA-M First yoar: 1968
Hydromatric statistics for 1995

		JAN	FEB	MAR	APR	MAY	JUN	JUL
Flows	Avg.	10.930	7.364	5.017	2.189	1.119	0.874	0.772
$\left(\mathrm{~m}^{3}-{ }^{-1}\right):$	Poak	89.64	28.06	16.62	4.14	1.77	1.52	3.98
Runoff (mm)	197	120	90	38	20	15	14	
Rainfall (mm)	210	115	83	32	62	22	55	

Monthly and yearly statistics for previous record (May 1968 to Dec 1994)

Moan	Avg.	6.121	4.930	4.864	3.750	2.275	1.854	1.467	1.719	1.821	3.037	4.905	5.657	3.528
flows	Low	2.561	2.039	1.065	1.277	0.812	0.745	0.493	0.386	0.458	0.716	1.555	2.135	2.241
($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	High	8.858	12.710	9.455	6.200	5.713	5.151	3.505	4.560	4.147	6.697	8.198	10.450	4.808
Peak flow	$\mathrm{m}^{3} \mathrm{~s}^{-1}$	80.13	74.53	66.72	47.36	52.40	39.58	37.29	137.00	45.69	75.78	91.61	160.50	160.50
Runoff (mm		110	81	88	65	41	32	26	31	32	55	86	102	750
Rainfall (mm		118	80	95	76	69	82	74	79	86	98	114	117	1088

Factors affecting runoff: P E
Station typo: C
995 runoff is 79% of previous mean rainfall 81\%

Grid reference: 43 (SK) 263034 Level stn. (m OD): 60.40

Catchment area (sq km): $\mathbf{3 6 8 . 0}$ Max alt. (m OD): 278

028031 Manifold at Ilam

028039 Rea at Calthorpe Park
 028039 Rea at Calthorpe Park

1995

Measuring outhority: EA-M First yoar: 1967
Hydrometric statistics for 1995

		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	1.807	1.219	0.805	0.405	0.477	0.338	0.468	0.281	0.555	0.411	0.550	0.932	0.685
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$:	Poak	25.09	6.50	3.48	4.58	5.55	2.27	25.41	7.17	7.94	18.24	11.36	23.53	25.41
Runoff (mm)		65	40	29	14	17	12	17	10	19	15	19	34	292
Rainfall (mm)		132	72	50	15	47	15	42	15	89	45	66	89	677

Monthly and yearly statistics for previous record (Apr 1967 to Dec 1994)

Mean Avg.	1.191	1.026	0.956	0.787	0.743	0.647	0.527	0.614	0.629	0.681	0.870	1.101	0.814
flows Low	0.481	0.433	0.375	0.316	0.318	0.287	0.257	0.286	0.295	0.311	0.493	0.378	0.602
$\left(m^{3} s^{-1}\right)$ High	1.950	2.610	2.101	1.489	1.780	1.324	0.995	1.366	1.423	1.408	1.753	1.934	1.058
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	43.24	27.44	28.64	25.15	30.37	37.44	48.86	62.98	40.85	23.88	24.97	54.02	62.98
Runots (mm (43	34	35	28	27	23	19	22	22	25	30	40	347
Rainfall (mm)* -(1968-1994)	78	57	65	58	63	62	58	70	69	65	72	79	798

-(1968-1994)
Factors affacting runoff: E
Station type: C B

Grid reference: 42 (SP) 071847
Level stn. (m OD): 104.20

Catchment area (sq km): 74.0 Max alt. (m OD): 29 ;
\qquad

028052 Sow at Great Bridgford

1995

Moasuring outhority: EA-M
First year: 1971
Hydrometric statistics

	JAN	FEB.	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	3.282	3.021	1.835	0.932	0.659	0.514	0.381	0.271	0.389	0.377	0.403	0.618	1.046
($\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	10.00	8.14	3.31	1.38	0.93	0.69	0.56	0.37	0.53	0.59	0.56	2.81	10.00
Runaff (mm)	54	45	30	15	11	8	6	4	6	6	6	10	202
Rainfall (mm)	123	87	52	17	45	12	34	12	71	30	37	71	591
Monthly and yearly statistics for previous record (Jun 1971 to Dec 1994)													
Mosn Avg.	1.843	1.720	1.511	1.255	0.872	0.760	0.575	0.734	0.534	0.750	1.149	1.685	1.113
flows Low	0.753	0.625	0.659	0.520	0.474	0.315	0.174	0.138	0.277	0.317	0.379	0.524	0.711
$\left.\mathrm{mb}^{3} \mathrm{~s}^{-1}\right)^{\text {High }}$	2.715	4.607	3.448	2.258	1.925	1.426	1.388	3.047	0.818	1.731	2.461	2.975	1.593
Poak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	11.07	18.82	9.21	9.86	18.05	9.78	10.89	15.11	3.51	10.21	9.51	12.72	18.82
Runoff (mm)	30	26	25	20	14	12	9	12	8	12	18	28	216
Rainfall (mm)	70	50	62	51	58	63	56	64	67	66	73	77	757
Factors affecting runoff: GE Station type: FVVA										1995 runoff is 94% of previous mean rainfall 78\%			

028067 Derwent at Church Wilne

Measuring authority: EA-M First year: 1973
Hydrometric statistics for 1995

	JAN	FEB	MAR	APR	MAY	JUN	Jul	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	59.220	46.990	27.530	14.010	8.842	6.466	6.227	5.421	6.064	5.601	5.851	8.384	16.563
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	198.00	110.10	46.47	24.58	18.84	8.53	16.50	7.22	15.10	14.20	12.57	38.38	198.00
Runoff (mm)	135	97	63	31	20	14	14	12	- 13	13	13	19	444
Rainfall (mm)	190	112	75	29	53	18	43	12	87	40	61	75	95
Monthly and yearty statistics for previous record (May 1973 to Dec 1994)													
Mean Avg.	33.650	30.110	27.800	21.780	13.560	11.110	8.643	8.038	8.747	13.740	19.650	29.600	18.824
flows Low	13.270	10.020	8.793	7.891	6.652	5.411	4.445	3.965	4.429	4.933	5.152	9.272	10.267
$\mathrm{lm}^{3} \mathrm{~s}^{-1}$) High	52.530	81.270	59.290	40.240	28.060	23.060	22.050	16.600	17.130	31.970	35.860	57.850	25.542
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	194.10	215.70	173.60	158.40	142.20	118.70	156.20	153.60	71.96	146.50	94.66	214.70	215.70
Runoff (mm)	77	62	63	48	31	24	20	18	19	31	43	67 115	505
Rainfall (mm)	108	74	89	66	61	76	64	74	83	95	93	115	998
Factors affecting runoff: S P EI													

Station type: FV

Grid reference: 43 (SK) 438316 Level stn. (m OD): 31.00

Catchment area (sq km): 1177.5 Max alt. (m OD): 636

028082 Soar at Littlethorpe

Measuring authority: EA-M
Grid reference: 42 (SP) 542973 Level stn. (m OD): 61.40
First year: 1971

Catchment area (sq km): 183.9 Max alt. (m OD): 151

Hydrometric statistics for 1995

							MAR	MAY	JUN
		JAN	FEB	MUL	AUG				
Flows	Avg.	4.487	3.527	2.007	0.715	0.524	0.356	0.238	0.183
$\left(\mathrm{~m}^{3} \mathrm{~s}^{-1}\right):$	Peak	21.41	9.63	6.13	1.32	1.85	0.94	0.54	0.28
Runoff (mm)	65	46	29	10	8	5	3	3	
Rainfall (mm)	98	62	42	19	32	12	14	10	

Monthly and yearly statistics for previous record (Aug 1971 to Dec 1994)

029003 Lud at Louth

Measuring authority: EA-A
First year: 1968
Hydrometric statistics for 1995

	JAN	FEB	MAR	APR	MAY	JuN	JUL	AUG	SEP
Flows Avg.	0.782	1.002	0.756	0.538	0.422	0.329	0.253	0.192	0.169
$\left(m^{3} s^{-1}\right)$: Peak	3.02	1.58	1.30	0.82	0.80	1.63	0.29	0.24	0.76
Runoff (mm)	38	44	37	25	20	15	12	9	8
Rainfall (mm)	101	54	49	22	50	33	16	5	80
Monthly and yearly statistics for previous record (Aug 1968 to Dec 1994)									
Mean Avg.	0.622	0.741	0.698	0.648	0.527	0.411	0.318	0.265	0.233
flows Low	0.139	0.157	0.162	0.150	0.156	0.131	0.112	0.097	0.108
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{High}$	1.516	1.428	1.338	1.289	1.177	0.687	0.507	0.414	0.625
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	3.70	3.81	3.58	5.06	3.51	3.27	3.93	3.10	3.30
Runoff (mm)	30	33	34	30	26	19	15	13	11
Rainfall (mm)	67	46	60	52	51	55	53	58	60

Factors affecting runoff: G
Station type: C

Grid reference: 53 (TF) 337879
Level stn. (m OD): 15.40

Catchment area (sq km): 55.2 Max alt. (m OD): 149

OCT	NOV	DEC	Year
0.138	0.121	0.128	0.399
0.30	0.20	0.86	3.02
7	6	6	228
23	46	63	542
0.255	0.311	0.420	0.453
0.093	0.088	0.090	0.145
0.719	1.158	0.980	0.703
5.39	6.77	3.10	6.77
12	15	20	259
58	66	65	691

1995 runoff is 88% of previous mean rainfall 78\%

030004 Partney Lymn at Partney Mill

Measuring authority: EA-A
First year: 1962
First yoar: 1962
Hydrometric statistics for 1995

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year 0.380
Flows Avg.	1.041	0.936	0.623	0.356	0.256	0.193	0.142	0.116	0.192	0.185	0.219	0.335	0.380
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	5.64	3.90	1.54	0.54	0.89	0.33	0.19	0.15	0.67	0.29	0.36	1.94	5.84
Runoff (mm)	45	37	27	15	11	8	6	5	8	8	9	15	194
Rainfall (mm)	96	54	46	18	45	23	19	4	87	33	39	60	524
Monthly and yearly statistics for previous record (Jun 1962 to Dec 1994-incomplete or missing months total 0.3 years)													
Mean Avg.	0.826	0.729	0.673	0.593	0.424	0.303	0.258	0.265	0.285	0.401	0.544	0.708	0.500
flows Low	0.351	0.264	0.276	0.220	0.169	0.116	0.088	0.083	0.119	0.134	0.190	0.210	0.224
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	1.574	1.838	1.538	1.518	0.886	0.691	0.863	0.593	0.917	1.144	1.112	1.804	0.754
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	10.01	12.59	7.71	13.34	11.30	8.13	13.38	7.06	6.64	10.46	10.17	8.48	13.38
Runoff (mm)	36	29	29	25	18	13	11	12	12	17	23	31	256
Rainfall (mm)	62	46	58	53	53	55	54	63	57	55	68	63	687

Factors affecting runoff: PI
Station type: C
Comment: June and July 1995 contain estimated daily flows.

030012 Stainfield Beck at Stainfield

Measuring authority: EA-A
First year: 1970
Hydrometric statistics for 1995

	JAN	FEB	MAR	APR	MAY	JuN	JuL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.		0.525	0.264	0.112	0.055	0.032	0.013	0.006	0.015	0.011	0.020	0.058	
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak		3.71	0.86	0.22	0.20	0.09	0.02	0.01	0.06	0.03	0.06	0.39	
Runotf (mm)		34	19	8	4	2	1	0	1	1	1	4	
Rainfall (mm)	95	47	41	14	39	30	15	5	72	19	46	56	479
Monthly and yearly statistics for previous record (Dec 1970 to Dec 1994 -incomplota or missing months total 0.8 years)													
Mean Avg.	0.559	0.522	0.441	0.276	0.164	0.082	0.067	0.043	0.083	0.135	0.230	0.421	0.251
flows Low	0.093	0.114	0.078	0.050	0.032	0.019	0.006	0.004	0.007	0.009	0.017	0.024	0.061
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	1.050	1.521	1.078	0.838	0.496	0.202	0.524	0.161	0.599	0.780	0.729	1.084	0.414
Peak flow ($\mathrm{m}^{3} \mathrm{~B}^{-1}$)	21.53	11.04	10.00	12.42	8.58	4.23	17.57	5.91	6.71	12.33	7.42	B. 19	21.53
Runotf (mm)	40	34	32	19	12	6	5	3	6	10	16	30	212
Aainfall (mm)	60	43	56	46	48	51	48	54	54	54	55	58	627

Factors affecting runoff: \mathbf{N}
Station type: CC

Grid reference: 53 (TF) 127739
Level stn. (m OD): 7.70

Catchment area (sq km): 37.4
Max alt. (m OD): 134

Comment: Januory 1995 contains missing daily flows.

031002 Glen at Kates Br and King St Br

Measuring authority: EA-A
First year: 1960
Hydrometric statistics for 1995

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	3.297	3.775	2.601	1.017	0.511	0.245	0.137	0.146	0.150	0.113	0.107	0.261	1.015
($\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	14.35	9.76	7.67	2.89	0.91	0.50	0.22	0.30	0.25	0.14	0.29	2.28	14.35
Runoff (mm)	26	27	20	8	4	2	1	1	1	1	1	2	94
Rainfall (mm)	83	58	37	14	39	13	7	6	87	23	57	67	491
Monthly and yearly statistics for previous record (Oct 1960 to Dec 1994-incomplete or missing months total 0.7 years)													
Mean Avg.	2.036	2.310	2.153	1.807	1.337	0.720	0.396	0.334	0.329	0.527	0.908	1.537	1.194
flows Low	0.093	0.048	0.033	0.018	0.008	0.004	0.000	0.001	0.008	0.019	0.017	0.026	0.154
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \quad \mathrm{High}$	6.351	10.110	6.317	4.903	5.060	2.182	1.465	1.615	1.873	2.810	5.552	7.868	2.333
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	16.55	15.32	10.32	12.48	9.85	1.64	0.83	3.50	16.13	12.57	17.60	14.89	17.60
Runoff (mm)	16	16	17	14	10	5	3	3	2	4	7	12	110
Rainfall (mm)	53	40	48	52	50	52	50	60	56	51	56	55	623
Factors affecting runoff: G I Station type: FV+FL										1995 runoff is 85% of previous mean rainfall 79\%			

031010 Chater at Fosters Bridge

Measuring authority: EA-A
First year: 1968
Hydrometric statistics for 1995

	JAN	FEB	MAR	APR	MAY	JUN	JUL.	AUG	SEP	OCT	Nov	DEC	Year
Flows Avg.	1.649		0.097	0.278	0.185	0.130	0.098	0.079	0.111	0.088	0.132	0.409	
($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$): Paak	12.22		2.46	0.42	0.31	0.23	0.19	0.11	0.29	0.14	0.43	3.70	
Runoff (mm)	64		35	10	7	5	4	3	4	3	5	16	
Rainfall (mm)	95	67	38	17	37	11	13	7	94	28	61	70	538
Monthly and yearly statistics for previous record (Fob 1968 to Dec 1994)													
Mean Avg.	0.957	0.925	0.803	0.640	0.417	0.287	0.193	0.178	0.215	0.359	0.494	0.783	0.519
flows Low	0.147	0.106	0.090	0.065	0.051	0.033	0.024	0.044	0.061	0.048	0.073	0.098	0.198
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	1.724	3.094	1.677	1.670	1.471	0.717	0.867	0.818	0.997	1.188	1.343	1.891	0.828
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	16.19	16.06	15.77	15.07	16.44	11.78	20.64	20.76	15.04	9.04	12.48	14.69	20.76
Runoff (mm)	37	33	31	24	16	11	8	7	8	14	19	30	238
Rainfall (mm)	59	44	53	52	52	58	56	63	57	53	59	58	664

Factors affecting runoff: N
Station type: CC

Grid reference: 43 (SK) 961030
Level stn. (m OD): 38.40

Catchment area (sq km): 68.9

Comment: February 1995 contains missing daily flows

Grid reference: 53 (TF) 106149
Leval stn. (m OD): 6.10

Catchment area (sq km): 341.9 Max alt. (m OD): 129

Measuring authority: EA-A
First year: 1956
Hydrometric statistics for 1995

	Jan	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC 0.708	Year 1.555
Flows Avg.	2.981	4.084	3.810	2.318	1.439	1.003	0.577	0.422	0.554	0.460	0.484	0.708	1.555
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	4.97	5.05	5.55	3.07	1.85	1.65	1.44	0.58	1.28	0.52	0.82	1.91	5.55
Runoff (mm)	29	36	37	22	14	9	6	4	5	4	5	7	179
Rainfall (mm)	99	72	61	20	28	32	23	10	117	13	41	60	576
Monthly and yearly statistics for previous record (Mar 1956 to Dec 1994)													
Mean Avg.	2.875	2.925	2.675	2.404	1.816	1.333	1.066	0.890	0.864	1.094	1.610	2.290	1.815
flows Low	0.903	0.909	1.026	1.015	0.767	0.490	0.319	0.264	0.228	0.242	0.419	0.536	0.684
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \quad \mathrm{High}$	5.422	5.288	4.702	4.586	3.833	2.592	2.234	2.229	2.481	3.243	4.569	4.768	2.760
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	9.31	11.29	12.23	8.47	5.82	3.50	3.39	4.00	4.06	7.15	13.30	8.72	13.30
Runoff (mm)	28	26	26	23	18	13	10	9	8	11	15	22	209
Rainfall (mm)	58	40	47	46	46	55	59	58	57	59	66	62	653

Factors affacting runotf: PGEI
Station type: FL

Grid reference: 52 (TL) 771965
Level stn. (m OD): 5.30

Catchment area (sq km): 274.5 Max alt. (m OD): 95

033012 Kym at Meagre Farm

Measuring authority: EA-A
First year: 1960
Hydrometric statistics for 1995

		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	3.190	2.577	1.386	0.114	0.069	0.043	0.041	0.024	0.161	0.053	0.196	1.782	0.796
($\mathrm{m}^{3} \mathrm{~s}^{-1}$):	Peak	14.31	14.60	11.76	0.18	0.27	0.10	0.11	0.03	1.20	0.11	4.54	17.84	17.84
Runoff (mm)		62	45	27	2	1	1	1	0	3	1	4	35	183
Rainfall (mm)		96	62	45	18	31	11	35	3	133	22	60	82	598

Monthly and yearly statistics for previous record (May 1960 to Dec 1994 -incomplete or missing months total 0.1 years)

Mean Avg.	1.366	1.293	1.054	0.788	0.335	0.222	0.127	0.099	0.104	0.446	0.674	1.051	0.627
flows Low	0.074	0.047	0.044	0.041	0.024	0.009	0.001	0.004	0.017	0.015	0.022	0.050	0.103
$\left(\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}\right.$) High	3.296	5.577	3.474	2.107	1.469	1.489	2.438	1.096	1.685	3.515	3.718	3.348	1.048
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	25.26	22.70	30.24	30.75	20.61	24.10	16.68	23.42	23.40	25.91	34.71	33.98	34.71
Runoff (mm)	27	23	21	15	7	4	2	2	2	9	13	20	144
Rainfall (mm)	50	38	45	49	51	57	50	54	51	53	54	56	608
Factors affecting Station typa: CB	off: El										$\begin{aligned} & \text { If is } 12 \\ & \text { all } \quad 9 \end{aligned}$	of pr	mean

033022 Ivel at Blunham

Measuring authority: EA-A
First year: 1965
Hydrometric statistics for 1995

033024 Cam at Dernford

Measuring authority: EA-A
First year: 1949
Hydrometric statistics for 1995

ines mithe													
Moasuring authority: EA-A First year: 1965			Grid reference: 52 (TL) 333485 Level stn. (m OD): 17.90							Catchment area (sq km): 119.1 Max att. (m OD): 168			
Hydrometric statistics for 1995													
	JAN	FEG	MAR	APR	MAY	JUN	JUL*	'AUG	SEP	OCT	NOV	DEC	Year
Flows Avg,	1.130	1.655	1.492	0.666	0.401	0.250	0.160	0.098	0.105	0.087	0.093	0.236	0.525
($\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	3.92	4.44	4.24	0.83	0.60	0.32	0.22	0.12	0.16	0.10	0.18	1.55	4.44
Runoff (mm)	25	34	34	14	9	5	4	2	2	2	2	5	139
Rainfall (mm)	103	59	49	14	37	12	21	5	110	18	35	73	536
Monthly and yearly statistics for previous record (Jul 1965 to Dec 1994-incomplate or missing months total 0.1 years)													
Moan Avg.	0.926	0.945	0.767	0.738	0.521	0.342	0.210	0.180	0.204	0.363	0.462	0.637	0.522
flows Low	0.088	0.092	0.089	0.099	0.067	0.041	0.022	0.014	0.040	0.053	0.058	-0.065 ',	0.079
$\underset{\left(m^{3} s^{-1}\right)}{\text { High }}$	2.687	1.911	2.077	2.074	1.579	0.936	0.434	0.586	1.090	1.751	1.848	1:718.	0.945
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	8.79	6.00	5.29	5.19	8.87	4.55	1.11	5.72	5.62	9.19	7.14	7.11	9.19
Runotf (mm)	21	19	17	16	12	7	5	4	${ }^{5} 4$	8	10	14	138
Rainfall (mm)	48	33	41	45	50	50	49	51	53	53	52	52	577
Factors affecting runoff: GEI Station type: FL										1995 runoff is 100% of previous mean rainfall $\mathbf{9 3 \%}$			

034003 Bure at Ingworth

Measuring authority: EA-A
First year: 1959
Hydrometric statistics for 1995

		JAN	FEB	MAR	APR	MAY	JUN	Jul.	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	1.973	1.928	2.132	1.205	1.035	1.121	0.852	0.649	0.858	0.737	0.880	1.005	1.194
$\left(\mathrm{m}^{\mathbf{3}} \mathbf{s}^{-1}\right)$:	Peak	4.25	3.26	8.46	1.49	1.89	1.79	1.02	0.72	1.23	0.82	1.22	2.05	
Runoff (mm)		32	28	35	19	17	18	14	11	14	12	14	16	229
Rainfall (mm)		97	64	68	19	44	55	34	18	91	11	47	61	609

Monthly and yearly statistics for previous record (Jun 1959 to Dec 1994 -incomplete or missing months total 0.2 years)

Mean Avg.	1.541	1.420	1.276	1.192	0.959	0.782	0.764	0.780	0.856	0.986	1.208	1.366	1.093
flows Low	0.844	0.792	0.779	0.688	0.600	0.495	0.493	0.472	0.548	0.649	0.688	0.827	0.752
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	2.483	2.954	2.115	2.322	1.639	1.168	1.158	1.955	1.823	2.428	2.024	2.560	1.488
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	8.27	10.65	6.45	18.30	6.07	3.79	3.47	12.82	9.26	10.17	10.05	9.63	18.30
Runotf (mm)	25	21	21	19	16	12	12	13	13	16	19	22	209
Rainfall (mm)	61	41	50	48	45	48	59	60	59	64	72	66	673

Factors affecting runoff: G I
Station type: MIS

Grid reference: 63 (TG) 192296
Level stn. (m OD): 12.20

Catchment area (sq km): 164.7 Max alt. (m OD): 101

035008 Gipping at Stowmarket

Moasuring authority: EA-A
First year: 1966
Hydrometric statistics for 1995

036006 Stour at Langham

Mensuring authority: EA-A
First year: 1962
Hydrometric statistics for 1995

	JAN	FE日	MAR	APR	MAY	JUN	JUL	AUG	SEP
Flows Avg.	9.973	10.820	7.463	2.002	1.238	1.218	0.966	0.624	1.169
($\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	31.44	27.03	22.31	3.07	1.60	2.55	2.12	1.07	3.37
Runoff (mm)	46	45	35	9	6	5	4	3	5
Rainfall (mm)	111	71	58	13	17	26	26	10	118
Monthly and yearly statistics for previous record (Oct 1962 to Dec 1994)									
Mean Avg.	5.582	4.894	4.513	3.665	2.335	1.626	1.110	1.162	1.185
flows Low	1.398	0.884	1.597	1.218	0.757	0.453	0.190	0.209	0.395
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$, High	16.080	12.980	9.776	9.335	7.253	5.999	2.956	6.237	4.946
Peak flow ($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-\dagger}$)	48.47	41.27	38,37	28.45	39.31	20.64	17.06	39.52	91.00
Runoff (mm)	26	21	21	16	11	7	5	5	5
Rainfall (mm)	49	34	46	46	46	53	46	50	53

Factors affecting runoff: RPG I
Station type: FL

Grid reference: 62 (TM) 020344 Level str. (m OD): 6.40

Catchment area (sq km): 578.0 Max alt. (m OD): 128

OCT	NOV	DEC	Year
0.953	2.094	3.368	3.451
1.65	2.77	10.79	31.44
4	9	16	188
日	22	75	555
2.040	2.940	4.186	2.928
0.509	0.578	0.693	1.428
13.170	11.340	11.260	5.119
53.63	38.93	43.85	91.00
9	13	19	160
52	58	53	586

1995 runoff is 118% of previous mean rainfall 95\%

Comment: May to December 1995 flows augmented from the Ely/Ouse Transfer Scheme.

037001 Roding at Redbridge

Measuring authority: EA-T first year: 1950			Grid reference: 51 (TO) 415884 Level stn. (m OD): 5.70							Catchment area (sq km): 303.3 Max alt. (m OD): 117			
Hydrometric statistics for 1995													
	JAN	fEB	MAR	APR	MAY	JUN	Jul	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	7.913	7.284	3.566	0.656	0.408	0.342	0.300	0.168	0.560	0.258	0.331	1.208	1.888
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	22.00	18.10	15.20	1.11	3.29	2.86	6.22	0.22	4.74	0.51	1.80	7.82	22.00
Runoff (mm)	70	58	31	6	4	3	3	1	5	2	${ }^{3}$	11	196
Rainfall (mm)	122	73	53	8	19	22	36	3	100	8	21	83	548
Monthly and yearly statistics for previous record (Feb 1950 to Dec 1994)													
Mean Avg.	3.804	3.361	2.603	1.943	1.161	0.837	0.607	0.636	0.812	1.504	2.138	2.891	1.851
flows Low	0.382	0.379	0.537	0.482	0.280	0.226	0.202	0.224	0.197	0.283	0.364	0.392	0.801
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	10.920	10.670	6.862	6.768	4.044	2.953	1.975	3.925	4.009	7.883	10.340	9.455	2.809
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	42.00	40.10	38.10	27.70	32.70	21.80	24.50	31.30	25.60	35.60	62.40 18	36.40 26	62.40 193
Runoff (mm)	34	27	23	17	10	7 5	5	56	58	58	60	57	624
Rainfail (mm)	53	40	45	45	48	52	52	56	58	58	60	57	624
Factors affecting runoff: S El Station type: EW										1995 runoff is 102% of previous mean rainfall 88\%			

037005 Colne at Lexden

1995

Measuring authority: EA-A
First year: 1959
Hydrometric statistics for 1995

	JAN	FEB	MAA	APR	MAY	JUN	JUL	AUG	SEP . 392	OCT 0.329	NOV 0.389	DEC 0.814	Year 1.278
Flows Avg.	4.591	4.054	2.727	0.908	0.523	0.373	0.251	0.167					
($\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	15.34	12.44	9.88	1.43	0.90	0.70	0.60	0.28	2.01	0.38	0.59	4.15	15.34
Runoff (mm)	52	41	31	10	6	4	3	2	4	4	4	8	169
Rainfall (mm)	110	64	55	12	17	20	23	6	112	6	19	80	524
Monthly and yearty statistics for previous record (Oct 1959 to Nov 1994)													
Mean Avg.	2.057	1.738	1.557	1.206	0.755	0.489	0.363	0.348	0.398	0.778	1.149	1.544	1.029
flows Low	0.460	0.346	0.380	0.358	0.229	0.146	0.101	0.088	0.175	0.188	0.288	0.352	0.362
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \quad$ High	6.543	4.684	3.556	3.344	2.353	1.528	0.907	1.558	1.099	4.838	5.521	4.200	1.732
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	21.13	22.65	20.68	13.34	12.56	8.07	6.41	8.86	10.50	24.81	21.29	20.58	24.81
Runotf (mm)	23	18	18	13	8	5	4	4	4	9	13	17	136
Rainfall (mm)	49	34	43	44	43	49	47	48	53	55	57	54	576
Factors affecting runoff: RP I Station type: FL										1995 runoff is 124% of previous mean rainfall 91\%			

037010 Blackwater at Applejord Bridge

Measuring authority: EA-A
First year: 1962
Hydrometric statistics for 1995

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	$\begin{aligned} & \text { SEP } \\ & 1.209 \end{aligned}$	OCT 1.640	NoV 1.804	$\begin{aligned} & \text { DEC } \\ & 2.037 \end{aligned}$	$\begin{aligned} & \text { Year } \\ & 1.797 \end{aligned}$
Flows Avg.	4.625	4.022	2.568	0.834	0.621	0.930	0.956	0.458	1.209	1.640	1.804	2.037	1.797 17.00
($\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	17.00	14.20	9.80	1.12	1.03	1.59	1.87	0.75	2.23	2.58	2.42	5.65 22	17.00 229
Runoff (mm)	50	39	28	9	7	10	10	5	13	18	19 19	22	229 535
Rainfall (mm)	112	63	55	14	20	22	30	5	109	5	19	81	535
Monthly and yearly statistics for previous record (Oct 1962 to Dec 1994)													
Mean Avg.	2.180	1.948	1.828	1.493	1.028	0.795	0.582	0.527	0.549	0.878	1.217	1.696	1.224
flows Low	0.532	0.460	0.479	0.479	0.341	0.356	0.182	0.161	0.215	0.288	0.325	0.379	0.822
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	7.181	4.888	3.583	3.843	2.860	1.777	1.359	1.738	1.651	4.955	4.676	4.307	1.659 26.80
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	26.80	21.60	20.00	12.31	17.80	7.76	6.04	13.75	15.25	26.08	20.20	21.60	156
Runoff (mm)	24	19	20	16	11	8	6	6	6	10	13	18	156
Rainfall (mm)	49	34	46	45	46	53	46	49	52	52	56	52	580

Factors affecting runoff: RPG I
Station type: FL
Comment: May to December 1995 flows augmented from the Ely/Ouse Transfer Scheme.

Grid reference: 52 (TL) 845158
Level stn. (m OD): 14.60

Catchment area (sq km): 247.3
Max alt. (m OD): 127

Measuring authority: EA-T

First year: 1971
Hydrometric statistics for 1995

					MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg	JAN 1.023	FEB 0.908	MAR 0.444	APA 0.032	MAY 0.029	0.019	0.021	0.005	0.055	0.022	0.021	0.137	0.223
Flows ${ }^{\text {a }}$ Avg.	1.023	6.908	5.4 .99	0.10	0.50	0.34	0.39	0.01	0.88	0.32	0.16	1.78	6.25
$\because\left(m^{3} \mathrm{~s}^{-1}\right)$: Pat	6.18 65	6.25 52	28.9	2. 2	2	${ }_{1} 1$	1	0	3	1	1	9	167
Runofat (mm)	. 132	80	54	12	22	22	30	3	93	24	26	87	585
Monthly and yearly statistics for previous record (Sep 1971 to Dec 1994$)$													
Mean Avg.	0.436	0.337	0.304	0.223	0.150	0.090	0.042	0.047	0.057	0.186	0.230	0.331	0.202
flows Low	0.019	0.022	0.024	0.020	0.009	0.021	0.009	0.008	0.008	0.013	0.019	0.022	0.057
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	1.180	0.988	0.811	0.626	0.626	0.240	0.087	0.171	0.228	0.941	1.158	0.724	0.339
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	10.50	11.50	7.68	7.72	20.70	15.30	2.38	2.76	7.55	10.70	12.80	10.50	20.70
Runoff (mm)	28	19	19	14	10	6	3	3	3	12	14	21	151
Rainfall (mm)	63	42	55	51	56	56	47	51	61	66	59	64	671
Factors affecting runoff: PG Station type: FV										1995 runoff is 110% of previous mean rainfall 87%			

Measuring authority: EA-T First year: 1938
Hydrometric statistics for 1995

		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	77.180	108.500	56.810	19.050	11.490	6.759	4.354	2.517	5.109	5.003	12.080	50.080	29.475
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$:	Paak	149.00	159.00	111.00	29.90	23.20	13.50	9.74	6.16	16.90	13.60	48.90	177.00	177.00
Runoff (mm)		60	76	44	14	9	5	3	2	4	4	9	39	270
Rainfall (mm)		122	73	45	22	54	10	23	4	116	49	81	96	695

Monthly and yearly statistics for previous record (Oct 1938 to Dec 1994)

Factors affecting runoff: PEI
Station type: MIS

Grid reference: 41 (SU) 568935
Level stn. (m OD): 46.00

Catchment area (sq km): 3444.7 area (sq km): 3444.7
Max alt. (m OD): 330

1995 runoff is 105% of previous mean rainfall 97%

039005 Beverley Brook at Wimbledon Common

Measuring authority: EA-T
First year: 1935
Hydrometric statistics for 1995

039007 Blackwater at Swallowfield

Measuring authority: EA-T
First year: 1952
Hydrometric statistics for 1995

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	8.553	9.177	5.994	3.203	2.262	1.720	1.460	1.176	2.253	1.820	2.174	4.422	3.654
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	22.50	22.40	19.80	6.55	5.09	3.13	2.27	1.81	6.82	3.84	5.06	19.20	22.50
Runoff (mm)	65	63	45	23	17	13	11	9	16	14	16	33	325
Rainfall (mm)	139	92	50	20	24	11	38	8	118	35	56	98	689
Monthly and yearly statistics for previous record (Oct 1952 to Dec 1994)													
Mean Avg.	4.798	4.239	3.820	3.203	2.550	2.026	1.534	1.522	1.824	2.619	3.349	4.069	2.957
flows Low	1.758	1.687	1.323	1.521	1.081	0.766	0.711	0.723	0.638	0.907	1.262	1.298	1.466
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	8.936	11.010	6.898	5.600	5.946	6.472	2.829	2.622	6.609	7.613	8.019	7.022	3.883
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	25.60	25.90	30.50	24.30	24.40	25.20	11.80	11.20	41.00	27.80	28.60	26.90	41.00
Runoff (mm)	36	29	29	23	19	15	12	11	13	20	24	31	263
Rainfall (mm)	69	45	53	47	53	52	53	57	64	73	70	73	709
Factors affecting runoff: GE Station type: CC										1995 runoff is 124% of previous mean rainfall 97%			

Grid reference: 41 (SU) 731648 Level stm. (m OD): 42.30

Catchment area (sq km): $\mathbf{3 5 4 . 8}$ Max alt. (m OD): 225

039014 Ver at Hansteads

1995

Measuring authority: EA-T
First year: 1956
Hydrometric statistics for 1995

	JAN	FEB	MAR	APR	MAY	JuN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	0.808	1.127	1.185	0.959	0.828	0.667	0.359	0.242	0.361	0.285	0.243	0.336	0.613
$\left(m^{3} s^{-1}\right): ~ P e a k ~$	1.54	1.51	1.52	1.25	1.39	1.61	0.54	0.31	0.70	0.60	0.55	1.19	1.61
Runaff (mm)	16	21	24	19	17	13	7	5	7	6	5	7	146
Rainfall (mm)	138	81	57	15	30	24	19	2	113	29	53	89	650
Monthly and yearly statistics for previous record (Oct 1956 to Dec 1994)													
Mean Avg.	0.476	0.535	0.553	0.532	0.472	0.410	0.339	0.297	0.268	0.299	0.346	0.402	0.410
flows Low	0.079	0.076	0.074	0.093	0.069	0.045	0.028	0.016	0.025	0.057	0.039	0.048	0.095
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{High}$	1.306	1.336	1.312	1.254	1.140	0.864	0.651	0.564	0.660	0.716	0.791	0.977	0.817
Peak flow ($\mathrm{m}^{3} \mathbf{s}^{-1}$)	1.77	1.91	1.88	1.90	2.07	1.65	1.44	1.13	2.34	1.50	2.31	2.64	2.64
Runotf (mm)	10	10	11	10	10	8	7	6	5	6	7	8	98
Rainfall (mm)	65	46	55	54	54	60	53	58	63	69	66	73	716

Factors affecting runoff: G
Station type: CC

Grid reference: 52 (TL) 151016 Level stn. (m OD): 61.30

Catchment area (sq km): 132.0 Max alt. (m OD): 243

Comment: The Ver is included in the NRA (now EA) Alleviation of Low Flows Programme.

Measuring authority: EA-T
First year: 1961
Hydrometric statistics for 1995

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	22.100	31.480	24.640	15.600	10.680	7.179	5.299	3.715	5.180	4.617	6.430	9.999	12.125
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	44.10	45.70	35.20	19.20	13.50	9.39	7.38	7.26	16.80	7.07	23.90	30.71	45.70
Runoff (mm)	57	74	64	39	28	18	14	10	13	12	16	26	370
Rainfall (mm)	157	92	53	25	43	13	46	6	135	49	109	102	830
Monthly and yearly statistics for previous record (Oct 1961 to Dec 1994)													
Mean Avg.	13.460	14.750	14.250	12.480	10.060	8.311	6.332	5.560	5.309	6.169	7.859	10.510	9.561
flows Low	4.144	4.401	4.190	3.429	2.739	2.041	1.620	1.377	2.787	3.596	3.943	4.333	4.056
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	28.110	27.780	22.010	19.790	15.430	18.600	11.120	9.542	10.000	13.970	17.710	23.850	12.882
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	48.30	52.10	44.30	36.90	31.50	70.00	19.00	20.50	33.40	38.20	43.50	47.30	70.00
Runoff (mm)	35	35	37	31	26	21	16	14	13	16	20	27	292
Rainfall (mm)	76	51	67	52	59	60	49	65	67	70	74	82	772

Factors affecting runoff: R G I
Station type: C

Grid reference: 41 (SU) 649708
Level stn. (m OD): 43.40

Catchment area (sq km): 1033.4 Max alt. (m OD): 297

039019 Lambourn at Shaw

Measuring authority: EA-T First year: 1962			Grid reference: 41 (SU) 470682 Level stn. (m OD): 75.60							Catchment area (sq km): 234.1 Max alt. (m OD): 261			
Hydrometric statistics for 1995													
	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	2.512	4.549	4.856	3.617	2.543	1.882	1.456	1.116	1.209	1.061	1.133	1.428	2.265
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	4.18	4.95	5.35	4.38	3.13	2.30	1.92	1.30	3.26	1.29	1.64	2.22	5.35
Runoff (mm)	29	47	56	40	29	21	17	13	13	12	13	16	305
Rainfall (mm)	143	83	51	26	47	12	57	6	138	42	106	103	814
Monthly and yearly statistics for previous record (Oct 1962 to Dec 1994)													
Mean Avg.	1.804	2.250	2.451	2.357	2.078	1.798	1.481	1.252	1.132	1.119	1.210	1.443	1.695
flows Low	0.797	0.787	0.743	0.695	0.639	0.573	0.538	0.485	0.681	0.683	0.757	0.710	0.739
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	3.854	4.160	3.718	3.550	2.979	2.764	2.359	2.048	1.699	1.921	2.392	3.200	2.270
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	4.40	4.93	4.39	4.08	4.97	4.34	3.06	3.54	3.75	3.17	5.02	4.15	5.02
Runoff (mm)	21	23	28	26	24	20	17	14	13	13	13	17	228
Rainfall (mm)	70	48	63	50	59	58	50	61	63	65	72	77	736
Factors affecting runoff: R G Station type: C										1995 runoff is 134% of previous mean rainfall 111\%			

039021 Cherwell at Enslow Mill

Measuring authority: EA-T
First year: 1965
Hydrometric statistics for 1995

	JAN	FEB	MAF	APA	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	9.476	10.990	8.000	3.246	1.847	1.290	0.748	0.507	0.946	0.915	1.782	5.152	3.703
$\left(m^{3} s^{-1}\right)$: Peak	15.60	16.50	15.60	4.44	3.67	2.24	1.34	0.57	2.56	1.50	6.58	14.70	16.50
Runoff (mm)	46	48	39	15	9	6	4	2	4	4	8	25	212
Rainfall (mm)	${ }^{\dagger} 109$	62	53	25	51	14	15	6	115	39	74	91	654
Monthly and yearly statistics for previous record (Feb 1965 to Dec 1994)													
Mean Avg.	7.368	6.964	6.023	4.515	3.199	2.328	1.490	1.393	1.461	2.260	3.433	5.868	3.845
flows Low	0.919	0.905	0.754	0.566	0.445	0.309	0.156	0.132	0.468	0.630	0.730	0.915	1.370
$\left(m^{3} s^{-1}\right) \quad \mathrm{High}$	12.180	15.900	12.090	8.710	8.674	6.632	4.997	2.634	5.577	7.615	9.223	13.330	5.373
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	- 22.50	23.80	26.70	20.70	19.30	17.60	24.50	10.30	20.80	17.40	22.00	30.20	30.20
Runoff (mm)	36	31	29	21	16	11	7	7	7	11	16	28	220
Rainfall (mm)	62	45	54	47	58	58	56	61	59	60	59	68	687
Factors affecting runoff: PE Station type: CC										1995 runoff is 96% of previous mean rainfall 95%			

Station type: CC

Grid reference: 42 (SP) 482183 Level stn. (m OD): 65.00

Catchment area (sq km): 551.7 Max alt. (m OD): 239

039023 Wye at Hedsor

Measuring authority: EA-T
First year: 1964

Grid reference: 41 (SU) 896867 Level stn. (m OD): 26.80

Catchment area (sq km): 137.3 Max alt. (m OD): 244

Hydrometric statistics for 1995

039029 Tillingbourne at Shalford

Measuring authority: EA-T
First year: 1968
First year: 1968
Hydrometric statistics for 1995

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	0.848	0.942	0.784	0.614	0.498	0.463	0.427	0.373	0.460	0.403	0.429	0.539	0.563
$\left(m^{3} s^{-1}\right):$ Peak	1.71	1.57	1.28	0.69	0.74	0.59	0.57	0.47	0.94	0.72	0.62	1.29	1.71
Runoff (mm)	39	39	36	27	23	20	19	17	20	18	19	24	301
Rainfall (mm)	170	111	49	15	28	19	40	3	116	26	54	106	737
Monthly and yearly statistics for previous record (Jun 1968 to Dec 1994)													
Mean Avg.	0.657	0.632	0.606	0.586	0.534	0.487	0.444	0.436	0.458	0.505	0.539	0.595	0.539
flows Low	0.322	0.346	0.350	0.357	0.308	0.257	0.283	0.292	0.280	0.292	0.353	0.319	0.353
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	0.998	1.072	0.900	0.897	0.819	0.830	0.599	0.619	0.885	0.938	0.883	0.840	0.686
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	4.54	3.04	3.23	3.00	1.91	2.79	1.65	2.36	6.09	5.09	3.65	3.25	6.09
Runoff (mm)	30	26	28	26	24	21	20	20	20	23	24	27	289
Aainfall (mm)	87	51	66	58	58	57	52	59	74	80	79	83	804
Factors affecting runoff: N G I Station type: C										1995 runoff is 104% of previous mean			

Station type: C

Grid reference: 51 (TQ) 000478
Level stn. (m OD): 31.70

Catchment area (sq km): 59.0 Max alt. (m OD): 294

039049 Silk Stream at Colindeep Lane

1995
Measuring authority: EA-T
First year: 1973
Hydrometric statistics for 1995

	JAN	FEB	MAR	APR	MAY	JUN	Jul	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	0.830	0.677	0.396	0.097	0.081	0.083	0.104	0.052	0.189	0.092	0.107	0.289	0.248
($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$): Peak	8.23	3.99	5.58	1.33	2.70	1.57	2.68	0.11	3.53	2.84	1.46	5.11	8.23
Runotf (mm)	77	56	37	9	8	7	10	5	17	8	10	27	269
Rainfall (mm)	135	80	54	14	22	23	32	1	89	24	34	91	599
Monthly and yearly statistics for previous record (Dec 1973 to Dac 1994 -incomplete or missing months total 4.4 years)													
Mabn Avg.	0.381	0.280	0.298	0.267	0.215	0.197	0.146	0.125	0.158	0.296	0.302	0.325	0.249
flows Low	0.093	0.102	0.092	0.030	0.035	0.061	0.047	0.053	0.057	0.062	0.096	0.096	0.178
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	0.790	0.725	0.677	0.560	0.570	0.566	0.248	0.204	0.505	0.808	0.967	0.593	0.308
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	8.54	14.30	6.26	10.26	17.10	16.30	14.50	14.20	17.20	17.30	13.00	16.00	17.30
Runoff (mm)	35	24	28	24	20	18	14	. 12	14	27	27	30	271
Rainfall (mm)	64	39	56	52	61	59	50	51	65	74	59	63	693
Factors affecting runoff: Station type: FV							?			1995 runoff is 99% of previous mean rainfall 86\%			

039069 Mole at Kinnersley Manor

Measuring authority: EA-T
First year: 1972
Hydrometric statistics for 1995

		JAN	FEB	MAR	APA	MAY	JUN	Jul	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	8.406	6.880	2.915	0.966	0.710	0.557	0.544	0.404	1.239	0.548	0.796	2.997	2.224
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right):$	Peak	43.90	28.90	17.70	2.35	3.19	1.66	3.65	0.49	8.07	1.73	3.95	24.30	43.90
Runoff (mm)		159	117	55	18	13	10	10	8	23	10	15	57	494
Rainfall (mm)		172	113	57	16	21	21	32	2	125	25	57	106	747

. Monthly and yearly statistics for previous record (Oec 1972 to Dec 1994 -incomplete or missing months total 1.5 years)

Mean Avg.													
MeanAvg. flows Low	4.020 0.940	2.998 0.829	2.468 0.833	2.046 0.388	1.415 0.305	1.030 0.221	0.791 0.296	0.788 0.169	$\begin{aligned} & 0.992 \\ & 0.281 \end{aligned}$	2.223 0.207	2.454 0.260	3.716 1.071	2.076
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)^{\text {d }}$ High	9.375	8.634	4.668	3.666	3.552	2.225	2.818	2.864	5.419	8.486	5.894	6.493	2.856
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	48.80	46.50	24.10	47.00	32.90	23.30	28.90	29.80	40.70	71.90	56.70	68.50	71.90
Runoff (mm)	76	51	47	37	27	19	15	15	18	42	45	70	461
Rainfall (mm)	82	53	62	55	54	58	49	55	68	93	77	92	798
Factors affecting	ff: E									995 r	is 10	pr	mea

Factors affecting runoff: E
Station type: MiS

Grid reference: 51 (TQ) 262462
Level stn. (m OD): 48.00

Catchment area (sq km): 142.0 Max alt. (m OD): 178 $2 a r$
224
3.90
47
rainfall 94%

040004 Rother at Udiam

Measuring authority: EA-S
First year: 1962
Hydrometric statistics for 1995

Flows Avg. $\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right):$ Peak	JAN	FEB	MAR	$\begin{aligned} & \text { APR } \\ & 0.624 \end{aligned}$	MAY 0.408	$\begin{aligned} & \text { JUN } \\ & 0.317 \end{aligned}$	JUL 0.259	AUG 0.160	$\begin{aligned} & \text { SEP } \\ & 0.308 \end{aligned}$	$\begin{aligned} & \text { OCT } \\ & 0.190 \end{aligned}$	NOV 0.175	DEC	Year
Runoff (mm)				8	5	4	3	2	4	2	2		
Rainfall (mm)	172	124	66	14	21	23	38	3	134	33	43	103	774
Monthly and yearly statistics for previous record (Oct 1962 to Sep 1994 incomplete or missing months total 3.0 years)													
Maan Avg.	4.667	3.751	3.149	2.257	1.226	'0.997'	0.621	0.583	0.828	1.935	3.229	3.822	2.249
flows Low	0.641	0.681	0.422	0.274	0.239	0.211	0.174	0.142	0.153	0.119	0.155	0.353	0.701
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \quad \mathrm{High}$	14.700	11.010	6.927	4.533	2.896	4.919	3.097	2.934	4.505	13.050	12.360	9.547	3.322
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)													
Runoff (mm)	61	44	41	28	16	13	8	8	10	25	41	50	344
Rainfall (mm)	89	59	69	60	55	62	53	62	75	93	98	92	867

Factors affecting runoff: S GE
Station type: VA
Comment: Estimation of flows or flows missing in January, February, March and December 1995.

Measuring authority: EA-S
First year: 1961
First year: 1961
Hydrometric statistics for 1995

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	8.661	7.039	3.277	0.888	0.530	0.405	0.331	0.232	0.556	0.401	0.493	2.239	2.064
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	38.42	890.10	20.95	1.24	0.88	0.72	0.71	0.34	2.12	0.97	1.62	21.73	890.10
Runoff (mm)	103	76	39	10	6	5	4	3	6	5	6	27	290
Rainfall (mm)	162	103	55	13	20	21	31	2	128	22	48	110	715

Monthly and yearly statistics for previous record (Oct 1961 to Dec 1994 -incomplete or missing months total 1.8 years)

Mean Avg.	3.937	3.195	2.498	1.865	1.288	0.887	0.491	0.511	0.721	1.372	2.362	3.058	1.843
flows Low	0.412	0.515	0.362	0.396	0.283	0.193	0.182	0.201	0.223	0.265	0.314	0.672	0.810
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	9.958	8.346	6.040	4.373	4.842	4.132	2.125	1.438	5.243	5.486	8.909	7.260	2.809
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	45.56	64.44	32.28	34.03	39.16	31.85	24.70	17.42	22.02	46.15	55.21	60.00	64.44
Runotf (mm)	47	35	30	22	15	10	6	6	8	16	27	37	259
Rainfall (mm)	75	48	59	57	55	56	. 50	57	71	77	78	79	762

Factors affecting runoff: S E
Station type: C

Grid reference: 51 (TQ) 520437
Level stn. (m OD): 27.80

Catchment area (sq km): 224.3
Max alt. (m OD): 267

040012 Darent at Hawley

Measuring authority: EA-S
First year: 1963
Grid reference: 51 (TQ) 551718
Level stn. (m OD): 11.20
Catchment area (sq km): 191.4
Hydrometric statistics for 1995

	JAN	FEB	MAR	APR	MAY	JuN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	2.028	2.633	1.927	1.127	0.700	0.482	0.255	0.133	0.340	0.303	0.321	0.747	0.906
$\left(m^{3} s^{-1}\right):$ Peak	4.04	3.91	3.20	1.51	0.93	0.62	0.44	0.21	0.83	0.63	0.52	2.26	4.04
Runoff (mm)	28	33	27	15	10	7	4	2	5	4	4	10	149
Rainfall (mm)	154	97	57	11	23	23	30	2	127	18	39	107	688
Monthly and yearly statistics for previous record (Dec 1963 to Dec 1994-incomplete or missing months total 0.2 years)													
Mean , Avg.	0.957	0.997	0.861	0.786	0.589	0.436	0.296	0.259	0.276	0.377	0.532	0.778	0.593
flows Low	0.054	0.219	0.034	0.068	0.076	0.041	0.000	0.000	0.000	0.000	0.000	0.011	0.101
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	2.060	2.076	1.804	1.515	1.509	0.982	0.617	0.690	1.817	1.516	1.448	1.674	1.067
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	- 5.79	3.99	4.05	3.09	13.10	3.06	2.35	2.27	10.05	3.77	4.91	4.36	13.10
Runoff (mm)	13	13	12	11	8	6	4	4	4	5	7	11	98
Rainfall (mm)	71	47	57	56	55	56	53	56	68	70	71	74	734

Factors affecting runoff: G
Station type: C
Comment: The Darent is included in the NRA (now EA) Alleviation of Low Flows Programme.

041001 Nunningham Stream at Tilley Bridge

Measuring authority: EA-S
First year: 1950
Hydrometric statistics for 1995

	JAN	FEB	MAR	APA	MAY	JUN	JuL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	0.854	0.692	0.280	0.093	0.040	0.028	0.018	0.012	0.022	0.020	0.023	0.190	0.187
($\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	8.82	5.47	8.68		0.08	0.10	0.08	0.03	0.13	0.12	0.10	2.64	
Runoff (mm)	135	99	44	14	6	4	3	2	3	3	4	30	349
Rainfall (mm)	156	101	64	11	18	26	29	1	119	35	44	89	693
Monthly and yearly statistics for previous record (Apr 1950 to Dec 1994-incomplete or missing months total 0.1 years)													
Mean . Avg.	0.433	0.325	0.231	0.151	0.078	0.054	0.035	0.037	0.049	0.124	0.286	0.357	0.179
flows Low	0.062	0.094	0.054	0.034	0.023	0.012	0.010	0.008	0.009	0.013	0.019	0.033	0.053
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \quad \mathrm{High}$	1.108	0.958	0.577	0.404	0.195	0.319	0.210	0.125	0.359	0.576	1.017	1.082	0.306
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	9.00	9.00	8.49	7.63	6.20	7.92	1.89	9.32	8.92	8.82	11.90	8.84	11.90
Runoff (mm)	69	47	37	23	12	8	6	6	8	20	44	57	335
Rainfall (mm)	85	57	59	52	51	56	57	68	74	92	96	94	841

Factors affecting runoff: R
Station type: TPFL
Comment: Estimation of flows in January, March, April and December 1995.
1995 runoff is 104% of previous mean rainfall 82%

1995 runoff is 153% of previous mean rainfall 94%

041006 Uck at Isfield

Measuring authority: EA-S
First year: 1964
Hydrometric statistics for 1995

	JAN.	FEB	MAR	APR	MAY	JUN	JuL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	5.768	4.201	1.791	0.592	0.403	0.328	0.248	0.219	0.315	0.240	0.266	0.983	1.265
$\left(m^{3} s^{-1}\right)$: Peak	52.38	46.25	30.52	0.82	1.47	0.77	0.90	0.32	1.05	0.44	0.49	25.30	52.38
Runoff (mm)	. 176	116	55	17	12	10	8	7	9	7	8	30	455
Rainfall (mm)	166	121	57	14	22	25	33	1	126	30	44	107	746
Monthly and yearly statistics for previous record (Oct 1964 to Dec 1994)													
Mean Avg.	2.407	1.776	1.327	1.126	0.731	0.525	0.375	0.331	0.475	1.066	1.582	2.086	1.148
flows Low	0.412	0.570	0.411	0.324	0.252	0.170	0.142	0.106	0.154	0.160	0.211	0.342	0.480
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	6.356	5.206	3.317	2.205	1.854	1.657	1.575	1.506	2.868	6.692	6.536	5.136	1.945
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	55.60	75.63	39.12	45.22	38.73	37.41	53.64	33.74	36.40	63.04	64.43	70.91	75.63
Runoff (mm)	73	49	40	33	22	15	11	10	14	33	47	64	413
Rainfall (mm)	87	57	63	55	53	63	53	61	73	90	90	90	835
Factors affecting runoff: E Station type: C										1995 runoff is 110% of previous mean rainfall 89\%			

Measuring authority: EA-S
First year: 1970
Hydrometric statistics for 1995

	JAN	Feb	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	9.366	6.711	2.236	0.446	0.255	0.179	0.193	0.137	0.401	0.230	0.340	1.859	1.840
($\mathrm{m}^{\mathbf{3}} \mathbf{s}^{-1}$): Peak	64.74	38.15	16.02	1.32	1.13	0.46	1.62	0.24	2.54	0.51	1.03	21.21	64.74
Runoff (mm)	180	117	43	8	5	3	4	3	7	4	6	36	417
Rainfal (mm)	168	118	52	17	24	17	37	2	120	26	52	98	731
Monthly and yearly statistics for previous record (May 1970 to Dec 1994-incomplete or missing months total 0.1 years)													
Mean Avg.	3.969	2.655	2.159	1.734	1.029	0.667	0.353	0.362	0.614	1.839	2.432	3.243	1.752
flows Low	0.52 B	0.689	0.418	0.277	0.223	0.131	0.138	0.078	0.161	0.150	0.167	0.492	0.589
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{High}$	10.770	9.827	4.413	3.829	3.313	3.055	1.274	1.618	5.443	11.580	10.030	7.022	2.845
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	69.69	67.53	54.45	76.97	47.48	46.54	10.02	23.86	56.14	74.94	74.94	80.52	80.52
Runoff (mom)	76	47	42	32	20	12	7	7	11	35	45	62	398
Rainfall (mm)	86	51	65	55	53	57	48	56	70	86	82	87	796
Factors affecting runoff: E Station type: CC										1995 runoff is 105% of previous mean rainfall 92\%			

041027 Rother at Princes Marsh

Measuring authority: EA-S
First year: 1972
Hydrometric statistics for 1995

	JAN	FEB	MAR	APA	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	1.355	1.681	0.752	0.364	0.266	0.187	0.156	0.123	0.184	0.179	0.256	0.477	0.491
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	12.24	13.11	4.27	0.53	0.95	0.35	0.31	0.16	0.61	0.60	0.60	9.16	13.11
Runoff (mm)	98	109	54	25	19	13	11	9	13	13	18	34	417
Rainfall (mm)	183	154	59	22	35	16	32	4	136	54	73	102	870
Monthly and yearly statistics for previous record (Nov 1972 to Dec 1994-incomplate or missing months total 0.2 years)													
Mean Avg.	0.888	0.738	0.632	0.507	0.361	0.267	0.208	0.210	0.252	0.477	0.569	0.808	0.492
flows Low	0.258	0.320	0.237	0.194	0.158	0.121	0.120	0.106	0.140	0.165	0.167	0.248	0.288
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	1.729	2.228	1.220	0.720	0.641	0.471	0.300	0.493	0.949	1.223	1.855	1.384	0.696
Peak flow ($\mathrm{m}^{\mathbf{3}} \mathbf{s}^{-1}$)	15.63	17.79	10.71	8.75	7.20	4.68	2.17	4.55	12.97	68.03	16.60	22.62	68.03
Runoff (mm)	64	48	46	35	26	19	15	15	18	34	40	58	418
Rainfall (mm)	100	63	78	56	56	56	54	61	78	98	85	107	892
Factors affecting runoff: GE													

Factors affecting runoff: GE
Station type: C

Grid reference: 41 (SU) 772270
Level stn. (m OD): 56.40

Catchment area (sq km): $\mathbf{3 7 . 2}$ Max alt. (m OD): 252

042003 Lymington at Brockenhurst Park

Measuring authority: EA-S
First year: 1960
Hydrometric statistics for 1995

		JAN	FEB	MAR	APR	MAY	Jun	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	3.046	4.406	1.311	0.497	0.191	0.088	0.035	0.024	0.447	0.398	1.705	1.941	1.153
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$:	Peak	10.07	10.13	8.28	4.23	0.88	0.20	0.09	0.06	5.98	2.78	9.98	10.07	10.13
Runoff (mm)		83	108	36	13	5	2	1	1	12	11	45	53	368
Rainfall (mm)		178	139	51	29	28	11	25	6	165	60	151	96	939

Monthly and yearly statistics for previous record (Oct 1960 to Dec 1994 -incomplete or missing months total 0.2 years)

Factors affecting runoff: N
Station type: TP
Comment: January, February, November and December 1995 contain estimated daily flows. Bypassing during floods.

042004 Test at Broadlands

Measuring authority: EA-S
First year: 1957
Hydrometric statistics for 1995

		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows $\left(m^{3} s^{-1}\right):$	Avg. Peak	18.150	27.710	25.830	16.980	11.680	8.241	6.645	5.695	6.211	6.573	7.614	9.549	12.480
Runoff (mm)		47	64	67	42	30	21	17	15	15	17	19	25	378
Rainfall (mm)		170	106	55	25	30	15	32	8	137	49	125	95	847

Monthly and yearly statistics for previous record (Oct 1957 to Dec 1994 -incomplete or missing months total 0.2 years)

Mean Avg.	14.630	15.650	14.960	13.500	11.480	9.636	7.918	7.356	7.517	8.891	10.370	12.330	11.163
flows Low	6.415	6.882	6.686	6.107	4.861	4.558	3.708	4.263	5.377	5.786	5.304	6.069	6.597
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	34.670	32.680	24.430	19.050	16.320	$\cdot 13.540$	10.850	10.440	12.810	27.060	33.510	35.180	18.790
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)													
Runoff (mm)	38	37	39	34	30	24	20	19	19	23	26	32	339
Rainfall (mm)	86	55	67	53	56	57	49	63	70	82	81	92	811

Factors affecting runoff: N
Station type: VA

Grid reference: 41 (SU) 354188 Level stn. (m OD): 10.10

Catchment area (sq km); 1040.0 Max alt. (m OD): 297 rainfall 111%

Measuring authority: EA-S
First year: 1958
Hydrometric statistics for 1995

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	2.544	4.157	3.145	1.774	0.993	0.647	0.397	0.284	0.290	0.265	0.276	0.381	1.245
$\left(m^{3} s^{-1}\right)$: Peak	4.29	4.62	4.22	2.36	- 1.34	0.95	0.55	0.45	0.59	0.31	0.51	0.93	4.62
Runoff (mm)	94	138	116	63	37	23	15	10	10	10	10	14	539
Rainfall (mm)	174	153	58	19	32	26	23	3	158	54	85	93	878
Monthly and yearly statistics for previous record (Oct 1958 to Dec 1994 -incomplete or missing months total 0.1 years)													
Mean Avg.	1.461	1.777	1.591	1.359	1.005	0.725	0.513	0.382	0.334	0.513	0.787	1.111	0.959
flows Low	0.332	0.353	0.356	0.335	0.164	0.120	0.079	0.068	0.102	0.110	0.124	0.179	0.334
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \quad \mathrm{High}$	3.470	3.310	2.820	2.024	1.738	1.220	0.827	0.657	0.882	2.309	4.126	3.917	1.813
Paak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	4.83	4.27	3.26	2.83	2.07	1.50	1.23	1.08	0.96	2.66	2.83	3.77	4.83
Runoff (mm)	54	60	59	48	37	26	19	14	12	19	28	41	416
Rainfall (mm)	99	62	75	62	61	59	55	69	80	97	97	104	920

Factors affecting runoff: G
Station type: FL

Grid reference: 41 (SU) 58914
Level stn. (m OD): 29.30

Catchment area (sq km): 72.8 Max alt. (m OD): 233

1995 runoff is 130% of previous mean rainfall 95%

043006 Nadder at Wilton Park

Measuring authority: EA-S
First year: 1966
Grid reference: 41 (SU) 098308
Level stn. (m OD): 51.10
Catchment area (sq km): 220.6
Hydrometric statistics for 1995

043007 Stour at Throop Mill

Measuring authority: EA-S

Hydrometric statistics for 1995

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg,	48.050	54.170	27.990	10.780	6.483	4.057	2.522	1.796	3.899	4.712	15.320	22.320	16.626
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	103.30	94.52	66.89	14.35	8.30	5.89	3.73	2.26	8.45	12.50	47.76	107.50	107.50
Runoff (mm)	120	122	70	26	16	10	6	4	9	12	37	56	489
Rainfall (mm)	177	115	58	37	41	11	29	11	142	69	133	95	918
Monthly and yearly statistics for previous record (Jan 1973 to Dec 1994)													
Mean Avg.	25.010	25.390	19.770	14.810	9.219	6.341	4.392	4.015	4.910	9.175	13.800	23.190	13.282
flows Low	4.319	6.826	7.548	4.483	3.157	2.231	1.614	1.358	1.892	2.716	2.823	6.386	6.138
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \quad \mathrm{High}$	50.480	69.370	32.620	27.070	18.900	16.940	7.932	8.998	20.340	31.730	36.730	42.950	18.891
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	119.30	137.70	110.20	88.24	150.00	180.00	47.60	32.41	90.33	128.70	141.20	280.00	280.00
Runoff (mm)	62	58	49	36	23	15	11	10	12	23	33	58	391
Rainfall (mm)	91	68	76	50	54	56	51	61	78	89	80	107	861
Factors affecting runoff: PGE										1995 runoff is 125% of previous mean rainfall 107\%			

Station type: CC

1995
043012 Wylye at Norton Bavant

Measuring authority: EA-S
First year: 1969
Hydrometric statistics for 1995

		JAN	FEB	MAR	APR	MAY	JUN	JuL	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	3.294	3.859	2.345	1.411	0.945	0.691	0.563	0.522	0.598	0.602	0.763	1.303	1.394
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$:	Peak	7.21	7.01	3.72	2.47	1.76	1.26	1.60	1.22	1.64	1.53	2.04	3.95	7.21.
Runoff (mm)		78	83	56	33	23	16	13	12	14	14	18	31	391
Rainfall (mm)		199	96	70	39	56	18	43	13	134	72	133	108	981 :

Monthly and yearly statistics for previous record (Jul 1971 to Dec 1994 -incomplete or missing months total 0.1 years)

Grid reference: 31 (ST) 909428 Level stn. (m OD): 96.70

Catchment area (sq km): 112.4 Max alt. (m OD): 288

044002 Piddle at Baggs Mill

Measuring authority: EA-SW
First year: 1963
Hydrometric statistics for 1995

	JAN	FEB	MAR	APR	MAY	Jun	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	6.517	6.883	5.880	2.910	1.762	1.343	0.951	0.690	1.021	1.060	1.601	2.427	2.885
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	8.87	9.20	8.84	3.94	$2.21{ }^{\circ}$	1.66	1.32	0.85	1.75	1.91	4.68	7.01	9.20
Runotf (mm)	95	117	86	41	26	19	14	10	14	16	23	36	497
Rainfall (mm)	193	145	55	43	47	10	32	10	166	78	144	105	1028
Monthly and yearly statistics for previous record (Oct 1963 to Dec 1994 -incomplete or missing months total 0.1 years)													
Mean Avg.	3.697	4.355	3.802	3.006	2.166	1.644	1.223	1.055	1.078	1.443	2.096	2.971	2.368
flows Low	1.045	1.020	1.093	0.945	0.757	0.571	0.483	0.433	0.598	0.707	0.721	0.853	1.328
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{High}$	7.836	8.785	6.202	4.782	3.376	2.907	1.755	1.526	2.300	3.285	5.047	5.654	3.350
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	11.87	10.02	9.37	6.68	8.11	9.23	4.79	4.50	8.18	9.29	9.20	8.62	11.87
Runoff (mm)	54	58	56	43	32	23	18	15	15	21	30	43	408
Rainfall (mm)	108	81	84	56	62	58	48	63	85	98	104	114	961

Factors affecting runoff: G
Station type: FL

Grid reference: 30 (SY) 913876
Level stn. (m OD): 2.10

Catchment area (sq km); 183.1 Max alt. (m OD): 275

1995 runoff is 122% of previous mean rainfall 107%

044009 Wey at Broadwey

Measuring authority: EA-SW
First year: 1975
Hydrometric statistics for 1995

	JAN	FEE	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	Nov	DEC	Year
Flows Avg.	0.814	1.201	0.923	0.462	0.276	0.182	0.134	0.094	0.099	0.093	0.131	0.220	0.381
($\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	1.68	1.84	1.39	0.64	0.37	0.25	0.21	0.15	0.48	0.28	0.42	0.79	1.84
Runotf (mm)	311	415	353	171	106	68	51	36	37	35	48	84	1716
Rainfall (mm)	189	136	56	42	47	11	21	8	126	62	123	105	926
Monthly and yearly statistics for previous record (Jul 1975 to Dec 1994-incomplete or missing months total 0.1 years)													
Mean Avg.	0.467	0.551	0.527	0.443	0.305	0.243	0.183	0.144	0.123	0.151	0.209	0.350	0.307
flows Low	0.100	0.100	0.126	0.117	0.099	0.093	0.095	0.085	0.076	0.067	0.070	0.076	0.188
$\left(m^{3} \mathrm{~s}^{-1}\right)$ High	1.156	0.970	0.896	0.730	0.486	0.450	0.318	0.211	0.178	0.359	0.401	0.698	0.482
Paak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	2.34	2.61	2.86	1.23	3.31	3.18	2.29	1.25	0.65	0.98	1.26	5.47	5.47
Runoff (mm)	179	192	202	164	117	90	70	55	46	58	77	134	1382
Rainfall (mm)	90	83	89	53	53	53	50	57	74	99	86	112	899
Factors affecting runoff: N Station type: FV										1995 runoff is 124% of previous mean rainfall 103\%			

Monthly and yearly statistics for previous record (Jul 1975 to Dec 1994 -incomplete or missing months total 0.1 years)

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	0.814	1.201	0.923	0.462	0.276	0.182	0.134	0.094	0.099	0.093	0.131	0.220	0.381
($\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	1.68	1.84	1.39	0.64	0.37	0.25	0.21	0.15	0.48	0.28	0.42	0.79	1.84
Runoff (mm)	311	415	353	171	106	68	51	36	37	35	48	84	1716
Rainfall (mm)	189	136	56	42	47	11	21	8	126	62	123	105	926
Monthly and yearly statistics for previous record (Jul 1975 to Dec 1994-incomplete or misaing months total 0.1 years)													
Mean Avg.	0.467	0.551	0.527	0.443	0.305	0.243	0.183	0.144	0.123	0.151	0.209	0.350	0.307
flows Low	0.100	0.100	0.126	0.117	0.099	0.093	0.095	0.085	0.076	0.067	0.070	0.076	0.188
$\left(m^{3} s^{-1}\right) \quad \mathrm{High}$	1.156	0.970	0.896	0.730	0.486	0.450	0.318	0.211	0.178	0.359	0.401	0.698	0.482
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	2.34	2.61	2.86	1.23	3.31	3.18	2.29	1.25	0.65	0.98	1.26	5.47	5.47
Runoff (mm)	179	192	202	164	117	90	70	55	46	58	77	134	1382
Rainfall (mm)	90	83	89	53	53	53	50	57	74	99	86	112	899
Factors affecting runoff: N Station type: FV										1995 runoff is 124% of previous mean rainfall 103\%			

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	0.814	1.201	0.923	0.462	0.276	0.182	0.134	0.094	0.099	0.093	0.131	0.220	0.381
($\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	1.68	1.84	1.39	0.64	0.37	0.25	0.21	0.15	0.48	0.28	0.42	0.79	1.84
Runoff (mm)	311	415	353	171	106	68	51	36	37	35	48	84	1716
Rainfall (mm)	189	136	56	42	47	11	21	8	126	62	123	105	926
Monthly and yearly statistics for previous record (Jul 1975 to Dec 1994-incomplete or misaing months total 0.1 years)													
Mean Avg.	0.467	0.551	0.527	0.443	0.305	0.243	0.183	0.144	0.123	0.151	0.209	0.350	0.307
flows Low	0.100	0.100	0.126	0.117	0.099	0.093	0.095	0.085	0.076	0.067	0.070	0.076	0.188
$\left(m^{3} s^{-1}\right) \quad \mathrm{High}$	1.156	0.970	0.896	0.730	0.486	0.450	0.318	0.211	0.178	0.359	0.401	0.698	0.482
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	2.34	2.61	2.86	1.23	3.31	3.18	2.29	1.25	0.65	0.98	1.26	5.47	5.47
Runoff (mm)	179	192	202	164	117	90	70	55	46	58	77	134	1382
Rainfall (mm)	90	83	89	53	53	53	50	57	74	99	86	112	899
Factors affecting runoff: N Station type: FV										1995 runoff is 124% of previous mean rainfall 103\%			

Factors affecting runoff: N
Station type: FV

Grid reference: 30 (SY) 666839 Leval stn. (m OD): 17.80

Catchment ares (sq km): 7.0 Max alt. (m OD): 183

045003 Culm at Wood Mill

1995

Measuring authority: EA-SW First year: 1962
Hydrometric statistics for 1995

Factors affecting runoff: PGEI
Station type: FVVA

Grid reference: 31 (ST) 021058
Level stn. (m OD): 44.00
atchrnent area (sq km): 226.1 Max alt. (mOD): 293

045004 Axe at Whitford

Measuring authority: EA-SW
First year: 1964
Hydrometric statistics for 1995

Measuring authority: EA-SW irst year: 1963

Hydrometric statistics for 1995

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	9.236	7.823	4.128	2.214	1.632	1.234	1.052	0.822	1.679	1.642	5.869	5.530	3.546
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	50.64	55.06	27.00	9.63	5.31	2.29	1.95	1.41	12.54	8.04	56.61	58.53	58.53
Runoff (mm)	122	93	55	28	22	16	14	11	21	22	75	73	552
Rainfall (mm)	197	128	68	47	57	11	27	13	154	72	166	118	1058
Monthly and yearly statistics for previous record (Oct 1962 to Dec 1994)													
Mean Avg.	5.426	5.176	4.023	2.881	2.274	1.721	1.476	1.354	1.619	2.560	3.682	4.951	3.086
flows Low	1.503	1.308	1.290	1.147	0.940	0.714	0.587	0.542	0.963	1.051	1.257	1.757	2.068
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	9.978	10.880	7.293	5.944	5.354	3.073	4.771	2.565	4.577	9.655	8.773	9.875	3.942
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	100.80	78.56	65.25	70.12	80.38	41.77	347.00	51.03	66.91	52.60	84.95	123.60	347.00
Runoff (mm)	72	62	53	37	30	22	20	18	21	34	47	65	481
Rainfall (mm)* - (1963-1994)	115	87	85	63	67	62	57	65	77	93	96	114	981
Factors affecting runoff: PGEI Station type: FVVA										1995 runoff is 115% of previous mean rainfall 108\%			

Grid reference: 30 (SY) 087885 Level stn. (m OD): $14: 50$

Catchment area (sq km): 202.5 Max alt. (m OD): 299

5 runoff is 115% of provious mean
rainfall 108%

046003 Dart at Austins Bridge

Measuring authority: EA-SW
First year: 1958
Hydrometric statistics for 1995

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	31.480	32.260	15.770	5.133	3.987	2.803	1.906	1.178	2.257	9.250	10.440	17.510	11.057
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right):$ Peak	152.70	163.60	53.01	15.64	38.16	9.51	6.63	1.90	7.75	110.10	35.36	158.40	163.60
Runoff (mm)	341	315	171	54	43	29	21	13	24	100	109	189	1408
Rainfall (mm)	378	307	148	62	94	22	85	13	164	205	175	207	1860
Monthly and yearly statistics for previous record (Oct 1958 to Dec 1994)													
Mean Avg.	20.060	17.190	13.710	10.070	7.079	4.927	3.859	4.606	5.996	10.730	15.060	19.780	11.067
flows Low	5.428	4.270	3.246	3.275	1.942	1.447	0.994	0.713	0.905	1.229	5.048	8.229	7.298
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	36.680	43.870	33.520	22.720	14.530	14.260	10.930	12.590	26.290	28.000	33.410	35.660	15.592
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	284.00	309.40	236.10	187.40	98.88	253.00	206.50	222.20	327.60	170.40	317.80	549.70	549.70
Runoff (mm)	217	169	148	105	77	52	42	50	63	116	158	214	1410
Rainfall (mm)	231	165	163	117	104	93	95	120	139	180	198	239	1844

Factors affecting runoff: SR
Station type: VA

Grid reference: 20 (SX) 751659
Level stn. (m OD): 22.40

1995 runoff is 100% of previous mean rainfall 101\%

047001 Tamar at Gunnislake

Measuring authority: EA-SW
First year: 1956
Grid reference: 20 (SX) 426725
Level stn. (m OD): 8.20
Carchment area (sq km): 916.9
Max alt. (m OD): 586
Hydrometric statistics for 1995

	JAN	FEB	MAR 32820	APR 10.180	MAY 6.088	JUN 4.211	JUL 3.606	AUG 3.025	$\begin{aligned} & \text { SEP } \\ & 3.879 \end{aligned}$	$\begin{aligned} & \text { OCT } \\ & 7.259 \end{aligned}$	$\begin{aligned} & \text { NOV } \\ & 16.620 \end{aligned}$	$\begin{gathered} \text { DEC } \\ 29.650 \end{gathered}$	$\begin{aligned} & \text { Year } \\ & \mathbf{2 0 . 3 8 5} \end{aligned}$
Flows Avg.	68.200	61.560	32.820										
$\left(m^{3} s^{-1}\right)$: Peak	230.30	193.00	117.20	38.24	8.82	6.49	6.73	6.33	10.22	36.83	63.45	144.50	230.30
Runoff (mm)	199	162	96	29	18	12	11	9	11	21	47	87	701
Rainfall (mm)	232	175	101	59	53	21	51	17	121	109	123	98	1160
Monthly and yearly statistics for previous record (Jul 1956 to Dec 1994)													
Mean Avg.	45.490	36.500	25.560	16.930	11.040	7.231	6.292	8.271	11.720	22.520	35.050	45.240	22.604
flows Low	8.476	9.161	6.193	5.681	3.112	1.995	1.181	0.757	1.118	1.540	4.213	13.710	12.519
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	89.410	86.970	65.520	35.200	32.370	32.990	28.730	42.100	59.840	65.080	78.760	91.690	34.886
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	347.90	306.70	411.70	268.00	154.50	363.70	96.00	238.00	401.40	373.50	530.20	714.60	714.60
Runoff (mm)	133	97	75	48	32	20	18	24	33	66	99	132	778
Rainfall (mm)	145	100	98	71	71	72	83	93	104	126	. 136	148	1247
Factors affecting runoff: SRP EI Station type: VA										1995 runoff is 90% of previous mean rainfall 93%			

047008 Thrushel at Tinhay

1995

Measuring authority: EA-SW
First year: 1969
Hydrometric statistics for 1995

	JAN	FEB	MAR	APR	MAY	JuN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	6.085	5.980	3.377	1.191	1.040	1.359	1.875	1.848	1.806	1.493	1.640	2.336	2.485
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	31.06	27.63	18.91	6.98	1.69	1.68	5.51	5.34	2.71	10.18	7.71	16.63	31.06
Runoff (mm)	145	128	80	27	25	31	45	44	42	35	38	56	695
Rainfall (mm)	212	159	97	64	54	20	44	16	103	106	105	88	1068
Monthly and yearly statistics for previous record (Oct 1969 to Dec 1994)													
Mean, Avg.	4.982	3.944	2.970	1.705	1.057	0.756	0.559	0.816	1.075	2.320	3.687	4.702	2.376
flows Low	1.317	0.951	0.918	0.482	0.239	0.110	0.028	0.019	0.116	0.069	0.442	1.662	1.643
$\left(m^{3} s^{-1}\right)$ High	9.727	8.847	7.477	4.038	4.209	2.500	2.131	2.916	6.687	6.878	7.195	8.122	3.757
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	53.32	61.78	61.46	32.52	38.72	57.13	11.97	33.64	75.12	66.18	57.07	124.40	124.40
Runoff (mm)	118	85	71	39	25	17	13	19	25	55	85	112	665
$\begin{gathered} \text { Rainfall (mm) } \\ *(1970-1994) \end{gathered}$	143	99	98	64	65	73	72	87	95	119	127	143	1185
Factors affecting runoff: S H Station type: CC										1995 runoff is 105% of previous mean rainfall 90\%			

048005 Kenwyn at Truro

1995

Messuring authority: EA-SW
First yoar: 1968
Hydrometric statistics for 1995

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	1.390	1.150	0.635	0.220	0.139	0.089	0.059	0.045	0.070	0.099	0.158	0.555	0.380
($\mathrm{m}^{3} \mathrm{~s}^{-1}$): Poak	6.71	3.36	4.36	0.55	0.22	0.37	0.18	0.13	0.37	0.64	0.65	2.22	6.71
Runotf (mm)	195	146	89	30	19	12	8	6	10	14	21	78	628
Painfall (mm)	195	144	85	47	35	20	24	18	110	99	116	122	1015
Monthly and yearly statistics for previous record (Oct 1968 to Dec 1994)													
Masn Avg.	0.835	0.769	0.533	0.336	0.202	0.154	0.096	0.090	0.120	0.275	0.493	0.768	0.388
flows Low	0.169	0.206	0.144	0.156	0.090	0.070	0.043	0.026	0.037	0.034	0.046	0.218	0.263
$\left(\mathrm{m}^{3} \mathrm{~m}^{-1}\right) \mathrm{High}$	1.508	1.638	0.997	0.640	0.418	0.594	0.245	0.179	0.560	0.899	1.110	1.353	0.602
Poak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	22.50	11.11	5.74	4.07	4.56	3.71	2.79	2.29	4.10	30.37	9.74	14.76	30.37
Runotf (mm)	117	98	75	46	28	21	13	13	16	39	67	108	640
Rainfall (mm)	142	105	94	62	62	63	58	74	88	114	127	142	1131
Factors affecting runoff: N Station type: CC										1995 runoff is 98% of previous mean rainfall 90\%			

Catchment area (sq km): 19.1 Max alt. (m OD): 152
rainfall 90%

048011 Fowey at Restormel

1995

Moasuring authority: EA-SW
First year: 1961
Hydrometric statistics for 1995

	JAN	FEB	MAR	APA	MAY	JUN	JUL	AUG	SEP	OCT	Nov	DEC	Year
Flows Avg.	12.720	11.740	6.900	2.334	1.389	1.125	0.890	0.870	0.879	1.246	2.420	5.557	3.968
$\left(m^{3} \mathrm{~s}^{-1}\right):$ Pegak	45.43	25.25	19.38	3.87	2.05	1.98	1.96	1.51	2.41	4.97	6.83	19.97	45.43
Runoff (mm)	202	168	109	36	22	17	14	14	13	20	37	88	740
Rainfall (mm)	250	203	118	53	48	31	47	18	156	113	151	133	1321
Monthly and yearly statistics for previous record (Apr 1961 to Dec 1994)													
Mean Avg.	9.168	8.178	6.001	4.150	2.918	2.225	1.824	1.951	2.558	4.469	6.776	9.001	4.922
flows Low	2.267	2.704	1.641	1.684	1.034	0.693	0.562	0.343	0.673	0.617	0.921	2.947	3.391
$\left.{ }_{(m)}{ }^{3} s^{-1}\right)$ High	17.330	21.780	12.130	7.814	6.447	7.763	4.859	6.044	10.490	11.720	15.450	20.890	7.440
Peak flow ($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$)	104.80	111.90	45.62	29.28	30.98	39.44	31.10	48.51	70.02	35.07	223.70	126.60	223.70
Runatf (mm)	145	118	95	64	46	34	29	31	39	71	104	143	918
Rainfall (mm)	179	125	128	84	88	88	96	106	123	143	169	183	1512
Foctors affecting runoff: SRP Station type: CC										1995 runoff is 81% of previous mean rainfall 87\%			

Grid reference: 20 (SX) 098624
Level stn. (m OD): 9.20

Catchment area (sq km): 169.1 Max alt. (m OD): 420

049001 Camel at Denby

1995

Moasuring authority: EA-SW
First year: 1964
Hydrometric statistics for 1995

		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	17.420	15.020	9.232	3.708	2.195	1.415	0.929	0.701	1.005	1.640	3.248	7.274	5.268
$\left(\mathrm{m}^{3} \mathrm{~B}^{-1}\right)$:	Peak	73.25	40.14	34.47	6.84	3.04	2.91	2.72	1.17	2.78	7.27	15.76	10.97	73.25
Runoff (mm)		223	174	118	46	28	18	12	9	12	21	40	93	796
Rainfall (mm)		233	183	105	55	46	34	40	22	144	106	135	123	1226

Monthly and yearly statistics for previous record (Sep 1964 to Dec 1994)

Moan Avg.	11.370	9.828	7.109	4.771	3.327	2.781	2.371	2.474	3.043	5.557	8.254	11.060	5.981
flows Low	3.819	4.070	2.216	2.081	0.960	0.888	0.582	0.421	0.798	0.882	1.371	4.184	4.081
$\left(m^{3} \mathrm{~s}^{-1}\right) \quad \mathrm{High}$	19.600	23.260	16.420	9.738	8.491	15.770	7.322	7.858	11.920	16.640	17.990	19.1.10	8.402
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	73.18	80.21	94.75	46.66	58.52	306.40	40.59	63.98	125.80	92.14	94.75	227.90	306.40
Runoff (mm)	146	115	91	59	43	35	30	32	38	71	102	142	904
Rainfall (mm)	167	113	116	78	81	87	96	101	117	139	153	165	1413
Factors affecting runoff: SRP E Station type: VA 1995 runoff is 88% of previous mean													

Comment: Decomber 1995 contains estimated flow data.

Grid reference: 20 (SX) 017682
Level stn. (m OD): 4.60

Catchment area (sq km): 208.8 Max alt. (m OD): 420

050002 Torridge at Torrington

Measuring authority: EA.SW First year: 1962
Hydrometric statistics for 1995

		JAN	FEB	MAR	APR	MAY	JUN	Jul	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	53.120	41.350	22.150	6.049	3.197	1.503	0.922	0.507	1.253	4.864	9.489	20.220	13.592
$\left(m^{3} \mathrm{~s}^{-1}\right)$:	Peak	208.70	180.30	86.03	26.72	5.56	3.25	3.67	1.50	9.63	30.77	31.86	148.30	208.70
Runoff (mm)		215	151	89	24	13	6	4	2	5	20	37	82	647
Rainfall (mm)		240	157	98	54	54	22	65	16	116	101	101	93	1117

Monthly and yearly statistics for previous record (Aug 1960 to Dec 1994 -incomplete or missing months total 1.2 years)

Mean Avg.	30.840	24.600	18.100	11.430	7.444	4.762	4.320	5.147	7.602	17.030	27.050	32.110	15.839
flows Low	5.018	4.695	3.265	3.082	1.399	1.092	0.443	0.252	0.954	0.668	3.798	10.270	8.968
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	57.510	64.240	51.280	28.120	31.290	20.540	21.540	19.690	45.910	50.100	55.730	64.530	21.930
Poak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	391.10	294.40	535.60	188.80	205.70	189.90	310.60	228.50	415.00	381.00	370.40	730.00	730.00
Runoff (mm)	125	90	73	45	30	19	17	21	30	69	106	130	754
Rainfall (mm)*	133	93	97	70	70	74	76	86	98	118	133	138	1186

Factors affecting runoff: SRP EI
Station type: VA

Grid reference: 21 (SS) 500185
Level stn. (m OD): 13.90

Catchment area (sq km): 663.0 Max alt. (m OD): 621

052007 Parrett at Chiselborough

Measuring authority: EA-SW
First year: 1966
Hydrometric statistics for 1995

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	5.314	4.139	1.590	0.532	0.407	0.269	0.218	0.152	0.360	0.700	3.106	2.928	1.629
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	27.89	19.07	11.30	1.78	2.21	0.56	1.58	0.47	3.41	10.25	15.00	28.68	28.68
Runoff (mm)	190	134	57	18	15	9	8	5	12	25	108	105	687
Rainfals (mm)	198	112	55	40	63	13	27	13	139	93	153	105	1011
Monthly and yearly statistics for previous record (Aug 1966 to Dec 1994)													
Mean ' Avg.	2.443	1.998	1.481	0.915	0.691	0.476	0.332	0.326	0.456	1.015	1.360	2.170	1.136
flows Low	0.258	0.544	0.343	0.285	0.206	0.130	0.106	0.090	0.145	0.186	0.219	0.409	0.564
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	4.914	6.120	3.055	1.867	2.048	1.053	0.921	0.988	2.225	4.819	3.789	4.219	1.542
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	36.38	30.70	27.46	21.21	57.21	12.81	16.14	23.88	32.25	28.69	34.05	44.94	57.21
Runoff (mm)	87	65	53	32	25	16	12	12	16	36	47	78	479
Rainfall (mm)	105	75	78	51	66	62	53	66	79	89	85	106	915

Factors affecting runoff: E
Station type: C

Grid reference: 31 (ST) 461144 Level stn. (m OD): 20.70

Catchment area (sq km): 74.8 Max alt. (mOD): 219
rainfall 110\%

052010 Brue at Lovington

1995

Measuring authority: EA-SW
Grid reference: 31 (ST) 590318
Level stn. (m OD): 19.8
Catchment area (sq km): 135.2
First year: 1964
Hydrometric statistics for 1995

053004 Chew at Compton Dando

1995

Measuring authority: EA-SW
First year: 1958
Hydrometric statistics for 1995

		JAN	FEB	MAR	APR
Flows	Avg.	7.319	5.687	2.401	0.886
$\quad\left(\mathrm{~m}^{3} \mathrm{~s}^{-1}\right):$	Peak	46.50	18.13	5.90	1.86
Runoff (mm)	151	106	50	18	
Rainfall (mm)	224	129	67	34	

Monthly and yearly statistics for previous record (Mar 1958 to Dec 1994 -incomplete or missing months total 1.0 years)

Mean Avg.	1.967	1.722	1.389	1.058	0.813	0.591	0.463	0.456	0.563	0.814	1.250	1.838	1.075
flows Low	0.444	0.557	0.410	0.469	0.333	0.287	0.243	0.195	0.232	0.300	0.264	0.622	0.540
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	4.336	4.166	4.210	3.274	2.493	1.211	0.811	1.245	2.135	3.251	3.898	5.017	1.970
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	39.43	48.99	50.00	20.33	67.50	13.00	6.23	6.09	59.26	49.56	58.85	63.78	67.50
Runoff (mm)	41	32	29	21	17	12	10	9	11	17	25	38	262
Rainfall (mm) ,	103	70	79	63	67	69	70	83	90	94	102	116	1006
Factors affecting	off: S										f is 170 all 104	of pr	us mean

Grid reference: 31 (ST) 648647 Level stn. (m OD): 16.80
MAY JUN JUL AUG SEP

SEP	OCT	NOV	DEC	Year
0.492	0.539	0.843	1.914	$\mathbf{1 . 8 2 6}$
1.12	1.40	2.53	22.86	$\mathbf{4 6 . 5 0}$
10	11	17	40	445
167	79	105	119	1047

0.696	0.566	0.433	0.369
1.83	0.71	0.61	0.54
14	11	9	8
77	16	19	11

105 047

Station type: FL

053006 Frome(Bristol) at Frenchay

Measuring authority: EA-SW
First year: 1961
Hydrometric statistics for 1995

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	6.599	5.324	1.860	0.636	0.560	0.337	0.201	0.135	0.631	0.630	1.552	3.541	1.817
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	19.81	15.61	8.44	3.81	9.59	0.73	0.76	1.20	8.15	5.47	7.31	21.40	21.40
Runoff (mm)	119	87	33	11	10	6	4	2	11	11	27	64	385
Rainfall (mm)	159	97	45	25	58	14	18	5	133	66	96	97	813
Monthly and yearly statistics for previous record (Sep 1961 to Dec 1994)													
Mean Avg.	3.463	2.784	2.245	1.406	1.095	0.752	0.581	0.524	0.688	1.221	2.236	3.171	1.677
flows Low	0.670	0.613	0.468	0.476	0.228	0.220	0.122	0.139	0.208	0.162	0.211	0.808	0.804
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	6.266	6.040	5.762	3.434	5.028	2.973	3.516	2.398	5.113	4.691	5.559	9.807	2.255
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	35.06	41.09	33.84	29.63	49.00	29.01	70.79	12.75	29.73	42.93	39.90	66.55	70.79
Runoff (mm)	62	46	40	24	20	13	10	9	12	22	39	57	355
Rainfall (mm)	79	54	63	50	61	62	55	69	73	73	78	87	804
Factors affecting runoff: \mathbf{N} Station type: FL										1995 runoff is 108% of previous mean rainfall 101\%			

Measuring authority: EA-M
First year: 1961
Hydrometric statistics for 1995

	JAN	FEB	MAR	APR	MAV	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	5.999	6.626	3.296	1.357	0.995	0.621	0.398	0.266	0.525	0.476	0.514	0.989	1.811
$\left(m^{3} s^{-1}\right)$: Peak	15.53	12.48	7.98	1.70	2.14	0.97	0.91	0.36	1.35	0.75	0.97	4.69	15.53
Runoff (mm)	62	62	34	14	10	6	4	3	5	5	5	10	221
Rainfall (mm)	108	93	44	20	55	13	35	8	83	29	38	74	600
Monthly and yearly statistics for previous record (Oct 1961 to Dec 1994)													
Mean Avg.	3.593	3.177	2.739	2.097	1.653	1.058	0.856	0.798	0.805	1.315	2.118	3.345	1.959
flows Low	0.882	0.788	0.977	0.862	0.610	0.393	0.281	0.220	0.373	0.478	0.540	0.684	1.003
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	6.352	8.473	5.608	3.673	8.610	2.431	6.043	2.548	2.476	4.179	4.470	8.223	3.164
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	19.38	22.24	21.79	16.07	24.79	11.31	30.58	20.90	7.76	12.02	16.02	18.38	30.58
Runoff (mm)	37	30	28	21	17	11	9	8	8	14	21	35	239
Rainfall (mm)	59	44	54	48	59	55	52	59	61	59	68	69	687
Factors affecting runoff: N I Station type: FLVA										1995 runoff is 92% of previous mean rainfall 87\%			

Factors affecting runoff: N I
Station type: FLVA

Grid reference: 33 (\$J) 589141 Level stn. (m OD): 48.00

Catchment area (sq km): 259.0 Max alt. (m OD): 208
rainfall 87% of previous mean 1995

Catchment area (sq km): 347.0 Max alt. (m OD): 214

First year: 1962

Measuring authority: EA-M
Hydrometric statistics for 1995

054020 Perry at Yeaton

1995

Measuring authority: EA-M
First yaar: 1963
Hydrometric statistics for 1995

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	Nov	OEC	Year
Flows Avg.	4.650	5.548	2.846	1.223	0.939	0.650	0.532	0.471	0.556	0.531	0.570	0.918	1.597
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	13.95	11.63	6.40	1.63	2.68	0.88	0.84	0.57	0.75	0.69	0.81	4.57	13.95
Runoff (mm)	69	74	42	18	14	9	8	7	8	8	8	14	279
Rainfall (mm)	122	114	43	21	60	11	41	9	84	34	51	81	671
Monthly and yearly statistics for previous record (Oct 1963 to Dec 1994)													
Moan Avg.	2.901	2.661	2.280	1.717	1.318	0.942	0.689	0.670	0.687	1.077	1.715	2.678	1.607
flows Low	0.901	0.669	0.796	0.728	0.520	- 0.379	0.271	0.208	0.350	0.412	0.427	0.725	0.809
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{High}$	4.870	6.507	4.265	3.041	4.232	2.046	2.735	1.416	1.785	3.308	3.103	6.244	2.335
Poak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	14.26	17.66	12.94	10.83	10.41	8.49	7.87	5.49	7.32	7.52	10.02	13.73	17.66
Runoff (mm)	43	36	34	25	20	14	10	10	10	16	25	40	280
Rainfall (mm)	69	53	60	50	62	57	56	61	65	66	78	81	758
Factors affocting runoff: GEI Station type: C										1995 runoff is 99% of previous mean rainfall 89%			

Grid reference: 33 (SJ) 434192
Level stn. (m OD): 61.30

Catchment area (sq km): 180.8 Max alt. (m OD): 356

054022 Severn at Plynlimon flume

1995

Measuring authority: IH
First year: 1953
Hydrometric statistics for 1995

		JAN	FEG	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	OEC
Flows	Avg.	1.272	1.179	0.733	0.231	0.121	0.157	0.201	0.062	0.240	0.312	0.354	0.445
$\left(m^{3} s^{-1}\right):$	Peak	11.63	6.52	5.93	1.81	0.54	0.65	5.72	0.29	5.77	3.08	1.14	6.48
Runoff (mm)	392	328	226	69	37	47	62	19	72	96	105	137	1589
Rainfall (mm)	533	394	214	71	94	66	152	20	208	121	151	154	2178

Monthly and yearly statistics for previous record (Oct 1953 to Dec 1994 --incomplete or missing months total 10.4 years)

Measuring authority: EA-M First year: 1969

Hydrometric statistics for 1995

	JAN	FEB	MAR	APR	MAY	JuN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	3.484	2.733	2.020	1.122	0.863	0.566	0.460	0.255	0.617	0.584	0.674	1.042	1.194
$\left(m^{3} s^{-1}\right)$: Peak	6.93	4.51	3.75	1.51	1.92	1.03	1.52	0.35	1.60	1.22	1.33	3.77	6.93
Runoff (mm)	36	26	21	11	9	6	5	3	6	6	7	11	146
Rainfall (mm)	116	70	45	15	46	13	44	7	83	32	47	81	599
Monthly and yearly statistics for previous record (Apr 1969 to Dec 1994)													
Mean Avg.	1.896	1.791	1.597	1.418	1.130	0.837	0.579	0.635	0.665	0.825	1.137	1.584	1.172
flows Low	0.617	0.593	0.712	0.548	0.426	0.256	0.101	0.094	0.322	0.422	0.499	0.508	0.687
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	3.144	3.802	3.171	2.491	4.490	1.527	1.293	1.111	1.221	1.535	2.235	2.551	1.519
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	10.84	10.56	6.86	7.73	16.09	5.65	4.06	4.32	5.27	3.87	5.88	16.00	16.09
Runoff (mm)	20	17	17	14	12	8	6	7	7	9	11	16	143
Rainfall (mm)	66	46	56	50	57	56	51	63	60	58	64	66	693

Factors affecting runoff: PGEI
Station type: C

Grid reference: 32 (SO) 747953
Level stn. (m OD): 33.20

Catchment area (sq km): 258.0 Max alt. (m OD): 120

1995 runoff is 102% of previous mean rainfall 86%

054034 Dowles Brook at Oak Cottage, Dowles

Measuring authority: EA-M First year: 1971
Hydrometric statistics for 1995

Factors affecting runoff: N
Station type: FVVA

Grid reference: 32 (SO) 768764
Level stn. (m OD): 24.20

Catchment area (sq km): 40.8
Max alt. (m OD): 230 $\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right.$) Peak $\quad 7.19 \quad 5.13$ (moff (mm)
unoff (mm)
Monthly and yearly statistics for previous record (Oct 1971 to Dec 1994) rainfall 95%

054038 Tanat at Llanyblodwel

Measuring authority: EA-M
First year: 1973
Hydrometric statistics for 1995

055008 Wye at Cefn Brwyn
1995

Measuring authority: IH
First year: 1951
Hydrometric statistics for 1995

	JAN	FEB	MAR	APR	MAY	JUN	Jul	AUG	SEP 0.398	OCT 0.396	NOV 0.440	DEC 0.518	Year 0.539
Flows Avg.	1.600	1.369	0.912	0.279	0.139	0.219	0.209	0.045	0.398	0.396	0.440	0.518	0.539
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	25.19	11.01	14.80	3.31	1.05	1.40	8.02	0.11	9.96	3.78	1.98	11.20	25.19
Runoff (mm)	406	314	231	69	35	54	53	11	98	100	108	131	1612
Rainfall (mm)	477	365	219	79	90	76	129	20	218	114	142	140	2069
Monthly and yearly statistics for previous record (Aug 1951 to Dec 1994-incomplete or missing months total 2.3 years)													
Mean Avg.	0.986	0.746	0.718	0.541	0.373	0.348	0.429	0.568	0.670	0.819	1.036	1.147	0.699
flows Low	0.492	0.137	0.206	0.073	0.054	0.074	0.053	0.045	0.050	0.095	0.376	0.198	0.459
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	1.870	1.486	1.735	1.373	1.144	0.954	1.264	1.478	1.478	2.031	1.761	2.655	0.994
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	23.47	21.10	24.23	19.12	17.89	25.49	19.11	48.87	22.64	27.68	29.15	32.00	48.87
Runoff (mm)	250	172	182	133	95	86	109	144	165	208	255	291	2090
Rainfall (mm)	268	172	209	152	128	139	160	197	204	243	270	315	2457
Factors affecting runoff: N Station type: CC										1995 runoff is 77% of previous mean rainfall 84\%			

Measuring authority: EA-WEL
First year: 1966
Grid reference: 32 (SO) 328585 Level stn. (m OD): 129.00

Max (sq km): 126.4
Hydrometric statistics for 1995

055014 Lugg at Byton

1995

Measuring authority: EA-WEL
First year: 1966
Hydrometric statistics for 1995

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСт	NOV	DEC	Year
Flows Avg.	15.690	14.260	8.450	2.639	1.623	1.145	0.865	0.674	0.644	0.725	2.536	5.789	4.538
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	31.63	25.87	21.16	3.76	2.52	1.45	1.62	0.93	0.94	1.27	8.83	27.55	31.63
Runoff (mm)	207	170	111	34	21	15	11	9	8	10	32	76	704
Rainfall (mm)	197	145	91	26	70	16	74	6	95	72	130	103	1025
Monthly and yearly statistics for previous record (Oct 1966 to Dec 1994)													
Mean Avg.	7.644	6.809	5.777	4.191	2.949	1.975	1.360	1.202	1.385	2.611	4.509	6.906	3.932
flows Low	2.604	2.597	1.504	1.626	1.054	0.772	0.557	0.414	0.420	0.657	1.219	2.443	2.321
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	11.940	16.530	13.980	8.647	7.994	4.113	5.253	3.599	4.313	7.962	8.774	12.580	5.277
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	54.27	37.53	33.24	30.08	45.56	14.18	26.16	13.32	12.46	28.51	27.22	37.49	54.27
Flunoff (mm)	101	82	76	53	39	25	18	16	18	34	57	91	610
Rainfall (mm)	117	83	88	66	74	64	59	76	89	95	99	118	1028
Factors affecting runoff: P Station type: FVVA										1995 runoff is 115% of previous mean rainfall 100\%			

Station type: FVVA

Grid reference: 32 (SO) 364647
Leval stn. (m OD): 124.10

Catchment area (sq km): 203.3 Max alt. (m OD): 660

055018 Frome at Yarkhill

Measuring authority: EA-WEL
First year: 1968
Hydrometric statistics for 1995

	JAN	FEB	MAR	APA	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	4.156	2.789	1.671	0.706	0.634	0.341	0.228	0.137	0.191	0.185	0.219	0.804	0.997
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	19.39	9.75	6.69	0.85	1.36	0.52	0.34	0.17	0.35	0.34	0.40	8.26	19.39
Runoff (mm)	77	47	31	13	12	6	4	3	3	3	4	15	218
Rainfall (mm)	119	74	44	18	65	10	27	9	90	49	66	87	658
Monthly and yearly statistics for previous record (Oct 1968 to Dec 1994)													
Mean Avg.	2.600	2.368	1.946	1.302	1.001	0.588	0.338	0.314	0.310	0.492	1.007	2.032	1.187
flows Low	0.214	0.389	0.509	0.359	0.274	0.146	0.091	0.063	0.096	0.142	0.119	0.210	0.672
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	4.668	5.456	5.176	3.299	3.972	1.349	0.630	0.759	0.970	2.405	2.266	4.230	1.628
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	24.98	24.99	24.28	24.57	25.89	16.99	5.96	9.61	15.68	11.25	18.51	25.14	25.89
Runoff (mm)	48	40	36	23	19	11	6	6	6	9	18	38	260
Rainfall (mm)	76	51	59	47	57	56	49	64	63	61	64	74	721
Factors affecting runoff: E Station type: VA										1995 runoff is 84% of previous mean rainfall 91%			

055023 Wye at Redbrook

Hydrometric statistics for 1995

	JAN	FEB	MAR	APR	MAY	JuN	Jul	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	265.300	215.100	123.600	33.830	21.280	15.020	10.460	6.052	11.450	22.950	57.060	99.200	72.761
$\left(m^{3} s^{-1}\right): P_{\text {eak }}$	629.20	380.90	307.50	61.38	36.17	28.88	31.80	10.33	41.23	95.49	134.80	484.80	629.20
Runoff (mm)	177	130	83	22	14	10	7	4	7	15	37	66	572
Rainfall (mm)	195	136	77	29	72	14	53	B	111	79	114	97	985
Monthly and yearly statistics for previous record (Oct 1936 to Dec 1994)													
Mean Avg.	135.300	121.700	93.390	65.960	43.390	34.030	24.000	27.960	39.200	59.480	101.500	128.500	72.633
flows Low	25.050	30.760	21.840	17.930	12.340	10.970	7.426	5.180	7.271	9.582	31.730	46.890	39.916
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	241.900	333.900	325.400	143.600	125.000	131.600	95.830	83.680	174.000	174.700	252.400	262.200	113.382
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	748.00	700.40	905.40	493.30	387.90	467.20	368.30	347.80	531.70	472.90	600.30	812.70	905.40
Runoff (mm)	90	74	62	43	29	22	16	19	25	40	66	86	571
Rainfall (mm)	113	79	77	65	72	63	67	83	87	96	111	116	1029
Factors affecting runoff: S P E Station type: VA										1995 runoff is 100% of previous mean rainfall 96%			

056013 Yscir at Pontaryscir

Measuring authority: EA-WEL First year: 1972
Hydrometric statistics for 1995

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	Nov	DEC	Year
Flows Avg.	5.827	4.449	2.510	0.653	0.437	0.351	0.265	0.157	0.267	1.244	2.344	2.70	1.755
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	29.12	13.72	7.17	1.63	1.48	1.35	4.92	0.45	1.35	7.39	7.46	26.79	29.12
Runoff (mm)	249	171	107	27	19	15	11	7	11	53	97	115	881
Rainfall (mm)	276	171	89	38	79	23	64	10	131	124	144	116	1265
Monthly and yearly statistics for previous record (May 1972 to Dec 1994 -incomplete or missing months total 0.2 years)													
Mean Avg.	3.608	2.691	2.589	1.564	0.970	0.716	0.517	0.752	1.101	2.080	3.056	3.763	1.949
flows Low	1.146	0.920	0.403	0.431	0.269	0.214	0.150	0.104	0.251	0.214	0.941	1.540	1.286
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	5.795	5.914	6.303	3.382	3.041	1.788	1.758	3.044	3.947	4.280	5.290	6.392	2.465
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	36.98	34.71	40.55	23.38	14.81	74.33	11.06	30.69	21.44	85.01	34.02	59.93	85.01
Runaff (mm)	154	104	110	65	41	30	22	32	45	89	126	160	979
Rainfall (mm)* ${ }^{\bullet}$ (1973-1994)	170	110	133	79	80	76	80	101	126	144	152	189	1440
Factors affecting runoff: \mathbf{N} Station type: C										1995 runoff is 90% of previous mean rainfall 88\%			

Grid raference: 32 (SO) 003304
Level stn. (m OD): 161.20

057008 Rhymney at Llanedeyrn

Measuring authority: EA-WEL
Grid reference: 31 (ST) 225821 Level stn. (m OD); 11.80

Hydrometric statistics for 1995

058009 Ewenny at Keepers Lodge

Measuring authority: EA-WEL
First year: 1971
Hydrometric statistics for 1995

		JAN	FEB	MAR	APR	! MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	5.081	3.899	2.102	0.859	: 0.574	0.402	0.327	0.278	0.468	1.271	1.979	2.271	15
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$:	Peak	73.52	29.71	7.86	1.38	1.95	0.76	2.32	7.11	7.74	19.97	16.70	43.68	73.52
Runoff (mm)		218	151	90	36	25	17	14	12	19	54	82	97	815
Rainfall (mm)		239	165	78	28	71	26	68	32	161	143	166	122	1299

Monthly and yearly statistics for previous record (Nov 1971 to Dec 1994-incomplete or missing months total 0.2 years)

Mean Avg.	3.068	2.534	2.424	1.633	1.102	0.916	0.850	1.008	1.244	2.075	2.767	3.060	1.888
flows ' Low	1.268	1.224	0.804	0.654	0.500	0.431	0.302	0.220	0.458	0.409	1.082	1.323	1.037
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	5.948	4.745	6.004	3.918	2.515	1.756	2.196	3.879	3.604	4.391	5.680	5.988	2.870
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	69.10	30.15	51.23	56.59	20.44	17.24	28.97	57.64	42.60	73.68	65.14	55.14	73.68
Runoff (mm)	131	99	104	68	47	38	36	43	52	89	115	131	953
Rainfall (mm)	148	100	118	75	76	87	84	110	128	143	147	151	1367
Factors affecting	off: E									1995		of pre	ous mean

Station type: FVVA

Grid reference: 21 (SS) 920782
Level stn. (m OD): 8.30
Catchment area (sq km): 62.5 Max alt. (m OD): 300
runoff is 85% of previous mean
rainfall 95\%

060002 Cothi at Felin Mynachdy

Measuring authority: EA-WEL
First year: 1961
Hydrometric statistics for 1995

	JaN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	28.200	31.440	11.740	2.604	1.988	2.113	1.310	0.466	1.389	11.590	13.890	. 0	9.941
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	105.60	149.40	55.56	4.57	13.45	9.07	14.32	0.79	4.87	115.80	85.12	100.90	149.40
Runoff (mm)	254	255	106	23	18	18	12	4	12	104	121	126	1053
Rainfall (mm)	296	261	113	34	92	35	74	13	146	177	186	128	1555
Monthly and yearly statistics for previous record (Oct 1961 to Dec 1994-incomplete or missing months total 0.1 years)													
Mean Avg.	18.950	14.370	12.900	9.029	6.363	4.452	3.478	6.300	7.420	13.810	17.680	20.810	11.291
flows Low	2.990	3.708	2.821	1.444	0.835	0.801	0.385	0.363	1.500	1.610	5.945	6.032	7.174
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	37.580	40.210	40.710	20.380	14.820	13.070	11.810	23.350	23.920	37.940	36.270	41.140	14.950
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	176.00	181.20	220.90	85.88	87.22	90.33	144.40	171.00	129.70	283.70	194.50	274.70	283.70
Runoff (mm)	170	118	116	79	57	39	31	57	65	124	154	187	1196
Rainfall (mm)	183	120	136	100	99	97	99	126	140	176	176	197	1649
Factors affecting runoff: \mathbf{N} Station type: VA										1995 runoff is 88% of previous mean rainfall 94%			

060010 Tywi at Nantgaredig

Measuring authority: EA-WEL
First year: 1959
Hydrometric statistics for 1995

		JAN	FEB	MAA	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	104.600	100.100	46.690	11.300	9.001	8.104	5.756	2.781	4.963	32.850	42.190	43.840	34.002
($\left.\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$:	Peak	237.90	265.50	124.10	22.92	27.79	27.79	26.10	5.88	12.45	180.60	162.00	239.00	265.50
Runoff (mm)		257	222	115	27	22	19	14	7	12	81	100	108	983
Rainfall (mm)		290	228	110	34	83	35	76	13	135	166	165	119	1454

Monthly and yearly statistics for previous record (Oct 1958 to Dec 1994 -incomplete or missing months total 0.1 years)

Mean Avg.	66.040	49.060	43.190	32.660	22.010	15.050	12.490	20.320	25.160	45.050	61.100	69.100	38.411
flows Low	9.473	12.210	9.657	6.201	4.507	3.736	2.752	2.699	1.523	8.708	23.910	19.470	22.516
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \quad \mathrm{High}$	120.600	109.300	137.800	64.470	51.420	43.990	42.120	78.470	76.490	128.700	122.600	134.400	54.099
Patak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	507.40	578.80	702.30	215.30	180.10	256.80	295.90	312.50	322.80	1200.00	461.10	526.70	1200.00
Runoff (mm)	162	110	106	78	54	36	31	50	60	111	145	170	1112
Rainfall (mm)	182	115	117	112	95	95	105	123	121	163	171	193	1592
Factors affecting Station type: FVV	noff: RP									$1995 \text { rai }$	noff is 88 infall 91	\% of pre \%	us mean

063001 Ystwyth at Pont Llolwyn

Measuring authority; EA-WEL
First year: 1963
Hydrometric statistics for 1995

	JAN	FEB	MAR	APR	MAY	JuN	NuL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	15.560	13.610	8.926	3.046	1.010	1.100	0.939	0.306	1.645	2.414	3.281	4.885	4.681
$\left(\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}\right)$: Peak	84.07	42.27	36.04	9.79	2.73	4.25	12.03	0.47	30.56	7.10	6.72	39.59	84.07
Runaff (mm)	246	194	141	47	16	17	15	5	25	38	50	77	870
Rainfall (mm)	255	215	124	53	61	45	74	20	141	80	95	91	1254
Monthly and yaarly statistics for previous record (Oct 1963 to Dec 1994 -incomplete or missing months total 0.2 years)													
Mean Avg.	9.561	6.891	6.585	4.604	3.042	2.548	2.612	3.346	4.337	7.212	9.400	11.180	5.944
flows Low	2.268	2.179	2.180	0.961	0.577	0.625	0.422	0.181	0.882	0.558	3.757	2.219	3.783
	15.330	15.200	18.470	10.110	10.800	7.571	5.831	8.556	10.670	19.800	18.320	22.600	7.895
Peak flow ($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$)	105.60	88.63	126.70	90.32	105.10	129.70	68.24	174.30	76.84	147.40	128.10	210.40	210.40
Runotf (mm)	151	99	104	70	48	39	41	53	66	114	144	177	1106
Rainfall (mm)	158	102	124	90	86	92	99	114	129	154	167	185	1500
Factors affecting runoff: N Station typo: VA										1995 runoff is 79% of previous mean rainfall 84\%			

Station typo: VA

Grid reference: 22 (SN) 591774
Level stn. (m OD): 12.00

Catchment area (sq km): 169.6
Max alt. (m OD): 611

Runoff (mm)

95 runoff is 79%
rainfall 84%
reference: 22 (SN) 48520 Level stn. (m OD): 7.80

064001 Dyfi at Dyfi Bridge

1995

Measuring authority: EA-WEL
First year: 1962
Hydrometric statistics for 1995

		JAN	FE8	MAR	APA	MAY	JuN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	63.960	55.810	29.010	9.461	4.636	4.350	11.350	1.918	4.232	14.570	17.430	20.710	19.610
$\left(m^{3} s^{-1}\right)$;	Peak	302.00	235.50	128.10	32.05	14.48	11.63	295.50	6.08	52.03	71.11	75.59	172.80	302.00
Runoff (mm)		363	286	165	52	26	24	65	11	23	83	96	118	1312
Rainfall (mm)		356	275	151	55	75	50	158	18	133	113	113	117	1814

Monthly and yearly statistics for previous record (Oct 1962 to Doc 1994 -Incomplete or missing months total 4.6 years)

Mean Avg.	34.610	25.640	28.570	17.610	11.250	9.597	8.459	13.430	17.230	27.620	36.510	42.930	22.795
flows Low	6.245	5.174	5.340	2.626	1.295	1.618	0.822	0.663	5.966	9.697	14.530	7.501	14.412
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	68.810	55.560	75.790	42.490	31.380	21.770	18.780	40.440	36.260	76.960	70.470	88.280	29.888
Poak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	350.20	342.20	360.70	288.10	337.20	402.10	162.00	210.00	329.80	344.00	375.50	580.50	580.50
Runoff (mm)	197	133	162	97	64	53	48	76	95	157	201	244	1526
Rainfall (mm)	207	134	169	111	102	108	109	144	164	191	211	249	1899
Factors affecting Station type: VA	off: N									$1995 \mathrm{rai}$	noff is 86	of pre	ous mean

064002 Dysynni at Pont-y-Garth

Measuring authority: EA.WEL
First year: 1966
Hydrometric statistics for $\mathbf{1 9 9 5}$

065005 Erch at Pencaenewydd

Measuring authority: EA-WEL
First year: 1973
Hydrometric statistics for 1995

	JAN	FEB	MAR	APR	MAY	JUN	Jut	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	1.362	1.367	0.657	0.264	0.206	0.164	0.135	0.106	0.125	0.487	0.528	0.512	0.488
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	13.26	11.17	7.08	0.61	0.84	0.44	0.81	0.38	0.38	+4.25	2.41	3.87	13.26
Runoff (mm)	202	183	97	38	31	23	20	16	18	72	76	76	850
Rainfall (mm)	219	200	85	34	79	45	71	29	109	165	127	91	1254
Monthly and yearly statistics for previous record (Jan 1973 to Dec 1994)													
Mean Avg.	0.965	0.784	0.773	0.509	0.332	0.234	0.187	0.298	0.390	0.718	0.981	1.072	0.603
flows Low	0.372	0.366	0.311	0.177	0.120	0.089	0.081	0.062	0.103	0.236	0.264	0.366	0.430
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{High}$	1.673	1.869	1.804	0.977	0.728	0.647	0.427	1.113	0.919	1.736	1.816	1.764	0.739
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	10.41	15.45	19.78	11.00	4.68	6.99	5.53	9.22	7.76	25.01	16.91	15.50	25.01
Runoff (mm)	143	106	114	73	49	33	28	44	56	106	140	159	1051
Rainfall (mm)	145	101	132	82	77	74	82	117	123	155	161	168	1417
Factors affecting runoff: N Station type: C										1995 runoff is 81% of previous mean rainfall 88\%			

Grid reference: 23 (SH) 400404 Level stn. (m OD): 56.10

Catchment area (sq km): 18.1
Max alt. (m OD): 564
rainfall 88%

066006 Elwy at Pont-y-Gwyddel

Measuring authority: EA-WEL
First year: 1973
Hydrometric statistics for 1995

	JAN	FEB	MAR	APR	MAY	JUN	JUL.	AUG 0.289	SEP 0.909	$\begin{aligned} & \text { OCT } \\ & 1.791 \end{aligned}$	$\begin{aligned} & \text { NOV } \\ & 3.279 \end{aligned}$	$\begin{aligned} & \text { OEC } \\ & 3.057 \end{aligned}$	Year 3.713
Flows Avg.	13.140	12.790	6.012	1.312	1.268	0.765	0.545	0.289	0.909	$\begin{array}{r} 1.791 \end{array}$	3.279	3.057	3.713
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right\}$: Peak	68.27	75.82	21.85	6.37	6.74	1.49	8.29	0.47	4.27	7.08	19.16	16.33	75.82
Runoff (mm)	181	159	83	18	18	10	8	4	12	25	44	42	604
Rainfall (mm)	208	183	84	43	82	20	80	14	147	75	82	56	1074
Monthly and yearly statistics for previous record (Dec 1973 to Dec 1994)													
Mean Avg.	7.987	5.993	5.309	3.199	1.718	1.321	0.655	1.132	2.318	4.759	7.102	8.504	4.160
flows Low	3.115	2.180	0.816	0.823	0.479	0.359	0.278	0.242	0.249	1.360	2.263	4.085	2.908
(mis s^{-1}) High	13.060	15.070	11.950	6.939	5.918	3.527	1.402	4.351	7.450	11.530	11.850	15.560	5.094
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	100.40	58.00	76.59	50.76	21.66	25.38	27.05	38.13	58.57	143.00	101.60	75.42	143.00
Runoff (mm)	110	75	73	43	24	18	9	16	31	66	95	117	677
Rainfall (mm)	131	87	103	65	72	73	64	89	114	129	136	151	1214
Factors affecting runoff: SRP Station type: VA										1995 runoff is 89% of previous mean rainfall 88\%			

067008 Alyn at Pont-y-Capel

Measuring authority: EA-WEL
First year: 1965
Hydrometric statistics for 1995

	JAN	FEB	MAR	APF	MAY	JUN	Jul	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	7.968	6.873	4.456	1.601	1.437	0.771	0.665	0.466	1.046	0.639	0.912	1.628	2.349
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	25.76	17.13	12.74	4.34	9.43	1.18	5.75	0.76	4.23	1.31	2.88	9.28	25.76
Runoff (mm)	94	73	53	18	17	9	8	6	12	8	10	19	326
Rainfall (mm)	154	119	68	40	78	21	58	18	170	34	67	63	890
Monthly and yearly statistics for previous record (Jun 1965 to Dec 1994)													
Mean ' Avg.	4.208	3.662	3.098	2.504	1.665	1.169	0.833	0.849	0.974	1.871	3.019	4.357	2.346
flows Low	1.328	1.234	0.766	1.023	0.677	0.438	0.331	0.287	0.391	0.452	0.614	1.246	1.266
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	7.219	9.085	8.027	6.474	5.657	2.873	2.098	2.456	3.906	6.896	6.168	9.481	3.027
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	27.53	28.52	26.11	25.28	26.86	18.34	23.23	20.81	59.11	26.46	28.21	35.92	59.11
Runoff (mm)	50	39	37	29	20	13	10	10	11	22	34	51	326
Rainfall (mm)	84	63	73	61	69	64	60	71	81	87	102	100	915
Factors affecting runoff: S EI Station type: CC										1995 runoff is 100% of previous mean rainfall $\mathbf{9 7 \%}$			

Grid reference: 23 (SH) 952718
Level stn. (m OD): 87.90

068004 Wistaston Brook at Marshfield Bridge

1995
Measuring authority: EA-NW
Grid reference: 33 (SJ) 674552 Level sin. (m OD): 30.10

Catchrnent area (sq km): 92.7
First year: 1957
Max alt. (m OD): 221
Hydrometric statistics for 1995

069006 Bollin at Dunham Massey
Measuring authority: EA-NW First year: 1955

Grid reference: 33 (SJ) 727875 Level stn. (m OD): 12.80
Hydrometric statistics for 1995

		JAN	FEB	MAR	APR	MAY	Jun	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	12.650	11.270	6.848	2.728	2.091	2.040	1.917	1.544	1.998	1.408	1.531	1.710	3.939
($\mathrm{m}^{3} \mathrm{~s}^{-1}$):	Peak	44.06	29.42	24.31	7.50	4.44	4.80	6.93	3.82	8.91	5.15	4.58	9.40	44.06
Runotf (mm)		132	107	72	28	22	21	20	16	20	15	16	18	485
Rainfall (mm)		146	104	66	27	46	29	41	23	91	28	44	41	686

Monthly and yearly statistics for previous record (Oct 1955 to Dec 1994 -incomplete or missing months total 1.1 years)

Mean Avg.	6.500	5.236	4.600	3.754	2.823	2.528	2.415	2.905	3.074	4.178	5.488	6.684	4.179
flows Low	1.639	1.686	1.694	1.742	1.286	0.707	0.875	0.464	0.651	1.300	1.804	2.296	2.728
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	10.960	12.880	11.470	8.732	5.781	9.203	5.626	11.410	8.963	11.340	9.425	14.510	6.307
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	43.95	39.29	36.91	60.43	63.02	42.37	41.50	44.04	35.05	41.18	44.35	46.33	63.02
Runoff (mm)	68	50	48	38	30	26	25	30	31	44	56	70	515
Hainfall (mm)	79	53	64	57	61	70	75	86	81	85	83	90	884
Factors affecting Station type: VA	noff: S P									$\begin{array}{r} 1995 \mathrm{rai} \\ \hline \end{array}$	ff is 94	of pre	s mean

069007 Mersey at Ashton Weir

Measuring authority: EA-NW
First year: 1958
Hydrometric statistics for 1995

Monthly and yearly statistics for previous record (Jan 1981 to Dec 1994 -incomplete or missing months total 0.1 years)

Mean Avg.	19.180	11.550	14.620	10.470	5.840	6.320	4.965	6.217	7.291	10.940	14.710	20.290	11.043
fows Low	8.297	6.048	3.886	4.698	3.479	3.847	2.447	2.760	2.574	4.403	5.757	8.686	8.438
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	29.220	23.100	36.210	17.190	11.420	18.090	9.211	12.560	12.550	25.500	25.190	36.810	15.876
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	341.80	125.00	176.70	113.00	56.25	157.50	49.21	216.70	108.10	202.50	303.70	563.40	563.40
Runotf (mm)	78	43	59	41	24	25	20	25	29	44	58	82	528
Rainfall (mm)	117	61	106	78	59	83	72	96	94	120	115	131	1132
Factors affecting Station type: CB	off: S P									1995 r	off is 98	of prev	us mean

Station type: CB

Grid reference: 33 (SJ) 772936 Level stn. (m OD): 14.90

Catchment area (sq km): 660.0 Max alt. (m OD): 636
rainfall 77%

070004 Yarrow at Croston Mill
Measuring authority: EA-NW
First year: 1976
Hydrometric statistics for 1995

		JAN	FEB	MAR	APR	MAY	JUN	JuL	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	5.157	4.958	2.340	0.828	0.732	0.641	0.604	0.417	0.650	0.498	0.645	0.575	1.484
($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$):	Peak	47.28	22.54	15.52	2.08	4.60	3.36	6.13	1.29	4.18	1.61	1.94	3.38	47.28
Runoff (mm)		186	161	84	29	26	22	22	15	23	18	22	21	629
Rainfall (mm)		177	132	72	24	50	34	54	19	93	34	56	31	776

Monthly and yearly statistics for previous record (Jan 1976 to Dec 1994 -incomplete or missing months total 0.1 years)

Mean	Avg.	3.252	2.095	2.407	1.405	1.017	0.918	0.807	1.124	1.156	2.378	2.671	3.382	1.887
flows	Low	1.491	0.846	0.643	0.586	0.508	0.405	0.494	0.379	0.536	0.854	1.181	1.756	1.251
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$	High	5.037	4.917	7.574	2.504	2.577	1.417	1.804	4.003	2.062	6.360	4.699	6.531	2.830
Peak flow	$\left.n^{3} s^{-1}\right)$	35.89	20.17	93.13	31.18	27.79	30.15	27.89	192.00	35.77	89.38	34.23	107.60	192.00
Runoff (mm		117	69	87	49	37	32	29	40	40	86	93	122	800
Rainfall (mm		102	59	93	60	60	79	64	92	91	120	103	119	1042
Factors affecting runoff: S PGEI Station type: MIS											1995 runoff is 79% of previous mean rainfall 74\%			

Measuring authority: EA-NW First year: 1960
Hydrometric statistics for 1995

		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	93.920	72.720	47.800	13.140	7.520	6.663	5.485	3.760	6.230	7.494	11.480	10.410	23.643
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$:	Peak	1043.00	440.10	286.10	74.45	20.54	26.25	45.07	5.54	35.78	27.52	92.83	112.80	1043.00
Runoff (mm)		220	154	112	30	18	15	13	9	14	18	26	24	651
Rainfall (mm)		253	179	130	30	56	35	58	18	87	57	68	47	1018

Monthly and yearly statistics for previous record (May 1960 to Dec 1994)

Mean	Avg.	52.500	37.220	35.300	26.550	17.430	13.800	15.750	22.900	28.390	40.350	51.270	57.290	33.235
flows	Low	10.610	9.565	8.691	5.601	4.100	5.031	2.638	2.958	4.263	5.716	14.970	15.190	22.045
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$	High	82.510	80.890	97.070	54.820	46.460	33.520	40.500	68.920	65.820	118.400	88.610	120.200	45.022
Peak flow	$\mathrm{m}^{3} s^{-1}$	754.60	513.10	589.80	466.60	319.10	494.80	399.80	520.80	619.30	801.70	613.20	891.30	891.30
Runoff (mm)		123	79	83	60	41	31	37	54	64	94	116	134	916
Rainfall (mm *(1961-199		138	88	109	83	79	88	90	117	127	139	141	156	1355
Factors af Station ty	ecting e: MIS	noff: S										noff is 71 fall	\% of pre \%	ous mean

Grid reference: 34 (SD) 589304 Level stn. (m OD): 6.00

Catchment area (sq km): 1145.0 Max alt. (m OD): 680

$$
\text { rainfall } 75 \%
$$

071004 Calder at Whalley Weir

Measuring authority: EA-NW
First year: 1963
Hydrometric statistics for 1995

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	25.350	18.760	12.690	4.728	3.018	2.532	2.475	1.886	2.594	2.276	2.926	3.172	6.810
$\left(m^{3} s^{-1}\right)$: Peak	302.70	115.50	57.17	16.06	12.83	13.33	16.52	3.08	17.63	8.58	17.35	36.02	302.70
Runoff (mm)	215	144	108	39	26	21	21	16	21	19	24	27	680
Rainfall (mm)	217	147	108	30	46	30	56	12	86	43	56	44	875
Monthly and yearly statistics for previous record (Oct 1963 to Dec 1994 -incomplete or missing months total 2.6 years)													
Mean Avg.	13.430	9.453	9.274	6.784	4.886	4.205	3.861	5.658	7.011	10.500	12.700	14.360	8.513
flows Low	5.766	3.320	2.773	2.272	2.053	1.888	1.773	1.564	1.921	2.397	4.488	4.886	6.225
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	20.590	17.170	25.320	13.010	9.916	7.609	9.059	16.280	18.620	23.910	21.990	26.920	11.485
Peak flow $\left\{\mathrm{m}^{3} \mathrm{~s}^{-1}\right.$)	211.80	146.10	185.20	108.40	91.66	135.50	230.60	171.60	206.00	229.50	148.60	237.50	237.50
Runoff (mm)	114	73	79	56	41	34	33	48	58	89	104	122	850
Rainfall (mm)	127	78	103	74	73	84	81	106	113	129	128	138	1234
Factors affecting runoff: El Station type: FV										1995 runoff is 80% of previous mean rainfall 71\%			

073005 Kent at Sedgwick

Measuring authority: EA-NW
First year: 1968
Hydrometric statistics for 1995

	JAN	FEB	MAR	APR	MAY	JUN	JuL	Aug	SEP	OCT	Nov	DEC	Year
Flows Avg.	21.820	24.190	12.510	3.486	2.216	2.653	2.035	0.736	1.328	13.110	8.339	3.574	7.911
$\left(m^{3} s^{-1}\right)$: Peak	237.70	105.30	40.17	11.25	20.42	28.89	8.98	1.24	17.94	97.63	50.24	14.39	237.70
Runoff (mm)	280	280	160	43	28	33	26	9	16	168	103	46	1194
Rainfall (mm)	310	274	156	21	83	65	95	20	99	243	128	49	1543
Monthly and yearly statistics for previous record (Nov 1968 to Dec 1994)													
Mean Avg.	13.800	10.680	10.870	6.946	4.117	3.531	3.763	5.636	7.753	10.650	14.230	14.680	8.884
flows Low	5.872	2.792	2.992	2.038	1.119	0.851	0.677	0.735	1.753	1.396	3.467	5.271	5.995
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	22.790	29.910	25.080	13.280	12.000	13.010	11.060	20.210	16.640	19.470	23.280	26.750	11.320
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	240.10	178.80	205.10	111.10	100.70	72.86	105.50	103.70	120.70	146.80	211.40	282.90	282.90
Runoff (mm)	177	125	139	86	53	44	48	72	96	136	177	188	1341
Rainfall (mm)	197	123	162	98	86	100	111	134	162	181	201	206	1761
Factors affecting runoff: N I Station type: CBVA										1995 runoff is 89% of previous mean rainfall 88\%			

Factors affecting runoff: N
Station type: CBVA

Grid reference: 34 (SD) 509874 Level stn. (m OD): 18.90

Catchment area (sq km): 209.0 Max alt. (m OD): 817

074005 Ehen at Braystones

Measuring authority: EA-NW First year: 1974				Grid reference: 35 (NY) 009061 Level stn. (m OD): 10.10						Catchment area (sq km): 125.5 Max alt. (m OD): 899			
Hydrometric statistics for 1995													
	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	11.010	9.781	6.605	2.875	1.616	2.475	3.363	1.392	1.172	7.767	3.679	2.354	4.486
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right.$): Peak	70.30	65.23	20.06	6.55	8.01	17.17	13.10	2.21	4.42	25.83	21.83	7.42	70.30
Runoff (mm)	235	189	141	59	34	51	72	30	24	166	76	50	1127
Rainfall (mm)	249	192	152	40	100	78	140	32	115	242	103	34	1477
Monthly and yearly statistics for previous record (Jan 1974 to Dec 1994)													
Mean Avg.	7.599	5.797	5.991	3.837	-2.274	1.975	2.373	3.979	4.996	7.374	7.766	8.105	5.173
flows Low	2.220	1.856	2.225	0.993	0.771	0.779	0.789	0.661	1.644	1.799	3.121	2.448	3.963
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{High}$	16.030	15.890	10.300	7.751	6.877	4.371	5.602	12.260	12.840	14.080	12.470	13.380	6.328
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	97.85	79.36	69.47	81.07	55.46	38.25	56.92	74.32	76.40	115.90	64.49	91.47	115.90
Runoff (mm)	162	113	128	79	49	41	51	85	103	157	160	173	1301
Rainfall (mm)	196	122	178	97	80	97	124	152	172	211	191	207	1827
Factors affecting runoff: S P Station type: VA										1995 runoff is 87% of previous mean rainfall 81\%			

075002 Derwent at Camerton

1995
Measuring authority: EA-NW
First year: 1960
Hydrometric statistics for 1995

	JAN	FEB	MAA	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	62.310	75.470	41.580	12.550	4.996	8.334	5.747	2.194	3.353	43.250	23.490	9.518	24.116
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	224.00	224.50	71.40	35.65	14.07	12.94	9.42	4.31	10.86	105.30	77.30	31.14	224.50
Runotf (mm)	252	275	168	49	20	33	23	9	13	175	92	38	1147
Rainfall (mm)	315	249	182	42	92	56	101	22	110	300	124	35	1628
Monthly and yearly statistics for previous record (Sep 1960 to Dec 1994 -incomplete or missing months total 0.2 years)													
Mean Avg.	39.060	29.500	27.720	20.990	12.750	9.857	11.050	17.570	24.180	33.800	40.540	42.230	25.764
flows Low	9.587	4.837	7.466	4.359	2.753	2.041	2.503	2.384	2.885	2.755	14.210	14.740	14.824
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	84.550	84.850	66.470	38.940	36.280	34.800	23.140	55.940	62.980	107.800	76.340	75.840	34.235
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	219.20	165.70	215.50	145.50	102.90	135.80	114.50	216.20	189.20	264.70	226.40	234.80	264.70
Runoff (mm)	158	109	112	82	52	39	45	71	95	137	158	171	1226
Rainfall (mm)* '(1961-1994)	187	117	153	102	98	105	115	147	172	198	192	201	1787
Factors affecting runoff: S P Station type: VA										1995 runoff is 94% of previous mean rainfall 91%			

076005 Eden at Temple Sowerby

Measuring authority: EA-NW
First year: 1964
Hydrometric statistics for 1995

	JAN	FEB	MAR	APA	MAY	JUN	JuL	AUG	SEP	OCT	Nov	DEC	Year
Flows Avg.	41.010	50.670	24.060	5.739	3.212	2.624	1.886	1.458	1.941	9.030	11.490	8.694	13.267
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	321.80	308.30	106.40	15.22	5.67	6.28	5.10	1.79	2.94	76.89	135.80	63.11	321.80
Runoff (mm)	178	199	105	24	14	11	8	6	8	39	48	38	679
Rainfall (mm)	218	209	108	24	52	28	50	14	80	123	90	44	1040
Monthly and yearly statistics for previous record (Nov 1964 to Dec 1994)													
Mean Avg.	24.610	19.260	17.060	11.140	7.282	5.027	5.064	7.372	10.650	15.540	21.300	26.500	14.219
flows Low	9.871	5.430	4.469	2.923	2.196	1.553	1.176	1.613	1.593	1.975	4.240	9.403	8.669
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right\}$ High	42.580	62.620	43.570	19.500	17.050	13.780	16.690	22.070	30.440	55.960	38.740	49.530	18.912
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	283.30	314.90	346.30	165.80	169.40	139.40	230.50	204.00	280.20	271.00	279.30	323.20	346.30
Aunoff (mm)	107	76	74	47	32	21	22	32	45	68	90	115	728
Rainfall (mm)	128	86	100	66	69	67	75	93	104	114	124	138	1164
Factors affecting runoff: Station type: VA										1995 runoff is 93% of previous mean rainfall 89\%			

076010 Petteril at Harraby Green

Measuring authority: EA-NW
First year: 1969
Hydrometric statistics for 1995

		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	6.680	6.745	4.127	1.066	0.531	0.365	0.266	0.203	0.272	0.803	1.683	1.057	1.95
($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$):	Peak	51.83	46.74	13.21	2.75	1.52	0.69	0.65	0.42	1.00	2.78	18.31	6.15	51.83
Runoff (mm)		112	102	69	17	9	6	4	3	4	13	27	18	386
Rainfall (mm)		158	135	93	20	56	21	42	13	72	111	76	30	825

Monthly and yearly statistics for previous record (Jan 1970 to Dec 1994 -incomplete or missing months total 5.8 years)

Factors affecting runoff: N
Station type: MiS
1995 runoff is 93% of previous mean rainfall 88%

Grid reference: 35 (NY) 412545
Level stn. (m OD): 20.10
rainfall 89\%

Catchment area (sq km): 616.4
Max alt. (m OD): 950

Grid reference: 35 (NY) 605283
Level stn. (m OD): 92.40

Catchment area (sq km): 663.0 Max alt. (m OD): 950

95 runoff is 94% of previous mean
rainfall 91%

077003 Liddel Water at Rowanburnfoot

Measuring authority: SEPA-W
First year: 1973
Hydrometric statistics for 1995

	JAN	FEB	MAR	APR	MAY	JUN	JUL.	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	19.230	22.810	10.680	3.540	2.871	3.777	1.168	0.836	2.550	15.120	10.680	4.284	8.041
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	352.50	165.20	51.55	17.32	31.42	70.84	1.71	1.00	24.98	125.30	133.00	34.94	352.50
Runoff (mm)	161	173	90	29	24	31	10	7	21	127	87	36	795
Rainfall (mm)	202	196	107	31	79	52	58	17	122	189	102	48	1203
Monthly and yearly statistics for previous record (Oct 1973 to Dec 1994)													
Mean Avg.	17.160	12.680	13.440	7.466	5.019	4.012	4.747	6.248	8.344	11.570	14.720	17.410	10.234
flows Low	8.344	4.126	5.391	1.538	1.118	1.083	0.879	0.869	1.757	4.057	3.421	4.819	7.515
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	30.750	32.030	23.150	15.690	16.730	12.940	22.800	23.360	24.390	19.120	26.200	30.000	13.059
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	404.40	349.10	345.30	171.00	248.40	131.00	309.40	284.40	354.90	334.30	281.00	393.20	404.40
Runoff (mm)	144	97	113	61	42	. 33	40	52	68	97	120	146	1012
Rainfall (mm)	154	99	134	79	80	85	103	119	121	139	141	168	1422
Factors affecting runoff: N Station type: VA										1995 runoff is 79% of previous mean rainfall 85\%			

078003 Annan at Brydekirk

Measuring authority: SEPA-W First year: 1967

Grid reference: 35 (NY) 191704 Level stn. (m OD): 10.00

Catchment area (sq km): 925.0
Max alt. (m OD): 821
Hydrometric statistics for 1995

		JAN	FEB	MAR	APA	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	61.100	66.160	51.860	14.920	9.712	8.028	5.049	2.947	4.712	64.250	30.610	15.220	
($\mathrm{m}^{3} \mathrm{~s}^{-1}$):	Peak	310.50	199.30	255.80	39.96	97.12	29.20	14.80	4.77	20.76	284.20	159.70	63.54	310.50
Runoff (mm)		177	173	150 .	42	28	23	15	9	13	186	86	44	945
Rainfall (mm)		191	159	140	38	88	45	81	28	96	248	91	48	1253

Monthly and yearly statistics for previous record (Oct 1967 to Dec 1994)

Mean Avg.	48.050	36.540	34.840	23.090	15.370	11.060	10.940	17.940	24.080	35.200	42.340	46.970	28.85
flows Low	17.820	12.820	8.402	6.124	3.519	2.937	1.944	2.007	3.362	3.592	11.490	19.530	16.40
$\left(m^{3} s^{-1}\right)$ High	83.440	105.700	63.910	52.350	53.160	32.150	34.940	76.400	76.330	86.820	77.930	87.030	36.42
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	405.40	305.00	293.30	213.30	229.30	171.30	253.10	378.90	446.60	499.10	325.00	355.40	499.1
Runoff (mm)	139	97	101	65	44	31	32	52	67	102	119	136	984
Rainfall (mm)	149	98	124	76	82	81	94	113	126	143	136	149	1371

Factors affecting runoff: N
Station type: VA

1995

078004 Kinnel Water at Redhall

1995 runoff is 96% of previous mean rainfall 91\%

Measuring authority: SEPA-W
First year: 1963
Hydrometric statistics for 1995

		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg,	5.894	6.216	4.472	0.810	0.858	0.548	0.207	0.073	0.366	7.648	2.392	. 045	
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$:	Peak	47.20	42.42	44.16	4.60	24.37	5.32	0.80	0.11	6.42	63.32	20.04	18.76	63.32
Runoft (mm)		207	198	157	28	30	19	7	3	12	269	81	37	1049
Rainfall (mm)		215	176	162	41	93	46	79	29	91	303	96	56	1387

Monthly and yearly statistics for previous record \{Oct 1963 to Dec 1994 -incomplete or missing months total 1.0 years)

Mean Avg.	4.419	3.180	3.127	1.876	1.468	1.004	1.012	1.722	2.578	3.486	4.027	4.409	2.692
flows Low	1.296	0.590	0.552	0.251	0.122	0.112	0.048	0.049	0.099	0.207	0.740	1.081	1.507
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	9.213	9.298	6.570	4.672	5.496	3.282	3.435	7.513	6.689	7.288	7.535	8.694	3.517
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	95.89	90.99	101.20	66.70	51.79	36.09	60.14	65.25	91.37	110.90	86.69	103.60	110.90
Runoff (mm)	156	102	110	64	52	34	36	61	88	123	137	155	1117
Rainfall (mm)	157	104	132	83	93	88	97	121	141	152	149	163	1480
Factors affecting	ff: N									$1995 \text { r }$	ff is 9	of prev	s mean

Grid reference: 35 (NY) 077868
Level stn. (m OD): 53.70
Catchment area (sq km): 76.1 Max alt. (m OD): 697

080001 Urr at Dalbeattie

Measuring authority: SEPA-W First year: 1963
Hydrometric statistics for 1995

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	12.940	12.440	8.407	2.066	0.913	0.539	0.315	0.086	0.244	9.973	7.655	3.128	4.855
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	75.92	44.75	34.77	11.61	10.45	2.52	1.41	0.15	0.73	61.40	75.79	17.79	75.92
Runotf (mm)	174	151	113	27	12	7	4	1	3	134	100	42	769
Rainfall (mm)	223	167	120	26	71	33	74	17	91	236	122	55	1235
Monthly and yearly statistics for previous record (Nov 1963 to Dec 1994)													
Mean Avg.	9.928	7.858	6.850	4.299	2.939	1.893	1.397	2.890	4.926	7.757	9.377	10.280	5.859
flows Low	3.534	1.419	2.094	0.753	0.308	0.246	0.137	0.149	0.319	0.522	1.711	3.369	3.109
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	19.080	19.340	12.570	11.550	10.880	6.833	5.081	13.310	17.160	19.400	19.420	19.200	8.358
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	133.70	100.10	95.03	69.39	69.92	59.18	68.42	104.60	129.40	162.20	129.70	164.30	164.30
Runoff (mm)	134	96	92	56	40	25	19	39	64	104	122	138	${ }^{9239}{ }^{\text {a }}$
Rainfall (mm)	141	98	119	76	79	77	80	104	127	143	140	147	1331
Factors affecting runoff: N Station type: VA										1995 runoff is 83% of previous mean rainfall 93\%			

081002 Cree at Newton Stewart

Measuring authority: SEPA-W
First year: 1963
Hydrometric statistics for 1995

	JAN	FEB	MAR	APR	MAY	JUN	JuL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	35.420	28.500	22.180	7.987	5.335	5.296	2.780	0.442	4.050	35.640	13.350	5.816	13.848
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	208.50	101.90	92.84	76.88	52.25	68.81	17.69	1.28	31.51	204.90	91.17	58.43	208.50
Runoff (mm)	258	187	161	56	39	37	20	3	29	259	. 94	42	1187
Rainfall (mm)	308	229	188	66	99	67	93	34	137	335	130	55	1741
Monthly and yearly statistics for previous record (Oct 1963 to Dec 1994)													
Mean Avg.	24.030	17.650	17.300	11.390	7.873	6.478	7.636	10.930	15.730	20.930	23.380	24.490	15.653
flows Low	9.633	2.569	4.039	1.319	0.426	0.466	0.969	0.684	1.063	6.495	7.292	5.775	9.965
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	45.820	42.490	33.060	25.030	22.960	15.620	19.710	36.030	43.320	36.720	43.910	48.050	18.980
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	272.50	253.10	347.20	207.10	345.10	195.10	223.10	230.90	312.70	318.00	199.10	322.30	347.20
Runoff (mm)	175	117	126	80	57	46	56	80	111	152	165	178	1342
Rainfall (mm)	199	128	163	106	97	100	113	140	165	193	199	199	1802
Factors affecting runoff: N Station type: VA										1995 runoff is 88% of previous mean rainfall 97%			

Measuring authority: SEPA-W First yoar: 1967
Hydrometric statistics for 1995

		JAN	FEB	MAR	APA	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	12.760	9.328	8.802	2.879	2.619	1.254	1.926	0.275	0.684	12.200	6.991	3.020	5.219
$\left(m^{3} s^{-1}\right)$:	Peak	77.96	80.82	42.89	55.37	36.82	28.48	70.19	0.37	12.31	219.70	82.90	41.20	219.70
Runoff (mm)		200	132	138	44	41	19	30	4	10	191	106	47	963
Rainfall (mm)		217	154	150	60	98	53	109	26	103	253	133	50	1406

Monthly and yearly statistics for previous record (Jan 1967 to Dec 1994)

Moan Avg.	9.923	7.230	6.747	4.379	2.493	2.026	2.194	3.642	5.781	8.785	9.887	9.370	6.035
flows Low	4.540	0.789	1.359	0.454	0.261	0.225	0.191	0.277	0.366	1.689	3.857	2.445	3.691
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	15.600	14.810	12.860	11.400	7.597	5.360	6.445	14.290	17.670	16.750	15.940	17.090	7.787
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	177.10	146.10	216.70	197.60	159.30	190.30	156.80	283.60	192.40	231.80	191.00	204.00	283.60
Runoff (mm)	155	103	106	66	39	31	34	57	88	138	150	147	1114
Rainfall (mm)	164	105	127	89	76	85	98	119	142	164	165	155	1489
Factors affecting	noff: NS									1995	ff is 8	of prev	ous mean

Station type: VA
Grid reference: 25 (NX) 180599 Level stn. (m OD): 19.00

Catchment area (sq km): 171.0 Max alt. (m OD): 438 rainfall 94%

082002 Doon at Auchendrane

Measuring authority: SEPA-W
First year: 1974
Hydrometric statistics for 1995

		JAN	FEB	MAR	APA	MAY	JuN	JuL	AUG	SEP	ост	NOV	OEC	Year
Flows	Avg.	15.570	14.860	14.360	6.079	4.153	3.503	3.264	3.110	3.639	13.380	6.846	5.087	7.794
$\left(\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}\right)$:	Peak	56.96	47.92	45.33	31.33	10.53	5.06	10.11	6.50	11.14	54.97	24.53	13.16	56.96
Runoff (mm)		129	111	119	49	34	28	27	26	29	111	55	42	759
Hainfall (mm)		296	226	201	57	94	40	92	39	130	322	108	48	1653

Monthly and yearly statistics for previous record (Jul 1974 to Dec 1994 -incomplete or missing months total 0.1 years)

Mean	Avg.	10.970	8.163	8.876	5.617	4.185	3.690	4.034	5.222	7.290	9.509	10.570	11.300	7.454
flows	Low	5.203	3.685	4.270	3.157	2.390	2.265	2.397	2.557	3.613	4.732	4.785	6.247	5.559
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$	High	15.120	18.360	13.570	10.520	8.006	4.981	6.945	10.930	17.680	14.610	17.290	20.680	8.698
Peak flow	$\mathrm{H}^{3} \mathrm{~s}^{-1}$	85.15	63.08	69.51	61.06	48.63	19.63	61.38	46.33	103.20	121.50	83.78	102.50	121.50
Runotf (mm)		91	62	73	45	35	30	33	43	58	79	85	93	727
Rainfall (mm		202	116	161	83	77	79	101	129	163	185	185	200	1681
Factors affecting runoff: P Station type: VA											1995 runoff is 104% of previous mean rainfall 98\%			

083005 Irvine at Shewalton

Measuring authority: SEPA-W
First vear: 1972
Hydrometric statistics for 1995

		JAN	FEB	MAR	APR	MAY	JuN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	20.320	24.510	17.110	5.743	1.445	1.078	1.556	0.326	3.485	25.080	7.902	2.627	9.192
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$:	Peak	153.70	143.60	90.19	81.74	5.61	3.97	21.37	0.74	40.95	216.50	61.85	16.33	216.50
Runoff (mm)		143	156	120	39	10	7	11	2	24	176	54	18	761
Rainfall (mm)		163	181	126	60	57	36	90	29	122	253	69	40	1226

Monthly and yearly statistics for previous record (Feb 1972 to Dec 1994 -incomplete or missing months total 0.2 years)

Mean Avg.	17.500	10.570	12.060	6.431	3.646	2.837	3.320	6.180	10.900	12.350	16.010	16.070	9.825
flows Low	4.527	1.874	3.182	1.138	0.789	0.536	0.367	0.328	1.608	4.298	3.754	3.829	6.694
$\left(m^{3} s^{-1}\right)$ High	28.890	26.480	23.440	16.980	11.530	10.870	12.060	20.070	33.760	23.910	27.770	33.960	12.406
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	341.20	190.90	207.50	108.50	131.80	139.30	278.70	228.20	303.60	272.30	194.30	290.90	341.20
Runoff (mm)	123	68	85	44	26	19	23	43	74	87	109	113	815
Rainfall (mm)	136	77	116	68	63	75	87	107	133	127	138	140	1267
Factors affecting Station type: VA	off: E									$\begin{array}{r} 1995 \mathrm{rai} \end{array}$	off is 93 97	of pre	us mean

Station type: VA
Grid reference: 26 (NS) 345369 Level str. (m OD): 4.80

Catchment area (sq km): 380.7 Max alt. (m OD): 484

084016 Luggie Water at Condorrat

Measuring authority: SEPA-W
First year: 1966
Hydrometric statistics for 1995

	JAN	FEB	MAA	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	1.674	2.112	1.254	0.572	0.244	0.180	0.234	0.191	0.475	2.843	1.435	0.864	1.001
$\left(\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}\right)$: Peak	12.63	12.10	5.66	3.50	0.69	0.58	0.52	0.51	2.44	23.93	6.21	5.66	23.93
Runotf (mm)	132	151	99	44	19	14	18	15	36	225	110	68	931
Rainfall (mm)	142	173	118	39	56	31	61	31	103	210	60	36	1060
Monthly and yearly statistics for previous record (Oct 1966 to Dec 1994-incomplete or missing months total 0.5 years)													
Mean Avg.	1.552	1.070	1.107	0.629	0.466	0.308	0.308	0.495	0.773	1.042	1.318	1.477	0.879
flows Low	0.680	0.415	0.370	0.287	0.166	0.138	0.147	0.123	0.125	0.129	0.367	0.592	0.539
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	3.104	2.378	2.508	1.030	1.199	0.692	1.751	1.606	3.386	2.121	2.362	3.899	1.169
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	30.25	19.34	28.11	14.61	14.54	7.01	27.14	22.06	44.46	34.20	30.68	51.31	51.31
Runoff (mm)	123	77	87	48	37	24	24	39	59	82	101	117	818
Rainfall (mm)	117	75	101	56	66	67	74	93	109	115	114	117	1104
Factors affecting runoff: N Station type: VA										1995 runoff is 114% of previous mean rainfall 96\%			

Monthly and yearly statistics for previous record (Oct 1966 to Dec 1994 -incomplete or missing months total 0.5 years)

	JAN	FEB	MAA	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	1.674	2.112	1.254	0.572	0.244	0.180	0.234	0.191	0.475	2.843	1.435	0.864	1.001
$\left(\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}\right)$: Peak	12.63	12.10	5.66	3.50	0.69	0.58	0.52	0.51	2.44	23.93	6.21	5.66	23.93
Runotf (mm)	132	151	99	44	19	14	18	15	36	225	110	68	931
Rainfall (mm)	142	173	118	39	56	31	61	31	103	210	60	36	1060
Monthly and yearly statistics for previous record (Oct 1966 to Dec 1994-incomplete or missing months total 0.5 years)													
Mean Avg.	1.552	1.070	1.107	0.629	0.466	0.308	0.308	0.495	0.773	1.042	1.318	1.477	0.879
flows Low	0.680	0.415	0.370	0.287	0.166	0.138	0.147	0.123	0.125	0.129	0.367	0.592	0.539
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	3.104	2.378	2.508	1.030	1.199	0.692	1.751	1.606	3.386	2.121	2.362	3.899	1.169
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	30.25	19.34	28.11	14.61	14.54	7.01	27.14	22.06	44.46	34.20	30.68	51.31	51.31
Runoff (mm)	123	77	87	48	37	24	24	39	59	82	101	117	818
Rainfall (mm)	117	75	101	56	66	67	74	93	109	115	114	117	1104
Factors affecting runoff: N Station type: VA										1995 runoff is 114% of previous mean rainfall 96\%			

Factors affecting runoff: N
Station type: VA
Grid reference: 26 (NS) 739725
Level stn, (m OD): 68.00
Catchment area (sq km): 33.9 Max alt. (m OD): 107

Measuring authority: SEPA-W
First year: 1963
Hydrómetric statistics for 1995

		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	90.700	99.370	86.780	40.670	11.400	11.810	13.720	16.090	10.570	76.500	65.470	28.510	45.679
$\left(m^{3} s^{-1}\right)$:	Peak	106.00	113.30	112.70	67.93	20.76	19.79	19.97	21.36	14.99	123.70	107.50	54.79	123.70
Runoff (mm)		310	307	296	134	39	39	47	55	35	261	216	97	1836
Rainfall (mm)		332	365	244	58	107	48	157	34	166	397	140	59	2107

Monthly and yearly statistics for previous record (Jul 1963 to Dec 1994 -incomplete or missing months total 0.2 years)

Mean Avg.	68.080	56.710	52.380	38.510	25.380	18.990	18.770	24.710	36.550	53.460	59.580	62.980	42.956
flows Low	27.910	18.610	16.630	10.540	10.620	8.518	7.303	4.556	8.736	10.830	13.250	17.580	30.712
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	119.100	134.600	138.200	80.810	73.120	51.860	44.640	85.730	91.360	90.150	115.000	125.500	54.062
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	169.50	163.60	196.80	112.40	92.02	78.48	116.60	115.30	121.60	138.50	145.70	148.50	196.80
Runoff (mm)	233	176	179	127	87	63 '	64	84	121	183	197	215	1728
Rainfall (mm)	253	156	206	111	114	113	123	154	206	222	226	235	2119
Factors affecting Station type: VA	noff: S										off is 106 infall	\% of pre \%	us mean

g runoff: S
Station type: VA

Grid reference: 26 (NS) 394803
Level stn. (m OD): 4.30

Catchment area (sq km): 784.3
Max alt. (m OD): 1130

090003 Nevis at Claggan

Measuring authority: SEPA-N First year: 1982			Grid reference: 27 (NN) 116742 Level stn. (m OD): 3.60							Catchment area ($\mathrm{sq} \mathbf{~ k m}$): 76.8 Max alt. (m OD): 1344			
Hydrometric statistics for 1995													
	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	9.233	12.200	8.054	6.731	3.652	1.922	4.002	0.924	4.383	12.400	7.018	1.249	5.940
($\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	64.60	102.10	58.24	45.76	16.63	11.20	126.50	14.22	82.50	102.00	129.50	12.51	129.50
Runoff (mm)	322	384	281	227	127	65	140	32	148	433	237	44	2439
Rainfall (mm)	487	514	316	110	120	59	217	57	242	514	232	38	2906
Monthly and yearly statistics for previous record (Sep 1982 to Dec 1994)													
Mean Avg.	10.240	7.095	10.180	5.902	3.954	2.609	3.731	5.480	7.066	8.161	7.445	10.450	6.869
flows Low	2.517	0.691	2.188	3.017	1.123	0.838	0.907	1.116	1.146	3.001	1.831	2.831	5.186
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	17.790	17.990	25.920	10.030	12.600	8.391	8.607	10.720	11.010	16.380	15.360	15.480	9.050 21900
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	197.70	172.00	143.10	101.70	67.50	69.35	105.00	130.50	219.00	146.50	110.30	189.00	219.00
Runoff (mm)	357	226	355	199	138	88	130	191	238	285	251	364	2823
Rainfall (mm)* $\bullet(1986-1994)$	454	303	459	177	124	116	175	247	252	300	301	419	3327
Factors affecting runoff: P Station type: VA										1995	noff is 86 fall 87	of prev	us mean

094001 Ewe at Poolewe

Measuring authority: SEPA-N First year: 1970

Hydrometric statistics for 1995

		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	62.460	67.230	45.110	37.740	15.110	13.190	10.300	5.509	24.620	52.550	40.310	14.520	32.139
$\left(m^{3} s^{-1}\right)$:	Peak	102.70	126.20	87.62	61.86	23.07	19.07	17.35	10.64	71.58	84.43	116.40	46.91	126.20
Runoff (mm)		379	369	274	222	92	78	63	33	145	319	237	88	2298
Rainfall (mm)		, 446	351	225	146	105	66	126	78	264	324	221	63	2415

Monthly and yeariy statistics for previous record (Nov 1970 to Dec 1994)

Station type: VA

Grid reference: 18 (NG) 859803 Level stn. (m OD): 4.60

Catchment area (sq km): 441.1 Max alt. (m OD): 1014

096001 Halladale at Halladale

Measuring authority: SEPA-N
First year: 1976
Hydrometric statistics for 1995

	JAN	FEB	MAA	APR	MAY	JuN	JUL	AUG	SEP	OCT	Nov	DEC	Year
Flows Avg.	10.390	11.340	7.446	5.744	3.204	1.594	0.572	0.216	10.510	3.266	7.878	3.329	5.398
$\left(\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}\right)$: Peak	52.54	67.22	56.65	41.29	36.19	18.33	1.01	0.34	88.71	43.41	65.11	12.55	88.71
Runotf (mm)	136	134	97	73	42	20	7	3	133	43	100	44	832
Rainfall (mm)	182	142	110	83	89	33	40	31	226	67	109	86	1178
Monthly and yearly statistics for previous record (Jan 1976 to Dec 1994)													
Mean Avg.	8.596	6.193	6.348	2.905	1.950	1.746	1.940	2.779	4.611	7.246	8.411	7.434	5.011
flows Low	4.478	1.555	2.907	0.624	0.279	0.271	0.215	0.186	0.447	1.351	1.807	3.004	3.326
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \underset{\mathrm{Hagh}}{\mathrm{Hag}}$	13.120	10.940	11.340	6.442	5.434	4.128	5.064	9.192	7.886	16.560	14.730	12.390	6.418
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	98.96	86.24	122.60	69.28	108.00	140.80	129.10	172.00	189.10	169.10	163.20	162.00	189.10
Punotf (mm)	113	74	83	37	26	22	25	36	58	95	107	97	773
Rainfall (mm)	129	76	108	65	58	64	66	83	112	126	130	118	1135
Factors affecting runoff: N Station type: VA										1995 runoff is 108% of previous mean rainfall 104\%			

101002 Medina at Upper Shide

Measuring authority: EA-S
First year: 1965
Hydrometric statistics for 1995

		JAN	FEB	MAR	APR	MAY	JUN	JUL	Aug	SEP	OCT	NOV	DEC	Year
Flows	Avg.	0.875	0.967	0.505	0.271	0.223	0.159	0.164	0.122	0.195	0.164	0.219	0.304	0.344
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$:	Peak	6.45	5.82	3.94	0.57	0.40	0.23	0.23	0.15	0.67	0.32	0.58	2.41	6.45
Runaff (mm)		79	78	45	24	20	14	15	11	17	15	19	27	364
Rainfall (mm)		171	135	62	25	23	11	27	4	148	43	74	88	811

Mean	Avg.	0.460	0.406	0.318	0.262	0.198	0.142	0.126	0.117	0.153	0.237

	Hows	0.460	0.406	0.318	0.262	0.198

Low	0.132	0.159	0.121	0.104	0.094	0.068	
$\left(\mathrm{~m}^{3} \mathrm{~s}^{-1}\right)$	High	1.176	0.795	0.903	0.522	0.383	0.231

Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)
Runoff (mm)
Rainfall (mm)*
-(1968-1994)
Factors affecting runoff: G I
Station type: FL

Grid reference: 40 (SZ) 503874 Leval stn. (m OD): 10.40

Catchment area (sq km): 29.8 Max alt. (m OD): 167

Comment: January 1995 contains estimated daily flows.

201007 Burn Dennet at Burndennet Bridge

1995

Moasuring authority: DOEN
First year: 1975
Hydrometric statistics for 1995

	JAN	FE8	MAR	APA	MAY	JuN	JUL.	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	9.248	8.295	8.599	2.960	1.821	1.256	1.025	0.705	1.020	6.231	4.705	2.654	4.025
(m3 m^{-1}): Peak	71.07	64.39	91.20	8.67	10.59	2.53	7.08	1.88	3.17	105.50	60.99	28.11	105.50
Runoff (mm)	170	138	159	53	34	22	19	13	18	115	84	49	874
Rainfall (mm)	187	165	148	50	67	33	73	21	96	194	118	59	1211

Monthly and yearly statistics for previous record (Jun 1975 to Dec 1994 -incomplete or missing months total 0.1 years)

Mean Avg.	6.379	5.892	5.316	3.691	2.515	2.060	2.062	2.680	3.200	4.916	4.904	6.080	4.136
flows Low	0.418	2.244	2.441	1.687	0.925	0.843	0.832	0.579	0.664	1.571	1.689	3.203	2.634
$\left(m^{3} s^{-1}\right)$ High	9.839	14.320	8.066	6.536	5.024	4.635	3.990	7.213	8.151	9.979	7.351	11.740	6.211
Paak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	99.98	66.69	55.31	66.25	25.51	29.50	50.79	105.20	67.37	110.80	64.52	78.29	110.80
Runoff (mm)	118	99	98	66	46	37	38	49	57	91	87	112	898
Rainfall (mm)	135	85	115	73	66	75	87	96	101	124	108	125	1190
Factors affecting Station type: VA	off: E									1995	ff is 97 102	of pre	us mean

203012 Ballinderry at Ballinderry Bridge

Measuring authority: DOEN
First year: 1970
Hydrometric statistics for 1995

	JAN	FEB	MAR	APR	MAY	JUN	Jut.	AUG	SEP	ост	NOV	DEC	Year
Flows Avg.	18.990	15.570	12.200	3.565	2.621	1.920	1.882	1.148	3.838	14.280	19.930	12.030	8.962
$\left(m^{3} s^{-1}\right)$: Peak	97.82	77.23	65.45	7.15	4.10	2.70	7.33	1.99	8.30	73.95	96.92	72.31	97.82
Runoff (mm)	121	90	78	22	17	12	12	7	24	91	123	77	674
Rainfall (mm)	151	121	113	31	45	22	69	12	80	186	166	69	1065
Monthly and yearly statistics for previous record (Jul 1970 to Dec 1994)													
Mean Avg.	18.380	12.660	11.070	7.492	5.190	3.772	2.942	4.850	5.793	8.699	11.870	14.620	8.766
flows Low	9.339	4.805	5.502	3.515	2.454	1.627	1.518	1.060	1.236	2.113	5.122	4.946	5.251
	24.690	25.040	17.260	14.090	12.740	8.710	7.498	17.640	21.020	17.200	21.860	28.840	11.532
Peak flow ($\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right.$)	183.20	139.90	98.37	112.50	109.20	61.60	127.20	140.10	141.00	194.80	122.90	138.00	194.80
Runoff (mm)	105	74	71	46	33	23	19	31	36	56	73	93	660
$\begin{aligned} & \text { Rainfall (mm)* } \\ & *(1983-1994) \end{aligned}$	127	84	109	80	58	72	72	105	84	107	90	117	1105
Factors affecting runoff: N Station type: VA										1995 runoff is 102% of previous mean rainfall 96\%			

Measuring authority: DOEN
First year: 1971
Hydrometric statistics for 1995

	JaN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows . Avg.	18.930	15.630	14.950	4.416	2.930	2.175	1.812	1.288	2.060	11.280	14.190	7.358	8.049
$\left(m^{3} s^{-1}\right)$: Peak	118.80	74.20	115.40	11.70	10.99	4.81	6.34	2.91	5.44	87.29	105.20	72.92	118.80
Runoff (mm)	165	123	131	37	26	18	16	11	17	99	120	64	828
Rainfall (mm)	174	134	137	39	57	29	71	17	93	198	167	81	1197
Monthly and yearly statistics for previous record (Feb 1971 to Dec 1994)													
Mean Avg.	15.240	11.700	10.750	7.042	4.767	3.642	2.987	4.503	5.623	8.871	11.210	13.520	8.312
flows Low	7.707	3.696	3.776	2.238	1.335	1.015	0.952	0.748	1.366	2.000	4.563	5.088	4.961
($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$) High	23.280	25.940	17.160	14.520	12.360	7.159	6.512	15.310	19.100	16.790	20.770	24.410	10.654
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	152.20	121.90	90.99	120.40	114.10	67.84	83.33	111.00	112.70	134.80	117.20	154.60	154.60
Runoff (mm)	133	93	94	60	42	31	26	39	48	78	95	118	856
Rainfall (mm)* *(1983-1994)	148	98	129	91	68	78	81	110	94	126	109	132	1264
Factors affecting runoff: S PG I Station type: VA										1995 runoff is 97% of previous mean rainfall 95%			

205004 Lagan at Newforge

205005 Ravernet at Ravernet

1995

Measuring authority: DOEN
First year: 1972
Hydrometric statistics for 1995

	JAN	FEB	MAR	APA	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year 1050
Flows Avg.	2.669	2.337	1.805	0.521	0.168	0.153	0.063	0.014	0.058	0.506	2.612	1.796	1.050
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	11.25	7.12	8.73	1.15	0.36	3.16	0.16	0.04	0.38	3.72	8.60	4.71	11.25
Runoff (mm)	103	81	70	19	6	6	2	1	2	19	97	69	477
Rainfall (mm)	119	98	83	33	37	40	67	9	75	114	156	74	905
Monthly and yearly statistics for previous record (Aug 1972 to Dec 1994 -incomplete or missing months total 2.0 years)													
Mean Avg.	2.110	1.561	1.211	0.926	0.515	0.303	0.136	0.355	0.586	1.221	1.296	1.922	1.010
flows Low	0.689	0.502	0.313	0.195	0.054	0.040	0.006	0.008	0.013	0.066	0.260	0.573	0.667
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	4.045	3.653	2.089	2.422	1.780	1.260	0.356	2.103	2.232	4.361	2.994	5.916	1.278
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	15.45	18.89	14.98	19.75	13.82	11.91	2.60	17.52	11.32	24.15	17.04	22.79	24.15
Runoff (mm)	81	55	47	35	20	11	5	14	22	47	48	74	459
Rainfall (mm)	97	61	78	56	64	59	60	82	86	90	80	96	909

Factors affecting runoff: N
Station type: FV

Grid reference: 33 (IJ) 267613 Level stn. (m OD): 31.00
\qquad

THE NATIONAL RIVER FLOW ARCHIVE DATA RETRIEVAL SERVICE

The National River Flow Archive (NRFA) comprises over 32,000 station-years of daily river flows and incorporates data from over 1400 gauging stations throughout the United Kingdom. In addition to gauged flow data, naturalised data (see page 36) have been derived from the records of a small number of gauging stations. Catchment areal rainfall and the highest instantaneous flow, when available, are also archived on a monthly basis.

In order that the contents of the Archive may be readily accessible, a suite of programs has been developed to provide a selection of retrieval options. Descriptions of these options are listed on pages 137 and 138 and can also be found, together with examples of the computer output, in the National River Flow Archive Data Retrieval Service Handbook which is intended for regular users of the Archive and is available free from the address opposite.

All data retrieval programs have been designed to allow flexibility in the presentation of the options, particularly those producing graphical output. Before finalising a data request it is recommended that the Concise Register of Gauging Stations on pages 139 to 145 , be consulted and that, where continuity of record is important, the availability of suitable data sets are checked by referring to the Summary of Archived Data in the Handbook. As an aid to data selection and to the interpretation of hydrological analyses the 1986-90 Hydrometric Register and Statistics (see page 174) and the forthcoming 1991-95 edition are recommended as sources of indispensable reference material.

In response to user requirements the NRFA data retrieval facilities are being continually updated and extended. A wide range of specialist analyses and presentations is now available. Individuals having data requirements not catered for in the standard retrieval suite are invited to discuss their particular needs - see opposite for contact points.

Retrievals are normally available as A4 paper listings, on diskette, or as hydrograph plots. Most data retrieval options can now be provided over the Internet.

Cost of Service

To cover the computing and handling costs, a moderate charge will be made depending on the output options selected. Estimates of these charges may be obtained on request; the right to amend or waive charges is reserved.

Requests for Retrieval Options

Requests for retrieval options should include: the name and address to which output should be
directed, the gauging stations for which data are required together with the period of record of interest and the title of the required options. Where possible, a daytime telephone number should be given.

Requests should be addressed to:

The National Water Archive Office
Institute of Hydrology
WALLINGFORD
Oxfordshire OX10 8BB

Telephone: (01491) 692468
Facsimile: (01491) 692424
Email: nwamail@ioh.ac.uk

The National Water Archive

As of April 1992, the National River Flow Archive was incorporated into the National Water Archive (NWA) - one of NERC's seven Designated Data Centres. These Centres, located at NERC Institute sites, exist to hold data and provide information and advisory services to a wide range of users. An introduction to the NWA's facilities is available on the World Wide Web:

http://www.nwl.ac.uk/~nrfadata/nwa.html

The National River Flow and National Groundwater Level Archives form the kernel of the National Water Archive but a very broad range of hydrological - and related - data sets are being assimilated into the co-ordinated management that the NWA provides. Data holdings range from the catchment scale (e.g. detailed climatological and hydrological data for a network of experimental catchments) to national (flood event data) and international coverage (European data held as part of the 'FRIEND' Project' ${ }^{1}$ of the International Hydrological Programme, the World Floods Archive). Further details of the UK databases of hydrological time series data - and the associated facilities - are given overleaf. The utility of the archived time series data is enhanced by the availability of complementary spatial information (for example, the IH Digital Terrain Model, digitised river network and UK soils hydrology map) and by the manipulative potential provided by modern data handling systems and analytical packages.

Staff at the NWA maintain close contacts with measuring authorities and keep under review developments in the field of network design, instrumentation and information technology. A continuing dialogue with both data suppliers and an active
community of users ensures that the databases and retrieval facilities are reviewed continuously to provide an effective and responsive service across a broad range of applications.

The UK Flood Event Archive

Data describing flood events and associated rainfall have been formally gathered by the IH since 1969, the beginning of the Flood Studies Project (FSP ${ }^{2}$). Also associated with the Flood Event Archive are data collected from a network of Representative Basins. The present Archive holds over 4000 events, the majority of which are fairly simple, short duration rainfall-runoff events of the type used for the FSP. The data most commonly collected are river flow, storm and antecedent rainfall and soil moisture deficit. These components are stored on a relational database allowing flexible access and data association. A variety of analyses have been developed to collate and manipulate the data.

Data are available as lists on hard copy or on floppy disk; they can also be transferred over the Internet.

Peaks-Over-Threshold (POT) Floods Database ${ }^{3}$

This database comprises instantaneous peak flow data from river gauging stations throughout the UK. These peaks have been manually extracted from river records, generally from stage hydrographs, where the threshold was chosen to yield, on average, five peaks a year above the selected flow. There have been three main cycles of data collection and abstraction: first, for the FSP, second, at the Department of the Environment Water Data Unit, beginning 1978 and third, at the IH for a Ministry of Agriculture, Fisheries and Food Commission in 1985-91. Currently the database holds over 87,000 peaks for nearly 1000 gauging stations, with an average length of record of 20 years. Annual maxima have been derived automatically from these data and are held independently on the relational database. Annual maxima are also held for a further 116 stations where records proved unsuitable for POT extraction.

Data are available as lists on hard copy or on floppy disk; they can also be transferred over the Internet.

Experimental Catchments Archive ${ }^{4}$

The data gathered from the nine major groups of the IH's experimental catchments are held in an independent archive within the NWA. The catchments have been highly instrumented and an intensive
recording regime has been employed. Derived catchment data are stored for the main hydrological components of precipitation, evaporation and runoff as either hourly or daily values. Additionally, the component site-specific data used to generate the areal values are also stored, generally at finer time resolutions. Other complementary datasets (such as soil moisture measurements) are available for some of the sites.

It is recommended that potential users of any of these additional datasets contact the NWA office to discuss their requirements.

The European Water Archive

The European Water Archive has been assembled as an integral part of the FRIEND - Flow Regimes from International Experimental and Network Data - research programme ${ }^{5}$. This is an international collaborative study into regional hydrology in Europe and is a recognised contribution to Unesco's Fourth International Hydrology Programme.

The European Water Archive was developed by five regional coordination centres in France, Germany, Norway, Russia and the United Kingdom collecting data from 26 European countries. The central archive is held at the Institute of Hydrology and includes summary information for over 4000 gauging stations, time series of daily mean flow, flood data and key flow statistics. In addition, thematic, soil, climate, land use and catchment boundary information is held on a Geographical Information System.

For further details of the European Water Archive, contact the Regional Flow Regimes Section of the Institute of Hydrology:
Email: friend@ioh.ac.uk

References

1. Gustard, A.G., Roald, L.A., Demuth, S., Lumadjeng, H.S. and Gross, R. (1989). Flow Regimes from Experimental and Network Data. Institute of Hydrology, Wallingford, 2 Vols.
2. Flood Studies Report (1975). Natural Environment Research Council (5 Vols., reprinted 1993).
3. Bayliss, A.C., and Jones, R.C. (1993). Peaks-Over-Threshold Floods Database: Summary Statistics and Seasonality. Institute of Hydrology, Report No. 121.
4. Roberts, A.M. (1989). The Catchment Research Database at the Institute of Hydrology. Institute of Hydrology, Report No. 106.
5. Gustard, A. (Ed.) (1993). Flow Regimes from International Experimental and Network Data (FRIEND). Institute of Hydrology, Wallingford, 3 Vols.

LIST OF SURFACE WATER DATA RETRIEVAL OPTIONS

The standard retrievals have been grouped into Basic, Analytical and Station-based categories.
OPTION TITLE
CODE
NOTES
Basic Time-series retrievals
TDF Table of daily mean gauged (or naturalised) discharges

Includes monthly and annual summary statistics. Flows in cubic metres per second.

TMF Table of monthly mean gauged (or naturalised) discharges

TME Table of monthly extreme flows

TMR Table of catchment monthly rainfall

TRR Table of catchment monthly areal rainfall and runoff

Runoff is normally derived from the monthly mean gauged flow. An additional listing is provided for catchments with naturalised flow records. Includes summary statistics. Rainfall and runoff totals are in millimetres.

YBM Yearbook data tabulation (monthly)

HDF Hydrographs of daily mean flows

HMF Hydrographs of monthly mean flows
Choices of scale, units and overlay grid pattern are available. The period of record maximum, minimum and mean flows may be included.
Choices of scale, units, truncation level and overlay grid pattern are available. The period of record maximum and minimum flows, or the mean flow, may be included. The plots may be based on single or n-day means, or on n-day running mean flows.

Analytical time-series retrievals

YBD Yearbook data tabulation (daily)

FDS Flow duration statistics

THS Table of hydrometric statistics

Station-based retrievals

A4S Gauging station summary sheet

GSR Table of gauging station reference information

River flow and catchment rainfall data for a specified year with basic gauging station and catchment details and flow statistics derived from the historical record.

Tabulation of the 1-99 percentile flows with optional plot of the flow duration curve. The percentiles may be derived from daily flows or n-day averages and the analysis may be restricted to nominated periods within the year, e.g. AprilSeptember only. Choices of scales, grid marking and units are available and the percentiles may be expressed as a percentage of the average flow or of a nominated flow.

Provides a comparison between summary statistics for a selected year, or a group of years, and the corresponding statistics for a nominated period of record (as featured in the Hydrometric Register and Statistics 1986-90).

Includes a daily flow hydrograph (with period of record extreme values) and flow duration curve together with summary statistics relating to river flow, catchment runoff and catchment rainfall. A description of the gauging station and catchment is also provided together with selected catchment characteristics and a concise summary of the archived data.

Tabulation of selected gauging station details and catchment characteristics for nominated gauging stations.

A brief summary of the gauging station; its history and major influences on the flow regime, together with catchment details.

[^9]| Stution number | Alvar and station name | Grld reference | Authority | Area
 (sq kmp | Station number | River and station name | Grid reference | Auth. ority | Area (sal km) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 002001 | Helmsdale al Kilphedir | 29979181 | SEPa-N | 551.4 | 016006 | Dunning Burn at Granco | 30197147 | SEPA-E | 12.1 |
| 002002 | Brora at Bruachrobis | 28929039 | SEPA-N | 434.4 | 016007 | Ruthven Water at Aberutiven | 29757154 | SEPA-E | 49.0 |
| 003001 | - Shin at Lairg | 25819062 | | 494.6 | 016011 | - All Strath a'Ghimne at Auchinner | 26957158 | SEPA-E | |
| 003002 | Carron at Sgodachail | 24908921 | SEPa.N | 241.1 | 017001 | Carron at Headswood | 28328820 | SEPA-E | 122.3 |
| 003003 | Oykel al Easior Turneig | 24039001 | SEPA-N | 330.7 | 017002 | Leven at Leven | 33697006 | SEPA-E | 424.0 |
| ${ }^{0} 033004$ | Cassloy at Roseneal | 24729022 | SEPA-N | 187.5 | 017003 | Eonny Water at Bonnybridgo | 28246804 | SEPA-E | 50.5 |
| 003005 | Shir at Inveran | 25749974 | SEPA-N | 575.0 | 017004 | Ore at Balfour Mains | 33306997 | SEPA-E | 162.0 |
| 004001 | Conon at Moy Bridge | 24828547 | SEPA.N | 961.8 | 017005 | Avon at Polmonthill | 29526797 | SEPA-E | 195.3 |
| 0^{004003} | Alness al Alness | 26549695 | SEPA-N | 201.0 | 017008 | South Queich at Kinross | 31227015 | SEPA-E | 33.7 |
| ${ }^{0} 04004$ | Blackwater at Contin | 24559563 | Sepa-n | 336.7 | 017012 | Fled Bum at Castlecary | 27888780 | SEPA-E | 22.0 |
| 004005 | Meig ar Gienmeannia | 22868528 | SEPA-N | 120.5 | 017016 | Lochty Burn at Whinnyhall | 3220 6985 | SEPA.E | 14.0 |
| 004006 | Bron at Doumucheran | 22058602 | SEPA-N | 116.1 | 017017 | Greens Burn at Killford Bridgo | 31507053 | SEPA-E | 7.9 |
| 005001 | - Bosuly at Erchless | 24268405 | | 849.5 | 018001 | Allan Water at Kinbuck | 27927053 | SEPa-E | 161.0 |
| 005002 | Farrar at Struy | 23908405 | SEPA-N | 311.3 | 018002 | Devon at Glenochil | 28586960 | SEPA-E | 181.0 |
| 005003 | Glass at Kerrow Wood | 23548321 | Sepa-N | 481.8 | 018003 | Teith at Eridge of Teirh | 27257011 | SEPA-E | 518.0 |
| $\bigcirc 05004$ | - Glass ot Fasnakyle | 23158288 | SEPA-N | 277.5 | 018005 | Allan Water at Bridge of Allan | 27866980 | SEPA-E | 210.0 |
| 008001 | - Nesis at Nass Castie Ferm | 26398410 | | 1792.3 | 018007 | Devon at Fossoway Bridge | 30117018 | SEPA-E | 69.5 |
| 008003. | Moriston at Invermoriston | 24168169 | | 391.0 | 018008 | Leny at Arie | 25857096 | SEPA-E | 190.0 |
| 006008. | - Allt Ehioraidh at Invermoriston | 23778168 | | 27.5 | 018010 | Forth at Gargunnock | 27146953 | SEPA-E | 397.0 |
| 006007 | Nesseat Nasi Sida | 28458427 | SEPA-N | 1839.1 | 018011 | Forth at Craigforth | 2775 6955 | SEPA-E | 1036.0 |
| 006008 | Enrick at Mill of Tore | 2450 B300 | SEPA-N | 105.9 | 018012 | Ardoch Bum at Douna Castie | 27297008 | SEPA-E | 48.0 |
| 007001 | Findhorn at Sherectie | 28268337 | SEPA-N | 415.6 | 018013 | Black Devon at Fould Mill | 29146924 | SEPA-E | 87.0 |
| 007002 | Findhorn at Forras | 30188583 | SEPA-N | 791.9 | 018014 | Bamnock Eurm al Bannockbur | 28128908 | SEPA-E | 23.7 |
| 007003 | Lossie at Sheriffmills | 31948626 | SEPA-N | 218.0 | 018016 | Kelty Water at Clashtmore | 24686968 | SEPA-E | 2.8 |
| 007004 | Nairn at Firha! | 2882 B55 | SEPA-N | 313.0 | 018017 | Monachyle Burn at Belquhidder | 24757230 | IH | 7.7 |
| 007005 | Divie at Dunphail | 30058480 | SEPA-N | 165.0 | 018018 | Kirkion Eum at Ealouhidder | 25327219 | | 6.8 |
| 007006 | Lossie at Torwinny | 31358489 | SEPA-N | 20.0 | 018019 | Comer Burn at Comer | 23877042 | SEPAEE | 0.9 |
| 007007 | Biack Burn at Monsughly | 31558584 | SEPA-N | 44.0 | 018020 | Loch Ard Burn at Duchray | 24686987 | SEPA-E | 0.9 |
| 008001 | - Spey al Aberlour | 32788439 | SEPA-N | 2854.7 | 018021 | Loch Ard Burn at Elig | 24696987 | SEPA-E | 1.5 |
| 008002 | Spay at Kirrara | 28818082 | SEPA-N | 1011.7 | 018022 | Forth at Milton | 25037135 | SEPA-E | 44.5 |
| 008003. | Spey al Rutiven Bridga | 27597996 | SEPA-N | 533.8 | 019001 | Almond at Craigiehall | 31656752 | SEPA-E | 369.0 |
| 008004 | Avon at Delnashaugh | 31868352 | SEPA-N | 542.8 | 019002 | Almond at Almond Weir | 30046652 , | SEPA-E | 43.8 |
| 008005 | Spey al Bost of Gariton | 29468191 | SEPA-N | 1267.8 | 019003 | Breich Weter at Breich Weir | 30146639 ' | SEPA-E | 51.8 |
| 008006 | Spay at Boat o Brig | 33188518 | SEPA-N | 2861.2 | 019004 | North Esk al Dalmore Weir | 32526616 | SEPA-E | 81.6 |
| 008007 | Spay at Inverruim | 28877962 | SEPA-N | 400.4 | 019005 | Atmond at Almondell | 30866886 | SEPA-E | 229.0 |
| 008008 | Tromie at Tromie Bridga | 27897995 | SEPA-N | 130.3 | 019006 | Water of Leith at Murrayfield | 32286732 | SEPA-E | 107.0 |
| 008009 | Dulnain al Bainaan Bridgg | 29778247 | SEPA-N | 272.2 | 019007 | Esk at Mussatburgh | 33396723 | SEPA-E | 330.0 |
| 008010 | Spey at Grantown | 30338268 | SEPA-N | 1748.8 | 019008 | South Esk at Prastonholm | 33256623 | SEPA-E | 112.0 |
| 008011 | Livet al Minmore | 32018291 | SEPA-N | 104.0 | 019010 | Braid Burn at Liberron | 32736707 | SEPA-E | 16.2 |
| 0080:3 | Feshie at Feshie Bridge | 28498047 | SEPA-N | 231.0 | 019011 | North Esk at Dalkeith Palace | 33336678 | SEPA-E | 137.0 |
| 008015 | fiddich at Auchindoun | 33558399 | SEPA-N | 44.5 | 019012 | Water of Leith at Colinton | 32126688 | SEPAE | 72.0 |
| 008016 | Conglass Water at Auchriachan | 31758191 | SEPA-N | 40.8 | 019014 | Brox Bum at Newliston | 31146732 | SEPAE | 34.1 |
| 008017 | Burn of Carron at Dailusina | 32378415 | SEPA N | 15.2 | 019017 | Gogar Burn at Turnhouse | 31616733 | SEPa.E | 38.8 |
| 009001 | Deveron st Avochie | 35328464 | SEPA-N | 441.6 | 020001 | Tyne at East Linton | 35916768 | SEPAE | 307.0 |
| 009002 | Deveron st Muiresk | 37058498 | SEPA-N | 954.9 | 020002 | West Peffer Burn at Luff | 34896811 | SEPaE | 26.2 |
| 009003 | lsab at Grange | 34948506 | SEPA-N | 176.1 | 020003 | Tyne at Spilmerstord | 34566689 | SEPA.E | 161.0 |
| 009004 | Bogia at Redcraig | 35198373 | SEPA-N | 179.0 | 020004 | East Peffer Burn at Lochhouses | 36106824 | SEpat | 31.1 |
| 009005 | All: Doveron at Cabrach | 33788291 | SEPA N | 67.0 | 020005 | Birms Water al Soltoun Hall | 34576688 | SEPA-E | 93.0 |
| 009008 | Desktord Burn at Culien | 35048667 | SEPA ${ }^{\text {N }}$ | 46.5 | 020006 | Biel Water at Betron House | 36456768 | SEPAE | 51.8 |
| 009007 | Forgue Burn at Inverkeithry | 36278469 | SEPa ${ }^{\text {N }}$ | 88.3 | 020007 | Gifford Water at Lennoxiove | 35116717 | SEPA-E | 64.0 |
| 010002 | Ugie at tiverugie | 41018485 | SEPA N | 325.0 | 020009 | Brox Burn at Aroxmouth | 36976776 | SEPAE | 19.7 |
| 010003 | Ythan at Ellon | 39478303 | SEPA N | 523.0 | 021001 | - Fnid Water at Fruid | 30896205 | | 23.7 |
| 011001 | Don at Parkhill | 38878141 | SEPA N | 1273.0 | 021002 | Whiteadder Watar at Hungry Snout | 36636633 | | 45.6 |
| 011002 | Oon at Haughton | 37568201 | SEPA-N | 787.0 | 021003 | Tweed at Peables | 32576400 | SEPA-E | 694.0 |
| 011003 011004 | Oon at Aridge of Allord | 35668170 37218260 | SEPA A N SPPA | 499.0 | 0221004 | Watch Warer at Watch Water Reservoir | ${ }^{36646568}$ | Spat | 10.7 |
| 011004 | Urie at Pitcople | 37218260 | SEPA N | 198.0 | 021005 | Tweed at Lyme Ford | 32066397 | SEPA-E | 373.0 |
| 011005. | Don or Mill of Newa | 33718121 | SEPA.N | 187.0 | 021006 | Tweed at Boleside | 34986334 | SEPA-E | 15000 |
| 012001 | Dee al Wocdend | 36357956 | SEPA.N | 1370.0 | 021007 | Etrrick Water at Lindean | 34866315 | SEPA.E | 499.0 |
| 012002 | Dees al Pork | 37987983 | SEPA.N | 1844.0 | ${ }^{211008}$ | Teviot at Ormiston Mill | 37026280 | SEPA-E | 1110.0 |
| 012003 | Dee at Poihallick | 33447965 | SEPA.N | 890.0 | 021009 | Tweed at Norham | 38964477 | SEPAEE | 4390.0 |
| 012004 | Girnock Burn at Littemill | 33247956 | SEPA-N | 30.3 | 021010 | Tweed at Dryturgh | 35886320 | SEPA-E | 2080.0 |
| 012005 | Muick at Inverrmuick | 333647947 | SEPA. N | 110.0 | 021011 | Yarrow Water at Philiphuugh | 34396277 | SEPA.E | 231.0 |
| 012006 | Gairn at Invergairn | 33537971 | SEPA.N | 150.0 | 021012 | Teviot al Hawick | 35226159 | SEPA-E | 323.0 |
| 012007 | Defe al Mar Lodge | 30987895 | SEPA.N | 289.0 | 021013 | Gela Water at Galashiels | 34796374 | SEPA-E | 207.0 |
| 012008 | Feugh at Hough Head | 36877928 | SEPA. N | 229.0 | 021014 | Tweed at Kingledores | 31096285 | SEPA.E | 139.0 |
| 012009 | Weier of Dye at Charr | 36247834 | SEPA-N | 41.7 | 021015 | Leader Water at Eartston | 35656388 | SEPA-E | 239.0 |
| 013001 | Bervie at Invertervia | 38267733 | SEPA-N | 123.0 | 021016 | Eye Water at Eyemouth Mill | 39426835 | SEPA-E | 119.0 |
| 013002. | Luther Water at Luther Bridga | 36607668 | SEPA-E | 138.0 | ${ }_{0} 221017$ | Etrick Water at Brockhoperig | 32346132 | SEPA-E | 37.5 |
| 013003. | Soulh Esk at Stannochy Bridga | 35837593 | SEPA-E | 487.0 | 021018 | Lyne Water at lyne Station | 32096401 | SEPA-E | 175.0 |
| 013004 | Prosen Water al Prosen Bridge | 33967586 | SEPA.E | 1040 | 021019 | Manor Water at Cedermuir | 32176369 | SEPA-E | 81.6 |
| 013005 | Lunen Weter at Kirkton Mill | 36557494 | SEPA.E | 124.0 | 021020 | Yarrow Water at Gordon Arms | 33096247 | SEPA-E | 155.0 |
| $0: 3007$ | Nornh Esk at Logie Mill | 36997640 | SEPA-E | 730.0 | 021021 | Tweed at Sprouston | 37526354 | SEPA-E | 3330.0 |
| 013008 | South Esk at Errechin | 36007596 | SEPA-E | 490.0 | 021022 | Whitagdaer Water at Hutton Casille | 38816550 | SEPA-E | 503.0 |
| 013009 | West Wester at Dalhousia Bridga | 35927680 | SEPA-E | 127.2 | 021023 | Leet Water at Coldstrasm | 38396396 | SEPA-E | 113.0 |
| 013010 | Brothock Water at Arbrasih | 36407419 | SEPA-E | 50.0 | 021024 | Jed Water at Jedturgh | 36556214 | SEPA-E | 139.0 |
| 013012 | South Exk at Gella Bridga | 33727653 | SEPA-E | 130.0 | 021025 | Ale Water at Ancrum | 36346244 | SEPA.E | 174.0 |
| 013017 | Colliston Burn al Colliston | 36097466 | SEPA-E | 8.4 | 021026 | Tims Water at Desphope | 32786138 | SEPA-E | 31.0 |
| 014001 | Eden at Kemback | 34157158 | SEPA-E | 3077.4 | 021027 | Blackadder Water at Mouth Bridge | 38266530 | SEPA-E | 159.0 |
| 014002 | Dighty Water at Balrossio Mill | 34777324 | SEPA-E | 126.9 | 021030 | Megget Water at Henderiand | 32316232 | SEPA-E | 56.2 |
| 014005 | Morray Weter al St Micheals | 34417224 | SEPA-E | 52.0 | 021031 | Till at Etal | 39276396 | EA-NE | 648.0 |
| 014008. | Morikie Burn at Penbricde | 35747361 | SEPA-E | 16.0 | 021032 | Glen at Kirknewton | 39196310 | EA-NE | 198.9 |
| 014007 | Craigmill Burn at Craigmill | 35757360 | SEPA-E | 29.0 | 021034 | Yarrow Water at Craig Douglas | 32886244 | SEPA-E | 116.0 |
| 014009 | Eden at Strathriglo | 32267102 | SEPA-E | 26.0 | 022001 | Coquet at Morwick | 42346044 | EA-NE | 569.8 |
| $\begin{aligned} & 014010 \\ & 015001 \end{aligned}$ | - Motray Water al Kilmany | 33877217 31877647 | SEPA-E | 33.0 70.7 | ${ }_{022003}^{02020}$. | Coquet at Byate | 38706083 38866077 | EA-NE | 59.5 21.4 |
| ${ }_{0}^{015002}$. | - | 31877647 32307605 | | 70.7 15.4 | ${ }^{022003}$ | Usway Burn at Shilmo Aln at Howkhill | 38866077 42116129 | EA-NE | 21.4 2050 |
| 015003 | Tay at Caputh | 30827395 | SEPA-E | 3211.0 | 022006 | Blyth at Harford Bridge | 42435800 | EA-NE | 289.4 |
| 015004 . | Inyion al Loch of Lintrathen | 32807559 3275 | | 24.7 | ${ }_{0}^{222007}$ | Wansbeck at Mitford | 41755858 | EA-NE | 287.3 |
| $015005{ }^{\text {. }}$ | Melgan al Loch of Lintrathen | 32757558 | | 40.9 | 022009 | Alwin at Clennell | 39256063 | EA-NE | 27.7 |
| 015008 | Tay at Eallathie | 31477367 | SEPA-E | 4587.1 | 022009 | Coquet at Rotheury | 40676016 | EA-NE | 346.0 |
| 015007 | Tay at Pithacrese | 29247534 | SEPA-E | 1149.4 | 023001 | Tyne at Bywell | 40385617 | EA-NE | 2175.8 |
| 015008 | Dean Water at Cookstion | 33407479 | SEPA-E | 177.1 | 023002 | Derwent at Eddys Bridge | 40415508 | EANE | 118.0 |
| 015010 | leata al Wester Cordean | 32957466 | SEPA-E | 386.5 | 023003 | North Tyne at Reavertill | 39065732 | EA-NE | 1007.5 |
| 015011 015012 | Lyon at Contrie Bridge Tummel at Patlochry | 27887486 29477574 | SEPA-E | 391.1 16700 | 023004 023005 | South Yyne at Havdon Eridge | | EA-NE | 751.1 |
| 015012 015013 | Tummel at Pitlochry | 29477574 30677258 | SEPA-E | 1670.0 174.8 | 023005 023006 | North Tyne at Tarset South Tyne at Featherstone | 37765861 36725611 | EA-NE | 284.9 321.9 |
| 015014 | Ardile at Kindrogan | 30567631 | SEPA-E | 103.0 | 023007 | Derwent at Rowlonds Gill | 36725611 41685891 | EA-NE | 321.9 |
| 015015 | Almond at Newton Bridge | 28887316 | SEPA-E | 84.0 | 023008 | Rede at Rede Bridge | 38685832 | EA-NE | 343.8 |
| 015016 | Tay at Kanmora | 27827467 | SEPA-E | 600.9 | 023009 | South Tyne at Alston | 37165465 | EA-NE | 118.5 |
| 015017 | Braon at Ballinloan | 29797406 | SEPA-E | 197.0 | 023010 | Tarsect Bum at Greenhough | 37895879 | EA-NE | 96.0 |
| 015018. | Lyon at Moar | 25347448 | | 161.4 | 023011 | Kielder Buma at Kielder | 36445946 | EA-NE | 58.8 |
| 015021 | Lunan Burn at Mill Bank | 31827400 | SEPA-E | 94.0 | 023012 | East Allen at Wide Eals | 38025583 | EA-NE | 88.0 |
| 015023 | Braen at Herritago | 30147422 | SEPA-E | 210.0 | 023013 | West Alten at Hindley Wras | 37915583 | EA-NE | 75.1 |
| 015024 015025 | Dochart at Killin | 25677320 31747472 | SEPA E E SEPA-E | 239.0 4320 | ${ }^{023014}$ | Norrth Tyne at Kielder temporary | 36315931 | EA-NE | 27.0 |
| 015025 015027 | Eriche at Craighall Garry Aurn at Loakmill | 31747472 30757339 | SEPA-E | 432.0 20.0 | 023015 023016 | North Tyne at Barrasford Ouse Burn at Crag holl | 39245721 4254574 | $\xrightarrow[\text { EA-NE }]{\text { NEW }}$ | 1043.8 55.0 |
| 015028 | Ordie Butn at Luncarry | 3090 30512 | SEPA-E | 54.0 | ${ }_{0}^{023017}$ | Ouse Burn at Crag hail | 42545674
 2495585 | EA-NE | 55.0 61.9 |
| 015029 015030 | Alyth Burn at Pitcrocknie | 32577485 3293745 | SEPA-E | 33.0 | 023019 | Ouseburn at Woolsingion | 41965700 | EA-NE | 9.0 |
| 015030 | Doan Water at Dasan Bridge | 32937458 | SEPA-E | 230.0 | 023022 | Norrh Tyne at Uglydub | 37125875 | EA-NE | 241.5 |
| 015032 015034 | Ordie Bum at Jackstione | 30707337 29017837 | $\underset{\text { SEPA-E }}{\text { STPA-E }}$ | 20.0 7450 | 023023 024001 | Tyme at Riding Mill | 40325617 42845376 | EA.NE | 2174.5 6578 |
| ${ }_{0} 015035$ | Garry at Kilisicrankie | 26617588 | SEPA-E | 745.0 647.0 | ${ }_{024002}^{02401}$ | Wear at Sunderland Bridge | 42845376 42155306 | EA-NE | 657.8 93.0 |
| ${ }^{1515038}$ | Turmmel at Eridga of Gaur | 24977570 | SEPA-E | 247.0 | ${ }^{024003}$ | Wear ar Stanhope | 39845391 | EA-NE | 171.9 |
| 015039 015041 | Till st Marble Lodge | 28927717 | SEPA-E | 165.0 | 024004 | Bedbum Beck st Bedburn | 41185322 | EA-NE | 74.9 |
| 015041 | Lyon ar Camusurachan | 26207477 | SEPA-E | 237.0 | 024005 | Browney at Burn Hall | 42595387 | EA-NE | 178.5 |
| ${ }_{016001}^{01602}$ | Earn at Kinketil Pridgs | 29337167 | SEPA-E | 590.5 | 024006 | Rooktope Burn at Eastgate | 39525390 | EA-NE | 36.5 |
| 016002 016003 | Earn at Aberuchill ${ }^{\text {Each }}$ | 27547216 | SEPA-E | +7695 | ${ }_{0}^{224007}$ | Browney at Lanchester | 41655462 | EA-NE | 44.6 |
| 016004 | Earn ol forteviol Bridgs | 30437184 | SEPA-E | 782.2 | -024009 | Wear at Chester le Streat | 42835512 | EA-NE | 1008.3 |

Station number	River and station name	Grid refarence	Authority	Area (sq q km)	Station number	River and station name	Grid reference	Authority	Area (sq cm)
024011	Wear at Burnhope Reservoir	38565395	EA-NE	20.5	028016 -	Hyton at Serrlby Park	46413897	EA-M	231.0
025001	Teas at Broken Scar	42595137	EA-NE	818.4	028017 •	Devon at Coiham	47873476	EA-M	284.0
025002	Tees at Dent Bank	39325260	EA-NE	217.3	028018	Dove at Marston on Dove	42353288	EA-M	883.2
025003	Trout Beck at Moor House	37595336	EA-NE	11.4	028019	Trent at Drakelow Park	42393204	EAM	3072.0
025004	Skerne al South Park	42845129	EA-NE	250.1	028020	Churnet at Rocester	41033389	EA-M	236.0
025005	Leven at Leven Bridga	44455122	EA-NE	196.3	028021	Derwent at Draycott	44433327	EAM	1175.0
025006	Greta at Rutherford Bridge	40345122	EA-NE	86.1	028022	Trent at North Muskham	48013601	EA-M	8231.0
025007	Clow Beck at Croft	42825101	EA-NE	78.2	028023	Wye at Ashford	41823696	EA-M	154.0
025008	Tees at Barmard Castle	40475166	EA-NE	509.2	028024	Wreake at Syston Mill	46153124	EA-M	413.8
025009	Tees at Low Mcor	43645105	EA-NE	1264.0	028025	Sence at Ratcliffe Culey	43212996	EAM	169.4
025010	Baydale Beck at Mowden Bridge	42605156	EA-NE	31.1	028026	Anker at Polesworth	42633034	EAM	368.0
025011	Langdon Back at Langdon	38525309	EA-NE	13.0	028027	Erowash at Sandiacre	44823364	EA-M	182.2
025012	Harwood Beck at Harwood	38495309	EA-NE	25.1	028029	Kingston Brook at Kingston Hall	45033277	EAM	57.0
025013	Billingham Beck at Thorpe Thewles	44085237	EA-NE	61.4	028030	Black Brook at Onebarrow	44663171	EAMM	8.4
025014	Mordon Stell at Mordon Sctiool	43235274	EA-NE	2.5	028031	Manifold at llam	41403507	EA-M	148.5
025015	Woodham Burn ar South Farm	42855263	EA-NE	29.1	028032	Meden at Church Warsop	45583680	EA-M	62.8
025018	Tees at Middiloton in Teessdale	39505250	EA-NE	242.1	028033	Dove at Hollinsclough	40633668	EA-M	B.
025019	Leven at Easby	45855087	EA.NE	14.8	028035	Leen at Triumph Road Notringham	45493392	EAM	111.0
025020	Skerne at Preston le Skerne	42925238	EA-NE	147.0	028036	Poulter at Twhford Bridge	47003752	EA-M	128.2
025021	Skeme at Bradbury	43185285	EA-NE	70.1	028038	Marifold at Huline End	41063595	EA-M	\%
025022	Balder at Ealderhead Ressarvoir	39315182	EA-NE	20.4	028039	Rea at Calthorne Park	40712847	EAM	74.0
028001	West Beck at Wansford Bridge	50644560	Yw	192.0	028040	Trent at Stoke on Trent	38923467	EA-M	53.2
026002 :	Hull at Hemphoime Lock	50804498	EA-NE	378.1	02804	Hamps at Watertiouses	40823502	EA.M	35.1
026003	Foston Beck at Foston Mill	50934548	EA-NE	57.2	028043	Derwent at Chatsworth	42613683	EAM	335.0
026004	Gypsay Race al Bridington	51654675	EA-NE	253.8	028044	Poulter at Cuckney	45703713	EA-M	32.2
026005	Gypsey Race at Boyntom	51374877	EA-NE	240.0	028045	Maden/Maun at Bothamsal//Haughton	46813732	EA-M	262.6
026006	Elmswell Beck at Lititia Driffield	50094575	EA-NE	136.0	028046	Dove at lzaak Walton	41463509	EAM	83.0
026007	Catchwater at Withernwick	51714403	EA-NE	15.5	028047	Ofdcotes Dyke at Blyth	46153876	EAM	85.2
026008	Mires Beck at North Cave	48904316	EA-NE	41.9	028048	Amber at Wingfield Park	43763520	EA-M	139.0
026009	West Beck at Snakaholma Lock	50664555	EA-NE		${ }^{228049}$	Ryton at Worksop	45753794	EA-M	77.0
026010	Drififield Canal at Snakeholme Lock	50664555	EA-NE		028050	Torne at Auckiey	46464012	EAM	135.5
027001	Nidd at Hunsingore Weir	44284530	EA-NE	484.3	028052	Sow at Graat Bridgford	38833270	EAM	163.0
027002	Wharte at Fint Mill Weir	44224473	EA-NE	758.9	028053	Penk at Penkridge	39233144	EAM	272.0
027003	Aire at Beal Weir	45344255	EA-NE	1932.1	028054	Sences at Blaby	45662985	EAM	133.0
027004	Calder at Newlands	43654220	EA-NE	899.0	028055	Ecclesbourne at Duffield	43203447	EA-M	0.4
027006	Don at Hadields Weir	43903910	EA-NE	373.0	028056	Rothley Brook at Rothiey	45803121	EA-M	94.0
027007	Ure at Westwick Lock	43564671	EA-NE	914.6	028058	Henmors Brook at Ashbourna	41763463	EAM	42.0
027009	Swale at Leckby Grange	44154748	EA-NE	1345.6	028059	Maun at Mansfield	45483623	EA-M	${ }^{28.8}$
027009	Ouse at Skelton	45684554	EA-NE	3315.0	028060	Dover Beck at Lowdham	46533479	EAMM	69.0
027010	- Hodge Beck at Bransdala Weir	46274944	EA-NE	18.9	028061	Churnet at Bastord Bridge	39833520	EAMM	139.0
027012	Hebden Water at High Greenwood	39734309	EA-NE	36.0	028066	Cole at Coleshill	41832874	EA-M	130.0
027013	Ewden Beck at More Hall Reservoir	42893977	EA-NE	26.4	028067	Derwent at Church Wine	44383316	EAMM	1177.5
027014	Rye at Litte Habton	47434771	EA-NE	679.0	028070	Burbage Brook at Burbage	42593804	EA-M	9.1
027015	Derwent at Stamford Bridge	47144557	EA-NE	1634.3	028072	Greet at Southwell	47113541	EA-M	46.2
027018	Rytum at Ryburn Reservoir	40254187	EA-NE	10.7	028073	Ashop at Ashop diversion	41713896	EA.M	42.0
027019	Booth Dean Clough at Booth Wood Mill	40334166	EA-NE	15.9	028074	Soar at Kegworth	44923263	EA.M	1292.0
027021	Don at Doncaster	45694040	EA-NE	1256.2	028075	Derwent at Slippery Stones	41693951	EA-M	17.0
027022	Don at Rotherham Weir	44273928	EA-NE	826.0	028079	Meace Brook at Shallowtord	38743291	EA-M	86.3
027023	Dearne at Barnslay Weir	43504073	EA-NE	118.9	028080	Tame at Lea Marston Lakes	42072937	EAM	799.0
027024	Swale at Richmond	41465006	EA-NE	${ }^{381.0}$	028081	Tame at Bescot	40122958	EA-M	169.0
027025	Rother at Woodhouse Mill	44323857	EA-NE	352.2	028082	Soor at Litlefthorpe	45422973	EA-M	183.9
027026	Rother at Whitington	43943744	EA-NE	165.0	028083	Trent at Darlaston	3885 435535 4358	${ }_{\text {EA }}^{\text {EA-M }}$	195.2
${ }_{0}^{027027}$		41124481	EA-NE EA.NE		$\begin{aligned} & 028085 \\ & 028086 \end{aligned}$	Derwent at St. Marys Brid Sence al South Wigston	$\begin{aligned} & 43553368 \\ & 45882977 \end{aligned}$	${ }_{\text {EA }}^{\text {EA-M }}$ -	1054.0 113.0
027028 027029	Airs at Armlay Calder at Elland	$\begin{aligned} & 42814340 \\ & 41244219 \end{aligned}$	EA-NE EA-NE	691.5 341.9	${ }_{0}^{0280869}$	Sence al South Wigston Ryton at Byrth	45882977 46313871	$\underset{\text { EA M M }}{\text { E }}$	113.0 231.0
027030	Dearne at Adwick	44774020	EA-NE	310.8	028093	Soar at Plilings Lock	45653182	EA-M	1108.4
027031	Colne at Colne Bridge	41744199	EA-NE	245.0	028095	Tame at Hopwas Bridge	41823052	EA-M	1421.7
027032	Hebden Beck at Hebden	40254643	EA-NE	22.2	028101	Tame at Sheepwash	39742918	EA-M	27.9
027033	Sea Cut at Scarborough	50284908	EA-NE	33.2	028102	Blythe at Whitacre	42122911	EA-M	194.3
027034	Ure at Kilgram Bridge	41904860	EA-NE	510.2	029001	Waithe Back at Brigsley	52534016	EA-A	108.3
027035	Airs at Kildwick Aridga	40134457	EA-NE	282.3	029002	Great Eau at Clayhtorpe Mill	54163793	EA-A	77.4
027036.	- Derwent at Malton	47894715	EA.NE	;421.0	029003	Lud al Louth	53373879	EA.A	55.2
027038	Costa Beck at Gatehouses	47744836	EA-NE	7.8	029004	Ancholme at Bishopbridge	50323911	EA-A	54.7
027040	Doa Lee at Stavelay	44433746	EA-NE	67.9	029005	Rase at Bishopbridge	50323912	EA-A	66.6
027041	Derwent at Buttercrambe	47314587	EA-NE	586.0	029009	Anchotme at Toft Newton	50333877	EA-A	27.2
027042	Dove at Kirkby Mills	47054855	EA-NE	59.2	030001	Witham at Claypole Mill	48423480	EA-A	297.9
027043	Wherfe at Addingham	40924494	EA.NE	427.0	030002	Barrings Eau at Langworth Bridge	50663766	EA-A	210.9
027044	Blackfoss Beck at Sananils Bridga	47254475	EA-NE	47.0	030003 030004	Bain at Fulsby Lock	52413611 54023676	$\underset{\text { EA-A }}{\text { EA }}$	197.1
027047	Snsizeholme Beck at Low Houses	38334883	EA-NE	10.2	${ }^{030004}$	Parney Lymn at Parney Mill	54023676	EA-A	
027048	Derwent at West Ayton	49894850	EA-NE	127.0	030005	Withem al Saltersford total	49273335	EA-A	126.1
027049	Aye at Ness	46964791	EA-NE	238.7	030006	Slea at Leasingham Mill	50883485	EA-A	48.4
027050	Esk at Slieights	48655081	EA-NE	308.0	030011	Bain at Goukeby Bridge	52463795	EA-A	62.5
027051	Crimpla at Burn Bridge	42844519	EA-NE	8.1	030012	Stainfield Beck at Stainfield	51273739	EA-A	37.4
027052	Whitting at Sheepbridge	43763747	EA-NE	50.2	030013	Heighington Beck at Heighington	50423696	EA-A	21.2
027053	Nidd at Birstwith	42304603	EA-NE	217.6	030014	Pointon Lode at Pointon	51283313	EA-A	11.9
027054	Hodge Beck at Cherry Form	46524902	EA-NE	37.7	030015	Cringla Brook at Stoke Rochford	49253297	EA-A	50.5
027055	Hye at Broadway Foot	45604883	EA-NE	131.7	030017	Withom at Colsterworth	49293246 48532941	EA-A	51.3
027056	Pickering Beck at Ings Bridge	47914819	EA-NE	68.6	031001	Eye Brook at Eye Brook Reservoir			
027057	Seven at Normanby	47364821	EA-NE	127.6	${ }^{031002}$	Gion at Katas Er and King St Br		EAPA	341.9 7174
${ }_{0}^{2727058}$	Hiccal at Crook House Farm	46614810	EA-NE	57.6	031004	Weiliand at Tallington	50953078 50383097	EAAA	717.4 150.0
027059	Laver at Ripon	430:4710	EA-NE	87.5	031006	Gwash at Eelmasthorpe	${ }^{5038} 3097$	EA.A	150.0 411.6
027060	Kyle at Newton On Ouse	45094602	EA-NE	167.6	031007			EAAA	41.6
027061	Coine at Longroyd Bridge	41364161	EA-NE	72.3	031010 031012	Chater at Fosiers Bridge	49613030 50163179	EA-A	68.9 24.9
027062	Niodd at Skip Bridge	44824561	EA-NE	516.0	031012	Tham at Lirite Bytham	50163179 49573089	EA-A	24.9
027064	Went at Walden Stubbs	45514163	EA-NE	83.7	031016	North Brook at Empingham		EA-A	
027065 027066	Holme at Queens Mill	41424157	$\underset{\text { EA-NE }}{\text { EA }}$	97.4 42.8	031021 031023	Welland at Astiey West Glon ar Easton Wood	48192915 4965358	EA-A	250.7 4.4
027066 027067	Blackburn Prook at Astlowes Sheat et Highfeild Road	43933914 43573863	${ }_{\text {EA-NE }}^{\text {EA-NE }}$	42.8 49.1	0	Wwash South Arm at Manton	49753051	EAA A	4.5
027069	Ryburn at Rippondern	40354188	EA-NE	33.0	031026	Eglaton Prook at Egleton	48783073	EA-A	2.5
027069	Wiske at Kirty Wiske	43754844	EA-NE	215.5	031028	Gwash at Church Bridga	49513082	EA-A	76.5
027070	Eller Beck at Skipton	39844502	EA-NE	35.3	032001	Nene at Orion	51682972	EA-A	634.3
027071	Swale at Crakeniul	44254734	EA-NE	363.0	032002	Willow Brook at fotheringhay	50672933	EA-A	${ }_{74.6} 9$
027072	Worth at Keighley	40644408	EA-NE	71.7	032003	Hatpers Brook at Old Mill Bridge	49832799	EA-A	74.3
027073	Brompton Beck at Snainton Ings	49364794	EA-NE	12.9	0303204	Ise Brook at Harrowdon Old Mill	48982715 47215929	${ }_{\text {EA }}^{\text {EA-A }}$	194.0 223.0
027074	Spen Beck at Northorpa	42254210	EA-NE	46.3	032006	Nene/Kisisingtury at Upton	47212592	EA-A	223.0
027075.	Bedale Beck at Leeming	43064902	EA-NE	${ }^{160.3}$	032007	Nene Brampton at St Andrews	47472617	EA-A	232.8
027076	Bielloy Beck at Thernton Lock	47604444	EA-NE	103.1	032008	Nene/Kisslingbury at Dodford	46272607	EA-A	107.0 7.0
027077	Bradford Beck at Shipley	41514375	EA-NE	58.0	032029	Fiore at Experimenial Catchment	46552504	EA-A	7.0
027080	Aire at Fleet Weir	43814295	EA-NE	865.0	032031	Wootton Brook at Wootion Park	47262577	EA-A	73.8
027081	Oulton Beck at Farrer Lane	4365428)	EA-NE	25.1	033001.	- Beafford Ouse at Brownshill Staunch	53692727	EA-A	3030.0
027082	Cundall Beck at Bat Bridge	44194724	EA-NE		033002	Bedford Ouse at Bedford	50552495	EA-A	1480.0
027083	Foss at Huntington	46124543	EA-NE		033003	Cam at Botisham	55082657	EA-A	803.0
027084	Eastburn Beck at Crosshills	40214452	EA-NE	43.3	033004	Lark at Isteham	56482760	EA-A	466.2
027085	- Cod Beck at Dalton Bridge	44224766	EA-NE	209.3	033005	Bedford Ouse at Thornborough Mill	47362353	EA-A	388.5 274.5
027086	Skell at Alma Weir	43164709	EA-NE		033008	Wissey at Northwold	57712965	EA-A	274.5
028001 ,	Derwent at Yorkshire Bridge	41983851	EA.M	126.0	033007	Nar at Marham	57233119 58602832	EA-A	153.3 69990
028002 .	Blithe at Hamstall Ridwara	41093192	EA-M	163.0	033008	Litit Ouse at Thetford No1 Staunch	$\begin{array}{r}5860 \\ 49512852 \\ \hline 1565\end{array}$	EA-A	699.0 1320.0
028003	Tame at Water Orion	41692915	EAMM	408.0	033009	Bediord Ouse at Harrold Mill	${ }_{5892}^{49512561}$	EA-A	1320.0 128.7
028004 028005	Tame at Lea Marston	42062935 41733105	EA-M	795.0	033011 033012	Kitie Ouse at County Bridga Euston	51552631	EA-A	
${ }^{0288005}{ }^{028006}{ }^{\text {. }}$	Tame at Elford	41733105 3994331	${ }_{\text {EA-M }}^{\text {EA-M }}$	1475.0 325.0	-333013	Sapiston at Rectory Bridge	58962791	EA-A	205.9
028007	Trentat Sharcliow	44483299	EA.M	4400.0	033014	Lark at Temple	57582730	EA-A	272.0
028008	Dove at Rocester Weir	41123397	EA-M	399.0	033015	Cuzel at Willen	48922408	EA-A	277.1
028009	Trent at Colwick	46203399	EA-M	7486.0	033016	Com at Jesus Lo	54502593	EA-A	761.5
028010	- Derwent at Longbridga Weir/St.Mary's Bridge	43563363	EA-M	1054.0	033018	Tove at Cappenham Bridga	47142488	EA-A	138.1
028011	Derwent at Mailock Bath	42963586	EA-M	690.0	033019	Thet at Melford Bridge	58802830	EA-A	316.0
028012'	Trent at Yoxall	41313177	EA-M	1229.0	033020	Alcontury Brook at Brampton	52082717 54152523	EA.A	201.5 303.0
028014	Sow at Milford	39753215	EA-M	591.0	033021	Rhee at Burnt Mill	54152523 51532509	EA.A	${ }_{54.3}$
028015	Idie at Mattersey	46903895				Ivel at Blunharm			

Station number	Rlver and stetion name	Grid reference	Authority	Araa (8 q km)	Station number	River and station name	Grid reference	Authority	Aral (8 s km)
033023	Lea Brook at Bock Brdga	56622733	EA-A	101.8	$038006{ }^{\text {. }}$	Ribe at Herts Training School	53352158	EA-T	148.1
033024	Cam at Demtord	54662506	EA-A	198.0	038007	Canons brook at Elizabeth Way	54312104	EA-t	21.4
033025	Babingly at Wast Newton Mall	56363256	EA-A	39.6	038011	Mirriam at Fuling Mill	52252169	EA-T	98.7
033026	Beatiord Ouse al Offord	52162669	EA-A	2570.0	038012	Stoverago Brook at Bragbury Park	52742211	EA-T	36.0
${ }^{033027}$	frees at Wimpole	53332485	EA-A	119.1	038013	Upper Lee at Luton Hoo	51182185	EA-T	70.7
${ }^{033028}$	Fit at Shettord	51432393	EA-A	119.6	038014	Sutmon Brook at Edmonton	53431937	EA-T	20.5
033029	Stringzide al White Bridge	57163006	EA-A	98.8	038015	Intercepting Drain st Enfield	53551932	EA.T	7.4
${ }^{033030}$	Clipetione Brook al Clipstono	49332255	EA-A	40.2	038016	Stensteso Springs at Mountificher	55002246	EA-t	20.5
033031	Broughton Brook at Broughton	48892408	EA-A	66.6	038017	Merram at Whiwell	51842212	EA-T	39.1
033032	Hascham at heocham	56853375	EA-A	59.0	038018	Upper Lee at Weter Mal	52992099	EA-T	150.0
033033	Mir at Arosey	51902379	EA-A	108.0	038020	Cobbina Brook al Sowerdzone Rosa	53871999	EA-T	38.4
033034	Little Ouse al Abbey Heath	58512844	EA-A	699.3	038021	Turkey Brook al Albany Park	53591985	EA-T	42.2
033035	Ey Ouse at Denver Complax	55883010	EA-A	3430.0	038022	Pymmes Brook at Edmontion Siver Stroen	53401925	EA-T	42.6
033037	Beditord Ouse at Newpon Pegrall	48772443	EA-A	800.0	038024	Smad fiver Leen at Ordinance Rood	53701988	EA-T	41.5
033039	Bediord Ouse at Roxton	51602535	EA-A	1660.0	038026	Pincer Brook al Stheoring Holl	54952126	EA-T	54.6
033040	Rheee al Azhwell	52672401	EA-A	1.0	038027	Stort at Geen Fabs	53932093	EA-T	280.2
033044	Tret al Ericophem	59572855	EA-A	277.8	038028	Stansted Erook at Gypay Lone	55062241	EA-T	25.9
033045	Witule at Owidenhem	50272878	EA-A	28.3	038029	Ouin at Griggs Eridge	53922248	EA-T	50.4
033046	That at Aod Bridgo	59962923	EA-A	145.3	038030	Beose at Harthom	53252131	EA-T	175.1
${ }^{033048}$	Laring Arook at Stonebridge	59282907	ea-A	21.4	038031	Loe ar flye Bridga	53352098	EA-T	758.3
${ }_{0} 33049$.	Stantord Water at Puckenham Totis	58342953	EA-A	43.5	-38032	Leas at Los Bridgo	53521872	EA-T	
033050.	Snail at fordhem	$563 \% 2703$.	EA-A	60.6	039001	Themes at Kingsion	51771698	EA-T.	9948.0
033051	Com at Cresterford	55052426	EA-A	141.0	039002	Thames at Dera Woir	45881935	EA-T	3444.7
033052	Swathom Lode at Swafthem Bulbeck	55532828	EA-A	36.4	039003	Wandile at Connollya Mill	52651705	EA-T	176.1
033063	Gremia at Stapletord	54712515	EA-A	114.0	039004	Wandie at Doddirgaton Park	52961655	EA-T	122.0
033054	Babinolay at Caslo Risising	56803252	EA-A	47.7	039005	Beveriey Brook at Wimblodon Common	52161717	EA-T	43.6
${ }_{0} 033055$	Gramia 11 Babraham	65102504	EA-A	98.7	039006	Windiush at Nawbridge	44022019	EA-T	362.6
${ }_{0} 033056$	Ouy Water ar Lode	55312827	EA-A	76.4	039007	Elackwater at Swallowfield	47311848	EA-T	354.8
${ }^{0} \mathbf{0 3 3 0 5 7}$	Ouzel al Leighton Burzard	${ }_{4}^{49172241}$	EA.A	119.0	0390008	Thernes at Eysinam	44452087	EA-T	${ }^{6146.2}$
033058	Ouzel ot Blerchilay	48832322	EA-A	215.0	039010	Colne at Denham	50521864	EA-T	743.0
033000	Kings Diko at Stanground	52082973	EA-A		039011	Wey al Tiliford	48741433	EA-T	396.3
${ }_{033062}^{033081}$	Shep al Fowimera Ona	54022460 54032457	EA-A		039012	Hogamill at Kingaton upon Thames	51821688	EA-T	69.1
033062	Guiken Arook at Fowlmers Two	54032457	EA-A		039013	Colne at Berrygrove	51231982	EA-T	352.2
${ }^{033063}$	Litrie Cuasa al Kreerishmall	59552807	EA-A	101.0	039014	Ver at Hanstaga	51512018	EA-t	132.0
033084 033065	Whaddon Prook at Whaddon	53592466 5185	EA.A	16.0 8.8	039015	Whistwatio st Lodge Farm	47311523	EA-T	44.5
${ }^{033065}$	Hiz at Mischin	51852290	EA.A	6.8	039016	Kernet at Thealo	46491708	EA-T	1033.4
033068	Granta al Linton	55702464	EA-A	59.8	039017	Ray at Grendon Underwood	46802211	EA-T	18.6
${ }^{033087}$	Now Riverat At lurwell	556082696	EA.A	19.6	039019	Lambeurrn at Shaw	447016812	EA-T	234.1
033088	Cheney Water at Gatiey End	52962411	EA-A	5.0	039020	Coln at Bibury	41222082	EA-T	106.7
033372	Bourne Brook at Comberion	53822549	EA-A		039021	Cherwall at Enslow Mill	44822183	EA-T	551.7
034001	Yore at Cothay	81823082	EA.A	231.8	039022	Loddon it Sheopbridge	47201652	EA-T	164.5
034002	Tha at Shotasham	62262994	EA-A	146.5	039023	Wye at Hedicor	48961867	EA-T	137.3
034003	Bure at ingworth	61923296	EA-A	164.7	039025	Enborne at Brimpton	4568164 B	EA-T	147.6
034004 034005	Wenmum at Costeszoy Mall	61773128 61703113	${ }_{\text {EA }}^{\text {EA-A }}$	570.9 73.2	039026 039027	Charwent at Banbury	44582411	EA-T	199.4
034006	Wiveney at Neschamm Mall	61703113 62292811	EA.A	73.2 370.0	${ }_{039029}^{039027}$	Pany at Pangbourne	4634 432117865	EA-T	170.9
034007	Dove at Oakley Park	61742772	EA-A	133.9	039029	Tilingbourre at Sholford	\$000 1478	eat	101.3 590
034008	Ant at Honing Lock	63313270	EA.A	49.3	039030	Gade al Croxiey Groen	50821952	EA-T	184.0
034010	Wiveney en eminglord Eridga	${ }_{5}^{16168} 2782$	EA-A	149.4	039031	Lembourn at Wellord	44111731	EA-T	176.0
034011	Wensurn at Fakenisam	59193294	EA-A	161.9	039032	Lambourn at East Shefford	43901745	EA-T	154.0
034012 034013	Bum it Aurnhem Overy	58423248 6364	EA.A	80.0	039033	Winterbourne St at Bagnor	44531694	EA-T	49.2
034013	Wavoney al Ekinghem Mill	63642917	EA-A	670.0	039034	Everiocie al Costinpton Mill	44482099	EA-T	430.0
O34014	Wenzum at Swenton Morior Total Sutikey al Werhem All Sains	60203184	EA-A	397.8	039035	Chum at Cerney Wick	40761963	EA-T	124.3
034018 034018	Sutikey at Werram All Saints Bure at Horatod MiA	59443414	EA-A	87. ${ }^{\text {8 }}$	0390336	Low Brook at Albury	50451468	EA-T	16.0
035001	Gipping af Conatonting Weir	62673194 61542441	EA-A	313.0 310.8	${ }_{0}^{039037}$	Kennet int Mertborough	41871686	EA-T	142.0
035002	Daben al Naumion Hall	63222534	EA-A	163.1	039040	Thamest si Whosorit Mil Crickisde	46702055 40941942	EA-T	443.0
035003	Aldo al furnham	63602601	EA-A	63.9	039042	Leoch at Priory Mill Lechlode	42271994	EA-T	76.9
${ }^{035004}$	Ore at Beveratsom Bridge	${ }^{6359} 2583$	EA.A	54.9	039043	Konnet at Knighton	42951710	EA-T	295.0
035008	Gipping at Stowmerket	60582578	EA-A	128.9	039044	Hart at Bramshill houze	47551593	EA-T	84.0
035010	Gipping at Eramford	81272465 6406	EA-A	298.0	039046	Thames at Sution Courionay	45161946	EA-T	44.0
${ }_{0}^{035013}$	Biyth si Holton	64062769	EA-A	92.9	039049	Silk Straam at Colindoep Lone	52171895	EA-T	29.0
${ }_{0}^{036001}$	Stour at Stratord St Mary	60422340	ESW	844.3	039051	Sor Brook at Addorbury	44752346	EA-T	106.4
036002 036003	Glam at Glematord Box al Polstand	58462472 5985 278	EA-A	87.3 53.9	039052	The Cut ot Binfield	48531713	EA-T	50.2
036003 036004	Box al Polstaad	59852378	EA-A	53.9	039053	Mote at Horley	52711434	EA-T	日9.9
${ }_{036005}$	Chad Arook at Long M Breat at Hadieigh	58682459 60252429	EA.A	47.4 1560	O39054	Motan at Getwick Airpor1	52601399	EA-T	31.8 17.6
036006	Stour al Longhom	60202344	EA-A	578.0	039058	Yasing bkunazt at Yeading West	50831846 53721732	EA-T	17.6 120.4
036007	Bolchamp Brook at Barctield Aridga	58482421	EA-A	58.6	039057	Crane al Crantord Park	51031778	EA-T	61.7
038008 036009	Stour at Wentrill Bratt at Cockliald	58272463 5914	EA-A	224.5	${ }^{039058}$	Pool ot Winstord Rasd	53711725	EA-T	38.3
${ }^{036009}$	Braut at Cockliold	59142525	EA.A	25.7	039061	Letcombe Brook at Latcornta Bassert	43751853	EA-T	2.7
036010 036011	Bumpatand Brook at Broad Green	56892418	EA-A	29.3	039065	Ewalme Brook at Ewalme	46421916	EA-T	13.4
036011 036012	Stour Brook at Stermer	${ }_{5}^{5696} 2441$	EA-A	34.5	039068	Mole at Castio Mill	51791502	EA-T	316.0
036013	Srall at Higham	57082450 60322354	EA.A	76.2 195.0	${ }^{039069}$	Mole at Kinnorstay Manor Themes at Ewen	52621462 40071973	EA-T	142.0
036015	Stour at Lamarsh	58972358	EA.A	480.7	039072	Thamas al Royal Windsor Park	49821773	EA-T	83.7 046.0
036018	Ramsay at Graat Oakiey	62062288	EA-A	13.9	039073	Churn al Cirrencester	40202028	EA-T	84.0
038017	Ely Ouse Outrall at Kirrling Green	56812559	EA-A		039074	Ampney Brook at Sheepen Bridge	41051950	EA-T	74.4
037001 037002	Roding ot Redoridge	54151884 5794	EA-T	303.3	039975	Martion Meysey Bk it Whetsione Bridgo	41281964	EA-T	25.0
${ }_{0} 37003$	Terat Crabos Erioge	57942090 57862107	EA-A	${ }^{533.9} 7$	${ }_{0}^{039076}$	Windrush at Worahmm	42992107	EA-T	296.0
037004	Bleckwater et Langtord	58362092	EA-A	337.0	039078	Werincorni) at Fermhem	48381462	EA-t	199.2 191.1
037005	Colne at Lexdon	59622261	EA-A	238.2	039079	Wey at Werbrioge	50681648	EA-T	1008.0
037008	Can al Basch's Mia	56902072	EA-A	228.4	039081	Ock at Abingdon	44811966	EA-T	234.0
037007	Wide it Writulo	56862060	EA-A	${ }^{136.3}$	039085	Wandle at Wancle Park	52681703	EA-T	176.1
037008 037009	Chiolmer at Springtity	57132071	EA.A	190.3	${ }_{0} 039086$	Gatwick Streem at Gatwick Link	52851417	EA-T	33.6
037009 037010	Brain at Guthevon Valioy	58182147	EA-A	60.7	039087	Ray at Water Eaton	41211935	EA-T	84.1
O37010	Cluckwater at Apploford Ericga	58452158	EA-A	247.3	039088	Chess at Rickmonaworth	50661947	EA-T	105.0
037012	Colne at Poolstrioat	57712364	EA.A	72.6 65.1	-039090	Cade al bury Mam	50532077 42081970	EA-T	48.2
037013	Sandon Prook at Sondon Aridga	57552055	EA.A	75.1	039091	Mistourre ot Ouerrendor Mal	49751963	EA-T	${ }_{68.3}$
037014	Roding at High Onigas	55612040	EA-T	95.1	039092	Dolisis Brook at Hendon Lano Bridge	52401895	EA-T	25.1
037015 037016	Cripsoy Prook at Cripping Ongar	55482035	EA.t	62.2	039093	Brent at Monkt Park	52021850	EA-T	117.6
037016	Pant at Coptord Malt	56682313	EA-A	62.5	039094	Crane at Marah Farm	51541734	EA-T	81.0
${ }_{0}^{037017}$	Buackwater al Stistod	57932243	EA-A	139.2	039095	Ousggy at Manor House Gerdens	53941748	EA-T	33.9
037018	tnareboume at Goymas Park	55531862	EA-T	47.9	039096	Waskistone Brook at Wembloy	51921862	EA-T	21.7
037019	Beam at Bretons Form	55151853	EA-T	49.7	039097	Thamos at Buscot	42301981	EA-T	997.0
${ }^{037020}$	Cholmer at Foisted	56702193	EA-A	132.1	039098	Pinn at Uxtridge	50621826	EA-T	33.3
037021		59852205	EA-A	52.6	039099	Ampney Brook at Ampney St. Peter	40762013	EA-T	45.3
037022 037024	Holitond Brook al Therpe lo Soken Coina at Earis Cotine	6179 5955212	EA-A	54.9	039100	Swill Brook at Oaksoy	39971927	EA-T	53.3
-037025	Colne it Earis Coine Bourne Erook at Parces Bridgo	58552298 58222276	EA.A	154.2 32.1	039101 039102	Alaboume at Ramabury	42881717	EA.	53.1
037028	Tenpenny Brook al Tenpenny Bridga	60792207	EA-A	29.0	${ }_{0} 039103$		50461866 44721672	EA-T	138.0 548.1
037027	Sixpenny Brook at Ship House Bridgo	60542214	EA-A	5.1	039104	Mode et Etstor	51301653	ea-t	469.6
037028 037029	Bentioy Brook at Satwwitar Bridgo S Osytrt Brook at Main Roed Bridge	81092193 81342159	EA-A	12.1	039105	Thame at Wheatioy	46122050	EA-T	533.8
037029 037030	S1 Ovyth Brook at Main Rood Bridge Holland Brook at Craola Bridge	81342159 61712217	EA.A	8.0 48.6	039106 039107	Mote an Leatherthand	51611564 52161633	EA-T	371.4
037031	Crouch ar Wicktord	57481934	EA-A	71.8	-39108	Churn at Perroti's Arook	52161633 40222057	EA-T	33.7 59.0
037033	Eastwood Brook at Eastwood	58591888	EA.A	10.4	039109	Coln at Fonabridge	40802112	EA-T	88.0
037034	Mardyks al Stifford	55961804	EA.A	90.7	039110	Coln at Fsirford	41512012	EA-T	130.0
${ }^{037038}$	Ely Ouze Cuitall al Greal Sampford	56462351	EA.A		039111	Thamer at Staines	50341713	EA-T	8120.0
037037 037038	Toppastield Brook at Cornish Hall End Wid ot Margaroting	56752377 56722000	EA.A	1.3	039112	Latcombe Brook al Arabellas Lake	43741852	EA-T	3.1
-037038	Wid et Mergareoting	56722000 58352090	EA.A	99.6	039113	Manor Ferm Brook at Letcombe Regis	43831861	EA-T	1.4
038001	Locas feildea Woir	53902092	${ }_{\text {EA }}^{\text {EA. }}$ -	337.0 1036.0	${ }_{0}^{039115}$	Pang at Frisham ${ }_{\text {Pang ot }}$	45371730 45561710	EA-T	90.1 109.0
038002	Aab at Mardock	63932148	EA-T	78.7	039116	Sutham Brook at Sultam	4642 1741	EA-T	3.0
038003	Mirmam at Panahanger Park	52822133	EA-T	133.9	039117	Cointrook at thyte End	50191723	EA-T	929.5
038004	Fib at Wactermill	53602174	EA-T	136.5	039118	Wey at Alton	47171395	EA.t	44.6
038005 .	Ashat Easneve	53802138	EA-T	85.2	039119	Woy at Kings Pond (Atron)	47241395	EA-T	46.1

Station number	River and station nama	Grid reference	Authority	Area (sq km)	Station number	Aiver and station name	Grid raferance	Authority	Area (sqg km)
039120	Caker Stream at Alton	47291388	EA-T	89.1	045005	Oteer ar Dotton	30870885	EA-SW	202.5
039121	Thames at Watton	50991670	EA-T	9291.5	045006	Quarme at Enterwell	29191356	EA-SW	20.4
039122	Cranlaigh Waters at Bramley	49991462	EA-T	109.5	045009	Oter at fenny Bridges	31150986	EA-SW	104.2
039125	Ver at Redbourn	51092118	EA-T	62.6	045009	Exte at Pixton	29351260	EA-SW	147.6
039126	Red at fedbourn	51072119	EA-T		045010	Haddao at Hartford	29521294	EA-SW	0
039127	Misbourne at Litio Missenden	49341984	EA-T	47.2	045011	Barte at Brushtord-	29271258°	EA-SW	$\because 128.0$
039128	Bourne (South) at Addiestone	5061.1650	EA-T	91.7	045012	Creedy at Cowley	29010967	EA-SW	261.6
039129	Thames at Farmoor	44382068	EA-T	1608.6	045013	Tale at Fairmile	30880972	EA-SW	34.4
039130	Thames at Reading	47181741	EA-T	4633.7	046002	Teign at Preston	28560746	EA-SW	380.0
039131	Brent at Costons Lane, Greenford	51491823	EA-T	146.2	046003	Dart at Austins Bridge			247.6 21.5
039134	Ravenstoume East at Bromley South	540611887	EA-T	10.0	046005	East Dart at Bellever	26570775	${ }_{\text {EAS }}^{\text {EA-SW }}$	21.5 43.5
039135	Ouaggy River at Chinbrook Meadows	54101720	EA-T	15.0	${ }_{0}^{046006}$	Erme at Ermington	26420532 26430742	EA.SW	43.5 47.9
040001	Medway at Weir Wood Reservoir	54071353	SW	26.9	046007	West Dart at Dunnabridge Avon at Loddiswell	$\begin{aligned} & 26430742 \\ & 27190476 \end{aligned}$	EA.SW	47.9 102.3
040002	Darwell at Dorwell Reservoir	57221213	sw	9.6 1256.1	${ }^{046008}{ }^{047001}$	Avon at Loddiswell Tamar at Gunnislake	$\begin{aligned} & 27190476 \\ & 24260725 \end{aligned}$	EA-SW	916.9
040003	Medway at Teston	57081530	EA-S	1256.1 206.0	${ }_{047003}^{04701}$	Temar et Gunnislake Tevv at Lopwell	24260725 24750652	${ }_{\text {EA }}^{\text {EA-SW }}$	916.9 205.9
040004 040005	Rother at Udiam Beut at Stile Sridge	57731245 57581478	EA-S	277.1	047003	Lynher at Pillaton Mill	23690626	EA-SW	135.5
040006	Bourne at Hadlow	56321497	EA-S	50.3	047005	Otrery at Werrington Park	23370866	EA-SW	120.7
040007	Medway at Chafford Weir	55171405	EA-S	255.1	047006	Lyd at Litoon Park	23890842	EA.SW	218.1
040008	Graat Stour at Wye	60491470	EA-S	230.0	047007	Yealm at Pustinch	25740517	EA-SW	54.9
040009	Teise at Stone Bridge	57181399	EAS	136.2	047008	Thushel at Tinhay	23990856	EASW	112.7
040010	Eden at Penshurst	55201437	EA-S	224.3	047009	Tiddy al Tideford	23440596 2290099		76.7
040011	Graat Stour at Horton	61161554	EA-S	345.0	047010	Tamar at Crowford Bridgo	22520613	EA-SW	79.2
040012	Dorent at Hawley	55511718 5525	EA-S	191.4	0047011	Plym at Carn Wood Withey Brook at Bastreet	25220613 22440764	${ }_{\text {EA-SW }}^{\text {EA-SW }}$	79.2 16.2
040013 040014	Darent at Otford	55251584	EA-S	100.5 37.7	047013 047014	Withey Mrook at Bastreet Walkham at Horrabridga	22440769	EA-SW	43.2
040014 040015	Wingham at Durlock White Drain at Fairbrook Farm	$\begin{array}{r} 62761576 \\ 60561606 \end{array}$	EA-S	$\begin{array}{r}37.7 \\ 31.8 \\ \hline\end{array}$	047014 047015	Walkham at Horrabnigga Tevv at Denham / Ludbrook	24760681	EA-SW	197.3
040016	Cray at Craytord	55111746	EA-S	119.7	047016	Lumburn at Lumburn Bridge	24590732	EA-SW	20.5
040017	Dudwell at Burwash	56791240	EA-S	27.5	047017	Wolf at Combe Park Farm	24190898	EA.SW	31.1
040018 .	Darent at Lullingstona	55301643	EA-S	118.4	047018	Thrushel at Hayne Bridge	24160867	EA-SW	
040020	Eridge Stream at Hendal Bridge	55221367	EA-S	53.7	047019	Tamar at Polson Bridge			
040021	Hexdan Channal at Hopemill Br Sandhurst	58131290	EA.S	32.4	${ }_{048001} 048$	Fowey at Trokeivesteps	${ }_{2108}^{2220613}$	EA-SW	171.2
040023	East Stour at South Willesborough	60151407	EA-S	58.8	048002 048003	Fowey at hestormet one	21080613 1921044	EASSW	171.2 87.0
040024	Bartiey Mill St at Bartley Mill	$\begin{aligned} & 56331357 \\ & 61741625 \end{aligned}$	EA-S	25.1 19.4	048003 048004		19590674	EA-SW	85.3
040027 040029	Sarre Penn at Calcott	61741625 57651556	EA-S	19.4 69.7	O48004	Warieggan ot Trengoffe	18200450	EA.SW	19.1
040032	Hother at Crowhurst Bridge	56831263	EA-S	92.7	048806	Cober at Helston	16540273	EA.SW	40.1
040033	Dour at Crabble Mill	63001430	EA-S	49.5	048007	Kennall at Ponsanooth	17620377	EA-SW	26.6
041001	Nunningham Stream at Tilley Bridga	56621129	EA-S	16.9	048009	St Neot at Craigsshill Wood	21840662	EA-SW	${ }^{22.7}$
041002	Ash Boume at Hammer Wood Bridga	56841141	EA-S	18.4	048010	Saaton at Trebrownbridge	22990595	EA-SW	38.1 169.
0410031	Cuckmere at Sherman Bridge	55331105	EA-S	134.7	048011	Fowey at Restormel	209810024	EA-SW	208.8
041004	Ouse at Barcombe Mills	54331148	EA-S	395.7	049001	Camol at Denby	2017 15490682	EA-SW	208.8 48.9
041005	Ouse at Goid 日ridga	54291214 545919	EA-S	180.9 878	049002 049003	Haytat at Ert	15490341 21330765	EA-SW	21.7
0410061 041009	Uck at Isfield	54591190 50341178	EA-S	$\begin{array}{r}87.8 \\ 345.8 \\ \hline\end{array}$	049003 049004	Da Lank at De Lank Gannel at Gwills	21330765 1829	EA-SW	41.0
041010	Adur W Branch at Hatterell Bridge	51781197	EA-S	109.1	050001	Taw at Umberlieigh	26081237	EA-SW	826.2
041011.	Rother at Iping Mill	48521229	EA.S	154.0	050002	Torridge al Torrington	2500 27051185	EA-SW	${ }_{6}^{663.0}$
041012	Adur E Branch at Sokeham	52191190	EA-S	93.3	050004	Hole Water at Muxwornhy West Okement at Vellake	270511373 2557 9903	EA-SW	13.4
041013	Huggletts Stream at Hently Bridge	56711138	EA-S	14.2 3790	050005	West Okement at vellaxa	25650	EA-SW	327.5
041014 041015	Arun at Pallingtagn Quay	50471229 47551074	EA-S	379.0 58.3	050006 05007	Mole at Woodleigh	26731068	EA.SW	31.4
041016	Cuckmere at Cowbeech	56111150	EA-S	18.7	050008	Lew at Gribleford Bridge	25291014	EA-SW	
041017	Combehaven at Crowhurst	57651102	EA-S	30.5	050009	Northow at Notray Bridge	25010999	EA.SW	
041018	Kird at Tanyards	50441256	EAS	66.8	050010	Tertidge at Rockhay Bridge	25071070	EA-SW	
041019	Arun at Alfoldean	51171331	EA-S	139.0	050011	Okement at Jacobstowe	25921019 27751267		82.1 53.7
041020	Bevern Siream at Clappers Bridge	54231161	EA-S	34.6	050012	Yeo at Veraby	27751267 2677 1399	EA-SW	53.7 17.6
041021.	Clayhill Stream at Old Ship	54481153	EA-S	7.1	050013	Bray at Leenamford Bridge	26771399 30881428	EA-SW	17.6 75.8
041022	Lod at Halfway Bridge	$\begin{array}{l:l} 4931 & 223 \\ 4871 & 064 \end{array}$	EA-S	52.0 87.2	051001 051002	Donitord Stream at Swill erdge Horner Watar at West Luccombe	3088 28981458	EA-SW	20.8
041023 041024	Lavant at Graylingwall Shell Brook at Shell Brook P S	$\begin{aligned} & 48711064 \\ & 53351286 \end{aligned}$	EA-S	87.2 22.6	${ }_{051003} 051$	Horner Watar at West Lucombe Washford at leggearn Huish	30401395	EA-SW	36.3
041025	Loxwood Stream at Orungewick	50601309	EA.S	91.6	052001.	- Axt at Wookey	35271458	EA-SW	18.2
041026	Cockhaise Brook at Holywell	53761262	EA-S	36.1	${ }^{052002}{ }^{\text {. }}$	Yeo at Sution Bingham Res.	35551106	EA-SW	30.3
041027	Rother at Princes Marsh	47721270	EA-S	37.2	${ }_{0}^{052003}$	Halse Water at Bishops Hull	32061253	EA-SW	87.8
041028	Chess Stream at Chess Eridge	52171173	EAS	24.0	052004	Iste at Ashford Mill	33611188 32061250	${ }_{\text {EAA }}^{\text {EASW }}$	202.1
041029	Bull at Lealands	55751131	EA-S	40.8	052005 052006	Tone at Bishops Hull	$\begin{aligned} & 32061250 \\ & 35731161 \end{aligned}$	EA-SW	213.1
041031	Fulking Stream at Fulking	52471113 48801174	EA.S		052006 052007	Yeo at Pen Mill	34611144	EA-SW	74.8
${ }^{041033}$	Costers Brook at Cocking	48801174 47861104	EA-S	2.7 41.5	052007 052008	- Tone at Clarworthy Reservoir	30431312	EA-SW	18.1
${ }^{041034}{ }^{041035}$	- Ems at Waldenton $\begin{aligned} & \text { Norn River at } \\ & \text { Brookhurst }\end{aligned}$	47861104 51301325	EA-S	41.5 55.1	052008 052009	Tone at Cotworthy Raservoir Sheppey at Fenny Caste	34981439	EA-SW	59.6
041037	Winterboume Stream al Lowes	54031096	EA-S	17.3	052010	Brue at Lovington	35901318	EA-SW	135.2
042001	Wallington at North Fareham	45871075	EA-S	111.0	05201 ?	Cary at Somerion	34981291	EA-SW	82.4
042003	Lymington at Brockenhurst Park	43181019	EAS	98.9	052014	Tone at Greenham	30781202 34831716	EA-SW	57.2 23.3
042004 .	Test at Broadlands	43541188	EA-S.	${ }^{1040.0} 5$	${ }_{0} 052015$	Lend Yoo at Wraxall Bridge Currypool Stream at Currypool Ferm	34831716 3221382	EA.SW	23.3 15.7
042005	Wallop 日rook at Broughton	43111330	EA-S	53.6 72.8	${ }^{052018}$	Currypool Stream at Currypool Ferm Congresbury Yeo at iwood	322151382	EA.SW	15.7
042006	Meon at Mislingtord Alre at Drove Lana Alresford	45891141 45741326	EA.S	72.8 57.0	${ }_{0}^{052017}$ 0520.	- Congricastury Stream at Gallica Bridge	35711100	EA-SW	16.4
042007	Arra at Drove Lana Alresford Cheriton Straem at Sewards Bridge	45741326 45741323	EA-S	75.9	053001.	- Avon at Melksham	39031641	EA.SW	665.6
${ }_{0} 042009$	Cheriton Stream ar Aewarus Brige	45681323	EA-S	71.2	053002	Sermington Brook at Semington	39071605	EA-SW	157.7
042010	ltchen at Highoridge + Allbrook	44671213	EA-S	360.0	053003.	Avon at Bath St James	37511651	EA.SW	1595.0
042011	Hamble at Frog Mill	45231149	EAS	56.6	053304	Chew at Compton Dando	36481647	EA-SW	129.5
042012	Anton at Fullerion	43791393	EA-S	185.0	053005	Milford Brook at Midford	3763 1611	EA-SW	\$47.4
042014.	Elackwater at Ower	43281174	EA-S	104.7	053006	Frome(Bristol) at Fronchay	36371772 38051564	EA-SW	148.9 $\substack{\text { 261.6 }}$
042015.	Dever at Weston Collay	44961394	EA-S	52.7	053007 053008	FromelSomersety at Tollisfor Avon at Greet Someriord	38051564 39661832	EA-SW	261.6 303.0
042016	Itchen at Exston	45121325	EA-S	$\begin{array}{r}236.8 \\ 170 \\ \hline\end{array}$	053008 053009	Avon at Great Somerord Wellow Brook at Wellow	39661832 3741581	EA-SW	303.6 72.6
042017 042018	Herrmitage at Havant Monks Brook at Easteigh	471111067 44431179	EA-S	43.3	053013	Marden at Stanley	39551729	EA-SW	99.2
042020	Tadburn Lake at Romsey	43621212	EA-S	19.0	053017	Boyd at Bituon	36811898	EA-SW	48.0
042023	Itichen at Riverside Park	44451154	EA-S	415.0	053018	Avon at Bathiord	37851870	EA-SW	
042024	Test at Chilbotion (Total)	43861394	EA-S	453.0	053019	Woodbridge Brook at Crab Mal	39461866 39371840	EA.SW	${ }_{28 .}{ }^{46.6}$
042025	Lovant Stream at Leigh Park	47211072	EA-S	54.5	${ }_{053022}^{053020}$	Gauze Brook at Rodboume Avon at Bath ultrasonic			28.2 1605.0
${ }^{043001 .}$	Avon at Ringwood		EA.SW	1649.8	${ }_{0}^{053022}$	Avon at Bath ulirasonic	${ }_{3891} 1870$	EA-SW	1605.0 89.7
043003 043004		41581144 41571304	EA-SW		${ }_{0}^{053023}$		39141893	EA-SW	73.6
043004 043005	Bourne at Leverstock Mill Avon at Amesbury	41571304 41511413	EA-SW	163.6 323.7	053024 053025	Terbury Avon at Brokenborough	37571491	EA-SW	119.0
043005 043006.	Avon at Amestury	41511413 40991308	EA-SW	220.6	053325 053026	Mrome \Sristol) at Frampton Cortarell	36671822	EA-SW	78.5
043007	Stoir at Throop Mill	41130958	EA-SW	1073.0	053028	By Brook at Middle hill	38131688	EA-SW	122.0
043009	Wylve at South Newton	40861343	EA-SW	445.4	053029	Biss at Trowbridge	38571576	EA-SW	77.6
043009	Stour at Hammoon	38201147	EA-SW	523.1	054001	Severn at Bewciliy	37822762	EA-M	4325.0 2210.0
043010	Allen at Loverley Mill	40061085	EA-SW	94.0	054002	Avon at Eveshary	4040 43322381 4371	EA-M	2210.0 262.0
043011.	- Ebele at Bodenham	41651265	EA-SW	109.0	${ }_{0}^{054004}$	Sowe at Stonolieigh Severn at Montford	${ }_{34123144}$	EA-M	2025.0
043013°	Mude at Someriord East Avon at Upavon	41840936 41331599	${ }_{\text {EAA }}^{\text {EASW }}$	12.4 86.2	${ }_{054007}$	Arrow at Breom	40862536	EA-M	319.0
043015.	- Wrive at Longbridge Deverilt	38681413	EA.SW	69.0	054008	Teme at Tenbury	35972686	EAMM	1134.4
043017.	West Avon at Upavon	41331559	EA-SW	76.0	054010	Stour at Alscot Park	42082507	EA.M	319.0
$043018{ }^{\circ}$	Allen at Wallord Mill	40081007	EA-SW	176.5	054011	Salwarpa ar Harford Hill	38682618 35923123	EAMM	${ }^{184.0}$
043019	Shreen Warer at Colestrook	38071278	EA-SW.	29.1	054012	Tern at Walcot	$\begin{array}{r}35923123 \\ 2944 \\ \hline 1855\end{array}$	EA-M	
043021	Avon at Knapp Mill	41560943	EA-SW	1706.0	- 054013	Cirwecog at Cribyna	29442855 31642958	EA-M	57.0 580.0
044001	Frome at East Stoka	38660867	EA-SW	414.4	054014 054015	Severn at Abermuls	${ }_{3927} 3463$	EAMM	580.0 158.0
${ }^{044002}$.	Piddle at Eaggs Mill	39130878 34700928	EA.SW	183.1 49.1	054015 054016	Bow Arook bit Besford Bridge Roden at Rodington	35993141	EAMM	259.0
${ }^{0044003}{ }^{044004}$	Asker at Bridport Frome at Oorchester total	34700928 37080903	EA-SW	49.1 206.0	O54017	Roden at RoCington	37772234	EA-M	293.0
044006	Sydling Water at Sydling Si Nicholas	36320997	EA.SW	12.4	${ }_{0}^{054018}$	Res Brook at Hookagate	34663092 4333	EAMM	178.0 3470
044008	Sth Winterdourne at W'bourne Steeppleton	36290897	EA-SW	19.9	054019	Avon at Stareton	43332715 34343192	EAMM	347.0 180.8
044009	Wey at Braadwey	36660839 29361016	EA-SW	7.0 600.9	054020 054022	Perry at Yeator Severn at Plyntiman fluma	34343192 28532872	${ }_{H}^{\text {EA }}$-M	${ }^{180.8} 8$
045001	Exe at ${ }^{\text {Exa }}$ Thorvertan Exa Stoodligh	29361016 29431178	EA-SW	600.9 421.7	054022 054023	Sevarn at Plyniman flume Beadsey Brook at Offenhem	28532842 4063	${ }_{\text {EA }}^{\text {If }}$ -	95.8
0045002 045003	Exa at Stoodieigh Cum at Wood Mill	29431178 30211058	EA-SW	226.1	0544024 05025	Worfe at Eurcote	37472953	EA-M	258.0
045004	Axe at Whirford	32620953	EASW	288.5	054025	Dulas at Rhos- γ-pentref	29502824	EA-M	52.7

Station number	Alver and tataton name	Grid raference	Authority	Aren (mq km)	Station number	Rlver and station name	Grid refarence	Authouty	Area ($\mathbf{s q} \mathrm{c} \mathrm{km}$)
054028	Cheot al Stano Mill	38922284	EA.M	34.5	058011	Thaw at Gigman Bridge	30171716	Ea-wel	49.2
054027	Frome at Ebley Mill	38312047	EA.M	198.0	058012	Atan at Marcrott Weir	27711910	EA.wel	87.8
054028	Vymwy at Llemymynach	32523195	EA.M	778.0	059001	Towa at Ynystanglws	26851998	EA-WEL	227.7
054029	Teme at Knightatord Bridgo	37352557	EA-M	1480.0	059002	Louphor at Tir-y-dail	26232127	EA-WEL	46.4
054032	Severn at Soxons Lode	38632390	EA-M	8850.0	060002	Cothi at Felin Myrachay	25082225	EA-wEL	297.8
054034	Dowles Brook st Oak Cottrag. Dowles	37682784	EA.M	40.8	060003	Taf at Clog. y-Fran	22382160	EA.wEL	217.3
054038	Izbourne at Hintion on the Groen	40232408	EA-M	90.7	080004	Dewi fowt at Glastry ford	22902175	EA-WEL	40.1
054038	Tanat at Lionyblodwel	32523225	EA-M	229.0	080005	Bran at Llandovery	27712343	EA.WEL	66.8
054040	Moese at Tibbertion	36803205	EA.M	167.8	060006	Gwili at Clangwih	24312220	EA-wEL	129.5
054041	Tarn at Eaton On Tern	38493230	EA.M	192.0	060007	Tywi al Dolau Hrion	27622362	EA-WEL	231.8
054042	Crywedog at Clywedog Dm Lower Weir	29142867	EA-M	49.0	060008	Tywi al Yatradtion	27862472	EA-WEL	89.8
054043	Severn at Upion On Sovern	38832399	EA.M	6850.0	060009	Sawdde at felin- y-cwm	27122266	EA-WEL	81.1
054034	Tern at Tornith	36293318	EA.M	92.6	060010	Twwi al Nantgarecira	24852206	EA-WEL	090.4
054045	Party at Parry Ferm	33473303	EA.M	49.1	060012	Twich at Dodol 63	26502440	EA-WEL	20.7
054046	Worie at Costord	37813046	EA.M	54.9	060013	Cothi et Pont Ynys Erechta	25372301	EA.WEL	261.6
054047	Porry at Ruyton Bridgo	34033223	EA.M	155.0	061001	Western Clecddeu at Prendergost Mia	19542177	EA-WEL	197.6
054048	Dene et Welliostrume	42732556	EA.M	102.0	061002	Euztern Cleddau at Consaston Bridga	20722153	EA-WEL	183.1
054049	Laem at Princes Drive Weir	43072654	EA.M	362.0	061003	Gwaun at Cirrnedym Eridge	20052349	EA-WEL	31.3
054050	Leam ar Eathorpe	43882888	EA.M	300.0	061004	Western Clioddov et Redrthin	19422194	EA-WEL	197.6
054052	Bailoy Brook ar Temmill	36293316	EA.M	34.4	062001	Teiti at Clam Teifi	22442418	EA-WEL	893.6
054055	Ras at Naen Sollert	36642724	EA.M	1290	062002	Tefit at Lenteit	24332406	EA-WEL	510.0
054058	Clun at Commgntord	33932786	EA.M	195.0	063001	Yatwych at Pont Lotwyn	25912774	EA-WEL	169.6
054057	Severn at Maw Enidgo	38442279	EA.M	9895.0	063002	Pheidol at Lusmbadern Fowr	26012804	EA-WEL	182.1
054058	Stoke Payk Brook al Stoke Park	36443200	EA.M	14.3	063003	Wyre at Lantivstyd	25422698	EA-WE1	40.6
054059	Altord Brook al Alliord	36543223	EA.M	10.2	063004	Ystwrth ot Cwm Ystwrth	27912737	EA-WEL	32.1
054060	Pottord Brook al Sendytord Bridgo	36343220	EA.M	25.0	083005	Moesnant at Nent $-\gamma-\mathrm{Moch} \mathrm{C}$	27782877		0.6
054081	Hodnat Brook at Hodnet	36283288	EA.M	5.1	063006	Mseesnest Fach at Nant $-y$-Mocth E	27652865	${ }_{1}$	0.8
054062	Stoke Brook at Stoke	36373280	EA.M	13.7	004001	Drit at Oryi Pridge	27453019	EA-WEL	41.3
054063	Stour at Presiwood Hospisal	38852858	EA.M	89.9	064602	Dravmin at Pont- y-Garth	28323066	EA-WEL	75.1
054065	Roden at Stanton	35653241	EA.M	210.0	064005	Wrion ar Dolgellau	27303179	EA-WEL	110.8
054066	- Patt Broak al Plat1	36283229	EA.M	15.7	064006	Lori at Dolviont	26352882	EA-WEL	47.2
054067	Smeatow Brcok at Swindon	38612906	EA-M	${ }^{1} 1.3$	064007	Oolm at Limberynnair	28993062		1.1
054068	Tetcrial Brook at Hordiley	33793288	EA.M	21.2	064008	Cwn at Lanberymair E	29163087	i+	3.0
064069	Springs Eriok at Lower Hordloy	33873297	EA.M	10.4	065001	Glastrn at Bodogetert	25923478	EA-WEL	68.6
054070	Wer Brook at Wollord	34323198	EA.M	22.5	065002	Owrrya at Meentwrog	26703415	EA-WEL	78.2
054080	Savern at Dotwen	29962851	EA.M	187.0	065004	Gwyrtai ma Bontnewydo	24843599	EA-WEL	47.9
054081	Crwodog as Bryntail	29132868	EA.M	49.0	065005	Erch en Pencsenowydd	24003404	EA-WEL	18.1
054093	Crow Brook at Horion	38783141	EA-M	16.7	065006	Soiont ot Peobig Mill	24933623	EA-WEL	74.4
054084	Cannop Brook at Parikent	36182075	EA.M	31.5	065007	Dwyrfowr at Garndotbentioen	24993429	EA-WEL	52.4
054085	Connop Brook at Cannop Crose	36092115	EA.M	10.4	086001	Clwyd at Pont-v-cambul	30693709	ea-wel	404.0
054086	Cownwy Diversion at Cownwy Weir	29993179	EA-M	13.2	066002	Enwy at Pamy yr Onen	30213704	EA-WEL	220.0
054007	Alford Brook at Chids Freall	36673228	EA-M	4.7	${ }^{086003}$	Alod et Errm Aled	29573703	EA-WEL	70.0
054088	Litile Avon at Berkitoy Kernels	36831988	EA-M	134.0	066004	Wheeter ot Bodfari	31053714	EA-WEL	62.9
054089	Avon at Bredon	39212374	EA-M	2674.0	066005	Cwyd ot Ruthin Weir	31223592	EA-WEL	95.3
054090	Tonllwyth at Tanllwyh Fume	28432878	$\mathrm{I}^{\text {H }}$	0.9	066008	Emy si Pont-y-Gwyddel	29523718	ea-wel	194.0
054091	Sovern al Hation Firma	28432878	${ }^{\text {H/ }}$	3.6	068008	Alad ot Aled isaf Reservair	29153598	EA.WEL	11.6
054092	Hore at Hore Fivme	28462873	${ }_{1}$	3.2	066011	Conmy at Cwm Lanerch	28023581	ea wel	344.5
054094	Strine at Crudgington	36403175	EA.M	134.0	067001	Deo at Aata	29423357	EA.WEL	261.6
054095	Sovom at Buddwas	36443044	EA.M	3717.0	067002	Doe at Eftistock foctory	33573413	EA-wEL	1040.0
054096	Hadioy Brook ol Werda Bridgo	38702631	EA.M	53.4	067003	Brenig et Limb Brenig outfow	29743539	EA.WEL	20.2
055002	Wreat Beatmont	34852388	EA.WEL	1895.9	067005	Coiriog at Brynkinalt Weir	32953373	EA-wEL	113.7
055003	Lugg ot Lugwardine	35482405	EA.WEL	885.8	087006	Alwen at Oruid	30423436	EA.WEL	184.7
055004	Itron at Abernant	29922460	EA.WEL	72.8	067008	Alyn at Pont- γ-Capal	33363541	EA.WEL	227.1
055005	Wye at Rhoyader	29692878	EA-WEL	186.8	${ }^{067009}$	Alyn at Phydymwy	32063687	EA-WEL	77.8
055006	Elan at Caban Coch Reeervoir	29282845	EA-WEL	184.0	067010	Gotyn at Cynetail	28433420	Ea-wel	13.1
055007	Wye at Erwood	30782445	EA.WEL	1282.9	067011.	Nant Aberderfol at Nont Aberdorfal	28513392	EA-WEL	3.7
055008	Wreat Caln Brwy	28292838	IH	10.8	067013	Mirment at Plase Rhivedog	29463349	EA-WEL	33.9
055009	Monnow al Kenteckurch	34192251	EA.wel	357.4	067015	Doe at Manley Hall	33483415	EA-WEL	1019.3
055010 :	Wre at Pant Mowr	28432825	EA.WEL	27.2	067016	Worthenbury Brook at Worthenbury	34183464	EA-wEL	142.1
${ }_{0}^{055011} 0$	thon at Llandowi	31052883	EA.WEL	111.4	087017	Trvwery at Lirn Catyn ourtiow	28803399	EA-WEL	59.9
	tron at Cillmery	29352507	EA.WEL	244.2	067018	Doe at New tnn	28743308	EA-WEL	53.9
055014	Luggat Byton	33642647	EA.WEL	203.3	067025	clat ar Chessier Woir Bank	34083659 3396393	EA.WEL	816.B
055015	Honddu at Tatolog	32772294	EA.WEL	25.1	067028	-ivee at Eccloston Ferity	33963483 34153612	EA-WEL	$\begin{array}{r}98.8 \\ \hline 816.8\end{array}$
055018	Ithan al Dieserth	30242578	EA-WEL	358.0	087028	Ceidiog at Limondrillo	30343371	EA-WEL	36.5
055017	Chwetru ot Carreg-r-wen	29982531	EA.WEL	29.0	067029	Trystion at Pen- γ-falin Fowr	30863405	EA-wEL	12.3
055018	Frome at Yarkhill	38152428	EA-WEL	144.0	088001	Woaver at Ashbrook	36703633	EA-NW	622.0
055021	Lugg at Butre Bridge	35022589	EA.Wel	371.0	088002	Gowy at Piction	34433714	EA-NW	:56.2
055022	Trothy at Mitchel Troy	35032112	EA.WEL	142.0	088003	Dene at fudhesth	36683718	EA-NW	407.1
055023	Wya at Redbrook	35282110	EA.wel	4010.0	068004	Witaston Brook at Marshfield Bridge	36743552	EA-NW	92.7
055025	Llynti at Three Cocks	31882373	EA.WEL	132.0	068005	Weever et Audiem	36533431	EA-NW	207.0
${ }^{055028}$	Wya at Ddol Farm	29762676	EA-WEL	174.0	088006	Dena at Hulme Walifield	38453644	EA-NW	150.0
055027	Rudhall Aroak ar Senatord Bridgo	38412257	EA-wel	13.2	088007	Wincham Brook at Lostock Gralam	36973757	EA-NW	148.0
055028	Frome at lishopa Frome	38672429	EA.WEL	77.7	0088015	Gowy at Huxley	34973624	EA-NW	49.0
055029	Monnow at Groamont	34152249	EA.wEL	354.0	088020	Gowy at Aridge Traftord	34483711	EA-NW	156.0
055030	Claerwen at Dol.-y-mynach	29102820	EA-WEL	95.3	069001	Mersey at rism Weir	37283936	EA-NW	679.0
055031	Yaror Brook at Thrse Etms	34922415 2934545	EA.WEL	42.3	069002	1 l well 1 l Addotph W Weir	33243987	EA-NW	559.4
055032	Elon al Elon Village	29342653	EA-WEL	184.0	069003	Irk at Scotiand Weir	38413992	EA-NW	72.5
055033	Wya at Gwy tume	28242853	${ }^{1+4}$	3.9	069004	Etherow at Bottoms Reservoir	40233971	EA-NW	78.2
055034	Cytf of Cyt liume	28242842	${ }_{\text {I }}$	3.1	0699005	Giare Brook at Litto Woolden Hall	368853939	EA-NW	152.0
O56035	- lago al lego flume	2828 3345 3	IH	91.1	0699006	Bollin al Ounham Massey	37273875	EANW	256.0
${ }_{056002}^{056001}$	Usk at Choin Eridgo	33452056	EA.WEL	911.7	069007	Mersey at Ashton Weir	37723936	EA-NW	660.0
056002 056003	Ebbw at Rhiwdory	32591889	EA-WEL	218.5	069008	Dasen al Stanneytands	38463830	EA-NW	51.8
${ }_{056004}$	Uak al Llanderty	30512297 31272203	EA-WEL	62.1 543.9	0699012	Bollin al Wilmslow Sinderisad Brook ot Parington	38503815	EA-NW	72.5
056005	Lwyd al Ponthir	33301924	EA.wEL	98.1	069015	Etherow at Compstall	39623990	EA.NW	44.8 1560
056008	Uak al Trallong	29472295	EA.wEL	183.8	069017	Goyt at Marpla Bridge	39643898	EA-NW	1830
056007	Sonni at Pont hen Halod	29282255	EA.WEL	19.9	069019	Worsiey Brook at Ecclos	37533980	EA $\cdot \mathrm{NW}$	24.9
${ }_{0}^{056008}{ }_{0}^{05010}$.	Monka Dich at Llanwern	33721985 3351	EA.WEL	15.4	069020	Medlock at London Road			57.5
${ }_{0}^{056010}$	Usk at rostray Weir	33502042 32081912	EA-WEL	927.2 76.1	O69024	Roch ar Blackford Eridge Croal ot Fermworth Weir	38074077 37434068	EA-NW	186.0 145.0
056012	Gruyne al Millbrook	32412176	EA.WEL	82.2	069027	Tame at Poriwood	39063918	EA-NW	145.0 150.0
056013	Yacir at Poniaryacir	30032304	EA.WEL	62.8	069030	Senkay Brook at Causey Bridga	35883922	EA-NW	154.0
058014	Usk at Usk Raservoir	28402290	EA.WEL	17.0	${ }^{069031}$	Ditron Brook at Greens Bridge	34573865	EANW	47.9
056015	Ofway frook at Otway inn	33842010	EA.WEL	105.1	089032	Atter Kirkby	33923983	EA-NW	90.1
058016 057001	Cosortanat Outtoll al Talyboni foservoir	31042206	EA.WEL	32.4	089034	Musbury Braok at Helrnshore	37754213	EA -NW	3.1
057001	- Tat facthen al Tal Fecchan Roservoir	30602117	EA.WEL	33.7	069035	Irwell ar Bury Pridge	37974109	EAANW	155.0
${ }_{0}^{057002}$	Tat Fawt al Lhyrnon Reservoir	30122111	EA.WEL	43.0	069037	Mersoy at Westy	36173877	EA-NW	2030.0
${ }_{057004}$	Tat al Tongwwhisis	31321818 30791956	EA.WEL	${ }^{486,9}$	0898040	Irwell at Stubbins	37934188 3939 1858	EAANW	105.0
057005	Crat at Ponstyprida	30791956 30791897	EA.WEL	106.0 454.8	${ }_{0}^{069041}$	Tame at Broomstair Bridge	3939 34764126	EA-NW	113.0 198.0
${ }^{057006}$	Rhondde at Tranatod	30541909	EA.WEL	100.5	070003	Douglaz at Central Park Wigan	35974061	EA-NW	55.3
057007 057008		30891951	EA.WEL	194.5	070004	Yarow at Crosion Mil	34984180	EAANW	74.4
${ }^{057008}$	Rtymney nt lionedoym	32251821	EA.WEL	178.7	070005	Lostock al Lititawood Bricgo	34974197	EA-NW	56.0
057009 057010	Ety ar St Fegons	31211770 3034 1827	EA-WEL	145.0	071001	Ribble at Semmesbury	35894304	EA-NW	1145.0
${ }_{0}^{057010} 0$		$\begin{array}{r}3034 \\ \hline 2982 \\ \hline 298\end{array}$	EA.WEL	39.4	071003	Croasdale ot Croostale frume	37064546		10.4
057012	Garwnant al Uwy noon Rosenvoir	29872193 30042129	EA.WEL	5.1 4.3	071004 071005	Calder of Whatey Woir Botroms Beck ot Bottoms Beck fiume	37294360 37454565	EA-NW	316.0 10.6
057015	Tolt at Merthyr Tydifil	30432068	EA-wEL	104.1	071006	Ribble al Henitom	37224392	EA-NW	456.0
057018	Tol fochan al Ponratical	30602115	EA.WEL	33.8	071009	Hodder at Hodoter Place	37044399	EA-NW	261.0
058001	Opmore at Eridgend	29041794	EA-wEL	158.0	071009	Rubble al kumbles fock	37024376	EA-NW	1053.0
058002 058003	Nesth at Aezorven	28152017 29141780	EA.WEL	190.9	071010	Pemche Woter at Barcoen Lome	$\begin{array}{r}38374351 \\ 3839 \\ \hline\end{array}$	EAANW	108.0
O58005	Ewomy at Ewenny Prory	298418484	EA.WEL	82.9 74.3	071013	Rubble at Amford ${ }^{\text {derwen at Ewood Bridge }}$	38394556 36774262	EAANW	204.0 39.5
${ }^{0580008}$	Maltre est Pontnedditiccion	29152082	EA.WEL	65.8	071014	Datwen at Bke Bridge	35654278	EA-NW	128.0
058007	Unti at Covtrion	297911855	EA.WEL	50.2	072001	Lune at Hation	35034647	EA.NW	994.6
058008	Ditais al Caltrew	27782008	EA.wEL	43.0	072002	Wyre al St Michoels	34634411	EA.NW	275.0
058009	Ewenny at Keopera looge	29201782	EA.WEL	62.5	072004	Lune at caron	35294653	EAANW	983.0
058010	- Hopato al Exggir Carrau	29692134	EA-WEL	11.0	072005	Lune at Kiliningon New Bricge	36224507	EA-NW	219.0

Station number	River and station name	Grid reference	Authority	Area ($s q \mathrm{~km}$)	Station number	River and station nama	Grid reference	Authority	Area (sq gm)
072008	Wyre at Garstang	34884447	EA-NW	114.0	084006	Kelvin at Bridgend	26726749	SEPA-W	63.7
072009	Wenning at Wennington Road Bridge	36154701	EA.NW	142.0	084007	South Calder Wtr at forgewood	27516585	SEPA-W	93.0
072011	Rawthey at Brigg Flatts	36394911	EA-NW	200.0	084008	Rictten Calder Wit at Rediees	26796604	SEPA-W	51.3
072014	Conder at Galgate	34814554	EA.NW	28.5	084009	Nethan at Kirkmuirhill	28096429	SEPA-W	66.0
072015	Lune at Lunes Bridge	36125029	EA-NW	141.5	084011	Gryfe at Craigend	24156664	SEPA-W	71.0
072016	Wyre at Scorton Weir	35014500	EA-NW	88.8	084012	White Cart Water at Hawkhead	24996629	SEPA-W	227.2
073001	Leven at Newby Bridge	33714863	EA-NW	241.0	084013	Clyde at Daldowie	26726616	SEPA-W	1903.1
073002	Crake at Low Nibthwaite	32944882	EA-NW	73.0	084014	Avon Water at Fairholm	27556518	SEPA-W	265.5
073003	Kent at Burneside	35074956	EA-NW	73.6	084015	Kelvin at Dryfield	26386739	SEPA-W	235.4
073005	Kent at Sedgwick	35094874	EA-NW	209.0	084016	Luggie Water at Condorrat	27396725	SEPA-W	33.9
073006	Cunsey Beck at Eel House Bridge	33694940	EA-NW	18.7	084017	Black Cart Water at Milliken Park	24116620	SEPA-W	103.1
073008	Bela at Beetham	34964806	EA-NW	131.0	084018	Clyde at Tutliford Mill	28916404	SEPA-W	932.6
073009	Sprint at Sprint Mill	35144961	EA-NW	34.6	084019	North Calder Wtr at Calderpark	26816625	SEPA-W	129.8
073010	Leven at Newby Bridge	33674863	EA-NW	247.0	084020	Glazert Water at Milton of Carnpsie	26566763	SEPA-W	51.9
073011	Mint at Mint Bridge	35244944	EA-NW	65.8	084021	Whita Cart Water at Netherlee	25876597	SEPA.W	91.6
073013	Rothay at Miller Bridge House	33715042	EA-NW	64.0	084022	Durraaton at Maidencots	29296259	SEPA-W	110.3
073014	Brathay at Jeffy Knotts	33605034	EA-NW	57.4	084023	Bothlin Burn at Auchengeich	26806717	SEPA-W	35.7
074001	Duddon at Duddon Hall	31964896	EA-NW	85.7	084024	North Calder Wir at Hilland	28286678	SEPA-W	19.9
074002	1 t at Galesyke	31365038	EA-NW	44.2	084025	Luggie Water at Oxgang	26666734	SEPA-W	87.7
074003	Ehen at Ennerdale Weir	30845154	EA-NW	44.2	084026	Allander Water at Milngavie	25586738	SEPA-W	32.8
074005	Ehen at Braystones	30095061	EA-NW	125.5	084027	North Calder Wtr at Calderbank	27656624	SEPA-W	60.6
074006	Calder at Calder Hall	30355045	EA-NW:	44.8	084028 -	Monkland Canal at Woodhall	27656626	SEPA-W	60.6
074007	Esk at Cropple How	31314978	EA-NW	70.2	084029	Cander Water at Candermill	27656471	SEPA-W	24.5
074008	Duddon at Ulpha	32094947	EA-NW	47.9	084030	White Cart Water at Overlee	25796575	SEPA.W	111.8
075001	St Johns Beck at Thirmere Reservoir	33135195	EA-NW	42.1	085001	Leven at Linnbrane	23946803	SEPA-W	784.3
075002	Derwent at Camerton	30385305	EA-NW	663.0	085002	Endrick Water at Gaidrew	24856866	SEPA-W	219.9
075003	Derwent at Ouse Bridge	31995321	EA-NW	363.0	085003	Falloch at Glen Failoch	23217197	SEPA-W	80.3
075004	Cocker at Southwaite Bridge	31315281	EA-NW	116.6	085004	Luss Water at Luss	23566929	SEPA.W	35.3
075005	Derwent at Portinscale	32515239	EA-NW	235.0	086001	Little Eachaig at Dalinlongart	21436829	SEPA-W	30.8
075006	Newlands Beck at Braithwaite	32405239	EA-NW	33.9	086002	Eachaig at Eckford	21406843	SEPA-W	139.9
075007	Glenderamackin at Threikeld	33235248	EA-NW	64.5	089008 *	Eas Daimh at Eas Daimh	22397276	SEPA-W	4.5
075009	Greta at Low Briery	32865242	EA-NW	145.6	089009	Eas A Ghaill at Succoth	22097265	SEPA-W	9.7
075016	Cocker at Scatehill	31495214	EA-NW	64.0	090003	Nevis at Claggan	21167742	SEPA-N	76.8
075017	Ellen at Bullgill	30965384	EA-NW	96.0	091002	Lochy at Camisky	21457805	SEPA-N	1252.0
076001	Haweswater Beck at Burntarks	35085159	EA-NW	33.0	093001	Carran at New Kelso	19428429	SEPA-N	137.8
076002	Eden at Warwick Bridge	34705567	EA-NW	1366.7	094001	Ewe at Poolewe	18598803	SEPA-N	441.1
076003	Eamont at Udford	35785306	EA-NW	396.2	095001	Inver at Little Assynt	21479250	SEPA-N	137.5
076004	Lowther at Eamont Bridge	35275287	EA-NW	158.5	095002	Broom at Invarbroom	21848842	SEPA-N	141.4
076005	Eden at Temple Sowrroy	36055283	EA-NW	616.4	096001	Hatradate at Halladale	28919564	SEPA-N	204.6
076007	Eden at Sheepmount	33905571	EA.NW	2286.5	096002	Naver at Apigill	27139568	SEPA-N	477.0
076008	Itthing at Greenhalme	34865581	EA-NW	334.6	096003	Strathy at Strathy Bridge	28369652	SEPA-N	111.8
076009	Caldew at Holm Hill	33785469	EA-NW	147.2	096004	Strathmore at Allnabad	24539429	SEPA-N	105.0
076010	Petteril at Harraby Green	34125545	EA-NW	160.0	097002	Thurso at Halkirk	31319595	SEPA-N	412.8
076011	Coal Rurn at Coalburn	36935777	IH/EA-NW	1.5	101001 .	Eastern Yar at Alverstone Mill	45770857	EA-S	57.5
076014	Eden at Kirkby Staphen	37735097	EA-NW	69.4	101002	Medina at Upper Shide	45030874	EA-S	29.8
076015	Eamont at Pooley Bridge	34725249	EA-NW	145.0	101003	Lukely Brook at Newport	44910886	EA-S	16.2
077001	Esk at Netherby	33905718	EA-NW	B41.7	101004	Eastern Yar at Burnt House	45830853	EA-S	59.6
077002	Esk at Canonbia	33975751	SEPA-W	495.0	101005	Eastern Yar at Budbridge	453 ! 0835	EA-S	22.5
077003	Liddal Water at Rowanburnfoot	34155759	SEPA-W	319.0	101006	Wroxall Stream at Waightshale	45360839	EA-S	15.8
077004	Kirtle Water at Mossknowe	32855693	SEPA-W	72.0	101007	Scotchells Broak at Burnt Houso	45830852	EA-S	9.2
077005	Lyпe at Cliff Bridge	34125662	EA-NW	191.0	102001	Cafni at Bodffordd	24293770	EA-WEL	25.0
078001	Anran at St Mungos Manse	31255755	SEPA.W	730.3	106001	Creed at Creed Bridge	14029325	SEPA-N	43.4
078002	Ae at Elshieshields	30685852	SEPA-W	143.2	201002 .	Fairy Water at Dudgeon Bridge	24063758	DOEN	161.2
078003	Annan at Brydakirk	31915704	SEPA-W	925.0	201005	Camowen al Comowen Terrace	24603730	DOEN	274.6
078004	Kinnel Wster at Redhall	30775868	SEPA-W	76.1	201006	Drumragh at Campsia Bridge	24583722	doen	324.6
078005	Kinnel Watar at Bridgemuir	30915845	SEPA-W	229.0	201007	Burn Dennet at Burndennet Bridge	23724047	DOEN	145.3
078006	Annan at Wooctoot	30996010	SEPA-W	217.0	201008	Derg at Castlederg	22653842	DOEN	337.3
079001	Afton Water at Afton Reservoir	26316050	SEPA-W	8.5	201009	Owenkillew at Crosh	24183866	DOEN	442.4
079002	Nith at Friars Carse	29235851	SEPA-W	799.0	201010	Mourne at Drumnabuoy House	23473960	DOEN	1844.5
079003	Nith at Hall Bridge	26846129	SEPA-W	155.0	202001	Aces at Ardnargle	26744247	doen	365.6
079004	Scer Water at Capenoch	28455940	SEPA-W	142.0	202002	Faughan at Orumahoe	24644151	DOEN	272.3
079005	Cluden Water at Fiddlers Ford	29285795	SEPA-W	238.0	203010	Blackwater at Maydown Bridge	28203519	DOEN	951.4
079006	Nith at Drumlanrig	28585994	SEPA.W	471.0	203011	Main at Dromona	30524086	doen	228.8
079007	Lochar Water at Kirkblain Bridge	30265695	SEPA-W	125.0	203012	Batinderry at Ballinderry Bridge	29263799	DOEN	419.5
080001	Urr at Dalbeattie	28225610	SEPA-W	199.0	203013	Main at Andraid	30923973	DOEN	646.8
080002	Dee at Gleniochar	27335641	SEPA-W	809.0	203017	Upper Bann at Dynes Bridge	30433509	DOEN	335.6
080003	White Laggan Burn at Loch Dee	24685781	SEPA-W	5.7	203018	Six Mile Water at Antrim	31463867	DOEN	277.3
080004	Greenburn at Loch Dee	24815791	SEPA-W	2.6	203019	Claudy at Glenone Eridge	29624037	doen	130.1
080005	Dargall Lane at Loch Dee	24515787	SEPA-W	2.1	203020	Mayole at Moyola Naw Bridge	29553905	DOEN	306.5
080006	Blackwater at Loch Dee	24785797	SEPA-W	15.6	203021	Kells Water at Currys Bridge	31063971	DOEN	127.0
081001	Perwhim Burn at Penwhirm Reservoir	21285694		18.2	203023	Torrent at The Moor Bridge	28583649	DOEN	59.9
081002	Cree at Newton Stewart	24125653	SEPA-W	368.0	203024	Cusher at Gambles Bridge	30483471	DOEN	176.7
081003.	Luce at Airyhemming	21805599	SEPA-W	171.0	203025	Callan at Callan New Bridge	28933524	DOEN	164.1
$081004{ }^{\text {. }}$	Bladnoch at Low Malzia	23825545	SEPA W	334.0	203026	Glenavy at Glenavy	31493725	doen	44.6
081005	Piltanton Bum at Barsolus	21075564	SEPA-W	34.2	203027	Braid at Ballee	30974014	DOEN	177.2
081006	Water of Minnoch at Minnoch Bridge	23635746	SEPA-W	141.0	203028	Agivey at White Hill	28834193	doen	98.9
081007	Water of Fleet at Rusko	25925590	SEPA-W	77.0	203029	Six Mile Water at Ballyclare	32823902	DOEN	58.4
082001	Girvan at Robstone	22175997	SEPA-W	245.5	203033	Upper Bann at Bannfiekd	32333341	DOEN	100.9
082002	Doan at Auchendrane	23386160	SEPA-W	323.8	203038	Rocky at Rocky Mountain	32433265	DOEN	6.7
082003	Stinchar at Balnowlart	21085832	SEPA.W	341.0	203040	Lower Bann al Movanagher	29314154	DOEN	5209.8
083001	Caaf Water at Knockendan Reservoir	22456514		6.0	203042	Crumtin at Cidercourt Bridge	31353765	doen	54.0
083002	Garnock at Dalry	22936488	SEPA-W	88.9	203092	Main at Dunminning-Lower	30514111	doen	211.7
083003	Ayr at Catrine	25256259	SEPA.W	166.3	203093	Main at Shane's Viaduct	30863896	DOEN	704.2
083004	Lugar at Lengholm	25086217	SEPA-W	181.0	204001	Bush at Seneirl	29424362	DOEN	306.1
083005	İvine at Shewalton	23456369	SEPA-W	380.7	205003 *	Lagan at Dunmurry	32993679	DOEN	444.7
083006	Ayr at Mainholm	23616216	SEPA-W	574.0	205004	Lagan at Newforge	33293693	DOEN	490.4
083007	Lugton Water at Eglinton	23156420	SEPA-W	54.6	205005	Ravernet at Ravernet	32673613	DOEN	69.5
083008	Annick Water at Dreghorn	23526384	SEPA-W	95.3	205006	Lagan at Blaris	32593628	DOEN	315.9
083009	Garnock at Kilwinning	23076424	SEPA-W	183.8	205008	Lagan at Drummiller	32363525	DOEN	85.2
083010	Irvine at Newmilns	25326372	SEPA-W	72.8	205010	Lagan at Banoge	31233540	DOEN	189.8
084001	Kolvin as Killermont	25586705	SEPA-W	335.1	205020	Enler at Comber	34593697	DOEN	59.8
084002	Caldar at Muirshial	23096638		12.4	206001	Clanrye at Mount Mill Bridge	30863309	DOEN	132.7
084003	Clyde at Hazelbank	28356452	SEPA-W	1092.9	206002	Jerretspass at Jerretspass	30643332	doen	41.7
084004	Clyde at Sills	29276424	SEPA W	741.8	236005 -	Colebrooke at Ballindarragh Bridge	23313359	doen	309.1
084005	Clyde at Blairston	27046579	SEPA-W	1704.2	236007	Sillees at Drumrainy Bridge	22053400	DOEN	167.6

[^10]- = closed, or no data for post 1992 have been received.

See pages 172 and 173 for listing of extant measuring authorities and the authority codes [gauging stations operated by the Environment Agency have been assigned to the regions on the basis of the 1995 National River Authority regional boundaries).

GROUNDWATER LEVEL DATA

Background

Groundwater may be obtained from almost any stratum in the sedimentary succession in the British Isles, as well as from igneous and metamorphic rocks. In many, such as clays and shales, volcanics and metamorphics, the permeable zone may well be limited to the depth to which weathering may reach, and this is likely to be no more than some 50 metres beneath the ground surface. In those strata which are not generally recognised to be aquifers, well-yields tend to be small (of the order of only a few cubic metres per day), uncertain as a continuous source (tending to fail in prolonged droughts), with an indifferent water quality, and with the sources vulnerable to pollution.

The more generally recognised aquifers are listed in Table 6 with the Chalk, the Lincolnshire Limestone and the Permo-Triassic sandstones as the most important from the viewpoint of public supply. From aquifers such as these, yields of 3000 to 4500 cubic metres per day are not unusual.

For the next category, including the Upper and Lower Greensand and the Magnesian Limestone, yields to individual wells of 1500 to 3000 cubic metres per day can generally be expected. In the other aquifers, while occasional sources sufficient for large supplies may be developed, they tend to be important only locally. The outcrop areas of the major aquifers are shown in Figure 10; throughout Wales, Scotland and Northern Ireland aquifers are less extensively developed and tend to be only of relatively local importance.

The groundwater resources of an aquifer are naturally replenished from rainfall. During the summer months, when the pótential evapotranspiration is high and soil moisture deficits are appreciable, little infiltration takes place. Water levels in the aquifer fall as storage is depleted by flows to rivers and springs, and by pumped abstractions. The normal recharge of an aquifer takes place during the winter months when the potential evapotranspiration is low and soil moisture deficits are negligible; groundwater levels rise in response to this recharge

Only the largest artificial reservoirs in the United Kingdom have sufficient capacity to support demands through the driest summers, assuming that they were full in the spring, without some continuous contributions from river intakes. Prolonged dry spells lead in many rivers to reduced flow, particularly where the natural groundwater contribution (baseflow) is limited. Consequently, while surface water droughts may be in part due to the failure of runoff from winter rainfall to fill the reservoirs, they are more frequently caused by a decrease in the summer flows of streams and rivers. Surface water droughts do, however, lead to increased consumption
of water (where available). By way of contrast, a groundwater drought is caused by a lack of winter rainfall. Potentially, the most serious droughts occur when, as in 1975/76, a dry summer succeeds a notably dry winter or, as in 1988-92 in eastern England, recharge is significantly below average over successive winters.

The Observation Borehole Network

Groundwater level observation wells (in this context, a well includes both shafts - constructed by hand digging - and boreholes - constructed by machinery) are generally used for one of two purposes; to monitor levels regionally and thus to estimate groundwater resource fluctuations, or to monitor the effects locally of groundwater abstractions.

The observation well network was reviewed in 1981 by the British Geological Survey (then the Institute of Geological Sciences) with the aim of selecting 200 to 300 sites from the existing national archive to be used for periodical assessments of the national groundwater situation. The selection was based upon the hydrogeological units identified in an investigation of the groundwater resources of the United Kingdom ${ }^{1}$; one site was chosen for each aquifer present within each unit. For Scotland and Northern Ireland this was not possible due to the very limited number of potential observation wells available. In England and Wales the total number finally selected was 175^{2}. Minor changes to the national network have been made in recent years see page 148 for the changes in 1995.

Details of the wells currently in this national network are given in the Register of Selected Groundwater Observation Wells (see page 154).

Measurement and Recording of Groundwater Levels

The majority of observation wells are still measured manually either weekly or monthly. The usual instrument is an electric probe suspended upon a graduated cable or tape, contact being made by the water to complete a circuit which gives either an audible or visual signal at the surface. Measurements are normally made to the nearest 10 millimetres, although instruments may be accurate to 1 millimetre.

Some observation wells are equipped with continuous water level recorders. These recorders normally measure level either using a float activated mechamism or, less commonly, a pressure transducer. Data are recorded on paper charts, punched tapes (now rarely used) or solid state loggers. At a small but increasing number of sites provision is

TABLE 6 GENERALISED LIST OF AQUIFERS IN THE UNITED KINGDOM

Era	System	Subsystem	Aquifer	Importance
0000233	Quaternary	Holocene	Superficial deposits	*.
		Pleistocene	Upper and Middle Pleistocene	*
			Crag	**
	Neogene	Pliocene	Coralline Crag	**
		Oligocene		
	Paleogene	Eocene	Bagshot Beds	
			Lower London Tertiaries	
			Blackheath \& Oldhaven Beds	
			Woolwich \& Reading Beds	*
			Thanet Beds	**
UO0000	Cretaceous	Upper Cretaceous	Chalk	****
			Upper Greensand	***
		Lower Cretaceous	Lower Greensand	***
			Hastings Beds	**
	Jurassic	Upper Jurassic	Portland \& Purbeck Beds (with Spilsby Sandstone)	(**)
			Corallian	**
		Middle Jurassic	Great \& Inferior Oolitic limestones (with Lincolnshire Limestone)	$\begin{gathered} \star \star \\ (* * * *) \end{gathered}$
		Lower Jurassic	Bridport \& Yeovil Sands	**
			Marlstone Rock	
PALAEOZOIC	Triassic	Upper Triassic	Permo-Triassic sandstones	
		Lower Triassic		
	Permian			
			Magnesian Limestone	***
	Carboniferous	Upper Carboniferous	Coal Measures	**
			Millstone Grit	**
		Lower Carboniferous	Carboniferous Limestone	**
	Devonian		Devonian sandstone	*

[^11]

Figure 10 Principal aquifers and representative borehole locations
Note: The Chalk and Upper Greensand are now regarded as separate aquifers
made for the routine transmission - usually by telephone line - of measured levels to local or regional centres.

Observation Well Hydrographs 1991-95

Well hydrographs for 32 observation sites are shown in Figure 11; the location of the sites is shown on Figure 10. For each borehole, the 1991 to 1995 groundwater hydrographs are illustrated as a continuous trace, together with the average and extreme monthly levels for the pre-1991 record (provided sufficient historical data are available) as castellated traces. Five-year plots have been used both to illustrate the remarkable variation of groundwater levels over the recent past and because the volume of groundwater stored in aquifers can reflect not only the infiltration taking place during the winter months of 1994/95, but also that occurring in previous years. When comparing the hydrographs for a number of sites account should be taken of the differing scales used to illustrate the water-table fluctuations.

For the Killyglen borehole the long-term monthly extremes and mean traces have been omitted due to the limited amount of historical data available. At a few other sites the historical data do not provide an appropriate basis for comparison with contemporary groundwater levels; the earliest level records are of dubious accuracy and have been ignored when computing the relevant maximum, minimum and mean values. For others, substantial changes in the pattern and/or magnitude of groundwater abstraction limit the representativeness of any segment in the groundwater level time series.

The majority of observation boreholes for which data are held on the National Groundwater Level Archive monitor the natural variation in levels. However, in parts of the United Kingdom levels have been influenced, sometimes over long periods, by pumping for water supply or other purposes which exceeds the natural rate of replenishment. As a consequence the regional water-table may become substantially depressed. For instance, the levels at a number of observation boreholes in the PermoTriassic sandstones of the Midlands are indicative of a significant regional decline. By contrast those at Rushyford (Northumbria) now stand substantially higher than 15 years ago despite a downtrend in 1994. This reflects, in part, a rundown of the coal industry and the consequent cessation of continuous pumping for mine dewatering. A more protracted recovery is evident for the Trafalgar Square borehole which penetrates the confined Chalk below central London. As a result of increasingly heavy abstraction groundwater levels declined by around 70 metres from the early 18th century to the late 1950s. Subsequently, much reduced abstraction rates have allowed groundwater levels to rise, latterly by about two metres a year. Rising groundwater levels have also been reported from other conurbations in

Britain - leakages from water mains is considered to be a significant factor in some cases. The implications of rising groundwater levels extend beyond the potential improvement in resources that the rise represents. Groundwater quality may be adversely affected as levels approach the surface and a number of geotechnical problems may result, for instance the flooding of tunnels and foundations.

Register of Selected Groundwater Observation Wells

Scope

The sites listed in the Register were selected so as to give a reasonably representative cover for aquifers throughout England and Wales. Some sites are also included for Scotland and Northern Ireland. The wells are grouped according to the aquifer to which the water level variations in the wells are attributed. A generalised list of aquifers is given on page 146; most of the local names for individual strata are omitted and the intervening aquicludes are not shown.

Network Changes

Since the original selection of boreholes for incorporation in the national network, a number of changes have been made to the list of selected wells. At some locations observations could no longer be continued and new sites have been added from time to time. Details of the wells in the national network are given in the Register of Selected Groundwater Observation Wells.

Six new sites have been added to the Register in the 1995 Yearbook:

Chalk

TA 10/6 Pimlico
TF 29/49 Grainsby
TQ 40/45B Blackcap Farm No. 2

Lincolnshire Limestone

TF 06/47 Stow No. 2

Magnesian Limestone

NZ 21/29 Swan House

Carboniferous Limestone

NT 94/3B Royalty Observatory

The Register

The six columns of the register are:

Well Number

The well numbering system is based upon the National Grid. Each 100 kilometre square is designated by prefix characters, e.g. SE, and is divided into 100 squares of 10 kilometre sides designated by numbers 00 (in the south-west corner) to 99 (in the north-east corner). Thus, the site SE94/5 is located in the 10 kilometre square SE94 while the number after the solidus denotes that the site is the fifth accessed in this square in the National Well Record Collection. A suffix such as A, B, etc., defines the particular well when there are several at the same site. For Northern Ireland, which is on the Irish Grid, the first of the prefix characters is always "I".

Two asterisks following the well number indicates a well for which a hydrograph is shown on pages 150 to 153 .

Grid Reference

The eight-figure references given in the Register relate to the 100 kilometre National (or Irish) Grid square designated by the two-letter code appearing as the prefix characters in the Well Number.

Site

The name by which the well is normally referenced. The location of all the sites listed in the Register are shown on Figure 10.

Measuring Authority

An abbreviation referencing the organisation responsible for measuring the groundwater level. A full list of codes, together with the corresponding names and addresses appears on pages 172 and 173.

Records commence

The first year for which records are held on the National Groundwater Level Archive.

Indicated \% Annual Recharge

The difference between the level measured at the end of the summer recession of groundwater levels and that measured at the beginning of the summer recession of the following year reflects the amount of recharge received in that period. Details of the procedures followed to assess the annual recharge are given in the Hydrometric Register and Statistics

1981-5 volume. The method is most suited to circumstances when a single peak is readily identifiable in each recharge season. Where recharge follows an uneven pattern resulting in poorly defined or multiple peaks, the percentage of the mean annual recharge is often unrepresentative. Consequently, the original method has been modified to produce more realistic values of recharge and to allow more accurate comparison between sites. First, the recharge period is arbitrarily defined as the first day of August to the end of the following July. Next, the water level at each site is estimated, by extrapolation where necessary, for the last day of each month. Finally, all the rises in successive months are summed over each recharge period. Prior to 1993 the calculation of recharge was made manually. The process has now been fully computerised. Recharge is only calculated for years where there is a continuous data series, with no more than 60 days between readings of levels.

The summed rise for each year is called the 'annual fluctuation' and the mean of the annual fluctuations over the period of record is termed the 'mean annual recharge' (MAR). This also assumes that the natural discharge (via, for instance, springs and seepages) is constant; while this is not the case in view of the large differences of head that are recorded in some observation wells, there is insufficient information currently available to permit corrective factors to be determined. It is considered that the errors caused by this assumption will be small.

The annual fluctuation is then expressed as a percentage of the MAR and thus represents the percentage of the mean annual recharge received for that year. Acknowledging the limited precision in the estimation procedure the percentages are rounded (to the nearest 5%) and are tabulated in the last column of the Register; see page 21 for a discussion of the precision of the 1994/95 recharge assessments.

References

1. Monkhouse, R.A., and Richards, H.J. (1982). Groundwater resources of the United Kingdom. Commission of the European Communities, published Th. Schaeffer Druckerei GmbH, Hannover, 252 pages.
2. Monkhouse, R.A., and Murti, P.K. (1981). The rationalisation of groundwater observation well networks in England and Wales. Institute of Geological Sciences, Unpublished Report No. WD/81/1, 18 pages.

Figure 11 Hydrographs of groundwater level fluctuations 1991-95

Figure 11-(continued)

Figure 11-(continued)

Figure 11-(continued)

The Register

Well Number	Grid Reference	Site	Measuring Authority	Records Commence	Indicated \% Annual Recharge 1994/95
Aquifer: Superficial Deposits					
IJ28/1	22488620	Dunadry	DOEN	1984	175
SO44/4	46834253	Stretton Sugwas	EA-WEL	1973	135

Aquifer: Chalk					
ID30/1**	36630310	Killyglen	DOEN	1985	65
SE94/5**	96514530	Dalton Holme	EA-NE	1889	155
SE95/6**	95785939	Wetwang	EA-NE	1971	135
SE97/31	93457079	Green Lane	EA-NE	1971	115
SP90/26	94700875	Champneys	EA-T	1962	---
SP91/59	93801570	Pitstone Green Farm	EA-A	1970	---
SU01/5B**	01601960	West Woodyates Manor	EA-SW	1942	120
SU17/57**	16557174	Rockley	EA-T	1933	140
SU32/3	38172743	Bailey's Down Farm	EA-S	1964	145
SU34/8A	32154875	Clanville Lodge	EA-S	1963	175
SU35/14	33155645	Woodside	EA-S	1959	
SU51/1	59101680	Upper Hill Farm	EA-S	. 1965	285
SU53/94	55863498	Abbotstone	EA-S	1976	250
SU57/159	56287530	Calversleys Farm	EA-T	1974	170
SU61/32	65781775	Chidden Farm	EA-S	1958	125
SU61/46	68901532	Hinton Manor Farm	EA-S	1952	---
SU64/28	63604049	Lower Wield Farm	EA-S	1958	---
SU68/49	64428525	Well Place Farm	EA-T	1976	155
SU71/23**	77551490	Compton House	EA-S	1894	140
SU73/8	70483491	Faringdon Station	EA-S	1966	95
SU76/46	73676251	Riseley Mill	EA-T	1975	145
SU78/45A	74198924	Stonor Park	EA-T	1961	140
SU81/1	83561440	Chilgrove House	EA-S	1836	175
SU87/1	83367885	Folly Cottage, Coldharbour	EA-T	1950	130
SU89/7	81039417	Piddington	EA-T	1966	115
SY68/34**	66158805	Ashton Farm	EA-SW	1974	115
TA06/16	04906120	Nafferton P.S	EA-NE	1964	115
TA07/28	09407740	Hunmanby Hall	EA-NE	1976	145
TA10/6	11320787	Pimlico	EA-A	1929	105
TA11/158**	14931019	Keelby Grange	EA-A	1980	145
TA21/14	26701890	Church Farm	EA-NE	1971	115
TF29/49	26049823	Grainsby	EA-A	1977	100
TF72/11	77102330	Off Farm	EA-A	1971	80
TF73/9	77903270	Coe Ltd, Bircham	EA-A	1971	45
TF80/33	87300526	Houghton Common	EA-A	1971	135
TF81/2**	81381960	Washpit Farm	EA-A	1950	95
TF83/1	85783606	South Creake School	EA-A	1952	85
TF92/5	98692183	Tower Hills P.S	EA-A	1974	105
TG00/92	04400020	High Elm Farm, Deopham	EA-A	1971	---
TG03/25B	03823583	The Hall, Brinton	EA-A	1952	--
TG11/5	16911101	The Sprinney, Costessey	EA-A	1952	115
TG12/7	11262722	Heydon Pumping Station	EA-A	1974	125
TG21/9	24001657	Frettenham Depot	EA-A	1952	105
TG21/10	26991140	Grange Farm	EA-A	1952	150
TG23/21	29323101	Melbourne House	EA-A	1974	105
TG31/20	33651606	Woodbastwick Hall	EA-A	1974	105
TG32/16	37002682	Brumstead Hall, Stalham	EA-A	1978	145
TL11/4	15601555	Mackerye End House	EA-T	1963	185
TL11/9**	16921965	The Holt	EA-T	1964	145
TL13/24	12003026	West Hitchin	EA-A	1970	70
TL22/10	29782433	Box Hall	EA-T	1964	
TL33/4**	33303720	Therfield Rectory	EA-T	1883	180
TL42/6	45362676	Hixham Hall	EA-T	1964	145
TL42/8	46692955	Berden Hall	EA-T	1964	130
TL44/12**	45224182	Redlands Hall	EA-A	1963	155
TL55/109	59255605	Lower Farm	EA-A	1983	135
TL72/54	79822516	Rectory Road	EA-A	1968	< 75
TL84/6	84654106	Smeetham Cottages, Bulmer	EA-A	1963	170
TL86/110	88506470	Cattishall Farm	EA-A	1969	
TL89/37	81319001	Grimes Graves	EA-A	1971	120
TL92/1	96572562	Lexden Pumping Station	EA-A	1961	75
TM15/112**	12015618	Dial Farm	EA-A	1968	35
TM26/46	24616109	Fairfields	EA-A	1974	95

Well Number	Grid Reference	Site	Measuring Authority	Records Commence	Indicated \% Annual Recharge 1994/95
TM26/95	27866397	Strawberry Hill	EA-A	1974	--
TQ01/133	08501170	Chantry Post, Sullington	EA-S	1977	120
TQ21/11	28501289	Old Rectory, Pyecombe	EA-S	1958	335
TQ28/119B**	22968051	Trafalgar Square	EA-T	1845	--
TQ31/50	32201180	North Bottom	EA-S	1979	---
TQ35/5**	33635924	Rose and Crown	EA-T	1976	120
TQ38/9	35098536	Hackney Public Baths	EA-T	1953	95
TQ40/45B	46640387	Blackcap Farm No. 2	EA-S	1970	200
TQ50/7	55920380	The Old Rectory	EA-S	1965	
TQ56/19	56486124	West Kingsdown	EA-S	1961	> 300
TQ57/118	58807943	Thurrock A13	EA-A	1979	125
TQ58/2B	56228408	Bush Pit Farm	EA-T	1967	130
TQ86/44	85956095	Little Pett Farm	EA-S	1982	245
TQ99/11	94709710	Burnham-on-Crouch	EA-A	1975	85
TR14/9**	12254690	Little Bucket Farm	EA-S	1971	180
TR14/50	12654167	Glebe Cottage	EA-S	1970	
TR24/26	27874003	Church House	EA-S	1971	---
TR36/62	32086634	Alland Grange	EA-S	1969	--
TV59/7C**	52909920	Westdean No. 3	EA-S	1940	190

Aquifer: Upper Greensand

ST30/7**	37630667	Lime Kiln Way	EA-SW	1969	150
Aquifer: Lower Greensand					
SU82/57	88882505	Madams Farm	EA-S	1984	
SU84/8A	87164087	Tilford Pumping Station	EA-T	1971	-
TL45/19	41105204	River Farm	EA-A	1973	125
TQ41/82	43701320	Lower Barn Cottage	EA-S	1975	20
TR13/21	11323881	Ashley House	EA-S	1972	-
TR23/32	20753650	Morehall Depot	EA-S	1972	-

Aquifer: Hastings Beds

TQ22/1	23482770	The Bungalow	EA-S	1964	225
TQ42/80A	47252990	Kingstanding	EA-S	1979	-
TQ61/44	66581803	Dallington Herrings Farm	EA-S	1964	105
TQ62/99	61992282	Whiteoaks, Heathfield	EA-S	1978	--
TQ71/123	79691659	Red House	EA-S	1974	--

Aquifer: Upper Jurassic

SE68/16	68908590	Kirkbymoorside	EA-NE	1975	-
SE77/76	76907300	Broughton	EA-NE	1975	115
SE98/8	99108540	Seavegate Farm	EA-NE	1971	--
SU49/75B	46519736	Marcham	EA-T	1988	190
Aquifer: Middle Jurassic					
SP00/62**	05950190	Ampney Crucis	EA-T	1958	
SP20/113	27210634	Alvescot Road	EA-T	1983	90
ST51/57	59101690	Over Compton	EA-SW	1971	125
ST88/62A	82758743	Didmarton 1	EA-SW	1977	95

Aquifer: Lincolnshire Limestone

SK97/25	98007817	Grange de Lings	EA-A	1975	60
TF03/37*ぇ	08853034	New Red Lion	EA-A	1964	110
TF04/14	04294273	Silk Willoughby	EA-A	1972	100
TF06/47	04726938	Stow No. 2	EA-A	1972	100

Aquifer: Permo-Triassic Sandstones

IJ26/2	29506900	Dunmurry	DOEN	1985	45
NX97/1**	96677432	Redbank	SEPA-W	1981	85
NY00/328	05110247	Brownberry Layby	EA-NW	1974	165
NY14/4**	12464555	New Cowper	EA-NW	1977	110
NY45/16	49475667	Corby Hill	EA-NW	1977	-
NY63/2**	61303250	Skirwith	EA-NW	1978	155
NZ41/34	48611835	Northern Dairies	EA-NE	1974	-
SD27/8	21727171	Furness Abbey	EA-NW	1972	30
SD40/137	41285210	Moor Hall	EA-NW	1983	15

| Well | Grid | Site | | | Records |
| :--- | :--- | :--- | :--- | :--- | ---: | Indicated \% Annual

Aquifer: Coal Measures

SE23/4	28503414	Silver Blades Ice Rink	EA-NE	1971	100

Aquifer: Millstone Grit					
SE02/46	07712528	Thrum Hall	EA-NE	1977	---
SE04/7	02954792	Lower Heights Farm	EA-NE	1971	215
SE24/2B	20674053	Green Lane Dyeworks	EA-NE	1971	155
SE27/8	21207380	Kirby Moor Farm	EA-NE	1971	110
Aquifer: Carboniferous Limestone					
NT94/3B	93654747	Royalty Observatory	EA-NE	1990	---
NT95/21	96955055	Middle Ord	EA-NE	1969	---
SE06/1	02416183	Jerry Laith Farm	EA-NE	1971	<200
SK15/16**	12925547	Alstonfield	EA-M	1974	125
SK17/13	17787762	Hucklow South	EA-M	1969	95
ST64/33	65604790	Oakhill No. 1	EA-SW	1974	120

[^12] substituted.

THE NATIONAL GROUNDWATER LEVEL ARCHIVE DATA RETRIEVAL SERVICE

The National Groundwater Level Archive includes water level data for around 170 representative wells and boreholes in the United Kingdom; the average length of record is around 22 years. This archive is supplemented by historical water level data (up to 1974 generally) for approximately 3000 additional monitoring sites.

The data are stored on a computer database and water level records may be made available in various forms as specified by users. Retrievals are available for all of the sites listed in the Register of Selected Groundwater Observation Wells, although not all the data contained within the archive have been validated.

In addition, five standard options are available for retrieving data. A description of each option is given overleaf. Options 1 to 4 give details of the well site, the period of record available, and maximum and minimum recorded levels in addition to the output specific to each option. Data may be retrieved for a specific well or for groups of wells by well reference numbers, by area (using National Grid References), by aquifer, by hydrometric area, by measuring authority, or by any combination of these parameters. Data may be output to paper or in digital form and can be transferred over the Internet.

Cost of Service

To cover the computing and handling costs, a moderate charge will be made depending on the data requested. Estimates of these charges may-be obtained on request; the right to amend or waive charges is reserved.

Requests for Retrieval Options:

Requests for retrieval options should include: the name and address to which the output should be directed, the sites, or areas, for which data are required together with the period of record of interest (where appropriate) and the title of the required option. Where possible, a daytime telephone number should be given.

Requests should be addressed to:

The British Geological Survey
Hydrogeology Group
WALLINGFORD
Oxfordshire OX10 8BB

Telephone: (01491). 838800
Facsimile: (01491) 692345

Further information concerning the range of data retrieval services, the British Borehole Catalogue CD ROM, and planned developments, is available via the British Geological Survey's Web Site:
http.//www.nkw.ac.uk/bgs/index.html

Long Term Groundwater Level Hydrographs

Details of the wallcharts of long term variations in groundwater level variations at several index sites are given on page 175.

The National Well Record Archive

The British Geological Survey (BGS) also maintains the National Well Record Archive (NWRA) for England and Wales. Currently this archive includes hydrogeological details and reference information for over 150,000 shafts, boreholes and some springs - predominantly constructed or used for water supply or the monitoring of groundwater levels or quality. The archive is organised into paper files based upon the 10 kilometre squares of the National Grid. Each file includes a register which details the accession number, depth, national grid reference and certain other details. This material is an essential component in the hydrogeological enquiry service operated by BGS and the register details are in the process of being transferred to a digital format.

The archive is located at the Wallingford Office of BGS (address opposite) and all the non-confidential records are open to inspection by the general public. Those wishing to avail themselves of this facility should contact the BGS Records Section in advance to discuss access procedures and costs.

National Geosciences Information Centre

The NWRA is associated with the National Geosciences Information Service (NGIS), one of a number of computer-based centres established at NERC Institutes. The NGIS is located at the BGS Headquarters, Keyworth, near Nottingham (Telephone: 0115936 3100) and provides access to a broad range of geological information (for example, geophysical and hydrogeological logs, core samples and chemical analyses).

LIST OF GROUNDWATER RETRIEVAL OPTIONS

OPTION TITLE
1 Table of groundwater levels

Table of annual maximum

Table of monthly maximum, minimum and mean groundwater levels

Hydrographs of groundwater levels

Site details

NOTES
All recorded observations of groundwater level in metres above Ordnance Datum, with dates of observation and maximum and minimum levels for each year. Specific years, or ranges of years, may be requested, otherwise the full period of record is given.

Annual maximum and minimum groundwater levels in metres above Ordnance Datum levels with dates of occurrence. Specific years, or ranges of years, may be requested, otherwise the full period of record is given.

Monthly maximum, minimum and levels in metres above Ordnance Datum, mean groundwater levels together with the number of years contributing values to the calculation of each monthly mean. A specific period of years may be nominated, otherwise the full period of record is given.

Provides a well hydrograph for a number groundwater levels of specified years. Castellated annual plots of monthly maximum and mean groundwater levels calculated from a nominated period of years are superimposed upon the hydrograph, provided that the nominated period exceeds 10 years. Tabulations of the monthly maximum, minimum and mean values are also listed, together with the number of years of record used in the calculations, and the number of observations used for each month.

The output comprises the well reference number of the British Geological Survey, the original (Water Data Unit) station number (where applicable), the hydrometric area, the aquifer name and code, the site name and location, the National Grid Reference, the depth of the well, the datum points (from which measurements are made), the altitude of the ground surface, the period of record and the water authority area in which the well or borehole is located.

SURFACE WATER QUALITY DATA

Background

A national archive of water quality data is maintained by the Environmental Protection Statistics Division of the Department of the Environment (DoE) to provide information concerning the quality of rivers throughout the United Kingdom and to satisfy certain international obligations including the estimation of riverborne inputs of selected contaminants (e.g. nutrients) to the sea. Data for this archive are collected as part of the Harmonised Monitoring programme which provides for the sampling and analysis of water quality on a national basis.

The Harmonised Monitoring Scheme was established, for England and Wales, in 1974; a similar scheme was instituted for Scotland in July 1975 and operates under the aegis of the Scottish Office Environment Department. Responsibility for the collection and analysis of samples passed, on the 1st April 1996, from the former River Purification Boards to the newly-created Scottish Environment Protection Agency. Similarly in England and Wales responsibility passed from the former National Rivers Authority to the newly-created Environment Agency (see page 2).

Measuring authorities send analytical results of routinely collected samples of river water from approximately 200 monitoring stations; sampling frequencies vary substantially but are, typically, in the range 6 to 52 per year. Most of the monitoring stations are located on major rivers at, or near, the tidal limit.

The monitoring programme can embrace a large number - over 80 - of physical and chemical attributes of river water but typically only 25 are measured at any given site. A number of determinands are measured as standard but a larger proportion are monitored only where it is considered necessary to do so.

To allow mass flows to be assessed river flow data are stored alongside the water quality data on the Harmonised Monitoring database. Where available, both the instantaneous (corresponding to the sampling time) and daily mean flows are held. At a few monitoring sites there are currently no facilities for measuring flow. A complete list of Harmonised Monitoring sites together with their associated gauging stations (for some HM sites it is necessary to sum the flows for a number of upstream tributaries) is given on pages 170 to 171 . In order to increase the utility of the HM archive the completeness and consistency of flow data has recently been comprehensively examined in conjunction with the flows held on the National River Flow Archive. Daily mean flows for over 80% of the sample dates are now held on the HM database.

Currently no data for Northern Ireland are held on the Harmonised Monitoring Archive. Water
quality data are, however, routinely collected and archived by the Environment Service (from April 1996, The Environment and Heritage Service) of the Department of the Environment; data for two Northern Ireland monitoring sites are included in this publication.

The measuring authorities maintain major programmes of chemical and biological sampling of rivers for their own purposes; the monitoring networks involved provide a far more comprehensive coverage than the selected sites incorporated in the Harmonised Monitoring programme. From the 31st July 1985, the former Water Authorities in England and Wales were required, under the Control of Pollution Act, to maintain registers of the results of all samples of water and effluent taken for pollution control purposes together with details of all consented discharges. Following the enactment of the Water Bill 1989 this obligation passed to the National Rivers Authority and, in 1996, to the Environment Agency. These registers are maintained at the regional headquarters of the Environment Agency (see page 172) and are open for inspection by the public - free of charge. Persons wishing to consult the registers are advised to first

Figure 12 Water quality monitoring station location map
contact the individual regional headquarters; a list of addresses is given on pages 172 to 173 .

Data Retrieval

A comprehensive range of retrieval options has been developed by DoE to make available the water quality data held on the Harmonised Monitoring Archive and to provide statistical summaries based on that data. Requests for data, and guidance concerning its availability, should be addressed to:

Department of the Environment
Environmental Protection Statistics Division
Room A105
Romney House
43 Marsham Street
LONDON SW1P 3PY
Telephone: 01712768245
Data listings for monitoring sites in Northern Ireland may be obtained from the Environmental Protection Division of the DoE (NI) - see page 173.

Scope of the Water Quality Data Tabulations

River water quality data are presented for 32 monitoring sites on rivers throughout the United Kingdom; the location of each monitoring site is given on Figure 12. The Harmonised Monitoring Station on the Dorset Stour (Station No: 08200) was decommissioned in 1995 and, for this Yearbook, data from the River Frome at Holme Bridge (08400) have been substituted.

For each site 1995, and period of record, data are given for a range of determinands; the determinands featured may differ between monitoring sites reflect. ing the character of the rivers themselves and differences in the sampling regimes between:

The following notes are provided to assist in the interpretation of particular data items.

Harmonised Monitoring Station Code

A reference number which serves as the primary identifier of the station. For stations on the Harmonised Monitoring Archive the first two digits refer to the measuring authority, the remainder refer to individual sites within each measuring authority. For the Northern Ireland stations the Department of the Environment (NI) reference code is given.

Measuring Authority

An abbreviation referencing the organisation responsible for the operation of the monitoring site.

See pages 172 and 173 for a full list of the codes together with the corresponding authority names and addresses.

Grid Reference

The initial two-letter and two-figure codes each designate the relevant 100 kilometre National Grid square or Irish Grid square (distinguished by the italicised two-figure code - see page 36); the standard six-figure map reference follows.

Associated Flow Measurement Station

For monitoring sites in Great Britain the reference number, name, catchment area and grid reference of the gauging station which provides the discharge data stored on the Harmonised Monitoring Archive. At most sites the flow corresponding to the time the quality sample was taken is archived; at other locations the corresponding daily mean flow is utilised. Where the gauging station and water quality monitoring site are not coincident, some method of flow adjustment may have been employed to allow for the differing catchment areas. For the Northern Ireland monitoring sites reference details of the colocated gauging stations are given; the flow data for these stations are held on the National River Flow Archive.

1995 flow data for all but one of the relevant gauging stations in Great Britain may be found in the River Flow Data section. The shortness of the flow record for the Fleet Weir gauging station on the River Aire precludes its incorporation in the River Flow Data section; summary river flow data for 1995 are, however, included at the head of the water quality listing.

Determinands

Inadequate or unrepresentative sampling frequencies, or the presence of a substantial number of samples with concentrations recorded at, or below, the limit of detection, will normally result in the omission of a particular determinand.

Notes:

i. Conductivity results are standardised to $20^{\circ} \mathrm{C}$.
ii. The biochemical oxygen demand data normally relate to the inhibited analytical results BOD(atu).
iii. Nitrate concentrations are normally derived by subtracting the nitrite concentration from the reported Total Oxidised Nitrogen (TON) concentration; if the nitrite determination is below the limit of detection, nitrate is recorded as equivalent to TON.

Units

The standard units used to record and report each determinand. The number of significant figures given for each determinand corresponds to the way the data are stored on the Harmonised Monitoring or DoE (NI) Archives and reflects the uncertainty associated with the relevant analytical procedures.

1995 Data

Samples

The number of samples taken for each determinand during 1995. Where a proportion of analytical results were below the limit of detection (which may vary according to the analytical procedure used), the number of samples in this category is given in parentheses. Normally determinands are not featured when the number of samples in the year is less than about six. Exclusion may also result from a very uneven sampling pattern through the year.

The precision of the mean, maximum and minimum values computed on the basis of a limited number of samples will vary from determinand to determinand but statistics associated with sampling frequencies of lower than about once a month should be regarded as indicative only.

Mean

The average* of all the sample values for each determinand in 1995. Where concentrations below the limit of detection are held on the Harmonised Monitoring Archive, the threshold value itself is used to compute the mean.

Maximum / Date

The maximum determinand value recorded during 1995 together with its date of occurrence. Where the maximum value recurs the date refers to the initial occurrence.

Minimum/Date

The minimum determinand value together with its date of occurrence. Where the minimum value recurs the date refers to the initial occurrence. A ' $<$ ' symbol indicates a value below the limit of detection.

Different limits of detection may apply through-
out the year at certain monitoring sites, for further details contact the address given on page 160 .

Period of Record Data

For about half of the featured sites, the pre-1995 summary statistics are presented for the period beginning in 1974; where individual stations were not incorporated into the Harmonised Monitoring network until after 1974, the appropriate first year of data is given. For certain stations the sampling frequency varies significantly from year to year and data for a few determinands may not extend over the full period of record; in particular the first year of data will normally be incomplete.

Where the pre-1995 data series includes values below the limit of detection, the threshold value has been used in the computation of the summary statistics.

For a number of the featured monitoring stations a considerable amount of pre-1974 data, at least for certain determinands, may be stored on local, or regional, archives maintained by the measuring authorities. Also, for the period 1974-94, such archives may hold analytical results for substantially more samples than are represented on the Harmonised Monitoring Archive. Hence full equivalence between statistical summaries derived from national and regional databases cannot be expected for all monitoring sites.

Mean

The average* value of all the sample values for each determinand.

Percentiles

The 5, 50 and 95 percentile values for each determinand based on all the samples taken over the pre-1995 period.

Quarterly Averages

The mean quarterly average* for each of the threemonthly periods: January to March, April to June, July to September and October to December.

[^13]Mersey at Flixton
Harmonised monitoring station number : 01001 Measuring authority : EA-NW NGR : 33 (SJ) 742938

Determinand	Units	Samples	Mean	Max.	Date	Min.	Date
Temperature	${ }^{\circ} \mathrm{C}$	41	12.8	24.0	01/08	3.6	12/12
pH	pH units	49	7.4	8.1	01/08	7.0	18/04
Conductivity	$\mu \mathrm{S} / \mathrm{cm}$	49	448	606	12/12	231	24/01
Suspended Solids	mg / l	48 (3)	15.9	73.0	17/01	3.0	20/06
Dissolved Oxygen	mg / O	45	8.21	11.80	03/01	0.90	05/09
BOD (inhibited)	$\mathrm{mg} / \mathrm{l} 0$	49	3.8	11.0	18/04	2.0	22/08
Ammoniacal nitrogen	mg / N	49	1.055	3.300	14/11	0.095	15/08
Nitrite	mg/in	49	0.290	0.798	11/07	0.050	24/01
Nitrate	mg / N	49	5.76	9.62	24/10	1.95	24/01
Chloride	$\mathrm{mg} / \mathrm{Cl}$	49	48.8	91.0	07/03	26.0	14/02
Total Alkalinity	$\mathrm{mg} / \mathrm{CaCO} 3$	49	76.0	109.0	25/07	33.0	30/01
Orthophosphate	mg / P	49	1.434	2.670	24/10	0.201	24/01
Silica	$\mathrm{mg} / \mathrm{SiO}$	49	7.99	12.50	22/08	2.86	09/05
Calcium	$\mathrm{mg} / \mathrm{l} \mathrm{Ca}$	49	35.2	42.5	$21 / 11$	22.9	24/01
Magnesium	$\mathrm{mg} / \mathrm{Mg}$	49	7.56	9.72	08/11	4.46	24/0

Flow measurement station : 069007-Ashton Weir C. A. $\left(\mathrm{km}^{2}\right): 660.0$ NGR : 33 (SJ) 772936

Period of record: 1975-1994							
Mean	Percentiles			Quarterly averages			
	5\%	50\%	95\%	J-M			O-D
10.8	3.9	10.1	19.1	5.9	12.7	16.3	8.7
7.3	6.9	7.3	7.6	7.3	7.3	7.3	7.3
477	280	461	741	453	494	507	443
37.4	3.7	19.2	107.5	41.3	28.1	26.9	50.6
8.08	4.62	8.02	11.33	9.98	7.32	6.23	8.75
6.0	2.4	5.0	12.6	6.1	6.3	5.2	6.2
1.81	0.30	1.55	4.14	1.93	2.14	1.63	1.51
0.27	0.04	0.21	0.67	0.10	0.37	0.46	0.17
4.1	2.1	4.0	7.1	3.2	4.6	5.2	3.7
52.1	26.4	48.9	84.4	58.0	50.8	53.0	46.0
90.1	49.6	88.8	131.1	83.1	96.7	95.1	83.4
1.15	0.16	1.03	2.57	0.69	1.40	1.61	0.91
8.09	5.18	8.11	10.36	8.12	6.87	8.71	8.52
33.0	25.6	33.4	38.9	32.8	34.3	33.2	31.5
7.2	4.8	7.2	9.1	6.9	7.8	7.4	6.7

Ribble at Samlesbury
Harmonised monitoring station number: 01008 Measuring authority : EA-NW NGR: 34 (SD) 590305

Determinand	Units	1995					
		Samples	Mean	Max.	Date	Min.	Date
Temperature	${ }^{\circ} \mathrm{C}$	50	11.6	24.0	28/06	3.0	26/01
pH	pH units	50	8.2	9.4	11/05	7.4	27/03
Conductivity	$\mu \mathrm{S} / \mathrm{cm}$	50	447	672	14/08	169	01/03
Suspended Solids	mg / l	50 (5)	15.6	191.0	01/03	2.0	12/04
Dissolved Oxygen	$\mathrm{mg} / \mathrm{l} 0$	50	11.57	15.60	76/05	7.40	14/08
BOD \{inhibited ${ }^{\text {d }}$	$\mathrm{mg} / \mathrm{I} 0$	49 (2)	2.7	6.5	11/08	0.9	02/11
Ammoniacal nitrogen	$\mathrm{mg} / \mathrm{IN}$	50 (7)	0.160	1.060	08/04	0.030	31/05
Nitrite	mg / N	50	0.096	0.319	14/08	0.016	07/11
Nitrate	$\mathrm{mg} / \mathrm{l} \mathrm{N}$	50	8.68	20.60	18/10	1.15	01/03
Chloride	$\mathrm{mg} / \mathrm{Cl}$	50	37.0	72.0	05/01	14.0	01/03
Total Alkalinity	$\mathrm{mg} / \mathrm{CaCO}$,	49(1)	103.8	159.0	09/03	25.0	01/03
Orthophosphate	$\mathrm{mg} / \mathrm{P} \mathrm{P}$	50	1.183	3.810	24/08	0.113	26/01
Silica.	$\mathrm{mg} / \mathrm{SS} \mathrm{SO}_{2}$	49 (2)	2.78	8.04	28/07	0.20	28/04
Calcium	$\mathrm{mg} / \mathrm{Ca}$	49	46.8	56.9	05/01	27.5	01/03
Magnesium	$\mathrm{mg} / \mathrm{l} \mathrm{Mg}$	49	5.16	7.82	11/08	2.10	27/03
Potassium	mg / K	48	4.90	9.33	14/06	2.45	11/01
Sodium	$\mathrm{mg} / \mathrm{l} \mathrm{Na}$	48	44.0	92.0	14/08	9.8	11/01

Flow measurement station : 071001-Samlesbury
C. A. $\left(\mathrm{km}^{2}\right): 1145.0^{\text {- }}$ NGR : 34 (SD) 589304

Period of record: 1974-1994							
Mean	Percentiles			Quarterly averages			
	5\%	50\%	95\%	J-M	A-J		O-D
9.9	1.1	9.9	18.1	4.3	11.8	15.2	7.
7.8	7.1	7.8	8.7	7.6	7.9	8.0	7.
412	233	407	610	403	448	430	36
19.3	1.6	7.8	67.1	24.4	12.7	15.9	24.
10.16	7.23	10.17	12.82	11.57	9.80	8.82	10.66
2.8	1.1	2.4	5.9	2.7	3.1	2.6	2.
0.26	0.03	0.15	0.83	0.49	0.17	0.13	0.2
0.08	0.02	0.06	0.20	0.05	0.11	0.09	0.0
4.3	1.3	3.4	10.2	3.4	5.3	5.0	3.
32.9	14.3	30.2	55.2	37.5	35.6	32.2	26.
115.7	66.3	120.3	152.6	108.9	122.2	120.4	110.8
0.44	0.07	0.31	1.31	0.25	0.60	0.62	0.32
3.23	0.13	3.46	5.79	4.19	1.79	2.47	4.55
51.0	34.9	51.2	63.8	50.5	52.1	50.4	49.
5.1	2.7	5.1	7.5	4.9	5.6	5.3	4.
4.0	2.0	3.8	6.9	3.5	4.5	4.5	3.
30.6	9.4	26.1	63.3	28.2	35.4	34.7	21

Eden at Temple Sowerby

Harmonised monitoring station number: 01017
Measuring authority : EA-NW NGR : 35 (NY) 604281

\author{
Determinand

Temperature
pH
Conductivity
Suspended Solids
Dissolved Oxygen
BOD (inhibited)
Chloride
Total Alkalinity
Orthophasphate
Silica
Clicium
Magnesium
Potassium
Sodium
}

Units	1995					
	Samples	Mean	Max.	Date	Min.	Date
${ }^{\circ} \mathrm{C}$	14	10.2	19.5	21/08	0.1	29/12
pH units	14	8.1	8.5	02/05	7.9	07/02
$\mu \mathrm{S} / \mathrm{cm}$	14	395	472	21/08	259	11/12
mg / l	14(3)	4.9	14.0	05/10	3.0	09/03
$\mathrm{mg} / 10$	14	11.37	16.40	29/12	9.10	21/08
$\mathrm{mg} / 10$	14(1)	1.7	3.0	05/10	0.9	07/02
$\mathrm{mg} / \mathrm{ICl}$	13	26.4	46.0	08/12	15.0	05/10
$\mathrm{mg} / \mathrm{l} \mathrm{CaCO}{ }_{3}$	13	138.0	170.0	29/12	78.0	05/10
mg / P	$14(4)$	0.085	0.182	13/07	0.050	04/04
$\mathrm{mg} / \mathrm{SiO}$	1411)	2.56	3.81	29/12	0.20	02/05
$\mathrm{mg} / \mathrm{Ca}$	13	59.3	70.2	29/12	40.5	11/12
$\mathrm{mg} / \mathrm{Mg}$	13	9.74	16.40	21/08	3.93	05/10
mg / K	13	3.33	6.46	21/08	1.58	11/12
$\mathrm{mg} / \mathrm{l} \mathrm{Na}$	13	14.0	25.4	08/12	8.0	05/10

Flow measurement station : 076005-Temple Sowerby C.A. $\left(\mathrm{km}^{2}\right): 616.4$ NGR : 35 (NY) 605283

Period of record: 1975-1994							
Mean	Percentiles			Quarterly averages			
	5\%	50\%	95\%	J-M	A-J	J-S	O-D
10.2	2.9	9.5	18.5	4.9	12.0	15.5	7.6
8.1	7.5	8.0	8.7	7.9	8.2	8.2	8.0
358	226	377	471	335	370	383	344
8.6	1.3	4.3	27.7	11.9	7.1	4.9	14.6
11.16	8.85	10.98	13.73	12.22	11.41	10.37	10.96
1.9	0.7	1.7	3.0	1.7	1.9	1.9	1.6
18.9	11.1	17.8	29.0	19.5	20.0	21.1	15.8
150.1	87.3	157.6	190.3	142.5	157.3	151.9	149.3
0.13	0.02	0.09	0.37	0.08	0.20	0.17	0.10
2.43	0.41	2.47	4.19	3.07	1.35	2.20	3.08
57.0	35.9	59.0	72.5	56.6	58.4	58.5	56.3
9.2	4.2	9.0	14.5	8.2	10.4	10.5	7.9
2.8	1.5	2.5	4.9	2.2	3.0	3.5	2.6
10.3	5.2	9.3	16.6	9.9	10.8	11.8	8.3

South Tyne at Warden Bridge

Harmonised monitoring station number : Measuring authority: EA-NE

Determinand

Temperature
pH
Conductivity Suspended Solids BOD (inhibited) Chloride

NGR : 35 (NY) 910660

1995					
Samples	Mean	Max.	Date	Min.	Date
12	11.1	22.0	$22 / 08$	4.0	$09 / 02$
12	7.9	8.7	$10 / 08$	7.4	$30 / 03$
11	245	373	$30 / 08$	159	$13 / 11$
$12(1)$	3.7	6.0	$09 / 02$	1.0	$22 / 08$
12	11.73	12.70	$20 / 03$	10.49	$22 / 08$
12	1.8	2.5	$09 / 02$	1.2	$25 / 10$
12	13.9	18.6	$22 / 08$	9.7	$27 / 09$

Flow measurement station : 023004 - Haydon Bridge C. A. $\left(\mathrm{km}^{2}\right): 751.1 \quad$ NGR: 35 (NY) 856647

Period of record: 1975-1994							
Mean	Percentiles			Quarterly averages			
	5\%	50\%	95\%	J.M	A-J	J-S	O-D
9.2	1.9	8.4	18.9	3.9	11.4	15.1	6.5
7.8	7.2	7.8	8.5	7.6	8.0	7.9	7.7
252	122	240	407	250	262	267	231
10.4	1.3	4.4	25.7	10.5	10.3	12.5	8.5
11.40	9.03	11.41	13.84	12.47	11.17	10.20	11.69
1.7	0.6	1.5	3.0	1.5	1.8	1.8	1.5
14.1	7.9	12.9	24.1	17.4	14.5	12.4	12.3

Tees at Broken Scar
$\begin{array}{lr}\text { Harmonised monitoring station number : } & 02058 \\ \text { Measuring authority: EA-NE } & \text { NGR: } 45 \text { (NZ) } 265131\end{array}$

Determinand	Units	1995					
		Samples	Masn	Max.	Date	Min.	Date
Tomperature	${ }^{\circ} \mathrm{C}$	17	10.7	20.3	21/08	1.5	10/12
pH .	pH units	12	7.5	7.8	21/03	5.0	09/10
Suspended Solids	mg/l	$11(1)$	10.0	72.0	01/03	1.0	02/05
Dissolved Oxygen	mg / O	13	8.10	12.82	17/01	0.93	09/10
BOD (inhibitad)	mg / O	11	1.3	1.7	19/06	1.0	19/09
Nitrato	mggin	15	0.77	2.04	10/12	0.34	19/07
Chloride	$\mathrm{mg} / \mathrm{Cl}$	11	12.2	25.9	10/12	6.9	16/08
Total Alkalinity	$\mathrm{mg} / \mathrm{CaCO}$	11(1)	53.9	77.3	10/12	10.0	01/03

Flow measurement station: 025001-Broken Scar
C.A. $\left(\mathrm{km}^{2}\right): 818.4$

NGR : 45 (NZ) 259137

Mean	Porcentiles			Quarterty averages			
	5\%	50\%	95\%	J-M	A.J	J-S	O-D
9.4	1.5	8.6	18.2	3.9	12.0	15.6	6.4
7.6	6.9	7.7	8.2	7.6	7.7	7.6	7.6
13.5	1.4	6.3	46.5	15.2	8.9	13.6	15.9
10.94	8.31	11.00	13.24	12.40	10.41	9.42	11.45
1.8	0.9	1.6	3.2	1.9	1.8	1.8	1.7
1.4	0.2	1.0	3.6	1.8	1.2	0.8	1.7
15.6	6.5	14.0	26.7	19.1	14.2	11.8	18.6
65.8	32.4	60.9	102.6	74.2	66.8	60.9	64.3

Trent at Nottingham
Harmonised monitoring station number :
03007
Measuring authority : EA-M NGR 43 (SK̇) 581383

Units	1995					
	Samples	Mean	Max.	Date	Min.	Date
${ }^{\circ} \mathrm{C}$	62	13.0	23.0	12/07	3.0	03/01
pH units	63.	8.0	8.4	28/07	7.7	26/01
$\mu \mathrm{S} / \mathrm{cm}$	54	953	1210	28/06	540	13/02
mg / l	54	20.8	248.0	26/01	3.0	14/05
m9/lo	59	10.09	13.20	03/01	4.60	16/08
mgho	62	3.0	5.5	26/01	1.0	24/08
mg/lo	22	7.6	8.8	07/06	5.7	06/12
mg / N	$63(4)$	0.248	0.969	14/07	0.030	10/05
mg / N	63	8.64	12.50	20/12	3.72	28/07
$\mathrm{mg} / \mathrm{ll}$	63	126.8	216.0	28/06	29.0	28/07
$\mathrm{mg} / \mathrm{lCaCO}$	63	161.7	324.0	06/09	112.0	13/02
mg / P	22	1.944	2.690	19/10	0.424	14/02
$\mathrm{mg} / \mathrm{SiO}$	12	7.48	12.00	20/12	2.58	27/04
	13	168.15	203.00	20/12	89.00	14/02
$\mathrm{mg} / \mathrm{Ca}$	13	99.8	118.0	28/06	73.8	30/03
$\mathrm{mg} / \mathrm{Mg}$	13	22.45	25.50	28/06	15.30	14/02
$\mathrm{mg} / \mathrm{kK}$	13	11.64	14.90	06/09	6.11	14/02
$\mathrm{mg} / \mathrm{Na}$	13	92.2	118.0	06/09	30.1	14/02

Flow measurement station : 028009-Colwick C.A. $\left.\left(k^{2}\right)^{2}\right): 7486.0 \quad$ NGR : 43 (SK) 620399

Period of record: 1974-1994							
Mean	Percontiles			Quarterty averages			
	5\%	50\%	95\%	J-M	A-J	J-S	O-D
12.6	4.0	11.5	21.0	7.4	14.9	18.4	10.4
7.8	7.4	7.8	8.3	7.7	7.9	7.9	7.7
883	599	904	1116	811	909	960	862
24.3	5.7	14.3	75.5	28.9	20.3	17.9	28.8
10.01	7.85	10.21	12.50	11.03	9.87	8.96	10.17
3.5	1.6	3.0	5.7	3.1	3.9	3.5	3.2
7.9	4.5	6.6	18.0	7.0	0.0	0.0	0.0
0.37	0.03	0.25	0.88	0.60	0.26	0.20	0.35
8.5	6.2	8.6	11.1	8.7	8.8	8.4	8.6
99.1	53.8	99.6	149.3	87.7	100.7	118.1	94.2
159.6	119.6	163.2	186.9	157.8	165.8	161.7	153.8
1.49	0.52	1.50	2.79	0.98	1.60	2.02	1.47
7.30	2.73	7.65	11.03	8.68	4.61	6.78	8.53
166.7	105.5	169.1	222.00	154.9	177.0	174.0	159.1
104.3	72.2	98.3	112.6	95.7	107.3	90.5	92.0
21.9	13.6	22.4	29.0	22.1	23.4	21.9	19.7
9.9	6.6	9.8	15.2	7.9	10.2	11.7	10.2
72.8	31.0	74.5	125.8	63.1	73.8	87.3	69.3

Derwent at Wilne

Harmonised monitoring station number :
Measuring authority : EA-M

Determinand

Temperature
pH
Conductivity
Suspended Solids
BOD (inhibited!
Tot, diss, org, carbon Ammoniacal nitrogan Nitrate Chiorida Total Alkalinity Orthophosphate Silica Sulphate Calcium Magnesium
Potassium Sodium

NGR : 43 (SK) 452315
03011

1995

1995						
Samples	Mean	Max.	Dato	Min.	Date	
40	10.9	21.0	$13 / 07$	4.0	$27 / 01$	
38	7.9	8.5	$04 / 05$	7.7	$27 / 01$	
38	699	950	$18 / 12$	370	$01 / 02$	
$39(2)$	14.8	77.0	$17 / 02$	3.0	$13 / 06$	
39	10.10	14.00	$27 / 01$	6.80	$11 / 10$	
39	2.7	4.0	$01 / 03$	1.5	$16 / 01$	
39	5.4	7.5	$17 / 10$	3.2	$17 / 03$	
39	0.200	0.410	$09 / 02$	0.058	$22 / 08$	
39	5.06	7.07	11112	3.23	$01 / 02$	
39	68.6	125.0	$18 / 12$	31.0	$27 / 01$	
39	148.8	182.0	$25 / 07$	75.0	$01 / 02$	
39	0.993	2.010	1110	0.117	$27 / 01$	
14	7.02	13.10	$17 / 01$	3.45	$22 / 08$	
15	127.99	176.00	$14 / 12$	54.40	$13 / 03$	
19	73.7	86.7	$18 / 10$	55.5	$17 / 02$	
19	21.32	29.50	$18 / 10$	9.59	$17 / 02$	
19	6.26	8.41	$11 / 10$	2.91	$13 / 03$	
19	66.0	95.7	$11 / 10$	25.4	$17 / 02$	

Flow measurement station : 028067 - Church Wilne C.A. $\left(\mathrm{km}^{2}\right): 1177.5 \quad$ NGR : 43 (SK) 438316

Period of record: 1975-1994							
Mean	Percentlles			Quarterty averages			
	5\%	50\%	95\%	J-M	A-J		O.D
11.9	4.1	11.1	21.0	6.5	14.2	17.9	9.4
7.8	7.5	7.9	8.2	7.8	8.0	7.9	7.7
657	435	660	891	560	673	760	637
14.7	2.1	8.2	47.8	20.1	9.5	10.1	19.1
10.10	7.02	10.28	13.18	11.71	10.14	8.54	10.39
2.6	1.2	2.5	4.3	2.4	2.7	2.6	2.6
4.9	2.5	4.4	9.1	3.9	0.0	0.0	
0.31	0.07	0.26	0.74	0.40	0.28	0.23	0.34
4.4	3.3	4.5	5.8	4.4	4.4	4.5	4.4
66.6	34.1	64.9	108.5	55.9	66.2	82.9	63.1
155.1	110.4	158.7	188.1	140.2	161.1	172.0	148.7
0.87	0.20	0.80	1.89	0.50	0.90	1.34	0.79
5.45	0.63	5.93	8.50	6.19	3.64	4.62	6.74
108.7	59.5	97.7	167.37	81.5	106.6	124.3	92.5
72.6	55.5	74.1	85.8	69.0	76.0	76.6	67.4
16.7	9.0	15.7	24.8	14.1	17.7	20.1	15.0
5.3	3.0	5.1	7.8	4.5	5.4	6.2	5.0
49.7	19.1	47.5	83.4	37.4	49.0	66.1	42.1

Teme at Powick

Harmonised monitoring station number : 03029
Measuring authority : EA-M 03 (SO)
836525

Determinand

Temperature

pH
Suspended Solids Dissolved Oxygen BOD (inhibited) Tot. diss. org. carbon Nitrase Chiorida
Total Alkalinity
Orthophosphate

Unit*	Samples	Mean	Max.	Date	Min.	Date
${ }^{\circ} \mathrm{C}$	12	11.3	21.0	27/07	4.0	14/12
pH units	12	8.1	8.4	$27 / 07$	7.7	18/01
$\mu \mathrm{S} / \mathrm{cm}$	12	408	530	16/10	264	18/01
mg/l	12	110.5	910.0	18/01	3.0	14/12
mgil 0	11	10.85	12.60	14/12	8.30	16/08
mg / O	12 (1)	2.0	5.0	18/01	1.0	16/08
$\mathrm{mg} / 10$	12	4.5	10.4	18/01	2.7	13/04
mg / N	12	4.47	6.40	14/02	3.19	16/08
mg/l Cl	12	30.4	53.0	14/02	20.0	18/01
$\mathrm{mg} / \mathrm{CaCO}$	12	134.5	186.0	16/08	44.0	18/01
$\mathrm{mg} / \mathrm{l} P$	12(1)	0.248	0.820	18/01	0.050	14/12

Flow measurement station : 054029 - Knightsford Br.
C.A. $\left(\mathrm{km}^{2}\right): 1480.0 \quad$ NGR : 32 (SO) 735557

Period of record: 1975-1994							
Mean	Parcentilas			Quarterty averages			
	6\%	50\%	95\%	J-M	A-J	J-S	O-D
10.5	3.0	10.0	19.1	5.3	12.6	16.3	7.9
8.0	7.5	8.0	8.5	7.9	8.2	8.2	7.9
423	271	410	518	371	422	440	398
39.6	1.9	11.6	189.1	66.3	31.8	14.3	46.1
10.90	8.55	11.03	13.31	11.93	10.70	9.93	11.18
1.9	0.8	1.6	4.1	1.7	2.1	1.9	1.8
4.8	1.9	3.5	12.4	4.3	0.0	0.0	
4.4	2.3	4.3	6.5	5.4	4.5	3.5	4.2
23.7	15.3	23.1	31.6	23.2	22.9	25.7	23.6
137.7	76.9	141.2	189.5	118.5	148.8	162.0	123.9
0.19	0.03	0.15	0.40	0.12	0.10	0.24	0.26

Avon at Evesham Road Bridge
Harmonised monit
Measuring authorit

Determinand

Temperature
pH
Conductivity
Suspended Solids
Dissolved Oxygen
BOD (inhibited)
Tot. diss. org. carbon
Ammoniacal nitrogen
Nitrate
Chtoride
Total Alkalinity
Orthophosphate
Silica
Sulphate
Calcium
Magnesium
Potassium
Sodium

NGR :
03416
NGR : 42 (SP) 034431

Units	1995					
	Samples	Mean	Max.	Dato	Min.	Date
${ }^{\circ} \mathrm{C}$	58	12.2	23.0	30/06	4.0	05/01
pH units	42	8.1	8.8	09/05	7.8	11/09
$\mu \mathrm{S} / \mathrm{cm}$	12	980	1150	03/10	660	15/02
mg/l	59 (3)	29.2	560.0	23/01	3.0	05/09
mg / O	56	10.67	14.86	28/04	4.20	21/07
$\mathrm{mg} / \mathrm{l} 0$	59(1)	2.6	9.5	09/05	1.0	01/09
$\mathrm{mg} / \mathrm{l} 0$	13	7.5	9.0	09/05	4.7	07/11
mg / N	13 (2)	0.117	0.235	06/02	0.030	09/05
mg / N	13	10.04	11.60	07/11	7.40	11/09
$\mathrm{mg} / \mathrm{l} \mathrm{Cl}$	13	105.2	156.0	11/08	45.0	15/02
$\mathrm{mg} / \mathrm{CaCO}$	13	185.9	208.0	09/05	145.0	$11 / 09$
mg / P	59	1.841	3.380	01/09	0.402	14/02
$\mathrm{mg} / 1 \mathrm{SiO}_{2}$	12	10.83	16.10	27/11	0.36	09/05
$\mathrm{mg} / \mathrm{SSO}$	13	195.62	247.00	07/11	101.00	15/02
$\mathrm{mg} / \mathrm{ICa}$	13	116.6	128.0	09/05	98.6	11/09
$\mathrm{mg} / \mathrm{Mg}$	13	28.25	34.50	09/05	18.80	15/02
mg / K	13	10.05	13.10	07/11	6.03	06/02
$\mathrm{mg} / \mathrm{l} \mathrm{Na}$	13	70.3	107.0	11/08	27.8	15/02

Flow measurement station : 054002 - Evesham
C.A. $\left(k^{2}\right)$: $2210.0 \quad$ NGR : $\mathbf{4 2}$ (SP) 040438

Period of record: 1977-1994							
Mean	Percentiles			Quarterty averages			
	5\%	50\%	95\%	J-M	A.J	J-S	O-D
11.2	3.2	11.0	19.9	5.4	13.4	17.0	8.6
8.0	7.6	8.0	8.6	7.9	8.2	8.0	7.8
922	604	937	1188	840	912	1021	918
27.9	5.1	15.7	90.6	42.1	25.8	16.5	25.7
10.63	7.90	10.97	13.35	11.98	10.83	9.00	10.67
3.2	1.5	2.7	6.6	2.8	4.5	2.8	2.5
8.7	5.3	7.1	18.5	8.5	0.0	0.0	0.0
0.24	0.02	0.16	0.65	0.44	0.14	0.13	0.26
10.5	7.7	10.4	14.4	11.5	9.9	9.9	11.0
76.7	38.8	74.0	136.5	67.4	70.7	92.2	77.3
195.1	144.5	198.7	229.2	191.9	201.5	195.3	190.2
1.76	0.52	1.60	3.86	1.07	1.60	2.55	1.89
10.77	3.90	11.39	15.46	10.44	6.70	11.83	13.01
193.9	100.5	196.0	265.62	167.8	197.0	217.7	185.4
119.2	87.4	120.1	140.3	119.1	116.7	121.2	117.7
28.3	16.6	27.8	39.1	24.7	29.8	31.2	27.2
9.9	6.3	9.1	14.5	7.5	10.1	12.0	10.2
56.5	22.2	55.0	96.0	43.4	55.9	70.9	56.9

Aire at Fleet Weir

Harmonised monitoring station number : 04005
Measuring authority : EA-NE NGR : 44 (SE) 381285
Determinand

Flow
Temperature
pH
Conductivity
Suspended Solids
Dissolved Oxygen
BOD (inhibited)
Ammoniacal nitrogen
Nitrite
Nitrate
Chloride
Total Alkalinity
Orthophosphate
Calcium
Magnesium

Units	1995					
	Samples	Mean	Max.	Date	Min.	Date
$\mathrm{m}^{\mathbf{3}} \mathbf{s}^{-1}$	365	15.2	145.2	28/01	3.8	20/08
${ }^{\circ} \mathrm{C}$	15	11.4	20.7	21/08	4.6	07/03
pH units	15	7.4	8.0	29/03	7.2	21/04
$\mu \mathrm{S} / \mathrm{cm}$	15	901	1209	30/10	311	01/02
mg / l	15	18.2	107.0	01/02	3.0	20/07
$\mathrm{mg} / 10$ -	. 15	8.06	12.20	01/02	4.58	20/07
mg / O	14	6.5	12.3	28/09	2.1	20/07
mg / N	15	1.129	2.610	21/11	0.190	01/02
$\mathrm{mg} / \mathrm{lN}$	15	0.283	0.680	21/08	0.020	07/03
$\mathrm{mg} / \mathrm{l} \mathrm{N}$	15	7.09	12.10	21/08	2.48	01/02
$\mathrm{mg} / \mathrm{l} \mathrm{Cl}$	15	113.1	163.0	21/04	32.4	01/02
$\mathrm{mg} / \mathrm{CaCO}_{3}$	15	121.5	145.0	12/10	55.0	01/02
mg / P	15(1)	0.995	2.520	21/08	0.020	29/03
$\mathrm{mg} / \mathrm{Co}$	14	62.6	78.5	30/10	30.9	01/02
$\mathrm{mg} / 1 \mathrm{Mg}$	14	14.27	20.30	27/06	4.97	01/02

Flow measurement station : 027080 - Fleet Weir
C.A. $\left(\mathrm{km}^{2}\right): 865.0 \quad$ NGR : 44 (SE) 381295

Period of record: 1975-1994							
Mean	Percentiles			Quarterty averages			
	5\%	50\%	95\%	J-M	A-J	J-S	O-D
12.4	4.9	12.1	20.1	7.1	14.1	17.5	10.0
7.5	7.2	7.5	7.8	7.5	7.5	7.4	7.5
710	400	680	1069	677	714	786	648
26.0	3.2	17.3	72.6	29.1	23.7	22.3	30.4
7.68	2.68	7.98	11.71	10.31	7.03	5.31	8.59
7.8	3.5	7.0	13.5	7.6	8.2	8.2	7.4
2.10	0.42	1.49	4.75	1.87	2.12	2.29	1.70
0.33	0.05	0.23	0.80	0.14	0.38	0.49	0.24
5.3	2.6	4.9	8.8	4.4	5.7	6.0	4.8
83.7	36.9	77.3	153.0	83.7	84.4	92.1	73.7
123.4	78.6	125.8	162.5	115.8	124.3	133.3	119.3
1.29	0.16	1.08	3.13	0.81	1.40	1.85	0.99
60.7	46.1	60.3	73.3	59.5	60.6	60.5	61.1
12.6	5.1	11.9	20.0	12.1	12.9	14.1	11.3

Derwent at Loftsome Bridge

$\begin{array}{lr}\text { Harmonised monitoring station number : } & 04014 \\ \text { Measuring authority: EA-NE } & \text { NGR : } 44 \text { (SE) } 707302\end{array}$
Determinand

Temperature
pH
Conductivity
Suspended Solids
Dissolved Oxygen
BOD (inhitititad
Ammoniacal nitrogen
Nitrate,
Chloride
Total Alkalinity
Orthophosphate
Silica
Sulphate
Calcium
Magnesium

Units	1995					
	Samples	Maan	Max.	Date	Min.	Date
${ }^{\circ} \mathrm{C}$	23	12.5	23.2	31/07	1.6	04/01
pH units	22	7.8	8.1	26/06	7.6	04/01
$\mu \mathrm{S} / \mathrm{cm}$	15	608	698	26/10	538	08/12
mg / l	22(1)	14.0	59.0	08/12	1.0	26/06
$\mathrm{mg} / \mathrm{l} 0$	23	10.25	13.50	04/01	6.23	29/08
$\mathrm{mg} / \mathrm{l} 0$	22	1.5	2.3	04/08	0.9	20/07
$\mathrm{mg} / \mathrm{IN}$	22 (4)	0.076	0.180	04/01	0.030	26/04
$\mathrm{mg} / \mathrm{l} \mathrm{N}$	15	4.82	7.85	$17 / 01$	2.64	23/08
$\mathrm{mg} / \mathrm{l} \mathrm{Cl}$	22	37.5	46.7	04/01	28.9	15/12
$\mathrm{mg} / \mathrm{CaCO} 3$	15	158.5	194.0	26/10	106.0	08/12
$\mathrm{mg} / \mathrm{l} P$	22(1)	0.106	0.220	26/10	0.020	06/02
$\mathrm{mg} / \mathrm{S} \mathrm{SO}_{2}$	10	6.30	8.41	10/02	4.00	26/04
$\mathrm{mg} / \mathrm{SO}$	10	88.83	106.00	04/07	74.20	10/02
$\mathrm{mg} / \mathrm{l} \mathrm{Ca}$	19	95.7	111.0	04/07	58.6	15/12
$\mathrm{mg} / \mathrm{Mg}$	19	9.21	10.80	04/07	6.24	15/12

Flow measurement station : 027041 - Buttercrambe
C.A. $\left(\mathrm{km}^{2}\right): 1586.0 \quad$ NGR : 44 (SE) 731587

Period of record: 1975-1994							
Mean	Percentiles			Quarterty averages			
	5\%	50\%	95\%	J-M	A-J	J-S	O-D
10.4	3.1	10.1	19.2	5.3	12.9	16.6	7.8
7.9	7.4	7.9	8.3	7.8	8.0	7.9	7.8
538	385	536	660	545	533	543	531
23.9	2.1	11.6	75.2	30.8	17.7	9.8	27.9
10.48	8.11	10.63	12.65	11.91	10.30	9.14	10.50
1.7	0.7	1.5	3.1	1.7	2.0	1.3	1.7
0.11	0.02	0.08	0.27	0.14	0.09	0.08	0.11
4.2	2.3	4.0	7.1	5.4	4.4	3.3	- 4.2
32.7	23.0	31.9	43.8	36.0	31.4	31.5	32.6
149.3	104.2	154.5	180.9	147.4	154.7	153.4	141.3
0.09	0.02	0.08	0.23	0.07	0.10	0.13	0.10
6.32	2.80	6.61	8.98	7.23	4.89	6.20	7.19
81.3	46.3	81.4	105.66	79.3	82.5	82.9	80.1
92.0	66.5	92.6	110.0	100.0	91.3	87.9	88.9
9.6	4.0	8.9	16.8	11.3	9.3	9.2	9.3

Nene at Wansford

Harmonised monitoring station number:
05511
Measuring authority : EA-A NGR : 52 (TL) 082996
Determinand

Temperature
pH
Conductivity
Suspended Solids
Dissolved Oxygen
BOD (inhibited)
Ammoniacal nitrogen
Nitrite
Nitrate
Chloride
Total Alkalinity
Silica
Calcium
Magnesium
Sulphate
Potassium
Sodium

Units	1995					
	Samples	Mean	Max.	Date	Min.	Dat*
${ }^{\circ} \mathrm{C}$	48	12.4	25.0	01/08	3.0	04/01
pH units	48	8.3	8.9	12/05	7.9	22/09
$\mu \mathrm{S} / \mathrm{cm}$	48	992	1240	15/08	700	13/02
mg / l	24(2)	21.8	214.0	26/01	3.0	20/07
$\mathrm{mg} / \mathrm{I} 0$	45	10.69	14.30	22/03	7.86	05/07
$\mathrm{mg} / 10$	45 (13)	2.8	7.9	12/05	1.0	09/01
mg / t	48(10)	0.097	0.320	15/11	0.030	27/03
mg / N	24	0.092	0.232	26/05	0.028	15/08
mg / N	48	8.48	12.35	29/11	4.90	16/08
$\mathrm{mg} / 1 \mathrm{Cl}$	48	83.4	120.0	15/08	42.0	13/02
$\mathrm{mg} / / \mathrm{CaCO}_{3}$	24(1)	198.5	240.0	05/07	40.0	26/01
$\mathrm{mg} / / \mathrm{SiO}_{2}$	24(3)	5.68	16.70	08/02	0.20	26/04
$\mathrm{mg} / \mathrm{Ca}$	12	129.4	144.0	06/04	111.0	07/03
$\mathrm{mg} / \mathrm{Mgg}$	12	11.77	14.30	04/09	7.90	07/03
$\mathrm{mg} / \mathrm{SO} \mathrm{S}_{4}$	24	175.33	230.00	15/08	100.00	07/03
$\mathrm{mg} / \mathrm{K} \mathrm{K}$	12	10.85	15.80	04/09	5.20	07/03
$\mathrm{mg} / / \mathrm{Na}$	12	63.7	92.0	04/09	28.0	08/02

Bure at Horstead Mill
Harmonised monitoring station number :
05722
Measuring authority : EA-A NGR: 63 (TG) 267198

Determinand	Units	1995					
		Samplas	Mean	Max.	Data	Min.	Date
Temperature	"C	47	11.3	22.5	$31 / 07$	1.7	11/12
pH	pH units	47	8.1	8.4	09/05	7.8	09/01
Conductivity	$\mu \mathrm{S} / \mathrm{cm}$	47	792	910	06/11	708	06/03
BOD \{inhibited)	mg / O	$46(16)$	1.4	2.7	24/04	1.0	16/01
Ammoniacal nittogen	$\mathrm{mg} / \mathrm{IN}$	47(27)	0.046	0.150	30/01	0.030	13/02
Nitrito	$\mathrm{mg} / \mathrm{IN}$	23	0.046	0.069	04/12	0.020	10/04
Nitrste	$\mathrm{mg} / \mathrm{IN}$	47	6.58	8.66	30/01	4.80	11/09
Chloride	$\mathrm{mg} / 1 \mathrm{Cl}$	47	62.0	73.0	16/10	50.0	11/09
Total Alkalinity	$\mathrm{mg} / \mathrm{CaCO}$	23	214.7	230.0	10/04	200.0	10/07
Silica	$\mathrm{mg} / \mathrm{SiO} \mathrm{SiO}_{2}$	23	9.05	13.30	04/12	4.00	01/05
Sulphate	$\mathrm{mg} / \mathrm{SO}$,	24	89.12	102.00	13/03	70.00	11/09
Colcium	$\mathrm{mg} / \mathrm{lla}$	12	123.2	136.0	16/01	114.0	07/08
Magnesium	$\mathrm{mg} / \mathrm{Mg}$	12	7.78	8.50	10/07	4.50	11/09
Potastium	mg / K	12	3.92	5.40	11/09	3.40	15/05
Sodium	$\mathrm{mg} / \mathrm{l} \mathrm{No}$	12	26.9	30.0	16/01	25.0	13/02

Flow measurement station : 034003-Ingworth
C.A. $\left(\mathrm{km}^{2}\right): 164.7$ NGR : 63 (TG) 192296

Period of record: 1975-1994							
Mean	Porcentiles			Ouarterly averages			
	5\%	50\%	95\%	J-M	A-J	J.S	O-D
10.8	4.0	10.5	20.1	6.1	12.9	16.9	8.3
7.8	7.4	7.9	8.3	7.8	7.9	8.0	7.7
749	661	760	875	766	723	733	769
1.7	0.9	1.6	3.0	1.8	2.1	1.6	1.3
0.13	0.02	0.06	0.34	0.20	0.09	0.08	0.13
0.06	0.02	0.05	0.10	0.06	0.05	0.07	0.07
5.8	3.5	5.7	8.5	7.5	5.7	4.5	5.9
58.9	49.1	59.4	70.2	61.4	56.8	57.1	60.8
216.8	180.5	212.9	251.8	218.7	205.5	214.3	230.1
7.65	2.95	8.29	12.49	8.92	4.93	6.92	10.85
91.3	59.3	84.2	126.03	92.0	85.7	85.1	92.7
119.7	97.1	118.3	141.6	123.4	117.9	115.1	124.2
7.6	5.1	7.6	9.3	7.8	7.8	7.3	7.4
4.0	2.5	4.0	5.8	4.1	3.6	4.0	4.5
30.3	20.6	27.8	47.0	29.4	29.1	29.2	29.0

Stour at Langham

Harmonised monitoring station number :
Measuring authority : EA-A NGR : 62 (TM) 026345

Determinand	Unita	1995					
		Samples	Man	Max.	Date	Min.	Date
Temporature	${ }^{\circ} \mathrm{C}$	48	12.0	23.0	22/08	1.6	11/12
pH	pH units	48	8.4	8.9	30/01	8.0	07/02
Conductivity	$\mu \mathrm{S} / \mathrm{cm}$	48	894	1100	12/06	659	24/01
Suspended Solids	mg / l	24(8)	9.6	51.5	24/01	1.6	17/07
Oissolved Oxygen	$\mathrm{mg} / \mathrm{l} 0$	5	11.25	14.00	28/03	9.21	28/06
EOO (inhibited)	mg / O	44(10)	2.3	10.5	24/04	1.0	03/01
Tot, diss. org. carbon	mg/io	22	5.8	7.9	24/01	3.7	31/10
Ammoniacal nitrogen	mg / N	$48(25)$	0.063	0.430	10/01	0.030	28/03
Nitrite	mg / N	24; 1)	0.051	0.130	09/05	0.014	31/10
Nitrate	mg / N	48	6.64	17.80	26/09	0.80	22/08
Chloride	$\mathrm{mg} / \mathrm{ll}$	48	74.6	130.0	12/06	29.0	07/03
Total Alkalinity	$\mathrm{mg} / \mathrm{CaCO}$	24	248.4	290.0	06/06	126.0	20/02
Silica	$\mathrm{mg} / \mathrm{SiO}$	24(2)	5.80	14.30	11/12	0.20	24/04
Sulphate	$\mathrm{mg} / \mathrm{SO} \mathrm{S}_{4}$	24	92.79	130.00	20/02	68.00	07/03
Calcium	$\mathrm{mg} / \mathrm{Ca}$	12	132.2	153.0	07/02	114.0	01/08
Magnesium	$\mathrm{mg} / \mathrm{Mg}$	11	8.65	11.50	31/10	4.20	07/03
Potassium	mg/l K	12	6.82	8.90	05/09	2.80	07/03
Sodium	$\mathrm{mg} / 1 \mathrm{Na}$	12	45.4	64.0	10/01	17.0	07/03

Flow measurement station : 036006-Langham C.A. $\left(\mathrm{km}^{2}\right): 578.0 \quad$ NGR : 62 (TM) 020344

Period of record: 1974-1994							
Mean	Percentiles			Quarterty averages			
	5\%	50\%	95\%	J-M	A.J	J-S	0-0
11.4	2.9	11.1	20.1	5.3	13.9	17.2	8.4
8.2	7.8	8.2	8.8	8.1	8.5	8.3	8.1
918	729	911	1084	930	884	891	978
16.0	2.4	9.8	47.3	16.2	19.9	10.6	16.9
10.84	7.61	10.87	14.00	12.34	11.30	9.44	10.51
3.1	1.1	2.1	9.1	2.3	5.3	2.4	2.0
6.5	4.4	6.2	10.3	6.3	0.0	0.0 :	
0.11	0.02	0.07	0.36	0.17	0.08	0.07	0.13
0.07	0.02	0.06	0.15	0.07	0.09	0.04	0.08
7.8	2.4	7.2	15.4	11.7	7.4	4.2	8.6
70.5	39.7	67.8	103.8	61.7	65.6	78.3	75.2
247.2	195.3	250.4	284.8	245.5	245.6	250.1	250.4
7.71	0.29	7.95	13.28	7.75	4.30	8.21	10.28
103.1	70.4	96.2	137.43	110.6	109.4	94.1	101.1
134.8	95.9	137.0	165.4	147.4	134.4	120.2	138.6
8.6	5.2	8.3	18.1	7.7	8.6	9.4	8.4
7.6	3.6	7.5	12.1	6.1	7.2	8.0	8.9
43.5	21.2	43.6	69.4	34.2	40.8	50.8	47.4

Thames at Teddington Weir

$\begin{array}{lr}\text { Harmonised monitoring station number: } & 06010 \\ \text { Measuring authority. EA-T }\end{array}$
Measuring authority: EA-T NGR:51 (TQ) 171714
Determinand

Temperature
pH
Conductivity
Suspended Solids
Dissolved Oxyen
BOO finhibited)
Ammoniacal nitrogen
Nitrite
Nitrate
Chloride
Total Alkalinity
Orhophosphate
Sulphate
Calcium
Potassium
Sodium

1995

Samples	Moan	Mox.	Date	Min.	Date
18	14.1	22.4	$07 / 08$	5.0	$12 / 12$
12	8.7	9.0	$10 / 05$	7.7	$06 / 11$
12	627	722	$06 / 11$	514	$13 / 02$
$12(2)$	17.9	60.4	$13 / 02$	3.0	$29 / 00$
12	10.06	13.70	$10 / 05$	3.60	$03 / 07$
$11(3)$	1.8	2.9	$18 / 01$	1.0	$13 / 02$
$12(1)$	0.237	0.570	$10 / 03$	0.030	$10 / 05$
12	0.101	0.195	$23 / 10$	0.040	$03 / 04$
12	6.95	8.10	$06 / 11$	4.90	$03 / 07$
12	53.2	68.0	$06 / 11$	34.0	$13 / 02$
12	193.7	224.0	$03 / 04$	161.0	$18 / 01$
12	1.605	3.300	$29 / 08$	0.330	$10 / 03$
12	66.67	82.00	$18 / 01$	60.00	$03 / 04$
12	98.9	114.0	$03 / 04$	85.0	$23 / 10$
12	7.33	10.50	$29 / 08$	4.30	$10 / 03$
12	36.9	52.0	$29 / 08$	18.0	$13 / 02$

Flow measurement station : 039001-Kingston C.A. $\left(\mathrm{km}^{2}\right): 9948.0 \quad$ NGR : 51 (TQ) 177698

Mean	Period of record: 1974-1994						
	Percentiles			Quarterty averages			
	5\%	50\%	95\%	J-M	A.J	J-S	O-D
12.3	3.9	12.1	21.0	6.2	14.1	18.4	9.
8.0	7.5	7.9	8.7	7.9	8.3	7.9	7.8
616	485	587	716	622	598	633	617
19.2	4.1	13.0	65.9	24.8	21.1	11.5	20.8
9.99	6.67	9.98	13.04	11.39	10.54	8.49	9.71
2.9	1.1	2.3	6.4	2.3	4.2	2.8	2.2
0.33	0.03	0.23	1.01	0.34	0.21	0.37	0.4
0.12	0.05	0.10	0.25	0.12	0.11	0.12	0.13
7.4	5.4	7.1	10.0	8.4	6.7	6.6	7.8
45.6	29.8	42.0	65.6	42.5	43.2	49.4	46.4
187.2	146.3	190.2	214.4	185.1	197.3	191.1	180.4
1.44	0.39	1.18	3.60	0.86	1.10	2.10	1.58
70.5	51.3	65.5	85.19	67.9	66.8	65.6	72.7
98.9	77.9	99.8	116.5	103.7	102.6	95.4	96.6
7.1	4.3	6.6	10.5	6.2	6.2	8.2	7.4
34.5	19.9	30.6	55.4	28.2	30.5	41.7	35.7

Harmonised monitoring station number :
Measuring authority : EA-T NGR : 52 (TL) 299099

Determinand

Temperature
pH
Conductivity
Suspended Solids
Dissolved Oxygon
Tot. disn. org. carbon
Nitrite
Nitrate
Nitrate
Chioride
Total Alkalinity
Orthophosphate
Sulphate
Calcium
Cosicium
Magnesium
Potaktium
Soctium

06101

1995				
Samples: Max. Date Min. Date				

Flow measurement station : 038018-Water Hall
C. A. $\left(\mathrm{km}^{2}\right): 150.0$ NGR : 52 (TL) 299099

Poriod of record: 1975-1994							
Maan	Percentilea			Ouarterty averages			
	5\%	50\%	95\%	J-M	A-J		O-D
12.0	4.9	11.9	20.0	7.0	13.9	16.9	9.3
8.0	7.5	8.0	8.4	7.9	8.1	8.1	7.8
819	626	816	1065	872	811	783	845
16.6	2.4	10.7	47.4	16.6	13.4	16.4	22.2
10.18	7.46	10.15	12.75	11.22	10.08	9.33	10.18
17.8	3.7	13.4	47.7	16.7	0.0	0.0	0.0
0.16	0.05	0.10	0.28	0.11	0.11	0.26	0.17
12.0	7.4	11.1	16.1	12.2	11.6	11.4	13.0
80.4	47.9	73.6	121.0	89.9	72.0	80.3	81.0
212.2	135.0	224.3	255.5	207.9	217.2	213.0	206.5
2.56	1.18	2.45	4.64	2.34	2.50	2.72	2.77
84.4	60.2	86.4	127.90	86.5	86.1	78.7	88.3
119.4	94.3	119.2	139.8	123.5	121.0	114.4	116.1
4.2	3.1	4.0	5.0	4.6	4.0	4.2	4.0
9.2	6.0	8.8	15.5	8.5	8.4	9.4	10.5
68.5	37.7	66.5	124.5	69.9	69.4	69.1	66.9

Harmonised monitoring station number
Measuring authority: EA-S NGR: 61 (TR) 187603

Determinand	Units	1995					
		Samples	Mean	Max.	Date	Min.	Date
Temperature	${ }^{\circ} \mathrm{C}$	65	11.9	19.0	13/07	3.0	08/03
pH	pH units	65	8.0	8.5	24/03	7.7	27/09
Suspended Solids	mg / l	52 (8)	16.0	230.0	08/03	3.0	27/04
BOD (inhibited)	$\mathrm{mg} / \mathrm{l} 0$	52 (1)	2.1	6.4	18/07	1.0	13/07
Tot. diss. arg. carbon	$\mathrm{mg} / \mathrm{l} 0$	52	9.6	21.6	08/03	6.1	11/10
Ammoniacal nitrogen	mg / N	63 (2)	0.103	0.470	08/03	0.030	24/03
Nitrite -	$\mathrm{mg} / \mathrm{IN}$	63	0.076	0.311	07/12	0.024	07/08
Nitrate	mg / N	63	6.85	8.91	23/11	4.19	08/03
Chloride	$\mathrm{mg} / \mathrm{Cl}$	52	67.6	109.0	03/05	41.0	22/02
Total Alkalinity	$\mathrm{mg} / \mathrm{CaCO}$,	52	223.3	250.0	22/06	120.0	08/03
Orthophosphate	$\mathrm{mg} / \mathrm{l} \mathrm{P}$	63	0.944	1.800	16/11	0.260	14/02

Flow measurement station : 040011 - Horton
C.A. $\left(\mathrm{km}^{2}\right): 345.0 \quad$ NGR : 61 (TR) 116554

Mean	Percentiles				Quarterty averages		
	5\%	50\%	95\%	J-M	A-J	J-S	O-D
12.0	4.5	12.0	18.6	7.2	13.5	16.7	9.8
7.9	7.5	7.9	8.3	7.8	8.0	7.9	7.8
13.3	1.0	7.1	51.4	22.0	8.4	6.9	16.7
2.5	1.1	2.3	4.8	2.8	2.8	2.1	2.4
11.3	3.1	11.3	24.4	8.4	0.0	0.0	0.0
0.29	0.02	0.12	1.05	0.44	0.28	0.11	0.34
0.11	0.03	0.08	0.28	0.10	0.11	0.10	0.13
6.2	4.0	6.2	9.4	7.3	5.8	5.3	6.8
55.3	37.7	52.6	85.0	57.6	53.1	54.5	58.0
215.1	154.1	223.3	244.7	201.4	220.1	224.0	209.8
1.03	0.35	0.93	1.91	0.75	1.00	1.28	1.10

Itchen at Gatersmill
Harmonised monitoring station number : 07013
Measuring authority : EA-S NGR: 41 (SU) 434156
Determinand

Temperature
pH
Suspended Solids
BOD (inhibited)
Tot. diss. org. carbon
Ammoniacal nitrogen
Nitrite
Nitrate
Chloride
Total Alkalinity
Orthophosphate
Silica

Units	Samples	Mean	Max.	Date	Min.	Date
${ }^{\circ} \mathrm{C}$	62	11.3	19.0	01/08	4.0	27/12
pH units	62	8.1	8.6	15/08	7.7	22/12
mg/l	$53(1)$	19.9	109.0	08/02	3.4	07/09
$\mathrm{mg} / 10$	$53(2)$	2.1	5.1	30/03	1.0	16/01
$\mathrm{mg} / \mathrm{l} 0$	53	6.3	19.5	22/12	3.5	03/04
$\mathrm{mg} / \mathrm{l} \mathrm{N}$	62(1)	0.129	0.510	18/10	0.030	02/05
$\mathrm{mg} / \mathrm{IN}$	53	0.057	0.093	24/11	0.020	08/03
$\mathrm{mg} / \mathrm{IN}$	53	6.01	7.10	30/03	4.46	22/12
mg / l C!	53	23.9	29.0	08/03	21.0	19/05
$\mathrm{mg} / \mathrm{CaCO}_{3}$	53	234.6	270.0	20/03	127.0	22/12
mg / P	53	0.311	0.490	15/08	0.130	01/03
$\mathrm{mg} / \mathrm{l} \mathrm{SiO}$	51	10.58	12.60	04/01	7.10	10/05

Flow measurement station: 042010-Highbridge
C.A. $\left(\mathrm{km}^{2}\right)$: 360.0 NGR : 41 (SU) 467213

Period of record: 1980-1994							
Mean	Percentiles			Ouarterly averages			
	5\%	50\%	95\%	J.M	A-J	J-\$	O-D
11.4	5.2	11.1	18.0	7.8	13.0	15.9	9.8
8.1	7.8	8.1	8.3	8.0	8.1	8.2	8.0
11.5	2.4	7.6	33.1	25.9	9.8	4.8	10.6
1.9	1.0	1.8	3.3	2.1	2.2	1.5	1.8
7.4	4.2	6.9	13.8	6.9	0.0	0.0	0.0
0.10	0.01	0.09	0.23	0.14	0.08	0.07	0.12
0.06	0.03	0.05	0.10	0.05	0.05	0.06	0.07
5.1	4.0	5.3	6.2	5.6	5.2	4.7	5.
21.9	18.0	21.9	27.0	22.7	21.2	21.2	22.7
235.3	200.1	238.5	254.3	239.2	231.6	234.9	232.3
0.39	0.17	0.35	0.70	0.34	0.30	0.42	0.45
10.33	5.96	10.83	12.57	10.41	7.84	10.96	11.72

Frome at Holme Bridge
Harmonised monitoring station number: 08400
Measuring authority : EA-SW NGR : 30 (SY) 891866

\qquad
1995

1995					
Samples	Mean	Max.	Date	Min.	Date
28	12.2	19.0	$30 / 06$	5.0	$12 / 01$
30	8.1	8.4	$20 / 02$	7.8	$16 / 11$
29	13.0	620	$25 / 10$	3.5	$19 / 04$
28	10.58	14.29	20002	7.49	$30 / 06$
$30(1)$	1.8	3.7	$09 / 06$	1.0	$12 / 01$
$30(14)$	0.049	0.120	$15 / 09$	0.030	$20 / 02$
30	0.038	0.082	$16 / 11$	0.017	$24 / 09$
30	5.17	6.57	$28 / 02$	3.77	$21 / 08$
30	25.0	27.0	$19 / 04$	22.0	$10 / 02$
30	0.140	0.230	$15 / 09$	0.060	$19 / 04$
29	6.98	9.20	$04 / 12$	3.20	$19 / 04$
29	20.59	35.00	$16 / 11$	14.00	$20 / 02$
27	89.1	98.0	$28 / 02$	77.0	$16 / 11$
27	2.67	3.00	$19 / 04$	2.09	$12 / 01$
27	2.25	3.40	$16 / 11$	1.70	$04 / 05$
27	13.7	16.0	$14 / 08$	12.0	$12 / 01$

Flow measurement station : 044001-East Stoke Total C.A. $\left(k^{2}\right)^{2}$: 414.4 NGR : 30 (SY) 866867

Mean	Percentiles			Quarterly avorages			
	5\%	50\%	95\%	J.M	A-J	J-S	O-D
11.5	5.0	10.9	18.5	7.5	12.9	16.3	8.7
8.0	7.6	8.1	8.4	7.9	8.1	8.1	7.9
12.7	2.4	8.1	29.2	19.9	9.9	5.4	14.4
11.07	9.07	11.12	13.26	11.78	11.40	10.31	11.11
1.6	0.7	1.5	2.9	1.7	1.9	1.3	1.7
0.07	0.02	0.05	0.19	0.08	0.05	0.05	0.10
0.05	0.02	0.04	0.08	0.04	0.04	0.04	0.06
4.2	2.6	4.2	6.1	5.1	4.2	3.4	3.9
24.2	18.9	23.9	29.7	25.8	23.1	22.9	24.9
0.17	0.05	0.15	0.26	0.14	0.10	0.20	0.19
4.35	1.72	4.15	9.26	4.66	3.36	4.61	5.32
29.0	17.9	23.5	35.20	35.5	34.0	28.3	26.0
91.9	77.0	92.1	101.3	94.4	92.3	92.8	89.0
2.8	2.4	2.7	3.5	2.7	2.8	2.8	2.8
2.3	1.6	2.1	3.5	2.1	1.7	2.1	2.8
13.5	11.0	13.0	16.0	12.9	13.3	13.9	13.9

Axe at Whitford Road Bridge
$\begin{array}{lr}\text { Harmonised monitoring station number : } & 09001 \\ \text { Measuring authority : EA-SW } & 09295\end{array}$

Determinand

${ }^{\circ} \mathrm{C}$ pH units $\mu \mathrm{S} / \mathrm{cm}$ mg / l $\mathrm{mg} / 10$ $\mathrm{mg} / \mathrm{I} O$ $\mathrm{mg} / \mathrm{I} O$ $\mathrm{mg} / \mathrm{IN}$ $\mathrm{mg} / \mathrm{l} \mathrm{N}$ mg / N $\mathrm{mg} / \mathrm{ICl}$ $\mathrm{mg} / \mathrm{ICaCO}$, $\mathrm{mg} / \mathrm{l} P$ $\mathrm{mg} / \mathrm{ISO}$ $\mathrm{mg} / \mathrm{SO}_{4}$ $\mathrm{mg} / \mathrm{Ca}$ $\mathrm{mg} / \mathrm{Mg}$ mg / K $\mathrm{mg} / \mathrm{Na}$

	1995					
Samplos	Mean	Max.	Date	Min.	Date	
26	12.0	21.0	$17 / 08$	5.8	$08 / 03$	
26	8.1	8.8	$29 / 03$	7.7	$04 / 01$	
26	389	452	$14 / 07$	238	$01 / 02$	
$26(2)$	16.9	120.0	$01 / 02$	3.0	$07 / 08$	
26	11.30	16.50	$29 / 03$	9.03	$28 / 07$	
$26(3)$	1.9	4.1	$04 / 01$	1.0	$18 / 09$	
26	11.3	22.4	$01 / 02$	6.7	$17 / 08$	
$26(11)$	0.090	0.410	$04 / 01$	0.030	$29 / 03$	
24	0.039	0.070	$14 / 02$	0.014	$09 / 11$	
19	4.93	7.13	$01 / 12$	2.85	$01 / 02$	
26	24.8	30.0	$14 / 07$	19.0	$01 / 02$	
26	129.5	173.0	$17 / 08$	67.0	$01 / 02$	
18	0.315	0.610	$14 / 07$	0.090	$08 / 03$	
26	9.24	12.40	$18 / 09$	4.40	$05 / 04$	
26	29.04	45.00	$18 / 09$	14.00	$01 / 02$	
26	62.9	79.0	$14 / 07$	34.0	$01 / 02$	
26	6.07	8.40	$10 / 01$	4.80	$23 / 01$	
26	3.80	5.80	$04 / 01$	2.70	$07 / 08$	
26	14.4	19.0	$14 / 07$	9.0	$23 / 01$	

Flow measurement station : 045004 - Whitford
C.A. $\left(\mathrm{km}^{2}\right)$: $288.5 \quad$ NGR : 30 (SY) 262953

Period of record: 1974-1994							
Mean	5\% Percentiles ${ }_{\text {5 }}{ }_{\text {95\% }}$			Quartorty averages			
				J-M	A.J	J-S	O-D
10.8	3.9	10.3	18.1	6.1	12.2	16.0	8.9
8.0	7.4	8.0	8.5	7.9	8.1	8.1	7.8
385	302	393	452	373	387	412	375
15.1	1.6	5.6	61.3	17.6	10.4	6.6	25.1
10.94	8.39	10.89	13.54	12.03	11.14	9.85	10.77
2.0	0.9	1.6	4.3	2.1	2.2	1.7	2.1
12.7	4.5	10.7	25.2	11.0	0.0	0.0	0.0
0.10	0.01	0.06	0.31	0.15	0.08	0.05	0.12
0.05	0.02	0.04	0.10	0.04	0.05	0.03	0.05
3.9	2.2	3.6	5.9	4.4	3.5	3.2	4.6
24.2	19.3	23.0	32.0	25.2	22.1	24.2	25.0
136.0	90.4	140.3	167.9	121.7	143.4	154.2	126.8
0.26	0.13	0.23	0.47	0.22	0.30	0.34	0.24
9.47	4.74	9.90	12.66	9.14	7.67	10.17	10.80
33.2	21.9	33.9	42.45	32.2	31.9	34.8	33.6
62.6	44.2	63.5	77.4	57.9	63.8	70.2	59.6
6.1	4.8	6.1	7.4	6.1	6.1	6.2	6.2
4.1	3.0	3.8	6.2	4.1	3.7	4.1	4.6
13.5	10.5	13.1	18.2	13.6	13.1	14.4	13.3

Tamar at Gunnislake Newbridge

Harmonised monitoring station number : 09017
Measuring authority : EA-SW NGR : 20 (SX) 433722

Determinand	Units	1995					
		Samples	Moan	Max.	Date	Min.	Date
Temperature	${ }^{\circ} \mathrm{C}$	26	11.7	20.3	10/07	5.1	15/12
pH	pH units	26	7.7	8.6	14/06	7.4	29/03
Conductivity	$\mu \mathrm{S} / \mathrm{cm}$	26	185	237	09/10	158	30/01
Suspended Solids	mg / l	26(5)	15.9	139.0	29/03	3.0	13/04
Dissolved Oxygen	$\mathrm{mg} / 10$	26	10.59	12.70	06/12	8.12	28/07
BOD (inhibited)	mg / O	26	2.2	7.0	25/10	1.0	15/03
Tol. diss. org. carbon	$\mathrm{mg} / \mathrm{IO}$	26	9.1	18.9	29/03	4.0	15/03
Ammoniacal nitrogen	mg / N	26(15)	0.100	1.200	$29 / 03$	0.030	13/01
Nitrite	$\mathrm{mg} / \mathrm{l} \mathrm{N}$	26	0.024	0.091	29/03	0.006	09/11
Nitrate	mg / N	26	2.43	4.79	06/12	1.19	09/08
Chloride	$\mathrm{mg} / \mathrm{ll}$	26	22.6	28.0	22/05	19.0	14/02
Total Alkalinity	$\mathrm{mg} / \mathrm{CaCO}$	26	33.5	42.0	14/06	25.0	09/10
Orthophosphate	mg / P	26	0.062	0.170	29/03	0.030	29/02
Silica	$\mathrm{mg} / \mathrm{SiO} \mathrm{S}_{2}$	28	3.84	6.80	09/10	1.90	12/05
Sutphote	$\mathrm{mg} / \mathrm{SO} \mathrm{SO}_{4}$	26i 2)	15.73	36.00	09/10	10.00	30/01
Calcium	$\mathrm{mg} / \mathrm{la}$	26	15.7	19.0	09/10	12.0	29/03
Magnesium	$\mathrm{mg} / 1 \mathrm{Mg}$	26	4.57	5.90	12/05	3.40	30/01
Potassium	$\mathrm{mg} / \mathrm{AK}$	26	3.08	5.50	25/10	2.20	15/03
Sodium	$\mathrm{mg} / \mathrm{la}$	26	13.5	17.0	12/05	10.0	14/02

Flow measurement station : 047001 - Gunnislake C.A. $\left(\mathrm{km}^{2}\right): 916.9 \quad$ NGR : 20 (SX) 426725

Exe at Thorverton Road Bridge

Harmonised monitoring station number : 09036
Measuring authority : EA-SW NGR : 21 (SS) 936016
Daterminand

Temperature
pH
Conductivity
Suspended Solids
Dissolverd Oxygen
BOO finhibited)
Tot. diss. org. carbon
Ammoniacal nitrogen
Nitrite
Nitrate
Chloride
Total Alkalinity
Orthophosphate
Silica
Sulphate
Calcium
Magnesium
Potassium
Sodium

Unita	Samples	Mean	Max.	Date	Min.	Date
'C	26	12.0	20.8	04/08	6.1	23/0t
pH units	26	7.8	8.9	06/04	7.5	10/10
$\mu \mathrm{S} / \mathrm{cm}$	26	165	239	17/08	109	01/02
$\mathrm{mg} / 1$	$2617)$	17.2	136.0	01/02	3.0	06/04
mgll 0	25	10.84	12.80	09/11	8.21	28/07
mg / l	26(1)	1.7	3.5	05/04	1.0	31/10
mg / O	26	5.8	8.8	01/02	3.2	15/03
$\mathrm{mg} / \mathrm{l} \mathrm{N}$	$26(7)$	0.049	0.140	17/03	0.030	05/04
mg / N	24	0.023	0.046	13/06	0.011	10/10
mg / N	24	2.44	3.59	14/11	1.39	10/10
$\mathrm{mg} / \mathrm{lCl}$	26	15.4	20.0	28/07	12.0	01/02
$\mathrm{mg} / \mathrm{ICaCO}$	26	38.5	60.0	17/08	22.0	01/02
$\mathrm{mg} / \mathrm{P} P$	24	0.115	0.300	11/07	0.040	23/01
$\mathrm{mg} / \mathrm{SiO}$	26	3.41	4.80	14/11	1.60	06/04
$\mathrm{mg} / \mathrm{SO} \mathrm{S}^{\text {, }}$	26 (7)	13.62	24.00	11/07	10.00	06/01
$\mathrm{mg} / \mathrm{Co}$	26	16.5	23.0	28/07	11.0	01/02
$\mathrm{mg} / \mathrm{t} \mathrm{Mg}$	26	3.91	5.10	28/07	2.70	01/02
mg / K	26	1.95	2.90	05/09	1.30	31/10
$\mathrm{mg} / \mathrm{l} \mathrm{Na}$	26	11.4	20.0	11/07	6.0	01/02

Flow measurement station : 045001 - Thorverton C.A. $\left(\mathrm{km}^{2}\right)$: $600.9 \quad$ NGR : 21 (SS) 936016

Period of record: 1974-1994							
Moan	Percentiles			Quarterty averages			
	5*	50\%	95\%	J.M	A.J	J-S	O.0
10.9	4.5	10.3	18.6	6.2	12.5	16.3	9.1
7.5	7.0	7.5	8.1	7.4	7.7	7.6	7.4
170	123	163	239	161	182	184	159
12.4	1.4	5.1	44.5	15.8	7.7	7.0	14.2
11.04	8.67	11.17	13.18	12.29	10.84	9.71	11.29
1.7	0.9	1.6	3.4	1.7	2.0	1.6	1.6
7.0	2.7	6.3	13.5	5.4	0.0	0.0	
0.06	0.01	0.05	0.16	0.08	0.06	0.05	0.05
0.02	0.01	0.02	0.05	0.02	0.04	0.03	0.02
2.5	1.4	2.3	3.5	2.9	2.5	2.0	2.4
17.7	13.2	17.1	26.1	17.8	17.8	18.7	16.5
40.2	23.7	38.0	63.4	34.3	45.5	46.6	36.0
0.11	0.03	0.08	0.29	0.06	0.10	0.18	0.08
3.98	1.73	4.17	5.21	4.43	3.18	3.50	4.61
13.6	8.0	12.7	23.35	12.4	14.8	15.0	12.9
16.6	11.8	16.2	23.2	16.1	18.3	17.5	15.1
4.1	2.9	4.0	5.3	3.9	4.4	4.3	3.8
2.0	1.3	1.9	3.4	1.9	2.0	2.3	1.9
10.9	7.2	9.9	18.9	9.8	11.5	13.0	10.0

Dee at Overton

Harmonised monitoring station number :
10002
Measuring authority : EA-WEL NGR : 33 (SJ) 354427

Daterminand

Temperature

pH
Conductivity
Suspended Solids
Dissolved Oxyge
Ammoniacal nitrogen
Nitrite
Nitrate
Ontrophosphate

1995

Samplas	Mean	Max.	Date	Min.	Date
14	11.1	20.5	$26 / 07$	4.0	$15 / 12$
13	7.3	7.7	$05 / 04$	6.9	$21 / 11$
13	161	218	$28 / 09$	100	$11 / 01$
$13(5)$	6.0	27.0	$11 / 11$	1.5	$06 / 12$
13	11.03	12.90	$06 / 12$	9.10	$27 / 06$
$13(1)$	0.9	1.7	$05 / 04$	0.5	$31 / 03$
$13(3)$	0.041	0.110	$30 / 05$	0.010	$31 / 03$
13	0.014	0.055	$30 / 05$	0.002	$31 / 03$
13	0.94	1.47	$06 / 12$	0.55	$10 / 08$
$13(6)$	0.024	0.080	$11 / 01$	0.004	$27 / 06$

Taf at Clog-y-fran Bridge

Harmonised monitoring station number:
Measuring authority : EA-WEL NGR : 22 (SN) 238161

Units	1995					
	Samples	Mean	Max.	Date	Min.	Date
${ }^{\circ} \mathrm{C}$	25	11.0	23.0	22/08	5.0	16/03
pH units	24	7.4	8.0	22/08	6.6	06/01
$\mu \mathrm{S} / \mathrm{cm}$	12	183	234	12/10	126	16/02
mg / l	12(2)	19.3	177.0	16/02	2.0	01/11
$\mathrm{mg} / 10$	23	10.81	13.10	12/12	8.40	17/07
$\mathrm{mg} / 10$	24	1.1	3.4	16/02	0.5	12/10
$\mathrm{mg} / \mathrm{IN}$	34 (6)	0.053	0.280	19/01	0.010	13/04
mg / N	34	0.022	0.062	26/06	0.008	13/04
mg / P	24 (4)	0.055	0.270	13/12	0.004	26/06

Flow measurement station : 067015 - Manley Hall
C.A. $\left(\mathrm{km}^{2}\right): 1019.3$ NGR : 33 (SJ) 348415

Period of record: 1974-1994							
Mean	Percentiles			Quarterly averages			
	5\%	50\%	95\%	J-M	A-J	J.S	O-D
10.1	3.1	9.9	17.6	5.2	11.6	15.5	8.2
7.3	6.6	7.2	7.8	7.2	7.4	7.3	7.2
170	98	164	269	158	205	176	145
9.4	0.6	3.5	36.4	11.5	7.3	6.1	13.0
11.11	9.13	11.12	13.18	12.35	10.70	9.80	11.57
1.2	0.5	1.1	2.5	1.2	1.5	1.2	1.2
0.05	0.01	0.03	0.14	0.06	0.05	0.05	0.05
0.02	0.01	0.01	0.05	0.02	0.02	0.02	0.01
1.1	0.5	1.0	2.1	1.5	1.2	0.8	1.0
0.06	0.01	0.05	0.13	0.05	0.10	0.07	0.05

Harmonised monitoring station number: 11009
Measuring authority : SEPA-N NGR: 18 (NG) 938425

Determinand	Units	1995					
		Samples	Mean	Max.	Date	Min.	Date
Temperature	${ }^{\circ} \mathrm{C}$	11	9.3	16.9	17/08	2.2	26/01
Conductivity	$\mu \mathrm{S} / \mathrm{cm}$	12	75	297	29/09	31	26/10
Dissolved Oxygen	$\mathrm{mg} / \mathrm{I} 0$	11	11.14	12.70	28/02	9.45	20/07
GOD (inhibited)	$\mathrm{mg} / \mathrm{l} 0$	12	1.1	5.1	23/03	0.1	03/04
Ammoniacal nitrogen	$\mathrm{mg} / \mathrm{l} \mathrm{N}$	12 (2)	0.010	0.025	29/09	0.002	20/07
Nitrate	$\mathrm{mg} / \mathrm{IN}$	12	0.04	0.05	26/01	0.02	03/04
Chloride	$\mathrm{mg} / \mathrm{Cl}$	12	8.4	10.8	28/02	5.9	26/10

$\mu \mathrm{S} / \mathrm{cm}$ mg / O $\mathrm{mg} / \mathrm{lO}$ $\mathrm{mg} / \mathrm{IN}$

Spey at Fochabers

Harmonised monitoring station number:
Measuring authority : SEPA-N NGR : 38 (NJ) 341596

Determinand	Units	1995					
		Samples	Mean	Max.	Date	Min.	Date
Temperature	${ }^{\circ} \mathrm{C}$	11	10.1	19.5	13/07	2.0	02/02
pH	pH units	11	7.3	8.3	22/08	6.8	28/03
Conductivity	$\mu \mathrm{S} / \mathrm{cm}$	11	78	113	22/08	45	01/11
Suspended Solids	mg / l	11	3.9	16.0	25/10	1.0	28/03
Dissalved Oxygen	$\mathrm{mg} / 10$	11	11.71	14.08	13/12	9.92	07/09
800 (inhibited)	$\mathrm{mg} / \mathrm{l} 0$	11	0.9	1.3	25/10	0.3	28/03
Ammoniacal nitrogen	mg / N	11	0.016	0.026	13/12	0.007	27/04
Nitrite	mg / N	10(5)	0.006	0.008	01/11	0.005	02/02
Nitrate	mg / l	11	0.27	0.51	13/12	0.15	01/11
Chloride	$\mathrm{mg} / \mathrm{Cl}$	11	10.4	15.0	28/03	6.0	01/11
Total Alkalinity	$\mathrm{mg} / \mathrm{l} \mathrm{CaCO} 3$	11	18.3	33.0	22/08	10.0	02/02
Orthophosphate	$\mathrm{mg} / 1 \mathrm{P}$	11 (5)	0.006	0.014	13/12	0.003	$27 / 04$
Silica	$\mathrm{mg} / 1 \mathrm{SiO}_{2}$	11	5.19	7.92	13/12	3.89	22/08

Flow measurement station : 093001 - New Kelso
C.A. $\left(\mathrm{km}^{2}\right): 137.8$ NGR : 18 (NG) 942429

Period of record: 1979-1994							
Mean	Percentiles			Quarterly averages			
	5\%	50\%	95\%	J-M	A.J	J-S	O-D
8.3	2.4	7.9	15.3	3.8	10.5	12.9	. 6.9
44	28	42	64	50	46	40	39
11.27	9.51	11.30	13.07	12.51	10.96	10.07	11.40
0.9	0.3	0.9	1.8	1.1	0.8	0.9	1.0
0.01	0.00	0.01	0.02	0.01	0.01	0.01	0.01
0.1	0.0	0.1	0.1	0.1	0.1	0.1	0.1
10.3	5.9	9.5	18.1	13.5	10.5	8.0	9.1

1995
Flow measurement station : 008006-Boat o Brig C.A. $\left(\mathrm{km}^{2}\right): 2861.2$ NGR : 38 (NJ) 318518

Period of record: 1975-1994							
Mean	Percentiles			-	Quarterly avarages		
	5\%	50\%	95\%	J-M	A-J	J.S	O-D
9.8	2.4	11.0	18.0	3.5	10.4	14.7	6.1
7.0	6.0	7.1	7.8	6.8	7.1	7.3	6.9
78	50	77	110	82	73	86	72
3.9	0.1	1.8	18.0	3.8	3.7	3.4	4.2
11.47	9.28	11.42	13.66	12.79	11.14	10.13	11.84
0.9	0.3	0.9	1.5	0.7	1.0	0.9	0.9
0.03	0.00	0.02	0.11	0.02	0.03	0.04	0.03
0.01	0.00	0.01	0.01	0.01	0.01	0.01	0.01
0.3	0.2	0.3	0.6	0.4	0.3	0.3	0.3
10.4	6.0	9.9	15.9	12.2	9.9	10.3	9.2
23.8	10.2	24.9	35.2	21.3	23.0	28.2	23.7
0.02	0.00	0.01	0.07	0.01	0.00	0.03	0.02
5.70	3.68	5.39	7.79	5.77	4.74	5.39	5.98

Almond at Craigiehall

Harmonised monitoring station number: 14008 Measuring authority : SEPA-E NGR: 36 (NT) 165752

Determinand	Units	1995					
		Samples	Mean	Max.	Date	Min.	Date
pH	pH units	12	7.8	8.1	09/08	7.5	05/09
Conductivity	$\mu \mathrm{S} / \mathrm{cm}$	12	681	866	04/07	320	10/01
Suspended Solids	mg / l	12	11.5	56.0	05/09	2.0	09/08
Dissolved Oxygen	$\mathrm{mg} / \mathrm{l} 0$	12	10.39	12.90	09/08	7.60	12/10
BOD (inhibited)	$\mathrm{mg} / \mathrm{l} 0$	12	4.1	6.8	09/05	2.5	07/11
Ammoniacal nitrogen	$\mathrm{mg} / \mathrm{l} \mathrm{N}$	12	1.314	2.860	07/06	0.506	10/01
Nitrite	$\mathrm{mg} / \mathrm{IN}$	12	0.285	0.914	09/08	0.027	07/03
Nitrate	$\mathrm{mg} / \mathrm{IN}$	12	4.15	6.05	09/08	2.40	10/01
Total Alkalinity	$\mathrm{mg} / \mathrm{CaCO}$	12	114.4	148.0	07/06	59.5	10/01
Orthophosphate	mg / P	12	0.828	2.170	09/08	0.137	10/01
Sulphate	$\mathrm{mg} / \mathrm{S} \mathrm{SO} 4$	12	124.93	161.00	04/07	75.50	10/01
Magnesium	$\mathrm{mg} / \mathrm{l} \mathrm{Mg}$	12	18.12	24.60	04/07	8.66	05/09

Tweed at Norham

Harmonised monitoring station number Measuring authority' : SEPA-E NGR	

Determinand	Units	1995					
		Samples	Mean	Max.	Date	Min.	Date
Temperature	${ }^{\circ} \mathrm{C}$	12	10.8	19.5	15/08	2.5	24/01
pH	pH units	12	8.0	9.6	15/08	6.8	24/01
Conductivity	$\mu \mathrm{S} / \mathrm{cm}$	12	230	282	16/05	165	10/10
Suspended Solids	mg / l	12	2.7	7.0	21/02	1.0	14/09
Dissolved Oxygen	$\mathrm{mg} / 10$	12	11.11	14.80	15/08	9.30	14/09
BOD (intibited)	$\mathrm{mg} / \mathrm{l} 0$	12	1.6	2.8	24/01	1.0	10/10
Ammoniacal nitrogen	$\mathrm{mg} / \mathrm{l} \mathrm{N}$	12	0.056	0.160	24/01	0.020	07/11
Nitrite	mg / N	12	0.015	0.040	14/09	0.000	24/01
Nitrate	$\mathrm{mg} / \mathrm{l} \mathrm{N}$	12	1.57	2.90	24/01	0.20	15/08
Chloride	$\mathrm{mg} / \mathrm{l} \mathrm{Cl}$	12	17.6	23.0	15/08	13.0	10/10
Orthophosphate	mg / P	12	0.052	0.150	19/07	0.010	21/02

Flow measurement station : 019001-Craigiehall
C. A. $\left(\mathrm{km}^{2}\right): 369.0$

NGR : 36 (NT) 165752

Period of record: 1975-1994							
Mean	Percentiles			Quarterly averages			
	5\%	50\%	95\%	J-M	A-J	J-S	O-D
7.6	7.1	7.7	8.0	7.5	7.8	7.6	7.5
599	294	595	903	539	697	635	500
19.3	2.1	9.8	60.1	30.0	10.0	12.2	25.7
9.33	5.39	9.67	12.39	11.16	9.38	7.44	9.74
3.5	1.4	2.9	7.1	3.3	3.7	3.2	3.8
1.23	0.21	0.95	3.12	1.26	1.55	1.07	0.89
0.26	0.02	0.14	0.79	0.12	0.34	0.44	0.14
3.8	2.2	3.7	5.9	3.5	4.0	4.1	3.7
118.4	51.0	119.5	180.2	100.6	139.5	124.7	100.9
0.74	0.08	0.45	2.07	0.28	0.90	$t .24$	0.42
122.5	25.6	125.2	200.31	106.5	140.7	133.1	109.2
22.9	8.5	22.0	39.4	19.9	27.0	25.1	19.9

Flow measurement station : 021009 - Norham
C.A. $\left(\mathrm{km}^{2}\right): 4390.0 \quad$ NGR : 36 (NT) 898477

Mean	Period of record: 1975-1994						
	Percentiles			Quarterty averagos			
	5\%	50\%	95\%	J-M	A-J	J-S	O-D
10.1	2.6	9.1	19.5	4.7	13.2	16.0	6.2
8.0	7.2	7.8	9.3	7.6	8.3	8.5	7.7
232	166	227	291	229	234	227	227
8.9	1.3	4.4	31.2	14.3	4.9	6.7	9.0
11.59	9.04	11.47	14.69	11.94	11.46	11.56	11.47
2.4	1.0	2.2	4.2	2.3	2.5	2.6	2.0
0.08	0.02	0.08	0.16	0.10	0.07	0.07	0.09
0.02	0.01	0.01	0.04	0.02	0.02	0.02	0.02
1.8	0.8	1.7	3.2	2.5	1.7	1.1	1.8
16.1	10.5	15.8	22.1	17.2	16.2	15.7	15.2
0.13	0.02	0.07	0.39	0.12	0.10	0.14	0.13

Dee at Glenlochar

Harmonised monitoring station number: 16005
Measuring authority : SEPA-W NGR : 25 (NX) 733642

Detarminand	Units	1995					
		Samples	Mean	Max.	Date	Min.	Date
Temperature	${ }^{\circ} \mathrm{C}$	12	10.9	25.0	01/08	2.0	04/01
pH	pH units	12	6.7	6.9	02/05	6.2	02/11
Conductivity	$\mu \mathrm{S} / \mathrm{cm}$	12	54	66	01/12	46	01/09
Suspended Solids	mg / l	12	2.1	5.0	04/01	1.0	03/04
Dissolved Oxygen	$\mathrm{mg} / \mathrm{l} 0$	12	9.81	12.20	04/01	6.00	01/08
BOD (inhibited)	$\mathrm{mg} / 10$	12	1.5	2.6	01/03	1.1	03/04
Ammoniacal nitrogen	$\mathrm{mg} / \mathrm{l} \mathrm{N}$	12	0.039	0.060	01/02	0.010	01/12
Nitrate	$\mathrm{mg} / \mathrm{IN}$	12	0.27	0.59	04/01	0.08	01/09
Chloride	$\mathrm{mg} / \mathrm{lCl}$	12	7.9	9.8	02/11	6.8	04/01
Orihophosphate	$\mathrm{mg} / \mathrm{l} \mathrm{P}$	12	0.005	0.017	03/04	0.002	02/05
Silica	$\mathrm{mg} / \mathrm{SiO}$	12	1.61	3.10	04/01	0.20	01/06
Sulphate	$\mathrm{mg} / \mathrm{SO} \mathrm{SO}_{4}$	12	4.15	6.34	01/12	3.35	03/04
Calcium	$\mathrm{mg} / \mathrm{l} \mathrm{Ca}$	12	3.5	5.3	04/01	2.1	01/06
Magnesium	$\mathrm{mg} / \mathrm{Mg}$	12	1.19	1.42	01/12	0.85	01/09
Potassium	mg / K	12	0.53	0.68	04/01	0.39	01/06
Sodium	$\mathrm{mg} / \mathrm{l} \mathrm{Na}$	12	4.8	5.7	01/12	4.0	04/01

Flow measurement station : 080002-Glenlochar C. A. $\left(\mathrm{km}^{2}\right): 809.0$

NGR : 25 (NX) 733641

Period of record: 1975-1994							
Mean	Percentiles			Quarterty averages			
	5\%	50\%	95\%	J.M	A.J	J-S	O-D
9.9	1.9	9.1	20.0	3.5	11.3	17.0	8.3
6.7	6.2	6.7	7.3	6.6	6.7	6.9	6.6
61	41	55	77	56	58	64	60
3.3	1.1	1.9	6.9	4.7	3.3	2.3	2.5
10.81	8.70	10.76	12.98	12.36	11.02	9.46	10.54
2.0	1.0	1.9	3.1	2.1	2.0	1.6	1.9
0.06	0.01	0.04	0.15	0.05	0.05	0.07	0.07
0.3	0.1	0.3	0.7	0.5	0.3	0.2	0.3
9.0	5.1	8.7	13.6	9.8	9.4	8.6	8.4
0.01	0.00	0.01	0.04	0.01	0.00	0.02	0.01
2.19	0.33	2.19	4.30	3.13	1.67	1.17	2.81
5.4	3.6	4.9	9.06	5.3	5.1	5.5	6.1
3.8	2.3	3.2	5.7	3.4	3.4	4.4	3.8
1.5	0.7	1.4	2.2	1.4	1.4	1.5	1.5
0.6	0.3	0.5	0.8	0.6	0.5	0.5	0.6
5.1	3.4	5.1	7.0	5.5	5.2	4.8	4.9

Leven at Renton Footbridge

Harmonised monitoring station number : 17005
Measuring authority : SEPA-W NGR : 26 (NS) 389783
Determinand

Temperature
pH
Conductivity
Suspended Solids
Dissotved Oxyge
BOD (inhibited)
Ammoniacal nitrogen
Ammon
Nitrate
Total Alkalinity
Orthophosphate

Units	1995					
	Samples	Mean	Max.	Date	Min.	Date
${ }^{\circ} \mathrm{C}$	13	12.4	22.0	11/08	4.0	24/02
pH units	12	6.9	7.3	11/08	6.6	03/11
$\mu \mathrm{S} / \mathrm{cm}$	12	76	98	03/11	65	28/04
mg / l	23 (5)	2.5	6.0	21/07	1.0	10/05
$\mathrm{mg} / \mathrm{l} 0$	12	10.76	12.50	16/03	9.70	08/09
$\mathrm{mg} / \mathrm{l} 0$	12(1)	1.9	3.0	16/03	1.0	28/04
$\mathrm{mg} / \mathrm{IN}$	12 (3)	0.082	0.260	11/08	0.010	28/04
$m \mathrm{mg} / \mathrm{N}$	12(1)	0.41	0.97	08/09	0.01	10/05
$\mathrm{mg} / \mathrm{CaCO}$,	12	12.1	14.0	25/07	10.0	03/11
mg / P	23 (8)	0.010	0.035	28/04	0.002	18/08

Flow measurement station : 085001-Linnbrane
C.A. $\left(\mathrm{km}^{2}\right): 784.3 \quad$ NGR : 26 (NS) 394803

Period of record: 1975-1994							
Mean	Porcentiles			Quarterly averages			
	5\%	50\%	95\%	J-M	A-J	J.S	O-D
9.5	2.9	9.0	16.9	4.0	10.9	14.9	8.2
7.0	6.6	7:1	7.5	7.0	7.1	7.1	7.0
70	57	68	93	71	72	69	69
4.5	1.1	3.2	12.1	6.3	3.6	3.5	4.0
10.95	9.28	11.00	12.71	12.28	11.27	9.66	10.73
1.8	1.0	1.8	3.4	2.3	2.2	1.5	1.7
0.05	0.03	0.02	0.20	0.05	0.05	0.05	0.04
0.3	0.1	0.3	0.5	0.3	0.3	0.2	0.3
15.6	10.0	15.1	21.9	14.2	15.6	16.0	15.9
0.02	0.00	0.01	0.04	0.01	0.00	0.03	0.02

Ballinderry at Ballinderry Bridge

DOE Northern Ireland station number :
Measuring authority : DOEN
03/07/Q100
NGR : 23 (IH) 927798

Daterminand

Temperature
pH
Conductivity
Suspended Solids
BOD (inhibited)
Ammoniacal nitrogen
Nitrito
Chloride
Orthophosphate

	1995					
Units	Sampleas	Mean	Max.	Date	Min.	Date
${ }^{\circ} \mathrm{C}$	23	12.0	20.0	$22 / 08$	4.0	$03 / 03$
pH units	24	7.9	8.6	$09 / 05$	7.5	$13 / 11$
$\mu \mathrm{~S} / \mathrm{cm}$	24	330	384	$14 / 12$	212	$11 / 01$
mg / I	24	10.3	53.0	$06 / 10$	2.0	$22 / 08$
$\mathrm{mg} / / \mathrm{O}$	24	10.25	12.60	$23 / 05$	7.00	$22 / 08$
$\mathrm{mg} / / \mathrm{O}$	24	2.5	4.0	$11 / 01$	1.2	$20 / 09$
$\mathrm{mg} / / \mathrm{N}$	24	0.235	0.540	$11 / 01$	0.050	$23 / 05$
$\mathrm{mg} / / \mathrm{N}$	24	0.060	0.140	$05 / 09$	0.030	$16 / 02$
$\mathrm{mg} / / \mathrm{Cl}$	24	19.0	25.0	$03 / 03$	14.0	$16 / 02$
$\mathrm{mg} / / \mathrm{P}$	$24(1)$	0.182	0.420	$29 / 06$	0.050	$29 / 11$

Flow measurement station : 203012-Ballinderry Br
C.A. $\left(\mathrm{km}^{2}\right): 419.5$ NGR : $23(\mathrm{H}) 926799$

Period of record: 1974-1994							
Mean	Porcentiles			Quarterly averages			
	5\%	50\%	95\%	J-M	A-J	J.S	O-D
9.9	3.0	10.0	17.0	5.2	11.8	14.8	7.9
7.8	7.3	7.8	8.3	7.7	7.9	7.8	7.7
308	216	306	374	283	327	334	296
10.2	2.0	6.0	32.0	13.2	7.0	9.0	10.9
10.13	6.80	10.20	12.60	11.30	10.10	8.80	10.40
2.5	1.0	2.0	4.9	2.6	2.7	2.3	2.2
0.25	0.04	0.20	0.53	0.34	0.25	0.17	0.24
0.05	0.02	0.04	0.12	0.04	0.05	0.06	0.05
18.9	12.0	19.0	26.0	19.5	18.9	19.3	18.2
0.20	0.07	0.17	0.43	0.13	0.16	0.31	. 0.17

Lagan at Shaws Bridge

DOE Northern Ireland station nu Measuring authority : DOEN		$\begin{gathered} \text { ber : } \quad 05 / 01 / \mathrm{Q} 200 \\ \text { NGR: } 33(\mathrm{IJ}) 325690 \end{gathered}$					
		1995					
Detorminand	Unite	Samples	Mean	Max.	Date	Min.	Date
Temperature	${ }^{\circ} \mathrm{C}$	24	10.0	19.5	27/07	3.0	27/01
pH	pH units	24	7.9	8.2	10/08	7.5	15/11
Conductivity	$\mu \mathrm{S} / \mathrm{cm}$	24	483	888	08/09	252	13/02
Suspended Solids	mg/t	24 (3)	7.7	48.0	15/11	2.0	25/08
Dissolved Oxygen	$\mathrm{mg} / 10$	24	6.80	11.70	11/12	4.10	03/07
BOD (inhibited)	$\mathrm{mg} / \mathrm{l} 0$	24	2.9	5.9	23/06	1.5	10/08
Ammoniacal nitrogen	mg / N	24	0.230	1.600	08/09	0.060	25/05
Nitrite	mg / N	24	0.064	0.170	08/09	0.030	11/05
Chloride	$\mathrm{mg} / \mathrm{Cl}$	24	49.7	146.0	08/09	24.0	27/11
Orhophosphate	$\mathrm{mg} / \mathrm{l} \mathrm{P}$	24	0.985	2.730	25/08	0.130	27/01

Flow measurement station : 205004 - Newforge C.A. $\left(\mathrm{km}^{2}\right)$: 490.4 NGR : 33 (IJ) 329693

Mean	Percentiles			Quarterty averages			
	5\%	50\%	95\%	J.M	A-J	J-S	O.D
10.1	4.0	9.5	16.5	5.3	12.4	15.1	8.0
7.7	7.2	7.7	8.0	7.6	7.7	7.6	7.6
429	286	414	806	381	443	517	392
11.5	2.0	- 6.0	35.0	14.6	8.1	6.8	15.2
11.20	4.00	10.70	21.80	13.30	10.40	7.20	11.40
3.2	1.3	2.9	6.3	2.9	4.0	3.2	3.0
0.71	0.08	0.44	2.03	0.62	0.87	1.35	0.78
0.15	0.02	0.07	0.44	0.08	0.19	0.28	0.09
41.2	22.0	37.0	70.0	36.2	41.5	45.3	34.8
0.81	0.15	0.56	2.23	0.35	0.97	1.25	0.60

HARMONISED MONITORING STATIONS

HM Site Numb	River	HM Location	National Grid Reference	Gauging ${ }^{\dagger}$ Station
1001	Mersey	Flixton	SJ742938	69007*
1002	Mersey	Above Howley Weir	SJ616880	69037
1003	Irwell	Salford	SJ823990	69002
1004	Tame	Tame Street, Portwood	SJ900913	69027
1005	Weaver	Frodsham	SJ530785	68001*
1006	Als	Above Hightown	SD292051	69033*
:007	Ribble	Mitton	SD716388	71006
1008	Riblle	Samlesbury	SD590305	71001
1009	Calder	Whalley	SD729361	71004
1010	Wyre	St Michaels	SD462411	72002
1011	Lune	Forge Weir	SD514648	72004
1012	Kent	Sedgwick Weir	SD509875	73005
1013	Beela	Milothorpe	SD489813	73008
1014	Leven	Low Wood Br, Havertbwaite	SD346837	73010
1015	Douglas	Wanes Blades Bridge	SD476126	70002
1016	Darwen	Walton Green	SD551282	71014
1017	Eden	Temple Sowerby	NY604281	76005
1018	Eamont	Udford	NY575304	76003
1019	Eden	Beaumont	NY351593	76007
1020	Esk	Burnfoot	NY364665	77001
1021	Lyne	Lyne Foot	NY365652	77005
1022	Derwent	Seaton Road Br, Workington	NY008291	75002
1023	Lune	Denny Bridge	SD504647	72004
2001	Tweed	Norbam Bridge	NT890473	21009
2009	Coquet	Warkworth	NU238060	22001
2012	Wansbeck	Sheepwash Dam	NZ256858	22007
2020	North Tyne	Cbollerford	NY919706	23003
2021	South Tyne	Warden Bridge	NY910660	23004
2026	Derwent	Clockburn Drift	NZ186604	23007
2044	Wear	Lamb Bridge	NZ295523	24009
2058	Tees	Broken Scar	NZ265131	25001
2061	Tees	Low Worsall	NZ391102	25009
2923	Tyne	Wylam	NZ119645	23001
3006	Trent	Dunham	SK820745	28022
3007	Trent	Nottingham	SK581383	28009
3008	Trent	Yozall	SK131177	28012
3009	Idle	Bawtry	SK656927	28015*
3010	Soar	Redhill Lock	SK493303	28074
3011	Derwent	Wilne	SK452315	28067
3012	Stour	Stourport Footbridge	SO814709	54006
3013	Tame	Chetwynd	SK187138	28005
3014	Sowe	Milford	SJ975215	28014
3015	Dove	Monks Bridge	SK268270	28018
3019	Tern	Atcham	SJ553093	54012
3029	Teme	Powick	SO836525	54029
3227	Severn	Haw Bridge	SO845278	54057
3416	Avon	Evesham Road Bridge	SP034431	54002
3752	Severn	Shelton	SJ467138	54005*
4001	Hull	Hempholme Lack	TA079510	26002
4002	Ouse	Skelton	SE560551	27009
4003	Ouse	Naburn Weir	SE594445	27009
4004	Aire	Beal Weir	SE534255	27003
4005	Aire	Fleet Weir	SE381285	27080
4006	Calder	Methley	SE409258	27079
4007	Don	Doncaster	SE563031	27021
4008	Don	Hadfields Weir	SK391911	27006
4009	Dearne	Pastures Bridge	SE499012	27030
4010	Rother	Canklow	SK425905	27025
4011	Derwent	Elvington	SE704475	27041
4012	Esk	Ruswarp	NZ887091	27050
4013	Wharfe	Tadcaster Weir	SE485437	27002
4014	Derwent	Loftsome Bridge	SE707302	27041
4015	Ouse	Nether Poppleton	SE560551	27009
5500	Welland	Peakirk	TF208093	31004*
5501	Welland	Tinwell	TF017060	31007*
5502	Welland	Crowland	TF229107	$31004 *$
5510	Neas	'Dog-in-a-Doublet' Sluice	TL272994	32001 *
5511	Nene	Wansford	TL082996	32001
5626	Bedford Ouse	Earith	TL394748	33026*
5651	Ely Ouse	Denver Sluice	TF598009	33035
5683	Mid Lv Main Dr	Mullicourt Priory Stuice	TF531029	
5714	Wensum	Sweet Brier Road Bridge	TG206096	34004*
5722	Bure	Horstead Mill	TG267198	34003
5810	Stour	Langham	TM026345	36006
5811	Stour	Wixoe	TL. 709431	36012*
5820	Colne	East Mills	TM007254	37005
5830	Blackwater	Langford	TL836092	37010*
5840	Cbelmer	Langford	TL835086	37002*
6001	Thames	Farmoor Intake	SP439064	39008
6002	Cherwell	Marston Road, Oxford	SP527067	39021
6003	Thame	Dorchester Bridge	SU579939	39105
6004	Kennett	100 m above Thames	SU731738	39016
6005	Loddon	A4 Roadbridge, Twyford	SU779766	39007*
6006	Thames	Egham	TQ023718	39111
6007	Colne	Confluence with Thames	TQ033716	39010
6008	Wey	Confluence with Thames	TQ075657	39079
6009	Mole	Confluence with Thames	TQ154683	39104
6010 6101	Thames Lee	Teddingtoo Weir Waterball	TQ170713 TL299099	39001 38018

HM Site Numbe	River	HM Location	National Grid Reference	$\underset{\text { Gtation }}{\text { Gauging } \dagger}$
6102	Lee	Ware Lock	TL352143	38018
6104	Lee	Lea Valley Road	TQ375949	38001
6105	Lee	Carpenters Road	TQ377845	38001
6106	Roding	Woodford Bridge	TQ418916	37001
7001	Medway	U / s of Allington Sluices	TQ750582	40003
7002	Eden	Pensturst G/s	TQ521438	40010
7003	Great Stour	Bretrs Bailey Bridge	TR187603	40011
7004	Rotber	Blackwall Bridge	TQ885258	40004
7005	Cuckmere	Shermans Bridge	TQ532051	41003
7006	Ouse	Harcombe Mills	TQ433148	41004
7007	Rother	Hardbam G/s	TQ034178	41009
7008	Arun	Pallingham G/s	TQ033198	41014
7009	Test	Longbridge	SU355179	42004
7010	Itchen	The White Swan	SU449156	42010
7011	Blackwater	Nutsey Bridge, Testwood	SU352151	42014
7012	Test	Testwood	SU353153	42004
7013	Itchen	Gatersmill	SU434156	42010
8001	Avon	Great Somerfords	ST975829	53008
8002	Somerset Frome	Tellisford	ST805565	53007
8003	Midford Brook	Midford	ST764611	53005
8004	Avon	Keynsham	ST662689	53022*
8100	Avon	Knapp Mill Pipe Br .	SZ154940	43021
8200	Stour	Bridge at Iford	SZ122955	43007
8300	Piddle	Baggs Mill Bridge	SY913876	44002
8326	Tone	Knapp Bridge	ST302260	52005*
8400	Frome	Holme Bridge	SY891866	44001
8426	Parrett	Langport (Westover)	ST416266	52007*
9001	Axe	Wbitford Road Bridge	SY262953	45004
9002	Oter	Dotton Footbridge	SY087885	45005
9003	Exe	Trews Weir	SX925915	45001 *
9008	Teign	Preston Footbridge	SX855745	46002
9011	Dart	Totaes Weir	Sx800614	46003
9013	Avon	Hatch	SX714473	46008
9014	Plym	Plymbridge	SX524587	47011
9015	Tavy	Denham Bridge	SX477678	47003
9017	Tamar	Gumnislake Newbridge	SX433722	47001
9023	Lymher	Notter Bridge	SX385609	47004
9024	Fowey	Respryn Bridge	SX099635	48011
9025	Fal	Tregony G/s	SW921445	48003
9026	Carnon	Devoran Bridge	SW791394	
9027	Camel	Polbrock Bridge	SX014695	49001
9028	Torridge	Beam Footbridge	SS474209	50002
9030	Taw	Chapelton	SS582261	50001
9031	Taw	Taw Bridge	SS673065	50007
9035	Yeo	Riversmead	SS596357	
9036	Exe	Thorverton Road Bridge	SS936016	45001
9037	Red	Gwithian Towans	SW585422	
10001	Dee	Llandderfel	SH982366	67001
10002	Dee	Overton	SJ354427	67015
10003	Dee	Iron Bridge	SJ418601	67015*
10004	Alwen	Glan Alwen Fords	SJ058429	67006
10005	Clywedag	Pickhill Bridge	SJ396482	67025
10006	Alyn	Ithels Bridge	SJ390562	67008
10007	Clwyd	St Asaph	SJ044748	66001
10008	Elwy	Gipsy Lape	SJ032760	66006
10009	Ognore	Dipping Bridge	SS891784	58801
10010	Neath	Aberdulais	SS773990	58002*
10011	Ely	St Fagans	ST119769	57009
10012	Taff	Llandaff North	ST153785	57005
10013	Rbymney	L.lanrbymney	ST214807	57008
10014	Dwyryd	Maentwrog Bridge	SH666407	65002
10015	Dysyoni	Pont-y-Garth Bridge	SH636071	64002
10016	Gwyrfai	Boatnewydd Bridge	SH483598	65004
10017	Doves (Dyf)	Dovey Bridge	SH748019	645001
10018	Waion	Pont Fawr, Dotgellau	SH730179	65002
10019	Mawddach	Ganllwyd	SH729233	
10020	Glaslyn	Pont Croesor	SH593413	65001
10021	Dwyfawt	Dolbenmaen Road Br	SH487400	65007
10022	Ogwen	Talybont Footbridge	SH601699	
10023	Conwy	Cwm Llanerch	SH801595	66011
10024	Tawe	Morriston Road Bridge	SS674979	59001
10025	Loughor	Ynys Liwchwr	SN618089	
10026	Towy (Tywi)	Nantgaredig Road Br	SN491204	60010
10027	Taf	Clog-y-Fran Bridge	SN238161	60003
10028	Eastern Cleddau	Canason Bridge	SN070153	61002
10029	Western Cleddau	Mart Footbridge	SM953159	61004
10030	Teifi	Lechryd Bridge	SN217436	62001
10031	Ystwyth	Llanfarian Bridge	SN590778	63001
10032	Rheidol	Penybont Bridge	SN594803	63002
10033	Usk	Chain Bridge	SO345056	56001
10034	Afon Lwyd	Ponthir Weir	ST330924	56005
10035	Ebbw Fawr	Rhiwderin	ST259889	56002
10036	Wye	Bridge Sollars Bridge	SO413425	55002
10037	Wye	Redbrook Railway Br	SO536098	55023
10038	Elan	Glyn Footbridge	SN965656	55032
10039	Western Cleddau	Prendergast Mill	SM954177	61004
10040	Gwili	Abergwili Road Br	SN434210	60006
10041	Ystwyth	Rhydytelin	SN588788	63001
10042	Nant y Fendrod	Llansamlet	SS670966	

HM Site Number	River	HM Location	National Grid Reference	$\underset{\text { Station }}{\text { Gauging }} \dagger$	HM Site Number	River	HM Location	National Grid Reference	$\begin{gathered} \text { Gauging } \\ \text { Station } \end{gathered}$
11001	Wick	Fairy Hillock	ND344519	1001	14005	Forth	Drip Bridge	NS770956	18011
11002	Shin	Inveran Power Station	NH575975	3005	14006	Carron	Carron Iron Works	NS883824	17001*
11003	Conon	A9 Road Bridge	NH540558	4001	14007	Avon	Jinkaboot Bridge	NS947797	17005
11004	Beauly	A9 Road Bridge	NH517450		14008	Almond	Craigiehall	NT165752	19001
11005	Ness	Inverness	NH665445	6007	14009	Water of Leith	Anderson Place	NT258756	19006
11006	Nairn	Nairn	NH887561	7004	14010	Esk	Musselburgh	NT339724	19007
11007	Findhorn	A96 Road Bridge	NJ012582	7002	14011	Tyne	East Linton	NT593772	20001
11008	Lochy	A830 Road Bridge	NN124758	91002					
11009	Carron	A890 Road Bridge	NG938425	93001	15001	Tweed	Norham	NT898477	21009
11010	Thurso	Thurso	ND112673	97002		Whiteadder	Chesterfield Ford	NT937535	21022
							Eyemouth Mill	NT942635	21016
12001	Lossie	Arthurs Bridge	NJ253672	7003	16001	Esk	Canonbie G/s	NY397751	77002
12002	Spey	Fochabers	NJ341596	8006	16002	Annan	Brydekirk G/s	NY191704	78003
12003	Deveron	Bridge of Alvah	NJ680611	9002	16003	Nith	Marybome Bridge, Dumfries	NX973765	79002*
12004	Ugie	Inverugie	NK109483	10002	16004	Urr Water	Dalbeattie G/s	NX822610	80001
12005	Ythan	Ellon	NJ957303	10003	16005	Dee	Glenlochar G/s	NX733642	80002
12006	Don	Grandholm Bridge	NJ924093	11001	16006	Cree	Newton Stewart G/s	NX412653	81002
12007	Dee	Marycutler Bridge	NJ858003	12002	16007	Water of Luce	Airyhemming G/s	NX180599	81003
13001	Eden	Kemback	NO415158	14001	17001	Clyde	Glasgow Green	NS595645	84013
13002	Earn	Forteviot Bridge	NO049176	16004	17002	Kelvin	Partick Bridge	NS555706	84001
13003	Tay	Perth (Queens Bridge)	NO122234	15006*	17003 17004	White Cart	Hawkbead	NS499629	84012
13004	Dighty Water	Balmossie Mill	NO477324	14002	17004	Black Cart Leven	Blackstoun Farm ${ }^{\text {Br }}$ Renton Footbridge	NS459660 NS 389783	84017
13005	South Esk	Kinnairds Mitl	NO632582	13008	17006	North Calder	Calderpark	NS681624	84019
13006	North Esk	Maryxirk	NO686650	13007	17007	South Calder	Orbiston Park	NS733580	844007
					17008	Ayr	Dam at Parkhill	NS343216	83006
14001	Leven	National Steel Foundry	NO372004	17002	17009	Irvine	Irvine/Annick Confluence	NS345375	83005
14002	Devon	Cambus Bridge	NS853941 .	18002	17010	Annick	A71 Road Bridge	NS331383	83008
14003	Allan	Bridge of Allan	NS789976	18005	17011	Garnock	Dirrans Weir, Kilwinning	NS308427	83009
14004	Teith	Bridge of Teith, Doune	NN722013	18003	17012	Lugton	Egliaton Castle Bridge	NS318422	83007

* Subsidary gauging stations are used in the estimation of river flows. †NRFA Number.

Note: Not all gauging stations have been operational throughout the Harmonised Monitoring programme.

DIRECTORY OF MEASURING AUTHORITIES

	Address	Code
Environment Agency	Rio House Waterside Drive Aztec West Almondsbury BRISTOL BS12 4UD	EA
Environment Agency Regional Headquarters		
Anglian Region	Kingfisher House, Goldhay Way Orton Goldhay PETERBOROUGH PE2 5ZR	EA-A
North East Region	Rivers House 21 Park Square South LEEDS LSI 2QG	EA-NE
North West Region	Richard Fairclough House PO Box 12 Knutsford Road WARRINGTON WA4 1HG	EA-NW
Midlands Region	Sapphire East 550 Streetsbrook Road SOLIHULL B91 1QT	EA-M
Southern Region	Guildbourne House Chatsworth Road WORTHING BN11 1LD	EA-S
South West Region	Manley House, Kestrel Way Sowton Industrial Estate EXETER EX2 7LQ	EA-SW
Thames Region	Kings Meadow House Kings Meadow Road READING RGl 8DQ	EA-T
Welsh Region	Rivers House/Plas-yr-Afon St Mellons Business Park St Mellons CARDIFF CF3 OLT	EA-WEL

Scottish Environment Protection Agency

Erskine Court
SEPA
The Castle Business Park STIRLING FK9 4TR

Scottish Environment Protection Agency Regional Headquarters

East Region	Clearwater House Heriot Watt Research Park Avenue North, Riccarton EDINBURGH EH14 4AP	SEPA-E
West Region	Rivers House, Murray Road EAST KILBRIDE G75 0LA	SEPA-W
Other measuring authorities		
British Waterways Board	Willow Grange, Church Road WATFORD WD1 3QA	BWB
Department of the Environment for Northern Ireland	Environment and Heritage Service Calvert House 23 Castle Place BELFAST BT1 1FY	DOEN
East of Scotland Water Authority (Directorate of Water and Drainage Services)	West Grove, Waverley Road MELROSE TD6 9SJ	ESWA
Essex \& Suffolk Water Plc	Hall Street CHELMSFORD CM2 OHH	ESW
Geological Survepy of Northern Ireland	20 College Gardens BELFAST BT9 6BS	GSNI
North of Scotland Water Authority	Denburn House 25 Union Terrace ABERDEEN AB10 1NN	NSWA
Institute of Hydrology	Maclean Building Crowmarsh Gifford WALLINGFORD OX10 8BB	IH
North East Water Plc	PO Box 10, Allendale Road NEWCASTLE UPON TYNE NE6 2SW	NEW
North West Water Plc	Dawson House, Liverpool Road Great Sankey WARRINGTON WA5 3LW	NWW
Southern Water Plc	Southern House, Yeoman Road WORTHING BN13 3NX	SW
West of Scotland Water Authority	419 Balmore Road GLASGOW G22 6NU	WSWA
Yorkshire Water Services Ltd	West Riding House 67 Albion House LEEDS LSI 5AA	YW

PUBLICATIONS - in the Hydrological data UK series

Introduction

As detailed on page 3 the 1995 Yearbook is the last to be published in printed form. The annual datasets featured in the Yearbooks will henceforth be available via the Internet. The five-yearly Hydrometric Register and Statistics volumes will continue to be published as hard copy, as will the monthly Hydrological Summaries for Great Britain. It is expected that further occasional reports in the Hydrological data UK series will also be published documenting notable hydrological events.

The pace of technological change and, in particular, the demand for material via the Internet will help shape the future of the Hydrological data UK series. Listed below are the publications currently available, together with companion volumes and other reports obtainable through the National Water Archive.

Title	Published	Price (inclusive of second class postage		
		within the UK)		
		Loose-leaf*	Bound	
Yearbooks:	1985	$£ 10$	$£ 12$	
Yearbook 1981	1985	$£ 10$	$£ 12$	
Yearbook 1982	1986	Out of print		

Reports:

Hydrometric Register and Statistics 1981-5	1988	$£_{12}$	$£ 15$
Hydrometric Register and Statistics 1986-90 ${ }^{1}$	1992		$£ 20$
The 1984 Drought ${ }^{2}$	1985		$£ 12$
The 1988-92 Drought ${ }^{3}$	1993		$£ 20$

Concessionary rates apply to the purchase of two or more of the pre-1990 Yearbooks.

[^14]All the Hydrological data UK publications may be obtained from:-

National Water Archive Office
Institute of Hydrology
WALLINGFORD
Oxfordshire OX10 8BB
Telephone: (01491) 692468
Facsimile: (01491) 692424
E-mail: nwamail@ioh.ac.uk

Enquiries or comments regarding the Hydrological data UK series, or individual publications, are welcomed and should be directed to the National Water Archive Office at the above address.

1. Hydrometric Register and Statistics 1986-90

This reference volume includes maps, tables and statistics for over 1000 river basins and 150 representative observation boreholes throughout the United Kingdom. The principal objective of the publication is to assist data users in the selection of monitoring sites for particular investigations and to allow more effective interpretation of analyses based upon the raw data. To this end, concise gauging station and catchment descriptions are given for the featured flow measurement stations - particular emphasis is placed on hydrometric performance, especially in the high and low flow ranges, and on the net effect of artificial influences on the natural flow regime.

Summary hydrometric statistics, for each of the years 1986-90, are provided alongside the corresponding long term averages, or extremes, to allow the recent variability in surface and groundwater resources to be considered in a suitable historical context.

The Hydrometric Register and Statistics 1991-95 is in preparation and is scheduled for publication in the spring of 1997.

2. The 1984 Drought

This first, occasional report in the Hydrological data UK series concerns the 1984 drought. The structure of the report follows the hydrological cycle with chapters devoted to rainfall, evaporation, runoff and water storage in surface reservoirs and aquifers. The report documents the drought in a water resources framework and its development, duration and severity are examined with particular reference to regional variations in intensity.

3. The 1988-92 Drought

This report provides comprehensive documentation of the 1988-92 drought within a hydrological framework and establishes a benchmark against which future periods of severe rainfall deficiency may be compared. The spatial and temporal variations in the drought's intensity are examined and its severity assessed within the context provided by long-term rainfall and hydrometric records. The synoptic backcloth to the drought's development is also reviewed and the European perspective is examined using selected rainfall and river flow records to index drought severity. Additionally, a short review of water resource variability in Great Britain over the featured five years - and the water industry's response to the actual and projected deficiencies - is included to help appreciate the, often complex, linkages between hydrological stress and water supply impacts on the community.

Associated Publications

Hydrological Summaries for Great Britain

Since the winter of $1988 / 89$ these monthly reports have been prepared jointly by the Institute of Hydrology and the British Geological Survey on behalf of the Department of the Environment and the Environment Agency (financial support towards the production costs are also received from the Scottish Environment Protection Agency and OFWAT). Each report includes areal rainfall data for the major administrative divisions in the water industry. Also featured are representative hydrographs of river flow and groundwater levels with supporting summary statistics and a tabulation of current stocks for a selection of major reservoirs. A commentary is provided on the cover page detailing notable hydrological events and summarising both the national hydrological status and the water resources outlook.

Subscription to the Hydrological Summaries $£ 48$ per year - may be arranged through the National Water Archive Office.

National River Flow Archive CD-ROM

A CD-ROM continuing NRFA daily and monthly river flow data, together with monthly catchment rainfall totals, for over 800 catchments throughout the UK is scheduled for release in 1997. A register of reference and spatial information will also be pro-
vided with explanatory text and descriptive material relating to the monitoring sites. Straightforward selection and retrieval facilities will allow the export of the basic data and the presentation of hydrographs and flow duration curves. For further details contact the NWA Office or check the NWA Web site (see below).

Representative Basin Catalogue

Data collection for the national Flood Event Archive, maintained by the Institute of Hydrology, concentrates on a selection of basins that form a representative sample of UK catchments. A catalogue providing comprehensive hydrological and reference information for 200 representative basins has been prepared and is available as national (five volumes) or regional sets; user-selected groups of catchments can be provided for particular investigations.

Enquiries concerning the cost and availability of the catalogue should be directed to the address opposite.

Long Term Groundwater Level Hydrographs

In 1990 the British Geological Survey launched a series of wallcharts depicting long term variations in groundwater levels. The following are currently available:
i. Hydrograph of groundwater levels in the Chilgrove House well in the Chalk of southern England
ii. Hydrograph of groundwater levels in the Dalton Holme estate well in the Chalk of Yorkshire

Copies may be obtained from:
British Geological Survey
WALLINGFORD
Oxfordshire OX10 8BB
Telephone: (01491) 838800
Facsimile: (01491) 692345

World Wide Web

For the latest details of the full range of publications and retrieval facilities available through the National Water Archive, please access Web site:
http://www.nwl.ac.uk/~nrfadata/nwa.html

ABBREVIATIONS

Note: The following abbreviations do not purport to represent any standardised usage; they have been developed for use in the Hydrological data UK series of publications only. Where space constraints have required alternative forms of these conventional abbreviations to be used, the meaning should be evident from the context.

AOD	Above Ordnance Datum
Bk	Beck
Blk	Black
Br	Bridge
Brk or B	Brook
Brn	Burn
Ch	Channel
C / m	Current meter(ing)
Com	Common
Dk	Dike
Dr or D	Drain
D / s	Downstream
DWF	Dry weather flow
E	East
Frm	Farm
G / s	Gauging station
Gw	Groundwater
HEP	Hydro-electric power
Ho	House
Hosp	Hospital
L	Loch or lake
Lb	Left hand river bank
	(looking downstream)
Ln	Lane
Lst	Limestone
Ltl	Little
Lv	Level
MAF	Mean annual flood
Mkt	Market
Ml / d	Megalitres per day
Mnr	Manor
N	North
Ntch	Notch

NW	North-West
O/f	Outfall or outflow
ORS	Old Red Sandstone
Pk	Park
Pop	Population
POR	Period of record
PS	Pumping station
Pt	Point
PWS	Public water supply
Rb	Right hand river bank
	(looking downstream)
R/c	Racecourse
RCS	Regional communications scheme
R/d	Road
Res	Reservoir
Rh	Right hand
S	South
SAGS	Stour Augmentation Groundwater
	Scheme
Sch	School
S-D	Stage-discharge relation
SE	South-East
Sl	Sluice
SOE	The Scottish Office Environment
	Department
Sp	Spring
Ssts	Sandstones
St	Stream
STW	Sewage treatment works
SW	South-West
TS	Transfer scheme
US	Ultrasonic gauging station
U/s	Upstream
W	West
W'course	Watercourse
Wd	Wood
Wht	White
Wr	Weir
WRW	Water reclamation works
Wtr	Water
WTW	Water treatment works

[^0]: * Note: inhomogeneities in the rainfall series for Scotland imply that rainfall since 1957 has been overestimated by $>5 \%$ relative to the carlier rainfall data ${ }^{2}$.

[^1]: * The method of computing SMDs changed in 1995; in previous years the maximum SMD (for a grass cover) was 125 mm . The change also affects computed actual evaporation totals.

[^2]: * National Rivers Authority and River Purification Board regions.
 \%LTA = percentage of 1961-90 average return periods associated with above average rainfalls are underlined.
 Data source: Met. Office.
 'Return period assessments are based on tables provided by the Met. Office (wee reference 8 for details of the procedures followed and justification for the use of a three-parameter lognormal distribution). The tables reflect rainfall variability over the 1911-70 period only and assume a sensibly stable climate. The return periods featured above assume a start in a specified month; return periods for a start in any month may be expected to be around an order of magnitude less - for longer durations the return period estinates converge. The ranking of accumulated rainfall totals for England and Wales and for Scotland can be affected by artifacts in the historical series -on balance these tend to exaggerate the wetness of the recent past.

[^3]: * Although February 1996 was wet, rainfall deficiencies continued to build through the spring and early summer. By the end of September, the rainfall deficiency for England and Wales since March 1995 ranked third greatest (after the 18 -month minima established in the 1883/5 and 1975/6 droughts) in the last 200 years at least.

[^4]: Runoff in mm $=$
 Average Flow in Cumecs $\times 86.4 \times n$
 Catchment Area (km ${ }^{2}$)

[^5]: * For the IH research catchments, the monthly totals are subsequently updated using areal figures derived from a dense local raingauge network. \dagger As a consequence of leap years the runoff and mean flow percentages may not be identical.

[^6]: * Additional data are held on the Flood Peaks Archive (see page 136).

[^7]: Station and catchment description
 Ultrasonic station commissioned in 1974; multi-path operation from 1986. Full range. No peak flows pre-1974 when dmfs derived from Teddington weir complex (70 m wide); significant structural improvements since 1883. Some underestimation of pre-195 1 low flows. Baseflow sustained mainly from the Chalk and the Oolites. Runoff decreased by major PWS abstractions - naturalised flows available. Diverse topography, geology and land use which - together with the pattern of water utilisation - has undergone important historical changes.

[^8]: Station and catchment description

[^9]: Note: The NRFA is principally a database of daily flow data. Monthly peak flows are archived to provide a guide to overall flow variability but their precision varies widely. The primary sources of nationally archived flood data are the UK Flood Event Archive, the Peaks-Over-Threshold (POT) database and the Flood Studies report (see page 136).

 In line with Natural Environment Research Council policy, the provision of data from the National River Flow Archive confers only a right to use the data. Ownership of the data, or the associated Intellectual Property Rights, will not normally be transferred. Data received from the NRFA must not be sold, or passed on to any third party. Reproduction is authorised, except for commercial purposes, provided the source is acknowledged.

 Through the use of quality control procedures every effort is made to maintain and improve the quality of data on the NRFA. However, the data derive from a variety of sources and, for bistorical data sets especially, the provenance and precision may be uncertain. Therefore the NRFA cannot guarantee the validity or the accuracy of the data and NERC accepts no liability for any loss or damage, cost or claims arising directly or indirectly from their use.

[^10]: \dagger Irish Grid references are italicised.

[^11]: Key to aquifer importance: * aquifer of minor importance only
 ** aquifer producing small, but useful, local supplies
 *** aquifer of local importance, often providing public supplies
 **** aquifer of major importance

[^12]: Sites marked '**' are indicator weils; well hydrographs are shown in Figure 11. Where the annual percentage recharge cannot be estimated, the entry '-_-' is

[^13]: * In all cases this refers to the temporal mean rather than the flow-weighted average.

[^14]: * Loose-leaf versions of the Hydrological data UK publications have been discontinued.

