Hydrological data UK

1994 YEARBOOK

INSTITUTE OF HYDROLOGY • BRITISH GEOLOGICAL SURVEY

HYDROLOGICAL DATA UNITED KINGDOM

1994 YEARBOOK

© 1995 Natural Environment Research Council

Published by the Institute of Hydrology, Wallingford, Oxon OX10 8BB

ISBN 0 948 540 71 0

Editor Hydrological data UK series: T J Marsh

Assistant Editor: S Green

The acquisition, archiving and validation of the bulk of the hydrological data featured in this Yearbook is undertaken as part of the National Water Archive (NWA) project at the Institute of Hydrology. Liaison with the measuring authorities is coordinated by M L Lees (NWA Manager), J M Dixon acts as the regional representative for Northern Ireland. J Carr and F J Sanderson were responsible for the acquisition and checking of much of the data featured in this Yearbook.

The style and contents of the Yearbook, and the scope of the data retrieval service which complements it, reflect a decade of archive system development supervised by D G Morris. Recent enhancements to the retrieval and data presentation facilities have largely been undertaken by O Swain and R W Flavin.

The British Geological Survey is responsible for the acquisition and archiving of the featured groundwater level data. The Groundwater Level Archive is managed by A A McKenzie; data acquisition and measuring authority liaison duties are undertaken by P Doorgakant.

Mrs S Black was responsible for the preparation of the text and supervises the sale and distribution of the Hydrological data UK publications through the National Water Archive Office at the Institute of Hydrology.

Design: P A Benoist

Graphics: [] Carr

Typeset and printed in the United Kingdom by Wace Burgess.

The materials used in the production of this volume are made from the pulp of softwood trees in managed Scandinavian forests, in which every tree cut down is replaced by at least one more, thus replenishing the Earth's resources.

Cover: Flood gauging on the A27 at Westhampnett, Sussex in January 1994. The A27 was closed for a week when the River Lavant burst its banks east of Chichester.

Photograph: National Rivers Authority, Southern Region

HYDROLOGICAL DATA UNITED KINGDOM

1994 YEARBOOK

An account of rainfall, river flows, groundwater levels and river water quality
January to December 1994

Institute of Hydrology

British Geological Survey

•	•	

FOREWORD

The recent volatile climatic conditions experienced in the United Kingdom have stimulated considerable media and public interest in hydrological issues. Concern has focused on the resilience of water management strategies, and operational procedures designed to mitigate the impact of flooding or drought. Water management is largely predicated on the lack of any long term trends exhibited by lengthy rainfall, river flow and groundwater level records for the UK. The remarkable variability in hydrological conditions over the last decade together with the increasing evidence of global warming, suggest that this stability may not extend into the future. Whilst the inherent variability of our climate dictates that any departures from the normal range need to be treated with caution, there is a need to monitor the impact of hitherto unusual weather patterns with particular care because of their economic and social consequences. Meticulously high hydrometric standards will need to be maintained in order to help distinguish between the effect of man on river flow regimes and on groundwater levels and those resulting from climatic variability. An important incentive is that such attentive hydrological surveillance should provide valuable insights into conditions likely to be experienced with greater frequency in the future.

A principal function of the Hydrological data UK series is to document and disseminate information relating to contemporary hydrological conditions. The individual Yearbooks constitute a series of benchmarks which, when viewed in the context of historical variablity, can expose to public and scientific examination any significant changes in river flow regimes and aquifer recharge patterns. The Yearbooks also provide a gateway to the extensive data holdings which together constitute the National Water Archive; these now appear within the metadata catalogue of the Natural Environment Research Council (NERC).

It is intended that the complete flow records from the core gauging stations of the National River Flow Archive will be published in computer-readable form on a CD-ROM. This will further enhance the service we are able to give to an ever widening community of data users.

The Hydrological data UK series of Yearbooks and reports was launched in 1985 as a joint venture by the Institute of Hydrology (IH) and the British Geological Survey (BGS); both organisations are component bodies of the NERC. Such a collaborative enterprise arose naturally from the close liaison maintained between those responsible for the management of the National River Flow Archive at IH, and their counterparts at BGS concerned with the National Groundwater Level Archive.

The work of the national River Flow and Groundwater Level Archives is overseen by the Surface and Groundwater Level Archive (SAGA) a steering committee which includes representatives of Government departments, the National Rivers Authority and the water industry from England, Wales, Scotland and Northern Ireland. I commend this Yearbook to the Environment Agency for England and Wales and the Scottish Environment Protection Agency as they begin their work; their hydrometric teams in the predecessor organisations (the National Rivers Authority and the Scottish River Purification Boards) are thanked for essential work which underpins all publications in the Hydrological data UK series.

A.G.P. Debney Acting Director, Institute of Hydrology

CONTENTS

	Page
INTRODUCTION	1
SCOPE AND SOURCES OF INFORMATION Rainfall and climatological data	2 2
HYDROLOGICAL REVIEW OF 1994 Summary Rainfall	3 3 3 8
Evaporation and soil moisture deficits Runoff Groundwater 1994 Hydrological Diary	8 10 17 20
THE CHICHESTER FLOOD, JANUARY 1994	23
REGIONAL FLOODING IN STRATHCLYDE, DECEMBER 1994	29
LONG RIVER FLOW RECORDS	35
RIVER FLOW DATA Computation and accuracy of gauged flows Scope of the flow data tabulations Gauging station location map Daily flow tables Monthly flow tables	37 37 37 42 44 94
THE NATIONAL RIVER FLOW ARCHIVE DATA RETRIEVAL SERVICE The National Water Archive List of surface water retrieval options Concise Register of Gauging Stations	135 135 137 139
GROUNDWATER LEVEL DATA Background The observation borehole network Measurement and recording of groundwater levels Index borehole location map Register of selected groundwater observation wells Network changes Hydrographs of groundwater level fluctuations The Register	147 147 147 147 149 150 152 156
THE NATIONAL GROUNDWATER LEVEL ARCHIVE DATA RETRIEVAL SERVICE List of groundwater retrieval options	159 160
SURFACE WATER QUALITY DATA Background Data retrieval Scope of the water quality data tabulations Water quality data tables	161 161 161 162 164
DIRECTORY OF MEASURING AUTHORITIES	172
PUBLICATIONS in the Hydrological data UK series	174
ABBREVIATIONS	176

INTRODUCTION

The 1994 Yearbook is the sixth edition since responsibility for the publication of data, upon which assessments of water resources in England and Wales may be made, was transferred (under the Water Act 1989) from the Department of the Environment to the National Rivers Authority. It is the fourteenth Yearbook in the Hydrological data UK series and the fourth volume in the third five-year publication cycle (1991-95).

The 1994 Yearbook represents the thirty-fifth edition in the series of surface water publications which began with the 1935-36 Surface Water Yearbook. As a result of the incorporation of groundwater data in the Yearbook, this volume is also the nineteenth edition in the series of groundwater data publications which began with the 1964-66 Groundwater Yearbook.

Apart from summary information, river flow and groundwater data were published separately on a national basis, prior to the introduction of the Hydrological data UK series. In common with the earlier editions, the 1994 Yearbook brings together the principal data sets relating to river flow, groundwater levels and areal rainfall throughout the United Kingdom. Also tabulated are water quality data for a selection of monitoring sites throughout the UK; such data first appeared in the 1986 Yearbook. A comprehensive hydrological review of the year is included together with feature articles documenting the remarkable floods which occurred on the River Lavant in early January and in the Strathclyde region in December. An outline description is given of the National River Flow and Groundwater Level Archives and the data retrieval facilities which complement them. Introductory details are also provided of the range of facilities and datasets available through the National Water Archive - one of the Natural Environment Research Council's (NERC) Designated Data Centres.

Publication of river flow data for Great Britain started with the series of Surface Water Yearbooks. The first edition, which was published in 1938 for the water-year (October-September) 1935-36, also included selected data for the previous fifteen years; the edition for 1936-37 followed in 1939. Both these publications were prepared under the direction of the Inland Water Survey Committee. Assisted by the Scottish Office, the Committee continued to publish hydrological data after the Second World War; the Yearbook for the period 1937-45 was published as a single volume in 1952. Due to economic stringency, the Survey was suspended in 1952 for a period of two years but was then re-formed as the Surface Water Survey Centre of Great Britain. A Yearbook covering the years 1945-53 was published in 1955.

In 1964 the Survey was transferred to the Water Resources Board where it remained until the Board was disbanded in 1974. The work of collecting and publishing surface water information in England and Wales then passed to the newly created Water Data Unit of the Department of the Environment (DoE). Yearbooks were published jointly each year by these organisations and the Scottish Office for the wateryears 1953-54 to 1965-66; thereafter information for the five calendar years 1966 to 1970 was published in one volume in 1974. Following editions were renamed 'Surface Water: United Kingdom' to mark the inclusion of the first records from Northern Ireland and in recognition of the move away from single year volumes. Two volumes of Surface Water: United Kingdom, covering the years 1971-73 and 1974-76 were published jointly by the Water Data Unit, the Scottish Development Department and the Department of the Environment for Northern Ireland.

Following the transfer of the Surface Water Archive to the Natural Environment Research Council in 1982, the final edition of Surface Water: United Kingdom, for the years 1977-80, was prepared by the Institute of Hydrology at the request of the Water Directorate of the Department of the Environment, and published in 1983.

The 1981 and 1982 Yearbooks were prepared concurrently and were, in 1985, the first Yearbooks published by the Natural Environment Research Council. Further Yearbooks - the editions for 1983 to 1993 - were published over the following nine years.

A compilation of 'Groundwater levels in England during 1963', which was produced by the Geological Survey of Great Britain (prior to its incorporation into the Institute of Geological Sciences), was the precursor to the publication of groundwater level data on a national basis. The more formal Groundwater Yearbook series was instigated by the Water Resources Board which published the inaugural edition and a further volume for 1967, both covering England and Wales. In 1975 a third Yearbook, for 1968–70, was published by the Water Data Unit. The Groundwater: United Kingdom series was introduced in 1978 with the production of the 1971–73 volume, also published by the Water Data Unit.

Following the transfer of the Groundwater Archive to the Institute of Geological Sciences (now the British Geological Survey), the second edition of Groundwater: United Kingdom, covering the period 1974–80, was prepared by the Institute of Hydrology at the request of the Water Directorate of the Department of the Environment. Subsequently, groundwater level data have been included in the Hydrological data UK publications.

SCOPE AND SOURCES OF INFORMATION

The format of the 1994 Yearbook follows that of the recent editions in the Hydrological data UK series. The Hydrological Review examines rainfall, evaporation, soil moisture, river flow and groundwater conditions throughout the year. The following data sections provide detailed coverage for the featured year, and for comparison purposes, period of record reference statistics are also given.

Emphasis is placed upon ready access to basic data both within the Yearbook and through the complementary data retrieval facilities.

A companion publication to the individual Year-books – the 'Hydrometric Register and Statistics' volume – provides a comprehensive reference source for hydrometric information which does not change materially from year to year; the second edition (for 1986–90) (see page 174) was published in 1992 and the 1991–95 edition will be compiled in 1996.

The Yearbook contents have been abstracted primarily from the National River Flow and Groundwater Level Archives. Water quality data have been provided from the Harmonised Monitoring Archive which is currently maintained by the Environmental Protection Statistics Division of the Department of the Environment (DoE). Similar data from Northern Ireland have been provided by the Environmental Service of the Department of the Environment (NI).

The National Rivers Authority (NRA) is responsible for the initial collection and processing of most river flow and groundwater level data in England and Wales. Following the 1989 Water Act, the new Water Service PLCs assumed responsibility

for a small number of important monitoring sites for which historical – and a few contemporary – data sets are held on the River Flow and Groundwater Level Archives. The seven River Purification Boards (RPBs) are responsible for most hydrometric data acquisition in Scotland. In Northern Ireland responsibility is shared between the Departments of Environment and Agriculture. These organisations also supplied valuable material relating to significant hydrological events during 1994. Additional hydrometric material has been supplied by water supply companies, various research bodies and public undertakings.

The majority of the rainfall data, and some of the material incorporated in the Hydrological Review, has been provided by the Meteorological Office. For historical comparisons of the rainfall over England and Wales, a data set based upon the homogeneous series derived by the Climatic Research Unit of the University of East Anglia has been used.

Most of the rainfall data published in the Hydrological data UK series are in the form of monthly rainfall totals for catchment areas (see page 38). The Met. Office (address below) can provide details of the availability of daily and monthly rainfall data associated with individual raingauges. Brief details of rainfall and climatological data sets published by The Met. Office, are given below.

The Natural Environment Research Council acknowledges and extends its appreciation to all who have assisted in the collection of information for this publication.

Rainfall and Climatological Data

The Meteorological Office maintains the national archives of rainfall and climatological data at its headquarters at Bracknell. Specific items, such as daily and hourly rainfalls from gauges and radar (from the PARAGON system) may be obtained by application to Met. Office Commercial Services Rainfall Section (address opposite, Tel: 01344 856849). Summaries of the data are also published regularly and a list of current titles is given below:

1. Monthly Weather Report

This is published monthly and contains climatological means for more than 550 UK observing stations; in addition an introduction and annual summary are produced yearly. The publication should be available about a year after the month concerned, costs around £3 and is available only from Her Majesty's Stationery Office (HMSO) or their stockists.

MORECS (Meteorological Office Rainfall and Evaporation Calculation System).

This is a weekly issue of maps and tables of rainfall, evapotranspiration, soil moisture deficit, effective rainfall, and the hydrometeorological variables used to calculate them. The data are used to provide values for 40 km squares and various sets of maps and tables are available according to customer requirements. Enquiries to (01344) 856858.

Further information about these and other publications may be obtained from:

Meteorological Office, Commercial Manager, Commercial Services, Johnson House, London Road, Bracknell, Berks RG12 2SY

Tel: (01344) 854455 Fax: (01344) 854906

HYDROLOGICAL REVIEW OF 1994

Summary

With a westerly airstream predominating, 1994 was a very mild and relatively wet year in most regions. Some limited water distribution difficulties occurred during the late summer but no significant water resources problems were encountered. The transformation in hydrological conditions at the end of the 1988-92 drought heralded a lengthy period with notably high accumulated rainfall totals and, generally, runoff and recharge rates remained healthy, relative to the seasonal average, throughout 1994. There were relatively few episodes of widespread flooding although two major events – of contrasting character – provided clear reminders of our continuing vulnerability to flood damage and the need to refine existing alleviation and warning procedures.

On a nationwide basis January, March and December were easily the wettest months in 1994 and the May-August period was notably dry, in the east particularly. Notable convectional storms were relatively uncommon in 1994 and most rainfall derived from Atlantic frontal systems. One consequence was an exaggeration in the west-to-east rainfall gradient across Britain with rain-shadow effects being especially noticeable in eastern Scotland. The United Kingdom rainfall total for 1994 is about 13% above average and the fourth highest year this century. However, 1982, 1986, 1990 and 1992 were almost as wet. The recent wet phase mainly reflects persistently high precipitation totals for Scotland: 1994 was the ninth wettest year, in a 126-year series, but ranks only fifth in the last 13 years; precipitation over the post-1978 period has been almost 20% greater than the preceding average* - winter rainfall being especially abundant in the west.

Although February was cold, most months in 1994 registered mean temperatures appreciably above average – exceptionally so in July, and November which was the warmest in the full 337-year Central England Temperature series (CET)¹. These notably warm interludes helped to place 1994 amongst the eight warmest years this century. More significantly, the post-1987 period represents the warmest seven-year sequence in the entire CET.

In common with each of the last six years, potential evaporation (PE) losses for 1994 were well above average, typically ranking in the top five since 1960 – but generally considerably below the totals for 1989 and 1990. Actual evaporation (AE) losses for 1994 present a rather more complex pattern. In parts of eastern Britain sustained soil moisture deficits restricted evaporation through the growing season and AE losses were exceptionally low relative to the long term average in parts of north-east England and eastern Scotland. Throughout most of southern England however, soils remained relatively moist except in July and August; as a result AE totals

were substantially above average. This was true of the west also where AE losses closely approached their potential value and were commonly amongst the highest on record.

Monthly river flows remained above, or near, average in most catchments throughout much of 1994 and record annual runoff totals were established for a substantial number of rivers - most draining permeable catchments but unprecedented runoff totals were also recorded for catchments in North Wales and western Scotland. Very high runoff totals early and late in 1994, together with the relatively dry summer (triggering record irrigation demands in some areas) helped emphasise seasonal contrasts in flow rates, particularly in rivers with only modest baseflows; autumn flows were especially depressed in Scotland. However, healthy spring flows - a consequence of heavy and sustained recharge over the previous winter - maintained lowland summer flows well within the normal range. Although extensive floodplain inundations were uncommon in 1994 the December flooding in Scotland was the latest in a notable cluster which have substantially reduced estimated return periods for high magnitude floods, in rivers draining the Highlands especially.

Groundwater levels were mostly well above average in 1994 and, in January, overall aquifer storage was remarkably high - a dramatic contrast to 18 months previously when groundwater levels were as depressed as at any time this century. Generally, the 1994 spring peaks were easily the highest since 1988 and many approached or exceeded the highest groundwater levels on record. In parts of the Chalk levels remained near to seasonal maxima well into the autumn and, typically, the 1994/95 recovery began with healthy groundwater stocks. The contrast with 1989-92, and the volatility of the last six years, is without modern parallel. The recovery of runoff rates and extension of the stream network was especially noticeable in those catchments where low flow alleviation programmes (mostly involving reduced groundwater pumping) have been instigated.

The very mild conditions, the exaggeration in both the west-to-east rainfall gradient and enhanced seasonality in runoff and recharge rates (and very limited snowfall in southern Britain) which characterised 1994 are also typical of most of the last decade. These features are broadly consistent with a number of favoured climate change scenarios.

Rainfall

1994 rainfall as a percentage of the 1961-90 average for the UK is mapped on Figure 1. The actual rainfall totals for the UK are depicted in Figure 2.

* Note: inhomogeneities in the rainfall series for Scotland imply that rainfall since 1957 has been overestimated by >5% relative to the earlier rainfall data?.

Figure 1 Annual rainfall in 1994 as a percentage of the 1961-90 average

Source: The Meteorological Office

Figure 2 Annual rainfall in 1994

Source: The Meteorological Office

TABLE 1 1994 RAINFALL IN MM AND AS A PERCENTAGE OF THE 1961-90 AVERAGE

1994													D	Year	Oct- Mar 1993/94	Apr Sep 1994
United Kingdom	mm %	155 141	90 118	148 164	94 145	50 69	62 86	55 75	83 92	103 104	99 90	109	176 156	1224 113	753 124	44° 95
England and	mm	123	82	96	74	62	36 55	47	72 95	106	97	86 96	142	1023	631 128	39°
Wales	%	140	130	133	123	97	22	76	90	138	114	90	151	114		
Scotland	тп %	215 142	96 94	250 200	133 175	29 34	110 128	67 71	101 86	103 73	110 71	156 103	245 162	1615 112	989 118	54 9
Northern	mm	159	135	131	91	39	67	69	92	74	64	94	151	1166	721	43
reland	%	143	173	149	142	55	94	103	101	76	57	91	145	110	121	9
North West	mm	159	71	165	107	35	70	70	103	113	123	136	207	1359	758	49
(NRA)	%	131	91	174	151	47	86	82	96	98	96	111	167	113	113	9
Northumbria	mm	107	71	84	63	26	39	41	81	77	71	97	124	881	552	32
NRA)	%	127	120	120	113	42	65	63	100	105	93	113	153	103	121	8:
Severn-Trent	mm	95	71	75	57	54	24	44	56	127	68	73	115	859	521	36
(NRA)	%	136	131	123	104	92	41	83	84	198	106	103	149	114	131	10
Yorkshire	mm	116	68	71	61	46	28	53	58	101	73	89	123	887	516	34
(NRA)	%	147	117	104	103	77	47	90	78	149	100	111	148	108	117	9
Anglian	mm	73	45	53	51	51	25	41	57	89	70	32	59	646	416	31
NRA)	%	146	122	113	111	106	49	84	104	182	137	55	107	108	140	10
Thames	mm	97	59	51	57	79	25	21	50	74	85	53	93	744	470	30
NRA)	96	152	131	91	114	141	45	43	86	125	137	82	133	108	130	9
outhern	mm	124	64	57	77	91	39	29	68	90	118	66	123	946	596	39
NRĄ)	96	155	119	90	145	169	72	60	119	130	148	78	150	121	134	11
Wessex	mm	126	100	80	62	92	24	34	68	99	115	96	139	1035	658	37
NRA)	%	145	154	114	117	151	42	65	103	138	146	116	149	→ 124	138	10
South West	mm	186	174	125	94	99	32	49	103	131	140	127	214	1474	974	50
(NRA)	%	135	172	126	136	138	46	71	123	141	121	102	154	126	136	11
Welsh	mm	182	131	184	116	69 84	57 72	68 88	94 93	134 117	139 101	134 94	255 167	1563 119	966 124	53 10
(NRA)	%	127	135	172	145	04	12	00	93	117	101	94	107	119	124	
Highland	mm 04	248 132	74 58	341 210	185 203	36 39	148 151	62 58	112 88	153 89	116 59	169 ° 83	304 154	1948 111	1143 106	69 10
R.P.B.	%	132	. 06	210	203	29	151	96	00	09	39	65	134	111	100	10
North East	mm	131	110	106	77	16	55	40	47	89	87	89	93	940	676	32
R.P.B.	%	132	169	136	128	23	83	55	54	102	90	90	100	97	127	7
Гау	mm	206	117	219	96	22	89	47	81	56	115	154	196	1398	920	39
R.P.B	96	143	123	201	155	27	122	61	86	49	88	127	154	114	127	7
Forth	mm	161	88	210	84	21	75	59	80	56	90	134	210	1268	828	37
R.P.B.	96	136	111	223	142	28	109	79	85	51	78	120	191	114	132	7
Clyde	mm	268	110	301 205	149	38	143	97 80	142	98 55	128	189	322	1985	1165	66 0
R.P.B	%	142	93	205	177	42	154	89	106	55	66	105	180	117	116	9
Tweed	mm	141	86	124	72 126	19	52 80	46	71 81	57 64	75 70	123	173	1039	717 136	31 7
R.P.B	%	141	128	157	126	27	80	63	81	64	79	132	186	107	136	
iolway	mm	204	116	195	124	29	79	106	121	76	117	184	246	1597	935	53
R.P.B	%	131	115	167	161	34	94	118	102	53	75	128	166	112	114	8
Western Isles, Orkney and Shetland	mm %	208 165	71 85 ·	201 199	114 184	36 61	116 190	57 81	91 106	158 132	89 66	168 127	203 159	1512 130	870 123	57 12

Western and southern regions registered well above average rainfall for 1994 with parts of the southern seaboard recording up to 130% of the 1961-90 mean. Notably high annual precipitation totals also typified much of Wales and the Scottish Highlands, western areas especially, a few districts exceeding 150% of the standard annual average. Rainfall totals for 1994 were close to the mean throughout much of Northern Ireland and most of eastern England. Annual precipitation totals exceeded 4000 mm in parts of the Scottish Highlands, while north-eastern Scotland was drier in percentage terms than the rest of the UK. In absolute terms however, the driest places in the UK were enveloped by the 550 mm isohyet: along the eastern Scottish coastline around Berwickupon-Tweed and in parts of Essex and Cambridgeshire.

Table 1 gives the annual, half-yearly, monthly actual and percentage rainfall totals for the major administrative divisions in the water industry; the original 10 regions of the National Rivers Authority (NRA) have been retained to maintain consistency with earlier Yearbooks and allow better spatial differentiation. The annual rainfall totals for the UK and England and Wales were the highest since 1960 and 1979 respectively. England, Wales, Scotland and Northern Ireland all registered annual rainfall at least 10% above the long term mean. In Scotland, a protracted wet phase continues. Twelve of the last 15 years have registered rainfall totals more than 10% above the preceding mean. In contrast, post-1987 rainfall for England is close to the long term average and, for the Thames Valley, a little below the preceding mean. These persistent regional rainfall differences reflect the strengthening of the northwest/south-east rainfall gradient that has been a feature of recent years.

Recent rainfall patterns are also indicative of a departure from the normal seasonal distribution in much of the UK. For the UK as a whole the 1993/94 winter half-year (October-March) was the third wettest this century whereas rainfall over the following summer half-year was around 5% below the 1961-90 average but substantially wetter than 1989, 1990 and 1991. In contrast to these dry summers, the mean rainfall total for the last seven winter halfyears for the UK is approximately 15% above the preceding average (1900-1987). The recent tendency for a more distinct partitioning between winter and summer rainfall was again especially evident in Scotland. The six wettest winters in Scotland have each occurred since 1982, with five since 1988. Taken together, rainfall over the last six winters has been around 20% above the 1961-90 average. By contrast the summer six-month period for 1994 was the second driest in Scotland since 1984 and the average for the recent past is appreciably below the long term mean. The clustering in recent years of wet winters and dry summers, if continued, would have important implications for future water resources management.

The wet weather at the end of 1993 continued into 1994: southern England and Wales recorded between 120-170% of long term average rainfall for the first two months. Taken together February and March provided the wettest end to the winter for at least 20 years in the South-West. Most Scottish River Purification Board (RPB) areas also saw a wet start to the year culminating in Scotland's highest March rainfall total on record. Weather patterns over the January-March period were especially unsettled in Northern Ireland, concluding the third wettest winter half-year this century.

The frequency of rain-bearing frontal systems declined through the spring. For May, the North East RPB area registered less than a quarter of the 1961-90 mean rainfall. This heralded a sustained rainfall deficiency; the period May-August was the driest for 50 years in parts of the region. A zone of very low rainfall extended down into north-eastern England. The three-month period ending in July was the driest, or second driest, on record for some parts of Northumberland. The modest rainfall, coupled with high temperatures and parched soil conditions, caused mild drought stress in some districts. In southern and central parts of England the summer was also dry and for several NRA regions the rainfall total for June was below 50%. By contrast, August rainfall totals for the South-West were significantly above the 1961-90 average.

As usual, most exceptional daily rainfall totals in 1994 were recorded during the summer half-year and resulted from thunderstorms; some events produced significant local flooding (see Hydrological Diary, pages 20 to 22). Table 2 shows daily rainfall totals in 1994 with estimated return periods exceeding 200 years. Three major events may be identified: in August on the 3rd, and 31st and on September 14th.

The re-establishment of a predominantly southwesterly airflow over southern Britain resulted in a moderately wet autumn in England and Wales but much of Scotland and Northern Ireland remained relatively dry. Northern Ireland recorded its second successive dry autumn, the 1994 September-November rainfall total was the lowest, 1993 excepted, for 22 years. November was dry throughout much of the English lowlands - in the latter half of the month precipitation was largely restricted to fog drip and light drizzle - but exceptionally warm. Scotland's sequence of dry months ended in November, and December was remarkably unsettled. Glasgow established a new December monthly rainfall maximum and a warm front, lingering across the Strathclyde Region on the 10th and 11th, produced particularly heavy and sustained rainfall which resulted in exceptionally severe flooding (see page 29).

TABLE 2 DAILY RAINFALLS IN 1994 WITH RETURN PERIODS EXCEEDING 200 YEARS

Date (Rain-day)	Station Number	Name	County	Grid Reference	Amount (mm)	Return Period
03.08.94	007036	Capheaton	Northumberland	NZ038805	99.7	320
03.08.94	012716	Hallington Resr.	Northumberland	NY973762	87.5	260
03.08.94	012996	High Warden	Northumberland	NY910671	85.5	230
31.08.94	208737	Framingham Earl	Norfolk	TG272030	105.8	400
31.08.94	211668	Ditchingham	Norfolk	TM340906	144.2	2350
31.08.94	211831	Woodton	Norfolk	TM293953	121.0	970
31.08.94	211896	Ditchingham	Norfolk	TM330917	146.8	2500
31.08.94	212059	Barsham W. Wks.	Suffolk	TM406896	114.0	670
31.08.94	293375	Falconhurst	Kent	TQ470426	93.2	210
31.08.94	294415	Penshurst Place	Kent	TQ528440	99.3	290
31.08.94	297361	Sutton Valence, Herriard Farm	Kent	TQ826508	96.4	270
14.09.94	152426	Caldecott	Leicestershire	SP865932	81.8	230
14.09.94	162865	Pilton, Lodge Cottage	Northamptonshire	TL013849	91.3	320
14.09.94	163095	Oundle S. Wks Auto. Sta.	Northamptonshire	TL038897	83.5	220
14.09.94	163465	Corby, Stanion Lane	Northamptonshire	SP901885	93.6	360
14.09.94	164117	Lutton	Northamptonshire	TL112878	91.3	350
14.09.94	196254	Stilton, Church Street	Cambridgeshire	TL162893	83.0	250
14.09.94	196776	Yaxley	Cambridgeshire	TL196934	82.2	260
14.09.94	438304	Enville	Staffordshire	SO825866	92.4	300
10.12.94	646827	Amlaird Filters No.2	Strathclyde	NS484443	97.5	210
10.12.94	647277	Corsehouse	Strathclyde	NS474502	107.1	260
10.12.94	648358	Uplawmoor S. Wks.	Strathclyde	NS432552	107.9	300
10.12.94	658758	Mugdock Park	Central	NS546780	126.0	730
10.12.94	659231	Kaim Dam	Strathclyde	NS346622	141.0	530
10.12.94	659347	Muirhead	Strathclyde	NS390576	128.2	780
10.12.94	659409	Castle Semple Loch	Strathclyde	NS364594	129.8	590
10.12.94	660469	Picketlaw Res. No. 1 Logger Sta.	Strathclyde	NS567516	100.8	200
10.12.94	660928	Neilston Filters	Strathclyde	NS475564	128.6E	600
10.12.94	661218	Paisley	Strathclyde	NS478642	88.5	230
10.12.94	896458	Cumbernauld, Dunns Wood	Strathclyde	NS782772	99.6E	270

Evaporation and Soil Moisture Deficits

Boosted by a July heatwave and the warmest November on record, mean temperatures for the UK in 1994 were again above the long term average but were well within the recent range. Positive anomalies dominate the recent run of annual mean temperatures at the national and regional scales. 1994 continued an exceptional sequence of warm years beginning in 1988. Over this period the average CET temperature exceeds the previous mean by almost 1° Celsius.

The relatively warm summer ensured evaporative demands were high in 1994 over most parts of the UK. Potential evaporation (PE) totals for 1994 were 5-20% above the 1961-90 average for all areas except for a few localities in the far South-West. Figure 3 illustrates PE totals for 1994 derived by the Meteorological Office's Rainfall and Evaporation Calculation System (MORECS - see page 2). The modelled assessments assume a grass cover and a soil of medium water retention capability. PE totals ranged from above 650 mm in many south-eastern coastal areas to below 500 mm in the Scottish Highlands and in the Solway and Clyde RPB areas. Actual evaporation (AE) losses followed a similar pattern to those of PE but 1994 totals were less than the 1961-90 average in parts of north-eastern Scotland and the eastern seaboard where transpiration rates were inhibited for lengthy periods by the dry soils. AE totals for 1994 in the south and east of

Figure 3 Potential evaporation (for a grass cover) in 1994
Data source: MORECS

Figure 4 The variation in potential evaporation, actual evaporation and soil moisture deficits for five MORECS squares

England generally ranked in the upper quartile for the period of record and, in a few localities, AE losses were the highest on record.

Variations in PE, AE and Soil Moisture Deficits (SMDs) during 1994 for five representative MORECS squares are shown on Figure 4 (page 9). The location of these squares can be found on Figure 3. The normally strong seasonality in evaporative losses was accentuated by PE values for June and July in western Scotland and south-eastern England which approached the highest on record. The same was true for AE values around London and in parts of Scotland. Soils in the north and in central and southern England were not as parched as in 1990 and 1991 but were significantly drier than in the following two years. This was less true of the South-East where maximum SMDs in 1994 were lower than in 1992 and 1993; this probably reflects the wet August-October period for Southern and Anglian NRA regions. Soil moisture deficits began to build in April/May but for Scotland and parts of Wales, AE values remained very close to PE throughout the year. Many eastern and central areas had differences between annual AE and PE totals of at least 100 mm in 1994 and, generally, the annual shortfall was the largest since 1990.

Soil moisture deficits increased rapidly through June and July and generally peaked rather later than usual. During the summer half-year, high temperatures led to crop stress in some eastern areas; irrigation demand increased accordingly. Maximum soil moisture deficits generally occurred in late summer and declined briskly through the autumn in southern Britain. In much of eastern Scotland SMDs declined very sluggishly and, at the end of November were close to the highest on record for the month, though modest in absolute terms. November SMD values were similar to those experienced between 1988-91 in much of southern England, and soils were not fully saturated until the following January in some districts.

Runoff

For the UK as a whole the 1994 runoff total was approximately 20% above the 1961-90 average. Since 1978 there have only been three or four years where runoff was less than the long term mean. As in 1993, spatial variability was muted by comparison to most of the recent past – in southern Britain especially – but hydrogeological controls on runoff distribution through the year were much in evidence. As a consequence of heavy winter rainfall, spring-fed rivers – those draining the Chalk especially – maintained above average monthly flows well into the autumn. In contrast, the more responsive catchments in Scotland recorded a sequence of below average monthly runoffs beginning in the summer and ending in early winter; accumulated deficiencies

over this period were, however, modest in relation to those of 1989 or 1990. Regional geological contrasts and the 1994 rainfall distribution served to moderate the normally strong UK runoff gradient from the north-west to the south-east.

A guide to 1994 runoff totals - mapped as percentages of the 1961-90 average - for the UK is given in Figure 5. Despite significant growth in the gauging station network over the last decade data remain sparse in a few, mostly upland, areas. Thus Figure 5 is least precise in north-western Scotland, the Welsh mountains and the coastal lowlands of parts of eastern England. In such areas assessments of residual rainfall (rainfall minus evaporation) totals were used to help delineate isopleths. A similar approach was used for Northern Ireland where only limited flow data were available for 1994. Although river flow data are now submitted to the National River Flow Archive (NRFA) from a gauging station on Lewis, no runoff information is available to map runoff variability across the Western Isles or the Orkney and Shetland Isles.

For rivers with high baseflow components the lagged response to the wetness of the September-December period in 1993 helped ensure that 1994 runoff totals were markedly above average – and greater than the annual rainfall total might imply. To a degree, this contrasts with 1993 when exceptionally low groundwater levels, following the drought of 1998–92, served to reduce runoff totals in a wet year. In a substantial proportion of eastern England the 1994 runoff pattern appears as a reverse of that in 1993.

In southern and eastern England winter (December-February) runoff totals for 1993/94 were commonly the highest on record; runoff totals are also notable for the winter half-year. During the following summer half-year, in contrast, sustained recessions typified most rivers, beginning in April and continuing - interrupted by a notable runoff event in May - into September. Despite the lengthy recessions, annual minimum flows were generally well within the normal range; exceptions included a few responsive catchments in Scotland where notably low flows were recorded in the late summer. A steep increase in flow rates in December helped to accentuate 1994 seasonal runoff contrasts especially in impermeable catchments - a common feature in recent years. Figure 6 shows monthly mean flows (blue trace) over the 1991-94 period for 16 representative rivers; the period of record monthly maxima and minima are also shown and the long term monthly average flow is defined by the black trace. The flows for the River Thames at Kingston have been adjusted to account for the major upstream abstractions for London's public water supply.

Flooding was experienced in southern England at the start of the year; in some areas this resulted largely from extremely high groundwater levels. New maximum monthly runoff totals for many

Figure 5 A guide to 1994 runoff expressed as a percentage of the 1961-90 average

Figure 6 1990-94 monthly flow hydrographs

Figure 6—(continued)

spring-fed rivers were recorded during the early part of 1994. For catchments in the north-west of England a very brisk recession in February ended with flows approaching the minima for the month. March runoff totals in Scotland represented new monthly maxima in several areas. In April, rivers registering new monthly maxima showed a wide distribution, examples included the Little Ouse, Mimram, Piddle, Taw, Clyde and the Severn (in a record from 1921). Early summer flows were generally above average in western Scotland, notably so in June; inflows to Lochaber Hydro-Power Scheme, close to Fort William, being the highest – for the month – in 50 years.

Seasonal flow recoveries mostly began with runoff rates already healthy and monthly flows increased substantially over the autumn. The September runoff total for the Trent was the highest in 30 years at Colwick and there was localised flooding in October in many parts of Devon and South Wales. Many areas recorded particularly large runoff totals for the two weeks beginning around the 28th October and flooding was prevalent during November in North Wales and northern England. By early December most western and northern catchments were very vulnerable to further precipitation. The

risk of flooding remained high throughout December and many monthly runoff and peak flow records were eclipsed over wide areas. The exceptional flows resulting from the storm centred over the Glasgow region on the 10/11th feature prominently in Table 3. This lists new river flow and runoff records established during 1994; entries are confined to gauging stations commissioned before 1967 with reasonably continuous datasets on the NRFA. The records may be subject to revision as stage-discharge relations are reviewed in the light of very high, or very low, flows. Some new annual maxima were established for lengthy flow series, e.g. the Wye at Ddol Farm with data from 1937. A few annual maximum were exceeded by very wide margins: the 1994 runoff total for the River Yeo at Veraby was more than 300 mm greater than the previous annual maximum.

Figure 7 shows flow duration curves for four representative gauging stations; such curves allow the proportion of time that river flows fall below any given threshold to be identified. Flows exceeded 95% of the time were below the period-of-record average in many catchments in northern and eastern Scotland but close to or above average for most rivers in England and Wales. The Mimram typifies

Figure 7 Flow duration curves for 1994 and the preceding record

TABLE 3 RIVER FLOW AND RUNOFF RECORDS ESTABLISHED IN 1994

Station	River	Station Name	First	New	Month	Pre-1994	Month/
Number			Year of Record	Record (mm)		Record (mm)	Year
				(/			
Highest Ann	ual Runoff						
18001	Allan Water	Kinbuck	1957	1295		1246	1990
19005	Almond	Almondell	1962	762		738	1986
38003	Mimram	Panshanger Park	1952	199		180	1961
39007	Blackwater	Swallowfield	1952	345		335	1982
39010	Colne	Denham	1952	248		247	1988
39012 39014	Hogsmill Ver	Kingston upon Thames Hansteads	1956 1956	540 195		535	1979
39014 39019	Lambourn	Shaw	1956	306		179 289	1961 1967
39022	Loddon	Sheepbridge	1965	500		498	1967
39052	The Cut	Binfield	1957	347		319	1958
39053	Mole	Horley	1961	652		613	1974
41011	Rother	Iping Mill	1966	601		584	1968
41016	Cuckmere	Cowbeech	1939	523		476	1987
43004	Bourne	Laverstock Mill	1965	217		214	1966
43005	Avon	Amesbury	1965	449		436	1977
43006	Nadder	Wilton Park	1966	550		546	1977
44002	Piddle	Baggs Mill	1963	577		556	1966
45002	Exe	Stoodleigh	1960	1308		1148	1974
45004	Axe	Whitford	1964	751		700	1974
45009	Exe	Pixton	1966	1388		1175	1967
47005	Ottery	Werrington Park	1963	1226		1043	1993
47007	Yealm	Puslinch	1963	1359		1269	1974
49001	Camel	Denby	1964	1269		1233	1974
50002 50006	Torridge Mole	Torrington	1960	1043		1000	1974
51003	Washford	Woodleigh Beggearn Huish	1965 1966	1255 1120		1045 877	1986 1986
52003	Halse Water	Bishops Hull	1961	577		509	1980
52005	Tone	Bishops Hull	1961	689		637	1974
52007	Parrett	Chiselborough	1966	650		646	1982
52009	Sheppey	Fenny Castle	1964	777		763	1979
53004	Chew	Compton Dando	1958	480		431	1960
53005	Midford Brook	Midford	1961	641		625	1986
53007	Frome (Somerset)	Tellisford	1961	599		587	1966
54014	Severn	Abermule	1962	1091		942	1965
55014	Lugg	Byton	1966	819		768	1977
55026	Wye	Ddol Farm	1937	1740		1545	1954
56005	Lwyd	Ponthir	1966	1358		1269	1982
57004	Cynon	Abercynon	1957	1693		1667	1982
58001	Ogmore	Bridgend	1963	1813		1643	1967
64001	Dyfi	Dyfi Bridge	1962	2000		1774	1986
64006 66011	Leri Conwy	Dolybont Cwm Llanerch	1960	1332 2221		1268	1979
67001	Dee	Bala	1964 1957	1946		2056 1923	1986 1974
84015	Kelvin	Dryfield	1960	1242		1115	1974
84016	Luggie Water	Condorrat	1966	1088		1042	1985
84022	Duncaton	Maidencots	1966	1208		1152	1990
85002	Endrick Water	Gaidrew	1963	1381		1323	1986
101002	Medina	Upper Shide	1965	451		355	1981
Highest Mon	nthly Runoff						
8009	Dulnain	Balnaan Bridge	1952	205	MAR	202	FEB 1990
19002	Almond	Almond Weir	1962	209	MAR	203	NOV 1963
19004	North Esk	Dalmore Weir	1960	141	MAR	139	NOV 1963
19005	Almond	Almondell	1962	177	MAR	163	NOV 1963
29002	Great Eau	Claythorpe Mill	1962	79	JAN	76	NOV 1968
33019	Thet	Melford Bridge	1962	52	JAN	49	DEC 1993
33028	Flit	Shefford	1966	53	JAN	50	JAN 1988
33032	Heacham	Heacham	1965	40	JAN	34	APR 1979
37015	Cripsey Brook	Chipping Ongar	1961	79	JAN	76	OCT 1982
38003	Mimram	Panshanger Park	1952	27	JAN	22	MAR 1961

TABLE 3-	-(continued)							
39010	Colne	Denham	1952		37 JA	N 3	APR 1	979
39016	Kennet	Theale	1961		73 JA	.N 6	FEB 1	990
39020	Coln	Bibury	1963		102 JA	.N 100	FEB 1	990
41011	Rother	Iping Mill	1966		147 JA	N 146	FEB 1	990
52009	Sheppey	Fenny Castle	1964		170 JA	N 149	DEC 1	965
84008	Rotten Calder Water	Redlees	1966		327 D	EC 315	JAN 1	975
84012	White Cart Water	Hawkhead	1963		277 D	EC 255	OCT 1	967
84013	Clyde	Daldowie	1963		233 D	EC 224	FEB 1	990
84014	Avon Water	Fairholm	1964		300 D	EC 256	SEP 19	985
84015	Kelvin	Dryfield	1960		233 D	EC 223	JAN 19	975
84016	Luggie Water	Condorrat	1966		308 D	EC 259	SEP 19	985
84022	Duneaton	Maidencots	1966		271 D	EC 243	FEB 1	990
101002	Medina	Upper Shide	1965		106 JA	N 83	JAN 1	988
Lowest Mo	nthly Runoff							
12009	Water of Dye	Charr	1957		8.15 AU	JG 8.65	AUG 1	984
36004	Chad Brook	Long Melford	1965		1.09 A	JG 1.39	SEP 19	976
Station	River	Station Name	First	New	Day	Pre-1994	Day/Mo	mth/
Number			Year of	Record	Month	Record	,	Year
			Record	(m³s-1)		(m³s-1)		_
Highest Da	ily Mean Flows							
19002	Almond	Almond Weir ·	1962	20.43	11 DEC	ι 15.94	22 NOV 19	969
19005	Almond	Almondell	1962	116.1	11 DEC	100.9	6 OCT 19	
21003	Tweed	Peebles	1959	234.4	11 DEC	221.7	21 SEP 19	
33032	Heacham	Heacham	1965	1.09	10 JAN	1.07	1 APR 19	
39019	Lambourn	Shaw	1962	4.530	3 FEB	4.270	22 JAN 19	
40006	Bourne	Hadlow	1959	8.825	8 DEC	8.430	15 SEP 19	
45009	Exe	Pixton	1966	55.27	28 DEC	45.79	26 DEC 19	
53004	Chew	Compton Dando	1958	32.97	27 DEC	27.63	30 MAY 19	979
55012	Irfon	Cilmery	1966	227.0	27 DEC	209.3	2 DEC 19	992
79003	Nith	Hall Bridge	1959	138.2	11 DEC	124.7	30 JAN 19	974
84004	Clyde	Sills	1957	286.6	11 DEC	285.9	31 OCT 19	977
84008	Rotten Calder Wtr	Redlees	1966	36.03	11 DEC	29.85	6 OCT 19	990
84009	Nethan	Kirkmuirhill	1966	44.39	11 DEC	28.50	22 DEC 19	991
84012	White Cart Water	Hawkhead	1963	171.4	11 DEC	118.4	18 JAN 19	974
84014	Avon Water	Fairholm	1964	213.8	11 DEC	182.9	13 AUG 19	966
85002	Endrick Water	Gaidrew	1963	107.7	11 DEC	100.9	22 DEC 19	991
Lowest Dai	ly Mean Flows							
12009	Water of Dye	Charr	1957	0.094	20 AUG	0.100	31 AUG 19	983
30004	Partney Lymn	Partney Mill	1962	0.046	30 AUG	0.064	7 JUL 19	976
36004	Chad Brook	Long Melford	1965	0.008	24 AUG	0.017	9 SEP 19	967
63001	Ystwyth	Pont Llolwyn	1963	0.106	17 AUG	0.114	22 AUG 19	976
84016	Luggie Water	Condorrat	1966	0.014	II JUN	0.075	31 AUG 19	976
Highest Ins	tantaneous Flows							
21018	Lyne Water	Lyne Station	1962	83.46	11 DEC	73.75	6 OCT 19	990
41011	Rother	Iping Mill	1966	68.62	-8 DEC	65.54	27 DEC 19	٠
58001	Ogmore	Bridgend	1963	175.5	30 OCT	168.0	11 MAR 19	
60003	Taf	Clog-y-Fran	1965	7695	ı JUL	101.0	12 DEC 19	
66011	Conwy	Cwm Llanerch	1964	530.7	13 NOV	509.7	12 DEC 19	
84001	Kelvin	Killermont	1948	265.7	12 DEC	175.2	18 OCT 19	
84003	Clyde	Hazelbank	1956	606.5	· 12 DEC	530.3	31 OCT 19)7 7
84005	Clyde	Blairston	1958	830.9	12 DEC	666.4	22 SEP 19	985
84011	Gryfe	Craigend	1963	129.5	11 DEC	112.8	15 JAN 19	993
84013	Clyde	Daldowie	1963	1107	12 DEC	802.5	22 SEP 19	985
84015	Kelvin	Dryfield	1960	91.47	12 DEC	84.94	19 SEP 19	985
84016	Luggie Water	Condorrat	1966	51.31	12 DEC	44.46	11 SEP 19	
84019	North Calder Wtr	Calderpark	1963	134.3	12 DEC	91.21	7 OCT 19	
84022	Duneaton	Maidencots	1966	120.4	12 DEC	116.2	2 FEB 19	988

many eastern Chalk catchments; 1994 flows were well above average throughout the flow range and the 95% exceedance flow was more than twice the preceding average. Even healthier low flows characterised a number of rivers where reduced groundwater abstractions - often associated with the NRAs Alleviation of Low Flow programmeenhanced the post-drought runoff recovery; examples include the River Ver (Buckinghamshire) and River Darent (Kent). The 1994 flow regime for the Mimram and similar chalk rivers highlights the contrast between high baseflow rivers where the seasonality of the rainfall over the catchment is muted in runoff terms, and impervious catchments in northern and western Britain where seasonal runoff contrasts were enhanced in 1994.

Relative to the monthly average, reservoir levels remained generally high throughout 1994, although in July and August demand increased rapidly and supply was at times under stress (e.g. in communities served from reservoirs in the southern Pennines). In most of England and Wales a brisk recovery in runoff rates through the autumn quickly replenished stocks and the outlook for water resources remained healthy at year-end.

Groundwater

Water-tables exhibited their normal seasonal variation in 1994 as the strong recovery following the 1988-92 drought continued. The improvement in groundwater resources was best demonstrated by the maximum and minimum levels recorded in 1994 - over many outcrop areas both were significantly higher than in the preceding five years. Recharge over the winter of 1993/94, like that of 1992/93, was abundant and the 1994 water-table recovery was generated from a much higher base than in the recent past. Groundwater levels in many wells remained well above average for much of 1994 and the increase in average levels since 1992 has few recent precedents. Such notable recoveries are well illustrated in Figure 11 (pages 152 to 155) which show groundwater level hydrographs for 32 representative wells and boreholes. Some boreholes - including the Holt (Hertfordshire) and Washpit Farm (Norfolk), have recorded both new minima and new maxima levels within the last four years. Most wells and boreholes featured in Figure 11 were selected to illustrate natural variations in groundwater levels. However, the volume of groundwater abstraction has a significant impact on water-tables in many parts of the UK and for a few monitoring sites man's influence can completely mask the effect of natural variation. Under the influence of pumping levels in the Trafalgar Square borehole (see page 153), which penetrates the confined Chalk below central London declined by around 70 metres from the

early eighteenth century to the 1950s. Thereafter, decreasing abstraction rates produced a stabilisation and subsequent recovery, groundwater levels are now rising at over a metre a year and currently stand nearly 40 metres above the mid-1960s minima.

The late summer of 1993 was dry and warm, but heavy rainfall in October saw the seasonal onset of infiltration and a brisk water-table rise in many western aquifers. Dry conditions in October and November saw localised reversals of the recovery in some boreholes, and many November water-tables in a few areas were below the seasonal minimum, for example at Llanfair (North Wales) and Redbank (Dumfries and Galloway) where pumping may have been influential. In the less responsive Chalk aquifers the recovery was slower. By the end of October most levels were close to, or above, average but recoveries in the eastern Chalk were, as usual, patchy until December.

December produced heavy and sustained recharge which continued into 1994. Rapidly rising groundwater levels resulted in high level springs, and winterbournes, flowing at exceptional rates. In parts of the Chalk, the South Downs especially, artesian conditions were reported over substantial areas in January. The Chilgrove House borehole (West Sussex) provides a notable example, overflowing for the first time in 35 years on the 7th January. The very unusual nature of such conditions is confirmed by levels in the nearby Compton House borehole which recorded a new maxima in a 100-year record, standing nearly 40 metres above the 1992 minima. In the Chilterns during January and February, The Holt borehole recorded its highest levels in a record from 1964. Very brisk recoveries also characterised boreholes in the Lincolnshire Limestone and Carboniferous Limestone (see the hydrographs for New Red Lion and Alstonfield on pages 154 and 155).

Towards the end of the 1993/94 recharge season water-tables stood well above the normal range. Recessions had begun by February in some parts of the more responsive sandstone and limestone aquifers but levels continued to rise in the less responsive Chalk. Above average rainfall in the late spring extended the recharge season and resulted in temporary increases in groundwater levels in some western and central areas. As a result, recessions began with groundwater levels generally well above the seasonal mean and close to the seasonal maxima for many Chalk wells.

A comprehensive tabulation of estimated recharge over the 1993/94 winter, expressed as a percentage of the long term average is given in the Register of Selected Groundwater Observation Wells (see pages 156 to 158); details of the method of assessing recharge are also given. In most aquifers winter recharge was well above average for the third successive winter and contrasts

TABLE 4 ANNUAL REPLENISHMENT TO THE MORE IMPORTANT AQUIFERS IN ENGLAND AND WALES FOR THE YEAR 1993/94

NRA Region	Mean annual replenishment (m ³ ×10 ⁶)	1993-94 replenishment (m³×10°)
Chalk and Upper C	reensand aquifers	
Anglian	955	1765 (185)
Southern	1230	1850 (150)
South West	200	495 (245)
Thames	975	1435 (145)
Wessex	950	1240 (130)
Yorkshire	320	425 (130)
Total	4630	7210 (155)
Lincolnshire Limest	one aquifer	
Anglian	85	80 (90)
Permo-Triassic san	dstone aquifers	
Northumbria	10	10 (110)
North West	330	270 (80)
Severn-Trent	530	775 (145)
South West	205	254 (125)
Welsh	30	25 (95)
Wessex	40	50 (125)
Yorkshire	300	480 (160)
Total	1440	1865 (130)
Magnesian Limesto	ne aquifers	ing in
Northumbria	80	100 (120)
Severn-Trent	40	60 (150)
Yorkshire	125	230 (180)
Total	250	385 (155)

Values have been rounded to reflect uncertainty in source data and recharge calculation.

Percentages of the annual mean are shown in parentheses.

For the sake of conformity with previous publications, the values for the Northumbria and Yorkshire and the South West and Wessex NRA Regions are shown separately.

markedly in the east, with the very modest overall recharge over the 1988-92 period. Using the data presented in the Register, Table 4 presents estimates of overall recharge to the principal aquifers in England and Wales for each of the major administrative units in the water industry. Generally the areal estimates of recharge exceed 150% for the eastern aquifers but significant spatial variation is evident. Figure 8 provides a guide to the variation in 1993/94 groundwater replenishment to the Chalk and Upper Greensand aquifer. Recharge exceeded twice the long term average in an appreciable proportion of the Chalk outcrop - this is especially notable away from the most easterly aquifer units where annual variability is characteristically large. The recharge volumes implied by Figure 8, together with notable recharge in the two preceding winters, helps to explain the historical high groundwater levels featured on pages 152 and 153.

Limited rainfall and accelerating evaporation rates curtailed most infiltration in May and rapidly developing SMDs thereafter ensured a brisk

groundwater recession. In the more slowly responding confined aquifers, steady increases in levels continued and, in parts of the Permo-Triassic sandstones aquifer long term average levels were exceeded for the first time in over five years (e.g. at Weeford Flats, Staffordshire). Parched soil conitions in July and early August threatened to delay the onset of the 1994/95 recharge season but the wet autumn in the English lowlands allowed levels to begin their recovery within the normal timeframe. As usual soils reached saturation initially in western and northern Britain where seasonal upturns could be recognised by late September. In East Anglia a relatively dry November permitted only a sluggish start to recharge but, as elsewhere, the 1994 minimum levels were mostly well above average and substantially greater than those in the recent past. Table 5 lists annual minimum levels for 1991-94 for the great majority of index boreholes in the national monitoring programme; in a few cases the minima quoted does not correspond to the end of the summer recession (which in 1991 for example, continued into the following year in a number of eastern boreholes). The exceptional range relative to the minimum recorded towards the end of the 1988-92 drought is of particular note. In many cases the subsequent recovery is the equivalent of twice the normal annual range, emphasising the large departure from typical annual and seasonal behaviour in many aquifers over the last eight years. By December 1994 levels were high and continuing to

Figure 8 Generalised percentage of the mean annual replenishment to the main outcrops of the Chalk and Upper Greensand aquifer for 1993–94

TABLE 5 GROUNDWATER LEVELS IN SELECTED OBSERVATION WELLS

Site	Aquifer	Records	Lowest	Year		Minimu	m levels		Maximum	Risc
		Commence	pre-1989 level		1991	1992	1993	1994	level 1994	92/94
Dalton Holme	C & UGS	1889	11.58	1905	11.08	9.64	13.82	11.88	22.68	13.04
Wetwang	C & UGS	1971	18.16	1976	17.12	16.66	19.41	18.44	30.84	14.18
Keelby Grange	C & UGS	1980	9.02	1988	5.12	4.92	6.82	10.22	18.30	13.38
Washpit Farm	C & UGS	1950	41.24	1978	40.61	40.30	41.66	44.23	48.97	8.67
The Holt	C & UGS	1964	83.90	1973	84.77	84.26	86.84	87.98	92.41	8.15
Redlands Hall	C & UGS	1964	34.53	1965	32.46	32.29	36.01	37.40	49.24	16.95
Rockley	C & UGS	1933	128.94*	1976	128.94*	130.00	130.64	130.13	143.71	13.71
Little Bucket Farm	C & UGS	1971	56.57	1976	58.62	59.56	60.81	65.71	85.12	25.56
Compton House	C & UGS	1984	27.64	1976	27.88	29.96	31.45	31.65	68.75	38.79
Westdean No. 3	C & UGS	1940	1.01	1949	1.38	1.33	1.38	1.47	4.29	2.96
Lime Kiln Way	C & UGS	1969	124.09	1976	124.24	123.70	124.08	125.22	125.91	2.21
Ashton Farm	C & UGS	1974	63.32	1976	63.80	64.66	65.36	64.77	71.18	6.52
West Woodyates Manor	C & UGS	1942	67.62	1976	70.30	72.59	72.90	70.60	98.04	25.45
Killyglen (NI)	C & UGS	1985	113.53	1985	113.26	113.66	113.42	113.11	118.23	4.57
New Red Lion	LLst	1964	3.29	1976	5.68	6.06	12.39	12.17	21.79	15.73
Ampney Crucis	Mid Jur	1958	97.87	1976	99.81	100.04	100.02	99.75	102.97	2.93
Redbank	PTS	1981	7.49 ·	1984	7.45	7.55	7.68	7.53	8.74	1.19
Skirwith	PTS	1978	129.45	1978	129.81	129.66	129.90	130.09	130.93	1.27
Yewtree Farm	PTS	1972	8.43	1972	12.85	13.11	13.43	13.32	13.87	0.76
Llanfair D.C.	PTS	1972	78.85	1976	79.05	78.92	79.10	79.39	80.07	1.15
Stone	PTS	1974	89.34	1976	89.50	89.73	89.94	90.00	91.19	1.46
Bussels No. 7A	PTS	1972	22.90	1976	23.39	23.15	23.44	23.57	24.96	1.86
Peggy Ellerton	MgLst	1968	31.10	1976	32.71	31.23	31.37	33.02	33.84	2.61
Alstonfield	CLst	1974	174.22	1975	175.00	175.95	178.34	175.54	214.39	38.44
C&UGS	Chalk a	nd Upper G	reensand		Mi	id Jur		 Mid	dle Jurassic l	Limeston
LLst		shire Limest				gLst			Magnesian	
PTS	Permo-	Triassic sand	Istones		CI	-		C	arboniferous	

^{*} dry

rise with the prospects of further substantial recharge early in 1995; the outlook for groundwater resources was exceptionally good.

References

1. Manley, G (1974) Central England Tempera-

tures: monthly means 1659 to 1973. Quart. Jour. Royal Met. Soc., 100, 389-405.

 Smith, K (1995). Precipitation over Scotland, 1757-1992: some aspects of temporal variability. Int. Jour. Clim. Vol. 15, 543-556.

1994 HYDROLOGICAL DIARY

Compiled by F. J. Sanderson

January

A mild and wet month with weather patterns dominated by the passage of a continuing sequence of Atlantic frontal systems, blizzard conditions were common in Scotland. Sustained late-1993 rainfall had made most catchments vulnerable to further precipitation and flooding in January was very widespread.

December 1993-14 January 1994: Very notable rainfall totals were recorded over 20-40 day periods beginning around mid-December 1993 – twice the seasonal average over wide areas, reaching a third of the annual average in parts of the South Downs. Runoff rates increased rapidly in early January and spate conditions were extensive by the 4th. In Northern Ireland three men were drowned in the swollen River Bann; commercial premises, plus some houses were flooded in Belfast. Flooding was also widespread in southern England; on the 5th over 100 houses were flooded at Darenth (Kent) when the Darent overtopped its banks. By the 6th over 150 flood warnings had been issued across central and southern Britain. An estimated 4000 hectares of farmland were inundated in the Somerset Levels despite heavy pumping (up to 50 m³s⁻¹) to the sea. Flooding was especially widespread in the Severn Valley, particularly between Worcester and Tewkesbury – some properties experiencing seven weeks under water. Transport disruption was considerable over a wide area. The most extreme conditions occurred in the South Downs above Chichester – see article on page 23.

February

February was another largely unsettled month especially during the first ten days. Spatial variability in temperature and rainfall totals were large and snow constituted a substantial proportion of upland precipitation in northern Britain. The relatively even distribution of rainfall through the month played a valuable role in moderating the flood risk.

2nd-3rd: A rapidly deepening Atlantic depression brought belts of heavy rainfall and subsequent flooding to many parts of the South and West – snowmelt making a significant contribution. Saturated catchments produced brisk responses even in some permeable catchments.

20-24th: A very cold easterly airflow produced dramatic declines in temperatures followed by snowstorms – these were heavy in North Yorkshire (22 cm in Fylingdales). Trans-Pennine roads were closed and Bridlington was cut off by heavy snowfalls for 24 hours on the 22nd.

26-28th: Prolonged heavy rain (snow at higher altitudes) lead to significant flooding in Scotland. Many roads were impassable after 118 mm of precipitation was recorded at Aberdeen Airport in 72 hours. Subsequently the River Dee (at Park) registered its highest March flow (528 m³s⁻¹) in a record from 1972.

March

March was mild and very wet in much of north-western Britain but dry in most south-eastern areas where rain-shadow effects were evident. Scotland registered its wettest March on record and in parts of Wales it was the wettest month in 22 years. Some gauging stations in northern and eastern Scotland registered new maximum monthly runoff totals. Spate conditions were common but the relatively even pattern of rainfall through the month again helped reduce the risk of flooding.

April

The month began in boisterous vein – wet, windy and cool – but high pressure predominated in the eastern lowlands thereafter. Some parts of Anglesey recorded their wettest April in 30 years and rainfall was substantially above average throughout most of north-west Britain. New monthly maximum runoff records were set in a significant number of western catchments as well as some baseflow-dominated lowland rivers. Snowmelt contributed to the abundant runoff in western and northern catchments.

May

A month characterised by very large regional variations in rainfall, temperature and sunshine amounts. Scotland was exceptionally dry – registering its fourth lowest May rainfall total. By contrast, some southern areas were notably wet – Guernsey had its wettest May in a record from 1843.

June

June continued the pattern of the spring with large spatial variations in weather conditions. North-western Scotland was very wet and the English lowlands mostly dry although thunderstorms near the end of the month boosted some local rainfall totals.

24th: Active convectional cells, associated with a slow-moving frontal system, produced notable rainfall intensities over many localities. At Hollinsclough (Derbyshire), 43 mm was recorded in three hours including a 23 mm burst in 15 mins (estimated return period of around 100 years). A total of 49 mm fell at East Malling (Kent), and 41 mm in two hours at Hambleden Lock on the Thames. Precipitation intensities exceeded infiltration capacities in many catchments and localised flooding occurred throughout much of southern Britain.

July

A persistent anticyclone over Scandinavia resulted in warm continental air bringing heatwave conditions across the British Isles. The Central England Temperature series ranks this month as the fourth warmest July this century and evaporative demands were exceptional. Some parts of southern England recorded their driest July for over 50 years; sequences of 20 or more dry days were common but thunderstorms became increasingly prevalent over the latter half of the month. River flow recessions, especially in impervious catchments were steep and a few monthly minimum runoff totals were established (e.g. on the South Tyne).

30-31st: Widespread thunderstorms occurred over the Midlands and East Anglia, producing localised flooding. The River Leen at Triumph Road, Nottingham recorded a peak flow of 17.13 m³s⁻¹ on 31 July, in a (patchy) flow series from 1967.

August

August was substantially cooler and more unsettled than July but an average month at the national scale. Much of northern Britain registered its fourth successive month with below average rainfall and eastern Scotland was again particularly dry. In the English lowlands, a significant proportion of the monthly rainfall total was convectional and spatial variability was large.

3-4th: Warm, humid conditions triggered thundery downpours in several parts of the country. The most notable was in Northumberland; a daily total of 103 mm was recorded at Fawcett whilst 30 mm fell in 15 minutes (estimated return period of about 120 years) at Wallington Hall, in a daily total of 83.6 mm. Flows in the River Wansbeck rose extremely quickly (0.6-44.5 m³s⁻¹ in 15 minutes); observers reported a "wall of water" travelling downstream.

10-11th: A vigorous low pressure system containing active convective cells tracked northwards from France across the South-East during the evening of the 10th before returning southwards across the London area the next morning. Rainfall totals varied considerably although none had return periods exceeding 70 years. The highest 2-day total - 87.6 mm - was recorded at Holland Park (Central London); 28.2 mm falling in 30 mins on the 10th. Runoff rates climbed accordingly, especially in responsive urban catchments. In South London new maximum August flow rates (estimated return periods of about 25 years) were recorded in the Rivers Ravensbourne and Wandle. Urban drainage systems were overwhelmed and widespread disruption was caused to road and rail transport (the Underground especially) in the London region.

31st: Convective cells embedded in a warm front tracking north-east from France produced exceptional rainfall totals at several localities in eastern England. At Ditchingham on the Norfolk/Suffolk border, a storm which achieved its maximum intensity overnight, registered a rain-day total of 146.8 mm - the highest daily rainfall in south-east Britain since the Hampstead storm in London of July 1975 - with an estimated return period in excess of 2000 years. Roads and buildings, including a local school and Beccles Hospital, were inundated and significant surface runoff and sediment transport occurred. North Thorpe (Norfolk) registered its wettest August day since the Norwich floods of 1912.

September

Generally cool and wet with the weather dominated by the passage of active frontal systems; these were replaced by high pressure towards month-end. Parts of southern England recorded around three times the monthly average rainfall but a few districts in eastern Scotland registered their fifth successive relatively dry month

14-16th: A complex low pressure system - with embedded thunder cells - produced rainfall totals in the 60-80 mm range over wide swathes of central England. During 36 hours, 77 mm was recorded at Wittering, near Peterborough and new twentieth century daily maxima were reported for Birmingham, Sheffield and

Chesterfield. The Trent (at Colwick) recorded its highest September flow in 30 years and flood warnings were issued throughout southern Britain – but most peak flows had return periods of less than five years.

October

Contrasts in weather conditions were notable in both spatial and temporal terms. The first three weeks were extremely dry, many places in southern central regions reported an absolute drought (15 days without appreciable rainfall) and in parts of Grampian Region the dry spell was the longest in October for 47 years. Heavy rain during the last ten days of the month over southern Britain produced monthly totals well above average. Scotland and Northern Ireland continued their drier than normal sequence of months.

29-31st: Heavy and persistent frontal rainfall swept eastwards across England and Wales causing widespread flooding in the South-West and South Wales. On the 30th, Dorchester (Dorset) recorded its wettest rain-day (57.1 mm) for almost 40 years, and totals of over 100 mm were recorded on Dartmoor and at Treherbert (West Glamorgan), in 24-hour periods. Farmland was flooded and livestock swept away. In Devon, the Torridge broke its banks inundating property near Bideford, the Exe flooded property in Bickleigh and disrupted transport services. The Taw recorded its highest flow since 1981, causing severe localised flooding in its lower catchment. In South Wales, new highest instantaneous flows were recorded for the Ogmore and Llynfi (on the 30th); the peak on the latter was 50% higher than the previous maximum in a 25-year record.

November

November was a remarkable month climatologically but unexceptional in hydrological terms. The weather was dull but exceptionally mild – the warmest November in the 337-year CET series. Cyclonic conditions dominated the first half of the month but, from the 18th, precipitation totals were very limited in most eastern regions. Ely (Cambridgeshire) had its driest November since 1945. In Scotland, the north excepted, the lengthy sequence of relatively dry months was broken.

8-11th: More than 50 hours of persistent rainfall over southern England and South Wales produced totals of 40-50 mm in many catchments. River flows rose accordingly; the Dorset Stour recorded its highest flow since 1979.

13-14th: Over 50 mm rain fell widely in northern and western Britain, especially over the Lake District and north Wales. Flooding was reported in Blaenau Ffestiniog, Gwynedd after 124.2 mm of rain fell in 20 hours; the River Conwy recorded its highest flow in a 30-year record, 530.7 m³s⁻¹, on the 13th.

December

Generally a mild and wet month punctuated by some very windy interludes and several short cold spells. South-westerlies prevailed throughout most of December and the associated sequence of frontal systems resulted in high rainfall totals, in the west especially. Scotland recorded its second wettest December this century. The saturated catchments encouraged very rapid runoff and for much of December the risk of flooding was widespread and persistent, in Scotland particularly.

8th: Torrential rain and hurricane force winds caused widespread problems in the West Country and Wales, disrupting ferry crossings and flights. The NRA called six Red Alerts after 50 mm of rain fell in South Wales. Alerts were also in force in the South-West and floodplain inundations were reported in south-eastern England.

10-12th: Heavy and continuous rain fell across west-central Scotland, associated with a vigorous depression bringing very moist tropical air from the south-west. The front remained almost stationary over a 48-hour period and around 170 mm of rain was recorded in the Glasgow area, far exceeding previous maximum December 2-day rainfall totals and corresponding to a return period in excess of 250 years. In the north of the region, 250 mm fell at Loch Sloy during the same period and falls in the 150-250 mm range were common even at low elevations. Numerous rivers in Scotland recorded peak runoff and flows at this time. Very severe flooding ensued in Strathclyde – its coincidence with centres of population and commercial activities resulted in one of the most financial damaging of modern UK floods, for details see page 29.

26-30th: Heavy and persistent frontal rainfall fell over Wales and south-western England. At Treherbert (West Glamorgan) 223 mm of rain fell in three days and return periods of up to 40 years were estimated for 3-or 4-day rainfall totals in the headwaters of the River Severn. At Hereford, the Wye rose to its highest levels since March 1981 and Red Alerts were in force on the Rhondda, Severn, Taff, Wye, Dyfi and Ogmore. The Rivers Torridge, Mole and Exe in Devon burst their banks for the second time in less than two months, again causing extensive disruption. Widespread flooding was also reported from Yorkshire and the Midlands, where rail services were cut.

THE CHICHESTER FLOOD, JANUARY 1994

S.M. TAYLOR

National Rivers Authority, Southern Region

Flooding is a familiar phenomenon in the United Kingdom and communities tend to adjust, albeit imperfectly, to the short term disturbance associated with the relatively rapid rise, and subsequent fall, of river levels during a flood event. However, when the principal causative factors are sustained rainfall and exceptionally high groundwater levels flooding can be very protracted and the associated problems outside recent experience. The 1993/94 inundation at Chichester was a remarkable hydrological event which provided a graphic demonstration of the role groundwater can play in generating and sustaining flood conditions. As the spring-fed River Lavant remained above previous maximum levels for an extended period, mitigation of the flood's impact constituted a considerable challenge. This report on the flood, and the response to it, is based upon a paper presented at the British Hydrological Society's Fifth National Hydrological Symposium.\(^1\).

Introduction

Sussex is no stranger to both tidal and river flooding with its long low lying coastline and many flashy rivers. However, what made the 1993/94 event and the response different was that flooding and communication disruption continued in major urban areas for over a month. Consequently, the response of the National Rivers Authority (NRA), Local Authorities and Emergency Services required careful management and coordination over several weeks.

The Catchment

The River Lavant is a small West Sussex Chalk stream which flows through the centre of the County City of Chichester. The Lavant rises in the folds of the South Downs to the north east of the city with its normal winter spring head somewhere between the villages of Singleton and Charlton. Its initial course is from east to west, it then swings towards the south below Singleton and flows between the villages of Mid and East Lavant. It then drops onto the coastal plain, turning through a further right angle bend in the Westhampnett area to flow west through the city to the sea at Fishbourne. This somewhat tortuous route, controlled partly by geology and partly by man, can be seen in Figure 1.

Although the Lavant is a Chalk stream, just under half of its course on the coastal plain lies over younger Tertiary strata. The catchment drains about one-third of the outcrop of the Chichester Chalk block which is bounded by the Rivers Arun, Ems, the South Downs scarp and the coast. Most of the outcrop in the upper catchment comprises Upper Chalk but the Middle and Lower Chalk is exposed in some locations. The Chalk has a shallow southward dip associated with the Wealden anticline, but the Lavant is particularly affected by the minor features of the Singleton anticline and the Chichester syncline. These east to west trending folds govern the

Figure 1 Location map

upper river course and result in the thick sequence of Lower London Tertiaries which confine the Chalk in the lower valley below East Lavant. Of equal importance in the lower valley are the superficial deposits which take the form of two raised beaches and an extensive alluvial fan derived from the Lavant and on which Chichester sits. These gravels vary from some 10 m in depth in the Westhampnett

area to around 2 m on the southern edge of the fan, (British Geological Survey²). The catchment is unique in that the longest continuous Chalk groundwater record in the country (records back to 1836) is located at Chilgrove House in the upper catchment.

Throughout its upper reaches the Lavant flow is governed by the hydrogeology. Although the normal winter spring head lies just above Singleton, following wet winters the spring head may migrate well upstream of the village of East Dean. Conversely, following dry winters the Lavant may disappear altogether; indeed during the period of 1989–93 much of the river was dry. Rainfall records have been collected in the valley from 1834 (again at Chilgrove House), but flow records are available only from 1971. The flows are recorded at Graylingwell gauging station, the location of which can be seen in Figure 1. Normal winter flows average around 2 m³s⁻¹.

Winter 1993-94

In October, at the beginning of the 1993/94 winter half-year, groundwater levels in the Chalk Downs were reasonably low (see page 153). However, from then onwards to the end of January the weather was much wetter than average. The monthly areal rainfalls for the Lavant catchment are given in Table 1. The total for the October to January period was

TABLE 1 WINTER RAINFALL IN THE LAVANT CATCH-MENT OCTOBER 1993 TO JANUARY 1994

Month	1961-90 Average (mm)	Actual (mm)
	(iiiii)	(mm)
October	90	140
November	90	80
December	100	200
January	99	190
Total	379	610

some 610 mm against an average of 379 mm (1961-90). Of particular note are the heavy rainfalls in late December and early/mid January where daily totals on one occasion reached almost 50 mm (December 30th) in the lower Lavant valley. Between the 29th September and the 13th October 1993, a period of heavy rainfall totalled 175 mm. This overcame the summer soil moisture deficit, groundwater levels responded rapidly and a small but sustained flow of about 0.1 m3s-1 appeared in the Lavant by late October. This was followed by a relatively dry spell until the end of November in which groundwater levels declined slightly, but the flow in the Lavant increased slowly up to around 0.25 m³s⁻¹ during this period. From the 28th November until mid-January the area was swept by a

Plate 1 Chilgrove House borehole overflowing, January 1994 Photo: Phillip Turton

series of vigorous depressions which resulted in more than 350 mm of rainfall. 40% of this fell on six days in late December and early January. As a result, groundwater levels rose rapidly, between mid-December and Christmas Day the Chilgrove level rose some 16-18 metres above the December average. On the 7th January the well became artesian and remained so for some 18 days (see Plate 1). This is the longest recorded period of artesian overflow. Consequently river flows also rose rapidly from 0.3 m³s⁻¹ in mid-December to 1.7 m³s⁻¹ on the 29th and peaking at around 8.1 m³s⁻¹ on the 10th January. Whilst these are not 'large' flows, in a flat bottomed Chalk valley with a channel adjusted to flows of around 2 m3s-1 plus a flat impermeable tide-locked coastal plain, the potential for flooding is easy to imagine. The resultant hydrograph from Graylingwell can be seen in Figure 2. (The spot gauged peak exceeds the flow over the weir which was bypassed by out-of-bank flows).

Figure 2 Flows at Graylingwell (River Lavant) and daily rainfall totals at West Dean

Of great interest is the change in response to rainfall of the catchment over the mid-December to January period. Prior to mid-December the Lavant CHICHESTER FLOOD 25

behaved as a normal Chalk stream with delayed response of river flow and groundwater levels to rainfall. After mid-December this began to change and until late January the response of flow to rainfall was extremely rapid and the catchment became almost flashy. Later analysis by Posford Duvivier³, who were contracted to investigate the floods, identified a critical groundwater level at Chilgrove well of 69.5 m aOD. Once this threshold level is reached then the response of the catchment appears to switch from a baseflow dominated flow regime to a more rainfall responsive regime. It has been postulated that this level marks the movement into a zone of much more fissured Chalk which enables a more rapid response to rainfall.

This, plus the fact that by the time this level is reached the whole catchment and valley bottom is saturated, possibly leads to rapid runoff. The full reasons for this phenomenon still remain to be explored, but other independently obtained hydrogeological data may provide additional evidence. Packer testing was carried out on a site some two kilometres to the east of Chilgrove, which indicated a marked change in transmissivity at or around 70 m aOD.

Event Magnitude

Estimation of the flood return period is difficult, even though there are long period rainfall and groundwater level records available. Whilst the event was characterised by an extremely high flow, it is difficult to determine the significance of short and long term rainfall and of groundwater level. In many respects it is the combined probability of intense rainfall on top of a generally wet winter causing high groundwater levels, which produced the flood. In order to assess the impact of rainfall on groundwater storage, various durations of daily totals were examined. Single daily totals, whilst quite large, do not produce results which explain the flood conditions. Although the impact of a >25 mm storm on an already saturated catchment produces a worsening of the conditions, indications are that all groundwater storage must be exhausted first. This produces the two stage catchment response described earlier.

TABLE 2 FREQUENCY OF RAINFALL EVENTS -SEPTEMBER 1993 TO JANUARY 1994

Rainfall Duration (days)	Dates of rainfall,	Rainfall (mm)	Return Períod (ýears)
1	01/10/93	33.4	2.1
1	30/12/93	25.7	1.3
5	30/12/93-03/01/94	78.9	2.7
5	28/09/93-03/10/94	79.0	2.7
10	28/12/93-06/01/94	132.3	5.7
40	06/12/93-14/01/94	335.0	38.6
90	03/11/93-31/01/94	455.6	6.3

Source: Ref. 3.

TABLE 3 RELATIVE RANKINGS OF 40- AND 45-DAY CUMULATIVE RAINFALL TOTALS (TOP 10 YEARS 1921 TO 1995) FOR CHILGROVE WITH CORRESPONDING PEAK FLOWS (FROM 1971)

Rank	40-Day	Total (mm)	[•] 45-Day	Total (mm)	Peak Q* (cumecs)
1	1930	353	1961	375	
2	1994	345	1994	373	8.1
3	1961	341	1930	368	-
4	1935	319	1977	339	
5	1995	315	1935	339	4.4
6	1977	308	1995	332	2.2
7	1971	307	1950	326	0.9
8	1988	306	1928	322	3.9
9	1950	304	1988	321	_
10	1987	298	1971	313	1.2

^{*} Associated with year in 40-day ranking

Examining a 6-month period (October-March) for rainfall totals, the return period appears to be around 30-60 years. The return period assessment for various durations peak at around the 40-50 day timeframe. (See Table 2.) By taking cumulative 40and 45-day rainfall totals from Chilgrove House, a ranked list of events is obtained. Extending from 40 to 45 days does not change the years involved in 9 out of 10 cases, although the rank position does alter. This can be seen in Table 3. This gives 1993/94 a return period of about 1 in 45 for a 40 day period. For 45 days 1994 increases to 1 in 55. These cumulative rainfall totals perhaps suggest that >300 mm (40 days) or >320 mm (45 days) is required before more major problems may occur. At somewhere over 300 mm of rainfall Chalk groundwater storage must be at or around capacity and any storms of significance (>20 mm) cause an instant peaky flow response. This possibly explains the increased flooding from individual storms in 1993/94.

A variety of return periods have been postulated using combinations of hydrometeorological variables. The results vary from 1 in 17 for the total winter rainfall, through 1 in 100 for the Graylingwell flow, to approaching 400 years for groundwater levels and combined probability analyses. Possibly the best estimate, assuming a stable climate, is that the return period exceeds the 1 in 100 year event.

Previous Records

Searching carefully through the archives it appears that "flood" events have happened in the past every 30 years or so. Undoubtedly the areas of urban flooding were greater in the past, but flows were probably less. The last major event occurred in 1960/61. This was certainly a very severe flood, although no river flow records exist. Much of the flood protection built after 1961 withstood the flood waters of 1994, although the impact of flooding was

different. In the case of 1960/61 water was diverted from the Lavant into gravel workings, subsequently infilled. The site is now occupied by a Sainsbury's superstore, which had burnt down in December 1993! Flooding in the upper valley in particular was exacerbated by the Chalk stream character of the land. Small channels, low banks and low capacity bridges all played a part. Towards the city itself, man's activities on the coastal plain played an even greater part in the events. In the relatively recent past it is almost certain that the Lavant has been diverted from its original path to the sea at the mouth of Pagham Harbour. This accounts for the westward course of the river from Westhampnett through the city to Chichester Harbour. Diversion possibly occurred in Roman times (contemporary rumour). The normally placid or dry nature of the summer Lavant would aid this. Certainly early maps of the city4 show the Lavant forming part of the city defence and, presumably, water supply. As time went on the city expanded and a large section of the Lavant source within the city became culverted. The majority of the present culverts date back to Victorian times.

The 1993/94 Flood

First evidence of the flood problems to come surfaced in the Westhampnett area around the 20th of December 1993. Here flooding caused by excessive groundwater discharge began to occur in a lowlying industrial estate set amongst old gravel workings (Church Farm Pit). By the beginning of January springs were appearing throughout the valley and in several locations in the upper Lavant valley the channel could no longer cope with the flow. As the road was the next lowest conduit this began to become a subsidiary channel (see Plate 2). Attendant traffic wash then began to affect adjacent properties. The first widespread flooding occurred on the 4th when the Lavant began to overtop right along the channel length. The most serious occurrences were at Westhampnett where the river burst its banks and flowed off towards the Pagham Rife, and in The Hornet/St Pancras area of the city, where demolition of a building appears to have affected the flood wall. Here serious overtopping occurred. Within the Hornet around twenty properties and business premises were inundated by the overtopping (Plate 3). Around this time the city centre culverts became surcharged. They remained in this state until virtually the end of January.

Meanwhile, in the Westhampnett area overflow from the Lavant had been channelled down the B2141 and across the A285, closing them to traffic, before entering the Church Farm Pit. The industrial estate around the Pit was already flooded with groundwater and the Lavant overflow of around 1.25 m³s⁻¹ simply added to the depth of inundation.

Plate 2 Floodwater on the B2141, near Chilgrove, in January 1994 Photo: NRA, Southern Region

Plate 3 Flooding in The Hornet, Chichester City Centre Photo: NRA, Southern Region

Within 24 hours the available storage in the Pit was used up and the flood of combined groundwater/surface water overflow crossed the A27 (T) and closed it. Next the floodwater closed the B2144, passed under the railway line (where small culverts throttled back the flow) and by the 9th January the flood closed the A259 on its flow path towards Pagham Harbour. Supplemented by groundwater the 1.25 m³s⁻¹ flood to the south reached well over 3 m³s⁻¹ within a kilometre. Thankfully the number of properties severely flooded was relatively small, less than 50. However, the disruption to commerce and communications (see Cover) was tremendous. At one point the most secure route between Southampton and Brighton by road was via London and the M3, M25 and M23. All the main South Coast roads were closed and on the main South Coast railway line, trains passed through the flood area at walking pace with water passing through the ballast. Road traffic around the city was only reinstated with the provision of military Bailey bridges at key points.

Whilst this major overtopping was occurring every village along the Lavant was suffering widespread flooding and road closures. In The Hornet area of the city the river was periodically rising with rainfall causing culvert surcharging and overtopping. There was no respite from the flooding for almost a month.

The city centre Victorian culverts were giving cause for increasing concern. The most constricted section has a normal capacity of around 4.5 m³s⁻¹. Peak flow at Graylingwell was around 8.1 m³s⁻¹ and although around 1.25 m³s⁻¹ was out of bank around the city some 5-6 m³s⁻¹ was at times passing through the culvert. The culvert was itself in dubious structural condition and at times a spray mist could be seen through fine cracks in the floor of buildings along the culvert line.

During periods of rainfall the river rose, the culvert surcharged and water spilled out upstream of the culvert into the city. Fortunately a combination of relays of 'green goddess' fire appliances and Maine Coastal Pollution Unit pumps kept the city centre flood water confined to a restricted area. Throughout most of January there was an ever present fear of culvert collapse. Had this happened some 1200 properties would have been inundated within 30 minutes, around 10,000 people would have required evacuation and all roads/railways to the east would have been closed. As a result Operation Badminton was conceived by the Emergency Committee. Initially alternative flood water routes both around and through the city were investigated, but gradients and services prevented this. Sandbag channels were planned through the city but they would have virtually isolated the centre. Consequently, evacuation procedures using public service vehicles and fully fitted reception centres in Hampshire were set up. Military, NRA, County/District and Emergency Service staff were available on a 24 hour basis and strategic sandbag stores were located through the city. Had the need arisen the sandbags, plus selected buildings, would have formed the new channel. Whilst precautions were in place the vast majority of city and commercial life continued as normal.

Discussion

Although the areas flooded are low lying and have a history of inundation, there have been no problems since the early 1960s. In the intervening period residents have changed and many properties have been renovated. During past floods it appears possessions were moved upstairs and the residents waited for the water to abate. It is difficult to do this

with central heating systems, fitted furniture/carpets and sophisticated electrical equipment, even if warning is given. The question was raised "why did they not stop it?", as attempts were made to apportion blame and impute negligence. This was particularly so where the flooding was associated with sewer surcharging and contaminated water.

Associated with the direct public response is management of the media. January is traditionally a quiet month for news, Chichester is in easy reach of London for media crews, the imagery of pumps, floods and fire engines is newsworthy and the length of the event in 'commuter land' led to intense media interest. Whilst the Lavant and Chichester event of 1993–1994 was caused by exceptional weather it did not flood a large number of individual properties. However, it was distinguished by its longevity, media interest and disruption to communications.

Response to the event was hindered by the arcane state of Flood Defence and Land Drainage law. Flooding is no respecter of the limits of NRA main river and riparian responsibility. Interestingly, if flooding occurs naturally then there is no liability. If water is diverted from a river and flooding damage subsequently occurs then there is potential for liability and claims of negligence.

NRA investigations are underway to decide upon the optimum route for a Chichester flood alleviation scheme. Three proposals are being given detailed consideration and a decision on the preferred option is expected early in 1996.

References

- Midgeley, P and Taylor, S M (1975) Chichester 1994: the impact of man on a groundwater flood.
- -- Proc. 5th National Hydrological Symposium. BHS. 3.27 to 35
- British Geological Survey. (1982) Geological notes and details for 1:10000 sheets covering the West Sussex Coastal Plain. BGS.
- Posford Duvivier (1994) River Lavant flood investigation - commissioned by the National Rivers Authority, Southern Region.
- Newbury, K (1987) The River Lavant: Chichester's Power from Source to Mouth, Phillimore, 64 pp.

REGIONAL FLOODING IN STRATHCLYDE DECEMBER 1994

A. R. BLACK* and A. M. BENNETT†
Institute of Hydrology Clyde River Purification Board

Between the 10th and 12th December 1994, major flooding occurred in rivers and urban watercourses across the Glasgow conurbation and its surrounding areas. A slow-moving weather system delivered persistent rain over a 48-hour period and across a wide geographical area, such that previous peak river flow values were exceeded in all major catchments in the region. The River Clyde is thought to have reached its highest level in 150 years, and the total cost of the damage may reach £100 million. The event is the latest in a series of major floods in Scotland and raises questions concerning land use planning and flood hazard management.

Introduction

Major floods always attract considerable public attention when they occur, and with good justification: whole communities are often rendered helpless while uncontrolled waters inundate property, sometimes taking lives in their wake. With damage attributable to flooding throughout the world increasing despite continuing attempts to mitigate their impact, interest in floods and their consequences is as high as ever. In a global context UK floods are small scale and represent only a limited threat to lives and livelihoods. Nonetheless, they can still pose a considerable threat in terms of their economic and social impact.

Yearbooks in the Hydrological data UK series have documented several of the most significant floods to occur since 1980: the Tywi flood of 19871, the two Truro floods of 19882, the Tay floods of 19903 and 19934 and, in this volume, the Chichester flood of January 1994. December of the same year also witnessed flooding in Strathclyde which became the latest event in a striking list of floods to occur in Scotland since the late 1980s. Flooding on the Ness in 19895, and on the Spey6 and Teith7 in several recent winters since 1988, combined with the Tay floods and others elsewhere, has caused significant economic and social impact. As in many other parts of the world, possible links between recent hydrological events and climate change are of considerable concern. Whether there is any common cause of this now well-recognised increase in flooding in Scotland8, it accords well with a general steepening in the north-west/south-east rainfall gradient across Britain9 which, if sustained, may necessitate significant adjustments in the provision of regional water resource systems and flood defences.

The flooding which forms the focus of this paper was unusual for its geographical extent, involving all the rivers converging on Glasgow and affecting many of its suburbs. Strathclyde Region accommodates 45% of the Scottish population of 5.1 million, with 1.6 million located in the Glasgow conurbation. The resulting pressure on land resources may be considered to contribute to the risk of flooding problems.

The River Clyde is the main river in the Region (Figure 1), draining a catchment which rises to some 750 m in the Southern Uplands. It includes tributaries on the south side of Glasgow, such as the White Cart Water, which fall steeply from their upland headwaters, and others such as the River Kelvin which, although also having some very steep

Figure 1 Location map

^{*} Now Lecturer, Dept. of Geography, Dundee University.

[†] Now Director, Scotia Water Services, Wanlockhead, Lanarkshire.

headwaters, flows slowly through a gentle floodplain in its middle course to the north-east of Glasgow. Mean annual rainfall varies strongly with altitude, from around 900 mm on the Ayrshire coast and in the middle Clyde valley, to more than 3000 mm in the mountains to the north of Glasgow; hydrological characteristics also vary strongly in response to these controls. When these diverse characteristics are taken into consideration, the response of the rivers of Strathclyde to the heavy December rainfall in 1994 was especially remarkable.

Rainfall

December 1994 started with generally damp conditions, following on from a November of near-average rainfall. At Picketlaw in the centre of the Clyde River Purification Board (CRPB) area, rain fell on each day of December until the 20th. Daily totals were in the range 1-10 mm on the first six days of the month, but on the 7th and 8th falls of 22.4 and 19.4 mm respectively were recorded. This rainfall ensured that soil moisture levels were at, or approaching, saturation throughout the region.

In the early hours of December 10th, a slow-moving frontal system brought sustained rainfall of 1-5 mm per hour to the whole of west-central Scotland, lasting for about 48 hours. The rain was produced by an unusually wide warm sector, which caused warm, moist air from the west-south-west to be conveyed continuously across the area. More unusual was the coincidence of this rainfall with a large conurbation and, as the rain continued, fears of flooding grew. A similar meteorological situation had been responsible for the damaging Ness and Conon floods of February 1989¹⁰ although, on that occasion, the cold front marking the northern limit of the rainfall was much further to the north.

Table 1 shows the daily rainfall totals recorded across the area while in Figure 2 hourly totals are presented for three sites located around the main Glasgow conurbation. The sustained nature of the rainfall is clearly illustrated, and it can be seen that

Figure 2 Hourly rainfall for three selected rainguages. (See Table 1 for location)

TABLE 1 DAILY RAINFALL TOTALS FOR SELECTED CLYDE RPB RAINGAUGES

Raingauge	Catchment	NGR	Alt	Water-day rainfall totals				
	research and controlled	St. Se letterpool	(m aOD)	9th	10th	11th		
Dunlop	Annick Water	NS412489	148	16.4	88.0	57.2		
Saughall	Irvine	NS598364	222	6.9	80.5	54.3		
Leadhills	Clyde	NS888151	384	3.2	65.8	46.5		
East Kilbride	Clyde	NS638535	178	9.4	69.0	48.0		
Clyde Park SW	Clyde	NS772539	30	3.4	42.2	29.4		
Picketlaw	White Cart	NS568515	220	14.0	100.8	57.6		
Gleniffer Braes	Black Cart	NS435595	183	22.7	165.4	54.6		
Mugdock Park	Allander/Kelvin	NS546779	164	11.9	126.0	53.4		
Glenmill	Glazert/Kelvin	NS605794	99	18.1	89.3	57.3		
Cumbernauld*	Kelvin	NS783770	85	5.4	99.6	52.6		
Dalinlongart TS	Eachaig	NS138813	60	15.8	73.4	23.2		
Inveruglas	Loch Lomond	NN320091	13	36.9	100.4	28.5		

Note: Almost all the rain was received within 48 hours at each gauge.

* Operated by Forth RPB

most of the rain fell within the water days (09.00-09.00) of the 10th and 11th. An assessment of the rarity of the 2-day falls by CRPB staff has produced estimated return periods of over 500 years for some sites. It is striking that five of the six 2-day totals exceeding 140 mm were at sites below 200 m aOD, with two of these being below 100 m.

Hydrological Response, Hydrometric Network Operation and Flood Warning

The first rivers to show a significant response to the rainfall were those draining the urban areas to the south of Glasgow. The CRPB flood warning staff were monitoring the situation, as they had been given a heavy rain warning by the Met Office on the 9th, predicting between 18 and 25 mm of rain in the area.

The first telemetry alarm was received at 11.45 on Saturday 10th December from the White Cart system, and at 15.05 Strathclyde Police were officially warned that flooding was likely in parts of Cathcart, southern Glasgow. The White Cart initially peaked at 18.30 but by 23.00 had started to rise again, eventually peaking at Overlee gauging station at 01.30 on Sunday 11th (Figure 3). The White Cart (84030) has a long history of flooding, a result of the steep nature of the catchment and its tributaries, causing a rapid response to rainfall. However, as the rainfall in this event was of long duration but only moderate intensity, the flows at Overlee in the middle of the catchment were not exceptional, the peak level being more than 0.5 m less than the previous recorded maximum in a record commencing in 1981.

Further down the catchment at Hawkhead (on the outskirts of Paisley), where the peak flows are sometimes less than those at Overlee due to attenuation down the channel, a new maximum flow of 193 m³s⁻¹ was recorded at 04.45 on Sunday 12th, with the recorded level being almost 0.7 m above the previous recorded maximum (Table 2). This clearly demonstrates one of the most striking features of this event, namely that the prolonged duration of the rainfall ensured that the effects were greatest in the larger

Figure 3 Flows at three gauging stations in the Clyde basin (see map)

catchments where peak flows from tributaries were able to coincide. The Black Cart, which joins the White Cart below Paisley, peaked at 18.00 on the 11th (Table 2), the coincidence of the high flows in both rivers causing significant flooding and backing up along the main channels.

Once the warnings had been issued for the White Cart, attention turned to other rivers in the region. It had been observed early on the 10th that the rivers draining the Campsie Fells to the north of Glasgow were very high, and they were the next group to reach peak levels, typically around 03.00 on the 11th. Many of these rivers drain into the Kelvin which, because of its large, flat middle section, was unable to effectively drain the coincident peak flows. Flows in the Kelvin were the most notable in the region, with a peak flow at Killermont (84001) gauging station estimated to be more than twice the previous maximum (in a 47-year record). There were such large volumes of water contained in the floodplain that the river did not finally peak until 07.00 on Monday 12th, more than 48 hours after it had started to rise (Figure 3). The Kelvin caused widespread flooding at Kirkintilloch in the centre of the large floodplain, and downstream in Glasgow, particularly following ingress into a disused railway tunnel (see below).

Further south, the River Irvine peaked in the early hours of Sunday 11th, causing flooding in the town of Irvine, and localised, minor flooding was also reported on the Ayr. As the rain moved to the southeast, the River Clyde itself began to cause concern. This had been much slower to rise, given its greater catchment area, but quickly made up for lost time and eventually recorded a new maximum at Daldowie (84013) at 06.15 on Monday 12th (Figure 3). Peak levels were more than a metre above any previous level, with the corresponding flows estimated to be between 1100 and 1300 m³s⁻¹, compared to a previous maximum of 803 m³s⁻¹.

A total of 27 gauging stations recorded new maximum levels during the event, including 17 with 25 or more years of record (Table 2). Several instrument huts were inundated, a number of

Plate 1 Redlees gauging station on the Rotten Calder Photo: Clyde RPB

River	Station	First Yr of Record	Catchment area (km²)	Day	Time	Max. Level (m)	Flow (m ³ s ⁻¹)	Previous max. level (m)	
Duneaton	Maidencots	1966	110	11	23.59	2.126	120	2.092	
Clyde	Sills	1957	742	12	10.29	3.113	403	3.023	
Clyde	Tulliford Mill	1969	933	12	05.59	2.843	539	2.592	
Clyde	Hazelbank	1956	1093	12	06.35	3.778	606	3.637	
Nethan	Kirkmuirhill	1966	66	11	21.28	2.239	75.0	2.308	
Avon	Fairholm	1964	266	11	01.00	3.173	289	3.916	
South Calder	Forgewood	1965	93	12	06.44	1.147	26.5	1.682	
Clyde	Blairston	1958	1704	12	05.41	4.038	>830	3.480	
North Calder	Calderbank	1968	61	11	20.29	1.684	27.3	1.821	
North Calder	Calderpark	1963	130	12	03.11	2.674	134	2.278	
Rotten Calder	Redlees	1966	51	11	17.11	1.820	44.6	2.119	
Clyde	Daldowie	1963	1903	12	06.15	5.903	>1100	4.815	
White Cart	Hawkhead	1963	227	12	04.43	4.372	193	3.680	
Black Cart	Milliken Park	1967	103	11	18.14	2.012	110	1.383	
Gryfe	Craigend	1963	71	11	05.13	2.618	129	2.007	
Glazert	Milton of Campsie	1968	52	11	02.32	2.089	87.1	1.972	
Luggie	Condorrat	1966	34	11	19.53	2.280	51.3	1.835	
Kelvin	Dryfield	1960	235	12	08.44	5.223	104	4.586	
Kelvin	Killermont	1948	335	12	07.11	3.781	>300	2.255	
Falloch	Glen Falloch	1970	80	11	02.29	2.665	176	2.746	
Endrick	Gaidrew	1963	220	11	06.59	3.606	134	3.744	
Leven	Linnbrane	1963	784	13	00.28	2.370	138	2.996	
Little Eachaig	Dalinlongart	1968	31	11	02.13	1.271	31.1	2.310	
Eachaig	Eckford	1968	140	11	03.28	2.661	126	2.477	
Ayr	Catrine	1970	166	10	22.29	2.993	201	2.704	
Irvine	Glenfield	1914	218	11	01.23	2.895	437	2.106	

TABLE 2 MAXIMUM LEVELS/ESTIMATED FLOWS RECORDED IN DECEMBER 1994: CRPB STATIONS WITH 25+ YEARS OF RECORD*

cableways were damaged and flood debris created considerable flow measurement difficulties (Plate 1). Some telemetry lines were affected by water, but the system as a whole was robust enough to allow the CRPB staff to keep both the emergency services and the Met. Office advised of conditions as the event progressed. It is worth noting that the rainfall radar station at Corse Hill (to the south of Glasgow) was not working through the event, due to a technical fault, yet sufficient information was available from the CRPB's telemetry raingauges to map the rainfall.

Due to the exceptionally high flows it was not possible to current meter many of the peak river flows, especially where station huts were inundated. However, many new high level gaugings were completed whilst still ensuring that the network continued to operate. Low flow gaugings during the following summer have revealed that some of the stations will require recalibration as a result of channel erosion or deposition during the event.

Flood Impact

It was inescapable that flows of the magnitude experienced would cause considerable impact across the area. Damage was caused to properties over an area more than 50 km wide, as a result of the widespread nature of the rainfall and associated

runoff. Three lives were lost: two when a car plunged from a submerged and collapsed bridge over the Kelvin near Twechar, and the other on the River Nith to the south. At the height of the floods 80 roads were closed and, in central Glasgow, Argyll Line and Glasgow Underground rail services were halted when tunnels became flooded. Ten months were required to repair damage on the Argyll Line - caused by ingress of floodwaters from the Kelvin via a disused tunnel. Water from the same source inundated part of the Scottish Exhibition & Conference Centre, a hotel (see Plate 2) and the Glasgow Expressway.

Plate 2 Walkway in front of Moat House Hotel, Finnieston, Glasgow, undermined by floodwater Photo: Clyde RPB

^{*} Some of the featured levels and flows result from site investigations and may involve the use of special high flow stage-discharge relations; moderate differences from the routinely processed flows may occur.

Inundation of residential property was one of the most prominent features of the floods, affecting properties of a wide range of ages. Some 700 homes were flooded, with many families needing to be evacuated. Residential flooding was most extensive in Paisley and Kirkintilloch, and occurred in a range of circumstances. In Paisley much of the flooding appears to have occurred as a result of the culvert capacity of a small watercourse being exceeded, causing ponding in a deep hollow. Some houses were inundated by up to 4.5 m of floodwater. Most of the flooding in Kirkintilloch occurred on, and along the margins of, the wide floodplain of the River Kelvin. While some flooding is experienced in many winters, historical sources suggest that the levels reached in this event may not have been exceeded for more than 100 years. Much of the damage centred on a 1960s development at Hayston, and the new Summerfield Gate housing estate, where house building was still in progress (Plate 3).

Commercial losses also occurred in Kirkintilloch, mostly at a floodplain industrial estate, and at several locations to the south of Glasgow, eg. a whisky distiller's bonded warehouses, industrial units and a public health laboratory, as a result of the Clyde overtopping its banks. An insurance survey of the damage caused by the floods suggests that total damage costs may approach £100 million, with £30 million to be met in insurance claims¹¹.

Plate 3 Flooding on the Summerfield Estate, Kirkintilloch Photo: Andrew Black

Discussion

The damage costs associated with these floods suggest that they are probably the most damaging witnessed anywhere in the UK since the 1968 flooding in southern England. The essence of their impact lies in the coincidence of a most unusual near-stationary frontal system with the UK's third-largest urban centre. Costs have been incurred in not only economic but also social terms. In common with other floods such as the Tay event of 1993, those social groups least able to withstand the effects of

flooding have often found themselves most exposed to it. In this case the Ferguslie Park area of Paisley, with high unemployment and very low levels of insurance cover, experienced great hardship.

The history of flood defence provision demonstrates that the cost of constructing defences is often worthwhile, in terms of offering protection against the range of losses which flooding causes. However, evidence suggests that many of those defences which have been provided were inadequate in this event. It should be a matter of concern that some of the worst flooding would not have occurred if more thought had gone into the sizing and maintenance of culverts and screens, and the significance of embankments as effective dams. A more coordinated approach may well have been beneficial in this instance.

Elsewhere, however, particularly on land adjacent to the Clyde and Kelvin, the hydrological analysis above suggests that the flood flows experienced were truly exceptional. Such flooding might therefore be considered to lie within the scope of that risk which home-owners and businesses choose to accept when locating in floodplain areas, although it should be noted that the perception of risk does appear to vary according to the length of time since flooding last occurred. Many of these same areas are successfully protected against floods of lower magnitude.

There has been much discussion of the effectiveness of planning controls following these floods; suggestions have been made that much of the flood damage was avoidable. The Scottish Office has subsequently issued a National Planning Policy Guideline¹², directing planning authorities to exercise the precautionary principle by refusing applications for floodplain development, except where other reasons for granting permission take precedence over flood risk. Difficult decisions may need to be taken in assessing the balance between development and the benefits of limiting the potential for flood damage, and the assessment of risk is therefore as important as ever. A well-founded understanding of the nature of flood risk must be an essential input for future development plans to be made on an informed basis. Particularly in the case of a heavily developed conurbation such as Glasgow, the use of floodplain areas may be an essential part of future development and, with control over the types of development permitted and the level of structural protection offered, an equitable distribution of risk may be achieved. New duties of flood survey, and input into planning procedures, for the forthcoming Scottish Environment Protection Agency (SEPA) will aid the future management of flood risk in Scotland. A survey of the flooding¹³, commissioned by CRPB with Scottish Office backing, will also be valuable in this regard, and can be seen as anticipating the new duties to be given to SEPA.

Climate change remains a relevant issue in considering this event, as with others. Warm, moist air masses may bring rain such as that experienced in

Strathclyde more frequently to north-western Europe under preferred climate change scenarios. Therefore it would seem appropriate for those involved in risk assessment for new flood defence works, the design of structures, etc. to exercise caution in their assessments. A particular hydrological aspect of this flood which deserves further study is the high percentage runoff which was achieved in some catchments. Inspection of data for the responsive White Cart Water catchment (111.8 km²) above Overlee shows that, in the 36 hours from 15.00 on the 10th December (Figure 3), the estimated runoff equates to 75% of the point rainfall simultaneously received at Picketlaw in the headwaters of the catchment.

Conclusions

The Strathclyde floods of December 1994 were remarkable for their geographical extent, stretching 50 km across a major conurbation, and for the severity of flooding with some 700 homes and many business properties flooded. The unusually persistent rainfall resulted in previous river flow records being exceeded in all river basins around Glasgow, in both small and large catchments.

In a large conurbation, where development pressures are sure to continue in the foreseeable future, risk assessment is vital in order that floodplain management can offer widely acceptable solutions to the threat of flooding. Through monitoring and research, the role of the hydrologist must be to ensure that the relevant decisions are made on a fully informed basis.

Acknowledgement

Thanks to Marjory Roy of Edinburgh University for providing details and interpretation of meteorological aspects of the event.

References

 Frost, J R and Jones, E C (1988) The October 1987 flood on the River Tywi. 1987 Yearbook, Hydrological data UK series, Institute of Hydrology, 23-29.

- Acreman, M C (1989) Hydrological analysis of the Truro floods of January and October 1988.
 1988 Yearbook, Hydrological data UK series, Institute of Hydrology, 27-33.
- Marsh, T J and Bryant, S J (1991) 1990 a year of floods and drought. 1990 Yearbook, Hydrological data UK series, Institute of Hydrology, 25-37.
- 4. Black, A R and Anderson, J L (1994) The Great Tay Flood of January 1993. 1993 Yearbook, Hydrological data UK series, Institute of Hydrology, 25-34.
- 5. Inglis, T (1989) River flows and flood warning. Proceedings, East Highland Floods Symposium, Dingwall, October 1989, Paper A3.
- Sprott, W C and McKenna, E (1992) River Spey flooding in 1989 and 1990 and subsequent recommendations. Paper presented at joint IWEM/SHG/SHSG meeting, Perth, 31 March 1992.
- Evans, T E, Smith, T M and Gill, B (1995)
 Flood management of upper Teith basin, above
 Callander. Proceedings, BHS Fifth National
 Hydrology Symposium, Edinburgh, 1995,
 Black, A R and Johnson, R C (eds), British
 Hydrological Society.
- 8. Grew, H and Werritty, A (1995) Changes in flood frequency and magnitude in Scotland 1964-92. Proceedings, BHS Fifth National Hydrology Symposium, Edinburgh, 1995, Black, A R and Johnson, R C (eds), British Hydrological Society.
- 9. Anon (1995) Hydrological Review in: 1994 Yearbook, Hydrological data UK series, Institute of Hydrology, 3-20.
- Roy, M G (1989) Meteorological conditions. Proceedings, East Highland Floods Symposium, Dingwall, October 1989, Paper A1.
- 11. Flooding in Glasgow & Ayrshire. Alexander Howden Group Ltd Report.
- 12. Planning and flooding (1995) National Planning Policy Guideline, The Scottish Office Environment Department.
- Clyde RPB (1995) The 10th-12th December 1994 flood event - Floodplain mapping: Factual report. Babtie Group report to Clyde RPB.

LONG RIVER FLOW RECORDS

Hydrometric data are the foundations upon which water management is built. The lack of any long term trend in most lengthy rainfall, river flow (Figure 1) and groundwater level series in the United Kingdom serves to underpin water management strategies and operational procedures designed to mitigate the problems caused by flooding or drought. The resilience of these strategies has been brought into question both by the magnitude of the departures from average conditions over the last decade and the broad similarity between recent climate patterns and a number of favoured climate change scenarios.

The inherent variability of the UK climate implies that any short term trends need to be treated with caution. A temporary shift in the preferred tracks of rain-bearing Atlantic frontal systems, for instance, can produce significant perturbations in hydrometric time series. These can easily assume an exaggerated significance given the very limited length of most UK river flow and borehole records. Rainfall data series provide a much longer historical perspective – around 2000 raingauges were operational by 1880 – and are useful in hindcasting hydrometric series. However, reservoirs and aquifers are replenished, and rivers sustained, not by rainfall directly but by that proportion which remains after allowing for evaporative losses.

Although in global terms the UK maintains a relatively dense network of flow measurement stations (around 1250), it is less well blessed in terms of the length of flow records. This is especially true of those datasets which have been systematically archived to allow general access and analysis. For monitoring sites incorporated in the National River Flow Archive (NRFA) the average record length is less than 23 years and fewer than 15 stations offer sensibly continuous records of more than 50 years. A substantial proportion commence in the 1960s, a period of intense network growth in much of the UK – and their ability to fully characterise runoff variability is necessarily limited.

Figure 1 Five-year running mean plots for the River Thames (naturalised flows used)

Until recently, the Rivers Thames and Lee were alone on the NRFA in having records extending back to the nineteenth century. In 1993 the Institute of Hydrology instigated a programme to acquire additional long runoff records, most hitherto not formally held on national or regional archives. Many such records have been referenced in the literature and some measuring authorities, notably the Thames Region of the NRA, have collated important datasets. Most, however, tend to be less continuous and of a lower hydrometric quality than their modern counterparts. Nonetheless, they provide a valuable opportunity to explore historical runoff variability and identify significant trends.

In order to capitalise fully on these important series it is essential to critically review the likely data accuracy and appraise, at least qualitatively, temporal changes in artificial influences and their impact on the flow regime. Data precision and consistency is a major problem with many early hydrometric records. In the twentieth century instrumentation and data acquisition facilities have improved but Man's influence on river flow regimes has become increasingly pervasive. In many areas, the complex pattern of water utilisation has a profound effect on runoff patterns. These effects are compounded by the less perceptible impacts of land use change; most such changes defy easy quantification.

An important milestone was passed in 1994 with the incorporation into the NRFA of a long monthly flow series for the Wendover Springs; the earliest extant monitoring site in the UK. Flows are currently measured at a thin-plate weir gauging station operated by British Waterways. Their utility is greatly enhanced by the existence of an 1841–97 dataset derived from a count of the monthly total of lockages which fed water from the Wendover Arm to the main Grand Union Canal; the possibility exists of extending the record back to 1793. Lockage counts can introduce significant errors into flow assessments but the Wendover series does capture the main elements of runoff variability (see Figure 2)

Figure 2 Five-year running mean plot of the Wendover Springs flow

over a period with few, if any, other sensibly continuous records. Unfortunately, the Wendover Arm fell into disuse and, being constructed largely in Chalk, began to leak badly around the 1880s. Eventually, after a period of substantial underregistration of runoff, the monitoring site was abandoned. It will be apparent that considerable curatorial skills, and a commitment to rigorous data quality appraisal are an essential pre-requisite if historical series of this type are to be fully exploited.

The need for critical reviews of historical series are not confined to little-used or recently acquired series. A major rainfall/runoff modelling exercise using flows for the River Thames - one of the most widely used records in the world - revealed that the long recognised underestimation of historical low flows at Teddington Weir (now superseded by the Kingston ultrasonic gauging station - see page 66) is of a greater magnitude than previously thought1. Artificial influences on the Thames regime are considerable and have changed substantially through time. Attempts to monitor the major abstractions have been reasonably successful and the underestimation is in large part a consequence of leakage through the old weir complex and lockages. Once the conventional adjustments for such losses are increased to a more realistic level, the severity of recent drought episodes (especially those of 1976

and 1989-92) relative to their historical counterparts increases significantly.

Table 1 lists some recently acquired lengthy runoff records. These have been incorporated in the NRFA but until further validation has been undertaken and details of the origin, and method of derivation of the individual series, are fully documented such datasets will be released on a restricted basis only.

The potential effects of global warming on UK hydrological conditions has focused attention on the need for continuing and careful hydrometric monitoring to help determine the extent and magnitude of any departures from the historical norm - and to assess the relative contribution of climate and man to any associated regime changes. Despite the shortcomings of many early series, most of which are to be expected with hydrometric series of long vintage, preliminary analyses has revealed an interesting measure of spatial coherence regarding a number of early very dry, or very wet, episodes (for example, over the 1850-70 period). At other times spatial variability appears substantial and the NRFA wishes to extend its regional coverage of datasets covering the pre-1950 period particularly. Further lengthy records, whether of springs, runoff, river levels, well levels or bourne flow occurrences, would be welcomed and holders of such data are invited to contact the National Water Archive Office (see page 135).

TABLE 1 RECENTLY ACQUIRED LONG RUNOFF SERIES

River	Station	NGR	Catchment Area	Length of Record	Comments
Loch Leven	17806	NT171993	158.3	1855-1993	Derived loch inflows (monthly)
Wendover Springs at Wendover Wharf	39801	SP869083	9.5	1841–1897	Monthly flows based on lockages at Tringford
Sutton Poyntz Spring at Sutton Poyntz	44814	SY707844	11.3	1858-1970	Gauged 'spot' monthly flows
Havant and Bedhampton Springs at Havant	42812	SU712062	93.0	1908-1992	Derived monthly flows
Rickford Spring at Rickford	53810	ST487592	2.1	1931-1969	Gauged daily flows
Langford Spring at Langford	53811	ST466593	1.0	1931-1969	Gauged daily flows
Tyne Reservoir Group	23820	NY960760	96.2	1904-1957	Monthly yields for a group of reservoirs
Tributary of Endon Bk Deep Hayes Reservoir	28805	SJ961534	9.8	1915-1964	Naturalised monthly flows

Reference

1. Littlewood, I G and Marsh, T J (1995) A reassessment of the monthly naturalised flow

record for the River Thames at Kingston since 1883, and the implications for the relative severity of historic droughts. Regulated Rivers (in press).

Computation and Accuracy of Gauged Flows

Gauged flows are generally calculated by the conversion of the record of stage, or water level, using a stage-discharge relation, often referred to as the rating or calibration. Stage is measured and recorded against time by instruments usually actuated by a float in a stilling well. The instrument records the level either digitally, on a solid state logger, less commonly on punched tape, or continuously by pen and chart. At the majority of the gauging stations in the United Kingdom provision is made for the routine transmission of river levels directly to the processing centre, by telephone line or, less generally, by radio; on occasions satellites have been used to receive and re-transmit the radio signal. The rapid growth in the use of the public telephone network for the transmission of river level and flow data is enabling hydrometric data acquisition to proceed on a near real-time basis in most areas. Typically, levels are recorded at 15-minute intervals and stored onsite for overnight transmission to allow the initial processing to be completed on the following day. Normally, both digital and analogue recording devices are deployed at gauging stations to provide a measure of security against loss of record caused by instrument malfunction.

The stage-discharge relation is obtained either by installing a gauging structure, usually a weir or flume with known hydraulic characteristics, or by measuring the stream velocity and cross-sectional area at points throughout the range of flow at a site characterised by its ability to maintain the relationship.

The accuracy of the processed gauged flows therefore depends upon several factors:

- accuracy and reliability in measuring and recording water levels,
- accuracy and reliability of the derived stagedischarge relation, and
- concurrency of revised ratings and the stage record with respect to changes in the station control.

Flow data from ultrasonic gauging stations are computed on-site where the times are measured for acoustic pulses to traverse a river section along an oblique path in both directions. The mean river velocity is related to the difference in the two timings and the flow is then assessed using the river's cross-sectional area. Accurate computed flows can be expected for stable river sections and within a range in stage that permits good estimates of mean channel velocity to be derived from a velocity traverse set at a series of fixed depths.

Flow data from electromagnetic gauging stations may also be computed on-site. The technique requires the measurement of the electromotive force (emf) induced in flowing water as it cuts a vertical magnetic field generated by means of a large coil buried beneath the river bed, or constructed above it. This emf is sensed by electrodes at each side of the river and is directly proportional to the average velocity in the cross-section.

British and International Standards are followed as far as possible in the design, installation and operation of gauging stations. Most of these Standards include a section devoted to accuracy, which results in recommendations for reducing uncertainties in discharge measurements and for estimating the extent of the uncertainties which do arise.

The National River Flow Archive exists to provide not only a central UK database and retrieval service but also an extra level of hydrological validation. To further this aim, staff at the Institute of Hydrology liaise with their counterparts in the water industry on a regional basis and, by visiting gauging stations and data processing centres, endeavour to maintain the necessary knowledge of local conditions and problems which is essential to help identify and rectify anomalous flow data.

Scope of the Flow Data Tabulations

River flow data are presented in two parts. In the first, daily mean gauged flows are tabulated for 49 gauging stations; daily naturalised flows are also tabulated for the River Lee (page 63) and River Thames (page 66). Monthly flow data for a further 163 gauging stations are given in the second part. The featured gauging stations have been selected to give a broad geographical coverage and to typify a wide range of catchment types found throughout the United Kingdom. A map (Figure 9) is provided on page 42 to assist in locating the gauging stations featured in this section.

For each gauging station, basic reference information is given together with comparative average and extreme river flow and rainfall figures based upon the archived record.

Explanatory notes precede the two sets of tables and are provided to assist in the interpretation of particular items. The notes relating to the daily flow tables are given in the following section; those relating to the monthly data are given on page 93.

Part (i) - the daily mean flow tabulations

Station Number

The gauging station number is a unique six-digit reference number which serves as the primary identifier of the station record on the River Flow Archive. The first digit is a regional identifier being 0 for mainland Britain, 1 for the islands around Britain

and 2 for Ireland. This is followed by the hydrometric area number given in the second and third digits. Hydrometric areas are either integral river catchments having one or more outlets to the sea or tidal estuary or, for convenience, they may include several contiguous river catchments having topographical similarity with separate tidal outlets. In Britain they are numbered from 1 to 97 in clockwise order around the coastline commencing in north-east Scotland: Ireland has a unified numbering system from 1 to 40, commencing with the River Foyle catchment and circulating clockwise; not all Irish hydrometric areas, however, have an outlet directly on the coast.

The numbers and boundaries of the United Kingdom hydrometric areas are shown in the frontispiece.

The fourth, fifth and sixth digits comprise the number, usually allocated chronologically, of the gauging station within the hydrometric area. Where the leading digit, or digits, are zero they may be omitted giving rise to apparent four or five-digit reference numbers.

Measuring Authority

The abbreviation references the organisation responsible for the provision of flow data to the River Flow Archive. A list of measuring authority codes together with the corresponding names and addresses for organisations currently contributing data to the National River Flow Archive appears on pages 172 and 173.

Grid Reference

The initial two-letter and two-figure codes each designate the relevant 100 kilometre National Grid square or Irish Grid square; the standard six-figure map reference follows.

Note: Irish Grid references – which are italicised – have only one prefix letter but it is common practice to precede it with the letter I to make the identification clear.

Catchment Area

The surface catchment area, in the horizontal plane, draining to the gauging station in square kilometres. There are a few gauging stations where, because of geological considerations, or as a result of water transfers – for instance, the use of catchwaters to increase reservoir yields – the actual contributing area may differ appreciably from that defined by the topographical boundary. In consequence, the river flows whether augmented or diminished, may cause the runoff (as a depth in millimetres) values to appear anomalous.

First Year

The year in which the station started producing daily mean flow data, usually the first year for which data are held on the River Flow Archive. Earlier data, often of a sporadic nature or of poorer quality, may occasionally be available from the measuring authorities or other sources.

Level of Station

The level of the station is, generally, the level of the gauge zero in metres above Ordnance Datum, or above Malin Head Datum for stations in Northern Ireland. Although gauge zero is usually closely related to zero discharge, it is the practice in a few areas for an arbitrary height, typically one metre, to be added to the level of the lowest crest of a measuring structure to avoid the possibility of false recording of negative values by some digital recorders. Station levels are stored to the nearest 0.1 m on the Archive.

Maximum Altitude

The level to the nearest metre of the highest point in the catchment.

Table of daily mean gauged (or naturalised) discharges

The mean flow in cubic metres per second (abbreviated to m³s-¹ and sometimes also referred to as 'cumecs') in a water-day, normally 09.00 to 09.00. The naturalised discharge is the gauged discharge adjusted to take account of net abstractions and discharges upstream of the gauging station.

Throughout the River Flow Data section flows are given to four significant figures.

Peak Flow: The highest flow in cubic metres per second for each month. The day of peak generally refers to the water-day but the calendar day has also been used, particularly in Scotland. Normally the peak flow corresponds to the highest fifteen-minute flow where water levels are recorded digitally, or the highest instantaneous flow associated with maximum stage where analogue recorders are used.

Runoff: The notional depth of water in millimetres over the catchment equivalent to the mean flow for the month as measured at the gauging station. It is computed using the relationship:

Runoff in mm =

Average Flow in Cumecs \times 86.4 \times n

Catchment Area (km²)

where n is the number of days in the month. The runoff total is rounded to the nearest millimetre.

Runoff is computed on the basis of naturalised flows (see 'Factors Affecting Runoff') for the minority of catchments where daily, or monthly, naturalised flows are available.

Rainfall: The rainfall over the catchment in millimetres for each month. Each areal rainfall total is derived from a one kilometre square grid of rainfall values generated from all available daily and

RIVER FLOW DATA 39

monthly rainfall data. A computer program calculates catchment rainfall by averaging the values at the grid points lying within the digitised catchment boundary. Validation procedures allow for the rejection of obviously erroneous raingauge observations prior to the gridding exercise. The bulk of the rainfall data are provided by the Meteorological Officet. Where, as for instance in some small mountainous catchments, raingauges are few and their siting and exposure are not ideal, great precision in the areal rainfall estimates cannot be expected.

Statistics of monthly data for previous record

Only complete monthly records are used in the derivation of the average, low and high values of river flow, runoff and rainfall. The rainfall and runoff statistics are normally directly comparable but full equivalence will not obtain where the pattern of missing data differs between the archived rainfall and runoff data sets.

Where applicable, a guide to the amount of missing data is given following the section heading. Some slight variations from the statistics held by the measuring authorities may occur; these may be due to the different methods of computation or the need for uniformity in presentation.

Summary statistics

Current year flow statistics are tabulated alongside the corresponding values for the previous record. Where appropriate, the current year figures are expressed as a percentage* of the preceding average.

Mean Flow: The average of all available daily mean flows during the term indicated.

Lowest Daily Mean: The value and date of occurrence of the lowest mean flow in cubic metres per second in a water-day during the term indicated. In a record in which the value recurs, the date is that of the last occasion.

River flow measurement tends to become more imprecise at very low discharges. Very low velocities, heavy weed growth and the insensitivity of stage-discharge relations combine with the difficulty of accurately measuring limited water depths to reduce the accuracy of computed flows. The reliability of both the lowest daily mean flow and the 95 per cent exceedance flow (see below) as representative measures of low flow must, therefore, be considered carefully and the values used with caution in view of the increasing proportional variability between the natural flow and the artificial influences, such as abstractions, discharges and storage changes as the river flow diminishes.

Peak: The peak flow in cubic metres per second during the term indicated. The date of occurrence, normally the water-day, is also indicated. Generally, the peak flows are derived from the record of monthly instantaneous maximum flows stored on the River Flow Archive.

Note: The peak flows submitted to the NRFA are of variable quality. The primary sources of nationally archived flood data are the UK Flood Event Archive, the Peaks-over-Threshold Floods Database (see page 136) and the Flood Studies Report¹.

10% exceedance: The flow in cubic metres per second which was equalled or exceeded for 10 per cent of the specified term – a high flow parameter which, when compared with the mean may give a measure of the variability, or 'flashiness', of the flow regime. The 10 per cent exceedance value is computed using daily flow data only for those years with ten days, or less, missing on the River Flow Archive.

50% exceedance: The flow in cubic metres per second which was equalled or exceeded for 50 per cent of the specified term – the median value. The same conditions for completeness of the annual records apply as for the 10 per cent exceedance flow.

95% exceedance: The flow in cubic metres per second which was equalled or exceeded for 95 per cent of the specified term – a significant low flow parameter relevant in the assessment of river water quality consent conditions. The same conditions for completeness of the annual records apply as for the 10 per cent exceedance flow.

Factors Affecting Runoff (FAR)

An indication of the various types of abstractions from, and discharges to, the river operating within the catchment which alter the natural flow is given by a standard set of abbreviated descriptions. In Part (ii) – the monthly flow data – each description is shortened to a code letter. An explanation of the abbreviated descriptions and the code letters is given overleaf. With the exception of the induced loss in surface flow resulting from underlying groundwater abstraction, these codes and descriptions refer to quantifiable variations and do not include the progressive, and difficult to measure, modifications in the regime related to land-use changes.

Except for a small set of gauging stations for which the net variation, i.e. reservoir storage changes and/or the balance between imports and exports of water to, or from, the catchment, is assessed in order to derive the 'naturalised' flow from the gauged flow, (see page 38), the record of individual abstractions, discharges and changes in storage as indicated in the code above is not held centrally.

[†] For the IH research catchments, the monthly totals are subsequently updated using areal figures derived from a dense local raingauge network.

* As a consequence of leap years the runoff and mean flow percentage may not be identical.

¹ Flood Studies Report 1975. Natural Environment Research Council (5 vols. reprinted 1993).

CODE EXPLANATION

N Natural, i.e., there are no significant abstractions and discharges or the variation due to them is so limited that the gauged flow is within 10 per cent of the natural flow at, or in excess of, the 95 per cent exceedance flow.

Storage or impounding reservoir. Natural river flows will be affected by water stored in a reservoir situated in, and supplied from, the catchment above the gauging station.

R Regulated river. Under certain flow conditions the river will be augmented from surface water and/or groundwater storage upstream of the gauging station.

Public water supplies. Natural river flows are reduced by the quantity abstracted from a reservoir or by a river intake if the water is conveyed outside the gauging station's catchment area.

Groundwater abstraction. Natural river flow may be reduced or augmented by groundwater abstraction or recharge. This category includes catchments where minewater discharges influence the flow regime.

Effluent return. Outflows from sewage treatment works will augment the river flow if the effluents originate from outside the catchment.

Industrial and agricultural abstractions. Direct industrial and agricultural abstractions from surface water and from groundwater may reduce the natural river flow.

Hydro-electric power. The river flow is regulated to suit the need for power generation.

ABBREVIATED DESCRIPTION

Natural within 10 per cent at the 95 per cent exceedance flow.

Reservoirs in catchment.

Augmentation from surface water and/or groundwater.

Abstraction for public water supply.

Flows influenced by groundwater abstraction and/or recharge.

Augmentation from effluent returns.

Flow reduced by industrial and/or agricultural abstraction.

Regulation for HEP.

Station and catchment description

Н

A short commentary providing a guide to the characteristics of the station, its flow record and the catchment it commands; refer to page 176 for an explanatory listing of the abbreviations and acronyms used. The principal objectives of this summary information are to assist data users in the selection of gauging station records appropriate to their needs and to assist in the interpretation of flow variability at individual gauging stations particularly where the natural flow pattern is significantly disturbed by artificial influences.

A comprehensive set of gauging station and catchment descriptions is provided in the 'Hydro-

metric Register and Statistics 1986-90' (see page 174). Further details of the net impact of abstractions and discharges on river flow patterns are given in: Gustard, A., Bullock, A. and Dixon, J.M. 1992. Estimating Low River Flows in the United Kingdom. Institute of Hydrology Report number 108.

Comment

A summary of any important factors influencing the accuracy of the current year's flow data specifically; for instance, the reconstruction of a gauging station or the use of extrapolated stage-discharge relations during periods of very low or very high flows.

STATIONS FOR WHICH DAILY OR MONTHLY DATA ARE GIVEN IN THE RIVER FLOW SECTION

	RIVER FLOW SECTION				
STATION	RIVER NAME AND STATION NAME	SEE	STATION	RIVER NAME AND STATION NAME	SEE
NUMBER		PAGE	NUMBER		PAGE
3002	CARRON AT SGODACHAIL	94	28026	ANKER AT POLESWORTH	105
D 3003	OYKEL AT EASTER TURNAIG	44	28031	MANIFOLD AT ILAM	105
4001	CONON AT MOY BRIDGE	94	28039	REA AT CALTHORPE PARK	105
6008	ENRICK AT MILL OF TORE	94	28052	SOW AT GREAT BRIDGEFORD	105
D 7002	FINDHORN AT FORRES	45	28067	DERWENT AT CHURCH WILNE	106
D 8006	SPEY AT BOAT O BRIG	46	28082	SOAR AT LITTLETHORPE	106
8007	SPEY AT INVERTRUIM	94	D 28085	DERWENT AT ST MARY'S BRIDGE	57
9001	DEVERON AT AVOCHIE	95	29003	LUD AT LOUTH	106
10002	UGIE AT INVERUGIE	95	D 30001	WITHAM AT CLAYPOLE MILL	58
11001	DON AT PARKHILL	95		PARTNEY LYMN AT PARTNEY MILL	106
D 12001	DEE AT WOODEND	47		STAINFIELD BECK AT STAINFIELD	107
12006	GAIRN AT INVERGAIRN	95		GLEN AT KATES BRIDGE KING	
13007	NORTH ESK AT LOGIE MILL	96		STREET	107
14001	EDEN AT KEMBACK	96	31010	CHATER AT FOSTERS BRIDGE	107
D 15006	TAY AT BALLATHIE	48		HARPERS BROOK AT OLD MILL BRIDGE	107
	LYON AT COMRIE BRIDGE	96		ISÉ BROOK AT HARROWDEN OLD MILL	59
16003	RUCHILL WATER AT CULTYBRAGGAN	96		BEDFORD OUSE AT BEDFORD	60
16004	EARN AT FORTEVIOT BRIDGE	97		WISSEY AT NORTHWOLD	108
	CARRON AT HEADSWOOD	97		KYM AT MEAGRE FARM	108
	LEVEN AT LEVEN	97		CAM AT DERNFORD	108
	TEITH AT BRIDGE OF TEITH	97		RHEE AT WIMPOLE	108
	ALLAN WATER AT BRIDGE OF ALLAN	98		HEACHAM AT HEACHAM	109
	KIRKTON BURN AT BALQUHIDDER	98		LITTLE OUSE AT ABBEY HEATH	61
	ALMOND AT CRAIGIEHALL	49		BURE AT INGWORTH	109
	TYNE AT EAST LINTON	98		WAVENEY AT NEEDHAM MILL	62
	TWEED AT BOLESIDE	98		GIPPING AT STOWMARKET	109
	TWEED AT NORHAM	50		STOUR AT LANGHAM	109
	TEVIOT AT HAWICK	99		RODING AT REDBRIDGE	110
	LYNE WATER AT LYNE STATION	99		COLNE AT LEXDEN	110
	WHITEADDER WATER AT HUTTON	•••		BLACKWATER AT APPLEFORD BRIDGE	110
	CASTLE	99		LEE AT FEILDES WEIR	63
21024	JED WATER AT JEDBURGH	99		MIMRAM AT PANSHANGER PARK	64
	COQUET AT MORWICK	51		TURKEY BROOK AT ALBANY PARK	110
	BLYTH AT HARTFORD BRIDGE	100		THAMES AT KINGSTON	65/6
23001	TYNE AT BYWELL	100	39002	THAMES AT DAYS WEIR	111
23006	SOUTH TYNE AT FEATHERSTONE	100	39005	BEVERLEY BROOK AT WIMBLEDON	
23011	KIELDER BURN AT KIELDER	100		COMMON	111
24004	BEDBURN BECK AT BEDBURN	101	39007	BLACKWATER AT SWALLOWFIELD	111
24009	WEAR AT CHESTER LE STREET	101		VER AT HANSTEADS	111
	TEES AT BROKEN SCAR	101		KENNET AT THEALE	112
D 25006	GRETA AT RUTHERFORD BRIDGE	52		LAMBOURN AT SHAW	112
25019	LEVEN AT EASBY	101		COLN AT BIBURY	67
26003	FOSTON BECK AT FOSTON MILL	102	39021	CHERWELL AT ENSLOW MILL	112
126005	GYPSEY RACE AT BOYNTON	102		WYE AT HEDSOR	112
D 27002	WHARFE AT FLINT MILL WEIR	53	39029	TILLINGBOURNE AT SHALFORD	113
27007	URE AT WESTWICK LOCK	102	39049	SILK STREAM AT COLINDEEP LANE	113
27025	ROTHER AT WOODHOUSE MILL	102	39069	MOLE AT KINNERSLEY MANOR	113
D 27035	AIRE AT KILDWICK BRIDGE	54	D 40003	MEDWAY AT TESTON	68
D 27041	DERWENT AT BUTTERCRAMBE	· 55	40004	ROTHER AT UDIAM	113
27042	DOVE AT KIRKBY MILLS	103	40010	EDEN AT PENSHURST	114
27047	SNAIZEHOLME BECK AT LOW HOUSES	103	D 40011	GREAT STOUR AT HORTON	69
27050	ESK AT SLEIGHTS	103		DARENT AT HAWLEY	114
27053	NIDD AT BIRSTWITH	103		NUNNINGHAM STREAM AT TILLEY	
27071	SWALE AT CRAKEHILL	104		BRIDGE	114
D 28009	TRENT AT COLWICK	56	41006	UCK AT ISFIELD	114
28015	IDLE AT MATTERSEY	-104	41019	ARUN AT ALFOLDEAN	115
28018	DOVE AT MARSTON ON DOVE	104	41027	ROTHER AT PRINCES MARSH	115
28024	WREAKE AT SYSTON MILL	104	42003	LYMINGTON AT BROCKENHURST PARK	115

STATION	RIVER NAME AND STATION NAME	SEE	STATION	RIVER NAME AND STATION NAME	SEE
NUMBER		PAGE	NUMBER		PAGE
42004	TEST AT BROADLANDS	115	64002	DYSYNNI AT PONT-Y-GARTH	125
42006	MEON AT MISLINGFORD	116	65005	ERCH AT PENCAENEWYDD	126
D 42010	ITCHEN AT HIGHBRIDGE/ALLBROOK	70	66006	ELWY AT PONT-Y-GWYDDEL	126
D 43005	AVON AT AMESBURY	71	67008	ALYN AT PONT-Y-CAPEL	126
43006	NADDER AT WILTON PARK	116	D 67015	DEE AT MANLEY HALL	81
43007	STOUR AT THROOP MILL	116	67018	DEE AT NEW INN	126
43012	WYLYE AT NORTON BAVANT	116	D 68001	WEAVER AT ASHBROOK	82
44002	PIDDLE AT BAGGS MILL	117	68004	WISTASTON BROOK AT MARSHFIELD	
44009	WEY AT BROADWEY	117		BRIDGE	127
D 45001	EXE AT THORVERTON	72	69006	BOLLIN AT DUNHAM MASSEY	127
45003	CULM AT WOODMILL	117	69007	MERSEY AT ASHTON WEIR	127
45004	AXE AT WHITFORD	117	70004	YARROW AT CROSTON MILL	127
46003	DART AT AUSTINS BRIDGE	118	71001	RIBBLE AT SAMLESBURY	128
46005	EAST DART AT BELLEVER	118	71004	CALDER AT WHALLEY WEIR	128
47001	TAMAR AT GUNNISLAKE	118	D 72004	LUNE AT CATON	83
47008	THRUSHEL AT TINHAY	118	73005	KENT AT SEDGWICK	128
48005	KENWYN AT TRURO	119	D 73010	LEVEN AT NEWBY BRIDGE	84
48011	FOWEY AT RESTORMEL	119	74005	EHEN AT BRAYSTONES	128
49001	CAMEL AT DENBY	119	75002	DERWENT AT CAMERTON	129
D 50001	TAW AT UMBERLEIGH	73	76005	EDEN AT TEMPLE SOWERBY	129
50002	TORRIDGE AT TORRINGTON	119	D 76007	EDEN AT SHEEPMOUNT	85
D 52005	TONE AT BISHOPS HULL	74	76010	PETTERIL AT HARRABY GREEN	129
52007	PARRETT AT CHISELBOROUGH	120	77003	LIDDEL WATER AT ROWANBURNFOOT	129
52010	BRUE AT LOVINGTON	120	78003	ANNAN AT BRYDEKIRK	130
53004	CHEW AT COMPTON DANDO	120	78004	KINNEL WATER AT REDHALL	130
53006	FROME (BRISTOL) AT FRENCHAY :	120	D 79006	NITH AT DRUMLANRIG	86
D 53018	AVON AT BATHFORD	75	80001	URR AT DALBEATTIE	130
D 54001	SEVERN AT BEWDLEY	76	81002	CREE AT NEWTON STEWART	130
D 54002	AVON AT EVESHAM	77	81003	LUCE AT AIRYHEMMING	131
D 54008	TEME AT TENBURY	78	82002	DOON AT AUCHENDRANE	131
54012	TERN AT WALCOT	121	83005	IRVINE AT SHEWALTON	131
54019	AVON AT STARETON	121	D 84005	CLYDE AT BLAIRSTON	87
54020	PERRY AT YEATON	121	84016	LUGGIE WATER AT CONDORRAT	131
54022	SEVERN AT PLYNLIMON FLUME	121	85001	LEVEN AT LINNBRANE	132
54024	WORFE AT BURCOTE	122	D 85003	FALLOCH AT GLEN FALLOCH	88
54034	DOWLES BROOK AT DOWLES	122	90003	NEVIS AT CLAGGAN	132
54038	TANAT AT LLANYBLODWEL	122	D 93001	CARRON AT NEW KELSO	89
55008	WYE AT CEFN BRWYN	122	94001	EWE AT POOLEWE	132
55013	ARROW AT TITLEY MILL	123	95001	INVER AT LITTLE ASSYNT	132
55014	LUGG AT BYTON	123	96001	HALLADALE AT HALLADALE	133
55018	FROME AT YARKHILL	123	101002	MEDINA AT UPPER SHIDE	133
55023	WYE AT REDBROOK	123	D 201005	CAMOWEN AT CAMOWEN TERRACE	90
D 56001	USK AT CHAIN BRIDGE	79	201007	BURN DENNET AT BURNDENNET	
56013	YSCIR AT PONTARYSCIR	124		BRIDGE	133
57008	RHYMNEY AT LLANEDERYN	124	D 203010	BLACKWATER AT MAYDOWN BRIDGE	91
58009	EWENNY AT KEEPERS LODGE	124	203012	BALLINDERRY AT BALLINDERRY	
60002	COTHI AT FELIN MYNACHDY	124		BRIDGE	133
60010	TYWI AT NANTGAREDIG	125	203020	MOYOLA AT MOYOLA NEW BRIDGE	134
D 62001	TEIFI AT GLAN TEIFI	80	D 203028	AGIVEY AT WHITE HILL	92
63001	YSTWYTH AT PONT LLOLWYN	125	205004	LAGAN AT NEWFORGE	134
64001	DYFI AT DYFI BRIDGE	125	205005	RAVERNET AT RAVERNET	134

003003 Oykel at Easter Turnaig

1994

Measuring aut First year: 19		3				ce: 29 (NC) n. (m OD): 1				Catchme	ent area (sq Max alt. (r	km): 330.7 n OD): 998
Daily mean	gauged dis	charges (d	ubic metres p	per second)								
DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC
1	6.893	25.340 14.330	3.934	40.830	9.761 8.669	1.684 1.602	2.832 2.117	0.758 0.753	4.453 3.000	28.870 26.320	74.030 16.010	4.966 4.969
2 3	5.831 23.770	9,754	10.340 27.010	43.740 27.190	6.386	15.870	1.732	0.780	2.613	13.520	7.952	6.402
4	30.700	17.460	79.560	18.130	4.841	14.890	5.766	0.855	3.140	21.720	5.307	7.653
5	18.640	10.610	40.320	26.260	9.775	7.378	21.870	0.803	3.757	12.460	4.509	7.746
6	20.820	6.493	99.790	27.110	6.940	6.581	6,115	0.802	2.642	8.873	5.891	13.590
ž	12.630	4.853	54.740	14.730	4.402	15.500	3.061	0.809	2.056	8.673	4.233	18.050
8	6.536	6.427	60.370	10.920	3.351	19.670	2.534	0.762	14.350	7.060	3.404	46.540 67.590
9 10	19.060 24.360	32.080 11.600	28.140 74.130	33.680 22.590	2.786 2.729	39,100 11,410	2.269 2.163	0.723 0.680	7.834 42.660	5.278 3.810	3.824 28.620	81.470
10	24.500											
11	13.490	6.002	34.820	16.360	2.644	5.434	1.865 2.353	0.635 0.634	29.760 12.850	3.514 3.034	23.080 19.650	118.000 62.670
12 13	14.500 40.630	4.577 3.245	29.540 46.420	9.924 7.004	2.813 2.646	3.971 2.762	2.058	0.634	7.064	2.556	34.720	22.800
14	33.090	2.224	43.850	5.929	2.201	2.146	1.650	0.608	3.976	2.344	54.900	10.550
15	11.880	2.032	21.200	5.080	1.849	2.678	1.465	0.613	3.013	3.119	34.250	21.670
16	5.916	2.333	10.910	5.948	1.632	3.228	1.526	0.830	2.767	2.515	31.350	21.990
17	30.410	2.919	11.670	5.381	1.512	4.310	1.389	1.460	3.005	2.055	25.870	34.570
18	70.800	2.101	9.771	20.240	1.350	45.460	1.180	1.481	2.490	1.865	21.470	28.100
19 20	32.060 86.930	1.747 1. 692	7.970 6.077	44.190 39.430	1.231 1.132	14.750 7.979	1.052 1.099	4.396 9.048	3.354 3.374	1.656 1.599	26.480 36.700	42.330 26.500
20	80.530	1.032	0.077	33,430	1.132	7.575	1.000	0.040				
21	43.620	1.454	31.170	18.860	1.049	9.961	1.237	4.456	2.585	1.692	14.190	10.080 40.980
22 23	30.640 15.310	1.409 1,291	151.500 82.390	14,990 26,530	1.056 1.021	16.180 8.578	1.185 0.985	2.664 2.751	2.169 2.524	1.619 22.440	7.101 37.160	70.250
23 24	39.310	1.462	44.280	13.630	0.984	15,110	0.976	3.303	2.941	13.770	12.520	24.860
25	52.220	1.683	26.840	8.290	0.973	10.220	0.925	3.083	2.231	6.650	14,550	37.430
26	43.770	1.616	13.510	41.080	0.990	5.287	0.934	9.663	29.900	9.067	10.310	21.980
27	34,160	2.010	9.416	34.910	0.907	3.881	0.932	10.680	36.620	12.930	14.430	9.821
28	10.680	1.738	19.480	26.250	0.896	3.192	0.838	37.040	208.700	9.965	32.270	48.050
29	124.400		24.640	40.690	0.927 1.034	4.355 4.202	0.781 0.732	25.130 15.330	176.600 113.700	11.180 7.763	14.580 7.097	42.960 27.610
30 31	37.800 28.890		17,180 44,700	22.670	1.606	4.202	0.732	8.072	113.700	68.170	7.037	12.330
•									24.542	** 500	20,000	22.000
Average	31.280 5.831	6.446 1.291	37.600 3.934	22.420 5.080	2.906 0.896	10.250 1,602	2.462 0.701	4.846 0.608	24.540 2.056	10.520 1.599	20.880 3.404	32.080 4.966
Lowest Highest	124.400	32.080	151.500	44.190	9.775	45.460	21.870	37.040	208.700	68.170	74.030	118.000
	044.70		054.00		45.00	00.40	E2 27	67.45	303.50	255.80	204.80	244.50
Peak flow Day of peak	241.70 29	56.66 9	254.30 22	117.80 26	15.09 5	89.43 18	53.37 5	57.45 28	303.50	31	1	11
Monthly total	25	•										
(million cu m)	83.79	15.59	100.70	58.11	7.78	26.56	6.59	12.98	63.60	28.17	54.13	85.93
Runoff (mm)	253	147	305	176	24	80	20	39	192	85	164	260
Rainfall (mm)	263	67	338	197	30	140	56	104	220	119	157	343
Statistics o	f monthly c	lata for or	evious recor	rl (Nov 197)	7 to Dec	1993)						
Statistics o	· ····································	ata ioi pi	B 11003 10001	Q (100° 137)	10 000							
Mean Avg.	25.900	18.390	22.680	9.800	6.401	6.412	8.528	10.930 2.332	19.330 3.710	23.340 7.329	25.070 4.587	23.700 8.246
flows: Low (year)	13.550 1985	2.376 1986	6.649 1980	5.445 1980	1.067 1980	0.752 1982	2.756 1992	1984	1993	1979	1993	1977
High	43.980	39.930	48.340	17.710	14.380	14.140	20.530	22.590	31.870	41,100	49.380	38.210
(year)	1983	1989	1990	1979	1982	1980	1993	1985	1981	1980	1981	1980
Runoff: Avg.	210	136	184	77	52	¢ \$50	~d 69	E089	151	189	€.197	192
Low	110	17	54	43	9	6	22	19	29	59	36	67
High	356	292	391	139	116	111	166	183	250	333	387	309
Rainfall: Avg.	242	145	210	95	84	100	114	144	204	228	235	225
Low	113	21	76	50	29	44	60	52	49 326	96 401	44 458	82 361
High	430	423	436	175	167	176	191	263	320	401	436	301
Summary s	tatistics						1004	Fac	tors affect	ing runoff	•	
			or 1994	Fo	or record		1994 As % of					
		•	0. 1004	prece	eding 199		ore-1994	• Na	atural to wit	hin 10% at	t 95 percen	tile flow.
Mean flow (m		17.	250	16.710 12.970		1987	103					
Lowest yearly Highest yearly				20.250		1981						
Lowest month		2.	462 Jul	0.752	!	Jun 1982						
Highest month			600 Mar			Nov 1981						
Lowest daily n Highest daily r		208.	608 14 Aug 700 28 Sep			Jun 1982 Jan 1982						
Peak	110011	303.				Oct 1978						
10% exceedar			280	40.240			103					
50% exceedar 95% exceedar			975 838	8.458 1.076			94 78					
Annual total (r			1.00	527.30			103					
Annual runoff	(mm)	164	5	1595			103					
Annual rainfall	l (mm) infall average	203	4	2026 1900			100					
1301-3018	mian avalada	friant.		1500								

Station and catchment description

40m wide river section. Flows fully contained except in extreme circumstances (e.g. October 1978). Construction of gabion groynes immediately downstream, in February 1986, has rendered the low flow rating less stable. 100% natural flow regime with little loch storage. Catchment is typical Highland mix of rough grazing and moorland with some afforestation in the middle reaches.

007002 Findhorn at Forres

1994

Measuring au First year: 19		В		Gri		:e: 38 (NJ) n. (m OD): l				Catchme		km): 781.9 m OD): 941
Daily mean	gauged dis	scharges (cubic metres	per second)								
DAY 1 2 3	JAN 9.519 9.048 8.211	FEB 53.850 32.440 19.600	MAR 6.502 7.168	APR 57.500 35.430	MAY 35.760 45.280	JUN 14.240 9.282	JUL 5.050 4.425	AUG 3.181 3.032	SEP 5.120 4.326	OCT 18.170 33.730	NOV 65.330 23.980	DEC 7.000 6.738
4 5	10.420 8.968	21.380 26.980	10.640 64.970 119.200	24.300 26.000 19.960	45.030 34.080 35.850	15.070 14.390 9.226	4.392 4.350 5.058	3,116 20,770 9,511	3.898 3.902 4.183	35.210 20.810 17.680	18.330 14.800 14.910	8.783 16.430 8.699
6 7 8 9	31.500 37.310 . 18.390 14.090	19.780 14.840 12.150 16.210	114,700 154,800 159,900 54,690	18.230 16.870 16.180 15.050	27.310 21.710 17.800 17.060	8.758 10.570 8.279 7.785	5.936 5.528 5.846 6.064	5.544 4.126 3.647 3.425	3.752 4.094 6.938 15.150	11.650 9.146 8.712 7.043	15.290 11.260 9.061 8.683	9.206 16.500 12.730 25.690
10 11 12	46.370 25.740 22.460	18.370 12.660 10.970	49.370 71.430	45.640 83.150	25.520 21.190 27.850	9.186 6.995	4.643 4.362	3.351 3.312	6.898 6.468	6.084 5.383	25.450 32.400	110.500 115.400
13 14 15	19.320 27.180 19.370	9.374 7.153 6.778	32.950 41.860 108.900 41.280	57.690 35.800 31.970 32.310	24.410 18.920 15.030	7.185 7.193 6.164 5.398	4.612 5.408 4.355 3.916	3.248 3.084 3.065 3.031	40.540 45.440 16.040 14.590	5.062 4.769 4.542 4.552	22.040 25.080 97.840 41.410	49.590 32.820 16.850 12.710
16 17 18 19	13.760 10.780 48.350 38.460	6.758 6.463 6.995 6.605	25.630 20.340 18.300 16.880	36.240 38.530 36.940 46.630	11.050 9.178 8.135 6.996	5.989 5.190 5.689 8.201	3.761 3.548 3.347 3.213	3.046 3.210 3.741 3.354	24.130 33.060 14.620 11.260	4.670 4.497 4.210 4.106	23.650 20.010 23.130 41.710	12.060 29.840 18.240 12.950
20 21 22	47.140 94.210 34.280	5.727 5.793 5.575	14.620 12.870 103.500	48.370 48.960 39.960	6.620 8.270 10.650	5.585 7.361 10.480	3.175 3.194	3.178 3.789	35.640 21.310	4.072 6.317	31.010 24.320	12.120 9.793
23 24 25	24.270 16.270 47.480	5.177 5.645 4.997	128.900 60.530 41.720	52.330 81.610 49.270	10.360 9.427 8.935	11.390 7.316 23.780	3.114 3.028 2.955 2.993	3,148 4,721 10,180 4,758	11.440 8.194 6.913 6.182	5.296 30.200 20.810 21.540	16.110 21.180 16.800 11.410	8.801 38.780 50.390 30.030
26 27 28 29	38.680 38.960 20.950 87.820	4.990 4.920 4.647	41.880	89.800 96.850 112.900 70.820	7.670 6.920 6.876 7.360	14.730 10.030 7.551 6.588	2.989 2.978 2.907 2.860	4.162 5.614 12.480 11.740	5.563 5.563 5.894 6.281	12.760 8.927 14.210 14.790	11.130 10.220 9.109 8.330	18.550 12.510 25.650 37.620
30 31 Average	75.800 35.450 31.630	12.740	86.370 100.900 57.270	44.540 46.990	8.312 17.900 17.980	6.602 9.207	2.802 2.879 3.990	6.392 6.405 5.334	9.497	17.930 23.910 12.610	7.372	27.600 29.090 26.570
Lowest Highest Peak flow	8,211 94,210 209,70	4.647 53.850 71.59	6.502 159.900 222.10	15.050 112.900 189.60	6.620 45.280	5.190 23.780 33.78	2.802 6.064	3.031 20.770	3.752 45.440	4.072 35.210	7,372 97.840	6.738 115.400
Day of peak Monthly total (million cu m)	29 84.72	30.83	8 153.40	26	57.70 3 48.16	25 23.86	9.00 8 10.69	58.12 4 14.29	93.80 12 33.43	56.07 23 33.76	150.80 14 60.60	184.70 11 71.17
Runoff (mm) Rainfall (mm)	108 149	39 54	196 199	156 105	62 23	31 70	14 33	18 67	43 96	43 78	78 85	91 129
Statistics of	f monthly o	lata for pr	evious reco	rd (Oct 195	8 to Dec 1	993)						
Mean Avg. flows: Low (year) High (year)	25.560 9.429 1963 55.880 1993	21.550 5.259 1963 53.760 1990	24.990 8.615 1964 58.360 1990	20.880 5.561 1974 54.180 1979	15.670 3.836 1960 41.990 1968	10.480 3.141 1992 41.900 1966	9.590 2.743 1984 24.650 1965	13.270 2.478 1976 58.840 1970	14.820 2.864 1972 37.870 1965	21.830 3.548 1972 49.540 1981	23.090 6.965 1993 39.710 1977	24.610 8.333 1976 61.550 1966
Runoff: Avg. Low High	38 32 191	.≎ 67 16 166	86 30 200	0869 18 180	9954 13 144	10 139	33 9 84	45 8 202	49 9 126	75 12 170	77 23 132	84 29 211
Rainfall: Avg, Low High	108 34 217	70 19 197	91 29 228	62 13 136	72 22 169	78 22 239	81 26 167	101 18 247	99 18 216	114 26 223	113 27 225	108 37 210
Summary st	tatistics 1						1994	Fact	ors affecti	ing runoff		
Mean flow (m ³ Lowest yearly	mean	21.	or 1994 780	prec 18.860 11.990)	1 р 1972	As % of re-1994 115	● Na	tural to wit	hin 10% at	95 percen	tile flow.
Highest yearly Lowest monthl Highest monthl Lowest daily m Highest daily m Peak 10% exceedan	ly mean ly mean nean nean	57.:	802 30 Jul 900 8 Mar 100 8 Mar	61.550 1.752 612.000	3 A D D 2 23 A D 17 A	1990 ug 1976 ec 1966 ug 1976 ug 1970 ug 1970	116					
50% exceedan 95% exceedan Annual total (m Annual runoff (Annual rainfall 1961-90 mi	ce nillion cu m) (mm)	686 8 7 108	173 5.90 8	11,430 3,267 595,20 781 1097 1064	7		107 97 115 115 99					

Station and catchment description
50m wide river section in a mobile gravel reach which necessitates frequent recalibration of low flow rating. Flows contained under cableway up to 3.8m. Adequately gauged to bankfull. 100% natural catchment with minimal surface storage. Other than a narrow agricultural coastal plain the catchment drains the Monadhliath Mountains with an extensive blanket peat cover.

Spey at Boat o Brig 008006

1994

Measuring au First year: 19		РВ		G		ce: 38 (NJ) n. (m OD): 4					t area (sq k Max alt. (m	
Daily mean	gauged dis	scharges (cubic metres	per second)							
DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC 25,400
1 2	41.030 41.400	163.300 139.700	39.320 42.950	210.300 163.300	153.900 130.700	46.350 42.820	36.730 32.710	18.800 17.770	24.330 21.380	30.630 46.160	115.200 75.970	35,400 34,130
3	44.120	101.500	51.250	117.000	127.600	44.430	31.060	18.430	19.910	63.890	62.950	33.850
4	59.850	145.300	124.800	99.290	118.100	50.930	30.120	20.540	20.320	47.820	64.700	46.660
5	51.110	151.600	278.700	81.170	106.500	43.050	33.690	26.460	20.190	45.210	63.810	43.940
6	88.850	106.600	220.900	71.510	100.300	37.990	32.750	23.980	19.450	40.320	63.000	43.680
7	79.400	82.670	311.100	65.840 63.430	85.740 75.850	39.240 38.140	30.020 28.310	21.150 19.230	20.120 33.970	33.910 30.740	52.180 45.100	68.710 64.480
8 9	57.890 60.010	69.320 68.340	360.500 316.000	60.610	66.770	35.970	26.970	18.120	41.870	28.530	44.210	71.980
10	158.800	77.010	230.100	100.400	66.750	39.390	25.870	17.380	32.770	26.670	71.940	145.000
11	112,700	63.840	218.300	170.000	71.520	36.660	25.530	17.050	28,180	24.950	92.900	213.500
12	102.600	56.400	167.500	151.300	72.880	34.710	26.250	16.600	42.800	23.860	7,1.070	234.200
13	87.510	50.720	151.700	105.900	82.170	34.210	28.180	16,140 15,720	77.550 47.420	22.900 22.180	81.540 139.200	166.400 105.000
14 15	99.660 79.360	45.380 43.130	229.700 194.900	90.670 88.710	75.650 64.260	32.990 31.830	26.850 25.160	15.720	38.750	21.730	139.900	74.470
									74.450	04.000	100.000	C1 220
16 17	62.430 52.900	40.240 38.860	146.500 109.700	92.670 99.000	53.870 46.960	31.930 31.790	23.570 22.290	15.400 16.050	74.450 81.620	21.330 20.720	100.800 78.970	61.220 65.000
18	108.800	39.450	90.020	93.790	42.600	32.060	21.190	16.500	50.590	20.330	69.470	81.870
19	109.200	37.760	76.640	102.900	39.470	34.050	20.400	16.170	43.180	19.940	102.600 87.620	64.100 56.960
20	105.600	35.810	66.950	109.900	36.700	34.160	20.070	15.640	57.100	20.280	57.020	30.300
21	212.500	34.820	61.340	119.900	35.590	33.750	20.010	15.930	54.570	33.150	81.860	50.030
22 23	148.900 114.300	34.130 32.750	157.700 252.300	112.300 146.400	36.530 37.410	34.360 39.100	19.840 19.250	15.940 15.720	40.980 34.180	29.770 142.400	66.130 63.090	43.090 62.400
23 24	84,430	32.750	223.300	162.200	37.190	38.030	18.790	19.590	30.580	76.490	63.570	109.400
25	105.500	32.250	177.400	152.600	36.260	54.630	18.860	19.680	28.190	70.570	53.350	85.160
26	105.400	31.710	128.200	167.500	35.100	56.420	19.170	19.540	26.330	69.860	47.730	73.990
27	115.900	32.600	98.080	213.000	33.580	48.600	19.040	21.320	24.940	53.140	44.630	58.520
28 29	80.440 149.200	33.840	94.350 118.500	254.800 250.400	32.430 32.420	43.910 41.100	18.420 18.050	22.410 33.580	24.260 23.670	51.190 48.740	41.870 39.130	56.780 102.300
30	198.700		135.900	211.900	33.670	41.140	17.790	28.140	25.030	50.460	37.240	88.110
31	126.700		230.400		37.750		17.520	26.530		57.730		79.320
Average	98.230	65.050	164.700	131.000	64.720	39.460	24.340	19.380	36.960	41.790	72.060	81.280
Lowest	41.030	31.710	39.320	60.610	32.420	31.790	17.520	15.370	19.450	19.940 142.400	37.240 139.900	33.850 234.200
Highest	212.500	163.300	360.500	254.800	153.900	56.420	36.730	33.580	81.620	142.400	139.900	234.200
Peak flow	280.90	194.90	392.70	268.70	182.40	63.98	39.28	36.16	102.10	206.40	192.30	246.90
Day of peak Monthly total	29	1	8	28	1	25	1	29	17	23	14	12
(million cu m)	263.10	157.40	441.10	339.40	173.30	102.30	65.19	51.92	95.79	111.90	186.80	217.70
Runoff (mm)	92	. 55	154	119	61	36	23	18	33	39	65	76
Rainfall (mm)	157	68	200	101	19	74	35	64	89	91	92	144
Cantingian	£	data fan an			53 an Dag	1002)						
Statistics o	i miorithly	aata ior pr	avious race	ים וטטן טינ	32 (0 Dec	1993)						
Mean Avg.	86.860	73.980	79.240	68.890	58.160	41.910	38.950	47.050	48.690	69.250 13.350	74.960	84.210
flows: Low (year)	41.080 1979	26.470 1963	35.760 1964	33.580 1974	26.910 1960	17,900 1961	15.530 1992	11.310 1955	14.090 1972	1972	30.130 1958	31.230 1989
High	164.100	200.500	186.200	135.200	103.400	103.000	79.860	119.600	105.500	153.900	147.000	198 600
(year)	1993	1990	1990	1979	1968	1966	1980	1956	1965	1981	1984	1954
Runoff: Avg.	81	63	74	62	54	38	36	44	44	65	68	79 20
Low High	38 154	22 170	33 174	30 122	25 97	16 93	15 75	11 112	13 96	12 144	27 133	29 186
•												
Rainfall: Avg. Low	114 38	76 26	87 29	64 19	76 24	75 23	84 20	97 21	9 6 21	117 30	111 30	117 46
High	267	212	179	128	146	181	158	188	178	205	213	211
Summary s	tatiatiaa							Fact	ors affect	ing runoff		
Summary s	lausucs						1994			_		
		F	or 1994		For record ceding 199		As % of ore-1994	● Re	igulation fo	or HEP.		
Mean flow (m ³	3s-1}	69.	.950	64.34		,	109					
Lowest yearly				44.2		1972						
Highest yearly Lowest month		19.	.380 Au	82.8° g 11,3°		1954 Aug 1955						
Highest month	ly mean	164.	.700 Ma	r 200.50	00	Feb 1990						
Lowest daily n Highest daily n		15. 360.	.370 15 Au .500 8 Ma			Aug 1955 Aug 1970						
Peak		392.	.700 8 Ma	r 1675.00	00 17 🗸	Aug 1970						
10% exceedar 50% exceedar			.100 .670	120.60 49.61			124 98					
95% exceedar	nce	18.	.240	19.15	50		95					
Annual total (n Annual runoff		2206 77	6.00	2030.0 710			109 109					
Annual reinfall		113		1114			102					
	infall average			1120	1							

Station and catchment description
Lowest station currently operating on the Spey. Cableway rated 65m wide section with natural control, extreme floods bypass station on left bank. 380 sq km developed for hydro-power with diversions and storage; limited net impact on annual runoff (small loss). Mainly granites and Moinian metamorphics. Geology is some Dalradian with a little Old Red Sandstone. Catchment is mixed with mountain (includes all northern slopes of Cairngorms), moorland, hill grazing, arable and forestry.

012001 Dee at Woodend

1994

Measuring au First year: 19		PB		G	rid referenc Level str	:e: 37 (NO) ı. (m OD): 7						m): 1370.0 OD): 1309
Daily mean	gauged di	scharges (cubic metres	per second	1)							
DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	21.180	131.300	29.120	90.560	67.850	29.970	15.260	7.883	10.890	10.700	52.050	18.640
2	27.860	67.380	27.390	61.840	69.030	25.180	14.050	6.893	8.985	14.940	35.230	17.810
3 4	39.940 45.320	47.260 101.700	30.990 121.600	49.620 50.360	73.210	29.090	13.900	6.958	8.286	17.610	47.460	30.950
5	36.790	110.000	256.300	38.150	65,150 61,160	29.570 22.550	13.520 15.510	7.245 8. 6 75	9.139 9.306	14.990 15.940	67.940 59.720	28.960 24.740
			200.000	55.155	01.700	22.500	13.310	0.073	3.300	15.540	35.720	24.740
6	63.780	73.930	182,500	34.430	57.490	19.440	16.010	7.257	8.258	17.520	50.110	32.380
7	53.120	56.000	276.400	31.660	47.080	22.240	12.610	6.478	12.560	15.030	37.650	71.440
8 9	37.070 79.930	47,370 50,010	330.000 125.900	30.420 27.630	41.280	21.030	11.380	6.123	33.590	13.490	33.330	46.300
10	156.700	51.600	90.840	40.710	37.660 40.400	19.430 24.250	10.720 10.990	5.972 5.761	32.390 18.370	12.160 11.180	60.990 65.660	48.360 121.600
			00.010			24.200	10.550	3.751	10.570	11.100	03.000	121.000
11	87.830	39.070	117.500	55.520	40.040	20.470	11,280	5.521	15.740	10.310	70.150	139.700
12 13	91.650	34.390	66.600	58.460	45.620	19.690	12.100	5.257	18.330	9.788	71.010	68.760
14	67.530 63.760	30.670 26.900	64,000 149,500	44.010 38.420	51.170 44.760	19.340 18.620	14.050 11.460	5.062 5.033	31.620	9.296 8.878	104.700	50.640
15	47.310	25.830	71.680	38.530	36.930	16.550	10.580	4.930	21.060 17.820	8.639	109.600 79.700	37.300 31.890
_									***************************************	0.000	70.700	01.000
16	38.110	23.900	52.630	48.900	29.970	17,190	9.737	5.008	42.540	8.501	56.840	28.850
17 18	33.080 68.680	20.990 24.740	45,740 40,650	56.190 47.970	25.550 22.550	15.380	8.974	5.613	43.990	8.129	47.110	44.760
19	65.990	21.850	35,710	48.080	20.340	15,190 16,880	8.298 7.899	5.716 5.139	27.200 21.970	7.972 7.768	44.770 73.120	40.080
20	82.700	20.300	32.030	43.440	18.520	15.740	7.640	4.930	26.810	44.020	48.920	29.350 25.590
											10.020	20.000
21	177.600	20.140	28.690	43.650	18.030	16.560	7.740	4.804	26.460	33.720	43.900	21.900
22 23	70.130 54.680	19.190 18.730	84.080 161.500	45.960 120.200	18.960 20.130	15.860	7.759	4.648	20.040	39.500	37.440	19.090
24	40.760	18.060	73.330	112.200	19.970	17.600 16.660	7.206 6.939	11.820 21.560	16.900 14.890	119.200 54.160	35.000 31.210	31.080 45.390
25	49.440	17.640	55.670	89.090	19.010	36.070	6.954	12.190	13.360	61.570	27.590	32.090
20												
26 27	41,180 43,850	17.530 17.950	44.380 39.840	99.510 116.500	17.890	26.770	7.713	10.510	12.140	43.070	25.730	27.280
28	27.940	18.910	63.900	172.900	16.760 16.220	23.570 20.940	9.581 7.485	10.160 9.921	11.200 10.730	34.040 31.060	23.690 21.780	20.840 29.930
29	75.250	+	65.200	131.600	16.320	19.940	6.819	13.730	10.400	27.730	20.470	53.840
30	91.880		151.800	91.540	17.140	18.180	6.554	10.340	10.540	32.970	19,140	39.320
31	50.580		182.600		22.730		6.800	13.510		33.000		30.060
Average	62.310	41.190	99.940	65.270	35.450	21.000	10.240	7.892	18.850	25.060	50.070	41.580
Lowest	21,180	17.530	27.390	27.630	16.220	15.190	6.554	4.648	8.258	7.768	19.140	17.810
Highest	177.600	131.300	330.000	172.900	73.210	36.070	16.010	21.560	43.990	119.200	109.600	139.700
Peak flow	436.70	200.60	537.70	191.00	80.11	55.31	20.68	47.91	00.75	100 50	100.40	400 40
Day of peak	9	1	5	28	1	25	6	24	82.75 8	183.50 23	192.10 13	199.10 11
Monthly total			-		•		v		•	25		" "
(million cu m)	166.90	99.65	267.70	169.20	94.95	54.43	27.43	21,14	48.86	67.12	129.80	111.40
Runoff (mm)	122	73	195	123	69	40	20	15	36	49	O.E.	
Rainfall (mm)	177	138	139	80	16	57	43	55	83	101	95 101	81 111
04-41-41							_					.,,
Statistics o	t monthly (data for pr	evious reco	rd (Oct 192	29 to Dec 1	993)						
Mean Avg.	47.790	40.870	43.830	45.130	35.920	22.240	18.320	22.020	25 700	40.240	46 270	40.000
flows: Low	15.450	13,420	15.160	11.380	12.130	7.340	6.851	5.141	25.780 6.491	40.240 6.798	46.270 12.230	48.020 22.020
(year)	1940	1947	1973	1938	1946	1940	1989	1984	1972	1972	1983	1976
High	127.800	104.200	88.680	113.300	85.950	56.080	36.710	63.850	71.830	138.200	127.500	108.400
(year)	1937	1990	1977	1947	1986	1948	1958	1948	1930	1982	1984	1954
Runoff: Avg.	93	73	86	85	70	42	36	43	49	79	88	94
Low	30	24	30	22	24	14	13	10	12	13	23	43
High	250	184	173	214	168	106	72	125	136	270	241	212
Rainfall: Avg.	120	78	80	70	80	68	87	94	93	121	112	117
Low	36	10	16	12	21	16	22	13	13	121 8	112 22	117 43
High	374	216	175	196	179	160	206	185	227	310	320	282
Summary s	tatietice							F				
Odininary s	tatistics						1994	Fact	ors affect	ing runoff		
		F	or 1994	1	For record		As % of					
					ceding 1994	p	re-1994	● Na	tural to wit	hin 10% at	95 percent	tile flow.
Mean flow (m ³ Lowest yearly		39.	910	36.35		1072	110					
Highest yearly				24.19 49.05		1973 1982						
Lowest month		7.1	392 Aug			ug 1984						
Highest month		99.	940 Ma	138.20		ct 1982						
Lowest daily n			848 22 Aug			ug 1976						
Highest daily n Peak	nean	330.0				an 1937						
10% exceedan	nce	537.3 81.6		r 1133.00 72.35		an 1937	112					
50% exceedan		28.4		25.79			110					
95% exceedan		6.8	345	8.34	13		82					
Annual total (n		1259		1147.0	ю.		110					
Annual runoff Annual rainfall		91 ⁻ 110		837 1120			110					
	(mm) infall average		•	1109			98					

Station and catchment description
Cableway rated, fairly stable natural control. Present station, built in 1972, replaced earlier station (flow records from 1929, chart records from 1934) on same reach. Cairnton; c/m measurements at Woodend established by Capt. McClean. Earlier staff gauge record dates from 1911. No regulation, little natural storage, minor abstractions. Dalradian and Moinian metamorphic along most of the valley, flanked by igneous intrusive. Mountain, moorland, forestry, pastoral and some arable in the valley bottom.

Tay at Ballathie 015006

1994

Managerian aut	hasins TDO			,	Grid referen	oo: 37 /NO	1 147 267			Catchman	t area ten k	m): 4587.1
Measuring aut First year: 195	52				Level st	n. (m OD):						OD): 1214
Daily mean	gauged di	scharges (cubic metres	per secon	d)							
DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC 160 200
1	141.400 151.700	541.200 408.000	110.100 112.300	570.400 465.800	300.900 282.300	70.070 69.430	125.400 97.570	43.320 42.710	95.060 79.020	71,920 65,860	177.300 160.100	169.200 167.200
2 3	211.100	350.300	164.800	410.700	270.200	96.150	90.150	44.010	91.280	62.690	208.000	207.100
4	229.100	445.800	323,600	377.100	264.100	93.960	90.310	60,440	102.800	57.150	251.500	220.900
5	174.100	460.000	639.000	341.700	277.400	83.620	95.940	61.660	86.270	54.610	254.800	217.200
_									75 000	50.400	212 200	220 E00
6 7	194.600 206.800	412.100 371.700	487.300 642.300	308.500 251.100	270.100 243.800	81.210 73.810	88.980 83.570	58.240 54.810	75.930 75.500	53.430 58.260	213.200 165.700	230.500 338.700
8	159.700	335.800	925.100	289.900	224.700	72.030	75.480	50.910	90.220	61.210	155.700	361.200
9	192.900	333.400	686.900	262.800	213.700	70.650	72.390	49.130	110.900	62,170	318.200	406.600
10	427.100	306.100	559.900	251.600	202.600	69.750	70.930	49.050	94.600	60.490	301.000	686.400
	247 200	201.400	612 200	242 500	181.600	65.870	72.630	48.210	107.200	57.990	271.600	1061.000
11 12	347.300 384.600	281.400 265.300	613.300 486.000	242.500 216.600	181.200	62.350	76.000	46.770	109.600	57.150	297.500	783.400
13	392.900	227.800	458.100	209.800	164.300	60.870	74.590	43.540	109.700	59.130	412.600	598.900
14	377.900	216.800	689.900	221.100	110.900	49.110	68.020	41.390	95.850	58.660	509.500	453.900
15	288.700	187.300	549.400	210.300	103.900	50.220	65.210	41,370	94.700	60.210	463.500	362.900
	240 400	105 200	400.000	210.000	120 700	CE 250	62 700	41.060	92.370	60.730	376.600	335.400
16 17	249.100 221.200	165.300 153.000	482.600 403.200	219.000 212.700	129.700 129.100	55.350 57.090	63.780 58.560	41.060 42.270	84.910	63.790	357.800	364.300
18	278.300	149,200	337.100	196.200	124.300	59.410	56.420	40.910	83.290	61.230	374.500	340.100
19	293.900	142.700	302,200	192.400	123.900	88.300	54.760	40.140	78.800	54.310	440,600	317.500
20	329.600	131.500	241.600	182.700	124.900	79.690	57.250	40.550	81.890	347.700	390.800	283.800
21	477.500	114.900	236.400	172.200	111.500	89.440	58.580	39.830	69.320	207.800	363.300	238.300
22	373.500	106.800	397.900	175.800	119.500	91.800	57,120	39.640 142.600	65.700	191.400 297.500	306.500	227.700 270.900
23	370.800	102.000	699.400	248.900 287.700	123.900 120.200	87.810 97.440	54.030 50.800	106.800	62.740 51.330	188.600	297.000 270.100	310,400
24 25	313.900 368.400	100.600 99.570	541.600 420.500	299.200	116.400	170.100	53.110	81.080	47.310	274.600	257.900	274.400
23	000.400	00.070	120.000	200.200		,						
26	349.200	92.730	342.100	352.700	112.400	172.800	55.020	75.570	43.350	232.600	255.100	275.000
27	369.800	86.940	313.100	395.800	94.970	147.900	51.080	74.220	42.570	197.700	233.500	249.300
28	322.900	101.100	360.500	486.000	74.030	127.600	46.690	124.900 130.200	42.300 43.140	173.300 175.000	223.300 205.200	328.800 410.600
29 30	397.100 421.000		391.000 493.300	424.600 346.600	69.330 67.160	134.500 133.100	44.700 43.570	107,100	47.240	197,100	181,400	407.800
31	349.000		750.500	340.000	69.100	133.100	42.100	114.400	47.240	219.600		358.400
31	0-0.000		, 55.555		001.00							
Average	302.100	238.900	456.800	294.100	161,400	88.710		63.770	78.500	124.000	289.800	363.200
Lowest	141.400	86.940	110.100	172.200	67.160	49.110		39.640	42.300	53.430 347.700	155.700 509.500	167.200 1061.000
Highest	477.500	541.200	925.100	570.400	300.900	172.800	125.400	142.600	110.900	347.700	509.500	1001.000
Peak flow	588.60	660.90	1112.00	702.70	324.30	186.50	132.10	253.80	134.10	489.10	616.30	1156.00
Day of peak	29	1	8	1	1	25	1	23	8	20	14	11
Monthly total												
(million cu m)	809.10	578.00	1224.00	762.30	432.20	229.90	181.00	170.80	203.50	332.10	751.10	972.70
Donald (mm)	176	126	267	166	94	50	39	37	44	72	164	212
Runoff (mm) Rainfall (mm)	176 230	126 107	308	114	26	107	47	102	66	129	173	252
realistan (ilibis)	230	107	300	114	20	107			•	,		
Statistics of	monthly (data for pr	evious rec	ord (Oct 19	952 to Dec	1993)						
									404 700	100.000	244 400	244 400
Mean Avg.	255.200	215.300	218.500	155.100	118.800	79.250	68.050 31.390	88.180 14.700	124.700 40.660	190.600 39.690	211.100 73.190	241.400 110.500
flows: Low (year)	92.900 1963	52.560 1963	69.380 1953	75.210 1974	45,500 1980	42.080 1957	1984	1955	1955	1972	1993	1989
High	563.200	661.000	551.600	306.900	321.100	190,400	129,600	286.100	283.900	390.500	407.700	491.400
(year)	1993	1990	1990	1993	1986	1966	1988	1985	1985	1982	1984	1954
		_					:-		-		440	
Runoff: Avg.	149	115	128 41	88 43	69 27	45 24	40 18	51 9	70 23	111 23	119 41	141 65
Low High	54 329	28 349	322	173	188	108	76	167	160	228	230	287
· •g··		5-15	orr.									
Rainfall: Avg.	167	109	128	75	94	82	93	109	132	151	143	167
Low	33	29	39	10	24	23	21	14 250	11 266	63 269	38 311	64 304
High	403	353	251	150	214	181	219	250	200	209	311	304
Summary st	atistics							Fact	tors affect	ing runoff	:	
•		_					1994	- 0				
		F	or 1994	_	For record		As % of pre-1994		eservoir(s) egulation fo	in catchme	ent.	
Mean flow (m3:	n = 1\	210.	700	163.7	receding 199	14	129			for public v	water supr	ilies.
Lowest yearly		210.	700	107.3		1955	125			d by indust		
Highest yearly				215.		1990				bstractions		
Lowest monthl	y mean	63.	770 Au	g 14.1		Aug 1955						
Highest monthl	,	456.				Feb 1990						
Lowest daily m			640 22 Au			Aug 1955 Jan 1993						
Highest daily m Peak	rean	1061. 1156.				Jan 1993 Jan 1993						
10% exceedan	ce	413.		321.8			128					
50% exceedan		170.		129.4			132					
95% exceedan	ce	43.	920	43.4			101					
Annual total (m		664		5166			129					
Annual runoff (144		112			129 115					
Annual rainfall	(mm) nfall average	166 (mm)	, ,	145 142			113					
100 1-00 (8)	,an average	Armin		1-72,	-							

Station and catchment description
Velocity-area station with cableway. 90m wide. The most d/s station on the Tay, records highest mean flow in UK. Since end of 1957, 1980 sq. km (43%) controlled for HEP; there was some control prior to this. 73 sq. km controlled for water supply. Catchment is mostly steep, comprising mountains and moorland; exceptions are lower valleys. Mainly rough grazing and forestry. Geology: mainly metamorphics and granite, but lower 20% (Isla Valley) is Old Red Sandstone.

Measuring authority: FRPB

Almond at Craigiehall 019001

1994

Catchment area (sq km): 369.0

First ye	ear: 195	57	÷		Oil	Level stn	e: 36 (NT) . (m OD):				Catchme		Km}: 369.0 m OD): 518
Daily (mean (gauged di	scharges (cubic metres (per second)							·	·
DAY	,	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC
1		5.853	34,400	25.360	6.704	2.308	1.622	1.295	1.843	1.871	1.581	5.729	2.704
2		6.628	14.500	27.960	5.487	2.515	1.598	1.273	1.136	1.563	3.384	3.554	2.550
3 4		9.923 8.755	9.808 10.220	46.140 26.990	5.824	2.656	2.119	1.337	1.296	2.157	4.867	3.423	3.915
5		17.200	7.520	33.160	7.362 10.330	2.698 3.229	1.634 1.483	1.758 1.693	1.440 1.084	2.296 1.960	2.577 1.941	4.307 11.570	3.741 3.660
6		35.870	6.505	18.130	9.738	3.467	1.535	2.006	0.962	2.924	1.681	6.887	7.483
7		18.500	5.484	16.820	21.570	2.855	1.648	2.191	0.957	4.000	1.549	4.300	8.122
8		9.537	5.474	40.710	21.850	2.302	1.620	1.598	0.991	3.325	1.408	3.204	31.130
9 10		9.245 9.945	5.803 4.830	23.070 18.190	14.400 10.000	2.114 2.034	1.581 1.550	1.403 2.301	1.037 1.009	2.683 3.178	1.346 1.397	3.161 4.729	15.770 50.680
11		7,327	4.335	12.830	7.124	2.034	1,447	2.356	1.000	5.721	1.325	4.822	140.000
12		9.819	3.935	13.440	5.646	1.994	1.447	2.010	1.003	4.302	1.289	5.796	61.620
13		19.870	3,475	26.050	4.595	1.912	1.470	1.961	0.974	3.196	1.284	30.940	18.520
4 5		22.280 12.570	3.262 3.205	57.200 14.750	4.024 3.611	1.788 1.720	1.425 1.464	1.623 1.448	1,010 1,080	2.313 1.905	1.312 1.270	33.090 18.580	10.620 8.416
6		7.560	2.939	12.900	3.325								
7		5.792	2,774	13.850	3.201	1.713 1.702	2.337 1.733	1.242 1.192	1,474 1,416	1.636 1.403	1.245 1.181	10.740 16.200	7.172 9.015
8		8.169	2.887	14.180	3.148	1.712	2.352	1.202	1.339	1.333	1.220	31.630	9.117
9		8.396	2.765	10.810	3.132	1.708	1.781	1.203	1.524	1.517	1.248	23.820	15.870
:0		8.906	2.551	8.271	2.883	1.714	1.569	0.989	1.460	1.959	1.723	12.940	9.883
1		7,117	2.570	7.565	3.135	1.646	2.305	0.975	1.265	1.540	1.418	8.758	6.216
2		10.180	2.565	14.980	3.847	1.628	2.354	0.957	1.354	1.402	3.795	7.243	4.704
3 4		15,490 9,998	2.436 2.473	70,210 20,300	4.000 3.502	1.666	1.696	0.886	2.321	1.309	15.110	6.664	4.791
25		34.340	2.527	11.540	3.724	1.661 1.7 24	1.937 1.924	1,412 1,129	1.707 1.772	1,180 1,172	5.803 5.875	4.895 4.207	6.508 10.310
16		35.510	7.882	7.922	4.136	1.705	1.858	1,446	1.616	1,196	4.990	5.069	18.010
27		36,440	65.110	7.111	3.118	1.676	1.748	1.065	1.686	1.205	4.094	4.679	12.120
8		12.800	50.440	7.023	2.850	1.567	1,473	0.909	8.673	1.320	2.979	3.964	38.830
9		12.290		7.311	2.933	1.588	1.341	0.852	8.241	1.387	6.695	3.433	18.310
30 31		12.780 9.361		8.639 10.420	2.585	1.677 1.667	1.327	0.832 1.980	4.000 2.398	1.787	7.084 11.840	3.034	24.290 12.710
verage	e	14,140	9.738	20.450	6.259	2.012	1,713	1.436	1.905	2.158	3.371	9.712	18.610
owest		5.792	2.436	7.023	2.585	1.567	1.327	0.832	0.957	1.172	1.181	3.034	2.550
lighest		36,440	65.110	70.210	21.850	3.467	2.354	2.356	8.673	5.721	15.110	33.090	140.000
eak flo		70.94	100.80	128.00	32.47	4.01	3.49	4.42	18.77	7.27	26.44	55.03	167.60
Day of (Vionthly		26	27	14	8	6	16	6	28	11	23	13	11
million		37.88	23.56	54.76	16.22	5.39	4.44	3.85	5.10	5.59	9.03	25.17	49.83
Runaff ((mm)	103	64	148	44	15	12	10	14	15	24	68	135
Rainfall	(mm)	128	81	170	66	16	55	55	66	54	81	107	177
Statis	tics of	monthly o	lata for pro	evious recor	d (Jan 195)	7 to Dec 1	993)						
Mean	Avg.	10,130	7.798	6.726	4.524	3.282	2.430	2.357	3.153	4.576	6.491	8.962	9.492
lows:	Low	3.574	1.782	1.918	1.410	1.091	0.817	0.950	0.869	0.668	0.668	1.862	3.016
	(year)	1963 20.820	1963 22.010	1973	1974	1961	1961	1960	1983	1959	1972	1972	1975
	High (year)	1993	1990	14.300 1979	9.841 1986	12.030 1993	8.572 1966	9.223 1958	8.568 1985	20.360 1985	15.120 1981	21.660 1963	19.860 1986
lunoff:	Avg.	74	52	49	32	24	17	17	23	32	47	63	69
	Low	.26	12	14	10	8	, 6	7	6	5	5	13	22
	High	151	144	104	69	87	60	67	62	143	110	152	144
Rainfall:	Avg. Low	86 28	59 11	71 22	52	60	61	72	84	88	òo	89	89
	High	178	167	142	8 89	16 134	15 136	17 173	19 152	14 195	23 177	19 190	21 179
Sümm	nary sta	atistics *							Fact	ors affecti	ina runoff		
			F	or 1994	E,	or record		1994 As % of			for public v	vator cupo	lion
0	ow (m³s	-1.			prec	eding 1994		pre-1994	● Flo	ow reduced	l bý indust	rial and/or	
	оw µп-в п үһвөү		7.0	337	5.820 2.890		1973	131			ostractions of from effi		_
	yearly n				8.199		1986		▼ A(sginentatio	ii ii Olii eili	uent retun	is.
	monthly			136 Jul	0.668		ct 1972						
	monthly		20.4		22.010		b 1990						
	daily me		0.8 140.0	332 30 Jul 300 11 Dec	0.241		ct 1959						
ngnesi osk	GONA LUC	oo#1	167.6		147.200 220.000		ct 1990 ct 1990						
	ceedanc	e	18.		13.220		. 1000	137					
50% ex	ceedanc	:e	3.1	153	2.927	7		108					
	coodanc			095	0.903			121					
	total (mi runoff (n	illion cu m)	240		183.70	,		131					
	runott (n rainfall (i		65: 105:		498 901			131 117					
		ıfall average		-	1017			* . *					

Grid reference: 36 (NT) 165 752

1961-90 rainfall average (mm)

Station and catchment description

The recorder is well sited on a straight even reach with steep banks which have contained all recorded floods. Stable rating over the period of record. Weed growth in summer - some adjustment to stage is required. Low flows substantially affected by sewage effluent especially from Mid Calder. Abstraction at Almondell to feed a canal. A number of storage reservoirs are situated in the catchment. Geology - predominantly Carboniferous rocks. Land use - mainly rural. Livingston new town and several small mining towns in catchment.

Tweed at Norham 021009

1994

Measuring au First year: 19		RP		Gı		e: 36 (NT) n. (m OD):				Catchmen		m): 4390.0 n OD): 839
Daily mean	gauged di	scharges (cubic metres	per second)							
DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV C0.670	DEC
1 2	108.500 109.900	264.700 196.500	222.000 181.100	146.600 114.000	47.720 47.890	18.620 20.310	16.000 14.130	26.490 20.980	24.310 20.410	15.530 17.370	68.670 49.350	48.100 45.090
3	159.500	148.000	287.400	97.860	49.430	22.140	13.870	15.960	18,110	32.700	54.790	53.870
4	186.700	210.900	219.800	123.600	59.250	22.450	14.200	19.030	18.540	37.290	63.160	65.420
5	184.500	160.700	436.300	95.790	66.140	20.170	14.480	25.360	19.480	26.050	79.300	66.670
6	390.200	142.700	252.500	87.580	68.100	18.660	15.410	17.120	17.570	22.350	83.260	85.280
7	291.900	128.300	201.200	108.300	52.380	18.180	16.470	14.480	26.600	20.060	63.660	157.800
8 9	191.900 201.900	110,200 118,900	222.100 192.300	134.500 127.900	47.740 43.200	17.560 18.420	19.130 15.920	13.350 12.960	25.040 21.490	18.710 17.850	55.040 66.770	436.400 224.000
10	397.600	95.670	145.400	126.500	40.640	19.570	14.300	12.420	26.230	16.940	90.590	222.200
							00.000	10.400	20.000	10.210	70.010	633 E00
1 1 12	238.300 288.500	85.250 76.460	134.600 119.200	116.800 108.900	37.630 35.540	17.060 16.530	23.620 22.680	12.480 14.450	26.300 43.970	16.210 15.560	78.910 100.600	632.500 759.300
13	342.100	69.280	169.900	92.080	32.930	16.190	18.850	12.830	41.160	15.980	266.100	306.300
14	378.600	63.690	181.200	77.300	31.060	15.210	16.750	11.370	36.180	16.630	332.300	197.500
15	229.200	59.860	144.400	67.500	29.530	15.050	16.020	11.040	29.280	14.890	320.800	155.700
16	172.800	56.010	121.400	61.400	28.940	19.050	14.020	11.000	28.900	14.780	194.000	134.200
17	137.500	52.160	111.300	58.460	27.480	22.820	13.240	11,280	24.610	14.710 14.300	162.900 225.500	142.100 175.500
18 19	131.700 146.600	49.800 47.830	106.100 96.090	53.260 49.930	26.460 26.280	20.350 21.140	12.570 12.200	12.290 14.940	21.230 20.050	14.030	285.100	138.200
20	122.200	45.350	82.160	46.130	25.240	21.920	11.830	11.980	24.020	30.330	199.600	119.700
	124 200	42.000	74 100	44.620	24 200	10.220	12.070	11.920	33.030	55.510	145.000	97.930
21 22	134.200 110.300	43.680 41.310	74.130 90.200	44.620 60.080	24.300 23.520	19.220 25.930	12.070 13.680	11.260	27.050	42.700	125.100	84.190
23	139.000	39.650	265.000	73.540	22.760	21.980	11.810	16.100	22.170	105.400	128.300	80.560
24	106.800	38.950	207.900	88.920	21.990	19.600	11.110	41.670	19.740	69.020	98.330	88.920 87.760
25 ·	141.000	38.040	140.100	69.440	21.500	19.680	11.110	66.160	18.580	50.960	83.810	87.760
26	159.100	42.670	107.100	78.250	23.200	20.710	11.360	36,640	17.500	43.030	75.390	98.520
27	258.500	259.600	90.570	60.940	22.850	23.850 25.010	16.370	29.900 29.010	16.520 15.600	38.630 34.640	67.840 60.790	107.000 179.600
28 29	156.000 132.000	386.700	110.000 117.000	54.020 59.200	20.790 20.210	19.030	15.610 14.630	37.300	15.440	32.050	55.470	249.100
30	155.800		94.070	54.530	19.410	17.090	11.870	32.220	15.460	34.340	51.530	335.100
31	118.600		188.000		18.750		12.500	25.610		84.290		236.200
Average	194.200	109.700	164.900	84.600	34.290	19.780	14.770	20.630	23.820	31.700	124.400	187.400
Lowest	106.800	38.040	74.130	44.620	18.750	15.050	11.110	11.000	15.440	14.030	49.350	45.090
Highest	397.600	386.700	436.300	146.600	68.100	25.930	23.620	66.160	43.970	105.400	332.300	759.300
Peak flow	532.60	468.50	555.00	168.30	79.11	32.14	30.88	92.79	62.86	137.70	456.10	976.90
Day of peak	10	27	5	1	6	27	11	25	12	23	13	12
Monthly total (million cu m)	520.20	265.50	441.50	219.30	91.83	51.28	39.55	55.26	61.74	84.92	322.40	502.00
-					•						70	114
Runoff (mm) Rainfall (mm)	119 138	60 81	101 122	50 69	21 19	12 50	9 45	13 71	14 57	19 74	73 118	114 165
		_										
Statistics of	f monthly	data for pi	revious reco	ord (Jan 196	32 to Dec 1	993)						
Mean Avg.	130.700	104.500	100.700	73.880	54.990	35.030	31.730	43.900	54.830	80.070	107.600	119.000
flows: Low	50.320	37.180	26.290	25.190	17.950	15.550	11.650	9.881	10.990	10.170	24.710	40.690
(year) High	1973 249.700	1963 274.200	1973 236.400	1974 165.800	1980 153.300	1974 66.200	1 9 84 85.330	1976 146.300	1972 179,900	1972 176.300	1973 271.700	1975 200.600
(year)	1982	1990	1963	1992	1967	1981	1985	1985	1985	1967	1963	1993
			64	44	24	24	10	27	22	40	64	73
Runoff: Avg. Low	80 31	58 20	61 16	44 15	34 11	21 9	19 7	27 6	32 6	49 6	15	25
High	152	151	144	98	94	39	52	89	106	108	160	122
Rainfall: Avg.	98	67	84	62	73	67	73	90	91	95	97	96
Low	45	15	21	12	20	20	23	21	19	25	⁻ 16	23
High	165	176	139	120	181	129	186	188	164	163	224	175
Summary s	tatistics							Fact	tors affect	ing runoff	:	
			For 1994		For record		1994 As % of	■ Re	seen/oir/s)	in catchme	ent	
		,	FOI 1394		ceding 199		re-1994				water supp	lies.
Mean flow (m ³		84	.210	77.99			108					
Lowest yearly Highest yearly				33.92 102.40		1973 1963						
Lowest month		14	.770 Ju			ug 1976						
Highest month			.200 Ja			eb 1990						
Lowest daily n Highest daily n			.000 16 Au .300 12 De			ug 1976 Apr 1992						
Peak			.900 12 De			lan 1982						
10% exceedar		203	.100	166.90	ю.		122		nment	d avenues a	al for 100	4
50% exceedar 95% exceedar			.900 .580	51.47 14.43			93 87		naturalised 2 mm.	a runon tol	tal for 1994	•
Annual total (n			6.00	2461.0			108	13 02				
Annual runoff	(mm)	60	05	561			108					
Annual rainfall 1961-90 ra	(mm) infall average	100 (mm))A	993 955			102					
.551-55 la		. ,,		555								

Station and catchment description
Lowest station on River Tweed. Velocity-area station at very wide natural section. Complex control. Moderate seasonal weed growth effects on rating. Reservoirs in headwaters have only a small impact on the flow regime - monthly naturalised flows available. Geology: mixed but principally impervious Palaeozoic formations. Moorland and hill pasture predominates; improved grasslands and arable farming below Melrose.

022001 **Coquet at Morwick**

1994

	ring auti ear: 196	hority: NRA 3	-NY		Grid	d reference Level stn					Catchme		km): 569.8 n OD): 776
Daily	mean (auged dis	charges (cubic metres	per second)								
DAY		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC
1 2		11.470 23.210	11.210 11.310	36.430 25.310	8.879 6.694	3.756 3.829	1.853 1.879	1.261 1.302	1.702 1.603	1.604 1.511	1.663 1.879	5.900 4.119	4.277 4.114
3		37.970	19.680	34.200	5.595	5.061	1.966	1.458	4.883	1.444	3.851	5.291	4.071
4 5		25.310	37.390	19.750	5.365	4.257	2.253	1.452	10.860	1.473	4.650	6.540	5.693
5		64.120	18.730	23.070	5.348	3.942	2.066	1,475	3.656	1.464	3.552	12.710	5.693
6		46.850	12.610	13.610	6.106	4.076	1.845	1.365	2.323	1.418	2.860	10.070	5.750
7 8		32.840 18.370	10.340 9.010	11.450 10.460	7.386 12.530	3.595 3.311	1.818 1.691	1.289 1.299	1.888 1.693	1,436 1,668	2.392 . 2.180	6.950 5.769	7.435 26.230
9		22.910	8.599	10.140	11.520	3.350	1.715	1.253	1.553	1.745	2.041	11.040	12.270
10		46.040	7.456	8.401	13.320	3.675	1.716	1.257	1.545	1.622	1.915	10.900	9.444
11		30.810	6.839	8.328	9.787	3.306	1.666	1.254	1.503	1.610	1.836	10.790	10.470
12 13		37.870 41.980	6.273 5.722	7.753 9.726	9.968 8.240	3.019 2.841	1.621 1.547	1,211	1.458 1.400	2.107	1.750	22.200	11.120
14		31.340	5.256	8.393	6.619	2.725	1.467	1,171 1,139	1.352	7.637 5.007	1.686 1.647	32.060 40.340	7.992 6.724
15		17.290	5.075	7.744	5.813	2.638	1.414	1.091	1.310	3.786	1.640	32.310	6.073
16		13.670	4.885	6.960	5.312	2.578	1.685	1.083	1.251	4.723	1.664	15.770	5.959
17		11.080	4.548	6.687	4.990	2.489	2.148	1.048	1.294	3.276	1.634	15.510	5.861
18 19		15.960 13.110	4.709 4.505	6.431 6.147	4.709 4.526	2.448 2.376	2.089 1.864	1.021 1.088	1.314 1.244	2.494 2.241	1.560 1.574	30.650 34.440	10.660 9.841
20		10.350	4.364	5.377	4.330	2.370	1.695	1.048	1.227	4.327	4.208	21.710	7.340
21		11,190	4.112	5.034	4.229	2.324	1.701	1.053	1.195	7.185	5.075	13.710	6.057
22		8.960	3.873	4.955	5.540	2.365	1.720	1.119	1.184	4.013	5.075	10.760	5.217
23 24		8.279	4.039	10.510	12.610	2.230	1.613	1.091	1.301	2.970	9.948	9.119	4.864
25		7.434 9.161	4.052 4.222	11.060 7.210	9.680 6.228	2.180 2.094	1.589 1.724	1.049 1.110	1.510 4.979	2.491 2.259	5.469 3.960	7.894 6.974	5.334 5.179
20		0.144											
26 27		9.144 16.490	12.700 89.790	5.813 5.435	5.829 4.715	2.076 2.031	1.576 1.488	1.109 1.107	3.372 2.437	2.091 1.892	3.353 3.064	6.377 5.788	6.175 8.036
28		9.382	60.160	7.011	4.342	2.003	2.199	1.074	2.252	1.787	2.771	5.189	18.170
29 30		7.916 9.488		7.202 5.839	4.816 4.197	1.936 1.907	0.975 0.913	0.978 0.992	2.077 1.894	1.682 1.694	2.604	4.801	22.160
31		7.740		8.014	4.107	1.864	0.515	1.016	1.744	1.054	3.442 9.432	4.506	24.130 17.980
Averag	ın	21.220	13.620	11,110	6.974	2.860	1,717	1,170	2.226	2.689	2 226	12 670	
Lowest		7.434	3.873	4.955	4.197	1.864	0.913	0.978	1.184	1.418	3.236 1.560	13.670 4.119	9.365 4.071
Highesi	t	64.120	89.790	36.430	13.320	5.061	2.253	1.475	10.860	7.637	9.948	40.340	26.230
Peak flo	ow	107.20	115.80	46.67	24.63	6.07	6.54	1.57	23.42	13.66	14.65	52.48	53.06
Day of Month!		5	27	3	23	3	28	4	4	13	23	15	8
(million		56.83	32.96	29.76	18.08	7.66	4.45	3.13	5.96	6.97	8.67	35.44	25.08
Runoff	(mm)	100	58	52	32	13	8	6	10	12	15	62	4.4
Rainfall		103	77	60	56	17	36	26	90	12 67	65	62 96	44 77
Statis	tice of	monthly d	ata for or	evious reco	d (Nov. 100)) to Dec 10					•		
		····o·····y u		741003 18001	O (1404 1 207	TO Dec 13	933—IIICC	inspiete or m	iissing mon	ins total Q.	years)		
Mean flows:	Avg.	14.510 5.029	12.770	12.130	9.229	5.610	3.492	3.188	4.077	4,424	7.707	11.910	13.310
HUWS.	Low (year)	1992	2.672 1973	1.72 9 1973	2.153 1990	2.039 1984	1,140 1970	1.135 1989	1.119 1990	1.121 1991	1.084 1972	1.926 1973	4.563 1971
	High	32.310	26.350	31.390	23.490	15.410	6.441	8.138	12.950	14.240	26.860	31.370	33.340
	(year)	1982	1978	1979	1992	1983	1987	1988	1986	1965	1976	1965	1978
Runoff:		68	55	57	42	26	16	15	19	20	36	54	63
	Low High	24 152	11 112	8 148	10 107	10 72	5 29	5 38	5 61	5 65	5 126	9 143	21 157
	-												
Rainfall (1966-	: Avg.	87 27	61 15	77 18	59 8	64 18	55 8	65 13	74 18	74 15	79 19	85 19	85 31
1993)		140	126	144	127	127	129	169	161	215	176	214	251
Sumn	nary sta	itistics							Fact	ors affecti	ing runoff		
	·		_		_			1994					
			F	or 1994		r record ding 1994		\s % of re-1994	● Nat	tural to wit	hin 10% at	95 percent	ile flow
	low (m³s		7.4	151	8.512	-	·	88				о о ролоот.	
	yearly m Lyearly n				3.716 11.380		1973 1969						
Lowest	monthly	mean		170 Jul	1.084	Oc	t 1972						
	t monthly daily me		21.2	220 Jan 913 30 Jun			c 1978 n 1970						
Highest	daily me		89.7				r 1992						
Peak 1094 es	ceedanc	•	115.8				r 1992	80					
	ceedanc ceedanc		16.6 4.4	113	18.680 4.789			89 92					
95% ex	ceedanc	0	1.1	123	1.264			89					
	runoff (n	llion cu m) nm)	235 41		268.60 471			87 87					
Annual	rainfall (r	nm)	770		865			89					
196	1-9U rain	fall average	(mm)		850								

Station and catchment description
Volocity-area station with 34m wide concrete Flat V weir (informal design, approx. 1:20 cross-slope) made with pre-cast segments (installed 1973). Cableway. Fairly straight section with high banks. Replaced earlier station at Guyzance. Responsive natural regime, occasional impoundment by landowner. A predominantly upland catchment draining from the Cheviots with some afforestation. Largely Carboniferous Limestone and Devonian Igneous series.

Greta at Rutherford Bridge 025006

1994

	ing auth ar: 196	nority: NRA- 0	-NY			l reference Level stn. (Catchm	ent area (sq Max alt. (n	km): 86.1 n OD): 596
Daily r	mean g	jauged dis	charges (cu	ıbic metres ç	per second)								
DAY		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1 2		1.171 5.757	11.900 2.964	5,18 6 5,956	5.990 2.542	0.549 0.477	0.232	0.123 0.126	0.088 0.080	0.937 0.342	0.662 3.898	2.665 1.335	0.587 0.558
3		8.441	3.350	13.730	2.538	0.439	1.061	0.130	0.233	0.222	4.679	3.939	3.865
4		3.437	10.530	3.726	3.045	0.555	1.309	0.131	0.510	0.228	1.655	3.105	9.445
5		2.144	3.391	6.123	6.879	0.971	0.527	0.127	0.201	0.314	1.212	7.625	9.355
6		2.446	2.685	2.520	4.635	1.078	0.348	0.177	0.137	0.522	0.744	2.191	7.650
7		2.206 1.550	1.935 2.461	2.429 4.477	4.227 7.034	0.582 0.436	0.294 0.241	0.172 0.147	0.116 0.110	0.764 0.667	0.575 0.509	1.407 1.240	11.150 12.130
8 9		12.760	.1.874	2.269	2.931	0.365	0.257	0.133	0.103	1.361	0.424	3.582	2.838
10		4.685	1.216	1.338	2.637	0.331	0.263	0.120	0.113	5.040	0.367	3.927	4.192
11		3.375	0.950	4.327	1.475	0.297	0.229	0.124	0.119	3.657	0.322	3.034	9.761
12		11.770	0.776	5.315	1.602	0.273	0.204	0.123	0.109	7.002	0.292	6.697 11.000	5.675 7.748
13 14		11.580 5.516	0.542 0.455	4.871 5.921	1.218 0.827	0.249 0.243	0.186 0.165	0.110 0.103	0.096 0.086	3.793 6.359	0.271 0.251	15.980	2.662
15		2.555	0.472	2.411	0.662	1.434	0.153	0.097	0.082	3.994	0.274	6.947	2.169
16		1.454	0.468	1.841	0.574	0.979	0.172	0.095	0.086	1.665	0.465	3.635	2.262
17		0.999	0.460	2.308	0.517	0.479	0.210	0.095	0.939	0.863	0.375	8.036	7.297
18		2.362	0.456	3.448	0.477	0.350	0.194	0.094	0.373	0.592 0.534	0.306 0.342	10.860 7.560	5.632 3.579
19 20		1.731 1.431	0.445 0.388	2.228 1.585	0.449 0.685	0.301 0.276	0.192 0.182	0.092 0.090	0.195 0.148	1.165	3.332	6.988	2.142
										4 700	0.700	2.540	4 207
21 22		1.191 1.462	0.347 0.363	1,314 1,783	1.172 4.935	0.306 5.528	0.307 0.354	0.093 0.095	0.119 0.103	1.799 0.877	2.760 9.940	2.548 1.761	1.387 0.987
23		4.355	0.353	19.370	10.300	1.382	0.203	0.089	0.257	0.552	8.509	1.436	0.921
- 24		2.772	0.337	3.504	2.455	0.714	0.183	0.121	0.364	2.779	2.440 1.610	1.368 1.068	1.412 2.262
25		10.740	0.334	4.465	1.709	0.490	0.242	0.134	0.726	5.963	1.010	1.008	2.202
26		15.080	0.761	1.786	1.467	0.404	0.195	0.106	0.291	1.878	1.542	,0.954	7.967
27 28		11.370 2.688	20.260 11.380	2.136 2.438	0.876 1.589	0.349 0.311	0.167 0.155	0.115 0.102	0.324 0.286	1.028 0.709	1.225 1.172	0.843 0.738	6.486 28.090
29		7.808	11.000	1.673	1,111	0.287	0.134	0.088	0.208	0.539	0.934	0.660	13.980
30		3.122		2.050	0.681	0.251 0.225	0.126	0.091 0.097	0.167 0.229	0.446	1.834 5.447	0.615	14.810 7.249
31		1.772		12.060		0.225		0.037	0.225				
Average		4.830	2.923	4.342	2.575	0.674	0.291	0.114	0.226 0.080	1.886 0.222	1.883 0.251	4,125 0.615	6.331 0.558
Lowest Highest		0.999 15.080	0.334 20.260	1.314 19.370	0.449 10.300	0.225 5.528	0.126 1.309	0.088 0.177	0.939	7.002	9.940	15.980	28.090
-										12.50	20.77	24.24	46.30
Peak flo Day of		37.61 26	31.83 27	40.56 3	22.35 23	14.25 22	3.67 3	0.24 6	2.22 17	12.56 12	20.77 22	24.21 18	28
Monthly													
(million	cu m)	12.94	7.07	11.63	6.67	1.81	0.75	0.31	0.60	4.89	5.04	10.69	16.96
Runoff	(mm)	150	82	135	78	21	9	4	7	57	59	124	197
Rainfall	(mm)	160	78	141	100	41	38	34	82	114	90	128	212
Statis	tics of	monthly o	lata for pre	vious recor	d (Oct 1960	to Dec 19	93)						
Mean	Avg.	3.819	2.878	3.159	2.156	1.276	0.800	0.663	1.232	1,461	2.487	3.326	3.786
flows:	Low	0.290	0.280	0.697	0.375	0.148	0.130	0.092	0.098	0.110	0.195	0.898	0.944
	(year)	1963 7.155	1963 8.185	1993 8.926	1982 4.682	1980 3.951	1970 2.502	1984 2.784	1976 4.107	1989 4.067	1972 6.665	1993 6.878	1971 6.607
	High (year)	1975	1990	1979	1969	1967	1980	1988	1971	1965	1967	1963	1990
D #		110	02	OB	ec	40	24	21	29	44	77	100	118
Runoff:	Low	119 9	82 8	98 22	65 11	40 5	. 4	21 3	38 3	3	6	27	29
	High	223	230	278	141	123	75	87	128	122	207	207	206
Rainfall:	Ava.	122	88	98	77	74	69	70	95	92	105	113	124
	Low	38	13	31	10	16	18	20	35	18	21	43	43
	High	206	248	220	138	164	188	194	200	206	269	219	296
Sumn	nary st	atistics							Fact	ors affecti	ng runoff		
			Fo	r 1994	Fo	r record		1994 As % of					
	_	<u>.</u> .				eding 1994		pre-1994	Na	tural to wit	hin 10% at	95 percent	tile flow.
	low (m³s yearty п		2.5	17	2.252 1.447		1973	112					
Highest	yearly r	nean			2.926	i	1979						
	monthly monthly		0.1 6.3				ıl 1984 ır 1979						
	daily m		0.0			24 Au	g 1976						
	daily m	ean	28.0	90 28 Dec	54.090		r 1963						
Peak 10% ex	ceedano	:e	46.3 7.1		210.400 5.758		g 1986	125					
50% ex	ceedano	:е	0.9	90	0.797	•		124					
	ceedand total (mi	:e illion cu m)	0.1 [.] 79.		0.121 71.07			83 112					
Annual	runoff (r	nm)	922	:	825			112					
	rainfall (mm) ifall average	1218	l	1127 1128			108					
190	,-ou rain	avalaye	friend		1120								

Station and catchment description
Compound Crump profile weir, total width 19.2m, low flow crest 3m broad. Theoretical rating with check gaugings. Responsive, natural regime.
An eastward-draining Pennine catchment developed largely on Millstone Grit.

Wharfe at Flint Mill Weir 027002

1994

Measuring a	uthority: NRA	-NY	_	G	rid referenc	o: 44 (SE)	422 472			Casab		L-1 750 0
First year: 1				0		i. (m OD): 1				Catchine		km): 758.9 n OD): 704
Daily mear	n gauged di	scharges (cubic metres	per second)							
DAY 1	JAN 23.300	FEB 33.620	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
2	58.220	30,450	33.200 25.760	69.210 30.820	6.244 6.079	3,114 3,319	3.057 2.911	3.449 3.283	12.190 7.397	4.691 23.460	33.550 16.350	7.232 7.300
3	86.670	29.700	59.360	26.440	5.752	3.359	2.794	3.269	5.144	29.160	19.330	10.130
4	56.510	43,100	31.930	58.550	5.716	4.821	2.718	7.848	4.401	14,170	23.540	38.500
5	38.620	30.690	27.310	29.020	6.565	4.419	2.586	6.212	6.573	8.639	47.880	40.760
6	36.490	24.250	21.360	27.960	12.290	3.708	2.668	3.720	5.817	6.521	26.230	38.880
7	23.770	21.760	54.720	26.120	7.750	3.871	2.948	3.052	12.240	6.363	15.990	36.390
8 9	18.310 26.480	17.230	70.260	49.590	6.300	4.060	2.939	2.812	8.677	7.729	12.490	52.450
10	49.370	30.800 16.990	44.940 23.290	41.630 27.610	5.346 4.795	3.482 3.346	2.676 2.502	2.579 2.464	7.877 16.440	7.818 5.57 6	47.400 34.680	28.140 69.240
					,,,,,,,	0.0-0	2.502	2,404	10.440	3.370	34.000	09.240
11 12	26.170 40.680	13.280 11.320	20.240	21.280	4.718	3.415	2.450	2.401	27.360	5.193	21.430	42.790
13	45.080	9.385	21.540 64.690	17.140 15.090	4.486 4.188	3.244 3.072	2.534 2.360	2.470 2.230	36.600 34.550	5.108 4.788	37.030 76.780	55.850 42.410
14	53.940	8.764	59.900	11.840	4.225	2.916	2.312	2.037	16.280	4.525	119.000	31.740
15	35.490	8.431	35.300	9.794	5.570	2.785	2.235	1.993	38.470	4.296	69.440	20.310
16	21.050	8.585	22.330	8.344	5.000	2.705	2.182	1.989	24.100	4.168	42.290	24.210
17	15.640	8.051	20.780	7.714	4.687	2.736	2.114	2.310	11.490	4.048	31.690	18.690
18	22.040	8.135	21.620	7.712	4.179	2.624	2.140	5.562	7.799	3.914	36.830	47.160
19 20	36.400 30.580	7.604 7.062	24.100 15.800	7.375 7.450	3.819 3.677	2.685 5.793	2.116 2.068	3.381 2.858	7.314	3.879	62.360	33.430
	55.555	7.00L	15.500	7.400	3.077	3.733	2.000	2.000	6.819	4.289	67.370	21.410
21	27.750	6.751	12.450	8.148	4.255	10,100	2.085	2.781	9.834	6.536	33.760	15.820
22 23	24.040 79.220	6.454 6.464	21,440 82.050	10.280 25.240	5.265	12.730	2.069	2.448	7.211	13.030	22.420	12.460
24	30.280	6.285	62.330	19.270	6.341 4.607	4.903 4.252	1.982 2.760	2.986 6.837	5.348 5.371	52.320 26.030	17.650 14.770	10.350 8.926
25	98.550	7.826	37.780	12.650	3.964	4.328	3.176	30.840	19.540	34.180	12.390	16.380
26	73.450	25.060	25.230	15.430	3.665	4.059	2.603	10.050	12 440	20.000	10.500	20.550
27	103.300	76.170	16.880	10.340	3.452	4.552	2.961	10.860 7.076	13.440 8.024	30.990 17.310	10.580 10.070	38.650 56.600
28	52.000	59.040	22.230	9.417	3.375	6.098	2.507	20.410	6.278	17.390	9.237	139.000
29 30	46.450 50.060		17.880	10.300	3.295	3.856	2.451	9.742	5.352	13,390	8.693	102.000
31	26.620		13.860 14.260	7.394	3.208 3.107	3.274	2.304 3.527	6.095 6.578	4.754	15.100 35.960	7.472	72.470 55.370
	40.700									00.000		00.070
Average Lowest	43.760 15.640	20,120 6,285	33.060 12.450	20.970 7.375	5.030 3.107	4,254 2,624	2.540 1.982	5.567 1.989	12.760 4.401	13,570 3,879	32.960	38.550
Highest	103.300	76.170	82.050	69.210	12.290	12.730	3.527	30.840	38.470	52.320	7.472 119.000	7.232 139.000
Peak flow	146.50	100.70	171.10	127.70	10.40	22.50	4.40	24.74				
Day of peak	23	27	23	127.70 1	18.48 6	32.68 21	4.19 24	61.71 25	61. 6 0 12	77.59 23	182.70 13	191,00 asc:28
Monthly total												1132 ZO
(million cu m)	117.20	48.67	88.54	54.36	13.47	11.03	6.80	14.91	33.06	36.34	85.42	103.30
Runoff (mm)	154	64	117	72	18	15	9	20	44	48	113	136:
Rainfall (mm)	174	84	155	91	40	49	55	93	111	106	150	- 203 - 1-
Statistics of	of monthly o	lata for pr	evious reco	rd (Oct 195	5 to Dec 1	993)						;
Moan Avg.	27.900	23.170	21 200	15.960	*0.600	7.400	7 444	44.400				
flows: Low	4.472	2.974	21.300 5.740	4.496	10.690 2.312	7.182 1.545	7.441 1.674	11.190 0.991	13.150 1.419	17.680 3.026	23.020 6.876	128.060 10.230
(year)	1963	1963	1993	1974	1980	1957	1976	1976	1959	1972	1958	1963
High	44.000	54.590	53.940	35.240	26.750	18.530	16,440	41.340	33.520	54.000	51.090	62.090
(year)) 1984	1966	1981	1970	1967	1972	1963	1956	1968	1967	1963	1965
Runoff; Avg.	98	75	75	55	38	25	26	39	45	62	79	99
Low High	16 155	9 174	20 190	15 120	8 94	5	6	4	5	11	23	36
· ···g··	100	1/4	130	120	34	63	58	146	115	191	174	219
Rainfall: Avg.	117	85	91	77	74	75	83	99	101	108	111	127
Low High	41 217	14 201	24 222	8 147	13 181	18 183	20 185	18 226	8 241	32 225	33 211	41 234
_						100	103	220	241	225	211	234
Summary s	statistics '						1994	Fact	ors affecti	ing runoff		
		F	or 1994	F	or record		1354 As % of	• Re	servoir(s) i	n catchme	nt.	
Mean flow (m	3 11	10.	140		eding 1994	p.	re-1994				vater suppi	
Lowest yearly		19.4	140	17.21 11.42		1975	113			l by indust estractions	rial and/or	
Highest yearly	/ mean			23.30		1966					face water	and/or
Lowest month			540 Jul			ıg 1976		gro	oundwater.			•
Highest month Lowest daily r		43.1 1.9	760 Jan 982 23 Jul			ec 1965 un 1957						
Highest daily r		139.0				ь 1991						
Peak		191.0	000 28 Dec	362.80	O 3 Ja	n 1982						
10% exceeda 50% exceeda		49. 10.0		40.82			120					
95% exceeds			450	9.45 2.36			107 104					
Annual total (i		613	.10	543.1			113					
Annual runoff Annual rainfall		80 131		716			113					
	i (mm) sinfall average	(mm)	•	1148 1161			114					
	3-											

Station and catchment description
Broad-crested masonry weir 47m wide with a current meter cableway 1.5km u/s (moved to new US station at Tadcaster in 1990). Insensitive at low flows. Level data only from 1936 to 1955. Recalibration(from 1965) completed but flows reprocessed from 1982 only. Pre-1965 data less reliable. Regulation effect of headwater reservoirs evident at low flows. Small net export of water (inc. Bradford supply). Mixed geology - mainly Carboniferous Limestone, grits and Coal Measures. Predominantly rural catchment with moorland headwaters.

Aire at Kildwick Bridge 027035

1994

Measuring aut First year: 196		·NY			l reference Level stn.					Catchmer	nt area (sq k Max alt. (m	
Daily mean	gauged dis	charges (c	ubic metres p	er second)								
DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1 2	12.080 31.660	13.390 10.280	14,210 12,820	23.050 11,460	2.325 2.167	0.848 0.925	0.601 0.622	2.640 1.350	2.678 1.435	3.039 13.070	12.870 7.971	3.222 2.917
3	35.320	17.310	20.650	13.000	2.152	1.233	0.623	1.277	1.170	11,720	10.270	3.618
4	21.320	16.970	11.460	14.630	2.139	1.061	0.551	2.292	1.338	6.279	9.811	18.150 14.260
5	20.440	10.920	9.569	12.790	2.204	0.821	0.540	1.253	1.357	4,450	25.800	14.200
6	14.680	9.470	8.794	9.212	2.224	0.793	1.258	0.919	2.550	3.507	11.460	13.120
7	10.280	7.828	11.220	13.480	2.075	0.757	0.935	0.780 0.742	3.597 2.283	2.999 2.904	7.654 7.292	13.080 18.510
8 9	8.426 11.720	7.838 7.965	21.530 15.660	23.200 21.000	1.889 1.835	0.740 0.749	0.657 0.560	0.663	3.308	2.482	16.220	11.190
10	11.260	6.248	9.589	12.740	1.650	0.736	0.534	0.626	7.548	2.147	9.991	33.400
11	8.639	5.477	10,240	8.838	1.546	0.703	0.525	0.613	7.435	1.932	7.247	16.680
12	12.450	4.730	16.080	7.480	1.449	0.691	0.482	0.590	26.160	1.743	20.230	21.700
13	11.990	4.156	19.240	5.936	1.343	0.681	0.462	0.540 0.498	15.770 7.363	1.624 1.534	35.140 49.720	24.650 14.390
14 15	22.700 13.190	3.696 3.396	19.350 12.540	4.757 3.994	1.312 1.605	0.665 0.637	0.401 0.388	0.496	15.230	1.432	44.400	10.340
										4.054	20 620	0.075
16 17	8.973 6.498	3.203 2. 9 99	11.390 12.530	3.525 3.172	1.391 1.273	0.630 0.610	0.388 0.373	0.497 1.084	7.771 4.717	1.354 1.280	29.630 22.740	8.975 14.640
18	11.110	3.062	12.800	2.954	1.206	0.590	0.375	0.853	3.556	1.224	23.200	16.470
19	9.793	2.831	10.130	2.805	1.139	0.760 0.721	0.385 0.389	0.716 0.615	4.178 5.135	1.165 1.242	32.330 40.810	14.880 10.120
20	11.910	2.507	7.401	2.857	1.129	0.721	0.303	0.015	5.155	1.272	40.010	
21	9.664	2.202	5.940	3.247	1.179	1.902	0.396	0.527	4.084	1.362	19.690	7.808 6.112
22 23	14.590 31.060	2.066 2.099	6.781 35.350	3.807 7.237	1.10 9 1.066	1.437 0.995	0.398 0.366	0.525 1.520	3.016 2.513	3,414 14.600	12.570 9.349	5.112
24	18.850	2.074	20.900	5.194	1.017	1.136	1.483	2.483	2.822	12.580	7.273	5.201
25	49.830	5.401	17.980	5.320	1.005	1.115	0.992	5.269	7.784	20.970	6.072	9.270
26	37.180	29.480	10.570	5.023	0.955	0.865	0.647	2.192	4.382	13.900	6.034	24.560
27	43.100	32.890	8.725	3.830	0.909	0.817	1,181	2.125	3.245	10.380	5.258 4.448	35.790 53.390
28 29	23.610 22.000	25.680	8.320 6.366	3.288 2.893	0.907 0.889	0.776 0.710	0.701 0.560	3.783 1.908	2.658 2.248	15.870 10.410	3.985	48.010
30	15.670		5.623	2.544	0.843	0.672	2.346	1.378	2.054	13.080	3.618	45.830
31	10.660		13.260		0.793		3.923	1.441		19.870		26.800
Average	18.410	8.792	13.130	8.109	1.443	0.859	0.775	1.361	5.313	6.567	16.770	17.810
Lowest	6.498	2.066	5.623	2.544	0.793	0.590	0.366	0.496 5.269	1.170 26.160	1.165 20.970	3.618 49.720	2.917 53.390
Highest	49.830	32.890	35.350	23.200	2.325	1.902	3.923	5.205				
Peak flow	55.16	41.59	53.62	47.52	2.41	2.72	8.33	8.53	34.03 12	27.94 31	61.51 13	55.81 28
Day of peak Monthly total	22	26	23	' 1	6	21	31	25	12	31	13	20
(million cu m)	49.30	21.27	35.17	21.02	3.86	2.23	2.08	3.65	13.77	17.59	43.47	47.71
Runoff (mm)	175	75	125	74	14	8	7	13	49	62	154	169
Rainfall (mm)	171	77	161	88	23	57	68	94	122	108	145	195
Statistics of	monthly d	lata for ore	vious recor	d (Dec 1968	to Dec 19	93—inc	omplete or m	issina mom	ths total 0.1	(vears)		
Othusuca O	monthly c	iata ioi più	·									
Mean Avg.	11.450 4.463	8.513 3.216	7.694 1.219	4.969 0.923	2.832 0.611	2.186 0.604	1.791 0.298	3.126 0.289	3.721 0.498	6.775 0.789	10.130 2.545	11.560 3.175
flows: Low (year)	1973	1993	1993	1974	1974	1970	1984	1976	1989	1972	1993	1971
High	19.130	19.810	22.520	11.400	8.174	6.416	5.927	11.410	10.360 1974	17.570 1981	17.750 1991	24.710 1993
(year)	1990	1990	1981	1986	1983	1982	1973	1985	1974	1301		
Runoff: Avg.	109	74	73	46	27	20	17	30	34	64	93	110
Low High	42 181	28 170	12 214	8 105	6 78	6 59	3 56	3 108	5 95	7 167	23 163	30 234
_										4.0		120
Rainfall: Avg. Low	124 45	79 13	101 19	70 3	70 10	76 23	76 17	94 17	104 22	112 37	124 47	128 42
High	222	191	233	135	142	155	179	171	250	213	195	249
Summary st	atietice							Fact	ors affecti	ina runoff		
Summery st	dustics						1994			_		
		Fo	or 1994		r record ding 1994		As % of ore-1994	• Re	servoir(s) i	n catchme	nt.	
Mean flow (m3	s ⁻¹)	8.2	280	6.223	_	,	133					
Lowest yearly				3.655 8.161		1971 1988						
Highest yearly Lowest monthl		0.7	775 Jul			g 1976						
Highest monthl		18.4		24.710		c 1993						
Lowest daily m Highest daily m		0.3 53.3		0.180 79.900		g 1976 :t 1980						
Peak		61.5	10 13 Nov				404	0				
10% exceedan 50% exceedan		21.2	200 ≩18	15.860 3.078			134 127		i ment view of the	stage-dis	charge	
95% exceedan	ce	0.5	532	0.506			105	relati	ion is unde	rway; som	e	
Annual total (m Annual runoff (261 921		196.40 696	l		133 133		ocessing o s is expect	f daily and ed.	peak	
Annual rainfall		130		1158			113	11011	nps00			
	nfall average	(mm)		1153								

Station and catchment description

Velocity-area station rated by current meter cableway 150m downstream. The bridge sills provide the low flow control. Flows below one currect underestimated - recalibration scheduled. Washland storage, minor reservoirs, and the Leeds-Liverpool Canal can influence the flow pattern but small overall impact; minor net export. Geology is mainly Carboniferous Limestone with some Millstone Grit series. Rural catchment draining part of the eastern Pennines.

Measuring authority: NRA-NY

027041 **Derwent at Buttercrambe**

1994

Catchment area (sq km): 1586.0

	ring aut ear: 197	попцу: NHA 73	-I¥ Y		Gr	reterenc Level st	:e: 44 (SE) n. (m OD):				Catchmen	tarea (sq.k Maxalt. (ı	m): 1586.(n OD): 454
Daily	mean (gauged di:	scharges (cubic metres	per second)							
DAY		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC
1		35.410	25.410	71.690	21.190	10.870	7.865	5.122	5.047	4.801	5.674	11.190	10.380
2 3		40.470	24,440	50.650	18.890	10.760	7.898	5.196	5.143	5.446	6.496	9.254	10.050
4		50.500 57.960	34.590 42.370	41.330 33.820	14.820 15.100	10.840 10.680	7.981 8.466	5.293 5.313	5.287 5.456	4.836 4.527	11.770 15.500	9.042	10.210 19.190
5		69.740	35.640	28.720	14.200	10.460	8.221	5.316	5.378	4.399	10.870	11.690 15.430	31.990
6		73.780	30.920	25.550	13.340	10.490	7.803	5.276	4.931	4.385	8.529	19.210	26.630
7 8		75.450 74.760	35.650 30.750	24.070 22.880	13.630 16.190	10.360	7.556	5.512	4.708	4.388	7.448	16.150	22.800
9		66.670	28.170	21.540	19.980	10.230 10.030	7.389 7.307	5.583 5.313	4.657 4.477	4.463 4.562	6.868 6.549	13.090 12.510	24.410 23.710
10		72.840	25.680	20.290	18.280	9.711	7.256	5.150	4.454	4.614	6.237	13.680	18.940
11		85.670	23.890	19.650	16.150	9.522	7.081	4.937	4.487	4.620	6.009	12.160	17.530
12 13		81.150 68.820	22.650 21.480	19.160 18.730	15.490 16.540	9.392 9.187	6.873 6.821	5.085	4.618	5.446	5.839	12.170	15.910
14		55.770	20.530	17.880	14.890	9.106	6.351	5.123 5.086	4.764 4.434	7.259 6.991	5.761 5.726	22.280 20.840	19.690 26.610
15		47.940	20.040	17.200	14.340	10.650	6.107	5.076	4.266	8.166	5.658	18.580	20.500
16		43.040	19.540	16.850	13.500	10.910	6.274	4.953	4.172	11.280	5.545	14.510	17.920
17 18		40.350 40.270	19.970 19.770	16.610	13.000	9.600	6.585	4.849	4.422	8.173	5.548	13.070	17.170
19		44.350	18.720	16.520 17.090	12.640 12.560	9.176 8.946	6.638 6.449	4.706 4.657	5.018 4.762	6.476 5.887	5.471 5.573	13.290 20.310	19.380 18.950
20		38.190	18.050	15.930	12.640	8.662	6.253	4.572	4.411	6.561	10.490	28.210	17.000
21		33.530	17.630	15.060	12.980	8.987	6.484	4.528	4.268	10.580	15.420	27.500	15,110
22		30.490	17.400	14.890	12.880	11.170	6.664	4.505	4.168	9.159	10.700	19.790	14.460
23 24		29.860 28.080	17.180 17.070	14.750 14.320	12.980 14.040	15.200 11.590	6.144	4.452	4,173	7.240	15,180	17.040	13.570
25		31.390	19.730	14.380	13.590	9.768	5.772 5.662	4.714 6.126	4.450 4.449	6.488 9.031	16,130 12,910	15.150 13.870	13.000 13.570
26		36.150	49.010	14.360	15.400	9.093	5.594	5.751	4.466	12.250	14.560	13.010	17.920
27		34.040	60.990	13.750	13.330	8.660	5.561	5.855	4.313	8.611	11.390	12.280	28.140
8 9		38.730 31.530	73.660	13.990	12,180	8.540	5.409	5.960	4.192	7.136	9.697	11.550	36.100
0		29.850		13.590 13.270	11.580 11.180	8.29 9 7.944	5.263 5.166	5.318 5.042	4.119 4.090	6.368 5.850	8.979 9.264	11.050 10.730	36.260 34.490
1		26.510		14.160	71.100	7.841	3.100	4.950	4.284	5.650	12.170	10.730	35.530
verag	0	48.820	28.250	21.700	14.580	9.893	6.696	5.139	4.576	6.666	9.160	15.290	20.870
owest		26.510	17.070	13.270	11.180	7.841	5.166	4.452	4.090	4.385	5.471	9.042	10.050
lighest		85.670	73.660	71.690	21.190	15.200	8.466	6.126	5.456	12.250	16.130	28.210	36.260
eak flo ay of		89.00 11	79.14 28	79.14 1	26.00 1	16.32 23	8.72 4	6.78 25	5.61 4	14.27	20.80	32.05	43.79
Monthly	/ total									26	21	20	31
million		130.70	68.34	58.12	37.80	26.50	17.36	13.77	12.26	17.28	24.53	39.63	55.91
Runoff Rainfall		82 105	43 73	37 37	24 52	17 39	11 28	9 56	8 53	11 89	15 71	25 63	35 94
Statis	tics of	monthly d	lata for pre	evious reco								30	
/lean	Avg.	25.660	24.360	23.760	19.360	13.660	9.665	7.819	7 705	8.403	10.010	45.110	24 500
lows:	Low	9.596	8.606	6.254	6.640	5.282	4.778	3.882	7.735 3.126	3.077	12.910 3.929	15.110 5.472	24.500 8.276
	(year)	1992	1973	1973	1990	1990	1992	1976	1990	1990	1991	1989	1991
	High (year)	48.190 1977	49.280 1978	56.110 1979	37.540 1986	29.840 1979	21.260 1979	17.120 1973	15.430 1980	23.520 1993	36.820 1976	25.220 1980	42.740 1978
unoff:		43	38	40	32	23	16		13				
2.,0.,.	Low	16	13	11	11	9	8	13 7	5	14 5	22 7	25 9	41 14
	High	81	75	95	61	50	35	29	26	38	62	41	72
ainfall:		71	50	68	53	54	57	59	66	70	77	68	79
	Low High	20 132	5 101	7 143	11 113	13 142	11 149	18 138	10 126	18 192	21 158	28 111	24 180
Summ	arv sta	atistics							Fact	ors affact	ina runoff		
	•		E.	or 1994	_	or record		1994			•		*
		•			prec	eding 1994		As % of ore-1994	• Flo	ow reduce	for public v d by indust	rial and/or	
	ow (m³s vearly n		15.9	30	16.056 7.906		1000	99			bstractions		
	yearly n				25.32		1989 1979			oundwater	on from sur	race water	ana/or
.owest	monthly	mean		76 Aug	3.07	7 S	ep 1990		3	00.10.110.01	•		
	monthly		48.8				ar 1979						
	daily me		4.0 85.€	90 30 Aug 370 11 Jan	2.69° 121.40		ug 1976 ec 1978						
eak	-		89.0	000 11 Jan			an 1982						
	ceedanc		33.9		33.03	0		103					
	ceedanc		11.5	590 151	11,736 3,98			99					
		illion cu m)	502		3.983 506.50			112 99					
Annual	runoff (n	nm)	317	7	319	_		99					
	rainfall (r		760)	772			98					
190	・・ひひ 「BIN	ıfall average	(mm)		765								

Grid reference: 44 (SE) 731 587

Station and catchment description
Crump weir, 20m wide; high flow rating derived from limited number of gaugings. Pre-October 1973 data (monthly only) of poorer quality; derives from Stamford Br. (27015) - slightly smaller catchment area (1586.0 sq km). Peak flows from the headwaters upstream of Forge Valley (8% catchment) are diverted down the Sea Cut (27033). Minor net impact of artificial influences (spray irrigation is appreciable). Mixed geology of clays, shales and limestone. Rural catchment draining the North York Moors.

Trent at Colwick 028009

1994

Measuring aut First year: 19		-ST		C	Grid referend Level str	ce: 43 (SK) n. (m OD): 1				Catchmen	t area (sq kı Max alt. (r	m): 7486.0 n OD): 636
Daily mean	gauged dis	charges (cubic metres	per secon	d)							
DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	204.200	123,400	200.500	224.100	57.340 55.180	43.480	34.150 35.040	47.410 38.340	52.050 47.920	48.350 67.140	123.800 91.800	60.230 60.170
2 3	289.200 317.000	122.900 164.200	172.900 148.900	226.400 156.100	54.110	41.730 44.420	33.440	36.730	35.610	122.300	87.660	63.250
4	356.000	260.900	125.000	214.900	54.560	44.580	37.840	46.490	35.710	110.600	111.800	117.700
5	377.100	187.300	114.700	232.600	56.360	44.690	38.960	39.710	33.090	75.880	250.900	166.400
6	365.000	147.800	102.100	175.200	57.180	39.640	37.120	32,460	33.520	61.780	232.200	166.000
7	273.500	151.400	95.820	148.500	58.590	39.900	37.710	30.180	35.680	52.910	145.300	191.900
8	183.700	129.500	90.490	176.300	55.320	39,220	35.310	28.840	41.790	50.530	111.100	213.100
9	172.100	116.700	97.900	247.700	52.110	37.240 37.860	31.610 30.120	29.500 28.430	42.320 36.980	47.790 44.040	168.200 278.400	186.000 136.100
10	217.400	107.100	110.100	233.400	50.920	37.000	30.120	20.450	30.300	44.040	270.400	
11	202.100	121.700	93.560	183.400	48.390	39.370	30.690	35.560	38.590	41.930	199.300	112.100
12	255.800	139.600	98.090	142.800 136.000	48.070 48.460	38.590 37.990	29.620 30.040	36.780 32.290	38.310 45.610	40.540 39.620	220.900 292.700	96.830 130.300
13 14	342.800 314.600	112.200 99.290	101.700 92.820	114.900	54.590	37.410	28.750	29.210	84.590	38.880	225.500	204.000
15	226.900	93.630	111.900	102.200	78.010	35.020	30.160	28.650	233.700	36.600	169.000	144.300
		0.070	400 000	00.000	eE 110	22 200	30.220	28.470	229.100	36.600	129.900	115.900
16 17	169.900 141.600	91.070 98.750	120.300 102.600	92.630 86.320	65,110 55,970	33.380 34.360	29.220	32.120	170.400	35.130	115.600	110.100
18	126.800	103.000	110.100	82.050	48.850	33.330	28.840	37.640	101.100	35.640	104.300	228.000
19	144.900	94.990	247.300	80.030	46.630	31.840	29.260	32.090	83.110	35.240	104.200	218,100
20	127.200	88.370	182.400	79.380	47.270	32.350	29.410	30.810	103.900	37.580	111.300	151.600
21	119.300	82.600	125,200	80.030	66.100	33.840	29.660	28.240	111.700	43.560	140.300	131.100
22	115.400	77.520	122.800	78.310	107.100	35.900	29.840	28.270	85.580	47.620	112.400	109.100
23	182.600	83.080	121.500	92.700	80.880	34.370	29.020 30.790	29.290 30.410	64.000 56.160	81,250 72,540	98.880 84.950	93.860 85.680
24 25	189.600 189.800	99.240 125.200	115.300 155.500	90.260 76.690	65.250 59.710	33.000 47.100	49.230	33.520	65.090	56.080	77.530	86.180
23	105.000		7.000									440 500
26	260.900	311.400	163.900	76.720	66.620	40.860	39.760	30.420 28.710	61.200 49.790	54.400 60.970	71.090 67.810	112.500 322.300
27 28	224.800 234.900	383.200 329.500	117.800 114.500	69.660 65.790	62.560 51.240	34.960 34.020	36.200 39.780	27.560	45.500	56.990	65.830	405.500
29	174.500	020.000	106.600	62.960	48.980	33.090	34.630	26.550	42.110	72.340	62.450	370.400
30	155.400		96.730	60.390	46.590	33.060	31.710	26.370	39.750	111.300	59.760	277.400
31	132.900		123.600		44.210		40.240	30.280		148.400		214.400
Average	219.000	144.500	125.200	129.600	57.810	37.550	33.500	32.300	71.470	60.150	137.200	163.900
Lowest	115.400	77.520	90.490	60.390	44.210	31.840	28.750	26.370	33.090	35.130	59.760	60.170 405.500
Highest	377,100	383.200 -	247.300	247.700	107.100	47.100	49.230	47.410	233.700	148.400	292.700	405.500
Peak flow	388.20	390.20	266.10	275.20	137.20	62.11	57.92	53.06	252.70	158.50	304.10	414.80
Day of peak	5	27	19	1	22	25	25	1	15	31	13	28
Monthly total (million cu m)	586.50	349.50	335.50	336.00	154.90	97.34	89.72	86.51	185.20	161.10	355.50	439.00
,												50
Runoff (mm)	78 94	47 62	45 82	45 58	21 48	13 25	12 48	12 51	25 128	22 67	47 77	59 105
Rainfall (mm)	94	02	02	50	70	20	70	٠.	120	•		
Statistics o	f monthly	data for pr	evious rec	ord (Oct 19	58 to Dec	1993)						
Mean: Avg.	138.500	127.400	108.900	91.600	68.310	54.760	44.500	45.570	48.550	66.310	88.820	127.100
flows: Low	52,910	47.130	38.030	35.220	32.090	24.690	19.460	18.440	23.070	25.260	34.170	46.240
(year)	1963	1992	1993	1976	1990	1976	1976	1976	1959	1959 187.000	1975 231.800	1975 351.600
High (year)	216.400 1988	384.000 1977	227.600 1981	179.500 1966	175.100 1969	103.100 1987	104,100 1968	76.480 1966	121.100 1965	1960	1960	1965
(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									4-	6.4		45
Runoff: Avg.	50 19	42 16	39 14	32 12	24 11	19 9	16 7	16 7	17 8	24 9	31 12	45 17
Low High	77	124	81	62	63	36	37	27	42	67	80	126
-							F0		65	67	73	79
Rainfall: Avg. Low	72 23	52 8	59 13	58 9	58 11	62 14	59 18	69 21	3	12	38	15
High	138	175	116	116	144	148	125	120	149	141	145	173
C	totiotico							Fac	tors affect	ing runoff		
Summary s	เสเเรเเตร						1994			=		
- <u>-</u> -		1	For 1994		For record		As % of ore-1994	● R	eservoir(s)	in catchme ed by grou	ent. Indivistor al	etraction
Mean flow (m	3 _e -1)	100	.700	94.(receding 199 010	14 [120		nd/or recha		ilianolei ar	Janacuon
Lowest yearly				47.0	030	1976		• A	bstraction	for public v		
Highest yearly	mean			124.0		1966				d by industions		T .
Lowest month Highest month			.300 At .000 Ja	ug 18.4 an 384.0		lug 1976 Feb 1977				on from su		r and/or
Lowest daily r		26	.370 30 At	ig 14.7	700 23 /	Aug 1976		gı	roundwater	r .		
Highest daily r			.500 28 De	ec 854.9		Feb 1977		• A	ugmentatio	on from eff	iuent returi	ns.
Peak 10% exceedar	nce		.800 28 De .100	ec 956.7 169.6		Feb 1977	129					
50% exceedar			.650		020 .		132					
95% exceedar	nce	29	.520	27.3	390		108					
Annual total (r Annual runoff			6.00 24	2651 35			120 120					
Annual rainfall			45	77	3		109					
	infall average	(mm)		76	1							

Station and catchment description
Velocity-area station in the navigable Trent. Main channel approx. 62m; cableway span 99m. Holme sluices 750m u/s affect water levels up to medium flows. Bypassed at high flows on rb when gravel workings inundated. Very substantial flow modifications owing to imports, WRW's, cooling water and industrial usage. Predominantly impervious - glacial clay and Triassic Marl, but some sandstone and limestone. Extensive terrace gravels and alluvium maintain baseflow.

Derwent at St. Marys Bridge 028085

1994

. ...

27

							-	_			* P. S.	- 14 ³⁰ J.	
		hority: NRA	-ST		Gr		ce: 43 (SK				Catchmen	t area (sq k	
	ar: 193		_		, , ,		n. (m OD):	44.00				Max alt. (i	n OD)∷636
-	mean	- •		cubic metres	•								
DAY 1		JAN 47.340	FEB 34.160	MAR 35.030	APR 50.960	MAY 10,770	JUN 7.076	JUL 4.512	AUG	SEP	OCT T		DEC
ż		84.360	30.070	34.520	39.780	11.020	6.847	6.148	5.227 4:585	5.983 3.799	8.871 13.700	22.930 19.520	14.800 15.500
3		79.580	46.640	31.150	37.020	11.750	7.142	5.927	5.613	4.091	19.210	23.320	16.950
4		65.480	45.400	27.220	50.960	11.880	6.990	8.702	5.137	4.595	13.780	27.390	28.300
5		63.980	37.890	24.980	39.900	12.050	6.556	5.291	4.162	4.379	11.000	58.600	- 26.720
6		47.880	34.800	22.780	36.200	11.390	6.277	5.378	3.953	4.176	9.608	34.700	26.380
7		38.500	32.550	21.700	34.260	11.190	6.569	4.940	4.207	4.691	8.945	25.360	34.090
8 9		33.580 34.770	28.830 27.240	20.290 22.340	48.700 53.890	10.690	6.269	4.648	4.133	4.604	8.400	22.710	32.710
10		37.940	25.350	21.150	44,770	10.460 9.053	6.052 6.109	4.164 4.027	4.178 4.110	4.053 6.309	7.856 7.290	53.010 56.530	27.500 26.110
												00,000	
11 12		37.840 61.830	24.830 23.040	19.800 21.380	38.830 35.100	8.298 8.116	6.349 6.205	4.099	4.056	4.964	7.041	38.330	23.750
13		60.570	21.550	25.700	34.590	7.890	6.151	4.190 4.210	3.988 4.004	6.341 5.898	6.536 6.224	60.420 48.600	21.910 32.290
14		44.150	20.730	22.390	31.400	9.188	6.534	4.059	4.080	24,300	6.286	43.310	28 050
15		36.580	20.350	24.070	26.380	10.570	6.306	3.998	4.499	37.360	6.272	35.000	24.460
16		32.030	19.980	24.090	23.150	8.901	6.489	4.015	4.342	13:880	6.223	31.880	22.420
17		28.850	20.070	23.480	21.040	7.806	5.403	4.046	4.737	8.332	6.001	31.970	26.590
18		28.420	19.740	29.020	19.740	7.609	4.797	3.953	4.529	7.118	5.898	29.720	38.060
19 20		27.760 25.580	18.750	41.850	18.190	7.367	4.793	4.743	4.717	9.155	5.795	27.920	26.240
20		25.560	17.860	27.010	17,470	7.917	4.884	4.059	3.757	9.942	5.895	33.870	24.430
21		24.770	16.380	23.270	17.530	15.900	6.236	3.911	3.867	14.360	5:967	30.970	22.910
22		25.170	16.810	25.050	17.110	17.210	5.644	4.198	4.508	8.702	9.756	28.530	20.890
23 24		65.220 42.020	16.780 15.020	23.940 31.560	20.390 17.210	10.920 9.414	4.789 4.772	4.078 6.048	4,124 4.380	7.815 7.824	13.980	25.410	19.710
25		66.050	21.610	44.160	16.640	8.774	7.692	5.603	4.022	11.850	11.910 10.640	19.120 17.660	19.520 19.690
26		60 4E0	E1 130	22.400	10 500	0.070	5 040	- 074			:		
27		69.450 73.440	51.120 66.750	33.480 28.680	16.530 14.670	8.073 7.527	5.342 5.371	5.274 6.320	4.162 4.770	8.976 7.830	12.330 12.790	16.040 · 14.890	29.450 82.720 ·
28		62.540	44.880	27.780	13.730	7.120	4.927	5.384	4.166	7.337	17.470	15.230	71:650
29		49.210		23.960	12.640	7.530	4.512	4.000	4.052	6.612	19.240	13.570	53.550
30 31		43.620 34.870		22.790 27.750	11.310	7.551 7.173	4.485	4.292 6.414	3.930 5.775	6.204	25.080 27.040	12.700	49.050 · 43.680
Average Lowest		47.530 24.770	28.540 15.020	26.850 19.800	28.670 11.310	9.713 7.120	5.919 4.485	4.859 3.911	4.380 3.757	8.716 3.799	10.870 5.795	30.640	30.650
Highest		84.360	66.750	44.160	53.890	17.210	7.692	8.702	5.775	37.360	27.040	12.700 60.420	14.800 82.720
Peak flo		101.50	74.19	67.01	71,64	25.02	12.00	10.00	0.40	50.70	40.70	75.00	
Day of		2	27	19	8	25.93 21	13.08 25	16.09 4	9.43 31	59.72 15	28.70 31	75.69 12	98.50 27
Monthly	/ total							-	5,		31	12	21
(million	cu m)	127.30	69.05	71.92	74.31	26.02	15.34	13.01	11.73	22.59	29.12	79.42	82.09
Runoff (121	66	68	71	25	15	12	11	21	28	75	78
Rainfall	(mm)	146	77	113	82	51	44	53	54	146	99	115	140
Statis	tics of	monthly o	lata for pro	evious reco	rd (Jan 193	6 to Dec 1	1993—inc	omplete or m	nissing mon	ths total 2.	0 vears)		
Mean flows:	Avg. Low	29.250 9.749	27,770 8.084	22.560 7.361	17.830 7.253	12.420 4.710	10.040 4.647	8.489 4.211	8.785 3.647	10.220 3.955	13.450 4.155	21,110 4,304	26.710
	(year)	1963	1963	1993	1990	1990	1990	1976	1976	1959	1959	1975	8.480 1975
	High	67.000	76.780	69.530	39.590	26.410	20.240	28.660	33.840	32.940	35.130	54.330	88.690
	(year)	1939	1977	1947	1966	1967	1987	1958	1956	1946	1960	1940	1965
Runoff:	Avg.	74	64	57	44	32	25	22	22	25	34	52	68
	Low	25	19	19	18	12	11	11	9	10	11	11	22
	High	170	176	177	97	67	50	73	86	81	89	134	225
Rainfall:	Ávg.	104	77	76	67	67	71	76	82	81	90	-103	104
	Low	33	8	16	8	13	15	16	10	3	17	16	20
	High	215	236	185	132	163	188	158	185	199	178	232	246
Summ	ary st	atistics							Fact	tors affect	ting runoff		
			F	or 1994	F	or record		1994 As % of	♠ Ra	servoirle)	in catchme	o.t	
	_					eding 199	4	pre-1994			ed by grou		straction
	ow (m³s yearly n		19.7	720	17.34			114	an	d/or recha	arge.		
	yearly r				9.62 25.20		1976 1966		● At	ostraction	for public v d by indust	vater suppl	ies.
Lowest	monthly	y mean	4.3	380 Aug			ug 1976				bstractions		
	monthly		47.5				Dec 1965		● Aī	ugmentatio	on from sur		and/or
	daily me		3.7 84.3	757 20 Aug 360 2 Jan			ug 1952 Dec 1965			oundwatei Jomentatio	·. on from effl	uent return	e
Peak			101.5	500 2 Jan			1500		- A(-Amenialic	ALL HOLLI GIAL	usin (Bluff)	э.
	ceedand		43.6		35.69			122					
	ceedano ceedano		14.9	300)73	11.800 4.710			126 86					
		illion cum)	621		547.20			86 114					
	runoff (r		59	0	519			114					
	rainfall (. I-90 rain	mm) nfall average	(mm)	U	998			112					
	· VO Idil	avaiaña	p+1111)		1012								

Annual runom (mm)
Annual rainfall (mm)
1961-90 rainfall average (mm)

Station and catchment description
Ten-channel, interleaved cross path US gauge in the centre of Derby, 1.75km ds of Longbridge Weir (28010). Record continuous with 28010. Peaks from 1976 only. Derby may flood but bypassing small. Substantial flow modification owing to Derwent reservoirs, milling and PWS abstractions. Large, predominantly upland catchment draining Millstone Grit and Carb. Lst. Lower reaches drain Coal Measures on the Ib and Triassic sandstones and marls on the rb. Peat moorland headwaters; forestry, pasture and some arable.

030001 Witham at Claypole Mill

1994

	ring auth	ority: NRA-	A				e: 43 (SK) . (m OD):	842 480 16.90			Catchmen	t area (sq k Max alt. (m	
			charges (cu	bic metres p	er second)								
DAY		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1		5.422	3.673	4.528	3.383	1.725	1.221	0.755	0.739	2.017	1.543 1.847	1.800 1.511	1.950 1.912
2		8.305	3.364 7.423	4.309 3.913	6.466 6.380	1.685 1.754	1.154 1.185	0.748 0.733	0.656 0.678	0.792 0.712	3.118	1.388	1.906
3 4		8.570 8.410	7.423 6.477	3.613	3.739	1.734	1.166	0.719	0.891	0.703	2.689	1.917	3.403
5		12.210	4.569	3.525	2.878	1.830	1.158	0.788	0.672	0.629	1.963	6.802	4.011
										0.070	4.545	2 000	2 720
6		9.063	4.225	3.315	2.198	1.763	1.128 1.148	0.737 0.837	0.601 0.672	0.670 0.795	1.643 1.523	3.888 2.582	3.720 4.852
7 8		6.518 5.870	4.244 3.763	3.284 3.201	2.362 2.693	1.778 1.799	1,125	0.837	0.653	0.784	1.463	2.272	4.654
9		6.255	3.494	3.250	3.038	1.786	1.164	0.681	0.615	0.648	1.409	2.350	3.743
10		7.971	3.306	2.948	2.543	1.593	1.191	0.660	0.606	0.874	1.330	4.785	2.987
			• • • •	0.007	2 202		1.089	0.625	0.531	0.649	1.343	3.407	2.615
11 12		6.326 8.229	3.088 3.002	3.007 2.970	2.283 2.407	1.533 1.525	1.020	0.576	0.422	0.842	1.324	6.370	2.374
13		10.840	2.893	2.874	2.459	1.484	0.874	0.576	0.420	0.728	1.320	6.373	3.888
14		7.603	2.836	2.771	2.419	1.786	0.843	0.585	0.401	3.519	1.308	4.222	5.008
15		5.885	2.861	3.268	2.193	1.957	0.861	0.591	0.382	10.110	1.318	3.260	3.408
16		5,114	3.025	3.050	2.349	1.620	0.846	0.608	0.526	5.555	1.310	2.901	2.897
16 17		4.694	3.553	2.845	2.183	1.547	0.828	0.580	0.806	2.611	1.281	2.724	2.992
18		4.527	3.762	3.111	2.083	1,412	0.839	0.551	0.663	1.789	1.266	2.690	8.614
19		4.336	3.175	4.200	2.027	1.469	0.835	0.570	0.480	1.795	1.278	2.488	4.994
20		4.098	2.892	3.094	1.917	1.714	0.803	0.579	0.529	2.269	1.361	2.563	3.619
21		3.962	2.803	2.821	1.953	2.075	0.873	0.602	0.472	2.667	1.301	2.511	3.030
22		3.864	2.700	2.906	1.906	2.605	0.833	0.631	0.427	2.070	1.339	2.439	2.679
23		4.585	2.807	2.791	3.794	2,218	0.758	0.611	0.494	1.656	1.318	2.344	2.510
24		4.123	2.843	2.675	2.806	1.835	0.746	1,430	0.518	1.560	1.112	2.238	2.448 2.437
25		4.975	4.816	2.774	2.262	1.672	0.942	1.258	0.451	1.697	1.098	2.194	2.437
26		5.856	11,160	2.524	2.002	1.407	0.715	0.803	0.437	1.462	1.067	2,175	3.637
27		5.465	8.932	2.382	1.871	1.379	0.760	0.741	0.422	1.388	1.048	2.129	15.510
28		5.282	5.474	2.574	1.813	1.313	0.795	2.170	0.366	1.303	1.058	2.037	9.952
29		4.412		2.235	1.777	1.248 1,218	0.741 0.772	1.128 0.955	0.361 0.345	1.241 1.217	1.186 1.751	2.015 1.999	6.117 4.899
30 31		4.154 3.763		2.146 2.321	1.760	1,176	0.772	0.870	0.718	1.217	2.627	1.000	4.079
31		5.700		2.02									
Averag		6.151	4.184	3.072	2.665	1.666	0.947	0.788	0.547	1.825	1.501	2.946	4.221
Lowest		3.763	2.700	2.146	1.760	1.176	0.715	0.551	0.345 0.891	0.629 10.110	1.048 3.118	1.388 6.802	1.906 15.510
Highest	t	12.210	11.160	4.528	6.466	2.605	1.221	2.170	0.651	10.110	3.110	0.502	
Peak flo	ow	13.68	12.12	5.13	8.48	2.76	1.29	4.42	1.42	12.30	3.97	9.32	16.84
Day of		5	27	19	2	22	9	28	31	15	3	12	27
Monthl						4.45	0.45	0.41	1,47	4.73	4.02	7.64	11.31
(million	cu m)	16.48	10.12	8.23	6.91	4.46	2.45	2.11	1,47	4.73	4.02	7.04	11.51
Runoff	(mm)	55	34	28	23	15	8	7	5	16	14	26	38
Rainfall		69	52	50	51	42	13	69	54	117	52	53	76
C+-+:-		المراجا ومحمد		dave sacar	d (84 10E)	to Dec '	10031						
Statis	TICS OT	ποιτιτιγ α	ata for prev	/ious recoi	u (IVIAY 1958	O Dec	1333)						
Mean	Avg.	2.793	3,125	2.802	2.339	1.694	1.122	0.784	0.758	0.749	1.070	1.458	2.205
flows:	Low	0.673	0.492	0.453	0.365	0.311	0.184	0.063	0.136	0.232	0.218	0.278	0.312
	(year)	1965	1976	1976	1976	1976	1976 3.141	1976 2.118	1976 2.376	1959 2.886	1959 4.190	1959 6.525	1964 7.879
	High (year)	5.857 1988	10.690 1977	6.995 1979	5.748 1979	4.695 1983	1985	1968	1980	1968	1993	1960	1965
	(9001)	(000								_			
Runoff:		25	1 26	25		15	10	ף זי <i>ב</i> 1	0° 7	7	10	ւ 13 2	20 3
	Low	6 53	4 → 87	4 63	3 50	3 42	2 27	19	21	2 25	2 38	57	71
	High	33	- 67	03	50	74							
Rainfall	l: Avg.	54	39	47	50	49	53	52	60	53	51	56	55
	Low	20	3	8	10	11	3	9	5 127	3 127	5 137	24 115	13 142
	High	117	140	92	103	130	148	132	127	12.7	137	113	172
Sumn	nary sta	itistics							Fact	ors affect	ing runoff		
	•				_			1994	- 41				ina
			For	1994		r record iding 1994	4	As % of pre-1994			for public w n from surf		
Maan f	low (m³s	- 11	2.53	34	1,735		•	146		oundwater.			
	t yearly m		2.00	-	0.594		1976		● Ăı	ugmentatio	n from effli	lent return	S.
	t yearly m				2.807		1979						
	t monthly		0.54		0.063		Jul 1976 eb 1977						
	t monthly t daily me		6.19 0.34		10.690 0.021		Jul 1976						
	t daily me		15.5		31.600		eb 1977						
Peak	,		16.84		37.540		eb 1977						
	xceedanc		4.99		3.758			133					
	xceedanc		1.96 0.54		1.060 0.352			185 156					
	xceedanc I total (mi	e llion cu m)	79.9		54.75			146					
	runoff (n		268		184			146					
Annual	l rainfall (r	nm)	698		619			113					
196	1-90 rain	fall average	(mm)		614								

Station and catchment description

An old weir at three levels with a total width of 24.99m converted into a standard Lea designed broad-crested weir. It is rated theoretically and there is no bypassing or drowning. Low flows moderately influenced by transfer of water from Rutland Water (Feb. 1977 to Apr. 1986). Abstractions for public supply at Saltersford. The catchment is clay (50%) with limestone (40%) and gravel, and is largely rural.

Ise Brook at Harrowden Old Mill 032004

1994

	ıring aut ear: 19	thority; NRA 43	-A		Gri	d reference Level stn.		P) 898 715 : 45.30	•		Catchme	nt area (sq l Max alt. (n	km): 194.0 n OD): 197
Daily	mean	gauged dis	charges (c	ubic metres	per second)								
DAY		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1		3.685	1,731	2.659	3.940	0.813	0.569		0.261	0.355	0.602	2.338	0.711
2		7.159	1.693	2.783	2.308	0.785	0.762		0.264	0.262	0.618	1.393	0.691
3 4		7.048	6.242	2.503	2.218	0.782	0.652		0.303	0.259	0.607	1.132	0.870
5		7.083 12.910	4.851 2.584	1.438 2.010	5.812 3.269	0.809 0.828	0.721 0.586		0.300	0.248	-1.017	1.876	1.318
•		12.510	2.564	2.010	3.209	0.020	0.580	0.276	0.253	0.224	0.602	5.923	1.988
6		9.662	2.377	1.917	2.350	0.763	0.561	0.384	0.229	0.219	0.561	4.044	2.077
7		4.891	2.578	1.768	2.112	0.811	0.523		0.223	0.245	0.509	1.991	2.298
8		4.048	2.142	1.335	3.039	0.745	0.487		0.231	0.258	0.493	1.630	3.969
9 10		4.469 7.359	1.898	1.964	4.120	0.694	0.566		0.225	0.230	1.111	2.075	2.662
.0		7.555	1.775	1.042	3.543	0.666	0.488	0.261	0.381	0.224	0.512	3.427	1.932
11		5,254	2.230	1.377	2.149	0.659	0.467	0.274	0.469	0.234	0.461	2.221	1.580
12		7.082	1.970	1.472	2.686	0.647	0.446		0.327	0.256	0.462	2.504	1.416
13		6.745	1.755	1.383	2.428	0.630	0.433		0.287	0.222	0.445	2.979	1.780
14 15		4.382 3.645	1.629 1.687	1.402 1.999	1.832 1.726	0.936	0.414		0.243	3.454	0.441	2.199	2.438
		3.043	1.007	1,555	1.720	0.787	0.400	0.233	0.226	5.028	0.442	1.814	1.877
16		3.236	2.087	1.766	1.607	0.720	0.382	0.246	0.276	3.926	0.445	1.424	1.568
17		2.725	2.652	1.486	1.470	0.621	0.383		0.490	1.344	0.422	1.250	1.941
18		2.685	2.417	1.714	1.383	0.590	0.382		0.280	0.735	0.415	1.228	3.793
19 20		2.584 2.365	1.942	2.174	1.339	0.573	0.373		0.239	1.321	0.430	1,121	2.464
20		2.305	1.746	1.722	1.278	0.611	0.349	0.242	0.219	1.535	0.474	1.108	1.891
21		2.199	1.568	1.397	1.222	1.292	0.390	0.227	0.213	1.599	0.486	1.014	1.608
22		2.126	1.505	1.951	1.270	1.557	0.353		0.211	1.017	0.707	0.986	1.427
23		2,142	1.923	1.533	1.758	1.169	0.329		0.248	0.753	0.552	0.927	1.308
24 25		2.032 2.189	2.749	1.402	1.389	0.923	0.478		0.257	0.690	0.524	0.866	1.285
4.0		2.165	5.340	1.406	1.181	0.884	0.395	0.310	0.245	0.605	0.475	0.821	1.387
26		2.114	9.830	1.242	1.069	0.946	0.330	0.262	0.214	0.553	0.453	0.806	1.915
27		2.134	4.790	1.284	1.012	0.794	0.328		0.195	0.498	0.427	0.801	4.599
28		1.913	3.222	1.478	0.944	0.712	0.313		0.185	0.461	0.443	0.774	4.197
29 30		1.807 1.738		1.421 1.510	0.896 0.850	0.662 0.616	0.278 0.280		0.186	0.520	1.668	0.725	4.986
31		1.628		1.983	0.650	0.579	0.280	0.379 0.386	0.193 0.318	0.434	3.837 5.343	0.725	3,124 2,448
						0.070		0.505	0.510		0.343		2.440
Averag		4.227	2.818	1.694	2.073	0.794	0.447		0.264	0.924	0.838	1.737	2.179
Lowest Highest		1.628	1.505	1.042	0.850	0.573	0.278		0.185	0.219	0.415	0.725	0.691
Linginga	•	12.910	9.830	2.783	5.812	1.557	0.762	0.728	0.490	5.028	5.343	5.923	4.986
Peak fle	DW	14.60	10.73	3.01	6.39	2.80	1.13	1,51	1.07	6.35	6.52	7.56	5.62
Day of		6	26	1	9	22	2	24	10	14	31	6	29
Month							_						
(million	cu mj	11.32	6.82	4.54	5.37	2.13	1.16	0.82	0.71	2.39	2.24	4.50	5.84
Runoff	(mm)	58	35	23	28	11	6	4	4	12	12	23	30
Rainfell		68	56	55	53	55	23	37	44	126	62	45	65
Censia	*:£												
Statis	ucs or	monthly a	ata for pre	vious recor	a (Dec 1943	to Dec 1	993—in	complete or m	nissing mont	hs total 0.8	years)		
Mean	Avg.	2.451	2.521	2.165	1.523	1.071	0.754	0.556	0.528	0.537	0.780	1,408	1.968
flows:	Low	0.459	0.324	0.219	0.330	0.143	0.128		0.110	0.128	0.785	0.176	0.219
	(year)	1944	1944	1944	1948	1944	1944	1945	1944	1949	1947	1947	1947
	High	6.441 1959	6,948	7.984	3.835	3.606	2.421		2.656	2.584	4.384	5.330	5.827
	(year)	1858	1977	1947	1979	1967	1981	1958	1980	1992	1960	1960	1965
Runoff:	Avg.	34	32	30	20	15 '	^{(‡†} 10	8	7	as 7	11	19	27
	Low	6	4	3	4	2	2	2	2	2	3	2	3
	High	89	87	110	51	50	32	42	37	35	61	71	80
Rainfall	· Avn	55	42	48	46	52	56	53	ca	C.F.			
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Low	15	3	5	8	6	5	53 5	63 3	55 3	53 5	59 10	58 13
	High	112	115	127	109	130	141	112	139	127	137	132	123
C		_4!_4!							_				
Summ	iary st	atistics						1994	Facto	ors affecti	ng runoff		
			For	1994	Fo	r record		As % of	• Re	servoir(s) i	n catchmer	•	
					_	ding 1994		pre-1994			by industr		
	ow (m³s		1.5	17	1.350			112			stractions.		
	yearly r				0.422		1944						
	yearly r		0.26	64 Aug	2.337 0.110		1960 g 1944						
	monthly		4.22		7.984		g 1944 ar 1947						
Lowest	daily m	ean ea	0.18	35 28 Aug	0.048	11 Au	g 1944						
	daily m	ean	12.91		21.360		g 1980						
Peak 10% av	ceedano	•	14.60		28.390		ar 1947	111					
	ceedanc		3.41 0.99		2.990 0.730			114 136					
	ceedano		0.22		0.197			116					
		illion cu m)	47.8	34	42.60			112					
	runoff (r rainfall (247		220			112					
		mm) ifall average (689 mm)		640 635			108					

Station and catchment description
Flume with low flow notch and side weir to 1965, compound Crump profile weir to April 1976, and theoretically-rated Flat V weir with 5.94m crest since. Crump weir modular to 15.6 cumecs, but bypassed at 14.2m. Flat V also bypassed. Two small storage reservoirs with minor influence on low flows. Underlain by clay (59%) and sandstone (24%), mostly rural but includes Kettering.

033002 Bedford Ouse at Bedford

1994

	-	***	•				•						
Measur First ye	ing auth ar: 193	ority: NRA-	A '-		Gri	d reference Level stn.					Catchmen	t area (sq km) Max alt. (m	
Daily r	nean g	auged dis	charges (c	ubic metres p	er second)								
DAY		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1		54.550	16.150	24.580	20.340	8.120	6.270	4.090	3.280	3.400	3.280	27.060	5.100
2		50.650	20.620	21.000	29.330	8.080	6.150	3.910	3.170	4.900	3.610	15.770	5.000
3		55.320	25.970	18.740	18,150	6.680	6.320	3.580	3.000	4.250	4.090 4.340	10.080 8.820	5.200 6.800
4		.57.010	48.060	16.380	26.000	6.930	6.620 7.080	3.760 3.780	3.120 3.050	3.790 3.500	3.100	18.610	8.000
5.		64.050	41,940	15.640	27.920	7.010	7.080	3.760	3.030	3.500	3.100	10.010	0.005
6 .		68.750	26.210	15.120	16.690	7.030	8.360	3.770	3.060	3.230	3.000	39.540	17.800
7		74.390	32.120	14,060	18.580	7.620	8.290	3.940	2.940	3.400	3.280	31.390	22.400
8		78.740	32,370	13.620	22.240	7.790	7.660	4.060	2.680	3.530	3.040	15.860	32.900
9.		47.810	24.240	12.870	34.900	7.240	6.540	3.920	3.200	5.810	3.250	12.550	33.900
10.		49.110	20.680	11.730	36.890	6.950	7.010	3.610	2.800	4.370	3.220	15.840	33.900
						0.000		2 540	2.910	3.820	3,130	20.020	21.900
11		59.220 59.300	20.340 35.140	11.720 11.710	27.470 19.920	6.360 6.120	6.610 6.770	3.540 3.440	4.650	3.500	2.960	14.790	16.100
12 13		55.780	26.330	11.570	25.120	5.480	6.780	3.430	4.430	3.470	2.870	14.670	14.200
14		,54.500	20.810	11.040	26.030	6.570	6.410	3.350	3.930	4.100	2.940	15.610	15.800
15		38.740	18.230	11.340	19.000	8.190	6.520	3.260	3.320	7.870	2.770	12.580	14.900
		, T										40.000	44.000
16		35.890	17.140	11.760	16.290	8.830	5.070	3.000	3.250	14.040	3.170	10.390 9.000	11.200 11.100
17		32.610	20.090	10.960	16.800	7.330	4.820 4.590	3.330 3.200	3.390 3.590	13.710 9.150	2.720 2.980	9.000 8.560	15.400
18	7	26.930	20.590	11.170	14.390 12.880	7.610 6.880	4.940	3.140	3.630	6.620	3.080	8.150	39.300
19 20		25,310 23,990	23.400 23.220	14.330 14.650	12.490	6.280	4.570	2.900	3.540	6.800	3.000	8.440	32.900
20		20.000											
21		21,700	21.790	12.370	11.490	7.200	4.450	3.270	3.470	7.740	3.570	8.200	21.200
22		20.590	20.760	11.580	10.840	18.590	4.660	2.860	3.200	5.320	4.020	6.890	13.800
23		20.210	24.540	12.380	11.440	12.060	4.670	3.090	2.960	5.880	5.810 5.510	6.450 5.990	11.600 10.100
24		20.250	48.810	11.770	12.190	9.050	4.770	2.920 2.920	2.980 2.910	5.110 4.570	4.510	5.870	11.200
25		21.130	43.500	11.240	11.020	6.830	5.350	2,520	2.510	4.370	4,510	5.570	17.200
26		27.350	41.530	11,250	9.900	11.060	6.820	2.920	3.040	4.970	4.790	5.720	11.200
27		27.340	47.510	10.350	9.340	13.790	5.460	2.920	2.960	4.220	4.570	5.640	14.100
28		24.230	33.520	10.190	9.040	12.110	4.810	2.810	2.740	3.500	4.730	5.500	33.700
29		21,440		10.540	8.850	9.060	3.960	2.740	2.830	3.610	6.190	5,440	36.700
30		19.070		9.980	8.510	7.520	4,180	3.300	2.850	2.850	14.730 26.000	5.240	40.000 31.500
31		23.940		11.340		6.740		2.960	3.200		20.000		31.300
Averag		40.640	28.410	13.130	18.130	8.294	5.884	3.346	3.228	5.368	4.783	12.620	19.320
Lowest		19.070	16.150	9.980	8.510	5.480	3.960	2.740	0.070	2.850	2.720	5.240	5.000
Highest		78.740	48.810	24.580	36.890	18.590	8.360	4.090	4.650	14.040	26.000	39.540	40.000
								F 00	F 00	16.20	28.62	48.53	
Peak flo		80.73	55.06	27.81	50.09	27.73 22	11.54 7	5.09 11	5.09 12	16.20 17	31	6	
Day of		8	24	1	10	22	,	• • •	12	.,	٥.	ŭ	
Monthly (million		108.90	68.74	35.16	47.01	22.21	15.25	8.96	8.15	13.91	12.81	32.72	51.74
timmon	Cu III,	100.00	00.74	55.10	41.01								
Runoff	(mm)	75	47	24	32	15	10	6	6	10	9	22	35
Rainfall	(mm)	73	56	49	52	65	28	21	42	87	72	45	76
Centin	tion of	monthly d	ata for pr	evious reco	d / Ian 193	3 to Dec 19	93)						
Statis	tics of	inonthiny u	ata iti pi	841003 1000	u pan 155	3 (0 000 13	50,						
Mean	Avg.	19.650	19.780	16.740	11.440	7,111	4.717	3.312	2.879	3.117	5.923	11,430	15.790
flows:	Low	2.608	2.232	2.410	1.996	1.411	0.483	0.100	0.040	0.268	0.454	1,152	1.531
	(year)	1934	1965	1944	1976	1934	1934	1934	1934	1934	1934	1934 43.800	1964 40.400
	High	55.190	53.300	62.010	31.470	28.280	14.280	19.080 1968	14.400 1980	19.760 1992	30.420 1987	1960	1960
	(year)	1939	1977	1947	1951	1983	1985	1906	1960	1992	1307		1000
Runoff:	Avo	36	33	31	20	13	8	6 ۱۴	81 5	6	11	\$5 20 .gv.	29
	Low	5	4	4	4	3	1	0	0	0	1	2	3
	High	101	88	114	56	52	25	35	26	35	56	78	74
						- 4		F.4	60	54	60	63	60
Rainfall		58	41	48 5	46 3	54 6	54 8	54 5	60 3	3	4	10	13
(1934- 1993)		14 124	3 111	140	96	113	119	120	138	110	147	178	134
1993)		144	111	140	50								
Sumn	nary sta	atistics							Fact	ors affect	ting runof	f	
			_		_			1994	• Pa		in catchme	ont	
			F	or 1994		or record eding 1994		As % of pre-1994				undwater abs	traction
Adapa 6	low (m³s	-14	12	510	10.11			134		d/or recha			
	yearly n			• • •	2.40		1934					water supplie	3S.
	t vearly r				18.89	0	1937					trial and/or	
Lowest	r monthly	r mean		228 Aug			g 1934				bstraction		
	t monthly			640 Jan			r 1947		● At	ugmentatio	on trom er	fluent returns	
	daily m			680 8 Aug			g 1934						
	t daily m	98N		740 8 Jan 730 8 Jan		U ID MA	sr 1947						
Peak 10% o	xceedano	e e		730 6 Jan 220	26.36	0		122	Com	nment			
	xceedanc			163	4,74			172				lues are estin	
	xceedano			938	0.97	6		301				are available	
Annual	total (m	illion cu m)	426	.10	319.0	0		134			wnstream	gauging stati	on
	runoff (r		29		219			134	(033	1039).			
	rainfall ((mm)	ь	652 636			102					
196	1-90 rain	ıfall average	(mm)		636	, -							

Station and catchment description
3 broad-crested weirs, 30m, 20m and 12m wide supplemented by 3 vertical sluice gates which are either fully open or shut. High flow rating confirmed by current meter measurements. Records before 1959 based on daily gauge board readings and gate openings. (Improved flow record, from 1972, d/s at 33039). Significant surface and groundwater abstractions in catchment for PWS, Milton Keynes' effluent now significant. Geology - predominantly clay. Land use - agricultural with substantial urban development over last 15 years.

Little Ouse at Abbey Heath 033034

1994

Measuring aut First year: 196		A	*1			e: 52 (TL) ı. (m OD):	851 844 7.20			Catchmen	nt area (sq k `Max alt. (m): 699.3 m OD): 98
Daily mean	gauged dis	charges (c	ubic metres p	er second)								
DAY	JAN	FEB	MAR		MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	11,200	7.118	8.395		5.236	3.357	1.983	1.680	2.170	1.882	4.971	2.228
. 2 . 3	11.760 12.690	7.188 8.387	8.340 8.223		5.125 4.736	3.316 3.348	1.979 1.989	1.566 1.679	2.844 2.492	2.126 2.272	3.734 3.268	2.135 2.188
,3 4	13.000	13.130			4.730	3.497	1.992	1.698	2.452	2.352	3.186	2.278
5	14.670	10.950			4.968	3.514	1.919	1.537	1.950	2.303	2.924	2.485
6	10.070	8.990	6.893	12.010	E 072	2 150		1 512	1 027	2 172	2.755	2 500
7	16.670 18.200	8.013			5,072 5,474	3.158 3.176	1.911 1.881	1.512 1.422	1.827 1.860	2.172 2.080	2.755 2.795	2.589 2.690
8	18.010	7.576			6.612	3.340	1.870	1.414	1.976	2.025	2.671	2.832
9	15.450	7.280			6.787	3.304	1.812	1.375	1.964	2.005	2.520	3.074
10	14.440	6.994	5.827	11.490	6.296	3.127	1.766	1.387	1.945	2.003	2.585	3.057
11	14.230	6.730	5.621	9.060	5.529	2.994	1.724	1.891	1.788	1.921	2.632	3.008
12	13.700	6.509	5.603		4.946	2.892	1.652	1.695	1.768	1.875	2.726	2.884
13	14.410	6.314	5.473		4.638	2.828	1.649	1.754	1,727	1.877	2.759	2.884
14 15	13,100 11,070	6.145 6.172	5.416 5.906		4.658 4.679	2.743 2.643	1.730 1.742	1.602 1.480	2.032 2.635	1.942 1.935	3.056 2.970	3.270 3.304
			0.000				٠.					
16	9.797	6.276	6.123		4.486	2.594	1.661	:- 1.651	2.724	1.932	2.812	3.164
17 18	8.860 8.397	6.266 6.139	5.746 5.922		4.401 4.354	2.598 2.533	1.609 1.591	1.727 1.614	2.588 2.353	1.892 1.824	2.674 2.663	2.983 3.398
19	8.476	5.899	7.594		4.173	2.462	1.583	1.499	2.369	1.879	2.651	3.418
20	8.211	5.860	7.274	6.950	4.182	2.400	1.506	1.468	2.400	1.969	2.569	3.189
21	8.010	5.773	6.528	6.647	4.297	2,430	1.491	1,407	2.575	1.912	2.494	3.001
22	7.841	5.694	6.390	6.395	4.474	2.429	1.503	1.379	2.315	1.912	2.474	2.873
23	7.973	6.167	6.321	6.300	4.364	2.354	1.445	1.479	2.162	2.243	2.473	2.730
24	7,876	7.749	6.184	6.172	4.234	2,493	1.788	1.515	2.153	2.090	2.496	2.740
25	8.020	8.655	7.053	5.939	4.131	2.465	1.683	1.463	2.129	2.034	2.432	2.382
26	8.587	8.913	7.936	5.734	3.988	2.481	1.638	1.547	2.068	1.997	2.410	2.632
27	8.414	9.193	7,130	5.539	3.857	2.420	1.610	1.539	2.056	1.967	2.388	3.050
28 29	8.007 7.373	8.397	7.010 6.803	5.438 5.365	3.794 3.702	2.105 2.042	1.582 1.712	1.486 1.454	1.956 1.862	2.070 2.690	2.390 2.390	4.979 4.990
30	7.313		6.555	5.317	3.622	2.049	1.640	1.450	1.771	3.358	2.314	4.746
31	6.972		6.798		3.494		1.670	2.136		5.027		4.003
Average	11.060	7.446	6.668	8.528	4.686	2.770	1.720	1.565	2.154	2.179	2.773	3.070
Lowest	6.972	5.694	5.416	5.317	3.494	2.042	1,445	1.375	1.727	1.824	2.314	2.135
Highest	18.200	13.130	8.395	15.630	6.787	3.514	1.992	2.136	2.844	5.027	4.971	4.990
Poak flow	19.12	15.80	8.64	17.93	7.26	3.91	3.26	5.08	3.09	6.47	6.16	5.75
Day of peak	8	4	2	4	10	4	24	31	1	31	1	29
Monthly total												
(million cu m)	29.61	18.01	17.86	22.10	12.55	7.18	4.61	4.19	5.58	5.84	7.19	8.22
Runoff (mm)	42	26	26	32	18	10	7	6	8	8	10	12
Rainfall (mm)	61	41	64	53	41	29	33	82	64	70	21	47
Statistics of	monthly d	lata for pre	vious recor	d (Jan 1969	to Dec 1	993)						
Mean Avg.	5.867	6.018	5.523	4.801	3.707	2.808	2.094	1.876	1.739	2.484	3.304	4.500
flows: Low	2.026	1.728	1.931	2.063	1.767	1.165	0.798	0.621	0.902	1.154	1.264	1.500
(year) High	1992 11.270	1992 12.010	1973 10.240	1973 8.286	1991 7.677	1976 6,851	1976 3.603	1976 5.210	1976 5.028	1991 10.200	1990 9.033	1991 10.640
(year)	1988	1979	1988	1979	1969	1985	1985	1987	1987	1987	1974	1993
Runoff: Avg.	22	21	21	10 -	14	10	8	7	6	. 10	12	17
Low	8	6	7	18 դ 8	14 7	н 10 4	3	2	3	4	5	6
High	43	42	39	31	29	25	14	20	19	39	33	41
Rainfall; Avg.	56	38	48	44	46	54	50	47	50	55	64	55
Low	16	9	12	10	6	10	9	8	2	4	24	27
High	114	78	100	84	97	137	99	116	101	123	147	98
Summary st	tatistics							Facto	ors affecti	ing runoff		
·		_		_			1994					
		FC	or 1994		r record ding 1994	4	As % of pre-1994		w intiuence d/or recha	ed by grour rae.	lowater ab:	straction
Mean flow (m ³	a-1)	4.5	33	3.716		•	122			by industr	rial and/or	
Lowest yearly				1.735		1991				ostractions		
Highest yearly			GE A	5,670		1969		● Au	gmentatio	n from effli	uent return	s.
Lowest months Highest month		1.5 11.0		0.621 12.010		ug 1976 ab 1979						
Lowest daily m		1.3		0.482		ug 1976						
Highest daily m		18.2	00 7 Jan	24.320	13 C	ot 1987						
Peak		19.1		25.290	13 C	Oct 1987	121					
10% exceedan 50% exceedan		8.5 3.0	037 102	7.082 2.836			121 106					
95% exceedan		1.5		1.145			133					
Annual total (m	nillion cu m)	143.	.00	117.30			122					
Annual runoff (204		168			122					
Annual rainfall 1961-90 rai	(mm) infall average	(mm)	,	607 607			100					
			_	•••								

Station and catchment description
Rectangular section Crump profile weir with crest tapping. Replaced 33008 in 1968. Weir subject to drowning and spills on rare occasions.
Since the late 1980s, low flows augmented from groundwater in drought conditions. Geology - Chalk with approx. 85% Boulder Clay cover.
Land use - predominately agricultural with large areas of forest and heathland.

Waveney at Needham Mill 034006

1994

Measuring authority: NRA-A				Grid reference: 62 (TM) 229 811						Catchment area (sq km): 370.0		
First year: 1963				Level stn. (m OD): 16.50						Max alt. (m OD): 65		
Daily mean gauged discharges (cubic metres per second)												
DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	6.913	2.251	3.587	5.700	0.937	0.491	0.392	0.461	2.798	0.453	3.901	0.588
2	10.230	2.174	3.771	5.809	0.890	0.495	0.393	0.445	2.959	0.555	1.631	0.590
3	9.596	8.144	3.792	4.134	0.883	0.490	0.388	0.367	1.362	0.879	1.380	0.584
4	11.460	15.420	3.054	12.190	0.893	0.516	0.377	0.355	0.779	0.961	1.152	0.604
5	14.200	7.086	2.839	13.060	0.880	0.587	0.370	0.361	0.593	0.792	0.990	0.614
6	16.090	4.436	2.233	6.812	0.990	0.553	0.394	0.347	0.515	0.629	0.904	0.585
7	18.810	3.697	2.072	6.398	1.110	0.494	0.389	0.312	0.471	0.557	0.797	0.624
8	13.050	2.908	1.851	7.212	1.975	0.488	0.348	0.305	0.482	0.524	0.755	1.737
9	7.364	2.442	1.761	9.939	1.521	0.496	0.343	0.304	0.469	0.495	0.727	3.133
10	10.400	2.145	1.527	5.999	1.230	0.468	0.328	0.313	0.438	0.475	0.857	1.805
11	9.758	1.998	1.436	4.313	1.111	0.424	0.304	0.392	0.400	0.483	1.136	1.420
12	9.563	1.766	1.436	3.572	0.928	0.376	0.309	0.459	0.389	0.471	1.391	0.842
13	11.200	1.598	1.434	3.392	0.795	0.419	0.354	0.406	0.380	0.461	2.575	1.324
14	7.413	1.526	1.282	3.343	0.769	0.454	0.351	0.330	0.567	0.456	2.218	2.467
15	5.198	1.640	1.854	4.449	0.764	0.464	0.346	0.300	1.230	0.452	1.508	1.982
16	4.614	1.668	1.889	6.560	0.771	0.456	0.325	0.297	1.594	0.439	1.200	1.575
17	4.092	1.649	1.726	4.783	0.701	0.444	0.304	0.293	1.241	0.428	1.006	1.346
18	3.743	1.582	2.212	3.474	0.692	0.427	0.294	0.313	0.811	0.446	0.926	1.562
19	4.103	1.414	5.084	2.892	0.665	0.415	0.297	0.311	0.829	0.448	0.900	1.869
20	3.713	1.431	3.475	2.311	0.622	0.396	0.277	0.299	1.090	0.477	0.842	1.601
21	3.310	1.357	2.509	2.062	0.613	0.421	0.270	0.273	1.090	0.471	0.793	1.331
22	3.031	1.339	2.190	1.767	0.763	0.419	0.266	0.284	0.830	0.505	0.755	1.134
23	3.192	1.799	2.128	1.658	0.770	0.408	0.251	0.273	0.661	0.493	0.723	0.929
24	3.024	4.877	1.902	1.506	0.691	0.396	0.262	0.284	0.589	0.493	0.694	0.866
25	3.321	5.020	2.887	1.344	0.652	0.498	0.252	0.305	0.565	0.537	0.655	0.906
26 27 28 29 30 31	3.916 3.848 3.032 2.348 2.393 2.121	5.046 4.748 3.723	3.104 2.285 2.213 1.883 1.687 1.905	1.002 0.972	0.604 0.569 0.563 0.535 0.527 0.454	0.587 0.471 0.434 0.456 0.433	0.258 0.262 0.443 0.503 0.403 0.431	0.334 0.304 0.292 0.298 0.298 0.379	0.546 0.510 0.471 0.449 0.437	0.531 0.506 0.476 0.662 2.406 6.327	0.639 0.611 0.600 0.594 0.591	1,009 2,477 5,855 4,208 3,747 2,421
Average	6.937	3.389	2.355		0.835	0.463	0.338	0.332	0.851	0.784	1.115	1.669
Lowest	2.121	1.339	1.282		0.454	0.376	0.251	0.273	0.380	0.428	0.591	0.584
Highest	18.810	15.420	5.084		1.975	0.587	0.503	0.461	2.959	6.327	3.901	5.855
Peak flow Day of peak Monthly total (million cu m)	19.54 7 18.58	17.02 4 8.20	5.65 19 6.31	14.77 5 11.24	2.10 8 2.23	0.61 26 1.20	0.52 29 0.91	0.88 31 0.89	4.01 2 2.21	6.91 31 2.10	5.69 1 2.89	6.35 28 4,47
Runoff (mm)	50	22	17	30	6	3	2	2	6	6	8	12
Rainfall (mm)	64	40	57	52	38	32	40	90	59	67	22	47
Statistics of	monthly d	ata for prev	ious recor	d (Dec 1963	to Dec 19	93—inc	omplete or m	issing mont	hs total 0.2	years)		
Mean Avg.	3.910	3.166	2.580	1.928	1.080	0.753	0.519	0.685	0.807	1.135	1.801	2.869
flows: Low	0.609	0.587	0.591	0.487	0.369	0.285	0.242	0.281	0.261	0.330	0.386	0.492
(year)	1973	1992	1973	1974	1974	1974	1990	1973	1964	1989	1989	1964
High	14.260	10.670	7.665	5.646	3.254	4.302	1.197	6.959	9.753	10.260	8.852	8.379
(year)	1988	1979	1981	1983	1969	1985	1987	1987	1968	1987	1974	1965
Runoff: Avg.	28	21	19	14	8	5	4	5	6	8	13	21
Low	4	4	4	3	3	2	2	2	2	2	3	4
High	103	70	55	40	24	30	9	50	68	74	62	61
Rainfall: Avg.	52	37	44	45	45	52	48	49	53	55	63	55
Low	16	10	10	9	5	10	11	7	2	4	25	18
High	122	76	96	86	97	132	93	110	161	118	150	100
Summary st	atistics			Factor 1994					ers affecting runoff			
Mean flow (m³s⁻¹) Lowest yearly mean Highest yearly mean Lowest monthly mean		For 1994 1.941 0.332 Aug				1973 1987 I 1990	As % of pre-1994 110	 Flow reduced by industrial and/or agricultural abstractions. Augmentation from surface water and/or groundwater. 				
Highest monthly mean Lowest daily mean Highest daily mean Peak 10% exceedance 50% exceedance 95% exceedance Annual total (million cu m) Annual rainfall (mm) 1961-90 rainfall average (r		6.93 0.25 18.81 19.54 4.60 0.85 0.29 61.2 165 608	1 23 Jul 10 7 Jan 10 7 Jan 13 13 15 18	14.260 0.165 89.760 113.300 4.025 0.767 0.306 55.67 150 598 594			114 111 98 110 110					
.551-551011		1		554								

Station and catchment description
A compound Crump weir 8.5m wide in the main channel with a single crested Crump in the mill bypass. Sluice action at a mill 2.4 km upstream is infrequent but is evident in flow records. Surface water abstractions, and the use of river gravels as an aquifer, influence flows but the overall impact is minimal. Record affected by the Waveney Groundwater Scheme between 1975 and 1979. Predominantly a Boulder Clay catchment with largely rural land use.

Measuring authority: NRA-T

038001 Lee at Feildes Weir

1994

Catchment area (sq km): 1036.0

First yea		B	•			Level stn.	e: 52 (TL) . (m OD): 2				Catchinent	Max alt. (n	
Daily n	nean n	aturalised	l discharge	es (cubic met	i res per seci	ond)							
DAY		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC
1		12.500	10.200	9.010	16.700	5.980	5.860	4.580	3.210	3.440	2.530	6.380	2.620
2 3		17.900 16.000	9.660 27.300	9.570 9.310	10.100 10.200	6.100 6.240	5.840 6.120	4.670 4.800	3.130 3.150	3.150 3.080	2.790 2.960	4.900 4.290	2.600 2.950
4		22.600	20.600	8.510	20.900	6.380	6.890	4.750	3.180	3.010	2.790	4.800	3.080
5		34.500	13.400	8.350	14.000	6.400	6.460	4.590	3.240	2.870	2.530	6.630	3.240
6		37,400	10.500	7.860	9.370	6.370	5.830	4.860	3.150	2.820	2.540	5.900	3.370
7		35.400	10.900	7.890	9.490	7.620	5.710	4.680	3.090	3.050	2.490	4.770	3.840
8 9		21.400 23.800	10.300 9.920	7.600 7.400	14.400 20.500	7.340 6.490	5.850 5.810	4.450 4.030	3.050 3.620	4.820 3.520	2.430 2.460	4.450 4.760	18.000 9.950
10		41.000	9.460	7.130	32.700	6.080	5.800	3.900	4.360	3.010	2.470	5.190	5.740
11		23.900	9.760	7.070	24.200	5.860	5.570	3.860	5.490	2.890	2.500	4.570	4.780
12		23.600	8.890	7.100	15.900	5.900	5.480	3.890	4.810	3.020	2.450	4.580	4.330
13 14		23,200 17,200	8.580 8.430	7.090 6.840	23.000 15.700	5.800 6.920	5.570 5.450	4.070 3.890	3.770 3.460	2.870 3.670	2.470 2.370	4.530 4.430	3.550 4.050
15		16.000	8.880	7.660	12.100	6.950	5.450	3.550	3.370	5.700	2.400	4.440	3.930
16		14.400	9.550	7.350	10.700	6.350	5.380	3.490	3.410	5.380	2.410	3.990	3.880
17		11,100	9.760	6.870	9.290	8.820	5.370	3.490	3.640	3.470	2.400	3.460	3.830
18		10.900	9,110	7.540	8.900	6.990	5.290	3.480	3.390	3.180	2.390	3.570	5.510
19 20		10.900 10.500	8.400 8.460	7.900 6.810	8.380 6.640	6.250 5.830	5.170 5.220	3.380 3.440	3.240 3.190	3.900 3.880	2.540 3.720	3.690 3.460	5.240 4.390
21		9.550	8.210	6.760	7,150	9.440	5.220	3.340	3.090	3.440	3.090	3.380	4.090
22		9.340	8.250	7.050	7.410	11.000	4.800	3.320	3.040	3.140	6.750	3.390	3.960
23		9.590	12.900	6.830	7.440	9.090	4.750	3.200	2.830	3.070	4.700	3.350	3.880
24 25		9.350 9.350	14.600 10.200	6.630 6.810	7.370 7.080	8.170 7.270	5.100 5.820	3.200 3.260	2.820 2.780	3,130 3,100	3,680 4,110	3.340 3.270	3.850 3.910
								3.140					
26 27		9.100 9.500	10.300 9.740	6.410 6.170	6.820 6.730	6.860 6.420	5.170 4.730	3.140	2.710 2.730	2.960 2.560	4.050 4.090	3.240 3.240	4.150 10.300
28		9.920	9.350	6.300	6.590	6.370	4.800	4.070	2.580	2.500	3.600	3.210	10.600
29 30		9.090 8.860		6.560 6.650	6.480 6.360	6.210 6.000	4.650 4.530	3.690 3.360	2.560 2.540	2.520 2.470	5.550 9.320	2.810 2.660	15.300 13.200
31		8.390		9.200	0.300	5.980	4.550	3.260	2.700	2.470	10.400	2.000	8.900
Average	,	16.980	10.910	7.427	12.090	6.886	5.456	3.833	3.269	3.321	3.580	4.156	5.839
Lowest		8.390	8.210	6.170	6.360	5.800	4.530	3.140	2.540	2.470	2.370	2.660	2.600
Highest		41.000	27.300	9.570	32.700	11.000	6.890	4.860	5.490	5.700	10.400	6.630	18.000
Monthly	total												
(million o		45.47	26.40	19.89	31.33	18.44	14.14	10.27	8.76	8.61	9.59	10.77	15.64
Nat'ised	1												
runoff (n	nm)	44	25	19	30	18	14	10	8	8	9	10	15
Rainfall ((mm)	79	44	47	67	69	23	26	36	60	85	32	73
Statist	tics of	monthly o	lata for pre	evious recor	d (Oct 188	3 to Dec 1	993—inco	mplete or m	issing mont	hs total 2.	2 years)		
Mean	Avg.	8.351	8.324	7.507	5.995	4.950	3.763	3.118	2.905	2.882	3.931	5.445	7.036
nat'ised		1.718	1.525	1.607	1.640	1.408	1.072	1.019	0.801	0.840	1.074	1.369	1.564
	(year) High	1992 22.830	1992 25.730	1944 30.700	1944 19.270	1944 13.810	1949 9.592	1949 7.420	1949 8.707	1949 8.218	1934 17.320	1934 16.730	1991 19.130
	(year)	1928	1919	1947	1919	1919	1903	1889	1917	1968	1903	1916	1929
Nat'ised	Avg.	22	20	19	15	13	9	8	8	7	10	14	18
runoff:	Low High	4 59	4 60	4 79	4 48	4 36	3 24	3 19	2 23	2 21	3 45	3 42	4 49
Rainfall: (1936-		57 10	41 3	46 3	45 5	49 7	51 5	55 8	57 3	55 3	62 4	64 8	58 15
1993)		132	117	135	104	112	137	104	124	129	157	173	129
Summ	ary sta	atistics							Fact	ors affect	ting runoff		
(naturali:	sed flow	/S)	-	1004				1994	a F1-	:=6=	ed by grour		
			Г	or 1994		or record eding 1994		As % of ore-1994		d/or recha		idwater ab	Subcion
Mean flo			6.	954	5.33			130			for public v		ies.
Lowest Highest					1.61 11.51		1934 1919				d by indust bstractions		
Lowest	monthly	mean		269 Aug	0.80	1 A	ug 1949				on from effl		s.
Highest Lowest				980 Jan 370 14 Oct			lar 1947 ep 1949						
Highest			41.				lar 1947						
10% 24	ceedanc	n	10	990	9.33	1		118					
50% axe	ceedanc	0	5.	461	3.69	7		148					
95% ex				551 130	1.58			161 130					
Annual i		llion cu m) nm)	218).30 2	168.4 163	•		130					
Annual r	rainfall (ı	mm)	64		640			100					
1961	ı-90 rain	fall average	(mm)		630								

Grid reference: 52 (TL) 390 092

Station and catchment description
Thin-plate weir (insensitive - 29m wide) and 3 vertical-lift sluices; completed 1978 to improve range and precision of flow measurement. Model rated. All flows (bar lockages) now contained but Ryemeads STW affluent bypasses. Pre-1978: barrage of gates/sluices; no peak flows prior to 1965, low flows probably under-estimated. Gauging instigated by Beardsmore in 1850s. Significant g/w abstraction; net export from catchment. Naturalised flows (New Gauge abstraction only) from 1883. A mainly pervious (Chalk) catchment. Predominantly rural headwaters; significant urban growth in lower valleys.

Mimram at Panshanger Park 038003

1994

Measu	ring auth		т		Gri						Catchmei		
			charges (c	ubic metres	per second)	Level stn.	(m QD); 4	47.10				Max ait. (n	1 (UU): 195
DAY		•	-		-	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC
1		1.080	1.400	1.180	1.250	0.967	0.904	0.703	0.608	0.593	0.492	0.552	0.481
2		1.060	1.290	1.180	1.120	0.959	0.895	0.694	0.612	0.527	0.544	0.530	0.481
													0.542
5	Intersection part years Intersection Continued Continued		0.532 0.604										
		-											
													0.553 0.601
8													0.948
													0.578
ΙŲ		1.630	1.240	1.110	1,190	0.970	0.903	0.674	0.805	0,512	0.471	0.535	0.544
11													0.520
													0.510
													0.535 0.515
15													0.512
16		1 390	1 240	1 130	1 120	0.683	0.842	0.649	0.594	0.566	0.450	0.508	0.505
17													0.535
18													0.697
19													0.527
20		1.340	1.190	1.100	1.100	0.963	0.781	0.031	0.563	0.507	0.465	0.501	0.516
21													0.511
22													0.507
24													0.504
25													0.512
26		1 310	1 210	1.070	1.070	1 030	0.750	0.595	0.565	0.500	0.547	0.484	0.567
27													0.707
28			1.180										0.589
29													0.766
31					0.300		0.090			0.462		0.463	0.649
	_	1 240	4 272	1 125	4 427	1.015	0.024		0.600	0.547	A E 10	0.536	0.500
													0.565
Highest													0.948
Peak flo	nw.	2 24	2 19	1 64	1.53	1.55	1.26	1 79	1 47	1.08	1.33	1 17	1,61
													8
								4.70					
(million	cu m)	3.59	3.08	3.04	2.95	2.72	2.10	1.78	1.61	1.42	1.39	1.30	1.52
	3		11										
Kainfall	(mm)	91	49	50	65	68	23	24	40	62	80	36	80
Statis	tics of 1	monthly d	ata for pre	vious recor	d (Dec 195:	2 to Dec 19	93)						
Mean	Avo.	0.571	0.630	0.650	0 641	0 599	0.547	0.476	0.435	0.410	0.416	0.450	0.508
flows:													0.189
													1973
													1.005 1960
		7501											
Runoff:													
													20
Rainfall	Aun	56	41	47	40	50	50	55	67	5.7	62	61	62
1101111011													13
	High	121	99	116	105	115	122	123	127	121	171	151	141
Sumn	nary sta	tistics							Fact	ors affecti	ng runoff		
	-		F-	- 1004	-				# Ela	:afl	-	disconnection of	
			ro	r 1994								dwater aps	straction
			0.8	44				160					
									agı	icultural at	stractions.		
			0.5	18 Oct									
Peak	daily me	an											
	ceedance	•											
	1,340												
Annual	rainfall (m	nm)	668		655								
196	1-90 rainf	all average (mm)		656								

Station and catchment description
Critical-depth flume; 5m overall width. Theoretical calibration confirmed by gaugings. All flows contained. Appreciable net export of water (considerable groundwater abstraction in headwaters). Very high baseflow component. A predominantly permeable catchment (Upper Chalk overlain by glacial deposits near headwaters); mainly rural but some urbanisation in the lower valley.

Thames at Kingston 039001

Measuring au First year: 18		\- Т		(ce: 51 (TQ) tn. (m OD):				Catchmer		:m): 9948.0 m OD): 330
Daily mean	gauged di	scharges	cubic metre	s per secon	d)							
DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC
1 2	232.000 244.000	130.000 144.000	145.000	155.000	50.600	45.700	13.200	8.940	11.600	9.260	113.000	29.400
3	254.000	186,000	132.000 117.000	142.000 115.000	49.500 43.000	43.300 44.300	16.800 14.900	8.370 8.010	13.200 8.410	9.650 9.530	60.200 32.800	42.800 54.000
4	285.000	238.000	111.000	140.000	44.900	52.900	11.900	8.580	9.530	9.320	43.900	62.100
5	324.000	197,000	104.000	140.000	48.500	57.500	12.600	7.540	8.820	8.590	149.000	57.300
6	339.000	171.000	100.000	111.000	51.700	50.500	9.900	7.410	6.790	8.200	120.000	76.200
7	349.000	206.000	98.100	102.000	52.500	46.400	12.600	18.800	8.810	8.560	80.700	92.200
8 9	315.000 322.000	184.000 151.000	95.000 92.900	110.000 181.000	54.800	38.200	17.300	23.100	10.200	9.240	54.800	193.000
10	384.000	131.000	88.900	181.000	49.000 42.700	33.100 34.100	19,100 16,800	19.200 16.300	8.600 8.800	8.540 11.500	64.500 65.300	274.000 205.000
											00.000	203.000
11 12	377.000 336.000	155.000 192.000	83.500 83.800	147.000 114.000	43.300 47.200	33.300 33.000	13.000 12.500	17.700 14.500	9.020 9.250	12.300 9.090	60.500	121.000
13	335.000	175.000	80.800	110.000	46.900	31.200	10.200	11.600	10.000	12.200	69.300 59.100	96.100 79.100
14 15	305.000 286.000	155.000	77.700	106.000	53.300	24.700	10.600	10.200	10.100	10.400	63.000	65.600
15	280,000	130.000	78.400	94.500	62.900	22.700	9.730	11.900	22.600	9.670	69.700	62.800
16	291.000	126.000	78.300	97.200	55.400	20.000	9.330	20.700	28.600	9.080	48.500	54.900
17 18	269.000 232.000	121,000 117,000	75.100 74.600	87.500 80.300	82.400	19.200	9.560	16.900	18.500	8.910	42.100	54.800
19	211.000	118.000	79.000	67.600	84,100 58,900	20.200 19.600	9.830 9.100	11,000 11,000	14.700 16.000	7.860 9.970	42.500 77.400	79.200 116.000
20	185.000	109.000	77.600	72.000	46.700	19.000	9.220	10.200	20.900	13.400	74.500	101.000
21	166.000	99,000	75.100	67.800	71.500	23.000	0.740	0.000		40.400		
22	154.000	98.700	73.200	62.700	115.000	26.900	9.740 9.330	8.600 8.510	11.200 12.900	10.400 24.200	53.500 38.200	77.200 62.400
23	145.000	146.000	80.100	77.200	95.300	28.300	9.000	9.230	13.400	27.700	45.000	58.400
24 25	155.000 171.000	173.000 167.000	77.300 72.400	77.900 67.800	78.400 72.400	29.700 40.600	10.400	9.430 9.610	9.750	9.130	39,100	55.400
			72.400	07.000	72,400	40.000	10.400	3.010	16.800	22.400	32.100	54.900
26 27	167,000	156.000	71.400	63.900	98.300	28.700	8.880	9.140	11.300	19.600	33,100	72.000
28	158.000 156.000	162,000 163,000	67.100 65.500	52.500 57.100	127.000 96.600	27.500 25.700	9.100 10.000	9.190 8.150	8.180 8.040	9.150 9.710	36.100 33.400	107.000 161.000
29	146.000	•	58.800	55.400	60.100	20.300	10.100	9.100	7.540	17.400	31.100	215.000
30 31	129,000 131,000,		66.800 80.300	52.900	53,300	13.200	8.770	8.830	7.810	55.100	29.100	240.000
.	101.500,		00.500		52.600		8.680	12.200		131.000		192.000
Average	243.600	153.600	85.830	99.610	64.150	31.760	11.370	11.740	12.050	17.130	58.720	103.600
Lowest Highest	129.000 384.000	98.700 238.000	58.800 145.000	52.500 181.000	42.700 127.000	13.200 57.500	8.680 19.100	7.410 23.100	6.790 28.600	7.860 131.000	29.100	29.400
_				101.000	127.000	37.300	13.100	23.100	20.000	131.000	149.000	274.000
Peak flow Day of peak	405.00 10	247.00 4	166.00 1	206.00	162.00	73.20	28.70	67.40	48.30	159.00	198.00	308.00
Monthly total	10	•	1	10	27	25	24	9	7	31	5	9
(million cu m)	652.60	371.60	229.90	258.20	171.80	82.32	30.46	31,44	31.22	45.88	152.20	277.50
Runoff (mm)	68	37	23	26	17	8	3	3	3	5	15	28
Rainfall (mm)	99	64	51	54	80	25	21	49	77	83	59	95
Statistics of	f monthly a	data for or	avious raco	ord Lian 19	93 to Dec 1	0031						
		Jata IÇI PI	UTIONS ISCU	JIU (Jan 10	OJ LU DIĘC	333)						
Moan Avg.	125.600	122.400	102.900	74.740	52.680	36.620	23.150	21.500	23.180	38.840	71.500	101.100
flows: Low (year)	18.570 1976	12.290 1976	9.426 1976	8.975 1976	4.391 197 6	3.302 1976	2.079 1921	1.912 1976	0.688 1976	3.144 1934	4.248 1990	8.350
High	325.300	342.000	359.500	188.800	171.700	171.600	72.290	79.330	123.900	179.800	334,000	1990 333.900
(year)	1915	1904	1947	1916	1932	1903	1968	1931	1927	1903	1894	1929
Runoff: Avg.	34	30	28	19	14	10	6	6	6	10	19	27
Low	5	3	3	2	1	1	1	1	0	1	1	2
High	88	86	97	49	46	45	19	21	32	48	87	90
Rainfall: Avg.	65	49	52	49	54	53	58	63	58	73	72	72
Low High	14 137	3 127	3 142	3 104	7 137	3 137	8 130	3 147	3 157	5	8	13
_		,_,		104	107	137	130	147	157	188	188	185
Summary st	tatistics						1004	Fact	ors affect	ing runoff		
		F	or 1994		For record		1994 \s%of	● Re	servoir(s) i	n catchme	nt.	
Man 6 (-3	1	74	050		eceding 199	4 рі	e-1994	• Flo	ow influenc	ed by grou	ndwater ab	straction
Mean flow (m ³ Lowest yearly		74.	050	65.9 20.4		1934	112		d/or recha		vater supp	lion
Highest yearly				120.0		1951					rial and/or	
Lowest month		11. 243.	370 Ju 600 Ja			ep 1976 far 1947			ricultural al			
Lowest daily m			790 6 Sei			Oct 1976			ugmentatio pundwater.		face water	and/or
Highest daily m	nean	384.	000 10 Ja	n 1059,0		ov 1894					uent return	S .
Peak 10% exceedan	iće	405. 171.		n 160. 1	00		107					
50% exceedan	ce	53.	260	41.3			129					
95% exceedan			639	8.6			100					
Annual total (n Annual runoff (2335 23		2080. 209			112 112					
Annual rainfall	(mm)	75		718			105					
1961-90 rai	infall average	(mm)		706	6							

Station and catchment description
Ultrasonic station commissioned in 1974; multi-path operation from 1986. Full range. No peak flows pre-1974 when dmfs derived from Teddington weir complex (70m wide); significant structural improvements since 1883. Some underestimation of pre-1951 low flows. Baseflow sustained mainly from the Chalk and the Oolites. Runoff decreased by major PWS abstractions - naturalised flows available. Diverse topography, geology and land use which - together with the pattern of water utilisation - has undergone important historical changes.

Thames at Kingston 039001

1994

Measuring auti	harim: NDA	_		· ·	irid referenc	·a· 51 (TO	177 698			Catchman	t area (so k	m): 9948.0
First year: 188		-1		`		n. (m OD):				ooto,,,,,o.,		n OD): 330
Daily mean r	naturalised	d discharg	es (cubic me	tres per se	cond)							
DAY	JAN	FEB	MAR	APR	MAY 70.300	JUN 66.700	JUL 38.500	AUG 28.400	SEP 35.300	ОСТ 33.200	NOV 138.000	DEC 52.900
1 2	251.000 262.000	141.000 159.000		179.000 164.000	69.500	64.000	39,700	29.800	38.900	32.600	84.800	56.600
3	272.000	203.000		136.000	65.200	63.700	38.400	29.500	32.600	33.500	59.300	56.200
4	300.000	255.000	132.000	161.000	71.000	71.400	37.100	30.000	32.900	31.800	73.800	65.500
5	340.000	217.000	125.000	161.000	74.200	74.500	39.300	31.600	31.700	29.000	174.000	75.900
6	355.000	191.000	121.000	134,000	74.900	67.700	37.200	32.100	27.600	30.000	145.000	103.000
7	368.000	224.000	125.000	126.000	74.800	64.500	38.300	27.400	27.900	29.100	109.000	118.000
8	335.000	200.000		133.000 204.000	77.600 70.700	59.900 54.900	41.700 42.400	30.000 28.900	34.700 31.900	29.100 28.500	84.800 94.200	216.000 301.000
9 10	342.000 400.000	170.000 150.000		202.000	64.400	56.300	40.100	30.300	36.700	31.200	94 800	230.000
											00.400	147.000
11	394.000 356.000	177.000 215.000	105.000 104.000	165.000 129.000	66,100 69,800	53.900 54.100	39.700 39.200	38.300 39.200	36.600 40.900	32.100 30.700	86,400 94,300	147.000 122.000
12 13	355.000	197.000	103.000	126.000	66.600	55.500	31.800	39.500	38.900	31.800	84.000	101.000
14	327.000	172.000	97.500	121.000	73.400	49.400	33.600	34.700	36.900	29.800	85.700	91.300
15	307.000	146.000	98.300	113.000	82.900	47.500	32.700	28.900	49.600	29.100	92.500	88.600
16	311.000	145.000	97.400	117.000	76.000	46.200	33.400	31.000	63.700	28.600	72.900	84.200
17	288.000	142.000	96.800	108.000	99.700	36.000	33.000	29.900	54.200	29,100	67.900	81.200
18	252.000	143.000	95.200	101.000 90.900	102.000 76.000	36.000 35.500	32.100 31.300	28.600 29.000	49.900 47.500	28.700 29.700	69.100 101.000	103.000 136.000
19 20	230.000 204.000	141.000 129.000	99.000 98.800	95.200	66.100	40.400	31.400	28.500	52.300	33.100	98.500	126.000
											70.000	102.000
21	184.000	127.000	96.700 95.900	91.300 85.300	93.700 134.000	35.200 42.200	28.900 29.500	27.800 27.400	42.700 38.400	35.500 51.800	79.200 65.300	102.000 86.600
22 23	173.000 165.000	127.000 174.000	103.000	102.000	115.000	46.900	29.900	26.300	38.800	63.500	70.800	80.200
24	173.000	199.000	99.700	97.700	97.800	49.100	29.300	25.800	29.800	40.100	64.500	76.200
25	191.000	192.000	94.000	88.600	94,100	58.200	31.600	27.200	34.600	55.700	56.300	76.100
26	190.000	178.000	92,200	83.200	119.000	46.400	30.100	30.700	38.900	53.500	55.300	93.500
27	181.000	186.000	87.700	72.200	148.000	46.000	30.100	29.400	36.300	39.100	58.400	129.000
28	173.000	188.000	87.300 80.700	79.300 75.500	116.000 79.400	47.600 47.100	30.000 32.800	27.600 24.400	36.400 36.500	36.000 46.000	59.500 55.600	183.000 238.000
29 30	159.000 142.000		87.300	72.600	74.000	36.300	31.900	25.200	32.300	86.300	52.900	262.000
31	143.000		102.000		73.900		30.500	27.900		161.000		214.000
Average	262.000	174.600	107.600	120.500	85.040	51.770	34.370	29.850	38.850	41.260	84.260	125.700
Lowest	142.000	127.000	80.700	72.200	64.400	35.200	28.900	24.400	27.600	28.500	52.900	52.900
Highest	400.000	255.000	167.000	204.000	148.000	74.500	42,400	39.500	63.700	161.000	174.000	301.000
Monthly total (million cu m)	701.80	422.30	288.30	312.20	227.80	134.20	92.06	79.95	100.70	110.50	218.40	336.60
(minor co m)	701.00	422.30	200.00	\$12.20	227.00	104.20	52.55					
Nat'ised	71	42	29	31	23	13	9	8	10	11	22	34
runoff (mm) Rainfall (mm)	71 99	42 64	29 51	54	80	25		49	77	83	59	95
Statistics of	monthly	data for pr	revious reco	ord (Jan 18	383 to Dec	1993)						
Mean Avg.	137.100	133.900	114.500	86.200	64.480	48.570	35.200	32.480	34.430	50.410	82.970	112.500
nat'ised Low	32.210	25,100	27.320	26.510	18.200	13,470	10.760	11.040	11.230	15,120	17.750 1921	22.480 1921
flows: (year)	1905 332.900	1905 348,100	1944 370.900	1976 199.800	1944 181.300	1944 178.700	1921 88.840	1976 88.780	1898 139.400	1934 185.300	339.600	343.900
· High (year)	1915	1904	1947	1951	1932	1903	1968	1931	1968	1903	1894	1929
· ·	477	20	41	22	17	13	9	9	9	14	22	30
Nat'ised Avg. runoff: Low	37 9	33 6	31 7	22 7	5	4	ž	3	3	4	5	6
High	90	88	100	52	49	47	24	24	36	50	88	93
Rainfall: Avg.	65	49	52	49	54	53	58	63	58	73	72	72
(1883- Low	14	3	3	3	7	3	8	3	3	5	8	13
1993) High	137	127	142	104	137	137	130	147	157	188	188	185
Summary st	tatistics							Fact	tors affect	ing runoff		
(naturalised flo	ws)		For 1994		For record		1994 As % of	● Re	eservoir(s)	in catchme	ent.	
					eceding 199	14	pre-1994	• Flo	ow influenc	ed by grou		ostraction
Mean flow (m ³		95	.920	77.4		1934	124		d/or recha	irge. for public v	water sunc	dies
Lowest yearly Highest yearly				30.9 131.8		1951				d by indust		
Lowest monthl			.850 Au	g 10.7	760	Jul 1921				bstractions		
Highest month			.000 Jai			Mar 1947			ugmentatio oundwatei	on from sui	rrace water	r and/or
Lowest daily m Highest daily m			.400 29 Aug .000 10 Jai			Jul 1934 Nov 1894				on from eff	luent returi	ns.
•							442					
10% exceedan 50% exceedan			.600 .030	171.1 53.1			113 139					
95% exceedan			.790	18.5			155					
Annual total (m	nillion cu m)		5.00	2444			124					
Annual runoff (Annual rainfall			04 57	24: 71:			124 105					
	(11111) infall average		٠.	70								
-												

Station and catchment description
Ultrasonic station commissioned in 1974; multi-path operation from 1986. Full range. No peak flows pre-1974 when dmfs derived from Teddington weir complex (70m wide); significant structural improvements since 1883. Some underestimation of pre-1951 low flows. Baseflow sustained mainly from the Chalk and the Oolites. Runoff decreased by major PWS abstractions - naturalised flows available. Diverse topography, geology and land use which - together with the pattern of water utilisation - has undergone important historical changes.

039020 Coln at Bibury

1994

	iring auth ear: 196	nority: NRA 3	т.			d reference Level stn.					Catchmer	nt area (sq I Max alt. (n	cm): 106,7 n OD): 330
Daily	mean g	auged dis	charges (co	ibic metres	per second)								
DAY 1 2		JAN 3.110 3.310	FEB 3.120 3.040	MAR 2.950 3.000	APR 2.020 1.930	MAY 1.700 1.670	JUN 1.300 1.300	JUL 0.887 0.894	AUG 0.699 0.691	SEP 0.583 0.573	OCT 0.544 0.558	NOV 0.593 0.581	DEC 0.987 0.973
4 5		3.780 4.360	3.040 3.010	3.000 2.990	2.030 2.020	1.630 1.610	1.320 1.300 1.310	0.884 0.882 0.864	0.694 0.692 0.680	0.579 0.565 0.560	0.572 0.557 0.562	0.598 0.623 0.650	0.988 1.000 1.090
7 8		4.720 4.770	3.020 3.020	2.870 2.820	2.050 2.180	1.560 1.520	1.230 1.200	0.834 0.853	0.661 0.647 0.652	0.566 0.571 0.575	0.550 0.532 0.536	0.655 0.651 0.670	1.110 1.220 1.360
10		4.590	3.020	2.700	2.280	1.450	1.150	0.850	0.659	0.565	0.537	0.748	1,410 1,540
12 13 14		4.660 4.660 4.780	3,010 3,000 3,030	2.600 2.510 2.460	2.410 2.340 2.360	1.400 1.360 1.380	1.090 1.100 1.110	0.813 0.838 0.808	0.664 0.647	0.571 0.554	0.526 0.546	0.779 0.808	1.650 1.730 1.790 1.800
16		4.770	3.050 3.040	2.420 2.360	2.360 2.360	1.370 1.340	1.080 1.070	0.815 0.826	0.642 0.643	0.592 0.595	0.525 0.520	0.860	1.800
17 18 19 20		4.520 4.360 4.200	3.020 2.980 2.940 2.880	2.310 2.250 2.220 2.170	2.320 2.280 2.250 2.200	1.330 1.290 1.260 1.260	1,060 1,090 1,070 1,050	0.808 0.787 0.780 0.753	0.640 0.631 0.637 0.618	0.579 0.575 0.591 0.597	0.521 0.515 0.503 0.517	0.901 0.940 0.950 0.970	1.790 1.850 1.790 1.770
21 22 23		4.060 3.940 3.850	2.830 2.820 2.850	2.130 2.120 2.060	2.160 2.120 2.100	1.300 1.310 1.290	1.060 1.040 1.020	0.744 0.747	0.620 0.618	0.595 0.582	0.514 0.526	0.968 0.974	1.760 1.750
24 25		3.750 3.630	2.770 2.780	2.010 1.990	2.040 1.990	1.250 1.330	0.981 1.010	0.735 0.735	0.613 0.612	0.576 0.571	0.506 0.509	0.973 0.982	1.750 1.740 1.750
27 28 29 30		3.450 3.320 3.250 3.170	2.820 2.820 2.870	1.910 1.930 1.920 1.850 1.860	1.860 1.820 1.770	1.380 1.330 1.330	0.952 0.922 0.905	0.731 0.726 0.718	0.583 0.583 0.579	0.562 0.560 0.557	0.509 0.507 0.498 0.529 0.606	0.998 1.000 1.010 0.999	1.770 1.820 1.870 1.990 2.080
Averag		3.120 4.082 3.110	2.965	1.970 2.412	2.115	1.290	1.106	0.715 0.799	0.575 0.636	0.573	0.610 0.534	0.835	2.190 1.609
Highest	t	4.870	3.120 3.30	3.010	2.410	1.700	1.320	0.894	0.699	0.597	0.610	1.010	0.973 2.190 2.25
2 3.310 3.040 3.000 1.930 1.870 1.870 1.300 0.884 0.884 0.891 0.573 0.588 0.881 4.84 0.379 0.575 0.589 0.881 4.84 0.379 0.575 0.589 0.881 4.84 0.379 0.575 0.589 0.881 4.84 0.84 0.879 0.575 0.589 0.881 4.84 0.84 0.879 0.575 0.682 0.882 0.886 0.881 0.884 0.884 0.884 0.898 0.580 0.585 0.685 0.681 0.882 0.888 0.881 0.889 0.881 0.884 0.884 0.889 0.880 0.885 0.88		31 4.31											
													40 122
Statis	tics of I	monthly d	ata for prev	rious recor	d (Oct 1963	to Dec 19	93)						
	Low (year) High	0.374 1976 3.494	0.380 1976 4.414	0.383 1976 3.385	0.371 1976 3.415	0.334 1976 2.599	0.290 1976 2.290	0.243 1976 1.397	0.207 1976 1.085	0.202 1976 0.908	0.259 1976 1.299	0.332 1990 2.714	1.602 0.375 1975 3.492 1992
Runoff:	Low	9	9	10	9	8	7	6	5	5	7	8	40 9 88
Rainfall:	Low	13	8	15	5	5	9	15	13	17	8	30	86 20 159
Summ	nary sta	tistics						1004	Facto	rs affecti	ng runoff		
Lowest Highest	yearly m	ean ean	1.58	3	prece 1.323 0.400 1.771		р 1976	As % of re-1994	and	or rechar	ge.		
Highest Lowest Highest Peak 10% ex 50% ex 95% ex Annual	monthly daily made daily made daily made dance deadance deadance total (mill runoff (m	mean an an ion cu m) m)	4.08 0.49 4.87 4.93 3.06 1.21 0.53 49.9 468	2 Jan 8 28 Oct 0 15 Jan 0 15 Jan 9 5 3	0.202 4.414 0.190 5.310 5.480 2.584 1.066 0.395 41.75	Feb 19 Aug 11 Feb	1976 1990 1976 1990	114 135 120 120					
			mm) 886					110					

Station and catchment description
Crump weir (9.1m broad). Modular throughout the range. Some overspill onto floodplain before design capacity reached. Limited impact of artificial influences on river flows - net import (sewage effluent). Baseflow dominated flow regime. Pervious (Oolitic Limestone) catchment on the dip-slope of the Cotswolds; predominantly rural.

040003 Medway at Teston

1994

Measuring aut First year: 19		s		Gri	id reference Level str	e: 51 (TQ) n. (m OD):				Catchment	area (sq kı Max alt. (r	m): 1256.1 n OD): 267
Daily mean	gauged dis	charges (c	ubic metres p	er second)								
DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	96.710	12.070	10.060	35.470	5.670	5.745	3.498	3.064 2.454	18.890 5.777	3,178 3,159	62.430 20.860	2.400 4.525
2	82.850	12.400 44.030	11.100 9.484	19.440 16.320	5.489 5.355	5.629 5.584	3.834 3.498	2.270	3.020	3.670	14.450	7.140
3 4	87.590 133.200	62.300	8.464	35.470	6.105	9.344	3.562	1.974	3.008	3.491	13.100	16.020
5	140.900	57.930	8.023	22.710	6.233	10.640	3.577	2.120	3.365	2.583	25.360	17.220
_	407.000	40.470	7.000	14 510	C 11C	6.723	3.371	2.114	2.358	2,726	21.690	18.030
6 7	137.200 127.300	19.470 24.250	7.623 7.546	14.510 15.060	6.116 8.922	5.290	3.196	2.183	3.762	2.505	12.650	56.340
8	65.260	18.460	8.409	41.850	11,490	7.691	4.027	2.207	4.225	2.710	9.919	118.300
9	70.230	15.890	7.406	64.590	6.475	7.369	3.716	2.035	4,195	2.746	5.475	143.300
10	115.700	13.630	6.868	67.740	5.326	5.394	3.429	2.153	4.662	2.906	10.850	76.410
11	81,130	12.910	5.469	45.030	5.125	4.718	2.975	7.028	5.956	2.706	10.940	51.020
12	85.570	12.350	6.327	25.030	5.754	4,488	2.865	4.784	14.390	2.403 2.567	9.656 14.660	21.760 16.530
13	77.970	10.910	8.170 6.837	24.660 21.150	5.240 9.537	4.149	4.297 3.421	2.354	7.192 13.620	2.628	17.210	14.230
14 15	40.720 24.930	10.140 10.460	6.647	45.030	10.410	4.824	2.867	2.085	16.720	2.611	15.590	11.840
			•						04.000	2 020	7 761	10.020
16	25.260	14.120	5.969	36.620 23.450	10.670 25.8 5 0	4.091 3.166	2.815 2.599	2.460 2.152	21.080 7.638	2.630 2,551	7.761 4.448	10.830 9.935
17 18	23.640 19.900	13.850 11.920	5.856 4.736	17,780	25.250	3.725	2.756	2.293	5.262	2.469	6.975	20.370
19	21.050	10.100	7.860	14.550	20.310	3.625	2.425	2.295	5.186	2.947	12.620	19.870
20	18.180	9.684	8.475	12.620	13.020	3.569	2.843	2.110	10.740	5.796	8.183	13.010
21	16.220	8.797	6.648	9.685	21.650	3.744	1.974	2.140	7.692	4.901	5.616	10.900
22	15.070	10.250	6.957	9.557	24.590	3.676	2.285	2.200	5.062	23.390	4.691	10.710
23	15.650	24.090	10.230	9.114	16.570	3.322	2.430	2.099	4.379	32.230	4.228	9.733
24	16.560	23.300	8.688 7.644	8.333 7.914	11.310 10.090	10.400 13.880	2.359 2.396	2.180 5.310	3.773 3.750	14.310 65.300	3,915 3,707	9.279 12.560
25	18.370	16.780	7.044	7.314	10.030	13.000	2.000	5.510	5.750	00,000		
26	20.680	14.240	6.783	7.234	16.610	5.697	2,218	3.616	3.695	36.170	3.128	25.040
27	17.450	12.210	6.097	6.803	14.950	4.195 3.845	2.417 3.340	2.716 2.422	3.405 3.088	12.650 7.938	2.967 2.775	49.660 56.070
28 29	16.470 13.640	10.960	4,342 7,943	6.714 6.581	10.100 8.205	3.639	2.764	2.285	3.066	19,130	2.692	85.210
30	13.390		5.008	5.988	6.395	3.388	3.138	2.360	3.122	65.780	2.566	50.030
31	11.950		18.400		6.128		3.078	6.606		109.400		25.530
Average	53.250	18,480	7.744	22.570	11.130	5.524	3.031	2.797	6.736	14.520	11.370	32.060
Lowest	11.950	8.797	4.342	5.988	5.125	3.166	1.974	1.974	2.358	2.403	2.566	2.400
Highest	140.900	62.300	18.400	67.740	25.850	13.880	4.297	7.028	21.080	109.400	62.430	143.300
Peak flow												
Day of peak												
Monthly total	440.00	44.71	20.74	58.49	29.80	14.32	8.12	7.49	17.46	38.90	29.47	85.86
(million cu m)	142.60	44.71	20.74	30.43	25.60	14.32	G. 12	,	17.40	00.00		
Runoff (mm)	114	36	17	47	24	11	6	6	14 89	31 114	23 45	68 117
Rainfall (mm)	119	47	52	81	91	51	35	84	89	114	45	(1)
Statistics o	f monthly o	tata for pro	evious reco	d (Oct 195	i6 to Dec 1	993inc	omplete or m	issing mon	ths total 1.1	7 years)		
M A	22.070	18.990	13.870	10.640	6.663	4.651	3.029	3.204	4.534	8.772	14.870	19.230
Mean Avg. flows: Low	22.070 3.287	4.781	3.320	2.328	1.751	1.141	1,118	0.578	1.068	1.401	2.339	3.670
(year)		1992	1993	1976	1976	1976	1976	1976	1959	1972	1978	1988
High	48.240	59.480	31.600	23.550	20.820	21.690	7.553 1980	9.969 1985	30.090 1968	53.220 1987	66.830 1960	39.210 1993
(year)	1988	1990	1975	1983	1978	1964	1960		1300	1307		
Runoff: Avg.	47	37	30	22	14	10	6	7	9	19	31 5	41 8
Low	7 103	10 115	7 67	5 49	4 44	2 45	2 16	1 21	2 62	3 113	138	84
High	103	113	٠,	43	44							
Rainfall: Avg.	74	49	56	52	51	54	53 9	56 10	68 5	78 5	80 14	80 15
Low High	13 187	3 130	3 113	7 108	3 112	8 127	103	122	183	198	169	168
=								Ena		ina minoff		
Summary s	tatistics						1994	Fac	LUIS AILECI	ting runoff		
		F	or 1994		For record	_	As % of	● Re	eservoir(s)	in catchme	nt.	etroction
88 fl (m	3 h	15	790	pre 10.84	ceding 199 In	4	pre-1994 146		ow influence id/or recha	ed by grou erge.	nowater at	straction
Mean flow (m Lowest yearly		15.	750	6.07		1989	,0	● Ä	bstraction	for public v	water supp	lies.
Highest yearly				19.33		1960				on from sur	face water	and/or
Lowest month			797 Aug			ug 1976		gr	oundwater	r,		
Highest month			250 Jan 974 21 Jul			lov 1960 lug 1976						
Lowest daily r Highest daily r		143.			DO 4 N	lov 1960						
Peak				294.50	00 4 N	lov 1960						
10% exceeda			030	24.36			148 160					
50% exceeda 95% exceeda			646 300	4.78 1.45			158					
Annual total (3.00	342.			146					
Annual runoff	(mm)	39	6	272			146					
Annual rainfal		92	5	751			123					
1961-90 ra	ainfall average	humi		744								

Station and catchment description
Crump profile weir plus sharp-crested weir superseded insensitive broad-crested weir. Flows greater than 27 cumecs measured at well calibrated river section 2km d/s (East Farleigh), updating of primary record incomplete. Responsive regime. Complex water utilisation. Significant artificial disturbance; low flow augmentation from Bewl Water (via River Teise): >20 yrs of naturalised flows available. Mixed geology; impervious formations constitute up to 50% of the catchment. Diverse land use with significant areas of woodland and orchard.

040011 Great Stour at Horton

1994

Measuring First year:	authority: NRA 1964	≀- S			reference Level stn.		116 554 12,50			Catchmen	it area (sq k Max alt. (m	
Daily me	an gauged di	scharges (d	ubic metres (per second)								
DAY	NAL	FEB	MAR	APR .	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	16.400	4.327	3.593	6.573	3.323	2.410	1.846	1.318	4.881	1.691	9.091	2.194
2 3	15.970 14.690	4,225 11,590	3.985	4.205	3.226	2.404 2.440	2.351	1.457	3.334	1.646	6.180	2.160
4	16.360	11.990	3.744 3.598	4,435 10,190	3.268 3.209	2.888	2.015 1.946	1.421 1.519	2.118 1.786	2.014 1.826	4.460 3.469	2.401 3.251
5	17.250	7.988	3.515	6.807	2.772	3.922	2.058	1.640	1.849	1.673	3.985	3.271
	17.000	0.007	0.000									
6 7	17.220 13.130	6.397 5.917	3.356 3.386	4.693 4.355	2.871 3.032	2.848 2.561	1.923 1.793	1.466 1.404	1.732 1.696	1.624 1.622	3.883 3.358	3.050 3.861
á	10.900	5.196	3.381	5.692	3.975	3.055	1.850	1.381	1.858	1.620	2.992	11,510
9	10.940	4.774	3.310	9.312	3.176	3.535	1.847	1.397	2.033	1.565	3.126	17.760
10	12.620	4.506	3.331	10.010	2.819	2,717	1.770	1.410	1.937	1.651	5.554	10.640
11	10,730	4.335	3.257	9.982	2.771	2,484	1.716	1.925	2.044	1.553	5.498	8.192
12	11.970	4.212	3.250		2.749	2.310	1.715	2.302	3.625	1.563	4.592	6.609
13	12.810	4.067	3.238	6.077	2.698	. 2.274	2.002	1.726	2.799	1.586	6.271	5.270
14 15	9.642 8.250	3.967 3.934	3.153 3.288	5.424 7.889	2.827	2.250	1.961	1.491	2.138	1.571	5.596	4.113
13	6.250	3.334	3.200	7.003	3.141	2.130	1.789	1.506	2.339	1.521	5.230	3.601
16.	7.628	3.857	3.249	8.903	3.084	2.127	1.733	1.571	3.521	1.506	3.876	3.317
17	6.259	3.756	3.148	6.712	8.255	2.043	1.605	1.792	2.786	1.520	3.398	3.133
18 19	5,557 6,137	3.643 3.481	3.216 3.287	5.229 4.684	9.144 5.237	1.971 1.927	1.675 1.702	1.703 1.691	2.165 2.364	1.51 7 1.506	3.473 4.339	4:802
20	5.578	3.441	3.049	4.350	3.998	2.018	1.691	1.581	4.551	2:167	3.797	4.610 3.698
21	5.171	3.320	3.029	4.032	4.711	1.979	1.560	1.420	3.682	1.831	3.301	3.330
22 23	4.953 5.122	3.515 4.423	3.468 3.796	3.832	5.307	1.911	1.531 1.496	1.459	2.657	5.145	3.027	4.410
24	5.048	4.812	3.459	3.891 3.995	4.023 3.660	1.887 1.943	1.465	1.450 1.453	2.286 2.120	8.426 6.878	2.799 2.647	4.549 3.773
25	5.084	+ 4.063	3.278	3.767	3.542	3.039	1.474	1.763	1.872	7.560	2.505	3.670
20	F 000	* •					4 500					
26 27	5.392 4.991	4.008 3.849	3.008 2.767	3.691 3.874 i	3.782 3.949	2.577 2.070	1.508 1.454	1.928 1.693	1.916 1.837	7.600 5.235	2.442 2.398	5.797
28	4.786	3.692	2.850	3.720	3.377	2.060	1.843	1.492	1.836	3.418	2.343	7.566 8.832
29	4,433		2.734	3.597	3.025	1.942	1.769	1.445	1.731	4.125	2.285	13.690
30	4,478		2.692	3.439	2.780	1,860	1.556	1.495	1.719	7.588	2.239	10.410
31,#	4.286		3.860		2.745		1.372	2.252		11.670		7.142
Average	9.154	4.903	3.299	5.662	3.757	2.386	1.742	1.598	2.440	3.304	3.938	5.826
Lowest	4.286	3.320	2.692	3.439	2.698	1.860	1.372	1.318	1.696	1.506	2.239	2.160
Highest	17.250	11.990	3.985	10.190	9.144	3.922	2.351	2.302	4.881	11.670	9.091	17.760
Peak flow	22.11	16.67	6.34	11.98	11.31	5.15	4.43	5.81	5.64	14.02	11.42	20.57
Day of peal		3	31	10	17	2	6	31	1	31	1 ,	9
Monthly to		11.05	0.04	14.60	10.00	6 10	4.67	4.00		0.05	10.21	45.50
(million cu i	m) 24.52	11.86	8.84	14.68	10.06	6.18	4.67	4.28	6.33	8.85	10.21	15.60
Runoff (mm		34	26	43	29	18	14	12	18	26	30	45
Rainfall (mr	n) 91	41	48	89	85	48	37	96	79	115	39	106
Statistics	s of monthly	data for pre	evious recor	d (Oct 1964	to Dec 19	993.—Inc	omplete or mi	issing mont	hs total 0.2	years)		
Mean Av	/g. 5.091	4.610	4.167	3.392	2.669	2.002	1.792	1.682	1.778	2 624	2 501	A 42E
flows: Lo		2.026	1.812	1.655	1.314	0.976	0.965	0.877	0.842	2.634 1.057	3.591 1.329	4.436 1.687
	aar) 1989	1989	1973	1976	1990	1992	1976	1976	1990	1989	1978	1971
Hig		B. 189	9.086	7.143	5.810	3.221	3.231	3.092	3.626	8.687	8.195	9.088
{γ€	aar) 1988	. 1988	1975	1975	1983	1971	1980	1987	1968	1987	1974	1966
Runoff: Av		33	32	25	21	15	14	13	13	20	27	34
Lo		14	14	12	10	7	7	7	6	8	10	13
Hiç	gh 85	59	71	54	45	24	25	24	27	67	62	71
Rainfall: Av		48	57	52	49	52	59	55	67	81	84	75
Lo		16	4	11	2	10	14	12	13	6	18	15
Hiç	gh 192	104	141	117	105	120	132	106	169	224	175	146
Summar	y statistics							Facto	ors affect	ing runoff		
		F	or 1994	For	record		1994 As % of	● Flo	w influenc	ed by groun	dwater ab	etraction
		•	5. 1554		ding 1994		pre-1994		/or recha		awata ab	attaction
Mean flow		3.9	998	3.148	_		127	● Au	gmentatio	n from efflu	ent return	s.
Lowest yea Highest yea				1.808 4.717		1973 1966						
	nthly mean	1.5	598 Aug	0.842	Se	p 1990						
	onthly mean		154 Jan			n 1988						
Lowest dai			318 1 Aug	0.658		p 1990						
Highest dai	ily mean	17.3		28.850		v 1967						
Peak 10% exces	dance	22. 7.	110 1 Jan 706	38.290 5.922	a Vi	pr 1979	130					
50% excee			270	2.286			143					
95% excee	dance	1.4	490	1.076			138					
	al (million cu m)		10	99.35			127					
Annual run Annual rain		36 87		288 752			127 116					
	nan (mm) Dirainfall average		₹	747			110					
	-											

Station and catchment description

Broad-crested weir (width: 10.7m, insensitive) in trapezoidal section plus a VA section for flows >20 cumecs. EM installed 1992. All flows contained. Minor impact of artificial influences on runoff (import of 0.03 cumecs in 1988), modest PWS and irrigation abstractions in lower valley. Flood storage reservoirs above Ashford (constructed 1990-2). U/s mill regulation evident on the hydrographs. The E.& W. branches of the Stour flow over Weald Clay; below the confluence (at Ashford) Chalk dominates. A rural catchment with mixed land use.

Itchen at Highbridge+Allbrook 042010

1994

Measuring aut First year: 199		-S		Grid	d reference Level stn.					Catchmer	nt area (sq k Max alt. (m	
Daily mean	gauged dis	charges (cu	ibic metres	per second)								
DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC
1 2	8.604 8.947	10.130 10.150	9.264 9.644	8.792 8.201	7.164 7.150 [©]	6.002 6.173	4.853 4.831	4.072 4.171	4.248 3.959	3.648 3.607	5.653 4.975	5.300 5.269
3	8.979	11.180	9.140	8.556	7.100	6.215	4.660	4.161	3.909	3.629	4.890	5.571
4	9.270	10.830	9.060	8.624	7.202	6.597	4.687	4.132	3.851	3.663	5.259	5.798
5	9.877	10.430	8.954	8.296	7.245	6.547	4.688	4.034	3.753	3.682	5.776	5.684
6	10.050	10.600	8.874	8.054	7.314	6.361	4.742	3.929	3.681	3.547	5.216	5.677
7	9.850	10.630	8.832	8.062	7.206	5.336	4.689	3.897	3.707	3.563	4.999	5.897
8	9.882	10.240	8.749	8.736	7.047	5.494	4.700	3.863	3.740	3.561	5.296	8.225
9 10	10.510 10.950	10.010 10.010	8.767 8.742	9.270 8.786	6.889 6.804	5.491 5.520	4.579 4.461	3.816 3.869	3.794 3.903	3.493 3.517	6.736 5.982	7.373 6.630
11 12	10.870 11.090	10.600 10.120	8.557 8.505	8.303 8.155	6.639 6.990	5.222 5.171	4.328 4.228	3.976 3.954	3.894 3.968	3.571 3.588	5.563 5.550	6.159 6.072
13	11.060	9.915	8.46 9	8.072	6.713	5.332	4.296	3.816	4.328	3.627	5.460	6.098
14	10.930	9.815	8.334	8.048	7.002	5.216	4.285	3.754	4.871	3.492	5.591	6.013
15	11.020	9.839	8.346	8.050	6.791	5.305	4.263	3.715	4.739	3.464	5.463	6.124
16	11.000	9.788	8.336	8.084	6.816	5.285	4.284	3.737	4.661	3.433	5.306	6.117
17	10.860	9.780	8.283	7.940	7.511	5.197	4.195	3.784	4.207	3.426	5.330	6.168
18 19	10.710 10.590	9.583 9.502	8.432 8.392	7.820 7.718	6.917 6.651	5.153 5.130	4.182 4.201	3.818 3.919	4.058 4.145	3.420 3.814	5.911 5.713	6.642 6.456
20	10.960	9.601	8.262	7.711	6.530	5.221	4.107	3.904	4.088	3.749	5.517	6.231
	•0.000	0.404	0.000	7.045	7.400	F 000	4 100	2.070	2.050	2 202		0.000
21 22	10.860 10.790	9.494 9.786	8.263 8.357	7.815 7.718	7.128 7.103	5.269 5.202	4.100 4.006	3.870 3.707	3.958 3.889	3.892 4.295	5.391 5.370	6.222 6.148
23	10.810	9.939	8.294	7.929	6.918	5.072	3.885	3.700	3.820	4.100	5.398	6.086
24	10.850	9.670	8.211	7.816	6.771	5.037	3.860	3.782	3.818	3.872	5.288	6.129
25	10.730	9.492	7.987	7.666	6.954	5.194	3.842	3.959	3.891	4.259	5.268	6.208
26	10.700	9.528	7.850	7.553	7.258	5.151	3.943	3.854	3.770	4.011	5.292	6.452
27	10.750	9.380	7.767	7.511	7.104	5.082	4.057	3.783	3.710	3.888	5.286	7.358
28 29	10.520 10.320	9.364	7.825 7.753	7.361 7.243	6.776 6.628	4.908 4.680	4.045 4.062	3.743 3.685	3.682 3.645	3.905 4.295	5.258 5.273	7.468 7.932
30	10.160		7.759	7.176	6.458	4.598	3.958	3.688	3.598	5.755	5.249	7.219
31	10.010		8.487		6.169		4.039	4.097		7.025		6.899
Average	10.400	9.979	8.468	8.036	6.934	5.405	4.292	3.877	3.976	3.896	5.442	6.375
Lowest	8.604	9.364	7.753	7.176	6.169	4.598	3.842	3.685	3.598	3.420	4.890	5.269
Highest	11.090	11.180	9.644	9.270	7.511	6.597	4.853	4.171	4.871	7.025	6.736	8.225
Peak flow												
Day of peak												
Monthly total (million cu m)	27.86	24.14	22.68	20.83	18.57	14.01	11.50	10.38	10.31	10.44	14,11	17.07
									•			
Runoff (mm) Rainfall (mm)	77 127	67 78	63 67	58 78	52 88	39 26	32 18	29 49	29 84	29 124	39 84	47 123
									•		•	
Statistics of	monthly d	lata for prev	/ious recor	d (Oct 1958	to Dec 19	93)						
Mean Avg.	6.393	7.089	6.838	6.395	5.594	4.742	4.042	3.730	3.606	4.071	4.709	5.603
flows: Low	3.527	3.571	3.517	3.203	3.093	2.581	2.474	2.331	2.670	2.702	2.840	3.136
(γear) High	1989 10.520	1992 11.060	1992 9.923	1976 8.521	1976 7.311	1976 6.549	1976 5.219	197 6 5.244	1973 5.127	1959 7.867	1973 9.858	1973 10.860
(year)	1969	1990	1977	1969	1966	1979	1979	1979	1968	1960	1960	1960
Runoff: Avg.	48	48	51	46	42	34	30	28	26	30	34	42
Low	26	25	26	23	23	19	18	17	19	20	20	23
High	78	74	74	61	54	47	39	39	37	59	71	81
Rainfall: Avg.	90	57	71	56	56	58	56	62	74	86	88	95
(1959-	12	5	3	2	8	10	14	13	5	6	27	19 229
1993)	159	173	172	113	145	128	109	120	201	234	218	229
Summary st	atistics						1004	Facto	ors affecti	ng runoff		
		For	1994	Fo	r record	-	1994 As % of	• Flo	w influence	ed by groun	dwater abs	straction
	-11				ding 1 994	p	re-1994		/or rechar			
Mean flow (m ³ : Lowest yearly r		6.40)2	5.224 3.614		1992	123			or public w n from surfa		
Highest yearly				6.594		1960			undwater.			,
Lowest month		3.87		2.331		1976						
Highest monthl Lowest daily m		10.40 3.42				1990 1976						
Highest daily m		11.18				1969						
Peak				7 070			120					
10% exceedant 50% exceedant		9.93 6.00		7.679 4.802			129 125					
95% exceedan	ce	3.65	3	2.921			125					
Annual total (m		201.9	90	164.90	i		122					
Annual runoff (Annual rainfall (561 946		458 849			122 111					
	nfall average			833								

Station and catchment description
Crump weir 7.75m broad (which can drown), superseded, in 1971, a rated section with weedgrowth problems. Plus thin-plate weir (Allbrook).
All flows contained (rare bypassing resulted from wrong sluice settings). Flows for Allbrook for Nov/Dec 1993 were estimated due to construction of a fish path. Flow augmentation from GW during droughts. GW catchment exceeds topographical catchment. Artificial influences have minor, but increasing, impact on baseflow dominated regime; small net export of water. Very permeable catchment (90% Chalk). Land use is mainly arable with scattered settlements.

Avon at Amesbury 043005

1994

Measuring a First year: 1	uthority: NRA 965	-sw		Grid	freference: Level stn.		J) 151 413 67.10			Catchmer	nt area (sq k Max alt. (m	
Daily mea	n gauged dis	scharges (cu										
DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC
1	8.589	8.603	7.677	7.398	4.738	3.686		1.655	1.571	1.541	3.586	3.178
2 3	8.956 9.246	8.434	7.528	6.159	4.633	3.642		1.657	1.517	1.551	2.934	3.182
4	10.080	10.230 11.340	7.271 7.122	6.102 6.669	4.617 4.655	3.667 3.961		1.690 1.685	1.473 1.453	1.562 1.540	2.694 2.908	3.409
5	12.920	9.322	7.155	6.123	4.633	4.026		1.642	1.424	1.534	3.352	3.499 3.716
_												
6 7	17.130	9.296	6.915	5.885	4.601	3.812		1.622	1.419	1.529	3.239	4.799
8	14,410 13,150	10.460 8.685	6.855 6.749	5.627 5.953	4.594 4.532	3.673 3.580		1.59 8 1.565	1.508 1.476	1.518	2.931	5.449
ğ	13.630	8.259	6.654	7.701	4.291	3.482		1.541	1.480	1.510 1.511	2.801 3.274	6.826 6.961
10	14.830	8.129	6.487	7.805	4.236	3.411		1.575	1.509	1.480	3.654	5.706
	10.400	10.000	0.450		4 405							
11 12	13.460 13.750	10.860 10.470	6.422 6.385	6.430 6.112	4.195 4.318	3.369		1.787 1.786	1.515 1.524	1.470 1.465	3.264 3.218	5.349 5.084
13	15.010	8.866	6.300	5.885	4.214	3.212		1.698	1.717	1.459	3.216	5.018
14	13.640	8.568	6,116	5.722	4.266	3.132		1.629	2.242	1.453	3.168	4.940
15	13.110	8.472	6.348	5.613	4.290	3.073	1.967	1.567	2.327	1.457	3.075	4.839
16	13.580	8.376	6.364	5.556	4.272	3.021	1.964	1.548	2.390	1 445	2015	4 000
17	12.170	8.329	6.115	5.463	4.475	2.936		1.537	2.106	1.445 1.430	3.015 3.029	4.822 4.879
18	11.550	8.361	6.193	5.345	4.271	2.920		1.531	1.854	1.477	3.445	5.313
19	11.230	8.245	6.830	5.405	4.115	2.896		1.537	1.900	1.622	3.926	5.293
20	10.680	8.338	6.331	5.411	4.057	2.920	1.865	1.527	1.923	1.583	3.693	5.029
21	10.390	8.011	6.260	5.376	4.299	2.921	1.829	1.509	1.858	1.620	3.432	4.914
22	10.020	8.156	6.165	5.354	4.453	2.912		1.475	1,772	2.138	3.375	4.791
23	10.250	8.982	6.098	5.467	4.356	2.869	1.791	1.457	1.698	2.150	3.304	4.694
24	10.630	8.370	5.952	5.322	4.413	2.776		1.438	1.679	1.966	3.285	4.663
25	10,480	8.133	5.880	5.245	4.435	2.760	1.761	1.587	1.713	2.032	3.236	4.761
26	10.640	8.475	5.716	5.050	4.565	2.718	1.673	1.507	1.641	1.907	3.233	4.984
27	10.120	8.202	5.674	5.010	4.517	2.729		1.433	1.605	1.811	3.257	5.448
28 29	10.480 9.315	7.831	5.746	4.964	4.311	2.612		1.400	1,525	1.768	3.199	6.026
30	8.841		5.557 5.582	4.920 4.873	4.100 3.906	2.490 2.535		1.379 1.449	1.551 1.5 60	2.031 2.675	3.148 3.168	6.505 6.863
31	8.460		6.088	.,,,,,	3.768	2.000	1.627	1.496	1.500	3.856	0.100	7.826
		0.000										
Average Lowest	11.640 8.460	8.850 7.831	6.404 5.557	5.798 4.873	4.359 3.768	3.168 2.490		1.565 1.379	1.698 1.419	1.745 1.430	3.236 2.694	5.121
Highest	17.130	11.340	7.677	7.805	4.738	4.026		1.787	2.390	3.856	3.926	3.178 7.826
Peak flow	18.18	12.01	7.80	8.44	4.84	4.14		1.91	3.00	4.56	4.56	8.18
Day of peak Monthly tota	6 I	11	1	10	1	5	1	11	15	31	1	31
(million cu m		21.41	17.15	15.03	11.67	8.21	5.29	4.19	4.40	4.67	8.39	13.72
D 46 (a)	00	00		40	••							
Runoff (mm) Rainfall (mm)	96 107	66 78	53 60	46 54	36 65	25 23	16 18	13 66	14 103	14 103	26 65	42 114
							10	00	103	103	05	114
Statistics	of monthly o	data for pre	vious recor	d (Feb 1965	to Dec 19	93)						
Mean Avg	. 5.159	6.037	5.326	4.504	3,444	2.623	1.953	1 624	1 544	1 004	2 5 4 0	2.000
flows: Low		1.188	1.158	1.039	0.834	0.626		1.634 0.372	1.544 0. 64 5	1.894 0.973	2.548 1.090	3.988 1.366
(yea		1976	1976	1976	1976	1976		1976	1976	1989	1973	1990
High		16.000	8.352	7.586	5.146	4.259		2.362	2.528	3.597	6.440	9.947
(yea	r) 1993	1990	1972	1979	1979	1979	1971	1979	1974	1993	1974	1992
Runoff: Avg	. 43	45	44	36	28	21	16	14	12	16	20	33
Low		9	10	8	7	5	4	3	5	8	9	11
High	74	120	69	61	43	34	25	20	20	30	52	82
Rainfall: Avo	. 79	53	65	48	56	58	52	61	66	70	73	86
Low		5	14	1	8	3	15	16	11	4	31	17
High	134	147	150	100	121	143	113	152	179	161	185	160
Summary	etatietice							Enct	ors affecti	ina mina#		
Cummury	Dia ii Stics						1994	ract	uis allecu	ng runon		
		For	r 1994		r record		As % of			ed by groun	dwater abs	straction
Mean flow (n	_3 11	4.60	00		ding 1994		pre-1994	an	d/or recha	rge.		
Lowest year		4.00	08	3.374 1.430		1976	137					
Highest year				4.476		1977						
Lowest mon		1.50		0.372		1976						
Highest mon- Lowest daily		11.64		16.000		1990						
Highest daily		1.33 17.13		0.175 26.000		1976						
Peak		18.18	BO 6 Jan	28.540		1990						
10% exceeds		8.93		6.485			138					
50% exceeds		3.70 1.40		2.736 1,115			137 133					
	(million cu m)	145.3		106.50			133					
Annual runof	f (mm)	449		329			136					
Annual rainfa		856		767			112					
1961-90 :	rainfall average	(mm)		745								

1961-90 rainfall average (mm)

Station and catchment description
Crump profile weir (crest 9.14m broad) flanked by broad-crested weirs. Small bypass channel approx. 2m u/s of weir - included in rating. Full range station. Bankfull is 1.37m. During summer flows are naturally augmented from groundwater draining from northern half of River Bourne catchment. Some groundwater pumping also takes place within the catchment. Predominantly permeable (Chalk) catchment with a small inlier of Upper Greensand and Gault. Land use - rural. Topographical and groundwater catchments do not coincide.

045001 Exe at Thorverton

1994

Measuring au First year: 19	uthority: NRA- 956.	-sw		G	rid reference Level stn.	e: 21 (SS) . (m OD): 2				Catchme		km): 600.9 n OD): 519
Daily mean	gauged dis	charges (c	ubic metres (per second	1)							
DAY.	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	oct	NOV	DEC
1 .	70.810	33.450	30.530	65.400	5.624 5.423	8.450	2.929 2.862	2.463	2.520 2.252	7.412 7.464	62.080 43.260	8.967 8.403
. 2 . 3	66.200 64.370	31.560 55.220	26.970 22.470	51.910 90.860	5.423	7.903 7.770	2.802	2.712 2.723	2.293	7.470	47.810	13,170
4	67.080	40.410	19.730	85.800	5.514	8.177	2.866	2.576	2.304	6.151	37.970	13.260
5	111.200	36.120	18.140	62.350	5.824	7.046	2.941	2.363	2.264	5.614	31.920	20.590
_			45 700	40.000	7.004	0.000	2 002	2 215	2 207	E 202	27 100	2E 170
6 7	66.510 48.860	34.860 29.420	15.760 21.290	48.220 42.280	7.331 6.193	6.968 6.432	3.683 4.950	2.215 2.159	2.297 3.005	5.383 5.043	27.180 24.430	35.170 45.150
8	46.800	27.470	20.920	76.950	5.677	5.915	4.018	2.076	5.944	4.878	55.320	74.490
9	57.670	24.000	25.980	70.210	5.480	5.327	3.240	2.083	5.471	4.590	96.500	49.360
10	48.600	28.010	20.650	51.360	5.160	5.005	2.938	2.225	11.480	4.432	70.860	41.830
11	43,640	36.310	18.710	40.700	5,145	4.756	2.916	2.691	8.413	4.286	49.690	33.880
12	61.560	28.840	19.690	33.120	5.384	4.542	2.714	2.359	8.399	4.022	51.130	28.390
13	50.210	25.290	18.570	26.990	4.861	4.290	2.667	2.156	8.378	3.814	41.130	24.600
14	44.340	22.020	15.790	21.860	6.751	4.076	2.560	2.029	15.780	3.752	67.180	20.720
15	47.580	19.040	22.010	18.300	6.141	3.879	2.595	1.952	29.420	3.629	44.830	18.110
16	41.930	16.880	17.400	15.750	7.673	3.734	2.528	2.011	24.270	3.436	37.270	16.300
17	35.830	15.870	17.450	13.750	6.675	3.534	2.424	2.213	16.410	3.415	33.240	22.240
18	33.500	19,670	43.940	12.170	5.725	3.414 3.396	2.528 2.514	2.374 2.564	13.460 16.280	3.743 5.707	52.560 46.820	34.030 35.440
19 20	29.170 27.930	19.190 36.110	44.720 39.320	11.000 9.987	5.356 5.332	3.349	2.381	2.424	12.170	4.787	40.450	32.000
20	27.000	00.710	05.020	0.007	0.002	0.0.0	Γ					
21	24.070	26.210	37.270	.9.370	7.767	4.279	2.330	2.184	12.490	5.618	34.130	27.670
22	26.450	40.520 71.570	39.060 38.440	8.648 8.185	7.412 6.551	4.706 3.541	2.263 2.202	2.086 2.065	10.490 9.658	7.796 7.933	29.090 23.970	22.940 19.340
23 24	52.070 50.110	49.440	39.200	7.844	14.300	3.375	2.167	2.234	9.212	8.767	19.830	16.910
25	60.670	55.010	43,330	7.672	12.940	3.531	2.286	3.421	13.000	14.360	16.860	20.640
							0.400	0.770	40 700	44.450	14.070	22.000
26 27	43.980 43.610	52.880 42.390	34.300 35.010	8.274 7.814	14.350 12.580	3.332 3.316	2.433 2.775	2.770 2.511	12.700 9.907	14.450 25.380	14,870 13,150	33.860 195.500
28	34.750	35.290	38.250	6.932	11.790	3.258	2.582	2.407	9.165	23.170	11.610	203.900
29	34.700		31.160	6.377	10.840	3.056	2.258	2.264	8.588	55.460	10.600	115.600
30	33.930		36.730	5.934	9.863	3.012	2.181	2.299	7.919	173.700	9.694	88.030
31	29.690		54.280		9.028		2.345	2.686		130.400		73.260
Average	48.320	34.040	29.260	30.870	7.546	4.779	2.738	2.364	9.865	18.260	38.180	44.960
Lowest	24.070	15.870	15.760	5.934	4.861	3.012	2.167	1.952	2.252	3.415	9.694	8.403
Highest	111.200	71.570	54.280	90.860	14.350	8.450	4.950	3.421	29.420	173.700	96.500	203.900
Peak flow	161.30	106.90	77.74	150.20	22.23	8.86	5.77	4.14	37.54	246.30	126.30	237.80
Day of peak	5	23	19	4	25	1	7	25	15	31	10	28
Monthly total	400.40		20.02	00.04	20.04	10.00	7.00		25 57	48.91	98.97	120.40
(million cu m)	. 129.40	82.34	78.37	80.01	20.21	12.39	7.33	6.33	25.57	40.91	30.37	120.40
Runoff (mm)	. 215	137	130	133	34	21	12	11	43	81	165	200
Rainfall (mm)	208	150	161	117	94	34	49	77	150	164	149	261
Statistics of	of monthly d	ata for ore	vious recor	d (May 19	156 to Dec 1	1993)						
Ototistios c	or monday c	101 pre		a (ina) it								
Mean Avg.	29.020	25.030	18.600	12.940	8.289	5.625	4.711	6.299	8.918	16.650	22.490	30.320
flows: Low	5,438 1963	6.450 1965	3.858 1993	4.341 1974	2.594 1976	1.978 1975	1.151 1976	0.693 1976	1.699 1972	1.560 1978	5.297 1978	12.460 1963
(year) High	57.190	51.730	49.640	28.800	29.380	15.870	19,770	20.550	35.830	59.830	46.170	68.440
(year)		1990	1981	1966	1983	1958	1968	1985	1974	1960	1986	1965
		400	00		27	24	24	20	20	74	07	125
Runoff: Avg. Low	129 24	102 26	83 17	56 19	37 12	24 9	21 5	28 3	38 7	74 7	97 23	135 56
High	255	208	221	124	131	68	88	92	155	267	199	305
									400			455
Rainfall; Avg.	144 30	102 7	102 18	75 7	74 10	74 9	82 19	96 28	10 9 13	128 13	131 48	155 51
Low High	297	239	222	163	175	160	174	185	254	300	243	321
*									••			
Summary s	statistics						1994	Fact	ors arrect	ing runoff		
		Fo	r 1994		For record		As% of			in catchme		
Man	31	22.5	20	pre 15.7	ceding 1994	l b	re-1994 143		w influenc d/or recha	ed by grour	idwater at	straction
Mean flow (m Lowest yearly		22.5	120	9.69		1964	143			for public v	vater supp	lies.
Highest yearly				22.60	00	1960				d by indust		
Lowest month			64 Aug			ug 1976				bstractions on from surf		and/or
Highest month Lowest daily r		48.3	120 Jan 152 15 Aug			ec 1965 ug 1976			oundwater		ace water	and/or
Highest daily		203.9				ec 1960				n from effl	uent return	ıs.
Peak		246.3	00 31 Oct	492.60	00 4 D	ec 1960			-			
10% exceeda		51.7		37.6			138					
50% exceeda 95% exceeda		12.4 2.2		9.20	82 - პ 1ჯი 16		134 118					
Annual total (710.		495.4			143					
Annual runoff	(mm)	1182	2	825			143					
Annual rainfal		1614 (mm)	1	1272			127					
1901-901	ainfall average	urury		1248	1							

Station and catchment description
Velocity-area station with cableway. Flat V Crump profile weir constructed in 1973 due to unstable bed condition. Minor culvert flow through mill u/s of station included in rating. Wimbleball Reservoir has significant effect upon low flows. Station is control point for Wimbleball Reservoir operational releases. Headwaters drain Exmoor. Geology predominantly Devonian sandstones and Carboniferous Culm Measures, with subordinate Permian sandstones in the east. Moorland, forestry and a range of agriculture.

Taw at Umberleigh 050001

1994

Measuring authorit First year: 1958	y: NRÀ-SW				e: 21 (SS) ((m OD): 1				Catchme		km): 826.2 n OD): 604
Daily mean gaug	ged discharge	S (cubic metres	per second)								
1 8 2 8 3 74 4 79	JAN FEB 1.570 41.45 1.180 31.22 4.280 97.85 9.650 55.36 4.400 44.32	0 25.990 0 21.590 0 19.000	APR 76.180 57.350 132.800 131.400 76.660	MAY 5.151 4.915 4.880 5.144 5.686	JUN 5.784 5.501 5.595 6.587 5.825	JUL 1.880 1.846 1.860 2.014 2.045	AUG 1.280 1.425 1.601 1.507 1.327	SEP 2.091 1.904 1.587 1.556 1.548	OCT 6.356 6.358 6.179 5.215 4.668	NOV 71.010 48.500 59.880 43.680 33.750	DEC .9.054 .8.349 .15.730 .17.740 .25.430
7 6 8 56 9 69	6.070 41.07 1.960 33.77 6.610 30.09 9.730 26.66 6.060 30.88	0 29.980 0 28.640 0 32.530	52.900 44.910 91.350 82.380 56.560	6.604 5.995 5.726 5.068 4.807	6.731 5.432 4.865 4.296 4.015	2.498 3.233 3.140 2.325 1.926	1.204 1.132 1.090 1.056 1.284	1.440 1.807 5.457 5.979 8.183	4.372 4.203 4.028 3.830 3.620	26.810 24.160 39.540 87.230 72.020	42.210 -69.280 113.000 63.510 49.100
12 78 13 51 14 56	9.510 57.08 8.390 37.29 7.720 30.72 0.820 25.22 1.630 21.57	0 22.810 0 21.050 0 17.060	41.820 33.300 25.830 20.980 17.520	4.747 6.275 4.860 9.399 8.168	3.806 3.630 3.484 3.339 3.152	1.845 1.803 1.707 1.591 1.616	1.931 1.373 1.214 1.121 1.093	6.083 6.672 5.983 18.200 20.910	3.450 3.275 3.086 3.029 2.993	50.520 64.180 46.660 70.190 50.040	37.510 29.920 25.820 21.710 18.590
17 39 18 33 19 30	5.410 18.74 5.520 16.75 3.460 31.13 0.480 23.23 1.780 44.90	0 17.950 0 55.320 0 78.820		11.840 12.770 8.550 6.574 6.154	3.050 2.933 2.820 2.759 2.728	1.612 1.515 1.458 1.488 1.395	1.122 1.384 1.381 2.411 1.962	25.270 15.810 13.910 23.920 18.660	2.770 2.641 2.595 3.573 3.780	43.240 41.440 119.600 89.390 64.450	16.920 21.450 53.210 49.620 45.310
22 3 23 84 24 93	6.780 28.78 1.950 46.60 4.510 98.48 3.250 61.95 9.860 66.27	0 52.710 0 46.360 0 45.580	8.068 7.640 7.283	10.480 9.239 6.906 10.690 11.060	3.181 3.317 2.625 2.506 2.631	1.366 1.343 1.286 1.256 1.228	1.440 1.288 1.348 1.513 2.991	17.830 14.420 12.380 10.980 12.400	5.233 6.867 6.983 7.132 18.190	47.230 36.430 28.370 22.560 18.690	34.800 27.350 22.390 18.920 24.060
27 5: 28 40 29 30 30 3:	9.340 61.24 3.650 45.95 0.380 36.81 8.960 8.240 1.620	0 37.340	7.771 7.513 6.459 5.860 5.475	14.820 9.862 8.283 7.367 6.644 6.115	2.367 2.196 2.171 2.057 1.948	1.256 2.049 1.648 1.381 1,271 1.238	1.838 1.657 1.485 1.407 1.423 1.724	15.360 10.280 8.789 7.790 7.043	16.250 27.820 26.780 59.690 209.800 156.500	16.140 14.040 12.140 10.950 9.909	39.950 219.000 271.800 141.000 109.900 85.850
Lowest 20	9.510 42.33 6.780 16.75 4.400 98.48	0 15.140	35.790 5.475 132.800	7.574 4.747 14.820	3.711 1.948 6.731	1.746 1.228 3.233	1.484 1.056 2.991	10.140 1.440 25.270	20.040 2.595 209.800	45.420 9.909 119.600	55.760 8:349 271.800
Day of peak Monthly total	88.90 152.9 5 23 59.40 102.4	19	242.60 4 92.76	21.02 25 20.28	7.47 5 9.62	3.70 7 4.68	4.27 25 3.98	37.54 16 26.29	323.30 30 53.68	138.90 18 117.70	308.90 28 149.30
Runoff (mm) 1	93 124	112	112	25	12	6	5	32	65	143	181
Rainfall (mm) 1 Statistics of mo	91 138	147	108 rd (Oct 1958	84 to Dec 16	34	45	83	142	144	129	234 :
Mean Avg. 3: flows: Low ((year) High 6:	5.590 28.23 6.657 3.23 1963 195 2.100 68.00 1984 199	0 20.440 5 3.369 9 1993 0 52.140	13.880 3.888 1974	8.914 1.982 1990 37.000 1983	5.469 1.329 1984 23.370 1993	4.819 0.794 1976 23.390 1968	5,743 0,423 1976 19,130 1985	7.746 0.857 1959 47.670 1974	19.270 1.043 1978 77.360 1960	29.200 3.654 1978 58.500 1963	36,770 13:200 1963 73,670 1965
Low	15 83 22 9 01 199	66 11 169	44 12 103	29 6 120	17 4 73	16 3 76	19 1 62	24 3 150	62 3 251	92 11 184	119 43 239
Low	31 88 28 3 42 225	90 18 183	71 8 145	68 12 146	70 10 164	75 23 156	87 24 175	93 14 247	119 14 278	128 53 2 3 9	139 41 271
Summary statis	tics						Fact	ors affect	ing runoff		
Mean flow (m ³ s ⁻¹) Lowest yearly mean Highest yearly mean Lowest monthly me Highest monthly mean Highest daily mean Peak 10% exceedance	an an :	For 1994 26.400 1.484 Aug 59.510 1.056 9 Aug 71.800 28 Dec 23.300 30 Oct 64.550 12.560	prece 17.970 11.310 27.590 0.423 77.360 0.202 363.800 644.900 47.110 9.062	Od 28 Au 4 De 4 De		1994 s % of e-1994 147	● Ab	ostraction	for public v	vater supp	lies.
95% exceedance Annual total (million Annual runoff (mm) Annual rainfall (mm) 1961-90 rainfall a	,	1,336 832,60 1008 1479	1.218 567.10 686 1159 1155			110 147 147 128					

Station and catchment description
Velocity-area station, main channel 34m wide, cableway span 54.9m. Rock step downstream forms control. Bypassing begins at about 3.7m on right bank, but a good rating accommodates this. Significant modification to flows owing to PWS abstraction. Some naturalised flow data available. Large rural catchment - drains Dartmoor (granite) in south and Devonian shales and sandstones of Exmoor in north. Central area underlain mainly by Culm shales and sandstones (Carboniferous). Agriculture conditioned by grade 3 and 4 soils.

Tone at Bishops Hull 052005

1994

Parametric property	Annual total (r Annual runoff Annual rainfall	nillion cu m) (mm)	139.; 689 1 199	30	94.7 469 972 966			128 147 147 123					
Daily mean purpose Daily m	Highest yearly Lowest month Highest month Lowest daily r Highest daily r Peak 10% exceedar 50% exceedar	mean nly mean nly mean mean mean nce	10.45 0.66 51.85 82.16 9.7 2.5	30 Jan 87 28 Aug 30 9 Nov 60 9 Nov 72 71	0.26 14.56 0.17 84.20 112.70 6.47 1.74	6 A 0 . 9 22 A 0 23 I 0 11 3	Aug 1976 Jan 1984 Aug 1976 Feb 1978	147					
Daily First Fir					pred 3.00 1.60	ceding 199 1 0	1964	pre-1994					ies.
Daily mean part 1961	Junmary \$	eatistiC2	_	4004	_						_		
Pict	· Low High	25 250	6	5	6	9	8	16	19 131	8 202	8 249	31 192	34
Color	Low High	17 193	21 170	18 123	15 85	10 87	6 36	4 75	4 22	6 63	8 131	8 98	24 150
Daily mean gauged discharges (cubic metres per second) Daily metres	High (year)	14.560 1984	14.160 1990	9.259 1981	6.655 1966	6.562 1983	2.770 1972	5.628 1968	1.685 1965	4.892 1974	9.873 1976	7.611 1982	11.280 1965
First year 1986 South was propertied. Level str. (m OD): 16.20 Max alt. (m OD): 409 Daily mean gauged discharges (cubic metres per secons) DAY JAN First year 10 on	Mean Avg. flows: Low	5.944 1.246	5.910 1.746	4.202 1.355	2.966 1.176	2.004 0.734	1.349 0.456	0.326	0.266	0.501	0.580	0.651	1.821
Daily mean gauged discharges (cubic metres per second) Carlot	Rainfall (mm)	12.580 8.388 4.816 11.190 1992 2.163 0.891 0.894 0.790 0.864 4.346 3.824 6.61		188									
Daily mean gauged discharges (cubic metres per second) DAY JAN FEB MAR JOSTO 2.113 2.1166 0.965 0.822 0.963 0.957 5.662 2.046 2.113 1.4040 6.258 5.488 10.910 2.113 2.1166 0.965 0.965 0.963 0.953 0.957 5.662 2.046 2.114 0.100 5.482 5.968 0.812 1.910 1.		14.010 1.6402 8.858 7.818 2.031 2.087 0.989 0.985 0.761 0.954 4.537 13. 1.1910 19.800 1.819 0.130 2.000 2.112 0.941 0.942 0.965 0.822 0.767 0.924 4.537 13. 1.1910 1.580 8.181 4.818 1.1915 1.930 2.112 0.941 0.962 0.730 0.824 3.74 3.4 1.1910 1.580 8.181 4.818 1.1915 1.930 2.112 0.941 0.962 0.731 0.884 3.24 6.6 1.1910 1.2910 1.		118									
Daily mean gauged discharges (cubic metres per second) Daily mean gauged discharges (cubic metres per second)	Day of peak Monthly total	5	22	31	8	24	4	7	25	25	30	9	28
Daily mean gauged discharges reubic metres per seconds	Lowest Highest	4.688 37.120	3.727 20.930	2.493 11.580	2.183 18.030	1.721 6.352	0.986 2.166	0.72 6 1.364	0.687 1.054	0.731 2.772	0.781 14.320	2.129 51.830	1.971 34.900
Daily mean gauged discharges Cubic metres per second DAY JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	31	4.688		11.580		2.213		0.887	1.054		8.777		14.710
Daily mean gauged discharges (cubic metres per second) Daily mean gauged discharges (cubic metres per second) Day Daily mean gauged discharges (cubic metres per second) Day D	29	5.096	7.394	3.831	2.274	2.556	1.018	0.754	0.691	1.034	3.398	2.238	22.480
Daily mean gauged discharges (cubic metres per second) Daily mean gauged discharges (cubic metres per second) Day	27	6.085	8.746	3.959	2.415	3.509	1.128	0.861	0.724	1.233	1.697	2.531	31.560
Daily mean gauged discharges (cubic metres per second) Day JAN FEB MAR APR A	24	5.858 6.832	10.320 12.790	3.592 3.821	2.744 2.698	6.352 4.466	1.222	0.726	0.998	2.772	1.624	2.888	3.812
Daily mean gauged discharges (cubic metres per second) DAY JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 1 14.040 6.258 6.448 10.910 2.113 2.166 0.965 0.822 0.853 0.957 5.662 2.046 2.046 2.010 5.462 5.858 7.818 2.031 2.087 0.969 0.965 0.761 0.954 4.537 1.971 3 11.910 19.980 5.181 10.130 2.009 2.112 0.941 0.962 0.790 0.922 6.574 3.489 4.12.580 8.358 4.816 11.190 1.992 2.163 0.981 0.894 0.790 0.864 4.945 3.367 5.371 0.667 9.4508 9.635 1.970 1.896 0.965 0.821 0.731 0.854 3.824 6.699 6.821 0.731 0.854 3.824 6.699 9.820 6.245 3.836 7.609 2.079 1.753 1.364 0.768 1.032 0.859 3.461 10.390 8.920 6.245 3.836 7.609 2.079 1.753 1.364 0.768 1.032 0.859 3.461 10.390 9.92 2.1800 5.003 3.346 12.610 1.879 1.579 0.990 0.734 0.951 0.833 51.830 9.579 10.940 5.872 3.041 9.108 1.845 1.542 0.952 0.861 0.917 0.825 18.800 7.770 1.994 0.5872 3.041 9.108 1.845 1.542 0.952 0.861 0.917 0.825 18.800 7.770 1.994 0.961 1.940 5.872 3.041 9.108 1.845 1.542 0.952 0.861 0.917 0.825 18.800 7.770 1.994 0.961 1.940 2.756 4.583 2.216 1.289 0.837 0.692 1.579 0.822 8.652 6.377 1.981 4.746 2.978 5.872 1.721 1.428 0.843 0.715 1.311 0.789 6.446 4.741 1.99 1.366 4.477 2.676 5.162 2.630 1.360 0.803 0.694 1.039 0.790 8.721 5.421 1.49 9.136 4.477 2.676 5.162 2.630 1.360 0.803 0.694 1.039 0.790 8.721 5.421 1.99 0.990 0.822 8.090 3.804 1.091 0.991 0.822 8.091 0.822 8.091 0.822 8.091 0.822 8.091 0.822 8.091 0.822 8.091 0.991 0.991 0.991 0.992 0.993 0.991 0.991 0.991 0.992 0.993 0.993 0.991 0.993 0.99	22	4.918 6.229	18.610 20.930 ∌⊐	3.873 3.840	2.897 2.982 · ·	3.164 1 2.466	1.271 1.190	0.770 0.738	0.920 0.915	0.850 0.857	1.390 1.163	3.733 3.429	4.212 3.867
Eirst year: 1961 Level stn. (m OD): 16.20 Max alt. (m OD): 409 Daily mean gauged discharges (cubic metres per second) DAY JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 1 14.040 6.258 6.448 10.910 2.113 2.166 0.965 0.822 0.853 0.957 5.662 2.046 2 14.010 5.462 5.858 7.818 2.031 2.087 0.965 0.761 0.954 4.537 1.971 3 11.910 19.980 5.191 10.130 2.009 2.112 0.941 0.962 0.790 0.922 6.574 3.489 4 12.580 8.358 4.816 11.190 1.992 2.163 0.981 0.894 0.790 0.864 4.945 3.367 5 37.120 6.679	20	5.942	12.290	3.786	3.085	1.789	1.243	0.780	0.748	0.965	1.475	4.350	5.256
Daily mean gauged discharges (cubic metres per second) DAY JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 1 14,040 6.258 6.448 10,910 2.113 2.166 0.965 0.822 0.853 0.957 5.662 2.046 2 14,010 5.462 5.858 7.818 2.031 2.087 0.969 0.965 0.761 0.954 4.537 1.971 3 11,910 19,980 5.191 10,130 2.009 2.112 0.941 0.962 0.790 0.922 6.574 3.489 4 12,580 8.358 4.816 11,190 1.992 2.163 0.981 0.894 0.790 0.864 4.945 3.367 5 37,120 6.679 4.508 9.635 1.970 1.896 0.969 0.821 0.731 0.854 3.824 6.699 6 13,400 7.626 4.039 8.282 1.993 1.826 1.249 0.773 0.808 0.851 3.366 6.848 7 9.820 6.245 3.836 7.609 2.079 1.753 1.364 0.768 1.032 0.859 3.461 10.390 8 9.200 5.504 3.551 18,030 2.032 1.647 1.193 0.746 1.058 0.841 17.400 20.930 9 21.800 5.003 3.346 12.610 1.879 1.579 0.990 0.734 0.951 0.833 51.830 9.579 10 10.940 5.872 3.041 9.108 1.845 1.542 0.952 0.861 0.917 0.825 18.800 7.770 11 9.570 8.177 2.934 7.631 1.813 1.528 0.914 0.842 0.865 0.822 8.652 6.377 12 16.160 5.433 3.020 6.812 1.816 1.466 0.885 0.771 0.893 0.790 8.721 5.421 13 9.811 4.746 2.978 5.872 1.721 1.428 0.843 0.715 1.311 0.789 6.446 4.741 14 9.136 4.477 2.676 5.162 2.630 1.360 0.803 0.694 2.208 0.825 6.071 4.174 15 21.440 4.180 2.756 4.583 2.216 1.297 0.837 0.692 1.579 0.822 5.069 3.804	17 18	8.228 7.709	3.727 4.337	2.493 3.554	3.826 3.502	2.960 2.073	1.257 1.247	0.824 0.827	0.777 0.755	0.972 0.922	0.781 0.810	4.210 5.309	4.706 8.901
Level stn. (m OD): 16.20 Max alt. (m OD): 409 Daily mean gauged discharges (cubic metres per second) DAY JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 1 14,040 6.258 6.448 10.910 2.113 2.166 0.965 0.822 0.853 0.957 5.662 2.046 2 14,010 5.462 5.858 7.818 2.031 2.087 0.969 0.965 0.761 0.954 4.537 1.971 3 11.910 19.980 5.191 10.130 2.009 2.112 0.941 0.962 0.790 0.864 4.945 3.367 5 37.120 6.679 4.508 9.635 1.970 1.896 0.969 0.821 0.731 0.854 3.824 6.699 6 13.400 7.626 4.039 <	15	21.440	4.180	2.756	4.583	2.216	1.297	0.837	0.692	1.579	0.822	5.069	3.804
Eirst year: 1961 Level stn. (m OD): 16.20 Max alt. (m OD): 409 Daily mean gauged discharges (cubic metres per second) DAY JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 1 14,040 6.258 6.448 10.910 2.113 2.166 0.965 0.822 0.853 0.957 5.662 2.046 2 14,010 5.462 5.858 7.818 2.031 2.087 0.969 0.965 0.761 0.954 4.537 1.971 3 11,910 19.980 5.191 10.130 2.009 2.112 0.941 0.962 0.790 0.864 4.945 3.489 4 12.580 8.358 4.816 11.190 1.992 2.163 0.981 0.884 0.790 0.864 4.945 3.367 5 37.120 6.679 <	12 13	16.160 9.811	5.433 4.746	3.020 2.978	6.812 5.872	1.81 6 1.721	1.466 1.428	0.885 0.843	0.771 0.715	0.893 1.311	0.790 0.789	8.721 6.446	5.421 4.741
Eirst year: 1961 Level stn. (m OD): 16.20 Max alt. (m OD): 409 Daily mean gauged discharges (cubic metres per second) DAY JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 1 14,040 6.258 6.448 10.910 2.113 2.166 0.965 0.822 0.853 0.957 5.662 2.046 2 14,010 5.462 5.858 7.818 2.031 2.087 0.969 0.965 0.761 0.954 4.537 1.971 3 11,910 19.980 5.191 10.130 2.009 2.112 0.941 0.962 0.790 0.922 6.574 3.489 4 12.580 8.358 4.816 11.190 1.992 2.163 0.981 0.894 0.790 0.864 4.945 3.367 5 37.120 6.679 4.508 <td>10</td> <td colspan="2">ily mean gauged discharges (subic metres per second) y MAN FEB MAR AR RAY NAT STATE 1 14 010 5.46 2 5.858 7.818 2.031 2.098 0.966 0.955 0.057 0.956 6.524 0.958 0.957 0.956 0.956 0.951 0.958 0.957 0.958</td> <td>7.770</td>	10	ily mean gauged discharges (subic metres per second) y MAN FEB MAR AR RAY NAT STATE 1 14 010 5.46 2 5.858 7.818 2.031 2.098 0.966 0.955 0.057 0.956 6.524 0.958 0.957 0.956 0.956 0.951 0.958 0.957 0.958		7.770									
Daily mean gauged discharges (cubic metres per second) Day JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	7 8	9.820 9.200	6.245 5.504	3.836 3.551	7.609 18.030	2.079 2.032	1.753 1.647	1.364 1.193	0.768 0.746	1.032 1.058	0.859 0.841	3.461 17.400	10.390 20.930
First year: 1961 Level stn. (m OD): 16.20 Max alt. (m OD): 409 Daily mean gauged discharges (cubic metres per second) DAY JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 1 14,040 6.258 6,448 10.910 2.113 2.166 0.965 0.822 0.853 0.957 5.662 2.046 2 14,010 5.462 5.858 7.818 2.031 2.087 0.969 0.965 0.761 0.954 4.537 1.971	4	12.580	8.358	4.816	11.190	1.992	2.163	0.981	0.894	0.790	0.864	4.945	3.367
First year: 1961 Level stn. (m OD): 16.20 Max alt. (m OD): 409 Daily mean gauged discharges (cubic metres per second)	1 2	14.040 14.010	6.258 5.462	6.448 5.858	10.910 7.818	2.113 2.031	2.166 2.087	0.965 0.969	0.965	0.761	0.954	4.537	1.971
First year: 1961 Level stn. (m OD): 16.20 Max alt. (m OD): 409	•		-			MAY							
	·		charges (cu	ıbic metres	per second)								
			-sw		Gr						Catchme		

Station and catchment description
Crump profile weir (breadth 12.2m) with crest tapping (not operational). Prior to March 1968 velocity area station (flows were unreliable below 1.42 cumecs). Full range station. Clatworthy and smaller Luxhay Reservoir in headwaters. Compensation flow maintains low flows. Reservoirs not large enough to influence fairly rapid response to rainfall. Minor surface water abstractions for PWS. Catchment geology - predominantly sandstones and marls. Land use - rural.

053018 Avon at Bathford

1994

Measuri First yea		hority: NRA 19	-SW		Gri	d reference Level stn.	e: 31 (ST) (m OD):				Catchment		m): 1552.0 n OD): 305
Daily n	nean ç	gauged dis	charges (c	ubic metres	per second)								
DAY 1 2 3		JAN 55.680 79.030 73.530	FEB 31.840 30.720 55.690	MAR 27.850 28.760 24.670	APR 65.990 32.900 31.720	MAY 9.385 9.330 9.293	JUN 10.610 10.220 11.080	JUL 3.879 3.713 3.630	AUG 3.114 2.733 4.217	SEP 2.987 2.761 2.432	OCT 3.615 3.448 3.349	NOV 29.720 19.790 18.480	DEC 11.090 10.600 11.840
4 5		73.880 157.600	39.390 30.920	22.770 22.610	49.720 35.660	9.368 8.894	12.370 11.870	4.084 3.874	6.845 3.738	2.099 2.113	3.626 3.587	27.780 31.450	14.550 23.980
6 7 8		164.200 72.140 50.530	41.820 38.940 29.040	20.140 19.260 18.840	31.270 26.530 41.680	8.867 8.673 8.421	9.781 9.025 8.206	6.650 6.750 5.421	2.764 2.267 2.593	1.915 2.107 2.637	3.217 3.583 3.611	21.820 17.650 17.090	39.770 56.310 84.650
9 10		62.750 73.300	25.300 24.910	18.290 17.760	88.600 51.450	7.687 7.389	7.559 7.249	4.378 3.925	1.518 3.167	3.994 5.964	3.427 3.225	53.460 41.640	60.390 36.860
11 12 13		58.060 94.050 101.300	. 72.270 46.890 31.710	16.650 16.240 16.510	34.030 29.720 26.150	7.146 8.238 7.225	6.806 6.697 6.356	3.590 3.490 2.705	7.743 4.007	4.464 3.366	3.467 3.178	27.160 28.730	29.630 25.740
14 15		64,980 68,940	27.540 25.230	14.550 21.040	22.780 20.400	7.848 7.922	6.781 6.519	2.825 2.478	3.000 2.155 2.420	3.622 10.180 13.920	3.496 3.181 3.188	27.060 25.400 24.250	23.430 22.410 20.160
16 17 18		66.270 45.220	24.450 23.230	18.260 16.210	19.060 17.610	8.658 10.740	6.361 5.976	2.484 2.601	1.881 2.748	11.370 7.262	3.448 3.415	21.260 20.080	19.150 23.000
19 20		42.660 40.000 34.180	23.480 22.750 25.050	20.390 28.460 19.480	16.480 15.770 14.800	8.463 7.230 6.706	5.944 5.562 5.740	1.910 2.006 2.485	2.529 2.750 1.923	5.075 5.173 5.425	3.531 4.515 4.977	32,440 35,690 26,360	59.810 40.350 30.130
21 22		31,120 29,190	21.750 28.240	23.990 19.890	14.150 13.470	9.726 14.430	6.505 6.307	2.373 1.722	1.960 1.845	4.870 4.108	4.976 7.271	22.500 20.280	25.880 22.830
23 24 25		40.660 39.010 45.450	52,600 34,570 33,070	18.970 17.010 17.510	12.910 12.390 11.880	12.800 13.030 16.990	5.581 5.121 4.907	1.516 2.236 1.706	1.884 1.978 2.276	3.853 3.889 4.628	7,523 5,564 5,606	18.220 16.540 15.320	20.460 19.510 20.980
26 27 28		37.670 37.670 31.660	54.280 39.440 32.930	16.560 15.890 18.030	11.700 10.910	43.240 26.230	4.404 4.425	1.640 1.856	2.209 1.499	4.313 3.772	8.020 10.150	14.290 13.330	32.910 120.400
29 30 31		29.590 28.960 25.880	52.930	17.550 18.890 39.330	10.690 10.480 10.130	17.270 14.320 12.450 11.220	4.332 4.140 3.683	1.696 1.582 1.413 4.059	1.446 1.342 1.160 3.215	3.429 3.209 3.323	8.082 17.760 57.620 59.300	12,900 12,140 11,630	142.300 104.700 106.800 86.620
Average Lowest Highest		59.840 25.880 164.200	34.570 21.750 72.270	20.400 14.550 39.330	26.370 10.130 88.600	11.590 6.706 43.240	7.004 3.683 12.370	3.054 1.413 6.750	2.740 1.160 7.743	4.609 1.915 13.920	8.482 3.178 59.300	23.480 11.630 53.460	43.460 10.600 142.300
Peak flow Day of po Monthly	eak	192.00 6	78.03 11	84.21 31	111.50 9	48.32 26	14.31 4	8.04 6	9.72 11	14.97 15	94.07 30	66.89 9	162.10 28
(million c	u m)	160.30	83.64	54.64	68.34	31.03	18.15	8.18	7.34	11.95	22.72	60.87	116.40
Runoff (n Rainfall (i	mm)	103 123	54 81	35 76	44 55	20 83	12 28	5 35	5 72	8 87	15 93	39 72	75 140
Statisti	ics of	monthly d	lata for pre	vious recor	d (Dec 196	9 to Dec 1	993)						
flows:	Avg. Low (year) High (year)	31.940 9.227 1976 51.270 1984	30.390 11.370 1976 67.120 1990	24.160 7.216 1993 54.230 1981	16.500 7.719 1976 26.520 1987	11.230 5.048 1976 31.020 1983	8.790 3.289 1992 30.110 1971	5.507 2.410 1976 9.956 1973	5.350 1.715 1976 13.830 1985	6.447 2.699 1990 25.450 1974	11.150 3.115 1978 28.180 1976	19.280 4.406 1978 44.240 1992	29.220 10.290 1991 50.080 1992
	Low	55 16	`	42 12	13	19 9	≒ 15 5	1 10 4	9 3	11 5	19 5	32 7	50 18
Rainfall:	High Avg.	88 87	105 59	94 73	44 51	54 55	50 66	·17 56	24 65	43 74	49 76	74 80	86 90
(1970- 1993)	•	18 148	7 143	17 163	2 110	7 142	5 151	25 115	17 141	15 178	6 149	35 178	20 155
Summa	ary sta	atistics						4004	Fact	ors affect	ing runoff		
Mean flo			Fo 20.4	r 1994 10				1994 As % of ore-1994 123	and ● Ab	d/or recha straction	ed by grour irge. for public w on from surf	ater supp	ies.
Highest of Lowest of Highest of Highest of Peak 10% exc	yearly n monthly monthly faily me daily me	nean I mean I mean Ban Ban	2.7 59.8 1.1 164.2 192.0 47.8	40 Jan 60 30 Aug 00 6 Jan 00 6 Jan 30	22.160 1.715 67.120 1.093 253.600 300.500	Au Fe 27 Au 28 De 28 De	1977 g 1976 b 1990 g 1976 c 1979 c 1979	134	gro	undwater			•
Annual re	eedanc otal (mi unoff (n ainfall (r	e (lion cu m) nm)	12.4 1.9 643. 415 945 (mm)	38 60	10.420 2.978 523.80 338 832 817	1		119 65 123 123 114					

Station and catchment description

Velocity-area station with cableway next to a railway bridge 4 km u/s of Bath (replacement station for Bath St James). Situated immediately d/s of confluence with Bybrook. Widely inundated in flood conditions, but all flows contained through bridge. Deep section and low velocities render flows below 5 cumecs inaccurate. Flows augmented by groundwater scheme in catchment. Mixed geology - predominantly clays and limestone with eastern tributaries rising from Chalk. Land use - mainly rural, some urbanisation.

Severn at Bewdley

1994

Substitution	Measuri First yea		hority: NRA	ST .		C		ce: 32 (SO) n. (m OD): 1				Catchmen		(m): 4325.0 (m OD): 827
1	Daily n	nean g	gauged dis	scharges (cubic metres	per secon	d)							
1 220 abou 98-886 224 300 183 200 224 100 18 360 10 110 13 350 13 220 2250 13 200 38 370 38 3	2.5	•		_				JUN	JUL	AUG	SEP ,		NOV	
25 25, 250 16, 250														
1	2													
\$ \$ \$ \$ \$ \$ \$ \$ \$ \$														
6								33.370	10.930	13.920	10.160	29.240	110,400	175.500
7 178,200 168,100 71,400 189,000 21,100 21,100 17,100 11,400 22,500 65,500 18,6			210 200	118 100	77.040	201.000	27.600	20.010	12.000	12 150	0.668	25 670	84 530	175 700
8 14.3900 98.220 79.570 193.000 27.560 25.500 25.500 26.100 10.1000 13.410 20.180 56.890 218.000 10.1000 178.000 17														
10 178,900 60,640 80,630 243,700 28,810 20,380 10,480 11,520 15,550 18,220 86,640 179,900 12,100 13,540 13,												20.180	56.890	216.000
173 BOO 127 BOO 175														
12 195,600 183,400 77,0160 186,000 78,090 121,000 175,000 157	10		176.900	80.540	90.630	243.700	26.810	20.380	10.810	11.520	15.450	18.220	90.040	179.900
1	11		173.800	127.900	76.740	231.300	27.240	18.140						
14														
1														
100 100														
153,300 70,180 79,720 53,750 52,310 52,310 52,430 93,42 11,710 109,200 14,290 129,600 88,290 19 105,300 112,000 115,000 115,000 55,200 27,700 11,640 10,370 12,130 46,700 13,330 13,500 101,100 105,500 124,900 105,500 124,900 105,500 124,900 105,500 124,900 105,500 124,900 105,500 124,900 105,500 124,900 105,500 124,900 105,500 101,700 101,700	. 4		400 500	70.400	00.510		00.700	12 520	10 540	10 100	154 700	14 500	162 600	92 210
1														
19 105,300 112,000 112,000 115,000 55,100 24,770 11,640 10,330 112,100 48,720 15,810 115,001 124,000 124,000 124,000 125,00														
21 90,690 77.220 84,730 45,890 19.770 13.140 10.380 9.983 57.990 14.820 169.000 105.600 223 91.30 65.520 87.470 41.380 19.220 15.740 10.250 11.020 48.890 17.920 143.300 94.090 223 91.30 65.250 87.470 10.385 18.90 11.020 48.890 17.920 143.300 94.090 225 186.000 81.880 108.200 41.020 20.190 14.190 16.730 11.000 81.800 80.700 10.000 81.880 10.000 81.880 10.000 39.530 10.000 11.000 39.000 11.000 39.000 11.000 39.000 11.000 39.000 11.000 39.000 11.000 39.000 11.000 39.000 11.000 39.000 11.000 39.000 11.0000 11.0000 11.000 11.000 11.000 11.000 11.000 11.0000 11.0000 11														
22	20		93.660	96.260	162.900	52.730	23.270	13.080	10.330	11.040	49.260	17.570		120.500
\$\frac{9}{14} \$\frac{1}{18}\$, 000 \$6.5.250 \$\frac{9}{18}\$, \$\frac{1}{18}\$, 000 \$\frac{1}{18}\$, 000	21		90.690	77.220	94.730	45.680	19.770	13.140	10.360					
188,100														
26														
28														
17. 165.400 203.100 136.500 45.020 26.980 12.490 13.040 11.820 32.280 90.190 53.300 167.800 29.901 170.600 28.200 101.300 30.480 23.520 10.960 10.890 10.890 24.440 75.940 44.440 331.700 31.201 11.201 12.3100 10.8500 10.7780 11.520 11.330 11.6500 24.440 75.940 44.440 331.700 31.75.800 11.201 11.520 11.300 11.500 39.100 377.50											00.040	00.000	C+ C2O	02 100
170,800 228,200 101,300 38,450 23,520 10,880 10,880 10,870 28,880 85,760 48,970 250,400 31,150 31,17														
192,000														
Average								10.490		11,450				
Average 173,800 112,100 105,300 112,600 25,590 17,230 11,340 11,740 41,790 36,230 97,760 144,400						30.490		10.850			22.510		39.160	
1	31		114.600		108.500		17.780		11.520	11.330		115.000		347.700
Peak flow Cent Peak flow Cent Cen	Average)	173.600											
Peak flow 268.50 232.60 233.80 247.70 37.38 38.66 21.64 15.97 175.90 128.50 188.70 383.10 20 20 20 20 20 20 20														
Day of Peak Monthly total (million cum) A65,00 271,20 282,00 291,80 68.55 44.66 30.37 31.46 108.30 97.03 253.40 386.70	Hignest		260.200	228.200	224.300	243.700	33.700	33.370	18.330	14.430	134.700	115.500	102.100	0,,,,,,,,
Month	Peak flor	w												
Principion			3	28	1	10	16	5	8	4	15	31	15	30
Runoff (mm) 108			465.00	271.20	282.00	291.80	68.55	44.66	30.37	31.46	108.30	97.03	253.40	386.70
Rainfall (mm) 122 88 106 78 48 34 44 64 129 79 82 162	•	-							_	_				00
Statistics of monthly data for previous record (Apr 1921 to Dec 1993)														
Man Avg. 114,400 100,700 74,070 52,860 37,890 29,480 22,560 27,900 36,140 53,470 89,100 102,200 19,4										-				
Flows: Low 22.100 19.440	Statist	tics of	monthly (data for pr	evious reco	ord (Apr 19	321 to Dec	1993)						
Flow Low 22, 100 21,200 19,440 15,880 10,230 9,864 9,587 7,461 7,668 10,490 21,730 17,850 1931 1933 1934 1993 1933 1938 1976 1976 1976 1949 1947 1942 1933 1946 1947 1947 1949 1931 1948 1947 1940 1946 1947 1940 1	Mean	Ava.	114,400	100,700	74.070	52.660	37.890	29.480	22.560	27.900	36.140	53.470	89.100	102.200
High (year) 1939 1946 1947 1947 1949 1931 1958 1932 1946 1947 1940 1946			22,100	21,200	19.440	15.880	10.230							
Runoff: Avg. 71 57 46 32 8 23 18 19 19 19 19 19 19 19														
Runoff: Avg. 71 57 46 32 8 23 .rt 18 14 rt 17 22 .b2 33 25 3 .vt 63 Low 14 12 12 10 6 6 6 6 6 5 5 5 7 13 11 High 155 130 162 67 81 70 57 57 76 .87 143 184 Rainfall: Avg. 93 67 63 61 68 62 71 78 77 85 96 96 Low 23 8 3 5 11 5 10 13 5 10 13 5 13 13 10 High 226 170 175 128 186 136 193 161 209 174 244 294 Summary statistics For 1994 For record preceding 1994 pre-1994 Highest yearly mean Highest yearly mean Highest ward highest monthly mean Lowest daily mean Highest daily mean 173.600 Jan 297.400 Dec 1965 Lowest daily mean Highest daily mean 173.600 Jan 297.400 Dec 1965 Lowest daily mean 173.600 Jan 297.400 Dec 1965 Paak 10% exceedance 178.800 147.200 120 37.060 133 95% exceedance 49.250 37.060 133 95% exceedance 10.300 11.030 93 Annual total (million cu m) 2331.00 1942.00 120 Annual runoff (mm) 539 449 120 Annual runoff (mm) 1036 937 1036 113														
Low														63
Rainfall: Avg. 93	Runoff:									-† 17 -5		ეგ 33 7	∆g53 13	
Low 23														
Low 23				67	63	61	60	62	71	79	77	95	96	96
High 226 170 175 128 186 136 193 161 209 174 244 294	Haintaii:													
For 1994 For record preceding 1994 Proceeding 1994 Proceed		High	226	170	175	128	186	136	193	161	209	174	244	294
For 1994 For record preceding 1994 Proceeding 1994 Proceed	Summ	arv st	atistics							Fac	tors affect	ing runoff	:	
Mean flow (m³s⁻¹) 73.900 61.530 120 Lowest yearly mean Highest yearly mean Lowest monthly mean Highest monthly mean Highest daily mean Highest daily mean 173.600 Jan 297.400 Dec 1965 Dec 1965 Say 1976 — Abstraction for public water supplies. Flow reduced by industrial and/or agricultural abstractions. — Abstraction for public water supplies. Flow reduced by industrial and/or agricultural abstractions. — Augmentation from surface water and/or groundwater. — Augmentation from surface water and/or groundwater. — Augmentation from surface water and/or groundwater. — Augmentation from effluent returns. — Augmentation from effluent returns. Peak 383.100 30 Dec 10% exceedance 178.800 178	•=	,								- 5		- :		
Mean flow (m³s - 1) 73.900 61.530 120 and/or recharge. Abstraction for public water supplies. Flow reduced by industrial and/or agricultural abstractions. Flow reduced by industrial and/or agricultural abstractions. Augmentation from surface water and/or groundwater. Augmentation from effluent returns. Augmentation from effluent returns. Solventer and surface water and/or groundwater. Augmentation from effluent returns.				,	For 1994	n								bstraction
Lowest yearly mean	Mean flo	ow (m³s	s ⁻¹)	73	.900			,		ar	nd/or recha	irge.		
Lowest monthly mean 11.340 Jul 7.461 Aug 1976	Lowest	yearly r	mean							• A	bstraction	for public v	water supp	olies.
Highest monthly mean 173.600 Jan 297.400 Dec 1965 Lowest daily mean 9.244 12 Jul 5.990 4 Sep 1976 Highest daily mean 377.500 30 Dec 637.100 21 Mar 1947 Augmentation from surface water and/or groundwater. 10% exceedance 178.800 147.200 121 50% exceedance 10.300 11.030 93 11.030 93 Annual runoff (mm) 2331.00 1942.00 120 Annual runoff (mm) 1036 917 113				11	340 6									4
Lowest daily mean 9.244 12 Jul 5.990 4 Sep 1976 groundwater. Highest daily mean 377.500 30 Dec 537.100 21 Mar 1947 Augmentation from effluent returns. 10% exceedance 178.800 147.200 121 50% exceedance 49.250 37.060 133 95% exceedance 10.300 11.030 93 Annual total (million cu m) 2331.00 1942.00 120 Annual rainfall (mm) 1036 917 113										• A	ugmentatio	on from sui		r and/or
Peak 383.100 30 Dec 10% exceedance 178.800 147.200 121 50% exceedance 49.250 37.060 133 95% exceedance 10.300 11.030 93 Annual total (million cu m) 2331.00 1942.00 120 Annual runoff (mm) 539 449 120 Annual rainfall (mm) 1036 917 113	Lowest	daily m	ean										livent setus	
10% exceedance 178.800 147.200 121 50% exceedance 49.250 37.060 133 95% exceedance 10.300 11.030 93 Annual total (million cu m) 2331.00 1942.00 120 Annual runoff (mm) 539 449 120 Annual rainfall (mm) 1036 917 113		daily m	rase				100 21	war 1947		● A	ugmentatio	A) ITOM eff	ident retur	115.
50% exceedance 49.250 37.060 133 95% exceedance 10.300 11.030 93 Annual rotal (million cu m) 2331.00 1942.00 120 Annual runoff (mm) 539 449 120 Annual rainfall (mm) 1036 917 113		ceedan	ce				200		121					
Annual total (million cu m) 2331.00 1942.00 120 Annual runoff (mm) 539 449 120 Annual rainfall (mm) 1036 917 113	50% exc	ceedano	ce	49.	.250	37.0	060		133					
Annual runoff (mm) 539 449 120 Annual rainfall (mm) 1036 917 113														
Annual rainfall (mm) 1036 917 113														
1961-90 rainfall average (mm) 913	Annual r	rainfall ((mm)	103		91	7							
	1961	1-90 raii	nfall average	(mm)		91	3							

Station and catchment description
Since 1988, reflective X-pattern, 20 path US gauge. Originally velocity-area station with rock control. Peak flows from 1972. Stage monitoring site relocated in 1950 and 1970; lowest flows not reliable in earlier record. Sig. exports for PWS and CEGB; minimum flow maintained by Clywedog releases. Naturalised flow series accommodates major usages. Diverse catchment; wet western 50% from impermeable Palaeozoic rocks and river gravels; drier northern 50% from Drift covered Carboniferous to Liassic sandstones and marls. Moorland, forestry, mixed farming.

Avon at Evesham 054002

1994

	iring out ear: 193	thority: NRA 36	-ST		G -		ce: 42 (SP) i. (m OD): 1				Catchment	t area (sq kr Max alt. (n	m): 2210.0 n OD): 320
Daily	mean	gauged di:	scharges (cubic metres	per second	}							
DAY		MAL	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1 2		42.060	19.720	34.220	58.160	9.699	9,219	5.389	6.171	7.656	7.184	33,460	8.120
3		79.920 84.070	21.380 48.770	29.150 25.880	41.000 29.600	9.615 9.685	9.258 9.458	6.912 6.328	5.754 5.832	7.227 6.238	8.769 9.154	20.390 16.140	7.915 11.290
4		91.060	61.160	22.160	58.950	10.050	10.090	5.991	7.972	6,088	8.806	18.960	24.670
5		124.800	40.620	20.800	61.510	10.530	10.310	6.021	6.697	5.449	7.409	49.220	33.520
6		118.300	31,040	18.680	39.930	10.500	8,780	6.281	5.559	5.302	7.056	52.630	40.000
7		73.910	31,390	17,420	33.880	11.080	8.321	7.042	5.085	6.043	6.648	38.990	40.020 54.940
8		39.930	26.090	16.650	43.730	10.280	7.876	6.074	4.819	6.659	6.548	22.260	66.830
9 10		45.210	22,140	20.360	56.190	9.505	7.537	5,701	4.853	6.180	6.491	36.470	51.850
10		70.900	21.460	19.940	51.840	8.979	7.413	5.402	5.717	6.376	7.402	34.060	34.470
11		52,490	60.540	17.670	35.610	8.740	7.091	5,158	8.689	6.270	5,929	27.030	25.400
12 13		62,970 90,660	50.060 32.210	17.290	26.500	8.735	6.771	5.142	7.999	6.165	5.597	34.770	20.740
14		63,430	25.980	16.650 13.820	24.980 1 21.640	8.758 10.760	6.784 6.871	4,983 4,950	6.202 5.483	5.957 16,750	5.088 4.897	39.870 31.470	20.730 24.600
15		44.340	22.650	19.210	19.180	16.400	6.405	5.159	5.112	51.550	5.175	22.820	24.630
10		40.000	20.010	24.630			0.450						
16 17		40.620 33.320	20.910 22.560	21.670 18.030	17.170 15.830	15.140 11.410	6.458 6.233	5.055 4.963	5,146 5,780	37.840 27.230	5.227 5.336	17.540 14.910	21.010 18.970
18		28.650	24.270	17.560	14.730	9.316	6.211	4.809	5,641	17.360	4.688	14.140	41.370
19		26,160	22.430	28.830	14.370	8.494	6.120	4.757	5.332	14.790	4.667	15.350	35.400
20		24.320	20,110	25.860	13.800	8.372	6.104	4.698	5.021	17.780	5.608	14.390	25.920
21		23.250	17.890	19,530	13.250	10.600	6.423	4.716	4.937	17.040	8.799	14,470	20.560
22		20.910	16.700	18.150	12.620	16.540	6.356	4.683	4.883	12.430	9.164	14.280	17.720
23 24		25,110 25,060	37.500 53.680	18.480 17.180	16.310 15.220	18.120	5.994	4.642	4.844	9.317	8.922	15.670	15.570
25		28,570	53.650	17.150	12.710	14.950 21.260	5.934 5.927	5,242 8,545	5.469 5.838	8.615 9.322	7,409 6.320	11.580 10.860	14.160 15.420
26 27		37.210 30.900	106.000 91.240	15.030 13.260	11.590 10.850	32.140 22.390	6,101 6,174	6,111 5,651	5.154 4.882	8.600 7.739	6.960 6.230	9.979 9.500	22.160
28		25.990	52.700	16.250	10.440	15.950	5.759	5.252	4.725	6.944	6.443	8.881	61.770 65.060
29		21.430		14.960	9.980	12.220	5.663	5.191	4.602	6.621	19.710	8.393	61.760
30 31		20.130 18.840		14,420 24.800	9.831	10.590 9.616	5.381	5.159 5.665	4.671 5.305	6.636	35.860	8.251	51.230
٠.		10.040		24.000		3.010		5.005	5.305		40.710		37.160
Averag		48.860	37.670	19.710	26.710	12.590	7.101	5.538	5.619	11.940	9.168	22.220	31.450
Lowest Highest		18,840 124,800	16.700 106.000	13.260 34.220	9.831 61.510	8.372 32.140	5.381 10.310	4.642 8.545	4.602 8.689	5.302 51.550	4.667 40.710	8.251 52.630	7.915 66.830
	•					52.140	10.510	0.545	0.003	31.000	40.710	52.030	00.630
Peak flo		143.40	117.80	39.18	69.10	34.51	11.47	10.70	12.05	58.87	43.47	56.83	72.22
Day of Months		5	26	1	1	26	5	25	11	15	31	5	27
(million		130.90	91.14	52.80	69.24	33.73	18.41	14.83	15.05	30.95	24.56	57.61	84.24
Runoff	(mm)	59	41	24	31	15	8	7	7	14	11	26	38
Rainfall		75	62	58	49	61	16	31	48	111	59	54	77
Statio	tice of	monthly	data for an		d (Dec 10)	36 as Dec 1							
Statis	itics of	monthly (and for pro	evious recor	a (nec 19.	so to Dec	1993)						
Mean	Avg.	28.390	27.190	22.010	15.170	11,340	8.792	6.703	6.767	6.985	9.789	17.620	23.190
flows:	Low	5,143 1950	4.868	2.261	3.237	2.220	1.935	2.256	2.042	1.968	2.485	2.681	3.549
	(year) High	73.520	1944 77.930	1944 75.600	1938 36.110	1944 37.690	1944 27.380	1976 42.230	1943 16.100	1959 24,200	1959 45.410	1943 55.910	1943 65.160
	(year)	1939	1977	1947	1987	1983	1977	1968	1969	1960	1960	1960	1965
Runoff:	Ava	34	' ' 30	27	\1 18	·! 14	¹ 10	8	8	В	12	21	28
1.011011.	Low	6	6	3	4	3	2	3	2	2	3	3	4
	High	89	85	92	42	46	32	51	20	28	55	66	79
Rainfall	· Ava	60	42	48	44	54	54	58	68	55	59	64	60
(1937-		13	3	5	5	8	10	8	5	3	6	8	15
1993)		127	122	140	94	130	121	122	130	127	150	163	121
Sumn	nary st	atistics							Fact	ors affect	ing runoff		
	•		_		_			1994			-		
			F	or 1994		or record ceding 199		4s % of re-1994	● Re	servoir(s) w.influenc	in catchme ed by grour	Nt. Odwater ob	etraction
	low (m³		19.3	770	15,27		γ μ	129	an	d/or recha	irge.	IOWOLGI AD	Straction
	yearly r				6.89		1944				for public v		ies.
	t yearly r t monthh		5.9	538 Jul	25.02 1. 9 3		1960 un 1944				d by indust bstractions		
Highest	t month!	y mean	48.1	B60 Jan	77.93		eb 1977				on from effi		s.
	daily m			302 29 Aug	1.27		oct 1959			•			
Highest Peak	t daily m	oan	124.8 143.4		277.10 371.00		Jul 1968 Jul 1968						
	coedano	co	45.2		34.02		, 1900	133					
	ceedan		13.		8.25	5		164					
	ceedano m) total	ca illion cu m)	4.9 623	940 .50	2.91 481.9			170 129					
Annual	runoff (mm)	28	2	218	-		129					
	rainfall (70	1	666			105					
196	1.90 [9]	nfall average	(crury)		654								

Station and catchment description

Velocity-area station. Recording site, control and gauging site are widely separated; recording at a site where all flows contained. Gauge site can measure out-of-bank flows. Extensive modification to flow regime from abstractions and returns. Large catchment of low relief, draining argillaceous rocks almost exclusively. Contains many large towns, but chief land use is agriculture.

054008 Teme at Tenbury

1994

	ring auth ear: 1956	ority: NRA-	ST		Grid	d reference: Level stn.					Catchment	area (sq kr Max alt. (m	
Daily	mean g	auged dis	charges (c	ubic metres p	per second)								
DAY		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1		49.940	26.300	38.260 32.330	50.620 39.930	6.806 6.622	4.978 4.922	2.321 2.295	1.927 1.944	2.250 2.104	4.910 5.406	17.880 14.580	8.977 8.645
2 3		61.240 76.790	24.050 50.370		31,130	6.566	5.076	2.326	2.136	1.721	6.375	19.160	12.340
4		71.140	54.050	22.930	35.250	6.446	5.653	2,378	2.115	1.648	5.247	27.470	39.450
5		63.560	40.140	20.870	37.600	6.216	5.897	2.442	1.882	1.571	4.637	30.020	67.250
6		52.510	33.380	18.010	41.540	6.079	4.984	2.942	1.752	1.571	4.330	21.210	63.210
7		39.890	28.390	16.890	36.150	6.021	4.715	3.257	1.706	1.591	4.174	16.950	72.460
8		34.130	23.610	15.680	52.790	5.838	4.516	2.609	1.674	1.732	4.064	15.800 48.360	99.530 68.220
9 10		49.990 58.860	20.870 21.120	16.810 14,740	58.260 52.820	5.539 5.377	4.282 4.146	2.368 2.215	1.610 1.809	1.738 1.756	3.922 3.738	43.800	51.240
10		38.600	21.120	14.740	32.020	0.0.,							
11		56.600	66.010	13.800	38.280	5.263 5.257	4.008 3.923	2.152 2.074	2.142 1.882	1.748 2.475	3.601 3.476	30.320 45.440	37.280 29.120
12 13		80.310 81.740	43.050 32.810	13.610 13.820	31.250 25.660	5.159	3.840	1.963	1.686	2.800	3.326	42.780	27.130
14		65.080	26.560	12.290	21.250	5.401	3.636	1.875	1.602	11.580	3.304	39.180	25.700
15		55.990	23.020	12.170	18.330	7.170	3.485	1.871	1.568	52.760	3.274	30.380	21.970
16		45.220	19.870	11.780	16.200	6.896	3.385	1.850	1.565	28.900	3.113	25.270	19.730
17		34.700	19.760	11.200	14.690	6.062	3.310	1.805	1.649	13.830	3.007	24.610	22.430
18		30.190	33.380	12.700	13.430	5.346	3.268	1.772	1.785 1.623	9.551 14.030	2.951 3.273	23.160 24.490	56.820 38.640
19 20		26.490 22.980	26.400 22.330	17.080 14.710	12.650 11.870	5.066 4.995	3.229 3.190	1,751 1,734	1.535	16.330	3.884	24.350	30.260
20		22.000											05.00
21		20.700	19.680	13.510	11.230	5.127 5.493	3.255	1,744	1.511 1.444	19.020 13.570	3.634 7.682	22.620 20.370	25.480 21.230
22 23		18.850 24.390	18.520 20.850	12.660 12.040	10.640 10.190	5.493 5.144	3.250 3.005	1.760 1.724	1,444	10.770	12.110	17.820	18.410
24		21.940	20.650	12.360	9.609	5.213	2.920	2.577	1.439	9.120	8.794	15.400	17.040
25		25.500	31.800	14.260	9.115	6.315	2.872	2.506	1.506	8.844	8.577	13.760	18.340
26		29.460	69.690	12.980	8.741	7.648	2.788	1.955	1.462	7.819	8.942	12.680	36.260
27		26.710	61.890	12.580	8.057	7.098	2.683	2.208	1.410	6.718	8.947	11.650	81.100
28		25.780	51.190	15.080	7.638	6.121	2.587	2.102	1.357	6.004 5.478	8.457 9.729	10.530 9.965	66.730 63.430
29 30		23.060 21.340		13.190 13.900	7.356 7.057	5.696 5.367	2.437 2.393	1,812 1,798	1.341 1.358	5.079	17.560	9.461	62.870
31		19.290		23.880	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5.097	2.000	2.020	1.638		22.760		54.190
		42.400	22.210	16 540	24.310	5.885	3.754	2.136	1.660	8.804	6.361	23.650	40.820
Averaç Lowes		42.400 18.850	33.210 18.520	16.540 11.200	7.057	4.995	2.393	1.724	1.341	1.571	2.951	9.461	8.645
Highes		81.740	69.690	38.260	58.260	7.648	5.897	3.257	2.142	52.760	22.760	48.360	99.530
Donk fl		95.79	80.97	43.63	73.70	8.91	6.47	3.56	2.24	57.38	24.94	58.26	113.00
Peak fl Day of		33.75	11	1	8	26	5	7	3	15	31	12	8
Month											47.04		100.20
(million	cu m)	113.60	80.33	44.30	63.01	15.76	9.73	5.72	4.45	22.82	17.04	61.30	109.30
Runoff	(mm)	100	71	39	56	14	9	5	4	20	15	54	96
Rainfal	l (mm)	107	91	74	64	56	23	46	63	137	69	79	149
Statis	stics of	monthly o	lata for pre	vious recor	d (Oct 1956	to Dec 19	93)						
								4.001	4 100	E 072	10.770	16.480	25.340
Mean flows:	Avg. Low	28.440 6.281	24.430 7.267	20.870 4.349	14.690 4.599	9.970 2.569	6.092 1.558	4.061 1.010	4.109 0.744	5.873 1.075	1.347	3.087	5.567
IICWS.	(year)	1964	1992	1993	1990	1976	1976	1976	1976	1990	1959	1975	1975
	High	51.630	58.160	51.940	32.850	35.380 1969	13,090 1969	21.920 1968	16,680 1957	29.650 1958	43.130 1960	50.140 1960	57.290 1965
	(year)	1960	1990	1981	1987	1303	1505	1300	1307			•	
Runoff		67	53	49	34	24	14	10	10	13 2	25 3	38 7	60 13
	Low High	15 122	16 124	10 123	11 75	6 84	4 30	2 52	2 39	68	102	115	135
	111911												
Rainfal		87	62 7	68 5	60 7	62 9	59 12	59 15	72 23	77 3	75 17	82 33	92 23
	Low High	23 157	138	146	132	174	125	122	170	211	183	169	183
C	- 								Fact	ore affort	ing runoff		
Sumi	nary sta	itistics						1994			-		
			F	or 1994		or record		As % of	● Aı	gmentatio	on from effl	uent return	S.
Moon	flow (m³s	-11	17.3	360	prec 14.220	eding 1994	F	ore-1994 122	● Na	tural to wi	thin 10% at	95 percent	ile flow.
	t yearly m		17.4	300	7.279		1964		,	••			
Highes	t yearly n	nean			23.490		1960						
	t monthly t monthly		1.0 42.4	560 Aug 400 Jan			g 1976 b 1990						
	t daily me			341 29 Aug			g 1976						
	t daily me	an	99.				c 1960						
Peak	xceedanc		113.0 48.3		266,500 34,050		c 1960	142					
	xceedanc			373	8.375			118					
95% e	xceedanc	0	1,6	522	1.544			105					
	l total (mi I runoff (n	llion cu m)	547 48		448.80 396	J		122 122					
	r runorr (n I rainfall (r		95		855			112					
		fall average			841								

Station and catchment description
Velocity-area station with a gravel control. Upstream shoaling may render low flow rating variable from year to year. Rarely goes out of bank. Adjustments small and dispersed; natural catchment. Left bank characterised by high relief hills and broad valleys. Steep and narrow on the right bank. Geology mainly Palaeozoic sediments with Pre-Cambrian crystalline rocks of the Longmynd. Relatively Drift free; some valley gravel and Boulder Clay in the lower reaches. Forestry, grazing.

056001 Usk at Chain Bridge

1994

	ring aut ear: 195	hority: NRA 57	-WEL		Gr	id referenc Level stn	e: 32 (SO) . (m OD): 2				Catchme		km): 911.7 m OD): 886
Daily	mean ç	gauged di	scharges (cubic metres	per second)								
DAY		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1 2		62.170	77.770		158.300	14.590	12.230	6.028	4.510	3.929	6.916	56.280	15.580
3		82.600 100.600	51.680 92.240	46.970 40.120	74.950 75.460	13.770 13.620	11.870 14.690	5.939 5.860	4.421 5.648	3.784 3.701	6.775 7.849	39.100	14.900 29.910
4		95.450	81,420	37.220	96.960	14.710	18.230	5.904	5.364	3.699	6.913	65.010 53.270	64.590
5		88.260	66.340	40.340	66.230	14.470	15.260	6.082	4,711	3.863	6.239	37.520	88.890
6		60.640	65,760	33.090	56,780	15.360	13.050	7.427	4.239	3.943	5.952	30.430	76.960
7		48.550	56.010	35.050	62.920	13.290	12.470	7.955	4.017	4.398	5.728	27.120	140.500
8		46.200	46.830		113.900	12.330	12.160	6.628	3.854	6.483	5.557	65.670	218.100
9 10		81,170 69,560	41.820 38.900	49.310 37.300	105.900 81.570	11.580	10.750	6.010	3.679	9.972	5.426	139,100	79.050
				37.300	61.570	11.090	10.150	5.618	8.496	10.060	5.228	72.880	61.920
11 12		68,150 181,400	55.520 39.740	33.060	57.800	10.660	9.824	5.389	13.850	7.685	5.050	50.480	56.020
13		134,600	34.950	36.520 41.880	49.140 40.730	10.770 10.440	9.455 9.164	5.135 4.905	6.939 5.273	10.610 11.750	4.910 4.776	62.180 67.130	50.900 46.700
14		87.510	31.060	30.320	34.910	11.840	8.713	4.736	4.623	29.890	4.715	101.800	41.390
15		88,920	29,180	39.620	30.790	24.640	8.281	4.649	4.279	31.510	4.633	57.910	35.810
16		71.580	26.940	33.050	27.780	19.980	7.934	4.543	4,179	21.040	4.512	47.850	31.540
17		54.200	27.480	29.670	25,480	15.580	7.654	4.400	5.019	14,190	4.405	40.520	40.960
18		50.930	32.570	46.910	23.440	13.550	7.418	4.292	5.390	11.480	4.333	41.050	69.110
19		47.930	28.930	62.060	21.920	12.440	7.310	4.190	4.516	13.420	5.234	43.390	42.680
20		44.760	32.390	38.010	20.530	11.960	7.241	4.128	4.406	13.460	6.148	70.490	35.570
21		40.560	26,840	35.960	19.330	17.060	12.410	4.065	4.045	14.190	11.690	46.600	30.800
22		40.290	25.800	34.610	19.360	21.330	14.850	4.052	3.853	11.680	28.730	37.990	26.970
23 24		90.510 56.040	41.840 34.190	39.870 47.220	18.410 19.610	15.560 17.850	9.338 8.191	3.915 3.900	3.785 3.951	10.220 9.743	27.070 16.480	33.460	24.480
25		73.310	80.490	50.740	22.900	23.720	7.758	4.642	4.659	10.660	34.890	28.090 25.260	23.590 32.950
26		58.630	136.800	36.420	26.610	20.000	3 250	4 453	4.405	0.077			
27		65,450	89.430	42.060	26.610 20.130	30.680 21.880	7.358 7.052	4.452 7.938	4.105 3.861	9.977 8.788	25.230 21.020	23.130 21.220	117.100 265.600
28		52.080	66.340	79.800	19.460	17.990	6.877	6.280	3.722	8.118	18.410	19.240	309.900
29		47.550		46.400	17.490	15.580	6.411	4.786	3.568	7.577	39.880	18.010	160.800
30 31		49.030 39.380		61.140 138.000	15.680	14.000 12.940	6.198	4.363 4.623	3.519 3.875	7.162	111.500 93.260	16.570	131.100
•				100.000		12.040		4.023	3.073		33.200		77.750
Averag Lowest		70.260 39.380	52.120 25.800	45.490 29.670	47.480 15.680	15.650 10.440	10.010 6.198	5.253 3.900	4.850	10.570	17.400	47.960	78.780
Highes		181.400	136.800		158.300	30.680	18.230	7.955	3.519 13.850	3.699 31.510	4.333 111.500	16.570 139.100	14.900 309.900
Peak fi	•••	280.50	212.50	310.60	288.10	40.84	00.67		20.03				
Day of		12	26	310,00	1	15	25.57 21	9.41 6	22.07 10	42.80 14	161.80 30	201.30 9	441.10 28
Monthi	y total							ŭ			50	•	20
(million	cu m)	188.20	126.10	121.80	123.10	41.93	25.95	14.07	12.99	27.39	46.61	124.30	211.00
Runoff	(mm)	206	138	134	135	46	28	15	14	30	51	136	231
Rainfall	(mm)	200	143	171	107	87	49	56	80	116	138	132	270
Statis	tics of	monthly o	data for pr	evious reco	rd (Mar 195	7 to Dec 1	993)						
Mean flows:	Avg. Low	52.730 10.850	41.940 12.680	34.380 7.392	23.840 8.121	16.640 6.051	11.130 4.273	8.202 3.390	10.720 2.698	15.840 2.939	28.090 4.303	39.530 13.760	51.190 17.770
	(year)	1964	1963	1993	1974	1990	1957	1976	1976	1959	1978	1988	1988
	High	88.650	116.000	100.700	49.330	46.590	26.740	27.490	38.540	45.680	86.350	99.840	112.700
	(year)	1974	1990	1981	1985	1983	1972	1968	1985	1974	1967	1960	1959
Runoff:		155	112	101	68	49	32	24	32	45	83	112	150
	Low	32 260	34	22	23	18	12	10	8	8	13	39	52
	High	200	308	296	140	137	76	81	113	130	254	284	331
Rainfall		161	112	113	86	87	77	78	98	120	138	148	169
	Low High	28 331	10 289	15 303	8 175	9 221	17 144	21 177	25 247	8 259	19 325	55	46
_	-		200	500	173	221	144	1//	247	255	323	323	351
Sumn	nary st	atistics						1994	Fact	ors affect	ing runoff		
			F	or 1994	F	or record	,	As % of	• Re	servoir(s) i	in catchme	nt.	
Mann 4	low (m³s	-1	22	700		eding 1994	P	re-1994			for public v		
	erm) wor tyearly n		33.	720	27.810 14.880		1973	121		igmentatio oundwater	n from sur	face water	and/or
	t yearly n				44.05		1960		giv	Juliawatel	•		
	t monthly			850 Aug			ıg 1976						
	t monthly			780 Dec			ь 1990						
	t daily me t daily me		3.1 309.1	519 30 Aug 900 28 Dec			ıg 1976 ec 1979						
Peak			441.				ec 1979						
	kceedand		77.0	690	64.03	0	- · · -	121					
	xceedanc xceedanc			870 970	16.38			127					
		e llion cu m)	1063	970 3.00	4,21(877.6(94 121					
	runoff (n		116		963	-		121					
	rainfall (i		154		1387			112					
196	1-90 rain	fall average	(mm)		1363								

Station and catchment description
Velocity-area station; permanent cableway. Low flows measured at complementary station downstream (56010 - Trostrey weir). There is a partial impact on flows resulting from three large existing public water supply reservoirs in upper catchment. Intake to canal upstream of gauge. Some naturalised flows available. Geology - mainly Old Red Sandstone. Hill farming in upper areas, with dairy or livestock farming below; forest 3%. Peaty soils in uplands, seasonally wet.

Teifi at Glan Teifi 062001

Measuring authority: NRA-WEL

1994

Catchment area (sq km): 893.6

First year:	1959	4-44CC		One	Level stn					OBTORNO	Max alt. (n OD): 593
Daily me	an gauged di	ischarges (cubic metres	ner secondi								
DAY	D DOGDDO 11D: NAL	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC
1	58.410	60.750	60.610	139.600	25.960	7.745		4.567	5.982	12.400	90.280	18.190
2	60.810	49.470	52.180	97.020	23.770	7.651		4.382	5.911	14.970	62,160	17.880
3 4	117.200	85.840	45.370	84.960 89.660	23.420 22.590	9.106 11.330		12.390 10.270	5.696 6.447	18.670 16.000	67.980 65.420	50.100 135.500
5	118.500 98.620	91.970 77.190	44.320 44.390	76.410	21.720	11.800		7.805	6.437	13.340	51.610	140.900
6	77.980	77.700	39.060	64.520	20.030	10.500		6.776	7.918	12.260	45.210	153.200
7 8	69.850 61.770	65.310 55.330	39.340 42.030	56.210 77.410	20.250 18.810	12.600 11.270		5.885 5.262	7.214 9.564	11.620 11.200	38.680 61.260	175.100 184.400
9	71.920	48.490	57.840	78.640	17.080	9.758		4.870	10.600	10.780	75.590	112.600
10	67.740	44.670	50.770	79.550	16.010	8.396	5.896	7.117	12.370	10.210	57.740	77.920
11	68.350	49.650	47.450	61.950	15,150	7.361	5.375	7.342	16.040	9.310	48,160	58.470
12	96.890	42.500	50.750	50.470	15.330	6.617	5.017	5.956	36.710	8.927	73.180	48.290
13	82.520	36.150	52.410	42.790	14.280	6.064		5.361	25.520	8.586	77.250	46.420 45.680
14 15	67.430 59.330	30.820 27.540	45.360 48.360	37.170 31.780	14.790 20.430	5.785 5.485		5.007 4.787	33.630 42.790	8.322 8.051	85.960 69.910	39.110
	55.555	47.040	40.500	01.700	20.400	000	7.2.7	4				
16	49.880	25.910	45.290	28.050	19.010	5.257		4.731	42.680	7.706	59.370	33.740
17 18	43.960 42.610	24.530 25.390	40.290 51.640	25.290 23.050	15.110 13.540	5.068 4.902		5.066 5.037	32.760 34.350	7.495 7.362	49.630 55.720	41.620 58.630
19	43.120	24.410	65.820	21.480	12.310	4.776		4.884	43.540	8.106	57.200	50.280
20	43.950	24.660	61.520	26.200	11.390	4.693	4.058	4.539	43.570	8.081	77.130	42.770
21	42.240	21.230	51.000	33,700	10.740	6.960	4.020	4,346	40.850	12.330	63.400	36.380
22	44.770	22.220	55.220	37.700	10.180	8.182		4.205	32.230	30.140	53.920	31.030
23	67.550	39.270	49.540	34.090	9.845	6.932		4.680	25.610	31.510	45.320	27.340
24 25	63.880 67.260	30.540 59.710	48.090 55.860	41.190 43.850	10.550 12.440	5.580 5.103		4.828 4.992	23.300 21.960	31.130 48.530	39.300 33.440	25.780 31.150
23	07.200	55.710	55.600	43,650	12.440	5.103	3.027	7.552	21.300	-0.550	33,440	31.130
26	57.630	72.280	52.980	42.270	10.840	4.866		4.981	19.870	49.660	29.200	63.200
27 28	51.780 45.750	93.570 73.430	55.430 57.970	38.710 35.480	9.818 9.188	4.778 4.479		4.862 · 4.958	17.040 15.330	48.660 44.020	26.140 23.340	161.700 235.600
29	42.130	73.430	48.280	31.980	8.667	4.317		5.449	14.040	54.800	21.280	195.300
30	42.610		61.350	28.640	8.244	4.250		4.788	13.030	93.300 n	19.580	125.100
31	39.390		102.400		7.895		3.859	5.590		105.900 f		90.900
Average	63.410	49.300	52.350	51.990	15.140	7.054	5.240	5.668	21.770	24.630	54.150	82.400
Lowest	39.390	21.230	39.060	21.480	7.895	4.250		4.205	5.696	7.362	19.580	17.880
Highest	118.500	93.570	102.400	139.600	25.960	12.600	14.030	12.390	43.570	105.900	90.280	235.600
Peak flow	137.70	107.70	145.90	149.60	27.32	13.30		17.22	52.26	114.90	109.50	261.90
Day of pea		27	31	1	1	7	6	3	15	31	1	28
Monthly to (million cu		119.30	140.20	134.80	40.56	18.28	14.03	15.18	56.42	65.96	140.30	220.70
					4-	••						247
Runoff (mn Rainfall (mr		133 137	157 186	151 122	45 52	20 52	16 91	17 98	63 131	74 140	157 123	247 266
•	•											
Statistic	s of monthly	data for pr	evious reco	rd (Jul 1959	to Dec 19	193—inc	omplete or mi	ssing mont	hs total 0.2	years)		
Mean A	vg. 48.450	38.150	31.620	22.770	17.210	11.700	8.400	12.390	16.620	34.690	46.310	53.540
flows: Lo		11.140	8.280	7.481	4.228	2.975		1.127	1.073	3.886	16.060	17.270
(ye Hi	ear) 1963 gh 106.000	1965 87,130	1962 96.730	1974 41.810	1984 36.780	1984 41.700		1976 39.210	1959 48.680	1972 102.000	1983 85.130	1991 93,960
	ear) 1974	1990	1981	1985	1979	1972		1985	1974	1981	1986	1965
Runoff: Av	vg. 145	104	95	66	52	34	25	37	48	104	134	160
Lo	•	30	25	22	13	9	5	3	3	12	47	52
Hi		236	290	121	110	121	75	118	141	306	247	282
Rainfall: Av	va. 148	95	104	86	78	81	81	101	114	149	153	161
Lo	w 28	2	25	10	17	17	25	16	10	40	75	28
Hi	gh 326	213	312	163	168	148	166	235	242	293	279	315
Summar	y statistics							Fact	tors affect	ing runoff		
		_		-			1994	- D.		in catchmen		
		۲	or 1994		r record eding 1994	ļ.	As % of pre-1994			ın caterimen for public w		ies.
Mean flow	(m ³ s ⁻¹)	36.	010	28.460)		127					
Lowest year				18.860		1964						
Highest year	arry mean onthly mean	5	240 Ju	38.230 1.073		1974 1959 p						
	onthly mean		400 Dec			n 1974						
Lowest dai			827 25 Ju			ıg 1976						
Highest dai Peak	ily mean	235. 261.				ct 1987 ct 1987						
10% excee	edance		090 28 080	64.120			120					
50% excee	edance	27.	470	18.650	1		147					
95% excee	edance al (million cu m)	4. 1136	273 3.00	3.047 898.10			140 126					
Annual run		127		1005	•		126					
Annual rain	ıfali (mm)	157		1351			117					
1961-9	D rainfall average	(mm)		1382								

Grid reference: 22 (SN) 244 416

Station and catchment description
Velocity-area station. Straight reach (width: 35m), natural control. Flood flows spill over right bank. Public water supply impounding reservoirs in upland area where there is mostly hill farming. Tregaron bog (10 sq. km.) has partial effect on flows; sensibly natural regime. Geology - mainly Ordovician and Silurian deposits. Dairy farming predominates in southern area. Forest: 5%. Peaty soils on hills, seasonally wet. Apart from Tregaron bog, most of the lower areas have soils with permeable substrate.

067015 Dee at Manley Hall

1994

Measuring au First year: 19		-WEL				e: 33 (SJ) . (m OD): 2				Catchmen	t area (sq k Max alt. (r	m): 1019.3 n OD): 884
Daily mean	gauged dis	scharges (d	cubic metres	per second)								
DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC
1	89.380	74.530		119.900	12.280	9.817	10.960	13.650	12.870	14.640	42.230	16.680
2	95.260	65.390	69.620	102,400	10.840	10.200	11.430	13.260	11.510	17.570	35.300	15.330
3	104.900	73.080	58.170	84.380	10.740	11.090	11.540	13.470	10.950	25.600	38.080	26.380
4	92.550	79.590	49.280	84.660	10.970	11.260	11.380	14.200	11.010	23.380	40.100	54.450
5	83.890	63.400	42.540	88.850	10.670	10.510	11.250	13.450	10.820	19.980	33.670	67.680
_												
6	67.570	57.400	37.160	80.950	11.660	9.357	12.460	12.520	10.110	17.830	29.010	68.990
7	55.720	52.040	39.050	85.240	11.590	10.990	13.490	12.590	10.420	16.950	25.920	107.400
8 9	49.750 57.120	46.810 43.230	39.430 41.850	103.200	12.040 11.530	11.990	11.460	12.810	10.310	15.090	26.350	161,600
10	58.010	39.830	39.720	111.500 102.200	10.630	11.060 10.630	11.020 10.990	12.670	13.020	12.600	37.760	106.200
10	38.010	35,630	35.720	102,200	10.030	10.630	10.990	12.540	20.150	10.990	34.620	81.540
11	57.560	60.700	38.330	80.990	10.260	10.260	11.300	12,550	25.410	10.410	30.580	70.510
12	100,000	46.720	44.230	65.380	10.020	10.160	11.250	11.450	44.330	13.580	42.410	70.460
13	109,500	40.290	59.320	49.240	9.670	9.665	10.960	10.970	42.030	13.350	62.590	84.470
14	98.580	34.610	53.860	37.820	10.390	9.709	10.930	11.130	39.940	13.020	142.600	74.720
15	82.810	31.170	61.170	31.350	14.600	10.220	10.860	11.420	48.110	12.920	108.200	60.670
_												
16	64.540	30.160	64.910	26.290	14.090	10.590	10.610	11.280	44.780	12.730	77.270	50.920
17	52.470	29.590	54.460	24.530	10.500	10.770	10.640	11.630	32.550	12.610	58.590	52.160
18	48.860	31.940	69.910	22.500	9.266	10.750	10.490	10.450	25.760	12.090	48.720	67.010
19 20	47.840 45.210	28.940 26.440	80.710	20.250	9.801	10.600	10.700	10.090	22.890	11.560	51.220	56.930
20	45.210	20.440	64.710	18.890	9.534	10,470	14.320	10.040	23.770	11.130	107.700	48,320
21	43.510	24.260	50.960	17.830	9.820	12.120	14,400	10.230	22.410	10.890	87,160	43.230
22	42,400	21.980	52.540	19,290	10.010	20.530	14.000	10.320	18.330	16.320	66.490	37.460
23	75.910	20.200	68.930	21.230	9.770	14.450	13.500	10.590	14.580	23.760	50.810	33.050
24	67,370	18.940	78.940	22.250	9.380	11.550	14.860	10.780	13.750	20.530	40.240	30.860
25	78.640	21.690	97.110	23.760	9.831	10.910	14.690	11.110	17.510	32.650	33.320	33.290
26	84.290	62.700	92.890	27.000	9.455	10.720	13.630	10.920	15.320	38.230	28.560	69.610
27	97.000	118.500	74.050	32.570	9.225	10.550	14.020	11.190	13.110	41.470	24.880	164,600
28	91,120	108.800	72.570	30.980	9.003	10.750	12.840	11.270	12.240	42.680	22.030	216.000
29 30	80.380 74.230 '		63.450	25.580	9.582	10.810	12.920	10.940	11.560	36.610	19.960	221.900
31	60.8101		59.350 84.790	16.820	10.500 9.774	10.710	13.410	10.550	11.040	41.950	18.180	203.400
31	00.810		04.750		5.774		13.730	10.680		47.590		145.700
Average	72.810	48.320	61.080	52.590	10.560	11.110	12.260	11.640	20,690	20.990	48.830	81.980
Lowest	42,400	18.940	37.160	16.820	9.003	9.357	10.490	10.040	10.110	10.410	18.180	15.330
Highest	109.500	118.500	97.110	119.900	14.600	20.530	14.860	14.200	48.110	47.590	142.600	221.900
_												
Peak flow	128.90	134.30	151.30	158.20	15.74	24.36	16.40	14.92	67.41	49.05	177.90	257.90
Day of peak	3	27	31	1	15	22	24	4	15	31	14	28
Monthly total	105.00	110.00	102.00	*20.00	20.20	20.70	00.04	01.17	FD 00	F0 00		0.00
(million cu m)	195,00	116.90	163.60	136.30	28.2 9	28.79	32.84	31.17	53.62	56.22	126.60	219.60
Runoff (mm)	191	115	161	134	28	28	32	31	53	55	124	215
Rainfall (mm)	199	127	204	120	53	57	54	85	149	111	142	300
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.55		20-	120	55	3,	3 -	00	143		142	300
Statistics o	of monthly o	lata for pro	evious reco	rd (Oct 193	7 to Dec 1	993)						
	·	•		•		•						
Mean Avg.	51.900	44.260	33.470	24.680	17.390	13.970	12.970	17.200	23.220	32.830	46.630	53.030
flows: Low	13,460	7.858	8.128	7.841	4.273	3.742	3.113	3.288	3.052	4.216	11.580	18.610
(year)		1963	1943	1938	1938	1961	1949	1955	1949	1947	1937	1963
High	109.300	106.700	103.700	61.030	41.940	31.240	40.270	59.400	69.470	92.470	103.000	105.200
(уевг)	1948	1946	1947	1970	1969	1972	1957	1957	1950	1967	1960	1965
Runoff: Avg.	136	106	88	63	46	36	34	45	59	86	119	139
Low	35	19	21	20	11	10	8	9	8	11	29	49
High	287	253	273	155	110	79	106	156	177	243	262	277
												_,,
Rainfall: Avg.	152	109	104	85	91	82	93	109	119	139	157	161
Low	41	14	28	10	18	13	20	9	13	25	15	36
High	338	252	251	182	197	168	244	211	306	317	300	373
C	4:											
Summary s	tatistics '						1004	ract	ors arrect	ing runoff		
		F	or 1994	E	or record		1994 As % of	● Ro	conjuir(e) i	in catchme	nt	
		•	0, 1004		eding 1994		re-1994				vater supp	line
Mean flow (m	3 ₅ -1)	37.3	700	30.910			122				rial and/or	
Lowest yearly				20.460		1964				bstractions		
Highest yearly	mean			44.600	0	1954					face water	and/or
Lowest month	nty mean	10.9	560 May	3.05	2 Se	ap 1949		gro	oundwater			•
Highest month	hly mean	81.9	980 Dec	109.300) Ji	an 1948		Ū				
Lowest daily r			003 28 May			lul 1949						
Highest daily r	mean	221.9				ec 1964						
Peak		257.9				ec 1964		_				
10% exceedar			150	70.50			119		ment			
50% exceeds			310	19.270			121			runoff tot	al for 1994	ł IS
95% exceedar Annual total (r		1189	978	5,34! 975.40			187	119	7 mm.			
Annual runoff		116		9/5.40	,		122 122					
Annual rainfall		160		1401			114					
	sinfall average		•	1369								
				· -								

Station and catchment description
Asymmetrical compound Crump profile weir, checked by current meter. Drowns at flows above 200 cumecs. Low flows maintained by releases from major river regulating res. (Celyn and Brenig). Data prior to February 1970 is poorer quality - based on d/s Erbistock (67002, area: 1040.0 sq. km.) flow record. D/s flood attenuation is notable. Geology is 75% shales, slates, mudstones and palaeozoic grits; 25% extrusive igneous and Carboniferous rocks. 80% grazed open moorland, 12% forestry, remainder arable, urban negligible.

Measuring authority: NRA-NW

068001 Weaver at Ashbrook

1994

Catchment area (sq km): 622.0

29 30 31		10.600 9.077 7.637		5.033 5.275 11.150	3.002 3.006	2.144 2.094 2.072	1.415 1.336	1.736 1.774 5.477	1.075 1.318	1.783	11.850 12.200		30.350 22.670	
Average Lowest Highest	1	16.850 7.637 34.580	9.605 4.811 22.660	9.052 5.033 23.830	9.360 3.002 29.320	2.683 2.072 4.779	1.825 1.336 2.628	1.855 1.224 5.477	1.621 1.051 4.368	3.357 1.530 19.030	4.177 1.569 12.200	9.716 3.594 25.810	18.660 3.243 57.810	
Peak flo Day of p Monthly	eak total	41.63 3	28.78	29.33 31	34.09	5.33 15	3.09	10.61 31	5.80 1	20.90 15	13.51 30	30.99 20	63.96 27	
(million o	cu m)	45.12 73	23.24	24.25 39	24.26 39	7.19 12	4.73 B	4.97 8	4.34 7	8.70 14	11.19 18	25.18 40	49.99 80	
Runoff (i Rainfall (73 80	37 51	39 77	39 53	12 31	8 20	8 51	7 43	14 114	18 72	40 61	80 115	
Statist	tics of	monthly d	lata for pre	evious recor	d (Oct 1937	7 to Dec 19	93—inco	mplete or mi	issing mont	hs total 1.8	years)			
Mean	Avg.	10.380	8.923	6.724	4.902	3.713	2.803	2.704	2.931	3.141	4.413	7.605 1.302	9.607 2.430	
flows:	Low (year) High (year)	1.966 1964 21.950 1939	2.376 1965 19.860 1980	2.183 1938 18.580 1947	1,491 1938 11.760 1986	0.905 1946 22.720 1969	1,125 1962 6,996 1954	0.737 1976 12.750 1968	0.641 1976 8.405 1971	0.918 1964 16.990 1957	1.184 1947 15.970 1954	1.302 1942 22.540 1954	2.430 1947 22.250 1965	
Runoff:	Avg. Low High	45 8 95	35 9 80	29 9 80	20 6 49	16 4 98	12 5 29	12 3 55	13 3 36	13 4 71	19 5 69	32 5 94	41 10 96	
Rainfall:		67	48	51	49	59	59	67	70	65	69	76	70	
	Low High	18 145	2 145	12 127	2 98	9 194	13 142	16 168	6 175	5 1 69	15 137	13 170	10 140	
Summ	ary sta	itistics						1994	Fact	ors affecti	ing runoff			
			Fo	or 1994		or record		As % of				ndwater ab:	straction	
Mean flo Lowest	yearly m	iean	7.3	393	5.641 2.752	2	1964	re-1994 131	• At		or public v	vater suppl uent return		
Highest Lowest	yearly m	nean	1.6	521 Aug	9.209 0.641	9	1954 1976							
Highest	monthly	mean	18.6	60 Dec	22.720) Ma	y 1969							
Lowest	daily me daily me		57.8		0.394 84.950) 9 Fei	g 1976 b 1946							
Highest	,	•	63.9	60 27 Dec	212.400) 8 Fel	1946	150						
Peak		_												
Peak 10% exc	ceedanci		18.6 4.4	520 104	12.410 3.209			137						
Peak 10% exc 50% exc 95% exc	ceedanci ceedanci	9 8	4,4 1.3	104 335	3.209 1.155) 5		137 116						
Peak 10% exc 50% exc 95% exc Annual 1	ceedanci ceedanci	e lion cu m)	4,4	104 335 .10	3.209) 5		137						

Grid reference: 33 (SJ) 670 633

Station and catchment description Initially a river section (from 1937). Early gaugings lost; rating accuracy unknown. Mobile control. Data before 1972, particularly low flows, unreliable. Unstable low flow rating led to relocation 400m d/s with an informal Flat V control and cableway in 8/78. Prone to weed and algal growth. High flow rating (above 40 cumec) has yet to be defined. Flat catchment includes western half of Crewe. Post glacial deposits over (mostly) Keuper Marl.

072004 Lune at Caton

1994

Measuring au First year: 19		-NW		Gri		:e; 34 (SD) i. (m OD): 1				Catchma		km): 983.0 n OD): 736
Daily mean	gauged di	scharges (cubic metres	per second)								
DAY	NAL	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1 2	43.750 112.200	132.900 56.830	47.450 44.980	106.200 49.900	18.100 15.460	4.416 4.342	8.811 7.715	9.942 9.703	25.150 13.770	16.100 125.400	59.050 31.700	13.890
3	134.300	46.380		105.400	14.030	5.163	7.048	18.160	12.540	59,310	41,600	12.850 19.280
4	64.680	43.950	53.040	80.450	19.320	7.571	6.747	47.210	31.530	28.320	29.320	78.700
5	79.520	31.470	93.270	73.550	53.790	5.955	6.486	16.420	23.270	19.970	57.080	66.360
6	56.180	33.970	96.060	53.920	37.930	5.439	6.554	10.740	38.740	15.980	32.080	49.550
7	34.070	29.430	120.700	95.400	21.600	8.357	6.593	7.942	55.760	21.460	23.080	76.200
8 9	28.910	65.300	246.900	132.600	16.700	5.738	5.545	6.762	32.500	27.330	25.910	129.500
10	50.140 48.900	46.440 27.940	83.260 44.760	80.190 62.400	13.910 12.270	5.189 5.735	4.904 5.030	5.965 5.364	43.190 80.810	16.100 12.900	68.520 43.950	48.300 218.900
11 12	33.730 75.450	22.440 18.610	68.640 115.200	39.340 32.570	10.880 9.846	5.081 4.482	11.880 8.170	4.985 4.653	68.820 104.200	11.150 9.975	28.480 62.410	192.100 182.300
13	72.390	15.960	103.100	26.190	8.897	4.086	5.759	4.278	68.570	9.148	327.800	102.700
14	78.640	13.690	106.700	20.500	8.315	3.636	4.977	3.911	35.580	8.505	214.300	56.940
15	42.760	12.470	56.500	17.100	10.860	3.453	4.777	3.662	39.810	7.943	113.500	50.790
16	28.770	, 11.810	44.300	15.000	11.060	3.588	4.499	3.925	29.700	7.585	70.460	51.140
17	22.090	11.220	40.370	13.580	8.467	3.596	4.065	15.480	19.830	7.260	102.800	124.400
18 19	175.800 71.360	11,040 10,410	60.510 41.180	12.440 12.130	7.426 7.016	3.597 11.650	3.736 3.434	8.775 6.932	16.100 15.060	6.810 6.577	93.180 142.100	96.400 65.390
20	68.650	9.394	28.360	33.620	6.883	11.130	3.290	6.625	16.590	7.565	130.900	43.070
21 22	62.400 83.910	8.532 8.093	23.480 76.980	29.370 105.900	6.602 6.684	65.580 21.440	3.234 3.215	5.382 4.590	15.770	8,135	58.280	31.750
23	135.500	7.749	329.800	57.830	6.244	10.750	3.084	17.680	12.310 10.480	18.740 74.880	40.180 36.120	24.560 20.860
24	82.260	8.050	90.010	33.500	5.874	12.170	3.489	92.070	10.270	34.560	29.640	25.590
25	186.600	12,620	85.270	35.140	5.576	17.580	3.896	83.570	32.610	45.200	24.500	47.320
26	134.700	72.320	43.580	35.390	5.340	29.900	3.165	36.960	17.870	47.170	25.100	122.900
27	166.100	123.100	51.870	30.400	5.210	80.650	4.852	55.260	13.080	51.120	22.490	94.870
28 29	70.330 105.100	97.900	55.130 41.630	70.310 35.260	5.054 4.968	22.770 14.290	4.096 3.133	41.390 26.410	11.320 10.170	63.510 32.100	18.810 16.680	449.800 143.600
30	70.990		31.460	22.950	4.720	10.740	2.887	23.090	9.757	48.080	15.120	137.600
31	43.030		127.800		4.516		4.805	19.890		117.400		84.150
Average	79.460	35.360	83.600	50.820	12.050	13.270	5,157	19.600	30.510	31,170	66.170	92.310
Lowest	22.090	7.749	23.480	12.130	4.516	3.453	2.887	3.662	9.757	6.577	15.120	12.850
Highest	186.600	132.900	329.800	132.600	53.790	80.650	11.880	92.070	104.200	125.400	327.800	449.800
Peak flow	394.60	259.80	582.00	285.90	123.10	150.60	13.49	212.70	129.60	224.10	609.60	579.50
Day of peak	18	1	23	1	5	27	11	25	10	2	13	28
Monthly total (million cu m)	212.80	85.54	223.90	131.20	32.27	34.39	13.81	52.51	79.07	83.49	171.50	247.30
											171.50	247.50
Runoff (mm) Rainfall (mm)	217 224	87 81	228 255	133 145	33 41	35 98	14 59	53 151	80 121	85 129	174 174	252 287
		_									1/4	20/
Statistics of	f monthly (data for pr	evious reco	rd (Jan 195)	9 to Dec 1	993inco	mplete or m	issing mon	ths total 4.0) years)		
Mean Avg.	54.080	39.570	36.770	28.560	18.250	14,740	18.310	24.670	31.550	43,150	50.980	57.900
flows: Low	6.622	3.842	10.040	4.203	2.565	3.385	1.882	2.167	2.790	4.314	11.220	18.730
(year) High	1963 88.800	1963 114.000	1993 113.800	1974 67.970	1974 40.700	1975 49.190	1984 42.800	1976 71.330	1959 67.010	1972 134.400	1993 97,220	1971
(year)	1990	1990	1981	1970	1986	1972	1988	1985	1985	1987	1963	108.900 1986
Dunatti Ava	147	98	100	75	50	20	50	47				
Runoff: Avg. Low	18	9	27	75 11	50 7	39 9	50 5	67 6	83 7	118 12	134 30	158 51
High	242	280	310	179	111	130	117	194	177	366	256	297
Reinfall; Avg.	153	101	112	95	89	89	112	128	135	154	149	170
Low	20	9	44	5	21	22	29	24	26	46	60	55
High	279	309	246	193	178	169	245	270	262	402	277	333
Summary st	tatistics							Fac	tors affect	ing runoff		
			or 1994	E	or record		1994 As % of	● R4	eservoir(s)	in catchmo	nt	
			5. 1554		eding 1994		re-1994				water supp	lies.
Mean flow (m ³		43.	370	34.880			124				face water	and/or
Lowest yearly Highest yearly				24.700 46.500		1976 1967		gr	oundwater	-		
Lowest month		5.	157 Ju			Jul 1984						
Highest month			310 Dec			Oct 1967						
Lowest daily n Highest daily n		449	887 30 Ju 800 28 Dec			ug 1984 tar 1968						
Peak		609				eb 1990						
10% exceedan		104.	700	81.350)		129					
50% exceedan 95% exceedan			690 004	16.860 2.841			152 141					
Annual total (n			3.00	1101.00			124					
Annual runoff ((mm)	139	}1	1120			124					
Annual rainfall 1961-90 rai	(mm) infall average	(mm) 176	5	1487 1523			119					
.55, 66 19		ç <i>y</i>		1323								

Station and catchment description
Bazin type compound broad-crested weir operated after 10/6/77 as full-range station. Previously used for low/medium flows; high flows from Halton 3km downstream. High flows inundate wide floodplain. Transfers to River Wyre under Lancs. Conjunctive Use Scheme. Major abstractions for PWS. Headwaters rise from Shap Fell and the Pennines. Mixed geology: Carboniferous Limestone; Silurian shales; Millstone Grit and Coal Measures, substantial Drift cover. Agriculture in valleys; grassland rising to peat moss in highest areas.

Leven at Newby Bridge 073010

1994

Measuring at First year: 19	uthority: NRA 939	-NW		Gr	id reference Level stn.					Catchme	nt area (sq l Max alt. (n	km): 247.0 n OD): 873
·	gauged dis	charges (ubic metres	per second)	1						
DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC
1	23.240	44,160	25.720	26.890	12.690	1.176	9.217	2.944	8.678	3.374	26.500	7.772
2	22.980	47.360	24.110	25.300	11.260	1,273	7.387	3.069	7.309	5.377	24.840	6.661
3	26.720	40.550	26.980	26.900	9.760	1.609	6.011	6.782	6.464	6.654	24.540	7,782
4 5	31.640 29.290	33.740 26.680	28.330 31.240	36.770 35.170	11.420 16.810	2.127 2.072	5.211 4.511	13.980 14.200	6.291 6.480	6.120 5.404	23.700 22.960	11.850 15.210
6	27.820	22.840	32.350	31.670	18.860	2.506	4.237	12.510	8.867	4.519	20.990	16.760 °
7	24.940	20.610	41.070	30.630	17,490	3.139	3.832	10.390	12.570	4.701	18.440	19.100
8	21.780	20.890	53.160	32.190	15.480	3.201	3.279	8.386	13.990	5.004	16.680	28.590
9	20.250	23.200	54.810	33.550	13.480	3.494	2.664	7.129	15.490	4.651	20.790	29.230
10	21.130	21.760	45.250	31.000	11.730	4.002	5.346	5.527	19.600	4.012	21.370	35.070
11	20.040	19.230	38.350	25.260	10.350	3.801	9.848	4.179	23.860	3.474	19.470	43.560
12	22.270	16.740	34.760	22.630	8.659	3.441	10.320	3.140	28.710	2.951	20.780 40.500	49.850 45.920
13 14	24.690 25.120	14.560 12.480	37.630 38.100	19.970 17.350	7.666 6.614	3.150 2.867	8.966 7.330	2.621 2.320	31.650 28.350	2.554 2.232	55.630	39.100
15	23.450	10.260	36.600	14.270	5.913	2.383	6.209	2.146	21.900	2.210	52.900	33.160
10	20.500	0.020	22.070	11.040	E 100	2 171	5.128	2.128	18.060	1.799	46.440	28.000
16 17	20.500 17.350	8.939 7.773	32.070 25.910	11.840 10.100	5.188 4.303	2.171 1.837	3.947	2.128	14.960	1.755	41.520	26,780
18	20.540	6.811	23.050	8.411	3.619	1.918	3.069	2.686	12.320	1.432	41.430	28.990
19	26.820	6.194	20.370	7.586	3.327	3.289	2.418	3.213	10.560	1.745	45.000	27.560
20	25.920	5.281	17.870	8.729	3.065	3.882	1.967	3.506	9.485	2.603	43.750	25.350
21	24.900	4.641	15.440	9.430	2.931	12.030	1.945	3.546	7.704	3.223	38.490	22.250
22	23.880	4.268	18.080	15.700	2.531	14.390	1.918	3.585	6.345	5.611	33.170	19.010
23	28.650	4.978	36.390	18.510	2.136	12.570	1.852	5.064	5.339	9.788	27.390	16.330
24 25	28.080 31.580	4.2 9 9 4.735	46,110 41,340	18.510 17.960	1.938 1.890	10.310 8.312	1.90 6 1.543	7.546 11.530	5.075 4.263	11.870 12.360	23.510 19.850	15.350 15.910
											•	
26	35.550	6.450	35.140	17.880	1.713	8.601	2.565	12.410	3.714	13.930 16.490	16.950 14.570	19.060 23.570
27 28	43.830 42.560	13.410 124.890	30.380 29.730	16.910 16.320	1,470 1,320	14.960 14.780	3.492 3.419	12.640 12.140	3.521 3.140	18.860	12.580	44.670
29	39.050	14.000	27.290	15.630	1.345	12.840	3.045	11.920	3.021	18.440	10.760	54,490
30	37.870		23.850	14.440	1.072	11.100	2.742	10.700	2.966	19.260	9.156	52.020
31	33.590		24.300		1.133		2.856	9.653		24.470		50.360
Average	27.290	17.060	32.120	20.580	7.005	5.774	4.457	6.911	11.690	7.309	27.820	27.720
Lowest	17.350	4.268	15.440	7.586	1.072	1.176	1.543	2.128	2.966	1.432	9.156	6.661
Highest	43.830	47.360	54.810	36.770	18.860	14.960	10.320	14.200	31.650	24.470	55.630	54.490
Peak flow	45.89	50.26	59.77	38.07	19.26	15.93	10.68	14.93	33.27	26.77	56.78	56.78
Day of peak	27	1	8	4	6	27	12	4	13	31	14	29
Monthly total (million cu m)	73.10	41.28	86.04	53.35	18.76	14.97	11.94	18.51	30.30	19.58	72.11	74,24
						•						
Runoff (mm) Rainfall (mm)	296 344	167 149	348 372	216 211	76 71	61 154	48 103	75 180	123 160	79 186	292 270	301 393
								100				
Statistics of	of monthly o	lata for pro	evious reco	'd (Jan 193	9 to Dec 19	993)						
Mean Avg.	20.050	16.710	14.020	11.330	7.501	6.296	7.316	10.370	13.970	17.070	20.250	21.500
flows: Low	1.935	0.974	3.699	1.796	0.641	0.545	0.774	0.652	0.560	1.438	5.059	8.207
(year)		1963	1962	1974	1980	1978	1941	1984	1959	1972	1993	1963
High	38.020 1975	37.450 1990 ,	36.040 1989	21,640 1949	18.680 1986	18.730 1972	16.990 1953	31.070 1985	33.930 1946	50.170 1967	36.450 1986	40.110 1954
(year)	1, 1,7,5	1330	1000	13-3	1000		,,,,,	1000			,,,,,	
Runoff: Avg.	217	165	152	119	81	66	79	112	147	185	213	233
Low High	21 412	10 367	40 391	19 227	7 203	6 197	8 184	7 337	6 356	16 544	53 383	89 435
_						•						
Rainfall: Avg.	231 26	156 7	167 32	122 12	116 22	124 17	148 32	183 7	211 29	224 30	234 17	244 90
Low High	439	410	398	243	241	269	309	428	427	557	428	482
=								Enge	ors affecti	ina sunaff		
Summary s	itatistics						1994	raci	ors affecti	ng runon		
		F	or 1994		or record		As % of			n catchmer		:
Mean flow (m	: 3 ₀ -1)	16.3	200	pre: 13.85	ceding 1994 O	,	pre-1994 118				vater suppl uent return	
Lowest yearly		10.	300	9.23		1973		• / (gmoment			.
Highest yearly				21.84		1954						
Lowest month			457 Jul			ın 1978						
Highest month		32.		50.17		ct 1967						
Lowest daily (Highest daily (1.0 55.6	072 30 May 630 14 Nov	0,10 115,90		ct 1972 ec 1954						
Peak		59.7		135.80		c 1954						
10% exceeda		35.5	560	30.98	0		115					
50% exceeda		12.8		10.05			127					
95% exceeda Annual total (1.9 514	91 9 .00	1.21 437.1			158 118					
Annual rotal (208		1770	-		118					
Annual rainfal	l (mm)	259		2160			120					
1961-90 ra	ainfall average	(mm)		2167								

Station and catchment description
Level record since 1939 from four different sites at Newby Bridge. All flow records from 1939 to 1974 combined into a single sequence. Since 5/5/71 compound Crump profile weir - increased sensitivity at low flows. Full-range. Just d/s of Lake Windermere - highly regulated compensation flow. Occasional very low flows (e.g. in autumn 1972) have resulted from closure of u/s fish pass. Major abstractions for PWS, sewage effluent from Ambleside. Predominantly impervious, Borrowdale Volcanics in north and Silurian slate in south. Boulder Clay along river valleys. Mainly grassland, very wooded in lower reaches.

076007 Eden at Sheepmount

1994

Measuring at First year: 19		NW			id reference , Level stn					Catchmen		m): 2286.5 m OD): 950
Daily mean	gauged di	scharges (cubic metres	per second)								
DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL .	AUG	SEP	ОСТ	NOV	DEC
1	66.170	226.000	80.580	154.200	34.200	12.400	13.700	13.150	18.920	16.810	79.570	29.060
2	98.500	139.500	64.700	84.080	32.270	12.850	12.870	11,400	18.190	31.590	54.430	27.230
3 4	135.000	93.740 98.530	168.400	87.180	30.500	15.820	12.390	15.270	15.550	70.860	64.750	41.400
5	113,000 109,600	74.600	92.180 208.500	118.400 84.210	35.460 42.980	17.430 16.500	12.420 12.190	39.500 25.500	16,190 17,290	38.300 28.910	62.350 92.700	97.110 115.500
				4		10.000	12.100	20.000	17.200	20.510	32.700	113.300
6	113.800	65.140	110.600	82.360	44.720	14.690	14.440	20.000	17.340	24.030	72.000	92.040
7 8	77.570 62.550	59.710 61.290		127.500 155.000	33.330	14.630	19.090	16.540	23.930	22.300	50.950	170.600
9	83.120	78.990		120.200	29.100 26.190	14.350 13.810	13.610 12.020	14.850 13,800	21.200 23.260	23.340 19.940	42.190 73.250	290.800 121.500
10	108.000	55.980	86.320	95.010	24.130	13.950	11.630	12.900	56.750	17,770	75.510	161.800
	00.000	47.000						•				
11 12	69.980 110.300	47.900 41.680	89.140 97.490	74.560 66.760	22.460 20.980	13.680 13.070	13.580 13.780	12.220 11.840	88.460 112.500	16.310 15.270	57.590 91.560	312.100
13	175.600	37.020	158.400	59.350	19.660	12.630	12.930	11.360	104.100	14.510	283.300	298.000 154.700
14	117.900	32.740	116.700	48.750	18.800	12.120	11.930	10.870	61.920	13.970	278.500	114.000
15	88.830	30.130	90.280	41.150	19.390	11.880	11.550	10.430	48.940	13.480	166.200	87.110
16	67.360	28.520	75,140	36.630	23.090	12.910	11.090	10.540	42.580	13.130	105.900	84.830
17	54.570	26.650	70.650	33.760	19.340	14.930	10.590	11,610	33.310	12.790	118.600	116.200
18	73.700	25.500	72.490	31.350	17.680	14,270	10.180	12.920	28.050	12.350	155.700	171.700
19 20	92.900	24.320	68.020	29.660	16.760	18.140	9.797	12.330	26.050	12.130	205.700	123.700
	65.540	22.920	52.720	32.460	16.040	15.980	9.567	12.440	28.120	13.210	170.200	86.710
21	60.080	21.760	45.600	40.790	15.550	40,490	9.727	11.310	29.570	19.680	104.000	66.930
22	55.390	20.330	66.110	84.560	15.720	34.110	9.705	10.510	24.860	25.410	76.100	54.440
23	103.500	19.700	289.100	81.240	16.180	20.840	9.223	14.070	21.190	86.080	64.840	48.420
24 25	71.050 153.900	19.390 19.530	162.100 110.600	62.040 52.080	15.200 14.520	17,270 15,800	9.237 9.561	23.710 66.020	19.300 31.240	51.820 39.190	58.120 50.130	49.170 60.740
	59		110.000	52.000	14.520	15.000	3.501	00.020	31.240	35.150	50.150	60.740
26	152,500	39.460	80.610	54.050	14.030	15.610	9.537	29.610	29.390	42.580	47.690	112.100
27 28	233,800 114,400	151,100 151,900	65.470 82.450	43.250 57.640	13.700	24.580	9.809	34.320	22.580	47.010	43.240	115.200
29	89.830	151.500	72.670	58.150	13.490 13.270	22.470 17.250	9.807 9.630	31.530 29.070	19.650 17.960	39.070 34.210	38.080 34.400	326,700 294,700
30	104.900		60.390	40.820	12.880	15.030	9.648	24.060	16.750	59.740	31.380	234.500
31	74.020		109.900		12.650		12.240	18.820		125.000		237.100
Average	99,910	61.220	107.300	71.240	22.070	16.980	11.530	19.110	34.500	32.280	94.960	138.600
Lowest	54.570	19.390	45.600	29.660	12.650	11.880	9.223	10.430	15.550	12.130	31.380	27.230
Highest	233.800	226.000	289.100	155.000	44.720	40.490	19.090	66.020	112.500	125.000	283.300	326.700
Peak flow	325.90	368.20	448.90	213.00	57.72	57.81	24.22	96.87	146.00	139.80	453.60	444.90
Day of peak	27	1	23	1	6	21	7	25	12	31	13	29
Monthly total												
(million cu m)	267.60	148.10	287.40	184.70	59.12	44.02	30.89	51.19	89.44	86.47	246.10	371.20
Runoff (mm)	117	6 5	126	81	26	19	14	22	39	38	108	162
Rainfall (mm)	159	68	179	104	29	71	49	114	92	91	140	241
Statistics of	of monthly	data for pr	evious reco	rd (Oct 196	7 to Dec 19	193—inco	molete or m	issina man	the total 3 () veerel		
				,				ilooling ilioli	tilo total o.	o 100.01		
Mean Avg.	88.490	67.770	58.770	42.810	28.700	21.900	22.330	25.780	36.930	59.790	73.000	80.590
flows: Low (year)	39.680 1992	26,440 1986	21.930 1993	13.070 1974	11.050 1974	10.420 1973	8.377 1984	7.023 1976	9.216	7.961	22.420	32.490
High	151.200	210.700	119.700	69.930	69.120	50.380	59.240	92.380	1972 105,400	1972 225.000	1993 126.400	1971 143,100
(year)		1990	1968	1993	1983	1972	1988	1985	1985	1967	1984	1986
Runoff: Avg.	104	מל	69	40	24	25	20	aò	40	70	00	
Low	46	72 28	26	49 15	34 13	25 12	26 10	30 8	42 10	70 9	83 25	94 38
High	177	223	140	79	81	57	69	108	120	264	143	168
Rainfall: Avg.	133	83	100	71	70	71	85	93	107	107		100
Low	44	13	43	8	19	21	22	19	107 25	127 31	123 :54	132 43
High	232	279	179	142	135	126	221	211	231	307	208	371
Summary s	tatistics							Engl		ing runoff		
Outmindry a							1994	Fac	iois allect	ing runon		
		F	or 1994		or record		As % of			in catchme		
Mean flow (m	311	50	180	pred 50.520	eding 1994	P	re-1994 117	• A	bstraction	for public v	water supp	lies.
Lowest yearly		33.	100	28.19		1973	117					
Highest yearly	/ mean			60.79	0	1982						
Lowest month			530 Jul			g 1976						
Highest month Lowest daily r		138.	600 Dec 223 23 Jul			ot 1967 p 1976						
Highest daily		326.				p 1976 er 1968						
Peak		453.	600 13 Nov	1357.00	D 24 Ma	ır 1968						
10% exceeds		125.		109.00			115					
50% exceeda 95% exceeda			700 080	31.28 10.09			117 110					
Annual total (1866		1594.0			117					
Annual runoff	(mm)	81	6	697			117					
Annual rainfall	l (mm) sinfall average	133 (mm)	17	1195 1183			112					
130 (-30) [6	0 4 41 4 4	Wintly		1103								

Station and catchment description
Velocity-area station. Permanent cableway. Full-range. Most floods contained in immediate channel. Pre-1970 (when floodbanks constructed) bypassed via Caldew floodplain. Highly influenced by Ullswater, Haweswater and Wet Sleddale especially at low flows. Rural except for Carlisle, Penrith and Appleby. Headwaters in Carboniferous Limestone of Pennines to east, impervious Lower Palaeozoics of Lake District massif to west; moorland. Extensive Boulder Clay covered Permo-Triassic sandstone in Vale of Eden. Arable and grazing.

Nith at Drumlanrig 079006

1994

Measurin First year		nority: SRP1 7	3		Grid	d reference Level stn.					Catchme		km): 471.0 n OD): 725
Daily m	ean g	auged dis	charges (c	ubic metres (per second)								
DAY		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC
1 2		12.790 17.680	138.400	19.380 34.920	39.800 38.460	6.272 6.515	1.494 1.477	1.547 1.458	14.560 5.308	7.054 5.464	4,186 8,215	27.300 25.920	7.083 7.251
3		57.330	42.000 30.630	49.160	90.680	9.902	2.082	1,442	15.810	5.198	9.573	73.510	37.430
4		26.790	62.790	95.070	54.340	21.450	2.375	1.712	18.570	5.895	5.945	42.520	23.830
5		27.360	48.480	67.360	39.140	24.770	1.918	3.311	7.699	5.296	8.811	25.040	39.460
		22.010	E1 470	40.220	20.020	14 200	1.817	6.773	5.495	27.800	6.177	23.560	67.880
6 7		32.010 23.410	51.470 30.780	49.330 44.320	28.930 32.160	14.300 10.250	1.747	5.323	4.263	15.180	5.147	16.470	67.470
é 8		19.130	34.570	69.490	43.420	7.785	1.586	3.079	3.589	20.430	4.338	15.620	104.200
9		102.500	24.630	31.670	31.710	6.356	3.150	2.448	3.090	32.190	3.709	30.570	33.220
10		65.580	16.810	22.500	27.160	5.574	3.201	8.180	2.657	34.490	3.334	16.110	156.800
11		55.180	14,190	23.410	21.500	4.905	2.025	7.874	2.354	41.850	2.990	12.170	342.100
12		80.220	11.200	40.270	20.820	4.259	1.740	11.500	2.095	19.770	2.701	25.460	128,600
13		67.590	9.016	45.870	13.790	3.826	1.548	8.272	1.901 1.787	13.000	2.510 2.388	125.800 77.140	45.030 26.020
14 15		63.910 32.780	7.382 6.826	57.160 32.280	10.630 8.700	3.507 3.240	1.324 1.333	4.680 4.142	1.701	9.762 7.650	2.307	113.800	21.240
13		32.700	0.020	52.250	0.700	0.2-40	1.000				2.00		
16		20.720	6.391	27.840	7.558	2.992	1.798	3.259	1.961	6.091	2.230	77.340	19.700
17		17.970	7.157	30.810	6.881	2.793	3.056	2.619 2.206	2.475 2.060	5.127 4.650	2.063 1.974	84.340 87.210	64.160 26.860
18 19		49.170 26.050	7.058 6.552	37.630 27.500	6.153 5.983	2.672 2.562	11.630 12.290	1.941	2.455	5.610	2.401	64.890	41.520
20		27.710	5.717	22.510	5.189	2.400	4.354	1.780	2.220	5.335	5.193	40.320	27.180
										4.545		03.000	40.400
21 22		25.070 30.490	5.264 4.865	37.070 74.490	5.092 6.991	2.252 2.138	16.620 6.893	1.739 1.635	1.943 1.756	4.347 3.776	6.426 45.190	27.660 33.630	16.160 12.400
23		37.100		110.100	13.170	2.030	4.130	1.463	15.490	3.416	59.810	22.220	20.000
24		31.500	3.428	48.290	12.610	1.924	3.557	1.666	23.080	3.134	18.750	16.490	19.480
25		59.280	3.264	28.040	19.530	1.819	3.140	1.882	11.850	2.911	11.020	13.740	31.160
26		72.800	6.087	17.950	14.680	1.736	3.019	6.934	10.810	2.733	11.060	16.060	29.490
27		46.030	72.980	42.230	8.567	1.693	3.128	3.277	13.150	2.874	11.430	12.360	20.100
28		22.990	35.790	35.100	8.515	1.631	2.333	2.230	37.730	2.912	13.200	10.160	91.610
29		33.040		25.860	9.781	1.563	1.896	1.865	41.650	3.253	11.990	8.559	42.090
30 31		31.340 23.920		73.170 49.760	7.874	1.515 1.492	1.697	1.648 17.680	14.140 9.443	3.168	16.650 4 47.650 4		62.110 28.330
31		20.020		10.700									
Average		39.980	24.910	44.210	21.330	5.359	3.612	4.050	9.132	10.350	10.950	39.120	53.550
Lowest		12.790 102.500	3.264 138.400	17.950 110.100	5.092 90.680	1.492 24.770	1.324 16.620	1.442 17.680	1.701 41.650	2.733 41.850	1.974 59.810	7.644 125.800	7.083 342.100
Highest		102.500	138.400	110.100	30.000	24.770	10.020	17.000	41.000	41.050	33.510	120.000	0-2
Peak flow		273.60	258.00	236.20	155.10	31.21	26.74	78.04	86.97	55.76	161.80	204.00	509.10
Day of pe		9	1	4	3	4	21	31	29	11	22	13	11
Monthly t (million cu		107.10	60.25	118.40	55.28	14.35	9.36	10.85	24,46	26.82	29.32	101.40	143.40
111111101101	,		00.20		00120								•
Runoff (m		227	128	251	117	30	20	23	52	57	62	215 206	305 310
Rainfall (m	nm)	242	119	260	131	30	89	112	116	86	115	206	310
Statistic	cs of	monthly o	lata for pre	evious recor	d (Jun 196)	7 to Dec 19	93)						
		20.070	0	20.000	14 200	0.077	E 227	c C 12	0.570	14.010	22 550	26,120	27 120
	Avg. .ow	29.870 9.037	21.400 4.288	20.060 4.427	11.220 2.457	8.077 1.390	5.237 1.489	5.513 0.868	8.579 0.841	14.010 1.261	22.550 2.744	5.268	27.130 12.770
	year)	1985	1986	1969	1974	1980	1984	1984	1984	1972	1972	1983	1971
	ligh	61.220	60.660	35.660	27.270	27.570	14.660	15.780	38.280	39.000	39.200	49.350	55.190
(t	year)	1974	1990	1992	1993	1986	1972	1988	1985	1985	1967	1982	1986
Runoff: A	٩vg.	170	111	114	62	46	29	31	49	77	128	144	154
L	_ow	51	22	25	14	8	8	5	5	7	16	29	73
H	ligh	348	312	203	150	157	81	90	218	215	223	272	314
Rainfall: A	٩va.	189	119	141	82	93	84	96	113	146	176	170	172
	_ow	67	10	34	11	19	30	41	23	20	61	35	69
Н	ligh	398	382	239	175	230	163	211	302	247	301	285	345
Summa	ırv sta	atistics							Fact	ors affect	ing runoff		
	•				_			1994					
			Fo	or 1994		or record eding 1994		As % of pre-1994			n catchme for public v		lies.
Mean flov	w (m³s	- 1 _]	22.2	230	16.640		1	134	• /	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	or public .	roto. oopp	
Lowest ye	early n	nean			10.720		1971		Na	tural to wit	hin 10% at	95 percen	tile flow.
Highest y			2.6	512 Jun	21.700 0.841		1982 1984						
Lowest m Highest m			53.5		61.220		1974						
Lowest da	laily me	ลก		324 14 Jun	0.606	3 26 Au	1984						
Highest d	laily me	an	342.1		231.700		1982						
Peak 10% exce	eedenn		509.1 57.4		538.400 42.950		t 1982	134					
50% exce			11.2		8.222			137					
95% exce	eedanc	0	1.6	599	1.351			126					
		llion cu m)	701		525.10 1115)		133 133					
Annual ru Annual ra			148		1581			115					
		fall average			1483								

Station and catchment description
Velocity-area station on long straight reach at particularly well confined site. Cableway. Gravel and rock bed. Natural channel control. Sensibly natural flow regime. Afton Reservoir has small influence.

084005 Clyde at Blairston

1994

Measuring au First year: 19		B		Gr	rid referenc Level stn	e: 26 (NS) . (m OD): 1				Catchmen		.m): 1704.2 m OD): 732
Daily mean	gauged di	scharges (cubic metres	per second)							
DAY	JAN	FEB	MAR	APR	MAY	NUL	JUL,	AUG	SEP	OCT	NOV	DEC
1	39,280	242.900	85.740	83.980	20.550	9,414	7.979	11.650	14.470	11.180	53.750	23.900
2 3	45.740 70.610	142.800 76.570	102.700 170.400	86.570	19.080	9.386 9.806	7.991	10.880	12.970	14.700	34.060	28.270
4	71,270	87.540	169.300	108.800 134.700	18.310 19.500	9.806	8.098 11.700	15.060 15.000	13.220 16.190	25.970 20.110	34.460 59.340	45.400 45.220
5	59.180	68.030	106.500	122.400	32.700	9.775	12.260	13.000	14.810	15.510	49.200	44.830
6	119.900	66.430	87.200	05 600	20.200	0.000	10.010	40.000	00.470		44.000	
7	90.870	58.610	153.400	95.680 108.800	38.390 25.940	9.062 8.871	16.310 18.660	10.000 9.000	20.470 34.980	14.060 13.940	46.880 38.630	105.600 121.400
8	53.060	54.310	132.700	125.600	22.430	8.882	12.550	8.500	21.640	13.350	30.920	251.800
9	63,000	63.690	121.900	102.000	19.250	8,665	10.680	7.937	25.230	12.220	28.320	130.400
10	124.200	46.360	91.080	84.280	18.080	8.132	24.170	6.669	46.870	11.120	34,450	386.200
11	69.900	39.600	85.220	64.540	16.340	8.203	22.490	6.528	65.930	9.994	33.200	676.400
12 13	109.600	34.660	89.810	54.820	17.470	8.107	23.310	6.265	42.960	9.470	39.960	516.600
14	174.000 191.700	30.180 27.030	152.300 239.800	47.210 39.540	17.930 17.060	8.098 8.160	20.990 14.590	5.932 5.771	28.500 22.250	9.459 9.242	206.400 199.100	159.800 93.100
15	98.840	25.160	109.700	34.510	16.300	8.144	11.190	5.953	18.240	8.795	181.400	72.750
	62 720	20.000	00.450	***	40.400							
18 17	63.720 48.910	23.320 21.550	88.150 90.000	30.870 29.350	16.400 16.190	8.852 9.116	10.500 9.064	6.054 6.576	15.630 14.050	8.752 8.878	120.900 161.500	63.880 92.140
18	94.270	20.680	88.040	26.670	15.810	12.420	8.974	6.988	13.360	8.131	201.000	99.580
19	80.690	20.110	73.210	25.300	15.140	17.340	8.507	7.164	12.650	7.710	190.900	122.000
20	72.460	18.940	59.260	23.470	14.270	12.820	8.241	6.912	11.740	8.338	103.000	84.910
21	63.100	17.740	60.930	21.430	14.630	13.630	8.235	7.023	11.890	9.297	72,390	55.140
22	87.200	16.670	129.400	24.210	14.470	18.590	8.244	7.175	11.360	19.050	64.080	44.580
23 24	108.100	15.010	286.600	25.810	14.270	12.110	8.373	7.710	10.060	127.100	60.010	57.160
25	75.450 168.800	16.140 15.540	148.800 85.150	24.850 25.890	13.890 13.760	11.520 11.520	8.309 8.297	16.360 26.390	9.039 8.497	53.120 40.740	46.860 39.950	76.260 86.320
								20.000		40.740	55,550	00.520
26 27	191,200 190,300	23.210 101.700	60.950 52.500	32.080 25.320	13.420	10.900	9.365	15.990	8.534	31.600	47.580	99.060
28	82.760	153.400	71,610	21.300	12.650 10.510	12,430 10,380	11.100 8.690	14.110 55.960	8.464 8.361	32.690 25.990	42.550 35.230	74.530 178.300
29	79.980		68.540	22.610	10.110	9.023	8.154	54.840	8.597	35.050	28.500	144.200
30	84.040		76.250	23.290	9.185	8.336	8.017	30.540	8.849	40.130	25.650	157.100
31	71.610		128.000		9.445		8.536	19.390		76.640		107.600
Average	94.960	54.570	111.800	55.860	17.210	10.380	11.730	13.780	18.660	23.620	77.010	136.900
Lowest	39.280	15.010	52.500	21.300	9.185	8.098	7.979	5.771	8.361	7.710	25.650	23.900
Highest	191.700	242.900	286.600	134.700	38.390	18.590	24.170	55.960	65.930	127.100	206.400	676.400
Posk flow	275.00	288.10	322.90	168.90	42.28	21.89	26.52	71.95	73.98	167.40	262.20	830.90
Day of peak Monthly total	27	2	24	4	7	23	11	29	12	24	14	12
(million cu m)	254.30	132.00	299.40	144.80	46.09	26.91	31,41	36.92	48.37	63.27	199.60	366.70
0												
Runoff (mm) Rainfall (mm)	149 173	77 82	176 205	85 90	27 21	16 65	18 83	22 92	28 66	37 83	117 143	215 252
								02	00	00	143	232
Statistics o	it monthly	data for pr	evious reco	rd (Oct 195	8 to Dec 1	993)						
Mean Avg.	69.590	53.130	48.040	32.220	23.460	16.590	15.670	24,700	35.940	50.810	63.620	67.380
flows: Low	11.920	8.854	14.810	10.430	7.994	7.491	5.041	4.536	7.630	8.243	15.870	26.080
(year)		1963	1969	1974	1980	1984	1984	1984	1972	1972	1983	1963
High (year)	134.300 1975	160,100 1990	91.060 1990	64.400 1991	56.230 1986	41.190 1972	47.620 1985	82.370 1985	128.400 1985	114.600 1967	129.600 1982	133.400 1986
										1007	1002	,500
Runoff: Avg. Low	109 19	76 13	76 23	49 16	37 13	25 11	25 8	39	55	80	97	106
High	211	227	143	98	88	63	75	7 129	12 195	13 180	24 197	41 210
D=:=6=#: A	100	70	.~									
Rainfall: Avg. Low	120 25	79 16	97 28	67 9	71 18	72 17	81 32	101 24	113 16	122 33	122 24	122 38
High	250	254	166	125	150	157	166	206	230	231	221	237
Summary s	tatistics							Enc	tore affect	ing runoff	•	
Cammany a	14451163						1994	rac	iors an e ci	ing fulloff		
		F	or 1994		or record		As % of	• Re	gulation fo	or HEP.		
Mean flow (m	3g-1)	52	320	pred 41.73	eding 1994	P	re-1994 125					
Lowest yearly		V 2.	020	27.09		1973	123					
Highest yearly				58.80		1990						
Lowest month Highest month		10,: 13 6 .:	380 Jur 900 Dec			ig 1984						
Lowest daily r			771 14 Aug			ab 1990 Jo 1984						
Highest daily r		676.				p 1985						
Peak		830.			O 22 Se	p 1985		_				
10% exceedar 50% exceedar		124. 25.	100 400	98.22 24.03			126		iment	ontele	elman = = = =	16.
95% exceeds			024	7.82			106 103		ust 1994 t n flows.	ontains es	umated da	шĄ
Annual total (r	million cu m)	1650	0.00	1317.0			125					
Annual runoff		96		773			125					
Annual rainfall 1961-90 ra	i (mm) iinfall average	(mm)	10	1167 1140			116					
,551-5516	on average	Contra		1140								

Station and catchment description
Recorder moved to present position in Nov. 1974 from opposite bank. Section is natural with steep grass and tree covered banks. Velocity profile slightly uneven due to upstream bend. Control - piers of redundant rail bridge, 300m d/s. Section rated by current meter to 3.4m, just below max. recorded stage. Some naturalised flows available. Very mixed geology with the older formations (Ordovician/Silurian) to the south. Hill pasture and moorland predominates but some mixed farming and urban development is found in the lower valley.

Falloch at Glen Falloch 085003

1994

	ing auth ar: 197	nority: CRPE 0	ı		Gri	d reference Level stn	e: 27 (NN) . (m OD):						km): 80.3 OD): 1130
Daily r	mean g	auged dis	charges (c	ubic metres p	er second)								
DAY		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT .	NOV	DEC
1		1.806	26.110	1.478	12.960	3.165	0.724	1.311	1.471	0.847	6.012	3.673	1.484 3.480
2 3		3.137 12.050	5.656 4.970	7.771 9.314	5.953 18.250	3.405 4.621	1.440 9.100	1.088 0.998	0.635 16.880	0.570 1.530	4.699 1.997	8.934 14.180	26.470
4		2.777	13.160	60.890	5.167	12.450	2.883	3.323	11.800	1.813	2.394	3.667	4.239
5		3.374	15,140	12.350	6.971	13.050	1.695	2.803	1.889	1,196	3.091	2.900	14.520
_				47.500	6 770	4.045	E E 20	1 246	0.013	4.024	10.870	3.725	21.160
6 7		3,807 1,960	8.159 4.715	47.530 40.450	6.779 5.517	4.015 3.645	5.529 3.021	1.246 0.852	0.913 0.664	1.458	5.314	2.397	8.450
é		2.067	7.668	42.800	3.956	1.982	3.187	0.639	0,538	5.328	3.350	8.933	21.020
9		22.180	7.200	10.050	3.978	1.476	3.187	5.777	0.450	5.952	1.674	12.670	30.620
10		10.430	2.341	26.320	4.267	1.722	4.318	3.091	0.287	18.330	1.177	6.985	123.600
11		11.000	1.658	8.506	6.969	1.672	1.418	3.198	0.236	4.541	0.929	2.749	46.310
12		18.450	1.422	22.170	4.969	2.224	0.913	6.752	0.196	1.828	0.765	7.253	16.270
13		28.330	0.917 0.698	55.530 23.410	3.021 3.482	1.651 1.156	0.756 0.553	1.468 0.912	0.171 0.163	1.233 0.885	0.664 0.627	28.690 20.060	3.660 1.968
14 15		7.177 2.352	0.707	5.002	2.740	0.757	0.464	0.810	0.160	0.664	0.628	14.110	3.943
16		1.352	0.987	3.206 3.466	3.550 3.608	0.601 0.487	0.603 3.446	0.628 0.500	1.204 0.562	0.528 0.450	0.552 0.500	7.395 10.890	3.583 23.740
17 18		4.049 27.020	0.834 0.768	2.699	4.339	0.412	10.320	0.413	0.849	0.446	0.465	27.550	6.307
19		9.904	0.663	2.089	3.745	0.384	48.880	0.356	5.126	0.741	10.790	17.980	5.718
20		36.350	0.553	1.604	2.651	0.385	4.355	0.324	3.084	0.654	13.840	12.100	2.423
21		26.330	0.529	14.610	2,124	0.404	18.450	0.504	0.946	0.546	5.556	4.879	1.320
22		17.650	0.478	61.270	4.912	0.461	5.035	0.408	5.383	0.487	8.244	8.527	6.654
23		4.704	0.461	30.720	16.780	0.451	7.875	0.316	17.530	0.436	2.422	6.288	29.960
24		19.680 .	0.466	.6.699 4.144	8.836 6.124	0.403 0.372	5.184 9.354	1.824 3.332	2.840 6.369	0.382 0.361	38.250 10.260	2.485 19.990	5.500 15.830
25		10.300	0.447	4.144	0.124	0.372	3.334	3.552	0.000	0.50	10.200		
26		22.380	0.718	2.011	27.160	0.330	3.011	4.189	7.583	0.920	3.850	5.233	7.149
27		5.962	1.549	13.000 18.630	20.370 25.260	0.305 0.324	7.698 5.699	1.047 0.703	18.770 34.370	0.887 10.760	2.893 2.121	3.486 3.950	3.060 40.650
28 29		2.279 .32.840	1.461	10.100	10.660	0.324	8.484	0.531	3.173	14.230	7.669	2.117	23.130
30		6.591		34.770	4.407	0.396	13.480	0.430	1.694	19.230	9.593	1.570	27.280
31		32.060		26.840		1.234		1.214	1.248		12.610		2.085
Average	0	12.590	3.944	19.660	7.984	2.073	6.369	1.645	4.748	3.375	5.607	9.179	17.150
Lowest		1.352	0.447	1.478	2.124	0.305	0.464	0.316	0.160	0.361	0.465	1.570	1.320
Highest		36.350	26.110	61.270	27.160	13.050	48.880	6.752	34.370	19.230	38.250	28.690	123.600
Peak flo	w	101.90	77.04	167.70	53.44	37.38	96.50	18.24	96.71	50.01	93.81	101.80	176.40
Day of p	peak	25	1	14	27	6	20	13	28	11	25	14	11
Monthly (million		33.73	9.54	52.65	20.69	5.55	16.51	4.40	12.72	8.75	15.02	23.79	45.93
(ivinitori	Cu III,	33.73	3.34	32.03	20.00	0.00	(0,0)						
Runoff		420	119	656	258	69 57	206 252	55 108	158 218	109 152	187 235	296 316	572 6 6 6
Rainfall	(mm)	485	164	686	273	57	252	100	210	192	255	3.0	550
Statis	tics of	monthly d	lata for pro	evious recor	d (Oct 197	0 to Dec 19	993—Inco	omplete or m	issing mont	ths total 0.3	years)		
Mean	Avg.	9.546	5.973	7.422	3.543	2.751	2.175	2.783	4.095	6.503	7.068	8.227	8.469
flows:	Low	1.926	0.489	0.854	0.408	0.133	0.284	0.634	0.339	0.751	1.362	2.875	1.416
	(year)	1985	1986	1975	1974	1980	1992	1984	1983	1972	1974	1993	1981 15.740
	High	20.620 1993	18.500 1990	21.400 1990	9.346 1991	10.980 1986	5.609 1973	7.402 1988	10.810 1 9 92	11.210 1981	16.050 1983	14.670 1986	1986
	(year)	1000	1000										
Runoff:	Avg.	318	182	248	114	92	70	93	137	210 24	236 45	266 93	282 47
	Low High	64 688	15 5 5 7	28 714	13 302	4 366	9 181	21 247	11 361	362	535	474	525
	i ngir	•											
Rainfall:		385	233	291	140	136 19	132 42	167 66	204 42	293 40	307 89	340 117	352 111
	Low High	93 739	11 675	100 696	15 357	439	249	365	507	468	645	614	637
	-								F4	#	:		
Summ	nary sta	atistics						1994	Fact	ors arrect	ing runoff		
			F	or 1994	F	or record		As % of					
		-1		205		eding 1994	۱	pre-1994 138	• Na	tural to wit	hin 10% at	95 percen	tile flow.
	low (m³s ∶yearty n		7.5	905	5.71: 4.44		1972	138					
	yearly n				7.72		1990						
	monthly			545 Jul			ay 1980						
	monthly daily me		19.0	560 Mar 160 15 Aug			ar 1990 Iul 1977						
	daily me		123.0		119.80		an 1993						
Peak	-		176.4	400 11 Dec	226.70	0 22 0	ct 1971						
	ceedanc		21.9	900 501	16.01 2.16			137 162					
	ceedanc ceedanc			389	0.26			149					
Annual	total (mi	illion cu m)	249	.30	180.4			138					
	runoff (r		310		2247			138 121					
	rainfall (i 1-90 rain	mm) nfall average	361 (mm)	4	2980 2842			121					
150	. ++ 1011												

Station and catchment description
Velocity-area station with artificial low flow control (long broad-crested weir with rectangular low flow notch) - installed 1975. Damage to part of the high flow crest results in a small discharge bypassing the central notch. All but very high flows contained. No significant abstractions or discharges. Very responsive flow regime. A very wet mountainous catchment developed on ancient metamorphic formations - some Drift cover.

093001 Carron at New Kelso

1994

Measu	ring auth	hority: HRP(3		Gri	d reference	e: 18 (NG)	942 429			Catchme	nt area (sq l	km): 137.8
	ear: 197		charges 4	nuble metres		Level str	n. (m OD):	5.60			Í	Max alt. (m	
	maan f			cubic metres	-				, ,				\$ 15.75
DAY 1		JAN 4,423	FEB 37.140	MAR 1.359	⊶APR 35.750	MAY 7.135	JUN 1.564	JUL • 3.921	AUG 1.031	SEP	OCT	NOV	DEC
2		4.374	13.030	3.458	19.460	8.051	1.838	2.727	0.995	2.174 1.727	18.680 19.250	29.650 8.108	3.334 ¹ 2.795
3		7.787	6.593	9.867	17.560	5.531	4.718	2.198	3.236	2.336	8.354	4.258	9.006
4		6.590	5.077	47.580	13.130	7.876	5.280	2.031	2.516	4.281	11.310	3.011	8.099
5		4,111	7.275	27.760	12.470	14.120	4.252	2.991	1.722	4.667	10.260	2.439	6.606
6		4,557	5.717	67.350	12.830	9.070	11,140	2.437		2 274	10 120	2 205	;
7		4.881	4.421	46.910	11.300	6.316	15.580	1.869	1,401 1,163	3.371 3.001	19.430 12.750	2.305 2.035	7.629 11. 08 0
8		3.693	7.170	47.900	8.036	4.250	16.040	1.561	1.027	2.577	8.640	1.772	30.040
9		7.942	17.590	18.360	13.280	3.163	20.450	1.565	0.930	2.883	5.532	1.848	56.440
10		9.942	7.514	48.700	12.730	2.710	7.670	2.446	0.852	16.250	3.399	4.075	74,470
11		7.013	4.426	28.700	18.930	2.613	4.343	2.858	0.783	13.380	2.684	5.200	63.580
12		10.920	3.897	23.080	12.670	2.607	3.538	4.601	0.741	5.695	2.188	4.031	57.590
13		35,630	3.395	35.470	7.276	2.525	2.667	2.841	0.723	3.397	1.846	27.300	17.370
14 15		21.540	2.572	37,370	5.666	2.224	2.219	2.011	0.717	2.347	1.906	45.940	6.799
15		8.453	2.042	11.210	4.884	1.869	3,137	1.783	0.702	1.803	2.506	21.100	9.015
16		4.587	1.860	6.700	4.813	1.597	3.543	1.681	0.842	1.579	1.887	18.760`	7.698
17		16.800	1.718	6.795	4.438	1.428	9.346	1.482	1.008	1.531	1.510	14.030	22.930
18		64.540	1.657	5.729	17.320	1.316	51.960	1.280	1.760	1.382	1.326	17.740	19.280
19 20		27.270 58.240	1.630 1.527	4.740 4.037	24.450 13.130	1.233 1,171	16.680 30.010	1.158 1.130	12.120	2.033	1.191	27.000	18.160
		35.145	1,527	4.007	13.130	1,171	30.010	1.130	14.330	2.520	1.166	21.450	10.410
21		46.410	1,435	12.520	8.057	1.102	15.430	1.667	5.453	1.823	1.176	10.480	5.510 .
22		19.820	1.354	67.150	5.515	1.067	11.600	1.588	2.717	1.515	1.064	10.180	17.910
23 24		12.490 19.970	1.261	46.250	6.658	1.063	6.207	1.340	3.083	1.970	6.047	29.110	74.590
25		29.220	1.210 1.248	17.110 14.270	7.148 5.731	1.052 1.019	8.897 8.069	1.264 1.557	2.926 2.654	2.412 1.913	8.817 5.822	9.295 11.440	24.070 23.120
			,-	74.270	0.70	1.010	5.005	1.557	2.004	1.515	3.522		23.120
26		25.380	1.289	7.248	36.290	0.988	7.942	5.356	9.337	6.625	3.556	15:220	13.270
27 28		17.680 8,299	1.300 1.272	6.358	62.560	0.945	8.511	2.652	17.780	11.980	5.425	16.600	6.811
29		70.370	1.2/2	28.100 24.380	44.180 40.500	0.929 0.938	6.401 13.370	2.018 1.567	28.110 9.949	76.240 72.410	6.326 7.588	13.790 7.680	39.880 29.620
30		20.800		19.290	16.430	0.981	7.193	1.270	4.785	55.790	11.130	4.423	18.240
31		30.080		35.300		1.315		1.111	3.021		25.610	•	7.840
Averag	•	19.810	5.236	24.550	16.770	3.168	10.320	2 120	4 405	10 200	7.044	12.010	22 620
Lowest		3.693	1.210	1.359	4.438	0.929	1.564	2,128 1,111	4.465 0.702	10.390 1.382	7,044 1,064	13.010 1.772	22.680 2.795
Highest		70.370	37,140	67.350	62.560	14.120	51.960	5.356	28,110	76.240	25.610	45.940	74.590
D1-0		112.00	E 1 00	05.10	400.00	47.00							
Peak fid Day of		113.90 29	51.88 1	95.13 6	128.90 27	17.83 5	61.08 18	7.73 26	43.12 28	106.40 30	63.14 31	66.85	103.30
Month		23	•	Ū	2,	3	10	20	20	30	31	14	23
(million		53.05	12.67	65.75	43.48	8.49	26.75	5.70	11.96	26.92	18.87	33.72	60.76
Runoff	(mm)	385	92	477	316	62	194	41	87	105	407	245	
Rainfall		391	73	547	322	41	273	68	189	195 277	137 183	245 228	441 493
													400
Statis	tics of	monthly d	lata for pre	evious recor	d (Jan 1979	to Dec 19	993)						
Mean	Avg.	16.360	12.240	14.560	7.306	5.008	3.928	6.378	B.715	13.720	13.000	15.090	17.670
flows:	Low	5.887	1.361	4.103	2.863	0.698	0.921	2.426	2.703	1.745	6.332	3.251	5.635
	(year)	1985	1986	1980	1980	1980	1982	1984	1984	1993	1979	1993	1989
	High	31.650	32.590	39.000	13.440	14.120	8.623	12.040	15.050	21.050	24.070	31.120	30.710
	(year)	1989	1989	1990	1984	1986	1980	1993	1989	1990	1983	1981	1983
Runoff:	Avg.	318	217	283	137	97	74	124	169	258	253	284	343
	Low	114	24	80	54	14	17	47	53	33	123	61	110
	High	615	572	758	253	274	162	234	293	396	468	585	597
Rainfall	Ανα	338	223	308	141	114	116	160	209	297	300	319	371
	Low	94	6	95	70	36	28	89	85	55	115	90	124
	High	623	583	768	285	295	275	248	384	425	532	629	546
Sumo	nary sta	atietice							Enat		: 		
Ounni	iai y att	ottatica						1994	raci	ors affect	ing runoff		
			Fo	or 1994		or record		As % of					
Mass f	/3	~1.		*70		eding 1994	p	re-1994	● Na	tural to wit	hin 10% at	95 percent	ile flow.
	ow (m³a yearly m		11.6	370	11,170 8,852		1987	104					
	yearly n				14.740		1990						
	monthly			128 Jul	0.698		ay 1980						
	monthly		24.5		39.000		ar 1990						
	daily me daily me		76.2	702 15 Aug 240 28 Sep	0.425 203.900		มก 1982 an 1992						
Peak	any IIR		128.9		337.400		ep 1990						
10% ex	ceedanc		29.4	190	27.090)		109					
	ceedanc			317	5.629			103					
	ceedanc	e Ilion cu m)	1.0 368	042 .00	1.035 352.50			101 104					
	runoff (n		267		2558	•		104					
Annual	rainfall (r	mm)	308		2896			107					
196	1-90 rain	ıfall average	(mm)		2620								

Station and catchment description
40m wide river section with floodbank on right. Any bypassing in extreme floods will be over 30m wide floodplain on left bank. Unstable gravel control requires regular calibration of low flow range. Adequately gauged to bankfull. Computed flows are 100% natural. 70% of catchment drains through Loch Dughaill with little additional surface storage. Typical mix of rough grazing and moorland. One of the wetter Highland catchments currently gauged.

Camowen at Camowen Terrace 201005

1994

	ing auth ar: 197	nority: DOE	N		Gri	d reference Level stn. :					Catchme	nt area (sq i Max alt. (n	km): 274.6 n OD): 539
Daily r	mean g	jauged dis	charges (c.	ıbic metres p	er second)								
DAY		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT 4.346	NOV 4.924	DEC 3.953
1 2		33.320 21.570	27.810 11.770	12.930 16.640	11.400 16.120	3.589 3.556	1.994 2.342	2.040 1.910	2.719 2.401	2.699 2.432	4.430	8.085	3.922
3		24.190	54.100	20.300	17.860	6.579	2.952	2.067	4.219	8.832	3.361	14.220	7.622
4		12.100	41.220	14.410	17.120	9.460	3.015	11.370	2.488	4.953	2.743 2.523	8.421 4.980	10.520 17.630
5		18.850	17.940	18.240	24.960	8.038	2.684	6.612	2.130	3.335	2.525	4.500	17.030
6		12.860	12.500	16.180	20.860	5.500	2.637	27.300	1.905	2.793	2.348	4.157	18.640 14.280
7 8		10.340 . 20.650	10.500 17.250	13.130 27.910	26.890 26.210	4.596 5.003	2.367 2.145	7.933 4.365	1.858 1.790	2.821 19.190	2.330 2.279	3.911 16.500	16.000
9		24.350	10.530	12.350	15.360	4.358	2.196	4.883	1.636	8.177	2.195	9.947	10.380
10		13.680	33.380	9.879	11.550	4.011	2.281	4.600	1.584	8.845	2.175	5.832	35.740
11		12.030	22.040	10.570	9.765	4.091	2.081	3.869	1.513	15.820	2.142	4.988	29.980
12		23.730	11.210	16.710	8.732	3.629 3.296	2.007 1.836	6.961 4.093	1.544 1.548	7.861 5.436	2.136 2.040	16.630 39.350	17.560 25.670
13 14		22.700 27.550	8.655 7.092	11.850 10.680	7.384 6.507	3.296	1.646	3.396	1.536	4.826	1.990	17.850	11.460
15		13.390	6.332	10.730	5.882	2.978	1.606	3.350	1.644	4.190	2.036	15.530	9.641
16		9.588	5.547	13.900	5.338	2.916	1.573	2.913	1.853	3.555	1.954	10.400	8.619
17		8.127	6.467	11.170	4.924	2.655	1.508	2.597	2.123	3.210	1.923	9.171	10.170
18		8.984	14.300	17.620	4.526 4.325	2.588 2.508	1.694 1.798	2.407 2.280	1.804 2.010	4.006 6.480	1.799 5.640	22.650 12.820	11.340 11.190
19 20		15.590 13.810	7.747 7.455	9.796 7.863	4.087	2.449	1.636	2.300	1.989	8.041	3.661	9.733	9.700
				40.040	0.070	2 400	4 350	2 200	1 072	4.791	2.898	7,463	7.765
21 22		10.700 9.876	6.090 5.228	10.340 17.350	3.879 4.049	2.406 2.279	1.758 1.803	2.389 2.161	1.872 9.709	3.723	3.040	6.477	6.519
23		8.919	5.202	29.450	6.428	2.337	1.751	2.071	8.526	3.308	2.652	6.083	5.906
24		9.779	5.738	15.900 20.680	16.700 11.730	2.292 2.289	16.010 5.171	2.106 2.108	13.810 7.682	3.043 2.986	2.579 5.921	5.980 5.369	5.848 8.407
25		21.160	40.460	20.000	11.730	2,203	5.171	2.100	7.002				
26		17.810	46.550	9.740	6.537	2.189	3.371	2.245	4.720 6.794	2.852 2.748	6.527 5.188	5.069 4.675	10.020 26.350
27 28		30.380 16.820	47.190 13.900	13.960 10.440	4.821 4.366	2.160 2.113	3.070 3.616	1.968 1.878	8.028	2.748	4.134	4.337	32.010
29		18.880		9.121	4.073	2.043	3.240		5.705	2.763	3.466	4.167	16.270
30 31		11.270 10.290		13.190 11.810	3.655	2.036 1.976	2.380	2.095 2.178	4.115 3.164	2.708	5.082 5.968	4.042	16.080 16.250
31		10.230		11.010		1.370							
Average		16.560	18.010	14.350	10.530	3.517 1.976	2.806 1.508	4.203 1.859	3.691 1.513	5.305 2.432	3.274 1.799	9.792 3.911	14.050 3.922
Lowest Highest		8.127 33.320	5.202 54.100	7.863 29.450	3.655 26.890	9.460	16.010		13.810	19.190	6.527	39.350	35.740
				40.77	40.40	11.26	41.25	39.06	27.10	36.91	8.83	59.67	47.45
Peak flo Day of		80.3 9 1	94.98 27	43.77 8	42.12 7	4	24	6	24	8	25	13	27
Monthly	y total									40.75	0.77	25.20	27.52
(million	cu m)	44.35	43.56	38.43	27.31	9.42	7.27	11.26	9.89	13.75	8.77	25. 38	37.62
Runoff		162	159	140	99	34	26	. 41	36	50	32	92	137
Rainfall	(mm)	177	145	160	115	42	76	' 84	88	82	51	91	162
Statis	tics of	monthly o	lata for pre	vious recor	d (May 197	2 to Dec 15	993)						
Mean	Avg.	12.500	9.093	8.884	5.658	3.563	2.859	2.379	3.922	4.998	7.478	9.096	11.470
flows:	Low	7.334	2.992	2.210	1.701	1.076	0.911	0.554	0.927	0.680	1.215 1972	3.194 1993	5.000 1989
	(year) High	1989 19.140	1986 19.580	1973 13.630	1974 12.640	1980 9.152	1974 7.289	1989 5.956	1983 13,070	1972 14.560	14.560	18.020	19.470
	(year)	1984	1990	1981	1993	1986	1993	1993	1985	1985	1990	1979	· 1993
Runoff:	Ava	3-122	.: 81	87	53 \$	ir 35	1 27	⊊s. 23	U+ 38	147	6 73	£8 86	112
HUIJOII.	Low	72	26	22	16	11	9	5	9	6	12	30	49
	High	187	173	133	119	89	· 69	58	127	137	142	170	190
Rainfall	: Avg.	127	83	108	68	69	72	76	97	99	111	107	122
	Low	55	4	38	20	11	28	20	20	13	23	45	39 209
	High	194	199	156	126	145	129	146	188	177	206	182	209
Sumn	nary st	atistics						1994	Fact	ors affect	ing runoff		
			Fo	r 1994	Fe	or record		As % of					
		4.				eding 1994		pre-1994					
	low (m³s : yearly r		8.7	84	6.821 4.102		1975	129					
	yearly r				8.435	5	1986						
	monthly		2.8 18.0				il 1989 b 1990						
	t monthly daily m		1.5				1989						
Highest	daily m		54.1	00 3 Feb	139.600	21 Oc	t 1987						
Peak 10% ex	ceedano	ne.	94.9 18.9		180.200 15.460		t 1987	123	Corr	nment			
	ceedand		5.5	74	4.236	3		132	Marc	ch and Apr		ntain estim	ated
	ceedano		1.8		1.046			174 129	daily	mean flov	VS.		
	total (m runoff (r	illion cu m) mm)	277. 1009		215.30 784	,		129					
Annual	rainfall ((mm)	1273		1139			112					
196	1-90 rair	nfall average	(mm)		1144								

Station and catchment description
Velocity-area station with cableway and weir control - informal broad-crested structure (for angling enhancement), dimensions not known. The net effect of abstractions for public water supply and augmentations from effluent returns is minor. Catchment geology: mixed impermeable rocks (granite, schist and gnaiss, and sandstone) overlain by substantial deposits of till, sand and gravel. Largely upland given over mainly to grassland or heath.

Blackwater at Maydown Bridge 203010

1994

	ring aut sar: 197	hority: DOE	N		Gri	id reference Level stn.					Catchme		km): 951.4 n OD): 380
Daily	mean (gauged di	scharges (c	ubic metres	per second)			•				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,
DAY		MAL	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC
1		38.250	68.380	33.410	24.750	8.612	2.869	3.792	2.499	4.619	5.784	12.460	7.947
2 3		84.320 74.550	41.340 79.530	36.820 79.000	35.560 50.850	8.248 8.794	3.069 4.914	3.329 3.061	3.646 12.730	4.122 7.743	10.710 8.367	10.310 21.880	7.834 17.170
4		43.990	122.000	41.900	51.600	10.600	6.468	14.680	7.223	9.003	6.158	20.850	19.220
5		41.390	102.000	53.120	66.120	13.610	4.720	12.250	5.001	6.158	5.084	12.110	32.940
6		34,470	58.390	36.030	47.990	11.610	4.067	20.780	3.885	4.968	4.496	9.609	32.750
7		30.050	36.830	28.520	63.350	9.114	3.885	18.820	3.424	4.690	4.176	8.867	36.850
8 9		33.410 49.600	42,530 35,370	53.170 37.680	65.370 41.620	8.710 9.145	3.427 3.137	8.369 10.580	3.030 2.814	36.670 27.600	3.961 3.802	12.180 20.930	52.760 26.690
10		56.120	39.850	26.980	28.650	7.467	2.868		2.577	16.090	3.593	12.920	44.020
11		32.050	80.850	25,270	22.550	7.567	2.797	8,791	2.403	19.520	3.379	10.680	50.040
12		52.870	34.690	25.280	19.840	7.131	2.683	10.550	2.280	15.090	3.217	19,170	52.900
13		44.070	24.120	30.210	17.120	6.152	2.524	9.395	2.184	10.570	3.133	84.990	60.820
14 15		36.910 28.170	19.590 16.830	21,510 21,150	14.830 13.010	5.534 5.335	2.406 2.238	7.304 7.578	2.071 2.009	9.211 8.309	3.054 3.110	61.200 28.210	38.640 24.780
16 17		21,650 19,000	14,480 13,450	35.330 30.220	11.690 10.670	5.693 5.199	2.101 2.020	5.997 5.155	2.179 3.839	7.018 6.024	3.047 2.867	21.320 19.580	22.610 29.040
18		18.060	31,100	30.590	10.150	4.677	2.105	4.493	3.197	6.280	2.819	30.700	27.580
19 20		18,730	21.630 17.070	27.200	9.792	4.307	2.282		2.739	11,440	4.800	37.480	33.870
20		24.620	17.070	19,540	9.205	3.992	2.344	3.692	2.729	12.380	6.090	25.700	27.560
21		20.090	15.720	17.010	8.769	3.879	2.285	3.626	2.814	9.441	4.766	19.260	22.330
22 23		18.250 25.050	12.810 15.810	20.930 31.170	10.190 16.810	3.768 3.645	2.443 2.412		9.743 33.860	7.313 6.292	4.858 4.757	15.930 14.560	17.840 16.190
24		19.690	20.080	31.750	33.400	3.630	31.470		18.080	5.707	4.032	14.470	15.780
25		45.370	79.260	32.900	28.070	3.775	21.940	2.978	20.770	5.257	4.070	12.890	15.850
26		53.980	120.000	21.650	18.130	3.604	9.060	3.148	11.330	4.870	4.996	11.650	27,130
27 28		69.080	117.600	48.650	12.970	3.390	7.178		10.370	4.495	5.331	10.540	58.640
29		53.510 50.870	62.330	42.950 24.730	10.970 10.270	3.204 3.124	5.826 5.783	2.759 2.400	9.761 8.265	4.273 4.129	5.888 5.290	9.435 8.754	108.800 83.640
30		38.950		26.450	9.273	3.067	4.726	2.329	6.491	4.061	16.320	8.403	75.460
31		26.900		35.090		2.978		2.365	5.375		19.040		75.680
Averag		38.840	47.990	33.110	25.790	6.115	5.202		6.752	9.445	5.516	20.230	37.530
Lowest Highest		18,060 84,320	12.810 122.000	17,010 79,000	8.769 66.120	2.978 13.610	2.020 31.470		2.009 33.860	4.061 36.670	2.819 19.040	8.403 84.990	7.834 108.800
												04.330	100.000
Peak flo		106.10 2	130.00 25	95.47 3	75.39 8	14.16 5	59.49 24	33.25 6	46.33 23	57.01 8	23.72 30	102.10 13	112.50
Monthly			20	•	•	J	2-7	Ū	23	•	30	13	28
(million	cu m)	104.00	116.10	88.68	66.84	16.38	13.48	18.09	18.09	24.48	14.77	52.45	100.50
Runoff		109	122	93	70	17	14	19	19	26	16	55	106
Rainfall	(mm)	156	135	128	88	40	69	70	90	81	46	79	145
Statis	tics of	monthly (data for pre	vious recor	d (Jul 1970	to Dec 199	3)						
Mean	Avg.	32.990	25.950	23.200	14.670	8.006	6.058	4.145	8.414	10.270	17.570	25.270	31.530
flows:	Low	18.050	7.186	8.772	3.441	1.306	0.973		0.596	1.920	2.163	6.882	10.570
	(year)	1971 56.780	1986 66,170	1973 43,250	1974 33,100	1984	1975	1984	1975	1972	1972	1993	1971
	High (year)	1984	1990	1981	1989	19.810 1983	17.540 1981	13.260 1993	32.480 1985	30.110 1985	33.770 1988	51.680 1970	58.120 1993
Runoff:	A	93	67	65	40	22		- 40	- 04				
nunon:	Low	53 51	18	25	غ 40 9	y 23 4	17 3	£12 2	~ 24 2	∖∺ 28 5	18 49 6	69 19	89 30
	Hìgh	160	168	122	90	56	48	37	91	82	95	141	164
Rainfall:	Ava.	109	75	88	63	59	63	66	84	83	96	94	99
	Low	46	4	33	14	8	19	17	15	7	36	36	30
	High	185	177	142	123	124	111	129	165	153	178	146	185
Sumn	nary st	atistics							Fac	tors affect	ing runoff		
			Fa	r 1994	F	or record		1994 As % of	● Fle	w influenc	ed by grour	rdwater ah	etraction
					prec	eding 1994		pre-1994		d/or recha			3110011011
	ow (m³s yearly r		20,1	00	17.310 9.712		1975	116	♠ Ns	tural to wis	thin 10% at	QE paraon	tila flave
	yearly r				23.860		1988		₩ INC	iturai to wii	ullii 1076 at	aa percen	ille HOW.
	monthly		5.2		0.596		1975						
	monthly daily ma		47.9 2.0		66.170 0.043		1990 1975						
Highest	daily m		122.0	00 4 Feb	172.000	22 De	1991						
Peak 10% ex	ceedan	:A	130.0 50.2		174.200 43.960		: 1991	114					
50% ex	ceedano	e	11.6	10	10.160)		114					
	coedano	e illion cu m)	2.4		1.135 546.30			214					
	runoff (r		633. 666		546.30 574	,		116 116					
Annual	rainfall (mm)	1127		979			115					
196	1-90 rair	nfall average	(mm)		1008								

1961-90 rainfall average (mm)

Station and catchment description
Velocity-area station with cableway and natural control. Flows influenced by major arterial drainage scheme - started in 1988. A substantial portion of the catchment is in the Irish Republic where some groundwater may be abstracted but its hydrological significance is uncertain. Geology: Carboniferous Limestone and Millstone Grit with sandstones overlain by substantial amounts of till. A predominantly rural catchment with limited afforestation. Monaghan Town (pop. 5,000) - in the Irish Republic - is the only significant urban centre.

203028 Agivey at White Hill

1994

	ring auth ear: 197	hority: DOEI 72	٧			d reference Level stn.						nt area (sq i Max alt. (m	
Daily :	mean g	gauged dis	charges (c	ubic metres p	ser second)								
DAY		NAL	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
.1		14.530	9.640	6.749	4.402	1.066	0.567	0.687	0.963	0.577	0.725	3.978	1.071
2		8.781	3.784	5.947	6.056	1.027	0.625	0.622	0.748	0.546	0.869	8.038	2.293
3		14.200	8.711	5.882	9.627	1.698	1.345	0.606	1.069	1.835	1.172	12.390	5.448
4		4.824	22.270	6.657	8.428	2.158	1.349	2.380	0.740	1.234	1.005	3.867	6.286 8.687
5:		10.820	6.528	9.328	14.630	3.228	1.042	1.463	0.598	0.830	0.741	1.900	0.007
6		6.976	3.668	4.983	8.538	2.002	0.969	1.244	0.543	0.684	0.597	1.404	5.632
7.		4.027	2.866	3.461	10.650	1.428	0.819	0.988	0.513	0.682	0.555	1.453	3.944
8 .		10.830	3.155	7.790	6.721	1.367	0.803	0.753	0.466	2.590	0.527	7.692	4.909
9.		22.500	2.684	5.200	7.191	1.299	1.070	0.731	0.443	3.154	0.494	4.268	2.409
10		5.363	8.307	4,163	3.624	1.655	1.113		0.428	1.860	0.453	2.733	8.013
11		6.873	5.864	3.952	2.638	2.293	0.826	0.697	0.417	1.605	0.432	2.077	11.580
12		9.152	3.400	3.623	2.267	1.319	0.758	1.231	0.397	1.310	0.438	9.153	4.364
13		7.243	2.451	3.661	1.887	1.039	0.624	0.953	0.386	1.056	0.428	7.870	3.634
14		6.240	1.886	3.132	1.645	0.956	0.573	0.983	0.383	0.976 0.760	0.429 0.426	6.174 4.687	2.462 2.324
15		3.718	1.679	3.161	1.503	0.906	0.548	1.155	0.389	0.700	0.420	4.507	2.024
16		2.909	1,549	5.649	1.372	0.891	0.527	0.736	0.574	0.655	0.416	3.042	2.130
17		2.445	4.276	4.571	1.288	0.850	0.536	0.541	1.156	0.608	0.427	7.646	2.873
18		2.333	8.619	6.203	1.255	0.822	0.537	0.445	0.744	0.947	0.432	12.390	4.341
19		3.329	3.095	3.955	1.263	0.760	0.606	0.437	1.106	1.392	1.039	4.541	5.939
20		3.580	2.158	2.915	1.136	0.732	0.634	0.427	0.999	2,266	1.024	2.539	4.134
		:								7	24	- ()	1
21		2.539	1.703	2.562	1.100	0.717	0.665	0.441	1.018	1.188	0.716	2.000	2.601
22		2.284	1.457	2.821	1.574	0.710	0.646	0.437	5.381	0.846	1.103	1.759	2.065
23		2.159	1.399	9.380	2.874	0.704	0.588	0.406	4.115	0.695	1.088	1.865	2.003
24		3.278	1.406	3.464	15.670	0.666	5.237	0.391	3.006	0.638	2.639	1.856	1.740
25		11.970	6.480	4.769	4.560	0.652	1.798	0.404	1.623	0.620	1.917	1.579	2.275
20		7.001	22.420	2 214	2 660	0.641	1 210	0.429	1.179	0.582	2.272	1.407	2.905
26		7.991	23.420	2.714	2.669 1.633	0.641 0.620	1.210 1.121	0.425	1.023	0.502	3,413	1.348	9.579
27 28		7.781 3.797	20.250 6.483	15.520 4.921	1.395	0.526	1.131	0.394	0.964	0.541	3.657	1.224	10.200
29		5.014	0.403	2.900	1.279	0.605	1.102	0.388	0.921	0.526	1.651	1.146	8.643
30		3.212		8.810	1.136	0.582	0.792	0.380	0.791	0.526	1.939	1.092	9.993
31		3.648		5.474		0.571	0.,, 0.	0.382	0.664		4.8371		5.856
1		0.0.0		•									*
Averag	e	6.592	6.042	5.301	4.267	1.115	1.005	0.721	1.089	1.074	1.221	4.104	4.849
Lowest		2.159	1.399	2.562	1.100	0.571	· 0.527	0.380	0.383	0.502	0.416	1.092	1.071
Highest	t	22.500	23.420	15.520	15.670	3.228	5.237	2.380	5.381	3.154	4.837	12.390	11.580
													00.07
Peak flo		52.35	55.84	31.85	33.70	4.04	14.80	5.03	14.99	5.68	9.85	35.77	22.27
Day of		9	4	27	24	5	24	4	22	8	31	18	5
Monthly		17.66	14.62	14.20	11.06	2.99	2.61	1.93	2.92	2.78	3.27	10.64	12.99
(million	cu mi	17.66	14.02	14.20	11.00	2.33	2.01	1.55	2.32	2.76	3.27	10.04	12.50
Runoff	(mm)	179	148	144	112	30	26	20	29	28	33	108	131
Rainfall		177	122	146	113	31	86	69	87	71	65	110	162
Statis	tics of	monthly d	lata for pre	vious recor	d (Dec 1972	to Dec 19	93)						
			0.044	2 200	2 220	1.500	1 007	0.004	1 544	2 102	3.772	3.839	4.627
Mean	Avg.	5.277	3.844	3.398	2.238	1.589	1.087 0.340	0.994 0.191	1.544 0.212	2.182 0.414	1.841	0.815	2.218
flows:	Low	2.609	0.847 1986	1.384 1973	0.870 1984	0.282 1984	1984	1984	1983	1991	1973	1983	1987
	(year)	1989 7.902	8.037	5.407	5.844	4.214	2.389	1.924	5.077	6.371	6.337	8.405	7.859
	High (year)	1974	1990	1992	1993	1993	1982	1990	1985	1985	1981	1982	1993
	190017	1374	1500			,000							
Runoff:	Ava.	143	95	92	59	43	28	27 IIIIII	11.42	57	وونه 102	101- 0	125
	Low	·71	21	37	23	8	9	5	6	11	50	21	60
	High	214	197	146	153	114	63	52	138	167	172	220	213
Rainfall		145	94	112	74	75	73	79	94	100	135	119	132
	Low	63	5	36	22	14	37	26	23	15	51	33	58
	High	221	217	191	149	179	150	144	218	213	233	196	251
Cuma	12 Per	atistics		•				, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			ing runoff		-
Summ	ilary Su	ausucs						1994)13 U11COL	ing ranon		
			Fc	и 1994	Fo	r record		As % of					
					prece	ding 1994		pre-1994	Nat	ural to wit	hin 10% at 9	15 percentil	e flow.
Mean fi	a ^e m) wol	s ⁻¹ }	3.0	97	2.864	_		108					
Lowest	yearly n	nean			2.165		1983						
Highest	vearly o				3.599		1981						
		y mean	0.7		0.191		1 1984						
	monthly		C E	92 Jan	8.405		1982						
Highest	monthly monthly												
Highest Lowest	monthly monthly daily me	ean	0.3	80 30 Jul	0.080		1976						
Highest Lowest Highest	monthly monthly	ean	0.3 23.4	80 30 Jul 20 26 Feb	0.080 76.500	21 Oc	t 1987						
Highest Lowest Highest Peak	monthly t monthly daily me t daily me	ean ean	0.3 23.4 55.8	180 30 Jul 120 26 Feb 140 4 Feb	0.080 76.500 159.300	21 Oc 21 Oc		110					
Highest Lowest Highest Peak 10% ex	monthly t monthly daily me t daily me	ean ean	0.3 23.4 55.8 7.9	80 30 Jul 20 26 Feb 40 4 Feb 28	0.080 76.500 159.300 6.642	21 Oc 21 Oc	t 1987	119					
Highest Lowest Highest Peak 10% ex 50% ex	t monthly t monthly daily me t daily me cceedance cceedance	ean ean ce	0.3 23.4 55.8 7.9 1.6	180 30 Jul 120 26 Feb 140 4 Feb 128	0.080 76.500 159.300 6.642 1.584	21 Oc 21 Oc	t 1987	102					
Highest Lowest Highest Peak 10% ex 50% ex	t monthly t monthly t daily me t daily me ceedance ceedance ceedance	ean ean ce ce	0.3 23.4 55.8 7.9 1.6 0.4	180 30 Jul 120 26 Feb 140 4 Feb 128 116 129	0.080 76.500 159.300 6.642 1.584 0.318	21 Oc 21 Oc	t 1987	102 135					
Highest Lowest Highest Peak 10% ex 50% ex 95% ex Annual	t monthly t monthly t daily me t daily me cceedance cceedance total (mi	ean ean ce ce ce illion cu m)	0.3 23.4 55.8 7.9 1.6 0.4 97.	180 30 Jul 120 26 Feb 140 4 Feb 128 116 129 167	0.080 76.500 159.300 6.642 1.584 0.318 90.39	21 Oc 21 Oc	t 1987	102 135 108					
Highest Lowest Highest Peak 10% ex 50% ex 95% ex Annual Annual	t monthly t monthly t daily me t daily me cceedance cceedance total (mi runoff (r	ean cean ce ce ce illion cu m) mm)	0.3 23.4 55.8 7.9 1.6 0.4 97. 988	80 30 Jul 20 26 Feb 40 4 Feb 128 116 29 67	0.080 76.500 159.300 6.642 1.584 0.318 90.39 914	21 Oc 21 Oc	t 1987	102 135 108 108					
Highest Lowest Highest Peak 10% ex 50% ex 95% ex Annual Annual Annual	t monthly t monthly daily me t daily me ceedance ceedance total (mi runoff (r rainfall (ean cean ce ce ce illion cu m) mm)	0.3 23.4 55.8 7.9 1.6 0.4 97. 988 1239	80 30 Jul 20 26 Feb 40 4 Feb 128 116 29 67	0.080 76.500 159.300 6.642 1.584 0.318 90.39	21 Oc 21 Oc	t 1987	102 135 108					

Station and catchment description
Velocity-area station with cableway. Geology: mainly basalt overlain by till with some peat. Significant proportion of upland, predominantly grassland or heath. No urban areas or major industry.

Part (ii) - The monthly flow data

The introductory information (measuring authority etc.) is as described in Part (i).

Hydrometric statistics for the year

The monthly average, peak flow, runoff and rainfall figures are equivalent to the summary information following the daily mean gauged discharges in Part (i). Because of the rounding of monthly runoff values the runoff for the year may differ slightly from the sum of the individual monthly totals; this can be particularly significant in catchments with low runoff.

Monthly and yearly statistics for previous record

Monthly mean flows (average, low and high) and the monthly rainfall and runoff figures are equivalent to those presented in Part (i). Again due to the rounding of monthly runoff values, the average runoff for the year derived from the previous record may differ slightly from the sum of the individual monthly totals. The peak flow is the highest discharge, in cubic metres per second, for each month. For many stations the archived series of monthly instantaneous maximum flows, from which the preceding record peak is abstracted, is incomplete. particularly for the earlier years, and certain of the peak flows are known to be of limited accuracy. Where the peak value - in an incomplete series - is exceeded by the highest daily mean flow on record, the latter is substituted; such substitutions are indicated by a 'd' flag. An examination of the quality of the peak flow figures is continuing and significant revision may be expected as this review proceeds. The figures are published primarily to provide a guide to the range of river flows experienced throughout the year at the featured gauging stations.

Factors Affecting Runoff

Code letters are used as described in Part (i). FAR codes have yet to be determined for a few catchments featured in the Yearbook; their absence does not imply a natural flow regime.

Station type

The station type is coded by the list of abbreviations given below – two abbreviations may be applied to each station relating to the measurement of lower or higher flows. Where total flow is a summation of the flows measured in several component channels a '+' separates the code for the principal monitoring station from that of the subsidiary site(s).

- B Broad-crested weir
- C . Crump (triangular profile) single crest weir
- CB Compound broad-crested weir. The compounding may include a mixture of types such as rectangular profiles, flumes and shallow-Vs and with or without divide walls
- CC Compound Crump weir
- EM Electromagnetic gauging station
- EW Essex weir (simple Crump weir modified with angled, sloping, triangular profile flanking crests) in trapezoidal channel
- FL Flume
- FV Flat-V triangular profile weir
- MIS Miscellaneous method
- TP Rectangular thin-plate weir
- US Ultrasonic gauging station
- VA Velocity-area gauging station
- VN Triangular (V notch) thin-plate weir

Comment

A note clarifying or qualifying data featured in the Hydrometric Statistics section; for instance to indicate that the runoff values have been derived from naturalised flows.

1994 runoff is 141% of previous mean rainfall 119%

Factors affecting runoff: H Station type: VA

003002 Carron at Sgodachail

1994

UU3UUZ	Ca	ITTOI	n at	2go	ıacn	all						-	774
Measuring authorit First year: 1973	ty: HRPB			(nce: 28 (Ni tn. (m OD)		1		c		area (sq k Nax alt. (m	
lydrometric sta	itistics fo	r 1994											
Flows Avg.	JAN 17,850	FEB 4.524	MAR 28.630	APR 17.950	MAY 4.245	JUN 3.645	JUL 1.705	AUG 2.256	SEP 7.922	OCT 5.950	NOV 10.480	DEC 15.590	Year 10.108
(m ³ s ⁻¹): Peak	146.10	24.88	175.20	98.89	18.81	24.39	17.84	19.52	80.39	170.10	155.70	108.20 173	175.20 1322
lunoff (mm) lainfall (mm)	198 326	45 81	318 399	193 217	47 26	39 129	19 53	25 103	85 169	66 112	113 162	328	2105
Monthly and ye						Dec 1993)							
dean Avg.	14.910	10.220	11.460	7.348	4.808	4.001	3.656	4.548	8.555	12.090	12.620	13.370	8.964
lows Low	7.226	1.944	3.680	1.294	1.020	0.957	1,142 9,481	0.983 10.680	3.117 17.670	3.963 29.670	2.390 25.410	5.595 28.120	6.846 12.192
(m³s ⁻¹) High reak flow (m³s ⁻¹)	29.740 281.80	25.850 264.70	33.120 225.00	15.030 127.90	10.110 101.20	10.270 140.40	165.20	207.30	340.30	288.90	219.10	255.70	340.30
lunoff (mm)	166	104	127	79	53	43	41	51	92	134 242	13 6 222	148 244	1173 2081
lainfell (mm)* (1981-1993)	272	165	232	96	96	93	94	127	198	242	222	244	2001
Factors affecting r Station type: VA	runoff: H										noff is 113 infall 101	% of prev %	ious mea
004001	Co	non	at 1	Moy	Brid	lge		_				1	1994
Measuring authori First year: 1947	ty: HRPB			•		nce: 28 (N tn. (m OD)		7		C		area (sq k ax alt. (m (
lydrometric sta	atistics fo	or 1994				,							
.,	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	Year
Flows Avg.	81.430	49.560	123.000	94.150	55.480	48.190	18.340	16.240	21.040	48.280	59.730	95.500	59.363 276.80
(m³s⁻¹): Peak Runoff (mm)	214.80 227	155.50 125	276.80 343	180.50 254	113.60 155	75.77 130	50.94 51	66.90 45	88.43 57	112.30 134	131.90 161	240.10 266	1946
Rainfall (mm)	279	65	419	200	22	130	42	108	120	109	174	332	2000
Monthly and ye	arly stati	stics for	previous :	record (Oc	t 1947 to	Dec 1993-	-incomple						
Mean Avg.	71.580	62.360	60.710	42.750	31.350	21.740	21.700 2.959	28.110 8.162	41.230 12.510	55.500 23.090	64.740 23.200	72.660 27.970	47.81 29.99
flows Low (m³s~¹) High	31.690 138.300	25.810 164.600	18.670 191.500	13.940 75.730	10.940 53.050	8.861 47.560	40.010	45.140	94.870	94.030	121.700	165.100	77.53
Peak flow (m ³ s ⁻¹)	617.00	703.90	507.00	203.90	232.20	165.20	247.40 60	254.90 78	223.70 111	324.80 155	411.80 174	1076.00 202	1076.00 1569
Runoff (mm) Rainfall (mm)*	199 203	158 141	169 172	115 102	87 101	59 93	105	126	166	209	202	227	1847
(1953-1993)	,, .,									1994 nu	noff is 124	1% of prev	ious me
Factors affecting : Station type: VA	runott: H										infall 108		1000 11100
006008	Eı	ıricl	at i	Mill	of T	ore						1	[994
Measuring authori First year: 1979	ity: HRPB			!		nce: 28 (N tn. (m OD):		0		(area (sq k Vlax alt. (m	
Hydrometric sta	atistics fo	or 1994											
	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP 0.770	OCT	NOV 3.715	DEC 9.540	Year 3.996
Flows Avg. (m ³ s ⁻¹): Peak	7.697 26.35	2.695 25.34	13.050 70.05	6.798 57.52	0.864 3.80	0.745 3.39	0.351 1.10	0.389 2.97	2.48	1.082 3.97	3.715 16.18	51.24	70.05
Runoff (mm)	195	62	330	166	22	18	9	10	19	27	91	241	1190 1563
Rainfall (mm)	225	60	343	159 record (De	41	92 Dec 1993	28	90	73	67	111	274	1503
Monthly and ye					1,466	0.946	0.927	0.941	2.254	4.410	4.736	5.522	3.26
Mean Avg. flows Low	6.519 1.947	4.834 0.707	4.755 1.154	1.879 0.422	0.184	0.946	0.054	0.020	0.166	2.654	1.206	1.422	2.118
(m³s ⁻¹) High	14.910	18.220	13.870	3.466 20.17	4.387 21.87	1.959 19.35	3.332 59.86	3,235 15,83	3.994 51.30	7.068 50.41	9.382 60.67	9.554 56.46	4.98 83.6
Peak flow (m³s ⁻¹) Runoff (mm)	83.62 165	77.96 112	51.08 120	46	37	23	23	24	55	112	116	140	973
Rainfall (mm)	197	115	156	62	73	73	68	87	134	164	157	187	1473
Factors affecting Station type: VA	runoff: N										noff is 122 infall 106	2% of prev 3%	/ious me
008007	S ₁	ey o	at In	vert	ruin	12						1	[994
Measuring author	_				Grid refere	ince: 27 (N tn. (m OD)		i2		•		t area (sq I Max alt. (n	
First year: 1952 Hydrometric st	atistice f	or 1994			201013	, 001							,
riyurum a tric st	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	Year
Flows Avg.	11.050	5.190	27,790	12.360	3.572	4.065	2.742	2.484	3.010	3.500	7.857	15.160	8.27
(m³s-1): Peak	62.12 74	31.74 31	155.90 186	95.77 80	6.03 24	10.97 26	4.32 18	8.74 17	5.77 19	15.57 23	33.75 51	139.60 101	155.9 652
Runoff (mm) Rainfall (mm)	248	68	402	138	28	122	32	113	68	101	150	288	1758
Monthly and ye	arly stati	istics for	previous	record (O	ct 1952 to	Dec 1993)						
Mean Avg.	9.965	7.512	7.539	4.227	3.603	2.939	2.844	3.310	4.702	6.797	7.490	9.386	5.85
flows Low	3.314	1.953	2.722 42.630	2.075 7.126	1.413 6.210	1.123 6.269	1.042 5.021	0.852 7.545	1.454 14.650	1.638 14.830	2.516 15.960	3.518 24.970	3.93 11.12
(m³s ⁻¹) High Peak flow (m³s ⁻¹)	27,710 264.50	39.990 269.10	42.630 274.50	7.126 61.90	92.03	45.93	72.83	75.00	108.00	106.90	170.60	259.50	274.5
Runoff (mm)	67	46	50 131	27 75	24 86	19 75	19 85	22 104	30 134	45 165	48 160	63 181	462 1483
Rainfall (mm)	174	113	131	75	00	75	05	104	.54			1% of prev	
Factors affecting	runott' H									33+ U		. ~ o. p. o.	

009001 Deveron at Avochie

1994

Measuring authori First year: 1959	ty: NERPB				Grid refere Level s	nce: 38 (N. tn. (m OD)		4		C			m): 441.6 OD): 775
Hydrometric sta	atistics fo	r 1994											
Flows Avg. (m³s-1): Peak Runoff (mm) Rainfall (mm) Monthly and ye	JAN 18.860 85.26 114 133 arly statis	FEB 11.630 66.31 64 106 stics for a	MAR 18.960 98.25 115 63	APR 10.040 48.89 59 71	MAY 4.487 6.27 27 17 t 1959 to I	JUN 3.074 4.38 18 45 Dec 1993)	JUL 2.375 4.26 14 44	AUG 1.847 2.21 11 31	SEP 4.123 18.52 24 124	OCT 5.101 54.27 31 91	NOV 7.364 25.55 43 69	DEC 4.322 10.23 26 61	Year 7.666 98.25 547 855
Mean Avg. flows Low (m³s-1) High Peak flow (m³s-1) Runoff (mm) Rainfall (mm) Factors affecting I Station type: VA	11.790 3.527 24.440 120.50 72 89	10.180 3.052 19.720 84.90 56 63	11.280 3.391 22.230 118.00 68 76	9.832 4,314 21.500 76.13 58 69	7.508 3.274 21.930 183.70 46 73	5.121 2.610 11.130 153.10 30 69	4.573 1.766 9.841 146.40 28 74	5.724 1.621 19.110 236.50 35 92	5.693 2.092 16.040 155.70 33 84		10.560 2.668 29.790 177.70 62 101 Inoff is 90 nfall 87		8.557 4.051 12.437 236.50 612 982 ious mean

010002 Ugie at Inverugie

1994

Measuring authori First year: 1971	ty: NERPB			(Grid referer Level s	nce: 48 (Ni stn. (m QD		5		C	atchment N	area (sq k fax alt. (m	
Hydrometric sta	atistics fo	r 1994											
Flows Avg. (m³s⁻¹): Peak Runoff (mm) Rainfoll (mm)	JAN 10.960 36.02 90 89	FEB 8.648 65.30 64 95	MAR 9.636 70.49 79 39	APR 3.633 5.73 29 44	MAY 2.413 3.05 20 12	JUN 1.657 2.45 13 40	JUL 1,259 1,87 10 25	AUG 1,137 2.05 9 37	SEP 1.375 3.47 11 61	OCT 2.008 3,47 17 80	NOV 4.804 15.71 38 73	DEC 3,405 6,99 28 62	Year 4.223 70.49 410 657
Monthly and ye	arly stati:	stics for p	revious r	ecord (Fel	b 1971 to i	Dec 1993)							
Mean Avg. flows Low (m³s-1) High Peak flow (m³s-1) Runoff (mm) Rainfall (mm)	7.278 2.085 11.300 66.40 60 74	6.171 2.088 14.620 96.74 46 48	5.563 1.791 9.751 66.40 46 64	4.116 1.624 7.785 40.26 33 51	3.309 1.467 8.103 35.57 27 51	2.267 1.200 4.296 13.29 18 54	1.982 0.927 4.901 23.66 16 58	2.138 0.858 6.225 21.24 18 64	2.435 0.912 7.052 36.25 19 78	5.053 0.894 9.785 94.52 42 89	6.371 1.531 18.230 99.28 51 87	7.105 1.360 13.320 87.75 59 74	4.477 2.069 6.505 99.28 435 792
Factors affecting Station type: VA	runoff: N										noff is 94 nfall 83		

011001 Don at Parkhill

1994

Measuring authori First year: 1969	ty: NERPB			ı	Grid refere Level :	nce: 38 (N stn. (m OD		1		Ca			n): 1273.0 OD): 872
Hydrometric sta	atistics fo	r 1994											
flows Avg. (m ³ s ⁻¹): Peak Runoff (mm) Rainfall (mm)	JAN 52,260 128,30 110 121	FEB 31.360 95.43 60 119	MAR 50.410 159.30 106 44	APR 22.880 54.99 47 59	MAY 11.950 17.85 25 14	JUN . 7,247 9,62 15 38	JUL 5.640 8.22 12 43	AUG 4.908 6.47 10 32	SEP 7.279 21.07 15 86	OCT 8.205 43.37 17 71	NOV 18.640 47.24 38 80	DEC 11.690 18.04 25 56	Year 19.333 159.30 479 763
Monthly and ye	arly stati	stics for p	previous r	ecord (De	c 1969 to	Dec 1993)							
Mean Avg. flows Low (m³s-¹) High Peak flow (m³s-¹) Runoff (mm) Rainfall (mm)	28.200 8.070 48.660 185.90 59 89	26.150 6.557 52.240 131.00 50 57	26.930 6.274 48.950 143.70 57 72	23.960 8.487 44.750 107.50 49 62	16.340 7.514 34.770 92.06 34 63	11.880 6.424 27.560 101.60 24 63	10.600 5.128 27.530 118.10 22 68	11.490 4.644 40.150 277.40 24 74	11.160 5.019 36.470 107.20 23 74	20.170 4.567 56.480 273.10 42 92	22.920 5.692 86.230 213.20 47 85	25.880 7.738 50.960 154.50 54 76	19.615 8.833 29.185 277.40 486 875
Factors affecting a Station type: VA	runoff; N										noff is 98		ious mean

012006 Gairn at Invergairn

1994

Measuring authorit First year: 1978	y: NERPB			(Grid referer Level st	nce: 37 (N0 n. (m OD):		1		C	atchment Ma	area (sq k ıx alt, (m (
Hydrometric sta	tistics fo	r 1994										•	
Flows Avg. (m³s+¹): Peak Runoff (mm) Rainfall (mm)	JAN 5.559 30.96 99 125	FEB 3,911 18,48 63 124	MAR 9.570 54.69 171 96	APR 5.468 16.31 94 63	MAY 2.876 6.22 51 11	JUN 1,747 3.52 30 45	JUL 0.955 1.48 17 38	AUG 0.743 1.24 13 49	SEP 2.185 9.99 38 86	OCT 2.316 17.86 41 84	NOV 4.407 14.68 76 76	DEC 3.107 10.76 55 74	Year 3.569 54.69 750 871
Monthly and yea	arly statis	ities for p	revious r	ecord (No	v 1978 to	Dec 1993)							
Maan Avg. flows Low (m³s-¹) High Poak flow (m³s-¹) Runoff (mm) Rainfall (mm)* *(1981-1993)	4,828 2,698 8,758 85,37 86 104	4.268 1.548 7.692 38.88 70 70	5.467 3.535 7.418 88.91 98 89	5.149 2.110 9.595 37.34 89 57	3.789 1.732 7.605 28.96 68 66	2.650 0.952 5.608 47.25 46 70	1,801 0,743 3,036 24,92 32 60	2.043 0.612 5.057 65.69 36 78	2.615 0.999 6.389 58.09 45 93	4.805 1.319 12.420 95.09 86 123	4.319 1.257 12,420 61.22 75 96	4.663 1.832 7.661 48.55 83 86	3.865 2.338 4.871 95.09 813 992
Factors affecting n	unoff: N										noff is 92		ous mean

Station type: VÃ

rainfall 88%

013007 North Esk at Logie Mill

1994

Measuring authorit First year: 1976	ty: ȚRPB			(Grid referer Level s	nce: 37 (Ni tn. (m OD)		0		C			m): 730.0 OD): 939
Hydrometric sta	itistics fo	r 1994											
Flows Avg. (m³s-¹): Peak Runoff (mm) Rainfall (mm)	JAN 37.620 257.50 138 156	FEB 27.030 128.70 90 140	MAR 40.700 204.30 149 74	APR 21.640 88.51 77 75	MAY 9.814 30.22 36 17	JUN 4.658 8.86 17 41	JUL 3.236 4.90 12 42	AUG 3.061 16.50 11 40	SEP 4,171 20.58 15 52	OCT 8.218 81.32 30 82	NOV 29.300 208.30 104 134	DEC 15.720 55.73 58 85	Year 17.039 257.50 736 938
Monthly and ye	arly stati:	stics for p	orevious r	ecord (Jai	n 1976 to l	Dec 1993-	-incomple	ate or miss	ing month	s total 0.2	years)		
Mean Avg. flows Low (m³s-¹) High Peak flow (m³s-¹) Runoff (mm) Rainfall (mm)	24.860 10.970 50.000 315.60 91 117	24.260 8.612 46.630 195.00 81 81	28.390 13.160 45.240 279.30 104 107	22.190 7.156 34.870 277.90 79 65	14.490 4.110 36.420 186.40 53 76	9.161 3.684 24.300 271.90 33 69	7.217 2.685 18.060 133.00 26 71	9.500 2.548 35.810 320.60 35 84	11.250 3.622 30.540 342.80 40 98	26.860 4.096 80.410 452.80 99 137	24.690 10.980 91.170 462.10 88 103	27.060 9.359 59.880 398.10 99 112	19.148 11.043 24.927 462.10 828 1120
Factors affecting r Station type: VA	unoff: S P	1									unoff is 89 infall 84		ious mean

014001 Eden at Kemback

1994

Measuring author First year: 1967	ity: TRPB		Grid reference: 37 (NO) 415 158 Catchment area (sq km): 3 Level stn. (m OD): 6.20 Max alt. (m OD)										
Hydrometric st	atistics fo	r 1994											
Flows Avg. (m³s-¹): Peak Runoff (mm) Rainfall (mm) Monthly and ye	JAN 8.675 33.29 76 92	FEB 7.334 41.73 58 97	MAR 9.204 29.42 80 84	APR 4.007 6.74 34 56	MAY 2.400 3.40 21 14	JUN 1.716 2.55 14 48	JUL 1.203 1.93 10 31	AUG 1.060 2.29 9 41	SEP 1.162 1.87 10 36	OCT 1.413 3.61 12 68	NOV 4,243 13,08 36 93	DEC 4.376 12.33 38 75	Year 3.883 41.73 398 735
	•	-											
Mean Avg.	7.403	6.215	4.976	3.880	3.057	2.190	1.530	1.663	2.009	3.318	4.389	5.657	3.848
flows Low	2.546	2.170	1.408	1.199	1.406	1.077	0.861	0.799	0.749	0.833	0.830	1.731	1.446
(m³s ⁻¹) High	18.380	19.460	8.237	7.243	8.335	6.651	3.390	6.038	11.260	8.162	14.440	12.390	5.634
Peak flow (m3s-1)	59.05	71.31	64.71	62.06	47.48	41.93	26.20	17.19	53.64	47.78	39.37	47.82	71.31
Runoff (mm)	65	49	43	33	27	18	13	14	17	29	37	49	395
Rainfall (mm)	89	55	67	47	63	58	58	62	73	78	72	74	796
Factors affecting Station type: VA	runoff; S G	EΙ			•						off is 101 nfall 92	% of previ	ous mean

015011 Lyon at Comrie Bridge

1994

Measuring authori First year: 1958	ty: TRPB		Grid reference: 27 (NN) 786 486 Catchment area (sq km): 39 Level stn. (m OD): 92.10 Max alt. (m OD): 1										
Hydrometric sta	atistics fo	r 1994											
Flows Avg. (m³s-¹): Peak Runoff (mm) Rainfall (mm)	JAN 20.740 129.40 142 324	FEB 11.430 126.70 71 125	MAR 40.580 205.30 278 504	APR 19.610 93.28 130 160	MAY 8.663 28.86 59 41	JUN 6.781 31.80 45 150	JUL 4.275 11.80 29 66	AUG 6.133 92.37 42 133	SEP 6.216 25.80 41 81	OCT 9.452 82.32 65 143	NOV 18.120 94.77 120 232	DEC 28.440 206.30 195 398	Year 15.092 206.30 1217 2357
Monthly and ye	arly stati:	stics for p	orevious r	ecord (Jai	1958 to (Dec 1993)							
Mean Avg. flows Low (m³s-¹) High Peak flow (m³s-¹) Runoff (mm) Rainfall (mm)* *(1971-1993)	18.440 3.596 43.920 370.90 126 283	14,790 3,198 54,190 377,90 92 159	15.880 4,219 67.160 311.30 109 215	10.320 4.002 17.390 129.00 68 92	9.344 3.537 24.520 181.70 64 103	6.404 3.470 18.870 109.70 42 87	6.093 3.062 20.800 154.70 42 105	7.466 2.221 28.940 128.70 51 127	10.330 2.843 28.120 145.10 68 184	14.810 3.662 29.930 191.90 101 213	14.500 5.320 30.550 271.30 96 227	15.810 6.182 32.780 199.60 108 240	12.013 8.330 19.871 377.90 969 2035

Factors affecting runoff: H Station type: VA 1994 runoff is 126% of previous mean rainfall 116%

016003 Ruchill Water at Cultybraggan

1994

Measuring authori First year: 1970	ty: TRPB			(nce: 27 (NI tn. (m OD)		4					km): 99.5 OD): 985
Hydrometric sta	atistics fo	r 1994											
Flows Avg. . (m ³ s ⁻¹): Peak Runoff (mm) Rainfall (mm)	JAN 10.570 124.80 284 327	FEB 4.628 122.60 113 123	MAR 16.630 189.00 448 444	APR 5.453 28.20 142 152	MAY 1.712 19.24 46 31	JUN 2.096 45.31 55 144	JUL 1.792 17.84 48 85	AUG 2.618 67.58 70 138	SEP 1.559 15.57 41 64	OCT 4.987 110.50 134 178	NOV 8,481 76,43 221 238	DEC 12.390 116.20 334 382	Year 6.107 189.00 1936 2306
Monthly and ye	arly stati	stics for p	orevious r	ecord (Oc	t 1970 to l	Dec 1993-	-incomple	ete or miss	ing monti	s total 1.1	years)		
Mean Avg. flows Low (m³s-¹) High Peak flow (m³s-¹) Runoff (mm) Rainfall (mm)	8.561 2.263 19.720 250.40 230 259	6.501 1.050 20.280 189.20 160 168	7,247 2,519 13,660 179,60 195 201	3.512 0.758 8.053 90.24 91 100	2.699 0.304 10.120 165.00 73 113	1.866 0.381 4.562 221.30 49 96	1.765 0.239 5.739 160.00 48 111	2.720 0.164 9.246 143.00 73 138	4.948 0.345 10.260 227.30 129 199	6.058 0.789 12.130 176.50 163 202	7.356 2.306 16.550 183.30 192 228	7.493 1.630 12.350 174.50 202 232	5.057 3.281 6.586 250.40 1604 2047
Factors affecting (Station type: VA	runoff: N										off is 121 nfall 113		ious mean

016004 Earn at Forteviot Bridge

1994

Measuring authority: TRPB Grid reference: 37 (NO) 043 184 First year: 1972 Level stn. (m OD): 7.80 Hydrometric statistics for 1994										C	atchment N	area (sq k fax alt. (m	
Hydrometric st	atistics fe	or 1994				•					•		
Flows Avg. (m ³ s ⁻¹): Peak Runoff (mm) Rainfall (mm)	JAN 52.380 129.10 179 213	FEB 43.380 214.90 134 112	MAR 79.410 289.70 272 289	APR 41.740 125.40 138 101	MAY 17.750 36.16 61 22	JUN 11.770 53.03 39 99	JUL 7.146 18.92 24 67	AUG 9.078 66.96 31 94	SEP 9,470 25,34 31 50	OCT 20.830 129.70 71 128	NOV 46.680 133.40 155 172	DEC 65.060 232.20 223 266	Year 33.714 289.70 1359 1613
Monthly and ye	arly stati	stics for p	previous r	ecord (Oc	t 1972 to l	Dec 1993-	-incomple	ete or miss	ing month	s total 0.9	years)		
Mean Avg. flows Low (m³s-¹) High Peak flow (m³s-¹) Runoff (mm) Rainfall (mm)	52.890 19.630 116.500 415.00 181 186	40.140 16.070 127.100 337.00 125 114	39.640 12.310 74.340 264.60 136 147	23.730 8.389 51.570 209.40 79 67	15.050 4.906 47.200 186.50 52 81	9.618 4.095 20.070 114.90 32 74	8.559 2.658 24.620 142.30 29 85	11.820 2.456 46.860 169.70 40 104	19.750 5.302 55.680 271.80 65 147	29.730 5.984 61.980 241.20 102 149	37.630 15.120 89.750 328.60 125 157	43.630 15.060 79.160 238.70 149 164	27.642 15.508 33.908 415.00 1115 1475
Factors affecting Station type: VA	runoff: P H	ı									off is 122 nfall 109		ious mean

017001 Carron at Headswood

1994

Measuring authori First year: 1969	ty: FRPB			(Grid referer Level s	nce: 26 (NS tn. (m OD):)		Catchment area (sq km): 122. Max alt. (m OD): 57					
Hydrometric sta	atistics fo	r 1994				•									
Flows Avg. (m ³ s ⁻¹): Peak Runoff (mm) Rainfall (mm)	JAN 9,121 73.00 200 278	FEB 4.356 73.38 86 125	MAR 14.480 68.17 317 358	APR 3.826 20.45 81 125	MAY 1.375 ·22.65 30 33	JUN 0.977 6.10 - 21 125	JUL 0.968 5.06 21 79	AUG 1,374 19,78 30 122	SEP 1.014 3.31 21 70	OCT 2.049 19.88 45 117	NOV 5.661 50.19 120 217	DEC 13.830 179.70 303 342	Year 4.946 179.70 1276 1991		
Monthly and ye	arly statis	stics for p	previous r	ecord (Au	g 1969 to	Dec 1993)									
Mean Avg. flows Low (m³s-¹) High Peak flow (m³s-¹) Runoff (mm) Rainfall (mm)	6,435 1,943 15,330 138,10 141 185	4.311 1.018 14.130 147.70 86 117	4.295 1.232 9.819 132.90 94 149	2.197 0.807 4.616 43.62 47 80	1.519 0.590 5.724 51.35 33 86	1.168 0.580 2.834 33.74 25 86	1.115 0.549 4.650 65.38 24 90	1,646 0,557 8,092 84,48 36 118	2.952 0.467 16.720 124.30 63 153	3.901 0.424 10.270 124.80 85 162	5.046 1.412 9.759 105.80 107 175	5.327 1.084 10.470 147.90 117 171	3.324 2.108 4.606 147.90 858 1572		
Factors affecting of Station type: VA	runoff: S E										off is 149 nfall 127		ious mean		

017002 Leven at Leven

1994

Measuring authori First year: 1969	ty: FRPB		Grid reference: 37 (NO) 369 006 Level stn. (m OD): 4,10										m): 424.0 OD): 522
Hydrometric sta	atistics fo	r 1994											
Flows Avg. (m ³ s ⁻¹): Peak Runoff (mm) Rainfall (mm)	JAN 13.200 19.94 83 120	FEB 10.500 26.66 60 88	MAR 17.120 27.69 108 150	APR 8.016 14.71 49 67	MAY 3.850 5.96 24 19	JUN 1.531 3.22 . 9 . 58	JUL 1.670 5.22 11 50	AUG 1.179 4.91 7 56	SEP 1.450 2.44 9 46	OCT 2.346 6.83 15 81	NOV 9.239 19.78 56 125	DEC 11.980 32.62 76 142	Year 6.830 32.62 508 1002
Monthly and ye	arly stati	stics for p	revious r	ecord (Au	g 1969 to l	Dec 1993)							
Mean Avg. flows Low (m³s-1) High Peak flow (m³s-1) Runoff (mm) Rainfall (mm)	12.250 4.788 26.030 85.42 77 103	10.380 2.882 22.660 128.00 60 64	7.830 1.543 14.680 69.64 49 82	5.503 1,413 10.630 70.96 34 52	3.874 2.012 12.050 44.54 24 61	3.213 1.166 7.044 26.93 20 67	2.089 0.902 5.300 28.83 13 65	3.269 0.820 11.840 25.69 21 75	3.969 0.970 21.040 84.25 24 89	6.085 0.795 13.170 48.50 38 90	8.167 0.972 26.510 56.76 50 93	10.060 3.462 19.200 62.69 64 93	6.373 2.269 9.294 128.00 474 934
Factors affecting r Station type: VA	runoff: SR	EI									off is 107 nfall 107		ous mean

018003 Teith at Bridge of Teith

1994

Measuring authori First year: 1957	ty: FRPB	Level stn. (m OD): 14.70											m): 518.0 DD): 1165
Hydrometric sta	itistics fo	or 1994											
Flows Avg. (m³s-¹): Peak Runoff (mm) Rainfall (mm)	JAN 51.520 146.10 266 329	FEB 29.060 164.40 136 119	MAR 79.140 220.80 409 455	APR 34.560 114.90 173 171	MAY 11.690 40.88 60 37	JUN 12.450 55.75 62 154	JUL 9.529 21.11 49 89	AUG 14,170 67,42 73 171	SEP 10.660 29.23 53 84	OCT 17.130 47.25 89 152	NOV 39.580 103.10 198 227	DEC 70.340 312.20 364 422	Year 31.754 312.20 1933 2410
Monthly and γe	arly stati	stics for p	revious r	ecord (Jai	1957 to 1	Dec 1993-	incomple	ete or miss	ing month	s total Q.1	years)		
Mean Avg. flows Low (m³s-1) High Peak flow (m³s-1) Runoff (mm) Rainfall (mm)* *(1963-1993)	38.550 9.608 99.850 378.30 199 250	30.050 5.743 109,100 361.80 141 157	29.760 6.589 81.670 217.40 154 191	17.300 5.612 44.110 182.40 87 100	14.290 4.017 55.000 158.00 74 116	9.256 3.953 21.520 161.70 46 102	9.654 3.781 26.390 118.30 50 112	13.550 3.135 54.210 174.40 70 137	20.450 3.635 51.510 184.10 102 198	27,380 5,897 66,410 242,60 142 216	31.020 9.842 70.650 245.10 155 218	34.790 11.790 72.370 241.10 180 223	22.989 15.094 32.716 378.30 1400 2020

Fectors affecting runoff: SPI Station type: VA

1994 runoff is 138% of previous mean rainfall 119%

018005 Allan Water at Bridge of Allan

1994

Measuring authorit	ty: FRPB			C	Grid referen Level st	nce: 26 (NS in. (m OD):		0		C			m): 210.0 OD): 633
Hydrometric sta	itistics fo	r 1994											
Flows Avg. (m³s-¹): Peak Runoff (mm) Rainfall (mm)	JAN 15.940 88.01 203 214	FEB 8.773 102.50 101 100	MAR 24.460 118.20 312 299	APR 7.154 25.72 88 90	MAY 3.019 20.06 39 23	JUN 2.320 16.76 29 94	JUL 2.368 19.02 30 80	AUG 2.450 32.46 31 85	SEP 2.005 8.27 25 51	OCT 4.272 32.38 54 102	NOV 12,260 62,43 151 166	DEC 22.420 158.80 286 270	Year 8.988 158.80 1350 1574
Monthly and ye	arly stati:	stics for p	orevious r	ecord (Jul	1971 to D	ec 1993)							
Mean Avg. flows Low (m³s-¹) High Peak flow (m³s-¹) Runoff (mm) Rainfall (mm) Factors affecting n	12.280 4.751 28.570 194.30 157 162	8.884 3.631 22.270 81.93 104 99	9.447 3.152 18.170 83.43 120 128	5.261 1.654 10.410 69.63 65 68	3.835 1.189 15.430 72.11 49 77	2.638 0.945 5.423 61.86 33 73	2.275 0.726 6.309 66.37 29 82	3.151 0.648 12.390 67.48 40 96	5.182 0.907 15.180 105.60 64 126	7.186 0.971 12.420 111.00 92 131 1994 run	8.847 3.642 17.760 97.89 109 135 off is 136	10.040 3.709 17.150 112.60 128 144 % of previ	6.580 4.269 9.091 194.30 989 1321 ious mean
Station type: VA										rai	nfall 119	%	

018018 Kirkton Burn at Balquhidder

1994

Measuring First year		ty: IH			(nce: 27 (Ni n. (m OD):		9					km): 6.8 OD): 852
Hydrome	etric sta	tistics fo	r 1994											
Flows (m³s ⁻¹): Runoff (m: Rainfall (m	m) m)	JAN 0.712 5.09 278 351	FEB 0.368 5.86 130 162	MAR 1.215 10.37 475 489	APR 0.574 3.23 217 184	MAY 0.177 0.88 69 46	JUN 0.226 1.38 85 165	JUL 0.164 0.83 64 73	AUG 0.294 5.05 115 189	\$EP 0.198 1.39 75 69	OCT 0.324 2.63 127 162	NOV 0.622 5.17 236 249	DEC 0.949 7.92 371 434	Year 0.487 10.37 2243 2573
Monthly	and ye	arly statis	stics for p	previous r	ecord (Jai	1983 to I	Dec 1993-	—incomple	ste or miss	ing month	s total 0.2	(years)		
Mean flows (m ³ s ⁻¹) Peak flow Runoff (mi Rainfall (m *(1983-19	(m³s¯¹) m) m)*	0.692 0.178 1.280 13.57 271 341	0.516 0.105 1.489 7.66 184 197	0.614 0.214 1.144 8.69 240 267	0.375 0.190 0.687 4.01 142 132	0.222 0.066 0.847 8.51 87 113	0.141 0.055 0.261 2.56 53 92	0.197 0.047 0.539 5.98 77 136	0.324 0.031 0.767 10.90 127 185	0.383 0.070 0.726 7.45 145 202	0.583 0.242 0.906 12.20 228 256	0.497 0.178 1.028 9.25 188 221	0.639 0.339 1.052 10.09 250 301	0.432 0.346 0.509 13.57 1992 2442

Factors affecting runoff: N Station type: C

1994 runoff is 113% of previous mean rainfall 105%

Comment: Period of record rainfall statistics derived from a network of ground flush raingauges.

020001 Tyne at East Linton

1994

Measuring authori First year: 1961	ty; FRPB		Grid reference: 36 (NT) 591 768 Catchment area (sq km): 30 Level stn. (m OD): 16.50 Max alt. (m OD):										
Hydrometric sta	itistics fo	r 1994											
Flows Avg. (m ³ s ⁻¹): Peak Runoff (mm) Rainfall (mm)	JAN 8.835 57.84 77 89	FEB 4.812 46.56 38 65	MAR 4,741 17,82 41 62	APR 2.601 6.12 22 53	MAY 1.320 1.99 12 15	JUN 1.010 2.27 9 40	JUL 0.778 1.30 7 25	AUG 0.643 1.14 6 28	SEP 0.662 1.49 6 54	OCT 0.902 4.26 8 65	NOV 1.672 7.94 14 62	DEC 3.380 23.82 29 85	Year 2.607 57.84 268 643
Monthly and ye	arly statis	itics for p	revious r	ecord (Jai	n 1961 to I	Dec 1993)							
Mean Avg. flows Low (m³s⁻¹) High Peak flow (m³s⁻¹) Runoff (mm) Rainfall (mm)	4.660 1.032 11.540 93.02 41 64	3.827 0.783 8.625 53.51 30 43	3.848 0.531 8.789 118.80 34 58	2.915 0.644 7.824 143.00 25 48	2.399 0.781 11.600 119.70 21 58	1.431 0.586 6.142 59.12 12 54	1.253 0.500 4.393 70.18 11 60	1.571 0.468 9.855 112.70 14 76	1.697 0.461 8.490 90.84 14 68	2.501 0.451 9.421 148.50 22 71	3.429 0.524 11.210 127.50 29 68	3.850 0.582 9.447 52.02 34 62	2.779 0.709 4.146 148.50 286 730
Factors affecting r Station type: VA	unoff: El										inoff is 94° nfall 88°		ious mean

021006 Tweed at Boleside

1994

Measuring author First year: 1961	ity: TWRP			(Grid refere Level s	nce: 36 (N tn. (m OD)		4		Ca			n): 1500.0 n OD): 839
Hydrometric st	atistics fo	or 1994											
Flows Avg. (m³s ⁻¹): Peak Runoff (mm) Rainfall (mm)	JAN 89.530 255.20 160 176	FEB 49.530 228.60 80 95	MAR 96.310 332.30 172 189	APR 48.750 102.50 84 91	MAY 18.210 48.71 33 25	JUN 10.130 22.81 18 63	JUL 9.076 25.14 16 62	AUG 12.730 52.67 23 86	SEP 15.460 59.11 27 63	OCT 21.090 91.45 38 89	NOV 73.670 282.90 127 143	DEC 118.700 799.60 212 242	Year 47.020 799.60 990 1324
Monthly and ye	arly stati	stics for	previous :	ecord (Jai	1961 to	Dec 1993)							
Mean Avg. flows Low (m³s⁻¹) High Peak flow (m³s⁻¹) Runoff (mm) Rainfall (mm)	61.090 14.740 111.900 678.60 109 129	48.840 10.780 159.700 507.60 80 86	46.110 16.230 104.200 469.80 82 104	33.240 10.250 68.230 447.30 57 72	25.330 7.290 67.600 385.00 45 84	16.210 5.669 35.350 125.90 28 76	15.410 4.314 44.590 342.40 28 85	23.020 3.834 85.410 444.30 41 108	30.780 4,316 98.480 496.30 53 115	43.680 4.655 99.430 1019.00 78 124	52.460 12.230 121.300 486.30 91 121	57.500 24.150 101.900 571.90 103 124	37.770 20.090 49.790 1019.00 795 1226
Factors affecting Station type: VA	runoff: S Á	•									noff is 125 infall 108		rious mean

Station type. VA

Comment: Monthly naturalised flows used.

Teviot at Hawick 021012

1994

Measuring authority First year: 1961	ty: TWRP			(Grid referer Level s	nce: 36 (N' tn. (m OD)		9		C			m): 323.0 OD): 608
Hydrometric sta	tistics fo	r 1994											
Flows Avg. {m³s=1}: Peak Runoff (mm) Rainfall (mm)	JAN 19.160 84.21 159 188	FEB 12.760 150.70 96 96	MAR 20.600 123.70 171 186	APR 9.703 35.62 78 93	MAY 3.521 16.32 29 22	JUN 1.734 7.74 14 79	JUL 1.640 13.30 14 65	AUG 3.197 35.95 27 99	SEP 2.472 12.70 20 55	OCT 4.148 40.33 34 94	NOV 19.220 110.50 154 158	DEC 26.520 187.90 220 245	Year 10.393 187.90 1015 1380
Monthly and ye	arly statis	stics for p	orevious r	ecord (Jai	n 1961 to I	Dec 1993)							
Mean Avg. flows Low (m³s-1) High Peak flow (m³s-1) Runoff (mm) Rainfall (mm)	14.520 3.587 28.570 257.40 120 127	11.160 2.601 34.800 235.30 84 83	10.510 2.991 27.700 182.40 87 101	6.994 2.190 14.200 179.00 56 70	5.694 1,296 17,340 135.00 47 85	3.770 0.909 10.500 89.41 30 75	3.358 0.676 12.300 148.30 28 86	4.980 0.735 19.120 178.60 41 103	6.564 0.915 18.960 185.90 53 107	9.934 0.816 25.690 273.40 82 118	12.370 2.555 29.910 188.50 99 119	14.140 4.523 26.550 230.00 117 126	8.661 4.183 11.280 273.40 846 1201
Factors affecting r Station type: VA Comment: Monthl		ed flows u	sed.								off is 120 nfall 115		ious mean

021018 Lyne Water at Lyne Station

1994

Measuring authoriti First year: 1962	y: TWRP			(Grid referen Level str	nce: 36 (N1 n. (m OD):		1		С			m): 175.0 OD): 562
Hydrometric sta	tistics fo	r 1994											
Flows Avg. (m³s-1): Peak Runoff (mm) Rainfall (mm)	JAN 7.515 16.58 115 126	FEB 4.261 19.58 59 68	MAR 8.294 23.30 127 148	APR 4.320 11.67 64 74	MAY 1.664 2.76 25 18	JUN 0.908 1.35 13 49	JUL 0.684 1.27 10 46	AUG 0.777 3.13 12 65	SEP 0.798 2.11 12 59	OCT 1.205 5.79 18 68	NOV 4.830 18.34 72 107	DEC 10.350 83.46 158 195	Year 3.809 83.46 685 1023
Monthly and yea	ırly stati:	stics for p	revious r	ecord (Jar	1962 to [Dec 1993)							
Mean Avg. flows Low (m³s-¹) High Peak flow (m³s-¹) Runoff (mm) Rainfall (mm)	5.109 1.666 8.991 52.31 78 93	4.227 1.416 11.260 41.55 59 63	3.892 1,491 7.613 41,21 60 79	2.895 1.197 6.084 41.08 43 57	2.079 0.881 4.907 23.97 32 64	1.522 0.795 2.738 16.46 23 66	1,361 0,609 4,433 31,72 21 71	1,751 0,522 5,606 20,77 27 89	2.519 0.542 10.660 58.74 37 97	3.548 0.540 11.320 73.75 54 99	4.483 1.100 9.053 53.60 66 96	4.704 1.756 8.581 37.98 72 91	3.170 1.599 4.304 73.75 572 965
Factors affecting ru Station type: VA	ınoff: S P										off is 120 nfatl 106		ous mean

Factors affecting runoff: S P Station type: VA Comment: Monthly naturalised flows used.

021022 Whiteadder Water at Hutton Castle

1994

Measuring authori First year: 1969	,			(Grid referer Level st	nce: 36 (NT tn. (m OD):		0		c			m): 503.0 OD): 533
Hydrometric sta	stistics fo	r 1994											
Flows Avg. (m ³ s ⁻¹): Peak Runoff (mm) Rainfall (mm)	JAN 21.530 155.70 115 108	FEB 11.650 107.00 56 75	MAR 9.750 34.99 52 51	APR 5.228 14.32 27 54	MAY 2.917 4.34 16 13	JUN 2.010 2.82 10 37	JUL 1.223 2.29 7 26	AUG 1,121 2,33 6 44	SEP 1.297 2.64 7 49	OCT 1.737 6.81 9 61	NOV 6.380 22.71 33 94	DEC 8.288 42.25 44 86	Year 6.075 155.70 382 698
Monthly and ye	arly stati:	stics for p	orevious r	ecord (Oc	t 1969 to (Dec 1993)							
Mean Avg. flows Low (m³s-¹) High Peak flow (m³s-¹) Runoff (mm) Rainfall (mm)	11.170 2.616 26.470 265.90 60 75	9.928 1.806 27.460 160.90 48 52	9.363 1.295 19.270 247.60 50 67	7.711 1.523 16.170 274.70 40 56	5.396 1.390 24.280 226.20 29 64	3.443 1.421 9.083 75.82 18 59	2.474 1.192 6.882 84.85 13 62	2.930 0.988 8.413 181.10 16 78	3.256 1.056 16.700 105.80 17 74	5.892 0.981 17.890 226.20 31 77	7.571 1.283 28.980 279.80 39 79	9.140 1.569 20.830 108.10 49 70	6.509 2.077 9.112 279.80 408 811
Factors affecting r Station type: CC Comment: Monthl			sed.								inoff is 94 nfall 86		ious mean

021024 Jed Water at Jedburgh

1994

Measuring First year:		ty: TWRP			(Grid referer Level s	nce: 36 (N' tn. (m OD)		4		C			m): 139.0 OD): 553
Hydrome	etric sta	atistics fo	r 1994											
C 1		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows (m³s-1);	Avg.	5.305	3.449	4.262	2.128	0.916	0.588	0.467	0.694	0.472	0.714	2.908	5.692	2.299
Runoff (mr		32.66	36.95	57.01	10.83	2.16	1.32	2.65	12.60	1.91	5.71	24.59	75.33	75.33
		102	60	82	40	18	11	9	13	9	14	54	110	521
Rainfall (ma	m)	119	70	107	62	17	40	34	66	44	64	107	164	894
Monthly	and ye	arly statis	stics for p	revious r	ecord (Jai	n 1960 to I	Dec 1993)							
Moan	Avg.	4.073	3.073	2.928	2.080	1.628	1.086	1.018	1.261	1.513	2.120	3.091	3.568	2.285
flows	Low	1.482	0.997	0.782	0.733	0.635	0.404	0.352	0.312	0.346	0.327	0.698	0.967	1.068
(m³s-1)	High	7.748	9.041	7.398	4.556	4.990	2.345	4.770	4.329	6.868	5.002	9.433	6.962	3.091
Peak flow	(m³s ⁻¹)	106.30	74.82	84.94	68.83	38.25	58.35	66.25	63.76	50.94	71.65	167.10	85.25	167.10
Runoff (mr	n)	79	54	56	39	31	20	20	24	28	41	58	69	519
Rainfall (m	m)	92	63	75	60	70	63	73	86	80	88	91	91	933
Energe of	Haarina .	umaff. N									1004	-4:- 101	~ _£	

Factors affecting runoff: N Station type: VA

Comment: Monthly naturalised flows used.

1994 runoff is 101% of previous mean rainfall 96%

022006 Blyth at Hartford Bridge

1994

Measuring authorit First year: 1966	ty: NRA-NY	•		(Grid referer Level st	nce: 45 (N2 tn. (m OD):		0		C			m): 269.4 OD): 259
Hydrometric sta	tistics fo	r 1994											
Flows, Avg. (m³s ⁻¹): Peak Runoff (mm) Rainfall (mm)	JAN 5.353 36.41 53 66	FEB 4.469 53.69 40 69	MAR 2.442 17.98 24 44	APR 1.638 22.62 16 54	MAY 0.464 0.94 5 15	JUN 0.217 0.55 2 33	JUL 0.118 0.19 1 33	AUG 0.273 3.27 3 89	SEP 0.215 0.61 2 60	OCT 0.308 1.26 3 53	NOV 2.280 12.47 22 77	DEC 2.256 7.82 22 62	Year 1.653 53.69 193 655
Monthly and yes	arly statis	stics for p	orevious r	ecord (Oc	t 19 66 to [Dec 1993-	-incomple	te or miss	ing month	s total 1.0	years)		
Mean Avg. flows Low (m³s-¹) High Peak flow (m³s-¹) Runoff (mm) Rainfall (mm)	4.276 0.587 10.150 146.60 43 64	3.575 0.398 7.997 59.52 32 47	3.451 0.245 11.090 150.20 34 61	2.561 0.359 10.360 162.80 25 48	1.425 0.212 5.502 101.50 14 55	0.569 0.161 1.895 31.54 5	0.417 0.096 1.800 21.52 4 56	0.586 0.067 2.963 61.09 6	0.694 0.107 2.695 30.02 7 62	1.494 0.111 9.680 56.84 15 62	2.272 0.162 5.735 69.20 22 65	3.760 0.274 12.500 122.30 37 64	2.085 0.537 3.410 162.80 244 703
Factors affecting r Station type: FV	unoff: E										noff is 79 nfall 93		ious mean

023001 Tyne at Bywell

1994

Measuring author First year: 1956	ity: NRA-N	Y		•	Grid refere Level s	nce: 45 (N tn. (m OD)		7		Ca			n): 2175.6 n OD): 893
Hydrometric st	atistics fo	or 1994											
Flows Avg. (m³s-¹): Peak Runoff (mm) Rainfall (mm)	JAN 106.300 356.20 131 128	FEB 68.350 386.10 76 73	MAR 104.400 795.40 129 148	APR 52.660 164.50 63 79	MAY 15.400 38.33 19 20	JUN 11.590 79.48 14 57	JUL 7.751 21.57 10 48	AUG 14.310 117.20 18 102	SEP 24.930 120.90 30 74	OCT 26.830 171.10 33 78	NOV 84.860 698.70 101 125	DEC 120.900 709.10 149 187	Year 53.172 795.40 771 1119
Monthly and ye	arly stati	stics for	previous I	record (Oc	t 1956 to l	Dec 1993-	incompl	ete or mis	sing mont	ns total 0.3	3 years)		
Mean Avg. flows Low (m³s-¹) High Peak flow (m³s-¹) Runoff (mm) Rainfall (mm)	74.070 19.220 150.800 1525.00 91 105	60.690 14.360 162.800 1198.00 68 75	55.930 18.450 150.900 1472.00 69 _86	38.790 8.461 75.620 905.60 46 65	25.140 7.246 60.650 550.90 31 68	17.610 4.910 50.010 440.30 21 67	19.090 5.199 58.000 1105.00 23 82	28.060 3.403 77.360 1561.00 35 95	33.840 4.155 106.600 1243.00 40 90	46.040 4.727 147.200 1586.00 57 96	61.600 18.090 147.000 1382.00 73 103	70.530 23.080 123.000 1317.00 87 108	44.226 25.849 63.834 1586.00 641 1040
Factors affecting Station type: VA	runoff: S		•								noff is 120 infall 108		vious mean

023006 South Tyne at Featherstone

1994

Measuring a First year: 1		ty: NRA-N'	Y	\$.	C		nce: 35 (N) n. (m OD):		1		c			m): 321.9 OD): 893
Hydromet	ric sta	atistics fo	r 1994	.5			6.4							
		JAN	FEB	MAR	APR .	MAY:	JUN	JUL	AUG	SEP	ост	NOV	DEC	Year
Flows	Avg.	19.700	9.486	21.480	12.150	2.727	3.415	1.386	3.812	7.796	7.550	17.310	25.900	11.082
(m³s ⁻¹);	Peak	193.20	129.10	208.80	102.40	19.82	75.75	1.72	46.56	50.93	63.97	176.00	178.00	208.80
Runoff (mm)		164	71	179	98	23	28	12	32	63	63	139	215	1086
Rainfall (mm))	206	66	205	112	26	81	42	121	97	98	157	272	1483
Monthly a	nd ye	arly statis	stics for p	orevious r	ecord (Oc	t 1966 to	Dec 1993-	-incomple	ete or miss	ing month	s total 0.2	(years)		
Mean	Avg.	16,110	12.570	13.570	9.347	6.185	4.888	5,130	6.709	9.241	12.400	15.230	16.100	10.620
flows	Low	6.606	3.380	4.733	1.850	1.311	1.465 .	1.123	0.960	1.467	1.181	5.895	5.110	7.630
(m³s ⁻¹)	High	25.510	33.950	30.210	17.380	13.850	12.740	17.170	19.240	23.670	30.330	24.670	28.810	12.915
Peak flow (m		292.10	255.30	260.80	178.00	131.30	164.70	273.60	297.30	264.70	263.10	309.90	283.70	309.90
Runoff (mm)		134	95	113	75	51	39	43	56	74	103	123	134	1041
Rainfall (mm)		140	96	122	82	85	86	100.	114	125	138	141	144	1373
Factors affe		unoff: N						•	:			off is 104		ious mean

023011 Kielder Burn at Kielder

Measuring authorit First year: 1970	y: NRA-N\	1		C	Grid referer Level str	nce: 35 (N) n. (m OD):		e ¹ 4.			Catchmen N		km): 58.8 OD): 602
Hydrometric sta	tistics fo	r 1994						į.					
Flows Avg. (m³s-¹): Peak Runoff (mm) Rainfall (mm)	JAN 3.850 27.99 175 159	FEB 1.967 23.58 81 102	MAR 3.942 57.88 180 165	APR 1.935 7.87 85 96	MAY 0.677 2.74 31 25	JUN 0.627 4.08 28 69	.tut 0.355 4.96 , 16 50	AUG 1.291 45.58 59 118	SEP 0.963 9.79 42 66	OCT 1.349 17.80 61 91	NOV 3.539 33.83 156 162	DEC 4.564 50.45 208 232	Year 2.093 57.88 1122 1335
Monthly and yea	ırly statis	ities for p	revious r	ecord (Jul	1970 to D	ec 1993—	-incomple	te or missi	ng month:	s total 2.2	years)		
Mean Avg. flows Low (m³s-¹) High Peak flow (m³s-¹) Runoff (mm) Rainfall (mm)	3.047 1.646 4.893 95.31 139 140	2.370 0.722 6.677 73.28 98 96	2,444 0,945 4,882 44,44 111 115	1.613 0.389 3.209 35.55 71 74	1.192 0.331 2.605 60.14 54 77	1.013 0.316 2.134 95.07 45 73	0.852 0.302 2.632 39.21 39	1.214 0.243 4,407 138.90 55 103	1.362 0.316 3.296 56.86 60 102	2.043 0.247 3.589 128.80 93 124	2.622 0.694 6.000 118.70 116 132	2.915 1.011 5.113 67.89 133 146	1.890 1.201 2.470 138.90 1014 1271
Factors affecting ru Station type: FVV											offis 1119 nfall 1059		ous mean

024004 Bedburn Beck at Bedburn

1994

Measuring authorit First year: 1959	ty: NRA-N	′		(Grid referer Level st	nce: 45 (N2 n. (m OD):		2				t area (sq k lax alt. (m	
Hydrometric sta	itistics fo	r 1994											
Flows Avg. (m³s⁻¹): Peak Runoff (mm) Rainfall (mm)	JAN 2.886 16.14 103 129	FEB 1.949 11.57 63 84	MAR 2.160 12.55 77 93	APR 1.532 13.44 53 83	MAY 0.568 3.11 20 38	JUN 0.264 0.41 9 32	JUL 0.174 0.30 6 37	AUG 0.175 1.70 6 88	SEP 0.461 2.50 16 99	OCT 0.835 9.00 30 75	NOV 2.015 12.01 70 93	DEC 2.561 11.72 92	Year 1.296 16.14 545
Monthly and yea	arly statis	itics for p	revious r	ecord (Oc	t 1959 to I	Dec 1993-	-incomple	ite or miss	ing month	s total 0.2		. :-	
Mean Avg, flows Low (m³s-1) High Peak flow (m³s-1) Runoff (mm) Rainfall (mm)	2.088 0.515 4.341 34.67 75 90	1.772 0.472 4.011 39.16 58 65	1.775 0.436 5.128 38.51 63 73	1.380 0.316 2.986 35.09 48 61	0.885 0.270 2.231 33.41 32 63	0.520 0.191 1.524 21.66 18 56	0.430 0.152 1.522 27.72 15 63	0.544 0.120 1,465 46.19 19 76	0.603 0.110 1.790 32.30 21 72	1.170 0.146 4.346 38.06 42 81	1.518 0.244 3.722 34.26 53 88	1.882 0.444 4.488 42.93 67 88	1.212 0.667 1.842 46.19 511 876
Factors affecting r Station type: CC	unoff: N								_		off is 1079 nfall 1149	% of previo	

024009 Wear at Chester le Street

1994

Measuring authori First year: 1977	ty: NRA-N	Y		(Grid refere Level :	nce: 45 (N stn. (m _. OD		2		Ca			n): 1008.3 OD): 747
Hydrometric sta	atistics fo	r 1994				•							
Flows Avg. (m³s-¹): Peak Runoff (mm) Rainfall (mm)	JAN 36.930 164.80 98 111	FEB 21.160 137.40 51 71	MAR 22.200 143.50 59 79	APR 16.030 89.94 41 68	MAY 6.386 18.00 17 38	JUN 4.070 5.48 10 30	JUL 4.054 7.78 11 44	AUG 4.182 12.06 11 72	SEP 5.916 18.29 15 87	OCT 8.386 73.60 22 73	NOV 20.640 99.17 53 86	DEC 32.540 165.40 86 134	Year 15.198 165.40 475 893
Monthly and ye	arly stati	stics for p	previous i	ecord (Se	p 1977 to	Dec 1993-	—incompl	ete or mis	sing monti	hs total 0.	years)		
Mean Avg. flows Low (m³s-¹) High Peak flow (m³s-¹) Runoff (mm) Rainfall (mm)	24.240 8.610 40.980 309.80 64 85	21.190 7.302 39.880 263.70 51 62	22.700 6.215 64.200 349.60 60 81	17.510 4.738 36.800 277.60 45 61	10.440 3.941 30.170 314.40 28 60	6.758 _3.447 14.650 200.60 _17 _60	5.522 2.948 14.010 226.50 15 56	6.530 3.057 19.300 354.40 17 78	6.957 3.054 23.480 203.70 18 68	11.210 4.563 27.060 273.40 30 82	16.620 4.812 35.820 254.10 43 87	24.540 12.780 50.640 353.10 65 98	14.495 8.661 19.785 354.40 454 878
Factors affecting r Station type: FV	runoff: R G	i									off is 105		ious mean

025001 Tees at Broken Scar

1994

Measuring authori First year: 1956	ty: NRA-N	Υ		(Grid refere: Level s	nce: 45 (N tn. (m OD)		7		C			m): 818.4 OD): 893
Hydrometric sta	atistics fo	r 1994											
Flows Avg. (m³a-¹): Peak Runoff (mm) Rainfall (mm)	JAN 47.930 342.80 157 186	FEB 26.490 142.80 78 84	MAR 36.850 260.50 121 152	APR 27.010 123.20 86 100	MAY 8.837 30.22 29 36	JUN 7.133 33.95 23 40	JUL 4.863 7.63 16 38	AUG 6.652 59.11 22 96	SEP 12.670 61.08 40 108	OCT 12.240 95.37 40 92	NOV 27.130 145.00 86 127	DEC 45.530 282.30 149 218	Year 21.945 342.80 846 1277
Monthly and ye									sing month	s total 0.1	years)		
Mean Avg. flows Low	29.950 2.906	24.650 2.804	23.730 5.482	18.660 2.539	10.340 2.007	6.559	6.734	9.764	11.080	17.650	22.390	29.150	17.533
(m³s-1) High	57.570	64.770	68,660	60.870	27.020	0.502 15.270	1.794 25.100	0.458 28.520	0.638 25.800	2.707 53.940	4.060 51.580	5.778 50.040	9.383 25.161
Peak flow (m ³ s ⁻¹) Runoff (mm)	590.80 98	521.10 74	679.30 78	350.90 59	311.50	191.90	380.70	709.80	331.30	525.80	416.30	565.10	709.80
Rainfall (mm)	121	89	96	39 77	34 77	21 72	22 81	32 99	35 95	58 106	71 112	95 125	676 1150
Factors affecting r Station type: CC	unoff: SRP	•									off is 125 nfall 111		ous mean

025019 Leven at Easby

Measuring authorit First year: 1971	γ: NRA-N	′		(Grid referer Level sti	nce: 45 (N) n. (m OD):		7			Catchmen: N	t area (sq l lax alt. (m	
Hydrometric sta	tistics fo	r 1994											
Flows Avg. (m³s-¹): Peak Runoff (mm) Rainfall (mm)	JAN 0.422 1.69 76 97	FEB 0.252 1.88 41 54	MAR 0.154 0.53 28 42	APR 0,128 0,48 22 41	MAY 0.143 1.81 26 63	JUN 0.072 0.12 13 29	JUL 0.054 0.18 10 45	AUG 0.054 0.32 10 59	SEP 0.088 0.48 15 99	OCT 0.120 0.57 22 81	NOV 0.153 0.47 27 58	DEC 0.222 1.06 40 112	Year 0.155 1.88 330 780
Monthly and yea	arly statis	stics for p	revious r	ecord (Ma	y 1971 to	Dec 1993)						
Mean Avg. flows Low (m³s-1) High Peak flow (m³s-1) Runoff (mm) Rainfall (mm)	0.282 0.082 0.630 3.56 51 74	0.276 0.094 0.729 4.38 46 51	0,272 0,076 0,821 5,68 49 68	0.242 0.066 0.771 9.36 42 60	0,164 0,069 0,544 7,56 30 56	0.119 0.058 0.239 1.99 21 60	0.100 0.044 0.189 3.14 18 60	0.121 0.038 0.427 15.53 22 75	0.129 0.039 0.532 16.01 23 74	0.166 0.049 0.556 6.11 30 79	0.195 0.058 0.507 5.20 34 77	0.269 0.129 0.543 7.66 49 77	0.194 0.083 0.305 16.01 414 811
Factors affecting in Station type: FV	unoff: N										noff is 809 nfall 969		

026003 Foston Beck at Foston Mill

1994

Measuring authorit First year: 1959	y: NRA-NY	′		C	Grid referer Level s	ice: 54 (T/ itn. (m OD)		8			Catchment N	t area (sq lax alt. (m	
Hydrometric sta	tistics fo	r 1994											
Flows Avg. (m³s-¹): Peak Runoff (mm) Rainfall (mm)	JAN 2.002 2.49 94 110	FEB 1.774 2.69 75 62	MAR 1.465 1.63 69 34	APR 1.096 1.36 50 51	MAY 0.788 0.98 37 43	JUN 0.581 0.69 26 17	JUL 0.461 0.62 22 52	AUG 0.363 0.41 17 40	SEP 0.327 0.42 15 99	OCT 0.287 0.35 13 54	NOV 0.254 0.32 12 50	DEC 0.274 0.72 13 95	Year 0.801 2.69 442 707
Monthly and yea	arly statis	stics for p	revious r	ecord (Oc	t 1959 to I	Dec 1993)							
Mean Avg. flows Low (m³s-¹) High Peak flow (m³s-¹) Runoff (mm) Rainfall (mm)	0.780 0.113 2.224 2.89 37 67	1.021 0.105 2.332 3.31 44 50	1.003 0.087 2.242 2.69 47 56	0.916 0.096 2.070 2.70 42 52	0.789 0.098 1.708 1.95 37 51	0.617 0.083 1.231 2.01 28 53	0.483 0.101 0.882 1.47 23 55	0.379 0.089 0.675 0.99 18 62	0.314 0.091 0.567 0.80 14 58	0.301 0.077 0.612 1.22 14 65	0.376 0.073 1.845 2.49 17 73	0.541 0.122 2.379 2.86 25 74	0.624 0.141 1.282 3.31 345 716
Factors affecting re Station type: TP	unoff: N G										off is 1289 nfall 999		ous mean

026005 Gypsey Race at Boynton

1994

Measuring authori First year: 1981	ity: NRA-N`	Y		(Grid referer Level s	nce: 54 (T/ tn. (m OD):		7		Catchment area (sq km): 240.0 Max alt. (m OD): 211						
Hydrometric sta	atistics fo	r 1994														
Flows Avg. (m³s-¹): Peak Runoff (mm) Rainfall (mm)	JAN 1.324 2,44 15 111	FEB 0.936 1.19 9 64	MAR 1,172 1,43 13 35	APR 0.627 1.02 7 52	MAY 0.321 0.43 4 40	JUN 0.171 0.27 2 21	JUL 0.058 0.12 1 58	AUG 0.006 0.04 0 45	SEP 0.005 0.03 0 100	OCT 0.005 0.01 0 58	NOV 0.008 0.03 0 51	DEC 0.017 0.06 0 96	Year 0.385 2.44 51 731			
Monthly and ye	arly statis	stics for p	revious r	ecord (Fel	b 1981 to l	Dec 1993)										
Mean Avg. flows Low (m³s-¹) High Peak flow (m³s-¹) Runoff (mm) Rainfall (mm)	0.150 0.006 0.475 0.72 2 60	0.282 0.005 0.887 1.00 3 48	0.303 0.005 0.872 1.86 3 64	0.396 0.002 1.585 1.87 4 55	0.363 0.000 1.217 1.58 4 44	0.220 0.000 0.623 0.86 2 52	0.124 0.000 0.351 0.60 1 54	0.056 0.000 0.184 0.28 1 59	0.027 0.000 0.098 0.29 0	0.014 0.000 0.055 0.14 0 64	0.014 0.000 0.033 0.10 0	0.046 0.003 0.190 0.91 1 66	0.165 0.004 0.349 1.87 22 698			
Factors affecting	runoff: G I										off is 233'		ous mean			

027007 Ure at Westwick Lock

1994

Measuring authori First year: 1958	ty: NRA-N	Y		(nce: 44 (S tn. (m OD)		1		c			m): 914.6 OD): 713
Hydrometric sta	atistics fo	r 19 9 4											
Flows Avg. (m ³ s ⁻¹): Peak Runoff (mm) Rainfall (mm)	JAN 55.110 169.60 161 170	FEB 32.460 177.10 86 89	MAR 47.850 221.10 140 164	APR 30.500 144,40 86 95	MAY 9.393 33.33 28 42	JUN 6.233 30.90 18 41	JUL 3.520 5.27 10 43	AUG 6,494 63.92 19 88	SEP 16.810 63.32 48 103	OCT 16.790 75.18 49 91	NOV 38.230 173.00 108 124	DEC 60.480 282.60 177 219	Year 26.989 282.60 931 1269
Monthly and ye	arly stati:	stics for p	previous r	ecord (Oc	t 1958 to	Dec 1993-	—incomple	ete or miss	ing month	s total 1.0	years)		
Mean Avg. flows Low (m³s-¹) High Peak flow (m³s-¹) Runoff (mm) Rainfall (mm)	34.590 4.009 59.590 537.90 101 122	30.040 3.886 84.770 625.90 80 86	27.260 8.875 60.330 413.10 80 96	20.360 5.674 40.980 263.30 58 79	12,810 3,831 31,290 248,50 38 72	8.411 3.024 21.400 161.50 24 69	7.863 2.202 20.130 153.30 23 75	11.330 1.287 31.600 271.90 33 90	13.670 1.450 33.030 296.20 39 94	21.330 5.856 68.480 266.50 62 106	28.030 7.078 65.010 288.80 79 118	34.370 11.330 59.960 320.80 101 127	20.804 12.946 27.066 625.90 718 1134
Factors affecting r Station type: B V											off is 130 nfall 112		ious mean

027025 Rother at Woodhouse Mill

1994

Measuring authori First year: 1961	ty: NRA-N	Y		•		nce: 43 (Si tn. (m OD):		7		C			m): 352.2 OD): 367
Hydrometric sta	itistics fo	r 1994											
Flows Avg. (m ³ s ⁻¹): Peak Runoff (mm) Rainfall (mm)	JAN 9.415 31.54 72 89	FEB 7.243 46.46 50 65	MAR 4.223 12.54 32 57	APR 4.107 16.46 30 51	MAY 2.850 17.40 22 59	JUN 1.561 2.48 11 14	JUL 1.856 8.20 14 40	AUG 1.352 11.36 10 50	SEP 3.857 35.62 28 143	OCT 2.433 9.82 19 53	NOV 7.934 41.13 58 95	DEC 8.426 36.35 64 103	Year 4.586 46.46 411 819
Monthly and ye	arly stati	stics for p	previous r	ecord (Oc	t 1961 to	Dec 1993-	-incomple	te or miss	ing month	s total 2.5	years)		
Mean Avg. flows Low (m³s⁻¹) High Peak flow (m³s⁻¹) Runoff (mm) Rainfall (mm)	6.798 1.287 13.000 60.30 52 71	6.508 1.424 22.440 78.80 45 56	6.019 1.500 14.330 53.21 46 64	5.018 1.400 13.160 78.14 37 62	3.513 1.257 10.110 61.40 27 59	2.915 1.166 10.840 105.40 21 65	1.964 0.934 4.907 45.63 15 55	1.944 0.760 3.323 33.55 15 60	2.185 0.712 7.786 45.59 16 62	2.949 0.693 7.600 41.74 22 65	4.463 1.023 8.200 50.55 33 73	6.537 2.393 18.140 91.46 50 78	4.224 2.540 6.364 105.40 378 770
Factors affecting (Station type: VA	unoff: SRF	PGEI									off is 109 nfall 106		ious mean

027042 Dove at Kirkby Mills

1994

Measuring authorit First year: 1972	y: NRA-N\	•		(Grid referer Level st	nce: 44 (SI tn. (m OD):		5			Catchment M	t area (sq l lax alt. (m	
Hydrometric sta	tistics fo	г 1994											
Flows Avg. (m³s-¹): Peak Runoff (mm) Rainfall (mm) Monthly and yea	JAN 2.909 26.22 132 118 arly statis	FEB 1,779 12,55 73 81 stics for p	MAR 1.083 3.55 49 50	APR 0.947 4.89 41 53 acord (Fel	MAY 0.531 2.63 24 43 5 1972 to I	JUN 0.336 0.64 15 34 Dec 1993)	JUL 0.252 1.50 11 63	AUG 0.239 1.47 11 60	SEP 0.522 2.97 23 109	OCT 0.902 4.28 41 82	NOV 1.307 3.65 57 77	DEC 1.468 7.14 66 106	Year 1.019 26.22 543 876
Mean Avg. flows Low (m³s-¹) High Peak flow (m³s-¹) Runoff (mm) Rainfall (mm) Factors affecting m Station type: FV	1.593 0.589 2.861 37.45 72 90 unoff: N	1.554 0.541 3.180 41.51 64 61	1.583 0.347 4.701 40.93 72 84	1.217 0.376 2.915 27.63 53 64	0.780 0.329 1.702 30.01 35 61	0.591 0.257 1.099 7.43 26 63	0.483 0.211 1.021 19.33 22 66	0.535 0.161 1.397 32.36 24 76	0.695 0.170 2.743 56.38 30 84		1.180 0.499 2.032 49.59 52 87 Inoff is 95		1.067 0.576 1.554 56.38 569 919 ous mean

027047 Snaizeholme Beck at Low Houses

1994

Measuring authori First year: 1972	ty: NRA-N1	1		C		nce: 34 (St n. (m OD):		3			Catchmen N		km): 10.2 OD): 668
Hydrometric sta	itistics fo	r 1994											
Flows Avg. {m ³ s ⁻¹ }: Peak Bunoff (mm) Rainfall (mm)	JAN 1.366 12.40 359 294	FEB 0.562 7.88 133 96	MAR 1.428 13.45 375 387	APR 0.720 9.98 183 149	MAY 0.122 2.33 32 43	JUN 0.169 3.31 43 105	JUL 0.031 0.15 8 49	AUG 0.289 6.87 76 155	SEP 0.434 4.60 110 131	OCT 0.443 5.44 116 136	NOV 0.927 14.55 236 218	DEC 1.418 14.01 372 379	Year 0.661 14.55 2044 2142
Monthly and yea	erly statis	itics for p	revious r	ecord (Jar	1973 to [Dec 1993-	-incomple	ite or miss	ing month	s total 1.0	years)		
Mean Avg. flows Low (m³s-¹) High Peak flow (m³s-¹) Runoff (mm) Rainfall (mm)	0.934 0.428 1.498 14.82 245 201	0.726 0.110 1.774 15.46 174 136	0.712 0.186 1.689 14.45 187 163	0.369 0.047 0.700 12.66 94 89	0.258 0.024 0.758 14.67 68 88	0.199 0.025 0.510 11.58 50 88	0.231 0.021 0.798 10.47 61 107	0.346 0.029 0.738 14.90 91 142	0.520 0.076 0.995 15.74 132 159	0.684 0.220 1.124 12.22 180 174	0.840 0.226 1.365 16.10 213 201	1.009 0.376 1.611 14.85 265 228	0.569 0.425 0.644 16.10 1759 1776
Factors affecting r Station type: FV	unoff: N										off is 116° nfall 121°		ous mean

027050 Esk at Sleights

1994

Measuring authori First year: 1970	ty: NRA-N	Y		(nce: 45 (N. stn. (m OD		1		c			m): 308.0 OD): 435
Hydrometric str	atistics fo	r 1994											
Flows Avg. (m³s=¹): Peak Runoff (mm) Rainfell (mm)	JAN 15.910 90.13 138 121	FEB 9.424 116.90 74 77	MAR 3.317 18.17 29 49	APR 3.752 21.08 32 49	MAY 2.934 29.29 26 59	JUN 1.260 2.81 11 29	JUL 0.905 2.10 8 55	AUG 0.824 1.31 7 55	SEP 2.487 20.31 21 108	OCT 3.326 20.38 29 74	NOV 5.210 19.75 44 67	DEC 8.057 43.89 70 118	Year 4.763 116.90 488 861
Monthly and ye	arly stati:	stics for p	revious r	ecord (Oc	t 1970 to	Dec 1993-	incomple	ete or miss	ing month	s total 1.6	years)		
Mean Avg. flows Low (m³s-¹) High Peak flow (m³s-¹) Runoff (mm) Rainfall (mm)* *(1980-1993)	7.839 1.823 13,110 159.30 68 71	6.935 1.917 21.220 198.10 55 59	7.243 1,497 30.470 358.70 63 79	5.195 1.041 19.380 191.70 44 65	3.163 1.004 9.565 144.00 28 45	2.085 0.749 5.231 106.80 18 72	1,833 0,453 6,585 165,70 16 64	2.570 0.268 8.767 276.00 22 87	2.591 0.446 19.130 347.90 22 69	4.165 0.675 16.150 156.80 36 104	6.147 1.794 14.760 243.00 52 85	8.673 2.539 18.770 350.10 75 85	4.864 2.228 7.574 358.70 499 885
Factors affecting (Station type: B V)											noff is 98 nfall 97		ious mean

027053 Nidd at Birstwith

1994

Measuring authorit First year: 1975	ty: NRA-NY	′		(Grid referer Level st	nce: 44 (Si tn. (m OD):		3		C			m): 217.6 OD): 705
Hydrometric sta	itistics fo	r 1994											
Flows Avg. (m³s-¹): Peak Runoff (mm) Rainfall (mm)	JAN 12.840 43.95 158 168	FEB 6.606 37.30 73 107	MAR 9.864 95.02 121 160	APR 5.714 33.28 68 106	MAY 1.496 3.12 18 50	JUN 1,080 1,51 13 44	JUL 0.948 2.66 12 57	AUG 0.889 4.29 11 95	SEP 1,491 8,17 18 122	OCT 2.984 14.16 37 106	NOV 9,413 39,49 112 144	DEC 12.890 77.13 159 220	Year 5.521 95.02 800 1379
Monthly and yea	erly statis	stics for p	revious r	ecord (Ap	r 1975 to [Dec 1993~	incomple	te or miss	sing month	s total 0.1	years)		
Mean Avg. flows Low (m³s-¹) High Peak flow (m³s-¹) Runoff (mm) Rainfall (mm)* '(1976-1993)	9.931 3.073 16.110 204.40 122 144	8.059 2.591 18.220 282.80 91 98	7.582 1.159 21.140 203.40 93 123	4,343 1,363 12,770 154,70 52 80	2.762 0.837 7.061 96.48 34 77	1.681 0.771 3.131 38.77 20 76	1.224 0.808 2.164 29.50 15 65	1.780 0.531 5.690 67.77 22 101	2.530 0.523 11.310 221.10 30 110	4,451 0,743 15,120 113,60 55 129	6.414 1.893 12.830 83.49 76 126	9.836 3.612 20.280 196.00 121 157	5.041 3.642 7.148 282.80 731 1286

Factors affecting runoff: SRP Station type: VA

1994 runoff is 109% of previous mean rainfall 107%

027071 Swale at Crakehill

1994

Measuring authority: NRA First year: 1980	-NY		(Grid refere Level s	nce: 44 (Si tn. (m OD)		4		Ca			i): 1363.0 OD): 713
Hydrometric statistics	for 1994											
JAN Flows Avg 56.7 (m³s-¹); Peak 151.8 Runoff (mm) 111 Rainfall (mm) 120	0 162.90 58 69	MAR 36.800 150.80 72 84	APR 21.870 82.69 42 63	MAY 9.209 31,49 18 33	JUN 5.622 11.64 11 30	JUL 3.484 4.80 7 43	AUG 4,439 22.09 9 71	SEP 12.500 45.05 24 92	OCT 13.880 79.29 27 81	NOV 31.950 115.60 61 89	DEC 54.920 195.40 108 144	Year 23.650 195.40 547 919
Monthly and yearly st	atistics for	previous i	ecord (No	v 1955 to	Dec 1993-	—incompl	ete or mis:	sing montl	ns total 0.2	2 years)		
Mean Avg. 33.02 flows Low 6.98 (m³s-1) High 56.86 Peak flow (m³s-1) 65 Runoff (mm) 85 Factors affecting runoff: Station type: C VA	6 5.465 0 64.050 0 225.50 51 61	25.970 7.465 71.680 255.70 51 66	19.510 7.120 46.690 183.30 37 58	13.210 4.585 32.370 194.30 26 57	9.280 3.739 23.110 129.80 18 61	8.405 2.712 21.790 136.50 17 66	11.760 1.959 50.310 199.80 23 83	11.850 2.082 33.140 194.70 23 72		23,310 7,131 52,200 197,90 44 79 loff is 122 nfall 108		19.430 11.155 26.048 255.70 450 850 ious mean

028015 Idle at Mattersey

1994

Measuring authorit First year: 1961	γ; NRA-ST	•		C	Grid referen Level s	ice: 43 (Sl tn. (m OD)		5		С	atchment : V	area (sq kı lax alt. (m	
Hydrometric sta	tistics fo	r 1994											
Flows Avg. (m³s-¹): Peak Runoff (mm) Rainfall (mm) Monthly and yea	JAN 5.521 9.56 28 69	FEB 4,352 10.61 20 51	MAR 3.552 6.67 18 42	APR 2.745 4.39 13 37 acord (Jui	MAY 2,412 5,62 12 59 1 1965 to I	JUN 1.526 2.30 7 12 Dec 1993-	JUL 1.007 1.82 5 47	AUG 1.154 2.03 6 51	SEP 2.645 8.41 13 129 ing month	OCT 2.129 3.80 11 48 s total 12.	NOV 3.307 6.68 16 68 3 years)	DEC 3.819 8.55 19 80	Year 2.838 10.61 169 693
Mean Avg. flows Low (m³s⁻¹) High Peak flow (m³s⁻¹) Runoff, (mm) Rainfall (mm) Factors affecting in Station type: EM	4.215 1.851 6.417 13.31 21 58	4.360 1.590 8.714 15.12 20 39	4.016 1.689 7.853 14.89 20 54	3.960 1.476 6.351 15.01 19 58	3.223 0.587 6.624 15.16 16 62	2.797 0.324 5.423 18.52 14 56	2.271 1.072 6.123 10.28 11 49	2 197 0.808 5.805 11.30 11 53	2.291 0.990 4.692 6.17 11 51	2.606 1.452 4.209 11.33 13 58 1994 ru	2.870 1.896 5.257 13.77 14 63 noff is 88		3.222 1.620 5.180 18.52 192 662 ous mean

028018 Dove at Marston on Dove

1994

Measuring authori First year: 1961	ty: NRA-S	Т		(Grid refere Level s	nce: 43 (S tn. (m OD)		8		c			m): 883.2 OD): 555
Hydrometric sta	atistics fo	г 1994											
Flows Avg. (m³s-1): Peak Runoff (mm) Rainfall (mm)	JAN 36.200 92.08 110 134	FEB 22.980 77.18 63 76	MAR 22,410 74,61 68 110	APR 24.420 76.09 72 78	MAY 8.166 10.85 25 37	JUN 5.450 6.60 16 43	JUL 4.239 8.02 13 68	AUG 4.189 8.35 13 52	SEP 9.931 70.41 29 137	OCT 12.900 44,18 39 96	NOV 22.830 86.95 67 93	DEC 27.890 160.90 85 136	Year 16.762 160.90 599 1060
Monthly and ye	arly stati:	stics for p	previous r	ecord (Oc	t 1961 to	Dec 1993)							
Mean Avg. flows Low {m³s⁻¹} High Peak flow (m³s⁻¹) Runoff (mm) Rainfall (mm)	22.510 7.822 34.470 202.30 68 90	19.570 4.615 59.880 215.20 54 65	17.740 5.959 38.890 122.60 54 , 76	14.550 -6.130 26.040 118.10 43 67	11.160 4.755 22.480 120.90 34 70	8.716 3.380 16.610 87.25 26 76	7.182 2.377 15.530 77.10 22 67	7.326 1.873 14.630 113.80 22 79	7.913 2.705 29.350 113.90 23 78	10.770 3.110 23.490 132,10 33 82	16.500 5.622 31.070 130.80 48 93	22.300 7.907 56.460 226.50 68 98	13.831 7.732 19.411 226.50 494 941
Factors affecting r Station type: FVV		℃	1								off is 121 nfall 113		ious mean

Comment: Reprocessing of post-1973 flow data has resulted in changes to previously published monthly and yearly statistics.

028024	Wreake	at Syston	Mill
--------	--------	-----------	------

1994

Measuring author First year: 1967		т		(Grid referen Level s	nce: 43 (Si tn. (m OD):		4		C		area (sq kı flax alt. (m	
Hydrometric s	itatistics fo	or 1994											
Flows Avg (m³s ⁻¹): Peal Runoff (mm) Rainfall (mm)		FEB 7.196 44.56 42 57	MAR 4.495 36.00 29 67	APR 4.401 17.13 28 49	MAY 1.377 6.05 9 51	JUN - 0.632 0.98 4 13	JUL 0.566 2.63 4 60	AUG 0,494 1,68 3 50	SEP 2.227 14.47 14 116	OCT 1.381 7.33 9 ⁻ 49	NOV 4.806 24.31 30 56	DEC 6.995 30.90 45 74	Year 3.614 44.56 275 705
Monthly and	early stati	istics for p	previous r	ecord (Au	g 19 67 to	Dec 1993-	—incompl	ete or miss	ing mont	ıs total 1.6	years)		
'Mean Avg flows Low (m³s-1) High Peak flow (m³s-1 Runoff (mm) Rainfall (mm)* *(1971-1993)	0.959 10.150	5.634 0.619 21.740 73.37 33 43	4.527 0.494 12.630 99.82 29 51	3.392 0.368 8.772 97.07 21 48	2.009 0.286 8.117 51.83 13 49	1.210 0.222 2.918 39.17 8 61	0.983 0.138 4.547 26.88 6 51	0.821 0.122 3.230 30.44 5 57	0.969 0.254 5.367 32.52 6 55	1.656 0.264 6.897 32.41 11 54	2.639 0.418 7.618 50.25 17 52	4.591 0.745 11.910 52.95 30 58	2.822 0.923 4.396 99.82 215 633

Factors affecting runoff: GE Station type: EM

1994 runoff is 128% of previous mean rainfall 111%

028026 Anker at Polesworth

1994

Measuring authorit First year: 1966	ty: NRA-S	г		(Grid referer Level st	nce: 43 (SI tn. (m OD):		4		c	atchment N	area (sq kı lax alt. (m	
Hydrometric sta	tistics fo	r 1994											
Flows Avg. (m ³ s ⁻¹): Peak Runoff (mm) Reinfall (mm)	JAN 7.551 27.04 55 67	FEB 5.860 28.15 39 56	MAR 4.343 17.28 32 67	APR 4,531 19,12 32 51	MAY 2.400 8.79 17 61	JUN 1.387 2.92 10 17	JUI. 1.204 4.20 9 42	AUG 1.269 3.67 9 55	SEP 2.967 20.01 21 109	OCT 1.962 5.73 14 53	NOV 5.118 24.25 36 67	DEC 6.788 25.44 49- 86	Year 3.768 28.15 323 731
Monthly and yes	arly stati:	stics for p	revious r	ecord (Oc	t 1966 to I	Dec 1993-	incomple	ite or miss	ing month	s total 2.7	vears).		177
Mean Avg. flows Low (m³s-¹) High Peak flow (m³s-¹) flunoff (mm) Rainfall (mm)* *(1971-1993)	5.261 1.298 9.572 75.63 38 58	5.098 0.953 16.200 73.18 34 48	4.024 0.650 9.233 56.09 29 52	2.893 0.657 8.629 45.84 20 47	2.228 0.686 8.389 59.77 16 50	1.862 0.484 4.650 52.68 13 62	1.368 0.343 5.580 59.34 10 51	1.347 0.405 4.173 45.03 10 56	1.385 0.711 3.363 37.59 10 60	2.176 0.728 8.109 42.46 16 58	2.837 0.855 7.309 68.52 20 54	4.432 1.175 9.473 74.01 32 62	2.900 1.213 4.114 75.63 249 658
Factors affecting in Station type: C VA											off is 130 ainfall 111	% of previ	

028031 Manifold at Ilam

Measuring au First year: 19		ST		(Grid referer Level st	nce: 43 (SI n. (m OD):		7		78 107 121 115 105 148 hths total 0.1 years) 2.988 4.858 5.615 0.716 1.555 2.135 6.697 8.198 10.450 75.78 91.81 180.50 54 85 101			
Hydrometric	statistics f	or 1994											
	JAN vg. 8,858 sak 41,41 160 153	FEB 5.289 25.81 86 87	MAR 5.798 33.83 105 129	APR 6.025 33.78 105 95	MAY 1.453 2.14 26 37	JUN 1.084 14.84 19 61	JUL 0.848 3.75 15 75	AUG 0.729 1.45 13 56	SEP 3.092 39.92 54 149	4.332 22.95 78	NOV 6.133 30.02 107	DEC 6.727 42.11 121	Year 4.190 42.11 890 1210
Monthly and	d yearly stat	istics for p	revious r	ecord (Ma	y 1968 to	Dec 1993	—incomp	ete or mis	sing mont	hs total O.	1 years)	•	
Mean A	vg. 6.010 ow 2.561 gh 8.522	4.916 2.039 12.710 74.53 81 80	4.826 1.065 9.455 66.72 87 93	3.659 1.277 6.200 47.36 64 75	2.306 0.812 5.713 52.40 42 71	1.883 0.745 5.151 39.58 33 82	1.491 0.493 3.505 37.29 27 73	1.757 0.386 4.560 137.00 32 80	1,772 0,458 4,147 45,69 31 83	2.988 0.716 6.697 75.78 54	4.858 1.555 8.198 91.61 85	2.135 10.450 160.50 101	3:501 2:241 4:806 160:50 744 : 1082
Factors affect	ing rupoff: P f	=								1994 aus	off in 120	of provi	

Factors affecting runoff: P E Station type: C

1994 runoff is 120% of previous mean rainfall 112% . ** !

028039 Rea at Calthorpe Park

1994

Measuring authori First year: 1967	ty: NRA-S1	Γ		•	Grid referer Level st	nce: 42 (SI n. (m OD):		7			Catchmen N	t area (sq. fax alt. (m	
Hydrometric sta	tistics fo	r 1994											
Flows Avg. (m³s-¹): Peak Runoff (mm) Rainfall (mm) Monthly and ye	JAN 1.245 11.75 45 86 arly statis	FEB 1.126 10.28 37 71	MAR 0.850 16.69 31 77	APR 0.921 9.12 32 61 acord (Ma	MAY 0.471 4.88 17 51	JUN 0.360 7.55 13 22	JUL 0.349 6.71 13 31	AUG 0.334 7.68 12 47	SEP 1.254 31.93 44 146	OCT 0.495 5.66 18 58	NOV -0.961 11.33 34 73	DEC 1.392 21.46 50 116	Year 0.810 31.93 345 839
Mean Avg. flows Low (m³s-1) High Peak flow (m³s-1) Runoff (mm) Rainfall (mm) *(1968-1993)	1.183 0.481 1.950 36.71 43 77	1.010 0.433 2.610 27.44 33 56	0.975 0.375 2.101 28.64 35 64	0.796 0.316 1.489 25.15 28 58	0.715 0.318 1.780 30.37 26 64	0.658 0.287 1.324 37.44 23 64	0.543 0.257 0.995 46.86 20 59	0.624 0.286 1.366 46.38 23 71	0.599 0.295 1.423 40.85 21 66	0.681 0.320 1.408 24.68 25 65	0.868 0.493 1.753 24.97 30 72	1.097 0.378 1.934 54.02 40 77	0.812 0.602 1.058 54.02 346 793

Factors affecting runoff: E Station type: C B

1994 runoff is 100% of previous mean rainfall 106%

028052 Sow at Great Bridgford

Measuring authorit First year: 1971	y: NRA-ST	Ī		(Grid referei Level s	nce: 33 (S. tn. (m OD):)		C	atchment N		m): 163.0 OD): 168
Hydrometric sta	tistics fo	r 1994											•
Flows Avg. (m³s-1): Peak Runoff (mm) Rainfall (mm) Monthly and yea	JAN 2.587 8.67 43 83 arly statis	FEB 1.809 5.58 27 56 stics for p	MAR 1.627 5.42 27 81 previous r	APR 1,719 4,76 27 55 ecord (Jui	MAY 0.772 1.05 13 34 1 1971 to I	JUN 0.553 0.68 9 21 Dec 1993	JUL 0.432 1.15 7 50 —incomple	AUG 0.463 1.32 8 45	SEP 0.608 2.88 10 115 ing month	OCT 0.559 1.02 9 65	NOV 1.122 3.59 18 65	DEC 2,136 9,82 35 109	Year 1.196 9.82 231 779
Mean Avg. flows Low (m³s-¹) High Peak flow (m³s-¹) Runoff (mm) Rainfall (mm) Factors affecting in Station type: FVV	1.819 0.753 2.715 11.07 30 69 unoff: GE	1.785 0.625 4.607 18.82 27 54	1.557 0.659 3.448 9.21 26 61	1,198 0,520 2,258 9,86 19 47	0.875 0.474 1.925 18.05 14 58	0.775 0.315 1.426 9.78 12 64	0.587 0.174 1.388 10.89 10 56	0.720 0.138 3.047 15.11 12 61	0.543 0.277 0.818 3.51 9	0.813 0.317 1.731 10.21 13 66 1994 run	1.083 0.379 2.461 9.51 17 71 off is 1079		1.114 0.711 1.593 18.82 216 749 ous mean

028067 Derwent at Church Wilne

1994

Measuring authori First year: 1973	ty: NRA-S	r		(Grid refere Level s	nce: 43 (SI tn. (m OD)		6		Ca	tchment a N		i); 1177.5 OD): 636
Hydrometric sta	atistics fo	r 1994											
Flows Avg. (m³s-¹): Peak Runoff (mm) Reinfall (mm) Monthly and ye	JAN 51,170 96.68 116 141	FEB 30.690 73.69 63 75	MAR 29.400 63.83 67 109	APR 31.270 71.69 69 79	MAY 12.190 30.36 28 51	JUN 7.735 12.99 17 41 Dec 1993	JUL 6,292 15,26 14 51	AUG 6.093 10.51 14 53	SEP 11.230 61.95 25 144	OCT 12.390 30.77 28 95	NOV 33.080 80.78 73 111	DEC 33.390 108.00 76 137	Year 22.020 108.00 590 1087
Mean' Avg. flows Low (m³s-¹) High Peak flow (m³s-¹) Runoff (mm) Rainfall (mm) Factors affecting i Station type: FV	32.780 13.270 52.530 194.10 75 107	30.080 10.020 81.270 215.70 62 74	27.720 8.793 59.290 173.60 63 88	21.300 7.891 40.240 158.40 47 66	13.630 6.652 28.060 142.20 31 62	11.270 5.411 23.060 118.70 25 77	8.755 4.445 22.050 156.20 20 64	8.131 3.965 16.600 153.60 18 75	8.629 4.429 17.130 71.96 19 81		19.010 5.152 35.860 94.66 42 93 off is 118 nfall 109		18.666 10.267 25.542 215.70 500 996 ious mean

028082 Soar at Littlethorpe

1994

Measuring authorit First year: 1971	JAN FEB MAR 1.762 1.				Grid referer Level st	nce: 42 (Si :n. (m OD):		3		С	atchment V	area (sq. kr lax alt. (m	
Hydrometric sta	tistics fo	r 1 9 94											
	3.355 17.25	2.576 14.35	1.762 8.80	APR 2.156 12.04 30	MAY 0.937 3.84 14	JUN 0.495 1.22 7	JUL 0.413 2.76 6	AUG 0.419 1.57 6	SEP 0.978 8.32 14	OCT 0.681 3.33 10	NOV 2.237 13.66 32	DEC 2.922 9.78 43	Year 1.571 17.25 269
Rainfall (mm)				50	61	19	50	56	105	47	64	77	721
Monthly and yea	arly statis	stics for p	revious r	ecord (Au	g 1971 to	Dec 1993-	—incomple	ete or miss	ing month	s total 0.2	years)		
flows Low	0.713 4.661 23.49	0.568 6.868 24,47	2.140 0.424 5.031 20.78 31 50	1.525 0.346 3.105 21.18 21 46	0.990 0.350 2.654 14.93 14 50	0.930 0.245 2.346 15.78 13 64	0.531 0.164 1.447 13.71 8 51	0.637 0.225 2.242 20.41 9 58	0.585 0.167 1.771 15.94 8 55	1.017 0.338 3.434 20.60 15 57	1.368 0.398 3.279 18.87 19 54	2.374 0.553 5.101 22.46 35 63	1.430 0.644 2.133 24.47 245 648

Factors affecting runoff: E Station type: EM

1994 runoff is 110% of previous mean rainfall 111%

029003 Lud at Louth

Measuring authorit First year: 1968	y: NRA-A			(nce: 53 (TI tn. (m OD):		•		i	Catchment V	area (sq i lax alt. (m	
Hydrometric sta	tistics fo	г 1994											
Flows Avg. (m ³ s ⁻¹): Peak Runoff (mm) Rainfall (mm)	JAN 1.516 3.61 74 102	FEB 1.107 2.61 49 63	MAR 0.871 1.31 42 64	APR 0.766 1.54 .36 50	MAY 0.614 1.95 -30 -72	JUN 0.454 0.74 (21 22	JUL 0.368 1.91 ₁₈ 53	AUG 0.275 0.78 	SEP 0.288 1.83 ,14 132	OCT 0.259 1.08 .13 61	NOV 0.298 0.62 14 42	DEC 0.480 2.07 23 81	Year 0.606 3.61 346 791
Monthly and yea	arly statis	itics for p	revious r	ecord (Au	g 1968 to	Dec 1993)				•			
Mean Avg. flows Low (m³s-¹) High Peak flow (m³s-¹) flunoff (mm) flainfall (mm)	0.586 0.139 1.279 3.70 28 65	0.726 0.157 1.428 3.81 32 46	0.691 0.162 1.338 -3.58 34 60	0.643 0.150 1.289 5.06 30 52	0.524 0.156 1.177 - 3.51 25 50	0.410 0.131 0.687 3.27 19 57	0.316 0.112 0.507 . 3.93 15 53	0.264 0.097 0.414 - 3.10 13 59	0.231 0.108 0.625 .3.30 11 57	0.255 0.093 0.719 .,5.39 12 58	0.312 0.088 1.158 6.77 15 67	0.417 0.090 0.980 -3.10 20 64	0.446 0.145 0.703 6.77 255 688
Factors affecting re Station type: C	unoff: G										off is 136 nfall 115		ous mean

030004	Pa	rtne	y Ly	mm	at P	artn	ey l	Mill				1	994	
Measuring authorit First year: 1962	y: NRA-A			C		nce: 53 (TI tn. (m OD):		5			Catchment N		km): 61.6 OD): 142	
Hydrometric sta	tistics fo	r 1994												
Flows Avg. (m ³ s ⁻¹): Peak Runoff (mm) Rainfall (mm)	JAN 1.472 7.58 64 102	FEB 0.858 4.07 34 50	MAR 0.610 1.57 27 60	APR 0.643 2.38 27 47	MAY 0.315 0.88 14 48	JUN 0.196 0.31 8 19	JUL 0.220 0.80 10 65	AUG 0.129 0.44 6 41	SEP 0.401 3.80 17 117	01 0.357 0.495 0.671 30 1.04 2.78 2.94 7 16 21 29 7 58 42 68				
Monthly and yea	arly statis	stics for p	revious r	ecord (Fel	1963 to I	Dec 1993-	-incomple	te or miss	ing montf	s total 0.2	years)			
Mean Avg. flows Low (m³s-1) High Peak flow (m³s-1) Runoff (mm) Reinfall (mm)	0.803 0.351 1.574 10.01 35 60	0.725 0.264 1.838 12.59 29 46	0.675 0.276 1.538 7.71 29 58	0.591 0.220 1.518 13.34 25 53	0.428 0.169 0.886 11.30 19 54	0.309 0.116 0.691 8.13 13 58	0.260 0.088 0.863 13.38 11	0.266 0.083 0.593 7.06 12 62	0.281 0.119 0.917 6.64 12 55	0.407 0.134 1.144 10.46 18 56	0.547 0.190 1.112 10.17 23 69	0.715 0.210 1.804 8.48 31 63	0.500 0.224 0.754 13.38 256 688	
Factors affecting r Station type: C	unoff: P I										off is 106' nfall 104'		ous mean	

Stainfield Beck at Stainfield 030012

1994

Measuring authorit First year: 1970	y: NRA-A			(Grid referer Level s	nce: 53 (Ti itn. (m OD)		9			Catchment IV	t area (sq.) lax alt. (m	
Hydrometric sta	tistics fo	r 1994											
Flows Avg. (m ³ s ⁻¹): Peak Runoff (mm) Rainfall (mm)	JAN 0.985 71 87	FEB 0.593 5.94 38 51	MAR 0.296 1.57 21 57	APR 0.310 1.56 21 40	MAY 0.176 2.19 13 59	JUN 0.063 0.12 4 16	JUL 0.028 0.14 2 50	AUG 0.020 0.21 1 53	SEP 0.338 6.71 23 116	OCT 0.159 0.71 11 55	NOV 0.288 1.50 20 41	DEC 0.555 8.19 40 69	Year 0.316 267 694
Monthly and yea	rly statis	itics for p	sevious r	ecord (De	c 1970 to i	Dec 1993-	—incomple	ete or miss	ing month	s total 0.8	years)		
Mean Avg. flows Low (m ³ s ⁻¹) High Peak flow (m ³ s ⁻¹) Runoff (mm) Rainfall (mm)	0.539 0.093 1.050 21.53 39 59	0.519 0.114 1.521 11.04 34 42	0.448 0.078 1.078 10.00 32 56	0.275 0.050 0.838 12.42 19 46	0.164 0.032 0.496 8.58 12 47	0.083 0.019 0.202 4.23 6 52	0.069 0.006 0.524 17.57 5 48	0.044 0.004 0.161 5.91 3 54	0.072 0.007 0.599 3.93 5 52	0.134 0.009 0.780 12.33 10 54	0.227 0.017 0.729 7.42 16 56	0.414 0.024 1.084 7.83 30 58	0.248 0.061 0.414 21.53 209 624
Factors affecting re Station type: CC	unoff: N										off is 127 nfall 111		ous mean

Comment: January 1994 contains estimated daily flows.

031002 Glen at Kates Br and King St Br

1994

Measurin First year		ty: NRA-A			(Grid referer Level s	nce: 53 (TI stn. (m OD)		9		C	m): 341.9 OD): 129		
Hydrom	etric sta	tistics fo	r 1994											
Flows (m ³ s ⁻¹) Runoff (m Rainfall (m	m)	JAN 4.705 16.55 37 67	FEB 3.419 24 54	MAR 2,260 5,40 18 56	APR 2.514 7.06 19 53	MAY 1.104 1.59 9 41	JUN 0.498 1.02 4 12	JUL 0.217 0.47 2 56	AUG 0.186 0.59 1 48	SEP ' 0.282 2.62 2 105	OCT 0.251 2.54 2 57	NOV 1.413 8.16 11 50	DEC 2.001 8.39 16 62	Year 1.560 144 661
Monthly	and yea	arly statis	stics for p	revious r	ecord (Oc	t 1960 to 0	Dec 1993-	-incomple	ete or miss	ing month	s total 0.7	years)		
Mean flows (m³s-1) Peak flow Runoff (m Rainfall (m	Avg. Low High (m³s ⁻¹) m)	1.950 0.093 6.351 16.00 15 52	2.276 0.048 10.110 15.32 16 40	2.150 0.033 6.317 10.32 17 47	1.785 0.018 4.903 12.48 14 52	1,344 0,008 5,060 9,85 11 50	0.727 0.004 2.182 1.64 6 53	0.402 0.000 1.465 0.83 3 50	0.339 0.001 1.615 3.50 3	0.331 0.008 1.873 16.13 3 55	0.535 0.019 2.810 12.57 4 51	0.893 0.017 5.552 17.60 7 56	1.523 0.026 7.868 14.89 12 55	1.183 0.154 2.333 17.60 109 622
Factors a Station ty												off is 132° nfall 106°		ious mean

Comment: February 1994 contains estimated daily flows.

031010 Chater at Fosters Bridge

1994

							•					_	774
Measuring authorit First year: 1968	y: NRA-A			•		nce: 43 (S tn. (m OD)	K) 961 03 : 38.40	0			Catchmen V	t area (sq l lax alt. (m	
Hydrometric sta	tistics fo	r 1994											
Flows Avg. (m³s-¹): Peak Runoff (mm) . Rainfall (mm)	JAN 1.487 9.76 58 66	FEB 1.338 9.26 47 61	MAR 0.879 5.20 34 73	APR 0.938 4.76 35 60	MAY 0.354 1.28 .14 52	JUN 0.178 0.27 1.7 17	JUL 0.140 0.87 5.5 62	AUG 0.123 0.26 55	SEP 0,458 4,15 17 122	OCT 0.563 3.18 22 50	NOV 1,156 5,11 44 54	DEC 1.077 3.16 42 (*)	Year 0.720 9.76 329 *** 732
Monthly and yea	arly statis	stics for p	revious r	ecord (Fel	b 1968 to	Dec 1993)							
Mean Avg. flows Low (m³s-¹) High Peak flow (m³s-¹) Runoff (mm) Rainfall (mm)	0.936 0.147 1.724 16.19 36 59	0.909 0.106 3.094 16.06 32 43	0.800 0.090 1.677 15.77 31 52	0.628 0.065 1.670 15.07 24 52	0.420 0.051 1.471 16.44 16 52	0.291 0.033 0.717 11.78 11 60	0.195 0.024 0.867 20.64 8 56	0.180 0.044 0.818 20.76 7 63	0.205 0.061 0.997 15.04 8 55	0.351 0.048 1.188 9.04 14 53	0.469 0.073 1.343 12.48 18 59	0.772 0.098 1.891 14.69 30 58	0.511 0.198 0.828 20.76 234 662
Factors affecting ru Station type: CC	unoff: N										offis 141° nfall 111°		ous mean

032003 Harpers Brook at Old Mill Bridge

Measuring authorit First year: 1938	y: NRA-A			(Grid referer Level st	nce: 42 (Si tn. (m OD)		€			Catchmen N		km): 74.3 OD): 146
Hydrometric sta	tistics fo	r 1994											
Flows Avg, (m³s-¹): Peak Runoff (mm) Reinfall (mm)	JAN 1.394 13.00 50 63	FEB 0.999 6.71 33 55	MAR 0.500 2.57 18 56	APR 0.701 4.58 24 57	MAY 0.273 1.60 10 53	JUN 0.153 0.53 5 21	JUL 0.119 0.64 4 40	AUG 0.109 0.44 4 41	SEP 0.451 5.04 16 146	OCT 0.325 4.49 12 59	NOV 0.606 4.37 21 42	DEC 0.866 4.30 31 64	Year 0.538 13.00 229 697
Monthly and yea	arly statis	stics for p	revious r	ecord (De	c 1938 to I	Dec 1993-	—incomple	ete or miss	ing month	s total Q.7	years)		
Mean Avg. flows Low (m³s-¹) High Peak flow (m³s-¹) Runoff (mm) Rainfall (mm)	0.771 0.097 2.766 16.06 28 58	0.780 0.080 2.485 18.58 26 41	0.685 0.076 2.363 17.01 25 48	0.485 0.066 1.334 22.00 17 45	0.298 0.056 1.246 18.65 11 50	0.204 0.049 0.616 11.44 7 53	0.146 0.052 0.685 12.49 5 53	0.154 0.048 0.791 20.50 6 62	0.141 0.049 1.147 6.80 5	0.235 0.057 1.176 16.58 8 54	0.437 0.069 1.688 13.47 15 61	0.604 0.077 1.762 17.90 22 57	0.410 0.159 0.676 22.00 174 633
Factors affecting r Station type: CC	unoff: N						_	_			off is 131'	% of previ	

Wissey at Northwold

1994

Measuring authorit First year: 1956	у. ипм-м			•	Grid referer Level s	tn. (m OD)		•		·	atchment a	Max alt. (n	
Hydrometric sta	tistics fo	r 1994											
Flows Avg.	JAN 3.997	FEB 3.424	MAR 3.579	APR 3.515	MAY 2.649	JUN 1.559	JUL 0.881	AUG 0.642	SEP 0.966	O€T 1.059	NOV 1.719	DEC 1.872	Year 2.147
(m³s ⁻¹): Peak Runoff (mm) Rainfall (mm)	5.67 39 72	4.09 30 44	4.35 35 78	4.75 33 54	26 54	2.05 15 28	1.50 9 30	1.09 6 86	1.95 9 83	2.59 10 89	3,13 16 21	3.26 18 50	247 689
Monthly and yea	arly statis	stics for p	revious r	ecord (Ma	ır 1956 to l	Dec 1993)							
Mean Avg. flows Low (m³s-¹) High Peak flow (m³s-¹) Runoff (mm) Rainfall (mm)	2.845 0.903 5.422 9.31 28 57	2.912 0.909 5.288 11.29 26 40	2.651 1.026 4.702 12.23 26 47	2.374 1.015 4.586 8.47 22 46	1.794 0.767 3.833 5.82 18 46	1.327 0.490 2.592 3.50 13 56	1.071 0.319 2.234 3.39 10 59	0.896 0.264 2.229 4.00 9 57	0.861 0.228 2.481 4.06 8 56	1.095 0.242 3.243 7.15 11 58	1.607 0.419 4.569 13.30 15 ,67	2.301 0.536 4.768 : 8.72 - 22 62	1.806 0.684 2.760 13.30 208 651
Factors affecting re Station type: FL	unoff: PGE	9 77									off is 1199 offall 1069		ous mear

033012 Kym at Meagre Farm

1994

Measuring First year:		y: NRA-A			(nce: 52 (TI tn. (m OD):		1		C	atchment V		m): 137.5 OD): 101
Hydromet	tric sta	tistics fo	r·1994											
Flows (m³s ⁻¹): Runoff (mm) Rainfall (mm		JAN 2.779 14.30 54 66	FEB 1.460 7.16 26 43	MAR : 0.452 1.22 9 47	APR 0.992 6.41 19 53	MAY 0.209 1.34 4 54	JUN 0.081 0.26 2 25	JUL 0.031 0.05 1 12	AUG 0.033 0.10 1 34	SEP 0.114 0.63 2 93	OCT 0.238 3.67 5 68	NOV 0.445 2.66 8 36	DEC 1.342 12.14 26 70	Year 0.678 14.30 155 601
Monthly a	and yea	erly statis	tics for p	revious r	ecord (Ma	y 1960 to	Dec 1993-	incompl	ete or mis	sing mont	hs total 0.	1 years)		
Mean flows (m ³ s ⁻¹) Peak flow (n Runoff (mm) Rainfall (mm)	1,323 0,074 3,296 25,26 26 50	1.288 0.047 5.577 22.70 23 38	1.073 0.044 3.474 30.24 21 45	0.781 0.041 2.107 30.75 15 49	0.338 0.024 1.469 20.61 7 50	0.227 0.009 1.489 24.10 4 58	0.130 0.001 2.438 16.68 3 51	0.101 0.004 1.096 23.42 2 55	0.104 0.017 1.685 23,40 2 50	0.452 0.015 3.515 25.91 9 53	0.681 0.022 3.718 34.71 13 54	1.042 0.050 3.348 33.98 20 55	0.625 0.103 1.048 34.71 143 608
Factors affe		unoff: El										off is 108 nfall 99		ous mean

033024 Cam at Dernford

1994

Measuring authori First year: 1949	ty: NRA-A			(Grid refere Level s	nce: 52 (Ti tn. (m OD):		5		С	atchment V	area (sq kı lax alt. (m	
Hydrometric sta	atistics fo	r 1994											
Flows Avg. (m³s-¹): Peak Runoff (mm) Rainfall (mm)	JAN 2.661 8.57 36 67	FEB 1.745 6.98 21 33	MAR 1,199 1,48 16 40	APR 1.616 6.70 21 58	MAY 1.015 14 62	JUN 0.675 0.86 9 24	JUL 0.476 0.77 6 24	AUG 0.392 0.57 5 37	SEP 0.373 0.74 5 65	OCT 0.442 1.44 6 82	NOV 0.492 1.08 6 25	DEC 0.777 3.46 11 58	Year 0.985 157 575
Monthly and ye	arly statis	itics for p	orevious r	ecord (Ma	r 1949 to	Dec 1993-	incomple	ete or mist	ing month	ns total 1.2	years)	1	
Mean Avg. flows Low (m³s-¹) High Peak flow (m³s-¹) Runoff (mm) Rainfall (mm)* *(1950-1993)	1,404 0,284 3,592 13,30 19 50	1.439 0.302 2.703 14.09 18 38	1.302 0.353 2.608 10.22 18 42	1.158 0.351 2.431 9.94 15 42	0.945 0.294 2.144 13.63 13 ,45	0.754 0.240 1.338 6.94 10 50	0.608 0.184 1.608 5.28 8 54	0.575 0.248 1.542 10.70 8 57	0.554 0.155 1.965 10.99 7 53	0.751 0.217 2.970 12.70 10 55	0.931 0.271 2.790 12.50 12 57	1.160 0.233 3.492 12.06 16 54	0.963 0.333 1.506 14.09 153 597

Factors affecting runoff: GEI Station type: TP

Comment: October 1994 contains estimated daily flows.

1994 runoff is 102% of previous mean rainfall 96%

033027 Rhee at Wimpole

1994

Measuring First year		ty: NRA-A			(Grid refere: Level s	nce: 52 (T) tn. (m OD)		5		C	atchment M	area (sq k fax alt. (m	
Hydrom	etric sta	itistics fo	r 1994											
		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	Year
Flows	Avg.	2.303	1.417	0.822	1.001	0.541	0.291	0.181	0.132	0.124	0.132	0.162	0.198	0.604
(m³s-1):		5.65	3.48	1.38	3.33	1.62	0.42	0.24	0.16	0.22	0.59	0.34	0.50	5.65
Runoff (m)	m)	52	29	18	22	12	6	4	3	3	3	4	4	160
Rainfall (m	ım)	64	36	38	50	61	20	16	38	63	69	27	50	532
Monthly	and yea	arly statis	stics for p	previous r	ecord (Jul	1965 to 0	ec 1993—	-incomple	te or missi	ing month:	s total 0.1	years)		
Mean	Avg.	0.877	0.928	0.765	0.728	0.520	0.343	0.211	0.182	0.207	0.370	0.472	0.653	0.519
flows	Low	0.088	0.092	0.089	0.099	0.067	0.041	0.022	0.014	0.040	0.053	0.058	0.065	0.079
(m³s~1)	High	2.687	1,911	2.077	2.074	1.579	0.936	0.434	0.586	1.090	1.751	1.848	1.718	0.945
Peak flow		8.79	6.00	5.29	5.19	8.87	4.55	1.11	5.72	5.62	9.19	7.14	7.11	9.19
Runoff (mi		20	19	17	16	12	7	5	4	5	8	10	15	138
Rainfall (m		47	33	41	45	50	51	50	52	53	52	53	52	579
Factors a		unoff: GEI										off is 116		ous mean

Station type: FL

rainfall 92%

033032 Heacham at Heacham

1994

Measuring authorit First year: 1965	ty: NRA-A			(Grid referer Level s	nce: 53 (TI tn. (m OD)		5			Catchmen		km): 59.0 n OD): 88
Hydrometric sta	tistics fo	r 1994										•	
Flows Avg. (m³s-1): Peak	JAN 0.885 1.12	FEB 0.576	MAR 0.480 0.56	APR 0.431 0.48	MAY 0.382 0.45	JUN 0.288 0.33	JUL 0.213 0.25	AUG 0,170 0,23	SEP 0.160 0.30	OCT 0.159 0.22	NOV Q.177 Q.19	DEC 0,199 0.25	Year 0.342
Runoff (mm) Rainfall (mm)	40 83	24 46	22 72	19 43	17 53	13 26	10 37	8 6 9	7 129	7 75	8 20	63	183 716
Monthly and yea	erly statis	itics for p	revious r	scord (No	v 1965 to I	Dec 1993)							
Mean Avg. flows Low {m³s-¹} High Peak flow (m³s-¹) Runoff (mm) Rainfall (mm) Factors affecting r	0.216 0.028 0.435 0.70 10 58	0.293 0.045 0.671 0.95 12 42	0.298 0.053 0.671 1.04 14 51	0.285 0.060 0.776 1,11 13 49	0.251 0.081 0.636 0.82 11 56	0.210 0.053 0.441 0.90 9 55	0.165 0.043 0.300 0.68 7 59	0.136 0.034 0.256 1.21 6 61	0.119 0.030 0.371 0.52 5 59	0.119 0.025 0.399 0.53 5 58	0.126 0.022 0.425 0.55 6 73 off is 172	0.174 0.018 0.590 0.75 8 63	0.199 0.057 0.331 1.21 106 684
Station type: C											nfall 105		ous mean
Comment: Februar	y 1994 co	ntains esti	imated dail:	y flows.									

034003 Bure at Ingworth

1994

Measuring First year:		ty: NRA-A			(Grid referer Level s	nce: 63 (Ti tn. (m OD)		6		c	atchment N	area (sq kı lax alt. (m	
Hydrome	tric sta	itistics fo	г 1994											
Flows (m³s+¹); Runoff (mn Rainfall (mi	n)	JAN 2.483 40 87	FEB 1.681 3.25 25 46	MAR 1.595 2.70 26 67	APR 1,477 2,52 23 37	MAY 1.092 18 46	JUN 0.834 1.01 13 20	JUL 0.750 1.76 12 52	AUG 0.886 1.70 14 87	SEP 1.558 6.82 25 113	OCT 1,234 3,07 20 70	NOV 1.237 2.13 19 23	DEC 1.385 2.64 23 62	Year 1.349 258 710
Monthly	and ye	arly statis	itics for p	previous r	ecord (Jui	1959 to 1	Sep 1993)							
Mean flows (m³s ⁻¹) Peak flow Runoff (mn Rainfall (mr	Avg. Low High (m³s ⁻¹) n)	1,513 0,844 2,450 8,27 25 61	1.413 0.792 2.954 10.65 21 41	1.266 0.779 2.115 6.45 21 49	1.184 0.688 2.322 18.30 19 48	0.956 0.800 1.639 6.07 16 45	0.780 0.495 1.168 3.79 12 49	0.765 0.493 1.158 3.47 12 59	0.777 0.472 1.955 12.82 13 59	0.836 0.548 1.823 9.26 13 58	0.979 0.649 2.428 10.17 16 64	1.208 0.688 2.024 10.05 19 74	1.366 0.827 2.560 9.63 22 66	1.085 0.752 1.488 18.30 208 673

Factors affecting runoff: G I Station type: MIS

1994 runoff is 124% of previous mean rainfall 105%

Comment: January and May 1994 contain estimated daily flows.

Gipping at Stowmarket 035008

1994

Measurin First year		ty: NRA-A			G		nce: 62 (Tf tn. (m OD)		8		C		area (sq k Max alt. (r	m): 128.9 n OD): 98
Hydrom	etric sta	stistics fo	r 1994											
'		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	2.441	1.358	0.651	1,596	0.334	0.162	0.119	0.114	0.212	0.318	0.331	0.664	0.688
(m³s ⁻¹):	Peak	10.04	14.72	1,74	9.77		0.88	1.28	1.27	1.26	3.71	1.25	3.19	3.555
Runoff (me	m)	51	25	14	32	7	3	2	2	4	7	7	14	168
Rainfall (m	ım)	64	44~	48 ₺	~- 56 C+	ж. 47 г	-66.33×0	r 36. ₁		72	₹ 74	21	50	606
Monthly	and ye	arly statis	stics for p	revious i	record (Ap	r 1964 to	Dec 1993-	-incompl	ete or miss	ing month	s total 1.1	years)		
Mean	Avg.	1.394	1.118	0.907	0.637	0.361	0.233	0.147	0.174	0.235	0.438	0.711	0.965	0.608
flows	Low	0.161	0.125	0.159	0.156	0.119	0.083	0.072	0.069	0.072	0.092	0.101	0.131	0.149
(m³s-1)	High	4.383	3.527	2.626	2.012	1.244	1.616	0.501	1.490	1.880	3.251	3,433	3.125	1.043
Peak flow	(m^3s^{-1})	28.13	34.39	18.60	19.30	20.18	7.98	6.22	23.77	24.19	25.30	23.21	25.54	34.39
Runoff (mi	m)	29	21	19	13	7	5	3	4	5	9	14	20	149
Rainfall (m *(1965-19		51	36	43	42	45	49	48	47	52	54	61	54	582

Factors affecting runoff: GEI Station type: CC

1994 runoff is 113% of previous mean rainfall 104%

Comment: May 1994 contains estimated daily flows.

Stour at Langham 036006

Measuring authori First year; 1962	ty: NRA-A			Ć	Grid referer Level s	nce: 62 (Th stn. (m OD		4		C		area (sq kı flax alt. (m	
Hydrometric sta	atistics fo	r 1994											
Flows Avg. (m³s-¹): Peak Runoff (mm) Rainfall (mm) Monthly and ye	JAN 11.050 28.71 51 66 arly stati	FEB 5.949 24.65 25 42 stics for p	MAR 3.509 6.94 16 46 previous r	APR 6.293 17.43 28 58 ecord (Oc	MAY 1.969 4.07 9 52 t 1962 to 8	JUN 1,091 2,11 5 33 Nov 1993)	JUL 0.826 1.62 4 23	AUG 1.463 2.54 7 47	SEP 1,199 4,19 5 65	OCT 1,215 10,24 6 77	NOV 1.671 8.16 8 24	DEC 2.609 11.34 12 52	Year 3.222 28.71 176 585
Mean Avg. flows Low (m³s-¹) High Peak flow (m³s-¹) Runoff (mm) Rainfall (mm) Factors affecting r Station type: FL	5.406 1.398 16.080 48.47 25 49 runoff: RPC	4.860 0.884 12.980 41.27 21 34	4.546 1.597 9.776 38.37 21 46	3.580 1.218 9.335 28.45 16 45	2.347 0.757 7.253 39.31 11 46	1.644 0.453 5.999 20.64 7 53	1.119 0.190 2.956 17.06 5 47	1.153 0.209 6.237 39.52 5	1.184 0.395 4.946 91.00 5 52		2.980 0.578 11.340 38.93 13 59 off is 111 nfall 100	4.009 0.693 10.550 43.85 19 53 % of previ	2.8 19 1.428 5.119 91.00 158 586 ous mean

037001 Roding at Redbridge

1994

Measuring authority First year: 1950	y: NRA-T			C	Grid referen Level s	ce: 51 (TC tn. (m OD)		1		C	atchment : V	area (sq kı lax alt. (m	
Hydrometric sta	tistics fo	r 1994											
Flows Avg. (m³s-¹): Peak Runoff (mm) Rainfall (mm)	JAN 7.848 22.60 69 78	FEB 3.509 13.10 28 41	MAR 1.536 4.51 14 44	APR 4,439 16,90 38 63	MAY 1,177 3,92 10 63	JUN 0.432 1.63 4 26	JUL 0.243 0.56 2 16	AUG 0.299 6.39 3 37	SEP 0.412 1.95 4 54	OCT 0.676 8.54 6 82	NOV 0.892 3.75 8 29	DEC 1,942 9,57 17 69	Year 1.942 22.60 202 602
Monthly and ye	arly statis	stics for p	revious re	acord (Fel	1950 to 0	Dec 1993)							
Mean Avg. flows Low (m³s-1) High Peak flow (m³s-1) Runoff (mm) Rainfall (mm) Factors affecting to Station type: EW	3,710 0,382 10,920 42,00 33 52 runoff: S El	3.358 0.379 10.670 40.10 27 40	2.627 0.537 6.862 38.10 23 45	1.886 0.482 6.768 27.70 16 44	1.160 0.280 4.044 32.70 10 48	0.846 0.226 2.953 21.80 7 52	0.616 0.202 1.975 24.50 5	0.644 0.224 3.925 31.30 6 56	0.821 0.197 4.009 25.60 7 58		2.167 0.364 10.340 62.40 19 61 noff is 105		1.849 0.801 2.809 62.40 192 622 ous mean

037005 Coine at Lexden

1994

Measuring authori First year: 1959	ty: NRA-A			•	Grid referei Level s	nce: 52 (Ti stn. (m OD)		1		C	atchment V	area (sq kı lax alt. (m	
Hydrometric sta	tistics fo	г 1994											
Flows Avg. (m³s⁻¹): Peak Runoff (mm) Rainfall (mm)	JAN 4.386 14.15 49 67	FEB 2.278 12.92 23 42	MAR 1.126 2.06 13 41	APR 1.985 6.36 22 53	MAY 0.853 3.49 10 57	JUN 0.424 0.93 5 30	JUL 0,241 0,48 3 23	AUG 0.235 0.45 3 50	SEP 0.401 0.77 4 60	OCT 0,575 3,12 6 78	NOV 0.715 2.60 8 24	DEC 55	Year 580
Monthly and ye	arly statis	stics for p	revious r	ecord (Oc	t 1959 to l	Dec 1993)							
Mean Avg. flows Low (m³s-¹) High Peak flow (m³s-¹) Runoff (mm) Rainfall (mm)	1.989 0.460 6.543 21.13 22 49	1.723 0.346 4.684 22.65 18 33	1.570 0.380 3.556 20.68 18 43	1.183 0.358 3.344 13.34 13 43	0.752 0.229 2.353 12.56 8 43	0.491 0.146 1.528 8.07 5 49	0.366 0.101 0.907 6.41 4 47	0.351 0.088 1.558 8.86 4 48	0.398 0.175 1.099 10.50 4 53	0.784 0.188 4.838 24.81 9	1.161 0.288 5.521 21.29 13 58	1,544 0,352 4,200 20,58 17 54	1.023 0.362 1.732 24.81 136 574
Factors affecting a	unoff: RP I										runoff is		ous mean

037010 Blackwater at Appleford Bridge

1994

Measuring auth First year: 196				(Grid referer Level st	nce: 52 (Tl in. (m OD):		3		С	atchment : V	area (sq kı lax alt. (m	
Hydrometric	statistics fo	r 1994											
Flows Avg (m³s-1): Pea Runoff (mm) Rainfall (mm)		FEB 2.500 16.60 24 40	MAR 1.202 1.73 13 41	APR 2.278 8.06 24 54	MAY 0.869 2.27 9 61	JUN 0.617 1.72 6 35	JUL 0.709 6.04 8 23	AUG 0.949 1.83 10 46	SEP 0.655 1.93 7 56	OCT 0.605 3.09 7 80	NOV 0.730 2.69 8 24	DEC 1.174 4.50 13 57	Year 1.388 16.60 177 583
Monthly and	yearly stati:	stics for p	revious r	ecord (Oc	t 1962 to I	Dec 1993)							
Mean Avg flows Lov (m³s-¹) Hig Peak flow (m³s- Runoff (mm) Rainfall (mm)	0.532 7.181	1.931 0.460 4.888 21.60 19 33	1.848 0.479 3.583 20.00 20 46	1,468 0,479 3,843 12,31 15 45	1.033 0.341 2.860 17.80 11 45	0.800 0.356 1.777 7.76 8 53	0.577 0.182 1.359 -4.10 -6 47	0.514 0.161 1.738 13.75 6 49	0.546 0.215 1.651 15.25 6 52	0.887 0.288 4.955 26.08 10 51	1.232 0.325 4.676 20.20 13 57	1,712 0,379 4,307 21,60 19 52	1.218 0.822 1.659 26.80 155 578
Factors affecting Station type: F	g runoff: RPC	31									off is 114° nfall 101°		ous mean

038021 Turkey Brook at Albany Park

Measuring authorit First year: 1971	y: NRA-T			C	Grid referen Level st	ice: 51 (TC tn. (m OD):		5		0.037				
Hydrometric sta	tistics fo	r 1994												
Flows Avg. (m³s-¹): Peak Runoff (mm) Rainfall (mm)	JAN 0.780 7.00 50 83	FEB 0.383 6.19 22 54	MAR 0.127 2.60 8 49	APR 0.366 4.21 22 66	MAY 0.109 1.18 7 80	JUN 0.028 0.43 2 24	JUL 0.012 0.23 1 19	AUG 0.021 0.82 1 42		0.084 1.61 5	0,102 0.76 6	0.363 5.35 23	Year 0.200 7.00 150 686	
Monthly and yea	arly statis	stics for p	revious r	ecord (Se	p 1971 to l	Dec 1993)								
Mean Avg. flows Low (m³s-¹) High Peak flow (m³s-¹) Runoff (mm) Rainfall (mm)	0.420 0.019 1.180 10.50 27 62	0.335 0.022 0.988 11.50 19 42	0.312 0.024 0.811 7.68 20 55	0.217 0.020 0.626 7.72 13 50	0.152 0.009 0.626 20.70 10 55	0.093 0.021 0.240 15.30 6 57	0.043 0.009 0.087 2.38 3 48	0.048 0.008 0.171 2.76 3 52	0.058 0.008 0.228 7.55 4 61	0.191 0.013 0.941 10.70 12 65	0.236 0.019 1.158 12.80 14 60	0.330 0.022 0.724 10.50 21 63	0.202 0.057 0.339 20.70 151 670	
Factors affecting re Station type: FV	unoff: PG										noff is 99 nfall 102	% of previ	ous mean	

039002 Thames at Days Weir

1994

Measuring author First year: 1938	ity: NRA-T			(Grid refere Level s	nce: 41 (Si tn. (m OD)		5		Ca		area (sq kn Max alt. (m	n): 3444.7 i OD): 330
Hydrometric st	atistics fo	or 1994											
Flows Avg. (m³s-¹): Peak Runoff (mm) Rainfall (mm) Monthly and ye	JAN 111.600 205.00 87 90	FEB 67.340 96.30 47 67	MAR 36.560 77.40 28 52	APR 39.380 91.20 30 47	MAY 22.260 55.80 17 79	JUN 12.940 20.80 10 20	JUL 5.512 9.61 4 27	AUG 4.410 7.00 3 47	SEP 6.021 16.50 5 81	OCT 6.329 40.20 5 70	NOV 24.300 41.40 18 58	DEC 50.340 111.00 39 93	Year 32.088 205.00 294 731
Mean Avg.	55.070 6.250	55. 5 40 5.554	44.520 5.620	30.700	20.260 2.855	14.420	8.523	7.204	8.779	15.290	31.200	45.410	27.945
flows Low (m ³ s ⁻¹) High Peak flow (m ³ s ⁻¹)	133.600	120.800	163.200	4.253 85.070	61.140	1.502 41.560	0.399 48.820	0.296 18.690	1.741 38.630	2.778 74.570	3.748 128.100	5.312 128.700	10.095 51.292
Runoff (mm) Rainfall (mm)	43 67	39 47	35 53	23 47	16 58	11 55	7 54	6 66	7 60	12 65	23 70	35 72	256 714
Factors affecting Station type: MIS		il .									noff is 115 infall 102		ious mean
Comment: Peak f	lows availa	ble from 1	992 only.										

039005 Beverley Brook at Wimbledon Common

1994

Measuring authorit First year: 1935	y: NRA-T			C	Grid referen Level st	ice: 51 (T0 tn. (m OD):		7			Catchment M	area (sq. l lax alt. (m	
Hydrometric sta	tistics fo	r 1994											
Flows Avg. (m³s-¹): Peak Runoff (mm) Rainfall (mm)	JAN 1.069 7.83 66 97	FEB 0.617 4.06 34 40	MAR 0.530 3.74 33 46	APR 0.715 6.12 43 60	MAY 0.683 4.94 42 80	JUN 0.485 3.55 29 21	JUL 0.488 2.56 30 21	AUG 0.505 10.90 31 57	SEP 0.498 3.42 30 57	OCT 0.638 7.08 39 86	NOV 0.576 7.09 34 40	DEC 0.735 11.20 45 80	Year 0.629 11.20 455 685
Monthly and yea	arly statis	stics for p	previous r	ecord (Ma	r 1935 to	Dec 1993-	-incomple	ete or miss	ing month	is total 24	.2 years)		
Mean Avg. flows Low (m³s-¹) High Peak flow (m³s-¹) Runoff (mm) Rainfall (mm)	0.707 0.280 1.237 10.90 43 59	0.606 0.244 1.208 14.10 34 39	0.559 0.290 1.023 7.51 34 44	0.564 0.257 1.538 22.40 34 45	0.483 0.214 1.092 14.80 30 49	0.483 0.157 0.956 12.90 29 53	0.447 0.211 0.920 16.50 27 50	0.454 0.189 0.970 17.30 28 55	0.503 0.224 1.340 16.50 30 58	0.519 0.161 1.321 15.90 32 61	0.579 0.274 1.415 11.10 34 62	0.632 0.247 1.057 14.00 39 62	0.544 0.291 0.695 22.40 394 637
Factors affecting re Station type: FL	unoff: GE										off is 115° nfall 108°		ous mean

039007 Blackwater at Swallowfield

1994

Measuring authorit First year: 1952	y: NRA-T			(Grid referer Level st	nce: 41 (Sl tn. (m OD):		8		C	atchment : V	erea (sq kı lax alt. (m	
Hydrometric sta	tistics fo	r 1994											
Flows Avg. (m³s-¹): Peak Runoff (mm) Rainfall (mm) Monthly and yea	JAN 8.936 24.80 67 108	FEB 6.161 19.40 42 61	MAR 3.671 15.70 28 50	APR 4.679 16.30 34 57	MAY 3.675 11.30 28 78	JUN 2.215 7.37 16 28	JUL 1.648 3.13 12 15	AUG 1.479 2.75 11 41	SEP 2.087 5.77 15 68	OCT 2.613 17.10 20 99	NOV 4.426 18.60 32 65	DEC 5.156 23.40 39 93	Year 3.883 24.80 345 763
Mean Avg. flows Low (m³s-¹) High Peak flow (m³s-¹) Runoff (mm) Rainfall (mm)	4.697 1.758 8.000 25.60 35 68	4,192 1,687 11,010 25,90 29 45	3.823 1.323 6.898 30.50 29 53	3.167 1.521 5.600 24.30 23 47	2.522 1.081 5.946 24.40 19 53	2.022 0.766 6.472 25.20 15 52	1.531 0.711 2.829 11.80 12 54	1.523 0.723 2.622 11.20 11 58	1.817 0.638 6.609 41.00 13 64	2.619 0.907 7.613 27.80 20 72	3.324 1.262 8.019 28.60 24 70	4.043 1.298 7.022 26.90 31 73	2.934 1.466 3.777 41.00 261 709
Factors affecting re Station type: CC	unoff: GE										off is 132' nfall 108'		ous mean

039014 Ver at Hansteads

1994

Measuring authorit	y: NRA-T			(Grid refere Level s	nce: 52 (Ti tn. (m OD)		6		С	atchment N	area (sq kı lax alt. (m	
Hydrometric sta	tistics fo	r 1994											
Flows Avg. (m³s-¹): Peak Runoff (mm) Rainfall (mm)	JAN 1.306 1.65 27 100	FEB 1.286 1.61 24 53	MAR 1.125 1.33 23 52	APR 1.062 1.34 21 65	MAY 1,140 2,06 23 73	JUN 0.864 1.42 17 25	JUL 0.549 0.91 11 32	AUG 0.481 0.79 10 57	SEP 0.457 0.70 9 72	OCT 0,460 1,16 9 87	NOV 0.530 1.06 10 44	DEC 0.577 1.50 12 90	Year 0.817 2.06 195 750
Monthly and yea	arly statis	itics for p	revious r	ecord (Oc	t 1956 to I	Dec 1993)							
Mean Avg. flows Low (m³s-1) High Peak flow (m³s-1) Runoff (mm) Rainfall (mm)	0.454 0.079 0.981 1.77 9 64	0.515 0.076 1.336 1.91 10 46	0.538 0.074 1.312 1.88 11 55	0.518 0.093 1.254 1.90 10 54	0.454 0.069 1.028 2.07 9 54	0.398 0.045 0.857 1.65 8 61	0.333 0.028 0.651 1.44 7 54	0.292 0.016 0.564 1.13 6 58	0.262 0.025 0.660 2.34 5 63	0.295 0.057 0.716 1.50 6 68	0.342 0.039 0.791 2.31 7 66	0.398 0.048 0.977 2.64 8 73	0.399 0.095 0.752 2.64 95 716
Factors affecting r Station type: CC	unoff: G										off is 205 ^o		ous mean

Comment: The Ver is included in the NRA 'Alleviation of Low Flow' programme. Decreased groundwater abstraction contributed to the very high percentage runoff for 1994.

039016 Kennet at Theale

1994

Measuring authori First year: 1961	ty: NRÁ-T			(nce: 41 (Si tn. (m OD)	U) 649 708 : 43.40	3		Ca			n): 1033.4 OD): 297
Hydrometric sta	atistics fo	r 1994											
Flows Avg. (m³s=¹): Peak Runoff (mm) Rainfall (mm)	JAN 28.110 43.60 73 110	FEB 24.430 37.40 57 72	MAR 17.110 20.60 44 59	APR 15.570 23.70 39 51	MAY 12.270 16.50 32 73	JUN 8.698 12.50 22 23	JUL 6.069 7.63 16 22	AUG 5.469 12.60 14 66	SEP 5.610 12.00 14 87	OCT 5.621 19.30 15 91	NOV 8.421 16.90 21 65	DEC 11.880 31.60 31 113	Year 12.371 43.60 378 832
Monthly and ye	arly stati:	stics for p	orevious r	ecord (Oc	t 1961 to	Dec 1993)							
Mean Avg. flows Low (m³s⁻¹) High Peak flow (m³s⁻¹) Runoff (mm) Rainfall (mm)	13.010 4.144 23.000 48.30 34 75	14.450 4.401 27.780 52.10 34 50	14.160 4.190 22.010 44.30 37 67	12.380 3.429 19.790 36.90 31 52	9.989 2.739 15.430 31.50 26 59	8.299 2.041 18.600 70.00 21 61	6.340 1.620 11.120 19.00 16 50	5.563 1.377 9.542 20.50 14 65	5.300 2.787 10.000 33.40 13 66	6.186 3.596 13.970 38.20 16 69	7.842 3.943 17.710 43.50 20 74	10.470 4.333 23.850 47.30 27 81	9.473 4.056 12.882 70.00 289 769
Factors affecting (Station type: C	runoff: R G	1									off is 131 nfall 108		ious mean

039019 Lambourn at Shaw

1994

Measuring authorit First year: 1962	γ: NRA-T			C	Grid referer Level st	nce: 41 (St tn. (m OD):		2		С	atchment . M	area (sq kı lax alt. (m	
Hydrometric sta	tistics fo	r 1994											
Flows Avg. {m³s⁻¹}: Peak Runoff (mm) Rainfall (mm)	JAN 3.552 4.40 41 101	FEB 4.160 4.93 43 66	MAR 3.718 4.11 43 55	APR 3.070 3.78 34 .47	MAY 2.500 2.84 29 84	JUN 2.005 2.41 22 26	JUL 1.581 2.04 18 23	AUG 1.367 2.38 16 61	SEP 1.237 1.66 14 82	OCT 1.142 1.94 13 82	NOV 1.357 1.64 15 63	DEC 1.685 2.35 19 98	Year 2.270 4.93 306 788
Monthly and yea	arly statis	tics for p	revious r	ecord (Oc	t 1962 to I	Dec 1993)							
Mean Avg. flows Low (m³s-¹) High Peak flow (m³s-¹) Runoff (mm) Rainfall (mm)	1.748 0.797 3.854 4.30 20 69	2.189 0.787 3.719 4.20 23 48	2.410 0.743 3.583 4.39 28 63	2.334 0.695 3.550 4.08 26 50	2.064 0.639 2.979 4.97 24 59	1.791 0.573 2.764 4.34 20 59	1.478 0.538 2.359 3.06 17 51	1.249 0.485 2.048 3.54 14 61	1.129 0.681 1.699 3.75 12 63	1.119 0.683 1.921 3.17 13 65	1.205 0.757 2.392 5.02 13 72	1.435 0.710 3.200 4.15 16 76	1.676 0.739 2.151 5.02 226 736
Factors affecting re Station type: C	unoff: R G	ê									off is 135° nfall 107°		ous mean

039021 Cherwell at Enslow Mill

1994

Measuring authori First year: 1965	ty: NRA-T			C	Grid referer Level s	nce: 42 (SF tn. (m OD):		3		C		area (sq kı flax alt. (m	
Hydrometric sta	atistics fo	r 1994											
Flows Avg, (m³s⁻¹): Peak Runoff (mm) Rainfall (mm)	JAN 12.180 17.80 59 81	FEB 9.345 15.00 41 66	MAR -5.571 12.70 27 55	APR 6.739 12.30 32 51	MAY 3.061 5.04 15 64	JUN 1.842 3.04 9 20	JUL 1.035 1.48 5 38	AUG 0.980 1.87 5 49	SEP 1.316 3.56 6 88	OCT 1.334 7.27 6 77	NOV 4.386 9.36 21 55	DEC 6.301 12.20 31 80	Year 4.478 17.80 256 724
Monthly and ye	arly stati:	stics for p	revious r	ecord (Fel	1965 to	Dec 1993)							
Mean Avg. flows Low {m³s-¹} High Peak flow (m³s-¹) Runoff (mm) Rainfall (mm)	7.196 0.919 12.040 22.50 35 62	6.882 0.905 15.900 23.80 30 44	6.039 0.754 12.090 26.70 29 54	4.439 0.566 8.710 20.70 21 47	3.204 0.445 8.674 19.30 16 57	2.345 0.309 6.632 17.60 11 60	1.505 0.156 4.997 24.50 7 57	1.407 0.132 2.634 10.30 7 62	1.466 0.468 5.577 20.80 7 58	2.292 0.630 7.615 17.40 11 59	3.400 0.730 9.223 22.00 16 59.	5.853 0.915 13.330 30.20 28 68	3.823 1.370 5.373 30.20 219 687
Factors affecting of Station type: CC	runoff: P E										off is 117	% of previ %	ous mean

039023 Wye at Hedsor

	'												
Measuring authori First year: 1964	ty: NRA-T			C		nce: 41 (St tn. (m OD):		7		С	atchment : 'N	area (sq kı lax alt: (m	
Hydrometric sta	atistics fo	r 1994											
Flows Avg. (m³s ⁻¹): Peak Runoff (mm) Rainfall (mm)	JAN 1.612 2.64 31 106	FEB 1.719 3.01 30 71	MAR 1.736 2.33 34 52	APR 1.739 2.93 33 61	MAY 1.521 2.31 30 82	JUN 1.331 2.00 25 54	JUL 1.103 2.06 22 16	AUG 1.035 1.92 20 51	SEP 0.962 1.75 18 68	OCT 0.852 1.81 17 95	NOV 0.959 2.29 18 63	DEC 0.971 2.86 19 95	Year 1.292 3.01 297 814
Monthly and ye	arly statis	tics for p	revious r	ecord (De	c 1964 to	Dec 1993)			٠.				
Mean Avg. flows Low (m³s⁻¹) High Peak flow (m³s⁻¹) Runoff (mm) Rainfall (mm)	0.963 0.419 1.699 3.49 19 72	1.059 0.484 1.933 2.92 19 49	1.138 0.467 1.976 3.21 22 59	1.165 0.470 1.891 3.44 22 56	1.117 0.432 1.842 3.98 22 60	1.080 0.380 1.582 3.51 20 62	0.984 0.370 1.434 2.94 19 57	0.927 0.314 1.317 4.17 18 65	0.853 0.381 1.182 4.43 16 68	0.832 0.395 1.180 3.55 16 70	0.822 0.375 1.329 2.79 16 70	0.880 0.340 1.452 3.19 17 78	0.984 0.442 1.365 4.43 226 766
Factors affecting (Station type: C	runoff: G I										off is 1319 nfall 1069		ous mean

039029 Tillingbourne at Shalford

1994

Measuring authorit First year: 1968	y: NRA-T			G	Grid referen Level st	ce: 51 (T0 n. (m OD):		8			Catchment N		km): 59.0 OD): 294
Hydrometric sta	tistics for	1994											
Flows Avg. (m³s=¹): Peak Runoff (mm) Rainfall (mm)	JAN 0.882 3.19 40 132	FEB 0.704 1.40 29 66	MAR 0.618 1.98 28 60	APR 0.640 1.27 28 77	MAY 0.572 0.99 26 95	JUN 0.466 0.61 20 29	JUL 0.406 0.54 18 24	AUG 0.379 0.70 17 55	SEP 0.440 0.71 19 95	OCT 0,452 1,28 21 98	NOV 0.538 2.15 24 69	DEC 0.694 2.50 32 127	Year 0.565 3.19 302 927
Monthly and yea	ırly statis	tics for p	revious r	ecord (Jur	1968 to [Dec 1993)							
Mean Avg. flows Low (m³s-1) High Peak flow (m³s-1) Runoff (mm) Rainfall (mm)	0.648 0.322 0.998 4.54 29 85	0.629 0.346 1.072 3.04 26 50	0.605 0.350 0.900 3.23 27 66	0.584 0.357 0.897 3.00 26 58	0.532 0.308 0.819 1.91 24 56	0.488 0.257 0.830 2.79 21 58	0.446 0.283 0.599 1.65 20 53	0.438 0.292 0.619 2.36 20 59	0.458 0.280 0.885 6.09 20 73	0.507 0.292 0.938 5.09 23 80	0.540 0.353 0.883 3.65 24 80	0.592 0.319 0.840 3.25 27 81	0.539 0.353 0.686 6.09 288 799
Factors affecting re Station type: C Comment: High flo			nisa astin	nated							off is 1059 nfall 1169		ous mean

039049 Silk Stream at Colindeep Lane

1994

Measuring authorit First year: 1973	y: NRA-T			C	Grid referen Level st	ice: 51 (T0 tn. (m OD):		5			Catchment N		km): 29.0 OD): 153
Hydrometric sta	tistics fo	r 1994											
Flows Avg. (m ³ s ⁻¹): Peak Runoff (mm) Rainfall (mm)	JAN 0.606 4.13 56 86	FEB 0.362 3.79 30 51	MAR 0.223 2.72 21 48	APR 0.375 3.69 34 61	MAY 0.259 3.35 24 76	JUN 0.089 1,40 8 19	JUL 0.078 1.99 7 20	AUG 0.146 11.10 13 63	SEP 0.174 3.16 16 65	OCT 0.236 3.81 22 86	NOV 0.217 3.13 19 42	DEC 0.367 10.60 34 78	Year 0.261 11.10 283 695
Monthly and yea	arly statis	tics for p	revious r	ecord (De	c 1973 to I	Dec 1993-	—incomple	te or miss	ing monti	ns total 4.4	years)		
Mean Avg. flows Low (m³s ⁻¹) High Peak flow (m³s ⁻¹) Runoff (mm) Rainfall (mm)	0.368 0.093 0.790 8.54 34 62	0.275 0.102 0.725 14.30 23 39	0.303 0.092 0.677 6.26 28 56	0.260 0.030 0.560 10.26 23 51	0.213 0.035 0.570 17.10 20 60	0.204 0.061 0.566 16.30 18 61	0.151 0.047 0.248 14.50 14 52	0.123 0.053 0.204 14.20 11 50	0.157 0.057 0.505 17.20 14 65	0.300 0.062 0.808 17.30 28 73	0.307 0.096 0.967 13.00 27 60	62	
Factors affecting re Station type: FV	unoff:										off is 1059 nfall 1019		ous mean

039069 Mole at Kinnersley Manor

1994

Measuring authorit First year: 1972	y: NRA-T	1 1'		Ó	Grid referer Level s	nce: 51 (T0 tn. (m OD)		2		c	atchment	area (sq kı lax alt. (m	
Hydrometric sta	tistics fo	r 1994									•		
Flows Avg. (m³s-¹); Peak Runoff (mm) Rainfall (mm) Monthly and yea	JAN 8.231 48.80 155 139 arly statis	FEB 3.422 26.90 58 61	MAR 1.875 24.10 35 60 Previous n	APR 3.600 23.70 66 74 ecord (De	MAY 2.095 13.10 40 83	JUN 0.817 4.10 15 27	JUL 0.614 6.62 12 26	AUG 0.592 7.49 11 59	SEP 1.432 8.30 26 94	0CT 2,406 32,30 45 115	NOV 2.801 18.00 51 57	OEC 6.349 63.50 120 134	Year 2.856 63.50 634 929
Mean Avg. flows Low (m³s-¹) High Peak flow (m³s-¹) Runoff (mm) ¹ Rainfall (mm)	3.798 0.940 9.375 42.30 72 79	2.976 0.829 8.634 46.50 51	2.499 0.833 4.668 22.30 47 63	1.969 0.388 3.666 47.00 36 54	1,381 0,305 3,552 32,90 26 52	1.040 0.221 2.225 23.30 19 59	0.800 0.296 2.818 28.90 15 50	0.798 0.169 2.864 29.80 15 55	0.969 0.281 5.419 40.70 18 67	2.214 0.207 8.486 71.90 42 92	2.436 0.260 5.894 56.70 .44 78	3.585 1.071 6.493 68.50 68	2.038 0.950 2.614 71.90 452 792
Factors affecting re Station type: MIS	unoff: E										off is 1409		ous mean

040004 Rother at Udiam

1994

Measuring authori First year: 1962	year: 1962 **Tometric statistics for 1994 **JAN FEB MAR APR (1954) 1.954 2.783 1.649 3.478 (1954) 1.954 2.783 1.649 3.478 (1954) 1.954 2.783 1.649 3.478 (1954) 1.955 63 94 (1954) 1.955 63 94 (1954) 1.955 1.95				irid referen Level s	ce: 51 (T0 tn. (m OD)		5		c	atchment : N		m): 206.0 OD): 197
Hydrometric sta	itistics fo	r 1994											•
					MAY 2.061	JUN 0.968	JUL 0.445	AUG 0.337	SEP 0.772	OCT 2.541	NOV 3.439	DEC 4.951	Year . 2.109
Runoff (mm) Rainfall (mm)					20 101	12 61	6 46	4 78	10 89	19 133	29 62	23 142	236 1063
Monthly and ye	arly statis	stics for p	revious r	ecord (Oct	t 1962 to C	Dec 1993-	-incomple	te or miss	ing month	s total 2.7	years)		
flows Low	0.719 11.990 41.57	0.792 10.370 44,74	0.422 6.927	0.343 4.533	1.272 0.302 2.817 24.09 17 54	1.002 0.268 4.157 24.24 13 62	0.650 0.221 2.790 22.20 8 54	0.620 0.182 2.682 14.36 8 61	0.767 0.195 3.952 33.98 10 75	1.758 0.151 10.750 42.76 23 91	2,904 0,184 12,360 50,43 37 99	3.376 0.427 9.547 51.82 44 90	2.093 0.756 3.322 51.82 321 861
Factors affecting r Station type: VA	unoff: S G	E	·								noff is 749 nfall 1239		ous mean

Comment: Some 1994 monthly flows are estimated. Pre-1992 flows are being reprocessed.

HYDROLOGICAL DATA: 1994

042006 Meon at Mislingford

1994

Measuring authority: NRA-S First year: 1958 Grid reference: 41 (SU) 589 141 Catchment area (so Max alt. (in OD): 29.30 Hydrometric statistics for 1994 Image: Plows \$ Avg. 4.069 JAN (69) FEB (70) MAR (70) MAY (70) JUL (70) AUG (70) SEP (70) OCT (70) NOV (70) DEC (70) DEC (70) NOV (70) DEC (70) </th <th></th> <th></th>													
Hydrometric sta	itistics fo	г 1994									4		
(m³s;-1): Peak Runoff (mm)	4.069 4.83 150	3.039 4.22: 101	1.976 2.63 73	1,945 2,46 69	1.428 1.81 53	1.004 1.24 36	0.643 0.86 24	0.431 0.61 16	0.352 0.69 13	0.348 0.90 13	0.779 1.03 28	1.578 2.73 58	Year 1.458 4.83 634 1081
Monthly and ye	arly statis	stics for p	revious r	ecord (Oc	t 1958 to I	Dec 1993)	ι :.		• .				
Mean Avg. flows Low (m³s-¹) High Peak flow (m³s-¹) Runoff (mm) Rainfall (mm)	1.461 0.332 3.470 3.84 54 97	1.741 0.353 3.310 4.27 58 62	1.580 0.356 2.820 3.26 58 75	1.342 0.335 2.024 2.83 48 61	0.993 0.164 1.738 2.07 37 60	0.717 0.120 1.220 1.50 26 60	0.509 0.079 0.827 1.23 .19 56	0.380 0.068 0.657 1.08 14 69	0.334 0.102 0.882 0.96 12 80	0.518 0.110 2.309 2.66 19 96	0.787 0.124 4.126 2.83 28 97	1.098 0.179 3.917 3.77 40 102	0.951 0.334 1.813 4.27 412 915
Factors affecting r	unoff: G										off is 1541		ious mean

Comment: January 1994 contains estimated daily flows.

043006 Nadder at Wilton Park

1994

Measuring authorit First year: 1966	y: NRA-S\	W		Ó	Grid referer Level st	nce: 41 (Sl tn. (m OD):		8		Ċ			(m): 220.6 (OD): 277
Hydrometric sta	tistics fo	r 1994″							ť				
ŀ	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows 1. Avg.	9.238	7.156	5.044	5.037	3.148	1.994	1.651	1.436	1.312	1.706	3.736	4.946	3.849
(m ³ s ⁻¹): Peak	17.80	13.74	9.17	11.24	7.25	2.89	2.15	1.86	1.96	10.43	11.16	14.64	17.80
Runoff (mm)	112	78	61	59	38	23	20	17	15	21	44	60	550
Rainfall (mm)	128	, 9 7	83	64	81	25	27	55	84	134	87	140	1005
Monthly and yea	arly statis	stics for p	revious r	ecord (Jai	1966 to (Dec 1993)					, ,		
Mean Avg.	4.536	5.008	4.198	3.275	2.396	1.875	1.464	1.282	1.304	1.825	2.471	3.840	2.779
flows Low	1.011	1.263	1.358	1.048	0.993	0.839	0.684	0.595	0.801	0.829	0.878	1.219	- 1.535
(m ³ s ⁻¹) High	6.773	12.290	6.732	5.935	4.044	3.283	2.234	2.040	3.093	4.526	6.413	7.316	3.821
Peak flow (m3s-1)	22.71	26.61	18.80	14.27	28.13	8.83	13.39	6.71	16.68	20.92	22.90	47.88	47.88
Runoff (mm)	55	55	51	38	29	22	18	16	15	22	29	47	397
Rainfall (mm)	95	71	77	55	63	63	54	68	76	87	86	104	899
Factors affecting re Station type: C	unoff: N										off is 138 ^o		ious mean

043007 Stour at Throop Mill

1994

1													
Measuring author First year: 1973		w		ı		nce: 40 (Si stn. (m OD)		В		Ca			n): 1073.0 i OD): 277
Hydrometric s	tatistics fo	or 1994			•								
Flows (Avg. (m³s-1): Peak Runoff (mm) Rainfall (mm)		FEB 36.690 81.39 83 106	MAR 21.880 41.31 55 83	APR 23.860 76.26 58 57	MAY 11.250 23.16 28 84	JUN 6.617 10.01 16 _20	JUL 3.782 4.98 9 32	AUG 3.382 4.65 8 54	SEP 4.367 8.45 11 93	OCT 6.362 42.21 16 124	NOV 30.250 141.20 73 105	DEC 29.140 108.10 73 125	Year 18.890 141.20 555 1005
Monthly and y	early stati	stics for	previous (record (Ja	n 1973 to	Dec 1993)		. 1			-		
Mean Avg. flows † Low (m³s-1) High Peak flow (m³s-1) Runoff (mm) Rainfall (mm)	4.319 38.730	24.860 6.826 69.370 137.70 56 67	19.670 7.548 32.620 110.20 49 76	14,380 4,483 27,070 88,24 35 50	9.122 3.157 18.900 150.00 23 53	6.328 2,231 16.940 180.00 15 57	4.421 1.614 7.932 47.60 11 52	4.046 1.358 8.998 32.41 10	4.936 1.892 20.340 90.33 12 77	9.309 2.716 31.730 128.70 23 88	13.010 2.823 36.730 133.40 31 79	22.910 6.386 42.950 280.00 57 106	13.014 6.138 17.377 280.00 383 855
Factors affecting		E									off is 145 infall 118		ious mean

043012 Wylve at Norton Bavant

773	-	• • •	7-7-			· · · · ·							_	
Measurin First yea		ty: NRA-SV	W		C	Grid referer Level s	nce: 31 (Sî tn. (m OD)		8		C			m): 112.4 OD): 288
Hydron	etric sta	itistics fo	r 1994											1.0
! Flows	Avg.	JAN 3.584	FEB 2.465	MAR 1.901	APR 1,980	MAY 1.139	JUN 0.788	JUL 0.626	AUG 0.594	SEP 0.675	OCT 0.686	NOV 1.508	DEC 1.910	Year 1.483
(m³s ⁻¹) Runoff (m	: Peak	5.82 85	4.08 53	3.37 45	3.48 46	1.70 27	1.50 18	1.48 15	1.70 14	2.94 15	2.97 16	3.28 35	3.73 46	5.82 1 416
Rainfall (n	nm)	134	89	88	68	85	35	44	77 .	112	, 122	83	141	1078
Monthly	y and ye	erly statis	itics for p	revious r	ecord (Jul	1971 to D	ec 1993—	-incomple	te or missi	ing month	s total 0.8	years)		
Mean flows (m ³ s ⁻¹)	Avg. Low High	1.678 0.454 2.444	1.884 0.468 4.465	1.566 0.503 2.403	1.322 0.482 2.230	0.949 0.450 1.454	0.738 0.335 1.238	0.590 0.279 0.771	0.547 0.287 0.694	0.561 0.405 1.033	0.660 0.413 1.387	0.854 0.456 1.731	1.415 0.523 2.628	1.060 0.652 1.362
Peak flow Runoff (rr Rainfall (n	ım)	5.90 40 99	7.26 41: 69	5.24 37 84	3.84 30 56	6.74 23 60	2.98 17 69	3,44 14 59	2.76 13 72	7.19 13 79	3.64 16 87	3.39 20 84	6.33 34 109	7.26 298 927
Factors a Station t	affecting r ype: C	unoff: E										off is 140 nfall 116		ious mean

Factors affecting runoff: PGEI Station type: CC

044002 Piddle at Baggs Mill

1994

1994 runoff is 140% of previous mean rainfall 119%

				·**55	J 1.00							_	. , ,-
Measuring authorit First year: 1963	y: NRA-S\	N		C		nce: 30 (S' stn. (m OD		6		C	atchment N	area (sq k Nax alt. (m	
Hydrometric sta				400		W 1		4110					
Flows Avg. (m³s ⁻¹): Peak . Runoff (mm) Rainfall (mm)	JAN 7,836 8,86 115 137	FEB 5.990 8.49 79 128	MAR 5.015 7.57 73 86	APR 4.161 6.68 59 64	MAY 2.973 5.00 43 97	JUN 1.975 2.74 28 21	JUL 1.320 1.75 19 31	AUG 1.074 1.37 16 58	SEP 1.113 2.34 16 103	OCT 1.307 6.95 19 148	NOV 3,414 7.83 48 140	DEC 4.186 7.68 61 137	Year 3.35 8.8 577 1150
Monthly and yes											_	137	1130
deen Avg. lows Low (m³s-1) High leak flow (m³s-1)	3.554 1.045 5.959 11.87	4.335 1.020 8.785 10.02	3.777 1.093 6.202 9.37	2.907 0.945 4.782 6.48	2.122 0.757 3.376 8.11	1.624 0.571 2.907 9.23	1.218 0.483 1.755 4.79	1.057 0.433 1.526 4.50	1.083 0.598 2.300 8.18	1.451 0.707 3.285 9.29	2.061 0.721 5.047 9.20	2.966 0.853 5.654 8.62	2.33 1.32 3.23 11.8
Runoff (mm) Rainfall (mm)	52 110	58 79	55 84	41 55	31 63	23 58	18 49	15 65	15 8 6	21 93	29 104	43 115	403 961
Factors affecting re Station type: FL	ипотт: С										off is 143 nfall 120		ous me
													7
044009	W	ey a	t Bro	oadu	vey							1	99
Measuring authorit First year: 1975	y: NRA-S\	W		C		nce: 30 (S' tn. (m OD)		9				int area (se Max alt. (m	
Hydrometric sta	tistics fo	r 1994											
Flows Avg.	JAN 1.158	FEB 0.924	MAR 0.821	APR 0.621	MAY 0.442	JUN 0.324	JUL 0.223	AUG 0.164	SEP 0.128	OCT 0.122	NOV 0.401	DEC 0.489	Year 0.48
(m ³ s ⁻¹): Peak Runoff (mm)	2.34 442	2.61 320	1.19 314	1.12	1.05 169	0.53 120	0.33 85	0.26 63	0.21 47	0.44 47	0.82	1.02 187	2.6 2173
Rainfall (mm)	135	131	86	62	108	26	27	52	71	139	125	122	1082
Monthly and yea Mean Avg.	orly statis 0.429	stics for p 0.530							-			0.040	
lows Low	0.100	0.100	0.511 0.126	0.433 0.117	0.297 0.099	0.239	0.1B1 0.095	0.142 0.085	0.123 0.076	0.152 0.067	0.199 0.070	0.342 0.076	0.29
(m ³ s ⁻¹) High 'eak flow (m ³ s ⁻¹)	0.698 1.46	0.970 1.79	0.89 6 2.86	0.730 1.23	0.486 3.31	0.450 3.18	0.318 2.29	0.211 1.25	0.178 0.65	0.359 0.98	0.390 1.26	0.698 5.47	0.41 5.4
lunoff (mm) lainfall (mm)	164 87	185 80	195 89	160 52	114 50	89 55	69 51	55 58	46 74	58 97	74 84	131 111	1339
actors affecting ru				J L	55		51	55	.→		off is 162		
						<u>-</u>							
045003 Measuring authorit			at W			nce: 31 (S	T) 021 0E	•			·	-	.99 <i>i</i>
First year: 1962 Hydrometric sta						tn. (m OD)		•		·	atchment N	area (sq k /lax alt. (m	
-	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	Year
Flows Avg. (m ³ s ⁻¹): Peak	10.070 53.92	8.647 47.88	4,121 13,66	5.574 26.78	3,225 16,02	1.805 3.27	1.347 2.32	1.370 2.31	1.896 8.01	2.707 29.01	6.751 80.20	7.003 34.69	4.51 80.2
Runoff (mm) Rainfall (mm)	119 155	93 130	49 82	64 77	38 84	21 23	16 34	16 55	22 106	32 102	77 117	83	630
Monthly and yes							J-7		.50	102	117	149	1114
Mean Avg.	6.491	6.124	4.808	3.393	2.624	1.922	1.688	1.546	1.861	2.983	4.375	6.064	3.64
flows Low (m³s-1) High	1.929 12.870	2.144 13.330	1.687 9.184	1.317 7.434	1.083 6.32 6	0.803 4.459	0.650 5.200	0.570 2.787	0.971 7.328	0.971 11.430	1.287 8.167	2.480 11.880	2.27 4.84
Peak flow (m ³ s ⁻¹) Runoff (mm)	110.70 77	100.10 66	50.11 57	61.98 39	33.82 31	30.58 22	202.20 20	58.62 18	94.16 21	49.07 35	134.50 50	142.80 72	202.2 509
Rainfall (mm)	108	81	83	61	65	63	60	66	79	91	96	111	964
Factors affecting ru Station type: FVV		il .									off is 124 nfall 116		ous me
045004	Δ~	o at	W/In	i+8	·d	<u>.</u>						4	994
Measuring authorit			II	_		nce: 30 (S'	Y) 262 95	3		r	atchment		
First year: 1964				`		stn. (m OD				~		flax alt. (m	
Hydrometric sta				A.DC	14474	0.121			n==		No	DF-	.,
lows Avg.	JAN 13,000	FEB 13.460	MAR 6.059	APR 7.364	MAY 5.330	JUN 2.490	JUL 1.744	AUG 1.804	SEP 3.596	OCT 4.998	NOV 12.770	DEC 10.380	Year 6.86
(m³s-1): Pesk Runoff (mm)	62.72 121	74.78 113	45.46 56	58.99 66	44.84 49	7.18 22	3.20 16	3.44 17	41.76 32	66.11 46	134.80 115	83.07 96	134.8 751
lainfall (mm)	138	146	86	71	108	24	32	74	112	113	140	143	1187
Monthly and yea	-	-											
Mean Avg. Iows Low	9.080 1,891	8.148 2.448	6.316 2.150	4.365 1.567	3.429 1.176	2.502 0.817	1.941 0.626	2.033 0.554	2.558 1.222	4.372 1.243	5.801 1.714	8.486 2.829	4.90 2.66
(m³s-1) High Peak flow (m³s-1)	15.730 110.60	18.720 114.60	11.670 93.02	8.346 75.42	7.284 173.40	4.678 75.04	5.312 228,80	4.935 128.00	9.911 88.95	16.440 146.10	11.980 116.90	15.430 244.00	6.40 244.0
Bunoff (mm)	84	69	59	39	32	22	18	19	23	41	52	79	537
lainfall (mm) factors affecting r	119	84	81	59	66	65	59	70	83	97	96 off in 140	119	998

046003 Dart at Austins Bridge

1994

Measuring authori First year: 1958	ty: NRA-S	W		(Grid referer Level s	nce: 20 (S) tn. (m OD)		9		C			m): 247.6 OD): 604
Hydrometric sta	itistics fo	r 1994											
Flows Avg. (m ³ s ⁻¹): Peak Runoff (mm) Rainfall (mm)	JAN 29.660 135.30 321 304	FEB 27.320 141.20 267 290	MAR 16.750 126.20 181 210	APR 16.650 116.00 174 144	MAY 8.953 45.46 97 151	JUN 5.508 22.63 58 58	JUL 2.484 4.70 27 69	AUG 3.393 42.16 37 147	SEP 8.496 58.46 89 174	OCT 10.340 170.40 112 204	NOV 20.900 91.54 219 177	DEC 29.130 215.80 315 392	Year 14.887 215.80 1896 2320
Monthly and ye	arly stati:	stics for p	revious r	ecord (Oc	t 1958 to I	Dec 1993)							
Mean Avg. flows Low (m³s-¹) High Peak flow (m³s-¹) Runoff (mm) Rainfall (mm) Factors affecting r Station type: VA	19.790 5.428 36.680 284.00 214 229 runoff: SR	16.900 4.270 43.870 309.40 167 161	13.620 3.246 33.520 236.10 147 161	9.886 3.275 22.720 187.40 103 116	7.026 1.942 14.530 98.88 76 102	4.911 1.447 14.260 253.00 51 94	3.898 0.994 10.930 206.50 42 95	4.641 0.713 12.590 222.20 50 119	5.925 0.905 26.290 327.60 62 138		14.900 5.048 33.410 317.80 156 198 off is 136 nfall 127		10.958 7.298 15.592 549.70 1397 1826 ious mean

046005 East Dart at Bellever

1994

Measuring authori First year: 1964	drometric statistics for 1994 JAN FEB MAR AI ws Avg. 2.991 2.488 2.079 1. m³s-1): Peak 20.52 17.71 18.94 1 noff (mm) 373 280 259 2 nfall (nm) 365 294 292 1 onthly and yearly statistics for previous record ws Low 0.718 0.468 0.385 0. m³s-1) High 3.830 5.103 3.639 1.				Grid referer Level st	nce: 20 (S) n. (m OD):		5					km): 21.5 OD): 604
Hydrometric sta	itistics fo	r 1994											
	2.991 20.52 373	2.488 17.71 280	2.079 18.94 259	APR 1.663 17.05 201 159	MAY 0.952 8.49 119 158	JUN 0.632 4.29 76 78	JUL 0.283 0.91 35 85	AUG 0.472 10.23 59 154	SEP 1.093 11.61 132 198	OCT 1.228 26.58 153 222	NOV 1.881 13.15 227 190	DEC 3.414 35.63 425 483	Year 1.594 35.63 2338 2678
Monthly and ye	arly statis	itics for p	revious r	ecord (Ap	r 1964 to I	Dec 1993)							
flows Low	0.718	0.468	0.385	0.968 0.348 1.990 26.80 117 120	0.755 0.250 1.605 18.89 94 116	0.643 0.185 1.589 47.89 78 115	0.551 0.126 1.303 65.13 69 115	0.624 0.105 1.571 54.01 78 132	0.797 0.203 3.306 53.35 96 159	1.256 0.176 2.903 34.55 156 198	1.663 0.783 3.586 53.76 200 219	2.131 0.971 3.756 67.06 265 273	1,218 0,808 1,775 67,06 1788 2064
Factors affecting (Station type: VA	unoff: N										off is 131' nfall 130'		ious mean

047001 Tamar at Gunnislake

1994

Measuring First year:		ty: NRA-S	w		(nce: 20 (S stn. (m OD		5		C			m): 916.9 OD): 586
Hydromet	tric sta	stistics fo	r 1994											
Flows (m³s ⁻¹): Runoff (mm) Rainfall (mm		JAN 65.500 203.80 191 191	FEB 53.050 163.10 140 165	MAR 33.620 149.70 98 132	APR 33.340 225.00 94 96	MAY 8.382 26.07 24 81	JUN 5.421 9.75 15 31	JUL 3.453 4.91 10 49	AUG 3.868 12.46 11 111	SEP 16.750 66.32 47 142	OCT 22.630 296.20 66 142	NOV 44.120 142.50 125 114	DEC 61.200 294.00 179 238	Year 29.130 296.20 1002 1492
Monthly a	and ye	arly stati:	stics for p	revious r	ecord (Jul	1956 to [Dec 1993)							
Mean flows (m ³ s ⁻¹) Peak flow (r Runoff (mm) Rainfall (mm)	44.950 8.476 89.410 347.90 131 144	36.050 9.161 86.970 306.70 96 98	25.340 6.193 65.520 411.70 74 97	16.480 5.681 35.200 268.00 47 70	11.110 3.112 32.370 154.50 32 71	7.280 1.995 32.990 363.70 21 73	6.367 1.181 28.730 96.00 19 84	8.387 0.757 42.100 238.00 24 93	11.590 1.118 59.840 401.40 33 103	22.520 1.540 65.080 373.50 66 126	34.810 4.213 78.760 530.20 98 136	44,820 13,710 91,690 714,60 131 146	22.428 12.519 34.886 714.60 772 1241
Factors affo		unoff: SRF	e Ei									off is 130 nfall 120		ious mean

047008 Thrushel at Tinhay

1994

Measuring First year:		y: NRA-SV	v		C	Grid referer Level st	nce: 20 (S) tn. (m OD):		5		С			m): 112.7 OD): 375
Hydrome	tric sta	tistics for	r 1994											
Flows (m ³ s ⁻¹): Runoff (mm Rainfall (mn		JAN 6.407 26.77 152 180	FEB 5.160 22.64 111 134	MAR 3.349 28.99 80 114	APR 3.625 32.52 83 90	MAY 0.951 4.56 23 74	JUN 0.605 0.84 14 25	JUL 0.845 1,45 20 44	AUG 1.169 2.42 28 97	SEP 1,801 9,68 41 131	OCT 2.184 29.53 52 128	NOV 3.994 22.68 92 101	DEC 5.812 25.83 138 220	Year 2.979 32.52 834 1338
Monthly .	and yea	arly statis	tics for p	revious r	ecord (Oc	t 1969 to (Dec 1993)							
Mean flows (m³s-1) Peak flow (Runoff (mrr Rainfall (mn *(1970-198	i) n)*	4.923 1.317 9.727 53.32 117 142	3.893 0.951 8.847 61.78 84 98	2.955 0.918 7.477 61.46 70 97	1.625 0.482 4.038 27.72 37 63	1.062 0.239 4.209 38.72 25 65	0.762 0.110 2.500 57.13 18 75	0.547 0.028 2.131 11.97 13 73	0.801 0.019 2.916 33.64 19 86	1.045 0.116 6.687 75.12 24 94	2.326 0.069 6.878 66.18 55 118	3.674 0.442 7.195 57.07 85 129	4.658 1.662 8.122 124.40 111 140	2.351 1.643 3.757 124.40 658 1180

Factors affecting runoff: S H Station type: CC

1994 runoff is 127% of previous mean rainfall 113%

048005 Kenwyn at Truro

1994

Measuring authority First year: 1968	ydrometric statistics for 1994 JAN FEB MAR ows Avg. 1.452 1.440 0.522 (m³s⁻¹): Peek 8.05 11.11 3.91 (noff (mm) 204 182 73 (infall (mm) 143 201 87 Ionthly and yearly statistics for previous receipen Avg. 0.810 0.743 0.534					ce: 10 (SV tn. (m OD)		0			Catchment M		km): 19.1 OD): 152
Hydrometric stati	istics fo	1994											
(m³s=1): Peak Runoff (mm) Rainfatl (mm)	1.452 8.05 204 143	1.440 11.11 182 201	0.522 3.91 73 87	APR 0.640 3.11 87 78 ecord (Oc	MAY 0.292 1.31 41 102 t 1968 to [JUN 0.203 0.61 28 25 Dec 1993 1	JUL 0.109 0.26 15 44	AUG 0.111 1.81 16 100	SEP 0.141 0.60 19 118	OCT 0.274 2.30 38 131	NOV 1.110 3.69 151 134	DEC 1.006 4.04 141 177	Year 0.602 11.11 995 1340
Mean Avg. flows Low (m³s-¹) High Peak flow (m³s-¹) Runoff (mm) Rainfall (mm) Factors affecting rur Station type: CC	0.169 1.506 22.50 114 142	0.743 0.206 1.638 7.19 95 101	0.534 0.144 0.997 5.74 75 95	0.323 0.156 0.613 4.07 44 61	0.199 0.090 0.418 4.56 28 61	0.152 0.070 0.594 3.71 21 64	0.095 0.043 0.245 2.79 13 59	0.089 0.026 0.179 2.29 12 73	0.119 0.037 0.560 4.10 16 86	0.275 0.034 0.899 30.37 39 114	0.469 0.046 1.093 9.74 64 127 off is 1599	0.759 0.218 1.353 14.76 106 140 % of previ	0.379 0.263 0.540 30.37 626 1123 ous mean

048011 Fowey at Restormel

1994

Measuring authori First year: 1961	ty: NRA-S\	N		C	Grid referer Level s	nce: 20 (S) stn. (m OD)		4		c	atchment N		m): 169.1 OD): 420
Hydrometric sta	itistics fo	г 1994											
Flows Avg. (m³s-¹): Peak Runoff (mm) Rainfall (mm)	JAN 13.930 29.88 221 231	FEB 12.490 29.88 179 229	MAR 7.530 24.09 119 153	APR 7.814 29.28 120 110	MAY 2.280 3.40 36 90	JUN 1.871 3.15 29 39	JUL 1.361 2.55 22 62	AUG 1,414 4,92 22 130	SEP 3.374 8.31 52 171	OCT 3.928 30.26 62 162	NOV 9.918 23.99 152 150	DEC 10.020 37.19 159 250	Year 6.283 37.19 1172 1777
Monthly and ye	arly stati:	stics for p	revious r	ecord (Ap	r 1961 to [Dec 1993)							
Mean Avg. flows Low (m³s-1) High Peak flow (m³s-1) Runoff (mm) Rainfall (mm)	9.020 2.267 17.330 104.80 143 178	8.043 2.704 21.780 111.90 116 121	5.953 1.641 12.130 45.62 94 127	4.039 1.684 7.641 24.52 62 83	2.938 1.034 6.447 30.98 47 88	2.236 0.693 7.763 39.44 34 90	1.838 0.562 4.859 31.10 29 97	1.967 0.343 6.044 48.51 31 106	2.533 0.673 10.490 70.02 39 122	4.485 0.617 11.720 35.07 71 142	6.681 0.921 15.450 223.70 102 169	8.970 2.947 20.890 126.60 142 181	4.879 3.391 7.440 223.70 911 1504
Factors affecting r Station type: CC	unoff: SRP	•									off is 129		ous mean

049001 Camel at Denby

1994

Measuring authori First year: 1964	ty: NRA-S	w		C		nce: 20 (\$) stn. (m OD)		2		c	Catchment N		m): 208.8 OD): 420
Hydrometric sta	stistics fo	r 1994											
Flows Avg. (m³s-¹): Peak Runoff (mm) Rainfall (mm)	JAN 18.560 59.77 238 214	FEB 17.090 68.75 198 221	MAR 10.300 27.91 132 149	APR 9.738 46.66 121 103	MAY 3.469 6.35 45 91	JUN 2.258 3.79 28 38	JUL 1.352 2.31 17 56	AUG 1.408 5.37 18 120	SEP 4.146 13.75 51 150	OCT 16.221 74.94 80 166	NOV 13.390 45.19 166 145	DEC 13.600 71.51 175 235	Year 8.402 74.94 1269 1688
Monthly and ye	arly stati:	stics for p	previous r	ecord (Se	1964 to	Dec 1993)							
Mean Avg. flows Low (m³s-1) High Peak flow (m³s-1) Runoff (mm) Rainfall (mm)	11.120 3.819 19.600 73.18 143 165	9.578 4.070 23.260 80.21 112 109	6.999 2.216 16.420 94.75 90 115	4.599 2.081 9.395 35.42 57 77	3.322 0.960 8.491 58.52 43 81	2.799 0.888 15.770 306.40 35 88	2.406 0.582 7.322 40.59 31 97	2.511 0.421 7.858 63.98 32 100	3.006 0.798 11.920 125.80 37 116	5.535 0.882 16.640 92.14 71 138	8.080° 1.371 17.990 94.75 100 153	10.980 4.184 19.110 227.90 141 163	5.898 4.081 8.165 306.40 891 1402
Factors affecting (Station type: VA	runoff: SRF	E									off is 142		ious mean

050002 Torridge at Torrington

1994

Measuring authori First year: 1962	ty: NRA-S\	W		(Grid refere Level s	nce: 21 (S tn. (m OD)		5		c		area (sq kı fax alt. (m	m): 663.0 OD): 621
Hydrometric sta	atistics fo	r 1994											
Flows Avg. (m³s-¹): Peak Runoff (mm) Rainfall (mm)	JAN 47.620 181.60 192 192	FEB 33.950 123.70 124 136	MAR 27.640 126.90 112 149	APR 25.780 188.80 101 105	MAY 5.973 20.48 24 80	JUN 3.193 10.02 12 36	JUL 1.332 2.96 5 53	AUG 1.304 5.11 5 108	SEP 16.080 103.00 63 145	OCT 19.410 381.00 78 142	NOV 31.910 120.50 125 111	DEC 49.790 305.00 201 239	Year 21.930 381.00 1043 1496
Monthly and ye	arly stati:	stics for p	revious r	ecord (Au	g 1960 to	Dec 1993-	-incompl	ete or mis	sing montl	ns total 1.2	2 years)		
Mean Avg. flows Low {m³s-¹} High Peak flow (m³s-¹) Runoff (mm) Rainfall (mm)* *(1962-1993)	30.300 5.018 57.510 391.10 122 131	24,290 4,695 64,240 294,40 89 91	17.800 3.265 51.280 535.60 72 96	10.990 3.082 28.120 164.40 43 68	7.490 1.399 31.290 205.70 30 70	4.811 1.092 20.540 189.90 19 75	4.414 0.443 21.540 310.60 18 77	5.263 0.252 19.690 228.50 21 85	7.345 0.954 45.910 415.00 29 97	16.960 0.668 50.100 276.40 69 117	26.910 3.798 55.730 370.40 105 134	31.560 10.270 64.530 730.00 128 134	15.647 8.968 21.036 730.00 745 1175
F													

Factors affecting runoff: SRP El Station type: VA

1994 runoff is 140% of previous mean rainfall 127%

052007 Parrett at Chiselborough

1994

Measuring authorit First year: 1966	y: NRA-SV	v		C	Grid referer Level st	ice: 31 (S1 in. (m OD):		4			Catchment M		km): 74.8 OD): 219
Hydrometric sta	tistics fo	r 1994											
Flows Avg. (m³s-¹): Peak Runoff (mm) Rainfall (mm)	JAN 3.626 22.55 130 113	FEB 3.037 19.66 98 116	MAR 1.080 19.29 39 72	APR 1.450 17.40 50 56	MAY 1.067 9.15 38 108	JUN 0.391 0.97 14 21 :	JUL 0.259 0.83 9 37	AUG 0.252 0.88 9 77	SEP 0.627 12.79 22 128	OCT 1,100 18,96 39 99	NOV 3.075 34.05 107 125	DEC 2.667 26.83 95 116	Year 1.542 34.05 650 1068
Monthly and yea	ırly statis	tics for p	revious r	ecord (Au	g 1966 to	Dec 1993)							
Mean Avg. flows Low (m³s-1) High Peak flow (m³s-1) Runoff (mm) Rainfall (mm)	2.397 0.258 4.914 36.38 86 104	1.959 0.544 6.120 30.70 64 73	1,496 0,343 3,055 27,46 54 78	0.895 0.285 1.867 21.21 31 50	0.677 0.206 2.048 57.21 24 64	0.479 0.130 1.053 12.81 17 63	0.335 0.106 0.921 16.14 12 54	0.329 0.090 0.988 23.88 12 66	0.450 0.145 2.225 32.25 16 78	1.011 0.186 4.819 28.69 36 89	1.299 0.219 3.789 29.53 45 84	2.153 0.409 4.219 44.94 77 106	1.121 0.564 1.534 57.21 473 909
Factors affecting re Station type: C	unoff: E										off is 1379 nfall 1179		ous mean

052010 Brue at Lovington

1994

Measuring autho First year: 1964	rity: NRA-S\	N		(Grid referer Level st	nce: 31 (S1 tn. (m OD):		3		C			m): 135.2 OD): 260
Hydrometric st	atistics fo	r 1994											
Flows Avg. {m³s-¹): Peak Runoff (mm) Rainfall (mm)	JAN 6.074 44.63 120 134	FEB 3.851 22.14 69 85	MAR 2.537 15.20 50 87	APR 2.900 16.21 56 63	MAY 1.141 10.03 23 80	JUN 0.554 1.58 11 26	JUL 0.357 1.17 7 44	AUG 0.378 6.90 7 87	SEP 0.521 8.22 10 90	OCT 1.646 31.50 33 119	NOV 3.888 39.64 75 85	DEC 4.222 37.27 84 125	Year 2.331 44.63 544 1025
Monthly and y	early statis	stics for p	revious r	ecord (Oc	t 1964 to I	Dec 1993)							
Mean Avg. flows Low (m³s ⁻¹) High Peak flow (m³s ⁻¹) Runoff (mm) Rainfall (mm)	3.482 0.743 5.752 47.28 69 87	3.167 0.910 6.961 53.57 57 65	2.464 0.589 5,263 43.49 49 72	1.567 0.526 3.352 27.19 30 54	1.109 0.313 3.554 95.48 22 62	0.757 0.218 2.203 35.46 15 68	0.798 0.150 4.081 83.00 16 70	0.745 0.130 2.449 48.42 15 72	0.807 0.218 4.873 69.42 15 76	1.403 0.190 4.380 61.06 28 78	2.203 0.407 4.883 74.62 42 84	3.466 1.034 6.158 61.06 69 95	1.826 1.153 2.427 95.48 426 883
Factors affecting	runoff: N									1994 run	off is 128	% of previ	ous mean

Factors affecting runoff: N 1994 runoff is 128% of previous mean Station type: C VA 1994 rainfall 116%

053004 Chew at Compton Dando

1994

Measuring authorit First year: 1958	ty: NRA-SV	W		(Grid referer Level st	nce: 31 (S1 tn. (m OD):		7		C			m): 129.5 OD): 305
Hydrometric sta	itistics fo	r 1994											
Flows Avg. (m³s-1): Peak Runoff (mm) Rainfall (mm)	JAN 4.335 20.35 90 151	FEB 2.939 7.17 55 91	MAR 2.313 14.39 . 48 111	APR 3.275 20.33 66 87	MAY 1.173 3.08 24 85	JUN 0.689 1.09 14 28	JUL 0.539 0.83 11 47	AUG 0.525 0.84 11 89	SEP 0.610 1.12 12 103	OCT 0.979 15.68 20 134	NOV 1.992 9.95 40 87	DEC 4.316 41.85 89 214	Year 1.969 41.85 480 1227
Monthly and yea	arly statis	stics for p	revious r	ecord (Ma	r 1958 to	Dec 1993-	-incompl	ete or miss	sing monti	ns total 1.0) years)		
Mean Avg. flows Low (m³s-¹) High Peak flow (m³s-¹) Runoff (mm) Rainfall (mm)	1.897 0.444 3.935 39.43 39 102	1.687 0.557 4.166 48.99 32 69	1.363 0.410 4.210 50.00 28 79	0.995 0.469 2.185 14.19 20 62	0.803 0.333 2.493 67.50 17 67	0.589 0.287 1.211 13.00 12 70	0.461 0.243 0.811 6.23 10 71	0.455 0.195 1.245 6.09 9 83	0.562 0.232 2.135 59.26 11 90	0.809 0.300 3.251 49.56 17 93	1.229 0.264 3.898 58.85 25 102	1.767 0.622 5.017 63.78 37 114	1.049 0.540 1.766 67.50 256 1002
Factors affecting r	unoff: S.P.									1994 run	off is 188	% of previ	ous mean

Factors affecting runoff: S P 1994 runoff is 188% of previous mean Station type: FL 129%

053006 Frome(Bristol) at Frenchay

Measuring authorit First year: 1961	y: NRA-SV	V		(Grid referer Level st	nce: 31 (Sī tn. (m OD):		2		С	atchment (M	area (sq kr lax alt. (m	
Hydrometric sta	tistics fo	r 1994											
Flows Avg. (m³s-¹): Peak Runoff (mm) Rainfall (mm)	JAN 5.468 22.09 98 108	FEB 3.303 11.96 54 81	MAR 1.734 11.88 31 67	APR 2.416 14.62 42 53	MAY 1.363 10.21 25 94	JUN 0.546 2.07 10 28	JUL 0.323 2.95 6 39	AUG 0.446 5.42 8 73	SEP 0.686 4.77 12 90	OCT 1.035 13.13 19 93	NOV 2.997 8.40 52 81	DEC 5.447 19.27 98 144	Year 2.143 22.09 454 951
Monthly and yea	arly statis	itics for p	revious r	ecord (Se	p 1961 to	Dec 1993)							
Mean Avg. flows Low (m³s-1) High Peak flow (m³s-1) Runoff (mm) Rainfall (mm)	3.401 0.670 6.266 35.06 61 78	2.768 0.613 6.040 41.09 45 53	2,260 0,468 5,762 33,84 41 63	1.375 0.476 3.434 29.63 24 50	1.086 0.228 5.028 49.00 20 60	0.758 0.220 2.973 29.01 13 63	0.589 0.122 3.516 70.79 11 56	0.526 0.139 2.398 12.75 9 69	0.688 0.208 5.113 29.73 12 72	1.226 0.162 4.691 42.93 22 72	2.213 0.211 5.559 39.90 39 77	3.102 0.808 9.807 66.55 56 85	1.662 0.804 2.255 70.79 352 798
Factors affecting re Station type: FL	unoff: N										off is 129° nfall 119°		ous mean

054012 Tern at Walcot

1994

Measuring authori First year: 1960	ty: NRA-S	Т		,	Grid referer Level st	nce: 33 (S. tn. (m OD)		3		c		area (sq kr fax alt. (m	
Hydrometric sta	atistics fo	r 1994											
Flows Avg. (m³s-1): Peak Runoff (mm) Rainfall (mm)	JAN 16.310 34.53 51 71	FEB 10.790 25.60 31 56	MAR 9.065 19.33 29 64	APR 8.864 20.42 27 47	MAY 4.801 7.53 15 38	JUN 3.232 5.09 10 20	JUL 2.891 7.02 9 45	AUG 2.800 4.97 9 46	SEP 5.259 20.50 16 108	OCT 3.965 6.03 12 - 56	NOV 7,463 16,48 23 58	DEC 13.820 38.80 43 95	Year 7.424 38.80 275 704
Monthly and ye	arly stati:	stics for p	revious r	ecord (Jai	n 196 1 to (Dec 1993)					•	* ·*	
Mean Avg. flows Low (m³s-¹) High Peak flow (m³s-¹) Runoff (mm) Rainfall (mm)	11.060 4.018 20.320 60.05 35 61	9.894 3.479 22.280 45.98 28 44	8.656 4.069 17,810 40.53 27 53	7.151 3.557 12.320 40.73 22 50	6,114 2,904 22,390 40,35 19 61	4,486 1,026 9,069 27,00 14 57	3.701 0.926 14.060 48.71 12 55	3.814 1.171 6.655 38.53 12 63	3.857 1.680 9.490 32.17 12 61	5.147 2.227 11,590 37,59 16 59	7.378 - 2.538 15.190 44.54 22 69	10.540 3.346 24.950 55.82 33 68	6.805 3.757 10.266 60.05 252 701
Factors affecting Station type: FV	runoff: GEI										ioff is 109 nfall 100	% of previ %	ous mean

054019 Avon at Stareton

1994

Measuring First year:		y: NRA-S	Т		(Grid referer Level st	nce: 42 (\$i tn. (m OD)		5		С		area (sq kı fax alt. (m	
Hydrome	tric sta	tistics fo	r 1994											
Flows (m³s = ¹): Runoff (mm Rainfall (mm	³ s ⁻¹): Peak 32.68 25.76 7.52 ff (mm) 60 44 27				APR 4,498 16,63 34 50	MAY 1.449 3.31 11 58	JUN 0.776 1.73 6 18	JUL 0.570 1.01 4 35	AUG 0.582 1.39 4 47	SEP 1.936 11.32 14 117	OCT 1,263 9,65 10 60	NOV 4.200 20.79 31 56	DEC 4.476 13.39 35 69	Year 3.083 32.68 280 703
Monthly -	and yea	erly stati:	stics for p	revious r	ecord (Oc	t 1962 to (Dec 1993)							
Mean flows (m³s-1) Peak flow (Runoff (mm Rainfall (mm	n) n)	4.499 0.798 9.679 55.83 35 55	4,310 0,777 12,890 59,60 30 43	3.986 0.545 8.577 55.89 31 53	2.774 0.485 6.356 42.67 21	1.969 0.474 6.149 39.05 15 55	1.382 0.368 4.862 42.89 10 60	1.028 0.247 5.379 71.36 8 58	1.028 0.356 3.332 26.08 8 66	1.165 0.414 6.469 54.17 9 57	1.724 0.507 5.361 32.89 - 13 55	2.514 0.549 7.450 40.38 19 58	4.073 0.667 10.400 56.28 31 61	2:531 1:094 3:588 71:36 230 670

Factors affecting runoff: S El Station type: C VA 1994 runoff is 122% of previous mean rainfall 105%

054020 Perry at Yeaton

1994

1994

Measuring authori First year: 1963	ty: NRA-S1	Г	EB MAR APR MAY JUN JUL AUG 1.604 2.383 2.406 1.061 0.702 0.511 0.45 9.39 5.17 7.72 1.54 0.96 0.94 0.54 48 35 34 16 10 8 6 74 65 55 40 20 35 44 65 for previous record (Oct 1963 to Dec 1993) 1.629 2.277 1.694 1.327 0.950 0.695 0.67 6.699 0.728 0.520 0.379 0.271 0.26 1.507 4.265 3.041 4.232 2.046 2.735 1.44					2		c	atchment N		m): 180.8 OD): 356
Hydrometric sta	itistics fo	r 1994											
Flows Avg. (m³s-¹): Peak Runoff (mm) Rainfall (mm) Monthly and ye	JAN 4.778 10.61 71 85 arly statis		2.383 5.17 35 65	2.406 7.72 34 55	1.061 1.54 16 40	0.702 0.96 10 20	0.511 0.94 8	AUG 0.433 0.57 6 44	SEP 0.615 1.11 9 106	OCT 0.722 1,42 11 64	NOV - 1.655 5.17 24 66	DEC 3.346 9.45 50 117	Year 1.842 10.61 321 771
Mean Avg. flows Low (m³s-1) High Peak flow (m³s-1) Runoff (mm) Rainfall (mm)	2.838 0.901 4.870 14.26 42 69	2.629 0.669 6.507 17.66 35 53	0.796	0.728	0.520	0.379	0.271	0.678 0.208 1.416 5.49 10 62	0.689 0.350 1.785 7.32 10 64	1.088 0.412 3.308 7.52 16 66	1.717 0.427 3.103 10.02 25 78	2.657 0.725 6.244 13.73 39 80	1.599 0.809 2.335 17.66 279 759
Factors affecting r Station type: C	unoff: GEI										off is 115° nfall 102°		ous mean

							,,,	******					_	. , , , -
Measuring First year:		ty: tH			(Grid referer Level sti	nce; 22 (SI n. (m OD);		2					q km): 8.7 OD): 740
Hydrome	etric sta	itistics fo	r 1994 -											
Flows (m³s ⁻¹); Runoff (mr Rainfall (m	n)	JAN 1,151 14,63 354 402	FEB 0.683 5.84 190 204	MAR 1.307 10.33 403 495	APR 0.835 7.76 249 271	MAY 0.183 0.94 56 77	JUN 0,363 5,63 108 164	JUL 0.121 0.70 37 75	AUG 0.170 0.65 52 166	SEP 0.634 4.23 189 234	OCT 0.715 6.27 220 304	NOV 0.788 6.97 235 235	DEC 1.389 13.18 428 580	Year 0.695 14.63 2521 3207
Monthly	and ye	arly statis	stics for p	revious r	ecord (Oc	t 1953 to (Dec 1993-	-incomple	te or miss	ing monti	s total 11.	8 years)		
Mean flows (m³s-1) Peak flow Runoff (mr Rainfall (m	Avg. Low High (m ³ s ⁻¹) n)	0.773 0.363 1.567 14.50 238 289	0.580 0.136 1.249 17.00 163 185	0.615 0.171 1.566 16.79 189 214	0.348 0.046 0.878 11.64 104 135	0.238 0.046 0.818 9.86 73 126	0.230 0.060 0.638 10.66 68 134	0.295 0.043 0.754 - 8.84 - 91 151	0.422 0.032 0.935 32.22 130 189	0.513 0.073 1.092 15.38 153 218	0.651 0.059 1,464 18.86 200 245	0.812 0.347 1.420 17.77 242 280	0.821 0.175 1.695 17.11 253 290	0.525 0.317 0.646 32.22 1904 2456
Factors at Station ty		unoff: N										off is 132 ^s		ous mean

Comment: 1994 monthly rainfall totals derived from data supplied by Met. Office.

054022 Severn at Plynlimon flume

054024 Worfe at Burcote

1994

Measuring authorit First year: 1969	y: NRA-ST			(Grid referer Level st	nce: 32 (SC tn. (m OD):		3		C	atchment V	area (sq kr lax alt. (m	
Hydrometric sta	tistics fo	r 1994											
Flows Avg. (m³s-1): Peak Runoff (mm) Rainfall (mm) Monthly and yea	JAN 2.748 6.10 29 73 arly statis	FEB 2.231 5.14 21 60 stics for p	MAR 1.692 2.78 18 61 previous re	APR 1.676 3.12 17 46 ecord (Ap	MAY 0.945 1.53 10 37 r 1969 to 8	JUN 0.591 1.42 6 31 Dec 1993)	JUL 0.387 1.08 4 50	AUG 0.494 0.96 5 52	SEP 1.221 5.27 12 129	OCT 0.851 1.73 9 52	NOV 1.491 3.30 15 56	DEC 1.995 3.55 21 87	Year 1.354 6.10 166 734
Mean Avg. flows Low (m³s-¹) High Peak flow (m³s-¹) Runoff (mm) Rainfall (mm) Factors affecting in Station type: C	1.860 0.617 3.144 10.84 19 66 unoff: PGE	1.773 0.593 3.802 10.56 17 45	1.593 0.712 3.171 6.86 17 55	1.408 0.548 2.491 7.73 14 51	1.138 0.426 4.490 7.26 12 57	0.846 0.256 1.527 5.65 9 57	0.587 0.101 1.293 4.06 6 51	0.641 0.094 1.111 4.32 7 64	0.643 0.322 0.887 5.10 6 57		1.123 0.499 2.235 5.88 11 65 off is 116		1.164 0.687 1.519 16.00 142 691 ous mean

054034 Dowles Brook at Oak Cottage, Dowles

1994

		ty: NRA-SI	ı		•				4				lax alt. (m	
Hydrometric statistics for 1994 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC														
		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP			DEC	Year
Flows	Ava.	1.176	1,214	0.379	0.567	0.144	0.069	0.041	0.036	0.213	0.133	0.626	1.091	0.469
(m³s ⁻¹):	: Pesk	6.33	6.78	1,76	4.43	0.54	0.12	0.08	0.13	2.80	0.97	3.12	7.39	7.39
Runoff (m	m)	77	72	25	36	9	4	3	2	14	9		72	363
Rainfall (m	ım)	85	88	50	48	45	19	40	53	136	56	69	105	794
Monthly	ainfall (mm) 85			revious r	ecord (Oc	t 1971 to l	Dec 1993-	-incomple	te or miss	ing month	s total 3.2	years)		
Mean	Ava.	0.787	0.688	0.626	0.457	0.292	0.223	0.086	0.089	0.120	0.216	0.328	0.689	0.382
flows	Low	0.097	0.160	0.108	0.116	0.073	0.033	0.017	0.019	0.020	0.036	0.046	0.072	0.240
(m³s-1)	High	1.617	1.738	1.637	1.090	1.016	0.826	0.255	0.347	0.880	1.047	0.786	1.414	0.508
Peak flow		16.57	9.67	14.96	12.90	12.14	21.64	4.73	6.39	19.35	5.09	8.61	18.90	21.64
Runoff (m		51	43	42	28	19	14	6	5	8	15	20	45	296
Rainfall (m		71	51	62	51	54	60	56	60	64	64	58	77	728

Factors affecting runoff: N Station type: FVVA 1994 runoff is 123% of previous mean rainfall 109% Comment: Reprocessing of post-1984 flow data has resulted in changes to previously published monthly average mean flows.

Tanat at Llanyblodwel 054038

1994

Measuring authori First year: 1973	ity: NRA-S	т		(Grid referei Level s	nce: 33 (S. tn. (m OD):		5		C			m): 229.0 OD): 827
Hydrometric st	atistics fo	r 1994											
Flows Avg. (m³s-1): Peak Runoff (mm) Rainfall (mm) Monthly and ye	JAN 16.840 51.30 197 192	FEB 12.600 81.36 133 130	MAR 10.390 53.77 122 155	APR 10.900 46.32 123 114	MAY 1.979 3.06 23 54	JUN 1.343 2.97 15 48 Dec 1993-	JUL 0.607 1.89 7 46	AUG 0.412 0.87 5 62	SEP 3.135 21.25 35 129 ing month	OCT 3.639 15.93 43 99	NOV 11,290 46,92 128 118	DEC 17.340 68.96 203 254	Year 7.508 81.36 1034 1401
Mean Avg. flows Low (m³s-¹) High Peak flow (m³s-²) Runoff (mm) Rainfall (mm) Factors affecting Station type: FV	11.970 5.037 19.220 123.10 140 135	9.833 3.477 21.460 101.20 105 96	8.663 1.406 17.800 85.77 101 109	5.465 1.392 9.686 49.50 62 71	3.278 0.867 10.250 31.27 38 74	2,379 0,699 4,751 56,87 27 71	1.332 0.348 2.589 13.17 16 64	2.413 0.190 7.609 55.72 28 91	3.425 0.520 9.885 69.56 39 105	6.489 1.701 15.020 82.17 76 118 1994 rur	9.533 2.895 17.370 76.12 108 132		6.448 4.185 7.510 123.10 889 1224 ious mean

055008 Wye at Cefn Brwyn

1994

Measuring authorit First year: 1951	ty: IH			(Grid referer Level st	nce: 22 (SI n. (m OD):		8			Catchmen N		km): 10.6 OD): 740
Hydrometric sta	tistics fo	r 1994											
Flows Avg. {m³s⁻¹}: Peak Runoff (mm) Rainfall (mm)	JAN 1.475 23.36 374 382	FEB 0.828 6.13 190 197	MAR 1.630 20.11 414 492	APR 0.989 12.14 243 263	MAY 0.231 2.36 59 80	JUN 0.476 10.06 117 157	JUL 0.145 2.17 37 84	AUG 0.233 1.46 59 164	SEP 0.830 6.54 204 228	OCT 0.986 14.48 250 312	NOV 0.985 13.65 242 236	DEC 1.876 22.05 476 548	Year 0.891 23.36 2665 3143
Monthly and yea	arly statis	stics for p	revious r	ecord (Au	g 1951 to	Dec 1993-	-incompl	ete or miss	sing montl	ns total 3.2	2 years)		
Mean [†] Avg. flows Low (m³s-¹) High Peak flow (m³s-¹) Runoff (mm) Rainfall (mm)	0.967 0.492 1.870 23.47 246 262	0.736 0.137 1.486 21.10 170 175	0.698 0.206 1.735 24.23 177 202	0.521 0.064 1.312 19.12 128 149	0.374 0.054 1.144 17.89 95 128	0.341 0.074 0.954 25.49 84 137	0.437 0.053 1.264 19.11 111 163	0.585 0.036 1,478 48.87 149 200	0.660 0.050 1.478 22.64 162 202	0.819 0.092 2.031 27.68 208 241	1.045 0.376 1.761 29.15 257 274	1.145 0.198 2.655 32.00 291 314	0.694 0.447 0.994 48.87 2077 2447
Enctors affection r	unoff: N									1994 run	off is 128	% of previ	ious mean

Factors affecting runoff: N Station type: CC

Comment: 1994 monthly rainfall totals derived from data supplied by Met. Office.

runoff is 128% of previous mean rainfall 128%

055013 Arrow at Titley Mill

1994

Measuring authorit First year: 1966	y: NRA-W	EL		C	Grid referer Level str	nce: 32 (\$0 n. (m OD):		5		С			m): 126.4 OD): 542
Hydrometric sta	tistics fo	r 19 9 4											
Flows Avg. (m ³ s ⁻¹): Poak Runoff (mm) Rainfall (mm)	JAN 6.133 22.95 130 145	FEB 4.551 14.26 87 116	MAR 2.738 9.40 58 84	APR 3.451 13.10 71 69	MAY 1.482 5.09 31 84	JUN 0.947 2.16 19 30	JUL 0.360 0.57 8 47	AUG 0.285 1.13 7 73	SEP 0.780 3.47 16 130	OCT 1.339 8.85 28 100	NOV 3.794 9.28 78 89	DEC 5.209 27.53 110 176	Year 2.581 27.53 644 1143
Monthly and yea	arly statis	tics for p	revious r	ecord (Oc	1966 to [Dec 1993)							
Mean Avg. flows Low (m³s-1) High Peak flow (m³s-1) Runoff (mm) Rainfall (mm)	4,755 1,528 9,004 101,10 101 112	3.953 1.369 8.763 42.40 76 80	3.393 0.666 8.933 57.85 72 84	2.232 0.632 5.028 37.95 46 61	1.627 0.355 5.001 32.49 34 70	1.082 0.257 2.559 13.09 22 68	0.691 0.211 3.842 30.68 15 58	0.649 0.154 2.219 24.80 14 77	0.884 0.135 2.644 18.85 18	1.943 0.255 6.916 36.45 41 96	3.071 0.662 6.625 34.78 63 99	4,407 1,366 8,464 63,34 93 113	2.385 1.309 3,418 101.10 596 1004
Factors affecting r Station type: VA	unoff; N										off is 1081 nfall 1141		ous mean

Comment: July, August and September 1994 average flows have been estimated.

055014 Lugg at Byton

1994

Measuring authori First year: 1966	ty: NRA-W	/EL		C	Grid referer Level sti	nce: 32 (SC n. (m OD):		7		c			m): 203.3 OD): 660
Hydrometric sta	atistics fo	r 1994											
Flows Avg. (m³s-¹): Peak Runoff (mm) Rainfall (mm) Monthly and ye	JAN 11,120 24,83 147 147 arly statis	FEB 8.920 17.72 106 112 stics for p	MAR 6.972 14.55 92 104 previous r	APR 7,123 16,21 91 68 ecord (Oc	MAY 3.003 3.93 40 74 t 1966 to [JUN 1.747 2.87 22 28 Dec 19931	JUL 1.070 1.45 14 40	AUG 0.797 1.08 10 68	SEP 1.233 3.53 16 130	0CT 1.849 10.11 24 103	NOV 7.126 18.10 91 101	DEC 12.580 28.51 166 196	Year 5.276 28.51 819 1171
Mean Avg. flows Low (m³s-1) High Peak flow (m³s-18 Runoff (mm) Rainfall (mm) Factors affecting r Station type: FVV	7.516 2.604 11.940 54.27 99 116 runoff; P	6.730 2.597 16.530 37.53 81 82	5.733 1.504 13.980 33.24 76 87	4.082 1.626 8.647 30.08 52 66	2.947 1.054 7.994 45.56 39 74	1.984 0.772 4.113 14.18 25 66	1.371 0.557 5.253 26.16 18 59	1,217 0,414 3,599 13,32 16 77	1.391 0.420 4.313 12.46 18 87		4,416 1,219 8,774 27,22 56 99 off is 136 nfall 115		3.883 2.321 4.954 54.27 603 1022 ous mean

055018 Frome at Yarkhill

1994

Measuring autho First year: 1968	rity: NRA-W	ÆL.		(Grid referer Level st	nce: 32 (S(tn. (m OD)		8		С		area (sq kı lax alt. (m	m): 144.0 OD): 244
Hydrometric s	atistics fo	r 1994											
Flows Avg. (m³s-¹): Peak Runoff (mm) Rainfall (mm)	JAN 2.925 13.66 54 76	FEB 2.769 14.54 47 78	MAR 1,120 3,09 21 49	APR 1.283 6.42 23 47	MAY 0.831 1.45 15 63	JUN 0.438 0.66 8 16	JUI. 0.256 0.60 5 37	AUG 0.203 0.29 4 56	SEP 0.401 2.39 7 132	OCT 0.440 2.84 8 71	NOV 1.371 7.56 25 62	DEC 3.136 17.90 58 114	Year 1.256 17.90 275 801
Monthly and y	early stati:	stics for p	previous r	ecord (Oc	t 1968 to [Dec 1993)							
Mean Avg. flows Low (m³s-1) High Peak flow (m³s-1) Runoff (mm) Rainfall (mm)	2.587 0.214 4.668 24.98 48 75	2.352 0.389 5.456 24.99 40 50	1.979 0.509 5.176 24.28 37 59	1.301 0.359 3.299 24.57 23 47	1.008 0.274 3.972 25.89 19 57	0.594 0.146 1.349 16.99 11 57	0.341 0.091 0.630 5.96 6 49	0.318 0.063 0.759 9.61 6	0.306 0.096 0.970 15.68 6 60	0.494 0.142 2.405 11.25 9 61	0.993 0.119 2.266 18.51 18 64	1.989 0.210 4.230 25.14 37 72	1.184 0.672 1.628 25.89 259 715
Factors affecting Station type: VA	runoff: E										off is 106 nfall 112		ous mean

055023 Wye at Redbrook

	s^1 ; Peak 450.50 359.80 340.70 4 4 91 83 83 141 91 83 142 110 113 141 142 110 113 141 142 110 113 141 142 110 113 141 141 142 143						nce: 32 (S stn. (m OD		O		C		area (sq kr Max alt. (n	
Hydrom	etric st	atistics fo	or 1994											
Flows		210.800	150.400	124.300	APR 129.500	MAY 40.110	JUN 28,480	JUL 13.820	AUG 13.240	SEP 37.860	OCT 48.490	NOV 123.600	DEC 216.400	Year 94.456
(m³s-1): Runoff (mi	m)	141	91	83	410.70 84	107.50 27	50.15 18	23.86 9	20.13 9	173.90 24	301.70 32	304,10 80	751.10 145	751.10 743
Rainfall (m Monthly			-		81 record iΩd	76 •• 1936 ••	33 Dec 1993-	42 —incomple	72 ete or mis	123 sino monti	107 he total 0 '	92	193	1184
Mean					64.850	43,440	34.120	24,180	28.590	39.770	59.670	101.100	127,000	72.329
flows	Low	25.050	30.760	21.840	17.930 143.600	12.340	10.970	7.426 95.830	5.180 83.680	7.271 174.000	9.582 174.700	31.730 252.400	46.890 262.200	39.916 113.382
Peak flow	(m³s-1)	748.00	700.40	905.40	493.30	387.90	467.20	368.30	347.80	531.70	472.90	600.30	812.70	905.40
Rainfall (m		112	7 8	76	64	72	63	68	83	26 86	96	111	85 115	569 1024
•	m) ffecting		78		42 64	29 72	22 63	16 68	19 83	26 86	1994 rui		1% of prev	/i

056013 Yscir at Pontaryscir

1994

Measuring authority First year: 1972	: NRA-WE	L		C	Grid referer Level str	ice: 32 (SC n. (m OD):		1					km): 62.8 OD): 474
Hydrometric stati	istics for	1994											
Flows Avg. (m³s-¹): Peak Runoff (mm) Rainfall (mm)	JAN 4.686 23.88 200 203	FEB 3.154 12.27 122 137	MAR 3.801 20.71 162 192	APR 3.382 23.38 140 124	MAY 1.019 9.78 43 86	JUN 0.564 1.56 23 51	JUL 0.316 0.90 13 64	AUG 0.228 0.35 10 70	SEP 0.870 4.48 36 121	OCT 1.800 18.81 77 148	NOV 3.555 14.94 147 127	DEC 5.688 41.84 243 288	Year 2.419 41.84 1215 1611
Monthly and year	rly statis	tics for p	revious re	ecord (Ma	y 1972 to	Dec 1993-	incompl	ete or mis	sing monti	ns total 0.2	2 years)		
Mean Avg. flows Low (m³s-¹) High Peak flow (m²s-¹) Runoff (mm) Rainfall (mm)* *(1973-1993)	3.557 1.146 5.795 36.98 152 169	2.669 0.920 5.914 34.72 104 109	2.532 0.403 6.303 40.55 108 131	1.477 0.431 3.211 13.74 61 77	0.968 0.269 3.041 14.81 41 80	0.723 0.214 1.788 74.33 30 77	0.526 0.150 1.758 11.06 22 81	0.775 0.104 3.044 30.69 33 102	1.111 0.251 3.947 21.44 46 126	2.093 0.214 4.280 85.01 89 144	3.032 0.941 5.290 34.02 125 154	3.672 1.540 6.392 59.93 157 184	1.926 1.286 2.465 85.01 968 1434

Factors affecting runoff: N Station type: C

1994 runoff is 126% of previous mean rainfall 112%

057008 Rhymney at Llanedeyrn

1994

Measuring authority: NRA-WEL First year: 1973 Catchment area (sq km): 178.7 Max alt. (m OD): 617 Grid reference: 31 (ST) 225 821 Level stn. (m OD): 11.80 Hydrometric statistics for 1994 JAN 14.330 MAR 10.010 APR 7.918 MAY JUN 2,417 24.42 JUL 1.135 AUG SEP OCT NOV DEC . 0.819 2.37 12 2.063 15.03 30 12.250 66.33 15.760 117.80 6.998 117.80 3.535 4.643 Flows Avg. (m³s-1): Peak Runoff (mm) 9.198 3.41 17 83.56 150 35.97 115 13.44 53 86.96 60.08 33.88 70 172 35 1235 215 125 Rainfall (mm) 230 147 199 111 108 67 57 80 116 179 293 1759 Monthly and yearly statistics for previous record (Jan 1973 to Dec 1993) Avg. Low 2.800 1.985 9.549 5.359 9.789 8.108 6.930 4.299 1.578 2.436 Mean 0.602 4.235 27.39 24 77 flows Low (m³s-1) High Peak flow (m³s-1) 0.570 11.500 0.748 13.700 2.355 16.560 128.30 2.903 7.153 156.70 3.313 17.500 2.732 22.510 1.342 1.204 9.695 0.611 8.340 0.873 4.604 0.453 10.450 3.218 17.370 20,960 108.30 55.31 62 31.31 42 54.31 29 87.41 37 156.70 110.50 101.60 118.50 147.30 114 150 Runoff (mm) 104 103 132 172 1414 Rainfall (mm) 167 76 75 148

Factors affecting runoff: S PGE Station type: FVVA

1994 runoff is 130% of previous mean rainfall 124%

058009 Ewenny at Keepers Lodge

1994

Measuring authorit First year: 1971	y: NRA-W	EL		(Grid referer Level s	nce: 21 (SS stn. (m OD)		2			Catchment Ma	area (sq k ax alt. (m (
Hydrometric sta	tistics fo	r 1994											
Flows Avg. (m³s ⁻¹): Peak Runoff (mm) Rainfall (mm)	JAN 5.948 50.72 255 221	FEB 3.412 16.89 132 130	MAR 5.516 37.63 236 226	APR 3.918 56.59 162 120	MAY 1,372 11,18 59 86	JUN 0.867 9.13 36 72	JUL 0.599 3.08 26, 74	AUG 0.539 3.17 H_ 23 ₀ : 108	SEP 0.772 6.33 .32 99	OCT 2.937 73.68 126 185	NOV 3.551 35.06 147 yin 158	DEC 4.983 54.65 214 256	Year 2.870 73.68 1448 1735
Monthly and yea	arly statis	stics for p	revious r	ecord (No	v 1971 to	Dec 1993-	—incompl	ete or misa	ing month	ns total 0.2	2 years)		
Mean Avg. flows Low (m³s-¹) High Peak flow (m³s-¹) Runoff (mm) Rainfall (mm)	2.931 1.268 5.921 69.10 126 145	2.494 1.224 4.745 30.15 97 99	2.283 0.804 6.004 51.23 98 113	1.529 0.654 2.683 27.50 63 73	1.089 0.500 2.515 20.44 47 76	0.919 0.431 1.756 17.24 38 88	0.862 0.302 2.196 28.97 37 84	1.030 0.220 3.879 57.64 44 110	1.265 0.458 3.604 42.60 52 129	2.036 0.409 4.391 59.45 87 141	2.731 1.082 5.680 65.14 113 146	2.976 1.323 5.988 55.14 128 147	1.843 1.037 2.344 69.10 931 1351
Factors affecting re Station type: FVV											off is 1569 nfall 1289		ous mean

060002 Cothi at Felin Mynachdy

					_		-						
Measuring authori First year: 1961	ty: NRA-W	'EL		(nce: 22 (SI tn. (m OD)		5		C			m): 297.8 OD): 484
Hydrometric sta	atistics fo	r 1994											
Flows Avg. (m³s-¹): Peak Runoff (mm) Rainfall (mm)	JAN 21.600 100.30 194 228	FEB 16.560 75.66 135 155	MAR 18.100 96.10 163 229	APR 16.080 80.80 140 150	MAY 3.710 8.39 33 61	JUN 2.942 9.92 26 76	JUL 2.577 9.23 23 117	AUG 3.885 36.04 35 109	SEP 7.373 25.00 64 130	OCT \ 8.426 58.56 76 153	NOV 17,410 57,18 152 139	DEC 32.040 190.10 288 342	Year 12.543 190.10 1328 1889
Monthly and ye	arly stati:	stics for p	revious r	ecord (Oc	t 1961 to l	Dec 1993-	—incomple	ete or miss	sing month	s total 0.2	years)		
Mean Avg. flows Low (m³s-¹) High Peak flow (m³s-¹) Runoff (mm) Rainfall (mm)	18.810 2.990 37.580 219.10 169 182	14.250 3.708 40.210 181.20 117 119	12.670 2.821 40.710 220.90 114 133	8.736 1.444 20.380 85.88 76 99	6.408 0.835 14.820 87.22 58 100	4.467 0.824 13.070 90.33 39 97	3.492 0.418 11.810 144.40 31 98	6.350 0.363 23.350 171.00 57 127	7.394 1.500 23.920 129.70 64 140	13.910 1.610 37.940 283.70 125 177	18.080 7,211 36,270 194,50 157 177	20.480 5.748 41.140 367.70 184 193	11.249 7.174 14.950 367.70 1192 1642
Factors affecting r Station type: VA	unoff: N										off is 111 nfall 115		ous mean

060010 Tywi at Nantgaredig

1994

Measuring authorit First year: 1959	y: NRA-W	VEL		(Grid referer Level s	nce: 22 (Si stn. (m OD		6		Ca			n): 1090.4 1 OD): 792
Hydrometric sta	tistics fo	or 1994											
Flows Avg. (m³s-¹): Peak Runoff (mm) Rainfall (mm)	JAN 78.470 199.90 193 229	FEB 54.300 137.10 120 141	MAR 65.970 203.00 162 232	APR 58,090 202,80 138 146	MAY 11.090 23.47 27 63	JUN 8.390 38.30 20 77	JUL 5.848 20.53 14 92	AUG 8.134 55.05 20 96	SEP 20.620 62.88 49 124	OCT 28.500 157.20 70 168	NOV 58.200 143.90 138 137	DEC 92.990 281.60 228 329	Year 40.823 281.60 1181 1834
Monthly and yea	irly statí	stics for (previous r	record (Oc	t 1958 to I	Dec 1993-	incomple	ete or miss	ing montl	ns total 0.1	years)		
Moan Avg. flows Low (m³s=') High Peak flow (m³s=') Runoff (mm) Rainfall (mm) Factors affecting re Station type: FVV		48.900 12.210 109.300 578.80 109 114	42.540 9.657 137.800 702.30 104 112	31.920 6.201 64.470 215.30 76 111	22.250 4.507 51.420 180.10 55 96	15.160 3.736 43.990 256.80 36 96	12.610 2.752 42.120 295.90 31 105	20.600 2.699 78.470 312.50 51 124	25.250 1.523 76.490 322.80 60 121		61.540 23.910 122.600 461.10 146 172 noff is 106 infall 116		38.326 22.516 54.099 1200.00 1109 1581

063001 Ystwyth at Pont Llolwyn

1994

Measuring authori First year: 1963	ty: NRA-W	'EL		(nce: 22 (Sf tn. (m OD):		4		C		area (sq k Nax alt. (m	m): 169.6 OD): 611
Hydrometric sta	atistics fo	រ 1994											
Flows Avg. (m³s-¹): Peak Runoff (mm) Rainfall (mm) Monthly and ye	JAN 13.510 87.18 213 213 arly statis	FEB 8.048 24.45 115 118 stics for p	MAR 15.060 64.88 238 255 previous r	APR 10.110 61.57 155 145 ecord (Oc	MAY 1.626 9.62 26 56 t 1 963 to I	JUN 1.882 18.25 29 73 Dec 1993–	JUL 1.084 6.71 17 73 —incomple	AUG 0.427 2.03 7 97	SEP 4,799 19,80 73 150	OCT 7.458 79.62 118 181 is total 0.2	NOV 7.867 43.82 120 126	DEC 15.250 101.40 241 298	Year 7.266 101.40 1351 1785
Mean Avg. flows Low (m³s-¹) High Peak flow (m³s-¹) Runoff (mm) Rainfall (mm) Factors affecting r Station type: VA	9.430 2.268 15.330 105.60 149 156 runoff: N	6.865 2.283 15.200 88.63 99 102	6.280 2.180 18.470 126.70 99 120	4.424 0.961 10.080 90.32 68 88	3.083 0.577 10.100 105.10 49 87	2.566 0.625 7.571 129.70 39 93	2.665 0.422 5.831 68.24 42 100	3,456 0,181 8,556 174,30 55 114	4.297 0.882 10.670 76.84 66 129		9.430 3.757 18.320 128.10 144 168 off is 123		5.892 3.783 7.775 210.40 1096 1490 ious mean

064001 Dyfi at Dyfi Bridge

1994

Measuring authori First year: 1962	ty: NRA-W	/EL		Ó	Grid refere Level :	nce: 23 (Si stn. (m OD		9		C	atchment N		m): 471.3 OD): 907
Hydrometric sta	atistics fo	r 1994											
Flows Avg. (m³s-¹): Peak Runoff (mm) Rainfall (mm) Monthly and ye	JAN 49.710 327.30 283 292	FEB 32.440 153.50 167 162	MAR 55.450 303.60 315 331	APR 36.960 245.50 203 192	MAY 6.633 38.55 38 58	JUN 10.130 104.30 56 113	JUL 3.840 28.74 22 63	AUG 4.704 18.88 27 129	SEP 26.090 127.00 143 191	OCT 24.020 147.70 137 193	NOV 41.660 311.30 229 187	DEC 67.110 371.90 381 406	Year 29.888 371.90 2000 2317
Mean Avg. flows Low (m³s-1) High Peak flow (m³s-1) Runoff (mm) Rainfall (mm)	34,070 6,245 68,810 350,20 194 204	25.390 5.174 55.560 342.20 131 133	27.540 5.340 75.790 360.70 156 164	16.870 2.626 42.490 288.10 93 109	11,440 1,295 31,380 337,20 65 103	9.577 1.618 21.770 402.10 53 108	8.630 0.822 18.780 162.00 49 111	13.770 0.663 40.440 210.00 78 144	16.860 5.966 36.260 329.80 93 163	27.750 9.697 76.960 344.00 158 190	36.330 14.530 70.470 375.50 200 212	42.070 7.501 88.280 580.50 239 244	22.530 14.412 26.520 580.50 1508 1885
Factors affecting r Station type: VA	unom: N										off is 133 nfall 123		ious mean

064002 Dysynni at Pont-y-Garth

1994

Measuring au First year: 19		NRA-W	EL		(Grid referer Level s	nce: 23 (Sh itn. (m OD)		6					km): 75.1 OD): 892
Hydrometri	c stati:	stics fo	r 1994											
	vg. esk	JAN 5.659 24.69 202 262	FEB 4.247 26.12 137 167	MAR 6.417 25.80 229 313	APR 6.401 29.88 221 181	MAY 1,488 5,18 53 56	JUN 2.098 25.37 72 141	JUL 1.244 4.74 44 96	AUG 1.852 7.08 66 1 161	SEP 5.249 28.64 181 205	OCT 5.858 40.11 209 237	NOV 7.598 56.52 262 210	DEC 10.760 60.56 384 404	Year 4.907 60.56 2060 2433
Monthly an	d year	ly statis	stics for p	revious r	ecord (Jai	1966 to I	Dec 1993-	-incomple	ete or miss	ing month	s total 3.2	years)		
flows L		6.249 3.371 11.830 61.40 223 220	4.809 1.548 10.330 41.34 156 148	4.982 0.986 14.780 98.71 178 186	3.584 0.457 7.209 48.57 124 128	2.506 0.298 7.602 76.32 89 121	2.431 0.427 5.921 48.42 84 139	2.676 0.278 5.158 53.35 95 142	3.685 0.289 8.900 56.75 131 172	4.063 1.926 8.282 70.14 140 188	6.159 2.231 12.350 107.70 220 236	7.686 3.011 15.460 121.30 265 243	7.818 3.782 13.070 84.70 279 254	4.723 3.523 7.137 121.30 1984 2175
Factors affec		off: N										off is 104		ious mean

Communt: The overall water balance for this catchment is under review.

065005 Erch at Pencaenewydd

1994

Measuring authorit First year: 1973	γ: NRA-W	EL		C	Grid referen Level st	ice: 23 (Sl in. (m OD):		1			Catchment N		km): 18.1 OD): 564
Hydrometric sta	tistics fo	1994											
Flows Avg. (m³s⁻¹): Peak Runoff (mm) Rainfall (mm)	JAN 0.932 4.38 138 146	FEB 0.885 5.80 118 144	MAR 1.141 11.79 169 207	APR 0.977 4.82 140 150	MAY 0.350 1.17 52 47	JUN 0.162 0.62 23 49	JUL 0.179 0.99 27 96	AUG 0.180 1.47 27 92	SEP 0.317 1.35 45 145	OCT 0.590 5.22 87 138	NOV 0.964 7.60 138 144	DEC 1,204 9,24 178 236	Year 0.655 11.79 1142 1594
Monthly and yea	arly statis	tics for p	revious re	ecord (Jar	1973 to [Dec 1993)							
Mean Avg. flows Low (m³s-¹) High Peak flow (m³s-¹) Runoff (mm) Rainfall (mm) Factors affecting n	0.966 0.372 1.673 10.41 143 145 unoff: N	0.779 0.366 1.869 15.45 105 99	0.755 0.311 1.804 19.78 112 128	0.487 0.177 0.892 11.00 70 78	0.331 0.120 0.728 4.68 49 78	0.237 0.089 0.647 6.99 34 75	0.188 0.081 0.427 5.53 28 81	0.303 0.062 1.113 9.22 45 118	0.394 0.103 0.919 7.76 56 122		0.982 0.264 1.816 16.91 141 162 off is 109		0.600 0.430 0.739 25.01 1047 1407 ous mean
Station type: C										raii	nfall 1139	*6	

066006 Elwy at Pont-y-Gwyddel

1994

Measuring author First year: 1973	ity: NRA-W	ÆL		C	Grid referer Level st	ice: 23 (Sh in. (m OD):		8		C			m): 194.0 OD): 518
Hydrometric st	atistics fo	r 1994											
Flows Avg. (m³s-¹): Peak Runoff (mm) Rainfall (mm)	JAN 7.776 19.16 107 125	FEB 5.656 22.48 71 88	MAR 8.140 56.56 112 169	APR 6.772 32.68 90 99	MAY 1.194 5.93 16 47	JUN 0.600 1.35 8 36	JUL 0.382 1.09 5 56	AUG 0.415 2.54 6 92	SEP 2.123 20.03 28 129	OCT 2.906 13.74 40 90	NOV 7.643 57.08 102 112	DEC 14.380 61.98 199 250	Year 4.831 61.98 785 1293
Monthly and ye	arly statis	stics for p	orevious r	ecord (De	c 1973 to	Dec 1993)							
Mean Avg. flows Low (m³s-1) High Peak flow (m³s-1) Runoff (mm) Rainfall (mm)	7.997 3.115 13.060 100.40 110 131	6.010 2.180 15.070 58.00 76 87	5.168 0.816 11.950 76.59 71 100	3.020 0.823 6.939 50.76 40 64	1.744 0.479 5.918 21.66 24 73	1.357 0.359 3.527 25.38 18 75	0.669 0.278 1.402 27.05 9 65	1.168 0.242 4.351 38.13 16 89	2.328 0.249 7.450 58.57 31 113	4.852 1.360 11.530 143.00 67 130	7.075 2.263 11.850 101.60 95 137	8.224 4.085 15.560 75.42 114 146	4.128 2.908 5.094 143.00 671 1210
Factors affecting Station type: VA	runoff; SRP	•									off is 117 nfall 107		ious mean

067008 Alyn at Pont-y-Capel

1994

Measuring author First year: 1965	rity: NRA-W	'EL		(Grid refere Level s	nce: 33 (S. tn. (m OD):		1		C	atchment N	area (sq kı lax alt. (m	
Hydrometric st	atistics fo	r 1994											
Flows Avg. (m³s=1); Peak Runoff (mm) Rainfall (mm)	JAN 5.275 17.10 62 89	FEB 3.720 12.97 40 68	MAR 2.884 16.98 34 88	APR 4.143 15.96 47 74	MAY 1.214 4.14 14 54	JUN 0.741 0.99 8 23	JUL 0.583 1.52 7 47	AUG 0.504 1.03 6 48	SEP 0.790 3.10 9 121	OCT 0.921 2.62 11 72	NOV 3.578 17.92 41 99	DEC 6.004 24.25 71 153	Year 2.522 24.25 350 936
Monthly and ye	arly statis	stics for p	revious r	ecord (Jui	n 1965 to I	Dec 1993)							
Mean Avg. flows Low (m³s-¹) High Peak flow (m³s-¹) Runoff (mm) Rainfall (mm)	4.170 1.328 7.219 27.53 49 84	3.660 1.234 9.085 28.52 39 63	3.106 0.766 8.027 26.11 37 73	2.445 1.023 6.474 25.28 28 61	1.681 0.677 5.657 26.86 20 70	1.183 0.438 2.873 18.34 14 66	0.842 0.331 2.098 23.23 10 60	0.860 0.287 2.456 20.81 10 72	0.980 0.391 3.906 59.11 11 80	1.904 0.452 6.896 26.46 22 88	3.000 0.614 6.168 28.21 34 102	4.300 1.246 9.481 35.92 51 98	2.339 1.266 3.027 59.11 325 917
Factors affecting Station type: CC	runoff: S El										off is 108 nfall 102		ous mean

067018 Dee at New Inn

•			-											
Measurin First year		y: NRA-W	'EL		(Grid referer Level st	nce: 23 (Sł n. (m OD):		8					km): 53.9 OD): 750
Hydrom	etric sta	tistics fo	r 1994											
Flows (m³s ⁻¹) Runoff (m Rainfall (m	m)	JAN 6.050 75.46 301 300	FEB 3.931 35.18 176 173	MAR 6.425 53.89 319 333	APR 4.051 51.95 195 185	MAY 0.816 11.86 41 57	JUN 1.351 40.87 65 113	JUL 0.484 4.86 24 66	AUG 1.021 11.86 51 144	SEP 2.619 26.06 126 187	OCT 3.188 21.36 158 181	NOV 4.548 77.63 219 201	DEC 8.993 73.69 447 424	Year 3.626 77.63 2121 2364
Monthly	and yea	arly statis	stics for p	revious r	ecord (Jul	1969 to D	ec 1993)							
Mean flows (m ³ s ⁻¹) Peak flow Runoff (m Rainfall (m	(m³s ⁻¹) m)	4.750 2.098 9.552 76.49 236 221	3.560 0.664 7.706 77.34 161 148	3.540 0.715 8.472 69.24 176 172	2.243 0.378 5.638 67.16 108 118	1.385 0.160 4.062 74.71 69 102	1.225 0.297 3.569 52.84 59 109	1.325 0.136 4.147 44.93 66 108	1.877 0.152 6.044 61.42 93 141	2.683 0.407 7.556 85.10 129 155	3.832 0.583 7.107 96.25 190 207	4.964 1.432 8.037 95.85 239 221	5.141 1.826 10.330 93.11 255 239	3.043 2.134 4.206 96.25 1781 1941
Factors a Station ty		unoff: N										off is 119 nfall 122		ious mean

068004 Wistaston Brook at Marshfield Bridge

1994

Measuring authorit First year: 1957	y: NRA-NV	~		C	Grid referer Level st	nce: 33 (S. in. (m OD):		2			Catchment M	area (sq l lax alt. (m	
Hydrometric sta	tistics fo	r 1994											
Flows Avg. (m ³ s ⁻¹): Peak Runoff (mm) Rainfall (mm)	JAN 2.096 8.33 61 88	FEB 1.017 4.24 27 48	MAR 1.101 4.83 32 84	APR 1.084 5.39 30 51	MAY 0.419 1.02 12 29	JUN 0.305 1.00 9 21	JUL 0.274 9.02 8 61	AUG 0.264 1.72 8 40	SEP 0.520 4.34 15 112	OCT 0.567 2.46 16 74	NOV 0.898 2.70 25 57	DEC 1.895 16.13 55 117	Year 0.871 16.13 296 782
Monthly and yea	irly statis	itics for p	previous r	ecord (Oc	t 1957 to [Dec 1993-	-incomple	te or miss	ing month	s total 5.5	years)		
Mean Avg. flows Low (m³s-1) High Peak flow (m³s-1) Runoff (mm) Rainfall (mm)	1.617 0.538 3.143 16.21 47 65	1.399 0.510 3.679 13.14 37 44	1.083 0.400 2.131 13.31 31 50	1.015 0.462 1.901 12.48 28 54	0.790 0.317 3.381 15.06 23 60	0.683 0.331 1.410 11.63 19 62	0.610 0.235 2.419 13.02 18 60	0.630 0.194 1.578 21.45 18 68	0.640 0.221 1.766 10.73 18 67	0.872 0.277 1.902 12.95 25 69	1.210 0.487 2.555 13.25 34 72	1.429 0.650 3.108 14.47 41 68	0.996 0.518 1.681 21.45 339 739
Factors affecting re Station type: VA	unoff: PGE	1									noff is 87° nfall 106°		ous mean

069006 Bollin at Dunham Massey

1994

Measuring authori First year: 1955	ty: NRA-N	N		(Grid referer Level st	nce: 33 (S. n. (m OD):		5		С		area (sq kr lax alt. (m	
Hydrometric sta	itistics fo	r 1994											
Flows Avg. (m³s-¹); Poak Runoff (mm) Rainfall (mm) Monthly and ye	JAN 9.754 31.71 102 100 arly statis	FEB 5.070 16.27 48 49 stics for p	MAR 7.408 24.83 78 106 previous r	APR 7.800 26.90 79 81 ecord (Oc	MAY 2.184 4.70 23 24 t 1955 to 0	JUN 2.001 6.77 20 41 Dec 1993–	JUL 2.388 16.42 25 70 –incomple	AUG 1.941 8.67 20 50 ete or miss	SEP 3.842 32.39 39 124 ing month	OCT 7,304 38,42 76 131 is total 1,1	NOV 8,809 33,93 89 85 years)	DEC 9.185 28.37 96 119	Year 5.645 38.42 695 980
Mean Avg. flows Low (m³s-¹) High Peak flow (m³s-¹) Runoff (mm) Rainfall (mm)	6.414 1.639 10.960 43.95 67 79	5.240 1.686 12.880 39.29 50 53	4.524 1.694 11,470 36.91 47 63	3.644 1,742 8,732 60.43 37 56	2.841 1.286 5.781 63.02 30 62	2.543 0.707 9.203 42.37 26 71	2.415 0.875 5.626 41.50 25 75	2.932 0.464 11,410 44.04 31 87	3.053 0.651 8.963 35.05 31 80	4.096 1,300 11,340 41,18 43 83	5.401 1.804 9.425 44.35 55 83	6.618 2.296 14.510 46.33 69 89	4.140 2.728 6.307 63.02 510 881
Factors affecting r Station type: VA	unoff: S P	ĞEI									offis 136 nfall 111	% of previ %	ous mean

069007 Mersey at Ashton Weir

.1994

Measuring author First year: 1958	ity: NRA-N	w		•		nce: 33 (S. tn. (m OD):		6		c			m): 660.0 OD): 636
Hydrometric st	atistics fo	r 1994											
Flows Avg. (m³s=¹): Peak Runoff (mm) Rainfall (mm)	JAN 25.020 116.00 102 147	FEB 11.490 33.57 42 64	MAR 16.930 72.79 69 136	APR 16.850 84.51 66 104	MAY 5.052 8.61 21 35	JUN 4.443 15.36 17 64	JUL 4.149 31.05 17 70	AUG 3.530 10.09 14 59	SEP 7.250 46.38 28 131	OCT 11.260 47.29 46 137	NOV 21.560 193.40 85 123	DEC 20.130 89.73 82 148	Year 12.310 193.40 588 1218
Monthly and ye	arly stati	stics for p	orevious r	ecord (Jai	1981 to	Dec 1993-	-incomple	ete or miss	ing month	s total 0.1	years)		
Mean Avg. flows Low (m³s-1) High Poak flow (m³s-1) Runoff (mm) Rainfall (mm)	18.730 8.297 29.220 341.80 76 115	11.550 6.048 23.100 125.00 43 61	14.450 3.886 36.210 176.70 59 103	9.978 4.698 17.190 113.00 39 76	5.901 3,479 11,420 56,25 24 61	6.476 3.847 18.090 157.50 25 84	5.028 2.447 9.211 49.21 20 73	6.424 2.760 12.560 216.70 26 99	7.294 2.574 12.550 108.10 29 91	10.920 4.403 25.500 202.50 44 119	14.180 5.757 25.190 303.70 56 114	20.300 8.686 36.810 563.40 82 130	10.947 8.438 15.876 563.40 524 1126
Factors affecting	runoff: S P	GEI								1994 rur	off is 112	% of previ	ous mean

rainfall 108% Station type: C8

070004 Yarrow at Croston Mill

1994

Measuring First year		ty: NRA-N\	~		(Grid referer Level s	nce: 34 (SI stn. (m OD)		0					km); 74,4 OD); 456
Hydrome	atric sta	itistics fo	r 1994											
Flows (m³s ⁻¹): Runoff (mr Rainfall (m	n)	JAN 4,716 30,63 170 130	FEB 1.610 7.89 52 59	MAR 2.586 18.05 93 116	APR 2.215 16.40 77 80	MAY 0.757 2.83 27 29	JUN 0.699 4.75 24 49	JUL 0.683 4.42 25 72	AUG 0.637 3.42 23 64	SEP 1.057 6.03 37 101	OCT 2.569 21.06 92 147	NOV 2.706 19.51 94 100	DEC 3.866 15.56 139 163	Year 2.015 30.63 854 1110
Monthly	and ye	arly statis	tics for p	revious r	ecord (Jai	n 1976 to I	Dec 1993-	-incompte	ete or miss	ing month	s total 0.1	years)		
Mean flows (m³s ⁻¹) Peak flow Runoff (mr Rainfall (m	n)	3.171 1.491 5.037 35.89 114 100	2.122 0.846 4.917 20.17 70 59	2.397 0.643 7.574 93.13 86 92	1.360 0.586 2.504 31.18 47 59	1.031 0.508 2.577 27.79 37 62	0.930 0.405 1.417 30.15 32 80	0.814 0.494 1.804 27.89 29 64	1.151 0.379 4.003 192.00 41 93	1.162 0.536 2.062 35.77 40 90	2,368 0,854 6,360 89,38 85 119	2.669 1.181 4.699 34.23 93 104	3.356 1.756 6.531 107.60 121 116	1.879 1.251 2.830 192.00 797 1038
Factors at		unoff: S PC	GEI									off is 107		ious mean

Station type: MIS

071001 Ribble at Samlesbury

1994

Measuring authorit First year: 1960	ty: NRA-N\	W		C	Grid referer Level s	nce: 34 (SI itn. (m OD)		4		Ca			n): 1145.0 OD): 680
Hydrometric sta	itistics fo	r 1994											
Flows Avg. (m³s-¹): Peak Runoff (mm) Rainfall (mm)	JAN 77.080 486.40 180 196	FEB 31.090 137.80 66 77	MAR 58.450 381.60 137 184	APR 39.030 296.40 88 108	MAY 6.789 26.39 16 28	JUN 8.207 66.68 19 73	JUL 6.045 29.45 14 69	AUG 12.090 80.99 28 104	SEP 32.790 167.20 74 134	OCT 41.810 294.40 98 146	NOV 63.280 425.60 143 155	DEC 84.160 444.90 197 234	Year 38.490 486.40 1060 1508
Monthly and year	arly statis	stics for p	previous r	ecord (Ma	y 1960 to	Dec 1993)	ŀ						
Mean Avg. flows Low (m³s⁻¹) High Peak flow (m³s⁻¹) Runoff (mm) Rainfall (mm)* *11961-1993)	51.560 10.610 82.510 787.30 121 136	37.290 9.565 80.890 513.10 79 88	34.640 6.994 104.700 643.30 81 107	26.100 5.601 54.820 466.60 59 82	17.680 4.048 46.460 319.10 41 80	14.020 5.031 33.520 494.80 32 88	16.240 2.638 40.500 399.80 38 91	23.530 2.958 68.920 520.80 55 117	28.550 4.263 65.820 619.30 65 126	40.520 5.716 118.400 810.00 95 138	51.370 15.300 88.610 613.20 116 141	57.230 15.190 120.200 891.30 134 154	33.232 22.045 45.022 891.30 916 1348

Factors affecting runoff; S E Station type: MIS

1994 runoff is 116% of previous mean rainfall 112%

Comment: Reprocessing of 1993 flow data has resulted in changes to previously published monthly average mean flows.

071004 Calder at Whalley Weir

1994

Measuring authori First year: 1963	ty: NRA-N\	N		C		nce: 34 (St tn. (m OD)		0		c			m): 316.0 OD): 558
Hydrometric sta	atistics fo	r 1994											
Flows Avg. (m³s ⁻¹): Peak Runoff (mm) Rainfall (mm)	JAN 19.950 158.10 169 177	FEB 8.391 29.19 64 64	MAR 14.340 85.65 122 152	APR 10.560 97.61 87 95	MAY 2.973 8.11 25 25	JUN 3.041 20.61 25 68	JUL 2.936 25.26 25 76	AUG 2.844 7.29 24 70	SEP 7.854 90.10 64 132	OCT 11.220 107.10 95 143	NOV 14.970 96.96 123 130	DEC 21.380 104.80 181 212	Year 10.062 158.10 1004 1344
Monthly and ye	arly statis	stics for p	orevious r	ecord (Oc	t 1963 to I	Dec 1993-	-incomple	ste or miss	ing month	s total 2.6	years)		
Mean Avg. flows Low (m³s-¹) High Peak flow (m³s-¹) Runoff (mm) Rainfall (mm)	13.200 5.766 20.590 211.80 112 125	9,491 3,320 17,170 146,10 73 79	9.093 2.773 25.320 185.20 77 101	6.649 2.272 13.010 108.40 55 73	4.955 2.053 9.916 91.66 42 74	4.247 1.888 7.609 135.50 35 85	3.894 1.773 9.059 112.80 33 81	5.759 1.564 16.280 171.60 49 107	6.980 1.921 18.620 206.00 57 113	10.470 2.397 23.910 229.50 89 128	12.620 4.488 21.990 148.60 103 128	14,100 4,886 26,920 237,50 120 135	8.456 6.225 11.485 237.50 844 1229
Factors affecting r Station type: FV	runoff: El										off is 119 nfall 109		ious mean

073005 Kent at Sedgwick

1994

Measuring authorit First year: 1968	ty: NRA-N'	w			Grid refere Level s	nce: 34 (S tn. (m OD)		4		C			m): 209.0 OD): 817
Hydrometric sta	itistics fo	r 1994											
Flows Avg. (m³s-¹): Peak Runoff (mm) Rainfall (mm)	JAN 17.500 63.36 224 250	FEB 10.760 94.30 125 115	MAR 22.430 130.30 287 309	APR 13.280 68.93 165 164	MAY 3.961 26.83 51 50	JUN 4.141 57.15 51 134	JUL 2.446 9.67 31 84	AUG 7.142 43.62 92 181	SEP 7.991 35.90 99 126	OCT 6.252 36.81 80 143	NOV 19.350 154.80 240 224	DEC 20.610 124.30 264 312	Year 11.328 154.80 1709 2092
Monthly and yea	arly stati:	stics for p	previous r	ecord (No	v 1968 to	Dec 1993)						
Mean Avg. flows Low (m³s-1) High Peak flow (m³s-1) Runoff (mm) Rainfall (mm)	13.150 5.998 20.950 230.90 168 194	10.360 3.094 27.410 167.80 121 124	10.030 3.348 23.030 194.60 128 156	6.744 2.038 12.620 111.10 84 96	4.236 1.222 11.580 91.42 54 87	3.609 0.872 13.010 72.86 45 99	3.879 0.658 10.570 95.90 50 112	5.553 0.740 18.810 94.26 71 132	7.632 1.753 15.680 120.70 95 1637	10.410 1.396 18.110 131.70 133 182	13.440 3.749 21.490 177.80 167 201	13.780 5.466 24.560 276.40 177 202	8.561 5.995 10.316 276.40 1293 1748
Factors affecting r Station type: CBV.											off is 132 infall 120		ious mean

074005 Ehen at Braystones

Measuring authori First year: 1974	ty: NRA-N\	N		G	Grid referen Level st	ice: 35 (N) in. (m QD):		1		C			m): 125.5 OD): 899
Hydrometric sta	itistics fo	r 1994											
Flows Avg. (m³s-¹): Peak Runoff (mm) Rainfall (mm)	JAN 7.906 39.05 169 217	FEB 5.239 43.02 101 111	MAR 7.942 27.70 169 217	APR 6.252 52.61 129 153	MAY 2.794 14.58 60 53	JUN 2.402 12.64 50 127	JUL 3.941 41.23 84 150	AUG 3.809 26.60 81 135	SEP 5.305 47.80 110 118	OCT 4,459 21,66 95 139	NOV 8.868 49.28 183 163	DEC 11.620 73.04 248 272	Year 5.885 73.04 1479 1855
Monthly and ye	arly statis	stics for p	revious r	ecord (Jar	1974 to [Dec 1993)							
Mean Avg. flows Low (m³s-1) High Peak flow (m³s-1) Runoff (mm) Rainfall (mm)	7.584 2.220 16.030 97.85 162 195	5.825 1.856 15.890 79.36 113 123	5.894 2.225 10.300 69.47 126 176	3.716 0.993 7.751 81.07 77 95	2.248 0.771 6.877 55.46 48 81	1.953 0.779 4.371 38.25 40 96	2.295 0.789 5.602 56.92 49 123	3.988 0.661 12.260 74.32 85 152	4.981 1.644 12.840 76.40 103 175	7.520 1.799 14.080 115.90 160 214	7.711 3.121 12.470 64.49 159 193	7.929 2.448 13.380 91.47 169 204	5.138 3.963 6.328 115.90 1292 1827
Factors affecting r Station type: VA	unoff: S P										off is 114 nfall 102		ous mean

075002 Derwent at Camerton

1994

Measuring authori First year: 1960	ty: NRA-N	w		C		nce: 35 (N itn. (m OD)		5		C			m): 663.0 OD): 950
Hydrometric sta	atistics fo	r 1994											
Flows Avg. (m³s-¹): Peak Runoff (mm) Rainfall (mm)	JAN 42.730 90.39 173 234	FEB 30.430 121.70 111 111	MAR 51.500 97.84 208 263	APR 34.560 128.90 135 152	MAY 12.570 33.38 51 61	JUN 9.719 26.51 38 125	JUL 8.570 20.30 35 91	AUG 10.580 23.05 43 136	SEP 18.270 51.05 71 118	OCT 16.390 63.39 66 149	NOV 45.550 130.30 178 197	DEC 57.500 146.50 232 339	Year 28.192 146.50 1341 1976
Monthly and ye	arly stati	stics for p	revious (ecord (Se	p 1960 to	Dec 1993-	-incompl	ete or mis	sing mont	hs total 0.2	2 years)		
Mean Avg. flows Low (m³s-1) High Peak flow (m³s-1) Runoff (mm) Rainfall (mm)* *(1961-1993)	38.950 9.587 84.550 219.20 157 185	29.470 4.837 84.850 165.70 108 117	27.000 7.466 66,470 215.50 109 150	20.570 4.359 38.940 145.50 80 101	12.760 2.753 36.280 102.90 52 99	9.861 2.041 34.800 135.80 39 105	11.130 2.503 23.140 114.50 45 116	17.790 2.384 55.940 216.20 72 148	24.360 2.885 62.980 189.20 95 174	34.310 2.755 107.800 264.70 139 199	40.390 14.210 76.340 226.40 158 191	41.780 14.740 75.840 234.80 169 196	25.690 14.824 34.235 264.70 1223 1781
Factors affecting (Station type: VA	unoff; \$ P										off is 110 nfall 111		ious mean

076005 Eden at Temple Sowerby

1994

Measuring aut First year: 19		ww		(Grid refere Level s	nce: 35 (N tn. (m OD)		3		C			m): 616.4 OD): 950
Hydrometric	statistics	for 1994										•	
Flows A' (m³s-1): Po Runoff (mm) Rainfall (mm)			MAR 29.920 182.40 130 181	APR 18.670 110.20 78 103	MAY 5.048 30.14 22 26	JUN 3.113 15.08 13 55	JUL 1.633 2.34 7 38	AUG 3.439 24.01 15 105	SEP 9.322 54.48 39 102	OCT 8.784 59.39 38 85	NOV 25.860 147.50 109 134	DEC 44.990 214.50 196 254	Year 16.360 214.50 837 1317
Monthly and	yearly sta	istics for	previous :	record (No	v 1964 to	Dec 1993)							-
Mean A flows Lo (m³s-1) Hi Peak flow (m³s Runoff (mm) Rainfall (mm)	w 9.871 sh 42.580	5.430 62.620	16.620 4.469 43.570 346.30 72 98	10.880 2.923 19.500 165.80 46 64	7.359 2.196 17.050 169.40 32 70	5.093 1.553 13.780 139.40 21 68	5.182 1.176 16.690 230.50 23 77	7.507 1.613 22.070 204.00 33 93	10.690 1.593 30.440 280.20 45 104	15.770 1.975 55.960 271.00 69 115	21.150 4.240 38.740 279.30 89 124	25.880 9.403 49.530 323.20 112 134	14.147 8.669 18.912 346.30 724 1160
Factors affect Station type:											off is 116		ious mean

076010 Petteril at Harraby Green

1994

Measuring authorit First year: 1969	y: NRA-NV	~		C	Grid referer Level st	ice: 35 (N) tn. (m OD):		5		C			m): 160.0 OD): 366
Hydrometric sta	tistics fo	r 1994											
Flows Avg. (m³s^1): Peak Runoff (mm) Rainfall (mm) Monthly and yes	JAN 5.009 17.83 84 124 arly statis	FEB 2.575 18.04 39 45 stics for p	MAR 4.587 23.08 77 136 previous re	APR 2.914 11.86 47 81 BCOrd (Jai	MAY 0.758 1.60 13 26	JUN 0.469 0.99 8 53 Dec 1993	JUL 0.323 1.27 5 45 —incomple	AUG 0.431 1.69 7 96	SEP 0.753 3.26 12 69	OCT 0.988 6.60 17 72	NOV 3.714 19.28 60 108	DEC 6.504 22.58 109 186	Year 2.422 23.08 477 1041
Mean Avg. flows Low (m³s-¹) High Peak flow (m³s-¹) Runoff (mm) Rainfall (mm)	4,509 1,585 7,125 38,27 75 106	3.277 1.148 9.440 38.88 50 62	2.475 0.688 4.355 47.18 41 73	1.646 0.667 3.007 15.71 27 52	0.965 0.413 3.898 18.64 16 56	0.634 0.286 1.469 9.80 10 60	0.618 0.279 1.944 22.39 10 79	0.816 0.282 2.699 24.04 14 81	1.094 0.293 4.975 42.15 18 80	1.980 0.277 5.669 29.77 33 92	3.329 0.896 7.146 47.03 54 100	3.891 1.260 6.439 44.86 65 98	2.099 1.065 2.672 47.18 414 939
Factors affecting n Station type: MIS	unott: N										off is 1159 nfall 1119		ous mean

077003 Liddel Water at Rowanburnfoot

								-					
Measuring authori First year: 1973	ty: SRPB			(Grid referer Level s	nce: 35 (N' tn. (m OD)		9		C			m): 319.0 OD): 608
Hydrometric sta	atistics fo	r 1994											
Flows Avg. (m³s-1): Peak Runoff (mm) Rainfall (mm)	JAN 18,450 101,70 155 191	FEB 13.970 307.70 106 100	MAR 20.700 209.90 174 202	APR 11.210 74.99 91 120	MAY 3.441 24.51 29 24	JUN 2.863 30.49 23 90	JUL 3.037 47.71 26 83	AUG 8.680 284.40 73 129	SEP 4.153 26.35 34 61	OCT 7.013 86.62 59 112	NOV 20.900 223.20 170 181	DEC 28.080 241.10 236 290	Year 11.880 307.70 1175 1583
Monthly and ye	arly stati:	stics for p	orevious r	ecord (Oc	t 1973 to l	Dec 1993)							
Mean Avg. flows Low (m³s-1) High Peak flow (m³s-1) Runoff (mm) Rainfell (mm) Factors affecting r	17.090 8.344 30.750 404.40 144 153 runoff: N	12.620 4.126 32.030 349.10 97 99	13.080 5.391 23.150 345.30 110 130	7.280 1.538 15.690 171.00 59 78	5.098 1.118 16.730 248.40 43 83	4.069 1.083 12.940 131.00 33 85	4.832 0.879 22.800 309.40 41 104	6.126 0.869 23.360 178.80 51 119	8.554 1.757 24.390 354.90 70 124				10.154 7.515 13.059 404.40 1004 1417 ous mean
Station type: VA										rai	nfall 112	%	

078003 Annan at Brydekirk

1994

Measuring authoring First year: 1967	ty: SRPB			(Grid referer Level s	nce: 35 (N' tn. (m OD)		4		C			m): 925.0 OD): 821
Hydrometric sta	itistics fo	or 1994											
Flows Avg. (m³s-¹): Peak Runoff (mm) Rainfall (mm)	JAN 59.450 140.50 172 187	FEB 40.030 212.70 105 104	MAR 62.550 207.10 181 194	APR 37.150 147.30 104 114	MAY 13.100 56.72 38 28	JUN 6.747 35.34 19 82	JUL 10.460 57.27 30 107	AUG 19.330 191.00 56 133	SEP 17.590 53.64 49 70	OCT 15.320 93.68 44 91	NOV 63.950 279.70 179 177	DEC 75.830 321.40 220 236	Year 35.127 321.40 1198 1523
Monthly and ye	arly stati	istics for p	orevious r	ecord (Oc	t 1967 to	Dec 1993)							
Mean Avg. flows Low {m³s-¹} High Peak flow (m³s-¹) Runoff (mm) Rainfall (mm) Factors affecting r	47.610 17.820 83.440 405.40 138 148 runoff: N	36.410 12.820 105.700 305.00 96 98	33.770 8.402 63.910 293.30 98 122	22.550 6.124 52.350 213.30 63 75	15.450 3.519 53.160 229.30 45 84	11.230 2.937 32.150 171.30 31 81	10.960 1.944 34.940 253.10 32 94	17.890 2.007 76.400 378.90 52 112	24.330 3.362 76.330 446.60 68 129				28.614 16.402 36.425 499.10 976 1367 ious mean
Station type: VA										rai	nfall 111	%	

078004 Kinnel Water at Redhall

1994

Measuring authorit First year: 1963	y: SRPB			G	irid referen Level st	ice: 35 (N) in. (m OD):		В			Catchmen N		km): 76.1 OD): 697
Hydrometric sta	tistics fo	r 1994											
Flows Avg. (m³s-¹): Peak Runoff (mm) Rainfall (mm)	JAN 5.484 33.71 193 212	FEB 3.634 48.28 116 113	MAR 6.569 61.73 231 229	APR 2.838 25.28 97 126	MAY 0.815 10.36 29 36	JUN 0.391 9.35 13 84	JUL 0.960 17.19 34 124	AUG 1.929 24.47 68 147	SEP 1.667 18.32 57 94	OCT 1.688 25.22 59 94	NOV 6.746 71.54 230 203	DEC 7.516 81.14 265 250	Year 3.356 81.14 1391 1712
Monthly and yea	arly statis	stics for p	revious r	ecord (Oc	t 1963 to [Dec 1993-	-incomple	te or miss	ing month	s total 1.0	years)		
Mean Avg. flows Low (m³s-1) High Peak flow (m³s-1) Runoff (mm) Rainfall (mm)	4.382 1.296 9.213 95.89 154 156	3.165 0.590 9.298 90.99 102 104	3.008 0.552 6.263 101.20 106 129	1.843 0.251 4.672 66.70 63 82	1,491 0,122 5,496 51,79 52 95	1.026 0.112 3.282 36.09 35 88	1.014 0.048 3.435 60.14 36 96	1.715 0.049 7.513 65.25 60 120	2.610 0.099 6.689 91.37 89 143	3.545 0.207 7.288 110.90 125 154	3.937 0.740 7.535 86.69 134 147	4.305 1.081 8.694 103.60 152 160	2.670 1.507 3.517 110.90 1107 1474
Factors affecting re Station type: VA											off is 126 nfall 116		ious mean

080001 Urr at Dalbeattie

1994

Measuring author First year: 1963	rity: SRPB			ď	Grid referen Level s	ice: 25 (N) tn. (m OD)		0		C			m): 199.0 OD): 432
Hydrometric st	atistics fo	r 1994											
Flows Avg. (m³s-¹): Peak Runoff (mm) Rainfall (mm)	JAN 12.360 53.93 166 193	FEB 10.050 72.83 122 115	MAR 11.180 54,02 150 176	APR 7.479 43.14 97 114	MAY 1.590 8.08 21 26	JUN 0.495 3.34 6 58	JUL 1.075 9.49 14 101	AUG 2,409 14,43 32 102	SEP 2.456 11.58 32 69	OCT 3,792 50,06 51 107	NOV 13.930 72.94 181 181	DEC 13.930 61.02 187 217	Year 6.708 72.94 1063 1459
Monthly and ye	early stati	stics for p	revious r	ecord (No	v 1963 to	Dec 1993)							
Mean Avg. flows Low (m³s-¹) High Peak flow (m³s-¹) Runoff (mm) Rainfall (mm)	9.847 3.534 19.080 133.70 133 140	7.785 1,419 19.340 100.10 96 97	6.706 2.094 12.570 95.03 90 117	4.193 0.753 11.550 69.39 55 75	2.984 0.308 10.880 69.92 40 80	1.939 0.246 6.833 59.18 25 78	1.408 0.137 5.081 68.42 19 80	2.906 0.149 13.310 104.60 39 104	5.009 0.319 17.160 129.40 65 129	7.890 0.522 19.400 162.20 106 144	9.230 1,711 19.420 129.70 120 139	10.160 3.369 19.200 164.30 137 145	5.831 3.109 8.358 164.30 925 1328
Factors affecting Station type: VA	runoff: N										off is 115 infall 110		ious mean

081002 Cree at Newton Stewart

Measuring authori First year: 1963	ty: SRPB			C		ice: 25 (N) stn. (m OD)		3		C	atchment N	area (sq k lax alt. (m	
Hydrometric sta	atistics fo	r 1994											
Flows Avg. (m³s-1): Peak Runoff (mm) Rainfall (mm)	JAN 27.390 86.19 199 262	FEB 21.330 130.00 140 143	MAR 25.160 76.37 183 232	APR 19.510 171.40 137 173	MAY 4.691 48.68 34 40	JUN 4.867 38.97 34 110	JUL 8.823 100.50 64 137	AUG 9.869 76.03 72 137	SEP 10.080 61.57 71 108	OCT 13.060 114.20 95 157	NOV 27.680 130.20 195 198	DEC 35.190 190.10 256 310	Year 17.290 190.10 1482 2007
Monthly and ye	arly stati:	stics for p	revious r	ecord (Oc	t 1963 to I	Dec 1993)							
Mean Avg. flows Low (m³s-¹) High Peak flow (m³s-¹) Runoff (mm) Rainfall (mm)	23.920 9.633 45.820 272.50 174 197	17.530 2.569 42.490 253.10 117 128	17.040 4.039 33.060 347.20 124 161	11.120 1.319 25.030 207.10 78 104	7.979 0.426 22.960 345.10 58 98	6.532 0.466 15.620 195.10 46 100	7.596 0.969 19.710 223.10 55 112	10.970 0.684 36.030 230.90 80 140	15.920 1.063 43.320 312.70 112 167	21.190 6.495 36.720 318.00 154 195	23.240 7.292 43.910 199.10 164 199	24.150 5.775 48.050 322.30 176 196	15.599 9.965 18.980 347.20 1338 1797
Factors affecting (Station type: VA	runoff: N										off is 111 nfall 112		ious mear

081003 Luce at Airyhemming

1994

Measuring authori First year: 1967	ty: SRPB			C	Grid referen Level st	ice: 25 (N) tn. (m OD)		9		c			m): 171.0 OD): 438
Hydrometric sta	itistics fo	r 1994											
Flows Avg. (m³s-¹): Peak Runoff (mm) Rainfall (mm)	JAN 10.580 59.78 166 206	FEB 9.358 71.21 132 140	MAR 8.297 60.55 130 152	APR 7.228 114.10 110 137	MAY 1,952 36,64 31 34	JUN 0.983 17.21 15 82	JUL 2.311 41.39 36 101	AUG 2.459 47.88 39 111	SEP 3.236 23.04 49 98	OCT 8.427 123.60 132 161	NOV 12.120 100.80 184 194	DEC 12.570 88.09 197 215	Year 6.612 123.60 1219 1631
Monthly and ye	arly statis	stics for p	revious r	ecord (Jar	1967 to [Dec 1993)							
Mean Avg. flows Low (m³s-¹) High Peak flow (m³s-¹) Runoff (mm) Rainfall (mm)	9.899 4.540 15.600 177.10 155 162	7.151 0.789 14.810 146.10 102 103	6.689 1.359 12.860 216.70 105 126	4.273 0.454 11.400 197.60 65 87	2.513 0.261 7.597 159.30 39 77	2.065 0.225 5.360 190.30 31 85	2.189 0.191 6.445 156.80 34 97	3.686 0.277 14.290 283.60 58 119	5.875 0.366 17.670 192.40 89 144	8.799 1.689 16.750 231.80 138 164	9.804 3.857 15.940 191.00 149 164	9.252 2.445 17.090 204.00 145 153	6.013 3.691 7.787 283.60 1110 1481
Factors affecting r Station type: VA	unoff: NS	P									off is 110 nfall 110		ous mean

082002 Doon at Auchendrane

1994

Measuring author First year: 1974	ity: CRPB			(Grid referer Level s	nce: 26 (N: tn. (m OD)		0		(m): 323.8 OD): 844
Hydrometric st	atistics fo	r 1994											
Flows Avg. (m³s-1): Peak	JAN 12.730 34.25	FEB 8.364 41.68	MAR 13.520 44.23	APR 8.456 41.75	MAY 3.423 9.60	JUN 3.587 9.85	JUL 3.434 7.77	AUG 4.426 24.33	SEP 5.662 22.70	OCT 6.452 45.19	NOV 12.010 42.48	DEC 17.150 102.50	Year 8.276 102.50
Runoff (mm) Rainfall (mm)	105 254	62 118	112 264	68 142	28 28	2 9 102	28 95	37 133	45 96	53 125	96 192	142 314	806 18 6 3
Monthly and ye	arly stati	stics for p	orevious r	ecord (Jul	1974 to D	ec 1993—	-incomple	te or miss	ing month	s total 0.1	years)		
Mean Avg. flows Low (m³s-¹) High Peak flow (m³s-¹) Runoff (mm) Rainfall (mm)	10.880 5.203 15.120 85.15 90 199	8.153 3.685 18.360 63.08 62 116	8.632 4.270 13.570 69.51 71 156	5.468 3.157 10.520 61.06 44 80	4.225 2.390 8.006 48.63 35 79	3.696 2.265 4.981 19.63 30 78	4.064 2.397 6.945 61.38 34 101	5.263 2.557 10.930 46.34 44 129	7.371 3.613 17.680 103.20 59 166	9.662 4.732 14.610 121.50 80 188	10.500 4.785 17.290 83.78 84 185	11.010 6.247 20.680 84.49 91 195	7.411 5.559 8.698 121.50 722 1672
Factors affecting Station type: VA	runoff: P										off is 112		ious mean

083005 Irvine at Shewalton

1994

Measuring authori First year: 1972	ty: CRPB			C		nce: 26 (N stn. (m OD		9		C			m): 380.7 OD): 484
Hydrometric sta	atistics fo	r 1994											
Flows Avg. (m³s-¹): Peak Runoff (mm) Rainfall (mm) Monthly and ye	JAN 19.870 92.20 140 177 arly stati	FEB 10.280 141.20 65 65 stics for p	MAR 20.850 130.00 147 180 previous r	APR 11.260 84.87 77 106	MAY 2.113 24.87 15 21 b 1972 to	JUN 1.604 8.21 11 78 Dec 1993-	JUL 2.863 55.47 20 110	AUG 6.578 68.98 46 118	SEP 4.944 49.79 34 73	OCT 6.373 46.11 45 79	NOV 17.830 124.60 121 138	DEC 33.960 290.90 239 269	Year 11.583 290.90 959 1414
Mean Avg. flows Low (m³s-¹) High Peak flow (m³s-¹) Runoff (mm) Reinfall (mm) Factors affecting i Station type: VA	17.380 4.527 28.890 341.20 122 134	10.580 1.874 26.480 190.90 68 78	11.640 3.182 23.440 207.50 82 113	6.212 1.138 16.980 108.50 42 66	3.716 0.789 11.530 131.80 26 65	2.908 0.536 10.870 139.30 20 74	3.341 0.367 12.060 278.70 24 86	6.162 0.328 20.070 228.20 43 106	11.170 1.608 33.760 303.60 76 136	12.620 4.298 23.910 272.30 89 130	15.920 3.754 27.770 194.30 108 138		9.741 6.694 12.406 341.20 808 1261 ious mean

Comment: July 1994 contains estimated daily flows.

084016 Luggie Water at Condorrat

Measuring author First year: 1966	ity: CRPB			C	Grid referen Level st	ce: 26 (NS n. (m OD):		5			Cetchment M		km): 33.9 OD): 107
Hydrometric st	atistics fo	r 1994											
Flows Avg. (m³s=1): Peak Runoff (mm) Rainfall (mm) Monthly and ye	JAN 1.810 9.75 143 180 early statis	FEB 1,214 13.51 87 86 stics for p	MAR 2.508 17.17 198 215 previous re	APR 0.897 69 70 acord (Jar	MAY 0.249 0.41 20 22 1967 to 0	JUN 0.321 1.01 25 75 Dec 1993-	JUL 0.234 0.84 19 76 —incomple	AUG 0.346 5.18 27 86 ate or miss	SEP 0.317 1.58 24 57 ing month	OCT 0.516 5.13 41 86 as total 1.3	NOV 1.676 27.60 128 139 years)	DEC 3.899 51.31 308 273	Year 1.169 1088 1365
Mean Avg. flows Low (m³s-1) High Peak flow (m³s-1) Runoff (mm) Rainfall (mm)	1.542 0.680 3.104 30.25 122 118	1.064 0.415 2.378 19.34 77 74	1,059 0,370 1,846 28,11 84 97	0.615 0.287 1.030 14.61 47 55	0.449 0.166 1.199 14.54 35 66	0.313 0.138 0.692 7.01 24 65	0.309 0.147 1.751 27.14 24 75	0.512 0.123 1.606 22.06 40 93	0.790 0.125 3.386 44.46 60 110	1.051 0.129 2.121 34.20 83 116	1.329 0.367 2.362 30.68 102 115	1.402 0.652 2.669 36.04 111 112	0.869 0.539 1.121 44.46 809 1096
Factors affecting Station type: VA	runoff: N										off is 1349 nfall 1259		ous mean

085001 Leven at Linnbrane

1994

Measuring authori First year: 1963	ity: CRPB			(Grid referer Level s	nce: 26 (N stn. (m OD		3		(area (sq k ax alt. (m (
Hydrometric sta	atistics fo	or 1994											
Flows Avg. (m³s ⁻¹): Peak Runoff (mm) Rainfall (mm)	JAN 77.730 100.80 265 339	FEB 70.790 112.30 218 126	MAR 94.330 124.20 322 457	APR 80.810 112.40 267 183	MAY 30.190 59.61 103 40	JUN 15.770 48.13 52 173	JUL 19.590 46.29 67 101	AUG 25.300 64.57 86 197	SEP 24.000 58.89 79 108	OCT 25.800 53.90 88 150	NOV 67.670 93.86 224 241	DEC 94.270 138.40 322 432	Year 52.19 138.40 2093 2547
Monthly and ye	arly stati	istics for p	orevious r	ecord (Jul	1963 to D	ec 1993)							
Mean Avg. flows Low (m³s-¹) High Peak flow (m³s-¹) Runoff (mm) Rainfall (mm)	67.760 27.910 119.100 169.50 231 251	56.240 18.610 134.600 163.60 175 157	50.980 16.630 138.200 196.80 174 198	37.100 10.540 77.130 112.40 123 109	25.220 10.620 73.120 92.02 86 117	19.100 8.518 51.860 78.48 63 111	18.750 7.303 44.640 116.60 64 124	24,700 4,556 85,730 115,30 84 153	36.550 8.736 91.360 121.60 121 209	53.460 10.830 90.150 138.50 183 225	59.320 13.250 115.000 145.70 196 226	61.970 17.580 125.500 148.50 212 229	42.542 30.712 54.062 196.80 1712 2109
Factors affecting Station type: VA											noff is 122 infall 121	% of prev %	ous mean

Comment: September and October 1994 monthly flows have been estimated.

090003 Nevis at Claggan

1994

Measuring authority: HRPB Grid reference: 27 (NN) 116 742 Level stn. (m OD): 3.60													km): 76.8 DD): 1344
Hydrometric sta	atistics fo	r 1994											
(m ³ s ⁻¹): Peak Runoff (mm)	9.418 86.04 328	3.072 58.50 97	15.450 109.80 539	9.874 73.42 333	4.435 25.54 155	8.391 66.89 283	1.576 6.27 55	3.260 64.40 114	4.083 68.46 138	OCT 4.898 53.61 171 203	NOV 7.950 66.89 268 311	DEC 13.510 122.00 471 577	Year 7.189 122.00 2952 3396
Monthly and ye	arly statis	stics for p	orevious r	ecord (Se	p 1982 to I	Dec 1993)							
Mean Avg. flows Low (m³s-¹) High Peak flow (m³s-¹) Runoff (mm) Rainfall (mm)* *(1986-1993)	10.310 2.517 17.790 197.70 360 458	7.461 0.691 17.990 172.00 238 324	9.697 2.188 25.920 143.10 338 434	5.541 3.017 10.030 101.70 187 161	3.910 1.123 12.600 67.50 136 132	2.083 0.838 3.211 69.35 70 92	3.927 0.907 8.607 105.00 137 188	5.682 1.116 10.720 130.50 198 256	7.314 1.146 11,010 219.00 247 262	8.433 3.001 16.380 146.50 294 312	7,403 1,831 15,360 110,30 250 300	10.190 2.831 15.480 189.00 355 399	6.839 5.186 9.050 219.00 2811 3318

Factors affecting runoff: P Station type: VA

1994 runoff is 105% of previous mean rainfall 102%

094001 Ewe at Poolewe

1994

Measuring authori First year: 1970	ty: HRPB			(nce: 18 (N stn. (m OD		3		C			m): 441.1 DD): 1014
Hydrometric sta	atistics fo	r 1994				•							
Flows Avg. (m³s-¹): Peak Runoff (mm) Rainfall (mm)	JAN 42.730 84.33 259 307	FEB 28.680 89.11 157 51	MAR 55.360 92.15 336 476	APR 43.590 72.99 256 246	MAY 18.780 59.70 114 33	JUN 19.740 33.25 116 193	JUL 10.870 24.09 66 60	AUG 9.059 32.87 55 146	SEP 22.720 114.90 133 220	OCT 36.070 109.20 219 175	NOV 34.770 53.00 204 207	DEC 56.720 110.50 344 416	Year 31.630 114.90 2261 2530
Monthly and ye	arly stati:	stics for p	revious r	ecord (Jai	n 1971 to	Dec 1993)							
Mean Avg. flows Low (m³s-¹) High Peak flow (m³s-¹) Runoff (mm) Rainfall (mm)	44.540 13.820 81.130 177.10 270 298	33.860 10.660 83.670 247.70 187 189	32.990 8.842 97.870 156.20 200 237	23.560 4.537 38.270 73.59 138 129	16.140 3.862 38.250 77.66 98 111	12.440 3.725 27.180 64.43 73 117	14.880 7.884 34.730 72.78 90 133	19.000 6.240 37.000 87.93 115 167	32.260 7.016 60.300 109.20 190 245	35.410 13.160 66.220 125.50 215 265	44.820 12.000 78.310 136.10 263 312	46.630 15.740 81.840 179.80 283 317	29.697 19.389 41.411 247.70 2125 2520
Factors affecting (Station type: VA	runoff: N										off is 106 infall 100		ious mean

095001 Inver at Little Assynt

Measuring authori First year: 1977	ity: HRPB			(Grid referer Level st	nce: 29 (N tn. (m OD)		0		C			m): 137.5 OD): 988
Hydrómetric sta	atistics fo	r 1994										~-	
Flows Avg. (m³s-¹): Peak Runoff (mm) Rainfall (mm)	JAN 10.730 23.12 209 242	FEB 5.816 17.68 102 66	MAR 13.590 22.84 265 328	APR 9.831 16.06 185 207	MAY 4.093 11.97 80 34	JUN 5.220 13.33 98 174	JUL 3.393 6.09 66 69	AUG 2.776 6.33 54 122	SEP 7.737 57.02 146 228	OCT 10.600 39.28 207 131	NOV 8,777 16,89 165 180	DEC 14.410 24.75 281 371	Year 8.102 57.02 1858 2152
Monthly and ye	arly stati	stics for p	previous r	ecord (Au	g 1977 to	Dec 1993	}						
Mean Avg. flows Low (m³s-1) High Peak flow (m³s-1) Runoff (mm) Rainfall (mm)* *(1978-1993)	11.180 4.082 19.950 55.24 218 246	8.993 2.397 21.150 63.64 160 155	10.230 4.179 23.090 62.82 199 227	5.958 3.453 8.129 15.36 112 101	4.213 1.660 8.158 20.92 82 86	3.502 1.812 6.689 19.72 66 108	5.473 2.432 13.940 32.27 107 140	6.588 3.394 10.050 26.47 128 169	10.070 4.048 16.390 56.50 190 236	12.420 6.227 21.180 57.51 242 246	12,470 3,181 23,960 50,06 235 263	11.120 4.631 17.580 58.90 217 253	8.519 6.956 10.896 63.64 1955 2230
Factors affecting Station type: VA	runoff: N										unoff is 95 infall 97		ious mean

096001 Halladale at Halladale

1994

Measuring authori First year: 1976	ty: HRPB			C	Grid referer Level st	nce: 29 (No tn. (m OD)		1		c			m): 204.6 OD): 580
Hydrometric sta	tistics fo	r 1994											
Flows Avg. (m³s-¹); Peak Runoff (mm) Rainfall (mm)	JAN 13,120 83,96 172 159	FEB 3.578 27.32 42 67	MAR 11.340 57.87 148 151	APR 5.130 42.92 65 94	MAY 0.705 3.72 9 20	JUN 0.425 1.36 5 55	JUL 0.531 0.98 7 48	AUG 0.650 5.54 9 63	SEP 4,249 69,74 54 117	OCT 5.241 35.12 69 84	NOV 7.277 64.98 92 96	DEC 7.221 31.99 95 136	Year 4.974 83.96 767 1090
Monthly and ye	arly stati:	stics for p	revious r	ecord (Jar	1976 to [Dec 1993)						.*	
Mean Avg. flows Low (m³s-1) High Peak flow (m³s-1) Runoff (mm) Rainfall (mm)	8.344 4.478 12.300 98.96 109 127	6.338 1.555 10.940 86.24 76 77	6.071 2.907 9.753 122.60 79 105	2.781 0.624 6.442 69.28 35 63	2.020 0.279 5.434 108.00 26 60	1.819 0.271 4.128 140.80 23 65	2.019 0.215 5.064 129.10 26 67	2.897 0.186 9.192 172.00 38 85	4.632 0.447 7.886 189.10 59	7.357 1.351 16.560 169.10 96 129	8.474 1.807 14.730 163.20 107 132	7.446 3.004 12.390 162.00 97 117	5.013 3.326 6.418 189.10 773 1138
Factors affecting a Station type: VA	unoff: N										noff is 99 nfall 96		ious mean

101002 Medina at Upper Shide

1994

Measuring authorit First year: 1965	y: NRA-S			(Grid referer Level st	nce: 40 (S2 in. (m OD):		4			Catchment M	t area (sq lax alt. (m	
Hydrometric sta	tistics fo	r 1994											
Flows Avg. (m³s⁻¹): Peak Runoff (mm) Rainfall (mm)	JAN 1.176 6.51 106 173	FEB 0.752 6.29 61 98	MAR 0.387 1.87 35 64	APR 0.408 3.22 35 75	MAY 0.383 3.26 34 102	JUN 0.231 0.62 20 43	JUL 0.161 0.19 14 15	AUG 0.155 0.26 14 55	SEP 0.177 0.80 15 103	OCT 0.264 3.19 24 115	NOV 0.447 1.93 39 90	DEC 0.595 4.83 53 140	Year 0.427 6.51 451 1073
Monthly and yea	arly statis	stics for p	revious r	ecord (Oc	t 1965 to C	Dec 1993-	-incomple	te or miss	ing month	s total 6.8	years)		
Mean Avg. flows Low (m³s-1) High Peak flow (m³s-1) Runoff (mm) Rainfall (mm)* *(1966-1993)	0.430 0.132 0.928 6.47 39 91	0.391 0.159 0.795 6.35 32 65	0.315 0.121 0.903 7.28 28 83	0.255 0.104 0.522 22 54	0.190 0.094 0.356 7.00 17 52	0.138 0.068 0.213 1.89 12 52	0.124 0.073 0.199 3.72 11 53	0.116 0.044 0.181 1.74 10 55	0.152 0.077 0.365 3.74 13 64	0.236 0.093 0.594 6.39 21	0.318 0.088 0.769 8.64 28 82	0.386 0.116 0.822 6.50 35 105	0.254 0.122 0.335 269 863

Factors affecting runoff: G I Station type: FL

1994 runoff is 168% of previous mean rainfall 124%

201007 Burn Dennet at Burndennet Bridge

1994

Measurin First year		y: DOEN			1	Grid referes Level s	nce: <i>24</i> (IC itn. (m OD)		7		C			m): 145.3 OD): 539
Hydrom	etric sta	tistics fo	r 1994											
Flows (m³s ⁻¹) Runoff (m Rainfall (m	m)	JAN 8.256 71.34 152 154	FEB 7.238 66.69 121 126	MAR 7.239 55.31 133 165	APR 6.004 36.48 107 110	MAY 2.034 8.50 38 29	JUN 1,960 26,45 35 92	JUL 1.517 10.42 28 79	AUG 1.927 26.45 36 107	SEP 1.682 11.53 30 74	OCT 1.571 8.80 29 66	NOV 3.398 36.80 61 94	DEC 7.830 44.22 144 193	Year 4.207 71.34 913 1289
Monthly	and yea	arly statis	stics for p	revious r	ecord (Jur	1975 to [Dec 1993-	-incomple	ete or miss	ing month	s total 0.1	years)		
Mean flows (m³s-1) Peak flow Runoff (m Rainfall (m	(m³s ^{- 1}) m)	6.269 0.418 9.839 99.98 116 134	5.817 2.244 14.320 53.00 98 83	5.210 2.441 8.066 47.48 96 112	3.562 1.687 6.536 66.25 64 71	2.541 0.925 5.024 25.51 47 67	2.066 0.843 4.635 29.50 37 74	2.091 0.832 3.990 50.79 39 88	2.720 0.579 7.213 105.20 50 95	3.280 0.664 8.151 67.37 59 103	5.092 2.033 9.979 110.80 94 127	4.983 1.689 7.351 64.52 89 109	5.988 3.203 11.740 78.29 110 121	4.129 2.634 6.211 110.80 897 1184
Factors a	ffecting r	unoff: E									1994 run	off is 102	% of previ	ious mean

Station type: VA

1994 runoff is 102% of previous mean rainfall 109%

203012 Ballinderry at Ballinderry Bridge

1994

Measuring au First year: 19		EN .		,	Grid refere Level st	nce: <i>23</i> (II tn. (m OD)		9		C			m): 419.5 OD): 476
Hydrometric	: statistic	for 1994											
	JAN /g. 24.6/ rak 98.9 157 160	0 107.50 142	MAR 14.540 55.07 93 138	APR 11.680 51.41 72 95	MAY 3,114 11,37 20 37	JUN 2.139 40.03 13 77	JUL 1.861 11.11 12 71	AUG 2.852 33.40 18 92	SEP 4.366 45.11 27 73	OCT 2.112 6.98 13 46	NOV 11.090 60.77 69 87	DEC 15.070 65.64 96 135	Year 9.740 107.50 732 1151
Monthly and	l yearly s	atistics for	previous :	record (Jul	1970 to D	ec 1993)							
flows Lo	vg. 16.03 pw 9.33 gh 24.63 =1) 183. 102 124	9 4.805 0 25.040 20 139.90 71	10.920 5.502 17.260 98.37 70 106	7.310 3.515 14.090 112.50 45 79	5.280 2.454 12.740 109.20 34 60	3.843 1.627 8.710 61.60 24 72	2.987 1.518 7.498 127.20 19 72	4.933 1.060 17.640 140.10 31 106	5.852 1.236 21.020 141.00 36 85	8.973 2.331 17.200 194.80 57 113	11.910 5.122 21.860 122.90 74 90	14.600 4.946 28.840 138.00 93 116	8.721 5.251 11.532 194.80 656 1101

Factors affecting runoff; N Station type: VA

1994 runoff is 112% of previous mean rainfall 105%

203020 Moyola at Moyola New Bridge

1994

Measuring authori First year: 1971	ty: DOEN			i	Grid referer Level st	nce: <i>23</i> (IH :n. (m OD):		i		C			m): 306.5 OD): 554
Hydrometric sta	itistics fo	r 1994											
Flows Avg. (m³s-¹): Peak Runoff (mm) Rainfall (mm)	JAN 18.790 96.82 164 179	FEB 19.040 103.70 150 148	MAR 15.340 65.70 134 164	APR 12.330 64.75 104 110	MAY 4.284 17.68 37 37	JUN 3.400 41,46 29 87	JUL 3.229 20.45 28 70	AUG 3.911 32.95 34 96	SEP 3.789 13.88 32 69	OCT 3.583 15.98 31 54	NOV 10.700 62.51 91 114	DEC 14.270 51.43 125 159	Year 9.330 103.70 960 1287
Monthly and ye	arly stati:	stics for p	revious r	ecord (Fel	b 1971 to [Dac 1993)							
Mean Avg. flows Low (m³s-¹) High Peak flow (m³s-¹) Runoff (mm) Rainfall (mm)* '(1983-1993)	15.080 7.707 23.280 152.20 132 145	11.390 3.696 25.940 121.90 91 93	10.550 3.776 17.160 90.99 92 126	6.812 2.238 14.520 120.40 58 89	4.788 1.335 12.360 114.10 42 71	3.652 1.015 7.159 67.84 31 77	2.976 0.952 6.512 83.33 26 81	4.529 0.748 15.310 111.00 40 111	5.702 1.366 19.100 112.70 48 97	9.101 2.000 16.790 134.80 80 133	11.240 4.563 20.770 117.20 95 108	13.490 5.088 24.410 154.60 118 130	8.267 4.961 10.654 154.60 851 1261
Factors affecting a Station type: VA	unoff: S P	GΙ									off is 113 nfall 102		ous mean

205004 Lagan at Newforge

1994

Measuring author First year: 1972	ity: DOEN					nce: 33 (IJ stn. (m OD)		3		C			m); 490.4 OD): 532
Hydrometric st	atistics fo	т 1994											
Flows Avg. (m³s-¹): Peak Runoff (mm) Rainfall (mm)	JAN 20.860 76.84 114 125	FEB 24.240 90.99 120 131	MAR 14.230 57.14 78 86	APR 8.969 32.93 47 63	MAY 2.907 6.84 16 40	JUN 1.614 3.39 9 43	JUL 1.619 6.77 9 60	AUG 2.304 12.20 13 90	SEP 3.338 20.36 18 62	OCT 5.934 36.79 32 75	NOV 14.290 45.38 76 83	DEC 14.600 34.66 80 101	Year 9.483 90.99 610 959
Monthly and ye	arly stati	stics for p	revious r	ecord (Au	g 1972 to	Dec 1993)							
Mean Avg. flows Low (m³s-¹) High Peak flow (m³s-¹) Runoff (mm) Rainfall (mm)* (1983-1993)	16.480 8.508 26.460 84.30 90 87	11.870 4.569 25.410 66.22 59 60	10.860 2.820 18.740 69.57 59 83	7.587 2.064 19.170 112.20 40 73	4.788 1.208 16.600 55.15 26 56	3.407 0.944 11.230 62.72 18 61	2.641 0.789 8.018 24.30 14 60	4.214 0.615 19.470 76.10 23 95	5.621 0.850 18.090 70.53 30 73	10.600 1.075 27.610 121.00 58 94	11,840 3,061 27,690 91,08 63 73	16.210 3.843 43.090 128.40 89 90	8.839 4.810 12.235 128.40 569 905

Factors affecting runoff: GEI Station type: VA

1994 runoff is 107% of previous mean rainfall 106%

205005 Ravernet at Ravernet

1994

Measuring authori First year: 1972	Grid reference: <i>33</i> (IJ) 267 613 Level stn. (m OD): 31.00							Catchment area (sq km): 69.5 Max alt. (m OD): 163					
Hydrometric statistics for 1994													
Flows Avg. (m³s=1); Peak Runoff (mm) Rainfall (mm)	JAN 2.939 12.03 113 134	FEB 3.188 14.46 111 138	MAR 2.040 5.45 79 83	APR 1.092 4.47 41 63	MAY 0.261 0.64 10 41	JUN 0.084 0.15 3 41	JUL 0.087 0.31 3 59	AUG 0 106 0.45 4 84	SEP 0.182 0.79 7 53	OCT 0.561 6.60 22 81	NOV 2.195 8.36 82 97	DEC 2.143 5.18 83 105	Year 1.228 14.46 557 979
Monthly and yearly statistics for previous record (Aug 1972 to Dec 1993—incomplete or missing months total 2.0 years)													
Mean Avg. flows Low (m³s-¹) High Peak flow (m³s-¹) Runoff (mm) Rainfall (mm)	2.066 0.689 4.045 15.45 80 95	1.475 0.502 3.653 18.89 52 57	1.167 0.313 2.089 14.98 45 78	0.917 0.195 2.422 19.75 34 56	0.529 0.054 1.780 13.82 20 65	0.314 0.040 1.260 11.91 12 60	0.138 0.006 0.356 2.60 5 60	0.368 0.008 2.103 17.52 14 82	0.606 0.013 2.232 11.32 23 88	1.254 0.066 4.361 24.15 48 90	1,251 0,260 2,994 17,04 47 79	1.911 0.573 5.916 22.79 74 96	0.999 0.667 1.278 24.15 454 906

Factors affecting runoff: N Station type: FV

Comment: August 1994 contains estimated daily flows.

1994 runoff is 123% of previous mean rainfall 108%

THE NATIONAL RIVER FLOW ARCHIVE DATA RETRIEVAL SERVICE

The National River Flow Archive comprises over 30,000 station-years of daily river flows and incorporates data from over 1400 gauging stations throughout the United Kingdom. In addition to gauged flow data, naturalised data (see page 39) have been derived from the records of a small number of gauging stations. Catchment areal rainfall and the highest instantaneous flow, when available, are also archived on a monthly basis.

In order that the contents of the archive may be readily accessible, a suite of programs has been developed to provide a selection of retrieval options. Descriptions of these options are listed on pages 137 and 138 and can also be found, together with examples of the computer output in the National River Flow Archive Data Retrieval Service Handbook which is intended for regular users of the Archive and is available free from the address opposite. The format of certain of the retrievals is currently under review. All data retrieval programs have been designed to allow flexibility in the presentation of the options, particularly those producing graphical output. Before finalising a data request it is recommended that the Concise Register of Gauging Stations on pages 139 to 145, be consulted, and that, where continuity of record is important, the availability of suitable data sets are checked by referring to the Summary of Archived Data in the Handbook. As an aid to data selection and to the interpretation of hydrological analyses the 1986-90 Hydrometric Register and Statistics (see page 174) is recommended as a source of indispensable reference material.

In response to user requirements the data retrieval facilities are being continually updated and extended. A wide range of specialist analyses and presentations is now available. Individuals having data requirements not catered for in the standard retrieval suite are invited to discuss their particular needs – address opposite.

Retrievals are normally available as A4 paper listings, diskette, or as hydrograph plots.

Cost of Service

To cover the computing and handling costs, a moderate charge will be made depending on the output options selected. Estimates of these charges may be obtained on request; the right to amend or waive charges is reserved.

Requests for Retrieval Options

Requests for retrieval options should include: the name and address to which output should be

directed, the gauging stations for which data are required together with the period of record of interest and the title of the required options. Where possible, a daytime telephone number should be given.

Requests should be addressed to:

The National Water Archive Office Institute of Hydrology WALLINGFORD OXFORDSHIRE OX10 8BB

Telephone: Wallingford (01491) 838800

Facsimile: (01491) 692424

Email: nwamail@ioh.ac.uk

The National Water Archive

As of April 1992, the River Flow Archive was incorporated into the National Water Archive (NWA) – one of NERC's seven Designated Data Centres. These Centres, located at NERC Institute sites, exist to hold data and provide information and advisory services to a wide range of users.

An introduction to the NWA's facilities is available on the World Wide Web:

http://www.nwl.ac.uk:80/ih/

National River Flow and National Groundwater Level Archives form the kernel of the National Water Archive but a very broad range of hydrological - and related - data sets are being assimilated into the co-ordinated management that the NWA provides. Data holdings range from the catchment scale (e.g. detailed climatological and hydrological data for a network of experimental catchments) to national (flood event data) and international coverage (European and southern African data held as part of the 'FRIEND' Project1 of the International Hydrological Programme; World Floods Archive). Further details of the UK databases - and the associated facilities - are given overleaf. The utility of the archived time series data is enhanced by the availability of complementary spatial information (for example the digitised river network and UK soils hydrology map) and by the manipulative potential provided by modern data handling systems and analytical packages.

Staff at the NWA maintain close contacts with measuring authorities and keep under review developments in the field of network design, instrumentation and information technology. A continuing dialogue with both data suppliers and an active community of users ensures that the databases and retrieval facilities are reviewed continuously to provide an effective and responsive service across a broad range of applications.

HYDROLOGICAL DATA: 1994

The UK Flood Event Archive

Data describing flood events and associated rainfall have been formally gathered by the IH since 1969, the beginning of the Flood Studies Project (FSP²). Also associated with the Flood Event Archive are data collected from a network of Representative Basins. The present Archive holds over 4000 events, the majority of which are fairly simple short duration rainfall-runoff events of the type used for the FSP. The data most commonly collected are river flow, storm and antecedent rainfall and soil moisture deficit. These components are stored on a relational database allowing flexible access and data association. A variety of analyses have been developed to collate and manipulate the data. Examples include:

Derivation of a catchment average rainfall profile for an event;

A plot of a catchment map and rainfall hyetographs for an event;

A plot of event rainfall and flow hydrographs;

Event analysis using the FSP unit hydrograph and losses model;

Plots of variation in unit hydrograph parameters and percentage runoff between events on a catchment.

Data are available as lists on hard copy or on floppy disk.

Peaks-Over-Threshold (POT) Floods Database³

This database comprises instantaneous peak flow data from river gauging stations throughout the UK. These peaks have been manually extracted from river records, generally from stage hydrographs, where the threshold was chosen to yield, on average, five peaks a year above the selected flow. There have been three main cycles of data collection and abstraction, first, for the FSP, second, at the Department of the Environment's Water Data Unit, beginning in 1978, and third, at the IH for a Ministry of Agriculture, Fisheries and Food Commission in - 1985-91. Currently the database holds over 77,000 peaks for 857 gauging stations, with an average length of record of 20 years. Annual maxima have been derived automatically from these data and are held independently on the relational database. Annual maxima are also held for a further 116 stations where records proved unsuitable for POT extraction.

Data are available as lists on hard copy or on floppy disk.

Experimental Catchments Archive⁴

The data gathered from the nine major groups of the IH's experimental catchments are held in an independent archive within the NWA. The catchments

have been highly instrumented and an intensive recording regime has been employed. Derived catchment data are stored for the main hydrological components of precipitation, evaporation and runoff as either hourly or daily values. Additionally, the component site-specific data used to generate the areal values are also stored, generally at finer time resolutions. Other, complementary datasets (such as soil moisture measurements) are available for some of the sites.

It is recommended that potential users of any of these additional datasets contact the NWA office to discuss their requirements.

The European Water Archive

The European Water Archive has been assembled as an integral part of the FRIEND - Flow Regimes from International Experimental and Network Data - research programme. This is an international collaborative study into regional hydrology in Europe and is a recognised contribution to Unesco's Fourth International Hydrological Programme.

The European Water Archive was developed by four regional coordination centres in Germany, the Netherlands, Norway and the United Kingdom collecting data from 17 European countries. The central archive is held at the Institute of Hydrology and includes summary information for some 3500 gauging stations, time series of annual maxima flood data and daily mean flows, and key flow statistics. In addition, thematic, soil, climate, land use and catchment boundary information is held on a Geographical Information System.

For further details of the European Water Archive, contact the Flow Regimes and Environmental Management Section of the Institute of Hydrology.

References

- Gustard, A.G., Roald, L.A., Pemuth, S., Lumadjeng, H.S. and Gross, R. 1989. Flow Regimes from Experimental and Network Data. Institute of Hydrology, Wallingford, 2 Vols.
- Flood Studies Report 1975. Natural Environment Research Council (5 Vols., reprinted 1993).
- Bayliss, A.C. and Jones, R.C. 1993. Peaks-Over-Threshold Floods Database: Summary Statistics and Seasonality. Institute of Hydrology, Report No. 121.
- Roberts, A.M. 1989. The Catchment Research Database at the Institute of Hydrology. Institute of Hydrology, Report No. 106.
- Gustard, A. (Ed.) 1993 Flow Regimes from International Experimental and Network Data (FRIEND). Institute of Hydrology, Wallingford, 3 Vols.

LIST OF SURFACE WATER RETRIEVAL OPTIONS

The standard retrievals have been grouped into Basic, Analytical and Station-based categories.

OPTION TITLE

CODE

TDF

NOTES

Basic time-series retrievals

Table of daily mean gauged (or naturalised) discharges

Includes monthly and annual summary statistics. Flows in cubic metres per second.

TMF Table of monthly mean gauged (or naturalised) discharges

Includes monthly and annual summary statistics. Flows in cubic metres per second.

TME Table of monthly extreme flows

The lowest and highest daily mean flows, together with the highest instantaneous flow and date of occurrence (where available). Flows in cubic metres per second. Includes summary statistics.

TMR Table of catchment monthly rainfall

Rainfall totals in millimetres and as a percentage of the 1941-70 catchment average (percentages based on the 1961-90 Standard Period will soon be available). Includes summary statistics.

TRR Table of catchment monthly areal rainfall and runoff

Runoff is normally derived from the monthly mean gauged flow. An additional listing is provided for catchments with naturalised flow records. Includes summary statistics. Rainfall and runoff totals are in millimetres.

YBM Yearbook data tabulation (monthly)

Monthly river flow and catchment rainfall data for a specified year together with comparative statistics derived from the historical record. Naturalised flows (where available) – and the corresponding runoff – may also be tabulated.

HDF Hydrographs of daily mean flows

Choices of scale, units, truncation level and overlay grid pattern are available. The period of record maximum and minimum flows, or the mean flow, may be included. The plots may be based on single or n-day means, or on n-day running mean flows.

HMF Hydrographs of monthly mean flows

Choices of scale, units and overlay grid pattern are available. The period of record maximum, minimum and mean flows may be included.

Analytical time-series retrievals

YBD Yearbook data tabulation (daily) River flow and catchment rainfall data for a specified year with basic gauging station and catchment details and flow statistics derived from the historical record.

FDS Flow duration statistics Tabulation of the 1-99 percentile flows with optional plot of the flow duration curve. The percentiles may be derived from daily flows or n-day averages and the analysis may be restricted to nominated periods within the year, e.g. April-September only. Choices of scales, grid marking and units are available and the percentiles may be expressed as a percentage of the average flow or of a nominated flow.

THS Table of hydrometric statistics Provides a comparison between summary statistics for a selected year, or a group of years, and the corresponding statistics for a nominated period of record (as featured in the Hydrometric Register and Statistics 1986-90).

Station-based retrievals

SCD Gauging station summary sheet Includes a daily flow hydrograph (with period of record extreme values) and flow duration curve together with summary statistics relating to river flow, catchment runoff and catchment rainfall. A description of the gauging station and catchment is also provided together with selected catchment characteristics and a concise summary of the archived data.

GSR Table of gauging station reference information

Tabulation of selected gauging station details and catchment characteristics for nominated gauging stations.

Gauging station and catchment description

A brief summary of the gauging station, its history and major influences on the flow regime, together with catchment details.

Author to the British

Note: In line with Natural Environmental Research Council policy, the provision of its own experimental catchment data now lodged with the National River Flow Archive confers only a right to use the data. Ownership of the data, or the associated Intellectual Property Rights, will not normally be transferred. Data received from the NRFA must not be sold, or passed on to any third party, but reproduction is permitted for the purposes of any fair dealing in the course of study, research, public debate or instruction, provided the source is acknowledged. However, the bulk of the data held on the Archive is received from measuring authorities operating under Government legislation and is made available under the Access to Environmental Data Regulations.

Through the use of quality control procedures every effort is made to maintain and improve the quality of data on the NRFA. However, the data derive from a variety of sources and, for historical data sets especially, the provenance and precision may be uncertain. Therefore the NRFA cannot guarantee the validity or accuracy of the data and NERC accepts no liability for any loss or damage, cost or claims arising directly or indirectly from their use.

A4S

00to 1256

25.5 T

Short Mila

Concise Register of Gauging Stations

standard with marked speed of the Sephine speed of										
1900 Series Lange Series 1900 Seri										Area (sq km)
1900 Series Lange Series 1900 Seri	002001	Helmadale as Kilphedir	2997 9181	HRPB	551,4	015030	Deen Water at Dean Bridge	3293 7458	TRPB	230.0
200000 Control Report 241 252 25	003001			CE			Ordie Burn at Jackstone	3073 7337	TRPB	20.0
Company Content	003002	Carron at Sgodachail	2490 8921							745.0 647.0
2000000 Control of Note 1987 1998										247.0 165.0
2000000 Mary of Professor										237.0
2000000 Seas of Fameworkers 220 8000 1999 118.1 10900000 1999 1									TRPB	590.5
0.0000 Sear of Commence 220 802										176.9 99.5
200000	004005	Meig at Glenmeannie	2286 8528	HRPB	120.5	016004	Earn at Forteviot Bridge	3043 7184	TRPB	782.2
2000000			2205 8602		116.1					12.1 49.0
Compare Internation						016011	Allt Strath a'Ghlinne at Auchinner	2695 7158	TRPB	
2000000000000000000000000000000000000	005003	Glass at Kerrow Wood	2354 8321	HRP8	481.8					122.3
200000	005004	Glass at Fasnakyle	2315 8288	HRPB	277.5					424.0 50.5
						017004	Ore at Balfour Mains	3330 6997	FRPB	162.0
CHOOD ID Circle at Mar of Toes 269 (30) 989 (10) 69 (10) 70 Cheep During at Michael (1994) 718 (20) 70 Cheep During at Michael (1994) 718 (20) 70 70<	006006 1	Allt Bhlaraidh at Invermoriston		SE		017008				195.3 33.7
Proposed to December 1926 9337 Perfect 10 10 10 10 10 10 10 1										22.0 14.0
Description February 19 19 19 19 19 19 19 1										7.9
2000000000000000000000000000000000000	007002					018001	Allan Water at Kinbuck	2792 7053	FRPB	161.0
2000000								2858 6960		181.0
2000000 Sept Abendron	007005	Divie at Dunphail	3005 8480	HAPB		018005				518.0 210.0
200001										69.5 190.0
. Sept et Konzel. 500000 Aur. Ann. Chartenburg. 288 1802 MSPPP 10117 (1982) 500000 Aur. Ann. Chartenburg. 288 1802 MSPPP 120 MSPPP 1		-				018010	Forth at Gargunnock	2714 6953	FRPB	397.0
0.00000 Sepre at Numbres Bridge 2759 7296 Repring 5.33 B 1000000 100000 100000 100000 100000 100000 100000 1000000 1000000 100000 100000 100000 100000 100000 100000 1000000 100000 100000 100000 100000 100000 100000 1000000 100000 100000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 10000000 10000000 10000000 10000000 10000000 10000000 100000000	008002									1036.0 48.0
2000000 Sey of floor of Claren 2318 512 Sellow 2010 2										67.0 23.7
Selvy of Investrum	008005	Spey at Boat of Garten	2946 8191	NERPO	1267.8	018016	Ketty Water at Clashmore -	2468 6968		2.8
Compare State Compare Stat										7.7 6.8
2009101 Joes of Members 2013 2224 REPRIP 1748 Disport Joes As Burna Elega 2449 8887 PRPB 2010 Disport Joes of Members 2013 221 REPRIP 2010 Disport Disport Disport 2013 Di						018019	* Corner Burn at Corner	2387 7042	FRPB	0.9
000010 Februs at Faches Bodgs 2848 8047 REPR 23.1.0 0100001 Februs at Alcrisobour microsis 232,8 918 REPR 15.2 0100001 1000001 1000001 1000001 1000001 1000001 1000001 1000001 1000001 1000001 1000001 1000001 10000001 10000001 10000001 10000001 10000001 10000001 10000001 100000000	008010	Spey at Grantown	3033 8268	NERP8	1748.8	018021	Loch Ard Burn at Elrig			0.9 1.5
Description Personal Continues Personal Conti						018022	* Forth at Milton	2503 7135	FRPB	44.5
200001 Deveron at Nucleis 323,9815 KEPPE 15.2 01900.7 Bouch Water at Elech Water 3014,6838 FIPBE 2000000 10 Deveron at Nucleis 3158,8464 KEPPE 814,9 0190000 Seat at Massabruph 3338,6727 FIPBE 3158,000000 Seat Annual Prescription 322,8465 KEPPE 199.0 0190000 Seat Annual Prescription 322,8465 KEPPE 89.0 0190000 Seat Annual Prescription 3314,8727 KEPPE 199.0 0190000 Seat Annual Prescription 3314,8727 KEPPE 199.0 0190000 Seat Annual Prescription 339,1476 Seat Annual Prescr	008015	Fiddich at Auchindoun	3355 8399	NERPO	44.5					369.0
Deveron it Auschin 3512 8464 REPR 41.6 019005 Ammode Almondel 3086 6886 RPB 279.0 019005 Deveron it Municipal 3228 6732 RPB 379.0 019005 Ammode Almondel 3228 6732 RPB 379.0 019006 Ammode Almondel 3228 6732 RPB 379.0 019006 Ammode Almondel 3228 6732 RPB 379.0 019007 3228 6732 RPB 3229 019007 3228 673										43.8 51.8
Development in Mulmarsh Compact Development in Mulmarsh Compact Co	009001	Deveron at Aunchie	3532 8464	NEDDR	441.6			3252 6616		81.6 229.0
South East at Presimon 325 8622 Fight 1900 1900 1900 325 8622 Fight 1900	009002	Deveron at Muirask	3705 8498	NERP8	954.9	019006	Water of Leith at Murrayfield	3228 6732	FRPB	107.0
										330.0 112.0
	009005	Allt Deveron at Cabrach	3378 8291	'GRWD	67.0	019010	Braid Burn at Liberton	3273 6707	FRPB	16.2
100002 Upsa at Inverrupie 4 10 848 NEPPB 523.0 0 10 10 Coge Burn at Tumbrouse 316 6733 FRPB 10 10 10 10 10 10 10 1						019012	Water of Leith at Colinton			137.0 72.0
100000 The net Ellon	010002	Ugie at Inverugie	4101 8485	NERPB	325.0					34.1 38.8
10000	010003			NERPB			_			
Once Bridge of Alford 9568 8170 N.RPR 980 020005 1						020002				307.0 26.2
101005 United at Principle 327 18260 NEPPB 198.0 0.20005 Blank Water at Batton House 344,5 7688 FRPB FRPB 101001 102001 Provided Market at Lennoxiove 311 6717 FRPB 101002 Provided Market at Lennoxiove 311 6717 FRPB 101002 Provided Market at Lennoxiove 311 6717 FRPB 101002 Provided Market at Lennoxiove 369,8 7678 FRPB 101002 Provided Market at Lennoxiove 369,8 7678 FRPB 101002 Provided Market at Lennoxiove 369,8 6633 JRWD 102005 Provided Market Pr							Tyrie at Spilmersford East Peffer Burn at Lochhouses			161.0 31.1
1,000 Dee at Woodend 3635 7956 NERPB 1370 0 200007 Gifford Wariar Lennostove 351 19717 FRPB 101002 Cee at Flesh 3796 7883 NERPB 1844 0 200007 Fresh Wariar Lennostove 351 19717 FRPB 10100204 Cee at Flesh 3796 7883 NERPB 1844 0 200007 Fresh Wariar Lennostove 3605 7883 LWD 200007 Cee at Flesh 3796 7883 NERPB 1040 0 201004 Cee at Flesh 3606 7883 LWD 3606	011004	Urle at Pitcaple	3721 8260	NERPO	198.0	020005	Birns Weter at Saltoun Hall	3457 6688	FRPB	93.0
10000	011005	DOR BY MUSI OF NEWS	3371 8121	NEHPU	187.0					51.8 64.0
102002 Des at Poholilick 3344 7965 SIEPPB 690 0 0.21001 Fruid Water at Fruid 3088 6209 LIFWD						020008	Brox Burn at Broxmouth	3697 6776	FRPB	19.7
10/2005 Muck at Invertemanck 3384 7947 NERPB 110.0 02.1003 Tweed at Peebles 3257 9400 TWRPB 60 12007 10006 Tweed at Lyne Ford 3208 6397 TWRPB 10.10 10.000 1			3344 7965	NERPB	690.0					23.7
01/2006 Gairn at Invergairin 3353 7971 NERPB 150.0 021/001 Tweed at Notarin 3664 8666 BRWD 101/2007 Breath Mart Lodge 3089 7828 NERPB 229.0 021/005 Tweed at Boteleide 3488 6313 TWRPB 101/2009 NERPB 3084 7828 NERPB 229.0 021/005 Tweed at Boteleide 3488 6313 TWRPB 101/2009 NERPB 3064 7828 NERPB 229.0 021/005 Tweed at Boteleide 3488 6315 TWRPB 101/2009 NERPB 3064 7828 NERPB 229.0 021/005 Tweed at Boteleide 3488 6315 TWRPB 101/2009 NERPB 3064 777 TWRPB 3064 777	012005						Tweed at Peebles	2000 2000		45.6 694.0
102006 Feugh at Heugh Head 3847 7920 NERPB 229 0 C21006 Time of Depart o								3664 6566		10.7 373.0
03001 Benvie at Inverbervie 382 773 KERPB 123 0 021009 Tweed at Norham 3998 6477 TWRPB 43 013002 Luther Water at Luther Bridge 3680 7668 TRPB 138 0 021010 Tweed at Norham 3998 6477 TWRPB 43 013002 Luther Water at Luther Bridge 3583 7593 TRPB 487.0 021011 Tweed at Dryburgh 3588 6320 TWRPB 20 13000 Prosen Water at Philiphurgh 3439 6277 TWRPB 20 13000 Prosen Water at Philiphurgh 3439 6277 TWRPB 20 13000 Prosen Water at Philiphurgh 3439 6277 TWRPB 20 13000 Prosen Water at Philiphurgh 3439 6277 TWRPB 20 13000 Prosen Water at Philiphurgh 3439 6277 TWRPB 20 13000 Prosen Water at Philiphurgh 3439 6277 TWRPB 20 13000 Prosen Water at Philiphurgh 3439 6277 TWRPB 20 13000 Prosen Water at Philiphurgh 3439 6277 TWRPB 20 13000 Prosen Water at Luther Water at Landing 342 6835 TWRPB 20 13000 Prosen Water at Luther Stating 342 6835 TWRPB 20 13010 Protect Water at Luther Stating 342 6835 TWRPB 20 13010 Protect Water at Luther Stating 344 6835 TWRPB 20 13010 Protect Water at Luther Stating 344 6835 TWRPB 20 13010 Protect Water at Luther Stating 344 6835 TWRPB 20 13010 Protect Water at Luther Stating 344 6835 TWRPB 20 13010 Protect Water at Luther Stating 344 6835 TWRPB 20 13010 Protect Water at Luther Stating 344 6835 TWRPB 20 13010 Protect Water at Luther Stating 344 6835 TWRPB 20 13010 Protect Water at Luther Stating 344 6835 TWRPB 20 13010 Protect Water at Luther Stating 344 6835 TWRPB 20 13010 Protect Water at Luther Wat	012008	Faugh at Heugh Head	3687 7928	NERPB	229.0	021006	Tweed at Boleside	3498 6334	TWRPB	1500.0
0.1300 Bernie al Inverbervie 3828 7733 KSRPB 123.0		Water of Dye at Chair	3624 7834	NEHPB	41,7					499.0 1110.0
0.13003 South Eak at Stannochy Bridge 3383 7583 TRPB 487.0 0.21011 Yarrow Water at Philiphaugh 3435 8227 TWRPB 3013004 Prosen Water at Prosen Bridge 3398 7588 TRPB 104.0 0.21013 Gale Water at Galeshiels 3479 8374 TWRPB 103000 South Eak at Brachin 3690 7598 TRPB 490.0 0.21015 Eader Water at Galeshiels 3479 8374 TWRPB 103000 South Eak at Brachin 3600 7598 TRPB 490.0 0.21015 Eader Water at Galeshiels 3479 8374 TWRPB 103000 South Eak at Brachin 3600 7598 TRPB 102.7 0.21016 Eader Water at Calebours 3592 7880 TRPB 103.0 0.21018 Eader Water at Calebours 3248 6335 TWRPB 103001 Brothock Water at Arbroach 3404 7419 TRPB 50.0 0.21017 Etrick Water at Brachin 3268 51789 TWRPB 103001 Eden at Kemback 3415 7158 TRPB 307.4 0.21025 Eader Water at Earlston 3268 6401 TWRPB 104002 Dighty Water at Earlston 3208 6401 TWRPB 104002 Dighty Water at Earlston 3752 8354 TWRPB 33.0 Dighty Water at Earlston 3752 8									TWRPB	4390.0
0.1300 Junan Water at Kirkton Mull 3855 7494 TRPB 124 0 0.21013 Gale Water at Galashiels 3479 8374 TWPPB 12 0 10 10 10 10 10 10	013003	South Esk at Stannochy Bridge	3583 7593	TRPB	487.0	021011	Yarrow Water at Philiphaugh		TWRPB	2080.0 231.0
0.1300 North Eak at Logie Mill 3699 7840 TRPB 730.0 0.21015 Tweed at Kingledores 3109 6285 TWRPB 10.13008 Out the Eak at Errorston 3666 5838 TWRPB 127.2 0.21016 Euder Water at Earlston 3666 5838 TWRPB 127.2 0.21016 Eve Water at Eyernouth Mill 3942 6635 TWRPB 10.13010 Brothock Water et Arbroath 340 7419 TRPB 50.0 0.21015 Eve Water at Eyernouth Mill 3942 6635 TWRPB 10.13010 Eve Water at Eyernouth Mill 3942 6635 TWRPB 10.13010 Eve Water at Lyne Station 3209 6401 TWRPB 10.13010 Eve Water at Lyne Station 3209 6401 TWRPB 10.13010 Eve Water at Lyne Station 3209 6401 TWRPB 10.13010 Eve Water at Lyne Station 3209 6401 TWRPB 10.13010 Eve Water at Lyne Station 3209 6401 TWRPB 10.13010 Eve Water at Lyne Station 3209 6401 TWRPB 10.13010 Eve Water at Lyne Station 3209 6401 TWRPB 10.13010 Eve Water at Lyne Station 3209 6401 TWRPB 10.13010 Eve Water at Lyne Station 3209 6401 TWRPB 10.13010 Eve Water at Lyne Station 3209 6401 TWRPB 10.13010 Eve Water at Lyne Station 3209 6401 TWRPB 10.13010 Eve Water at Lyne Station 3209 6401 TWRPB 10.13010 Eve Water at Lyne Station 3209 6401 TWRPB 10.13010 Eve Water at Lyne Station 3209 6401 TWRPB 10.13010 Eve Water at Lyne Station 3209 6401 TWRPB 10.13010 Eve Water at Cademum 3209 6247 TWRPB 10.13010 Eve Water at Cademum 3209 6247 TWRPB 10.13010 Eve Water at Lyne Station 3209 6247 TWRPB 10.13010 Eve Water at Lyne Station 3209 6247 TWRPB 10.13010 Eve Water at Lyne Station 3209 6247 TWRPB 10.13010 Eve Water at Lyne Station 3209 6247 TWRPB 10.13010 Eve Water at Lyne Station 3209 6247 TWRPB 10.13010 Eve Water at Lyne Station 3209 6247 TWRPB 10.13010 Eve Water at Lyne Station 3209 6247 TWRPB 30.00100 Eve Water at Lyne Station 3209 6247 TWRPB 30.00100 Eve Water at Lyne Station 3209 6247 TWRPB 30.00100 Eve Water at Lyne										323.0 207.0
0.130.09 West Water at Delhousie Birdge 3592 7880 TRPB 127.2 0.210.16 Eye Water at Eyemouth Mill 394.2 863.5 TWRPB 10.300.10 Etnick Water at Arbrowth 3840 7419 TRPB 50.0 0.210.17 Etnick Water at Exemplant 3224 State 10.10 19					730.0	021014	Tweed at Kingledores	3109 6285	TWRPB	139.0
0.13012 South Eak at Getta Bridge 3372 7653 TRPB 130.0 0.21018 Lyne Water at Lyne Station 3209 8401 TWRPB 10.14001 Eden at Kemback 3415 7158 TRPB 307.4 0.21020 Varrow Water at Cedemus 3217 8389 TWRPB 10.14002 Diphty Water at Stationary Water at Station Arms 3308 6247 TWRPB 10.14002 Diphty Water at Stationary Water At	013009	West Water at Dalhousia Bridge	3592 7680	TRPB	127.2	021016	Eye Water at Eyemouth Mill	3942 6635	TWRPB	239.0 119.0
O							Ettrick Water at Brockhoperig Lyne Water at Lyne Station			37.5 175.0
0.14002 Dighty Water at Balmossia Mull 34.77 7324 TRPB 128.9 0.21021 Twend at Sprouaton 375.2 8354 TWRPB 30.0 14005 Mority Water at St Michaels 34.1 7224 TRPB 52.0 0.21022 Writeadder Water at Hutton Castle 3881 8550 TWRPB 51.0 0.21023 Lest Water at Coldstream 3839 3398 TWRPB 51.0 0.21024 Lest Water at Coldstream 3839 3398 TWRPB 51.0 0.21024 Lest Water at Coldstream 3839 3398 TWRPB 51.0 0.14009 Gene at Strathminglo 3575 7380 TRPB 28.0 0.21024 Lest Water at Coldstream 3634 6244 TWRPB 1.014010 Motray Water at Kilmeny 3387 7217 TRPB 28.0 0.21025 Time Water at Leeburgh 3655 6214 TWRPB 1.014010 Motray Water at Kilmeny 3387 7217 TRPB 33.0 0.21026 Time Water at Leeburgh 3634 6244 TWRPB 1.014010 Motray Water at Kilmeny 3387 7217 TRPB 33.0 0.21026 Time Water at Leeburgh 3226 6136 TWRPB 1.015001 Tele at Forter 3187 7647 TRWS 70.7 0.21030 Megget Water at Henderland 3231 6232 TWRPB 1.015002 Tele at Leeburgh 3227 6396 MRA.NY 6.015003 Tele at Leeburgh 3082 7395 TRWS 32.1 0.021032 Gen at Kirknewton 3319 8310 MRA.NY 6.015004 Inzion at Loch of Lintrathen 3280 7558 TRWS 40.9 Try at Etniscree 324 7534 TRPB 177.1 0.22003 Usuary Burn at Shillmoor 3886 8077 NRA.NY 5.015004 Try at Pitriscree 2924 7534 TRPB 177.1 0.22003 Usuary Burn at Shillmoor 3886 8077 NRA.NY 1.015014 Try at Pitriscree 2924 7534 TRPB 391.1 0.22006 Try at Bhardard Attended 3925 6063 TRPB 30.0 0.2000 Try at Bhardard Attended 39		-				021019	Manor Water at Cademus	3217 6369	TWRPB	61.6
014005 Morkle Burn at Penbride 354 1724 TRPB 52.0 021022 Whiteadder Water at Hutton Castle 3891 6550 TWRPB 50 014006 Monkle Burn at Penbride 3574 7361 TRPB 18.0 021023 Let Water at Coldstream 3839 3896 TWRPB 1 014007 Craigmill Burn at Craigmill 3575 7360 TRPB 29.0 021024 Jed Water at Jedburgh 3655 6214 TWRPB 1 014007 Craigmill Burn at Craigmill 3575 7360 TRPB 29.0 021025 Jed Water at Jedburgh 3655 6214 TWRPB 1 014007 Water at Klimeny 327 7217 TRPB 23.0 021026 Time Water at Deephope 3278 6138 TWRPB 1 015001 Isla at Forter 3187 7647 TRWS 70.7 021030 Megget Water at Houth Bridge 3826 6530 TWRPB 015002 Newton Burn at Newton 3230 7605 TRWS 15.4 021031 Tall at Etal 3927 6396 NRA-NY 015004 Inzion at Loch of Lintrathen 3280 7559 TRWS 24.7 021034 Tall at Etal 3928 6244 TWRPB 1 015005 Melgan at Loch of Lintrathen 3275 7558 TRWS 40.9 105005 Tall at Etal 3275 7558 TRWS 40.9 105006 Tall at Etal 3275 7357 TRPB 4587.1 022001 Coquet at Morwick 4234 6044 NRA-NY 1 015005 Melgan at Loch of Lintrathen 3275 7558 TRWS 40.9 105006 Tall at Etal 3870 6903 NRA-NY 1 015004 Inzion at Loch of Lintrathen 3275 7558 TRWS 40.9 105006 Tall at Etal 3870 6903 NRA-NY 1 015005 Melgan at Loch of Lintrathen 3275 7558 TRWS 40.9 105006 Tall at Waster Colston 3340 7478 TRPB 1149.4 022002 Coquet at Morwick 4234 6044 NRA-NY 1 015006 Tall at Etal Sample S										155.0 3330.0
0.14007 Creigmill Burn at Craigmill 3326 7102 TRPB 28.0 0.21025 Ale Water at Jedburgh 3655 6214 TWRPB 1										503.0
0.14010 Motray Water at Kilmeny 3387 7217 TRPB 33.0 0.210.26 Time Water at Deephope 3278 6138 TWRPB 1.015001 Isla at Forter 3187 7647 TRWS 70.7 0.21030 Megget Water at Honderland 323 623.2 TWRPB 1.015002 Newton Burn at Newton 3230 7605 TRWS 15.4 0.21031 Tall at Etal 3927 6396 NRA-NY 6.015003 Tay at Caputh 3082 7395 TRWB 3211.0 0.21032 Glen at Kirknewton 3919 6310 NRA-NY 6.015003 Megget Water at Henderland 323 6236 TWRPB 1.015004 Inzion at Loch of Lintrathen 3280 7559 TRWS 24.7 0.21034 Yarrow Water at Craig Douglas 3288 6244 TWRPB 1.015004 Tay at Ballathie 3147 7387 TRPB 4587.1 0.22001 Coquet at Morwick 4.234 6044 NRA-NY 5.015005 Tay at Ballathie 3147 7387 TRPB 4587.1 0.22001 Coquet at Morwick 4.234 6044 NRA-NY 5.015005 Tay at Ballathie 3147 7387 TRPB 4587.1 0.22001 Coquet at Morwick 4.234 6044 NRA-NY 5.015005 Tay at Ballathie 3147 7387 TRPB 4587.1 0.22001 Coquet at Morwick 4.234 6044 NRA-NY 5.015005 Tay at Ballathie 3147 7387 TRPB 4587.1 0.22001 Coquet at Morwick 4.234 6044 NRA-NY 5.015005 Tay at Ballathie 3147 7387 TRPB 4587.1 0.22001 Coquet at Morwick 4.234 6044 NRA-NY 5.015005 Tay at Ballathie 3295 7466 TRPB 374.8 0.22002 Coquet at Morwick 4.234 6044 NRA-NY 0.15010 Isla at Wester at Cookston 3340 7478 TRPB 374.8 0.22004 Aln at Hawkhill 4.211 8129 NRA-NY 0.15010 Isla at Wester at Cookston 3340 7578 TRPB 314.8 0.22004 Aln at Hawkhill 4.211 8129 NRA-NY 0.15010 Isla at Wester at Cookston 3340 7578 TRPB 314.8 0.22004 Aln at Hawkhill 4.211 8129 NRA-NY 0.15010 Turn at Port-na-craig 2940 7577 TRPB 1649.0 0.22004 Aln at Hawkhill 4.211 8129 NRA-NY 0.15010 Turn at Port-na-craig 2940 7577 TRPB 1649.0 0.22004 Aln at Hawkhill 4.02005 NRA-NY 0.15010 Turn at Port-na-craig 2940 7577 TRPB 1649.0 0.22004	014007	Craigmill Burn at Craigmill	3575 7360	TRPB	29.0	021024	Jed Water at Jedburgh			113.0 139.0
0.15001 Isla at Forter 318.7 64.7 TRWS 70.7 0.21033 Megget Water at Honderland 3231 6232 TWRPB 1.05002 Newton Burn at Newton 3230 7605 TRWS 15.4 0.21031 Till at Etal 392.7 6336 NRA-NY 6.015003 Tay at Caputh 308.7 7385 TRPB 3211.0 0.21032 Glen at Kirknewton 319.8 6310 NRA-NY 1.015004 Loch of Untrethen 328.7 556 TRWS 24.7 0.21034 Yarrow Water at Craig Douglas 328.8 6244 TWRPB 1.015005 Tay at Baltahite 314.7 7367 TRPB 4587.1 0.22001 Coquet at Morwick 4.234 6044 NRA-NY 5.015007 Tay at Pittnacree 2.924.7534 TRPB 118.4 0.22002 Coquet at Morwick 4.234 6044 NRA-NY 5.015007 Tay at Pittnacree 2.924.7534 TRPB 118.4 0.22002 Coquet at Morwick 4.211 6129 NRA-NY 0.15010 Isla at Wester Cardean 3.295.7466 TRPB 366.5 0.22004 Aln at Hawkhill 4.211 6129 NRA-NY 0.15010 Lyon at Comris Bridge 2.786.7466 TRPB 381.1 0.22006 Bity hat Heritorid Bridge 4.245.5800 NRA-NY 0.15013 Almond at Almondank 3.067.7268 TRPB 174.8 0.22009 Coquet at Rothbury 4.075.5858 NRA-NY 2.015013 Almond at Newton Bridge 2.888.7318 TRPB 3.148.8 0.22009 Coquet at Rothbury 4.076.6016 NRA-NY 0.15017 Braan at Baltimoen 3.056.7631 TRPB 3.148.8 0.22009 Coquet at Rothbury 4.076.6016 NRA-NY 0.15017 Braan at Baltimoen 2.799.7406 TRPB 3.97.0 0.23002 Derwent at Eddys Bridge 4.048.5617 NRA-NY 0.15018 Cunan Burn at Midle Bank 3.187.7422 TRPB 432.0 0.23007 Derwent at Eddys Bridge 3.956.5847 NRA-NY 0.15018 Cunan Burn at Midle Bank 3.147.7422 TRPB 432.0 0.23007 Derwent at Howlands Gill 4.168.5581 NRA-NY 2.16002 Coquet at Rowhold Gill 4.168.5581 NRA-NY 2.16002 Coquet at Rowhold Gill 4.168.5581 NRA-NY 3.015018 Cunan Burn at Midle Bank 3.187.7422 TRPB 432.0 0.23007 Derwent at Eddys Bridge 4.048.5617 NRA-NY 3.015018 Cunan Burn at Midle Bank 3.147.7422 TRPB 432.0 0.23007 D										174.0 31.0
O15002 Newton Burn at Newton 3230 7805 TRWS 15.4 0.21031 Tall at Etal 3927 8396 NRA-NY 6 015003 Tay at Caputh 3082 7395 TRWS 24.7 021032 Glen at Kirknewton 3218 6244 TWRPB 1015005 Melgan at Loch of Untrathen 3228 07559 TRWS 24.7 021034 Yarrow Water at Craig Douglas 3288 6244 TWRPB 1 1015005 Tay at Baltahite 3147 7367 TRPB 4587.1 022001 Coquet at Morwick 4234 6044 NRA-NY 5 015007 Tay at Baltahite 3147 7367 TRPB 4587.1 022001 Coquet at Morwick 4234 6044 NRA-NY 5 015007 Tay at Baltahite 3147 7367 TRPB 4587.1 022002 Coquet at Morwick 4234 6044 NRA-NY 5 015007 Tay at Baltahite 3329 7454 TRPB 117.1 022003 Ulwavay Burn at Shillmoor 3886 6077 NRA-NY 015010 Isla at Wester Cardean 3295 7466 TRPB 386.5 022004 Alar Hawkhill 4211 8129 NRA-NY 2 015012 Turnmel at Port-na-craig 2940 7577 TRPB 391.1 022006 Blyth at Hartford Bridge 4245 5800 NRA-NY 2 015013 Almond at Almondbank 3067 7256 TRPB 339.1 022006 Variebeck at Mittord 4175 5858 NRA-NY 2 015013 Almond at Newton Bridge 2888 7316 TRPB 103.0 022009 Coquet at Rothburry 4067 6016 NRA-NY 015016 Almond at Newton Bridge 2888 7316 TRPB 48.0 022009 Coquet at Rothburry 4067 6016 NRA-NY 2 015017 Braan at Baltinloan 2979 7406 TRPB 197.0 023002 Derivent at Eddys Bridge 4041 5508 NRA-NY 1015016 Upon at Moer 2534 7448 SE 161.4 023003 North Tyne at Resverted 3906 5732 NRA-NY 1015016 Upon at Moer 2534 7448 SE 161.4 023003 North Tyne at Tarsat 3776 5861 NRA-NY 1015018 Upon at Moer 2534 7448 SE 161.4 023003 North Tyne at Resverted 3906 5732 NRA-NY 1015016 Upon at Moer 2534 7448 SE 161.4 023003 North Tyne at Resverted 3906 5732 NRA-NY 1015016 Upon at Moer 2534 7448 SE 161.4 023003 North Tyne at Resverted 3906 5732 NRA-NY 1015016 Upon at Moer 2534 7448						021027	Blackadder Water at Mouth Bridge	3826 6530	TWRPB	159.0
015003 Tay at Countre Tay at Pitracree 2924 7534 TRPB 1148.4 022002 Coquet at Morwick 4234 6044 RRA-NY 1015005 Melgan at Loch of Lintrathen 3147 7367 TRPB 4587.1 022001 Coquet at Morwick 4234 6044 RRA-NY 5015005 Tay at Baltantie 3147 7367 TRPB 4587.1 022001 Coquet at Morwick 4234 6044 RRA-NY 5015008 Coquet at Morwick 4234 6067 RRA-NY 5015008 Coquet at Morwick 4234 6067 RRA-NY 5015018 Coquet at Morwick 4234 6067 RRA-NY 5015018 Coquet at Morwick 4234 6067 RRA-NY 5015018 Coquet at Morwick 4234 5060 RRA-NY 5015018 Co	015002 1	Newton Burn at Newton	3230 7605	TRWS						56.2 648.0
0.15005 Melgen at Loch of Lintrathen 3275 7558 TRWS 40.9	015003	Tey at Caputh	3082 7395	TRPB	3211.0	021032	Glen at Kirknewton	3919 6310	NRA-NY	198.9
0.15007 Tay at Pithacree 294 7534 TRPB 118.4 0.22002 Coquet at Bygate 3870 6083 NRA.NY	015005 1	Melgan at Loch of Lintrathen	3275 7558	TRWS	40.9					116.0
015008 Dean Water at Cookston 3340 7479 TRPB 171.1 022003 * Usway Burn at Shillmoor 3886 6077 NRA-NY 015011 Lyon at Cornie Bridge 2786 7486 TRPB 381.1 022004 * Aln at Hawkhill 4211 8129 NRA-NY 2 015012 Tummel at Port-na-creig 2940 7577 TRPB 1649.0 022007 Wansbeck at Mitford 4175 5888 NRA-NY 2 015014 Ardle at Kindrogan 3057 7268 TRPB 174.8 022008 Alwin at Clennel 3925 6063 NRA-NY 3 015014 Ardle at Kindrogan 3056 7631 TRPB 103.0 022009 Coquet at Rothbury 4067 6016 NRA-NY 3 015014 Ardle at Kindrogan 3056 7631 TRPB 84.0 015015 Almond at Almond at Almond at Almond at Almond at Newton Bridge 2888 7318 TRPB 84.0 015016 Tay at Kemmore 2782 7467 TRPB 600.9 023001 Tyne at Ballindoan 4041 5508 NRA-NY 015016 Tay at Kemmore 2782 7467 TRPB 600.9 023001 Tyne at Ballindoan 4041 5508 NRA-NY 015019 Lunan Burn at Mill Bank 3182 7400 TRPB 94.0 023004 South Tyne at Raverthill 3906 6732 NRA-NY 015021 Lunan Burn at Mill Bank 3182 7400 TRPB 210.0 023005 North Tyne at Tarsat 3776 5861 NRA-NY 015026 Eicht at Craighall 3174 7472 TRPB 432.0 023007 Derwent at Eddys Bridge 3868 580 NRA-NY 2016027 Garry Burn at Luncarty 3093 7306 TRPB 432.0 023008 Rede at Rede Bridge 3868 5802 NRA-NY 3015028 Ordie Burn at Luncarty 3093 7306 TRPB 54.0 023008 South Tyne at Alston 3716 5465 NRA-NY 3015028 Ordie Burn at Luncarty 3093 7306 TRPB 54.0 023009 South Tyne at Alston 3716 5465 NRA-NY 3015028 Ordie Burn at Luncarty 3093 7306 TRPB 54.0 023009 South Tyne at Alston 3716 5465 NRA-NY 3015028 Ordie Burn at Luncarty 3093 7306 TRPB 54.0 023009 South Tyne at Alston 3716 5465 NRA-NY 3015028 Ordie Burn at Luncarty 3093 7306 TRPB 54.0 023009 South Tyne at Alston 3716 5465 NRA-NY 3015028 Ordie Burn at Luncarty 3093 7306 TRPB 54.0 023009 South Tyne at Alst	015007		3147 7367 2924 7534							569.8 59.5
D15011 Lyon at Comris Bridge 2785 7486 TRPB 391.1 0.22006 Blyth at Hertford Bridge 4243 5800 NRA-NY 2	015008	Deen Water at Cookston	3340 7479	TRPB	177.1	022003	* Usway Burn at Shillmoor	3886 6077	NRA-NY	21.4
0.15013	015011	Lyon at Comris Bridge	2786 7486	TRPB	391.1	022006	Blyth at Hartford Bridge	4243 5800	NRA-NY	205.0 289.4
0.15014 Ardle at Kindrogan 3.056 7631 TRPB 10.3 0 0.22009 Coquet at Rothbury 4.067 6016 NRA-NY 3.015015 Almond at Newton Bridge 2888 7318 TRPB 84.0 0.15015 Tay at Kemmore 2782 7467 TRPB 80.0 9 0.23001 Tyne at Bywell 4.038 5617 NRA-NY 2.015017 Braan at Balfinfoan 2979 7406 TRPB 197.0 0.23002 Derwent at Eddys Bridge 4.041 15508 NRA-NY 1.015017 Upon at Moor 2.534 744B SE 161.4 0.23003 North Tyne at Reaverhall 3906 6732 NRA-NY 1.015021 Lunan Burn at Mill Bank 3182 7400 TRPB 94.0 0.23004 South Tyne at Tarsat 3776 5861 NRA-NY 7.015023 Pann at Hermitage 3014 7422 TRPB 210.0 0.23005 North Tyne at Tarsat 3776 5861 NRA-NY 2.015025 Pochart at Killin 2.567 7320 TRPB 239.0 0.23006 South Tyne at Festherstone 3672 5811 NRA-NY 3.015025 Garry Burn at Londamil 3075 739 TRPB 432.0 0.23007 Derwent at Roublands Gill 4168 5581 NRA-NY 3.015025 Garry Burn at Luncarty 3093 7306 TRPB 54.0 0.23009 South Tyne at Alston 3716 5465 NRA-NY 3.015028 Ordie Burn at Luncarty 3093 7306 TRPB 54.0 0.23009 South Tyne at Alston 3716 5465 NRA-NY 3.015028 Ordie Burn at Luncarty 3093 7306 TRPB 54.0 0.23009 South Tyne at Alston 3716 5465 NRA-NY 3.015028 Ordie Burn at Luncarty 3093 7306 TRPB 54.0 0.23009 South Tyne at Alston 3716 5465 NRA-NY 3.015028 Ordie Burn at Luncarty 3093 7306 TRPB 54.0 0.23009 South Tyne at Alston 3716 5465 NRA-NY 3.015028 Ordie Burn at Luncarty 3093 7306 TRPB 54.0 0.23009 South Tyne at Alston 3716 5465 NRA-NY 3.015028 Ordie Burn at Luncarty 3093 7306 TRPB 54.0 0.23009 South Tyne at Alston 3716 5465 NRA-NY 3.015028 3716 5465 NRA-NY							Wansbeck at Mitford	4175 5858	NRA-NY	287.3 27.7
0.150.16 Tay at Kemmore 2.782 7467 TRPB 600.9 0.23001 Tyne at Bywell 4038 5617 NRA-NY 2.1 0.150.17 Braan at Bathindoen 2979 7406 TRPB 197.0 0.23002 Derwent at Eddys Bridge 4041 5508 NRA-NY 1 0.150.18 Lyon at Moar 2534 7448 SE 161.4 0.23003 North Tyne at Resverthall 3906 5732 NRA-NY 1 0.150.21 Lunan Burn at Mill Bank 3182 7400 TRPB 94.0 0.23005 North Tyne at Haydon Bridge 3856 5847 NRA-NY 2 0.150.23 Braan at Hermitage 3014 7422 TRPB 210.0 0.23005 North Tyne at Haydon Bridge 3856 5847 NRA-NY 2 0.150.24 Dochart at Killin 2567 7320 TRPB 239.0 0.23005 South Tyne at Haydon Bridge 3872 58611 NRA-NY 2 0.150.24 Dochart at Killin 2567 7320 TRPB 239.0 0.23005 South Tyne at Featherstone 3672 58611 NRA-NY 2	015014	Ardle at Kindrogen	3056 7631	TRPB	103.0					346.0
015017 * Brasn at Balfanfoen 2979 7408 TRPB 197.0 023002 Derwent at Eddys Bridge 404 15508 NRA-NY 105018 Vyon at Moor 2534 7448 SE 161.4 023003 North Tyne at Rezverhall 3906 5732 NRA-NY 105021 Lunan Burn at Midl Bank 3182 7400 TRPB 94.0 023004 South Tyne at Haydon Bridge 3856 5847 NRA-NY 105023 Pasan at Hermitage 3014 7422 TRPB 210.0 023005 North Tyne at Tarsat 3776 5861 NRA-NY 2015023 NRA-NY 20000 South Tyne at Featherstone 3572 5811 NRA-NY 2015023 NRA-NY <t< td=""><td>015016</td><td>Tay at Kenmore</td><td></td><td></td><td></td><td>023001</td><td>Tyne at Bywell</td><td>4038 5617</td><td>NRA-NY</td><td>2175.6</td></t<>	015016	Tay at Kenmore				023001	Tyne at Bywell	4038 5617	NRA-NY	2175.6
0.15021 Lunan Burn at Mill Bank 3182 7400 TRPB 94.0 0.23004 South Tyne at Haydon Bridge 3856 5647 NRA-NY 7 0.15023 Braan at Hermitage 3014 7422 TRPB 210.0 0.23005 North Tyne at Faster 3776 5861 NRA-NY 2 0.15024 Dochart at Killin 2567 7320 TRPB 239.0 0.23006 South Tyne at Festherstone 3672 5811 NRA-NY 2 0.15025 Ericht at Craighell 3174 7472 TRPB 432.0 0.23007 Derwent at Rowlands Gill 4168 5581 NRA-NY 2 0.15027 Garry Burn at Loakmill 3075 7339 TRPB 20.0 0.23008 Rede at Rede Bridge 3868 5832 NRA-NY 3 0.15028 Ordie Burn at Luncarty 3093 7306 TRPB 54.0 023009 South Tyne at Alston 3716 5465 NRA-NY 3			2979 7406		197.0	023002	Derwent at Eddys Bridge	4041 5508	NRA-NY	118.0
0.150/23 Brann at Hermitage 3014 7422 TRPB 210.0 0.23005 * North Tyrie at Tarsat 3776 5861 NRA-NY 2 0.016024 0.050/24 Dochart at Killin 2567 7320 TRPB 239.0 0.23006 South Tyrie at Featherstone 3572 5511 NRA-NY 3 0.15025 0.15025 Ericht at Craighell 3174 7472 TRPB 432.0 0.23007 Derwent at Rowlands Gill 4168 5581 NRA-NY 2 0.015027 0.15027 Garry Burn at Loskmill 3075 7339 TRPB 20.0 0.23008 Rede at Rede Bridge 3868 5832 NRA-NY 3 0.015028 0.15028 Ordie Burn at Luncarty 3093 7306 TRPB 54.0 0.23009 South Tyre et Alston 3716 5465 NRA-NY 3 0.016 700 NRA-NY	015021	Lunan Burn at Mill Bank	3182 7400	TRPB	94.0	023004	South Tyne at Haydon Bridge	3856 5847	NRA-NY	1007.5 751.1
0.15025 Ericht at Craigheil 3174 7472 TRPB 432.0 0.23007 Derwent at Rowlends Gill 4168 5581 NRA-NY 2 0.15027 Garry Burn at Loakmill 3075 7339 TRPB 20.0 023008 Rede at Rede Bridge 3868 55832 NRA-NY 3 0.15028 Ordie Burn at Luncarty 3093 7306 TRPB 54.0 023009 * South Tyne at Alston 3716 5465 NRA-NY 1								3776 5861		284.9 321.9
015028 Ordie Burn at Luncerty 3093 7306 TRPB 54.0 023009 South Tyne at Alston 3716 5465 NRA-NY 1	015025	Ericht at Craighall	3174 7472	TRPB	432.0	023007	Derwent at Rowlands Gill	4168 5581	YN-ARN	242.1
	015028									343.8 118.5
	015029	Alyth Burn at Piterocknie		TRPB		023010				96.0

Station 'number	River and station name	Grid reference	Auth- ority	Area (sq km)	Station number	River and station name,	Grid reterence	Auth- ority	Area (sq km)
023011	Kielder Burn et Kielder	3644 5946	NRA-NY	58.8	027076	Bielby Beck at Thornton Lock	4760 4444	NRA-NY	103.1
023012 *	East Allen at Wide Eals West Allen at Hindley Wrae	3802 5583 3791 5583	NRA-NY NRA-NY	88.0 75.1	027077 027080	Bradford Beck at Shipley Airs at Fleet Weir	4151 4375 4381 4285	NRA-NY NRA-NY	58.0 865.0
023014 °	North Tyne at Kielder temporary North Tyne at Barrasford	3631 5931 3924 5721	NRA-NY NEW	27.0 1043.8	027081 027082	Outton Beck at Farrer Lane Cundall Beck at Bat Bridge	4365 4281 4419 4724	NRA-NY NRA-NY	25.1
023016	Ouse Burn at Crag Hall	4254 5674	NRA-NY	55.0	027083 027084	Foss at Huntington Eastburn Beck at Crosshills	4612 4543 4021 4452	NRA-NY NRA-NY	43.3
023017 023018	Team at Team Valley Ouseburn at Woolsington	4249 5585 4196 5700	NRA-NY NRA-NY	61.9 9.0	027085	Cod Beck at Dalton Bridge	4422 4766	NRA-NY	209.3
023022 023023	North Tyne at Uglydub Tyne at Riding Mill	3712 5875 4032 5617	NRA-NY NRA-NY	241.5 2174.5	027086	Skell at Alma Weir	4316 4709	NRA-NY	
024001	Wear at Sunderland Bridge	4264 5376	NRA-NY	657.8	028001 028002 1	Derwent at Yorkshire Bridge Blithe at Hamstall Ridware	4198 3851 4109 3192	NRA-ST NRA-ST	126.0 163.0
024002	Gauntess at Bishop Auckland	4215 5306	NRA-NY NRA-NY	93.0	028003	Tame at Water Orton	4169 2915 4206 2935	NRA-ST NRA-ST	408.0 795.0
024003 024004	Wear at Stanhope Bedburn Beck at Bedburn	3984 5391 4118 5322	NRA-NY	171.9 74.9	028004 ° 028005 °	Tame at Lea Marston Tame at Efford	4173 3105	NRA-ST	1475.0
024005 024006 *	Browney at Burn Hall Rookhope Burn at Eastgate	4259 5387 3952 5390	YM-ARM YM-ARM	178.5 36.5	028006 °	Trent at Great Haywood Trent at Shardlow	3994 3231 4448 3299	NRA-ST NRA-ST	325.0 4400.0
024007 ° 024008	Browney at Lanchester Wear at Witton Park	4165 5462 4174 5309	NRA-NY NRA-NY	44.6 455.0	028008 028009	Dove at Rocester Weir Trent at Colwick	4112 3397 4620 3399	NRA-ST	399.0 7486.0
024009	Wear at Chester le Street	4283 5512	NRA-NY	1008.3	028010 028011	Derwent at Longbridge Weir/St.Mary's Bridge Derwent at Matlock Bath		NRA-ST NRA-ST	1054.0 690.0
024011	Wear at Burnhope Reservoir	3856 5395	NRA-NY	20.5	028012	Trent at Yoxall	4131 3177	NRA-ST	1229.0
025001	Tees at Broken Scar Tees at Dent Bank	4259 5137 3932 5260	NRA-NY NRA-NY	818.4 217.3	028013 ' 028014	Soer at Zouch Sow at Milford	4498 3240 3975 3215	NRA-ST NRA-ST	1289.8 591.0
025003 ° 025004	Trout Beck at Moor House Skerne at South Park	3759 5336 4284 5129	NRA-NY NRA-NY	11.4 250.1	028015 028016	kile at Mattersey Ryton at Seriby Perk	4690 3895 4641 3897	NRA-ST NRA-ST	529.0 231.0
025005	Leven at Leven Bridge	4445 5122	NRA-NY NRA-NY	196.3 86.1	028017 028018	Devon at Cothem Dove at Marston on Dove	4787 3476 4235 3288	NRA-ST NRA-ST	284.0 883.2
025006 025007 1	Greta at Rutherford Bridge Clow Beck at Croft	4034 5122 4282 5101	NRA-NY	78.2	028019	Trent at Drakelow Park	4239 3204	NRA-ST	3072.0
025008 025009	Tees at Barnard Castle Tees at Low Moor	4047 5166 4364 5105	NRA-NY NRA-NY	509.2 1264.0	028020 1 028021	Churnet at Rocester Derwent at Draycott	4103 3389 4443 3327	NRA-ST NRA-ST	238.0 1175.0
025010 1	Baydale Beck at Mowden Bridge	4260 5156 3852 5309	NRA-NY NRA-NY	31.1 13.0	028022 028023	Trent at North Muskham Wye at Ashford	4801 3601 4182 3696	NRA-ST NRA-ST	8231.0 154.0
025012	Harwood Beck at Harwood	3849 5309	NRA-NY YA-ARA	25.1	02B024 02B025	Wreake at Syston Mill Sence at Ratcliffe Culey	4615 3124 4321 2996	NRA-ST NRA-ST	413.8 169.4
025013 1 025014 1		4408 5237 4323 5274	NRA-NY	61.4 2.5	028026	Anker at Polesworth	4263 3034	NRA-ST	368.0
025015 1 025018	Woodhern Burn et South Farm Tees at Middleton in Teesdale	4285 5263 3950 5250	YM-ARN YM-ARN	29.1 242.1	028027 028029	Erewash et Sandiacre ' Kingston Brook at Kingston Hall	4482 3364 4503 3277	NRA-ST NRA-ST	182.2 57.0
025019	Leven at Easby	4585 5087 4292 5238	NRA-NY NRA-NY	14.8 147.0	028030 ° 028031	Black Brook at Onebarrow Manifold at Ilam	4466 3171 4140 3507	NRA-ST NRA-ST	8.4 148.5
025020 025021	Skerne at Preston le Skerne Skerne at Bradbury	4318 5285	NRA-NY	70.1	028032	Meden at Church Warsop	4558 3680	NAA-ST NRA-ST	62.8 8.0
025022 ' 025024 '	* Balder at Balderhead Reservoir * Chapel Back at Guisborough	3931 5182 4599 5163	NRA-NY NRA-NY	20.4 13.4	028033 ° 028035	Dove at Hollinsclough Leen at Triumph Road Nottingham	4063 3668 4549 3392	NRA-ST	111.0
026001	West Beck at Wansford Bridge	5064 4560	YW	192.0	028036 ° 028038 °	Poulter at Twyford Bridga Manifold at Hulme End	4700 3752 4106 3595	NRA-ST NRA-ST	128.2 48.0
026002	Hulf at Hempholme Lock	5080 4498 5093 4548	NRA-NY NRA-NY	378.1 57.2	028039 028040	Rea at Catthorpe Park Trent at Stoke on Trent	4071 2847 3892 3467	NRA-ST NRA-ST	74.0 53.2
026003 026004	Foston Beck at Foston Mill Gypsey Race at Bridlington	5165 4675	NRA-NY	253.8	028041	Hamps at Waterhouses	4082 3502	NRA-ST	35.1 335.0
026005 026006	Gypsey Race at Boynton Elmswell Beck at Little Driffield	5137 4677 5009 4575	NRA-NY NRA-NY	240.0 136.0	028043 028044	Derwent at Chatsworth Poulter at Cuckney	4261 3683 4570 3713	NRA-ST NRA-ST	32.2
026007 °	Catchwater at Withernwick Mires Beck at North Cave	5171 4403 4890 4316	NRA-NY NRA-NY	15.5	028045 1 028046	Meden/Maun at Bothamsall/Haughton Dove at Izaak Walton	4681 3732 4146 3509	NRA-ST NRA-ST	262.6 83.0
026009	West Beck at Snakeholme Lock	5066 4555 5066 4555	NRA-NY NRA-NY		028047 028048	Oldcotes Dyke at Blyth Amber at Wingfield Park	4615 3876 4376 3520	NRA-ST NRA-ST	85.2 139.0
026010	Driffield Canal at Snakeholme Lock				028049	Ryton at Worksop	4575 3794	NRA-ST NRA-ST	77.0
027001 027002	Nidd at Hunsingore Weir Wharfe at Flint Mill Weir	4428 4530 4422 4473	NRA-NY NRA-NY	484.3 758.9	028050 028052	Torne at Auckley Sow at Great Bridgford	4646 4012 3883 3270	NRA-ST	135.5 163.0
027003 027004	Aire at Beal Weir Celder at Newlands	4534 4255 4365 4220	NRA-NY NRA-NY	1932.1 899.0	028053 028054	Penk at Penkridge * Sence at Blaby	3923 3144 4566 2985	NRA-ST NRA-ST	272.0 133.0
027006	Don at Hadfields Weir	4390 3910 4356 4671	NRA-NY NRA-NY	373.0 914.6	028055 028056	Ecclesbourne at Duffield Rothley Brook at Rothley	4320 3447 4580 3121	NRA-ST NRA-ST	50.4 94.0
027007 027008 1	Ure at Westwick Lock Swale at Leckby Grange	4415 4748	NRA-NY	1345.6	028058	Henmore Brook at Ashbourne	4176 3463	NRA-ST	42.0
027009 027010 °	Ouse at Skelton * Hodge Beck at Bransdale Weir	4568 4554 4627 4944	NRA-NY NRA-NY	3315.0 18.9	028059 028060	Maun at Mansfield Dover Beck at Lowdham	4548 3623 4653 3479	NRA-ST NRA-ST	28.8 69.0
027012 1 027013 1	' Hebden Water at High Greenwood ' Ewden Beck at More Ha# Reservoir	3973 4309 4289 3957	NRA-NY NRA-NY	36.0 , 26.4	028061 028062	Churnet at Basford Bridge Trent at Fledborough	3983 3520 4815 3715	NRA-ST NRA-ST	139.0 8433.0
027014	Rye at Little Habton	4743 4771 4714 4557	YN-ARN YN-ARN	679.0 1634.3	028065 028066	Trent at Torksey Cole at Coleshill	4827 3780 4183 2874	NRA ST	8547.0 130.0
027018	Ryburn at Ryburn Reservoir	4025 4187 4033 4166	YA-ARN	10.7 15.9	028067	Derwent at Church Wilne * Burbage Brook at Burbage	4438 3316 4259 3804	NRA-ST	1177.5 9.1
027019	Booth Deen Clough at Booth Wood Mill Don at Doncaster	4569 4040	NRA-NY	1256.2	028072	Greet at Southwell	4711 3541	NRA-ST	46.2
027022 1 027023	Don at Rotherham Weir Dearne at Barnsley Weir	4427 3928 4350 4073	YM-ARN YM-ARN	826.0 118.9	028073 028074	Ashop at Ashop diversion Soar at Kegworth	4171 3896 4492 3263	NRA-ST NRA-ST	42.0 1292.0
027024 027025	Swale at Richmond Rother at Woodhouse Mill	4146 5006 4432 3857	NRA-NY NRA-NY	381.0 352.2	028075 028079	Derwent at Slippery Stones Meece Brook at Shallowford	4169 3951 v 3874 3291	ONAA-ST NRA-ST	17.0 86.3
027026	Rother at Whittington	4394 3744 4112 4481	NRA-NY NRA-NY	165.0 443.0	028080 028081	Tame at Lea Marston Lakes Tame at Bescot	4207 2937 4012 2958	NRA-ST NRA-ST	799.0 169.0
027027 027028	* Wharfe at likley Aire at Armley	4281 4340	NRA-NY	691.5	028082	Soar at Littlethorpe	4542 2973	NRA-ST NRA-ST	183.9
027029 027030	Calder at Elland Dearne at Adwick	4124 4219 4477 4020	NRA-NY NRA-NY	341.9 310.8	028083 028085	Trent at Dariaston Derwent at St. Marys Bridge	3885 3355 4355 3368	NRA-ST	195.2 1054.0
027031 027032	Coine at Coine Bridge Hebden Beck at Hebden	4174 4199 4025 4643	NRA-NY NRA-NY	245.0 22.2	028086 028091	Sence at South Wigston Ryton at Blyth	4588 2977 4631 3871	NRA-ST NRA-ST	113.0 231.0
027033 027034	Sea Cut at Scarborough Ure at Kilgram Bridge	5028 4908 4190 4860	NRA-NY NRA-NY	33.2 510.2	028093 028094	Soar at Pillings Lock Blythe at Castle Farm	4565 3182 4213 2888	NRA-ST NRA-ST	1108.4 183.8
027035	Aire at Kildwick Bridge	4013 4457	NRA-NY	282.3	028095	Tame at Hopwas Bridge Tame at Sheepwash	4182 3052 3974 2918	NRA-ST NRA-ST	1421.7 27.9
027036 027038	Derwent at Malton Costa Beck at Gatehouses	4789 4715 4774 4836	NRA-NY NRA-NY	1421.0 7.8	028101 028102	Blythe at Whitacre	4212 2911	NRA-ST	194.3
027040 027041	Doe Lea at Staveley Derwent at Buttercrambe	4443 3746 4731 4587	NRA-NY NRA-NY	67.9 1586.0	029001	Waithe Beck et Brigsley	5253 4016	NRA-A	108.3
027042 027043	Dove at Kirkby Mills Wharfe at Addingham	4705 4855 4092 4494	NRA-NY NRA-NY	59.2 427.0	029002 029003	Great Eau at Claythorpe Mill Lud at Louth	5416 3793 5337 3879	NRA-A NRA-A	77.4 55.2
027044	Blackfoss Beck at Sandhills Bridge	4725 4475 3833 4883	NRA-NY NRA-NY	47.0 10.2	029004 029005	Ancholme at Bishopbridge Rase at Bishopbridge	5032 3911 5032 3912	NRA-A NRA-A	54.7 66.6
027047 027048	Snaizeholme Beck at Low Houses Derwent at West Ayton	4989 4850	NRA-NY	127.0	029009	Ancholme at Toft Newton	5033 3877	NRA-A	27.2
027049 027050	Rys at Ness Esk at Sleights	4696 4791 4865 5081	NRA-NY NRA-NY	238.7 308.0	030001	Witham at Claypole Mill	4842 3480	NRA-A	297.9
027051 027052	Crimple at Burn Bridge Whitting at Sheepbridge	4284 4519 4376 3747	NRA-NY NRA-NY	8.1 50.2	030002	* Barlings Eau at Langworth Bridge Bain at Fulsby Lock	5066 3768 5241 3611	NRA-A NRA-A	210.1 197.1
027053 027054	Nidd at Birstwith Hodge Beck at Cherry Farm	4230 4603 4652 4902	YK-ARK YK-ARK	217.6 37.1	030004 030005	Partney Lymn at Partney Mill * Witham at Saltersford total	5402 3676 4927 3335	NRA-A NRA-A	61.6 126.1
027055	Rye at Broadway Foot	4560 4883	NRA-NY	131.7	030006 030011	Slea at Leasingham Mill Bain at Goulceby Bridge	5088 3485 5248 3795	NRA-A NRA-A	48.4 62.5
027056 027057	Pickering Beck at Ings Bridge Seven at Normanby	4791 4819 4736 4821	NRA-NY NRA-NY	68.6 121.6	030012	Stainfield Beck at Stainfield	5127 3739	NRA-A	37.4
027058 027059	Riccal at Crook House Farm Laver at Ripon	4661 4810 4301 4710	NRA-NY NRA-NY	57.6 87.5	030013 030014	Heighington Beck at Heighington Pointon Lode at Pointon	5042 3696 5128 3313	NRA-A NRA-A	21.2 11.9
027061 027062	Coine at Longroyd Bridge Nidd at Skip Bridge	4136 4161 4482 4561	NRA-NY NRA-NY	72.3 516.0	030015 030017	Cringle Brook at Stoke Rochford Witham at Colsterworth	4925 3297 4929 3246	NRA-A NRA-A	50.5 51.3
027064	Went at Walden Stubbs	4551 4163 4142 4157	NRA-NY NRA-NY	83.7 97.4	031001	Eye Brook at Eye Brook Reservoir	4853 2941	CDWC	60.1
027065 027066	Holme at Queens Mill Blackburn Brook at Ashkowes	4393 3914	NRA-NY	42.8	031002	Glen at Kates Brdg and King St Brdg Welland at Tixover	5106 3149 4970 2997	NRA-A NRA-A	341,9 417.0
027067 027068	Sheaf at Highfield Road Ryburn at Ripponden	4357 3863 4035 4188	NRA-NY NRA-NY	49.1 33.0	031005 031006	Gwash at Belmeathorpe	5038 3097	NRA-A	150.0
027069 027070	Wiske at Kirby Wiske Eller Beck at Skipton	4375 4844 3984 4502	NRA-NY NRA-NY	215.5 35.3	031007 031010	Welland at Barrowden Chater at Fosters Bridge	4948 2999 4961 3030	NRA-A NRA-A	411.6 68.9
027071 027072	Swale at Crakehill Worth at Keighley	4425 4734 4064 4408	NRA-NY NRA-NY	1363.0 71.7	031012 031016	 Tham at Little Bytham North Brook at Empingham 	5016 3179 4957 3089	NRA-A NRA-A	24.9 36.5
027073	Brompton Beck at Snainton Ings	4936 4794 4225 4210	NRA-NY NRA-NY	12.9 46.3	031021 031023	Welland at Ashley West Glen at Easton Wood	4819 2915 4965 3258	NRA-A NRA-A	250.7 4.4
027074 027075	Spen Beck at Northorpe Bedale Beck at Leeming	4306 4902	NRA-NY	160.3	031025	Gwash South Arm at Manton	4875 3051	NRA-A	24.5

Station number	River and station name	Grid reference	Auth- ority	Area (sq km)	Station number	River and station name	Grid reference	Auth- ority	Area (sq km)
031026 031028	Egleton Brook at Egleton Gwesh at Church Bridge	4878 3073 4951 3082	NRA-A NRA-A	2.5 76.5	037006 037007	Can at Beach's Mill Wid at Writtle	5690 2072 5686 2060	NRA-A NRA-A	228.4 136.3
032001	Nene at Orton	5166 2972	NRA-A	1634.3	037008 037009	Chelmer at Springfield	5713 2071	NRA-A	190.3
032002	Willow Brook at Fotheringhay	5067 2933	NRA-A	B9.6	037010	Brain at Guithavon Valley Blackwater at Appleford Bridge	5818 2147 5845 2158	NRA-A NRA-A	60.7 247.3
032003 032004	Harpers Brook at Old Mill Bridge lae Brook at Harrowden Old Mill	4983 2799 4898 2715	NRA-A NRA-A	74.3 194.0	037011 037012	Cheimer at Churchend Coine at Poolstreet	5629 2233 5771 2364	NRA-A NRA-A	72.6 65.1
032006 032007	Nene/Kistingbury at Upton Nene Brampton at St Andrews	4721 2592 4747 2617	NRA-A NRA-A	223.0	037013	Sandon Brook at Sandon Bridge	5755 2055	NRA-A	60.6
032008	Nene/Kislingbury at Dodford	4627 2807	NRA-A	232.8 107.0	037014 037015	Roding at High Ongar Cripsey Brook at Chipping Ongar	5561 2040 5548 2035	NRA-T NRA-T	95.1 62.2
032029 1	Flore at Experimental Catchment Wootton Brook at Wootton Park	4655 2604 4726 2577	NRA-A NRA-A	7.0 73.8	037016 037017	Pant at Copford Hall Blackwater at Stisted	5668 2313 5793 2243	NRA-A NRA-A	62.5 139.2
					037018	Ingrebourne at Gaynes Park	5553 1862	NRA-T	47.9
033001 1	* Bedford Ouse at Brownshill Staunch Bedford Ouse at Bedford	5369 2727 5055 2495	NRA-A NRA-A	3030.0 1460.0	037019 037020	Beam at Bretons Farm Chelmer at Felsted	5515 1853 5670 2193	NRA-T NRA-A	49.7 132.1
033003	* Cam at Bottisham * Lark at Islaham	5508 2657	NRA-A	803.0	037021	Roman at Bounstead Bridge	5985 2205	NRA-A	52.6
033005	Bedford Ouse at Thomborough Mill	5648 2760 4736 2353	NRA-A NRA-A	466.2 388.5	037022 037024	Holland Brook at Thorpe le Soken Coine at Earls Coine	6179 2212 5855 2298	NRA-A NRA-A	54.9 154.2
033006 033007	Wissey at Northwold Nar at Marham	5771 2965 5723 3119	NRA-A NRA-A	274.5 153.3	037025 037026	* Bourne Brook at Perces Bridge * Tenpenny Brook at Tenpenny Bridge	5822 2276 6079 2207	NRA-A NRA-A	32.1 29.0
033008	Little Ouse at Thetford No 1 Staunch	5860 2832	NRA-A	699.0	037027	Sixpenny Brook at Ship House Bridge	6054 2214	NRA-A	5.1
033009 033011	Bedford Ouse at Harrold Mill Little Ouse at County Bridge Euston	4951 2565 5892 2801	NRA-A NRA-A	1320.0 128.7	037028	* Bentley Brook at Saltwater Bridge * St Osyth Brook at Main Road Bridge	6109 2193 6134 2159	NRA-A NRA-A	12.1 8.0
033012 033013	Kym at Meagre Farm Sapiston at Rectory Bridge	5155 2631 5896 2791	NRA-A NRA-A	137.5 205.9	037030	* Holland Brook at Cradle Bridge	6171 2217	NRA-A	48.6
033014	Lark at Temple	5758 2730	NRA-A	272.0	037033	Eastwood Brook at Eastwood	5748 1934 5859 1888	NRA-A NRA-A	71.8 10.4
033015 033016	Ouzel et Willen ' Cam at Jesus Lock	4882 2408 5450 2593	NRA-A NRA-A	277,1 761.5	037034 037038	Merdyke at Stifford Ely Ouse Outfall at Great Sampford	5596 1804 5646 2351	NRA-A NRA-A	90.7
033018	Tove et Ceppenham Bridge	4714 2488	A-ARN	138.1	037037	Toppesfield Brook at Cornish Hall End	5675 2377	NRA-A	1.3
033019 033020	Thet at Melford Bridge Alconbury Brook at Brampton	5880 2830 5208 2717	NRA-A NRA-A	316.0 201.5	037038 ' 037039	* Wid at Margaretting Blackwater at Langford (low flows)	5672 2000 5835 2090	NRA-A NRA-A	98.6 337.0
033021 033022	Rhee at Burnt Mill Ivel at Blunham	5415 2523 5153 2509	A-ARN A-ARN	303.0 541.3	D38001				
033023	Lea Brook at Beck Bridge	5662 2733	NRA-A	101.8	038002	Lee at Feildes Weir Ash at Mardock	5390 2092 5393 2148	NRA-T NRA-T	1036.0 78.7
033024 033025	Cam at Demford Babingly at West Newton Mill	5466 2506 5696 3256	NRA-A NRA-A	198.0 39.6	038003 038004	Mimrem at Panshanger Park Rib at Wadesmill	5282 2133 5360 2174	NRA-T NRA-T	133.9 136.5
033026	Bedford Ouse at Offord	5216 2669	NAA-A	2570.0	038005	* Ash at Eesneye	5380 2138	NRA-T	85.2
033027 033028	Rhee at Wimpole Flit at Shefford	5333 2485 5143 2393	NRA-A NRA-A	119.1 119.6	038006 °	* Rib at Herts Training School Canons Brook at Elizabeth Way	5335 2158 5431 2104	NRA-T NRA-T	148.1 21.4
033029	Stringside at White Bridge Clipatone Brook at Clipatone	5716 3006 4933 2255	NRA-A	98.8	038011	* Mimram at Fulling Mill	5225 2169	NRA-T	98.7
033031	Broughton Brook at Broughton	4889 2408	A-ARN A-ARN	40.2 66.6	038012 038013	Stevenage Brook at Bragbury Park Upper Lee at Luton Hoo	5274 2211 5118 2185	NRA-T NRA-T	36.0 70.7
033032 033033	Heacham at Heacham Hiz at Arlessy	5685 3375 5190 2379	NAA-A NAA-A	59.0 108.0	038014 038015	Salmon Brook at Edmonton * Intercepting Drain at Enfield	5343 1937 5355 1932	NRA-T NRA-T	20.5 7.4
033034	Little Ouse at Abbey Heath	5851 2844	NRA-A	699.3	038016	Stanstead Springs at Mountfitchet	5500 2246	NRA-T	20.5
033035 033037	Ely Ouse at Denver Complex Bedford Guse at Newp't Pagnell Wr	5588 3010 4877 2443	A-ARM A-ARM	3430.0 800.0	038017 038018	Mimram at Whitwell Upper Lee at Water Hall	5184 2212 5299 2099	NFIA-T NRA-T	39.1 150.0
033039 033040	Bedford Ouse at Roxton Rhee at Ashwell	5160 2535 5267 2401	NRA-A NRA-A	1660.0 1.0	038020 038021	Cobbins Brook at Sewardstone Road Turkey Brook at Albany Park	5387 1999 5359 1985	T-ARA T-ARA	38.4 42.2
033044	That at Bridgham	5957 2855	NRA-A	277.8	038022	Pyrmmes Brook at Edmonton Silver Street	5340 1925	NRA-T	42.6
033045 033046	Wittle at Quidenham That at Red Bridge	6027.2878 5996.2923	A-ARA A-ARA	28.3 145.3	038024 038026	Small River Lee at Ordnance Road Pincey Brook at Sheering Hall	5370 1988 5495 2126	NRA-T NRA-T	41.5 54.6
033048	Larling Brook at Stonebridge Stanford Water at Buckenham Tofts	5928 2907	NRA-A	21.4	038027	Stort at Glen Faba	5393 2093	T-ARK	280.2
033050	Snail at Fordham	5834 2953 5631 2703	NRA-A NRA-A	43.5 60.6	038028 038029	Stanated Brook at Gypsy Lane Quin at Griggs Bridge	5506 2241 5392 2248	NRA-T NRA-T	25.9 50.4
033051 033052	Cam at Chesterford Swaffham Lode at Swaffham Bulbeck	5505 2426 5553 2628	NRA-A NRA-A	141.0 36.4	038030 038031	Beene at Hantham Lee at Rya Bridge	5325 2131 5385 2098	NRA-T NRA-T	175.1 758.3
033053	Granta at Stapleford	5471 2515	NRA-A	114.0	038032	Lee at Lee Bridge	5352 1872	NRA-T	700.3
033054 033055	Babingley at Castle Rising Granta at Babraham	5680 3252 5510 2504	NRA-A NRA-A	47.7 98.7	039001	Thames at Kingston	5177 1698	NRA-T	9948.0
033056 033057	Quy Water at Lode Ouzel at Leighton Buzzard	5531 2627 4917 2241	NRA-A NRA-A	76.4 119.0	039002 039003	Thames at Days Weir Wandle at Connollys Mill	4568 1935	NRA-T	3444.7
033058	Ouzel at Bletchley	4883 2322	NRA-A	215.0	039004	Wandle at Beddington Park	5265 1705 5296 1655	NRA-T NRA-T	176.1 122.0
033059	* Cut-off Chennel at Tolgate Kings Dike at Stanground	5729 2757 5208 2973	NRA-A NRA-A		039005 039006	Beverley Brook at Wimbledon Common Windrush at Newbridge	5216 1717 4402 2019	NRA-T NRA-T	43.6 362.6
033062	Guilden Brook at Fowlmere Two	5403 2467	NRA-A		039007	Blackwater at Swallowfield	4731 1648	NRA-T	354.8
033063 033064	Little Ouse at Knettishell . Wheddon Brook at Whaddon	5955 2807 5359 2466	NRA-A NRA-A	101.0 16.0	039008	Thames at Eynsham Coine at Denham	4445 2087 5052 1864	NRA-T NRA-T	1616.2 743.0
033065 033066	Hiz at Hitchin Grante at Linton	5185 2290 5570 2464	NRA-A NRA-A	6.B 59.8	039011 039012	Wey at Tifford Hogsmill at Kingston upon Thames	4874 1433 5182 1688	NRA-T	396.3 69.1
033067	New River at Burwell	5608 2696	NRA-A	19.6	039013	Coine at Berrygrove	5123 1982	NAA-T	352.2
033068	Changy Water at Gatley End	5296 2411	NRA-A	5.0	039014 039015	Ver at Hansteads Whitewater at Lodge Farm	5151 2016 4731 1523	T-ARN T-ARN	132.0 44.5
034001 034002	Yare at Colney* 37 Tes at Shotesham	6182 3082 6226 2994	NRA-A		039016 039017	Kennet at Theale	4649 1708	NRA-T	1033.4
034003	Bure at Ingworth	6192 3296	NRA-A NRA-A	146.5 164.7	039017	Ray at Grendon Underwood Lembourn at Shaw	4680 2211 4470 1682	T-ARN T-ARN	18.6 234.1
034004 034005	Wensum at Costessey Mill Tud at Costessey Park	6177 3128 6170 3113	NRA-A NRA-A	570.9 73.2	039020 039021	Coin at Bibury Cherwell at Enslow Mill	4122 2062 4482 2183	NRA-T NRA-T	106.7 551.7
034006	Waveney at Needhern Mill	6229 2811	NRA-A	370.0	039022	Loddon at Sheepbridge	4720 1652	NRA-T	164.5
034007 034008	Dove at Oakley Park Ant at Honing Lock	6174 2772 6331 3270	NRA-A NRA-A	133.9 49.3	039023 039025	Wye at Hedsor Enborne at Brimpton	4896 1867 4588 1648	NRA-T NRA-T	137.3 147.6
034010 034011	Waveney at Billingford Bridge Wensum at Fakanham	6168 2782 5919 3294	NRA-A NRA-A	149,4 181,9	039026 039027	Cherwell at Banbury Pang at Pangbourne	4458 2411 4634 1766	NRA-T NRA-T	199.4
034012	Burn at Burnham Overy	5842 3428	NRA-A	80.0	039028	Dun at Hungerford	4321 1685	NRA-T	170.9 101.3
034013 034014	Waveney at Ellingham Mill Wensum at Swanton Morley Total	6364 2917 6020 3184	NRA-A NRA-A	670.0 397.8	039029 039030	Tillingbourne at Shalford Gade at Croxley Green	5000 1478 5082 1952	NRA-T NRA-T	59.0 184.0
034018	Stiffkey at Warham All Saints	5944 3414	NRA-A	87.8	039031	* Lambourn at Welford	4411 1731	NAA-T	176.0
034019	Bure at Horstead Mill	6267 3194	NRA-A	313.0	039032 ° 039033	* Lambourn at East Shefford Winterbourne St at Bagnor	4390 1745 4453 1694	NRA-T NRA-T	154.0 49.2
035001 1 035002	* Gipping at Constantine Weir Deben at Naunton Hall	6154 2441 6322 2534	NRA-A NRA-A	310.8 163.1	039034 039035	Evenlode at Cassington Mill Churn at Cerney Wick	4448 2099 4076 1963	NRA-T NRA-T	430.0 124.3
035003	Alde at Fernhem	6360 2601	NRA-A	63.9	039036	Law Brook at Albury	5045 1468	NRA-T	16.0
035004 035008	Ore at Beversham Bridge Gipping at Stowmarket	6359 2583 6058 2578	NRA-A NRA-A	54.9 128.9	039037 039038	Kennet at Marlborough Theme at Shabbington	4187 1686 4870 2055	NRA-T NRA-T	142.0 443.0
035010	Gipping at Bramford	6127 2465	NRA-A	298.0	039040	Thames at West Mill Cricklade	4094 1942	NRA-T	185.0
035013	Blyth at Holton	6406 2769	NRA-A	92.9	039042 039043	Leach at Priory Mill Lechlade Kennet at Knighton	4227 1994 4295 1710	NRA-T NRA-T	76.9 295.0
036001 036002	Stour at Stratford St Mary Glem at Glemaford	6042 2340 5846 2472	EWC NRA-A	844.3 87.3	039044 039048	Hart at Bramshill House Thames et Sutton Courtenay	4755 1593 4516 1946	NFIA-T NRA-T	84.0 3414.0
036003	Box at Poistead	5985 2378	NRA-A	53.9	039049	Silk Stream at Colindeep Lane	5217 1895	NRA-T	29.0
036004 036005	Chad Brook at Long Melford Brett at Hadleigh	5868 2459 6025 2429	NRA-A NRA-A	47,4 156.0	039051	* Sor Brook at Adderbury The Cut at Binfield	4475 2348 4853 1713	NRA-T	106.4 50.2
036006 036007	Stour at Langham	6020 2344	NRA-A NRA-A	578.0	039053	Mole at Horley	6271 1434	NRA-T	89.9
036008	Belchamp Brook at Bardfield Bridge Stour at Westmill	5848 2421 5827 2463	NRA-A	58.6 224.5	039054 039055	Mole at Gatwick Airport Yeading Bk West at Yeading West	5260 1399 5083 1846	NRA-T NRA-T	31.8 17.6
036009 036010	Brett at Cockfield Bumpstead Brook at Broad Green	5914 2525 5689 2418	NRA-A NRA-A	25.7 28.3	039056 039057	Revensbourne at Catford Hill Crane at Cranford Park	5372 1732 5103 1778	NRA-T NRA-T	87.6 61.7
038011	Stour Brook at Sturmer	5696 2441	NRA-A	34.5	039058	Pool at Winsford Road	5371 1725	NRA-T	38.3
036012 036013	Stour at Kedington Brett at Higham	5708 2450 6032 2354	NRA-A NRA-A	76.2 195.0	039061 039065	Letcombe Brook at Letcombe Bassett Ewelme Brook at Ewelme	4375 1853 4642 1916	NRA-T NRA-T	2.7 13.4
036016 036016	Stour at Lamarsh * Ramsey at Great Oakley	5897 2358 6206 2288	NRA-A NRA-A	480.7 13.9	039068 039069	Mole at Castle Mill Mole at Kinnersley Manor	5179 1502 5262 1462	NRA-T NRA-T	316.0 142.0
036017	Ely Ouse Outfall at Kirtling Green	5681 2559	NRA-A	13.5	039072	Thames at Royal Windsor Park	4982 1773	NRA-T	7046.0
037001	Roding at Redbridge	5415 1884	NRA-T	303.3	039073 039074	Chum et Cirencester Ampney Brook at Sheepen Bridge	4020 2028 4105 1950	NRA-T NRA-T	84.0 74.4
037002	Chelmer at Rushes Lock	5794 2090	NRA-A	533.9	039076	Windrush at Worsham	4299 2107	NRA-T	296.0
037003 037004	Ter at Crabba Bridge * Blackwater at Langford	5786 2107 5836 2092	NRA-A NRA-A	77.8 337.0	039077 039078	Og at Mariborough Poulton Fm Way(north) at Famham	4194 1697 4838 1462	NRA-T NRA-T	59.2 191,1
037005	Coine at Lexden	5962 2261	NAA-A	238.2	039079	Way at Waybridge	5068 1648	NRA-T	1008.0
	•						٠		

Station number	River and station name	Grid reference	Auth- ority	Area (sq km)	Station number	River and station name	Grid reference	Auth- ority	Area (sq km)
039081	Ock at Abingdon	4481 1966	NRA-T	234.0	042011	Hamble at Frog Mill	4523 1149	NRA-S	56.6
039082	Graveney at Longley Rd	5271 1709	NRA-T	16.7	042012 042014	Anton at Fullerton Blackwater at Ower	4379 1393 4328 1174	NRA-S NRA-S	185.0 104.7
039085	Wandle at Wandle Park Gatwick Stream at Gatwick Link	5266 1703 5285 1417	NRA-T NRA-T	176.1. 33.6	042014	Dever at Weston Colley	4496 1394	NRA-S	52.7
039087,	Ray at Water Eaton	4121 1935	NRA-T	84.1	042016	Itchen at Easton	4512 1325 4711 1067	NRA-S NRA-S	236.B 17.0
039088	Chess at Rickmansworth Gade at Bury Mill	5066 1947 5053 2077	NRA-T NRA-T	105.0 48.2	042017 042018	Hermitage at Havant Monks Brook at Eastleigh	4443 1179	NRA-S	43.3
039090	Cole at Inglesham	4208 1970	NRA-T	140.0	042020	Tadburn Lake at Romsey	4362 1212	NRA-S	19.0
039091	Misbourne at Quarrendon Mill Dollis Brook at Hendon Lene Bridge	4975 1963 5240 1895	NRA-T NRA-T	66.3 25.1	042021 1 042023	Branch of Test at Nursling Itchen at Riverside Park	4355 1159 4445 1154	NRA-S NRA-S	1050.0 415.0
039093	Brent at Monks Park	5202 1850	NRA-T	117.6	042024	Test at Chilbolton (Total)	4386 1394	NRA-S	453.0
039094	Crane at Marsh Farm Quaggy at Manor House Gardens	5154 1734 5394 1748	NRA-T NRA-T	81.0 33.9	042025	Lavant Stream et Leigh Park	4721 1072	NRA-\$	54.5
039095 039096	Weeldstone Brook at Wembley	5192 1862	NRA-T	21.7	043001 1	Avon at Ringwood	4142 1054	NRA-SW	1649.8
039097,	Thames at Buscot Pinn at Uxbridge	4230 1981 5062 1826	NRA-T NRA-T	997.0 33.3	043003 043004	Avon at East Mills Bourne at Laverstock Mill	4158 1144 4157 1304	NRA-SW NRA-SW	1477.8 163.6
039098	Ampney Brook at Ampney St. Peter	4076 2013	NRA-T	45.3	043005	Avon at Amesbury	4151 1413	NRA-SW	323.7
039100	Swill Brook at Oaksay	3997 1927 4288 1717	NRA-T NRA-T	53.3 53.1	043006 043007	Nadder at Wilton Park Stour at Throop Mill	4098 1308 4113 0958	NRA-SW NRA-SW	220.6 1073.0
039101 039102	Aldbourne at Ramsbury Misbourne at Denham Lodge	5046 1866	NRA-T	136.0	043008	Wylye at South Newton	4086 1343	NRA-SW	445,4
039103	Kennet at Newbury	4472 1672	NRA-T	548.1 469.6	043009 043010	Stour at Hammoon Allen at Loverley Mill	3820 1147 4006 1085	NRA-SW NRA-SW	523.1 94.0
039104 039105	Mole at Esher Thame at Wheatley	5130 1653 4612 2050	NRA-T	533.8	043011	Ebble at Bodenham	4162 1263	NRA-SW	109.0
039106	Mole at Leatherhead	5161 1564	T-ARM	371.4	043012	Wylye at Norton Bavant	3909 1428 4184 0936	NRA-SW NRA-SW	112.4 12.4
039107 039108	Hogsmitl at Ewell Churn at Perrott's Brook	5216 1633 4022 2057	T-ARN T-ARN	33.7 59.0	043013 ° 043014	' Mude at Somerford East Avon at Upavon	4133 1559	NRA-SW	86.2
039109	Coln at Fossebridge	4080 2112	NRA-T	82.0	043015	' Wytye at Longbridge Devenill	3868 1413	NRA-SW	69.0
039110	Coin at Fairford Thames at Staines	4151 2012 5034 1713	NRA-T	130.0 8120.0	043017 043018	West Avon at Upsvon Allen at Walford Mill	4133 1559 4008 1007	NRA-SW NRA-SW	76.0 176.5
039112	Letcombe Brook at Arabellas Lake	4374 1852	NRA-T	3.1	043019	Shreen Water at Colesbrook	3807 1278	NRA-SW	29.1
039113 039114	Manor Farm Brook at Letcombe Regis Pang at Frilsham	4383 1861 4537 1730	NRA-T NRA-T	1.4 90.1	043021	Avon at Knapp Mill	4155 0943	NRA-SW	1706.0
039115	Pang at Bucklebury	4556 1710	NRA-T	109.0	044001	Frome at East Stoke total	3886 0867	NRA-SW	414.4
039116 039117	Sutham Brook at Sulham	4642 1741 5019 1723	NRA-T NRA-T	3.0 929.5	044002 044003 '	Piddle at Baggs Mill * Asker at Bridport	3913 0876 3470 0928	NRA-SW NRA-SW	183.1 49.1
039117	Coinbrook at Hythe End Wey at Alton	4717 1395	NRA-T	929.5 44.8	044004	Frome at Dorchester total	3708 0903	NRA-SW	206.0
039119	Wey at Kings Pond (Alton)	4724 1395	NRA-T	46.1	044006 044008 '	Sydling Water at Sydling St Nicholas	3632 0997 3629 0897	NRA-SW NRA-SW	12.4 19.9
039120 039121	Caker Stream at Alton Thames at Walton	4729 1388 4725 1385	NRA-T NRA-T	88.1 9291.5	044008	Sth Winterbourne at W'bourne Steepleton Wey at Broadwey	3666 0839	NRA-SW	7.0
039122	Cranleigh Waters at Bremley	4999 1462	NRA-T	109.5			2026 1016	NIDA CIAI	600.9
039125 039126	Ver at Redbourn Red at Redbourn	5109 2118 5107 2119	NRA-T NRA-T	62.6	045001 045002	Exe at Thorverton Exe at Stoodfeigh	2936 1016 2943 1178	NRA-SW NRA-SW	421.7
039127	Misbourne at Little Missenden	4934 1984	NRA-T	47.2	045003	Culm at Wood Mill	3021 1058	NRA-SW	226.1
039128 039129	Bourne at Addlestone Thames at Farmoor	5061 1650 4438 2068	NRA-T NRA-T	91.7 1608.6	045004 045005	Axe at Whitford Otter at Dotton	3282 0953 3087 0885	NRA-SW NRA-SW	288.5 202.5
039130	Thames at Reading	4718 1741	NRA-T	4633.7	045006	Quarme at Enterwell	2919 1356	NRA-SW	20.4
039131	Brent at Coston's Lene	5149 1823 5406 1887	NRA-T NRA-T	146.2 10.0	045008 045009	Otter at Fenny Bridges Exe at Pixton	3115 0986 2935 1260	NRA-SW NRA-SW	104.2 147.6
039134 039135	Ravensbourne (E) at Bromley Quaggy at Chinbrook Meadows	5410 1720	NRA-T	15.0	045010	Haddeo at Hartford	2952 1294	NRA-SW	50.0
040001	Allertum as Maris Miland Dannunis	5407 1353	sw	26.9	045011 1 045012	* Barle at Brushford Creedy at Cowley	2927 1258 2901 0967	NRA-SW NRA-SW	128.0 261.6
040001 1 040002 1	Medway at Weir Wood Reservoir Darwell at Darwell Reservoir	5722 1213	SW	9.6	045013	Tale at Fairmile	3088 0972	NRA-SW	34.4
040003	Medway at Teston	5708 1530	NRA-S NRA-S	1256.1 206.0	046002	Teign at Preston	2856 0746	NRA-SW	380.0
040004 040005	Rother at Udiam Beult at Stile Bridge	5773 1245 5758 1478	NRA-S	277.1	046002	Dart at Austins Bridge	2751 0659	NRA-SW	247.6
040006	Bourne at Hadlow	5632 1497	NRA-S	50.3	046005	East Dart at Bellever	2657 0775 2642 0532	NRA-SW	21.5 43.5
040007 040008	Medway at Chafford Weir Great Stour at Wye	5517 1405 6049 1470	NRA-S NRA-S	255.1 230.0	046008 046007	Erme at Ermington ' West Dart at Dunnabridge	2643 0742	NRA-SW	47.9
040009	Teise at Stone Bridge	5718 1399	NRA-S	136.2	046008	Avon at Loddiswell	2719 0476	NRA-SW	102.3
040010 040011	Eden at Penshurst Great Stour at Horton	5520 1437 6116 1554	NRA-S NRA-S	224.3 345.0	047001	Tamar at Gunnislake	2426 0725	NRA-SW	916.9
040012	Darent at Hawley	5551 1718	NRA-S	191.4	047003	* Tavy at Lopwell	2475 0652	NRA-SW	205.9
040013 040014	Darent at Otford Wingham at Durlock	5525 1584 6276 1576	NRA-S NRA-S	100.5 37.7	047004 047005	Lynher at Pillaton Mill Ottery at Wernington Park	2369 0626 2337 0866	NRA-SW NRA-SW	135.5 120.7
040015	White Drain at Fairbrook Farm	6055 1606	NRA-S	31.8	047006	Lyd at Lifton Park	2389 0842	NRA-SW	218.1
040016 040017	Cray at Crayford Dudwell at Burwash	5511 1746 5679 1240	NRA-S NRA-S	119.7 27.5	047007 047008	Yeatm at Pustinch Thrushel at Tinhay	2574 0511 2398 0856	NRA-SW NRA-SW	54.9 112.7
040018	Darent at Luffingstone	5530 1643	NRA-S	118.4	047009	Tiddy at Tideford	2344 0596	NRA-SW	37.2
040020 040021	Eridge Stream at Hendal Bridge Hexden Channel at Hopemill Br Sandhurst	5522 1367 5813 1290	NRA-S NRA-S	53.7 32.4	047010 047011	Temar at Crowford Bridge Plym at Carn Wood	2290 0991 2522 0613	NRA-SW NRA-SW	7 6 .7 79.2
040023	East Stour at South Willesborough	6015 1407	NRA-S	58.8	047013	Withey Brook at Bastreet	2244 0764	NRA-SW	16.2
040024 040027	Bartley Mill St at Bartley Mill Sarre Penn at Calcott	5633 1357 6174 1625	NRA-S NRA-S	25.1 19.4	047014 047015	Watkham at Horrabridge Tavy at Denham / Ludbrook	2513 0699 2476 0681	NRA-SW NRA-SW	43.2 197.3
040027	Len at Lenside	5765 1556	NRA-S	69.7	047016	Lumburn at Lumburn Bridge	2459 0732	NRA-SW	20.5
040032		5683 1263 6300 1430	NRA-S NRA-S	92.7 49.5	047017	Wolf at Combe Perk Ferm	2419 0898	NRA-SW	31.1
040033	Dour at Crabble Mill	0300 1430	NRA-S		048001	Fowey at Trekeivesteps	2227 0698	NRA-SW	36.8
041001	Nunningham Stream at Tilley Bridge	5662 1129	NRA-S NRA-S	16.9	048002 1 048003	* Fowey at Restormel one Fallat Tregony	2108 0613 1921 0447	NRA-SW NRA-SW	171.2 87.0
041002 041003	Ash Bourne at Hammer Wood Bridge Cuckmere at Sherman Bridge	5684 1141 5533 1051	NRA-S	18.4 - 134.7	048004	Warleggan at Trengoffe	2159 0674	NRA-SW	25.3
041004	Ouse at Barcombe Mills	5433 1148	NRA-S	395.7 180.9	048005 048006	Kenwyn at Truro Cober at Helston	1820 0450 1654 0273	NRA-SW NRA-SW	19.1 40.1
041005 041006	Ouse at Gold Bridge Uck at Isfield	5429 1214 5459 1190	NRA-S NRA-S	· 87.8	048007	Kennall at Ponsanooth	1762 0377	NRA-SW	26.6
041009	Rother at Hardham	5034 1178	NRA-S	345.8	048009	St Neot at Craigshill Wood	2184 0662	NRA-SW	22.7
041010 041011	Adur W Branch at Hatterell Bridge Rother at Iping Mill	5178 1197 4852 1229	NRA-S NRA-S	109.1 154.0	048010 048011	Seaton at Trabrownbridgs Fowey at Restormel	2299 0595 2098 0624	NRA-SW NRA-SW	38.1 169.1
041012	Adur E Branch at Sakeham	5219 1190	NRA-S	93.3		·		NRA-SW	208.8
041013 041014	Huggletts Stream at Henley Bridge Arun at Pallingham Quay	5671 1138 5047 1229	NRA-S NRA-S	14.2 379.0	049001 049002	Camel at Denby Hayle at St Erth	2017 0682 1549 0341	NRA-SW	48.9
041015	Ems at Westbourne	4755 1074	NRA-S	58.3	049003	De Lank at De Lank	2133 0765	NRA-SW	21.7
041016 041017	Cuckmere at Cowbeech Combehaven at Crowhurst	5811 1150 5765 1102	NRA-S NRA-S	18.7 30.5	049004	Gannel at Gwills	1829 0593	NRA-SW	41.0
041018	Kird at Tanyards	5044 1256	NRA-S	66.8	050001	Taw at Umberleigh	2608 1237	NRA-SW	
041019 041020	Arun at Alfoldean Bevern Stream at Clappers Bridge	5117 1331 5423 1161	NRA-S NRA-S	139.0 34.6	050002 050004	Torridge at Torrington Hole Water at Muxworthy	2500 1185 2705 1373	NRA-SW NRA-SW	
04 102 1	Clayhill Stream at Old Ship	5448 1153	NRA-S	7.1	050005	West Okement at Vellake	2557 0903	NRA-SW	13.3
041022 041023	Lod at Halfway Bridge Lavant at Graylingwell	4931 1223 4871 1064	NRA-S NRA-S	52.0 87.2	050006 050007	Mole at Woodleigh Taw at Taw Bridge	2660 1211 2673 1068	NRA-SW NRA-SW	
041024	Shell Brook at Shell Brook P S	5335 1286	NRA-S	22.6	050011	* Okement at Jacobstowe	2592 1019	NRA-SW	82.1
041025	Loxwood Stream at Drungewick	5060 1309 5376 1262	NRA-S NRA-S	91.6 36.1	050012 1 050013	* Yeo at Veraby Bray at Leehamford Bridge	2775 1267 2677 1399	NRA-SW NRA-SW	
041026 041027	Cockhaise Brook at Holywell Rother at Princes Marsh	4772 1270	NRA-S	37.2					
041028	Chess Stream at Chess Bridge	5217 1173 5575 1131	NRA-S NRA-S	24.0 40.8	051001 051002	Doniford Stream at Swill Bridge Horner Water at West Luccombe	3088 1428 2898 1458	NRA-SW NRA-SW	
041029 041031	Bull at Lealands Fulking Stream at Fulking	5247 1113	NRA-S		051002	Washford at Beggeam Huish	3040 1395	NRA-SW	
041033	Costers Brook at Cocking	4880 1174	NRA-S	2.7 41.5	052001		3527 1458	NRA-SW	18.2
04 1034 04 1035	North River at Brookhurst	4786 1104 5130 1325	NRA-S NRA-S	55.1	052002	* Yeo at Sutton Binghern Res.	3556 1116	NRA-SW	30.3
041037	Winterbourne Stream at Lewes	5403 1096	NRA-S	17.3	052003	Halse Water at Bishops Hull	3206 1253 3361 1188	NRA-SW NRA-SW	
042001	Wallington at North Fareham	4587 1075	NRA-S	111.0	052004 052005	Isle at Ashford Mill Tone at Bishops Hull	3206 1250	NRA-SW	202.0
042003	Lymington at Brockenhurst Park	4318 1019	NRA-S	98.9	052006	Yeo at Pen Milli	3573 1182	NRA-SW NRA-SW	213.1
042004 042005	Test at Broadlands Wallop Brook at Broughton	4354 1188 4311 1330	NRA-S NRA-S	1040.0 53.6	052007 052008	Parrett at Chiselborough * Tone at Clatworthy Reservoir	3461 1144 3044 1313	NRA-SW	18.1
042006	Meon at Mislingford	4589 1141	NRA-S	72.8	052009	Sheppey at Fenny Castle	3498 1439	NRA-SW NRA-SW	
042007 042008	Aire at Drove Lane Airesford Cheriton Stream at Sewards Bridge	4574 1326 4574 1323	NRA-S NRA-S	57.0 75.1	052010 052011	Brue at Lovington Cary at Somerton	3590 1318 3498 1291	NRA-SW	82.4
042009	Candover Stream at Borough Bridge	4568 1323	NRA-\$	71.2	052014	Tone at Greenham	3078 1202	NRA-SW	57.2
042010	Itchen at Highbridge + Allbrook	4467 1213	NAA-S	360.0	052015	Land Yeo at Wraxall Bridge	3483 1716	NRA-SW	23.3

Station number	River and etation name	Grid reference	Auth- ority	Area (sq km)	Station number	River and station name	Grid reference		Area (sq km)
052016 052017	Currypool Stream at Currypool Farm Congreabury Yeo at Iwood	3221 1382 3452 1631	NRA-SW NRA-SW	15.7 66.6	055025 055026	Llyπfi at Three Cocks Wye at Ddol Farm	3166 2373 2976 2676	NRA-WEL	132.0 174.0
052020		3571 1100	NRA-SW	16.4	055027 055028	Rudhall Brook at Sandford Bridge Frome at Bishops Frome	3641 2257 3667 2489	NRA-WEL NRA-WEL	13.2 77.7
053001		3903 1641	NRA-SW	665.6	055029	Monnow at Grosmont	3415 2249	NRA-WEL	354.0
053002 053003	Semington Brook at Semington Avon at Bath St James	3907 1605 3753 1845	NRA-SW NRA-SW	157.7 1595.0	055030 °	* Claerwen at Dol-y-mynach Yazor Brook at Three Elms	2910 2620 3492 2415	NRA-WEL NRA-WEL	95.3 42.3
053004 053005	Chew at Compton Dando Midford Brook at Midford	3648 1647 3763 1611	NRA-SW NRA-SW	129.5 147.4	055032 055033	Elan et Elan Village Wye at Gwy Flume	2934 2653 2824 2853	NRA-WEL IH	184.0 3.9
053006 053007	Frome(Bristol) at Frenchay Frome(Somerset) at Tellisford	3637 1772 3805 1564	NRA-SW NRA-SW	148.9 261.6	055034 055035	Cyff at Cyff Flume	2824 2842 2826 2854	IH IH	3.1 1.1
053008	Avon at Great Somerford	3966 1832	NRA-SW	303.0					
053009 053013	Wellow Brook at Wallow Marden at Stanley	3741 1581 3955 1729	NRA-SW NRA-SW	72.6 99.2	056001 056002	Usk at Chain Bridge Ebbw at Rhiwderyn	3345 2056 3259 1889	NRA-WEL NRA-WEL	911.7 216.5
053017 053018	Boyd at Bitton Avon at Bathford	3681 1698 3786 1671	NRA-SW NRA-SW	48.0 1552.0 -	056003 1 056004 1	* Honddu at The Forge Brecon * Usk at Llendetty	3051 2297 3127 2203	NRA-WEL NRA-WEL	62.1 543.9
053019	Woodbridge Brook at Crab Mill	3949 1866	NRA-SW	46.6	058005	Lwyd at Ponthir	3330 1924	NRA-WEL	98.1
053020 053022 1	Gauze Brook at Rodbourne Avon at Bath ultrasonic	3937 1840 3738 1651	NRA-SW NRA-SW	28.2 1605.0	056008 °	* Usk at Trailong Senni at Pont Hen Hafod	2947 2295 2928 2255	NRA-WEL NRA-WEL	183.8 19.9
053023 053024	Sherston Avon at Fosseway Tetbury Avon at Brokenborough	3891 1870 3914 1893	NRA-SW NRA-SW	89.7 73.6	056008	* Monks Ditch at Uanwern Usk at Trostrey Weir	3372 1885 3358 2042	NRA-WEL NRA-WEL	15.4 927.2
053025 053026	Mells at Vallis Frome(Bristol) at Frampton Cotterell	3757 1491 3887 1822	NRA-SW NRA-SW	119.0 78.5	056011	* Sirhowy at Wattsville * Grwyne at Millbrook	3206 1912 3241 2176	NRA-WEL NRA-WEL	76.1 82.2
053028	By Brook at Middlehill	3815 1688	NRA-SW	102.0	056013	Yscir at Pontaryscir	3003 2304	NRA-WEL	62.8
053029	Biss at Trowbridge	3854 1579	NRA-SW	77.6	056014 056015	Usk at Usk Reservoir Olway Brook at Olway Inn	2840 2290 3384 2010	NRA-WEL NRA-WEL	17.0 105.1
054001 054002	Severn at Bewdley Avon at Evesham	3782 2762 4040 2438	NRA-ST NRA-ST	4325.0 2210.0	056016	* Caerfanell Outfall at Talybont Reservoir	3104 2206	NRA-WEL	32.4
054004	Sowe at Stoneleigh	4332 2731 3412 3144	NRA-ST	262.0		* Taf Fechan at Taf Fechan Reservoir	3060 2117 3012 2111	NRA-WEL NRA-WEL	33.7 43.0
054005 054008	Severn at Montford Stour at Callows Lane, Kidderminster	3829 2768	NRA-ST NRA-ST	2025.0 324.0	057002 057003	* Taf Fawr at Uwynon Reservoir * Taff at Tongwynlais	3132 1818	NRA-WEL	486.9
054007 054008	Arrow at Broom Teme at Tenbury	4086 2536 3597 2686	NRA-ST NRA-ST	319.0 1134.4	057004 057005	Cynon at Abercynon Taff at Pontypridd	3079 1956 3079 1897	NRA-WEL NRA-WEL	106.0 454.8
054010 1 054011	Stour at Alscot Park Salwarpe at Harford Hill	4208 2507 3868 2618	NRA-ST NRA-ST	319.0 184.0	057006 057007	Rhondda at Trehafod Taff at Fiddlera Elbow	3054 1909 3089 1951	NRA-WEL NRA-WEL	100.5 194.5
054012	Tern at Walcot	3592 3123	NRA-ST	852.0	057008	Rhymney at Llanedeym	3225 1821	NRA-WEL	178.7
054013 °	Clywedog at Cribynau Severn at Abermule	2944 2855 3164 2958	NRA-ST NRA-ST	57.0 580.0	057009 057010	Ely at St Fagans Ely at Lanelay	3121 1770 3034 1827	NRA-WEL	145.0 39.4
054015 054016	Bow Brook at Beaford Bridge Roden at Rodington	3927 2463 3589 3141	NRA-ST NRA-ST	156.0 259.0	057011	* Blaen Taf Fawr at Beacons Reservoir * Garwnant at Llwynon Reservoir	2987 2193 3004 2129	NRA-WEL NRA-WEL	5.1 4.3
054017	Leadon et Wedderburn Bridge	3777 2234	NRA-ST NRA-ST	293.0	057015 057016	Taff at Merthyr Tydfil Taf Fechan at Pontsticill	3043 2068 3060 2115	NRA-WEL NRA-WEL	104.1 33.8
054018 054019	Rea Brook at Hookagate Avon at Stareton	3466 3092 4333 2715	NRA-ST	178.0 347.0					
054020 054022	Perry at Yeaton Severn at Phynimon Flume	3434 3192 2853 2872	NRA-ST IH	180.8 8.7	058001 058002	Ogmore at Bridgend Neath at Resolven	2904 1794 2815 2017	NRA-WEL NRA-WEL	158.0 190.9
054023 054024	Badsey Brook at Offenham Worfe at Burcote	4063 2449 3747 2953	NRA-ST NRA-ST	95.8 258.0	058003 058005	* Ewenny at Ewenny Priory Ogmore at Brynmenyn	2914 1780 2904 1844	NRA-WEL NRA-WEL	62.9 74.3
054025	Dulas at Rhos-y-pentref	2950 2824	NRA-ST	52.7	058006	Melite at Pontneddfechan	2915 2082	NRA-WEL	65.8 50.2
054026 054027	' Chelt at Slate Mill Frome at Ebley Mill	3892 2264 3831 2047	NRA-ST NRA-ST	34.5 198.0	058007 058008	Llynfi at Coytrahen Dulais at Cilfrew	2891 1855 2778 2008	NRA-WEL NRA-WEL	43.0
054028 054029	Vyrnwy at Llanymynech Terne at Knightsford Bridge	3252 3195 3735 2557	NRA-ST NRA-ST	778.0 1480.0	058009 058010	* Hepste at Esgair Carnau	2920 1782 2969 2134	NRA-WEL NRA-WEL	62.5 11.0
054032 054034	Severn at Saxons Lode Dowles Brook at Oak Cottage, Dowles	3863 2390 3768 2764	NRA-ST NRA-ST	6850.0 40.8	058011 058012	Thaw at Gigman Bridge Afan at Marcroft Weir	3017 1716 2771 1910	NRA-WEL NRA-WEL	49.2 87.8
054036	Isbourne at Hinton on the Green	4023 2408	NRA-ST	90.7					
054038 054040	Tenet et Llanyblodwel Messe at Tibberton	3252 3225 3680 3205	NRA-ST NRA-ST	229.0 167.8	059001 059002	Tawe at Yynstanglws Loughor at Tir-y-dail	2685 1998 2623 2127	NRA-WEL NRA-WEL	227.7 46.4
054041 054042	Tern at Eaton On Tern Clywedog at Clywedog Dm Lower Weir	3649 3230 2914 2867	NRA-ST NRA-ST	192.0 49.0	060002	Cothi at Felin Mynachdy	2508 2225	NRA-WEL	297.8
054043 054044	Severn at Upton On Severn Tern at Ternbill	3863 2399 3629 3316	NRA-ST NRA-ST	6850.0 92.6	060003 060004	Taf at Clog-y-Fran * Dewi Fawr at Glasfryn Ford	2238 2160 2290 2175	NRA-WEL NRA-WEL	217.3 40.1
054D45	Perry at Perry Farm	3347 3303	NRA-ST	49.1	060005 060008	Bran at Llandovery Gwili at Glangwili	2771 2343 2431 2220	NRA-WEL NRA-WEL	66.8 129.5
054048 054047	Worfe at Cosford Perry at Ruyton Bridge	3781 3046 3403 3223	NRA-ST NRA-ST	54.9 155.0	060007	Tywi at Dolau Hirion	2762 2362	NRA-WEL	231.8
054048 054049	Dene at Wellesbourne Learn at Princes Drive Weir	4273 2556 4307 2654	NRA-ST NRA-ST	102.0 362.0	060008	Tywi at Yatradflin Sawdde at Felin-y-cwm	2786 2472. 2712 2266	NRA-WEL NRA-WEL	89.8 81.1
054050 054052	Learn at Eathorpe Bailey Brook at Ternhill	4388 2688 3629 3316	NRA-ST NRA-ST	300.0 34.4	060010	Tywi at Nantgaredig * Twrch at Ddol Las	2485 2206 2650 2440	NRA-WEL NRA-WEL	1090.4 20.7
054055	Rea at Nean Sollars	3664 2724	NRA-ST	129.0		* Cothi at Pont Ynys Brechfa	2537 2301	NRA-WEL	
054056 064057	Severn at Haw Bridge	3393 2786 3844 2279	NRA-ST NRA-ST	195.0 9895.0	061001	Western Cleddau at Prendergast Mill	1954 2177	NRA-WEL	197.6
054058 054059	' Stoke Park Brook at Stoke Park ' Allford Brook at Allford	3644 3260 3654 3223	NRA-ST NRA-ST	14.3 10.2	061002 061003	Eastern Cleddau at Canaston Bridge Gwaun at Cilrhedyn Bridge	2072 2153 2005 2349	NRA-WEL	183.1 31.3
054060 054061	Potford Brook at Sandyford Bridge * Hodnet Brook at Hodnet	3634 3220 3628 3288	NRA-ST NRA-ST	25.0 5.1	061004	* Western Claddau at Redhill	1942 2184	NAA-MEL	197.6
054062	Stoke Brook at Stoke	3637 3280	NRA-ST	13.7	062001	Teifi at Glan Teifi	2244 2416	NRA-WEL	
054063 054065	Stour at Prestwood Hospital Roden at Stanton	3865 2858 3565 3241	NRA-ST NRA-ST	89.9 210.0	062002	* Teifi at Llanfair	2433 2406	NRA-WEL	
054066 054067	* Platt Brook at Platt * Smestow Brook at Swindon	3628 3229 3861 2906	NRA-ST NRA-ST	15.7 81.3	063001 063002	Ystwyth at Pont Llofwyn * Rheidol at Llanbadarn Fawr	2591 2774 2601 2804	NRA-WEL NRA-WEL	
054068 054069	* Tetchill Brook at Hordley * Springs Brook at Lower Hordley	3379 3288 3387 3297	NRA-ST NRA-ST	21,2 10.4	063003 063004	* Wyre at Llanrhystyd Ystwyth at Cwm Ystwyth	2542 2698 2791 2737	NRA-WEL NRA-WEL	40.6 32.1
054070	War Brook at Walford	3432 3198	NRA-ST	22.5	063005	* Maesnant at Nant-y-Moch C	2778 2877)H	0.6
054080 054081	* Severn at Dolwen Clywedog at Bryntali	2996 2851 2913 2868	NRA-ST NRA-ST	187.0 49.0	063006	* Maesnant Fach at Nant-y-Moch E	2765 2865	IH.	0.8
054083 054084	* Grow Brook at Horton * Cannop Brook at Parkend	3678 3141 3616 2075	NRA-ST NRA-ST	18.7 31.5	064001 064002	Dyfi at Dyfi Bridge Dysynni at Pont-y-Garth	2745 3019 2632 3066	NRA-WEL NRA-WEL	471.3 75.1
054085	* Cannop Brook at Cannop Cross	3609 2115	NRA-ST NRA-ST	10.4	064008	Leri at Dolybont	2635 2882	NRA-WEL	47.2 1.1
054086 054087	Cownwy Diversion at Cownwy Weir Allford Brook at Childs Ercall	2999 3179 3867 3228	NRA-ST	13.2 4.7	064007 064008	Delyn at Llanbrynmair Cwm at Llanbrynmair E	2899 3062 2916 3087	IH	3.0
054088 054089	Little Avon at Berkeley Kennels Avon at Bredon	3683 1988 3921 2374	NRA-SW NRA-ST	134,0 2674.0	065001	Glastyn at Beddgelert	2592 3478	NRA-WEL	68.6
054090 054091	Tanilwyth at Tanilwyth Flume Severn at Hafren Flume	2843 2876 2843 2878	iH tH	0.9 3.6	065002 065004	* Dwyryd at Maentwrog Gwyrfai et Bontnewydd	2670 3415 2484 3599	NRA-WEL NRA-WEL	78.2 47.9
054092	Hore at Hore Flume	2846 2873	tH	3.2	065005	Erch at Pencaenewydd	2400 3404	NRA-WEL	18.1
054094 054095	Strine at Crudgington Severn at Buildwas	3640 3175 3644 3044	NRA-ST NRA-ST	134.0 3717.0	065006 065007	Seiont at Peblig Mill Dwyfawr at Gamdolbenmaen	2493 3623 2499 3429	NRA-WEL NRA-WÉL	
054096	Hadley Brook at Wards Bridge	3870 2631	NRA-ST	63.4	066001	Clwyd at Pont-y-cambwll	3069 3709	NRA-WEL	404.0
055002 055003	Wye at Belmont * Lugg at Lugwardine	3485 2388 3548 2405	NRA-WE		066002 066003	* Elwy at Pent yr Onen Aled at Bryn Aled	3021 3704 2957 3703	NRA-WEL NRA-WEL	220.0 70.0
055004	* Irron at Abernant	2892 2460	NRA-WE	L 72,8	066004	* Wheeler at Bodfari	3105 3714	NRA-WEL	62.9
055006 055006	* Wye at Rhayader * Elen at Caban Coch Reservoir	2969 2676 2926 2645	NRA-WE NRA-WE	L 184.0	066005 066006	Clwyd at Ruthin Weir Elwy at Pont-y-Gwyddel	3122 3592 2952 3718	NRA-WEL NRA-WEL	194.0
055007 055008	Wye at Erwood Wye at Cefn Brwyn	3076 2445 2829 2838	NRA-WE	L 1282.1 10.6	066008 066011	Aled at Aled İsaf Reservoir Conwy at Cwm Llanerch	2915 3598 2802 3581	NRA-WEL NRA-WEL	
055009 055010	* Monnow at Kentchurch	3419 2251 2843 2825	NRA-WE	L 357.4	067001	Dee at Bala	2942 3357	NRA-WEL	
055011	* Ithon at Llandewi	3105 2683	NRA-WE	L 111.4	067002	* Dee at Erbistock Rectory	3357 3413	NRA-WEL	1040.0
065012 055013	Infon at Citmery Arrow at Titley Mill	2995 2507 3328 2585	NRA-WE	L 126.4	067003 067005		2974 3539 3295 3373		113.7
055014 055015	Lugg at Byton	3364 2647 3277 2294	NRA-WE		067006 067008	Alwen at Druid Alyn at Pont-y-Capel	3042 3436 3336 3541	NRA-WEL NRA-WEL	
055018	Ithon at Disserth	3024 2578		L 358.0	067009 067010	Alyn at Rhydymwyn	3206 3687 2843 3420	NRA-WEL	77.8
055017 055018	Frome at Yarkhill	2998 2531 3615 2428	NRA-WE	L 144.0	067011	* Nant Aberderfel et Nant Aberderfel	2051 3392	NRA-WEL	3.7
055021 055022	Lugg et Butts Bridge * Trothy at Mitchel Troy	3502 2589 3503 2112		L 142.0	067012 067013	* Tryweryn at Upper Tryweryn * Hirmant at Plas Rhiwedog	2838 3398 2948 3349	NRA-WEL NRA-WEL	33.9
055023	Wye at Redbrook	3528 2110		L 4010.0	067015	Dee at Manley Hall	3348 3415	NRA-WEL	
	· ·			·					

Station number	River and station name	Grid reference	Auth- ority	Area (sq km)	Station number	River and station name	Grid reference	Auth- ority	Area (sq km)
067016 067017	Worthenbury Brook at Worthenbury	3418 3464	NRA-WEL		076005	Eden at Temple Sowerby	3605 5283	NRA-NW	616.4
067017	Tryweryn at Llyn Celyn outflow Dee at New Inn	2880 3399 2874 3308	NRA-WEL NRA-WEL		076007 076008	Eden at Sheepmount Irthing at Greenholme	3390 5571 3486 5581	WM-ARM	2286.5 334.6
067020 067025	Dee at Chester Weir Clywedog at Bowling Bank	3408 3659 3396 3483	NRA-WEL NRA-WEL		076009 076010	Caldew at Holm Hill Patteril at Harraby Green	3378 5469 3412 5545	NRA NW NRA NW	147.2 160.0
067026	* Dee at Eccleston Ferry	3415 3612	NRA-WEL	1816.8	076011	Coal Burn at Coalburn	3693 5777	IH	1.5
067028 067029	* Ceidiog at Uandrillo * Trystion at Pen-y-felin Fawr	3034 3371 3066 3405	NRA-WEL NRA-WEL		076014 076015	Eden at Kirkby Stephen Earnont at Pooley Bridge	3773 5097 3472 5249	NRA-NW NRA-NW	69.4 145.0
068001 068002	Weaver at Ashbrook * Gowy at Picton	3670 3633 3443 3714	NRA-NW NRA-NW	622.0 156.2	077001 077002	Esk at Netherby Esk at Canonbie	3390 5718 3397 5751	NRA-NW SRPB	841,7 495.0
068003	Dane at Rudheath	3668 3718	NRA-NW	407.1	077003	Liddel Weter at Rowanburnfoot	3415 5759	SRPB	319.0
068004 068005	Wistaston Brook at Marshfield Bridge Weaver at Audlem	3674 3552 3653 3431	NRA-NW NRA-NW	92.7 207.0	077004 077005	Kirtle Water at Mossknows Lyne at Cliff Bridge	3285 5693 3412 5662	SRPB NRA-NW	72.0 191.0
068006 068007	* Dane at Hulme Walfield Wincham Brook at Lostock Gralam	3845 3644 3697 3757	WA-NW	150.0 148.0		* Annan at St Mungos Manse		ŞRPB	730.3
068010	* Fender at Ford	3281 3880	WA-ARA	18.4	078002	* Ae at Elshieshields	3125 5755 3068 5852	SRPB	143.2
068015 068018	Gowy at Huxley * Dane at Congleton Park	3497 3624 3861 3632	WA-ARA WA-ARA	49.0 145.0	078003 078004	Annan at Brydekirk Kinnel Water at Redhafl	3191 5704 3077 5868	SRPB SRPB	925.0 76.1
068019	Weaver at Pickerings Cut	3574 3762	WA-NW	1370.0	078005	Kinnel Water at Bridgemuir	3091 5845	SRPB	229.0
068020	Gowy at Bridge Trafford	3448 3711	NRA-NW	156.0	078006	Annan at Woodfoot	3099 6010	SRPB	217.0
069001 069002	* Mersey at Irlam Weir Irwell at Adelphi Weir	3728 3936 3824 3987	NRA-NW NRA-NW	679.0 559.4	079001 1 079002	* Afton Water at Afton Reservoir Nith at Friers Carse	2631 6050 2923 5851	SRPB SRPB	8.5 799.0
069003 069004	Irk at Scotland Weir * Etherow at Bottoms Reservoir	3841 3992 4023 3971	NRA-NW NRA-NW	72.5	079003 079004	Nith at Hall Bridge	2684 6129	SAPB	155.0
069005	Glaze Brook at Little Woolden Hall	3685 3939	NRA-NW	78.2 152.0	079005	Scar Water at Capenoch Cluden Water at Fiddlers Ford	2845 5940 2928 5795	SRPB SRPB	142.0 238.0
069006 069007	Bollin at Dunham Massey Mersey at Ashton Weir	3727 3875 3772 3936	NRA-NW NRA-NW	256.0 660.0	079006 079007	Nith at Drumlanrig Lochar Water at Kirkblain Bridge	2858 5994 3026 5695	SRPB SRPB	471.0 125.0
069008 069011	Dean at Stanneylands	3846 3830	NRA-NW	51.8					
069012	Micker Brook at Cheadle Bollin at Wilmslow	3855 3889 3850 3815	NRA-NW NRA-NW	67.3 72.5	080001 080002	Urr at Datbeattie Dee at Glenlochar	2822 5610 2733 5641	SRPB SRPB	199.0 809.0
069013 069015	Sinderland Brook at Partington Etherow at Compstall	3726 3905 3962 3908	NRA-NW NRA-NW	44.8 156.0	080003 080004	White Laggan Burn at Loch Dee Greenburn at Loch Dee	2488 5781 2481 5791	SRPB SRPB	5.7 2.6
069017	Goyt at Marple Bridge	3964 3898	NRA-NW	183.0	080005	Dargall Lane at Loch Oee	2451 5787	SRPB	2.1
069018 1 069019 1	Newton Brook at Newton Le Willows Worsley Brook at Eccles	3585 3933 3753 3980	NRA-NW NRA-NW	32.8 24.9	080006	Blackwater at Loch Dee	2478 5797	\$RPB	15.6
069020 069023	Medlock at London Road Roch at Blackford Bridge	3849 3975 3807 4077	WA-ARA WA-ARA	57.5 186.0	081001 °	Penwhirn Burn at Penwhirn Reservoir Cree at Newton Stewart	2128 5694 2412 5653	DGRW SRPB	18.2 368.0
069024	Croal at Farnworth Weir	3743 4068	WIA-NW	145.0	081003	Luce at Airyhemming	2180 5599	SRPB	171.0
069025 069027	Irwell at Manchester Racecourse Tame et Portwood	3821 4004 3906 3918	NRA-NW NRA-NW	557.0 150.0	081004 081005	Bladnoch at Low Malzie Piltanton Burn at Barsolus	2382 5545 2107 5564	SRPB SRPB	334.0 34.2
069028 069030	Mersey at Brinksway	3884 3900	NRA-NW NRA-NW	531.0	081006	Water of Minnoch at Minnoch Bridge	2363 5746 2592 5590	SRPB	141.0
069031	Sankey Brook at Causey Bridge Ditton Brook at Greens Bridge	3588 3922 3457 3865	NRA-NW	154.0 47.9	081007	Water of Fleet at Rusko	2552 5550	SRPB	77.0
069032 069034	Alt at Kirkby Musbury Brook at Helmshore	3392 3983 3775 4213	NRA-NW NRA-NW	90.1 3.1	082001 082002	Girvan at Robstone Doon at Auchendrane	2217 5997 2338 6160	CRPB CRPB	245.5 323.8
069035	Irwell at Bury Bridge	3797 4109	NRA-NW	155.0	082003	Stinchar at Balnowlart	2108 5832	CRPB	341.0
069037 1 069040	Mersey at Westy Irwell at Stubbins	3617 3877 3793 4188	NRA-NW NRA-NW	2030.0 105.0		* Caaf Water at Knockendon Reservoir	2245 6514	SRCW	6.0
069041 069042	Tame at Broomstair Bridge Ding Brook at Naden Reservoir	3938 3953 3850 4175	NRA-NW NRA-NW	113.0 2.2	083002 °	' Garnock at Dalry Ayr at Catrine	2293 6488 2525 6259	CRPB CRPB	88.8 166.3
					083004	Lugar at Langholm	2508 6217	CRPB	1B1.0
070002 070003	Douglas at Wanes Blades Bridge Douglas at Central Park Wigan	3476 4126 3587 4061	NRA-NW NRA-NW	198.0 55.3	083005 083006	Irvine at Shewalton Ayr at Mainholm	2345 6369 2361 6216	CRPB CRPB	380.7 574.0
070004 070005	Yarrow at Croston Mill Lostock at Littlewood Bridge	3498 4180 3497 4197	WA-ARA WA-ARA	74.4 56.0	083007 083008	Lugton Water at Eglinton Annick Water at Oreghorn	2315 6420 2352 6384	CRPB CRPB	54.6 95.3
	-	•			083009	Garnock at Kilwinning	2307 6424	CRPB	183.6
071001 071003	Ribble at Samlesbury Croasdale at Croasdale Flume	3589 4304 3706 4546	WW-ARM WWW	1145.0 10.4	083010	Irvine at Newmitns	2532 6372	CRPB	72.8
071004 071005	Calder at Whalfey Weir Bottoms Beck at Bottoms Beck Flume	3729 4360 3745 4565	WW-ARM	316.0 10.6	084001 084002 *	Kelvin at Killermont Calder at Muirshiel	2558 6705 2309 6638	CRPB SRCW	335.1 12.4
071006	Ribble at Henthorn	3722 4392	WA-ARA	456.0	084003	Clyde at Hazelbank	2835 6452	CRPB	1092.9
071007 ' 071008	Ribble at Hodderfoot Hodder at Hodder Place	3709 4379 3704 4399	NRA-NW NRA-NW	720.0 261.0	084004 084005	Clyde at Sills Clyde at Blairston	2927 6424 2704 6579	CRPB CRPB	741.8 1704.2
071009 071010	Ribble at Jumbles Rock Pendle Water at Barden Lane	3702 4376 3837 4351	NRA-NW NRA-NW	1053.0 108.0	084006 1 084007	Kelvin at Bridgend South Calder Wtr at Forgewood	2672 6749 2751 6585	CRPB CRPB	63.7 93.0
071011	Ribble at Arnford	3839 4556	NRA-NW	204.0	084008	Rotten Calder Wtr at Redlees	2679 6604	CRPB	51.3
071013 071014	Darwen at Ewood Bridge Darwen at Blue Bridge	3677 4262 3565 4278	NRA-NW NRA-NW	39.5 128.0	084009 084011	Nethan at Kirkmuirhill Gryfe at Craigend	2809 6429 2415 6664	CRPB CRPB	66.0 71.0
072001 1	Lune at Halton	3503 4647	NRA-NW	994.6	084012 084013	White Cart Water at Hawkhead Clyde at Daldowie	2499 6629 2672 6616	CRPB CRPB	227.2 1903.1
072002	Wyre at St Michaels	3463 4411	NRA-NW	275.0	084014	Avon Water at Fairholm	2755 6518	CRPB	265.5
072004 072005	Lune at Caton Lune at Killington New Bridge	3529 4653 3622 4907	NRA-NW NRA-NW	983.0 219.0	084015 084016	Kelvin at Dryfield Luggie Water at Condorrat	2638 6739 2739 6725	CRPB CRPB	235.4 33.9
072006 072007	Lune at Kirkby Lonsdale Brock at U/S A6	3615 4778 3512 4405	NRA-NW NRA-NW	507.1 32.0	084017 084018	Black Cart Water at Milliken Park Clyde at Tulliford Mill	2411 5620 2891 6404	CRPB CRPB	103.1 932.6
072008	Wyre at Garstang	3488 4447	NRA-NW	114.0	084019	North Celder Wtr at Calderpark	2681 6625	CRPB	129.8
072009 072011	Wenning at Wennington Road Bridge Rawthey at Brigg Flatts	3615 4701 3639 4911	WA-ARA WA-ARA	142.0 200.0	084020 084021	Glazert Water at Milton of Campsie White Cart Water at Netherlee	2656 6763 2587 6597	CRPB CRPB	51.9 91.6
072014 072015	Conder at Galgate Lune at Lunes Bridge	3481 4554 3612 5029	WK-ARK WK-ARK	28.5 141.5	084022 084023	Duneaton at Maidencots Bothlin Burn at Auchengeich	2929 6259 2680 6717	CRPB CRPB	110.3 35.7
072016	Wyre at Scorton Weir	3501 4500	NRA-NW	88.8	084024	North Calder Wtr at Hillend	2828 6678	CRPB	19.9
073001	Leven at Newby Bridge	3371 4863	NRA-NW	241.0	084025 084026	Luggie Water at Oxgang Allander Water at Milingavie	2666 6734 2558 6738	CRPB CRPB	87.7 32.8
073002 073003	Crake at Low Nibthwaite Kent at Burneside	3294 4882 3507 4956	NRA-NW NRA-NW	73.0 73.6	084027 084028	North Calder Wtr at Calderbank Monkland Canal at Woodhall	2765 6624 2765 6626	CRPB CRPB	60.6 60.6
073005	Kent at Sedgwick	3509 4874	NRA-NW NRA-NW	209.0	084029	Cander Water et Candermill	2765 6471	CRIPB	24.5
073006 073008	Cunsey Beck at Eel House Bridge Bela at Beetham	3369 4940 3496 4806	NRA-NW	18.7 131.0	084030	White Cart Water at Overlee	2579 6575	CRPB	111.8
073009 073010	Sprint at Sprint Mill Leven at Newby Bridge	3514 4961 3367 4863	NRA-NW NRA-NW	34.6 247.0	085001 085002	Leven at Linnbrane Endrick Water at Gaidrew	2394 6803 2485 6866	CRPB CRPB	784.3 219.9
073011	Mint at Mint Bridge	3524 4944	NRA-NW	65.8	085003	Falloch at Glen Falloch	2321 7197	CRPB	80.3
073013 073014	Rothay at Miller Bridge House Brathay at Jeffy Knotts	3371 5042 3360 5034	NRA-NW NRA-NW	64.0 57.4	085004	Luss Water at Luss	2356 6929	CRPB	35.3
074001	Duddon at Duddon Half	3196 4896	WA-AW	85.7	086001 086002	Little Eachaig at Dalinlongart Eachaig at Eckford	2143 6821 2140 6843	CRP9 CRP9	30.8 139.9
074002	irt at Galesyke	3136 5038	NRA-NW	44.2		-		CRPB	
074003 074005	Ehen at Braystones	3084 5154 3009 5061	NRA-NW NRA-NW	44.2 125.5	089008 089009	Eas Daimh at Eas Daimh Eas ÀGhaill at Succoth	2239 7276 2209 7265	CRPB	4.5 9.7
074006 074007	Calder at Calder Hall Esk at Cropple How	3035 5045 3131 4978	WIA-ARN	44.8 70.2	090003	Nevis at Claggan	2116 7742	HRPB	76.8
074008	Duddon at Ulpha	3209 4947	WA-ARK	47.9	091002				
075001	St Johns Beck at Thirtmere Reservoir	3313 5195	NRA-NW	42.1		Lochy at Camisky	2145 7805	HRPB	1252.0
075002 075003	Derwent at Camerton Derwent at Ouse Bridge	3038 5305 3199 5321	NRA-NW NRA-NW	663.0 363.0	093001	Carron at New Kelso	1942 8429	HRPB	137.8
075004 075005	Cocker at Southwaite Bridge Derwent at Portinscele	3131 5281 3251 5239	NRA-NW NRA-NW	116.6 235.0	094001	Ewe at Poolewe	1859 8803	HRPB	441.1
075006 *	Newlands Beck at Braithwaite	3240 5239	NRA-NW	33.9	095001	Inver at Little Assynt	2147 9250	HRPB	137.5
075007 ° 075009	Glenderamackin at Threlkeld Greta at Low Briery	3323 5248 3286 5242	NRA-NW NRA-NW	64.5 145.6	095002	Broom at Inverbroom	2184 8842	HRPB	141.4
075016 075017	Cocker at Scalehill Ellen at Bullgill	3149 5214 3096 5384	NRA-NW NRA-NW	64.0 96.0	096001 096002	Halladale at Halladale Naver at Apigill	2891 9561 2713 9568	HRPB HRPB	204.6 477.0
	-				096003	Strathy at Strathy Bridge	2836 9652	HRPB	111.8
076001 076002	Haweswater Beck at Burnbanks Eden at Warwick Bridge	3508 5159 3470 5567	NRA-NW NRA-NW	33.0 1366.7	096004	Strathmore at Allnabed	2453 9429	HRPB	105.0
076003 076004	Earnont at Udford Lowther at Earnont Bridge	3578 5306 3527 5287	NRA-NW NRA-NW	396.2 158.5	097001 ° 097002	Calder Burn at Achavam Thurso at Helkirk	3085 9596 3131 9595	HRCW HRPB	24.5 412.8
	<u> </u>								

Station number	River and station name	Grid reference	Auth-	Area (sq km)	Station number	River and station name	Grid reference	Auth- ority	Area (sg km)
			,	1-4			70.0101100	Olity	led kill
101001	Eastern Yar at Alverstone Mill	4577 0857	NRA-S	57.5	203021	* Kells Water at Currys Bridge	3106 3971	DOEN	- 127.0
101002	Medina at Upper Shide	4503 0874	NRA-S	29.8	203023	Torrent at The Moor Bridge	2858 3649	DOEN	59.9
101003	Lukely Brook at Newport	4491 0886	NRA-S	16.2	203024	Cusher at Gambles Bridge	3048 3471	DOEN	176.7
101004	Eastern Yar at Burnt House	4583 0853	NRA-S	59.6	203025	Callan at Callan New Bridge	2893 3524	DOEN	164.1
101005	Eastern Yar at Budbridge	4531 0835	NRA-S	22.5	203026	Glenavy at Glenavy	3149 3725	DOEN	44.6
101006	Wroxall Stream at Waightshale	4536 0839	NRA-S	15.8	203027	Braid at Ballee	3097 4014	DOEN	177.2
101007	Scotchells Brook at Burnt House	4583 0852	NRA-S	9.2	203028	Agivey at White Hill	2883 4193	DOEN	98.9
					203029	Six Mile Water at Ballyclare	3282 3902	DOEN	58.4
102001	Cefni at Bodffordd	2429 3770	NRA-WEL	25.0	203033	Upper Bann at Bannfield	3233 3341	DOEN	100.9
					203038 1	Rocky at Rocky Mountain	3243 3265	DOEN	6.7
106001	Creed at Creed Bridge	1402 9325	HRPB	43.4	203040	Lower Benn at Movenagher	2931 4154	DOEN	5209.8
					203042	Crumlin at Cidercourt Bridge	3135 3765	DOEN	54.1
201002 1	Fairy Water at Dudgeon Bridge	2406 3758	DOEN	161.2	203092	* Main at Dunminning Lower	3051 4111	DOEN	211.8
201005	Camowen at Camowen Terrace	2460 3730	DOEN	274.6	203093	Main at Shane's Viaduct	3086 3896	DOEN	704.2
201006	Drumragh at Campsie Bridge	2458 3722	DOEN	324.6					
201007	Burn Dennet at Burndennet Bridge	2372 4047	DOEN	145.3	204001	Bush at Seneirl	2942 4362	DOEN	306.1
201008	Derg at Castlederg	2265 3842	DOEN	337.3	20.00.	Dadat St Contain	2342 4002	DOLIV	300.1
201009 1	Owenkillew at Crosh	2418 3866	DOEN	442.4	205003	Lagan at Dunmurry	2200 2020	BOTAL	
201010	Mourne at Drumnabuoy House	2347 3960	DOEN	1844.5	205003	Lagan at Newforge	3299 3679	DOEN	444.7
					205004	Ravernet at Ravernet	3329 3693	DOEN	490.4
	Roe at Ardnargia	2674 4247	DOEN	365.6	205006	Lagan at Blaris	3267 3613	DOEN	69.5
202002	Faughan at Drumahoe	2464 4151	DOEN	272.3	205008	Lagan at Drummiller	3259 3628	DOEN	315.9
					205010	Lagan at Banoge	3236 3525 3123 3540	DOEN	85.2
203010	Blackwater at Maydown Bridge	2820 3519	DOEN	951,4	205020	Enter at Comber	3459 3697	DOEN	189.8
203011	Main at Dromona	3052 4086	DOEN	228.B	203020	Eliter at Comper	3459 3697	DOFM	59.8
203012	Ballinderry at Ballinderry Bridge	2926 3799	DOEN	419.5	******				
203013	Main at Andraid	3092 3973	DOEN	646.B		Clanrye et Mount Mill Bridge	3086 3309	DOEN	132.7
203017	Upper Bann at Dynes Bridge	3043 3509	DOEN	335.6	206002 1	Jerretspass at Jerretspass	3064 3332	DOEN	41,7
20301B	Six Mile Water at Antrim	3146 3867	DOEN	277.3					
203019	Claudy at Glenone Bridge	2962 4037	DOEN	130.1	236005	Colebrooke at Batlindarragh Bridge	2331 3359	DOEN	309.1
203020	Moyola at Moyola New Bridge	2955 3905	DOEN	306.5	236007	Sillees at Drumrainy Bridge	2205 3400	DOEN	167.6

t Irish Grid references are italicised.

Note: a significant proportion of the stations closed in the 1980s have subsequently been re-commissioned.

Refer to pages 172 and 173 for key to measuring authority codes.

⁼ closed, or no data for post 1992 have been received.

GROUNDWATER LEVEL DATA

Background

Groundwater may be obtained from almost any stratum in the sedimentary succession in the British Isles, as well as from igneous and metamorphic rocks. In many, such as clays and shales, volcanics and metamorphics, the permeable zone may well be limited to the depth to which weathering may reach, this is unlikely to be more than some 50 metres beneath the ground surface. In those strata which are not generally recognised to be aquifers, well-yields tend to be small (of the order of only a few cubic metres per day), uncertain as a continuous source (tending to fail in prolonged droughts), with an indifferent groundwater quality, and with the sources vulnerable to pollution.

The more generally recognised aquifers are listed in Table 6, with the Chalk and Upper Greensand, the Lincolnshire Limestone and the Permo-Triassic sandstones as the most important from the viewpoint of public supply. From such aquifers as these, yields of 3000 to 4500 cubic metres a day are not unusual. For the next category, including the Lower Greensand and the Magnesian Limestone, yields to individual wells of 1500 to 3000 cubic metres a day can generally be expected. In the other aquifers, whilst occasional sources sufficient for large supplies may be developed, they tend to be important only locally. The outcrop areas of the major aquifers are shown in Figure 10; throughout Wales, Scotland and Northern Ireland, aquifers are less extensively developed and tend to be only of relatively local importance.

The groundwater resources of an aquifer are naturally replenished from rainfall. During the summer months, when the potential evapotranspiration is high and soil moisture deficits are appreciable, little infiltration takes place. There is a notable exception to this rule in the Eden valley of Cumbria where, enclosed between the massifs of Cross Fell and the Lake District, sufficiently heavy and continuous summer rainfall occurs to maintain infiltration through part at least of most summers. The normal recharge of an aquifer takes place during the winter months when the potential evapotranspiration is low and soil moisture deficits are negligible.

Only the largest artificial reservoirs in the United Kingdom have sufficient capacity to support demands through the driest summers, assuming that they were full at the start of the summer, without some continuous contributions from river intakes. Prolonged dry spells lead, in many rivers, to reduced flow, particularly where the natural groundwater contribution (termed baseflow) is limited. Consequently, while surface water droughts may be in part due to the failure of runoff from winter rainfall to fill the reservoirs, they are more frequently caused by a decrease in the summer flows of streams and rivers. Surface water droughts do, however, lead to increased consumption of groundwater (where avail-

able). By way of contrast, a groundwater drought is caused by a lack of winter rainfall. Potentially, the most serious droughts occur when, as in 1975/76, a dry summer succeeds a notably dry winter, or as in 1988-92 in eastern England, recharge is significantly below average over two or three successive winters.

The Observation Borehole Network

Groundwater level observation wells (in this context, a well includes both shafts – constructed by hand digging – and boreholes – constructed by machinery) are generally used for one of two purposes: to monitor levels regionally and thus to estimate groundwater resource fluctuations, or to monitor the effects locally of groundwater abstractions. The number of observation wells required in different areas varies widely. Over the last two decades, a target density was sought of one well to 25 to 35 km².

The observation well network was reviewed in 1981 by the British Geological Survey (then the Institute of Geological Sciences) with the aim of selecting 200 to 300 sites from the existing national archive, to be used for periodical assessments of the national groundwater situation. The selection was based upon the hydrogeological units identified in an investigation of the groundwater resources of the United Kingdom¹; one site was chosen for each aquifer present within each unit. For Scotland and for Northern Ireland this was not possible due to the very limited number of observation wells available. In England and Wales, the total number finally selected was 175².

Details of the wells in this national network are given in the Register of Selected Groundwater Observation Wells (see page 156).

Measurement and Recording of Groundwater Levels

The majority of observation wells are measured manually either weekly or monthly. The usual instrument is an electric probe suspended upon a graduated cable or tape, contact being made by the water to complete a circuit which gives either an audible or visual signal at the surface. Measurements are normally made to the nearest 10 millimetres, although instruments may be accurate to 1 mm.

Some observation wells are equipped with continuous water level recorders. These recorders measure level either by a float or with a pressure transducer. Data are recorded either on paper charts, punched tape (now rarely used) or by solid state data loggers. At several observation boreholes provision is made for the routine transmission – usually by telephone line – of groundwater levels to local, or regional, centres.

TABLE 6 GENERALISED LIST OF AQUIFERS IN THE UNITED KINGDOM

era.	System	Subsystem	Aquifer	Importanc
l	Quaternary	Holocene	Superficial deposits	*
		Pleistocene	Upper and Middle Pleistocene	*
			Crag	**
	Neogene	Pliocene	Coralline Crag	**
		Oligocene		
	Paleogene	Eocene	Bagshot Beds	
			Lower London Tertiaries	
			Blackheath & Oldhaven Beds	
			Woolwich & Reading Beds	*
			Thanet Beds	**
	Cretaceous	Upper Cretaceous	Chalk and Upper Greensand	***
		Lower Cretaceous	Lower Greensand	***
			Hastings Beds	**
	Jurassic	Upper Jurassic	Portland & Purbeck Beds	*
			(with Spilsby Sandstone)	(**)
			Corallian	**
		Middle Jurassic	Great & Inferior Oolitic limestones	**
			(with Lincolnshire Limestone)	(****)
		Lower Jurassic	Bridport & Yeovil Sands	**
		· _	Marlstone Rock	*
	Triassic	Upper Triassic		
		Lower Triassic	Permo-Triassic sandstones	
	Permian			
) 			Magnesian Limestone	***
	Carboniferous	Upper Carboniferous	Coal Measures	**
:			Millstone Grit	**
		Lower Carboniferous	Carboniferous Limestone	**
	-			*

Key to aquifer importance:

- * aquifer of minor importance only
- ** aquifer producing small, but useful, local supplies
- *** aquifer of local importance, often providing public supplies
- **** aquifer of major importance

Figure 10 Principal aquifers and representative borehole locations

Observation Well Hydrographs 1990-94

Well hydrographs for 32 observation sites are shown in Figure 11. For each borehole the 1990 to 1994 groundwater hydrographs are illustrated, as a blue trace, together with the average and extreme monthly levels for the pre-1990 record. A break in the well hydrograph trace indicates an interruption in the record of greater than eight weeks. Five-year plots have been used both to illustrate the dramatic changes in groundwater levels over the recent past and because the volume of groundwater stored in aquifers can reflect not only the infiltration taking place during the winter months of 1993/94, but also that occurring in previous years. When comparing the hydrographs for a number of sites, account should be taken of the differing scales used to illustrate the water-table fluctuations.

For a few wells and boreholes the long-term monthly extremes and/or means have been omitted. In some cases this is due to the limited amount of historical data available. At other sites the historical data do not provide an appropriate basis for comparison with contemporary groundwater levels. For several of the featured wells and boreholes the earliest level records are of dubious accuracy and have been ignored when computing the relevant maximum, minimum and mean values. For others substantial changes in the pattern and/or magnitude of groundwater abstraction limit the representativeness of any segment in the groundwater level time series. The majority of observation boreholes for which data are held on the Groundwater Level Archive monitor the natural variation in levels. However, in parts of the United Kingdom levels have been influenced, sometimes over long periods, by pumping for water supply or other purposes which exceeds the natural rate of replenishment. As a consequence the regional water-table may become substantially depressed. For instance, the levels at a number of observation boreholes in the Permo-Triassic sandstones of the English Midlands are indicative of a significant regional decline. By contrast those in Northumbria, for example at Rushyford, now stand substantially higher than 15 years ago despite the recent downtrend. This reflects, in part, a rundown of the coal industry and the consequent cessation of continuous pumping for mine dewatering.

Register of Selected Groundwater Observation Wells

Scope

The listed sites were selected to give a reasonably representative, cover for aquifers through-out England and Wales. The wells are grouped according

to the aquifer to which the water level variations in the wells are attributed. A generalised list of aquifers is given on page 148, while the aquifers are tabulated in stratigraphical order, most of the local names for individual strata are omitted and the intervening aquicludes are not shown.

Network Changes

Since the original selection of boreholes for incorporation in the national network a number of changes have been made to the list of selected wells. At some locations, observations could no longer be continued, and new sites have been added from time to time. Details of the wells in the national network are given in the Register of Selected Groundwater Observation Wells.

The following sites, listed in the register in the 1993 yearbook, are no longer included in the network.

Chalk

TA10/40 Little Brocklesby SU51/10 Hill Place Farm TR35/49 Cross Manor Cottages

Upper Jurassic

SU49/40B East Hanney SE98/8 Seavagate Farm

Magnesian Limestone

SE28/28 Bedale

Nine new sites have been added to the register, in addition to one site that has been reinstated.

Chalk

TA11/158 Keelby Grange SU51/1 Upper Hill Farm

Upper Jurassic

SU49/75B Marcham SE98/23 Seavagate Gill

Permo-Triassic sandstones

NY14/4 New Cowper SD40/137 Moor Hall SD53/25 Red Scar Wood SJ59/147 Sandy Lane

SJ69/138 Kenyon Lane (reinstated)

SJ62/112 Heathlanes

The Register

The six columns of the Register are:

Well Number

The well numbering system is based on the National Grid. Each 100 kilometre square is designated by prefix characters, e.g. SE, and is divided into 100 squares of 10 kilometre sides designated by numbers 00 (in the south-west corner) to 99 (in the north-east corner). Thus, the site SE93/4, is located in the 10 kilometre square SE93, while the number after the solidus denotes that the site is the fourth accessed in this square in the National Well Record collection. A suffix such as A, B, etc., defines the particular well when there are several at the same site. For Northern Ireland, which is on the Irish Grid, the first of the prefix characters is always 'I'.

Two asterisks following the well number indicates a well or borehole for which hydrographs are shown on pages 152 to 155. The location of the index wells, and the outcrop areas of the principal aquifers, are shown on Figure 10.

Grid Reference

The six or eight figure references given in the Register relate to the 100 kilometre National (or Irish) Grid square designated by the preceding two-figure code; the corresponding two-letter code appears as the prefix characters in the Well Number. The Irish Grid References are italicised.

Site

The name by which the well or borehole is normally referenced. The location of all the sites listed in the Register are shown on Figure 10.

Measuring Authority

An abbreviation referencing the organisation responsible for groundwater level measurement. A full list of codes, together with the corresponding names and addresses appears on pages 172 and 173.

Records Commence

The first year for which records are held on the National Groundwater Level Archive.

Indicated % Annual Recharge

The difference between the level measured at the end of the summer recession of groundwater levels and that measured at the beginning of the summer recession of the following year reflects the amount of recharge received in that period. This method,

detailed in the Hydrometric Register and Statistics 1981-5 volume, is most suited to circumstances when a single peak is readily identifiable in each recharge season. Where recharge follows an uneven pattern resulting in poorly defined or multiple peaks, the percentage of the mean annual recharge is often unrepresentative. Consequently, the original method has been modified to produce more realistic values of recharge and to allow more accurate comparison between sites. First, the recharge period is arbitrarily defined as the first day of August to the end of the following July. Next, the water level at each site is estimated, by extrapolation where necessary, for the last day of each month. Finally, all the rises in successive months are summed over each recharge period. Prior to 1993 the calculation of recharge was made manually. The process has now been fully computerized. Recharge is only calculated for years where there is a continuous data series, with no more than 60 days between readings of level.

The summed rise for each year is called the 'annual fluctuation', and the mean of the annual fluctuations over the period of record is termed the 'mean annual recharge' (MAR). This also assumes that the natural discharge (via, for instance, springs and seepages) is constant; while this is not the case in view of the large differences of head that are recorded in some observation wells, there is insufficient information currently available to permit corrective factors to be determined. It is considered that for most wells the errors caused by this assumption will be small.

The annual infiltration is then expressed as a percentage of the MAR and thus represents the percentage of the mean annual recharge received for that year. Acknowledging the limited precision in the estimation procedure the percentages are rounded (to the nearest 5%) and are tabulated in the last column of the Register.

References

- Monkhouse, R.A. and Richards, H.J. 1983. Groundwater resources of the United Kingdom. Commission of the European Communities, pub. Th. Schaeffer Druckerei GmbH, Hannover, 252 pages.
- Monkhouse, R.A. and Murti, P.K. 1981. The rationalisation of groundwater observation well networks in England and Wales. Institute of Geological Sciences, Report No. WD/81/1, 18 pages.

Figure 11 Hydrographs of groundwater level fluctuations 1990-94

Figure 11—(continued)

Figure 11—(continued)

Figure 11—(continued)

The Register

Well Number	Grid Reference	Site	Measuring Authority	Records Commence	Indicated % Annua Recharge 1993/94
Aquifer: Sup	erficial Deposi	its			
IJ28/1	2248 8620	Dunadry	DOEN	1985	60
SO44/4	4683 4253	Stretton Sugwas	NRA-WEL	1973	155
Aquifer: Cha	lk and Upper	Greensand			
ID30/1**	3663 0310	Killyglen	DOEN	1985	90
SE94/5**	9651 4530	Dalton Holme	NRA-NY	1889	140
SE95/6**	9578 5939	Wetwang	NRA-NY	1971	110
SE97/31	9345 7079	Green Lane	NRA-NY	1971	125
SP90/26	9470 0875	Champneys	NRA-T	1962	180
SP91/59	9380 1570	Pitstone Green Farm	NRA-A	1970	180
ST30/7**	3763 0667	Lime Kiln Way	NRA-SW	1969	245
SU01/5B**	0160 1960	West Woodyates Manor	NRA-SW	1942	125
SU17/57**	1655 7174	Rockley	NRA-T	1933	130
SU32/3 SU34/8A	3817 2743 3215 4875	Bailey's Down Farm Clanville Lodge	NRA-S	1964	170
SU35/14	3315 5645	Woodside	NRA-S NRA-S	1962 1963	205 150
SU51/1	5910 1680	Upper Hill Farm	NRA-S	1965	255
SU53/94	5586 3498	Abbotstone	NRA-S	1976	115
SU57/159	5628 7530	Calversleys Farm	NRA-T	1974	190
SU61/32	6578 1775	Chidden Farm	NRA-S	1958	115
SU61/46	6890 1532	Hinton Manor	NRA-S	1953	200
SU64/28	6360 4049	Lower Wield Farm	NRA-S	1962	135
SU68/49	6442 8525	Well Place Farm	NRA-T	1976	105
SU71/23**	7755 1490	Compton House	NRA-S	1894	160
SU73/8	7048 3491	Faringdon Station	NRA-T	1966	140
SU76/46	7367 6251	Riseley Mill	NRA-T	1975	70
SU78/45A	7419 8924	Stonor Park	NRA-T	1961	155
SU81/1	8356 1440	Chilgrove House	NRA-S	1836	150
SU87/1	8336 7885	Folly Cottage, Coldharbour	NRA-T	1950	135
SU89/7	8103 9417	Piddington	NRA-T	1966	130
SY68/34**	6615 8805	Ashton Farm	NRA-SW	1974	115
TA06/16	0490 6120	Nafferton	NRA-NY	1964	115
TA07/28 TA11/158**	0940 7740 1493 1029	Hunmanby Hall Keelby Grange	NRA-NY	1976	150
TA21/14	2670 1890	Church Farm	NRA-A NRA-NY	1980 1971	305
TF72/11	7710 2330	Off Farm	NRA-NI NRA-A	1971	
TF73/9	7790 3270	Coe Ltd, Bircham	NRA-A	1971	
TF80/33	8730 0526	Houghton Common	NRA-A	1971	200
TF81/2**	8138 1960	Washpit Farm	NRA-A	1950	250
TF83/1	8578 3606	South Creake School	NRA-A	1952	180
TF92/5	9869 2183	Tower Hills P.S.	NRA-A	1974	
TG00/92	0440 0020	High Elm Farm, Deopham	NRA-A	1971	210
TG03/25B	0382 3583	The Hall, Brinton	NRA-A	1952	260
TG11/5	1691 1101	The Spinney, Costessey	NRA-A	1952	
TG12/7	1126 2722	Heydon Pumping Station	NRA-A	1974	220
TG21/9	2400 1657	Frettenham Depot	NRA-A	1952	
TG21/10	2699 1140	Grange Farm	NRA-A	1952	
TG23/21 TG31/20	2932 3101 3365 1606	Melbourne House Woodbastwick Hall	NRA-A	1974	210
TG32/16	3700 2682	Brumstead Hall	NRA-A NRA-A	1974 1978	
TL11/4	1560 1555	Mackerye End House	NRA-T	1963	360
TL11/9**	1692 1965	The Holt	NRA-T	1964	195
TL13/24	1200 3026	West Hitchin	NRA-A	1970	190
TL22/10	2978 2433	Box Hall	NRA-T	1964	
TL33/4**	3330 3720	Therfield Rectory	NRA-T	1883	180
TL42/6	4536 2676	Hixham Hall	NRA-T	1964	150
TL42/8	4669 2955	Berden Hall	NRA-T	1964	155
TL44/12**	4522 4182	Redlands Hall	NRA-A	1963	145
TL55/109	5925 5605	Lower Farm	NRA-A	1983	220
TL72/54	7982 2516	Rectory Road	NRA-A	1968	20
TL84/6	8465 4106	Smeetham Cottages, Bulmer	NRA-A	1963	200

Well Number	Grid Reference	Site	Measuring Authority	Records Commence	Indicated % Annua Recharge 1993/94
TL86/110	8850 6470	Cattishall Farm	NRA-A	1969	
TL89/37	8131 9001	Grimes Graves	NRA-A	1971	180
TL92/1	9657 2562	Lexden Pumping Station	NRA-A	1961	
TM15/112**	1201 5618	Dial Farm	NRA-A	1968	190
TM26/46	2461 6109	Fairfields	NRA-A	1974	170
TM26/95	2786 6397	Strawberry Hill	NRA-A	1974	95
TQ01/133	0850 1170	Chantry Post, Sullington	NRA-S	1977	
TQ21/11	2850 1289	Old Rectory, Pyecombe	NRA-S	1958	
TQ28/119B**	2996 8051	Trafalgar Square	NRA-T	1901	100
TQ31/50	3220 1180	North Bottom	NRA-S	1979	
TQ35/5**	3363 5924	Rose & Crown	NRA-T	1974	115
TQ38/9	3509 8536	Hackney Public Baths	NRA-T	1953	220
TQ50/7	5592 0380	Old Rectory, Folkington	NRA-S	1965	75
TQ56/19	5648 6124	West Kingsdown	NRA-T	1961	
TQ57/118	5880 7943	Thurrock A13	NRA-A	1979	100
TQ58/2B TQ86/44	5622 8408	Bush Pit Farm	NRA-T	1967	95
	8595 6092 9470 9710	Little Pett Farm	NRA-S	1982	130
TQ99/11 TR14/9**		Burnham-on-Crouch Little Bucket Farm	NRA-A	1975	75 222
TR14/50	1225 4690		NRA-S	1971	230
TR24/26	1265 4167 2787 4003	Glebe Cottage	NRA-S	1970	135
TR36/62		Church House	NRA-S	1971	
TV59/7C**	3208 6634 5290 9920	Alland Grange Westdean No. 3	NRA-S	1969	180
			NRA-S	1940	160
Aquifer : Low SU82/57	er Greensand 8888 2505		ND 4 C	1004	
SU84/8A		Madam's Farm	NRA-S	1984	
TL45/19	8716 4087	Tilford Pumping Station	NRA-T	1971	155
	4110 5204	River Farm	NRA-A	1973	
TQ41/82	4370 1320	Lower Barn Cottages	NRA-S	1975	220
TR13/21 TR23/32	1132 3881 2075 3650	Ashley House Morehall Depot	NRA-S NRA-S	1972 1972	120 170
Aquifer : Has	tings Beds				
TQ22/1	2348 2770	The Bungalow	NRA-S	1964	85
TQ42/80A	4725 2990	Kingstanding	NRA-S	1979	
TQ61/44	6658 1803	Dallington Herrings	NRA-S	1964	
TQ62/99	6199 2282	Whiteoaks	NRA-S	1978	310
TQ71/123	7969 1659	Red House	NRA-S	1974	140
Aquifer : Upp	er Jurassic	·			
SE68/16	6890 8590	Kirkbymoorside	NRA-NY	1975	
SE77/76	7690 7300	Broughton	NRA-NY	1975	
SE98/8	9910 8540	Seavegate Farm	NRA-NY	1971	100
SU49/75B	4651 9736	Marcham	NRA-T	1988	105
Aquifer : Mide	dle Jurassic			<u> </u>	
SP00/62**	0595 0190	Ampney Crucis	NRA-T	1050	00
SP20/113	2721 0634	Alvescot Road		1958	90
ST51/57	5931 1691	Over Compton	NRA-T NRA-SW	1983	110
ST88/62A	8275 8743	Didmarton 1	NRA-SW	1971 1977	115 80
Aquifer : Linc	olnshire Lime	estone			
SK97/25	9800 7817	Grange de Lings	NRA-A	1975	70
TF03/37**	0885 3034	New Red Lion	NRA-A	1964	105
TTOLIN	0429 4273	Silk Willoughby	NRA-A	1972	
TF04/14		detense			
Aquifer : Pern	no-Triassic sa	inusiones			
	2907 6943	Dunmurry	DOEN	1985	
Aquifer : Pern			DOEN SRPB	1985 1981	 85
Aquifer : Pern	2907 6943	Dunmurry			 85 95
Aquifer : Perr IJ26/1 NX97/1**	2907 6943 9667 7432	Dunmurry Redbank	SRPB	1981	95
Aquifer : Perr IJ26/1 NX97/1** NY00/328	2907 6943 9667 7432 0511 0247	Dunmurry Redbank Brownbank Layby	SRPB NRA-NW	1981 1974	

Well Number	Grid Reference	Site	Measuring Authority	Records Commence	Indicated % Annual Recharge 1993/94
NZ41/34	4861 1835	Northern Dairies	NRA-NY	1974	
SD27/8	2172 7171	Furness Abbey	NRA-NW	1972	95
SD40/137	4128 5210	Moor Hall	NRA-NW	1983	130
SD41/32**	4400 1164	Yew Tree Farm	NRA-NW	1973	75
SD44/15	4396 4928	Moss Edge Farm	NRA-NW	1961	
SD53/25	5260 3133	Red Scar Wood	NRA-NW	1973	120
SE36/47	3945 6575	Kelly's Cafe	NRA-NY	1977	220
SE39/20B	3004 9244	Scruton Village	NRA-NY	1969	225
SE45/3	4470 5580	Cattal Maltings	NRA-NY	1969	270
SE52/4	5473 2363	Southfield Lane	NRA-NY	1955	
SE54/32A	5532 4646	Bilborough	NRA-NY	1984	
SE60/76	6784 0709	Woodhouse Grange	NRA-ST	1980	
SE61/11**	6270 1710	Sykehouse	NRA-NY	1971	125
SE72/3B	7047 2149	Rawcliffe Bridge	NRA-NY	1971	85
SE83/9	8040 3640	Holme-on-Spalding Moor	NRA-NY	1972	
SJ15/15**	1374 5556	Llanfair D.C.	NRA-WEL	1972	125
SJ33/39	3814 3831	Eastwick Farm	NRA-WEL	1974	90
SJ56/45E	5042 6953	Ashton No. 4	NRA-NW	1969	45
SJ59/147	5950 9782	Sandy Lane	NRA-NW	1971	245
SJ62/112	6195 2105	Heathlanes	NRA-ST	1971	265
SJ69/138	6311 9620	Kenyon Lane	NRA-NW	1968	160
SJ83/1A**	8969 3474	Stone	NRA-ST	1974	130
	8969 7598	Dale Brow	NRA-NW	1973	145
SJ87/32 SJ88/93	8611 8645	Bruntwood Hall	NRA-NW	1972	80
SK00/41**	0670 0120	Nuttalls Farm	NRA-ST	1974	330
	1440 0464	Weeford Flats	NRA-ST	1966	-
SK10/9		Grange Wood	NRA-ST	1967	174
SK21/111	2731 1419	Burtonshuts Farm	NRA-ST	1972	280
SK24/22	2539 4431	Peafield Lane	NRA-ST	1969	
SK56/53	5632 6440		NRA-ST	1969	310
SK67/17	6448 7257	Morris Dancers	NRA-ST	1969	230
SK68/21	6100 8374	Crossley Hill	NRA-ST	1980	40
SK73/50	7693 3228	Woodland Farm	NRA-ST	1973	
SO71/18	7170 1970	Stores Cottage Hillfields	NRA-ST	1961	
SO87/28	8160 7970	Bussels No. 7A	NRA-SW	1971	140
SX99/37B** SY09/21A	9528 9872 0666 9235	Heathlands	NRA-SW	1951	130
Aquifer : Mag	gnesian Limes	tone			
NZ22/22**	2875 2896	Rushyford NE	NRA-NY	1967	115
NZ32/19	3575 2650	Heley House	NRA-NY	1969	435
NZ33/20	3349 3501	Garmondsway	NRA-NY	1974	125
		Castle Farm	NRA-NY	1970	160
SE35/4	3830 5830		NRA-NY	1968	290
SE43/9**	4535 3964	Peggy Ellerton Farm			115
SE43/14	4660 3550	Coldhill Farm 35	NRA-NY	1971	
SE51/2	5210 1530	Westfield Farm	NRA-NY	1971	145
SK46/71	4800 6030	Stanton Hill	NRA-ST	1973	
SK58/43	5248 8018	Southards Lane	NRA-ST	1973	
Aquifer : Coa	d Measures				
SE23/4	2850 3414	Trident House	NRA-NY	1971	80
Aquifer : Mil	lstone Grit				
SE02/46	0771 2528	Thrum Hall	NRA-NY	1977	85
SE04/7	0295 4792	Lower Heights Farm	NRA-NY	1971	130
SE24/2B	2067 4053	Green Lane Dyeworks	NRA-NY	1971	155
SE27/8	2120 7380	Kirkby Moor Farm	NRA-NY	1971	80
Aquifer : Car	boniferous Li	mestone			
NT95/21	9695 5055	Middle Ord	NRA-NY	1974	50
SE06/1	0241 6183	Jerry Laithe Farm	NRA-NY	1971	
SK15/16**	1292 5547	Alstonfield	NRA-ST	1974	115
SK17/13	1778 7762	Hucklow South	NRA-ST	1969	100
	6560 4790	Oakhill 1	NRA-SW	1974	125
ST64/33	0.500 4790	Cariiii I	14141-0 W		

Sites marked '**' are indicator wells; well hydrographs are shown in Figure 11. Where the annual percentage recharge cannot be estimated, the entry '---' is substituted.

THE NATIONAL GROUNDWATER LEVEL ARCHIVE DATA RETRIEVAL SERVICE

The National Groundwater Level Archive includes water level data for around 170 representative wells and boreholes in the United Kingdom; the average length of record is about 20 years. This archive is supplemented by historical water level data (up to 1974 generally) for approximately 3000 additional monitoring sites.

The data are stored on a computer database and water level records may be made available in various forms as specified by users. Retrievals are available for all of the sites listed in the Register of Selected Groundwater Observation Wells, although not all the data contained within the archive have been validated.

In addition five standard options are available for retrieving data. A description of each option is given overleaf. Options 1 to 4 give details of the well site, the period of record available, and maximum and minimum recorded levels in addition to the output specific to each option. Data may be retrieved for a specific well or for groups of wells by well reference numbers, by area (using National Grid References), by aquifer, by hydrometric area, by measuring authority, or by any combination of these parameters. Data may be output to paper or in digital form.

Cost of Service

To cover the computing and handling costs, a moderate charge will be made depending on the data requested. Estimates of these charges may be obtained on request; the right to amend or waive charges is reserved.

Requests for Retrieval Options

Requests for retrieval options should include: the name and address to which the output should be directed, the sites, or areas, for which data are required together with the period of record of interest (where appropriate). Where possible, a daytime telephone number should be given.

Requests should be addressed to:

The British Geological Survey Maclean Building WALLINGFORD OXFORDSHIRE OX10 8BB

Telephone: Wallingford (01491) 838800

Facsimile: (01491) 692345 Email: bgsftp@ua.nwl.ac.uk.

The National Well Record Archive

The British Geological Survey also maintains the National Well Record Archive (NWRA) for England and Wales. Currently this archive includes hydrogeological details and reference information for over 150,000 shafts, boreholes and some springs – predominantly constructed or used for water supply or the monitoring of groundwater levels or quality. The archive is organised into paper files based upon the 10 kilometre squares of the National Grid. Each file includes a register which details the accession number, the depth, the national grid reference and certain other details. This material is an essential component in the hydrogeological enquiry service operated by BGS and the register details are in the process of being transferred to a digital format.

The Archive is located at the Wallingford Office of BGS (address above) and all the non-confidential records are open to inspection by the general public. Those wishing to avail themselves of this facility should contact the BGS Records Section in advance to discuss access procedures and costs.

National Geosciences Information Centre

The NWRA is associated with the National Geosciences Information Service (NGIS), one of a number of computer-based data centres established at NERC Institutes. The NGIS is located at the BGS Headquarters, Keyworth, near Nottingham (Telephone: 0115 9363100) and provides access to a broad range of geological information (for example, geophysical and hydrogeological logs, core samples and chemical analyses).

LIST OF GROUNDWATER RETRIEVAL OPTIONS

OPTION TITLE

1 .

1

NOTES

All recorded observations of groundwater level in metres above Ordnance Datum, with dates of observation and maximum and minimum levels for each year. Specific years, or ranges of years, may be requested, otherwise the full period of record is given.

Table of annual maximum and minimum groundwater levels

Table of groundwater levels

Annual maximum and minimum groundwater levels in metres above Ordnance Datum, with dates of occurrence. Specific years, or ranges of years, may be requested, otherwise the full period of record is given.

Table of monthly maximum, minimum and mean groundwater levels

Monthly maximum, minimum and mean groundwater levels in metres above Ordnance Datum, together with the number of years contributing values to the calculation of each monthly mean. A specific period of years may be nominated, otherwise the full period of record is given.

Hydrographs of groundwater levels

Provides a well hydrograph for a number of groundwater levels of specified years. Castellated annual plots of monthly maximum and mean groundwater levels calculated from a nominated period of years are superimposed upon the hydrograph, provided that the nominated period exceeds 10 years. Tabulations of the monthly maximum, minimum and mean values are also listed, together with the number of years of record used in the calculations, and the number of observations used for each month.

Site details

The output comprises the well reference number of the British Geological Survey, the original (Water Data Unit) station number (where applicable), the hydrometric area, the aquifer name and code, the site name and location, the National Grid Reference, the depth of the well, the datum points (from which measurements are made), the altitude of the ground surface, the period of record and the measuring authority area in which the well or borehole is located.

The conditions applying to the use of data retrieved from the National Groundwater Level Archive are similar to those outlined on page 138 for the National River Flow Archive.

SURFACE WATER QUALITY DATA

Background

A national archive of water quality data is maintained by the Environmental Protection Statistics Division of the Department of the Environment to provide information concerning the quality of rivers throughout the United Kingdom and to satisfy certain international obligations including the estimation of riverborne inputs of selected contaminants (e.g. nutrients) to the sea. Data for this archive are collected as part of the Harmonised Monitoring programme which provides for the sampling and analysis of water quality on a national basis.

The Harmonised Monitoring Scheme was established, for England and Wales, in 1974; a similar scheme was instituted for Scotland in July 1975. In Scotland responsibility for the collection and analysis of the samples rests with the River Purification Boards; data acquisition is co-ordinated by The Scottish Office Environment Department. In England and Wales responsibility passed, on the 1st September 1989, from the former regional Water Authorities to the newly-created National Rivers Authority.

Measuring authorities send analytical results of routinely collected samples of river water from approximately 220 monitoring stations; sampling frequencies vary substantially but are, typically, in the range 6 to 52 per year. Most of the monitoring stations are located on major rivers at, or near, the tidal limit.

The monitoring programme can embrace a large number – over 80 – of physical and chemical attributes of river water but typically only 25 are measured at any given site. A number of determinands are measured as standard but a larger proportion are monitored only where it is considered necessary to do so.

Currently no data for Northern Ireland are held on the Harmonised Monitoring Archive. Water quality data are, however, routinely collected and archived by the Environmental Protection Division of the Department of the Environment (NI); data for two Northern Ireland monitoring sites are included in this publication.

The measuring authorities maintain major programmes of chemical and biological sampling of rivers for their own purposes; the monitoring networks involved provide a far more comprehensive coverage than the selected sites incorporated in the Harmonised Monitoring programme. From the 31st July 1985, the former Water Authorities were required, under the Control of Pollution Act, to maintain registers of the results of all samples of water and effluent taken for pollution control purposes together with details of all consented discharges. Following the enactment of the Water Bill 1989 this obligation passed to the National Rivers Authority. These registers are maintained at the regional head-quarters of the NRA (see page 172) and are open

for inspection by the public – free of charge. Persons wishing to consult the registers are advised to first contact the individual regional headquarters; a list of addresses is given on pages 172 and 173.

Data Retrieval

A comprehensive range of retrieval options has been developed by DoE to make available the water quality data held on the Harmonised Monitoring Archive and to provide statistical summaries based on that data. Requests for data, and guidance concerning its availability, should be addressed to:

Department of the Environment
Environmental Protection Statistics Division,
Room A105
Romney House
43 Marsham Street
LONDON SW1P 3PY

Data listings for monitoring sites in Northern Ireland may be obtained from the Environmental Protection Division of the DOE (NI).

Telephone: 0171 276 8245

Figure 12 Water quality monitoring station location map

Scope of the Water Quality Data Tabulations

River water quality data are presented for 32 monitoring sites on rivers throughout the United Kingdom. The location of each monitoring site is given on Figure 12. For each site 1994, and period of record, data are given for a range of determinands; the determinands featured may differ between monitoring sites reflecting the character of the rivers themselves and differences in the sampling regimes between monitoring stations.

The following notes are provided to assist in the interpretation of particular data items.

Harmonised Monitoring Station Code

A reference number which serves as the primary identifier of the station. For stations on the Harmonised Monitoring Archive, the first two digits refer to the measuring authority, the remainder refer to individual sites within each measuring authority. For the Northern Ireland stations, the Department of the Environment (NI) reference code is given.

Measuring Authority

An abbreviation referencing the organisation responsible for the operation of the monitoring site. See pages 172 and 173 for a full list of the codes together with the corresponding authority names and addresses.

Grid Reference

The initial two-letter and two-figure codes each designate the relevant 100 kilometre National Grid square or Irish Grid square (see page 38); the standard six-figure map reference follows.

Associated Flow Measurement Station

For monitoring sites in Great Britain, the reference number, name, catchment area and grid reference of the gauging station which provides the discharge data stored on the Harmonised Monitoring Archive. At most sites the flow corresponding to the time the quality sample was taken is archived; at other locations the corresponding daily mean flow is utilised. Where the gauging station and water quality monitoring site are not coincident, some method of flow adjustment may have been employed to allow for the differing catchment areas.

For the Northern Ireland monitoring sites, reference details of the co-located gauging stations are given; the flow data for these stations are held on the National River Flow Archive.

With the exception of the River Aire, for which summary flow information appears with the water quality data, 1994 flow data for all of the relevant gauging stations in Great Britain may be found in the River Flow Data section. Where daily flows are required for gauging stations featured in the monthly flow tables the National River Flow Archive data retrieval service may be used.

Determinands

Inadequate or unrepresentative sampling frequencies, or the presence of a substantial number of samples with concentrations recorded at, or below, the limit of detection, will normally result in the omission of a particular determinand.

Notes:

- i. Conductivity results are standardised to 20°C.
- ii. The biochemical oxygen demand data normally relate to the inhibited analytical results BOD(atu).
- iii. Nitrate concentrations are normally derived by subtracting the nitrite concentration from the reported Total Oxidised Nitrogen (TON) concentration; if the nitrite determination is below the limit of detection, nitrate is recorded as equivalent to TON*.

Units

The standard units used to record and report each determinand. The number of significant figures given for each determinand corresponds to the way the data are stored on the Harmonised Monitoring or DOE (NI) Archives and reflects the uncertainty associated with the relevant analytical procedures.

1994 Data

علامتحامة البائد عدادات

Samples

The number of samples taken for each determinand during 1994. Where a proportion of analytical results were below the limit of detection (which may vary according to the analytical procedure used), the number of samples in this category is given in parentheses. Normally determinands are not featured when the number of samples in the year is less than about six. Exclusion may also result from a very uneven sampling pattern through the year.

The precision of the mean, maximum and minimum values computed on the basis of a limited number of samples will vary from determinand to determinand but statistics associated with sampling frequencies of lower than about once a month should be regarded as indicative only.

^{*} Over recent years nitrate values for the featured Severn-Trent NRA sites have been reported as TON.

Mean

The average* of all the sample values for each determinand in 1994. Where concentrations below the limit of detection are held on the Harmonised Monitoring Archive, the threshold value itself is used to compute the mean.

Maximum / Date

The maximum determinand value recorded during 1994 together with its date of occurrence. Where the maximum value recurs the date refers to the initial occurrence.

Minimum / Date

The minimum determinand value together with its date of occurrence. Where the minimum value recurs the date refers to the initial occurrence. A '<' symbol indicates a value below the limit of detection.

Different limits of detection may apply throughout the year at certain monitoring sites, for further details contact the address given on page 161.

Period of Record Data

For half of the featured sites, the pre-1994 summary statistics are presented for the twenty-year period beginning in 1974; where individual stations were not incorporated into the Harmonised Monitoring network until after 1974, the appropriate first year of data is given. For certain stations the sampling frequency varies significantly from year to year and data for a few determinands may not extend over the full period of record; in particular the first year of data will normally be incomplete.

Where the pre-1994 data series includes values below the limit of detection, the threshold value has been used in the computation of the summary statistics.

For a number of the featured monitoring stations, a considerable amount of pre-1974 data, at least for certain determinands, may be stored on local, or regional, archives maintained by the measuring authorities. Also, for the period 1974-94, such archives may hold analytical results for substantially more samples than are represented on the Harmonised Monitoring Archive. Hence full equivalence between statistical summaries derived from national and regional databases cannot be expected for all monitoring sites.

Mean

The average* value of all the sample values for each determinand.

Percentiles

The 5, 50 and 95 percentile values for each determinand based on all the samples taken over the pre-1994 period.

Quarterly Averages

The mean quarterly average* for each of the threemonthly periods: January to March, April to June, July to September and October to December.

CONCRETE SECTION

^{*} In all cases this refers to the temporal mean rather than the flow-weighted average.

Mersey at Flixton

1994

Harmonised monitoring station number : 01 001 Measuring authority : NRA-NW NGR : 33 (SJ) 742 938

Flow measurement station : 069007 - Ashton Weir C.A.(km²) : 660.0 NGR : 33 (SJ) 772 936

1994 Max. Date Date Determinand Units Samples Mean Min. °C
pH units
µS/cm
mg/I
mg/I O
mg/I N
mg/I N
mg/I N
mg/I N
mg/I CaCO₃
mg/I CaCO₃
mg/I CaM
mg/I Mg 24.0 12/07
7.8 12/04
558 19/07
149.0 26/01
11.70 04/01
23.0 21/06
2.650 22/02
9.970 28/08
9.10 14/06
64.0 19/07
105.0 23/08
24.600 26/06
14.70 22/11
41.7 09/08
9.20 19/07 2.0 22/02 6.9 05/04 219 04/01 2.0 11/10 5.12 26/07 1.5 11/10 0.040 08/03 0.038 04/01 0.50 08/03 5.0 08/03 5.0 08/03 0.104 04/01 3.27 10/05 22.7 04/01 4.21 04/01 12.1 7.4 382 21.6 8.67 4.4 0.961 0.423 4.68 40.2 66.2 1.418 8.24 34.3 7.07 Temperature 40 49 49 49 46 48 49(1) 49 48(1) 49(1) pH Conductivity Suspended solids
Dissolved oxygen
BOD (inhibited)
Ammoniscal nitrogen Nitrate Chloride
Total alkalinity
Orthophosphate
Silica
Calcium 49 49 49 49

	Period of record: 1975 - 1993											
Mean		Percentiles			Quarterly averages							
	5%	50%	95%	J∙M	A-J	J-S	O-D					
10.7	3.9	10.1	19.1	5.9	12.6	16.3	8.6					
7.3	6.9	7.3	7.6	7.3	7.3	7.3	7.3					
482	284	465	744	460	499	510	449					
38.2	3.7	19.3	109.7	41.8	28.8	27.5	51.9					
8.05	4.59	7.98	11.29	9.92	7.25	6.21	B.73					
6.1	2.5	5.1	12.6	6.2	6.3	5.2	6.3					
1.85	0.31	1.61	4.18	1.97	2.20	1.67	1.55					
0.26	0.05	0.21	0.66	0.10	0.33	0.46	0.18					
4.1	2.1	4.0	7.1	3.2	4.6	5.1	3.7					
52.7	26.8	48.9	86.0	59.1	51.2	53.2	46.7					
91.3	54.0	90.0	133.8	84.6	98.1	95.7	84.9					
1.14	0.20	1.05	2.57	0.71	1.30	1.62	0.93					
8.09	5.12	8.10	10.36	8.12	6.83	8.73	8.48					
32.8	25.6	33.2	38.3	33.0	34.2	32.7	31.3					
7.2	4.8	7.2	9.1	7.0	7.8	7.4	6.7					

Ribble at Samlesbury

1994

Harmonised monitoring station number : 01 008 Measuring authority : NRA-NW NGR : 34 (SD) 590 305 Flow measurement station : 071001 - Samlesbury C.A.(km²) : 1145.0 NGR : 34 (SD) 589 304

				133	*		
Determinand	Units	Samples	Mean	Max.	Date	Min.	Date
Temperature	℃	52	10.7	21.0	21/07	1.0	17/02
pH	pH units	50	8.1	9.3	21/07	7.5	27/01
Conductivity	μS/cm	49	371	550	26/05	135	24/03
Suspended solids	mg/l	48 (3)	24.6	540.0	24/02	2.0	17/02
Dissolved oxygen	mg/I O	47	10.61	13.70	24/02	7.24	28/07
BOD (inhibited)	mg/I O	48	2.8	12.5	26/05	1.0	10/11
Ammoniacal nitrogen	mg/l N	49 (11)	0.181	1,070	03/03	0.040	28/04
Nitrite	mg/l N	49	0.072	0.261	28/07	0.017	04/08
Nitrate	mg/l N	49	5.38	17.60	18/08	0.80	22/03
Chloride	mg/l Cl	49	30.1	53.0	22/03	13.0	10/11
Total alkalinity	mg/l CaCO ₃	49	106.4	139.0	20/10	41.0	24/03
Orthophosphate	mg/l P	49	0.647	1.840	02/06	0.090	22/03
Silica	mg/l SiO₂	41(2)	2.88	6.28	17/02	0.05	12/05
Calcium	mg/l Ca	44	50.6	69.2	24/02	23.8	24/03
Magnesium	mg/l Mg	44	5.01	9.77	24/02	1.76	24/03
Potassium	mg/l K	44	4,31	9.08	14/07	1.93	24/03
Sodium	mg/i Na	44	31.6	68.0	18/08	7.9	24/03

		Period o	T record:	1974 - 19	93				
Mean		Percenti		Quarterly averages					
	5%	50%	95%	J-M	A-J	J-S	0-D		
9.8	1.0	9.9	18.1	4.3	11.8	15.1	7.5		
7.8	7.1	7.8	8.7	7.6	7.9	8.0	7.€		
414	233	410	618	407	449	431	366		
19.1	1.7	7.9	66.6	22.1	13.0	16.3	24.5		
10.14	7.21	10.15	12.81	11.56	9.75	8.78	10.69		
2.8	1.1	2.4	5.9	2.7	3.1	2.6	2.0		
0.26	0.03	0.16	0.83	0.50	0.18	0.14	0.25		
0.08	0.02	0.06	0.20	0.06	0.11	0.09	0.00		
4.2	1.3	3.3	10.0	3.4	5.2	4.9	3.3		
33.0	14.2	30.2	55.6	37.8	35.6	32.3	26.6		
116.2	67.2	120.5	153.3	109.9	122.4	120.6	111.3		
0.43	0.07	0.31	1.30	0.25	0.60	0.60	0.3		
3.24	0.13	3.46	5.78	4.16	1,82	2.49	4.5		
51.0	33.9	51.3	63.8	50.6	52.1	50.4	49.5		
5.1	2.7	5.1	7.5	4.9	5.6	5.3	4.1		
4.0	2.0	3.8	6.9	3.5	4.5	4.5	3.4		
30.5	9.4	25.9	63.4	28.2	35.2	34.5	21.7		

Eden at Temple Sowerby

1994

Harmonised monitoring station number : 01 017 Measuring authority : NRA-NW NGR : 35 (NY) 604 281 Flow measurement station : 076005 - Temple Sowerby C.A.(km²) : 616.4 NGR : 35 (NY) 605 283

			155			
Units	Samples	Mean	Max.	Date	Min.	Date
° C	11	10.9	19.0	13/07	5.0	07/02
pH units	12	8.2	8.7	11/05	7.7	10/01
úS/cm	12	361	454	10/08	190	10/01
	11(1)	8.2	34.0	10/01	2.0	11/05
mg/I O	11	11,44	15.10	11/05	9.50	15/06
mg/I O	11	1.7	2.5	09/06	1.0	10/01
mg/l Cl	11	19.2	28.0	10/08	12.0	10/01
mg/l CaCO ₁	11	152.0	176.0	13/07	76.0	10/01
	11(2)	0.116	0.237	15/06	0.050	07/02
mg/l SiO ₂	11	2.44	3.70	09/11	0.40	11/05
mg/l Ca	11	61.6	70.8	10/08	35.7	10/01
mg/l Mg	11	9.43	13.50	15/06	4.16	10/01
mg/LK	11	2.96	4.57	10/08	1.77	10/01
mg/l Na	11	10.9	16.1	10/08	7.4	14/09
	°C pH units µS/cm mg/l mg/l O mg/l O mg/l Cl mg/l EcO ₃ mg/l P mg/l SiO ₂ mg/l Mg mg/l K	°C 11 pH units 12 µS/cm 12 mg/l 11(1) mg/l 0 11 mg/l 0 11 mg/l Cl 11 mg/l CaCO ₃ 11 mg/l P 11(2) mg/l SiO ₂ 11 mg/l Ca 11 mg/l Mg 11 mg/l K 11	C 11 10.9 pH units 12 8.2 μS/cm 12 381 mg/l 11(1) 8.2 mg/l 0 11 1.44 mg/l 0 11 1.7 mg/l C1 11 19.2 mg/l C6CO ₃ 11 152.0 mg/l P 11(2) 0.116 mg/l SiO ₂ 11 61.6 mg/l Mg/l C3 11 61.6 mg/l Mg 11 9.43 mg/l K 11 2.96	Vonits Samples Mean Max. *C 11 10.9 19.0 pH units 12 8.2 8.7 μS/cm 12 381 454 mg/l 11(1) 8.2 34.0 mg/l 11 11.44 15.10 mg/l 11 19.2 28.0 mg/l 12 11 19.2 28.0 mg/l 12 152.0 176.0 176.0 mg/l 11 12.44 37.0 37.0 mg/l 11 2.44 37.0 37.0 mg/l 11 61.6 70.8 31.50 mg/l 11 9.43 13.50 mg/l 11 2.94 4.57	"C 11 10.9 19.0 13/07 pH units 12 8.2 8.7 11/05 p/S/cm 12 381 454 10/08 mg/l 11(1) 8.2 34.0 10/01 mg/l 0 11 11.44 15.10 11/05 mg/l 0 11 1.7 2.5 09/08 mg/l 11 15.0 17/05 mg/l 0 11 15.0 17/05 13/07 mg/l P 11(2) 0.116 0.237 15/06 mg/l SiO ₂ 11 52.0 17/0.0 13/07 mg/l SiO ₂ 11 61.6 70.8 10/08 mg/l Mg 11 9.43 13.50 15/08 mg/l Mg 11 9.43 13.50 15/08 mg/l K 11 2.96 4.57 10/08	Units Samples Mean Max. Date Min. *C 11 10.9 19.0 13/07 5.0 pH units 12 8.2 8.7 11/05 7.7 μS/cm 12 381 454 10/08 190 mg/l 11 18.2 34.0 10/01 2.0 mg/l 11 11.44 15.10 11/05 9.50 mg/l 11 17.2 28.0 10/08 1.0 mg/l 11 152.0 176.0 13/07 76.0 mg/l 11 152.0 176.0 13/07 76.0 mg/l 11 2.44 3.70 09/11 0.40 mg/l 11 2.44 3.70 09/11 0.40 mg/l 11 6.16 70.8 10/08 35.7 mg/l 11 6.16 70.8 10/08 35.7 mg/l 15/06 1.6

1994

	Period of record: 1975 - 1993						
Mean	Percentiles				Quarter	v avera	
	5%	50%	95%	J-M	A-J	J-S	0-D
10.2	2.9	9.4	18.5	4.9	12.0	15.5	7.0
8.1	7.4	8.0	8.7	7.9	8.2	8.2	8.0
358	** 227	378	473	1338	368	383	34:
8.6	1.3	4.3	27.5	11.8	7.3	4.9	11.4
11.15	8.80	10.99	13.71	12.22	11.35	10.38	10.9
1.9	0.7	1.7	3.3	1.8	1.9	1.9	1.0
18.9	11.0	17.8	29.0	19.7	19.9	21.1	15.7
150.0	88.9	157.0	191.1	143.2	157.0	151,5	149.0
0.13	0.02	0.09	0.38	0.08	0.20	0.17	0,10
2.42	0.41	2.44	4.20	3.08	1.38	2.14	3.09
56.8	35.9	58.6	72.7	56.8	58.0	58.2	56.0
9.2	4.2	8.9	14.5	B.3	10.3	10.5	7.5
2.8	1.5	2.5	4.9	2.2	3.0	3.5	2.6
10.2	5.2	9.3	17.0	9.9	10.6	11.8	8.3

South Tyne at Warden Bridge

1994

Harmonised monitoring station number: 02 021 Measuring authority: NRA-N NGR: 35 (NY) 910 660

Flow measurement station: 023004 - Haydon Bridge C.A.(km²): 751.1 NGR: 35 (NY) 856 647

	1994							
Units	Samples	Mean	Max.	Date	Min.	Date		
°C pH units mg/I mg/I O mg/I O mg/I CI	4 4 4(1) 4 4	8.9 8.1 1.5 13.12 1.3 18.6	8.5 2.0 15.20 1.6	11/05 22/08 22/02 22/02	7.7	22/02 22/02 22/02 29/11 29/11 29/11		
	°C pH units mg/I mg/I O mg/I O	*C 4 pH units 4 mg/l 4(1) mg/lO 4 mg/lO 4	*C 4 6.9 pH units 4 8.1 mg/l 4(1) 1.5 mg/l 0 4 13.12 mg/l 0 4 1.3.12	Units Samples Mean Max. *C 4 8.9 16.0 pH units 4 8.1 8.5 mg/l 4(1) 1.5 2.0 mg/l 0 4 13.12 15.20 mg/l 0 4 1.3 1.6	*C 4 8.9 16.0 22/08 pH units 4 8.1 8.5 11/05 mg/l 4(1) 1.5 2.0 22/08 mg/l 0 4 13.12 15.20 22/02 mg/l 0 4 1.3 1.6 22/02	Units Samples Mean Max. Date Min. *C 4 8.9 16.0 22/08 0.1 pH units 4 8.1 8.5 11/05 7.7 mg/l 4(1) 1.5 2.0 22/08 1.0 mg/l 0 4 13.12 15.20 22/02 11.30 mg/l 0 4 1.3 1.6 22/02 0.9		

Mean		Percent	iles		Quarter	ly averag	ges
	5%	50%	95%	J-M	A-J	J-S	0-0
9.3	2.0	8.4	19.0	4,1	11.3	15.0	6.4
7.8	7.2	7.8	8.5	7.6	8.0	7.9	7.6
10.9	1.3	4.4	26.2	10.9	10.8	13.0	8.9
11.32	9.03	11,41	13.78	12.33	11.03	10.11	11.71
1.7	0.6	1.5	3.0	1.5	1.8	1.8	1.6
13.9	7.9	12.9	24.1	16.8	14.4	12.2	12.3

Tees at Broken Scar

1994

Harmonised monitoring station number : 02 058 Measuring authority : NRA-N NGR: 45 (NZ) 265 131

Flow measurement station: 025001 - Broken Scar C.A.(km²): 818.4 NGR: 45 (NZ) 259 137 Desired of several, 4075 4000

1994 Determinand Samples Mean Max. Date Min. Date 17.0 27/10 7.8 06/06 27.0 24/03 12.50 24/03 2.0 02/11 0.81 27/10 13.9 27/10 63.0 27/10 5.0 02/11 7.4 02/11 2.0 06/06 10.66 27/10 1.4 24/03 0.48 02/11 9.3 24/03 19.0 02/11 10.5 7.6 10.5 11.24 1.7 0.65 4 4 4 4 4(1) 3 Temperature pH Suspended solids pH units pH uniti mg/l O mg/l O mg/l N mg/l Cl Dissolved oxygen BOD (inhibited) Nitrate Total alkalinity mg/l CaCO₃

		renoa a	recora:	1975 - 19	93		
Меап		Percent	les		Quarter	y nvera	
	5%	50%	95%	J-M	A-J	J-8	Q-D
9.3	1.6	8.4	18.1	3.8	11.9	15.3	6.1
7.6	6.9	7.7	8.2	7.6	7.6	7.6	7.6
13.7	1.4	6.2	46.9	14.6	9.2	14.0	16.4
10.93	8.31	11.01	13.24	12.39	10.39	9.37	11,48
1.8	0.9	1.6	3.2	1.9	1.8	1.8	1.7
1.4	0.2	1.0	3.7	1.9	1.2	0.8	1.8
15.8	6.4	14.0	26.7	19.6	14.2	11.8	18.8
67.2	33.4	61.2	102.9	76.0	68.2	61.5	65.4

Trent at Nottingham

1994

Harmonised monitoring station number : Measuring authority : NRA-ST

NGR 43 (SK) 581 383

1994

Flow measurement station: 028009 - Colwick C.A.(km²): 7486.0

NGR: 43 (SK) 620 399

Determinend Units Samples Mean Max. Date Min. Date 11.7 24.0 12/07
8.0 8.7 03/05
866 1180 31/08
16.9 132.0 13/01
11.11 15.00 15/02
2.9 5.5 14/11
7.0 10.2 25/12
8.17 10.50 20/10
98.8 183.0 31/08
164.4 190.0 18/10
1.054 1.840 22/06
8.38 10.30 15/02
143.28 190.00 18/10
93.7 109.0 01/06
21.19 26.40 22/06
9.16 12.30 22/06
63.9 96.3 22/06 1.0 15/02 7.7 14/11 510 29/12 3.0 15/10 8.00 14/07 1.5 11/10 0.040 03/05 5.79 04/01 44.0 29/12 0.404 08/01 6.00 22/06 76.70 29/12 67.7 29/12 67.7 29/12 62.0 13/04 24.8 29/12 Temperature pH units pH Conductivity 57 57 57 57 57 54 26 57 57 57 13 13 13 mg/I O mg/I O mg/I O mg/I O mg/I O mg/I O mg/I N mg/I CI mg/I CaCO₃ mg/I SO₄ mg/I SO₄ mg/I Ko mg/I Na μS/cm Conductivity
Suspended solids
Dissolved oxygen
BOD (inhibited)
Tot, diss. org. carbon*
Ammoniacal nitrogen
Nitrate Chloride Total alkalinity Orthophosphate Orthophosp Silica Sulphate Calcium Magnesium Potassium

	Period of record: 1974 - 1993												
Mean		Percent		Quarterly averages									
	5%	50%	95%	J-M	A-J	J-S	O-D						
12.6	5.0	11,9	21.0	7.6	15.0	18.4	10.4						
7.8	7.4	7.8	8.3	7.7	7.8	7.9	7.7						
884	602	904	1118	815	909	957	864						
24.6	6,1	15.0	75.9	28.2	20.7	18.4	29.6						
9.95	7.81	10.11	12.32	10.92	9.79	8.95	10.13						
3.5	1.6	3.2	5.9	3.1	4.0	3.6	3.2						
8.0	4.5	6.6	18.1	7.1	8.1	8.7	8.4						
0.38	0.03	0.28	0.90	0.60	0.27	0.21	0.36						
8.6	6.2	8.7	11.2	8.8	8.8	8.4	8.7						
99.1	54.1	99.5	149.2	88.4	100.6	117.3	94.6						
159.3	118.9	162.7	186.6	157.5	165.6	161.5	153.						
1.51	0.52	1.50	2.79	1.00	1.60	2.04	1.49						
7.24	2.68	7.63	11.06	8.57	4.42	6.76	8.4						
168.1	106.0	69.3	222.42	156.9	178.6	173.9	160.6						
105.0	72.5	98.6	113.1	95.8	108.0	90.1	92.						
22.0	13.7	22.5	29.1	22.3	23.4	21.7	19.						
9.9	6.6	9.8	15.4	8.0	10.3	11.7	10.3						
73.4	31.2	74.6	126.1	64.2	74.2	87.0	70.2						

Derwent at Wilne

1994

Harmonised monitoring station number : Measuring authority: NRA-ST

03 011 NGR: 43 (SK) 452 315 Flow measurement station: 028067 - Church Wilne C.A.(km²): 1177.5 NGR: 43 (SK) 438 316

Determinand	Units	Samples	Mean	Мах.	Date	Min.	Date
Temperature	*c	43	12.0	23.0	14/07	4.0	25/02
pН	pH units	41	8.0	8.5	11/05	7.7	10/11
Conductivity	μS/cm	41	635	1650	30/06	410	27/01
Suspended solids	mg/l	43	13.3	78.0	10/11	2.0	19/12
Dissolved oxygen	mg/I O	42	10.79	13.60	27/01	7.40	31/08
BOD (inhibited)	mg/I O	42	2.7	6.5	01/08	1.5	31/01
Tot. diss. org. carbon	mg/I O	42	5.0	9.1	10/11	2.4	18/01
Ammoniacal nitrogen	mg/l N	43 (1)	0.229	0.958	25/02	0.040	30/06
Nitrate	mg/l N	43	4.68	6.72	07/09	3.22	12/04
Chloride	mg/I CI	43	54.1	147.0	25/02	30.0	10/11
Total alkalinity	mg/I CaCO ₃	43	148.7	217.0	29/07 -	83.0	10/11
Orthophosphate	mg/IP	43	0.664	1.650	01/08	0.120	06/01
Silica	mg/I SiO ₂	11	6.41	7.80	25/02	2.80	14/07
Sulphate	mg/I SO ₄	14	92.67	160.00	07/09	55.60	10/11
Calcium	mg/l Ca	14	72.4	86.3	14/07	58.1	10/11
Magnesium	mg/l Mg	14	15.50	25.50	07/09	9.11	10/11
Potassium	mg/l K	14	5.00	8.04	07/09	2.97	28/03
Sodium	mg/l Na	14	43.4	94.9	25/02	20.2	10/11
					•		

Mean		Percent	tiles	Quarterly averages					
	5%	50%	95%	J-M	L-A	J-S	O-D		
11.9	4.0	11.1	21.0	6.5	14,2	17.8	9.3		
7.8	7.5	7.8	8.2	7.8	7.9	7.9	7.7		
658	430	660	888	564	671	760	639		
14.8	2.0	8.0	47.9	20.2	9.6	10.1	19.3		
10.06	6.98	10.24	12.92	11.67	10.11	8.54	10.37		
2.6	1.2	2.5	4.3	2.4	2.7	2.6	2.6		
4.9	2.4	4.4	9.1	3.9	5.0	5.7	5.1		
0.32	0.07	0.27	0.74	0.40	0.29	0.23	0.35		
4.4	3.2	4.5	5.8	4.4	4.4	4.5	4.4		
67.2	35.0	66.1	109.3	56.3	66.8	83.4	64.1		
155.4	110.7	159.3	189.0	140.4	161.4	172.2	149.2		
0.88	0.22	0.81	1.90	0.52	0.90	1.34	0.80		
5.39	0.59	5.73	8.54	6.12	3.43	4.61	6.72		
102.2	60.0	98.4	167.90	82.1	107.8	123.7	93.7		
72.6	55.4	74.1	85.6	68.9	75.9	76.4	67.6		
16.8	9.0	15.B	24.8	14.3	17.9	19.9	15.2		
5.3	3.0	5.1	7.7	4.6	5.5	6.2	5.0		
50.1	18.6	47.7	80.2	37.0	49.B	66.5	43.0		

Teme at Powick

1994

Harmonised monitoring station number : Measuring authority: NRA-ST

NGR: 32 (SO) 836 525

Flow measurement station: 054029 - Knightsford 8r. C.A.(km²): 1480.0 NGR: 32 (SO) 735 557 Darlad of second 1075 1000

		1994						
Determinand	Units	Samples	Mean	Max.	Date	Min.	Date	
Temperature	*C	17	10.2	21.0	14/07	5.0	17/01	
pH	pH units	15	8.1	8.5	14/07	7.6	16/09	
Conductivity	μS/cm	15	393	490	10/08	260	16/09	
Suspended solids	mg/l	17	44.4	198.0	16/09	5.0	27/04	
Dissolved oxygen	mg/I O	17	11.25	14.50	17/01	9.70	30/09	
BOD (inhibited)	mg/I O	17 (3)	1.6	5.0	16/09	1.0	20/01	
Tot. diss. org. carbon	mg/I O	16	4.4	13.9	18/09	1.9	20/01	
Nitrate	mg/I N	16	5.35	6.83	16/09	4.08	28/07	
Chloride	mg/l Cl	16	30.5	94.0	12/12	21.0	15/11	
Total alkalinity	mg/I CaCO ₃	15	124.4	172.0	28/07	10.0	16/09	
Orthophosphate	mg/I P	17 (2)	0.129	0.249	18/09	0.050	04/03	

Mean		Percent	iles		Quarter	ly avera	208
	5%	50%	95%	J-M	A-J	J-8	0-0
10.6	3.0	9.9	19,1	5.3	12.7	16.4	7.8
B.0	7.5	8.0	8.5	7.9	8.1	8.2	7.5
424	271	410	519	370	421	442	400
39.3	1.9	11,4	188.9	66.9	33.1	12.1	46.4
10.89	8.49	11.03	13.31	11.91	10.71	9.91	11.19
1.9	8.0	1.6	4.1	1.7	2.2	1.8	1.9
4.8	1.9	3.5	12.4	4.4	4.9	4.6	5.1
4.3	2.3	4.3	6.5	5.4	4.5	3.4	4.2
23.4	15.3	23.0	31.5	23.1	22.7	25.6	22.4
138.3	77.0	141.3	189.7	118.5	148.9	164.3	123.9
0.19	0.03	0.15	0.40	0.13	0.10	0.24	0.27

Avon at Evesham Road Bridge

1994

Harmonised monitoring station number : Measuring authority: NRA-ST

NGR: 42 (SP) 034 431

Flow measurement station: 054002 - Evesham NGR: 42 (SP) 040 438 C.A.(km²): 2210.0

				199	4		
Determinand	Units	Samples	Mean	Max.	Date	Min.	Date
Temperature	•c	44	10.4	21.0	20/07	1.0	14/02
pH `	pH units	29	8.1	8.6	11/05	7.8	06/01
Canductivity	μS/cm	29	842	1060	19/07	480	06/01
Suspended solids	mg/l	38	33.6	220.0	06/01	3.0	18/10
Dissolved oxygen	mg/I O	· 44	10.22	14.20	16/02	2.64	11/11
BOD (inhibited)	mg/I O	40(1)	3.0	5.0	11/05	1.0	08/08
Tot. diss. org. carbon	mg/I O	22	7.4	14.2	07/11	5.3	07/03
Ammoniacal nitrogen	mg/l N	30 (9)	0.130	0.594	19/05	0.040	22/04
Nitrate	mg/l N	30	9.81	11.30	07/11	7.17	06/01
Chloride	mg/l Cl	30	62.0	93.0	12/09	35.0	06/01
Total alkalinity	mg/I CaCO ₃	30	187.4	216.0	07/06	109.0	28/02
Orthophosphate	mg/IP	21	1.363	2.660	19/07	0.470	09/12
Silica	mg/I SiO ₂	11	10.55	14.80	13/10	5.30	16/05
Sulphate	mg/ISO ₄	11	175.45	242.00	19/07	103.00	07/04
Calcium	mg/l Ca	11	115.B	134.0	16/06	93.6	07/11
Magnesium	mg/l Mg	11	26.31	33.20	19/07	17.20	07/11
Potassium	mg/LK	11	9.30	12.20	12/09	5.96	07/04
Sodium	mg/l Na	11	45.7	69.2	12/09	22.3	07/04

Period of record: 1977 - 1993 Quarterly averages A-J J-\$ O-D Mean 95% 11.2 8.0 927 8.6 7.8 926 17.0 8.0 1021 16.7 9.00 2.9 8.8 0.13 8.0 943 8.6 1197 7.6 5.1 7.95 1.5 5.2 0.02 943 1197 15.5 90.4 10.92 13.32 2.7 6.6 7.1 18.6 0.16 0.65 14.5 75.1 137.0 198.8 229.3 1.62 3.90 1.41 15.48 97.5 265.85 122.4 140.3 27.8 39.2 9.2 14.6 55.4 99.6 11.6 68.3 192.8 1.09 10.31 170.0 119.7 24.9 7.5 44.1 9.9 92.5 195.3 7.7 38.9 145.1 0.52 3.83 100.0 87.2 16.4 6.4 21.9 1.60 6.59 198.4 116.7 30.0 10.2 1.93 13.04 187.3 118.3 27.5

Aire at Fleet Weir

1994

Harmonised monitoring station number :

04 005

Flow measurement station: 027080 - Fleet Weir

NGR: 44 (SE) 381 295

Measuring authority: NRA-Y

NGR: 44 (SE) 381 285

1994

C.A.(km²): 865.0 Period of record: 1975 - 1993

Determinand	Units	Samples	Mean	Max.	Date	Min.	Date
Flow	m3s−1	365	21.2	101.5	28/12	4.6	14/08
Temperature	•C	44	11.6	20.0	13/07	3.7	14/02
pH	pH units	44	7.5	7.6	09/02	7.2	05/01
Conductivity	μS/cm	44	744	1195	20/07	384	15/11
Suspended solids	mg/l	44	14.4	62.0	15/11	4.0	06/09
Dissolved oxygen	mg/I O	44	8.32	12.30	17/01	1.82	20/07
BOD (inhibited)	mg/I O	44	5.9	11.0	21/10	2.5	03/06
Ammoniacal nitrogen	mg/l N	44	0.904	2.490	13/06	0.280	15/11
Nitrite	mg/l N	44 (1)	0.198	0.600	21/10	0.010	05/01
Nitrate	mg/l N	44	6.07	12.80	13/06	2.93	15/11
Chloride	mg/l Cl	44	89.5	165.0	20/07	32.7	15/11
Total alkalinity	mg/I CaCO ₃	44	122.9	156.0	01/10	97.0	25/10
Onhophosphate	mg/IP	44	0.786	2.160	13/06	0.170	05/01
Calcium	mg/I Ca	44	60.4	84.7	08/10	49.3	11/04
Magnesium	mg/l Mg	44	12.22	21.10	08/10	5.72	15/11

Mean		Percenti	les		Quarter	y averag	jes
	5%	50%	95%	J-M	A-J	J-S	0-D
12.4	4.9	12.1	20.2	7.2	14.2	17.5	10.0
7.5	7.2	7.5	7.8	7.6	7.5	7.4	7.9
708	398	679	1071	678	710	782	648
26.6	3.3	17.5	75.8	29.9	24.4	23.0	30.0
7.65	2.67	7.96	11.66	10.23	6.98	5.33	8.5
7.9	3.5	7.1	13.7	7.7	8.3	8.3	7.9
2.16	0.43	1.55	4.81	1.93	2.17	2.36	1.70
0.33	0.05	0.24	0.82	0.15	0.39	0.50	0.2
5.2	2.6	4.9	8.7	4.4	5.6	5.9	4.8
83.4	36.6	77.0	153.4	84.0	84.2	90.8	73.
123.4	77.6	126.0	164.9	115.4	124.3	134.0	119.
1.32	0.16	1.11	3.19	0.83	1,50	1.89	1.03
60.7	45.8	60.3	73.6	59.5	60.7	60.4	61.0
12.6	4.9	11.8	20.2	12.1	12.9	14.1	11.3

Derwent at Loftsome Bridge

1994

Harmonised monitoring station number: Measuring authority: NRA-Y

04 014 NGR: 44 (SE) 707 302

C.A.(km2): 1586.0

Flow measurement station: 027041 - Buttercrambe NGR: 44 (SE) 731 587

1994 Date Determinand Units Samples Mean Max. Date Min. 9.3 7.7 599 19.0 8.3 700 23/02 06/01 28/10 08/07 02/08 23/02 11/03 11/10 28/10 10/01 10/02 28/02 12/12 08/07 12/05 31/03 06/01 23/02 28/02 28/02 17/01 16/05 08/07 15/09 17/01 16/05 10/02 2.4 7.2 468 1.0 6.58 0.050 3.07 30.6 107.0 0.030 2.80 49.70 10.7 3.39 33 33 25 33 (1) 33 (10) 25 33 25 33 (4) 17 17 24 24 Temperature pH units
µS/cm
mg/l
mg/l
omg/l O
mg/l O
mg/l N
mg/l Cl
mg/l CacO₃
mg/l P
mg/l SiO₂
mg/l Ca
mg/l Ca
mg/l Ca
mg/l Caco₃
mg/l Caco₃
mg/l Caco₃
mg/l Caco₃
mg/l Caco₃
mg/l Caco₃
mg/l Mg pH Conductivity pH units Suspended solids Dissolved oxygen BOD (inhibited) 56.0 13.00 2.6 0.290 7.23 45.6 181.0 0.200 8.40 98.00 109.0 10.70 15.7 10.40 1.3 0.088 5.35 38.0 152.3 0.092 Ammoniacal nitrogen Nitrate Chloride Total alkalinity Orthophosphate Silica Sulphate 6.58 83.75 90.7 8.78

	Period of record: 1975 - 1993 Mean Percentiles Quarterly averages													
Mean														
	5%	50%	95%	J-M	A-J	J-S	0.0							
10.5	3.1	10.1	19.3	5.3	12.9	16.7	7.							
7.9	7.4	7.9	8.3	7.8	8.0	7.9	7.							
535	383	535	660	541	527	539	53							
24.3	2.1	11.5	77.0	31.2	18.2	9.9	28.							
10.48	8.13	10.62	12.66	11,92	10.32	9.18	10.5							
1.7	0.7	1.5	3.1	1.7	2.0	1.4	1.							
0.11	0.02	0.08	0.27	0.14	0.09	0.08	0.1							
4.2	2.3	4.0	7.1	5.3	4.3	3,2	4.							
32.5	22.9	31.3	44.0	35.8	30.9	31.1	32.							
149.2	103.5	154.2	181.1	147.4	154.0	152.7	142.							
0.09	0.02	80.0	0.24	0.07	0.10	0.13	0.1							
6.30	2.78	6.44	9.00	7.20	4.92	6.15	7.1							
B1.2	44.9	81.0	106.02	79.3	82.2	B2.6	80.							
92.0	66.4	92.4	110.2	100.2	91.0	87.3	90.							
9.7	4.0	8.9	17.3	11.4	9.3	9.2	9							

Nene at Wansford

Magnesium

1994

Harmonised monitoring station number : Measuring authority: NRA-A

NGR: 52 (TL) 082 996

C.A.(km²): 1634.3

Flow measurement station: 032001 - Orton NGR: 52 (TL) 166 972

Period of record: 1974 - 1993

				199	4					Period	or recora:	1974 - 19	33		
Determinand	Units	Samples	Mean	Max.	Date	Min.	Date	Mean		Percent				ty averag	
									5%	50%	95%	J∙M	A-J	J-S	O-D
Temperature	*C	50	11.9	22.0	04/07	3.0	21/02	11.5	2.9	11.0	20.4	5.5	13.9	17.8	8.3
pH	pH units	48	8.1	8.7	03/05	7.8	06/01	8.1	7.7	8.0	B.8	8.0	8.3	8.2	7.9
Conductivity	μS/cm	46	923	1540	21/07	589	06/01	958	725	956	1194	933	937	989	975
Suspended solids	mg/l	24 (2)	15.8	97.2	10/01	3.0	19/07	22.9	4.3	13.8	66.2	29.7	22.3	16.0	20.2
Dissolved oxygen	mg/I O	47	11.22	18.20	03/02	7.70	05/07	10.54	7.72	10.52	13.07	11.87	10.66	8.98	10.80
BOD (inhibited)	mg/I O	47 (23)	2.7	20.0	06/01	1.0	18/10	3.6	1,1	2.8	8.4	3,1	5.8	3.0	2.5
Ammoniacal nitrogen	mg/I N	48 (17)	0.098	0.300	24/05	0.050	08/02	0.32	0.02	0.14	0.98	0.61	0.16	0.10	0.47
Nitrite	mg/l N	24 (3)	0.081	0.160	24/05	0.030	17/08	0.10	0.03	0.10	0.20	0.09	0.12	0.08	0.13
Nitrate	mg/l N	48	9.34	12.70	14/03	5.20	09/08	9.6	5.5	9.4	15.0	12.2	9.2	7.0	10.2
Chloride	mg/l Cl	48	74.5	145.0	17/08	46.0	21/02	75.4	43.8	75.7	111.0	69.5	71.7	84.8	76.7
Total alkalinity	mg/l CaCO ₃	24	200.8	268.0	08/02	135.0	20/09	204.2	166.1	209.6		202.8	206.7	204.7	202.7
Silica	mg/l SiO ₂	24 (1)	5.79	10.10	10/11	0.20	12/05	5.80	0.25	6.22		6.90	2.61	5.09	8.18
Calcium	mg/I Ca	12	129.8	143.0	29/11	112.0	10/01	128.5	93.1	138.3	154.6	129.2	139.4	129.4	130.1
Magnesium	mg/l Mg	12	10.99	13.40	04/07	8.00	10/01	10.9	7.7	11.3		10.4	11.1	11.7	10.5
Sulphate	mg/I SO ₄	24	157.58	213.00	19/07	117.00	13/04	167.6	105.5	68.1	228.16	157.4	167.3	189.7	174.7
Potassium	mg/I K	12	8.98	14.00	05/09	5.40	10/01	10.4	5.4	9.9	18.9	7.9	10.5	12.7	10.B
Sodium	mg/l Na	12	47.5	77.0	05/09	28.0	10/01	53.8	23.1	50.7	93.8	43.5	52.3	65.3	57.6

Bure at Horstead Mill

1994

Harmonised monitoring station number : 05 722 Measuring authority : NRA-A NGR : 63 (TG) 267· 198

Flow measurement station : 034003 - Ingworth C.A.(km²) : 164.7 NGR : 63 (TG) 192 296

			1994					Period of record: 1975 - 1993							
Determinand	Units	Samples	Mean	Max.	Date	Min.	Date	Mean	5%	Percent 50%	iles 95%	J-M	Quarter A-J	ty avera J-S	ges O-D
Temperature	'C	47	11.4	23.5	11/07	2.7	21/02	10.7	4.0	10.4					
pH	pH units	48	8.0	8.3	14/03	7.7	21/02			10.4	19.9	6.1	12.9	16.8	8.3
Conductivity	μS/cm	47	771	830				7.8	7.4	7.9	8.3	7.7	7.9	8.0	7.7
BOD (inhibited)					28/11			747	659	757	877	768	720	730	767
	mg/I O	46 (25)	1,9	4.4	11/07	1.0	01/08	1.7	0.9	1.6	3.0	1.7	2.1	1.6	1.3
Ammoniacal nitrogen	mg/l N	48 (31)	0.075	0.210	09/05	0.030	27/06	0.13	0.02	0.06	0.35	0.20	0.09	0.08	0.13
Nitrite	mg/l N	24 (12)	0.048	0.072	27/06	0.020	18/04	0.06	0.02	0.05	0.11	0.08	0.05	0.07	0.07
Nitrate	mg/l N	49	6.41	11.80	24/01	0.10	28/11	5.8	3.5	5.5	8.6	7.5	5.7	4.5	5.9
Chloride	mg/l Cl	48	61,4	71.0	24/10	15,0	28/11	58.8	49.1	58.9	71.3	61.4	56.6	56.8	60.9
Total alkatinity	mg/I CaCO ₂	24	214.6	286.0	01/02	90.0	16/05	217.0	180.0	211.4	252.7	218.2	206.0	214.5	230.6
Silica	mg/l SiO ₂	24	8.79	12.60	07/11	1.20	28/02	7.54	2.94	8.17	12.45	8.96	4.B7	6.63	10.71
Sulphate	mg/I SO ₄	24	93.44			67.00	18/04	91.2	58.5		127.69	91.4	85.8	84.8	92.5
Calcium	mg/i Ca	12	126.1	131.0	05/12	116.0	12/09	119.4	96.8	117.9	142.3	123.1	117.5		
Magnesium	mg/l Mg	12	8.14	B.60	08/08	7.70	07/11	7.6	5.1	7.6	9.3			114.6	124.0
Potassium	mg/LK	12	3.82	4.20	12/09							7.8	7.8	7.3	7.4
Sodium		12	27.7			3.50	16/05	4.0	2.5	4.0	5.6	4.1	3.6	4.0	4.5
30010111	mg/l Na	12	27.7	29.0	11/07	26.0	05/12	30.5	20.4	27.B	47.0	29.5	29.2	29.2	29.1

Stour at Langham

1994

Harmonised monitoring station number : 05 810 Measuring authority : NRA-A NGR : 62 (TM) 026 345

Flow measurement station: 036006 - Langham C.A.(km²): 578.0 NGR: 62 (TM) 020 344

				199	14					Period c	f record:	1974 - 19	93		
Determinand	Units	Samples	Mean	Max.	Date	Min.	Date	Mean		Percent				ly averag	
									5%	50%	95%	J-M	A-J	J-S	O-D
Temperature	*C	49	12.8	24.0	28/06	2.0	14/02	11.3	2.9	11.1	20.0	5.3	13.8	17.1	8.3
pH *	pH units	48	8.3	8.8	14/07	7.8	03/01	8.2	7.8	8.2	8.8	8.1	8.5	B.3	8.1
Conductivity	μS/cm	47	917	1360	28/06	613	08/08	918	730	911	1084	936	880	889	979
Suspended solids	mg/l	25 (5)	9.8	43.6	05/01	1.0	19/09	16.3	2.5	9.9	47.9	16.1	20.5	10.9	17.4
Dissolved oxygen	mg/I O	48	11.42	18.80	14/07	7.70	20/06	10.81	7.58	10.82	14.00	12,31	11.32	9.34	10.51
BOD (inhibited)	mg/I O	48 (25)	2.0	6,1	07/06	1.0	31/01	3.1	1.1	2.1	9.3	2.3	5.4	2.4	2.1
Tot, díss, org, carbon	mg/LO	25	7.0	18.1	04/10	4.3	02/02	6.5	4.4	6.2	10.4	6.5	7.4	6.5	6.4
Ammoniacal nitrogen	mg/l N	48 (30)	0.075	0.400	22/03	0.023	28/06	0.11	0.02	0.07	0.36	0.17	0.08	0.07	0.13
Nitrite	mg/l N	25 (6)	0.065	0.140	14/11	0.020	17/10	0.07	0.02	0.06	0.15	0.07	0.09	0.04	0.08
Nitrato	mg/l N	48	7.96	18,49	01/11	2.65	02/08	7.8	2.4	7.2	15.6	11.8	7.4	4.2	8.5
Chloride	mg/l Cl	4B	81.1	192.0	28/06	37.0	07/04	69.9	39.6	67.5	102.0	61.8	64.9	77.4	74.6
Total alkalinity	mg/l CaCO ₃		259.7	294.0		105.0	02/02	246.5	195.2	250.2	281.9	245.6	243.9	249.5	250.1
Silica	mg/I SiO ₂	25 (1)	6.90	14.20	14/11	1.00	19/09	7.75	0.28	8.03	13.26	7,77	4.30	8.33	10.29
Sulphate	mg/I SO ₄	25	96.24	129.00	20/06	72.00	07/04	103.4	70.1	96.1	139.56	111.6	109.7	94.1	101.3
Calcium	mg/l Ca	12	139.5	156.0		118.0	06/09	134.6	95.5	136.4	165.8	147.3	133.8	119.9	138.7
Magnesium	mg/l Mg	12	7.87	10.60		5.00	03/01	8.7	5.3	8.3	18.9	7.8	8.6	9.5	8.4
Potassium	mg/l K	12	7.07	9.50		3.50	03/01	7.6	3.7	7.5	12.1	6.1	7.2	0.8	8.9
Sodium	mg/l Na	12	42.0	68.0	05/07	21.0	03/01	43.6	21,1	43.6	69.5	34.5	40.6	50.5	47.6

Thames at Teddington Weir

1994

Harmonised monitoring station number : 06 010 Measuring authority : NRA-T NGR : 51 (TQ) 171 714

Flow measurement station : 039001 - Kingston C.A.(km²) : 9948.0 NGR : 51 (TQ) 177 698

				199	4					Period o	f record:	1974 - 19	93		
Determinand	Units	Samples	Mean	Max.	Date	Min.	Date	Mean	5%	Percent 50%	lles 95%	J·M	Quarter A-J	ty averaç J⋅S	ges O-D
Temperature	•c	16	12.7	21.7	13/07	5.9	22/01	12.2	3.9	12.1	21.0	6.2	14.2	18.4	9.7
pH	pH units	16	8.0	9.0	16/05	7.5	05/01	B.O	7.5	7.9	8.7	7.9	8.3	7.9	7.8
Conductivity	ms/cm	12	616	695	23/08	556	08/11	616	484	587	717	622	599	632	617
Suspended solids	mg/l	14	11.1	27.6	16/05	4.0	14/09	19.6	4.1	13.1	66.3	25.3	21.3	11.7	21.3
Dissolved oxygen	mg/I O	15	10.33	19.90	13/06	4.90		9.97	6.68	9.98	13.01	11.35	10.37	8.55	9.74
BOD (inhibited)	mg/I O	16 (4)	2.6	7.5	16/05	1.0	17/11	2.9	1.2	2.3	6.3	2.2	4.2	2.8	2.2
Ammoniacal nitrogen	mg/l N	16 (1)	0.245	0.590	14/09	0.050	16/05	0.34	0.03	0.23	1.01	0.35	0.22	0.36	0.42
Nitrite	mg/I N	14	0.133	0.250	14/04	0.070	16/05	0.12	0.05	0.10	0.23	0.12	0.11	0.11	0.13
Nitrete	mg/LN	12	7.32	11.40	14/04	5.20	16/05	7.4	5.4	7.1	10.0	8.4	6.6	6.5	7.8
Chloride	mg/l Cl	14	56.6	147.0	14/04	37.0	05/01	45.0	30.0	42.3	65.1	42.7	41.6	48.7	46.1
Total alkalinity	mg/I CaCO ₃	11	187.0	213.0	14/04	135.0	08/11	187.3	146.4	190.0	214.5	185.1	196.8	191.0	180.8
Orthophosphate	mg/IP	14	0.984	1.830	12/10	0.420	05/01	1.47	0.39	1.19	3.71	0.88	1.20	2.12	1.61
Sulphate	mg/I \$0 ₂	12	71.33	85.00	24/11	59.00	14/04	70.4	49.5	65.2	85.16	68.3	66.7	65.5	72.2
Calcium	mg/l Ca	11	95.8	104.0	22/01	81.0	08/11	99.0	77.4	100.0	116.6	103.7	102.9	95.8	96.6
Potassium	mg/l K	11	6.76	9.20	12/10	4.30	22/01	7.2	4.3	6.5	10.5	6.3	6.3	8.2	7.4
Sodium	mg/l Na	11	32.5	48.0	12/10	23.0	22/01	34.6	19.8	30.8	55.6	28.5	30.6	41.6	35.9

Lee at Waterhall

1994

Harmonised monitoring station number : 06 101 Measuring authority : NRA-T NGR : 52 (TL) 299 099

Flow measurement station: 038018 - Water Hall C.A.(km²): 150.0 NGR: 52 (TL) 299 099

				199	14			_		Period o	of record:	1975 - 19	93		
Determinand	Units	Samples	Mean	Max.	Date	Min.	Date	Mean	5%	Percent 50%	lles 95%	J-M	Quarter A-J	ly avera	
Temperature	•c	15	11.1	18.0	24/06	4.0	15/02	12.0	5.0	11.9	20.0	7.0	13.8	17.0	9.3
oH	oH units	15	8.0	8.3	28/04	7.4	07/01	8.0	7.5	8.0	B.4	7.9	8.1		
Conductivity	μS/cm	ii	794	888	06/10	626	08/12	820	628	817				8.1	7.8
Suspended solids	mg/l	12	60.4	499.0	08/12	8.0					1109	878	814	779	850
Dissolved oxygen							06/10	14.4	_2.9	9.8	46.7	15.9	13.1	16.1	14.3
	mg/I O	14	11.21	13.00	04/03	10.00	27/05	10.12	7,44	10.11	12.66	11.18	10.03	9.30	10.16
Tot. diss. org. carbon	mg/lO	12	16.4	38.4	11/11	10.1	10/02	17.9	3.5	13.3	48,1	17.2	16.9	10.6	19.9
Nitrite	mg/LN	12 (2)	0.072	0.130	08/12	0.050	10/02	0.16	0.05	0.11	0.28	0.11	0.11	0.27	0.17
Nitrate	mg/l N	12	10.01	14.60	12/09	7.10	10/02	12.1	7.4	11.1	16.2	12.4	11.6	11.4	13.2
Chloride	mg/l Cl	15	B2.2	97.0	15/02	68.0	27/05	80.3	47.7	73.2	121.3	90.2	71.9	79.9	81.1
Total alkalinity	mg/l CaCO ₃		212.8	257.0	24/06	101.0	27/05	212.2	139.0	224.0	255.4	208.2	218.7		205.2
Orthophosphate	mg/l P	15	2.003	3.600	06/10	0.980	07/01	2.58						211.8	
Sulphate	mg/I SO₄	12	95.87						1.19	2.47	4.65	2.39	2.50	2.73	2.78
				149.00	07/01	67.00	20/07	83.7	59.3	86.0	126.72	85.2	84.7	78.7	88.3
Calcium	mg/l Ca	11	119.8	129.0	10/02	104.0	08/12	119.4	94.0	119.0	140.0	123.2	120.B	114,1	116.3
Magnesium	mg/l Mg	11	4.35	5.50	08/12	3.90	19/08	4.2	3.1	4.0	5.0	4.6	4.0	4.2	4.0
Potassium	mg/l K	11	9.00	12.50	06/10	6.50	10/02	9.2	5.9	8.8	15.6	8.6	8.4	9.3	10.5
Sodium	mg/l Na	11	61.4	78.0	12/09	48.0	27/05	68.9	37.5	67.2	124.8	70.7	70.3	69.0	67.3

Great Stour at Bretts Bailey Bridge

1994

Harmonised monitoring station number : Measuring authority: NRA-S

NGR: 61 (TR) 187 603

C.A.(km²): 345.0

Flow measurement station: 040011 - Horton NGR: 61 (TR) 116 554

				199	4		
Determinand	Units	Samples	Mean	Max.	Date	Min.	Date
Temperature	*C	59	11.8	21.0	11/07	2.0	15/02
ρH	pH units	59	7.9	8.3	11/07	7.6	18/05
Suspended solids	mg/l	54 (6)	20.1	108.0	04/01	3.0	04/03
BOD (inhibited)	mg/I O	54 (4)	2.1	7.4	08/12	1.0	04/01
Tot, diss. org. carbon	mg/I O	53	6.1	14.4	31/10	2.8	07/03
Ammoniacal nitrogen	mg/l N	57 (7)	0.153	0.620	08/12	0.050	03/06
Nitrite	mg/LN	58	0.075	0.330	13/12	0.020	19/07
Nitrate	mg/I N	58	6.92	9.30	02/02	4.80	08/12
Chloride	mg/l Cl	54	58.2	125.0	22/06	37.0	18/05
Total alkalinity	mg/l CaCO ₃	53	207.2	252.0	19/07	89.0	04/01
Orthophosphate	mg/IP	58	0.718	1.240	08/08	0.300	14/04

		Period o	f record:	1974 - 19	93		
Mean		Percent	lles		Quarter	ly svera	ges
	5%	50%	95%	J-M	A-J	J-S	O-D
12.0	4.2	12.1	18.7	7.1	13.6	16.8	9.8
7.9	7.4	7.9	8.3	7.8	8.0	7.9	7.8
13.0	1.0	7.0	47.0	21,9	7.6	6.7	16.3
2.5	1.1	2.3	4.9	2.9	2.8	2.1	2.4
10.8	3.0	8.8	21.8	7.7	14.2	8.4	10.7
0.29	0.02	0.12	1.11	0.45	0.29	0.11	0.35
0.12	0.03	0.08	0.28	0.10	0.11	0.11	0.13
6.2	4.0	6.0	9.6	7.3	5.8	5.2	6.8
55.2	37.8	52.5	84.9	57.4	53.0	54.2	58.1
215.5	155.5	223.8	244.6	201.2	221.8	224.3	209.9
1.05	0.35	0.96	1.95	0.76	1.00	1.30	1.11

Itchen at Gatersmill

1994

Harmonised monitoring station number :

07 013

1994

Flow measurement station : 042010 - Highbridge C.A.(km²) : 360.0 NGR : 41 (SU) 467 213 C.A.(km²): 360.0

Measuring authority : NRA-S

NGR: 41 (SU) 434 156

Period of record: 1980 - 1993

Determinand	Units	Samples	Mean	Max.	Date	Min.	Date
Temperature	° C	50	11.5	18.0	20/07	4.0	15/02
pH	pH units	53	8.1	8.3	15/06	7.8	05/01
Suspended solids	mg/l	51(3)	13.8	45.0	05/01	3.0	07/10
BOD (inhibited)	mg/I O	52 (4)	1.8	4.0	04/05	1.0	10/01
Tot. diss. org. carbon	mg/I O	51	3.3	12.5	31/10	1.5	08/03
Ammoniacal nitrogen	mg/I N	54 (11)	0.086	0.190	31/10	0.050	17/03
Nitrite	mg/l N	54	0.045	0.080	15/11	0.010	17/03
Nitrate	mg/l N	53	5.60	6.60	15/02	4.00	31/10
Chloride	mg/I CI	54	23.7	38.0	22/12	21.0	19/05
Total alkalinity	mg/l CaCO ₃	51	233.8	260.0	22/12	102.0	13/04
Orthophosphate	mg/IP	54	0.262	0.420	04/10	0.150	12/01
Silica	mg/l SiO ₂	48	10.98	13.30	15/11	6.20	04/05

Mean		Percent	les		Quarter	y averag	ges
	5%	50%	95%	J-M	L-A	J-S	0-D
11.4	5.1	11.1	18.0	7.7	13.0	15.9	9.8
B.1	7.8	8.1	8.3	8.0	8.1	8.2	8.0
11.4		2.3	7.2	33.6	26.2	9.7	4.610.4
1.9	1.0	1.8	3.3	2.1	2.2	1.5	1.8
7.3	4.1	6.8	13.3	6.9	7.0	7.1	8.1
0.10	0.01	0.09	0.24	0.14	0.08	0.07	0.12
0.06	0.03	0.05	0.11	0.05	0.05	0.06	0.07
5.1	3.9	5.2	6.2	5.5	5.2	4.6	5.1
21.8	17.9	21.7	26.9	22.5	21.1	21.0	22.5
235.5	199.7	236.9	255.1	239.6	231.9	234.6	232.1
0.39	0.16	0.36	0.71	0.35	0.40	0.43	0.46
10.28	5.68	0.77	12.46	10.39	7.70	10.95	11.68

Stour at Bridge at Iford

1994

Harmonised monitoring station number : Measuring authority : NRA-W NGR

NGR: 40 (SZ) 122 955

Flow measurement station: 043007 - Throop Mill C.A.(km²): 1073.0 NGR: 40 (SZ) 113 958

				199	4		
Determinand	Units	Samples	Mean	Max.	Date	Min.	Date
Temperature	•c	55	11.9	22.0	20/07	4.1	15/02
pH	pH units	56 56	7.9 19.0	8.6 147.0	29/04 04/02	7.7 2.9	06/01 09/09
Suspended solids Dissolved oxygen	mg/l mg/l O	55	10.23	14.02	29/04	6.10	02/08
BOD (inhibited)	mg/I O	56	2.7	6.9	04/05	1,1	01/12
Ammoniacal nitrogen	mg/l N	56 (6)	0.109	0.430	07/12	0.020	16/03
Nitrite	mg/l N	56	0.062	0.146	17/05	0.024	23/08
Nitrate	mg/l N	56	6.45	8.49	27/10	4.23	06/01
Chloride	mg/l Cl	56	30.7	40.0	16/08	21.0	06/01
Orthophosphate	mg/I P	56	0.546	1.300	14/09	0.200	19/01
Magnesium	mg/l Mg	23	3.35	4.50	07/12	2.70	02/08
Potassium	mg/l K	23	4.70	7.90	26/10	3.10	29/04

Mean	1	Percenti	iles		Quarteri	y averaç	ges
	5%	50%	95%	J-M	A-J	J-S	O-D
11.1	4.6	10.8	19.0	6.9	12.9	16.8	8.6
7.9	7.5	8.0	8.4	7.9	8.1	8.0	7.8
15.8	3.3	9.2	47.2	18.3	10.9	9.1	20.€
10.32	7.53	9.92	12.98	10.68	10.87	9.12	10.50
2.8	1.2	2.2	6.0	2.4	3.9	2.0	2.7
0.17	0.02	0.11	0.41	0.21	0.15	0.12	0.19
0.09	0.03	0.07	0.17	0.06	0.10	0.10	0.09
5.6	3.4	5.8	8.9	6.7	5.3	4.6	6.2
27.9	21.0	30.1	39.3	26.8	26.7	29.9	30.2
0.42	0.11	0.38	0.98	0.26	0.30	0.70	0.50
3.9	2.7	3.5	5.6	3.9	3.8	3.4	4.0
5.2	3.0	4.8	8.1	4.5	4.2	5.2	6.3

Axe at Whitford Road Bridge

1994

Harmonised monitoring station number : 09 001 Measuring authority : NRA-SW NGR : 30 (SY) 262 953 Measuring authority : NRA-SW

C.A.(km²): 288.5

Flow measurement station : 045004 - Whitford NGR: 30 (SY) 262 953

				199	4					Period o	f record:	1974 - 19	93		
Determinand	Units	Samples	Mean	Max.	Date	Min.	Date	Mean	5%	Percenti 50%	les 95%	J-M	Quarter A-J	ty averaç J-S	ges O-D
<u>.</u>	°C	26	12.2	19.6	19/07	6.0	18/02	10.7	3.9	10.1	18.1	6.0	12.2	16.0	8.8
Temperature	pH units	26 26	8.1	8.6	25/08	7.7	03/02	8.0	7.4	B.O	8.5	7.9	8.1	8.0	7.8
pH Conductivity	μS/cm	26	373	445	30/06	180	03/02	385	303	394	453	375	387	412	376
Suspended solids	mg/l	26 (4)	24.9	256.0		2.0	19/04	14.7	1.6	5.6	59.5	16.3	10.7	6.7	24.1
Dissolved oxygen	mg/l O	26	10.79	12.80	25/08	9.39	16/08	10.94	8.31	10.90	13.62	12.07	11.16	9.82	10.76
BOD (inhibited)	mg/I O	26 (2)	1.7	5.9	03/02	1.0	07/11	2.1	0.9	1.7	4.3	2, 1	2.3	1.8	2.1
Tot. diss. org. carbon	mg/I O	26	12.0	35.2	03/02	6.1	30/06	12.7	4.0	10.8	25.2	10.8	12.5	11.5	15.4
Ammoniacal nitrogen	mg/LN	26 (6)	0.074	0.370	18/02	0.020	30/03	0.10	0.01	0.06	0.31	0.15	0.08	0.05	0.12
Nitrite	mg/l N	26	0.037	0.068	05/12	0.016	19/04	0.05	0.02	0.04	0.10	0.04	0.05	0.03	0.05
Nitrate	mg/l N	26	4.37	6.44	01/11	1.94	03/02	3.9	2.2	3.5	5.9	4.5	3.5	3.1	4.6
Chloride	mg/I Cl	26	24.1	32.0	19/07	16.0		24.2	19.2	23.0	32.1	25.4	22.0	24.1	25.1 126.9
Total alkalinity	mg/I CaCO ₃		137.5	169.0	16/08	57.0		135.9	90.2	139.8	167.9	122.0	142.9 0.30	154.1 0.34	0.24
Orthophosphate	mg/IP	26	0.246	0.530		0.130	19/04	0.26	0.12	0.24	0.47 12.70	0.22 9.20	7.61	10.18	10.85
Silica	mg/l SiO ₂	26	9.25	11.70	28/09	4.80		9.49 33.6	4.65 22.1	9.95 34.2	42.90	32.7	32.1	35.2	34.1
Sulphate	mg/I SO ₄	26	27.77	36.00		18.00	03/02	62.6	44.4	63.5	77.4	58.2	63.6	70.1	59.6
Calcium	mg/l Ca	26	63.2	78.0		22.0 4.30	03/02 03/02	6.1	4.8	6.1	7.4	6.2	6.1	6.2	6.2
Magnesium	mg/i Mg	26 26	6.07 3.72	7.60 5.90		2.70		4.2	3.0	3.8	6.5	4.1	3.8	4.1	4.6
Potassium Codines	mg/I K	26	14.2	20.0	19/07	9.0	03/02	13.5	10.5	13.0	18.2	13.7	13.0	14.3	13.3
Sodium	mg/l Na	20	14.2	20.0	.0/07	3.0	00,02	10.0	.0.0						

Tamar at Gunnislake Newbridge

1994

Harmonised monitoring station number : 09 017 Measuring authority : NRA-SW NGR : 20 (SX) 433 722 Flow measurement station : 047001 - Gunnislake C.A.(km²) : 916.9 NGR : 20 (SX) 426 725

				199	14				1	Period o	f record:	1975 - 19	93		
Determinand	Units	Samples	Mean	Max.	Date	Min.	Date	Mean		Percent			Quarteri		ges
									5%	50%	95%	J-M	A-J	J-S	0.0
Temperature	•c	26	11.3	19.2	21/07	3.4	15/02	11,2	4.9	10.8	18.6	7.0	12.6	16.2	9.4
pH	pH units	26	7.7	8.4	21/07	7.1	17/03	7.4	6.8	7.4	8.1-	7.2	7.5	7.5	7.3
Conductivity	μS/cm	26	171	190	08/06	115	31/10	182	141	180	231	171	185	196	179
Suspended solids	mg/l	26(1)	27.3	167.0	28/01	2.0	17/10	24.3	1.1	7.6	111.6	29.6	12.9	14.5	38.3
Dissolved oxygen	mg/I O	26	10.62	13.60	15/02	8.52	31/10	10.66	8.69	10.71	12.48	11.72	10.47	9.55	10.89 ~
BOD (inhibited)	mg/I O	26 (5)	1.6	4.3	07/12	1.0	17/01	2,1	0.9	1.9	4.8	2.0	2.1	1.9	2.4
Tot, diss, org, carbon	mg/I O	26	9.2	27,7	31/10	4.0	19/04	10.5	3.1	8.5	24.2	8.3	10.1	10.8	12.2
Ammoniacal nitrogen	mg/l N	26 (11)	0.048	0.190	07/12	0.020	07/03	0.08	0.01	0.05	0.24	0.10	0.06	0.06	0.09
Nitrito	mg/I N	26	0.019	0.051	18/11	0.006	07/10	0.03	0.01	0.02	0.06	0.03	0.02	0.02	0.03
Nitrate	mg/l N	26	2.34	3.29	15/12	1.49	09/08	2.7	1.5	2.5	4.1	3.2	2.6	2.1	2.9
Chloride	mg/I CI	26	21.5	26.0	28/01	16.0	31/10	22,9	18.0	22.2	28.9	23.6	22.0	22.8	23.7
Total alkalinity	mg/I CaCO ₃		37.0	48.0	05/07	20.0	31/10	36.3	23.2	35.2	51.7	30.6	39.4	42.2	33.7
Orthophosphate	mg/I₽	26	0.052	0.090		0.020	07/04	0.08	0.03	0.07	0.15	0.06	0.10	0.11	0.08
Silica	mg/I SiO ₂	26	4.22	5.80	07/10	1.10	12/05	4.79	1.69	5.11	6.54	5.06	3.95	4.54	5.56
Sulphate	mg/l SO₄	26	13.15	17.00		7.00	31/10	15.4	11.1	15.2	20.96	14.7	16.3	16.7	15.1
Calcium	mg/l Ca	26	15.B	18.0		10.0	31/10	17.3	14.0	17.3	21.9	16.B	17.3	18.2	17.0
Magnesium	mg/l Mg	26	4,47	5.70		2.70	31/10	4.8	3.4	4.8	6.6	4.3	5.0	5.3	4.6
Potassium	mg/l K	26	2.79	4.50		2.00	15/02	3.2	1.9	3.0	5.2	2.7	2.9	3.9	3.4
Sodium	mg/l Na	26	12.8	18.0	05/07	9.0	31/10	12.6	9.6	12.3	15.8	12.3	12.5	13.3	12.5

Exe at Thorverton Road Bridge

1994

Harmonised monitoring station number: 09 036 Measuring authority: NRA-SW NGR: 21 (SS) 936 016

Flow measurement station: 045001 - Thorverton C.A.(km²): 600.9 NGR: 21 (SS) 936 016

					199	4					Period o	f record:	1974 - 19	93		
Determinand		Units	Samples	Mean	Max.	Date	Min.	Date	Mean		Percent	iles		Quarteri	y avera	ges
										5%	50%	95%	J-M	A-J	J-S	O-D
Temperature		*C	25	11.3	18.2	14/07	5.2	18/01	10.9	4.4	10.3	18.6	6.2	12.5	16.3	9.0
pH	•	pH units	25	7.8	8.0	09/03	7.6	12/04	7.5	7.0	7.5	8.1	7.4	7.7	7.6	7.4
Conductivity	14	μS/cm	25	157	199	30/06	112	21/09	171	124	163	240	162	183	185	160
Suspended solids	4.	mg/l	25 (4)	6.5	21.0	10/01	2.0	26/04	12.6	1.4	5.1	45.8	16.0	7.9	7.1	14.5
Dissolved oxygen		mg/I O	25	10.94	12.90	06/10	8.46	14/07	11.05	8.67	11.19	13.29	12.31	10.85	9.70	11.30
BOD (inhibited)		mg/I Q	25 (2)	1,5	2.3	06/10	1.0	19/04	1.8	0.8	1.6	3.4	1.8	2.0	1.6	1.6
Tot, diss. org. carbon		mg/I O	25	5,1	12.5	26/10	2.9	19/04	7.1	2.6	6.6	13.6	5.5	7.3	7.8	7.1
Ammoniacal nitrogen		mg/I N	25 (4)	0.033	0.080	21/06	0.020	19/04	0.06	0.01	0.05	0.17	0.08	0.06	0.05	0.05
Nitrite		mg/l N	25	0.017	0.032	30/06	0.010	12/04	0.03	0.01	0.02	0.05	0.02	0.04	0.03	0.02
Nitrate		mg/l N	25	2.33	3.09	18/01	1.19	21/09	2,5	1.4	2.3	3.6	2.9	2.5	2.0	2.4
Chloride		mg/l Cl	25	15.4	19.0	17/08	12.0	21/09	17.8	13.2	17.1	26.4	17.9	17.9	18.8	16.6
Total elkalinity		mg/I CaCO ₃	25	40.3	55.0	26/04	27.0	24/03	40.2	23.5	38.0	63.9	34.3	45.5	46.6	36.1
Orthophosphate		mg/IP	25	0.089	0.240	14/07	0.030	24/03	0.11	0.03	0.08	0.29	0.07	0.10	0.18	0.08
Silica		mg/l SiO ₂	25	3.61	5.00	12/12	2.10	20/05	4.00	1,71	4.19	5.30	4.46	3.17	3.54	4.62
Sulphate		mg/l ŞQ₄	25	11.64	24.00	31/08	5.00	14/11	13.7	8.8	12.8	23.47	12.7	14.9	15.0	13.0
Calcium		mg/l Ca	25	16.5	22.0	14/07	10.0	21/09	16.6	11.9	16.2	23.7	16.1	18.3	17.5	15.1
Magnesium		mg/i Mg	25	3.93	5.10	14/07	2.60	21/09	4.1	2.9	4.0	5.3	3.9	4.4	4.3	3.8
Potassium		mg/l K	25	1.78	2.50	26/10	1.30	09/03	2.0	1.3	1.9	3.5	1.9	2.0	2.3	1.9
Sodium		mg/l Na	25	10.B	17.0	31/08	7.0	24/03	10.9	7.2	9.8	19.0	9.9	11.5	13.0	9.9

Dee at Overton

1994

Harmonised monitoring station number : 10 002 Measuring authority : NRA-WEL NGR : 33 (SJ) 354 427 Flow measurement station: 067015 - Manley Hall C.A.(km²): 1019.3 NGR: 33 (SJ) 348 415

				199	14					Period o	f record:	1974 - 19	93		
Determinand	Units د	Samples	Mean	Max.	Date	Min.	Date	Mean		Percent			Quarteri	y avera	ges
									5%	50%	95%	J-M	A-J	J-S	O.D
Temperature	•c	13	10.4	18.8	21/07	4.0	16/02	10.1	3.1	9.7	17.5	5.2	11.7	15.4	8.1
pΗ	pH units	13	7.2	7.4	11/01	6.9	12/12	7.3	6.5	7.2	7.8	7.2	7.4	7.3	7.2
Conductivity	μS/cm	13	144	188	10/10	97	16/03	172	98	164	269	160	207	177	146
Suspended solids	mg/l	13 (2)	12.2	60.0	11/01	3.0	21/07	9.3	0.5	3.5	35.8	10.7	7.2	6.3	13.2
Dissolved oxygen	mg/I O	12	11.34	12.20	10/10	10.00	09/06	11,10	9.13	11.11	13,19	12.39	10.69	9.76	11.57
BOD (inhibited)	mg/I O	13 (3)	0.9	1.8	09/06	0.5	11/01	1.3	0.5	1.1	2.5	1.2	1.5	1.2	1.2
Ammoniacal nitrogen	mg/l N	13 (3)	0.059	0.390	28/09	0.010	16/03	0.05	0.01	0.03	0.14	0.06	0.05	0.05	0.05
Nitrite	mg/l N	13	0.009	0.026	09/06	0.004	16/03	0.02	0.01	0.01	0.05	0.02	0.02	0.02	0.01

Taf at Clog-y-fran Bridge

1994

Harmonised monitoring station number : 10 027 Measuring authority : NRA-WEL NGR : 22 (SN) 238 161

Flow measurement station : 060003 - Clog-y-fran C.A.(km²) : 217.3 NGR : 22 (SN) 238 160

				199	14					Period o	f record:	1975 - 19	93		
Determinand	Units	Samples	Mean	Max.	Date	Min.	Date	Mean		Percent	iles		Quartert	y avera	ges
									5%	50%	95%	J-M	A-J	J-S	O-D
Temperature	*C	23	10.9	16.0	20/06	4.0	15/02	10.4	4.0	9.9	17.3	6.6	11.9	14.9	8.4
pH	pH units	25	7.4	8.3	22/08	6.9	12/12	7.4	6.9	7.4	7.9	7.3	7.5	7.5	7.2
Conductivity	μS/cm	14	167	236	26/08	136	20/09	169	117	160	247	148	178	198	151
Suspended solids	mg/l	16	12.2	28.0	07/02	4.0	12/05	16.5	1.6	7.6	58.5	24.7	9.3	10.1	22.3
Dissolved oxygen	mg/I O	25	11.26	12.90	21/03	9.60	07/07	10.31	7.98	10.45	12.47	10.88	10.59	9.34	10.32
BOD (inhibited)	mg/I O	25 (3)	1.1	2.8	07/07	0.5	26/01	1.8	0.6	1.5	3.6	1.9	1.9	1.5	1.7
Ammoniacal nitrogen	mg/l N	26 (3)	0.054	0.160	26/01	0.010	10/03	0.11	0.01	0.08	0.33	0.17	0.12	0.08	0.11
Nitrite	mg/l N	19	0.021	0.045	07/07	0.007	14/10	0.03	0.01	0.02	0.06	0.03	0.03	0.04	0.03
Orthophosphate	mg/l P	12 (2)	0.071	0.190	07/07	0.020	10/03	0.13	0.03	0.08	0.41	0.07	0.20	0.23	0.07

Carron at A890 Road Bridge

1994

Harmonised monitoring station number : Measuring authority : HRPB NGR

NGR: 18 (NG) 938 425

C.A.(km2): 137.8

Flow measurement station: 093001 - New Kelso NGR: 18 (NG) 942 429

1994

Determinand Unite Samples Mean Date Min. Date °C μS/cm mg/I O mg/I O mg/I N mg/I N 18/02 24/10 18/08 24/10 15/09 15/09 24/10 01/07 18/02 18/02 18/08 21/01 21/01 15/03 8.2 41 11.38 1.5 0.007 0.06 9.5 14.3 57 12.60 5.5 0.016 0.21 13.9 11 11 11 11 11(2) 11 Temperature Conductivity 28 9.86 Dissolved oxygen 0.1 0.002 0.01 6.2 BOD (inhibited)
Ammoniscal nitrogen

		Period d	ii recoru.	19/9 - 19	33		
Mean		Percent	iles		Quarter	ly averag	ges
	5%	50%	95%	J-M	A-J	J-S	0-D
8.3	2.4	7.7	15.5	3.8	10.8	12.9	6.7
44	28	43	65	50	46	40	39
11.26	9.41	11.30	13.18	12.51	10.90	10.06	11.42
0.9	0.3	0.9	1.7	1.0	0.8	0.8	1.1
0.01	~0.00	0.01	0.03	0.01	0.01	0.01	0.01
0.1	0.0	0.1	0.1	0.1	0.1	0.1	0.1
10.3	5.9	9.5	18 1	13.6	10.4	7 9	9.3

Spey at Fochabers

1994

Harmonised monitoring station number

12 002

1994

C.A.(km²): 2861.2

Flow measurement station: 008006 - Boat o Brig NGR: 38 (NJ) 318 518

Measuring authority: NERPB

NGR: 38 (NJ) 341 596

Period of record: 1975 - 1993

Determinand	Units	Samples	Mean	Max.	Date	Min.	Date
Temperature	°C	13	8.3	15.5	05/07	1.0	16/02
pH	pH units	13	7.4	8.3	11/08	6.7	15/11
Conductivity	μS/cm	13	73	116	16/02	48	15/11
Suspended solids	mg/l	13 (3)	8.6	43.0	15/11	0.4	16/02
Dissolved oxygen	mg/I O	13	11.74	14.20	16/02	9.28	05/07
BOD (inhibited)	mg/I O	13	0.9	1.6	15/11	0.3	16/02
Ammoniacal nitrogen	mg/I N	13	0.023	0.061	27/10	0.007	06/09
Nitrite	mg/IN	13(2)	0.007	0.010	15/11	0.005	18/05
Nitrate	mg/I N	13	0.30	0.73	16/02	0.15	27/06
Chloride	mg/I CI	13	10.2	18.0	16/02	6.0	15/11
Total alkalinity	mg/I CaCO ₃	13	15.8	26.0	11/08	6.0	09/03
Orthophosphate	mg/IP	13 (4)	0.009	0.019	27/10	0.003	09/03
Sitica	ma/l SiO ₂	13``	4.66	7.98	16/02	3.04	09/03

Mean		Percent	iles		Quarter	ly averag	105
	5%	50%	95%	J-M	A-J	J-S	Q-D
9.9	2.4	11.1	18.0	3.6	10.4	14.7	6.
7.0	6.0	7.1	7.8	6.8	7.1	7.3	6.9
78	50	77	109	82	73	86	73
3.7	0.2	1.8	13.9	3.1	3.8	3.4	3.5
11.46	9.28	11.40	13.61	12.76	11.13	10.10	11.84
0.9	0.3	0.9	1.4	0.8	1.0	0.9	0.9
0.03	0.00	0.02	0.11	0.02	0.03	0.04	0.03
0.01	0.00	0.01	0.01	0.01	0.01	0.01	0.0
0.3	0.2	0.3	0.6	0.4	0.3	0.3	0.3
10.4	6.0	9.9	15.9	12.1	9.9	10.3	9.5
24.3	11.2	25.0	35.2	21.7	23.4	28.4	24.4
0.02	0.00	0.01	0.08	0.01	0.00	0.03	0.0
5.79	3.69	5.64	7.78	5.78	4.77	5.52	6.1

Almond at Craigiehall

1994

Harmonised monitoring station number : Measuring authority: FRPB

NGR: 36 (NT) 165 752

C.A.(km²): 369.0

Flow measurement station: 019001 - Craigiehall NGR: 36 (NT) 165 752

1994 Determinand Units Samples Max. 10/05 08/06 07/12 10/05 09/08 08/06 12/07 09/08 08/06 15/03 15/03 09/08 12/07 08/11 09/08 15/03 15/03 15/03 7.9 637 9.9 8.3 920 37.0 13.10 12.3 4.100 0.790 5.34 164.0 1.960 7.7 395 1.0 6.90 1.8 0.390 0.030 2.47 68.0 0.130 pH units 12 12 11 12 12 12 12 12 12 pH Conductivity pH units µS/cm mg/l mg/l O mg/l O mg/l N mg/l N mg/l N mg/l CaCO₃ mg/l P mg/l SO₄ Conductivity
Suspended solids
Dissolved oxygen
BOD (inhibited)
Ammoniacal nitrogen
Nitrite 9.9 10.30 3.8 1.181 0.265 3.70 110.5 0.715 Total alkalinity Orthophosphate Sulphate

Period of record: 1975 - 1993										
Mean		Percen	tiles		Quarterly averages					
•	5%	50%	95%	J-M	A-J	J-\$	O-D			
7.6	7.1	7.6	8.0	7.5	7.8	7.6	7.5			
597	291	588	898	538	692	632	500			
19.8	2.1	9.9	60.8	31.0	10.1	12.7	26.2			
9.27	5.37	9.59	12.22	11.10	9.27	7.41	9.72			
3.5	1.4	2.9	7.1	3.3	3.7	3.1	3.8			
1.23	0.21	0.96	3.12	1.30	1,51	1.08	0.90			
0.26	0.02	0.14	0.78	0.13	0.34	0.44	0.14			
3.8	2.2	3.7	6.0	3.5	4,1	4.0	3.8			
118.8	50.8	120.3	180.7	101.2	139.4	124.9	101.6			
0.74	0.08	0.45	2.08	0.28	0.90	1.24	0.42			
122.4	25.0	26.7	201.49	107.4	139.9	132.4	109.8			

Tweed at Norham

1994

Harmonised monitoring station number : Measuring authority : TWRPB NGR

NGR: 36 (NT) 898 477

Flow measurement station: 021009 - Norham C.A.(km²): 4390.0 NGR: 36 (NT) 898 477

				1994				Period of record: 1975 - 1993							
Determinand	Units	Samples	Mean	Max.	Date	Min.	Date	Mean		Percenti	les		Quarter	ly avera	ges
									5%	50%	95%	J-M	A-J	J-S	O-D
Temperature	°C	12	10.0	19.0	28/06	4.0	09/02	10.1	2.6	9.1	19.9	4.7	13.2	16.0	6.2
рH	pH units	12	8.0	9.3	16/08	7.2	16/03	8.0	7.1	7.8	9.3	7.6	8.3	8.5	7.7
Conductivity	μS/cm	12	223	266	16/08	170	13/09	233	165	227	292	232	232	226	229
Suspended solids	mg/l	12	2.0	3.0	25/01	1.0	19/04	9.3	1.3	4.6	31.8	14.9	5.1	6.9	9.4
Dissolved oxygen	mg/IO	12	11.23	12.50	09/02	8.30	13/09	11.61	9.09	11,46	14.72	11.94	11.47	11.60	11.48
BQD (inhibited)	mg/I O	12	3.0	6.8	09/02	1.0	08/11	2.3	1.0	2.2	4.2	2.2	2.5	2.6	2.0
Ammoniacal nitrogen	mg/l N	12	0.064	0.120	25/01	0.020	17/05	0.08	0.02	0.08	0.16	0.10	0.07	0.07	0.09
Nitrite	mg/l N	12	0.014	0.030	25/01	0.000	12/07	0.02	0.01	0.01	0.04	0.02	0.02	0.02	0.02
Nitrate	mg/l N	12	1.54	2.30	14/12	0.94	13/09	1.8	0.8	1.7	3.3	2.5	1.7	1.1	1.B
Chloride	mg/l Cl	12	16.4	23.0	16/08	12.5	16/03	16,1	10.4	15.5	22.1	17.4	16.2	15.6	15.1
Orthophosphate	mg/I P	12	0.044	0.110	28/06	0.020	09/02	0.14	0.02	0.07	0.40	0.13	0.10	0.14	0.14

Dee at Glenlochar

1994

Harmonised monitoring station number : Measuring authority : SRPB NGR: 25 (NX) 733 642 Flow measurement station: 080002 - Glenlochar NGR: 25 (NX) 733 641 C.A.(km²): 809.0

		1994								
Determinand	Units	Samples	Mean	Max.	Date	Min.	Date			
Temperature	•c	7	7.9	19.0	01/07	1.0	05/01			
pH	pH units	12	6.8	7.2	01/08	6.4	05/01			
Conductivity	μS/cm	12	57	63	01/11	52	01/07			
Suspended solids	mg/l	12	2.8	15.0	04/02	1.0	01/06			
Dissolved oxygen	mg/I O	12	10.26	12.50	01/03	6.10	03/10			
BOD (inhibited)	mg/I O	12	2.1	2.9	04/02	1.4	01/06			
Ammoniacal nitrogen	mg/I N	12	0.130	1.040	01/11	0.010	03/05			
Nitrate	mg/l N	12	0.22	0.37	04/02	0.06	01/08			
Chloride	mg/l Cl	12	8.5	10.1	05/04	6.7	01/12			
Orthophosphate	mg/l P	12	0.009	0.026	01/11	0.001	03/05			
Silica	mg/l SiO ₂	12	1.71	2.80	01/11	0.50	01/08			
Sulphate	mg/I SO ₄	12	4.30	4.96	01/11	3.80	01/06			
Calcium	mg/l Ca	12	3.3	4.0	01/12	2.6	05/01			
Magnesium	mg/l Mg	12	1.35	1.58	01/11	1.17	01/03			
Potassium	mg/l K	12	0.58	0.87	01/03	0.45	01/09			
Sodium	mg/l Na	12	5.2	6.7	01/11	4.0	01/12			

Period of record: 1975 - 1993									
Mean		Percentiles			Quarterly averages				
	5%	50%	95%	J-M	A-J	J.S	0.0		
10.0	1.9	9.1	20.0	3.6	11,4	16.9	8.3		
6.7	6.2	6.7	7.3	6.6	6.7	6.9	6.0		
61	40	55	78	56	58	64	60		
3.3	1.1	1.9	6.9	4.6	3.4	2.4	2.0		
10.84	8.69	10.78	13.09	12.38	11.03	9.45	10.69		
1.9	0.8	1.9	3.1	2.1	2.0	1.6	1.9		
0.06	0.01	0.04	0.14	0.06	0.05	0.07	0.0		
0.3	0.1	0.3	0.7	0.5	0.3	0.2	0.3		
9.1	5.1	8.7	13.7	9.9	9.4	8.6	8.9		
0.01	0.00	0.01	0.04	0.01	0.00	0.02	0.0		
2.22	0.32	2.29	4.31	3.20	1.68	1.18	2.84		
5.4	3.5	5.1	9.25	5.3	5.2	5.6	6.3		
3.8	2.3	3.3	5.8	3.4	3.4	4.5	3.1		
1.5	0.7	1.4	2.2	1.4	1.4	1.5	1.9		
0.6	0.3	0.5	0.8	0.6	0.5	0.5	0.0		
5.1	3.4	5.1	7.0	5.6	5.2	4.8	4.9		

Leven at Renton Footbridge

1994

Harmonised monitoring station number : Measuring authority: CRPB NGR: 26 (NS) 389 783 Flow measurement station: 085001 - Linnbrane C.A.(km²): 784.3 NGR: 26 (NS) 394 803

1994 Determinand Samples Mean 2.0 18/02 6.6 03/06 43 27/10 1.0 18/02 9.20 09/09 1.2 29/11 0.010 18/02 0.10 03/06 11.0 29/04 0.003 11/11 16.0 19/08
7.2 27/10
75 28/01
8.0 03/06
12.90 28/01
0.060 29/04
0.98 29/04
14.0 22/07 9.2 7.0 63 2.6 11.02 2.1 0.026 0.30 12.3 *C pH units µS/cm mg/l mg/l*O mg/l*O mg/l*O mg/l*N mg/l*N mg/l*CaCO₃ mg/l*P Temperature 12 12 13 (1) 12 12 12 (3) 12 (3) 12 (4) pH Conductivity Suspended solids Dissolved oxygen BOD (inhibited) Ammoniacal nitrogen Nitrate Total alkalinity Orthophosphate

Period of record: 1975 - 1993										
Mean		Percent	iles	Quarterly averages						
	5%	50%	95%	J-M	A-J		0-0			
9.5	2.9	9.0	16.9	4,1	11,0	14,9	8.1			
7.1	6.6	7.1	7.5	7.0	7.1	7.1	7.0			
71	57	68	94	71	72	69	70			
4.6	1.1	3.2	12.1	6.6	3.6	3.6	4,1			
10.95	9.29	11.01	12.60	12.25	11.28	9.66	10.73			
1.8	0.9	1.8	3.2	2.2	2.2	1.5	1.7			
0.05	0.01	0.02	0.20	0.05	0.05	0.05	0.04			
0.3	0.1	0.3	0.5	0.3	0.3	0.2	0.3			
15.7	10.0	15.2	22.0	14.4	15.9	16.2	16.1			
0.02	0.00	0.01	0.05	0.01	0.00	0.03	0.02			

Ballinderry at Ballinderry Bridge

DOE Northern Ireland station number : Measuring authority : DOEN

NGR: 23 (IH) 927 798

Flow measurement station: 203012 - Ballinderry Br. C.A.(km²): 419.5 NGR: 23 (IH) 926 799

rd: 1974 . 1993

	1994							
Determinand	Units	Samples	Mean	Мах.	Date	Min.	Date	
Temperature	*C	24	9.54	16.0	28/07	3.0	06/01	
pH Conductivity	pH units μS/cm	24 24	8.0 318	8.3 373	17/06 28/07	7.6 211	06/04 04/02	
Suspended solids	mg/l	24	13.5	40.0	20/01	3.0	22/08	
Dissolved oxygen	mg/I O	24	10.45	12.30	20/01	8.40	22/08	
BOD (inhibited)	mg/I O	24	2.6	6.5	08/12	, 1.5	08/08	
Ammoniacal nitrogen	mg/l N	24	0.220	0.850	08/12	0.040	08/08	
Nitrite	mg/I N	24	0.056	0.100	14/07	0.020	06/01	
Chloride	mg/l CI	24	18.9	27.0	08/12	16.0	06/01	
Orthophosphate	mg/l P	24	0.139	0.260	08/08	0.050	07/03	

Mean		Percent	les		Quarterly averages					
	5%	50%	95%	J-M	A-J	J-S	0-D			
9.9	3.0	10.0	17.0	5.2	11.9	14.8	7.9			
7.8	7.3	7.8	8.3	7.7	7.9	7.8	7.7			
308	216	306	374	284	326	334	295			
10.2	2.0	6.0	32.0	12.6	6.9	9.1	10.7			
10.13	6.80	10.20	12.60	11.30	10.00	8.80	10.40			
2.5	1.0	2.0	4.9	2.6	2.7	2.3	2.2			
0.25	0.04	0.20	0.53	0.34	0.26	0.17	0.24			
0.05	0.02	0.04	0.12	0.04	0.06	0.06	0.05			
18.9	12.0	19.0	26.0	19.5	18.9	19.3	18.0			
0.20	0.07	0.17	0.43	0.13	0.17	0.32	0.18			

Lagan at Shaws Bridge

1994

DOE Northern Ireland station number : Measuring authority : DOEN

05/01/0200 NGR: 33 (IJ) 325 690

Flow measurement station: 205004 - Newforge C.A.(km²): 490.4

NGR: 33 (IJ) 329 693 Period of record: 1973 - 1993

			1994						
Determinand	Units	Samples	Mean	Max.	Date	Min.	Date	Mean	
Temperature	*c	24	8.9		28/06	4.0	13/01	10.1	
₽Н	pH units	24	7.9	8.3	10/05	7.6	01/03	7.7	
Conductivity	μS/cm	24	445	651	21/10	216		429	
Suspended solids	mg/l	24	9.5	26.0	11/02	2.0	07/10	11.5	
Dissolved oxygen	mg/I O	24	8.90	13.80	13/01	5.10	24/08	11.20	
BOD (inhibited)	mg/I O	24	2.7	5.2	28/03	1.3	10/08	3.2	
Ammoniacal nitrogen	mg/LN	24	0.178	0.420	11/07	0.040	22/04	0.71	
Nitrite	mg/LN	24	0.046	0.110	11/07	0.020	11/02	0.15	
Chloride	mg/l Cl	24	41.9	81.0	21/10	18.0	28/03	41.2	
Orthophosphate	mg/I P	24	0.705	1.670	25/07	0.140	11/02	0.81	

Mean		Percent	iles		Quarter	y avera	ges
	5%	50%	95%	J-M	A-J	J.S	O-D
10.1	4.0	9.5	16.5	5.3	12.5	15.2	8.0
7.7	7.2	7.7	8.0	7.6	7.7	7.5	7.6
429	286	414	606	384	442	516	389
11.5	2.0	6.0	35.0	14.5	8.2	6.8	15.5
11.20	4.00	10.70	21.80	13.30	10.40	7.20	11.60
3.2	1.3	2.9	6.3	2.9	4.0	3.3	3.0
0.71	0.08	0.44	2.03	0.64	0.88	1,41	0.8
0.15	0.02	0.07	0.44	0.09	0.21	0.30	0.09
41.2	22.0	37.0	70.0	36.7	41.4	44.9	34.3
0.81	0.15	0.56	2.23	0.37	0.99	1.25	0.59

DIRECTORY OF MEASURING AUTHORITIES

Address Code **National Rivers Authority** Rivers House, NRA Waterside Drive, Aztec West, Almondsbury, **BRISTOL BS12 4UD** NRA Regional Headquarters Anglian Kingfisher House, Goldhay Way, NRA-A Orton Goldhay, PETERBOROUGH PE2 5ZR Northumbria and Yorkshire* Rivers House, NRA-NY 21 Park Square South, LEEDS LS1 2QG North West Richard Fairclough House, NRA-NW PO Box 12, Knutsford Road, **WARRINGTON WA4 1HG** Severn-Trent Sapphire East, 550 Streetsbrook Road, NRA-ST SOLIHULL B91 1QT Southern Guildbourne House, Chatsworth Road, NRA-S **WORTHING BN11 1LD** South Western* Manley House, Kestrel Way, NRA-SW Sowton Industrial Estate, EXETER EX2 7LQ Thames Kings Meadow House, Kings Meadow Road, NRA-T READING RG1 8DQ Welsh Rivers House/Plas-yr-Afon, NRA-WEL St Mellons Business Park, St Mellons, CARDIFF CF3 0LT **River Purification Boards** Clyde River Purification Rivers House, Murray Road, **CRPB Board** EAST KILBRIDE, Glasgow G75 0LA Forth River Purification Clearwater House, **FRPB** Board Heriot Watt Research Park, Avenue North, Riccarton, **EDINBURGH EH14 4AP** Highland River Purification Graesser House, Fodderty Way, **HRPB** Board **DINGWALL IV15 9XB** North East River Greyhope House, Greyhope Road, **NERPB** Purification Board Torry, ABERDEEN AB1 3RD Solway River Purification Rivers House, Irongray Road, **SRPB** Board **DUMFRIES DG2 0IE** Tay River Purification 1, South Street, **TRPB** PERTH PH2 8NJ Board

^{*} In 1993, the Northumbria and Yorkshire and South-West and Wessex regions of the National Rivers Authority were amalgamated.

Tweed River Purification Board	Burnbrae, Mossilee Road, GALASHIELS TD1 1NF	TWRP
Other measuring authorities		
Borders Regional Council (Directorate of Water and Drainage Services)	West Grove, Waverley Road, MELROSE TD6 9SJ	BRWD
British Waterways	Willow Grange, Church Road, WATFORD WD1 3QA	BW
Department of the Environment for Northern Ireland	Water Executive, Northland House, 3 Frederick Street, BELFAST BT1 2NS	DOEN
(Environment Service)	Calvert House, 23 Castle Place, BELFAST BT1 1FY	
Dumfries and Galloway Regional Council (Department of Water and Sewerage)	Marchmount House, Marchmount, DUMFRIES DG1 1PW	DGRW
Essex Water Company	Hall Street, CHELMSFORD CM2 0HH	EWC
Geological Survey of Northern Ireland	20 College Gardens, BELFAST BT9 6BS	GSNI
Grampian Regional Council (Water Services Department)	Woodhill House, Westburn Road, ABERDEEN AB9 2LU	GRWD
Highland Regional Council (Water Department)	Regional Buildings, Glenurquhart Road, INVERNESS IV3 5NX	HRCW
Institute of Hydrology	Maclean Building, Crowmarsh Gifford, WALLINGFORD OX10 8BB	IH
Lothian Regional Council (Department of Water and Drainage)	55 Buckstone Crescent, EDINBURGH EH10 6XH	LRWD
North East Water Plc	PO Box 10, Allendale Road, NEWCASTLE-UPON-TYNE NE6 2SW	NEW
North West Water Plc	Dawson House, Liverpool Road, Great Sankey, WARRINGTON WA5 3LW	NWW
Scottish Hydro-Electric Plc	16 Rothesay Terrace, EDINBURGH EH3 7SE	SE
Scottish Office Agriculture and Fisheries Dept.	Pentland House, Robs Loan, EDINBURGH EH14 1TY	SOAF
Southern Water	Southern House, Yeoman Road, WORTHING BN13 3NX	sw
Strathclyde Regional Council (Water Department)	419 Balmore Road, GLASGOW G22 6NU	SRCW
Tayside Regional Council (Water Services Department)	Bullion House, Invergowrie, DUNDEE DD2 5BB	TRWS
Wessex Water	Wessex House, Passage St., Bristol BS2 0JQ	ww
Yorkshire Water Services Ltd	West Riding House, 67 Albion House, LEEDS LS1 5AA	YW

Note: The measuring authorities listed in this directory provide (or have provided) daily flow data to the national archive for primary flow measurement stations. In recent years a number of valuable long records for additional sites have been identified. Most of these will be incorporated into the National River Flow Archive when appraisals of the gauging stations and flow records are complete (see page 35).

PUBLICATIONS - in the Hydrological data UK series

Tr. I	p. ir.t. i	Doday Carel	
Title	Published		
		second class	
		within the	•
Yearbooks:		Loose-Leaf*	
Yearbook 1981	1985	£10	£12
Yearbook 1982	1985	£10	£12
Yearbook 1983	1986	out of p	rint
Yearbook 1984	1986	out of p	rint
Yearbook 1985	1987	£12	£15
Yearbook 1986	1988	£12	£15
Yearbook 1987	1989	£12	£15
Yearbook 1988	1989	£12	£15
Yearbook 1989	1990	£15	£18
Yearbook 1990	1991	£15	£18
Yearbook 1991	1992	*	£20
Yearbook 1992	1993	*	£20
Yearbook 1993	1994		£20
Yearbook 1994	1995		£20
Reports:			
Hydrometric Register and Statistics 1981-5	1988	£12	£15
Hydrometric Register and Statistics 1986-901	1992		£20
The 1984 Drought ²	1985		£12
The 1988-92 Drought ³	1993		£20

Concessionary rates apply to the purchase of two or more of the pre-1989 Yearbooks.

All the Hydrological data UK publications may be obtained from:-

Institute of Hydrology Maclean Building WALLINGFORD Oxfordshire OX10 8BB

Telephone: Wallingford (01491) 838800

Facsimile: (01491) 692424

Enquiries or comments regarding the series, or individual publications are welcomed and should be directed to the National Water Archive Office at the above address.

1. Hydrometric Register and Statistics 1986-90

This reference volume includes maps, tables and statistics for over 1000 river basins and 150 representative observation boreholes throughout the United Kingdom. The principal objective of the publication is to assist data users in the selection of monitoring sites for particular investigations and to

allow more effective interpretation of analyses based upon the raw data. To this end, concise gauging station and catchment descriptions are given for the featured flow measurement stations – particular emphasis is placed on hydrometric performance, especially in the high and low flow ranges, and on the net effect of artificial influences on the natural flow regime.

Summary hydrometric statistics, for each of the years 1986-90, are provided alongside the corresponding long term averages, or extremes, to allow the recent variability in surface and groundwater resources to be considered in a suitable historical context.

2. The 1984 Drought

This first, occasional report in the Hydrological data UK series concerns the 1984 drought. The structure of the report follows the hydrological cycle with chapters devoted to rainfall, evaporation, runoff and water storage in surface reservoirs and aquifers. The report documents the drought in a water resources framework and its development, duration and severity are examined with particular reference to regional variations in intensity.

3. The 1988-92 Drought Report

The objective of this report is to provide comprehensive documentation of the 1988-92 drought within a hydrological framework and to establish a benchmark against which future periods of severe rainfall deficiency may be compared. The spatial and temporal variations in the drought's intensity are examined and its severity assessed within the perspective provided by long-term rainfall and hydrometric records. An introductory hydrological overview of the United Kingdom is given to help place the volatile climatic conditions experienced in 1988-92 in a suitable context. The synoptic backcloth to the drought's development is also reviewed and the European perspective is examined using selected rainfall and river flow records to index drought severity. Additionally, a short review of water resource variability in Great Britain over the featured five years - and the water industry's response to the actual and protracted deficiencies is included to help appreciate the, often complex, linkages between hydrological stress and water supply impacts on the community.

^{*}Loose-leaf versions of the Hydrological data UK publications have been discontinued.

Associated Publications

Hydrological Summaries for Great Britain

Since the winter of 1988/89 these monthly reports have been prepared jointly by the Institute of Hydrology and the British Geological Survey on behalf of the Department of the Environment and the National Rivers Authority. Each report includes areal rainfall data - both recent and, where significant, longer term accumulations for the major administrative divisions in the water industry. Also featured are representative hydrographs of river flow and groundwater levels with supporting summary statistics and a tabulation of current stocks for a selection of major reservoirs. A commentary is provided on the cover page detailing notable hydrological events and summarising both the national hydrological status and the water resources outlook. Probability values are estimated for many of the events covered.

Subscription to the Hydrological Summaries – £48 per year – may be arranged through the National Water Archive Office. The summaries are normally published within ten working days of the close of the month to which they refer.

Representative Basin Catalogue

Data collection for the National Flood Event Archive, sponsored by the Ministry of Agriculture, Fisheries and Food and maintained by the Institute of

Hydrology, concentrates on a selection of basins that form a representative sample of UK catchments. A catalogue providing comprehensive hydrological and reference information for 200 representative basins has been prepared and is available as national (five volumes) or regional sets; user-selected groups of catchments can be provided for particular investigations. Enquiries concerning the cost and availability of the catalogue should be directed to the address opposite.

Groundwater Level Hydrographs

In 1990 the British Geological Survey launched a series of wallcharts depicting long term variations in groundwater levels. The following are currently available:

- Long term hydrograph of groundwater levels in the Chilgrove House well in the Chalk of southern England
- Long term hydrograph of groundwater levels in the Dalton Holme well in the Chalk of Yorkshire.

Copies may be obtained from:

British Geological Survey WALLINGFORD Oxfordshire OX10 8BB

Telephone: Wallingford (01491) 838800

Facsimile: (01491) 692345

ABBREVIATIONS

Note: The following abbreviations do not purport to represent any standardised usage; they have been developed for use in the Hydrological data UK series of publications only. Where space constraints have required alternative forms of these conventional abbreviations to be used, the meaning should be evident from the context.

		Pt
aOD	Above Ordnance Datum	PWS
Bk	Beck	Rb
Blk	Black	
Br	Bridge	R/c
Brk or B	Brook	RCS
Brn	Burn	Rd
Ch	Channel	Res
C/m	Current meter(ing)	Rh
Com	Common	S
Dk	Dike	SAGS
Dr or D	Drain	
D/s	Downstream	Sch
DWF	Dry weather flow	Ş-D
E	East	SE
Frm	Farm	Sl
G/s	Gauging station	SOE
Gw	Groundwater	
HEP	Hydro-electric power	Sp
Ho	House	St
Hosp	Hospital	STW
L	Loch or lake	sw
Lb	Left hand river bank	TS
	(looking downstream)	US
Lņ	Lane	U/s
Lst	Limestone	W
Ltl	Little	W'cour
MAF	Mean annual flood	₩d
Mkt	Market	Wht
Ml/d	Megalitres per day	Wr
Mnr	Manor	WRW
N	North	Wtr
Ntch	Notch	WTW

ORS	Old Red Sandstone			
Pk	Park			
Pop	Population			
POR	Period of record			
PS	Pumping station			
Pt	Point			
PWS	Public water supply			
Rb	Right hand river bank			
	(looking downstream)			
R/c	Racecourse			
RCS	Regional communications system			
Rd	Road			
Res	Reservoir			
Rh	Right hand			
S	South			
SAGS	Stour Augmentation Groundwater			
	Scheme			
Sch	School			
S-D	Stage-discharge relation			
SE	South-East			
Sl	Sluice			
SOE	The Scottish Office Environment			
	Department (previously SDD)			
Sp	Spring			
St	Stream			
STW	Sewage treatment works			
SW	South-West			
TS	Transfer scheme			
US	Ultrasonic gauging station			
U/s	Upstream			
W	West			
W'course	Watercourse			
₩d	Wood			
Wht	White			
Wr	Weir			
WRW	Water reclamation works			
Wtr	Water			

Water treatment works

NW

O/f

North-West

Outfall or outflow

