Hydrological data UK

1994 YEARBOOK

INSTITUTE OF HYDROLOGY•BRITISH GEOLOGICAL SURVEY

HYDROLOGICAL DATA UNITED KINGDOM

1994
YEARBOOK

Published by the Institute of Hydrology, Wallingford, Oxon OX10 8BB

ISBN 0948540710

Editor Hydrological data UK series: T J Marsh

Assistant Editor: S Green

The acquisition, archiving and validation of the bulk of the hydrological data featured in this Yearbook is undertaken as part of the National Water Archive (NWA) project at the Institute of Hydrology. Liaison with the measuring authorities is coordinated by M L Lees (NWA Manager), J M Dixon acts as the regional representative for Northern Ireland. J Carr and F J Sanderson were responsible for the acquisition and checking of much of the data featured in this Yearbook.

The style and contents of the Yearbook, and the scope of the data retrieval service which complements it, reflect a decade of archive system development supervised by D G Morris. Recent enhancements to the retrieval and data presentation facilities have largely been undertaken by O Swain and $R W$ Flavin.

The British Geological Survey is responsible for the acquisition and archiving of the featured groundwater level data. The Groundwater Level Archive is managed by A A McKenzie; data acquisition and measuring authority liaison duties are undertaken by P Doorgakant.

Mrs S Black was responsible for the preparation of the text and supervises the sale and distribution of the Hydrological data UK publications through the National Water Archive Office at the Institute of Hydrology

Design: P A Benoist
Graphics: J J Carr
Typeset and printed in the United Kingdom by Wace Burgess.
The materials used in the production of this volume are made from the pulp of softwood trees in managed Scandinavian forests, in which every tree cut down is replaced by at least one more, thus replenishing the Earth's resources.

Cover: Flood gauging on the A27 at Westhampnett, Sussex in January 1994. The A27 was closed for a week when the River Lavant burst its banks east of Chichester.

Photograph: National Rivers Authority, Southern Region

HYDROLOGICAL DATA UNITED KINGDOM

1994
 YEARBOOK

An account of rainfall, river flows, groundwater levels and river water quality January to December 1994

FOREWORD

The recent volatile climatic conditions experienced in the United Kingdom have stimulated considerable media and public interest in hydrological issues. Concern has focused on the resilience of water management strategies, and operational procedures designed to mitigate the impact of flooding or drought. Water management is largely predicated on the lack of any long term trends exhibited by lengthy rainfall, river flow and groundwater level records for the UK. The remarkable variability in hydrological conditions over the last decade together with the increasing evidence of global warming, suggest that this stability may not extend into the future. Whilst the inherent variability of our climate dictates that any departures from the normal range need to be treated with caution, there is a need to monitor the impact of hitherto unusual weather patterns with particular care because of their economic and social consequences. Meticulously high hydrometric standards will need to be maintained in order to help distinguish between the effect of man on river flow regimes and on groundwater levels and those resulting from climatic variability. An important incentive is that such attentive hydrological surveillance should provide valuable insights into conditions likely to be experienced with greater frequency in the future.

A principal function of the Hydrological data UK•series is to document and disseminate information relating to contemporary hydrological conditions. Thề individual Yearbooks constitute a series of benchmarks which, when viewed in the context of historical variablity, can expose to public and scientific examination any significant changes in river flow regimes and aquifer recharge patterns. The Yearbooks also provide a gateway to the extensive data holdings which together constitute the National Water Archive; these now appear within the metadata catalogue of the Natural Environment Research Council (NERC).

It is intended that the complete flow records from the core gauging stations of the National River Flow Archive will be published in computer-readable form on a CD-ROM. This will further enhance the service we are able to give to an ever widening community of data users.

The Hydrological data UK series of Yearbooks and reports was launched in 1985 as a joint venture by the Institute of Hydrology (IH) and the British Geological Survey (BGS); both organisations are component bodies of the NERC. Such a collaborative enterprise arose naturally from the close liaison maintained between those responsible for the management of the National River Flow Archive at IH, and their counterparts at BGS concerned with the National Groundwater Level Archive.

The work of the national River Flow and Groundwater Level Archives is overseen by the Surface and Groundwater Level Archive (SAGA) a steering committee which includes representatives of Government departments, the National Rivers Authority and the water industry from England, Wales, Scotland and Northern Ireland. I commend this Yearbook to the Environment Agency for England and Wales and the Scottish Environment Protection Agency as they begin their work; their hydrometric teams in the predecessor organisations (the National Rivers Authority and the Scottish River Purification Boards) are thanked for essential work which underpins all publications in the Hydrological data UK series.

A.G.P. Debney
Acting Director, Institute of Hydrology

CONTENTS

Page
INTRODUCTION 1
SCOPE AND SOURCES OF INFORMATION 2
Rainfall and climatological data 2
HYDROLOGICAL REVIEW OF 1994 3
Summary 3
Rainfall 3
Evaporation and soil moisture deficits 8
Runoff 10
Groundwater 17
1994 Hydrological Diary 20
THE CHICHESTER FLOOD, JANUARY 1994 23
REGIONAL FLOODING IN STRATHCLYDE, DECEMBER 1994 29
LONG RIVER FLOW RECORDS 35
RIVER FLOW DATA 37
Computation and accuracy of gauged flows 37
Scope of the flow data tabulations 37
Gauging station location map 42
Daily flow tables 44
Monthly flow tables 94
THE NATIONAL RIVER FLOW ARCHIVE DATA RETRIEVAL SERVICE 135
The National Water Archive 135
List of surface water retrieval options 137
Concise Register of Gauging Stations 139
GROUNDWATER LEVEL DATA 147
Background 147
The observation borehole network 147
Measurement and recording of groundwater levels 147
Index borehole location map 149
Register of selected groundwater observation wells 150
Network changes 150
Hydrographs of groundwater level fuctuations 152
The Register 156
THE NATIONAL GROUNDWATER LEVEL ARCHIVE DATA RETRIEVAL SERVICE 159
List of groundwater retrieval options 160
SURFACE WATER QUALITY DATA 161
Background 161
Data retrieval 161
Scope of the water quality data tabulations 162
Water quality data tables 164
DIRECTORY OF MEASURING AUTHORITIES 172
PUBLICATIONS in the Hydrological data UK series 174
ABBREVIATIONS 176

The 1994 Yearbook is the sixth edition since responsibility for the publication of data, upon which assessments of water resources in England and Wales may be made, was transferred (under the Water Act 1989) from the Department of the Environment to the National Rivers Authority. It is the fourteenth Yearbook in the Hydrological data UK series and the fourth volume in the third five-year publication cycle (1991-95).

The 1994 Yearbook represents the thirty-fifth edition in the series of surface water publications which began with the 1935-36 Surface Water Yearbook. As a result of the incorporation of groundwater data in the Yearbook, this volume is also the nineteenth edition in the series of groundwater data publications which began with the 1964-66 Groundwater Yearbook.

Apart from summary information, river flow and groundwater data were published separately on a national basis, prior to the introduction of the Hydrological data UK series. In common with the earlier editions, the 1994 Yearbook brings together the principal data sets relating to river flow, groundwater levels and areal rainfall throughout the United Kingdom. Also tabulated are water quality data for a selection of monitoring sites throughout the UK; such data first appeared in the 1986 Yearbook. A comprehensive hydrological review of the year is included together with feature articles documenting the remarkable floods which occurred on the River Lavant in early January and in the Strathclyde region in December. An outline description is given of the National River Flow and Groundwater Level Archives and the data retrieval facilities which complement them. Introductory details are also provided of the range of facilities and datasets available through the National Water Archive - one of the Natural Environment Research Council's (NERC) Designated Data Centres.

Publication of river flow data for Great Britain started with the series of Surface Water Yearbooks. The first edition, which was published in 1938 for the water-year (October-September) 1935-36, also included selected data for the previous fifteen years; the edition for 1936-37 followed in 1939. Both these publications were prepared under the direction of the Inland Water Survey Committee. Assisted by the Scottish Office, the Committee continued to publish hydrological data after the Second World War; the Yearbook for the period 1937-45 was published as a single volume in 1952. Due to economic stringency, the Survey was suspended in 1952 for a period of two years but was then re-formed as the Surface Water Survey Centre of Great Britain. A Yearbook covering the years 1945-53 was published in 1955.

In 1964 the Survey was transferred to the Water Resources Board where it remained until the Board was disbanded in 1974. The work of collecting and publishing surface water information in England and Wales then passed to the newly created Water Data Unit of the Department of the Environment (DoE). Yearbooks were published jointly each year by these organisations and the Scottish Office for the wateryears 1953-54 to 1965-66; thereafter information for the five calendar years 1966 to 1970 was published in one volume in 1974. Following editions were renamed 'Surface Water: United Kingdom' to mark the inclusion of the first records from Northern Ireland and in recognition of the move away from single year volumes. Two volumes of Surface Water: United Kingdom, covering the years 1971-73 and 1974-76 were published jointly by the Water Data Unit, the Scottish Development Department and the Department of the Environment for Northern Ireland.

Following the transfer of the Surface Water Archive to the Natural Environment Research Council in 1982, the final edition of Surface Water: United Kingdom, for the years 1977-80, was prepared by the Institute of Hydrology at the request of the Water Directorate of the Department of the Environment, and published in 1983.

The 1981 and 1982 Yearbooks were prepared concurrently and were, in 1985, the first Yearbooks published by the Natural Environment Research Council. Further Yearbooks - the editions for 1983 to 1993 - were published over the following nine years.

A compilation of 'Groundwater levels in England during 1963', which was produced by the Geological Survey of Great Britain (prior to its incorporation into the Institute of Geological Sciences), was the precursor to the publication of groundwater level data on a national basis. The more formal Groundwater Yearbook series was instigated by the Water Resources Board which published the inaugural edition and a further volume for 1967, both covering England and Wales. In 1975 a third Yearbook, for 1968-70, was published by the Water Data Unit. The Groundwater: United Kingdom series was introduced in 1978 with the production of the 1971-73 volume, also published by the Water Data Unit.

Following the transfer of the Groundwater Archive to the Institute of Geological Sciences (now the British Geological Survey), the second edition of Groundwater: United Kingdom, covering the period 1974-80, was prepared by the Institute of Hydrology at the request of the Water Directorate of the Department of the Environment. Subsequently, groundwater level data have been included in the Hydrological data UK publications.

The format of the 1994 Yearbook follows that of the recent editions in the Hydrological data UK series. The Hydrological Review examines rainfall, evaporation, soil moisture, river flow and groundwater conditions throughout the year. The following data sections provide detailed coverage for the featured year, and for comparison purposes, period of record reference statistics are also given.

Emphasis is placed upon ready access to basic data both within the Yearbook and through the complementary data retrieval facilities.

A companion publication to the individual Yearbooks - the 'Hydrometric Register and Statistics' volume - provides a comprehensive reference source for hydrometric information which does not change materially from year to year; the second edition (for 1986-90) (see page 174) was published in 1992 and the 1991-95 edition will be compiled in 1996.

The Yearbook contents have been abstracted primarily from the National River Flow and Groundwater Level Archives. Water quality data have been provided from the Harmonised Monitoring Archive which is currently maintained by the Environmental Protection Statistics Division of the Department of the Environment (DoE). Similar data from Northern Ireland have been provided by the Environmental Service of the Department of the Environment (NI).

The National Rivers Authority (NRA) is responsible for the initial collection and processing of most river flow and groundwater level data in England and Wales. Following the 1989 Water Act, the new Water Service PLCs assumed responsibility
for a small number of important monitoring sites for which historical - and a few contemporary - data sets are held on the River Flow and Groundwater Level Archives. The seven River Purification Boards (RPBs) are responsible for most hydrometric data acquisition in Scotland. In Northern Ireland responsibility is shared between the Departments of Environment and Agriculture. These organisations also supplied valuable material relating to significant hydrological events during 1994. Additional hydrometric material has been supplied by water supply companies, various research bodies and public undertakings.

The majority of the rainfall data, and some of the material incorporated in the Hydrological Review, has been provided by the Meteorological Office. For historical comparisons of the rainfall over England and Wales, a data set based upon the homogeneous series derived by the Climatic Research Unit of the University of East Anglia has been used.

Most of the rainfall data published in the Hydrological data UK series are in the form of monthly rainfall totals for catchment areas (see page 38). The Met. Office (address below) can provide details of the availability of daily and monthly rainfall data associated with individual raingauges. Brief details of rainfall and climatological data sets published by The Met. Office, are given below.

The Natural Environment Research Council acknowledges and extends its appreciation to all who have assisted in the collection of information for this publication.

Rainfall and Climatological Data

The Meteorological Office maintains the national archives of rainfall and climatological data at its headquarters at Bracknell. Specific items, such as daily and hourly rainfalls from gauges and radar (from the PARAGON system) may be obtained by application to Met. Office Commercial Services Rainfall Section (address opposite, Tel: 01344 856849). Summaries of the data are also published regularly and a list of current titles is given below:

1. Monthly Weather Report

This is published monthly and contains climatological means for more than 550 UK observing stations; in addition an introduction and annual summary are produced yearly. The publication should be available about a year after the month concerned, costs around $£ 3$ and is available only from Her Majesty's Stationery Office (HMSO) or their stockists.
2. MORECS (Meteorological Office Rainfall and Evaporation Calculation System).
This is a weekly issue of maps and tables of rainfall, evapotranspiration, soil moisture deficit, effective rainfall, and the hydrometeorological variables used to calculate them. The data are used to provide values for 40 km squares and various sets of maps and tables are available according to customer requirements. Enquiries to (01344) 856858.

Further information about these and other publications may be obtained from:

```
Meteorological Office, Commercial Manager, Commercial Services, Johnson House, London Road, Bracknell,
Berks RG12 2SY
```

Tel: (01344) 854455
Fax: (01344) 854906

HYDROLOGICAL REVIEW OF 1994

Summary

With a westerly airstream predominating, 1994 was a very mild and relatively wet year in most regions. Some limited water distribution difficulties occurred during the late summer but no significant water resources problems were encountered. The transformation in hydrological conditions at the end of the 1988-92 drought heralded a lengthy period with notably high accumulated rainfall totals and, generally, runoff and recharge rates remained healthy, relative to the seasonal average, throughout 1994. There were relatively few episodes of widespread flooding although two major events - of contrasting character - provided clear reminders of our continuing vulnerability to flood damage and the need to refine existing alleviation and warning procedures.

On a nationwide basis January, March and December were easily the wettest months in 1994 and the May-August period was notably dry, in the east particularly. Notable convectional storms were relatively uncommon in 1994 and most rainfall derived from Atlantic frontal systems. One consequence was an exaggeration in the west-to-east rainfall gradient across Britain with rain-shadow effects being especially noticeable in eastern Scotland. The United Kingdom rainfall total for 1994 is about 13% above average and the fourth highest year this century. However, 1982, 1986, 1990 and 1992 were almost as wet. The recent wet phase mainly reflects persistently high precipitation totals for Scotland: 1994 was the ninth wettest year, in a 126 -year series, but ranks only fifth in the last 13 years; precipitation over the post-1978 period has been almost 20% greater than the preceding average* - winter rainfall being especially abundant in the west.

Although February was cold, most months in 1994 registered mean temperatures appreciably above average - exceptionally so in July, and November which was the warmest in the full 337-year Central England Temperature series (CET) ${ }^{1}$. These notably warm interludes helped to place 1994 amongst the eight warmest years this century. More significantly, the post-1987 period represents the warmest sevenyear sequence in the entire CET.
In common with each of the last six years, potential evaporation (PE) losses for 1994 were well above average, typically ranking in the top five since 1960 - but generally considerably below the totals for 1989 and 1990. Actual evaporation (AE) losses for 1994 present a rather more complex pattern. In parts of eastern Britain sustained soil moisture deficits restricted evaporation through the growing season and AE losses were exceptionally low relative to the long term average in parts of north-east England and eastern Scotland. Throughout most of southern England however, soils remained relatively moist except in July and August; as a result AE totals
were substantially above average. This was true of the west also where AE losses closely approached their potential value and were commonly amongst the highest on record.

Monthly river flows remained above, or near, average in most catchments throughout much of 1994 and record annual runoff totals were established for a substantial number of rivers - most draining permeable catchments but unprecedented runoff totals were also recorded for catchments in North Wales and western Scotland. Very high runoff totals early and late in 1994, together with the relatively dry summer (triggering record irrigation demands in some areas) helped emphasise seasonal contrasts in flow rates, particularly in rivers with only modest baseflows; autumn flows were especially depressed in Scotland. However, healthy spring flows - a consequence of heavy and sustained recharge over the previous winter - maintained lowland summer flows well within the normal range. Although extensive floodplain inundations were uncommon in 1994 the December flooding in Scotland was the latest in a notable cluster which have substantially reduced estimated return periods for high magnitude floods, in rivers draining the Highlands especially.

Groundwater levels were mostly well above average in 1994 and, in January, overall aquifer storage was remarkably high - a dramatic contrast to 18 months previously when groundwater levels were as depressed as at any time this century. Generally, the 1994 spring peaks were easily the highest since 1988 and many approached or exceeded the highest groundwater levels on record. In parts of the Chalk levels remained near to seasonal maxima well into the autumn and, typically, the 1994/95 recovery began with healthy groundwater stocks. The contrast with 1989-92, and the volatility of the last six years, is without modern parallel. The recovery of runoff rates and extension of the stream network was especially noticeable in those catchments where low flow alleviation programmes (mostly involving reduced groundwater pumping) have been instigated.

The very mild conditions, the exaggeration in both the west-to-east rainfall gradient and enhanced seasonality in runoff and recharge rates (and very limited snowfall in southern Britain) which characterised 1994 are also typical of most of the last decade. These features are broadly consistent with a number of favoured climate change scenarios.

Rainfall

1994 rainfall as a percentage of the 1961-90 average for the UK is mapped on Figure 1. The actual rainfall totals for the UK are depicted in Figure 2.

[^0]

Figure 1 Annual rainfall in 1994 as a percentage of the 1961-90 average.

Figure 2 Annual rainfall in 1994

1994													D	Year		$\begin{gathered} \text { Apr- } \\ \text { Sep } \\ 1994 \end{gathered}$
United	mm	155	90	148	94	50	62	55	83	103	99	109	176	1224	753	447
Kingdom	\%	141	118	164	145	69	86	75	92	104	90	' 99	156	113	124	95
England and	mm	123	82	96	74	62	36	47	72	106	97	86	142	1023	631	397
Wales	\%	140	130	133	123	97	55	76	95	138	114	96	151	114	128	98
Scotland	mm	215	96	250	133	29	110	67	101	103	110	156	245	1615	989	543
	\%	142	94	200	175	34	128	71	86	73	71	103	162	112	118	90
Northern	mm	159	135	131	91	39	67	69	92	74	64	94	151	1166	721	432
Ireland	\%	143	173	149	142	55	94	103	101	76	57	91	145	110	121	94
North West	mm	159	71	165	107	35	70	70	103	113	123	136	207	1359	758	498
(NRA)	\%	131	91	174	151	47	86	82	96	98	96	111	167	113	113	93
Northumbria	mm	107	71	84	63	26	39	41	81	77	71	97	124	881	552	327
(NRA)	\%	127	120	120	113	42	65	63	100	105	93	113	153	103	121	82
Severn-Trent	mm	95	71	75	57	54	24	44	56	127	68	73	115	859	521	362
(NRA)	\%	136	131	123	104	92	41	83	84	198	106	103	149	114	131	101
Yorkshire	mm	116	68	71	61	46	28	53	58	101	73	89	123	887	516	347
(NRA)	\%	147	117	104	103	77	47	90	78	149	100	111	148	108	117	91
Anglian	mm	73	45	53	51	51	25	41	57	89	70	32	59	646	416	314
(NRA)	\%	146	122	113	111	106	49	84	104	182	137	55	107	108	140	105
Thames	mm	97	59	51	57	79	25	21	50	74	85	53	93	744	470	306
(NRA)	\%	152	131	91	114	141	45	43	86	125	137	82	133	108	130	94
Southern	mm	124	64	57	77	91	39	29	68	90	118	66	123	946	596	394
(NRA)	\%	155	119	90	145	169	72	60	119	130	148	78	150	121	134	118
Wessex	mm	126	100	80	62	92	24	34	68	99	115	96	139	1035	658	379
(NRA)	\%	145	154	114	117	151	42	65	103	138	146	116	149	. 124	138	105
South West	mm	186	174	125	94	99	32	49	103	131	140	127	214	1474	974	508
(NRA)	96	135	172	126	136	138	46	71	123	141	121	102	154	126	136	111
Welsh	mm	182	131	184	116	69	57	68	94	134	139	134	255	1563	966	538
(NRA)	\%	127	135	172 .	145	84	72	88	93	117	101	94	167°	119	124	101
Highland	mm	248	74	341	. 185	36	148	62	112	153	116	169	304	1948	1143	696
R.P.B.	\%	132	. 58	210	203	39	151	58	88	89	59	83	154	111	106	102
North East	mm	131	110	106	77	16	55	40	47	89	87	89	93	940	676	324
R.P.B.	\%	132	169	136	128	23	83	55	54	102	90	90	100	97	127	73
Tay	mm	206	117	219	96	22	89	47	81	56	115	154	196	1398	920	391
R.P.B	\%	143	123	201	155	27	122	61	86	49	88	127	154	114	127	78
Forth	mm	161	88	210	84	21	75	59	80	56	90	134	210	1268	828	375
R.P.B.	\%	136	111	223	142	28	109	79	85	51	78	120	191	114	132	78
Clyde	mm	268	110	301	149	38	143	97	142	98	128	189	322	1985	1165	667
R.P.B	\%	142	93	205	177	42	154	89	106	55	66	105	180	117	116	97
Tweed	mm	141	86	124	72	19	52	46	71	57	75	123	173	1039	717	317
R.P.B	\%	141	128	157	126	27	80	63	81	64	79	132	186	107	136	72
Solway	mm	204	116	195	124	29	79	106	121	76	117	184	246	1597	935	535
R.P.B	\%	131	115	167	161	34	94	118	102	53	75	128	166	112	114	89
Western Isles,	mm	208	71	201	114	36	116	57	91	158	89	168	203	1512	870	572
Orkney and Shetland	\%	165	85	199	184	61	190	81	106	132	66	127	159	130	123	125

Western and southern regions registered well above average rainfall for 1994 with parts of the southern seaboard recording up to 130% of the 1961-90 mean. Notably high annual precipitation totals also typified much of Wales and the Scottish Highlands, western areas especially, a few districts exceeding 150% of the standard annual average. Rainfall totals for 1994 were close to the mean throughout much of Northern Ireland and most of eastern England. Annual precipitation totals exceeded 4000 mm in parts of the Scottish Highlands, while north-eastern Scotland was drier in percentage terms than the rest of the UK. In absolute terms however, the driest places in the UK were enveloped by the 550 mm isohyet: along the eastern Scottish coastline around Berwick-upon-Tweed and in parts of Essex and Cambridgeshire.

Table 1 gives the annual, half-yearly, monthly actual and percentage rainfall totals for the major administrative divisions in the water industry; the original 10 regions of the National Rivers Authority (NRA) have been retained to maintain consistency with earlier Yearbooks and allow better spatial differentiation. The annual rainfall totals for the UK and England and Wales were the highest since 1960 and 1979 respectively. England, Wales, Scotland and Northern Ireland all registered annual rainfall at least 10% above the long term mean. In Scotland, a protracted wet phase continues. Twelve of the last 15 years have registered rainfall totals more than 10% above the preceding mean. In contrast, post1987 rainfall for England is close to the long term average and, for the Thames Valley, a little below the preceding mean. These persistent regional rainfall differences reflect the strengthening of the north-west/south-east rainfall gradient that has been a feature of recent years.

Recent rainfall patterns are also indicative of a departure from the normal seasonal distribution in much of the UK. For the UK as a whole the 1993/94 winter half-year (October-March) was the third wettest this century whereas rainfall over the following summer half-year was around 5% below the 1961-90 average but substantially wetter than 1989 , 1990 and 1991. In contrast to these dry summers, the mean rainfall total for the last seven winter halfyears for the UK is approximately 15% above the preceding average (1900-1987). The recent tendency for a more distinct partitioning between winter and summer rainfall was again especially evident in Scotland. The six wettest winters in Scotland have each occurred since 1982, with five since 1988. Taken together, rainfall over the last six winters has been around 20% above the 1961-90 average. By contrast the summer six-month period for 1994 was the second driest in Scotland since 1984 and the average for the recent past is appreciably below the long term mean. The clustering in recent years of wet winters and dry summers, if continued,
would have important implications for future water resources management.

The wet weather at the end of 1993 continued into 1994: southern England and Wales recorded between $120-170 \%$ of long term average rainfall for the first two months. Taken together February and March provided the wettest end to the winter for at least 20 years in the South-West. Most Scottish River Purification Board (RPB) areas also saw a wet start to the year culminating in Scotland's highest March rainfall total on record. Weather patterns over the January-March period were especially unsettled in Northern Ireland, concluding the third wettest winter half-year this century.

The frequency of rain-bearing frontal systems declined through the spring. For May, the North East RPB area registered less than a quarter of the 1961-90 mean rainfall. This heralded a sustained rainfall deficiency; the period May-August was the driest for 50 years in parts of the region. A zone of very low rainfall extended down into north-eastern England. The three-month period ending in July was the driest, or second driest, on record for some parts of Northumberland. The modest rainfall, coupled with high temperatures and parched soil conditions, caused mild drought stress in some districts. In southern and central parts of England the summer was also dry and for several NRA regions the rainfall total for June was below 50%. By contrast, August rainfall totals for the South-West were significantly above the 1961-90 average.

As usual, most exceptional daily rainfall totals in 1994 were recorded during the summer half-year and resulted from thunderstorms; some events produced significant local flooding (see Hydrological Diary, pages 20 to 22). Table 2 shows daily rainfall totals in 1994 with estimated return periods exceeding 200 years. Three major events may be identified: in August on the 3rd, and 31st and on September 14th.

The re-establishment of a predominantly southwesterly airflow over southern Britain resulted in a moderately wet autumn in England and Wales but much of Scotland and Northern Ireland remained relatively dry. Northern Ireland recorded its second successive dry autumn, the 1994 SeptemberNovember rainfall total was the lowest, 1993 excepted, for 22 years. November was dry throughout much of the English lowlands - in the latter half of the month precipitation was largely restricted to fog drip and light drizzle - but exceptionally warm. Scotland's sequence of dry months ended in November, and December was remarkably unsettled. Glasgow established a new December monthly rainfall maximum and a warm front, lingering across the Strathclyde Region on the 10th and 11th, produced particularly heavy and sustained rainfall which resulted in exceptionally severe flooding (see page 29).

TABLE 2 DAILY RAINFALLS IN 1994 WITH RETURN PERIODS EXCEEDING 200 YEARS

Date (Rain-day)	Station Number	Name	County	Grid Reference	Amount (mm)	Return Period
03.08 .94	007036	Capheaton	Northumberland	NZ038805	99.7	320
03.08.94	012716	Hallington Resr.	Northumberland	NY973762	87.5	260
03.08 .94	012996	High Warden	Northumberland	NY910671	85.5	230
31.08 .94	208737	Framingham Earl	Norfolk	TG272030	105.8	400
31.08 .94	211668	Ditchingham	Norfolk	TM340906	144.2	2350
31.08 .94	211831	Woodton	Norfolk	TM293953	121.0	970
31.08 .94	211896	Ditchingham	Norfolk	TM330917	146.8	2500
31.08 .94	212059	Barsham W. Wks.	Suffolk	TM406896	114.0	670
31.08 .94	293375	Falconhurst	Kent	TQ470426	93.2	210
31.08 .94	294415	Penshurst Place	Kent	TQ528440	99.3	290
31.08 .94	297361	Sutton Valence, Herriard Farm	Kent	TQ826508	96.4	270
14.09 .94	152426	Caldecott	Leicestershire	SP865932	81.8	230
14.09 .94	162865	Pilton, Lodge Cottage	Northamptonshire	TL013849	91.3	320
14.09 .94	163095	Oundle S. Wks Auto. Sta.	Northamptonshire	TL038897	83.5	220
14.09 .94	163465	Corby, Stanion Lane	Northamptonshire	SP901885	93.6	360
14.09 .94	164117	Lutton	Northamptonshire	TL112878	91.3	350
14.09 .94	196254	Stilton, Church Street	Cambridgeshire	TL162893	83.0	250
14.09 .94	196776	Yaxley	Cambridgeshire	TL196934	82.2	260
14.09 .94	438304	Enville	Staffordshire	SO825866	92.4	300
10.12 .94	646827	Amlaird Filters No. 2	Strathclyde	NS484443	97.5	210
10.12.94	647277	Corsehouse	Strathclyde	NS474502	107.1	260
10.12 .94	648358	Uplawmoor S. Wks.	Strathclyde	NS432552	107.9	300
10.12 .94	658758	Mugdock Park	Central	NS546780	126.0	730
10.12 .94	659231	Kaim Dam	Strathclyde	NS346622	141.0	530
10.12 .94	659347	Muirhead	Strathclyde	NS390576	128.2	780
10.12 .94	659409	Castle Semple Loch	Strathclyde	NS364594	129.8	590
10.12 .94	660469	Picketlaw Res. No. 1 Logger Sta.	Strathclyde	NS567516	100.8	200
10.12 .94	660928	Neilston Filters	Strathclyde	NS475564	128.6 E	600
10.12 .94	661218	Paisley	Strathclyde	NS478642	88.5	230
10.12 .94	896458	Cumbernauld, Dunns Wood	Strathclyde	NS782772	99.6 E	270

Evaporation and Soil Moisture Deficits

Boosted by a July heatwave and the warmest November on record, mean temperatures for the UK in 1994 were again above the long term average but were well within the recent range. Positive anomalies dominate the recent run of annual mean temperatures at the national and regional scales. 1994 continued an exceptional sequence of warm years beginning in 1988. Over this period the average CET temperature exceeds the previous mean by almost 1° Celsius.

The relatively warm summer ensured evaporative demands were high in 1994 over most parts of the UK. Potential evaporation (PE) totals for 1994 were $5-20 \%$ above the 1961-90 average for all areas except for a few localities in the far South-West. Figure 3 illustrates PE totals for 1994 derived by the Meteorological Office's Rainfall and Evaporation Calculation System (MORECS - see page 2). The modelled assessments assume a grass cover and a soil of medium water retention capability. PE totals ranged from above 650 mm in many south-eastern coastal areas to below 500 mm in the Scottish Highlands and in the Solway and Clyde RPB areas. Actual evaporation (AE) losses followed a similar pattern to those of PE but 1994 totals were less than the 1961-90 average in parts of north-eastern Scotland and the eastern seaboard where transpiration rates were inhibited for lengthy periods by the dry soils. AE totals for 1994 in the south and east of

Figure 3 Potential evaporation (for a grass cover) in 1994 Data source: MORECS

Figure 4 The variation in potential evaporation, actual evaporation and soil moisture deficits for five MORECS squares

England generally ranked in the upper quartile for the period of record and, in a few localities, $A E$ losses were the highest on record.

Variations in PE, AE and Soil Moisture Deficits (SMDs) during 1994 for five representative MORECS squares are shown on Figure 4 (page 9). The location of these squares can be found on Figure 3. The normally strong seasonality in evaporative losses was accentuated by PE values for June and July in western Scotland and south-eastern England which approached the highest on record. The same was true for AE values around London and in parts of Scotland. Soils in the north and in central and southern England were not as parched as in 1990 and 1991 but were significantly drier than in the following two years. This was less true of the SouthEast where maximum SMDs in 1994 were lower than in 1992 and 1993; this probably reflects the wet August-October period for Southern and Anglian NRA regions. Soil moisture deficits began to build in April/May but for Scotland and parts of Wales, AE values remained very close to PE throughout the year. Many eastern and central areas had differences between annual AE and PE totals of at least 100 mm in 1994 and, generally, the annual shortfall was the largest since 1990.

Soil moisture deficits increased rapidly through June and July and generally peaked rather later than usual. During the summer half-year, high temperatures led to crop stress in some eastern areas; irrigation demand increased accordingly. Maximum soil moisture deficits generally occurred in late summer and declined briskly through the autumn in southern Britain. In much of eastern Scotland SMDs declined very sluggishly and, at the end of November were close to the highest on record for the month, though modest in absolute terms. November SMD values were similar to those experienced between 1988-91 in much of southern England, and soils were not fully saturated until the following January in some districts.

Runoff

For the UK as a whole the 1994 runoff total was approximately 20% above the 1961-90 average. Since 1978 there have only been three or four years where runoff was less than the long term mean. As in 1993, spatial variability was muted by comparison to most of the recent. past - in southern Britain especially - but hydrogeological controls on runoff distribution through the year were much in evidence. As a consequence of heavy winter rainfall, spring-fed rivers - those draining the Chalk especially maintained above average monthly flows well into the autumn. In contrast, the more responsive catchments in Scotland recorded a sequence of below average monthly runoffs beginning in the summer and ending in early winter; accumulated deficiencies
over this period were, however, modest in relation to those of 1989 or 1990. Regional geological contrasts and the 1994 rainfall distribution served to moderate the normally strong UK runoff gradient from the north-west to the south-east.
A guide to 1994 runoff totals - mapped as percentages of the 1961-90 average - for the UK is given in Figure 5. Despite significant growth in the gauging station network over the last decade data remain sparse in a few, mostly upland, areas. Thus Figure 5 is least precise in north-western Scotland, the Welsh mountains and the coastal lowlands of parts of eastern England. In such areas assessments of residual rainfall (rainfall minus evaporation) totals were used to help delineate isopleths. A similar approach was used for Northern Ireland where only limited flow data were available for 1994. Although river flow data are now submitted to the National River Flow Archive (NRFA) from a gauging station on Lewis, no runoff information is available to map runoff variability across the Western Isles or the Orkney and Shetland Isles.

For rivers with high baseflow components the lagged response to the wetness of the SeptemberDecember period in 1993 helped ensure that 1994 runoff totals were markedly above average - and greater than the annual rainfall total might imply. To a degree, this contrasts with 1993 when exceptionally low groundwater levels, following the drought of 1998-92, served to reduce runoff totals in a wet year. In a substantial proportion of eastern England the 1994 runoff pattern appears as a reverse of that in 1993.

In southern and eastern England winter (Decem-ber-February) runoff totals for 1993/94 were commonly the highest on record; runoff totals are also notable for the winter half-year. During the following summer half-year, in contrast, sustained recessions typified most rivers, beginning in April and continuing - interrupted by a notable runoff event in May - into September. Despite the lengthy recessions, annual minimum flows wére generally well within the normal range; exceptions included a few responsive catchments in Scotland where notably low flows were recorded in the late summer. A steep increase in flow rates in December helped to accentuate 1994 seasonal runoff contrasts especially in impermeable catchments - a common feature in recent years. Figure 6 shows monthly mean flows (blue trace) over the 1991-94 period for 16 representative rivers; the period of record monthly maxima and minima are also shown and the long term monthly average flow is defined by the black trace. The flows for the River Thames at Kingston have been adjusted to account for the major upstream abstractions for London's public water supply.

Flooding was experienced in southern England at the start of the year; in some areas this resulted largely from extremely high groundwater levels. New maximum monthly runoff totals for many

Figure 5 A guide to 1994 runoff expressed as a percentage of the 1961-90 average

Figure 6 1990-94 monthly flow hydrographs

Little Ouse at Abbey Heath

Figure 6-(continued)
spring-fed rivers were recorded during the early part of 1994. For catchments in the north-west of England a very brisk recession in February ended with flows approaching the minima for the month. March runoff totals in Scotland represented new monthly maxima in several areas. In April, rivers registering new monthly maxima showed a wide distribution, examples included the Little Ouse, Mimram, Piddle, Taw, Clyde and the Severn (in a record from 1921). Early summer flows were generally above average in western Scotland, notably so in June; inflows to Lochaber Hydro-Power Scheme, close to Fort William, being the highest for the month - in 50 years.

Seasonal flow recoveries mostly began with runoff rates already healthy and monthly flows increased substantially over the autumn. The September runoff total for the Trent was the highest in 30 years at Colwick and there was localised flooding in October in many parts of Devon and South Wales. Many areas recorded particularly large runoff totals for the two weeks beginning around the 28 th October and flooding was prevalent during November in North Wales and northern England. By early December most western and northern catchments were very vulnerable to further precipitation. The
risk of flooding remained high throughout December and many monthly runoff and peak flow records were eclipsed over wide areas. The exceptional flows resulting from the storm centred over the Glasgow region on the 10/11th feature prominently in Table 3. This lists new river flow and runoff records established during 1994; entries are confined to gauging stations commissioned before 1967 with reasonably continuous datasets on the NRFA. The records may be subject to revision as stage-discharge relations are reviewed in the light of very high, or very low, flows. Some new annual maxima were established for lengthy flow series, e.g. the Wye at Ddol Farm with data from 1937. A few annual maximum were exceeded by very wide margins: the 1994 runoff total for the River Yeo at Veraby was more than 300 mm greater than the previous annual maximum.
Figure 7 shows flow duration curves for four representative gauging stations; such curves allow the proportion of time that river flows fall below any given threshold to be identified. Flows exceeded 95% of the time were below the period-of-record average in many catchments in northern and eastern Scotland but close to or above average for most rivers in England and Wales. The Mimram typifies

Figure 7 Flow duration curves for 1994 and the preceding record

TABLE 3 RIVER FLOW AND RUNOFF RECORDS ESTABLISHED IN 1994

Station Number	River	Station Name	First Year of Record		Month	Pre-1994 Record (mm)	Month/ Year
Highest Annual Runoff							
18001	Allan Water	Kinbuck	1957	1295		1246	1990
19005	Almond	Almondell	1962	762		738	1986
38003	Mimram	Panshanger Park	1952	199		180	1961
39007	Blackwater	Swallowfield	1952	345		335	1982
39010	Colne	Denham	1952	248		247	1988
39012	Hogsmill	Kingston upon Thames	1956	540		535	1979
39014	Ver	Hansteads	1956	195		179	1961
39019	Lambourn	Shaw	1962	306		289	1967
39022	Loddon	Sheepbridge	1965	500		498	1967
39052	The Cut	Binfield	1957	347		319	1958
39053	Mole	Horley	1961	652		613	1974
41011	Rother	Iping Mill	1966	601		584	1968
41016	Cuckmere	Cowbeech	1939	523		476	1987
43004	Bourne	Laverstock Mill	1965	217		214	1966
43005	Avon	Amesbury	1965	449		436	1977
43006	Nadder	Wilton Park	1966	550		546	1977
44002	Piddle	Baggs Mill	1963	577		556	1966
45002	Exe	Stoodleigh	1960	1308		1148	1974
45004	Axe	Whitford	1964	751		700	1974
45009	Exe	Pixton	1966	1388		1175	1967
47005	Ottery	Werrington Park	1963	1226		1043	1993
47007	Yealm	Puslinch	1963	1359		1269	1974
49001	Camel	Denby	1964	1269		1233	1974
50002	Torridge	Torrington	1960	1043		1000	1974
50006	Mole	Woodleigh	1965	1255		1045	1986
51003	Washford	Beggearn Huish	1966	1120		877	1986
52003	Halse Water	Bishops Hull	1961	577		509	1974
52005	Tone	Bishops Hull	1961	689		637	1974
52007	Parrett	Chiselborough	1966	650		646	1982
52009	Sheppey	Fenny Castle	1964	777		763	1979
53004	Chew	Compton Dando	1958	480		431	1960
53005	Midford Brook	Midford	1961	641		625	1986
53007	Frome (Somerset)	Tellisford	1961	599		587	1966
54014	Severn	Abermule	1962	1091		942	1965
55014	Lugg	Byton	1966	819		768	1977
55026	Wye	Ddol Farm	1937	1740		1545	1954
56005	Lwyd	Ponthir	1966	1358		1269	1982
57004	Cynon	Abercynon	1957	1693		1667	1982
58001	Ogmore	Bridgend	1963	1813		1643	1967
64001	Dyfi	Dyfi Bridge	1962	2000		1774	1986
64006	Leri	Dolybont	1960	1332		1268	1979
66011	Conwy	Cwm Llanerch	1964	2221		2056	1986
67001	Dee	Bala	1957	1946		1923	1974
84015	Kelvin	Dryfield	1960	1242		1115	1978
84016	Luggie Water	Condorrat	1966	1088		1042	1985
84022	Duneaton	Maidencots	1966	1208		1152	1990
85002	Endrick Water	Gaidrew	1963	1381		1323	1986
101002	Medina	Upper Shide	1965	451		355	1981
Highest Monthly Runoff							
8009	Dulnain	Balnaan Bridge	1952	205	MAR	202	FEB 1990
19002	Almond	Almond Weir	1962	209	MAR	203	NOV 1963
19004	North Esk	Dalmore Weir	1960	141	MAR	139	NOV 1963
19005	Almond	Almondell	1962	177	MAR	163	NOV 1963
29002	Great Eau	Claythorpe Mill	1962	79	JAN	76	NOV 1968
33019	Thet	Melford Bridge	1962	52	JAN	49	DEC 1993
33028	Flit	Shefford	1966	53	JAN	50	JAN 1988
33032	Heacham	Heacham	1965	40	JAN	34	APR 1979
37015	Cripsey Brook	Chipping Ongar	1961	79	JAN	76	OCT 1982
38003	Mimram	Panshanger Park	1952	27	JAN	22	MAR 1961

TABLE 3-(continued)

39010	Colne	Denham	1952	37	JAN	31	APR	1979
39016	Kennet	Theale	1961	73	JAN	65	FEB	1990
39020	Coln	Bibury	1963	102	JAN	100	FEB	1990
41011	Rother	Iping Mill	1966	147	JAN	146	FEB	1990
52009	Sheppey	Fenny Castle	1964	170	JAN	149	DEC	1965
84008	Rotten Calder Water	Redlees	1966	327	DEC	315	JAN	1975
84012	White Cart Water	Hawkhead	1963	277	DEC	255	OCT	1967
84013	Clyde	Daldowie	1963	233	DEC	224	FEB	1990
84014	Avon Water	Fairholm	1964	300	DEC	256	SEP	1985
84015	Kelvin	Dryfield	1960	233	DEC	223	JAN	1975
84016	Luggie Water	Condorrat	1966	308	DEC	259	SEP	1985
84022	Duneaton	Maidencots	1966.	271	DEC	243	FEB	1990
101002	Medina	Upper Shide	1965	106	JAN	83	JAN	1988

Lowest Monthly Runoff

12009	Water of Dye	Charr	1957	8.15	AUG	8.65	AUG	1984
36004	Chad Brook	Long Melford	1965	1.09	AUG	1.39	SEP	1976

| Station | River | Station Name | | | First |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Number | | | | | |

Lowest Daily Mean Flowis

12009	Water of Dye	Charr	1957	0.094	20 AUG	0.100	31 AUG 1983
30004	Partney Lymn	Partney Mill	1962	0.046	30 AUG	0.064	7 JUL 1976
36004	Chad Brook	Long Melford	1965	0.008	24 AUG	0.017	9 SEP 1967
63001	Ystwyth	Pont Llolwyn	1963	0.106	17 AUG	0.114	22 AUG 1976
84016	Luggie Water	Condorrat	1966	0.014	11 JUN	0.075	31 AUG 1976

Highest Instantaneous Flows

21018	Lyne Water	Lyne Station	1962	83.46	11 DEC	73.75	6 OCT 1990
41011	Rother	Iping Mill	1966	68.62	8 DEC	65.54	27 DEC 1979
58001	Ogmore	Bridgend	1963	175.5	30 OCT	168.0	11 MAR 1981
60003	Taf	Clog-y-Fran	1965	7695	1 JUL	101.0	12 DEC 1964
66011	Conwy	Cwm Llanerch	1964	530.7	13 NOV	509.7	12 DEC 1964
84001	Kelvin	Killermont	1948	265.7	12 DEC	175.2	18 OCT 1954
84003	Clyde	Hazelbank	1956	606.5	- 12 DEC	530.3	31 OCT 1977
84005	Clyde	Blairston	1958	830.9	12 DEC	666.4	22 SEP 1985
84011	Gryfe	Craigend	1963	129.5	11 DEC	112.8	15 JAN 1993
84013	Clyde	Daldowie	1963	1107	12 DEC	802.5	22 SEP 1985
84015	Kelvin	Dryfield	1960	91.47	12 DEC	84.94	19 SEP 1985
84016	Luggie Water	Condorrat	1966	51.31	12 DEC	44.46	11 SEP 1967
84019	North Calder Wtr	Calderpark	1963	134.3	12 DEC	91.21	7 OCT 1990
84022 .	Duneaton	Maidencots.	1966	120.4	12 DEC	116.2	2 FEB 1988

many eastern Chalk catchments; 1994 flows were well above average throughout the flow range and the 95% exceedance flow was more than twice the preceding average. Even healthier low flows characterised a number of rivers where reduced groundwater abstractions - often associated with the NRAs Alleviation of Low Flow programmeenhanced the post-drought runoff recovery; examples include the River Ver (Buckinghamshire) and River Darent (Kent). The 1994 flow regime for the Mimram and similar chalk rivers highlights the contrast between high baseflow rivers where the seasonality of the rainfall over the catchment is muted in runoff terms, and impervious catchments in northern and western Britain where seasonal runoff contrasts were enhanced in 1994.

Relative to the monthly average, reservoir levels remained generally high throughout 1994, although in July and August demand increased rapidly and supply was at times under stress (e.g. in communities served from reservoirs in the southern Pennines). In most of England and Wales a brisk recovery in runoff rates through the autumn quickly replenished stocks and the outlook for water resources remained healthy at year-end.
:

Groundwater

Water-tables exhibited their normal seasonal variation in 1994 as the strong recovery following the 1988-92 drought continued. The improvement in groundwater resources was best demonstrated by the maximum and minimum levels recorded in 1994 - over many outcrop areas both were significantly higher than in the preceding five years. Recharge over the winter of 1993/94, like that of 1992/93, was abundant and the 1994 water-table recovery was generated from a much higher base than in the recent past. Groundwater levels in many wells remained well above average for much of 1994 and the increase in average levels since 1992 has few recent precedents. Such notable recoveries are well illustrated in Figure 11 (pages 152 to 155) which show groundwater level hydrographs for 32 representative wells and boreholes. Some boreholes - including the Holt (Hertfordshire) and Washpit Farm (Norfolk), have recorded both new minima and new maxima levels within the last four years. Most wells and boreholes featured in Figure 11 were selected to illustrate natural variations in groundwater levels. However, the volume of groundwater abstraction has a significant impact on water-tables in many parts of the UK and for a few monitoring sites man's influence can completely mask the effect of natural variation. Under the influence of pumping levels in the Trafalgar Square borehole (see page 153), which penetrates the confined Chalk below central London declined by around 70 metres from the
early eighteenth century to the 1950s. Thereafter, decreasing abstraction rates produced a stabilisation and subsequent recovery, groundwater levels are now rising at over a metre a year and currently stand nearly 40 metres above the mid1960s minima.
The late summer of 1993 was dry and warm, but heavy rainfall in October saw the seasonal onset of infiltration and a brisk water-table rise in many western aquifers. Dry conditions in October and November saw localised reversals of the recovery in some boreholes, and many November water-tables in a few areas were below the seasonal minimum, for example at Llanfair (North Wales) and Redbank (Dumfries and Galloway) where pumping may have been influential. In the less responsive Chalk aquifers the recovery was slower By the end of October most levels were close to, or above, average but recoveries in the eastern Chalk were, as usual, patchy until December.

December produced heavy and sustained recharge which continued into 1994. Rapidly rising groundwater levels resulted in high level springs, and winterbournes, flowing at exceptional rates. In parts of the Chalk, the South Downs especially, artesian conditions were reported over substantial areas in January. The Chilgrove House borehole (West Sussex) provides a notable example, overflowing for the first time in 35 years on the 7th January. The very unusual nature of such conditions is confirmed by levels in the nearby Compton House borehole which recorded a new maxima in a 100 -year record, standing nearly 40 metres above the 1992 minima. In the Chilterns during January and February, The Holt borehole recorded its highest levels in a record from 1964. Very brisk recoveries also characterised boreholes in the Lincolnshire Limestone and Carboniferous Limestone (see the hydrographs for New Red Lion and Alstonfield on pages 154 and 155).

Towards the end of the 1993/94 recharge season water-tables stood well above the normal range. Recessions had begun by February in some parts of the more responsive sandstone and limestone aquifers but levels continued to rise in the less responsive Chalk. Above average rainfall in the late spring extended the recharge season and resulted in temporary increases in groundwater levels in some western and central areas. As a result, recessions began with groundwater levels generally well above the seasonal mean and close to the seasonal maxima for many Chalk wells.

A comprehensive tabulation of estimated recharge over the 1993/94 winter, expressed as a percentage of the long term average is given in the Register of Selected Groundwater Observation Wells (see pages 156 to 158); details of the method of assessing recharge are also given. In most aquifers winter recharge was well above, average for the third successive winter and contrasts

TABLE 4 ANNUAL REPLENISHMENT TO THE MORE IMPORTANT AQUIFERS IN ENGLAND AND WALES FOR THE YEAR 1993/94

NRA Region	Mean annual replenishment $\left(\mathrm{m}^{3} \times 10^{6}\right)$	$\begin{aligned} & 1993-94 \\ & \text { replenishment } \\ & \left(\mathrm{m}^{3} \times 10^{6}\right) \end{aligned}$
Chalk and Upper Greensand aquifers		
Anglian	955	1765 (185)
Southern	1230	1850 (150)
South West	200	495 (245)
Thames	975	1435 (145)
Wessex	950	1240 (130)
Yorkshire	320	425 (130)
Total	4630	7210 (155)
Lincolnshire Limestone aquifer		
Anglian	85	80 (90)
Permo-Triassic sandstone aquifers		
Northumbria	10	10 (110)
North West	330	270 (80)
Severn-Trent	530	775 (145)
South West	205	254 (125)
Welsh	30	25 (95)
Wessex	40	50 (125)
Yorkshire	300	480 (160)
Total	1440	1865 (130)
Magnesian Limestone aquifers		
Northumbria	80	100 (120)
Severn-Trent	40	60 (150)
Yorkshire	125	230 (180)
Total	250	385 (155)

Values have been rounded to reflect uncertainty in source data and recharge calculation.
Percentages of the annual mean are shown in parentheses.
For the sake of conformity with previous publications, the values for the Northumbria and Yorkshire and the South West and Wessex NRA Regions are shown separately.
markedly in the east, with the very modest overall recharge over the 1988-92 period. Using the data presented in the Register, Table 4 presents estimates of overall recharge to the principal aquifers in England and Wales for each of the major administrative units in the water industry. Generally the areal estimates of recharge exceed 150% for the eastern aquifers but significant spatial variation is evident. Figure 8 provides a guide to the variation in 1993/94 groundwater replenishment to the Chalk and Upper Greensand aquifer. Recharge exceeded twice the long term average in an appreciable proportion of the Chalk outcrop - this is especially notable away from the most easterly aquifer units where annual variability is characteristically large. The recharge volumes implied by Figure 8, together with notable recharge in the two preceding winters, helps to explain the historical high groundwater levels featured on pages 152 and 153.

Limited rainfall and accelerating evaporation rates curtailed most infiltration in May and rapidly developing SMDs thereafter ensured a brisk
groundwater recession. In the more slowly responding confined aquifers, steady increases in levels continued and, in parts of the Permo-Triassic sandstones aquifer long term average levels were exceeded for the first time in over five years (e.g. at Weeford Flats, Staffordshire). Parched soil conitions in July and early August threatened to delay the onset of the 1994/95 recharge season but the wet autumn in the English lowlands allowed levels to begin their recovery within the normal timeframe. As usual soils reached saturation initially in western and northern Britain where seasonal upturns could be recognised by late September. In East Anglia a relatively dry November permitted only a sluggish start to recharge but, as elsewhere, the 1994 minimum levels were mostly well above average and substantially greater than those in the recent past. Table 5 lists annual minimum levels for 1991-94 for the great majority of index boreholes in the national monitoring programme; in a few cases the minima quoted does not correspond to the end of the summer recession (which in 1991 for example, continued into the following year in a number of eastern boreholes). The exceptional range relative to the minimum recorded towards the end of the 1988-92 drought is of particular note. In many cases the subsequent recovery is the equivalent of twice the normal annual range, emphasising the large departure from typical annual and seasonal behaviour in many aquifers over the last eight years. By December 1994 levels were high and continuing to

Figure 8 Generalised percentage of the mean annual replenishment to the main outcrops of the Chalk and Upper Greensand aquifer for 1993-94

TABLE s GROUNDWATER LEVELS IN SELECTED OBSERVATION WELLS

Site	Aquifer	Records Commence	Lowest pre-1989 level	Year	Minimum levels				Maximum level 1994	$\begin{aligned} & \text { Rise } \\ & 92 / 94 \end{aligned}$
					1991	1992	1993	1994		
Dalton Holme	C \& UGS	1889	11.58	1905	11.08	9.64	13.82	11.88	22.68	13.04
Wetwang	C \& UGS	1971	18.16	1976	17.12	16.66	19.41	18.44	30.84	14.18
Keelby Grange	C \& UGS	1980	9.02	1988	5.12	4.92	6.82	10.22	18.30	13.38
Washpit Farm	C \& UGS	1950	41.24	1978	40.61	40.30	41.66	44.23	48.97	8.67
The Holt	C \& UGS	1964	83.90	1973	84.77	84.26	86.84	87.98	92.41	8.15
Redlands Hall	C \& UGS	1964	34.53	1965	32.46	32.29	36.01	37.40	49.24	16.95
Rockley	C \& UGS	1933	128.94*	1976	128.94*	130.00	130.64	130.13	143.71	13.71
Little Bucket Farm	C \& UGS	1971	56.57	1976	58.62	59.56	60.81	65.71	85.12	25.56
Compton House	C \& UGS	1984	27.64	1976	27.88	29.96	31.45	31.65	68.75	38.79
Westdean No. 3	C \& UGS	1940	1.01	1949	1.38	1.33	1.38	1.47	4.29	2.96
Lime Kiln Way	C \& UGS	1969	124.09	1976	124.24	123.70	124.08	125.22	125.91	2.21
Ashton Farm	C \& UGS	1974	63.32	1976	63.80	64.66	65.36	64.77	71.18	6.52
West Woodyates Manor	C \& UGS	1942	67.62	1976	70.30	72.59	72.90	70.60	98.04	25.45
Killyglen (NI)	C \& UGS	1985	113.53	1985	113.26	113.66	113.42	113.11	118.23	4.57
New Red Lion	LLst	1964	3.29	1976	5.68	6.06	12.39	12.17	21.79	15.73
Ampney Crucis	Mid Jur	1958	97.87	1976	99.81	100.04	100.02	99.75	102.97	2.93
Redbank	PTS	1981	7.49 -	1984	7.45	7.55	7.68	7.53	8.74	1.19
Skirwith	PTS	1978	129.45	1978	129.81	129.66	129.90	130.09	130.93	1.27
Yewtree Farm	PTS	1972	8.43	1972	12.85	13.11	13.43	13.32	13.87	0.76
Llanfair D.C.	PTS	1972	78.85	1976	79.05	78.92	79.10	79.39	80.07	1.15
Stone	PTS	1974	89.34	1976	89.50	89.73	89.94	90.00	91.19	1.46
Bussels No. 7A	PTS	1972	22.90	1976	23.39	23.15	23.44	23.57	24.96	1.86
Peggy Ellerton	MgLst	1968	31.10	1976	32.71	31.23	31.37	33.02	33.84	2.61
Alstonfield	CLst	1974	174.22	1975	175.00	175.95	178.34	175.54	214.39	38.44
C\&UGS	Chalk and Upper Greensand				Mid Jur			Middle Jurassic Limestones		
LLst	Lincolnshire Limestone				MgLst			Magnesian Limestone		
PTS	Permo-Triassic sandstones				CLst			Carboniferous Limestone		

* dry
rise with the prospects of further substantial recharge early in 1995; the outlook for groundwater resources was exceptionally good.

References

1. Manley, G (1974) Central England Tempera-
tures: monthly means 1659 to 1973. Quart. Jour. Royal Met. Soc., 100, 389-405.
2. Smith, K (1995). Precipitation over Scotland, 1757-1992: some aspects of temporal variability. Int. Jour. Clim. Vol. 15, 543-556.

1994 HYDROLOGICAL DIARY

Compiled by F. J. Sanderson

Abstract

January A mild and wet month with weather patterns dominated by the passage of a continuing sequence of Atlantic frontal systems, blizzard conditions were common in Scotland. Sustained late-1993 rainfall had made most catchments vulnerable to further precipitation and flooding in January was very widespread.

December 1993-14 January 1994: Very notable rainfall totals were recorded over 20-40 day periods beginning around mid-December 1993 - twice the seasonal average over wide areas, reaching a third of the annual average in parts of the South Downs. Runoff rates increased rapidly in early January and spate conditions were extensive by the 4th. In Northern Ireland three men were drowned in the swollen River Bann; commercial premises, plus some houses were flooded in Belfast. Flooding was also widespread in southern England; on the 5th over 100 houses were flooded at Darenth (Kent) when the Darent overtopped its banks. By the 6th over 150 flood warnings had been issued across central and southern Britain. An estimated 4000 hectares of farmland were inundated in the Somerset Levels despite heavy pumping (up to $50 \mathrm{~m}^{3} \mathrm{~s}^{-1}$) to the sea. Flooding was especially widespread in the Severn Valley, particularly between Worcester and Tewkesbury - some properties experiencing seven weeks under water. Transport disruption was considerable over a wide area. The most extreme conditions occurred in the South Downs above Chichester - see article on page 23.

February

February was another largely unsettled month especially during the first ten days. Spatial variability in temperature and rainfall totals were large and snow constituted a substantial proportion of upland precipitation in northern Britain. The relatively even distribution of rainfall through the month played a valuable role in moderating the flood risk.

2nd-3rd: A rapidly deepening Atlantic depression brought belts of heavy rainfall and subsequent flooding to many parts of the South and West - snowmelt making a significant contribution. Saturated catchments produced brisk responses even in some permeable catchments.
20-24th: A very cold easterly airflow produced dramatic declines in temperatures followed by snowstorms these were heavy in North Yorkshire (22 cm in Fylingdales). Trans-Pennine roads were closed and Bridlington was cut off by heavy snowfalls for 24 hours on the 22nd.
26-28th: Prolonged heavy rain (snow at higher altitudes) lead to significant flooding in Scotland. Many roads were impassable after 118 mm of precipitation was recorded at Aberdeen Airport in 72 hours. Subsequently the River Dee (at Park) registered its highest March flow ($528 \mathrm{~m}^{3} \mathrm{~s}^{-1}$) in a record from 1972.

March

March was mild and very wet in much of north-western Britain but dry in most south-eastern areas where rain-shadow effects were evident. Scotland registered its wettest March on record and in parts of Wales it was the wettest month in 22 years. Some gauging stations in northern and eastern Scotland registered new maximum monthly runoff totals. Spate conditions were common but the relatively even pattern of rainfall through the month again helped reduce the risk of flooding.

April

The month began in boisterous vein - wet, windy and cool - but high pressure predominated in the eastern lowlands thereafter. Some parts of Anglesey recorded their wettest April in 30 years and rainfall was substantially above average throughout most of north-west Britain. New monthly maximum runoff records were set in a significant number of western catchments as well as some baseflow-dominated lowland rivers. Snowmelt contributed to the abundant runoff in western and northern catchments.

May

A month characterised by very large regional variations in rainfall, temperature and sunshine amounts. Scotland was exceptionally dry - registering its fourth lowest May rainfall total. By contrast, some southern areas were notably wet - Guernsey had its wettest May in a record from 1843.

June

June continued the pattern of the spring with large spatial variations in weather conditions. North-western Scotland was very wet and the English lowlands mostly dry although thunderstorms near the end of the month boosted some local rainfall totals.

24th: Active convectional cells, associated with a slow-moving frontal system, produced notable rainfall intensities over many localities. At Hollinsclough (Derbyshire), 43 mm was recorded in three hours including a 23 mm burst in 15 mins (estimated return period of around 100 years). A total of 49 mm fell at East Malling (Kent), and 41 mm in two hours at Hambleden Lock on the Thames. Precipitation intensities exceeded infiltration capacities in many catchments and localised flooding occurred throughout much of southern Britain.

July

A persistent anticyclone over Scandinavia resulted in warm continental air bringing heatwave conditions across the British Isles. The Central England Temperature series ranks this month as the fourth warmest July this century and evaporative demands were exceptional. Some parts of southern England recorded their driest July for over 50 years; sequences of 20 or more dry days were common but thunderstorms became increasingly prevalent over the latter half of the month. River flow recessions, especially in impervious catchments were steep and a few monthly minimum runoff totals were established (e.g. on the South Tyne).

30-31st: Widespread thunderstorms occurred over the Midlands and East Anglia, producing localised flooding. The River Leen at Triumph Road, Nottingham recorded a peak flow of $17.13 \mathrm{~m}^{3} \mathrm{~s}^{-1}$ on 31 July, in a (patchy) flow series from 1967.

August

August was substantially cooler and more unsettled than July but an average month at the national scale. Much of northern Britain registered its fourth successive month with below average rainfall and eastern Scotland was again particularly dry. In the English lowlands, a significant proportion of the monthly rainfall total was convectional and spatial variability was large.
3-4th: Warm, humid conditions triggered thundery downpours in several parts of the country. The most notable was in Northumberland; a daily total of 103 mm was recorded at Fawcett whilst 30 mm fell in 15 minutes (estimated return period of about 120 years) at Wallington Hall, in a daily total of 83.6 mm . Flows in the River Wansbeck rose extremely quickly ($0.6-44.5 \mathrm{~m}^{3} \mathrm{~s}^{-1}$ in 15 minutes); observers reported a "wall of water" travelling downstream.
10-11th: A vigorous low pressure system containing active convective cells tracked northwards from France across the South-East during the evening of the 10th before returning southwards across the London area the next morning. Rainfall totals varied considerably although none had return periods exceeding 70 years. The highest 2-day total - 87.6 mm - was recorded at Holland Park (Central London); 28.2 mm falling in 30 mins on the 10th. Runoff rates climbed accordingly, especially in responsive urban catchments. In South London new maximum August flow rates (estimated return periods of about 25 years) were recorded in the Rivers Ravensbourne and Wandle. Urban drainage systems were overwhelmed and widespread disruption was caused to road and rail transport (the Underground especially) in the London region.

31st: Convective cells embedded in a warm front tracking north-east from France produced exceptional rainfall totals at several localities in eastern England. At Ditchingham on the Norfolk/Suffolk border, a storm which achieved its maximum intensity overnight, registered a rain-day total of 146.8 mm - the highest daily rainfall in south-east Britain since the Hampstead storm in London of July 1975 - with an estimated return period in excess of 2000 years. Roads and buildings, including a local school and Beccles Hospital, were inundated and significant surface runoff and sediment transport occurred. North Thorpe (Norfolk) registered its wettest August day since the Norwich floods of 1912.

September

Generally cool and wet with the weather dominated by the passage of active frontal systems; these were replaced by high pressure towards month-end. Parts of southern England recorded around three times the monthly average rainfall but a few districts in eastern Scotland registered their fifth successive relatively dry month.

14-16th: A complex low pressure system - with embedded thunder cells - produced rainfall totals in the 60-80 mm range over wide swathes of central England. During 36 hours, 77 mm was recorded at Wittering, near Peterborough and new twentieth century daily maxima were reported for Birmingham, Sheffield and

Chesterfield. The Trent (at Colwick) recorded its highest September flow in 30 years and flood warnings were issued throughout southern Britain - but most peak flows had return periods of less than five years.

October

Contrasts in weather conditions were notable in both spatial and temporal terms. The first three weeks were extremely dry, many places in southern central regions reported an absolute drought (15 days without appreciable rainfall) and in parts of Grampian Region the dry spell was the longest in October for 47 years. Heavy rain during the last ten days of the month over southern Britain produced monthly totals well above average. Scotland and Northern Ireland continued their drier than normal sequence of months.

29-31st: Heavy and persistent frontal rainfall swept eastwards across England and Wales causing widespread flooding in the South-West and South Wales. On the 30th, Dorchester (Dorset) recorded its wettest rain-day (57.1 mm) for almost 40 years, and totals of over 100 mm were recorded on Dartmoor and at Treherbert (West Glamorgan), in 24 -hour periods. Farmland was flooded and livestock swept away. In Devon, the Torridge broke its banks inundating property near Bideford, the Exe flooded property in Bickleigh and disrupted transport services. The Taw recorded its highest flow since 1981, causing severe localised flooding in its lower catchment. In South Wales, new highest instantaneous flows were recorded for the Ogmore and Llynfi (on the 30th); the peak on the latter was 50% higher than the previous maximum in a 25 -year record.

November

November was a remarkable month climatologically but unexceptional in hydrological terms. The weather was dull but exceptionally mild - the warmest November in the 337 -year CET series. Cyclonic conditions dominated the first half of the month but, from the 18 th, precipitation totals were very limited in most eastern regions. Ely (Cambridgeshire) had its driest November since 1945. In Scotland, the north excepted, the lengthy sequence of relatively dry months was broken.
8-11th: More than 50 hours of persistent rainfall over southern England and South Wales produced totals of $40-50 \mathrm{~mm}$ in many catchments. River flows rose accordingly; the Dorset Stour recorded its highest flow since 1979.

13-14th: Over 50 mm rain fell widely in northern and western Britain, especially over the Lake District and north Wales. Flooding was reported in Blaenau Ffestiniog, Gwynedd after 124.2 mm of rain fell in 20 hours; the River Conwy recorded its highest flow in a 30 -year record, $530.7 \mathrm{~m}^{3} \mathrm{~s}^{-1}$, on the 13 th.

December

Generally a mild and wet month. punctuated by some very windy interludes and several short cold spells. South-westerlies prevailed throughout most of December and the associated sequence of frontal systems resulted in high rainfall totals, in the west especially. Scotland recorded its second wettest December this century. The saturated catchments encouraged very rapid runoff and for much of December the risk of flooding was widespread and persistent, in Scotland particularly.
8th: Torrential rain and hurricane force winds caused widespread problems in the West Country and Wales, disrupting ferry crossings and flights. The NRA called six Red Alerts after 50 mm of rain fell in South Wales. Alerts were also. in force in the South-West and floodplain inundations were reported in south-eastern England.
10-12th: Heavy and continuous rain fell across west-central Scotland, associated with a vigorous depression bringing very moist tropical air from the south-west. The front remained almost stationary over a 48 -hour period and around 170 mm of rain was recorded in the Glasgow area, far exceeding previous maximum December 2-day rainfall totals and corresponding to a return period in excess of 250 years. In the north of the region, 250 mm fell at Loch Sloy during the same period and falls in the $150-250 \mathrm{~mm}$ range were common even at low elevations. Numerous rivers in Scotland recorded peak runoff and flows at this time. Very severe flooding ensued in Strathclyde - its coincidence with centres of population and commercial activities resulted in one of the most financial damaging of modern UK floods, for details see page 29.
26-30th: Heavy and persistent frontal rainfall fell over Wales and south-western England. At Treherbert (West Glamorgan) 223 mm of rain fell in three days and return periods of up to 40 years were estimated for 3or 4-day rainfall totals in the headwaters of the River Severn. At Hereford, the Wye rose to its highest levels since March 1981 and Red Alerts were in force on the Rhondda, Severn, Taff, Wye, Dyfi and Ogmore. The Rivers Torridge, Mole and Exe in Devon burst their banks for the second time in less than two months, again causing extensive disruption. Widespread flooding was also reported from Yorkshire and the Midlands, where rail services were cut.

THE CHICHESTER FLOOD, JANUARY 1994

S.M. TAYLOR
National Rivers Authority, Southern Region

Abstract

Flooding is a familiar phenomenon in the United Kingdom and communities tend to adjust, albeit imperfectly, to the short term disturbance associated with the relatively rapid rise, and subsequent fall, of river levels during a flood event. However, when the principal causative factors are sustained rainfall and exceptionally high groundwater levels flooding can be very protracted and the associated problems outside recent experience. The 1993/94 inundation at Chichester was a remarkable hydrological event which provided a graphic demonstration of the role groundwater can play in generating and sustaining flood conditions. As the spring-fed River Lavant remained above previous maximum levels for an extended period, mitigation of the flood's impact constituted a considerable challenge. This report on the flood, and the response to it, is based upon a paper presented at the British Hydrological Society's Fifth National Hydrological Symposium. ${ }^{1}$.

Introduction

Sussex is no stranger to both tidal and river flooding with its long low lying coastline and many flashy rivers. However, what made the 1993/94 event and the response different was that flooding and communication disruption continued in major urban areas for over a month. Consequently, the response of the National Rivers Authority (NRA), Local Authorities and Emergency Services required careful management and coordination over several weeks.

The Catchment

The River Lavant is a small West Sussex Chalk stream which flows through the centre of the County City of Chichester. The Lavant rises in the folds of the South Downs to the north east of the city with its normal winter spring head somewhere between the villages of Singleton and Charlton. Its initial course is from east to west, it then swings towards the south below Singleton and flows between the villages of Mid and East Lavant. It then drops onto the coastal plain, turning through a further right angle bend in the Westhampnett area to flow west through the city to the sea at Fishbourne. This somewhat tortuous route, controlled partly by geology and partly by man, can be seen in Figure 1.

Although the Lavant is a Chalk stream, just under half of its course on the coastal plain lies over younger Tertiary strata. The catchment drains about one-third of the outcrop of the Chichester Chalk block which is bounded by the Rivers Arun, Ems, the South Downs scarp and the coast. Most of the outcrop in the upper catchment comprises Upper Chalk but the Middle and Lower Chalk is exposed in some locations. The Chalk has a shallow southward dip associated with the Wealden anticline, but the Lavant is particularly affected by the minor features of the Singleton anticline and the Chichester syncline. These east to west trending folds govern the

Figure 1 Location map
upper river course and result in the thick sequence of Lower London Tertiaries which confine the Chalk in the lower valley below East Lavant. Of equal importance in the lower valley are the superficial deposits which take the form of two raised beaches and an extensive alluvial fan derived from the Lavant and on which Chichester sits. These gravels vary from some 10 m in depth in the Westhampnett
area to around 2 m on the southern edge of the fan, (British Geological Survey ${ }^{2}$). The catchment is unique in that the longest continuous Chalk groundwater record in the country (records back to 1836) is located at Chilgrove House in the upper catchment.

Throughout its upper reaches the Lavant flow is governed by the hydrogeology. Although the normal winter spring head lies just above Singleton, following wet winters the spring head may migrate well upstream of the village of East Dean. Conversely, following dry winters the Lavant may disappear altogether; indeed during the period of 1989-93 much of the river was dry. Rainfall records have been collected in the valley from 1834 (again at Chilgrove House), but flow records are available only from 1971. The flows are recorded at Graylingwell gauging station, the location of which can be seen in Figure 1. Normal winter flows average around $2 \mathrm{~m}^{3} \mathrm{~s}^{-1}$.

Winter 1993-94

In October, at the beginning of the 1993/94 winter half-year, groundwater levels in the Chalk Downs were reasonably low (see page 153). However, from then onwards to the end of January the weather was much wetter than average. The monthly areal rainfalls for the Lavant catchment are given in Table 1. The total for the October to January period was

TABLE 1 WINTER RAINFALL IN THE LAVANT CATCHMENT OCTOBER 1993 TO JANUARY 1994

Month	$1961-90$ Average (mm)	Actual (mm)
October	90	140
November	90	80
December	100	200
January	99	190
Total	379	610

some 610 mm against an average of 379 mm (1961-90). Of particular note are the heavy rainfalls in late December and early/mid January where daily totals on one occasion reached almost 50 mm (December 30th) in the lower Lavant valley. Between the 29th September and the 13th October 1993, a period of heavy rainfall totalled 175 mm . This overcame the summer soil moisture deficit, groundwater levels responded rapidly and a small but sustained flow of about $0.1 \mathrm{~m}^{3} \mathrm{~s}^{-1}$ appeared in the Lavant by late October. This was followed by a relatively dry spell until the end of November in which groundwater levels declined slightly, but the flow in the Lavant increased slowly up to around $0.25 \mathrm{~m}^{3} \mathrm{~s}^{-1}$ during this period. From the 28th November until mid-January the area was swept by a

Plate 1 Chilgrove House borehole overflowing, fanuary 1994
Photo: Phillip Turton
series of vigorous depressions which resulted in more than 350 mm of rainfall. 40% of this fell on six days in late December and early January. As a result, groundwater levels rose rapidly, between midDecember and Christmas Day the Chilgrove level rose some 16 -18 metres above the December average. On the 7 th January the well became artesian and remained so for some 18 days (see Plate 1). This is the longest recorded period of artesian overflow. Consequently river flows also rose rapidly from 0.3 $\mathrm{m}^{3} \mathrm{~s}^{-1}$ in mid-December to $1.7 \mathrm{~m}^{3} \mathrm{~s}^{-1}$ on the 29 th and peaking at around $8.1 \mathrm{~m}^{3} \mathrm{~s}^{-1}$ on the 10 th January. Whilst these are not 'large' flows, in a flat bottomed Chalk valley with a channel adjusted to flows of around $2 \mathrm{~m}^{3} \mathrm{~s}^{-1}$ plus a flat impermeable tide-locked coastal plain, the potential for flooding is easy to imagine. The resultant hydrograph from Graylingwell can be seen in Figure 2. (The spot gauged peak exceeds the flow over the weir which was bypassed by out-of-bank flows).

Figure 2 Flows at Graylingwell (River Lavant) and daily rainfall totals at West Dean

Of great interest is the change in response to rainfall of the catchment over the mid-December to January period. Prior to mid-December the Lavant
behaved as a normal Chalk stream with delayed response of river flow and groundwater levels to rainfall. After mid-December this began to change and until late January the response of flow to rainfall was extremely rapid and the catchment became almost flashy. Later analysis by Posford Duvivier ${ }^{3}$, who were contracted to investigate the floods, identified a critical groundwater level at Chilgrove well of 69.5 m aOD. Once this threshold level is reached then the response of the catchment appears to switch from a baseflow dominated flow regime to a more rainfall responsive regime. It has been postulated that this level marks the movement into a zone of much more fissured Chalk which enables a more rapid response to rainfall.
This, plus the fact that by the time this level is reached the whole catchment and valley bottom is saturated, possibly leads to rapid runoff. The full reasons for this phenomenon still remain to be explored, but other independently obtained hydrogeological data may provide additional evidence. Packer testing was carried out on a site some two kilometres to the east of Chilgrove, which indicated a marked change in transmissivity at or around 70 m aOD.

Event Magnitude

Estimation of the fiood return period is difficult, even though there are long period rainfall and groundwater level records available. Whilst the event was characterised by an extremely high flow, it is difficult to determine the significance of short and long term rainfall and of groundwater level. In many respects it is the combined probability of intense rainfall on top of a generally wet winter causing high groundwater levels, which produced the flood. In order to assess the impact of rainfall on groundwater storage, various durations of daily totals were examined. Single daily totals, whilst quite large, do not produce results which explain the flood conditions. Although the impact of a $>25 \mathrm{~mm}$ storm on an already saturated catchment produces a worsening of the conditions, indications are that all groundwater storage must be exhausted first. This produces the two stage catchment response described earlier.

TABLE 2 FREQUENCY OF RAINFALL EVENTS SEPTEMBER 1993 TO JANUARY 1994

Rainfall Duration (days)	Dates of rainfall	Rainfall (mm)	Return Period (years)
1	$01 / 10 / 93$	33.4	2.1
1	$30 / 12 / 93$	25.7	1.3
5	$30 / 12 / 93-03 / 01 / 94$	78.9	2.7
5	$28 / 09 / 93-03 / 10 / 94$	79.0	2.7
10	$28 / 12 / 93-06 / 01 / 94$	132.3	5.7
40	$06 / 12 / 93-14 / 01 / 94$	335.0	38.6
90	$03 / 11 / 93-31 / 01 / 94$	455.6	6.3

[^1]TABLE 3 RELATIVE RANKINGS OF 40- AND 45-DAY CUMULATTVE RAINFALL TOTALS (TOP 10 YEARS 1921 TO 1995) FOR CHILGROVE WITH CORRESPONDING PEAK FLOWS (FROM 1971)

Rank	40-Day	Total (mm)	\cdot 45-Day	Total (mm)	Peak Q* (cumecs)
1	1930	353	1961	375	
2	1994	345	1994	373	8.1
3	1961	341	1930	368	-
4	1935	319	1977	339	
5	1995	315	1935	339	4.4
6	1977	308	1995	332	2.2
7	1971	307	1950	326	0.9
8	1988	306	1928	322	3.9
9	1950	304	1988	321	-
10	1987	298	1971	313	1.2

* Associated with year in 40-day ranking

Examining a 6-month period (October-March) for rainfall totals, the return period appears to be around $30-60$ years. The return period assessment for various durations peak at around the 40-50 day timeframe. (See Table 2.) By taking cumulative 40and 45-day rainfall totals from Chilgrove House, a ranked list of events is obtained. Extending from 40 to 45 days does not change the years involved in 9 out of 10 cases, although the rank position does alter. This can be seen in Table 3. This gives 1993/94 a return period of about 1 in 45 for a 40 day period. For 45 days 1994 increases to 1 in 55. These cumulative rainfall totals perhaps suggest that >300 mm (40 days) or $>320 \mathrm{~mm}$ (45 days) is required before more major problems may occur. At somewhere over 300 mm of rainfall Chalk groundwater storage must be at or around capacity and any storms of significance ($>20 \mathrm{~mm}$) cause an instant peaky flow response. This possibly explains the increased flooding from individual storms in 1993/94.

A variety of return periods have been postulated using combinations of hydrometeorological variables. The results vary from 1 in 17 for the total winter rainfall, through 1 in 100 for the Graylingwell flow, to approaching 400 years for groundwater levels and combined probability analyses. Possibly the best estimate, assuming a stable climate, is that the return period exceeds the 1 in 100 year event.

Previous Records

Searching carefully through the archives it appears that "flood" events have happened in the past every 30 years or so. Undoubtedly the areas of urban flooding were greater in the past, but flows were probably less. The last major event occurred in 1960/61. This was certainly a very severe flood, although no river flow records exist. Much of the flood protection built after 1961 withstood the flood waters of 1994, although the impact of flooding was
different. In the case of $1960 / 61$ water was diverted from the Lavant into gravel workings, subsequently infilled. The site is now occupied by a Sainsbury's superstore, which had burnt down in December 1993! Flooding in the upper valley in particular was exacerbated by the Chalk stream character of the land. Small channels, low banks and low capacity bridges all played a part. Towards the city itself, man's activities on the coastal plain played an even greater part in the events. In the relatively recent past it is almost certain that the Lavant has been diverted from its original path to the sea at the mouth of Pagham Harbour. This accounts for the westward course of the river from Westhampnett through the city to Chichester Harbour. Diversion possibly occurred in Roman times (contemporary rumour). The normally placid or dry nature of the summer Lavant would aid this. Certainly early maps of the city ${ }^{4}$ show the Lavant forming part of the city defence and, presumably, water supply. As time went on the city expanded and a large section of the Lavant source within the city became culverted. The majority of the present culverts date back to Victorian times.

The 1993/94 Flood

First evidence of the flood problems to come surfaced in the Westhampnett area around the 20th of December 1993. Here flooding caused by excessive groundwater discharge began to occur in a lowlying industrial estate set amongst old gravel workings (Church Farm Pit). By the beginning of January springs were appearing throughout the valley and in several locations in the upper Lavant valley the channel could no longer cope with the flow. As the road was the next lowest conduit this began to become a subsidiary channel (see Plate 2). Attendant traffic wash then began to affect adjacent properties. The first widespread flooding occurred on the 4th when the Lavant began to overtop right along the channel length. The most serious occurrences were at Westhampnett where the river burst its banks and flowed off towards the Pagham Rife, and in The Hornet/St Pancras area of the city, where demolition of a building appears to have affected the flood wall. Here serious overtopping occurred. Within the Hornet around twenty properties and business premises were inundated by the overtopping (Plate 3). Around this time the city centre culverts became surcharged. They remained in this state until virtually the end of January.
Meanwhile, in the Westhampnett area overflow from the Lavant had been channelled down the B2141 and across the A285, closing them to traffic, before entering the Church Farm Pit. The industrial estate around the Pit was already flooded with groundwater and the Lavant overflow of around 1.25 $\mathrm{m}^{3} \mathrm{~s}^{-1}$ simply added to the depth of inundation.

Plate 2 Floodwater on the B2141, near Chilgrove, in Ganuary 1994
Photo: NRA, Southern Region

Plate 3 Flooding in The Hornet, Chichester City Centre Photo: NRA, Southern Region

Within 24 hours the available storage in the Pit was used up and the flood of combined groundwater/surface water overflow crossed the A27 (T) and closed it. Next the floodwater closed the B2144, passed under the railway line (where small culverts throttled back the flow) and by the 9th January the flood closed the A259 on its flow path towards Pagham Harbour. Supplemented by groundwater the 1.25 $\mathrm{m}^{3} \mathrm{~s}^{-1}$ flood to the south reached well over $3 \mathrm{~m}^{3} \mathrm{~s}^{-1}$ within a kilometre. Thankfully the number of properties severely flooded was relatively small, less than 50.However, the disruption to commerce and communications (see Cover) was tremendous. At one point the most secure route between Southampton and Brighton by road was via London and the M3, M25 and M23. All the main South Coast roads were closed and on the main South Coast railway line, trains passed through the flood area at walking pace with water passing through the ballast. Road traffic around the city was only reinstated with the provision of military Bailey bridges at key points.

Whilst this major overtopping was occurring every village along the Lavant was suffering widespread flooding and road closures. In The Hornet area of the city the river was periodically rising with rainfall
causing culvert surcharging and overtopping. There was no respite from the flooding for almost a month.

The city centre Victorian culverts were giving cause for increasing concern. The most constricted section has a normal capacity of around $4.5 \mathrm{~m}^{3} \mathrm{~s}^{-1}$. Peak flow at Graylingwell was around $8.1 \mathrm{~m}^{3} \mathrm{~s}^{-1}$ and although around $1.25 \mathrm{~m}^{3} \mathrm{~s}^{-1}$ was out of bank around the city some $5-6 \mathrm{~m}^{3} \mathrm{~s}^{-1}$ was at times passing through the culvert. The culvert was itself in dubious structural condition and at times a spray mist could be seen through fine cracks in the floor of buildings along the culvert line.

During periods of rainfall the river rose, the culvert surcharged and water spilled out upstream of the culvert into the city. Fortunately a combination of relays of 'green goddess' fire appliances and Maine Coastal Pollution Unit pumps kept the city centre flood water confined to a restricted area. Throughout most of January there was an ever present fear of culvert collapse. Had this happened some 1200 properties would have been inundated within 30 minutes, around 10,000 people would have required evacuation and all roads/railways to the east would have been closed. As a result Operation Badminton was conceived by the Emergency Committee. Initially alternative flood water routes both around and through the city were investigated, but gradients and services prevented this. Sandbag channels were planned through the city but they would have virtually isolated the centre. Consequently, evacuation procedures using public service vehicles and fully fitted reception centres in Hampshire were set up. Military, NRA, County/District and Emergency Service staff were available on a 24 hour basis and strategic sandbag stores were located through the city. Had the need arisen the sandbags, plus selected buildings, would have formed the new channel. Whilst precautions were in place the vast majority of city and commercial life continued as normal.

Discussion

Although the areas flooded are low lying and have a history of inundation, there have been no problems since the early 1960s. In the intervening period residents have changed and many properties have been renovated. During past floods it appears possessions were moved upstairs and the residents waited for the water to abate. It is difficult to do this
with central heating systems, fitted furniture/carpets and sophisticated electrical equipment, even if warning is given. The question was raised "why did they not stop it?", as attempts were made to apportion blame and impute negligence. This was particularly so where the flooding was associated with sewer surcharging and contaminated water.

Associated with the direct public response is management of the media. January is traditionally a quiet month for news, Chichester is in easy reach of London for media crews, the imagery of pumps, floods and fire engines is newsworthy and the length of the event in 'commuter land' led to intense media interest. Whilst the Lavant and Chichester event of 1993-1994 was caused by exceptional weather it did not flood a large number of individual properties. However, it was distinguished by its longevity, media interest and disruption to communications.

Response to the event was hindered by the arcane state of Flood Defence and Land Drainage law. Flooding is no respecter of the limits of NRA main river and riparian responsibility. Interestingly, if flooding occurs naturally then there is no liability. If water is diverted from a river and flooding damage subsequently occurs then there is potential for liability and claims of negligence.

NRA investigations are underway to decide upon the optimum route for a Chichester flood alleviation scheme. Three proposals are being given detailed consideration and a decision on the preferred option is expected early in 1996.

References

1. Midgeley, P and Taylor, S M (1975) Chichester 1994: the impact of man on a groundwater flood.
ω Proc. 5th- National Hydrological Symposium. BHS. 3.27 to 35
2. British Geological Survey. (1982) Geological notes and details for $1: 10000$ sheets covering the West Sussex Coastal Plain. BGS.
3. Posford Duvivier (1994) River Lavant flood investigation - commissioned by the National Rivers Authority, Southern Region.
4. Newbury, K (1987) The River Lavant: Chichester's Power from Source to Mouth, Phillimore, 64 pp .

A. R. BLACK*
 Institute of Hydrology

and Clyde River Purification Board

Abstract

Between the 10th and 12th December 1994, major flooding occurred in rivers and urban watercourses across the Glasgow conurbation and its surrounding areas. A slow-moving weather system delivered persistent rain over a 48-hour period and across a wide geographical area, such that previous peak river flow values were exceeded in all major catchments in the region. The River Clyde is thought to have reached its highest level in 150 years, and the total cost of the damage may reach $£ 100$ million. The event is the latest in a series of major floods in Scotland and raises questions concerning land use planning and flood hazard management.

Introduction

Major floods always attract considerable public attention when they occur, and with good justification: whole communities are often rendered helpless while uncontrolled waters inundate property, sometimes taking lives in their wake. With damage attributable to flooding throughout the world increasing despite continuing attempts to mitigate their impact, interest in floods and their consequences is as high as ever. In a global context UK floods are small scale and represent only a limited threat to lives and livelihoods. Nonetheless, they can still pose a considerable threat in terms of their economic and social impact.

Yearbooks in the Hydrological data UK series have documented several of the most significant floods to occur since 1980: the Tywi flood of 1987, the two Truro floods of 1988^{2}, the Tay floods of 1990^{3} and 1993^{4} and, in this volume, the Chichester flood of January 1994. December of the same year also witnessed flooding in Strathclyde which became the latest event in a striking list of floods to occur in Scotland since the late 1980s. Flooding on the Ness in 19895, and on the Spey ${ }^{6}$ and Teith ${ }^{7}$ in several recent winters since 1988, combined with the Tay floods and others elsewhere, has caused significant economic and social impact. As in many other parts of the world, possible links between recent hydrological events and climate change are of considerable concern. Whether there is any common cause of this now well-recognised increase in flooding in Scotland ${ }^{8}$, it accords well with a general steepening in the north-west/south-east rainfall gradient across Britain ${ }^{9}$ which, if sustained, may necessitate significant adjustments in the provision of regional water resource systems and flood defences.

[^2]The flooding which forms the focus of this paper was unusual for its geographical extent, involving all the rivers converging on Glasgow and affecting many of its suburbs. Strathclyde Region accommodates 45% of the Scottish population of 5.1 million, with 1.6 million located in the Glasgow conurbation. The resulting pressure on land resources may be considered to contribute to the risk of flooding problems.

The River Clyde is the main river in the Region (Figure 1), draining a catchment which rises to some 750 m in the Southern Uplands. It includes tributaries on the south side of Glasgow, such as the White Cart Water, which fall steeply from their upland headwaters, and others such as the River Kelvin which, although also having some very steep

Figure 1 Location map
headwaters, flows slowly through a gentle floodplain in its middle course to the north-east of Glasgow. Mean annual rainfall varies strongly with altitude, from around 900 mm on the Ayrshire coast and in the middle Clyde valley, to more than 3000 mm in the mountains to the north of Glasgow; hydrological characteristics also vary strongly in response to these controls. When these diverse characteristics are taken into consideration, the response of the rivers of Strathclyde to the heavy December rainfall in 1994 was especially remarkable.

Rainfall

December 1994 started with generally damp conditions, following on from a November of nearaverage rainfall. At Picketlaw in the centre of the Clyde River Purification Board (CRPB) area, rain fell on each day of December until the 20th. Daily totals were in the range $1-10 \mathrm{~mm}$ on the first six days of the month, but on the 7th and 8th falls of 22.4 and 19.4 mm respectively were recorded. This rainfall ensured that soil moisture levels were at, or approaching, saturation throughout the region.

In the early hours of December 10th, a slowmoving frontal system brought sustained rainfall of $1-5 \mathrm{~mm}$ per hour to the whole of west-central Scotland, lasting for about 48 hours. The rain was produced by an unusually wide warm sector, which caused warm, moist air from the west-south-west to be conveyed continuously across the area. More unusual was the coincidence of this rainfall with a large conurbation and, as the rain continued, fears of flooding grew. A similar meteorological situation had been responsible for the damaging Ness and Conon floods of February 1989^{10} although, on that occasion, the cold front marking the northern limit of the rainfall was much further to the north.

Table 1 shows the daily rainfall totals recorded across the area while in Figure 2 hourly totals are presented for three sites located around the main Glasgow conurbation. The sustained nature of the rainfall is clearly illustrated, and it can be seen that

Figure 2 Hourly rainfall for three selected rainguages. (See Table 1 for location)

TABLE 1 DAILY RAINFALL TOTALS FOR SELECTED CLYDE RPB RAINGAUGES

Raingauge	Catchment	NGR	Alt	Water-day rainfall totals		
			(m aOD)	9th	10th	11th
Dunlop	Annick Water	NS412489	148	16.4	88.0	57.2
Saughall	Irvine	NS598364	222	6.9	80.5	54.3
Leadhills	Clyde	NS888151	384	3.2	65.8	46.5
East Kilbride	Clyde	NS638535	178	9.4	69.0	48.0
Clyde Park SW	Clyde	NS772539	30	3.4	42.2	29.4
Picketlaw	White Cart	NS568515	220	14.0	100.8	57.6
Gleniffer Braes	Black Cart	NS435595	183	22.7	165.4	54.6
Mugdock Park	Allander/Kelvin	NS546779	164	11.9	126.0	53.4
Glenmill	Glazert/Kelvin	NS605794	99	18.1	89.3	57.3
Cumbernauld	KS783770	85	5.4	99.6	52.6	
Dalinlongart TS	Kelvin	NS138813	60	15.8	73.4	23.2
Inveruglas	Eachaig	NN320091	13	36.9	100.4	28.5

[^3]most of the rain fell within the water days (09.0009.00) of the 10 th and 11 th. An assessment of the rarity of the 2-day falls by CRPB staff has produced estimated return periods of over 500 years for some sites. It is striking that five of the six 2-day totals exceeding 140 mm were at sites below 200 m aOD, with two of these being below 100 m .

Hydrological Response, Hydrometric Network Operation and Flood Warning

The first rivers to show a significant response to the rainfall were those draining the urban areas to the south of Glasgow. The CRPB flood warning staff were monitoring the situation, as they had been given a heavy rain warning by the Met Office on the 9th, predicting between 18 and 25 mm of rain in the area.

The first telemetry alarm was received at 11.45 on Saturday 10th December from the White Cart system, and at 15.05 Strathclyde Police were officially warned that flooding was likely in parts of Cathcart, southern Glasgow. The White Cart initially peaked at 18.30 but by 23.00 had started to rise again, eventually peaking at Overlee gauging station at 01.30 on Sunday 11th (Figure 3). The White Cart (84030) has a long history of flooding, a result of the steep nature of the catchment and its tributaries, causing a rapid response to rainfall. However, as the rainfall in this event was of long duration but only moderate intensity, the flows at Overlee in the middle of the catchment were not exceptional, the peak level being more than 0.5 m less than the previous recorded maximum in a record commencing in 1981.
Further down the catchment at Hawkhead (on the outskirts of Paisley), where the peak flows are sometimes less than those at Overlee due to attenuation down the channel, a new maximum flow of 193 $\mathrm{m}^{3} \mathrm{~s}^{-1}$ was recorded at 04.45 on Sunday 12 th, with the recorded level being almost 0.7 m above the previous recorded maximum (Table 2). This clearly demonstrates one of the most striking features of this event, namely that the prolonged duration of the rainfall ensured that the effects were greatest in the larger

Figure 3 Flows at three gauging stations in the Clyde basin (see map)
catchments where peak flows from tributaries were able to coincide. The Black Cart, which joins the White Cart below Paisley, peaked at 18.00 on the 11th (Table 2), the coincidence of the high flows in both rivers causing significant flooding and backing up along the main channels.

Once the warnings had been issued for the White Cart, attention turned to other rivers in the region. It had been observed early on the 10 th that the rivers draining the Campsie Fells to the north of Glasgow were very high, and they were the next group to reach peak levels, typically around 03.00 on the 11 th. Many of these rivers drain into the Kelvin which, because of its large, flat middle section, was unable to effectively drain the coincident peak flows. Flows in the Kelvin were the most notable in the region, with a peak flow at Killermont (84001) gauging station estimated to be more than twice the previous maximum (in a 47 -year record). There were such large volumes of water contained in the floodplain that the river did not finally peak until 07.00 on Monday 12th, more than 48 hours after it had started to rise (Figure 3). The Kelvin caused widespread flooding at Kirkintilloch in the centre of the large floodplain, and downstream in Glasgow, particularly following ingress into a disused railway tunnel (see below).

Further south, the River Irvine peaked in the early hours of Sunday 11 th, causing flooding in the town of Irvine, and localised, minor flooding was also reported on the Ayr. As the rain moved to the southeast, the River Clyde itself began to cause concern. This had been much slower to rise, given its greater catchment area, but quickly made up for lost time and eventually recorded a new maximum at Daldowie (84013) at 06.15 on Monday 12th (Figure 3). Peak levels were more than a metre above any previous level, with the corresponding flows estimated to be between 1100 and $1300 \mathrm{~m}^{3} \mathrm{~s}^{-1}$, compared to a previous maximum of $803 \mathrm{~m}^{3} \mathrm{~s}^{-1}$.

A total of 27 gauging stations recorded new maximum levels during the event, including 17 with 25 or more years of record (Table 2). Several instrument huts were inundated, a number of

Plate 1 Redlees gauging station on the Rotten Calder Photo: Clyde RPB

TABLE 2 MAXIMUM LEVELS/ESTIMATED FLOWS RECORDED IN DECEMBER 1994: CRPB STATIONS WITH $25+$ YEARS OF RECORD*

River	Station	First Yr of Record	Catchment area $\left(\mathrm{km}^{2}\right)$	Day	Time	Max. Level (m)	Flow $\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$	Previous max. level (m)
Duneaton	Maidencots	1966	110	11	23.59	2.126	120	2.092
Clyde	Sills	1957	742	12	10.29	3.113	403	3.023
Clyde	Tulliford Mill	1969	933	12	05.59	2.843	539	2.592
Clyde	Hazelbank	1956	1093	12	06.35	3.778	606	3.637
Nethan	Kirkmuirhill	1966	66	11	21.28	2.239	75.0	2.308
Avon	Fairholm	1964	266	11	01.00	3.173	289	3.916
South Calder	Forgewood	1965	93	12	06.44	1.147	26.5	1.682
Clyde	Blairston	1958	1704	12	05.41	4.038	>830	3.480
North Calder	Calderbank	1968	61	11	20.29	1.684	27.3	1.821
North Calder	Calderpark	1963	130	12	03.11	2.674	134	2.278
Rotten Calder	Redlees	1966	51	11	17.11	1.820	44.6	2.119
Clyde	Daldowie	1963	1903	12	06.15	5.903	>1100	4.815
White Cart	Hawkhead	1963	227	12	04.43	4.372	193	3.680
Black Cart	Milliken Park	1967	103	11	18.14	2.012	110	1.383
Gryfe	Craigend	1963	71	11	05.13	2.618	129	2.007
Glazert	Milton of Campsie	1968	52	11	02.32	2.089	87.1	1.972
Luggie	Condorrat	1966	34	11	19.53	2.280	51.3	1.835
Kelvin	Dryfield	1960	235	12	08.44	5.223	104	4.586
Kelvin	Killermont	1948	335	12	07.11	3.781	>300	2.255
Falloch	Glen Falloch	1970	80	11	02.29	2.665	176	2.746
Endrick	Gaidrew	1963	220	11	06.59	3.606	134	3.744
Leven	Linnbrane	1963	784	13	00.28	2.370	138	2.996
Little Eachaig	Dalinlongart	1968	31	11	02.13	1.271	31.1	2.310
Eachaig	Eckford	1968	140	11	03.28	2.661	126	2.477
Ayr	Catrine	1970	166	10	22.29	2.993	201	2.704
Irvine	Glenfield	1914	218	11	01.23	2.895	437	2.106

* Some of the featured levels and flows result from site investigations and may involve the use of special high flow stage-discharge relations; moderate differences from the routinely processed flows may occur.
cableways were damaged and flood debris created considerable flow measurement difficulties (Plate 1). Some telemetry lines were affected by water, but the system as a whole was robust enough to allow the CRPB staff to keep both the emergency services and the Met. Office advised of conditions as the event progressed. It is worth noting that the rainfall radar station at Corse Hill (to the south of Glasgow) was not working through the event, due to a technical fault, yet sufficient information was available from the CRPB's telemetry raingauges to map the rainfall.

Due to the exceptionally high flows it was not possible to current meter many of the peak river flows, especially where station huts were inundated. However, many new high level gaugings were completed whilst still ensuring that the network continued to operate. Low flow gaugings during the following summer have revealed that some of the stations will require recalibration as a result of channel erosion or deposition during the event.

Flood Impact

It was inescapable that flows of the magnitude experienced would cause considerable impact across the area. Damage was caused to properties over an area more than 50 km wide, as a result of the widespread nature of the rainfall and associated
runoff. Three lives were lost: two when a car plunged from a submerged and collapsed bridge over the Kelvin near Twechar, and the other on the River Nith to the south. At the height of the floods 80 roads were closed and, in central Glasgow, Argyll Line and Glasgow Underground rail services were halted when tunnels became flooded. Ten months were required to repair damage on the Argyll Line - caused by ingress of floodwaters from the Kelvin via a disused tunnel. Water from the same source inundated part of the Scottish Exhibition \& Conference Centre, a hotel (see Plate 2) and the Glasgow Expressway.

Plate 2 Walkway in front of Moat House Hotel, Finnieston, Glasgow, undermined by floodwater Photo: Clyde RPB

Inundation of residential property was one of the most prominent features of the floods, affecting properties of a wide range of ages. Some 700 homes were flooded, with many families needing to be evacuated. Residential flooding was most extensive in Paisley and Kirkintilloch, and occurred in a range of circumstances. In Paisley much of the flooding appears to have occurred as a result of the culvert capacity of a small watercourse being exceeded, causing ponding in a deep hollow. Some houses were inundated by up to 4.5 m of floodwater. Most of the flooding in Kirkintilloch occurred on, and along the margins of, the wide floodplain of the River Kelvin While some flooding is experienced in many winters, historical sources suggest that the levels reached in this event may not have been exceeded for more than 100 years. Much of the damage centred on a 1960s development at Hayston, and the new Summerfield Gate housing estate, where house building was still in progress (Plate 3).

Commercial losses also occurred in Kirkintilloch, mostly at a floodplain industrial estate, and at several locations to the south of Glasgow, eg. a whisky distiller's bonded warehouses, industrial units and a public health laboratory, as a result of the Clyde overtopping its banks. An insurance survey of the damage caused by the floods suggests that total damage costs may approach $£ 100$ million, with $£ 30$ million to be met in insurance claims ${ }^{11}$.

Plate 3 Flooding on the Summerfield Estate, Kirkintilloch Photo: Andrew Black

Discussion

The damage costs associated with these floods suggest that they are probably the most damaging witnessed anywhere in the UK since the 1968 flooding in southern England. The essence of their impact lies in the coincidence of a most unusual near-stationary frontal system with the UK's thirdlargest urban centre. Costs have been incurred in not only economic but also social terms. In common with other floods such as the Tay event of 1993, those social groups least able to withstand the effects of
flooding have often found themselves most exposed to it. In this case the Ferguslie Park area of Paisley, with high unemployment and very low levels of insurance cover, experienced great hardship.
The history of flood defence provision demonstrates that the cost of constructing defences is often worthwhile, in terms of offering protection against the range of losses which flooding causes. However, evidence suggests that many of those defences which have been provided were inadequate in this event. It should be a matter of concern that some of the worst flooding would not have occurred if more thought had gone into the sizing and maintenance of culverts and screens, and the significance of embankments as effective dams. A more coordinated approach may well have been beneficial in this instance.
Elsewhere, however, particularly on land adjacent to the Clyde and Kelvin, the hydrological analysis above suggests that the flood flows experienced were truly exceptional. Such flooding might therefore be considered to lie within the scope of that risk which home-owners and businesses choose to accept when locating in floodplain areas, although it should be noted that the perception of risk does appear to vary according to the length of time since flooding last occurred. Many of these same areas are successfully protected against floods of lower magnitude.
There has been much discussion of the effectiveness of planning controls following these floods; suggestions have been made that much of the flood damage was avoidable. The Scottish Office has subsequently issued a National Planning Policy Guideline ${ }^{12}$, directing planning authorities to exercise the precautionary principle by refusing applications for floodplain development, except where other reasons for granting permission take precedence over flood risk. Difficult decisions may need to be taken in assessing the balance between development and the benefits of limiting the potential for flood damage, and the assessment of risk is therefore as important as ever. A well-founded understanding of the nature of flood risk must be an essential input for future development plans to be made on an informed basis. Particularly in the case of a heavily developed conurbation such as Glasgow, the use of floodplain areas may be an essential part of future development and, with control over the types of development permitted and the level of structural protection offered, an equitable distribution of risk may be achieved. New duties of flood survey, and input into planning procedures, for the forthcoming Scottish Environment Protection Agency (SEPA) will aid the future management of flood risk in Scotland. A survey of the flooding ${ }^{13}$, commissioned by CRPB with Scottish Office backing, will also be valuable in this regard, and can be seen as anticipating the new duties to be given to SEPA.

Climate change remains a relevant issue in considering this event, as with others. Warm, moist air masses may bring rain such as that experienced in

Strathclyde more frequently to north-western Europe under preferred climate change scenarios. Therefore it would seem appropriate for those involved in risk assessment for new flood defence works, the design of structures, etc. to exercise caution in their assessments. A particular hydrological aspect of this flood which deserves further study is the high percentage runoff which was achieved in some catchments. Inspection of data for the responsive White Cart Water catchment ($111.8 \mathrm{~km}^{2}$) above Overlee shows that, in the 36 hours from 15.00 on the 10th December (Figure 3), the estimated runoff equates to 75% of the point rainfall simultaneously received at Picketlaw in the headwaters of the catchment.

Conclusions

The Strathclyde floods of December 1994 were remarkable for their geographical extent, stretching 50 km across a major conurbation, and for the severity of flooding with some 700 homes and many business properties flooded. The unusually persistent rainfall resulted in previous river flow records being exceeded in all river basins around Glasgow, in both small and large catchments.

In a large conurbation, where development pressures are sure to continue in the foreseeable future, risk assessment is vital in order that floodplain management can offer widely acceptable solutions to the threat of flooding. Through monitoring and research, the role of the hydrologist must be to ensure that the relevant decisions are made on a fully informed basis.

Acknowledgement

Thanks to Marjory Roy of Edinburgh University for providing details and interpretation of meteorological aspects of the event.

References

1. Frost, J R and Jones, E C (1988) The October 1987 flood on the River Tywi. 1987 Yearbook; Hydrological data UK series, Institute of Hydrology, 23-29.
2. Acreman, M C (1989) Hydrological analysis of the Truro floods of January and October 1988. 1988 Yearbook, Hydrological data UK series, Institute of Hydrology, 27-33.
3. Marsh, T J and Bryant, S J (1991) 1990-a year of floods and drought. 1990 Yearbook, Hydrological data UK series, Institute of Hydrology, 25-37.
4. Black, A R and Anderson, J L (1994) The Great Tay Flood of January 1993. 1993 Yearbook, Hydrological data UK series, Institute of Hydrology, 25-34.
5. Inglis, T (1989) River flows and flood warning. Proceedings, East Highland Floods Symposium, Dingwall, October 1989, Paper A3.
6. Sprott, W C and McKenna, E (1992) River Spey flooding in 1989 and 1990 and subsequent recommendations. Paper presented at joint IWEM/SHG/SHSG meeting, Perth, 31 March 1992.
7. Evans, T E, Smith, T M and Gill, B (1995) Flood management of upper Teith basin, above Callander. Proceedings, BHS Fifth National Hydrology Symposium, Edinburgh, • 1995, Black, A R and Johnson, R C (eds), British Hydrological Society.
8. Grew, H and Werritty, A (1995) Changes in flood frequency and magnitude in Scotland 1964-92. Proceedings, BHS Fifth National Hydrology Symposium, Edinburgh, 1995, Black, A R and Johnson, R C (eds), British Hydrological Society.
9. Anon (1995) Hydrological Review in: 1994 Yearbook, Hydrological data UK series, Institute of Hydrology, 3-20.
10. Roy, M G (1989) Meteorological conditions. Proceedings, East Highland Floods Symposium, Dingwall, October 1989, Paper A1.
11. Flooding in Glasgow \& Ayrshire. Alexander Howden Group Ltd Report.
12. Planning and flooding (1995) National Planning Policy Guideline, The Scottish Office Environment Department.
13. Clyde RPB (1995) The 10th-12th December 1994 flood event - Floodplain mapping: Factual report. Babtie Group report to Clyde RPB.

LONG RIVER FLOW RECORDS

Hydrometric data are the foundations upon which water management is built. The lack of any long term trend in most lengthy rainfall, river flow (Figure 1) and groundwater level series in the United Kingdom serves to underpin water management strategies and operational procedures designed to mitigate the problems caused by flooding or drought. The resilience of these strategies has been brought into question both by the magnitude of the departures from average conditions over the last decade and the broad similarity between recent climate patterns and a number of favoured climate change scenarios.

The inherent variability of the UK climate implies that any short term trends need to be treated with caution. A temporary shift in the preferred tracks of rain-bearing Atlantic frontal systems, for instance, can produce significant perturbations in hydrometric time series. These can easily assume an exaggerated significance given the very limited length of most UK river flow and borehole records. Rainfall data series provide a much longer historical perspective around 2000 raingauges were operational by 1880 and are useful in hindcasting hydrometric series. However, reservoirs and aquifers are replenished, and rivers sustained, not by rainfall directly but by that proportion which remains after allowing for evaporative losses.

Although in global terms the UK maintains a relatively dense network of flow measurement stations (around 1250), it is less well blessed in terms of the length of flow records. This is especially true of those datasets which have been systematically archived to allow general access and analysis. For monitoring sites incorporated in the National River Flow Archive (NRFA) the average record length is less than 23 years and fewer than 15 stations offer sensibly continuous records of more than 50 years. A substantial proportion commence in the 1960 s, a period of intense network growth in much of the UK - and their ability to fully characterise runoff variability is necessarily limited.

Figure 1 Five-year running mean plots for the River Thames (naturalised flows used)

Until recently, the Rivers Thames and Lee were alone on the NRFA in having records extending back to the nineteenth century. In 1993 the Institute of Hydrology instigated a programme to acquire additional long runoff records, most hitherto not formally held on national or regional archives. Many such records have been referenced in the literature and some measuring authorities, notably the Thames Region of the NRA, have collated important datasets. Most, however, tend to be less continuous and of a lower hydrometric quality than their modern counterparts. Nonetheless, they provide a valuable opportunity to explore historical runoff variability and identify significant trends.

In order to capitalise fully on these important series it is essential to critically review the likely data accuracy and appraise, at least qualitatively, temporal changes in artificial influences and their impact on the flow regime. Data precision and consistency is a major problem with many early hydrometric records. In the twentieth century instrumentation and data acquisition facilities have improved but Man's influence on river flow regimes has become increasingly pervasive. In many areas, the complex pattern of water utilisation has a profound effect on runoff patterns. These effects are compounded by the less perceptible impacts of land use change; most such changes defy easy quantification.

An important milestone was passed in 1994 with the incorporation into the NRFA of a long monthly flow series for the Wendover Springs; the earliest extant monitoring site in the UK. Flows are currently measured at a thin-plate weir gauging station operated by British Waterways. Their utility is greatly enhanced by the existence of an 1841-97 dataset derived from a count of the monthly total of lockages which fed water from the Wendover Arm to the main Grand Union Canal; the possibility exists of extending the record back to 1793. Lockage counts can introduce significant errors into flow assessments but the Wendover series does capture the main elements of runoff variability (see Figure 2)

Figure 2 Five-year running mean plot of the Wendover Springs flow
over a period with few, if any, other sensibly continuous records. Unfortunately, the Wendover Arm fell into disuse and, being constructed largely in Chalk, began to leak badly around the 1880s. Eventually, after a period of substantial underregistration of runoff, the monitoring site was abandoned. It will be apparent that considerable curatorial skills, and a commitment to rigorous data quality appraisal are an essential pre-requisite if historical series of this type are to be fully exploited.

The need for critical reviews of historical series are not confined to little-used or recently acquired series. A major rainfall/runoff modelling exercise using flows for the River Thames - one of the most widely used records in the world - revealed that the long recognised underestimation of historical low flows at Teddington Weir (now superseded by the Kingston ultrasonic gauging station - see page 66) is of a greater magnitude than previously thought ${ }^{1}$. Artificial influences on the Thames regime are considerable and have changed substantially through time. Attempts to monitor the major abstractions have been reasonably successful and the underestimation is in large part a consequence of leakage through the old weir complex and lockages. Once the conventional adjustments for such losses are increased to a more realistic level, the severity of recent drought episodes (especially those of 1976
and 1989-92) relative to their historical counterparts increases significantly.

Table 1 lists some recently acquired lengthy runoff records. These have been incorporated in the NRFA but until further validation has been undertaken and details of the origin, and method of derivation of the individual series, are fully documented such datasets will be released on a restricted basis only.

The potential effects of global warming on UK hydrological conditions has focused attention on the need for continuing and careful hydrometric monitoring to help determine the extent and magnitude of any departures from the historical norm - and to assess the relative contribution of climate and man to any associated regime changes. Despite the shortcomings of many early series, most of which are to be expected with hydrometric series of long vintage, preliminary analyses has revealed an interesting measure of spatial coherence regarding a number of early very dry, or very wet, episodes (for example, over the $1850-70$ period). At other times spatial variability appears substantial and the NRFA wishes to extend its regional coverage of datasets covering the pre-1950 period particularly. Further lengthy records, whether of springs, runoff, river levels, well levels or bourne flow occurrences, would be welcomed and holders of such data are invited to contact the National Water Archive Office (see page 135).

TABLE 1 RECENTLY ACQUIRED LONG RUNOFF SERIES

River	Station	NGR	Catchment Area	Length of Record	Comments
Loch Leven	17806	NT171993	158.3	1855-1993	Derived loch inflows (monthly)
Wendover Springs at Wendover Wharf	39801	SP869083	9.5	1841-1897	Monthly flows based on lockages at Tringford
Sutton Poyntz Spring at Sutton Poyntz	44814	SY707844	11.3	1858-1970	Gauged 'spot' monthly flows
Havant and Bedhampton Springs at Havant	42812	SU712062	93.0	1908-1992	Derived monthly flows
Rickford Spring at Rickford	53810	ST487592	2.1	1931-1969	Gauged daily flows
Langford Spring at Langford	53811	ST466593	1.0	1931-1969	Gauged daily flows
Tyne Reservoir Group	23820	NY960760	96.2	1904-1957	Monthly yields for a group of reservoirs
Tributary of Endon Bk Deep Hayes Reservoir	28805	SJ961534	9.8 .	1915-1964	Naturalised monthly flows

Reference

1. Littlewood, I G and Marsh, T J (1995) A reassessment of the monthly naturalised flow
record for the River Thames at Kingston since 1883, and the implications for the relative severity of historic droughts. Regulated Rivers (in press).

Computation and Accuracy of Gauged Flows

Gauged flows are generally calculated by the conversion of the record of stage, or water level, using a stage-discharge relation, often referred to as the rating or calibration. Stage is measured and recorded against time by instruments usually actuated by a float in a stilling well. The instrument records the level either digitally, on a solid state logger, less commonly on punched tape, or continuously by pen and chart. At the majority of the gauging stations in the United Kingdom provision is made for the routine transmission of river levels directly to the processing centre, by telephone line or, less generally, by radio; on occasions satellites have been used to receive and re-transmit the radio signal. The rapid growth in the use of the public telephone network for the transmission of river level and flow data is enabling hydrometric data acquisition to proceed on a near real-time basis in most areas. Typically, levels are recorded at 15 -minute intervals and stored onsite for overnight transmission to allow the initial processing to be completed on the following day. Normally, both digital and analogue recording devices are deployed at gauging stations to provide a measure of security against loss of record caused by instrument malfunction.

The stage-discharge relation is obtained either by installing a gauging structure, usually a weir or flume with known hydraulic characteristics, or by measuring the stream velocity and cross-sectional area at points throughout the range of flow at a site characterised by its ability to maintain the relationship.

The accuracy of the processed gauged flows therefore depends upon several factors:
i. accuracy and reliability in measuring and recording water levels,
ii. accuracy and reliability of the derived stagedischarge relation, and
iii. concurrency of revised ratings and the stage record with respect to changes in the station control.
Flow data from ultrasonic gauging stations are computed on-site where the times are measured for acoustic pulses to traverse a river section along an oblique path in both directions. The mean river velocity is related to the difference in the two timings and the flow is then assessed using the river's crosssectional area. Accurate computed flows can be expected for stable river sections and within a range in stage that permits good estimates of mean channel velocity to be derived from a velocity traverse set at a series of fixed depths.

Flow data from electromagnetic gauging stations may also be computed on-site. The technique requires the measurement of the electromotive force
(emf) induced in flowing water as it cuts a vertical magnetic field generated by means of a large coil buried beneath the river bed, or constructed above it. This emf is sensed by electrodes at each side of the river and is directly proportional to the average velocity in the cross-section.

British and International Standards are followed as far as possible in the design, installation and operation of gauging stations. Most of these Standards include a section devoted to accuracy, which results in recommendations for reducing uncertainties in discharge measurements and for estimating the extent of the uncertainties which do arise.

The National River Flow Archive exists to provide not only a central UK database and retrieval service but also an extra level of hydrological validation. To further this aim, staff at the Institute of Hydrology liaise with their counterparts in the water industry on a regional basis and, by visiting gauging stations and data processing centres, endeavour to maintain the necessary knowledge of local conditions and problems which is essential to help identify and rectify anomalous flow data.

Scope of the Flow Data Tabulations

River flow data are presented in two parts. In the first, daily mean gauged flows are tabulated for 49 gauging stations; daily naturalised flows are also tabulated for the River Lee (page 63) and River Thames (page 66). Monthly flow data for a further 163 gauging stations are given in the second part. The featured gauging stations have been selected to give a broad geographical coverage and to typify a wide range of catchment types found throughout the United Kingdom. A map (Figure 9) is provided on page 42 to assist in locating the gauging stations featured in this section.

For each gauging station, basic reference information is given together with comparative average and extreme river flow and rainfall figures based upon the archived record.

Explanatory notes precede the two sets of tables and are provided to assist in the interpretation of particular items. The notes relating to the daily flow tables are given in the following section; those relating to the monthly data are given on page 93.

Part (i) - the daily mean flow tabulations

Station Number

The gauging station number is a unique six-digit reference number which serves as the primary identifier of the station record on the River Flow Archive. The first digit is a regional identifier being 0 for mainland Britain, 1 for the islands around Britain
' and 2 for Ireland. This is followed by the hydrometric area number given in the second and third digits. Hydrometric areas are either integral river catchments having one or more outlets to the sea or tidal estuary or, for convenience, they may include several contiguous river catchments having topographical similarity with separate tidal outlets. In Britain they are numbered from 1 to 97 in clockwise order around the coastline commencing in north-east 'Scotland: Ireland has a unified numbering system from 1 to 40 , commencing with the River Foyle . catchment and circulating clockwise; not all Irish hydrometric areas, however, have an outlet directly on the coast.

The numbers and boundaries of the United Kingdom hydrometric areas are shown in the frontispiece.

The fourth, fifth and sixth digits comprise the number, usually allocated chronologically, of the gauging station within the hydrometric area. Where the leading digit, or digits, are zero they may be omitted giving rise to apparent four or five-digit reference numbers.

- Measuring Authority

The abbreviation references the organisation responsible for the provision of flow data to the River Flow Archive. A list of measuring authority codes together with the corresponding names and addresses for organisations currently contributing data to the National ' River Flow Archive appears on pages 172 and 173.

Grid Reference

The initial two-letter and two-figure codes each designate the relevant 100 kilometre National Grid square or Irish Grid square; the standard six-figure map reference follows.
Note: Irish Grid references - which are italicised have only one prefix letter but it is common practice to precede it with the letter I to make the identification clear.

Catchment Area

The surface catchment area, in the horizontal plane, draining to the gauging station in square kilometres. There are a few gauging stations where, because of geological considerations, or as a result of water transfers - for instance, the use of catchwaters to increase reservoir yields - the actual contributing area may differ appreciably from that defined by the topographical boundary. In consequence, the river flows whether augmented or diminished, may cause the runoff (as a depth in millimetres) values to appear anomalous.

First Year

The year in which the station started producing daily mean flow data, usually the first year for which data are held on the River Flow Archive. Earlier data,
often of a sporadic nature or of poorer quality, may occasionally be available from the measuring authorities or other sources.

Level of Station

The level of the station is, generally, the level of the gauge zero in metres above Ordnance Datum, or above Malin Head Datum for stations in Northern Ireland. Although gauge zero is usually closely related to zero discharge, it is the practice in a few areas for an arbitrary height, typically one metre, to be added to the level of the lowest crest of a measuring structure to avoid the possibility of false recording of negative values by some digital recorders. Station levels are stored to the nearest 0.1 m on the Archive.

Maximum Altitude

The level to the nearest metre of the highest point in the catchment.

Table of daily mean gauged (or naturalised) discharges

The mean flow in cubic metres per second (abbreviated to $\mathrm{m}^{3} \mathrm{~s}^{-1}$ and sometimes also referred to as 'cumecs') in a water-day, normally 09.00 to 09.00 . The naturalised discharge is the gauged discharge adjusted to take account of net abstractions and discharges upstream of the gauging station.

Throughout the River Flow Data section flows are given to four significant figures.

Peak Flow: The highest flow in cubic metres per second for each month. The day of peak generally refers to the water-day but the calendar day has also been used, particularly in Scotland. Normally the peak flow corresponds to the highest fifteen-minute flow where water levels are recorded digitally, or the highest instantaneous flow associated with maximum stage where analogue recorders are used.

Runoff: The notional depth of water in millimetres over the catchment equivalent to the mean flow for the month as measured at the gauging station. It is computed using the relationship:

$$
\begin{aligned}
& \text { Runoff in } \mathrm{mm}= \\
& \frac{\text { Average Flow in Cumecs } \times 86.4 \times \mathrm{n}}{\text { Catchment Area }\left(\mathrm{km}^{2}\right)}
\end{aligned}
$$

where n is the number of days in the month. The runoff total is rounded to the nearest millimetre.

Runoff is computed on the basis of naturalised flows (see 'Factors Affecting Runoff') for the minority of catchments where daily, or monthly, naturalised flows are available.

Rainfall: The rainfall over the catchment in millimetres for each month. Each areal rainfall total is derived from a one kilometre square grid of rainfall values generated from all available daily and
monthly rainfall data. A computer program calculates catchment rainfall by averaging the values at the grid points lying within the digitised catchment boundary. Validation procedures allow for the rejection of obviously erroneous raingauge observations prior to the gridding exercise. The bulk of the rainfall data are provided by the Meteorological Officet. Where, as for instance in some small mountainous catchments, raingauges are few and their siting and exposure are not ideal, great precision in the areal rainfall estimates cannot be expected.

Statistics of monthly data for previous record

Only complete monthly records are used in the derivation of the average, low and high values of river flow, runoff and rainfall. The rainfall and runoff statistics are normally directly comparable but full equivalence will not obtain where the pattern of missing data differs between the archived rainfall and runoff data sets.

Where applicable, a guide to the amount of missing data is given following the section heading. Some slight variations from the statistics held by the measuring authorities may occur; these may be due to the different methods of computation or the need for uniformity in presentation.

Summary statistics

Current year flow statistics are tabulated alongside the corresponding values for the previous record. Where appropriate, the current year figures are expressed as a percentage ${ }^{\star}$ of the preceding average.

Mean Flow: The average of all available daily mean flows during the term indicated.

Lowest Daily Mean: The value and date of occurrence of the lowest mean flow in cubic metres per second in a water-day during the term indicated. In a record in which the value recurs, the date is that of the last occasion.

River flow measurement tends to become more. imprecise at very low discharges. Very low velocities, heavy weed growth and the insensitivity of stagedischarge relations combine with the difficulty of accurately measuring limited water depths to reduce the accuracy of computed flows. The reliability of both the lowest daily mean flow and the 95 per cent exceedance flow (see below) as representative measures of low flow must, therefore, be considered carefully and the values used with caution in view of the increasing proportional variability between the natural flow and the artificial influences, such as abstractions, discharges and storage changes as the river flow diminishes.

[^4]Peak: The peak flow in cubic metres per second during the term indicated. The date of occurrence, normally the water-day, is also indicated. Generally, the peak flows are derived from the record of monthly instantaneous maximum flows stored on the River Flow Archive.

Note: The peak flows submitted to the NRFA are of variable quality. The primary sources of nationally archived flood data are the UK Flood Event Archive, the Peaks-over-Threshold Floods Database (see page 136) and the Flood Studies Report ${ }^{1}$.
10% exceedance: The flow in cubic metres per second which was equalled or exceeded for 10 per cent of the specified term - a high flow parameter which, when compared with the mean may give a measure of the variability, or 'flashiness', of the flow regime. The 10 per cent exceedance value is computed using daily flow data only for those years with ten days, or less, missing on the River Flow Archive.
50% exceedance: The flow in cubic metres per second which was equalled or exceeded for 50 per cent of the specified term - the median value. The same conditions for completeness of the annual records apply as for the 10 per cent exceedance flow.

95\% exceedance: The flow in cubic metres per second which was equalled or exceeded for 95 per cent of the specified term - a significant low flow parameter relevant in the assessment of river water quality consent conditions. The same conditions for completeness of the annual records apply as for the 10 per cent exceedance flow.

Factors Affecting Runoff (FAR)

An indication of the various types of abstractions from, and discharges to, the river operating within the catchment which alter the natural flow is given by a standard set of abbreviated descriptions. In Part (ii) - the monthly flow data - each description is shortened to a code letter. An explanation of the abbreviated descriptions and the code letters is given overleaf. With the exception of the induced loss in surface flow resulting from underlying groundwater abstraction, these codes and descriptions refer to quantifiable variations and do not include the progressive, and difficult to measure, modifications in the regime related to land-use changes.

Except for a small set of gauging stations for which the net variation, i.e. reservoir storage changes and/or the balance between imports and exports of water to, or from, the catchment, is assessed in order to derive the 'naturalised' flow from the gauged flow, (see page 38), the record of individual abstractions, discharges and changes in storage as indicated in the code above is not held centrally.

[^5]
CODE EXPLANATION

N Natural, i.e., there are no significant abstractions and discharges or the variation due to them is so limited that the gauged flow is within 10 per cent of the natural flow at, or in excess of, the 95 per cent exceedance flow.

Storage or impounding reservoir. Natural river flows will be affected by water stored in a reservoir situated in, and supplied from, the catchment above the gauging station.

R Regulated river. Under certain flow conditions the river will be augmented from surface water and/or groundwater storage upstream of the gauging station.

Public water supplies. Natural river flows are reduced by the quantity abstracted from a reservoir or by a river intake if the water is conveyed outside the gauging station's catchment area.

Groundwater abstraction. Natural river. flow may be reduced or augmented by groundwater abstraction or recharge. This category includes catchments where minewater discharges influence the flow regime.

Effluent return. Outflows from sewage treatment works will augment the river flow if the effluents originate from outside the catchment.

Industrial and agricultural abstractions. Direct industrial and agricultural abstractions from surface water and from groundwater may reduce the natural river flow.

H Hydro-electric power. The river flow' is regulated to suit the need for power generation.

ABBREVIATED DESCRIPTION

Natural within 10 per cent at the 95 per cent exceedance flow.

Reservoirs in catchment.

Augmentation from surface water and/or groundwater.

Abstraction for public water supply.

Flows influenced by groundwater abstraction and/or recharge.

Augmentation from effluent returns.

Flow reduced by industrial and/or agricultural abstraction.

Regulation for HEP.

Station and catchment description

A short commentary providing a guide to the characteristics of the station, its flow record and the catchment it commands; refer to page 176 for an explanatory listing of the abbreviations and acronyms used. The principal objectives of this summary information are to assist data users in the selection of gauging station records appropriate to their needs and to assist in the interpretation of flow variability at individual gauging stations particularly where the natural flow pattern is significantly disturbed by artificial influences.

A comprehensive set of gauging station and catchment descriptions is provided in the 'Hydro-
metric Register and Statistics 1986-90' (see page 174). Further details of the net impact of abstractions and discharges on river flow patterns are given in: Gustard, A., Bullock, A. and Dixon, J.M. 1992. Estimating Low River Flows in the United Kingdom. Institute of Hydrology Report number 108.

Comment

A summary of any important factors influencing the accuracy of the current year's flow data specifically; for instance, the reconstruction of a gauging station or the use of extrapolated stage-discharge relations during periods of very low or very high flows.

STATIONS FOR WHICH DAILY OR MONTHLY DATA ARE GIVEN IN THE RIVER FLOW SECTION

Station	river name and station name	SEE
NUMBER		page
3002	CARRON AT. SGODACHAIL	94
D 3003	OYKEL AT EASTER TURNAIG	44
4001	CONON AT MOY BRIDGE	94
6008	ENRICK AT MILL OF TORE	94
D 7002	FINDHORN AT FORRES	45
D 8006	SPEY AT BOAT O BRIG	46
8007	SPEY AT INVERTRUIM	94
9001	DEVERON AT AVOCHIE	95
10002	UGIE AT INVERUGIE	95
11001	DON AT PARKHILL	95
D 12001	DEE AT WOODEND	47
12006	GAIRN AT INVERGAIRN	95
13007	NORTH ESK AT LOGIE MILL	96
14001	EDEN AT KEmback	96
D 15006	tay at ballathie	48
15011	LYON AT COMRIE BRIDGE	96
16003	RUCHILL WATER AT CULTYBRAGGAN	96
16004	EARN AT FORTEVIOT BRIDGE	97
17001	CARRON AT HEADSWOOD	97
17002	Leven at leven	97
18003	TEITH AT BRIDGE OF TEITH	97
18005	ALLAN WATER AT BRIDGE OF ALLAN	98
18018	KIRKTON BURN AT BALQUHIDDER	98
D 19001	ALMOND AT CRAIGIEHALL	49
20001	TYNE AT EAST LINTON	98
21006	TWEED AT boleside	98
D 21009	TWEED AT NORHAM	50
21012	TEVIOT at hawick	99
21018	LYNE WATER AT LYNE STATION	99
21022	WHITEADDER WATER AT HUTTON	
	CASTLE	99
21024	JED WATER AT JEDBURGH	99
D 22001	COQUET AT MORWICK	51
- 22006	BLYTH AT HARTFORD BRIDGE	100
23001	TYNE AT BYWELL	100
23006	SOUTH TYNE AT FEATHERSTONE	100
23011	KIELDER BURN AT KIELDER	100
24004	BEDBURN BECK AT BEDBURN	101
24009	Wear at chester Le street	101
25001	TEES AT BROREN SCAR	101
D 25006	GRETA AT RUTHERFORD BRIDGE	52
25019	LEVEN AT EASBY	101
26003	FOSTON BECK AT FOSTON MILL	102
-26005	GYPSEY RACE AT BOYNTON	102
D 27002	Wharfe at flint mill weir	53
27007	URE AT WESTWICK LOCK	102
27025	ROTHER AT WOODHOUSE MILL	102
D 27035	AIRE AT KILDWICK BRIDGE	54
D 27041	DERWENT AT BUTTERCRAMBE	55
27042	DOVE AT KIRKBY MILLS	103
27047	SNAIZEHOLME BECK AT LOW HOUSES	103
27050	ESK AT SLEIGHTS	103
27053	NIDD AT BIRSTWITH	103
27071	SWALE AT CRAKEHILL	104
D 28009	TRENT AT COLWICK	56
28015	IDLE AT MATTERSEY	- 104
28018	DOVE AT MARSTON ON DOVE	104
28024	WREAKE AT SYSTON MILL	104

STATION	river name and station name	SEE
NUMBER		Page
28026	ANKER AT POLESWORTH	105
28031	MANIFOLD AT ILAM	105
28039	REA AT CALTHORPE PARK	105
28052	SOW AT GREAT BRIDGEFORD	105
28067	DERWENT AT CHURCH WILNE	106
28082	SOAR AT LITTLETHORPE	106
D 28085	DERWENT AT ST MARY'S BRIDGE	57
29003	LUD AT LOUTH	106
D 30001	WITHAM AT CLAYPOLE MILL	58
30004	PARTNEY LYMN AT PARTNEY MILL	106
30012	STAINFIELD BECK AT STAINFIELD	107
31002	GLEN AT KATES BRIDGE KING	
	STREET	107
31010	CHATER AT FOSTERS BRIDGE	107
32003	HARPERS BROOK AT OLD MILL BRIDGE	107
D 32004	ISE BROOK AT HARROWDEN OLD MILL	59
D 33002	BEDFORD OUSE AT BEDFORD	60
33006	WISSEY AT NORTHWOLD	108
33012	KYM AT MEAGRE FARM	08
33024	CAM AT DERNFORD	108
33027	RHEE AT WIMPOLE	108
33032	HEACHAM AT HEACHAM	109
D 33034	LITTLE OUSE AT ABBEY HEATH	61
34003	BURE AT INGWORTH	109
D 34006	WAVENEY AT NEEDHAM MILL	62
35008	GIPPING AT STOWMARKET	109
36006	STOUR AT LANGHAM	109
37001	RODING AT REDBRIDGE	10
37005	COLNE AT LEXDEN	110
37010	BLACKWATER AT APPLEFORD BRIDGE	110
D 38001	LEE AT FEILDES WEIR	63
D 38003	MIMRAM AT PANSHANGER PARK	64
38021	TURKEY BROOK AT ALBANY PARK	110
D 39001	THAMES AT KINGSTON	65/6
39002	THAMES at days weir	111
39005	BEVERLEY BROOK AT WIMBLEDON	
	COMMON	111
39007	BLACKWATER AT SWALLOWFIELD	111
39014	VER AT HANSTEADS	11
39016	KENNET AT THEALE	112
39019	LAMBOURN AT SHAW	112
D 39020	COLN AT BIBURY	67
39021	CHERWELL AT ENSLOW MILL	112
39023	WYE AT HEDSOR	112
39029	TILLINGBOURNE AT SHALFORD	113
39049	SILK STREAM AT COLINDEEP LANE	113
39069	MOLE AT KINNERSLEY MANOR	113
D 40003	MEDWAY AT TESTON	68
40004	ROTHER AT UDIAM	113
40010	EDEN AT PENSHURST	114
D 40011	GREAT STOUR AT HORTON	69
40012	DARENT AT HAWLEY	114
41001	NUNNINGHAM STREAM AT TILLEY	
	BRIDGE	114
41006	UCK AT ISFIELD	114
41019	ARUN AT ALFOLDEAN	115
41027	ROTHER AT PRINCES MARSH	115
42003	LYMINGTON AT BROCKENHURST PARK	115

STATION	RIVER NAME AND Station name	SEE	STATION	RIVER NAME AND Station name	SEE
number		Page	NUMBER		Page
42004	TEST AT BROADLANDS	115	64002	DYSYNNI AT PONT-Y-GARTH	125
42006	MEON AT MISLINGFORD	116	65005	ERCH AT PENCAENEWYDD	126
D 42010	ITCHEN AT HIGHBRIDGE/ALLBROOK	70	66006	ELWY AT PONT-Y-GWYDDEL	126
D 43005	AVON AT AMESBURY	71	67008	ALYN AT PONT-Y-CAPEL	126
43006	NADDER AT WILTON PARK	116	D 67015	dee at manley hall	81
43007	Stour at Throop mill	116	67018	DEE AT NEW INN	126
43012	WYLYE AT NORTON BAVANT	116	D 68001	WEAVER AT ASHBROOK	82
44002	PIDDLE AT bagGs mill	117	68004	WISTASTON BROOK AT MARSHFIELD	
44009	WEY AT BROADWEY	117		BRIDGE	127
D 45001	EXE AT THORVERTON	72	69006	BOLLIN AT DUNHAM MASSEY	127
45003	CULM AT WOODMILL	117	69007	MERSEY AT ASHTON WEIR	127
45004	AXE AT WHITFORD	117	70004	Yarrow at croston mill	127
46003	DART AT AUSTINS BRIDGE	118	71001	RIBBLE AT SAMLESBURY	128
46005	East dart at bellever	118	71004	CALDER AT WHALLEY WEIR	128
47001	TAMAR AT GUNNISLAKE	118	D 72004	Lune at caton	83
47008	THRUSHEL AT TINHAY	118	73005	KENT AT SEDGWICK	128
48005	KENWYN AT TRURO	119	D 73010	LEVEN AT NEWBY BRIDGE	84
48011	FOWEY AT RESTORMEL	119	74005	EHEN AT BRAYSTONES	128
49001	CAMEL AT denby	119	75002	DERWENT AT CAMERTON	129
D 50001	TAW AT UMBERLEIGH	73	76005	EDEN AT TEMPLE SOWERBY	129
50002	TORRIDGE AT TORRINGTON	119	D 76007	EDEN AT SHEEPMOUNT	85
D 52005	TONE AT BISHOPS HULL	74	76010	PETTERIL AT HARRABY GREEN	129
52007	PARRETT AT CHISELBOROUGH	120	77003	LIDDEL WATER AT ROWANBURNFOOT	129
52010	BRUE AT LOVINGTON	120	78003	ANNAN AT BRYDEKIRK	130
53004	CHEW AT COMPTON DANDO	120	78004	KINNEL WATER AT REDHALL	130
53006	FROME (BRISTOL) AT FRENCHAY :	120	D 79006	NITH AT DRUMLANRIG	86
D 53018	AVON AT BATHFORD	75	80001	URR AT DALBEATTIE	130
D 54001	SEVERN AT BEWDLEY	76	81002	CREE AT NEWTON STEWART	130
D 54002	aVON AT EVESHAM	77	81003	LUCE AT AIRYHEMMING	131
D 54008	TEME AT TENBURY	78	82002	DOON AT AUCHENDRANE	131
54012	TERN AT WALCOT	121	83005	IRVINE AT SHEWALTON	131
54019	avon at stareton	121	D 84005	CLYDE AT BLAIRSTON	87
54020	PERRY AT YEATON	121	84016	LUGGIE WATER AT CONDORRAT	131
54022	SEVERN AT PLYNLIMON FLUME	121	85001	Leven at Linnbrane	132
54024	WORFE AT BURCOTE	122	D 85003	FALLOCH AT GLEN FALLOCH	88
54034	DOWLES BROOK AT DOWLES	122	90003	NEVIS AT CLAGGAN	132
54038	TANAT AT LLANYBLODWEL	122	D 93001	Carron at new kelso	89
55008	WYE AT CEFN BRWYN	122	94001	EWE AT POOLEWE	132
55013	ARROW AT TITLEY MILL	123	95001	INVER AT LITTLE ASSYNT	132
55014	LUGG AT BYTON	123	96001	halladale at halladale	133
55018	FROME AT YARKHILL	123	101002	MEDINA AT UPPER SHIDE	133
55023	WYE AT REDBROOK	123 * $3 \times$	D 201005	CAMOWEN AT CAMOWEN TERRACE	90
D 56001	USK AT CHAIN BRIDGE	79	201007	BURN DENNET AT BURNDENNET	
56013	YSCIR AT PONTARYSCIR	124		BRIDGE	133
57008	RHYMNEY AT LLANEDERYN	124	D 203010	BLACKwaterat maydown bridge	91
58009	EWENNY AT KEEPERS LODGE	124	203012	BALLINDERRY AT BALLINDERRY	
60002	COTHI AT FELIN MYNACHDY	124		BRIDGE	133
60010	TYWI AT NANTGAREDIG	125	203020	MOYOLA AT MOYOLA NEW BRIDGE	134
D 62001	TEIFI AT GLAN TEIFI	80	D 203028	agivey at white hill	92
63001	YSTWYTH AT PONT LLOLWYN	125	205004	LAGAN AT NEWFORGE	134
64001	DYFl AT DYFI BRIDGE	125	205005	RavERNET AT RAVERNET	134

Measuring authority: HRPB
first year: 1977

Grid reference: 29 (NC) 403001
Level stn. (m OD): 15.60

Catchment area ($\mathbf{s q ~ k m}$): $\mathbf{3 3 0 . 7}$
Max alt. (m OD): 998

DAY	Jan	FEB	MAR	APR	MAY	JUN	Jul	AUG	SEP	OCT	NOV	DEC
1	6.893	25.340	3.934	40.830	9.761	1.684	2.832	0.758	4.453	28.870	74.030	4.966
2	5.831	14.330	10.340	43.740	8.669	1.602	2.117	0.753	3.000	26.320	16.010	4.969
3	23.770	9.754	27.010	27.190	6.386	15.870	1.732	0.780	2.613	13.520	7.952	6.402
4	30.700	17.460	79.560	18.130	4.841	14.890	5.766	0.855	3.140	21.720	5.307	7.653
5	18.640	10.610	40.320	26.260	9.775	7.378	21.870	0.803	3.757	12.460	4.509	7.746
6	20.820	6.493	99.790	27.110	6.940	6.581	6.115	0.802	2.642	8.873	5.891	13.590
7	12.630	4.853	54.740	14.730	4.402	15.500	3.061	0.809	2.056	8.673	4.233	18.050
8	6.536	6.427	60.370	10.920	3.351	19.670	2.534	0.762	14.350	7.060	3.404	46.540
9	19.060	32.080	28.140	33.680	2.786	39.100	2.269	0.723	7.834	5.278	3.824	67.590
10	24.360	11.600	74.130	22.590	2.729	11.410	2.163	0.680	42.660	3.810	28.620	81.470
11	13.490	6.002	34.820	16.360	2.644	5.434	1.865	0.635	29.760	3.514	23.080	118.000
12	14.500	4.577	29.540	9.924	2.813	3.971	2.353	0.634	12.850	3.034	19.650	62.670
13	40.630	3.245	46.420	7.004	2.646	2.762	2.058	0.617	7.064	2.556	34.720	22.800
14	33.090	2.224	43.850	5.929	2.201	2.146	1.650	0.608	3.976	2.344	54.900	10.550
15	11.880	2.032	21.200	5.080	1.849	2.678	1.465	0.613	3.013	3.119	34.250	21.670
16	5.916	2.333	10.910	5.948	1.632	3.228	1.526	0.830	2.767	2.515	31.350	21.990
17	30.410	2.919	11.670	5.381	1.512	4.310	1.389	1.460	3.005	2.055	25.870	34.570
18	70.800	2.101	9.771	20.240	1.350	45.460	1.180	1.481	2.490	1.865	21.470	28.100
19	32.060	1.747	7.970	44.190	1.231	14.750	1.052	4.396	3.354	1.656	26.480	42.330
20	86.930	1.692	6.077	39.430	1.132	7.979	1.099	9.048	3.374	1.599	36.700	26.500
21	43.620	1.454	31.170	18.860	1.049	9.961	1.237	4.456	2.585	1.692	14.190	10.080
22	30.640	1.409	151.500	14.990	1.056	16.180	1.185	2.664	2. 169	1.619	7.101	40.980
23	15.310	1.291	82.390	26.530	1.021	8.578	0.985	2.751	2.524	22.440	37.160	70.250
24	39.310	1.462	44.280	13.630	0.984	15.110	0.976	3.303	2.941	13.770	12.520	24.860
25	52.220	1.683	26.840	8.290	0.973	10.220	0.925	3.083	2.231	6.650	14.550	37.430
26	43.770	1.616	13.510	41.080	0.990	5.287	0.934	9.663	29.900	9.067	10.310	21.980
27	34.160	2.010	9.416	34.910	0.907	3.881	0.932	10.680	36.620	12.930	14.430	9.821
28	10.680	1.738	19.480	26.250	0.896	3.192	0.838	37.040	208.700	9.965	32.270	48.050
29	124.400		24.640	40.690	0.927	4.355	0.781	25.130	176.600	11.180	14.580	42.960
30	37.800		17.180	22.670	1.034	4.202	0.732	15.330	113.700	7.763	7.097	27.610
31	28.890		44.700		1.606		0.701	8.072		68.170		12.330
Average	31.280	6.446	37.600	22.420	2.906	10.250	2.462	4.846	24.540	10.520	20.880	32.080
Lowest	5.831	1.291	3.934	5.080	0.896	1.602	0.701	0.608	2.056	1.599	3.404	4.966
Highest	124.400	32.080	151.500	44.190	9.775	45.460	21.870	37.040	208.700	68.170	74.030	118.000
Peak flow	241.70	56.66	254.30	117.80	15.09	89.43	53.37	57.45	303.50	255.80	204.80	244.50
Day of peak Monthly total	29	9	22	26	5	18	5	28	30	31	1	11
(million cu m)	83.79	15.59	100.70	58.11	7.78	26.56	6.59	12.98	63.60	28.17	54.13	85.93
Runoff (mm)	253	- 47	305	176	24	80	20	39	192	85	164	260
Rainfall (mm)	263	67	338	197	30	140	56	104	220	119	157	343

Statistics of monthly data for previous record (Nov 1977 to Dec 1993)

Station and catchment description
40 m wide river section. Flows fully contained except in extreme circumstances (e.g. October 1978). Construction of gabion groynes immediately downstream, in February 1986, has rendered the low flow rating less stable. 100% natural flow regime with little loch storage. Catchment is typical Highland mix of rough grazing and moorland with some afforestation in the middle reaches.

007002 Findhorn at Forres

Measuring authority: HRPB
First year: 1958

Grid reference: $38(\mathrm{NJ}) 018583$ Level stn. (m OD): 6.80

Catchment area (sq km): 781.9 Max att. (m OD): 941

Daily mean gauged discharges (cubic matres per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	Oct	Nov	DEC
1	9.519	53.850	6.502	57.500	35.760	14.240	5.050	3.181	5.120	18.170	65.330	7.000
2	9.048	32.440	7.168	35.430	45.280	9.282	4.425	3.032	4.326	33.730	23.980	6.738
3	8.211	19.600	10.640	24.300	45.030	15.070	4.392	3.116	3.898	35.210	18.330	8.783
4	10.420	21.380	64.970	26.000	34.080	14.390	4.350	20.770	3.902	20.810	14.800	16.430
5	8.968	26.980	119.200	19.960	35.850	9.226	5.058	9.511	4.183	17.680	14.910	8.699
6	31.500	19.780	114.700	18.230	27.310	8.758	5.936	5.544	3.752	11.650	15.290	9.206
7	37.310	14.840	154.800	16.870	21.710	10.570	5.528	4.126	4.094	9.146	11.260	16.500
8	18.390	12.150	159.900	16.180	17.800	8.279	5.846	3.647	6.938	8.712	9.061	12.730
9	14.090	16.210	54.690	15.050	17.060	7.785	6.064	3.425	15.150	7.043	8.683	25.690
10	46.370	18.370	49.370	45.640	25.520	9.186	4.643	3.351	6.898	6.084	25.450	110.500
11	25.740	12.660	71.430	83.150	21.190	6.995	4.362	3.312	6.468	5.383	32.400	115.400
12	22.460	10.970	32.950	57.690	27.850	7.185	4.612	3.248	40.540	5.062	22.040	49.590
13	19.320	9.374	41.860	35.800	24.410	7.193	5.408	3.084	45.440	4.769	25.080	32.820
14	27.180	7.153	108.900	31.970	18.920	6.164	4.355	3.065	16.040	4.542	97.840	16.850
15	19.370	6.778	41.280	32.310	15.030	5.398	3.916	3.031	14.590	4.552	41.410	12.710
16	13.760	8.758	25.630	36.240	11.050	5.989	3.761	3.046	24.130	4.670	23.650	12.060
17	10.780	6.463	20.340	38.530	9.178	5.190	3.548	3.210	33.060	4.497	20.010	29.840
18	48.350	8.995	18.300	36.940	8.135	5.689	3.347	3.741	14.620	4.210	23.130	18.240
19	38.460	6.605	16.880	46.630	6.996	8.201	3.213	3.354	11.260	4.106	41.710	12.950
20	47.140	5.727	14.620	48.370	6.620	5.585	3.175	3.178	35.640	4.072	31.010	12.120
21	94.210	5.793	12.870	48.960	8.270	7.361	3.194	3.789	21.310	6.317	24.320	9.793
22	34.280	5.575	103.500	39.960	10.650	10.480	3.114	3.148	11.440	5.296	16.110	8.801
23	24.270	5.177	128.900	52.330	10.360	11.390	3.028	4.721	8.194	30.200	21.180	38.780
24	16.270	5.645	60.530	81.610	9.427	7.316	2.955	10.180	6.913	20.810	16.800	50.390
25	47.480	4.997	41.720	49.270	8.935	23.780	2.993	4.758	6.182	21.540	11.410	30.030
26	38.680	4.990	28.820	89.800	7.670	14.730	2.989	4.162	5.563	12.760	11.130	18.550
27	38.960	4.920	21.550	96.850	6.920	10.030	2.978	5.614	5.563	8.927	10.220	12.510
28	20.950	4.647	34.250	112.900	6.876	7.551	2.907	12.480	5.894	14.210	9.109	25.650
29	87.820		41.880	70.820	7.360	6.588	2.860	11.740	6.281	14.790	8.330	37.620
30	75.800		86.370	44.540	8.312	6.602	2.802	6.392	9.497	17.930	7.372	27.600
31	35.450		100.900		17.900		2.879	6.405		23.910		29.090
Average	31.630	12.740	57.270	46.990	17.980	9.207	3.990	5.334	12.900	12.610	23.380	26.570
Lowest	8.211	4.647	6.502	15.050	6.620	5.190	2.802	3.031	3.752	4.072	7.372	6.738
Highest	94.210	53.850	159.900	112.900	45.280	23.780	6.064	20.770	45.440	35.210	97.840	115.400
Peak flow	209.70	71.59	222.10	189.60	57.70	33.78	9.00	58.12	93.80	56.07	150.80	184.70
Day of peak	29	1	8	26	3	25	8	4	12	23	14	11
Monthly total (million cu m)	84.72	30.83	153.40	121.80	48.16	23.86	10.69	14.29	33.43	33.76	60.60	71.17
Runoff (mm)	108	39	198	156	62	31	14	18	43	43	78	91
Rainfall (mm)	149	54	199	105	23	70	33	67	96	78	85	129

Statistics of monthly data for previous record (Oct 1958 to Dec 1993)

Station and catchment description
50 m wide river section in a mobile gravel reach which necessitates frequent recalibration of low flow rating. Flows contained under cableway up to 3.8 m . Adequately gauged to bankfull. 100% natural catchment with minimal surface storage. Other than a narrow agricultural coastal plain the catchment drains the Monadhliath Mountains with an extensive blanket peat cover.

008006 Spey at Boat o Brig

Measuring authority: NERPB First year: 1952

Grid reference: 38 (NJ) 318518 Level stn. (m OD): 43.10

Catchment area (sq km): 2861.2
Max alt. (m OD): 1309

Daily mean gauged discharges (cubic metres per second)

DAY ,	JAN	FEB	MAA	APR	MAY	JUN	JUL	AUG	SEP	OCT	NoV	DEC
1	41.030	163.300	39.320	210.300	153.900	46.350	36.730	18.800	24.330	30.630	115.200	35.400
2	41.400	139.700	42.950	163.300	130.700	42.820	32.710	17.770	21.380	46.160	75.970	34.130
3	44.120	101.500	51.250	117.000	127.600	44.430	31.060	18.430	19.910	63.890	62.950	33.850
4	59.850	145.300	124.800	99.290	118.100	50.930	30.120	20.540	20.320	47.820	64.700	46.660
5	51.110	151.600	278.700	81.170	106.500	43.050	33.690	26.460	20.190	45.210	63.810	43.940
6	88.850	106.600	220.900	71.510	100.300	37.990	32.750	23.980	19.450	40.320	63.000	43.680
7	79.400	82.670	311.100	65.840	85.740	39.240	30.020	21.150	20.120	33.910	52.180	68.710
8	57.890	69.320	360.500	63.430	75.850	38.140	28.310	19.230	33.970	30.740	45.100	64.480
9	60.010	68.340	316.000	60.610	66.770	35.970	26.970	18.120	41.870	28.530	44.210	71.980
10	158.800	77.010	230.100	100.400	66.750	39.390	25.870	17.380	32.770	26.670	71.940	145.000
11	112.700	63.840	218.300	170.000	71.520	36.660	25.530	17.050	28.180	24.950	92.900	213.500
12	102.600	56.400	167.500	151.300	72.880	34.710	26.250	16.600	42.800	23.860	7.1 .070	234.200
13	87.510	50.720	151.700	105.900	82.170	34.210	28.180	16.140	77.550	22.900	81.540	166.400
14	99.660	45.380	229.700	90.670	75.650	32.990	26.850	15.720	47.420	22.180	139.200	105.000
15	79.360	43.130	194.900	88.710	64.260	31.830	25.160	15.370	38.750	21.730	139.900	74.470
16	62.430	40.240	146.500	92.670	53.870	31.930	23.570	15.400	74.450	21.330	100.800	61.220
17	52.900	38.860	109.700	99.000	46.960	31.790	22.290	16.050	81.620	20.720	78.970	65.000
18	108.800	39.450	90.020	93.790	42.600	32.060	21.190	16.500	50.590	20.330	69.470	81.870
19	109.200	37.760	76.640	102.900	39.470	34.050	20.400	16.170	43.180	19.940	102.600	64.100
20	105.600	35.810	66.950	109.900	36.700	34.160	20.070	15.640	57.100	20.280	87.620	56.960
21	212.500	34.820	61.340	119.900	35.590	33.750	20.010	15.930	54.570	33.150	81.860	50.030
22	148.900	34.130	157.700	112.300	36.530	34.360	19.840	15.940	40.980	29.770	66.130	43.090
23	114.300	32.750	252.300	146.400	37.410	39.100	19.250	15.720	34.180	142.400	63.090	62.400
24	84.430	32.440	223.300	162.200	37.190	38.030	18.790	19.590	30.580	76.490	63.570	109.400
25	105.500	32.250	177.400	152.600	36.260	54.630	18.860	19.680	28.190	70.570	53.350	85.160
26	105.400	31.710	128.200	167.500	35.100	56.420	19.170	19.540	26.330	69.860	47.730	73.990
27	115.900	32.600	98.080	213.000	33.580	48.600	19.040	21.320	24.940	53.140	44.630	58.520
28	80.440	33.840	94.350	254.800	32.430	43.910	18.420	22.410	24.260	51.190	41.870	56.780
29	149.200		118.500	250.400	32.420	41.100	18.050	33.580	23.670	48.740	39.130	102.300
30	198.700		135.900	211.900	33.670	41.140	17.790	28.140	25.030	50.460	37.240	88.110
31	126.700		230.400		37.750		17.520	26.530		57.730		79.320
Average	98.230	65.050	164.700	131.000	64.720	39.460	24.340	19.380	36.960	41.790	72.060	81.280
Lowest	41.030	31.710	39.320	60.610	32.420	31.790	17.520	15.370	19.450	19.940	37.240	33.850
Highest	212.500	163.300	360.500	254.800	153.900	56.420	36.730	33.580	81.620	142.400	139.900	234.200
Peak flow	280.90	194.90	392.70	268.70	182.40	63.98	39.28	36.16	102.10	206.40	192.30	246.90
Day of peak	29	1	8	28	1	25	1	29	17	23	14	12
Monthly total (million cu m)	263.10	157.40	441.10	339.40	173.30	102.30	65.19	51.92	95.79	111.90	186.80	217.70
Runoff (mm)	92	. 55	154	119	61	36	23	18	33	39	65	76
Rainfall (mm)	157	68	200	101	19	74	35	64	89	91	92	144

Statistics of monthly data for previous record (Oct 1952 to Dec 1993)

Mean	Avg.	86.860	73.980	79.240	68.890	58.160	41.910	38.950	47.050	48.690	69.250	74.960	84.210
flows:	Low	41.080	26.470	35.760	33.580	26.910	17.900	15.530	11.310	14.090	13.350	30.130	31.230
	(year)	1979	1963	1964	1974	1960	1961	1992	1955	1972	1972	1958	1989
	High	164.100	200.500	186.200	135.200	103.400	103.000	79.860	119.600	105.500	153.900	147.000	198.600
	(year)	1993	1990	1990	1979	1968	1966	1980	1956	1965	1981	1984	1954
Runoff:	Avg.	81	63	74	62	54	38	36	44	44	65	68	79
	Low	38	22	33	30	25	16	15	11	13	12	27	29
	High	154	170	174	122	97	93	75	112	96	144	133	186
Rainfall:	Avg.	114	76	87	64	76	75	84	97	96	117	111	117
	Low	38	26	29	19	24	23	20	21	21	30	30	46
	High	267	212	179	128	146	181	158	188	178	205	213	211
Summ	ry st	istics								ors affec	ng runof		
								1994					
				1994		For record eceding 19		As \% of pre-1994		lation	HEP.		
Mean flow	Ow fm 3							109					
Lowest	yearly	ean			44.		1972						
Highest	yearly	ean			82.		1954						
Lowest	month	mean					Aug 1955						
Highest	monthl	mean	164		200.		Feb 1990						
Lowest	daily m			7015		1116	Aug 1955						
Highest	daily m		360		ar 1089.	0017	Aug 1970						
Peak			392		ar 1675.		Aug 1970						
10\% exc	ceedan		149		120.			124					
50\% ex	ceedan				49.			98					
95\% ex	ceedan				19.			95					
Annual	total (m)	ion cum)	220		2030			109					
Ansual	runoff				71			109					
Annual 1961	rainfall	(all averag	(mm) 113		111			102					

Station and catchment description
Lowest station currently operating on the Spey, Cableway rated 65 m wide section with natural control, extreme floods bypass station on left bank. 380 sq km developed for hydro-power with diversions and storage; limited net impact on annual runoff (small loss). Mainly granites and Moinian metamorphics. Geology is some Dalradian with a little Old Red Sandstone. Catchment is mixed with mountain (includes all northern slopes of Cairngorms), moorland, hill grazing, arable and forestry

012001 Dee at Woodend

Moasuring authority: NERPB
First year: 1929

Grid raference: 37 (NO) 635956 : Level stn. (m OD): 70.50

Catchment area (sq km): 1370.0
Max att. (m OD): 1309

Daily mean gauged discharges (cubic matres per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	Nov	DEC
1	21.180	131.300	29.120	90.560	67.850	29.970	15.260	7.883	10.890	10.700	52.050	18.640
2	27.860	67.380	27.390	61.840	69.030	25.180	14.050	6.893	8.985	14.940	35.230	17.810
3	39.940	47.260	30.990	49.620	73.210	29.090	13.900	6.958	8.286	17.610	47.460	30.950
4	45.320	101.700	121.600	50.360	65.150	29.570	13.520	7.245	9.139	14.990	67.940	28.960
5	36.790	110.000	256.300	38.150	61.160	22.550	15.510	8.675	9.306	15.940	59.720	24.740
6	63.780	73.930	182.500	34.430	57.490	19.440	16.010	7.257	8.258	17.520	50.110	32.380
7	53.120	56.000	276.400	31.660	47.080	22.240	12.610	6.478	12.560	15.030	37.650	71.440
8	37.070	47.370	330.000	30.420	41.280	21.030	11.380	6.123	33.590	13.490	33.330	46.300
9	79.930	50.010	125.900	27.630	37.660	19.430	10.720	5.972	32.390	12.160	60.990	48.360
10	156.700	51.600	90.840	40.710	40.400	24.250	10.990	5.761	18.370	11.180	65.660	121.600
11	87.830	39.070	117.500	55.520	40.040	20.470	11.280	5.521	15.740	10.310	70.150	139.700
12	91.650	34.390	66.600	58.460	45.620	19.690	12.100	5.257	18.330	9.788	71.010	68.760
13	67.530	30.670	64.000	44.010	51.170	19.340	14.050	5.062	31.620	9.296	104.700	50.640
14	63.760	26.900	149.500	38.420	44.760	18.620	11.460	5.033	21.060	8.878	109.600	37.300
15	47.310	25.830	71.680	38.530	36.930	16.550	10.580	4.930	17.820	8.639	79.700	31.890
16	38.110	23.900	52.630	48.900	29.970	17.190	9.737	5.008	42.540	8.501	56.840	28.850
17	33.080	20.990	45.740	56.190	25.550	15.380	8.974	5.613	43.990	8.129	47.110	44.760
18	68.680	24.740	40.650	47.970	22.550	15.190	8.298	5.716	27.200	7.972	44.770	40.080
19	65.990	21.850	35.710	48.080	20.340	16.880	7.899	5.139	21.970	7.768	73.120	29.350
20	82.700	20.300	32.030	43.440	18.520	15.740	7.640	4.930	26.810	44.020	48.920	25.590
21	177.600	20.140	28.690	43.650	18.030	16.560	7.740	4.804	26.460	33.720	43.900	21.900
22	70.130	19.190	84.080	45.960	18.960	15.860	7.759	4.648	20.040	39.500	37.440	19.090
23	54.680	18.730	161.500	120.200	20.130	17.600	7.206	11.820	16.900	119.200	35.000	31.080
24	40.760	18.060	73.330	112.200	19.970	16.660	6.939	21.560	14.890	54.160	31.210	45.390
25	49.440	17.640	55.670	89.090	19.010	36.070	6.954	12.190	13.360	61.570	27.590	32.090
26	41.180	17.530	-44.380	99.510	17.890	26.770	7.713	10.510	12.140	43.070	25.730	27.280
27	43.850	17.950	39.840	116.500	16.760	23.570	9.581	10.160	11.200	34.040	23.690	20.840
28	27.940	18.910	63.900	172.900	16.220	20.940	7.485	9.921	10.730	31.060	21.780	29.930
29	75.250		65.200	131.600	16.320	19.940	6.819	13.730	10.400	27.730	20.470	53.840
30	91.880		151.800	91.540	17.140	18.180	6.554	10.340	10.540	32.970	19.140	39.320
31	50.580		-182.600		22.730		6.800	13.510		33.000	-190	30.060
Average	62.310	41.190	99.940	65.270	35.450	21.000	10.240	7.892	18.850	25.060	50.070	41.580
Lowost	21.180	17.530	27.390	27.630	16.220	15.190	6.554	4.648	8.258	7.768	19.140	17.810
Highest	177.600	131.300	330.000	172.900	73.210	36.070	16.010	21.560	43.990	119.200	109.600	139.700
Peak flow	436.70	200.60	537.70	191.00	80.11	55.31	20.68	47.91	82.75	183.50	192.10	
Day of peak Monthly total	9	1	5	28	1	25	6	24	8	23	13	11
(million cu m)	166.90	99.65	267.70	169.20	94.95	54.43	27.43	21.14	48.86	67.12	129.80	111.40
Runoff (mm)	122	73	195	123	69	40	20	15	36	49	95	81
Rainfall (mm)	177	138	139	80	16	57	43	55	83	101	101	111

Statistics of monthly data for previous record (Oct 1929 to Dec 1993)

Mean	Avg,	47.790	40.870	43.830	45.130	35.920	22.240	- 18.320	22.020	25.780	40.240	46.270	48.020
flows:	Low	15.450	13.420	15.160	11.380	12.130	7.340	-6.851	5.141	6.491	6.798	12.230	22.020
	(year)	1940	1947	1973	1938	1946	1940	1989	1984	1972	1972	1983	1976
	High	127.800	104.200	88.680	113.300	85.950	56.080	- 36.710	63.850	71.830	138.200	127.500	108.400
	(year)	1937	1990	1977	1947	1986	1948	1958	1948	1930	1982	1984	1954
Runotf:	Avg.	93	73	86	85	70	42	36	43	49	79	88	94
	Low	30	24	30	22	24	14	13	10	12	13	23	43
	High	250	184	173	214	168	106	72	125	136	270	241	212
Rainfall:	Avg.	120	78	80	70	80	68	87	94	93	121	112	117
	Low	36	10	16	12	21	16	22	13	13	8	22	43
	High	374	216	175	196	179	160	206	185	227	310	320	282
Summ	ary st	stics								affec	gr runof		
								1994					
				1994		or record eding 19		As \% of pre-1994					
Mean flow	($\mathrm{fm}^{3} \mathrm{~B}$							$\begin{gathered} \text { pre-1994 } \\ 110 \end{gathered}$		al to w	in 10\%	percen	e flow.
Lowest	yearly r	san			24.		1973						
Highest	yearly	-an			49.		1982						
Lowest	monthly	mean					1984						
Highest	month	mean			ar 138.2		1982						
Lowest	daily m			22			1976						
Highest	daily m		330		ar 648.		1937						
Peak			537		ar 1133.		1937						
10\% ex	ceedanc				72.			112					
50\% ox	ceedanc				25.			110					
95\% ex	ceedanc							82					
Annual	total (m	ion cu m)	125		1147			110					
Annual	runotf		9		83			110					
Annual	rainfall	(m)	- 110		112			98					
1961	-90 rain	all averag	(m)		110								

Station and catchment description
Cableway rated, fairly stable natural control. Present station, built in 1972, replaced earlier station (flow records from 1929 , chart records from 1934) on same reach. Cairnton; c / m measurements at Woodend established by Capt. McClean. Earlier staff gauge record dates from 1911 . No regulation, little natural storage, minor abstractions. Dalradian and Moinian metamorphic along most of the valley, flanked by igneous intrusive. Mountain, moorland, forestry, pastoral and some arable in the valley bottom.

015006 Tay at Ballathie

Measuring authority: TRPB First year: 1952

Grid reference: 37 (NO) 147367
Level stn. (m OD): $\mathbf{2 6 . 3 0}$

Catchment ares (sq km): 4587.1
Max alt. (m OD): 1214

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	JuL	AUG	SEP	OCT	NOV	DEC
1	141.400	541.200	110.100	570.400	300.900	70.070	125.400	43.320	95.060	71.920	177.300	169.200
2	151.700	408.000	112.300	465.800	282.300	69.430	97.570	42.710	79.020	65.860	160.100	167.200
3	211.100	350.300	164.800	410.700	270.200	96.150	90.150	44.010	91.280	62.690	208.000	207.100
4	229.100	445.800	323.600	377.100	264.100	93.960	90.310	60.440	102.800	57.150	251.500	220.900
5	174.100	460.000	639.000	341.700	277.400	83.620	95.940	61.660	86.270	54.610	254.800	217.200
6	194.600	412.100	487.300	308.500	270.100	81.210	88.980	58.240	75.930	53.430	213.200	230.500
7	206.800	371.700	642.300	251.100	243.800	73.810	83.570	54.810	75.500	58.260	165.700	338.700
8	159.700	335.800	925.100	289.900	224.700	72.030	75.480	50.910	90.220	61.210	155.700	361.200
9	192.900	333.400	686.900	262.800	213.700	70.650	72.390	49.130	110.900	62.170	318.200	406.600
10	427.100	306.100	559.900	251.600	202.600	69.750	70.930	49.050	94.600	60.490	301.000	686.400
11	347.300	281.400	613.300	242.500	181.600	65.870	72.630	48.210	107.200	57.990	271.600	1061.000
12	384.600	265.300	486.000	216.600	181.200	62.350	76.000	46.770	109.600	57.150	297.500	783.400
13	392.900	227.800	458.100	209.800	164.300	60.870	74.590	43.540	109.700	59.130	412.600	598.900
14	377.900	216.800	689.900	221.100	110.900	49.110	68.020	41.390	95.850	58.660	509.500	453.900
15	288.700	187.300	549.400	210.300	103.900	50.220	65.210	41.370	94.700	60.210	463.500	362.900
16	249.100	165.300	482.600	219.000	129.700	55.350	63.780	41.060	92.370	60.730	376.600	335.400
17	221.200	153.000	403.200	212.700	129.100	57.090	58.560	42.270	84.910	63.790	357.800	364.300
18	278.300	149.200	337.100	196.200	124.300	59.410	56.420	40.910	83.290	61.230	374.500	340.100
19	293.900	142.700	302,200	192.400	123.900	88.300	54.760	40.140	78.800	54.310	440.600	317.500
20	329.600	131.500	241.600	182.700	124.900	79.690	57.250	40.550	81.890	347.700	390.800	283.800
21	477.500	114.900	236.400	172.200	111.500	89.440	58.580	39.830	69.320	207.800	363.300	238.300
22	373.500	106.800	397.900	175.800	119.500	91.800	57.120	39.640	65.700	191.400	306.500	227.700
23	370.800	102.000	699.400	248.900	123.900	87.810	54.030	142.600	62.740	297.500	297.000	270.900
24	313.900	100.600	541.600	287.700	120.200	97.440	50.800	106.800°	51.330	188.600	270.100	310.400
25	368.400	99.570	420.500	299.200	116.400	170.100	53.110	81.080	47.310	274.600	257.900	274.400
26	349.200	92.730	342.100	352.700	112.400	172.800	55.020	75.570	43.350	232.600	255.100	275.000
27	369.800	86.940	313.100	395.800	94.970	147.900	51.080	74.220	42.570	197.700	233.500	249.300
28	322.900	101.100	360.500	486.000	74.030	127.600	46.690	124.900	42.300	173.300	223.300	328.800
29	397.100		391.000	424.600	69.330	134.500	44.700	130.200	43.140	175.000	205.200	410.600
30	421.000		493.300	346.600	67.160	133.100	43.570	107.100	47.240	197.100 .	181.400	407.800
31	349.000		750.500		69.100		42.100	114.400		219.600		358.400
Average	302.100	238.900	456.800	294.100	161.400	88.710	67.570	63.770	78.500	124.000	289.800	363.200
Lowest	141.400	86.940	110.100	172.200	67.160	49.110	42.100	39.640	42.300	53.430	155.700	167.200
Highest	477.500	541.200	925.100	570.400	300.900	172.800	125.400	142.600	110.900	347.700	509.500	1061.000
Peak flow	588.60	660.90	1112.00	702.70	324.30	186.50	132.10	253.80	134.10	489.10	616.30	1156.00
Day of peak	29	1	8	1	1	25	1	23	8	20	14	11
Monthly total (mitlion cu m)	809.10	578.00	1224.00	762.30	432.20	229.90	181.00	170.80	203.50	332.10	751.10	972.70
Runoff (men)	176	126	267	166	94	50	39	37	44	72	164	212
Rainfall (mm)	230	107	308	114	26	107	47	102	66	129	173	252

Statistics of monthly data for previous record (Oct 1952 to Dec 1993)

Mean	Avg.	255.200	215.300	218.500	155.100	118.800	79.250	68.050	88.180	124.700	190.600	211.100	241.400
flows:	Low	92.900	52.560	69.380	75.210	45.500	42.080	31.390	14.700	40.660	39.690	73.190	110.500
,	(year)	1963	1963	1953	1974	1980	1957	1984	1955	1955	1972	1993	1989
	High	563.200	661.000	551.600	306.900	321.100	190.400	129.600	286.100	283.900	390.500	407.700	491.400
	(year)	1993	1990	1990	1993	1986	1966	1988	1985	1985	1982	1984	1954
Runotf:	Avg.	149	115	128	88	69	45	40	51	70	111	119	141
	L.ow	54	28	41	43	27	24	18	9	23	23	41	65
	High	329	349	322	173	188	108	76	167	160	228	230	287
Rainfall:	Avg.	167	109	128	75	94	82	93	109	132	151	143	167
	Low	33	29	39	10	24	23	21	14	11	63	38	64
	High	403	353	251	150	214	181	219	250	266	269	311	304
Summ	ary s	tistics								s affe	g runof		
								1994					
				r 1994		For record Feceding		As \% of pre-1994		ervoir(s) ulation	catchm HEP.		
Mean flo	\% $\left(\mathrm{m}^{3}\right.$		210		163.			129		straction	or public	ater sup	
Lowest	yearly	ean			107.		1955			w reduce	by indu	ial and/	
Highest	yearly	mean			215.		1990			cultural	straction		
Lowest	month	mean			14.		ug 1955						
Highest	month	mean	456		961.00		eb 1990						
Lowest	daily m			4022	11.4		ug 1955						
Highest	daily m		1061	11	c 1965.00		Jan 1993						
Peak			1156	11	c 2268.00		Jan 1993						
10\% exc	ceedan		413		321.			128					
50\% exc	ceedan		170		129.			132					
95\% exc	ceedan				43.4			101					
Annual ta	total (m	lion cu m)	664		5166			129					
Annual r	runoff		14		112			129					
Annual r	rainfall	mm)	16		145			115					
1961	-90 rai	fall average	(mm)		142								

Station and catchment description
Velocity-area station with cableway. 90 m wide. The most d / s station on the Tay, records highest mean flow in UK. Since end of 1957,1980 sq. $\mathrm{km}(43 \%)$ controlled for HEP; there was some control prior to this. $73 \mathrm{sq} . \mathrm{km}$ controlled for water supply. Catchment is mostly steep, comprising mountains and moorland; exceptions are lower valleys. Mainly rough grazing and forestry. Geology: mainly metamorphics and granite, but lower 20\% (Isla Valley) is Old Red Sandstone.

019001 Almond at Craigiehall

Moasuring authority: FRPB
First year: 1957

Grid reference: 36 (NT) 165752 Level stn. (m OD): 22.90

Catchment area (sq km): 369.0 Max alt. (m OD): 518

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APA	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	5.853	34.400	25.360	6.704	2.308	1.622	1.295	1.843	1.871	1.581	5.729	2.704
2	6.628	14.500	27.960	5.487	2.515	1.598	1.273	1.136	1.563	3.384	3.554	2.550
3	9.923	9.808	46.140	5.824	2.656	2.119	1.337	1.296	2.157	4.867	3.423	3.915
4	8.755	10.220	26.990	7.362	2.698	1.634	1.758	1.440	2.296	2.577	4.307	3.741
5	17.200	7.520	33.160	10.330	3.229	1.483	1.693	1.084	1.960	1.941	11.570	3.660
6	35.870	6.505	18.130	9.738	3.467	1.535	2.006	0.962	2.924	1.681	6.887	7.483
7	18.500	5.484	16.820	21.570	2.855	1.648	2.191	0.957	4.000	1.549	4.300	8.122
8	9.537	5.474	40.710	21.850	2.302	1.620	1.598	0.991	3.325	1.408	3.204	31.130
9	9.245	5.803	23.070	14.400	2.114	1.581	1.403	1.037	2.683	1.346	3.161	15.770
10	9.945	4.830	18.190	10.000	2.034	1.550	2.301	1.009	3.178	1.397	4.729	50.680
11	7.327	4.335	12.830	7.124	2.034	1.447	2.356	1.000	5.721	1.325	4.822	140.000
12	9.819	3.935	13.440	5.646	1.994	1.447	2.010	1.003	4.302	1.289	5.796	61.620
13	19.870	3.475	26.050	4.595	1.912	1.470	1.961	0.974	3.196	1.284	30.940	18.520
14	22.280	3.262	57.200	4.024	1.788	1.425	1.623	1.010	2.313	1.312	33.090	10.620
15	12.570	3.205	14.750	3.611	1.720	1.464	1.448	1.080	1.905	1.270	18.580	8.416
16	7.560	2.939	12.900	3.325	1.713	2.337	1.242	1.474	1.636	1.245	10.740	7.172
17	5.792	2.774	13.850	3.201	1.702	1.733	1.192	1.416	1.403	1.181	16.200	9.015
18	8.169	2.887	14.180	3.148	1.712	2.352	1.202	1.339	1.333	1.220	31.630	9.117
19	8.396	2.765	10.810	3.132	1.708	1.781	1.203	1.524	1.517	1.248	23.820	15.870
20	8.906	2.551	8.271	2.883	1.714	1.569	0.989	1.460	1.959	1.723	12.940	9.883
21	7.117	2.570	7.565	3.135	1.646	2.305	0.975	1.265	1.540	1.418	8.758	6.216
22	10.180	2.565	14.980	3.847	1.628	2.354	0.957	1.354	1.402	3.795	7.243	4.704
23	15.490	2.436	70.210	4.000	1.666	1.696	0.886	2.321	1.309	15.110	6.664	4.791
24	9.998	2.473	20.300	3.502	1.661	1.937	1.412	1.707	1.180	5.803	4.895	6.508
25	34.340	2.527	11.540	3.724	1.724	1.924	1.129	1.772	1.172	5.875	4.207	10.310
28	35.510	7.882	7.922	4.136	1.705	1.858	1.446	1.616	1.196	4.990	5.069	18.010
27	36.440	65.110	7.111	3.118	1.676	1.748	1.065	1.686	1.205	4.094	4.679	12.120
28	12.800	50.440	7.023	2.850	1.567	1.473	0.909	8.673	1.320	2.979	3.964	38.830
29	12.290		7.311	2.933	1.588	1.341	0.852	8.241	1.387	6.695	3.433	18.310
30	12.780		8.639	2.585	1.677	1.327	0.832	4.000	1.787	7.084	3.034	24.290
31	9.361		10.420		1.667		1.980	2.398		11.840		12.710
Average	14.140	9.738	20.450	6.259	2.012	1.713	1.436	1.905	2.158	3.371	9.712	18.610
Lowost	5.792	2.436	7.023	2.585	1.567	1.327	0.832	0.957	1.172	1.181	3.034	2.550
Highest	36.440	65.110	70.210	21.850	3.467	2.354	2.356	8.673	5.721	15.110	33.090	140.000
Poak flow	70.94	100.80	128.00	32.47	4.01	3.49	4.42	18.77	7.27	26.44	55.03	167.60
Day of peak Monthly total	26	27	14	8	6	16	6	28	11	23	13	11
((l (llion cu m)	37.88	23.56	54.76	16.22	5.39	4.44	3.85	5.10	5.59	9.03	25.17	49.83
Runoff (mm)	103	64	148	44	15	12	10	14	15	24	68	135
Rainfall (mm)	128	81	170	66	16	55	55	66	54	81	107	177

Statistics of monthly data for previous record (Jan 1957 to Dec 1993)

Station and catchment description
The recorder is well sited on a straight even reach with steep banks which have contained all recorded floods. Stable rating over the period of record. Weed growth in summer - some adjustment to stage is required. Low flows substantially affected by sewage effluent especially from Mid Calder. Abstraction at Almondell to feed a canal. A number of storage reservoirs are situated in the catchment. Geology - predominantly Carbonifarous rocks. Land use - mainly rural, Livingston new town and several small mining towns in catchment.

021009 Tweed at Norham

Measuring authority: TWRP First year: 1962

Grid reference: 36 (NT) 898477 Level stn. (m OD): 4.30

Catchment area (sq km): 4390.0 Max alt. (m OD): 839

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APA	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	108.500	264.700	222.000	146.600	47.720	18.620	16.000	26.490	24.310	15.530	68.670	48.100
2	109.900	196.500	181.100	114.000	47.890	20.310	14.130	20.980	20.410	17.370	49.350	45.090
3	159.500	148.000	287.400	97.860	49.430	22.140	13.870	15.960	18.110	32.700	54.790	53.870
4	186.700	210.900	219.800	123.600	59.250	22.450	14.200	19.030	18.540	37.290	63.160	65.420
5	184.500	160.700	436.300	95.790	66.140	20.170	14.480	25.360	19.480	26.050	79.300	66.670
6	390.200	142.700	252.500	87.580	68.100	18.660	15.410	17.120	17.570	22.350	83.260	85.280
7	291.900	128.300	201.200	108.300	52.380	18.180	16.470	14.480	26.600	20.060	63.660	157.800
8	191.900	110.200	222.100	134.500	47.740	17.560	19.130	13.350	25.040	18.710	55.040	436.400
9	201.900	118.900	192.300	127.900	43.200	18.420	15.920	12.960	21.490	17.850	66.770	224.000
10	397.600	95.670	145.400	126.500	40.640	19.570	14.300	12.420	26.230	16.940	90.590	222.200
11	238.300	85.250	134.600	116.800	37.630	17.060	23.620	12.480	26.300	16.210	78.910	632.500
12	288.500	76.460	119.200	108.900	35.540	16.530	22.680	14.450	43.970	15.560	100.600	759.300
13	342.100	69.280	169.900	92.080	32.930	16.190	18.850	12.830	41.160	15.980	266.100	306.300
14	378.600	63.690	181.200	. 77.300	31.060	15.210	16.750	11.370	36.180	16.630	332.300	197.500
15	229.200	59.860	144,400	67.500	29.530	15.050	16.020	11.040	29.280	14.890	320.800	155.700
16	172.800	56.010	121.400	61.400	28.940	19.050	14.020	11.000	28.900	14.780	194.000	134.200
17	137.500	52.160	111.300	58.460	27.480	22.820	13.240	11.280	24.610	14.710	162.900	142.100
18	131.700	49.800	106.100	53.260	26.460	20.350	12.570	12.290	21.230	14.300	225.500	175.500
19	146.600	47.830	96.090	49.930	26.280	21.140	12.200	14.940	20.050	14.030	285.100	138.200
20	122.200	45.350	82.160	46.130	25.240	21.920	11.830	11.980	24.020	30.330	199.600	119.700
21	134.200	43.680	74.130	44.620	24.300	19.220	12.070	11.920	33.030	55.510	145.000	97.930
22	110.300	41.310	90.200	60.080	23.520	25.930	13.680	11.260	27.050	42.700	125.100	84.190
23	139.000	39.650	265.000	73.540	22.760	21.980	11.810	16.100	22.170	105.400	128.300	80.560
24	106.800	38.950	207.900	88.920	21.990	19.600	11.110	41.670	19.740	69.020	98.330	88.920
25.	141.000	38.040	140.100	69.440	21.500	19.680	11.110	66.160	18.580	50.960	83.810	87.760
26	159.100	42.670	107.100	78.250	23.200	20.710	11.360	36.640	17.500	43.030	75.390	98.520
27	258.500	259.600	90.570	60.940	22.850	23.850	16.370	29.900	16.520	38.630	67.840	107.000
28	156.000	386.700	110.000	54.020	20.790	25.010	15.610	29.010	15.600	34.640	60.790	179.600
29	132.000		117.000	59.200	20.210	19.030	14.630	37.300	15.440	32.050	55.470	249.100
30	155.800		94.070	54.530	19.410	17.090	11.870	32.220	15.460	34.340	51.530	335.100
31	118.600		188.000		18.750		12.500	25.610		84.290		236.200
Average	194.200	109.700	164.900	84.600	34.290	19.780	14.770	20.630	23.820	31.700	124.400	187.400
Lowest	106.800	38.040	74.130	44.620	18.750	15.050	11.110	11.000	15.440	14.030	49.350	45.090
Highest	397.600	386.700	436.300	146.600	68.100	25.930	23.620	66.160	43.970	105.400	332.300	759.300
Peak flow	532.60	468.50	555.00	168.30	79.11	32.14	30.88	92.79	62.86	137.70	456.10	976.90
Day of peak	10	27	5	1	6	27	11	25	12	23	13	12
Monthly total (million cu m)	520.20	265.50	441.50	219.30	91.83	51.28	39.55	55.26	61.74	84.92	322.40	502.00
Runoff (mm)	119	60	101	50	21	12	9	13	14	19	73	114
Rainfat (mm)	138	81	122	69	19	50	45	71	57	74	118	165

Statistics of monthly data for previous record (Jan 1962 to Dec 1993)

Station and catchment description
Lowest station on River Tweed. Velocity-area station at very wide natural section. Complex control. Moderate seasonal weed growth effects on rating. Reservoirs in headwaters have only a small impact on the flow regime - monthly naturalised flows available. Geology: mixed but principally impervious Palaधozoic formations. Moorland and hill pasture predominates; improved grasslands and arable farming below Melrose.

022001 Coquet at Morwick

Measuring authority: NRA-NY First year: 1963

Grid reference: 46 (NU) 234044 - Level stn. (m OO): 5.20

Catchment area (sq km): 569.8
Max alt. (m OD): 776

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	JuL	AUG	SEP	OCT	Nov	DEC
1	11.470	11.210	38.430	8.879	3.756	1.853	1.261	1.702	1.604	1.663	5.900	4.277
2	23.210	11.310	25.310	6.694	3.829	1.879	1.302	1.603	1.511	1.879	4.119	4.114
3	37.970	19.680	34.200	5.595	5.061	1.966	1.458	4.883	1.444	3.851	5.291	4.071
4	25.310	37.390	19.750	5.365	4.257	2.253	1.452	10.860	1.473	4.650	6.540	5.693
5	64.120	18.730	23.070	5.348	3.942	2.066	1.475	3.656	1.464	3.552	12.710	5.693
6	46.850	12.610	13.610	6.106	4.076	1.845	1.365	2.323	1.418	2.860	10.070	5.750
7	32.840	10.340	11.450	7.386	3.595	1.818	1.289	1.888	1.438	2.392	6.950	7.435
8	18.370	9.010	10.460	12.530	3.311	1.691	1.299	1.693	1.668	2.180	5.769	26.230
9	22.910	8.599	10.140	11.520	3.350	1.715	1.253	1.553	1.745	2.041	11.040	12.270
10	46.040	7.456	8.401	13.320	3.675	1.716	1.257	1.545	1.622	1.915	10.900	9.444
11	30.810	6.839	8.328	9.787	3.306	1.666	1.254	1.503	1.610	1.836	10.790	10.470
12	37.870	6.273	7.753	9.968	3.019	1.621	1.211	1.458	2.107	1.750	22.200	11.120
13	41.980	5.722	9.726	8.240	2.841	1.547	1.171	1.400	7.637	1.686	32.060	7.992
14	31.340	5.256	8.393	6.619	2.725	1.467	1.139	1.352	5.007	1.647	40.340	6.724
15	17.290	5.075	7.744	5.813	2.638	1.414	1.091	1.310	3.786	1.640	32.310	6.073
16	13.670	4.885	6.960	5.312	2.578	1.685	1.083	1.251	4.723	1.664	15.770	5.959
17	11.080	4.548	6.687	4.990	2.489	2.148	1.048	1.294	3.276	1.634	15.510	5.861
18	15.960	4.709	6.431	4.709	2.448	2.089	1.021	1.314	2.494	1.560	30.650	10.660
19	13.110	4.505	6.147	4.526	2.376	1.864	1.088	1.244	2.241	1.574	34.440	9.841
20	10.350	4.364	5.377	4.330	2.370	1.695	1.048	1.227	4.327	4.208	21.710	7.340
21	11.190	4.112	5.034	4.229	2.324	1.701	1.053	1.195	7.185	5.075	13.710	6.057
22	8.960	3.873	4.955	5.540	2.365	1.720	1.119	1.184	4.013	5.015	10.760	5.217
23	8.279	4.039	10.510	12.610	2.230	1.613	1.091	1.301	2.970	9.948	9.119	4.864
24	7.434	4.052	11.060	9.680	2.180	1.589	1.049	1.510	2.491	5.469	7.894	5.334
25	9.161	4.222	7.210	6. 228	2.094	1.724	1.110	4.979	2.259	3.960	6.974	5.179
28	9.144	12.700	5.813	5.829	2.076	1.576	1. 109	3.372	2.091	3.353	6.377	6.175
27	16.490	89.790	5.435	4.715	2.031	1.488	1.107	2.437	1.892	3.064	5.788	8.036
28	9.382	60.160	7.011	4.342	2.003	2.199	1.074	2.252	1.787	2.771	5.189	18.170
29	7.916		7.202	4.816	1.936	0.975	0.978	2.077	1.682	2.604	4.801	22.160
30	9.488		5.839	4.197	1.907	0.913	0.992	1.894	1.694	3.442	4.506	24.130
31	7.740		8.014		1.864		1.016	1.744		9.432		17.980
Average	21.220	13.620	11.110	6.974	2.860	1.717	1.170	2.226	2.689	3.236	13.670	9.365
Lowest	7.434	3.873	4.955	4.197	1.864	0.913	0.978	1.184	1.418	1.560	4.119	4.071
Highest	64.120	89.790	36.430	13.320	5.061	2.253	1.475	10.860	7.637	9.948	40.340	26.230
Poak flow	107.20	115.80	46.67	24.63	6.07	6.54	1.57	23.42	13.66	14.65	52.48	53.06
Day of peak Monthly total	5	27	3	23	3	28	4	4			15	8
(million cu m)	56.83	32.96	29.76	18.08	7.66	4.45	3.13	5.96	6.97	8.67	35.44	25.08
Runoff (mm)	100	58	52	32	13	8	6	10	12	15	62	44
Rainfall (mm)	103	77	60	56	17	36	26	90	67	65	96	77

Statistics of monthly data for previous record (Nov 1963 to Doc 1993-incomplete or missing months total 0.6 yoars)

Station and catchment description
Volocity-area station with 34 m wide concrete Flat V weir (informal design, approx. 1:20 cross-slope) made with pre-cast segments (installed 1973). Cableway. Fairly straight section with high banks. Replaced earlier station at Guyzance. Responsive natural regime, occasional impoundment by landowner. A predominantly upland catchment draining from the Cheviots with some afforestation. Largely Carboniferous Limestone and Devonian Igneous series.

025006 Greta at Rutherford Bridge

Measuring authority: NRA-NY	Grid reference: 45 (NZ) 034122
First year: 1960	Level stn. (m OD) : 223.00

First year: 1960

Daily mean gauged discharges (cubic motras per second)

DAY	Jan	FEB	MAR	APR	MAY	JuN	JUL	AUG	SEP	OCT	NOV	DEC
1	1.171	11.900	5. 186	5.990	0.549	0.232	0.123	0.088	0.937	0.662	2.665	0.587
2	5.757	2.964	5.956	2.542	0.477	0.240	0.126	0.080	0.342	3.898	1.335	0.558
3	8.441	3.350	13.730	2.538	0.439	1.061	0.130	0.233	0.222	4.679	3.939	3.865
4	3.437	10.530	3.726	3.045	0.555	1.309	0.131	0.510	0.228	1.655	3.105	9.445
5	2.144	3.391	6.123	6.879	0.971	0.527	0.127	0.201	0.314	1.212	7.625	9.355
6	2.446	2.685	2.520	4.635	1.078	0.348	0.177	0.137	0.522	0.744	2.191	7.650
7	2.206	1.935	2.429	4.227	0.582	0.294	0.172	0.116	0.764	0.575	1.407	11.150
8	1.550	2.461	4.477	7.034	0.436	0.241	0.147	0.110	0.667	0.509	1.240	12.130
9	12.760	. 1.874	2.269	2.931	0.365	0.257	0.133	0.103	1.361	0.424	3.582	2.838
10	4.685	1.216	1.338	2.637	0.331	0.263	0.120	0.113	5.040	0.367	3.927	4.192
11	3.375	0.950	4.327	1.475	0.297	0.229	0.124	0.119	3.657	0.322	3.034	9.761
12	11.770	0.776	5.315	1.602	0.273	0.204	0.123	0.109	7.002	0.292	6.697	5.675
13	11.580	0.542	4.871	1.218	0.249	0.186	0.110	0.096	3.793	0.271	11.000	7.748
14	5.516	0.455	5.921	0.827	0.243	0.165	0.103	0.086	6.359	0.251	15.980	2.662
15	2.555	0.472	2.411	0.662	1.434	0.153	0.097	0.082	3.994	0.274	6.947	2.169
16	1.454	0.468	1.841	0.574	0.979	0.172	0.095	0.086	1.665	0.465	3.635	2.262
17	0.999	0.460	2.308	0.517	0.479	0.210	0.095	0.939	0.863	0.375	8.036	7.297
18	2.362	0.456	3.448	0.477	0.350	0.194	0.094	0.373	0.592	0.306	10.860	5.632
19	1.731	0.445	2.228	0.449	0.301	0.192	0.092	0.195	0.534	0.342	7.560	3.579
20	1.431	0.388	1.585	0.685	0.276	0.182	0.090	0.148	1.165	3.332	6.988	2.142
21	1.191	0.347	1.314	1.172	0.306	0.307	0.093	0.119	1.799	2.760	2.548	1.387
22	1.462	0.363	1.783	4.935	5.528	0.354	0.095	0.103	0.877	9.940	1.761	0.987
23	4.355	0.353	19.370	10.300	1.382	0.203	0.089	0.257	0.552	8.509	1.436	0.921
24	2.772	0.337	3.504	2.455	0.714	0.183	0.121	0.364	2.779	2.440	1.368	1.412
25	10.740	0.334	4.465	1.709	0.490	0.242	0.134	0.726	5.963	1.610	1.068	2.262
26	15.080	0.761	1.786	1.467	0.404	0.195	0.106	0.291	1.878	1.542	0.954	7.967
27	11.370	20.260	2.136	0.876	0.349	0.167	0.115	0.324	1.028	1.225	0.843	6.486
28	2.688	11.380	2.438	1.589	0.311	0.155	0.102	0.286	0.709	1.172	0.738	28.090
29	7.808		1.673	1.111	0.287	0.134	0.088	0.208	0.539	0.934	0.660	13.980
30	3.122		2.050	0.681	0.251	0.126	0.091	0.167	0.446	1.834	0.615	14.810
31	1.772		12.060		0.225		0.097	0.229		5.447		7.249
Average	4.830	2.923	4.342	2.575	0.674	0.291	0.114	0.226	1.886	1.883	4.125	6.331
Lowest	0.999	0.334	1.314	0.449	0.225	0.126	0.088	0.080	0.222	0.251	0.615	0.558
Highest	15.080	20.260	19.370	10.300	5.528	1.309	0.177	0.939	7.002	9.940	15.980	28.090
Peak flow	37.61	31.83	40.56	22.35	14.25	3.67	0.24	2.22	12.56	20.77	24.21	46.30
Day of peak	26	27	3	23	22	3	6	17	12	22	18	28
Monthly total (million cu m)	12.94	7.07	11.63	6.67	1.81	0.75	0.31	0.60	4.89	5.04	10.69	16.96
Runoff (mm)	150	82	135	78	21	9	4	7	57	59	124	197
Rainfall (mm)	160	78	141	100	41	38	34	82	114	90	128	212

Statistics of monthly data for previous record (Oct 1960 to Dec 1993)

Station and catchment description chidth 19.2 m , low flow crest 3 m broad. Theoretical rating with check gaugings. Responsive, natural regime.
Compound Crump profile weir, total width 19.2 m , low flow crest Aillstone Grit.

027002 Wharfe at Flint Mill Weir

Meosuring authority: NRA-NY
First year: 1936

Grid reference: 44 (SE) 422473
Level stn. (m OD): 13.70

Catchment area (sq km): 758.9 Max alt. (m OD): 704

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	Jul	AUG	SEP	OCT	NOV	DEC
1	23.300	33.620	33.200	69.210	6.244	3.114	3.057	3.449	12.190	4.691	33.550	7.232
2	58.220	30.450	25.760	30.820	6.079	3.319	2.911	3.283	7.397	23.460	16.350	7.300
3	86.670	29.700	59.360	26.440	5.752	3.359	2.794	3.269	5.144	29.160	19.330	10.130
4	56.510	43.100	31.930	58.550	5.716	4.821	2.718	7.848	4.401	14.170	23.540	38.500
5	38.620	30.690	27.310	29.020	6.565	4.419	2.586	6.212	6.573	8.639	47.880	40.760
6	36.490	24.250	21.360	27.960	12.290	3.708	2.668	3.720	5.817	6.521	26.230	38.880
7	23.770	21.760	54.720	26.120	7.750	3.871	2.948	3.052	12.240	6.363	15.990	36.390
8	18.310	17.230	70.260	49.590	6.300	4.060	2.939	2.812	8.677	7.729	12.490	52.450
9	26.480	30.800	44.940	41.630	5.346	3.482	2.676	2.579	7.877	7.818	47.400	28.140
10	49.370	16.990	23.290	27.610	4.795	3.346	2.502	2.464	16.440	5.576	34.680	69.240
11	26.170	13.280	20.240	21.280	4.718	3.415	2.450	2.401	27.360	5.193	21.430	42.790
12	40.680	11.320	21.540	17.140	4.486	3.244	2.534	2.470	36.600	5.108	37.030	55.850
13	45.080	9.385	64.690	15.090	4.188	3.072	2.360	2.230	34.550	4.788	76.780	42.410
14	53.940	8.784	59.900	11.840	4.225	2.916	2.312	2.037	16.280	4.525	119.000	31.740
15	35.490	8.431	35.300	9.794	5.570	2.785	2.235	1.993	38.470	4.296	69.440	20.310
16	21.050	8.585	22.330	8.344	5.000	2.705	2.182	1.989	24.100	4.168	42.290	24.210
17	15.640	8.051	20.780	7.714	4.687	2.736	2.114	2.310	11.490	4.048	31.690	18.690
18	22.040	8.135	21.620	7.712	4.179	2.624	2.140	5.562	7.799	3.914	36.830	47.160
19	36.400	7.604	24.100	7.375	3.819	2.685	2.116	3.381	7.314	3.879	62.360	33.430
20	30.580	7.062	15.800	7.450	3.677	5.793	2.068	2.858	6.819	4.289	67.370	21.410
21	27.750	6.751	12.450	8.148	4.255	10.100	2.085	2.781	9.834	6.536	33.760	15.820
22	24.040	6.454	21.440	10.280	5.265	12.730	2.069	2.448	7.211	13.030	22.420	12.460
23	79.220	6.464	82.050	25.240	6.341	4.903	1.982	2.986	5.348	52.320	17.650	10.350
24	30.280	6.285	62.330	19.270	4.607	4.252	2.760	6.837	5.371	26.030	14.770	8.926
25	98.550	7.826	37.780	12.650	3.964	4.328	3.176	30.840	19.540	34.180	12.390	16.380
28	73.450	25.060	25.230	15.430	3.665	4.059	2.603	10.860	13.440	30.990	10.580	38.650
27	103.300	76.170	16.880	10.340	3.452	4.552	2.961	7.076	8.024	17.310	10.070	56.600
28	52.000	59.040	22.230	9.417	3.375	6.098	2.507	20.410	6.278	17.390	9.237	139.000
29	46.450		17.880	10.300	3.295	3.856	2.451	9.742	5.352	13.390	8.693	102.000
30	50.060		13.860	7.394	3.208	3.274	2.304	6.095	4.754	15.100	7.472	72.470
31	26.620		14.260		3.107		3.527	6.578		35.960		55.370
Avorage	43.760	20.120	33.060	20.970	5.030	4.254	2.540	5.567	12.760	13.570	32.960	38.550
Lowest	15.640	6.285	12.450	7.375	3.107	2.624	1.982	1.989	4.401	3.879	7.472	7.232
Highest	103.300	76.170	82.050	69.210	12.290	12.730	3.527	30.840	38.470	52.320	119.000	139.000
Pook flow	146.50	100.70	171.10	127.70	18.48	32.68	4.19	61.71	61.60	77.59	182.70	191.00
Day of peak	23	27	23	1	6	21	24	25	12	23	13	15:28
Monthly total (million cu m)	117.20	48.67	88.54	54.36	13.47	11.03	6.80	14.91	33.06	36.34	85.42	$1 \div \cdot \cdot 103.30$
Runotf (mm)	154	64	117	72	18	15	9	20	44	48	113	136: .
Rainfall (mm)	174	84	155	91	40	49	55	93	111	106	150	-203.

Statistics of monthly data for previous record (Oct 1955 to Dec 1993)

Station and catchment description
Broad-crested masonry weir 47 m wide with a current meter cableway $1.5 \mathrm{~km} \mathrm{u} / \mathrm{s}$ (moved to new US station at Tadcaster in 1990). Insensitive at low flows. Level data only from 1936 to 1955. Recalibration(from 1965) completed but flows reprocessed from 1982 only. Pre-1965 data less oliable. Regulation effect of headwater reservoirs evident at low flows. Small net export of water (inc. Bradford supply). Mixed geology-mainly Carboniferous Limestone. grits and Coal Measures. Predominantly rural catchment with moorland headwaters.

Measuring authority: NRA-NY First year: 1968

Grid reference: 44 (SE) 013457 Level stn. (m OD): 87.30

Catchment area (sq kmi): 282.3
Max alt. (m OD): 593

Dajly mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	Jul	AUG	SEP	OCT	NOV	DEC
1	12.080	13.390	14.210	23.050	2.325	0.848	0.601	2.640	2.678	3.039	12.870	3.222
2	31.660	10.280	12.820	11.460	2.167	0.925	0.622	1.350	1.435	13.070	7.971	2.917
3	35.320	17.310	20.650	13.000	2.152	1.233	0.623	1.277	1.170	11.720	10.270	3.618
4	21.320	16.970	11.460	14.630	2.139	1.061	0.551	2.292	1.338	6.279	9.811	18.150
5	20.440	10.920	9.569	12.790	2.204	0.821	0.540	1.253	1.357	4.450	25.800	14.260
6	14.680	9.470	8.794	9.212	2.224	0.793	1.258	0.919	2.550	3.507	11.460	13.120
7	10.280	7.828	11.220	13.480	2.075	0.757	0.935	0.780	3.597	2.999	7.654	13.080
8	8.426	7.838	21.530	23.200	1.889	0.740	0.657	0.742	2.283	2.904	7.292	18.510
9	11.720	7.965	15.660	21.000	1.835	0.749	0.560	0.663	3.308	2.482	16.220	11.190
10	11.260	6.248	9.589	12.740	1.650	0.736	0.534	0.626	7.548	2.147	9.991	33.400
11	8.639	5.477	10.240	8.838	1.546	0.703	0.525	0.613	7.435	1.932	7.247	16.680
12	12.450	4.730	16.080	7.480	1.449	0.691	0.482	0.590	26.160	1.743	20.230	21.700
13	11.990	4.156	19.240	5.936	1.343	0.681	0.462	0.540	15.770	1.624	35.140	24.650
14	22.700	3.696	19.350	4.757	1.312	0.665	0.401	0.498	7.363	1.534	49.720	14.390
15	13.190	3.396	12.540	3.994	1.605	0.637	0.388	0.496	15.230	1.432	44.400	10.340
16	8.973	3.203	11.390	3.525	1.391	0.630	0.388	0.497	7.771	1.354	29.630	8.975
17	6.498	2.999	12.530	3.172	1.273	0.610	0.373	1.084	4.717	1.280	22.740	14.640
18	11.110	3.062	12.800	2.954	1.206	0.590	0.375	0.853	3.556	1.224	23.200	16.470
19	9.793	2.831	10.130	2.805	1.139	0.760	0.385	0.716	4.178	1.165	32.330	14.880
20	11.910	2.507	7.401	2.857	1.129	0.721	0.389	0.615	5.135	1.242	40.810	10.120
21	9.664	2.202	5.940	3.247	1.179	1.902	0.396	0.527	4.084	1.362	19.690	7.808
22	14.590	2.066	6.781	3.807	1.109	1.437	0.398	0.525	3.016	3.414	12.570	6.112
23	31.060	2.099	35.350	7.237	1.066	0.995	0.366	1.520	2.513	14.600	9.349	5.112
24	18.850	2.074	20.900	5.194	1.017	1.136	1.483	2.483	2.822	12.580	7.273	5.201
25	49.830	5.401	17.980	5.320	1.005	1.115	0.992	5.269	7.784	20.970	6.072	9.270
26	37.180	29.480	10.570	5.023	0.955	0.865	0.647	2.192	4.382	13.900	6.034	24.560
27	43.100	32.890	8.725	3.830	0.909	0.817	1.181	2.125	3.245	10.380	5.258	35.790
28	23.610	25.680	8.320	3.288	0.907	0.776	0.701	3.783	2.658	15.870	4.448	53.390
29	22.000		6.366	2.893	0.889	0.710	0.560	1.908	2.248	10.410	3.985	48.010
30	15.670		5.623	2.544	0.843	0.672	2.346	1.378	2.054	13.080	3.618	45.830
31	10.660		13.260		0.793		3.923	1.441		19.870		26.800
Average	18.410	8.792	13.130	8.109	1.443	0.859	0.775	1.361	5.313	6.567	16.770	17.810
Lowest	6.498	2.066	5.623	2.544	0.793	0.590	0.366	0.496	1.170	1.165	3.618	2.917
Highest	49.830	32.890	35.350	23.200	2.325	1.902	3.923	5.269	26.160	20.970	49.720	53.390
Peak flow	55.16	41.59	53.62	47.52	2.41	2.72	8.33	8.53	34.03	27.94	61.51	55.81
Day of peak	22	26	23	- 1	6	21	31	25	12	31	13	28
Monthly total (million cu m)	49.30	21.27	35.17	21.02	3.86	2.23	2.08	3.65	13.77	17.59	43.47	47.71
Runoff (mm)	175	75	125	74	14	8	7	13	49	62	154	169
Rainfall (mm)	171	77	161	88	23	57	68	94	122	108	145	195

Statistics of monthly data for previous record (Dec 1968 to Dec 1993 -incomplete or missing months total 0.1 years)

Station and catchment description
Velocity area station rated by current meter cableway 150 m downstrearn. The bridge sills provide the low flow control. Flows below one cumec underestimated - recalibration scheduled. Washland storage, minor reservoirs, and the Leeds-Liverpool Canal can influence the flow pattern but small overall impact; minor net export. Geology is mainly Carboniferous Limestone with some Millstone Grit series. Rural catchment draining part of the eastern Pennines.

027041 Derwent at Buttercrambe

Measuring authority: NRA-NY First year: 1973

Grid reference: 44 (SE) 731587
Level stn. (m OD): 9.50

Catchment area (sq km): 1586.0 Max alt. (m OD): 454

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	35.410	25.410	71.690	21.190	10.870	7.865	5.122	5.047	4.801	5.674	11.190	10.380
2	40.470	24.440	50.650	18.890	10.760	7.898	5.196	5.143	5.446	6.496	9.254	10.050
3	50.500	34.590	41.330	14.820	10.840	7.981	5.293	5.287	4.836	11.770	9.042	10.210
4	57.960	42.370	33.820	15.100	10.680	8.466	5.313	5.456	4.527	15.500	11.690	19.190
5	69.740	35.640	28.720	14.200	10.460	8.221	5.316	5.378	4.399	10.870	15.430	31.990
6	73.780	30.920	25.550	13.340	10.490	7.803	5.276	4.931	4.385	8.529	19.210	26.630
7	75.450	35.650	24.070	13.630	10.360	7.556	5.512	4.708	4.388	7.448	16.150	22.800
8	74.760	30.750	22.880	16.190	10.230	7.389	5.583	4.657	4.463	6.868	13.090	24.410
9	66.670	28.170	21.540	19.980	10.030	7.307	5.313	4.477	4.562	6.549	12.510	23.710
10	72.840	25.680	20.290	18.280	9.711	7.256	5.150	4.454	4.614	6.237	13.680	18.940
11	85.670	23.890	19.650	16.150	9.522	7.081	4.937	4.487	4.620	6.009	12.160	17.530
12	81.150	22.650	19.160	15.490	9.392	6.873	5.085	4.618	5.446	5.839	12.170	15.910
13	68.820	21.480	18.730	16.540	9.187	6.821	5.123	4.764	7.259	5.761	22.280	19.690
14	55.770	20.530	17.880	14.890	9.106	6.351	5.086	4.434	6.991	5.726	20.840	26.610
15	47.940	20.040	17.200	14.340	10.650	6.107	5.076	4.266	8.166	5.658	18.580	20.500
16	43.040	19.540	16.850	13.500	10.910	6.274	4.953	4.172	11.280	5.545	14.510	17.920
17	40.350	19.970	16.610	13.000	9.600	6.585	4.849	4.422	8.173	5.548	13.070	17.170
18	40.270	19.770	16.520	12.640	9.176	6.638	4.706	5.018	6.476	5.471	13.290	19.380
19	44.350	18.720	17.090	12.560	8.946	6.449	4.657	4.762	5.887	5.573	20.310	18.950
20	38.190	18.050	15.930	12.640	8.662	6.253	4.572	4.411	6.561	10.490	28.210	17.000
21	33.530	17.630	15.060	12.980	8.987	6.484	4.528	4.268	10.580	15.420	27.500	15.110
22	30.490	17.400	14.890	12.880	11.170	6.664	4.505	4.168	9.159	10.700	19.790	14.460
23	29.860	17.180	14.750	12.980	15.200	6.144	4.452	4.173	7.240	15.180	17.040	13.570
24	28.080	17.070	14.320	14.040	11.590	5.772	4.714	4.450	6.488	16.130	15.150	13.000
25	31.390	19.730	14.380	13.590	9.768	5.662	6.126	4.449	9.031	12.910	13.870	13.570
26	36.150	49.010	14.360	15.400	9.093	5.594	5.751	4.466	12.250	14.560	13.010	17.920
27	34.040	60.990	13.750	13.330	8.660	5.561	5.855	4.313	8.611	11.390	12.280	28.140
28	38.730	73.660	13.990	12.180	8.540	5.409	5.960	4.192	7.136	9.697	11.550	36.100
29	31.530		13.590	11.580	8.299	5.263	5.318	4.119	6.368	8.979	11.050	36.260
30	29.850		13.270	11.180	7.944	5.166	5.042	4.090	5.850	9.264	10.730	34.490
31	26.510		14.160		7.841		4.950	4.284		12.170		35.530
Average	48.820	28.250	21.700	14.580	9.893	6.696	5.139	4.576	6.666	9.160	15.290	20.870
L.owest	26.510	17.070	13.270	11.180	7.841	5.166	4.452	4.090	4.385	5.471	9.042	10.050
Highest	85.670	73.660	71.690	21.190	15.200	8.466	6.126	5.456	12.250	16.130	28.210	36.260
Peak flow	89.00	79.14	79.14	26.00	16.32	8.72	6.78	5.61	14.27	20.80	32.05	43.79
Day of peak Monthly total	11	28	1	1	23	4	25	4	26	21	20	31
(million cu m)	130.70	68.34	58.12	37.80	26.50	17.36	13.77	12.26	17.28	24.53	39.63	55.91
Runoff (mm)	82	43	37	24	17	11	9	8	11	15	25	35
Rainfall (mm)	105	73	37	52	39	28	56	53	89	71	63	94

Statistics of monthly data for previous record (Jan 1973 to Dec 1993)

Mean flows:	Avg.	25.660	24.360	23.760	19.360	13.660	9.665	7.819	7.735	8.403	12.910	15.110	24.500
	Low	9.596	8.606	6.254	6.640	5.282	4.778	3.882	3.126	3.077	3.929	5.472	8.276
	(year)	1992	1973	1973	1990	1990	1992	1976	1990	1990	1991	1989	1991
	High	48.190	49.280	56.110	37.540	29.840	21.260	17.120	15.430	23.520	36.820	25.220	42.740
	(year)	1977	1978	1979	1986	1979	1979	1973	1980	1993	1976	1980	1978
Runoff:	Avg.	43	38	40	32	23	16	13	13	14	22	25	41
	Low	16	13	11	11	9	8	7	5	5	7	9	14
	High	81	75	95	61	50	35	29	26	38	62	41	72
Rainfall:	Avg.	71	50	68	53	54	57	59	66	70	77	68	79
	Low	20	5	7	11	13	11	18	10	18	21	28	24
	High	132	101	143	113	142	149	138	126	192	158	111	180

Summary statistics

Mesn flow $\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$
Lowest yearly mean
Highest yearly mean
Lowest monthly mean
Highest monthly mean
Lowest daily mean
Highest daily mean
Peak
10% exceedance
50% exceedance
95% exceedance
Annual total (million cu m)
Annual runoff (mm)
Annual rainfall (mm)
$1961-90$ rainfall averege (mm)

For 1994 15.930 4.576
48.820
$4.576 \quad$ Aug
48.820 (

For record		
preceding	1994	
16.050		
7.900		1989
25.320		1979
3.077		Sep 1990
56.110	Mar 1979	
2.697	23 Aug 1976	
121.400	29 Dec 1978	
124.800	5 Jan 1982	
33.030		
11.730		
3.983		
506.50		
319		
772		
765		

Factors affecting runoff

- Abstraction for public water supplies.
- Flow reduced by industrial and/or
agricultural abstractions.
- Augmentation from surface water and/or groundwater.
tation and catchment description
Crump weir, 20 m wide; high flow rating derived from limited number of gaugings. Pre-October 1973 data (monthly only) of poorer quality; derives from Stamford Br. (27015) - slightly smaller catchment area (1586.0 sq km). Peak flows from the headwaters upstream of Forge Valley (8% catchment) are diverted down the Sea Cut (27033). Minor net impact of artificial influences (spray irrigation is appreciable). Mixed geology of clays, shales and limestone. Rural catchment draining the North York Moors.

028009 Trent at Colwick

Measuring authority: NRA-ST
First year: 1958

Grid reference: 43 (SK) 620399
Level stn, (m OD): 16.00

Catchment area (sq km): 7486.0
Max alt. (m OD): 636
Daily mean gauged discharges (cubic matres per second)

DAY	JAN	FEB	MAR	APA	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	204.200	123.400	200.500	224.100	57.340	43.480	34.150	47.410	52.050	48.350	123.800	60.230
2	289.200	122.900	172.900	226.400	55.180	41.730	35.040	38.340	47.920	67.140	91.800	60.170
3	317.000	164.200	148.900	156.100	54.110	44.420	33.440	36.730	35.610	122.300	87.660	63.250
4	356.000	260.900	125.000	214.900	54.560	44.580	37.840	46.490	35.710	110.600	111.800	117.700
5	377.100	187.300	114.700	232.600	56.360	44.690	38.960	39.710	33.090	75.880	250.900	166.400
6	365.000	147.800	102.100	175.200	57.180	39.640	37.120	32.460	33.520	61.780	232.200	166.000
7	273.500	151.400	95.820	148.500	58.590	39.900	37.710	30.180	35.680	52.910	145.300	191.900
8	183.700	129.500	90.490	176.300	55.320	39.220	35.310	28.840	41.790	50.530	111.100	213.100
9	172.100	116.700	97.900	247.700	52.110	37.240	31.610	29.500	42.320	47.790	168.200	186.000
10	217.400	107.100	110.100	233.400	50.920	37.860	30.120	28.430	36.980	44.040	278.400	136.100
11	202.100	121.700	93.560	183.400	48.390	39.370	30.690	35.560	38.590	41.930	199.300	112.100
12	255.800	139.600	98.090	142.800	48.070	38.590	29.620	36.780	38.310	40.540	220.900	96.830
13	342.800	112.200	101.700	136.000	48.460	37.990	30.040	32.290	45.610	39.620	292.700	130.300
14	314.600	99.290	92.820	114.900	54.590	37.410	28.750	29.210	84.590	38.880	225.500	204.000
15	226.900	93.630	111.900	102.200	78.010	35.020	30.160	28.650	233.700	36.600	169.000	144.300
16	169.900	91.070	120.300	92.630	65.110	33.380	30.220	28.470	229.100	36.600	129.900	115.900
17	141.600	98.750	102.600	86.320	55.970	34.360	29.220	32.120	170.400	35.130	115.600	110.100
18	126.800	103.000	110.100	82.050	48.850	33.330	28.840	37.640	101.100	35.640	104.300	228.000
19	144.900	94.990	247.300	80.030	46.630	31.840	29.260	32.090	83.110	35.240	104.200	218.100
20	127.200	88.370	182.400	79.380	47.270	32.350	29.410	30.810	103.900	37.580	111.300	151.600
21	119.300	82.600	125.200	80.030	66.100	33.840	29.660	28.240	111.700	43.560	140.300	131.100
22	115.400	77.520	122.800	78.310	107.100	35.900	29.840	28.270	85.580	47.620	112.400	109.100
23	182.600	83.080	121.500	92.700	80.880	34.370	29.020	29.290	64.000	81.250	98.880	93.860
24	189.600	99.240	115.300	90.260	65.250	33.000	30.790	30.410	56.160	72.540	84.950	85.680
25	189.800	125.200	155.500	76.690	59.710	47.100	49.230	33.520	65.090	56.080	77.530	86.180
26	260.900	311.400	163.900	76.720	66.620	40.860	39.760	30.420	61.200	54.400	71.090	112.500
27	224.800	383.200	117.800	69.660	62.560	34.960	36.200	28.710	49.790	60.970	67.810	322.300
28	234.900	329.500	114.500	65.790	51.240	34.020	39.780	27.560	45.500	56.990	65.830	405.500
29	174.500		106.600	62.960	48.980	33.090	34.630	26.550	42.110	72.340	62.450	370.400
30	155.400		96.730	60.390	46.590	33.060	31.710	26.370	39.750	111.300	59.760	277.400
31	132.900		123.600		44.210		40.240	30.280		148.400		214.400
Average	219.000	144.500	125.200	129.600	57.810	37.550	33.500	32.300	71.470	60.150	137.200	163.900
Lowest	115.400	77.520	90.490	60.390	44.210	31.840	28.750	26.370	33.090	35.130	59.760	60.170
Highest	377.100	383.200	247.300	247.700	107.100	47.100	49.230	47.410	233.700	148.400	292.700	405.500
Peak flow Day of peak	388.20 5	390.20 27	286.10 19	275.20 1	137.20 22	$\begin{aligned} & 62.11 \\ & 25 \end{aligned}$	$\begin{aligned} & 57.92 \\ & 25 \end{aligned}$	$\begin{gathered} 53.06 \\ 1 \end{gathered}$	$\begin{gathered} 252.70 \\ 15 \end{gathered}$	$\begin{aligned} & 158.50 \\ & 31 \end{aligned}$	$\begin{gathered} 304.10 \\ 13 \end{gathered}$	$\begin{gathered} 414.80 \\ 28 \end{gathered}$
Monthly total (million cu m)	586.50	349.50	335.50	336.00	154.90	97.34	89.72	86.51	185.20	161.10	355.50	439.00
Runoff (mm)	78	47	45	45	21	13	12	12	25	22	47	59
Rainfall (mm)	94	62	82	58	48	25	48	51	128	67	77	105

Statistics of monthly data for previous record (Oct 1958 to Dec 1993)

Mean flows:	Avg.	138.500	127.400	108.900	91.600	68.310	54.760	44.500	45.570	48.550	66.310	88.820	127.100
	Low	52.910	47.130	38.030	35.220	32.090	24.690	19.460	18.440	23.070	25.260	34.170	46.240
	(year)	1963	1992	1993	1976	1990	1976	1976	1976	1959	1959	1975	1975
	High	216.400	'384.000	227.600	179.500	175.100	103.100	104,100	76.480	121.100	187.000	231.800	351.600
	(year)	1988	1977	1981	1966	1969	1987	1968	1966	1965	1960	1960	1965
Runoff:	Avg.	50	42	39	32	24	19	16	16	17	24	31	45
	Low	19	16	14	12	11	9	7	7	8	9	12	17
	High	77	124	81	62	63	36	37	27	42	67	80	126
Rainfall:	Avg.	72	52	59	58	58	62	59	69	65	67	73	79
	Low	23	8	13	9	11	14	18	21	3	12	38	15
	High	138	175	116	116	144	148	125	120	149	141	145	173

Summary statistics					
- -	For 1994		For record preceding 1994		As \% of pre-1994
Mean flow ($\mathbf{m}^{\mathbf{3}} \mathbf{s}^{-1}$)	100.700		84.010		120
Lowest yearly mean			47.030	1976	
Highest yearly mean	-		124.000	1966	
Lowest monthly mean	32.300	Aug	18.440	Aug 1976	
Highest monthly mean	219.000	Jan	384.000	Feb 1977	
Lowest daily mean	26.370	30 Aug	14.700	23 Aug 1976	
Highest daily mean	405.500	28 Dec	854.900	26 Feb 1977	
Peak	414.800	28 Dec	956.700	25 Feb 1977	
10\% exceedance	219.100		169.600		129
50\% exceedance	77.650		59.020.		132
95\% exceedance	29.520		27.390		108
Annual total (million cu m)	3176.00		2651.00		120
Annual runoff (mm)	424		354		120
Annual rainfall (mm)	845		773		109
1961-90 rainfall average			761		

Factors affecting runoff

- Reservoir(s) in catchment.
- Flow influenced by groundwater abstraction and/or recharge.
- Abstraction for public water supplies.
- Flow reduced by industrial and/or
agricultural abstractions.
- Augmentation from surface water and/or
groundwater
- Augmentation from effluent returns.

Station and catchment description
Velocity-area station in the navigable Trent. Main channel approx. 62 m ; cableway span 99 m . Holme sluices $750 \mathrm{~m} \mathrm{u} / \mathrm{s}$ affect water levels up to medium flows. Bypassed at high flows on rb when gravel workings inundated. Very substantial flow modifications owing to imports, WRW's, cooling water and industrial usage. Predominantly impervious - glacial clay and Triassic Marl, but some sandstone and limestone. Extensive terrace gravels and alluvium maintain baseflow.

028085 Derwent at St. Marys Bridge

1994

Measuring authority: NRA-ST First year: 1936

Grid reference: 43 (SK) 355368
Level stn. (m OD): 44.00.

Cátchment area (sq km): 1054.0 Max alt. (m OD): 636

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV.	, DEC
1	47.340	34.160	35.030	50.960	10.770	7.076	4.512	5.227	5.983	8.871	22.930	14.800
2	84.360	30.070	34.520	39.780	11.020	6.847	6.148	4.585	3.799	13.700	19.520	$\because 15.500$
3	79.580	46.640	31.150	37.020	11.750	7.142	5.927	5.613	4.091	19.210	23.320	16.950
4	65.480	45.400	27.220	50.960	11.880	6.990	8.702	5.137	4.595	13.780	27.390	28.300
5	63.980	37.890	24.980	39.900	12.050	6.556	5.291	4.162	4.379	11.000	58.600	- 26.720
6	47.880	34.800	22.780	36.200	11.390	6.277	5.378	3.953	4.176	9.608	34.700	26.380
7	38.500	32.550	21.700	34.260	11.190	6.569	4.940	4.207	4.691	8.945	25.360	34.090
8	33.580	28.830	20.290	48.700	10.690	6.269	4.648	4.133	4.604	8.400	22.710	32.710
9	34.770	27.240	22.340	53.890	10.460	6.052	4.164	4.178	4.053	7.856	53.010	27.500
10	37.940	25.350	21.150	44.770	9.053	6.109	4.027	4.110	6.309	7.290	56:530	26.110
11	37.840	24.830	19.800	38.830	8.298	6.349	4.099	4.056	4.964	7.041	38.330	23.750
12	61.830	23.040	21.380	35.100	8.116	6.205	4.190	3.988	6.341	6.536	60.420	21.910
13	60.570	21.550	25.700	34.590	7.890	6.151	4.210	4.004	5.898	6.224	48.600	32.290
14	44.150	20.730	22.390	31.400	9.188	6.534	4.059	4.080	24.300	6.286	43.310	28.050
15	36.580	20.350	24.070	26.380	10.570	6.306	3.998	4.499	37.360	6.272	35.000	24.460
16	32.030	19.980	24.090	23.150	8.901	6.489	4.015	4.342	13.880	6.223	31.880	22.420
17	28.850	20.070	23.480	21.040	7.806	5.403	4.046	4.737	8.332	6.001	31.970	26.590
18	28.420	19.740	29.020	19.740	7.609	4.797	3.953	4.529	7.118	5.898	29.720	38.060
19	27.760	18.750	41.850	18.190	7.367	4.793	4.743	4.717	9.155	5.795	27.920	26.240
20	25.580	17.860	27.010	17.470	7.917	4.884	4.059	3.757	9.942	5.895	33.870	24.430
21	24.770	16.380	23.270	17.530	15.900	6.236	3.911	3.867	14.360	5:967	30.970	22.910
22	25.170	16.810	25.050	17.110	17.210	5.644	4.198	4.508	8.702	9.756	28.530	20.890
23	65.220	16.780	23.940	20.390	10.920	4.789	4.078	4.124	7.815	13.980	25.410	19.710
24	42.020	15.020	31.560	17.210	9.414	4.772	6.048	4.380	7.824	11.910	19.120	19.520
25	66.050	21.610	44.160	16.640	8.774	7.692	5.603	4.022	11.850	10.640	17.660	19.690
26	69.450	51.120	33.480	16.530	8.073	5.342	5.274	4.162	8.976	12.330	16.040 -	29.450
27	73.440	66.750	28.680	14.670	7.527	5.371	6.320	4.770	7.830	12:790	14.890	82.720
28	62.540	44.880	27.780	13.730	7.120	4.927	5.384	4.166	7.337	17.470	15.230	71:650
29	49.210		23.960	12.640	7.530	4.512	4.000	4.052	6.612	19.240	13.570	53.550
30	43.620		22.790	11.310	7.551	4.485 .	4.292	3.930	6.204	25.080	12.700	49.050 .
31	34.870		27.750		7.173		6.414	5.775		27.040		43.680
Average	47.530	28.540	26.850	28.670	9.713	5.919	4.859	4.380	8.716	10.870	30.640	30.650
Lowest	24.770	15.020	19.800	11.310	7.120	4.485	3.911	3.757	3.799	5.795	12.700	14.800
Highest	84.360	66.750	44.160	53.890	17.210	7.692	8.702	5.775	37.360	27.040	60.420	82.720
Peak flow	101.50	74.19	67.01	71.64	25.93	13.08	16.09	9.43	598.72	28.70	75.69	98.50
Day of peak Monthly total	2	27	19	8	21	25	4	31	15	31	12	27
((million cu m)	127.30	69.05	71.92	74.31	26.02	15.34	13.01	11.73	22.59	29.12	79.42	82.09
Runoff (mm)	121	66	68	71	25	15	12	11	21	28	75	78
Rainfall (mm)	146	77	113	82	51	44	53	54	146	99	115	140

Statistics of monthly data for previous record (Jan 1936 to Dec 1993 -incomplete or missing months total 2.0 years)

Mean	Avg.	29.250	27.770	22.560	17.830	12.420	10.040	8.489	8.785	10.220	13.450	21.110	26.710
flows:	Low	9.749	8.084	7.361	7.253	4.710	4.647	4.211	3.647	3.955	4.155	4.304	8.480
	(year)	1963	1963	1993	1990	1990	1990	1976	1976	1959	1959	1975	1975
	High	67.000	76.780	69.530	39.590	26.410	20.240	28.660	33.840	32.940	35.130	54.330	88.690
	(year)	1939	1977	1947	1966	1967	1987	1958	1956	1946	1960	1940	1965
Runoff:	Avg.	74	64	57	44	32	25	22	22	25	34	52	68
	Low	25	19	19	18	12	11	11	9	10	11	11	22
	High	170	176	177	97	67	50	73	86	81	89	134	225
Rainfall:	Avg.	104	77	76	67	67	71	76	82	81	90	. 103	104
	Low	33	8	16	8	13	15	16	10	3	17	16	20
	High	215	236	185	132	163	188	158	185	199	178	232	246
Summ	ary s	tics								s affec	runof		
				1994		record ding 19		As \% of pre-1994		rvoir(s) influen	catchm by grou	vater	action
Mean flow	W ${ }^{\left(m^{3}\right.}$				17.3			114		or rech			
Lowest	yearly						1976		- A	traction	public	er sup	
Highest	yearly				25.		1966		- F	reduced	y indus	and/or	
Lowest	monthly	теал					1976			ultural	traction		
Highest	month	nean			88.6		1965		- A	mentati	from sur	ce wat	nd/or
Lowest	daily m			720 A			1952			ndwate			
Highest	daily m				334.		1965		- A	mentati	from ef	nt return	
Peak			101										
10\% exc	ceedan				35.			122					
50\% exc	ceedan				11.8			126					
95\% exc	ceedan							86					
Annual	total (m	on cu m)			547			114					
Annual r	unoff				51			114					
Annual ra	rainfall	I)	112		99			112					
1961	-90 rai	ll averag			101								

Station and catchment description

Ten-channel, interleaved cross path US gauge in the centre of Derby, 1.75 km ds of Longbridge Weir (28010). Record continuous with 28010
Peaks from 1976 only. Derby may flood but bypassing small. Substantial flow modification owing to Derwent reservoirs, milling and PWS
abstractions. Large, predominantly upland catchment draining Millstone Grit and Carb. Lst. Lower reaches drain Coal Measures on the lb and Triassic sandstones and marls on the rb. Peat moorland headwaters; forestry, pasture and some arable.

030001 Witham at Claypole Mill

Measuring authority: NRA-A
First year: 1959

Grid reference: 43 (SK) 842480 Level stn. (m OD): 16.90

Catchment area (sq km): 297.9 Max alt. (m OD): 158

Daily mean	ged di	arges	metre	secon								
DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	5.422	3.673	4.528	3.383	1.725	1.221	0.755	0.739	2.017	1.543	1.800	1.950
2	8.305	3.364	4.309	6.466	1.685	1.154	0.748	0.656	0.792	1.847	1.511	1.912
3	8.570	7.423	3.913	6.380	1.754	1.185	0.733	0.678	0.712	3.118	1.388	1.906
4	8.410	6.477	3.613	3.739	1.734	1.166	0.719	0.891	0.703	2.689	1.917	3.403
5	12.210	4.569	3.525	2.878	1.830	1.158	0.788	0.672	0.629	1.963	6.802	4.011
6	9.063	4.225	3.315	2.198	1.763	1.128	0.737	0.601	0.670	1.643	3.888	3.720
7	6.518	4.244	3.284	2.362	1.778	1.148	0.837	0.672	0.795	1.523	2.582	4.852
8	5.870	3.763	3.201	2.693	1.799	1.125	0.733	0.653	0.784	1.463	2.272	4.654
9	6.255	3.494	3.250	3.038	1.786	1.164	0.681	0.615	0.648	1.409	2.350	3.743
10	7.971	3.306	2.948	2.543	1.593	1.191	0.660	0.606	0.874	1.330	4.785	2.987
11	6.326	3.088	3.007	2.283	1.533	1.089	0.625	0.531	0.649	1.343	3.407	2.615
12	8.229	3.002	2.970	2.407	1.525	1.020	0.576	0.422	0.842	1.324	6.370	2.374
13	10.840	2.893	2.874	2.459	1.484	0.874	0.576	0.420	0.728	1.320	6.373	3.888
14	7.603	2.836	2.771	2.419	1.786	0.843	0.585	0.401	3.519	1.308	4.222	5.008
15	5.885	2.861	3.268	2.193	1.957	0.861	0.591	0.382	10.110	1.318	3.260	3.408
16	5.114	3.025	3.050	2.349	1.620	0.846	0.608	0.526	5.555	1.310	2.901	2.897
17	4.694	3.553	2.845	2.183	1.547	0.828	0.580	0.806	2.611	1.281	2.724	2.992
18	4.527	3.762	3.111	2.083	1.412	0.839	0.551	0.663	1.789	1.266	2.690	8.614
19	4.336	3.175	4.200	2.027	1.469	0.835	0.570	0.480	1.795	1.278	2.488	4.994
20	4.098	2.892	3.094	1.917	1.714	0.803	0.579	0.529	2.269	1.361	2.563	3.619
21	3.962	2.803	2.821	1.953	2.075	0.873	0.602	0.472	2.667	1.301	2.511	3.030
22	3.864	2.700	2.906	1.906	2.605	0.833	0.631	0.427	2.070	1.339	2.439	2.679
23	4.585	2.807	2.791	3.794	2.218	0.758	0.611	0.494	1.656	1.318	2.344	2.510
24	4.123	2.843	2.675	2.806	1.835	0.746	1.430	0.518	1.560	1.112	2.238	2.448
25	4.975	4.816	2.774	2.262	1.672	0.942	1.258	0.451	1.697	1.098	2.194	2.437
26	5.856	11.160	2.524	2.002	1.407	0.715	0.803	0.437	1.462	1.067	2.175	3.637
27	5.465	8.932	2.382	1.871	1.379	0.760	0.741	0.422	1.388	1.048	2.129	15.510
28	5.282	5.474	2.574	1.813	1.313	0.795	2.170	0.366	1.303	1.058	2.037	9.952
29	4.412		2.235	1.777	1.248	0.741	1.128	0.361	1.241	1.186	2.015	6.117
30	4.154		2.146	1.760	1.218	0.772	0.955	0.345	1.217	1.751	1.999	4.899
31	3.763		2.321		1.176		0.870	0.718		2.627		4.079
Average	6.151	4.184	3.072	2.665	1.666	0.947	0.788	0.547	1.825	1.501	2.946	4.221
Lowest	3.763	2.700	2.146	1.760	1.176	0.715	0.551	0.345	0.629	1.048	1.388	1.906
Highest	12.210	11.160	4.528	6.466	2.605	1.221	2.170	0.891	10.110	3.118	6.802	15.510
Peak flow	13.68	12.12	5.13	8.48	2.76	1.29	4.42	1.42	12.30	3.97	9.32	16.84
Day of peak	5	27	19	2	22	9	28	31	15	3	12	27
Monthly total (million cu m)	16.48	10.12	8.23	6.91	4.46	2.45	2.11	1.47	4.73	4.02	7.64	11.31
Runoff (mm)	55	34	28	23	15	8	7	5	16	14	26	38
Rainfall (mm)	69	52	50	51	42	13	69	54	117	52	53	76

Statistics of monthly data for previous record (May 1959 to Dec 1993)

Mean flows:	Avg.	2.793	3.125	2.802	2.339	1.694	1.122	0.784	0.758	0.749	1.070		1.458	2.205
	Low	0.673	. 0.492	0.453	0.365	0.311	0.184	0.063	0.136	0.232	0.218		0.278	0.312
	(year)	1965	1976	1976	1976	1976	1976	1976	1976	1959	1959		1959	1964
	High	5.857	10.690	6.995	5.748	4.695	3.141	2.118	2.376	2.886	4.190		6.525	7.879
	(year)	1988	1977	1979	1979	1983	1985	1968	1980	1968	1993		1960	1965
Runoff:	Avg.	25	- 26	25	20	- 15	10	2r 7	O- 7	7	10	Δ	13	20
	Low	6	4	4	3	3	2	1	1	2	2		2	3
	High	53	+87	63	50	42	27	19	21	25	38		57	71
Rainfall:	Avg.	54	39	47	50	49	53	52	60	53	51		56	55
	Low	20	3	8	10	11	3	9	5	3	5		24	13
	High	117	140	92	103	130	148	132	127	127	137		115	142

Station and catchment description width of 24.99 m converted into a standard Lea designed broad-crested weir. It is rated theoretically and An oid weir at Abstractions for public supply at Saltersford. The catchment is clay (50%) with limestone (40%) and gravel, and is largely rural.

032004 Ise Brook at Harrowden Old Mill

Measuring authority: NRA-A First year: 1943

Grid reference: 42 (SP) 898715 Level stn. (m OD): 45.30 *. MAY

Catchment area (sq km): 194.0

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FE日	MAR	APR	MAY	JUN	JuL	AUG	SEP	OCT	NOV	DEC
1	3.685	1.731	2.659	3.940	0.813	0.569	0.277	0.261	0.355	0.602	2.338	0.711
2	7.159	1.693	2.783	2.308	0.785	0.762	0.286	0.264	0.262	0.618	1.393	0.691
3	7.048	6.242	2.503	2.218	0.782	0.652	0.271	0.303	0.259	0.607	1.132	0.870
4	7.083	4.851	1.438	5.812	0.809	0.721	0.277	0.300	0.248	+1.017	1.876	1.318
5	12.910	2.584	2.010	3.269	0.828	0.586	0.276	0.253	0.224	0.602	5.923	1.988
6	9.662	2.377	1.917	2.350	0.763	0.561	0.384	0.229	0.219	0.561	4.044	2.077
7	4.891	2.578	1.768	2.112	0.811	0.523	0.335	0.223	0.245	0.509	1.991	2.298
8	4.048	2.142	1.335	3.039	0.745	0.487	0.319	0.231	0.258	0.493	1.630	3.969
9	4.469	1.898	1.964	4.120	0.694	0.566	0.274	0.225	0.230	1.111	2.075	2.662
10	7.359	1.775	1.042	3.543	0.666	0.488	0.261	0.381	0.224	0.512	3.427	1.932
11	5.254	2.230	1.377	2.149	0.659	0.467	0.274	0.469	0.234	0.461	2.221	1.580
12	7.082	1.970	1.472	2.686	0.647	0.446	0.253	0.327	0.256	0.462	2.504	1.416
13	6.745	1.755	1.383	2.428	0.630	0.433	0.290	0.287	0.222	0.445	2.979	1.780
14	4.382	1.829	1.402	1.832	0.936	0.414	0.211	0.243	3.454	0.441	2.199	2.438
15	3.645	1.687	1.999	1.726	0.787	0.400	0.233	0.226	5.028	0.442	1.814	1.877
16	3.236	2.087	1.766	1.607	0.720	0.382	0.246	0.276	3.926	0.445	1.424	1.568
17	2.725	2.652	1.486	1.470	0.621	0.383	0.244	0.490	1.344	0.422	1.250	1.941
18	2.685	2.417	1.714	1.383	0.590	0.382	0.251	0.280	0.735	0.415	1.228	3.793
19	2.584	1.942	2.174	1.339	0.573	0.373	0.244	0.239	1.321	0.430	1.121	2.464
20	2.365	1.746	1.722	1.278	0.611	0.349	0.242	0.219	1.535	0.474	1.108	1.891
21	2.199	1.568	1.397	1.222	1.292	0.390	0.227	0.213	1.599	0.486	1.014	1.608
22	2.126	1.505	1.951	1.270	1.557	0.353	0.223	0.211	1.017	0.707	0.986	1.427
23	2.142	1.923	1.533	1.758	1.169	0.329	0.225	0.248	0.753	0.552	0.927	1.308
24	2.032	2.749	1.402	1.389	0.923	0.478	0.519	0.257	0.690	0.524	0.866	1.285
25	2.189	5.340	1.406	1.181	0.884	0.395	0.310	0.245	0.605	0.475	0.821	1.387
26	2.114	9.830	1.242	1.069	0.946	0.330	0.262	0.214	0.553	0.453	0.806	1.915
27	2.134	4.790	1.284	1.012	0.794	0.328	0.287	0.195	0.498	0.427	0.801	4.599
28	1.913	3.222	1.478	0.944	0.712	0.313	0.728	0.185	0.461	0.443	0.774	4.197
29	1.807		1.421	0.896	0.662	0.278	0.506	0.186	0.520	1.668	0.725	4.986
30	1.738		1.510	0.850	0.616	0.280	0.379	0.193	0.434	3.837	0.725	3.124
31	1.628		1.983		0.579		0.386	0.318		5.343		2.448
Average	4.227	2.818	1.694	2.073	0.794	0.447	0.306	0.264	0.924	0.838	1.737	2.179
Lowest	1.628	1.505	1.042	0.850	0.573	0.278	0.211	0.185	0.219	0.415	0.725	0.691
Highest	12.910	9.830	2.783	5.812	1.557	0.762	0.728	0.490	5.028	5.343	5.923	4.986
Peak flow	14.60	10.73	3.01	6.39	2.80	1.13	1.51	1.07	6.35	6.52	7.56	5.62
Day of peak Monthly total	6	26	1	9	22	2	24	10	14	31	6	29
(million cu m)	11.32	6.82	4.54	5.37	2.13	1.16	0.82	0.74	2.39	2.24	4.50	5.84
Runoff (mm)	58	35	23	28	11	6	4	4	12	12	23	30
Rainfall (mm)	68	56	55	53	55	23	37	44	126	62	45	65

Statistics of monthly data for previous record (Dec 1943 to Dec 1993 -incomplete or missing months total 0.8 years)

[^6]Flume with low flow notch and side weir to 1965 , compound Crump profile weir to April 1976, and theoretically-rated Flat V weir with 5.94 m crest since. Crump weir modular to 15.6 cumecs, but bypassed at 14.2 m . Flat V also bypassed. Two small storage reservoirs with minor influence on low flows. Underlain by clay (59%) and sandstone (24%), mostly rural but includes Kettering.

Measuring suthority: NRA-A ${ }^{\circ}$

First year: 1933

Grid reference: 52 (TL) 055495 Level stn. (m OD): 24.70

Catchment area (sq km): 1460.0 Max alt. (m OD): 247

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	54.550	16.150	24.580	20.340	8.120	6.270	4.090	3.280	3.400	3.280	27.060	5.100
2	50.650	20.620	21.000	29.330	8.080	6.150	3.910	3.170	4.900	3.610	15.770	5.000
3	55.320	25.970	18.740	18.150	6.680	6.320	3.580	3.000	4.250	4.090	10.080	5.200
4	57.010	48.060	16.380	26.000	6.930	6.620	3.760	3.120	3.790	4.340	8.820	6.800
5.	64.050	41.940	15.640 -	27.920	7.010	7.080	3.780	3.050	3.500	3.100	18.610	8.000
6	68.750	26.210	15.120	16.690	7.030	8.360	3.770	3.060	3.230	3.000	39.540	17.800
7	74.390	32.120	14.060	18.580	7.620	8.290	3.940	2.940	3.400	3.280	31.390	22.400
-	78.740	32.370	13.620	22.240	7.790	7.660	4.060	2.680	3.530	3.040	15.860	32.900
9	47.810	24.240	12.870	34.900	7.240	6.540	3.920	3.200	5.810	3.250	12.550	33.900
10.	49.110	20.680	11.730	36.890	6.950	7.010	3.610	2.800	4.370	3.220	15.840	33.900
11	- 59.220	20.340	11.720	27.470	6.360	6.610	3.540	2.910	3.820	3.130	20.020	21.900
12	59.300	35.140	11.710	19.920	6.120	6.770	3.440	4.650	3.500	2.960	14.790	16.100
13	55.780	26.330	11.570	25.120	5.480	6.780	3.430	4.430	3.470	2.870	14.670	14.200
14	54.500	20.810	11.040	26.030	6.570	6.410	3.350	3.930	4.100	2.940	15.610	15.800
15	38.740	18.230	11.340	19.000	8.190	6.520	3.260	3.320	7.870	2.770	12.580	14.900
16	35.890	17.140	11.760	16.290	8.830	5.070	3.000	3.250	14.040	3.170	10.390	11.200
17	32.610	20.090	10.960	16.800	7.330	4.820	3.330	3.390	13.710	2.720	9.000	11.100
18	- * 26.930	20.590	11.170	14.390	7.610	4.590	3.200	3.590	9.150	2.980	8.560	15.400
19	25.310	23.400	14.330	12.880	6.880	4.940	3.140	3.630	6.620	3.080	8.150	39.300
20	23.990	23.220	14.650	12.490	6.280	4.570	2.900	3.540	6.800	3.000	8.440	32.900
21	21.700	21.790	12.370	11.490	7.200	4.450	3.270	3.470	7.740	3.570	8.200	21.200
22	20.590	20.750	11.580	10.840	18.590	4.660	2.860	3.200	5.320	4.020	6.890	13.800
23	20.210	24.540	12.380	11.440	12.060	4.670	3.090	2.960	5.880	5.810	6.450	11.600
24	20.250	48.810	11.770	12.190	9.050	4.770	2.920	2.980	5.110	5.510	5.990	10.100
25	21.130	43.500	11.240	11.020	6.830	5.350	2.920	2.910	4.570	4.510	5.870	11.200
26	27.350	41.530	11.250	9.900	11.060	6.820	2.920	3.040	4.970	4.790	5.720	11.200
27	27.340	47.510	10.350	9.340	13.790	5.460	2.920	2.960	4.220	4.570	5.640	14.100
28	24.230	33.520	10.190	9.040	12.110	4.810	2.810	2.740	3.500	4.730	5.500	33.700
29	21.440		10.540	8.850	9.060	3.960	2.740	2.830	3.610	6.190	5.440	36.700
30	19.070		9.980	8.510	7.520	4.180	3.300	2.850	2.850	14.730	5.240	40.000
31	23.940		11.340		6.740		2.960	3.200		26.000		31.500
Averaga	40.640	28.410	13.130	18.130	8.294	5.884	3.346	3.228	5.368	4.783	12.620	19.320
Lowest	19.070	16.150	9.980	8.510	5.480	3.960	2.740	0.070	2.850	2.720	5.240	5.000
Highest	78.740	48.810	24.580	36.890	18.590	8.360	4.090	4.650	14.040	26.000	39.540	40.000
Peak flow Day of peak	80.73 8	$\begin{aligned} & 55.06 \\ & 24 \end{aligned}$	27.81	$\begin{aligned} & 50.09 \\ & 10 \end{aligned}$	$\begin{aligned} & 27.73 \\ & 22 \end{aligned}$	$\begin{gathered} 11.54 \\ 7 \end{gathered}$	$\begin{gathered} 5.09 \\ 11 \end{gathered}$	$\begin{aligned} & 5.09 \\ & 12 \end{aligned}$	$\begin{aligned} & 16.20 \\ & 17 \end{aligned}$	$\begin{gathered} 28.62 \\ 31 \end{gathered}$	$\begin{gathered} 48.53 \\ 6 \end{gathered}$	
Monthly total (million cu m)	108.90	68.74	35.16	47.01	22.21	15.25	8.96	8.15	13.91	12.81	32.72	51.74
Runotf (mm)	75	47	24	32	15	10	6	6	10	9	22	35
Rainfall (mm)	73	56	49	52	65	28	21	42	87	72	45	76

Statistics of monthly data for previous record (Jan 1933 to Dec 1993)

Station and catchment description
3 broad-crested weirs, $30 \mathrm{~m}, 20 \mathrm{~m}$ and 12 m wide supplemented by 3 vertical sluice gates which are either fully open or shut. High flow rating confirmed by current meter measurements. Records before 1959 based on daily gauge board readings and gate openings. (lmproved flow record, from 1972, d/s at 33039). Significant surface and groundwater abstractions in catchment for PWS. Milton Keynes' effluent now significant. Geology - predominantly clay. Land use-agricultural with substantial urban development over last is years.

033034 Little Ouse at Abbey Heath

Measuring authority: NRA-A
First year: 1968

Grid reference: 52 (TL) 851844 Level stn. (m OD): 7.20

Catchment area (sq km): 699.3 Max alt. (m OD): 98

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FE日	MAR	APR	- MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	11.200	7.118	8.395	8.790	5.236	3.357	1.983	1.680	2.170	1.882	4.971	2.228
2	11.760	7.188	8.340	10.630	5.125	3.316	1.979	1.566	2.844	2.126	3.734	2.135
3	12.690	8.387	8.223	8.663	4.736	3.348	1.989	1.679	2.492	2.272	3.268	2. 188
4	13.000	13.130	7.643	12.230	4.962	3.497	1.992	1.698	2.169	2.352	3.186	2.278
5	14.670	10.950	7.294	15.630	4.968	3.514	1.919	1.537	1.950	2.303	2.924	2.485
6	16.670	8.990	6.893	13.010	5.072	3.158	1.911	1.512	1.827	2.172	2.755	2.589
7	18.200	8.013	6.403	10.960	5.474	3.176	1.881	1.422	1.860	2.060	2.795	2.690
8	18.010	7.576	6.208	11.270	6.612	3.340	1.870	1.414	1.976	2.025	2.671	2.832
9	15.450	7.280	6.101	13.140	6.787	3.304	1.812	1.375	1.964	2.005	2.520	3.074
10	14.440	6.994	5.827	11.490	6.296	3.127	1.766	1.387	1.945	2.003	2.585	3.057
11	14.230	6.730	5.621	9.060	5.529	2.994	1.724	1.891	1.788	1.921	2.632	3.008
12	13.700	6.509	5.603	8.213	4.946	2.892	1.652	1.695	1.768	1.875	2.726	2.884
13	14.410	6.314	5.473	8.270	4.638	2.828	1.649	1.754	1.727	1.877	2.759	2.884
14	13.100	6.145	5.416	8.116	4.658	2.743	1.730	1.602	2.032	1.942	3.056	3.270
15	11.070	6.172	5.906	8.534	4.679	2.643	1.742	1.480	2.635	1.935	2.970	3.304
16	9.797	6.276	6.123	8.712	4.486	2.594	1.661	1.651	2.724	1.932	2.812	3.164
17	8.860	6.266	5.746	8.400	4.401	2.598	1.609	1.727	2.588	1.892	2.674	2.983
18	8.397	6.139	5.922	7.720	4.354	2.533	1.591	1.614	2.353	1.824	2.663	3.398
19	8.476	5.899	7.594	7.200	4.173	2.462	1.583	1.499	2.369	1.879	2.651	3.418
20	8.211	5.860	7.274	6.950	4.182	2.400	1.506	1.468	2.400	1.969	2.569	3.189
21	8.010	5.773	6.528	6.647	4.297	2.430	1.491	1.407	2.575	1.912	2.494	3.001
22	7.841	5.694	6.390	6.395	4.474	2.429	1.503	1.379	2.315	1.912	2.474	2.873
23	7.973	6.167	6.321	6.300	4.364	2.354	1.445	1.479	2.162	2.243	2.473	2.730
24	7.876	7.749	6.184	6.172	4.234	2.493	1.788	1.515	2.153	2.090	2.496	2.740
25	8.020	8.655	7.053	5.939	4.131	2.465	1.683	1.463	2.129	2.034	2.432	2.382
28	8.587	8.913	7.936	5.734	3.988	2.481	1.638	1.547	2.068	1.997	2.410	2.632
27	8.414	9.193	7.130	5.539	3.857	2.420	1.610	1.539	2.058	1.967	2.388	3.050
28	8.007	8.397	7.010	5.438	3.794	2.105	1.582	1.486	1.956	2.070	2.390	4.979
29	7.373		6.803	5.365	3.702	2.042	1.712	1.454	1.862	2.690	2.390	4.990
30	7.313		6.555	5.317	3.622	2.049	1.640	1.450	1.771	3.358	2.314	4.746
31	6.972		6.798		3.494		1.670	2.136		5.027		4.003
Avarago	11.060	7.446	6.668	8.528	4.686	2.770	1.720	1.565	2.154	2.179	2.773	3.070
Lowost	6.972	5.694	5.416	5.317	3.494	2.042	1.445	1.375	1.727	1.824	2.314	2.135
Highast	18.200	13.130	8.395	15.630	6.787	3.514	1.992	2.136	2.844	5.027	4.971	4.990
Paak flow Doy of peak	$\begin{gathered} 19.12 \\ 8 \end{gathered}$	$\begin{gathered} 15.80 \\ 4 \end{gathered}$	$\begin{aligned} & 8.64 \\ & 2 \end{aligned}$	$\begin{gathered} 17.93 \\ 4 \end{gathered}$	$\begin{aligned} & 7.26 \\ & 10 \end{aligned}$	$\begin{aligned} & 3.91 \\ & 4 \end{aligned}$	$\begin{aligned} & 3.26 \\ & 24 \end{aligned}$	$\begin{aligned} & 5.08 \\ & 31 \end{aligned}$	$\begin{gathered} 3.09 \\ 1 \end{gathered}$	$\begin{gathered} 6.47 \\ 31 \end{gathered}$	6.16	$\begin{aligned} & 5.75 \\ & 29 \end{aligned}$
Monthly total (million cu m)	29.61	18.01	17.86	22.10	12.55	7.18	4.61	4.19	5.58	5.84	7.19	8.22
Runotf (mm)	42	26	26	32	18	10	7	6	8	8	10	12
Rainfall (mm)	61	41	64	53	41	29	33	82	64	70	21	47

Statistics of monthly data for previous record (Jan 1969 to Dec 1993

Station and catchment description
Rectangular section Crump profile weir with crest tapping. Replaced 33008 in 1968. Weir subject to drowning and spills on rare occasions. Since the late 1980s, low flows augmented from groundwater in drought conditions. Geology - Chalk with approx. 85\% Boulder Clay cover. Land use - predominately agricultural with large areas of forest and heathland.

034006 Waveney at Needham Mill

Measuring authority: NHA-A First year: 1963

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	6.913	2.251	3.587	5.700	0.937	0.491	0.392	0.461	2.798	0.453	3.901	0.588
2	10.230	2.174	3.771	5.809	0.890	0.495	0.393	0.445	2.959	0.555	1.631	0.590
3	9.596	8.144	3.792	4.134	0.883	0.490	0.388	0.367	1.362	0.879	1.380	0.584
4	11.460	15.420	3.054	12.190	0.893	0.516	0.377	0.355	0.779	0.961	1.152	0.604
5	14.200	7.086	2.839	13.060	0.880	0.587	0.370	0.361	0.593	0.792	0.990	0.614
6	16.090	4.436	2.233	6.812	0.990	0.553	0.394	0.347	0.515	0.629	0.904	0.585
7	18.810	3.697	2.072	6.398	1.110	0.494	0.389	0.312	0.471	0.557	0.797	0.624
8	13.050	2.908	1.851	7.212	1.975	0.488	0.348	0.305	0.482	0.524	0.755	1.737
9	7.364	2.442	1.761	9.939	1.521	0.496	0.343	0.304	0.469	0.495	0.727	3.133
10	10.400	2.145	1.527	5.999	1.230	0.468	0.328	0.313	0.438	0.475	0.857	1.805
11	9.758	1.998	1.436	4.313	1.111	0.424	0.304	0.392	0.400	0.483	1.136	1.420
12	9.563	1.766	1.436	3.572	0.928	0.376	0.309	0.459	0.389	0.471	1.391	0.842
13	11.200	1.598	1.434	3.392	0.795	0.419	0.354	0.406	0.380	0.461	2.575	1.324
14	7.413	1.526	1.282	3.343	0.769	0.454	0.351	0.330	0.567	0.456	2.218	2.467
15	5.198	1.640	1.854	4.449	0.764	0.464	0.346	0.300	1.230	0.452	1.508	1.982
16	4.614	1.668	1.889	6.560	0.771	0.456	0.325	0.297	1.594	0.439	1.200	1.575
17	4.092	1.649	1.726	4.783	0.701	0.444	0.304	0.293	1.241	0.428	1.006	1.346
18	3.743	1.582	2.212	3.474	0.692	0.427	0.294	0.313	0.811	0.446	0.926	1.562
19	4.103	1.414	5.084	2.892	0.665	0.415	0.297	0.311	0.829	0.448	0.900	1.869
20	3.713	1.431	3.475	2.311	0.622	0.396	0.277	0.299	1.090	0.477	0.842	1.601
21	3.310	1.357	2.509	2.062	0.613	0.421	0.270	0.273	1.090	0.471	0.793	1.331
22	3.031	1.339	2.190	1.767	0.763	0.419	0.266	0.284	0.830	0.505	0.755	1.134
23	3.192	1.799	2.128	1.658	0.770	0.408	0.251	0.273	0.681	0.493	0.723	0.929
24	3.024	4.877	1.902	1.506	0.691	0.396	0.262	0.284	0.589	0.493	0.694	0.866
25	3.321	5.020	2.887	1.344	0.652	0.498	0.252	0.305	0.565	0.537	0.655	0.906
26	3.916	5.046	3.104	1.219	0.604	0.587	0.258	0.334	0.546	0.531	0.639	1.009
27	3.848	4.748	2.285	1.128	0.569	0.471	0.262	0.304	0.510	0.506	0.611	2.477
28	3.032	3.723	2.213	1.045	0.563	0.434	0.443	0.292	0.471	0.476	0.600	5.855
29	2.348		1.883	1.002	0.535	0.456	0.503	0.298	0.449	0.662	0.594	4.208
30	2.393		1.687	0.972	0.527	0.433	0.403	0.298	0.437	2.406	0.591	3.747
31	2.121		1.905		0.454		0.431	0.379		6.327		2.421
Average	6.937	3.389	2.355	4.335	0.835	0.463	0.338	0.332	0.851	0.784	1.115	1.669
Lowest	2.121	1.339	1.282	0.972	0.454	0.376	0.251	0.273	0.380	0.428	0.591	0.584
Highest	18.810	15.420	5.084	13.060	1.975	0.587	0.503	0.461	2.959	6.327	3.901	5.855
Peak flow	19.54	17.02	5.65	14.77	2.10	0.61	0.52	0.88	4.01	6.91	5.69	6.35
Day of peak	7	4	19	5	8	26	29	31	2	31	1	28
Monthly total (million cu m)	18.58	8.20	6.31	11.24	2.23	1.20	0.91	0.89	2.21	2.10	2.89	4.47
Runoff (mm)	50	22	17	30	6	3	2	2	6	6	8	12
Rainfall (mm)	64	40	57	52	38	32	40	90	59	67	22	47

Statistics of monthly data for previous record (Dec 1963 to Dec 1993 -incomplate or missing months totat 0.2 years)

Mean	Avg.	3.910	3.166	2.580	1.928	1.080	0.753	0.519	0.685	0.807	1.135	1.801	2.869
flows:	Low	0.609	0.587	0.591	0.487	0.369	0.285	0.242	0.281	0.261	0.330	0.386	0.492
	(year)	1973	1992	1973	1974	1974	1974	1990	1973	1964	1989	1989	1964
	High	14.260	10.670	7.665	5.646	3.254	4.302	1.197	6.959	9.753	10.260	8.852	8.379
	(year)	1988	1979	1981	1983	1969	1985	1987	1987	1968	1987	1974	1965
Runoff:	Avg.	28	21	19	14	8	5	4	5	6	8	13	21
	Low	4	4	4	3	3	2	2	2	2	2	3	4
	High	103	70	55	40	24	30	9	50	68	74	62	61
Rainfall:	Avg.	52	37	44	45	45	52	48	49	53	55	63	55
	Low	16	10	10	9	5	10	11	7	2	4	25	18
	High	122	76	96	86	97	132	93	110	161	118	150	100

Surnmary statistics
Mean flow $\mathrm{tm}^{3} \mathrm{~s}^{-1} \mathrm{j}$
Lowest yearly mean
Highest yearly mean
Lowest monthly mean
Highest monthly mean
Lowest daily mesn
Highest daily mean
Peak
10\% exceedance
50% exceedance
95% exceedance
Annual total (million cu m)
Annual runoff $\{\mathrm{mm})$
Annual rainfall (mm)
1961.90 rainfall average (mm)

Station and catchment description
A compound Crump weir 8.5 m wide in the main channel with a single crested Crump in the mill bypass. Sluice action at a mill 2.4 km upstream is infrequent but is evident in flow records. Surface water abstractions, and the use of river gravels as an aquifer, influence flows but the overall impact is minimal. Record affected by the Waveney Groundwater Scheme between 1975 and 1979. Predominantly a Boulder Clay catchrnent with largely rural land use.

Daily mean naturalised discharges (cubic motres per second)

DAY	JAN	FEB	MAA	APA	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	12.500	10.200	9.010	16.700	5.980	5.860	4.580	3.210	3.440	2.530	6.380	2.620
2	17.900	9.660	9.570	10.100	6.100	5.840	4.670	3.130	3.150	2.790	4.900	2.600
3	16.000	27.300	9.310	10.200	6.240	6.120	4.800	3.150	3.080	2.960	4.290	2.950
4	22.600	20.600	8.510	20.900	6.380	6.890	4.750	3.180	3.010	2.790	4.800	3.080
5	34.500	13.400	8.350	14.000	6.400	6.460	4.590	3.240	2.870	2.530	6.630	3.240
6	37.400	10.500	7.860	9.370	6.370	5.830	4.860	3.150	2.820	2.540	5.900	3.370
7	35.400	10.900	7.890	9.490	7.620	5.710	4.680	3.090	3.050	2.490	4.770	3.840
8	21.400	10.300	7.600	14.400	7.340	5.850	4.450	3.050	4.820	2.430	4.450	18.000
9	23.800	9.920	7.400	20.500	6.490	5.810	4.030	3.620	3.520	2.460	4.760	9.950
10	41.000	9.460	7.130	32.700	6.080	5.800	3.900	4.360	3.010	2.470	5.190	5.740
11	23.900	9.760	7.070	24.200	5.860	5.570	3.860	5.490	2.890	2.500	4.570	4.780
12	23.600	8.890	7.100	15.900	5.900	5.480	3.890	4.810	3.020	2.450	4.580	4.330
13	23.200	8.580	7.090	23.000	5.800	5.570	4.070	3.770	2.870	2.470	4.530	3.550
14	17.200	8.430	6.840	15.700	6.920	5.450	3.890	3.460	3.670	2.370	4.430	4.050
15	16.000	8.880	7.660	12.100	6.950	5.450	3.550	3.370	5.700	2.400	4.440	3.930
16	14.400	9.550	7.350	10.700	6.350	5.380	3.490	3.410	5.380	2.410	3.990	3.880
17	11.100	9.760	6.870	9.290	8.820	5.370	3.490	3.640	3.470	2.400	3.460	3.830
18	10.900	9.110	7.540	8.900	6.990	5.290	3.480	3.390	3.180	2.390	3.570	5.510
19	10.900	8.400	7.900	8.380	6.250	5.170	3.380	3.240	3.900	2.540	3.690	5.240
20	10.500	8.460	6.810	8.640	5.830	5.220	3.440	3.190	3.880	3.720	3.460	4.390
21	9.550	8.210	6.760	7.150	9.440	5.220	3.340	3.090	3.440	3.090	3.380	4.090
22	9.340	8.250	7.050	7.410	11.000	4.800	3.320	3.040	3.140	6.750	3.390	3.960
23	9.590	12.900	6.830	7.440	9.090	4.750	3.200	2.830	3.070	4.700	3.350	3.880
24	9.350	14.600	6.630	7.370	8.170	5.100	3.200	2.820	3.130	3.680	3.340	3.850
25	9.350	10.200	6.810	7.080	7.270	5.820	3.260	2.780	3.100	4.110	3.270	3.910
26	9.100	10.300	6.410	6.820	6.860	5.170	3.140	2.710	2.960	4.050	3.240	4.150
27	9.500	9.740	6.170	6.730	6.420	4.730	3.140	2.730	2.560	4.090	3.240	10.300
28	9.920	9.350	6.300	6.590	6.370	4.800	4.070	2.580	2.500	3.600	3.210	10.600
29	9.090		6.560	6.480	6.210	4.650	3.690	2.560	2.520	5.550	2.810	15.300
30	8.860		6.650	6.360	6.000	4.530	3.360	2.540	2.470	9.320	2.660	13.200
31	8.390		9.200		5.980		3.260	2.700		10.400		8.900
Average	16.980	10.910	7.427	12.090	6.886	5.456	3.833	3.269	3.321	3.580	4.156	5.839
Lowest	8.390	8.210	6.170	6.360	5.800	4.530	3.140	2.540	2.470	2.370	2.660	2.600
Highest	41.000	27.300	9.570	32.700	11.000	6.890	4.860	5.490	5.700	10.400	6.630	18.000
Monthly total (million cu m)	45.47	26.40	19.89	31.33	18.44	14.14	10.27	8.76	8.61	9.59	10.77	15.64
Nat'ised runoff (mm)	44	25	19	30	18	14	10	8	8	9	10	15
Rainfall (mm)	79	44	47	67	69	23	26	36	60	85	32	73

Statistics of monthly data for previous record (Oct 1883 to Dec 1993 -incomplote or missing months total 2.2 years)

Station and catchment description
Thin-plate weir (insensitive -29m wide) and 3 verticat-lift sluices; completed 1978 to improve range and precision of flow measurement. Model rated. All flows (bar lockages) now contained but Ryemeads STW effluent bypasses. Pre-1978: barrage of gates/sluices; no peak flows prior to 1965, low flows probably under-estimated. Gauging instigated by Beardsmore in 1850s. Significant g/w abstraction; net export from catchment. Naturalised flows (New Gauge abstraction only) from 1883. A mainly pervious (Chalk) catchment. Predominantly rural headwaters; significant urban growth in lower valleys.

Measuining authority: NRA-T
First year: 1952 First year: 1952

Grid reference: 52 (TL) 282133 Level stn. (m OD): 47.10

Catchment area (sq km): 133.9
Max alt. (m OD): 195

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	1.080	1.400	1.180	1.250	0.967	0.904	0.703	0.608	0.593	0.492	0.552	0.481
2	1.060	1.290	1.180	1.120	0.959	0.895	0.694	0.612	0.527	0.544	0.530	0.481
3	1.180	1.710	1.170	1.250	0.963	0.973	0.723	0.598	0.548	0.502	0.520	0.542
4	1.150	1.380	1.150	1.230	0.971	1.010	0.741	0.603	0.531	0.486	0.713	0.532
5	1.350	1.290	1.140	1.150	0.977	0.903	0.698	0.589	0.514	0.484	0.618	0.604
6	1.470	1.370	1.140	1.090	0.974	0.899	0.771	0.584	0.513	0.477	0.544	0.553
7	1.330	1.310	1.140	1.130	1.080	0.891	0.702	0.578	0.646	0.478	0.527	0.601
8	1.200	1.270	1.130	1.290	0.993	0.896	0.699	0.572	0.616	0.474	0.527	0.948
9	1.570	1.250	1.130	1.230	0.968	0.883	0.683	0.593	0.529	0.474	0.601	0.578
10	1.630	1.240	1.110	1.190	0.970	0.903	0.674	0.805	0.512	0.471	0.535	0.544
11	1.420	1.300	1.120	1.120	0.963	0.882	0.660	0.770	0.550	0.470	0.519	0.520
12	1.470	1.230	1.120	1.210	0.965	0.848	0.656	0.620	0.519	0.473	0.568	0.510
13	1.460	1.220	1.110	1.240	0.952	0.844	0.672	0.608	0.511	0.460	0.521	0.535
14	1.370	1.230	1.150	1.250	1.140	0.838	0.663	0.596	0.643	0.458	0.528	0.515
15	1.430	1.280	1.170	1.200	0.999	0.842	0.653	0.592	0.745	0.454	0.516	0.512
16	1.390	1.240	1.130	1.120	0.983	0.842	0.649	0.594	0.566	0.450	0.508	0.505
17	1.360	1.210	1.150	1.100	1.250	0.835	0.647	0.724	0.527	0.454	0.512	0.535
18	1.370	1.200	1.180	1.100	1.010	0.823	0.637	0.601	0.523	0.442	0.541	0.697
19	1.360	1.190	1.130	1.100	0.975	0.792	0.632	0.594	0.706	0.450	0.510	0.527
20	1.340	1.190	1.100	1.100	0.983	0.781	0.631	0.583	0.567	0.485	0.501	0.516
21	1.330	1.200	1.110	1.100	1.240	0.789	0.617	0.573	0.536	0.491	0.496	0.511
22	1.340	1.210	1.120	1.090	1.070	0.770	0.610	0.571	0.521	0.731	0.494	0.507
23	1.370	1.380	1.100	1.130	1.170	0.758	0.616	0.573	0.512	0.502	0.498	0.504
24	1.360	1.230	1.110	1.090	1.110	0.851	0.606	0.568	0.506	0.502	0.492	0.502
25	1.340	1.250	1.140	1.080	1.020	0.771	0.599	0.579	0.502	0.520	0.485	0.512
26	1.310	1.210	1.070	1.070	1.030	0.750	0.595	0.565	0.500	0.547	0.484	0.567
27	1.370	1.190	1.080	1.050	0.974	0.737	0.591	0.551	0.489	0.482	0.481	0.707
28	1.290	1.180	1.110	1.030	0.978	0.706	0.921	0.541	0.484	0.501	0.480	0.589
29	1.280		1.090	1.020	0.961	0.692	0.646	0.543	0.481	0.743	0.483	0.766
30.	1.280		1.140	0.988	0.943	0.696	0.623	0.548	0.482	0.880 ;	0.483	0.589
31	1.290		1.300		0.924		0.611	0.577		0.688		0.649
Average	1.340	1.273	1.135	1.137	1.015	0.834	0.665	0.600	0.547	0.518	0.526	0.569
Lowest	1.060	1.180	1.070	0.988	0.924	0.692	0.591	0.541	0.481	0.442	0.480	0.481
Highest	1.630	1.710	1.300	1.290	1.250	1.010	0.921	0.805	0.745	0.880	0.713	0.948
Peak flow	2.24	2.19	1.64	1.53	1.55	1.26	1.79	1.47	1.08	1.33	1.17	1.61
Day of peak Monthly total	9	3	31	1	17	4	28	10	7	30	4	8
(million cu m)	3.59	3.08	3.04	2.95	2.72	2.16	1.78	1.61	1.42	1.39	1.36	1.52
Runoff (mm)	27	23	23	22	20	16	13	12	11	10	10	11
Rainfall (mm)	91	49	50	65	68	23	24	40	62	80	36	80

Statistics of monthly data for previous record (Dec 1952 to Dec 1993)

Mean	Avg.	0.571	0.630	0.650	0.641		0.599	0.547	0.476	0.435	0.410	0.416	0.450	0.508
flows:	Low	0.222	0.220	0.221	0.222		0.216	0.187	0.163	0.145	0.195	0.176	0.176	0.189
	(year)	1992	1992	1992	1992		1976	1976	1976	1976	1973	1973	1973	1973
	High	1.102	1.167	1.119	1.050		1.084	0.971	0.803	0.765	0.632	0.926	0.827	1.005
	(year)	1961	1961	1961	1979		1979	1979	1979	1979	1968	1993	1993	1960
Runoff:	Avg.	11	11	13	12		12	11	10	9	8	8	9	10.
	Low	4	4	4	4		4	4	3	3	4	4	3	4
	High	22	21	22	20		22	19	16	15	12	19	16	20
Rainfall:	Avg.	56	41	47	48		50	59	55	57	57	62	61	62
	Low	11	3	3	5		4	5	5	7	5	5	20	13
	High	121	99	116	105		115	122	123	127	121	171	151	141
Summ	ary st	stics								Fac	s affec	g runof		
									1994					
				1994			record ding 19		As \% of pre-1994		influenc or recha	by grou e.	water	action
Maan flo	W m^{3}					0.527			160		reduce	y indu	and/	
Lowest	yearty					0.231		1973			ultural	traction		
Highest	yearly					0.767		1961						
Lowest	monthl	nean				0.145		1976						
Highest	monthly	-ean				1.167		1961						
Lowest	daily m			218		0.135		1976						
Highest	daily m			03 F		2.430		1993						
Peak				09		3.820		1993						
10\% exc	ceedan					0.790			162					
50\% exc	credanc					0.501			151					
95\% exc	ceedanc					0.222			217					
Annual t	otal (m)	$\mathrm{cu} \mathrm{m})$				16.64			160					
Annual r	runoff (124			160					
Annual ras	raintall					655			102					
1961	-90 rai	averag				656								

Station and catchment description
Critical-depth flume; 5 m overall width. Theoretical calibration confirmed by gaugings. All flows contained. Appreciable net export of water (considerable groundwater abstraction in headwaters). Very high baseflow component. A predominantly permeable catchment (Upper Chalk overlain by glacial deposits near headwaters); mainly rural but some urbanisation in the lower valley.

Measuring authority: NRA-T First year: 1883

Grid reference: 51 (TQ) 177698 Level stn. (m OD): 4.70

Catchment area (sq km): 9948.0 Max alt. (m OD): 330

Daily mean gauged discharges (cubic matres per second)

Statistics of monthly data for previous record (Jan 1883 to Dec 1993)

Moan	Avg.	125.600	122.400	102.900	74.740	52.680	36.620	23.150	21.500	23.180	38.840	71.500	101.100
flows:	Low	18.570	12.290	9.426	8.975	4.391	3.302	2.079	1.912	0.688	3.144	4.248	8.350
	(year)	1976	1976	1976	1976	1976	1976	1921	1976	1976	1934	1990	1990
	Migh	325.300	342.000	359.500	188.800	171.700	171.600	72.290	79.330	123.900	179.800	334.000	333.900
	(year)	1915	1904	1947	1916	1932	1903	1968	1931	1927	1903	1894	1929
Runoff:	Avg.	34	30	28	19	14	10	6	6	6	10	19	27
	Low	5	3	3	2	1	1	1	1	0	1	1	2
	High	88	86	97	49	46	45	19	21	32	48	87	2
Rainfall:	Avg.	65	49	52	49	54	53	58	83	58	73	72	72
	Low	14	3	3	3	7	3	8	3	3	5	8	13
	High	137	127	142	104	137	137	130	147	157	188	188	185
Summ	ry s	istics								ors affe	gh runo		
								1994					
				1994		For record		As \% of		ervoir(s)	catchm		
						ceding 19		pre-1994		w influen	by gro		traction
Moan flo	w (m 3				65.			112		/or rech	ge.		
Lowest	yearty	ean			20.		1934			straction	public	ater sup	
Highest	yearty	ean			120.	0	1951		- F	w reduce	by indus	al and/	
Lowest	month	mean			10.6		ep 1976			cultural	straction		
Highest	month	mean	243		359.	0	Mar 1947		- A	gmentat	from su	cet	and/or
Lowest	daily m			90			Oct 1976			undwate			
Highest	daily m		384	10	ก 1059.0	18	Nov 1894		- A	mentati	from ef	ent retur	
Poak			405	10									
10\% ex	ceodan		171		160.			107					
50\% ex	ceedan				41.3			129					
95\% ox	coedan							100					
Annual	cotal (m	lion cu m)	233		2080			112					
Annual r	runoff				20			112					
Annual	rainfald	7m)	75		71			105					
1961	-90 rai	fall averag	m)		70								

Station and catchment description
Ultrasonic station commissioned in 1974; multi-path operation from 1986. Full range. No peak flows pre-1974 when dmfs derived from Teddington weir complex (70 m wide); significant structural improvements since 1883 . Some underestimation of pre-1951 low flows. Baseflow sustained mainly from the Chalk and the Oolites. Runoff decreased by major PWS abstractions - naturalised flows available. Diverse topography. geology and land use which - together with the pattern of water utilisation - has undergone important historical changes.

Measuring authority: NRA-T First year: 1883

Grid reference: 51 (TQ) 177698 Level stn. (m OD): 4.70

Catchment area (sq km): 9948.0
Max alt. (m OD): 330

Daily mean naturalised discharges (cubic matres per second)

Station and catchment description
Ultrasonic station commissioned in 1974; multi-path operation from 1986. Full range. No peak flows pre-1974 when dmfs derived from Teddington weir complex (70 m wide); significant structural improvements since 1883. Some underestimation of pre-1951 low flows. Baseflow sustained mainly from the Chalk and the Oolites. Runoff decreased by major PWS abstractions - naturalised flows available. Diverse topography, geology and land use which - together with the pattern of water utilisation - has undergone important historical changes.

Mensuring authority: NRA-T First year: 1963
Daily mean gauged discharges (cublc metres per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	OEC
1	3.110	3.120	2.950	2.020	1.700	1.300	0.887	0.699	0.583	0.544	0.593	0.987
2	3.310	3.040	3.000	1.930	1.670	1.300	0.894	0.691	0.573	0.558	0.581	0.973
3	3.560	3.110	3.010	1.970	1.640	1.320	0.884	0.694	0.579	0.572	0.598	0.988
4	3.780	3.040	3.000	2.030	1.630	1.300	0.882	0.692	0.565	0.557	0.623	1.000
5	4.360	3.010	2.990	2.020	1.610	1.310	0.864	0.680	0.560	0.562	0.650	1.090
6	4.610	3.040	2.930	2.020	1.570	1.260	0.885	0.661	0.566	0.550	0.655	1.110
7	4.720	3.020	2.870	2.050	1.560	1.230	0.834	0.647	0.571	0.532	0.651	1.220
8	4.770	3.020	2.820	2.180	1.520	1.200	0.853	0.652	0.575	0.536	0.670	1.360
9	4.750	2.990	2.790	2.260	1.490	1.180	0.841	0.639	0.573	0.540	0.728	1.410
10	4.590	3.020	2.700	2.280	1.450	1.150	0.850	0.659	0.565	0.537	0.748	1.540
11	4.510	3.100	2.650	2.310	1.410	1.130	0.826	0.678	0.567	0.534	0.740	1.650
12	4.660	3.010	2.600	2.410	1.400	1.090	0.813	0.664	0.571	0.526	0.779	1.730
13	4.660	3.000	2.510	2.340	1.360	1.100	0.838	0.647	0.554	0.546	0.808	1.790
14	4.780	3.030	2.460	2.360	1.380	1.110	0.808	0.644	0.569	0.534	0.850	1.800
15	4.870	3.050	2.420	2.360	1.370	1.080	0.815	0.642	0.592	0.525	0.860	1.800
16	4.770	3.040	2.360	2.360	1.340	1.070	0.826	0.643	0.595	0.520	0.879	1.770
17	4.640	3.020	2.310	2.320	1.330	1.060	0.808	0.640	0.579	0.521	0.901	1.790
18	4.520	2.980	2.250	2.280	1.290	1.090	0.787	0.631	0.575	0.515	0.940	1.850
19	4.360	2.940	2.220	2.250	1.260	1.070	0.780	0.637	0.591	0.503	0.950	1.790
20	4.200	2.880	2.170	2.200	1.260	1.050	0.753	0.618	0.597	0.517	0.970	1.770
21	4.060	2.830	2.130	2.160	1.300	1.060	0.744	0.620	0.595	0.514	0.968	1.760
22	3.940	2.820	2.120	2.120	1.310	1.040	0.747	0.618	0.582	0.526	0.974	1.750
23	3.850	2.850	2.060	2.100	1.290	1.020	0.744	0.609	0.579	0.514	0.975	1.750
24	3.750	2.770	2.010	2.040	1.250	0.981	0.735	0.613	0.576	0.506	0.973	1.740
25	3.630	2.780	1.990	1.990	1.330	1.010	0.735	0.612	0.571	0.509	0.982	1.750
26	3.480	2.820	1.910	1.900	1.490	0.991	0.728	0.594	0.570	0.509	0.998	1.770
27	3.450	2.820	1.930	1.860	1.380	0.952	0.731	0.583	0.562	0.507	1.000	1.820
28	3.320	2.870	1.920	1.820	1.330	0.922	0.726	0.583	0.560	0.498	1.010	1.870
29	3.250		1.850	1.770	1.330	0.905	0.718	0.579	0.557	0.529	0.999	1.990
30	3.170		1.860	1.740	1.310	0.907	0.719	0.556	0.536	0.606	0.996	2.080
31	3.120		1.970		1.290		0.715	0.575		0.610	0.996	2.190
Avarago	4.082	2.965	2.412	2.115	1.415	1.106	0.799	0.636	0.573	0.534	0.835	1.609
Lowest	3.110	2.770	1.850	1.740	1.250	0.905	0.715	0.556	0.536	0.498	0.581	0.973
Highost	4.870	3.120	3.010	2.410	1.700	1.320	0.894	0.699	0.597	0.610	1.010	2.190
Poak flow	4.93	3.30	3.05	2.48	1.78	1.37	1.04	0.76	0.65	0.94	1.03	2.25
Day of peak Monthly total	15	11	3	12	1	3	8	4	16	30	27	$31{ }^{2.25}$
(million cu m)	10.93	7.17	6.46	5.48	3.79	2.87	2.14	1.70	1.48	1.43	2.16	4.31
Runotf (mm)	102	67	61	51	36	27	20	16	14	13	20	40
Rainfall (mm)	120	79	65	57	94	23	18	54	107	78	69	122

Statistics of monthly data for previous record fOct 1963 to Dec 1993)

Station and catchment description

Crump weir (9.1 m broad). Modular throughout the range. Some overspill onto floodplain before design capacity reached. Limited impact of artificial influences on river flows - net import (sewage effluent). Baseflow dominated flow regime. Pervious (Oolitic Limestone) catchment on the dip-slope of the Cotswolds; predominantly rural.

040003 Medway at Teston

Measuring authority: NRA-S First year: 1956

Grid reference: 51 (TQ) 708530 Level stn. (m OD): 7.00

Catchment area (sq km): 1256.1
Max slt. (m OD): 267

Statistics of monthly data for previous record (Oct 1956 to Dec 1993 --incomptete or missing months total 1.7 years)

Station and catchment description
Crump profile weir plus sharp-crested weir superseded insensitive broad-crested weir. Flows greater than 27 curnecs measured at well calibrated river section $2 \mathrm{~km} d / \mathrm{s}$ (East Farleigh), updating of primary record incomplete. Responsive regime. Complex water utilisation Significant artificial disturbance; low flow augmentation from Bewl Water (via River Teise); >20 yrs of naturatised flows available. Mixed Significant artificial disturbance; low fow augmentation from catchment. Diverse land use with significant areas of woodland and orchard.

040011 Great Stour at Horton

Measuring authority: NRA-S
First year: 1964
Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	. MAY	JuN	Jut	AUG	SEP	OCT	NOV	DEC
1	16.400	4.327	3.593	6.573	3.323	2.410	1.846	1.318	4.881	1.691	9.091	2.194
2	15.970	4.225	3.985	4.205	3.226	2.404	2.351	1.457	3.334	1.646	6.180	2.160
3	14.690	11.590	3.744	4.435	3.268	2.440	2.015	1.421	2.118	2.014	4.460	2.401
4	16.360	11.990	3.596	10.190	3.209	2.888	1.946	1.519	1.786	1.826	3.469	3.251
5	17.250	7.988	3.515	6.807	2.772	3.922	2.058	1.640	1.849	1.673	3.985	3.271
6	17.220	6.397	3.356	4.693	2.871	2.848	1.923	1.466	1.732	1.624	3.883	3.050
7	13.130	5.917	3.388	4.355	3.032	2.561	1.793	1.404	1.696	1.622	3.358	3.861
8	10.900	5.196	3.381	5.692	3.975	3.055	1.850	1.381	1.858	1.620	2.992	11.510
9	10.940	4.774	3.310	9.312	3.176	3.535	1.847	1.397	2.033	1.565	3.126	17.760
10	12.620	4.506	3.331	10.010	2.819	2.717	1.770	1.410	1.937	1.651	5.554	10.640
11	10.730	4.335	3.257	9.982	2.771	2.484	1.716	1.925	2.044	1.553	5.498	8.192
12	11.970	4.212	3.250	6.509	$\because 2.749$	2.310	1.715	2.302	3.625	1.563	4.592	6.609
13	12.810	4.067	3.238	6.077	2.698	2.274	2.002	1.726	2.799	1.586	8.271	5.270
14	9.642	3.967	3.153	5.424	2.827	2.250	1.961	1.491	2.138	1.571	5.596	4.113
15	8.250	3.934	3.288	7.889	3.141	2.130	1.789	1.506	2.339	. 1.521	5.230	- 3.601
16.	7.628	3.857	3.249	8.903	3.084	2.127	1.733	1.571	3.521	1.506	3.876	3.317
17	6.259	3.756	3.148	6.712	8.255	2.043	1.605	1.792	2.786	1.520	3.398	3.133
18	5.557	3.643	3.216	5.229	9.144	1.971	1.675	1.703	2.165	1.517	3.473	4.802
19	6.137	3.481	3.287	4.684	5.237	1.927	1.702	1.691	2.364	1.506	4.339	4.610
20	5.678	3.441	3.049	4.350	3.998	2.018	1.691	1.581	4.551	2:167	3.797	3.698
21	5.171	3.320	3.029	4.032	4.711	1.979	1.560	1.420	3.682	1.831	3.301	3.330
22	4.953	3.515	3.468	3.832	5.307	1.911	1.531	1.459	2.657	5.145	3.027	4.410
23	5.122	4.423	3.796	3.891	4.023	1.887	. 1.496	1.450	2.286	8.426	2.799	4.549
24	5.048	4.812	3.459	3.995	3.660	1.943	1.465	1.453	2.120	6.878	2.647	3.773
25	5.084	+.4.063	3.278	3.767	3.542	3.039	1.474	1.763	1.872	7.560	2.505	3.670
26	5.392	4.008	3.008	3.691	3.782	2.577	1.508	1.928	1.916	7.600	2.442	5.797
27	4.991	3.849	2.767	3.874 ,	3.949	2.070	1.454	1.693	1.837	5.235	2.398	7.566
28	4.786	3.692	2.850	3.720	3.377	2.060	1.843	1.492	1.836	3.418	2.343	8.832
29	4.433		2.734	3.597	3.025	1.942	1.769	1.445	1.731	4.125	2.285	13.690
30	4.478		2.692	3.439	2.780	1.860	1.556	1.495	1.719	7.588	2.239	10.410
31,4	4.286		3.860		2.745		1.372	2.252		11.670		7.142
Average	9.154	4.903	3.299	5.662	3.757	2.386	1.742	1.598	2.440	3.304	3.938	5.826
Lowest	4.286	3.320	2.692	3.439	2.698	1.860	1.372	1.318	1.696	1.506	2.239	2.160
Highest	17.250	11.990	3.985	10.190	9.144	3.922	2.351	2.302	4.881	11.670	9.091	17.760
Poak flow	22.11	16.67	6.34	11.98	11.31	5.15	4.43	5.81	5.64	14.02	11.42	20.57
Day of peak	1	3	31	10	17	2	6	31	1	31	1	9
Monthly total (miltion cu m)	24.52	11.86	8.84	14.68	10.06	6.18	4.67	4.28	6.33	8.85	10.21	15.60
Runoff (mm)	71	34	26	43	29	18	14	12	18	26	30	45
Rainfall (mm)	91	41	48	89	85	48	37	96	79	115	39	106

Statistics of monthly data for previous record (Oct 1964 to Dac 1993 -incomplete or missing monthe total 0.2 years)

Station and catchment description
Broad-crested weir (width: 10.7 m , insensitive) in trapezoidal section plus a VA section for flows $\mathbf{>} \mathbf{2 0}$ cumecs. EM installed 1992. All flows contained. Minor impact of artificial influences on runoff (import of 0.03 cumecs in 1988), modest PWS and irrigation abstractions in lower valley. Flood storage reservoirs above Ashford (constructed 1990-2). U/s mill regulation evident on the hydrographs. The E.\& W. branches of the Stour flow over Weald Clay; below the confluence (at Ashford) Chalk dominates. A rural catchment with mixed land use.

Measuring authority: NRA-S First year: 1958

Grid reference: 41 (SU) 467213 Level stn. (m OD): 17.10

Catchment area (sq km): 360.0 Max alt. (m OD): 208

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	8.604	10.130	9.264	8.792	7.164	6.002	4.853	4.072	4.248	3.648	5.653	5.300
2	8.947	10.150	9.644	8.201	7.150°	6.173	4.831	4.171	3.959	3.607	4.975	5.269
3	8.979	11.180	9.140	8.556	7.100	6.215	4.660	4.161	3.909	3.629	4.890	5.571
4	9.270	10.830	9.060	8.624	7.202	6.597	4.687	4.132	3.851	3.663	5.259	5.798
5	9.877	10.430	8.954	8.296	7.245	6.547	4.688	4.034	3.753	3.682	5.776	5.684
6	10.050	10.600	8.874	8.054	7.314	6.361	4.742	3.929	3.681	3.547	5.216	5.677
7	9.850	10.630	8.832	8.062	7.206	5.336	4.689	3.897	3.707	3.563	4.999	5.897
8	9.882	10.240	8.749	8.736	7.047	5.494	4.700	3.863	3.740	3.561	5.296	8.225
9	10.510	10.010	8.767	9.270	6.889	5.491	4.579	3.816	3.794	3.493	6.736	7.373
10	10.950	10.010	8.742	8.786	6.804	5.520	4.461	3.869	3.903	3.517	5.982	6.630
11	10.870	10.600	8.557	8.303	6.639	5.222	4.328	3.976	3.894	3.571	5.563	6.159
12	11.090	10.120	8.505	8.155	6.990	5.171	4.228	3.954	3.968	3.588	5.550	6.072
13	11.060	9.915	8.469	8.072	6.713	5.332	4.296	3.816	4.328	3.627	5.460	6.098
14	10.930	9.815	8.334	8.048	7.002	5.216	4.285	3.754	4.871	3.492	5.591	6.013
15	11.020	9.839	8.346	8.050	6.791	5.305	4.263	3.715	4.739	3.464	5.463	6.124
16	11.000	9.788	8.336	8.084	6.816	5.285	4.284	3.737	4.661	3.433	5.306	6.117
17	10.860	9.780	8.283	7.940	7.511	5.197	4.195	3.784	4.207	3.426	5.330	6.168
18	10.710	9.583	8.432	7.820	6.917	5.153	4.182	3.818	4.058	3.420	5.911	6.642
19	10.590	9.502	8.392	7.718	6.651	5.130	4.201	3.919	4.145	3.814	5.713	6.456
20	10.960	9.601	8.262	7.711	6.530	5.221	4.107	3.904	4.088	3.749	5.517	6.231
21	10.860	9.494	8.263	7.815	7.128	5.269	4.100	3.870	3.958	3.892	5.391	6.222
22	10.790	9.786	8.357	7.718	7.103	5.202	4.006	3.707	3.889	4.295	5.370	6.148
23	10.810	9.939	8.294	7.929	6.918	5.072	3.885	3.700	3.820	4.100	5.398	6.086
24	10.850	9.670	8.211	7.816	6.771	5.037	3.860	3.782	3.818	3.872	5.288	6.129
25	10.730	9.492	7.987	7.666	6.954	5.194	3.842	3.959	3.891	4.259	5.268	6.208
26	10.700	9.528	7.850	7.553	7.258	5.151	3.943	3.854	3.770	4.011	5.292	6.452
27	10.750	9.380	7.767	7.511	7.104	5.082	4.057	3.783	3.710	3.888	5.286	7.358
28	10.520	9.364	7.825	7.361	6.776	4.908	4.045	3.743	3.682	3.905	5.258	7.468
29	10.320		7.753	7.243	6.628	4.680	4.062	3.685	3.645	4.295	5.273	7.932
30	10.160		7.759	7.176	6.458	4.598	3.958	3.688	3.598	5.755	5.249	7.219
31	10.010		8.487		6.169		4.039	4.097		7.025		6.899
Average	10.400	9.979	8.468	8.036	6.934	5.405	4.292	3.877	3.976	3.896	5.442	6.375
Lowest	8.604	9.364	7.753	7.176	6.169	4.598	3.842	3.685	3.598	3.420	4.890	5.269
Highest	11.090	11.180	9.644	9.270 *	7.511	6.597	4.853	4.171	4.871	7.025	6.736	8.225
Peak flow Day of peak Monthly total (million cu m)	27.86	24.14	22.68	20.83	18.57	14.01	11.50	10.38	10.31	10.44	14.11	17.07
Runoff (mm)	77 127	67 78	63 67	58 78	52 88	39 26	32 18	29 49	29 84	29	39 84	$\begin{array}{r} 47 \\ 172 \end{array}$
Rasinfall (mm)	127	78	67	78	88	26	18	49	84	124	84	123

Statistics of monthly data for previous record (Oct 1958 to Dec 1993)

Station and catchment description
Crump weir 7.75 m broad (which can drown), superseded, in 1971, a rated section with weedgrowth problems. Plus thin-plate weir (Allbrook). All flows contained (rare bypassing resulted from wrong sluice settings). Flows for Albrook for Nov/Dec 1993 were estimated due to construction of a fish path. Flow augmentation from GW during droughts. GW catchment exceeds topographical catchment. Artificial influences have minor, but increasing, impact on baseflow dominated regime; small net export of water. Very permeable catchment (90% Chalk). Land use is mainly arable with scattered settlements.

043005 Avon at Amesbury

Moasuring authority: NRA-SW First yoar: 1965

Grid reference: 41 (SU) 151413 Level stn. (m OD): 67.10

Catchment area (sq km): 323.7 Max alt. (m OD): 294

Daily mean gauged discharges (cubic metras per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	6.589	8.603	7.677	7.398	4.738	3.686	2.352	1.655	1.571	1.541	3.586	3.178
2	8.956	8.434	7.528	6.159	4.633	3.642	2.353	1.657	1.517	1.551	2.934	3.182
3	9.246	10.230	7.271	6.102	4.617	3.667	2.346	1.690	1.473	1.562	2.694	3.409
4	10.080	11.340	7.122	6.669	4.655	3.961	2.292	1.685	1.453	1.540	2.908	3.499
5	12.920	9.322	7.155	6.123	4.633	4.026	2.259	1.642	1.424	1.534	3.352	3.716
6	17.130	9.296	6.915	5.885	4.601	3.812	2.279	1.622	1.419	1.529	3.239	4.799
7	14.410	10.460	6.855	5.627	4.594	3.673	2.266 .	1.598	1.508	1.518	2.931	5.449
8	13.150	8.685	6.749	5.953	4.532	3.580	2.260	1.565	1.476	1.510	2.801	6.826
9	13.630	8.259	6.654	7.701	4.291	3.482	2.210	1.541	1.480	1.511	3.274	6.961
10	14.830	8.129	6.487	7.805	4.236	3.411	2.132	1.575	1.509	1.480	3.654	5.706
11	13.460	10.860	6.422	6.430	4.195	3.369	2.074	1.787	1.515	1.470	3.264	5.349
12	13.750	10.470	6.385	6.112	4.318	3.300	2.045	1.786	1.524	1.465	3.218	5.084
13	15.010	8.866	6.300	5.885	4.214	3.212	2.003	1.698	1.717	1.459	3.227	5.018
14	13.640	8.568	6.116	5.722	4.266	3.132	1.956	1.629	2.242	1.453	3.168	4.940
15	13.110	8.472	6.348	5.613	4.290	3.073	1.967	1.567	2.327	1.457	3.075	4.839
16	13.580	8.376	6.364	5.556	4.272	3.021	1.964	1.548	2.390	1.445	3.015	4.822
17	12.170	8.329	6.115	5.463	4.475	2.936	1.937	1.537	2.106	1.430	3.029	4.879
18	11.550	8.361	6.193	5.345	4.271	2.920	1.915	1.531	1.854	1.477	3.445	5.313
19	11.230	8.245	6.830	5.405	4.115	2.896	1.880	1.537	1.900	1.622	3.926	5.293
20	10.680	8.338	6.331	5.411	4.057	2.920	1.865	1.527	1.923	1.583	3.693	5.029
21	10.390	8.011	6.260	5.376	4.299	2.921	1.829	1.509	1.858	1.620	3.432	4.914
22	10.020	8.156	6.165	5.354	4.453	2.912	1.811	1.475	1.772	2.138	3.375	4.791
23	10.250	8.982	6.098	5.467	4.356	2.869	1.791	1.457	1.698	2.150	3.304	4.694
24	10.630	8.370	5.952	5.322	4.413	2.776	1.760	1.438	1.679	1.966	3.285	4.663
25	10.480	8.133	5.880	5.245	4.435	2.760	1.761	1.587	1.713	2.032	3.236	4.761
26	10.640	8.475	5.716	5.050	4.565	2.718	1.673	1.507	1.641	1.907	3.233	4.984
27	10.120	8.202	5.674	5.010	4.517	2.729	1.656	1.433	1.605	1.811	3.257	5.448
28	10.480	7.831	5.746	4.964	4.311	2.612	1.663	1.400	1.525	1.768	3.199	6.026
29	9.315		5.557	4.920	4.100	2.490	1.683	1.379	1.551	2.031	3.148	6.505
30	8.841		5.582	4.873	3.906	2.535	1.634	1.449	1.560	2.675	3.168	6.863
31	8.460		6.088		3.768		1.627	1.496		3.856		7.826
Avorage	11.640	8.850	6.404	5.798	4.359	3.168	1.976	1.565	1.698	1.745	3.236	5.121
Lowest	8.460	7.831	5.557	4.973	3.768	2.490	1.627	1.379	1.419	1.430	2.694	3.178
Highost	17.130	11.340	7.677	7.805	4.738	4.026	2.353	1.787	2.390	3.856	3.926	7.826
Poak flow	18.18	12.01	7.80	8.44	4.84	4.14	2.54	1.91	3.00	4.56	4.56	8.18
Day of peak	6	11	1	10	1	5	1	11	15	31	1	31
Monthly total (million cu m)	31.17	21.41	17.15	15.03	11.67	8.21	5.29	4.19	4.40	4.67	8.39	13.72
Runotf (mm)	96	66	53	46	36	25	16	13	14	14	26	42
Rainfall (mm)	107	78	60	54	65	23	18	66	103	103	65	114

Statistics of monthly data for previous record (Feb 1965 to Dec 1993

Station and catchment description
Crump profile weir (crest 9.14 m broad) flanked by broad-crested weirs. Small bypass channel approx. $2 \mathrm{~m} u / \mathrm{s}$ of weir - included in rating. Full range station. Bankfull is 1.37 m . During summer flows are naturally augmented from groundwater draining from northern half of River Bourne catchment. Some groundwater pumping also takes place within the catchment. Predominantly permeable (Chalk) catchment with a small inlier of Upper Greensand and Gault. Land use - rural. Topographical and groundwater catchments do not coincide.

Measuring authority: NRA-SW First year: 1956

Grid reference: 21 (SS) 936016
Level stn. (m OD): 25.90

Catchment area (sq km): 600.9 Max alt. (m OD): 519

Daily mean gauged discharges (cubic metres per secónd)

DAY.	JAN	FEB	MAR	APR	MAY	JuN	JUL	AUG	SEP	OCr	NOV	DEC
1	70.810	33.450	30.530	65.400	5.624	8.450	2.929	2.463	2.520	7.412	62.080	8.967
2	66.200	31.560	26.970	51.910	5.423	7.903	2.862	2.712	2.252	7.464	43.260	8.403
3	64.370	55.220	22.470	90.860	5:236	7.770	2.814	2.723	2.293	7.470	47.810	13.170
4	67.080	40.410	19.730	85.800	5.514	8.177	2.866	2.576	2.304	6.151	37.970	13.260
5	111.200	36.120	18.140	62.350	5.824	7.046	2.941	2.363	2.264	5.614	31.920	20.590
6	66.510	34.860	15.760	48.220	7.331	6.968	3.683	2.215	2.297	5.383	27.180	35.170
7	48.860	29.420	21.290	42.280	6.193	6.432	4.950	2.159	3.005	5.043	24.430	45.150
8	46.800	27.470	20.920	76.950	5.677	5.915	4.018	2.076	5.944	4.878	55.320	74.490
9	57.670	24.000	25.980	70.210	5.480	5.327	3.240	2.083	5.471	4.590	96.500	49.360
10	48.600	28.010	20.650	51.360	5.160	5.005	2.938	2.225	11.480	4.432	70.860	41.830
11	43.640	36.310	18.710	40.700	5.145	4.756	2.916	2.691	8.413	4.286	49.690	33.880
12	61.560	28.840	19.690	33.120	5.384	4.542	2.714	2.359	8.399	4.022	51.130	28.390
13	50.210	25.290	18.570	26.990	4.861	4.290	2.667	2.156	8.378	3.814	41.130	24.600
14	44.340	22.020	15.790	21.860	6.751	4.076	2.560	2.029	15.780	3.752	67.180	20.720
15	47.580	19.040	22.010	18.300	6.141	3.879	2.595	1.952	29.420	3.629	44.830	18.110
16	41.930	16.880	17.400	15.750	7.673	3.734	2.528	2.011	24.270	3.436	37.270	16.300
17	35.830	15.870	17.450	13.750	6.675	3.534	2.424	2.213	16.410	3.415	33.240	22.240
18	33.500	19.670	43.940	12.170	5.725	3.414	2.528	2.374	13.460	3.743	52.560	34.030
19	29.170	19.190	44.720	11.000	5.356	3.396	2.514	2.564	16.280	5.707	46.820	35.440
20	27.930	36.110	39.320	9.987	5.332	3.349	2.381	2.424	12.170	4.787	40.450	32.000
21	24.070	26.210	37.270	.9.370	7.767	4.279	2.330	2.184	12.490	5.618	34.130	27.670
22	26.450	40.520	39.060	8.648	7.412	4.706	2.263	2.086	10.490	7.796	29.090	22.940
23	52.070	71.570	38.440	8.185	6.551	3.541	2.202	2.065	9.658	7.933	23.970	19.340
24	Y 50.110	49.440	39.200	7.844	14.300	3.375	2.167	2.234	9.212	8.767	19.830	16.910
25	60.670	55.010	43.330	7.672	12.940	3.531	2.286	3.421	13.000	14.360	16.860	20.640
26	43.980	52.880	34.300	8.274	14.350	3.332	2.433	2.770	12.700	14.450	14.870	33.860
27	43.610	42.390	35.010	7.814	12.580	3.316	2.775	2.511	9.907	25.380	13.150	195.500
28	34.750	35.290	38.250	6.932	11.790	3.258	2.582	2.407	9.165	23.170	11.610	203.900
29	34.700		31.160	6.377	10.840	3.056	2.258	2.264	8.588	55.460 .	10.600	115.600
30	33.930		36.730	5.934	9.863	3.012	2.181	2.299	7.919	173.700	9.694	88.030
31	29.690		54.280		9.028		2.345	2.686		130.400		73.260
Average	48.320	34.040	29.260	30.870	7.546	4.779	2.738	2.364	9.865	18.260	38.180	44.960
Lowest	24.070	15.870	15.760	5.934	4.861	3.012	2.167	1.952	2.252	3.415	9.694	8.403
Highest	. 111.200	71.570	54.280	90.860	14.350	8.450	4.950,	3.421	29.420	173.700	96.500	203.900
Peak flow	161.30	106.90	77.74	150.20	22.23	8.86	5.77	4.14	37.54	246.30	126.30	237.80
Day of peak Monthly total	5	23	19	4	25	1	7	25	15	31	10	28
(million cu m)	. 129.40	82.34	78.37	80.01	20.21	12.39	7.33	6.33	25.57	48.91	98.97	120.40
Runoff (mm)	- 215	137	130	133	34	21	12	11	43	81	165	200
Rainfall (mm)	208	150	161	117	94	34	49	77	150	164	149	261

Statistics of monthly data for previous record (May 1956 to Dec 1993)

Station and catchment description
Velocity-area station with cableway. Flat V Crump profile weir constructed in 1973 due to unstable bed condition. Minor culvert flow through mill u /s of station included in rating. Wimbleball Reservoir has significant effect upon low flows. Station is control point for Wimbleball Reservoir operational releases. Headwaters drain Exmoor. Geology predominantly Devonian sandstones and Carboniferous Culm Measures, with subordinate Permian sandstones in the east. Moorland, forestry and a range of agriculture.

Measuring authority: NRA-SW First year: 1958

Grid refarence: 21 (SS) 608237
Level stn. (m OD): 14.10

Catchiment area (sq km): 826.2
Max alt. (m OD): 604

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APA	MAY	JUN	JUL	AUG	SEP	OCT	NoV .	DEC
1	81.570	41.450	29.760	76.180	5.151	5.784	1.880	1.280	2.091	6.356	71.010	9.054
2	81.180	31.220	25.990	57.350	4.915	5.501	1.846	1.425	1.904	6.358	48.500	. 8.349
3	74.280	97.850	21.590	132.800	4.880	5.595	1.860	1.601	1.587	6.179	59.880	15.730
4	79.650	55.360	19.000	131.400	5.144	6.587	2.014	1.507	1.556	5.215	43.680	17.740
5	134.400	44.320	17.650	76.660	5.686	5.825	2.045	1.327	1.548	4.668	33:750	25.430
6	86.070	41.070	15.140	52.900	6.604	6.731	2.498	1.204	1.440	4.372	26.810	42.210
7	61.960	33.770	29.980	44.910	5.995	5.432	3.233	1.132	1.807	4.203	$\checkmark 24.160$. 69.280
8	56.610	30.090	28.640	91.350	5.726	4.865	3.140	1.090	5.457	4.028	39.540	113.000
9	69.730	26.660	32.530	82.380	5.068	4.296	2.325	1.056	5.979	3.830	87.230	63.510
10	56.060	30.880	26.920	56.560	4.807	4.015	1.926	1.284	8.183	3.620	72.020	49.100
11	49.510	57.080	24.000	41.820	4.747	3.806	1.845	1.931	6.083	3.450	50.520	37.510
12	78.390	37.290	22.810	33.300	6.275	3.630	1.803	1.373	6.672	3.275	64:180	29.920
13	57.720	30.720	21.050	25.830	4.860	3.484	1.707	1.214	5.983	3.086	46.660	25.820.
14	50.820	25.220	17.060	20.980	9.399	3.339	1.591	1.121	18.200	3.029	70.190	21.710
15	61.630	21.570	21.910	17.520	8.168	3.152	1.616	1.093	20.910	2.993	50.040	18.590.
18	45.410	18.740	18.050	14.950	11.840	3.050	1.612	1.122	25.270	2.770	43.240	16.920
17	35.520	16.750	17.950	13.070	12.770	2.933	1.515	1.384	15.810	2.641	41.440	21.450
18	33.460	31.130	55.320	11.540	8.550	2.820	1.458	1.381	13.910	2.595	119.600	53.210
19	30.480	23.230	78.820	10.520	6.574	2.759	1.488	2.411	23.920	3.573	89.390	49.620
20	31.780	44.900	56.450	9.574	6.154	2.728	1.395	1.962	18.660	3.780	64.450	45.310
21	26.780	28.780	53.200	8.914	10.480	3.181	1.366	1.440	17.830	5.233	47.230	34.800
22	31.950	46.600	52.710	8.068	9.239	3.317	1.343	1.288	14.420	6.867	36.430	27.350
23	84.510	98.480	46.360	7.640	6.906	2.625	1.286	1.348	12.380	6.983	28.370	22.390
24	93.250	61.950	45.580	7.283	10.690	2.506	1.256	1.513	10.980	7.132	22.560	18.920
25	89.860	66.270	45.760 i.	7.034	11.060	2.631	1.228	2.991	12.400	18.190	18.690	24.060
26	59.340	61.240	34.810	7.771	14.820	2.367	1.256	1.838	15.360	16.250	16.140	39.950
27	53.650	45.950	37.340	7.513	9.862	2.196	2.049	1.657	10.280	27.820	14.040	219.000
28	40.380	36.810	39.290	6.459	8.283	2.171	1.648	1.485	8.789	26.780	12.140	271.800
29	38.960		30.480	5.860	7.367	2.057	1.381	1.407	7.790	59.690	10.950	141.000
30	38.240		41.070	5.475	6.644	1.948	1.271	1.423	7.043	209.800	9.909	109.900
31	31.620		61.860		6.115		1.238	1.724		156.500		85.850
Average	59.510	42.330	34.490	35.790	7.574	3.711	1.746	1.484	10.140	20.040	45.420	55.760
Lowest	26.780	16.750	15.140	5.475	4.747	1.948	1.228	1.056	1.440	2.595	9.909	8.349
Highest	134.400	98.480	78.820	132.800	14.820	6.731	3.233	2.991	25.270	209.800	119.600	271.800
Peak flow	188.90	152.90	135.60	242.60	21.02	7.47	3.70	4.27	37.54	323.30	$13 \dot{8.90}$	308.90
Day of peak Monthly total	5	23	19	4	25	5	7	25	16	30	18	28
((${ }^{\text {allion } \mathrm{cu} \mathrm{m}}$)	159.40	102.40	92.37	92.76	20.28	9.62	4.68	3.98	26.29	53.68	117.70	149.30
Runotf (mm)	193	124	112	112	25	12	6	5	32	65	143	181
Plainfall (mm)	191	138	147	108	84	34	45	83	142	144	129	234

Statistics of monthly data for previous record (Oct 1958 to Dec 1993)

Mean	Avg.	35.590	28.230	20.440	13.880	8.914	5.469	4.819	5.743	7.746	19.270	29.200	36.770
flows:	Low	6.657	3.235	3.369	3.888	1.982	1.329	0.794	0.423	0.857	1.043	3.654	13:200
	(year)	1963	1959	1993	1974	1990	1984	1976	1976	1959	1978	1978	1963
	High	62.100	68.000	52.140	32.800	37.000	23.370	23.390	19.130	47.670	77.360	58.500	73.670
	(year)	1984	1990	1981	1966	1983	1993	1968	1985	1974	1960	1963	1965
Runoff:	Avg.	115	83	66	44	29	17	16	19	24	62	92	119
	Low	22	9	11	12	6	4	3	1	3	3	11	43
	High	201	199	169	103	120	73	76	62	150	251	184	239
Rainfall:	Avg.	131	88	90	71	68	70	75	87	93	119	128	139
	Low	28	3	18	8	12	10	23	24	14	14	53	41
	High	242	225	183	145	146	164	156	175	247	278	239	271
Summ	ary st	tics								s affec	runo		
								1994					
				1994		or record eding 19		As \% of pre-1994		action	public	sup	
Mean flo	(m^{3}							¢147					
Lowest	yearly						1964						
Highest	yearly				27.		1960						
Lowest	monthly	mean					1976						
Highest	monthl	mean			77.		1960						
Lowest	daily m						1976						
Highest	daily m		271	O 28	363.		1960						
Peak			323		644.		1960						
10\% exc	ceedan				47.			137					
50\% ex	ceedan							139					
95\% ex	ceedan							110					
Annual to	total (m)	(cu m)			567			147					
Annual rand	runoff		100		68			147					
Annual rain	rainfalt		14		115			128					
1961	. 90 rai	ll average			115								

Station and catchment description

Velocity-area station, main channel 34 m wide, cableway span 54.9 m . Rock step downstream forms control. Bypassing begins at about 3.7 m on right bank, but a good rating accommodates this. Significant modification to flows owing to PWS abstraction. Some naturatised flow data available. Large rural catchment - drains Dartmoor (granite) in south and Devonian shaies and sandstones of, Exmoor in north. Central area underlain mainly by Culm shales and sandstones (Carboniferous). Agriculture conditioned by grade 3 and 4 soils

Measuring authority: NRA-SW
First year: 1961

Grid reference: 31 (ST) 206250 Level stn. (m OD): 16.20

Catchment area (sq km): 202.0
Max alt. (m OD): 409
Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	MAY	JuN	JUL	AUG	SEP	OCT	NOV	DEC
1	14.040	6.258	6.448	10.910	2.113	2.166	0.965	0.822	0.853	0.957	5.662	2.046
2	14.010	5.462	5.858	7.818	2.031	2.087	0.969	0.965	0.761	0.954	4.537	1.971
3 ,	11.910	19.980	5.191	10.130	2.009	2.112	0.941	0.962	0.790	0.922	6.574	3.489
4	12.580	8.358	4.816	11.190	1.992	2.163	0.981	0.894	0.790	0.864	4.945	3.367
5	37.120	6.679	4.508	9.635	1.970	1.896	0.969	0.821	0.731	0.854	3.824	6.699
6	13.400	7.626	4.039	8.282	1.993	1.826	1.249	0.773	0.808	0.851	3.366	6.848
7	9.820	6.245	3.836	7.609	2.079	1.753	1.364	0.768	1.032	0.859	3.461	10.390
8	9.200	5.504	3.551	18.030	2.032	1.647	1.193	0.746	1.058	0.841	17.400	20.930
9	21.800	5.003	3.346	12.610	1.879	1.579	0.990	0.734	0.951	0.833	51.830	9.579
10	10.940	5.872	3.041	9.108	1.845 .	1.542	0.952	0.861	0.917	0.825	18.800	7.770
11	9.570	8.177	2.934	7.631	1.813	1.528	0.914	0.842	0.865	0.822	8.652	6.377
12	16.160	5.433	3.020	6.812	1.816	1.466	0.885	0.771	0.893	0.790	8.721	5.421
13	9.811	4.746	2.978	5.872	1.721	1.428	0.843	0.715	1.311	0.789	6.446	4.741
14	9.136	. 4.477	2.676	5.162	2.630	1.360	0.803	0.694	2.208	0.825	6.071	4.174
15	21.440	4.180	2.756	4.583	2.216	1.297	0.837	0.692	1.579	0.822	5.069	3.804
16	12.390	3.874	2.559	4.168	2.145	1.289	0.831	0.741	1.339	0.793	4.532	3.462
17	8.228	3.727	2.493	3.826	2.960	1.257	0.824	0.777	0.972	0.781	4.210	4.706
18	7.709	4.337	3.554	3.502	2.073	1.247	0.827	0.755	0.922	0.810	5.309	8.901
19	6.811	4.325	3.746	3.361	1.810	1.247	0.813	0.861	1.130	1.332	4.917	6.561
20	5.942	12.290	3.786	3.085	1.789	1.243	0.780	0.748	0.965	1.475	4.350	5.256
21	5.340	5.812	4.925	3.017	4.182	1.366	0.791	0.748	0.900	1.773	3.981	4.726
22	4.918	18.610	3.873	2.897	3.164	1.271	0.770	0.920	0.850	1.390	3.733	4.212
23	6.229	20.930 .as.	3.840	- $2.982 \cdots$	2.466	1.190	0.738	0.915	0.857	1.163	3.429	3.867
24	5.858	10.320	3.592	2.744	6.352	1.276	0.753	0.794	0.897	1.188	3.127	3.609
25	6.832	12.790	3.821	2.698	4.466	1.222	0.726	0.998	2.772	1.624	2.888	3.812
26	5.768	11.650	3.465	2.567	5.071	1.152	0.840	0.762	2.244	1.430	2.718	5.164
27	6.085	8.746	3.959	2.415	3.509	1.128	0.861	0.724	1.233	1.697	2.531	31.560
28	5.404	7.394	4.323	2.327	2.897	1.076	0.784	0.687	1.091	1.586	2.337	34.900
29	5.096		3.831	2.274	2.556	1.018	0.754	0.691	1.034	3.398	2.238	22.480
30	5.105		6.687	2.183	2.340	0.986	0.765	0.757	0.988	14.320	2.129	21.350
31	4.688		11.580		2.213		0.887	1.054		8.777		14.710
Average	10.430	8.172	4.162	5.981	2.585	1.461	0.890	0.806	1.125	1.818	6.926	8.932
Lowest	4.688	3.727	2.493	2.183	1.721	0.986	0.726	0.687	0.731	0.781	2.129	1.971
Highest	37.120	20.930	11.580	18.030	6.352	2.166	1.364	1.054	2.772	14.320	51.830	34.900
Peak flow	59.48	46.94	22.39	33.86	9.30	2.34	1.94	1.35	6.04	25.74	82.16	40.66
Day of peak	5	22	31	8	24	4	7	25	25	30	9	28
Monthly total (million cu m)	27.94	19.77	11.15	15.50	6.92	3.79	2.38	2.16	2.91	4.87	17.95	23.92
Runoff (mm)	138	98	55	77	34	19	12	11	14	24	89	118
Rainfall (mm)	150	127	94	83	92	23	39	55	119	115	114	188

Statistics of monthly data for previous record (Feb 1961 to Dec 1993)

Mean flows:	Avg.	5.944	5.910	4.202	2.966	2.004	1.349	1.132	0.914	1.181	2.022	3.327	5.218
	Low	1.246	1.746	1.355	1.176	0.734	0.456	0.326	0.266	0.501	0.580	0.651	1.821
	(year)	1976	1965	1993	1976	1976	1976	1976	1976	1964	1978	1978	1975
	High	14.560	14.160	9.259	6.655	6.562	2.770	5.628	1.685	4.892	9.873	7.611	11.280
	(year)	1984	1990	1981	1966	1983	1972	1968	1965	1974	1976	1982	1965
Runoff:	Avg.	79	- +71	56	$\div 38$	u. 27	517	$=15$	1-12	$\rightarrow 15$	6P 27	$\therefore 43$	69
	Low	17	21	18	15	10	6	4	4	- 6	8	8	24
	High	193	170	;23	85	87	36	75	22	63	131	98	150
Rainfall:	Avg.	112	81	81	63	62	60	59	68	81	94	97	114
	Low	25	6	5	6	9	8	16	19	8	8	31	34.
	High	250	194	170	150	137	147	144	131	202	249	192	231

Summary statistics

Mean flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	4.416	
Lowest yearly mean		
Highest yearly mean		
Lowest monthly mean	0.806	Aug
Highest monthly mean	10.430	Jan
Lowest daily mean	0.687	28 Aug
Highest daily mean	51.830	9 Nov
Peak	82.160	9 Nov
10\% exceedance	9.772	
50\% exceedance	2.571	
95\% exceedance	0.761	
Annual total (million cum)	139.30	
Annual runoff (mm)	689	
Annual rainfall (mm)	1199	
1961-90 rainfall average (mm)		

Station and catchment description
Crump profile weir (breadth 12.2 m) with crest tapping (not operational). Prior to March 1968 velocity area station (flows were unreliable below 1.42 cumecs). Full range station. Clatworthy and smaller Luxhay Reservoir in headwaters. Compensation flow. maintains low flows. Reservoirs not large enough to influence fairly rapid response to rainfall: Minor surface water abstractions for PWS. Catchment geology - predominantly sandstones and marls. Land use - rural.

053018 Avon at Bathord

Measuring authority: NRA-SW
First yoar: 1969
Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	Nov	DEC
1	55.680	31.840	27.850	65.990	9.385	10.610	3.879	3.114	2.987	3.615	29.720	11.090
2	79.030	30.720	28.760	32.900	9.330	10.220	3.713	2.733	2.761	3.448	19.790	10.600
3	73.530	55.690	24.670	31.720	9.293	11.080	3.630	4.217	2.432	3.349	18.480	11.840
4	73.880	39.390	22.770	49.720	9.368	12.370	4.084	6.845	2.099	3.626	27.780	14.550
5	157.600	30.920	22.610	35.660	8.894	11.870	3.874	3.738	2.113	3.587	31.450	23.980
6	164.200	41.820	20.140	31.270	8.867	9.781	6.650	2.764	1.915	3.217	21.820	39.770
7	72.140	38.940	19.260	26.530	8.673	9.025	6.750	2.267	2.107	3.583	17.650	56.310
8	50.530	29.040	18.840	41.680	8.421	8.206	5.421	2.593	2.637	3.611	17.090	84.650
9	62.750	25.300	18.290	88.600	7.687	7.559	4.378	1.518	3.994	3.427	53.460	60.390
10	73.300	24.910	17.760	51.450	7.389	7.249	3.925	3.167	5.964	3.225	41.640	36.860
11	58.060	72.270	16.650	34.030	7.146	6.806	3.590	7.743	4.464	3.467	27.160	29.630
12	94.050	46.890	16.240	29.720	8.238	6.697	3.490	4.007	3.366	3.178	28.730	25.740
13	101.300	31.710	16.510	26.150	7.225	6.356	2.705	3.000	3.622	3.496	27.060	23.430
14	64.980	27.540	14.550	22.780	7.848	6.781	2.825	2.155	10.180	3.181	25.400	22.410
15	68.940	25.230	21.040	20.400	7.922	6.519	2.478	2.420	13.920	3.188	24.250	20.160
16	68.270	24.450	18.260	19.060	8.658	6.361	2.484	1.881	11.370	3.448	21.260	19.150
17	45.220	23.230	16.210	17.610	10.740	5.976	2.601	2.748	7.262	3.415	20.080	23.000
18	42.660	23.480	20.390	16.480	8.463	5.944	1.910	2.529	5.075	3.531	32.440	59.810
19	40.000	22.750	28.460	15.770	7.230	5.562	2.006	2.750	5.173	4.515	35.690	40.350
20	34.180	25.050	19.480	- 14.800	6.706	5.740	2.485	1.923	5.425	4.977	26.360	30.130
21	31.120	21.750	23.990	14.150	9.726	6.505	2.373	1.960	4.870	4.976	22.500	25.880
22	29.190	28.240	19.890	13.470	14.430	6.307	1.722	1.845	4.108	7.271	20.280	22.830
23	40.660	52.600	18.970	12.910	12.800	5.581	1.516	1.884	$\cdots+3.853$	7.523	18.220	20.460
24	39.010	34.570	17.010	12.390	13.030	5.121	2.236	1.978	3.889	5.564	16.540	19.510
25	45.450	33.070	17.510	11.880	16.990	4.907	1.706	2.276	4.628	5.606	15.320	20.980
26	37.670	54.280	16.560	11.700	43.240	4.404	1.640	2.209	4.313	8.020	14.290	32.910
27	37.670	39.440	15.890	10.910	26.230	4.425	1.856	1.499	3.772	10.150	13.330	120.400
28	31.660	32.930	18.030	10.690	17.270	4.332	1.696	1.446	3.429	8.082	12.900	142.300
29	29.590		17.550	10.480	14.320	4.140	1.582	1.342	3.209	17.760	12.140	104.700
30	28.960		18.890	10.130	12.450	3.683	1.413	1.160	3.323	57.620	11.630	106.800
31	25.880		39.330		11.220		4.059	3.215		59.300		86.620
Averago	59.840	34.570	20.400	26.370	11.590	7.004	3.054	2.740	4.609	8.482	23.480	43.460
Lowest	25.880	21.750	14.550	10.130	6.706	3.683	1.413	1.160	1.915	3.178	11.630	10.600
Highest	164.200	72.270	39.330	88.600	43.240	12.370	6.750	7.743	13.920	59.300	53.460	142.300
Peak flow Day of peak Monthly total	$\begin{gathered} 192.00 \\ 6 \end{gathered}$	$\begin{aligned} & 78.03 \\ & 11 \end{aligned}$	$\begin{aligned} & 84.21 \\ & 31 \end{aligned}$	$\begin{gathered} 111.50 \\ 9 \end{gathered}$	$\begin{aligned} & 48.32 \\ & 26 \end{aligned}$	14.31 4	$\begin{aligned} & 8.04 \\ & 6 \end{aligned}$	${ }_{11} 9.72$	14.97 15	94.07 30	$\begin{gathered} 66.89 \\ 9 \end{gathered}$	$\begin{aligned} & 162.10 \\ & 28 \end{aligned}$
(million cu m)	160.30	83.64	54.64	68.34	31.03	18.15	8.18	7.34	11.95	22.72	60.87	116.40
Runoff (mm)	103	54	35	44	20	12	5	5	8	15	39	75
Reinfall (mm)	123	81	76	55	83	28	35	72	87	93	72	140

Statistics of monthly data for previous record (Dec 1969 to Dec 1993)

Station and catchment description
Volocity-area station with cableway next to a railway bridge $4 \mathrm{~km} \mathrm{u} / \mathrm{s}$ of Bath (replacement station for Bath St James). Situated immediately d/s of confluence with Bybrook. Widely inundated in flood conditions, but all flows contained through bridge. Deep section and low velocities render flows below 5 cumecs inaccurate. Flows augmented by groundwater scheme in catchment. Mixed geology - predominantly clays and limestone with eastern tributaries rising from Chalk, Land use - mainly rural, some urbanisation

Measuring authority: NRA-ST. First year: 1921

Grid reference: 32 (SO) 782762 Level sin. (m OD): 17.00

Catchment area (sq km): 4325.0 Max alt. (m OD): 827

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FES	MAR	APR	MAY	JUN	Jul	AUG	SEP	OCT	NOV	, DEC
1	230.900	95.880	224.300	163.200	29.010	16.950	10.110	13.330	13.230	22.350	133.200	36.370
2	221.800	128.700	179.100	204.500	27.740	16.660	10.110	13.590	13.850	23.310	102.400	34.360
3	253.800	142.500	147.800	201.100	27.480	17.660	10.330	14.220	17.220	31.730	75.830	36.610
4	257.700	148.100	116.000	183.300	26.010	20.240	10.670	14.490	12.150	38.870	85.190	72.100
5	252.400	147.800	65.860	206.200	26.790	33.370	10.930	13.920	10.160	29.240	110.400	175.500
:												
6	216.900	116.100	77.840	201.900	27.600	28.010	12.980	13.150	9.668	25:670	84.530	175.700
7	178.200	108.100	71.450	190.300	32.110	21.790	14.840	11.750	11.440	23.530	66.530	168.300
8	143.900	98.820	73.570	193.000	27.550	25.100	18.330	10.600	13.810	20.180	56.890	216.000
9	143.800	83.190	80.820	224.100	25.890	26.810	13.410	10.780	14.750	18.980	70.290	215.500
10	176.900	80.540	90.630	243.700	26.810	20.380	10.810	11.520	15.450	18.220	$\mathbf{9 6 . 6 4 0}$	179.900
11	173.800	127.900	76.740	231.300	27.240	18.140	10.280	12.200	35.680	16.940	86.770	133.700
12	195.600	183.400	70.160	166.000	28.350	16.820	9.244	11.550	33.760	17.490	87.170	119.700
13	246.400	128.000	78.090	121.000	27.630	16.410	9.477	10.100	57.860	15.710	118.000	111.100
14	260.200	93.540	107.400	94.770	27.200	15.100	10.790	9.501	80.090	15.160	134.600	120.500
15	243.200	80.350	84.110	75.270	30.790	13.880	9.668	10.450	141.100	14.960	182.100	114.700
16^{\prime}	190.500	72.480	98.510	63.230	33.760	13.530	10.540	10.190	154.700	14.590	162.600	92.310
17	153.300	70.180	79.720	53.750	32.310	12.430	9.942	11.710	108.200	14.290	129.600	88.290
18	120.700	86.600	75.110	56.220	27.650	12.000	9.767	13.070	63.600	13.830	113.500	124.900
19	105.300	112.000	116.500	55.100	24.770	11.640	10.370	12.130	46.720	15.810	101.500	164.400
20	93.660	96.260	162.900	52.730	23.270	13.080	10.330	11.040	49.260	17.570	111.200	126.500
21	90.690	77.220	94.730	45.680	19.770	13.140	10.360	9.983	57.990	14.820	169.000	105.600
22	85.440	68.550	78.890	42.440	19.920	15.740	10.250	11.020	48.890	17.920	143.300	94.090
23	91.130	65.250	87.470	41.380	19.450	28.520	10.180	11.800	39.780	38.070	107.600	80.700
24	186.100	64.590	101.100	39.530	18.490	17.710	12.370	11.850	33.160	75.010	87.700	68.330
25	160.000	81.860	108.200	41.020	20.190	14.190	16.730	11.990	32.030	49.470	68.770	62.870
26	183.600	149.800	177.600	40.990	28.650	12.770	13.360	10.940	33.210	82.320	61.620	82.190
27.	165.400	203.100	135.600	45.020	26.980	12.490	13.040	11.820	32.280	90.190	53.300	167.800
28	170.600	228.200	101.300	36.450	23.520	10.960	10.690	10.870	26.860	85.760	48.970	250.400
29	152.000		103.200	33.380	20.300	10.490	9.903	11.450	24.440	75.940	44.440	331.700
30	123.100		90.490	30.490	18.370	10.850	10.170	11.750	22.510	69.510	39.160	377.500
31	114.600		108.500		17.780		11.520	11.330		115.600		347.700
Average	173.600	112.100	105.300	112.600	25.590	17.230	11.340	11.740	41.790	36.230	97.760	144.400
Lowest	85.440	64.590	65.860	30.490	17.780	10.490	9.244	9.501	9.668	13.830	39.160	34.360
Highest	260.200	228.200	224.300	243.700	33.760	33.370	18.330	14.490	154.700	115.600	182.100	377.500
Peak flow Day of peak	$\begin{gathered} 268.50 \\ 3 \end{gathered}$	$\begin{gathered} 232.60 \\ 28 \end{gathered}$	$\begin{gathered} 233.80 \\ 1 \end{gathered}$	$\begin{gathered} 247.70 \\ 10 \end{gathered}$	$\begin{aligned} & 37.38 \\ & 16 \end{aligned}$	$\begin{gathered} 38.66 \\ 5 \end{gathered}$	$\begin{gathered} 21.64 \\ 8 \end{gathered}$	$\begin{gathered} 15.97 \\ 4 \end{gathered}$	$\begin{gathered} 175.90 \\ 15 \end{gathered}$	$\begin{gathered} 128.50 \\ 31 \end{gathered}$	$\begin{gathered} 188.70 \\ 15 \end{gathered}$	$\begin{gathered} 383.10 \\ 30 \end{gathered}$
Monthly total (million cu m)	465.00	271.20	282.00	291.80	68.55	44.66	30.37	31.46	108.30	97.03	253.40	386.70
Runoff (mm)	108	63	85	67	16	10	7	7	25	22	59	89
Rainfall (mm)	122	88	106	78	48	34	44	64	129	79	82	162

Statistics of monthly data for previous record (Apr 1921 to Dec 1993)

Mean flows:	Avg.	114.400	100.700	74.070	52.660	37.890	29.480	22.560	27.900	36.140	53.470	89.100	102.200
	Low	22.100	21.200	19.440	15.880	10.230	9.804	9.587	7.461	7.668	10.490	21.730	17.850
	(year)	1963	1934	1993	1938	1938	1976	1976	1976	1949	1947	1942	1933
	High	250.600	232.300	261.900	112.400	131.600	117.400	91.240	92.360	126.700	140.700	238.300	297.400
	(year)	1939	1946	1947	1947	1969	1931	1968	1927	1946	1967	1940	1965
Runoff:	Avg.	71	57	46	32	923	1, 18	- 14	-17	22	,1233	${ }_{48} 53$	w 63
	Low	14	12	12	10	9 6	-6	- 6	5	5	7	13	11
	High	155	130	162	67	81	70	57	57	76	87	143	184
Rainfall:	Avg.	93	67	63	61	68	62	71	78	77	85	96	96
	Low	23	8	3	5	11	5	10	13	5	13	13	10
	High	226	170	175	128	186	136	193	161	209	174	244	294

Summary statistics
For 1994

For record preceding 1994		$\begin{gathered} 1994 \\ \text { As \% of } \\ \text { pre. } 1994 \end{gathered}$
61.530		120
36.460	1964	
94.740	1960	
7.461	Aug 1976	
297.400	Dec 1965	
5.990	4 Sep 1976	
637.100	21 Mar 1947	
147.200		121
37.060		133
11.030		93
1942.00		120
449		120
917		113

Factors affecting runoff

- Reservoir(s) in catchment.
- Flow influenced by groundwater abstraction and/or recharge.
- Abstraction for public water supplies
- Flow reduced by industrial and/or
agricultural abstractions.
- Augmentation from surface water and/or groundwater.
- Augmentation from effluent returns.

Station and catchment description
Since 1988 , reflective X-pattern, 20 path US gauge. Originally velocity-area station with rock control. Peak flows from 1972 . Stage monitoring site relocated in 1950 and 1970; lowest flows not reliable in earlier record. Sig. exports for PWS and CEGB; minimum flow maintained by Clywedog releases. Naturalised flow series accommodates major usages. Diverse catchment; wet western 50\% from impermeable Palaeozoic rocks and river gravels; drier northern 50% from Drift covered Carboniferous to Liassic sandstones and marls. Moorland, forestry, mixed farming.

Moasuring outhority: NRA-ST First yoar: 1936
Daity mean gauged discharges \{cubic metres per second

DAY	JAN	FEB	- MAR	APR	MAY	JuN	JUL	AUG	SEP	OCT	NOV	DEC
1	42.060	19.720	34.220	58.160	9.699	9.219	5.389	6.171	7.656	7.184	33.460	8.120
2	79.920	21.380	29.150	41.000	9.615	9.258	6.912	5.754	7.227	8.769	20.390	7.915
3	84.070	48.770	25.880	29.600	9.685	9.458	6.328	5.832	6.238	9.154	16.140	11.290
4	91.060	61.160	22.160	58.950	10.050	10.090	5.991	7.972	8.088	8.806	18.960	24.670
5	124.800	40.620	20.800	61.510	10.530	10.310	6.021	6.697	5.449	7.409	49.220	33.520
6	118.300	31.040	18.680	39.930	10.500	8.780	6.281	5.559	5.302	7.056	52.630	40.020
7	73.910	31.390	17.420	33.880	11.080	8.321	7.042	5.085	6.043	6.648	38.990	54.940
8	39.930	26.090	16.650	43.730	10.280	7.876	6.074	4.819	6.659	6.548	22.260	66.830
9	45.210	22.140	20.360	56.190	9.505	7.537	5.701	4.853	6.180	6.491	36.470	51.850
10	. 70.900	21.460	19.940	51.840	8.979	7.413	5.402	5.717	6.376	7.402	34.060	34.470
11	52											
11	52.490	60.540	17.670	35.610	8.740	7.091	5.158	8.689	8.270	5.929	27.030	25.400
12	62,970	50.060	17.290	26.500	8.735	6.771	5.142	7.999	6.165	5.597	34.770	20.740
13	90.660	32.210	16.650	24.980 .	8.758	6.784	4.983	6.202	5.957	5.088	39.870	20.730
14	63.430	25.980	13.820	21.640	10.760	6.871	4.950	5.483	16.750	4.897	31.470	24.600
15	44.340	22.650	19.210	19.180	16.400	6.405	5.159	5.112	51.550	5.175	22.820	24.630
18	40.620	20.910	21.670	17.170	15.140	6.458	5.055	5.146	37.840	5.227	17.540	21.010
17	33.320	22.560	18.030	15.830	11.410	6.233	4.963	5.780	27.230	5.336	14.910	18.970
18	28.650	24.270	17.560	14.730	9.316	6.211	4.809	5.641	17.360	4.688	14.140	41.370
19	26.160	22.430	28.830	14.370	8.494	6.120	4.757	5.332	14.790	4.667	15.350	35.400
20	24.320	20.110	25.860	- 13.800	8.372	6.104	4.698	5.021	17.780	5.608	14.390	25.920
21	23.250	17.890	19.530	13.250	10.600	6.423	4.716	4.937	17.040	8.799	14.470	20.560
22	20.910	16.700	18.150	12.820	16.540	6.358	4.683	4.883	12.430	9.164	14.280	17.720
23	25.110	37.500	18.480	16.310	18.120	5.994	4.642	4.844	9.317	8.922	15.670	15.570
24	25.060	53.680	17.180	15.220	14.950	5.934	5.242	5.469	8.615	7.409	11.580	14.160
25	28.570	53.650	17.150	12.710	21.260	5.927	8.545	5.838	9.322	6.320	10.860	15.420
26	37.210	108.000	15.030	11.590	32.140	6.101	6.111	5.154	8.600	6.960	9.979	22.160
27	30.900	91.240	13.260	10.850	22.390	6.174	5.651	4.882	7.739	6.230	9.500	61.770
28	25.990	52.700	16.250	10.440	15.950	5.759	5.252	4.725	6.944	6.443	8.881	65.060
29	21.430		14.960	9.980	12.220	5.663	5.191	4.802	6.621	19.710	8.393	61.760
30	20.130		14.420	9.831	10.590	5.381	5.159	4.671	6.636	35.860	8.251	51.230
31	18.840		24.800		9.616		5.665	5.305		40.710		37.160
Avarage	48.860	37.670	19.710	26.710	12.590	7.101	5.538	5.619	11.940	9.168	22.220	31.450
Lowest	18.840	16.700	13.260	9.831	8.372	5.381	4.642	4.602	5.302	4.667	8.251	7.915
Highest	124.800	106.000	34.220	61.510	32.140	10.310	8.545	8.689	51.550	40.710	52.630	66.830
Peak flow	143.40	117.80	39.18	69.10	34.51	11.47	10.70	12.05	58.87	43.47	56.83	72.22
Day of peak	5	26	1	1	26	5	25	11	15	31	5	27
Monthly total (million cu m)	130.90	91.14	52.80	69.24	33.73	18.41	14.83	15.05	30.95	24.56	57.61	84.24
Runoff (mm)	59	41	24	31	15	8	7	7	14	11	26	38
Rainfoll (mm)	75	62	58	49	61	16	31	48	111	59	54	77

Statistics of monthly data for previous record (Dec 1936 to Dec 1993)

Station and catchment description
Velocity-area station. Recording site, control and gauging site are widely separated; recording at a site where all flows contained. Gauge site can measure out-of-bank flows. Extensive modification to flow regime from abstractions and returns. Large catchment of low relief, draining argillaceous rocks almost exclusively. Contains many large towns, but chief land use is agriculture.

054008 Teme at Tenbury

Measuring authority: NRA-ST
First year: 1956

Grid reference: 32 (SO) 597686 Level stn. (m OD): 48.00

Catchment area (sq km): 1134.4
Daily mean gauged discharges (cubic matres per second)

Station and catchment description
Velocity-area station with a gravel control. Upstream shoaling may render low flow rating variable from year to year. Rarely goes out of bank Adjustments small and dispersed; natural catchment. Left bank characterised by high relief hills and broad valleys. Steep and narrow on the righ bank. Geology mainly Palaeozoic sediments with Pre-Cambrian crystalline rocks of the Longmynd. Relatively Drift free; some valley gravel and Boulder Clay in the lower reaches. Forestry, grazing.

056001 Usk at Chain Bridge

Measuring authority: NRA-WEL
First year: 1957

Grid reference: 32 (SO) 345056 Level stn. (m OD): 22.60

Catchment area (sq km): 911.7 Max alt. (m OD): 886

Daily mean gauged discharges (cubic metres por socond)

DAY	JAN	FEB	MAA	APA	MAY	JUN	Jut	AUG	SEP	OCT	NOV	DEC
1	62.170	77.770	50.560	158.300	14.590	12.230	6.028	4.510	3.929	6.916	56.280	15.580
2	82.600	51.680	46.970	74.950	13.770	11.870	5.939	4.421	3.784	6.775	39.100	14.900
3	100.600	92.240	40.120	75.460	13.620	14.690	5.860	5.648	3.701	7.849	65.010	29.910
4	95.450	81.420	37.220	96.960	14.710	18.230	5.904	5.364	3.699	6.913	53.270	64.590
5	88.260	66.340	40.340	66.230	14.470	15.260	6.082	4.711	3.863	6.239	37.520	88.890
6	60.640	65.760	33.090	56.780	15.360	13.050	7.427	4.239	3.943	5.952	30.430	76.960
7	48.550	56.010	35.050	62.920	13.290	12.470	7.955	4.017	4.398	5.728	27.120	140.500
8	46.200	46.830	36.770	113.900	12.330	12.160	6.628	3.854	6.483	5.557	65.670	218.100
9	81.170	41.820	49.310	105.900	11.580	10.750	6.010	3.679	9.972	5.426	139.100	79.050
10	69.560	38.900	37.300	81.570	11.090	10.150	5.618	8.496	10.060	5.228	72.880	61.920
11	68.150	55.520	33.060	57.800	10.660	9.824	5.389	13.850	7.685	5.050	50.480	56.020
12	181.400	39.740	36.520	49.140	10.770	9.455	5.135	6.939	10.610	4.910	62.180	50.900
13	134.600	34.950	41.880	40.730	10.440	9.164	4.905	5.273	11.750	4.776	67.130	46.700
14	87.510	31.060	30.320	34.910	11.840	8.713	4.736	4.623	29.890	4.715	101.800	41.390
15	88.920	29.180	39.620	30.790	24.640	8.281	4.649	4.279	31.510	4.633	57.910	35.810
16	71.580	26.940	33.050	27.780	19.980	7.934	4.543	4.179	21.040	4.512	47.850	31.540
17	54.200	27.480	29.670	25.480	15.580	7.654	4.400	5.019	14.190	4.405	40.520	40.960
18	50.930	32.570	46.910	23.440	13.550	7.418	4.292	5.390	11.480	4.333	41.050	69.110
19	47.930	28.930	62.060	21.920	12.440	7.310	4.190	4.516	13.420	5.234	43.390	42.680
20	44.760	32.390	38.010	20.530	11.960	7.241	4.128	4.406	13.460	6.148	70.490	35.570
21	40.560	26.840	35.960	19.330	17.060	12.410	4.065	4.045	14.190	11.690	46.600	30.800
22	40.290	25.800	34.610	19.360	21.330	14.850	4.052	3.853	11.680	28.730	37.990	26.970
23	90.510	41.840	39.870	18.410	15.560	9.338	3.915	3.785	10.220	27.070	33.460	24.480
24	56.040	34.190	47.220	19.610	17.850	8.191	3.900	3.951	9.743	16.480	28.090	23.590
25	73.310	80.490	50.740	22.900	23.720	7.758	4.642	4.659	10.660	34.890	25.260	32.950
26	58.630	136.800	36.420	26.610	30.680	7.358	4.452	4.105	9.977	25.230	23.130	117.100
27	65.450	89.430	42.060	20.130	21.880	7.052	7.938	3.861	8.788	21.020	21.220	265.600
28	52.080	66.340	79.800	19.460	17.990	6.877	6.280	3.722	8.118	18.410	19.240	309.900
29	47.550		46.400	17.490	15.580	6.411	4.786	3.568	7.577	39.880	18.010	160.800
30	49.030		61.140	15.680	14.000	6.198	4.363	3.519	7.162	111.500	16.570	131.100
31	39.380		138.000		12.940		4.623	3.875		93.260		77.750
Average	70.260	52.120	45.490	47.480	15.650	10.010	5.253	4.850	10.570	17.400	47.960	78.780
Lowest	39.380	25.800	29.670	15.680	10.440	6.198	3.900	3.519	3.699	4.333	16.570	14.900
Highost	181.400	136.800	138.000	158.300	30.680	18.230	7.955	13.850	31.510	111.500	139.100	309.900
Paak flow	280.50	212.50	310.60	288.10	40.84	25.57	9.41	22.07	42.80	161.80	201.30	441.10
Day of peak	12	26	31	1	15	21	6	10	14	30	9	28
Monthly total (million cu m)	188.20	126.10	121.80	123.10	41.93	25.95	14.07	12.99	27.39	46.61	124.30	211.00
Runoff (mm)	208	138	134	135	46	28	15	14	30	51	136	231
Rainfall (mm)	200	143	171	107	87	49	56	80	116	138	132	270

Statistics of monthly data for previous record (Mar 1957 to Dec 1993)

Mean	Avg.	52.730	41.940	34.380	23.840	16.640	11.130	8.202	10.720	15.840	28.090	39.530	51.190
flows:	Low	10.850	12.680	7.392	8.121	6.051	4.273	3.390	2.698	2.939	4.303	13.760	17.770
	(year)	1964	1963	1993	1974	1990	1957	1976	1976	1959	1978	1988	1988
	High	88.650	116.000	100.700	49.330	46.590	26.740	27.490	38.540	45.680	86.350	99.840	112.700
	(year)	1974	1990	1981	1985	1983	1972	1968	1985	1974	1967	1960	1959
Runoff:	Avg.	155	112	101	68	49	32	24	32	45	83	112	150
	Low	32	34	22	23	18	12	10	8	8	13	39	52
	High	260	308	296	140	137	76	81	113	130	254	284	331
Rainfall:	Avg.	181	112	113	86	87	77	78	98	120	138	148	169
	Low	28	10	15	8	9	17	21	25	8	19	55	46
	High	331	289	303	175	221	144	177	247	259	325	323	351
Summ	ary s	stics								affe	runof		
								1994					
				1994		or record ceding 19		As \% of pre-1994		rvoir(s) traction	catchrm public		
Moan flow	ow $\left(\mathrm{m}^{3}\right.$				27.			121		menta	from	ce wat	d/or
Lowost	yearly				14.		1973			dwate			
Highest	yearly				44.		1960						
Lawest	month	moan		50			1976						
Highest	month	nean			116.		1990						
Lowest	daily m			1930		727	1976						
Highest	daily m		309	0028	585.		1979						
Poak			441	00 28	945.		1979						
10\% ex	ceedan				64.0			121					
50\% ex	ceedan				16.3			127					
95\% ex	ceedan			70				94					
Annual	total (m	n cum)	106		877			121					
Annual	runoff		11		96			121					
Annual	rainfall		15		138			112					
1961	. 90 ra	all averag	mm)		136								

Station and catchment description
Velocity-area station; permanent cablewsy. Low flows measured at complementary station downstream (56010-Trostrey weir). There is a partial impact on flows resulting from three large existing public water supply reservoirs in upper catchment. Intake to canal upstream of gauge. Some naturalised flows available. Geology - mainly Old Red Sandstone. Hill farming in upper areas, with dairy or livestock farming below; forest 3%. Peaty soils in uplands, seasonally wet.

062001 Teifi at Glan Teifi

Measuring authority: NRA-WEL First year: 1959

Grid reference: 22 (SN) 244416 Level stn. (m OD): 5.20

Catchment area (sq km): 893.6 Max alt. (m OD): 593

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	58.410	60.750	60.610	139.600	25.960	7.745	4.209 .	4.567	5.982	12.400	90.280	18.190
2	60.810	49.470	52.180	97.020	23.770	7.651	4.165	4.382	5.911	14.970	62.160	17.880
3	117.200	85.840	45.370	84.960	23.420	9.106	4.123	12.390	5.696	18.670	67.980	50.100
4	118.500	91.970	44.320	89.660	22.590	11.330	4.866	10.270	6.447	16.000	65.420	135.500
5	98.620	77.190	44.390	76.410	21.720	11.800	5.286	7.805	6.437	13.340	51.610	140.900
6	77.980	77.700	39.060	64.520	20.030	10.500	11.360	6.776	7.918	12.260	45.210	153.200
7	69.850	65.310	39.340	56.210	20.250	12.600	14.030	5.885	7.214	11.620	38.680	175.100
8	61.770	55.330	42.030	77.410	18.810	11.270	8.509	5.262	9.564	11.200	61.260	184.400
9	71.920	48.490	57.840	78.640	17.080	9.758	6.681	4.870	10.600	10.780	75.590	112.600
10	67.740	44.670	50.770	79.550	16.010	8.396	5.896	7.117	12.370	10.210	57.740	77.920
11	68.350	49.650	47.450	61.950	15.150	7.361	5.375	7.342	16.040	9.310	48.160	58.470
12	96.890	42.500	50.750	50.470	15.330	6.617	5.017	5.956	36.710	8.927	73.180	48.290
13	82.520	36.150	52.410	42.790	14.280	6.064	4.595	5.361	25.520	8.586	77.250	46.420
14	67.430	30.820	45.360	37.170	14.790	5.785	4.288	5.007	33.630	8.322	85.960	45.680
15	59.330	27.540	48.360	31.780	20.430	5.485	4.217	4.787	42.790	8.051	69.910	39.110
16	49.880	25.910	45.290	28.050	19.010	5.257	4.169	4.731	42.680	7.706	59.370	33.740
17	43.960	24.530	40.290	25.290	15.110	5.068	4.146	5.066	32.760	7.495	49.630	41.620
18	42.610	25.390	51.640	23.050	13.540	4.902	4.109	5.037	34.350	7.362	55.720	58.630
19	43.120	24.410	65.820	21.480	12.310	4.776	4.062	4.884	43.540	8.106	57.200	50.280
20	43.950	24.660	61.520	26.200	11.390	4.693	4.058	4.539	43.570	8.081	77.130	42.770
21	42.240	21.230	51.000	33.700	10.740	6.960	4.020	4.346	40.850	12.330	63.400	36.380
22	44.770	22.220	55.220	37.700	10.180	8.182	3.987	4.205	32.230	30.140	53.920	31.030
23	67.550	39.270	49.540	34.090	9.845	6.932	3.919	4.680	25.610	31.510	45.320	27.340
24	63.880	30.540	48.090	41.190	10.550	5.580	3.886	4.828	23.300	31.130	39.300	25.780
25	67.260	59.710	55.860	43.850	12.440	5.103	3.827	4.992	21.960	48.530	33.440	31.150
26	57.630	72.280	52.980	42.270	10.840	4.866	5.277	4.981	19.870	49.660	29.200	63.200
27	51.780	93.570	55.430	38.710	9.818	4.778	6.657	4.862 .	17.040	48.660	26.140	161.700
28	45.750	73.430	57.970	35.480	9.188	4.479	5.517	4.958	15.330	44.020	23.340	235.600
29	42.130		48.280	31.980	8.667	4.317	4.418	5.449	14.040	54.800	21.280	195.300
30	42.610		61.350	28.640	8.244	4.250	3.903	4.788	13.030	93.3000	19.580	125.100
31	39.390		102.400		7.895		3.859	5.590		105.900 r		90.900
Average	63.410	49.300	52.350	51.990	15.140	7.054	5.240	5.668	21.770	24.630	54.150	82.400
Lowest	39.390	21.230	39.060	21.480	7.895	4.250	3.827	4.205	5.696	7.362	19.580	17.880
Highest	118.500	93.570	102.400	139.600	25.960	12.600	14.030	12.390	43.570	105.900	90.280	235.600
Peak flow	137.70	107.70	145.90	149.60	27.32	13.30	24.54	17.22	52.26	114.90	109.50	261.90
Day of peak	3	27	31	1	1	7	6	3	15	31	1	28
Monthly total (million cu m)	169.80	119.30	140.20	134.80	40.56	18.28	14.03	15.18	56.42	65.96	140.30	220.70
Runoff (mm)	190	133	157	151	45	20	16	17	63	74	157	247
Rainfall (mm)	180	137	186	122	52	52	91	98	131	140	123	266

Statistics of monthly data for previous record (Jul 1959 to Dec 1993 -incomplete or missing months total 0.2 years)

Mean flows:	Avg.	48.450	38.150	31.620	22.770	17.210	11.700	8.400	12.390	16.620	34.690	46.310	53.540
	Low	7.086	11.140	8.280	7.481	4.228	2.975	1.819	1.127	1.073	3.886	16.060	17.270
	(year)	1963	1965	1962	1974	1984	1984	1984	1976	1959	1972	1983	1991
	High	106.000	87,130	96.730	41.810	36.780	41.700	24.930	39.210	48.680	102.000	85.130	93.960
	(year)	1974	1990	1981	1985	1979	1972	1968	1985	1974	1981	1986	1965
Runoff:	Avg.	145	104	95	66	52	34	25	37	48	104	134	160
	Low	21	30	25	22	13	9	5	3	3	12	47	52
	High	318	236	290	121	110	121	75	118	141	306	247	282
Rainfall:	Avg.	148	95	104	86	78	81	81	101	114	149	153	161
	Low	28	2	25	10	17	17	25	16	10	40	75	28
	High	326	213	312	163	168	148	166	235	242	293	279	315
Summary statistics													
			For 1994		For record preceding 1994			$\begin{gathered} 1994 \\ \text { As \% of } \\ \text { pre-1994 } \\ 127 \end{gathered}$	- Reservoir(s) in catchment. - Abstraction for public water supplies.				
Mean flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)			36.010		28.460								
Lowest yearly mean					18.860		1964						
Highest yearty mean					38.230		1974						
Lowest monthly mean				0			1959						
Highest monthly mean					106		1974						
Lowest daily mean							1976						
Highest daily mean			235	- 28	373.		1987						
Peak			261	- 28	448.		1987						
10\% exceedance								120					
50\% exceedance								147					
95\% exceedance								140					
Annual total (million cu m)			113					126					
Annual runoff (mm)			12		100			126					
Annual rainfall (mm)			15		135			117					
1961-90 rainfall average (mm)					1382								

Station and catchment description
Velocity-area station. Straight reach (width: 35 m), natural control. Flood flows spill over right bank. Public water supply impounding reservoirs in upland area where there is mostly hill farming. Tregaron bog ($10 \mathrm{sq} . \mathrm{km}$.) has partial effect on flows; sensibly natural regime. Geology - mainly Ordovician and Silurian deposits. Dairy farming predominates in southern area. Forest: 5\%. Peaty soils on hills, seasonally wet. Apart from Tregaron bog, most of the lower areas have soils with permeable substrate.

067015 Dee at Manley Hall

Moasuring authority: NRA-WEL First year: 1937
Daily mean gauged discharges \{cubic matres por second)

DAY	JAN	FEE	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	89.380	74.530	89.610	119.900	12.280	9.817	10.960	13.650	12.870	14.640	42.230	16.680
2	95.260	65.390	69.620	102.400	10.840	10.200	11.430	13.260	11.510	17.570	35.300	15.330
3	104.900	73.080	58.170	84.380	10.740	11.090	11.540	13.470	10.950	25.600	38.080	26.380
4	92.550	79.590	49.280	84.660	10.970	11.260	11.380	14.200	11.010	23.380	40.100	54.450
5	83.890	63.400	42.540	88.850	10.670	10.510	11.250	13.450	10.820	19.980	33.670	67.680
6	67.570	57.400	37.160	80.950	11.660	9.357	12.460	12.520	10.110	17.830	29.010	68.990
7	55.720	52.040	39.050	85.240	11.590	10.990	13.490	12.590	10.420	16.950	25.920	107.400
8	49.750	46.810	39.430	103.200	12.040	11.990	11.460	12.810	10.310	15.090	26.350	161.600
9	57.120	43.230	41.850	111.500	11.530	11.060	11.020	12.670	13.020	12.600	37.760	106.200
10	58.010	39.830	39.720	102.200	10.630	10.630	10.990	12.540	20.150	10.990	34.620	81.540
11	57.560	60.700	38.330	80.990	10.260	10.260	11.300	12.550	25.410	10.410	30.580	70.510
12	100.000	46.720	44.230	85.380	10.020	10.160	11.250	11.450	44.330	13.580	42.410	70.460
13	109.500	40.290	59.320	49.240	9.670	9.665	10.960	10.970	42.030	13.350	62.590	84.470
14	98.580	34.610	53.860	37.820	10.390	9.709	10.930	11.130	39.940	13.020	142.600	74.720
15	82.810	31.170	61.170	31.350	14.600	10.220	10.860	11.420	48.110	12.920	108.200	60.670
16	64.540	30.160	64.910	26.290	14.090	10.590	10.610	11.280	44.780	12.730	77.270	50.920
17	52.470	29.590	54.460	24.530	10.500	10.770	10.640	11.630	32.550	12.610	58.590	52.160
18	48.860	31.940	69.910	22.500	9.266	10.750	10.490	10.450	25.760	12.090	48.720	67.010
19	47.840	28.940	80.710	20.250	9.801	10.600	10.700	10.090	22.890	11.560	51.220	56.930
20	45.210	26.440	64.710	18.890	9.534	10.470	14.320	10.040	23.770	11.130	107.700	48.320
21	43.510	24.260	50.960	17.830	9.820	12.120	14.400	10.230	22.410	10.890	87.160	43.230
22	42,400	21.980	52.540	19.290	10.010	20.530	14.000	10.320	18.330	16.320	66.490	37.460
23	75.910	20.200	68.930	21.230	9.770	14.450	13.500	10.590	14.580	23.760	50.810	33.050
24	67.370	18.940	78.940	22.250	9.380	11.550	14.860	10.780	13.750	20.530	40.240	30.860
25	78.640	21.690	97.110	23.760	9.831	10.910	14.690	11.110	17.510	32.650	33.320	33.290
26	84.290	62.700	92.890	27.000	9.455	10.720	13.630	10.920	15.320	38.230	28.560	69.610
27	97.000	118.500	74.050	32.570.	9.225	10.550	14.020	11.190	13.110	41.470	24.880	164.600
28	91.120	108.800	72.570	30.980	9.003	10.750	12.840	11.270	12.240	42.680	22.030	216.000
29	80.380		63.450	25.580	9.582	10.810	12.920	10.940	11.560	36.610	19.960	221.900
30	74.230^{\prime}		59.350	16.820	10.500	10.710	13.410	10.550	11.040	41.950	18.180	203.400
31	$60.810^{\text {1 }}$		84.790		9.774		13.730	10.680		47.590		145.700
Average	72.810	48.320	61.080	52.590	10.560	11.110	12.260	11.640	20.690	20.990	48.830	81.980
Lowest	42.400	18.940	37.160	16.820	9.003	9.357	10.490	10.040	10.110	10.410	18.180	15.330
Highest	109.500	118.500	97.110	119.900	14.600	20.530	14.860	14.200	48.110	47.590	142.600	221.900
Peak flow	128.90	134.30	151.30	158.20	15.74	24.36	16.40	14.92	67.41	49.05	177.90	257.90
Day of peak	3	27	31	1	15	22	24	4	15	31	14	28
Monthly total (million cu m)	195.00	116.90	163.60	136.30	28.29	28.79	32.84	31.17	53.62	56.22	126.60	219.60
Runoff (mm)	191	115	161	134	28	28	32	31	53	55	124	215
Rainfall (mm)	199	127	204	120	53	57	54	85	149	111	142	300

Statistics of monthly data for previous record (Oct 1937 to Dec 1993)

Station and catchment description
Asymmetrical compound Crump profile weir, checked by current meter. Drowns at flows above 200 cumecs. Low flows maintained by releases from major river regulating res. (Celyn and Brenig). Data prior to February 1970 is poorer quality-based on d/s Erbistock $\langle 67002$, area: 1040.0 sq. km .) flow record. D/s flood attenuation is notable. Geology is 75% shales, slates, mudstones and pataeozoic grits; 25% extrusive igneous and Carboniferous rocks. 80% grazed open moorland, 12% forestry, remainder arable, urban negligible.

Measuring authority: NRA-NW First year: 1937				Grid reference: 33 (SJ) 670633 Level stn. (m OD): 16.30						Catchment area (sq km): $\mathbf{6 2 2 . 0}$ Max alt. (m OD): 222		
Daily mean gauged discharges (cubic metres per second)												
DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	16.480	9.572	13.310	29.320	2.888	2.006	1.373	4.368	2.079	3.362	7.938	3.380
2	25.410	10.070	11.600	14.320	2.813	2.080	1.398	2.843	1.541	9.423	5.194	3.243
3	33.140	22.660	9.514	9.762	2.857	2.628	1.508	2.922	1.530	10.240	6.576	4.649
4	34.580	21.350	8.047	15.330	2.784	2.372	1.728	2.473	2.085	5.552	8.637	28.060
5	23.380	12.050	7.208	14.130	2.787	2. 104	1.808	1.861	1.831	3.141	17.410	26.170
6	16.460	10.070	6.055	11.020	2.766	2. 157	3.042	1.625	1.603	2.454	11.700	20.370
7	11.690	9.131	5.559	13.440	2.890	2.153	2.613	1.507	1.791	2.177	7.288	20.890
8	10.460	8.071	5.347	19.810	2.813	2.165	1.822	1.452	1.706	2.229	5.778	27.610
9	18.040	7.347	7.594	28.650	2.664	2.084	1.613	1.411	1.837	2.017	12.470	17.610
10	24.050	6.848	7.368	20.310	2.655	1.992	1.515	1.421	2.566	1.918	12.980	12.660
11	19.170	15.650	6.794	11.960	2.598	1.942	1.504	1.407	1.644	1.852	9.698	9.898
12	26.790	11.060	7.582	10.170	2.573	1.935	1.542	1.509	4.308	1.828	18.720	8.442
13	29.080	8.289	6.951	8.737	2.574	1.900	1.398	1.391	2.512	1.736	18.820	19.290
14	17.830	6.763	9.303	6.875	2.758	1.810	1.348	1.320	8.509	1.804	14.970	19.900
15	12.630	5.810	11.330	5.894	4.779	1.700	1.373	1.243	19.030	1.856	9.985	13.050
16	10.370	5.379	7.884	5.312	3.526	1.669	1.333	1.342	8.975	1.748	7.022	11.560
17	8.685	5.936	6.190	4.775	2.922	1.638	1.280	2.607	3.278	1.606	5.996	12.010
18	10.660	6.393	15.490	4.488	2.626	1.598	1.224	1.760	2.464	1.569	5.819	19.120
19	10.760	5.781	23.830	4.418	2.481	1.569	1.294	1.473	3.042	1.776	6.461	14.240
20	9.116	5.341	11.950	4.720	2.448	1.602	1.416	1.278	4.180	2.013	25.810	19.020
21	8.593	5.067	8.674	4.452	2.483	1.799	1.550	1.221	3.254	2.037	18.500	17.920
22	9.707	4.811	8.374	3.932	2.625	1.676	1.576	1.166	2.425	3.279	11.170	12.170
23	21.700	4.923	6.938	3.746	2.485	1.516	1.430	1.254	2.076	6.713	8.501	9.246
24	13.580	4.815	7.104	3.562	2.536	1.746	2.035	1.241	2.328	4.332	6.401	8.178
25	25.410	8.032	17.510	4.644	2.495	1.678	2.143	1.186	3.731	4.677	5.791	9.757
26	18.980	17.610	9.066	4.023	2.461	1.561	1.721	1.229	2.581	3.835	5.417	18.600
27	14.220	14.850	6.709	3.508	2.355	1.468	3.434	1.206	2.164	6.437	4.785	57.810
28	13.970	15.260	5.883	3.479	2.234	1.437	2.511	1.091	2.001	7.179	4.188	47.000
29	10.600		5.033	3.002	2.144	1.415	1.736	1.051	1.857	6.634	3.853	33.720
30	9.077		5.275	3.006	2.094	1.336	1.774	1.075	1.783	11.850	3.594	30.350
31	7.637		11.150		2.072		5.477	1.318		12.200		22.670
Average	16.850	9.605	9.052	9.360	2.683	1.825	1.855	1.621	3.357	4.177	9.716	18.660
Lowest	7.637	4.811	5.033	3.002	2.072	1.336	1.224	1.051	1.530	1.569	3.594	3.243
Highest	34.580	22.660	23.830	29.320	4.779	2.628	5.477	4.368	19.030	12.200	25.810	57.810
Peak flow	41.63	28.78	29.33	34.09	5.33	3.09	10.61	5.80	20.90	13.51	30.99	63.96
Day of peak	3	3	31	1	15	3	31	1	15	30	20	27
Monthly total (million cu m)	45.12	23.24	24.25	24.26	7.19	4.73	4.97	4.34	8.70	11.19	25.18	49.99
Runoff (mm)	73	37	39	39	12	8	8	7	14	18	40	80
Rainfall (mm)	80	51	77	53	31	20	51	43	114	72	61	115

Statistics of monthly data for previous record (Oct 1937 to Dec 1993 -incomplete or missing months total 1.8 years)

Station and catchment description
Initially a river section (from 1937). Early gaugings lost; rating accuracy unknown. Mobile control. Data before 1972 , particularly low flows, unreliable. Unstable low flow rating led to relocation $400 \mathrm{~m} d / \mathrm{s}$ with an informal Flat V control and cableway in $8 / 78$. Prone to weed and algal growth. High flow rating (above 40 cumec) has yet to be defined. Flat catchment includes western half of Crewe. Post glacial deposits over (mostly) Keuper Marl.

072004 Lune at Caton

Measuring authority: NRA-NW First year: 1959

Grid reference: 34 (SD) 529653 Level stn. (m OD): 10.70

Catchment area (sq km): 983.0
Max alt. (m OD): 736

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	JuL	AUG	SEP	OCT	Nov	DEC
1	43.750	132.900	47.450	106.200	18.100	4.416	8.811	9.942	25.150	16.100	59.050	13.890
2	112.200	58.830	44.980	49.900	15.460	4.342	7.715	9.703	13.770	125.400	31.700	12.850
3	134.300	46.380	139.400	105.400	14.030	5.163	7.048	18.160	12.540	59.310	41.600	19.280
4	64.680	43.950	53.040	80.450	19.320	7.571	6.747	47.210	31.530	28.320	29.320	78.700
5	79.520	31.470	93.270	73.550	53.790	5.955	6.486	16.420	23.270	19.970	57.080	66.360
6	56.180	33.970	96.060	53.920	37.930	5.439	6.554	10.740	38.740	15.980	32.080	49.550
7	34.070	29.430	120.700	95.400	21.600	8.357	6.593	7.942	55.760	21.460	23.080	76.200
8	28.910	65.300	246.900	132.600	16.700	5.738	5.545	6.762	32.500	27.330	25.910	129.500
9	50.140	46.440	83.260	80.190	13.910	5.189	4.904	5.965	43.190	16.100	68.520	48.300
10	48.900	27.940	44.760	62.400	12.270	5.735	5.030	5.364	80.810	12.900	43.950	218.900
11	33.730	22.440	68.640	39.340	10.880	5.081	11.880	4.985	68.820	11.150	28.480	192.100
12	75.450	18.610	115.200	32.570	9.846	4.482	0.170	4.653	104.200	9.975	62.410	182.300
13	72.390	15.960	103.100	26.190	8.897	4.086	5.759	4.278	68.570	9.148	327.800	102.700
14	78.640	13.690	106.700	20.500	8.315	3.636	4.977	3.911	35.580	8.505	214.300	56.940
15	42.760	12.470	56.500	17.100	10.860	3.453	4.777	3.662	39.810	7.943	113.500	50.790
16	28.770	11.810	44.300	15.000	11.060	3.588	4.499	3.925	29.700	7.585	70.460	51.140
17	22.090	11.220	40.370	13.580	8.467	3.596	4.065	15.480	19.830	7.260	102.800	124.400
18	175.800	11.040	60.510	12.440	7.426	3.597	3.736	8.775	16.100	6.810	93.180	96.400
19	71.360	10.410	41.180	12.130	7.016	11.650	3.434	6.932	15.060	6.577	142.100	65.390
20	68.650	9.394	28.360	33.620	6.883	11.130	3.290	6.625	16.590	7.565	130.900	43.070
21	62.400	0.532	23.480	29.370	6.602	65.580	3.234	5.382	15.770	8.135	58.280	31.750
22	83.910	8.093	76.980	105.900	6.684	21.440	3.215	4.590	12.310	18.740	40.180	24.560
23	135.500	7.749	32.9 .800	57.830	6.244	10.750	3.084	17.680	10.480	74.880	36.120	20.860
24	82.260	8.050	90.010	33.500	5.874	12.170	3.489	92.070	10.270	34.560	29.640	25.590
25	186.600	12.620	85.270	35.140	5.576	17.580	3.896	83.570	32.610	45.200	24.500	47.320
26	134.700	72.320	43.580	35.390	5.340	29.900	3.165	36.960	17.870	47.170	25.100	122.900
27	166.100	123.100	51.870	30.400	5.210	80.650	4.852	55.260	13.080	51.120	22.490	94.870
28	70.330	97.900	55.130	70.310	5.054	22.770	4.096	41.390	11.320	63.510	18.810	449.800
29	105.100		41.630	35.260	4.968	14.290	3.133	26.410	10.170	32.100	16.680	143.600
30	70.990		31.460	22.950	4.720	10.740	2.887	23.090	9.757	48.080	15.120	137.600
31	43.030		127.800		4.516		4.805	19.890		117.400		84.150
Avarage	79.460	35.360	83.600	50.620	12.050	13.270	5.157	19.600	30.510	31.170	66.170	92.310
Lowest	22.090	7.749	23.480	12.130	4.516	3.453	2.887	3.662	9.757	6.577	15.120	12.850
Highest	186.600	132.900	329.800	132.600	53.790	80.650	11.680	92.070	104.200	125.400	327.800	449.800
Peak flow	394.60	259.80	582.00	285.90	123.10	150.60	13.49	212.70	129.60	224.10	609.60	579.50
Day of peak Monthly total	18	1	23	1	5	27	11	25	10	2	13	28
(million cu m)	212.80	85.54	223.90	131.20	32.27	34.39	13.81	52.51	79.07	83.49	171.50	247.30
Runotf (mm)	217	87	228	133	33	35	14	53	80	85	174	252
Reinfall (mm)	224	81	255	145	41	98	59	151	121	129	174	287

Statistics of monthly data for previous record (Jan 1959 to Dec 1993-incomplate or missing months total 4.0 years)

Station and catchment description
Bazin type compound broad-crested weir operated after 10/6/77 as full-range station. Previously used for low/medium flows; high flows from Halton 3 km downstrearn. High flows inundate wide floodplain. Transfers to River Wyre under Lancs. Conjunctive Use Scheme. Major abstractions for PWS. Headwaters rise from Shap Fell and the Pennines. Mixed geology: Carboniferous Limestone; Silurian shales; Millstone Grit and Coal Measures, substantial Drift cover. Agriculture in valleys; grassland rising to peat moss in highest areas.

Measuring authority: NRA-NW First year: 1939

Grid reference: 34 (SD) 367863 Level stn. (m OD): 37.30

Catchment area (sq km): 247.0
Max alt. (m OD): 873

Daily mean	ged	arges	ic motr	con		\because						
DAY	JAN	FEE	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	23.240	44.160	25.720	26.890	12.690	1.176	9.217	2.944	8.678	3.374	26.500	7.772
2	22.980	47.360	24.110	25.300	11.260	1.273	7.387	3.069	7.309	5.377	24.840	6.661
3	26.720	40.550	26.980	26.900	9.760	1.609	6.011	6.782	6.464	6.654	24.540	7.782
4	31.640	33.740	28.330	36.770	11.420	2.127	5.211	13.980	6.291	6.120	23.700	11.850
5	29.290	26.680	31.240	35.170	16.810	2.072	4.511	14.200	6.480	5.404	22.960	15.210
6	27.820	22.840	32.350	31.670	18.860	2.506	4.237	12.510	8.867	4.519	20.990	16.760
7	24.940	20.610	41.070	30.630	17.490	3.139	3.832	10.390	12.570	4.701	18.440	19.100
8	21.780	20.890	53.160	32.190	15.480	3.201	3.279	8.386	13.990	5.004	16.680	28.590
9	20.250	23.200	54.810	33.550	13.480	3.494	2.664	7.129	15.490	4.651	20.790	29.230
10	21.130	21.760	45.250	31.000	11.730	4.002	5.346	5.527	19.600	4.012	21.370	35.070
			$\therefore \dot{0}$	\cdots								
11	20.040	19.230	38.350	25.260	10.350	3.801	9.848	4.179	23.860	3.474	19.470	43.560
12	22.270	16.740	34.760	22.630	8.659	3.441	10.320	3.140	28.710	2.951	20.780	49.850
13	24.690	14.560	37.630	19.970	7.666	3.150	8.966	2.621	31.650	2.554	40.500	45.920
14	25.120	12.480	38.100	17.350	6.614	2.867	7.330	2.320	28.350	2.232	55.630	39.100
15	23.450	10.260	36.600	14.270	5.913	2.383	6.209	2.146	21.900	2.210	52.900	33.160
16	20.500	8.939	32.070	11.840	5.188	2.171	5.128	2.128	18.060	1.799	46.440	28.000
17	17.350	7.773	25.910	10.100	4.303	1.837	3.947	2.662	14.960	1.467	41.520	26.780
18	20.540	6.811	23.050	8.411	3.619	1.918	3.069	2.686	12.320	1.432	41.430	28.990
19	26.820	6.194	20.370	7.586	3.327	3.289	2.418	3.213	10.560	1.745	45.000	27.560
20	25.920	5.281	17.870	8.729	3.065	3.882	1.967	3.506	9.485	2.603	43.750	25.350
21	24.900	4.641	15.440	9.430	2.931	12.030	1.945	3.546	7.704	3.223	38.490	22.250
22	23.880	4.268	18.080	15.700	2.531	14.390	1.918	3.585	6.345	5.611	33.170	19.010
23	28.650	4.978	36.390	18.510	2.136	12.570	1.852	5.064	5.339	9.788	27.390	16.330
24	28.080	4.299	46.110	18.510	1.938	10.310	1.906	7.546	5.075	11.870	23.510	15.350
25	31.580	4.735	41.340	17.960	1.890	8.312	1.543	11.530	4.263	12.360	19.850	15.910
26	35.550	6.450	35.140	17.880	1.713	8.601	2.565	12.410	3.714	13.930	16.950	19.060
27	43.830	13.410	30.380	16.910	1.470	14.960	3.492	12.640	3.521	16.490	14.570	23.570
28	42.560	$\cdot 24.890$	29.730	16.320	1.320	14.780	3.419	12.140	3.140	18.860	12.580	44.670
29	39.050		27.290	15.630	1.345	12.840	3.045	11.920	3.021	18.440	10.760	54.490
30	37.870		23.850	14.440	1.072	11.100	2.742	10.700	2.966	19.260	9.156	52.020
31	33.590		24.300		1.133		2.856	9.653		24.470		50.360
Average	27.290	17.060	32.120	20.580	7.005	5.774	4.457	6.911	11.690	7.309	27.820	27.720
Lowest	17.350	4.268	15.440	7.586	1.072	1.176	1.543	2.128	2.966	1.432	9.156	6.661
Highest	43.830	47.360	54.810	36.770	18.860	14.960	10.320	14.200	31.650	24.470	55.630	54.490
Peak flow	45.89	50.26	59.77	38.07	19.26	15.93	10.68	14.93	33.27	26.77	56.78	56.78
Day of peak	27	1	8	4	6	27	12	4	13	31	14	29
Monthly total (million cu m)	73.10	41.28	86.04	53.35	18.76	14.97	11.94	18.51	30.30	19.58	72.11	74.24
Runoff (mm)	296	167	348	216	76	61^{*}	48	75	123	79	292	301
Rainfall (mm)	344	149	372	211	71	154	103	180	160	186	270	393

Statistics of monthly data for previous record (Jan 1939 to Dec 1993)

Station and catchment description
Level record since 1939 from four different sites at Newby Bridge. All flow records from 1939 to 1974 combined into a single sequence. Since 5/5/71 compound Crump profile weir - increased sensitivity at low flows. Full-range. Just d/s of Lake Windermere - highly regulated, compensation flow. Occasional very low flows (e.g. in autumn 1972) have resulted from closure of u/s fish pass. Major abstractions for PWS, sewage effluent from Ambleside. Predominantly impervious, Borrowdale Volcanics in north and Silurian slate in south. Boulder Clay along river valleys. Mainly grassland, very wooded in lower reaches.

076007 Eden at Sheepmount

Measuring authority: NRA-NW First year: 1967

Grid reference: 35 (NY) 390571
Level stn. (m OD): 7.00

Catchment area (sq km): 2286.5 Max alt. (m OD): 950

Daily mean gauged discharges (cubic motres per second)

DAY	JAN	FE日	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	66.170	226.000	80.580	154.200	34.200	12.400	13.700	13.150	18.920	16.810	79.570	29.060
2	98.500	139.500	64.700	84.080	32.270	12.850	12.870	11.400	18.190	31.590	54.430	27.230
3	135.000	93.740	168.400	87.180	30.500	15.820	12.390	15.270	15.550	70.860	64.750	41.400
4	113.000	98.530	92.180	118.400	35.460	17.430	12.420	39.500	16.190	38.300	62.350	97.110
5	109.600	74.600	208.500	84.210	42.980	16.500	12.190	25.500	17.290	28.910	92.700	115.500
6	113.800	65.140	110.600	82.360	44.720	14.690	14.440	20.000	17.340	24.030	72.000	92.040
7	77.670	59.710	114.200	127.500	33.330	14.630	19.090	16.540	23.930	22.300	50.950	170.600
8	62.550	61.290	227.800	155.000	29.100	14.350	13.610	14.950	21.200	23.340	42.190	290.800
9	83.120	78.990	136.900	120.200	26.190	13.810	12.020	13.800	23.260	19.940	73.250	121.500
10	108.000	55.980	86.320	95.010	24.130	13.950	11.630	12.900	56.750	17.770	75.510	161.800
11	69.980	47.900	89.140	74.560	22.460	13.680	13.580	12.220	88.460	16.310	57.590	312.100
12	110.300	41.680	97.490	66.760	20.980	13.070	13.780	11.840	112.500	15.270	91.560	298.000
13	175.600	37.020	158.400	59.350	19.660	12.630	12.930	11.360	104.100	14.510	283.300	154.700
14	117.900	32.740	116.700	48.750	18.800	12.120	11.930	10.870	61.920	13.970	278.500	114.000
15	88.830	30.130	90.280	41.150	19.390	11.880	11.550	10.430	48.940	13.480	166.200	87.110
16	67.360	28.520	75.140	36.630	23.090	12.910	11.090	10.540	42.580	13.130	105.900	84.830
17	54.570	26.650	70.650	33.760	19.340	14.930	10.590	11.610	33.310	12.790	118.600	116.200
18	73.700	25.500	72.490	31.350	17.680	14.270	10.180	12.920	28.050	12.350	155.700	171.700
19	92.900	24.320	68.020	29.660	16.760	18.140	9.797	12.330	26.050	12.130	205.700	123.700
$20 \therefore$	65.540	- 22.920	52.720	32.460	16.040	15.980	9.567	12.440	28.120	13.210	170.200	86.710
\therefore	1.000											
21',	60.080	21.760	45.600	40.790	15.550	40.490	9.727	11.310	29.570	19.680	104.000	66.930
22	55.390	20.330	66.110	84.560	15.720	34.110	9.705	10.510	24.860	25.410	76.100	54.440
23	103.500	19.700	289.100	81.240	16.180	20.840	9.223	14.070	21.190	86.080	64.840	48.420
24	71.050	19.390	182.100	62.040	15.200	17.270	9.237	23.710	19.300	51.820	58.120	49.170
25	153.900	19.530	110.600	52.080	14.520	15.800	9.561	66.020	31.240	39.190	50.130	60.740
	:	\because										
26	152.500	39.460	80.610	54.050	14.030	15.610	9.537	29.610	29.390	42.580	47.690	112.100
27	233.800	151.100	65.470	43.250	13.700	24.580	9.809	34.320	22.580	47.010	43.240	115.200
28	114.400	151.900	82.450	57.640	13.490	22.470	9.807	31.530	19.650	39.070	38.080	326.700
29	89.830		72.670	58.150	13.270	17.250	9.630	29.070	17.960	34.210	34.400	294.700
30	104.900		60.390	40.820	12.880	15.030	9.648	24.060	16.750	59.740	31.380	234.500
31	74.020		109.900		12.650	.	12.240	18.820		125.000		237.100
Average	99.910	61.220	107.300	71.240	22.070	16.980	11.530	19.110	34.500	32.280	94.960	138.600
Lowest	54.570	19.390	45.600	29.660	12.650	11.880	9.223	10.430	15.550	12.130	31.380	27.230
Highest	233.800	226.000	289.100	155.000	44.720	40.490	19.090	66.020	112.500	125.000	283.300	328.700
Poak flow	325.90	368.20	448.90	213.00	57.72	57.81	24.22	96.87	146.00	139.80	453.60	444.90
Day of peak	27	1	23	1	6	21	7	25	12	31	13	29
Monthly total (million cu m)	267.60	148.10	287,40	184.70	59.12	44.02	30.89	51.19	89.44	86.47	246.10	371.20
Runoff (mm)	117	65	126	81	26	19	14	22	39	38	108	162
Rainfall (mm)	159	68	179	104	29	71	49	114	92	91	140	241

Statistics of monthly data for previous record (Oct 1967 to Dac 1993 -incomplete or missing months total 3.0 years

Station and catchment description
Velocity-area station. Permanent cableway. Full-range. Most floods contained in immediate channel. Pre-1970 (when floodbanks constructed) bypassed via Caldew floodplain. Highly influenced by Ullswater, Haweswater and Wet Sleddale especially at low flows. Rural except for Carlisle, Penrith and Appleby. Headwaters in Carboniferous Limestone of Pennines to east, impervious Lower Palaeozoics of Lake District massif to west: moorland. Extensive Boulder Clay covered Permo-Triassic sandstone in Vale of Eden. Arable and grazing.

079006 Nith at Drumlanrig

Measuring authority: SRPB First year: 1967

Grid reference: 25 (NX) 858994 Level stn. (m OD): 52.20

Catchment area (sq km): 471.0
Max alt. (m OD): 725

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APA	MAY	JUN	JUL	AUG	SEP	OCT	Nov	DEC
1	12.790	138.400	19.380	39.800	6.272	1.494	1.547	14.560	7.054	4. 186	27.300	7.083
2	17.680	42.000	34.920	38.460	6.515	1.477	1.458	5.308	5.464	8.215	25.920	7.251
3	57.330	30.630	49.160	90.680	9.902	2.082	1.442	15.810	5.198	9.573	73.510	37.430
4	26.790	62.790	95.070	54.340	21.450	2.375	1.712	18.570	5.895	5.945	42.520	23.830
5	27.360	48.480	67.360	39.140	24.770	1.918	3.311	7.699	5.296	8.811	25.040	39.460
6	32.010	51.470	49.330	28.930	14.300	1.817	6.773	5.495	27.800	6.177	23.560	67.880
7	23.410	30.780	44.320	32.160	10.250	1.747	5.323	4.263	15.180	5.147	16.470	67.470
8	19.130	34.570	69.490	43.420	7.785	1.586	3.079	3.589	20.430	4.338	15.620	104.200
9	102.500	24.630	31.670	31.710	6.356	3.150	2.448	3.090	32.190	3.709	30.570	33.220
10	65.580	16.810	22.500	27.160	5.574	3.201	8.180	2.657	34.490	3.334	16.110	156.800
11	55.180	14.190	23.410	21.500	4.905	2.025	7.874	2.354	41.850	2.990	12.170	342.100
12	80.220	11.200	40.270	20.820	4.259	1.740	11.500	2.095	19.770	2.701	25.460	128.600
13	67.590	9.016	45.870	13.790	3.826	1.548	8.272	1.901	13.000	2.510	125.800	45.030
14	63.910	7.382	57.160	10.630	3.507	1.324	4.680	1.787	9.762	2.388	77.140	26.020
15	32.780	6.826	32.280	8.700	3.240	1.333	4.142	1.701	7.650	2.307	113.800	21.240
16	20.720	6.391	27.840	7.558	2.992	1.798	3.259	1.961	6.091	2.230	77.340	19.700
17	17.970	7.157	30.810	6.881	2.793	3.056	2.619	2.475	5.127	2.063	84.340	64.160
18	49.170	7.058	37.630	6.153	2.672	11.630	2.206	2.060	4.650	1.974	87.210	26.860
19	26.050	6.552	27.500	5.983	2.562	12.290	1.941	2.455	5.610	2.401	64.890	41.520
20	27.710	5.717	22.510	5.189	2.400	4.354	1.780	2.220	5.335	5.193	40.320	27.180
21	25.070	5.264	37.070	5.092	2.252	16.620	1.739	1.943	4.347	6.426	27.660	16.160
22	30.490	4.865	74.490	6.991	2.138	6.893	1.635	1.756	3.776	45.190	33.630	12.400
23	37.100	'3.640	110.100	13.170	2.030	4.130	1.463	15.490	3.416	59.810	22.220	20.000
24	31.500	3.428	48.290	12.610	1.924	3.557	1.666	23.080	3.134	18.750	16.490	19.480
25	59.280	3.264	28.040	19.530	1.819	3.140	1.882	11.850	2.911	11.020	13.740	31.160
26	72.800	6.087	17.950	14.680	1.736	3.019	6.934	10.810	2.733	11.060	16.060	29.490
27	46.030	72.980	42.230	8.567	1.693	3.128	3.277	13.150	2.874	11.430	12.360	20.100
28	22.990	35.790	35.100	8.515	1.631	2.333	2.230	37.730	2.912	13.200	10.160	91.610
29	33.040		25.860	9.781	1.563	1.896	1.865	41.650	3.253	11.990	8.559	42.090
30	31.340		73.170	7.874	1.515	1.697	1.648	14.140	3.168	16.650 ,	7.644	62.110
31	23.920		49.760		1.492		17.680	9.443		47.650		28.330
Average	39.980	24.910	44.210	21.330	5.359	3.612	4.050	9.132	10.350	10.950	39.120	53.550
Lowest	12.790	3.264	17.950	5.092	1.492	1.324	1.442	1.701	2.733	1.974	7.644	7.083
Highest	102.500	138.400	110.100	90.680	24.770	16.620	17.680	41.650	41.850	59.810	125.800	342.100
Peak flow	273.60	258.00	236.20	155.10	31.21	26.74	78.04	86.97	55.76	161.80	204.00	509.10
Day of peak	9	1	4	3	4	21	31	29	11	22	13	11
Monthly total (million cu m)	107.10	60.25	118.40	55.28	14.35	9.36	10.85	24.46	26.82	29.32	101,40	143.40
Runoff (mm)	227	128	251	117	30	20	23	52	57	62	215	305
Rainfall (mm)	242	119	260	131	30	89	112	116	86	115	206	310

Statistics of monthly data for previous record (Jun 1967 to Dec 1993)

Station and catchment description
Velocity-area station on long straight reach at particularly well confined site. Cableway. Gravel and rock bed. Natural channel control. Sensibly natural flow regime. Afton Reservoir has small influence.

084005 Clyde at Blairston

Measuring authority: CRPB First year: 1958

Grid reference: 26 (NS) 704579 Leval sin. (m OD): 17.60

Catchment area (sq km): 1704.2
Max alt. (m OD): 732

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL.	AUG	SEP	OCT	NOV	DEC
1	39.280	242.900	85.740	83.980	20.550	9.414	7.979	11.650	14.470	11.180	53.750	23.900
2	45.740	142.800	102.700	86.570	19.080	9.386	7.991	10.880	12.970	14.700	34.060	28.270
3	70.610	76.570	170.400	108.800	18.310	9.806	8.098	15.060	13.220	25.970	34.460	45.400
4	71.270	87.540	169.300	134.700	19.500	9.775	11.700	15.000	16.190	20.110	59.340	45.220
5	59.180	68.030	106.500	122.400	32.700	9.775	12.260	13.000	14.810	15.510	49.200	44.830
6	119.900	66.430	87.200	95.680	38.390	9.062	16.310	10.000	20.470	14.060	46.880	105.600
7	90.870	58.610	153.400	108.800	25.940	8.871	18.660	9.000	34.980	13.940 ,	38.630	121.400
8	53.060	54.310	132.700	125.600	22.430	8.882	12.550	8.500	21.640	13.350	30.920	251.800
9	63.000	63.690	121.900	102.000	19.250	8.665	10.680	7.937	25.230	12.220	28.320	130.400
10	124.200	46.360	91.080	84.280	18.080	8.132	24.170	6.669	46.870	11.120	34.450	386.200
11	69.900	39.600	85.220	64.540	16.340	8.203	22.490	6.528	65.930	9.994	33.200	676.400
12	109.600	34.660	89.810	54.820	17.470	8.107	23.310	6.265	42.960	9.470	39.960	516.600
13	174.000	30.180	152.300	47.210	17.930	8.098	20.990	5.932	28.500	9.459	206.400	159.800
14	191.700	27.030	239.800	39.540	17.060	8.160	14.590	5.771	22.250	9.242	199.100	93.100
15	98.840	25.160	109.700	34.510	16.300	8.144	11.190	5.953	18.240	8.795	181.400	72.750
18	63.720	23.320	88.150	30.870	16.400	8.852	10.500	6.054	15.630	8.752	120.900	63.880
17	48.910	21.550	90.000	29.350	16.190	9.116	9.064	6.576	14.050	8.878	161.500	92.140
18	94.270	20.680	88.040	26.670	15.810	12.420	8.974	6.988	13.360	8.131	201.000	99.580
19	80.690	20.110	73.210	25.300	15.140	17.340	8.507	7.164	12.650	7.710	190.900	122.000
20	72.460	18.940	59.260	23.470	14.270	12.820	8.241	6.912	11.740	8.338	103.000	84.910
21	63.100	17.740	60.930	21.430	14.630	13.630	8.235	7.023	11.890	9.297	72.390	55.140
22	87.200	16.670	129.400	24.210	14.470	18.590	8.244	7.175	11.360	19.050	64.080	44.580
23	108.100	15.010	286.600	25.810	14.270	12.110	8.373	7.710	10.060	127.100	60.010	57.160
24	75.450	16.140	148.800	24.850	13.890	11.520	8.309	16.360	9.039	53.120	46.860	76.260
25	168.800	15.540	85.150	25.890	13.760	11.520	8.297	26.390	8.497	40.740	39.950	86.320
26	191.200	23.210	60.950	32.080	13.420	10.900	9.365	15.990	8.534	31.600	47.580	99.060
27	190.300	101.700	52.500	25.320	12.650	12.430	11.100	14.110	8.464	32.690	42.550	74.530
28	82.760	153.400	71.610	21.300	10.510	10.380	8.690	55.960	8.361	25.990	35.230	178.300
29	79.980		68.540	22.610	10.110	9.023	8.154	54.840	8.597	35.050	28.500	144.200
30	84.040		76.250	23.290	9.185	8.336	8.017	30.540	8.849	40.130	25.650	157.100
31	71.610		128.000		9.445		8.536	19.390		76.640		107.600
Avarage	94.960	54.570	111.800	55.860	17.210	10.380	11.730	13.780	18.660	23.620	77.010	136.900
Lowest	39.280	15.010	52.500	21.300	9.185	8.098	7.979	5.771	8.361	7.710	25.650	23.900
Highest	191.700	242.900	286.600	134.700	38.390	18.590	24.170	55.960	65.930	127.100	206.400	676.400
Poak flow	275.00	288. 10	322.90	168.90	42.28	21.89	26.52	71.95	73.98	167.40	262.20	830.90
Day of peak Monthly total	27	2	24	4	7	23	11	29	12	24	14	12
((million cu m)	254.30	132.00	299.40	144.80	46.09	26.91	31.41	36.92	48.37	63.27	199.60	366.70
Runoff (mm)	149	77	176	85	27	16	18	22	28	37	117	215
Rainfall (mm)	173	82	205	90	21	65	83	92	66	83	143	252

Statistics of monthly deta for previous record (Oct 1958 to Dec 1993)

Station and catchment description

Recorder moved to present position in Nov. 1974 from opposite bank. Section is natural with steep grass and tree covered banks. Velocity profile slightly uneven due to upstream bend. Control - piers of redundant rail bridge, 300m d/s. Section rated by current meter to 3.4 m , just below max. recorded stage. Some naturalised flows available. Very mixed geology with the older formations (Ordovician/Siturian) to the south. Hill pasture and moorland predominates but some mixed farming and urban development is found in the lower valley.

085003 Falloch at Glen Falloch

Measuring authority: CRPB
First year: 1970 First year: 1970

Grid reference: 27 (NN) 321197 Level stn. (m OD): 9.50

Catchment area (sq km): 80.3 Max alt. (m OD): 1130

Daily mean	uged dis	arges	ic metr	er seco								
DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	1.806	26.110	1.478	12.960	3.165	0.724	1.311	1.471	0.847	6.012	3.673	1.484
2	3.137	5.656	7.771	5.953	3.405	1.440	1.088	0.635	0.570	4.699	8.934	3.480
3	12.050	4.970	9.314	18.250	4.621	9.100	0.998	16.880	1.530	1.997	14.180	26.470
4	2.777	13.160	60.890	5.167	12.450	2.883	3.323	11.800	1.813	2.394	3.667	4.239
5	3.374	15.140	12.350	6.971	13.050	1.695	2.803	1.889	1.196	3.091	2.900	14.520
	- ${ }^{\text {- }}$						1.246	0.913	4.024	10.870	3.725	21.160
6	3.807	8.159	47.530	6.779	4.015	5.529	1.246	0.913				88.450
7	1.960	4.715	40.450	5.517	3.645	3.021	0.852	0.664	1.458	5.314	2.397	8.450
8	2.067	7.668	42.800	3.956	1.982	3.187	0.639	0.538	5.328	3.350	8.933	21.020
9	22.180	7.200	10.050	3.978	1.476	3.187	5.777	0.450	5.952	1.674	12.670	30.620
10	10.430	2.341	26.320	4.267	1.722	4.318	3.091	0.287	18.330	1.177	6.985	123.600
11	11.000	1.658	8.506	6.969	1.672	1.418	3.198	0.236	4.541	0.929	2.749	46.310
12	18.450	1.422	22.170	4.969	2.224	0.913	6.752	0.196	1.828	0.765	7.253	16.270
13	28.330	0.917	55.530	3.021	1.651	0.756	1.468	0.171	1.233	0.664	28.690	3.660
14	7.177	0.698	23.410	3.482	1.156	0.553	0.912	0.163	0.885	0.627	20.060	1.968
15	2.352	0.707	5.002	2.740	0.757	0.464	0.810	0.160	0.664	0.628	14.110	3.943
16	1.352	0.987	3.206	3.550	0.601	0.603	0.628	1.204	0.528	0.552	7.395	3.583
17	. 4.049	0.834	3.468	3.608	0.487	3.446	0.500	0.562	0.450	0.500	10.890	23.740
18	27.020	0.768	2.699	4.339	0.412	10.320	0.413	0.849	0.446	0.465	27.550	6.307
19	9.904	0.663	2.089	3.745	0.384	48.880	0.356	5.126	0.741	10.790	17.980	5.718
20	36.350	0.553	1.604	2.651	0.385	4.355	0.324	3.084	0.654	13.840	12.100	2.423
21	26.330	0.529	14.610	2.124	0.404	18.450	0.504	0.946	0.546	5.556	4.879	1.320
22	17.650	0.478	61.270	4.912	0.461	5.035	0.408	5.383	0.487	8.244	8.527	6.654
23	4.704	0.461	30.720	16.780	0.451	7.875	0.316	17.530	0.436	2.422	6.288	29.960
24	19.680	0.466	6.699	8.836	0.403	5.184	1.824	2.840	0.382	38.250	2.485	5.500
25	10.300	0.447	4.144	6.124	0.372	9.354	3.332	6.369	0.361	10.260	19.990	15.830
26	22.380	0.718	2.011	27.160	0.330	3.011	4.189	7.583	0.920	3.850	5.233	7.149
27	5.962	1.549	13.000	20.370	0.305	7.698	1.047	18.770	0.887	2.893	3.486	3.060
28	2.279	1.461	18.630	25.260	0.324	5.699	0.703	34.370	10.760	2.121	3.950	40.650
29	. 32.840		10.100	10.660	0.337	8.484	0.531	3.173	14.230	7.669	2.117	23.130
30	6.591		34.770	4.407	0.396	13.480	0.430	1.694	19.230	9.593	1.570	27.280
31	32.060		26.840		1.234		1.214	1.248		12.610		2.085
Average	12.590	3.944	19.660	7.984	2.073	6.369	1.645	4.748	3.375	5.607	9.179	17.150
Lowest	. 1.352	0.447	1.478	2.124	0.305	0.464	0.316	0.160	0.361	0.465	1.570	1.320
Highest	36.350	26.110	61.270	27.160	13.050	48.880	6.752	34.370	19.230	38.250	28.690	123.600
Peak flow	101.90	77.04	167.70	53.44	37.38	96.50	18.24	96.71	50.01	93.81	101.80	176.40
Day of peak	25	1	14	27	6	20	13	28	11	25	14	11
Monthly total (million cu m)	33.73	9.54	52.65	20.69	5.55	16.51	4.40	12.72	8.75	15.02	23.79	45.93
Runoff (mm)	420	119	656	258	69	206	55	158	109	187	296	572
Rainfall (mm)	485	164	686	273	57	252	108	218	152	235	316	666

Statistics of monthly data for previous record (Oct 1970 to Dec 1993-incomplete or missing months total 0.3 years)

Station and catchment description
Velocity-area station with artificial low flow control (long broad-crested weir with rectangular low flow notch) - installed 1975. Damage to part of the high flow crest results in a small discharge bypassing the central notch. All but very high flows contained. No significant abstractions or discharges. Very responsive flow regime. A very wet mountainous catchment developed on ancient metamorphic formations - some Drift cover.

093001 Carron at New Kelso

Measuring authority: HRPB
First year: 1979

Grid reference: 18 (NG) 942429 Level stn. (m OD): 5.60

Catchment area (sq km): 137.8
Max alt. (m OO): 1053

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCt	Nov	OEC
1	4.423	37.140	1.359	35.750	7.135	1.564	3.921	1.031	2.174	18.680	29.650	$3.334^{\text {i }}$
2	4.374	13.030	3.458	19.460	8.051	1.838	2.727	0.995	1.727	19.250	8.108	2.795
3	7.787	6.593	9.867	17.560	5.531	4.718	2.198	3.236	2.336	8.354	4.258	$9.00{ }^{\circ}$
4	6.590	5.077	47.580	13.130	7.876	5.280	2.031	2.516	4.281	11.310	3.011	8.099
5	4.111	7.275	27.760	12.470	14.120	4.252	2.991	1.722	4.667	10.260	2.439	6.606
6	4.557	5.717	67.350	12.830	9.070	11.140	2.437	1.401	3.371	19.430	2.305	7.629
7	4.881	4.421	46.910	11.300	6.316	15.580	1.869	1.163	3.001	12.750	2.035	11.080
8	3.693	7.170	47.900	8.036	4.250	16.040	1.561	1.027	2.577	8.640	1.772	30.040
9	7.942	17.590	18.360	13.280	3.163	20.450	1.565	0.930	2.883	5.532	1.848	56.440
10	9.942	7.514	48.700	12.730	2.710	7.670	2.446	0.852	16.250	3.399	4.075	74.470
11	7.013	4.426	28.700	18.930	2.613	4.343	2.858	0.783	13.380	2.684	5.200	63.580
12	10.920	3.897	23.080	12.670	2.607	3.538	4.601	0.741	5.695	2.188	4.031	57.590
13	35.630	3.395	35.470	7.276	2.525	2.667	2.841	0.723	3.397	1.846	27.300	17.370
14	21.540	2.572	37.370	5.666	2.224	2.219	2.011	0.717	2.347	1.906	45.940	6.799
15	8.453	2.042	11.210	4.884	1.869	3.137	1.783	0.702	1.803	2.506	21.100	9.015
16	4.587	1.860	6.700	4.813	1.597	3.543	1.681	0.842	1.579	1.887	18.760°	7.698
17	16.800	1.718	6.795	4.438	1.428	9.346	1.482	1.008	1.531	1.510	14.030	22.930
18	64.540	1.657	5.729	17.320	1.316	51.960	1.280	1.760	1.382	1.326	17.740	19.280
19	27.270	1.630	4.740	24.450	1.233	16.680	1.158	12.120	2.033	1.191	27.000	18.160
20	58.240	1.527	4.037	13.130	1.171	30.010	1.130	14.330	2.520	1.166	21.450	-10.410
21	46.410	1,435	12.520	8.057	1.102	15.430	1.667	5.453	1.823	1.176	10.480	点: 5.510
22	19.820	1.354	67.150	5.515	1.067	11.600	1.588	2.717	1.515	1.064	10.180	17.910°
23	12.490	1.261	46.250	6.658	1.063	6.207	1.340	3.083	1.970	6.047	29.110	74.590
24	19.970	1.210	17.110	7.148	1.052	8.897	1.264	2.928	2.412	8.817	9.295	24.070
25	29.220	1.248	14.270	5.731	1.019	8.069	1.557	2.654	1.913	5.822	11.440	23.120
26	25.380	1.289	7.248	36.290	0.988	7.942	5.356	9.337	6.625	3.556	15:220	13.270
27	17.880	1.300	6.358	62.560	0.945	8.511	2.652	17.780	11.980	5.425	16.600	6.811
28	8.299	1.272	28.100	44.180	0.929	6.401	2.018	28.110	76.240	6.326	13.790	39.880
29	70.370		24.380	40.500	0.938	13.370	1.567	9.949	72.410	7.588	7.680	29.620
30	20.800		19.290	16.430	0.981	7.193	1.270	4.785	55.790	11.130	4.423	18.240
31	30.080		35.300		1.315		1.111	3.021		25.610		7.840
Average	19.810	5.236	24.550	16.770	3.168	10.320	2.128	4.465	10.390	7.044	13.010	22.680
Lowest	3.693	1.210	1.359	4.438	0.929	1.564	1.111	0.702	1.382	1.064	$1: 772$	2.795
Highest	70.370	37.140	67.350	62.560	14.120	51.960	5.356	28.110	76.240	25.610	45.940	74.590
Peak flow	113.90	51.88	95.13	128.90	17.83	61.08	7.73	43.12	106.40	63.14	66.85	103.30
Day of peak	29	1	6	27	5	18	26	28	30	31	14	23
(million cu m)	53.05	12.67	65.75	43.48	8.49	26.75	5.70	11.96	26.92	18.87	33.72	60.76
Runoff (mm)	385	92	477	316	62	194	41	87	195	137	245	441
Rainfall (mm)	391	73	547	322	41	273	68	189	277	183	228	493

Statistics of monthly data for previous record (Jan 1979 to Dec 1993)

Mean	Avg.	18.360	12.240	14.560	7.306	5.008	3.928	6.378	8.715	13.720	13.000	15.090	17.670
flows:	Low	5.887	1.381	4.103	2.863	0.698	0.921	2.426	2.703	1.745	6.332	3.251	5.635
	(year)	1985	1986	1980	1980	1980	1982	1984	1984	1993	1979	1993	1989
	High	31.650	32.590	39.000	3.440	14.120	8.623	12.040	15.050	21.050	24.070	31.120	30.710
	(year)	1989	1989	1990	1984	1986	1980	1993	1989	1990	1983	1981	1983
Runoff:	Avg.	318	217	283	137	97	74	124	169	258	253	284	343
	Low	114	24	80	54	14	17	47	53	33	123	61	110
	High	615	572	758	253	274	162	234	293	396	468	585	597
Rainfall:	Avg.	338	223	308	141	114	116	160	209	297	300	319	371
	Low	94	6	95	70	36	28	89	85	55	115	90	124
	High	623	583	768	285	295	275	248	384	425	532	629	546
Summ	ary st	istics								affec	runof		
								1994					
				1994		or record oding 199		As \% of pre-1994		to w	10\%	perce	
Mean flo	(${ }^{\text {(}}$ 3				11.			104		ral to w	10\%	percen	flow.
Lowest	yearly						1987						
Highest	yearly				14.		1990						
Lowest	monthl	ean					1980						
Highest	month	-asn			39.		1990						
Lowest	daily m					24	1982						
Highest	daily m				203.		1992						
Peak			128	- 27	337.	18	1990						
10\% ex	coodan				27.			109					
50\% exc	coodan							103					
95\% 0x	ceodan							101					
Annual	total (m	n cu m)			352			104					
Annual r	runoff		26		255			104					
Annual	rainfall		308		289			107					
1961	-90 rai	averag			262								

Station and catchment description
40 m wide river section with floodbank on right. Any bypassing in extreme floods will be over 30m wide floodplain on left bank. Unstable gravel control requires regular calibration of low flow range. Adequately gauged to bankfull. Computed flows are 100% natural 70% of catchment drains through Loch Dughaill with little additional surface storage. Typical mix of rough grazing and moorland. One of the wetter Highland catchments currently gauged.

201005 Camowen at Camowen Terrace

Measuring authority: DOEN First year: 1972

Grid reference: $23(\mathrm{HH}) 460730$ Level stn. (m OD): 66.00

Catchment area (sq km): 274.6
Max alt. (m OD): 539

Daily mean gauged discharges (cubic metres per second)												
DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	33.320	27.810	12.930	11.400	3.589	1.994	2.040	2.719	2.699	4.346	4.924	3.953
2	21.570	11.770	16.640	16.120	3.556	2.342	1.910	2.401	2.432	4.430	8.085	3.922
3	24.190	54.100	20.300	17.860	6.579	2.952	2.067	4.219	8.832	3.361	14.220	7.622
4	12.100	41.220	14.410	17.120	9.460	3.015	11.370	2.488	4.953	2.743	8.421	10.520
5	18.850	17.940	18.240	24.960	8.038	2.684	6.612	2.130	3.335	2.523	4.980	17.630
6 .,	12.860	- 12.500	16.180	20.860	5.500	2.637	27.300	1.905	2.793	2.348	4.157	18.640
7	10.340	10.500	13.130	26.890	4.596	2.367	7.933	1.858	2.821	2.330	3.911	14.280
8	20.650	17.250	27.910	26.210	5.003	2.145	4.365	1.790	19.190	2.279	16.500	16.000
9	24.350	10.530	12.350	15.360	4.358	2.196	4.883	1.636	8.177	2.195	9.947	10.380
10	13.680	33.380	9.879	11.550	4.011	2.281	4.600	1.584	8.845	2.175	5.832	35.740
11	12.030	22.040	10.570	9.765	4.091	2.081	3.869	1.513	15.820	2.142	4.988	29.980
12	23.730	11.210	16.710	8.732	3.629	2.007	6.961	1.544	7.861	2.136	16.630	17.560
13	22.700	8.655	11.850	7.384	3.296	1.836	4.093	1.548	5.436	2.040	39.350	25.670
14	27.550	7.092	10.680	6.507	3.093	1.646	3.396	1.536	4.826	1.990	17.850	11.460
15	13.390	6.332	10.730	5.882	2.978	1.606	3.350	1.644	4.190	2.036	15.530	9.641
16	9.588	5.547	13.900	5.338	2.916	1.573	2.913	1.853	3.555	1.954	10.400	8.619
17	8.127	6.467	11.170	4.924	2.655	1.508	2.597	2.123	3.210	1.923	9.171	10.170
18	8.984	14.300	17.620	4.526	2.588	1.694	2.407	1.804	4.006	1.799	22.650	11.340
19	15.590	7.747	9.796	4.325	2.508	1.798	2.280	2.010	6.480	5.640	12.820	11.190
20	13.810	7.455	7.863	4.087	2.449	1.636	2.300	1.989	8.041	3.661	9.733	9.700
21	10.700	6.090	10.340	3.879	2.406	1.758	2.389	1.872	4.791	2.898	7.463	7.765
22	9.876	5.228	17.350	4.049	2.279	1.803	2.161	9.709	3.723	3.040	6.477	6.519
23	8.919	5.202	29.450	6.428	2.337	1.751	2.071	8.526	3.308	2.652	6.083	5.906
24	9.779	5.738	15.900	16.700	2.292	16.010	2.106	13.810	3.043	2.579	5.980	5.848
25	21.160	40.460	20.680	11.730	2.289	5.171	2.108	7.682	2.986	5.921	5.369	8.407
26	17.810	46.550	9.740	6.537	2.189	3.371	2.245	4.720	2.852	6.527	5.069	10.020
27	30.380	47.190	13.960	4.821	2.160	3.070	1.968	6.794	2.748	5.188	4.675	26.350
28	16.820	13.900	10.440	4.366	2.113	3.616	1.878	8.028	2.734	4.134	4.337	32.010
29	18.880		9.121	4.073	2.043	3.240	1.859	5.705	2.763	3.466	4.167	16.270
30	11.270		13.190	3.655	2.036	2.380	2.095	4.115	2.708	5.082	4.042	16.080
31	10.290		11.810		1.976		2.178	3.164		5.968	:	16.250
Average	16.560	18.010	14.350	10.530	3.517	2.806	4.203	3.691	5.305	3.274	9.792	14.050
Lowest	8.127	5.202	7.863	3.655	1.976	1.508	1.859	1.513	2.432	1.799	3.911	3.922
Highest	33.320	54.100	29.450	26.890	9.460	16.010	27.300	13.810	19.190	6.527	39.350	35.740
Peak flow	80.39	94.98	43.77	42.12	11.26	41.25	39.06	27.10	36.91	8.83	59.67	47.45
Day of peak	1	27	8	7	4	24	6	24	8	25	13	27
Monthly total (million cu m)	44.35	43.56	38.43	27.31	9.42	7.27	11.26	9.89	13.75	8.77	25.38	37.62
Runaff (mm)	162	159	140	99	34	26	; 41	36	50	32	92	137
Rainfall (mm)	177	145	160	115	42	76	- 84	88	82	51	91	162

Statistics of monthly data for previous record (May 1972 to Dec 1993)

Station and catchment description
Velocity-area station with cableway and weir control - informal broad-crested structure (for angling enhancement), dimensions not known. The net offect of abstractions for public water supply and augmentations from effluent returns is minor. Catchment geology: mixed impermeable rocks (granite, schist and gneiss, and sandstone) overlain by substantial deposits of till, sand and gravel. Largely upland given over mainly to grassland or heath.

Measuring authority: DOEN
First yoar: 1970

Grid reference: $23(1 \mathrm{H}) 820519$ Level stn. (m OD): 15.00

Catchment area (sq km): 951.4 Max alt. (m OD): 380

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FE日	MAR	APR	MAY	JUN	JuL	AUG	SEP	OCT	NOV	DEC
1	38.250	68.380	33.410	24.750	8.612	2.869	3.792	2.499	4.619	5.784	12.460	7.947
2	84.320	41.340	36.820	35.560	8.248	3.069	3.329	3.646	4.122	10.710	10.310	7.834
3	74.550	79.530	79.000	50.850	8.794	4.914	3.061	12.730	7.743	8.367	21.880	17.170
4	43.990	122.000	41.900	51.600	10.600	6.468	14.680	7.223	9.003	6.158	20.850	19.220
5	41.390	102.000	53.120	66.120	13.610	4.720	12.250	5.001	6.158	5.084	12.110	32.940
6	34,470	58.390	36.030	47.990	11.610	4.067	20.780	3.885	4.968	4.496	9.609	32.750
7	30.050	36.830	28.520	63.350	9.114	3.885	18.820	3.424	4.690	4.176	8.867	36.850
8	33.410	42.530	53.170	65.370	8.710	3.427	8.369	3.030	36.670	3.961	12.180	52.760
9	49.600	35.370	37.880	41.620	9.145	3.137	10.580	2.814	27.600	3.802	20.930	26.690
10	56.120	39.850	26.980	28.650	7.467	2.868	14.590	2.577	16.090	3.593	12.920	44.020
11	32.050	80.850	25.270	22.550	7.567	2.797	8.791	2.403	19.520	3.379	10.680	50.040
12	52.870	34.690	25.280	19.840	7.131	2.683	10.550	2.280	15.090	3.217	19.170	52.900
13	44.070	24.120	30.210	17.120	6.152	2.524	9.395	2.184	10.570	3.133	84.990	60.820
14	36.910	19.590	21.510	14.830	5.534	2.406	7.304	2.071	9.211	3.054	61.200	38.640
15	28.170	16.830	21.150	13.010	5.335	2.238	7.578	2.009	8.309	3.110	28.210	24.780
16	21.650	14.480	35.330	11.690	5.693	2.101	5.997	2.179	7.018	3.047	21.320	22.610
17	19.000	13.450	30.220	10.670	5.199	2.020	5.155	3.839	6.024	2.867	19.580	29.040
18	18.060	31.100	30.590	10.150	4.677	2.105	4.493	3.197	6.280	2.819	30.700	27.580
19	18.730	21.630	27.200	9.792	4.307	2.282	3.933	2.739	11.440	4.800	37.480	33.870
20	24.620	17.070	19.540	9.205	3.992	2.344	3.692	2.729	12.380	6.090	25.700	27.560
21	20.090	15.720	17.010	8.769	3.879	2.285	3.626	2.814	9.441	4.766	19.260	22.330
22	18.250	12.810	20.930	10.190	3.768	2.443	3.350	9.743	7.313	4.858	15.930	17.840
23	25.050	15.810	31.170	16.810	3.645	2.412	3.117	33.860	6.292	4.757	14.560	16.190
24	19.690	20.080	31.750	33.400	3.630	31.470	3.048	18.080	5.707	4.032	14.470	15.780
25	45.370	79.260	32.900	28.070	3.775	21.940	2.978	20.770	5.257	4.070	12.890	15.850
26	53.980	120.000	21.650	18.130	3.604	9.060	3.148	11.330	4.870	4.996	11.650	27.130
27	69.080	117.600	48.650	12.970	3.390	7.178	3.093	10.370	4.495	5.331	10.540	58.640
28	53.510	62.330	42.950	10.970	3.204	5.826	2.759	9.761	4.273	5.888	9.435	108.800
29	50.870		24.730	10.270	3.124	5.783	2.400	8.265	4.129	5.290	8.754	83.640
30	38.950		26.450	9.273	3.067	4.726	2.329	6.491	4.061	16.320	8.403	75.460
31	26.900		35.090		2.978		2.365	5.375		19.040		75.680
Average	38.840	47.990	33.110	25.790	6.115	5.202	6.753	6.752	9.445	5.516	20.230	37.530
Lowest	18.060	12.810	17.010	8.769	2.978	2.020	2.329	2.009	4.061	2.819	8.403	7.834
Highest	84.320	122.000	79.000	66.120	13.610	31.470	20.780	33.860	36.670	19.040	84.990	108.800
Poak flow	108.10	130.00	95.47	75.39	14.16	59.49	33.25	46.33	57.01	23.72	102.10	112.50
Day of peak Monthly total	2	25	3	8	5	24	6	23	8	30	13	28
(million cu m)	104.00	116.10	88.68	66.84	16.38	13.48	18.09	18.09	24.48	14.77	52.45	100.50
Runoff (mm)	109	122	93	70	17	14	19	19	26	16	55	106
Rainfall (mm)	156	135	128	88	40	69	70	90	81	46	79	145

Statistics of monthly data for previous record (Jul 1970 to Dec 1993)

Station and catchment description
Velocity-area station with cableway and natural control. Flows influenced by major arterial drainage scheme - started in 1988. A substantial portion of the catchment is in the Irish Republic where some groundwater may be abstracted but its hydrological significance is uncertain. Geology: Carboniferous Limestone and Millstone Grit with sandstones overlain by substantial amounts of till. A predominantly rural catchment with limited afforestation. Monaghan Town (pop. 5,000) - in the lrish Republic - is the only significant urban centre.

Station and catchment description
Velocity-area station with cableway. Geology: mainly basalt overlain by till with some peat. Significant proportion of upland, predominantly grassland or heath. No urban areas or major industry.

Part (ii) - The monthly flow data

The introductory information (measuring authority etc.) is as described in Part (i).

Hydrometric statistics for the year

The monthly average, peak flow, runoff and rainfall figures are equivalent to the summary information following the daily mean gauged discharges in Part (i). Because of the rounding of monthly runoff values the runoff for the year may differ slightly from the sum of the individual monthly totals; this can be particularly significant in catchments with low runoff.

Monthly and yearly statistics for previous record

Monthly mean flows (average, low and high) and the monthly rainfall and runoff figures are equivalent to those presented in Part (i). Again due to the rounding of monthly runoff values, the average runoff for the year derived from the previous record may differ slightly from the sum of the individual monthly totals. The peak flow is the highest discharge, in cubic metres per second, for each month. For many stations the archived series of monthly instantaneous maximum flows, from which the preceding record peak is abstracted, is incomplete, particularly for the earlier years, and certain of the peak flows are known to be of limited accuracy. Where the peak value - in an incomplete series - is exceeded by the highest daily mean flow on record, the latter is substituted; such substitutions are indicated by a ' d ' flag. An examination of the quality of the peak flow figures is continuing and significant revision may be expected as this review proceeds. The figures are published primarily to provide a guide to the range of river flows experienced throughout the year at the featured gauging stations.

Factors Affecting Runoff

Code letters are used as described in Part (i). FAR codes have yet to be determined for a few catchments featured in the Yearbook; their absence does not imply a natural flow regime.

Station type

The station type is coded by the list of abbreviations given below - two abbreviations may be applied to each station relating to the measurement of lower or higher flows. Where total flow is a summation of the flows measured in several component channels a ' + ' separates the code for the principal monitoring station from that of the subsidiary site(s).

B Broad-crested weir
C . Crump (triangular profile) single crest weir
CB Compound broad-crested weir. The compounding may include a mixture of types such as rectangular profiles, flumes and shallow-Vs and with or without divide walls
CC Compound Crump weir
EM Electromagnetic gauging station
EW Essex weir (simple Crump weir modified with angled, sloping, triangular profile flanking crests) in trapezoidal channel
FL Flume
FV Flat-V triangular profile weir
MIS Miscellaneous method
TP Rectangular thin-plate weir
US Ultrasonic gauging station
VA Velocity-area gauging station
VN Triangular (V notch) thin-plate weir

Comment

A note clarifying or qualifying data featured in the Hydrometric Statistics section; for instance to indicate that the runoff values have been derived from naturalised flows.

003002 Carron at Sgodachail

Measuring authority: HRPB

First year: 1973
Hydrometric statistics for 1994

		Jan	FEB	MAR	APR	MAY	JUN	JUL	AUG
Flows	Avg.	17.850	4.524	28.630	17.950	4.245	3.645	1.705	2.256
($\mathrm{m}^{3} \mathrm{~s}^{-1}$):	Peak	146.10	24.88	175.20	98.89	18.81	24.39	17.84	19.52
Runoff (mm)		198	45	318	193	47	39	19	25
Rainfall (mm)		326	81	399	217	26	129	53	103

Monthly and yearly statistics for previous record (Jan 1974 to Dec 1993)

Mean Avg.	14.910	10.220	11.460	$7.348{ }^{\text {* }}$	4.808	4.001	3.656	4.548	8.555	12.090	12.620	13.370	8.964
flows Low	7.226	1.944	3.680	1.294	1.020	0.957	1.142	0.983	3.117	3.963	2.390	5.595	6.846
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \quad$ High	29.740	25.850	33.120	15.030	10.110	10.270	9.481	10.680	17.670	29.670	25.410	28.120	12.192
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	281.80	264.70	225.00	127.90	101.20	140.40	165.20	207.30	340.30	288.90	219.10	255.70	340.30
Runoff (mm)	166	104	127	79	53	43	41	51	92	134	136	148	1173
Rainfall (mm)* -(1981-1993)	272	165	232	96	96	93	94	127	198	242	222	244	2081
Factors affecting	off: H									1994	off is 113	of prev	us mean

Factors affecting runoff: H
Station type: VA

Grid reference: $28(\mathrm{NH}) 490921$
Level stn. (m OD): 70.70
Catchment area (sq km): 241.1
Max alt. (m OD): 954

1994 runoff is 113% of previous mean rainfall 101\%

004001 Conon at Moy Bridge

Measuring authority: HRPB
First year: 1947
Hydrometric statistics for 1994

	JAN	FEB	MAR	APA	MAY	JuN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	81.430	49.560	123.000	94.150	55.480	48.190	18.340	16.240	21.040	48.280	59.730	95.500	59.363
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	214.80	155.50	276.80	180.50	113.60	75.77	50.94	66.90	88.43	112.30	131.90	240.10	276.80
Runaff (mm)	227	125	343	254	155	130	51	45	57	134	161	266	1946
Rainfall (mm)	279	65	419	200	22	130	42	108	120	109	174	332	2000
Monthly and yearly statistics for previous record (Oct 1947 to Dec 1993-incomplete or missing months total 5.7 years)													
Mean Avg.	71.580	62.360	60.710	42.750	31.350	21.740	21.700	28.110	41.230	55.500	64.740	72.660	47.818
flows Low	31.690	25.810	18.670	13.940	10.940	8.861	2.959	8.162	12.510	23.090	23.200	27.970	29.991
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	138.300	164.600	191.500	75.730	53.050	47.560	40.010	45.140	94.870	94.030	121.700	165.100	77.536 1076.00
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	617.00	703.90	507.00	203.90	232.20	165.20	247.40	254.90	223.70	324.80	411.80	1076.00	1076.00
Runoff (mm)	199	158	169	115	87	59	60	78	111	155	174	202	1569
Rainfall (mm)* *(1953-1993)	203	141	172	102	101	93	105	126	166	209	202	227	1847
Factors affecting runoff: \mathbf{H} Station type: VA										1994 runoff is 124% of previous mean rainfall 108\%			

Grid reference: 28 (NH) 482547
Level stn. (m OD): 10.00

Catchment area (sq km); 961.8 Max alt. (m OD): 1052

4 runoff is 124% of previous mean rainfall 108\%

006008 Enrick at Mill of Tore

Measuring authority: HRPB
First year: 1979
Hydrometric statistics for 1994

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg,	7.697	2.695	13.050	6.798	0.864	0.745	0.351	0.389	0.770	1.082	3.715	9.540	3.996
$\left(m^{3} s^{-1}\right)$: Peak	26.35	25.34	70.05	57.52	3.80	3.39	1.10	2.97	2.48	3.97	16.18	51.24	70.05
Runoff (mm)	195	62	330	166	22	18	9	10	19	27	91	241	1190
Rainfall (mm)	225	60	343	159	41	92	28	90	73	67	111	274	1563
Monthly and yearly statistics for previous record (Dec 1979 to Dec 1993)													
Mean Avg.	6.519	4.834	4.755	1.879	1.466	0.946	0.927	0.941	2.254	4.410	4.736	5.522	3.263
flows Low	1.947	0.707	1.154	0.422	0.184	0.087	0.054	0.020	0.166	2.654	1.206	1.422	2.118
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	14.910	18.220	13.870	3.466	4.387	1.959	3.332	3.235	3.994	7.068	9.382	9.554	4.986
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-9}$)	83.62	77.96	51.08	20.17	21.87	19.35	59.86	15.83	51.30	50.41	60.67	56.46	83.62
Runoff (mm)	165	112	120	46	37	23	23	24	55	112	116	140	973
Rainfall (mm)	197	115	156	62	73	73	68	87	134	164	157	187	1473

Factors affecting runoff: N
Station type: VA

Grid reference: $28(\mathrm{NH}) 450300$
Level stn. (m OD): 109.40

Catchment area (sq km): 105.9 Max alt. (m OD): 678

1994 runoff is 122% of previous mean rainfall 106%

008007 Spey at Invertruim

Measuring authority: NERPB
First year: 1952
Hydrometric statistics for 1994

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	11.050	5.190	27.790	12.360	3.572	4.065	2.742	2.484	3.010	3.500	7.857	15.160	8.272
$\left(m^{3} s^{-1}\right)$: Peak	62.12	31.74	155.90	95.77	6.03	10.97	4.32	8.74	5.77	15.57	33.75	139.60	155.90
Runoff (mm)	74	31	186	80	24	26	18	17	19	23	51	101	652
Rainfall (mm)	248	68	402	138	28	122	32	113	68	101	150	288	1758
Monthly and yearly statistics for previous record (Oct 1952 to Dec 1993)													
Mean Avg.	9.965	7.512	7.539	4.227	3.603	2.939	2.844	3.310	4.702	6.797	7.490	9.386	5.858
flows Low	3.314	1.953	2.722	2.075	1.413	1.123	1.042	0.852	1.454	1.638	2.516	3.518	3.935
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	27.710	39.990	42.630	7.126	6.210	6.269	5.021	7.545	14.650	14.830	15.960	24.970	11.121
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	264.50	269.10	274.50	61.90	92.03	45.93	72.83	75.00	108.00	106.90	170.60	259.50	274.50
Runoff (mm)	67	46	50	27	24	19	19	22	30	45	48	63	462
Rainfall (mm)	174	113	131	75	86	75	85	104	134	165	160	181	1483
Factors affecting runoff: H Station type: VA										1994 runoff is 141% of previous mean rainfall 119\%			

009001 Deveron at Avochie

Measuring authority: NERPB
First yoar: 1959
Hydrometric statistics for 1994

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	18.860	11.630	18.960	10.040	4.487	3.074	2.375	1.847	4.123	5.101	7.364	4.322	7.666
$\left(m^{3} s^{-1}\right):$ Peak	85.26	66.31	98.25	48.89	6.27	4.38	4.26	2.21	18.52	54.27	25.55	10.23	98.25
Runoff (mm)	114	64	115	59	27	18	14	11	24	31	43	26	547
Rainfall (mm)	133	106	63	71	17	45	44	31	124	91	69	61	855
Monthly and yearly statistics for previous record (Oct 1959 to Dec 1993)													
Moan Avg.	11.790	10.180	11.280	9.832	7.508	5.121	4.573	5.724	5.693	9.380	10.560	11.090	8.557
flows Low	3.527	3.052	3.391	4.314	3.274	2.610	1.766	1.621	2.092	1.934	2.668	3.504	4.051
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	24.440	19.720	22.230	21.500	21.930	11.130	9.841	19.110	16.040	28.210	29.790	23.590	12.437
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	120.50	84.90	118.00	76.13	183.70	153.10	146.40	236.50	155.70	221.90	177.70	157.10	236.50
Runotf (mm)	72	56	68	58	46	30	28	35	33	57	62	67	612
Rainfall (mm)	89	63	76	69	73	69	74	92	84	105	101	87	982

Factors affecting runoff: N
Station type: VA

Grid reference: 38 (NJ) 532464
Level stn. (m OD): 81.80

Catchment area (sq km): 441.6 Max alt. (m OD): 775

010002 Ugie at Inverugie

Measuring authority: NERPB
Grid reference: 48 (NK) 101485 Level stn. (m OD): 8.50

Catchment area (sq km): 325.0 Max alt. (m OD): 234
Hydrometric statistics for 1994

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	10.960	8.648	9.636	3.633	2.413	1.657	1.259	1.137	1.375	2.008	4.804	3.405	4.223
$\left(m^{3} s^{-1}\right): ~ P e a k ~$	36.02	65.30	70.49	5.73	3.05	2.45	1.87	2.05	3.47	3.47	15.71	6.99	70.49
Runoff (mm)	90	64	79	29	20	13	10	9	11	17	38	28	410
Rainfoll (mm)	89	95	39	44	12	40	25	37	61	80	73	62	657
Monthly and yearly statistics for previous record (Feb 1971 to Dec 1993)													
Mean Avg.	7.278	6.171	5.563	4.116	3.309	2.267	1.982	2.138	2.435	5.053	6.371	7.105	4.477
flows Low	2.085	2.088	1.791	1.624	1.467	1.200	0.927	0.858	0.912	0.894	1.531	1.360	2.069
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	11.300	14.620	9.751	7.785	8.103	4.298	4.901	6.225	7.052	9.785	18.230	13.320	6.505
Peak flow ($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$)	66.40	96.74	66.40	40.26	35.57	13.29	23.66	21.24	36.25	94.52	99.28	87.75	99.28
Runoff (mm)	60	46	46	33	27	18	16	18	19	42	51	59	435
Rainfall (mm)	74	48	64	51	51	54	58	64	78	89	87	74	792
Factors affecting runoff: N Station type: VA										1994 runoff is 94% of previous mean rainfall 83\%			

011001 Don at Parkhill

Measuring authority: NERPB
First yoar: 1969
Hydrometric statistics for 1994

		JAN	FE日	MAR	APR	MAY	JUN	Jut.	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	52.260	31.360	50.410	22.880	11.950	7.247	5.640	4.908	7.279	8.205	18.640	11.690	19.333
$\left(m^{3} s^{-1}\right)$:	Peak	128.30	95.43	159.30	54.99	17.85	9.62	8.22	6.47	21.07	43.37	47.24	18.04	159.30
Runotf (mm)		110	60	106	47	25	15	12	10	15	17	38	25	479
Rainfall (mm)		121	119	44	59	14	38	43	32	86	71	80	56	763

Monthly and yearly statistics for previous record (Dec 1969 to Dec 1993)

Moan Avg.	28.200	26.150	26.930	23.960	16.340	11.880	10.600	11.490	11.160	20.170	22.920	25.880	19.615
flows Low	8.070	6.557	6.274	8.487	7.514	6.424	5.128	4.644	5.019	4.567	5.692	7.738	8.833
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	48.660	52.240	48.950	44.750	34.770	27.560	27.530	40.150	36.470	56.480	86.230	50.960	29.185
Poak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	185.90	131.00	143.70	107.50	92.06	101.60	118.10	277.40	107.20	273.10	213.20	154.50	277.40
Runotf (mm)	59	50	57	- 49	34	24	22	24	23	42	47	54	486
Rainfall (mm)	89	57	72	62	63	63	68	74	74	92	85	76	875
Factors affecting Station type: VA	noff: N									$\begin{array}{r} 1994 \mathrm{rai} \\ \text { rain } \end{array}$	off is 98	of pre	ous mean

012006 Gairn at Invergairn

Measuring authority: NERPB
First year: 1978
Hydrometric statistics for 1994

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	5.559	3.911	9.570	5.468	2.876	1.747	0.955	0.743	2.185	2.316	4.407	3.107	3.569
$\left(m^{3} s^{-1}\right):$ Peak	30.96	18.48	54.69	16.31	6.22	3.52	1.48	1.24	9.99	17.86	14.68	10.76	54.69
Runoff (mm)	99	63	171	94	51	30	17	13	38	41	76	55	750
Rainfall (mm)	125	124	96	63	11	45	38	49	86	84	76	74	871
Monthly and yearly statistics for previous record (Nov 1978 to Dec 1993)													
Mean Avg.	4.828	4.268	5.467	5.149	3.789	2.650	1.801	2.043	2.615	4.805	4.319	4.663	3.865
flows Low	2.690	1.548	3.535	2.110	1.732	0.952	0.743	0.612	0.999	1.319	1.257	1.832	2.338
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	8.758	7.692	7.418	9.595	7.605	5.608	3.036	5.057	6.389	12.420	12.420	7.661	4.871
Poak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	85.37	38.88	88.91	37.34	28.96	47.25	24.92	65.69	58.09	95.09	61.22	48.55	95.09
Runoff (mm)	86	70	98	89	68	46	32	36	45	86	75	83	813
Rainfall (mm)" -(1981-1993)	104	70	89	57	66	70	60	78	93	123	96	86	992
Foctors affecting runoff: N Station type: VA										1994 runoff is 92% of previous mean rainfall 88\%			

013007 North Esk at Logie Mill

Measuring authority: TRPB

 First year: 1976Hydrometric statistics for 1994

		JAN	FEE	MAR	APR	MAY	JuN	JuL	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	37.620	27.030	40.700	21.640	9.814	4.658	3.236	3.061	4.171	8.218	29.300	15.720	17.039
($\mathrm{m}^{3} \mathrm{~s}^{-1}$):	Peak	257.50	128.70	204.30	88.51	30.22	8.86	4.90	16.50	20.58	81.32	208.30	55.73	257.50
Runoff (mm)		138	90	149	77	36	17	12	11	15	30	104	58	736
Rainfall (mm)		156	140	74	75	17	41	42	40	52	82	134	85	938

Monthly and yearly statistics for previous record (Jan 1976 to Dec 1993 -incomplete or missing months total 0.2 years)

Mean Avg.	24.860	24.260	28.390	22.190	14.490	9.161	7.217	9.500	11.250	26.860	24.690	27.060	19.148
flows Low	10.970	8.612	13.160	7.156	4.110	3.684	2.685	2.548	3.622	4.096	10.980	9.359	11.043
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	50.000	46.630	45.240	34.870	36.420	24.300	18.060	35.810	30.540	80.410	91.170	59.880	24.927
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	315.60	195.00	279.30	277.90	186.40	271.90	133.00	320.60	342.80	452.80	462.10	398.10	462.10
Runoff (mm)	91	81	104	79	53	33	26	35	40	99	88	99	828
Rainfall (mm)	117	81	107	65	76	69	71	84	98	137	103	112	1120
Factors affecting Station type: VA	noff: S										off is 89 fall 84		us mean

014001 Eden at Kemback

Measuring authority: TRPB
First year: 1967
Hydrometric statistics for 1994

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	8.675	7.334	9.204	4.007	2.400	1.716	1.203	1.060	1.162	1.413	4.243	4.376	3.883
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	33.29	41.73	29.42	6.74	3.40	2.55	1.93	2.29	1.87	3.61	13.08	12.33	41.73
Runoff (mm)	76	58	80	34	21	14	10	9	10	12	36	38	398
Rainfall (mm)	92	97	84	56	14	48	31	41	36	68	93	75	735
Monthly and yearly statistics for previous record (Oct 1967 to Dec 1993)													
Mean Avg.	7.403	6.215	4.976	3.880	3.057	2.190	1.530	1.663	2.009	3.318	4.389	5.657	3.848
flows Low	2.546	2.170	1.408	1.199	1.406	1.077	0.861	0.799	0.749	0.833	0.830	1.731	1.446
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{High}$	18.380	19.460	8.237	7.243	8.335	6.651	3.390	6.038	11.260	8.162	14.440	12.390	5.634
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	59.05	71.31	64.71	62.06	47.48	41.93	26.20	17.19	53.64	47.78	39.37	47.82	71.31
Runoff (mm)	65	49	43	33	27	18	13	14	17	29	37	49	395
Rainfall (mm)	89	55	67	47	63	58	58	62	73	78	72	74	796
Factors affecting runoff: S GEI Station type: VA										1994 runoff is 101% of previous mean rainfall 92%			

Station type: VA

Grid reference: 37 (NO) 415158
Level str. (m OD): 6.20

Catchment area (sq km): 730.0
Max alt. (m OD): 939
rid reference: 37 (NO) 699640
Level stn. (m OD): 10.60

NOV $\begin{array}{lcc} & & \\ \text { DEC } & \text { Year } \\ .300 & 15.720 & 17.039 \\ 8.30 & 55.73 & 257.50 \\ 04 & 58 & 736 \\ 34 & 85 & 938\end{array}$ yars)

015011 Lyon at Comrie Bridge

Measuring authority: TRPB
First year: 1958
Hydrometric statistics for 1994

	JAN	Fex	MAR	APR	MAY	JuN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	20.740	11.430	40.580	19.610	8.663	6.781	4.275	6.133	6.216	9.452	18.120	28.440	15.092
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right.$): Peak	129.40	126.70	205.30	93.28	28.86	31.80	11.80	92.37	25.80	82.32	94.77	206.30	206.30
Runoff (mm)	142	71	278	130	59	45	29	42	41	65	120	195	1217
Rainfall (mm)	324	125	504	160	41	150	66	133	81	143	232	398	2357
Monthly and yearly statistics for previous record (Jan 1958 to Dec 1993)													
Mean Avg.	18.440	14.790	15.880	10.320	9.344	6.404	6.093	7.466	10.330	14.810	14.500	15.810	12.013
flows Low	3.596	3.198	4.219	4.002	3.537	3.470	3.062	2.221	2.843	3.662	5.320	6.182	8.330
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	43.920	54.190	67.160	17.390	24.520	18.870	20.800	28.940	28.120	29.930	30.550	32.780	19.871
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	370.90	377.90	311.30	129.00	181.70	109.70	154.70	128.70	145.10	191.90	271.30	199.60	377.90
Runoff (mm)	126	92	109	68	64	42	42	51	68	101	96	108	969
Rainfall (mm)* -(1971-1993)	283	159	215	92	103	87	105	127	184	213	227	240	2035
Fectors affecting runoff: \mathbf{H} Station type: VA										1994 runoff is 126% of previous mean rainfall 116\%			

016003 Ruchill Water at Cultybraggan

Measuring authority: TRPB
First year: 1970
Hydrometric statistics for 1994

	Jan	FEB	MAR	APR	MAY	JuN	Jut	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	10.570	4.628	16.630	5.453	1.712	2.096	1.792	2.618	1.559	4.987	8.481	12.390	6.107
$\left(m^{3} s^{-1}\right)$: Peak	124.80	122.60	189.00	28.20	19.24	45.31	17.84	67.58	15.57	110.50	76.43	116.20	189.00
Runoff (mm)	284	113	448	142	46	55	48	70	41	134	221	334	1936
Rainfall (mm)	327	123	444	152	31	144	85	138	64	178	238	382	2306
Monthly and yearly statistics for previous record (Oct 1970 to Dec 1993-incomplete or missing months total 1.1 years)													
Mean Avg.	8.561	6.501	7.247	3.512	2.699	1.866	1.765	2.720	4.948	6.058	7.356	7.493	5.057
flows Low	2.263	1.050	2.519	0.758	0.304	0.381	0.239	0.164	0.345	0.789	2.306	1.630	3.281
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	19.720	20.280	13.660	8.053	10.120	4.562	5.739	9.246	10.260	12.130	16.550	12.350	6.586
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	250.40	189.20	179.60	90.24	165.00	221.30	160.00	143.00	227.30	176.50	183.30	174.50	250.40
Runoff (mm)	230	160	195	91	73	49	48	73	129	163	192	202	1604
Rainfall (mm)	259	168	201	100	113	96	111	138	199	202	228	232	2047
Factors affecting runoff: N Station type: VA										1994 runoff is 121% of provious mean rainfall 113\%			

016004 Earn at Forteviot Bridge

1994

Measuring authority: TRPB
First year: 1972
Hydrometric statistics for 1994

		JAN	FEB	MAR	APR	MAY	JUN	Jul	AUG	SEP	OCT	Nov	DEC	Year
Flows	Avg.	52.380	43.380	79.410	41.740	17.750	11.770	7.146	9.078	9.470	20.830	46.680	65.060	33.714
$\left(\mathrm{m}^{3} \mathbf{s}^{-1}\right):$	Peak	129.10	214.90	289.70	125.40	36.16	53.03	18.92	66.96	25.34	129.70	133.40	232.20	289.70
Runotf (mm)		179	134	272	138	61	39	24	31	31	71	155	223	1359
Rainfall (mm)		213	112	289	101	22	99	67	94	50	128	172	266	1613

Monthly and yearly statistics for previous record (Oct 1972 to Dec 1993 -incomplete or missing months total 0.9 years)

Mean Avg.	52.890	40.140	39.640	23.730	15.050	9.618	8.559	11.820	19.750	29.730	37.630	43.630	27.642
flows Low	19.630	16.070	12.310	8.389	4.906	4.095	2.658	2.456	5.302	5.984	15.120	15.060	15.508
$\left(\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}\right) \quad \mathrm{High}$	116.500	127.100	74.340	51.570	47.200	20.070	24.620	46.660	55.680	61.980	89.750	79.160	33.908
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	415.00	337.00	264.60	209.40	186.50	114.90	142.30	169.70	271.80	241.20	328.60	238.70	415.00
Runotf (mm)	181	125	136	79	52	32	29	40	65	102	125	149	1115
Rainfall (mm)	186	114	147	67	81	74	85	104	147	149	157	164	1475

Factors affecting runoff: P H
Station type: VA

Grid reference: 37 (NO) 043184 Level stn. (m OD): 7.80

Catchment area (sq km): $\mathbf{7 8 2 . 2}$
Max alt. (m OD): 985

017001 Carron at Headswood

Measuring authority: FRPB
First year: 1969
Hydrometric statistics for 1994

		JAN	FEB	MAR	APR	MAY	JUN	JUL
Fiows	Avg.	9.121	4.356	14.480	3.826	1.375	0.977	0.988
$\left(m^{3} s^{\prime}\right):$	Poak	73.00	73.38	68.17	20.45	22.65	6.10	5.06
Runoff $(m m)$	200	88	317	81	30	$: 21$	21	
Rainfall (mm)	278	125	358	125	33	125	79	

Monthly and yearly statistics for previous record (Aug 1969 to Dec 1993)

Mean	Avg.	6.435	4.311	4.295	2.197	1.519	1.168

	flows	Low	1.943	4.318	4.295	2.197	1.519

flows	Low	1.943	1.018	1.232	0.807	0.590	0.580
$\left(\mathrm{~m}^{3}-1\right)$	High	15.330	14.130	9.819	4.616	5.724	2.834

Peak flow $\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$
Runoff (mm)
Rainfall (mm)
Factors affecting runoff: SE
Station type: VA

Grid reference: 26 (NS) 832820 Level \sin. (m OD): 17.10

Catchment area (sq km): 122.3 Max alt. (m OO): 570

017002 Leven at Leven

Measuring authority: FRPB
First year: 1969
Hydrometric statistics for 1994

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	13.200	10.500	17.120	8.016	3.850	1.531	1.670	1.179	1.450	2.346	9.239	11.980	6.830
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Paak	19.94	26.66	27.69	14.71	5.96	3.22	5.22	4.91	2.44	6.83	19.78	32.62	32.62
Runoff (mm)	83	60	108	49	24	9	11	7	9	15	56	76	508
Rainfall (mm)	120	88	150	67	19	58	50	56	46	81	125	142	1002
Monthly and yearly statistics for previous record (Aug 1989 to Dec'1993)													
Mean Avg.	12.250	10.380	7.830	5.503	3.874	' 3.213	2.089	3.269	3.969	6.085	8.167	10.060	6.373
flows Low	4.786	2.882	1.543	1.413	2.012	1.166	0.902	0.820	0.970	0.795	0.972	3.462	2.269
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	26.030	22.660	14.680	10.630	12.050	7.044	5.300	11.840	21.040	13.170	26.510	19.200	9.294
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	85.42	128.00	69.64	70.96	44.54	26.93	28.83	25.69	84.25	48.50	56.76	62.69	128.00
Runoff (mm)	77	60	49	34	24	20	13	21	24	38	50	64	474
Rainfall (mm)	103	64	82	52	61	67	65	75	89	90	93	93	934

1994 runoff is 107% of previous mean rainfall 107\%

018003 Teith at Bridge of Teith

Measuring authority: FRPB
First year: 1957
Hydrometric statistics for 1994

		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg,	51.520	29.060	79.140	34.560	11.690	12.450	9.529	14.170	10.660	17.130	39.580	70.340	31.754
($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$):	Paak	146.10	164.40	220.80	114.90	40.88	55.75	21.11	67.42	29.23	47.25	103.10	312.20	312.20
Runoff (mm)		266	136	409	173	60	62	49	73	53	89	198	364	1933
Rainfall (mm)		329	119	455	171	37	154	89	171	84	152	227	422	2410

Monthly and yearly statistics for previous record (Jan 1957 to Dec 1993 -incomplate or missing months total 0.1 years)

Moan Avg.	38.550	30.050	29.760	17.300	14.290	9.256	9.654	13.550	20.450	27.380	31.020	34.790	22.989
flows Low	9.608	5.743	6.589	5.612	4.017	3.953	3.781	3.135	3.635	5.897	9.842	11.790	15.094
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	99.850	109.100	81.670	44.110	55.000	21.520	26.390	54.210	51.510	66.410	70.650	72.370	32.716
Posk flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	378.30	361.80	217.40	182.40	158.00	161.70	118.30	174.40	184.10	242.60	245.10	241.10	378.30
Runoff (mm)	199	141	154	87	74	46	50	70	102	142	155	180	1400
Rainfall (mm)"	250	157	191	100	116	102	112	137	198	216	218	223	2020
Factors affecting Station type: VA	off: S									$1994 \text { rur }$ rai	ff is 13 fall 11	of pre	ous mean

018005 Allan Water at Bridge of Allan

Measuring authority: FRPB
First year: 1971
Hydrometric statistics for 1994

	JAN	FEB	MAR	APR	MAY	JuN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	15.940	8.773	24.460	7.154	3.019	2.320	2.368	2.450	2.005	4.272	12.260	22.420	8.988
($\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	88.01	102.50	118.20	25.72	20.06	16.76	19.02	32.46	8.27	32.38	62.43	158.80	158.80
Runoff (mm)	203	101	312	88	39	29	30	31	25	54	151	286	1350
Rainfall (mm)	214	100	299	90	23	94	80	85	51	102	166	270	1574
Monthly and yearly statistics for previous record (Jut 1971 to Dec 1993)													
Mean Avg.	12.280	8.884	9.447	5.261	3.835	2.638	2.275	3.151	5.182	7.186	8.847	10.040	6.580
flows Low	4.751	3.631	3.152	1.654	1.189	0.945	0.726	0.648	0.907	0.971	3.642	3.709	4.269
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{High}$	28.570	22.270	18.170	10.410	15.430	5.423	6.309	12.390	15.180	12.420	17.760	17.150	9.091
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	194.30	81.93	83.43	69.63	72.11	61.86	66.37	67.48	105.60	111.00	97.89	112.60	194.30
Runoff (mm)	157	104	120	65	49	33	29	40	64	92	109	128	989
Rainfall (mm)	162	99	128	68	77	73	82	96	126	131	135	144	1321
Factors affecting runoff: I Station type: VA										1994 runoff is 136% of previous mean rainfall 119\%			

018018 Kirkton Burn at Balquhidder

Measuring authority: IH First year: 1983

	JAN	FEB	MAR	APA	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	0.712	0.368	1.215	0.574	0.177	0.226	0.164	0.294	0.198	0.324	0.622	0.949	0.487
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	5.09	5.86	10.37	3.23	0.88	1.38	0.83	5.05	1.39	2.63	5.17	7.92	10.37
Runoff (mm)	278	130	475	217	69	85	64	115	75	127	236	371	2243
Rainfall (mm)	351	162	489	184	46	165	73	189	69	162	249	434	2573
Monthly and yearly statistics for previous record (Jan 1983 to Dec 1993 -incomplete or missing months total 0.2 years)													
Mean Avg.	0.692	0.516	0.614	0.375	0.222	0.141	0.197	0.324	0.383	0.583	0.497	0.639	0.432
flows Low	0.178	0.105	0.214	0.190	0.066	0.055	0.047	0.031	0.070	0.242	0.178	0.339	0.346
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{High}$	1.280	1.489	1.144	0.687	0.847	0.261	0.539	0.767	0.726	0.906	1.028	1.052	0.509
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	13.57	7.66	8.69	4.01	8.51	2.56	5.98	10.90	7.45	12.20	9.25	10.09	13.57
Runotf (mm)	271	184	240	142	87	53	77	127	145	228	188	250	1992
Rainfall (mm)*	341	197	267	132	113	92	136	185	202	256	221	301	2442

-(1983-1993)
Factors affecting runoff: N
Station type: C
Comment: Period of record rainfall statistics derived from a network of ground flush raingauges.

020001 Tyne at East Linton

Measuring authority: FRPB First year: 1961			Grid reference: $\mathbf{3 6}$ (NT) 591768 Level stn. (m OD): 16.50							Catchment area (sq km): $\mathbf{3 0 7 . 0}$ Max alt. (m OD): 528			
Hydrometric statistics for 1994													
	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	Nov	DEC	Year
Flows Avg.	8.835	4.812	4.741	2.601	1.320	1.010	0.778	0.643	0.662	0.902	1.672	3.380	2.607
$\left(m^{3} s^{-1}\right):$ Peak	57.84	46.56	17.82	6.12	1.99	2.27	1.30	1.14	1.49	4.26	7.94	23.82	57.84
Runoff (mm)	77	38	41	22	12	9	7	6	6	8	14	29	268
Rainfall (mm)	89	65	62	53	15	40	25	28	54	65	62	85	643
Monthly and yearly statistics for previous record (Jan 1961 to Dec 1993)													
Mesn Avg.	4.660	3.827	3.848	2.915	2.399	1.431	1.253	1.571	1.697	2.501	3.429	3.850	2.779
flows Low	1.032	0.783	0.531	0.644	0.781	0.586	0.500	0.468	0.461	0.451	0.524	0.582	0.709
($\mathrm{m}^{3}{ }^{-1}$) High	11.540	8.625	8.789	7.824	11.600	6.142	4.393	9.855	8.490	9.421	11.210	9.447	4.146
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	93.02	53.51	118.80	143.00	119.70	59.12	70.18	112.70	90.84	148.50	127.50	52.02	148.50
Runoff (mm)	41	30	34	25	21	12	11	14	14	22	29	34	286
Rainfall (mm)	64	43	58	48	58	54	60	76	68	71	68	62	730
Factors affecting runoff: El Station type: VA										$\begin{array}{r} 1994 \mathrm{ra} \\ \hline \end{array}$	off is 94 fall 88	of previo	us mean

021006 Tweed at Boleside

Measuring authority: TWRP
First year: 1961
Hydrometric statistics for 1994

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Yea
Flows Avg.	89.530	49.530	96.310	48.750	18.210	10.130	9.076	12.730	15.460	21.090	73.670	118.700	47.020
$\left(m^{3} s^{-1}\right)$: Peak	255.20	228.60	332.30	102.50	48.71	22.81	25.14	52.67	59.11	91.45	282.90	799.60	799.60
Runaff (mm)	160	80	172	84	33	18	16	23	27	38	127	212	990
Rainfall (mm)	176	95	189	91	25	63	62	86	63	89	143	242	1324
Monthly and yearly statistics for previous record (Jan 1961 to Dec 1993)													
Mean Avg.	61.090	48.840	46.110	33.240	25.330	16.210	15.410	23.020	30.780	43.680	52.460	57.500	37.770
flows Low	14.740	10.780	16.230	10.250	7.290	5.669	4.314	3.834	4.316	4.655	12.230	24.150	20.090
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	111.900	159.700	104.200	68.230	67.600	35.350	44.590	85.410	98.480	99.430	121.300	101.900	49.790
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	678.60	507.60	469.80	447.30	385.00	125.90	342.40	444.30	496.30	1019.00	486.30	571.90	1019.00
Runoff (mm)	109	80	82	57	45	28	28	41	53	78	91	103	795
Plainfall (mm)	129	86	104	72	84	76	85	108	115	124	121	124	1226

Factors affecting runoff: S P
Factors affecting

Grid reference: 36 (NT) 498334 Level stn. (m OD): 94.50

Catchment area (sq krs): 1500.0 Max att. (m OD): 839

994 runoff is 125% of provious mean rainfall 108\%

Comment: Monthly naturalised flows used.

Measuring authority: TWRP
First year: 1961
Hydrometric statistics for 1994

	JAN	FE日	MAR	APA	MAY	JUN	JUL	AUG	SEP	OCT	Nov	DEC	Year
Flows Avg.	19.160	12.760	20.600	9.703	3.521	1.734	1.640	3.197	2.472	4.148	19.220	26.520	10.393
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	84.21	150.70	123.70	35.62	16.32	7.74	13.30	35.95	12.70	40.33	110.50	187.90	187.90
Runoff (mm)	159	96	171	78	29	14	14	27	20	34	154	220	1015
Rainfall (mm)	188	96	186	93	22	79	65	99	55	94	158	245	1380
Monthly and yearly statistics for previous racord (Jan 1961 to Dec 1993)													
Mean Avg.	14.520	11.160	10.510	6.994	5.694	3.770	3.358	4.980	6.564	9.934	12.370	14.140	8.661
flows Low	3.587	2.601	2.991	2.190	1.296	0.909	0.676	0.735	0.915	0.816	2.555	4.523	4.183
$\left(m^{3} s^{-1}\right) \quad \mathrm{High}$	28.570	34.800	27.700	14.200	17.340	10.500	12.300	19.120	18.960	25.690	29.910	26.550	11.280
Poak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	257.40	235.30	182.40	179.00	135.00	89.41	148.30	178.60	185.90	273.40	188.50	230.00	273.40
Runotf (mm)	120	84	87	56	47	30	28	41	53	82	99	117	846
Rainfall (mm)	127	83	101	70	85	75	86	103	107	118	119	126	1201
Factors affecting runoff: N Station type: VA										1994 runoff is 120% of previous mean rainfall 115\%			
Comment: Monthly naturalised flows used.													

021018 Lyne Water at Lyne Station

Measuring authority: TWRP
First yoar: 1962
Hydrometric statistics for 1994

		JAN	FEB	MAR	APA	MAY	JUN	JUL
Flows	Avg.	7.515	4.261	8.294	4.320	1.664	0.908	0.684
($\left.\mathrm{m}^{3} \mathrm{~s}^{-1}\right):$	Peak	16.58	19.58	23.30	11.67	2.76	1.35	1.27
Runoff (mm)	115	59	127	64	25	13	10	
Rainfall (mm)	126	68	148	74	18	49	46	

Monthly and yearly statistics for previous record (Jan 1962 to Dec 1993)

Moan	Avg.	S.109	4.227	3.892	2.895	2.079	1.522	1.361
flows	L	1.060	1.416	.49	6.07	0.891	0.795	0.609

| flows Low | 1.666 | 1.416 | 1.491 | 1.895 | 2.079 | 1.522 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

${ }^{\left(m^{3} s^{-1}\right)}$ High
Runoff (mm)
Runoff (mm)
Factors affecting runoff: S P
Station type: VA
Comment: Monthly naturalised flows used

Grid reference: 36 (NT) 209401
Level stn. (m OD): 168.00

Catchment area (sq km): $\mathbf{3 2 3 . 0}$
Max alt. (m OD): 608
rid reference: 36 (NT) 522159
Level stn. (m OD): 90.10
Moasuring authority: TWRP
First year: 1969
Hydrometric statistics for 1994

021024 Jed Water at Jedburgh

Measuring authority: TWRP
First year: 1960
Hydrometric statistics for 1994

	JAN	FEB	MAR	APA	MAY	JUN	Jut	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	5.305	3.449	4.262	2.128	0.916	0.588	0.467	0.694	0.472	0.714	2.908	5.692	2.299
(m3s ${ }^{\text {- }}$): Poak	32.66	36.95	57.01	10.83	2.16	1.32	2.65	12.60	1.91	5.71	24.59	75.33	75.33
Runotf (mm)	102	60	82	40	18	11	9	13	9	14	54	110	521
Rainfall (mm)	119	70	107	62	17	40	34	66	44	64	107	164	894
Monthly and yearly statistics for previous record (Jan 1960 to Dec 1993)													
Mosn Avg.	4.073	3.073	2.928	2.080	1.628	1.086	1.018	1.261	1.513	2.120	3.091	3.568	2.285
flows Low	1.482	0.997	0.782	0.733	0.635	0.404	0.352	0.312	0.346	0.327	0.698	0.967	1.068
$\left(\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}\right)$ High	7.748	9.041	7.398	4.556	4.990	2.345	4.770	4.329	6.868	5.002	9.433	6.962	3.091
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	106.30	74.62	84.94	68.83	38.25	58.35	66.25	63.76	50.94	71.65	167.10	85.25	167.10
Aunotf (mm)	79	54	56	39	31	20	20	24	28	41	58	69	519
Rainfall (mm)	92	63	75	60	70	63	73	86	80	88	91	91	933

Foctors affecting runaff: \mathbf{N}
Station type: VA
Comment: Monthly naturalised flows used

Grid reference: 36 (NT) 655214 Level stn. (m OD): 67.50

Catchment area (sq km): 139.0 Max alt. (m OD): 553

1994 runoff is 101% of previous mean rainfall 96%

Measuring authority: NRA-NY
First year: 1966
Hydrometric statistics for 1994

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows, Avg.	5.353	4.469	2.442	1.638	0.464	0.217	0.118	0.273	0.215	0.308	2.280	2.256	1.653
$\left(m^{3} s^{-1}\right):$ Peak	36.41	53.69	17.98	22.62	0.94	0.55	0.19	3.27	0.61	1.26	12.47	7.82	53.69
Runoff (mm)	53	40	24	16	5	2	1	3	2	3	22	22	193
Rainfall (mm)	66	69	44	54	15	33	33	89	60	53	77	62	655
Monthly and yearly statistics for previous record (Oct 1966 to Dec 1993-incomplete or missing months total 1.0 years)													
Mean Avg.	4.276	3.575	3.451	2.561	1.425	0.569	0.417	0.586	0.694	1.494	2.272	3.760	2.085
flows Low	0.587	0.398	0.245	0.359	0.212	0.161	0.096	0.067	0.107	0.111	0.162	0.274	0.537
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	10.150	7.997	. 11.090	10.360	5.502	1.895	1.800	2.963	2.695	9.680	5.735	12.500	3.410
Peak flow ($\left(\mathrm{m}^{3} 5^{-1}\right)$	146.60	59.52	150.20	162.80	101.50	31.54	21.52	61.09	30.02	56.84	69.20	122.30	162.80
Runotf (mm)	43	32	34	25	14	5	4	6	7	15	22	37	244
Rainfall (mm)	64	47	61	48	55	50	56	69	62	62	65	64	703
Factors affecting runoff: E Station type: FV										1994 runoff is 79% of previous mean rainfall 93\%			

Monthly and yearly statistics for previous record (Oct 1966 to Dec 1993 -incomplete or missing months total 1.0 years)

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows, Avg.	5.353	4.469	2.442	1.638	0.464	0.217	0.118	0.273	0.215	0.308	2.280	2.256	1.653
($\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	36.41	53.69	17.98	22.62	0.94	0.55	0.19	3.27	0.61	1.26	12.47	7.82	53.69
Runoff (mm)	53	40	24	16	5	2	1	3	2	3	22	22	193
Rainfall (mm)	66	69	44	54	15	33	33	89	60	53	77	62	655
Monthly and yearly statistics for previous record (Oct 1966 to Dec 1993-incomplete or missing months total 1.0 years)													
Mean Avg.	4.276	3.575	3.451	2.561	1.425	0.569	0.417	0.586	0.694	1.494	2.272	3.760	2.085
flows Low	0.587	0.398	0.245	0.359	0.212	0.161	0.096	0.067	0.107	0.111	0.162	0.274	0.537
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	10.150	7.997	. 11.090	10.360	5.502	1.895	1.800	2.963	2.695	9.680	5.735	12.500	3.410
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	146.60	59.52	150.20	162.80	101.50	31.54	21.52	61.09	30.02	56.84	69.20	122.30	162.80
Runot (mm)	43	32	34	25	14	5	4	6	7	15	22	37	244
Rainfall (mm)	64	47	61	48	55	50	56	69	62	62	65	64	703
Factors affecting runoff: E Station type: FV										1994 runoff is 79% of previous mean rainfall 93\%			

023001 Tyne at Bywell

Measuring authority: NRA-NY
First year: 1956
Hydrometric statistics for 1994

		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	Nov	DEC	Year
Flows	Avg.	106.300	68.350	104.400	52.660	15.400	11.590	7.751	14.310	24.930	26.830	84.860	120.900	53.172
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$:	Peak	356.20	386.10	795.40	164.50	38.33	79.48	21.57	117.20	120.90	171.10	698.70	709.10	795.40
Runot (mm)		131	76	129	63	19	14	10	18	30	33	101	149	771
Rainfall (mm)		128	73	148	79	20	57	48	102	74	78	125	187	1119

Monthly and yearly statistics for previous record (Oct 1956 to Dec 1993 -_incomplete or missing months total 0.3 years)

Mean Avg	74.070	60.690	5.930	38.790	25.140	17.61	19.090	28.06	33.	46.040	1.600	0	44.226
flows Low	19.220	14.360	18.450	8.481	7.246	4.910	5.199	3.403	4.155	4.727	18.090	23.080	25.849
$\left(m^{3} s^{-1}\right)$ High	150.800	162.800	150.900	75.620	60.650	50.010	58.000	77.360	106.600	147.200	147.000	123.000	63.834
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	1525.00	1198.00	1472.00	905.60	550.90	440.30	1105.00	1561.00	1243.00	1586.00	1382.00	1317.00	1586.00
Runoff (mm)	91	68	69	46	31	21	23	35	40	57	73	87	641
lainfall (mm)	05	75	86	65	68	67	82	95	90	96	103	108	040

Factors affecting runoff: S
Station type: VA
1994 funoff is 120% of previous mean rainfall 108\%

Grid reference: $\mathbf{4 5}$ (NZ) 243800 Level stn. (m OD): 24.60

Catchment area (sq km): 269.4 Max alt. (m OD): 259

023006 South Tyne at Featherstone

Measuring authority: NRA-NY
First year: 1966
Hydrometric statistics for 1994

	JAN	FEB	\therefore MAR	APR	MAY	JuN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	19.700	9.486	21.480	12.150	2.727	3.415	1.386	3.812	7.796	7.550	17.310	25.900	11.082
$\left(m^{3} s^{-1}\right)$: Peak	193.20	129.10	208.80	102.40	19.82	75.75	1.72	46.56	50.93	63.97	176.00	178.00	208.80
Runoff (mm)	164	71	179	98	23	28	12	32	63	63	139	215	1086
Rainfall (mm)	206	66	205	112	26	81	42	121	97	98	157	272	1483

Monthly and yearly statistics for previous record (Oct 1966 to Dec 1993 - incomplete or missing months total 0.2 years)

Mean	Avg	16.110	12.570	13.570	9.347	6.185	4.888	5.130	6.709	9.241	12.400	15.230	16.100	. 6
flows	Low	6.606	3.380	4.733	1.850	1.311	1.465	1.123	0.960	1.467	1.181	5.895	5.110	7.6
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$	High	25.510	33.950	30.210	17.380	13.850	12.740 :	17.170	19.240	23.670	30.330	24.670	28.810	12.91
Peak flow	${ }^{3} \mathrm{~s}^{-1}$)	292.10	255.30	260.80	178.00	131.30	164.70°	273.60	297.30	264.70	263.10	309.90	283.70	309
Runoff (mm		- 134	95	113	75	51	39	43	56	74	103	123	134	1041
													144	

Rainfall (mm)	140	95	113	75	51	39	43	56	74	103	123
	140	122	82	85	86	100	114	125	138	141	144

Factors affecting runoff: N
Station type: CC

Grid reference: 35 (NY) 672611
Level stn. (m OD): 131.70
Catchment area (sq km): 321.9
Max alt. (m OD): 893

1994 runoff is 104% of previous mean rainfall 108\%

023011 Kielder Burn at Kielder

Measuring authority: NRA-NY
First year: 1970
Hydrometric statistics for 1994

	JAN	FEB	MAR	APA	MAY	JUN	JL	AUG	SEP	OCT	NOV	OEC	Year
Flows Avg.	3.850	1.967	3.942	1.935	0.677	0.627	0.355	1.291	0.963	1.349	3.539	4.564	2.093
$\left(m^{3} s^{-1}\right):$ Peak	27.99	23.58	57.88	7.87	2.74	4.08	4.96	45.58	9.79	17.80	33.83	50.45	57.88
Runoff (mm)	175	81	180	85	31	28	, 16	59.	42	61	156	208	1122
Rainfall (mm)	159	102	165	96	25	69	50	118	66	91	162	232	1335
Monthly and yearly statistics for previous record (Jul 1970 to Dec 1993-incomplete or missing months total 2.2 years)													
Maan Avg.	3.047	2.370	2.444	1.613	1.192	1.013	0.852	1.214	1.362	2.043	2.622	2.915	1.890
flows Low	1.646	0.722	0.945	0.389	0.331	0.316	0.302	0.243	0.316	0.247	0.694	1.011	1.201
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	4.893	6.677	4.882	3.209	2.605	2.134	2.632	4.407	3.296	3.589	6.000	5.113	2.470
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	95.31	73.28	44.44	35.55	60.14	95.07	39.21	138.90	56.86	128.80	118.70	67.89	138.90
Runoff (mm)	139	98	111	71	54	45	39	55	60	93	116	133	1014
Rainfall (mm)	140	96	115	74	77	73	89	103	102	124	132	146	1271
Factors affecting runoff: \mathbf{N} Station type: FVVA										1994 runoff is 111% of previous mean rainfall 105\%			

024004 Bedburn Beck at Bedburn

1994
Measuring authority: NRA-NY
Grid reference: 45 (NZ) 118322
Level stn. (mi OD): 109.00
Catchment area (sq km): 74.9
Hydrometric statistics for 1994

	JAN	FEB	MAA	APR	MAY	JUN	JUL	Aug	SEP	ОСТ	NOV	DEC	Year
Flows Avg.	2.886	1.949	2.160	1.532	0.568	0.264	0.174	0.175	0.461	0.835	2.015	2.561	1.296
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right):$ Peak	16.14	11.57	12.55	13.44	3.11	0.41	0.30	1.70	2.50	9.00	12.01	11.72	16.14
Runoff (mm)	103	63	77	53	20	9	6	6	16	30	70	92 "	545 !
Rainfall (mm)	129	84	93	83	38	32	37	88	99	75	93	148 :	999
Monthly and yearly statistics for previous record fOct 1959 to Dec 1993-incomplate or miasing months total 0.2 years)													
Mean Avg.	2.08 B	1.772	1.775	1.380	0.885	0.520	0.430	0.544	0.603	1.170	1.518	1.882	1.212
flows Low	0.515	0.472	0.436	0.316	0.270	0.191	0.152	0.120	0.110	0.146	0.244	0.444	0.667
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \xrightarrow{\mathrm{High}}$	4.341	4.011	5.128	2.986	2.231	1.524	1.522	1.465	1.790	4.346	3.722	4.488	1.842
Poak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	34.67	39.16	38.51	35.09	33.41	21.66	27.72	46.19	32.30	38.06	34.26	42.93	46.19
Runotf (mm)	75	58	83	48	32	18	15	19	21	42	53	67	511
Rainfall (mm)	90	65	73	61	63	56	63	76	72	81	88	88	876
Factors affecting runoff: \mathbf{N} Station type: CC										1994 runoff is 107% of previous mean rainfall 114\%			

024009 Wear at Chester le Street

Measuring authority: NRA-NY
First year: 1977
Grid reference: 45 (NZ) 283512 Level stn. (m OD): 5.50

Catchment area (sq km): 1008.3
Hydrometric statistics for 1994

		JAN	FEB	MAR	APR	MAY	JUN	ML	AUG	SEP	OCT	Nov	DEC	Year
Flows'	Avg.	36.930	21.160	22.200	16.030	6.386	4.070	4.054	4.182	5.916	8.386	20.640	32.540	15.198
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$:	Peak	164.80	137.40°	143.50	89.94	18.00	5.48	7.78	12.06	18.29	73.60	99.17	165.40	165.40
Runotf (mm)		98	51	59	41	17	10	11	11	15	22	53	86	475
Rainfall (mm)		111	71	79	68	38	30	44	72	87	73	86	134	893

Monthly and yearly statistics for previous record (Sep 1977 to Dec 1993 -incomplate or missing months total 0.1 years)

Mean Avg.	24.240	21.190	22.700	17.510	10.440	6.758	5.522	6.530	6.957	11.210	0	0	5
flows Low	8.610	7.302	6.215	4.738	3.941	3.447	2.948	3.057	3.054	4.563	4.812	12.780	8.661
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	40.980	39.880	64.200	36.800	30.170	14.650	14.010	19.300	23.480	27.060	35.820	50.640	19.785
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	309.80	263.70	349.60	277.60	314.40	200.60	226.50	354.40	203.70	273.40	254.10	353.10	354.40
Runoff (mm)	64	51	60	45	- 28	17	15	17	18	30	43	353.10	354.40
Rainfall (mm)	85	62	81	61	. 60	60	56	78	68	82	87	98	878

Factors affecting runoff: R G
Station type: FV
rainfall 102%

025001 Tees at Broken Scar
Measuring authority: NRA-NY
First year: 1956
Hydrometric statistics for 1994

		JAN	FEB	MAR	APH	MAY	JUN	Jul.	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	47.930	26.490	36.850	27.010	8.837	7.133	4.863	6.652	12.670	12.240	27.130	45.530	21.945
($\mathrm{m}^{3} \mathrm{~s}^{-1}$):	Peak	342.80	142.80	260.50	123.20	30.22	33.95	7.63	59.11	61.08	95.37	145.00	282.30	342.80
Runoff (mm)		157	78	121	86	29	23	16	22	40	40	86	149	846
Rainfall (mm)		186	84	152	100	36	40	38	96	108	92	127	218	1277

Monthly and yearly statistics for previous record (Oct 1956 to Doc 1993 -incomplete or missing months total 0.1 years)

Mean Avg.	29.950	24.650	23.730	18.860	10.340	6.559	6.734	9.764	11.080	17.650	22.390	29.150	17.533
flows Low	2.906	2.804	5.482	2.539	2.007	0.502	1.794	0.458	0.638	2.707	4.060	5.778	9.383
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ Migh	57.570	64.770	68.660	60.870	27.020	15.270	25.100	28.520	25.800	53.940	51.580	50.040	25.161
Peak flow ($\mathrm{m}^{3} \mathrm{~B}^{-1}$)	590.80	521.10	679.30	350.90	311.50	191.90	380.70	709.80	331.30	525.80	416.30	565.10	709.80
Runoff (mm)	98	74	78	59	34	21	22	32	35	58	71	95	676
Rainfall (mm)	121	89	96	77	77	72	81	99	95	106	112	125	1150
Factors affecting Station type: CC	off: SR									$1994 \text { rur }$	ff is 125	of prev	us mean

025019 Leven at Easby

1994

Moasuring authority: NRA-NY
First year: 1971
Hydrometric statistics for 1994

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
Flows Avg.	0.422	0.252	0.154	0.128	0.143	0.072	0.054	0.054	0.088
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	1.69	1.88	0.53	0.48	1.81	0.12	0.18	0.32	0.48
Runoff (mm)	76	41	28	22	26	13	10	10	15
Rainfall (mm)	97	54	42	41	63	29	45	59	99
Monthly and yearly statistics for previous record (May 1971 to Dec 1993)									
Mean Avg.	0.282	0.276	0.272	0.242	0.164	0.119	0.100	0.121	0.129
flows Low	0.082	0.094	0.076	0.066	0.069	0.058	0.044	0.038	0.039
(m's m^{-1}) High	0.630	0.729	0.821	0.771	0.544	0.239	0.189	0.427	0.532
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	3.56	4.38	5.68	9.36	7.56	1.99	3.14	15.53	16.01
Runoff (mm)	51	46	49	42	30	21	18	22	23
Reinfall (mm)	74	51	68	60	56	60	60	75	74

Factors affecting runoff: N
Station type: FV

Grid reference: 45 (NZ) 259137
Level stn. (m OD): 37.20
Catchment area (sq km): 818.4 Max alt. (m OD): 893 rainfall 111\%

026003 Foston Beck at Foston Mill

Measuring authority: NRA-NY
First year: 1959
Hydrometric statistics for 1994

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	2.002	1.774	1.465	1.096	0.788	0.581	0.461	0.363	0.327	0.287	0.254	0.274	0.801
$\left(m^{3} s^{-1}\right)$: Peak	2.49	2.69	1.63	1.36	0.98	0.69	0.62	0.41	0.42	0.35	0.32	0.72	2.69
Runoff (mm)	94	75	69	50	37	26	22	17	15	13	12	13	442
Rainfall (mm)	110	62	34	51	43	17	52	40	99	54	50	95	707
Monthly and yearly statistics for previous record (Oct 1959 to Dec 1993)													
Mean Avg.	0.780	1.021	1.003	0.916	0.789	0.617	0.483	0.379	0.314	0.301	0.376	0.541	0.624
flows Low	0.113	0.105	0.087	0.096	0.098	0.083	0.101	0.089	0.091	0.077	0.073	0.122	0.141
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \quad \mathrm{High}$	2.224	2.332	2.242	2.070	1.708	1.231	0.882	0.675	0.567	0.612	1.845	2.379	1.282
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	2.89	3.31	2.69	2.70	1.95	2.01	1.47	0.99	0.80	1.22	2.49	2.86	3.31
Runoff (mm)	37	44	47	42	37	28	23	18	14	14	17	25	345
Rainfall \{mm\}	67	50	56	52	51	53	55	62	58	65	73	74	716

Factors affecting runoff: N G
Station type: TP
Grid reference: 54 (TA) 093548
Level stn. (m OD): 6.40
Catchment area (sq km): 57.2
Max alt. (m OD): 164

1994 runoff is 128% of previous mean rainfall 99%

026005 Gypsey Race at Boynton

Measuring authority: NRA-NY
First year: 1981
Hydrometric statistics for 1994

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG 0.006	SEP 0.005	ОСт 0.005	NOV 0.008	$\begin{aligned} & \text { DEC } \\ & 0.017 \end{aligned}$	Year 0.385
Flows Avg.	1.324	0.936	1.172	0.627	0.321	0.171	0.058	0.006	0.005	0.005	0.008	0.017	0.385
($\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	2.44	1.19	1.43	1.02	0.43	0.27	0.12	0.04	0.03	0.01	0.03	0.06	2.44
Runotf (mm)	15	9	13	7	4	2	1	0	0	0	0	0	51
Rainfall (mm)	111	64	35	52	40	21	58	45	100	58	51	96	731
Monthly and yearly statistics for previous record (Feb 1981 to Dec 1993)													
Mean Avg.	0.150	0.282	0.303	0.396	0.363	0.220	0.124	0.056	0.027	0.014	0.014	0.046	0.165
flows Low	0.006	0.005	0.005	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.003	0.004
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	0.475	0.887	0.872	1.585	1.217	0.623	0.351	0.184	0.098	0.055	0.033	0.190	0.349
Peak flow ($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$)	0.72	1.00	1.86	1.87	1.58	0.86	0.60	0.28	0.29	0.14	0.10	0.91	1.87
Runoff (mm)	2	3	3	4	4	2	1	1	0	0	0 6	1 66	22
Rainfall (mm)	60	48	64	55	44	52	54	59	63	64	69	66	698
Factors affecting runoff: G I Station type: FV										1994 runoff is 233% of previous mean rainfall 105\%			

027007 Ure at Westwick Lock

Measuring authority: NRA-NY

First year: 1958
Hydrometric statistics for 1994

+		JAN	FEB	MAR	APR	MAY	JUN	JUL.	AUG	SEP	OCT	Nov	DEC	Ye
Flows	Avg.	55.110	32.460	47.850	30.500	9.393	6.233	3.520	6.494	16.810	16.790	38.230	60.480	26.989
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$:	Peak	169.60	177.10	221.10	144,40	33.33	30.90	5.27	63.92	63.32	75.18	173.00	282.60	282.60
Runoff (mm)		161	86	140	86	28	18	10	19	48	49	108	177	931
Rainfall (mm)		170	89	164	95	42	41	43	88	103	91	124	219	1269

Monthly and yearly statistics for previous record (Oct 1958 to Dec 1993 -incomplete or missing months total 1.0 years)

Mean Avg.	34.590	30.040	27.260	20.360	12.810	8.411	7.863	11.330	13.670	21.330	28.030 7.078	34.370 11.330	20.804
flows Low	4.009	3.886	8.875	5.674	3.831	3.024	2.202	1.287	1.450	5.856	7.078	11.330	12.946
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	59.590	84.770	60.330	40.980	31.290	21.400	20.130	31.600	33.030	68.480	65.010	59.960	27.066
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	537.90	625.90	413.10	263.30	248.50	161.50	153.30	271.90	296.20	266.50	288.80	320.80	625.90
Runoff (mm)	101	80	80	58	38	24	23	33	39	62	79	101	718
Rainfall (mm)	122	86	96	79	72	69	75	90	94	106	118	127	1134
Factors affecting	off: S									1994π	off is 13 fall	\% of pre	us mean

Station type: B VA

Grid reference: 44 (SE) 35667
Level stn. (m OD): 14.20
Catchment area (sq km): 914.6 Max alt. (m OD): 713
runoff is 130% of previous mean
rainfall 112%

027025 Rother at Woodhouse Mill

Measuring authority: NRA-NY
First year: 1961
Hydrometric statistics for 1994

027042 Dove at Kirkby Mills

1994

Measuring authority: NRA-NY
Grid reference: 44 (SE) 705855
Level str. (m OD): $\mathbf{3 5 . 6 0}$
Catchment area (sq km): 59.2
First year: 1972
Hydrometric statistics for 1994

027047 Smaizeholme Beck at Low Houses

Measuring authority: NRA-NY
First yoar: 1972
Hydrometric statistics for 1994

		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	1.366	0.562	1.428	0.720	0.122	0.169	0.031	0.289	0.434	0.443	0.927	1.418	0.661
$\left(m^{3} s^{-1}\right):$	Poak	12.40	7.88	13.45	9.98	2.33	3.31	0.15	6.87	4.60	5.44	14.55	14.01	14.55
Runoff (mm)		359	133	375	183	32	43	8	76	110	116	236	372	2044
Rainfall (mm)		294	96	387	149	43	105	49	155	131	136	218	379	2142

Monthly and yearly statistics for previous record (Jan 1973 to Dec 1993 -incomplete or missing months total 1.0 years)

Maen Avg.	0.934	0.726	0.712	0.369	0.258	0.199	0.231	0.346	0.520	0.684	0.840	1.009	0.569
flows Low	0.428	0.110	0.186	0.047	0.024	0.025	0.021	0.029	0.076	0.220	0.226	0.376	0.425
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	1.498	1.774	1.689	0.700	0.758	0.510	0.798	0.738	0.995	1.124	1.365	1.611	0.644
Poak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	14.82	15.46	14.45	12.68	14.67	11.58	10.47	14.90	15.74	12.22	16.10	14.85	16.10
Runoff (mm)	245	174	187	94	68	50	61	91	132	180	213	265	1759
Rainfall (mm)	201	136	163	89	88	88	107	142	159	174	201	228	1776
Factors affecting Station type: FV	off: N									$1994 \text { run }$	f is 116 fll 121	of pre	us mean

027050 Esk at Sleights

1994
Measuring authority: NRA-NY
Grid reference: 45 (NZ) 865081 Level stn. (m OD): 4.90

Catchment area (sq km): 308.0 Max alt. (m OD): 435
Hydrometric statistics for 1994

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	15.910	9.424	3.317	3.752	2.934	1.260	0.905	0.824	2.487	3.326	5.210	8.057	4.763
($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$): Peak	90.13	116.90	18.17	21.08	29.29	2.81	2.10	1.31	20.31	20.38	19.75	43.89	116.90
Runoff (mm)	138	74	29	32	26	11	8	7	21	29	44	70	488
Rainfall (mm)	121	77	49	49	59	29	55	55	108	74	67	118	861
Monthly and yearly statistics for previous record (Oct 1970 to Dec 1993-incomplete or miasing months total 1.6 years)													
Moan Avg.	7.839	6.935	7.243	5.195	3.163	2.085	1.833	2.570	2.591	4.165	6.147	8.673	4.864
flows Low	1.823	1.917	1.497	1.041	1.004	0.749	0.453	0.268	0.446	0.675	1.794	2.539	2.228
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \quad \mathrm{High}$	13.110	21.220	30.470	19.380	9.565	5.231	6.585	8.767	19.130	16.150	14.760	18.770	7.574
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	159.30	198.10	358.70	191.70	144.00	106.80	165.70	276.00	347.90	156.80	243.00	350.10	358.70
Runoff (mm)	68	55	63	44	28	18	16	22	22	36	52	75	499
Rainfall (mm)* $\cdot(1980-1993)$	71	59	79	65	45	72	64	87	69	104	85	85	885
Factors affecting runoff: \mathbf{N} Station type: B VA										1994 runoff is 98% of previous mean rainfall 97\%			

027053 Nidd at Birstwith

Measuring authority: NRA-NY
First year: 1975
Hydrometric statistics for 1994

	JAN	FEB	MAR	APR	MAY	JUN	JuL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	12.840	6.606	9.864	5.714	1.496	1.080	0.948	0.889	1.491	2.984	9.413	12.890	5.521
$\left(\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}\right)$: Peak	43.95	37.30	95.02	33.28	3.12	1.51	2.66	4.29	8.17	14.16	39.49	77.13	95.02
Runotf (mm)	158	73	121	68	18	13	12	11	18	37	112	159	800
Rainfall (mm)	168	107	160	106	50	44	57	95	122	106	144	220	1379
Monthly and yearly statistics for previous record (Apr 1975 to Dec 1993-incomplete or missing months total 0.1 years)													
Mean Avg.	9.931	8.059	7.582	4.343	2.762	1.681	1.224	1.780	2.530	4.451	6.414	9.836	5.041
flows Low	3.073	2.591	1.159	1.363	0.837	0.771	0.808	0.531	0.523	0.743	1.893	3.612	3.642
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	16.110	18.220	21.140	12.770	7.061	3.131	2.164	5.690	11.310	15.120	12.830	20.280	7.148
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	204.40	282.80	203.40	154.70	96.48	38.77	29.50	67.77	221.10	113.60	83.49	196.00	282.80
Runoff (mm)	122	91	93	52	34	20	15	22	30	55	76	121	731
Rainfall (mm)*	144	98	123	80	77	76	65	101	110	129	126	157	1286

factors affocting runoff: SRP
Station type: VA

Grid reference: 44 (SE) 230603
Level stn. (m OD): 67.40

Grid reference: 34 (SD) 833883 Level stn. (m OD): 260.00

Catchment area (sq km): 10.2 Max alt. (m OD): 668

027071 Swale at Crakehill

1994

Measuring authority: NRA-NY First year: 1980
Hydrometric statistics for 1994

Factors affecting runoff: N
Station type: C VA

Grid reference: 44 (SE) 425734 Level stn. (m OD): 12.00

Catchment area (sq km): 1363.0 Max alt. (m OD): 713 rainfall 108\%

028015 Idle at Mattersey

1994

Measuring authority: NRA-ST
First year: 1961
Hydrometric statistics for 1994

	JAN	FEB	MAR	APR	MAY	JUN	Jul	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	5.521	4.352	3.552	2.745	2.412	1.526	1.007	1.154	2.645	2.129	3.307	3.819	2.838
$\left(m^{3} s^{-1}\right)$: Peak	9.56	10.61	6.67	4.39	5.62	2.30	1.82	2.03	8.41	3.80	6.68	8.55	10.61
Runoff (mm)	28	20	10	13	12	7	5	6	13	11	16	19	169
Rainfall (mm)	69	51	42	37	59	12	47	51	129	48	68	80	693

Monthly and yearly statistics for previous record (Jun 1965 to Dec 1993 -incomplete or missing months total 12.3 years)

Mean Avg.	4.215	4.360	4.016	3.960	3.223	2.797	2.271	2.197	2.291	2.606	2.870	3.924	3.222
flows Low	1.851	1.590	1.689	1.476	0.587	0.324	1.072	0.808	0.990	1.452	1.896	1.697	1.620
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	6.417	8.714	7.853	6.351	6.624	5.423	6.123	5.805	4.692	4.209	5.257	8.959	5.180
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	13.31	15.12	14.89	15.01	15.16	18.52	10.28	11.30	6.17	11.33	13.77	14.11	18.52
Runoff, (mm)	21	20	20	19	16	14	11	11	11	13	14	20	192
Rainfall (mm)	58	39	54	58	62	56	49	53	51	58	63	61	662
ctors affecting	ff									1994 r	ff is 8	of pre	s mean

Factors affecting runoff: SA GE

Grid reference: 43 (SK) 690895
Level stn. (m OD): 3.80
MAY JUN

Catchment area (sq km): 529.0
Max alt. (m OD); 195
tation type: EM

028018 Dove at Marston on Dove

Measuring authority: NRA-ST
First year: 1961
Hydrometric statistics for 1994

Comment: Reprocessing of post-1973 flow data has resulted in changes to previously published monthly and yearly statistics.

028024 Wreake at Syston Mill

Measuring authority: NRA-ST First year: 1967			
Hydrometric statistics for 1994			
	JAN	fEB	MAR
Flows Avg.	9.063	7.196	4.495
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	40.28	44.56	36.00
Runoff (mm)	59	42	29
Rainfals (mm)	63	57	67
Monthly and yearly statistics for previous rec			
Mean Avg.	5.587	5.634	4.527
flows Low	0.959	0.619	0.494
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \quad \mathrm{High}$	10.150	21.740	12.630
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	43.11	73.37	99.82
Runoff (mm)	36	33	29
Rainfall (mm)*	54	43	51
*(1971-1993)			
Factors affecting runoff: GE Station type: EM			

Grid reference: 43 (SK) 615124
Level stn. (m OD): 47.70
MAY JUN - JUL

APR	MAY	JUN	JUL
4.401	1.377	0.632	0.566
17.13	6.05	0.98	2.63
28	9	4	4
49	51	13	60

NOV	DEC	Year
4.806	6.995	3.614
24.31	30.90	44.56
30	45	275
56	74	705

Catchment area (sq km): 413.8 Max alt. (m OD): 230

Hydrometric statistics for 1994

Monthly and yearly statistics for previous record (Aug 1967 to Dec 1993 -incomplate or missing months total 1.6 years)

Mean	Avg.	5.587	5.634	4.527	3.392	2.009	1.210	0.983	0.821	0.969	1.656	2.639	4.591	2.822
flows	Low	0.959	0.619	0.494	0.358	0.286	0.222	0.138	0.122	0.254	0.264	0.418	0.745	0.923
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$	High	10.150	21.740	12.630	8.772	8.117	2.918	4.547	3.230	5.367	6.897	7.618	11.910	4.396
Peak flow	$\mathrm{n}^{3} \mathrm{~s}^{-1}$	43.11	73.37	99.82	97.07	51.83	39.17	26.88	30.44	32.52	32.41	50.25	52.95	99.82
Runoff (mm)		36	33	29	21	13	8	6	5	6	11	17	30	215
Rainfall (mm		54	43	51	48	49	61	51	57	55	54	52	58	633

Factors affecting runoff: GE
Station type: EM

[^7] rainfall 111%

028026 Anker at Polesworth

Measuring authority: NRA-ST
First year: 1966
Hydrometric statistics for 1994

	JAN	FEB	MAR	APR	MAY	JUN	JUL.	AUG	SEP	OCT	- NOV	DEC	Year ':
Flows Avg.	7.551	5.860	4.343	4.531	2.400	1.387	1.204	1.269	2.967	1.962	5.118	6.788	3.768
$\left(\mathrm{m}^{3} \mathrm{~s}^{-3}\right):$ Peak	27.04	28.15	17.28	19.12	8.79	2.92	4.20	3.67	20.01	5.73	24.25	25.44	28.15
Runoff (mm)	55	39	32	32	17	10	9	9	21	14	36	49.	323.
Rainfall (mm)	67	56	67	51	61	17	42	55	109	53	67	86	731
Monthly and yearly statistics for previous record (Oct 1966 to Dec 1993-incomplete or missing months total 2.7 years),													
Mean Avg.	5.261	5.098	4.024	2.893	2.228	1.862	1.368	1.347	1.385	2.176	2.837	. 4.432 :	2.900
flows Low	1.298	0.953	0.650	0.657	0.686	0.484	0.343	0.405	0.711	0.728	0.855	1.175	: 1.213
($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$) High	9.572	16.200	9.233	6.629	8.389	4.650	5.580	4.173	3.363	8.109	7.309	: 9.473	4.114
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	75.63	73.18	56.09	45.84	59.77	52.68	59.34	45.03	37.59	42.46	68.52	74.01 .	75.63
Runoff (mm)	38	34	28	20	16	13	10	10	10	16	20.	32	249
Rainfall (mm)* -(1971-1993)	58	48	52	47	50	62	51	56	60	58	54.	62.	658
Factors affecting runoff: GE Station type: C VA									1994 runoff is 130% of previous mean rainfall 111\%				

Factors affecting runoff: GE
Station type: C VA

Grid reference: 43 (SK) 263034 Level stn. (m OD): 60.40

Catchment area (sq km): 368.0 Max alt. (m OD): 278

028031 Manifold at Ilam

Measuring authority: NRA-ST
First year: 1968
Hydrometric statistics for 1994

	JAN	FEB	MAR	APR	MAY	Jun	JUL	AUG	SEP	OCT	NOV*	DEC	Year
Flows Avg.	8.858	5.289	5.798	6.025	1.453	1.084	0.848	0.729	3.092	4.332	6.133	6.727	4.190
($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$): Peak	41.41	25.81	33.83	33.78	2.14	14.84	3.75	1.45	39.92	22.95	30.02	42.11	42.11
Runotf (mm)	160	86	105	105	26	19	15	13	54	78	107	121	890
Rainfall (mm)	163	87	129	95	37	61	75	56	149	115	105.	148	1210

Monthly and yearly statistics for previous record (May 1968 to Dec 1993 -incomplete or missing months total 0.1 years)

Mean Avg.	6.010	4.916	4.826	3.659	2.306	1.883	1.491	1.757	1.772	2.988	4.858	5.615	3:501
flows Low	2.561	2.039	1.065	1.277	0.812	0.745	0.493	0.386	0.458	0.716	1.555	2.135	2.241
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{High}$	8.522	12.710	9.455	6.200	5.713	5.151	3.505	4.560	4.147	6.697	8.198	- 10.450	4.806
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	80.13	74.53	66.72	47.36	52.40	39.58	37.29	137.00	45.69	75.78	91.61	180.50	160.50
Runoff (mm)	108	81	87	64	42	33	27	32	31	54	85	101	744
Painfall (mm)*	116	80	93	75	71	82	73	BO	83	98	115.	116 :	. 1082

Rainfall (19m)
Factors affecting runoff: P E
Station type: C

Grid reference: 43 (SK) 140507
Level sin. (m OD): 131.00
Max alt. (m OD): 513
028039 Rea at Calthorpe Park

Measuring authority: NRA-ST
First year: 1967
Hydrometric statistics for 1994

		JAN	FEB	MAR	APA	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	1.245	1.126	0.850	0.921	0.471	0.360	0.349	0.334	1.254	0.495	. 0.961	1.392	0.810
$\left(m^{3} \mathbf{s}^{-1}\right)$	Peak	11.75	10.28	16.69	9.12	4.88	7.55	6.71	7.68	31.93	5.66	11.33	21.46	31.93
Runoff (mm)		45	37	31	32	17	13	13	12	44	18	34	50	345
Rainfall (mm)		86	71	77	61	51	22	31	47	146	58	73	116	839

Monthly and yearly statistics for previous record (May 1967 to Dec 1993 -incomplate or missing months total $\mathbf{t . 1}$ years)

Mean Avg.	1.183	1.010	0.975	0.796	0.715	0.658	0.543	0.624	0.599	0.681	0.868	1.097	0.812
flows Low	0.481	0.433	0.375	0.316	0.318	0.287	0.257	0.286	0.295	0.320	0.493	0.378	0.602
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{High}$	1.950	2.610	2.101	1.489	1.780	1.324	0.995	1.366	1.423	1.408	1.753	1.934	1.058
Poak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	36.71	27.44	28.64	25.15	30.37	37.44	46.86	46.38	40.85	24.68	24.97	54.02	54.02
Runoff (mm)	43	33	35	28	26	23	20	23	21	25	30	40	346
Rainfall (mm)* -(1968-1993)	77	56	64	58	64	64	59	71	68	65	72	77	793
Factors affecting Station type: C B	off: E									$1994 \text { ru }$	f is 100 fall 106	of pre	s mean

028052 Sow at Great Bridgford

Measuring authority: NRA-ST
First year: 1971
Hydrometric statistics for 1994

		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	2.587	1.809	1.627	1.719	0.772	0.553	0.432	0.463	0.608	0.559	1.122	2.136	1.196
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right):$	Pank	8.67	5.58	5.42	4.76	1.05	0.68	1.15	1.32	2.88	1.02	3.59	9.82	9.82
Runoff (mm)		43	27	27	27	13	9	7	8	10	9	18	35	231
Rainfall (mm)		83	56	81	55	34	21	50	45	115	65	65	109	779

Monthly and yearly statistics for previous record (Jun 1971 to Dec 1993 -incomplete or missing months total 2.5 years)

Moan Avg.	1.819	1.785	1.557	1.198	0.875	0.775	0.587	0.720	0.543	0.813	1.083	1.640	1.114
flows Low	0.753	0.625	0.659	0.520	0.474	0.315	0.174	0.138	0.277	0.317	0.379	0.524	0.711
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	2.715	4.607	3.448	2.258	1.925	1.426	1.388	3.047	0.818	1.731	2.461	2.975	1.593
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	11.07	18.82	9.21	9.86	18.05	9.78	10.89	15.11	3.51	10.21	9.51	12.72	18.82
Runoff (mm)	30	27	26	19	14	12	10	12	9	13	17	27	216
Rainfall (mm)	69	54	61	47	58	64	56	61	69	66	71	73	749
Factors affecting runoff: GE Station type: FVVA										1994 runoff is 107% of previous mean rainfall 104%			

028067 Derwent at Church Wilne

Measuring authority: NRA-ST First year: 1973
Hydrometric statistics for 1994

	JAN	FEB	MAA	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	51.170	30.690	29.400	31.270	12.190	7.735	6.292	6.093	11.230	12.390	33.080	33.390	22.020
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	96.68	73.69	63.83	71.69	30.36	12.99	15.26	10.51	61.95	30.77	80.78	108.00	108.00
Runoff (mm)	116	63	67	69	28	17	14	14	25	28	73	76	590
Rainfall (mm)	141	75	109	79	51	41	51	53	144	95	111	137	1087
Monthly and yearly statistics for previous record (May 1973 to Dec 1993)													
Maan ${ }^{\text {a }}$ Avg.	32.780	30.080	27.720	21.300	13.630	11.270	8.755	8.131	8.629	13.800	19.010	29.420	18.666
flows Low	13.270	10.020	8.793	7.891	6.652	5.411	4.445	3.965	4.429	4.933	5.152	9.272	10.267
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	52.530	81.270	59.290	40.240	28.060	23.060	22.050	16.600	17.130	31.970	35.860	57.850	25.542
Peak flow ($\mathrm{m}^{3} \mathbf{s}^{-1}$)	194.10	215.70	173.60	158.40	142.20	118.70	156.20	153.60	71.96	146.50	94.66	214.70	215.70
Runoff (mm)	75	62	63	47	31	25	20	18	19	31	42	67	500
Rainfall (mm)	107	74	88	66	62	77	64	75	81	95	93	114	996

Factors affecting runoff: S P EI
Station type: FV

Grid reference: 43 (SK) 438316
Level stn. (m OD): 31.00

Catchment area (sq km): 1177.5 Max alt. (m OD): 636

1994 runoff is 118% of previous mean rainfall 109\%

028082 Soar at Littlethorpe

Measuring authority: NRA-ST
First year: 1971
Hydrometric statistics for 1994

		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT 0.681	$\begin{aligned} & \text { NOV } \\ & 2.237 \end{aligned}$	$\begin{aligned} & \text { DEC } \\ & 2.922 \end{aligned}$	Year 1.571
Flows	Avg.	3.355	2.576	1.762	2.156	0.937	0.495	0.413	0.419	0.978	0.681	2.237	2.922	1.571
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$:	Peak	17.25	14.35	8.80	12.04	3.84	1.22	2.76	1.57	8.32	3.33	13.66	9.78	17.25
Runoff (mm)		49	34	26	30	14	7	6	6	14	10	32	43	269
Rainfall (mm)		66	58	68	50	61	19	50	56	105	47	64	77	721

Monthly and yearly statistics for previous record (Aug 1971 to Dec 1993 -incomplete or missing months total 0.2 years)

Mean	Avg.	2.633	2.476	2.140	1.525	0.990	0.930	0.531	0.637	0.585	1.017	1.368	2.374	1.430
flows	Low	0.713	0.568	0.424	0.346	0.350	0.245	0.164	0.225	0.167	0.338	0.398	0.553	0.644
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$	High	4.661	6.868	5.031	3.105	2.654	2.346	1.447	2.242	1.771	3.434	3.279	5.101	2.133
Peak flow	$\mathrm{m}^{3} \mathrm{~s}^{-1}$	23.49	24.47	20.78	21.18	14.93	15.78	13.71	20.41	15.94	20.60	18.87	22.46	24.47
Runoff (mm)		38	33	31	21	14	13	8	9	8	15	19	35	245
Rainfall (m		57	43	50	46	50	64	51	58	55	57	54	63	648

Rainfall (mm)*
(1972-1993)
Factors affecting runoff: E
Station type: EM

Grid reference: 42 (SP) 542973
Level stn. (m OD): 61.40

Catchment area (sq km): 183.9
Max alt. (m OD): 151

1994 runoff is 110% of previous mean rainfall 111\%

029003 Lud at Louth

Measuring authority: NRA-A
First year: 1968
Hydrometric statistics for 1994

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	1.516	1.107	0.871	0.766	0.614	0.454	0.368	0.275	0.288	0.259	0.298	0.480	0.606
$\left(m^{3} \mathrm{~s}^{-1}\right)$: Peak	3.61	2.61	1.31	1.54	1.95	0.74	1.91	0.78	1.83	1.08	0.62	2.07	3.61
Runoff (mm)	74	49	42	36	C^{30}	r^{21}	${ }^{18}$	${ }_{-13}$,14	13	14	23	346
Rainfall (mm)	102	63	64	50	72	22	53	49	132	61	42	81	791
Monthly and yearly statistics for previous record (Aug 1968 to Dec 1993)													
Mean Avg.	0.586	0.726	0.691	0.643	0.524	0.410	0.316	0.264	0.231	0.255	0.312	0.417	0.446
flows Low	0.139	0.157	0.162	0.150	0.156	0.131	0.112	0.097	0.108	0.093	0.088	0.090	0.145
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{High}$	1.279	1.428	1.338	1.289	1.177	0.687	0.507	0.414	0.625	0.719	1.158	0.980	0.703
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	3.70	3.81	3.58	5.06	-3.51	-- 3.27	3.93	- 3.10	. 3.30	-. 5.39	6.77	- 3.10	6.77
Runoff (mm)	28	32	34	30	25	19	15	13	11	12	15	20	255
Rainfall (mm)	65	46	60	52	50	57	53	59	57	58	67	64	688

Factors affecting runoff: G
Station type: C

Grid reference: 53 (TF) 337879
Level stn. (m OD): 15.40

Catchment area (sq km): 55.2 Max alt. (m OD): 149

994 runoff is 136% of previous mean rainfall 115%

030004 Partney Lymn at Partney Mill

Measuring authority: NRA-A
First year: 1962
Hydrometric statistics for 1994

	JAN	FEB	MAR	APR	MAY 0.315	JUN 0.196	JUL 0.220	AUG 0.129	SEP 0.401	OCT 0.357	NOV 0.495	DEC 0.671	Year 0.529
Flows Avg.	1.472	0.858	0.610	0.643	0.315								
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	7.58	4.07	1.57	2.38	0.88	0.31	0.80	0.44	3.80	1.04	2.78	2.94	7.58
Runoff (mm)	64	34	27	27	14	8	10	6	17	16	21	29	271
Rainfall (mm)	102	50	60	47	48	19	65	41	117	58	42	68	717
Monthly and yearly statistics for previous record (Feb 1963 to Dec 1993-incomplete or missing months total 0.2 years)													
Mean Avg.	0.803	0.725	0.675	0.591	0.428	0.309	0.260	0.266	0.281	0.407	0.547	0.715	0.500
flows Low	0.351	0.264	0.276	0.220	0.169	0.116	0.088	0.083	0.119	0.134	0.190	0.210	0.224
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \quad \mathrm{High}$	1.574	1.838	1.538	1.518	0.886	0.691	0.863	0.593	0.917	1.144	1.112	1.804	0.754
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	10.01	12.59	7.71	13.34	11.30	8.13	13.38	7.06	6.64	10.46	10.17	8.48	13.38
Runoff (mm)	35	29	29	25	19	13	11	12	12	18	23	31	256
Rainfall (mm)	60	46	58	53	54	58	54	62	55	56	69	63	688

Rainfall (mm) 60
Factors affecting runoff: P 1
Station type: C

Grid reference: 53 (TF) 402676 Level stn. (m OD): 14.90

Catchment area (sq km): 61.6 Max alt. (m OD): 142

030012 Stainfield Beck at Stainfield

Moasuring authority: NRA-A
First year: 1970
Hydrometric statistics for 1994

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	0.985	0.593	0.296	0.310	0.176	0.063	0.028	0.020	0.338	0.159	0.288	0.555	0.316
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak		5.94	1.57	1.56	2.19	0.12	0.14	0.21	6.71	0.71	1.50	8.19	
Runotf (mm)	71	38	21	21	13	4	2	1	23	11	20	40	267
Rainfall (mm)	87	51	57	40	59	16	50	53	116	55	41	69	694
Monthly and yearly statistics for previous record (Dec 1970 to Dec 1993 -incomplete or missing months total 0.8 years)													
Moan Avg.	0.539	0.519	0.448	0.275	0.164	0.083	0.069	0.044	0.072	0.134	0.227	0.414	0.248
flows Low	0.093	0.114	0.078	0.050	0.032	0.019	0.006	0.004	0.007	0.009	0.017	0.024	0.061
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	1.050	1.521	1.078	0.838	0.496	0.202	0.524	0.161	0.599	0.780	0.729	1.084	0.414
Pank flow ($\mathrm{m}^{3} \mathbf{s}^{-1}$)	21.53	11.04	10.00	12.42	8.58	4.23	17.57	5.91	3.93	12.33	7.42	7.83	21.53
Runoff (mm)	39	34	32	19	12	6	5	3	5	10	16	30	209
Rainfall (mm)	59	42	56	46	47	52	48	54	52	54	56	58	624

Factors affecting runoff: N
Station type: CC
Comment: January 1994 contains estimated daily flows.

Grid reference: 53 (TF) 127739 Level stn. (m OD): 7.70

Catchment area (sq km): 37.4 Max alt. (m OD): 134

1994 runoff is 127% of previous mean rainfall 111\%

031002 Glen at Kates Br and King St Br

031010 Chater at Fosters Bridge

Measuring authority: NRA.A
First yoar: 1968
Hydrometric statistics for 1994

	JAN	FEB	MAR	APR	MAY	JUN	JUL.	AUG	SEP	OCT	NOV	OEC	Year
Flows Avg.	1.487	1.338	0.879	0.938	0.354	0.178	0.140	0.123	0.458	0.563	1.156	1.077	0.720
$\left(\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}\right)$: Peak	9.76	9.26	5.20	4.76	1.28	0.27	0.87	0.26	4.15	3.18	5.11	3.16	9.78
Runoff (mm)	58	47	34	35	. 14	$\because 7$	\cdots	4.5	17	22	44	42 "	$329{ }^{\circ}$
Rainfall (mm)	68	61	73	60	52	17	62	55	122	50	54	60	732

Monthly and yearly statistics for previous record (Feb 1968 to Dec 1993)

Mean Avg.	0.936	0.909	0.800	0.628	0.420	0.291	0.195	0.180	0.205	0.351	0.469	0.772	0.511
flows Low	0.147	0.106	0.090	0.065	0.051	0.033	0.024	0.044	0.061	0.048	0.073	0.098	0.198
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	1.724	3.094	1.677	1.670	1.471	0.717	0.867	0.818	0.997	1.188	1.343	1.891	0.828
Poak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	16.19	16.06	15.77	* 15.07	16.44	11.78	- 20.64	20.76	15.04	9.04	12.48	14.69	20.76
Runoff (mm)	36	32	31	24	16	11	8	7	8	14	18	30	234
Rainfall (mm)	59	43	52	52	52	60	56	63	55	53	59	58	662
Factors affecting Station type: CC	noff: N									994 ru	f is 14	of pre	us mean

Grid reference: 43 (SK) 961030 Level stn. (m OD): 38.40

Catchment area (sq km): 68.9 Max alt. (m OD): 230

032003 Harpers Brook at Old Mill Bridge

Measuring authority: NRA-A
First year: 1938
Hydrometric statistics for 1994

	JAN	FEB	MAR	APA	MAY	JUN	Jul.	AUG	SEP	OCT	nov	DEC	Year
Flows Avg.	1.394	0.999	0.500	0.701	0.273	0.153	0.119	0.109	0.451	0.325	0.606	0.866	0.538
($\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	13.00	6.71	2.57	4.58	1.60	0.53	0.64	0.44	5.04	4.49	4.37	4.30	13.00
Runoff (mm)	50	33	18	24	10	5	4	4	16	12	21	31	229
Rainfall (mm)	63	55	56	57	53	21	40	41	146	59	42	64	697

Monthly and yearly statistics for previous record (Dec 1938 to Dec 1993-incomplete or missing months total 0.7 years)

Moan	Avg.	0.771	0.780	0.685	0.485	0.298	0.204	0.146	0.154	0.141	0.235	0.437	0.604	0.410
flows	Low	0.097	0.080	0.076	0.066	0.056	0.049	0.052	0.048	0.049	0.057	0.069	0.077	0.159
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$	High	2.766	2.485	2.363	1.334	1.246	0.616	0.685	0.791	1.147	1.176	1.688	1.762	0.676
Peak flow	$\mathrm{m}^{3} \mathrm{~s}^{-1}$	16.06	18.58	17.01	22.00	18.65	11.44	12.49	20.50	6.80	16.58	13.47	17.90	22.00
Runoff (mm)		28	26	25	17	11	7	5	6	5	8	15	22	174
Rainfall (mm		58	41	48	45	50	53	53	62	51	54	61	57	633
Factors affecting runoff: \mathbf{N} Station typa: CC											1994 runoff is 131% of previous mean rainfall 110\%			

033006 Wissey at Northwold

Measuring authorty: NRA-A
First year: 1956
Hydrometric stạtistics for 1994

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	3.997	3.424	3.579	3.515	2.649	1.559	0.881	0.642	0.966	1.059	1.719	1.872	2.147
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	5.67	4.09	4.35	4.75		2.05	1.50	1.09	1.95	2.59	3.13	3.26	
Runoff (mm)	39	30	35	33	26	15	9	6	9	10	16	18	247
Rainfall (mm)	72	44	78	54	54	28	30	86	83	89	21	50	689
Monthly and yearly statistics for previous record (Mar 1956 to Dec 1993)													
Mean Avg.	2.845	2.912	2.651	2.374	1.794	1.327	1.071	0.896	0.861	1.095	1.607	2.301	1.806
flows Low	0.903	0.909	1.026	1.015	0.767	0.490	0.319	0.264	0.228	0.242	0.419	0.536	0.684
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$. High	5.422	5.288	4.702	4.586	3.833	2.592	2.234	2.229	2.481	3.243	4.569	4.768 :	2.760
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$).	9.31	11.29	12.23	8.47	5.82	3.50	3.39	4.00	4.06	7.15	13.30	8.72 -	13.30
Runoff (mm)	28	26	26	22	18	13	10	9	8	11	15	22	208
Rainfall (mm)	57	40	47	46	46	56	59	57	56	58	67	62	651

Factors affecting runoff: PGEI
STation type: FL

Grid reference: 52 (TL) 771965
Level stn. (m OD): 5.30

Catchment area (sq km): 274.5 Max alt. (m OD): 95

1994 runoff is 119% of previous mean rainfall 106%.

033012 Kym at Meagre Farm

033024 Cam at Dernford

033027 Rhee at Wimpole

Measuring authority: NRA-A
First year: 1965
Hydrometric statistics for 1994

	Jan 2303	FEB	MAR	APR	MAY	JUN 0.291	JUL 0.181	AUG 0.132	$\begin{aligned} & \text { SEP } \\ & 0.124 \end{aligned}$	$\begin{aligned} & \text { OCT } \\ & 0.132 \end{aligned}$	NOV 0.162	DEC 0.198	Year 0.604
Flows Avg.	2.303	1.417	0.822	1.001	0.541	0.291	0.181	0.132	0.124	0.132	0.162	0.198	0.604
$\left(m^{3} s^{-1}\right):$ Peak	5.65	3.48	1.38	3.33	1.62	0.42	0.24	0.16	0.22	0.59	0.34	0.50	5.65
Runoff (mm)	52	29	18	22	12	6	4	3	3	3	4	4	160
Rainfall (mm)	64	36	38	50	61	20	16	38	63	69	27	50	532
Monthly and yearly statistics for previous record (Jul 1965 to Dec 1993 -incomplete or missing months total 0.1 yoars)													
Mean Avg.	0.877	0.928	0.765	0.728	0.520	0.343	0.211	0.182	0.207	0.370	0.472	0.653	0.519
flows Low	0.088	0.092	0.089	0.099	0.067	0.041	0.022	0.014	0.040	0.053	0.058	0.065	0.079
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	2.687	1.911	2.077	2.074	1.579	0.936	0.434	0.586	1.090	1.751	1.848	1.718	0.945
Peak flow ($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$)	8.79	6.00	5.29	5.19	8.87	4.55	1.11	5.72	5.62	9.19	7.14	7.11	9.19
Runoff (mm)	20	19	17	16	12	7	5	4	5	8	10	15	138
Rainfall (mm)	47	33	41	45	50	51	50	52	53	52	53	52	579

Factors affecting runoff: GEI
Station type: FL
Grid reference: 52 (TL) 333485
Level str. (m OD): 17.90

Hydrometric statistics for 1994

1994 runoff is 116% of previous mean rainfall 92%

033032 Heacham at Heacham

Measuring authority: NRA-A
First year: 1965
Hydrometric statistics for 1994

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Yeer
Flows Avg.	0.885	0.576	0.480	0.431	0.382	0.288	0.213	0.170	0.160	0.159	0.177	0.199	0.342
$\left(m^{3} s^{-1}\right)$: Peak	1.12		0.56	0.48	0.45	0.33	0.25	0.23	0.30	0.22	0.19	0.25	
Runotf (mm)	40	24	22	19	17	13	10	8	7	7	8	9	183
Painfall (mm)	83	46	72	43	53	26	37	69	129	75	20	63	718
Monthly and yearly statistics for previous record (Nov 1965 to Doc 1993)													
Maan Avg.	0.216	0.293	0.298	0.285	0.251	0.210	0.165	0.136	0.119	0.119	0.126	0.174	0.199
flows Low	0.028	0.045	0.053	0.060	0.061	0.053	0.043	0.034	0.030	0.025	0.022	0.018	0.057
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	0.435	0.671	0.671	0.776	0.636	0.441	0.300	0.256	0.371	0.399	0.425	0.590	0.331
Peak flow ($\mathrm{m}^{3} \mathrm{~B}^{-1}$)	0.70	0.95	1.04	1.11	0.82	0.90	0.68	1.21	0.52	0.53	0.55	0.75	1.21
Runoff (mm)	10	12	14	13	11	9	7	6	5	5	6	8	108
Rainfall (mm)	58	42	51	49	56	55	59	61	59	58	73	63	684

Factors affacting runoff: GI
Station type: C
Comment: February 1994 contains estimated daily flows.

Grid reference: 53 (TF) 685375 Level stn. (m OD): 9.40

Catchment area (sq km): 59.0 Max alt. (m OD): 88

034003 Bure at Ingworth

Measuring authority: NRA-A First year: 1959
Hydrometric statistics for 1994

		JAN	FEB	MAR	APR	MAY	JUN	SUL	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	2.483	1.681	1.595	1.477	1.092	0.834	0.750	0.886	1.558	1.234	1.237	1.385	1.349
$\left(\mathrm{m}^{3} \mathrm{~s}^{-7}\right)$:	Peak		3.25	2.70	2.52		1.01	1.76	1.70	6.82	3.07	2.13	2.64	
Runotf (mm)		40	25	26	23	18	13	12	14	25	20	19	23	258
Rainfall (mm)		87	46	67	37	46	20	52	87	113	70	23	62	710

Monthly and yearly statistics for previous record (Jun 1959 to Sep 1993)

Mean	Avg.	1.513	1.413	1.268	1.184	0.956	0.780	0.765	0.777	0.836	0.979	1.208	1.366	1.085
flows	Low	0.644	0.792	0.779	0.688	0.600	0.495	0.493	0.472	0.548	0.649	0.688	0.827	0.752
$\left(\mathrm{~m}^{3} \mathrm{~s}^{-1}\right)$	High	2.450	2.954	2.115	2.322	1.639	1.168	1.158	1.955	1.823	2.428	2.024	2.560	1.488
Peak flow $\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$	8.27	10.65	6.45	18.30	6.07	3.79	3.47	12.82	9.26	10.17	10.05	9.63	18.30	
Runoff (mm)	25	21	21	19	16	12	12	13	13	16	19	22	208	
Rainfall (mm)	61	41	49	48	45	49	59	59	58	64	74	66	673	

Factors affecting runotf: GI
Station type: MIS
Comment: January and May 1994 contain estimated daily flows.

Grid reference: 63 (TG) 192296
Level stn. (m OD): 12.20

Catchment area (sq km): 164.7 Max alt. (m OD): 101
1994 runoff is 172% of previous mean rainfall 105\%
\qquad

035008 Gipping at Stowmarket

Measuring authority: NRA-A First year: 1966			Grid reference: 62 (TM) 058578 Leval stn. (m OD): 25.10							Catchment area (sq km): 128.9 Max alt. (m OD): 98			
Hydrometric statistics for 9994													
	Jan	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	2.441	1.358	0.651	1.596	0.334	0.162	0.119	0.114	0.212	0.318	0.331	0.664	0.688
$\left(\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}\right):$ Peak	10.04	14.72	1.74	9.77		0.88	1.28	1.27	1.26	3.71	1.25	3.19	
Runoff (mm)	51	25	14	32	7	3	2	2	4	7	7	14	168
Rainfall (mm)	64	44	48 t	~ 56	2r. 47 ¢	c. 33 K	36.	61.	72	-74	21	50	606
Monthly and yearly statistics for previous record (Apr 1964 to Dac 1993-incomplete or missing months total 1.1 years)													
Mean Avg.	1.394	1.118	0.907	0.637	0.361	0.233	0.147	0.174	0.235	0.438	0.711	0.965	0.608
flows Low	0.161	0.125	0.159	0.156	0.119	0.083	0.072	0.069	0.072	0.092	0.101	0.131	0.149
$\left\{\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \quad \mathrm{High}$	4.383	3.527	2.626	2.012	1.244	1.616	0.501	1.490	1.880	3.251	3.433	3.125	1.043
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	28.13	34.39	18.60	19.30	20.18	7.98	6.22	23.77	24.19	25.30	23.21	25.54	34.39
Runotf (mm)	29	21	19	13	7	5	3	4	5	9	14	20	149
Rainfall (mm)* $\cdot(1965 \cdot 1993)$	51	36	43	42	45	49	48	47	52	54	61	54	582
Factors affecting runoff: GEI Station type: CC										1994 runoff is 113% of previous mean rainfall 104\%			
Comment: May 1994 contains estimated daily flows.													

036006 Stour at Langham

Measuring authority: NRA-A
First year; 1962
Hydrometric statistics for 1994

	JAN	FEB	MAR	APR	MAY	JuN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	11.050	5.949	3.509	6.293	1.969	1.091	0.826	1.463	1.199	1.215	1.671	2.609	3.222
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Poak	28.71	24.65	6.94	17.43	4.07	2.11	1.62	2.54	4.19	10.24	8.16	11.34	28.71
Runoff (mm)	51	25	16	28	9	5	4	7.	5	6	8	12	176
Rainfall (mm)	66	42	46	58	52	33	23	47	65	77	24	52	585
Monthly and yearly statistics for previous record (Oct 1962 to Nov 1993)													
Moan Avg.	5.406	4.860	4.546	3.580	2.347	1.644	1.119	1.153	1.184	2.066	2.980	4.009	2.839
flows Low	1.398	0.884	1.597	1.218	0.757	0.453	0.190	0.209	0.395	0.509	0.578	0.693	1.428
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	16.080	12.980	9.776	9.335	7.253	5.999	2.956	6.237	4.946	13.170	11.340	10.550	5.119
Poak flow ($\mathrm{m}^{3} \mathrm{~B}^{-1}$)	48.47	41.27	38.37	28.45	39.31	20.64	17.06	39.52	91.00	53.63	38.93	43.85	91.00
Aunotf (mm)	25	21	21	16	11	7	5	5	5	10°	13	19	158
Painfall (mm)	49	34	46	45	46	53	47	50	52	52	59	53	586

Factors affecting runoff: RPG I
Station type: FL

Grid reference: 62 (TM) 020344
Level sin. (m OD): 6.40

Catchment area (sq km): $\mathbf{5 7 8 . 0}$
Max alt. (m OD): 128

1994 runotf is 111% of previous mean rainfall 100%

037001 Roding at Redbridge

Measuring authority: NRA-T First year: 1950			Grid reference: 51 (TQ) 415884 Level stn. (m OD): 5.70							Catchment area ($\mathbf{s q} \mathrm{km}$): $\mathbf{3 0 3 . 3}$ Max alt. (m OD); 117			
Hydrometric statistics for 1994													
	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	7.848	3.509	1.536	4.439	1.177	0.432	0.243	0.299	0.412	0.676	0.892	1.942	1.942
$\left(m^{3} s^{-1}\right):$ Peak	22.60	13.10	4.51	16.90	3.92	1.63	0.56	6.39	1.95	8.54	3.75	9.57	22.60
Runoff (mm)	69	28	14	38	10	4	2	3	4	6	8	17	202
Rainfall (mm)	78	41	44	63	63	26	16	37	54	82	29	69	602
Monthly and yearly statistics for previous record (Feb 1950 to Dec 1993)													
Mean Avg.	3.710	3.358	2.627	1.886	1.160	0.846	0.616	0.644	0.821	1.523	2.167	2.912	1.849
flows Low	0.382	0.379	0.537	0.482	0.280	0.226	0.202	0.224	0.197	0.283	0.364	0.392	0.801
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \quad \mathrm{High}$	10.920	10.670	6.862	6.768	4.044	2.953	1.975	3.925	4.009	7.883	10.340	9.455	2.809
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	42.00	40.10	38.10	27.70	32.70	21.80	24.50	31.30	25.60	35.60	62.40	36.40	62.40
Runoff (mm)	33	27	23	16	10	7	5	6	7	13	19	26	192
Rainfall (mm)	52	40	45	44	48	52	52	56	58	58	61	56	622
Factors affecting runoff: S El Station type: EW										1994 runoff is 105% of previous mean rainfall 97%			

037005 Colne at Lexden

Measuring authority: NRA-A
First year: 1959
Hydrometric statistics for 1994

037010 Blackwater at Appleford Bridge

Measuring authority: NRA-A
First year: 1962
Hydrometric statistics for 1994

	JAN	FEB	MAR	APA	MAY	JuN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	4.432	2.500	1.202	2.278	0.869	0.617	0.709	0.949	0.655	0.605	0.730	1.174	1.388
$\left(m^{3} s^{-1}\right)$: Peak	15.00	16.60	1.73	8.06	2.27	1.72	6.04	1.83	1.93	3.09	2.69	4.50	16.60
Runoff (mm)	48	24	13	24	9	6	8	10	7	7	8	13	177
Rainfa! (mm)	66	40	41	54	61	35	23	46	56	80	24	57	583
Monthly and yearly statistics for previous record (Oct 1962 to Dec 1993)													
Mean Avg.	2.107	1.931	1.848	1.468	1.033	0.800	0.577	0.514	0.546	0.887	1.232	1.712	1.218
flows Low	0.532	0.460	0.479	0.479	0.341	0.356	0.182	0.161	0.215	0.288	0.325	0.379	0.822
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \quad \mathrm{High}$	7.181	4.888	3.583	3.843	2.860	1.777	1.359	1.738	1.651	4.955	4.676	4.307	1.659
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	26.80	21.60	20.00	12.31	17.80	7.76	4.10	13.75	15.25	26.08	20.20	21.60	26.80
Runoff (mm)	23	19	20	15	11	8	6	6	6	10	13	19	155
Rainfall (mm)	48	33	46	45	45	53	47	49	52	51	57	52	578

Factors affecting runoff: RPG I
Station type: FL

Grid reference: 52 (TL) 845158 Level stn. (m OD): 14.60

Catchment area (sq km): 247.3 Max alt. (m OD): 127

994 runoff is 114% of previous mean rainfall 101\%

038021 Turkey Brook at Albany Park

Measuring authority: NRA-T
 First year: 1971

Hydrometric statistics for 1994

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	0.780	0.383	0.127	0.366	0.109	0.02B	0.012	0.021	0.037	0.084	0.102	0.363	0.200
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	7.00	6.19	2.60	4.21	1.18	0.43	0.23	0.82	0.47	1.61	0.76	5.35	7.00
Runoff (mm)	50	22	8	22	7	2	1	1	2	5	6	23	150
Rainfall (mm)	83	54	49	66	80	24	19	42	62	85	39	83	686
Monthly and yearly statistics for previous record (Sep 1971 to Dec 1993)													
Mean Avg.	0.420	0.335	0.312	0.217	0.152	0.093	0.043	0.048	0.058	0.191	0.236	0.330	0.202
flows Low	0.019	0.022	0.024	0.020	0.009	0.021	0.009	0.008	0.008	0.013	0.019	0.022	0.057
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	1.180	0.988	0.811	0.626	0.626	0.240	0.087	0.171	0.228	0.941	1.158	0.724	0.339
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	10.50	11.50	7.68	7.72	20.70	15.30	2.38	2.76	7.55	10.70	12.80	10.50	20.70
Runoff (mm)	27	19	20	13	10	6	3	3	4	12	14	21	151
Rainfall (mm)	62	42	55	50	55	57	48	52	61	65	60	63	670
Factors affecting runoff: PG Station type: FV										1994 runoff is 99% of previous mean rainfall 102\%			

039002 Thames at Days Weir

Hydrometric statistics for 1994

	JaN	FEB	MAR	APR	MAY	JUN	JUL	Aug	SEP	OCT	NOV	DEC	Year
Flows Avg.	111.600	67.340	36.560	39.380	22.260	12.940	5.512	4.410	6.021	6.329	24.300	50.340	32.088
$\left(\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}\right)$: Peak	205.00	96.30	77.40	91.20	55.80	20.80	9.61	7.00	16.50	40.20	41.40	111.00	205.00
Runoff (mm)	87	47	28	30	17	10	4	3	5	5	18	39	294
Rainfall (mm)	90	67	52	47	79	20	27	47	81	70	58	93	731
Monthly and yearly statistics for previous record (Oct 1938 to Dec 1993)													
Mean Avg.	55.070	55.540	44.520	30.700	20.260	14.420	8.523	7.204	8.779	15.290	31.200	45.410	27.945
flows Low	6.250	5.554	5.620	4.253	2.855	1.502	0.399	0.296	1.741	2.778	3.748	5.312	10.095
$\left(\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}\right)$ High	133.600	120.800	163.200	85.070	61.140	41.560	48.820	18.690	38.630	74.570	128.100	128.700	51.292
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)													
Runoff (mm)	43	39	35	23	16	11	7	6	7	12	23	35	256
Rainfall (mm)	67	47	53	47	58	55	54	66	60	65	70	72	714

Factors affecting runoff: P EI
Station type: MIS
1994 runoff is 115% of previous mean rainfall 102%
Comment: Peak flows available from 1992 only.

039005 Beverley Brook at Wimbledon Common

1994

Measuring authority: NRA-T
First year: 1935
Hydrometric statistics for 1994

	JAN	FEB	MAR	APA	MAY	JUN	JUL	AUG	SEP	OCT	Nov	DEC	Year
Flows Avg.	1.069	0.617	0.530	0.715	0.683	0.485	0.488	0.505	0.498	0.638	0.576	0.735	0.629
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	7.83	4.06	3.74	6.12	4.94	3.55	2.56	10.90	3.42	7.08	7.09	11.20	11.20
Runoff (mm)	66	34	33	43	42	29	30	31	30	39	34	45	455
Rainfall (mm)	97	40	46	60	80	21	21	57	57	86	40	80	685
Monthly and yearly statistics for previous record (Mar 1935 to Dec 1993-incomplete or missing months total 24.2 years)													
Mean Avg.	0.707	0.606	0.559	0.564	0.483	0.483	0.447	0.454	0.503	0.519	0.579	0.632	0.544
flows Low	0.280	0.244	0.290	0.257	0.214	0.157	0.211	0.189	0.224	0.161	0.274	0.247	0.29 \%
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	1.237	1.208	1.023	1.538	1.092	0.956	0.920	0.970	1.340	1.321	1.415	1.057	0.695
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	10.90	14.10	7.51	22.40	14.80	12.90	16.50	17.30	16.50	15.90	11.10	14.00	22.40
Runoff (mm)	43	34	34	34	30	29	27	28	30	32	34	39	394
Rainfall (mm)	59	39	44	45	49	53	50	55	58	61	62	62	637

Factors affecting runoff: GE
Station type: FL
Grid reference: 51 (TQ) 216717 Level stn. (m OD): 11.00

Catchment area (sq km): 43.6 Max alt. (m OD): 190

1994 runoff is 115% of previous mean rainfall 108\%

039007 Blackwater at Swallowfield

Measuring authority: NRA-T
First year: 1952

Grid reference: 41 (SU) 731648
Level stn. (m OD): 42.30

Hydrometric statistics for 1994

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	8.936	6.161	3.671	4.679	3.675	2.215	1.648	1.479	2.087	2.613	4.426	5.156	3.883
($\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	24.80	19.40	15.70	16.30	11.30	7.37	3.13	2.75	5.77	17.10	18.60	23.40	24.80
Runoff (mm)	67	42	28	34	28	16	12	11	15	20	32	39	345
Rainfall (mm)	108	61	50	57	78	28	15	41	68	99	65	93	763
Monthly and yearly statistics for previous record (Oct 1952 to Dec 1993)													
Mean Avg.	4.697	4.192	3.823	3.167	2.522	2.022	1.531	1.523	1.817	2.619	3.324	4.043	2.934
flows Low	1.758	1.687	1.323	1.521	1.081	0.766	0.711	0.723	0.638	0.907	1.262	1.298	1.466
$\left(m^{3} \mathrm{~s}^{-1}\right)$ High	8.000	11.010	6.898	5.600	5.946	6.472	2.829	2.622	6.609	7.613	8.019	7.022	3.777
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	25.60	25.90	30.50	24.30	24.40	25.20	11.80	11.20	41.00	27.80	28.60	26.90	41.00
Runoff (mm)	35	29	29	23	19	15	12	11	13	20	24	31	261
Rainfall (mm)	68	45	53	47	53	52	54	58	64	72	70	73	709

Factors affecting runoff: GE
Station type: CC

039014 Ver at Hansteads

rainfall 108%

Measuring authority: NRA-T
First year: 1956
Hydrometric statistics for 1994

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	1.306	1.286	1.125	1.062	1.140	0.864	0.549	0.481	0.457	0.460	0.530	0.577	0.817
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	1.65	1.61	1.33	1.34	2.06	1.42	0.91	0.79	0.70	1.16	1.06	1.50	2.06
Runoff (mm)	27	24	23	21	23	17	11	10	9	9	10	12	195
Rainfall (mm)	100	53	52	65	73	25	32	57	72	87	44	90	750
Monthly and yearly statistics for previous record (Oct 1956 to Dec 1993)													
Mean Avg.	0.454	0.515	0.538	0.518	0.454	0.398	0.333	0.292	0.262	0.295	0.342	0.398	0.399
flows Low	0.079	0.076	0.074	0.093	0.069	0.045	0.028	0.016	0.025	0.057	0.039	0.048	0.095
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{High}$	0.981	1.336	1.312	1.254	1.028	0.857	0.651	0.564	0.660	0.716	0.791	0.977	0.752
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	1.77	1.91	1.88	1.90	2.07	1.65	1.44	1.13	2.34	1.50	2.31	2.64	2.64
Runoff (mm)	9	10	11	10	9	8	7	6	5	6	7	8	95
Rainfall (mm)	64	46	55	54	54	61	54	58	63	68	66	73	716
Factors affecting runoff: G Station type: CC										1994 runoff is 205% of previous mean rainfall 105\%			

1994 runoff is 205% of previous mean rainfall 105\%
Factors affecting runoff: G

Grid reference: 52 (TL) 151016
Level stn. (m OD): 61.30

Catchment area (sq km): 132.0 Max alt. (m OD): 243 percentage runoff for 1994.

Measuring authority: NRA-T First year: 1961
Hydrometric statistics for 1994

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	28.110	24.430	17.110	15.570	12.270	8.698	6.069	5.469	5.610	5.621	8.421	11.880	12.371
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	43.60	37.40	20.60	23.70	16.50	12.50	7.63	12.60	12.00	19.30	16.90	31.60	43.60
Runoff (mm)	73	57	44	39	32	22	16	14	14	15	21	31	378
Rainfall (mm)	110	72	59	51	73	23	22	66	87	91	65	113	832
Monthly and yearly statistics for previous record (Oct 1961 to Dec 1993)													
Mean Avg.	13.010	14.450	14.160	12.380	9.989	8.299	6.340	5.563	5.300	6.186	7.842	10.470	9.473
flows Low	4.144	4.401	4.190	3.429	2.739	2.041	1.620	1.377	2.787	3.596	3.943	4.333	4.056
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	23.000	27.780	22.010	19.790	15.430	18.600	11.120	9.542	10.000	13.970	17.710	23.850	12.882
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	48.30	52.10	44.30	36.90	31.50	70.00	19.00	20.50	33.40	38.20	43.50	47.30	. 70.00
Runoff (mm)	34	34	37	31	26	21	16	14	13	16	20	27	289
Raintall (mm)	75	50	67	52	59	61	50	65	66	69	74	81	769
Factors affecting runoff: R G I Station type: C										1994 runoff is 131% of previous mean rainfall 108\%			

Catchment area (sq km): 1033.4

Max alt. (m OD): 297

Grid reference: 41 (SU) 649708
Level stn. (m OD): 43.40
Level stn. (m OD): 43.40

039019 Lambourn at Shaw

Measuring authority: NRA-T
First year: 1962
Hydrometric statistics for 1994

		JAN	FEB	MAR	APR	MAY	JUN	JUL
Flows	Avg.	3.552	4.160	3.718	3.070	2.500	2.005	1.581
$\left(\mathrm{~m}^{3} \mathrm{~s}^{-1}\right):$	Peak	4.40	4.93	4.11	3.78	2.84	2.41	2.04
Runoff (mm)	41	43	43	34	29	22	18	
Rainfall (mm)	101	66	55	.47	84	26	23	

Monthly and yearly statistics for previous record (Oct 1962 to Dec 1993)

Mean	Avg.	1.748	2.189	2.410	2.334	2.064	1.791	1.478	1.249	1.129	1.119	1.205	1.435	1.676
flows	Low	0.797	0.787	0.743	0.695	0.639	0.573	0.538	0.485	0.681	0.683	0.757	0.710	0.739
$\left(\mathrm{~m}^{3} \mathrm{~s}^{-1}\right)$	High	3.854	3.719	3.583	3.550	2.979	2.764	2.359	2.048	1.699	1.921	2.392	3.200	2.151
Peak flow $\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$	4.30	4.20	4.39	4.08	4.97	4.34	3.06	3.54	3.75	3.17	5.02	4.15	5.02	
Runoff (mm)	20	23	28	26	24	20	17	14	12	13	13	16	$\mathbf{2 2 6}$	
Rainfall (mm)		69	48	63	50	59	59	51	61	63	65	72	76	736

Factors affecting runoff: R G
Station type: C

Grid reference: 41 (SU) 470682
Level stn. (m OD): 75.60

1994 runoff is 135% of previous mean rainfall 107\%

Catchment area (sq km): 234.1 Max alt. (m OD): 261

039021 Cherwell at Enslow Mill

Measuring authority: NRA-T
First year: 1965
Hydrometric statistics for 1994

*	JAN	FEB	MAR	APR	MAY	JUN	JuL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg,	12.180	9.345	5.571	6.739	3.061	1.842	1.035	0.980	1.316	1.334	4.386	6.301	4.478
($\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	17.80	15.00	12.70	12.30	5.04	3.04	1.48	1.87	3.56	7.27	9.36	12.20	17.80
Runoff (mm)	59	41	27	32	15	9	5	5	6	6	21	31	256
Rainfall (mm)	81	66	55	51	64	20	38	49	88	77	55	80	724
Monthly and yearly statistics for previous record (Feb 1965 to Dec 1993)													
Mean Avg.	7.196	6.882	6.039	4.439	3.204	2.345	1.505	1.407	1.466	2.292	3.400	5.853	3.823
flows Low	0.919	0.905	0.754	0.566	0.445	0.309	0.156	0.132	0.468	0.630	0.730	0.915	1.370
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \quad \mathrm{High}$	12.040	15.900	12.090	8.710	8.674	6.632	4.997	2.634	5.577	7.615	9.223	13.330	5.373
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	22.50	23.80	26.70	20.70	19.30	17.60	24.50	10.30	20.80	17.40	22.00	30.20	30.20
Runoff (mm)	35	30	29	21	16	11	7	7	7	11	16	28	219
Rainfall (mm)	62	44	54	47	57	60	57	62	58	59	59.	68	687

Factors affecting runoff: PE
Station type: CC

Grid reference: 42 (SP) 482183
Level stn. (m OD): 65.00

039049 Silk Stream at Colindeep Lane

Measuring authority: NRA-T .
First year: 1973
Hydrometric statistics for 1994

	JAN	FEB	MAR	APR	MAY	JUN	JUL.	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	0.606	0.362	0.223	0.375	0.259	0.089	0.078	0.146	0.174	0.236	0.217	0.367	0.261
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right):$ Peak	4.13	3.79	2.72	3.69	3.35	1.40	1.99	11.10	3.16	3.81	3.13	10.60	11.10
Runotf (mm)	56	30	21	34	24	8	7	13	16	22	19	34	283
Rsinfoll (mm)	86	51	48	61	76	19	20	63	65	86	42	78	695

Monthly and yearly statistics for previous record (Dec 1973 to Dec 1993 -incomplete or missing months total 4.4 years)

Mean Avg.	0.368	0.275	0.303	0.260	0.213	0.204	0.151	0.123	0.157	0.300	0.307	0.322	0.249
Hows Low	0.093	0.102	0.092	0.030	0.035	0.061	0.047	0.053	0.057	0.062	0.096	0.096	0.178
$\left(m^{3} s^{-1}\right)$ High	0.790	0.725	0.677	0.560	0.570	0.566	0.248	0.204	0.505	0.808	0.967	0.593	0.308
Poak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	8.54	14.30	6.28	10.26	17.10	16.30	14.50	14.20	17.20	17.30	13.00	16.00	+17.30
Runoff (mm)	34	23	28	23	20	18	14	11	14	28	27	30	${ }^{1} 270^{\prime}$
Rainfall (mm)	62	39	56	51	60	61	52	50	65	73	60	62 ,	691:.

Factors affecting runoff:
Factors affecting
Station type: FV

Grid reference: 51 (TQ) 217895
Level sin. (m OD): 39.90
Catchment area (sq km): 29.0 Max alt. (m OD): 153

1994 runoff is 105% of previous meanrainfall 101%

039069 Mole at Kinnersley Manor

Measuring authority: NRA-T ,
First year: 1972
Hydrometric statistics for 1994

	JAN	FEB	MAR	APR	MAY	JUN	Jul	AUG	SEP	OCT	NOV	OEC	Year
Flows Avg.	8.231	3.422	1.875	3.600	2.095	0.817	0.614	0.592	1.432	2.406	2.801	6.349	2.856
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	48.80	26.90	24.10	23.70	13.10	4.10	6.62	7.49	8.30	32.30	18.00	63.50	63.50
Runoff (mm)	155	58	35	66	40	15	12	11	26.	45	51	120	634
Rainfall (mm)	139	61	60	74	83	27	26	59	94	115	57	134	929
Monthly and yearly statistics for previous record (Dec 1972 to Dec 1993-incomplete or missing months total 1.6 years)													
Mean Avg.	3.798	2.976	2.499	1.969	1.381	1.040	0.800	0.798	0.969	2.214	2.436	3.585	2.038
flows Low	0.940	0.829	0.833	0.388	0.305	0.221	0.296	0.169	0.281	0.207	0.260	1.071	0.950
$\left(m^{3} s^{-1}\right)$ High	9.375	8.634	4.668	3.666	3.552	2.225	2.818	2.864	5.419	8.486	5.894	6.493	2.614
Poak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	42.30	46.50	22.30	47.00	32.90	23.30	28.90	29.80	40.70	71.90	56.70	68.50	71.90
Runoff (mm) I	- 72	51	47	36	26	19	15	15	18	42	,44	68	452
Rainfall (mm)	79	53	63	54	52	59	50	55	67	92	78	90	792

$\begin{array}{ll}\text { Factors affecting runoff: E } & 1994 \text { runoff is } 140 \% \text { of previous mean } \\ \text { Station }\end{array}$
Station type: MIS

Grid reference: 51 (TO) 262462 Level stn. (m OD): 48.00

MAY
rainfall 117\%

040004 Rother at Udiam

Moasuring authority: NRA-S
First year: 1962
First year: 1962
Hydrometric statistics for 1994

Comment: Some 1994 monthly flows are estimated. Pre-1992 flows are being reprocessed

042006 Meon at Mislingford

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows \$ Avg.	4.069	3.039	1.976	1.945	1.428	1.004	0.643	0.431	0.352	0.348	0.779	1.578	. 1.458
$\left(m^{3} s^{-1}\right)$: Peak	4.83	4.22:	2.63	2.46	1.81	'1.24	0.86	0.61	0.69	0.90	1.03	2.73	4.83
Runoff (mm)	150	101	73	69	53	36	24	16	13	13	28	58	634
Rainfall (mm)	157	91	72	93	95	33	14	51	94	137	100	144	1081
Monthly and yearly statistics for previous record (Oct 1958 to Dec 1993)													
Mean Avg.	1.461	1.741	1.580	1.342	0.993	0.717	0.509	0.380	0.334	0.518	0.787°	1.098	0.951
flows Low	0.332	0.353 .	0.356	0.335	0.164	0.120	0.079	0.068	0.102	0.1 .10	0.124	0.179	0.334
$\left(m^{3} s^{-1}\right)$ High ${ }^{\text {d }}$	3.470	3.310	2.820	2.024	.1.738	1.220	0.827	0.657	0.882	2.309	4.126	3.917	1.813
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	3.84	4.27	3.26	2.83	2.07	1.50	1.23	. 1.08	0.96	2.68	2.83	3.77	4.27
Runoff (mm)	54	58	58	48	37	26	. 19	14	12	19	28	40	. 412
Rainfall (mm)	97	62	75	61	60	60	56	69	80	96	97	102	915
Factors affecting runoff: G Station type: FL										1994 runoff is 154% of previous mean rainfall 118\%			
Comment: January 1994 contains estimated daily flows.													

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows \$ Avg.	4.069	3.039	1.976	1.945	1.428	1.004	0.643	0.431	0.352	0.348	0.779	1.578	. 1.458
$\left(m^{3} s^{-1}\right)$: Peak	4.83	4.22:	2.63	2.46	1.81	'1.24	0.86	0.61	0.69	0.90	1.03	2.73	4.83
Runoff (mm)	150	101	73	69	53	36	24	16	13	13	28	58	634
Rainfall (mm)	157	91	72	93	95	33	14	51	94	137	100	144	1081
Monthly and yearly statistics for previous record (Oct 1958 to Dec 1993)													
Mean Avg.	1.461	1.741	1.580	1.342	0.993	0.717	0.509	0.380	0.334	0.518	0.787°	1.098	0.951
flows Low	0.332	0.353 .	0.356	0.335	0.164	0.120	0.079	0.068	0.102	0.1 .10	0.124	0.179	0.334
$\left(m^{3} s^{-1}\right)$ High ${ }^{\text {d }}$	3.470	3.310	2.820	2.024	.1.738	1.220	0.827	0.657	0.882	2.309	4.126	3.917	1.813
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	3.84	4.27	3.26	2.83	2.07	1.50	1.23	. 1.08	0.96	2.68	2.83	3.77	4.27
Runoff (mm)	54	58	58	48	37	26	. 19	14	12	19	28	40	. 412
Rainfall (mm)	97	62	75	61	60	60	56	69	80	96	97	102	915
Factors affecting runoff: G Station type: FL										1994 runoff is 154% of previous mean rainfall 118\%			
Comment: January 1994 contains estimated daily flows.													

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows \$ Avg.	4.069	3.039	1.976	1.945	1.428	1.004	0.643	0.431	0.352	0.348	0.779	1.578	. 1.458
$\left(m^{3} s^{-1}\right)$: Peak	4.83	4.22:	2.63	2.46	1.81	'1.24	0.86	0.61	0.69	0.90	1.03	2.73	4.83
Runoff (mm)	150	101	73	69	53	36	24	16	13	13	28	58	634
Rainfall (mm)	157	91	72	93	95	33	14	51	94	137	100	144	1081
Monthly and yearly statistics for previous record (Oct 1958 to Dec 1993)													
Mean Avg.	1.461	1.741	1.580	1.342	0.993	0.717	0.509	0.380	0.334	0.518	0.787°	1.098	0.951
flows Low	0.332	0.353 .	0.356	0.335	0.164	0.120	0.079	0.068	0.102	0.1 .10	0.124	0.179	0.334
$\left(m^{3} s^{-1}\right)$ High ${ }^{\text {d }}$	3.470	3.310	2.820	2.024	.1.738	1.220	0.827	0.657	0.882	2.309	4.126	3.917	1.813
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	3.84	4.27	3.26	2.83	2.07	1.50	1.23	. 1.08	0.96	2.68	2.83	3.77	4.27
Runoff (mm)	54	58	58	48	37	26	. 19	14	12	19	28	40	. 412
Rainfall (mm)	97	62	75	61	60	60	56	69	80	96	97	102	915
Factors affecting runoff: G Station type: FL										1994 runoff is 154% of previous mean rainfall 118\%			
Comment: January 1994 contains estimated daily flows.													

Measuring authority: NRA-S
First year: 1958
Hydrometric statistics for 1994

Monthly and yaarly statistics for previous record (Oct 1958 to Dec 1993)

Runoff (mm)
Factors affecting runoff: G
Station type: FL
Comment: January 1994 contains estimated daily flows.

Grid reference: 41 (SU) 589141
Level stn. (m OD): 29.30

Catchment area ($\mathrm{sq} \mathbf{~ k m}$): $\mathbf{7 2 . 8}$ Max alt. (m OD): 233

043006 Nadder at Wilton Park

1994

Measuring authority: NRA-SW
First year: 1966
Hydrơmetric statistics for 1994

Hydrơmetric sta	tics fo	$1994{ }^{-}$							${ }^{\prime}$				
F	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows ${ }^{\text {: }}$ Avg.	9.238	7.156	5.044	5.037	3.148	1.994	1.651	1.436	1.312	1.706	3.736	4.946	3.849
($\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	17.80	13.74	9.17	11.24	7.25	2.89	2.15	1.86	1.96	10.43	11.16	14.64	17.80
Runoff (mm)	112	78	61	59	38	23	20	17	15	21	44	60	550
Rainfall (mm)	128	97	83	64	81	25	27	55	84	134	87	140	1005
Monthly and yea	stati	cs for	vious	Ord (Ja	966 to	199					"		
Mean : Avg.	4.536	5.008	4.198	3.275	2.396	1.875	1.464	1.282	1.304	1.825	2.471	3.840	2.779
flows: Low	1.011	1.263	1.358	1.048	0.993	0.839	0.684	0.595	0.801	0.829	0.878	1.219	-1.535
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \quad \mathrm{High}$	6.773	12.290	6.732	5.935	4.044	3.283	2.234	2.040	3.093	4.526	6.413	7.316	3.821
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	22.71	26.61	18.80	14.27	28.13	8.83	13.39	6.71	16.68	20.92	22.90	47.88	47.88
Runot (mm)	, 55	55	51	38	29	22	18	16	15	22	29	47	397
Rainfall (mm)	95	71	77	55	63	63	54	68	76	87	86	104	899
Factors affecting r Station type: C	off: N									$1994 \text { run }$ rair	ff is 138 all 112	of prev	ous mean

043007 Stour at Throop Mill

Measúring authority: NRA-SW
First year: 1973
Hydrometric statistics for 1994

:	JAN	FEB	MAR	APR	MAY	JUN	Jut	AUG	SEP	OCT	NOV	DEC	Year
Flows: Avg.	50.480	36.690	21.880	23.860	11.250	6.617	3.782	3.382	4.367	6.362	30.250	29.140	18.890
($\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	119.30	81.39	41.31	76.26	23.16	10.01	4.98	4.65	8.45	42.21	141.20	108.10	141.20
Runotf (mm)	126	83	55	58	28	16	9	8	11	16	73	73	555
Rainfall (mm)	122	106	83	57	84	20	32.	54	93	124	105	125	1005
Monthly and yearly statistics for previous record (Jan 1973 to Dac 1993)													
Mean Avg.	23.800	24.860	19.670	14.380	9.122	6.328	4.421	4.046	4.936	9.309	13.010	22.910	13.014
flows + Low	4.319	6.826	7.548	4.483	3.157	2.231	1.614	1.358	1.892	2.716	2.823	6.386	6.138
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	38.730	69.370	32.620	27.070	18.900	16.940	7.932	8.998	20.340	31.730	36.730	42.950	17.377
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	116.60	137.70	110.20	88.24	150.00	180.00	47.60	32.41	90.33	128.70	133.40	280.00	280.00
Runotf (mm) .	59	56	49	35	23	15	11	$\because 10$.	12	23	31	57	383
Rainfall (mm)	89	67	76	50	53	57	52	61 :	77	88	79	106	855
Factors affecting runoff: PGE Station type: CC										1994 runoff is 145% of previous mean rainfall 118\%			

Grid reference: 40 (SZ) 113958
Level stn. (m OD): 4.40.
Catchment area (sq km): 1073.0 Max alt. (m OD): 277

043012 Wylye at Norton Bavant

Measuring authority: NRA-SW
First year: 1969

Hydrometric statistics for 1994

044002 Piddle at Baggs Mill

1994

Measuring authority: NRA-SW
First yoar: 1963
Hydrometric statistics for 1994

	JAN		MAR	APR	MAY	JuN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	7.838	- 5.990	5.015	4.161	2.973	1.975	1.320	1.074	1.113	1.307	3.414	4.186	3.350
$\left(m^{3} s^{-t}\right)$: Peak	8.86	8.49	7.57	6.68	5.00	2.74	1.75	1.37	2.34	6.95	7.83	7.68	8.86
Runoff (mm)	115	- 79	73	59	43	28	19	16	16	19	48	61	577
Rainfoll (mm)	137	-128	86	64	97	21	31	58	103	148	140	137	1150
Monthly and yearly statistics for previous record (Oct 1963 to Dec 1993-incompleta or missing months total 1.0 vears)													
Moan Avg.	3.554	4.335	3.777	2.907	2.122	1.624	1.218	1.057	1.083	1.451	2.061	2.966	2.336
flows Low	1.045	1.020	1.093	0.945	0.757	0.571	0.483	0.433	0.598	0.707	0.721	0.853	1.328
$\left(m^{3} s^{-1}\right)$ High	5.959	8.785	6.202	4.782	3.376	2.907	1.755	1.526	2.300	3.285	5.047	5.654	3.233
Peak flow ($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$)	11.87	10.02	9.37	6.48	8.11	9.23	4.79	4.50	8.18	9.29	9.20	8.62	11.87
Runoff (mm)	52	58	55	41	31	23	18	15	15	21	29	43	403
Rainfall (mm)	110	79	84	55	63	58	49	65	86	93	104	115	961
Factors affecting runoff: G Station type: FL										1994 runoff is 143% of previous mean rainfall 120\%			

044009 Wey at Broadwey

Measuring authority: NRA-SW First year: 1975
Hydrometric statistics for 1994

		JaN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year:
Fows	Avg.	1.158	0.924	0.821	0.621	0.442	0.324	0.223	0.164	0.128	0.122	0.401	0.489	0.482
$\left(m^{3} s^{-1}\right)$:	Pook	2.34	2.61	1.19	1.12	1.05	0.53	0.33	0.26	0.21	0.44	0.82	1.02	2.61
Runotf (mm)		442	320	314	230	169	120	85	63	47	47	148	187	2173
Rainfall (mm)		135	131	86	62	108	26	27	52	71	139	125	122	1082.

Monthly and yearly statistics for previous record (Jul 1975 to Dec 1993 -incomplate or missing months total 0.1 years)

Station type: FV
Grid reference: 30 (SY) 666839
Level stn. (m OO): 17.80
Catchment area (sq km): 7.0 Max alt. (m OD): 183

045003 Culm at Wood Mill

Hydrometric statistics for 1994

		JAN	FEB	MAR	APA	MAY	JUN
Flows	Avg.	10.070	8.647	4.121	5.574	3.225	1.805
$\left(m^{3} \mathbf{s}^{-1}\right):$	Poak	53.92	47.88	13.66	26.78	16.02	3.27
Runoff (mm)	119	93	49	64	38	21	
Rainfall (mm)	155	130	82	77	84	23	

Monthly and yoarly statistics for previous record (Feb 1982 to Dec 1993)

045004 Axe at Whitford

Hydrometric statistics for 1994

		JAN	FEB	MAR	APR	MAY	JUN
Flows	Avg.	13.000	13.460	6.059	7.364	5.330	2.490
$\left(\mathrm{~m}^{3}-1\right):$	Posk	62.72	74.78	45.46	58.99	44.84	7.18
Runoff (mm)	121	113	56	66	49	22	
Rainfall (mm)	138	146	86	71	108	24	

Monthly and yearly statistics for previous record (Oct 1984 to Dec 1993)

Maan Avg.	9.080	8. 148	6.316	4.365	3.429	2.502	1.941	2.033	2.558	4.372	5.801	8.486	4.907
flows Low	1.891	2.448	2.150	1.567	1.176	0.817	0.626	0.554	1.222	1.243	1.714	2.829	2.665
$\left(m^{3} s^{-1}\right)$ High	15.730	18.720	11.670	8.346	7.284	4.678	5.312	4.935	9.911	16.440	11.980	15.430	6.406
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	110.60	114.60	93.02	75.42	173.40	75.04	228.80	128.00	88.95	146.10	116.90	244.00	244.00
Runotf (mm)	84	69	59	39	32	22	18	19	23	41	52	79	537
Rainfall (mm)	119	84	81	59	66	65	59	70	83	97	96	119	998
Factors affecting Station type: CC	off: PG									1994	ff is 140 fall 119	of prev	us mean

046003 Dart at Austins Bridge

Measuring authority: NRA-SW
First year: 1958
Hydrometric statistics for 1994

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	29.680	27.320	16.750	16.650	8.953	5.508	2.484	3.393	8.496	10.340	20.900	29.130	14.887
$\left(m^{3} s^{-1}\right)$: Peak	135.30	141.20	126.20	116.00	45.46	22.63	4.70	42.16	58.46	170.40	91.54	215.80	215.80
Runoff (mm)	321	267	181	174	97	58	27	37	89	112	219	315	1896
Rainfall (mm)	304	290	210	144	151	58	69	147	174	204	177	392	2320
Monthly and yearly statistics for previous record (Oct 1958 to Dec 1993)													
Mean Avg.	19.790	16.900	13.620	9.886	7.026	4.911	3.898	4.641	5.925	10.740	14.900	19.520	10.958
flows Low	5.428	4.270	3.246	3.275	1.942	1.447	0.994	0.713	0.905	1.229	5.048	8.229	7.298
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \quad \mathrm{High}$	36.680	43.870	33.520	22.720	14.530	14.260	10.930	12.590	26.290	28.000	33.410	35.660	15.592
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	284.00	309.40	236.10	187.40	98.88	253.00	206.50	222.20	327.60	168.20	317.80	549.70	549.70
Runoff (mm)	214	167	147	103	76	51	42	50	62	116	156	211	1397
Rainfall (mm)	229	161	161	116	102	94	95	119	138	179	198	234	1826
Factors affecting runoff: SR Station type: VA										1994 runoff is 136% of previous mean rainfall 127\%			

Grid reference: 20 (SX) 751659
Level stn. (m OD): 22.40

Catchment area (sq km): 247.6
Max alt. (m OD): 604

046005 East Dart at Bellever

Measuring authority: NRA-SW
First year: 1964

Grid reference: 20 (SX) 657775
Level stn. (m OD): 309.00

Catchment area (sq km): 21.5 Max alt. (m OD): 604

Hydrometric statistics for 1994

Factors affecting runoff: N
Station type: VA

994 runoff is 131% of previous mean rainfall 130%

047001 Tamar at Gunnislake

Measuring authority: NRA-SW
First year: 1956

Grid reference: 20 (SX) 426725
Level stn. (m OD): 8.20

Catchment area (sq km): 916.9 Max alt. (m OD): 586

Hydrometric statistics for 1994

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SE	OC	NO	61200	Year
Flows Avg.	65.500	53.050	33.620	33.340	8.382	5.421	3.453	3.868	16.750	22.630	44.120	61.200	29.130
($\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	203.80	163.10	149.70	225.00	26.07	9.75	4.91	12.46	66.32	296.20	142.50	294.00	296.20
Runoff (mm)	191	140	98	94	24	15	10	11	47	66	125	179	1002
Rainfall (mm)	191	165	132	96	81	31	49	111	142	142	114	238	1492
Monthly and yearly statistics for previous record (Jul 1956 to Dec 1993)													
Mean Avg.	44.950	36.050	25.340	16.480	11.1.10	7.280	6.367	8.387	11.590	22.520	34.810	44.820	22.428
flows Low	8.476	9.161	6.193	5.681	3.112	1.995	1.181	0.757	1.118	1.540	4.213	13.710	12.519
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	89.410	86.970	65.520	35.200	32.370	32.990	28.730	42.100	59.840	65.080	78.760	91.690	34.886
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	347.90	306.70	411.70	268.00	154.50	363.70	96.00	238.00	401.40	373.50	530.20	714.60	714.60
Runoff (mm)	131	96	74	47	32	21	19	24	33	66	98	131	772
Rainfall (mm)	144	98	97	70	71	73	84	93	103	126	136	146	1241

Factors affecting runoff: SRP EI
Station type: VA

1994 runoff is 130% of previous mean rainfall 120\%

047008 Thrushel at Tinhay

Measuring authority: NRA-SW
First year: 1969
Hydrometric statistics for 1994

048005 Kenwyn at Truro

Measuring authority: NRA-SW
First year: 1968
Hydrometric statistics for 1994

	JAN	FEB	MAR	APR	MAY	JuN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	1.452	1.440	0.522	0.640	0.292	0.203	0.109	0.111	0.141	0.274	1.110	1.006	0.602
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	8.05	11.11	3.91	3.11	1.31	0.61	0.26	1.81	0.60	2.30	3.69	4.04	11.11
Runoff (mm)	204	182	73	87	41	28	15	16	19	38	151	141	995
Rainfatl (mm)	143	201	87	78	102	25	44	100	118	131	134	177	1340
Monthly and yearly statistics for previous record (Oct 1968 to Dec 1993)													
Mean Avg.	0.810	0.743	0.534	0.323	0.199	0.152	0.095	0.089	0.119	0.275	0.469	0.759	0.379
flows Low	0.169	0.206	0.144	0.156	0.090	0.070	0.043	0.026	0.037	0.034	0.046	0.218	0.263
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	1.506	1.638	0.997	0.613	0.418	0.594	0.245	0.179	0.560	0.899	1.093	1.353	0.540
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	22.50	7.19	5.74	4.07	4.56	3.71	2.79	2.29	4.10	30.37	9.74	14.76	30.37
Runoff (mm)	114	95	75	44	28	21	13	12	16	39	64	106	626
Rainfall (mm)	142	101	95	61	61	64	59	73	86	114	127	140	1123
Factors affecting runoff: N Station type: CC										1994 runoff is 159% of previous mean rainfall 119\%			

048011 Fowey at Restormel

1994

Measuring authority: NRA-SW
Grid reference: 20 (SX) 098624 Level stn. (m OD): 9.20

Catchment area (sq km): 169.1
First year: 1961
Hydrometric statistics for 1994

		JAN	FEB	MAR	APR	MAY	JUN
Flows	Avg.	13.930	12.490	7.530	7.814	2.280	1.871
$\left(m^{3} s^{-1}\right):$	Peak	29.88	29.88	24.09	29.28	3.40	3.15
Runotf (mmm)	221	179	119	120	36	29	
Rainfalt (mm)	231	229	153	110	90	39	

$\begin{array}{lcccccc}\text { Rainfall (mm) } & 231 & 229 & 153 & 110 & 90 & 39 \\ \text { Monthly and yearly statistics for previous record (Apr } & 1961 \text { to } & \text { Dec 1993) }\end{array}$

| Mean | Avg. | 9.020 | 8.043 | 5.953 | 4.039 | 2.938 | 2.236 | 1.838 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

flows Avg.	Low

$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High
Peak flow $\left(\mathrm{m}^{3} \mathrm{~g}^{-1}\right)$
Peak flow (m
Runotf (mm)
Factors affocting runott:
Station type: CC

Grid reference: 10 (SW) 820450
Level stn. (m OD): 7.20

Catchment area (sq km): 19.1
Max alt. (m OD): 152
rainfall 119\%
\qquad

049001 Camel at Denby

Measuring authority: NRA-SW
First year: 1964
Hydrometric statistics for 1994

	JAN	FEB	MAR	APR	MAY	JUN	Jul	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	18.560	17.090	10.300	9.738	3.469	2.258	1.352	1.408	4.146	$\cdot 6.221$	13.390	13.600	8.402
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	59.77	68.75	27.91	46.66	6.35	3.79	2.31	5.37	13.75	74.94	45.19	71.51	74.94
Runoff (mm)	238	198	132	121	45	28	17	18	51	BO	166	175	1269
Aainfall (mm)	214	221	149	103	91	38	56	120	150	166	145	235	1688
Monthly and yearly statistics for previous record (Sep 1964 to Dec 1993)													
Mean Avg.	11.120	9.578	6.999	4.599	3.322	2.799	2.406	2.511	3.006	5.535	$8.080{ }^{\prime}$	10.980	5.898
flows Low	3.819	4.070	2.216	2.081	0.960	0.888	0.582	0.421	0.798	0.882	1.371	4.184	4.081
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	19.600	23.260	16.420	9.395	8.491	15.770	7.322	7.858	11.920	16.640	17.990	19.110	8.165
Paak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	73.18	80.21	94.75	35.42	58.52	306.40	40.59	63.98	125.80	92.14	94.75	227.90	306.40
Runoff (mm)	143	112	90	57	43	35	31	32	37	71	100	141	891
Rainfall (mm)	165	109	115	77	81	88	97	100	116	138	153	163	1402
Factors affecting runoff: SRP E Station type: VA										1994 runoff is 142% of previous mean rainfall 120\%			

Catchment area (sq km); 208.8 Max alt. (m OD): 420

050002 Torridge at Torrington

Measuring authority: NRA-SW First year: 1962

Grid reference: 21 (SS) 500185 Level stn. (m OD): 13.90

Hydrometric statistics for 1994

		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	47.620	33.950	27.640	25.780	5.973	3.193	1.332	1.304	16.080	19.410	31.910	49.790	21.930
($\left.\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$:	Peak	181.60	123.70	126.90	188.80	20.48	10.02	2.96	5.11	103.00	381.00	120.50	305.00	381.00
Runoff (mm)		192	124	112	101	24	12	5	5	63	78	125	201	1043
Rainfall (mm)		192	136	149	105	80	36	53	108	145	142	111	239	1496

Monthly and yearly statistics for previous record (Aug 1960 to Dec 1993 -incomplete or missing months total 1.2 years)

Mean Avg.	30.300	24.290	17.800	10.990	7.490	4.811	4.414	5.263	7.345	16.960	26.910	31.560	15.647
flows Low	5.018	4.695	3.265	3.082	1.399	1.092	0.443	0.252	0.954	0.668	3.798	10.270	8.968
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \quad \mathrm{High}$	57.510	64.240	51.280	28.120	31.290	20.540	21.540	19.690	45.910	50.100	55.730	64.530	21.036
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	391.10	294.40	535.60	164.40	205.70	189.90	310.60	228.50	415.00	276.40	370.40	730.00	730.00
Runoff (mm)	122	89	72	43	30	19	18	21	29	69	105	128	745
Rainfall (mm)*	131	91	96	68	70	75	77	85	97	117	134	134	1175

-(1962-1993)
Factors affecting runoff: SRP EI
1994 runoff is 140% of previous mean
Station type: VA

052007 Parrett at Chiselborough

Measüring authority: NRA-SW
First year: 1966
Hydrometric statistics for 1994

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	3.626	3.037	1.080	1.450	1.067	0.391	0.259	0.252	0.627	1.100	3.075	2.667	1.542
$\left(m^{3} \mathrm{~s}^{-1}\right)$: Peak	22.55	19.66	19.29	17.40	9.15	0.97	0.83	0.88	12.79	18.96	34.05	26.83	34.05
Runotf (mm)	130	98	39	50	38	14	9	9	22	39	107	95	650
Rainfall (mm)	113	116	72	56	108	21 :	37	77	128	99	125	116	1068
Monthly and yearly statistics for previous record (Aug 1966 to Dec 1993)													
Mean : Avg.	2.397	1.959	1.496	0.895	0.677	0.479	0.335	0.329	0.450	1.011	1.299	2.153	1.121
flows . Low	0.258	0.544	0.343	0.285	0.206	0.130	0.106	0.090	0.145	0.186	0.219	0.409	0.564
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	4.914	6.120	3.055	1.867	2.048	1.053	0.921	0.988	2.225	4.819	3.789	4.219	1.534
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	36.38	30.70	27.46	21.21	57.21	12.81	16.14	23.88	32.25	28.69	29.53	44.94	57.21
Runoff (mm)	86	64	54	31	24	17	12	12	16	36	45	77	473
Rainfall (mm)	104	73	78	50	64	63	54	66	78	89	84	106	909

Factors affecting runoff: E
Station type: C

Grid reference: 31 (ST) 461144 Level stn. (m OD): 20.70

Catchment area (sq km); 74.8
Max alt. (m OD): 219

994 runoff is 137% of previous mean rainfall 117%

052010 Brue at Lovington

Measuring authority: NRA-SW
first year: 1964
Hydrometric statistics for 1994

	JAN	FEB	MAR	APR	MAY	JuN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	6.074	3.851	2.537	2.900	1.141	0.554	0.357	0.378	0.521	1.646	3.888	4.222	2.331
$\left(m^{3} s^{-1}\right)$: Paak	44.63	22.14	15.20	16.21	10.03	1.58	1.17	6.90	8.22	31.50	39.64	37.27	44.63
Runoff (mm)	120	69	50	56	23	11	7	7	10	33	75	84	544
Rainfall (mm)	134	85	87	63	80	26	44	87	90	119	85	125	1025
Monthly and yearly statistics for previous record (Oct 1964 to Dec 1993)													
Mean, Avg.	3.482	3.167	2.464	1.567	1.109	0.757	0.798	0.745	0.807	1.403	2.203	3.466	1.826
flows. Low	0.743	0.910	0.589	0.526	0.313	0.218	0.150	0.130	0.218	0.190	0.407	1.034	1.153
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	5.752	6.961	5.263	3.352	3.554	2.203	4.081	2.449	4.873	4.380	4.883	6.158	2.427
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	47.28	53.57	43.49	27.19	95.48	35.46	83.00	48.42	69.42	61.06	74.62	61.06	95.48
Runoff (mm)	69	57	49	30	22	15	16	15	15	28	42	69	426
Rainfall (mm)	87	65	72	54	62	68	70	72	76	78	84	95	883
Factors affecting runoff: \mathbf{N} Station type: C VA										1994 runoff is 128% of previous mean rainfall 116\%			

053004 Chew at Compton Dando

Measuring zuthority: NRA-SW
First year: 1958
Hydrometric statistics for 1994

Station type: FL

Grid reference: 31 (ST) 648647
Level stn. (m OD): 16.80

1993 -incomplete or missing months total 1.0 years)

1994 runaff is 188% of provious mean rainfall 122%

053006 Frome(Bristol) at Frenchay

Measuring authority: NRA-SW
First year: 1961
Hydrometric statistics for $\mathbf{1 9 9 4}$

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT 1.035	NOV 2997	DEC 5.447	Year 2.143
Flows Avg.	5.468	3.303	1.734	2.416	1.363	0.546	0.323	0.446	0.686	1.035	2.997	5.447	2.143
$\left(m^{3} s^{-1}\right)$: Peak	22.09	11.96	11.88	14.62	10.21	2.07	2.95	5.42	4.77	13.13	8.40	19.27	22.09
Runoff (mm)	98	54	31	42	25	10	6	8	12	19	52	98	454
Rainfall (mm)	108	81	67	53	94	28	39	73	90	93	81	144	951
Monthly and yearly statistics for previous record (Sep 1961 to Dec 1993)													
Mean ${ }^{\prime \prime}$ Avg.	3.401	2.768	2.260.	1.375	1.086	0.758	0.589	0.526	0.688	1.226	2.213	3.102	1.662
flows Low	0.670	0.613	0.468	0.476	0.228	0.220	0.122	0.139	0.208	0.162	0.211	0.808	0.804
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	6.266	6.040	5.762	3.434	5.028	2.973	3.516	2.398	5.113	4.691	5.559	9.807	2.255
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	35.06	41.09	33.84	29.63	49.00	29.01	70.79	12.75	29.73	42.93	39.90	66.55	70.79
Runoff (mm)	61	45	41	24	20	13	11	9	12	22	39	56	352
Rainfall (mm)	78	53	63	50	60	63	56	69	72	72	77	85	798
Factors affecting runoff: N Station type: FL										1994 runoff is 129% of previous mean rainfall 119\%			

054012 Tern at Walcot

Measuring authority: NRA-ST First year: 1960			Grid reference: 33 (S.J) 592123 Level stn. (m OD): 44.60							Catchment area (sq km): 852.0 Max alt. (m OD): 366			
Hydrometric statistics for 1994													
	JAN	FEB	MAR	APA	MAY	JuN	Jul	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	16.310	10.790	9.065	8.864	4.801	3.232	2.891	2.800	5.259	3.965	7.463	13.820	7.424
$\left(m^{3} s^{-1}\right): ~ P o a k$	34.53	25.60	19.33	20.42	7.53	5.09	7.02	4.97	20.50	6.03	16.48	38.80	38.80
Runotf (mm)	51	31	29	27	15	10	9	9	16	12.	- 23	43.	275
Rainfall (mm)	71	56	64	47	38	20	45	46	108	56	58	95	704
Monthly and yearly statistics for previous record (Jan 1961 to Dec 1993)													
Mean Avg.	11.060	9.894	8.656	7.151	6.114	4.486	3.701	3.814	3.857	5.147	7.378.	10.540	6.805
flows Low	4.018	3.479	4.069	3.557	2.904	1.026	0.926	1.171	1.680	2.227	2.538	- 3.346 .	3.757
$\left(m^{3}-1\right) \mathrm{High}$	20.320	22.280	17.810	12.320	22.390	9.069	14.060	6.655	9.490	11.590	15.190	24.950	10.266
Paok flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	60.05	45.98	40.53	40.73	40.35	27.00	48.71	38.53	32.17	37.59	44.54	$55.82{ }^{\text {- }}$	60.05
Runoff (mm)	35	28	27	22	19	14	12	12	12	16	22	33	252
Rainfall (mm)	61	44	53	50	61	57	55	63	61	59	. 69 -	. 68	701
Factors affocting runoff: GEI Station type: FV										1994 runoff is 109% of previous mean rainfall 100\%			

054019 Avon at Stareton

Moosuring authority: NRA-ST
First yoar: 1962
Hydrometric statistics for 1994

Grid reference: 42 (SP) 333715
Level stn. (m OD): 54.70

Catchment area (sq km): 347.0 Max alt. (m OD): 214

054020 Perry at Yeaton

1994

Measuring authority: NRA-ST
First year: 1963
Hydrometric statistics for 1994

	JAN	FEB	MAR	APA	MAY	JUN	Jut	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	4.778	3.604	2.383	2.406	1.061	0.702	0.511	0.433	0.615	0.722	1.655	3.346	1.842
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right):$ Peak	10.61	9.39	5.17	7.72	1.54	0.96	0.94	0.57	1.11	1.42	5.17	9.45	10.61
Runolf (mm)	71	48	35	34	16	10	8	6	9	11	24	50	321
Rainfall (mm)	85	74	65	55	40	20	35	44	106	64	66	117	771
Monthly and yearly statistics for previous record (Oct 1963 to Dec 1993)													
Mean Avg.	2.838	2.629	2.277	1.694	1.327	0.950	0.695	0.678	0.689	1.088	1.717	2.657	1.599
flows Low	0.901	0.669	0.796	0.728	0.520	0.379	0.271	0.208	0.350	0.412	0.427	0.725	0.809
($\mathrm{m}^{2} \mathrm{~s}^{-1}$) High	4.870	6.507	4.265	3.041	4.232	2.046	2.735	1.416	1.785	3.308	3.103	6.244	2.335
Poak flow ($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$)	14.26	17.66	12.94	10.83	10.41	8.49	7.87	5.49	7.32	7.52	10.02	13.73	17.66
Runoff (mm)	42	35	34	24	20	14	10	10	10	16	25	39	279
Rainfall (mm)	69	53	60	49	63	58	57	62	64	66	78	80	759

Factors affecting runoff: GE
Station typo: C

054024 Worfe at Burcote

Measuring authority: NRA-ST
Grid reference: 32 (SO) 747953
First year: 1969
Hydrometric statistics for 1994

		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG
Flows	Avg.	2.748	2.231	1.692	1.676	0.945	0.591	0.387	0.494
$\left(\mathrm{~m}^{3} \mathrm{~s}^{-1}\right):$	Peak	6.10	5.14	2.78	3.12	1.53	1.42	1.08	0.96
Runoff (mmm)	29	21	18	17	10	6	4	5	
Rainfall (mm)	73	60	61	46	37	31	50	52	

Monthly and yearly statistics for previous record (Apr 1969 to Dec 1993)

Mean	Avg.	1.860	1.773	1.593	1.408	1.138	0.846	0.587	0.641	0.643	0.824	1.123	1.567	1.164
flows	Low	0.617	0.593	0.712	0.548	0.426	0.256	0.101	0.094	0.322	0.422	0.499	0.508	0.687
$\left(\mathrm{~m}^{3} \mathrm{~s}^{-i}\right)$	High	3.144	3.802	3.171	2.491	4.490	1.527	1.293	1.111	0.887	1.535	2.235	2.551	1.519
Peak flow $\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$	10.84	10.56	6.86	7.73	7.26	5.65	4.06	4.32	5.10	3.87	5.88	16.00	16.00	
Runoff (mm)	19	17	17	14	12	9	6	7	6	9	11	16	142	
Rainfall (mm)	66	45	55	51	57	57	51	64	57	58	65	65	691	

Factors affecting runoff: PGEI
Station type: C

Catchment area (sq km): 258.0 Max att. (m OD): 120

054034 Dowles Brook at Oak Cottage, Dowles

Measuring authority: NRA-ST First year: 1971

Grid reference: 32 (SO) 768764
Level stn. (m OD): 24.20

SEP	OCT	NOV	DEC	Year
1.221	0.851	1.491	1.995	1.354
5.27	1.73	3.30	3.55	6.10
12	9	15	21	166
129	52	56	87	734
0.643	0.824	1.123	1.567	1.164
0.322	0.422	0.499	0.508	0.687
0.887	1.535	2.235	2.551	1.519
5.10	3.87	5.88	16.00	16.00
6	9	11	16	142
57	58	65	65	691

1994 runoff is 116% of previous mean rainfall 106\%

Hydrometric statistics for 1994

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DE	-ar
Flows Avg.	1.176	1.214	0.379	0.567	0.144	0.069	0.041	0.036	0.213	0.133	0.626	1.091	0.469
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	6.33	6.78	1.76	4.43	0.54	0.12	0.08	0.13	2.80	0.97	3.12	7.39	7.39
Runoff (mm)	77	72	25	36	9	4	3	2	14	9	40	72	363
Rainfall (mm)	85	88	50	48	45	19	40	53	136	56	69	105	794
Monthly and yearly statistics for previous record (Oct 1971 to Dec 1993-incomplete or missing months total 3.2 years)													
Mean Avg.	0.787	0.688	0.626	0.457	0.292	0.223	0.086	0.089	0.120	0.216	0.328	0.689	0.382
flows Low	0.097	0.160	0.108	0.116	0.073	0.033	0.017	0.019	0.020	0.036	0.046	0.072	0.240
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{High}$	1.617	1.738	1.637	1.090	1.016	0.826	0.255	0.347	0.880	1.047	0.786	1.414	0.508
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	16.57	9.67	14.96	12.90	12.14	21.64	4.73	6.39	19.35	5.09	8.61	18.90	21.64
Runoff (mm)	51	43	42	28	19	14	6	5	8	15	20	45	296
Rainfall (mm)	71	51	62	51	54	60	56	60	64	64	58	77	728

Factors affecting runoff: N
Station type: FVVA
1994 runoff is 123% of previous mean rainfall 109%

Comment: Reprocessing of post-1984 flow data has resulted in changes to previously published monthly average mean fiows.

054038 Tanat at Llanyblodwel

Measuring authority: NRA-ST
First year: 1973
Hydrometric statistics for 1994

		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
Flows	Avg.	16.840	12.600	10.390	10.900	1.979	1.343	0.607	0.412	3.135
$\left(\mathrm{~m}^{3} \mathrm{~s}^{-1}\right):$	Peak	51.30	81.36	53.77	46.32	3.06	2.97	1.89	0.87	21.25
Runoff (mm)	197	133	122	123	23	15	7	5	35	
Rainfall $\{\mathrm{mm})$	192	130	155	114	54	48	46	62	129	

Monthly and yearly statistics for previous record (Jun 1973 to Dec 1993 -incomplete or missing months total 0.8 years)

Mean Avg.	11.970	9.833	8.663	5.465	3.278	2.379	1.332	2.413	3.425	6.489	9.533	12.740	6.448
flows. Low	5.037	3.477	1.406	1.392	0.867	0.699	0.348	0.190	0.520	1.701	2.895	5.738	4.185
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	19.220	21.460	17.800	9.686	10.250	4.751	2.589	7.609	9.885	15.020	17.370	27.610	7.510
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	123.10	101.20	85.77	49.50	31.27	56.87	13.17	55.72	69.56	82.17	76.12	97.28	123.10
Runoff (mm)	140	105	101	62	38	27	16	28	39	76	108	149	889
Rainfall (mm)	135	96	109	71	74	71	64	91	105	118	132	158	1224

Factors affecting runoff: NE
Station type: FV

Grid reference: 33 (SJ) 252225 Level stn. (m OD): 77.00

055008 Wye at Cefn Brwyn

Measuring authority: tH
 First year: 1951

Hydrometric statistics for 1994

	JAN	FEB	MAR	APA	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	1.475	0.828	1.630	0.989	0.231.	0.476	0.145	0.233	0.830	0.986	0.985	1.876	0.891
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	23.36	6.13	20.11	12.14	$2.36{ }^{\circ}$	10.06	2.17	1.46	6.54	14.48	13.65	22.05	23.36
Runoff (mm)	374	190	414	243	59	117	37	59	204	250	242	476	2665
Rainfall (mm)	382	197	492	263	80	157	84	164	228	312	236	548	3143
Monthly and yearly statistics for previous record (Aug 1951 to Dec 1993 -incomplete or missing months total 3.2 years)													
Mean ${ }^{\text { }}$ Avg.	0.967	0.736	0.698	0.521	0.374	0.341	0.437	0.585	0.660	0.819	1.045	1.145	0.694
flows Low	0.492	0.137	0.206	0.064	0.054	- 0.074	0.053	0.036	0.050	0.092	0.376	0.198	0.447
$\left(m^{3} s^{-1}\right) \quad \mathrm{High}$	1.870	1.486	1.735	1.312	1.144	0.954	1.264	1.478	1.478	2.031	1.761	2.655	0.994
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	23.47	21.10	24.23	19.12	17.89	25.49	19.11	48.87	22.64	27.68	29.15	32.00	48.87
Runoff (mm)	246	170	177	128	95	84	111	149	162	208	257	291	2077
Rainfall (mm)	262	175	202	149	128	137	163	200	202	241	274	314	2447

Factors affecting runoff: N
Station type: CC
Comment: 1994 monthly rainfall totals derived from data supplied by Met. Office.

055013 Arrow at Titley Mill

1994
Moasuring authority: NRA-WEL
Grid reference: 32 (SO) 328585
Level stn. (m OD): 129.00
Catchment area (sq km): $\mathbf{1 2 6 . 4}$ Max alt. (m OD): 542
Hydrometric statistics for 1994

	JAN	FEB	MAR	APR	MAY	JUN	JUL.	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	6.133	4.551	2.738	3.451	1.482	0.947	0.360	0.285	0.780	1.339	3.794	5.209	2.581
($\mathrm{m}^{3} \mathrm{~s}^{-1}$): Poak	22.95	14.26	9.40	13.10	5.09	2.16	0.57	1.13	3.47	8.85	9.28	27.53	27.53
Runotf (mm)	130	87	58	71	31	19	8	7	16	28	78	110	644
Rainfall (mm)	145	116	84	69	84	30	47	73	130	100	89	176	1143
Monthly and yearly statistics for previous record (Oct 1966 to Dec 1993)													
Moan Avg.	4.755	3.953	3.393	2.232	1.627	1.082	0.691	0.649	0.884	1.943	3.071	4.407	2.385
flows Low	1.528	1.369	0.666	0.632	0.355	0.257	0.211	0.154	0.135	0.255	0.662	1.366	1.309
$\left(\mathrm{m}^{3} \mathrm{~s}^{-3}\right)$ High	9.004	8.763	8.933	5.028	5.001	2.559	3.842	2.219	2.644	6.916	6.625	8.464	3.418
Poak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	101.10	42.40	57.85	37.95	32.49	13.09	30.68	24.80	18.85	36.45	34.78	63.34	101.10
Runoff (mm)	101	76	72	46	34	22	15	14	18	41	63	93	596
Rainfall (mm)	112	80	84	61	70	68	58	77	88	96	99	113	1004
Factors affocting runoff; N													

Station type: VA
1994 runoff is 108% of previous mean
rainfall 114% rainfall 114%
Comment: July, August and September 1994 average flows have been estimated.

055014 Lugg at Byton

Measuring authority: NRA-WEL
First year: 1966
Hydrometric statistics for 1994

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	11.120	8.920	6.972	7.123	3.003	1.747	1.070	0.797	1.233	1.849	7.126	12.580	5.276
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Pook	24.83	17.72	14.55	16.21	3.93	2.87	1.45	1.08	3.53	10.11	18.10	28.51	28.51
Runoti (mm)	147	106	92	91	40	22	14	10	16	24	91	166	819
Rainfall (mm)	147	112	104	68	74	28	40	68	130	103	101	196	1171
Monthly and yearly statistics for previous record (Oct 1966 to Dac 1993)													
Moan Avg.	7.516	6.730	5.733	4.082	2.947	1.984	1.371	1.217	1.391	2.638	4.416	6.703	3.883
flows Low	2.604	2.597	1.504	1.626	1.054	0.772	0.557	0.414	0.420	0.657	1.219	2.443	2.321
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{High}$	11.940	16.530	13.980	8.647	7.994	4.113	5.253	3.599	4.313	7.962	8.774	12.360	4.954
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	54.27	37.53	33.24	30.08	45.56	14.18	26.16	13.32	12.46	28.51	27.22	37.49	54.27
Runotf (mm)	99	81	76	52	39	25	18	16	18	35	56	88	603
Rainfall (mm)	116	82	87	66	74	66	59	77	87	94	99	115	1022
Factors affocting runoff; \mathbf{P} Station type: FVVA										1994 runoff is 136% of previous mean rainfall 115\%			

Station type: FVVA

Grid referance: 32 (SO) 364647 Level stn. (m OD): 124.10

Catchment area (sq km): 203.3 Max alt. (m OD): 660

055018 Frome at Yarkhill

Measuring authority: NRA-WEL
First year: 1968
Hydrometric statistics for 1994

	JAN	FEB	MAR	APA	MAY	JuN	Jul.	AUG	SEP
Flows Avg.	2.925	2.769	1.120	1.283	0.831	0.438	0.256	0.203	0.401
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	13.66	14.54	3.09	6.42	1.45	0.66	0.60	0.29	2.39
Runoff (mm)	54	47	21	23	15	8	5	4	7
Rainfall (mm)	76	78	49	47	63	16	37	56	132
Monthly and yearly statistics for pravious record (Oct 1968 to Dec 1993)									
Mean Avg.	2.587	2.352	1.979	1.301	1.008	0.594	0.341	0.318	0.306
flows Low	0.214	0.389	0.509	0.359	0.274	0.146	0.091	0.063	0.096
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	4.668	5.456	5.176	3.299	3.972	1.349	0.630	0.759	0.970
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	24.98	24.99	24.28	24.57	25.89	16.99	5.96	9.61	15.68
Runotf (mm)	48	40	37	23	19	11	6	6	6
Rainfall (mm)	75	50	59	47	57	57	49	64	60

Factors affecting runoff: E
Station type: VA

Grid reference: 32 (SO) 615428
Level stn. (m OD): 55.40

Catchment area (sq km): 144.0 Max alt. (m OD): 244

OCT	NOV	DEC	Year
0.440	1.371	3.136	1.256
2.84	7.56	17.90	17.90
8	25	58	275
71	62	114	801
0.494	0.993	1.989	1.184
0.142	0.119	0.210	0.672
2.405	2.266	4.230	1.828
11.25	18.51	25.14	25.89
9	18	37	259
61	64	72	715

1994 runoff is 106% of previous mean rainfall 112\%

055023 Wye at Redbrook

Moasuring authority: NRA-WEL
First yoar: 1936
Hydrometric statistics for 1994

		JAN	FEB	MAR	APR	MAY	JUN	JuL	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	210.800	150.400	124.300	129.500	40.110	28.480	13.820	13.240	37.860	48.490	123.600	216.400	94.456
$\left(m^{3} \mathrm{~B}^{-1}\right)$)	Peak	450.50	359.80	340.70	410.70	107.50	50.15	23.86	20.13	173.90	301.70	304, 10	751.10	751.10
Aunoff (mm)		141	91	83	84	27	18	9	9	24	32	80	145	743
Rainfall (mm)		142	110	113	81	76	33	42	72	123	107	92	193	1184

Monthly and yearly statistics for previous record (Oct 1936 to Dec 1993 -incomplete or missing months total 0.2 years)

Mean Avg.	133.900	121.200	92.840	64.850	43.440	34.120	24.180	28.590	39.770	59.670	101.100	127.000	72.329
flows Low	25.050	30.760	21.840	17.930	12.340	10.970	7.426	5.180	7.271	9.582	31.730	46.890	39.916
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{High}$	241.900	333.900	325.400	143.600	125.000	131.600	95.830	83.680	174.000	174.700	252.400	262.200	113.382
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	748.00	700.40	905.40	493.30	387.90	467.20	368.30	347.80	531.70	472.90	600.30	812.70	905.40
Runoff (mm)	89	74	62	42	29	22	16	19	26	40	65	85	569
Painfall (mm)	112	78	76	64	72	63	68	83	86	96	111	115	1024
Factors affecting Station type: VA	noff: S									$1994 \mathrm{n}$	off is 131 infall 116	\% of prev \%	ious mean

056013 Yscir at Pontaryscir

1994

Measuring authority: NRA-WEL First year: 1972
Hydrometric statistics for 1994

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	4.686	3.154	3.801	3.382	1.019	0.564	0.316	0.228	0.870	1.800	3.555	5.688	2.419
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	23.88	12.27	20.71	23.38	9.78	1.56	0.90	0.35	4.48	18.81	14.94	41.84	41.84
Runoff (mm)	200	122	162	140	43	23	13	10	36	77	147	243	1215
Rainfall (mm)	203	137	192	124	86	51	64	70	121	148	127	288	1611
Monthly and yearly statistics for previous record (May 1972 to Dec 1993-incomplate or missing months total 0.2 years)													
Mean Avg.	3.557	2.669	2.532	1.477	0.968	0.723	0.526	0.775	1.111	2.093	3.032	3.672	1.926
flows Low	1.146	0.920	0.403	0.431	0.269	0.214	0.150	0.104	0.251	0.214	0.941	1.540	1.286
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	5.795	5.914	6.303	3.211	3.041	1.788	1.758	3.044	3.947	4.280	5.290	6.392	2.465
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	36.98	34.72	40.55	13.74	14.81	74.33	11.06	30.69	21.44	85.01	34.02	59.93	85.01
Runoff (mm)	152	104	108	61	41	30	22	33	46	89	125	157	968
Rainfall (mm)*	169	109	131	77	80	77	81	102	126	144	154	184	1434

Factors affecting runoff: N
Station type: C

Grid reference: 32 (SO) 003304 Level stn. (m OD): 161.20

Catchment area (sq km): 62.8
Max alt. (m OD): 474

94 runoff is 126% of previous mean rainfall 112%

057008 Rhymney at Llanedeyrn

Measuring authority: NRA-WEL
First year: 1973
Hydrometric statistics for 1994

	JAN	FEB	MAR	APR	MAY	JUN	JUL	Aug	SEP	OCT	NOV	DEC,	Year
Flows Avg.	14.330	9.198	10.010	7.918	3.535	2.417	1.135	0.819	2.063	4.643	12.250	15.760	6.998
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	60.08	33.88	83.56	35.97	13.44	24.42	3.41	2.37	15.03	86.96	66.33	117.80	117.80
Runoff (mm)	215	125	150	115	53	35	17	12	30	70	178	236	1235
Rainfall (mm)	230	147	199	111	108	67	57	80	116	172	179	293	1759
Monthly and yearly statistics for previous record (Jan 1973 to Dec 1993)													
Mean Avg.	9.789	8.108	6.930	4.299	2.800	1.985	1.578	2.436	3.404	5.726	7.826	9.549	5.359
flows Low	3.313	2.732	1.342	1.204	0.611	0.873	0.602	0.453	0.570	0.748	2.355	3.218	2.903
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{High}$	17.500	22.510	20.960	9.695	8.340	4.604	4.235	10.450	11.500	13.700	16.560	17.370	7.153
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	108.30	156.70	110.50	55.31	31.31	54.31	27.39	87.41	101.60	118.50	128.30	147.30	156.70
Runoff (mm)	147	111	104	62	42	29	24	37	49	86	114	143	946
Rainfall (mm)	167	115	125	76	75	74	77	103	132	148	150	172	1414

Factors affecting runoff: S PGE
Station type: FVVA

Grid reference: 31 (ST) 225821
Level stn. (m OD): 11.80

Catchment area (sq km): 178.7 Max alt. (m OD): 617

Measuring authority: NRA-WEL First year: 1971
Hydrometric statistics for 1994

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	5.948	3.412	5.516	3.918	1.372	0.867	0.599	0.539	0.772	2.937	3.551	4.983	2.870
$\left(m^{3} s^{-1}\right)$: Peak	50.72	16.89	37.63	56.59	11.18	9.13	3.08	3.17	6.33	73.68	35.06	54.65	73.68
Runoff (mm)	255	132	236	162	59	36	26,	\% 230:	32	126	147. צ17	214	; 1448
Rainfall (mm)	221	130	226	120	86	72	74	108	99	185	158	256	1735
Monthly and yearly statistics for previous record (Nov 1971 to Dec 1993-incomplete or missing months total 0.2 years)													
Mean Avg.	2.931	2.494	2.283	1.529	1.089	0.919	0.862	1.030	1.265	2.036	2.731	2.976	1.843
flows Low	1.268	1.224	0.804	0.654	0.500	0.431	0.302	0.220	0.458	0.409	1.082	1.323	1.037
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{High}$	5.921	4.745	6.004	2.683	2.515	1.756	2.196	3.879	3.604	4.391	5.680	5.988	2.344
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	69.10	30.15	51.23	27.50	20.44	17.24	28.97	57.64	42.60	59.45	65.14	55.14	69.10
Runoff (mm)	126	97	98	63	47	38	37	44	52	87	113	128	931
Rainfall (mm)	145	99	113	73	76	88	84	110	129	141	146 .	147	1351

Factors affecting runoff: E
Station type: FVVA

Grid reference: 21 (SS) 920782 Level stn. (m OD): 8.30

Catchment area (sq km): 62.5
Max alt. (m OD): 300

994 runoff is 156% of previous mean rainfall 128\%

060002 Cothi at Felin Mynachay

Measuring authority: NRA-WEL
First year: 1961
Hydrometric statistics for 1994

	JAN	FEB	MAR	APR	MAY	Jun	JUL	AUG	SEP 7373	OCT	NOV 17410	DEC	$\begin{aligned} & \text { Year } \\ & 12.543 \end{aligned}$
Flows Avg.	21.600	16.560	18.100	16.080	3.710	2.942	2.577	3.885	7.373	8.426	17.410	32.040	12.543
($\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	100.30	75.66	96.10	80.80	8.39	9.92	9.23	36.04	25.00	58.56	57.18	190.10	190.10
Runoff (mm)	194	135	163	140	33	26	23	35	64	76	152	288	1328
Rainfall (mm)	228	155	229	150	61	76	117	109	130	153	139	342	1889
Monthly and yearly statistics for previous record (Oct 1961 to Dec 1993-incomplete or missing months total 0.2 years)													
Mean Avg.	18.810	14.250	12.670	8.736	6.408	4.467	3.492	6.350	7.394	13.910	18.080	20.480	11.249
flows Low	2.990	3.708	2.821	1.444	0.835	0.824	0.418	0.363	1.500	1.610	7.211	5.748	7.174
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	37.580	40.210	40.710	20.380	14.820	13.070	11.810	23.350	23.920	37.940	36.270	41.140	14.950
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	219.10	181.20	220.90	85.88	87.22	90.33	144.40	171.00	129.70	283.70	194.50	367.70	367.70
Runoff (mm)	169	117	114	76	58	39	31	57	64	125	157	184	1192
Rainfall (mm)	182	119	133	99	100	97	98	127	140	177	177	193	1642
Factors affecting runoff: \mathbf{N} Station type: VA										1994 runoff is 111% of previous mean rainfall 115\%			

060010 Tywi at Nantgaredig

Mossuring authority: NRA-WEL
First year: 1959
Hydrometric statistics for 1994

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	78.470	54.300	65.970	58.090	11.090	8.390	5.848	8.134	20.620	28.500	58.200	92.990	40.823
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Poak	199.90	137.10	203.00	202.80	23.47	38.30	20.53	55.05	62.88	157.20	143.90	281.60	281.60
Runoty (mm)	193	120	162	138	27	20	14	20	49	70	138	228	1181
Rainfall (mm)	229	141	232	146	63	77	92	96	124	168	137	329	1834
Monthly and yearly statistics for previous record (Oct 1958 to Dec 1993--incomplete or missing months total 0.1 years)													
Moan Avg.	65.690	48.900	42.540	31.920	22.250	15.160	12.610	20.600	25.250	45.760	61.540	68.010	38.326
flows Low	9.473	12.210	9.657	6.201	4.507	3.736	2.752	2.699	1.523	8.708	23.910	19.470	22.516
$\left(\mathrm{m}^{3} \mathrm{a}^{-1}\right)$ High	120.600	109.300	137.800	64.470	51.420	43.990	42.120	78.470	76.490	128.700	122.600	134.400	54.099
Poak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	507.40	578.80	702.30	215.30	180.10	256.80	295.90	312.50	322.80	1200.00	461.10	526.70	1200.00
Runoff (mm)	161	109	104	76	55	36	31	51	60	112	146	167	1109
Roinfall (mm)	180	114	112	111	96	96	105	124	121	163	172	187	1581
Factors affocting runoff: RP													

Station type: FVVA

Grid reference: 22 (SN) 485206 Level stn. (m OD): 7.80

Catchment area (sq km): 1090.4 Max alt. (m OD): 792

063001 Ystwyth at Pont Llolwyn

Measuring authority: NRA-WEL
First year: 1963
Hydrometric statistics for 1994

		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	13.510	8.048	15.060	10.110	1.626	1.882	1.084	0.427	4.799	7.458	7.867	15.250	7.266
$\left(m^{3} s^{-}\right):$	Poak	87.18	24.45	64.88	61.57	9.62	18.25	6.71	2.03	19.80	79.62	43.82	101.40	101.40
Runoff $(m m)$	213	115	238	155	26	29	17	7	73	118	120	241	1351	
Rainfall $(m m)$	213	118	255	145	56	73	73	97	150	181	126	298	1785	

Monthly and yearly statistics for previous record (Oct 1963 to Dec 1993 -incomplete or missing months total 0.2 years)

| | | | | | | | | | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Moan | Avg. | 9.430 | 6.865 | 6.280 | 4.424 | 3.083 | 2.566 | 2.665 | 3.456 | 4.297 | 7.182 | 9.430 | 11.020 | 5.892 |
| flows | Low | 2.268 | 2.283 | 2.180 | 0.961 | 0.577 | 0.625 | 0.422 | 0.181 | 0.882 | 0.558 | 3.757 | 2.219 | 3.783 |
| $\left(\mathrm{~m}^{3} \mathrm{~s}^{-1}\right)$ | High | 15.330 | 15.200 | 18.470 | 10.080 | 10.100 | 7.571 | 5.831 | 8.556 | 10.670 | 19.800 | 18.320 | 22.600 | 7.775 |
| Peak flow $\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ | 105.60 | 88.63 | 126.70 | 90.32 | 105.10 | 129.70 | 68.24 | 174.30 | 76.84 | 147.40 | 128.10 | 210.40 | 210.40 | |
| Runoff (mm) | 149 | 99 | 99 | 68 | 49 | 39 | 42 | 55 | 66 | 113 | 144 | 174 | 1096 | |
| Rainfall (mm) | 156 | 102 | 120 | 88 | 87 | 93 | 100 | 114 | 128 | 153 | 168 | 181 | 1490 | |

Factors affocting runoff: N
Station type: VA

Grid reference: 22 (SN) 591774
Level stn. (m OD): 12.00

Catchment area (sq km): 169.6 Max alt. (m OD): 611

064001 Dyfi at Dyfi Bridge

Measuring authority: NRA-WEL
First year: 1962
Hydrometric statistics for 1994

		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	Nov	DEC	Year
Fiows	Avg.	49.710	32.440	55.450	36.960	6.633	10.130	3.840	4.704	26.090	24.020	41.660	67.110	29.888
$\left(m^{3} s^{-1}\right)$:	Peak	327.30	153.50	303.60	245.50	38.55	104.30	28.74	18.88	127.00	147.70	311.30	371.90	371.90
Runoff (mm)		283	167	315	203	38	56	22	27	143	137	229	381	2000
Rainfall (mm)		292	162	331	192	58	113	63	129	191	193	187	406	2317

Monthly and yearly statistics for previous record (Oct 1962 to Dec 1993 -incomplate or missing months total 4.6 years)

Maan Avg.	34.070	25.390	27.540	16.870	11.440	9.577	8.630	13.770	16.860	27.750	36.330	42.070	22.530
flows Low	6.245	5.174	5.340	2.626	1.295	1.618	0.822	0.663	5.966	9.697	14.530	7.501	14.412
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	68.810	55.560	75.790	42.490	31.380	21.770	18.780	40.440	36.260	76.960	70.470	88.280	26.520
Poak flow ($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$)	350.20	342.20	360.70	288.10	337.20	402.10	162.00	210.00	329.80	344.00	375.50	580.50	580.50
Runoff (mm)	194	131	156	93	65	53	49	78	93	158	200	239	1508
Rainfall (mm)	204	133	164	109	103	108	111	144	163	190	212	244	1885
Factors affecting Station typo: VA	off: N									$1994 \text { rur }$	f is 133 fall 123	\% of pre	us mean

Station typo: VA

Grid reference: 23 (SH) 745019
Level stn. (m OD): 5.90

Catchment area (sq km): 471.3 Max alt. (m OD): 907

064002 Dysynni at Pont-y-Garth

Moasuring authority: NRA-WEL
First year: 1966
Hydrometric statistics for 1994

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	5.659	4.247	6.417	6.401	1.488	2.098	1.244	1.852	5.249	5.858	7.598	10.760	4.907
$\left(m^{3} s^{-1}\right):$ Peak	24.69	26.12	25.80	29.88	5.18	25.37	4.74	7.08	28.64	40.11	56.52	60.56	60.56
Runoff (mm)	202	137	229	221	53	72	44	66 !	181	209	262	384	2060
Rainfall (mm)	262	167	313	181	56	141	96	161	205	237	210	404	2433
Monthly and yearly statistics for previous record (Jan 1966 to Dec 1993 -incomplate or missing months total 3.2 years)													
Mean Avg.	6.249	4.809	4.982	3.584	2.506	2.431	2.676	3.685	4.063	6.159	7.686	7.818	4.723
flows Low	3.371	1.548	0.986	0.457	0.298	0.427	0.278	0.289	1.926	2.231	3.011	3.782	3.523
$\left(m^{3} s^{-1}\right)$ High	11.830	10.330	14.780	7.209	7.602	5.921	5.158	8.900	8.282	12.350	15.460	13.070	7.137
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	81.40	41.34	98.71	48.57	76.32	48.42	53.35	56.75	70.14	107.70	121.30	84.70	121.30
Runotf (mm)	223	156	178	124	89	84	95	131	140	220	265	279	1984
Rainfall (mm)	220	148	186	126	121	139	142	172	188	236	243	254	2175

Factors offecting runoff: N
Station type: VA

Grid reference: 23 (SH) 632066
Level stn. (m OO): 2.30

Catchment area (sq km): 75.1
Max alt. (m OD): 892

Comment: The overall water balance for this catchment is under review.

065005 Erch at Pencaenewydd

Measuring authority: NRA-WEL
First year: 1973
Hydrometric statistics for 1994

	JAN	FEB	MAR	APR	MAY	JUN	JuL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	0.932	0.885	1.141	0.977	0.350	0.162	0.179	0.180	0.317	0.590	0.964	1.204	0.655
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	4.38	5.80	11.79	4.82	1.17	0.62	0.99	1.47	1.35	5.22	7.60	9.24	11.79
Runoff (mm)	138	118	169	140	52	23	27	27	45	87	138	178	1142
Rainfall (mm)	146	144	207	150	47	49	96	92	145	138	144	236	1594
Monthly and yearly statistics for previous record (Jan 1973 to Dec 1993)													
Mean Avg.	0.966	0.779	0.755	0.487	0.331	0.237	0.188	0.303	0.394	0.724	0.982	1.065	0.600
flows Low	0.372	0.366	0.311	0.177	0.120	0.089	0.081	0.062	0.103	0.236	0.264	0.366	0.430
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	1.673	1.869	1.804	0.892	0.728	0.647	0.427	1.113	0.919	1.736	1.816	1.764	0.739
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	10.41	15.45	19.78	11.00	4.68	6.99	5.53	9.22	7.76	25.01	16.91	15.50	25.01
Runoff (mm)	143	105	112	70	49	34	28	45	56	107	141	158	1047
Rainfall (mm)	145	99	128	78	78	75	81	118	122	156	162	165	1407

Factors affecting runoff: \mathbf{N}
Station type: C

Grid reference: 23 (SH) 400404
Level stn. (m OD): 56.10

Catchment area (sq km): 18.1

1994 runoff is 109% of previous mean rainfall 113\%

066006 Elwy at Pont-y-Gwyddel

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	7.776	5.656	8.140	6.772	1.194	0.600	0.382	0.415	2.123	2.906	7.643	14.380	4.831
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Paak	19.16	22.48	56.56	32.68	5.93	1.35	1.09	2.54	20.03	13.74	57.08	61.98	61.98
Runoff (mm)	107	71	112	90	16	8	5	6	28	40	102	199	785
Rainfall (mm)	125	88	169	99	47	36	56	92	129	90	112	250	1293
Monthly and yearly statistics for previous record (Dec 1973 to Dec 1993)													
Mean Avg.	7.997	6.010	5.168	3.020	1.744	1.357	0.669	1.168	2.328	4.852	7.075	8.224	4.128
flows Law	3.115	2.180	0.816	0.823	0.479	0.359	0.278	0.242	0.249	1.360	2.263	4.085	2.908
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	13.060	15.070	11.950	6.939	5.918	3.527	1.402	4.351	7.450	11.530	11.850	15.560	5.094
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	100.40	58.00	76.59	50.76	21.66	25.38	27.05	38.13	58.57	143.00	101.60	75.42	143.00
Runoff (mm)	110	76	71	40	24	18	9	16	31	67	95	114	671
Rainfall (mm)	131	87	100	64	73	75	65	89	113	130	137	146	1210

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	7.776	5.656	8.140	6.772	1.194	0.600	0.382	0.415	2.123	2.906	7.643	14.380	4.831
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Paak	19.16	22.48	56.56	32.68	5.93	1.35	1.09	2.54	20.03	13.74	57.08	61.98	61.98
Runoff (mm)	107	71	112	90	16	8	5	6	28	40	102	199	785
Rainfall (mm)	125	88	169	99	47	36	56	92	129	90	112	250	1293
Monthly and yearly statistics for previous record (Dec 1973 to Dec 1993)													
Mean Avg.	7.997	6.010	5.168	3.020	1.744	1.357	0.669	1.168	2.328	4.852	7.075	8.224	4.128
flows Law	3.115	2.180	0.816	0.823	0.479	0.359	0.278	0.242	0.249	1.360	2.263	4.085	2.908
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	13.060	15.070	11.950	6.939	5.918	3.527	1.402	4.351	7.450	11.530	11.850	15.560	5.094
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	100.40	58.00	76.59	50.76	21.66	25.38	27.05	38.13	58.57	143.00	101.60	75.42	143.00
Runoff (mm)	110	76	71	40	24	18	9	16	31	67	95	114	671
Rainfall (mm)	131	87	100	64	73	75	65	89	113	130	137	146	1210

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	7.776	5.656	8.140	6.772	1.194	0.600	0.382	0.415	2.123	2.906	7.643	14.380	4.831
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Paak	19.16	22.48	56.56	32.68	5.93	1.35	1.09	2.54	20.03	13.74	57.08	61.98	61.98
Runoff (mm)	107	71	112	90	16	8	5	6	28	40	102	199	785
Rainfall (mm)	125	88	169	99	47	36	56	92	129	90	112	250	1293
Monthly and yearly statistics for previous record (Dec 1973 to Dec 1993)													
Mean Avg.	7.997	6.010	5.168	3.020	1.744	1.357	0.669	1.168	2.328	4.852	7.075	8.224	4.128
flows Law	3.115	2.180	0.816	0.823	0.479	0.359	0.278	0.242	0.249	1.360	2.263	4.085	2.908
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	13.060	15.070	11.950	6.939	5.918	3.527	1.402	4.351	7.450	11.530	11.850	15.560	5.094
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	100.40	58.00	76.59	50.76	21.66	25.38	27.05	38.13	58.57	143.00	101.60	75.42	143.00
Runoff (mm)	110	76	71	40	24	18	9	16	31	67	95	114	671
Rainfall (mm)	131	87	100	64	73	75	65	89	113	130	137	146	1210

Measuring authority: NRA-WEL First year: 1973
Hydrometric statistics for 1994

Monthly and yearly statistics for previous record (Dec 1973 to Dec 1993)

Factors affecting runoff: SRP
Station type: VA

Grid reference: 23 (SH) 952718 Level stn. (m OD): 87.90

Catchment area (sq km): 194.0 Max alt. (m OD): 518

067008 Alyn at Pont-y-Capel

Measuring authority: NRA-WEL
First year: 1965
Hydrometric statistics for 1994

Station type: CC

Grid reference: 33 (SJ) 33654
Level stn. (m OD): 37.30

Catchment area (sq km): 227.1 Max alt. (m OD): 562

4 runoff is 117% of previous mean rainfall 107%

068004 Wistaston Brook at Marshfield Bridge

Measuring outhority: NRA-NW
First yoar: 1957
Hydrometric statistics for 1994

Station type: VA
Grid reference: 33 (SJ) 674552
Level stn. (m OD): 30.10
Catchment area (sq km): 92.7

069006 Bollin at Dunham Massey

Measuring authority: NRA-NW
First year: 1955
Hydrometric statistics for 1994

	JAN	FEB	MAA	APA	MAY	JuN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	9.754	5.070	7.408	7.800	2.184	2.001	2.388	1.941	3.842	7.304	8.809	9.185	5.645
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right):$ Poak	31.71	16.27	24.83	26.90	4.70	6.77	16.42	8.67	32.39	38.42	33.93	28.37	38.42
Runoff (mm)	102	48	78	79	23	20	25	20	39	76	89	96	695
Rainfall (mm)	100	49	106	81	24	41	70	50	124	131	85	119	980
Monthly and yearly statistics for previous record (Oct 1955 to Dec 1993 -incomplete or miasing months total 1.1 years)													
Mean Avg.	6.414	5.240	4.524	3.644	2.841	2.543	2.415	2.932	3.053	4.096	5.401	6.618	4.140
flows Low	1.639	1.686	1.694	1.742	1.286	0.707	0.875	0.464	0.651	1.300	1.804	2.296	2.728
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{High}$	10.960	12.880	11.470	8.732	5.781	9.203	5.626	11.410	8.963	11.340	9.425	14.510	6.307
Poak flow ($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$)	43.95	39.29	36.91	60.43	63.02	42.37	41.50	44.04	35.05	41.18	44.35	46.33	63.02
Runotf (mm)	67	50	47	37	30	26	25	31	31	43	55	69	510
Rainfall (mm)	79	53	63	56	62	71	75	87	80	83	83	89	881

Factors affecting runoff: S PGEI
Station typo: VA

Grid reference: 33 (SJ) 727875
Level stn. (m OD): 12.80

Catchment area (sq km): 256.0 Max alt. (m OD): 483

[^8]
069007 Mersey at Ashton Weir

1994

Measuring authority: NRA-NW
First year: 1958
Hydrometric statistics for 1994

Factors affecting runoff: S PGEI Station type: CB

Grid reference: 33 (S.ل 772936
Level sin. (m OD): 14.90

Catchment area (sq km): 660.0 Max alt. (m OD): 636

070004 Yarrow at Croston Mill

Measuring authority: NRA-NW
First year: 1976
Hydrometric statistics for 1994

	JAN	FEB	MAA	APA	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	4.716	1.610	2.586	2.215	0.757	0.699	0.683	0.637	1.057	2.569	2.706	3.866	2.015
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right):$ Poak	30.63	7.89	18.05	16.40	2.83	4.75	4.42	3.42	6.03	21.06	19.51	15.56	30.63
Runoff (mm)	170	52	93	77	27	24	25	23	37	92	94	139	854
Rainfall (mm)	130	59	116	B0	29	49	72	64	101	147	100	163	1110
Monthly and yearly statistics for previous record (Jan 1976 to Dec 1993 -incomplete or missing months total 0.1 years)													
Mean Avg.	3.171	2.122	2.397	1.360	1.031	0.930	0.814	1.151	1.162	2.368	2.669	3.356	1.879
flows Low	1.491	0.846	0.643	0.586	0.508	0.405	0.494	0.379	0.536	0.854	1.181	1.756	1.251
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{High}$	5.037	4.917	7.574	2.504	2.577	1.417	1.804	4.003	2.062	6.360	4.699	6.531	2.830
Pook flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	35.89	20.17	93.13	31.18	27.79	30.15	27.89	192.00	35.77	89.38	34.23	107.60	192.00
Runoff (mm)	114	70	86	47	37	32	29	41	40	85	93	121	797
Rainfall (mm)	100	59	92	59	62	80	64	93	90	119	104	116	1038

Factors affecting runoff: S PGEI
Grid reference: 34 (SD) 498180 Level stn. (m OD): 6.90

Cstchment area (sq km): 74.4 Max alt. (m OD): 456

Station type: MIS

071001 Ribble at Samlesbury

Measuring authority: NRA-NW
First year: 1960
Hydrometric statistics for 1994

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	77.080	31.090	58.450	39.030	6.789	8.207	6.045	12.090	32.790	41.810	63.280	84.160	38.490
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	486.40	137.80	381.60	296.40	26.39	66.68	29.45	80.99	167.20	294.40	425.60	444.90	486.40
Runoff (mm)	180	66	137	88	16	19	14	28	74	98	143	197	1060
Rainfall (mm)	196	77	184	108	28	73	69	104	134	146	155	234	1508
Monthly and yearly statistics for previous record (May 1960 to Dec 1993)													
Mean Avg.	51.560	37.290	34.640	26.100	17.680	14.020	16.240	23.530	28.550	40.520	51.370	57.230	33.232
flows Low	10.610	9.565	6.994	5.601	4.048	5.031	2.638	2.958	4.263	5.716	15.300	15.190	22.045
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{High}$	82.510	80.890	104.700	54.820	46.460	33.520	40.500	68.920	65.820	118.400	88.610	120.200	45.022
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	787.30	513.10	643.30	466.60	319.10	494.80	399.80	520.80	619.30	810.00	613.20	891.30	891.30
Runotf (mm)	121	79	81	59	41	32	38	55	65	95	116	134	916
Rainfall (mm)* '(1961-1993)	136	88	107	82	80	88	91	117	126	138	141	154	1348
Factors affecting runoff: S E Station type: MIS										1994 runoff is 116% of previous mean rainfall 112\%			

Comment: Reprocessing of 1993 flow data has resulted in changes to previously published monthly average mean flows.

071004 Calder at Whalley Weir

Measuring authority: NRA-NW
First year: 1963
Hydrometric statistics for 1994

Station type: FV

Grid reference: 34 (SD) 729360 Level stn. (m OD): 39.90

Catchment area (sq km): $\mathbf{3 1 6 . 0}$ Max alt. (m OD): 558

073005 Kent at Sedgwick

Measuring authority: NRA-NW
First year: 1968
Hydrometric statistics for 1994

	JAN	FEB	MAA	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	17.500	10.760	22.430	13.280	3.961	4.141	2.446	7.142	7.991	6.252	19.350	20.610	11.328
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	63.36	94.30	130.30	68.93	26.83	57.15	9.67	43.62	35.90	36.81	154.80	124.30	154.80
Runotf (mm)	224	125	287	165	51	51	31	92	99	80	240	264	1709
Rainfall (mm)	250	115	309	164	50	134	84	181	126	143	224	312	2092
Monthly and yearly statistics for previous record (Nov 1968 to Dec 1993)													
Mean Avg.	13.150	10.360	10.030	6.744	4.236	3.609	3.879	5.553	7.632	10.410	13.440	13.780	8.561
flows Low	5.998	3.094	3.348	2.038	1.222	0.872	0.658	0.740	1.753	1.396	3.749	5.466	5.995
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \quad \mathrm{High}$	20.950	27.410	23.030	12.620	11.580	13.010	10.570	18.810	15.680	18.110	21.490	24.560	10.316
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	230.90	167.80	194.60	111.10	91.42	72.86	95.90	94.26	120.70	131.70	177.80	276.40	276.40
Runoff (mm)	168	121	128	84	54	45	50	71	95	133	167	177	1293
Rainfall (mm)	194	124	156	96	87	99	112	132	163 *	182	201	202	1748

Factors affecting runoff: N I
Station type: CBVA

Grid reference: 34 (SD) 509874
Level stn. (m OD): 18.90

Catchment area (sq kmi: 209.0
Max alt. (m OD): 817

1994 runoff is 132% of previous mean rainfall 120\%

074005 Ehen at Braystones

Measuring authority: NRA-NW
Grid reference: 35 (NY) 009061
Level stn. (m OD): 10.10

Catchment area (sq km): 125.5 Max alt. (m OD): 899

Hydrometric statistics for 1994

075002 Derwent at Camerton
Measuring authority: NRA-NW First year: 1960
Hydrometric statistics for 1994

Monthly and yearly statistics for previous record (Sop 1980 to Dec 1993 -incomplete or missing months total 0.2 years)

Mean	Avg.	38.950	29.470	27.000	20.570	12.760	9.861	11.130	17.790	24.360	34.310	40.390	41.780	25.690
flows	Low	9.587	4.837	7.466	4.359	2.753	2.041	2.503	2.384	2.885	2.755	14.210	14.740	14.824
$\left(m^{3} \mathrm{~s}^{-1}\right)$	High	84.550	84.850	66.470	38.940	36.280	34.800	23.140	55.940	62.980	107.800	76.340	75.840	34.235
Poak flow	$\mathrm{m}^{3} \mathrm{~s}^{-1}$)	219.20	165.70	215.50	145.50	102.90	135.80	114.50	216.20	189.20	264.70	226.40	234.80	264.70
Runoff (mm)		157	108	109	80	52	39	45	72	95	139	158	169	1223
Rainfall (mm - 1961 -19		185	117	150	101	99	105	116	148	174	199	191	196	1781
Factors affecting runoff: S P Station type: VA											1994 runoff is 110% of previous mean rainfall 111\%			

076005 Eden at Temple Sowerby

Measuring outhority: NRA.NW
First year: 1964
Hydrometric statistics for 1994

Flows$\left(m^{3} s^{-1}\right):$		JAN	FEB	MAR	APR	MAY	JUN	JUL
	Avg.	28.360	16.960	29.920	18.670	5.048	3.113	1.633
	Poak	159.90	134.90	182.40	110.20	30.14	15.08	2.34
Aunoff (mm)		123	67	130	78	22	13	7
Rainfoll (mm)		162	72	181	103	26	55	38

Monthly and yearly statistics for previous record (Nov 1964 to Dec 1993)

Moan Avg.	24.480	19.340	16.620	10.880	7.359	5.093	5.182	7.507	10.690	15.770	21.150	25.880	14.147
flows Low	9.871	5.430	4.469	2.923	2.196	1.553	1.176	1.613	1.593	1.975	4.240	9.403	8.669
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{High}$	42.580	62.620	43.570	19.500	17.050	13.780	16.690	22.070	30.440	55.960	38.740	49.530	18.912
Poak flow ($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$)	283.30	314.90	346.30	165.80	169.40	139.40	230.50	204.00	280.20	271.00	279.30	323.20	346.30
Runoff (mm)	106	77	72	46	32	21	23	33	45	69	89	112	724
Rainfall (mm)	127	86	98	64	70	68	77	93	104	115	124	134	1160
Factors affecting runoff: N Station type: VA										1994 runoff is 116% of previous mean rainfall 114\%			

076010 Petteril at Harraby Green

1994

Moosuring authority: NRA-NW
First yoar: 1969
Hydrometric statistics for 1994

	JAN	FEB	MAR	APA	MAY	JUN	Jul	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	5.009	2.575	4.587	2.914	0.758	0.469	0.323	0.431	0.753	0.988	3.714	6.504	2.422
$\left(m^{3} \mathrm{~s}^{-1}\right)$: Peak	17.83	18.04	23.08	11.88	1.60	0.99	1.27	1.69	3.28	6.60	19.28	22.58	23.08
Runoff (mm)	84	39	77	47	13	8	5	7	12	17	60	109	477
Alainfall (mm)	124	45	136	81	26	53	45	96	69	72	108	186	1041
Monthly and yearly statistics for previous record (Jan 1970 to Dec 1993-incomplete or missing months total 6.1 years)													
Moan Avg.	4.509	3.277	2.475	1.646	0.965	0.634	0.618	0.816	1.094	1.980	3.329	3.891	2.099
flows Low	1.585	1.148	0.688	0.667	0.413	0.286	0.279	0.282	0.293	0.277	0.896	1.260	1.065
${ }_{\left(m^{3} \mathrm{~B}^{-1}\right) \text { High }}$	7.125	9.440	4.355	3.007	3.898	1.469	1.944	2.699	4.975	5.669	7.146	6.439	2.672
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	38.27	38.88	47.18	15.71	18.64	9.80	22.39	24.04	42.15	29.77	47.03	44.86	47.18
Runotf (mm)	75	50	41	27	16	10	10	14	18	33	54	65	414
Rainfall (mm)	106	62	73	52	56	60	79	81	80	92	100	98	939

Factors offecting runoff: N
Station type: MIS

Grid reference: 35 (NY) 412545
Level stn. (m OD): 20.10

1994

Catchment area (sq km): 616.4 Max alt. (m OD): 950

Grid reference: 35 (NY) 605283 Level stn. (m OD): 92.40

078003 Annan at Brydekirk

Measuring authority: SRPB
Grid reference: 35 (NY) 191704 Level stn. (m OD): 10.00

Catchment area (sq km): 925.0
Hydrometric statistics for 1994

	JAN	FEB	MAR 62550	APR	MAY	JUN 6.747		AUG 19.330	$\begin{aligned} & \text { SEP } \\ & 17.590 \end{aligned}$	$\begin{aligned} & \text { OCT } \\ & 15.320 \end{aligned}$	NOV 63.950	$\begin{gathered} \text { DEC } \\ 75.830 \end{gathered}$	$\begin{aligned} & \text { Year } \\ & \mathbf{3 5 . 1 2 7} \end{aligned}$
Flows Avg.	59.450	40.030	62.550	37.150	13.100	6.747							
$\left(m^{3} s^{-1}\right): ~ P e a k$	140.50	212.70	207.10	147.30	56.72	35.34	57.27	191.00	53.64	93.68	279.70	321.40	321.40
Runoff (mm)	172	105	181	104	38	19	30	56	49	44	179	220	1198
Rainfall (mm)	187	104	194	114	28	82	107	133	70	91	177	236	1523
Monthly and yearly statistics for previous record (Oct 1967 to Doc 1993)													
Mean Avg.	47.610	36.410	33.770	22.550	15.450	11.230	10.960	17.890	24.330	35.930	41.540	45.900	28.614
flows . Low	17.820	12.820	8.402	6.124	3.519	2.937	1.944	2.007	3.362	3.592	11.490	19.530	16.402
$\left(m^{3} s^{-1}\right)$ High	83.440	105.700	63.910	52.350	53.160	32.150	34.940	76.400	76.330	86.820	77.930	87.030	36.425
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	405.40	305.00	293.30	213.30	229.30	171.30	253.10	378.90	446.60	499.10	325.00	355.40	499.10
Runoff (mm)	138	96	98	63	45	31	32	52	68	104	116	133	976
Rainfall (mm)	148	98	122	75	84	81	94	112	129	144	134	146	1367
Factors affecting runoff: N										1994 runoff is 123% of previous mean rainfall 111\%			

Station type: VA Max alt. (m OD): 821
rainfall 111\%

078004 Kinnel Water at Redhall

Measuring authority: SRPB
First year: 1963
Hydrometric statistics for 1994

	JAN	FEB	MAR	APR	MAY	JuN	JuL	AUG	SEP	OCT	Nov	DEC	Year
Flows Avg	5.484	3.634	6.569	2.838	0.815	0.391	0.960	1.929	1.667	1.688	6.746	7.516	3.356
($\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	33.71	48.28	61.73	25.28	10.36	9.35	17.19	24.47	18.32	25.22	71.54	81.14	81.14
Runoff (mm)	193	116	231	97	29	13	34	68	57	59	230	265	1391
Rainfall (mm)	212	113	229	126	36	84	124	147	94	94	203	250	1712

Monthly and yearly statistics for previous record (Oct 1963 to Dec 1993 -incomplete or missing months total 1.0 years)

Mean Avg.	4.382	3.165	3.008	1.843	1.491	1.026	1.014	1.715	2.610	3.545	3.937	4.305	2.670
flows Low	1.296	0.590	0.552	0.251	0.122	0.112	0.048	0.049	0.099	0.207	0.740	1.081	1.507
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	9.213	9.298	6.263	4.672	5.496	3.282	3.435	7.513	6.689	7.288	7.535	8.694	3.517
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	95.89	90.99	101.20	66.70	51.79	36.09	60.14	65.25	91.37	110.90	86.69	103.60	110.90
Runoff (mm)	154	102	106	63	52	35	36	60	89	125	134	152	1107
Rainfall (mm)	156	104	129	82	95	88	96	120	143	154	147	160	1474
Factors affecting Station type: VA	off: N									$1994 \text { rur }$	f is 126 all 116	of prev	us mean

080001 Urr at Dalbeattie

Measuring authority: SRPB
First year: 1963
Hydrometric statistics for 1994

	JAN	FEB	MAR	APR	MAY	JUN	Jut	AUG	SEP	OCT	NOV	DEC	Year
Flows. Avg,	12.360	10.050	11.180	7.479	1.590	0.495	1.075	2.409	2.456	3.792	13.930	13.930	. 708
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	53.93	72.83	54.02	43.14	8.08	3.34	9.49	14.43	11.58	50.06	72.94	61.02	72.94
Runotf (mm)	166	122	150	97	21	6	14	32	32	51	181	187	106
Rainfall (mm)	193	115	176	114	26	58	101	102	69	107	181	217	1459
Monthly and yearly statistics for previous record (Nov 1963 to Dec 1993)													
Mean Avg.	9.847	7.785	6.706	4.193	2.984	1.939	1.408	2.906	5.009	7.890	9.230	10.160	5.831
flows Low	3.534	1.419	2.094	0.753	0.308	0.246	0.137	0.149	0.319	0.522	1.711	3.369	3.109
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	19.080	19.340	12.570	11.550	10.880	6.833	5.081	13.310	17.160	19.400	19.420	19.200	8.358
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	133.70	100.10	95.03	69.39	69.92	59.18	68.42	104.60	129.40	162.20	129.70	164.30	164.30
Runoff (mm)	133	96	90	55	40	25	19	39	65	106	120	137	925
Rainfall (mm)	140	97	117	75	80	78	80	104	129	144	139	145	1328
Factors affecting nunoff: N										1994 runoff is 115% of previous mean rainfall 110\%			

Grid reference: 25 (NX) 822610
Level stn. (m OD): 4.00
Catchment area (sq km): 199.0 Max att. (m OD): 432
rainfall 110% of previous mean

081002 Cree at Newton Stewart

Measuring authority: SRPB
First year: 1963
Hydrometric statistics for 1994

	JAN	FEB	MAA	APR	MAY	JUN	JUL	AUG	$\begin{aligned} & \text { SEP } \\ & 10.080 \end{aligned}$	$\begin{aligned} & \text { OCT } \\ & 13.060 \end{aligned}$	NOV 27.680	$\begin{aligned} & \text { DEC } \\ & 35.190 \end{aligned}$	$\begin{aligned} & \text { Year } \\ & 17.290 \end{aligned}$
Flows Avg.	27.390	21.330	25.160	19.510	4.691	4.867	8.823	9.869	10.080	13.060	27.680		
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	86.19	130.00	76.37	171.40	48.68	38.97	100.50	76.03	61.57	114.20	130.20	190.10	190.10
Runotf (mm)	199	140	183	137	34	34	64	72	71	95	195	256	1482
Rainfall (mm)	262	143	232	173	40	110	137	137	108	157	198	310	2007
Monthly and yearly statistics for previous record (Oct 1963 to Dec 1993)													
Mean Avg.	23.920	17.530	17.040	11.120	7.979	6.532	7.596	10.970	15.920	21.190	23.240	24.150	15.599
flows Low	9.633	2.569	4.039	1.319	0.426	0.466	0.969	0.684	1.063	6.495	7.292	5.775	9.965
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	45.820 .	42.490	33.060	25.030	22.960	15.620	19.710	36.030	43.320	36.720	43.910	48.050	18.980
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	272.50	253.10	347.20	207.10	345.10	195.10	223.10	230.90	312.70	318.00	199.10	322.30	347.20
Runoff (mm)	174	117	124	78	58	46	55	80	112	154	164	176	1338
Rainfall (mm)	197	128	161	104	98	100	112	140	167	195	199	196	1797
Factors affecting runoff: N Station type: VA										1994 runoff is 111% of previous mean rainfall 112\%			

Measuring authority: SRPB
First year: 1967
Hydrometric statistics for 1994

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Ye
Flows Avg.	10.580	9.358	8.297	7.228	1.952	0.983	2.311	2.459	3.236	8.427	12.120	12.570	6.612
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right):$ Peak	59.78	71.21	60.55	114.10	36.64	17.21	41.39	47.88	23.04	123.60	100.80	88.09	123.60
Runoff (mm)	166	132	130	110	31	15	36	39	49	132	184	197	1219
Rainfall (mm)	206	140	152	137	34	82	101	111	98	161	194	215	1631
Monthly and yearly statistics for previous record (Jan 1967 to Dec 1993)													
Mean Avg.	9.899	7.151	6.689	4.273	2.513	2.065	2.189	3.686	5.875	8.799	9.804	9.252	6.013
flows Low	4.540	0.789	1.359	0.454	0.261	0.225	0.191	0.277	0.366	1.689	3.857	2.445	3.691
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	15.600	14.810	12.860	11.400	7.597	5.360	6.445	14.290	17.670	16.750	15.940	17.090	7.787
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-\dagger}$)	177.10	146.10	216.70	197.60	159.30	190.30	156.80	283.60	192.40	231.80	191.00	204.00	283.60
Runoff (mm)	155	102	105	65	39	31	34	58	89	138	149	145	1110
Rainfall (mm)	162	103	126	87	77	85	97	119	144	164	164	153	1481

Factors affecting runoff: NS P
Station type: VA

Grid reference: 25 (NX) 180599 Level stn, (m OD): 19.00

Catchment area (sq km): 171.0 Max alt. (m OD): 438

Hydrometric statistics for 1994

1994 runoff is 110% of previous mean rainfall 110\%

082002 Doon at Auchendrane

Measuring authority: CRPB
First year: 1974
Hydrometric statistics for 1994

		JAN	FEB	MAR	APR	MAY	JUN	JuL	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	12.730	8.364	13.520	8.456	3.423	3.587	3.434	4.426	5.662	6.452	12.010	17.150	8.276
$\left(m^{3} s^{-1}\right):$	Peak	34.25	41.68	44.23	41.75	9.60	9.85	7.77	24.33	22.70	45.19	42.48	102.50	102.50
Runoff (mm)		105	62	112	68	28	29	28	37	45	53	96	142	806
Rainfall (mm)		254	118	264	142	28	102	95	133	96	125	192	314	1863

Monthly and yearly statistics for previous record (Jul 1974 to Dec 1993 -incomplete or missing months total 0.1 years)

Mean Avg.	10.880	8.153	8.632	5.468	4.225	3.696	4.064	5.263	7.371	9.662	10.500	11.010	7.411
flows Low	5.203	3.685	4.270	3.157	2.390	2.265	2.397	2.557	3.613	4.732	4.785	6.247	5.559
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{High}$	15.120	18.360	13.570	10.520	8.006	4.981	6.945	10.930	17.680	14.610	17.290	20.680	8.698
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	85.15	63.08	69.51	61.06	48.63	19.63	61.38	46.34	103.20	121.50	83.78	84.49	121.50
Runoff (mm)	90	62	71	44	35	30	34	44	59	80	84	91	722
Rainfall (mm)	199	116	156	80	79	78	101	129	166	188	185	195	1672
Factors affecting Station type: VA	noff: P										ff is 112 fall 11	of pre	ous mean

083005 Irvine at Shewalton

Measuring authority: CRPB
First year: 1972
Hydrometric statistics for 1994

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	Nov	DEC	Year
Flows Avg.	19.870	10.280	20.850	11.260	2.113	1.604	2.863	6.578	4.944	6.373	17.830	33.960	11.583
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	92.20	141.20	130.00	84.87	24.87	8.21	55.47	68.98	49.79	46.11	124.60	290.90	290.90
Runoff (mm)	140	65	147	77	15	11	20	46	34	45	121	239	959
Rainfall (mm)	177	65	180	106	21	78	110	118	73	79	138	269	1414
Monthly and yearly statistics for previous record (Feb 1972 to Dec 1993 -incomplete or missing months total 0.2 years)													
Mean Avg.	17.380	10.580	11.640	6.212	3.716	2.908	3.341	6.162	11.170	12.620	15.920	15.210	9.741
flows Low	4.527	1.874	3.182	1.138	0.789	0.536	0.367	0.328	1.608	4.298	3.754	3.829	6.694
$\left(\mathrm{m}^{3} \mathrm{~s}^{-7}\right) \mathrm{High}$	28.890	26.480	23.440	16.980	11.530	10.870	12.060	20.070	33.760	23.910	27.770	30.470	12.406
Peak flow ($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$)	341.20	190.90	207.50	108.50	131.80	139.30	278.70	228.20	303.60	272.30	194.30	226.10	341.20
Runoff (mm)	122	68	82	42	26	20	24	43	76	89	108	107	808
Reinfall (mm)	134	78	113	66	65	74	86	106	136	130	138	135	1261
Factors affecting runoff: E Station type: VA										1994 runoff is 119% of previous mean rainfall 112\%			

084016 Luggie Water at Condorrat

Measuring authority: CRPB
First year: 1966
Hydrometric statistics for 1994

		JAN	FEB	MAR	APR	MAY	Jun	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	1.810	1.214	2.508	0.897	0.249	0.321	0.234	0.346	0.317	0.516	1.676	3.899	1.169
($\mathrm{m}^{3} \mathrm{~s}^{-1}$):	Peak	9.75	13.51	17.17		0.41	1.01	0.84	5.18	1.58	5.13	27.60	51.31	
Runoff (mm)		143	87	198	69	20	25	19	27	24	41	128	308	1088
Rainfall (mm)		180	86	215	70	22	75	76	86	57	86	139	273	1365

Monthly and yearly statistics for previous record (Jan 1967 to Dec 1993-incomplate or missing months total 1.3 years)

Mean Avg.	1.542	1.064	1.059	0.615	0.449	0.313	0.309	0.512	0.790	1.051	1.329	1.402	0.869
flows Low	0.680	0.415	0.370	0.287	0.166	0.138	0.147	0.123	0.125	0.129	0.367	0.652	0.539
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	3.104	2.378	1.846	1.030	1.199	0.692	1.751	1.606	3.386	2.121	2.362	2.669	1.121
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	30.25	19.34	28.11	14.61	14.54	7.01	27.14	22.06	44.46	34.20	30.68	36.04	44.46
Runoff (mm)	122	77	84	47	35	24	24	40	60	83	102	111	809
Rainfall (mm)	118	74	97	55	66	65	75	93	110	116	115	112	1096
Factors affecting	off: N									994	is	of pre	s mean

Station type: VA

Grid reference: 26 (NS) 739725
Level stn. (m OD): 68.00

Cetchment area (sq km): 33.9

Measuring authority: CRPB
First year: 1963
Hydrometric statistics for 1994

	JAN	FEB	MAR	APR	MAY	JUN	JuL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	77.730	70.790	94.330	80.810	30.190	15.770	19.590	25.300	24.000	25.800	67.670	94.270	52.19
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	100.80	112.30	124.20	112.40	59.61	48.13	46.29	64.57	58.89	53.90	93.86	138.40	138.40
Runoff (mm)	265	218	322	267	103	52	67	86	79	88	224	322	2093
Rainfall (mm)	339	126	457	183	40	173	101	197	108	150	241	432	2547
Monthly and yearly statistics for previous record (Jul 1963 to Dec 1993)													
Mean Avg.	67.760	56.240	50.980	37.100	25.220	19.100	18.750	24.700	36.550	53.460	59.320	61.970	42.542
flows Low	27.910	18.610	16.630	10.540	10.620	8.518	7.303	4.556	8.736	10.830	13.250	17.580	30.712
($\mathrm{m}^{3} \mathrm{~s}^{-i}$) High	119.100	134.600	138.200	77.130	73.120	51.860	44.640	85.730	91.360	90.150	115.000	125.500	54.082
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	169.50	163.60	196.80	112.40	92.02	78.48	116.60	115.30	121.60	138.50	145.70	148.50	196.80
Runoff (mm)	231	175	174	123	86	63	64	84	121	183	196	212	1712
Rainfall (mm)	251	157	198	109	117	111	124	153	209	225	226	229	2109
Factors affecting runoff: S Station type: VA										1994 runoff is 122% of previous mean rainfall 121\%			

Comment: September and October 1994 monthly flows have been estimated.

090003 Nevis at Claggan

Measuring authority: HRPB
First year: 1982

Grid reference: 27 (NN) 116742 Level sin. (m OD): 3.60

Catchment area (sq km): 76.8 Max alt. (m OD): 1344

Hydrometric statistics for 1994

	JAN	FEB	MAR	APA	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	9.418	3.072	15.450	9.874	4.435	8.391	1.576	3.260	4.083	4.898	7.950	13.510	7.189
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	86.04	58.50	109.80	73.42	25.54	66.89	6.27	64.40	68.46	53.61	66.89	122.00	122.00
Runoff (mm)	328	97	539	333	155	283	55	114	138	171	268	471	2952
Rainfall (mm)	424	137	658	313	61	303	74	170	165	203	311	577	3396
Monthly and yearly statistics for previous record (Sep 1982 to Dec 1993)													
Mean Avg.	10.310	7.461	9.697	5.541	3.910	2.083	3.927	5.682	7.314	8.433	7.403	10.190	6.839
flows Low	2.517	0.691	2.188	3.017	1.123	0.838	0.907	1.116	1.146	3.001	1.831	2.831	5.186
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	17.790	17.990	25.920	10.030	12.600	3.211	8.607	10.720	11.010	16.380	15.360	15.480	9.050
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	197.70	172.00	143.10	101.70	67.50	69.35	105.00	130.50	219.00	146.50	110.30	189.00	219.00
Runoff (mm)	360	238	338	187	136	70	137	198	247	294	250	355	2811
$\begin{aligned} & \text { Rainfall (mm)* } \\ & { }^{(1986-1993)} \end{aligned}$	458	324	434	161	132	92	188	256	262	312	300	399	3318
Factors affecting runoff: \mathbf{P} Station type: VA										1994 runoff is 105% of previous mean rainfall 102\%			

094001 Ewe at Poolewe

Measuring authority: HRPB
First year: 1970
Hydrometric statistics for 1994

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	$\begin{aligned} & \text { SEP } \\ & 22.720 \end{aligned}$	OCT	$\begin{aligned} & \text { NOV } \\ & 34.770 \end{aligned}$	DEC 56.720	$\begin{aligned} & \text { Year } \\ & \mathbf{3 1 . 6 3 0} \end{aligned}$
Flows Avg.	42.730	28.680	55.360	43.590	18.780	19.740	10.870	9.059	22.720	36.070	34.770	56.720	31.630
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	84.33	89.11	92.15	72.99	59.70	33.25	24.09	32.87	114.90	109.20	53.00	110.50	114.90
Runoff (mm)	259	157	336	256	114	116	66	55	133	219	204	344	2261
Rainfall (mm)	307	51	476	246	33	193	60	146	220	175	207	416	2530
Monthly and yearly statistics for previous record (Jan 1971 to Dec 1993)													
Mean Avg.	44.540	33.860	32.990	23.560	16.140	12.440	14.880	19.000	32.260	35.410	44.820	46.630	29.697
flows Low	13.820	10.660	8.842	4.537	3.862	3.725	7.884	6.240	7.016	13.160	12.000	15.740	19.389
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	81.130	83.670	97.870	38.270	38.250	27.180	34.730	37.000	60.300	66.220	78.310	81.840	41.411
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	177.10	247.70	156.20	73.59	77.66	64.43	72.78	87.93	109.20	125.50	136.10	179.80	247.70
Runotf (mm)	270	187	200	138	98	73	90	115	190	215	263	283	2125
Rainfall (mm)	298	189	237	129	111	117	133	167	245	265	312	317	2520
Factors affecting runoff: N										1994 runoff is 106% of previous mean rainfall 100\%			

Station type: VA

Grid reference:. 18 (NG) 859803
Level stn. (m OD): 4.60

Catchment area (sq km): 441.1 Max att. (m OD): 1014

095001 Inver at Little Assynt

Measuring authority: HRPB
First year: 1977
Hydrómetric statistics for 1994

	JAN	FEB	MAR	APR	MAY	JUN	JuL	AUG	SEP	OCT	NoV	DEC	Yaar
Flows Avg.	10.730	5.816	13.590	9.831	4.093	5.220	3.393	2.776	7.737	10.600	8.777	14.410	102
$\left(m^{3} s^{-1}\right):$ Peak	23.12	17.68	22.84	16.06	11.97	13.33	6.09	6.33	57.02	39.28	16.89	24.75	57.02
Runoff (mm)	209	102	265	185	80	98	66	54	146	207	165	281	1858
Rainfall (mm)	242	66	328	207	34	174	69	122	228	131	180	371	2152
Monthly and yearly statistics for previous record (Aug 1977 to Dec 1993)													
Mean Avg.	11.180	8.993	10.230	5.958	4.213	3.502	5.473	6.588	10.070	12.420	12.470	11.120	8.519
flows Low	4.082	2.397	4.179	3.453	1.660	1.812	2.432	3.394	4.048	6.227	3.181	4.631	6.956
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right.$) High	19.950	21.150	23.090	8.129	8.158	6.689	13.940	10.050	16.390	21.180	23.960	17.580	10.896
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	55.24	63.64	62.82	15.36	20.92	19.72	32.27	26.47	56.50	57.51	50.06	58.90	63.64
Runoff (mm)	218	160	199	112	82	66	107	128	190	242	235	217	1955
Rainfall (mm)* -(1978-1993)	246	155	227	101	86	108	140	169	236	246	263	253	2230
Factors affecting runoff: N Station type: VA										1994 runoff is 95% of previous mean rainfall 97%			

096001 Halladale at Halladale

Measuring authority: HRPB
First year: 1976
Hydrometric statistics for 1994

	JAN	FEB	MAR	APR	MAY	JUN	Jul	AUG	SEP	OCT	Nov	DEC	Year
Flows Avg.	13.120	3.578	11.340	5.130	0.705	0.425	0.531	0.650	4.249	5.241	7.277	7.221	4.974
$\left(m^{3} \mathrm{~s}^{-1}\right)$: Peak	83.96	27.32	57.87	42.92	3.72	1.36	0.98	5.54	69.74	35.12	64.98	31.99	83.96
Runotf (mm)	172	42	148	65	9	5	7	9	54	69	92	95	787
Rainfall (mm)	159	67	151	94	20	55	48	63	117	84	96	136	1090
Monthly and yearly statistics for previous record (Jan 1976 to Dec 1993)													
Mean Avg.	8.344	6.338	6.071	2.781	2.020	1.819	2.019	2.897	4.632	7.357	8.474	7.446	5.013
flows Low	4.478	1.555	2.907	0.624	0.279	0.271	0.215	0.186	0.447	1.351	1.807	3.004	3.326
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ Migh	12.300	10.940	9.753	6.442	5.434	4.128	5.064	9.192	7.886	16.560	14.730	12.390	6.418
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	98.96	86.24	122.60	69.28	108.00	140.80	129.10	172.00	189.10	169.10	163.20	162.00	189.10
Runoff (mm)	109	76	79	35	26	23	26	38	59	96	107	97	773
Rainfall (mm)	127	77	105	63	60	65	67	85	111	129	132	117	1138
Factors affecting runoff: \mathbf{N} Station type: VA										1994 runoff is 99% of previous mean rainfall 96%			

Grid reference: 40 (SZ) 503874
Level stn. (m OD): 10.40
Catchment area (sq kmi): 29.8
Max alt. (m OD): 167
Grid reference: 29 (NC) 89156
Level stn. (m OD): 23.20
Catchment area (sq km): 204.6 Max alt. (m OD): 580

101002 Medina at Upper Shide

Measuring authority: NRA-S
First yoar: 1965
Hydrometric statistics for 1994

		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	1.176	0.752	0.387	0.408	0.383	0.231	0.161	0.155	0.177	0.264	0.447	0.595	0.427
$\left(\mathrm{~m}^{3} \mathbf{s}^{-1}\right):$	Peak	6.51	6.29	1.87	3.22	3.26	0.62	0.19	0.26	0.80	3.19	1.93	4.83	6.51
Runoff (mm)	106	61	35	35	34	20	14	14	15	24	39	53	451	
Rainfall (mm)	173	98	64	75	102	43	15	55	103	115	90	140	1073	

Monthly and yearly statistics for previous record (Oct 1965 to Dec 1993 -incomplete or missing months total 6.8 years)

Mann Avg.	0.430	0.391	0.315	0.255	0.190	0.138	0.124	0.116	0.152	0.236	0.318	0.386	0.254
flows Low	0.132	0.159	0.121	0.104	0.094	0.068	0.073	0.044	0.077	0.093	0.088	0.116	0.122
$\left(m^{\mathbf{3}} \mathbf{s}^{-1}\right)$ High	0.928	0.795	0.903	0.522	0.356	0.213	0.199	0.181	0.365	0.594	0.769	0.822	0.335
Poak flow ($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$)	6.47	6.35	7.28		7.00	1.89	3.72	1.74	3.74	6.39	8.64	6.50	
Runoff (mm)	39	32	28	22	17	12	11	10	13	21	28	35	269
Rainfall (mm)*	91	65	83	54	52	52	53	55	64	107	82	105	863

-(1966-1993)
Factors affecting runoff: G
Station type: FL

Mensuring authority: DOEN
First year: 1975
Hydrometric statistics for 1994

	JAN	FEB	MAR	APR	MAY	JuN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	8.256	7.238	7.239	6.004	2.034	1.960	1.517	1.927	1.682	1.571	3.398	7.830	4.207
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	71.34	66.69	55.31	36.48	8.50	26.45	10.42	26.45	11.53	8.80	36.80	44.22	71.34
Runoff (mm)	152	121	133	107	38	35	28	36	30	29	61	144	913
Rainfall (mm)	154	126	165	110	29	92	79	107	74	66	94	193	1289
Monthly and yearly statistics for previous record (Jun 1975 to Dec 1993-incomplete or missing months total 0.1 years)													
Mean Avg.	6.269	5.817	5.210	3.562	2.541	2.066	2.091	2.720	3.280	5.092	4.983	5.988	4.129
flows Low	0.418	2.244	2.441	1.687	0.925	0.843	0.832	0.579	0.664	2.033	1.689	3.203	2.634
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \quad \mathrm{High}$	9.839	14.320	8.066	6.536	5.024	4.635	3.990	7.213	8.151	9.979	7.351	11.740	6.211
Poak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	99.98	53.00	47.48	66.25	25.51	29.50	50.79	105.20	67.37	110.80	64.52	78.29	110.80
Runoff (mm)	116	98	96	64	47	37	39	50	59	94	89	110	897
Rainfall (mm)	134	83	112	71	67	74	88	95	103	127	109	121	1184
Factors affecting runoff: E Siation type: VA										1994 runoff is 102% of previous mean rainfall 109\%			

203012 Ballinderry at Ballinderry Bridge

Measuring authority: DOEN
First year: 1970
Hydrometric statistics for 1994

		JAN	FEB	MAR	APR	MAY	JUN
Flows	Avg.	24.640	24.540	14.540	11.680	3.114	2.139
$\left(m^{3}-1\right):$	Peak	98.50	107.50	55.07	51.41	11.37	40.03
Runoff (mm)	157	142	93	72	20	13	
Rainfall (mm)	160	140	138	95	37	77	

Monthly and yearly statistics for previous record (Jul 1970 to Dec 1993)

Moan Avg.	16.020	12.140	10.920	7.310	5.280	3.843	2.987	4.933	5.852
flows Low	9.339	4.805	5.502	3.515	2.454	1.627	1.518	1.060	1.23
$\left(m^{3} \mathrm{a}^{-9}\right)$ High	24.690	25.040	17.260	14.090	12.740	8.710	7.498	17.640	21.020
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	183.20	139.90	98.37	112.50	109.20	61.60	127.20	140.10	141.00
Runoff (mm)	102	71	70	45	34	24	19	31	36
Rainfall (mm)*	124	78	106	79	60	72	72	106	85

-(1983.1993)
Factors affecting runoff: \mathbf{N}
Station type: VA

Grid reference: $23(\mathrm{IH}) 926799$
Level stn, (m OD): 16.00

Catchment area (sq km): 419.5 Max alt. (m OD): 476
AUG
AUG
2.852
33.40
18
SEP
4.366
45.11
27
73

5.852
1.236
21.020
141.00
36
85

OCT
2.1
6.
1
CT NO
\qquad
\qquadDEC

Catchment area ($\mathrm{sq} \mathbf{~ k m}$): 145.3 Max alt. (m OD): 539

203020 Moyola at Moyola New Bridge

Measuring authority: DOEN First year: 1971			Grid reference: 23 (IH) 955905 Level stn. (m OD): 13.00							Catchment area (sq km): 306.5 Max alt. (m OD): 554			
Hydrometric statistics for 1994													
	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	18.790	19.040	15.340	12.330	4.284	3.400	3.229	3.911	3.789	3.583	10.700	14.270	9.330
($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$): Peak	96.82	103.70	65.70	64.75	17.68	41.46	20.45	32.95	13.88	15.98	62.51	51.43	103.70
Runoff (mm)	164	150	134	104	37	29	28	34	32	31	91	125	960
Rainfall (mm)	179	148	164	110	37	87	70	96	69	54	114	159	1287
Monthly and yearly statistics for previous record (Feb 1971 to Dec 1993)													
Mean Avg.	15.080	11.390	10.550	6.812	4.788	3.652	2.976	4.529	5.702	9.101	11.240	13.490	8.267
flows Low	7.707	3.696	3.776	2.238	1.335	1.015	0.952	0.748	1.366	2.000	4.563	5.088	4.961
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	23.280	25.940	17.160	14.520	12.360	7.159	6.512	15.310	19.100	16.790	20.770	24.410	10.654
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	152.20	121.90	90.99	120.40	114.10	67.84	83.33	111.00	112.70	134.80	117.20	154.60	154.60
Runoff (mm)	132	91	92	58	42	31	26	40	48	80	95	118	851
Rainfall (mm)* (1983-1993)	145	93	126	89	71	77	81	111	97	133	108	130	1261
Factors affecting runoff: S PG I Station type: VA										1994 runoff is 113% of previous mean rainfall 102\%			

205004 Lagan at Newforge

1994

Measuring authority: DOEN
First year: 1972
Hydrometric statistics for 1994

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	20.860	24.240	14.230	8.969	2.907	1.614	1.619	2.304	3.338	5.934	14.290	14.600	9.483
($\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	76.84	90.99	57.14	32.93	6.84	3.39	6.77	12.20	20.36	36.79	45.38	34.66	90.99
Runoff (mm)	114	120	78	47	16	9	9	13	18	32	76	80	610
Rainfals (mm)	125	131	86	63	40	43	60	90	62	75	83	101	959
Monthly and yearly statistics for previous record (Aug 1972 to Dec 1993)													
Mean Avg.	16.480	11.870	10.860	7.587	4.788	3.407	2.641	4.214	5.621	10.600	11.840	16.210	8.839
flows Low	8.508	4.569	2.820	2.064	1.208	0.944	0.789	0.615	0.850	1.075	3.061	3.843	4.810
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \quad$ High	26.460	25.410	18.740	19.170	16.600	11.230	8.018	19.470	18.090	27.610	27.690	43.090	12.235
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	84.30	66.22	69.57	112.20	55.15	62.72	24.30	76.10	70.53	121.00	91.08	128.40	128.40
Runoff (mm)	90	59	59	40	26	18	14	23	30	58	63	89	569
Rainfall (mm)*	87	60	83	73	56	61	60	95	73	94	73	90	905

-(1983-1993)
Factors affecting runoff: GEI
Station type: VA

Grid reference: 33 (IJ) 329693
Level stn. (m OD): 2.00

Catchment area (sq km); 490.4 Max alt. (m OD): 532

205005 Ravernet at Ravernet

Measuring authority: DOEN
First year: 1972
Hydrometric statistics for 1994

		JAN	FE8	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	2.939	3.188	2.040	1.092	0.261	0.084	0.087	0.106	0.182	0.561	2.195	2.143	1.228
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$:	Peak	12.03	14.46	5.45	4.47	0.64	0.15	0.31	0.45	0.79	6.60	8.36	5.18	14.46
Aunoff (mm)		113	111	79	41	10	3	3	4	7	22	82	83	557
Rainfall (mm)		134	138	83	63	41	41	59	84	53	81	97	105	979

Monthly and yearly statistics for previous record (Aug $\mathbf{1 9 7 2}$ to Dec $\mathbf{1 9 9 3}$ —incomplete or missing months total 2.0 years)

Mean Avg.	2.066	1.475	1.167	0.917	0.529	0.314	0.138	0.368	0.606	1.254	1.251	1.911	0.999
flows Low	0.689	0.502	0.313	0.195	0.054	0.040	0.006	0.008	0.013	0.066	0.260	0.573	0.667
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	4.045	3.653	2.089	2.422	1.780	1.260	0.356	2.103	2.232	4.361	2.994	5.916	1.278
Peak flow ($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$)	15.45	18.89	14.98	19.75	13.82	11.91	2.60	17.52	11.32	24.15	17.04	22.79	24.15
Runoff (mm)	80	52	45	34	20	12	5	14	23	48	47	74	454
Rainfall (mm)	95	57	78	56	65	60	60	82	88	90	79	96	906
Factors affecting Station type: FV	off: N										f is 12	of pr	mean

Comment: August 1994 contains estimated daily flows.

THE NATIONAL RIVER FLOW ARCHIVE DATA RETRIEVAL SERVICE

The National River Flow Archive comprises over 30,000 station-years of daily river flows and incorporates data from over 1400 gauging stations throughout the United Kingdom. In addition to gauged flow data, naturalised data (see page 39) have been derived from the records of a small number of gauging stations. Catchment areal rainfall and the highest instantaneous flow, when available, are also archived on a monthly basis.

In order that the contents of the archive may be readily accessible, a suite of programs has been developed to provide a selection of retrieval options. Descriptions of these options are listed on pages 137 and 138 and can also be found, together with examples of the computer output in the National River Flow Archive Data Retrieval Service Handbook which is intended for regular users of the Archive and is available free from the address opposite. The format of certain of the retrievals is currently under review. All data retrieval programs have been designed to allow flexibility in the presentation of the options, particularly those producing graphical output. Before finalising a data request it is recommended that the Concise Register of Gauging Stations on pages 139 to 145, be consulted, and that, where continuity of record is important, the availability of suitable data sets are checked by referring to the Summary of Archived Data in the Handbook. As an aid to data selection and to the interpretation of hydrological analyses the 1986-90 Hydrometric Register and Statistics (see page 174) is recommended as a source of indispensable reference material.

In response to user requirements the data retrieval facilities are being continually updated and extended. A wide range of specialist analyses and presentations is now available. Individuals having data requirements not catered for in the standard retrieval suite are invited to discuss their particular needs - address opposite.

Retrievals are normally available as A4 paper listings, diskette, or as hydrograph plots.

Cost of Service

To cover the computing and handling costs, a moderate charge will be made depending on the output options selected. Estimates of these charges may be obtained on request; the right to amend or waive charges is reserved.

Requests for Retrieval Options

Requests for retrieval options should include: the name and address to which output should be
directed, the gauging stations for which data are required together with the period of record of interest and the title of the required options. Where possible, a daytime telephone number should be given.

Requests should be addressed to:

The National Water Archive Office
Institute of Hydrology
WALLINGFORD
OXFORDSHIRE OX10 8BB

Telephone: Wallingford (01491) 838800
Facsimile: (01491) 692424
Email: nwamail@ioh.ac.uk

The National Water Archive

As of April 1992, the River Flow Archive was incorporated into the National Water Archive (NWA) - one of NERC's seven Designated Data Centres. These Centres, located at NERC Institute sites, exist to hold data and provide information and advisory services to a wide range of users.

An introduction to the NWA's facilities is available on the World Wide Web:
http: //www.nwl.ac.uk:80/ih/
The National River Flow and National Groundwater Level Archives form the kernel of the National Water Archive but a very broad range of hydrological - and related - data sets are being assimilated into the co-ordinated management that the NWA provides. Data holdings range from the catchment scale (e.g. detailed climatological and hydrological data for a network of experimental catchments) to national (flood event data) and international coverage (European and southern African data held as part of the 'FRIEND' Project' ${ }^{1}$ of the International Hydrological Programme; World Floods Archive). Further details of the UK databases - and the associated facilities - are given overleaf. The utility of the archived time series data is enhanced by the availability of complementary spatial information (for example the digitised river network and UK soils hydrology map) and by the manipulative potential provided by modern data handling systems and analytical packages.

Staff at the NWA maintain close contacts with measuring authorities and keep under review developments in the field of network design, instrumentation and information technology. A continuing dialogue with both data suppliers and an active community of users ensures that the databases and retrieval facilities are reviewed continuously to provide an effective and responsive service across a broad range of applications.

The UK Flood Event Archive -

Data describing flood events and associated rainfall have been formally gathered by the IH since 1969, the beginning of the Flood Studies Project (FSP ${ }^{2}$). Also associated with the Flood Event Archive are data collected from a network of Representative Basins. The present Archive holds over 4000 events, the majority of which are fairly simple short duration rainfall-runoff events of the type used for the FSP. The data most commonly collected are river flow, storm and antecedent rainfall and soil moisture deficit. These components are stored on a relational database allowing flexible access and data association. A variety of analyses have been developed to collate and manipulate the data. Examples include:

Derivation of a catchment average rainfall profile for an event;
A plot of a catchment map and rainfall hyetographs for an event;
A plot of event rainfall and flow hydrographs;
Event analysis using the FSP unit hydrograph and losses model;
Plots of variation in unit hydrograph parameters and percentage runoff between events on a catchment.
Data are available as lists on hard copy or on floppy disk.

Peaks-Over-Threshold (POT) Floods Database ${ }^{3}$

This database comprises instantaneous peak flow data from river gauging stations throughout the UK. These peaks have been manually extracted from river records, generally from stage hydrographs, where the threshold was chosen to yield, on average, five peaks a year above the selected flow. There have been three main cycles of data collection and abstraction, first, for the FSP, second, at the Department of the Environment's Water Data Unit, beginning in 1978, and third, at the IH for a Ministry of Agriculture, Fisheries and Food Commission in 1985-91. Currently the database holds over 77,000 peaks for 857 gauging stations, with an average length of record of 20 years. Annual maxima have been derived automatically from these data and are held independently on the relational database. Annual maxima are also held for a further 116 stations where records proved unsuitable for POT extraction.

Data are available as lists on hard copy or on floppy disk.

Experimental Catchments Archive ${ }^{4}$

The data gathered from the nine major groups of the IH's experimental catchments are held in an independent archive within the NWA. The catchments
have been highly instrumented and an intensive recording regime has been employed. Derived catchment data are stored for the main hydrological components of precipitation, evaporation and runoff as either hourly or daily values. Additionally, the component site-specific data used to generate the areal values are also stored, generally at finer time resolutions. Other, complementary datasets (such as soil moisture measurements) are available for some of the sites.

It is recommended that potential users of any of these additional datasets contact the NWA office to discuss their requirements.

The European Water Archive

The European Water Archive has been assembled as an integral part of the FRIEND - Flow Regimes from International Experimental and Network Data - research programme. This is an international collaborative study into regional hydrology in Europe and is a recognised contribution to Unesco's Fourth International Hydrological Programme.

The European Water Archive was developed by four regional coordination centres in Germany, the Netherlands, Norway and the United Kingdom collecting data from 17 European countries. The central archive is held at the Institute of Hydrology and includes summary information for some 3500 gauging stations, time series of annual maxima flood data and daily mean flows, and key flow statistics ${ }^{5}$. In addition, thematic, soil, climate, land use and catchment boundary information is held on a Geographical Information System.

For further details of the European Water Archive, contact the Flow Regimes and Environmental Management Section of the Institute of Hydrology.

References

1. Gustard, A.G., Roald, L.A., Pemuth, S., Lumadjeng, H.S. and Gross, R. 1989. Flow Regimes from Experimental and Network Data. Institute of Hydrology, Wallingford, 2 Vols.
2. Flood Studies Report 1975. Natural Environment Research Council (5 Vols., reprinted 1993).
3. Bayliss, A.C. and Jones, R.C. 1993. Peaks-Over-Threshold Floods Database: Summary Statistics and Seasonality. Institute of Hydrology, Report No. 121.
4. Roberts, A.M. 1989. The Catchment Research Database at the Institute of Hydrology. Institute of Hydrology, Report No. 106.
5. Gustard, A. (Ed.) 1993 Flow Regimes from International Experimental and Network Data (FRIEND). Institute of Hydrology, Wallingford, 3 Vols.

LIST OF SURFACE WATER RETRIEVAL OPTIONS

The standard retrievals have been grouped into Basic, Analytical and Station-based categories.

OPTION TITLE
CODE

Basic time-series retrievals

TDF Table of daily mean gauged (or naturalised) discharges

TMF Table of monthly mean gauged (or naturalised) discharges

TME Table of monthly extreme flows

TMR Table of catchment monthly rainfall

YBM Yearbook data tabulation (monthly)

HDF Hydrographs of daily mean flows

TRR Table of catchment monthly areal rainfall and runoff

Includes monthly and annual summary statistics. Flows in cubic metres per second.

Includes monthly and annual summary statistics. Flows in cubic metres per second.

The lowest and highest daily mean flows, together with the highest instantaneous flow and date of occurrence (where available). Flows in cubic metres per second. Includes summary statistics.

Rainfall totals in millimetres and as a percentage of the 1941-70 catchment average (percentages based on the 1961-90 Standard Period will soon be available). Includes summary statistics.

Runoff is normally derived from the monthly mean gauged flow. An additional listing is provided for catchments. with naturalised flow records. Includes summary statistics. Rainfall and runoff totals are in millimetres.

Monthly river flow and catchment rainfall data for a specified year together with comparative statistics derived from the historical record. Naturalised flows (where available) - and the corresponding runoff may also be tabulated.

Choices of scale, units, truncation level and overlay grid pattern are available. The period of record maximum and minimum flows, or the mean flow, may be included. The plots may be based on single or n -day means, or on n -day running mean flows.

Choices of scale, units and overlay grid pattern are available. The period of record maximum, minimum and mean flows may be included.

YBD Yearbook data tabulation (daily)

FDS Flow duration statistics

THS Table of hydrometric statistics

Station-based retrievals

SCD Gauging station summary sheet

GSR Table of gauging station reference infor-

A4S Gauging station and catchment description

River flow and catchment rainfall data for a specified year with basic gauging station and catchment details and flow statistics derived from the historical record.

Tabulation of the 1-99 percentile flows with optional plot of the flow duration curve. The percentiles may be derived from daily flows or n-day averages and the analysis may be restricted to nominated periods within the year, e.g. AprilSeptember only. Choices of scales, grid marking and units are available and the percentiles may be expressed as a percentage of the average flow or of a nominated flow.

Provides a comparison between summary statistics for a selected year, or a group of years, and the corresponding statistics for a nominated period of record (as featured in the Hydrometric Register and Statistics 1986-90).

Includes a daily flow hydrograph (with period of record extreme values) and flow duration curve together with summary statistics relating to river flow, catchment runoff and catchment rainfall. A description of the gauging station and catchment is also provided together with selected catchment characteristics and a concise summary of the archived data.

Tabulation of selected gauging station details and catchment characteristics for nominated gauging stations.
dessex

A brief summary of the gauging station, its history and major influences on the flow regime, together with catchment details.

[^9]Concise Register of Gauging Stations

Station number	River and ntation name	Grid raference	Auth－ orty	Araa （eq kmp	Station number	Alver and station name	Grid reference	Auth－ ority	Aree （sq km）
002001	Helmadale at Kiphodir	29979181	HAPB	551.4	015030	Dean Water at Dean Bricge	32937458	TRPB	230.0
					015032	Ordie Bum at Jockstone	30737337	TR	20.0
003001	Stin at Lairg	25819062	SE	494.6	015034	Gerry at Kiliiccrankia	29017637		745.0
003002	Carron it Sgodachail	24908921	HAPB	241.1	015035	Turmmed at Kintoch Ramnoch	26637588	TRPB	647.0
003003	Orkel al Eatier Turnaig	24039001	${ }^{\text {HPPB }}$	330.7	015038	Tummed at Bridge of Gout	24977570	TRPB	247.0
003004	Cansley ot Rosehail	24729022	HRPB	187.5	015039	Tilit at Martole Lodge	28927717	TR	165.0
003005	Shtr at Inveran	25748974	HAPB	575.0	015041	Lyon at Camusurschan	26207477	TRPB	237.0
004001	Conon at Moy Bridge	24828547	HRPB	961.8	016001	Esrin at Kinkelll Bridge	29337167	TRPE	590.5
004003	Almess at Almess	26548695	HRPB	201.0	016002	Esma at Aberuchill	27547216	TRPB	176.9
${ }^{004004}$	Alockwaler at Contin	24558583	HRPB	336.7	018003	Ruchill Weter at Cututraggan	27647204	TRPB	99.5
004005	Meig al Glonmeannie	22888528	HRPE	120.5	018004	Eam at Forteviot Bridge	30437184	TRPE	782.2
004006	Bran at Dasmuctioran	22058602	HRPE	118.1	016006	Ounning Burn at Granco	30197147	TRPP	12.1
					016007	fuuthven Water at Aberutiven	29757154	TRA	49.0
005001	Beouly at Erchiesa	24288405	SE	849.5	016011	Alt Surath s＇Ghtime at Auchinner	26957158	TR	
005002	Farrar at Sinuy	23908405	HRP8	311.3					
005003	Glostat kerrow Wood	23548321	HRPB	481.8	017001	Corron at Hesdswood	28326820	FRPB	122.3
005004	Glast at fosnokylo	23158288	HRPB	277.5	017002	Leven at Leven	33697006	FRPE	424.0
					017003	Bomy Water at Bonnybridge	28248804	FRP压	50.5
006001.	Nosa at Nozs Cassie Farm	26398410	SE	1792.3	017004	Ore at Balfour Mains	33306997	FRPE	162.0
008003	Morision al Invermoristion	24168169	SE	391.0	017005	Avon at Polmontrill	29528787	FAPE	195.3
006000	Allt ehlaraidh at invermoriston	23778168	SE	27.5	017008	South Queich al Kinross	31227015	FAPB	33.7
008007	Nose at Nozes Sido	28458427	HRPP	1839.1	017012	fied dum at Castlocary	27888780	FAPP	22.0
006008	Enrick at Mill of Tors	24508300	HRPP	105.9	017016	Lochiy Aurn at Whennytal	32206385	FAPB	14.0
					017017	Greens Burn at Killytord Bridge	31507053	FRPB	7.9
$\begin{aligned} & 007001 \\ & 007002 \end{aligned}$	Findhom at Shenachis Findhorn at Forraz	$\begin{aligned} & 28268337 \\ & 30188583 \end{aligned}$	HAPB HAPB	$\begin{aligned} & 415.6 \\ & 78.19 \end{aligned}$	018001	Allan Water at Kinbuck	27927053	FAPB	161.0
007003	Loncie at Sheritfmilts	31948826	NERPB	216.0	018002	Devon at Glenochil	28566960	FRPB	181.0
007004	Nairn at firmall	28828551	HRPB	313.0	018003	Teith at Aridge of Teith	27257011	FRPB	518.0
007005	Divie at Dunphail	30058480	HAPB	165.0	018005	Allan Woter at Bridge of Altan	27866980	FAPB	210.0
007006	Loasie at Torwimy	31358489	NEAPB	20.0	018007	Dovon as Foasoway Bridgo	30117018	FAPB	69.5
007007	Atack Bum ot Monoughty	31558584	NEFPE	44.0	018008	Leny at Anie	25857096	FAPG	190.0
					018010°	Forth at Gargummeck	27146953	FAPB	397.0
008001	Spey al Aberiour	32788439	NERPE	2654.7	018011	Forth at Cruigtorth	27756955	Fffr	1036.0
008002	Spey al Kinara	28818082	NERPE	1011.7	018012	Ardoct Sum at Dounn Castie	27297008	Ffps	48.0
008003	Speey al futiven Bridgo	27597996	NERPE	533.8	018013	Block Devon at fould Mal	29146924	FRPB	67.0
0008004	Avon at Dolnashaugh	31868352	NERP詸	542.8	018014	Bonnock Burn at Bannockbum	28126908	FRP8	23.7
$\bigcirc 008005$	Spey at toat of Garion	29468191	NERPE	1287.8	018016	Ketty Water at Clashrmere	24686968	FFPP	2.8
008008	Spay al Boat o Arig	33188518		2861.2	018017	Monschyte Burn at Balqubiddar	24757230	IH	7.7
008007	Spay at inveriruim	28877962	NERPB	400.4	018018	Kirkton Burn at Balquhidder	25327218	1 H	6.8
008008	Tromia at Tromie Bridgo	27897995	NERPG	130.3	018019	Comer Burn at Comer	23877042	FRPB	0.9
008009	Ouinain at Belinsan Bridgo	29778247	NERPE	272.2	018020	Loch Ard Burn at Duchr	24886987	FRPE	0.9
008010	Spay al Grantown	30338288	NERP晶	1748.8	018021	Loch Ard Burn at Elrig	24696987	fRPB	1.5
008011	Livet to Minmore	32018291	NEAPE	104.0	018022	Forth at Miton	25037135	FRPB	4.5
008013	Foshise at Fosthe Eridge	28498047	NEFPE	231.0					
008015	Fiddich al Auchindoum	33558399	NEPP易	44.5	019001	Almond at Craigioral	31856752	FRPB	369.0
${ }^{008016}$	Conglasa，Watar at Auchrischan	31758191	NEAPB	40.8	019002	Almand at Almond Weir	30046652	FRPB	43.8
008017	Burn of Carron at Daimaine	3237.8415	NERPB	15.2	019003	Breich Water at Eroich Weir	30146839	FRPP	51.8
					019004	North Esk at Oalmore Weir	32526818	FRPB	81.6
009001	Doveron at Avochie	35328464	NEAPB	441.6	019005	Almond st Almondell	30866686	FRPB	229.0
009002	Deveron at Muirask	37058498	NEFPPB	954.9	019006	Water of Leith ot Murrayfield	32286732	FRPB	107.0
${ }^{009003}$	lito at Grange	34948506	NEAPB	178.1	019007	Esk at Muszallburgh	33398723	FRPB	330.0
009004	Ecgie at Recteraig	35198373	MEAPB	179.0	019008	South Esk at Prestortholm	33256823	FAPB	1120
009005	Aht Deveron at Cabrach	3378829	＇GAWD	67.0	019010	Braid Eurn at Liberton	32736707	FAPB	18.2
${ }^{009006}$	Dosktord Burn at Culton	35048667	NEAPB	46.5	019011	Norrt Eak at Dalkeich Palace	3333 6678	FRPB	37.0
009007	Forgue Burn at inverkeithy	38278469	NEAPE	88.3	019012	Wster of Leith at Colinion	32126678	FRPB	72.0
					019014	Brox Eurm al Newliston	31146732	FRPB	34.1
0100003	Yupe it Inverugie	41018485	${ }_{\text {NERPPP }}$	$\begin{aligned} & 325.0 \\ & 523.0 \end{aligned}$	019017	Gogar Burn at Tumbruse	31616733	FRif	38.8
					020001	Tyme at East Linton	35916788	FRPP	307.0
011001	Don et Parkhill	3887814,	NERPE	1273.0	020002	West Pafter Bum at Luffinss	34886811	FRPB	26.2
011002	Don et Hsughton	3756820	NERPE	787.0	020003	Tyne at Spilmerstord	34586889	FRPB	161.0
011003	Dan at Eridge of Altara	35668170	NERPE	499.0	020004	East Peffer Bum at Lochhour	36106824	fapb	31.1
0111004	Urie at Pitcaple	37218260	NERP厚	198.0	020005	Bima Water st Seltoun Hall	3457 6898	FRPB	93.0
011005	Don at Mil of Nawe	33718121	NERPE	1870	020006	（iel Waser at Betion Houso	36456788	Ffips	51.8
					020007	Giftord Water at Lennoxiove	35116717	fRPB	64.0
012001 012002	Dee it Wcodend	36357956	NERPP	13700	020008	Brox Eum at Eroxmouth	36976776	FRPB	19.7
012002	Oeo at Pork	37987983	NERP明	1844.0					
012003	Oen en Pohthollick	33447965	NERPE	690.0	021001	Fruid Water at Fruid	30886205	Lawd	23.7
012004	Cirnock Bum at Littlomill	33247956	SOAF	30.3	021002	Whitendider Water at Hungy Snour	36636633	Lawd	45.6
012005	Muick at Inverrmuick	33847947	NEAPB	110.0	021003	Tweod at Peebles	32576400	TWRPB	694.0
012008	Gairn at Invargairn	33537971	NERPB	150.0	021004	Watch Weter at Watch Watar Razanvoir	36646588	brwo	10.7
012007	Dase at Mar Lodge	30987895	NERPB	289.0	021005	Tweed at Lyne ford	32086397	TWRPB	373.0
012008	Feugh at Hough Heasd	36877928 36247834	NEAPB	229.0	021006	Tweod et eoloside	34986334	${ }^{\text {TWRPP }}$	1500.0
012009	Whiter of Dyest Cherr	36247834	NEAPB	41.7	021007	Ettrick Water at Lincosan	34866315	TWRPP	499.0
					021008	Teviot at Ommiston Mill	37026280	TWRP8	1110.0
013001	Bervie al 1 nverbervie	38287733	NERPP	123.0	021009	Tweod at Northem	38986477	TWRPE	4390.0
013002 013002 013003	Luther Water ot Luther Bricgo	38667668	$\mathrm{TRPB}^{\text {TRP }}$	138.0	021010	Twoed at Dertourgh	35888320	TWFPs	2080.0
${ }^{013003}$	South Eak er Stennoctiy Bridgo	35837593	TRP8	487.0	021011	Yarrow Water at Phitphough	34396277	TWRP8	231.0
013004	Prozen Water at Prosen Bridge	33987588	TRPB	104.0	021012	Teviot al Howick	35228159	TWFPP	323.0
013005	Lunsen Watar at Kirkton Mill	36557494	TRP8	124.0	021013	Gota Water at Galashieds	34796374	TWRPB	207.0
013007	Narth Eak ar Logia Mill	36997840	${ }^{\text {TRPB }}$	730.0	021014	Tweed at Kingledares	31096285	TWRPB	139.0
013008	South Eik at Brachin	36007596	TRPB	490.0	021015	Leader Weter at Eariston	35658388	TWFPB	239.0
013009	West Water at Dalthousie Brdge	35927880	TRPB	127.2	021016	Eye Wout at Eyemourth Mill	39426835	TWFPP	119.0
013010	Brothock Woite st Arbras：h	36407419	${ }_{\text {TRPB }}$	50.0	021017	Etrrick Water at Brockhoperig	32346132	TWPPB	37.5
013012	Sourn Eak at Gelta Pricga	33727653	TRPB	130.0	021018	Lyne Water at Lyne Sistion	32098401	TWFPB	175.0
					021019	Manor Water at Codermuit	32176369	TWFPs	61.6
014001	Eden at Kembock	34157158	${ }_{\text {TRPB }}$	307.4	021020	Yarrow Whater at Gordon Arms	33098247	TWPPB	155.0
014002	Oighty Werer at Balrossie Ma	34777324	TRP8	126.9	023021	Twead at Sprouston	37526354	TWRPs	3330.0
014005	Motray Weter al St Michoels	34417224	TRPB	52.0	021022	Whiteadder Water at Hutton Castie	38816550	TWRPB	503.0
014008	Monikie Burn at Panbrida	35747361	TRPB	18.0	021023	Loat Water at Codstritam	38396396	TWRPS	113.0
014007	Craigmill Burn at Craigmill	35757360	TRPB	29.0	021024	Jod Water al Jedburgh	36556214	TWRP9	139.0
014009 014010	Eden at Stisathmiglo Movay Wator at Kimany	32287102 3387217	TRPB	26.0 330	O221025	Ale Weter at Ancrum	36346244 3278138	TWFPB	174.0
014010	Motray Water at Kilmany	33877217	TRPB	33.0	021026	Tims Weter at Deephope	32786138	TWFPE	31.0
					021027	Btockodder Water at Mouth Pridge	38266530	TWRPB	159.0
015001.	Islo at Forter	31877647	TRWS	70.7	021030	Megget Woter at Henderitand	32316232	TWAPE	56.2
015002	Nowton Qurn at Newton	32307605	TRWS	15.4	021031	Till 0 eftol	39276396	nha－Nr	649.0
015003	Toy at Caputh	30827395	TRPB	3291.0	021032	Gien at Kinknewton	39196310	NRA－NY	198.9
015004	Inton ar Loch of Lintration	32807559	TRWS	24.7	021034	Yarrow Weter at Craig Doughas	32888244	TWTPE	118.0
015005	Maggen at Loch of Lintration	32757558	taws	40.9					
015008	Tey at Eatasothe	31477367 298	TRP8	4587.1	022001	Coquel at Morwick	42346044	nha－ny	569.8
015007	Tay at Pitnecreo	29247534	TRPB	1148.4	022002	Copuel at Bygate	38706093	nha．ny	59.5
015008	Deen Water at Cookston	33407478	TRPB	177.1	022003	Uaway Burn at Shillmoor	38868077	nha NY	21.4
015010	1310 at Wester Cardeen	32957486	${ }_{\text {TRPB }}$	368.5	022000	Aln at Hawkhill	42118129	NRAAM	205.0
015011	Lyon at Comrie Bridgs	27867486	TRPB	391.1	022006	Blyth at Hortord Bridge	42435800	NAA－NY	289.4
015012	Turnmel at Por－na－craid	29407577	TRPB	1649.0	022007	Wansbeck at Mifford	41755858	nRa－NY	287.3
015013 015014	Almond et Almondbank	30877258	TRP8	174.8	022008	Alwin at Clonneld	39256063	NRA－NY	27.7
015014 015015	Ardie at Kindrogon	30567631	TRPB	103.0	022009	Coquer et Rorthury	40676016	NRA－NY	348.0
015015 015016	Almond at Nowion Bridgo	28887318	TRP8	84.0					
015016 015017	Tiy at Kemmors	27827467	TRPB	600.9	023001	Tyne at 日ywon	40385617	NRA－NY	2175.6
015017 015018	Brasan al Batimben Lyon al Mosar	29797408 25347448	TRE8	197.0 161.4	023002 023003	Dorwent at Eddrys Bridge North Tyme at feaverthill	40415508 39065732	NRA－NY	118.0 1007.5
015021	Lunon Bum at Mȧ Bank	31827400	TRPB	94.0	023004	South Tyme al Haydon Bricge	38565847	NRA．NY	751.1
015023	Brasn st Hermitbge	30147422	TRPB	210.0	023005	North Tyme at Tarsat	37765861	NRA－NY	284.9
015024	Dochart of Killin	25677320	${ }^{\text {TRPP }}$	239.0	023006	South Tyne at Feetherstone	36725811	NRA－NY	321.9
015025	Ericht at Craighall	31747472	TRPB	432.0	023007	Oorwent at Rowlands Gill	41685581	nha－nr	242.1
015027	Garry Burn al Loakmill	30757339	${ }_{\text {TRPB }}$	20.0	023008	Fede at Rede Eridge	38685832	NRA．NY	343.8
015028	Ordio Burn at Luncarty	30937306	TRP8	54.0	023009	South Tyme ot Alstion	37165465	nfa ${ }^{\text {dr }}$	118.5
015029	Alyth Eurn at Plecrocknie	32577485	TRPB	32.0	$023010 \cdot$	Terseet Sum at Greenhsugh	37895879	nfa－NY	96.0

Station number	Fiver and station name	Grid referance	Auth. orlty	Aroa (sq km)	Station number	River and station name.	Grid refarence	Authority	Area (eq km)
023011	Kielder Burn at Kiotlder	36455946	nfa-ny	58.8	027076	Bielby Beck of Thornton Lock	476044	NRAN	103.1
0230:2	East Allon at Wide Eals	38025583	NRA-NY	88.0	027077	Bractord Bock st Shepley	41514375		. 0
023013	West Allon at Hindley Wrae	37915583	nfa-ny	75.1	027080	Aire at floet Weir	43814285	NRA-NY	865.0
023014	North 7 yne at Kiedder temporary	36315931	nRa-ny	27.0	027081	Oution Beck at Furrer Lane	43654281	NRANY	25.1
023015	Nornh Tyne at Barrasford	39245721	NEW	1043.8	027082	Cundall Beck at Bat Bridge	44194724	NRANY	
023016	Ouse Burn at Crag mal	42545674	NRA-NY	55.0	027083	Foss at thuntingion	46124543	NRAA-NY	
023017	Toam st Team Valley	42495585	NRA-NY	61.9	027084	Eastburn Beck at Crosshidls	40214452	NRA-NY	43.3
023018	Ousaturn al Woolsingion	41965700	NRA-NY	9.0	027085	Cod Beck at Dalton Bridge	44224766	NPA-NY	3
023022	Norrth Tyne ar Uglvoub	37125875	nRa.nr	241.5	027086	Skell at Atma Weir	43164709	NRA.NY	
$023023{ }^{1}$	Tyne at Riding Mill	40325817	NRA-NY	2174.5					
024001	ear at Sunderland Bridge	42645376	nha-ny	657.8	028002	- Berwent at Yarkshirital Eitware	41093192	NRA-ST	126.0 163.0
024002	Geuntexi at Eishop Auckland	42155306	NRA-NY	93.0	028003	Tame at Water Orton	41692915	NRA.ST	408.0
024003	Wear at Stenhope	39845391	nha NY	171.9	028004	Tame at Leo Marsion	42062935	NAA-ST	795.0
024004	Bodturn Back al Bedbum	41185322	nfa-ny	74.9	028005	Tarne at Elford	41733105	NFA-ST	1475.0
024005	Browney al Eutn Han	42595387	NRA.NY	178.5	028006	Trent at Great Haywood	39943231	NRAST	325.0
024006	Rookhope Burn at Eastgate	39525390	nfa NY	36.5	028007	Trent at Shordiow	44483299	NRA-ST	4400.0
024007	Browney at Lenchester	41655462	NAA-NY	44.6	028008	Dove at Rocester Weir	41123397	NAA-ST	399.0
024008	Wear at Witton Park	41745309	NRA NY	455.0	028009	Trent at Colwick	46203399	NRA-ST	7486.0
024009	Wear ot Chester le Street	42835512	nfa-NY	1008.3	028010	Derwent at Longbridge Weir/St.Mary's Bridge	43563363	NRA-ST	1054.0
024011	Wear at Burnhope Reservoir	38565395	NRA-NY	20.5	028011	Derwent at Matiock Bath	42963586	NRA-ST	690.0
					- 228012	Trent at Yoxall	41313177	NRA-ST	1229.0 1289.8
${ }_{025002}$.	Toes at Eroken Scar	$\begin{aligned} & 42595137 \\ & 39325260 \end{aligned}$	NRA-NY	217.3	028014	Soor at Zouch	39753215	NRA-ST	591.0
025003.	Trout Bock at Moor Housa	37595336	NRa-ny	11.4	028015	klie at Martersey	48903895	NRA.ST	529.0
025004	Skerne at South Park	42845129	nRa-ny	250.1	028016	Ryton at Serlby Park	46413897	NRA.ST	231.0
025005	Leven at Leven Bridge	44455122	NRA-NY	196.3	028017	Devon at Cothem	47873478	NRA-ST	284.0
025006	Grota al Rutherford Bridge	40345122	NRA-NY	86.1	028018	Dove at Martion on Dove	42353288	NRA-ST	883.2
025007	Crow Beck at Crot	42825101	NRA.NY	78.2	028019	Trent at Orakelow Park	42393204	NRA.ST	${ }^{072.0}$
025008	Tees ot Barnard Cast	40475166	NRA-NY	509.2	028020	Churnet at Rocester	41033389	NRA-ST	238.0
025009	Tees at Low Moor	43845105	NRA-NY	1264.0	028021	Derwent at Draycott	44433327	NRA-ST	1175.0
025010	Baydole Beck at Mowden Bridge	42605156	NRA-NY	31.1	028022	Trent at North Muskham	48013601	NRA-ST	8231.0
025011.	Langdon Beck at Langdon	38525309	NRA.NY	13.0	${ }^{028023}$	Wye at Ashford	41823696	NRA-ST	154.0
025012	Horwood Beck at Harwood	38495309	NRA.NY	25.1	${ }^{02828024}$	Wreake al Systion Mill	46153124	NRA-ST	413.8 1694
025013.	Billingham Beck at Thorpe Thewles	44095237	NRA-NY	61.4	${ }^{228025}$	Sence at Ratclifto Culay	43212996	NRA-ST	169.4
025014	Mordon Sten at Mordon School	43235274	NRAANY	2.5	${ }_{0}^{028026}$	Anker at Polesworth	$\begin{aligned} & 42633034 \\ & 44823364 \end{aligned}$	NRAAST	188.0 182.2
025015	Woodhem Bum at Sourt Farm	42855283	NAA.NY	29.1	${ }^{228027}$	Errwash at Sondiscro	$\begin{aligned} & 44823364 \\ & 45033277 \end{aligned}$	NFAA-ST	182.2 57.0
025018	Teez at Middleton in Teesdale	39505250	NPA-NY	242.1	028029	Kingston Brook al Kimgston Han	${ }^{4503} 3277$	NFAA-ST	$\begin{array}{r}57.0 \\ \hline 8.4\end{array}$
025019	Leven at Easby	45855087	NRA.NY	14.8	${ }_{0}^{02803031}$	Black Brook at Onebarrow	44663171 41403507	NRAAST	8.4 148.5
025020 025021	Skerne ot Prsation in Skerre Skerne at Bradbury	42925238 43185295	NTAA-NY	147.0 70.1	${ }_{028032}^{028031}$	Manitoto at llam	45583680	NFA-ST	62.8
025022	Balder at Badderteead Rasarvoir	39315182	NRA-NY	20.4	028033	Dove at Hollinaclough	40633668	NRA.ST	8.0
025024	Chapel Back st Guisborough	45995163	NFA-NY	13.4	028035	Leen at Triumph Food Notringham	45493392	NRA-ST	11.0
					028036	Poulter at Twytord Bric	47003752	NRA-ST	28.2
026001.	West Beck at Wonstord Aridgo	50644560	Yw	192.0	028038	Menifold at Hulme End	41063595	NRA-ST	48.0
026002	Huli at Hempthome Lock	50804498	NRA-NY	378.1	028039	Ree at Cathorpe Park	40712847	NRA-ST	74.0
026003	Fostion Bock at foston Mal	50934548	NRANY	57.2	028040	Trent at Stoke on Tren	38923467	NRA-ST	53.2
026004	Gypsey Race at Rridilington	51654675	NRANY	253.8	028041	Hemps at Wotertouses	40823502	NRA-ST	35.1
026005	Gypsey foce at Boynton	51374677	NRA-NY	240.0	028043	Derwent at Chatsworth	42613683	NRA-ST	335.0
026006	Elmswall Beck ot Littie Drififie	50094575	NRANY	136.0	028044	Poutter at Cuckney	45703713	ST	2
026007	Catchwater at Withernwick	51714403	NRA-NY	15.5	028045	Meden/Moun al Bothumsall/Haughton	48813732	NRA-ST	262.6
026008	Miras Back at North Cave	48904316	NRA-NY		028046	Dove at Izaak Waton	41463509	NRA-ST	83.0
026009	West Beck at Snekeholme Lock	50664555	NRA-NY		028047	Oidcotes Dyke at Blyth	46153876	NRA-ST	. 2
026010	Dritified Carnal at Snskeholme Lock	50664555	NRA-NY		028048	Amber nt Wingfield Park	43763520	NRA-ST	779.0
					028049	Ayton at Worktop	45753794	NRA-ST	7.0
027002		44284530	NRA.NY	758.9	028052	Sow at Gresil Bridgtord	38833270	NRA-ST	163.0
027002 027003	Wharfa at fint Mall Weir	44224473	NRA-NY	$\begin{array}{r}1938.9 \\ \hline 189\end{array}$	028053	Penk at Penkkidgo	3923144	NRA-St	272.0
${ }_{027004}^{02703}$	Axre at Beat Weir	45344255	NRA-NY	1932.1 8990	028054	Sence at Blaby	45662985	NRA.ST	133.
027004.	Cabder al Newlonds	43654220	NRA-NY	899.0	028054	Sence at disoy	45662985	NRA.ST	53.0
027006	Don at Hedtieds Weir	43903910	NRA-NY	373.0	028055	Ecclesbourne at Duttiedd	43203447	NRA-ST	50.4
027007	Ure at Westwick Lock	43564671	NRA-NY	914.6	028056	Rothley Erook al fothey	45803121	NRA-ST	94.0
027008.	Swale at Leckby Grenge	44154748	NRANY.	1345.6	028058	Henmore Brook at Ashbour	41783463	NRA-ST	
027009	Ouss at Sketion	45684554	NRA-NY	3315.0	028059	Maun at Monsfield	45483623	NRA-ST	${ }^{28.8}$
027010	Hodga Back at Eransdale Weir	46274944	NRA-NY	18.9	028060	Dover Beck at Lowdham	46533479	NRA-ST	69.0
027012.	Hebden Water at High Greonwood	39734309	NRA-NY	36.0	028081	Churret at Bostord Bridge	39833520	NRA.ST	139.0
$027013^{.}$	Ewden Beck al More Hall Reservoir	42893957	NRA-NY	26.4	028062	Trent al Fledborough	48153715.	NRA-ST	8433.0
027014.	Rye at Littla Habion	47434771	NRA-NY	679.0	028065	Tremt at Torksoy	48273780	NRA-ST	8547.0
027015	Dorwent en Stamtord Bridge	47144557	NRA.NY	1634.3	028066	Cole at Colearill	41832874	NTA.ST	1377.0
027018.	Ryburn at Arbum Reservoi	40254187	NRAANY	10.7	028087	Derwent et Church Wins	44383316	NRA.ST	177.5
027019	Booth Dean Clough at Booth Wood Mill	40334186	NRA-NY	15.9	028070	Burbege Arook al Aurbaga	42593804	NTA-ST	9.1
027021.	Don at Doncaster	45694040	NRA.NY	1256.2	028072	Greet at Southwol	47113541	NRA-ST	48.2
027022 .	Don at Rotherham Weir	44273928	NFA-NY	826.0	028073	Ashop at Ashop divarsion	41713896	NHA-ST	42.0
027023	Dearne at Barnsiay Weir	43504073	NRAAMY	188.9	028074	Soar at Kegworth	44923263	NRA.ST	1792.0
027024	Swale at Richmond	41465006	NRA-NY	381.0	028075	Derwent at Slippery Stones	416939511		17.0
027025	Rother at Woodhouse Mill	44323857	NRA.NY	352.2	028079	Meece Brook at Shallowtord	38743291 42072937	NRA ${ }^{\text {NRA ST }}$	799.0
${ }^{027026}$	Rother at Whittington	43943744	NRA-NY	165.0	O28080	Tante at Las Mastion Lakes Teme at Bescot	42072937 40122958	NRA-ST	799.0 169.0
027027	Wherte at likby	41124481	NRA-NY	443.0	028081	Teme at Bescot	45422973		
027028	Aire at Arsley	42814340	NRA-NY	691.5	028082 028083	Soar at Litibithope	454253535	NRAA-ST	183.9 195.2
027029	Calder at Elland	41244219	NRA-NY	341.9	028085	Derwent at St. Marys Bridge	43553368	NRA-ST	1054.0
${ }_{0}^{027030}$	Doemre al Adwick	4477 41744199	NRAANY	310.8 245.0	028086	Sence at Sourh Wigston	45882977	nfa-st	113.0
${ }_{027032}$		40254643	NRA-NY	22.2	028091	Frion at Blyth	46313971	NRA-ST	231.0
027033	Ses Cut ot Scartorough	50284908	NRA-NY	33.2	028093	Soar at Pilings Lock	45653182	NRA-ST	108.4
027034	Ure at Kilgram Bridge	41904860	NRA-NY	510.2	028094	Blyctie at Cassile Farm	42132888	NRA-ST	183.8
027035	Aire al Kildwick Bridge	40134457	NRA-NY	282.3	028095	Tame at Hopwas Eridge	41823052	NRA-ST	1421.7
027036 .	Derwent at Malton	47894715	NRA-NY	1421.0	028101	Tame at Shoepwesh	38742918	NRA-ST	27.9
027038	Costa Beck at Gotelouse	47744836	NRA-NY	7.8	028102	Blythe at Whilacre	42122911	NRA-St	194.3
027040	Dos Les at Stavelay	44433746	NRA-NY	67.9					
027041	Derwent al Butiercrambe	47314587	NRA-NY	1586.0	029001	Waithe Beck at Erigztey	52534016 54163793	NRAA-A	77.4
027042	Dove at Kirkby Mills	47054855	NRA-NY	59.2	029002	Great Evu at Claythorpe Mill	54163793	NRAA	77.4 55.2
027043	Wharfe it Addingtam	40924494	NRA-NY	427.0	029003	Lud at Louth	53373879	NRAAA	55.2 54.7
027044	Btacktoss Beck at Sandrals Bridge	47254475	NRA-NY	47.0	029004	$\stackrel{\text { Ancholme at Bithopbridge }}{\text { Rase at }}$	50323911 50323912	${ }_{\text {NRAA }}$	54.7 66.6
027047 027048	Snaizeholme Peck at Low Houses	34334883	NRA-NY	10.2		Rase at Eishopbridge Ancholme at Tot Newton	50333877	NRAAA	27.2
027048 027049	Derwent at West Ayton Rye at Ness	49894850	NRA-NV NRA-NY	127.0 238.7	029009	Ancholme at Totit Newton	50333877	Nata	27.2
${ }_{0} 027050$	Aye at Ness Esk at Sloights	48655081	NRA.NY	308.0	030001	Withast at Claypote Mill	48423480	nRa.a	297.9
027051	Crimpla at Burn Bridgo	42844518	NRA-NY	8.1	030002	Barlings Eau at Langworth Bridga	50663768	NRA-A	210.1
027052	Whitting et Sheapbridge	43763747	NRA-NY	50.2	030003	Bain at fulsby Lock	52413681	NRAA	${ }_{819.1}$
027053	Nidd et Biratwith	42304603	nha ${ }^{\text {an }}$	217.6	030004	Patrney Lymn at Patney Mill	${ }_{5} 54023676$	NRAA	61.6 128.1
027054	Hodge Beck ot Cherry Farm	46524902	nat NY	37.1	030005	Witham at Salterstord Total	49273335	NRAA	128.1 48.4
0027055	Rye at Brodway Foot	45604883	nRany	131.7		Slea ot Leasingham Mill	50883485 5248959	NRAAA	88.5
027056 027057	Pickering Beck at logs Bridgo Seven at Normanty	47914819 47364821	NRA NA - NY	68.6 121.6	O30011	Stainfietd leck at Stainfield	51273739	NRA-A	62.5 37.4
027058	Riccal al Crook House Form	46614810	nfa-ny	57.6	030013	Heighington Beck at Heighengton	50423696	NRA.A	21.2
027059	Lover st Ripon	43014710	NRA-NY	87.5	030014	Pointon Lode at Pointon	51283313	Nfa-A	11.9
027061	Colne at Longroyd Bridgo	41364161	NRA-NY	72.3	030015 030017	Cringte Brook al Stoke fochfor Witham at Colstarworth	49253297 49293246	NRAA-A	50.5 51.3
${ }_{027064} 0270$	Nidd at Skip Bridge	44824561	NRA-NY	518.0	030017	Witham at Colaserworth			
${ }_{027065}$	Holme at Ouvens Mill	41424157	NRA-NY	97.4	031001	Eya Brook at Eye Brook Reservoir	48532941	cowc	80.1
027066	Bibeckburn Brook at Ashowes	43933914	NRA-NY	42.8	031002	Glen at Katas Erdg and King St Erdg	51083149	NRAA	341.9
027067	Sheof at Hightield Road	43573863	NRANY	49.1	031005	Welland at Tixover	49702997	NRA-A	417.0
027068	Aytum at fipponden	40354188	NRA-NY	33.0	031006	Gwash at Betmeshorpe	50383097	NRAA	150.0 411.6
027069	Wiske at Kirby Wiske	43754844	NRA-NY	215.5	031007	Woilsnd at Barrowden	49482999 49613030	NRAAA	411.6 68.9
027070 027071	Eller beck ot Skipton	39844502 44254734	NRA-NY	1363.0	031012	Tham at Litile 日ytham.	550163179	NRAAA	64.9 24.9
027072	Worth at Keighley	40644408	NRA $\cdot \mathrm{NY}$	71.7	031016	North Brook at Empingham	49573089	NRA-A	36.5
027073	Brompton Beck at Snainton Ings	49364794	NRA-NY	12.9	031021	Welland at Azstoy	48192915	NRAA	450.7
027074	Spen Beck at Northorpe	42254210	NRA-NY	46.3	031023	West Glen at Easton Wood	49653258	NAA-A	4.4
027075	Beodala Beck at Loeming	43064902	Nfa-NY	160.3	031025	Gwash South Arm at Manton	48753051	nRA-A	24.5

Station number	Alver and station name	Grdd reference	Authority	Area (89 km)	Station number	River and etation name	Grid raference	Authorty	Area (49 km)
031028	Eglaton Brook al Epatan	48793073	NRA-A	2.5	037006	Cenat Baectis Mal	56902072	nra-a	228.
031028	Gwash at Church Bridgo	495; 3082	NRA-A	76.5	037007	Wid at Writule	58862060	NRA-A	136.3
					037008	Chesmer at Springrield	57132071	NRA-A	190
032001	Nene al Orion	51882972	NRA-A	1634.3	037009	Brain at Guithavon Valley	58182147	NRA-A	60
032002	Willow Brook at Fotharinghay	50672933	NRA-A	89.6	037010	Blackwater at Appletord Bridge	58452158	NRA-A	247.3
032003	Harpors Brook at Oid Mill Bridgo	49832799	NRA-A	74.3	037011	Chelimer at Churchend	56292233	NfA-A	72.8
032004	las Brook at Hatrowden Old Mill	48982715	NRA-A	194.0	037012	Coine at Podistreet	57712384	NRA-A	65.
032008	Nentio/Kistingbury al Upton	47212592	NRA-A	223.0	037013	Sandon Brook at Sandon Bridge	57552055	NRA-A	60.
032007	Nene Brampton at St Androw*	47472617	NRA A A	232.8	0370:4	Roding at Hight Ongar	55612040	NRA-T	95.
032008	Nerne/Kistinabury al Dodiord	46272807	NRA-A	107.0	037015	Criptoy Brook at Chipping Ongar	55482035	NRA-T	62.2
032029	Fiore at Experimental Catchme	46552604	NRA-A	7.0	037016	Pant at Coptord Hal	56682313	NRA-A	62.5
032031	Wootton Brook at Wootron Park	47282577	NRA-A	73.8	037017	Blackwater at Stistiod	57932243	NRA-A	39.
					037018	ingrebourne at Gaymes Park	55531882	NRA-T	47.9
033001	Eediord Ouse at Brownshil Staunch	53692727	NRA-A	3030.0	037019	Beam al Bretions Farm	55151853	NRA-T	49.
033002	Bedford Ouse ar Bedtord	50552495	NRA.A	1480.0	037020	Chetmer at Feistad	58702193	NRA-A	32.1
033003	Cam at Botrisham	55082857	NRA-A	803.0	037021	Romon at Bounstead Eridge	59852205	NRA-A	52.6
033004	Lark at Itiohem	58482780	NBA-A	468.2	037022	Holland Brook at Thorpe le Soken	61792212	NRA-A	54
033005	Bediord Ouse at Thermborough mill	47362353	NRA-A	388.5	037024	Coline at Earia Colne	58552298	NRA-A	54.2
033006	Wistey at Northwodd	57712985	NRA-A	274.5	037025	Bourre Brook at Perces Bridge	58222276	NRA-A	32.1
033007	Nar at Mastham	57233199	NRA-A	153.3	037028	Tenpenny Brook at Tenpenny Bridge	60792207	NRA-A	29
033008	Litrle Ouse at Therford No, Staunch	58602832	NRA.A	699.0	037027	Sixpenny Brook at Ship House Eridge	60542214	NRA-A	5.1
033009	Bedford Ouse at Horrold Mill	49512565	NRA-A	1320.0	037028	Bentey Brook at Saltwater Eridga	61092193	NRA-A	12.
033011	Utrie Ouse at County Bridpe Eustion	58922801	NRA-A	128.7	037029	St Oayth Brook at Main Road Bridga	61342159	NRA-A	8.0
033012	Kym at Meagre Furm	51552631	NRA.A	137.5	037030	Holland Brook at Crade Bridgo	81712217	NRA-A	48.6
033013	Sapiston at Rectory Bridge	58982791	NRA-A	205.9	037031	Crouch at Wiekford	57481934	NRA-A	71
033014	Lork at Temple	57582730	NRA-A	272.0	037033	Eastwood Brook at Eastwood	58591888	NRA-A	10
033015	Ourel at Wditen	48822408	NRA.A	277.1	037034	Merrype at Stifford	55961804	NRA-A	90.
033016	Cam at Jozus Lock	54502593	NTA-A	761.5	037036	Ery Ouse Outallat at Great Samptord	56462351	NRA-A	
033018	Tove at Copponham Bridgo	47142488	NRA.A	138.1	037037	Toppestioid Brook at Corristh Holl end	56752377	NRA-A	
${ }^{033019}$	Thet at Meltord Enidge	58882830	NFA-A	316.0	${ }_{0} 037038$	Wid at Mergareting	56722000	NRAA A	98.6
033020	Alconbury Prook at Erampton	52082717	NRA-A	201.5	037039	Blackwater at Longiord low flows)	58352090	NRA-A	37.0
033021	Rhee st Burn Mill	54152523	NRA-A	303.0					
033022	voel at Bunham	51532509	NRA.A	541.3	038001	Loest Foildes We	53902092	NRA-T	38
033023	Les Brook at Beck Aridgo	56622733	NfA-A	101.8	038002	Ash at Mardock	53932148	nha ${ }^{\text {a }}$	78.
033024	Cam at Demford	54662506	nha.A	198.0	${ }^{038003}$	Mimrem al Panshanger Park	52822133	NRA-T	133.9
033025	Qabingly al Wert Nowto	56963256	NRA.A	39.6	038004	Rib at Wodesmia	53602174	NRA-T	136.5
033026	Bedtord Cuse al Ottord	52182669	NHA-A	2570.0	038005	Ash at Eazneys	53802138	NRA-T	85.
033027	Anee at Wirmpole	53332485	nRA-A	119.1	038006	Rib at Herrs Training School	53352158	NRA-T	48.1
${ }^{033028}$	Flit at Shefford	51432393	NRA.A	119.6	038007	Canons Srook at Elizabeth Wey	54312104	NRA-T	21.4
033029	Stringzide al White Pridge	57163006	nha-A	98.8	038011	Mimeam al Fuling Mill	52252169	NRA-T	98
033030	Clipstone Broak al Clipptione	49332255	NPA-A	40.2	038012	Steverage Erook at Bragtury Park	52742211	NRA-T	36.0
033031	Broughton Brook si Proughton	48892408	nata	${ }^{66.6}$	${ }^{038013}$	Upper Lee at Lutor Hoo	51182185	NRA.T	70.7
033032	Heacham at Heactram	56853375	nfa -A	59.0	038014	Salmon Broak at Edmonton	53431937	NRA-T	20.5
033033	Hiz at Ariosey	51902379	nfa-a	108.0	038015	Iniercopting Drain at Enfield	53551932	NRAAT	
${ }^{033034}$	Litilo Ouse at Abbey Heath	58512844	nfa-a	699.3	038016	Stanitend Springs at Mountfitchet	55002246	NRA-T	20.
${ }^{033035}$	Evy Ouse at Denver Comptox	55883010	NRA.A	3430.0	038017	Minram at Whitwell	51842212	NFA-T	39.
033037	Beatiord Ouse at Nowp't Pegnol Wr	48772443	Nfa-A	в00.0	038018	Upper Lee at Water Hal	52992099	NRA-T	50.
${ }^{033039}$	Beatiord Ouse al floxion	51602535	nfa-A	1660.0	038020	Cobbins Brook at Sewardstone Rosd	53871999	nRa-t	38.
033040	Atres at Astiwent	52672401	nfa-A	1.0	038021	Turkey Arook at Albany Park	53591985	NRA-T	42
033044	Thet at Eridghom	59572855	nha-A	277.8	038022	Pyrmmes Brook at Edmmonton Silver Streot	53401925	NRA-T	42.
033045	Witute at Quidenhom	6027.2878	nfa-A	28.3	038024	Small River Lee at Ordinance Road	53701988	NRA-T	41.5
033046	Thet at hed Bridge	59982923	nfa-A	145.3	038026	Pincey Brook at Sheering Ha	54952126	NRA-T	54.
033048	Laring Erook al Stonebridge	59282907	nha.a	21.4	038027	Stori at Glen faba	53932093	NRA-T	280
033049	Stonford Water at Buckenham Totts	58342953	NTA-A	43.5	038028	Stansted Brook at Gypsy Lane	55062241	NRA-T	25.
033050	Snail ar Fordham	56312703	NRA.A	60.6	038029	Ouin al Griges Bridg	53922248	NRA-T	50.
033051	Cam at Chestarford	55052426	NFA.A	141.0	038030	Hoane at Horthem	53252131	NRA-T	175.
033052	Swofflam Lode at Swatiham Qulbeck	55532828	nfa A	36.4	038031	Loe al Rye Bridgo	53852098	NRA-T	758.
033053	Granta al Stapiotord	54712515	NRA-A	114.0	038032	Lee al Loe Erioga	5352 t872	NRA-T	
033054 033055	Bobingloy at Castie Rising	56803252	NRA-A	47.7					
		55102504	NRA-A	98.7	039001	Thames at kingston	51771698	NRA-T	9948.0
${ }_{0}^{033057}$	Our water at Lode	55312627 9817241	NRAAA	76.4 119.0	039002	Thenos at Oays Woir	45881935 52651705	NRPA-T	3444.7 176.
033058	Ouzel al Blatichioy	48832322	NRA-A	215.0	039004	Wenctie at Beoddington Park	52961855	NRA-T	122.0
033059	Cur-off Champo it Totgate	57292757	NRA-A		039005	Beveriby Brook at Wimbtedon Common	52181717	NRA-T	43.6
033060	Kings Dike at Stenground	52082973	NHA-A		039006	Windruakh at Newbridge	44022019	NRA-T	362.6
033062	Guiden Brook al Fowimore Two	54032457	nfa.a		039007	Blackwater at Swallowfiedd	47311848	NTA-T	354.8
033063	Litle Ouse al Knentishay	59552807	NRA-A	101.0	039008	Thames at Eynzham	44452087	NRA-T	1816.2
${ }^{033004}$	Whaddon Brook at Whaddon	53592488	NRA-A	16.0	039010	Cotre al Donhism	50521864	NRA-T	743.0
033085	Hiz ot Hitchin	51852290	NRA-A	$6 . \mathrm{B}$	039011	Wey at Tithord	48741433	nfa-t	396.3
033088	Granta al Linton	55702464	NRA-A	59.8	039012	Hogasmill at Kingsion upon Thames	51821688	NRA-T	69.1
033087 033088	Now River at Burwell	56082696	NRA-A	19.6	039013	Coine at Berrygrove	51231982	NFA-T	352.2
033088	Cheney Water ot Gatioy End	52962411	NRA-A	5.0	$\begin{aligned} & 039014 \\ & 039015 \end{aligned}$	Ver at honateads Whitewater at Lodge form	$\begin{aligned} & 51512016 \\ & 47311523 \end{aligned}$	NRA-T NRA-T	132.0 44.5
034001	Yare at Colnay*	81823082	nha. ${ }^{\text {a }}$ -	231.8	039016	Kennet at Thesie	46491708	NRA-T	033.
034002	Tes ot Shoteshom	52282994	NRA-A	146.5	039017	Roy at Grendon Underwood	46802211	NRA-T	18.
034003	Bure at ingworth	81923296	NRA-A	184.7	039019	Lembourn at Show	44701892	NRA-T	234.
034004	Wonaum at Costossey Mill	81773128	NRA-A	570.9	039020	Conn at bibury	41222082	NRA-T	106
034005 034006	Tud at Costersoy Park	61703113	NfA-A	73.2	039021	Cherwell at Ensiow Mild	44822183	NRA-T	551.7
034006 034007	Woveroy at Neadhem MiA	82292811	NRAA A	3730.0	039022	Loddon at Shoepbriage	47201852	NRA-T	164.5
034007 034009	Dove st Oakky Park	81742772	NRA-A	133.9	039023	Wye it Hadior	48961867	NRA-T	137.3
034008 034010	Ant at Honing Lock	83313270	NRA-A	49.3	039025	Enborne at Brimpton	45881848	nra-t	147.
034010 034011	Waveney al Bilingtord Eridga	61682782	NRA.A	149.4	039026	Cheowel at Bentury	44582411	nfa	
034011 034012	Wensum al Fakanham	59193294	NPA.A	181.9	039027	Pang at Pangbourne	46341786	NRA-T	170.9
034012 034013	Burn al Burnhem Overy	58423428	NRA-A	80.0	039028	Dun at Aungeeriord	43211885	nra-t	101.3
O34013	Waveney at Elilingham Mill	63642917	NRA-A	870.0	039029	Tillingbourne at Shalford	50001478	NRA-T	59.0
034014 034016	Wansum at Swanton Moriay Total	${ }^{6020} 3184$	NRA-A	397.8	039030	Gado at Croxley Green	50821952	NRA-T	184.0
034018 034019	Suifkey al Wutham All Sainta	59443414	NRA-A	87.8	039031	Lambourn at Welford	44111731	NRA-T	178.0
034019	Bure at Horstend Mill	82673194	NRA-A	313.0	${ }_{0}^{039032}$	Lambourn at East Sheflord Winterbuurne St at Eagnor	$\begin{aligned} & 43901745 \\ & 44531694 \end{aligned}$	${ }_{\text {NRAA }}$ NRA $-T$	154.0 49.2
035001	Gipping at Consamatine Woir	81542441	NRA.A	310.8	039034	Everiode at Cossington Mill	44482099	nra-t	430.0
035002	Daben al Naunton Hall	63222534	NRA-A	163.1	039035	Chum at Corney Wick	40761963	NRA-T	124.3
035003	Aldos al fernham	63602601	NRA.A	63.9	039038	Low Brook ot Albury	50451468	NRA-T	18.0
035004	Ore at Beverahmom endge	63592583	NRA-A	54.9	039037	Kenneat at Martborough	41871686	NAA.T	142.0
035008	Gippring at Stownorkel	60582578	NRA-A	128.9	039038	Thame at Shabbingion	48702055	NRA-T	443.0
035010 035013	Gipping at Eramtord	81272465 84082769	NRAAA	298.0	0393940	Thames at Wost Mal Cricklade	40941942	NRA ${ }^{\text {T }}$	185.0
035013	Blyth at Hotion	64082769	NRA.A	92.9	039042	Laoch at Priory Mid Locchada	42271994	NRA-T	76.9
					039043	Kamnet et Knighton	42951710	NRA-T	295.0
038001 036002	Stour at Stratiord St Mary	60422340	EWC	844.3	0393044	Hent at Bramskrall House	47551593	NRA-T	84.0
038002 036003	Glem at Cimmatord	58462472	NRA-A	87.3	039046	Thamaz at Surtion Courteray	45161948	NRA-T	3414.0
038003	Box al Polstond	59852378	NRA.A	53.9	039049	Silk Stroam ar Colindesp Lama	52171895	NRA-T	29.0
036004	Chad Brook et Long Maliord	58882459	NRA-A	47.4	039951	Sor Brook at Addertury	44752348	NRA-T	106.4
036005	Breta at Hadeigh	60252429	NRA.A	156.0	039052	The Cut al Binfield	48531713	Nfa-t	50.
0380006	Stour at Longhom	60202344	NRA-A	578.0	039053	Mole as Horley	627) 1434	NRA-T	89.9
036007	Beichamp Brook al Bardtiold Bridge	58482421	NRA-A	68.6	039054	Mole at Gatwick Aiport	52601399	NRA-T	31.8
036008	Stour at Westmill	58272463	NRA-A	224.5	039055	Yeading Bk West at Yeading West	50831846	NRA-T	17.
038009	Bratt ar Cockfiakd	59142525	NRA.A	25.7	039056	Rovensboume at Catford Hill	53721732	NRA-T	87.6
038010	Bumpstand Broak at Broad Green	56892418	NRA-A	28.3	039057	Crane at Crantord Park	51031778	NFA-T	61.7
038011	Stour Brook ar Sturner	56962441	NRA-A	34.5	039058	Pool at Winstord Road	53711725	NRA-T	38.3
036012	Stour 31 Kadington	57082450	NRA-A	76.2	039081	Letcombe Brook at Letcormbe Bassett	43751853	NFA-T	2.7
038013	Brett at Highsm	60322354	NRAA A	195.0	039065	Ewolme Brook at Ewembe	46421918	NRA-T	
036015	Stour at Lamarat	58972358	NRA-A	480.7	039068	Mote at Casile Mill	51791502	nRa-T	318.0
038016	Ramsey ol Grest Oakloy	62062288	NRA-A	13.9	039069	Mole at Kinnorclioy Monor	52821482	NRRA-T	142.0
038017	Ely Ouse Outall at Kirting Groen	56812559	NRA-A		039072	Thames at Royal Windsor Park	49821773	NRA-T	7046.0
					0393073	Chumer at Cirencester	40202029	NRA-T	84.0
${ }_{0}^{037001}$	Roding at Resbridge	54151884	NRA-T	303.3	039074	Ampmay Prook at Sheepen Bridge	41051950	NRA-T	74.
037002 037003	Chatmer si fuarsas Lock	57942090	NAA-A	533.9	039076	Windruth at Worsham	42992107	NRA-T	296.
037003	Ter at Crabbs Anidge	57882107	NAA-A	77.8	039077	$\mathrm{Og}_{\mathrm{g}} \mathrm{t}$ Marlborough Poution Fm	41941697	NRA-T	59.
037004	Biockwater at Langiord	58362092	NRA.A	337.0	039078	Weythorth at Famham	48381462	NRA-T	191
037005	Colne as Lexdan	59622281	NAA-A	238.2	039079	Wey at Weybridga	50681848	NRA-T	1008

Station number	Fiver and station name	Grid reforence	Auth ority	Aren (Fq gm)	Suation number	River and station name	Grid reference	Auth. ority	Arte (sq kn)
039081	Ock at Abingdon	44811966	nRA-T	234.0	042011	Hamble at Frog Mill	45231149	NRA-S	56.6
039082	Graveney at Longlay Rd	52711709	nRa-t	16.7	042012	Anton at Fullerton	43791393	NRAS	185.0
о39085.	Wandia at Wandia Park	52681703	NRA-T	176.1.	042014	Blackwater at Ower	43281174	nhas	104.7
039086	Gatwick Streem ot Gotwick Link	52851417	NRA-T	33.6	042015	Dever at Westion Colley	44961394	NRA-S	52.7
039087.	Ray at Water Eation	41211935	nha-t	84.1	042018	Itchen at Easton	45121325	NRA-S	${ }^{236.8}$
039088	Chass at Rickmantworth	50861947	Nfa-t	105.0	042017	Hermilage at Havant	47111067	nhas	17.0
039099	Gasde at Bury Mill	50532077	NRA-T	48.2	042018	Monks Brook at Eastligh	44431179	NTA-S	43.3
039090	Cote at lingtastem	42081970	NRA-T	140.0	042020	Tadturn Lake at Romsey	43621212	NRA-S	19.0
039091.	Misbourne et Ouarrendon Mill	49751963	NRA-T	66.3	042021	Branch of Test al Nurreling	43551159		
039092	Doltis Erook at Hendon Lane Bridge	52401895	NRA-T	25.1	042023	Itchen at Fiverside Park	44451154	NRA.S	415.0
039093	Brent at Monks Park	52021850	NRA-T	117.6	042024	Test at Chilbotion (Totaf	43861394	NRA.S	453.0
039094	Crane at Marbl Farm	51541734	NRA-T	81.0	042025	Lavant Stream at Leigh Park	47211072	NRAS	54.5
039095	Ouaggy at Manor House Garclens	53941748	NRA-T	33.9					
039098	Wealdstone Broek al Wembley	51921862	NRA-T	21.7	043001	Avon at Ringwood	41421054	NRA.SW	1649.8
039097.	Thames at Buscot	42301981	NRA-T	997.0	043003	Avon at East Mills	41581144	NRA.SW	1477.8
039098	Pinn at Uxtridga	5082 1826	NRA-T	33.3	043004	Bourne at Loverstock Mill	41571304	NRA-SW	163.6
039099	Ampney Brook st Ampney St. Peter	40762013	NRA-T	45.3	${ }^{043005}$	Avon at Amestury	41511413	NRA.SW	323.7
039100	Swill Brook at Oakzay	39971927	NRA-T	53.3	${ }_{0}^{043006}$	Nadder at Wilton Park	40981308	NRA.SW	220.6
039101	Aldboume st Ramsbury	42881717	NRA-T	53.1	043007	Stour at Throop Mill	41130958	NAA-SW	1073.0
039102	Misbourne at Denhom Lodge	50461866	NRA-T	138.0	043008	Wryye at South Newton	40861343	NAA.SW	445.4
039103	Kennet at Nowbury	44721872	nat ${ }^{\text {a }}$ -	548.1	043009	Stour at hemmoon	38201147	NRA-SW	523.1
039104	Mcte at Esher	51301853	NAA.T	469.6	043010	Allen at Loverioy Mill	40061085	NRA.SW	94.0
039105	Thame at Wheatioy	46122050	NAA-T	533.8	043011	Ebbte at Eodennam	41621263	NRA.SW	109.0
039106	Mcofe at Lastherthead	51611564	nata-t	371.4	043012	Wrype at Norton Bovars	39091428	NRA.SW	112.4
039107	Hogsmull or Ewell	52181833	nata-t	33.7	043013	Mude at Somerford	41840936	NRA.SW	12.4
039108	Churn at Perrotis Brook	40222057	Nata-t	59.0	043014	East Avon at Upavon	41331559	NHAPSW	86.2
039109	Codn at Fossobridge	40802112	NHA-T	82.0	043015	Wyrye at Longbridge Deverill	38681413	NRA-SW	69.0
039110	Commat fairford	41512012	NRA-T	130.0	043017	West Avon al Upovon	41331559	NRA-SW	76.0
039111	Thames at Stioinez	50341713	NRA-T	8120.0	${ }_{0} 43018$	Allen at Waltord Mill	40081007	NAA.SW	176.5
039112	Letcombe Brook at Aratellas Lake	43741852	NRA-T	3.1	043019	Shreen Water at Colestrook	38071278	NRA-SW	29.1
039113	Manor Farm Briok at Letcombe Regis	43831861	NRA-T	1.4	043021	Avon at Knapp Mill	41550943	NRA.SW	06.0
039114	Pang at Frilsham	45371730	NAA-T	90.1					
039115	Pang at Bucklobury	45561710	NRA-T	109.0	044001	Frome at Esst Stoke total	38880887	NRA-SW	$4: 4.4$
039116	Sultham Brook at Sulharn	46421741	NRA-T	3.0	044002	Piddle at Baggs Mill		NRA-SW	183.1
039117	Colnbrook ar Hylte End	50191723	NRA-T	929.5	044003	Asker at Bridporn	34700928	NRA-SW	49.1
039119	Wey at Atm	47171395	NRA-T	44.8	044004	Frome at Dorchaster toral	37080903	NRA-SW	206.0
039119	Wey at Kings Pond (Aton)	47241395	NRA-T	46.1	044008	Syding Water ar Syding Si Nictiolas	36320997	NRA-SW	12.4
039120	Caker Stream at Aton	47291388	NRA-T	88.1	044008	Sth Winterbourne at W'bourne Steepletion	36290897	NRA-SW	$\xrightarrow{19.9}$
039121	Thames at Wation	47251385	NRA-T	9291.5	044009	Wey at Broodwey	36660838	NRA-SW	7.0
039122	Crentieigh Weters at Bremtay	49991482	NRA-T	109.5					
039125	Ver at Redbourn	51092118	NRA-T	62.6	045001	Exe at Thorverion	29361016	NRA.SW	600.9
039126	Red at Redbourn	51072119	NRA-T		045002	Exe at Stoodtrigh	29431178	NRA-SW	421.7
039127	Mistourme at Litile Missenden	49341984	NRA-T	47.2	045003	Culm at Wood Mill	30211068	NRA-SW	226.1
039128	Bourne at Addiestone	50611650	NRA-T	91.7	045004	Axe at Whittord	32820953	NRA-SW	288.5
039129	Thames at farmoor	44382088	NRA-T	1609.6	045005	Orter at Dotion	30870885	NRA-SW	202.5
039130	Thames at Reading	47181741	NRA-T	4633.7	045008	Quarme at Entorwe:l	29191356	NRA-SW	20.4
039131	Brent at Costion's Lon	5149 1823	NRA-T	146.2	045008	Otrer at Fenny Eridge	31150986		104.2
039134	Ravensbourne (E) at Erarriley	54081887	NRA-T	10.0	045009	Exe at Pixton	2935 1280	NRA-SW	
038135	Ouaggy at Chinbrook Masdows	54101720	NRA-T	15.0	$\begin{aligned} & 045010 \\ & 045011 \end{aligned}$	Haddeo et Hartiord Barie at Brushford	$\begin{aligned} & 29521294 \\ & 29271258 \end{aligned}$	NRA-SW NRA-SW	$\begin{array}{r} 50.0 \\ 128.0 \end{array}$
040001	Mestway at Weir Wood Reservoir	54071353	sw	26.9	045012	Creedy at Cowley	29010967	NRA-SW	281.6
040002	Darwell at Darwell ferervoir	57221213	SW	9.6	045013	Tale at Fairnile	30880972	NRA-SW	34.4
040003	Medway at Teston	57081530	NRA-S	1256.1					
040004	Rother at Udism	57731245	NRA-S	206.0	046002	Teign at Preston	28560748	NRA-SW	380.0
040005	Beuta at Stile Bridga	57581478	NRA-S	277.1	046003	Darr at Austins Eridge		NRA-SW	
040006	Bourne at Hadlow	56321497	NRA-S	50.3	048005	East Dart at Bellever	26570775 .	NRA-SW	21.5
040007	Medway at Chatford Weir	55.71405	NRA-S	255.1	${ }_{0} 046008$	Emme at Ermington	26420532	NRA.SW	43.5
040008	Great Stour at Wye	60491470	NRA-S	230.0	046007	West Dart at Dunnabridge	26430742	NRA.SW	47.9
040009	Teise at Stone Bridgs	57181399	NRA-S	${ }^{136.2}$	046008	Avon at Loddiswell	27190478	NRA.SW	102.3
040010	Eden at Penshursi	55201437	NPA-S	224.3					
040011	Great Stour at Horton	61181554	NRA-S	345.0	047001	Temar at Gumneslake	24260725	NAA-SW	916.9
040012	Darent at Hawhoy	55511718	NRA-S	191.4	047003	Tavy at Lopwell	24750652	NHA.SW	205.9
040013	Darent at Otford	55251584	NPA-S	100.5	047004	Lymber at Pilaton Mill	23690628	NFA.SW	135.5
040014	Wingham at Durtock	62761576	NRA-S	37.7	047005	Otuery at Werrington Park	23370886	NRA-SW	120.7
040015	White Drain at Faitrook Fsmm	60551608	NRA-S	31.8	047006	Lyd at Lifion Park	23890842	NFA.SW	218.1
040016	Cray at Craytord	55111746	NRA-S	119.7	047007	Yeatm at Pustinch	25740511	NAA-SW	54.9
040017	Dudwell ar Burwash	56791240	NAA-S	27.5	047008	Truushel at Tinhoy	23980885	NAA.SW	112.7
040018	Darent at Lutingstions	55301643	NAA-S	118.4	047009	Tiddy at Tideford	23440596	NRA-SW	37.2
040020	Eridge Stream at Hendal Bridge	55221367	NAA-S	53.7	047010	Tamar at Crowford Bridgo	22900991	NRA.SW	76.7
040021	Hexden Channel at Hopemill Br Sandhurst	58131290	NRA-S	32.4	047011	Plym at Carn wood	25220613	NRA-SW	79.2
040023	East Stour at South Willesborough	60151407	NAA-S	58.8	047013	Withey Brook al Asatreot	22440764	NAA-SW	16.2
040024	Barriey Mill St at Beriley Mild	56331357	NRA-S	25.1	047014	Waikharn at Horribinge	25130699	NFA.SW	43.2
040027	Sarre Penn at Colcott	81741625	NAA-S	19.4	047015	Tevy at Denham / Ludbrook	24780681	NRA.SW	197.3
040029	Len at Lenside	57651556	NRA-S	${ }^{69.7}$	047016	Lumburn at Lumburn Aridge	24590732 2419	NAPA.SW	20.5 31.1
040032	Rother at Crowheres Erioge	56831283 83001430	NRA-S	92.7	047017	Wolf at Combe Perk Ferm		NFA-SW	1.1
					048001	Fowey at Trekoivostops	22270698	NRA.SW	36.8
041001	Nunningham Stream at Tilloy Eridge	56621129	NRA.S	16.9	048002	Fowey at Restormel	21080813	NFA.SW	171.2
041002	Ash Soume at Hammer Wood Bridge	5684114	NRA-S	18.4	048003	Fal at Tregony	19210447	NRA.SW	87.0
041003	Cucknore at Sherman Bridga	55331051	NRAS	-134.7	048004	Warteggan at Trengoffe	21590674	NFA.SW	25.3
041004	Ouse at Barcombe Mills	54331148	NRA-S	395.7	048005	Kenwrn at Turo	18200450	NHA.SW	19.9
041005	Ouse at Gotd Bridge	54291214	NRA-S	180.9	${ }^{0480006}$	Cober at Helston	16540273	NAA-SW	40.1
041006	Uck at isfifild	54591190	NRA-S	87.8	048007	Kennall at Ponsancoth	17820377	NFA.SW	26.6
041009	Rother at Hardhsm	50341178	NRA-S	345.8	048009	St Neot at Craigshell Wood	21840662	NRA-SW	22.7
041010	Adur W Branch at Harterelll Bridge	51781197 852129	NRA-S	109.1 1540	-048010	Seaton at Trabrownbridge Fowoy at Aestormal	22990595 20980624	NRA-SW	
041011 041012	Rother at lying Mall Adur E Branch at Sakeham	48521229 52191190	NRA-S	154.0 93.3	0480	Fowey at feestorm	20980624	NRA-SW	169.1
041013	tuggiotis Strosm al Herioy Bridgo	56711138	NRA-S	;4.2	049001	Cameal at Denty	20170682	Nfa-SW	208.8
041014	Arun at Pollinghom Quay	50471229	NRA-S	379.0	049002	Heyte at St Enh	15490341	NRA-SW	48.9
041015	Ems at Westiboume	47551074	NRA-S	58.3	${ }_{0}^{049003}$	Da Lanik at Do Lan	$\begin{array}{r}21330765 \\ \hline 1929\end{array}$	NRA-SW	21.7
041018	Cucknere at Cowbeech	58111150	NRA-S	18.7	049004	Gannel at Gwills	18290593	NRA-SW	41.0
041017	Combehaven at Crowhurst	57651102							
041018 041019	Kird at Tanyards Arun at Altodean	50441258 51171331	NRA-S	66.8 139.0	050001 050002	Tow at Umberbigh Torridge at Torrington	28081237 250011185	NRA.SW	826.2 663.0
041020	Bevem Stream at Clappers Bridge	54231181	NRA-S	34.6	050004	Hole Water at Muxworthy	27051373	NRA-SW	5.4
041021	Ctayhill Stream at Old Ship	54481153	NRA-S	7.1	050005	West Okement at Vellake	25570903	NRA-SW	13.3
041022	Lod at Haltway Eridge	49311223	NRA-S	52.0	050006	Mole as Woodieigh	26601211	NRA.SW	327.5
041023	Lavant at Greylingwell	48711084	NRA-S	87.2	050007	Taw at Taw Aridge	26731088	NRA.SW	71.4
041024	Shell Brook at Shell Brook P S	553351288	NRAS	${ }^{22.6}$	050011	Okement at Jacobsto			
041025	Loxwood Stream at Drungewick	50601309	NRA-S	${ }^{91.6}$	050012 050013	Yeo at Verraby Bray at Leehemtard Bridge	27751267 26771399	NRA-SW	53.7 17.8
041026 041027	Cockhaise Brook at Holrwoll Rother at Princes Morsh	$\begin{aligned} & 5376 \\ & 4772 \\ & 47262 \\ & 1270 \end{aligned}$	NRA-S	36.1 37.2		Bray at Leehemford Bridgo			17.8
041028	Rother at Princes Morat	52171173	NRA-S	34.0	051001	Doniford Sueam at Swill Bridge	30881428	NRA.SW	75.8
041029	Bull at Lomands	55751131	NRA-S	40.8	051002	Horner Water al West Luccombe	28981458	NRA-SW	20.8
041031	Fulking Stream at Furking	52471113	NRA-S		051003	Washtord at Beggoam Hhish	30401395	NRA-SW	36.3
041033	Costers Erook at Cocking	488011174	NRA-S	2.7					
041034	Ems at Waklerton	47861104	NRA-S	41.5	${ }_{0}^{052001}$	Axe at Wookey Yeo at Sutton Binghem Res.	35271458 35581118	NRA-SW	18.2 30.3
041035 041037	North River at Brookturst Winterbourne Stream at Lewes	51301325 $5403: 098$	NRA-S NRA-S	55.1 17.3	$\begin{aligned} & 052002 \\ & 052003 \end{aligned}$	Yoo at Sutton Bingham Res. Halse Water at Bishops Hull	35581118 32061253	NRA-SW	
$04: 037$	Winterbourne Stream at Lewes	$5403: 096$	NRA-S	17.3	$\begin{aligned} & 052003 \\ & 052004 \end{aligned}$	Malse Water at Bishops Hull Isle at Ashford Mill	$\begin{aligned} & 32061253 \\ & 33811188 \end{aligned}$	${ }_{\text {NRA-SW }}^{\text {NRA }}$	87.8 90.1
042001	Waltington al North Farehem	45871075	NRA-S	111.0	052005	Tone at Bisthops full	32081250	NRA-SW	202.0
042003	Lymington at Brockenhurst Park	43181019	NRA-S	98.9	052008 052007				
042004 042005	Test at Eroadiande	43541188 4311130	NRA-S	1040.0	052007 052008	Parrett at Chisallorough	34611144 30441313	NRA-SW	74.8 18.1
O42005	Watop Brook at Broughton	43111330	NAA-S	53.6	052008	Tone at Clarworthy Rezervoir	304411313 34981439	NRA-SW	
042006 042007	Meon at Mislingtord Alre at Drove Lene Atrestora	45891141 45741326	NRA-S	72.8 57.0	052009 052010	Sheppey at Fenny Castio Brue at Lovingion	34981439 35901318	NFAA-SW	59.6 135.2
042007 042008	Alre at Drove Lene Atrestord Cheriton Stroam at Sowards Aricga	45741326 45741323	NRAA-S	75.1	052011	Cary at Sommerion	34981291	NRA-SW	82.4
042009	Candover Stream at Borough Brioge	45881323	NRA-S	71.2	052014	Tone at Greentiam	30781202	NRA-SW	57.2
042010	Ifchen at Hightridge + Atibrook	44671213	NAA-S	360.0	052015	Land Yoo at Wraxall Anidge	34831716	NRA-SW	23.3

Btation number	Rlver and otation name	Grld reference	Authority	Area (sacm)	Station number	Rlver and station name	Grid reforence	Authority	Arala (sa kmi)
052018	Currypool Strasm al Currypoot Farm	32211382	nha.sw	15.7	055025	Uynfi at Three Cocks	31662373	NRA. WEL	132.0
052017	Congrostury Yoo at iwood	34521837	nhasw	66.8	055026	Wye at Ddol Form	29762676	NRA.WEL	174.0
052020	Gallica Stream at Gatica Eridgo	35711100	NRA.SW	16.4	055027	Fudhal Brock at Sandford Bridg	36412257	NRA.wEL	13.2
					055028	Frome at Bishops Frome	36672489	NRA. WEL	77.7
053001.	Avon	39031841	nfa Sw	685.6	055029	Momow at Grosmont	34152249	NRA-WEL	354.0
053002	Samington Brook at Semingion	39071605	NRA.SW	157.7	055030	Clisarwen at Doty-mynach	29102620	nha.wel	95.3
053003	Avon al Bath St james	37531845	NRA-SW	1595.0	055031	Yazor Brook at Threes Elms	34922415	NRA-WEL	42.3
053004	Chew at Compton Dando	36481847	NRA-SW	129.5	055032	Elan at Elan Villoge	29342653	NRA-WEL	84.0
053005	Midford Brook al Midtord	37631611	NRA-SW	147.4	055033	Wye at Gwy Fhume	28242853		3.9
053008	Fromme(Bristoll al Frinichay	36371772	NRA-SW	148.9	055034	Cyft at Cytf Fume	28242842	${ }_{1}$	3.1
053007	Frome(Sormersat) at Tellistord	38051584	NRA-SW	281.6	055035	togo at logo flume	28262854	${ }^{1+}$	1.1
053008	Avon ot Great Sormariord	39681832	NRA-SW	303.0					
053009	Wellow drook at Wathow	37411581	NRA-sw	72.6	056001	Usk at Chain Bridga	33452056	NRA-WEL	911.7
053013	Marcien at Staniey	39551729	NRA.SW	99.2	056002	Ebow at Rhiwderm	32591889	NRA-WEL	216.5
053017	Boyd at Bution	36811698	NRA.SW	48.0	056003	Mondou at The Forge Brecon	30512297	NRA-WEL	62.1
053018	Avon nt Bathord	37881671	nha-sw	1552.0	058004	Uzk at Lenderty	31272203	NRA-WEL	543.9
053019	Woodbridge Brook al Crab Mal	39491888	nhasw	46.8	058005	Lwyd at Ponthi	33301924	NRA.WEL	98.1
053020	Gouze Brook at flodbourne	39371840	nhasw	28.2	056008	Usk 81 Trallong	29472295	NRA-WEL	183.8
053022	Avon at Bath ultramic	37381651	nfa ${ }^{\text {dew }}$	1805.0	056007	Sanni al Pont Hen Hatod	29282255	NRA-WEL	19.9
053023	Sherstion Avon al foiseway	38911870	NRA.sw	89.7	056008	Monks Dich at Uanwe	33721885	NRA.WEL	15.4
053024	Tertury Avon at Brokenborovah	39141893	NRA.SW	73.6	056010	Uak at Trostrey We	33582042	NRA-WEL	927.2
053025	Mola ti Vallia	37571491	nRa.sw	19.0	056011	Sirtowy at Wattsville	32061912	NRA-WEL	76.1
053028	Fromme(Bristot at Frampton Coterall	38871822	NRA.SW	78.5	056012	Grwynet at Millbrook	32412176	NRA-WEL	82.2
053028	By Brook at Midatamill	38151688	nat-sw	102.0	056013	Yscir at Pontaryucir	30032304	NRA-WEL	82.8
053029	Bise at Trowbridge	38541579	NRA-SW	77.6	056014	Usk at Usk Reservoir	28402290	NRA-WEL	17.0
					056015	Otway brook at Olway inn	33842010	NRA-WEL	105.1 32.4
054002	Avon al Evoshom	40402438	NRA-ST	2210.0	Ose	-		NA	
054004	Sowe at Stomberigh	43322731	NRA-ST	262.0	057001	Taff Fechen at Taf Fechen Roservoir	30602117	NRA-WEL	33.7
054005	Severn at Montord	34123144	NRA-ST	2025.0	057002	Tal fowt al Uwymon Raservoin	30122111	NRA-WEL	43.0
054006	Stour at Callows Lane, Kiddemminstor	38292768	NRA-ST	324.0	057003	Tett at Tongwrrais	31321818	NRA-WEL	486.9
054007	Arrow at Broom	40862538	NRA-ST	319.0	057004	Cymon at Abercymon	30791956	NRA-WEL	106.0
054008	Teme al Tenbury	35972688	NAA-ST	1134.4	057005	Taff at Pontrpricd	30791897	NRA-WEL	454.8
054010	Stour at Alscot Park	42082507	NAA-St	319.0	057006	Rtondio at Trensotiod	30541909	NRA-WEL	100.5
054011	Solwirpe al hariord Hill	38882818	NAA.ST	184.0	057007	Teff at Fiddilirs Elbow	30891951	NRA.WEL	194.5
054012	Tern at Welcor	35923123	NAA.ST	852.0	057008	Rthymmey at Laresdoym	32251821	NRA.WEL	178.7
054013	Crwedog al Cribynaw	29442855	NAASTI	57.0	057009	Eny at St Fogens	31211770	NRA-WEL	145.0
054014	Savern at Abermulo	31642958	NAA-ST	580.0	057010	Ety at Lanelay	30341827	NRA-WEL	39.4
054015	Bow erook at Beatord Bridge	39272463	NAA.ST	156.0	057011	Busen Teffowt at Beacons fleservoir	29872193	nfa-wel	5.1
054018	Roden at Rodington	35893141	NRA-ST	259.0	057012	Garmnent al Ltwynon Reservoir	30042129	NRA-WEL	4.3
054017	Lasden at Weddorturn Eridge	37772234	NRA-ST	293.0	057015	Taft at Merthyr Tydrid	30432068	NFA-WEL	104.1
054018	Rea Brook at Hookkgate	34863092	NRA-ST	178.0	057016	Tat fochan at Pontsicill	30602115	NRA-WEL	33.8
054019	Avon at Straton	43332715	NRA-ST	347.0					
054020	Peary at Yeation	34343192	NRA-ST	180.8	058001	Ogmore at Bridgend	29041794	NRA-WEL	158.0
054022	Severn at Pyrnimon Fume	28532872	IM	8.7	058002	Neeth at Resoctun	28152017	NRA-WEL	190.9
054023	Bataey arook at Offienham	40632449	NRA-ST	95.8	058003	Ewemny at Ewenny Priory	29141780	NRA-WEL	62.9
054024	Worte it Burcote	37472953	NRA-ST	258.0	058005	Opmore at Brymeny	29041844	NRA.WEL	74.3
054025	Dutas at Phos- \%.pantret	29502824	NRA-ST	52.7	058006	Mettre at Pontredifiection	29152082	NRA-WEL	65.8
054028	Chelt st State Min	38922264	NRA-ST	34.5	058007	Lrynti al Coytrahen	28911855	NRA-WEL	50.2
054027	Frome at Ebioy Mill	38312047	NRA.ST	198.0	058008	Dudais at Ciltrew	27782008	NRA-WEL	43.0
054028	Vyrnwy at Lenymynech	32523195	NRA-ST	778.0	058009	Ewenny at Keepers Lodge	29201782	NRA.WEL	62.5
054029	Terme at Knightulord Bridge	37352557	NAA-ST	1480.0	058010	Hopate at Esgoir Carnau	29692134	NRA-WEL	11.0
054032	Sovom al Saxons Lode	38632390	NAA-ST	6850.0	058011	Thaw at Gigman Enidge	30171716	NRA-WEL	49.2
054034	Dowhes Brook at Det Cotrago, Dowles	37622764	NRA.ST	40.8	058012	Aton at Morcroth Weir	27711910	NFA-WEL	87.8
054036	Istowne at hintion on the Green	40232408	NAA.ST	90.7					
054038	Tenat ot Llanyblodwal	32523225	NAA.ST	229.0	059001	Tawe at Yynstanglws	26851998	nRA-wEL	227.7
054040	Mespes at Tibbarton	36803205	nfa-st	167.8	059002	Loughor at Tir-y-dail	26232127	NRA-WEL	6.4
054041	Tern at Eaton On Tom	38493230	NRA.ST	192.0					
054042	Clywedog at Clywedog Dm Lower Weir	29142867	NRA-ST	49.0	060002	Cothi at Felin Mynachay	25092225	NRA-WEL	297.8
054043	Severn at Upion On Sovern	38832399	NRA.ST	8850.0					
054044	Tern at Ternkill	38293316	NRA-ST	92.6	060004	Dowt Fawr at Glostrym Ford	22902175	NRA-WEL	40.1
054045	Perry at Perry Farm	33473303	NRA-ST	49.1	060005	Bren at Llandovery	27712343	NRA-WEL	66.8
054048	Worie at Costord	37813046	NRA-ST	54.9	060006	Gwili at Glangwiil	24312220	NRA-WEL	129.5
054047	Perry at furion Bridge	34033223	NRA-ST	155.0	060007	Trwi at Dolau Hirion	27622362	NRA-WEL	231.8
054048	Dene al Wellerbourne	42732556	NRA-ST	102.0	060008	Trwi at Ystradtin	27862472.	NRA-WEL	89.8
054049	Lasm at Princas Drive Weir	43072854	NRA-ST	362.0	${ }^{060009}$	Sawdie at felin $\gamma-\mathrm{c}$-wm	27122286	NRA.WEL	81.1
054050	coem at Eathorpa	43892888	NRA-ST	300.0	060010	Tywi at Nonstgatedig	24852206	NRA-WEL	090.4
054052	Eaimy Prook at Ternhill	36293318	NRA.ST.	34.4	060012	Twich at Ddel Las	26502440	NRA-WEL	20.7
054055	Feas at Nean Sollara	36642724	NAA-ST	129.0	086013	Corhi at Pont Yrys Brechfa	25372301	NRA-WEL	261.6
054056	Clun at Clungunford	33932788	NRA.ST	195.0					
054057	Severn at haw Anidge	38442279	NAA.ST	9895.0	061001	Wesiern Claddau at Prendergast Mill	19542177	NRA-WEL	197.6
054058	Stoke Park Brook al Stoke Park	36443260	NAA.ST	14.3	061002	Eastern Clieddau ar Cennaston Bridge	20722153	NRA WEL	183.1
054059	Allford Brook al Allford	36543223	NRA-ST	10.2	0011003	Gwoun ot Cilthodyn Bridge	2005 2349	NRA-WEL	31.3 1978
054080	Pottord Brook al Sondytord Bridgg	36343220	NAA-ST	25.0	061004	Woatern Cleddau at Rodkill	19422184	NHA.WEL	197.6
054081	Hodnet Brook at Hodner	38283288	NRA.ST	5.1					
054062	Stoke Prook at Stoke	36373280	NRA-ST	13.7	062001	Teilif at Glan Teifi	22442416	NRA.WEL	893.6
054063	Stour at Prantwood Hoapital	38852858	NRA.ST	89.9	062002	Teifi	24332406	NAA-wEL	10.0
054065	Rodon at Stanton	35653241	NRA.ST	210.0					
054088	Platt Erock at Platt	36283229	NRA.ST	15.7	063001	Ystwrth at Pont Llowyn	25912774	NRA-WEL	169.6
054067	Smentiow Brook at Swindon	38612908	NRA-ST	81.3	063002	Rheidol at Lanbedam Fowr	26012804	NRA-WEL	182.1
054088	Tetchill Brook at Hordiey	33793288	NRA-ST	21.2	063003	Wyre at Llanthystyd	25422698	NRA-WEL	40.6
054069	- Springa Brook at Lower Hordray	33873297	NRA-ST	10.4	063004	Ysiwyth at Cwm Ysiwyth	27912737	NRA-WEL	32.1
054070	War Brook at Welford	34323198	NRA-ST	22.5	063005	- Moesnont at Nant.-M-Moch C	27782877	${ }_{1+}^{1 H}$	${ }^{0.8}$
054080 054081	Severn at Dolwan	29962851	NRA-ST	187.0	063006	Maesnemi fach at Nant-y-Moch E	27652865	H	0.8
${ }_{054081}^{054}$	Crywedog at Eryntal	29132888	NRA-ST	49.0					
${ }^{054083}{ }^{054084}{ }^{\text {0, }}$	- Crow erook at Horion	36783141 36162075	NRA-ST	16.7 31.5	064001 064002	Oyfi at Dyfi Bridge	27453019 26323066	NRA-WEL NRA-WEL	471.3 75.1
054085	Cannop Brook al Cannop Crosi	36092115	nRa-st	10.4	064008	Leri at Dolybont	26352882	NRA-WEL	47.2
054086	Cownwy Diversion at Cownmy Weir	29993179	nRA-ST	13.2	064007	Delyn at Lendrymmir	28993062	${ }^{1+}$	1.1
054087	Allford Brook at CMids Ercall	36873228	nfa-st	4.7	064008	Cwm al Uentrynmair E	29163087	${ }^{1+}$	3.0
054089	Little Avon at Berksloy Konnols	38831988	NRA.SW	134.0					
054089	Avon at Brecton	39212374	nRA-St	2674.0	065001	Glasyrn at Baddpelent	25923478	NRA-WEL	68.6
054090	Tentlwnt at Tanliwnth Fwrme	28432876	${ }_{\text {H }}^{1 \mathrm{H}}$	0.9	065002	Durryd al Masentwrog	26703415	NPA-WEL	78.2
054091	Severt at Hatron Fhuma	28432878	${ }^{\text {H }}$	3.6	065004	Gwyriai at Bontinewydd	24843599	NRA-WEL	47.9
054092	Hore at Hore Fwme	28462873	${ }^{\text {H }}$	3.2	065005	Erch at Pancaenewydd	24003404	NRA-WEL	18.1
054094	Strine 14 Cradgingion	38403175	NRA-ST	134.0	${ }^{065006}$	Soiont st Peoblig Mat	24933623 24993429	NRA-WEL	74.4 5.4
${ }^{054095}$	Severn at Buibwes	38443044	NRA-ST	3717.0	065007	Dwyfawr at Gammolbennraen	24993429	NRA.WEL	2.4
054096	Hadioy Brook at Wurdat Bridgo	38702631	NRA-ST	63.4		Cmyd at Pont $\%$-camb	30693709	NRA.WEL	404.0
055002	Wyo al Bolmont	3485 2388	NRA.WEL	1895.9	086002	Elwy at Pant yr Onen	30213704	NRA-WEL	220.0
055003 .	Luge at Lugwardine	35482405	NRA-WEL	${ }^{885.8}$	${ }^{086003}$	Alod at Pry Aled.	29573703	NRA.WEL	70.0
0550004	Irfon al Absment	28922480	NRA WEL	72.8	066004	Whooter at Boditari	31053714 31223592	NRA-WEL	62.9
055005	Wye al fhayader	29692876	NRA-WEL	186.8	086005	Clwyd at Ruthin Weir	31223592 29523718	NRA-WEL	95.3
055006	Elan ot Caban Coch Rasarvir	29282645	NRA-WEL	184.0	${ }^{068006}$	Etwy at Pont-y-Gwydal	29523718	NRA-WEL	194.0
055007	Wye at Emood	30782445	NRA.WEL	1282.1	${ }^{068008}$	Alod et Alod leat Reservo	29153598	NRA-WEL	11.6
${ }^{055008}$	Wya ar Cotan Brwn	28292838	${ }_{\text {In }}$	10.8	068011	Conwy at Cww Lonerch	28023581	NRA-WEL	344.5
055009	Monnow et Kentctiurch	34192251	NRA.WEL	357.4					
055010	Wreat Pant Mawr	28432825	Nfa. wel	27.2	067001	Doe at Bala	29423357	NRA-WEL	251.6
055011.	Ithon at Llandowi	31052683	NRA WEL	11.4	067002	Dose at Etristock fectiory	33573413	NRAWEL	1040.0
${ }_{0}^{055012}$	uton at carmery	29952507	NRA. WEL	244.2	${ }_{067005}^{067005}$	Brenig at Lry Erenimg ouffiow	29743539 32953373	NRA-WEL	$\begin{array}{r}113.2 \\ \\ \hline 18.2\end{array}$
055014	Arrow at fitioy Mid	- 33282585	Nfa-WEL NRA-WEL	1203.3 208	067006	Ceinog it erymkinat Woir	32543436	NRA-WEL	184.7
055015	Hendidu at Tototog	32772294	NRA. WEL	25.1	067008	Alyn at Pont-y-Capel	33363541	NTA-WEL	227.1
055018	thten at Daszerth	30242578	NRA. WEL	358.0	067009	Alyn at Rtyodymun	32063667	NRA-WEL	77.8
055017	Chwatru at Carreg.r-wen	29982531	NRA. WEL	29.0	067010	Getrn at Cyneteil	28433420	NRA-WEL	13.1
055018	Frome of Y צikhtid	38152428	NRA. WEL	144.0	067011	Nant Abercarife at Nant Abenderifel	28513392	NRA-WEL	3.7
055021	Lugg ot Evtis Bridgo	35022589	NRA. WEL	371.0	067012	Trwerrn at Upper Trwerm	28383398	NRA-WEL	27.2
055022	Trothy at Mitchel Troy	35032112	NRA-WEL	142.0	087013	Hembent at Plas Ritrwadog	29463349	NRA-WEL	33.9
055023	Wre at Redbrook	35282110	NRA.WEL	4010.0	067015	Doe at Mantey Hald	33483415	NRA-WEL	1019.3

Station number	River and station name	Grid reference	Authority	Area (sq gm)	Station number	River and station name	Grid reference	Authority	Area (sq km)
087016 -	Worthenbury Brook at Wortherbury	34183464	NRA.WEL	142.1	076005	Eden at Temple Sowerby	36055283	NRA-NW	816.4
067017	Trywerrn at tlyn Celyn ouffow	28803399	NRA-WEL	59.9	076007	Eden at Sheeppmount	33905571	NHA-NW	2286.5
067018	Dee at New inn	28743308	NRA-WEL	53.9	076009	Itring at Greenholme	34865581	NHA-NW	334.6
067020	Dee at Chester Weir	34083659	NRA-WEL	1816.8	076009	Caldow at Holm Hial	33785469	NFA-NW	147.2
067025	Clywadog at Bowling Bank	33963483	NRA-WEL	98.6	076010	Petteril at Harraby Green	34125545	NRA-NW	160.0
067026.	Dee at Eccloston Ferry	34153612	NRA-WEL	1816.8	076011	Coal Bum at Coatluern	36935777		1.5
067028.	Ceidiog at Landrillo	30343371	nha-wel	36.5	076014	Eden at Kirkby Stephen	37735097	NRA-NW	69.4
067029.	- Tystion at Pen-y-felin Fawr	30663405	NRA-WEL	12.3	0760 5	Eamont al Poolay Bridge	34725249	NRA-NW	145.0
068001	Weaver at Ashbrook	36703633	NRA-NW	622.0	077001	Esk at Natherby	33905718	NRA-NW	841.7
068002.	Gowy at Picton	34433714	NRA-NW	156.2	077002	Esk ar Canonbie	33975751	SRPB	485.0
068003	Dane at Rudhenth	36683718	NRA-NW	407.1	077003	Liddel Weter at Rowenburnfoot	34155759	SRP8	319.0
068004	Wistaston Brook at Marshfiald Bridge	36743552	NRA-NW	92.7	077004	Kirile Water at Mossknowe	32855693	SRPB	72.0
068005	Weaver at Audlem	36533431	NHA NW	207.0	077005	Lyne at Clift Bridge	34125682	NRA-NW	191.0
$068006{ }^{\text {. }}$	- Dane at Hulme Wallifld	38453644	NHA-NW	150.0					
068007	Wincham Prook at Lostock Gralam	36973757	NAA.NW	148.0	078001	Annen at St Mungos Mans	31255755	SRPB	730.3
068010.	Fender at Ford	32813880	NHA-NW	18.4	078002	As at Elshieshiedrs	30885852	SAPB	143.2
068015	Gowy at Huxioy	34973624	NRA-NW	49.0	078003	Annan at Brdakirk	31915704	SAPB	925.0
068018.	- Dane at Congleton Park	3869 3632	NHA-NW	145.0	078004	Kinnel Water at Redha!	30775868	SRPB	76.1
068019	Weaver at Pickerings Cut	35743762	NRA.NW	1370.0	078005	Kinnel Water at Aridgemuir	30915845	SRPB	229.0
068020	Gowy at Bridge Trafford	34483711	NRA-NW	156.0	078008	Annan at Woodtoot	30996010	SAPB	217.0
069001 .	Mersey at Irlam Weir	37283936	NRA-NW	679.0	079001 -	- Atton Water at Atton Reservoir	26316050	SAPB	8.5
069002	Irwell at Adalphi Weir	38243987	NRA-NW	559.4	079002	Nith at Friars Carso	29235851	SAPB	799.0
${ }^{069003}$	lrk at Scotand Weir	38413992	NRA-NW	72.5	079003	Nith at Hall Bridgs	28846129	SAPP	155.0
069004.	Etherow at Bottoms Reserva	40233971	NRA-NW	78.2	079004	Scar Water at Capenoch	28455940	SPPB	142.0
069005.	- Glaze Brook at Little Woolden H	36853939	NRA-NW	152.0	079005	Cluden Water at Ficdilers Ford	29285795	SRPE	238.0
069006	Bollin at Durham Massey	37273875	NRA-NW	258.0	079006	Nith at Drumlanrig	28585994	SRPE	471.0
069007	Marsey at Ashoo Weir	37723936	NRA-NW	660.0	079007	Lochar Water at Kirkblain Bridge	30265695	SRPB	125.0
069008	Dean at Stanneytands	38463830	NRA-NW	51.8					
069011	Micker Erook at Cheadta	38553889	NRA-NW	67.3	080001	Urr as Dalbeatie	28225810	SRPE	:99.0
069012	Botin at Wilmsiow	38503815	NRA-NW	72.5	080002	Dae at Glenlochar	27335641	SRPE	809.0
069013	Sinderland Brook at Partington	37283905	NRA-NW	44.8	080003	White Laggan Bum at Loch Dee	24885791	SRPB	5.7
069015	Etherow at Compstall	39623909	NRA-NW	156.0	080004	Greenburn at Loch Dea	24815791	SRPB	2.6
069017	Goyt at Marpie Bridge	39643899	nRa-NW	183.0	080005	Dargal Lane ot Loch Des	24515787	SRPB	2.1
069018.	- Nowton Brook at Newton Lo Willows	35853933	NRA-NW	32.8	080006	Blackwater at Loch Det	24785797	SRPB	15.6
069019	Worsloy Brook at Eccles	37533980	NRA-NW	24.9					
069020	Mediock at London foad	38493975	NRA-NW	57.5	091001	Penwhim Burn at Penwhim Reservoir	21285694	DGRW	78.2
069023	Roch at Elackford Bridge	38074077	NFA-NW	188.0	081002	Cree at Newton Stowart	24125653	SRPB	368.0
069024	Croal at Farnworth Weir	37434068	NRA-NW	145.0	081003	Luce at Airytemming	21805599	Sfipg	171.0
069025	Ifwell at Manchester Ascecourse	-382! 4004	NRA.NW	557.0	091004	Eladnoch at Low Matzie	23825545	SRPB	334.0
069027	Tame et Portwood	39063918	NRA ${ }^{\text {NW }}$	150.0	091005	Pillanton Burn at Barsolus	21075564	SAPB	34.2
069028	Mersey at Brinksway	38843900	NRA-NW	531.0	091008	Water of Minnoch at Minnoch Bridge	23635746	SRP8	141.0
069030	Sankey Brook at Causey Eridgo	35883922	NRA-NW	154.0	081007	Water of fleet at Rusko	25925590	SAPB	77.0
069031.	- Ditton Brook at Greens Bridge	34573865	NRA-NW	47.9					
069032	Alt at Kirkby	33923983	NRA.NW	90.1	082001	Girvan at Robstons	22175997	CAPB	245.5
069034.	- Musbury Broak at Hotmshore	37754213	NRA-NW	3.1	082002	Doon at Auchencrane	23386180	CRPB	323.8
069035	Irwell at Bury Bridge	37974109	NRA-NW	155.0	082003	Stinchar at Balnowlart	21085832	CRPB	341.0
069037	Mersey at Westy	36173877	NRA-NW	2030.0					
069040	Irwell at Stubbins	37934188	NRA-NW	105.0	083001	- Casf Water at Knockendon Resservoir	22456514	SACW	6.0
069091	Tame ei Broomstair Bridge	39383953	NRA-NW	113.0	083002	Garnock at Daly	22936488	CAPB	88.8
069042	Ding Brook at Naden Reservoir	38504175	NRA-NW	2.2	083003	Ayr at Cautine	25256259	CAPB	:86.3
					083004	Lugar at Langhomm	25086217	CAPP	181.0
070002	Douglas at Wanes Blades Bridge	34764126	NRA-NW	198.0	083005	Irvine at Shewation	23456369	CAPB	380.7
070003	Douglas at Central Park Wigan	35874061	NRA-NW	55.3	083006	Ays at Mainholm	23616216	CRP8	574.0
070004	Yarrow at Croston Mill	34984180	NfA-NW	74.4	083007	Lugton Water at Eglinton	23158420	CRPE	54.8
070005	Lostock at Litilewood Bricge	34974197	NAANW	56.0	093008	Ammick Water at Dreghorn	23526384		95.3
					083009	Garnock at Kiwwinring	23076424	CRPB	183.8
071001	Ribble at Samlestury	35894304	NRANW	t145.0	083010	Irvine at Newmidns	25326372	CRPB	72.8
071003.	Croasclale at Craesdate Frume	37084546	NWW	10.4					
071004	Cakder at Whalley Weir	37294360	NAA-NW	316.0	084001	Kekhin at Kiliermont	25586705	CRPB	335.1
071005	Botroms Beck at Botioms Beck Flume	37454565	NWW	10.6	084002	- Calder at Muirshiel	23096638	SRCW	12.4
071006	Rible al Henthom	37224392	NHA.NW	456.0	084003	Clyde at Hazelbank	28356452	${ }^{\text {CRPB }}$	1092.9
071007	Rible at Hodderitot	37094379	NRA-NW	720.0	084004	Clyde at Sills	29276424	CRPB	741.8
071008	Hodder at Hodder Place	37044399	NRA-NW	261.0	084005	Cyda at Blairston	27046579	CAPP	1704.2
071009	Ribble at Mumbles Rock	37024376	NRA-NW	1053.0	084006	- Kelven at Bridgend	26726749	CRPB	63.7
071010	Penctie Watar at Barden Lane	38374351	NRA-NW	108.0	084007	South Calder Wu at forgawood	27516585	CAPB	93.0
071011	Ribble at Amford	38394556	NRA-NW	204.0	084009	Rotren Calder Wtr at Redilees	26796604	CAPP	51.3
07:013	Derwen at Ewcod Bridge	36774262	NRA-NW	39.5	084009	Nathan at Kirkmuintill	28096429	CAPa	${ }^{68.0}$
071014	Darwen at Brue Bridge	35654278	NRA-NW	128.0	084011	Grite st Crisgend	24156884.	CAPP	71.0
					084012	White Cart Woter at Hewkhead	24996629	CPP8	227.2
072001 -	Lune at Hation	35034647	NRA-NW	994.6	084013	Cryde at Daddowie	28726818	CAPE	1903.1
072002	Wyre at St Micheets	34634411	NRA-NW	275.0	084014	Avon Water at Fairtholm	27556518	CRPE	265.5
072004	Lune at Caton	35294653	NRA-NW	983.0	084015	Kotin at Dorfieitd	26386739	CRPE	235.4
072005	Lune at Killington New Bridge	36224907	NRANW	219.0	084016	Luggio Water al Condorrat	27396725	CRPE	33.9
072006	Lune at Kirkby Lonscale	36154778	NRA-NW	507.1	084017	Elack Cart Water at Mililiken Park	24118620	CRP8	103.1
072007	Brock at U/S A6	35124405	NRA NW	32.0	084018	Clyde at Tuliford Mila	28916404	CRPB	932.6
072009	Wyre at Gerstang	34884447	nfa-NW	114.0	084019	North Calder Wit at Cakberperk	26818625	CRPB	129.8
072009	Wenning at Werningtor Road Bridga	36154701	NRA ${ }^{\text {NW }}$	142.0	084020	Glazert Water at Miton of Compsie	26568763	CRP8	51.9
072011	Rawthey at Brigg Flatts	36394911	nfa ${ }^{\text {anw }}$	200.0	084021	White Cart Water at Netheribe	25878597	CRPB	91.8
072014	Conder ar Galgate	34814554	nha ${ }^{\text {anw }}$	28.5	084022	Dunemion at Maidencotz	29296259	CRPB	110.3
072015	Lune at Lunes Bridge	36125029	NHA NW	141.5	084023	Bothin Burn at Auchengeich	26806717	CRPB	35.7
072016	Wrte at Scorton Weir	35014500	NRA-NW	88.8	084024	North Cakder Wut at Hillend	28288678	CRP8	19.9
					084025	Luggie Water at Oxgang	26666734	CRPB	87.7
073001	Leven at Nowby Endge	33714863	NRA-NW	241.0	084026	Atrander Water at Mimgavie	225886738	${ }_{\text {CAPP }}$	32.8
073002	Crake at Low Nibitwaite	32944882	NRA-NW	73.0	084027	North Cakber Wets at Caldertenk	27656624	$\mathrm{CAPB}^{\text {ch }}$	60.6
073003	Keni at Bumeside	35074956	NRA-NW	73.6	084028	Monkland Canal st Woodhal	27656828	CRP8	60.6
073005	Kort at Sedgwick	35094874	NRA-NW	209.0	${ }^{084029}$	Cander Water et Candermill	27656471	Caps	24.5
073006	Cunsey bock at Eol Houss Enidga	33694940	NRA.NW	18.7	084030	Whita Cart Water ar Overibe	25796575	P8	1.8
073009	Bela at Beestram	34964806	NRA-NW	131.0					
073009	Sprint at Sprint Mil	35144961	NRA-NW	34.6	085001	Leven at Linnorane	23946803	CAPB	784.3
073010	Leven at Nowby Bridge	33674883	NRANW	247.0	${ }^{085002}$	Endrick Woter at Gaidrow	24856866	CRP9	219.9
073011	Mint at Mint Bricge	35244944	NRA-NW	65.8	085003	Falloch at Glen Falloch	23217197	CPPB	80.3
073013	Rothay st Miler Bridga Housa	33715042	NRA-NW	64.0	085004	Luss Weter at Luss	23566929	CRPE	35.3
073014	Brathay at Joffy Kroots	33605034	NRA-NW	57.4					
	Duchion at Duddon Hall				086001 086002	Littr Eacheip ar Dabinlongart	21436821	CRP9	30.8 139.9
${ }_{074002}$	Hr at Galesyke	31964896 31365938	NRAANW	84.2		Eachaig at Eckiora	21406843		
074003	Eren at Ennerdale Weir	30845154	NRA NW	44.2	089008	Eas Dairnh at Eas Daimh	22397276	CRPE	4.5
074005	Ehen at Braystomes	30095061	NRA-NW	125.5	089009	Eos ÁGhail at Succoth	22097265	CRPB	9.7
074006	Cakber at Cakder Hal	30355045	NFANW	44.8					
074007	Esk at Cropple How	31314978	nhanw	70.2	090003	Nevis at Claggan	21167742	HRPE	76.8
074008	Duddon at Uphe	32094947	NRA-NW	47.9					
					091002	Loctry at Camisky	21457805	HRPE	1252.0
075001 075002	St Johns Beck ar thirmere Reservoir Derwent at Camerton	33135195 30385305	NRA-NW	42.1 663.0	093001	Carron at New Kolso	19428429	HRPB	137.8
075003	Derwent at Ouse Eridge	31995321	NRA-NW	363.0					
075004	Cocker at Southwaita Bridge	31315281	NRANW	116.6	094001	Ewe at Podewe	18598803	HRPB	44.1
075005	Derwent at Portinscale	32515239	NRA-NW	235.0					
075006	Newlands Beck at Braithwate	32405239	NRANW	33.9	095001	Lrver at Litile Assyn	21479250	HRPB	137.5
075007	Gienderameckin at Threlkeld	33235248	NRA-NW	64.5	095002	Broom at Invertriom	21848842	HRPB	141.4
075009	Greta al Low eriery	32855242	NRA-NW	145.6					
075016	Cocker ot Scailenal	31495214	NRA-NW	64.0		Halladato at Halladale	28919561		
075017	Elion at Eutigit	30965384	NRA-NW	96.0	096002	Naver at Apouin	27139568	Hfpr	477.0
					0960003	Suatiy at Strathy Pridge	28339858	Haps	111.8
$\begin{aligned} & 076001 \\ & 076002 \end{aligned}$	Haweswater Beck at Burnbenks Edon ot Warwick Aridge	35085159 34705567	NRANW	$\begin{array}{r} 33.0 \\ 1386.7 \end{array}$	096004	Strathmore at Allinebed	24539429		105.0
076003	Eamont at vatiord	35785306	NRANW	396.2	097001 -	Calder Burn at Achovam	30859598	hricw	24.5
076004	Lowther at Eamont Eridge	35275287	NRA-NW	158.5	097002	Thurso at Helkink	31319595	HAPB	412.8

| Station | River and |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| number | |
| atation name | |

- - closed, or no data for post 1992 have been received.

Note: a significant proportion of the stations closed in the 1980 s have subsequently been re-commissioned.
Refer to pages $\$ 72$ and 173 for key to measuring authority codes.

GROUNDWATER LEVEL DATA

Background

Groundwater may be obtained from almost any stratum in the sedimentary succession in the British Isles, as well as from igneous and metamorphic rocks. In many, such as clays and shales, volcanics and metamorphics, the permeable zone may well be limited to the depth to which weathering may reach, this is unlikely to be more than some 50 metres beneath the ground surface. In those strata which are not generally recognised to be aquifers, well-yields tend to be small (of the order of only a few cubic metres per day), uncertain as a continuous source (tending to fail in prolonged droughts), with an indifferent groundwater quality, and with the sources vulnerable to pollution.

The more generally recognised aquifers are listed in Table 6, with the Chalk and Upper Greensand, the Lincolnshire Limestone and the Permo-Triassic sandstones as the most important from the viewpoint of public supply. From such aquifers as these, yields of 3000 to 4500 cubic metres a day are not unusual. For the next category, including the Lower Greensand and the Magnesian Limestone, yields to individual wells of 1500 to 3000 cubic metres a day can generally be expected. In the other aquifers, whilst occasional sources sufficient for large supplies may be developed, they tend to be important only locally. The outcrop areas of the major aquifers are shown in Figure 10; throughout Wales, Scotland and Northern Ireland, aquifers are less extensively developed and tend to be only of relatively local importance.

The groundwater resources of an aquifer are naturally replenished from rainfall. During the summer months, when the potential evapotranspiration is high and soil moisture deficits are appreciable, little infiltration takes place. There is a notable exception to this rule in the Eden valley of Cumbria where, enclosed between the massifs of Cross Fell and the Lake District, sufficiently heavy and continuous summer rainfall occurs to maintain infiltration through part at least of most summers. The normal recharge of an aquifer takes place during the winter months when the potential evapotranspiration is low and soil moisture deficits are negligible.

Only the largest artificial reservoirs in the United Kingdom have sufficient capacity to support demands through the driest summers, assuming that they were full at the start of the summer, without some continuous contributions from river intakes. Prolonged dry spells lead, in many rivers, to reduced flow, particularly where the natural groundwater contribution (termed baseflow) is limited. Consequently, while surface water droughts may be in part due to the failure of runoff from winter rainfall to fill the reservoirs, they are more frequently caused by a decrease in the summer flows of streams and rivers. Surface water droughts do, however, lead to increased consumption of groundwater (where avail-
able). By way of contrast, a groundwater drought is caused by a lack of winter rainfall. Potentially, the most serious droughts occur when, as in 1975/76, a dry summer succeeds a notably dry winter, or as in 1988-92 in eastern England, recharge is significantly below average over two or three successive winters.

The Observation Borehole Network

Groundwater level observation wells (in this context, a well includes both shafts - constructed by hand digging - and boreholes - constructed by machinery) are generally used for one of two purposes: to monitor levels regionally and thus to estimate groundwater resource fluctuations, or to monitor the effects locally of groundwater abstractions. The number of observation wells required in different areas varies widely. Over the last two decades, a target density was sought of one well to 25 to $35 \mathrm{~km}^{2}$.

The observation well network was reviewed in 1981 by the British Geological Survey (then the Institute of Geological Sciences) with the aim of selecting 200 to 300 sites from the existing national archive, to be used for periodical assessments of the national groundwater situation. The selection was based upon the hydrogeological units identified in an investigation of the groundwater resources of the United Kingdom ${ }^{1}$; one site was chosen for each aquifer present within each unit. For Scotland and for Northern Ireland this was not possible due to the very limited number of observation wells available. In England and Wales, the total number finally selected was 175^{2}.

Details of the wells in this national network are given in the Register of Selected Groundwater Observation Wells (see page 156).

Measurement and Recording of Groundwater Levels

The majority of observation wells are measured manually either weekly or monthly. The usual instrument is an electric probe suspended upon a graduated cable or tape, contact being made by the water to complete a circuit which gives either an audible or visual signal at the surface. Measurements are normally made to the nearest 10 millimetres, although instruments may be accurate to 1 mm .

Some observation wells are equipped with continuous water level recorders. These recorders measure level either by a float or with a pressure transducer. Data are recorded either on paper charts, punched tape (now rarely used) or by solid state data loggers. At several observation boreholes provision is made for the routine transmission - usually by telephone line - of groundwater levels to local, or regional, centres.

TABLE 6 GENERALISED LIST OF AQUIFERS IN THE UNITED KINGDOM

Key to aquifer importance:

*	aquifer of minor importance only
$* *$	aquifer producing small, but useful, local supplies
$* * *$	aquifer of local importance, often providing public supplies
$* * * *$	aquifer of major importance

Figure 10 Principal aquifers and representative borehole locations

Observation Well Hydrographs . 1990-94

Well hydrographs for 32 observation sites are shown in Figure 11. For each borehole the 1990 to 1994 groundwater hydrographs are illustrated, as a blue trace, together with the average and extreme monthly levels for the pre-1990 record. A break in the well hydrograph trace indicates an interruption in the record of greater than eight weeks. Five-year plots have been used both to illustrate the dramatic changes in groundwater levels over the recent past and because the volume of groundwater stored in aquifers can reflect not only the infiltration taking place during the winter months of 1993/94, but also that occurring in previous years. When comparing the hydrographs for a number of sites, account should be taken of the differing scales used to illustrate the water-table fluctuations.

For a few wells and boreholes the long-term monthly extremes and/or means have been omitted. In some cases this is due to the limited amount of historical data available. At other sites the historical data do not provide an appropriate basis for comparison with contemporary groundwater levels. For several of the featured wells and boreholes the earliest level records are of dubious accuracy and have been ignored when computing the relevant maximum, minimum and mean values. For others substantial changes in the pattern and/or magnitude of groundwater abstraction limit the representativeness of any segment in the groundwater level time series. The majority of observation boreholes for which data are held on the Groundwater Level Archive monitor the natural variation in levels. However, in parts of the United Kingdom levels have been influenced, sometimes over long periods, by pumping for water supply or other purposes which exceeds the natural rate of replenishment. As a consequence the regional water-table may become substantially depressed. For instance, the levels at a number of observation boreholes in the PermoTriassic sandstones of the English Midlands are indicative of a significant regional decline. By contrast those in Northumbria, for example at Rushyford, now stand substantially higher than 15 years ago despite the recent downtrend. This reflects, in part, a rundown of the coal industry and the consequent cessation of continuous pumping for mine dewatering.

Register of Selected Groundwater Observation Wells

Scope

The listed sites were selected to give a reasonably representative. cover for aquifers through-out England and W ales. The wells are grouped according
to the aquifer to which the water level variations in the wells are attributed. A generalised list of aquifers is given on page 148 , while the aquifers are tabulated in stratigraphical order, most of the local names for individual strata are omitted and the intervening aquicludes are not shown.

Network Changes

Since the original selection of boreholes for incorporation in the national network a number of changes have been made to the list of selected wells. At some locations, observations could no longer be continued, and new sites have been added from time to time. Details of the wells in the national network are given in the Register of Selected Groundwater Observation Wells.

The following sites, listed in the register in the 1993 yearbook, are no longer included in the network.
Chalk
TA10/40 Little Brocklesby
SU51/10 Hill Place Farm
TR35/49 Cross Manor Cottages
Upper Gurassic
SU49/40B East Hanney
SE98/8 Seavagate Farm
Magnesian Limestone
SE28/28 Bedale
Nine new sites have been added to the register, in addition to one site that has been reinstated.

Chalk
TA11/158 Keelby Grange
SU51/1 Upper Hill Farm
Upper furassic
SU49/75B Marcham
SE98/23 Seavagate Gill
Permo-Triassic sandstones
NY14/4 New Cowper
SD40/137 Moor Hall
SD53/25 Red Scar Wood
SJ59/147 Sandy Lane
SJ69/138 Kenyon Lane (reinstated)
SJ62/112 Heathlanes

The Register

The six columns of the Register are:

Well Number

The well numbering system is based on the National Grid. Each 100 kilometre square is designated by
prefix characters, e.g. SE, and is divided into 100 squares of 10 kilometre sides designated by numbers 00 (in the south-west corner) to 99 (in the north-east corner). Thus, the site SE93/4, is located in the 10 kilometre square SE93, while the number after the solidus denotes that the site is the fourth accessed in this square in the National Well Record collection. A suffix such as A, B, etc., defines the particular well when there are several at the same site. For Northern Ireland, which is on the Irish Grid, the first of the prefix characters is always ' I '.

Two asterisks following the well number indicates a well or borehole for which hydrographs are shown on pages 152 to 155 . The location of the index wells, and the outcrop areas of the principal aquifers, are shown on Figure 10.

Grid Reference

The six or eight figure references given in the Register relate to the 100 kilometre National (or Irish) Grid square designated by the preceding two figure code; the corresponding two-letter code appears as the prefix characters in the Well Number. The Irish Grid References are italicised.

Site

The name by which the well or borehole is normally referenced. The location of all the sites listed in the Register are shown on Figure 10.

Measuring Authority

An abbreviation referencing the organisation responsible for groundwater level measurement. A full list of codes, together with the corresponding names and addresses appears on pages 172 and 173.

Records Commence

The first year for which records are held on the National Groundwater Level Archive.

Indicated \% Annual Recharge

The difference between the level measured at the end of the summer recession of groundwater levels and that measured at the beginning of the summer recession of the following year reflects the amount of recharge received in that period. This method,
detailed in the Hydrometric Register and Statistics 1981-5 volume, is most suited to circumstances when a single peak is readily identifiable in each recharge season. Where recharge follows an uneven pattern resulting in poorly defined or multiple peaks, the percentage of the mean annual recharge is often unrepresentative. Consequently, the original method has been modified to produce more realistic values of recharge and to allow more accurate comparison between sites. First, the recharge period is arbitrarily defined as the first day of August to the end of the following July. Next, the water level at each site is estimated, by extrapolation where necessary, for the last day of each month. Finally, all the rises in successive months are summed over each recharge period. Prior to 1993 the calculation of recharge was made manually. The process has now been fully computerized. Recharge is only calculated for years where there is a continuous data series, with no more than 60 days between readings of level.

The summed rise for each year is called the 'annual fluctuation', and the mean of the annual fluctuations over the period of record is termed the 'mean annual recharge' (MAR). This also assumes that the natural discharge (via, for instance, springs and seepages) is constant; while this is not the case in view of the large differences of head that are recorded in some observation wells, there is insufficient information currently available to permit corrective factors to be determined. It is considered that for most wells the errors caused by this assumption will be small.

The annual infiltration is then expressed as a percentage of the MAR and thus represents the percentage of the mean annual recharge received for that year. Acknowledging the limited precision in the estimation procedure the percentages are rounded (to the nearest 5%) and are tabulated in the last column of the Register.

References

1. Monkhouse, R.A. and Richards, H.J. 1983. Groundwater resources of the United Kingdom. Commission of the European Communities, pub. Th. Schaeffer Druckerei GmbH, Hannover, 252 pages.
2. Monkhouse, R.A. and Murti, P.K. 1981. The rationalisation of groundwater observation well networks in England and Wales. Institute of Geological Sciences, Report No. WD/81/1, 18 pages.

Figure 11 Hydrographs of groundwater level fluctuations 1990-94

Figure 11-(continued)

Figure 11-(continued)

Bussels No.7a

Figure 11-(continued)

Well Number	Grid Reference	Site	Measuring Authority	Records Commence	Indicated \% Annual Recharge 1993/94
Aquifer: Superficial Deposits					
IJ28/1	22488620	Dunadry	DOEN	1985	60
SO44/4	46834253	Stretton Sugwas	NRA-WEL	1973	155

Aquifer: Chalk and Upper Greensand					
ID30/1**	36630310	Killyglen	DOEN	1985	90
SE94/5**	96514530	Dalton Holme	NRA-NY	1889	140
SE95/6**	95785939	Wetwang	NRA-NY	1971	110
SE97/31	93457079	Green Lane	NRA-NY	1971	125
SP90/26	94700875	Champneys	NRA-T	1962	180
SP91/59	93801570	Pitstone Green Farm.	NRA-A	1970	180
ST30/7**	37630667	Lime Kiln Way	NRA-SW	1969	245
SU01/5B**	01601960	West Woodyates Manor	NRA-SW	1942	125
SU17/57**	16557174	Rockley	NRA-T	1933	130
SU32/3	38172743	Bailey's Down Farm	NRA-S	1964	170
SU34/8A	32154875	Clanville Lodge	NRA-S	1962	205
SU35/14	33155645	Woodside	NRA-S	1963	150
SU51/1	59101680	Upper Hill Farm	NRA-S	1965	255
SU53/94	55863498	Abbotstone	NRA-S	1976	115
SU57/159	56287530	Calversleys Farm	NRA-T	1974	190
SU61/32	65781775	Chidden Farm	NRA-S	1958	115
SU61/46	68901532	Hinton Manor	NRA-S	1953	200
SU64/28	63604049	Lower Wield Farm	NRA-S	1962	135
SU68/49	64428525	Well Place Farm	NRA-T	1976	105
SU71/23**	77551490	Compton House	NRA-S	1894	160
SU73/8	70483491	Faringdon Station	NRA-T	1966	140
SU76/46	73676251	Riseley Mill	NRA-T	1975	70
SU78/45A	74198924	Stonor Park	NRA-T	1961	155
SU81/1	83561440	Chilgrove House	NRA-S	1836	150
SU87/1	83367885	Folly Cottage, Coldharbour	NRA-T	1950	135
SU89/7	81039417	Piddington	NRA-T	1966	130
SY68/34**	66158805	Ashton Farm	NRA-SW	1974	115
TA06/16	04906120	Nafferton	NRA-NY	1964	115
TA07/28	09407740	Hunmanby Hall	NRA-NY	1976	150
TA11/158**	14931029	Keelby Grange	NRA-A	1980	305
TA21/14	26701890	Church Farm	NRA-NY	1971	---
TF72/11	77102330	Off Farm	NRA-A	1971	---
TF73/9	77903270	Coe Ltd, Bircham	NRA-A	1971	---
TF80/33	87300526	Houghton Common	NRA-A	1971	200
TF81/2**	81381960	Washpit Farm	NRA-A	1950	250
TF83/1	85783606	South Creake School	NRA-A	1952	180
TF92/5	98692183	Tower Hills P.S.	NRA-A	1974	---
TG00/92	04400020	High Elm Farm, Deopham	NRA-A	1971	210
TG03/25B	03823583	The Hall, Brinton	NRA-A	1952	260
TG11/5	16911101	The Spinney, Costessey	NRA-A	1952	---
TG12/7	11262722	Heydon Pumping Station	NRA-A	1974	220
TG21/9	24001657	Frettenham Depot	NRA-A	1952	---
TG21/10	26991140	Grange Farm	NRA-A	1952	---
TG23/21	29323101	Melbourne House	NRA-A	1974	210
TG31/20	33651606	Woodbastwick Hall	NRA-A	1974	---
TG32/16	37002682	Brumstead Hall	NRA-A	1978	---
TL11/4	15601555	Mackerye End House	NRA-T	1963	360
TL11/9**	16921965	The Holt	NRA-T	1964	195
TL13/24	12003026	West Hitchin	NRA-A	1970	190
,TL22/10	29782433	Box Hall	NRA-T	1964	---
TL33/4**	33303720	Therfield Rectory	NRA-T	1883	180
TL42/6	45362676	Hixham Hall	NRA-T	1964	150
TL42/8	46692955	Berden Hall	NRA-T	1964	155
TL44/12**	45224182	Redlands Hall	NRA-A	1963	145
TL55/109	59255605	Lower Farm	NRA-A	1983	220
TL72/54	79822516	Rectory Road	NRA-A	1968	20
TL84/6	84654106	Smeetham Cottages, Bulmer	NRA-A	1963	200

Well Number	Grid Reference	Site	Measuring Authority	Records Commence	Indicated \% Annual Recharge 1993/94
TL86/110	88506470	Cattishall Farm	NRA-A	1969	---
TL89/37	81319001	Grimes Graves	NRA-A	1971	180
TL92/1	96572562	Lexden Pumping Station	NRA-A	1961	---
TM15/112**	12015618	Dial Farm	NRA-A	1968	190
TM26/46	24616109	Fairfields	NRA-A	1974	170
TM26/95	27866397	Strawberry Hill	NRA-A	1974	95
TQ01/133	08501170	Chantry Post, Sullington	NRA-S	1977	---
TQ21/11	28501289	Old Rectory, Pyecombe	NRA-S	1958	---
TQ28/19B**	29968051	Trafalgar Square	NRA-T	1901	100
TQ31/50	32201180	North Bottom	NRA-S	1979	---
TQ35/5**	33635924	Rose \& Crown	NRA-T	1974	115
TQ38/9	35098536	Hackney Public Baths	NRA-T	1953	220
TQ50/7	55920380	Old Rectory, Folkington	NRA-S	1965	75
TQ56/19	56486124	West Kingsdown	NRA-T	1961	---
TQ57/118	58807943	Thurrock A13	NRA-A	1979	100
TQ58/2B	56228408	Bush Pit Farm	NRA-T	1967	95
TQ86/44	85956092	Little Pett Farm	NRA-S	1982	130
TQ99/11	94709710	Burnham-on-Crouch	NRA-A	1975	75
TR14/9**	12254690	Little Bucket Farm	NRA-S	1971	230
TR14/50	12654167	Glebe Cottage	NRA-S	1970	135
TR24/26	27874003	Church House	NRA-S	1971	1
TR36/62	32086634	Alland Grange	NRA-S	1969	180
TV59/7C**	52909920	Westdean No. 3	NRA-S	1940	160
Aquifer : Lower Greensand					
SU82/57	88882505	Madam's Farm	NRA-S	1984	---
SU84/8A	87164087	Tilford Pumping Station	NRA-T	1971	155
TL45/19	41105204	River Farm	NRA-A	1973	---
TQ41/82	43701320	Lower Barn Cottages	NRA-S	1975	220
TR13/21	11323881	Ashley House	NRA-S	1972	120
TR23/32	20753650	Morehall Depot	NRA-S	1972	170

Aquifer : Hastings Beds					
TQ22/1	23482770	The Bungalow	NRA-S	1964	85
TQ42/80A	47252990	Kingstanding	NRA-S	1979	---
TQ61/44	66581803	Dallington Herrings	NRA-S	1964	---
TQ62/99	61992282	Whiteoaks	NRA-S	1978	310
TQ71/123	79691659	Red House	NRA-S	1974	140
Aquifer : Upper Jurassic					
SE68/16	68908590	Kirkbymoorside	NRA-NY	1975	---
SE77/76	76907300	Broughton	NRA-NY	1975	---
SE98/8	99108540	Seavegate Farm	NRA-NY	1971	100
SU49/75B	46519736	Marcham	NRA-T	1988	105

Aquifer : Midde Jurassic					
SP00/62**	05950190	Ampney Crucis	NRA-T	1958	90
SP20/113	27210634	Alvescot Road	NRA-T	1983	110
ST51/57	59311691	Over Compton	NRA-SW	1971	115
ST88/62A	82758743	Didmarton 1	NRA-SW	1977	80

Aquifer: Lincolnshire Limestone

SK97/25	98007817	Grange de Lings	NRA-A	1975	70
TF03/37**	08853034	New Red Lion	NRA-A	1964	105
TF04/14	04294273	Silk Willoughby	NRA-A	1972	---

Aquifer : Permo-Triassic sandstones					
IJ26/1	29076943	Dunmurry	DOEN	1985	---
NX97/1**	96677432	Redbank	SRPB	1981	85
NY00/328	05110247	Brownbank Layby	NRA-NW	1974	95
NY14/4**	12464555	New Cowper	NRA-NW	1977	95
NY45/16	49475667	Corby Hill	NRA-NW	1977	---
NY63/2**	61303250	Skirwith	NRA-NW	1978	110

Well Number	Grid Reference	Site	Measuring Authority	Records Commence	Indicated \% Annual Recharge 1993/94
NZ41/34	48611835	Northern Dairies	NRA-NY	1974	---
SD27/8	21727171	Furness Abbey	NRA-NW	1972	95
SD40/137	41285210	Moor Hall	NRA-NW	1983	130
SD41/32**	44001164	Yew Tree Farm	NRA-NW	1973	75
SD44/15	43964928	Moss Edge Farm	NRA-NW	1961	
SD53/25	52603133	Red Scar Wood	NRA-NW	1973	120
SE36/47	39456575	Kelly's Cafe	NRA-NY	1977	220
SE39/20B	30049244	Scruton Village	NRA-NY	1969	225
SE45/3	44705580	Cattal Maltings	NRA-NY	1969	270
SE52/4	54732363	Southfield Lane	NRA-NY	1955	---
SE54/32A	55324646	Bilborough	NRA-NY	1984	---
SE60/76	67840709	Woodhouse Grange	NRA-ST	1980	---
SE61/11**	62701710	Sykehouse	NRA-NY	1971	125
SE72/3B	70472149	Rawcliffe Bridge	NRA-NY	1971	85
SE83/9	80403640	Holme-on-Spalding Moor	NRA-NY	1972	
SJ15/15**	13745556	Llanfair D.C.	NRA-WEL	1972	125
SJ33/39	38143831	Eastwick Farm	NRA-WEL	1974	90
SJ56/45E	50426953	Ashton No. 4	NRA-NW	1969	45
SJ59/147	59509782	Sandy Lane	NRA-NW	1971	245
SJ $62 / 112$	61952105	Heathlanes	NRA-ST	1971	265
SJ69/138	63119620	Kenyon Lane	NRA-NW	1968	160
SJ83/1A**	89693474	Stone	NRA-ST	1974	130
SJ87/32	89697598	Dale Brow	NRA-NW	1973	145
SJ88/93	86118645	Bruntwood Hall	NRA-NW	1972	80
SK00/41**	06700120	Nuttalls Farm	NRA-ST	1974	330
SK10/9	14400464	Weeford Flats	NRA-ST	1966	---
SK21/111	27311419	Grange Wood	NRA-ST	1967	174
SK24/22	25394431	Burtonshuts Farm	NRA-ST	1972	280
SK56/53	56326440	Peafield Lane	NRA-ST	1969	---
SK67/17	64487257	Morris Dancers	NRA-ST	1969	310
SK68/21	61008374	Crossley Hill	NRA-ST	1969	230
SK73/50	76933228	Woodland Farm	NRA-ST	1980	40
SO71/18	71701970	Stores Cottage	NRA-ST	1973	---
SO87/28	81607970	Hillfields	NRA-ST	1961	---
SX99/37B**	95289872	Bussels No. 7A	NRA-SW	1971	140
SY09/21A	06669235	Heathlands	NRA-SW	1951	130

Aquifer : Magnesian Limestone					
NZ22/22**	2875	2896	Rushyford NE	NRA-NY	1967
NZ32/19	35752650	Heley House	NRA-NY	1969	115
NZ33/20	33493501	Garmondsway	NRA-NY	1974	435
SE35/4	38305830	Castle Farm	NRA-NY	1970	125
SE43/9**	45353964	Peggy Ellerton Farm	NRA-NY	1968	160
SE43/14	46603550	Coldhill Farm 35	NRA-NY	1971	290
SE51/2	52101530	Westfield Farm	NRA-NY	1971	115
SK46/71	48006030	Stanton Hill	NRA-ST	1973	145
SK58/43	52488018	Southards Lane	NRA-ST	1973	--

Aquifer : Coal Measures

SE23/4	28503414	Trident House	NRA-NY	1971	80
Aquifer : Millstone Grit					
SE02/46	07712528	Thrum Hall	NRA-NY	1977	85
SE04/7	02954792	Lower Heights Farm	NRA-NY	1971	130
SE24/2B	20674053	Green Lane Dyeworks	NRA-NY	1971	155
SE27/8	21207380	Kirkby Moor Farm	NRA-NY	1971	80
Aquifer : Carboniferous Limestone					
NT95/21	96955055	Middle Ord	NRA-NY	1974	50
SE06/1	02416183	Jerry Laithe Farm	NRA-NY	1971	---
SK15/16**	12925547	Alstonfield	NRA-ST	1974	115
SK17/13	17787762	.Hucklow South	NRA-ST	1969	100
ST64/33	65604790	Oakhill 1	NRA-SW	1974	125

[^10]
THE NATIONAL GROUNDWATER LEVEL ARCHIVE DATA RETRIEVAL SERVICE

The National Groundwater Level Archive includes water level data for around 170 representative wells and boreholes in the United Kingdom; the average length of record is about 20 years. This archive is supplemented by historical water level data (up to 1974 generally) for approximately 3000 additional monitoring sites.

The data are stored on a computer database and water level records may be made available in various forms as specified by users. Retrievals are available for all of the sites listed in the Register of Selected Groundwater Observation Wells, although not all the data contained within the archive have been validated.

In addition five standard options are available for retrieving data. A description of each option is given overleaf. Options 1 to 4 give details of the well site, the period of record available, and maximum and minimum recorded levels in addition to the output specific to each option. Data may be retrieved for a specific well or for groups of wells by well reference numbers, by area (using National Grid References), by aquifer, by hydrometric area, by measuring authority, or by any combination of these parameters. Data may be output to paper or in digital form.

Cost of Service

To cover the computing and handling costs, a moderate charge will be made depending on the data requested. Estimates of these charges may be obtained on request; the right to amend or waive charges is reserved.

Requests for Retrieval Options

Requests for retrieval options should include: the name and address to which the output should be directed, the sites, or areas, for which data are required together with the period of record of interest (where appropriate). Where possible, a daytime telephone number should be given.

Requests should be addressed to:
The British Geological Survey
Maclean Building
WALLINGFORD
OXFORDSHIRE OX10 8BB
Telephone: Wallingford (01491) 838800
Facsimile: (01491) 692345
Email: bgsftp@ua.nwl.ac.uk.

The National Well Record Archive

The British Geological Survey also maintains the National Well Record Archive (NWRA) for England and Wales. Currently this archive includes hydrogeological details and reference information for over 150,000 shafts, boreholes and some springs - predominantly constructed or used for water supply or the monitoring of groundwater levels or quality. The archive is organised into paper files based upon the 10 kilometre squares of the National Grid. Each file includes a register which details the accession number, the depth, the national grid reference and certain other details. This material is an essential component in the hydrogeological enquiry service operated by BGS and the register details are in the process of being transferred to a digital format.

The Archive is located at the Wallingford Office of BGS (address above) and all the non-confidential records are open to inspection by the general public. Those wishing to avail themselves of this facility should contact the BGS Records Section in advance to discuss access procedures and costs.

National Geosciences Information Centre

The NWRA is associated with the National Geosciences Information Service (NGIS), one of a number of computer-based data centres established at NERC Institutes. The NGIS is located at the BGS Headquarters, Keyworth, near Nottingham (Telephone: 01159363100) and provides access to a broad range of geological information (for example, geophysical and hydrogeological logs, core samples and chemical analyses).

LIST OF GROUNDWATER RETRIEVAL OPTIONS

1. Table of groundwater levels

Table of annual maximum and minimum groundwater levels

Table of monthly maximum, minimum and mean groundwater levels

Hydrographs of groundwater levels

Site details

NOTES

All recorded observations of groundwater level in metres above Ordnance Datum, with dates of observation and maximum and minimum levels for each year. Specific years, or ranges of years, may be requested, otherwise the full period of record is given.

Annual maximum and minimum groundwater levels in metres above Ordnance Datum, with dates of occurrence. Specific years, or ranges of years, may be requested, otherwise the full period of record is given.

Monthly maximum, minimum and mean groundwater levels in metres above Ordnance Datum, together with the number of years contributing values to the calculation of each monthly mean. A specific period of years may be nominated, otherwise the full period of record is given.

Provides a well hydrograph for a number of groundwater levels of specified years. Castellated annual plots of monthly maximum and mean groundwater levels calculated from a nominated period of years are superimposed upon the hydrograph, provided that the nominated period exceeds 10 years. Tabulations of the monthly maximum, minimum and mean values are also listed, together with the number of years of record used in the calculations, and the number of observations used for each month.

The output comprises the well reference number of the British Geological Survey, the original (Water Data Unit) station number (where applicable), the hydrometric area, the aquifer name and code, the site name and location, the National Grid Reference, the depth of the well, the datum points (from which measurements are made), the altitude of the ground surface, the period of record and the measuring authority area in which the well or borehole is located.

[^11]
SURFACE WATER QUALITY DATA

Background

A national archive of water quality data is maintained by the Environmental Protection Statistics Division of the Department of the Environment to provide information concerning the quality of rivers throughout the United Kingdom and to satisfy certain international obligations including the estimation of riverborne inputs of selected contaminants (e.g. nutrients) to the sea. Data for this archive are collected as part of the Harmonised Monitoring programme which provides for the sampling and analysis of water quality on a national basis.

The Harmonised Monitoring Scheme was established, for England and Wales, in 1974; a similar scheme was instituted for Scotland in July 1975. In Scotland responsibility for the collection and analysis of the samples rests with the River Purification Boards; data acquisition is co-ordinated by The Scottish Office Environment Department. In England and Wales responsibility passed, on the 1st September 1989, from the former regional Water Authorities to the newly-created National Rivers Authority.

Measuring authorities send analytical results of routinely collected samples of river water from approximately 220 monitoring stations; sampling frequencies vary substantially but are, typically, in the range 6 to 52 . per year. Most of the monitoring stations are located on major rivers at, or near, the tidal limit.

The monitoring programme can embrace a large number - over 80 -of physical and chemical attributes of river water but typically only 25 are measured at any given site. A number of determinands are measured as standard but a larger proportion are monitored only where it is considered necessary to do so.

Currently no data for Northern Ireland are held on the Harmonised Monitoring Archive. Water quality data are, however, routinely collected and archived by the Environmental Protection Division of the Department of the Environment (NI); data for two Northern Ireland monitoring sites are included in this publication.

The measuring authorities maintain major programmes of chemical and biological sampling of rivers for their own purposes; the monitoring networks involved provide a far more comprehensive coverage than the selected sites incorporated in the Harmonised Monitoring programme. From the 31st July 1985, the former Water Authorities were required, under the Control of Pollution Act, to maintain registers of the results of all samples of water and effluent taken for pollution control purposes together with details of all consented discharges. Following the enactment of the Water Bill 1989 this obligation passed to the National Rivers Authority. These registers are maintained at the regional headquarters of the NRA (see page 172) and are open
for inspection by the public - free of charge. Persons wishing to consult the registers are advised to first contact the individual regional headquarters; a list of addresses is given on pages 172 and 173.

Data Retrieval

A comprehensive range of retrieval options has been developed by DoE to make available the water quality data held on the Harmonised Monitoring Archive and to provide statistical summaries based on that data. Requests for data, and guidance concerning its availability, should be addressed to:

Department of the Environment
Environmental Protection Statistics Division, Room A105
Romney House
43 Marsham Street
LONDON SW1P 3PY

Telephone: 01712768245
Data listings for monitoring sites in Northern Ireland may be obtained from the Environmental Protection Division of the DOE (NI).

Figure 12 Water quality monitoring station location map

Scope of the Water Quality Data Tabulations

River water quality data are presented for 32 monitoring sites on rivers throughout the United Kingdom. The location of each monitoring site is given on Figure 12. For each site 1994, and period of record, data are given for a range of determinands; the determinands featured may differ between monitoring sites reflecting the character of the rivers themselves and differences in the sampling regimes between monitoring stations.

The following notes are provided to assist in the interpretation of particular data items.

Harmonised Monitoring Station Code

A reference number which serves as the primary identifier of the station. For stations on the Harmonised Monitoring Archive, the first two digits refer to the measuring authority, the remainder refer to individual sites within each measuring authority. For the Northern Ireland stations, the Department of the Environment (NI) reference code is given.

Measuring Authority

An abbreviation referencing the organisation responsible for the operation of the monitoring site. See pages 172 and 173 for a full list of the codes together with the corresponding authority names and addresses.

Grid Reference

The initial two-letter and two-figure codes each designate the relevant 100 kilometre National Grid square or Irish Grid square (see page 38); the standard six-figure map reference follows.

Associated Flow Measurement Station

For monitoring sites in Great Britain, the reference number, name, catchment area and grid reference of the gauging station which provides the discharge data stored on the Harmonised Monitoring Archive. At most sites the flow corresponding to the time the quality sample was taken is archived; at other locations the corresponding daily mean flow is utilised. Where the gauging station and water quality monitoring site are not coincident, some method of flow adjustment may have been employed to allow for the differing catchment areas.

For the Northern Ireland monitoring sites, reference details of the co-located gauging stations are given; the flow data for these stations are held on the National River Flow Archive.

With the exception of the River Aire, for which summary flow information appears with the water
quality data, 1994 flow data for all of the relevant gauging stations in Great Britain may be found in the River Flow Data section. Where daily flows are required for gauging stations featured in the monthly flow tables the National River Flow Archive data retrieval service may be used.

Determinands

Inadequate or unrepresentative sampling frequencies, or the presence of a substantial number of samples with concentrations recorded at, or below, the limit of detection, will normally result in the omission of a particular determinand.

Notes:

i. Conductivity results are standardised to $20^{\circ} \mathrm{C}$.
ii. The biochemical oxygen demand data normally relate to the inhibited analytical results BOD (atu).
iii. Nitrate concentrations are normally derived by subtracting the nitrite concentration from the reported Total Oxidised Nitrogen (TON) concentration; if the nitrite determination is below the limit of detection, nitrate is recorded as equivalent to $T O{ }^{\star}$.

Units

The standard units used to record and report each determinand. The number of significant figures given for each determinand corresponds to the way the data are stored on the Harmonised Monitoring or DOE (NI) Archives and reflects the uncertainty associated with the relevant analytical procedures.

1994 Data

Samples

The number of samples taken for each determinand during 1994. Where a proportion of analytical results were below the limit of detection (which may vary according to the analytical procedure used), the number of samples in this category is given in parentheses. Normally determinands are not featured when the number of samples in the year is less than about six. Exclusion may also result from a very uneven sampling pattern through the year.

The precision of the mean, maximum and minimum values computed on the basis of a limited number of samples will vary from determinand to determinand but statistics associated with sampling frequencies of lower than about once a month should be regarded as indicative only.

[^12]
Mean

The average ${ }^{\star}$ of all the sample values for each determinand in 1994. Where concentrations below the limit of detection are held on the Harmonised Monitoring Archive, the threshold value itself is used to compute the mean.

Maximum / Date

The maximum determinand value recorded during 1994 together with its date of occurrence. Where the maximum value recurs the date refers to the initial occurrence.

Minimum / Date

The minimum determinand value together with its date of occurrence. Where the minimum value recurs the date refers to the initial occurrence. A ' $<$ ' symbol indicates a value below the limit of detection.

Different limits of detection may apply throughout the year at certain monitoring sites, for further details contact the address given on page 161 .

Period of Record Data

For half of the featured sites, the pre-1994 summary statistics are presented for the twenty-year period beginning in 1974; where individual stations were not incorporated into the Harmonised Monitoring network until after 1974, the appropriate first year of data is given. For certain stations the sampling frequency varies significantly from year to year and data for a few determinands may not extend over the full period of record; in particular the first year of data will normally be incomplete.

Where the pre-1994 data series includes values below the limit of detection, the threshold value has been used in the computation of the summary statistics.

For a number of the featured monitoring stations, a considerable amount of pre-1974 data, at least for certain determinands, may be stored on local, or regional, archives maintained by the measuring authorities. Also, for the period 1974-94, such archives may hold analytical results for substantially more samples than are represented on the Harmonised Monitoring Archive. Hence full equivalence between statistical summaries derived from national and regional databases cannot be expected for all monitoring sites.

Mean

The average* value of all the sample values for each determinand.

Percentiles

The 5, 50 and 95 percentile values for each determinand based on all the samples taken over the pre-1994 period.

Quarterly Averages

The mean quarterly average ${ }^{\star}$ for each of the threemonthly periods: January to March, April to June, July to September and October to December.

[^13]Harmonised monitoring station number: 01001
Measuring authority : NRA-NW NGR: 33 (SJ) 742938
Determinend

Temperature

ph
Conductivity
Suspended solids
Dissolved oxygen
AOD (inhibited)
Ammon
Nitrite
Nitrite
Nitrate
,
Total alkalinity
Orthophosphate
Silica
Magnesium
199

Samples	Mean	Max.	Date	Min.	Date
40	12.1	24.0	12/07	2.0	22/02
49	7.4	7.8	12/04	6.9	05/04
49	382	558	19/07	219	04/01
49	21.6	149.0	26/01	2.0	11/10
46	8.67	11.70	04/01	5.12	26/07
48	4.4	23.0	21/06	1.5	11/10
49 (1)	0.981	2.650	22/02	0.040	08/03
49	0.423	9.970	28/06	0.038	04/01
48 (1)	4.68	9.10	14/06	0.50	08/03
49 (1)	40.2	64.0	19/07	5.0	08/03
49	66.2	105.0	23/08	5.0	08/03
49	1.418	24.600	28/06	0.104	04/01
49	8.24	14.70	22/11	3.27	10/05
49	34.3	41.7	09/08	22.7	04/01
49	7.07	9.20	19/07	4.21	04/01

Flow measurement station : 069007-Ashton Weir C.A. $\left(\mathrm{km}^{2}\right): 660.0$

NGR : 33 (S.J) 772936

Period of record: 1975-1993							
Mean	Parcentiles			Quarterty averagea			
	5\%	50\%	95\%	J-M	A-J	J-S	O-D
10.7	3.9	10.1	19.1	5.9	12.6	16.3	8.6
7.3	6.9	7.3	7.6	7.3	7.3	7.3	7.3
482	284	465	744	460	499	510	449
38.2	3.7	19.3	109.7	41.8	28.8	27.5	51.9
8.05	4.59	7.98	11.29	9.92	7.25	6.21	8.73
6.1	2.5	5.1	12.6	6.2	6.3	5.2	6.3
1.85	0.31	1.61	4.18	1.97	2.20	1.67	1.55
0.26	0.05	0.21	0.66	0.10	0.33	0.46	0.18
4.1	2.1	4.0	7.1	3.2	4.6	5.1	3.7
52.7	26.8	48.9	86.0	59.1	51.2	53.2	46.7
91.3	54.0	90.0	133.8	84.6	98.1	95.7	84.9
1.14	0.20	1.05	2.57	0.71	1.30	1.62	0.93
8.09	5.12	8.10	10.36	8.12	6.83	8.73	8.48
32.8	25.6	33.2	38.3	33.0	34.2	32.7	31.3
7.2	4.8	7.2	9.1	7.0	7.8	7.4	6.7

Ribble at Samlesbury

Harmonised monitoring station number :
Meàjuing 01008
Determinand

Temperature
pH
Conductivity
Suspended solids
Dissolved oxygen
BOD (inhibitad)
Ammoniacal nitrogen
Nitrite
Nitrate
Chloride
Total alkalinity
Onthophosphate
Silica
Calcium
Magnesium
Potassium
Sodium

Units	1994					
	Samples	Mean	Max.	Date	Min.	Date
${ }^{*}$	52	10.7	21.0	21/07	1.0	17/02
pH units	50	8.1	9.3	21/07	7.5	27/01
$\mu \mathrm{S} / \mathrm{cm}$	49	371	550	26/05	135	24/03
$\mathrm{mg} / 1$	48(3)	24.6	640.0	24/02	2.0	17/02
$\mathrm{mg} / 10$	47	10.61	13.70	24/02	7.24	28/07
$\mathrm{mg} / \mathrm{l} \mathrm{O}$	48	2.8	12.5	26/05	1.0	10/11
mg / N	49(11)	0.181	1.070	03/03	0.040	28/04
$\mathrm{mg} / \mathrm{IN}$	49	0.072	0.261	28/07	0.017	04/08
mg / N	49	5.36	17.60	18/08	0.80	22/03
mg / l	49	30.1	53.0	22/03	13.0	10/11
$\mathrm{mg} / \mathrm{CaCO}$	49	108.4	139.0	20/10	41.0	24/03
mg / P	49	0.647	1.840	02/06	0.090	22/03
$\mathrm{mg} / \mathrm{SiO}_{2}$	41(2)	2.88	6.28	17/02	0.05	12/05
$\mathrm{mg} / \mathrm{l} \mathrm{Ca}$	44	60.6	69.2	24/02	23.8	24/03
$\mathrm{mg} / \mathrm{IMg}^{\mathrm{Mg}}$	44	5.01	9.77	24/02	1.76	24/03
mg/l K	44	4.31	9.08	$14 / 07$	1.93	24/03
$\mathrm{mg} / \mathrm{Na}$	44	31.8	68.0	18/08	7.9	24/03

Flow measurement station : 071001 - Samlesbury
C. A. $\left(\mathrm{km}^{2}\right): 1145.0$ NGR : 34 (SD) 589304

Period of record: 1974-1993							
Mean	Percentiles			Quarterty avaragas			
	5\%	50\%	95\%	J.M	A.J	: J-S	O-D
9.8	1.0	9.9	18.1	4.3	11.8	15.1	7.5
7.8	7.1	7.8	8.7	7.6	7.9	8.0	7.6
414	233	410	618	407	449	431	366
19.1	1.7	7.9	66.6	22.1	13.0	16.3	24.5
10.14	7.21	10.15	12.81	11.56	9:75	8.78	10.69
2.8	1.1	2.4	5.9	2.7	3.1	2.6	2.6
0.26	0.03	0.16	0.83	0.50	0.18	0.14	0.25
0.08	0.02	0.06	0.20	0.06	0.11	0.09	0.06
4.2	1.3	3.3	10.0	3.4	5.2	4.9	3.3
33.0	14.2	30.2	55.6	37.8	35.6	32.3	26.6
116.2	67.2	120.5	153.3	109.9	122.4	120.6	111.3
0.43	0.07	0.31	1.30	0.25	0.60	0.60	0.31
3.24	0.13	3.46	5.78	4.16	1.82	2.49	4.55
51.0	33.9	51.3	63.8	50.6	52.1	50.4	49.5
5.1	2.7	5.1	7.5	4.9	5.6	5.3	4.6
4.0	2.0	3.8	6.9	3.5	4.5	4.5	3.4
30.5	9.4	25.9	63.4	28.2	35.2	34.5	21.7

Eden at Temple Sowerby

Harmonised monitoring station number
Measuring authority : NRA-NW NGR: 35 (NY) 604281

Determinand

Temperature

 pHConductivity Suspended solids Bissolved oxygen Chioride Total alkalinity Orthophosphate Silica Calcium Mognosium Potassimm
Sodium

Unit*	1994					
	Samptes	Mean	Max.	Dato	Min.	Date
${ }^{\circ}$	11	10.9	19.0	13/07	5.0	07/02
pH units	12	8.2	8.7	11/05	7.7	10/01
$\mu \mathrm{S} / \mathrm{cm}$	12	381	454	10/08	190	10/01
mg/l	11 (1)	8.2	34.0	10/01	2.0	11/05
mg / O	11	11.44	15.10	11/05	9.50	15/06
mgfio	11	1.7	2.5	09/06	1.0	10/01
$\mathrm{mg} / \mathrm{ll} \mathrm{Cl}$	11	19.2	28.0	10/08	12.0	10/01
$\mathrm{mg} / \mathrm{CaCO} \mathrm{Ca}_{3}$	11	152.0	176.0	13/07	78.0	10/01
mg / P	11 (2)	0.118	0.237	15/06	0.050	07/02
$\mathrm{mg} / \mathrm{SiO} 2$	11	2.44	3.70	09/11	0.40	11/05
$\mathrm{mg} / \mathrm{Ca}$	11	61.6	70.8	10/08	35.7	10/01
$\mathrm{mg} / \mathrm{Mg}$	11	9.43	13.50	15/06	4.16	10\%1
mg/ K	11	2.96	4.57	10/08	1.77	10/01
$\mathrm{mg} / \mathrm{Na}$	11	10.9	16.1	10/08	7.4	14/09

Flow measurement station : 076005 - Temple Sowerby
C. A. $\left(\mathrm{km}^{2}\right): 616.4$

NGR: 35 (NY) 605283

Mean	5\%	$\begin{aligned} & \text { Percentile } \\ & 50 \% \end{aligned}$	${ }^{\operatorname{les}} 95 \%$	J.M	Quarterly A.J	$\begin{gathered} \text { ly averag } \\ \text { J-S } \end{gathered}$	$0-D$
10.2	2.9	9.4	18.5	4.9	12.0	15.5	7.
8.1	7.4	8.0	8.7	7.9	8.2	8.2	8.0
358	$\cdots 227$	378	473^{-}	'338	368	383	343
8.6	1.3	4.3	27.5	11.8	7.3	4.9	11.
11.15	8.80	10.99	13.71	12.22	11.35	10.38	10.9
1.9	0.7	1.7	3.3	1.8	1.9	1.9	1.
18.9	11.0	17.8	29.0	19.7	19.9	21.1	15.
150.0	88.9	157.0	191.1	143.2	157.0	151.5	149.
0.13	0.02	0.09	0.38	0.08	0.20	0.17	0.1
2.42	0.41	2.44	4.20	3.08	1.38	2.14	3.0
56.8	35.9	58.6	72.7	56.8	58.0	58.2	56
9.2	4.2	8.9	14.5	8.3	10.3	10.5	7.
2.8	1.5	2.5	4.9	2.2	3.0	3.5	2
10.2	5.2	9.3	17.0	9.9	10.6	11.8	

South Tyne at Warden Bridge

Harmonised monitoring station number: 02021
Measuring authority: NRA-N NGR: 35 (NY) 910660
Determinend

Temperature
pH
Suspended solids
Dissolved oxygen
BOD (inhibited)
Choride

1994
${ }^{\circ} \mathrm{C}$
pH units
$\mathrm{mg} / / 1 \mathrm{o}$
mg / O
$\mathrm{mg} / \mathrm{IO}$
$\mathrm{mg} / / \mathrm{Cl}$

1994					
Samples	Mean	Mex.	Date	Min.	Dete
4	8.9	16.0	$22 / 08$	0.1	$22 / 02$
4	8.1	8.5	$11 / 05$	7.7	$22 / 02$
$4(1)$	1.5	2.0	$22 / 08$	1.0	$22 / 02$
4	13.12	15.20	$22 / 02$	11.30	$29 / 11$
4	1.3	1.6	$22 / 02$	0.9	$29 / 11$
4	18.6	27.9	$22 / 02$	12.8	$29 / 11$

Flow measurement station : 023004 - Haydon Bridge C.A. $\left(\mathrm{km}^{2}\right): 751.1$ NGR : 35 (NY) 856647

Period of record: 1975-1993							
Mean	Parcentiles			Quarterty everages			
	5\%	50\%	95\%	J.M	A.J	J-S	O-D
9.3	2.0	8.4	19.0	4.1	11.3	15.0	6.4
7.8	7.2	7.8	8.5	7.8	8.0	7.9	7.6
10.9	1.3	4.4	28.2	10.9	10.8	13.0	8.9
11.32	9.03	11.41	13.78	12.33	11.03	10.11	11.71
1.7	0.6	1.5	3.0	1.5	1.8	1.8	1.6
13.9	7.9	12.9	24.1	16.8	14.4	12.2	12.3

$\begin{array}{ll}\text { Harmonised monitoring station number: } & 02058 \\ \text { Measuring authority : NRA-N } & 02 \\ \text { NGR : } & 45 \text { (NZ) } 265131\end{array}$

Determinand	Unita	1994					
		Samples	Mean	Max.	Date	Min.	Date
Temperature	${ }^{\circ} \mathrm{C}$	4	10.5	17.0	27/10	5.0	02/11
pH	pH unit	4	7.6	7.8	08/06	7.4	02/11
Suspended solids	mg / l	4	10.5	27.0	24/03	2.0	06/06
Diszolvad oxygen	$\mathrm{mg} / 10$	4	11.24	12.50	24/03	10.66	27/10
800 (inhibited)	mg / O	4 (1)	1.7	2.0	02/11	1.4	24/03
Nitrate	mg / l	3	0.65	0.81	27/10	0.48	02/11
Chloride	$\mathrm{mg} / \mathrm{l} \mathrm{Cl}$	4	12.1	13.9	27/10	9.3	24/03
Total elkalinity	$\mathrm{mg} / \mathrm{CaCO} 3$	4	36.2	63.0	27/10	19.0	02/11

Flow measurement station : 025001-8roken Scar C. A. $\left(\mathrm{km}^{2}\right)$: 818.4 NGR : 45 (NZ) 259137

Period of record: 1975-1993							
Mean	Percentiles			Quarterty averages			
	5\%	50\%	95\%	J-M	A.J	J. 5	O-D
9.3	1.6	8.4	18.1	3.8	11.9	15.3	6.1
7.6	6.9	7.7	8.2	7.6	7.6	7.6	7.6
13.7	1.4	6.2	46.9	14.6	9.2	14.0	16.4
10.93	8.31	11.01	13.24	12.39	10.39	9.37	11.48
1.8	0.9	1.6	3.2	1.9	1.8	1.8	1.7
1.4	0.2	1.0	3.7	1.9	1.2	0.8	1.8
15.8	6.4	14.0	26.7	19.6	14.2	11.8	18.8
67.2	33.4	61.2	102.9	76.8	68.2	61.5	65.4

Trent at Nottingham
Harmonised monitoring station number :
03007
Measuring authority : NRA-ST NGR 43 (SK) 581383

Determinend Tomperature pH Conductivity Suspended solids Disinolved oxygen BOD (inhibited) Tol, diss. org. corbon* Ammoniacal nitrogen Nitrate Chioride Totsl alkalinity Orthophosphate Silica Sulphate Calctum Magnesium Potastium Sodium

Units	1994					
	Samplea	Mean	Max.	Date	Min.	Date
${ }^{\circ} \mathrm{C}$	57	11.7	24.0	12/07	1.0	15/02
pH units	57	8.0	8.7	03/05	7.7	14/11
$\mu \mathrm{S} / \mathrm{cm}$	57	868	1180	31/08	510	29/12
mg / l	57	16.9	132.0	13/01	3.0	15/10
$\mathrm{mg} / 10$	57	11.11	15.00	15/02	8.00	14/07
$\mathrm{mg} / 10$	54	2.9	5.5	14/11	1.5	11/10
mg / O	26	7.0	10.2	29/12	4.7	10/02
mg / N	57 (8)	0.178	0.947	24/02	0.040	03/05
mg / N	57	8.17	10.50	20/10	5.79	04/01
$\mathrm{mg} / \mathrm{Cl}$	57	98.8	183.0	31/08	44.0	29/12
$\mathrm{mg} / \mathrm{CaCO}$	57	164.4	190.0	18/10	116.0	29/12
mg / P	13	1.054	1.840	22/06	0.404	08/01
$\mathrm{mg} / \mathrm{SiO}$	12	8.38	10.30	15/02	6.00	22106
$\mathrm{mg} / / \mathrm{SO}_{4}$	13	143.28	190.00	18/10	76.70	29/12
$\mathrm{mg} / \mathrm{Co}$	13	93.7	109.0	01/06	67.7	29/12
$\mathrm{mg} / \mathrm{/} \mathrm{Mg}$	13	21.19	28.40	22/06	13.50	29/12
mg / K	13	9.16	12.30	22/06	6.20	13/04
mg/l Na	13	63.9	96.3	22/06	24.8	29/12

Flow measurement station : 028009-Colwick C. A. $\left(\mathrm{km}^{2}\right)$: $\mathbf{7 4 8 6 . 0} \quad$ NGR : 43 (SK) 620399

Period of record: 1974-1993							
Mean	5x Percentiles ${ }_{\text {50\% }} \begin{gathered}\text { P5\% }\end{gathered}$			Ouarterty averagea			
				J-M	A-J	J.S	O.D
12.6	5.0	11.9	21.0	7.6	15.0	18.4	10.4
7.8	7.4	7.8	8.3	7.7	7.8	7.9	7.7
884	602	904	1118	815	909	957	864
24.6	6.1	15.0	75.9	28.2	20.7	18.4	29.6
9.95	7.81	10.11	12.32	10.92	9.79	B.95	10.13
3.5	1.6	3.2	5.9	3.1	4.0	3.6	3.2
8.0	4.5	6.6	18.1	7.1	8.1	8.7	B.
0.38	0.03	0.28	0.90	0.60	0.27	0.21	0.36
8.6	6.2	8.7	11.2	8.8	8.8	8.4	8.7
99.1	54.1	99.5	149.2	88.4	100.6	117.3	94.6
159.3	118.9	162.7	186.6	157.5	165.6	181.5	153.5
1.51	0.52	1.50	2.79	1.00	1.60	2.04	1.49
7.24	2.68	7.63	11.06	8.57	4.42	6.76	8.48
168.1	106.0	69.3	222.42	156.9	178.6	173.9	160.6
105.0	72.5	98.6	113.1	85.8	109.0	90.1	92.1
22.0	13.7	22.5	29.1	22.3	23.4	21.7	19.7
9.9	6.6	9.8	15.4	8.0	10.3	11.7	10.3
73.4	31.2	74.6	26.1	4.2	74.2	87.0	0.3

Derwent at Wilne

Harmonised monitoring station number :
Measuring authority: NRA-ST NGR: 43 (SK) 452315

Determinand	Unts	1994					
		Samples	Mean	Max.	Dato	Min.	Date
Tompersture	${ }^{*} \mathrm{C}$	43	12.0	23.0	14/07	4.0	25/02
	pH units	41	8.0	8.5	11/05	7.7	10/11
Conductivity	$\mu \mathrm{S} / \mathrm{cm}$	41	635	1650	30/06	410	27/01
Suspended solids	mg / l	43	13.3	78.0	10/11	2.0	19/12
Dissolvad oxygen	$\mathrm{mg} / \mathrm{l} 0$	42	10.79	13.60	27/01	7.40	31/08
800 (inhibited)	$\mathrm{mg} / \mathrm{l} 0$	42	2.7	6.5	01/08	1.5	31/01
Tot. diss. org. carbon	$\mathrm{mg} / 10$	42	5.0	9.1	10/11	2.4	18/01
Ammoniacel nitrogen	$\mathrm{mg} / 1 \mathrm{~N}$	43 (1)	0.229	0.958	25/02	0.040	30/06
Nitrote	mg / N	43	4.68	6.72	07/09	3.22	12/04
Chloride	($\mathrm{mg} / \mathrm{l} \mathrm{Cl}$	43	54.1	147.0	25/02	30.0	10/11
Totel alkalinity	$\cdots \mathrm{mog} / \mathrm{CaCO}$	43	148.7	217.0	29/07.	83.0	10/11
Orthophosphate	mg / P	43	0.684	1.650	01/08	0.120	06/01
Silica	$\mathrm{mg} / / \mathrm{SiO}$	11	6.41	7.80	25/02	2.80	14/07
Sulphate	$\mathrm{mg} / \mathrm{SO} \mathrm{SO}_{4}$	14	92.67	160.00	07/09	55.60	10/11
Celctum	$\mathrm{mg} / \mathrm{CO}$	14	72.4	86.3	14/07	58.1	10/11
Magnasium	$\mathrm{mg} / \mathrm{Mg}$	14	15.50	25.50	07/09	9.11	10/11
Potatsium	mg/l K	14	5.00	8.04	07/09	2.97	28/03
Sodium	$\mathrm{mg} / \mathrm{l} \mathrm{Na}$	14	43.4	94.9	25/02	20.2	10/11

Flow measurement station : 028067-Church Wilne C.A. $\left(\mathrm{km}^{2}\right)$: 1177.5

NGR : 43 (SK) 438316

Mean	Percantiles			Ouarterty averages			
	5\%	50%	$95 x$	J.M	A.J	J-S	0.0
11.9	4.0	11.1	21.0	6.5	14.2	17.8	9.3
7.8	7.5	7.8	8.2	7.8	7.9	7.9	7.7
658	430	660	888	564	671	760	639
14.8	2.0	8.0	47.9	20.2	9.6	10.1	19.3
10.06	6.98	10.24	12.92	11.67	10.11	6.54	10.37
2.6	1.2	2.5	4.3	2.4	2.7	2.6	2.6
4.9	2.4	4.4	9.1	3.9	5.0	5.7	5.1
0.32	0.07	0.27	0.74	0.40	0.29	0.23	0.35
4.4	3.2	4.5	5.8	4.4	4.4	4.5	4.4
67.2	35.0	68.1	109.3	56.3	68.8	83.4	64.1
155.4	110.7	159.3	189.0	140.4	161.4	172.2	149.2
0.88	0.22	0.81	1.90	0.52	0.90	1.34	0.80
5.39	0.59	5.73	8.54	6.12	3.43	4.61	6.72
102.2	60.0	98.4	167.90	82.1	107.8	123.7	93.7
72.6	55.4	74.1	85.6	68.9	75.9	76.4	67.8
16.6	9.0	15.8	24.8	14.3	17.9	19.9	15.2
5.3	3.0	5.1	7.7	4.6	5.5	6.2	5.0
50.1	18.6	47.7	80.2	37.0	49.8	68.5	43.0

Teme at Powick

Harmonised monitoring station number: 03029
Measuring authority : NRA-ST NGR : 32 \{SO\} 836525

Untt						
	Samples	Mean	Max.	Oate	Min.	Date
${ }^{*} \mathrm{C}$	17	10.2	21.0	14/07	5.0	17/01
pH units	15	8.1	8.5	14/07	7.6	16/09
$\mu \mathrm{S} / \mathrm{cm}$	15	393	490	10/08	260	16/09
mg / l	17	44.4	198.0	16/09	5.0	27/04
$\mathrm{mg} / \mathrm{l} \mathrm{O}$	17	11.25	14.50	17/01	9.70	30/09
$\mathrm{mg} / \mathrm{l} 0$	17 (3)	1.6	5.0	16/09	1.0	20/01
$\mathrm{mg} / 10$	16	4.4	13.9	18/09	1.9	20/01
mg / N	16	5.35	6.83	18/09	4.08	28/07
$\mathrm{mg} / \mathrm{ll}$	16	30.5	94.0	12/12	21.0	15/11
$\mathrm{mg} / \mathrm{CaCO}_{3}$	15	124.4	172.0	28/07	10.0	16/09
mg / P	17(2)	0.129	0.249	18/09	0.050	04/03

How measurement station : 054029-Knightsford 8 r C.A. $\left(\mathrm{km}^{2}\right): 1480.0 \quad$ NGR : 32 (SO) 735557

Period of record: 1975-1993							
Mean	Percorrtilen			Quarterty averages			
10.6	3.0	9.9	19.1	5.3	12.7	16.4	7.8
8.0	7.5	8.0	8.5	7.9	8.1	8.2	7.9
424	271	410	519	370	421	442	400
39.3	1.9	11.4	188.9	66.9	33.1	12.1	46.4
10.89	8.49	11.03	13.31	11.91	10.71	9.91	11.19
1.9	0.8	1.6	4.1	1.7	2.2	1.8	1.9
4.8	1.9	3.5	12.4	4.4	4.9	4.6	5.1
4.3	2.3	4.3	6.5	5.4	4.5	3.4	4.2
23.4	15.3	23.0	31.5	23.1	22.7	25.8	22.4
138.3	77.0	141.3	189.7	118.5	148.9	184.3	123.9
0.19	0.03	0.15	0.40	0.13	0.10	0.24	0.27

Harmonised moni Measuring author	station nu A-ST	ber : NGR	(SP)	$\begin{array}{r} 0341 \\ 03443 \end{array}$				Flow C. A. k^{\prime}	asure	10.0	station	$\begin{aligned} & \text { J5400: } \\ & \text { JGR : } 4 \end{aligned}$	$\begin{aligned} & \text { - Eves! } \\ & 2 \text { (SP) } \end{aligned}$	$\begin{aligned} & \text { ham } \\ & 04043 \end{aligned}$	
				199						Period of	of record	977.19			
Determirand	Units	Samples	Mean	Max.	Date	Min.	Date	Mean	5\%	$\begin{aligned} & \text { Percentil } \\ & 50 \% \end{aligned}$	95%	J.M	Quarte A.J	$\begin{gathered} \text { avera } \\ \mathrm{J}-\mathrm{S} \end{gathered}$	0.0
Temperature	${ }^{\circ} \mathrm{C}$	44	10.4	21.0	20/07	1.0	14/02	11.2	3.4	11.0	19.9	5.4	13.4	17.0	8.6
pH	pH units	29	8.1	8.6	11/05	7.8	06/01	8.0	7.6	8.0	8.6	7.9	8.2	8.0	7.8
Conductivity	$\mu \mathrm{S} / \mathrm{cm}$	29	842	1060	19/07	480	06/01	927	605	943	1197	847	914	1021	926
Suspended solids	mg / l	38	33.6	220.0	06/01	3.0	18/10	27.5	5.1	15.5	90.4	40.9	26.1	16.7	25.2
Dissolved oxygen	mg / O	44	10.22	14.20	16/02	2.64	11/11	10.63	7.95	10.92	13.32	11.94	10.83	9.00	10.78
BOD (inhibited)	$\mathrm{mg} / \mathrm{l} 0$	40 (1)	3.0	5.0	11/05	1.0	08/08	3.2	1.5	2.7	6.6	2.8	4.6	2.9	2.5
Tot. diss. org. carbon	mg/i 0	22	7.4	14.2	07/11	5.3	07/03	8.7	5.2	7.1	18.6	8.6	8.7	8.8	9.0
Ammoniacal nitrogen	mg/iN	30 (9)	0.130	0.594	19/05	0.040	22/04	0.24	0.02	0.16	0.66	0.45	0.14	0.13	0.26
Nitrate	mg / N	30	9.81	11.30	07/11	7.17	06/01	10.6	7.7	10.5	14.5	11.6	9.9	9.9	11.0
Chloride	$\mathrm{mg} / \mathrm{Cl}$	30	62.0	93.0	12/09	35.0	06/01	77.5	38.9	75.1	137.0	68.3	71.2	92.5	78.4
Total alkalinity	$\mathrm{mg} / \mathrm{CaCO} 3$	30	187.4	216.0	$07 / 06$	109.0	28/02	195.5	145.1	198.8	229.3	192.8	201.7	195.3	191.6
Orthophosphate	mg / P	21	1.363	2.660	19/07	0.470	09/12	1.78	0.52	1.62	3.90	1.09	1.60	2.55	1.93
Silica	$\mathrm{mg} / \mathrm{SiO}$	11	10.55	14.80	13/10	5.30	16/05	10.78	3.83	1.41	15.48	10.31	6.59	11.76	13.04
Sulphate	$\mathrm{mg} / \mathrm{SO} \mathrm{SO}_{4}$	11	175.45	242.00	19/07	103.00	07/04	195.0	100.0	97.5	265.85	170.0	198.4	217.2	187.3
Calcium	$\mathrm{mg} / \mathrm{Ca}$	11	115.8	134.0	16/06	93.6	07/11	119.4	87.2	122.4	140.3	119.7	116.7	121.1	118.3
Magnesium	$\mathrm{mg} / \mathrm{Mg}$	11	26.31	33.20	19/07	17.20	07/11	28.4	16.4	27.8	39.2	24.9	30.0	31.2	27.5
Potassium	mg / K	11	9.30	12.20	12/09	5.96	07/04	9.9	6.4	9.2	14.6	7.5	10.2	12.0	10.2
Sodium	$\mathrm{mg} / \mathrm{l} \mathrm{Na}$	11	45.7	69.2	12/09	22.3	07/04	57.1	21.9	55.4	99.6	44.1	56.8	71.2	58.0

Aire at Fleet Weir

$\begin{array}{lr}\text { Harmonised monitoring station number: } & 04005 \\ \text { Measuring authority : NRA-Y } & 04 \text { (SE) } 381285\end{array}$
Determinand

Flow
Temperature
pH
Conductivity
Suspended solids
Dissolved oxygen
BOD (inhibited)
Ammoniacal nitrogen
Nitrite
Nitrate
Chloride
Total alkalinity
Orthophosphate
Calcium
Magnesium

Units	1994					
	Samplea	Mean	Max.	Date	Min.	Date
$m^{3} 5-1$	365	21.2	101.5	28/12	4.6	14/08
${ }^{\circ} \mathrm{C}$	44	11.6	20.0	13/07	3.7	14/02
pH units	44	7.5	7.6	09/02	7.2	05/01
$\mu \mathrm{S} / \mathrm{cm}$	44	744	1195	20/07	384	15/11
mg / l	44	14.4	62.0	15/11	4.0	06/09
mg / O	44	8.32	12.30	17/01	1.82	$20 / 07$
$\mathrm{mg} / \mathrm{l} 0$	44	5.9	11.0	21/10	2.5	03/06
mg / N	44	0.904	2.490	13/06	0.280	15/11
$\mathrm{mg} / \mathrm{l} \mathrm{N}$	44 (1)	0.198	0.600	21/10	0.010	05/01
mg / N	44	6.07	12.80	13/06	2.93	15/11
$\mathrm{mg} / \mathrm{l} \mathrm{Cl}$	44	89.5	185.0	20/07	32.7	15/11
$\mathrm{mg} / \mathrm{CaCO} 3$	44	122.9	156.0	01/10	97.0	25/10
$\mathrm{mg} / \mathrm{P} \mathrm{P}$	44	0.786	2.160	13/06	0.170	05/01
$\mathrm{mg} / \mathrm{lla}$	44	60.4	84.7	08/10	49.3	11/04
$\mathrm{mg} / \mathrm{Mg}$	44	12.22	21.10	08/10	5.72	15/11

Flow measurement station: 027080 - Fleet Weir
C.A. $\left(\mathrm{km}^{2}\right): 865.0 \quad$ NGR : 44 (SE) 381295

Mean	Percentiles			Quarterfy averages			
	5\%	50\%	95\%	J-M	A-	J-S	O-D
12.4	4.9	12.1	20.2	7.2	14.2	17.5	10.0
7.5	7.2	7.5	7.8	7.6	7.5	7.4	7.5
708	398	679	1071	678	710	782	648
26.6	3.3	17.5	75.8	29.9	24.4	23.0	30.8
7.65	2.67	7.96	11.66	10.23	6.98	5.33	8.59
7.9	3.5	7.1	13.7	7.7	8.3	8.3	7.5
2.16	0.43	1.55	4.81	1.93	2.17	2.36	1.76
0.33	0.05	0.24	0.82	0.15	0.39	0.50	0.24
5.2	2.6	4.9	8.7	4.4	5.6	5.9	4.8
83.4	36.6	77.0	153.4	84.0	84.2	90.8	73.8
123.4	77.6	126.0	164.9	115.4	124.3	134.0	119.2
1.32	0.16	1.11	3.19	0.83	1.50	1.89	1.02
60.7	45.8	60.3	73.6	59.5	60.7	60.4	61.0
12.6	4.9	11.8	20.2	12.1	12.9	14.1	11.2

Derwent at Loftsome Bridge
Harmonised monitoring station number
GR : 44 (SE) 707302
Measuring authority : NRA-Y NGR : 44 (SE) 707302
Daterminand

Temperature
pH
Conductivity
Suspended solids
Dissolved oxygen
BOD (inhibited)
Ammoniacal nitrogen
Nitrate
Chloride
Total alkelinity
Orthophosphate
Silica
Sulphate
Calcium
Margnesium

Units	1994					
	Samplat	Mean	Max.	Date	Min.	Date
${ }^{\circ} \mathrm{C}$	33	9.3	19.0	08/07	2.4	23/02
pH units	33	7.7	8.3	12/05	7.2	06/01
$\mu \mathrm{S} / \mathrm{cm}$	25	599	700	31/03	468	28/10
mg / l	33(1)	15.7	56.0	06/01	1.0	08/07
$\mathrm{mg} / 10$	33	10.40	13.00	23/02	6.58	02/08
$\mathrm{mg} / \mathrm{l} 0$	33 (1)	1.3	2.6	28/02	0.5	23/02
$\mathrm{mg} / \mathrm{l} \mathrm{N}$	33 (10)	0.088	0.290	28/02	0.050	11/03
$\mathrm{mg} / \mathrm{IN}$	25	5.35	7.23	17/01	3.07	11/10
$\mathrm{mg} / \mathrm{l} \mathrm{Cl}$	33	38.0	45.6	16/05	30.6	28/10
$\mathrm{mg} / \mathrm{CaCO} 3$	25	152.3	181.0	08/07	107.0	10/01
mg / P	331 4)	0.092	0.200	15/09	0.030	10/02
$\mathrm{mg} / \mathrm{SiO} 2$	17	6.58	8.40	17/01	2.80	16/05
$\mathrm{mg} / \mathrm{SO} \mathrm{S}_{4}$	17	83.75	98.00	16/05	49.70	28/02
$\mathrm{mg} / \mathrm{Ca}$	24	90.7	109.0	10/02	10.7	12/12
$\mathrm{mg} / \mathrm{Mg}$	24	8.78	10.70	10/02	3.39	12/12

Flow measurement station : 027041 - Buttercrambe
C.A. $\left(k^{2}\right)^{2}$: 1586.0 NGR: 44 (SE) 731587

Period of record: 1975-1993							
Mean	Percentiles ${ }_{\text {5 }}$			Quarterly avorages			
	5\%	50\%	95\%	J.M	A-J		0.0
10.5	3.1	10.1	19.3	5.3	12.9	16.7	7.7
7.9	7.4	7.9	8.3	7.8	8.0	7.9	7.8
535	383	535	660	541	527	539	531
24.3	2.1	11.5	77.0	31.2	18.2	9.9	28.5
10.48	8.13	10.62	12.66	11.92	10.32	9.18	10.51
1.7	0.7	1.5	3.1	1.7	2.0	1.4	1.7
0.11	0.02	0.08	0.27	0.14	0.09	0.08	0.11
4.2	2.3	4.0	7.1	5.3	4.3	3.2	4.2
32.5	22.9	31.3	44.0	35.8	30.9	31.1	32.5
149.2	103.5	154.2	181.1	147.4	154.0	152.7	142.0
0.09	0.02	0.08	0.24	0.07	0.10	0.13	0.10
6.30	2.78	6.44	9.00	7.20	4.92	6.15	7.10
81.2	44.9	81.0	106.02	79.3	82.2	82.6	80.0
92.0	66.4	92.4	110.2	100.2	91.0	87.3	90.3
9.7	4.0	8.9	17.3	11.4	9.3	9.2	9.4

Nene at Wansford
Harmonised monitoring station number :
Measuring authority : NRA-A NGR : 52 (TL) 082996
Determinand

Temperature
pH
Conductivity
Suspended solids
Dissolved oxygen
BOD (inhibited)
Ammoniacal nitrogen
Nitrite
Nitrati
Chloride
Total alkalinity
Sitice
Caicium
Magnesium
Sulphate
Potasium
Sodium

Units	1994					
	Samplea	Mean	Max.	Dat*	Min.	Date
${ }^{*} \mathrm{C}$	50	11.9	22.0	04/07	3.0	21/02
pH units	48	8.1	8.7	03/05	7.8	06/01
$\mu \mathrm{S} / \mathrm{cm}$	46	923	1540	21/07	589	06/01
mg/l	24; 2)	15.8	97.2	10/01	3.0	19/07
$\mathrm{mg} / \mathrm{l} 0$	47	11.22	18.20	03/02	7.70	05/07
$\mathrm{mg} / \mathrm{l} \mathrm{O}$	47 (23)	2.7	20.0	06/01	1.0	18/10
$\mathrm{mg} / \mathrm{IN}$	$48(17)$	0.098	0.300	24/05	0.050	08/02
$\mathrm{mg} / \mathrm{l} \mathrm{N}$	24, 3)	0.081	0.160	24/05	0.030	17/08
$\mathrm{mg} / \mathrm{l} \mathrm{N}$	48	9.34	12.70	14/03	5.20	09/08
$\mathrm{mg} / \mathrm{ll}$	48	74.5	145.0	17/08	46.0	21/02
$\mathrm{mg} / \mathrm{CaCO} 3$	24	200.8	268.0	08/02	135.0	20/09
$\mathrm{mg} / 1 \mathrm{SiO}_{2}$	$24(1)$	5.79	10.10	10/11	0.20	12/05
$\mathrm{mg} / \mathrm{Ca}$	12	129.8	143.0	29/11	112.0	10/01
$\mathrm{mg} / 1 \mathrm{Mg}$	12	10.99	13.40	04/07	8.00	10/01
$\mathrm{mg} / \mathrm{SO}{ }_{4}$	24	157.58	213.00	19/07	117.00	13/04
mg / K	12	8.98	14.00	05/09	5.40	10/01
$\mathrm{mg} / \mathrm{Na}$	12	47.5	77.0	05/09	28.0	10/01

Flow measurement station : 032001-Orton C. A. $\left(\mathrm{km}^{2}\right): 1634.3$ NGR : 52 (TL) 166972

Period of record: 1974-1993							
Mean	Percentiles			Quarterty averages			
	5\%	50\%	95\%	J.M	A.J	J-S	O.D
11.5	2.9	11.0	20.4	5.5	13.9	17.8	8.3
8.1	7.7	8.0	8.8	8.0	8.3	8.2	7.9
958	725	956	1194	933	937	989	975
22.9	4.3	13.8	86.2	29.7	22.3	16.0	20.2
10.54	7.72	10.52	13.07	11.87	10.66	8.98	10.80
3.6	1.1	2.8	8.4	3.1	5.8	3.0	2.5
0.32	0.02	0.14	0.98	0.61	0.16	0.10	0.47
0.10	0.03	0.10	0.20	0.09	0.12	0.08	0.13
9.6	5.5	9.4	15.0	12.2	9.2	7.0	10.2
75.4	43.8	75.7	111.0	69.5	71.7	84.8	76.7
204.2	166.1	209.6	235.5	202.8	206.7	204.7	202.7
5.80	0.25	6.22	9.51	6.90	2.61	5.09	8.18
128.5	93.1	138.3	154.6	129.2	139.4	129.4	130.1
10.9	7.7	11.3	13.2	10.4	11.1	11.7	10.5
167.6	105.5	68.1	228.16	157.4	167.3	189.7	174.7
10.4	5.4	9.9	18.9	7.9	10.5	12.7	10.8
53.8	23.1	50.7	93.8	43.5	52.3	65.3	57.6

Harmonised monitoring station number: 05722
Measuring authority : NRA-A NGR: 63 (TG) 267.198
Determinand

Tomperature
pH
Conductivity
BOD (inhibitod)
Ammoniacal nitrogon
Nitrito
Nitrote
Chloride
Total alkatinity
Sitica
Sulphate
Calcium
Magnesium
Potasaium
Sodium

Units

1994
Samples Mean Max Date Min Date

Flow measurement station : 034003 - Ingworth C.A. $\left(\mathrm{km}^{2}\right)$: 164.7

NGR: 63 (TG) 192296
Period of record: 1975 - 1993

Mean	Percontiles					Quarterty averages		
	5%	50%	95%	J.M	A-J			
J.S	O.0							
10.7	4.0	10.4	19.9	6.1	12.9	16.8	8.3	
7.8	7.4	7.9	8.3	7.7	7.9	8.0	7.7	
747	659	757	877	768	720	730	767	
1.7	0.9	1.6	3.0	1.7	2.1	1.6	1.3	
0.13	0.02	0.06	0.35	0.20	0.09	0.08	0.13	
0.06	0.02	0.05	0.11	0.06	0.05	0.07	0.07	
5.8	3.5	5.5	8.6	7.5	5.7	4.5	5.9	
58.8	49.1	58.9	71.3	61.4	56.6	56.8	60.9	
217.0	180.0	211.4	252.7	218.2	206.0	214.5	230.6	
7.54	2.94	8.17	12.45	8.96	4.87	6.63	10.71.	
91.2	58.5	83.2	127.69	91.4	85.8	84.8	92.5	
119.4	96.8	17.9	142.3	123.1	117.5	114.6	124.0	
7.6	5.1	7.6	9.3	7.8	7.8	7.3	7.4	
4.0	2.5	4.0	5.6	4.1	3.6	4.0	4.5	
30.5	20.4	27.8	47.0	29.5	29.2	29.2	29.1	

Stour at Langham

Harmonised monitoring station number :
Measuring authority : NRA-A NGR: 62 (TM) 026345
Doterminand

Tomperature
pH
Conductivity
Suspended aolids
Dissolvad oxvgen
BOD (inhibited
Tot, disa, org, carbon
Armmoniacal nitrogen
Nitrite
Nitrato
Chlorido
Total alkslinity
Silica
Sulphate
Calcium
Mognesium
Potassium
Sodium

Units	Samplos	Mean	Max.	Dato	Mis.	Date
${ }^{\circ} \mathrm{C}$	49	12.8	24.0	28/06	2.0	14/02
pH units	48	8.3	8.8	14/07	7.8	03/01
$\mu \mathrm{S} / \mathrm{cm}$	47	917	1360	28/06	613	08/08
mg / l	25(5)	9.8	43.6	05/01	1.0	19/09
$\mathrm{mg} / 0$	48	11.42	18.80	14/07	7.70	20/06
$\mathrm{mg} / \mathrm{l} 0$	48 (25)	2.0	6.1	07/06	1.0	31/01
$\mathrm{mg} / 10$	25	7.0	18.1	04/10	4.3	02/02
mg/l N	48 (30)	0.075	0.400	22/03	0.023	28/06
mg / N	25 (6)	0.065	0.140	14/11	0.020	17/10
mg / N	48	7.96	18.49	01/11	2.65	02/08
$\mathrm{mg} / \mathrm{ll} \mathrm{Cl}$	48	81.1	192.0	28/06	37.0	07/04
$\mathrm{mg} / \mathrm{CaCO}_{3}$	25	259.7	294.0	05/07	105.0	02/02
$\mathrm{mg} / \mathrm{l} \mathrm{SiO}_{2}$	25 (1)	6.90	14.20	14/11	1.00	19/09
$\mathrm{mg} / \mathrm{ISO}$	25	96.24	129.00	20/06	72.00	07/04
$\mathrm{mg} / \mathrm{Cl} \mathrm{Ce}$	12	139.5	156.0	31/01	118.0	06/09
$\mathrm{mg} / \mathrm{l} \mathrm{Mg}$	12	7.87	10.60	05/07	5.00	03/01
mg/lk	12	7.07	9.50	05/07	3.50	03/01
$\mathrm{mg} / \mathrm{l} \mathrm{Na}$	12	42.0	68.0	05/07	21.0	03/01

Flow measurement station : 036006 - Langham C.A. $\left(\mathrm{km}^{2}\right): 578.0 \quad$ NGR : 62 (TM) 020344

Mean	Period of record; 1974-1993						
	5\% Percentiles			Quarterty averages			
				J-M	A-J		O-D
11.3	2.9	11.1	20.0	5.3	13.8	17.1	8.
8.2	7.8	B. 2	8.8	8.1	8.5	B. 3	8.1
918	730	911	1084	936	880	889	979
16.3	2.5	9.9	47.9	16.1	20.5	10.9	17.4
10.81	7.58	10.82	14.00	12.31	11.32	9.34	10.51
3.1	1.1	2.1	9.3	2.3	5.4	2.4	2.1
6.5	4.4	6.2	10.4	6.5	7.4	6.5	6.4
0.11	0.02	0.07	0.36	0.17	0.08	0.07	0.13
0.07	0.02	0.06	0.15	0.07	0.09	0.04	0.08
7.8	2.4	7.2	15.6	11.8	7.4	4.2	8.5
69.9	39.6	67.5	102.0	61.8	64.9	77.4	74.6
246.5	195.2	250.2	281.9	245.6	243.9	249.5	250.1
7.75	0.28	8.03	13.26	7.77	4.30	8.33	10.29
103.4	70.1	96.1	139.56	111.6	109.7	94.1	101.3
134.6	95.5	136.4	165.8	147.3	133.8	119.9	138.7
8.7	5.3	8.3	18.9	7.8	8.6	9.5	8.4
7.6	3.7	7.5	12.1	6.1	7.2	8.0	8.9
43.6	21.1	43.6	69.5	34.5	40.6	50.5	47.6

Thames at Teddington Weir
Harmonised monitoring station number
Measuring authority : NRA-T
NGR : 51 (TQ) 171714

Daterminand	Units	1994					
		Samples	Mean	Max.	Oate	Min.	Date
Tempersture	${ }^{\circ} \mathrm{C}$	16	12.7	21.7	13/07	5.9	22/01
pH	pH units	16	8.0	9.0	16/05	7.5	05/01
Conductivity	$\mathrm{ms} / \mathrm{cm}$	12	616	695	23/08	556	08/11
Suspended solids	mg / l	14	11.1	27.6	16/05	4.0	14/09
Distolved axygen	$\mathrm{mg} / 10$	15	10.33	19.90	13/06	4.90	14/09
BOD (inhibitod)	$\mathrm{mg} / 10$	16 (4)	2.6	7.5	16/05	1.0	17/11
Ammaniacal nitrogen	$\mathrm{mg} / \mathrm{l} \mathrm{N}$	16 (1)	0.245	0.590	14/09	0.050	16/05
Nitrite	mg/l N	14	0.133	0.250	14/04	0.070	16/05
Nitrate	mg / N	12	7.32	11.40	14/04	5.20	16/05
Chloride	$\mathrm{mg} / \mathrm{ll}$	14	56.6	147.0	14/04	37.0	05/01
Total afkalinity	$\mathrm{mg} / \mathrm{CaCO} 3$	11	187.0	213.0	14/04	135.0	08/11
Orthophosphate	mg / P	14	0.984	1.830	12/10	0.420	05/01
Sulphate	$\mathrm{mg} / \mathrm{SO}_{2}$	12	71.33	85.00	24/11	59.00	14/04
Calcium	$\mathrm{mg} / \mathrm{Ca}$	11	95.8	104.0	22/01	81.0	08/11
Potassium	mg/l K	11	6.76	9.20	12/10	4.30	22/01
Sodium	$\mathrm{mg} / \mathrm{l} \mathrm{Na}$	11	32.5	48.0	12/10	23.0	22/01

1994
Flow measurement station : 039001 - Kingston
C. A. $\left(\mathrm{km}^{2}\right): 9948.0 \quad$ NGR : 51 (TQ) 177698

Period of record: 1974-1993							
Mean	Porcentilas			Quarterty averages			
	5\%	50\%	95\%	J.M	A-J	J.S	O-D
12.2	3.9	12.1	21.0	6.2	14.2	18.4	9.7
8.0	7.5	7.9	8.7	7.9	8.3	7.9	7.8
616	484	587	717	622	599	632	617
19.6	4.1	13.1	68.3	- 25.3	21.3	11.7	21.3
9.97	6.68	9.98	13.01	11.35	10.37	8.55	9.74
2.9	1.2	2.3	6.3	2.2	4.2	2.8	2.2
0.34	0.03	0.23	1.01	0.35	0.22	0.36	0.42
0.12	0.05	0.10	0.23	0.12	0.11	0.11	0.13
7.4	5.4	7.1	10.0	8.4	6.6	6.5	7.8
45.0	30.0	42.3	65.1	42.7	41.6	48.7	46.1
187.3	146.4	190.0	214.5	185.1	198.8	191.0	180.8
1.47	0.39	1.19	3.71	0.88	1.20	2.12	1.61
70.4	49.5	65.2	85.16	68.3	66.7	65.5	72.2
99.0	77.4	100.0	116.6	103.7	102.9	95.8	96.6
7.2	4.3	6.5	10.5	6.3	6.3	8.2	7.4
34.6	19.8	30.8	55.6	28.5	30.6	41.6	35.9

Lee at Waterhall

Harmonised monitoring station number
Moasuring authority : NRA-T NGR : 52 (TL) 299099

	1994					
Units	Samples	Moan	Max.	Date	Min.	Date
		15	11.1	18.0	$24 / 06$	4.0

Flow measurement station : 038018-Water Hall

 C.A. $\left(\mathrm{km}^{2}\right)$: 150.0NGR : 52 (TL) 299099

Period of record: 1975-1993							
Mean	Percentlies			Quarterly averages			
	5*		95\%	J.M	A-J		O-O
12.0	5.0	11.9	20.0	7.0	13.8	17.0	9.
8.0	7.5	8.0	8.4	7.9	8.1	8.1	7.8
820	628	817	1109	878	814	779	850
14.4	2.9	9.8	46.7	15.9	13.1	16.1	14.3
10.12	7.44	10.11	12.66	11.18	10.03	9.30	10.16
17.9	3.5	13.3	48.1	17.2	16.9	10.6	19.9
0.16	0.05	0.11	0.28	0.11	0.11	0.27	0.17
12.1	7.4	11.1	16.2	12.4	11.6	11.4	13.2
80.3	47.7	73.2	121.3	90.2	71.9	79.9	81.1
212.2	139.0	224.0	255.4	208.2	218.7	211.8	205.2
2.58	1.19	2.47	4.65	2.39	2.50	2.73	2.78
83.7	59.3	88.0	126.72	85.2	84.7	78.7	88.3
119.4	94.0	119.0	140.0	123.2	120.8	114.1	116.3
4.2	3.1	4.0	5.0	4.6	4.0	4.2	4.0
9.2	5.9	8.8	15.6	9.6	8.4	9.3	10.5
68.9	37.5	67.2	124.8	70.7	70.3	69.0	67.3

$\begin{array}{lrr}\text { Harmonised monitoring station number : } & 07003 \\ \text { Measuring authority : NRA-S NGR : } 61 \text { (TR) } 187603\end{array}$

Determinand	Units	1994					
		Samples	Moan	Max.	Date	Min.	Date
Temperature	${ }^{\circ} \mathrm{C}$	59	11.8	21.0	11/07	2.0	15/02
pH	pH units	59	7.9	8.3	11/07	7.6	18/05
Suspended solids	mg/l	54 (6)	20.1	108.0	04/01	3.0	04/03
BOD (inhibited)	$\mathrm{mg} / \mathrm{l} 0$	54 (4)	2.1	7.4	08/12	1.0	04/01
Tot. diss. org carbon	$\mathrm{mg} / \mathrm{l} 0$	53	6.1	14.4	31/10	2.8	07/03
Ammoniacal nitrogen	mg / N	57 (7)	0.153	0.620	08/12	0.050	03/06
Nitrite	mg / N	58	0.075	0.330	13/12	0.020	19/07
Nitrate	mg / N	58	6.92	9.30	02/02	4.80	08/12
Chloride	$\mathrm{mg} / \mathrm{l} \mathrm{Cl}$	54	58.2	125.0	22/06	37.0	18/05
Total alkalinity	$\mathrm{mg} / \mathrm{CaCO} 3$	53	207.2	252.0	19/07	89.0	04/01
Orthophosphate	mg / P P	58	0.718	1.240	08/08	0.300	14/04

Flow measurement station : 040011 - Horton
C. A. $\left(\mathrm{km}^{2}\right): 345.0$

NGR: 61 (TR) 116554

Period of record: 1974-1993							
Mean	5\% Percentilot ${ }_{\text {a }}$ (${ }^{\text {a }}$			Quarterly averages			
				J-M	A-J	J-S	O-D
12.0	4.2	12.1	18.7	7.1	13.6	16.8	9.8
7.9	7.4	7.9	8.3	7.8	8.0	7.9	7.8
13.0	1.0	7.0	47.0	21.9	7.6	6.7	16.3
2.5	1.1	2.3	4.9	2.9	2.8	2.1	2.4
10.8	3.0	8.8	21.8	7.7	14.2	8.4	10.7
0.29	0.02	0.12	1.11	0.45	0.29	0.11	0.35
0.12	0.03	0.08	0.28	0.10	0.11	0.11	0.13
6.2	4.0	6.0	9.6	7.3	5.8	5.2	6.8
55.2	37.8	52.5	84.9	57.4	53.0	54.2	58.1
215.5	155.5	223.8	244.6	201.2	221.8	224.3	209.9
1.05	0.35	0.96	1.95	0.76	1.00	1.30	1.11

Itchen at Gatersmill

Harmonised monitoring station number: 07013
Measuring authority : NRA-S NGR: 41 (SU) 434156

Determinand	Units	1994					
		Samples	Mean	Max.	Date	Min.	Date
Temperature	${ }^{\circ} \mathrm{C}$	50	11.5	18.0	20/07	4.0	15/02
pH	pH units	53	8.1	8.3	15/06	7.8	05/01
Suspended solids	mg / l	$51(3)$	13.8	45.0	05/01	3.0	07/10
BOD (inhibited)	$\mathrm{mg} / 10$	52(4)	1.8	4.0	04/05	1.0	10/01
Tot, diss org. carbon	$\mathrm{mg} / \mathrm{l} 0$	51	3.3	12.5	31/10	1.5	08/03
Ammoniacal nitrogen	$\mathrm{mg} / \mathrm{lN}$	54 (11)	0.086	0.190	31/10	0.050	17/03
Nitrite	$\mathrm{mg} / \mathrm{l} \mathrm{N}$	54	0.045	0.080	15/11	0.010	17/03
Nitrate	$\mathrm{mg} / \mathrm{IN}$	53	5.60	6.60	15/02	4.00	31/10
Chloride	$\mathrm{mg} / \mathrm{Cl}$	54	23.7	38.0	22/12	21.0	19/05
Totat alkalinity	$\mathrm{mg} / \mathrm{CaCO} 3$	51	233.8	260.0	22/12	102.0	13/04
Orthophosphate	$\mathrm{mg} / \mathrm{l} \mathrm{P}$	54	0.262	0.420	04/10	0.150	12/01
Silics	$\mathrm{mg} / \mathrm{SSO} 2$	48	10.98	13.30	15/11	6.20	04/05

Flow measurement station : 042010 - Highbridge
C. A. $\left(\mathrm{km}^{2}\right): 360.0 \quad$ NGR : 41 (SU) 467213

Mean	Percentilas			Quarterty overages			
	5\%	50\%	95%	J-M	A.J	$\mathrm{J}-\mathrm{S}$	O-D
11.4	5.1	11.1	18.0	7.7	13.0	15.9	9.8
8.1	7.8	8.1 .	8.3	8.0	8.1	8.2	8.0
11.4		2.3	7.2	33.6	26.2	9.7	4.610 .4
1.9	1.0	1.8	3.3	2.1	2.2	1.5	1.8
7.3	4.1	6.8	13.3	6.9	7.0	7.1	8.1
0.10	0.01	0.09	0.24	0.14	0.08	0.07	0.12
0.06	0.03	0.05	0.11	0.05	0.05	0.06	0.07
5.1	3.9	5.2	6.2	5.5	5.2	4.6	5.1
21.8	17.9	21.7	26.9	22.5	21.1	21.0	22.5
235.5	199.7	236.9	255.1	239.6	231.9	234.6	232.1
0.39	0.16	0.36	0.71	0.35	0.40	0.43	0.46
10.28	5.68	0.77	12.46	10.39	7.70	10.95	11.68

Stour at Bridge at Iford
Harmonised monitoring station number : 08200 Measuring authority : NRA-W NGR: 40 (SZ) 122955
Determinand

Temperature
pH
Suspended sotids
Dissolved oxygen
BOD (inhibited)
Ammoniacal nitrogen
Nitrite
Nitrate
Chloride
Orthophosphate
Magnesium
Potassium

Units	1994					
	Samplos	Mean	Max.	Oate	Min.	Date
${ }^{\circ} \mathrm{C}$	55	11.9	22.0	20/07	4.1	15/02
pH units	56	7.9	8.6	29/04	7.7	06/01
mg / l	56	19.0	147.0	04/02	2.9	09/09
$\mathrm{mg} / \mathrm{l} 0$	55	10.23	14.02	29/04	6.10	02/08
$\mathrm{mg} / \mathrm{l} 0$	56	2.7	6.9	04/05	1.1	01/12
$\mathrm{mg} / \mathrm{l} \mathrm{N}$	56 (6)	0.109	0.430	07/12	0.020	16/03
$\mathrm{mg} / \mathrm{l} \mathrm{N}$	56	0.062	0.146	17/05	0.024	23/08
mg / l	56	6.45	8.49	27/10	4.23	06/01
$\mathrm{mg} / \mathrm{lCl}$	56	30.7	40.0	16/08	21.0	06/01
mg / P	56	0.546	1.300	14/09	0.200	19/01
$\mathrm{mg} / \mathrm{l} \mathrm{Mg}$	23	3.35	4.50	07/12	2.70	02/08
$\mathrm{mg} / \mathrm{l} \mathrm{K}$	23	4.70	7.90	26/10	3.10	29/04

Flow measurement station : 043007 - Throop Mill
C.A. $\left(\mathrm{km}^{2}\right): 1073.0 \quad$ NGR : $40(\mathrm{SZ}) 113958$

Period of record: 1975-1993							
Mean	Percentilas			Quarterty averages			
	5\%	50\%	95\%	J-M	A.J	J.S	O-D
11.1	4.6	10.8	19.0	6.9	12.9	16.8	8.6
7.9	7.5	8.0	8.4	7.9	8.1	8.0	7.8
15.8	3.3	9.2	47.2	18.3	10.9	9.1	20.6
10.32	7.53	9.92	12.98	10.68	10.87	9.12	10.50
2.8	1.2	2.2	6.0	2.4	3.9	2.0	2.7
0.17	0.02	0.11	0.41	0.21	0.15	0.12	0.19
0.09	0.03	0.07	0.17	0.06	0.10	0.10	0.09
5.6	3.4	5.8	8.9	6.7	5.3	4.6	6.2
27.9	21.0	30.1	39.3	26.8	26.7	29.9	30.2
0.42	0.11	0.38	0.98	0.26	0.30	0.70	0.50
3.9	2.7	3.5	5.5	3.9	3.8	3.4	4.0
5.2	3.0	4.8	8.1	4.5	4.2	5.2	6.3

Axe at Whitford Road Bridge
Harmonised monitoring station number : 09001 Measuring authority : NRA-SW NGR: 30 (SY) 262953

Determinand	Units	1994					
		Samples	Mean	Max.	Dato	Min.	Date
Temperature	${ }^{\circ} \mathrm{C}$	26	12.2	19.6	19/07	6.0	18/02
pH	pH units	26	8.1	8.6	25/08	7.7	03/02
Conductivity	$\mu \mathrm{S} / \mathrm{cm}$	26	373	445	30/06	180	03/02
Suspended sotids	mg/l	26 (4)	24.9	256.0	05/12	2.0	19/04
Dissolved oxygen	$\mathrm{mg} / \mathrm{l} 0$	26	10.79	12.80	25/08	9.39	16/08
BOD (inhibited)	$\mathrm{mg} / \mathrm{l} 0$	26 (2)	1.7	5.9	03/02	1.0	07/11
Tot. diss. org, carbon	mg / O	26	12.0	35.2	03/02	6.1	30/06
Ammoniacal nitrogen	mg / l	26 (6)	0.074	0.370	18/02	0.020	30/03
Nitrite	mg / N	26	0.037	0.068	05/12	0.016	19/04
Nitrate	mg / N	26	4.37	6.44	01/11	1.94	03/02
Crioride	$\mathrm{mg} / \mathrm{lCl}$	26	24.1	32.0	19/07	16.0	03/02
Total alkalinity	$\mathrm{mg} / \mathrm{CaCO}$	26	137.5	169.0	16/08	57.0	03/02
Orithophosphate	mgfl P	26	0.246	0.530	19/10	0.130	19/04
Sitica :	$\mathrm{mg} / \mathrm{SiO}$	26	9.25	11.70	28/09	4.80	26/04
Sutphate	$\mathrm{mg} / \mathrm{SO} 4$	26	27.77	36.00	14/10	18.00	03/02
Calcium	mg/l Ca	26	63.2	78.0	16/08	22.0	03/02
Magnesium	$\mathrm{mg} / \mathrm{Mg}$	26	6.07	7.60	05/12	4.30	03/02
Potassium	mg / K	26	3.72	5.90	03/02	2.70	19/04
Sodium	$m \mathrm{~m} / \mathrm{l} \mathrm{Na}$	26	14.2	20.0	19/07	9.0	03/02

Flow measurement station : 045004-Whitford
C.A. $\left(\mathrm{km}^{2}\right): \mathbf{2 8 8 . 5} \quad$ NGR : 30 (SY) 262953

Period of record: 1974-1993							
Mean	Percentiles			Quarterty averagos			
	5\%	50\%	95\%	J-M	A-J	J-S	O-D
10.7	3.9	10.1	18.1	6.0	12.2	16.0	8.8
8.0	7.4	8.0	8.5	7.9	8.1	8.0	7.8
385	303	394	453	375	387	412	376
14.7	1.6	5.6	59.5	16.3	10.7	6.7	24.1
10.94	8.31	10.90	13.62	12.07	11.16	9.82	10.76
2.1	0.9	1.7	4.3	2.1	2.3	1.8	2.1
12.7	4.0	10.8	25.2	10.8	12.5	11.5	15.4
0.10	0.01	0.06	0.31	0.15	0.08	0.05	0.12
0.05	0.02	0.04	0.10	0.04	0.05	0.03	0.05
3.9	2.2	3.5	5.9	4.5	3.5	3.1	4.6
24.2	19.2	23.0	32.1	25.4	22.0	24.1	25.1
135.9	90.2	139.8	167.9	122.0	142.9	154.1	126.9
0.26	0.12	0.24	0.47	0.22	0.30	0.34	0.24
9.49	4.65	9.95	12.70	9.20	7.61	10.18	10.85
33.6	22.1	34.2	42.90	32.7	32.1	35.2	34.1
62.6	44.4	63.5	77.4	58.2	63.6	70.1	59.6
6.1	4.8	6.1	7.4	6.2	6.1	6.2	6.2
4.2	3.0	3.8	6.5	4.1	3.8	4.1	4.6
13.5	10.5	13.0	18.2	13.7	13.0	14.3	13.3

Tamar at Gunnislake Newbridge
Harmonised monito
Measuring authority

Determinand

Temperature
pH
Conductivity
Suspended solids
Dissolved oxygen
BOD (inhibited)
Tot, diss. org, carbon
Ammoniscal nitrogen
Nitrita
Nitrate
Chloride
Total sikalinity
Orthophosphete
Silica
Sutphate
Calcium
Magnesium
Potassium
Sodium

09017

33722

Unite

${ }^{\circ} \mathrm{C}$ pH units $\mu \mathrm{S} / \mathrm{cm}$ mg / I mg/l 0 $\mathrm{mg} / \mathrm{I} 0$ $\mathrm{mg} / 1 \mathrm{O}$ $\mathrm{mg} / \mathrm{IN}$ $\mathrm{mg} / \mathrm{IN}$ mg / N $\mathrm{mg} / \mathrm{ICl}$ $\mathrm{mg} / \mathrm{ICaCO} \mathrm{Cl}_{3}$ $\mathrm{mg} / \mathrm{IP}$ $\mathrm{mg} / \mathrm{ISO} \mathrm{Si}_{2}$ $\mathrm{mg} / \mathrm{SO}_{4}$ $\mathrm{mg} / \mathrm{Ca}$ $\mathrm{mg} / \mathrm{IMg}$ $\mathrm{mg} / \mathrm{IK}$ $\mathrm{mg} / \mathrm{INa}$

' 1994

Samples Mean Max. Date Min. Date

26	11.3	19.2	$21 / 07$	3.4	$15 / 02$
26	7.7	8.4	$21 / 07$	7.1	$17 / 03$
26	171	190	$08 / 06$	115	$31 / 10$
$26(1)$	27.3	187.0	$28 / 01$	2.0	$17 / 10$
26	10.62	13.60	$15 / 02$	8.52	$31 / 10$
$26(5)$	1.6	4.3	$07 / 12$	1.0	$17 / 01$
26	9.2	27.7	$31 / 10$	4.0	$19 / 04$
$26(11)$	0.048	0.190	$07 / 12$	0.020	$07 / 03$
26	0.019	0.051	$18 / 11$	0.006	$07 / 10$
26	2.34	3.29	$15 / 12$	1.49	$09 / 08$
26	21.5	26.0	$28 / 01$	16.0	$31 / 10$
26	37.0	48.0	$05 / 07$	20.0	$31 / 10$
26	0.052	0.090	$05 / 07$	0.020	$07 / 04$
26	4.22	5.80	$07 / 10$	1.10	$12 / 05$
26	13.15	17.00	$12 / 09$	7.00	$31 / 10$
26	15.8	18.0	$05 / 07$	10.0	$31 / 10$
26	4.47	5.70	$05 / 07$	2.70	$31 / 10$
26	2.79	4.50	$31 / 10$	2.00	$15 / 02$
26	12.8	18.0	$05 / 07$	9.0	$31 / 10$

Flow measurement station: 047001-Gunnislake
C. A. $\left(\mathrm{km}^{2}\right): 916.9 \quad$ NGR : 20 (SX) 426725

Period of record: 1975-1993							
Mean	Percentiles			Quarterly averages			
	5\%	50\%	95\%	J-M	A-J	J.S	0.0
11.2	4.9	10.8	18.6	7.0	12.6	16.2	9.4
7.4	6.8	7.4	8.1 .	7.2	7.5	7.5	7.3
182	141	180	231	171	185	196	179
24.3	1.1	7.6	111.6	29.6	12.9	14.5	38.3
10.66	8.69	10.71	12.48	11.72	10.47	9.55	10.89
2.1	0.9	1.9	4.8	2.0	2.1	1.9	2.4
10.5	3.1	8.5	24.2	8.3	10.1	10.8	12.2
0.08	0.01	0.05	0.24	0.10	0.06	0.06	0.09
0.03	0.01	0.02	0.06	0.03	0.02	0.02	0.03
2.7	1.5	2.5	4.1	3.2	2.6	2.1	2.9
22.9	18.0	22.2	28.9	23.8	22.0	22.8	23.7
36.3	23.2	35.2	51.7	30.6	39.4	42.2	33.7
0.08	0.03	0.07	0.15	0.06	0.10	0.11	0.08
4.79	1.69	5.11	6.54	5.06	3.95	4.54	5.56
15.4	11.1	15.2	20.96	14.7	16.3	16.7	15.1
17.3	14.0	17.3	21.9	16.8	17.3	18.2	17.0
4.8	3.4	4.8	6.6	4.3	5.0	5.3	4.6
3.2	1.9	3.0	5.2	2.7	2.9	3.9	3.4
12.6	9.6	12.3	15.8	12.3	12.5	13.3	12.5

Exe at Thorverton Road Bridge

Harmonised monitoring station number :
$\begin{array}{llr}\text { Harmonised monitoring station number : } & 09036 \\ \text { Measuring authority : NRA-SW NGR : } & 21 \text { (SS) } 936016\end{array}$

Determinand	Units		1994					
			Samplez	Mean	Max.	Date	Min.	Date
Temperature		${ }^{\circ} \mathrm{C}$	25	11.3	18.2	14/07	5.2	18/01
pH	,	pH units	25	7.8	8.0	09/03	7.6	12/04
Conductivity	-	$\mu \mathrm{S} / \mathrm{cm}$	25	157	199	30/06	112	21/09
Suspended solids	-。	mg / l	25 (4)	8.5	21.0	10/01	2.0	26/04
Diasolved oxygen		$\mathrm{mg} / 10$	25	10.94	12.90	06/10	8.46	14/07
800 (inhibited)		$\mathrm{mg} / \mathrm{ll}$	25 (2)	1.5	2.3	06/10	1.0	19/04
Tot, diss. org. carbon		$\mathrm{mg} / \mathrm{l} \mathrm{O}$	25	5.1	12.5	26/10	2.9	19/04
Ammoniacal nitrogan		$\mathrm{mg} / \mathrm{l} \mathrm{N}$	25 (4)	0.033	0.080	21/06	0.020	19/04
Nitrite		mg / N	25	0.017	0.032	30/06	0.010	12/04
Nitrate		mg / N	25	2.33	3.09	18/01	1.19	21/09
Chloride		$\mathrm{mg} / \mathrm{l} \mathrm{Cl}$	25	15.4	19.0	17/08	12.0	21/09
Total elkalinity		$\mathrm{mg} / \mathrm{l} \mathrm{CaCO}_{3}$	25	40.3	65.0	26/04	27.0	24/03
Orthophosphate		$\mathrm{mg} / \mathrm{l}^{\mathrm{P}}$	25	0.089	0.240	14/07	0.030	24/03
Sulica		$\mathrm{mg} / \mathrm{SSO}$	25	3.61	5.00	12/12	2.10	20/05
Sulphate		$\mathrm{mg}^{\text {m }} \mathrm{SO}_{4}$	25	11.64	24.00	31/08	5.00	14/11
Calcium		$\mathrm{mg} / \mathrm{Ca}$	25	16.5	22.0	14/07	10.0	21/09
Mognesium		$\mathrm{mg} / \mathrm{Mg}$	25	3.93	5.10	14/07	2.60	21/09
Potassium		mg / K	25	1.78	2.50	26/10	1.30	09/03
Sodium		$\mathrm{mg} / \mathrm{lna}$	25	10.8	17.0	31/08	7.0	24/03

1994

Flow measurement station : 045001 - Thorverton C.A. $\left(\mathrm{km}^{2}\right): 600.9$ NGR : 21 (SS) 936016

Period of record: 1974-1993							
Mean	Percentiles			Quarterty averages			
	5\%	50\%	95\%	J-M	A-J	J-S	O.D
10.9	4.4	10.3	18.6	6.2	12.5	16.3	9.0
7.5	7.0	7.5	8.1	7.4	7.7	7.6	7.4
171	124	163	240	162	183	185	160
12.6	1.4	5.1	45.8	16.0	7.9 .	7.1	14.5
11.05	8.67	11.19	13.29	12.31	10.85	9.70	11.30
1.8	0.8	1.6	3.4	1.8	2.0	1.6	1.6
7.1	2.6	6.6	13.6	5.5	7.3	7.8	7.1
0.06	0.01	0.05	0.17	0.08	0.06	0.05	0.05
0.03	0.01	0.02	0.05	0.02	0.04	0.03	0.02
2.5	1.4	2.3	3.6	2.9	2.5	2.0	2.4
17.8	13.2	17.1	26.4	17.9	17.9	18.8	16.6
40.2	23.5	38.0	63.9	34.3	45.5	46.6	36.1
0.11	0.03	0.08	0.29	0.07	0.10	0.18	0.08
4.00	1.71	4.19	5.30	4.48	3.17	3.54	4.62
13.7	8.8	12.8	23.47	12.7	14.9	15.0	13.0
16.6	11.9	16.2	23.7	16.1	18.3	17.5	15.1
4.1	2.9	4.0	5.3	3.9	4.4	4.3	3.8
2.0	1.3	1.9	3.5	1.9	2.0	2.3	1.9
10.9	7.2	9.8	19.0	9.9	11.5	13.0	9.9

Dee at Overton

Harmonised monitoring station number Measuring authority : NRA-WEL NGR: 33 (SJ) 10002427

Flow measurement station : 067015 - Manley Hall C.A. $\left(\mathrm{km}^{2}\right): 1019.3 \quad$ NGR: 33 (SJ) 348415

Period of record: 1974-1993							
Mean	Percentilas			Ouarterty averages			
	5\%	50\%	95\%	J-M	A-J	J.S	O.D
10.1	3.1	9.7	17.5	5.2	11.7	15.4	8.1
7.3	6.5	7.2	7.8	7.2	7.4	7.3	7.2
172	98	164	269	160	207	177	146
9.3	0.5	3.5	35.8	10.7	7.2	6.3	13.2
11.10	9.13	11.11	13.19	12.39	10.69	9.76	11.57
1.3	0.5	1.1	2.5	1.2	1.5	1.2	1.2
0.05	0.01	0.03	0.14	0.08	0.05	0.05	0.05
0.02	0.01	0.01	0.05	0.02	0.02	0.02	0.01

Taf at Clog-y-fran Bridge

Harmonised monitoring station number : 10027 Measuring authority : NRA-WEL NGR: 22 (SN) 238161
Determinand

Temperature
pH
Conductivity
Suspended aolids
Dispolved oxygen
BOD finhibited)
Ammoniacal nitrogen
Nitrite
Oritophosphate

1994					
Samples	Mean	Max.	Date	Min.	Date
23	10.9	16.0	$20 / 06$	4.0	$15 / 02$
25	7.4	8.3	$22 / 08$	6.9	$12 / 12$
14	167	238	$26 / 08$	136	$20 / 09$
16	12.2	28.0	$07 / 02$	4.0	$12 / 05$
25	11.26	12.90	$21 / 03$	9.60	$07 / 07$
$25(3)$	1.1	2.8	$07 / 07$	0.5	$26 / 01$
$26(3)$	0.054	0.160	$26 / 01$	0.010	$10 / 03$
19	0.021	0.045	$07 / 07$	0.007	$14 / 10$
$12(2)$	0.071	0.190	$07 / 07$	0.020	$10 / 03$

Flow measurement station : 060003-Clog-y-fran C. A. $\left(\mathrm{km}^{2}\right): \mathbf{2 1 7 . 3}$

NGR : 22 (SN) 238160

Period of record: 1975-1993							
Mean	5\% Parcentilas ${ }^{\text {a }}$			Quarterty averages			
	5\%		95\%	J-M	A-J	J-S	O.D
10.4	4.0	9.9	17.3	6.6	11.9	14.9	8.4
7.4	6.9	7.4	7.9	7.3	7.5	7.5	7.2
169	117	160	247	148	178	198	151
16.5	1.6	7.6	58.5	24.7	9.3	10.1	22.3
10.31	7.98	10.45	12.47	10.88	10.59	9.34	10.32
1.8	0.6	1.5	3.6	1.9	1.9	1.5	1.7
0.11	0.01	0.08	0.33	0.17	0.12	0.08	0.11
0.03	0.01	0.02	0.06	0.03	0.03	0.04	0.03
0.13	0.03	0.08	0.41	0.07	0.20	0.23	0.07

Harmonised monitoring station number :
11009
Measuring authority : HRPB

Doterminand	Unit*	1994					
		Samples	Mean	Max.	Date	Min.	Date
Temperature	${ }^{\circ} \mathrm{C}$	11	8.2	14.3	01/07	3.0	18/02
Conductivity	$\mu \mathrm{S} / \mathrm{cm}$	11	41	57	18/02	28	24/10
Dissotved oxygen	$\mathrm{mg} / 10$	11	11.38	12.60	18/02	9.86	18/08
BOD (intribited)	$\mathrm{mg} / 10$	11	1.5	5.5	18/08	0.1	24/10
Ammoniacal nitrogen	mg / l	11(2)	0.007	0.016	21/01	0.002	15/09
Nitrate	mg / N	11	0.06	0.21	21/01	0.01	15/09
Choride	$\mathrm{mg} / \mathrm{Cl}$	11	9.5	13.9	15/03	6.2	24/10

Flow measurement station: 093001 - New Kelso
C.A. $\left(\mathrm{km}^{2}\right): 137.8 \quad$ NGR : 18 (NG) 942429

Period of record: 1979-1993							
Mean	Parcentiles			Quarterly averages			
	5*	50\%	95\%	J-M	A.J	J.S	O-D
8.3	2.4	7.7	15.5	3.8	10.8	12.9	6.7
44	28	43	65	50	46	40	39
11.26	9.41	11.30	13.18	12.51	10.90	10.06	11.42
0.9	0.3	0.9	1.7	1.0	0.8	0.8	1.1
0.01	- 0.00	0.01	0.03	0.01	0.01	0.01	0.01
0.1	0.0	0.1	0.1	0.1	0.1	0.1	0.1
10.3	5.9	9.5	18.1	13.6	10.4	7.9	9.3

Spey at Fochabers
Harmonised monitoring station number : 12002
Measuring authority : NERPB NGR : 38 (NJ) 341596
Determinand

Temperature
pH
Conductivity
Suspended solids
Dissolved oxygen
BOD (inhibited)
Ammoniacal nitrogen
Nitrite
Nitrate
Chloride
Total alkalinity
Orthophosphate
Sitica

Units	1994					
	Samples	Mean	Max.	Date	Min.	Date
${ }^{\circ} \mathrm{C}$	13	8.3	15.5	05/07	1.0	16/02
pH units	13	7.4	8.3	11/08	6.7	15/11
$\mu \mathrm{S} / \mathrm{cm}$	13	73	116	16/02	48	15/11
mg / l	13 (3)	8.6	43.0	15/11	0.4	16/02
$\mathrm{mg} / \mathrm{l} 0$	13	11.74	14.20	16/02	9.28	05/07
$\mathrm{mg} / \mathrm{l} 0$	13	0.9	1.6	15/11	0.3	16/02
$\mathrm{mg} / \mathrm{IN}$	13	0.023	0.061	27/10	0.007	06/09
$\mathrm{mg} / \mathrm{IN}$	13 (2)	0.007	0.010	15/11	0.005	18/05
mg / N	13	0.30	0.73	16/02	0.15	27/06
$\mathrm{mg} / \mathrm{Cl}$	13	10.2	18.0	16/02	6.0	15/11
$\mathrm{mg}^{\text {/f }} \mathrm{CaCO}_{3}$	13	15.8	26.0	11/08	6.0	09/03
$\mathrm{mg} / \mathrm{l} \mathrm{P}$	13 (4)	0.009	0.019	27/10	0.003	09/03
$\mathrm{mg} / \mathrm{SiO} \mathbf{2}$	13	4.66	7.98	16/02	3.04	09/03

1994
Flow measurement station : 008006-Boat o Brig C. A. $\left(\mathrm{km}^{2}\right)$: 2861.2 NGR : $38(\mathrm{NJ}) 318518$

Period of record: 1975-1993							
Mean	Percentiles			Quartorty averages			
	5\%	50\%	95\%	J-M	A-J	J-S	O-D
9.9	2.4	11.1	18.0	3.6	10.4	14.7	6.
7.0	6.0	7.1	7.8	6.8	7.1	7.3	6.9
78	50	77	109	82	73	86	73
3.7	0.2	1.8	13.9	3.1	3.8	3.4	3.5
11.46	9.28	11.40	13.61	12.76	11.13	10.10	11.84
0.9	0.3	0.9	1.4	0.8	1.0	0.9	0.9
0.03	0.00	0.02	0.11	0.02	0.03	0.04	0.03
0.01	0.00	0.01	0.01	0.01	0.01	0.01	0.01
0.3	0.2	0.3	0.6	0.4	0.3	0.3	0.3
10.4	6.0	9.9	15.9	12.1	9.9	10.3	9.3
24.3	11.2	25.0	35.2	21.7	23.4	28.4	24.4
0.02	0.00	0.01	0.08	0.01	0.00	0.03	0.02
5.79	3.69	5.64	7.78	5.78	4.77	5.52	6.1

Almond at Craigiehall

Harmonised monitoring station number
14008
Measuring authority : FRPB NGR: 36 (NT) 165752
Determinand

pH
Contuctivity
Suspended sotids
Dissolved oxygen
B00 (inhibited)
Ammoniacal nitrogen
Nitrite
Nitrate
Total alkalinity
Orthophosphate
Sulphate

Sulphate

Units	1994				Min.	Date
	Samples	Mean	Max.	Date		
pH units	12	7.9	8.3	10/05	7.7	15/03
$\mu \mathrm{S} / \mathrm{cm}$	12	637	920	08/06	395	15/03
mg/l	12	9.9	37.0	07/12	1.0	09/08
$\mathrm{mg} / \mathrm{l} 0$	11	10.30	13.10	10/05	6.90	12/07
mg / O	12	3.8	12.3	09/08	1.8	08/11
$\mathrm{mg} / \mathrm{IN}$	12	1.181	4. 100	08/06	0.390	09/08
$\mathrm{mg} / \mathrm{IN}$	12	0.265	0.790	12/07	0.030	15/03
$\mathrm{mg} / \mathrm{l} \mathrm{N}$	12	3.70	5.34	09/08	2.47	15/03
$\mathrm{mg} / \mathrm{CaCO} 3$	12	110.5	164.0	08/06	68.0	15/03
$\mathrm{mg} / \mathrm{PP}$	12	0.715	1.960	08/06	0.130	15/03
$\mathrm{mg} / \mathrm{SO}$	12	122.76	174.00	08/06	75.40	15/03

Flow measurement station : 019001-Craigiehal
C. A. $\left(\mathrm{km}^{2}\right): 369.0$ NGR : 36 (NT) 165752

Period of record: 1975-1993							
Mean	Percentiles			Quarterly avorages			
	6\%	50\%	95\%	J-M	A-J	J-S	O-D
7.6	7.1	7.6	8.0	7.5	7.8	7.6	7.5
597	291	588	898	538	692	632	500
19.8	2.1	9.9	60.8	31.0	10.1	12.7	26.2
9.27	5.37	9.59	12.22	11.10	9.27	7.41	9.72
3.5	1.4	2.9	7.1	3.3	3.7	3.1	3.8
1.23	0.21	0.96	3.12	1.30	1.51	1.08	0.90
0.26	0.02	0.14	0.78	0.13	0.34	0.44	0.14
3.8	2.2	3.7	6.0	3.5	4.1	4.0	3.8
118.8	50.8	120.3	180.7	101.2	139.4	124.9	101.6
0.74	0.08	0.45	2.08	0.28	0.90	1.24	0.42
122.4	25.0	26.7	201.49	107.4	139.9	132.4	109.8

Tweed at Norham

1994

Flow measurement station : 021009 - Norharn C.A.(km²) : $4390.0 \quad$ NGR : 36 (NT) 898477

Period of record: 1975-1993							
Mean	Percentiles			Ouarteriy averagas			
	5\%	50\%	95\%	J-M	A-J	J.S	O-D
10.1	2.6	9.1	19.9	4.7	13.2	16.0	6.2
8.0	7.1	7.8	9.3	7.6	8.3	8.5	7.7
233	165	227	292	232	232	226	229
9.3	1.3	4.6	31.8	14.9	5.1	6.9	9.4
11.61	9.09	11.46	14.72	11.94	11.47	11.60	11.48
2.3	1.0	2.2	4.2	2.2	2.5	2.6	2.0
0.08	0.02	0.08	0.16	0.10	0.07	0.07	0.09
0.02	0.01	0.01	0.04	0.02	0.02	0.02	0.02
1.8	0.8	1.7	3.3	2.5	1.7	1.1	1.8
16.1	10.4	15.5	22.1	17.4	16.2	15.6	15.1
0.14	0.02	0.07	0.40	0.13	0.10	0.14	0.14

Dee at Glenlochar

Harmonised monitoring station number: 16005
Measuring authority : SRPB NGR : 25 (NX) 733642
Determinand

Temperature
pH
Conductivity
Suspended solids
Dissolved oxygen
6OD (inhibited)
Ammoniacal nitrogen
Nitrate
Chloride
Ortophosphate
Silics
Sulphate
Calcium
Magnesium
Potassium
Sodium

Flow measurement station : 080002-Glenlochar
C.A. $\left\{\mathrm{km}^{2} \mathrm{\}}\right.$: $809.0 \quad$ NGR : 25 (NX) 733641

Period of record: 1975-1993							
Mean	Percentiles			Quarterly averages			
	5\%	50\%	95\%	J.M	A.J	J.S	0.0
10.0	1.9	9.1	20.0	3.6	11.4	16.9	8.3
6.7	6.2	6.7	7.3	6.6	6.7	6.9	6.6
61	40	55	78	56	58	64	60
3.3	1.1	1.9	6.9	4.6	3.4	2.4	2.6
10.84	8.69	10.78	13.09	12.38	11.03	9.45	10.65
1.9	0.8	1.9	3.1	2.1	2.0	1.6	1.9
0.06	0.01	0.04	0.14	0.06	0.05	0.07	0.05
0.3	0.1	0.3	0.7	0.5	0.3	0.2	0.3
9.1	5.1	8.7	13.7	9.9	9.4	8.6	8.5
0.01	0.00	0.01	0.04	0.01	0.00	0.02	0.01
2.22	0.32	2.29	4.31	3.20	1.68	1.18	2.84
5.4	3.5	5.1	9.25	5.3	5.2	5.6	6.2
3.8	2.3	3.3	5.8	3.4	3.4	4.5	3.8
1.5	0.7	1.4	2.2	1.4	1.4	1.5	1.5
0.6	0.3	0.5	0.8	0.6	0.5	0.5	0.6
5.1	3.4	5.1	7.0	5.6	5.2	4.8	4.9

Leven at Renton Footbridge
Harmonised monitoring station number : 17005
Measuring authority : CRPB NGR: 26 (NS) 389783
Oeterminand

Temperature
pH
Conductivity
Suspended solids
Dissolved oxygen
BOD (inhibitedd
Ammoniacal nitrogen
Nitrate
Total alkalinity
Orthophosphate

Units	1994					
	Samples	Moan	Max.	Oate	Min.	Date
${ }^{\circ} \mathrm{C}$	12	9.2	16.0	19/08	2.0	18/02
pH units	12	7.0	7.2	27/10	6.6	03/06
$\mu \mathrm{S} / \mathrm{cm}$	12	63	75	28/01	43	27/10
$\mathrm{mg} / 1$	1311	2.6	8.0	03/06	1.0	18/02
$\mathrm{mg} / \mathrm{l} 0$	12	11.02	12.90	28/01	9.20	09/09
mg / O	12	2.1	3.6	28/01	1.2	29/11
mg / N	12 (3)	0.026	0.060	29/04	0.010	18/02
mg / N	12 (3)	0.30	0.98	29/04	0.10	03/06
$\mathrm{mg} / \mathrm{CaCO} 3$	12	12.3	14.0	22/07	11.0	29/04
$\mathrm{mg} / \mathrm{l} P$	14 (6)	0.007	0.020	21/04	0.003	11/11

Flow measurement station : 085001 - Linnbrane
C.A. $\left(\mathrm{km}^{2}\right): 784.3$ NGR : 26 (NS) 394803

Period of record: 1975-1993							
Mean	Parcentilez			Quarterty averages			
	5\%	50\%	95\%	J-M	A-J	J.S	O-D
9.5	2.9	9.0	16.9	4.1	11.0	14.9	9.1
7.1	6.6	7.1	7.5	7.0	7.1	7.1	7.0
71	57	68	94	71	72	69	70
4.6	1.1	3.2	12.1	6.6	3.8	3.6	4.1
10.95	9.29	11.01	12.60	12.25	11.28	9.66	10.73
1.8	0.9	1.8	3.2	2.2	2.2	1.5	1.7
0.05	0.01	0.02	0.20	0.05	0.05	0.05	0.04
0.3	0.1	0.3	0.5	0.3	0.3	0.2	0.3
15.7	10.0	15.2	22.0	14.4	15.9	16.2	16.1
0.02	0.00	0.01	0.05	0.01	0.00	0.03	0.02

Ballinderry at Ballinderry Bridge

DOE Northern Ireland station number :
Determinand

Temperature
ph
Conductivity
Suspended solids
Diszolved oxygen
BOD (inhibited)
Ammoniacal nitrogen
Nitrite
Chloride
Orthophosphate

Measuring authority : DOEN NGR:23(IH) 927798
03/07/0100
Unita Samplea Moan Max. Date Min. Date
${ }^{\circ} \mathrm{C}$
pH units
$\mu \mathrm{S} / \mathrm{cm}$
$\mathrm{mg} / \mathrm{ll}$
mg / O
mg / O
mg / N
mg / N
mg / N
$\mathrm{mg} / \mathrm{ll}$
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24

$\mathrm{mg} / \mathrm{IP}$	24	18.9	27.0	$08 / 12$	16.0	$06 / 01$
		0.139	0.260	$08 / 08$	0.050	$07 / 03$

Flow measurement station: 203012-Ballinderry Br
C.A. $\left(\mathrm{km}^{2}\right): 419.5 \quad$ NGR : 23 (IH) 926799

Period of record: 1974-1993							
Mean	Percentiles			Quarterty averages			
	5\%	50\%	95\%	J.M	A.J	J-S	O-D
9.9	3.0	10.0	17.0	5.2	11.9	14.8	7.9
7.8	7.3	7.8	8.3	7.7	7.9	7.8	7.7
308	216	306	374	284	328	334	295
10.2	2.0	6.0	32.0	12.6	6.9	9.1	10.7
10.13	6.80	10.20	12.60	11.30	10.00	8.80	10.40
2.5	1.0	2.0	4.9	2.6	2.7	2.3	2.2
0.25	0.04	0.20	0.53	0.34	0.26	0.17	0.24
0.05	0.02	0.04	0.12	0.04	0.06	0.06	0.05
18.9	12.0	19.0	26.0	19.5	18.9	19.3	18.0
0.20	0.07	0.17	0.43	0.13	0.17	0.32	0.18

Lagan at Shaws Bridge

DOE Northern Ireland station number :
Measuring authority : DOEN NGR. 33 05/01/0200
Determinand

Temperature
pH
Conductivity
Suspended solids
Dissolved oxygen
BOD (inhibited)
Ammoniacal nitrogen
Nitrite
Chioride
Orthophosphate

1994					
Samples	Mean	Max.	Date	Min.	Date
24	8.9	14.0	$28 / 06$	4.0	$13 / 01$
24	7.9	8.3	$10 / 05$	7.6	$01 / 03$
24	445	651	$21 / 10$	216	$01 / 03$
24	9.5	26.0	$11 / 02$	2.0	$07 / 10$
24	8.90	13.80	$13 / 01$	5.10	$24 / 08$
24	2.7	5.2	$28 / 03$	1.3	$10 / 08$
24	0.178	0.420	$11 / 07$	0.040	$22 / 04$
24	0.046	0.110	$11 / 07$	0.020	$11 / 02$
24	41.9	81.0	$21 / 10$	18.0	$28 / 03$
24	0.705	1.670	$25 / 07$	0.140	$11 / 02$

Flow measurement station : 205004 - Newforge C.A. $\left(\mathrm{km}^{2}\right)$: 490.4 NGR : $33(I J) 329693$

Period of record: 1973-1993							
Man	Percentiles			Quarterty averages			
	5\%	50\%	95\%	J-M	A-J	J-S	O-D
10.1	4.0	9.5	16.5	5.3	12.5	15.2	8.0
7.7	7.2	7.7	8.0	7.6	7.7	7.5	7.8
429	286	414	606	384	442	516	389
11.5	2.0	6.0	35.0	14.5	8.2	6.8	15.5
11.20	4.00	10.70	21.80	13.30	10,40	7.20	11.60
3.2	1.3	2.9	6.3	2.9	4.0	3.3	3.0
0.71	0.08	0.44	2.03	0.64	0.88	1.41	0.81
0.15	0.02	0.07	0.44	0.09	0.21	0.30	0.09
41.2	22.0	37.0	70.0	36.7	41.4	44.9	34.3
0.81	0.15	0.56	2.23	0.37	0.99	1.25	0.59

DIRECTORY OF MEASURING AUTHORITIES

	Address	Code
National Rivers Authority	Rivers House, Waterside Drive, Aztec West, Almondsbury, BRISTOL BS12 4UD	NRA

NRA Regional Headquarters

Anglian	Kingfisher House, Goldhay Way, Orton Goldhay, PETERBOROUGH PE2 5ZR	NRA-A
Northumbria and Yorkshire*	Rivers House, 21 Park Square South, LEEDS LS1 2QG	NRA-NY
North West	Richard Fairclough House, PO Box 12, Knutsford Road, WARRINGTON WA4 1HG	NRA-NW
Severn-Trent	Sapphire East, 550 Streetsbrook Road, SOLIHULL B91 1QT	NRA-ST
Southern	Guildbourne House, Chatsworth Road, WORTHING BN11 1LD	NRA-S
South Western*	Manley House, Kestrel Way, Sowton Industrial Estate, ' EXETER EX2 7LQ	NRA-SW
Thames	Kings Meadow House, Kings Meadow Road, READING RGl 8DQ	NRA-T
Welsh	Rivers House/Plas-yr-Afon, St Mellons Business Park, St Mellons, CARDIFF CF3 0LT	NRA-WEL

River Purification Boards

Clyde River Purification Board	Rivers House, Murray Road, EAST KILBRIDE, Glasgow G75 0LA	CRPB
Forth River Purification Board	Clearwater House, Heriot Watt Research Park, Avenue North, Riccarton, EDINBURGH EH14 4AP	FRPB
Highland River Purification Board	Graesser House, Fodderty Way, DINGWALL IV15 9XB	HRPB
North East River Purification Board	Greyhope House, Greyhope Road, Torry, ABERDEEN AB1 3RD	NERPB
Solway River Purification Board	Rivers House, Irongray Road, DUMFRIES DG2 0JE	SRPB
Tay River Purification Board	1, South Street, PERTH PH2 8NJ	TRPB

[^14]
Tweed River Purification Board
 Other measuring authorities

Burnbrae, Mossilee Road,
TWRP
GALASHIELS TD1 1NF

Borders Regional Council
(Directorate of Water and Drainage Services)
British Waterways

Department of the Environment for Northern Ireland
(Environment Service)

Dumfries and Galloway Regional Council
(Department of Water and Sewerage)
Essex Water Company

Geeological Survey of Northern Ireland
Grampian Regional Council (Water Services Department)
Highland Regional Council (Water Department)
Institute of Hydrology

Lothian Regional Council (Department of Water and Drainage)
North East Water Plc

North West Water Plc

Scottish Hydro-Electric Plc

Scottish Office Agriculture and Fisheries Dept.
Southern Water

Strathclyde Regional Council (Water Department)
Tayside Regional Council (Water Services Department)
Wessex Water

Yorkshire Water Services Ltd

West Grove, Waverley Road,	BRWD
MELROSE TD6 9SJ	
Willow Grange, Church Road,	
WATFORD WD1 3QA	BW
Water Executive, Northland House,	DOEN
3 Frederick Street,	
BELFAST BT1 2NS	
Calvert House, 23 Castle Place, BELFAST BT1 1FY	
Marchmount House, Marchmount, DUMFRIES DG1 1PW	DGRW

Hall Street, EWC
CHELMSFORD CM2 OHH
20 College Gardens, GSNI
BELFAST BT9 6BS
Woodhill House, GRWD
Westburn Road, ABERDEEN AB9 2LU
Regional Buildings, Glenurquhart Road, HRCW INVERNESS IV3 5NX
Maclean Building, Crowmarsh Gifford, IH WALLINGFORD OX10 8BB
55 Buckstone Crescent, LRWD
EDINBURGH EH10 6XH
PO Box 10, Allendale Road, NEW NEWCASTLE-UPON-TYNE NE6 2SW
Dawson House, Liverpool Road, NWW Great Sankey, WARRINGTON WA5 3LW

16 Rothesay Terrace, SE
EDINBURGH EH3 7SE
Pentland House, Robs Loan, SOAF
EDINBURGH EH14 ITY
Southern House, Yeoman Road, SW WORTHING BN13 3NX
419 Balmore Road, SRCW GLASGOW G22 6NU
Bullion House, Invergowrie, TRWS
DUNDEE DD2 5BB
Wessex House, Passage St., WW Bristol BS2 OJQ
West Riding House, 67 Albion House, YW LEEDS LS1 5AA

Title	Published	Price (inclusive of second class postage within the UK)	
Yearbooks:		Loose-Le	Bound
Yearbook 1981	1985	$£ 10$	$£ 12$
Yearbook 1982	1985	$£ 10$	612
Yearbook 1983	1986	out of print	
Yearbook 1984	1986	out of print	
Yearbook 1985	1987	$£ 12$	$£ 15$
Yearbook 1986	1988	612	$£ 15$
Yearbook 1987	1989	$£ 12$	± 15
Yearbook 1988	1989	¢12	\&15
Yearbook 1989	1990	$£ 15$	¢18
Yearbook 1990	1991	$¢ 15$	18
Yearbook 1991	1992	*	¢20
Yearbook 1992	1993	*	£20
Yearbook 1993	1994		$£ 20$
Yearbook 1994	1995		± 20
Reports:			
Hydrometric Register and Statistics 1981-5	1988	$£ 12$	$£ 15$
Hydrometric Register and Statistics 1986-90 ${ }^{1}$	1992		$£ 2$
The 1984 Drought ${ }^{2}$	1985		612
The 1988-92 Drought ${ }^{3}$	1993		$£ 20$

Concessionary rates apply to the purchase of two or more of the pre-1989 Yearbooks.

All the Hydrological data UK publications may be obtained from:-

Institute of Hydrology
Maclean Building
WALLINGFORD
Oxfordshire OX10 8BB
Telephone: Wallingford (01491) 838800
Facsimile: (01491) 692424
Enquiries or comments regarding the series, or individual publications are welcomed and should be directed to the National Water Archive Office at the above address.

1. Hydrometric Register and Statistics 1986-90

This reference volume includes maps, tables and statistics for over 1000 river basins and 150 representative observation boreholes throughout the United Kingdom. The principal objective of the publication is to assist data users in the selection of monitoring sites for particular investigations and to

[^15]allow more effective interpretation of analyses based upon the raw data. To this end, concise gauging station and catchment descriptions are given for the featured flow measurement stations - particular emphasis is placed on hydrometric performance, especially in the high and low flow ranges, and on the net effect of artificial influences on the natural flow regime.

Summary hydrometric statistics, for each of the years 1986-90, are provided alongside the corresponding long term averages, or extremes, to allow the recent variability in surface and groundwater resources to be considered in a suitable historical context.

2. The 1984 Drought

This first, occasional report in the Hydrological data UK series concerns the 1984 drought. The structure of the report follows the hydrological cycle with chapters devoted to rainfall, evaporation, runoff and water storage in surface reservoirs and aquifers. The report documents the drought in a water resources framework and its development, duration and severity are examined with particular reference to regional variations in intensity.

3. The 1988-92 Drought Report

The objective of this report is to provide comprehensive documentation of the 1988-92 drought within a hydrological framework and to establish a benchmark against which future periods of severe rainfall deficiency may be compared. The spatial and temporal variations in the drought's intensity are examined and its severity assessed within the perspective provided by long-term rainfall and hydrometric records. An introductory hydrological overview of the United Kingdom is given to help place the volatile climatic conditions experienced in 1988-92 in a suitable context. The synoptic backcloth to the drought's development is also reviewed and the European perspective is examined using selected rainfall and river flow records to index drought severity. Additionally, a short review of water resource variability in Great Britain over the featured five years - and the water industry's response to the actual and protracted deficiencies is included to help appreciate the, often complex, linkages between hydrological stress and water supply impacts on the community.

Associated Publications

Hydrological Summaries for Great Britain

Since the winter of 1988/89 these monthly reports have been prepared jointly by the Institute of Hydrology and the British Geological Survey on behalf of the Department of the Environment and the National Rivers Authority. Each report includes areal rainfall data - both recent and, where significant, longer term accumulations for the major administrative divisions in the water industry. Also featured are representative hydrographs of river flow and groundwater levels. with supporting summary statistics and a tabulation of current stocks for a selection of major reservoirs. A commentary is provided on the cover page detailing notable hydrological events and summarising both the national hydrological status and the water resources outlook. Probability values are estimated for many of the events covered.

Subscription to the Hydrological Summaries $£ 48$ per year - may be arranged through the National Water Archive Office. The summaries are normally published within ten working days of the close of the month to which they refer.

Representative Basin Catalogue

Data collection for the National Flood Event Archive, sponsored by the Ministry of Agriculture, Fisheries and Food and maintained by the Institute of

Hydrology, concentrates on a selection of basins that form a representative sample of UK catchments. A catalogue providing comprehensive hydrological and reference information for 200 representative basins has been prepared and is available as national (five volumes) or regional sets; user-selected groups of catchments can be provided for particular investigations. Enquiries concerning the cost and availability of the catalogue should be directed to the address opposite.

Groundwater Level Hydrographs

In 1990 the British Geological Survey launched a series of wallcharts depicting long term variations in groundwater levels. The following are currently available:
i. Long term hydrograph of groundwater levels in the Chilgrove House well in the Chalk of southern England
ii. Long term hydrograph of groundwater levels in the Dalton Holme well in the Chalk of Yorkshire.

Copies may be obtained from:
British Geological Survey
WALLINGFORD
Oxfordshire
OX10 8BB
Telephone: Wallingford (01491) 838800
Facsimile: (01491) 692345

ABBREVIATIONS			
Note: The following abbreviations do not purport to represent any standardised usage; they have been developed for use in the Hydrological data UK series of publications only. Where space constraints have required alternative forms of these conventional abbreviations to be used, the meaning should be evident from the context.		NW	North-West
		O/f	Outfall or outflow
		ORS	Old Red Sandstone
		Pk	Park
		Pop	Population
		POR	Period of record
		PS	Pumping station
		Pt	Point
aOD	Above Ordnance Datum	PWS	Public water supply
Bk	Beck	Rb	Right hand river bank
Blk	Black		(looking downstream)
Br	Bridge	R/c	Racecourse
Brk or B	Brook	RCS	Regional communications system
Brn	Burn	Rd	Road
Ch	Channel	Res	Reservoir
C / m	Current meter(ing)	Rh	Right hand
Com	Common	S	South
Dk	Dike	SAGS	Stour Augmentation Groundwater
Dr or D	Drain		Scheme
D/s	Downstream	Sch	School
DWF	Dry weather flow	S-D	Stage-discharge relation
E	East	SE	South-East
Frm	Farm	Sl	Sluice
G/s	Gauging station	SOE	The Scottish Office Environment
Gw	Groundwater		Department (previously SDD)
HEP	Hydro-electric power	Sp	Spring
Ho	House	St	Stream
Hosp	Hospital ${ }^{\text {' }}$	STW	Sewage treatment works
L	Loch or lake	SW	South-West
Lb	Left hand river bank	TS	Transfer scheme
	(looking downstream)	US	Ultrasonic gauging station
Ln	Lane	U/s	Upstream
Lst	Limestone	W	West
Ltl	Little	W'course	Watercourse
MAF	Mean annual flood	Wd	Wood
Mkt	Market	Wht	White
Ml/d	Megalitres per day	Wr	Weir
Mnr	Manor	WRW	Water reclamation works
N	North	Wtr	Water
Ntch	Notch	WTW	Water treatment works

[^0]: * Note: inhomogeneities in the rainfall seriea for Scotland imply that rainfall since 1957 bas been overestimated by $>5 \%$ relative to the earlier rainfall data ${ }^{2}$.

[^1]: Source: Ref. 3.

[^2]: * Now Lecturer, Dept. of Geography, Dundee University. \dagger Now Director, Scotia Water Services, Wanlockhead, Lanarkshire.

[^3]: * Operated by Forth RPB

[^4]: \dagger For the IH research catchments, the monthly totals are subsequently updated using areal figures derived from a dense local raingauge network.

 * As a consequence of leap years the runoff and mean flow percentage may not be identical.

[^5]: 'Flood Studies Report 1975. Natural Environment Research Council (5 vols. reprinted 1993).

[^6]: Station and catchment description

[^7]: 1994 runoff is 128% of previous mean

[^8]: 1994 runoff is 136% of previous mean rainfall 111%

[^9]: Note: In line with Natural Environmental Research Council policy, the provision of its own experimental catchment data now lodged with the National River Flow Archive confers only a right to use the data. Ownership of the data, or the associated Intellectual Property Rights, will not normally be transferred. Data received from the NRFA must not be sold, or passed on to any third party, but reproduction is permitted for the purposes of any fair dealing in the course of study, research, public debate or instruction, provided the source is acknowledged. However, the bulk of the data held on the Archive is received from measuring authorities operating under Government legislation and is made available under the Access to Environmental Data Regulations.

 Through the use of quality control procedures every effort is made to maintain and improve the quality of data on the NRFA. However, the data derive from a variety of sources and, for historical data sets especially, the provenance and precision may be uncertain. Therefore the NRFA cannot guarantee the $\dot{\text { validity or accuracy of the data and NERC accepts no liability for any loss or damage, cost or claims arising directly or indirectly from their use. }}$

[^10]: Sites marked '**' are indicator wells; well hydrographs are shown in Figure 11. Where the annual percentage recharge cannot be estimated, the entry '---' is substituted.

[^11]: The conditions applying to the use of data retrieved from the National Groundwater Level Arehive are similar to those outlined on page 138 for the National River Flow Archive.

[^12]: * Over recent years nitrate values for the featured Severn-Trent NRA sites have been reported as TON.

[^13]: * In all cases this refers to the temporal mean rather than the flow-weighted average.

[^14]: * In 1993, the Northumbria and Yorkshire and South-West and Wessex regions of the National Rivers Authority were amalgamated.

[^15]: *Loose-leaf versions of the Hydrological data UK publications have been discontinued.

