ih Hydrological data UK

1993 YEARBOOK

INSTITUTE OF HYDROLOGY•BRITISH GEOLOGICAL SURVEY

HYDROLOGICAL DATA UNITED KINGDOM

1993
YEARBOOK

Published by the Institute of Hydrology, Wallingford, Oxon OX10 8BB

ISBN 0948540664

Editor Hydrological data LK serics: I J Marsh
Editorial Assistant: S Green

The acquisition, archiving and validation of the bulk of the hydrological data featured in this Yearbook is undertaken as part of the National Water Archive (NWA) project at the Institute of Hydrology. Under the leadership of M L Lees (NWA Manager) a team of regional representatives is responsible for liaison with the measuring authorities (see page 170). In addition to the Project Leader and editorial staff, this team currently includes:-

A R Black, J D Dixon, I G Littlewood, S C Loader, D G Morris and F J Sanderson.

The style and contents of the Yearbook, and the scope of the data retrieval service which complements it, reflect a decade of archive system development supervised by D G Morris. Recent enhancements to the retrieval and data presentation facilities have largely been undertaken by O Swain and RW Flavin.

The British Geological Survey is responsible for the acquisition and archiving of the featured groundwater level data. The Groundwater Level Archive is managed by A McKenzic, data acquisition and measuring authority liaison duties are undertaken by P Doorgakant.

Mrs S Black was responsible for the preparation of the text and supervises the sale and distribution of the Hydrological data LK publications through the National Water Archive Office at the Institute of Hydrology.

Design: P A Benoist
Graphics: J J Carr
Typeset and printed in the United Kingdom by Burgess.
The materials used in the production of this volume are made from the pulp of softwood trees in managed Scandinavian forests, in which every tree cut down is replaced by at least one more, thus replenishing the Earth's resources.

Cover: Receding flood waters, Marshall Place, Perth, 18/1/93.
Photograph: Andrew Black

HYDROLOGICAL DATA UNITED KINGDOM

1993 YEARBOOK

An account of
rainfall, river flows, groundwater
levels and river water quality
January to December 1993

FOREWORD

The capricious climatic conditions which have typified much of the recent past were again evident in 1993 which, after a very dry interlude in the late winter, saw the continuation of a protracted recovery from the drought conditions which afflicted much of the country over the 1989-92 period. By the year-end, the water resources outlook was very healthy and the focus of hydrological concern had shifted to the widespread threat of flooding. The ability of the river network to harmlessly discharge large volumes of runoff was well demonstrated in 1993 but several notable flood events served to underline how man's activities can, as with drought, exacerbate the impact of unusual weather conditions.

In developing improved water management policies and procedures to address the problems caused by too little or too much water - and to give practical expression to sustainable water resources development strategies - hydrometric data have an essential role to play. A principal function of the Hydrological data UK series is to document and disseminate information relating to contemporary hydrological conditions and, thereby, to stimulate public and scientific interest in the associated issues. The Yearbooks also provide a gateway to the extensive data holdings which together constitute the National Water Archive.

The Hydrological data UK series of Yearbooks and reports was launched in 1985 as a joint venture by the Institute of Hydrology (IH) and the British Geological Survey (BGS); both organisations are component bodies of the Natural Environment Research Council (NERC). Such a collaborative enterprise arose naturally from the close liaison maintained between those responsible for the management of the National River Flow Archive at IH, and their counterparts at BGS concerned with the National Groundwater Level Archive.

The work of the national River Flow and Groundwater Level Archives is overseen by a steering committee which includes representatives of Government departments, the National Rivers Authority and the water industry from England, Wales, Scotland and Northern Ireland.
A.G.P. Debney

Acting Director, Institute of Hydrology

CONTENTS

Page
INTRODUCTION 1
SCOPE AND SOURCES OF INFORMATION 2
Rainfall and climatological data 2
HYDROLOGICAL REVIEW 3
Summary 3
Rainfall 3
Evaporation and soil moisture deficits 9
Runoff 12
Groundwater 18
1993 Hydrological Diary 21
THE GREAT TAY FLOOD OF JANUARY 1993 25
RIVER FLOW DATA 35
Computation and accuracy of gauged flows 35
Scope of the flow data tabulations 35
Gauging station location map 40
Daily flow tables 42
Monthly flow tables 92
THE NATIONAL RIVER FLOW ARCHIVE DATA RETRIEVAL SERVICE 133
The National Water Archive 133
List of surface water retrieval options 135
Concise Register of Gauging Stations 137
GROUNDWATER LEVEL DATA 145
Background 145
The observation borehole network 145
Measurement and recording of groundwater levels 145
Index borehole location map 147
Register of selected groundwater observation wells 148
Network changes 148
Hydrographs of groundwater level fluctuations 150
The Register 154
THE NATIONAL GROUNDWATER LEVEL ARCHIVE DATA RETRIEVAL SERVICE 157
List of groundwater retrieval options 158
SURFACE WATER QUALITY DATA 159
Background 159
Data retrieval 159
Scope of the water quality data tabulations 160
Water quality data tables 162
DIRECTORY OF MEASURING AUTHORITIES 170
PUBLICATIONS in the Hydrological data UK series 172
ABBREVIATIONS 174

The 1993 Yearbook is the thirteenth Yearbook in the Hydrological data UK series and the third volume in the third five-year publication cycle (1991-95). It is the fifth edition since responsibility for the publication of data, upon which assessments of water resources in England and Wales may be made, was transferred (under the Water Act 1989) from the Department of the Environment to the - National Rivers Authority.

The 1993 Yearbook represents the thirty-fourth edition in the series of surface water publications which began with the 1935-36 Surface Water Yearbook. As a result of the incorporation of groundwater data in the Yearbook, this volume is also the eighteenth edition in the series of groundwater data publications which began with the 1964-66 Groundwater Yearbook.

Apart from summary information, surface water and groundwater data on a national basis were published separately prior to the introduction of the Hydrological data UK series. In common with the earlier editions, the 1993 Yearbook brings together the principal data sets relating to river flow, groundwater levels and areal rainfall throughout the United Kingdom. Also tabulated are water quality data for a selection of monitoring sites throughout the UK; such data first appeared in the 1986 Yearbook. A comprehensive hydrological review of the year is included together with a feature article documenting the remarkable flood which occurred in the River Tay basin during mid-January.

An outline description is given of the national River Flow and Groundwater Level Archives and the data retrieval facilities which complement them. Introductory details are also provided of the range of facilities and datasets available through the National Water Archive - one of the Natural Environment Research Council's (NERC) Designated Data Centres.

Publication of river flow data for Great Britain started with the series of Surface Water Yearbooks. The first edition, which was published in 1938 for the water-year (October-September) 1935-36, also included selected data for the previous fifteen years; the edition for 1936-37 followed in 1939. Both these publications were prepared under the direction of the Inland Water Survey Committee. Assisted by the Scottish Office, the Committee continued to publish hydrological data after the Second World War; the Yearbook for the period 1937-45 was published as a single volume in 1952. Due to economic stringency, the Survey was suspended in 1952 for a period of two years but was then re-formed as the Surface Water Survey Centre of Great Britain. A Yearbook covering the years 1945-53 was published in 1955.

In 1964 the Survey was transferred to the Water Resources Board where it remained until the Board was disbanded in 1974. The work of collecting and publishing surface water information in England and Wales then passed to the newly created Water Data Unit of the Department of the Environment (DoE). Yearbooks were published jointly each year by these organisations and the Scottish Office for the wateryears 1953-54 to 1965-66; thereafter information for the five calendar years 1966 to 1970 was published in one volume in 1974. Following editions were renamed 'Surface Water: United Kingdom' to mark the inclusion of the first records from Northern Ireland and in recognition of the move away from single year volumes. Two volumes of Surface Water: United Kingdom, covering the years 1971-73 and 1974-76 were published jointly by the Water Data Unit, the Scottish Development Department (now - The Scottish Office Environment Department) and the Department of the Environment for Northern Ireland.

Following the transfer of the Surface Water Archive to the Natural Environment Research Council in 1982, the final edition of Surface Water: United Kingdom, for the years 1977-80, was prepared by the Institute of Hydrology at the request of the Water Directorate of the Department of the Environment, and published in 1983.

The 1981 and 1982 Yearbooks were prepared concurrently and were, in 1985, the first Yearbooks published by the Natural Environment Research Council. Further Yearbooks - the editions for 1983 to 1991 - were published over the following seven years.

A compilation of 'Groundwater levels in England during 1963', which was produced by the Geological Survey of Great Britain (prior to its incorporation into the Institute of Geological Sciences), was the precursor to the publication of groundwater level data on a national basis. The more formal Groundwater Yearbook series was instigated by the Water Resources Board which published the inaugural edition and a further volume for 1967, both covering England and Wales. In 1975 a third Yearbook, for 1968-70, was published by the Water Data Unit. The Groundwater: United Kingdom series was introduced in 1978 with the production of the 1971-73 volume, also published by the Water Data Unit.

Following the transfer of the Groundwater Archive to the Institute of Geological Sciences (now the British Geological Survey), the second edition of Groundwater: United Kingdom, covering the period 1974-80, was prepared by the Institute of Hydrology at the request of the Water Directorate of the Department of the Environment. Subsequently, groundwater level data have been included in the Hydrological data UK publications.

SCOPE AND SOURCES OF INFORMATION

The format of the 1993 Yearbook follows that of the recent editions in the Hydrological data UK series. The Hydrological Review examines rainfall, cvaporation, soil moisture, river flow and groundwater conditions throughout the year. The following data sections provide detailed coverage for the featured year, and for comparison purposes, period of record reference statistics are also given.

Emphasis is placed upon ready access to basic data both within the Yearbook and through the complementary data retrieval facilities.

A companion publication to the individual Yearbooks - the 'Hydrometric Register and Statistics' volume - provides a comprehensive reference source for hydrometric information which does not change materially from year to year; the second edition (for 1986-90) (see page 172) was published in 1992.

The Yearbook contents have been abstracted primarily from the National River Flow and Groundwater Level Archives. Water quality data have been provided from the Harmonised Monitoring Archive which is currently maintained by the Environmental Protection Statistics Division of the Department of the Environment (DoE). Similar data from Northern Ireland have been provided by the Environmental Service of the Department of the Environment (NI).

The National Rivers Authority (NRA) is responsible for the initial collection and processing of most river flow and groundwater level data in England and Wales. Following the 1989 Water Act,
the new Water Service PLCs assumed responsibility for a small number of important monitoring sites for which historical - and a few contemporary - data sets are held on the River Flow and Groundwater Level Archives. The seven River Purification Boards (RPBs) are responsible for most hydrometric data acquisition in Scotland. In Northern Ireland responsibility is shared between the Departments of Environment and Agriculture. These organisations also supplied valuable material relating to significant hydrological events during 1993.

The majority of the rainfall data, and some of the material incorporated in the Hydrological Review, has been provided by the Meteorological Office. For historical comparisons of the rainfall over England and Wales, a data set based upon the homogeneous series derived by the Climatic Research Unit of the University of East Anglia has been used.

Most of the rainfall data published in the Hydrological data UK series are in the form of monthly rainfall totals for catchment areas (see page 36). For details of pre 1992 monthly and annual rainfalls associated with individual raingauge sites reference should be made to the 'RAINFALL', series published regularly by the Met. Office. Brief details of rainfall and climatological data sets published by the Metcorological Office, are given below.

The Natural Environment Research Council acknowledges and extends its appreciation to all who have assisted in the collection of information for this publication.

Rainfall and Climatological Data

The Meteorological Office maintains the national archives of rainfall and climatological data at its headquarters at Bracknell. Specific items, such as daily and hourly rainfalls from gauges and radar (from the PARAGON system) may be obtained by application to Met. Office Commercial Services Rainfall Section (address opposite, Tel: 01344 856849). Summaries of the data are also published regularly and a list of current titles is given below:

1. Monthly Weather Report

This is published monthly and contains climatological means for more than 550 UK observing stations; in addition an introduction and annual summary are produced yearly. The publication should be available about a year after the month concerned, costs around $£ 3$ and is available only from Her Majesty's Stationery Office (HMSO) or their stockists.
2. MORECS (Meteorological Office Rainfall and Evaporation Calculation System).
This is a weekly issue of maps and tables of evapotranspiration, soil moisture deficit, effective rainfall, stress and the hydrometeorological variables used to calculate them. The data are used to provide values for 40 km squares and various sets of maps and tables are available according to customer requirements.

Further information about these and other publications may be obtained from:

Meteorological Office, Commercial Manager, Commercial Services, Johnson House,
London Road, Bracknell, Berks RG12 2SY

Tel: (01344) 856207
Fax: (01344) 854906

HYDROLOGICAL REVIEW OF 1993

Summary

The drought conditions which characterised much of eastern and southern Britain until the summer of 1992 moderated rapidly in the latter half of the year and the hydrological transformation continued into 1993. The persistence of rain-bearing frontal systems across southern Britain soon allayed any lingering concern for the water resources outlook and, by the autumn, the focus of hydrological concern had shifted decisively from the long term rainfall deficiency to the widespread threat of flooding. Over the latter half of the year the recovery in runoff and aquifer recharge rates was remarkable. One important consequence was a substantial headwater extension of the river network. This was especially noticeable in eastern and southern England where, a year previously, many springs and winterbournes were dry and the associated loss of amenity and aquatic habitat was considerable.

The overall improvement in water resources from mid-1992 was exceptional but uneven. In southern Britain the late winter and early spring of 1993 rekindled fears of a further drought episode the rainfall over England and Wales for February and March was the second lowest for 200 years but a wet April heralded a very protracted wet phase which extended well into 1994 in many areas. The autumn was especially wet in much of southern and eastern Britain. By contrast a dry interlude in western Scotland, which began in August and continued into the early winter, brought an end to an exceptionally wet phase which - in the west - could be traced back to 1988. In 1993 some Highland catchments registered their driest August-to-November period in twenty years and isolated examples of drought stress could be identified - for instance the very limited late-autumn storage in a number of upland reservoirs restricted hydro-power generation and new period-of-record monthly minimum flows were established on an appreciable proportion of Highland rivers.

Regional rainfall totals for 1993 were mostly a little above the long term average and, significantly, spatial contrasts were much less marked than in the preceding five years. Overall, a distinct moderation in the normal north-west/south-east rainfall gradient across Great Britain could be recognised. The relative wetness of eastern and southern Britain was the principal reason for the rapid recovery of groundwater levels in the major aquifers. An important contributory factor was the relatively modest temperatures, certainly by comparison with the extremely warm years of 1989 and 1990. Temperatures for 1993 as a whole were close to the average, but still continued a sequence with above average
temperature stretching back to 1987. Nonetheless, potential evaporation losses were up to 200 mm less than in 1990 in some areas and soils were generally much more moist than in the summers of 1988-1991. Soil moisture deficits (SMDs) developed only sluggishly during 1993 and most were rapidly eliminated in the early autumn heralding one of the longest aquifer recharge seasons in modern times. By yearend, water-tables were close to seasonal maxima over wide areas, only 18 months after overall groundwater resources had been exceptionally depressed - on the evidence of a limited network of long term monitoring sites, groundwater resources in the summer of 1992 had been the lowest since at least the turn of the century.

Very wet conditions characterised January and December 1993 and triggered several exceptional flood events. In Scotland the January flooding added to the cluster of notable events recorded over the 1988-92 period which has substantially increased the expected frequency of damaging spates in some regions. An unusual feature of the December flooding in parts of southern England was the role played by the remarkably high groundwater levels which resulted in some Chalk wells and boreholes overflowing around the end of the year. Floodplain inundation was also widespread following heavy rainfall in May and October; more localised flooding resulted from a number of intense thunderstorms in the late summer and carly autumn. Generally, however, the abundant rainfall from the spring was well distributed through time - an important factor in mitigating the threat of widespread flooding. The ability of the natural drainage network to effectively discharge substantial volumes of runoff was well demonstrated in 1993 and flooding was mostly less extensive than the rainfall figures might suggest.

Rainfall

The rainfall pattern throughout the United Kingdom relative to the 1961-90 average is shown in Figure 1; Figure 2 illustrates the actual rainfall totals in millimetres. Below average annual rainfall throughout much of north-western Britain contrasted with the wetness of the eastern seaboard and produced relatively subdued regional differences in precipitation totals. The range of the isohyets featured on Figure 2 is moderate, particularly when compared with the exaggerated ranges which have typified much of the recent past. Annual precipitation totals exceeded 3000 mm in parts of the Scottish Highlands but were less than 550 mm in a few low-lying districts adjacent to the Thames Estuary; Southend reported the only sub- 500 mm

Figure 1 Annual rainfall in 1993 as a percentage of the 1961-90 average

TABLE 1 1993 RAINFALL IN MM AND AS A PERCENTAGE OF THE 1961-90 AVERAGE

North West	mm	162	18	38	123	128	57	109	80	87	51	65	247	1165	629	584
(NRA)	$\%$	134	23	40	173	171	70	128	75	76	40	53	199	97	94	109
Northumbria	mm	108	16	25	123	119	39	59	77	109	91	63	136	965	401	526
(NRA)	\%	129	27	36	220	192	65	91	95	149	120	73	168	113	88	132
Scvern-Trent	mm	82	9	16	79	80	72	79	43	96	74	67	139	836	352	449
(NRA)	\%	117	17	26	144	136	122	149	64	150	116	94	181	111	89	126
Yorkshire	mm	91	19	15	102	83	47	67	78	132	62	63	136	895	375	509
(NRA)	9	115	33	22	173	138	78	114	105	194	85	- 79	164	109	85	134
Anglian	mm	57	17	17	71	53	49	69	45	105	90	70	85	728	288	392
(NRA)	\%	114	46	36	154	110	96	141	82	214	176	121	155	122	97	132
Thames	mm	86	7	24	84	61	56	55	33	103	111	47	105	772	365	392
(NRA)	\%	134	16	43	168	109	102	112	57	175	179	72	150	112	101	120
Southern	mm	95	9	30	90	57	53	62	37	123	134	63	154	907	437	422
(\cap RA)	$\%$	119	17	48	170	106	98	129	65	178	168	74	188	116	98	126
Wessex	mm	119	9	40	83	61	69	75	36	120	122	63	167	964	458	444
(NRA)	\%	137	14	57	157	100	121	144	55	167	154	76	180	115	96	123
South West	mm	171	22	33	98	131	108	127	39	168	119	107	263	1386	660	671
(NRA)	*	124	22	33	142	182	157	184	46	181	103	86	189	118	92	147
Welsh	mm	19.4	24	35	113	133	98	111	75	118	81	113	275	1370	714	648
(NRA)	\%	136	25	33	141	162	124	144	74	103	59	80	180	104	92	121

Highland	mm	395	120	154	85	95	83	143	85	52	138	67	275	1692	1343	543
R.P.B.	\%	210	94	95	93	103	85	135	67	30	70	33	140	96	125	79
North East	mm	157	35	54	69	111	59	82	70	84	170	44	115	1050	527	475
R.P.B.	\%	159	54	69	115	161	89	112	80	97	175	44	124	108	99	107
Tay	mm	343	27	116	134	129	58	90	58	103	126	77	175	1436	832	572
R.P.B.	\%	238	28	106	216	155	79	117	62	90	97	64	138	117	115	114
Forth	mm	261	19	92	111	124	72	76	51	80	107	73	189	1255	675	517
R.P.B.	\%	221	24	98	188	168	104	101	54	73	93	65	172	113	107	107
Clyde	mm	351	70	163	159	119	77	138	89	75	66	114	306	1727	1137	657
R.P.B.	\%	186	59	111	189	131	83	127	66	42	34	63	171	102	113	95
Tweed	mm	161	16	43	124	134	62	55	53	92	135	55	176	1106	514	520
R.P.B.	$\%$	161	24	54	218	189	95	75	60	103	142	59	189	114	98	117
Soluay	mm	217	29	106	165	147	72	101	65	102	54	97	269	1424	804	652
R.P.B.	\%	139	29	91	214	173	86	112	55	71	34	67	182	100	98	109
Western Isles,	mm	250	100	118	91	52	96	110	76	45	100	98	192	1328	958	470
Orkney and	\%	198	119	117	147	88	157	157	88	38	75	74	150	114	136	103
Shetland																

[^0]annual total in the UK. However, the area enclosed by the 600 mm isohyet for 1993 was very restricted and provides a clear contrast with 1989, 1990 and 1991 when most of the English lowlands was embraced.

In percentage terms, the wettest localities were predominantly coastal; a number of widely distributed pockets registered annual rainfall totals more than 25\% above the 1961-90 mean and a few districts, for instance on the Isle of Wight, reported their wettest year since 1960. Of greater hydrological significance was the substantial proportion of the eastern lowlands of Scotland, East Anglia and southern England where rainfall exceeded 115% of the average. In southern Britain the largest positive anomalies were broadly coincident with the major aquifer outcrop areas (see page 147) - a feature of 1992 also. Generaily, the lowest percentage annual rainfalls for 1993 were associated with the weltest regions. Rainfall over much of the Scottish Highlands, the Lake District and the mountains of North Wales fell short of the average by an appreciable margin. For example at Achnasheen (Highland Region), where January was exceptionally wet, the annual total was 84% of the long term average.

A breakdown of the annual, half-yearly and monthly actual and percentage rainfall totals in 1993 is given in Table 1 for the major administrative divisions in the water industry; the original 10 regions of the National Rivers Authority (NRA) have been retained to maintain consistency with earlier Yearbooks and allow better spatial differentiation. On a nationwide basis, the 1993 rainfall total was around seven per cent above the 1961-90 average with England and Wales, Scotland and Northern Ircland each modestly exceeding the average. The 985 mm total for England and Wales was the highest since 1986 and ranks sixth wettest over the last 25 years. Year-on-year variability in rainfall amounts over the last decade has been considerable but, overall, the 1984-93 average is very close to, if marginally above, the long term mean. Scotland provides a very different perspective. Although the annual rainfall was again appreciably above average, 1993 was the driest year since 1987 and ranks only fourth wettest since 1978. Rainfall over this 15 -year period is approaching 20% above that for the preceding record in a series from 1869 - a remarkable increase over such an extended period. Long term rainfall accumulations for Scotland, up to the summer of 1993, are unprecedented over a range of timespans. For example, five of the wettest ten years on record have been registered since 1980 and the six-year total for the period ending with 1993 substantially exceeds any 72-month accumulation for the pre-1988 record.

Temporal variations in rainfall through the year were more significant than spatial variations in 1993.

Table 2 lists regional accumulated rainfall totals over a range of timeframes - with estimates of the corresponding return periods. A measure of the remarkable contrast in weather patterns during and following the recent drought may be gauged by comparing the percentage rainfall - and associated return periods - in columns four and five. For the Anglian region, rainfall over the latter half of the drought and during the post-summary 1992 recovery both have return periods in excess of 100 years. Within 1993 the most compelling regional contrasts were over the late summer and autumn.

Following a very wet January, persistent anticyclonic conditions resulted in notably low rainfall totals in February and March. The two-month rainfall total was the lowest on record for many English catchments and for some, including the Trent, a new two-month minimum (for any start month) was established. Rain-bearing frontal systems began to penetrate the eastern lowlands in late March and a sequence of vigorous depressions produced very wet conditions in most regions through into the late summer. April and May were especially wet with some areas registering almost ten times the combined rainfall of the preceding two months. A number of catchments in northern England followed their driest February/March in twenty years with the wettest April/May for more than fifty. Rainfall accumulations over the four months to July were also outstanding in some regions. Northern Ireland recorded its highest April-July rainfall total this century and many catchments in the South-West and South Wales exceeded their previous highest by a very wide margin - albeit in records of mostly less than 30 years. Following a respite in August, when lengthy sequences of dry days were reported in southern England, a westerly airflow again became entrenched carrying an unremitting series of active frontal systems across the UK.

The September-December period was the wettest for nearly 30 years in large parts of the English lowlands, with the exception of 1992 in a few central southern areas. Many southern and East Anglian catchments registered record rainfall accumulations over the last four months of the year with totals typically $40-70 \%$ above average. More notably, the Anglian region as a whole recorded its wettest fourmonth sequence for at least 15 years and, very unusually, registered higher August-November rainfall than western Scotland; many western Highland catchments experienced their driest such period since 1973, recording only around half the average rainfall, a very notable contrast with the totals which have typified the recent past.

The autumn storms produced widespread falls in excess of 30 mm on a number of occasions. From a hydrological viewpoint, the most significant individual storm was that of the $11 / 12$ th October which produced two-day totals exceeding 50 mm in a large

TABLE 2 NATIONAL AND REGIONAL RAINFALL ACCLMULATIONS FOR SELECTED DURATIONS WITH ESTIMATES OF RETURN PERIODS

		$\begin{aligned} & \text { Jul } 92 . \\ & \hline \text { مes. } \end{aligned}$	Eat R.P. (yrt)	$\begin{gathered} \mathrm{Apr}- \\ \mathrm{Dec} 93 \end{gathered}$	Ent. R.P. (yn)	Aus. Nor 93	Es R P. (yr)	Jul 92. Dec 93	Est. R.P. (yrs)	$\begin{gathered} \text { Mer } 90 . \\ \text { Jui } 92 \end{gathered}$	Es. R.P. (yrs)
England and	mm	722		828		331		1592		1693	
Wales	\%LTA	126	10-20	123	10-20	101	2.5	115	10-20	82	40-60

NRA REGIONS

North West	mm	913		947		283		1916		2464	
	\%LTA	114	2-5	104	2-5	60	25-40	102	2.5	90	5-10
Northumbria	mm	617		816		340		1474		1762	
	\%LITA	113	$2-5$	128	15-25	108	2-5	112	5-10	90	5-10
Severn-Trent	mm	609		729		280		1363		1438	
	\%LTA	131	15-25	128	15.25	105	2-5	119	10-20	83	25-40
Yorkshice	mm	616		770		335		1420		1533	
	\%LTA	119	5-10	125	10-20	114	2.5	113	5-10	81	40-60
Anglian	mm	512		637		310		1183		1065	
	\%LTA	140	40-60	138	60-90	146	20-35	130	110-150	77	140-180
Thames	mm	612		655		294		1298		1218	
	\%LTA	143	40-60	125	10-15	120	2.5	123	$\underline{20-35}$	76	80-120
Southern	mm	647		773		357		1459		139.4	
	\%LTA	129	10-20	133	20-35	123	5-10	122	15-25	78	50-80
Wessex	mm	687		796		341		1532		1507	
	\%LTA	129	10-15	129	15-25	114	2-5	119	10-20	79	50-80
South West	mm	955		1160		433		2170		2176	
	\%LTA	125	5-15	139	60-90	104	2.5	121	15-25	82	30-45
Welsh	mm	1084		1117		387		2260		2565	
	\%LTA	125	10-15	116	5-10	78	$5 \cdot 10$	111	5-10	86	10-20
Scotland	mm	1290		993		345		2471		3595	
	\%LTA	134	90.130	94	2	61	70-100	110	5-10	111	$\underline{10-20}$

RIVER PLRIfICATION bOARDS

Highland	mm	1633		1023		342		2930		4552	
	\%L.TA	137	110-150	80	10-20	49	>200	106	2-5	115	30-50
North East	mm	724		804		368		1617		2143	
	\%LTA	114	5-10	110	2.5	99	2-5	107	2-5	97	2-5
Tay	mm	1127		950		364		2220		2844	
	\%LTA	140	60-90	108	2-5	79	$5-10$	117	10-20	102	2-5
Forth	mm	$987{ }^{\circ}$		883		311		1981		2607	
	$91 . \mathrm{TA}$	134	40-60	108	2-5	72	10-15	115	10-20	104	2-5
Tweed	mm	791		886		335		1736		2193	
	\%L.TA	125	10-20	122	10-20	92	2-5	116	10-20	99	2-5
Solway	mm	1140		1072		318		2347		3251	
	\%LTA	119	5-10	102	$\underline{2-5}$	56	40-60	106	2.5	101	2-5
Clyde	mm	1510		1143		344		2886		4409	
	\%LTA	130	30-40	92	2.5	50	>200	108	2-5	116	30-50

R.P. - Return period.
\%1.TA - Percentage of the 1961-90 average
Return period assessments are based on tables provided by the Meteorological Office*. These assume a start in a specific month; return periods for a start in any month may be expected to be an order of magnitude less - for the longest durations the return period estimates converge. 'Wet' return periods are underlined.
The Tables reflect ranfall totals over the period 1911-70 only and the estumate assumes a sensibly stable climate.
\bullet Tabony, R.C., 1977. The variability of long duration rainfall only over Great Britain, Scientific Paper No. 37, Meteorological Office (HMSO)
number of lowland districts. Coming at a time when soil moisture deficits had been largely eliminated, this storm, which included a number of very active convective cells, produced widespread surface flooding and triggered a brisk increase in aquifer recharge rates. The October storm is well represented in Table 3 which lists rain-day totals having associated return periods in excess of 100 years. Further details of other notable rainfall events are given in the Hydrological Diary on pages 21 to 24. Exceptional rain-day totals were rare towards year-end but a sequence of active frontal systems - echoing the weather conditions early in 1993 - produced significant rainfall throughout December which for most of southern Britain was the wettest month of the year in some western districts the combined January and December rainfall accounted for almost 40% of the annual total.

Evaporation and Soil Moisture Deficits

Although temperatures were again above the long term mean, 1993 was significantly cooler than the preceding five years. Nonetheless, the last six years represent the warmest such sequence in the Central England Temperature Series which extends back to 1659.' Over this period, and especially in 1989 and 1990, Potential Evaporation (PE) rates have been exceptionally high; typically 20% above average and, at times, more typical of those which characterise western France.

1993 saw a return to more normal evaporative demands. PE losses were mostly above average but well within the normal range and commonly 150 mm less than the corresponding totals in the recent past. The relatively moist summer soils resulted in actual evaporation (AE) losses falling short of PE by a

TABLE 3 DAILY RAINFALLS IN 1993 WITH RETCRN PERIODS EXCEEDING 100 YEARS

Dote: (Ren. d dy)	Station Number	Name	County	Gexd Reference	Ancount (ans)	Return Period
$\begin{gathered} \text { '1' } \\ 29.03 .93 \end{gathered}$	662549	Doune	Highland	NS 313981	139.0	150
13.05 .93	016991	Bywell	Northumberland	N7.047616	76.0	110
25.05.93	260074	Uffington, Sower Hill	Oxfordshire	SU 303874	128.7	1320
08.06 .93	380837	Culdrose RNAS Met.Office	Cornwall	SW672257	122.7	720
10.06 .93	114377	Thornton Resr.	Leicestershire	SK 473072	88.4 F	190
10.06.93	238605	Thornwood S.Wks Auto Sta.	Esssex	TL 476048	96.2	360
10.06 .93	534494	Conway Mussel Tanks	Gwynedd	SH 785773	137.0	1440
11.06 .93	25035	Aynho Grounds	Northamptonshire	SP 509323	76.6	130
11.06 .93	373224	Davidstow Moor	Cornwall	SX 147857	143.6	520
11.06 .93	390388	Jennet's Resr.	Devon	SS 444247	89.1	150
11.06 .93	390480	Bideford, King George's Field	Devon	SS 454271	81.2	110
11.06 .93	395728	Combe Martin	Devon	SS 590468	92.1	110
11.06 .93	396371	Lynmouth, Glen Lyn	Devon	SS 724493	124.0	290
11.06 .93	512688	Pontfaen, Detnant	Dyfed	SN 032340	118.8	310
11.06 .93	513071	Brynberian, Tafarn-y-bwich	Dyfed	SN 088339	98.4	100
11.06 .93	513226	Nevern, Rhoswrdan	Dyfed	SN 089424	100.6	240
13.07.93	967747	Lough Mourne W.Wks	Antrim, N.Ireland	IJ 425921	82.7 E	130
09.09 .93	938051	Altnagelvin Cemetery	Londonderry, N.Ireland	IC.453151	67.4	110
09.09 .93	938112	Cloghole P.Sta	Londonderry, N.Ireland	IC. 489200	73.0	180
09.09 .93	938308	Carmoney W'Whs	Londonderry, N.Ireland	IC 503197	76.3	190
06.10 .93	797616	Kiltarlity	Highland.	NH 503403	73.5	130
06.10 .93	798112	I.entran	Highland	NH 578436	77.2	160
06.10 .93	806285	Loch Duntelcharg	Highland	NH 627328	96.8	240
06.10 .93	806646	Culloden, Leanach	Highland	NH 751452	104.3	450
06.10 .93	807613	Clunas Tr.Whs	Highland	NH 874465	88.5	110
11.10 .93	218117	Theberton	Suffolk	TM 437660	87.8	260
11.10 .93	218185	Upper Abbey	Suffoik	TM 453645	75.0	130
11.10 .93	218315	Aldeburgh	Suffolk	TM458582	73.5F	110
11.10 .93	219170	Aldeburgh, Linden Road	Suffolk.	TM452575	77.4	140
12.10 .93	150411	Leverton, Highgate	Lincolnshire	TF411476	73.6	130
12.10 .93	207568	Heydon	Norfolk	TG 107266	71.8	100
12.10 .93	283710	Bagshot, L.utines Farm	Surrey	SU 918640	83.2	160

[^1]much smaller amount than is typical and AE totals were close to the highest on record in some eastern areas. As in 1992, the very moderate SMDs (relative to the long term average) which obtained in most areas by the early autumn allowed a rapid recovery in runoff and recharge rates as evaporation rates declined into the winter. The crucial hydrological role played by evaporation and soil moisture conditions, in the lowlands especially, is underlined by the contrast between runoff in the 18 -month periods bracketing the summer of 1992. During the drought, when rainfall was around 20% below average, runoff fell to below half the long term average in parts of eastern England. Rainfall was around 20\% above average from the late summer 1992 to the end of 1993 but, with evaporation much moderated and soils close to saturation for long periods, it was very much more hydrologically effective. Consequently runoff and recharge rates increased markedly to more than 50% above average and several times the rates measured during the corresponding seasons in the drought.

Computed MORECS (see page 2) potential evaporation totals for 1993 are mapped on Figure 3 - the modelled assessments assume a grass cover and a soil of medium water-retention capability. Annual losses range from above 600 mm in some, mostly coastal, locations (where wind is an important factor) in southern Britain to a little above 400 mm in parts of the Scottish Highlands. In all regions PE totals were, as in 1992, close to the long term average. AE losses displayed a similar geographical pattern but the relatively moist soils resulted in annual totals well above the average in much of English lowlands. For large parts of East Anglia and the South-East the 1993 totals were unprecedented in the 35 -year MORECS series. This is confirmed by Table 4 which ranks the ten

TABLE 4 HIGHEST RANKED ANNUAL ACTUAL EVAPORATION TOTALS (FOR A GRASS COVER)

MORECS SQUARE 120 (NORFOLK)		MORECS SQUARE 140 (CAMBRIDGESHIRE)	
YEAR	AE (mm)	YEAR	AE (mm)
1993	569	1993	539
1992	550	1992	536
1966	549	1986	530
1965	543	1987	527
1986	537	1967	520
1982	536	1988	517
1985	533	1982	514
1973	533	1966	512
1987	531	1965	511
1968	529		
$1961-92$	Av.	483	

Figure 3 Potential evaporation (for a grass cover) in 1993 Data source: MORECS
highest annual AE totals for two MORECS squares in East Anglia. For both squares, 1993 and 1992 rank first and second respectively, underlining the contrast with the preceding three years when AE losses were, on average, around 100 mm lower.

Figure 4 illustrates the variation in PE, AE, and SMDs for five representative MORECS squares the location of which are shown on Figure 3. Broad similarities may be identified between 1993 and 1992 but, western Scotland aside, the most significant feature of the temporal patterns are again the contrasts between the last two, and the preceding three years. The recent past has been very volatile in terms of evaporative demands and the large difference in magnitude between the annual PE minus AE totals provide a measure of the unusual climate conditions experienced since the mid-1980s. The length of time lowland soils were at or close to field capacity over the 1992/93 winter - commonly three times that which typified the 1988/89 to 1991/92 winter sequences in the lowlands - allowed recharge to extend over the full half-year. The rapid eradication of SMDs in the early autumn of 1993 once again promised a protracted recharge season over the ensuing winter.

Figure 4 The variation in potential evaporation, actual evaporation and soil moisture deficits for five MORECS squares

Runoff

Runoff for Great Britain as a whole in 1993 was marginally above the 1961-90 average and the 11th year in the last 15 when runoff has exceeded the mean. Spatial variability in runoff was rather muted and much diminished relative to the exaggerated regional contrasts which characterised much of the preceding five years. Over this period the north-west/south-east gradient was reinforced even more heavily than for rainfall. In 1992 relatively high runoff in the East Midlands and central southern England provided a counterbalance to the established pattern and in 1993 - when abundant runoff was again a feature of parts of south-eastern Britain - below average runoff in some western Highland catchments helped establish a tendency, still weak, for the average runoff gradient to be moderated: Figure 5 provides a guide to 1993 runoff totals for Great Britain expressed as a percentage of the average for 1961-90; this is the first standard 30 -year period for UK runoff and was selected to correspond with the latest standard rainfall period. Following a quiescent decade in the 1980s, the gauging station network has shown significant growth over the last five years but runoff data remain sparse in a number of mostly upland areas. As a consequence Figure 5 is least precise in north-western Scotland and the Welsh mountains. Technical measurement difficulties, combined with the effects of artificial drainage, are such that direct monitoring of runoff in some low-lying parts of the English lowlands is undertaken at few sites. In such areas assessments of residual rainfall (rainfall-evaporation) were used to help delineate runoff isopleths. A similar approach was used for Northern Ireland where only limited river flow data were available for 1993. Insufficient confirmatory flow data exist for the Scottish Islands or for Anglesey to allow runoff to be established with any confidence.

In 1992, notably high rainfall totals for many English lowland catchments coexisted with relatively low runoff totals - a consequence of depressed groundwater levels and the corresponding minimal contribution from baseflow over much of the first eight months of the year. Some parallels could be recognised in 1993 especially in the east of the Anglian region. Further west however, the above average groundwater levels through the 1992/93 winter, and the elevated water-tables in the latter part of 1993, contributed to very healthy runoff in permeable catchments. Hydrogeological influences on runoff meant that, overall, there was only a limited measure of consistency between the isopercentiles of rainfall and runoff for 1993. Runoff maps can only be broadly indicative below the regional scale; at the catchment level much greater spatial contrasts may be discerned. In north-eastern Scotland for example, the generalised isopleths on Figure 5 obscure a few areas where the 1993 runoff was marginally below that
for the preceding record; however where catchments have runoff records of around 15 years or less the average itself is unlikely to be fully representative. Over much of the South-East, Chalk rivers registered more runoff in 1993 than neighbouring rivers draining impervious catchments; a reflection of abundant spring flows resulting from the heavy rainfall over the latter third of 1992. But even where catchments are geologically similar, large runoff differences can occur. An extreme example is provided in Yorkshire where average runoff was registered by a number of gauging stations in the Chalk of the southern Wolds but the Boynton gauging station, on the ephemeral Gypsey Race, registered less than 20% of the long term average for 1993 - the post-drought recovery in groundwater levels did not produce average flow at Boynton until November. As elsewhere, stretches well above the perennial head of such streams can remain dry over many years; correspondingly, the nominal runoff close to catchment divides can be minimal.

Spate conditions early and, more persistently, late in the year provided a notable contrast with the moderate late summer river flows in many catchments but, commonly, the normal seasonal decay and recovery of runoff rates was masked by large variations in monthly flow rates. Very steep recessions in the late winter were associated with a decline in some reservoir stocks, in the west particularly, which generated some concern regarding water supply prospects for the ensuing summer. However runoff rates increased briskly during April and May and a very notable further recovery occurred over the last third of the year. Figure 6 illustrates monthly mean flows (the blue trace) over the 1989-92 period for 16 representative rivers; the period of record monthly maxima and minima are also illustrated together with the long term monthly average. Flows for the Kingston gauging station on the Thames have been adjusted to take account of the major upstream abstractions for London's public water supply. Figure 7 illustrates flow duration curves for four representative gauging stations; such curves enable the proportion of time that river flows fall below a given threshold to be identified. With the exception of rivers in north-western Britain, flows exceeded 95% of the time in 1993 were generally well above average. This was true of the entire flow range for some lowland rivers sustained principally by groundwater. Similar characteristics could be identified for responsive rivers in the South-West but, generally, the 1993 regimes for rivers in western and northern Britain conformed reasonably closely to normal.

A predictable feature of the monthly flow hydrographs is that seasonal variations were less marked in rivers reliant principally on baseflow. For some rivers e.g. the Itchen, runoff dipped only slightly through the summer before continuing a brisk increase which began in mid-1992. Many rivers

Figure 5 A guide to 1993 runoff expressed as a percentage of the average for the 1961-90 Standard Period

Trent at Colwick

Figure 6 1989-93 monthly flow hydrographs

Exe at Thorverton

Figure 6-(continued)

Figure 7 Flow duration curves for 1993 and the preceding record
in southern England remained at, or above, average throughout much of the year with some exceptional runoff rates registered near year-end (and continuing into 1994). One consequence of the high flows and the near saturated soils throughout much of 1993 was that catchments remained vulnerable to flooding for relatively lengthy periods. Major floodplain inundations were common in Scotland in midJanuary and rivers registering record January totals showed a wide distribution - from the River Earn (Tayside) to the Hampshire Avon. The Tay (see page 25) was only one of many rivers which recorded outstanding flow rates in mid-month continuing a sequence of winters which have featured notable flood events. For the third time since 1989 a new peak flow was recorded on the River Teith (Central Region) in a 38 -year series.

April again saw maximum monthly runoff totals eclipsed in northern Britain but thereafter, summer flooding was, as usual, very restricted in extent. High runoff rates were registered in the South-West during June and thunderstorms - particularly in September and October - produced substantial surface flooding, albeit spatially restricted, in parts of the South-East, London especially. The peak flow on the 12th October at Panshanger Park on the River Mimram was the highest in a 40 -year series,
eclipsing the record established in May 1992. More notably, the daily mean flow on the 13th at Feildes Weir on the River Lee is the second highest in a record from 1879. Steep recessions throughout late October and early November resulted in several seasonal minima in parts of North Wales and western Scotland but subsequently runoff rates climbed dramatically in the early winter. Following two years in which new hydrometric records established for United Kingdom gauging stations were principally related to low flows, there was a heavy emphasis on the high flow range in 1993. New hydrometric records established in 1993 are detailed in Table 5. Entries in Table 5 are confined to monitoring sites having 25 or more years of data on the National River Flow Archive and, by the nature of rare flow events, may be subject to revision as stage-discharge relations are reviewed in the light of the very high flows.

Sustained rainfall on already saturated catchments contributed to a runoff total for December which was the highest, for any month, in nearly 30 years in parts of southern Britain. Flooding, originally restricted to the South-West became increasingly prevalent towards the month end particularly in the English lowlands where very high baseflows contributed to lengthy periods of bankfull flows (or

TABLES RIVER FLOW AND RLNOFF RECORDS ESTABLISHED IN 1993

Highess Daily Mean Flows							
015006	Tay	Ballathie	1952	1965	17 JAN	1648	05 FEB 1990
015013	Almond	Almondbank	1955	169.4	16 JAN	107.5	08 DEC 1962
018001	Allan Water	Kinbuck	1957	98.71	16 JAN	60.88	28 JUL 1958
018002	Devon	Glenochil	1959	81.96	16 JAN	71.15	02 JAN 1991
018003	Teith	Bridge of Teith	1957	311.0	16 JAN	294.3	05 FEB 1990
019006	Water of Leith	Murrayfield	1903	47.00	14 MAY	41.23	21 SEP 1985
033022	Ivel	Blunham	1959	26.20	14 OCT	25.90	28 DEC 1979
033052	Swaftham L.ade	Swaftham Bulbeck	1963	0.83	13 OCT	0.56	06 MAY 1978
034008	Ant	Honing Lock	1966	3.16	01 MAR	2.60	26 APR 1981

TABLE 5-(continued)

Station Number	Ruver	Statoan Name			Day/ Moath	Pre- 199 Recard ($\boldsymbol{a}^{\prime} \mathbf{3}^{-1}$	Day/Mootb/ yes
Highest Daily Mean Flows-(continued)							
037019	Beam	Bretons Farm	1965	11.90	02 OCT	10.90	21 NOV 1974
038003	Mimram	Panshanger Park	1952	2.43	13 (K.F	2.01	29 JAN 1988
038014	Salmon Brook	Edmonton	1956	4.62	12007	3.71	03 FEB 1990
038022	Pymmes Brook	Edmonton Silver St.	1954	9.39	12005	8.11	09 OCT 1987
039010	Colne	Denham	1952	17.60	14 OCT	15.70	29 JAN 1988
039019	Lambourn	Shaw	1962	4.27	22 JAN	4.02	14 FEB 1988
041015	Ems	Westbourne	1967	2.50	30 DEC	2.21	31 JAN 1983
044001	Frome	East Stoke Total	1965	24.38	30 DEC	24.09	26 FEB 1966
048007	Kennall	Ponsancoth	1968	3.87	30 DEC	3.76	27 DEC 1979
049001	Camel	Denby	1964	150.19	12 JUN	113.9	27 DEC 1979
053002	Semington Brook	Semington	1953	24.95	13 OCT	24.80	28 DEC 1979
Highest Instantaneous Flows							
015003	Tay	Caputh	1951	1874	17 JAN	1747	04 FEB 1990
015006	Tay	Ballathie	1952	2269	17 JAN	1746	05 FER 1990
015007	Tay	Pitnacree	1957	732.9	16 JAN	668.9	04 FEB 1990
016001	Earn	Kinkell Bridge	1951	357.7	16 JAN	279.7	04 FER 1990
018001	Allan Water	Kinbuck	1957	130.0	16 JAN	101.4	28 JUL 1958
018002	Devon	Glenochil	1959	115.0	16 JAN	109.1	08 JAN 1992
018003	Teith	Bridge of Teath	1963	378.3	16 JAN	373.7	02 JAN 1992
033023	L.ea Brook	Beck Bridge	1962	5.39	13 OCT	5.26	07 FEB 1984
033027	Rhee	Wimpole	1965	9.19	13 OCT	8.87	06 MAY 1978
034008	Ant	Honing Lock	1966	3.20	01 MAR	1.66	19 NOV 1974
037015	Cripsey Brook	Chipping Ongar	1967	40.20	10 JUN	34.70	29 JUL 1987
037019	Beam	Bretons Farm	1965	17.80	02 OCT	17.40	22 AUG 1987
038003	Mimram	Panshanger Park	1952	3.82	12 OCT	3.57	29 MAY 1992
038007	Canons Brook	Elizabeth Way	1953	14.40	10 JUN	14.20	01 JUL 1958
039010	Colne	Denham	1952	18.40	14 OCI	17.70	29 JAN 1988
041015	Ems	Westbourne	1967	5.04	30 DEC.	4.76	20 NOV 1986
071004	Calder	Whalley Weir	1963	237.5	19 DEC	230.6	18 JUL 1964
081002	Cree	Newton Stewart	1963	347.2	30 MAR	322.3	21 DEC 1991
084007	South Calder Water	Forgewood	1965	61.12	24 JAN	54.37	07 OC.T 1990
084011	Gryfe	Craigend	1963	112.8	15 JAN	106.5	27 NOV 1979
Lourest Daily Mtean Flows							
039036	Law Bridge	Albury	1968	0.034	28 SEP	0.049	20 SEP 1992

above). Flooding was especially serious in parts of southern England. Flood warnings were common in the Devon and Cornwall and, on the 30th December, the River Pol (Cornwall) rose out of its normal channel flooding over 100 properties. To the east, many rivers were in spate and, in Hampshire and Sussex particularly, high flows were maintained for extended periods as a consequence of sustained rainfall and remarkably high spring flows which culminated in the protracted inundation of parts of Chichester and upstream villages in early 1994. Numerous flood warnings were issued during the month but, at least until the New Year, the natural drainage system coped well. However, much of the flooding which did occur tended to be in the more highly populated regions - thus its impact was rather greater than hydrological data alone might suggest.

Groundwater

The relatively wet summer in 1992 heralded the end of a period of drought that had lasted four years from 1988 over much of eastern, central and southern Britain. During this drought, groundwater levels in many British aquifers, especially in the English lowlands, had fallen to the lowest levels recorded since measurements began. This protracted drought followed a quiescent period during the late 1970s and early to mid-1980s when groundwater levels in most major aquifers remained close to, but normally above, their seasonal average. With water-tables already depressed in the summer of 1991 the low volume of recharge due to the dry autumn in eastern regions led to a further decline in level. Through much of 1992 levels were exceptionally low over a wide area. The effect of the drought was particularly
notable in the Chalk aquifer, with a number of sources drying up, affecting wells and small holdings on the Chalk outcrop. The magnitude and spatial extent of the subsequent recovery is well illustrated in Figure 10 (pages 150 to 153) which features groundwater level hydrographs for 32 representative wells and boreholes.

Rainfall in the late summer of 1992 was relatively heavy and resulted in moist soils that were responsive to the autumn rainfall. Groundwater recessions were halted, and there was an early and brisk start to the seasonal recovery. By December, groundwater levels in most aquifers had recovered to close to their seasonal means. The rate of recovery was marked in some Chalk borcholes, for instance Redlands Hall in Cambridgeshire rose from close to its record minima to close to the seasonal mean between November 1992 and January 1993. There was, however, significant local variation with levels in some eastern areas still depressed, although higher than during the preceding years of drought, and only a patchy recovery in the Chalk and upper Greensand

TABLE 6 ANNUAL REPLENISHMENT TO THE MORE IMPORTANT AQUIFERS IN ENGLAND AND WAI,ES FOR THE YEAR 1992/93

NRA Region	Mean annual replenishment $\left(\mathrm{m}^{\prime} \times 10^{*}\right)$	$1992-93$ replenishment $\left(\mathrm{m}^{\prime} \times 10^{\circ}\right)$
Chalk and Upper Greensand aquifers		
Anglian	955	$1330(140)$
Southern	1230	$1420(115)$
South West	200	$253(125)$
Thames	975	$1790(185)$
Wessex	950	$1250(130)$
Yorkshire	320	$360(110)$
Total	4630	$6400(140)$

Lincolnshire Limestone aquifer

Anglian	85	$90(105)$
Permo-Triassic sandstone aquifers		
Northumbria	10	$20(180)$
North West	330	$565(170)$
Severn-Trent	530	$465(90)$
South West	205	$175(85)$
Welsh	30	$25(95)$
Wessex	40	$35(85)$
Yorkshire	300	$190(60)$
Total	1440	$1475(100)$
Magnesian Limestone aquifers		
Northumbria	80	$90(110)$
Severn-Trent	40	$40(105)$
Yorkshire	125	$100(20)$
Total	250	$230(90)$

Values have been rounded to reflect uncertainty in source data and recharge calculation.
Percentages of the annual mean are shown in parentheses.
For the sake of conformity with previous publications, the values for the Northumbria and Yorkshire and the South West and Wessex NRA Regions are shown separately.
of Kent. Within the Permo-Triassic sandstones brisk recovery was evident in some areas, such as the South-West, but there were also areas, such as the Cheshire plain and Nottinghamshire, where levels remained depressed. In some cases this was exacerbated by the effect of abstraction superimposed on the low rate of recharge during the drought period.

The general recovery in levels was to some extent arrested in February 1993, when relatively low rainfall was reflected in falling water levels, except in those deep, slow responding boreholes which were still responding to infiltration from the previous autumn. Thus in the Llanfair DC borehole, which penetrates the Permo-Triassic sandstones of North Wales, levels were still below the seasonal minima recorded prior to the onset of drought in 1988, and this situation was echoed in other boreholes in the English Midlands and in Scotland. Heavy rainfall over much of the country during April offset the effect of low rainfall earlier in the year except in a few eastern areas where the dry early spring soils served to terminate the recharge season. More generally however, the continuing wet weather during May contributed to a delayed onset of the summer recession. By the end of May water levels in the Chalk were almost universally close to seasonal average levels, and well above the levels recorded in the preceding years of drought. In other aquifers levels were equally high, although the pockets of depressed water-tables within the Permo-Triassic sandstones persisted.

A comprehensive tabulation of estimated recharge over the 1992/93 winter, expressed as a percentage of the long term average, is given in the Register of Selected Groundwater Observation Wells (pages 154 to 156). The estimates are based on the cumulative rise registered over the full recharge period. Details of the method used are given on page 149. The percentage recharge estimates reflect the early onset of aquifer replenishment in 1992 and the overall length of the recharge season but are influenced also, in northern England especially, by the winter half-year (October-September) rainfall totals (see Table 1) which fell short of the average over a number of important outcrop areas. Table 6 presents estimates of the overall recharge to the major aquifers in England and Wales for each of the major administrative divisions in the water industry. Figure 8 provides a guide to the spatial variation in groundwater replenishment over the 1992/93 winter throughout the Chalk and Uipper Greensand aquifer. In many eastern areas recharge was easily the highest since 1987/88 and for a few individual aquifer units, amongst the highest on record. From the Chilterns to parts of Norfolk recharge over wide areas exceeded 150% of average and was, commonly, an order of magnitude greater than in 1991/92. Greater spatial variation was evident in other aquifers but only in a few, mostly western, pockets did the 1992/93 recharge fall substantially below average.

Figure 8 Generalised percentage of the mean annual replenishment to the main outcrops of the Chalk and Upper Greensand aquifer for 1992-93

The need in most areas to generate post-drought recoveries from an exceptionally low base meant that despite notable recharge volumes, the 1993 recessions generally began from around, or below, the seasonal average. Thereafter, the groundwater recession was characterised by a gentle fall in levels. For the majority of boreholes the recession kept levels close to their long term seasonal averages. Within the Chalk, a zone of relatively depressed levels persisted in Lincolnshire, Cambridgeshire and Norfolk, but even within these areas levels were substantially higher at the end of August than at the corresponding time in 1992. Minimum levels during 1993 were, typically, registered in the early autumn and, with a few exceptions, fell within the normal range (see Table 7) - and were very considerably above those of 1989-92 in the English lowlands. At a few sites, especially in the North-West, levels continued to decline into the early winter.

By late September soil conditions conducive to recharge had been established over most of Great Britain. Levels in the boreholes penetrating the Carboniferous Limestone, with its characteristically rapid response to infiltration, began to rise almost immediately. Boreholes within the Permo-Triassic sandstones also began to show rises in level by the
end of September. Response to infiltration is normally somewhat delayed in the Chalk, but by midOctober the shallower Chalk wells had begun to recover. In some instances the recoveries were steep. The Holt borehole exceeded its recorded maximum level in October and continued to record new maxima through the remainder of the year.

In general, a wet autumn and early winter resulted in replenishment to the Chalk aquifer which had exceeded the full winter average over wide areas by very early in 1994. This - following abundant recharge over the previous winter - led to many Chalk boreholes approaching their maximum recorded levels by December. A number of boreholes, especially on the South Downs, began to overflow following dramatic increases in groundwater levels. Brisk recoveries were noted elsewhere, with an exceptional rise of 11 metres in 17 days recorded for the Little Bucket Farm borehole (see Figure 10) at the year end. Over wide areas the overall rise from the summer of 1992 was the equivalent of more than three times the annual range.

In the fissured Jurassic and Carboniferous Limestones rapid recharge in October, November and December left water-tables substantially higher than their seasonal average. The Alstonfield borehole in the South Pennine Carboniferous Limestone rose 30 metres to exceed previously recorded maximum levels in December.

In the Permo-Triassic sandstones the recovery was equally pronounced, with end-of-year levels generally well above average. There were still some areas of confined aquifer - which respond much more slowly than the outcrop zones - where levels were below average, but rising steadily. Boreholes that had been persistently below average level over much of the previous five years, such as Llanfair DC, finally showed a recovery and ended the year close to their average.

Over the twelve months of 1993 groundwater levels in Great Britain underwent a very notable transformation. At the beginning of the year levels, while recovering, were still presenting evidence of the 1988-92 drought, with levels generally close to the seasonal average, but with a number of areas still significantly depressed. At the end of the year levels were generally well above average and many boreholes were recording new maxima, both in terms of level and in their rate of recovery.

Reference

1. Manley, G. (1974) Central England Temperatures: monthly means 165960 1973. Quart. Journ. Royal Met. Soc., 100, 389-405.

TABLE 7 END-OF-SUMMER RECESSION GROUNDWATER LEVELS AND DECEMBER MEANS IN SELECTED OBSERVATION WELLS

Site	Aquifet	Records commexce	Mean level at ead of rexession	End of 91/92 revesson	End of 92/93 recension	Eod of Dee arean all yeans	92 Dec mesan	93 Dec ниен
Dation Holme	C \& UGS	1889	14.99	10.98	13.82	15.64	14.41	16.08
Little Brocklesby	C \& UGS	1926	10.79	4.59	7.61	11.52	9.98	16.41
W'ashpit Farm	C \& UGS	1950	43.42	40.30	42.73	43.22	40.70*	44.32*
The Hold	C \& UGiS	1964	86.67	84.26	88.69	86.71	$86.13 *$	90.00
Dial Farm	C \& UGS	1968	25.44	24.73	25.07	25.43	24.89*	25.59*
Redlands Farm	C. \& UGS	1964	39.49	32.29	36.01	38.79	37.46*	40.82*
Rockley	C \& UGS	1933	130.72	130.26	130.64	133.73	142.91	135.33
Little Bucket Farm	C\& UGS	1971	62.38	59.56	60.81	63.77	71.53	67.04
Compton House	C. \& UGS	1894	32.69	29.93	31.45	41.13	47.47	45.73
West Dean	C \& UGS	1940	1.45	1.33	1.38	1.95	2.53	2.20
Lime Kiln Way	C \& UGS	1969	124.94	123.70	124.08	124.82	123.91	124.75*
Ashton Farm	C \& UCiS	1974	65.29	64.66	65.36	67.05	71.29**	71.48 *
West Woodyates	C \& LGS	1942	74.12	72.59	72.90	86.08	98.72*	99.34*
New Red Lion	I.I.st	1964	11.43	8.72	12.39	12.36	20.02	18.80
Ampney Crucis	Mid Jur	1958	100.24	100.14	100.02	101.83	102.99*	102.37
Dunmurry (NI)	PTS	1985	27.83	27.81	27.11	28.34	28.34	27.56
L, lanfair DC	PTS	1972	79.63	78.92	79.10	79.83	79.60*	79.50
Stone	PTS	1974	89.92	89.73	89.94	90.05	90.59 *	90.00^{*}
Weeford Flats	PIS	1966	89.88	88.61 dry	88.91	89.80	$88.61 *$ dry 2	88.92*
Bussels 7A	PTS	1972	23.47	23.15	23.44	23.70	3.51	24.19
Rushyford NE	MgI st	1979	72.96	74.47	75.06	71.94	77.82	76.39
Peggy Ellerton	MgLst	1968	33.83	31.23	31.37	33.95	32.29*	32.59*
Alstonfield	CLst	1974	176.48	175.95	178.34	191.96	209.62*	182.31*
$\begin{aligned} & \text { C. \& CGS } \\ & \text { L.1.st } \\ & \text { PTS } \end{aligned}$	Chalk and Upper (ireensand Lincolnshire Limestone Permo-Triassic sandstones				Mid Jur MgLst CL.st		Middle Jurassic limestones Magnesian l.imestone Carboniferous Limestone	

- Based on a single reading.

1993 Hydrological Diary

Compiled by S. C. Loader

January

January was a month of very disturbed and stormy weather throughout the LK, with a series of deep low pressure systems passing across the north of the British Isles. Scotland recorded its wettest month in a rainfall series beginning in 1869. Widespread flooding was reported throughout Great Britain; there was considerable disruption to road and rail transport. New highest monthly runoffs were recorded over large areas of Scotland; the Rivers Gryfe, North Calder Water, Endrick Water, Almond and Earn all recorded new high monthly runoff totals in records of 30 years or more. In England, the River Lambourn in Berkshire and the Rivers Boyd and Frome in Avon recorded new monthly runoff totals in records extending 32,21 and 16 years respectively.
11th-18th: Blizzards at the start of the month left large accumulations of snow over much of the Highlands. Further heavy snowfalls on the llth were followed by rapid snowmelt, due to a sharp temperature rise and persistent rain, producing very high runoff totals and extreme flooding over wide areas. On the 18 th, the River Tay recorded a daily mean flow of $1965 \mathrm{~m}^{3} \mathrm{~s}^{-1}$, exceeding the previous maximum on the entire National River Flow Archive. River levels at Perth were the highest since February 1814. Severe flooding occurred in Perth and $>50 \mathrm{~km}^{2}$ of floodplain was inundated; the total damage was provisionally estimated at $£ 20$ million (see page 28). Other Scottish rivers also recorded notable flows: the River Earn established a new highest daily mean flow in a 46 -year record, whilst on the Spey the peak was second only to that of February 1990 in a 42 -year record. Torrential rain, high winds and spate conditions extended into England and Wales. Flood alerts were called on several rivers in South Wales; a new peak flow was recorded on the River Ewenny (West Glamorgan).

February

A mild, dull month dominated by high pressure; most regions were very dry. England and Wales registered its fifth driest February this century and the driest since 1959. Rainfall for some locations in southern England totalled less than 5 mm ; at Wallingford (Oxfordshire) only one wet day was recorded (on the 26th). Following the record flows in January, prolonged recessions became established; new minimum February runoff totals were recorded on the South Tyne (Northumberland) and Dee (North Wales).

March

Dry' and mild conditions prevailed throughout March over much of England and Wales. Sustained river flow recessions continued from February and new minimum March runoff totals were registered for many rivers including the Wharfe, Trent, Medway, Exe, Severn, and Eden.
29th: Heavy rain fell across Northern Ireland and Scotland; 139 mm fell at Doune (Strathclyde Region), corresponding to a return period of over 150 years. The resulting spates included a new highest instantaneous flow ($347 \mathrm{~m}^{3} \mathrm{~s}^{-1}$) for the River Cree (Dumfries and Galloway) in a 31 -year record.
31 st-1st April: A band of heavy frontal rain tracked across southern England, producing localised flooding. Salisbury (Wiltshire) registered 48 mm in 28 hours from the 31 st , having recorded only 17 mm of rain in the previous 62 days.

April

A cloudy, warm and mild month - very wet in all regions except for northern Scotland. In England and Wales it was the 7th wettest April this century. Record April runoff totals were registered on the Tay (Tayside) and Eden (Cumbria), in records starting in 1952 and 1967 respectively.

May

Very unsettled weather patterns during May resulted in wide spatial variations in sunshine hours, temperature and rainfall. Thundery activity increased as the month progressed, contributing to the wettest May in England and Wales since 1983.
13th-14th: A slow moving frontal system brought heavy rainfall to much of north-east England and south-east Scotland. 85.6 mm fell at Newbiggin (Durham) and 76 mm was recorded at Bywell (Northumberland), the latter corresponding to a return period of over 100 years. Sunderland recorded its highest rain-day total since 1903. On the 14th, 94.6 mm fell at Dungonnell, Northern Ireland, whilst in the Lothian Region of Scotland, record high daily flows were established on the Water of Leith and the Braid Burn in flow series of 31 and 25 years respectively.
25th: Intense thunderstorms tracked across southern Britain, bringing heavy rain to many areas. A particularly active cell produced a remarkable 128.7 mm precipitation total at Uffington (Oxfordshire); the associated return period exceeds 1000 years; localised flooding ensued - the centre of Faringdon being inundated with mud-laden water.

June

A warm, rather wet month with thunderstorms producing some very notable precipitation totals and severe but spatially very restricted flooding.
8th-9th: Convective cells associated with a frontal system produced a series of intense and very localised downpours. 122.7 mm was recorded on the 8th at Culdrose (Cornwall), including a 92 mm burst in only two hours, corresponding to a return period of over 1000 years. Extensive surface flooding resulted, most seriously in Porthleven and Helston in Cornwall where over 50 houses were flooded, some to a depth of two metres.
10th: A further remarkably intense storm took place over the coast of North Wales; Conwy recorded 137 mm in 24 hours, an event with a return period well in excess of 1000 years. Considerable flooding occurred in Llandudno; over 500 residents were evacuated. Slow moving cells in thunderstorms tracking north-westwards
from France produced several exceptional rainfall events in the South-East. 120.8 mm fell at North Weald, Essex, in $3 \frac{1}{4}$ hours, with 76 mm falling in only 45 minutes (another >1000-year event). A new record peak flow of $40.2 \mathrm{~m}^{3} \mathrm{~s}^{-1}$ was established on the Cripsey Brook and severe flooding ensued in the Roding, Colne, and Stort catchments in Essex, with substantial structural damage to properties and considerable transport disruption. An intense thunderstorm over Birmingham virtually brought the city centre to a standstill, with severe flooding in places. The River 'Tame at Bescot (West Midlands) recorded a new peak flow of $70.0 \mathrm{~m}^{3} \mathrm{~s}^{-1}$ on the 11th, exceeding the previous peak by over 50%. Flooding was reported at other locations in the Midlands: 45.7 mm of rain fell at Bayton Common (Hereford and Worcester) and the peak flow of $21.6 \mathrm{~m}^{3} \mathrm{~s}^{-1}$ in the nearby Dowles Brook was the highest in a 23 -year record.

10th-11th: Intense and persistent rain, associated with a deep depression, fell on Wales and the South-West. In Dyfed, 174 mm fell in 36 hours at Aberporth, whilst at nearby Cardigan 84.6 mm fell in 18 hours on the 11 th. Over 40 homes and a caravan park were flooded when the Mwldan Brook and the River Teifi overflowed. At Davidstow Moor (Cornwall), 143.6 mm fell on the 11 th, the highest daily rainfall total in mainland Britain for 1993, and totals over 70 mm were reported across much of Devon and Cornwall. The River Camel in Cornwall recorded a peak flow of $306.4 \mathrm{~m}^{3} \mathrm{~s}^{-1}$ on the 12 th , the highest in a 30 -year record and flooding was particularly severe in Bude, Bideford and Barnstaple.

July

July was cold, cloudy and showery over much of the UK. Most areas were substantially wetter than average.
15th: An intense thunderstorm produced a 63 mm precipitation total at Louth (Lincolnshire). The dry soils moderated the storm's hydrological impact but flooding occurred in Lincoln.

August

August was generally a cool and very dry month, but thunderstorms produced a few localised downpours.
4th-5th: Heavy rain spread across England and Wales. 85.3 mm of rain fell in 18 hours at Carlton-inCleveland, North Yorkshire.

September

A very cool, dull and wet month - after a dry start - in most regions, although northern Scotland remained exceptionally dry. In Luton, Bedfordshire, it was the wettest September since 1918, whilst in Ulceby, Humberside, it was the wettest for at least 100 years. In contrast, Lerwick in the Shetland Islands recorded its driest September for over 50 years; water was shipped to outer islands to augment reserves.
12th-14th: A series of deep depressions tracked north-eastwards across the country, bringing heavy and persistent rain to many areas. On the $12 \mathrm{th}, 114.3 \mathrm{~mm}$ fell at Swincombe (Devon), whilst a two-day rainfall total of 108.5 mm was recorded at Gouthwaite Reservoir (North Yorkshire) on the 13th-14th. Flows in rivers draining the North York Moors were notable: a new peak flow of $14.01 \mathrm{~m}^{3} \mathrm{~s}^{-1}$ was recorded on the River Leven and a daily flow of $171.7 \mathrm{~m}^{3} \mathrm{~s}^{-1}$ on the River Esk, establishing new maxima in records extending back more than 20 years.

October

A month of contrasting halves: Initially the cyclonic, unsettled conditions that prevailed during September continued; East Anglia, central and southern England were exceptionally wet. In a few areas, for example the Waveney catchment, the 31 -day period ending on the 12 October produced rainfall totals equivalent to $35-40 \%$ of the annual average. Thereafter, it was mostly dry. Parts of north-western Britain remained largely dry throughout the month; at Coniston (Cumbria) it was the driest October since 1951. Reservoir storage (for hydro-power) in the Lochaber region of Scotland fell to its lowest October levels for 50 years.
$1 \mathrm{st}-3 \mathrm{rd}$: A deep depression moving eastwards brought heavy and sustained rainfall to much of the South-East. 67.5 mm fell at Gatwick (West Sussex) on the 1st, and many locations received over 40 mm . On the 2 nd , a
deluge produced 34.8 mm of rain in one hour at Shide (Isle of Wight). The River Beam in Essex recorded a new maximum peak flow in a 29 -year record; flooding also occurred in the Ravensbourne and Roding catchments.

6th: Widespread and heavy rainfall in Scotland; 104.3 mm fell at Culloden, Highland Region, on the 6th, an event with a return period of 450 years. In northern Scotland, the Rivers Thurso, Helmsdale, Alness and Nairn all recorded new maximum flow rates in records between 15 and 22 years in length. Localised flooding was reported in the Dee catchment (Grampian Region). In north-eastern England a short-lived but intense band of convectional rainfall caused flooding in a number of small catchments, the most serious being on the Cockshaw Burn in Hexham (Northumberland). Damage to commercial property in Hexham was estimated at over $£ 1$ million.
12th-14th: A band of very heavy rain tracked north-eastwards across southern England; Bagshot (Surrey) recorded 83.2 mm on the 12 th , and many other locations from Lincolnshire to Sussex received over 40 mm . With catchments already saturated from previous storms, floodplain inundation was common throughout the eastern lowlands. On the 14th, the River Colne in Essex exceeded its previous peak flow in a 42-year record. Flood alerts were issued for the Rivers Lud, Bain, Waring and Rase as North Lincolnshire experienced its worst flooding since 1981. Flooding also occurred in Norfolk and Suffolk.

November

A notably cold but relatively dry month away from the east coast. Substantial snowfalls were experienced in eastern England and Scotland but the dry conditions in northern and western Scotland persisted; several rivers recorded new November minimum runoff totals, including the Tay, Carron and Ewe.

December

A sequence of vigorous Atlantic frontal systems crossed southern England from the start of the month and continued, without respite, into January 1994. Individual daily rainfall totals were unremarkable, but monthly totals were exceptional in the South; Brighton experienced its wettest December since 1934. A large number of rivers, particularly in the South-West, Wales, north-west England and Northern Ireland, recorded new monthly maximum runoff totals. Extensive washland inundation occurred in the River Severn catchment from early in the month and extended into the New Year. The water-table in the Chalk and Upper Greensand aquifer of southern England rose very rapidly in response to the persistently wet conditions.
18th-21st: Flood warnings were issued on over 30 rivers in the South-West and South Wales. As in the River Severn catchment, the flooding was more notable for its geographical extent and its longevity than its magnitude. The Horner Water (Somerset) registered a peak flow of $11.32 \mathrm{~m}^{3} \mathrm{~s}^{-1}$, a new record in a 21-year series. A rainfall total of 122.6 mm was recorded at Llyn Fawr Reservoir (Mid Glamorgan) on the 18th.
29th-31st: Flooding became a serious problem in many parts of southern England at the end of the month. Soils had remained close to saturation after prolonged wet weather in the autumn and sustained December rainfall produced flooding in many catchments draining to the south coast, with the most severe occurring in Sussex and Cornwall. Polperro in south Cornwall experienced flooding of a similar level to late-1976, as the River Pol rose over its banks; up to 100 properties were affected. The Rivers Bull, Ems and Clayhill Stream in Sussex and the Wey (Dorset) recorded new peak flows in records varying between 19 and 27 years in length. Groundwater levels at the Chilgrove House borehole (West Sussex) rose 25 metres in three weeks from midmonth, becoming artesian early in the New Year for the first time since the carly winter of 1960 . The River Lavant recorded flows (at Graylingwell) several times the previous maximum; its culverted reach through Chichester (West Sussex) required emergency bypass pumping for a considerable time.

A. R. BLACK Institute of Hydrology

and
J. L. ANDERSON
Tay River Purification Board

Abstract

Flooding is a natural process which each year sees rivers across the United Kingdom rise out of their banks and occupy floodplains which have been developing over many thousands of years. In relatively recent times the growth of towns and cities on floodplains has caused society to become more vulnerable to the effects of flooding which, although often lasting for no more than a few days within periods of tens of years, can nonetheless be severe. Defences built to protect settlements from the flood hazard are rarely able to afford total protection. In January 1993 river levels at Perth, at the foot of the UK's largest river, reached their highest stage since 1814. This paper explores the causes of the flood, its historical context, and examines its impact and implications.

Introduction

The Tay flood of January 1993 was, in one sense, history repeating itself as a major event with some similar characteristics had occurred just three years previously. However, the peak flow at Perth was 30% greater in the second event, with a disproportionately large increase in the damage caused.

The Tay flood of February 1990 had significance not only in a regional context - flooding many rural and urban properties, inundating tens of square kilometres of tloodplain and dislocating transport links - but also on a national scale. It appeared as the culmination of a remarkably wet phase in Highland Scotland, and in a year which was later to witness severe drought in eastern and southern England ${ }^{1}$. The flood was thought to be the highest since November 1951, and its magnitude alerted the tocal community to the very real dangers of flooding in Perth. Few would have thought, after a 40 -year period of relatively minor flooding problems, that a much greater event would visit the Tay just three years later.

The peak flow recorded in February 1990 at Ballathie gauging station, 8 km upstream of Perth (Figure 1), was $1965 \mathrm{~m}^{3} \mathrm{~s}^{-1}$. By comparison the peak on the 17th January 1993 reached $2268 \mathrm{~m}^{3} \mathrm{~s}^{-1}$ and the corresponding daily mean flow of $1965 \mathrm{~m}^{3} \mathrm{~s}^{-1}$ represents a new record for the UK National River Flow Archive. In the week preceding the 17 th , large snow accumulations had built up throughout the catchment, down to low leveis, and with the passage of two frontal systems on the 14 th and 16 th bringing heavy rainfall and temperature rises (both of which contributing to snowmelt), large volumes of runoff were generated. The resulting flood was the largest at Perth since 1814. In many parts of Perth, including the city centre and much of a large housing estate to the north, properties were severely inundated, with attendant economic and social costs. In the rural catchment, over $50 \mathrm{~km}^{2}$ of farmland was
inundated, floodbanks were breached, villages were isolated and major transport links were dislocated. The weather conditions responsible for these dramatic events form the starting point of this account.

Weather Conditions

January 1993 was unusual from a meteorological perspective in a number of ways. The month was characterised by a remarkable succession of Atlantic frontal systems ${ }^{3}$, including what may have been the deepest depression to pass over the UK this century. Each brought to Scotland either rain, snow or both and by mid-month rivers in many areas were at moderately high levels. The wintry conditions experienced from the 8 th to the 14 th produced substantial snow depths not only on high ground, but also over coastal areas. Roads were blocked on the 11th in many of the usual Highland trouble-spots and also, for example, on the Fife coast where such problems are much less frequent.

Rainfall over the first ten days of January was equivalent to the monthly average at many localities in the Tay catchment, and the weather continued in the same very unsettled vein over the next few days ${ }^{4}$. Over the night of 14 th January, a temperature rise of typically $4-6^{\circ} \mathrm{C}$, accompanied by moderately heavy rainfall, resulted from the passage of another vigorous weather system: This rainfall was most intense in the headwaters of the adjacent Earn catchment; 58.6 mm being recorded at Lochcarnhead. The overall effect was a widespread melting of snow at elevations up to 400 m . Temperatures remained high throughout the 15 th, and meltwater produced very high flows in many coastal and lowland rivers, while headwater streams displayed a more modest response, though on the Tay at Ballathie (despite a mostly upland catchment) the peak flow for the 15th of $1025 \mathrm{~m}^{3} \mathrm{~s}^{-1}$ was close to the mean annual flood value.

After an overnight fall in temperature, another general rise occurred on the 16 th, associated with the passage of a further warm front and bringing more heavy, wind-driven rain. While there had been substantial snowmelt at lower altitudes, some snow remained in these areas, along with deeper accumulations at higher levels. Moreover, much of the recent rain had accumulated within the snowpack, bringing it to a very unstable state in many areas. In some cases, e.g. at mid-altitudes in the Braan and Almond catchments, the snowpack became mobilised under its own weight, and flowed down slopes in a manner analogous to the failure of a saturated soil. Daytime temperatures on the 16 th were sufficiently high to exceed freezing point on the highest mountains, while approaching $10^{\circ} \mathrm{C}$ at 250 m , e.g. at Kindrogan in the Ardle catchment. Coupled with the rainfall, snowmelt occurred throughout the catchment, and with rivers still at high flows, it was inevitable that extreme rates of runoff would occur.

Generation of the Flood Peak

Unlike the 1990 flood, the feature which so importantly characterised this event was the large amount of runoff contributing to the main flood peak from all major sub-catchments. In particular, the River Isla and other tributaries at the bottom of the Tay system (Figure 1) made large contributions to the peak, while in 1990 their effect was either minor or, in the case of the Isla, negative. Flow from the Isla on that occasion was so small in comparison with the main river that Tay floodwaters were able to cause reverse flow in its lowest reaches. Some details are
provided here to illustrate the magnitude of the water fluxes involved, and the importance of the timing from individual sub-catchments in producing the final peak.

Figures 2a-c show the hydrographs recorded on the Tay and its main tributaries through the 1993 event. It can be seen that peaks emerging from adjacent catchments were often coincident in time, notably at the Garry-Tummel, Tay-Tummel and Tay-Isla confluences, such that the resulting downstream peaks were the highest possible with the given input hydrographs. The likelihood of such coincidences is low, and reflects the nature of the developing weather pattern over the area at that time.

It is important to note the impact of the hydropower schemes of the area. Four of the large storage reservoirs in the Tummel-Garry and Breadalbane schemes - Lochs Lyon, Ericht, Errochty and Loch an Daimh - were able to continue storing water without any spillage throughout the entire event and, receiving water from approximately 15% of the catchment to Perth, thus afforded substantial reduction of the downstream peak that would otherwise have resulted. Further attenuation was afforded by floodwaters taking up capacity in many other reservoirs which had filled, and then lost water as spillage, during the event; unfortunately draw-down rates severely limit the potential for providing alleviation capacity within these reservoirs. The modest initial increase in runoff from the highly regulated Tummel valley can be seen in Figure 2(a). Flows in the Tay at Kenmore (Figure 2b, station 15016) were also slow to rise, but as a result of the natural damping effect of Loch Tay; the result at the Tay-Lyon confluence was a modest time-displacement of peaks from the two rivers.

Figure 1 The catchment of the River Tay
(Gauging station reference details appear on page 137; to derive the full station number see page 35)

Figure 2 Hydrographs of the River Tay and major tributaries during the flood of Ganuary 1993 (The key gives the relevant gauging station numbers - see Fig. 1 for station locations)

On the Tay floodplain downstream of the Tummel confluence, large areas of agricultural land are protected from flooding by an extensive network of floodbanks, and a similar situation applies on the floodplain of the lower Isla. As these rivers rose to unusually high levels, the floodbanks were overtopped and often breached, causing extensive inundation. The result was further attenuation of the flood wave although the high flow in the Tay was such that this effect is thought to have been modest. Suggestions have been made ${ }^{5}$ that flood damage may be reduced by locating embankments further away from the main river channel, but hydraulic modelling of these areas ${ }^{6}$ suggests that the present configuration is near-optimal in terms of flood wave attenuation, and it is unlikely that major changes will follow this most recent flood.

As mentioned above, the role of the River Isla in the January 1993 flood proved to be very different to that of February 1990, and Figure 2c shows the increase in the flood peak from $1873 \mathrm{~m}^{3} \mathrm{~s}^{-1}$ at Caputh to $2269 \mathrm{~m}^{3} \mathrm{~s}^{-1}$ at Ballathie, below the Tay-Isla confluence. For hydraulic reasons, it is not possible to operate a current meter gauging station on the lower Isla, but the behaviour of the three principal rivers in this catchment can be seen in Figure 2d, and it is evident that the Dean Water (15030), draining the eastern extremity of the catchment ($230 \mathrm{~km}^{2}$), produced only very modest rates of runoff. With the highest recorded flow in the Tay just 8 km upstream of Perth, and no floodplain storage available to significantly reduce the peak, major flooding in Perth was inevitable. However, the recent installation of a flood warning system provided the potential to reduce the effects of such inundation.

Flood Warnings

A request by the local authorities and other organisations for the Tay River Purification Board to develop a warning system for the Rivers Tay and Earn was one of the consequences of the 1990 flooding. By the end of 1990 a system was operational on the River Tay and was extended to cover the Rivers Earn and Isla by the autumn of 1991. The warning system was based largely on the existing hydrometric network, modified by the installation of a telemetry based data logging and alarm system. A number of new gauging stations were installed where gaps existed in the hydrometric network, most notably in the catchments of the Rivers Tummel and Garry, and these helped to increase warning lead times.

Three levels of warning are currently in use ${ }^{2,7}$: Yellow (flooding possible - minor flooding of low lying agricultural land), Amber (flooding likely agricultural land, some roads and high risk properties), and Red (serious flooding likely - agricultural land, properties, communications; flood defences at risk). The rural areas of the catchment and smaller
communities are organised into flood warning groups of 5-10 people, most of which receive Amber and Red warnings. The Yellow warning is issued only to farming groups with very vulnerable land. All flood warnings are issued by the Tay River Purification Board to Tayside Police who pass on the warnings to the flood warning groups, the public and other bodies.

Since January 1991 the system has been activated on several occasions, principally for Amber level warnings, and these soon provided the Board, Police and warning groups with some experience of the system. It was to receive its first significant test in the floods of January 1993. At 1030 hours on Thursday 14th January the Board, with regard to the weather forecast for thaw and overnight rain, contacted the Control Room of Scottish Hydro-Electric Plc for an assessment of the storage situation in the Tummel-Garry and Breadalbane Hydro-Electric Schemes. The Board and Scottish Hydro-Electric were then in regular contact throughout the period of the flood events.

At 1130 hours on the 14 th the Board issued formal Yellow warnings to the farming flood warning groups in the upper and middle reaches of the Tay and Earn catchments. These were precautionary warnings to indicate that river conditions in excess of bankfull could develop overnight. As well as issuing these warnings through the formal channels of Tayside Police, the Board also contacted the leaders of these warning groups to explain the reasons for issuing the warnings in advance of the developing river conditions and the Board's concern for potentially more severe flooding.

On Friday 15th most flood risk areas were elevated to Amber status as river levels rose throughout the day. By 1030 hours the River Earn was placed on Red alert and this status remained throughout the weekend. On the River Tay the first Red warnings for the upper reaches were issued at 1445 hours on the 16 th and these were extended to cover the whole river including Perth by 1900 hours.

In most upper catchments the Red warnings were issued some three to four hours ahead of the onset of severe flows. When the Red warning for Perth was issued, the flow at Ballathie gauging station was 923 $\mathrm{m}^{3} \mathrm{~s}^{-1}$. This was some 10 hours before the flow in this reach exceeded $1500 \mathrm{~m}^{3} \mathrm{~s}^{-1}$, the threshold at which serious flood problems are expected to develop in Perth, and 24 hours before the flood peak passed through the city.

After the Red warnings were issued the Regional Emergency Control Centre (RECC) at Perth \& Kinross District Council was issued with regular updates of rising river levels. At a meeting on the evening of Saturday 16th January, the RECC was told that serious flooding would develop in Perth the following day and that there was a serious risk of overtopping of the North Muirton flood defences.

Generally the flood warning system performed well, with warnings issued sufficiently in advance for losses to be reduced. This was particularly evident in rural areas where livestock and machinery losses were minimised. In some cases warnings were ignored resulting in avoidable losses and instances of people being rescued from inundated properties.

In the Perth area where warnings are disseminated via the local authority services rather than by a cascade system, problems arose, particularly in the North Muirton area where failure of the floodbanks gave rise to sudden inundation as the flood approached its peak level. Consequently losses of household possessions, commercial equipment and stocks were substantially greater than should have been the case given the substantial lead times provided by the flood warning system. These problems have subsequently been addressed by the development of the Perth Business Community Cascade Warning System, and improved procedures for a door-to-door warning of domestic properties by Tayside Police.

Damage and Disruption

The effects of the flood were felt over a wide area, mostly in the middle and lower reaches of the Tay, and the lower reaches of the Tummel and Isla. Its impact encompassed a wide variety of effects.

The Catchment above Perth

In the rural part of the catchment, the clearest impact of the flood was in the area of land inundated: a total of $52 \mathrm{~km}^{2}$ was identified on the basis of aerial photography, ground survey and local knowledge ${ }^{8}$. This area is more than 50% greater than the area flooded in 1990, mostly as a result of the much greater extent of flooding in the Isla catchment; all floodplain areas in the Tay and Tummel valleys were inundated in both events.

As mentioned above, much of the floodplain throughout the Tay system is protected from moderate floods by floodbanks, and in an event such as this, areas normally protected are inundated by overtopping and breaching of the banks. A total of 73 breaches were identified in the Tay catchment after the 1993 flood, resulting predominantly from initial overtopping, but occasionally as a result of bed scours. The reinstatement of these banks represents a major financial burden for the farmers affected.

The repeated failure of floodbanks in certain locations has been shown to be a feature of the Tay area over at least the last 150 years'. Frequently, this results from super-elevation of water levels on the outside of bends, leading to overtopping. However, the construction of embankments over former river channels in-filled with coarse, unconsolidated material is also cited as an important reason for
repeated breaching at a number of locations, the two factors often interacting at the same location (see Figure 3). Water returning to rivers from floodplain areas also overtops floodbanks and was responsible for several breaches; in one case at Dalguise (north of Dunkeld) this resulted in the breach of a railway embankment by water which had entered the floodplain through another breach 2.5 km upstream. Similar damage occurred at an immediately adjacent location in the February 1990 flood (see Plate 1).

The rapid flow of water through such breaches generally results in scour of the surrounding soil and, coupled with widespread sediment deposition over farmland, represents further economic loss for farmers. In addition much of the fertile floodplain was planted with winter crops, and in many cases the extent of damage, with surface water lying for weeks after the flood, precluded any recovery of these. Because of silt clogging soil pores, fears have also been expressed regarding the effects of the inundation on fertility in future years.

As previously noted, one fortunate aspect of the flood in agricultural areas was that due to warnings issued by the Tay River Purification Board, and the prolonged threat of banks being overtopped, there were no livestock losses reported. Previous events, in which there has been no flood warning system, have resulted in hundreds of livestock deaths.

Figure 3 Location of flood embankment breaches during the February 1990 flood (near Guay, downstream of the confluence with the River Tummel) Source: Gilvear, D.J. et al (1993) Mechanisms of floodbank failure during large events on the Rivers Tay and Earn, Scotland. Quart. Jour. Eng. Geol., 27, 319-332.

a.

b.

Plate 1 The Tay in flood near Dalguise
a: February 1990 b: January 1993
(Photos: a - Scot Rail b-Tay RPB)

Transport links invariably suffer in floods, and the 1993 event was no exception. The high water levels reached on floodplain areas blocked many roads and at Almondbank a bridge collapsed into the flooding River Almond. Some roads in the Isla catchment were blocked for several days because of water becoming trapped behind floodbanks. Landslips, caused by saturated soils, further added to the situation. Several communities including Pitlochry, Dunkeld and Blairgowrie were cut off for a time.

The previously described breaching of the railway embankment at Dalguise dislocated the PerthInverness route for some weeks. In the Earn catchment to the south, bed scour caused the collapse of a bridge carrying the Perth-Glasgow railway, causing additional disruption for three months and contributing to a joint repair bill in excess of $£ 1.1$ million.

Finally, flooding of properties in the rural catchment must be considered. Data collation is neither simple nor necessarily very accurate, but the Factual Report produced for Tayside Regional Council in May 1993^{8} shows that housing, some industrial areas, holiday lodges and wastewater treatment plants were all affected in various parts of the Tay catchment. In many cases, flooding of property resulted from small burns rather than main
rivers overtopping their banks. Many of the most vulnerable properties are in farmsteads lying on the floodplains: these were completely surrounded by floodwaters and often inundated even though buildings stood at higher elevations than their immediate surroundings.

Perth

Flooding of property in Perth affected many more properties than in the catchment upstream, and also occurred on a much more extensive scale than in the February 1990 event. Most important was the inundation of the North Muirton housing estate on the north side of Perth, as a result of overtopping and then multiple breaching of a flood embankment. Approximately 780 properties were affected, causing in excess of $£ 10$ million of damage. A further $£ 1$ million of costs was incurred through the provision of temporary accommodation by Perth \& Kinross District Council, owners of most of the affected properties; some houses were not fully repaired until almost a year after the flood.

In the city centre many properties, generally shops and offices, were affected by direct flooding from the River Tay. While water depths at street level were generally quite modest, many buildings have basements and this is where much of the damage was sustained. Even when warnings had been received contents were still sometimes damaged, for example at the Perth City Muscum and Art Gallery, where defences had been overwhelmed by the flood. Despite the issuc of warnings well in advance of damage levels being reached, it seems the response was, in many cases, either limited or inadequate.

Damage in the city centre extended beyond the effects of direct flooding. Through groundwater, the sewerage and drainage system and a mill lade which runs through the city centre, basement flooding occurred in further areas which were not directly inundated. However, no assessment of the total cost of damage has yet been made.

Many residential properties in the city centre were also affected. In the streets surrounding the North and South Inches, houses have been built with ground floors elevated slightly above the surrounding ground level such that in the past only basements were flooded - a clear indicator of many years experience of flooding. However, in recent years many of these basements have been converted into flats, thereby exacerbating the flooding problem. The benefits of historical adaptation to flood risk are thus rather less now than they have been previously.

The planners responsible for the North Muirton development responded to the flood hazard by erecting a flood embankment around the estate. In January 1974, the then recently developed estate was flooded following failure of the existing embank-
ment. The local authority reacted by rebuilding the defences to a higher specification based on a $100-$ year return period event, then assessed at approximately $2100 \mathrm{~m}^{3} \mathrm{~s}^{-1}$. These defences were successful in February 1990 in affording the desired protection, if only by a small margin. The local topography and the design of the floodbank, however, are such that if the design flood is exceeded, a large number of properties sustain major damage. This is exactly what happened in January 1993, with some properties flooded to a depth of 2 m , and is the principal reason for the great local significance attached to the flood.

Historical Perspective

At $162 \mathrm{~m}^{3} \mathrm{~s}^{-1}$, the mean flow of the Tay is the highest of any river in the UK, reflecting its large and wet catchment, and it is to be expected that its floods will be large in comparison with other UK rivers. The most salient point to emerge from the description of this particular flood is the way in which a number of factors combined to produce a peak flow which, although not unprecedented in the period of flow measurement in this country, was the largest to be witnessed in the UK in over 20 years, and registered an exceptional impact in terms of the amount of land and the number of properties inundated. The synchrony of flood peaks emerging from the Garry and Tummel sub-catchments, the Tummel and Tay, and then the Tay and Isla seems remarkable, resulting from the timing, extent and spatial distribution of first snowfall, then meltinducing pulses of rain and temperature increases, and finally producing the major flood which swept through Perth.

Also remarkable is the occurrence of such a large flood only three years after another which was noteworthy in its own right, and in a series of large peaks from 1989 (and general wetness since 1982) which is unprecedented on the Tay in records which commenced in 1947. Conventional risk analysis treats flooding as an entirely random process, and assumes the climate which generates floods to be unchanging through time - such that the risk of exceeding any given flood level is invariant between years. However Table 1, which gives levels of major floods at Smeaton's Bridge in Perth since 1814, shows a clustering of major events. Distinct periods containing concentrations of floods can be identified, separated by intervening periods with few major peaks. Clusters are apparent around 1850, 1910, 1950, and 1990. Nothing is known about the incidence of any other peaks around the time of the largest known peak in 1814, caused in part by icejamming in the bridge. Clustering has also been found in a number of long UK seasonal and annual runoff records ${ }^{9}$, supporting the suggestion of interdependence within runoff records. The information

TABLE 1 FLOOD LEVEIS AT SMEATON'S BRIDGE, PERTH (METRES OD)

Year	Date	Level
1814	February 12	7.0
1847	October 7	6.11
1851	January 19	5.65
1853	January 20	5.79
1868	February 1	5.90
1894	February 7	5.64
1903	January 31	5.64
1909	January 18	5.52
1910	August 29	5.61
1912	Deccember 21	5.68
1913	May 9	5.66
1928	January 22	5.77
1931	June 15	5.49
1947	January 15	5.55
1950	February 17	6.03
1951	November 5	5.97
1962	February 12	5.37
1974	January 31	5.61
1989	February 7	5.07
1990	February 5	5.85
1993	January 17	6.48

provided by Smeaton's Bridge, as is so often the case with observations from before the time of instrumental recordings, is of great value in placing recent events in an historical context.

Whether the recent large Tay floods simply constitute the latest in a series of clusters, or signify some change in the flood regime of the river, perhaps resulting from climate change, poses a question which is difficult to answer. Some favoured climate change scenarios envisage an increase in rainfall along the west of the British mainland, including the headwaters of most of the Tay's tributaries, so an increase in the frequency of flood-producing conditions seems quite plausible. However, the links between climate change studies and any changes in river flow regime are difficult to develop - not least because of the limitations of climate change modelling - and likely changes in flood risk cannot therefore be postulated with any great certainty.

Comparison with other Great UK Floods

At this point it is worth making comparison with other major UK floods, specifically recalling the great Findhorn flood of 17th August 1970, which still holds the UK gauging station peak discharge record. A peak of $2410 \mathrm{~m}^{3} \mathrm{~s}^{-1}$ was recorded at Forres gauging station, where the catchment area is 781.9 km^{2}, a mere 17% of the catchment area to Ballathie on the Tay. Considering also that there was no snowmelt contribution to the Findhorn flood, its magnitude seems all the more remarkable.

The rainfall responsible for the 1970 Findhorn flood was intense over a wide area, benefiting from
strong orographic enhancement as the northerly winds rose over the Monadhliath Mountains ${ }^{10}$. Such a synoptic situation is characteristic of all the known major floods of this area, always occurring in summer'', and historical records of the 'Muckle Spate' of 1829^{12} demonstrate the occurrence of a larger peak in the more distant past.

Archer's investigation of the 1771 Tyne flood ${ }^{13}$ produced a discharge estimate of $3900 \mathrm{~m}^{3} \mathrm{~s}^{-1}$ for Hexham (catchment area $1970 \mathrm{~km}^{2}$), exceeding by a large margin any other UK historical flood estimate. Like the Findhorn flood, this seems a remarkable discharge in relation to the corresponding catchment area, and these two extreme historical events together provide a useful context in which to view the recent Tay flood.

Rainfall intensities in the 1993 Tay flood were not exceptional, and it is important to note that at most gauging stations on the Tay's main tributaries, previous events gencrated with rather less important snowmelt components have achieved peaks comparable with those of January 1993 (e.g. Kenmore, Comric Bridge, Pitnacree, Port-na-Craig, Wester Cardean). Had heavier rain fallen on the snowpack present on January 16th, an even larger flood peak would have been produced. However, the likelihood of heavier rain falling on such a snowpack, and with a spatial and temporal distribution still capable of producing coincident high peaks from all the major tributaries, is quite remote.

Risk Assessment

With the occurrence of the major floods of 1990 and 1993, the time series data on which risk assessments may be made have changed substantially ${ }^{14}$. While assessments of flood risk should never be made solely on the basis of statistically derived magnitudefrequency curves, changes in the shape of such curves are still likely to have some bearing on the understanding of flood risk at a given site.

On the Tay, the definition of flood scries is further complicated by the existence of five years of estimated peaks at Ballathie preceding the full record commencing in 1952. Moreover, the estimated peaks of 1950 and 1951 are both larger than any others recorded until 1993. Up until 1989 the flood series from 1952 contained only one peak above 1500 $\mathrm{m}^{3} \mathrm{~s}^{-1}\left(1570 \mathrm{~m}^{3} \mathrm{~s}^{-1}\right.$ on 30th January 1974) and, if considered in isolation, could be interpreted to suggest a very low risk of any major flood, above say $2000 \mathrm{~m}^{3} \mathrm{~s}^{-1}$. If all the peak estimates for the preceding five years are accepted, however, the two peaks of $1890 \mathrm{~m}^{3} \mathrm{~s}^{-1}$ and $1850 \mathrm{~m}^{3} \mathrm{~s}^{-1}$ for 1950 and 1951 respectively produce a much different picture with a small but discrete group of outliers appearing, and indicating a higher risk of floods exceeding the $2000 \mathrm{~m}^{3} \mathrm{~s}^{-1}$ threshold. This group is substantially enlarged by the addition of the 1990 and 1993 annual

Figure 4 Flood frequency curves for the River Tay at Ballathie
maxima (Figure 4), and it is interesting to note that three of the four largest events $(1993,1950,1990)$ were all associated with substantial snow-melt contributions. Such an observation raises the possibility that Tay flood series might best be modelled by use of methods which explicitly recognise different populations within the observed data ${ }^{15}$.

The events of the past few years have done much to concentrate attention on the nature of flood risk. The clustered nature of major floods on the Tay, coupled with an important variability in the mechanisms of flood generation, illustrates the complexity of modelling flood frequency distributions.

Long-term Response

In the course of its progress, the flood made considerable demands on the emergency services and local authorities throughout Tayside, as occurred in
many surrounding areas which were also affected. With its damaging effects at North Muirton, central Perth and throughout the surrounding area, however, it was acknowledged that some more considered long-term response was also required, to minimise within justifiable resources the risk of similar damage recurring in the future.

The most urgent need to counter the effects of any future peak was at North Muirton. With the floodbank there breached in three places, it was imperative to repair these as soon as possible, as the Tay remained high after its major peak and further frontal systems threatened to bring rain which might cause further inundation of property. Heavy plant was therefore brought in quickly to reduce this vulnerability. On the agricultural floodplain too, farmers were concerned to mend breaches in their defences to prevent any further flooding of their land. Unfortunately, two further peaks at approximately the mean annual flood level occurred on 30 March and 8 April 1993, and in some areas where floodbanks had not been reinstated, further crop loss and sediment deposition occurred. One method of damage limitation not yet introduced in the Tay valley would be a re-positioning of these banks in areas of repeated failure: benefits would accrue from a reduction of damage to banks and fields alike. However, as noted above, the River Tay Catchment Study ${ }^{6}$ has found the present arrangement of banks to be near-optimal for the purpose of attenuating downstream flooding.

Following the 1993 flood, Tayside Regional Council commissioned two major studies: a catchment study to enhance the understanding of floodgenerating processes in the Tay basin and its sensitivity to various changes in land use, climate, snowmelt and hydro-power operations; and a Perth flood study to assess structural options for flood mitigation in the urban area. An initial estimate of the cost of works to protect Perth from a flood similar to that of January 1993 combined with a 100year extreme tide is $£ 11.1$ million, with other design options also having been identified ${ }^{16}$. In the catchment study, the effects of afforestation were considered to be broadly helpful in reducing the rate of snowmelt which might contribute to flood generation, though in rainfall events land use impact would be very limited ${ }^{6}$. Little or no improvement in the operation of the hydro-power schemes is available to help attenuate floods in the Tay: by the time that the value of additional storage capacity becomes apparent, the limited potential rate of draw-down makes such efforts futile against the volume of runoff being produced in upstream areas.

Considering the large size of catchment, and the marginal effects of land use and resource management on its hydrological behaviour in times of extreme flood, it seems unlikely that any formal basin management plan could be justified in response to the flood threat. The control of floodplain
development, through planning legislation, appears to offer much greater scope for the future management of the flood hazard. More practically, the flood warning system has shown its worth in reducing damage in the 1993 event, and it is hoped that more recent developments of the system will allow businesses and individuals to more effectively protect their property in any future emergency.

Conclusions

The Tay flood of 17th January 1993 achieved a peak discharge of $2269 \mathrm{~m}^{3} \mathrm{~s}^{-1}$ at Ballathie gauging station and is the second largest - after the Findhorn flood of 1970 - recorded at any LK gauging station. It resulted from a very deep snowpack across the entire catchment being subject to temperature increases and rainfall, which caused major tributaries of the main river to add to the flood wave as it passed downstream in a way which was to ensure the flooding of hundreds of properties and some $52 \mathrm{~km}^{2}$ of farmland. The North Muirton housing estate received the most concentrated damage after its flood embankment was breached, but effects were widespread throughout the lower part of the Tay basin.
'The presence of several large hydro-electric reservoirs in the catchment reduced the magnitude of the peaks emerging from the Garry, Tummel and Lyon tributaries, and while it was suggested that the presence of agricultural flood embankments might have exacerbated flooding in downstream areas, their widespread failure and the inundation of areas normally protected by them in fact provided greater attenuation than would otherwise have been available. Flood warnings gave early notice of the floods for all areas, but nothing could be done to substantially reduce the major peak which was developing in the river upstream.

Coming only three years after the February 1990 event, this larger flood generated considerable local concern both through the damage and disruption it caused, and by raising awareness of the threat of further flooding in the future. In a broader context such events raise the possibility of a temporally variable model of flood risk being applicable to the Tay and other rivers, while the threat of climate change introduces the possibility of greater flood risk for the future. Detailed studies and discussions are now taking place to assess what means might be employed to afford the maximum protection to Perth in any further major floods.

Recent events have served to remind Perth and other communities in the Tay catchment of their vulnerability to flooding after a substantial period of relatively little threat. However, it is likely that not only the activities of the local authorities, but also the behaviour of the river itself over the next few winters, will play a large part in determining
whether or how any efforts to reduce this vulnerability should be attempted. It is certain that the continuing monitoring and documentation of notable flows will play a fundamental role in enhancing our understanding of flooding on the Tay, which must form the basis of any future plans for its management.

References

1. Marsh, T J and Bryant, S J (1991) 1990-a year of floods and drought, Hydrological data UK: 1990 Yearbook, Institute of Hydrology, 25-37.
2. Falconer, R H and Anderson, J L (1993) Assessment of the February 1990 flooding in the River Tay and subsequent implementation of a flood-warning system, J.IWEM, 7, 134-148.
3. Royal Meteorological Society (1993) Weather Log, January 1993.
4. Tay RPB (1993) The great flood of January 14th - 18th, 1993 on the Rivers Tay and Earn, Tay River Purification Board, Perth, 78 pp.
5. Gilvear, D J, Davies, J R and Winterbottom, S J (1994) Mechanisms of floodbank failure during large flood events on the rivers Tay and Earn, Scotland, Quarterly Journal of Engineering Geology, 27.
6. Ove Arup and Partners (1994) River Tay Catchment Study, Report to Tayside Regional Council Water Services Department.
7. Anderson, J L (1993) The River Tay Floods of January 1993, Proceedings 1993 MAFF Conference of River and Coastal Engineers, Loughborough University.
8. Babtie Shaw and Morton (1993) Flooding in the Tay Catchment - January 1993: Factual Report, Report to Tayside Regional Council Water Services Department.
9. Arnell, N W, Brown, R P C and Reynard, N S (1990) Impact of climatic variability and change on river flow regimes in the UK, Institute of Hydrology Report No 107.
10. Green, F H W (1971) History repeats itself flooding in Moray in August 1970, Scottish Geographical Magazine, 87, 150-152.
11. Black, A R and Werritty, A (in preparation) Seasonality of flooding in North Britain.
12. Lauder, T D (1830) An account of the great floods of August 1829 in the province of Moray, and adjoining districts, Edinburgh: Adam Black.
13. Archer, N (1993) Discharge estimate for Britain's greatest flood: River Tyne, 17th November 1771. Proc. Fourth Nat. Hydrol. Symp., Cardiff, September 1993, pages 4.1-4.6.
14. Anderson, J L and Black, A R (1993) Tay flooding: Act of God or climate change?, Circulation: Newsletter of the British Hydrological Society, 38, 1-4.
15. Cunane, C (1989) Statistical distributions for flood frequency analysis, World Met. Org. Operational Hydrology report 33, WMO Publ. No. 718.
16. Babtie Shaw and Morton (1993) Perth Flood Study: Report on Flood Mitigation Measures, Report to Tayside Regional Council Water Services Department.

Computation and Accuracy of Gauged Flows

Gauged flows are generally calculated by the conversion of the record of stage, or water level, using a stage-discharge relation, often referred to as the rating or calibration. Stage is measured and recorded against time by instruments usually actuated by a float in a stilling well. The instrument records the level either digitally, on a solid state logger, less commonly on punched tape, or continuously by pen and chart. At the majority of the gauging stations in the United Kingdom provision is made for the routine transmission of river levels directly to the processing centre, by telephone line or, less generally, by radio; on occasions satellites have been used to receive and re-transmit the radio signal. The rapid growth in the use of the public telephone network for the transmission of river level and flow data is enabling hydrometric data acquisition to proceed on a near real-time basis in most areas. Typically, levels are recorded at 15 -minute intervals and stored onsite for overnight transmission to allow the initial processing to be completed on the following day. Normally, both digital and analogue recording devices are deployed at gauging stations to provide a measure of security against loss of record caused by instrument malfunction.

The stage-discharge relation is obtained either by installing a gauging structure, usually a weir or flume with known hydraulic characteristics, or by measuring the stream velocity and cross-sectional area at points throughout the range of flow at a site characterised by its ability to maintain the relationship.

The accuracy of the processed gauged flows therefore depends upon several factors:
i. accuracy and reliability in measuring and recording water levels,
i. accuracy and reliability of the derived stagedischarge relation, and
iii. concurrency of revised ratings and the stage record with respect to changes in the station control.
Flow data from ultrasonic gauging stations are computed on-site where the times are measured for acoustic pulses to traverse a river section along an oblique path in both directions. The mean river velocity is related to the difference in the two timings and the flow is then assessed using the river's crosssectional area. Accurate computed flows can be expected for stable river sections and within a range in stage that permits good estimates of mean channel velocity to be derived from a velocity traverse set at a series of fixed depths.

Flow data from electromagnetic gauging stations may also be computed on-site. The technique requires the measurement of the electromotive force
(emf) induced in flowing water as it cuts a vertical magnetic field generated by means of a large coil buried beneath the river bed, or constructed above it. This emf is sensed by electrodes at each side of the river and is directly proportional to the average velocity in the cross-section.

British and International Standards are followed as far as possible in the design, installation and operation of gauging stations. Most of these Standards include a section devoted to accuracy, which results in recommendations for reducing uncertainties in discharge measurements and for estimating the extent of the uncertainties which do arise.

The National River Flow Archive exists to provide not only a central UK database and retrieval service but also an extra level of hydrological validation. To further this aim, staff at the Institute of Hydrology liaise with their counterparts in the water industry on a regional basis and, by visiting gauging stations and data processing centres, endeavour to maintain the necessary knowledge of local conditions and problems which is essential to help identify and rectify anomalous flow data.

Scope of the Flow Data Tabulations

River flow data are presented in two parts. In the first, daily mean gauged flows are tabulated for 49 gauging stations; daily naturalised flows are also tabulated for the River Lee (page 61) and River Thames (page 64). Monthly flow data for a further 163 gauging stations are given in the second part. The featured gauging stations have been selected to give a broad geographical coverage and to typify a wide range of catchment types found throughout the United Kingdom. A map (Figure 9) is provided on page 40 to assist in locating the gauging stations featured in this section.

For each gauging station, basic reference information is given together with comparative average and extreme river flow and rainfall figures based upon the archived record.

Explanatory notes precede the two sets of tables and are provided to assist in the interpretation of particular items. The notes relating to the daily flow tables are given in the following section; those relating to the monthly data are given on page 91.

Part (i) - the daily mean flow tabulations

Station Number

The gauging station number is a unique six-digit reference number which serves as the primary identifier of the station record on the River Flow Archive. The first digit is a regional identifier being 0 for mainland Britain, 1 for the islands around Britain
and 2 for Ireland. This is followed by the hydrometric area number given in the second and third digits. Hydrometric areas are either integral river catchments having one or more outlets to the sea or tidal estuary or, for convenience, they may include several contiguous river catchments having topographical similarity with separate tidal outlets. In Britain they are numbered from 1 to 97 in clockwise order around the coastline commencing in north-east Scotland: Ircland has a unified numbering system from 1 to 40 , commencing with the River Foyle catchment and circulating clockwise; not all Irish hydrometric areas, however, have an outlet directly on the coast.

The numbers and boundaries of the United Kingdom hydrometric areas are shown in the frontispiece.

The fourth, fifth and sixth digits comprise the number, usually allocated chronologically, of the gauging station within the hydrometric area. Where the leading digit, or digits, are zero they may be omitted giving rise to apparent four or five-digit reference numbers.

Measuring Authority

The abbreviation references the organisation responsible for the provision of flow data to the River Flow Archive. A list of measuring authority codes together with the corresponding names and addresses for organisations currently contributing data to the National River Flow Archive appears on pages 170 and 171 .

Grid Reference

The initial two-letter and two-figure codes each designate the relevant 100 kilometre National Grid square or Irish Grid square; the standard six-figure map reference follows.
Note: Irish Grid references - which are italicised have only one prefix letter but it is common practice to precede it with the letter I to make the identification clear.

Catchment Area

The surface catchment area, in the horizontal plane, draining to the gauging station in square kilometres. There are a few gauging stations where, because of geological considerations, or as a result of water transfers - for instance, the use of catchwaters to increase reservoir yields - the actual contributing area may differ appreciably from that defined by the topographical boundary. In consequence, the river flows whether augmented or diminished, may cause the runoff (as a depth in millimetres) values to appear anomalous.

First Year

The year in which the station started producing daily mean flow data, usually the first year for which data
are held on the River Flow Archive. Earlier data, often of a sporadic nature or of poorer quality, may occasionally be available from the measuring authorities or other sources.

Level of Station

The level of the station is, generally, the level of the gauge zero in metres above Ordnance Datum, or above Malin Head Datum for stations in Northern Ireland. Although gauge zero is usually closely related to zero discharge, it is the practice in a few areas for an arbitrary height, typically one metre, to be added to the level of the lowest crest of a measuring structure to avoid the possibility of false recording of negative values by some digital recorders.

Maximum Altitude

The level to the nearest metre of the highest point in the catchment.

Table of daily mean gauged (or naturalised) discharges

The mean flow in cubic metres per second (abbreviated to $\mathrm{m}^{3} \mathrm{~s}^{11}$ and sometimes also referred to as 'cumecs') in a water-day, normally 09.00 to 09.00 . The naturalised discharge is the gauged discharge adjusted to take account of net abstractions and discharges upstream of the gauging station.

Peak Flow: The highest flow in cubic metres per second for each month. The day of peak generally refers to the water-day but the calendar day has also been used, particularly in Scotland. Normally the peak flow corresponds to the highest fifteen-minute flow where water levels are recorded digitally, or the highest instantaneous flow associated with maximum stage where analogue recorders are used.

Runoff: The notional depth of water in millimetres over the catchment equivalent to the mean flow for the month as measured at the gauging station. It is computed using the relationship:

$$
\begin{aligned}
& \text { Runoff in } \mathrm{mm}= \\
& \frac{\text { Average Flow in Cumecs } \times 86.4 \times \mathrm{n}}{\text { Catchment Area }\left(\mathrm{km}^{2}\right)}
\end{aligned}
$$

where n is the number of days in the month. The runoff total is rounded to the nearest millimetre.

Runoff is computed on the basis of naturalised flows (see 'Factors Affecting Runoff') for the minority of catchments where daily, or monthly, naturalised flows are available.

Rainfall: The rainfall over the catchment in millimetres for each month. Each areal rainfall total is derived from a one kilometre square grid of rainfall values generated from all available daily and
monthly rainfall data. A computer program calculates catchment rainfall by averaging the values at the grid points lying within the digitised catchment boundary. Validation procedures allow for the rejection of obviously erroncous raingauge observations prior to the gridding exercise. The bulk of the rainfall data are provided by the Meteorological Officet. Where, as for instance in some small mountainous catchments, raingauges are few and their siting and exposure are not ideal, great precision in the areal rainfall estimates cannot be expected.

Statistics of monthly data for previous record

Only complete monthly records are used in the derivation of the average, low and high values of river flow, runoff and rainfall. The rainfall and runoff statistics are normally directly comparable but full equivalence will not obtain where the pattern of missing data differs between the archived rainfall and runoff data sets.

Where applicable, a guide to the amount of missing data is given following the section heading. Some slight variations from the statistics held by the measuring authorities may occur; these may be due to the different methods of computation or the need for uniformity in presentation.

Summary statistics

Current year flow statistics are tabulated alongside the corresponding values for the previous record. Where appropriate, the current year figures) are expressed as a percentage* of the preceding average.

Mean Flow: The average of all available daily mean flows during the term indicated.

Lowest Daily Mean: The value and date of occurrence of the lowest mean flow in cubic metres per second in a water-day during the term indicated. In a record in which the value recurs, the date is that of the last occasion.

River flow measurement tends to become more imprecise at very low discharges. Very low velocities, heavy weed growth and the insensitivity of stagedischarge.relations combine with the difficulty of accurately measuring limited water depths to reduce the accuracy of computed flows. The reliability of both the lowest daily mean flow and the 95 per cent exceedance flow (see below) as representative measures of low flow must, therefore, be considered carefully and the values used with caution in view of the increasing proportional variability between the natural flow and the artificial influences, such as abstractions, discharges and storage changes as the river flow diminishes.

[^2]Peak: The peak flow in cubic metres per second during the term indicated. The date of occurrence, normally the water-day, is also indicated. Generally, the peak flows are derived from the record of monthly instantaneous maximum flows stored on the River Flow Archive*. As a result of particular flow measurement difficulties in the flood range, this peak flow series is often incomplete. Consequently, in some cases, the peak flow from the previous period of record has been abstracted from the Flood Studies Report ${ }^{1}$. Reference to this report should be made to check for historical flood events which may exceed the peak falling within the gauged flow record.
10% exceedance: The flow in cubic metres per second which was equalled or exceeded for 10 per cent of the specified term - a high flow parameter which, when compared with the mean may give a measure of the variability, or 'flashiness', of the flow regime. The 10 per cent exceedance value is computed using daily flow data only for those years with ten days, or less, missing on the River Flow Archive.

50\% exceedance: The flow in cubic metres per second which was equalled or exceeded for 50 per cent of the specified term - the median value. The same conditions for completeness of the annual records apply as for the 10 per cent exceedance flow.

95\% exceedance: The flow in cubic metres per second which was equalled or exceeded for 95 per cent of the specified term - a significant low flow parameter relevant in the assessment of river water quality consent conditions. The same conditions for completeness of the annual records apply as for the 10 per cent exceedance flow.

Factors Affecting Runoff (FAR)

An indication of the various types of abstractions from, and discharges to, the river operating within the catchment which alter the natural flow is given by a standard set of abbreviated descriptions. In Part (ii) - the monthly flow data - each description is shortened to a code letter. An explanation of the abbreviated descriptions and the code letters is given overleaf. With the exception of the induced loss in surface flow resulting from underlying groundwater abstraction, these codes and descriptions refer to quantifiable variations and do not include the progressive, and difficult to measure, modifications in the regime related to land-use changes.

Except for a small set of gauging stations for which the net variation, i.e. reservoir storage changes and/or the balance between imports and exports of water to, or from, the catchment, is assessed in order to derive the 'naturalised' flow from the gauged flow, (see page 36), the record of individual abstractions, discharges and changes in storage as indicated in the code above is not held centrally.

[^3]
CODE EXPLANATION

N Natural, i.e., there are no significant abstractions and discharges or the variation due to them is so limited that the gauged flow is within 10 per cent of the natural flow at, or in excess of, the 95 per cent exceedance flow.

Storage or impounding reservoir. Natural river flows will be affected by water stored in a reservoir situated in, and supplied from, the catchment above the gauging station.

Regulated river. Under certain flow conditions the river will be augmented from surface water and/or groundwater storage upstream of the gauging station.

Public water supplies. Natural river flows are reduced by the quantity abstracted from a reservoir or by a river intake if the water is conveyed outside the gauging station's catchment area.

Groundwater abstraction. Natural river flow may be reduced or augmented by groundwater abstraction or recharge. This category includes catchments where minewater discharges influence the flow regime.

Effluent return. Outflows from sewage treatment works will augment the river flow if the effluents originate from outside the catchment.

Industrial and agricultural abstractions. Direct industrial and agricultural abstractions from surface water and from groundwater may reduce the natural river flow.

H Hydro-electric power. The river flow is regulated to suit the need for power generation.

abBreviated description

Natural within 10 per cent at the 95 per cent exceedance flow.

Reservoirs in catchment.

Augmentation from surface water and/or groundwater.

Abstraction for public water supply.

Flows influenced by groundwater abstraction and/or recharge.

Augmentation from effluent returns.

Flow reduced by industrial and/or agricultural abstraction.

Regulation for HEP.

Station and catchment description

A short commentary providing a guide to the characteristics of the station, its flow record and the catchment it commands; refer to page 174 for an explanatory listing of the abbreviations and acronyms used. The principal objectives of this summary information are to assist data users in the selection of gauging station records appropriate to their needs and to assist in the interpretation of flow variability at individual gauging stations particularly where the natural flow pattern is significantly disturbed by artificial influences.

A comprehensive set of gauging station and catchment descriptions is provided in the 'Hydro-
metric Register and Statistics 1986-90' (see page 172). Further details of the net impact of abstractions and discharges on river flow patterns are given in: Gustard, A., Bullock, A. and Dixon, J.M. 1992. Estimating Low River Flows in the United Kingdom. Institute of Hydrology Report number 108.

Comment

A summary of any important factors influencing the accuracy of the current year's flow data specifically; for instance, the reconstruction of a gauging station or the use of extrapolated stage-discharge relations during periods of very low or very high flows.

STATIONS FOR WHICH DAILY OR MONTHLY DATA ARE GIVEN IN THE RIVER FLOW SECTION

ation	river name ando station name	SEES
NLimber		Page
3002	Carron at sgodachail	92
D 3003	OYKEL AT EASTER TURNAIG	42
4001	CONON AT MOY BRIDGE	92
6008	ENRICK AT MIIL OF TORE	92
D 7002	FINDHORN AT FORRES	43
D 8006	SPEY AT BOAT O BRIG	4
8007	SPEY AT INVERTRUIM	92
9001	deveron at avochie	93
10002	UGie at inverugie	93
11001	DON AT PARKHILL	93
D 12001	dee at woodend	45
12006	GAIRN AT INVERGAIRN	93
13007	NORTH ESK AT LOGIE MILL	94
14001	EDEN AT KEMBACK	94
D 15006	tay at ballathie	46
15011	LYON AT COMRIE BRIDGE	94
16003	RUCHILL WATER at Cul.tybraggan	94
16004	EARN AT FORTEVIOT BRIDGE	95
17001	CARRON AT HEADSWOOD	95
17002	leven at leven	95
18003	TEITII AT BRIDGE OF TEITH	95
18005	ALILAN WATER AT BRIDGE OF ALLAN	96
18018	KIRKTON BURN AT BALQUHIDDER	96
D 19001	almond at craigiehal.l	47
20001	TYNE AT EAST LINTON	96
21006	TWEED AT BOLESIDE	96
D 21009	TWEED AT NORHAM	48
21012	teviot at hamick	97
21018	I.YNE WATER AT I.YNE STATION	97
21022	WHITEADDER WATER AT HUTTION	
	Castie.	97
21024	JED Water at jedburgh	97
D 22001	COQUET AT MOREICK	49
22006	BLYTH AT HARTFORD BRIDGE	98
23001	TYNE AT BYWELL	98
23006	SUUTH TYNE AT FEATHERSTONE	98
23011	KIELDER BURN AT KIELDER	98
24004	bedblirn beck at bedblirn	99
24009	wear at chester le street	99
25001	tees at broken scar	99
D 25006	GRETA AT RUTHERFORD BRIDGE	50
25019	Leven at easby	99
26003	FOSTON BECK AT FOSTON MILL	100
26005	GYPSEY RACE AT BOYNTON	100
D 27002	Wharfe at flint mill weir	51
27007	URE AT WESTWICK LOCK	100
27025	ROTHER AT WOODHOUSE MILL	100
D 27035	AIRE AT KILDFICK BRIDGE	52
D 27041	DERWENT AT BUTTERCRAMBE	53
27042	DOVE AT KIRKBY MILIS	101
27047	SNAIZEHOLME BECK AT LOW houses	101
27050	ESK AT SLEIGHTS	101
27053	NIDD AT BIRSTwith	101
27071	Swale at crakehiti.	102
D 288009	Trent at colwick	54
28015	IDIE AT MATTERSEY	102
28018	dove at marston on dove	102
28024	WREAKE AT SYSTON MILL	102

STATION	river name and station name	SEE
28026	ANKER AT POLESWORTH	10
28031	MANIFOLD AT ILAM	103
28039	REA AT CAI.THORPE PARK	103
28052	SOW AT GREAT BRIIXGEFORD	10
28067	DERWENT AT CHURCH WILNe	104
28082	SOAR AT LITTLETHORPE	104
D 28085	DERWENT AT ST MARY'S BRIDGE	55
29003	i.UD at louth	04
D 30001	WITHAM AT CIAMPOLE MILI.	56
30004	PARTNEY L.YMN AT PARTNEY MILI.	04
30012	STAINFIELD BECK AT STAINFIELD	105
31002	GİEN AT KATES BRIDGE KING	
	STREET	105
31010	Chater at fosters bridge	105
32003	HARPERS BROOK ATOLD MILL BRIDGE	105
D 32004	ISE BROOK AT HARROWDENOLDMILL	57
D 33002	BEDFORD OUSE AT BEDFORD	58
33006	WISSEY AT NORTHWOLD	106
33012	KYM AT MEAGRE FARA	106
33024	CAM AT DERNFORD	106
33027	RHEE AT WIMPOLE	106
33032	heacham at heacham	107
D 33034	litt	59
34004	WENSUM AT COSTESSEY MILI.	107
D 34006	waveney at needham mill	60
35008	GIPPING AT STOWMARKET	107
36006	STOUR AT I.ANGHAM	107
37001	RODING AT REDBRIDGE	108
37005	Colne at lexden	108
37010	black water at appleford bridge	108
D 38001	l.ee at felldes weir	61
D 38003	mimram at pansuanger park	62
38021	TURKEY BROOK AT Al.bany park	108
D 39001	thames at kingston	63/4
39002	THAMES at days weir	109
39005	BEVERLEY BROOK AT WIMBI.EDON	
	COMMON	109
39007	blackwater at swal.lowfield	109
39014	VER AT HANSTEADS	109
39016	KENNET AT Thealif	110
39019	l.ambourn at shav	110
D 39020	COLN AT bibury	65
39021	CHERWELL AT ENSLOW MILI.	110
39023	WYE AT HEDSOR	110
39029	TILLINGBOURNE AT SHALFORD	111
39049	SILK Stream at colindeep lane	111
39069	mole at kinnersley manor	111
D) 40003	meidway at teston	66
40009	TEISE AT STONE BRIDGE	111
40010	EDEN AT PENSHURST	112
D 40011	Great stour at horton	67
40012	Darent at hatwley	112
41001	NUNNINGHAM STREAM at tilley	
	BRIDGE	112
41006	UCK AT ISFIELD	112
41019	ARUN AT Al.Fot.dean	113
41027	ROTHER AT PRINCES MARSH	113
42003	LYMINGTON AT BROCKENHURST PARK	113

Station	river name and station name	SEE
Nushaer		Page
42004	test at broadiands	113
42006	MEON AT MISLINGFORD	114
D 42010	ITCHEN AT HIGHBRIDGE/ALLBROOK	68
D 43005	AVON AT AMESBURY	69
+3006	NADDER AT WILTON PARK	114
43007	Stolir at throop mill.	114
43012	WYI.YE AT NORTON BAVANT	114
+4002	piddle at bacios mill	115
44009	WEY AT BROADEEY	115
D) 45001	EXEAT THORVERTON	70
45003	CULM AT WOODMILL	115
45004	AXE AT WHITFORD	115
46003	DART AT AUSTINS BRIDGE	116
46005	EAST DART AT bellever	116
47001	tamar at gunnislake	116
47008	THRUSHEI. AT TINHAY	116
48005	KENWYN AT TRLRO	117
48011	FOWEY AT RESTORAEI.	117
49001	Camel at denby	117
D 50001	TAw at CMberleigh	71
50002	TORRIDGE AT TORRINGION	117
1) 52005	TONE AT hishops hull	72
52007	Parrett at chiselborolijh	118
52010	brue at lovinciton	118
53004	CHEW AT COMPTON DANDO	118
53006	FROME (BRISTOL) AT frisichay	118
D 53018	AVON AT BATHFORD	73
D 54001	SEvern at bewdeley	74
D 54002	avon at evesham	75
D 54008	TEME AT TENBLIRY	76
54012	TERN at walcot	119
54019	avon at stareton	119
54020	PerRy at yeaton	119
54022	SEVERN AT PI.YNIIMON FLLME	119
54024	WORFEAT BLURCOTE	120
54034	DOWLES BROOK AT DOWLES	120
54038	tanat at litanyblodwel	120
55008	WYE AT CEFS BRWY:	120
55013	ARROW AT TITLEY MILL	121
55014	LUGG AT BYTON	121
55018	FROME AT YARKHILL	121
55023	WYE AT REDBROOK	121
D 56001	USK AT CHAIN BRIDGE	77
56013	YSCIR AT PONTARYSCIR	122^{-}
57008	RGYMNEY AT LLANEDERYN	122
58009	EWENNY AT Keppers lodge	122
60003	taf at clog-y-fran	122
60010	TYWI AT NANTGAREDIG	123
D 62001	Thifi at glan teifi	78
63001	YSTWYTH AT PONT LLOLUYN	123
04001	DYFI AT DYFI BRIDCiE	123

STATION	RIVER NAME AND STATION Name	SEE
Number		page
64002	DYSYNNI AT PONT-Y-GARTH	123
65005	ERCH AT PENCAENEWYDD	124
66006	EL.WY AT PONT-Y-GWYDDEL	124
67008	AL.YN AT PONT-Y-CAPEL	124
D 67015	deE at manley hali.	79
67018	dee at new inn	124
D 68001	W'EAVER AT ASHBROOK	80
68004	WISTASTON BROOK AT MARSHFIEL.D	
	BRIDGE	125
69006	bOLLIN AT DUNHAM MASSEY	125
69007	mersey at ashton welr	125
70004	Yarrow at croston mill	125
71001	RIBBILE. AT SAMLESBURY	126
71004	calder at mhalley meir	126
D 72004	l.line at caton	81
73005	KENT AT SEDGWICK	126
D) 73010	L,EVEN AT NEWBY BRIDGE	82
74005	EHEN AT BRAYSTONES	126
75002	DERWENT AT CAMERTON	127
76005	FIDEN AT TEMPLE SOTERBY	127
D 76007	EDEN AT Sheepmotict	83
76010	PETTERIL AT HARRABY GREEN	127
77003	LIDDEL WATERATROWANBLIRNFOOT	127
78003	ANNAN AT BRYDEKIRK	128
78004	KINNEI. WATER AT REDHALL	128
D 79006	NITH at drumlanrig	84
80001	URR AT DAlbeattie	128
81002	CRHE AT NEWTON STEWART	128
81003	I.JCE AT AIRYHEMABING,	129
82002	DOON AT AUCHENDRANE	129
83005	IRVINE AT SHEWAI,TON	129
D 84005	CI.YDE AT BLAIRSTON	85
84016	lugGie water at condorrat	129
85001	Leven at linnibrane	130
D 85003	falloch at glen falloch	86
90003	nevis at cilagioan	130
D 93001	carron at new kelso	87
94001	EWE AT POOLEWE	130
95001	inver at little assynt	130
96001	halladale at hali,adale	131
101002	Midina at upper shide	131
D 201005	Canowenat camowen terrace	88
201007	BURN DENNET AT BURNDENNET	
	BRIDGE	131
D) 203010	BLACKWATERATMAYDOWN BRIDGE	89
203012	BAI.IINDERRY AT BALLINDERRY	
	BRIDGE	131
203020	MOYOLA AT MOYOLA NEW BRIDGE,	132
D 203028	agivey at white hill.	90
205004	l.agan at newloorge	132
205005	ravernet at ravernet	132

First year 1977

Grid reforence. 29 (NC) 403001
Level sin (m OO) 15.60

Catchment aros (sq kmi) 3307 Max all (m OD) 998

Day	JAN	FEB	MAA	APR	MAY	JUN	Jul	AUG	SEP	OCT	NOV	DEC
1	8629	5967	4496	4338	1828	5.505	2061	19.970	2.141	25360	1.790	7.215
2	33.690	12970	4088	3.328	1725	5.595	5972	15770	10020	31320	1663	35700
3	24850	23190	3421	3.102	1686	3955	18.700	16730	8102	7149	1564	40420
4	24.940	37460	39910	4.678	1701	4391	28420	10740	3.718	39.010	1508	47530
5	32.310	81890	50830	5774	1938	13880	30010	6342	2519	45420	1451	32450
6	19600	41020	18160	5124	1890	12030	35370	4366	1989	97570	1659	32400
7	20710	25360	8154	3587	1968	4783	54410	4.830	1708	35560	23.060	17240
8	39.150	12.820	5588	4.297	1514	3027	59980	4978	1505	48100	8429	26180
9	33130	7562	4536	6397	1302	2.287	61640	35400	1464	21840	15.180	37860
10	18940	5.504	3.419	8939	1137	1838	68300	32720	2.392	37.540	6735	19670
11	6.370	4374	3.067	4.279	1019	1551	30430	11940	19.890	30830	8.518	9266
12	14760	3802	2784	3046	0999	1.281	14960	6472	9408	11600	13350	7202
13	12100	3340	2.792	2.471	5080	1060	6570	4.316	7.778	7176	8134	6249
14	25350	11650	3776	2.190	2619	0937	4181	4528	4603	13230	9.113	32570
15	76.130	14360	22.300	11900	60490	0887	3.151	3450	3627	10520	6393	15680
16	196.800	60780	44610	15270	18750	3119	2951	2565	2 \& 15	7614	4931	31650
17	66030	32900	90950	22920	14100	43620	2845	2145	2.243	21990	3396	20530
18	19.090	45340	32480	8286	8071	42040 :	2740	1975	1853	10510	2606	112200
19	40470	34500	37580	30300	3784	13.690 *	2320	1790	3463	19.000	2040	48.300
20	38.740	61220	38200	18620	2750	7.902	3807	1880	2516	26640	1.760	13750
21	68150	16920	26.570	11580	2584	21.900	7945	5221	2064	11500	1.582	7321
22	73.650	19.890	28740	8.478	2349	11.580	10220	3.519	1.864	6061	1.729	6231
23	100400	11460	14490	8501	1862	8226	21740	5262	1628	5102	1474	4939
24	57250	7268	24640	22.510	1536	4.602	13050	4.357	2152	4.251	0962	6938
25	42620	10.340	14450	9.160	1.291	13150	32010	7305	2375	3.380	1412	4998
26	81470	12020	11290	4773	1087	13.140	55860	3.880	1856	2863	1.534	5567
27	33670	6.712	11290	3435	0959	5130	14080	3.914	1573	2.518	1.500	8343
28	25230	5504	8483	2676	0881	3248	6143	2909	1427	2371	1447	8806
29	14060		8141	2218	0870	2.656	4681	2961	1339	2.196	1.463	32480
30	16180		11670	1931	2588	2.366	10180	2602	1239	2007	1.239	18320
31	10610		7355		8088		21750	2.351		1.898		1713
Average	41130	22000	18.980	8131	3111	8646	20530	7.651	3110	19.100	4.587	22770
Lowest	6370	3340	2784	1.931	0870	0887	2061	1.790	1259	1.898	0962	4939
Heghest	196800	81890	90950	30300	60490	43620	68.300	35.400	19890	97570	23060	112200
Peak fow	36830	13380	18940	69.00	11120	9845	10730	58.40	5707	148.50	3946	18520
Day of peak	16	20	17	24	15	18	7	9	11	6	7	18
Monthly total (malion cu m)	11020	5323	5083	2109	1369	2241	5439	2049	962	3116	1189	6097
Runotf (mm)	333	161	154	64	41	68	166	62	29	155	36	184
Ramfall (min)	430	156	161	81	92	108	191	77	49	156	44	240

Statistics of monthly data for previous record iNow 1977 to Dec 19921

Station and catchment description

40 m wide river section. Flows fully contained except in extreme circumstances (e 9 . October $\cdot 1978$) Construction of gabion groynes immediately downstream. in February 1986. has rendered the low flow rating less stable. 100\% natural flow regime with litile loch storage. Catchment is typical Highland mix of rough grazing and moorland with some afforestation in the middle reaches

007002 Findhorn at Forres

oay	JAN	FEA	MAR	APA	may	JN	μ	AUG	SFP	OCT	NOV	DEC
1	10.300	18.220	10030	16620	6.945	21090	4872	4.850	3.577	18.690	6060	4.579
2	59.170	17030	9.089	13.200	5740	16.180	4.215	4111	3.505	52070	5.957	9.645
3	32.380	77.680	8574	10930	4.772	12.830	3.952	4261	3637	16600	5734	50.350
4	15.570	125000	9.798	10850	4385	9238	4075	4.497	4.149	27440	9107	49140
5	37250	102.200	46420	9935	4820	7.412	3.924	11870	3.523	28020	7.920	61.060
6	23.620	88760	26.700	20140	5344	6.136	3.750	5558	3248	305800	6.455	49.840
7	35.490	70070	16880	15290	6.924	5.545	3451	5103	3171	215500	6851	20850
8	29.100	31300	14320	12.000	9.993	5314	3713	4.923	3.131	101900	16.560	13.530
9	34.860	18310	14.790	18370	6651	5048	12650	4317	3.115	63190	13.120	28820
10	34420	19.530	11930	12.940	5.408	5.586	23090	8831	3621	111900	10930	17870
11	21550	15820	8909	12140	5542	5.507	26.960	7806	11960	72760	7437	12.510
12	13900	13.560	13420	9662	5.523	5055	11410	$9(0) 4$	12.560	68380	6428	9789
13	14.840	17670	20970	7806	11020	4.517	6921	6.587	8470	38810	6021	9236
14	12540	33.180	25640	7.527	39550	4.115	5266	5452	9059	26920	5245	8223
15	72.570	25860	24080	7.753	89410	3964	4653	8.324	11880	21630	5098	8913
16	230300	37090	18550	13.110	49610	3996	11430	5515	8440	17320	12090	8187
17	261.300	37.890	53760	10300	174400	4.696	13.050	4302	6380	13800	9578	7115
18	62.520	24730	25.540	7.488	63570	5949	6425	3956	5128	14020	6.588	122.700
19	38110	18.410	14.430	8. 105	20880	7.773	5002	4010	4524	14600	4980	110300
20	84860	19250	28430	19750	14670	7460	4.455	3591	6658	38.850	3.838	35050
21	100.500	18120	34770	16410	12590	6707	4.144	3.381	5.946	26620	4.164	19.240
22	67.450	17.150	16130	12.200	13.180	6.942	4205	3425	5.459	16760	3098	14.710
23	70.590	22.400	11630	10960	12.980	8028	5.225	12.900	4657	13.510	2.994	11.940
24	116000	20.940	11970	10080	9274	6.907	5.388	11920	4122	11.750	4566	10700
25	42.470	31290	13460	8614	7.770	7.525	4.316	22280	6278	10010	6634	9.558
26	36.050	25020	13540	8224	6757	21.690	4.513	14370	4782	8779	7.216	7.571
27	34.370	15.340	16420	7.904	6084	8.428	5026	7999	4131	8121	8362	9484
28	35580	11.690	18540	7270	5.584	5.597	4.322	5918	3769	7.650	6742	11.290
29	26.290		16450	6730	5.573	4734	5.962	4.752	3557	7.300	4854	17040
30	30.140		111100	6562	12.060	4760	5.511	4.181	3416	6891	4.328	15.760
31	28180		27800		25880		4.546	3810		6230		11550
Averago	55880	34.770	22390	11300	21060	7.624	6981	6832	5528	44900	6.965	24990
Lowest	10.300	11690	8.574	6562	4.385	3964	3451	3.381	3115	6230	2.994	4.579
Highosi	281300	125.000	111100	20140	174.400	21.690	26960	22280	12360	305800	16560	122.700
Pook frow	59250	131.20	185.40	3192	36500	37.58	3897	3133	1922	42540	21.66	215.20
Doy of neak Monthty total	17	4	30	6	17	26	11	23	11	6	16	19
(rullion cis m)	149.70	8411	5997	2928	5641	1976	18.70	18.30	1433	12030	1805	6692
Runoff (min)	191	108	77	37	72	25	24	23	18	154	23	86
Rainfo'l (mm)	217	34	64	33	127	51	64	52	54	197	27	151

Siatistics of montrily deta for previous record (Oct 1958 to Dec 19921

Station and catchment description
50 m wide river saction in a mobile gravel reach which necessitates frequent recalibration of low flow rating. Flows contanned under cableway up to 3.8 m . Adequately gauged to bankfuil. 100% natural catchment with minimal surface storage. Other than a narrow agricultural coastal plain the catchment drains the Monadhlath Mountains with an extensive blankat peat cover.

Grid reference: 38 (NJ) 318518 Leval sin. (m OO) 4310

Caichment area (sq km): 2861.2 Max alt (m OD). 1309

Daily mean gauged discharges (cubic metres per second)												
DAY	JAN	ffe	MAA	APR	MAY	${ }_{53}{ }^{\text {JUN }}$	JU1400	AUG	$\begin{gathered} \text { S\&P } \\ 23500 \end{gathered}$	$\propto \subset$	MOV 35810	$\begin{gathered} \text { DEC } \\ 23950 \end{gathered}$
1	41010	77.600	44900	97.390	36870	53.550	26490	24880	23500	80440	35810	23950
2	85150	69.710	43130	70410	35.550	50660	23.190	23710	22940	195.100	34550	32270
3	89620	114900	41810	57580	32490	46230	22.420	24930	25.550	93060	33610	79610
4	61.730	190100	45.820	53780	30080	39850	21500	27500	25040	98.990	35490	131800
5	108600	200300	122600	58170	29000	35.510	21250	41880	23140	86.700	34.630	131000
6	104.300	220100	86650	83160	30080	31800	22250	34580	21880	274100	33040	107000
7	89380	202.900	63 y 10	71.350	35700	29560	21150	31390	21.220	376300	33.100	30630
8	104000	154400	54710	55420	45270	28440	22080	30600	20780	253.800	45420	69130
9	100300	107300	50930	56150	39.390	27740	26950	30110	24230	208.300	45660	83710
10	108200	86080	46210	62450	33650	28530	34400	32.390	64490	252.700	42890	64070
11	91350	72380	42780	55680	32160	28430	48260	36460	110300	174600	37670	53210
12	63.190	62.640	43330	47840	32.450	27040	38750	42.660	71400	155.600	34380	46420
13	57120	59620	50230	43230	42.610	25180	31610	39150	65.940	126300	33420	43480
14	53340	64790	60500	39850	82.560	23500	28660	32910	57.690	104800	32130	39.990
15	197.100	72620	62.360	38820	172.900	22620	26400	36570	50800	93840	30480	39.770
16	375.000	66180	67730	39590	115.600	22800	28330	33870	43.140	75.340	35100	41030
17	475.600	84460	73940	45360	198.700	26720	47830	29.620	38430	65.740	37570	37.540
18	381.900	72510	92010	40780	202.900	30820	35130	27520	34.340	63730	32110	158800
19	247.100	64440	70090	40650	124.200	30280	29.580	26260	32580	65.510	28440	247.600
20	239.300	61550	66660	55.150	65 750	30780	27010	24640	37.350	94870	25800	15:900
21	253500	61930	83.650	72.290	70560	28.690	25.560	23.380	36.720	86010	26.250	96600
22	279.900	64150	68160	59220	61.630	27.490	24460	23180	32920	68.050	23.400	70080
23	241000	66260	57220	54980	52380	27890	25380	41280	30870	59680	21780	51510
24	297.700	55.130	52040	52.530	46080	26950	24960	45700	29290	56130	19180	50320
25	211000	66140	51820	46940	41470	27140	24090	57780	31.580	50070	20840	45070
28	162800	75630	50350	43290	37820	45860	24420	43490	30240	46360	22510	33830
27	139700	57410	49110	42.480	35040	38.540	24200	34680	28040	43700	23.810	33850
28	126900	4)/90	49440	40070	32720	30310	2.4330	30.910	26260	41.860	24740	39670
29	104.000		46020	37760	32.220	27230	29030	27650	25.180	40000	23070	58710
30	102200		154100	35790	39000	27330	28510	25770	24.510	38390	23320	63280
31	96650		145600		50140		25870	24300		37.050		48550
Averago	164100	92810	65130	53.270	62500	31520	27890	32.570	37.010	113100	31.010	73240
Lowest	41010	41790	41810	35.790	29000	22620	21.250	23180	20780	37050	19.180	23950
Highast	475.600	220100	154100	97390	202900	53550	48260	57780	110300	376.300	45.660	247600
Poak now	68110	22870	20640	11750	28440	5515	7802	6659	15490	45950	5145	31090
Day of peak	16	6	30	1	17	1	17	25	11	7	8	18
Monthly total (mation cu m)	439.70	224.50	17610	138.10	167.40	81.69	7471	8724	9593	303.00	8037	19620
Rumoff (mm)	154	18	63.	48	59	29	26	30	34	106	28	69
Reinfall (mm)	267	41	67	46	115	54	66	55	71	147	33	143

Statistics of monthly data for previous record (Oct 1952 to Oec 1992)

Station and catchment description
Lowest station currunty operating on the Spey Cabloway rated 65 m wide section with natural control, extreme floods bypass station on left bank. 380 sq . km developed for hydro-power with diversions and storage. limited nei impact on annual runoff (small loss). Geology is mainiy graniles and Moinkan metamorphics with some Dalradian and Old Red Sandstone. Catchment is mixed with mountain (aill northern slopes of Cairngorms) moorland, hill grazing, arable und forestry.

Mossuring outhority: NERPB First year: 1929

Grid roference. 37 (NO) 635956 Level sin. (m OD) 7050

Catchment ares (sq km): 1370.0 Max alt (m OD): 1309

Daily mean gauged dischargas (cubic metres per second)

Statistics of monthly data for previous record (Oct 1929 to Dec 1992)

Station and catchment dascription
Cobleway rated, fairly stable natural control. Present station, buit in 1972, replaced earlier station on sarne reach fflow records from 1929 . chart rocords from 1934). Carnton: c/m measurements at Woodendestablished by Capt. McClean. Earlier staff gauge record dates from 1911 . No ogulation. litite natural storage. minor abstractions. Dalradan and Mointan metamorphic along most of the valley. flanked by igneous intrusive. Mountain, moortand, forosiry. pastoral and some arable in the valtey bottom.

Measuring authority: TRPB
First yoar 1952

Grad refarenco: 37 (NO) 147367 Level sin (in OD) 2630

Catchment aros (sq km): 4587. 1 Max all (m OD) 1214

Daity mean gauged discharges (cubic metres per second)

Day	JAN	fte	MAA	APR	MAY	JUN	JuL	AUG	SEP	OCT	Nov	DEC
1	130.100	258.100	84990	357.700	131300	155.000	54.030	61480	47.590	337300	61.790	105500
2	208100	216700	73970	322.500	108600	202000	50420	68620	46490	421600	61.280	200500
3	202.200	328.500	70400	297800	99460	146700	50200	83.270	44440	246.100	60.380	342400
4	206000	406400	67.770	320.600	112800	137200	49.910	75580	43.540	273900	75.110	406.500
5	384.200	408500	97330	408300	101200	133500	49070	8) 140	42900	208400	69.260	320100
6	313000	447900	86350	423500	91630	129000	48470	81650	42670	250500	60920	297200
7	335.100	384900	83.350	338500	89670	123800	45640	83550	42.330	369400	62580	268400
8	326000	313300	11830	332.100	85350	112.900	49340	79320	43540	445400	73850	235000
9	410.700	244200	69000	658600	74660	103000	53210	78190	50270	334700	88100	260700
10	479300	227.400	61830	649800	68740	95.530	51450	77.240	. 90960	292300	89810	277800
11	405500	242.700	63290	449300	66390	85.880	49930	81.710	124600	246000	78970	248900
12	347200	224000	73110	372.500	67320	86120	47.960	84350	85650	205800	76050	220.000
13	330.400	212.400	76.050	320.500	84820	80980	46630	74.920	75810	186400	80750	221700
14	320500	196700	83030	277.800	97910	84.350	48450	72590	72120	177.200	73.270	205300
15	862.800	204200	87730	254.600	117000	77110	52240	83190	66520	162600	69520	245600
16	1127.000	183100	102000	211.200	128200	84890	105800	83410	62990	150400	93480	205800
17	1965000	163900	182200	188900	554800	78.390	78320	76250	56850	125900	80.780	202700
18	1081.000	158200	255900	181200	445700	86900	60700	69990	52490	125100	82230	457100
19	746.900	142400	238 000	223500	260200	73820	58960	68350	66120	109300	81630	587300
20	816900	140200	208.400	320700	218000	70.250	74210	65710	174.300	113000	73890	384000
21	819000	135600	231.700	334.000	185800	70.440	60850	65290	96.240	118.500	74.350	332300
22	856100	138300	213400	276000	142500	69860	56990	61.510	90.960	107.800	74690	250700
23	725.000	137700	212200	273.100	120300	63810	64110	61.130	88890	98.730	67.420	245300
24	978.500	131200	170400	245800	116000	62710	63720	62970	79.130	87.840	68260	211400
25	665200	133200	139.400	221.500	98880	66.300	67220	58.750	81630	84.380	71110	169400
26	582600	128400	126.800	206500	91120	77050	64510	55260	66270	74640	68.150	132000
27	456500	111400	112400	198800	100900	56.560	65560	54330	59820	72.510	66850	124.500
28	402.000	97120	175800	194400	98.190	55650	64950	58180	57100	81.230	64810	120000
29	348700		352.200	183400	99290	51460	63660	52.460	54730	75.320	65.910	241800
30	335200		939300	164500	145000	54.660	62850	51.360	59030	68800	80.360	190700
31	292.400		496600		185000		61800	48.660		65.170		178600
Average	563200	218500	171400	306900	141.700	92.530	58750	69690	68870	184.400	73190	254.500
Lowest	130100	97120	61830	164500	66390	51460	45640	48.660	42330	65.170	60380	105500
Highost	1965.000	447900	939900	658.600	554800	202000	105800	84.350	174300	445400	93480	587300
Paok flow Day of neak	$\begin{gathered} 226800 \\ 17 \end{gathered}$	$\begin{gathered} 47400 \\ 6 \end{gathered}$	$\begin{gathered} 110200 \\ 30 \end{gathered}$	$\begin{gathered} 82120 \\ 9 \end{gathered}$	$\begin{gathered} 82390 \\ 17 \end{gathered}$	$\begin{gathered} 22230 \\ 2 \end{gathered}$	$\begin{gathered} 12290 \\ 16 \end{gathered}$	$\begin{aligned} & 93.44 \\ & 11 \end{aligned}$	$\begin{gathered} 23560 \\ 20 \end{gathered}$	$\begin{gathered} 49110 \\ 8 \end{gathered}$	$\begin{gathered} 111.50 \\ 9 \end{gathered}$	$\begin{gathered} 754.50 \\ 19 \end{gathered}$
(million cu m)	150900	52850	45910	79550	37950	23980	15740	18670	17850	49390	18970	68170
Hunotf (mm)	329	115	100	173	83	52	34	41	39	108	41	149
Rainfall (mm)	403	35	142	134	134	56	94	61	107	112	75	202

Statistics of monthly data for previous record tOct 1952 to Dec 1992)

Station and catchment description
Velocity-area station with cableway. 90 m wide. The mosi d / s station on the Tay, records highest mean flow in UX Since end of 1957.1980 sa . $\mathrm{km}(43 \%$) controlled for HEP. thero was some control prior to this 73 sq km controled for water supply. Catchment is mostly steep. comprising mountains and moorland: exceptions are lower valleys Mainly rough grazing and forestry Geology: manly metamorphics and granite, but lower 20\% (Isla Valley) is Old Red Santistone

019001 Almond at Craigiehall

Mnesuring outhority FRPB
First yoor 1957

Gind roference 36 (NT) 165752
Leval sin. (m OD): 22.90
Daily mean gauged discharges (cubic metres per eacond)

Day	Jan	FEB	MAR	APR	MAY	JUN	rr	AUS	SEP	OCT	Nov	OEC
1	2576	5.281	1757	1.932	3549	3864	2010	1.598	1594	2567	1795	5162
2	2.907	5.128	1839	1.738	4959	6536	1.988	1.651	1599	3794	1768	20550
3	4042	4663	2518	1657	3552	4.531	2106	1.867	1678	5380	5191	47550
4	5.379	4.157	2354	1689	2.986	3492	2.149	2.288	1544	6.508	6884	27870
5	6408	3744	3275	2440	2651	2.713	1.951	7477	1549	10.730	3814	13240
6	4871	3.413	2724	5884	2462	2380	1.862	3533	1619	49480	3175	12.160
7	7000	3225	2.338	3249	2568	2225	1767	2.584	1611	70870	3003	13240
0	15650	3.119	2179	3.143	4.251	2035	2.323	2.580	2925	21.740	5010	49420
9	30320	3008	1851	5.707	2.895	8539	2.217	2.864	2596	60080	10.920	37100
10	19.170	2888	1.791	5486	2768	8.251	1816	2.273	4027	32690	7309	17140
11	11680	2780	1955	3513	2343	8328	1.706	7292	3.382	14220	5007	13.410
12	10870	2679	1.870	2848	2195	12.170	1592	5009	2224	10340	6249	17300
13	16550	2.515	2401	2591	15.570	5711	1.595	2.908	3157	7.205	7200	39270
14	26.740	2535	2.199	2255	122.200	5.758	2.039	2.386	12.500	5579	7077	29650
15	59340	2416	2.239	2127	65640	4185	2353	2135	12560	4511	5084	28500
16	37580	2393	2335	2184	28680	3294	7438	2376	6192	3836	10600	13750
17	25610	2.338	6502	3108	36430	3482	5.259	1.922	3511	3403	6856	9677
18	34.710	2.537	7713	15.350	14330	3.935	2.852	1890	2.752	3159	4602	16.080
19	35.630	2.577	3994	27890	8.521	4400	2.762	1.761	5277	3081	3524	24480
20	31.510	2.322	3234	12100	6497	3535	3093	1.691	6.312	2383	2.907	10030
21	38.300	2170	3246	13750	5550	2747	2.289	1.597	3.766	2705	2720	6931
22	27310	2075	3331	7870	4648	2474	1965	1.734	3114	2497	2562	6593
23	71.330	1.950	7.784	6.929	4003	2.461	2.013	1638	2.568	2268	2530	6651
24	40.260	1.931	6683	5289	3585	2.291	1.637	1.641	2516	2164	2324	6006
25	17.400	2214	4525	9.906	3085	2.763	1561	1825	2.238	2071	2417	5116
26	17.550	2.302	3135	B 32.8	2712	2469	1.551	1584	2097	1992	2319	4.386
27	12090	2042	2.663	5105	2533	2.124	1.664	1.578	1.992	1967	2142	3991
28	10.810	1817	2.259	4413	2307	2.175	1.766	1.522	1.819	1922	2076	5.391
29	8349		2331	3605	2.283	2094	1.846	1524	1748	1905	2339	30.380
30	7115		2692	3171	3.383	2136	1696	1584	1800	1.786	2706	12430
31	5.875		2179		3724		1727	1624		1762		7498
Averago	20.820	2865	3.158	5862	12030	4.103	2.277	2.443	3.409	11140	4404	17450
Lowast	2.576	1.817	1.757	1657	2.195	2035	1.551	1.522	1.544	1.762	1.766	3991
Highest	71.330	5.281	7784	27890	122.200	12170	7438	7.477	12.560	10870	10920	49420
Peak flow	134.90	537	1105	4352	18260	2032	1129	1105	2197	12760	1530	8706
Ooy of poak Moninly toted	23	1	17	19	14	12	16	5	14	7	9	8
(miluon cum	55.77	693	846	1519	3222	1064	610	654	8.84	2982	1141	4674
Runot! (mm)	151	19	23	41	87	29	17	18	24	81	31	127
Reinfall [mm]	174	11	49	78	134	74	60	55	73	120	54	161

Statistics of monthly data for previous record (Jan 1957 to Dec 1992)

Mesn flows	Avg.	9833	7935	6825	4487	3039	2.384	2.359	3173	4608	6362	9088	9.271
	Low	3574	1.782	1918	1410	1091	0817	0950	0.863	0668	0668	1862	3016
	(ymar)	1963	1963	1973	1974	1961	1961	1960	1983	1959	1972	1972	1975
	H	18970	22.010	14300	9840	11.170	8572	9.223	- 568	20.360	15.120	21660	19.860
	(vear)	1990	1990	1979	1986	1968	1966	1958	1985	1985	1981	1963	1986
Rumult.	Avg.	71	53	50	32	22	17	17	23	32	46	64	67
	Low	26	12	14	10	8	6	7	6	5	5	13	22
	Hagh	138	144	104	69	81	60	67	62	143	110	152	144
Raintoll	Avg	84	60	71	52	58	61	72	85	89	89	89	87
	Low	28	17	22	8	16	15	17	19	14	23	19	21
	Hegh	178	167	142	89	123	136	173	152	195	177	190	179

Factors affecting runoff

- Abstraction for public water supplies

Flow reduced by industrial and/or
agricultural abstractions

- Augmentation from effluent raturns

Station and catchment description
The recorder is well sited on a straight even reach with stoep banks which have contained all recorded floods. Stable rating over the period of acord. Weed growth in summer - sumie adjustment in stage is required. Low flows substanitally affected by sewage affluent espacially from Mid Calder. Abstraction at Alsnondell to feed a canal A number of storage reservoirs are situated in the catchment. Geology-predominantly Carboniferous rocks. Land uso mainly rural. Livingston new town and several small mining towns th catchment.

021009 Tweed at Norham

Measuring authonty TWRP First year: 1962

Grad reference. 36 (NT) 898477 Level sti. (m OD). 4.30

Catchment area (sq km): $\mathbf{4 3 9 0 . 0}$ Max alt (m OO): 839

Daily mean gauged discharges (cubic metres per eecond)

DAY	JAN	feg	MAA	APR	MAY	JUN	Jus	AUG	SEP	ОСт	Nov	DEC
1	54520	95450	28930	54.950	67080	61940	24830	20890	14620	30990	30820	71.520
2	51440	88840	28980	43.950	63730	83440	23350	20260	14.570	56.580	29.580	97.580
3	49.130	82020	29350	37770	57540	71060	21560	20410	15790	99.780	29490	110300
4	48900	74950	30600	40550	50850	56.470	21390	24380	14720	73210	33.970	302600
5	105100	69140	34630	93470	47120	47600	21110	45260	13.760	61010	33.540	138800
6	91.150	64.750	42830	204000	45290	42190	19500	44130	13790	292.500	31.160	122.200
7	73180	60240	33600	112000	41800	38.460	18670	29660	13930	525600	30240	199700
8	90250	56.550	30040	82820	5. 260	35120	20.590	27710	14630	306500	29180	241400
9	275800	53520	27.580	185800	51450	33.410	23770	25.970	30450	439.500	31260	400.300
10	264.500	50460	25850	255700	43.250	50.700	22430	28050	29600	503800	54.920	291600
11	180300	4/820	25660	138700	41060	44890	20580	25.570	37220	252500	40690	200500
12	: 23800	44920	27450	108300	37350	53640	19200	39930	30900	195700	34.680	179200
13	14/200	42900	27.250	94140	46610	48970	18360	29900	24.770	155600	41480	376.100
14	130500	41280	28.220	79010	365800	40420	18300	25.620	31120	130.800	110000	291.700
15	550.500	39070	24900	68010	427400	36.790	21.100	24880	108.800	109300	76.540	298800
16	309.400	39470	29610	61180	392700	33500	27290	23650	83030	91460	60670	214100
17	264.600	38660	30520	56.700	609.300	32.220	40.200	22870	59.620	78730	55040	153.400
18	206200	36450	30970	109800	360600	40840	26.770	20910	42040	69660	46.800	351500
19	319100	35560	28430	250000	195100	57450	22.050	19.870	34330	63000	42.830	484200
20	265200	32590	24.910	177900	146400	44.680	21260	18340	36750	59390	38.170	215.700
21	237600	31500	38.890	161.100	130.500	35.980	22060	17.490	43370	55.990	36.950	155200
22	215800	29.900	36870	124800	107.700	32170	20270	17010	54.340	51.160	35.330	135800
23	297400	29630	32880	127500	91.430	30650	21230	16.920	38.760	47.280	33580	119.000
2.4	403700	28.560	35840	113200	77500	29080	23280	17540	31750	43.930	31310	112100
25	225400	28000	38270	144.900	67190	28000	23650	17190	29600	41.240	30490	95.410
26	198400	39090	31.760	148.100	60280	30.190	22710	18.260	26770	38830	36.460	83050
27	168800	33980	28970	111800	54890	28710	22740	18090	24.630	36600	34.210	75130
28	164000	29350	27690	94330	49730	25370	22800	15.910	22800	34.980	40480	71670
29	141600		27620	82130	46830	23950	23.490	15360	21900	33410	42.860	288600
30	121900		91980	73540	51.920	23.260	21730	15130	21710	31950	55290	202000
31	108.100		82160		87400		20430	14970		31140		139600
Avorago	189800	48020	34300	114500	124000	41370	22470	23290	32670	130400	41930	200600
Lowest	48.900	28000	24900	37770	37350	23260	18300	14970	13.760	30990	29.180	71.520
Highest	550500	95450	91980	255.700	609300	83440	40200	45.260	108.800	525600	110000	484200
Pook flow	84760	101.10	17410	325.20	63730	99.50	4671	80.13	. 123.90	70660	140.90	63630
Day of beak	15	1	30	10	17	2	17	5	15	10	14	19
Montinly total (mblion cu m)	508.30	11620	91.86	29690	34280	107.20	6019	6239	84.68	34920	108.70	537.30
Runatf (mm)	116	26	21	68	78	24	14	14	19	80	25	122
Rainfall (mm)	156	15	44	120	130	58	54	52	90	131	54	171

Statistics of monthly data for previous record (Jan 1962 to Dec 1992)

Station and catchment description

Lowest station on River Tweed. Velocity-area station at very wide natural seclion Complex control Moderate seasonar weed growth effects on ating. Ruservoirs in headwaters have only a small impact on the flow regirne - monthly naturijised flows available. Geology mixed but principally impervrous Palaeozoic formations. Moorland and hill pasture predominates: improved grasslands and arable farming below Melrose.

022001 Coquet at Morwick

Moasuring authority NRA.NY
First yoar 1963
Daity mean gauged discharges (cubic metres per second)

OAY	JAN	FLB	MAR	AP4	MAY	JN	Jut	Auts	SXP	OCT	NOV	dr.
1	4.554	7438	2950	3279	5.650	4877	1.746	1391	1267	3.504	3.279	15690
2	4.150	7056	3027	2986	5020	7035	1729	1392	1261	5.409	3081	19280
3	4.188	6.588	3412	2598	4.640	6441	1711	1373	1247	6060	3.134	14.820
4	4.432	6060	3678	2.983	4333	5.184	1.693	1395	1260	5.961	3984	18220
5	14.860	5.663	6.972	9777	4.026	4262	1641	3.926	1.269	10.170	3.687	11.160
6	8.842	5.512	7.574	18530	3.890	3633	1561	4072	1286	29.380	3.466	12260
7	7.874	5.141	5153	8507	3.694	3362	1556	2.412	1.295	76840	3942	26.230
8	8.742	4834	4284	7626	3.711	3121	1651	2143	1774	29880	3.722	39.660
9	:6.720	4738	3776	81660	3.706	2925	1790	2. 192	4392	53910	3736	39.930
10	18060	4.722	3483	53450	3.669	2848	1800	2.263	3225	27350	3.662	29.630
11	12.620	4609	3.357	18880	3723	3075	1.724	2.141	5555	15.360	3326	19020
12	9.361	4.285	3.342	18130	3.338	3169	1.583	2871	3081	12420	3.155	50350
13	44.260	4141	3633	14.530	24310	2958	1.478	2379	2370	11.470	12970	87.650
14	17.920	4012	3.595	10380	127300	3464	1.680	1.907	13490	12.670	40600	39090
15	63060	3767	3.194	8272	40.230	2621	2043	1750	34030	9731	12.540	38.900
18	22470	3659	3357	7206	31850	2.568	2490	1787	19230	7.623	8570	24090
17	14610	3.671	3.228	6833	39.090	1729	3.399	1767	10280	6.556	7283	15160
18	11.160	3477	2.914	32530	22230	2604	2099	1628	6820	5.775	6.048	45.930
19	22.110	3322	2.729	40710	12370	2.712	1.809	1518	5193	5.262	5229	35180
20	15250	3. 158	2.600	17.480	10.470	2739	1.757	1.517	4741	4995	4.651	16.280
21	15720	2.976	2611	13220	11.100	2445	1915	1.455	4.782	4916	5295	11740
22	17380	2852	2645	10460	8595	2306	1837	1366	4105	5.173	5351	10740
23	29780	2937	2521	10350	7.010	2.215	1674	1375	3530	4.697	5095	9694
24	37.930	2.887	2485	9693	6.050	2149	1734	1.429	3115	4212	4430	11.880
25	16380	2.888	2.359	26100	5355	2235	1.687	1499	2871	3.912	4607	9.276
28	13.360	2912	2283	15050	4954	2.488	1.561	1466	2665	3.703	4770	8.195
27	12.390	2.951	2249	10090	4.654	2258	1.575	1385	2426	3500	6.415	7.789
28	13.880	2813	2.240	8401	4344	1.945	1.650	1395	2348	3.342	16270	7867
29	11930		2287	7156	4158	1.863	1.641	1355	2297	3.239	11100	33600
30	9464		2.484	6309	4.657	1779	1546	1.313	2295	3166	16850	28320
31	8341		3017		6.127		1431	1.283		3.176		13980
Avarogo	16510	4252	3.337	16110	13690	3.100	1780	1843	5117	12.370	7342	24250
Lowest	4150	2.813	2240	2.598	3.338	1729	1431	1.283	1247	3168	3.081	7.789
Mighost	83060	7.438	7574	81.660	127.300	7035	3.399	4.072	34030	78840	40600	87.650
Patk flow	112.20	755	13.58	12800	15260	831	553	787	45.95	133.90	6422	13400
Day of poak Niontiny total	15	1	5	9	14	2	16	5	15	7	14	13
(mition cu m)	4422	1029	8.94	4175	3668	804	477	4.94	1326	33.12	1903	6494
Runots (mm)	78	18	16	73	64	14	8	9	23	58	33	114
Rantall (mm)	109	15	28	121	111	36	49	53	95	103	63	146

Statistics of monthly data for previous record (Nov 1983 to Dec 1992 -incomplete or missing months total 02 veare)

Station and catchment description
Volocity-aroa station with 34 m whe concreto Flat V weir (informal design, approx $1 \cdot 20$ cross-slope) made with pre-cast segments (installed 1973). Cableway Foirly straight section with high banks. Repleced earlier station at Guyzanco. Responsive natural regime. A predominantly upland catchment draining from the Cheviots with some afforestation Largely Carboniferous Limestone and Devonan lgneous series

025006 Greta at Rutherford Bridge

Measuring authority NRA.NY First year. 1960

Grid reference: 45 (NZ) 034122 Levol sin. (m OD) 223.00

Catchment area (sq km): 86 . Max all (m OD): 596

QAY	JAN	FE日	MAR	APR	may	JN	M	AUK;	SEP	OCT	Nov	OEC
1	0454	1269	0343	0378	0557	1714	0149	0214	0.123	1866	0409	6951
2	0376	1022	0388	0295	0526	1362	0137	0170	0120	8566	0367	4206
3	0325	0891	0392	0.297	0555	1105	0138	0446	0125	2265	0416	6204
4	0943	0.785	0428	0625	0420	0753	0152	0900	0125	1969	0.491	9015
5	9653	0769	5065	13.970	0373	0527	0136	11.470	0.121	7369	0.436	2.212
6	2122	0921	3044	6.841	0351	0396	0117	1515	0119	6.727	0453	6.867
7	2558	0.856	1382	2218	0314	0336	0108	0793	0120	7.165	0470	4210
8	2277	0801	0929	2912	0279	0302	0.125	0919	9841	2231	0417	15.130
9	7625	0869	0684	10090	0258	0275	0151	4663	4035	1596	0.427	4781
10	13510	0.916	0575	3166	0311	0267	0128	0998	3609	1187	0565	8.001
11	3074	0.836	0.597	1725	0383	0298	0127	2923	1.487	1.123	0429	3226
12	3.151	0706	0555	4.929	0299	0332	0.177	1679	1.510	5620	0384	1.936
13	16060	0.627	0.570	2548	14230	0275	0137	0.850	38070	2.639	3148	5246
14	6.519	0.580	0428	1419	22.300	0.398	0205	0507	16000	1.441	3882	4. 107
15	19360	0516	0386	0948	4653	0392	0527	0969	8459	0992	1219	12.780
16	8287	0477	0.459	0.751	16300	0403	1220	0563	3172	0740	0770	7947
17	4342	0472	0411	0650	13.870	0306	0468	0363	1.885	0611	0561	10180
18	10020	0446	0514	6742	3973	0497	0279	0.284	1196	0542	0450	25210
19	7004	0410	0372	5068	1.738	0406	2.909	0241	0871	0506	0348	11.940
20	4000	0370	0311	2158	5252	0.292	1021	0217	1.108	1052	0389	2.647
21	9080	0326	0395	1837	3574	0.235	0522	0192	0.840	0978	0382	1.502
22	4283	0316	0366	1104	1588	0210	0301	0199	0659	0658	0.346	3973
23	18610	0324	0446	1780	0.978	0205	0371	0195	0.583	0527	0286	2045
24	7754	0326	0431	1363	0720	0191	0392	0181	0492	0465	0353	1402
25	2656	0345	0327	11320	0590	0188	0464	0.112	0420	0422	0761	1051
26	3346	0574	0272	3038	0574	0189	0514	0165	0364	0387	1.259	0.847
21	3.269	0398	0253	1539	0749	0112	0395	0157	0328	0362	1.949	0717
28	5255	0375	0249	1034	0632	0151	0338	0147	0.303	0346	1.675	0.744
29	3018		0253	0761	0571	0142	0257	0139	0293	0.338	0867	9779
30	1918		0390	0631	5588	0137	0214	0137	0393	0412	3022	3238
31	1582		0.390		4127		0219	0130		0469		1.564
Aversgo	5889	0.626	0697	3073	3440	0415	0400	1048	3.226	1.986	0898	5.795
Lowest	0325	0316	0249	0295	0258	0131	0.108	0130	0.119	0.338	0286	0.717
Highost	19.360	1269	5065	13.970	22.300	1714	2909	11470	38070	8566	3882	25210
Peak flow	5901	134	1003	3090	5528	200	8.76	2688	7189	19.82	1077	34.51
Day of peak	15	1	5	25	13	1	19	5	13	5	13	8
Monthly totel (million cu m)	1577	151	187	797	921	108	107	281	836	532	233	15.52
Rumofi (mm)	183	18	22	93	107	13	12	33	97	62	27	180
Rainfall (mm)	195	19	31	138	160	32	74	87	156	72	55	189

Statistics of monthly data for previous record (Oct 1960 to Dec 1992)

Mean	Avg	3754	2348	3236	2128	1208	0812	0671	1238	1406	2502	3400	3.725
flows	Low	0290	0280	0842	0375	0148	0130	0092	0098	0.110	0195	0951	0944
	(yoar)	1963	1963	1973	1982	1980	1970	1984	1976	1989	1972	1973	1971
	High	7.155	8.185	8.926	4682	3951	2.502	2783	4107	4067	6665	6878	6607
	(yoer)	1975	1990	1979	1969	1967	1980	1988	1911	1965	1967	1963	1990
Runots:	Avg.	117	84	101	64	38	24	21	39	42	78	102	116
	Low	9	8	26	11	5	4	3	3	3	6	29	29
	High	223	230	218	141	123	75	87	128	122	207	207	206
Ranciall	Avg	120	90	100	75	72	70	70	95	90	106	115	122
	Low	38	13	31	10	16	18	20	35	18	21	43	43
	Hegh	206	248	230	136	164	188	194	200	206	269	219	296

Summary statistics

	For 1993	
Moen flow (m's ${ }^{-1}$)	2306	
Lowast yearly moan		
Highest yearly mean		
Lowess monthty mean	0400	
Highast monthty mean	5889	Ja
Lownst daily mean	0108	7 h
Highusi daty mean	38070	13 Sop
Peak	71.890	13 Sen
10\% exceodenco	6887	
50\% nxceedence	0622	
95\% exceedence	0138	
Annual total (mulbon cu m)	72.72	
Ansual runotf (mm)	845	
Annual rainfall (mm)	1208	

for record precoding 1993		$\begin{gathered} 1993 \\ \text { As \% of } \\ \text { (xes- } 1993 \end{gathered}$
2251		102
1447	1973	
2926	1979	
0092	1984	
8926	Mar 1919	
0040	24 Aug 1976	
54090	6 Mar 1963	
210400	25 Aug 1986	
5734		120
0803		77
0120		115
7104		102
825		102
1125		107
1259		

Factors affecting runof

- Natural 10 withın 10% at 95 parcennile flow

Station and catchment description
Compound Cruinp profile weir, total wrdth 19.2 m , Low flow crest 3 m broad. Theoretical rating with check gaugings. Responsive. natural regime An rastward-draining Pennine catchment developed largely on Millstone Grit.

027002 Wharfe at Flint Mill Weir

Moosuring authority: NRA.NY
First year: 1936
Daily mean gauged discharges (cubic matres per second)

Day		JAN	f6B	MAA	APA	MAY	JN	Ju	AUG	58	OCT	NOV	
1		6.969	16.500	5423	4612	7.218	36220	3013	7.102	3179	14820	$\begin{aligned} & \text { NOV } \\ & 4388 \end{aligned}$	11.780
2		6.116	14.180	5262	4.428	6594	20.230	2.934	6219	3134	30210	4405	57210
3		5.722	12.110	5313	4811	6.234	14830	3071	9315	3.139	18800	4242	27850
4		6.539	10.780	5.149	8.334	5706	10.150	3070	17460	3.067	16990	4113	42060
5		23.790	9686	5285	29130	5.309	7.858	3525	65.590	3032	16510	4146	20.910
6		17.540	10270	10350	33250	4.834	6328	3.545	25510	3347	27180	3.887	16.700
7		11.780	10.160	8.542	14.990	4492	5.761	3.163	12.590	3334	37030	3.630	31320
8		17.860	9.395	6.924	9.497	4.509	5353	3052	11530	15480	21.210	3630	87870
9		37.720	9746	6.115	65210	4.450	5.507	7943	17.370	24.970	14.570	4.173	81040
10		59480	9.502	5479	35.950	6748	5079	5004	13810	31820	11860	15.150	68690
11		47.310	9280	5.278	16920	5691	5016	3.720	31.880	22360	10020	7254	38.390
12		24.800	8.339	5141	15.530	4848	4.835	3315	23090	11290	14760	5673	29490
13		60630	7.475	5141	15.250	4483	4684	3538	13.370	157600	14940	16370	81470
14		38000	7.138	5.739	10960	83.770	5.714	3.385	9.108	124100	10830	31480	43200
15		80.680	7046	5097	9300	34.610	5.045	4141	12.400	92620	8.642	13270	86.040
16		42790	6.935	4828	0053	31.550	5026	8114	9870	35190	7833	8755	76810
17		28.390	6.767	5.750	9798	55060	5.527	8.510	7.242	21800	7.177	7685	37530
18		20440	6.568	7451	31.800	33.890	8.588	6034	6868	15.860	6591	6717	80710
19		42.190	6.938	8402	33720	15.850	10980	27430	6206	12.680	6437	6601	145.600
20		55.420	7.022	5937	16.320	13460	9085	14030	6080	14670	6431	5617	44430
21		59830	6.191	5831	12.610	21890	6.007	17320	5590	14350	6.094	5.372	26220
22		47.900	5.771	7.416	10710	13.340	4761	7671	5.315	12.190	5.834	5271	43280
23		61830	5888	5.524	9064	9491	4.554	11440	4.926	13.770	5705	5.123	40960
24		95.220	5.770	5.141	11010	7.524	3853	15.340	4655	9.785	5517	4.662	32.350
25		42370	5.610	4.923	41.790	6309	3829	9086	4607	8857	5387	4.766	22250
26		27.520	6.181	4559	23650	5.713	3726	12.580	4247	7.713	4893	5495	16.710
27		26.550	5.841	4508	14.150	6611	3613	10.470	3985	6957	4.786	5.376	13860
28		60080	5.314	4404	10.460	6604	3.520	12.400	3796	6371	5203	5.273	13460
29		41.480		4238	8 343	7082	3.281	7525	3562	6.175	5136	5.561	57130
30		25.670		4.250	7238	7.885	3.120	6167	3.432	6757	4804	8.576	50390
31		19.780		4535		74090		5143	3.286		4427		33670
Avprage		36850	8302	5740	17560	16.320	7403	7.603	11610	23190	11630	7222	47080
Lowest		5.722	5314	4.238	4.428	4450	3.120	2934	3286	3032	4427	3630	11780
Hiphest		95.220	16500	10350	65.210	83770	36.220	27430	65590	157600	37030	31480	145600
Poak flow Day of peek Montwy total (milion cu m)		15830	17.98	13.22	9365	14020	6262	5700	9840	267.70	4776		
		23	1	6	9	14	1	19	5	13	7	14	19
		9870	2008	15.37	4552	43.71	19.19	2036	31.10	6010	3116	1872	12610
Runotf (mm) Renfall (mm)		130	26	20	60	$\begin{array}{r} 58 \\ 134 \end{array}$	25	$\begin{aligned} & 27 \\ & 97 \end{aligned}$	$\begin{aligned} & 41 \\ & 93 \end{aligned}$	$\begin{array}{r} 79 \\ 170 \end{array}$	$\begin{aligned} & 41 \\ & 55 \end{aligned}$	25	$\begin{aligned} & 166 \\ & 234 \end{aligned}$
		178	21	24	125		43					53	
Statistics of monthly data for previous record (Oct 1955 to Dec 1992)													
Moen f:ows	Avg.	27.660	23.580	21.720	15.920	10540	7176	7437	11.180	12870	17840	23440	27560
	Low	4.472	2974	6.741	4496	2312	1545	1674	0991	1419	3026	6876	10230
	(year)	1983	1963	1961	1974	1980	1957	1976	1976	1959	1972	1958	1963
	$\mathrm{High}^{\text {d }}$	44.000	54530	53940	35.240	26.750	18530	16.440	41340	33520	54.000	51090	62090
	(yont)	1984	1966	1981	1970	1967	1972	1963	1356	1968	1967	1963	1965
Punolf.	Avg.	9816	769	7724	$\begin{aligned} & 54 \\ & 15 \end{aligned}$	$\begin{array}{r} 37 \\ 8 \\ 94 \end{array}$	$\begin{array}{r} 25 \\ 5 \\ 63 \end{array}$	$\begin{array}{r} 26 \\ 6 \\ 58 \end{array}$	$\begin{array}{r} 39 \\ 4 \\ 146 \end{array}$	$\begin{array}{r} 44 \\ 5 \\ 115 \end{array}$	$\begin{array}{r} 63 \\ 11 \\ 191 \end{array}$	$\begin{array}{r} 80 \\ 23 \\ 174 \end{array}$	$\begin{array}{r} 97 \\ 36 \\ 219 \end{array}$
	Low												
	High	155	174	190	120								
Reinfall	Avg Low	$\begin{array}{r} 115 \\ 41 \end{array}$	$\begin{aligned} & 87 \\ & 14 \end{aligned}$	93	$\begin{array}{r} 75 \\ 8 \end{array}$	7313	$\begin{aligned} & 76 \\ & 18 \end{aligned}$	$\begin{array}{r} 83 \\ 20 \end{array}$	$\begin{array}{r} 100 \\ 18 \end{array}$	$\begin{array}{r} 100 \\ 8 \end{array}$	$\begin{array}{r} 110 \\ 32 \end{array}$	11333	12.4
				28									41
	High	217	201	222	147	181	183	185	226	241	225	211	233

Summary statistics

	For 1993		For rocord proceding 1993		$\begin{gathered} 1993 \\ \text { As * of } \\ \text { pre. } 1993 \end{gathered}$
Mean flow \{m's ${ }^{-1}$ \}	16830		17.220		98
Low 0 st yoorty mean			11.420	1975	
Heghost yoarly mean			23300	1966	
Lowest monthly moen	5.740	Mar	0.391	Aug 1976	
Highesi montity mean	47.080	Dec	62090	Dec 1965	
Lowest daly meen	2934	2 Jul	0.425	23 Jun 1957	
Hightast daty moen	157.600	13 Sop	292.100	23 Fob 1991	
Paak	267.700	13 Sop	362800	3 Jen 1982	
10\% ancoodance	41.590		40680		102
50\% exceedance	7.953		9.496		84
95\% exceedanco	3.457		2.341		148
Anrual total (mulwon cu m)	53080		543.40		98
Annusal runotf (mm)	699		716		98
Annual foinfoll (mmi)	1227		1149		107
1941-70 rentall avorage (mm)			1168		

Station and catchmant dascription
Broad-crested masonry wair 47 m wide with a current meter cabloway $1.5 \mathrm{~km} \mathrm{u} / \mathrm{s}$ (moved to new US station at Tadcaster in 1990) insensitive at low flows Level data only Irom 1936 to 1955. Recalibration(from 1965) completed but flows reprocessed from 1982 only. Pre- 1965 data less reliable. Regulation effect of hasdwater reservoirs evident al low flows. Small net export of water finc. Bradford supply). Mixed geotogy - mainly Carboniferous Limesione. grits and Coal Measures Predominantly rural catchment with moorland headwaters

Measuring authority NRA.NY
First year 1968

Grid reterence: 44 (SE) 013457 Leval stn. (m OD) 87.30

Catchment aroa (sq km) 282.3 Max alt (m ODI 593

DAY	JAN	feg	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	Nov	Dfe
1	2446	7.530	1638	0886	2250	9907	0763	2004	1066	4779	1393	6470
2	2.289	6332	1.766	0826	2235	7790	0.729	1715	1.013	8467	1358	17.810
3	2348	5487	1.763	1079	1.999	5354	0833	2.344	0995	5.738	1429	8511
4	3620	4789	1656	1583	1.711	4.104	0845	6501	0947	7165	1453	17220
5	10320	4492	1.777	4040	1.545	3313	0.801	31310	0877	9380	1428	10180
6	6293	4861	1855	4.122	1403	2749	0.713	9517	0.827	9493	1409	10760
7	6206	4316	1604	2583	1.304	2420	0677	5499	0852	11010	1365	14580
8	6.820	3989	1499	3.701	1230	2152	0798	4.153	4.696	6978	1344	42710
9	20520	3883	1412	16960	1197	2282	0912	10180	3749	5289	1.595	33870
10	34640	3.710	1.400	8.941	1603	2187	0834	5495	8616	4484	1.780	37940
11	24.810	3.492	1.376	5054	1246	2211	0.799	16350	4720	3964	1580	23240
12	18780	3.182	1295	4430	1109	1.936	0745	9267	3.792	3.894	2701	26.170
13	38.320	2.943	1.303	3.698	3461	1.682	0715	5.802	49.120	3553	8350	46.580
14	19160	2735	1.239	2.820	30090	2186	0.883	4531	36960	3064	9450	30610
15	27290	2.552	1149	2.188	13.590	1791	1.293	8393	21.560	2662	4.576	54200
16	16320	2.368	1.112	1.974	15920	1.951	2507	4455	13740	2420	3.552	38820
17	10730	2227	1. 108	2.526	15850	1.738	1589	3.311	8871	2255	3.086	26980
18	10980	2164	1100	11670	10.380	2676	1.788	2.742	7189	2.129	2.679	30300
19	20480	2.485	1.050	9.274	6264	2.034	11640	2.393	5256	2059	2368	51910
20	27430	2.142	1.008	5862	8.196	1.609	5.324	2.371	8447	2.077	2177	25060
21	28.860	1.968	1.029	4.671	8.511	1391	3506	2.255	5.400	1.954	2118	20090
22	17520	1.811	0966	3.630	5402	1.270	2.208	1973	4247	1808	2004	29160
23	29.910	1.742	0.892	3.350	3984	1209	2133	1635	3551	1735	1845	30.880
24	27710	1.663	0869	3443	3.186	1.141	1.944	1448	2930	1691	1.739	19750
25	16150	1675	0.845	16820	2.681	1066	3289	1.348	2488	1600	1782	12520
26	13050	2138	0820	7598	2.609	1083	3590	1312	2136	1.556	1962	9113
27	11.780	1823	0812	5.195	3463	1035	2.917	1276	2.053	1504	1938	7543
28	22550	1547	0804	3825	3.387	0946	2458	1222	2065	1470	1863	7381
29	16360		0834	2993	3186	0887	2.000	1.180	2112	1491	2129	31530
30	11120		0894	2568	6615	0861	1.672	1151	2331	1485	3.892	27920
31	9274		0907		11040		2.119	1103		1438		16220
Averaga	16.580	3216	1.219	4944	5698	2432	2033	4.975	7.087	3826	2.545	24.710
Lowest	2289	1547	0804	0826	1109	0861	0.677	1103	0827	1.438	1344	6470
Highest	38320	7.530	1855	16.960	30090	9907	11.640	31310	49.120	11010	9450	54200
Peak flow	5163	811	205	2901	4683	1219	2067	4333	6043	1364	1871	6742
Day of poak	10	1	5	25	14	1	19	5	13	5	13	19
Monthly total (milion cum)	4442	7.78	326	1281	15.26	630	5.44	1333	1837	10.25	660	6618
Runoff (mm)	157	28	12	45	54	22	19	47	65	36	23	234
Ram!all (mm)	183	18	19	101	131	43	97	88	126	43	47	249

Statistics of monthly data for previous record (Dec 1988 to Dec 1992 -incomplete or missing months total 0.1 years)

Station and catchment description
Velocity-aree station rated by curfent meter cableway 150 m downstream. Low flow control is the sills of the bridge. Flows below one cumer underestumated - ecalibration scheduled. Washland storage, minor reservoirs, and the Leeds-Liverpool Canal can influence the fiow pattern but small overall impact: minor net export Geology is mainly Carboniforous Limestone with some Millstone Grit serios. Rural catchment draining part of the eastern Pennines.

027041 Derwent at Buttercrambe

Moasuring suthority: NRA.NY
First your: 1973
Daily mean gauged discharges \{cubic metres per mecond\}

OAY	JAN	FEB	MAA	APA	MAY	UN	Ju	Aus,	SPP	OCT	Nov	DEC
1	13270	15170	12950	9043	15.800	11310	6541	4982	6080	14630	10.710	32.650
2	12.830	14.720	19420	8.839	14650	11.010	6418	5017	5900	19640	10630	32830
3	12420	14.160	20200	8930	14.020	10770	6260	5.176	5834	20100	10390	28120
4	12.470	13800	16400	14.130	13210	10.610	6.152	5419	5.819	16460	10290	25.050
5	15390	13360	16600	21.600	12.650	9833	6011	10620	5781	17.980	10090	22.720
6	13240	13.450	22150	24170	12.300	3389	5809	29.620	5743	34940	9.783	20420
7	17.910	13240	17.270	. 17.520	11.960	9.065	5631	17340	5736	37620	9714	20770
8	17.890	12.770	14630	14.080	11440	8782	5.598	10.680	5890	33770	9589	27410
9	18.420	12710	13.630	21.730	11260	9.026	5689	10680	8.971	25270	10450	44.670
10	20300	12.660	12690	50790	13.840	12050	5.763	13.080	9.699	23.660	15110	37.340
11	26620	12.530	12190	41610	14.590	13350	5819	10.840	8895	19700	13.830	29930
12	26090	12220	11.950	33910	12980	11.830	5611	13150	7655	22520	11970	30190
13	28820	11.890	11560	30250	12.170	10780	5350	14.650	18100	29640	13780	46.370
14	30.930	11.710	11270	22660	18.800	11080	5.623	11.480	47000	23.650	45490	50670
15	28620	11440	10690	18620	34380	11.900	6240	10120	71450	20130	65880	44420
16	27.830	11.180	10440	16870	20.380	10450	7.143	11.670	89520	17420	58170	41080
17	23.710	11040	10370	15810	21480	9.552	6832	12850	90190	15770	41.640	35.770
18	19830	10840	10.100	15.570	24410	9.255	6.173	10360	64.110	14.590	31.580	30.970
19	19270	10.710	9626	18820	17.660	9178	6499	9.134	41100	13.990	24430	34.490
20	18.680	10250	9516	19.700	15740	8470	6.224	8.328	32.330	13.700	20180	29010
21	17240	10.130	9533	16650	18.240	8058	6.001	7.714	26780	15870	19990	25. 100
22	16.510	9824	9.298	14850	16310	7.786	5.868	7266	22170	17.440	20930	23.520
23	15680	9.721	9058	14.100	13.990	7.694	5690	7195	19.150	14580	20980	23.120
24	17.770	9637	9084	15.190	12.880	7643	5.539	7057	16350	13.480	19240	27.570
25	16.180	9772	8.805	34100	12.060	7474	5511	6898	14660	12.770	19100	29390
26	14700	10100	8.644	40830	11660	7.614	5495	6790	14.790	12300	20370	25020
27	14540	10.690	8555	27080	11.550	7531	5400	6.661	16120	12.020	20890	24.980
28	16410	11.120	8447	20470	11.410	7092	5.438	6.487	13.970	11650	26.450	28.520
29	20.210		8319	18.150	11.210	6841	5367	6297	12.910	11350	26.250	39.120
30	17.900		8525	16840	11410	6.681	5238	6142	12870	11070	28520	50120
31	16180		8118		11500		5086	6.029		10860		44110
Avarago	19.160	11820	11940	21430	15030	9403	5.872	9668	23520	18660	21.880	32430
Lowest	12.420	9.637	8118	8.839	11210	6681	5.086	4.982	5.736	10860	9.589	20420
Pighoat	30.930	15.170	22150	50790	34.380	13350	7.143	29.620	90190	37.620	65880	50670
Poak flow	32.62	15.57	2409	5281	38.36	1376	742	3222	92.83	3842	7023	51.87
Day of puak Monthly total	14	1	6	10	15	11	16	6	17	7	15	14
(mathon Cu m)	5131	2858	3197	5555	4026	2437	1573	25.90	6096	4999	5672	8687
Rumotf (mm)	32	18	20	35	25	15	10	16	38	32	36	55
Hainfoll (mm)	52	27	14	109	67	51	47	99	131	58	83	89

Statistics of monthly data for previous record (Jan 1973 to Dec 1992\}

Station and catchment description
Crump woir. 20m wide: high flow rating derived from limitod number of gaugings. Pre-October 1973 data (monthly onty) of poorer quality. durives from Stamford Br. (27015) - slightly smaller catchment area (1586.0 sq km). Paak flows from the headwaters upstraam of Forga Valley 18% catchmont) are divertod down the Soa Cut (27033) Minor net impact of artificial influences (spray irfigation is appreciable). Mixed geology of clays, shales and limestone. Rural catchment draining the North York Moors

028009 Trent at Colwick

Measuriņ authonity NRA.ST
First year. 1958
id reference 43 (SK\} 620399
Level stn (m OD). 1600

Catchment area (sq km) 7486 Max alt. (m OD). 636

Daily mean gauged discharges \{cubic metres per eecond)

DAY	JAN	frb	MAR	APH	MAY	UN	Ω	AUG	SxP	OCT	NOV	DEC
1	61950	86210	45030	42950	48260	55150	35.150	36680	27750	65470	41.510	103400
2	58420	82360	45220	37980	46150	51.420	33.860	39220	27430	97050	43560	87.780
3	56670	77170	44510	39.150	44.210	50680	33490	41.080	27.800	92.400	42380	76310
4	63.190	72200	42.300	60350	42.020	45950	32.010	37660	27.820	82.970	41720	73200
5	78220	69230	42.530	68070	41.660	42780	31690	37880	28240	104400	41220	74280
6	104800	64600	41430	81870	39900	39240	31190	37050	27430	191900	38860	67.700
7	99.920	61900	40.500	58.600	39.330	37.170	31.170	33.920	28990	264200	37.370	132.900
8	30320	60850	40550	51050	39240	36.520	31.200	33860	66.390	200200	38400	226.300
9	84630	62240	41160	137.800	39110	41400	46840	36.680	91.340	177000	46.430	365.400
10	102000	62390	40270	231200	40400	51650	57720	41930	74.690	126800	75420	299300
11	178900	60590	40800	141700	51.490	169500	43600	45400	55850	135600	70.760	194300
12	174700	58100	37490	160600	45070	251.800	39.190	52210	56.740	223800	59650	273300
13	215800	54.730	37870	188200	40790	236600	39060	49080	132700	259500	177.500	404200
14	341700	51870	37240	119300	40880	177800	60890	42.230	139300	253300	355900	420800
15	331700	52600	36.500	85500	41870	170300	67680	40910	121.900	187000	347.200	336600
16	243800	53020	36490	71620	38.800	116.300	88.190	37010	106600	116900	250.500	326000
17	164.900	52.510	36280	63620	40330	92.420	75090	35.790	103900	91360	141.300	277800
18	128600	50720	35450	59730	41820	90040	57400	33.790	77920	78280	107200	209500
19	113000	50320	33190	64210	38650	76.990	56540	33950	60340	69910	90170	246500
20	104900	46550	34780	58000	38940	62.330	58590	31.790	57360	65970	19400	246200
21	96190	44130	35.250	52650	61.960	54.860	51000	33.670	65.990	61.760	73990	281200
22	91100	44380	41840	50410	51050	50000	43980	48090	60250	58060	68910	330600
23	97240	46640	39.380	49660	40240	46.320	40290	48300	54100	52450	65380	362700
24	109200	44990	36390	54910	36550	44330	46600	37.960	50140	49510	62600	345300
25	101200	45290	33240	99370	35.470	41.970	48.670	34880	49.510	48410	68190	272400
26	93460	52640	33460	95450	42.140	40.380	43990	31660	45.560	48210	76400	196300
27	130100	48630	33450	74 650	139400	39.550	46380	30.190	44670	47240	81.740	153900
28	121800	44100	33800	63.060	145800	37720	44.560	28710	48310	45.230	73780	169000
29	115100		33210	56240	108300	36.670	50050	27390	47690	45070	69760	266500
30	103.900		33.710	51.840	81020	35690	48440	28700	48940	42.680	99640	336600
31	33.220		35.600		67.480		40730	28.470		40570		267.500
Avarnga	127500	57180	38030	82320	53170	77450	46340	37290	61.860	110400	95560	239500
Lowest	56670	44100	33190	37.980	35470	35690	31.170	27390	27430	40.570	31370	67.700
Highast	341700	86270	45.220	231200	145.800	251800	88190	52.210	139300	264.200	355.900	420800
Peak flow	36440	8966	5043	25380	16350	255.50	10050	6451	178.40	27900	36430	44040
Day of peak Montily iotal	15	1	2	10	27	12	16	22	13	7	14	14
(million cu m)	34140	13830	10190	21340	14240	20080	12570	9989	16030	29580	24770	64140
Runotf (mm)	46	18	14	29	19	27	17	13	21	40	33	86
Rainfall (mm)	72	10	15	84	70	77	86	45	98	73	67	133

Statistics of monthly data for previous record toct 1958 to Dec 1992)

Station and catchment description
Velocily-arba station in the navigable Trent Man channel approx 62 m : cableway span 99 m Holme sluicos $750 \mathrm{~m} u / \mathrm{s}$ affect water lavels up to modium flows Bypassed at high flows on rb when gravel workings inundated. Very substantial flow modificalions owing to imports, WRW s. cooling water and industial usage. Predorninantly impervious - glactal clay and Triassic Mart, bul some sandstone and limestone. Extonsive terrace gravels and alluvium mantain baseflow.

028085 Derwent at St. Marys Bridge

Grid roforence: 43 (SK) 355368 "Level stn. (m OOf 44.00

Daily mean gauged discharges (cubic metres per aecond)

Day	JAN	FEB	MAR	APR	MAY	JUN	ת	AUG	SEP			
1	13.630	20140	8381	6473	8.914	6.888	6.126	8350	5064	15460	8342	$\begin{gathered} \text { DCC } \\ 13.120 \end{gathered}$
2	12.520	19.210	8.189	6097	8.789	6.950	6088	8039	5.302	22.790	8383	12180
3	11.430	17900	8037	8456	8.474	6.619	5.754	7.522	5 160	18000	8383 8215	12180 11.590
4	12.410	15.970	7944	8.715	8.194	6070	5471	8180	5.483	17.960	8.230	12410
5	17.410	14990	7793	14160	8007	5.727	5177	6692	5.483 5.482	27390	88083	12480
6	15840	13.090	7620	11.390	8015	5.514	4.974	8184	5.497	48820	7.690	14.500
7	14.730	12.470	7.543	7.343	8006	5.298	4615	6577	4.967	52.780	7870	39.610
8	13.950	12.770	7.927	9.232	7.707	5002	4872	6.711	9.208	30480	7.657	74370
9	14.770	13.490	7797	28220	7.435	8840	6189	8852	9118	24860	9.456	95.670
10	23440	12.920	7746	20730	8699	9091	5272	8912	7.080	20990	9.776	53020
11	31.170	12.300	7265	18310	7807	28970	5074	10.700	5.679	23390	8971	49780
12	22.500	11.980	7.242	19320	7.487	20710	5913	10.560	12.080	29.920	9100	73810
13	48060	10230	7.136	18090	7.368	12450	5650	8.535	37.410	30910	37890	96970
14	33.830	9998	7012	14030	8245	21840	7690	7.241	28.100	22510	44900	70060
15	33820	10.800	6922	13260	7631	15.670	14260	7049	44.130	18.830	23130	69470
18	28410	$: 0.860$	6835	11900	7612	12200	12400	7138	27030	16780	18.330	96020
17	24650	10610	6.904	11070	8132	12.390	8454	6.843	22.730	15840	15.900	63150
18	21830	10330	6832	11640	7816	11180	8 526	7077	19.140	14.270	14170	55.230
19	21.170	10300	6620	13210	7268	9.628	13.210	7013	17450	12450	13390	72.730
20	21.820	8680	6.644	11440	6987	9094	10130	6468	17.250	11.860	12770	55170
21	20000	8.660	6737	10670	7160	8236	8954	5412	16400	11310	12690	51690
22	19030	9.521	6.999	10140	6494	7872	7.725	6318	16.540	10.690	12230	82.580
23	23640	9.732	6644	9968	6345	7481	7.113	6333	15450	10300	11800	82.400
24	23.180	9.884	6357	10.910	5189	7.471	6524	6059	15.060	9983	11.410	65.180
25	23.700	9.631	6320	17440	5.135	7.225	6511	5864	14440	9.774	12.300	65.180 47.910
28	23.700	9420	6128	13850	5338	7073	8526	5769	13.500	9.528	12850	39.970
27	24.590	8831	6338	11490	15.410	6.809	9124	5461	13440	3319	11740	33.890
28	22.630	8.440	6270	10830	10160	6591	8827	4726	13.200	9.048	10970	34090
29	22890		6199	9983	8.853	6.521	9.926	4569	12.040	8.895	12400	77.360
30	21040		6.104	9.490	8.679	6.028	9.257	5422	11.990	8533	15620	59.670
31	20270		6327		8513		8543	5.103		8.530		48.930
Avorogn	21.940	11900	7058	12600	7931	9714	7841	7022	14.510	18780	13540	53.690
Lowos1	11430	8440	6104	6097	5.135	5002	4615	4569	4.967	88530	7657	11590
Highost	46.060	20140	8381	28220	15410	28.970	14260	10700	44.130	52.780	44900	96970
Pook flow	7488	20.93	887	3785	17.94	40.97	2337	11.18				
Day ol peak Montiny total	13	1	2	9	27	11	15	11	15	$\begin{gathered} 910 \\ 7 \end{gathered}$	13	9
(miluon cu m)	5876	28.78	18.91	3265	2124	2518	2047	1887	3762	5030	3510	14380
Punoll (trm)	56	27	18	31	20	24	19	18	36	48		
Roinfall (mm)	98	12	16	106	73	. 78	110	55	133	70	66	219

Statistics of monthty data for previous record (Jan 1936 to Dec 1992 -incomplete or misalng months total 0.9 years)

Mam	Avg	29.630	28.090	22.840	17.910	12.470	10.010						
flowe:	Low	9.749	8.084	- 9110	7252	4.709	10.010 4.646		8877 3647	10120 3955	13430 4155		
	(yorer)	1963	1963	1976	1990	1990	1990	1976	1976	$\begin{array}{r}1959 \\ \hline\end{array}$		$\begin{array}{r} 4304 \\ 1975 \end{array}$	8.480
	Prigh	67.000	76780	69530	39590	26410	20220	28660	33.840	32.940	35130	54320	
	(year)	1939	1977	1947	1966	1967	1987	1958	1956	1946	1960	1940	-8.685
Runotf:	Avg.	75	65	58	44	32	25	22	23	25	34	52	
	Low	25	19	23	18	12	11	11	23 9	10	14	52	67
	High	170	176	177	97	67	50	73	86	81	89	134	225
Rainfal:	Avg.	104	78	77	66	67	71	76	83	80	90	104	
	Low	33	8	16	8	13	15	16	10	3	17	16	102 20
	High	215	236	185	132	163	188	158	185	199	178	232	246
Summ	ary st	tics								affe	runo		
								1993					
				1993		or recort oding 19		As \% of Ae. 1993		rvoir(s)	catchm		
Mean flo	($\mathrm{mm}^{\text {d }}$							$\begin{gathered} \text { pre• } 1993 \\ 90 \end{gathered}$		influen or rec	by grou	water a	action
Lowest	vearty						1976			raction	public	er sup	
Highast	voatty						1966			reduce	y indus	and/	
Lownst	montht	man					1976			ultural	traction	and	
Higlvest	monthl	-an			88		1965			mentat	from su	e wa	d/or
Luwost	daly m			929		28	1984			ndwate			
Highes: Pook	dudy m				334		1965			mentatio	from ef	nt retur	
Pook ox	coedanc		123										
50\% ox	coerdan				111			85					
95\% Ax	endanc							116					
Anmual	otal (m	Cum)			548			90					
Annual	unott It		46		52			90					
Anmual	anfall		103		99			104					
1941	. 70 ran	1 avarage			10								

Station and catchment description
Ton-channel, intorleaved cross path US gauge in the centre of Derby. 1.75 km ds of Longbridge Weir (28010). Record continuous with 28010 Pooks from 1976 only. Derby may flood but bypassing small Substantial flow modification owing to Dorwent roservoirs, milling and PWS abstractions Large. predominantly upland catchment draining Millstone Grit and Carb. Lst. Lower reaches drain Coal Measuras on the tb and Triassic sandsiones and marls on the rb. Peat moorland headwaters. forestry. pasture and some arable

Measuring authority: NRA.A First year 1959

Grad reference 43 (SK) 842480 Level stn (m OD)' 16.90

Catchment area (sq km): 297.9 Max alt (m OO). 158

OAY	JAN	fEB	MAR	APA	may	JuN	N	Aug	SEP	OCI	Nov	DEC
1	2.225	2445	1830	1289	1238	1203	0875	0.740	0605	4482	2210	5219
2	2.183	2429	1889	1240	1.257	1226	0881	0735	0610	2975	2170	4206
3	2112	2338	1722	1394	120%	1148	0850	0865	0635	2201	2.099	3619
4	2.239	2.242	1603	1664	1128	1022	0774	0738	0614	2213	1.968	3.298
5	2719	2209	1573	1944	1141	0.985	0755	0740	0601	4646	1887	2951
6	3215	- 2.174	1520	1627	1106	0.952	0788	0667	0576	6.918	1.859	2917
7	3027	2078	1488	1399	1096	0866	0.735	0.625	0634	6835	1.845	3226
8	2739	2026	1445	1288	1.072	0815	0700	0673	1160	3924	1811	5.344
9	2644	2026	1460	2616	1071	1805	1101	0857	0811	2912	2035	6202
10	3.296	2026	1390	4646	1153	3.379	0992	0.901	0796	2598	2.126	4170
11	4.156	1.928	1341	3347	1010	5268	0739	0806	0706	5.241	2.036	3.470
12	3227	1904	1325	2.140	0949	5.266	0.729	0780	1048	9.884	1972	9760
13	7.443	1.904	1291	1880	0969	2843	0760	0758	3610	14210	8354	10470
14	9391	1721	1261	1595	0991	3.874	1.354	0652	2750	8.876	11040	6355
15	5.959	1.694	1267	1441	0.918	3692	1547	0771	2670	5489	5862	6.719
16	4655	1.692	1287	1367	0.857	2.138	1275	0646	5604	4378	4.129	5454
17	3870	1.729	1094	1327	0908	1781	1352	0658	5863	3801	3.497	4.675
18	3473	1692	1205	1261	0900	1728	1204	0657	2530	3.525	3142	4647
19	3331	1670	1193	1211	0825	1502	1163	0663	1801	3343	2854	6079
20	3.163	1649	1211	1223	1243	1373	1.059	0643	1.114	3283	2.796	6556
21	3076	1.638	1310	1176	1113	1298	0959	0642	1608	2942	2881	8.920
22	2941	1550	1405	1220	1022	1231	0866	1.907	1429	2819	2801	9.199
23	3140	1544	1.239	1272	0948	1.159	0977	1074	1334	2.790	2866	6899
24	3009	1536	1227	1290	0898	1203	1269	0847	1284	2689	2.763	6107
25	2875	1.524	1198	2421	0858	1189	1056	0741	1235	2.519	3272	5373
26	2756	1841	1192	2.119	0880	1.202	1.055	0722	1.164	2.539	4.129	4.831
27	2719	1.561	1200	1754	4.157	1063	1148	0704	1894	2466	3885	4633
28	2746	1547	1.203	1476	2.436	0972	0.881	0644	2.222	2423	3.348	5845
29	2712		1169	1457	1690	0941	0335	0630	1831	2362	3338	9369
30	2.596		1071	1340	1502	0928	0817	0612	2308	2284	5491	7449
31	2.502		1192		1255		0846	0603		2201		5657
Avaroge	3424	1868	1348	1.716	1219	1802	0982	0765	1722	4190	3.349	5794
Lowest	2112	1.524	1071	1.176	0825	0815	0700	0603	0.576	2201	1811	2917
Highesi	9.391	2445	1889	4646	4157	5268	1547	1907	5883	14270	11040	10.470
Peak flow	1129	2.48	213	6.36	639	623	1.87	296	8.22	1524	1248	1611
Dey of peak Monthly total	14	1	1	10	27	11	15	22	16	13	14	12
(milion cu m)	9.17	4.52	361	445	327	467	2.63	2.05	446	1122	868	15.52
Aunot \{mm	31	15	12	15	11	16	9	7	15	38	29	52
Rounfall (tmm)	54	13	16	67	57	71	72	47	115	64	67	80

Statistics of monthly data for provious record (May 1959 to Dec 1992)

Station and catchment description
An old weft at three levels with a total width of 24.99 m converted into a standard Lea designed broad crested weir it is rated theoreticalty and there is no bypassing or drowning Low flows moderately influenced by transter of water from Rutland Water (Feb. 1977 to Apr. 1986) Abstractions for public supply at Saltersford The catchment is clay (50%) with timestone (40%) and gravel, and is largely rural

032004 Ise Brook at Harrowden Old Mill

Moasuring authority: NRA.A
Firsi yeur: 1943

Grid tofernnce 42 (SP) 898715 Leval stn. (m OD): 45.30

Catchment ares (sq km): 194.0 Max alt. (m OD): 197

Daily mean gauged discharges (cuble metres per eecond)

DAY	JAN	FEB	MAR	APA	May	JN	rus	AUG	StP	OCT	Nov	Dec
1	1.178	1.380	0813	0408	0738	0495	0565	0376	0239	1154	0597	2.334
2	1.140	1.232	0798	0489	0682	0532	0541	0366	0270	2.044	0574	1876
3	1109	1.169	0772	0757	0.650	0467	0.523	0359	0269	1526	0535	1.676
4	1.303	1.151	0.794	0.700	0.612	0439	0493	0433	0262	1290	0524	2134
5	2.151	$\cdot 1097$	0853°	0871	0611	0414	0.465	0412	0262	2614	0509	1.850
6	3.199	1058	0.847	0730	0.588	0406	0.454	0348	0.268	3.393	0493	1.646
7	3086	1023	0.754	0.574	0.567	0369	0436	0350	0389	2863	0515	1602
8	2.267	1018	0.613	0.547	0559	0345	0680	0337	0885	1.740	0776	6682
3	2.170	0.998	0.597	5.014	0.560	1.216	1.815	0391	0605	1329	1417	5252
10	.6. 198	1082	0.598	4289	0.565	2.650	1.093	0.322	0495	1.168	2125	2.844
11	4896	1.092	0589	1900	0542	11.210	0.761	0.361	0455	2086	1.775	2153
12	2.936	1080	0.446	3263	0.551	11.300	0630	0439	0.767	2437	1.301	8819
13	9.168	1.289	0469	2.602	0528	3458	0808	0342	0762	6.640	9.268	11630
14	10820	1156	0.379	1.391	0.549	3.688	0708	0312	0845	4601	16040	5645
15	4.773	0.961	0499	1.330	0561	3044	0748	0317	0684	1.585	6.947	5.998
16	4.258	0.977	0.674	1366	0.549	2158	0.703	0298	1.176	1.531	3. 140	4050
17	3.533	0.957	0522	1066	0566	2050	0557	0287	0788	1287	2.407	3.289
18	3.125	0.949	0.345	0954	0.513	2.028	0.583	0275	0655	1.136	2.006	3.204
19	2.298	0.804	0.288	0893	0403	1.498	0.539	0281	0517	1054	1.751	3989
20	2063	0623	0.317	0807	0.725	1.137	0.513	0.272	0553	1.004	1.631	6320
21	1.943	0.786	0.476	0764	0560	0994	0481	0496	0491	0949	1576	7677
22	1.815	0919	0605	0610	0.492	0.892	0447	0.908	0493	0885	1435	6.911
23	1.972	0953	0495	0616	0.820	0.847	0486	0469	0525	0775	1353	6.179
24	1.998	0.863	1.047	0.838	0439	0779	0985	0371	0465	0533	1317	4759
25	1703	0812	0481	1281	0380	0734	0642	0371	0433	0513	1404	3.665
26	1.663	0904	0470	1.261	0721	0719	0590	0391	0412	0970	1452	3072
27	1871	0634	0466	1068	1.536	0672	0569	0303	0674	0462	1361	2750
28	- 2.002	0715	0463	0.931	1.204	0625	0.503	0.290	0529	0499	1258	3305
29	1.836		0340	0.835	0868	0600	0512	0280	0571	0608	1638	8650
30	1.720		0.282	0784	0681	0569	0439	0283	0.688	0.594	2647	5.663
31	1.602		0.397		0552		0.402	0276		0588		3734
Avorago	2.961	0.988	0564	1298	0641	1.878	0635	0365	0548	1608	2326	4.495
Lowost	1.109	0.623	0.282	0408	0380	0345	0402	0272	0239	0462	0493	1602
Hughest	10820	1.380	1047	5.014	1.536	11.300	1815	0908	1176	6640	16040	11630
Peak flow	14.11	1.55	396	830	2.25	12.38	2.97	2.29	2.09	8.79	1681	1468
Day of peak Monilly total	14	1	24	10	27	12	9	22	16	13	14	13
(imituon cu m)	793	239	151	3.36	172	487	1.70	098	142	431	603	1204
Aunoff (mm)	41	12	8	17	9	25	9	5	7	22	31	62
Aomioll \{mm\}	56	10	17	69	54	94	78	35	82	64	70	94

Statistics of monthly data for previous record (Dec 1943 to Dec 1992 -incomplete or missing monthe total 0.8 years).

Station and catchment description

Flume with low flow notch and side weir to 1965. compound Crump profile weir to April 1976. and theoreticalty-rated Flat V weir with 5.94 m crest since. Crump weir modular to 15.6 cumacs. but bypassed at 14.2 m . Flat V also bypassed. Two small storage reservoirs with minor influence on low flows. Undarlain by clay (59\%) and sandstone (24\%). mosity rural but includes Kettering

033002 Bedford Ouse at Bedford

Measuring authority: NRA.A First vear: 1933

Grid referonce 52 (TL) 055495
Level sin (m OD) 2470

Caichment area (sq km) 1460.0
Max alt (m OD) 247

DAY	Jan	feb	mar	$A P A$	MAY	JW	un	AUG	SEP	OCI	Nov	DEC
1	12400	16.300	7.100	15300	9100	6000	3700	3300	2.600	6.800	5700	15.300
2	12000	15.100	7100	36.700	8400	5.700	3500	3200	2600	13000	5700	15.100
3	11.400	14000	6.900	18000	7900	6000	3400	3100	2.600	15700	5400	13000
4	10700	13.500	6.700	18.900	6700	5600	3300	3100	2.600	13000	5300	13000
5	12.100	13100	6.500	18600	6800	5. 100	3200	3200	2.600	11.400	5200	16.100
6	30720	12600	6.500	21300	6700	5000	3200	3600	2.600	23.700	5100	14.100
7	50000	12300	6.700	14300	6400	5000	3000	3.400	2.800	38400	5100	13000
8	44900	11.900	6800	12400	6400	4900	3.200	3300	4000	35.100	5.100	20200
9	31400	11600	6800	25800	6400	4900	4400	3300	7200	20800	5100	34800
10	41800	11.500	6800	55900	8000	8400	7.600	3.400	6300	14400	10300	28000
11	61800	11000	6700	64500	7600	17400	5.800	3700	- 600	12600	25400	18200
12	75900	10600	6400	54100	6300	30400	4400	3900	4500	18000	22300	21600
13	83900	10400	6400	40.900	6000	19.600	4.100	5000	5100	46000	28400	50600
14	67200	10200	6400	31700	6000	16700	5200	4000	6.500	51800	52800	59500
15	72800	10000	6400	19800	6000	28200	5.900	3.400	6800	60500	60800	63100
16	$6 \% 800$	9.800	6300	15500	5700	19900	5600	3100	5900	47400	63.900	53100
17	41100	9.800	6200	13700	b 300	21800	5.700	3000	5600	23300	34800	32000
18	30500	9500	5900	12800	5000	15900	4800	2800	5400	16200	22000	24400
13	25900	9.100	5800	11700	5000	10.900	4.200	2700	4400	18600	16400	32.400
20	23800	8900	5800	11000	5.100	8900	4100	2.700	4200	13500	14400	51300
21	22500	8. 100	6.000	10400	9300	7900	4200	2300	4200	7100	12.400	58.200
22	23100	7800	8000	9600	8500	1200	3.900	3300	4800	13300	12600	62600
23	23400	7700	8200	9400	6.500	5800	3800	5400	4300	9100	14100	57900
24	23.400	6.700	6.700	10400	5900	5000	3700	4300	3.700	7400	11900	56900
25	22600	6700	6200	12.800	5400	4800	4.000	3500	3000	7.100	10000	47000
26	18100	7.300	5.800	15900	5400	4.800	4000	3100	3300	6700	9400	31800
27	22.000	7400	5900	13400	8.500	4400	3800	2.800	3300	6.500	9400	25400
28	28800	6.800	6200	12000	11100	4300	3600	2.700	3.500	6400	9100	25100
29	25500		6000	10600	11.200	4000	3600	2.700	4000	6.300	9000	38200
30	20400		5.700	9600	9600	3.800	3600	2.700	4400	5.900	11200	42200
31	17700		6400		7.800		3600	2.700		5800		44700
Average	34.050	10.350	6494	20900	7116	9943	4197	3.332	4247	18.770	16940	34800
Lowest	10700	6700	5700	9.400	5000	3800	3000	2.700	2600	5.800	5100	13000
Highest	83.900	16300	- 200	64500	11.200	30400	7600	5.400	7200	60500	63900	63100
Pask low	9240	1700	9.30	6600	1170	33.30	880	5.90	7.40	6260	6480	6480
Day of peok Monthly toial	13	1	23	11	29	12	10	23	9	16	16	22
(mmilion cu m)	91.21	25.03	1739	5417	1906	25.77	1:24	893	1101	50.27	43.92	9321
Rumbit (min)	62	17	12	37	13	18	8	6	8	34	30	64
Raintal (mm)	74	9	23	80	55	68	57	36	83	87	59	94

Statistics of monthly data for provious record (Jan 1933 to Dec 1992)

Station and catchment description
3 broad-crested weirs. 30 m . 20 m and 12 m wide supplemented by 3 vertical sluice gates which are either fully open or shut. Hegh flow rating conlirmed by curtent meter measurements Records before 1959 based on daly gauge board readings and gate openings. (improved flow record. frorn 1972, d/s at 330391 Significant surface and groundwater abstractions in catchment for PWS. Milton Keynes effluent now significant Guology - pradominantly clay. Land use - agricultural with substantial urban dovelopment over last is years.

033034 Little Ouse at Abbey Heath

Muasuring authority: NRA.A First year: 1968

Grid raference 52 (TL) 85 ; 844 Levet $\sin (\mathrm{mOD}) 720$

Catchment area (sa km) 699.3 Max all (m OD). 98

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	feg	MAR	AP閁	MAY	UN	Jレ	AUG	SEP	OCT	NOV	Of
1	3714	4943	5321	3896	3259	2536	1469	1570	1246	2880	3676	8228
2	3.684	4829	8471	4047	3111	2.534	1402	1480	1238	3637	3620	7280
3	3648	5135	8323	3815	2.950	2912	1365	1420	1225	3612	3546	6580
4	3667	4875	6288	3744	2816	2641	1.365	1510	1220	2849	3484	6213
5	3.976	4804	5506	3851	2739	2429	1.372	1420	1206	2804	3399	5.699
6	5501	4485	5149	3862	2689	2249	1305	1370	1233	2737	3336	5374
7	9.697	4393	4811	3530	2.626	2035	1.241	1370	1260	2680	3341	5.467
8	8917	4274	4545	3393	2567	1.984	1218	1340	1244	2380	3.373	6312
9	7.656	4.277	4203	3400	2650	1912	1419	1450	12.25	2524	3408	9450
10	7816	4401	4284	3840	2640	2019	1351	1340	1232	2552	4208	8.177
11	11180	4193	4002	3920	2564	2089	$14 / 4$	1480	1222	2991	6170	7081
12	11.770	3.890	3894	3800	2494	2062	1446	1720	1498	5421	6120	7915
13	9.592	3978	3.871	3440	2466	2048	1598	1.721	1485	10870	7650	14360
14	11130	4.033	3745	3560	2241	2215	1557	1870	1624	13.270	14470	16330
15	9722	4028	3.652	3330	2378	2091	1761	1.553	1682	16300	17290	15260
16	7979	3853	3661	3210	2304	2248	1878	1507	1911	14800	20340	11960
17	6953	3870	3.574	3210	2522	2260	1828	1489	1.741	11120	19830	9.029
18	5955	3.838	3514	3400	2486	2264	1729	1435	1944	7154	15580	7854
13	5732	3618	3144	3520	2470	2135	1967	1425	1590	5850	11080	8661
20	5580	3657	3303	3400	2584	2039	1861	1269	1390	5188	8192	9.937
21	5.405	3791	3720	3140	2.768	1.917	1734	1469	1286	4798	7316	14420
22	5259	3880	4111	2840	2259	1890	1556	1537	1295	5251	6.702	17020
23	5.074	3815	4162	2959	2331	1858	1496	1531	1427	5011	6373	16340
24	5173	3677	3651	3448	2208	1790	1574	1589	1292	4710	6146	15560
25	4.904	3647	$34 / 4$	5337	2168	1.737	1589	1547	1315	4440	5955	16250
26	4814	3.747	3418	6.433	2370	1684	1549	1525	1682	4248	5796	14690
27	5.320	4255	3371	4574	3197	1664	1561	1481	2270	4062	5665	11990
28	5627	4573	3372	3866	4227	1644	1545	1.467	3748	4027	5528	10770
29	5763		3293	3648	3472	1587	1810	1416	4314	3998	5497	11760
30	5662		3292	3410	3042	1519	1900	1413	3.368	3836	6848	11920
31	5.083		3397		2725		1710	1424		3.719		11910
Avarogo	6.515	4170	4275	3.127	2688	2. 066	1569	1488	1683	5475	7465	10640
Lowes:	3648	3618	3144	2840	2168	1519	1218	1269	1206	2380	3336	5374
Heghast	11770	5135	8471	6433	4227	2912	1967	1870	4314	16300	20340	17020
Pask flow	1360	7.59	335		609	367			471			1735
Day of peak Monthy totel	12	28	3		21	3			29			22
(million cu m)	1745	1009	1145	966	7.20	536	420	399	436	1466	1935	2849
Runotl (mm)	25	14	16	14	10	8	6	6	6	21	28	41
Hanfoll [mm)	60	27	20	56	57	37	69	56	100	94	82	92

Statistics of monthly data for previous record (Apr 1988 to Dec 1992)

Moan	Avg	5840	6.095	5575	4776	3733	2805	2111	1944	1937	2514	3251	4356
flows	Low	2026	1.728	1331	2063	1767	1165	0798	067.1	0902	1154	1264	1.500
	(rear)	1992	1992	1973	1973	1991	1976	1976	1976	1976	1991	1990	1991
	High	11270	12010	10240	8286	7677	6851	3603	5210	6635	10.200	9033	7093
	tyear)	1988	1979	1988	1979	1969	1985	1985	1987	1968	1987	1974	1982
Runoff:	Avg	22	21	21	18	14	10	8	7	\%	10	12	17
	Low	8	6	7	8	7	4	3	2	3	4	5	6
	High	43	42	39	31	29	25	14	20	25	39	33	27
Rainfal.	Avg.	55	38	48	44	46	55	50	49	51	53	62	53
	Low	16	9	12	10	6	10	9	8	2	4	24	27
	Hugh	114	78	100	84	97	137	99	116	138	123	147	98

Summary etatistics					
	For 1993		For raceses procurling 1993		$\begin{gathered} 1993 \\ \text { As } \% \text { of } \\ \text { pre- } 1993 \end{gathered}$
Moun flow (m's-')	4.321		3733		116
Lownst yoarly moan			1735	1991	
Heghast yoarly mean			5670	1969	
Lowast monthly memen	1488	Aug	0621	Alsy 1976	
Hinghest monthly mman	10640	Dec	12010	Fob 1979	
Lowest dady treum	1206	5 Sop	0482	28 Aug 1976	
Higlost dady moon	20340	16 Nov	24320	13 Oci 1987	
Patk			25290	13 Oct 1987	
10\% exceodance	8.720		7030		124
50\% oxceodance	3440		2812		122
95\% exceodarcis	1324		1132		117
Annust toter (rullion cu mj	136.30		11780		116
Annual tunoff (men)	195		168		116
Annust iminfoll (mm)	750		604		124
1941.70 rainfall average (mm)			618		

Factors affocting runoff

- Flow influencerd by groundwater abstraction and/or recharge.
- Flow reduced by industrial and/or
agricultural abstractions
- Augmentation from effluent returns.

Station and catchment description
Ractangular section Crump profile weir with crest tapping. Replaced 33008 in 1968 . Weir subject to drowning and spills on rare occasions
Since the late 1980 s , low flows augmented from groundwater in drought conditions Geology - Chalk with approx. 85% Boulder Clay cover Land use - predominately agricultural with large areas of forest and heathland

034006 Waveney at Needham Mill

Measuring authonty NRA-A First year 1963

Grad relerence 62 (TM) 229811 level stn (m OD) 1650

Catchmont ares (sq km): $\mathbf{3 7 0} 0$ Max alt. (m OD): 65

Daily mean gauged discharges (cubic metres per aecond)

DAY	JAN	FE8	MAR	APR	may	JUN	Jul	AUG	SEP	OCT	NOV	DfC
1	1089	1867	3931	1072	0779	0545	0338	0.303	0278	2.238	1.060	5871
2	1016	1740	6.600	1449	0705	0.755	0330	0304	0.283	4.109	0.976	4138
3	0.951	1500	4341	1185	0622	0878	0316	0.305	0256	2.751	0966	3218
4	1031	1500	2716	1120	0571	0.572	0302	0305	0296	1.900	0.916	2867
5	1372	1424	2279	1279	0539	0472	0.295	0310	0272	1.481	0857	2.140
6	6.421	1320	1839	1347	0524	0421	0.288	0311	0.255	2.249	0791	1.929
7	11280	1248	1665	1028	0504	0.403	0298	0297	0263	2024	0.773	2076
8	7586	1.214	1514	0855	0478	0413	0.271	0275	0278	2.343	0773	4.419
9	-5 388	1.280	1375	0903	0487	0421	0376	0.272	0281	2.006	0.802	8034
10	6.920	1331	1270	1.261	0532	0430	0.434	0280	0269	1.436	2169	4.583
11	10800	1281	1133	1323	0514	0439	0417	0.299	0263	1.385	4605	3581
12	8734	1180	1090	1357	0477	0447	0380	0562	0.297	13850	3099	7957
13	6949	1090	1085	1296	0465	0456	0388	0831	0618		9075	18410
14	9080	1074	1023	1063	0466	0465	0439	0540	0.850			18390
15	6257	1041	0986	0.889	0.423	0469	0.516	0416	0782	14.050		11.250
16	4329	0991	0956	0801	0382	0506	0580	0374	0709	5.281		6.151
17	3.375	1018	0935	0771	0.373	0593	0728	0349	0986	3162	9738	3965
18	2.307	1006	0887	0841	0382	0560	0474	0313	0842	2312	5.556	3839
13	2305	1021	0827	0832	0436	0491	0.319	0303	0557	2043	4040	6.337
20	2.292	0916	0775	0730	0458	0431	0417	0.326	0453	1.739	3473	8011
21	2025	0.914	0861	0700	0435	0401	0439	0331	0413	2.153	3073	19.160
22	1.933	0940	1163	0703	0383	0406	0384	0370	0385	2.760	2695	18850
23	1742	0911	1039	0643	0370	0.390	0417	0505	0.365	2333	2701	13.370
24	1818	0858	0849	0765	0354	0380	0506	0471	0357	1.906	2803	13240
25	1514	0.866	0779	2481	0377	0372	0506	0230	0.352	1636	2.694	15650
26	1488	1171	0725	2329	0381	0372	0488	0343	0391	1533	3046	10720
21	2410	1808	0698	1400	1565	0351	0.530	0327	1.579	1428	2750	6.372
28	2187	2230	0702	1067	1824	0.331	0516	0320	3.512	1368	2.367	6271
29	2788		0695	0953	1030	0333	06	0302	2629	1282	2143	7.545
30	2575		0616	0855	0818	0331	045	0294	1.633	1161	5.550	7398
31	2194		0681		0658		035	0273		1091		9.170
Averago	3.960	1241	1485	1.110	0591	0461	0.422	0356	0690			8223
Lowest	0351	0858	0616	0643	0354	0331	0271	0.230	0255			1.929
Highest	11280	2230	6600	2.481	1824	0878	0.728	0831	3512			19.160
Peak now	1219	303	797	347	249	1.01		091	4.17			2209
Day ol paok Monthly iotal	7	28	2	25	27	3		13	28			21
(malion cu m)	1061	300	398	288	158	1.19		095	1.79			2202
Runolf (mm)	29	8	11	8	4	3		3	5			60
Hainfall (mm)	53	23	18	52	49	36	F	49	103	10		93

Statistics of monthly data for previous record (Dec 1963 to Dec 1992)

Station and catchment description

A compound Cruinp weir 8.5 m wide in the main channel with a single crested Crump in the mull bypass. Stuice action at a mill 2.4 km upstream is infrequent but is evident in flow records. Surface water abstractions. and the use of river gravels as an aquifer, influence flows but the overall imosct is minimal Record affectod by the Waveney Groundwater Scheme between 1975 and 1979. Predominantly a Bouldor Clay catchment with targety rural land use

038001 Lee at Feildes Weir

1993

Moasuring authority. NRA.T
First year: 1951

Grid reforence: 52 (TL) 390092 Level stin. (m OD) 27.70

Catchment area (sq km). 1036.0 Max sh. (m OD). 229

Daity mean naturalised discharges tcubic matras per second)

DAY	JAN	FEB	MAP	APR	MAY	UN	JuL	AUG	SKP	OCT	Nov	DEC
1	5670	6640	3.790	15.200	5220	3.910	3.650	3030	2470	16900	5400	6140
2	5.520	6590	4.990	17300	4880	4310	3570	3090	2200	20600	5300	5740
3	5.480	6.360	5080	14200	4830	4310	3520	3570	2390	10.400	5180	5530
4	5640	6310	5090	14100	4.720	3.940	3.490	3.260	2.290	8.270	5090	5.760
5	6870	6.230	4.890	8.940	4.780	3610	3480	3390	2180	6610	4940	5480
6	16.700	6200	4930	9780	4.710	3.640	3.510	3.170	2.190	8.400	4.880	5180
7	21600	6.080	4.800	9.290	4630	3.580	3420	2.950	2500	9390	4850	5600
8	10600	6.070	4.790	8830	4600	2.650	3160	2.870	3.440	6.730	4.770	8.440
9	9.800	6.120	4.740	18400	4.780	2.740	4.230	2820	2990	5740	5.120	9750
10	29.800	6.100	4.810	20400	4.330	8330	4070	2.870	2.770	5220	7310	6890
11	27.500	5.930	4.810	15.700	3930	11.800	3490	2860	2.540	8680	6440	5990
12	13100	5.760	4.660	14.600	3890	9.880	3320	5250	3.800	39.700	5.560	12100
13	27000	5.670	4.690	6700	3380	7070	3870	4310	7.140	100000	14000	17300
14	21200	5610	4.590	4640	3400	7.890	5330	3.290	6.320	42.200	25.700	15500
15	14.100	5.610	4.710	4310	3350	6.780	4740	2990	4470	17000	13.800	22600
16	11.100	5.230	3.910	4320	3210	10400	4.750	2800	3970	11800	8500	12400
17	8980	5350	4.740	4580	3.830	7.730	4030	2870	3830	9330	7.190	8480
18	7.960	4790	4690	4630	2850	5990	3390	2850	3230	8520	6610	8790
19	8010	5510	4600	4860	3410	5.030	3.150	2780	2.670	7.930	6160	16.700
20	7140	5.380	4640	4860	5.470	4630	3560	2630	3310	7630	5870	23.500
21	7200	5.290	4.790	4830	5.350	4.500	3.540	2650	4.650	7.120	5.790	20100
22	7.860	5.150	5.350	4.630	4420	4340	3.300	3950	3650	6790	5710	14000
23	7.820	5040	5070	5520	3990	4260	3290	3450	3190	6330	5470	14.800
24	7630	4270	4 760	11000	3890	4.180	3430	2840	2.880	6000	5500	12600
25	6960	4490	4.650	21.100	3.920	4.050	3.390	2840	2.820	5.850	5250	9890
28	7.560	5370	4640	16100	4.720	3.930	3.240	2820	2.790	5.780	5160	8.470
27	8460	5.300	4.550	7.930	6.210	3.800	3.360	2810	3740	5.740	5060	7770
28	9080	5.030	4.520	7340	5.720	3810	3.210	2.790	5580	5800	4850	9240
29	6600		4570	4800	4420	3760	3090	2620	4470	5690	5230	19300
30	7.390		4620	5220	4230	3740	3.090	2620	8.420	5.600	6710	22.500
31	6970		5.770		4010		3.110	2300		5420		31700
Avorogo	11.200	5.624	4750	9804	4357	5280	3606	3075	3630	13460	6.913	12200
Lownet	5480	4.270	3.790	4.310	2850	2650	3090	2300	2180	5220	4.770	5180
Hyghost	29.800	0.840	5.770	21.100	6210	11.800	5330	${ }^{5} 250$	8420	100000	25.700	31700
Monthly coial (malion cu m)	3001	1361	12.72	25.41	11.67	13.68	9.66	8.24	9.41	36.04	1792	3268
Nat "inert tunotf (mm)	29	13	12	25	11	13	9	8	9	35	17	32
Rainfoll (mm)	67	10	17	79	49	70	51	41	107	108	49	87

Statistics of monthly data for previous record \{Oct 1883 to Doc 1992 -incomplete or missing months total 2.2 years\}

Station and catchment description

Thin-plate weir (insensitive - 29rn wide) and 3 vertical-lift sluces: completed 1978 to improve range and precision of flow measurement. Model rated. All flows (bar lockages) now contained but Ryemeads STW effluent bypasses. Pre-1978. barrage of getes/sluices; no peak flows prior to 1965. Low flows probably under-estimated. Gauging instigatad by Beardsmore in 1850s. Significant g/w abstracion, net expont from catchment Naturalised flows (New Gauge abstraction only) from 1883. A mainly pervious (Chalk) catchment. Pradominantly rural headwaters, significant urban growth in lower valleys

038003 Mimram at Panshanger Park

Measuring aulhority. NRA-T
First yoar: 1952
Daily mean gauged discharges (cubic metres pet second)

Daily mean gauged discharges (cubic metres pet second)													
DAY		JAN	FEB	MAR	APR	may	Jw	un	AUG	SEP	OCT	Nov	DCC
1		0598	0.736	0698	1170	0580	0529	0558	0522	0442	0855	0836	0.783
2		0.594	0742	0685	0718	0577	0.687	0.549	0515	0442	0.663	0827	0.770
3		0593	0739	0680	0726	0575	0586	0.549	0494	0456	0583	0823	0.763
4		0.615	0731	0672	0667	0.571	0528	0.533	0519	0441	0.556	0813	0.777
5		0.706	0.727	0675	0757	0566	0507	0532	0.510	0438	0555	0804	0754
6		0849	0726	0667	0646	0569	0502	0.522	0481	0441	0976	0792	0771
7		0695	0729	0668	0652.	0565	0495	0.518	0469	0.591	0671	0.794	0785
8		0.650	0732	0666	0621	0561	0490	0.517	0466	0531	0603	0.790	0942
9		0659	0733	0663	0934	0.633	0488	0656	0473	0467	0.577	0852	0.783
10		1.170	0726	0662	0746	0594	0739	0537	0465	0460	0610	0940	0.779
11		0.872	0720	0657	0718	0573	1270	0534	0.522	0450	0902	0808	0.756
12		0.775	0716	0648	0691	0551	0880	0527	0734	0193	1860	0810	0990
13		1110	0709	0635	0673	0554	0790	0632	0507	0839	2430	1200	0.902
14		0.839	0713	0633	0657	0559	0863	0577	0485	0564	1510	0959	1020
15		0806	0714	0633	0631	0558	0758	0604	0478	0498	1100	0841	0.948
16		0761	0712	0629	0629	0552	0.870	0616	0467	0539	1020	0810	0850
17		0748	0707	0624	0628	0717	0692	0.549	0458	0491	0.963	0797	0.823
18		0753	0708	0620	0626	0562	0664	0545	0453	0.464	0935	0791	0.971
19		0.751	0701	0616	0623	0547	0638	0562	0449	0456	0.917	0784	0949
20		0743	0634	0616	0616	0778	0626	0621	0446	0577	0912	0798	1.120
21		0.750	0694	0650	0616	0588	0.620	0552	0462	0508	0896	0.805	0925
22		0806	0.695	0682	0621	0564	0625	0535	0541	0472	0.889	0797	0.937
23		0786	0686	0627	0713	0549	0645	0565	0459	0461	0.873	0792	0928
24		0.755	0684	0619	0804	0541	0622	0558	0457	0454	0.881.	0788	0.906
25		0.737	0686	0612	0789	0534	0598	0543	0461	0452	0871	0781	0.879
26		0793	0743	0615	0.702	0.713	0589	0534	0460	0457	0862	0773	0874
27		0774	0691	0614	0622	0623	0579	0.545	0454	0561	0.856	0770	0.870
28		0818	0688	0617	0600	0573	0.571	0523	0450	0.537	0853	0768	0984
29		0746		0619	0602	0565	0.564	0545	0448	0544	0845	0857	0.947
30		0734		0641	0589	0543	0564	0544	0445	0839	0837	0817	1120
31		0.739		0715		0526		0528	0443		0849		1080
Averag		0.765	0714	0647	0693	0583	0653	0555	0486	0522	0.926	0.827	0893
Lowest		0.593	0684	0612	0589	0526	0488	0517	0443	0438	0.555	0768	0.754
Highest		1170	0743	0715	1170	0778	1.270	0656	0794	0839	2430	1.200	1120
Peak flow		185	079	091	202	130	236	099	126	137	382	150	170
Day of	peok	10	26	31	1	20	11	9	12	12	12	13	14
Monthl (mullion	cu mial	205	173	173	180	156	169	149	1.30	135	248	214	239
Runotf	(mm)	15	13	13	13	12	13	11	10	10	19	16	18
Rainfar	(.mm)	74	9	20	89	50	92	56	45	111	115	52	95
Statistics of monthly data for previous record (Dec 1952 to Dec 1992)													
Maan	Avg	0566	0628	0650	0640	0600	0545	0474	0434	0401	0403	0441	0499
flows	Low	0.222	02.20	0221	0222	0216	0187	0.163	0145	() 195	0176	0176	0.189
	(year)	1992	1992	1992	1992	1976	1976	1976	1976	1973	1973	1973	1973
	High	1102	1.167	1119	1050	1084	0971	0803	0765	0632	0638	0739	1005
	(year)	1961	1961	1961	1979	1979	1979	1979	1979	1968	1968	1960	1960
Runoti:	Avg	11	11	13	12	12	11	9	9	8	8	9	10
	Low	4	4	4	4	4	4	3	3	4	4	3	4
	High	22	21	22	20	22	19	16	15	12	13	14	20
Ramian	Avg	56	42	48	47	50	58	55	57	56	61	61	61
	Low	11	3	3	5	4	5	5	7	5	5	20	13
	High	121	99	116	105	115	122	123	127	121	171	151	141

Summary statistics

onn flow (m) m^{-1} -
Lowest yearty mean Heghost yoarly mean Lowest monthly meen Highost monthly mean Lowest dally mean Haghest daily meen Pank 10% nxcoedancen 50\% excendancen 95\% oxceodance Annual total (milion cu m) Annual runoff (mm) Annual rainfall (mm) 1941.70 ramisil overaga (mm)

Station and catchment description
Critical-depth flume: 5 m overall width. Theoretical calibratıon confirmod by gaugings. All flows contained Appreciable net export of water (Considerable groundwater abstraction in headwaters). Very high baseflow component. A prodominantly permeable catchment (Upper Chalk overlain by glacial deposits near headwaters). mainty rural but some urbanisation in the lower valley

039001 Thames at Kingston

1993

Moasuring authority NRA-T First year: 1883

Grid reference 51 (TQ) 177698 Leval sin (m OO): 4.70

Catchment area (sq km) 9948.0
Max alt. (m OO). 330

Daily mean gauged discharges (cubic metres per eecond)

DAY	JAN	FEB	MAR	APR	MAY	JuN	rr	AUS	SEP	оС	Nov	OEC
1	88800	123000	55300	132000	40800	44800	13400	11200	21400	62700	36400	63.500
2	84700	110000	52.300	171000	40200	51300	11.500	13.400	18800	113000	35300	67.500
3	74800	107000	54.000	99000	41100	45900	10.700	19300	19.300	129000	37000	48800
4	93800	105000	53800	77.900	32200	46600	11700	23000	18000	58000	36.500	47800
5	96.000	97000	49000	108000	26800	47000	10100	18900	13200	53.400	27.700	49.100
6	130000	92.400	50100	130000	28900	32800	8.190	18000	9.590	111000	31000	53800
7	178.000	85.800	47200	88000	30.700	30200	11000	18400	12400	135.000	30500	65.900
8	163.000	93300	47300	65300	28700	28000	9.490	13700	19.900	107000	34.300	90200
9	149.000	92100	37200	114.000	28300	26.100	12400	10400	25200	93.700	36800	117000
10	209.000	67. 100	39500	216000	36000	28400	12.000	10100	26600	96.500	46900	104.000
11	303.000	79900	42.600	227000	34.000	33300	14600	9960	23800	98500	49.600	75.900
12	283.000	76700	38600	183.000	36700	54.000	15000	10800	27000	135.000	58200	86.800
13	286.000	76900	39300	151000	28.600	48200	12700	11600	43.800	244.000	68300	153000
14	301000	72000	38600	128000	27000	55.700	20100	12.700	51500	261000	136000	160000
15	288.000	83800	38200	88600	30.600	52600	27200	9130	22800	220000	141000	183000
16	284000	78000	32300	73300	27.100	71800	36900	9750	24100	152.000	110.000	185000
17	270000	77700	34400	70000	32700	88.800	24700	14.600	12900	117.000	96900	144000
18	261000	72600	34400	65900	30.800	54600	18600	17500	10.100	87200	89.200	135000
19	242000	65.100	28500	59900	29500	49.500	21300	20500	10000	78.500	57500	195.000
20	199000	61800	30700	53200	33.900	31700	20800	17400	16200	54800	51.900	266000
21	175000	60.800	31600	58.500	61100	36.500	19.500	19300	16900	65900	50300	293000
22	177000	61400	38.300	56.900	46400	30100	18.300	21400	15800	58100	48.100	247000
23	190000	51.800	41200	60000	42.400	25700	10700	15700	11.600	48500	48100	215000
24	169000	58600	41600	67400	22.600	28300	13400	10200	10300	52.300	47100	205000
25	165000	54.600	40200	71300	29200	25.700	12300	10.400	9520	50900	43800	187000
26	144000	57.300	30100	74.000	43.500	23.400	11700	9.950	10700	42300	41.500	169.000
27	157000	60500	29500	74.900	101000	25.500	14400	8280	10400	48.200	39800	135000
28	154000	57300	35700	56800	96500	21400	14600	7860	11.500	47.100	38400	131000
29	153000		31600	45600	B2. 100	17900	13500	11000	13900	39400	41400	155.000
30	143.000		31.700	41000	62400	16400	12.000	16300	32.600	40000	52.300	199000
31	123000		39600		54800		12.200	19000		39000		263000
Average	185000	78.550	39820	97120	41.500	39090	15320	14180	18990	94.810	55390	144.800
Lowest	14.800	51800	28500	41000	22600	16400	8190	7.860	9.520	39000	27700	47800
Highest	303.000	123000	55300	227.000	101000	88800	36.900	23000	51500	261.000	141000	293.000
Peak flow	33600	137.00	7650	24900	12200	99.60	48.50	68.00	7950	29500	19000	30500
Day of peok Monthly total	14	9	10	10	27	17	16	2.1	16	14	15	21
(mulwon cu m)	49540	19000	10670	25170	11120	10130	4104	37.39	4923	253.90	14360	38800
Aunotf (mm)	50	19	11	25	11	10	4	4	5	26	14	39
Ramiall (mm)	91	7	26	84	65	54	56	32	100	109	48	109

Statistics of monthly data for previous record wen 1883 to Dec 1992)

Station and catchment description
Ulirasonic station commissioned in 1974: multi-path operation from 1986 Full range. No peak flows pre-1974 when dmfs derived from Teddington weir complox (70 m wide): significant structural improvements since 1883. Some underestimation of pre-195 low flows. Baseflow sustained mainly from the Chalk and the Oolites Runoff decreased by major PWS abstractions - naturalised flows avalable. Diverse topography. geology and land use which - together with the pattern of water utilisation - has undergone important historical changes

039001 Thames at Kingston

Measuring authority NRA-T First year: 1883

Grid roference 51 (TQ) 177698
Level stn (m OO): 470

Cotchment area (sq km) 9948.0
Max alt. (m OD) 330

DAY	JAN	F¢. 8	MAR	APA	MAY	UN	\cdots	AUG	SEP	OCT	NOV	O\&C
1	107000	139000	75.200	153000	63800	65700	42100	33100	27100	96.100	57100	80.500
2	101000	125000	10000	192000	62900	72600	41400	32300	25300	146000	56.100	84100
3	96400	124000	71.100	120000	62600	65000	41000	32300	26.400	162000	57.000	68.400
4	112000	122000	70400	98600	54.500	68200	41.900	32.600	25.200	91300	56400	68300
5	115000	118000	66000	128000	54300	66600	40300	30400	23.100	83300	49100	69700
6	149000	113000	67000	150000	55800	52200	34500	33600	23.500	138.000	53300	71600
7	199000	106000	64000	108000	55700	51.600	34100	32000	28700	162000	52900	83.400
8	188000	112000	64500	85100	53.900	50700	34300	27500	43300	134.000	51.800	109000
9	174000	107000	55100	134000	53600	49900	36500	29800	46900	121000	52.700	136.000
10	233000	104000	58300	236000	59500	51500	40300	30100	44400	124.000	66.200	125000
11	324000	97200	60300	248.000	59500	56200	41600	30000	39.800	126.000	67000	96.700
12	302000	91400	58.300	204000	56800	75700	43600	39800	44100	183000	78.400	108000
13	306000	97700	59.600	176000	51800	69700	40900	32.600	61000	266000	88600	168.000
14	320000	92700	58800	147000	50.300	77300	46500	37700	64400	286000	156.000	177000
15	31200	98100	58300	111000	53300	72600	54000	33500	43200	245000	158000	200000
16	305000	88700	53400	98100	49600	92.100	62600	29400	54.900	179000	127000	202000
17	289000	88600	53500	93.900	54600	104000	51700	31300	48300	142.000	114000	168000
18	278000	91600	55200	89300	53.100	76.600	45200	30800	39.400	118000	107000	156.000
19	260000	85800	49300	82900	52.400	71800	47900	26000	28500	103.000	77600	217000
20	217000	83500	51300	78.200	56900	54100	47400	26200	39.400	78.400	73.200	285000
21	194000	82400	52100	79700	63.700	58.700	46.200	29.100	44900	88.200	71700	312000
22	201000	80200	59500	76300	63300	52000	44800	34.500	42200	79.600	65800	266000
23	214000	72900	62.100	78.500	66000	47900	36000	32.600	38.900	71.800	65600	233000
24	193.000	77100	59.600	85400	46.400	51100	37800	31400	37.700	77100	64.100	226000
25	183000	75600	5) 100	88700	53500	47200	37200	27800	30.500	73200	59700	207000
26	162000	78.100	46900	87.900	67500	43400	38400	30.600	32.500	61300	61.100	189000
27	173000	81000	46300	98400	125000	46300	39.700	28400	33.200	67200	60400	155.000
28	170000	77900	52000	80200	114000	45.800	39700	27900	37300	64100	59000	151000
29	175000		51700	70900	102000	42800	38.300	23400	39900	58.100	58.700	175000
30	162000		52600	67.800	82800	42200	37000	26200	65.000	59700	69.300	219.000
31	141000		60600		74700		37.200	28500		58.700		283000
Averagh	205200	97020	58710	118200	64510	60.650	41.940	30690	39300	120.000	74490	164100
Lowest	96400	72900	46300	67800	46400	42200	34.100	23400	23.100	58100	49.100	68.300
Heghesi	324000	139000	75200	248000	125000	104000	62600	39800	65000	286000	158000	312000
Monsily total (mulhon cu m)	54960	23470	15730	30650	17280	15720	11230	82.20	101.90	321.50	19310	43940
Natised	55	24	16	31	17	16	11	8	10	32	19	44
Ramial (mm)	91	7	26	84	65	54	56	32	100	109	48	109

Statistics of monthly data for previous record (Jan 1883 to Dec 1992)

Mean	Avg	137600	134600	115000	86220	64660	48490	35.130	32.470	34420	49780	83040	
notised	Low	32.210	25100	27.320	26510	18200	13470	10760	11040	11.230	15120	17750	22.480
flows	(year)	1905	1905	1944	1976	1944	1944	1921	1976	1898	1934	1921	1921
	High	332900	348.100	370900	199800	181300	178.700	88840	88780	139.400	185300	339600	343.900
	(ymar)	1915	1904	1947	1951	1932	1903	1968	1931	1968	1903	1894	1929
nat'isod	Avg	37	33	31	22	17	13	9	9	9	13	22	30
cunoff	Low	9	6	7		5	4	3	3	3	4	5	6
	Hegh	90	88	100	52	49	47	24	24	36	50	88	93
Rainfan	Avg	65	49	53	48	54	53	48	64	58	72	72	72
11883	Low	14	3	3	3	7	3	8	3	3	5	8	13
1992)	Hayh	137	127	142	104	137	137	130	147	157	188	188	185
Summ	ary	stics								rs affec	ing runof		
(neturali	isod fio							1993					
				1993		For racord ocedurg 1993		As \% of pre. 1993		servoir(s) winfluen	catchrm d by gro	dwater	traction
Mman flo	(${ }^{\text {(}}{ }^{2}$							116		/or rech			
Lowest	y warty	can					1934			siraction	or public	ter sup	
Haghest	yeorty	esn			131		1951			reduc	by indus	al and/	
Lowest	month	mean					tut 1921			rcultural			
Hinghest	month	mean	205		370		Mar 1947			gmentation	from su	ace wat	and/or
Lowes!	(daly m					$70 \quad 9$	Jul 1934			undwate			
Highest	dasty m		324	0011	an 1065	0018	Nov 1894			mentation	from et	ent retur	
10\% exc	ceoden		188		170			110					
50\% ex	ceedon							125					
95\% ox	cosdan							160					
Annual	total (m)	hon cum)	284		244			116					
Anmual	rumoff							116					
Annusi	rastall	mm)						109					
1941	1.70 ral	tall average	(mm)										

Station and catchment description
Ulirasonic station commissioned in 1974: mutti-path operation from 1986. Full range. No peak flows pre-1974 when dmfs derived from Teddington weir complex (70 m wide): significent structural improvements since 1883 Some underestimation of pre-195 low flows Baseflow sustained mainly from the Chalk and the Oolites. Runoff decreased by mapor PWS absiractions - naturalised flows available. Diverse topography. geology and land use which - together with the pattern of water utilisation - has undergone important historical changes.

Measurng authority: NRA.T First year: 1963

Daily mean gauged discharges (cubic motres per escond)

DAY	JAN	FEB	MAR	APPA	may	JN	Nu	AUG	$\mathbf{S E P}$	OCT	MOV	DCC
1	2.710	3490	1.820	1.130	1310	1200	1160	0806	0.612	0554	0977	1.120
2	2.640	3400	1.790	1.090	1.290	1220	1.140	0814	0602	0.571	0961	1.090
3	2580	3.310	1.750	1130	1270	1190	1.130	0803	0592	0563	0958	1.070
4	2.520	3220	1670	1.190	1280	1.190	1120	0.778	0601	0563	0.944	1090
5	2.530	3.180	1660	1.230	1.240	1180	1080	0765	0591	0.610	0922	1.080
8	2.520	3100	1.650	1.150	1220	1.180	1070	0757	0595	0623	0.906	1080
7	2470	3.010	1620	1.110	1.190	1150	1060	0744	0587	0603	0899	1.100
8	2410	2.940	1600	1110	1.160	1150	1080	0737	0646	0620	0883	1140
9	2460	2.850	1570	1.340	1200	1.120	1130	0735	0622	0677	0.893	1.160
10	2.720	2770	1.550	1.340	1.200	1.320	1080	0.710	0604	0.684	0912	1.180
11	2.760	2.700	1.510	1360	1160	1.250	1060	0716	0594	0.709	0901	1200
12	2.980	2630	1480	1440	1150	1360	1070	0.709	0605	0739	0893	1.380
13	3.530	2.570	1460	1480	1130	1.410	1080	0703	0609	0788	0.951	1510
14	'3.950	2510	1440	1460	1110	1.520	1060	0.698	0531	0828	0998	1.670
15	4.310	2.450	1410	1500	1. 100	1.590	1060	0690	0.593	0875	1010	1850
16	4.410	2.390	1370	1520	1080	1670	1.040	0681	0594	0955	1050	2000
17	4.390	2310	1340	1560	1.100	1.660	1020	0.680	0588	1000	1.060	2.120
18	4.360	2.280	1340	1560	1070	1.650	1.020	0837	0587	1070	1.100	2260
19	4.350	2.220	1.310	1.550	1030	1.590	1020	0653	0591	1100	1 130	2340
20	4.270	2.180	1300	1550	1.120	1.550	0.935	0637	0592	1080	1.140	2.440
21	4160	2.130	1.320	1530	1.200	1.530	0.905	0654	0598	1090	1.150	2.460
22	4.120	2090	1.310	1520	1120	1.510	0890	0658	0582	1.100	1150	2.640
23	4.110	2050	1280	1510	1.060	1.470	0891	0656	0583	1.070	1.150	2.740
24	4050	2000	1.220	1500	1030	1440	0.903	0642	0565	1070	1.150	2800
25	4.010	2.000	1.210	1.500	1040	1400	0.882	0635	0559	1050	1.150	2.830
26	4.030	1.960	1.200	1470	1.160	1380	0.866	0831	0569	1050	1.140	2.860
27	3.970	1.890	1. 170	1.440	1160	1320	0.862	0609	0569	1030	1.130	2.870
28	3.890	1850	1140	1.400	1120	1.300	0847	0613	0563	1020	1110	2940
29	3.820		1120	1360	1130	1240	0843	0609	0584	1010	1140	2880
30	3.700		1.130	1350	1.210	1.210	0823	0.621	0565	0995	1.150	2.940
31	3.570		1.160		1.230		0813	0.603		0982		2.990
Averogo	3.494	2553	1416	1379	1157	1.365	0999	0690	0591	0861	1030	1.962
Lowest	2410	1.850	1120	1090	1030	1120	0813	0605	0559	0554	0883	1.070
Highast	4.410	3.490	1820	1560	1.310	1670	1.180	0814	0646	1.100	1150	2.990
Paok flow	4.45	3.54	1.94	169	139	186	1.28	089	080	1.29	124	3.24
Day of pook Monthly total	16	1	4	24	1	10	1	2	28	18	16	27
(milion cum)	9.36	618	379	357	3.10	354	2.68	185	153	231	2.67	5.26
Runotl (mm)	88	58	36	34	29	33	25	17	14	22	25	49
Ranntall [mm)	117	11	26	81	100	72	79	31	95	83	65	139

Statistics of monthly data for previous record (Oct 1983 to Dec 1992)

Moan	Avg.	2.008	2.314	2124	1.753	1.295	1.072	0822	0862	0585	0650	1009	1.590
Hows	Low	0374	0.380	0383	0371	0334	0.290	0243	0207	0202	0259	0.332	0375
	(vear)	1978	1976	1976	1976	1976	1976	1976	1976	1976	1976	1990	1975
	High	3.198	4414	3.385	3415	2.599	2.290	1.397	1085	0908	1299	2.714	3492
	(yoar)	1982	1990	1977	1979	1983	1979	1985	1985	1968	1968	1967	1992
Rumotr:	Ang.	50	53	53	43	33	26	21	17	14	16	25	40
	Low	9	9	10	9	8	7	6	5	5	7	8	9
	Hanh	80	100	85	83	65	56	35	27	22	33	66	88
Rainfall:	Avg.	76	59	67	53	64	61	59	67	67	67	76	84
	Low	13	8	15	5	5	9	15	13	17	8	30	20
	Hogh	142	159	143	109	161	158	120	149	149	171	163	159

Factors affecting runotf

- Flow influenced by groundwater abstraction and/or recharge
- Augmentation from effluent returns

Station and catchment description
Crump weir 19.1 m broad). Modular throughout the range. Some overspill onto floodplain before design capacity reached. Limited impact of artificial influences on river flows - net import (sowage affluent). Baseflow dominated flow regime. Pervious (Oaitic Limestonel catchment on the dip-stope of the Cotswolds: predominantly rural

040003 Medway at Teston

Measuring authority. NRA.S First year: 1956

Gind reference: 51 (TQ) 708530 Level sin (m OD): 700

Catchment area (sq km): 1256. Max alt. (m ODi: 267

Daily mean gauged discharges (cubic metres per second)

day	JAN	FE8	mar	APA	MAY	UN	UR	AUG	SEP	OCT	NOV	DFC
1	6086	10690	4.953	18260	18140	4055	2.356	2060	1.697	52110	4426	11000
2	5.781	10.220	4430	18380	19040	3.749	2345	1842	2051	68.970	4637	8343
3	5.371	9298	4.113	8003	8753	3605	2315	1.812	1.527	51840	4505	7329
4	5622	8841	3873	6554	6534	3.179	2332	2.033	1.676	24810	4321	7.137
5	7.704	8.033	3841	20240	5981	2.933	2134	1896	1689	25500	4262	6273
6	18.850	8.140	3.318	18100	5194	3.179	2093	1.829	1.615	21.200	4136	5.813
7	24.680	7780	3.743	9.885	4944	3036	2047	1970	2179	25630	4069	21500
8	19870	7429	3820	7292	4697	2.905	2412	1910	2661	23050	2584	24310
9	17.160	7.689	3.742	15940	5354	2844	3046	2395	2295	20260	5704	23.150
10	38890	6538	3669	23220	6507	2862	3099	2118	2773	20270	11280	13.520
11	51.250	5937	3546	24910	4412	3273	2881	2083	2692	51190	9717	9.879
12	39.970	5.695	2861	18560	4875	4295	2741	2717	4.369	109900	6425	33.790
13	26870	5774	3572	10340	4856	3868	2769	2.453	7914	111600	29060	49830
14	24630	6.768	3387	8304	4693	5765	3451	2166	5529	54250	65470	25790
15	24310	6580	5355	6243	4734	5707	4647	2.034	3.613	21280	23130	67870
16	19.200	6365	3221	5659	4025	13320	3346	1.816	5.328	12.640	11880	32.210
17	15530	5.594	3188	5.657	5311	10850	3205	1752	3917	9551	9049	14500
18	12.130	4660	1.546	5627	5564	4688	2413	1700	2.972	8638	8124	23170
19	13080	5158	2828	¢ 109	4505	3.936	5998	1.675	2219	7513	7264	100100
20	15680	4.765	2787	4.836	8598	3766	4272	1790	1.482	6.425	6443	123700
21	15420	4.769	2602	4573	9798	3188	2693	2002	2144	7.289	6270	99.590
22	36040	4611	2.988	4387	4256	3249	2370	3902	2828	5494	6352	56450
23	34.310	4570	3189	5949	3921	3.125	2201	2.881	2.830	5.193	6466	35.500
24	22640	4.447	3488	13040	3438	3099	2114	1882	2408	4864	6.142	24940
25	15650	4498	1.977	24050	3/43	3061	2325	1.956	2289	4649	5922	21160
26	14.980	5512	2436	24030	4512	3013	2.164	1813	2371	4510	6039	16110
27	24.510	6067	2.125	21450	4610	2882	2494	1.832	3.122	4546	5793	13720
28	23480	4.863	2023	12390	5281	2688	2518	1881	5151	4.827	5437	18060
29	21450		2.147	8968	5174	2442	2247	1838	4875	4664	5322	34460
30	16250		2.583	1618	6224	2460	2.342	1768	10730	4482	11.930	115000
31	13820		5.561		4256		2326	1.614		4.395		171300
Averege	20360	6.475	3320	12250	6191	4034	2764	2.045	3298	25.210	9.741	39210
Lowest	5371	4.447	1.546	4387	3438	2442	2047	1614	1482	4.395	2584	5813
Higherst	51250	10690	5561	24910	19040	13320	5.998	3.902	10730	111600	65470	171300
Peak flow Day of poak Monthly totel (malion cu m)	54.54	1566	889	31.76	1658	1046	740	548	855	6753	2525	10500
Runutf (mm)	43	12	7	25	13	8	6	4	7	54	20	84
Rainfall (mm)	79	9	22	86	65	49	55	34	109	122	51	134

Statistics of monthly data for previous record (Oct 1956 to Dec 1992 -incomplete or missing montha total 1.5 years)

Masen	Avg	22120	19350	14180	10590	6677	4669	3037	3.238	4569	8127	15020	18290
flows	Low	3287	4.781	3385	2328	1751	1141	1118	0578	1068	1401	2339	3670
	(year)	1992	1992	1976	1916	1976	1976	1976	1976	1959	1972	1978	1988
	Hegh	48.240	59480	31600	23550	20820	21690	1553	9.968	30090	53220	66830	3)330
	(yoers	1988	1990	1975	1983	1978	1964	1980	1985	1368	1987	1960	1965
Runotf	Avg	47	38	30	22	14	10	6	7	9	17	31	39
	Low	7	10	7	5	4	2	2	1	2	3	5	8
	Hath	103	115	67	49	44	45	16	21	62	113	138	80
Rainfal	Avg	74	50	56	51	50	54	53	57	67	77	81	79
	Low	13	3	3	7	3	8	9	10	5	5	14	15
	High	187	130	113	108	112	127	103	122	183	198	169	168

Station and catchment description

Curnp profile woir plus sharp-crested weir superseded insensitiva broad-crested weir flows greater than 27 cumecs measured at well calibrated river section $2 \mathrm{~km} d / \mathrm{s}$ (East Farleigh), updating of primary record incomplete. Responsive regime. Complex water utilisaton Significant artificial disturbanca: Iow flow augmentation froin Bowi Waier (via River Teise): >20 yrs of naturalisud flows available Mixed geology: impervious formations constitute up to 50% of the catchment. Diverse land use with significant areas of woodtand and orchard

040011 Great Stour at Horton

Mossuring authority NRA.S
First yoar. 1964

Grid reforence 61 (TR) 116554 Level stn. (m OD) 12.50

Catchment ares (sq km) 345.0 Max alt (m OD). 205

Daily mean gauged discharges (cubic metras per eecond)

DAY	JAN	FEB	MAR	APA	MAY	UN	Ju	AUG	SrP	OCT	NOV	DEC
1	2.634	3982	2978	2871	2163	1437	1233	1103	0982	2561	1848	3661
2	2593	3724	2871	2861	2.542	1422	1167	1091	0989	5114	1842	3050
3	2519	347%	2795	2343	2319	1343	1.096	1120	0936	3403	1789	2.803
4	2590	3325	2610	2607	2099	1306	1054	1076	1143	2749	1732	2.600
5	2778	3249	2649	3447	1.953	1048	1093	1068	1002	2823	1685	2404
6	4300	3141	2675	3300	1881	1.257	1165	1067	0944	2667	1627	2252
7	7304	3111	2672	2574	1795	1205	1017	1051	1009	5536	1628	3759
8	5258	3.073	2556	2421	1795	1177	1156	1066	1336	6019	1634	5.306
9	4570	3020	2511	2.759	1859	1145	1298	1080	1142	5355	1671	5389
10	11.130	3013	2452	3276	1985	1153	1434	1131	1181	5.088	4064	3.731
11	14230	2942	2394	3.317	1740	1.264	1566	1170	1182	3826	3.928	3096
12	9740	2888	2.335	2829	1670	1387	1622	1.313	1428	8872	2962	4939
13	7.769	2.875	2277	2.710	1730	1647	1400	1301	1864	11990	4730	9435
14	6444	2930	2.221	2576	1776	1801	1448	1170	2462	10700	11850	6306
15	5118	2.900	2164	2403	1724	2158	1487	1123	1934	8.046	7714	8.244
16	4416	2847	2121	2243	1492	2457	1616	1111	2195	5021	4896	6327
17	4022	2852	2086	2212	1591	2897	1416	1124	1.753	3318	3526	4313
18	3700	2773	2034	2275	1543	2004	1210	1117	1349	2887	2959	4281
19	3589	2746	1979	2316	1809	1715	1806	1106	1289	2511	2653	10170
20	3539	2675	1389	2209	1962	1511	1.746	1046	1234	2.259	2467	12630
21	3478	2656	2015	2242	1.905	1546	1408	0914	1159	2164	2574	12420
22	5.125	2667	2088	2186	1623	1469	1294	1772	1108	2138	2.442	9588
23	5895	2715	2034	2182	1412	1458	1297	1717	: 367	2068	2.410	8.493
24	4570	2634	1976	2562	1552	1433	1183	1303	1195	1914	2.299	1240
25	3.869	2.673	1976	3811	1458	1.453	1146	1156	1068	1925	2.258	5850
26	4096	3331	2018	4.585	1463	1410	1229	1029	1049	1941	2268	4659
27	6.043	3.765	2000	4002	1523	1261	1293	1018	1464	2258	2235	4106
28	5.487	3095	1970	2919	1904	1260	1317	1002	1612	2275	2150	4902
29	6601		1898	2524	1586	1259	1308	0917	1663	2262	2128	7.494
30	5095		1932	2347	1503	1263	1255	0901	1.580	2034	3979	16770
31	4308		2. 198		1452		1330	0984		1918		25350
Averago	5.252	3039	2.274	2764	1768	1505	1325	1134	1354	3.988	3065	6825
Lowes:	2519	2634	1898	2182	1412	1048	1017	0901	0936	1914	1627	2252
Highasi	14230	3982	2978	4585	2542	2897	1806	1.772	2.462	11990	11850	25350
Paak flow					310	460	2.59	254	373	1332	1380	2733
Day of paek Monthly toiel					9	17	19	23	20	13	14	31
(miluon cu m)	1407	735	609	716	474	390	365	304	351	1068	794	1828
Runati [mm]	41	21	18	21	14	11	10	9	10	31	23	53
Riminfoll (inm)	74	16	12	69	44	52	59	38	96	134	64	140

Statistics of monthly data for previous record tOct 1964 to Dec 1992 -incompiete or miseing months total 02 yeara)

Mnatr	Avg	5086	4666	4234	3416	2701	2020	1809	1702	1793	2588	3609	4350
flows.	Low	1.777	2026	1812	1655	1314	0976	0965	0877	0842	1057	1329	1681
	(yorr)	1389	1989	1973	1976	1990	1992	1976	1976	1990	1989	1918	1971
	High	10940	8.189	9086	7143	5810	3221	3231	3092	3626	8687	8195	9088
	(ymar)	1988	1988	1975	1975	1983	1971	1980	1987	1968	1987	1974	1966
Runotf	Avg.	39	33	33	26	21	15	14	13	13	20	27	34
	Low	14	14	14	12	10	7	7	7	6	8	10	13
	Pingh	85	59	71	54	45	24	25	24	27	67	62	71
Rainfall.	Avg	73	50	58	52	49	52	59	55	66	79	85	73
	Low	22	17	4	11	2	10	14	12	13	6	18	15
	High	192	104	141	117	105	120	132	106	169	224	175	146

Summary statistics							
	For 1993		For record procoding 1993		$\begin{gathered} 1993 \\ \text { As \% of } \end{gathered}$		
			$\text { pre. } 1993$				
Moan flow (m^{3} - ${ }^{\text {- }}$]	2901				3158		92
Lowest yearly maan			1808	1973			
Highest yearly mean			4717	1966			
Lowest monthy mean	1134	Aug	0842	Sep 1990			
Highesi monthly meen	6825	Dac	10940	Jan 1988			
Lowest daily meen	0901	30 Aug	0658	19 Sep 1990			
Highost dady meen	25350	310 Dac	28850	5 Nov 196\%			
Poak	27330	31 Dec	38290	9 Apr 1979			
10\% excoedance	5235		5947		88		
50\% exceedanco	2 : 80		2294		95		
95\% oxceodence	1061		1078		98		
Annual total (inilion cu m	91.49		9967		92		
Annual runutf (mm)	265		289		92		
Anruas isanfall (mm)	798		751		106		
1941.70 rainlal average (mm)			761				

Factors affecting runoff

- Flow influenced by groundwater abstraction and/or recharge
- Augmentation from uffluent returns

Broad-crasted weir (wrdth. 107 m , insensitive) in trapezoidal section plus a VA section for flows $>20 \mathrm{cumecs}$ EM installed 1992 All flows containod Minor impact of artificial influences on runoff (import of 003 cumecs in 1988). modest PWS and irrigation abstractions in lower valley flood storago reservoirs above Ashford (constructed 1990-2). U/s mill regulation ovident on the hydrographs. The E \& W branches of the Stour flow over Weald Clay; bolow the confluence (at Ashford) Chalk dominates A rural catchment with mixed land use

042010 Itchen at-Highbridge+Allbrook

Measurting authority NRA.S First year 1958

Gird roforence. 41 (SU) 467213 Leved stn (m OO): 17.10

Catchment area (sq km): 3600 Max alt. (m OD). 208

Daity mean gauged discharges (cubic metres oer eecond)												
DAY	JAN	FEB	MAR	APR	MAY	JN	un	AUG	SEP	OCT	NOV	OFC
1	6.893	7.974	6.651	9486	5.827	4927	3922	3706	3196	4924	5989	6300
2	6811	7.911	6600	7.226	5754	5084	3922	3685	3169	5853	5960	6100
3	6.728	7856	6.544	6653	5. 110	5059	3864	3612	3167	4862	5920	5900
4	6.764	7.876	6432	6348	5655	4889	3854	3645	3.133	4722	5900	5924
5	6.951	7815	6.277	6750	5645	4.702	3.779	3.717	3125	6255	5880	5.744
6	7.233	7799	6259	6251	5660	4592	3.722	3659	3147	6.878	5860	5724
7	7.289	7757	6203	6.151	5558	4.542	3.566	3.598	3.383	5700	5.840	6098
8	7012	7.703	6087	6027	5472	4423	3618	3.504	3786	6245	5.820	6375
9	7.141	7616	6081	6973	5469	4.463	3.903	3539	3571	6.602	5800	6047
10	9.370	7.568	6009	6.617	5504	4510	3.930	3545	3480	6045	5800	6044
11	8.863	7610	6072	6606	5310	4750	3850	3527	3.444	6335	5900	5896
12	7.805	7.519	6005	6343	5371	5072	3843	4014	4069	7083	6000	6652
13	8295	7426	5917	6281	5364	5007	4 120	3.780	4363	7777	6300	6616
14	8.225	7392	5883	6109	5408	4971	4397	3594	3.775	7164	6.500	6538
15	8.464	7328	5.835	5989	5382	4729	4668	3.494	3.763	6869	6100	6821
16	8.076	7258	5.785	5.936	5445	5543	4424	3.446	3890	6731	6000	6560
17	7.934	7202	5757	5958	5426	5399	4213	3421	3818	6737	5900	6609
18	7.876	7.243	5697	5905	5316	5189	4209	3.380	3689	6.641	5700	6.974
19	7935	7.140	5600	5874	5170	5043	4.325	3320	3.598	6665	5600	7.665
20	B. 161	7101	5.579	5826	5548	4884	4322	3.338	3803	6.587	5600	8480
21	8.346	6988	5595	5668	5.696	4732	4261	3337	3813	6.545	5500	7714
22	8.748	6923	5873	5808	5282	4671	4090	3.570	3741	6662	5500	7448
23	8580	6.836	5687	6412	5142	4578	3.931	3656	3682	6546	5400	7694
24	8373	6.756	5589	6410	4997	4550	3.924	3524	3602	6490	5300	7782
25	8.269	6.820	5.522	6208	5252	4478	3.977	3455	3.583	6425	5.200	7727
26	8289	6914	5426	6468	6630	4312	4089	3381	3.507	6.371	5100	7659
27	8365	6738	5.364	6197	5695	4261	4.167	3.318	3.536	6332	5100	7623
28	8.397	6609	5.326	6023	5403	4134	4099	3.280	3570	6.334	5000	-186
29	8329		5390	5.983	5135	4014	4.030	3.322	3659	6344	5200	8199
30	8167		5540	5.916	5112	3967	3.911	3.280	4025	6232	6100	9086
31	8.031		5902		5039		3.784	3.258		6099		8887
Average	7.926	7.346	5887	6347	5466	4.716	4023	3.513	3.603	6.357	5726	7002
Lowes:	6728	6.609	5326	5.668	4997	3967	3.566	3258	3.125	4722	5000	5.724
Highest	9.370	7974	6.651	9486	6630	5.543	4668	4.014	4363	7.777	6500	9.086
Peak fow												
Monthly total \{milion cu m\}	21.23	17.77	1577	1645	1464	1222	1078	941	934	1703	1484	18.76
Runoff (mm)	59	49	44	46	41	34	30	26	26	47	41	52
Rainfall (mm)	112	7	45	102	58	59	60	37	124	150	66	138

Statistics of monthly data for previous record (Oct 1958 to Dec 1992)

Mman	Avg	6348	7081	6866	6397	5597	4742	4043	3737	3606	4006	4680	5563
flows	Low	3527	3571	3517	3203	3093	2581	2474	2.331	2670	2.702	2840	3136
	(yome)	1989	1992	1992	1976	1976	1976	1976	1976	1973	1959	1973	1973
	High	10520	11060	9923	8521	1311	6549	5219	5244	5.127	7867	9858	10.860
	(ynes)	1969	1990	1977	1969	1966	1979	1979	1979	1968	1960	1960	1960
Runoff	Avg	47	48	51	46	42	34	30	28	26	30	34	41
	Low	26	25	26	23	23	19	18	17	19	20	20	23
	Hıgh	78	74	74	61	54	47	39	39	37	59	71	81
$\begin{aligned} & \text { Haintal } \\ & \text { (1959- } \\ & 1992) \end{aligned}$	Avg.	89	59	71	55	56	58	56	63	72	84	88	94
	Low	12	5	3	2	8	10	14	13	5	6	21	19
	High	159	173	172	113	145	128	109	120	201	234	218	229

Station and catchment description
Crump weir 7.75 m broad (which can drown). suporseded, in 1971. a rated section with weedgrowth problems Plus thin-plate weir (Allbrook) All flows contained (rare bypassing resulted from wrong slure settings) Flows for Allbrook for Nov/Dec 1993 were estimated due to consiruction of a fish path Flow augmentition from GW during droughts. GW catchment oxcueds topographical catchment. Artificial influences havo minor, but increasing. impact on baseflow dominated regime, small not export of water. Very permeable catchment (90% Chalk). Land use is manly arabie with scattored settlements

043005 Avon at Amesbury

1993

Measuring authonity NRA.SW
Firsi yoar 1965

Gird reference 41 (SU) 151413
Level stn (m OD): 6710
Daily mean gauged discharges (cubre metres per eecond)

OAY	JAN	FEB	MAR	APR	MAY	JUN	π	AUG	SEP	OCT	NOV	DEC
1	6689	7227	4716	5407	4.101	3466	2401	1823	1399	1.915	3434	3508
2	6.622	7048	4649	4560	4055	3446	2.335	1818	1415	1966	3.446	3382
3	6466	6942	4613	4129	402.6	3555	2307	1836	1407	1856	3434	3337
4	6.419	6849	4516	4094	4001	3459	2.291	1827	1376	1815	3.430	3400
5	6721	6.762	4466	4883	3979	3301	2.248	1801	1375	2142	3415	3373
6	7105	6513	4459	4667	3939	3.177	2182	1755	1378	2920	3383	3361
7	7310	6.437	4444	4331	3891	3072	2088	1736	1389	3310	3367	3519
8	6931	6376	4408	4399	3884	3000	2038	1714	1517	3824	3.251	3709
9	6802	6312	4368	5657	3898	2956	2093	1.703	1696	4580	3373	4208
10	9559	6203	4317	5840	3902	2363	2098	1684	1758	3587	3.486	3875
11	12450	6.096	4261	5340	3858	3141	2082	1721	1703	3126	3552	3688
12	10080	5991	4237	5.705	3901	3203	2058	1831	1867	3717	3477	3.860
13	11710	5885	4203	5416	3994	3188	2133	1787	1992	5737	3796	4186
14	14600	5.781	4146	4884	3903	3.222	2224	1715	1919	6.830	4264	4111
15	11.780	5704	4.052	4644	3845	3112	2.547	1675	1836	5270	4005	4629
16	10650	5663	4051	4426	3828	3398	2624	1630	1.773	4476	3661	4835
17	10200	5614	4.024	4444	3803	3466	2.483	1569	1718	4147	3.573	4521
18	9665	5.522	3958	4355	3731	3254	2310	1528	1669	3952	3468	4856
19	9660	5.440	3856	4356	3655	3100	2.255	1510	1631	3817	3.428	6057
20	9646	5.309	3871	4329	4.118	2989	2183	1500	1664	3.785	3390	7282
21	9148	5.275	3912	4318	4652	2.925	2142	1506	1651	3.725	3355	8395
22	10020	5178	3989	4311	4252	2883	2054	1543	1630	3652	3310	7.143
23	10050	5027	3843	4511	3852	2831	2014	1592	1602	3615	3.280	7305
24	9192	4.906	3749	4532	3569	2792	2063	1564	1564	3.526	3278	7117
25	8591	4946	3666	4465	3473	2739	2112	1318	1.562	3474	3241	6.833
26	8433	4969	3644	4541	3.872	2688	2080	1504	1540	3473	3204	6573
27	8391	4820	3628	4471	3929	2614	2049	1493	1525	3345	3185	6348
28	8180	4741	3597	4.279	3692	2541	1988	1455	1589	3559	3168	6857
29	7837		3546	4226	3541	2.488	1912	1438	1572	3474	3275	7054
30	7624		3563	4179	3508	2.460	1931	1430	1663	3451	3544	7869
31	7391		3796		3486		1880	1419		3443		9656
Average	8901	$5 \mathrm{B4} 1$	4082	4657	3875	3048	2170	1633	1613	3597	3.449	5318
Lowest	6419	4.741	3546	4094	3.473	2460	1880	1419	1375	1.815	3168	3337
Hephast	14600	1227	4716	5840	4652	3555	2624	1836	1992	6830	4264	9656
Peak flow	1591	732	476	668	473	363	272	198	208	752	447	1016
Day of posk Montily total	14	1	2	10	21	17	16	13	13	14	15	31
(milion cu m)	2384	1413	1093	1207	1038	790	581	4.37	418	963	894	1424
Runoti [mm]	74	44	34	37	32	24	18	14	13	30	28	44
Raniall (mm)	96	5	41	82	75	52	63	34	94	108	43	122

Statistics of monthly data for previous record (fab 1965 to Dec 1992)

Station and catchment description
Crump profile weir (cresi 914 m broad) flanked by broad-crested weirs Small bypass channel approx. $2 \mathrm{~m} u / \mathrm{s}$ of weir - included in rating. Full angu station. Banktult is 137 m Durimg Surniner fiows are naturally augmented from groundwater draining from northern half of River Bourne catchment. Some groundwater pumping also takes place within the cetchinent. Predominantly permeable (Chalk) catchment with a sinall inlier of Upper Greensand and Gault. Land use - rural Topographical and groundwatar catchments do not coincide

045001 Exe at Thorverton

Measurimg authority. NRA-SW First year 1956

Grid reference: 21 (SS) 936016 Level sin. (m OD) 2590

Catchment area (sq km) 600.9 Max alt (m ODI 519

Daily mean gauged discharges (cubic metrea per aecond)

DAY	JAN	FEB	MAR	APA	MAY	JN	Ur	AuG	SEP	OCT	NOV	DEC
1	7488	17.170	4.870	3881	5.274	10130	4.465	6747	3301	23.190	4587	11440
2	7.128	15060	4775	3647	4.966	15.280	4221	6691	3427	22.670	4340	11710
3	6982	13.400	4560	8075	4674	12360	3933	6.373	3311	18130	5208	11.150
4	7630	12070	4324	6.576	4.508	10520	3699	6284	3.205	17100	4590	15860
5	12.600	10940	4.301	16910	4279	9.319	3.457	6160	3066	23350	4.223	14430
6	15.700	10060	4303	9307	4087	8383	3319	5090	2978	50440	4229	16.740
7	15.370	9.385	4.252	9.271	3978	7662	3463	4.775	3944	38210	3909	33370
8	16510	8800	4.163	10020	3.902	7.244	3.500	4514	7369	35240	3712	57.850
9	22450	8168	4.107	21730	3961	7270	4133	5.111	16850	29330	6025	42650
10	72.520	7675	4046	16.600	3.917	6.941	3857	4687	15.110	25910	8967	37.000
11	57.050	7223	3.973	19.860	3786	24.930	3447	5840	10670	42670	7019	31960
12	47330	6.918	3.913	18140	3.790	34650	3200	5899	20850	42670	7104	103.000
13	71.750	6.504	3861	20030	3653	22.980	4298	4.922	21640	36340	39690	91.450
14	54760	6.164	3.761	17.280	4.080	26490	5866	4585	17050	29.600	30400	14.380
15	46160	5871	3.634	15800	4130	19.910	11.650	4.312	14740	24110	23210	70.470
16	36730	5643	3.523	14.590	4212	28.530	8.920	4010	12970	19800	19420	70270
17	31670	5428	3.458	14020	7.858	20.140	5859	3.795	11230	16.490	16400	83.650
18	26660	5300	3.347	12720	7421	19080	5.590	3.595	9828	14100	14080	78.510
19	29600	5064	3.321	11140	5.344	15.760	7819	3496	8975	12700	12320	144.800
20	87.270	4.880	3.428	10.180	4.537	13.350	5654	3377	10.710	11040	10860	170.600
21	75910	4682	3.789	9.360	4293	11.500	5.175	3.350	10620	9809	9871	101.200
22	64990	4.569	4823	9006	4.216	10.130	4631	3473	9320	8.753	8794	95.150
23	50390	4447	3.863	9503	4129	9.268	4.764	11.550	8275	7964	8147	87770
24	40450	4278	3.288	8247	4387	8.119	6614	5.531	7894	7309	9.967	63170
25	32660	7033	3.183	7.368	6490	7.223	5.927	4822	7769	6763	9672	51260
26	29.540	7178	3318	7560	13670	6874	6059	4408	7812	6342	8346	38.920
27	36370	5500	3305	7015	11.310	6.338	12590	4090	7023	6.017	7684	33.630
28	29930	4.944	3.299	6361	- 102	5.659	8.788	3872	6611	5815	7356	50720
29	25940		3.340	5914	8.066	5.239	9.959	3684	6.858	5438	12.770	38.830
30	22330		3482	5.718	12.850	4.823	8359	3.535	7735	5.076	13610	70070
31	19480		3.985		10090		7.288	3.326		4871		67.050
Avarage	35530	7656	3.858	11190	5805	13.200	5823	4900	9371	19590	10880	60290
Lowes:	6982	4.278	3183	3.647	3653	4823	3200	3326	2978	4871	3.712	11150
Heghest	87270	17.170	4870	21.730	13.670	34650	12590	11550	21.640	50440	39690	170600
Pakk flow	11450	1900	539	31.56	2125	4387	18.18	24.94	3516	6316	5996	21040
Day of pook Montiny total	10	1	22	5	30	12	15	23	13	12	13	20
(mulhon cu m)	95.16	1852	1033	29.02	1555	3422	1560	1312	2429	5247	2821	161.50
Aunoff \{min)	158	31	17	48	26	57	26	22	40	87	47	269
Hantall (mm)	190	23	28	96	104	97	118	52	137	113	92	310

Statistics of monthly data for previous record (May 1958 to Dec 1992)

Moan	- Avg	28840	25510	19010	12990	8 356	5420	4681	6337	8906	16570	22800	29.510
flows	Low	5438	6450	6.376	4341	2594	1978	1151	0693	1699	1580	5297	12460
	(ywar)	1963	1965	1962	1974	1976	1975	1976	1978	1972	1978	1978	1963
	. High	57190	51730	49640	28800	29380	15870	19.770	20550	35830	59830	46170	68440
	(yeat)	1984	1990	1981	1966	1983	1958	1968	1985	1974	1960	1986	1965
Runoff	Avg	129	104	85	56	37	23	21	28	38	74	98	132
	Low	24	26	28	19	12	9	5	3	7	7	23	56
	High	255	208	221	124	131	68	88	92	155	267	199	305
Rannfall	Avg	142	104	104	75	73	74	81	97	109	128	132	150
	Low	30	7	18	7	10	9	19	28	13	13	48	51
	Hiģt	297	239	222	163	175	160	174	185	254	300	243	321

Summary statistics

	For 1993	
Mheen flow (m's ${ }^{-1}$)	15940	
Lowest yearty mean		
linghest yoarty mean		
Lowest monthly mean	3858	Mar
Heghesi monthly mean	60290	Dec
Lowest dady moan	2.978	6 Sap
Hrghest dady mean	170600	20 Dec
Posk	210.400	20 Dec
10\% exceoctance	38.940	
50\% exceectance	7.734	
95\% excoedance	3403	
Annual totel (milion cu mi	50270	
Annual runotf (mm)	837	
Annual rainfall (mm)	1360	

Factors affecting runoff

- Reservoir(s) in catchment

Flow influencerd by groundwater abstraction and/or recharge

- Abstraction for public water supplies
- Flow reduced by industrial and/o
agricultural abstractions
- Augmentation from surface water and/or groundwater
- Augmentation from offluent relurns

1303

Station and catchment description

Vetocity-area station with cableway. Flat VCrump profile weir constructed in 1973 due to unstable bed condition. Minor culvert flow through mill u/s of station included in rating. Wimblaball Reservoir has significant effect upon low flows Siation is control pornt for Wirnbtebail Reservoir operational reteases. Headwaters drain Exmoor. Geology predominantly Devonian sandstones and Carboniferous Culm Measuros. with subordinate Perman sandstones in the east. Moortand, forestry and a range of agriculture

050001 Taw at Umberleigh

Mossuring outhority: NRA.SW
Firsi year 1958

Grid raforence: 21 (SS) 608237
Leval sin. (m OD): 14.10

Catchment area (sq km) 826.2
Max att. (m OD) 604

OAY	Jan	FEB	MAR	APA	may	JUN	UR	AUG	SEP	OCT	Nov	OfC
1	7032	16.760	4.487	3963	5.505	10340	4.588	12390	2.690	84340	4846	12.940
2	6663	14650	4.416	4.758	5080	16.150	4207	11.390	2.618	74.790	4.823	12440
3	6638	13020	4.064	12.200	4.659	12470	3948	10.270	2.593	54.530	6034	11.990
4	8445	11800	3.814	8.170	4379	10.010	3713	10.750	2476	39940	5206	16.100
5	18.930	10630	3.759	20070	4. 190	8510	3.394	9628	2361	51.460	4.665	13450
6	30240	9.709	3769	9.788	4000	7.468	3.092	7780	2299	75.250	4380	18450
7	28.320	9.042	3.691	10520	3829	6710	2.986	7067	2700	55.980	4.154	52480
8	26540	8499	3.607	9.634	3.751	6.142	2932	6.453	6.793	56830	3.990	77790
9	34000	8112	3505	18.060	3.792	11.720	3.825	7.594	21110	41360	6496	51560
10	136.100	7.596	3410	12680	3695	14.520	3.493	6.365	15960	36.550	12.160	45.650
11	80370	7154	3.298	21.880	3525	76500	3453	6620	9.433	83080	14390	41.820
12	63.260	6.790	3.269	18620	3.625	108300	2.808	7032	31420	64.840	12110	112.000
13	100.300	6394	3215	18.800	4077	53.380	2.943	5.771	39560	48280	56130	120500
14	66.690	6.039	3.109	14900	4621	58.750	7.193	5386	18940	34140	43.980	88.890
15	57.240	5.671	2.980	12.790	4.136	39.530	24.340	5110	14850	26.240	31110	89.250
16	41420	5.391	2964	11540	3792	60520	16.320	4745	12.350	21.000	24700	79.390
17	34.120	5195	2.899	12060	13.450	38050	9263	4.393	10840	17.180	20030	85.760
18	27.880	5.072	2.806	10620	8592	31.880	9.435	4192	9.314	14610	16630	88640
19	31.930	4.785	2.680	9242	7212	24030	18.520	4006	8438	12.780	14.170	133.300
20	92.730	4.465	2.662	8.534	4950	18.630	10.470	3889	11.200	11.540	12240	225200
21	76.760	4378	3.120	7.861	4273	15.190	8939	3801	24020	10310	11000	114200
22	74960	4.242	5.818	7567	4.151	12820	8.055	4.507	17.790	9.097	9.598	111500
23	55.340	4085	3.814	8.054	4032	10.920	7572	6890	14.690	8 264	8835	101700
24	42920	3.849	3069	14290	4.177	9303	13.670	4.208	13210	7559	13010	70580
25	32.210	5.248	2817	10460	7.541	8.153	12140	3.746	12430	6.954	11510	59610
26	27.720	7220	2.678	9051	53.230	7.593	10860	3510	12550	6500	9478	42.310
27	38920	5.992	2652	8365	26.950	6.917	30150	3.333	10270	6.173	8700	37030
28	31.510	4701	2.706	7.152	13940	6.023	20600	3.213	9439	¢ 876	8.149	52190
29	27.120		2.741	6.342	11530	5488	20750	3107	13920	5530	15500	41.700
30	22.780		2.684	5880	19.460	5007	17.290	3076	15630	5213	17950	104900
31	19.250		3.938		12.200		14430	2.903	- 630	5036	-	84.610
Avorego	43490	7.375	3369	11130	8483	23370	9851	5907	12.400	31650	13870	70.900
Lowest	6.638	3.849	2.652	3.963	3.525	5007	2808	2.903	2.299	5036	3.990	11.990
Hegrest	136.100	16760	5.818	21880	53.230	108300	30150	12.390	39.560	84340	56130	225200
Peok flow	19800	18.73	7.16	3606	79.33	148.20	4569	13.95	7350	14850	8567	30680
Doy of paak Monthty total	10	1	22	5	27	12	27	1	13	1	13	20
(melion cu mi	11650	17.84	902	2884	2267	60.57	2638	1582	3213	8478	3594	18990
Runolf (mmp	141	22	11	35	27	73	32	19	39	103	44	230
Rainfall (mm)	172	19	29	81	105	114	136	44	135	115	84	268

Statistics of monthly data for previous record (Oct 1958 to Dec 1992)

Mnan flows	Avg	35350	28.840	20940	13960	8.928	4942	4671	5738	7609	18910	29640	35.790
	Low	6657	3.235	7.449	3888	1.982	1329	0794	0423	0857	1043	3654	13200
	(yost)	1963	1959	1984	1974	1990	1984	1976	1976	1959	1978	1978	1963
	Pigh	62.100	68000	52.140	32800	37000	16.630	23390	19130	47.670	77360	58500	73670
	(yest)	1984	1990	1981	1966	1983	1972	1968	1985	1974	1960	1963	1965
Rumoff:	Avg.	115	85	68	44	29	16	15	19	24	61	93	116
	Low	22	9	24	12	6	4	3	,	3	3	11	43
	High	201	199	163	103	120	52	76	62	150	251	184	239
Rainfall:	Avg	130	90	91	71	67	68	73	88	92	119	129	135
	Low	28	3	18	8	12	10	23	24	14	14	53	41
	High	242	225	183	145	146	164	156	175	247	278	239	271

Summary statistics						Factors affocting runotf
	For 19		$\begin{gathered} \text { For } \\ \text { proced } \end{gathered}$	$\begin{aligned} & \text { cord } \\ & g 1993 \end{aligned}$	$\begin{gathered} 1993 \\ \text { AB \% of } \\ \text { pre } 1993 \end{gathered}$	- Abstraction for putbic water supplies.
Moan flow ($\left.\mathrm{m}^{2} \mathrm{~s}^{-1}\right)$	20470		17.900		114	
Lowast yenty meen			11310	1964		
Highost yosity moen			27590	1960		
Lowost monithy mean	3369	Mar	0423	Aug 1976		
righest monthly meen	70900	Dec	77360	Oct 1960		
Lowast daily maan	2.299	6 Sop	0202	28 Aug 1976		
trighest doily moan	225.200	20 Dec	363800	4 Dec 1960		
Poak	306800	20 Dec	644900	4 Dec 1960		
10\% exceodanco	56960		46.830		122	
50\% oxceectance	9.426		9.054		104	
95\% oxceedance	2.898		1.203		241	
Anmual totel (mallion cu m)	645.50		564.90		114	
Annual runoth (mm)	781		684		114	
Anmuel rainfall (mm) 1941.70 ramiall average (mm)	1302		$\begin{gathered} 1153 \\ 1193 \end{gathered}$		113	

Station and catchment description
Volocity-area station, main channel 34 m wida, cableway spen 54.9 m . Rock step downstream forms control Bypassing begins at about 3.7 m on right bank, but a good rating accommodates this. Significant modification to flows owing to PWS abstraction. Some naturalised flow data available. Large rura Caichmant - drains Dartmoor (granite) in south and Dovonian shams and sandstones of Exmoor in north Central area underlain mainly by Culm shales and sandstones (Cerbonifarous). Agriculture conditoned by grade 3 and 4 sods

052005 Tone at Bishops Hull

Measuring authority NRA.SW First yoar: 1961

Gind reference: 31 (ST) 206250 Level stn. (m OD) 1620

Catchment area (sq km). 2020

Daily mean gauged discharges (cubic metres per eecond)

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	Aus	SEP	OCT.	NOV	DEC
1	2.473	3383	1631	1403	1424	1.790	1003	0777	0571	2498	1358	1884
2	2431	3061	1.540	1380	1.331	2016	0954	0.799	0.522	2055	1390	2299
3	2072	3017	1468	2.223	1290	1653	0.945	0767	0.514	1.551	1.569	2237
4	2.183	2.875	1.426	1.736	1273	1.541	0927	0.889	0.504	1.577	1.393	2336
5	2969	2.713	1441	3.895	1245	1475	0.860	0789	0.511	3.470	1334	2142
6	3847	2.597	1434	1872	1248	1424	0.847	0759	0508	9806	1299	2355
7	3.660	2501	1.421	1749	1.214	1.421	0844	0.710	0671	4236	1276	3883
8	3291	2.429	1408	2391	1.224	1318	0.858	0702	1461	4871	1.243	5.213
9	4206	2341	1.376	7515	1.317	1.278	1093	0.755	1742	3.929	1458	3854
10	20.550	2.244	1362	3.534	1281	1.363	0894	0698	1.070	3388	1660	3.716
11	8431	2. 196	1.359	4.118	1212	3427	0.870	0.793	0840	5694	1477	3433
12	8072	2159	1351	3593	1.215	2.803	0812	0812	2701	7782	1.469	14180
13	21.140	2.086	1.355	5.230	1189	1.844	1077	0692	2231	7256	5595	8923
14	10160	2021	1.312	4.228	1153	1.870	1.136	0697	1274	4321	3.097	9429
15	9802	1.955	1.296	3541	1.131	1.668	2.119	0676	1259	3.564	2.385	11840
16	7634	1.919	1.296	3.155	1.238	4062	1524	0645	1392	3082	2229	9413
17	6543	1.890	1281	2844	2012	2.290	1002	0538	1093	2.713	2110	9740
18	5811	1.861	1253	2.636	1420	2001	0.968	0535	0967	2.474	2004	9230
19	5651	1.772	1209	2.474	1.200	1.784	1026	0.542	0934	2.338	1896	12980
20	8555	1.730	1.248	2.352	1.144	1632	0.896	0524	1.422	2213	1.804	59080
21	8739	1.679	1417	2.183	1.098	1512	0.851	0543	1.225	2010	1.745	15.360
22	8.631	1654	1825	2154	1.098	1.467	0829	1.053	2112	1.865	1653	24240
23	7586	1.618	1281	2208	1072	1.384	0831	1.157	1414	1754	1.614	26.120
24	6.677	1576	1220	2080	1.156	1.334	1193	0.676	1143	1680	1879	13920
25	5627	2341	1.195	1.920	1710	1283	0862	0601	1045	1611	1.751	13230
26	5.383	2025	1217	2066	3478	1.271	0902	0584	0997	1567	1.805	9269
27	5093	1706	1.239	1.750	2.111	1208	1.157	0570	0990	1498	1.682	8093
28	4745	1629	1231	1607	1.468	1127	0905	0.569	0.975	1480	1615	14110
29	4.354		1223	1540	1478	1092	0852	0573	1284	1424	3561	8651
30	4015		1342	1495	1814	1032	0790	0605	2.621	1370	3488	24810
31	3705		1.539		1495		0.773	0586		1342		12950
Averoge	6582	2178	1355	2.696	1411	1712	0.987	0697	1.200	3110	1961	11260
Lowest	2.072	1576	1.195	1.380	1072	1.032	0773	0.524	0504	1342	1243	1884
Highesi	21140	3383	1631	7.515	3478	4062	2.119	1157	2.701	9806	5595	59080
Poak now	4611	3.58	207	1176	633	7.30	325	2.51	566	1263	978	8854
Day of peok	10	1	22	9	26	16	15	22	12	6	13	20
Munthly total (milion cu m)	1763	5.27	363	699	378	444	264	187	311	833	508	3015
Runoff (mm)	87	26	18	35	19	22	13	9	15	41	25	149
Rusintall (mm)	130	15	26	92	82	72	78	37	125	93	66	231

Statistics of monthly data for previous record (Fab 1981 to Dec 1992)

Station and catchment description
Crump profile weir (breadth 12.2 m) with crest tapping (not operationali. Prior 10 March 68 velocity area station with flows unreliable below 1.42 cumec. Full range station. Clatworthy and smaller Luxhay Reservor in headwaters. Compensation flow maintains low flows. Reservoirs not large enough to influence fairly rapid response to rainfall. Minor surface water abstractions for PWS Catchment geology-prodominantly sandstones and marls. Land use - rural.

Mensuring euthority NRA-SW First yoar 1969

Gral relerence 31 (ST) 786671 Levelstn. (m OO) 1800

Catchment area (sq km): 1552.0 Max alt (m OD): 305

Daily mean gaugod discharges (cubic metres per second). .

OAY	JAN	FEB	MAR	APK	may	JUN	入1	AUG	SEP	OCt	NKV	OEC
1	14810	20260	8965	18890	8460	8148	3512	3329	1886	11700	9.651	15090
2	14720	18.680	8672	11900	8067	11990	3646	3277	1988	8464	9169	13430
3	14110	17730	8256	10450	7470	12580	3733	3133	2717	6186	9.363	13590
4	14490	16880	8004	12870	7557	8670	3398	3515	2311	7060	10440	15690
5	18010	15860	7758	36360	7388^{*}	7347	3361	5300	2431	19560	10290	14570
6	35.500	15410	7138	19040	7083	6499	3055	3338	2301	362.70	10030	16300
7	41950	14780	7605	15370	6609	5959	2937	3000	2577	28980	9796	24370
8	31000	14240	7670	15300	6645	5.714	2871	2744	3.656	24150	9655	50.370
9	27.170	13870	7626	47460	6.643	5482	4140	2897	6958	37300	10010	38370
10	95520	13210	7570	35530	7198	5272	3.957	2655	6362	21350	15100	26940
11	108400	12790	7254	29770	6580	10740	3430	2656	4124	20780	14080	23340
12	79090	12590	7294	26150	6860	16400	3210	3817	5661	32200	11720	64690
13	116.400	11910	7309	23220	6.520	10950	4357	3329	7997	160900	37660	51.780
14	108000	11980	7098	18930	6447	9469	5752	2670	6710	94340	44590	35810
15	67040	11520	6902	16460	6131	8144	9239	2414	5228	36510	23900	60890
16	50370	11000	7005	14810	6353 .	13770	9049	2523	5109	26610	19500	43600
17	40.950	10980	6890	13800	6961	14360	6608	2111	4035	22040	17930	36000
18	34020	10710	6624	12870	6889	9484	4911	1991	3862	19120	16560	44490
19	32960	10450	6315	11990	5786	8349	4414	1850	3568	16920	15250	96900
20	41890	10170	6583	11610	8276	7116	4300	2187	4310	15540	13800	125100
21	44.200	10010	6872	10840	11.090	6090	3738	2146	4480	14430	14000	87640
22	58310	9673	8.370	10340	7772	5788	3251	3085	4237	13220	11930	77010
23	48220	9115	7031	10360	6455	5668	3533	3114	3761	12360	11290	71570
24	39960	9147	6480	10700	5840	5153	4899	3363	3376	12.060	11490	56750
25	32.660	9860	6317	10500	S 684	5040	5883	2888	3215	10910	10710	44480
26	29630	10470	5908	11.210	9767	4568	5412	2504	3211	10720	10090	36090
27	30.410	9181	5925	10360	9979	4690	4823	2270	3063	10680	9878	31000
28	28380	8837	5957	9625	7398	4001	4432	2980	2386	10160	9419	52610
29	25430		6033	8.946	6613	3891	4384	2473	3316	9876	13.130	41670
30	23.200		6988	8522	9150	4.127	3845	2237	11490	9419	13130	71860
31	21490		8405		9018		3242	2290		9553		82760
Avorogn	44.140	12550	7216	16850	7379	7849	4430	2.925	4231	24820	14520	47210
Lowns1	14.110	8837	5908	8522	5684	3.891	2.811	1850	1886	6186	9169	13.430
Highost	116400	20260	8965	$4) 460$	11030.	16400	9239	5300	11490	160500	44.590	125700
Ponk fluw	14340	2049	1; 88	5914	1267	2.186	1137	619	2040	20090	5603	14020
Doy of prak	13	1	31	9	26	12	15	5	30	13	13	20
Monthly total (inilion cu m)	11820	3035	1933	4367	1976	2034	1187	784	1097	6648	3763	12660
Runoti (mm)	76	20	12	28	13	13	8	5	7	43	24	82
Raunfan (mm)	112	7	34	70	68	49	75	35	88	108	51	146

Statistics of monthly data for previous record (Dec 1969 to Doc 1992)

Muan flows.	Avg.	31410	31170	24890	16480	11400	8830	5554	5455	6.543	10560	19480	28470	
	Low	9227	11370	9.007	$1 / 19$	5048	3289	2410	1.715	2699	3.115	4406	10290	
	(ymur)	1976	1916	1932	1376	1976	1992	1976	1976	1990	1978	1978	1991	
	High	51270	61120	54230	26520	31020	30110	9956	13830	25450	28180	44240	50080	
	(your)	:984	1990	1981	1987	1983	1911	1973	1985	1974	1976	1992	1992	
fuenofi-	Avo	54	49	43	28	20	15	10	9	11	18	33	49	
	Low	16	18	16	13	9	5	4	3	5	6	7	18	
	Huph	88	105	94	44	54	50	17	24	43	43	74	86	
Renfall $\{1970$. 1992	Avg	86	61	74	50	55	66	55	66	13	75	81	87	
	Low	18	7	17	2	7	5	25	17	15	6	35	20	
	High	148	143	163	110	142	151	115	141	178	149	178	155	
Summary statistics										s affec	g runof			
			For 1993					$\begin{gathered} 1993 \\ \text { As \% of } \\ \text { pin- } 1993 \\ 98 \end{gathered}$						
			For record perecerding 1993			- Flow influenced by groundwater abstraction and/or recharge								
Moan flow (m's -')			16270		16620				Abstraction for public water supplies - Auginentation from surface water and/or					
Lowest yearly masn					10360		1973							
Highosi yearly moan					22160		1971		Auymentation from offluent returns					
Lowes: month'y mmon							1976							
Highosi monthty mean					67		1990							
Lownsi daily moen				519		37	1976							
Highosi daily mean			160		253		1979							
Pook			200	13	300	- 28	1979							
10\% exceordunco					35530		101							
50\% exceodance					10500			90						
95\% axceedance					2993			88						
Annual total (milion cu mb					52450			98						
Annual runoff \{mm\}					338			98						
Annual rainfoll (mml					829			103						
1941.70 cainfall everage (men)					840									

Station and catchment description
Velocity-area station with cableway. (Roplacoment station for Bath St James). Upstream of the city of Bath Situated immediately downsiream of confluence with Bybrook. Soction by ralway bridge: area widely inundated in flood conditions. but all flows contained through bridge. Flows below 5 cumecs are inaccurate. Flows augmented by groundwater scheme in catchment. Mixed geology predominantly clays and limestone with eastern tributaries rising from Chalk Land use - mainly rural. some urtuanisation.

Measuring authorisy NRA.ST First year 1921

Grid relerence 32 (SO) 782762
Level sti (m OD) 1700

Catchment area (sq km) 43250 Max alt (m OD) 827

Daily mean gauged discharges (cubic metres per socond)

day	JAN	FEB	MAR	APA	Nay	JN	$\boldsymbol{\mu}$	AUG	SEP	OCT	NoV	DEC
1	38750	71680	23260	17500	26480	75740	17700	32530	15690	28120	19330	37740
2	36310	65460	26500	16480	25620	57770	16590	23100	14700	35700	18970	37310
3	35050	63210	25370	17890	23500	56570	16790	21900	14020	33330	19560	44150
4	34750	59630	23380	16630	22480	55730	15460	2.5850	13230	30210	19400	50.140
5	43230	50790	22600	20870	21450	44930	14450	26020	13770	41990	22030	88990
6	12510	48270	20610	57210	19860	36410	14050	44990	13680	60690	21250	70530
1	65500	44670	21120	74200	18180	32820	14250	29.830	13900	72810	20010	104500
8	$54 / 20$	42500	20510	67250	18150	29460	13650	24250	16560	72740	20330	188700
9	55380	40680	20360	82240	16790	27450	15530	22.910	18250	75440	20440	212700
: 0	90750	31930	20300	76.570	18150	37200	16160	22390	54140	65030	25850	244500
il	185800	36390	19340	40860	20760	89410	17560	29.620	97460	59860	37350	265.100
i2	210000	34850	19200	46090	23260	137000	16660	61380	66530	70140	33.890	235500
13	201700	32540	18.930	67540	18300	138400	16370	53.110	60460	110500	101600	229300
14	215500	32200	18.390	61210	17890	88830	18260	36010	108600	112300	197600	251500
15	206200	32110	17800	49870	23690	78520	21130	31300	78340	75930	207500	274000
16	186400	30680	1/.510	42800	23480	71810	23560	28420	56050	60320	154.000	267.100
17	158700	30260	17810	38510	36710	58210	24750	25920	48630	51700	102900	268.100
:8	130100	29610	18390	36720	77860	56200	21660	22410	48560	44830	74400	250700
19	106400	28830	19650	58470	73560	51790	23680	19.990	41670	38960	60630	232800
20	105600	28030	17890	60630	52350	42870	40860	19300	36770	34600	51.180	251300
21	148300	25910	17490	41660	49590	38230	33050	18160	37520	32240	44630	293200
2.2	149400	24880	17.560	36360	52900	33280	23760	23.400	38130	30380	41260	289600
23	140200	24930	21.510	34.810	40980	30120	22950	22630	45600	28.410	37580	318600
24	129000	26040	20680	36400	35870	26940	19610	27.380	38330	26910	34860	384200
25	129600	26630	17470	39850	34870	24560	21770	23060	32570	25.990	33240	390900
26	104200	25090	16.910	40.180	64470	24570	23830	19330	32840	24990	33.420	301100
2.7	103800	23530	16220	41500	91170	22940	28160	17.940	29030	23580	37390	198.800
28	126400	24470	16680	34790	97030	2.1700	31820	17580	27090	22.140	35080	174900
29	106200		16140	27380	78940	20.040	30710	16400	25670	21700	33.610	184100
30	86690		15880	29030	64560	18840	31810	16450	25.830	20580	34730	220700
31	77140		16320		76610		40290	15720		19380		235900
Average	114000	37210	19410	43720	40820	50950	22160	26450	38790	46820	53.130	212800
lowest	34150	23530	15880	16480	16790	18840	13650	15720	13.230	19380	18.970	37.310
Highost	215500	71680	26.500	82240	97030	138400.	40860	61380	108600	112.300	207500	390900
Peak flow	22220	7569	3243	11280	10250	16430	64.83	8634	11810	12380	215.30	406.30
Day of poak	15	1	2	9	28	12	31	12	14	13	14	24
$\text { \{mblion cu m\} }$	30540	9001	5200	11330	10930	13210	5935	7084	10050	12540	137.70	570.00
Runotf (mm)	71	21	12	26	25	31	14	16	23	29	32	132
Rainfor (mm)	108	10	18	79	106	71	79	57	89	65	73	214

Statistics of monthly data for previous record (Apr 1921 to Dec 1992)

Mean	Avg	114400	101600	74840	52780	37.840	29180	22.570	27920	36.100	53560	89600	100.600
flows.	Low	22100	21.200	23200	15880	10230	9804	3587	7461	7668	10490	21730	17850
	(year)	1963	1934	1943	1938	1938	1976	1976	1976	1949	1947	1942	1933
	Hagh	250600	232300	261900	112400	131.600	117400	91240	92360	126700	140700	238300	297400
	(year)	1939	1946	1947	1947	1969	1931	1968	1927	1946	1967	1940	1965
Runoth	Avg	71	57	46	32	23	17	14	17	22	33	54	62
	Low	14	12	14	10	6	6	6	5	5	7	13	11
	Hogh	155	130	162	61	81	70	57	57	76	87	143	184
Rainfall	Avg	92	68	64	60	68	62	71	78	77	85	97	95
	Low	23	8	3	5	11	5	10	13	5	13	13	10
	Hegh	226	110	175	128	186	136	193	161	209	174	244	294
Summ	ary st	tistics								rs affe	gr runaf		
								1993					
	1			$\times 1993$		For record oceding 19		As * of ()\& 1993		ervoir(s) influen	catchm d by gro	dwater	traction
Mean fow	(${ }^{\text {(}}$ (${ }^{\text {] }}$					560		96		/or rech	$\mathbf{y e} .$		
l ownst	yetarty	man					1964			straction	r public	ater sup	
Heghest	yearly	mean					1960			w reduce	by incus	al and/o	
lowest	month	masn				61	ug 1976			icultural	straction		
Hryhest	monthly	mean	212		c 297		Doc 1965			gmentation	from su	ce wat	nd/or
Lownst	daily m					904	Sand 1976			undwate			
Hughest	daly m		390	900 25	c 637	0021	Mar 1947			gmentatı	from ef	ent retur	
Peak			406	30024									
10\% ex	ceeden		141		147			96					
50\% ex	ceeden			88				92					
95\% กx	coertan			10				148					
Annual	total im	ton Cu m)	186		194			96					
Annual	runot	(m)						96					
Annual	rainfal	(mm)						106					
1941	1. 10 ram	tall aversge	(mm)										

Station and catchment description
US gauge since 1988 previousty velocity-area station with rock control. Peak flows from 1972 . Stage monitoring site relocated th 1950 and 1970 towest flows not relable in earlier racord. Sig exports for PWS and CEGB minimum flow mainiained by Clywedog releases. Naturalised flow series accommodates major usages Diverse catchment: wet western 50% from impermeable Pataeozoic rocks and river gravels: drier northern 50% from Drift covered Carboniferous to Liassic sandstones and maris. Moorland, forestry. mixed farming

Muasuring authority. NRA.ST First yoar. 1936

Grid raforence 42 (SP) 040438 Level stn. (m OD) 19.50

Catchment aros (sq km): 22100 Max alı (m OD) 320

Daily mean gauged discharges \{cubic metres per second\}

DAY	JAN	FEB	MAA	APP	MAY	JN	Jus	Aug	SEP	ОСT	NOV	$\bigcirc \times$
1	13.500	17.760	9987	9432	9446	11160	6673	6044	5224	9760	7.528	25430
2	12.830	16600	9.928	8.513	9015	9.968	6525	6031	5085	10820	7461	21.870
3	12.510	15.830	9405	8.618	8.583	10120	6276	5930	5055	11050	7518	17.950
4	13.270	14.740	8831	11.960	7892	9564	6073	5808	5014	13.010	7254	17460
5	16.550	13.630	8690	16010	7.811	8332	5963	6.075	4972	17700	7020	17970
6	32730	12.940	8646	13800	7.582	7817	5957	5946	5003	26200	6850	16450
7	44.030	12.810	8.525	11890	7572	7342	5.734	5715	5272	43030	6.850	15.390
8	33.630	12330	8496	10.690	7351	7.138	6173	5.513	13550	53600	6881	26590
9	26340	12420	8487	57910	7.189	7356	13720	5644	19020	36010	8024	45.220
10	65.910	12350	8446	49.960	7.550	7702	13940	5699	14360	28610	14.620	34050
11	86.740	11.980	8218	45750	8103	27.900	11260	5684	9140	29750	16170	23.160
12	58.730	11.580	8.386	39420	7.313	46280	9655	5.896	9287	48440	13490	63.510
13	128.900	11.330	8.179	28650	7.129	43360	10370	5663	17.390	78740	55.960	108000
14	190.300	11560	8109	20.420	7608	41.890	12740	5532	16340	74.080	117400	94640
15	145.900	11.220	7.948	14940	7.692	33.750	10370	5.391	12370	50050	97600	83330
16	61.540	10920	8.072	13.190	7036	28.970	11860	5664	9674	24.600	58390	54040
17	40900	10970	7874	11440	8057	24.090	12.730	5735	10210	16770	27020	35.260
18	31.200	10790	7.862	10740	7.207	19970	8379	5.350	8839	13480	20.080	29840
19	27620	10.590	7.678	10030	6716	15710	8.213	5441	7749	11650	16010	42.880
20	25200	10.310	7.475	9703	10.390	12570	7.745	5014	8322	10710	13720	60.090
21	23050	9.870	8.032	9.293	22400	10.740	6775	5317	9293	9828	12.470	75720
22	22.330	9.617	10.030	8857	12.140	9.674	6662	8.501	8676	9271	11720	64890
23	24030	9.286	9156	9397	8.827	8963	6512	8.224	1290	9026	10750	64560
24	25620	9094	8.021	10860	7778	8.450	11440	6668	6847	8873	10330	66530
25	22.060	9.731	7.597	16710	7566	7979	9.924	5913	6710	8120	11.460	45030
26	20.510	11.200	7.564	15810	36.270	7.727	8250	5641	6488	8568	13250	31460
27	26730	10640	7.493	14580	30810	7.355	7936	5493	6329	8415	14770	25.150
28	29320	9993	7.452	11.910	32440	7152	7507	5375	7.969	8336	12790	47380
29	25.370		7.412	10460	25.750	6880	7480	5308	7579	8118	13070	65010
30	21630		7.715	9674	18720	6.816	7.153	5288	1.539	7.911	26000	64.980
31	19460		B 343		14.080		6387	5.170		7618		61.730
Avorogo	42850	11850	8.324	17350	12070	15.420	8593	5828	8887	22670	21.750	46630
Lowost	12.510	9.094	7.412	8.513	6716	6.816	5.734	5014	4972	7.618	6850	15.390
Highost	190300	17.760	10030	57.910	36270	46280	13.940	8.501	19020	78.740	117.400	108000
Poak flow	21840	86.57	10.28	8332	5318	5071	1881	1087	2343	9327	12500	11050
Doy of pook Monitily total	13	2	22	9	26	13	9	22	9	13	14	13
(milion cu m)	11480	2868	22.30	4498	3232	3996	23.02	15.61	2303	6072	5637	12490
Punotf (mm)	52	13	10	20	15	18	10	7	10	27	26	57
Raviall \{mm\}	70	9	17	64	70	59	70	25	87	74	64	50

Statistics of monthly data for previous record toec 1936 to Dec 19921

Station and catchment description
Velocity-area station Recording site. control and gauging site aro widely soparated: recording al a site where all flows contained. Gauge site can measure out-of-bank flows. Extensive modification to fow rogime from abstractions and returns. Larga catchment of low relief. draining argilacoous rocks almost exclusively. Contains many large towns, but chief land use is agriculture.

Measuring authority NRA.ST First year. 1956

Grad relerenco 32 (SO) 597686 Lovet stn (m OO). 4800

Catchment area (SQ km) 1134

Daily mean gauged discharges (cubic metres par second)

DAY	Jan	fe\%	MAR	APR	may	JuN	Jul	AUS	SEP	OCT	NOV	DEC
1	10130	13.870	5.602	3867	6787	10450	5.266	3132	2251	7149	5317	10270
2	9653	13200	5.542	3672	6436	10520	4996	3122	2187	9306	5249	9945
3	9327	12430	5343	4304	6061	9.257	4816	3041	2.182	7895	5534	9.959
4	9418	11900	5.160	5131	5.803	- 197	4.653	3.347	2155	7564	5510	13130
5	12510	11260	5101	7838	5.640	7.459	4452	3839	2.145	15300	5232	12110
6	15000	10690	5047	7221	5450	6938	4286	3450	2.190	17740	5.103	12420
7	12940	10.230	4930	10530	5276	6407	4.173	3292	2191	14710	4958	21.140
8	11810	9877	4.843	10.040	5122	6065	4191	3.186	2477	13860	4801	34.700
9	12340	9665	4198	53510	5.026	5.856	5230	3092	3.370	17080	5095	50920
10	41020	9.437	4719	37080	5152	6476	4902	2.981	5152	12850	7231	37180
11	48.800	9073	4688	39.130	5.258	27.140	4.368	3078	3821	14.400	6.305	28540
12	34.720	8.685	4603	38820	4850	40320	4096	3376	4277	18.670	6206	68010
13	74.130	8377	4.535	26.050	4.742	24400	4636	3.067	10320	37890	65070	70120
14	68.660	8137	4399	20000	4.741	28340	5.581	2922	8445	28710	71240	68180
15	6/730	7954	4250	16260	4538	22280	5.138	3486	7199	20480	44.010	77900
16	56.010	7731	4.191	14080	4.521	19.240	4866	3.108	7097	15.800	29090	64380
17	44.140	7.552	4.130	12.650	5482	16.700	4249	2.842	7117	13.140	22080	52610
18	34320	7391	4058	11690	6.081	15.920	4.207	2.718	6.269	11370	17.940	46360
19	30770	7123	3.950	10740	5258	12850	4.912	2663	5538	10240	15300	60930
20	27.580	6812	3957	10020	5.666	11080	4431	2605	5487	9474	13400	65.200
21	24.510	6627	4011	9316	9287	10050	3.992	2687	5.532	8730	12.300	62680
22	23440	6406	4.116	8772	6.502	9.235	3740	3153	5253	7932	10950	70.610
23	23700	6226	3.880	9056	5725	8476	3624	3086	4799	7433	10010	86970
24	23120	6092	3711	8458	5336	7.715	3.829	2.836	4.577	7020	9728	82520
25	21290	6.128	3593	8891	6.807	7.201	3835	2.632	4354	6.645	9792	62070
26	19290	6. 183	3.544	8.923	12.280	6898	3835	2.565	4.129	6.323	9801	47710
27	19220	5887	3565	8385	12970	6.525	3.835	2.506	3922	6.119	9379	36590
28	18760	5601	3576	7.718	11610	6114	3835	2487	3831	5931	8870	58540
29	16930		3536	7371	10240	5891	3835	2450	3824	5830	8.875	53160
30	15550		3.611	7090	13230	5613	3723	2403	5541	5576	11130	58390
31	14540		3832		12.060		3323	2291		5405		56840
Average	27470	8591	4.349	14220	6901	12320	4.350	2950	4.588	12.170	14.850	48230
Lowes 1	3327	5601	3.536	3.677	4521	5613	3323	2291	2145	5405	480 :	9945
Highest	74130	13870	5602	53510	13230	40.320	5581	3839	10320	37.890	71240	86970
Peak now	106.60	1403	5.70	68.28	1638	59.66	588	3.96	1323	45.11	83.96	103.30
Day of poak	13	1	2	9	26	11	14	5	13	13	13	23
Monthy total (millian cu m)	7356	2018	11.65	3686	1848	31.93	1165	7.90	11.89	32.59	38.49	12920
Runoti (mm)	65	18	10	32	16	28	10	7	10	29	34	114
Raintol (mm)	87		15	87	86	69	68	46	91	67	73	162

Statistics of monthly data for previous record tOct 1956 to Dec 1992)

Mom	Avg	28460	24870	21330	14.700	10050	5919	4053	4.142	5909	10730	16520	24720
flows	Low	6281	7.267	7436	4.599	2.569	1.558	1010	0744	1.075	1347	3087	5.567
	(yuar)	1964	1992	1976	1990	1976	1976	1976	1976	1990	1959	1975	1975
	prigh	51630	58160	51940	32850	35380	13.090	21920	16680	29650	43130	50140	57290
	(year)	1960	1990	1981	1987	1969	1969	1968	1957	1958	1960	1960	1965
Rumotf	Avg	67	53	50	34	24	14	10	10	14	25	38	58
	low	15	16	18	11	6	4	2	2	2	3	7	13
	Hoh	122	124	123	75	84	30	52	39	68	102	115	135
Rainfall	Avg.	87	64	70	59	61	59	59	73	77	75	82	90
	Low	23	8	5	7	9	12	15	23	3	17	33	23
	High	157	138	146	132	174	125	122	170	211	183	169	183

Summary statistics

Factors affecting runoff

- Augmentation from effluent returns
- Nutural to withen 10\% at 95 percentile flow

Station and catchment description
Velocity-area station with a gravel control. Upstream shoaling may render low flow rating variable from year to year. Rarely goes out of bank Adjustments sinill and dispersed; natural catchment. Left bank characterisod by high relieat hills and broad valluys. Steep and narrow on the right bank Geology midinly Palaeozotc sediments with Pre-Cambrian crystalline rocks of the Longmynd. Relatively Drift free. some valley gravel and Boulder Clay in the lower reaches. Forestry. grazing.

Moasuring outhority NRA.WEL
First yoar. 1957

Grid raference. 32 (SO) 345056
Lovet stn. (m OD) 22.60

Catchment aroa (sq km): 911.7 Max Alt. (m OD): 886

Daity mean gauged discharges (cubic motres per second)

day	JAN	FĖB	MAR	APA	May	JN	JUL	AUG	StP	OCT	NOV	OEC
1	16.750	33310	9664	7291	13670	23670	8916	8169	4397	17.880	9716	20.500
2	15.790	30330	9454	6.738	12720	27240	8517	8.485	4266	20470	9.514	19.170
3	15.140	27.730	8.927	9732	11820	23430	8133	9.341	4170	15.400	10.790	21.380
4	17.470	25.590	0.633	13480	11.170	19.490	7780	8733	4044	16440	11.180	68.010
5	27.310	23.790	8468	45.040	10580	16.950	7.401	14270	3953	33.640	9.892	33370
6	25.740	22.120	8401	21.060	10120	15290	7070	9.529	3932	48670	9.352	36380
7	25.300	20950	8209	13490	9645	13810	6931	8.537	4434	43.870	8.968	76.940
8	24.540	20130	8015	21330	9.213	12610	6954	7992	7111	45.610	8.761	143600
9	39.380	19080	7826	71.990	8999	12060	12430	8119	48070	41930	9080	77.520
10	220.400	17.930	7703	35.920	8976	19440	9.924	8.657	28290	55200	16.150	67700
11	133.400	17.020	7.784	41.940	8743	43410	8284	9.210	17130	50.790	11.850	48.550
12	79.650	16080	7.504	39.990	8363	43460	7419	10000	18760	47.870	11.700	132200
13	181000	15.190	7.274	34390	8208	26350	7742	8215	29660	79680	93.780	116.700
14	98.270	14.530	7084	28.860	8529	28490	12570	7285	19320	46.060	61000	120600
15	165.800	14.220	6950	23050	8204	24.910	11400	7012	15590	35.990	35780	145400
16	94.370	13960	6874	20.550	9.962	37.540	14890	6661	14770	29740	27.650	101.400
17	95.370	13.280	6.859	19520	38.420	30390	10660	6182	13.470	25530	23.150	79.540
18	67.530	12.750	6705	18.430	28970	33.120	9180	5924	11650	22510	20220	158.000
19	77.010	12.180	6609	17660	20380	24590	115%	5.728	10700	20.350	18000	236300
20	136.000	11640	6497	16200	15630	21220	9419	5.545	11910	18770	16.310	125.000
21	120600	11.280	6537	16070	13.750	18.550	8362	5.674	14920	17300	15460	83740
22	100.800	10.950	7.325	15.480	12380	16.800	7.851	7.049	18180	15780	14.100	116700
23	87.170	10800	7.712	27.360	11840	15.320	7527	7.759	16220	14.710	13100	102.400
24	71.440	10380	6671	20.750	10740	13880	17090	6188	13710	13.810	13980	76660
25	54.150	10370	6322	24.380	11020	12.780	11.210	5.577	12480	13.060	22.810	60490
26	63.510	12050	6.136	20780	18.590	12.140	9884	5.321	11170	12380	19.560	48240
27	71.550	10680	6055	19730	20680	11.570	10510	5103	10290	11840	15.880	42.770
28	58.000	9913	6035	17.110	15630	10590	10150	4.993	9710	11.480	14520	72.710
29	48.120		6033	15650	15.060	9952	11400	4855	11.010	11160	15710	72.230
30	40.670		6.502	14630	46080	9424	10620	4.730	19460	10490	27.320	71.310
31	37.690		8.387		31230		8656	4.582		10050		77510
Avorego	74.470	16720	7392	23420	15.140	20950	9694	7.272	13.760	27690	19840	85.580
Lowos1	15.140	9913	6033	6.738	8204	9424	6.931	4.582	3332	10050	8.761	19.170
Hightest	220.400	33.310	9684	71990	46080	43460	17090	14.270	48070	79680	93.780	236300
Peat flow	3.27		9.72	101.50	6960	73.99	2908	1786	8038	10390	127.10	36900
Day of pook Monthly 10101	10		1	9	17	10	24	5	9	13	13	19
(milion cu m)	199.50	40.45	19.80	6070	40.55	5430	2596	1948	3566	7417	51.43	229.20
Ruontf (mm)	219	44	22	67	44	60	28	21	39	81	56	251
Rainfoll (mm)	230	15	28	118	111	93	102	52	135	109	95	276

Statistics of monthly data for previous record (Mer 1957 to Dec 1992

Station and catchment description
Valocity-area station: parmanent cableway. Low flows measured at complementary siation downstream (56010-Trosirey wair). There is a partial impact on flows resulting from three largo oxisting public water supply reservoirs in uppar catchment Intake to canal upstream of gauge Somo noturalised flows avalable. Geology - manly Old Red Sandstone. Hill farming in uppar areas, with dairy or livesiock farming below; forest
3%. Peaty soils in uplonds, seasonally wet.

Measuring authority: NRA.WEL First year: 1959

Gid reforence 22 (SN) 244416 Level sin. (m OD). 520

Catchment aras (sq km): 893.6 Max alt (m OD) 593

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APH	MAY	JNN	ת	Aug	SrP	OCT	NOV	DEC
1	16730	41780	12.900	9231	11310	35270	13120	11310	7515	21360	9.983	29070
2	15750	36390	12.520	8692	10.730	31630	11440	10990	7245	20920	9776	26610
3	16050	31980	11990	10250	10230	28880	10690	10810	7075	29.010	18350	35260
4	18.340	26310	11520	17.130	9.776	24710	10160	13.520	6799	32090	13.890	61400
5	24780	23.660	11320	41.170	9369	21.460	9.555	14.600	6497	44.930	12.190	48950
6	24960	21650	11250	25000	8936	19100	9105	13.140	6.255	62070	11.150	56.180
7	22.940	20010	10970	39300	8600	17.440	8765	11650	6.525	63.350	11.010	75180
8	23170	18.690	10560	39830	8.233	16090	9.116	11290	7493	49390	11430	87870
9	34600	17.530	10230	61110	8142	15.950	13470	13370	15920	46700	22050	78640
10	98880	16400	9.976	45330	7.995	22.250	11.920	14930	22270	42840	29.110	71.270
11	95330	15400	9654	38270	7606	101200	11.550	15340	18650	39620	27.960	55160
12	78350	14540	9383	32200	6692	118700	11720	14710	17300	37740	38650	86600
13	100300	13810	9002	29140	6.784	90640	13340	12980	16250	33360	124.900	106000
14	88.860	13120	8681	24120	7672	75.490	23460	11.350	14660	28950	129.900	106200
15	116500	13.540	8378	21250	8.751	61830	24830	10380	12830	27.150	99.140	99.230
16	94700	13.710	8357	19400	29310	70080	23.980	9704	12490	24.380	67.650	83160
17	83.430	12840	8617	18460	64990	60600	19000	8.925	11800	21.940	50970	81270
18	67.340	12260	- 530	18440	45430	56550	16180	8046	10550	20320	42520	110300
19	67750	11800	7897	19610	43.790	46920	16640	1722	10670	19070	36340	129200
20	80170	11080	7609	18030	31300	40.730	14620	7704	14420	18220	31080	108200
21	79.210	10680	8.569	15900	25.710	34060	12760	10410	46400	17360	27470	83.370
22	74500	10990	11720	16560	22.630	28830	11.350	16880	37180	16340	24350	89840
23	66920	10.220	10660	18.800	20040	25180	10740	16.020	28520	15.440	22000	88.790
24	57.240	9719	8.935	16560	24.460	22240	10950	13130	23140	14650	22540	83710
25	48870	15140	8.202	15790	25670	20010	10390	10840	21140	13510	24.670	74790
26	59430	16850	1805	16460	31600	18.920	10890	9860	19950	12490	23.970	59080
27	113000	14870	7562	15030	28200	19.300	11.990	9144	18720	12000	20980	55.510
28	115000	13700	7555	13610	24430	17220	19.910	8613	16740	11610	18940	72730
29	77810		7643	12580	25650	15.320	13830	8345	16380	11.140	23900	64.760
30	56.480		10.520	11860	47840	14240	14.840	8185	22.830	10680	29.110	60310
31	47560		10230		39080		13480	7.871		10310		61.550
Average	63390	17470	9637	22970	21320	39030	13410	11350	18.140	26.740	34530	75.170
Lowest	15.750	9719	7555	8692	6.692	14240	8.765	7704	6255	10310	9776	26.610
Highesi	116500	41.780	12900	61110	64990	118.700	24830	16880	46400	63350	129900	129200
Poak flow	123.70	4414	13.19	6767	71.13	14360	26.99	2339	5484	7571	138.50	14600
Day of peak Monthy total	15	1	1	9	17	11	14	27	21	7	14	18
(miluon cu m)	16980	4227	2581	5954	5711	101.20	35.92	3039	4184	7162	89.51	20130
Runot (mm)	190	47	29	67	64	113	40	34	47	80	100	225
Prantat (mm)	203	34	37	100	145	127	103	77	110	72	137	246

Statistics of monthty data for previous record Wul 1959 to Oec 1992 -incomptete or misaing months total 0.2 years)

Mean flows	Avg	48.000	38780	32310	22760	17080	10870	8.253	12420	16640	34930	46.660	52.900
	Low	7086	11.140	8280	7481	4228	2375	1819	1127	1073	3886	18.060	17.270
	(year)	1963	1965	1962	1974	1984	1984	1984	1976	1959	1972	1983	1991
	High	106000	87130	96730	41810	36780	41700	24.930	39210	48.680	102000	85.130	93960
	(year)	1974	1990	1981	1985	1979	1972	1968	1985	1974	1981	1986	1965
Runotf	Avg	144	106	97	66	51	32	25	37	48	105	135	159
	Low	21	30	2.5	22	13	9	5	3	3	12	47	52
	High	318	236	290	121	110	121	75	118	141	306	247	282
Ramiall	Avg.	146	97	106	86	76	80	80	102	114	152	153	158
	Low	28	2	25	10	17	17	25	16	10	40	75	28
	High	326	213	312	163	168	148	166	235	242	293	279	315

[^4] Tregaron boy, mosi of the lower arcas have soils with pormeable substrate

Measuring authority: NRA.WEL
First year: 1937

Grid reference: 33 (SJ) 348415 Level stn. (m OD): 25.40

Catchment area (sq km): 1019.3 Max alt. (m OD): 884

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL.	AUG	SEP	OCT	NOV	DEC
1	17.900	35.520	10.530	11.220	10.750	45.910	9.694	12.780	10.980	15.930	9.969	13.800
2	17.690	31.210	10.730	10.820	10.180	36.220	9.570	12.210	10.890	15.100	10.210	17.930
3	16.290	28.640	10.440	12.610	9.857	29.600	9.706	11.090	10.760	14.310	11.040	24.670
4	18.990	26.410	10.270	13.890	9.951	25.530	10.010	18.580	10.670	14.410	11.820	44.940
5	24.880	23.670	10.620	26.710	10.240	21.290	10.080	43.660	10.540	15.200	14.690	37.410
6	24.520	21.590	10.710	36.110	10.240	18.220	9.794	29.000	10.360	16.450	15.640	46.230
7	23.440	20.080	10.280	34.490	9.940	16.350	9.766	19.820	10.650	18.380	16.600	86.620
8	25.580	18.030	10.060	34.860	9.874	15.100	9.918	18.570	12.830	22.010	17.660	158.700
9	34.390	16.610	9.883	81.200	10.050	14.090	10.380	20.070	26.120	20.970	16.320	199.100
10	71.650	15.500	10.210	68.310	11.460	15.090	10.090	20.920	31.000	20.220	17.890	143.000
11	78.200	14.100	9.923	59.650	13.000	55.580	10.350	28.760	29.450	18.930	15.460	102.900
12	69.440	12.820	9.867	45.420	10.450	66.290	10.010	37.240	34.520	36.580	15.110	121.200
13	69.960	11.980	9.951	30.420	11.550	43.380	9.980	29.030	62.280	35.230	38.870	115.600
14	58.760	11.300	9.799	25.240	12.990	34.310	11.190	21.600	44.960	28.360	65.880	131.900
15	92.150	10.750	10.020	22.690	12.980	29.190	12.290	22.340	39.870	24.980	47.500	140.500
16	82.370	10.280	10.570	22.780	28.880	26.720	11.360	18.570	34.130	22.370	40.700	133.400
17	70.100	10.130	11.050	23.890	66.150	23.690	15.980	15.730	29.250	20.590	36.680	103.500
18	57.620	9.981	10.460	32.260	63.480	22.680	17.390	14.970	24.440	18.540	34.340	108.000
19	62.520	9.726	10.080	39.450	43.360	20.730	15.020	14.460	22.400	16.640	31.950	166.200
20	74.360	9.321	;0.280	34.200	30.500	18.670	12.560	14.360	22.820	15.620	29.910	146.500
21	85.690	9.074	10.930	26.820	38.030	16.330	9.647	14.240	21.830	15.220	28.560	110.700
22	86.550	9.001	11.520	19.300	27.980	14.660	9.139	15.280	20.240	13.150	25.970	173.800
23	85.450	9.527	10.500	19.050	24.330	12.910	9.204	15.140	19.250	11.900	20.410	177.900
24	75.600	9.438	9.824	20.820	22.420	11.600	10.680	14.010	19.040	11.070	16.180	143.700
25	65.550	9.570	10.150	21.810	45.210	11.420	11.200	13.270	18.320	10.370	15.440	98.330
26	59.210	10.920	10.470	20.910	43.740	11.070	10.900	12.820	17.640	9.946	14.710	73.580
27	64.950	11.490	11.080	19.970	43.400	10.260	12.880	12.440	17.160	9.573	13.060	59.890
28	60.100	10.920	11.360	17.010	35.600	9.750	16.120	12.130	16.080	9.619	11.900	65.850
29	52.430		11.350	14.280	30.140	9.446	15.020	11.840	15.800	9.684	11.190	99.150
30	45.580		11.580	11.450	45.160	9.809	15.280	11.580	17.090	9.763	13.420	102.400
31	40.690		11.430		59.690		13.190	11.210		9.647		98.100
Avarage	55.250	15.270	10.510	28.590	26.180	23.200	11.560	18.310	22.380	17.120	22.300	104.700
Lowest	16.290	9.001	9.799	10.820	9.857	9.446	9.139	11.090	10.360	9.573	9.969	13.800
Highes:	92.150	35.520	11.580	81.200	66.150	66.290	17.390	43.660	62.280	36.580	65.880	199.100
Poak flow	117.60	38.19	11.97	99.15	79.87	91.52	19.26	53.85	74.53	46.12	80.01	264.70
Day of peak Monthly total	15	1	30	9	17	11	18	4	13	12	14	264.70 9
(million cu m)	148.00	36.94	28.16	74.10	70.12	60.13	30.97	49.05	58.01	45.86	57.81	280.40
Runoff (mm)	145	36	28	73	69	59	30	48	57	45	57	275
Rainfall $\{\mathrm{mm}$ \}	192	20	28	131	162	81	92	94	115	60	81	373

Statistics of monthly data for previous record (Oct 1937 to Dec 1992)

Station and catchment description

Asymmetrical compound Crump profile weir, checked by current meter. Drowns at flows above 200 cumecs. Low flows maintained by releases from major river regulating res. (Celyn and Brenig). Data prior to February 1970 is poorer quality - based on d/s Erbistock (67002 , area: 1040.0 sq. km .) flow record. D/s flood attenuation is notable. Geology is 75% shales, slates, mudstones and palaeozoic grits; 25% extrusive igneous and Carboniferous rocks. 80% grazed open moorland, 12% forestry, remainder arable, urban negligible.

068001 Weaver at Ashbrook

Measuring authority: NRA-NW
First year: 1937

Grid reference: 33 (SJ) 670633 Level stn. (m OD): 16.30

Catchment area (sq km): 622.0 Max alt. (m OD): 222

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	3.796	6.965	2.696	2.045	2.176	9.224	1.881	1.696	1.238	2.739	2.093	3.587
2	3.638	6.055	2.664	1.964	2.105	7.034	1.769	1.745	1.309	5.325	2.094	3.386
3	3.541	5.703	2.573	2.457	2.035	5.181	1.726	1.739	1.338	3.766	2.292	3.251
4	3.639	5.587	2.462	2.695	2.047	4.344	1.695	2.150	1.296	3.202	2.221	4.208
5	5.839	5.116	2.458	3.611	2.009	3.728	1.694	2.370	1.247	10.270	2.212	4.165
6	8.181	4.686	2.454	3.013	2.027	3.236	1.630	1.899	1.260	14.790	2.175	6.337
7	6.915	4.533	2.417	2.675	2.050	2.901	1.629	1.849	1.375	9.255	2.176	20.880
8	6.146	4.421	2.401	2.565	2.040	2.644	1.678	1.817	2.595	5.929	2.120	27.980
9	7.147	4.283	2.367	14.490	2.168	2.619	1.982	2.615	$2.41{ }^{\text {i }}$	11.090	6.267	31.920
10	12.750	4.003	2.330	14.350	2.910	$3.10{ }^{\prime}$	2.715	2.445	2.665	7.839	8.167	15.870
11	20.830	3.816	2.310	7.323	3.476	17.690	2.108	2.779	2.000	5.434	6.460	11.640
12	13.110	3.624	2.307	7.305	2.693	18.920	1.827	3.539	2.042	12.260	5.266	28.870
13	18.010	3.530	2.286	7.045	2.522	8.768	2.260	3.039	2.715	11.020	16.570	31.240
14	21.810	3.395	2.220	4.930	3.524	13.290	3.112	2.882	2.419	7.962	33.610	24.540
15	21.560	3.336	2.155	4.023	2.684	10.530	4.783	3.751	2.400	5.361	18.470	36.290
16	15.650	3.237	2.138	3.420	2.505	6.771	3.633	2.627	2.217	4.066	10.410	25.980
17	11.050	3.386	2.175	3.146	2.784	5.604	3.051	2.091	2.174	3.381	7.699	18.150
18	8.497	3.488	2.160	3.462	2.694	6.213	3.313	1.925	1.940	3.104	5.786	15.680
19	7.738	3.299	2.105	3.120	1.794	4.155	4.234	1.860	1.756	3.084	4.642	19.760
20	7.038	2.894	2.071	2.903	2.351	3.471	3.494	1.864	2.138	3.244	4.118	17.690
21	6.078	2.820	2.070	2.716	3.102	3.061	2.286	1.618	2.538	3.134	3.739	23.820
22	5.730	2.812	2.300	2.547	2.520	2.829	2.151	1.794	2.325	2.766	3.540	30.000
23	6.412	2.860	2.187	2.616	2.136	2.645	1.995	1.660	2.000	2.539	3.330	30.560
24	6.335	2.896	1.971	2.476	2.305	2.394	1.901	1.564	1.895	2.440	3.151	29.130
25	5.701	3.004	1.921	2.751	1.814	2.260	1.995	1.465	1.781	2.367	3.132	20.590
26	12.920	3.064	1.883	2.590	5.509	2.205	1.994	1.483	1.686	2.334	3.127	14.350
27	19.690	2.953	1.877	2.452	22.970	2.123	2.112	1.650	1.626	2.297	3.039	11.270
28	15.030	2.706	1.876	2.283	29.890	2.000	2.066	1.518	1.593	2.292	2.968	29.010
29	12.350		1.875	2.340	17.500	1.873	2.800	1.409	1.618	2.219	3.239	28.880
30	10.260		1.911	2.271	14.930	1.929	2.176	1.364	2.067	2.156	3.745	21.430
31	8.498		2.067		12.880		1.807	1.328		2.085		18.430
Average	10.190	3.874	2.216	4.053	5.295	5.425	2.371	2.050	1.922	5.153	5.929	19.640
Lowest.	3.541	2.706	1.875	1.964	1.794	1.873	1.629	1.328	1.238	2.085	2.093	3.251
Highest	21.810	6.965	2.696	14.490	29.890	18.920	4.783	3.751	2.715	14.790	33.610	36.290
Peak flow	26.32	7.44	2.80	24.07	33.88	26.34	6.15	5.74	3.42	16.61	37.22	41.42
Day of peak Monthly total	14	1	1	9	28	11	15	14	8	6	14	14
(million cu m)	27.29	9.37	5.94	10.50	14.18	14.06	6.35	5.49	4.98	13.80	15.37	52.61
Runoff (mm)	44	15	10	17	23	23	10	9	8	22	25	85
Rainfall (mm)	65	8	12	63	111	59	78	49	62	58	52	125

Statistics of monthly data for previous record (Oct 1937 to Dec 1992 -incomplete or missing months total 1.8 years)

Station and catchment description

Initially a river section (from 1937). Early gaugings lost; rating accuracy unknown. Mobile control. Data before 1972 , particularly low flows, unreliable. Unstable low flow rating led to relocation $400 \mathrm{~m} d / \mathrm{s}$ with an informal Flat V control and cableway in $8 / 78$. Prone to weed and algal growth. High flow rating (above 40 cumec) has yet to be defined. Flat catchment includes western half of Crewe. Post glacial deposits over (mostly) Keuper Marl.

072004 Lune at Caton

Measuring authority: NRA-NW
First year: 1959

Grid reference: 34 (SD) 529653 Level stn. (m OD): 10.70

Catchment area (sq km): 983.0 Max att. (m OD): 736

Daily mean gauged discharges (cubic metres per second).

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	10.070	27.530	7.532	8.486	11.500	63.480	4.502	13.580	5.167	10.730	4.730	33.960
2	.9.448	23.290	7.309	7.570	10.390	44.150	4.420	11.680	4.983	21.210	4.607	105.200
3	9.491	20.180	7.252	9.568	10.000	31.090	4.580	33.890	4.817	15.480	4.717	96.860
4	16.320	18.060	6.970	18.830	8.826	22.090	6.473	30.260	4.705	23.180	5.577	144.000
5	. 81.910	16.270	7.501	107.900	8.140	17.200	6.935	108.900	4.553	22.220	5.500	49.810
6	28.680	15.040	10.670	66.820	7.842	13.910	4.943	35.160	4.437	24.650	5.042	89.360
7	28.150	14.040	8.811	29.160	7.373	11.970	4.404	39.360	4.207	35.380	5.162	85.890
8	32.980	13.280	7.499	31.600	6.813	10.510	20.230	32.460	5.153	22.100	4.971	245.400
9	103.500	12.340	6.634	138.100	6.359	14.240	17.670	91.290	9.609	16.190	14.220	108.900
10	215.000	11.480	6.054	53.190	6.106	12.170	10.210	34.940	105.400	14.170	17.970	125.600
11	87.310	10.840	6.427	28.300	6.053	11.910	7.879	97.660	31.920	11.950	10.980	71.050
12	48.450	10.210	6.411	23.310	5.607	10.010	6.422	61.270	18.820	14.220	23.610	92.070
13	149.300	9.690	8.830	21.880	15.150	8.769	5.680	33.100	99.110	16.020	33.930	110.300
14	59.190	9.287	7.409	16.310	112.200	8.908	6.720	23.120	51.390	11.340	40.920	124.500
15	154.400	8.721	6.215	13.580	53.880	9.236	11.960	20.730	37.150	9.719	18.750	217.900
16	96.520	8.285	8.753	19.260	113.400	11.450	33.390	16.390	19.590	8.721	13.620	99.850
17	69.960	8.031	15.790	29.710	107.900	9.274	19.870	13.540	14.700	8.076	11.130	64:240
18	103.700	8.450	18.440	191.400	59.240	38.210	24.820	11.670	11.740 .	7.443	9.493	268.000
19	140.100	10.740	11.620	69.330	29.790	20.050	80.110	11.010	10.100	7.150	8.313	306.400
20	93.810	8.925	9.152	40.650	25.140	14.820	63.040	12.810	23.580	7.402	7.518	72.960
21	142.100	8.472	34.810	41.850	32.650	10.100	37.460	11.110	20.050	7.938	7.423	46.270
22	72.040	7.406	16.140	27.910	20.610	8.544	19.790	9.162	15.980	6.996	6.840	134.800
23	135.100	7.118	13.020	42.290	15.710	7.561	51.670	8.264	11.850	6.483	5.971	109.500
24	- 95.520	6.841	11.970	40.420	12.810	6.997	29.490	7.491	10.060	6.127	6.455	58.670
25	51.670	8.500	9.908	75.370	11.050	6.429	27.670	7.004	9.279	5.816	6.919	37.790
26	48.460	13.330	8.646	37.190	10.230	8.441	30.730	6.587	8.350	5.606	7.046	28.320
27	56.620	9.768	7.941	24.720	12.570	7.401	38.010	6.240	7.649	5.353	6.627	23.520
28	183.100	7.694	7.469	18.610	13.210	6.075	24.720	5.923	6.899	5.075	6.350	30.440
29	69.180		7.332	15.290	15.350	5.404	17.590	5.780	6.622	4.931	6.881	127.300
30	43.420		9.866	12.960	73.270	4.591	15.070	5.670	7.439	4.787	25.440	91.450
31	35.260		8.982		158.100		14.800	5.390		4.776		49.590
Average	79.700	11.920	10.040	42.050	31.850	15.170	21.010	26.180	19.180	11.980	11.220	104.800
Lowest	9.448	6.841	6.054	7.570	5.607	4.591	4.404	5.390	4.207	4.776	4.607	23.520
Highest	215.000	27.530	34.810	191.400	158.100	63.480	80.110	108.900	105.400	35.380	40.920	306.400
Peak flow	. 441.20	30.33	59.88	246.80	258.60	72.24	160.40	197.30	204.30	49.09	56.07	640.50
Day of poak Monthly total	10	1	21	18	16	1	20	5	13	7	14	19
(million cu m)	213.50	28.84	26.90	109.00	85.30	39.31	56.27	70.11	49.71	32.08	29.09	280.80
Runoff (mm)	217	29	27	111	87	40	57	71	51	33	30	286
Alainfall (mm)	249	16	44	161	168	59	141	101	102	46	60	325

Statistics of monthly data for previous record (Jan 1959 to Dec 1992-incomplete or missing months total 4.0 years)

Station and catchment description
Bazin type compound broad-crested weir operated after 10/6/77 as full-range station. Previously used for low/medium flows; high flows from Halton 3 km downstream. High flows inundate wide floodplain. Transfers to river Wyre under Lancs. Conjunctive Use Scheme. Major abstractions for PWS. Headwaters rise from Shap Fell and the Pennines. Mixed geology: Carboniferous Limestone, Silurian shales, Millstone Grit and Coal Measures, substantial Drift cover. Agriculture in valleys; grassland rising to peat moss in highest areas

Measuring authority: NRA-NW First year: 1939

Grid reference: 34 (SD) 367863 Level stn. (m OD): 37.30

Catchment area (sq km): 247.0
Max alt. (m OD): 873

DAY	JAN	FEB	MAR	APR	MAY	JuN	JUL	AUG	SEP	OCT	NOV	DEC
1	4.722	17.740	4.882	10.390	9.306	27.060	2.587	12.380	1.419	5.462	1.686	6.532
2	4.248	15.220	4.212	8.901	7.651	25.420	2.138	11.560	1.399	6.152	1.691	12.800
3	4.035	13.280	3.508	7.983	6.310	22.190	2.202	12.830	1.432	6.004	1.982	18.740
4	4.341	11.630	2.965	8.328	5.227	18.850	3.010	13.440	1.133	6.695	2.038	33.410
5	8.575	10.140	2.766	13.200	4.538	15.910	3.366	13.320	0.944	7.668	2.025	34.570
6	10.960	9.066	2.433	19.140	3.688	13.230	2.836	12.520	1.445	9.203	1.782	32.340
7	11.540	7.955	2.199	18.540	3.148	11.110	2.407	12.320	1.515	10.610	1.503	35.140
8	13.090	7.027	2.037	18.330	3.053	9.528	3.282	12.150	1.539	11.310	1.339	39.800
9	18.450	6.223	1.894	34.510	3.142	8.379	5.302	12.590	1.654	10.550	5.496	48.090
10	29.830	5.510	1.983	40.850	2.594	7.882	5.186	12.100	3.550	9.707	10.240	50.790
11	35.560	4.942	2.088	36.030	2.405	8.059	5.065	15.160	5.624	8.863	9.825	48.180
12	31.890	4.509	2.345	28.660	1.720	7.417	4.752	16.650	6.462	8.256	9.424	43.250
13	32.620	4.009	3.033	23.970	3.308	6.075	4.362.	15.260	6.291	7.376	11.280	40.840
14	32.040	3.751	3.053	19.640	7.315	5.825	4.826	13.540	5.670	6.146	12.040	41.200
15	33.950	3.419	2.759	15.780	8.931	4.951	6.595	11.610	6.289	5.169	11.680	49.190
16	35.630	3.186	3.321	13.300	14.300	5.155	9.391	9.885	5.645	4.326	10.530	47.420
17	37.580	3.094	5.013	12.060	29.010	4.805	10.330	8.218	4.949	3.735	9.338	41.050
18	35.650	2.918	6.792	16.940	31.090	7.275	10.270	6.831	4.082	3.180	8.099	50.990
19	40.080	3.038	6.847	21.790	27.150	8.860	10.920	5.859	3.609	2.781	6.811	78.920
20	43.050	2.810	6.926	21.480	23.200	8.678	10.340	5.158	4.913	2.805	5.736	69.030
21	38.940	2.769	12.660	21.070	19.530	7.812	9.210	4.542	7.887	2.700	4.595	54.500
22	34.950	2.649	13.190	19.510	16.410	7.110	8.085	3.812	10.340	2.110	3.759	46.790
23	33.250	2.490	12.170	20.560	13.870	6.130	8.647	3.109	9.959	1.856	3.163	42.240
24	35.540	2.181	10.780	22.740	11.620	5.123	9.216	2.588	9.122	1.723	2.650	35.990
25	32.360	3.741	9.183	22.490	10.200	4.426	9.908	2.404	8.453	1.540	2.274	30.590
26	26.660	5.752	7.604	20.510	8.441	4.236	12.560	2.147	7.294	1.600	2.025	25.450
27	24.080	5.765	6.301	18.120	6.723	3.935	14.910	1.947	6.132	1.714	1.666	21.400
28	26.010	5.495	5.523	15.760	5.724	3.718	15.980	1.736	5.199	1.764	1.565	18.930
29	25.230		4.943	13.190	5.371	3.278	15.470	1.640	4.590	1.760	2.102	23.680
30	22.800		9.017	10.850	6.015	3.021	14.340	1.646	4.324	1.828	3.421	27.280
31	20.350		11.460		22.060		13.590	1.544		1.758		25.560
Average	25.420	6.082	5.609	19.150	10.420	9.182	7.777	8.403	4.762	5.044	5.059	37.890
Lowest	4.035	2.181	1.894	7.983	1.720	3.021	2.138	1.544	0.944	1.540	1.339	6.532
Highest	43.050	17.740	13.190	40.850	31.090	27.060	15.980	16.650	10.340	11.310	12.040	78.920
Peak flow	44.59	19.20	13.91	42.20	31.91	27.61	16.38	17.24	10.68	11.63	12.66	82.38
Day of peak	20	1	21	10	18	1	28	12	22	8	14	19
Monthly total (million cu m)	68.08	14.71	15.02	49.65	27.91	23.80	20.83	22.51	12.34	13.51	13.11	101.50
Runoff (mm)	276	60	61	201	113	96	84	91	50	55	53	411
Rainfall (mm)	326	36	105	239	205	79	167	90	131	60	127	482

Statistics of monthly data for previous record (Jan 1939 to Dec 1992)

Station and catchment description
Level record since 1939 from four different sites at Newby Bridge. All flow records from 1939 to 1974 combined into a single sequence. Since $5 / 5 / 71$ compound Crump profile weir - increased sensitivity at low flows. Full-range. Just d/s of Lake Windermere - highly regulated, compensation flow. Major abstractions for PWS, sewage effluent from Ambleside. Predominantly impervious, Borrowdale Volcanics in north and Silurian slate in south. Boulder Clay along river valleys. Mainly grassland, very wooded in lower reaches.

076007 Eden at Sheepmount

Measuring authority: NRA-NW First year; 1967

Grid reference: 35 (NY) 390571 Level stn. (m OD): 7.00

Catchment area (sq km): 2286.5 Max alt. (m OD): 950

Daily mean gauged discharges (cubic matres per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NoV	DEC
1	24.420	56.290	19.190	21.900	32.280	65.990	12.470	22.350	11.910	17.610	13.210	39.300
2	23.400	50.740	18.910	20.430	29.260	59.190	12.220	19.800	11.700	19.020	13.130	58.160
3	22.600	46.190	18.830	19.180	26.640	46.300	12.420	32.990	11.490	23.910	14.280	77.450
4	28.680	41.780	18.640	20.370	23.780	36.930	12.740	34.150	11.210	26.130	15.130	224.300
5	82.180	37.890	20.630	92.390	21.720	31.050	12.480	128.000	11.060	28.880	14.980	86.020
6	55.430	35.630	29.270	169.100	20.550	27.070	11.970	60.800	10.910	53.920	14.300	102.700
7	45.720	33.950	23.810	76.190	19.520	24.150	11.870	42.150	10.690	105.700	13.970	166.100
8	56.870	32.080	19.950	61.240	18.580	21.900	13.330	41.090	13.750	57.100	13.660	204.300
9	159.800	30.180	18.510	140.700	17.800	20.670	15.970	71.170	28.770	43.960	16.110	169.500
10	212.400	28.460	17.680	114.100	17.290	20.800	15.480	46.860	37.270	41.690	23.350	152.700
11	141.800	27.170	17.590	66.100	16.960	22.400	14.800	52.680	43.090	32.540	19.030	116.900
12	88.860	25.940	18.160	53.340	16.210	21.470	15.440	51.010	23.490	30.330	26.180	95.580
13	257.700	25.030	22.460	49.630	24.510	19.400	13.380	39.290	73.330	34.030	52.490	135.200
14	139.600	24.180	20.800	39.560	181.100	18.630	13.450	29.450	81.210	27.050	80.380	162.100
15	303.600	23.180	18.610	33.130	105.400	18.070	16.510	24.950	68.100	23.080	44.210	271.900
16	195.600	22.400	20.340	29.730	139.500	17.830	30.530	22.960	40.100	20.660	31.830	166.600
17	191.700	21.990	23.560	30.020	243.700	17.480	27.380	20.550	29.920	19.040	26.290	97.580
18	159.400	20.900	30.790	164.200	147.700	20.520	19.340	18.840	24.480	17.810	22.280	287.000
19	250.500	20.720	24.000	153.100	81.210	28.740	19.100	17.820	21.510	17.040	19.840	432.200
20	182.400	19.770	20.420	73.620	65.740	26.170	22.470	17.120	25.270	18.080	18.240	149.800
21	169.600	19.280	37.780	70.900	78.910	18.390	19.510	16.320	36.670	19.420	17.840	99.780
22	142.200	18.340	28.500	53.890	57.620	16.540	17.130	15.430	32.720	17.810	17.100	129.300
23	231.600	17.840	24.930	60.620	45.020	15.570	27.590	14.880	27.900	16.640	16.390	118.500
24	250.800	17.720	23.380	70.450	37.260	14.900	29.760	14.450	24.370	15.880	15.650	97.750
25	124.200	19.380	21.400	145.100	31.900	14.600	35.390	14.060	22.570	15.300	15.760	73.850
26	102.900	24.600	19.810	90.900	28.770	14.960	35.660	13.690	20.390	14.890	16.510	59.910
27	93.650	22.500	18.820	58.930	27.400	15.210	31.890	13.340	18.860	14.520	16.910	51.150
28	185.500	19.720	18.240	46.330	25.440	13.970	41.620	13.050	17.690	14.180	16.750	51.730
29	102.800		18.340	38.840	24.430	13.250	28.870	12.790	16.860	13.910	16.500	153.700
30	75.260		22.260	34.010	26.820	12.750	25.000	12.550	16.850	13.620	30.430	126.100
31	66.120		24.160		118.400		24.530	12.180		13.400		85.810
Avarago	134.400	27.990	21.930	69.930	56.500	23.830	20.650	30.540	27.470	26.680	22.420	136.900
Lowest	22.600	17.720	17.590	19.180	16.210	12.750	11.870	12.180	10.690	13.400	13.130	39.300
Highost	303.600	56.290	37.780	169.100	243.700	65.990	41.620	128.000	81.210	105.700	80.380	432.200
Peak flow	457.60	60.47	49.67	258.30	344.60	80.18	52.18	182.60	166.50	135.60	95.94	581.30
Day of peak Monthly total	24	1	21	6	17	1	23	5	13	7	14	19
(million cu m)	360.10	67.72	58.73	181.30	151.30	61.77	55.32	81.80	71.21	71,47	58.12	366.60
Runoff (mm)	157	30	26	79	66	27	24	36	31	31	25	160
Rainfall (mm)	213	15	43	142	135	40	94	69	90	53	57	233

Statistics of monthly data for previous record \{Oct 1967 to Dec 1992 -incomplete or missing months total 3.0 vears).

Station and catchment description
Volocity-area station. Permanent cableway. Full-range. Most floods contained in immediate channel. Pre-1970 (when floodbanks constructed) bypassed via Caldew floodplain. Highly influenced by Ullswater, Haweswater and Wet Sleddale especially at low flows. Rural except for Carlisle, Ponrith and Appleby. Headwaters in Carboniferous Limestone of Pennines to east, impervious Lower Palaeozoics of Lake District massif to west: moorland. Extensive Boulder Clay covered Permo-Triassic sandstone in Vale of Eden. Arable and grazing.

079006 Nith at Drumlanrig -

Measuring authority: SRPB
First year: 1967

Grid reference: 25 (NX) 858994 Level sin. (m OD): 52.20

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	10.780	13.990	5.177	20.750	5.696	6.116	2.029	6.967	4.478	12.770	2.270	35.560
2	10.460	13.660	4.848	14.000	5.136	6.193	2.113	21.230	4.430	15.350	2.177	52.430
3	9.996	11.350	4.847	15.530	4.528	5.217	5.296	17.080	4.350	9.243	7.144	130.000
4	33.560	9.707	4.839	22.370	4.060	4.286	12.900	10.010	4.260	10.330	7.658	68.350
5	52.000	8.814	4.710	105.800	3.772	3.673	5.178	9.688	4.220	21.660	4.595	35.030
6	16.800	10.010	5.369	64.580	3.557	3.302	3.340	8.290	4.177	36.180	3.815	50.980
7	29.330	9.320	4.946	25.350	3.579	3.025	2.861	25.470	4.105	20.780	4.067	50.490
8	81.420	8.250	4.283	45.200	9.248	2.828	12.240	15.300	8.080	11.920	10.010	130.100
9	83.440	7.387	3.949	66.850	4.828	7.744	9.997	24.770	8.412	17.550	42.490	91.310
10	81.960	6.729	3.785	27.750	3.757	6.287	6.505	12.850	8.977	16.940	13.210	74.580
11	31.110	6.504	4.269	17.210	3.361	6.661	5.327	47.310	8.544	9.957	8.535	53.310
12	20.410	6.160	4.108	13.340	2.985	7.345	3.898	16.550	6.576	8.164	12.900	37.730
13	23.510	5.899	5.031	10.800	3.959	4.757	3.152	10.240	5.757	6.714	11.850	41.520
14	94.790	5.789	4.349	8.617	25.900	4.149	3.451	8.943	5.362	5.776	10.990	69.040
15	133.900	6.998	4.583	7.375	47.650	3.507	5.327	8.554	5.173	5.155	9.862	74.880
16	72.750	6.926	7.250	7.502	79.970	3.292	9.254	6.275	5.008	4.628	17.250	49.010
17	41.770	7.144	22.230	7.869	202.100	6.127	5.891	5.282	4.854	4.208	9.943	49.330
18	53.200	7.116	30.640	37.630	60.050	16.760	4.520	4.735	4.737	3.947	7.496	170.100
19	82.190	8.389	12.770	47.190	27.000	9.277	3.780	4.260	35.850	3.835	6.260	99.210
20	51.380	6.488	10.110	73.380	17.660	5.364	3.203	3.852	20.110	4.447	6.062	36.260
21	46.780	5.941	13.780	36.720	15.780	4.180	2.783	3.490	13.320	4.259	5.487	27.940
22	32.290	5.266	9.169	25.700	11.780	3.772	2.576	3.160	10.560	3.660	5.220	33.050
23	127.700	4.986	13.100	21.560	9.094	3.297	3.018	2.989	8.972	3.415	5.909	29.170
24	72.640	4.813	22.550	15.200	7.384	2.867	3.277	2.850	9.271	3.200	4.506	22.040
25	33.630	12.640	12.520	27.090	6.247	2.974	7.917	2.657	8.108	3.013	5.485	17.620
26	40.280	10.090	9.007	17.280	5.426	5.318	33.970	2.470	7.317	2.890	5.786	16.060
27	33.410	7.097	7.766	11.930	4.821	3.772	10.900	2.334	6.851	2.765	4.645	15.790
28	43.220	5.443	25.090	9.354	4.416	2.719	13.260	2.236	6.528	2.653	4.336	24.280
29	24.860		112.200	7.606	4.278	2.327	9.194	2.163	6.907	2.591	10.030	81.760
30	20.420		138.300	6.497	5.954	2.157	6.347	2.060	8.708	2.493	58.390	24.770
31	18.240		38.920		7.195		10.130	1.920		2.400		15.700
Average	48.650	7.961	17.890	27.270	19.390	4.976	6.891	9.548	8.133	8.480	10.280	55.080
Lowest	9.996	4.813	3.785	6.497	2.985	2.157	2.029	1.920	4.105	2.400	2.177	15.700
Highest	133.900	13.990	138.300	105.800	202.100	16.760	33.970	47.310	35.850	36.180	58.390	170.100
Peak flow	392.30	19.72	291.80	144.20	282.30	19.87	54.42	88.88	88.35	75.86	92.87	245.50
Day of peak Monthly total	14	25	30	5	17	18	26	11	19	5	30	8
(million cu m)	130.30	19.26	47.91	70.68	51.94	12.90	18.46	25.57	21.08	22.71	26.64	147.50
Runotf (mm)	277	41	102	150	110	27	39	54	45	48	57	313
Rainfall (mm)	287	33	132	169	155	72	108	75	111	61	112	295

Statistics of monthly data for previous record (Jun 1967 to Dec 1992)

Station and catchment description
Velocity-area station on long straight reach at particularly well confined site. Cableway. Gravel and rock bed. Natural channel control. Sensibly natural flow regime. Afton Reservoir has small influence.

084005 Clyde at Blairston

1993

Measuring outhority: CRPB First year: 1958

Grid reference: 26 (NS) 704579
Level stn. (m OD): 17.60

Catchment area (sq km): 1704.2 Max alt. (m OD): 732

Daily maan gaiuged discharges (cubic matras por second)

Station and catchment description
Recorder moved to present position in Nov. 1974 from opposite bank. Section is natural with steep grass and tree covered banks, Velocity profile slightly uneven due to upstream bend. Control - piers of redundant rail bridge, $300 \mathrm{md} / \mathrm{s}$. Section rated by current meter to 3.4 m , just below max. recorded stage. Some naturalised flows avaitable. Very mixed geology with the older formations (Ordovician/Silurian) to the south. Hill pasture and moorland predominates but some mixed farming and urban development is found in the lower valley.

Grid reference: 27 (NN) 321197 Level stn. (m OD): 9.50

Catchment area (sq km): 80.3 Max alt. (m OD): 1130

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	Nov	DEC
1	13.000	1.621	0.744	3.436	0.490	3.097	0.358	7.092	0.205	7.486	0.411	28.680
2	23.040	4.590	0.767	1.681	0.414	2.642	9.259	18.900	0.199	8.883	0.394	28.840
3	11.120	10.490	0.673	6.368	0.391	1.587	14.430	8.851	0.199	8.698	0.521	47.190
4	24.350	13.330	0.782	6.444	0.379	1.505	2.530	8.572	0.199	4.144	0.674	19.660
5	15.950	16.200	1.631	24.930	0.382	0.902	0.939	4.348	0.199	1.506	0.521	9.422
6	5.234	7.891	1.082	5.420	0.560	0.634	0.626	11.870	0.200	7.468	0.918	20.340
7	16.530	4.757	0.859	2.397	0.490	0.637	12.940	6.880	0.236	9.147	4.079	5.553
8	27.890	2.320	1.300	15.010	0.390	0.607	15.370	3.503	0.434	3.125	5.666	9.886
9	20.110	2.181	0.740	21.540	0.330	1.160	2.394	8.225	0.919	3.081	15.300	15.150
10	21.670	1.754	0.578	6.735	0.307	0.821	1.138	2.410	1.575	2.377	1.782	8.955
11	3.342	1.448	1.762	2.525	0.308	0.541	0.754	7.359	2.349	1.379	1.475	3.389
12	3.518	1.359	1.463	1.693	0.255	0.372	0.563	2.150	0.801	0.993	6.256	3.830
13	4.053	1.971	3.005	1.736	1.410	1.207	0.458	2.955	1.163	0.765	1.651	2.379
14	47.500	14.730	2.350	1.210	1.769	1.025	0.544	4.637	0.603	0.682	1.061	15.120
15	40.600	4.120	6.110	2.378	3.178	0.895	2.302	1.765	0.444	0.607	16.190	4.700
16	119.800	3.889	58.640	8.415	11.380	3.529	3.829	1.354	0.427	0.542	5.630	2.245
17	16.060	2.605	49.720	4.967	52.570	7.340	3.006	0.777	0.465	0.519	2.223	9.178
18	6.075	6.028	7.060	8.860	5.250	3.754	0.981	1.671	0.396	0.503	1.246	104.100
19	38.270	3.082	5.260	12.320	4.513	2.177	0.782	0.961	17.970	5.203	0.850	11.200
20	22.190	4.753	16.220	24.800	1.870	0.873	0.566	0.722	9.639	2.840	0.716	2.413
21	45.530	1.633	4.593	5.829	1.341	1.504	0.445	0.687	5.372	1.129	0.622	1.637
22	11.930	1.446	3.798	9.934	0.981	0.985	5.199	0.499	1.768	0.827	1.029	1.781
23	57.370	1.575	3.240	5.159	0.711	0.595	6.138	0.427	1.128	0.714	0.675	1.706
24	11.150	7.056	6.116	2.792	0.528	0.474	18.790	0.388	3.516	0.631	0.452	1.316
25	3.852	8.775	2.770	2.136	0.421	7.249	4.268	0.351	1.253	0.570	0.822	2.437
26	6.419	2.157	2.445	1.468	0.354	3.656	4.185	0.309	0.786	0.539	0.580	2.654
27	8.552	1.062	13.430	1.158	0.313	0.840	4.173	0.290	0.603	0.503	0.763	0.884
28	3.968	0.829	9.432	0.835	0.326	0.533	7.338	0.314	0.527	0.482	0.646	8.267
29	2.972		70.910	0.639	0.768	0.429	5.092	0.487	0.532	0.464	4.292	21.300
30	4.977		23.260	0.533	20.940	0.384	7.666	0.323	2.711	0.440	8.806	3.434
31	2.350		4.392		4.810		6.060	0.254		0.424		1.937
Average	20.620	4.773	9.843	6.445	3.811	1.732	4.617	3.527	1.894	2.473	2.875	12.890
Lowest	2.350	0.829	0.578	0.533	0.255	0.372	0.358	0.254	0.199	0.424	0.394	0.884
Highest	119.800	16.200	70.910	24.930	52.570	7.340	18.790	18.900	17.970	9.147	16.190	104.100
Peak flow	191.30	35.26	176.20	64.69	107.30	16.32	71.24	45.86	58.34	37.96	77.04	172.20
Day of peak	17	15	17	6	18	26	25	2	20	4	9	19
Monthly total (million cu m)	55.24	11.55	26.36	16.71	10.21	4.49	12.37	9.45	4.91	6.62	7.45	34.52
Runoff (mm)	688	144	328	208	127	56	154	118	61	83	93	430
Rainfall (mm)	739	127	344	214	179	B5	204	125	113	89	173	505

Statistics of monthly data for previous record (Oct 1970 to Dec 1992 -incomplete or missing months total 0.3 years)

Station and catchment description
Velocity-area station with artificial low flow control (long broad-crested weir with rectangular low flow notch) - installed 1975. Damage to part of the high flow crest results in a small discharge bypassing the central notch. All but very high flows contained. No significant abstractions or discharges. Very responsive flow regime. A very wet mountainous catchment developed on ancient metamorphic formations - some Drift cover.

093001 Carron at New Kelso

Measuring authority: HRPB First year: 1979

Grid reference: 18 (NG) 942429 Level stn. (m OD): 5.60

Daily mean gauged discharges (cubic motres per second)

Station and catchment description
40 m wide river section with floodbank on right. Any bypassing in extreme floods will be over 30 m wide floodplain on left bank. Unstable gravel control requires regular calibration of tow flow range. Adequately gauged to bankfull. Computed flows are 100% natural. 70% of catchment drains through Loch Dughaill with little additional surface storage. Typical mix of rough grazing and moorland. One of the wetter Highland catchments currently gauged.

Measuring authority: DOEN First year: 1972

Grid reference: $23(\mathrm{IH}) 460730$ Level stn. (m OD): 66.00

Catchment area (sq km): 274.6

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	Nov	DEC
1	3.985	7.290	4.321	9.268	3.990	7.889	2.814	4.324	2.504	5.678	2.356	6.642
2	3.812	6.621	3.865	8.656	3.818	22.120	2.732	11.410	2.438	5.010	2.257	9.731
3	9.355	5.942	3.564	49.660	3.555	10.520	2.738	12.840	2.363	10.270	2.278	18.420
4	8.946	5.440	3.344	29.370	3.310	6.117	2.778	7.139	2.387	7.353	2.320	12.110
5	8.254	5.045	3.322	26.700	3.245	4.733	2.607	6.067	2.416	4.977	2.335	9.727
6	5.706	4.803	3.348	14.200	3.190	4.114	2.421	4.972	2.404	5.322	2.363	12.370
7	5.565	4.557	3.249	12.940	3.117	3.727	2.470	4.599	2.223	4.643	2.640	14.700
8	22.640	4.324	3.168	19.900	3.038	3.495	2.655	4.650	3.413	4.662	3.231	49.330
9	15.720	4.120	2.645	32.840	2.923	3.327	2.781	9.890	9.276	4.214	7.356	17.270
10	13.310	4.015	2.577	14.030	2.781	3.614	2.807	8.116	32.660	3.868	3.856	17.520
11	9.296	3.852	2.823	9.512	2.742	15.660	2.734	24.180	8.128	3.601	3.185	25.390
12	7.711	3.645	2.793	7.780	2.591	10.080	2.664	7.650	5.236	3.340	4.367	37.100
13	13.720	3.504	2.834	6.897	2.658	5.863	5.814	5.543	4.074	3.122	4.047	19.100
14	25.070	3.723	2.770	6.221	3.341	6.693	11.100	5.061	3.475	2.994	3.971	29.940
15	23.780	3.923	2.772	5.548	3.395	5.660	19.510	4.715	3.058	2.917	3.509	43.320
					\backslash							
16	13.510	3.806	3.637	5.331	3.142	4.866	11.760	4.160	2.831	2.840	3.533	17.860
17	11.900	3.698	5.191	5.462	9.578	8.054	7.012	3.755	2.624	2.744	3.003	14.530
18	18.960	3.571	5.052	17.570	5.287	14.580	19.260	3.596	2.607	2.648	2.626	20.230
19	16.150	3.466	3.786	11.300	3.683	28.860	9.561	3.392	4.359	2.591	2.480	19.090
20	12.840	3.398	3.278	8.255	3.231	9.231	5.681	3.168	3.611	2.582	2.346	10.560
21	11.320	3.576	3.223	7.206	2.926	6.533	4.721	3.014	3.917	2.546	2.208	12.040
22	9.502	3.708	3.703	8.503	2.779	5.269	4.433	2.870	3.852	2.546	2.177	23.820
23	46.440	3.559	9.488	11.010	2.595	4.454	10.040	2.771	3.163	2.528	2.195	32.230
24	18.410	3.418	6.119	13.800	2.554	3.913	5.652	2.667	5.130	2.508	2.145	13.490
25	11.580	5.393	4.544	9.269	2.466	3.663	7.123	2.647	4.397	2.506	2.237	11.060
26	17.060	12.150	3.747	7.740	2.372	3.459	5.771	2.678	4.137	2.469	2.230	8.633
27	15.710	6.792	3.721	6.139	2.354	3.155	4.985	2.608	3.431	2.444	2.213	23.090
28	16.240	5.178	3.890	5.282	5.010	2.954	5.491	2.545	3.222	2.420	2.220	28.540
29	13.150		20.510	4.661	5.835	3.078	5.945	2.554	5.333	2.393	8.325	24.520
30	9.672		20.230	4.297	22.540	2.989	4.374	2.620	5.364	2.393	5.824	12.160
31	8.116		14.370		19.030		4.189	2.532		2.391		9.066
Average	13.790	4.733	5.222	12.640	4.615	7.289	5.956	5.443	4.801	3.630	3.194	19.470
Lowest	3.812	3.398	2.577	4.297	2.354	2.954	2.421	2.532	2.223	2.391	2.145	6.642
Highest	46.440	12.150	20.510	49.660	22.540	28.860	19.510	24.180	32.660	10.270	8.325	49.330
Peak flow	78.37	16.74	43.07	84.42	45.22	45.53	40.96	50.47	55.14	16.60	17.63	75.66
Day of peak	23	26	29	3	30	19	18	11	10	3	29	8
Monthly sotal (million cu m)	36.93	11.45	13.99	32.78	12.36	18.89	15.95	14.58	12.44	9.72	8.28	52.15
Runoff (mm)	134	42	51	119	45	69	58	53	45	35	30	190
Rainfall (mm)	152	31	75	126	86	101	124	67	103	23	50	209

Statistics of monthly data for previous record (May 1972 to Dec 1992

Station and catchment description
Velocity-area station with cableway and weir control - informal broad-crested structure (for angling enhancement), dimensions not known. The net effect of abstractions for public water supply and augmentations from effluent returns is minor. Catchment geology: mixed impermeable rocks (granite, schist and gneiss, and sandstone) overlain by substantial deposits of till, sand and gravel, Largely upland given over mainly to grassland or heath.

203010 Blackwater at Maydown Bridge

Measuring authority: DOEN First yoar: 1970

Grid reference: 23 (IH) 820519
Level stn. (m OD): 15.00

DAY	JaN	feb	MAR	APP	MAY	JuN	JUL	aug	SEP	OCT	NOV	DEC
1	8.991	17.470	10.620	24.560	9.783	18.430	4.326	9.262	3.277	9.785	3.620	11.910
2	8.830	15.980	9.162	23.290	8.758	31.080	4.179	16.470	3.177	8.262	3.582	25.730
3	17.250	14.360	8.623	89.330	7.955	35.460	4.151	20.090	3.076	12.200	3.538	40.930
4	32.110	12.980	7.892	85.130	7.307	18.450	4.219.	15.300	2.996	18.230	3.478	49.050
5	31.380	11.850	7.616.	80.840	6.862	13.770	3.987	15.160	2.914	21.430	3.416	22.080
6	18.850	10.990	7.253	47.490	6.437	11.400	3.754	10.950	2.848	38.630	3.365	37.880
7	15.480	10.400	6.847	35.270	6.034	9.894	3.659	9.360	2.822	20.820	3.559	56.070
8	19.350	9.829	6.477	33.880	5.638	8.269	3.520	8.604	5.366	17.620	3.661	108.500
9	50.030	9.455	6.059	75.390	5.273	7.521	3.684	12.650	17.830	17.100	15.770	107.100
10	29.220	8.942	5.867	53.100	5.006	7.965	3.956	11.050	- 36.550	14.770	11.760	71.840
11	22.990	8.551	6.637	27.100	5.064	40.840	3.780	37.200	15.670	12.260	7.743	84.220
12	19.860	7.916	6.843	20.610	4.646	55.120	3.787	21.330	9.451	10.360	7.215	91.080
13	67.620	7.476	7.473	20.840	4.878	21.500	4.178	14.140	7.102	8.988	10.700	88.240
14	54.360	7.829	7.435	19.110	14.090	24.380	12.080	17.560	5.756	7.884	12.500	65.100
15	. 109.600	10.940	6.438	16.570	16.600	20.870	29.280	20.020	4.825	7.181	9.784	111.300
18	68.320	9.652	7.479	15.150	11.750	17.970	32.440	12.640	4.259.	6.530	11.480	89.750
17	35.730	8.915	9.556	15.340	51.660	15.550	16.260	9.998	3.885	6.020	10.170	46.820
18	32.180	8.253	9.254	26.940	32.570	26.520	40.290	8.817	3.678	5.419	7.874	40.460
19	40.300	7.644	8.080	33.060	17.510	22.040	48.490	8.020	7.974	5.235	6.507	69.550
20	35.700	7.016	6.781	23.190	13.940	16.520°	18.010	7.200	8.563	4.597	5.664	37.880
21	28.760	6.947	8.998	20.350	11.290	12.770	12.920	6.548	6.584	4.319	5.226	26.290
22	25.330	8.191	6.525	17.000	9.585	10.900	10.950	5.893	8.223	4.184	4.717	59.330
23	93.140	7.491	7.805	20.990	8.454	9.451	19.370	5.290	6.078	4.031	4.334	93.750
24	98.960	6.796	9.826	28.300	7.944	8.270	16.920	4.897	5.771	3.965	4.181	66.280
25	53.830	10.200	7.718	26.560	7.492	7.521	22.690	4.620	9.798	3.887	4.260	36.210
28	38.510	23.940	6.579	27.410	6.990	7.080	21.020	4.396	10.890	3.935	4.376	28.440
27	39.940	20.310	5.977	18.460	8.285	6.229	16.240	4.194	7.738	3.925	4.322	27.550
28	37.620	13.170	6.537	14.740	12.690	5.524	14.330	4.014	6.326	3.847	4.309	84.170
29	33.660		32.660	12.440	17.120	5.032	11.480	3.904	7.250	3.771	8.839	65.450
30	24.860		69.270	10.900	27.650	4.681	9.909	3.819	11.520	3.713	16.500	35.820
31	19.990		31.660		27.040		9.115	3.450		3.661		24.990
Averag	39.060	10.840	11.100	32.110	12.460	16.700	13.260	10.870	7.740	9.566	6.882	58.120
Lowost	8.830	6.796	5.867	10.900	4.646	4.681	3.520	3.450	2.822	3.661	3.365	11.910
Highost	109.600	23.940	69.270	89.330	51.660	55.120	46.490	37.200	36.550	38.630	16.500	111.300
Peak flow	124.90	35.58	95. 18	131.70	71.22	76.57	81.28	49.87	45.08	51.47	23.30	125.30
Day of peok	23	26	30	3	17	12	18	11	10	6	9	8
(million cu m)	104.60	26.22	29.72	83.23	33.38	43.29	35.51	29.10	20.06	25.62	17.84	155.70
Runoff (mm)	110	28	31	87	35	46	37	31	21	27	19	164
Rainfall (mm)	134	27	62	123	101	88	104	61	96	36	50	185

Statistics of monthly data for previous record (Jul. 1970 to Dec 1992).

Station and catchment description
Velocity-area station with cableway and natural control. Flows influenced by major arterial drainage scheme - started in 1988. A substantial portion of the catchment is in the Irish Republic where some groundwater may be abstracted but its hydrological significance is uncertain. Geology: Carboniferous Limestone and Millstone Grit with sandstones overlain by substantial amounts of till. A predominantly rural catchment with limited afforestation. Monaghan Town (pop. 5,000) - in the Irish Republic - is the only significant urban centre.

Measuring authority: DOEN First year: 1972

Grid reference: 24 (IC) 883193 Level stn. (m OD): 17.00

Catchment area (sq km): 98.9 Max att. (m OD): 461

Daily mean gauged discharges (cubic metres per second)

DAY	JaN	FEB	MAR	APR	MAY	JUN	JuL	AUG	SEP	OCT	NOV	DEC
1	1.223	2.193	1.339	3.153	1.078	3.646	0.586	1.251	0.517	3.538	0.758	2.341
2	1.236	1.981	1.164	2.225	1.011	4.155	0.580	4.718	0.521	2.093	0.741	3.570
3	9.858	1.783	1.077	30.120	0.941	2.590	0.570	2.163	0.540	4.682	0.727	11.980
4	6.360	1.605	1.011	34.350	0.893	1.831	0.623	3.849	0.545	2.687	0.747	5.512
5	4.570	1.485	1.229	13.340	0.857	1.449	0.588	2.302	0.559	1.679	0.676	3.253
6	2.347	1.416	1.132	5.749	0.838	1.238	0.554	1.328	0.532	1.719	0.684	3.900
7	1.947	1.366	1.035	4.580	0.963	1.107	0.561	1.225	0.527	5.347	1.382	3.544
8	11.450	1.327	0.983	4.339	1.154	1.016	0.599	1.453	1.408	3.333	1.415	14.460
9	6.202	1.256	0.935	10.630	0.892	0.990	0.704	3.458	10.850	2.978	3.636	6.257
10	7.421	1.225	1.079	3.754	0.815	1.090	1.826	2.933	11.060	2.446	1.714	6.846
11	3.299	1.196	1.704	2.385	0.785	1.714	2.358	7.426	2.349	1.722	1.294	9.233
12	2.617	1.142	1.300	2.631	0.762	1.523	1.222	2.258	1.404	1.342	1.381	29.010
13	3.381	1.080	2.173	4.183	2.964	1.159	1.848	1.453	1.022	1.182	1.367	10.430
14	18.750	1.230	1.446	4.292	16.000	1.073	5.162	1.196	0.904	1.007	1.333	8.360
15	18.000	1.402	1.507	3.082	20.890	0.983	5.758	1.076	0.825	1.717	1.254	13.050
16	9.263	1.216	1.875	2.699	4.132	0.879	2.501	0.961	0.750	3.040	1.820	5.934
17	4.760	1.239	1.828	2.343 .	19.210	1.076	1.329	0.846	0.706	2.016	1.288	4.194
18	9.994	1.275	1.968	9.115	4.643	1.608	2.300	0.822	0.679	1.436	1.023	4:258
19	6.265	1.462	1.391	4.413	2.912	2.731	2.354	0.777	8.165	1.317	0.909	5.084
20	4.684	1.311	1.131	3.442	2.384	1.746	1.260	0.690	1.818	2.017	0.857	2.943
21	4.183	1.639	1.078	2.751	1.747	1.157	1.147	0.700	1.459	1.549	0.813	4.614
22	3.132	1.914	1.144	3.398	1.471	0.966	0.995	0.663	1.501	1.216	0.764	16.690
23	19.890	1.440	2.305	5.704	1.257	0.844	0.889	0.647	1.106	1.009	0.740	12.700
24	8.060	1.221	1.924	3.530	1.352	0.777	1.043	0.654	3.073	1.026	0.763	5.068
25	4.201	2.102	1.484	2.168	1.699	0.742	5.135	0.658	2.389	0.909	0.976	3.816
26	11.870	3.987	1.164	1.769	1.280	0.734	1.973	0.661	1.677	0.868	0.997	2.600
27	7.121	2.574	1.824	1.473	2.702	0.687	1.950	0.613	1.192	0.861	0.978	14.270
28	5.829	1.790	1.822	1.358	4.777	0.650	2.051	0.609	1.024	0.838	0.896	13.510
29	4.144		23.460	1.203	4.806	0.638	2.091	0.613	4.540	0.815	15.330	9.658
30	3.096		10.230	1.141	18.770	0.615	1.298	0.610°	6.101	0.792	3.081	3.982
31	2.633		6.392		6.643		1.216	0.557		0.775		2.555
Average	6.703	1.602	2.585	5.844	4.214	1.380	1.712	1.586	2.325	1.870	1.678	7.859
Lowest	1.223	1.080	0.935	1.141	0.762	0.615	0.554	0.557	0.517	0.775	0.676	2.341
Highest	19.890	3.987	23.460	34.350	20.890	4.155	5.758	7.426	11.060	5.347	15.330	29.010
Peak flow	58.21	5.43	40.96	110.00	49.94	5.50	10.07	19.89	26.61	10.33	44.25	56.86
Day of peak	14	26	29	4	15	2	14	11	10	3	29	27
Monthly total (million cu m)	17.95	3.88	6.92	15.15	11.29	3.58	4.59	4.25	6.03	5.01	4.35	21.05
Runoff (mm)	182	39	70	153	114	36	46	43	61	51	44	213
Rainfall (mm)	147	36	89	139	179	56	108	63	112	51	66	251

Statistics of monthly data for previous record (Dec 1972 to Dec 1992)

Station and catchment description
Velocity-area station with cableway. Geology: mainly basalt overlain by till with some peat. Significant proportion of upland, predominantly grassland or heath. No urban areas or major industry.

Part (ii) - The monthly flow data

The introductory information (measuring authority etc.) is as described in Part (i).

Hydrometric statistics for the year

The monthly average, peak flow, runoff and rainfall figures are equivalent to the summary information following the daily mean gauged discharges in Part (i). Because of the rounding of monthly runoff values the runoff for the year may differ slightly from the sum of the individual monthly totals.

Monthly and yearly statistics for previous record

Monthly mean flows (average, low and high) and the monthly rainfall and runoff figures are equivalent to those presented in Part (i). Again due to the rounding of monthly runoff values, the average runoff for the year derived from the previous record may differ slightly from the sum of the individual monthly totals. The peak flow is the highest discharge, in cubic metres per second, for each month. For many stations the archived series of monthly instantaneous maximum flows, from which the preceding record peak is abstracted, is incomplete, particularly for the earlier years, and certain of the peak flows are known to be of limited accuracy. Where the peak value - in an incomplete series - is exceeded by the highest daily mean flow on record, the latter is substituted; such substitutions are indicated by a ' d ' flag. An examination of the quality of the peak flow figures is continuing and significant revision may be expected as this review proceeds. The figures are published primarily to provide a guide to the range of river flows experienced throughout the year at the featured gauging stations.

Factors Affecting Runoff

Code letters are used as described in Part (i).

Station type

The station type is coded by the list of abbreviations given below - two abbreviations may be applied to each station relating to the measurement of lower or higher flows. Where total flow is a summation of the flows measured in several component channels a ' + ' separates the code for the principal monitoring station from that of the subsidiary site(s).

B Broad-crested weir

C Crump (triangular profile) single crest weir
CB Compound broad-crested weir. The compounding may include a mixture of types such as rectangular profiles, flumes and shallow-Vs and with or without divide walls
CC Compound Crump weir
EM Electromagnetic gauging station
EW Essex weir (simple Crump weir modified with angled, sloping, triangular profile flanking crests) in trapezoidal channel
FL Flume
FV Flat-V triangular profile weir
MIS Miscellaneous method
TP Rectangular thin-plate weir
US Ultrasonic gauging station
VA Velocity-area gauging station
VN Triangular (V notch) thin-plate weir

Comment

A note clarifying or qualifying data featured in the Hydrometric Statistics section; for instance to indicate that the runoff values have been derived from naturalised flows.

003002 Carron at Sgodachail

Measuring authority: HRPB
First year: 1973
Hydrometric statistics for 1993

	JAN	FEB	MAF	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	25.220	13.880	9.154	4.966	6.153	3.666	6.323	3.259	3.117	17.840	2.390	12.67	074
$\left.m^{3} s^{-1}\right): ~ P e a k$	178.50	58.02	89.68	27.31	86.71	22.55	38.07	15.49	29.90	243.20	12.87	141.00	243.20
Runoff (mm)	280	139	102	53	68	39	70	36	34	198	26	141	1187
Rainfall (mm)	402	117	132	71	113	87	119	62	56	177	42	256	1634
Monthly and yeärly statistics for previous record (Jan 1974 to Dec 1992)													
Mean Avg.	14.370	10.020	11.580	7.473	4.737	4.018	3.516	4.616	8.841	11.780	13.160	13.400	8.958
flows Low	7.226	1.944	3.680	1.294	1.020	0.957	1.142	0.983	3.659	3.963	4.228	5.595	6.846
$\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	29.740	25.850	33.120	15.030	10.110	10.270	9.481	10.680	17.670	29.670	25.410	28.120	12.192
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$).	-281.80 ${ }^{-}$	264.70	- 225.00	127.90	101.20	140.40	165.20	207:30	340.30	288.90	219.10	255.70	340.30
Runóff (mm)	160	102	129	80	53	43	39	51	95	131	141	149	1173
Rainfall (mm)* -(1981-1992)	262	169	240	99	95	94	92	132	210	247	237	244	2121
Factors affecting runoff: H Station type: VA										1993 runoff, is 101% of previous mean rainfall 77\%			

Catchment area (sq km): 241.1 Max alt. (m OD): 954

004001 Conon at Moy Bridge

006008 Enrick at Mill of Tore

Measuring authority: HRPB
First year: 1979
Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	14.910	2.344	2.946	1.245	3.096	0.816	0.190	0.206	0.166	4.851	$1: 206$. 79	264
$\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	93.62	6.95	14.83	6.30	21.87	4.23	0.37	0.58	0.30	50.13	6.32	56.46	83.62
Runoff (mm) -	377	54	75	30	78	20	5	5	4	123	30	172	972
Rainfall (mm)	397	59	95	38	113	42	45	35	41	154	42	235	1296
Monthly and yearly statistics for previous record (Dec 1979 to Dec 1992)													
Mean Avg.	5.874	5.026	4.894	1.928	1.341	0.956	0.984	0.998	2.415	4.376	5.008	5.431	3.264
flows Low	1.947	0.707	1.154	0.422	0.184	0.087	- 0.054	0.020	0.398	2.654	1.685	1.422	2.118
$\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	9.679	18.220	13.880	3.466	4.386	1.959	3.332	3.235	3.994	7.068	9.382	9.554	4.986
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	56.60	77.96	51.08	20.17	18.65	19.34	59.86	15.83	51.30	50.41	60.67	49.72	77.96
Runoff (mm)	149	116	124	47	34	23	25	25	59	111	123	137	973
Rainfall (mm)	183	119	160	64	70	75	70	91	141	165	165	184	1487

Factors affecting runoff: N
Station type: VA

Grid reference: 28 (NH) 450300 Level sin. (m OD): 109.40

Measuring authority: HRPB
First year: 1947
Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	133.700	75.390	69.040	41.680	18.930	14.180	26.930	22.480	16.140	40.700	23.200	67.950	45.859
$m^{3} s^{-1}$: Peak	491.60	146.00	160.30	119.70	121.30	65.29	80.84	55.69	49.27	137.80	84.25	328.80	491.60
Runoff (mm)	372	190	192	112	53	38	75	63	43	113	63	189	1504
Rainfall (mm)	399	112	152	53	92	64	128	67	44	136	50	281	1578
Monthly and yearly statistics for previous record (Oct 1947 to Dec 1992-incomplete or missing months total 5.7 years)													
Mean Avg.	$70.020^{\text { }}$	62.040	60.500	42.780	31.680	21.930	21.570	28.250	41.850	55.870	65.780	72.780	47.869
flows Low	31.690 .	25.810	18.670	13.940	10.940	8.861	2.959	8.162	12.510	23.090	24.090	27.970	29.991
$\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	138.300	164.600	191.500	75.730	53.050	47.560	40.010	45.140	94.870	94.030	121.700	165.100	77.537
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	617.00	703.90	507.00	203.90	232.20	165.20	247.40	254.90	223.70	324.80	411.80	1076.00	1076.00
Runoff (mm)	195	158	168	115	88	59	60	79	113	156	177	203	1571
Rainfall (mm) ${ }^{*}$ - $\{1953$-1992 $\}$	198	142	173	104	102	94	105	128	169	212	206	226	1859
Factors affecting runoff: H Station type: VA										1993 runoff is 96% of previous mean rainfall 85\%			

Grid reference: 28 (NH) 482547
Level stn. (m OD): 10.00

Catchment area (sq km): 961.8 Max alt. (m OD): 1052

Station type: VA

009001 Deveron at Avochie

Measuring authority: NERPB
First year: 1959
Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	MAY	JuN	JuL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	10.830	6.097	5.737	5.675	6.864	4.571	3.362	3.983	7.326	24.310	5.634	9.522	7.862
$\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	57.80	9.68	34.70	15.64	70.45	28.50	11.51	15.64	69.06	124.30	8.29	65.83	124.30
Runoff (mm)	66	33	35	33	42	27	20	24	43	147	33	58	561
Rainfall (mm)	86	35	30	57	108	67	71	75	97	205	31	88	950
Monthly and yearly statistics for previous record (Oct 1959 to Dec 1992)													
Man Avg.	11.820	10.300	11.450	9.958	7.528	5.138	4.610	5.777	5.643	8.941	10.710	11.130	8.579
flows Low	3.527	3.052	3.391	4.314	$3.274{ }^{\text {, }}$	2.610	1.766	1.621	2.092	1.934	2.668	3.504	4.051
$\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	24.440	19.720	22.230	21.500	21.930	11.130	9.841	19.110	16.040	28.210	29.790	23.590	12.437
Poak flow ($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$)	120.50	84.90	118.00	76.13	183.70	153.10	146.40	236.50	155.70	221.90	177.70	157.10	236.50
flunoff (mm)	72	57	69	58	46	30	28	35	33	54	63	68	613
Rainfall (mm)	89	64	78	69	72	69	74	92	83	102	103	87	982

Factors affecting runoff: N Station type: VA

Grid reference: $38(N J) 532464$
Leval stn. (m OD): 81.80

Catchment area (sq km): 441.6 Max alt. (m OD): 775

010002 Ugie at Inverugie

1993

Measuring authority: NERPB
First year: 1971
Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	MAY ${ }^{\text {- }}$	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	4.987	3.106	2.422	2.849	2.399	2.006	2.273	3.622	2.345	9.785	4.545	9.155	4.146
$\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1} \mathrm{k}$: Poak	12.29	4.18	4.36	11.46	11.66	4.98	9.30	16.21	4.90	39.85	14.68	33.27	39.85
Aunoff (mm)	41	23	20	23	20	16	19	30	19	81	36	75	402
Rainfall (mm)	54	25	25	53	77	54	88	67	37	116	53	82	731
Monthly and yearly statistics for previous record (Fab 1971 to Dec 1992)													
Mean Avg.	7.388	6.310	5.705	4.173	3.350	2.279	1.969	2.070	2.439	4.838	6.454	7.011	4.493
flows Low	2.085	2.088	1.791	1.624	1.487	. 1.200	0.927	0.858	0.912	0.894	1.531	1.360	2.069
$\mathrm{m}^{3} \mathrm{~s}^{-1} \mathrm{l}$ High	11.300	14.620	9.751	7.785	8.103	4.296	4.901	6.225	7.052	9.079	18.230	13.320	6.505
Peak flow $\left\{\mathrm{m}^{3} \mathrm{~s}^{-1}\right.$ \}	66.40	96.74	66.40	40.26	35.57	13.29	23.66	21.24	36.25	94.52	99.28	87.75	99.28
Runoff (mm)	61	48	47	33	28	18	16	17	19	40	51	58	436
Rainfall (mm)	75	49	66	51	49	54	56	64	80	88	89	74	795
Factors affecting runoff: N Station type: VA										1993 runoff is 92% of previous mean rainfall 92%			

Station type: VA

Grid reference: 48 (NK) 101485
Level stn, (m OD): 8.50

Catchment area (sq km): $\mathbf{3 2 5 . 0}$
Max alt. (m OD): 234

011001 Don at Parkhill

Measuring authority: NERPB
First year: 1969
Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	25,480	17.280	15.020	20.190	19.710	14.600	14.230	15.960	20.590	56.480	20.150	29.080	22.478
$\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1} \mathrm{l}:$ Peak	82.18	26.95	48.26	66.96	70.79	23.27	65.41	39.96	76.06	191.10	40.48	77.12	191.10
Runoff (mm)	54	33	32	41	41	30	30	34	42	119	41	61	557
Rainfall (mm)	81	29	35	69	99	58	90	71	90	163	42	82	909
Monthly and yearly statistics for previous record (Dec 1969 to Dec 1992)													
Mean Avg.	28.320	26.540	27.450	24.130	16.190	11.770	10.450	11.290	10.750	18.590	23.040	25.740	19.492
flows Low	8.070	8.557	6.274	8.487	7.514	6.424	5.128	4.644	5.019	4.567	5.692	7.738	8.833
$\mathrm{m}^{3} \mathrm{~s}^{-1} \mathrm{l}$ High	48.660	52.240	48.950	44.750	34.770	27.560	27.530	40.150	36.470	51.940	86.230	50.960	29.185
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	185.90	131.00	143.70	107.50	92.06	101.60	118.10	277.40	107.20	273.10	213.20	154.50	277.40
Plunoff (mm)	60	51	58	49	34	24	22	24	22	39	47	54	483
Rainfatl (mm)	89	58	74	62	62	63	67	74	73	89	87	75	873
Factors affecting runoff: N										1993 runoff is 115% of previous mean			

Station type: VA

Grid reference: 38 (NJ) 88714 Level stn. (m OD): 9.90

Catchment area (sq km): 1273.0 Max alt. (m OD): 872

1993 tunoff is 115% of previous mean rainfall 104\%

012006 Gairn at Invergairn

1993

Measuring authority: NERPB
First yoar: 1978
Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	MAY	Jun	Jul	AUG	SEP
Flows Avg.	8.637	5.047	3.535	3.363	4.125	1.896	1.259	1.289	3.559
$\left.\mathrm{m}^{3} \mathrm{~s}^{-1}\right):$ Peak	85.37	18.50	18.83	10.46	28.96	5.98	4.23	2.46	30.41
Runotf (mm)	154	81	63	58	74	33	22	23	62
Rainfall (mm)	177	32	52	64	111	39	56	62	110
Monthly and yearly statistics for previous record (Nov 1978 to Dec 1992)									
Mean Avg.	4.556	4.212	5.605	5.277	3.765	2.704	1.840	2.097	2.548
flows Low	2.698	1.548	3.565	2.110	1.732	0.952	0.743	0.612	0.999
$\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$) High	8.758	7.692	7.418	9.595	7.605	5.608	3.036	5.057	6.389
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	37.70	38.88	88.91	37.34	27.41	47.25	24.92	65.69	58.09
Runotf (mm)	81	69	100	91	67	47	33	37	44
Rainfall (mm) ${ }^{-}$	98	73	92	57	63	73	61	79	91

Factors affecting runoff: N
Factors affecting

Grid reference: 37 (NO) 353971 Level stn, (m OD): 217.70

Catchment area (sq km): 150.0 Max alt. (m OD): 117

OCT	NOV	DEC	Year
9.839	1.752	3.545	3.993
67.71	2.88	41.30	85.37
176	30	63	840
199	36	91	1029
4.445	4.490	4.737	3.855
1.319	1.257	1.832	2.338
12.420	12.420	7.661	4.871
95.09	61.22	48.55	95.09
79	78	-.85	811
	116	101	86
		990	

1993 runoff is 103% of previous mean rainfall 104\%

013007 North Esk at Logie Mill

Measuring authority: TRPB
First year: 1976
Hydrometric statistics for 1993

	JAN	FEB	MAA	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	C	Year
Flows Avg.	50.000	17.270	13.170	34.870	19.920	9.631	7.889	6.758	17.280	39.870	13.330	27.900	21.555
$\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	315.60	49.13	172.40	277.90	186.40	25.56	67.10	21.55	181.70	320.80	46.39	131.30	320.80
Runotf (mm)	183	57	48	124	73	34	29	25	61	146	47	102	931
Rainfall (mm)	201	19	68	143	131	45	81	60	115	151	81	99	1194
Monthly and yearly statistics for previous record (Jan 1976 to Dec 1992-incomplete or missing months total 0.1 years)													
Mean Avg.	23.380	24.670	29.290	21.440	14.170	9.133	7.178	9.661	10.890	26.040	24.210	27.240	18.928
flows Low	10.970	8.612	14.620	7.156	4.110	3.684	2.685	2.548	3.622	4.099	5.281	9.359	11.043
$\mathrm{m}^{3} \mathrm{~s}^{-1} \mathrm{l}$ High	48.600	46.630	45.240	34.750	36.420	24.300	18.060	35.810	30.540	80.410	91.170	59.880	24.927
Peak flow ($\mathrm{m}^{\mathbf{3}} \mathbf{s}^{-1}$)	240.80	195.00	279.30	230.40	180.80	271.90	133.00	320.60	342.80	452.80	462.10	398.10	462.10
Runoff (mm)	86	83	107	76	52	32	26	35	39	96	86	100	818
Rainfall (mm)	112	84	109	60	73	70	71	86	97	136	104	112	1114

Factors affecting runoff: S P I
Station type: VA

Grid reference: 37 (NO) 699640
Level stn. (m OD): 10.60

Catchment area (sq km): 730.0 Max alt. (m OD): 939

014001 Eden at Kemback

Measuring authority: TRPB
First year: 1967
Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	18.380	4.242	2.798	6.479	6.112	3.262	1.948	1.638	1.783	8.163	3.591	8.843	5.634
$\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	55.64	7.45	4.38	39.56	36.50	7.89	4.91	4.06	5.50	47.78	9.80	28.35	55.64
Runoff (mm)	160	33	24	55	53	28	17	14	15	71	30	77	578
Rainfall (mm)	213	7	47	98	110	59	56	57	77	119	63	105	1011
Monthly and yearly statistics for previous record (Oct 1967 to Dec 1992)													
Mean Avg.	6.964	6.294	5.063	3.776	2.935	2.147	1.514	1.664	2.018	3.132	4.419	5.534	3.777
flows Low	2.546	2.170	1.408	1.199	1.406	1.077	0.861	0.799	0.749	0.833	0.830	1.731	1.446
$\mathrm{m}^{3} \mathrm{~s}^{-1}$, High	10.890	19.460	8.238	7.243	8.335	6.651	3.390	6.038	11.260	6.880	14.440	12.390	5.593
Peak flow ($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$)	59.05	71.31	64.71	62.06	47.48	41.93	26.20	17.19	53.64	35.97	39.37	47.82	71.31
Runoff (mm)	61	50	44	32	26	18	13	14	17	27	37	48	388
Rainfall (mm)	85	57	67	45	61	58	58	63	73	77	72	73	789

Factors affecting runoff: S GE
Station typa: VA

Grid reference: 37 (NO) 415158
Level stn. (m OD): 6.20

Catchment area (sq km): 307.4 Max alt. (m OD): 522

993 runoff is 149% of previous mean rainfall 128\%

015011 Lyon at Comrie Bridge

Measuring authority: TRPB
First year: 1958
Hydrometric statistics for 1993

	JAN	FEB	MAR	APA	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	40.560	13.020	14.160	14.070	10.590	5.263	4.460	4.700	5.699	13.720	5.986	19.020	12.654
$\mathrm{m}^{3} \mathbf{5}^{-1}$): Peak	370.90	52.30	189.00	80.41	181.70	18.54	18.93	18.82	59.82	103.00	27.86	157.80	370.90
Runoff (mm)	278	81	97	93	73	35	31	32	38	94	40	130	1020
Rainfall (mm)	545	56	213	145	155	66	125	72	108	139	104	306	2034
Monthly and yearly statistics for previous record (Jan 1958 to Dec 1992)													
Mean Avg.	17.810	14.840	15.930	10.210	9.308	6.437	6.140	7.545	10.470	14.840	14.740	15.720	11.994
flows Low	3.596	3.198	4.219	4.002	3.537	3.470	3.062	2.221	2.843	3.662	5.320	6.182	8.330
$\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	43.920	54.190	67.160	17.390	24.520	18.870	20.800	28.940	28.120	29.930	30.550	32.780	19.871
Peak flow ($\mathrm{m}^{2} \mathrm{~s}^{-1}$)	254.70	377.90	311.30	129.00	124.90	109.70	154.70	128.70	145.10	191.90	271.30	199.60	377.90
Runoff (mm)	122	93	109	68	64	43	42	52	69	102	98	108	988
Rainfall (mm) ${ }^{\text {" }}$ -(1971-1992)	271	164	216	90	101	88	104	129	187	216	233	237	2036
Factors affecting runoff: H										1993 runoff is 105% of previous mean rainfall 100%			

Grid reference: 27 (NN) 786486 Level stn. (m OD): 92.10

Catchment area (sq km): 391. Max alt. (m OD): 1215
rainfall is 105%
rainfor

016003 Ruchill Water at Cultybraggan

Measuring authority: TRPB
First year: 1970
Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	MAY	JUN	Jut	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	19.720	2.923	7.841	8.053	4.880	2.086	1.600	1.534	2.222	4.094	2.752	11.160	5.783
$\left.\mathrm{m}^{3} \mathrm{~s}^{-1}\right):$ Peak	228.20	13.42	179.60	90.24	131.90	12.23	32.70	19.19	56.28	49.55	44.71	139.20	228.20
Runotf (mm)	531	71	211	210	131	54	43	41	58	110	72	300	1833
Rainfall (mm)	575	41	243	202	189	80	108	61	116	116	123	333	2187
Monthly and yearly statistics for previous record (Oct 1970 to Dec 1992-incomplete or missing months total 0.2 years)													
Mean Avg.	8.029	6.595	6.973	3.234	2.559	1.818	1.820	2.746	4.899	6.204	7.403	7.304	4.960
flows Low	2.263	1.050	1.802	0.758	0.304	0.381	0.239	0.164	0.345	0.789	2.306	1.630	3.281
$\mathrm{m}^{3} \mathrm{~s}^{-1} \mathrm{l}$ High	15.240	20.280	13.660	7.109	10.120	4.562	5.739	9.246	10.260	12.130	16.550	12.350	6.586
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	250.40	189.20	165.30	87.32	165.00	221.30	160.00	143.00	227.30	176.50	183.30	174.50	250.40
Runoff (mm)	216	162	188	84	69	47	49	74	128	167	193	197	1573
Rainfall (mm)	247	173	193	95	110	96	115	141	196	210	228	227	2031
Factors affecting runoff: \mathbf{N} Station type: VA										1993 runoff is 116% of previous mean rainfall 108\%			

Station type: VA

Grid reference: 27 (NN) 764204
Level stn. (m OD): 62.30

Catchment area (sq km): 99.5
Max alt. (m OD): 985

016004 Earn at Forteviot Bridge

Measuring authority: TRPB
First year: 1972
Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	116.500	25.820	26.830	51.570	30.710	16.850	9.313	7.727	8.908	30.520	16.140	57.970	33.407
$\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$: Peak	415.00	46.63	226.40	209.40	186.50	50.32	31.61	22.75	72.15	146.00	52.46	220.80	415.00
Runoff (mm)	399	80	92	171	105	56	32	26	30	105	53	199	1347
Rainfall (mm)	435	24	154	144	156	74	92	52	100	121	93	230	1675

Monthly and yearly statistics for previous record (Oct 1972 to Dec 1992 -incomplete or missing months total 0.2 years)

Foctors affecting runoff: PH Station type: VA

Grid reference: 37 (NO) 043184
Level stn. (m OD): 7.80

Catchment area (sq km): 782.2
Max alt. (m OD): 985

017001 Carron at Headswood

Moasuring zuthority: FRPB
First year: 1969
Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	15.330	2.198	2.891	3.935	2.269	1.326	1.039	1.859	1.089	2.328	2.156	8.427	3.768
$\mathrm{m}^{3} \mathrm{~s}^{-1}$): Poak	122.30	8.88	32.99	27.32	21.79	9.69	4.63	7.00	7.99	29.50	26.32	55.30	122.30
Runoff (mm)	336	43	63	83	50	28	23	41	23	51	46	185	972
Rainfall (mm)	354	31	141	137	130	86	101	65	84	104	93	257	1583
Monthly and yearly statistics for previous record (Aug 1969 to Dec 1992)													
Mean Avg.	6.048	4.403	4.356	2.121	1.487	1.161	1.119	1.637	3.029	3.967	5.166	5.198	3.304
flows Low	1.943	1.018	1.232	0.807	0.590	0.580	0.549	0.557	0.467	0.424	1.412	1.084	2.108
$\mathrm{m}^{3} \mathrm{~s}^{-1}$ High	11.300	14.130	9.819	4.616	5.724	2.834	4.650	8.092	16.720	10.270	9.759	10.470	4.606
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	138.10	147.70	132.90	43.62	51.35	33.74	65.38	84.48	124.30	124.80	105.80	147.90	147.90
Runoff (mm)	132	88	95	45	33	25	24	36	64	87	109	114	853
Rainfall (mm)	178	121	149	78	84	86	89	120	156	165	178	167	1571
Factors affecting runoff: S E													

factors affecting runoff: S E
Station typo: VA

Grid reference: 26 (NS) 832820
Level stn. (m OD): 17.10

Catchment area (sq km): 122.3 Max alt. (m OD): 570
rainfall 101%

017002 Leven at Leven

1993

Measuring authority: FRPB
First year: 1969
Hydrometric statistics for 1993

018003 Teith at Bridge of Teith

Measuring authority: FRPB
First year: 1957
Hydrometric statistics for 1993

		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows $\left.m^{3} s^{-1}\right\}$	Avg. Penk	$\begin{aligned} & 99.850 \\ & 378.30 \end{aligned}$	$\begin{array}{r} 15.000 \\ 26.31 \end{array}$	32.480	40.090	15.180	10.010	9.486	11.470	8.645	13.240	11.400	46.570	26.304
Runoff (mm)		516	70	168	201	79	50	49	59	43	68	57	241	1601
Rainfall (mm)		551	50	244	189	154	74	128	77	105	89	131	345	2137

Monthly and yearly statistics for previous record (Jan 1957 to Dec 1992 -incomplete or missing months total 0.1 years)

018005 Allan Water at Bridge of Allan

Measuring authority: FRPB
First year: 1971
Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	28.580	4.315	8.568	10.410	8.251	3.976	2.842	2.403	1.983	6.403	3.846	14.530	8.072
$\left.\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	194.30	8.71	68.90	69.15	68.05	15.37	19.55	7.96	12.42	54.67	24.03	71.40	194.30
Runoff (mm)	364	50	109	129	105	49	36	31	24	82	47	185	1212
Rainfall (mm)	379	25	122	123	144	79	90	45	73	88	81	213	1462
Monthly and yearly statistics for previous record (Jul 1971 to Dec 4992)													
Mean Avg.	11.500	9.101	9.488	5.016	3.625	2.574	2.250	3.185	5.327	7.222	9.075	9.834	6.508
flows Low	4.751	3.631	3.152	1.654	1.189	0.945	0.726	0.648	0.907	0.971	3.642	3.709	4.269
$\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	18.550	22.270	18.170	9.120	15.430	5.423	6.309	12.390	15.180	12.420	17.760	17.140	9.090
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	136.80	81.93	83.43	69.63	72.11	61.86	66.37	67.48	105.60	111.00	97.89	112.60	136.80
Runoff (mm)	147	106	121	62	46	32	29	41	66	92	112	125	978
Rainfall (mm)	153	102	128	65	74	73	81	99	129	133	137	141	1315

Factors affecting runoff: I
Station type: VA

Grid reference: 26 (NS) 786980
Leval stn. (m OD): 11.20

Catchment area (sq kmi): 210.0
Max alt. (m OD): 633

1993 runoff is 124% of previous mean rainfall 111%

018018 Kirkton Burn at Balquhidder

Measuring authority: IH
First year: 1983
Hydrometric statistics for 1993

		JAN	FEB	MAR	APR
Flows	Avg.	1.280	0.368	0.582	0.557
$m^{3} \mathbf{s}^{-3}$): Peak	12.53	1.11	8.28	2.63	
Runoff (mm)	501	130	228	211	
Rainfall (mm)	616	55	280	192	

Grid reference: 27 (NN) 532219 Level stn. (m OD): 246.00

Monthly and yearly statistics for previous record (Jan 1983 to Dec 1992)

Mean	Avg.	0.618	0.530	0.617	0.357	0.215	0.143	0.203	0.336	0.404	0.615	0.529	0.632
flows	Low	0.178	0.105	0.214	0.190	0.066	0.055	0.047	0.031	0.070	0.242	0.221	0.339
$\mathrm{~m}^{3} \mathrm{~s}^{-1}$ High	0.920	1.489	1.144	0.687	0.847	0.261	0.539	0.767	0.726	0.906	1.028	1.052	$\mathbf{4 7 . 3 6 2}$
Peak flow $\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$	13.57	7.66	8.69	4.01	4.28	2.56	5.98	10.90	7.45	12.20	9.25	10.09	13.57
Runnoff (mm)	264	189	241	135	84	54	79	131	153	244	200	247	1971
Rainfall (mm)	324	254	309	126	104	95	132	193	193	266	229	276	2501

*(1986-1992)
Factors affecting runoff: \mathbf{N}
Station type: C

MAY	JUN	JUL.	AUG	SEP	OCT	NOV	DEC	Year
0.290	0.126	0.141	0.204	0.170	0.301	0.178	0.709	0.411
8.51	0.43	1.06	1.49	3.57	2.11	1.39	7.50	12.53
114	48	55	80	64	118	67	277	1891
162	68	134	79	115	112	139	374	$\mathbf{2 3 2 6}$
$\mathbf{1 9 8 3}$ to Dec 1992)								
0.215	0.143	0.203	0.336	0.404	0.615	0.529	0.632	0.428
0.066	0.055	0.047	0.031	0.070	0.242	0.221	0.339	0.346
0.847	0.261	0.539	0.767	0.726	0.906	1.028	1.052	47.362
4.28	2.56	5.98	10.90	7.45	12.20	9.25	10.09	13.57
84	54	79	131	153	244	200	247	1971
104	95	.132	193	193	266	229	276	2501

1993 runoff is 96% of previous mean rainfall 93\%

020001 Tyne at East Linton

Measuring authority: FRPE
irst year: 1961

Grid reference: 36 (NT) 591768
Level stn. (m OD): 16.50

Catchment area (sq km): $\mathbf{3 0 7 . 0}$ Max alt. (m OD): 528

Hydrometric statistics for 1993

	JAN	FEB	MAR	APA	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	5.912	1.911	1.201	2.759	6.137	1.762	0.951	0.880	1.219	9.421	2.297	9.447	3.691
$\mathrm{m}^{3}{ }^{-1}{ }^{-1}$: Peak	42.87	3.34	1.89	15.02	91.06	5.78	3.52	1.16	5.25	86.34	6.45	49.82	91.06
Runoff (mm)	52	15	10	23	54	15	8	8	10	82	19	82	379
Rainfa! (mm)	83	9	23	85	105	61	42	43	76	143	49	121	840
Monthly and yearly statistics for previous record (Jan 1961 to Dec 1992)													
Mean Avg.	4.621	3.887	3.931	2.920	2.282	1.421	1.263	1.593	1.712	2.285	3.464	3.675	2.750
flows Low	1.032	0.783	0.531	0.644	0.781	0.586	0.500	0.468	0.461	0.451	0.524	0.582	0.709
$\mathrm{m}^{3} \mathbf{s}^{-1}$) High	11.540	8.625	8.789	7.824	11.600	6.142	4.393	9.855	8.490	7.402	11.210	8.405	4.146
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	93.02	53.51	118.80	143.00	119.70	59.12	: 70.18	112.70	90.84	148.50	127.50	52.02	148.50
Runoff (mm)	40	31	34	25	20	12	11	14	14	20	29	32	283
Rainfall (mm)	64	44	59	46	57	54	61	77	68	69	69	60	728
Factors affecting runoff: El										1993 runoff is 134% of previous mean rainfall 115%			

Factors affecting runoff: El
Station type: VA

1993

Catchment area (sq km): 1500.0 Max alt. (m OD): 839
First year: 1961
Grid reference: 36 (NT) 498334
Level stn. (m OD): 94.50
Hydrometric statistics for 1993

	JAN	FEB	MAR	APA	M	JUN	12.31	15.12	9,
Flows Avg.	99.180	22.140	21.340	58.920	59.970	20.540	12.310	15.120	19.570
$\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	411.00	48.09	157.10	168.40	385.00	46.21	- 28.96	53.31	61.40
Runoff (mm)	177	36	38	102	107	36	22	27	34
Rainfall (mm)	220	18	69	138	151	66	69	60	101
Monthly and yearly statistics for previous record (Jan 1961 to Dec 1992)									
Mean Avg.	57.740	47.930	44.970	30.960	23.340	15.400	14.790	21.790	29.070
flows Low	14.300	10.480	14.930	9.896	7.605	5.515	6.362	5.012	4.572
$\left.\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \quad$ High	110.700	152.200	101.000	66.020	64.330	32.820	40.970	81.400	95.510
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	678.60	507.60	469.80	447.30	182.80	125.90	342.40	444.30	496.30
Runoff (mm)	107	81	84	56	43	28	28	42	54
Rainfall (mm)	126	88	105	70	82	77	85	108	116

Factors affecting runoff: S P
Station type: VA
Comment: Monthly naturalised flows used

021012 Teviot at-Hawick.

Measuring authority: TWRP
First yoar: 1963
Hydrometric statistics for 1993

021018 Lyne Water at Lyne Station

Measuring authority: TWRP
First year: 1968
Hydrometric statistics for 1993

		JAN	FEB	MAR	APR	MAY	JUN	Jul	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	7.600	2.411	1.816	3.926	4.792	2.303	1.253	1.352	1.980	6.624	2.372	8.550	3.77
$\left.\mathrm{m}^{3} \mathrm{~s}^{-1}\right):$	Poak	32.12	4.47	3.66	16.71	23.97	9.75	6.05	4.13	8.18	37.27	5.70	35.14	37.27
Runoff (mm)		116	33	28	58	73	34	19	21	29	101	35	131	678
Rainfall (mm)		151	13	48	96	117	70	67	59	89	134	53	168	1065

Monthly and yearly statistics for previous record (Jan 1968 to Dec 1992)

Moan	Avg,	5.105	4.358	3.866	2.774	1.868	1.360	1.248	1.428	2.035
flows	Low	1.682	2.158	1.357	1.127	0.882	0.787	0.675	0.605	0.591
$\mathrm{~m}^{3} \mathrm{~s}^{-1}$ High	8.774	11.090	7.325	5.979	4.813	2.653	3.884	5.364	10.440	
Peak flow $\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$	52.31	41.55	41.21	41.08	18.30	16.46	31.72	20.77	58.74	
Runoff (mm)	77	60	61	42	31	22	21	27	38	
Rainfall (mm)	94	65	84	53	$\mathbf{5 9}$	64	69	82	$\mathbf{8 3}$	

Factors affocting runoff: S P
Station type: VA
Grid reference: 36 (NT) 20940
Level stn. (m OD): 168.00

Catchment area (sq km): 323.0
reference: 36 (NT) 522159 Level stn. (m OD): 90.10

Comment: Monthly naturalised flows used

Comment: Monthly naturalised flows used

021022 Whiteadder Water at Hutton Castle

Measuring authority: TWRP
First year: 1969
Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	10.170	4.372	2.882	10.040	12.130	4.504	2.093	1.553	2.870	14.390	4.292	18.660	7.375
$\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$): Peak	74.47	7.13	7.70	69.61	115.10	18.50	4.13	3.75	16.18	115.30	13.60	86.71	115.30
Runoff (mm)	54	21	15	52	65	23	11	8	15	77	22	99	462
Rainfal (mm)	81	12	22	107	109	56	39	43	96	139	53	130	887
Monthly and yearly statistics for previous record (Sep 1969 to Dec 1992)													
Mean Avg.	10.930	9.877	9.438	7.402	4.899	3.237	2.346	2.849	3.021	5.140	7.320	8.469	6.227
flows Low	2.143	1.557	1.108	1.325	1.420	1.393	1.245	1.144	0.990	1.001	1.100	1.347	1.828
$\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	25.990	27.300	19.220	15.850	24.050	8.835	6.626	8.184	16.360	16.670	27.680	20.660	8.847
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	265.90	160.90	247.60	274.70	- 226.20	75.82	84.85	181.10	105.80	226.20	279.80	108.10	279.80
Runoff (mm)	60	49	51	39	27	18	13	16	17	30	40	47	406
Rainfall (mm)	78	53	74	51	61	59	59	70	69	74	73	68	789

Factors affecting runoff: S P
Station type: CC
Comment: Monthly naturalised flows used

Grid reference: 36 (NT) 881550 Level stn. (m OD): 29.00

Catchment area ($\mathrm{sq} \mathbf{~ k r n}$): 503.0 Max alt. (m OD): 533

1993 runoff is 114% of previous mean rainfall 112\%

021024 Jed Water at Jedburgh

Measuring authority: TWRP
First yoar: 1971
Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	7.389	1.228	1.106	3.726	3.675	0.968	0.577	0.805	0.976	3.899	1.311	6.665	2.716
$\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$: Poak	106.30	1.96	3.31	20.12	38.25	2.15	1.13	17.68	7.19	56.67	15.27	41.29	106.30
Runotf (mm)	142	21	21	69	71	18	11	16	18	75	24	128	616
Rainfall (mm)	164	17	31	121	114	46	44	66	81	123	49	165	1021
Monthly and yearly statistics for previous record (Jan 1971 to Dec 1992)													
Mean Avg.	4.121	3.294	3.128	2.012	1.427	1.072	1.086	1.195	1.125	2.059	3.079	3.614	2.265
flows Low	1.482	0.997	0.782	0.733	0.635	0.444	0.352	0.312	0.346	0.327	0.698	0.967	1.068
$\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$) Migh	7.748	9.041	6.822	4.556	4.864	2.345	4.770	4.329	3.883	5.002	9.432	6.961	3.013
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	104.00	74.82	84.94	68.83	37.82	58.35	66.25	63.76	50.94	71.65	167.10	85.25	167.10
Runoff (mm)	77	55	57	38	30	20	20	25	29	40	59	67	516
Rainfall (mm)	92	65	83	54	64	63	72	80	70	88	88	95	914

Factors affecting runoff: N
Station type: VA
Comment: Monthly naturalised flows used

Grid reference: 36 (NT) 655214
Level stn. (m OD): 67.50

Catchment area (sq km): 139.0 Max alt. (m OD): 553

993 runoff is 119% of previous mean rainfall 112\%

022006 Blyth at Hartford Bridge

Measuring authority: NRA-NY
Grid reference: 45 (NZ) 243800
Level stn. (m OD): $\mathbf{2 4 . 6 0}$
Catchment area (sq km): 269.4
First year: 1966
Level sin. (m OD: 24.60
Max alt. (m OD): 259
Hydrometric statistics for 1993

	JAN	FEB	MAP	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	3.826	1.151	0.616	4.749	5.502	0.510	0.211	0.325	1. 158	2.813	2.664	6.938	2.553
$\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	23.02	3.10	1.10	26.24	101.50	1.07	0.61	2.66	11.90	22.10	23.69	53.80	101.50
Runotf (mm)	38	10	6	46	55	5	2	3	11	28	26	69	299
Rainfall (mm)	64	12	20	110	112	36	41	68	96	84	57	92	792
Monthly and yearly statistics for previous record (Oct 1966 to Dec 1992 -incomplete or missing months total 0.4 years)													
Mean Avg.	4.294	3.668	3.560	2.473	1.262	0.572	0.425	0.614	0.665	1.523	2.358	3.524	2.072
flows Low	0.587	0.398	0.245	0.359	0.212	0.161	0.096	0.067	0.107	0.111	0.162	0.274	0.537
$\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	10.150	7.997	11.090	10.360	4.948	1.895	1.800	2.963	2.695	9.680	5.735	12.500	3.410
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	146.60	59.52	150.20	162.80	38.86	31.54	21.52	61.09	30.02	56.84	69.20	122.30	162.80
Runotf (mm)	43	33	35	24	13	6	4	6	6	15	23	35	243
Rainfall (mm)	64	48	62	45	53	51	57	69	61	61	65	63	699

Factors affecting runoff: E
1993 runoff is 123% of previous mean Station type: FV

023001 Tyne at Bywell

Measuring authority: NRA-NY
First year: 1956
Hydrometric statistics for 1993

		JAN	FEB	MAR	APA	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	103.500	27.100	18.450	67.620	53.580	18.070	19.510	25.120	42.670	47.200	33.520	123.000	48.28
$\mathrm{m}^{3} \mathrm{~s}^{-1}$):	Peak	713.70	55.54		402.80	550.90		83.11	255.90	239.50	342.30	220.00	521.80	
Runoff (mm)		127	30	23	81	66	22	24	31	51	58	40	151	704
Rainfall (mm)		172	17	40	138	122	44	82	69	106	85	59	192	1126

Monthly and yearly statistics for previous record (Oct 1956 to Dec 1992 -incomplete or missing months total 0.3 years)

| flows Low | 19.220 | 14.360 | 20.150 | 8.461 | 7.246 | 4.910 | 5.199 | 3.403 | 4.155 | 4.727 | 18.090 | 23.080 | 25.849 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{llllllllllllllll}\left.\mathrm{m}^{3} \mathrm{~s}^{-t}\right) & H i g h & 150.800 & 162.800 & 150.900 & 75.620 & 60.650 & 50.010 & 58.000 & 77.360 & 106.600 & 147.200 & 147.000 & 112.000 & 63.834\end{array}$ | Peak flow $\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ | 1525.00 | 1198.00 | 1472.00 | 905.60 | 476.30 | 440.30 | 1105.00 | 1561.00 | 1243.00 | 1586.00 | 1382.00 | 1317.00 | 1586.00 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Runoff (mm)	90	69	70	45	30	21	23	35	40	57	74	85
Rainfall (mm)	103	77	88	63	67	68	82	96	89	96	104	105

Factors affecting runoff: S
Station type: VA
Comment: The March flows derive from station 023023

1993 runoff is 110% of previous mean rainfall 108\%

023006 South Tyne at Featherstone

Measuring authority: NRA-NY
First year: 1966
Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	23.130	4.000	4.733	17.370	13.490	4.054	7.410	7.711	12.770	7.125	5.896	27.310	11.323
$\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	218.60	7.20	25.00	178.00	131.30	26.57	73.29	110.60	108.50	68.05	92.00	216.90	218.60
Runoff (mm)	192	30	39	140	112	33	62	64	103	59	47	227	1109
Rainfall (mm)	230	23	47	190	179	46	138	86	151	65	79	274	1508
Monthly and yearly statistics for previous record (Oct 1966 to Dec 1992 -incompleté or missing months total 0.2 years)													
Mean Avg.	15.840	12.900	13.910	9.038	5.905	4.920	5.042	6.669	9.099	12.600	15.580	15.680	10.592
flows Low	6.606	3.380	5.860	1.850	1.311	1.465	1.123	0.960	1.467	1.181	6.616	5.110	7.630
$\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	25.510	33.950	30.210	17.020	13.850	12.740	17.170	19.240	23.670	30.330	24.670	28.810	12.915
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	292.10	255.30	260.80	140.70	118.20	164.70	273.60	297.30	264.70	263.10	309.90	283.70	309.90
Runoff (mm)	132	98	116	73	49	40	42	55	73	105	125	130	1038
Rainfall (mm)	136	99	125	78	82.	88	99	115	124	141	144	139	1370

Factors affecting runoff: N
Station type: CC
Grid reference: 35 (NY) 672611
Level stn. (m OD): 131.70
Catchment area (sq km): 321.9
Max att. (m OD): 893

1993 runoff is 107% of previous mean rainfall 110%

023011 Kielder Burn at Kielder
1993

Measuring authority: NRA-NY
First year: 1970
Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	MAY	JuN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows ' Avg.	4.618	0.745	1.247	2.984	2.308	0.704	0.511	1.202	1.248	2.055	1.069	5.113	1.999
$m^{3} s^{-\frac{1}{3}}$: Peak	95.31	1.68	8.59	24.61	33.09	3.85	3.73	45.12	8.09	24.69	10.83	65.78	95.31
Runaff (mm)	210	31	57	132	105	31	23	55	55	94	47	233	1072
Rainfall (mm)	223	22	52	166	141	48	70	83	101	121	68	257	1352
Monthly and yearly statistics for previous record (Jul 1970 to Dec 1992-incomplete or missing months total 2.2 years)													
Mean Avg.	2.972	2.447	2.504	1.545	1.137	1.029	0.869	1.215	1.368	2.042	2.696	2.799	1.883
flows : Low	1.646	0.722	0.945	0.389	0.331	0.316	0.302	0.243	0.316	0.247	0.694	1.011	1.201
$\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	4.893	6.677	4.882	3.209	2.605	2.134	2.632	4.407	3.296	3.589	6.000	4.705	2.470
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	83.02	73.28	44.44	35.55	60.14	95.07	39.21	138.90	56.86	128.80	118.70	67.89	138.90
Runoff (mm)	135	102	114	68	52	45	40	55	60	93	119	127	1011
Rainfall (mm)	136	100	118	70	75	74	90	104	102	125	135	141	1270
Factors affecting runoff: \mathbf{N} Station type: FVVA										1993 runoff is 106% of previous mean rainfall 106\%			

Factors affecting runoff: N
Station type: FVVA

Grid reference: 35 (NY) 644946 Level stn. (m OD): 214.00

Catchment area (sq km): 58.8
Max alt. (m OD): 602

024004 Bedburn Beck at Bedburn

1993

Messuring authority: NRA-NY
First year: 1959
Hydrometric statistics for 1993

	JAN	FEB	MAA	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	2.340	0.708	0.481	1.895	2.085	0.565	0.327	0.579	1.772	1.775	0.841	3.330	1.399
$\left.\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}\right\}$: Peak	23.80	1.33	2.48	9.89	33.41	1.72	2.89	6.75	14.43	19.59	6.71	16.24	33.41
Runoff (mm)	84	23	17	66	75	20	12	21	61	63	29	119	589
Aainfall (mm)	124	17	24	132	145	31	70	88	139	86	64	135	1055
Monthly and yearly statistics for previous record fOct 1959 to Dec 1992-incomplate or missing months total 0.2 years)													
Moan Avg.	2.080	1.804	1.815	1.364	0.849	0.519	0.433	0.543	0.567	1.152	1.538	1.839	1.206
flows Low	0.515	0.472	0.436	0.316	0.270	0.191	0.152	0.120	0.110	0.146	0.244	0.444	0.667
$\left.\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \quad \underset{\text { High }}{\text { Heg }}$	4.341	4.011	5.128	2.986	2.231	1.524	1.522	1.465	1.790	4.346	3.722	4.488	1.842
Paak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	34.67	39.16	38.51	35.09	24.06	21.66	27.72	46.19	32.30	38.06	34.26	42.93	46.19
Runoff (mm)	74	59	65	47	30	18	15	19	20	41	53	66	508
Rainfall (mm)	89	67	74	59	60	57	63	76	70	81	89	86	871
Factors affecting runoff: N Station type: CC										1993 runoff is 116% of previous mean rainfall 121%			

024009 Wear at Chester le Street

Moasuring authority: NRA-NY
First yoar: 1977
Hydrometric statistics for 1993

		JAN	FEB	MAR	APR	MAY	JuN	JUL.	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	28.260	7.301	6.216	22.120	25.520	6.586	4.554	6.847	23.480	19.250	12.410	39.070	16.886
$\mathrm{m}^{\mathbf{3}} \mathrm{B}^{-1}$):	Peak	206.60	13.37	24.58	119.70	314.40	23.63	10.04	67.43	203.70	186.60	138.80	175.90	314.40
Runoff (mm)		75	18	17	57	68	17	12	18	60	51	32	104	528
Rainfall (mm)		102	17	21	122	127	32	60	88	139	80	64	122	974

Moan Avg.	23.970	22.110	23.800	17.210	9.437	6.770	5.586	6.509	5.925	10.710	16.880	23.570	14.343
flows Low	8.610	8.101	13.300	4.738	3.941	3.447	2.948	3.057	3.054	4.563	4.812	12.780	8.661
$\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$) High	40.980	39.880	64.200	36.800	30.170	14.650	14.010	19.300	12.080	27.060	35.820	50.640	19.785
Payk flow ($\mathrm{m}^{\mathbf{3}} \mathbf{3}^{-1}$)	309.80	263.70	349.60	277.60	157.60	200.60	226.50	354.40	105.50	273.40	254.10	353.10	354.40
Runoff (mm)	64	54	83	44	25	17	15	17	15	28	43	63	449
Rainfall (mm)	84	65	85	57	55	62	55	77	64	83	88	96	871
Factors affecting	noff: R									1993 ru	ff is 118	of pre	ous mean

Station type: FV

Grid reference: 45 (NZ) 283512
Level stn. (m OD): 5.50

Catchment area (sq km): 1008.3 Max alt. (m OD): 747

Catchment area (sq km): 74.9 Max alt. (m OD): 535
rid reference: 45 (NZ) 118322
Level stn. (m OD): 109.00

025001 Tees at Broken Scar

Measuring authority: NRA-NY
First yoar: 1956
Grid reference: 45 (NZ) 259137
Level str. (m OD); 37.20
rainfall 112\%

Hydrometric statistics for 1993

025019 Leven at Easby

1993

Measuring authority: NRA-NY
First year: 1971
Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	MAY	JUN	Jut	AUG
Flows Avg.	0.165	0.116	0.130	0.230	0.165	0.095	0.066	0.178
$\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	0.32	0.15	0.49	2.00	0.63	0.16	0.13	2.96
Runoff (mm)	30	19	24	40	30	17	12	32
Rainfall (mm)	46	27	10	103	69	40	40	131
Monthly and yearly statistics for previous record (May 1971 to Dec 1992)								
Mean Avg.	0.288	0.284	0.279	0.243	0.164	0.121	0.101	0.118
flows Low	0.082	0.094	0.076	0.066	0.069	0.058	0.044	0.038
$\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	0.630	0.729	0.821	0.771	0.544	0.239	0.189	0.427
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	3.56	4.38	5.68	9.36	7.56	1.99	3.14	15.53
Runoff (mm)	52	47	50	43	30	21	18	21
Rainfall (mm)	75	52	70	58	5	61	61	2

Grid reference: 45 (NZ) 585087 Level stn. (m OD): 101.30

Factors affecting runoff: N
Station type: FV

Catchment area (sq km): 14.8 Max alt. (m OD): 335

Measuiring authority: NRA-NY first year: 1959

Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	0.885	0.839	0.676	0.595	0.585	0.591	0.468	0.378	0.352	0.323	0.422	0.748	0.571
$\mathrm{m}^{3} \mathrm{~s}^{-1}$: Peak	1.14	0.90	0.81	0.89	0.81	0.71	0.52	0.47	0.50	0.35	0.99	1.12	1.14
Runoff (mm)	41	35	32	27	27	27	22	18	16	15	19	35	315
Rainfall (mm)	48	25	14	96	56	35	47	77	117	44	81	91	731
Monthly and yearly statistics for previous record (Oct 1959 to Dec 1992)													
Mean Avg.	0.776	1.026	1.013	0.926	0.795	0.618	0.483	0.379	0.312	0.300	0.375	0.535	0.626
flows Low	0.113	0.105	0.087	0.096	0.098	0.083	0.101	0.089	0.091	0.077	0.073	0.122	0.141
$\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	2.224	2.332	2.242	2.070	1.708	1.231	0.882	0.675	0.567	0.612	1.845	2.379	1.282
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	2.89	3.31	2.69	2.70	1.95	2.01	1.47	0.99	0.80	1.22	2.49	2.86	3.31
Runoff (mm)	36	44	47	42	37	28	23	18	14	14	17	25	345
Rainfall (mm)	68	50	57	51	50	53	55	62	57	66	73	74	716

Factors affecting runoff: N G
Station type: TP

Grid reference: 54 (TA) 093548
Level stn. (m OD): 6.40

993 runoff is 91% of previous mean rainfall 102%

026005 Gypsey Race at Boynton

Measuring authority: NRA-NY
First year: 1981
Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	0.021	0.045	0.014	0.017	0.017	0.010	0.001	0.002	0.014	0.012	0.022	0.190	0.030
$\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$): Peak	0.04	0.06	0.04	0.04	0.06	0.02	0.00	0.01	0.06	0.03	0.10	0.91	0.91
Runoff (mm)	0	0	0	0	0	0	0	0	0	0	0	2	4
Rainfall (mm)	50	25	15	102	59	40	47	81	123	46	85	92	765
Monthly and yearly statistics for previous record (Feb 1981 to Dec 1992)													
Mean Avg.	0.162	0.302	0.327	0.428	0.392	0.238	0.134	0.060	0.028	0.014	0.013	0.034	0.177
flows Low	0.006	0.005	0.005	- 0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.003	0.004
$\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	0.475	0.887	0.872	1.585	1.217	0.623	0.351	0.184	0.098	0.055	0.033	0.082	0.349
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	0.72	1.00	1.86	1.87	1.58	0.86	0.60	0.28	0.29	0.14	0.08	0.28	1.87
Runoff (mm)	2	3	4	5	4	3	2	1	0	0	0	0	23
Rainfall (mm)	61	50	69	50	43	53	55	57	57	66	68	64	693

Factors affecting runoff: G I
Station type: FV

Grid reference: 54 (TA) 137677
Level stn. (m OD): 16.80

Catchment area (sq km): 240.0
Max alt. (m OD): 211

993 runoff is 17% of previous mean rainfall 110%

027007 Ure at Westwick Lock

Measuring authority: NRA-NY
First year: 1958
Hydrometric statistics for 1993

		JAN	FEB	MAR	APR	MAY	JUN	${ }_{10.610}$	AUG 13.950	SEP 28.560	$\begin{aligned} & \text { OCT } \\ & 21.590 \end{aligned}$	$\begin{aligned} & \text { NOV } \\ & 10.230 \end{aligned}$	$\begin{aligned} & \text { DEC } \\ & \mathbf{5 9 . 9 2 0} \end{aligned}$	$\begin{aligned} & \text { Year } \\ & 24.342 \end{aligned}$
Flows	Avg.	57.740	11.440	8.875	24.680	31.290	11.240	10.610	13.950	28.560	21.590	10.230	59.920	24.342
$\mathrm{m}^{3} \mathrm{~s}^{-1}$):	Peak	214.00	24.32	24.78	109.30	248.50	77.76	72.13	140.20	276.50	101.20	64.51	231.50	276.50
Runoff (mm)		169	30	26	70	92	32	31	41	81	63	29	175	839
Rainfall (mm)		201	22	28	122	151	45	88	89	150	76	51	211	1234

Monthly and yearly statistics for previous record (Oct 1958 to Dec 1992 -incomplete or missing months total 0.5 years)

Mean Avg.	33.910	30.590	27.800	20.230	12.260	8.328	7.782	11.250	13.230	21.290	28.790	33.210	20.682
flows Low	4.009	3.886	10.250	5.674	3.831	3.024	2.202	1.287	1.450	5.856	7.078	11.330	12.946
$\mathrm{m}^{3} \mathrm{~s}^{-1} \quad \mathrm{High}$	59.590	84.770	60.330	40.980	29.500	21.400	20.130	31.600	33.030	68.480	65.010	57.370	27.068
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	537.90	625.90	413.10	263.30	170.80	161.50	153.30	271.90	296.20	266.50	288.80	320.80	625.90
Runoff (mm)	99	82	81	57	36	24	2.3	33	38	62	82	97	714
Rainfall (mm)	120	88	98	78	70	70	74	90	92	107	120	125	1132

Factors affecting runoff: SP
Station type: B VA

Grid reference: 44 (SE) 356671 Level stn. (m OD): 14.20

Catchment area (sq km): 914.6 Max alt. (m OD); 713

1993 runoff is 118% of previous mean rainfall 109\%

027025 Rother at Woodhouse Mill

Measuring authority: NRA-NY
First year: 1961
Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	5.677	2.371	1.500	4.103	2.036	5.285	2.533	1.798	5.127	6.221	3.868	13.360	4.506
$\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	32.12	3.90	3.99	23.00	16.35	49.41	16.25	4.03	39.88	41.57	39.12	49.89	49.89
Runoff (mm)	43	16	11	30	15	39	19	14	38	47	28	102	404
Rainfall (mm)	73	9	12	88	61	86	86	36	127	74	53	139	844
Monthly and yearly statistics for previous record (Oct 1961 to Dec 1992 -incomplete or missing months total 2.5 years)													
Mean Avg.	6.837	6.651	6.175	5.049	3.564	2.834	1.944	1.949	2.080	2.836	4.483	6.302	4.214
flows Low	1.287	1.424	1.830	1.400	1.257	1.166	0.934	0.760	0.712	0.693	1.023	2.393	2.540
$\mathrm{m}^{3} \mathrm{~s}^{-1}$ High	13.000 .	22.440	14.330 ${ }^{\text {- }}$	13.160	10.110	10.840	4.907	3.323	7.786	7.600	8.200	18.140	6.364
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	60.30	78.80	53.21	78.14	61.40	105.40	45.63	33.55	45.59	41.74	50.55	91.46	105.40
Runotf (mm)	52	46	47	37	27	21	15	15	15	22	33	48	378
Rainfall (mm)	71	58	66	61	59	65	54	61	60	65	74	76	770

Factors affecting runoff: SRPGE1
Station type: VA

Grid reference: 43 (SK) 432857
Level stn. (m OD): 28.70

Catchment area (sq km): 352.2 Max att. (m OD): 367

1993 runoff is 107% of previous mean rainfall 110%

027042 Dove at Kirkby Mills

1993

Measuring authority: NRA-NY
First yoar: 1972
Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	MAY	JUN	Jul	AUG	SEP	OCT	Nov	DEC	Year
Flows Avg.	1.141	0.690	0.747	1.447	1.057	0.583	0.327	0.824	2.621	1.469	1.739	2.119	1.231
$\mathrm{m}^{3} \mathrm{~s}^{-1}$: Peak	2.31	1.12	3.33	7.72	10.18	1.30	0.96	14.42	46.34	5.64	49.59	7.65	49.59
Runaff (mm)	52	28	34	63	48	26	15	37	115	66	76	96	656
Rainfall (mm)	63	31	15	132	81	56	46	126	154	71	98	108	981
Monthly and yearly statistics for previous record (Feb 1972 to Dec 1992)													
Mean Avg.	1.616	1.595	1.623	1.206	0.767	0.592	0.490	0.521	0.604	0.953	1.153	1.618	1.059
flows Low	0.589	0.541	0.347	0.376	0.329	0.257	0.211	0.161	0.170	0.251	0.499	0.664	0.576
$\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	2.861	3.180	4.701	2.915	1.702	1.099	1.021	1.397	2.743	2.683	2.032	3.237	1.554
Peak flow ($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$)	37.45	41.51	40.93	27.63	30.01	7.43	19.33	32.36	56.38	24.71	23.85	53.38	56.38
Runoff (mm)	73	66	73	53	35	26	22	24	26	43	51	73	585
Rainfall (mm)	91	63	87	61	60	63	67	74	80	91	87	92	916

Factors affecting runoff: \mathbf{N}
Station type: FV

Grid reference: 44 (SE) 705855
Level stn. (m OD): 35.60

Catchment area (sq km): $\mathbf{5 9 . 2}$ Max alt. (m OD): 433
runoff is 116% of previous mean rainfall 107\%

027047 Snaizeholme Beck at Low Houses

Measuring authority: NRA-NY
First year: 1972
Hydrometric statistics for 1993

		JAN	FEB	MAR	APA	MAY	JUN	Jul	AUG	SEP	OCT	Nov	DEC	Year
Flows	Avg.	1.362	0.110	0.186	0.637	0.758	0.172	0.409	0.395	0.543	0.283	0.226	1.609	0.563
$\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$:	Peak	14.72	0.82	1.24	7.35	12.31	1.45	7.07	7.67	14.20	3.42	2.88	14.72	14.72
Runotf (mm)		358	26	49	162	199	44	107	104	138	74	57	422	1740
Rainfatl (mm)		327	23	51	180	215	64	158	115	168	63	66	393	1823

Monthly and yearly statistics for previous record (Aug 1972 to Dec 1992 -incomplete or missing months total 1.0 years)

Mean Avg.	0.910	0.762	0.740	0.355	0.233	0.200	0.221	0.340	0.495	0.677	0.882	0.972	0.565
flows Low	0.420	0.222	0.224	0.047	0.024	0.025	0.021	0.029	0.049	0.153	0.389	0.376	0.425
$\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$) High	1.498	1.774	1.689	0.700	0.724	0.510	0.798	0.738	0.995	1.124	1.365	1.611	0.644
Poak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	14.82	15.46	14.45	12.66	14.67	11.58	10.47	14.90	15.74	12.22	16.10	14.85	16.10
Runoff (mm)	239	183	194	90	61	51	58	89	126	178	224	255	1748
Rainfall (mm)	193	139	165	87	86	93	104	141	153	175	213	217	1766
Factors affocting Station type: FV	off: N									993 run	f is 100	of prov	is mean

027050 Esk at Sleights

1993

Measuring authority: NRA-NY
Grid reference: 45 (NZ) 865081
Level stn. (m OD): 4.90
Catchment areà (sq km): 308.0
First year: 1970
Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	4.739	2.131	2.212	6.666	4.082	1.533	0.753	4.316	19.130	16.150	14.760	12.170	7.396
$\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$): Peok	12.99	3.24	11.03	41.98	31.66	3.16	1.54	93.70	347.90	108.30	243.00	75.58	347.90
Runoff (mm)	41	17	19	56	36	13	7	38	161	140	124	106	757
Rainfall (mm)	60	27	12	118	73	43	42	135	172	85	95	110	972
Monthly and yearly statistics for previous record (Oč 1970 to Dec 1992 -incomplote or missing months total 1.6 years)													
Mean Avg.	8.011	7.202	7.472	5.129	3.120	2.113	1.882	2.490	1.764	3.621	5.756	8.489	4.747
flows Low	1.823	1.917	1.497	1.041	1.004	0.749	0.453	0.268	0.446	0.675	1.794	2.539	2.228
$\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	13.110	21.220	30.470	19.380	9.565	5.231	6.585	8.767	3.778	11.350	13.140	18.770	7.574
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	159.30	198.10	358.70	191.70	144.00	106.80	165.70	276.00	115.00	156.80	88.38	350.10	358.70
Runoff (mm)	70	57	65	43	27	18	16	22	15	31	48	74	487
Rainfall (mm)*	72	63	86	59	43	75	66	82	59	106	84	83	878

Grid reference: 34 (SD) 833883
Level stn. (m OD): 260.00

Catchment area (sq km): 10.2 Max alt. (m OD): 668

027071 Swale at Crakehill

1993

Measuring authority: NRA-NY
First year: 1980
Hydrometric statistics for 1993

	JAN	FEB	MAR	APA	MAY	JuN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg	44.550	12.360	9.541	22.550	30.610	9.218	6.130	12.070	28.890	25.520	14.340	52.070	22.442
$\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	148.90	21.17	25.75	83.30	194.30	56.25	17.07	106.30	194.70	107.50	87.32	173.70	194.70
Runoff (mm)	88	22	19	43	60	18	12	24	55	50	27	102	519
Rainfall (mm)	116	23	19	102	111	41	55	96	117	74	52	124	930
Monthly and yearly statistics for previous record (Nov 1955 to Dec 1992-incomplete or missing months total 0.2 years)													
Mean Avg.	32.710	29.010	26.420	19.430	12.740	9.282	8.468	11.750	11.390	18.380	23.550	29.490	19.349
flows ! Low	6.906	5.465	7.465	7.120	4.585	3.739	2.712	1.959	2.082	4.270	7.131	9.007	11.155
$\mathrm{m}^{3} \mathrm{~s}^{-1} \mathrm{~J}$ High	56.800	64.050	71.680	46.690	32.370	23.110	21.790	50.310	33.140	53.710	52.200	62.830	26.046
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	230.70	225.50	255.70	183.30	165.90	129.80	136.50	199.80	175.10	232.70	197.90	219.40	255.70
Runoff (mm)	64	52	52	37	25	18	17	23	22	36	45	58	448
Rainfall (mm)	84	62	67	57	56	61	66	83	70	75	79	86	846

Factors affecting runoff: N
Station type: C VA

Grid reference: 44 (SE) 425734
Level stn. (m OD): 12.00

Catchment area (sq km): 1363.0 Max alt. (m OD); 713

028015 Idle at Mattersey

Measuring authority: NRA-ST
First year: 1961
Hydrometric statistics for 1993

Factors affecting runoff: SR GE
Station type: EM

Grid reference: 43 (SK) 690895 Level stn. (m OD): 3.80

Catchment area (sq km); 529.0
Max att. (m OD): 195

028018 Dove at Marston on Dove

Measuring authority: NRA-ST
First year: 1961
Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	MAY	JUN	JuL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg	18.650	9.418	6.114	14.160	7.303	8.684	6.572	5.894	8.727	11.930	11.810	38.870	12.385
$\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	68.84	14.70	7.44	69.47	27.11	33.98	18.55	16.12	36.32	47.44	93.11	132.80	132.80
Runoff (mm)	57	26	19	42	22	25	20	18	26	36	35	118	442
Rainfall (mm)	87	11	16	103	76	69	96	52	104	67	67	182	930
Monthly and yearly statistics for previous record (Oct 1961 to Dec 1992-incomplete or missing months total 0.1 years)													
Mean Avg.	22.030	19.400	17.720	14.320	11.280	8.733	7.240	7.384	7.920	10.640	16.300	21.250	13.662
flows Low	7.822	4.615	8.943	6.195	4.831	3.452	2.434	1.913	2.777	3.222	5.684	7.907	7.724
$\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	32.880	55.910	36.570	24.550	22.480	16.280	15.530	14.630	29.350	22.830	31.070	56.460	19.411
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	191.40	194.60	129.70	121.00	121.40	73.02	77.10	113.60	113.90	132.10	130.80	223.40	223.40
Runoff (mm)	67	54	54	42	34	26	22	22	23	32	48	64	488
Rainfall (mm)	90	67	78	66	70	76	66	80	77	83	94	95	942

Factors affecting runoff: SRPG
Station type: FVVA

Grid reference: 43 (SK) 235288
Level sin. (m OD): 47.20

Catchment area (sq km): 883.2
Max alt. (m OD): 555

1993 runoff is 91% of previous mean
rainfall 99%

028024 Wreake at Syston Mill

Measuring authority: NRA-ST
First year: 1967
Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	6.110	1.810	1.205	3.446	1.216	2.919	2.296	0.616	2.244	5.114	5.639	11.910	3.728
$\mathrm{m}^{3} \mathrm{~s}^{-1}$: Peak	35.07	2.72	1.86	21.87	5.81	23.38	18.17	2.03	23.73	31.94	41.44	40.63	41.44
Runoff (mm)	40	11	8	22	8	18	15	4	14	33	35	77	284
Rainfall (mm)	57	10	14	73	49	81	95	40	95	56	67	94	731
Monthly and yearly statistics for previous record (Aug 1967 to Dec 1992 -incomplete or missing months total 1.6 years)													
Mean Avg.	5.565	5.800	4.665	3.390	2.022	1.136	0.926	0.833	0.918	1.517	2.519	4.302	2.786
flows Low	0.959	0.619	0.494	0.358	0.286	0.222	0.138	0.122	0.254	0.264	0.418	0.745	0.923
$\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	10.150	21.740	12.630	8.772	8.117	2.776	4.547	3.230	5.367	6.897	7.618	11.850	4.396
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	43.11	73.37	99.82	97.07	51.83	39.17	26.88	30.44	32.52	32.40	50.25	52.95	99.82
Runoff (mm)	36	34	30	21	13	7	6	5	6	10	16	28	212
Rainfall (mm)* '(1971-1992)	54	44	53	47	49	60	49	58	54	54	51	56	629
Factors affecting runoff: GE Station type: EM										1993 runoff is 134% of previous mean rainfall 116\%			

028026 Anker at Polesworth

Moasuring authority: NRA-ST
First year: 1966
Hydrometric statistics for 1993

		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	
Flows	Avg.	5.709	1.849	1.381	4.267	2.041	4.541	1.638	1.352	2.701	8.109	6.289	9.320	4.114
$\left.\mathrm{m}^{\mathbf{3}} \mathbf{s}^{-1}\right)$:	Peak	59.20	2.56	1.97	24.91	13.98	47.95	5.11	3.24	9.44	42.46	68.52	35.52	68.52
Runoff (mm)		42	12	10	30	15	32	12	10	19	42.46	68.52	68 68	68.52 353
Rainfall (mm)		59	9	14	86	65	84	76	39	94	95	75	97	793

Monthly and yearly statistics for previous record (Oct 1966 to Dec 1992 -incomplete or missing months total 2.7 years)

Mean Avg.	5.242	5.234	4.134	2.835	2.236	1.740	1.357	1.347	1.327	1.929	2.694	4.229	2.848
flows Low	1.298	0.953	0.650	0.657	0.686	0.484	0.343	0.405	0.711	0.728	0.855	1.175	1.213
$\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	9.572	16.200	9.233	6.629	8.389	4.650	5.580	4.173	3.363	4.611	7.309	$\underline{9.473}$	1.213 3.724
Poak flow ($\mathrm{m}^{3} 5^{-1}$)	75.63	73.18	56.09	45.84	59.77	52.68	59.34	45.03	37.59	36.25	45.77	74.01	75.63
Runoff (mm)	38	35	30	20	16	12	10	10	9	14	19	31	244
Rainfall (mm)*	58	50	54	45	50	61	50	57	59	56	53	60	653

Rainfall (mm)
Factors affecting runoff: GE
Station type: C VA

Grid reference: 43 (SK) 263034
Level stn. (m OD): 60.40

Catchment area (sq km): 368.0 Max alt. (m OD): 278

1993 runoff is 144% of previous mean rainfall 121\%

028031 Manifold at Ilam

Measuring authority: NRA-ST
First year: 1968

Grid reference: 43 (SK) 140507 Level stn. (m OD): 131.00

Catchment area (sq km): 148.5 Max alt. (m OD): 513

Hydrometric statistics for 1993

		JAN	FEB	MAR	APA	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	4.647	2.039	1.065	3.960	1.838	2.977	1.825	1.696	2.883	3.310	2.885	10.450	3.310
$\left.\mathrm{m}^{3} \mathrm{~s}^{-1}\right):$	Peak	20.70	3.64	1.41	33.13	17.19	24.79	11.01	10.25	17.68	23.33	39.13	60.46	60.46
Runoff (mm)		84	33	19	69	33	52	33	31	50	60	50	188	703
Rainfall (mm)		98	14	17	119	87	80	33	31	50	6	50	188	703

Monthly and yearly statistics for previous record (May 1968 to Dec 1992 -incomplete or missing months total 0.1 years)

| Mean | Avg. | 6.069 | 5.036 | 4.983 | 3.647 | 2.325 | 1.840 | 1.477 | 1.759 | 1.728 | 2.975 | 4.937 | 5.422 | 3.510 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| flows | Low | 2.561 | 2.489 | 2.528 | 1.277 | 0.812 | 0.745 | 0.493 | 0.386 | 0.458 | 0.716 | 1.555 | 2.135 | 2.241 |

$\mathrm{m}^{3_{5}} \mathbf{- 1}^{1}$ High
Paak flow ($\mathrm{m}^{3} \mathbf{s}^{-}$
Runaff (mm)
Rainfall (mm)*
69-1992)
Factors affecting runoff: P E
Station type: C

028039 Rea at Calthorpe Park

Measuring authority: NRA-ST
First year: 1967
Hydrometric statistics for 1993

	JAN	FE日	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	1.086	0.433	0.375	0.935	0.715	0.983	0.508	0.353	0.504	0.794	0.943	1.300	0.746
$\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	29.50	1.28	3.13	17.35	21.45	31.59	7.32	4.30	10.37	14.14	16.59	18.17	31.59
Runoff (mm)	39	14	14	33	26	34	18	13	18	29	33	47	31.59 318
Rainfoll (mm)	75	8	21	75	87	81	77	33	74	77	83	106	797
Monthly and yearly statistics for previous record (May 1967 to Dec 1992-incomplete or missing months total 1.2 years)													
Moan Avg.	1.194	1.037	1.002	0.794	0.716	0.647	0.548	0.636	0.604	0.680	0.844	1.096	0.816
flows Low	0.483	0.464	0.475	${ }^{\circ} 0.318$	0.319	0.287	0.257	0.287	0.295	0.320	0.493	0.380	0.602
$\mathrm{m}^{3} \mathrm{~s}^{-1}{ }^{\text {d }}$ High	1.985	2.610	2.101	1.489	1.780	1.324	1.018	1.366	1.423	1.408	0.893 1.753	1.934	0.602 1.058
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	36.71	27.44	28.64	25,15	30.37	37.44	46.86	46.38	40.85	24.68	24.97	54.02	54.02
Runoff (mm)	43	34	36	28	26	23	20	23	21	25	30	40	348
Rainfall (mm)*	77	58	66	57	63	63	58	72	66	64	72	76	348

Grid reference: 42 (SP) 071847 Level sin. (m OD): 104.20

Catchment area (sq km): 74.0 Max att. (m OD): 291

Factors affecting runoff: E
Station type: C B

028052 Sow at Great Bridgford

Measuring authority: NRA-ST
First year: 197
Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	MAY	JuN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	1.843	0.914	0.658	0.779	0.796	0.996	0.581	0.507	0.553	0.681	1.158	2.975	1.039
$\left.\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Poak	8.97	1.31	0.77	2.44	3.96	6.42	1.36	0.79	0.82	10.21	9.19	8.82	1.039
Runotf (mm)	30	14	11	12	13	16	10	8	9	11	18	49	10.21
Rainfall (mm)	74	11	15	56	94	82	85	48	68	49	59	131	772
Monthly and yearly statistics for previous record (Jun 1971 to Dec 1992-incomplete or missing months total 2.5 years)													
Mean Avg.	1.818	1.831	1.604	1.220	0.880	0.764	0.587	0.731	0.543	0.820	1.079	1.570	1.118
flows Low	0.753	0.625	0.832	0.520	0.474	0.315	0.174	0.138	0.277	0.317	0.379	0.524	0.711
$\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	2.715	4.607	3.448	2.258	1.925	1.426	1.388	3.047	0.818	1.731	2.461	2.561	1.593
Poak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	11.07	18.82	9.21	9.86	18.05	9.78	10.89	15.11	3.51	9.55	9.51	12.72	18.82
Runotf (mm)	30	27	26	19	14	12	10	12	9	13	17	26	216
Rainfall (mm)	69	56	64	47	56	63	55	62	69	67	72	70	750

Factors affecting runoff: GE
Station type: FVVA

Grid reference: 33 (SJ) 883270
Level stn. (m OD): 77.10

Catchment area (sq km): 163.0 Max alt. (m OD): 168

1993 runoff is 93% of previous mean rainfall 103\%

028067 Derwent at Church Wilne

Measuring authority: NRA-ST
First year: 1973
Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	24.320	13.320	8.793	14.950	9.527	12.390	10.130	9.152	17.130	21.450	15.380	57.850	17.935
$\mathrm{m}^{3} \mathrm{~s}^{-1}$: Peak	79.03	22.19	11.06	58.06	21.70	44.49	24.81	13.91	63.17	90.12	76.23	164.40	164.40
Runoff (mm)	55	27	20	33	22	27	23	21	38	49	34	132	480
Rainfall (mm)	95	12	15	103	70	76	108	54	130	71	67	210	1011
Monthly and yearly statistics for previous record (May 1973 to Dec 1992)													
Mean ' Avg.	33.220	30.970	28.720	21.640	13.830	11.220	8.687	8.080	8.204	13.420	19.190	28.000	18.714
flows Low	13.270	10.020	10.210	7.891	6.652	5.411	4.445	3.965	4.429	4.933	5.152	9.272	10.267
$\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	52.530	81.270	59.290	40.240	28.060	23.060	22.050	16.600	14.200	31.970	35.860	46.890	25.542
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	194.10	215.70	173.60	158.40	142.20	118.70	156.20	153.60	71.96	146.50	94.66	214.70	215.70
Runoff (mm)	76	64	65	48	31	25	20	18	18	31	42	64	502
Rainfall (mm)	107	77	92	64	62	77	62	76	78	96	94	109	994

Factors affecting runoff: S P EI
Station type: FV

Grid reference: 43 (SK) 438316 Level sin. (m OD): 31.00

Catchment area (sq km): 1177.5 Max alt. (m OD): 636

028082 Soar at Littlethorpe

1993

Measuring authority: NRA-ST
First year: 1971
Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	2.736	0.874	0.614	1.736	0.727	1.645	0.706	0.385	0.819	3.434	2.296	4.366	1.702
$\mathrm{m}^{3} 5^{-1}$): Peak	19.79	1.27	1.02	10.20	2.55	12.73	3.79	1.00	4.25	20.60	18.87	17.01	20.60
Runoff (mm)	40	11	9	24	11	23	10	6	12	50	32	64	292
Rainfall (mm)	66	10	14	79	56	90	85	36	94	102	73	96	801
Monthly and yearly statistics for previous record (Aug 1971 to Dec 1992 - incomplete or missing months total 0.2 years)													
Mean Avg.	2.629	2.552	2.212	1.515	1.003	0.897	0.540	0.651	0.594	0.908	1.326	2.284	1.421
flows Low	0.713	0.568	0.424	0.346	0.350	0.245	0.164	0.225	0.307	0.338	0.398	0.553	0.644
$\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	4.661	6.868	5.031	3.105	2.654	2.346	1.447	2.242	1.770	2.921	3.279	5.101	2.133
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	23.49	24.47	20.78	21.18	14.93	15.78	13.71	20.41	15.94	19.81	16.59	22.46	24.47
Runoff (mm)	38	34	32	21	15	13	8	9	8	13	19	33	244
Rainfall (mm)*	56	45	52	44	50	63	49	59	53	55	53	61	640

Factors affecting runoff: E
Station type: EM

Grid reference: 42 (SP) 542973
Level stn. (m OD): 61.40

Catchment area (sq km): 183.9
Max alt. (m OD): 151

1993 runoff is 120% of previous mean rainfall 125\%

029003 Lud at Louth

1993

Measuring authority: NRA-A
First year: 1968
Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	0.617	0.439	0.339	0.402	0.344	0.340	0.220	0.190	0.240	0.660	0.680	0.980	0.455
$\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	3.07	0.59	0.55	2.06	0.91	1.15	3.93	0.74	1.36	5.39	2.14	2.83	5.39
Runoff (mm)	30	19	16	19	17	16	11	9	11	32	32	48	260
Rainfall (mm)	66	27	13	97	34	42	91	45	136	109	88	93	841
Monthly and yearly statistics for previous record (Aug 1968 to Dec 1992)													
Mean Avg.	0.585	0.738	0.706	0.653	0.531	0.413	0.320	0.268	0.230	0.239	0.297	0.395	0.446
flows Low	0.139	0.157	0.162	0.150	0.156	0.131	0.112	0.097	0.108	0.093	0.088	0.090	0.145
$\mathrm{m}^{3} \mathrm{~s}^{-1}$. High	1.279	1.428	1.338	1.289	1.177	0.687	0.507	0.414	0.625	0.719	1.158	0.912	0.703
Peak flow ($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$)	3.70	3.81	3.58	5.06	3.51	3.27	3.40	3.10	3.30	2.96	6.77	3.10	6.77
Runoff (mm)	28	33	34	31	26	19	16	13	11	12	14	19	255
Rainfall (mm)	65	46	62	50	51	57	51	59	54	56	66	63	680

Factors affecting runoff: G
Station type: C

Grid reference: 53 (TF) 337879
Level stn. (m OD): 15.40

Catchment area (sq km): 55.2 Max alt. (m OD): 149

1993 runoff is 102% of previous mean rainfall 124\%

030004 Partney Lymn at Partney Mill

030012 Stainfield Beck at Stainfield

Measuring authority: NRA-A
First year: 1970
Hydrometric statistics for 1993

Fiows	Avg.	JAN 0.513	FEB 0.177	MAR 0.136	APR 0.427	MAY 0.099	JUN 0.048	JUL 0.075	AUG 0.047	SEP 0.559	OCT	NOV 0.725	DEC 0.807	Year
$\mathrm{m}^{3} \mathrm{~g}^{-1}$):	Paak		0.28	0.45	4.32	0.22	0.048 0.16		0.047 0.15			0.725 7.42		
Runoff (mm)		37	11	10	30	7	3	5	3	41		50	58	
Rainfall (mm)		61	18	13	82	34	41	90	54	125	98	81	76	773

Monthly and yearly statistics for previous record (Dec 1970 to Dec 1992 - incomplete or missing months total 0.7 years)

Mean	Avg.	0.540	0.535	0.462	0.268	0.167	0.084	0.069	0.044	0.048	0.134	0.205	0.396	0.245
flows	Low	0.093	0.114	0.078	0.050	0.032	0.019	0.006	0.004	0.007	0.009	0.017	0.024	0.061
$\mathrm{m}^{3} \mathrm{~s}^{-1}$	High	1.050	1.521	1.078	0.838	0.496	0.202	0.524	0.161	0.197	0.780	0.729	1.084	0.414
Peak flow	$\mathrm{m}^{3} \mathrm{~s}^{-1}$	21.53	11.04	10.00	12.42	8.58	4.23	17.57	5.91	3.93	12.33	6.41	7.83	21.53
Runoff (mm		39	35	33	19	12	6	5	3	3	10	14	28	207
Rainfall (m		59	43	58	45	48	53	46	54	48	52	55	57	618
Factors affecting runoff: N Station typa: CC											1993 runoff is \% of previous mean rainfall 125\%			

Station type: CC
Grid reference: 53 (TF) 127739
Level stn. (m OD): 7.70
Catchment area (sq km): 37.4 Max alt. (m OD): 134

031002 Glen at Kates Brdg and King St Brdg

1993

Measuring authority: NRA-A
First year: 1960
Hydrometric statistics for 1993

Flows	A	JAN	$\begin{aligned} & \text { FEB } \\ & 1.488 \end{aligned}$	MAR 0.862	APR 1.663	MAY 0.696	JUN 0.480	JUL 0.256	AUG 0.157	SEP 0.446	$\begin{aligned} & \text { OCT } \\ & 2.039 \end{aligned}$	NOV 2.295	DEC 4.354	Year
$\mathrm{m}^{3} \mathrm{~s}^{-1}$):	Peak		2.17	1.47	12.48	3.87	1.64	0.52	0.36	2.96	12.57	17.60	14:89	
Runotf (mm)			11	7	13	5	4	2	1	3	16	17	34	
Rainfall (mm)		54	14	13	78	63	52	83	49	118	57	67	79	727

Monthly and yearly statistics for previous record (Oct 1960 to Dec. 1992 -incomplete or missing months total 0.6 years)

Moan Avg.	1.950	2.301	2.190	1.789	1.365	0.735	0.407	0.345	0.327	0.488	0.851	1.435	1.176
flows Low	0.093	0.048	0.033	0.018	0.008	0.004	0.000	0.001	0.008	0.019	0.017	0.026	0.154
$\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$) High	6.351	10.110	6.317	4.903	5.060	2.182	1.465	1.615	1.873	2.810	5.552	7.868	2.333
Paak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	16.00	15.32	10.32	11.95	9.85	1.26	0.83	3.50	16.13	10.71	13.56	14.08	16.13
Runotf (mm)	15	16	17	14	11	6	3	3	2	4	6	11	109
Rainfall (mm)	52	40	48	51	49	53	49	61	53	51	56	54	617
Factors affecting	off: G 1									199	unoff is	of prev	us mean

Station type: FV+FL
Grid reference: 53 (TF) 106149
Level stn. (m OD): 6.10
Catchment area (sq km): 341.9
Max alt. (m OD): 129 rainfall 118\%

031010 Chater at Fosters Bridge

1993

Measuring authority: NRA-A
First year: 1968
Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	MAY	JUN	JUL.	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	1.161	0.393	0.233	0.605	0.230	0.626	0.364	0.180	0.372	0.967	0.812	1.891	0.656
[$\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	16.19	0.57	0.30	6.69	0.93	7.97	3.27	0.35	3.39	5.42	10.52	14.69	16.19
Runoff (mm)	45	14	9	23	9	24	14	7	14	38	31	74	300
Rainfall (mm)	63	11	13	81	51	90	110	41	95	60	70	93	778
Monthly and yearly statistics for previous record (Feb 1968 to Dec 1992)													
Mean Avg.	0.926	0.930	0.823	0.629	0.427	0.278	0.189	0.180	0.199	0.327	0.455	0.727	0.505
flows Low	0.147	0.106	0.090	0.065	0.051	0.033	0.024	0.044	0.061	0.048	0.073	0.098	0.198
$\left.\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{High}$	1.724	3.094	1.677	1.670	1.471	0.717	0.867	0.818	0.997	1.188	1.343	1.468	0.828
Paak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	15.99	16.06	15.77	15.07	16.44	11.78	20.64	20.76	15.04	9.04	12.48	11.00	20.76
Runaff (mm)	36	33	32	24	17	10	7	7	7	13	17	28	232
Rainfall (mm)	58	44	54	51	52	59	54	64	53	53	59	57	658
Factors affecting runoff: N Station type: CC										1993 runoff is 130% of previous mean rainfall 118\%			

032003 Harpers Brook at Old Mill Bridge

1993

Measuring authority: NRA-A
First year: 1938
Hydrometric statistics for 1993

		JAN	FEB	MAR	APR	MAY	JuN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	0.988	0.270	0.168	0.656	0.227	0.616	0.208	0.127	0.191	0.751	0.856	1.749	0.570
$\mathrm{m}^{3} \mathrm{~s}^{-1} \mathrm{r}$	Poak	14.75		0.27	10.55	1.89	11.44	1.03	0.65	0.95	8.33	13.47	15.01	
Runoff (mm)		36	9	6	23	8	21	8	5	7	27	30	63	242
Rainfall (mm)		56	11	15	71	56	90	82	35	84	65	69	92	726

Monthly and yearly statistics for previous record (Dec 1938 to Dec 1992 -incompleto or missing months total 0.7 years)

Moan	Avg,	0.766	0.790	0.695	0.482	0.300	0.196	0.145	0.154	0.140	0.225	0.430	0.583	0.407
flows	Low	0.097	0.080	0.076	0.066	0.056	0.049	0.052	0.048	0.049	0.057	0.069	0.077	0.159
$\left.\mathrm{~m}^{3} \mathrm{~s}^{-1}\right\}$	High	2.766	2.485	2.363	1.334	1.246	0.606	0.685	0.791	1.147	1.176	1.688	1.762	0.676
Poak flow $\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$	16.06	18.58	17.01	22.00	18.65	10.54	12.49	20.50	6.80	16.58	11.74	17.90	22.00	
Runoff (mm)	28	26	25	17	11	7	5	6	5	8	15	21	173	
Rainfall (mm)	58	42	48	45	50	52	53	62	50	53	61	56	630	

Factors affecting runoff: N
Station type: CC

Grid reference: 42 (SP) 983799
Level stn. (m OD): 30.30
Catchment area (sq km): 74.3 Max alt. (m OD): 146

993 runoff is 140% of previous mean rainfall 115\%

033006 Wissey at Northwold
1993

Measuring authority: NRA-A
First year: 1956
Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	may .	JuN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	2.783	2.148	2.237	1.924	1.241	0.873	0.668	0.626	0.828	2.316	2.850	3.609	1.842
$m^{3} \mathrm{~s}^{-1}$): Peak	4.65	2.82	3.97	2.72	2.49	1.21	0.86	1.01	2.13				
Runaff (mm)	27	19	22	18	12	8	7	6	8	23	27	35	212
Rainfall (mm)	65	31	23	62	63	32	79	57	108	105	91	97	813
Monthly and yearly statistics for previous record (Mar 1956 to Dec 1992)													
Mean Avg.	2.846	2.933	2.662	2.387	1.809	1.339	1.082	0.904	0.862	1.062	1.573	2.266	1.805
flows Low	0.903	0.909	1.026	1.015	0.767	0.490	0.319	0.264	0.228	0.242	0.419	0.536	0.684
$\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	5.422	5.288	4.702	4.586	3.833	2.592	2.234	2.229	2.481	3.243	4.569	4.768	2.760
Peak flow ($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$)	9.31	11.29	12.23	8.47	5.82	3.50	3.39	4.00	4.06	7.15	13.30	8.72	13.30
Runoff (mm)	28	26	26	23	18	13	11	9	8	10	15	22	207
Rainfall (mm)	57	41	47	45	46	56	59	57	55	57	66	61	647
Factors affecting runoff: PGEt Station type: FL										1993 runoff is 102% of previous mean rainfall 126%			

Grid reference: 52 (TL) 771965
Level stn. (m OD): 5.30

Catchment area (sq kmi): 274.5 Max alt. (m OD): 95

033012 Kym at Meagre Farm

1993

Measuring authority: NRA-A
First year: 1960
Grid reference: 52 (TL) 155631
Level stn. (m OD): 17.20
Catchment area (sq km): 137.5 Max alt. (m OD): 101
Hydrometric statistics for 1993

		JAN	FEB	MAR	APR	MAY	JUN	JuL	AUG 0.045	SEP 0.110	${ }^{\text {OCT }}$	NOV	DEC 3.348	Year 0.907
Flows	Avg.	1.964	0.238	0.138	1.418	0.158	0.257	0.073	0.045	0.110	1.537	1.526	3.348	0.907
$\mathrm{m}^{3} \mathrm{~s}^{-1}$):	Peak		0.38	0.27		0.67	3.14	0.38	0.17	1.02			14.00	
Runoff (mm)		38	4	3	27	3	5	1	1	2	30	29	65	208
Rainfall (mm)		58	11	19	79	51	61	62	37	87	82	64	87	698

Monthly and yearly statistics for previous record (May 1960 to Dec 1992 -incomplete or missing months total 0.1 years)

Mean	Avg.	1.303	1.320	1.102	0.762	0.344	0.226	0.132	0.102	0.104	0.419	0.655	0.973	0.617
flows	Low	0.074	0.047	0.044	0.041	0.024	0.009	0.001	0.004	0.017	0.015	0.022	0.050	0.103
$\mathrm{m}^{3} \mathrm{~s}^{-1}$)	High	3.296	5.577	3.474	2.107	1.469	1.489	2.438	1.096	1.685	3.515	3.718	3.328	1.048
Peak flow	$n^{3} s^{-1}$	25.26	22.70	30.24	30.75	20.61	24.10	16.68	23.42	23.40	25.91	34.71	33.98	34.71
Runoff (m		25	23	21	14	7	4	3	2	2	8	12	19	142
Rainfall (m		50	39	46	48	50	58	50	55	49	52	54	54	605

Factors affecting runoff: EI
Station type: CB

1993 runoff is 147% of previous mean
rainfall 115%

033024 Cam at Dermford

1993

Measuring authority: NRA-A
First year: 1949
Hydrometric statistics for 1993

		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	1.893	0.965	0.770	0.948	0.626	0.592	0.406	0.333	0.359	1.273	1.005	1.923	0.926
$\mathrm{m}^{3} \mathrm{~s}^{-1}$):	Peak	7.39	1.43	0.95	3.27	1.07	1.72	0.51	0.67	0.82	9.32	6.18	5.16	9.32
Runoff (mm)		26	12	10	12	8	8	5	5	5	17	13	26	148
Rainfall (mm)		63	14	15	68	51	63	46	46	90	98	46	84	684

Mean Avg.	1.392	1.450	1.315	1.163	0.953	0.758	0.613	0.581	0.558	0.738	0.930	1.141	0.964
flows Low	0.284	0.302	0.353	0.351	0.294	0.240	0.184	0.248	0.155	0.217	0.271	0.233	0.333
$\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	3.592	2.703	2.608	2.431	2.144	1.338	1.608	1.542	1.965	2.970	2.790	3.492	1.506
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	13.30	14.09	10.22	9.94	13.63	6.94	5.28	10.70	10.99	12.70	12.50	12.06	14.09
Runoff (mm)	19	18	18	15	13	10	8	8	7	10	12	15	154
Rainfall (mm)* -(1950-1992)	49	38	43	42	45	50	54	58	52	54	58	54	597
Factors affecting Station type: TP	off: GE									1993	off is 96 fall 115	pravi	mean

Grid reference: 52 (TL) 466506
Level stn. (m OD): 14.70
Catchment area (sq km): 198.0 Max alt. (m OD): 146

033027 Rhee at Wimpole

1993
Measuring authority: NRA-A
Grid reference: 52 (TL) 333485
Level stn. (m OD): 17.90
Catchment area (sq km): 119.1
First year: 1965
Max att. (m OD): 168
Hydrometric statistics for 1993

	JAN	FEE	MAR	APH	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Fiows Avg.	1.607	0.635	0.452	0.893	0.394	0.325	0.195	0.147	0.176	1.525	0.788	1.582	0.729
$\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	4.60	0.78	0.56	3.50	0.62	0.86	0.30	0.26	3.01	9.19	4.62	3.81	9.19
Runoff (mm)	36	13	10	19	9	7	4	3	4	34	17	36	193
Rainfall (mm)	55	11	18	71	54	50	50	46	102	84	45	73	659
Monthly and yearly statistics for previous record (Jul 1965 to Dec 1992-incomplete or missing months total 0.1 years)													
Mean Avg.	0.850	0.939	0.776	0.722	0.525	0.344	0.211	0.183	0.208	0.329	0.461	0.619	0.512
flows Low	0.088	0.092	0.089	0.099	0.067	0.041	0.022	0.014	0.040	0.053	0.058	0.065	0.079
$\left.\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \quad \mathrm{High}$	2.687	1.911	2.077	2.074	1.579	0.936	0.434	0.586	1.090	1.751	1.848	1.718	0.945
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	8.79	6.00	5.29	5.19	8.87	4.55	1.11	5.72	5.62	6.38	7.14	7.11	8.87
Runoff (mm)	19	19	17	16	12	7	5	4	5	7	10	14	136
Rainfall (mm)	47	34	42	44	50	51	50	52	51	51	53	51	576

Factors affecting runoff: GEI
Station type: FL
1993 runoff is 142% of previous mean rainfall 114\%

033032 Heacham at Heacham

1993

Measuring authority: NRA-A
First yoar: 1965
Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	MAY	JUN	Jut	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	0.237	0.228	0.213	0.235	0.217	0.187	0.156	0.125	0.122	0.308	0.425	0.590	0.254
$\mathrm{m}^{3} \mathrm{~s}^{-1} \mathrm{l}:$ Peak			0.24	0.30	0.32	0.24	0.19	0.19	0.19	0.46	0.55	0.75	
Runoff (mm)	11	9	10	10	10	8	7	6	5	14	19	27	136
Rainfatl (mm)	54	38	24	78	62	27	95	57	135	94	96	95	855
Monthly and yearly statistics for previous record (Nov 1965 to Dec 1992)													
Mean Avg.	0.215	0.295	0.301	0.287	0.252	0.210	0.165	0.136	0.118	0.112	0.116	0.159	0.197
flows Low	0.028	0.045	0.053	0.060	0.061	0.053	0.043	0.034	0.030	0.025	0.022	0.018	0.057
$\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	0.435	0.671	0.671	0.776	0.636	0.441	0.300	0.256	0.371	0.399	0.319	0.327	0.331
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	0.70	0.95	1.04	1.11	0.82	0.90	0.68	1.21	0.52	0.53	0.47	0.45	1.21
Runoff (mm)	10	12	14	13	11	9	8	6	5	5	5	7	105
Rainfall (mm)	58	42	52	48	56	56	58	61	56	56	72	62	677

Factors affecting runoff: GI
Station typa: C
Commont: January and February 1993 flows are estimates

Grid reference: 53 (TF) 685375
Level stn. (m OD): 9.40
Catchment area (sq km): 59.0 Max alt. (m OD): 88

1993 runoff is 129% of previous mean rainfall 126\%

034004 Wensum at Costessey Mill

Measuring authority: NRA-A First year: 1960			Grid reference: 63 (TG) 177128 Level stn. (m OD): 5.20							Catchment area (sq km): 570.9 Max alt. (m OD): 94			
Hydrometric statistics for 1993													
	JAN	FEB	MAR	APA	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg. $m^{3} s^{-1}:$: Peak	5.363	3.403	3.399	2.995	2.376	1.557	1.526	1.461	2.601	8.377	8.685 22.68	10.670	4.380
Aunoff (mm)	25	14	16	14	11	7	7	7	12	39	39	50	242
Rainfall (mm)	68	32	22	60	56	25	90	54	115	121	95	103	841
Monthly and yearly statistics for previous record (Feb 1960 to Dec 1992-incomplate or missing months total 0.2 years)													
Mesn Avg.	6.566	6.147	5.185	4.554	3.431	2.507	2.210	2.146	2.464	3.230	4.218	5.385	3.994
flows Low	2.415	1.761	2.355	2.064	1.430	1.079	0.786	0.516	0.866	1.211	1.914	1.822	1.909
$\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	11.270	15.960	10.740	8.923	6.699	4.220	3.871	6.130	7.689	11.060	9.312	11.150	5.765
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	34.00	29.20	22.32	21.28	27.20	10.33	7.83	24.00	20.13	21.99	21.74	24.44	34.00
Runoff (mm)	31	26	24	21	16	11	10	10	11	15	19	25	221
Rainfall (mm)	59	42	50	49	47	53	57	59	57	61	74	63	671
Factors affocting runoff: G I Station type: CB										$1993 \mathrm{ru}$	ff is 11 fall 12	of prev	us mean

035008 Gipping at Stowmarket

1993

Measuring authority: NRA-A
First year: 1966
Hydrometric statistics for 1993

	JAN	FEB	MAR	APA	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	1.300	0.395	0.630	0.495	0.199	0.172	0.162	0.113	0.409	1.788	1.969	3.125	0.902
$\mathrm{m}^{3} \mathrm{~s}^{-1} \mathrm{l}$: Peak	6.81	0.85	6.13	6.05	0.82	0.79	3.52	0.64	2.84	25.30	23.21	13.26	25.30
Runoff (mm)	27	7	13	10	4	3	3	2	8	37	40	65	221
Rainfat (mm)	52	25	14	55	47	44	68	44	100	88	77	95	709

Monthly and yearly statistics for previous record (Apr 1964 to Dec 1992 -incomplete or missing months total 1.1 years)

Mean Avg.	1.398	1.144	0.917	0.642	0.367	0.235	0.146	0.176	0.228	0.388	0.666	0.887	0.597
flows Low	0.161	0.125	0.159	0.156	0.119	0.083	0.072	0.069	0.072	0.092	0.101	0.131	0.149
$\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$) High	4.383	3.527	2.626	2.012	1.244	1.616	0.501	1.490	1.880	3.251	3.433	2.033	1.043
Poak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	28.13	34.39	18.60	19.30	20.18	7.98	6.22	23.77	24.19	24.23	19.74	25.54	34.39
Runoff (mm)	29	22	19	13	8	5	3	4	5	8	13	18	146
Rainfall (mm)* -(1965-1992)	51	37	44	42	45	49	47	48	50	53	60	52	578
Factors affecting Station typo: CC	off: GE									1993	$\begin{aligned} & \text { H is } 151 \\ & \text { fall } 123 \end{aligned}$	of pre	s mean

Factors affecting runoff: GEI
Station typo: CC

Grid reference: 62 (TM) 058578
Level stn. (m OD): 25.10

Catchment area (sq km): 128.9 Max alt. (m OD): 98

036006 Stour at Langham

Measuring authority: NRA-A
First year: 1962
Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	6.899	2.298	1.921	2.756	1.389	1.108	1.030	0.982	1.580	5.708	4.461		
$\mathrm{m}^{3} \mathrm{~s}^{-1} \mathrm{l}$: Peak	20.46	3.82	6.73	15.92	4.42	2.35	1.79	1.96	8.43	33.89	27.63		
Runoff (mm)	32	10	9	12	6	5	5	5	7	26	20		
Rainfall (mm)	58	17	14	63	58	49	56	42	98	80	62	95	692
Monthly and yearly statistics for previous record (Oct 1962 to Dec 1992)													
Moan Avg.	5.356	4.945	4.633	3.608	2.379	1.661	1.122	1.158	1.171	1.949	2.932	4.009	2.901
Hows Low	1.398	0.884	1.597	1.218	0.757	0.453	0.190	0.209	0.395	0.509	0.578	0.693	1.428
$\mathrm{m}^{3} \mathrm{~s}^{-1} \mathrm{l}$ High	16.080	12.980	9.776	9.335	7.253	5.999	2.956	6.237	4.944	13.170	11.340	10.550	5.119
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	48.47	41.27	38.37	28.45	39.31	20.64	17.06	39.52	91.00	53.63	38.93	43.85	91.00
Runoff (mm)	25	21	21	16	11	7	5	5	5	9	13	19	158
Rainfall (mm)	49	35	47	45	45	53	47	50	51	51	59	51	583
Factors affecting runoff: RPG I Station typo: FL													

Station type: FL

Grid reference: 62 (TM) 020344
Lavel stn. (m OD): 6.40

Catchment area $(\mathrm{sq} \mathrm{km}): 578.0$ Max alt. (m OD): 128

Measuring authority: NRA-T
First year: 1950
Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	MAY	JuN	Jul	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	4.969	1.077	0.588	2.344	0.724	1.861	0.455	0.332	0.915	6.194	1.932	5.747	2.277
$\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	18.10	1.99	2.02	10.20	3.40	21.80	3.75	3.23	7.82	35.50	13.50	16.00	35.50
Runoff (mm)	44	9	5	20	6	16	4	3	8	55	17	51	237
Rainfall (mm)	62	8	15	73	53	62	55	33	104	106	45	75	691
Monthly and yearly statistics for previous record (Feb 1950 to Dec 1992)													
Mean Avg.	3.680	3.411	2.675	1.875	1.170	0.823	0.619	0.651	0.819	1.414	2.172	2.846	1.839
flows Low	0.382	0.379	0.537	0.482	0.280	0.226	0.202	0.224	0.197	0.283	0.364	0.392	0.801
$\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	10.920	10.670	6.862	6.768	4.044	2.953	1.975	3.925	4.009	7.883	10.340	9.455	2.809
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	42.00	40.10	38.10	27.70	32.70	21.70	24.50	31.30	25.60	35.60	62.40	36.40	62.40
Runoff (mm)	33	27	24	16	10	7	5	6	7	12	19	25	191
Rainfall (mm)	52	41	46	44	48	52	52	56	57	57	61	56	622

1993 runoff is 124% of previous mean rainfall 111%

037005 Colne at Lexden

1993

Measuring authority: NRA-A
First year: 1959
Hydrometric statistics for 1993

Factors affecting runoff: RP I
Station type: FL

Grid reference: 52 (TL) 962261 Level str. (m OD): 8.20

Catchment area ($\mathrm{sq} \mathbf{~ k m}$): 238.2 Max alt. (m OD): 114
rainfall 113%

037010 Blackwater at Appleford Bridge

Measuring authority: NRA-A
First year: 1962
Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	MAY	JUN	JuL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	2.654	0.939	0.686	1.182	0.559	0.731	0.528	0.503	0.742	2.435	1.463	3.639	1.345
$\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$: Peak	9.68	1.34	1.41	4.97	0.97	2.92	1.15	0.89	1.96	16.20	9.78	10.05	16.20
Runoff (mm)	29	9	7	12	6	8	6	5	8	26	15	39	172
Rainfall (mm)	59	12	15	66	52	66	47	34	99	86	50	82	668
Monthly and yearly statistics for previous record (Oct 1962 to Dec 1992)													
Mean Avg.	2.089	1.964	1.887	1.477	1.049	0.803	0.579	0.514	0.539	0.837	1.225	1.650	1.214
flows Low	0.532	0.460	0.479	0.479	0.341	0.356	0.182	0.161	0.215	0.288	0.325	0.379	0.822
$\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$) High	7.181	4.889	3.583	3.843	2.860	1.777	1.359	1.738	1.651	4.955	4.676	4.307	1.659
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	26.80	21.60	20.00	12.31	17.80	7.76	4.10	13.75	15.25	26.08	20.20	21.60	26.80
Runoff (mm)	23	19	20	15	11	8	6	6	6	9	13	18	155
Rainfall (mm)	48	34	47	44	45	53	47	50	50	50	58	51	577
Factors affecting runoff: RPG I 1993 runoff is 111\% of previo													

Factors affecting runoff: RPG I
Station type: FL

Grid reference: 52 (TL) 845158
Level sin. (m OD): 14.60

Catchment area (sq km): 247.3 Max alt. (m OD): 127
rainfall 116%

038021 Turkey Brook at Albany Park

Measuring authority: NRA-T
First year: 1971
Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	MAY	JUN 0.184	JUL 0.044	AUG 0.017	SEP 0.085	ОСT 0.614	NOV 0.175	DEC 0.724	Year 0.238
Flows Avg.	0.576	0.052	0.024	0.292	0.038	0.184	0.044	0.017	0.085	0.614	0.175	0.724	0.238
$\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	7.39	0.13	0.25	5.13	0.49	4.77	1.14	0.25	1.73	10.70	3.03	3.76	10.70
Runotf (mm)	37	3	2	18	2	11	3	1	5	39	11	46	178
Rainfall (mm)	77	7	19	84	55	95	73	33	108	119	45	103	818
Monthly and yearly statistics for previous record (Sep 1971 to Dec 1992)													
Mean Avg.	0.413	0.348	0.326	0.213	0.157	0.088	0.043	0.049	0.056	0.171	0.238	0.312	0.201
flows Low	0.019	0.022	0.024	0.020	0.009	0.021	0.009	0.008	0.008	0.013	0.019	0.022	0.057
$\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	1.180	0.988	0.811	0.626	0.626	0.240	0.087	0.171	0.228	0.941	1.158	0.704	0.339
Peak flow ($\mathrm{m}^{3} 5^{-1}$)	10.50	11.50	7.68	7.72	20.70	15.30	2.38	2.76	7.55	10.70	12.80	10.50	20.70
Runoff (mm)	26	20	21	13	10	5	3	3	3	11	15	20	150
Rainfall (mm)	61	43	57	49	55	56	47	53	59	63	61	61	665

Factors affecting runoff: PG
Station type: FV
Grid reference: 51 (TQ) 359985 Level stn. (m OD): 16.60

Catchment area (sq km): 42.2
Max alt. (m OD): 128

1993 runoff is 118% of previous mean rainfall 123\%

Measuring authority: NRA-T
First year: 1938
Grid reference: 41 (SU) 568935 Level stn. (m OD): 46.00
Hydrometric statistics for 1993

Flows Avg.	JAN 92.810	$\begin{aligned} & \text { FEB } \\ & 34.210 \end{aligned}$	MAR 16.220	APR 37.400	MAY 22.530	$\begin{gathered} \text { JUN } \\ 20.710 \end{gathered}$	$\begin{gathered} J U L \\ 10.840 \end{gathered}$	AUG 5.890	SEP 8.200	$\begin{aligned} & \text { OCT } \\ & 32.740 \end{aligned}$	NOV 25.450	$\begin{aligned} & \text { DEC } \\ & 70.230 \end{aligned}$	Year 31506
$\mathrm{m}^{3} \mathrm{~s}^{-1}$: : Poak	168.00	58.50	29.30	103.00	65.70	33.40	18.80	10.70	16.80	89.70	79.50	130.00	188.00
Runoff (mm)	72	24	13	28	18	16	8	5	6	25	19	55	288
Rainfall (mm)	92	8	27	75	85	52	62	30	88	88	51	109	767
Monthly and yearly statistics for previous record (Oct 1938 to Dec 1992)													
Moan Avg.	54.380	55.940	45.050	30.570	20.210	14.310	8.480	7.228	8.790	14.980	31.300	44.960	27.880
flows Low	6.250	5.554	5.620	4.253	2.855	1.502	0.399	0.296	1.741	2.778	3.748	5.312	10.095
$\mathrm{m}^{\mathbf{3}} \mathbf{s}^{-1}$) High	133.600	120.800	163.200	85.070	61.140	41.560	48.820	18.690	38.630	74.570	128.100	128.700	51.292
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)													
Runoff (mm)	42	40	35	23	16	11	7	6	7	12	24	35	255
Rainfall (mm)	66	47	54	47	58	55	54	66	60	64	71	71	713
Factors affecting runoff: PE1										1993 runoff is 113% of previous mean			

Mis
Station type: MIS

Catchment area (sq km): 3444.7 Max alt. (m OD): 330

1993 runoff is 113% of previous mean rainfall 108\%

039005 Beverley Brook at Wimbledon Common

Measuring authority: NRA-T
First year: 1935
Hydrometric statistics for 1993

	Jan	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	Nov	DEC	Year
Flows Avg.	0.758	0.428	0.408	0.780	0.528	0.509	0.481	0.426	0.701	0.928	0.456	0.798	0.601
$\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$): Peak	5.56	1.15	2.25	13.50	5.51	7.41	4.03	4.13	7.58	9.87	2.91	8.23	13.50
Runotf (mm)	47	24	25	46	32	30	30	26	42	57	27	49	435
Rainfall (mm)	65	6	19	84	52	44	43	31	124	99	30	82	679
Monthly and yearly statistics for previous record (Mar 1935 to Dec 1992-incomplate or missing months total 23.4 years)													
Mean Avg.	0.706	0.611	0.563	0.553	0.482	0.484	0.446	0.450	0.494	0.519	0.588	0.634	0.544
flows Low	0.280	0.244	0.290	0.257	0.214	0.157	0.211	0.189	0.224	0.161	0.274	0.247	0.291
$\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	1.237	1.208	1.023	1.538	1.092	0.956	0.920	0.970	1.340	1.321	1.415	1.057	0.695
Payk flow ($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$)	10.90	14.10	7.51	22.40	14.80	12.90	16.50	17.30	16.50	15.90	11.10	14.00	22.40
Runoff (mm)	43	34	35	33	30	29	27	28	29	32	35	39	394
Rainfall (mm)	58	39	45	43	49	54	49	56	56	61	63	62	635

Grid reference: 51 (TQ) 216717
Level stn. (m OD): 11.00
Catchment area (sq km): 43.6 Max alt. (m OD): 190

1993 runoff is 111% of previous mean rainfall 107\%

039007 Blackwater at Swallowfield

Measuring outhority: NRA-T
First year: 1952
Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	Nov	DEC	Year
Flows Avg.	6.423	3.035	2.438	4.697	2.228	2.443	1.674	1.418	2.101	5.696	2.582	5.827	3.388
$\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	24.10	3.95	5.92	24.30	6.17	11.40	3.42	3.77	6.38	27.80	7.43	21.30	27.80
Runotf (mm)	48	21	18	34	17	18	13	11	15	43	19	44	301
Rainfall (mm)	90	5	27	81	43	66	46	30	99	125	38	106	756
Monthly and yearly statistics for previous record (Oct 1952 to Dec 1992)													
Mean Avg.	4.653	4.221	3.858	3.129	2.530	2.011	1.528	1.525	1.810	2.544	3.342	3.999	2.923
flows Low	1.758	1.687	1.323	1.521	1.081	0.766	0.711	0.723	0.638	0.907	1.262	1.298	1.466
$\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	8.000	11.010	6.898	5.600	5.946	6.472	2.829	2.622	6.609	7.613	8.019	7.022	3.777
Poak flow ($\mathrm{m}^{3} \mathrm{~g}^{-1}$)	25.60	25.90	30.50	23.10	24.40	25.20	11.80	11.20	41.00	24.90	28.60	26.90	41.00
Runoff (mm)	35	29	29	23	19	15	12	12	13	19	24	30	260
Rainfall (mm)	67	46	54	46	53	52	54	58	63	71	71	72	707
Factors affecting runoff: GE Station type: CC										1993 runoff is 116% of previous mean rainfall 107\%			

Grid reference: 41 (SU) 731648 Level stn. (m OD): 42.30
rainfall 107\%

039014 Ver at Hansteads

Measuring authority: NRA-T
First year: 1956

Grid reference: 52 (TL) 151016
Level stn. (m OD): 61.30

Catchment area (sq km): 132.0 Max alt. (m OD): 243

Hydrometric statistics for 1993

[^5] rainfall 120\%

Measuring authority: NRA-T
First year: 1961
Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	22.990	15.920	11.510	13.980	10.000	8.956	6.967	5.740	6.028	12.070	8.635	16.160	11.568
$\left.\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	41.30	20.10	13.80	32.00	31.50	13.50	9.35	8.25	9.08	38.20	18.10	39.00	41.30
Runoff (mm)	60	37	30	35	26	22	18	15	15	31	22	42	353
Rainfall (mm)	101	8	35	87	97	48	59	32	94	124	49	124	858
Monthly and yearly statistics for previous record (Oct 1961 to Dec 1992)													
Mean Avg.	12.680	14.400	14.240	12.330	9.989	8.278	6.320	5.557	5.276	6.002	7.817	10.290	9.406
flows Low	4.144	4.401	4.190	3.429	2.739	2.041	1.620	1.377	2.787	3.596	3.943	4.333	4.056
$\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	22.680	27.780	22.010	19.790	15.430	18.600	11.120	9.542	10.000	13.970	17.710	23.850	12.882
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	48.30	52.10	44.30	36.90	30.10	70.00	19.00	20.50	33.40	29.60	43.50	47.30	70.00
Runoff (mm)	33	34	37	31	26	21	16	14	13	16	20	27	287
Rainfall (mm)	74	52	68	51	58	61	50	66	66	68	75	80	769

Factors affecting runoff: R G I
Station type: C

Grid reference: 41 (SU) 649708
Level stn. (m OD): 43.40

Catchment area (sq km): 1033.4 Max ait. (m OD): 297

1993 runoff is 123% of previous mean rainfall 112\%

039019 Lambourn at Shaw

Measuring authority: NRA-T
First year: 1962
Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	MAY	JUN	JUL.	AUG	SEP	OCT	NOV	OEC	Year
Flows Avg.	3.854	3.581	2.903	2.487	2.137	2.182	1.845	1.277	0.937	1.266	1.444	1.970	2.150
$\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$): Peak	4.30	4.03	3.30	3.63	4.97	2.47	2.14	1.65	1.08	1.89	1.89	2.78	4.97
Runoff (mm)	44	37	33	28	24	24	21	15	10	14	16	23	290
Rainfall (mm)	95	7	31	84	119	47	54	33	88	117	43	110	828
Monthly and yearly statistics for previous record (Oct 1962 to Dec 1992)													
Mean Avg.	1.678	2.142	2.394	2.329	2.062	1.778	1.466	1.248	1.135	1.114	1.197	1.418	1.660
flows Low	0.797	0.787	0.743	0.695	0.639	0.573	0.538	0.485	0.681	0.683	0.757	0.710	0.739
$\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	3.410	3.719	3.583	3.550	2.979	2.764	2.359	2.048	1.699	1.921	2.392	3.200	2.151
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	3.93	4.20	4.39	4.08	3.76	4.34	3.06	3.54	3.75	3.17	5.02	4.15	5.02
Runoff (mm)	19	22	27	26	24	20	17	14	13	13	13	16	224
Rainfalt (mm)	68	49	64	49	57	59	51	62	62	63	73	75	732
Factors affecting runoff: R G										1993 runoff is 129% of previous mean			

Factors affecting runoff: R G
Station type: C

Grid reference: 41 (SU) 470682
Level stn. (m OD): 75.60

Catchment area (sq km): 234.1 Max alt. (m OD): 261
rainfall 113\%

039021 Cherwell at Enslow Mill

Measuring authority: NRA-T
First year: 1965
Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	10.430	4.598	2.869	5.849	2.837	2.637	1.506	0.983	1.430	4.414	4.800	9.293	4.308
$\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1} \mathrm{l}$: Peak	19.10	6.74	3.74	17.00	4.04	7.16	2.63	1.62	2.63	12.60	15.70	15.40	19.10
Runotf (mm)	51	20	14	27	14	12	7	5	7	21	23	45	246
Rainfall (mm)	76	9	25	77	65	57	62	30	87	77	61	93	719
Monthly and yearly statistics for previous record (Fab 1965 to Dec 1992)													
Mean Avg.	7.076	6.964	6.152	4.388	3.217	2.334	1.505	1.422	1.468	2.216	3.350	5.730	3.805
flows Low	0.919	0.905	0.754	0.566	0.445	0.309	0.156	0.132	0.468	0.630	0.730	0.915	1.370
$\left.\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	12.040	15.900	12.090	8.710	8.674	6.632	4.997	2.634	5.577	7.615	9.223	13.330	5.373
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	22.50	23.80	26.70	20.70	19.30	17.60	24.50	10.30	20.80	17.40	22.00	30.20	30.20
Runoff (mm)	34	31	30	21	16	11	7	7	7	11	16	28	218
Rainfall (mm)	61	45	55	46	57	60	56	63	57	58	59	67	684

Factors affecting runoff: PE
Station type: CC

Grid reference: 42 (SP) 482183
Level str. (m OD): 65.00

Catchment area (sq km): 551.7 Max alt. (m OD): 239

1993 runoff is 113% of previous mean rainfall 105\%

039023 Wye at Hedsor

Measuring authority: NRA-T
First year: 1964

Grid reference: 41 (SU) 896867
Level stn. (m OD): 26.80

Catchment area (sq km): 137.3 Max alt. (m OD): 244
Hydrometric statistics for 1993

	JAN	FEB	MAF	APR	MAY	JUN	Jul	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	1.699	1.641	1.520	1.588	1.309	1.165	1.032	0.904	0.929	1.070	0.963	1.139	1.244
$\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	2.95	1.95	2.02	3.44	1.85	1.99	1.60	1.98	2.50	3.55	1.80	2.12	3.55
Runoff (mm)	33	29	30	30	26	22	20	18	18	21	18	22	286
Rainfall (mm)	103	9	27	104	42	49	63	38	115	119	64	119	852
Monthly and yearly statistics for previous record (Dec 1964 to Dec 1992)													
Mean Avg.	0.937	1.038	1.124	1.150	1.110	1.077	0.983	0.928	0.850	0.823	0.817	0.871	0.975
flows Low	0.419	0.484	0.467	0.470	0.432	0.380	0.370	0.314	0.381	0.395	0.375	0.340	0.442
$\left.\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \quad \mathrm{High}$	1.518	1.933	1.976	1.891	1.842	1.582	1.434	1.317	1.182	1.180	1.329	1.452	1.365
Peak flow ($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$)	3.49	2.92	3.21	3.26	3.98	3.51	2.94	4.17	4.43	3.15	2.79	3.19	4.43
Runoff (mm)	18	18	22	22	22	20	19	18	16	16	15	17	224
Rainfall (mm)	70	51	60	54	61	62	57	66	67	68	71	76	763

Factors affecting runoff; G I
Station type: C

1993 runoff is 128% of previous mean rainfall 112\%

039029 Tillingbourne at Shalford

Measuring authority: NRA-T
First year: 1968
Hydrometric statistics for 1993

039049 Silk Stream at Colindeep Lane

Measuring authority: NRA-T
First year: 1973
Hydrometric statistics for 1993

| | | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | Year |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Flows | Avg. | 0.488 | 0.102 | 0.092 | 0.370 | 0.132 | 0.341 | 0.152 | 0.087 | 0.285 | 0.634 | 0.221 | 0.593 | 0.293 |
| $m^{3} s^{-1}$): | Pook | 6.13 | 0.46 | 1.25 | 5.90 | 2.94 | 16.30 | 3.79 | 3.14 | 9.15 | 14.80 | 2.86 | 3.53 | 16.30 |
| Runoff (mm) | 45 | 9 | 9 | 33 | 12 | 30 | 14 | 8 | 25 | 59 | 20 | 55 | 318 | |
| Rainfall (mm) | 80 | 6 | 19 | 78 | 44 | 90 | 64 | 29 | 113 | 124 | 45 | 99 | 791 | |

Monthly and yearly statistics for previous record (Dec 1973 to Dec 1992 -incomplete or missing months total 4.4 years)

Mean	Avg.	0.360	0.286	0.317	0.252	0.218	0.195	0.151	0.126	0.148	0.276	0.314	0.305	0.246
flaws	Low	0.093	0.102	0.104	0.030	0.035	0.061	0.047	0.053	0.057	0.062	0.096	0.096	0.178
$\mathrm{m}^{3} \mathrm{~s}^{-1}$	High	0.790	0.725	0.677	0.560	0.570	0.566	0.248	0.204	0.505	0.808	0.967	0.581	0.308
Poak flow	$\mathrm{n}^{3} \mathrm{~s}^{-1}$	8.54	14.30	6.26	10.26	17.10	14.90	14.50	14.20	17.20	17.30	13.00	16.00	17.30
Runoff (mm)		33	24	29	23	20	17	14	12	13	25	28	28	267
Painfall (m		61	41	58	49	61	59	51	52	62	70	61	60	685
Factors affocting runoff: Station type: FV											1993 runoff is 119% of previous mean rainfall 115\%			

039069 Mole at Kinnersley Manor

Measuring authority: NRA-T
First year: 1972
Grid reference: 51 (TQ) 262462
Level stn. (m OD): 48.00
Catchment area (sq km): 142.0
Hydrometric statistics for 1993

		JAN	FEB	MAR	APR	MAY	JuN	JuL	AUG	SEP	OCT	Nov	DEC	Year
Flows	Avg.	4.449	1.281	0.877	3.189	1.070	1.104	0.886	0.679	1.543	7.388	2.206	6.494	2.61
$\mathrm{m}^{3} \mathrm{~s}^{-1}$:	Poak	34.90	2.30	4.58	19.40	6.72	12.30	4.54	5.94	16.70	71.90	23.60	42.20	71.9
Runoff (mm)		84	22	17	58	20	20	17	13	28	139	40	122	581
Rainfall (mm)		83	7	24	95	60	51	62	32	132	137	56	133	872

Mean Avg.	3.782	3.070	2.589	1.904	1.397	1.037	0.796	0.804	0.939	1.926	2.448	3.431	2.005
flows Low	0.940	0.829	0.833	0.388	0.305	0.221	0.296	0.169	0.281	0.207	0.260	1.071	0.950
$\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	9.375	8.634	4.668	3.666	3.552	2.225	2.818	2.864	5.419	8.486	5.894	5.474	2.424
Poak flow ($\mathrm{m}^{3} \mathrm{a}^{-1}$)	42.30	46.50	22.30	47.00	32.90	23.30	28.90	29.80	40.70	56.40	56.70	68.50	68.50
Runoff (mm)	71	53	49	35	26	19	15	15	17	36	45	65	446
Rainfall (mm)	79	55	65	52	52	60	49	56	64	89	79	88	788
Fuctors affecting Station type: MIS	ff: E									$993 \text { rur }$	f is 130 fall 11	of pre	s mean

040009 Teise at Stone Bridge

Measuring authority: NRA-S
First year: 1961
Hydrometric statistics for 1993

Measuring authority: NRA-S
First year: 1961
Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	4.390	0.954	0.362	2.802	0.821	0.620	0.392	0.333	0.653	5.486	1.523	5.459	1.998
$\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak					1.95	3.32	0.81	0.77	4.52	46.15	17.05	29.26	
Runoff (mm)	52	10	4	32	10	7	5	. 4	8	66	18.	65	281
Rainfall (mm)	79	9	22	92	53	48	55	33	120	131	51	121	814
Monthly and yearly statistics for previous record (Oct 1961 to Dec 1992-incomplete or missing months total 1.8 years)													
Mean Avg.	3.759	3.226	2.612	1.755	1.275	0.902	0.498	0.518	0.703	1.193	2.413	2.851	1.802
flows Low	0.412	0.515	0.605	0.396	0.283	0.193	0.182	0.201	0.223	0.265	0.314	0.672	0.810
$\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	9.957	8.346	6.040	4.373	4.842	4.132	2.125	1.438	5.243	4.276	8.909	7.260	2.627
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	45.56	64.44	32.28	34.03	39.16	31.85	24.70	17.42	22.02	31.43	55.21	60.00	64.44
Runoff (mm)	45	35	31	20	15	10	6	6	8	14	28	34	254
Rainfall (mm)	73	49	60	55	54	56	51	56	68	74	80	77	753

Factors affecting runoff: S E
Station type: C

Grid reference: 51 (TQ) 520437
Leval stn. (m OD): 27.80

Catchment area (sq km): 224.3 Max alt. (m OD): 267

040012 Darent at Hawley

1993

Measuring authority: NRA-S
First year: 1963
Hydrometric statistics for 1993

Flows	Avg.	JAN 1.061	FEB 0.626	MAR 0.404	APR 0.585	MAY 0.296	JUN 0.202	JUL 0.108	AUG 0.080	SEP 0.076	$\begin{aligned} & \text { OCT } \\ & 0.520 \end{aligned}$	Nov 0.455	$\begin{aligned} & \text { DEC } \\ & 1.038 \end{aligned}$	Year 0.454
$\mathrm{m}^{3} \mathrm{~s}^{-1} \text {): }$	Peak					0.47	0.41	0.18	0.16	0.25	1.18	1.16	2.14	
Runoff (mm)		15	8	6	8	4	3	2	1	1	7	6	15	75
Rainfall (mm)		70	10	22	82	51	44	48	32	109	107	52	110	737
Monthly and yearly statistics for previous record (Dec 1963 to Dec 1992)														
Mean	Avg.	0.918	0.967	0.872	0.775	0.587	0.437	0.300	0.264	0.279	0.369	0.525	0.741	0.584
flows	Low	0.054	0.032	0.034	0.068	0.076	0.041	0.000	0.000	0.000	0.000	0.000	0.011	0.101
$\mathrm{m}^{3} \mathrm{~s}^{-1}$	High	2.060	2.076	1.804	1.515	1.509	0.982	0.617	0.690	1:817	1.516	1.448	1.674	1.067
Peak flow (m)	$\mathrm{n}^{3} \mathbf{s}^{-1}$	5.79	3.99	4.05	3.09	13.10	3.06	2.35	2.27	10.05	3.77	4.91	4.36	13.10
Runoff (mm)		13	12	12	10	8	6	4	4	4	5	7	10	96
Rainfall (mm)		70	48	58	55	54	56	54	56	66	67	73	71	728
Factors affecting runoff: G Station type: C											1993 runoff is 78% of previous mean rainfall 101\%			

Grid reference: 51 (TQ) 551718 Level stn. (m OD): 11.20

Catchment area (sq km): 191.4 Max alt. (m OD): 251

041001 Nunningham Stream at Tilley Bridge
1993
Measuring authority: NRA-S
First year: 1950
Grid reference: 51 (TO) 662129
Level stn. (m OD): 3.80
Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	MAY	JuN	Jul	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	0.537	0.112	0.065	0.275	0.070	0.044	0.027	0.023	0.047	0.205	0.120		
$\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak					0.26	0.49	0.07	0.12	0.59	1.89	1.89	8.84	
Runotf (mm)	85	16	10	42	11	7	4	4	7	32	18		
Rainfall (mm)	94	8	27	109	49	51	65	39	125	98	62	160	887
Monthly and yearly statistics for previous record (Apr 1950 to Dec 1992)													
Mean Avg.	0.423	0.330	0.236	0.142	0.076	0.053	0.035	0.038	0.050	0.122	0.290	0.352	0.178
flows Low	0.062	0.094	0.054	0.034	0.023	0.012	0.010	0.008	0.009	0.013	0.019	0.033	0.053
$\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	1.108	0.958	0.577	0.390	0.195	0.319	0.210	0.125	0.359	0.576	1.017	1.082	0.306
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	8.84	8.60	8.49	5.94	6.20	7.92	1.89	9.32	8.92	8.82	11.90	8.84	11.90
Runoff (mm)	67	48	37	22	12	8	6	6	8	19	45	56	333
Rainfall (mm)	83	58	60	50	50	56	57	69	72	91	98	92	836
Factors affecting runoff: R Station type: MIS										1993 runoff is \% of previous mean rainfall 106\%			

041006 Uck at Isfield

Measuring authority: NRA-S
First year: 1964
Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	MAY	JUN	JUL	Aug	SEP	OCT	NOV	DEC	Year
Flows Avg.	2.929	0.661	0.411	1.791	0.600	0.405	0.290	0.201	0.421	3.944	1.188	5.136	1.511
$\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$): Peak					6.09	5.60	2.57	0.72	6.59	57.35	30.83	70.91	
Runoff (mm)	89	18	13	53	18	12	9	6	12	120	35	157	543
Rainfall (mm)	103	8	25	108	65	52	70	37	121	112	61	172	934
Monthly and yearly statistics for previous record (Oct 1964 to Dec 1992)													
Mean Avg.	2.284	1.812	1.370	1.063	0.713	0.524	0.380	0.336	0.478	0.952	1.596	1.918	1.116
flows Low	0.412	0.570	0.413	0.324	0.252	0.170	0.142	0.106	0.154	0.160	0.211	0.342	0.480
$m^{3} s^{-1} y \quad H i g h$	6.355	5.205	3.317	2.183	1.854	1.657	1.575	1.506	2.868	6.692	6.536	4.034	1.945
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	55.60	75.63	39.12	45.22	38.73	37.41	53.64	33.74	36.40	63.04	64.43	55.58	75.63
Runoff (mm)	70	50	42	31	22	15	12	10	14	29	47	59	401
Rainfall (mm)	85	59	64	52	51	63	53	61	70	88	92	85	823

Factors affecting runoff: E
Station type: C

Station type: MIS

041019 Arun at-Alfoldean

1993

Moasuring authority: NRA-S
First year: 1970
Hydrometric statistics for 1993

	JAN	1 FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	OEC	Year
Flows Avg.	4.491	0.779	0.418	2.346	0.536	0.472	0.309	0.202	1.202	8.236	1.394	7.022	2.306
$\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$): Peak					2.25	5.38	6.95	1.03	47.66	74.94	18.19	65.93	
Runoff (mm)	87	14	8	44	10	9	6	4	22	159	26	135	523
Rainfall (mm)	91	7	26	87	59	53	67	34	145	138	54	134	895
Monthly and yearly statistics for previous record (May 1970 to Dec 1992 -incomplete or missing months total 0.1 years)													
Maan Avg.	3.734	2.715	2.272	1.657	1.030	0.685	0.360	0.375	0.590	1.582	2.458	2.949	1.697
flows Low	0.528	0.689	0.469	0.277	0.223	0.131	0.138	0.078	0.161	0.150	0.167	0.492	0.589
$\mathrm{m}^{3} \mathrm{~s}^{-1}$) , High	10.770	9.827	4.413	3.829	3.313	3.055	1.274	1.618	5.443	11.580	10.030	6.152	2.845
Pook flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	68.63	67.53	54.45	76.97	47.48	46.54	10.02	23.86	56.14	71.12	74.94	77.65	77.65
Runolf (mm)	72	48	44	31	20	13	7	7	11	30	46	57	385
Rainfall (mm)	84	52	67	53	52	58	48	57	66	83	84	83	787

Factors affecting runoff: E
Station type: CC

Grid reference: 51 (TO) 117331
Level stn. (m OD): 21.40

Catchment area (sq km): 139.0 Max alt. (m OD): 294

1993 runoff is 136% of previous mean rainfall 114\%

041027 Rother at Princes Marsh

1993

Moasuring authority: NRA-S
Grid reference: 41 (SU) 772270
Catchment area ($\mathrm{sq} \mathbf{~ k m}$): $\mathbf{3 7 . 2}$
First yoar: 1972
Level stn. (m OD): 56.40
Max alt. (m OD): 252
Hydrometric statistics for 1993

	AN	B	AR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	1.129	0.364	0.283	0.720	0.266	0.216	0.174	0.148	0.235	1.222	0.435	1.192	0.535
$\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$: Peak					0.44	0.69	0.75	0.52	1.57	27.76	4.23	11.93	
Runoff (mm)	81	24	20	50	19	15	13	11	16	88	30	86	453
Rainfall (mm)	124	6	38	114	44	59	62	38	141	163	69	151	1009
Monthly and yearly statistics for previous record (Nov 1972 to Dec 1992-incomplete or missing months total 0.2 years)													
Mean Avg.	0.834	0.745	0.653	0.487	0.363	0.269	0.211	0.215	0.255	0.443	0.573	0.771	0.484
flows Low	0.258	0.320	0.237	0.194	0.158	0.121	0.120	0.106	0.140	0.165	0.167	0.248	0.288
$\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	1.485	2.228	1.220	0.694	0.641	0.471	0.300	0.493	0.949	1.088	1.855	1.384	0.696
Poak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	15.63	17.79	10.71	8.75	7.20	4.68	2.17	4.55	12.97	68.03	16.60	22.62	68.03
Runotf (mm)	60	49	47	34	26	19	15	15	18	32	40	55	410
Rainfall (mm)	96	64	80	51	55	57	56	62	74	94	86	103	878
Factors affecting runoff: GE Station type: C										1993 runoff is 110% of previous mean rainfall 115\%			

Station type: C
1993 runoff is 110% of previous mean
rainfall 115\%

042003 Lymington at Brockenhurst Park

Mensuring suthority: NRA-S
Grid reference: 41 (SU) 318019
Catchment area (sq km): 98.9
First yoar: 1960
Level stn. (m OD): 6.10
Max alt. (m OD): 114
Hydrometric statistics for 1993

	JAN	FEB	MAR	APA	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	2.339	0.541	0.409	2.221	0.527	0.522	0.225	0.121	0.942	2.631	1.342	3.298	1.266
$\left.\mathrm{m}^{3} \mathrm{~g}^{-1}\right)$; Peak					7.71	9.64	2.41	1.26	9.64	10.11	10.09	10.11	
Runoff (mm)	63	13	11	58	14	14	6	3	25	71	35	89	404
Rainfall (mm)	113	10	51	102	68	61	72	40	147	164	89	182	1099
Monthly and yearly statistics for previous record (Oct 1960 to Dec 1992 -incomplete or missing months total 0.2 years)													
Mean Avg.	1.804	1.651	1.444	1.018	0.731	0.426	0.235	0.238	0.398	0.937	1.313	1.539	0.975
flows Low	0.330	0.439	0.327	0.168	0.128	0.042	0.013	0.014	0.042	0.128	0.198	0.522	0.407
$\mathrm{m}^{3} \mathrm{~s}^{-1} \mathrm{l}$ High	3.723	3.680	3.089	2.169	1.569	1.247	1.603	0.847	2.308	4.841	5.283	3.294	1.340
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	10.13	13.62	10.13	10.13	13.98	9.94	11.38	8.16	8.47	11.28	13.54	14.91	14.91
Runoff (mm)	49	41	39	27	20	11	6	6	10	25	34	42	311
Rainfall (mm)	88	62	71	53	56	58	45	60	72	88	90	92	835

Factors affecting runoff: N
Station type: TP
1993 runoff is 130% of previous mean rainfall 132%

042004 Test at Broadlands

Mensuring authority: NRA-S
First year: 1957
Hydrometric statistics for 1993

	JaN	FEB	MAA	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	OEC	Ye
Flows Avg. $m^{3} \mathbf{s}^{-1}$: Peak	18.950	14.810	12.270	15.790	12.460	10.800	8.967	7.489	7.974	14.450	12.230	14.280	12.530
Runoff (mm)	49	34	32	39	32	27	23	19	20	37	30	37	380
Rainfall (mm)	111	7	50	105	80	51	57	32	113	150	55	138	949
Monthly and yearly statistics for previous record (Oct 1957 to Dec 1992 -incomplete or missing months total 0.2 years)													
Mean Avg.	14.270	15.460	14.960	13.370	11.410	9.570	7.878	7.344	7.499	8.764	10.250	12.210	11.060
flows Low	6.415	6.882	6.686	6.107	4.861	4.558	3.708	4.263	5.377	5.786	5.304	6.069	6.597
$\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$) High	34.670	32.680	24.430	19.050	16.320	13.540	10.850	10.440	12.810	27.060	33.510	35.180	18.790
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)													
Runoff (mm)	37	36	39	33	29	24	20	19	19	23	26	31	338
Rainfall (mm)	84	56	68	51	54	59	49	64	68	79	82	90	804

Factors beffecting runoff: \mathbf{N}
Station type: VA

Grid reference: 41 (SU) 354188
Level stn. (m OD): 10.10

Catchment area (sq km): 1040.0 Max alt. (m OD): 297

1993 runoff is 113% of previous mean rainfalt 118\%

042006 Meon at Mislingford

Measuring authority: NRA-S
First year: 1958
Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	2.142	1.778	1.189	1.144	0.850	0.636	0.470	0.348	0.334	1.535	1.333	1.770	1.125
$\mathrm{m}^{3} \mathrm{~s}^{-1} \mathrm{j}: \quad$ Peak					1.05	0.94	0.69	0.59	0.85	2.66	1.88	3.38	
Runoff (mm)	79	59	44	41	31	23	17	13	12	56	47	65	487
Rainfall (mm)	119	9	37	117	44	61	76	41	155	164	75	160	1058
Monthly and yearly statistics for previous record (Oct 1958 to Dec 1992)													
Mean Avg.	1.441	1.740	1.592	1.348	0.997	0.719	0.510	0.381	0.334	0.489	0.771	1.079	0.946
flows Low	0.332	0.353	0.356	0.335	0.164	0.120	0.079	0.068	0.102	0.110	- 0.124	0.179	0.334
$\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	3.470	3.310	2.820	2.024	1.738	1.220	0.827	0.657	0.882	2.309	4.126	3.917	1.813
Paak flow ($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$)	3.84	4.27	3.26	2.83	2.07	1.50	1.23	1.08	0.96	1.68	2.83	3.77	4.27
Runoff (mm)	53	58	59	48	37	26	19	14	12	18	27	40	410
Rainfall (mm)	97	63	76	59	60	60	55	70	78	94	98	101	911

Factors affecting runoff: G
Station type: FL

Grid reference: 41 (SU) 589141
Level stn . (m OD): 29.30

1993 runoff is 119% of previous mean
rainfall 116\%

043006 Nadder at Wilton Park

Measuring authority: NRA-SW
First year: 1966
Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	MAY	JuN	Jul.	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	5.839	3.722	2.180	3.284	2.187	1.998	1.407	1.145	1.261	4.526	2.706	5.938	3.018
$\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	12.77	4.71	4.07	10.13	2.89	5.88	2.35	1.56	5.53	20.92	7.39	13.94	20.92
Runoff (mm)	71	41	26	39	27	23	17	14	15	55	32	72	431
Rainfall (mm)	112	8	50.	90	59	72	64	34	122	149	60	172	992
Monthly and yearly statistics for previous record (Jan 1966 to Dec 1992)													
Mean Avg.	4.488	5.056	4.273	3.274	2.404	1.871	1.466	1.287	1.305	1.725	2.463	3.762	2.770
flows Low	1.011	1.263	1.358	1.048	0.993	0.839	0.684	0.595	0.801	0.829	0.878	1.219	1.535
$\mathrm{m}^{\mathbf{3}} \mathbf{s}^{-1}$) High	6.773	12.290	6.732	5.936	4.044	3.283	2.234	2.040	3.093	3.537	6.413	7.316	3.821
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	22.71	26.61	18.80	14.27	28. 13	8.83	13.39	6.71	16.68	10.99	22.90	47.88	47.88
Runoff (mm)	54	56	52	38	29	22	18	16	15	21	29	46	396
Rainfall (mm)	95	73	78	53	63	63	53	70	75	85	87	101	896
Factors affecting runoff: \mathbf{N} Station type: C										1993 runoff is 109% of previous mean rainfall 111\%			

Factors affecting runoff: N
Station type: C

Grid reference: 41 (SU) 098308 Leval stn. (m OD): 51.10

Catchment area (sq km): 220.6 Max alt. (m OD): 277
rainfall 111%

043007 Stour at Throop Mill

Measuring authority: NRA-SW
First year: 1973
Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	MAY	JUN	JuL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	35.440	15.270	8.486	18.280	8.064	7.471	4.513	3.497	5.777	31.730	13.100	37.840	15.844
$\mathrm{m}^{3} \mathrm{~s}^{-1}$: Peak	104.60	22, 15	16.02	45.34	10.36	21.74	7.27	5.45	20.21	128.70	37.58	123.00	128.70
Runoff (mm)	88	34	21	44	20	18	11	9	14	79	32	94	466
Reinfall (mm)	113	9	51	88	52	69	65	35	138	140	64	159	983
Monthly and yearly statistics for previous record (Jan 1973 to Dec 1992)													
Mean Avg.	23.220	25.340	20.230	14.180	9.175	6.271	4.417	4.073	4.893	8.188	13.010	22.160	12.873
flows Low	4.319	6.826	7.548	4.483	3.157	2.231	1.614	1.358	1.892	2.716	2.823	6.386	6.138
$\mathrm{m}^{3} \mathrm{~s}^{-1} \mathrm{l}$ High	38.730	69.370	32.620	27.070	18.900	16.940	7.932	8.998	20.340	29.770	36.730	42.950	17.377
Peak flow ($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-2}$)	116.60	137.70	110.20	88.24	150.00	180.00	47.60	32.41	90.33	101.90	133.40	280.00	280.00
Runoff (mm)	58	58	50	34	23	15	11	10	12	20	31	55	379
Rainfall (mm)	88	70	77	48	53	57	51	63	74	85	80	104	850
Factors affecting runoff: PGE Station type: CC										1993 runoff is 123% of previous mean rainfall 116\%			

Factors affecting runoff: PGE
Station type: CC

Grid reference: 40 (SZ) 113958
Level stn. (m OD): 4.40

Catchment area (sq km): 1073.0 Max alt. (m OD): 277
rainfall 116%

043012 Wylye at Norton Bavant

Measuring authority: NRA-SW
First year: 1969
Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	MAY	JUN	JUL.	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	2.362	1.377	0.918	0.954	0.703	0.617	0.561	0.520	0.530	1.065	0.898	2.005	1.043
$\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	4.63	1.91	3.32	2.38	1.11	1.74	1.45	0.95	1.64	3.64	2.15	4.67	4.67
Runoff (mm)	56	30	22	22	17	14	13	12	12	25	21	48	293
Rainfall (mm)	116	10	46	87	64	71	84	50	101	128	59	183	999
Monthly and yearly statistics for previous record (Jul 1971 to Dec 1992 -incomplete or missing months total 0.1 years)													
Mean Avg.	1.645	1.909	1.598	1.335	0.961	0.741	. 0.599	0.554	0.568	0.662	0.868	1.364	1.063
flows Low	0.454	0.468	0.503	0.482	0.450	0.335	0.279	0.287	0.405	0.413	0.456	0.523	0.652
$\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$) High	2.444	4.465	2.403	2.230	1.454	1.238	0.771	0.694	1.033	1.387	1.731	2.628	1.362
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-9}$)	5.90	7.26	5.24	3.84	6.74	2.98	3.44	2.76	7.19	2.88	3.39	6.33	7.26
Runoff (mm)	39	41	38	31	23	17	14	13	13	16	20	32	298
Rainfall (mm)	98	72	86	55	60	69	58	73	78	85	85	105	924

Factors affecting runoff: E
Grid reference: 31 (ST) 909428
Level stn. (m OD): 96.70
Catchment area (sq km): 112.4 Max alt. (m OD): 288

Station type: C

1993 runoff is 98% of previous mean rainfall 108\%

Measuring authority: NRA-SW
First year: 1963
Hydrometric statistics for 1993

		JAN	FEB	MAR	APR	MAY	JuN	Jul	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	5.912	4.058	2.407	2.759	1.991	1.656	1.240	1.044	1.322	3.285	2.873	4.921	2.786
$\left.m^{3} s^{-1}\right):$	Peak	8.44	5.45	5.02	5.41	2.33	2.57	1.52	1.50	4.03	6.49	6.33	8.54	8.54
Runoff (mm)		86	54	35	39	29	23	18	15	19	48	41	72	480
Rainfall (mm)		127	11	53	93	45	68	69	40	159	143	90	189	1087

Monthly and yearly statistics for previous record (Oct 1963 to Dec 1992 -incomplete or missing months total 0.1 years)

Moan Avg.	3.470	4.308	3.809	2.975	2.145	1.632	1.219	1.055	1.069	1.386	2.027	2.866	2.320
flows Low	1.045	1.020	1.093	0.945	0.757	0.571	0.483	0.433	0.598	0.707	0.721	0.853	1.328
$\mathrm{m}^{3} \mathrm{~s}^{-1} \mathrm{l}$ High	5.959	8.785	6.202	4.782	3.376	2.907	1.755	1.526	2.300	0.106	5.047	0.853 5.654	1.328 3.233
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	11.87	10.02	9.37	6.48	8.11	9.23	4.79	4.50	8.18	9.29	5.047 9.20	8.652	11.87
Runoff (mm)	51	57	56	42	31	23	18	15	15	20	29	42	400
Rainfall (mm)	106	82	85	54	62	59	48	64	82	94	103	111	950
Factors affecting	off: G									993 r	f is 12	of prev	s mean

Station type: FL

Grid reference: 30 (SY) 913876
Level stn. (m OD): 2.10

Catchment area (sq km): 183.1 Max alt. (m OD): 275

044009 Wey at Broadwey

1993

Measuring authority: NRA-SW
First yoar: 1975
Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	0.573	0.512	0.327	0.280	0.216	0.184	0.145	0.119	0.150	0.359	0.293	0.641	0.316
$\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	0.79	0.64	0.47	0.55	0.36	0.39	0.31	0.29	0.53	0.98	0.53	5.47	5.47
Runotf (mm)	219	177	125	104	83	68	55	46	55	137	109	245	1423
Rainfall (mm)	112	12	54	77	47	85	79	42	148	130	94	204	1084
Monthly and yearly statistics for previous record (Jul 9975 to Dec 1992 -incomplate or missing months total 0.1 years)													
Mean Avg.	0.420	0.531	0.521	0.442	0.302	0.242	0.183	0.144	0.121	0.141	0.193	0.326	0.298
flows Low	0.100	0.100	0.126	0.117	0.099	0.093	0.095	0.085	0.076	0.067	0.070	0.076	0.188
$\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	0.698	0.970	0.896	0.730	0.486	0.450	0.318	0.211	0.178	0.290	0.390	0.698	0.410
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	1.46	1.79	2.86	1.23	3.31	3.18	2.29	1.25	0.65	0.70	1.26	2.35	3.31
Runoff (mm)	161	185	199	164	115	90	70	55	45	54	72	125	1335
Rainfall (mm)	86	84	91	51	50	53	50	58	70	95	84	106	878
Factors affecting runoff: N Station type: FV										1993 runoff is 107% of previous mean rainfall 123\%			

045003 Culm at Wood Mill

1993

Mensuring authority: NRA-SW
First yoar: 1962
Hydrometric statistics for 1993

045004 Axe at Whitford

Moasuring authority: NRA-SW
Grid reference: 30 (SY) 262953 Level stn. (m OD): 7.30
Hydrometric statistics for 1993

	JAN	FE8	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	8.764	2.557	2.150	6.592	2.560	3.479	1.705	1.385	3.998	11.460	6.147	15.430	5.548
$\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1} 1:$ Peak	82.59	3.52	5.77	60.96	12.08	21.79	5.80	2.57	39.65	146.10	61.71	91.74	146.10
Plunoff (mm)	81	21	20	59	24	31	16	13	36	106	55	143	606
Rainfall (mm)	111	12	44	100	88	72	67	36	152	142	96	202	1122
Monthly and yearly statistics for previous record (Oct 1964 to Dec 1992)													
Mean Avg.	9.091	8.347	6.465	4.286	3.460	2.467	1.950	2.056	2.507	4.128	5.789	8.247	4.886
flows Low	1.891	2.448	2.542	1.567	1.176	0.817	0.626	0.554	1.222	1.243	1.714	2.829	2.665
$\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	15.730	18.720	11.670	8.346	7.284	4.678	5.312	4.935	9.911	16.440	11.980	14.410	2.665 6.406
Peak flow ($\mathrm{m}^{\mathbf{3}} \mathbf{s}^{-1}$)	110.60	114.60	93.02	75.42	173.40	75.04	228.80	128.00	88.95	99.72	116.90	244.00	244.00
Runoff (mm)	84	71	60	39	32	22	18	19	23	38	52	77 17	2344
Rainfall (mm)	119	87	82	58	66	64	59	71	81	95	96	116	994
Factors affecting runoff: PGEI Station type: CC										1993 runoff is 113% of previous mean rainfall 113\%			

046003 Dart at Austins Bridge-

Measuring authority: NRA-SW
First year: 1958
Hydrometric statistics for 1993

	JAN	FEB	MAR	${ }^{\text {APR }}$	MAY	JUN	JUL 4.997	AUG 3.643	$\begin{aligned} & \text { SEP } \\ & 11.610 \end{aligned}$	$\begin{aligned} & \text { OCT } \\ & 14.330 \end{aligned}$	NOV 9.572	$\begin{gathered} \text { DEC } \\ \mathbf{3 5 . 6 6 0} \end{gathered}$	$\begin{aligned} & \text { Year } \\ & \mathbf{1 2 . 2 4 1} \end{aligned}$
Flows Avg.	25.940	6.223	3.246	9.137	12.330	9.324	4.997	3.643	11.610	14.330	9.572	$35.660 .$	12.241
$\mathrm{m}^{3} \mathrm{~s}^{-1}$: Peak	186.50	12.38	5.28	82.49	68.90	26.77	24.40	19.10	217.60	69.62	84.82	161.50	217.60
Runoff (mm)	281	61	35	96	133	98	54	39	122	155	100	386	1559
Rainfall (mm)	299	35	43	149	227	80	143	48	261	158	158	442	2043
Monthly and yearly statistics for previous record (Oct 1958 to Dec 1992)													
Mean Avg.	19.610	17.220	13.930	9.908	6.870	4.781	3.866	4.670	5.757	10.640	15.050	19.060	10.922
flows Low	5.428	4.270	5.704	3.275	1.942	1.447	0.994	0.713	0.905	1.229	5.048	8.229	7.298
$\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	36.680	43.870	33.520	22.720	14.530	14.260	10.930	12.590	26.290	28.000	33.400	35.540	15.592
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	284.00	309.40	236.10	187.40	98.88	253.00	206.50	222.20	327.60	168.20	317.80	549.70	549.70
Runoff (mm)	212	170	151	104	74	50	42	51	60	115	158	206	1392
Rainfall (mm)	227	165	165	115	98	94	94	121	134	180	199	228	1820

Factors affecting runoff: SR
Station type: VA

Grid reference: 20 (SX) 751659
Level stn. (m OD): 22.40

Catchment area (sq km): 247.6 Max alt. (m OD): 604

1993 runoff is 112% of previous mean rainfall 112\%

046005 East Dart at Bellever

1993

Measuring authority: NRA-SW First year: 1964

Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG.	SEP 1550	OCT	NOV 1.009	DEC 3.703	Year 1.342
Flows Avg.	2.610	0.613	0.385	1.000	1.403	1.108	0.801	0.506	1.550	1.323	1.009	3.703	1.342
$\mathrm{m}^{3} \mathrm{~s}^{-1} \mathrm{l}$: Peak	30.53	2.03	2.16	13.35	14.35	7.15	4.55	3.44	47.72	8.73	10.96	23.08	47.72
Runotf (mm)	325	69	48	121	175	134	100	63	187	165	122	461	1969
Rainfa! (mm)	338	38	50	151	236	99	176	58	307	162	159	504	2278
Monthly and yearly statistics for previous record (Apr 1964 to Dec 1992)													
Mean Avg.	2.068	1.804	1.440	0.967	0.733	0.627	0.542	0.628	0.771	1.254	1.685	2.077	1.214
flows . Low	0.718	0.468	0.600	0.348	0.250	0.185	0.126	0.105	0.203	0.176	0.783	0.971	0.808
$\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	3.830	5.103	3.639	1.990	1.605	1.589	1.303	1.571	3.306	2.903	3.586	3.756	1.775
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	50.12	45.63	32.53	26.80	18.89	47.89	65.13	54.01	53.35	34.55	53.76	67.06	67.06
Runoff (mm)	258	205	179	117	91	76	68	78	93	156	203	259	1782
Rainfall (mm)	252	184	188	119	112	115	113	134	154	199	221	265	2056
Factors affecting runoff: \mathbf{N} Station type: VA										1993 runoff is 110% of previous mean rainfall 111\%			

Grid reference: 20 (SX) 657775 Level stn. (m OD): 309.00

Catchment area (sq km): 21.5 Max alt. (m OD): 604
rainfall 111\%

047001 Tamar at Gunnislake

Measuring authority: NRA-SW
First year: 1956
Grid reference: 20 (SX) 426725
Level stn. (m OD): 8.20
Catchment area (sq km): 916.9

Hydrometric statistics for 1993

		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	50.610	10.800	6.191	13.580	14.920	32.990	18.750	8.826	15.940	39.610	18.160	71.410	25.321
$\left.\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$;	Peak	238.40	18.10	12.68	61.87	71.96	363.70	95.25	21.89	75.41	179.40	116.80	200.70	363.70
Runoff (mm)		148	29	18	38	44	93	55	26	45	116	51	209	871
Rainfall (mm)		178	24	31	87	136	126	162	33	162	129	97	264	1429

Monthly and yearly statistics for previous record (Jul 1956 to Dec 1992)

Mean Avg.	44.790	36.760	25.870	16.560	11.000	6.566	6.032	8.375	11.470	22.060	35.260	44.100	22.351
flows Low	8.476	9.161	11.250	5.681	3.112	1.995	1.181	0.757	1.118	1.540	4.213	13.710	12.519
$\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	89.410	86.960	65.520	35.210	32.370	20.630	28.730	42.100	59.840	65.080	78.760	91.700	34.885
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	347.90	306.70	411.70	268.00	154.50	177.70	96.00	238.00	401.40	373.50	530.20	714.60	714.60
Runoff (mm)	131	98	76	47	32	19	18	24	32	64	100	129	769
Rainfall (mm)	143	101	99	70	69	71	82	94	102	126	137	143	1237
Factors affecting Station type: VA	off: SR									$1993 \text { r }$	off is 113 infall 116	of pre	s mea

048005 Kenwyn at Truro

1993

Messuring authority: NRA-SW
First year: 1968
Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	0.932	0.279	0.144	0.262	0.357	0.594	0.245	0.152	0.350	0.899	0.361	1.324	0.494
$\mathrm{m}^{3} \mathrm{~s}^{-1} \mathrm{j}: \quad$ Peak	5.81	0.52	0.41	1.20	4.56	3.10	1.50	0.49	3.67	7.99	2.58	14.76	14.76
Runoff (mm)	131	35	20	36	50	81	34	21	48	126	49	186	816
Rainfall (mm)	146	25	30	102	160	89	113	35	176	119	106	235	1336
Monthly and yearly statistics for previous record (Oct 1968 to Dec 1992)													
Mean Avg.	0.805	0.762	0.550	0.326	0.192	0.134	0.089	0.086	0.109	0.250	0.474	0.736	0.374
flows Low	0.169	0.206	0.185	0.156	0.090	0.070	0.043	0.026	0.037	0.034	0.046	0.218	0.263
$\left.\mathrm{m}^{3} \mathrm{~s}-1\right) \mathrm{High}$	1.506	1.638	0.997	0.613	0.418	0.357	0.163	0.179	0.560	0.714	1.093	1.353	0.540
Poak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	22.50	7.19	5.74	4.07	1.82	3.71	2.79	2.29	4.10	30.37	9.74	13.35	30.37
Runoff (mm)	113	97	77	44	27	18	12	12	15	35	64	103	619
Rainfall (mm)	142	104	97	59	57	63	57	74	83	113	128	137	1114
Factors affecting runoff: \mathbf{N} Station type: CC										1993 runoff is 132% of previous mean rainfall 120%			

Catchment area (sq km): 19.1 Max alt. (m OD): 152
ainfall 120%

048011 Fowey at Restormel

1993

Measuring authority: NRA-SW
First year: 1961
Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	9.897	2.743	1.641	4.079	4.733	7.763	3.248	2.429	4.700	8.475	4.625	12.690	5.612
$\mathrm{m}^{3} \mathrm{~s}^{-1} \mathrm{f}$: Peak	32.60	5.13	2.57	10.71	30.98	37.79	10.22	4.57	17.07	27.02	20.20	30.70	37.79
Runotf (mm)	157	39	26	63	75	119	51	38	72	134	71	201	1047
Rainfall (mm)	208	28	39	132	198	144	164	40	248	130	139	299	1769
Monthly and yéarly statistics for previous record (Apr 1961 to Dec 1992)													
Mean Avg.	8.991	8.214	6.093	4.038	2.881	2.063	1.793	1.953	2.465	4.361	6.745	8.854	4.857
flows Low	2.267	2.704	2.595	1.684	1.034	0.693	0.562	0.343	0.673	0.617	0.921	2.947	3.391
$\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	17.330	21.780	12.130	7.641	6.447	5.479	4.859	6.044	10.490	11.720	15.450	20.890	7.440
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	104.80	111.90	45.62	24.52	22.62	39.44	31.10	48.51	70.02	35.07	223.70	126.60	223.70
Runoff (mm)	142	119	97	62	46	32	28	31	38	69	103	140	906
Roinfall (mm)	177	124	130	82	85	88	95	108	117	143	170	177	1496

Factors affecting runoff: SRP
Station type: CC

Grid reference: 20 (SX) 098624
Level stn. (m OO): 9.20

052007 Parrett at Chiselborough

Measuring authority: NRA-SW
First year: 1966
Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	2.563	0.544	0.343	1.646	0.435	0.754	0.266	0.181	1.141	3.760	1.285	4.134	1.431
$\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	27.43	0.82	2.24	14.55	1.99	8.11	0.84	0.66	32.24	28.69	16.02	29.60	32.24
Runot (mm)	92	18	12	57	16	26	10	7	40	135	45	148	603
Rainfall (mm)	99	9	41	95	74	77	61	35	169	133	72	160	1025
Monthly and yearly statistics for previous record (Aug 1966 to Dec 1992)													
Mean Avg.	2.391	2.014	1.540	0.867	0.686	0.468	0.337	0.335	0.424	0.910	1.299	2.079	1.110
flows Low	0.258	0.593	0.463	0.285	0.206	0.130	0.106	0.090	0.145	0.186	0.219	0.409	0.564
$\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	4.914	6.120	3.055	1.867	2.048	1.053	0.921	0.988	2.225	4.819	3.789	4.219	1.534
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	36.38	30.70	27.46	21.21	57.21	12.81	16.14	23.88	15.29	27.22	29.53	44.94	57.21
Runoff (mm)	86	66	55	30	25	16	12	12	15	33	45	74	468
Rainfall (mm)	105	76	B0	49	64	63	53	67	74	87	84	104	906

Factors affecting runoff: E
Station type: C

Grid reference: 31 (ST) 461144 Level stn. (m OD): 20.70

Catchment area (sq km): 74.8 Max alt. (m OD): 219

1993 runoff is 129% of previous mean

052010 Brue at Lovington

Measuring authority: NRA-SW
First year: 1964
Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	4.144	1.212	0.589	1.923	0.516	0.535	0.408	0.282	0.394	3.258	1.270	5.454	1.676
$\mathrm{m}^{3} \mathrm{~s}^{-1}$: Peak	28.48	2.40	1.23	18.37	0.83	6.85	3.57	0.75	4.66	59.49	9.57	35.60	59.49
Runoff (mm)	82	22	12	37	10	10	8	6	8	65	24	108	391
Rainfall (mm)	108	14	38	72	44	64	89	41	101	116	54	154	895
Monthly and yearly statistics for previous record (Oct 1964 to Dec 1992)													
Mean Avg.	3.458	3.237	2.531	1.555	1.131	0.765	0.812	0.762	0.822	1.339	2.235	3.397	1.832
flows Low	0.743	0.910	0.844	0.526	0.313	0.218	0.150	0.130	0.218	0.190	0.407	1.034	1.153
$\mathrm{m}^{3} \mathrm{~s}^{-1} \mathrm{l}$ High	5.752	6.961	5.263	3.352	3.554	2.203	4.081	2.449	4.873	4.380	4.883	6.158	2.427
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	47.28	53.57	43.49	27.19	95.48	35.46	83.00	48.42	69.42	61.06	74.62	61.06	95.48
Runoff (mm)	69	58	50	30	22	15	16	15	16	27	43	67	428
Rainfall (mm)	86	67	74	54	62	68	69	74	75	76	85	92	882
Factors affecting runoff: N Station type: C VA										1993 runoff is 91% of previous mean rainfall 101\%			

Station type: C VA

Grid reference: 31 (ST) 590318 Level stn. (m OD): 19.80

Catchment area (sq km): 135.2 Max alt. (m OD): 260

053004 Chew at Compton Dando

1993

Measuring authority: NRA-SW
First year: 1958
Grid reference: 31 (ST) 648647
Level stn. (m OD): 16.80
Catchment area (sq km): 129.5 Max alt. (m OD): 305
Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	MAY	JUN	JuL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	3.336	0.932	0.543	0.859	0.631	0.547	0.501	0.420	0.428	1.460	0.866	2.928	1.127
$\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	18.39	1.65	1.33	3.81	0.78	0.94	0.73	0.49	1.54	41.98	6.95	28.05	41.98
Runoff (mm)	69	17	11	17	13	11	10	9	9	30	17	61	275
Rainfall (mm)	146	12	30	74	53	53	98	33	110	116	77	205	1007
Monthly and yearly statistics for previous record (Mar 1958 to Dec 1992 -incomplete or missing months total 1.0 years)													
Mean Avg.	1.853	1.710	1.387	0.999	0.808	0.590	0.460	0.456	0.566	0.790	1.240	1.733	1.046
flows 1 Low	0.444	0.557	0.410	0.469	0.333	0.287	0.243	0.195	0.232	0.300	0.264	0.622	0.540
$\left.\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	3.935	4.166	4.210	2.185	2.493	1.211	0.811	1.245	2.135	3.251	3.898	5.017	1.766
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	39.43	48.99	50.00	14.19	67.50	13.00	6.23	6.09	59.26	49.56	58.85	63.78	67.50
Runoff (mm)	38	32	29	20	17	12	10	9	11	16	25	36	255
Rainfall (mm)	101	71	80	62	167	70	70	84	89	92	103	111	1000
Factors affecting runoff: S P 1993													

Station type: FL

1993 runoff is 108% of previous mean rainfall 101\%

053006 Frome(Bristol) at Frenchay

1993

Measuring authority: NRA-SW
First year: 1961
Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	MAY	JuN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	6.266	0.760	0.468	1.367	0.598	0.863	0.566	0.301	0.530	2.943	1.259	5.455	1.798
$m^{3} s^{-1}$: Peak	26.08	1.38	2.06	10.94	4.15	5.93	5.53	2.06	7.59	25.67	9.06	19.62	26.08
Runoff (mm)	113	12	8	24	11	15	10	5	9	53	22	98	381
Rainfall (mm)	148	5	21	69	61	58	80	34	97	99	57	143	872
Monthly and yearly statistics for previous record (Sep 1961 to Dec 1992)													
Mean Avg.	3.308	2.833	2.318	1.375	1.102	0.755	0.590	0.534	0.693	1.173	2.243	3.028	1.658
flows Low	0.670	0.613	0.637	0.476	0.228	0.220	0.122	0.139	0.208	0.162	0.211	0.808	0.804
$\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	6.152	6.040	5.762	3.434	5.028	2.973	3.516	2.398	5.113	4.691	5.558	9.807	2.255
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	35.06	41.09	33.84	29.63	49.00	29.01	70.79	12.75	29.73	42.93	39.90	66.55	70.79
Runoff (mm)	60	46	42	24	20	13	11	10	12	21	39	54	351
Rainfall (mm)	76	55	64	50	60	63	55	70	71	71	78	83	796
factors affecting runoff: N (1993 runoff is 108\% of preser													

factors affecting runoff: N
Station type: FL

Grid reference: 31 (ST) 637772
Level stn. (m OD): 20.00

Catchment area (sq km): 148.9 Max alt. (m OD): 193

993 runoff is 108% of provious mean rainfall 110\%

054012 Tern at Walcot

Moosuring authority: NRA-ST
First yaar: 1960
Hydrometric statistics for 1993

Grid reference: 33 (SJ) 592123
Level sin. (m OD): 44.60

Catchment area (sq km): 852.0 Max alt. (m OD): 366 rainfall 106\%

054019 Avon at Stareton

Measuring authority: NRA-ST
First yoar: 1962
Grid reference: 42 (SP) 333715
Level stn. (m OD): 54.70
Hydrometric statistics for 1993

Station type: C VA
1993 runoff is 121% of previous mean rainfall 110%

054020 Perry at Yeaton

1993

Measuring authority: NRA-ST
First year: 1963
Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	2.859	1.201	0.880	1.319	1.150	1.662	0.586	0.497	0.616	1.430	1.668	6.066	1.669
$\left.\mathrm{m}^{3} \mathrm{~s}^{-1}\right): \quad$ Peak	7.73	1.67	1.01	6.18	4.07	8.32	0.94	0.61	1.39	4.61	7.68	13.73	13.73
Runoff (mm)	42	16	13	19	17	24.	9	7	9	21	24	90	291
Rainfall (mm)	75	7	12	72	109	63	56	44	89	73	62	176	838
Monthly and yearly statistics for previous record (Oct 1963 to Dec 1992)													
Moan Avg.	2.838	2.678	2.325	1.707	1.333	0.925	0.699	0.684	0.692	1.077	1.719	2.543	1.597
llows Low	0.901	0.669	0.796	0.728	0.520	0.379	0.271	0.208	0.350	0.412	0.427	2.543 0.725	1.597 0.809
$\mathrm{m}^{3} \mathrm{~s}^{-1}$ High	4.870	6.507	4.265	3.041	4.232	2.046	2.735	1.416	1.785	3.308	3.103	6.244	2.335
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	14.26	17.66	12.94	10.83	10.41	8.49	7.87	5.49	7.32	3.5082	10.02	6.244 12.57	17.66
Runoff (mm)	42	36	34	24	20	13	10	10	10	16	25	38	279
Rainfall (mm)	68	54	62	49	61	58	57	63	63	66	79	77	757
Factors affecting runoff: GEI Station type: C													

054022 Severn at Plynlimon flume

Measuring authority: IH
First year: 1953
Grid reference: 22 (SN) 853872
Level stn. (m OD): 331.00
Catchment area (sq km): 8.7
Hydrometric statistics for 1993

	JAN	FE8	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	1.124	0.184	0.207	0.456	0.364	0.327	0.514	0.472	0.411	0.390	0.523	1.695	0.560
$\mathrm{m}^{3} \mathrm{~s}^{-1}$: Peak	7.93	0.44	1.14	6.97	3.98	1.70	5.66	6.45	4.55	3.21	4.74	11.51	11.51
Runoff (mm)	346	51	64	136	112	97	158	145	122	120	156	522	2030
Rainfall (mm)	418	40	76	162	176	106	252	163	165	113	196	629	2496
Monthly and yearly statistics for previous record (Oct 1953 to Dec 1992-incomplete or missing months total 10.4 years)													
Moan Avg.	0.761	0.595	0.631	0.348	0.233	0.220	0.275	0.407	0.504	0.633	0.795	0.768	0.514
flows Low	0.363	0.136	0.171	0.046	0.046	0.045	0.043	0.032	0.073	0.059	0.268	0.175	0.317
$\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	1.567	1.249	1.566	0.878	0.818	0.638	0.754	0.935	1.092	1.464 1.48	1.268 1.420	0.175 1.313	0.646
Peak flow ($\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$	14.50	17.00	16.79	11.64	9.86	10.66	8.84	32.22	15.38	18.86	17.77	17.11	32.22
Runoff (mm)	234	167	194	104	72	65	85	125	150	195	237	236	1864
Rainfall (mm)	284	189	219	134	125	135	148	190	220	249	282	279	2454
Factors affecting runoff; \mathbf{N} Station type: FL										1993 runoff is 109% of previous mean rainfall 102\%			

054024 Worfe at Burcote

Measuring authority: NRA-ST irst year: 1969
Hydrometric statistics for 1993

Factors affecting runoff: PGEI Station type: 0

Grid reference: 32 (SO) 747953
Level stn. (m OD): 33.20
Catchment area (sq km): 258.0 Max alt. (m OD): 120

054034 Dowles Brook at Oak Cottage, Dowles

Measuring authority: NRA-ST first year: 1971
Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	MAY	JUN	JUt.	AUG		OCT 0.581	NOV 0.561	DEC 1.292	Year. 0.440
Flows Avg.	0.693	0.195	0.108	0.457	0.306	0.826	0.097	0.053	0.093	0.581	0.561	1.292	0.440
$\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	6.01	0.31	0.17	3.08	2.95	21.64	0.31	0.11	7.16	5.04	8.61	6.46	21.64
Runoff (mm)	46	12	7	29	20	53	6	4	6	38	36	85	340
Rainfall (mm)	68	9	14	68	89	91	61	33	89	93	77	111	803
Monthly and yearly statistics for previous record (Oct 1971 to Dec 1992-incomplete or missing months total 3.2 years)													
Mean Avg.	0.787	0.748	0.674	0.436	0.287	0.188	0.086	0.080	0.124	0.205	0.303	0.653	0.379
flows Low	0.097	0.160	0.169	0.116	0.073	0.033	0.017	0.019	0.020	0.036	0.046	0.072	0.240
$\mathrm{m}^{3} \mathrm{~s}^{-1}$ High	1.617	1.738	1.637	1.090	1.016	0.692	0.255	0.347	0.880	1.047	0.786	1.414	0.508
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	16.57	9.67	14.96	12.90	12.14	16.28	4.73	6.39	19.35	5.09	7.72	18.90	19.35
Runoff (mm)	52	45	44	28	19	12	6	5	8	13	19	43	294
Rainfall (mm)	72	53	64	50	53	58	56	62	63	63	57	75	726

Factors affecting runoff: N Station type: FVVA

Grid reference: 32 (SO) 768764 Level stn. (m OD): 24.20

Catchment area (sq km): 40.8 Max alt. (m OD): 230

1993 runoff is 116% of previous mean rainfall 111%

054038 Tanat at Llanyblodwel

Measuring authority: NRA-ST first year: 1973
Hydrometric statistics for 1993

	JAN	FEB	MAR	APA	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	11.690	3.835	1.879	7.460	6.318	5.008	1.856	2.106	5.115	3.763	4.440	22.650	373
$\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	31.44	6.20	2.95	37.97	25.50	19.63	3.94	17.51	26.72	14.96	23.38	66.05	66.05
Runoff (mm)	137	41	22	84	74	57	22	25	58	44	50	265	878
Rainfall (mm)	166	18	22	127	147	66	85	78	128	57	87	373	1354
Monthly and yearly statistics for previous record (Jun 1973 to Dec 1992-incomplete or missing months total 0.8 years)													
Mean Avg.	11.940	10.190	9.066	5.345	3.117	2.255	1.332	2.424	3.318	6.623	9.729	11.870	6.419
flows Low	5.037	3.707	2.693	1.392	0.867	0.699	0.348	0.190	0.520	1.701	2.895	5.738	4.185
$\left.\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \quad$ High	19.220	21.460	17.800	9.686	10.250	4.660	2.589	7.609	9.885	15.020	17.370	21.410	7.510
Peak flow ($\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$	123.10	101.20	85.77	39.85	31.27	56.87	15.68	118.20	69.56	82.17	76.12	87.99	123.10
Runoff (mm)	140	109	106	61	36	26	16	28	38	77	110	139	885
Rainfall (mm)	133	100	113	68	71	72	63	91	103	121	134	147	1216

Factors affecting runoff: N EI
Station type: FV

Catchment area (sq km): 229.0 Max alt. (m OD): 827

1993 runoff is 99% of previous mean rainfall 111\%

055008 Wye at Cefn Brwyn

Factors affecting runoff: N
Station type: CC

Measuring authority: IH
First year: 1951
Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	1.387	0.178	0.258	0.622	0.414	0.398	. 0.807	0.616	0.471	0.441	0.619	2.072	0.696
$\left.\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	14.70	0.44	2.14	11.89	6.61	2.33	9.42	13.01	7.67	2.94	7.57	21.75	21.75
Runoff (mm)	352	41	66	153	105	98	205	156	116	112	152	526	2081
Rainfall (mm)	429	42	84	174	179	120	284	166	167	120	206	600	2571
Monthly and yearly statistics for previous record (Aug 1951 to Dec 1992-incomplete or missing months total 2.5 years)													
Mean Avg.	0.956	0.751	0.710	0.519	0.373	0.340	0.423	0.573	0.666	0.817	1.038	1.098	0.689
flows Low	0.492	0.137	0.206	0.064	0.054	0.074	0.053	0.036	0.050	0.092	0.376	0.198	0.447
$\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	1.870	1.486	1.735	1.312	1.144	0.954	1.264	1.478	1.478	2.031	1.761	2.655	0.994
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	23.47	21.10	24.23	19.12	17.89	25.49	19.11	48.87	22.64	27.68	29.15	32.00	48.87
Runoff (mm)	243	174	180	127	95	84	107	145	164	207	255	279	2060
Rainfall (mm)	261	175	205	148	128	139 -	-159	199	205	244	272	303	2438

Grid raference: 22 (SN) 829838
Level stn. (m OD): 341.00
Catchment area (sq km): 10.6 Max alt. (m OD): 740

1993 runoff is 101% of previous mean rainfall 105%

055013 Arrow at Titley Mill

1993

Measuring authority: NRA-WEL
Grid reference: 32 (SO) 328585 Level stn. (m OD): 129.00

Catchment area (sq km); 126.4
First year: 1966
Max alt. (m OD): 542

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	4.861	1.488	0.666	2.622	1.104	1.978	0.739	0.355	1.155	2.831	2.439	8.294	2.389
$\left.\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	29.03	2.66	0.89	17.56	2.75	6.39	1.27	0.62	5.04	14.29	17.73	34.59	34.59
Runotf (mm)	103	28	14	54	23	41	16	8	24	60	50	176	596
Rainfall (mm)	129	8	17	115	86	85	84	53	111	84	90	203	1065
Monthly and yearly statistics for previous record (Oct 1966 to Dec 1992)													
Mean Avg.	4.751	4.048	3.498	2.217	1.647	1.048	0.689	0.660	0.874	1.910	3.095	4.264	2.386
flows Low	1.528	1.369	1.629	0.632	0.355	0.257	0.211	0.154	0.135	0.255	0.662	1.366	1.309
$\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	9.004	8.763	8.933	5.028	5.001	2.559	3.842	2.219	2.644	6.916	6.625	8.464	3.418
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	101.10	42.40	57.85	37.95	32.49	13.09	30.68	24.80	18.85	36.45	34.78	63.34	101.10
Runoff (mm)	101	78	74	45	35	21	15	14	18	40	63	90	596
Rainfoll (mm)	111	83	87	59	70	66	57	78	88	96	99	109	1003
Factors affecting runoff: N Station type: VA										1993 runoff is 100% of previous mean rainfall 106\%			

055014 Lugg at Byton

Measuring authority: NRA-WEL
First yoar: 1966
Hydrometric statistics for 1993

actors affecting runaff: P
Station type: FVVA
Grid reference: 32 (SO) 364647
Level stn. (m OD): 124.10
MAY JUN JUL

1993 runoff is 97% of previous mean rainfall 103%

055018 Frome at Yarkhill

Moasuring authority: NRA-WEL
First year: 1968
Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	MAY	JuN	JUL	AUG	SEP	OCT	Nov	DEC	Year
Flows Avg.	2.487	0.782	0.509	1.152	0.754	0.635	0.378	0.261	0.292	1.290	1.321	2.898	1.068
$\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$): Peak	23.62	1.08	0.64	10.43	2.16	2.09	0.63	0.35	1.11	11.25	14.29	18.29	23.62
Runoff (mm)	46	13	9	21	14	11	7	5	5	24	24	54	234
Rainfall (mm)	76	9	16	65	78	58	58	26	90	90	66	104	736
Monthly and yearly statistics for previous record (Oct 1968 to Dec 1992)													
Mann Avg.	2.591	2.418	2.041	1.307	1.018	0.592	0.340	0.321	0.307	0.463	0.980	1.953	1.189
flows Low	0.214	0.389	0.560	0.359	0.274	0.146	0.091	0.063	0.096	0.142	0.119	0.210	0.672
$\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	4.668	5.456	5.176	3.299	3.972	1.349	0.630	0.759	0.970	2.405	2.266	4.230	1.628
Peak flow ($\mathrm{m}^{3} \mathbf{s}^{-1}$)	24.98	24.99	24.28	24.57	25.89	16.99	5.96	9.61	15.68	10.34	18.51	25.14	25.89
Runotf (mm)	48	41	38	24	19	11	6	6	6	9	18	36	261
Rainfall (mm)	75	52	61	46	56	57	49	66	59	60	64	71	716
Factors affecting runoff: E Station type: VA										1993 runoff is 90% of previous mean			

Factors affecting runotf: E
Station type: VA
Grid reference: 32 (SO) 615428
Leval stn. (m OD): 55.40
MAY JUN JUL rainfall 103%

055023 Wye at Redbrook

Measuring authority: NRA-WEL
First year: 1936
Hydrometric statistics for 1993

Monthly and yearly statistics for previous record (Oct 1936 to Dec 1992 -incomplete or missing months total 0.2 years)

| Mean | Avg. | 133.100 | 122.500 | 94.110 | 64.800 | 43.450 | 33.730 | 24.140 | 28.640 | 39.770 | 59.380 | 101.700 | 124.600 | 72.256 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

${ }^{\text {S }}$-1	Hig	241.900	333.900	325.400	143.600	125.000	131.600	95.830	83.680	174.000	174.700	252.400	246.000	113
ank flow	$3_{3}{ }^{-}$	748.	700.4	905	493	387.	467	368	347	531	47	600	81	

Peak flow ($\mathrm{m}^{3} \mathrm{~m}^{-1}$)	748.00	700.40	905.40	493.30	387.90	467.20	368.30	347.80	531.70	472.90	600.30	812.70	90
Runotf (mm)	89	74	63	42	29	22	16	19	26	40	66	83	569
Roinfall (mm)	112	79	77	64	72	63	67	83	86	96	111	113	1023

Factors affecting runoff: SPE $\quad 1993$ runoff is 106% of previous mean Station type: VA

Grid reference: 32 (SO) 528110 Level stn. (m OD): 9.20

Catchment area (sq km): 4010.0 Max alt. (m OD): 752
 rainfall 104%
\qquad

056013 Yscir at Pontaryscir
1993

Measuring authority: NRA.WEL
First year: 1972
Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows ' Avg.	4.647	0.920	0.403	1.552	0.968	1.304	0.807	0.695	1.348	1.891	1.725	6.392	1.900
$\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	20.99	2.19	0.79	7.76	4.35	5.15	3.27	2.35	8.82	7.11	17.87	31.00	31.00
Runoff (mm)	198	35	17	64	41	54	34	30	56	81	71	273	954
Rainfall (mm)	230	16	28	113	114	95	126	75	130	92	107	292	1418
Monthly and yearly statistics for previous record (May 1972 to Dec 1992-incomplete or missing months total 0.2 years)													
Mean Avg.	3.503	2.757	2.638	1.473	0.968	0.696	0.513	0.779	1.100	2.103	3.097	3.535	1.928
flows Low	1.146	0.998	0.852	0.431	0.269	0.214	0.150	0.104	0.251	0.214	0.941	1.540	1.286
$\left.\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	5.795	5.914	6.303	3.211	3.041	1.788	1.758	3.044	3.947	4.279	5.291	6.324	2.465
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	36.98	34.72	40.55	13.74	14.81	74.33	11.06	30.69	21.44	85.01	34.02	59.93	85.01
Runoff (mm)	149	107	113	61	41	29	22	33	45	90	128	151	969
Rainfall (mm) ${ }^{*}$ -(1973-1992)	165	114	136	75	78	76	79	104	126	147	156	178	1434
Factors affecting runoff: N Station type: C										1993 runoff is 99% of previous mean rainfall 99\%			

Grid reference: 32 (SO) 003304
Level stn. (m OD): 161.20

Catchment area (sq km): 62.8 Max alt. (m OD): 474

057008 Rhymney at Llanedeyrn

Measuring authority: NRA-WEL
First year: 1973
Hydrometric statistics for 1993

058009 Ewenny at Keepers Lodge

Measuring authority: NRA•WEL
First year: 1971
Hydrometric statistics for 1993

		JAN	FEB	MAR	APR	MAY	JuN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	4.551	1.398	0.804	1.843	0.828	1.017	1.485	0.977	1.197	1.407	2.316	5.988	1.993
$\mathrm{m}^{3} \mathrm{~s}^{-1}$:	Peak	69.10	6.13	1.80	11.93	3.07	4.93	19.59	6.52	8.28	9.63	37.16	55.14	69.10
Runoff (mm)		195	54	34	76	35	42	64	42	50	60	96	257	1006
Rainfall (mm)		221	18	35	112	77	73	145	62	142	76	120	291	1372

Monthly and yearly statistics for previous record (Nov 1974 to Dec 1992 -incomplete or missing months tatal 0.2 years)

Mean	Avg.	2.850	2.546	2.354	1.514	1.102	0.914	0.832	1.032	1.268	2.066	2.751	2.839	1.836
flows	Low	1.268	1.224	1.011	0.654	0.500	0.431	0.302	0.220	0.458	0.409	1.082	1.323	1.037
$\mathrm{m}^{3} \mathrm{~s}^{-1} \mathrm{y}$	High	5.921	4.745	6.004	2.683	2.515	1.756	2.196	3.879	3.604	4.391	5.680	4.744	2.344
Peak flow	$\mathrm{n}^{3} \mathrm{~s}^{-1}$	56.47	30.15	51.23	27.50	20.44	17.24	28.97	57.64	42.60	59.45	65.14	43.85	65.14
Runoff (mm		122	100	101	63	47	38	36	44	53	89	114	122	927
Rainfall (m)		142	103	116	71	75	88	81	112	129	144	147	140	1348

actors affecting runoff
Station type: FVVA

Grid reference: 21 (SS) 920782
Level sin. (m OD): 8.30
Catchment area (sq km): 62.5 Max alt. (m OD): 300

1993 runoff is 108% of previous mean rainfall 102\%

060003 Taf at Clog-y-Fran

Factors affecting runoff: N
Station type: VA

Measuring authority: NRA-WEL
First year: 1965
Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	14.050	4.611	2.883	6.816	5.383	9.413	2.786	2.335	2.656	5.824	9.215	21.170	7.286
$\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	41.84	10.96	3.93	37.16	17.72	40.50	7.41	9.43	9.96	24.59	73.48	73.48	73.48
Runoff (mm)	173	51	36	81	66	112	34	29	32	72	110	261	1057
Rainfall (mm)	189	45	42	114	160	134	107	82	117	79	157	261	1487
Monthly and yearly statistics for previous record foct 1965 to Dec 1992-incomplete or missing months total 0.4 years)													
Mean Avg.	12.890	10.730	8.992	5.699	3.587	2.410	1.863	3.137	3.684	8.863	11.750	13.610	7.257
flows Low	4.748	3.858	3.796	1.735	1.017	0.781	0.375	0.363	0.687	1.018	3.757	3.899	4.672
$\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	25.900	27.200	26.610	11.800	8.412	8.821	6.339	10.760	15.340	22.310	22.730	25.520	9.662
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	73.43	B1.15	85.73	60.03	35.85	45.11	38.25	101.00	58.02	86.49	80.82	84.22	101.00
Runoff (mm)	159	120	111	68	44	29	23	39	44	109	140	168	1054
Rainfall (mm)	158	110	120	83	77	79	75	109	120	163	155	172	1421

Grid reference: 22 (SN) 238160
Level str. (m OD): 7.00
Catchment area (sq km): 217.3
Max alt. (m OD): 395

1993 runoff is 100% of previous mean rainfall 105\%

060010 Tywi at Nantgaredig

Measuring authority: NRA-WEL
First year: 1959
Hydrometric statistics for 1993

		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	85.030	19.540	11.020	31.340	24.180	43.990	17.590	13.210	13.500	28.750	35.170	104.600	35.844
$\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1} \mathrm{l}$:	Peak	206.30	48.82	18.77	114.10	100.90	151.20	44.82	46.53	53.59	96.64	203.00	244.70	244.70
Runotf (mm)		209	43	27	75	59	105	43	32	32	71	84	257	1037
Rainfall (mm)		265	33	41	119	145	124	128	78	127	89	149	330	1628

Monthly and yearly statistics for previous record (Oct 1958 to Dec 1992 -incomplete or missing months total 0.1 years)

Mean	Avg.	65.120	49.760	43.470	31.930	22.190	14.320	12.470	20.820	25.590	46.240	62.310	66.970	38.401
flows	Low	9.473	12.210	9.657	6.201	4.507	3.736	2.752	2.699	1.523	8.708	23.910	19.470	22.516
$\mathrm{m}^{3} \mathrm{~s}^{-1}$	High	120.600	109.300	137.800	64.470	51.420	39.400	42.120	78.470	76.490	128.700	122.600	134.400	54.099
Peak flow	$\mathrm{m}^{3} \mathrm{~s}^{-1}$	507.40	578.80	702.30	215.30	180.10	256.80	295.90	312.50	322.80	1200.00	461.10	526.70	1200.00
Runoff (mm		160	111	107	76	55	34	31	51	61	114	148	164	1111
Rainfall (m		176	118	115	110	94	95	104	126	120	166	173	181	1578
Factors affecting runoff: RP Station type: FVVA											1993 runoff is 93% of previous mean rainfall 103\%			

063001 Ystwyth at Pont Llolwyn

Meosuring authority: NRA-WEL
First yoar: 1963
Hydrometric statistics for 1993

		JAN	FEB	MAR	APR	MAY	JUN	NL	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	13.990	2.613	2.180	5.286	2.646	6.999	5.831	4.345	3.487	4.796	6.572	18.260	6.457
$\mathrm{m}^{3} \mathrm{~m}^{-1}$):	Peak	91.13	6.74	8.21	42.22	13.74	42.33	55.29	27.01	29.11	16.82	56.39	68.51	91.13
Runoff (mm)		221	37	34	81	42	107	92	69	53	76	100	288	1201
Rainfall (mm)		242	33	46	112	106	151	164	106	104	76	130	293	1563

Monthly and yearly statistics for previous record (Oct 1963 to Dec 1992 -incomplete or missing months total 0.2 years)

Mean Avg.	9.272	7.012	6.421	4.394	3.098	2.413	2.552	3.424	4.324	7.262	9.525	10.780	5.872
flows Low	2.268	2.283	2.761	0.961	0.577	0.625	0.422	0.181	0.882	0.558	3.757	2.219	3.783
$\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	15.330	15.200	18.470	10.080	10.100	7.571	5.461	8.556	10.670	19.800	18.320	22.600	7.775
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	105.60	88.63	126.70	90.32	105.10	129.70	68.24	174.30	76.84	147.40	128.10	210.40	210.40
Runotf (mm)	146	101	101	67	49	37	40	54	66	115	146	170	1093
Rainfall (mm)	153	104	122	87	86	91	98	114	129	155	170	178	1487
Factors affecting Station sype: VA	off:									1993 ru	ff is 1	6 of pre	ous mean

Station type: VA
Grid reference: 22 (SN) 591774
Level stn. (m OD): 12.00
Catchment area (sq km): 169.6 Max alt. (m OD): 611
$\begin{array}{lllllllll}\text { Rainfall }(\mathrm{mm}) & 153 & 104 & 122 & 87 & 86 & 91 & 98 & 114\end{array}$

Grid reference: 22 (SN) 485206

- Level stn. (m OD): 7.80

Catchment area (sq km): 1090.4 Max alt. (m OD): 792

Factors affecting runoff: RP
Station type: FVVA

064001 Dyfi at Dyfi Bridge

Measuring authority: NRA-WEL
First year: 1962
Hydrometric statistics for 1993

		JAN	FE8	MAR	APR	MAY	JUN	Jul	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg,	44.540	6.578	5.341	20.060	13.650	13.760	12.170	18.430	13.000	9.698	15.230	78.870	21.122
$\mathrm{m}^{3} \mathrm{~s}^{-1}$):	Peak	213.60	20.84	18.53	117.10	132.30	38.83	54.35	182.70	48.54	31.04	118.00	322.40	322.40
Runoff (mm)		253	34	30	110	78	76	69	105	71	55	84	448	1413
Rainfall (mm)		298	33	56	148	159	107	175	141	121	67	130	489	1924

Monthly and yearly statistics for previous record (Oct 1962 to Dec 1992 -incomplete or missing months total 4.6 years)

Mean	Avg.	33.680	26.110	28.420	16.740	11.340	9.416	8.494	13.580	17.020	28.420	37.110	40.710	22.588
flows	Low	6.245	5.174	5.789	2.626	1.295	1.618	0.822	0.663	5.966	10.770	14.530	7.501	14.412
$\mathrm{m}^{3} \mathrm{~s}^{-1}$	High	68.810	55.560	75.790	42.490	31.380	21.770	18.780	40.440	36.260	76.960	70.470	88.280	26.520
Peok flow	$\mathrm{m}^{3} \mathrm{~s}^{-1}$	350.20	342.20	360.70	288.10	337.20	402.10	162.00	210.00	329.80	344.00	375.50	580.50	580.50
Runoff (mm		191	135	162	92	64	52	48	77	94	162	204	231	1512
Rainfa! (m)		200	136	167	107	101	108	108	144	165	195	215	235	1881
Factors affecting runoff: \mathbf{N} Station type: VA											1993 runoff is 93% of previous mean rainfall 102\%			

064002 Dysynni at Pont-y-Garth

Measuring authority: NRA-WEL
First year: 1966
Hydrometric statistics for 1993

	JAN	FE日	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	6.891	1.828	1.390	4.179	2.540	5.113	3.928	6.078	4.119	2.231	3.336	10.100	4.333
$\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1} ;$: Peak	23.05	5.25	3.59	21.97	7.30	13.71	10.36	20.16	18.35	6.62	28.00	44.35	44.35
Runoff (mm)	246	59	50	144	91	176	140	217	142	80	115	360	1819
Rainfall (mm)	292	43	65	145	148	174	184	160	94	74	168	436	1983
Monthly and yearly statistics for previous record (Jan 1966 to Dec 1992-incomplete or missing months total 0.8 years)													
Mean Avg.	6.225	4.919	5.115	3.561	2.505	2.289	2.759	3.533	4.205	5.890	7.226	7.113	4.613
Hows Low	3.371	1.548	0.986	0.457	0.298	0.427	0.278	0.289	1.926	0.556	3.011	2.770	3.523
$\left.\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \quad \mathrm{High}$	11.830	10.330	14.780	7.209	7.602	5.921	5.407	8.900	8.282	12.350	15.460	13.070	7.137
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	61.40	41.34	98.71	48.57	76.32	48.42	53.35	56.75	70.14	107.70	121.30	84.70	121.30
Runoff (mm)	222	160	182	123	89	79	98	126	145	210	249	254	1938
Rainfall (mm)	217	151	190	125	120	138	141	172	191	242	245	247	2179
Factors affecting runoff: N Station type: VA										1993 runoff is 94% of previous mean rainfall 91\%			

065005 Erch at Pencaeneivydd
1993

Measuring authority: NRA-WEL
First year: 1973
Grid reference: 23 (SH) 400404 Leval stn. (m OD): 56.10

Catchment area (sq km): 18.1 Max alt. (m OD): 564

Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	MAY	JUN	JuL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	0.951	0.482	0.314	0.614	0.593	0.647	0.306	0.286	0.339	0.421	0.542	1.240	0.562
$\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	3.41	3.98	0.95	4.24	4.24	4.76	2.37	2.17	6.82	3.18	6.05	8.03	8.03
Runoff (mm)	141	64	46	88	88	93	45	42	48	62	78	184	979
Rainfall (mm)	164	52	58	122	198	88	88	96	97	71	128	226	1388
Monthly and yearly statistics for previous record (Jan 1973 to Dec 1992)													
Mean Avg.	0.967	0.794	0.777	0.480	0.318	0.216	0.182	0.304	0.396	0.739	1.004	1.057	0.602
flows Low	0.372	0.366	0.311	0.177	0.120	0.089	0.081	0.062	0.103	0.236	0.264	0.366	0.430
$\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	1.673	1.869	1.804	0.892	0.728	0.539	0.427	1.113	0.919	1.736	1.816	1.764	0.739
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	10.41	15.45	19.78	11.00	. 4.68	6.99	5.53	9.22	7.76	25.01	16.91	15.49	25.01
Runoff (mm)	143	107	115	69	47	31	27	45	57	109	144	156	1050
Rainfall (mm)	144	102	131	76	72	74	81	120	123	160	164	162	1409

Factors affecting runoff: N
Station type: C
runoff is 93% of previous mean rainfall 99\%

1993
066006 Elwy at Pont-y-Gwyddel

Measuring authority: NRA-WEL
First year: 1973
Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	9.804	2.180	0.816	2.133	3.083	3.527	0.823	1.043	2.021	2.281	2.756	15.560	3.863
$\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	42.85	5.78	1.83	6.08	16.85	25.38	1.54	13.38	17.76	17.18	24.76	62.04	62.04
Runoff (mm)	135	27	11	29	43	47	11	14	27	32	37	215	628
Rainfall (mm)	176	19	25	80	139	86	77	78	90	66	72	272	1180
Monthly and yearly statistics for previous record (Dec 1973 to Dec 1992)													
Mean Avg.	7.902	6.212	5.396	3.067	1.673	1.242	0.661	1.175	2.344	4.987	7.302	7.857	4.143
flows Low	3.115	2.650	1.539	0.823	0.479	0.359	0.278	0.242	0.249	1.360	2.263	4.085	2.908
$\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	13.060	15.070	11.950	6.939	5.918	3.300	1.402	4.351	7.450	11.530	11.850	14.560	5.094
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	100.40	58.00	76.59	50.76	21.66	18.00	27.05	38.13	58.57	143.00	101.60	75.42	143.00
Runoff (mm)	109	78	75	41	23	17	9	16	31	69	98	108	674
Rainfall (mm)	129	91	104	63	70	74	64	90	114	134	141	140	1214
Factors affecting runoff: SRP Station type: VA										1993 runoff is 93% of previous mean rainfall 97\%			

Catchment area (sq km): 194.0

Grid reference: 23 (SH) 952718
Level stn. (m OD): 87.90
rainfall 97%

067008 Alyn at Pont-y-Capel

Measuring authority: NRA-WEL
First year: 1965
Hydrometric statistics for 1993

Grid reference: 33 (SJ) 336541
Level stn. (m OD): 37.30

067018 Dee at New Inn

Measuring authority: NRA-WEL
First year: 1969
Grid reference: 23 (SH) 874308
Level stn. (m OD): 163.50
Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
Flows Avg.	5.541	0.664	0.715	2.874	2.802	1.826	1.451	2.112	1.719
$\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	45.35	2.54	4.76	30.45	74.71	24.01	13.82	36.92	14.90
Runoff (mm)	275	30	36	138	139	88	72	105	83
Rainfall (mm)	296	29	48	185	202	115	128	130	122
Monthly and yearly statistics for previous record (Jul 1969 to Dec 1992)									
Mean Avg.	4.716	3.686	3.662	2.216	1.323	1.199	1.320	1.867	2.723
flows Low	2.098	0.707	0.858	0.378	0.160	0.297	0.136	0.152	0.407
$\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	9.552	7.707	8.472	5.638	4.062	3.569	4.147	6.044	7.556
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	76.49	77.34	69.24	67.16	53.39	52.84	44.93	61.42	85.10
Runoff (mm)	234	167	182	107	66	58	66	93	131
Rainfall (mm)	218	153	177	115	98	109	107	141	156

Factors affecting runoff: N
Station type: VA

068004 Wistaston Brook at Marshfield Bridge

Measuring authority: NRA-NW
First year: 1957
Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	1.104	0.581	0.400	0.488	0.514	0.431	0.327	0.324	0.333	0.564	0.593	1.989	0.640
$\mathrm{m}^{3} \mathrm{z}^{-1} \mathrm{l}:$ Poak	4.11	0.89	0.58	2.46	5.00	4.45	1.76	3.17	1.91	4.72	4.58	8.64	8.64
Runoff (mm)	32	15	12	14	15	12	9	9	9	16	17	57	218
Rainfall (mm)	63	9	12	56	102	54	73	49	57	53	46	121	695
Monthly and yearly statistics for previous record (Oct 1957 to Dec 1992 -incomplete or missing months total 4.2 years)													
Mean Avg.	1.633	1.425	1.105	1.051	0.830	0.706	0.623	0.640	0.698	0.931	1.282	1.535	1.037
flows Low	0.538	0.510	0.638	0.462	0.317	0.331	0.235	0.194	0.221	0.277	0.487	0.650	0.518
$\mathrm{m}^{3} \mathrm{~s}^{-1} \mathrm{l}$ High	3.143	3.679	2.131	1.901	3.381	1.410	2.419	1.578	1.973	1.902	2.555	4.701	1.681
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	16.21	13.14	13.31	12.48	15.06	11.63	13.02	21.45	10.73	12.95	13.25	14.47	21.45
Runoff (mm)	47	38	32	29	24	20	18	18	20	27	36	44	353
Rainfall (mm)	65	45	51	54	59	62	60	68	67	70	73	67	741
Factors affecting runoff: PGEI Station type: VA													

069006 Bollin at Dunham Massey

Moasuring authority: NRA-NW First yoar: 1955
Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	6.392	2.999	1.893	3.162	2.447	2.827	3.747	4.061	3.097	3.927	3.117	12.410	4.195
$\left.\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Paak	15.91	5.27	2.76	9.92	14.54	12.59	14.72	14.10	9.43	22.00	23.45	32.19	32.19
Runoif (mm)	67	28	20	32	26	29	39	42	31	41	32	130	517
Rainfall (mm)	83	17	12	71	72	64	103	74	67	55	43	165	826
Monthly and yearly statistics for previous record (Oct 1955 to Dec 1992-incomplete or missing months total 1.1 vears)													
Mean Avg.	6.414	5.301	4.597	3.658	2.852	2.535	2.378	2.899	3.052	4.100	5.462	6.462	4.139
flows Low	1.639	1.686	1.694	1.742	1.286	0.707	0.875	0.464	0.651	1.300	$\cdot 1.804$	2.296	2.728
$\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	10.960	12.880	11.470	8.732	5.781	9.203	5.626	11.410	8.963	11.340	9.425	14.510	6.307
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	43.95	39.29	36.91	60.43	63.02	42.37	41.50	44.04	35.05	41.18	44.35	46.33	63.02
Runoff (mm)	67	51	48	37	30	26	25	30	31	43	55	68	510
Rainfall (mm)	79	54	64	56	62	71	74	87	80	84	84	87	882

Foctors affecting runoff: S PGEI Station type: VA

Grid reference: 33 (SJ) 727875
Level stn. (m OD): 12.80

Catchment area (sq km): 256.0 Max alt. (m OD): 483

1993 runoff is 101% of previous mean rainfall 94%

069007 Mersey at Ashton Weir

Measuring authority: NRA-NW
First year: 1958
Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	13.130	6.049	3.886	6.759	5.047	5.988	9.210	9.072	12.550	8.131	5.757	30.760	9.746
$\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$): Peak	26.46	12.37	5.36	42.89	19.99	22.03	34.89	30.48	108.10	35.63	47.50	144.70	144.70
Runoff (mm)	53	22	16	27	20	24	37	37	49	33	23	125	466
Rainfall (mm)	111	18	16	92	85	69	149	85	121	54	57	239	1096
Monthly and yearly statistics for previous record (Jan 1981 to Dec 1992-incomplete or missing months total 0.1 years)													
Man Avg.	19.200	12.010	15.330	10.250	5.972	6.520	4.680	6.203	6.857	11.150	14.880	19.430	11.047
flows Low	8.297	7.270	5.544	4.698	3.479	3.847	2.447	2.760	2.574	4.403	7.300	8.686	8.438
$\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	29.220	23.100	36.210	17.190	11.420	18.090	7.866	12.560	11.110	25.500	25.190	36.810	15.876
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	341.80	125.00	176.70	113.00	56.25	157.50	49.21	216.70	87.70	202.50	303.70	563.40	563.40
Runotf (mm)	78	45	62	40	24	26	19	25	27	45	58	79	528
Rainfall (mm)	115	65	110	74	59	85	66	100	88	125	119	120	1126
Factors affecting runoff: S PGEI Station type: CB										1993 runoff is 88% of previous mean rainfall 97%			

070004 Yarrow at Croston Mill

Measuring authority: NRA-NW
Grid reference: 34 (SD) 498180 Level stn. (m OD): 6.90

Catchment area (sq km): 74.4 Max alt. (m OD): 456
Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	MAY	JuN	Jul	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	2.670	1.005	0.643	1.532	1.117	1.194	1.026	1.237	0.881	1.112	1.181	5.354	1.588
$\left.\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	7.81	2.05	1.16	14.82	5.22	21.20	11.62	14.21	7.25	9.23	8.24	19.16	21.20
Runoff (mm)	96	33	23	53	40	42	37	45	31	40	41	193	673
Rainfall (mm)	105	15	20	93	104	66	91	77	68	51	53	218	961
Monthly and yearly statistics for previous record (Jan 1976 to Dec 1992 -incomplate or missing months total 0.1 years)													
Mean Avg.	3.201	2.188	2.501	1.350	1.026	0.914	0.802	1.146	1.180	2.441	2.756	3.238	1.897
flows Low	1.491	0.846	1.037	0.586	0.508	0.405	0.494	0.379	0.536	0.854	1.349	1.756	1.251
$\mathrm{m}^{2} \mathrm{~s}^{-1}$) High	5.037	4.917	7.574	2.504	2.577	1.417	1.804	4.003	2.062	6.360	4.699	6.531	2.830
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	35.89	20.17	93.13	31.18	27.79	30.15	27.89	192.00	35.77	89.38	34.23	107.60	192.00
Runoff (mm)	115	72	90	47	37	32	29	41	41	88	96	117	805
Rainfall (mm)	100	62	96	57	60	81	62	94	92	123	107	110	1044
Foctors affecting runoff: S PGEI													

[^6]Grid reference: 33 (S.J) 772936
Level sin. (m OD): 14.90

Catchment area (sq km): 660.0 Max alt. (m OD): 636 Runoff (mm)
ly statis rainfall 97%

Measuring authority: NRA-NW First year: 1960

Hydrometric statistics for 1993

		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	Nov	DEC	Year
Flows	Avg.	66.260	13.610	8.693	35.040	28.110	14.960	21.190	27.880	23.010	14.680	14.970	105.900	31.437
$\mathrm{m}^{3} \mathrm{~s}^{-1}$:	Peak	296.20	31.35	19.19	332.80	196.80	68.88	178.00	232.70	276.60	52.14	125.30	580.00	580.00
Runoff (mm)		155	29	20	79	66	34	50	65	52	34	34	248	866
Rainfall (mm)		193	18	29	131	137	57	125	99	98	46	56	297	1286

Monthly and yearly statistics for previous record (May 1960 to Dec 1992)

Mean ! Avg.	51.150	38.100	35.510	25.770	17.420	13.950	15.960	23.320	28.650	41.250	52.470	55.790	33.276
flows Low	10.610	9.565	11.790	5.601	4.048	5.031	2.638	2.958	4.263	5.716	20.770	15.190	22.045
$\left.\mathrm{m}^{3} 5^{-1}\right) \quad \mathrm{High}$	82.510	80.890	104.700	54.820	46.460	33.520	40.500	68.920	65.820	118.400	88.610	120.200	45.022
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-7}$)	787.30	513.10	643.30	466.60	319.10	494.80	399.80	520.80	619.30	810.00	613.20	891.30	891.30
Runoff (mm)	120	81	83	58	41	32	37	55	65	96	119	131	917
Rainfall (mm)*	134	90	110	80	78	89	90	118	127	141	143	149	1349

1993 runoff is 94% of previous mean rainfall 95%

Comment: 1993 flows derive from a nearby temporary gauging station (NGR: 587314)

071004 Calder at Whalley Weir

Measuring authority: NRA-NW First year: 1963

Hydrometric statistics for 1993

	JAN	FEB	MAR	APA	MAY	JUN	Jul	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	14.590	4.066	2.772	8.035	5.925	3.846	5.683	7.044	7.259	4.588	4.488	26.920	7.989
$\mathrm{m}^{3} \mathrm{~s}^{-19}$: Peak	72.36	7.88	4.80	91.93	26.55	12.08	43.05	82.60	131.10	20.14	38.22	237.50	237.50
Runoff (mm)	124	31	24	66	50	32	48	60	60	39	37	228	797
Rainfall (mm)	157	16	22	116	113	51	119	96	104	46	51	277	1168
Monthly and yearly statistics for previous record (Oct 1963 to Dec 1992 -incomplete or missing months total 2.6 years)													
Mean Avg.	13.150	9.691	9.327	6.598	4.919	4.262	3.827	5.711	6.969	10.700	12.930	13.610	8.474
flows Low	5.766	3.320	3.989	2.272	2.053	1.888	1.773	1.564	1.921	2.397	5.625	4.886	6.225
$\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	20.590	17.170	25.320	13.010	9.916	7.609	9.059	16.280	18.620	23.910	21.990	25.610	11.485
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	211.80	146.10	185.20	108.40	91.66	135.50	230.60	171.60	206.00	229.50	148.60	199.50	230.60
Runoff (mm)	111	75	79	54	42	35	32	48	57	91	106	115	846
Rainfall (mm)	124	81	104	72	73	86	80	108	113	131	131	130	1233
Factors affecting runoff: EI Station type: FV										1993 runoff is 94% of previous mean rainfall 95\%			

Monthly and yearly statistics for previous record (Oct 1963 to Dec 1992 -incomplete or missing months total 2.6 years)

	JAN	FEB	MAR	APA	MAY	JUN	Jul	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	14.590	4.066	2.772	8.035	5.925	3.846	5.683	7.044	7.259	4.588	4.488	26.920	7.989
$\mathrm{m}^{3} \mathrm{~s}^{-19}$: Peak	72.36	7.88	4.80	91.93	26.55	12.08	43.05	82.60	131.10	20.14	38.22	237.50	237.50
Runoff (mm)	124	31	24	66	50	32	48	60	60	39	37	228	797
Rainfall (mm)	157	16	22	116	113	51	119	96	104	46	51	277	1168
Monthly and yearly statistics for previous record (Oct 1963 to Dec 1992 -incomplete or missing months total 2.6 years)													
Mean Avg.	13.150	9.691	9.327	6.598	4.919	4.262	3.827	5.711	6.969	10.700	12.930	13.610	8.474
flows Low	5.766	3.320	3.989	2.272	2.053	1.888	1.773	1.564	1.921	2.397	5.625	4.886	6.225
$\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	20.590	17.170	25.320	13.010	9.916	7.609	9.059	16.280	18.620	23.910	21.990	25.610	11.485
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	211.80	146.10	185.20	108.40	91.66	135.50	230.60	171.60	206.00	229.50	148.60	199.50	230.60
Runoff (mm)	111	75	79	54	42	35	32	48	57	91	106	115	846
Rainfall (mm)	124	81	104	72	73	86	80	108	113	131	131	130	1233
Factors affecting runoff: EI Station type: FV										1993 runoff is 94% of previous mean rainfall 95\%			

Station type: FV
Grid reference: 34 (SD) 729360
Level stn. (m OD): 39.90
Catchment area (sq km): $\mathbf{3 1 6 . 0}$ Max alt. (m OD): 558

073005 Kent at Sedgwick

Measuring authority: NRA-NW
First year: 1968
Hydrometric statistics for 1993

074005 Ehen at Braystones

Measuring authority: NRA-NW
 First year: 1974

Hydrometric statistics for 1993

075002 Derwent at Camerton

1993

Measuring authority: NRA-NW
First year: 1960
Hydrometric statistics for 1993

		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg,	53.640	12.190	11.620	33.400	22.810	14.440	10.530	16.790	11.050	10.810	14.210	70.130	23.618
$\mathrm{m}^{3} \mathrm{~s}^{-1}$):	Peak	131.70	34.02	25.24	77.38	97.35	57.75	19.47	52.55	20.58	23.65	58.62	186.80	186.80
Runoff (mm)		217	44	47	131	92	56	43	68	43	44	56	283	1123
Rainfall (mm)		274	40	89	179	193	62	135	90	132	57	115	364	1730

Monthly and yearly statistics for previous record (Sep 1960 to Dec 1992 -incomplete or missing months total 0.2 years)

Mean Avg.	38.490	30.010	27.480	20.170	12.430	9.714	11.150	17.820	24.760	35.020	41.180	40.920	25.751
flows Low	9.587	4.837	7.466	4.359	2.753	2.041	2.503	2.384	2.885	2.755	14.570	14.740	14.824
$\mathrm{m}^{3} \mathrm{~s}^{-1} \mathrm{l}$ High	84.550	84.850	66.470	38.940	36.280	34.800	23.140	55.940	62.980	107.800	76.340	75.840	34.235
Poak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	219.20	165.70	215.50	145.50	102.90	135.80	114.50	216.20	189.20	264.70	226.40	234.80	264.70
Runoff (mm)	155	110	111	79	50	38	45	72	97	141	161	165	1226
Rainfoll (mm)*	183	119	152	98	96	106	115	149	175	204	194	191	1782

Factors affecting runoff: S P
Station type: VA

Grid reference: 35 (NY) 038305
Level stn. (m OD): 16.70
Catchment area (sq km): $\mathbf{6 6 3 . 0}$ Max alt. (m OD): 950

1993 runoff is 92% of previous mean rainfall 97%

076005 Eden at Temple Sowerby

Moasuring authority: NRA-NW
First yoar: 1964
Hydrometric statistics for 1993

	JAN	fEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	42.580	5.429	4.469	17.830	17.050	3.993	3.411	5.718	7.532	5.896	4.240	40.250	13.318
$\mathrm{m}^{3} \mathrm{~s}^{-1 /} /: \quad$ Peak	254.20	11.44	12.97	123.00	169.40	15.00	15.08	68.39	131.10	49.39	24.58	228.40	254.20
Runoff (mm)	185	21	19	75	74	17	15	25	32	26	18	175	681
Rainfall (mm)	221	14	35	131	137	33	77	69	90	51	48	221	1127
Monthly and yearly statistics for previous record (Nov 9964 to Dec 1992)													
Mean Avg.	23.830	19.840	17.050	10.630	7.013	5.132	5.246	7.571	10.800	16.120	21.730	25.390	14.177
flows Low	9.871	5.577	6.338	2.923	2.196	1.553	1.176	1.613	1.593	1.975	7.764	9.403	8.669
$\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-11}$ High	42.280	62.620	43.570	19.500	17.000	13.780	16.690	22.070	30.440	55.960	38.740	49.530	18.912
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	283.30	314.90	346.30	165.80	150.40	139.40	230.50	204.00	280.20	271.00	279.30	323.20	346.30
Runoff (mm)	104	79	74	45	30	22	23	33	45	70	91	110	726
Rainfall (mm)	124	89	100	62	68	69	77	94	104	117	126	131	1161
Factors affecting runoff: Station type: VA										1993 runoff is 94% of previous mean rainfall 97\%			

Catchment area (sq km): 616.4 Max alt. (m OD): 950
rainfall 97%

076010 Petteril at Harraby Green

Meosuring authority: NRA-NW
First year: 1969
Hydrometric statistics for 1993

		JAN	FEB	MAR	APR	MAY	JUN	Jul	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	5.916	1.193	0.688	2.939	1.935	0.915	0.447	0.849	0.459	0.971	0.896	6.251	1.968
$\mathrm{m}^{3} \mathrm{~s}^{-1} \mathrm{l}:$	Peak	22.77	2.45	0.88	14.39	11.10	2.79	0.88	4.86	0.96	5.95	5.90	22.27	22.77
Runoff (mm)		99	18	12	48	32	15	7	14	7	16	15	105	388
Rainfall (mm)		176	11	32	114	103	35	83	56	61	48	45	186	950

Monthly and yearly statistics for previous record (Jan 1970 to Dec 1992 -incomplete or missing months total 5.8 years)

Mean	Avg.	4.426	3.408	2.580	1.570	0.907	0.618	0.610	0.783	1.089	2.039	3.472	3.753	2.099
flows	Low	1.585	1.148	1.040	0.667	0.413	0.286	0.279	0.251	0.293	0.277	1.162	1.260	1.065
$\mathrm{m}^{3} \mathrm{~s}^{-1}$	High	7.125	9.440	4.355	3.007	3.898	1.469	1.944	2.699	4.975	5.669	7.146	6.439	2.672
Peak flow	$\mathrm{m}^{3} \mathrm{~s}^{-1}$)	38.27	38.88	47.18	15.71	18.64	9.80	22.39	24.04	42.15	29.77	47.03	44.86	47.18
Aunoff (m)		74	52	43	25	15	10	10	13	18	34	56	63	414
Rainfall ${ }^{\text {m }}$		102	64	74	49	55	60	76	79	83	95	102	91	930

Factors affecting runoff: N
Station type: MIS

Grid reference: 35 (NY) 412545
Level stn. (m OD): 20.10

077003 Liddel Water at Rowanburnfoot

Measuring authority: SRPB
First yoar: 1973
Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	27.370	4.126	5.391	15.690	9.939	3.401	2.425	4.483	4.106	6.283	5.289	30.000	9.953
$\left.m^{3} s^{-1}\right)$: Paak	245.20	32.16	30.60	88.34	204.60	17.87	16.95	142.10	44.40	62.43	62.29	292.50	292.50
Runoff (mm)	230	31	45	128	83	28	20	38	33	53	43	252	984
Rainfall (mm)	239	25	65	162	149	64	93	74	97	81	81	279	1409
Monthly and yearly statistics for previous record (Oct 1973 to Dac 1992)													
Moan Avg.	16.550	13.060	13.490	6.837	4.843	4.105	4.959	6.212	8.788	12.060	14.880	16.250	10.165
flows Low	8.344	5.633	5.710	1.538	1.118	1.083	0.879	0.869	1.757	4.057	3.421	4.819	7.515
$\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	30.750	32.020	23.150	14.760	16.730	12.940	22.800	23.360	24.390	19.120	26.200	26.460	13.058
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	404.40	349.10	345.30	171.00	248.40	131.00	309.40	178.80	354.90	334.30	281.00	393.20	404.40
Runoff (mm)	139	100	113	56	41	33	42	52	71	101	121	136	1006
Rainfall (mm)	148	102	134	73	80	86	104	121	125	144	142	157	1416
Factors affecting runotf: N Station type: VA										1993 runoff is 98% of previous mean rainfall 100\%			

Measuring authority: SRPB
Grid reference: 35 (NY) 191704
Level stn. (m OD): 10.00

Catchment area (sq km): 925.0 Max alt. (m OD): 821

Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DE	Year
Flows Avg.	66.920	13.980	20.140	52.350	29.950	17.790	10.630	14.580	10.870	13.080	11.760	85.810	28.682
$\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$: $:$ Peak	213.80	32.17	225.00	200.20	229.30	45.89	86.05	47.68	52.04	53.28	66.63	315.10	315.10
Runoff (mm)	194	37	58	147	87	33	31	42	30	38	33	248	978
Rainfall (mm)	225	18	101	156	142	58	96	63	88	50	77	257	1331
Monthly and yearly statistics for previous record (Oct 1967 to Dec 1992)													
Mean Avg.	46.840	37.310	34.320	21.360	14.870	11.210	10.970	18.020	24.870	36.810	42.680	44.370	28.610
flows . Low	17.820	12.820	8.402	6.124	3.519	2.937	1.944	2.007	3.362	3.592	11.490	19.530	16.402
$\mathrm{m}^{3} \mathrm{~s}^{-1} \mathrm{l}$ High	83.440	105.700	63.910	40.600	53.160	32.150	34.940	76.390	76.320	86.820	77.930	87.020	36.424
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	405.40	305.00	293.30	213.30	180.20	171.30	253.10	378.90	446.60	499.10	325.00	355.40	499.10
Runoff (mm)	136	99	99	60	43	31	32	52	70	107	120	128	976
Rainfall (mm)	145	101	122	72	82	82	94	114	130	148	136	142	1368
Factors affecting runoff: N										1993 runoff is 100% of previous mean			

Station type: VA

1993

078004 Kinnel Water at Redhall

Measuring authority: SRPB
First year: 1963
Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	MAY	JuN	Jut	AUG	SEP	OCT	Nov	DEC	Year
Flows Avg.	6.681	0.768	2.253	4.672	2.222	0.731	1.022	1.164	0.768	0.865	1.166	8.694	2.607
$\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	59.04	3.27	55.76	28.36	35.88	6.90	30.21	8.86	12.37	11.56	16.67	73.89	73.89
Runoff (mm)	235	24	79	159	78	25	36	41	26	30	40	306	1080
Rainfall (mm)	234	19	114	157	149	58	102	69	87	46	86	274	1395
Monthly and yearly statistics for previous record (Oct 1963 to Dec 1992-incomplete or missing months total 1.0 years)													
Mean Avg.	4.300	3.250	3.035	1.742	1.464	1.036	1.014	1.735	2.675	3.638	4.032	4.154	2.672
flows Low	1.296	0.590	0.552	0.251	0.122	0.112	0.048	0.049	0.099	0.207	0.740	1.081	1.507
$\left.\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	9.214	9.298	6.263	4.161	5.496	3.282	3.435	7.513	6.689	7.288	7.535	8.490	3.517
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	95.89	90.99	101.20	66.70	51.79	36.09	60.14	65.25	91.37	110.90	86.69	103.60	110.90
Runoff (mm)	151	104	107	59	52	35	36	61	91	128	137	146	1108
Rainfall (mm)	153	107	129	79	93	89	96	122	145	158	149	156	1476
Factors affecting runoff: \mathbf{N}										1993 runoff is 97% of previous mean			

Monthly and yearly statistics for previous record (Oct 1963 to Dec 1992 -incomplete or missing months total 1.0 years)

	JAN	FEB	MAR	APR	MAY	JuN	Jut	AUG	SEP	OCT	Nov	DEC	Year
Flows Avg.	6.681	0.768	2.253	4.672	2.222	0.731	1.022	1.164	0.768	0.865	1.166	8.694	2.607
$\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	59.04	3.27	55.76	28.36	35.88	6.90	30.21	8.86	12.37	11.56	16.67	73.89	73.89
Runoff (mm)	235	24	79	159	78	25	36	41	26	30	40	306	1080
Rainfall (mm)	234	19	114	157	149	58	102	69	87	46	86	274	1395
Monthly and yearly statistics for previous record (Oct 1963 to Dec 1992-incomplete or missing months total 1.0 years)													
Mean Avg.	4.300	3.250	3.035	1.742	1.464	1.036	1.014	1.735	2.675	3.638	4.032	4.154	2.672
flows Low	1.296	0.590	0.552	0.251	0.122	0.112	0.048	0.049	0.099	0.207	0.740	1.081	1.507
$\left.\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	9.214	9.298	6.263	4.161	5.496	3.282	3.435	7.513	6.689	7.288	7.535	8.490	3.517
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	95.89	90.99	101.20	66.70	51.79	36.09	60.14	65.25	91.37	110.90	86.69	103.60	110.90
Runoff (mm)	151	104	107	59	52	35	36	61	91	128	137	146	1108
Rainfall (mm)	153	107	129	79	93	89	96	122	145	158	149	156	1476
Factors affecting runoff: \mathbf{N}										1993 runoff is 97% of previous mean			

Factors affecting runoff: \mathbf{N}
Station type: VA

Grid reference: 35 (NY) 077868 Level sin. (m OD): 53.70

Catchment area (sq km): 76.1 Max alt. (m OD): 697
rainfall 95%

080001 Urr at Dalbeattie

Measuring authority: SRPB First year: 1963
Hydrometric statistics for 1993

		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG
Flows	Avg.	12.500	2.239	4.571	11.550	5.861	2.415	0.807	1.408
$\mathrm{~m}^{3} \mathrm{~s}^{-1}$:	Peak	59.98	6.55	75.33	63.38	69.92	12.40	7.23	10.09
Runoff (mm)	168	27	62	150	79	31	11	19	
Rainfall (mm)	207	25	98	162	133	68	73	54	

Runatf (mm)	168	27	62	150	79	31
Rainfall (mm)	207	25	98	162	133	68

Monthly and yearly statistics for previous record (Nov 1963 to Dec 1992)

Mean	Avg.	9.756	7.976	6.780	3.939	2.884	1.923	1.428	2.958	5.139	8.074	9.428	9.857	5.837
flows	Low	3.534	1.419	2.094	0.753	0.308	0.246	0.137	0.149	0.319	0.522	1.711	3.369	3.109
$\left.\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$	High	19.080	19.340	12.570	8.509	10.880	6.833	5.081	13.310	17.160	19.400	19.420	18.590	8.358
Peak flow	$\left.\mathrm{m}^{3} \mathbf{s}^{-1}\right)$	133.70	100.10	95.03	69.39	65.95	59.18	68.42	104.60	114.10	162.20	129.70	164.30	164.30
Runoff (mm)		131	98	91	51	39	25	19	40	67	109	123	133	926
Rainfall (mm		138	100	118	72	79	78	80	106	130	148	141	141	1331
Factors affecting runoff: N Station type: VA											1993 runoff is 97% of previous mean rainfall $\mathbf{9 8 \%}$			

081002 Cree at Newton Stewart

Measuring authority: SRPB
Grid reference: 25 (NX) 412653
Level sin. (m OD): 4.80
st year: 1963

Catchment area (sq km): 199.0 Max att. (m OD): 432

	JAN	FEB	MAR	APA	MAY	JUN	JuL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	27.780	8.725	17.400	25.030	16.970	6.746	8.909	10.220	7.912	6.902	10.650	39.170	15.623
$\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$): Peak	117.50	22.37	347.20	118.10	345.10	92.58	25.90	53.48	157.10	46.26	99.88	139.40	347.20
Runoff (mm)	202	57	127	176	123	48	65	74	56	50	75	285	1339
Rainfall (mm)	248	56	167	210	190	91	149	101	132	59	130	303	1836
Monthly and yearly statistics for previous record (Oct 1963 to Dec 1992)													
Mean Avg.	23.780	17.840	17.030	10.640	7.669	6.525	7.551	10.990	16.190	21.660	23.660	23.640	15.597
flows Low	9.633	2.569	4.039	1.319	0.426	0.466	0.969	0.684	1.063	6.495	7.292	5.775	9.965
$\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	45.820	42.490	33.060	23.880	22.960	15.620	19.710	36.030	43.310	36.720	43.910	48.050	18.979
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	272.50	253.10	217.20	207.10	119.40	195.10	223.10	230.90	312.70	318.00	199.10	322.30	322.30
Runoff (mm)	173	119	124	75	56	46	55	80	114	158	167	172	1338
Rainfall (mm)	195	130	161	100	95	100	111	141	168	199	202	192	1794

Factors affecting runoff: N
Station type: VA

Grid reference: 25 (NX) 822610 Level stn. (m OD): 4.00

Hydrometric statistics for 1993
\qquad

081003 Luce at Airyhemming

1993

Measuring authority: SRPB
First year: 1967
Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	8.102	3.385	5.080	11.400	6.680	4.462	2.523	3.802	3.161	4.024	5.998	13.910	6.063
$\left.\mathrm{m}^{3} \mathrm{~s}^{-1}\right):$ Pask	56.10	13.15	99.93	67.96	159.30	65.44	13.75	30.35	105.30	45.62	119.10	66.17	159.30
Runotf (mm)	127	48	80	173	105	68	40	60	48	63	91	218	1118
Rainfall (mm)	148	50	113	168	148	102	124	73	137	62	125	224	1474
Monthly and yearly statistics for previous record (Jan 1967 to Dec 1992)													
Mean Avg.	9.968	7.296	6.751	3.999	2.353	1.972	2.177	3.681	5.980	8.982	9.950	9.073	6.011
flows Low	4.540	0.789	1.359	0.454	0.261	0.225	0.191	0.277	0.366	1.689	3.857	2.445	3.691
$\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	15.600	14.810	12.860	9.522	7.597	5.360	6.445	14.290	17.670	16.750	15.940	17.090	7.787
Peok flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	177.10	146.10	216.70	197.60	87.38	190.30	156.80	283.60	192.40	231.80	191.00	204.00	283.60
Runoff (mm)	156	104	106	61	37	30	34	58	91	141	151	142	1110
Rainfa! (mm)	163	105	127	84	74	85	96	121	144	168	165	151	1483

Factors affecting runoff: NS P Station type: VA

Grid reference: 25 (NX) 180599
Level stn. (m OD): 19.00

Catchment area (sq km): 171.0
Max alt. (m OD): 438

1993 runaff is 101% of previous mean rainfall 99%

082002 Doon at Auchendrane

Measuring authority: CRPB
First yoar: 1974
Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	MAY	JUN	Jut	AUG	SEP	ОСт	Nov	DEC	Year
Flows Avg.	11.630	4.829	6.185	8.002	7.212	3.837	5.015	5.650	3.613	4.756	6.588	16.730	7.038
$\left.\mathrm{m}^{3} \mathrm{~s}^{-1}\right\}$: Peak	38.57	7.52	25.92	36.50	48.63	6.68	21.83	27.34	8.56	31.90	33.66	52.27	52.27
Runoff (mm)	96	36	51	64	60	31	41	47	29	39	53	138	685
Rainfall (mm)	255	43	135	152	151	71	137	88	88	60	118	307	1605
Monthly and yearly statistics for previous record (Jul 1974 to Dec 1992)													
Moon Avg.	10.840	8.337	8.768	5.327	4.059	3.688	4.014	5.278	7.569	9.920	10.700	10.710	7.434
flows Low	5.203	3.685	4.270	3.157	2.390	2.265	2.397	2.557	3.825	4.732	4.785	6.247	5.559
$\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$) High	15.120	18.360	13.570	10.520	8.006	4.981	6.945	10.930	17.680	14.610	17.290	20.680	8.698
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	85.15	63.08	69.51	61.06	42.45	19.63	61.38	46.34	103.20	121.50	83.78	84.49	121.50
Runoff (mm)	90	63	73	43	34	30	33	44	61	82	86	89	725
Rainfall (mm)	196	120	157	77	75	78	99	131	170	194	188	189	1674

Factors affecting runoff: P
Station type: VA

Grid reference: 26 (NS) 338160 Level stn. (m OD): 22.20

Catchment area (sq km): 323.8 Max alt. (m OD): 844

083005 Irvine at Shewalton

1993

Moasuring authority: CRPB
First yoar: 1972
Hydrometric statistics for 1993

		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	19.650	4.463		12.220	8.004	2.534	4.398	6.823	3.178	5.795	9.744	30.470	
$\mathrm{m}^{3} \mathrm{~s}^{-1}$):	Peak	120.40	8.80	86.99	81.96	100.90	8.00	46.35	47.13	42.49	55.73	91.81	148.10	148.10
Runoff (mm)		138	28		83	56	17	31	48	22	41	66	214	
Rainfatl (mm)		181	28	101	113	111	71	105	75	74	64	103	235	1261

Monthly and yearly statistics for previous record (Feb 1972 to Dec 1992 -incomplete or missing months total 0.2 years)

Moan Avg.	17.270	10.870	11.640	5.926	3.512	2.926	3.291	6.131	11.550	12.950	16.220	14.450	9.726
flows Low	4.527	1.874	3.182	1.138	0.789	0.536	0.367	0.328	1.608	4.298	3.754	3.829	6.694
$\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	28.890	26.480	23.440	16.980	11.530	10.870	12.060	20.070	33.750	23.910	27.770	27.660	12.406
Poak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	341.20	190.90	207.50	108.50	131.80	139.30	278.70	228.20	303.60	272.30	194.30	226.10	341.20
Runoff (mm)	122	70	82	40	25	20	23	43	79	91	110	102	806
Rainfall (mm)	132	80	113	64	63	75	85	107	139	133	139	130	1260
Factors affecting Station type: VA	noff: E										runoff is infall 100	of pre	ous mean

084016 Luggie Water at Condorrat

Moasuring authority: CRPB
First yoar: 1966
Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	MAY	Jun	JUL.	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	2.308	0.430	0.768	0.943	1.002	0.376	0.311	0.401	0.362	0.738	0.469	2.127	0.860
$\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$): Peak	24.57	0.95	17.77	4.39	14.22	3.50	3.44	2.22	1.95	7.89	1.86	22.02	24.57
Runoff (mm)	182	31	61	72	79	29	25	32	28	58	36	168	800
Roinfall (mm)	212	16	86	93	110	73	77	56	66	79	67	192	1127
Monthly and yearly statistics for previous record (Oct 1966 to Dac 1992-incomplete or missing months total 0.5 years)													
Moan Avg.	1.512	1.090	1.067	0.606	0.454	0.305	0.310	0.504	0.808	1.074	1.337	1.359	0.868
flows Low	0.680	0.415	0.370	0.287	0.166	0.138	0.147	0.123	0.125	0.129	0.367	0.592	0.539
$\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	3.104	2.378	1.846	1.030	1.199	0.692	1.751	1.606	3.386	2.121	2.362	2.669	1.121
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	30.25	19.34	28.11	14.61	14.54	7.01	27.14.	22.06	44.46	34.20	30.68	36.04	44.46
Runoff (mm)	119	78	84	46	36	23	25	40	62	85	102	107	808
Rainfall (mm)	111	77	97	54	66	67	74	94	113	118	115	108	1094
Factors affecting runoff: N Station typ̈e: VA										1993 runoff is 99% of previous mean rainfall 103\%			

085001 Leven at Linnbrane

1993

Measuring authority: CRPB
First year: 1963
Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Av	110.100	57.680	39.270	77.130	36.410	15.650	21.380	29.590	11.420	20.820	13.250	81.270	42.856
$\mathrm{m}^{3} \mathrm{~s}^{-1}$: Peak	169.50	112.30	90.58	96.80	63.49	33.82	48.19	50.48	18.62	43.83	22.40	105.10	169.50
Runoff (mm)	376	178	134	255	124	52	73	101	38	71	44	278	1723
Rainfall (mm)	529	63	243	183	145	76	150	90	86	74	137	363	2139
Monthly and yearly statistics for previous record (Jul 1963 to Dec. 1992)													
Mean Avg.	66.300	56.190	51.390	35.720	24.830	19.220	18.660	24.530	37.390	54.540	60.860	61.330	42.523
flows Low	27.910	18.610	16.630	10.540	10.620	8.518	7.303	4.556	8.736	10.830	24.540	17.580	30.712
$\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	119.100	134.600	138.200	73.990	73.120	51.860	44.640	85.740	91.360	90.150	115.000	125.500	54.061
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	150.50	163.60	196.80	112.40	92.02	78.48	116.60	115.30	121.60	138.50	145.70	148.50	196.80
Runoff (mm)	226	175	175	118	85	64	64	84	124	186	201	209	1711 2106
Rainfall (mm)	241	160	196	107	116	112	123	155	213	230	229	224	2106
Factors affecting runoff: \$ Station type: VA										1993 runoff is 101% of previous mean rainfall 102\%			

090003 Nevis at Claggan

Measuring authority: HRPB
First year: 1982
Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year 5.596
Flows . Avg.	15.510	7.370	8.482	4.656	3.076	1.805	5.872	4.376	1.146	3.00	1.83		
$\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	159.50	42.67	80.97	20.94	40.47	12.52	33.54	34.06	8.56	43.68	21.88	115.90	159.50
Runoff (mm)	541	232	296	157	107	61	205	153	39	105	62	341	2298
Rainfall (mm)	767	161	294	137	118	74	177	126	83	86	126	478	2627
Monthly and yearly statistics for previous record (Sep 1982 to Dec 1992)													
Mean Avg.	9.790	7.470	9.819	5.630	3.993	2.111	3.733	5.813	7.875	8.926	7.909	10.230	6.949
flows Low	2.517	0.691	2.188	3.017	1.123	0.838	0.907	1.116	2.909	3.554	3.755	2.831	5.186
$\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	17.790	17.990	25.920	10.030	12.600	3.211	8.608	10.720	11.010	16.380	15.360	15.480	9.050
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	197.70	172.00	143.10	101.70	67.50	69.35	105.00	130.50	219.00	146.50	110.30	189.00	219.00
Runoff (mm)	341	238	342	190	139	71	130	203	266	311	267	357	2856
Rainfall (mm)" -(1986-1992)	414	348	454	164	134	95	190	275	288	345	325	388	3420
Factors affecting runoff: Station type: VA										1993 runoff is 80% of previous mean rainfall 77\%			

094001 Ewe at Poolewe

1993

Measuring authority: HRPB
First year: 1970
Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСт 14.270	$\begin{aligned} & \text { NOV } \\ & 12.000 \end{aligned}$	$\begin{aligned} & \text { DEC } \\ & 43.500 \end{aligned}$	Year 28.039
Flows Avg.	71.890	46.020	35.870	20.180	11.670	12.030	34.730	27.060	7.017	14.270	12.000	43.500	28.039
$\left.\mathrm{m}^{3} \mathrm{~s}^{-1}\right):$ Peak	141.50	68.78	65.72	39.37	21.51	19.95	72.78	42.21	12.08	25.82	19.30	89.70	141.50
Runoff (mm)	437	252	218	119	71	71	211	164	41	87	71	264	2005
Rainfall (mm)	530	188	212	97	94	102	216	108	46	107	90	380	2170
Monthly and yearly statistics for previous record (Nov 1970 to Dec 1992)													
Mean Avg.	43.290	33.310	32.860	23.720	16.350	12.460	13.980	18.630	33.410	36.370	46.270	45.920	29.696
flows Low	13.820	10.660	8.842	4.537	3.862	3.725	7.884	6.240	8.046	13.160	21.020	15.740	19.389
$\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	81.130	83.670	97.870	38.270	38.250	27.180	26.180	37.000	60.300	66.220	78.300	81.840	41.409
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	177.10	247.70	156.20	73.59	77.66	64.43	45.08	87.93	109.20	125.50	136.10	179.80	247.70 2125
Runoff (mm)	263	184	200	139	99	73	85	113	196	221	272	279	2125
Rainfall (mm)	278	194	242	132	113	116	137	169	254	285	320	309	2549
Factors affecting runoff: \mathbf{N} Station type: VA										1993 runoff is 94% of previous mean rainfall 85\%			

Grid reference: 18 (NG) 859803 Level stn. (m OD): 4.60

Catchment area (sq km): 441.1 Max alt. (m OD): 1014

095001 Inver at Little Assynt

1993

Measuring authority: HRPB
First year: 1977
Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year 7.953
Flows Avg.	14.970	13.230	8.022	5.189	3.086	4.697	13.940	7.949	4.048	7.17	3.181	987	953
$\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	33.75	24.60	15.80	7.91	5.52	9.64	32.27	13.97	9.13	13.42	6.92	26.49	33.75
Runoff (mm)	292	233	156	98	60	89	271	155	76	140	60	195	824
Rainfall (mm)	391	154	171	87	92	130	241	113	62	149	64	282	1936
Monthly and yearly statistics for previous record (Aug 1977 to Dec 1992)													
Mean Avg.	10.920.	8.710	10.370	6.010	4.289	3.422	4.909	6.503	10.440	12.740	13.050	11.190	8.550
flows Low	4.082°	2.397	4.179	3.453	1.660	1.812	2.432	3.394	5.263	6.227	6.572	4.631	6.956
$\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	19.950	21.150	23.090	8.129	8.158	6.689	10.340	10.050	16.390	21.180	23.960	17.580	10.896
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	55.24	63.64	62.82	15.36	20.92	19.72	15.19	26.47	56.50	57.51	50.06	58.90	63.64
Runoff (mm)	213	155	202	113	84	65	96	127	197	248	246	218	1982
Rainfall (mm$)^{*}$ -(1978-1992)	236	155	231	102	86	107	133	173	247	253	276	251	2250
Factors affecting runoff: \mathbf{N} Station type: VA										1993 runoff is 93% of previous mean rainfall 86\%			

096001 Halladale at Halladale

1993

Measuring authority: HRPB
First year: 1976
Hydrometric statistics for 1993

	JAN	FE日	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	12.300	2.756	4.054	3.208	2.275	1.876	4.324	2.668	2.404	12.450	1.807	8.328	4.916
$\mathrm{m}^{3} \mathrm{~s}^{-1} \mathrm{l}:$ Poak	74.42	11.78	46.00	32.90	40.69	21.25	47.03	16.20	18.30	167.50	7.02	43.77	167.50
Runoff (mm)	161	33	53	41	30	24	57	35	30	163	23	109	758
Rainfall (mm)	173	49	64	63	78	59	87	64	40	167	30	135	1009
Monthly and yearly statistics for previous record (Jan 1976 to Dec 1992)													
Moon Avg.	8.111	6.548	6.189	2.756	2.005	1.816	1.883	2.910	4.763	7.058	8.866	7.394	5.019
flows Low	4.478	1.555	2.907	0.624	0.279	0.271	0.215	0.186	0.447	1.351	2.510	3.004	3.326
$\left.\mathrm{m}^{3} \mathrm{~B}^{-1}\right) \mathrm{High}$	11.900	10.940	9.753	6.442	5.434	4.128	5.064	9.193	7.886	16.560	14.730	12.390	6.418
Poak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	98.96	86.24	122.60	69.28	108.00	140.80	129.10	172.00	189.10	169.10	163.20	162.00	189.10
Runoff (mm)	106	78	81	35	26	23	25	38	60	92	112	97	774
Rainfall (mm)	125	79	108	63	59	65	66	86	115	127	138	116	1147
Factors affecting runoff: N Station typo: VA										1993 runoff is 98% of previous mean rainfall 88\%			

101002 Medina at Upper Shide

Measuring authority: NRA-S
First yoar: 1965
Hydrometric statistics for 1993

		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	Nov	DEC	
Flows $\mathrm{m}^{3} \mathrm{~s}^{-1} \mathrm{j}:$	Avg. Poak	0.497	0.197	0.146	0.305	0.157	0.149	0.119	0.112	0.232	0.594	0.274	0.822	0.302
Runoff (mm)						0.84	1.89	0.33	0.22	2.90	6.39	2.26	6.50	
Rainfall (mm)		45 112	16	13	26	14	13	11	10	20	53	24	74	319
Rainfall (mm)		112	12	44	97	70	67	80	46	140	143	73	203	1087

Monthly and yearly statistics for previous record (Oct 1965 to Dec 1992 -incomplete or missing months total 6.8 years)

Mean Avg.	0.427	0.400	0.324	0.252	0.192	0.137	0.124	0.116	0.148	0.219	0.320	0.366	0.251
flows Low	0.132	0.159	0.121	0.104	0.094	0.068	0.073	0.044	0.077	0.093	0.088	0.116	0.122
$\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	0.928	0.795	0.903	0.522	0.356	0.213	0.199	0.181	0.365	0.555	0.769	0.663	0.335
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	6.47	6.35	7.28	73.33	7.00	1.79	3.72	1.74	3.74	4.73	8.64	6.30	73.33
Runoff (mm)	38	33	29	22	17	12	11	10	13	20	28	33	266
Rainfall (mm) ${ }^{\circ}$	90	68	85	51	51	51	51	56	60	105	83	99	850

Factors affecting runoff: G I
Station type: FL

Grid reference: 40 (SZ) 503874 Level stn. (m OD): 10.40

Catchment area ($\mathrm{sq} \mathbf{~ k m}$): 29.8 Max alt. (m OD): 167

1993 runoff is 120% of previous mean rainfall 128\%

201007 Burn Dennet at Burndennet Bridge

Mensuring authority: DOEN
First year: 1975
Hydrometric statistics for 1993

	JAN	feb	MAA	APR	MAY	JUN	Jut.	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	9.839	3.474	3.133	6.536	3.410	2.739	3.046	3.226	2.980	2.033	1.689	11.740	4.506
$\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$): Peak	86.01	8.15	27.98	66.25	25.40	16.33	26.55	41.20	66.14	12.25	10.22	78.29	86.01
Runoff (mm)	181	58	58	117	63	49	56	59	53	37	30	216	978
Rainfall (mm)	194	42	76	131	107	80	112	67	115	39	54	257	1274
Monthly and yearly statistics for previous record (Jun 1975 to Dec 1992-incomplete or missing months total 0.1 years)													
Mean Avg.	6.045	5.955	5.332	3.387	2.490	2.028	2.038	2.692	3.297	5.262	5.166	5.668	4.107
flows Low	0.418	2.244	2.441	1.687	0.925	0.843	0.832	0.579	0.664	2.596	2.130	3.203	2.634
$\mathrm{m}^{3} \mathrm{a}^{-9}$ High	9.542	14.320	8.067	6.115	5.024	4.635	3.990	7.213	8.151	9.979	7.351	3.203 8.156	6.211
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	99.98	53.00	47.48	36.86	25.51	29.50	50.79	105.20	67.37	110.80	64.52	59.53	110.80
Runoff (mm)	111	100	98	60	46	36	38	50	59	97	922	104	1892
Rainfall (mm)	131	85	115	68	65	74	86	97	102	132	112	114	1181
Factors affecting runoff: E Station type: VA										1993 runoff is 110% of previous mean rainfall 108\%			

rainfall 108\%

203012 Ballinderry at Ballinderry Bridge

Measuring authority: DOEN
irst year: 1970
Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	17.760	5.416	6.177	14.090	9.417	8.710	6.190	7.859	9.658	7.280	6.169	28.840	10.684
$\mathrm{m}^{3}-1$): Poak	93.56	11.24	65.59	112.50	61.55	41.09	45.40	53.38	96.29	34.08	48.12	88.86	112.50
Runoff (mm)	113	31	39	87	60	54	40	50	60	46	38	184	803
Rainfall (mm)	143	28	60	120	123	75	97	64	116	27	50	204	1107
Monthly and yearly statistics for previous record (Jul 1970 to Dec 1992)													
Mean Avg.	15.940	12.450	11.130	7.002	5.092	3.622	2.848	4.806	5.687	9.047	12.150	13.980	8.635
flows Low	9.339	4.805	5.502	3.515	2.454	1.627	1.518	1.060	1.236	2.331	5.122	4.946	5.251
$\mathrm{m}^{3} \mathrm{~s}^{-1}$) $\mathrm{High}^{\mathrm{High}}$	24.690	25.040	17.260	13.140	12.740	7.524	7.496	17.640	21.020	17.200	21.860	21.490	11.532
Paak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	183.20	139.90	98.37	106.70	109.20	61.60	127.20	140.10	141.00	194.80	122.90	138.00	194.80
Runoff (mm)	102	73	71	43	33	22	18	31	35	58	75	89	650
Rainfall (mm)*	122	84	111	75	54	72	70	110	82	121	94	107	1102

Grid reference: $23(\mathrm{IH}) 926799$
L.evel sin. (m OD): 16.00 $\begin{array}{ll}\text { MAY } & \text { JUN } \\ 9.417 & 8.710 \\ 61.55 & 41.09 \\ 60 & 54 \\ 123 & 75\end{array}$ JUL
6.19
45.4
40 $\begin{array}{cc} & \\ 2.848 & 4.806 \\ 1.518 & 1.060 \\ 7.496 & 17.640 \\ 127.20 & 140.10 \\ 18 & 31 \\ 70 & 110\end{array}$

203020 Moyola at Moyola New-Bridge

Measuring authority: DOEN
First year: 1971
Hydrometric statistics for 1993

	JaN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	18.320	5.642	6.657	14.520	9.823	6.501	5.045	5.292	5.852	5.135	. 997	24.410	95
$\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	98.41	15.32	80.68	120.40	68.69	29.06	29.19	37.56	78.63	32.40	61.01	98.30	120.40
Runoff (mm)	160	45	58	123	86	55	44	46	49	45	42	213	967
Rainfall (mm)	166	34	75	129	156	64	101	64	117	39	60	223	1228
Monthly and yearly statistics for previous record (Feb. 1971 to Dec 1992).													
Mean Avg.	14.930	11.650	10.730	6.461	4.559	3.523	2.882	4.494	5.696	9.281	11.520	12.990	8.215
flows Low	7.707	3.696	3.776	2.238	1.335	1.015	0.952	0.748	1.366	2.000	4.562	5.088	4.961
$\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	23.280	25.940	17.150	13.280	12.360	7.159	6.512	15.310	19.100	16.790	20.770	22.170	10.653
Peak flow ($\mathrm{m}^{3} \mathbf{s}^{-1}$)	152.20	121.90	88.87	102.80	114.10	67.84	83.33	111.00	112.70	134.80	117.20	154.60	154.60
Runoff (mm)	130	93	94	55	40	30	25	39	48	81	97	114	846 1265
Rainfall (mm)*	143	99	131	85	62	78	80	116	95	142	113	121	1265

Factors affecting runoff: S PG
Station type: VA

Grid reference: $23(\mathrm{IH}) 955905$ Level stn. (m OD): 13.00

Catchment area (sq km); 306.5 Max alt. (m OD): 554

1993 runoff is 114% of previous mean rainfall 97%

205004 Lagan at Newforge

Measuring authority: DOEN
First year: 1972
Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	12.270	4.569	3.219	12.480	12.230	6.749	3.635	4.122	6.249	10.120	5.053	21.790	8.583
$\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	26.46	10.27	11.60	64.52	45.35	26.87	9.54	19.63	34.36	46.10	16.39	61.92	64.52
Runoff (mm)	67	23	18	66	67	36	20	23	33	55	27	119	552
Rainfall (mm)	91	21	48	99	140	56	90	59	120	44	57	136	961
Monthly and yearly statistics for previous record (Aug 1972 to Dec 1992)													
Mean Avg.	16.690	12.230	11.240	7.341	4.415	3.240	2.591	4.218	5.591	10.620	12.160	15.950	8.852
flows Low	8.508	5.311	2.820	2.064	1.208	0.944	0.789	0.615	0.850	1.075	3.059	3.843	4.810
$\mathrm{m}^{3} \mathrm{~s}^{-1}$ High	26.460	25.410	18.740	19.170	16.600	11.230	8.018	19.470	18.090	27.600	27.690	43.090	12.235
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	84.30	66.22	69.57	112.20	55.15	62.72	24.30	76.10	70.53	121.00	91.08	128.40	128.40
Runoff (mm)	91	61	61	39	24	17	14	23	30	58	64	87	570
Rainfall (mm)" $\cdot(1983-1992)$	87	64	86	71	47	62	57	99	69	99	74	85	900
Factors affecting runoff: GEI Station type: VA													

205005 Ravernet at Ravernet

Measuring authority: DOEN
First year: 1972
Hydrometric statistics for 1993

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	1.354	0.582	0.323	1.685	1.780	1.028	0.322	0.561	1.009	1.458	0.667	2.957	1.149
$\mathrm{m}^{3} \mathrm{~s}^{-1}$: Peak	4.26	1.34	1.61	9.07	7.21	2.97	0.79	3.13	6.58	8.61	4.86	11.50	11.50
Runoff (mm)	52	20	12	63	69	38	12	22	38	56	25	114	521
Rainfall (mm)	87	18	49	103	153	58	88	56	124	45	61	138	980
Monthly and yearly statistics for previous record (Aug 1972 to Dec 1992 -incomplete or missing months total 2.0 years)													
Mean Avg.	2.106	1.525	1.214	0.874	0.459	0.275	0.128	0.357	0.585	1.243	1.281	1.856	0.991
flows Low	0.689	0.502	0.313	0.195	0.054	0.040	0.006	0.008	0.013	0.066	0.260	0.573	0.667
$\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	4.045	3.653	2.089	2.422	1.761	1.260	0.356	2.103	2.232	4.361	2.994	5.916	1.278
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	15.45	18.89	14.98	19.75	13.82	11.91	2.60	17.52	11.32	24.15	17.04	22.79	24.15
Runoff (mm)	81	54	47	33	18	10	5	14	22	48	48	72	450
Rainfall (mm)	95	59	79	53	61	61	58	83	86	93	80	93	901

Factors affecting runoff: N Station type: FV

Grid reference: 33 (IJ) 267613 level stn. (m OD): 31.00

Catchment area (sq km): 69.5 Max alt. (m OD): 163

THE NATIONAL RIVER FLOW ARCHIVE DATA RETRIEVAL SERVICE

The National River Flow Archive comprises over 30,000 station-years of daily river flows and incorporates data from over 1400 gauging stations throughout the United Kingdom. In addition to gauged flow data, naturalised data (see page 37) have been derived from the records of a small number of gauging stations. Catchment areal rainfall and the highest instantaneous flow, when available, are also archived on a monthly basis.

In order that the contents of the archive may be readily accessible, a suite of programs has been developed to provide a selection of retrieval options. Descriptions of these options are listed on pages 135 and 136 and can also be found, together with examples of the computer output in the National River Flow Archive Data Retrieval Service Handbook which is intended for regular users of the Archive and is available free from the address opposite. The format of certain of the retrievals is currently under review. All data retrieval programs have been designed to allow flexibility in the presentation of the options, particularly those producing graphical output. Before finalising a data request it is recommended that the Concise Register of Gauging Stations on pages 137 to 143, be consulted, and that, where continuity of record is important, the availability of suitable data sets are checked by referring to the Summary of Archived Data in the Handbook. As an aid to data selection and to the interpretation of hydrological analyses the 1986-90 Hydrometric Register and Statistics (see page 172) is recommended as a source of indispensable reference material.'

In response to user requirements the data retrieval facilities are being continually updated and extended. A wide range of specialist analyses and presentations is now available. Individuals having data requirements not catered for in the standard retrieval suite are invited to discuss their particular needs - address opposite.

Retrievals are normally available as A4 paper listings, on IBM PC compatible disk, or as hydrograph plots.

Cost of Service

To cover the computing and handling costs, a moderate charge will be made depending on the output options selected. Estimates of these charges may be obtained on request; the right to amend or waive charges is reserved.

Requests for Retrieval Options

Requests for retrieval options should include: the name and address to which output should be
directed, the gauging stations for which data are required together with the period of record of interest and the title of the required options. Where possible, a daytime telephone number should be given.

Requests should be addressed to:

The National Water Archive Office
Institute of Hydrology
WALLINGFORD
OXFORDSHIRE OX10 8BB

Telephone: Wallingford (01491) 838800
Facsimile: (01491) 832256
Email: sgr@ioh.ac.uk

The National Water Archive

As of April 1992, the River Flow Archive was incorporated into the National Water Archive (NWA) - one of NERC's seven Designated Data Centres. These Centres, located at NERC Institute sites, exist to hold data and provide information and advisory services to a wide range of users.

The National River Flow and National Groundwater Level Archives form the kernel of the National Water Archive but a very broad range of hydrological - and related - data sets are being assimilated into the co-ordinated management that the NWA provides. Data holdings range from the catchment scale (e.g. detailed climatological and hydrological data for a network of experimental catchments) to national (flood event data) and international coverage (European data held as part of the 'FRIEND' Project' of the International Hydrological Programme, World Floods Archive). Further details of the UK databases - and the associated facilities - are given overleaf. The utility of the archived time series data-is-enhanced by the availability of complementary spatial information (for example the digitised river network and UK soils hydrology map) and by the manipulative potential provided by modern data handling systems and analytical packages.

Staff at the NWA maintain close contacts with measuring authorities and keep under review developments in the field of network design, instrumentation and information technology. A continuing dialogue with both data suppliers and an active community of users ensures that the databases and retrieval facilities are reviewed continuously to provide an effective and responsive service across a broad range of applications.

The UK Flood Event Archive

Data describing flood events and associated rainfall have been formally gathered by the IH since 1969, the beginning of the Flood Studies Project (FSP ${ }^{2}$). Also associated with the Flood Event Archive are data collected from a network of Representative Basins. The present Archive holds over 4000 events, the majority of which are fairly simple short duration rainfall-runoff events of the type used for the FSP. The data most commonly collected are river flow, storm and antecedent rainfall and soil moisture deficit. These components are stored on a relational database allowing flexible access and data association. A variety of analyses have been developed to collate and manipulate the data. Examples include:

Derivation of a catchment average rainfall profile for an event;
A plot of a catchment map and rainfall hyetographs for an event;
A plot of event rainfall and flow hydrographs;
Event analysis using the FSP unit hydrograph and losses model;
Plots of variation in unit hydrograph parameters and percentage runoff between events on a catchment.
Data are available as lists on hard copy or on floppy disk.

Peaks-Over-Threshold (POT) Floods Database ${ }^{3}$

This database comprises instantaneous peak flow data from river gauging stations throughout the UK. These peaks have been manually extracted from river records, generally from stage hydrographs, where the threshold was chosen to yield, on average, five peaks a year above the selected flow. There have been three main cycles of data collection and abstraction, first, for the FSP, second, at the Department of the Environment's Water Data Unit, beginning in 1978, and third, at the IH for a Ministry of Agriculture, Fisheries and Food Commission in 1985-91. Currently the database holds over 77,000 peaks for 857 gauging stations, with an average length of record of 20 years. Annual maxima have been derived automatically from these data and are held independently on the relational database. Annual maxima are also held for a further 116 stations where records proved unsuitable for POT extraction.

Data are available as lists on hard copy or on floppy disk.

Experimental Catchments Archive ${ }^{4}$

The data gathered from the nine major groups of the IH's experimental catchments are held in an independent archive within the NWA. The catchments
have been highly instrumented and an intensive recording regime has been employed. Derived catchment data are stored for the main hydrological components of precipitation, evaporation and runoff as either hourly or daily values. Additionally, the component site-specific data used to generate the areal values are also stored, generally at finer time resolutions. Other, complementary datasets (such as soil moisture measurements) are available for some of the sites.

It is recommended that potential users of any of these additional datasets contact the NWA office to discuss their requirements.

The European Water Archive

The European Water Archive has been assembled as an integral part of the FRIEND - Flow Regimes from International Experimental and Network Data - research programme. This is an international collaborative study into regional hydrology in Europe and is a recognised contribution to Unesco's Fourth International Hydrological Programme.

The European Water Archive was developed by four regional coordination centres in Germany, the Netherlands, Norway and the United Kingdom collecting data from 17 European countries. The central archive is held at the Institute of Hydrology, UK and includes summary information for some 3500 gauging stations, time series of annual maxima flood data and daily mean flows, and key flow statistics ${ }^{5}$. In addition, thematic, soil, climate, land use and catchment boundary information is held on a Geographical Information System.

For further details of the European Water Archive, contact the Flow Regimes and Environmental Management Section of the Institute of Hydrology.

References

1. Gustard, A.G., Roald, L.A., Pemuth, S., Lumadjeng, H.S. and Gross, R. 1989. Flow Regimes from Experimental and Network Data. Institute of Hydrology, Wallingford, 2 Vols.
2. Flood Studies Report 1975. Natural Environment Research Council (5 Vols., reprinted 1993).
3. Bayliss, A.C. and Jones, R.C. 1993. Peaks-Over-Threshold Floods Database: Summary Statistics and Seasonality. Institute of Hydrology, Report No. 121.
4. Roberts, A.M. 1989. The Catchment Research Database at the Institute of Hydrology. Institute of Hydrology, Report No. 106.
5. Gustard, A. (Ed.) 1993 Flow Regimes from International Experimental and Network Data (FRIEND). Institute of Hydrology, Wallingford, 3 Vols.

LIST OF SURFACE WATER RETRIEVAL OPTIONS

OPTION TITLE

NUMBER
1 Table of daily mean gauged discharges

Table of daily mean naturalised discharges

Yearbook data tabulation (daily)

Table of monthly mean gauged discharges

Table of monthly mean naturalised discharges

Yearbook data tabulation (monthly)

Table of monthly extreme flows

Table of catchment monthly rainfall

Table of catchment monthly areal rainfall and runoff

Hydrographs of daily mean flows

Hydrographs of monthly mean flows

NOTES

Includes monthly and annual summary statistics. Flows in cubic metres per second.

Includes monthly and annual summary statistics. Flows in cubic metres per second.

River flow and catchment rainfall data for a specified year with basic gauging station and catchment details and flow statistics derived from the historical record.

Includes monthly and annual summary statistics. Flows in cubic metres per second.

Includes monthly and annual summary statistics. Flows in cubic metres per second.

Monthly river flow and catchment rainfall data for a specified year together with comparative statistics derived from the historical record. Naturalised flows (where available) - and the corresponding runoff may also be tabulated.

The lowest and highest daily mean flows, together with the highest instantaneous flow and date of occurrence (where available). Flows in cubic metres per second. Includes summary statistics.

Rainfall totals in millimetres and as a percentage of the 1941-70 catchment average. Includes summary statistics.

Runoff is normally derived from the monthly mean gauged flow. An additional listing is provided for catchments with naturalised flow records. Includes summary statistics. Rainfall and runoff totals are in millimetres.

Choices of scale, units, truncation level and overlay grid pattern are available. The period of record maximum and minimum flows, or the mean flow, may be included. The plots may be based on single or n -day means, or on n -day running mean flows.

Choices of scale, units and overlay grid pattern are available. The period of record maximum, minimum and mean flows may be included.

Flow duration statistics

Table of gauging station reference information

Table of hydrometric statistics

River flow pattern plots*

Gauging station summary sheet

Tabulation of the 1-99 percentile flows with optional plot of the flow duration curve. The percentiles may be derived from daily flows or n-day averages and the analysis may be restricted to nominated periods within the year, e.g. AprilSeptember only. Choices of scales, grid marking and units are available and the percentiles may be expressed as a percentage of the average flow or of a nominated flow.

Tabulation of selected gauging station details and catchment characteristics for nominated gauging stations.

Provides a comparison between summary statistics for a selected year, or a group of years, and the corresponding statistics for a nominated period of record (as featured in the Hydrometric Register and Statistics 1986-90).

A brief summary of the gauging station, its history and major influences on the flow regime, together with catchment details.

Three plots on an A4 sheet:
a) daily mean flow hydrograph for a selected year b) monthly mean flow hydrograph for the selected year. The maximum and minimum monthly flows, together with the 30 -day running mean for the preceding period of record may be included
c) flow duration curve for the specified year. A flow duration curve for the period of record may be included.

Includes a daily flow hydrograph (with period of record extreme values) and flow duration curve together with summary statistics relating to river flow, catchment runoff and catchment rainfall. A description of the gauging station and catchment is also provided together with selected catchment characteristics and a concise summary of the archived data.

[^7]Concise Register of Gauging Stations．

Station number	Rlver and station name	Grid reference	Auth ． ority	Area （ $\mathbf{m}_{4} \mathrm{~km}$ ）	Station number	River and Etation name	Grid raference	Auth． orlty	Ares （sq kmb
002001	Helmsdale at Kilphedir	29979181	HRPG	551.4	015032	Ordie Aurn at Jackstone	30737337	TRPE	20.0
003001	Shin at Lairg				015034	Garry at Killicerankie	29017837	TRPE	745.0
003002	Carron at Sgodachail	24908921	HRP日	494.6	015035	Tummed at Kinloch farnoch	26637588	TRPE	647.0
003003	Oykel at Eassar Turnaig	24039001	HRPE	330.7	015039	Tummed at eridge of Geur	24977570	阳	
003004	Cosaley al fouehall	24729022	HRPE	187.5	015041	LYon at Carmusvicchan	26927477	TRPB	237.0
003005	Stin at Inveran	25748974	HRPB	575.0					
004001	Conon al Moy Bridge	24828547			016001	Earm at Kinkell Pridge	29337167	TRPB	590.5
004003	Anont at Alose	24828547	HRPB	961.8	016002	Eorn ot Abeructill	27547216		176.9
004004	Allaenswater at Contin	26548895	HRPB	201.0	016003	Ruccrid Water at Cultybraggan	27647204	TRPG	99.5
004005	Meig at Glenmeannie	2496593	HRPB	336.7	016004	Earn at forteviot Bridge	30437184		
004006	Bran at Dotmucheran	220588802	${ }_{\text {HRPP }}$	118.5 18.	016006	Dunning Burn at Granco	30197147	TA	12.1
					016011	Aulthven Water at Aborutiven	29757154	TRPB	49.0
005001	y st Erchless	24268405	SE	849.5			26957158	ThP日	
005002	Farrar at Struy	23908405	HRP宜	311.3	017001	Cerron at Headswood	28328820	FAPB	122.3
005003	Glass at Kerrow Weod	23548321	HRPB	481.8	017002	Levon at Leven	33697006	FAPB	424.0
005004	Glass at Fosnakyle	23158288	HAPB	277.5	017003	Bonny Water at Banmybridge	28246804	FRPG	50.5
					017004	Ore at Belfour Mains	33306997	FAPg	162.0
	Neas at Ness Castle Farm	26398410	SE	1792.3	$0: 77005$	Avon at Pobmonthill	29526797	FRPP	195.3
008008	A A1 Ehlaraidh at Invermoriston	23778168	SE	391.0 27.5	077008	South Quench at Kirross	31227015		33.7
006007	Ness ot Ness Side	26458427	HRPB	1839.1	017016	Lochty Burn ot Whinoytall	27886780		22.0
006008	Enrick at Mill of Tore	24508300	HRPB	105.9	017017	Greens Eurn al Killyford Bridge	$\begin{aligned} & 32208985 \\ & 31507053 \end{aligned}$	FRPB FRPB	14.0 7.9
007001	Findhorr at Shonechie	29268337	HRPB	415.6	018001	Allsn Water at Kinbu	27927053	fRPB	161.0
007002	Findhorn at Forras	30188583	HRP日	781.9	018002	Devon ar Glonoctial	28586960	FRPB	181.0
007003	Loasios al Sherifmias	31948626	NERPB	2；6．0	018003	Teith at Bridge of Toith	2725 701：	FRPB	518.0
007004	Neirn at Firthell	28828551	HRPG	313.0	018005	Allan Water at Bridge of Altan	27866980	faps	210.0
007005	Drio al Dunphail	30058480	HRP堲	165.0	018007	Devon as Fossoway Bridge	30117018	FR	69.5
007006	Lonsie at Torwinny	31358489	NEAPE	20.0	018008	Leny at Anie	25857096	fAPP	190.0
007007	Elack Bum at Moraughty	31558584		44.0	018010	Forth at Gargunnock	27146953	FRPE	397.0
008001.	Spey at Aberlour	32788439	NERPB	2654.7	018011	Forth al Craigforth	27758955		036.0
008002	Spay at Kinrera	28818082	NERPB	10117	018013	Ardoch Burn ot Doun	2729		
008003	Spey at Puthven Bridga	27597996	NERPB	533.8	018014	Bannock Eurn ot Barmockburn	2914 8924	FRPP	67.0
008004	Avon ot Dalnashaugh	31868352	NERPB	542.8	018016	Kelty Woier at Clashmare	${ }_{2468} 29888$	${ }_{\text {fRPE }}$	2.8
O08005	Spey at Boat of Gerian	29468191	NERPB	1267.8	018017	Monachyle Eum at Balquhidder	24757230		7
008006	Spey et Hoat o Bris	33188518	NERPB	2861.2	018018	Kirkton Burn at Balquticder	25327219	${ }_{1+}$	8.8
008007	Spey at Invertruim	26877962	NERPB	400.4	018019	Comer Burn at Comper	23877042	FR	0.9
008009 008009		27897995	NERPB	130.3	018020	Loch Ard Burn at Duchray	24686987	fRPs	0.9
008010	Spay al Grantown	29778247 30338268	NERPB	272.2 17488	018021	Loch Ard Burn at Elrig	24696987	${ }^{\text {FRPPB }}$	1.5
008011	Livet at Minmora	30018291	${ }_{\text {NERPPB }}$	1748.8 104.0	018022	Forthat Mito	25037135	FAPB	4.5
008015	Fiddich ot Auctindoun	33558399	NERP厚	44.5	019001	Almend at Craigiehall	31656752		
008018	Conglass Water ot Auchrischan	31758191	NEAP9	40.8	019002	Almand at Almond Weir	30046852	FRPB	43.8
008017	Burn of Carron at Daikuaine	32378415	NERP亩	15.2	019003	Breich Water at Ereich Wair	30146839	FAPG	51.8
					019004	Nortn Esk at Dalmere Weir	32528616	FRPB	81.6
09001	Oeveron at Avoche	35328484	NERP8	441.6	0：9005	Almond ot Almondell	30888686	fapg	229.0
009003	Isla ar Grange	（ 3494845088	NERP8	954.9	0：9006	Water of Leith ar Murroytiedd	32288732	FRPE	107.0
009004	Bogie ot Redcraig	35198373	NERPB	179.0	019008	Esk or Musselburgh	33396723 33256523	${ }_{\text {FRPE }}$	330.0
009005	Alt Deveron st Cobrach	33788291	GAWD	67.0	019010	Braid Burn at Literton	32736707	FRPB	16.2
009008	Doskford Burn at Culien	35049867	NERPB	46.5	019011	North Eak at Dalkeith Palace	33336678	FRPB	137.0
009007	Forgue Burn at Inverkeithry	36278469	NERPB	88.3	019012	Woter of Leith ot Cotimion	32126688	fRPB	72.0
					019014	Brox Eurn at Newlistoon	31146732	庫	
010003	Yithan at Ellun	$\begin{aligned} & 41016485 \\ & 39478303 \end{aligned}$	NERPB NERPB	325．0	019017	Gogar Bum at Turnhouse	31816733	fRPB	38.8
					020001	Tyna at East Linton	35918788		．
011001	Don at Parthill	38878147		12730	020002	West Peftier Burn at Luftioss	34898811	FRP8	28.2
011002	Don at Moughton	3756820 ：		787.0	020003	Tyne at Spilmersford	34586689	FRPG	161.0
011004	Urie al Pitcepot	35668170 37218260	NERPP	4989	0200005	Esast Pefter Burn at Locthouv	38106824	FRPG	
011005	Don at Mill of Newe	33718121	${ }_{\text {NERPEB }}^{\text {Neg }}$	198.0	020006	Birma Woter at Soltoun holl	34576888	FAPP	93.0
					020007	Gifford Water at Lemmoxlove	36456768 35116717	${ }_{\text {FRPE }}$	51.8 64.0
012001	Does at Woodend	36357956	NERPB	13700	020008	Brox Eurn at Broxmouth	36976778	${ }_{\text {fRPB }}$	19.7
	Doe at Park	37987983	NERPB	1944.0			）		9．7
012003	Dee as Polhallick	33447965	NERP8	690.0	021001^{-}	Fruid Water at Fruid	30886205	Lawo	23.7
012004 012005	Girrock Burn at Littomad	33247956 33847947		30.3	021002	Whieadder Water at Hungry Snout	36636633	Lawo	
012006	Goim at hvergaim	33647977 3357	$\stackrel{\text { NeERPG }}{\text { NERP }}$	110.0 1500	021003 021004		32576400 36646568	HWRP	694.0
012007	Deet at Mor Lodgo	30987895	NERP仡	289.0	021005	Tweod at Lyme ford	320666397		10.7 3730
012008	Feugh of Heugh Hosed	36877928	NERPP	229.0	021006	Tweod at Botesica	34886334	TWRPB	1500.0
012009	Water of Dye si Charr	36247834	NERPE	41.7	021007	Errick Water at Lindaan	34868315	TWFPs	499.0
013001	Bervie sl tivarborvie	38287733	NE		021008	Teviol at Orriston Mill	37026280	TWFPPB	1110.0
013002	Luther Weiter at Luther Bridge	36607668	TRPE	133.0	021009	Twoed at Norhem	38986477	TWF	43900
013003	South Eak al Stemmechy Enidge	35837593	TRPB	487.0	021011	Yarrow Weiter at Priliphough	358886320 3439277	TWFPP	2310
013004	Prosen Water at Prozen Bridga	33967586	TRP8	104.0	021012	Teviot at Howick	35226159	TWFPB	323.0
O13005	Lunan Water at Kirkson Mill	36557494	${ }^{\text {TRPP }}$	124.0	${ }^{021013}$	Gata Werer at Golastiols	34796374	TWRPE	207.0
013007	Norrt Esk st Logio Mill	36997640	TRP9	7300	021014	Twoed at Kingledores	31096285	twaps	139.0
013008 013009	South Esk at Brochin	36007596 35927680	TRPP日	490.0	021015	Lasder Water of Earistion	35656388	TWRP9	239.0
013010	Brothock Water at Artroath	35927680 36407419	${ }_{\text {TRPG }}^{\text {TRPG }}$	127.2 500	${ }_{0}^{021018}$	Evo Wster at Eyemourt Min	39426635	TWAPS	119.0
013012	Sourt Esk ut Gelta Prioge	33727653	tRPe	：30．0	021018	Lrre Water at Lyme Station	32346132 32096401	${ }_{\text {TWRPE }}$	37.5 1750
					021019	Manor Water al Cadermuir	32176369	TWRPE	81.8
14001	Eden at Kemback	34157159	TRPB	307.4	021020	Yatrow Water at Gordon Arms	33096247	TWAPB	155.0
14002	Ophaty Water at Rolmossie Mia	34777324	TRPB	126.9	021021	Tweed ar Sprouston	37526354	TWPP8	3330.0
014005 014006	Motray Water oi St Michoots	34417224 3574731	TRP8	52.0	021022	Whitesdder Water at Hution Caste	38818550	TWRPP	503.0
014007	Monike Eurn at Panbice	35747361 35757360	TRPB	18.0	${ }_{022} 021023$	Leet Water at Codastream	38396396	TWFP9	113.0
014009	Eden at Surathrigio	32267102	TRPB	26.0	021025	Atod Water at deatburgh	36556214 36346244	TWFPP日	139.0
014010	Motray Water at Kilmsny	33877217	TRP品	33.0	021025	Tima Worter at Deephope	36346244 3278688	TWRP星	310
					021027	Bleckeadder Water et Mouth Eridga	38266530	TWRP免	159.0
015002	Nowton Burn al Newton		TRWS	70.7 15.4	021030	Meggat Water at Hendertand	32316232	TWRPE	58.2
015003	Tey at Caputh	30827395	TRPE	3211．0	021032	Glen at Kiknowion	39276396	NRA－NY	648.0
015004	Insion at Loch of Lintration－	32807559	thws	24.7	021034	Yarrow Water at Crraig Douglaz	32886244	NRANY	198.9 116.0
015005	Melgan at Loch of Lintration	32757558	thws	40.9		Warw Wior ar craig Douglay			
015008	Tey al batartio	31477387	TRPB	4587.1	022001	Coouet at Morwick	42348044		
015007	Tuy at Pinsecres	29247534	TRPB	1149.4	022002	Coguet at Bygate	38706083	nha－ny	59.5
015008	Dasn Weter as Cookstion	33407479	TRP8	177.1	022003	Usway Burn ot Shilmoor	38886077	nfa－ny	21.4
015010	1 lsto at Wester Cardosan	32957468	TRPB	366.5	022004	Aln at Hawkhill	42118129	nfa－ny	205.0
015011 015012	Lyon tr Comme Bridge	27967486	TRP8	391.1	022006	Byth al Hartord Enidge	42435800	NRA．NY	269.4
（15012	Tummel at Port－ns－crig	29407577	TRPP	${ }^{1649.0}$	022007	Wanztoeck al Mitford	41755858	NRA．NY	287.3
015014	Arctio at Kindrogan	30677258 3056.731	${ }_{\text {TRPP }}^{\text {TRPB }}$	174.8 103.0	022008 022009	Ahwin at Clionsell Coquet at Rotheury	39256083 40676016	NRA NRA	346.7
015015	Atmond st Newtion Indige	28887316	tripg	84.0					
015018	Tay at Konmore	27827467	${ }^{\text {TRPP }}$	60.9	023001	Tyme at Bywel	40385617	NRA－NY	2175.6
015017	Brase at Bolinconn Lyon at Moert	29797406 25347448	TRPG	197.0 1614	023002 023003	Derwent at Edtys Pridge	40415508	NRANY	118.0
015021	Lunon Bum at Mall Bonk	31827400	TRP仡	94.0	023004	Nort	39065732 38565647	NRANY	1007.5
015023	Braan al Hermitage	30147422	thPe	2100	023005	Nornh Tyme at Tarset	37765881	NRA．NY	
015024	Dochar at Killin	25677320	tRPE	239.0	023006	Soust Tyme at Festherstions	36725611	NRA－NY	321.9
015025	Ericht at Craighal	31747472	TAPB	432.0	023007	Derwent at fowlends Gill	41685581	NRA．NY	242.1
015027	Garry Burn al Loxkmill	30757339	TRP8	20.0	${ }^{023008}$	Rede at Rede Ericigo	38685832	NRA－NY	343.8
015028 015029		30937306 32577485	${ }_{\text {TRPB }}^{\text {TRPB }}$	54.0	023009 ．	Sourt Tyres at Alsion	337165465	NRANY	118.5
015030	Deon Water at Dose Bridge	32577485 32937458	TRP8	33.0 230.0	${ }^{0233011}{ }^{023}$		37895879 36445946	NRANA－NY	98.0 59.8

Station number	River and station name
$023012^{\text {- }}$	- East Allon at Wide Eals
023013.	West Alten at Aindiay Wrae
023014	- North Tyne at Kielder temporary
023015	North Tyne at Barrasford
023016	Dusa Burn at Crag Hall
023017	Team at Team Valloy
023018	Ouseburn at Woodsington
023022	North Tyne at Ughydub
023023	Tyne at Riding Mill
024001	Wear at Sunderlend Eridge
024002	- Geounless at Bistop Auckiand
024003	Wear at Stanhope
024004	Bedturm Beck at Bedburn
024005	Browney at Bum Hall
024006	Rookhope Eurn at Eastgate
024007	- Browney at Lanchestar
024008	Wear at Witton Park
024009	Wear at Chaster le Street
024011	Wear at Eumbope Reservoir
025001	Tees as Brokon Scar
025002	Toess at Dent Eank
025003	Trout beck at Moor Hous.
025004	Skerne at South Park
025005	Leven at Loven Bridgo
025006	Greta at Rustherford Bridge
025007	- Clow leck at Croth
025008	Tees at Barmard Caste
025009	Tees at Low Moor
025010.	- Boydale Beck at Mowden Bridge
025011.	- Langdon Beck ot Langdon
025012	Harwood Beck at Harwood
025013	- Billingham Beck at Thorpa Thewl
025014	Mordon Stall at Mordon School
025015	Woodham Burn at South Form
025018	Teess at Middilaton in Teasdale
025019	Leven at Easby
025020	Skerne at Prestion le Skerne
025021	Skerne at Bradbury
025022 .	Baidar at Balderthead Reservoir
025024.	Chapet Beck at Guisborough
026001	West Beck at Wensford Bridge
026002	Hull at Hampholma Lock
026003	Fosion Beck at Foston Mill
026004	Gypsey Race at Eridlington
026005	Gypsey Race at Boynton
026006	Elimswell Back at Little Drifiritd
026007	Catchwater at Withernwick
026008	Miras Bock ol North Cave
026009	West Beck ar Snakeholme Lock
026010	Driffield Canol al Snakeholme Lock
027001	Nidd at Hunsingora Weir
027002	Wharfe at Flitt Mill Weir
027003	Aire al Beal Wair
027004	Calder at Nawtands
027006	Don at Hadtields Weir
027007	Ure al Wastwick Lock
027008.	Swale at LeckDy Grange
027009	Ouse at Skelton
027010	Hodge Beck at Bransdale Weir
027012	Hebden Water at High Greenwood
027013	Ewden Beck at Mort Hall Reservoir
027014	Rye at Littre Hobion
027015	Derwent at Stamtord Eridge
027018	Ryburn at Ryturn Resorvoir
027019	Booth Desen Clough at Booth Wood Mill
027021	Don at Doncastor
027022	Don at Motrerhem Weir
027023	Doorre at Barnsley Weir
027024	Swaic at fichmond
027025	Rother at Woodhouse Mil
027026	Rother at Whitington
027027	Wharie at Ilxley
027028	Aire at Ammey
027029	Calder at Eliand
027030	Deame at Adwick
027031	Coine at Colne Bridge
027032	Hebden Beck at Hebidan
027033	See Cut at Scarborough
027034	Ure at Kilgram Bridge
027035	Aire at Kiddwick Bridgo
027036	Derwent at Malton
027038	Costa Beck at Garthouses
027040	Doo loa at Staveler
027041	Doewent st Eutiorcrambe
027042	Dove at Kirkby Mills
027043	Wherfe at Addingham
027044	Blocktoss Beck at Sennchinds Eridge
027047	Snaizeholme Beck at Low Housas
027048	Derwant st West Ayton
027049	Rye at Ness
027050	Esk at Staighta
027051	Crimple at Burn Bridge
027052	Whitting al Sheopbridge
027053	Niod al Birstwith
027054	Hodge Bock at Charry farm
027055	Rye at Broadway Foor
027056	Pickering Beck ot lings Bridge
027057	Seven at Normanty
027058	Riccal ar Crook House Farm
027059	Laver at Ripon
027060	Kyla at Newton On Ouse
027061	Coine at Longroyd Bridge
027062	Nidd at Skip Bridge
027064	Went at Walden Stubbs
027065	Hoime at Quesins Mill
027066	Blackbum Brook at Ashiowes
027067	Shoaf ar Hightiold Road
027068	Ayburn at Ripponden
027069	Wiske at Kithy Wiske
027070	Eller Beck at Skipton
027071	Swale at Crakehill
027072	Worth at Keighley
027073	Brompton Beck at Snainton Ings
$\begin{aligned} & 027074 \\ & 027075 \end{aligned}$	Spen Beck at Northorpe Bedale Beck at Learning

Grid
reference Authority Area
(taq km$)$ 38025583 NRA-NY 37915583 36315931 39245721 42545674
42495585 44965700 41965700
37125875
40325617 42845376
42155306 39845391
41185322 Nios 425525390
41655462 41655462
41745309 42835512 42595137 39325260
37595336 37595336
42845129 44455122
40345122 40345122
42825101 40475166
43645105 42605156 38525309
38495309 38495309
44095237 43235274
42855263 39505250 45855087 43185285 39315182
45995163

50644560

 50804498 50934548 50934548 513746775137 50094575 51714403
48904318 48904318
50664555 50664555
50664555
4
4
4
4
4
4
4
4
4
3
4
4 44224473
4355 43654220
43903910 43963910 44154748
45684554 46274944
39734309 39734309 42893957 47434771 40254187
40334168 40334166
45694040 44273928 43504073 44323857 43943744
41124481 41124481 42814340
41244219 44774020 41744199
40254843 50284908 41904860 40134457 47894836
47433746 47314587 47054855 40924494
47254475 38334883 49894850
46964791 48655081 42844519
43763747 42304603
46524902 46524802 47914819
47364821 47364821
46614810 43014710 45094602
41364161 41364161
44824561
45514163 45514163
41424157 41424157
43933914 43573863 40354188
43754844 43754844
39844502 44254734 40644408
49364794 42254210 43064902 NRA-NY

NRA-NY
NRA-NY 88.0
75.1
27.0
1043.8
55.0
9.0
241.5
2174.5
657.8
93.0

NRA-NY
NRA-NY NRA.NY
NRA.NY NRA-NY
NRA.NY NRA-NY
NRA-NY 455.0
1008.3
 YW NRA-NY
NRA-NY
NRA-NY NRA-NY
NRA-NY
NRA-NY
NRA-NY
NGA-NY

484.3
758.9
1932.1
1932.1
899.0
3730
$\begin{array}{r}373 . \\ 914 . \\ \hline\end{array}$ 1345.6
3315.0
18.9
36.0

679 1634 10 10

N.
N
ज
in
256.2
826.0
118.9
381.0
352.2
185.0
164.0
< NRA.NY

NRA.N NRA-N
NRA RA-NY NRA-NY NRA-NY NRA-NY
NRA-NY NRA-N
NRA-N NRA-N
NRA-N NRA.NY NRA-NY
NRA-NY
 즁 진
z
< NRA-NY
NRA-NY RA-NY ede ack Northorpe

Station number	Alver and station name	Grid reference	Authority	Ares (6 q km)
027076	Bielby Beck at Thomton Lock	47604444	NRA-NY	03.1
027077	Bradiord Beck at Shiptoy	41514375	NRA-NY	58.0
027080	Aire at fleat Weir	43814285	NRA.NY	55.
027081	Oullon Beck at Farter Lane	43654281		
027082	Cundall Beck at Bat Bridgo	44194724	NRANY	
027083	Foss at tuntington	46124543	NRA-NY	
027084	Eastuum Beck at Crosshills	40214452	NRA-NY	3
027085	Cod Beck at Oation Eridge	44224766	NRA.NY	209.3
027086	Skell at Alma Weir	43164709	NRA-NY	
028001	Derwent al Yorkshira Ericga	4198385	NRA.ST	126.0
028002	Bithe at Harsstall Ridware	41093192	NRA-ST	163.0
028003	Tarme at Water Orion	41692915	NRA-ST	408.0
028004	Tame al Lea Marston	42062935	NRA.ST	795.0
028005	Tame al Etford	41733105	NRA-ST	
028006	Trent at Grest Harwood	39943231	NAA.ST	325.0
028007	Tremt at Shardiow	44483299	NRA-ST	4400.0
028008	Dove at Rocester Weir	41123397	NRA-ST	399.0
028009	Trent at Colwick	46203399	nia-st	7486.0
028010	Derwert at Longbridge Weir/St.Mary's Eridge	43563363	NRA-ST	1054.0
028011	Derwent at Matiock Bath	42963586	NRA-ST	839.0
028012	Trent at Yoxal	41313177	NRA-ST	1229.0
028013	Soar at Zouch	44983240	NRA-ST	289.8
028014	Sow at Milford	39753215	NRA-ST	591.0
028015	vile at Mottersoy	46903895	NRA.ST	529.0
028016	Ryton at Serrby Park	46413897	NRA-ST	231.0
028017	Devon at Cotham	47873476	NRA-ST	284.0
028018	Dove at Marston on Dove	42353288	NRA-ST	883.2
028019	Trent en Drakelow Park	42393204	NRA-ST	232.0
028020	Churnet at Rocester	41033389	NPA-ST	238.0
028021	Derwent at Draycott	44433327	NRA-ST	1175.0
028022	Trent at North Muskh	48013601	NRA-ST	8231.0
028023	Wye at Ashford	41823696	NHAST	154.0
028024	Wreake at Syston Mill	46153124	NRA-ST	413.8
028025	Sence at Ratclife Culey	43212996	NRA-ST	169.4
028026	Anker at Polesworth	42633034	NRA-ST	369.0
028027	Erewash at Sandiacre	44823364	NRA-ST	82.2
028029	Kingston Brook at Kingston Hall	45033277	NRA-ST	57.0
028030	Black Brook at Oneberrow	44683171	NRA-ST	8.4
028031	Monitold at llam	41403507	NRA-ST	48.5
028032	Maden at Church Wersop	45583680	NRA-ST	62.8
028033	Dove at Hollinsclough	40633668	NRA-ST	9.0
028035	Leen at Triumph Road Nottinghem	45493392	NRA-ST	111.0
028036	Poutrer at Twytord Bridge	47003752	NRA-ST	128.2
028039	Manifold at Hutme End	41063595	NRA-ST	48.0
028039	Rea at Calthorpe Park	40712847	nha-st	74.0
028040	Trent at Stoke on Trent	38923467	NRA-ST	53.2
028041.	Hamps at Waterhouses	40823502	NRA-ST	35.1
028043	Derwent at Chatsworth	42613683	NFA-ST	35.0
028044	Poulter at Cuckngy	45703713	NAA-ST	32.2
028045	Meden/Maun at Botharnsall/Haughton	46813732	NRA-ST	262.8
028046	Dove at lzaak Waton	41463509	NRA-ST	83.0
028047	Oldcotes Dyke at Blyth	46153878	NRA-ST	85.2
028048	Amber at Wingtield Park	43763520	NRA-ST	137.0
028049	Ryton at Worksop	45753794	NRA-ST	77.0
028050	Torre at Auckley	46484012	NRA-ST	135.5
028052	Sow at Great Bridgford	38833270	NRA-ST	163.0
028053	Penk at Penkxidgs	39233144	NRA-ST	2720
028054	Sence at Elaby	45662985	NRA-ST	133.0
028055	Ecclesbourne at Duffield	43203447	NRA-ST	50.4
028056	Rothley Brook at Rothley	45803121	NAAST	94.0
028058	- Hennmore Brook at Ashboume	41763463	NRA-ST	42.0
028059	Maun at Mansfield	45483623	natast	28.8
028060.	Dover Beck at Lowdham	46533479	NRA-ST	69.0
028061	Churnet at Basford Bridge	39833520	NRA-ST	139.0
028062 .	Trent at fledborough	48153715	NRA-ST	843330
028065	Trent at Torksey	48273780	NRA-ST	8547.0
028066	Cote at Coleshid	41832874	NRA.ST	1370
028067	Derwent at Church Witme	44383316	NRA-ST	1177.5
028070.	- Burbage Brook at Burtage	42593804	NRA-ST	9.1
028072	Greet ar Southwell	47113541	NRA-ST	46.2
028073.	Astop at Ashop diversion	41713896	NRA-ST	42.0
028074	Soar at Kegworth	44923263	NRA-ST	172.0
028075	- Derwent at Stippery Stomes	41693951	NRA-ST	17.0
028079	Meece Brook at Shenowford	38743291	NRA-ST	88.3
028080	Teme at Lea Marstion Lakes	42072937	NAAST	799.0
028081	Terne al Bescot	40122958	NRA-ST	169.0
028082	Soar at Lintertorpe	45422973	NAA-ST	183.9
028083	Trent at Dariaston	38853355	NRA-ST	195.2
028085	Derwent at St. Marrs Bridge	43553388	NRA-ST	1054.0
028086	Sence at South Wigston	45882977	NRA-ST	113.0
028091	Arton at Byyth	46313971	NRA-ST	231.0
028093	Soar at Pilings Lock	45653182	NRA-ST	1108.4
028094	Blythe at Castle Farm	42132888	NRA-ST	183.8
028095	Tame at Hopwas Bridge	41823052	NRA-ST	${ }^{4} 21.7$
028101	Tame at Sheepwash	39742918	NRA-ST	27.9
028102	Brythe at Whitacre	42122911	NRA-ST	194.3
029001	Waithe Beck at Brigstay	52534016	NRA-A	108.3
029002	Great Eau at Claythorpe Mill	54163793	NRA-A	77.4
029003	Lud at Louth	53373879	NRA.A	55.2
029004	Ancholme at Bishopbridge	50323911	NBA.A	54.7
029005	Rase at Bishopbridge	50323912 5033	NRA-A	${ }_{26.2}^{68.6}$
029009	Ancholme at Toft Newton	50333877	NFA-A	. 2
030001	Witham at Claypote Min	48423480	n na-A	297.9
030002	Barings Eau at Langworth Bridge	50663768	NRA-A	210.1
030003	Bain at Fulsby Lock	52413611	NAPA-A	97.1
030004	Parney Lymn at Partney Mall	54023678	NRA-A	61.6
030005	Withsm at Sathersford total	49273335	NRA-A	126.1
030006	Slea at Laasingham Mill	50883485	NRA-A	48.4
030011	Bain at Goulceby Bridge	52483795	NPA-A	62.5
030012	Stainfield Bock at Stainfield	51273739	NRA-A	37.4
030013	Heighington Beck al Heighington	50423696	NRA-A	21.2
030014	Pointon Lode at Pointon	51283313	NRA-A	11.9
030015	Cringle Brook at Stoke Rochford	49253297	NPA-A	50.5
030017	Witham at Colsterworth	49293246	NRA-A	51.3
031001	Eye Brook at Eye Brook Raservoir	48532941	cowc	80.1
031002	Glen at Kates Brdg and King St Brdg	51083149	NRA-A	341.9
031005	Wellard at Tixover	49702997	NRA-A	417.0
031006	Gwash at Balmesthorpe	50383097	NRA-A	150.0
031007	Welland at Barrowden	49482999	NRA-A	411.6
031010	Chater at fosters Bridge	49613030	NRA-A	68.8
031012	Tham at Litile Bytharm	50163179	NRA-A	24.9
031016	North Brook at Empingham	49573089	nha-a	38.5
031027	Wetland at Astley	48192915	nha-a	
031023 031025	West Gien at Easton Wood Gwash South Arm at Mamion	49853258 48753051	NRA-A NRA-A	4.4 24.5

Station number	River and atation name	Grid reference	Authority	Area (sq km)	Station number	Fiver ond station name	Grid reference	Authority	Area (sa km)
031026	Egleton Brok	48783			037000				
		$48783073{ }^{-}$	NRA A ${ }^{\text {a }}$	2.5	0370	's Mill	56902072	NRA-A	228.4
031028	Gwash at Church Bridgo	49513082	NFA-A	76.5	037007	Wid at Writte	56862060	NRA-A	136.3
					037008	Chelmer at Springfield	57132071	NRA-A	190.3
032001	Nent at Drion	51662972	NRA-A	1634.3	037009	Brain at Guithevon Valle	58182147	NRA-A	60.7
032002	Willow Brook at Fotheringhay	50672933	NRA-A	99.6	037010	Blackwater at Appleford Bridge	58452158	nRa.a	247.3
032003	Harpers Brook at Old Mill Bridge	49832799	NRA-A	74.3	037011	Chelmer st Churchend	56292233	NRA-A	72.8
032004	Ise Ercok at Harrowden Old Mill	48982715	NRA-A	194.0	037012	Colne at Poolstreet	57712364	NRA-A	65.1
032000	Neno/Kislingbury al Upton	47212592	NRA-A	223.0	037013	Sandon Brook at Sandon Bridga	57552055	NRA-A	60.6
032007	Nene Brampton at St Andrews	47472617	NRA-A	232.8	037014	Roding at Kigh Ongar	55612040	NRA-T	95.1
032009	Nane/Kissingbury st Doctiord	46272607	NRA-A	107.0	037015	Cripsay Brooik at Chipping Ongar	55482035	NRA-T	62.2
032029	Flore at Experimental Catchmant	46552604	NRA-A	7.0	037016	Pant at Copford Hall	56682313	NRA-A	62.5
032031	Woatton Brook at Wootton Park	47262577	NRA-A	73.8	037017	Blackwater at Stisted	57932243	NRA-A	139.2
					${ }^{037018}$	Ingrebourne at Gaynas Park	55531862	NRA-T	47.9
$\begin{aligned} & 033001 \\ & 033002 \end{aligned}$	Bedtord Ousa at Brownshill Staunch Bactord Ouse at Bedford	53692727 5055 2495	NRAAA NRA.A	3030.0 1460.0	037019	Boam at Bretoss Farm	55151859	NRA-T	49.7
033003	Cachord Cuse it Bediord	50552495		1460.0	037020	Chalmer at Felsted	56702193	NRA-A	132.1
${ }_{0} \mathbf{3} 3004$	Lerk at taterismam	55082657 56482760	NRAAA	803.0 466.2	037021 03022	Homan at Bounstead Bridge	59952205	NRA-A	52.6
033005	Badford Ouse al Thornborough Milt	47362353	NFA.A	388.5	037024	Holinn Brook at horpe te Soken	61792212 58552288		54.9
033006	Wissey at Northwotd	57712965	NRA-A	274.5	037025.	- Boume Brok at Perces Bridge	5885	NRAA.A	154.2
033007	Nar at Masham	57233119	NRA-A	153.3	037026 .	-Tenpenny Brook at Tenpenny Bridga	60792207		29.0
033008	Little Cuse al Therford Nol Staunch	58602832	NRA-A	699.0	037027	Sixpenny Brook at Ship Houso Bridge	60542214	NRAPA	59.1
033009	Eedford Ouse at Harrold Mill	49512565	NRA-A	1320.0	037028.	Benter Brook at Saltwater Bridga	81092193	NRA-A	12.1
033011	Linte Ouse at County Bridge Euston	58922801	NRA-A	128.7	037029.	St Osyth Brook at Msin Rosd Bridga	61342159	NRA.A	8.0
033012	Kym al Meagre Farm	51552631	NRA-A	137.5	037030.	Holland Brook at Cradla Bridge	61712217	NRA-A	48.6
033013	Sapiaton at Rectory Bridge	58962791	NRA-A	205.9	037031.	Crouch at Wickford	57481934	NRA-A	71.8
033014	Lark at Temple	57582730	NRA-A	272.0	037033	Eastwood Brook at Eastwood	58591888	NRA-A	10.4
033015	Ouzel at Wilitan	48822408	NRA-A	277.1	037034	Mardyke at Stifford	55961804	NRA-A	90.7
033016	Cam at Jesus Lock	54502593	NRA-A	761.5	${ }^{037036}$	Ely Ouse Outfill at Great Sampford	56462351	NRA-A	
-333019	Tove at Coppenham 日ridge	47142488	NRA-A	138.1	037037	Toppesfield Brook at Cornish Hasl End	56752377	NRA-A	1.3
033020	Alconbury Prook at Erampton	$\begin{aligned} & 58802830 \\ & 52082717 \end{aligned}$	NRA-A	316.0 201.5	037038	Wid at Margaretting	56722000	NRA	98.6
033021	Rhea at Burnt Mill	54152523	NRA-A	303.0	-37039	Blackwater at Langiord (low flows)	58352090	NRA-A	7.0
033022	Ivel at Blunham	51532509	NRA-A	541.3	038001	Lee at Feildes Weir	53902092	NRA-T	1036.0
033023	Les Brook at Pock Bridga	56622733	NRA-A	101.8	038002	Ash at Mardock	53932148	nha-t	78.7
033024 033025.	Cam at Dernford Asbingly Wast Nawton Mill	54662506 56963266	NRA.A	198.0	${ }_{0}^{0380003}$	Mintram at Panshanger Park	52822133	nRA-T	133.9
033028	Aasingly at Wast Nowton Mill	56963256 52162669	NHA-A	39.6	038004	Rib at Wadesmill	53602174	NRA	136.5
033027	Rhee ot Wimpole	53332485	NRA-A	119.1	${ }_{038006}$.	${ }^{\text {ash at }}$	53802738 53352158	NRA-T	. 2
${ }^{033029}$	Flit at Sheflord	51432393	NRA-A	119.6	038007	Canons Brook ar Elizabeth Way	54312104	NRA-T	21.4
${ }^{033029}$	Stringside at White Aridge	57163006	nRa-A	98.8	038011	Mimram at Fulling Mill	52252169	NRA-T	98.7
$033030{ }^{\circ}$	Clipstone Brook at Clipstone	49332255	NRA-A	40.2	038012	Stovenage Brook at Eragbury Park	52742211	nRast	36.0
033031	Braughion Brook at Broughton	48892408	NRA-A	66.6	038013	Upper Lea at Luton Hoo	51182185	NRA-T	70.7
033032	Heachem at Heacham	56853375	NRA-A	59.0	038014	Satmon Brook at Edmonion	53431937	NRA-T	20.5
${ }^{033033}$	Hiz at Ariesay	51902379	NRA-A	108.0	038015	tmercepting Drain at Enfield	53551932	NRA-T	7.4
${ }_{0}^{033034}$	Little Ouse at Abboy Heath	58512844	NRA-A	699.3	038016	Stanstead Springs at Mountifichet	55002246	NRA-T	20.5
033035	Ely Ouse al Denver Comptax	55883010	NRA-A	3430.0	038017	Mimram at Whitwell	51842212	NRA-T	39.1
033037 $\mathbf{0 3 3 0 3 9}$	Bedtord Ousa at Nowp't Pagnell Wr Bediord Ouse al Aoxion	48772443 51602535	NRA-A	800.0 16600	${ }_{0}^{038018}$	Upperer Leat at Water Hall	52992099	NRA-T	150.0
033040	Rhee at Ashwell	52672401	NRA.A	1660.0	038020	Cobbins Brook at Sowardstione Road	53871999	NRA-T	38.4
033044	Thet ot Bridgham	59572855	NRA-A	277.8	038022	Pymmes Brook at Edmonton Silver Streat	53591985	NRAA-T	42.2
033045	Wittle at Quidenhem	60272878	NRA-A	29.3	038024	Small River Lee at Ordnance Road	53701988	NRA-T	41.5
033046	Thet at Red Bridga	59962923	NRA.A	145.3	038026	Pincey Brook al Sheoring Hall	54952126	NRA-T	54.6
$\begin{aligned} & 033048 \\ & 033049 \end{aligned}$	Lerling Brook al Stonebridge Stantord Water at Buckenham Tofts	59282907 58342953	NHA.A	21.4 435	038027	Stort at Glen Faba	53932093	NHA-T	280.2
033050	Snail al Fordham	56312703	NHAAA	43.5 60.6	038028 038029	Stansted Brook at Gypsy Lan	55062241	NRA-T	.9
033051	Cam at Chesterford	55052428	NRA-A	141.0	038030	Beane at Harham	53922248 532131	NRA-T	50.4 175.1
033052	Swafthem Lode at Swaftham Buibeck	56532628	NFA.A	36.4					
${ }^{033053}{ }^{\text {P30, }}$	Grants at Stapliford	54712515	NRA-A	114.0	039001	Thames ar Kingston	5177 ;898	nra-t	9948.0
033054	Eabinglay at Casate Rising	56803252	NRA-A	47.7	039002	Thames at Days Weir	45681935	NRA-T	3444.7
-333056	Granta at Babraham	55102504 55312627	NRA-A	98.7	039003	Wandle at Connollys Mill	52651705	NRA-T	176.1
033057	Ouzel at Laighton Buzzard	49172241	NRAAA	76.4 119.0	039005	Wendie at Beddington Perk	52961655	NRA-T	122.0
033058	Ouzel at Blotchley	48832322	NRA-A	215.0	039006	Windrush at Newbridga	52161717 44022019	NRA-T	43.6 362.6
033059	Cul-off Channel at Tolgate	57292757	NRA-A		039007	Blackwater at Swallowfield	44311648	NRA-T	362.6 354.8
033060	Kings Dike at Stonground	52082973	NRA.A		039008	Thames at Eynsham	44452087	NRA-T	1654.2
033082	Guilden Brook at Fowimere iwo	54032457	NHA-A		039010	Cotne at Dentram	50521864	NRA-T	743.0
033083	Little Ouse at Knetishati	59552807	nha A	101.0	039011	Wey at Tifford	48741433	NRA-T	396.3
033064 03085	Whaddon Brook at Whaddon	53592466	NRA-A	16.0	039012	Hogsmill at Kingston upon Thames	51821688	NRA-T	69.1
033085 033086	Hiz as Hitchin Granta at Linion	5185 5570 50290	NRAA A	${ }_{59}^{6.8}$	039013	Coine at Berrygrove	51231982	nha-t	352.2
033067	Now River ol furwell	55082696	NRAA	59.8	039014	Ver at Hanstagds	51512016	NRA-T	132.0
033068	Cheney Water at Gatiay End	52962411	NRAA-A	19.6 5.0	039015 039016	Whitewoter at Lodge Farm	47311523	NRA.T	44.5
					039017	Ray ai Grendon Underwood	46802211	NRAT	183.4 18.6
034001	Yare at Colney	61823082	NRA-A	231.8	039019	Lambount at Shaw	44701682	NRA-T	234.1
034002	Tas al Shotesham	62262994	NRA-A	146.5	039020	Coln at Bibury	41222062	NRA-T	106.7
${ }^{034003}$	Bure ol ingworth	61923296	NRA-A	164.7	-3902	Cherwell at Enslow Mill	44822183	NRA-T	551.7
034004 034005	Wongum ot Costessoy Mill	61773128	NRAA ${ }^{\text {a }}$	570.9	039022	Loddon at Sheepbridge	47201652	NRA-T	164.5
034005 034006	Tud at Costosasy Park Waveney at Noedham	61703113	NRA-A	73.2	039023	Wye at Hedsor	48961867	NRA-T	137.3
034007	Dove at Oakklay Perk	62292817	NRAA	3138.0	039025	Enbome at Erimpton	45681648	NRA-T	147.6
034008	Ant at Honing Lock	63313270	NAA-A	493.3	039027	Charwill at Banbury Pang at Pangbourne	44582411 46341765	NRAA-T	199.4 170.9
034010	Waveney at Billingtord Bridgo	81682782	nfa-a	149.4	039028	Dun at Hungerford	43211685	NRA-T	170.9
034011	Wensum at Fakenham	59193294	NRA-A	161.9	039029	Tillingbourne at Shelford	5000:478	NPA-T	59.0
034012	Burn at Eumham Ovary	58423428	NRA-A	80.0	039030	Gode at Croxley Green	50821952	NRA-T	184.0
034013 034014	Waveney at Ellinghem Mill Wensum at Swanton Morlay Total	63642917 60203184	NRAA	870.0	039031	Lembourn at Weltord	44111731	NRA-T	176.0
${ }_{0} 34018$	Stitikey at Warham All Saints	60203184 59443414	NRAAA	397.8 87.8	0399332	Lembourn at East Sheftord	43901745 44531694	NRA-T	154.0 49.2
034019	Burs at Horstead Mill	62673194	NRA-A	313.0	039034	Evenlode est Cassington Mal	44482099	NRA-T	430.0
					${ }^{039035}$	Churn at Cernay Wick	40761963	NRA-T	124.3
035002	Gipping at Constaming Weir Deben al Naurion Hall	61542441 6322534	NRA-A	310.8	039036	Low Brook at Albury	50451468	NRA-T	16.0
035003	Alde at Farnham	63602601	NRA-A	163.1 63.9	${ }_{0} \mathbf{3 9 0 3 8}$	Khame at Shabbington	41871686 46702055	NRAA-T	142.0 443.0
035004	Ore at Beversham Bridge	63592583	NRA-A	54.9	039040	Thames at West Mill Cricklade	40941942	NRA-T	185.0
035008	Gipping at Stowmarket	60582578	NRA-A	128.9	039042	Leach at Priory Mill Lechlada	42271994	NPA-T	76.9
${ }_{035013}^{035010}$	Gipping at Bramford Blyth ot Holton	81272465 64062769	NRA-A	298.0	${ }^{0393043}$	Konnet at Knighton	42951710	NRA-T	295.0
035013	Blyth al Holton	6406	NRA-A	92.9	039044	Hort at Eramshill House	47551593	NRA-T	B4.0
	Stour ot Strarford St Mary				039046 039049	Thames at Sutton Courtenay Silk Straam at Colindoep Lane	45161946 5217 1895	NRAT	414.0
036002	Giem at Glemsford	58462472	NHA-A	87.3	039051	Sor Brook at Addartury Lane	5277895 44752346	${ }_{\text {NRAA }}$ NRAT	29.0 106.4
036003	Box ot Polatead	59852378	nRa-A	53.9	039052	The Cut at Binfield	48531713	NRA-T	50.2
036004 036005	Chad Drook at Long Melford Brell at Madeigh	58682459 60252429	NRA-A	47.4 1560	${ }^{0393053}$	Mole at Horiey	52711434	NRA-T	89.9
036806	Stour at Lengham	60202344	NRA-A	156.0 578.0	039054 039055	Mole at Gatwick Aiport	52601399 50831846	NRA-T	31.8
036007	Beichamp Brook at Bardfield Bridge	58482421	NRA-A	58.6	039056	Vavensbourne at Catiord Ciil	50831846	NRAA-T	17.6 67.6
038009	Stour ot Westimill	58272463	NRA-A	224.5	039057	Crane at Cranford Park	51031778	NRAA ${ }^{\text {a }}$	${ }_{61.7} 67.6$
036009	Brett at Cockfield	59142525	NRA-A	25.7	039058	Pool at Winstord foad	53711725	NRA-T	38.3
036010 036011	Bumpstead Brook at Brood Green	56892418	NRA-A	28.3	039061	Letcombe Brook at Letcombe Bassert	43751853	NRA-T	2.7
036011	Stour Brook at Stumer	56962441	NRA-A	34.5	039065	Ewatme Brook at Ewalma	46421916	NFA-T	13.4
${ }_{036013} 03801$	Stout at Kedington Brett ot Highasm	57082450 60322354	NRAA	76.2 1950	039068	Mole at Casstlo Mill	51791502	NRA-T	316.0
036015	Stour at Lamersh	58972358	NTA-A	480.7	${ }_{0}^{0393071}$	Mole at Kinnerslay Manor Thames at Ewer	52621482 40071973	NRAA-T	142.0
036016	Ramsay at Grast Oakley	62062289	NRA-A	13.9	039072	Thames at Royal Windsor Park	40971973 49827	NRAA-T	$\begin{array}{r}63.7 \\ \hline 046.0\end{array}$
036017	Ely Ouse Outtall at Kirtling Green	56812559	NRA-A		039073	Churn at Cirancester	40202028	NRAA	84.0
					039074	Ampney Brook at Sheespen Bridge	41051950	NBA.T	74.4
037002	Roding ot Reabricgs	54151884 57942090	NRA.T	303.3	039075	Marston Meysey Bk at Wherstone Eridge	41281964	NRA-T	25.0
037003	Ter at Crabbs Bridge	57862107	NRAA-A	737.9	039077	Windrush at Worsham $\mathrm{O}_{\mathrm{g} \text { at Marlterough Poution } \mathrm{fm}}$	42992107 41941697	NRA-T	296.0
037004	Brackwater at Langford	58362092	NRA-A	337.0	039078	Waythorth) ot farnham	41941697 48381462	NRA-T	59.2
037005	Colne at Lexden	59622261	NRA-A	238.2	039079	Wey er Weybridge	50681848	NRA, T	1008.0

Station number	River and station name	Grid reference	Authority	Area (sq km)	Station number	Alver and station name	Grid raference	Authority	Area (sq q km)
039091	Ock at Abingdon	44811966	NRA-T	234.0	042017	Herritiage at Havant	47111067	NRA-S	17.0
039085	Wandle at Wandle Park	52661703	NRA-T	176.9	042018	Monks Brook at Easteigh	44431179	NHAS	43.3
039086	Gatwick Stroam at Gatwick Link	52851417	NRA-T	33.6	042020	Tadburn Lake at Romsay	43621212	NRA-S	19.0
039087	Ray at Water Eston	4121935	NRA-T	84.1	042021	Branch of Test at Nursiling	43551159	NRA-S	1050.0
039088	Chess at Rickmansworth	50661947	NPA-T	105.0	042023	Itchen at Riverside Park	44451154	NHAS	415.0
039089	Gode at Eury Mill	50532077	NFA-T	48.2	042024	Test at Chillooton (Total)	43861394	NRA-S	453.0
039090	Cole at lingtasham	42081970	NRA-T	140.0	04202	Lavant Strearn at Leight Park	47211072	NR	54.5
039091	Misboume at Quarrendon Mill	49751963	NRA-T						
039092	Dolitis Brook at Hendon Lane Bridge	52401895	NRA-T	25.1	043001	Avon at Ringwood	41421054	NRA.SW	1649.8
039093	Brent at Monks Park	52021850	NRA-T	117.6	043003	Avon at East Mills	41581144	NRA-SW	1477.8
039094	Crane at Marsh Farm	51541734	NRA-T	81.0	043004	Bourne at Laverstock Mill	41571304	NRA-SW	163.6
039095	Quaggy at Manor House Gardens	5394 ;748	NRA-T	33.9	043005	Avon at Amesbury	41511413	NRA.SW	323.7
039096	Wealdstone Brook at Wembley	51921862	NRA-T	21.7	043006	Nadder at Witon Park	40981308	NRA-SW	220.6
039097	Thames at Buscot	42301981	NRA-T	997.0	043007	Stour at Throop Mill	41130958	NRA.SW	1073.0
039098	Pinn at Uxbridge	50621826	NRA-T	33.3	043008	Wylye at South Nowt	40861343	NRA.SW	445.4
039099	Ampney Brook at Ampney St. Peter	40762013	NRA-T	45.3	043009	Stour at Hammoon	38201147	NRA-SW	523.1 94.0
039100	Swill Brook at Oaksey	39971927	NRA-T	53.3	043010	Allen at Loverley Mill	40061085	NRA-SW	94.0
039101	Aldbourne at Ramsbury	42881797	NRA-T	53.1	043011	Ebble at Bodenham	41621263	NRA-SW	109.0
039102	Misbourne at Denham Lodge	50461866	NHA-T	136.0	043012	Wylye at Norton Bevant	39091428	NRA-SW	112.4
039103	Kennet at Newbury	44721672	NRA-T	548.1	043013	Mude at Somerford	41840936	NRA-SW	12.4
039104	Mole at Esher	51301653	NRA-T	469.6	043014	East Avon at Upavon	41331559		86.2 69.0
039105	Thame at Wheatley	46122050	NPA-T	533.8	043015	Wylye at Longbridge Deverill	38681413 1731559	NRA-SW	${ }_{76.0}$
039106	Mole at Leatherhead	51611564	NRA-T	371.4	043017	West Avon at Upavon	41331559	NRA-SW	76.0
039107	Hogsmill at Ewell	52161633	NRA-T	33.7	043018	Alien at Watford Mill	40081007	NRA-SW	176.5
039108	Chum at Perrotr's Brook	40222057	NRA-T	59.0	043019	Shreen Water at Colesbrook	38071278 41550943	NRA-SW	29.1
039109	Coln at Fossabridge	40802112	NRA-T	82.0	043021	Avon at Krapp Mill	41550943	NRA-SW	1706.0
039110	Coln at Fairford	${ }^{41512012}$	NRA-T	130.0				NRA-SW	414.4
039111	Thames at Staines	50341713 43741852	${ }_{\text {NRA }}$ NRA-T	${ }^{8120.0}$	044001 044002	Frome at East Stoke total Piddea at Baggs Mill	38660867 39130876	NRA-SW	183.4
${ }_{0} 039113$	Manor Fsirm Brook at Letcombe Regis	43831861	NRA-T		044003	Asker at Bricport	34700928	NRA-SW	49.1
039114	Pang st Frilsham	45371730	NRA-T	90.1	044004	Frome at Dorchester total	37080903	NRA-SW	206.0
039115	Pang at Buckiebury	45561710	nRa-T	$\underline{09.0}$	044006	Syding Water at Syding St Nichotas	36320937	NRA-SW	12.4
039116	Sulharm Brook at Sulham	46421741 5019 1723	NRA-T		044008 044009	Sth Winterbourne at W'bourme Stegoleton Wey at Broadwey	36290897 36660839	NRA-SW	19.9 7.0
039117	Colnbrook at Hythe End		NRA- T	!	044009	Wey at Broadwey	36660839	NRA-SW	7.0
039118	Wey at Alton	47171395	${ }_{\text {NRAA-T }}^{\text {NRA- }}$,	045001	Exeat Thorverion	29361016	NRA-SW	600.9
039119 039120	Wey at Kings Pond (Atton) Caker Stramm at Aton	$\begin{aligned} & 47241395 \\ & 47291388 \end{aligned}$	${ }_{\text {NRA-T }}^{\text {NRA-T }}$	88.1	${ }_{045002}$	Exe at Thorverion	29431178	NRA-SW	421.7
039121	Thames at Walton	47251385	NRA-T		045003	Culrm at Wood Mill	30291058	NRA-SW	226.1
039122	Cranleigh Waters at Bramley	49991462	nfa-T		045004	Axe at Whittord	32620953		288.5 2025
039125	Ver at Redtbourn	51092118	NRA-T		045005	Otter at Dotton	30870885 2919	NRA-SW	202.5 20.4
039126	Red at Redbourn	51072119	NRA-T		045006	Quarme at Enterwall Otec at Fenny Bridges	29191356 31150986	NRA-SW	20.4 104.2
039127	Misbourne at Littie Missenden	49341984	NRA-T		045008 045009	(etter at fenny Bridges	31150985 29360	NRASAW	147.6
039129 039130	Tharmes at farmoor Thames at Reading	$\begin{aligned} & 44382068 \\ & 47181741 \end{aligned}$	NRA-T		045009 045010	Exe at Pixton Haddao at Hartford	29351294	NRA.SW	14.0 50
					045011	Barte at Erushford	29271258	NRA-SW	128.0
040001	Madway at Weir Wood Reservoir	54071353	sw	26.9	045012	Creedy at Cowley	29010967	NRA-SW	261.6
040002	Darwell at Darwell Reservoir	57221213	SW	9.6	045013	Tale at Faimile	30880972	NRA-SW	34.4
040003	Medway at Teston	57081530	NRA-S	1256.1					
040004	Rother at Udiam	57731245	NRA-S	206.0	046002	Teign at Preston	28560746.	NRA-SW	380.0
040005	Beutit at Stile Bridge	57581478	NRA-S	277.1	046003	Dar, at Austins Bridge	27510659	NRASW	247.6
040006	Boume at Hadlow	56311497	NRA-S	50.3	${ }_{0}^{046005}$	East Dart at Bellever	26570775 26420532	NRA-SW	21.5 43.5
040007	Medway at Chaftord Weir	55171405	NRA-S	255.1	046006 046007	Erme at Ermington	26420532 26430742	NRAASW	43.5 47.9
040008	Graat Stour at WYe	60491470 57181399	NRASS	230.0 136.2	048007 046008	West Dar at dunnabridge Avon at loddiswell	26430742 2719	NRASW	${ }_{102.3}$
040009 040010	Teise at Stone Bridge Eden at Penshurst	57181399 55201437	${ }_{\text {NRAS }}$	$\begin{aligned} & 136.2 \\ & 224.3 \end{aligned}$	046008	Avon at Loddiswell	27190476	NRA-SW	102.3
040010	Eden at Pensthurst	51161554	NRA-S	345.0	047001	Tamar at Gunnislaka	24260725	NRA-SW	918.9
040012	Darent at Hawley	55511718	NRA-S	191.4	047003	Tavy at Lopwell	24750652	NRA-SW	205.9
040013	Darent at Otford	55251584	NRA-S	100.5	047004	Lymber at Pillaton Mill	23690626	NRA-SW	135.5
040014	Wingham at Durlock.	62761576	NRA-S	37.7	047005	- Ottery at Werrington P	23370866	NRA-SW	120.7
040015	White Drain at Fairbrook Farm	60551606	NRA-S	31.8	047006	Lyd at Lition Park	2389 25740542	NRA.SW	
040016	Cray at Crayford	55111746	NRA-S	119.7	047007	Yealm at Pussinch	25740511	NRA-SW	54.9 112.7
040017	Dudwell at Burwash	56791240	NRA-S	27.5	047009	Thushel at Tinhay	23980856 23440596	NRAA-SW	112.7 37.2
040018	Oarent at Lullingstone	55301643	NRA-S	$\begin{array}{r}118.4 \\ 53.7 \\ \hline\end{array}$	047009 047010	Tiddy at Tideford	23440596 22900991	NRA-SW	37.2 76.7
040020	Eridge Stream at Hendal Bridge	55221367 59131290	NRA-S	53.7 32.4	${ }^{0477010} 0$	Tarnar at Crowford Bridge Plym at Carn Wood	229009913 25220813	NHA-SW	76.7 79.2
040021	Hexdon Channel at Hopenil Br Sendurst East Stour at South Willesborough	58131290 60151407	NRA-S	32.4 58.8	${ }_{047013}^{047011}$	Plym at Corn Wood Withey Brook at Bastre	25220813 22440764	NRA-SW	79.2 16.2
040023 040024	East Stour at South Willesborough Bartiey Mill St at Bartigy Mill	60151407 56331357	NRA-S	58.8 25.1	O47014	Watkham at Horrabridge	25130699	NRA-SW	43.2
040027	Sarra Penn at Calcott	61741625	NRA-S	19.4	047015	Tavy at Denham / Ludbrook	24760681	NRA-SW	197.3
040029	Len at Lenside		NRA-S	,	047016	Lumburn at Lumburn Bridge	24590732	NRA-SW	20.5
040032	Rother st Crowhurst Bridge	56831263	NRA-S		047017	Wolf at Combe Park Farm	24190898	NRA-SW	31.1
040033	Dour at Crabble Mill	63001430	NAA-S	49.5		Fowey at Trekeivesteps	22270698	NRA-SW	36.8
041001	Nunningham Stream at Tilley Pridge	56621129	nha-s	16.9	048002.	Fowey et hestormel one	21090613	NRA-SW	171.2
041002	Ash Bourne at Hammer Wood Bridge	56841141	NRA-S	18.4	048003	Fal at Tregony	19210447	NRA-SW	87.0
041003	Cuckmare at Sherrman Bridge	55331051	NRA-S	134.7	048004	Warleggan st Trengofta	21590674	NRA-SW	25.3
041004	Ouse at Barcombe Mills	54331148	NRA-S	395.7	048005	Kenwy at Tuuro	18200450	NRA-SW	19.1
041005	Ouse at Gold Pridge	54291214	NRA-S	180.9	048006	Cober at Helston	16540273	NRA-SW	40.1
041006	Uck at Isfietd	54591190	NRA-S	87.8	048007	Kennall at Ponsanooth		NRA-SW	26.6 22.7
041009	Rother at Haraham	50341178	NRA-S	345.8	048009	St Neot at Craigstill Wood	21840662 22990595	NAA-SW	22.7 36.1
041010 041011	Adur W Branch st Hatterall Bridga Rother at ling Mill	51781197 48521229	NRA-S	109.1 154.0	O48011		20980624	NRA-SW	169.1
041012	Adur E Branch at Sakeham	52191190	NRA-S	93.3					
041013	Huggletrs Stream at Henley Bridge	56711138	NRA-S	14.2	049001	Camel at Denby	20170882	NRA-SW	208.8
041014	Arun at Pallingham Quay	50471229	NRA-S	379.0	049002	Hayle at St Ert	15490341	NRA-SW	48.9
041015	Ems at Westbourne	47551074	NRAS	58.3 187	O49003	De Lank at De Lank	21330765 18290593	NRA-SW	21.7 41.0
041016	Cuckmere at Cowbeech	56111150	NRA.S	18.7		Gannel ar Gwills		NA,	
041017	Combehaven at Crowhurs:	57651102	NRA-S	${ }_{668}$					
041018 041019	Kird ${ }^{\text {at Tanyards }}$ A Arun at Alfoldean	50441256 5117131	NRA-S	66.8 139.0	050002	Torridge at Torrington	25001185	NRA-SW	663.0
041019 041020	Arun at Alfoldean Bevers Stream at Clappers Bridge	54231161	NRA-S	34.6	050004	- Hole Water at Muxworthy	27051373	NRA-SW	. 4
041021	Clayhill Stream at Old Ship	54481153	NRA-S	7.1	050005	West Okement at Vellake	25570903	NRA-SW	13.3
041022	Lod at Haltway Bridge	49311223	NRA-S	52.0	050006	Mole at Woodleigh	26601211	NRA-SW	327.5
041023	Lavant at Graylingwell	48711064	NRA.S	87.2	050007	Taw at Taw Bridge	26731068		71.4
041024	Shell Brook at Shell lrook P S	53351286	NRA-S	22.6	050011	- Okement at Jacobst	25921019 27751267	NRA-SW	82.9 53.7
041025	Loxwood Strearn at Drungewick	50601309 53761262	NRA-S	91.6 36.1	${ }_{050013}^{050012}$	Bray at Leethanford Bridge	272771399	NRA-SW	17.6
041026 041027	Cockhaise Erook at Holywell Fother at Princes Marsh	53761262 47721270	NRAAS	36.1 37.2		Bray at Leehamford Bndge			
041029	Chess Strram at Chess Bridge	52171173	NRA-S	24.0	051001	Doniford Stream at Swill Eridge	30881428	NRA-SW	
041029	Buill at Lealands	55751131	NRAS	40.8	051002	Homer Water at West Luccombe	28981458 30401395		20.8 36.3
041031	Fulking Stream at Fulking	52471113	NRA-S		051003	Washford at Beggearn Huish	30401395	NRA.SW	36.3
${ }_{0}^{041033}$	Costers Brook at Cocking								
041034 041035	Ems at Waldertion North River at Prookhurst	47861104 5130 1325	NRA-S NRA-S	55.1	${ }_{052002}^{052001}{ }^{\text {0 }}$	Axe at Wookey Yeo at Sution Bingham Res.	35271458 3556116	NRA-SW	18.2 30.3
041037	Winterbourne Strearn at Lewes	54031096	NRA-S	17.3	052003.	Halse Water at Bishops Hull	32061253	NRA-SW	87.8
	Winterbourne Strearn at Lewes				052004	Isle at Ashtord Mill	33611188	NRA-SW	90.1
042001	Wallington at North Fareham	45871075	NRA-S	111.0	052005	Tone ot Bishops Hull	32081250	NRA-SW	202.0
042003	Lymington at Brockenhurst Park	43181019	NRA-S	98.9	052006	Yeo at Pen Mill	35731162	NRA-SW	213.1
042004	Test at Broadlands	43541188	NRA-S	1040.0	052007	Parrett ot Chiselborough	34611144	NRA-SW	
042005	Wallop Brook at Broughton	43111330	nha-s	53.6	052008	Tone at Clatworthy Reservoir	30441313 34981439	NRA-SW	18.1 59.8
042006	Meon at Mistingtord	45891141	NAA-S	72.8 570	052009	Sheppey at Fenny Castle	$\begin{array}{r}34981439 \\ 3590 \\ \hline 1318\end{array}$	NRA-SW	59.6 135.2
042007	Alre at Drove Lane Alresford	45741326	NRA-S	57.0.	052010 052011	Brua at Lovington Cary at Somerton	35901318 34981291	NRAASW	${ }^{135.2}$
042008 042009	Cheriton Stream at Sewards Bridge Candover Stream at Borough Bridge	45741323 45681323	NRA-S	75.1	052014	Tone at Greenham	30781202	NRA.SW	57.2
042010	Itchen at Highbridga + Allbrook	44671213	NRA-S	360.0	052015	Land Yeo at Wraxall Eridge	34831716	NHA-SW	23.3
042011	Hambie at Frog Mill	45231149	NRA-S	56.6	052016	Currypool Stream at Currypool Farm	32211382	NRA-SW	15.7
042012	Anton at Fullerton	43791393	NRA-S	185.0	052017	Congresbur Yeo at twood	34521631 35711100	NRA-SW	66.6 16.4
042014	Blackwater st Ower	43281174	NRA-S	104.7 52.7	052020	Gallica Stream at Gallica Bridge	35711100	NRA-SW	16.4
042015 042016	Dever at Weston Colley Itchen at Easton	44961394 4512	NRA-S NRA-S	23,7 236.8	053001	Avor at Maiksham	39031641	NRA-SW	665.6

Station number	River and station name	Grid raference	Auth. ority	Area (sq km)	Station number	Aiver and station neme	Grid referance	Authorty	Ares (89 km)
067026	Doe al Eccleston Ferry	34153612	NRA-WEL	1816.8	07700:	Esk at Noitherby	33905718	NRA-NW	841.7
067028	Ceidiog al Ulandrila	30343371	NRA-WEL	36.5	077002	Esk at Canorbie	33975751	SRPE	495.0
067029	Trystion at Pen-y-fetin Fawr	30663405	NRA-WEL	12.3	077003	Liddel Weter at Rowanburntoot	34155759		319.0
					077004	Kirtie Woter at Mossknowe	32855693	SRPB	72.0
068001	Weaver at Ashbrook	36703633	nRa-NW	622.0	077005	Lyne at Cliff Bridge	34125662	NRA-N	191.0
068002	Gowy at Picton	34433714	NRA-NW	156.2					
068003	Dane at Rudheach	36683718	NRA-NW	407.1	078001	Annsm at St Murgos Manso	31255755	SRPB	730.3
068004	Wistoston Brook al Marratfied Eridge	36743552	NRA-NW	92.7	078002	Ao at Ethiesthiekds	30685852	SAPP	143.2
068005	Weaver at Audiom	36533431	nha.nw	207.0	078003	Annan at Erydekirk	31915704	SRPE	925.0
068006	Done at Hutme Weltield	38453644	nha-nw	150.0	078004	Kinnel Water at Redran	30775868	SRP8	76.1
068007	Wirchamm Brook at Lostock Gralam	36973757	nfa-nw	148.0	078005	Kinnol Water al Bridgermuir	30915845	SRPE	229.0
068010	Fender at Ford	32913880	nha NW	18.4	078006	Annan at Woodfoct	30996010	SRPE	217.0
068015	Gowy at Huxley	34973624	NRA-NW	49.0					
068018	Dane at Congleton Park	38613632	NRA-NW	:45.0	079001	Atton Water at Afton Reservoir	26316050	SRPE	9.5
068020	Gowy at Bridge Tratiord	34483711	NRA.NW	:56.0	079002	Nith at Friars Carse	29235851	SRPE	799.0
					079003	Nith at Hall Bridgo	26846129	SRPE	155.0
069001	Mersey at Irram Weir	37283936	nat.nw	679.0	079004	Scar Water at Capenoch	28455940	SRPP	142.0
069002	Inwell al Adotphi Weir	38243987	NRA-NW	559.4	079005	Cluden Water at Fiddilers Ford	29285795	SAPB	238.0
069003	Irk at Scotand Weir	38413992	nfa-nw	72.5	079006	Nith at Orumlannig	28585994	SRPB	471.0
089004	Etherow at Botroms Reservo	40233971	nRa-NW	78.2	079007	Loctrar Watar at Kirkblain Bridga	30285695	SRPB	125.0
069005	Glaze Brook at Litile Woolden Hall	36853939	NRA-NW	152.0					
069006	Bollin al Dunham Massey	37273875	NRA-NW	256.0	080001	Urr al Dalbeattie	28225610	SAPB	199.0
069007	Mersey at Ashton Weir	37723936	NRA-NW	660.0	080002	Dee at Glanlochar	27335641	SAPB	809.0
069008	Dean at Stamneylandz	38463830	NRA-NW	51.8	${ }^{080003}$	Whisa Laggan Burn at Loch Dee	24685781	SRPP	5.7
069011	Micker Brook at Chasolia	38553889	NRA.NW	67.3	080004	Greenburn at Loch Dee	24815791	Sfpe	2.6
069012	Bodin at Wilmsiow	38503815	NRA-NW	72.5	088005	Oergol Lane at Loch Dee	24515787	SfPP	2.1
069013	Sindertand Brcok at Partington	37263905	NRA-NW	44.8	080006	Blickwater at Loch Dee	24785797	SAPB	15.6
069015	Etherow at Compstal	39623908	nfa-NW	156.0					
069017	Goyt at Marple Bridgo	39643898	NRA-NW	183.0	081001	Panwhirn Burn at Penwhirn Aeservoir	21285694	DGRW	18.2
069018	Newton Brook at Nawton Le Willows	35853933	NRA.NW	32.8	${ }^{081002}$	Cree at Newton Stewz	24125653	${ }^{\text {SAPP }}$	368.0
069019	Worsloy Brook at Eccles	37533980	NRA-NW	24.9	081003	Luce al Airyhernming	21805599	STPP	171.0
069020	Medlock at London Road	38493975	NRA-NW	57.5	081004	Blodnoch at Low Malzie	23825545	SRPP	334.0
069023	floch at Elackford Eidge	38074077	NRA.NW	186.0	${ }^{081005}$	Pitanton Eurn at Barsotus	21075564	SAPB	34.2
069024	Crool at Farnworth Weir	37434068	NRA-NW	145.0	081006	Water of Minnoch at Minnoch Bricge	23635746	SAPP	141.0
069027	Tame at Portwood	39063918	NRA-NW	150.0	081007	Water of fleet at fusko	25925590	SRPB	
069030	Sonkey Prook at Cousey Bridge	35883922	NRA-NW	154.0					
069031	Ditton Brook at Groens Bridge	34573865	NRA-NW	47.9	082001	Girvan at flobstone	22175997	CRPB	245.5
069032	All at Kirkby	33923983	NRA.NW	90.1	082002	Doon at Auchendrane	23386160	CRPB	323.8
069034	Musbury Broak at Helmshore	37754213	NRA-NW	3.1	082003	Stinchar at Balnowlart	21085832	CRPB	341.0
069035	Irwell at Bury Bridge	37974109	NRA-NW	155.0					
069037	Mersey at Westy	36173877	NRA-NW	2030.0	083001	Cast Water at Knockendon Reservoir	22456514	SACW	6.0
069041	Teme at Broomstair Bridge	39383953	NRA-NW	13.0	083002	Garnock at Dalky	22936488	${ }^{\text {CRPB }}$	88.8
					083003	Ayt at Cartine	25256259	CPPB	166.3
					083004	Lugger at Langholm	25086217	CRP8	181.0
070002	Douglos at Wanes Elades Bridge	34764126	NRA-NW	198.0	083005	Itrine at Shewation	23456369	CRPB	380.7
070003	Dougtas at Central Park Wigan	35874061	NRA-NW	55.3	083006	Ayr al Mainholm	23616216	CRPB	574.0
070005	Lostock at Littiewood Bridge	34984180	NRA-NW	74.4	083007	Lugton Water at Eglinton	23156420	CRPB	54.6
		34974197	NRA-NW	56.0	083009	Annick Water at Dreghom	23526384	CRPB	95.3
					${ }^{083009}$	Gormock at Kilwinning	23076424	CRP8	183.8
071001	Ribble at Sammesbury	35894304	NRA-NW	1145.0	083010	truine at Newmilns	25326372	CRPB	72.8
071003	Croasdale al Crossdale furme	37064546	NWW.	10.4					
071004	Calber at Whalley Weir	37294360	nRa-nw	316.0	084001	Kolvin at Killermont	25586705	CRPB	335.1
071005	Bottoms Beck at Bottoms Beck flume	37454565	NWW	10.6	084002	Calder st Murishiel	23096638	SRCW	12.4
071006	Rible at Henthorn	37224392	NRA-NW	456.0	084003	Clyde at Hazeibank	28356452	${ }^{\text {CRPB }}$	1092.9
071007	- Ribble at Hodderfoot	37094379	NRA-NW	720.0	084004	Clyde at Sills	29276424	CRPB	741.8
071008	Hodder at Hodder Place	37044399	NRA-NW	261.0	${ }^{084005}$	Cryde at Blairston	27046579	CRPB	1704.2
071009	frible at Jumbles Rock	37024376	NRA.NW	1053.0	084006	Kelvin at Bridgend	26726749	CPPB	63.7
071010	Pendie Water at Berdon Lone	38374351	NRA-NW	108.0	084007	Sounh Calder Wtr at Forgewood	27516585	CRPB	93.0
071011	Rubble at Amford	38394556	NRA-NW	204.0	084008	Rotten Calder Wty at Rodibes	26796604	CRP8	51.3
071013	Darwen at Ewood Bridge	36774262	NRA-NW	39.5	084009	Nathan at Kirknuirtill	28096429	CRPB	${ }^{66.0}$
071014	Darwen at Bive Bridge	35654278	NRA-NW	128.0	084011	Girfo at Craigend	24156684	CRPB	71.0
					084012	White Cart Water at Hawkhoad	24996629	CAPB	227.2
072001	Lune at Halton	35034647	NRA-NW	994.6	${ }^{084013}$	Clyde at Dasidowie	28726616	CRPB	903.1
072002	Wyre al St Micheels	34634411	NRA-NW	275.0	084014	Avon Water et Fairholm	27556518	CRPB	265.5
072004	Lune at Caton	35294653	NRA-NW	983.0	084015	Kelvin at Drytield	28386739	CRPB	235.4
072005	Lune at Killingion New Eridgs	36224907	NRA-NW	219.0	084016	Luggio Water at Condrorrat	27396725	CRPB	33.9
072006	Lunt at Kirkby Lonadale	36154778 3512405	NRA-NW	507.1	${ }_{084019}^{084017}$	Black Car Water at Mililiken Park	24116620 28916404	${ }_{\text {chp }}^{\text {chp }}$	103.1 932.6
072007 072008	Brock at U/S A6	35124405	NRA.NW	32.0 1140	084018 084019		${ }_{2681625}$	${ }_{\text {chab }}$	1932.6 129.8
072008 072009	Wyre at Garstang Werning at Wenningtor forad Bridge	34884447 36154701	NRA NRA NW	114.0 142.0	-884020	North Coiver Wrt at Cavioepork	26566763	CRPB	12.8 51.9
072011	Wowthey at Erigg Flatis	36394911	NRA-NW	200.0	084021	Whis Cart Worer at Netheries	25886597	CRPB	91.6
072014	Conder at Galgate	34814554	NRA-NW	29.5	084022	Duneaton at Maidencots	29296259	CRPB	110.3
072015	Lune at Lunes Bridge	36125029	NRA-NW	141.5	${ }^{084023}$	Bothlin Burn ot Auchengeich	26806717	CRPB	35.7
072018	Wyre at Scorton Weir	35014500	NRA-NW	89.8	$\begin{aligned} & 084024 \\ & 084025 \end{aligned}$	North Calder Wit at Hillervd Luggie Water at Oxgang	$\begin{aligned} & 28286678 \\ & 26886734 \end{aligned}$	${ }_{\text {CRPB }}$	19.9 87.7
073001	Leven at Newby Bridge	33714863	NRA-NW	241.0	084026	Alhander Water at Mibrgavie	25586738	CPPB	32.8
073002	Crake at Low Nibitwraite	32944882	NRA.NW	73.0	${ }^{084027}$	North Cabaer Wt at Caldertenk	27856624	CAPB	${ }_{60.6}$
073003	Koni at Burneside	35074956	NRA-NW	73.6	${ }^{084028}$	Monkland Canal at Woodhas	27656626	CRPB	60.6
073005	Konn st Sedgwick	35094874	NRA-NW	209.0	084029 084030	Conder Water at Conderniilt Whita Cart Water at Overlea	27656471 25796575	${ }_{\text {cRPB }}^{\text {cRPB }}$	111.5
073008 073008	Cunsey Bock ot Eat House Bridge Bela at Beatham	33694940	NRA - NW NRA - W	19.7 1310	084030	Whita Cart Water at Overiog	25796575	Crpb	11.8
073008 073009	Sela at Beatham ${ }_{\text {Sprint }}$	34964806 35144961	NRA-NW	131.0 34.6	085001	Leven ot Linnbrane	23946803	CRPB	784.3
073010	Loven at Newby Bridgo	33674863	NRA-NW	247.0	${ }^{085002}$	Endrick Water at Gaidraw	24856866	CFPB	219.9
073011	Mint st Mint Eridge	35244944	NRA-NW	65.8	${ }_{085003}^{08503}$	Falloch at Glen falloch	23217197	CFPB	80.3
073013	Fothey at Milber Eridge House	33715042	NRA.NW	64.0	085004	Luss Water at Luss	23566929	CRP8	35.3
073014	Brathay at Jeffy Krota	33605034	NRA.NW	57.4		Lirla Exchsio at Dalintong	21436821	CRPB	30.8
	Ouddon at Duddon Hall	31964896			086002	Eschaig at Eckford	21406843	CRPB	139.9
074002	Ifrat Galesyke	31365038	NRA.NW	44.2					
074003	Ehen at Ennercate Weir	30845154	NRANW	44.2	${ }^{0898009}$	Eas Daimh at Eas Daimh	22397276	CRPB	4.5
074005	Ehen at Braystones	30095061	NRA.NW	125.5	089009	Eas AGhaill et Succoth	22097265	CRPB	9.7
074006	Colder at Calder Hall	30355045	NRA-NW	44.8					
074007	Esk si Cropple How	31314978	NRA.NW	70.2	090003	Nevis at Cloggan	21167742	HRP堲	76.8
074008	Ouddon at Ulipha	32094947	NRA-NW	47.9	091002	Loctiy at Comisky	21457805	HRPE	1252.0
075001	St Johns Beck at Thirmmere Reservoir	33135195	NRA.NW	42.1					
075002	Derwent at Camatron	30385305	NRA-NW	663.0	093001	Carron ot New Ketso	19428429	HRP昅	137.8
075003	Oerwent at Ouse Bridge	31995321	NRA-NW	363.0					
075004 075005	Cockar at Southwaite Bridga	31315281	NRA-NW	116.6	094001	Ewe at Poolewe	18598803	HRPB	441.1
075005	Derwent at Portinscole	32515239	NRA-NW	235.0					
${ }^{075006}$	- Newlands Beck ot Braithwite	32405239	NRANW	33.9	095001	Inver at Litrie Assynt	21479250 21848842	${ }_{\text {HRPP }}^{\text {HR }}$	137.5 141.4
075007 075009	Glenderamsckin at Threlkend	33235248	NRA-NW	64.5	095002	Broom et invertroom	21848842		141.4
075009	Greta at Low Briery	32865242	NRA-NW	145.6					
075017	Cocker ot Scalehill	31495214	NRA-NW	64.0	096001	Hatedale at Halladale	28919561	HRPP	204.6
	Eilon at Bullgill	30965384	NRA-NW	96.0	096002	Naver at Apigill	27139568	HRPE	477.0
					096003	Strathy al Strathy Bridge	28369652	HRPE	111.8
076001	Haweswater Beck at Burnbenks	35085159	nRa-nw	33.0	096004	Strathmore at Atnabsd	24539429	HRPB	105.0
076002	Eden at Warwick Bridge	34705567	NRA-NW	1366.7					
076003	Esmont at Udtord	35785306	NRA-NW	396.2	097001	Calder Burn at Achavarn	30859596	HRCW	24.5
076004	Lowther at Eamont Bridge	35275287	NRA-NW	158.5	097002	Thurso at Halkit	31319595	HRPE	412.8
076005	Eden al Temple Sowerby	36055283	NRA-NW	616.4					
076007	Eden at Sheepmoun:	33905571	NRA.NW	2286.5	101001.	Eastern Yar at Alverstone Mill	45770857	NAAS	57.5
076008	1 Irhing at Graenholma	34865581	NRA-NW	334.6	101002	Medina at Upper Shide	45030874	NRA-S	29.8
${ }^{076009}$	Caldew at Holm Hill	33785469	NRA.NW	147.2	101003	Lukety Brook at Newport	44910886	NHA.S	18.2
076010	Patteril at Harraby Green	34125545	NRA-NW	160.0	101004	Esstern Yar at Burnt House	45830853	NRAS	59.6
076011	Coal Surn at Cosiburn	36935777		1.5	101005	Esstorn Yar at Eudbridge Wroxall Sueam ar Waightrate	45310835 45360839	NRA.S	
076014	Eden at Kirkby Staphen	37735097	NRA.NW	69.4	101006	Wroxall Sireem at Weightrhoto	45360839 45830852	NRA ${ }_{\text {NRA S }}$	15.8 9.2
076015	Eamont at Pooley Bridge	34725249	NRA-NW	145.0	101007	Scotchells Brook at Bumt House	45830852	NRA.S	9.2

- - closed, or no data for post 1990 have been received.

Refer to pages 170 and 171 for key to measuring authority codes.

GROUNDWATER LEVEL DATA

Background

Groundwater may be obtained from almost any stratum in the sedimentary succession in the British Isles, as well as from igneous and metamorphic rocks. In many, such as clays and shales, volcanics and metamorphics, the permeable zone may well be limited to the depth to which weathering may reach, this is unlikely to be more than some 50 metres beneath the ground surface. In those strata which are not generally recognised to be aquifers, well-yields tend to be small (of the order of only a few cubic metres per day), uncertain as a continuous source (tending to fail in prolonged droughts), with an indifferent groundwater quality, and with the sources vulnerable to pollution.

The more generally recognised aquifers are listed in Table 8, with the Chalk and Upper Greensand, the Lincolnshire Limestone and the Permo-Triassic sandstones as the most important from the viewpoint of public supply. From such aquifers as these, yields of 3000 to 4500 cubic metres a day are not unusual. For the next category, including the Lower Greensand and the Magnesian Limestone, yields to individual wells of 1500 to 3000 cubic metres a day can generally be expected. In the other aquifers, whilst occasional sources sufficient for large supplies may be developed, they tend to be important only locally. The outcrop areas of the major aquifers are shown in Figure 9; throughout Wales, Scotland and Northern Ireland, aquifers are less extensively developed and tend to be only of relatively local importance.

The groundwater resources of an aquifer are naturally replenished from rainfall. During the summer months, when the potential evapotranspiration is high and soil moisture deficits are appreciable, little infiltration takes place. There is a notable exception to this rule in the Eden valley of Cumbria where, enclosed between the massifs of Cross Fell and the Lake District, sufficiently heavy and continuous summer rainfall occurs to maintain infiltration through part at least of most summers. The normal recharge of an aquifer takes place during the winter months when the potential evapotranspiration is low and soil moisture deficits are negligible.

Only the largest artificial reservoirs in the United Kingdom have sufficient capacity to support demands through the driest summers, assuming that they were full at the start of the summer, without some continuous contributions from river intakes. Prolonged dry spells lead, in many rivers, to reduced flow, particularly where the natural groundwater contribution (termed baseflow) is limited. Consequently, while surface water droughts may be in part due to the failure of runoff from winter rainfall to fill the reservoirs, they are more frequently caused by a decrease in the summer flows of streams and rivers. Surface water droughts do, however, lead to increased consumption of groundwater (where avail-
able). By way of contrast, a groundwater drought is caused by a lack of winter rainfall. Potentially, the most serious droughts occur when, as in 1975/76, a dry summer succeeds a notably dry winter, or as in 1988-92 in eastern England, recharge is significantly below average over two or three successive winters.

The Observation Borehole Network

Groundwater level observation wells (in this context, a well includes both shafts - constructed by hand digging - and boreholes - constructed by machinery) are generally used for one of two purposes: to monitor levels regionally and thus to estimate groundwater resource fluctuations, or to monitor the effects locally of groundwater abstractions. The number of observation wells required in different areas varies widely. Over the last two decades, a target density was sought of one well to 25 to $35 \mathrm{~km}^{2}$.

The observation well network was reviewed in 1981 by the British Geological Survey (then the Institute of Geological Sciences) with the aim of selecting 200 to 300 sites from the existing national archive, to be used for periodical assessments of the national groundwater situation. The selection was based upon the hydrogeological units identified in an investigation of the groundwater resources of the United Kingdom ${ }^{1}$; one site was chosen for each aquifer present within each unit. For Scotland and for Northern Ireland this was not possible due to the very limited number of observation wells available. In England and Wales, the total number finally selected was 175^{2}.

Details of the wells in this national network are given in the Register of Selected Groundwater Observation Wells (see page 148). This network has remained relatively stable over the last few years but a recent review of the groundwater level monitoring network in England and Wales, undertaken by BGS on behalf of the National Rivers Authority is expected to initiate significant changes.

Measurement and Recording of Groundwater Levels

The majority of observation wells are measured manually either weekly or monthly. The usual instrument is an electric probe suspended upon a graduated cable or tape, contact being made by the water to complete a circuit which gives either an audible or visual signal at the surface. Measurements are normally made to the nearest 10 millimetres, although instruments may be accurate to 1 mm .

Some observation wells are equipped with continuous water level recorders. These recorders measure level either by a float or with a pressure transducer. Data are recorded either on paper charts, punched tape (now rarely used) or by solid state data loggers.

TABLE 8 GENERALISED LIST OF AQUIFERS IN THE UNITED KINGDOM

Era	System	Subsyutem	Aquifer	Importance
U0NZZU	Quaternary	Holocene	Superficial deposits	*
		Pleistocene	Upper and Middle Pleistocene	*
			Crag	**
	Neogene	Pliocene	Coralline Crag	**
		Oligocene		
	Paleogene	Eocene	Bagshot Beds	
			Lower London Tertiaries	
			Blackheath \& Oldhaven Beds	
			Woolwich \& Reading Beds	*
			Thanet Beds	**
$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \text { X } \end{aligned}$	Cretaceous	Upper Cretaceous	Chalk and Upper Greensand	****
		Lower Cretaceous	Lower Greensand	***
			Hastings Beds	**
	Jurassic	Upper Jurassic	Portland \& Purbeck Beds (with Spilsby Sandstone)	(**)
			Corallian	**
		Middle Jurassic	Great \& Inferior Oolitic limestones (with Lincolnshire Limestone)	$\stackrel{* *}{(* * * *)}$
		Lower Jurassic	Bridport \& Yeovil Sands	**
			Marlstone Rock	*
PALAEOZOIC	Triassic	Upper Triassic	Permo-Triassic sandstonesMagnesian Limestone	
		Lower Triassic		

	Carboniferous	Upper Carboniferous	Coal Measures	**
			Millstone Grit	**
		Lower Carboniferous	Carboniferous Limestone	**
	Devonian		Old Red Sandstone	*

Key to aquifer importance:

[^8]

Figure 9 Principal aquifers and representative borehole locations

At a number of observation boreholes provision is made for the routine transmission - usually by telephone line - of groundwater levels to local, or regional, centres.

Observation Well Hydrographs 1989-93

Well hydrographs for 32 observation sites are shown in Figure 10. For each borehole the 1989 to 1993 groundwater hydrographs are illustrated, as a blue trace, together with the average and extreme monthly levels for the pre-1989 record. A break in the well hydrograph trace indicates an interruption in the record of greater than eight weeks. Five-year plots have been used both to illustrate the dramatic changes in groundwater levels over the recent past and because the volume of groundwater stored in aquifers can reflect not only the infiltration taking place during the winter months of 1992/93, but also that occurring in previous years. When comparing the hydrographs for a number of sites, account should be taken of the differing scales used to illustrate the water-table fluctuations.

For a few wells and boreholes the long-term monthly extremes and/or means have been omitted. In some cases this is due to the limited amount of historical data available. At other sites the historical data do not provide an appropriate basis for comparison with contemporary groundwater levels. For several of the featured wells and boreholes the earliest level records are of dubious accuracy and have been ignored when computing the relevant maximum, minimum and mean values. For others substantial changes in the pattern and/or magnitude of groundwater abstraction limit the representativeness of any segment in the groundwater level time series. The majority of observation boreholes for which data are held on the Groundwater Level Archive monitor the natural variation in levels. However, in parts of the United Kingdom levels have been influenced, sometimes over long periods, by pumping for water supply or other purposes which exceeds the natural rate of replenishment. As a consequence the regional water-table may become substantially depressed. For instance, the levels at a number of observation boreholes in the PermoTriassic sandstones of the Midlands are indicative of a significant regional decline. By contrast those at Rushyford (Northumbria) now stand substantially higher than 15 years ago despite the recent downtrend. This reflects, in part, a rundown of the coal industry and the consequent cessation of continuous pumping for mine dewatering.

On a larger scale, groundwater levels in the confined Chalk and Upper Greensand aquifer below Loñdon have risen by over 35 metres since the late 1960s. The increase-in the recent past is illustrated on the hydrograph on page 151 - the monthly
extremes relate to the post-1950 period only. Although earlier data are very patchy, it is known that in the 1840s groundwater levels stood around 30 metres higher than at present. The subsequent decline - to a minimum of 85 mOD in 1968 - and partial recovery is principally a consequence of changes in the rate of groundwater abstraction. Decreasing demands on the Chalk aquifer, especially after the Second World War, initially stabilised the water-table, which had been falling steadily over the preceding 150 years in response to London's water demands, and subsequently levels have risen at the rate of approximately one metre per year. More moderate recent increases have been reported for other conurbations in Britain; in most cases leakage from water mains is considered to be an exacerbating factor. The implications of rising groundwater levels extend beyond the potential improvement in resources that the rise represents. Groundwater quality may be adversely affected as levels more closely approach the surface and a number of geotechnical problems may result, for instance the flooding of tunnels and foundations.

Register of Selected Groundwater Observation Wells

Scope

The listed sites were selected so as to give a reasonably representative cover for aquifers through-out England and Wales. The wells are grouped according to the aquifer to which the water level variations in the wells are attributed. A generalised list of aquifers is given on page 146, while the aquifers are tabulated in stratigraphical order, most of the local names for individual strata are omitted and the intervening aquicludes are not shown.

Network Changes

Since the original selection of boreholes for incorporation in the national network a number of changes have been made to the list of selected wells. At some locations, observations could no longer be continued, and new sites have been added from time to time. In the Coal Measures and the Millstone Grit, certain sites have not been monitored for some years due to the presence of methane in the wells; these sites have been discarded until either they have been made safe or have been replaced. Details of the wells in the national network are given in the Register of Selected Groundwater Observation Wells.

No sites were added or removed from the Register in 1993.

The Register

The six columns of the Register are:

Well Number

The well numbering system is based on the National Grid. Each 100 kilometre square is designated by prefix characters, e.g. SE, and is divided into 100 squares of 10 kilometre sides designated by numbers 00 (in the south-west corner to 99 (in the north-east corner). Thus, the site SE93/4, is located in the 10 kilometre square SE93, while the number after the solidus denotes that the site is the fourth accessed in this square in the National Well Record collection. A suffix such as A, B, etc., defines the particular well when there are several at the same site. For Northern Ireland, which is on the Irish Grid, the first of the prefix characters is always ' I '.

Two asterisks following the well number indicates a well or borehole for which hydrographs are shown on pages 150 to 153 . The location of the index wells, and the outcrop areas of the principal aquifers, are shown on Figure 9.

Grid Reference

The six or eight figure references given in the Register relate to the 100 kilometre National (or Irish) Grid square designated by the preceding two figure code; the corresponding two-letter code appears as the prefix characters in the Well Number. The Irish Grid References are italicised.

Site

The name by which the well or borehole is normally referenced. The location of all the sites listed in the Register are shown on Figure 9.

Measuring Authority

An abbreviation referencing the organisation responsible for groundwater level measurement. A full list of codes, together with the corresponding names and addresses appears on pages 170 and 171.

Records Commence

The first year for which records are held on the National Groundwater Level Archive.

Indicated \% Annual Recharge

The difference between the level measured at the end of the summer recession of groundwater levels and that measured at the beginning of the summer recession of the following year reflects the amount of recharge received in that period. This method,
detailed in the Hydrometric Register and Statistics 1981-5 volume, is most suited to circumstances when a single peak is readily identifiable in each recharge season. Where recharge follows an uneven pattern resulting in poorly defined or multiple peaks, the percentage of the mean annual recharge is often unrepresentative. Consequently, the original method has been modified to produce more realistic values of recharge and to allow more accurate comparison between sites. First, the recharge period is arbitrarily defined as the first day of August to the end of the following July. Next, the water level at each site is estimated, by extrapolation where necessary, for the last day of each month. Finally, all the rises in successive months are summed over each recharge period. The use of end-of-month levels is dictated to a large extent by the existence of end-of-month data alone for the longest pre-1993 records. However, where some sites are measured at close time intervals (weekly or daily), the summed cumulative rises give a significant larger total than the rise determined by end-of-monthly levels alone. To compare sites with differing intervals between measurements, it is thus necessary to resort to a common base.

The summed rise for each year is called the 'annual fluctuation', and the mean of the annual fluctuations over the period of record is termed the 'mean annual recharge' (MAR). This also assumes that the natural discharge (via, for instance, springs and seepages) is constant; while this is not the case in view of the large differences of head that are recorded in some observation wells, there is insufficient information currently available to permit corrective factors to be determined. It is considered that for most wells the errors caused by this assumption will be small.

The annual infiltration is then expressed as a percentage of the MAR and thus represents the percentage of the mean annual recharge received for that year. Acknowledging the limited precision in the estimation procedure the percentages are rounded (to the nearest 5%) and are tabulated in the last column of the Register. Exceptionally low percentage recharge values are conventionally presented as ' <10 '. Where data for the year are inadequate for the purpose of calculating the annual percentage recharge, no value is given. This process has now been computerised.

References

1. Monkhouse, R.A. and Richards, H.J. 1983. Groundwater resources of the United Kingdom. Commission of the European Communities, pub. Th. Schaeffer Druckerei GmbH, Hannover, 252 pages.
2. Monkhouse, R.A. and Murti, P.K. 1981. The rationalisation of groundwater observation well networks in England and Wales. Institute of Geological Sciences, Report No. WD/81/1, 18 pages.

Figure 10 Hydrographs of groundwater level fluctuations 1988-93

Compton House

Well No: SU71/23 Aquifer: Chalk and Upper Greensand

+ extremes \& mean monthly levels (1894-1988)

Figure 10-(continued)

Ashton Farm

Figure 10-(continued)

Figure 10-(continued)

Well Number	Grid Reference	Site	Measuring Authority	Records Commence	Indicated \% Annual Recharge 1992/93
Aquifer: Superficial Deposits					
IJ28/1	22488620	Dunadry	DOEN	1985	80
SO44/4	46834253	Stretton Sugwas	NRA-WEL	1973	90
Aquifer: Chalk and Upper Greensand					
ID30/1**	36630310	Killyglen	DOEN	1985	
SE94/5**	96514530	Dalton Holme	NRA-NY	1889	105
SE95/6**	95785939	Wetwang	NRA-NY	1971	125
SE97/31	93457079	Green Lane	NRA-NY	1971	110
SP90/26	94700875	Champneys	NRA-T	1962	
SP91/59	93801570	Pitstone Green Farm	NRA-A	1970	
ST30/7**	37630667	Lime Kiln Way	NRA-SW	1969	80
SU01/5B**	01601960	West Woodyates Manor	NRA-SW	1942	125
SU17/57**	16557174	Rockley	NRA-T	1933	125
SU32/3	38172743	Bailey's Down Farm	NRA-S	1964	110
SU34/8A	32154875	Clanville Lodge	NRA-S	1962	200
SU35/14	33155645	Woodside	NRA-S	1963	135
SU51/10	58751655	Hill Place Farm	NRA-S	1965	100
SU53/94	55863498	Abbotstone	NRA-S	1976	135
SU57/159	56287530	Calversleys Farm	NRA-T	1974	195
SU61/32	65781775	Chidden Farm	NRA-S	1958	105
SU61/46	68901532	Hinton Manor	NRS-S	1953	100
SU64/28	63604049	Lower Wield Farm	NRA-S	1962	145
SU68/49	64428525	Well Place Farm	NRA-T	1976	360
SU71/23**	77551490	Compton House	NRA-S	1894	115
SU73/8	70483491	Faringdon Station	NRA-T	1966	120
SU76/46	73676251	Riseley Mill	NRA-T	1975	---
SU78/45A	74198924	Stonor Park	NRA-T	1961	240
SU81/1	83561440	Chilgrove House	NRA-S	1836	115
SU87/1	83367885	Folly Cottage, Coldharbour	NRA-T	1950	130
SU89/7	81039417	Piddington	NRA-T	1966	215
SY68/34**	66158805	Ashton Farm	NRA-SW	1974	120
TA06/16	04906120	Nafferton	NRA-NY	1964	105
TA07/28	09407740	Hunmanby Hall	NRA-NY	1976	
TA10/40**	13710888	Little Brocklesby	NRA-A	1926	145
TA21/14	26701890	Church Farm	NRA-NY	1971	125
TF72/11	77102330	Off Farm	NRA-A	1971	130
TF73/9	77903270	Coe Ltd, Bircham	NRA-A	1971	285
TF80/33	87300526	Houghton Common	NRA-A	1971	110
TF81/2**	81381960	Washpit Farm	NRA-A	1950	110
TF83/1	85783606	South Creake School	NRA-A	1952	230
TF92/5	98692183	Tower Hills P.S.	NRA-A	1974	190
TG00/92	04400020	High Elm Farm, Deopham	NRA-A	1971	95
TG03/25B	03823583	The Hall, Brinton	NRA-A	1952	210
TG11/5	16911101	The Spinney, Costessey	NRA-A	1952	115
TG12/7	11262722	Heydon Pumping Station	NRA-A	1974	130
TG21/9	24001657	Frettenham Depot	NRA-A	1952	80
TG21/10	26991140	Grange Farm	NRA-A	1952	70
TG23/21	29323101	Melbourne House	NRA-A	1974	225
TG31/20	33651606	Woodbastwick Hall	NRA-A	1974	60
TG32/16	37002682	Brumstead Hall	NRA-A	1978	120
TL11/4	15601555	Mackerye End House	NRA-T	1963	---
TL11/9**	16921965	The Holt	NRA-T	1964	200
TL13/24	12003026	West Hitchin	NRA-A	1970	180
TL22/10	29782433	Box Hall	NRA-T	1964	100
TL33/4**	33303720	Therfield Rectory	NRA-T	1883	160
TL42/6	45362676	Hixham Hall	NRA-T	1964	143
TL42/8	46692955	Berden Hall	NRA-T	1964	160
TL44/12**	45224182	Redlands Hall	NRA-A	1963	120
TL55/109	59255605	Lower Farm	NRA-A	1983	
TL72/54	79822516	Rectory Road	NRA-A	1968	90
TL84/6	84654106	Smeetham Cottages, Bulmer	NRA-A	1963	130

Well Number	Grid Reference	Site	Measuring Authority	Records Commence	Indicated \% Annual Recharge 1992/93
TL86/110	88506470	Cattishall Farm	NRA-A	1969	155
TL89/37	81319001	Grimes Graves	NRA-A	1971	125
TL92/1	96572562	Lexden Pumping Station	NRA-A	1961	110
TM15/112**	12015618	Dial Farm	NRA-A	1968	125
TM26/46	24616109	Fairfields	NRA-A	1974	-
TM26/95	27866397	Strawberry Hill	NRA-A	1974	80
TQ01/133	08501170	Chantry Post, Sullington	NRA-S	1977	70
TQ21/11	28501289	Old Rectory, Pyecombe	NRA-S	1958	105
TQ28/119B**	29968051	Trafalgar Square	NRA-T	1901	---
TQ31/50	32201180	North Bottom	NRA-S	1979	50
TQ35/5**	33635924	Rose \& Crown	NRA-T	1974	195
TQ38/9	- 35098536	Hackney Public Baths	NRA-T	1953	---
TQ50/7	55920380	Old Rectory, Folkington	NRA-S	1965	130
TQ56/19	56486124	West Kingsdown	NRA-T	1961	90
TQ57/118	58807943	Thurrock A13	NRA-A	1979	170
TQ58/2B	56228408	Bush Pit Farm	NRA-T	1967	70
TQ86/44	85956092	Little Pett Farm	NRA-S	1982	---
TQ99/11	94709710	Burnham-on-Crouch	NRA-A	1975	60
TR14/9**	12254690	Little Bucket Farm	NRA-S	1971	125
TR14/50	12654167	Glebe Cottage	NRA-S	1970	105
TR24/26	27874003	Church House	NRA-S	1971	
TR35/49	33305090	Cross Manor Cottages	NRA-S	1971	---
TR36/62	32086634	Alland Grange	NRA-S	1969	125
TV59/7C**	52909920	Westdean No. 3	NRA-S	1940	

Aquifer : Lower Greensand					
SU82/57	8888	2505	Madam's Farm	NRA-S	1984
SU84/8A	8716	4087	Tilford Pumping Station	NRA-T	1971
TL45/19	41105204	River Farm	18	80	
TQ41/82	43701320	Lower Barn Cottages	NRA-A	1973	--
TR13/21	11323881	Ashley House	NRA-S	1975	115
TR23/32	20753650	Morehall Depot	NRA-S	1972	95
Aquifer : Hastings Beds		NRA-S	1972	160	
TQ22/1	2348				
TQ42/80A	47252990	The Bungalow	Kingstanding		
TQ61/44	66581803	Dallington Herrings	NRA-S	1964	135
TQ62/99	61992282	Whiteoaks	NRA-S	1979	145
TQ71/123	79691659	Red House	NRA-S	1964	50

Aquifer :	Upper Jurassic				
SE68/16	68908590	Kirkbymoorside	NRA-NY	1975	45
SE77/76	76907300	Broughton	NRA-NY	1975	50
SE98/8	99108540	Seavegate Farm	NRA-NY	1971	---
SU49/40B	41179307	East Hanney	NRA-T	1978	---

Aquifer: Middle Jurassic					
SP00/62**	05950190	Ampney Crucis	NRA-T	1958	100
SP20/113	2721	0634	Alvescot Road	NRA-T	1983
ST51/57	59311691	Over Compton	NRA-SW	1971	115
ST88/62A	82758743	Didmarton 1	NRA-SW	1977	115

Aquifer : Lincolnshire Limestone					
SK97/25	98007817	Grange de Lings	NRA-A	1975	80
TF03/37**	08853034	New Red Lion	NRA-A	1964	140
TF04/14	04294273	Silk Willoughby	NRA-A	1972	110

Aquifer : Permo-Triassic sandstones

IJ26/1**	29076943	Dunmurry	DOEN	1985	70
NX97/1**	96677432	Redbank	SRPB	1981	140
NY00/328**	05110247	Brownbank Layby	NRA-NW	1974	135
NY45/16	49475667	Corby Hill	NRA-NW	1977	85

Well Number	Grid Reference	Site	Measuring Authority	Records Commence	Indicated \% Annual Recharge 1992/93
NY63/2**	61303250	Skirwith	NRA-NW	1978	120
NZ41/34	48611835	Northern Dairies	NRA-NY	1974	180
SD27/8	21727171	Furness Abbey	NRA-NW	1972	120
SD41/32**	44001164	Yew Tree Farm	NRA-NW	1973	210
SD44/15	43964928	Moss Edge Farm	NRA-NW	1961	175
SE36/47	39456575	Kelly's Cafe	NRA-NY	1977	110
SE39/20B	30049244	Scruton Village	NRA-NY	1969	75
SE45/3	44705580	Cattal Maltings	NRA-NY	1969	175
SE52/4	54732363	Southfield Lane	NRA-NY	1955	---
SE54/32A	55324646	Bilborough	NRA-NY	1984	45
SE60/76	67840709	Woodhouse Grange	NRA-ST	1980	45
SE61/11**	62701710	Sykehouse	NRA-NY	1971	75
SE72/3B	70472149	Rawcliffe Bridge	NRA-NY	1971	40
SE83/9	80403640	Holme on Spalding Moor	NRA-NY	1972	115
SJ15/15**	13745556	Llanfair D.C.	NRA-WEL	1972	95
SJ33/39	38143831	Eastwick Farm	NRA-WEL	1974	---
SJ56/45E	50426953	Ashton 4	NRA-NW	1969	255
SJ83/1A	89693474	Stone	NRA-ST	1974	80
SJ87/32	89697598	Dale Brow	NRA-NW	1973	65
SJ88/93	86118645	Bruntwood Hall	NRA-NW	1972	---
SK00/41**	06700120	Nuttals Farm	NRA-ST	1974	125
SK10/9	14400464	Weeford Flats	NRA-ST	1966	75
SK21/111	27311419	Grange Wood	NRA-ST	1967	115
SK24/22	25394431	Burtonshuts Farm	NRA-ST	1972	95
SK56/53	56326440	Peafield Lane	NRA-ST	1969	---
SK67/17	64487257	Morris Dancers	NRA-ST	1969	40
SK68/21	61008374	Crossley Hill	NRA-ST	1969	
SK73/50	76933228	Woodland Farm	NRA-ST	1980	105
SO71/18	71701970	Stores Cottage	NRA-ST	1973	115
SO87/28	81607970	Hillfields	NRA-ST	1961	150
SX99/37B**	95289872	Bussels No. 7A	NRA-SW	1971	85
SY09/21A	06669235	Heathlands	NRA-SW	1951	200
Aquifer : Magnesian Limestone					
NZ22/22**	28752896	Rushyford NE	NRA-N	1967	210
NZ32/19	35752650	Heley House	NRA-N	1969	115
NZ33/20	33493501	Garmondsway	NRA-N	1974	110
SE28/28	24608520	Bedale	NRA-NY	1972	65
SE35/4	38305830	Castle Farm	NRA-NY	1970	70
SE43/9**	45353964	Peggy Ellerton Farm	NRA-NY	1968	90
SE43/14	46603550	Coldhill Farm 35	NRA-NY	1971	90
SE51/2	52101530	Westfield Farm	NRA-NY	1971	70
SK46/71	48006030	Stanton Hill	NRA-ST	1973	105
SK58/43	52488018	Southards Lane	NRA-ST	1973	105
Aquifer : Coal Measures					
SE23/4	28503414	Trident House	NRA-NY	1971	30
Aquifer : Millstone Grit					
SE02/46	07712528	Thrum Hall	NRA-NY	1977	85
SE04/7	02954792	Lower Heights Farm	NRA-NY	1971	35
SE24/2B	20674053	Green Lane Dyeworks	NRA-NY	1971	---
SE27/8	21207380	Kirkby Moor Farm	NRA-NY	1971	---
Aquifer : Carboniferous Limestone					
NT95/21	96955055	Middle Ord	NRA-N	1974	65
SE06/1	02416183	Jerry Laithe Farm	NRA-NY	1971	200
SK15/16**	12925547	Alstonfield	NRA-ST	1974	125
SK17/13	17787762	Hucklow South	NRA-ST	1969	115
ST64/33	65604790	Oakhill 1	NRA-SW	1974	85

[^9] '---' is substituted.

THE NATIONAL GROUNDWATER LEVEL ARCHIVE DATA RETRIEVAL SERVICE

The National Groundwater Level Archive includes water level data for around 170 representative wells and boreholes in the United Kingdom; the average length of record is about 20 years. This archive is supplemented by historical water level data (up to 1974 generally) for approximately 3000 additional monitoring sites.

The data are stored on a computer database and water level records may be made available in various forms as specified by users. Retrievals are available for all of the sites listed in the Register of Selected Groundwater Observation Wells, although not all the data contained within the archive have been validated.

In addition five standard options are available for retrieving data. A description of each option is given overleaf. Options 1 to 4 give details of the well site, the period of record available, and maximum and minimum recorded levels in addition to the output specific to each option. Data may be retrieved for a specific well or for groups of wells by well reference numbers, by area (using National Grid References), by aquifer, by hydrometric area, by measuring authority, or by any combination of these parameters. Data may be output to paper or in digital form.

Cost of Service

To cover the computing and handling costs, a moderate charge will be made depending on the data requested. Estimates of these charges may be obtained on request; the right to amend or waive charges is reserved.

Requests for Retrieval Options

Requests for retrieval options should include: the name and address to which the output should be directed, the sites, or areas, for which data are required together with the period of record of interest (where appropriate). Where possible, a daytime telephone number should be given.

Requests should be addressed to:

The British Geological Survey
Maclean Building
WALLINGFORD
OXFORDSHIRE OX10 8BB

Telephone: Wallingford (01491) 838800
Facsimile: (01491) 825338
Email: bgsftp@ua.nwl.ac.uk.

The National Well Record Archive

The British Geological Survey also maintains the National Well Record Archive (NWRA) for England and Wales. Currently this archive includes hydrogeological details and reference information for over 150,000 shafts, boreholes and some springs - predominantly constructed or used for water supply or the monitoring of groundwater levels or quality. The archive is organised into paper files based upon the 10 kilometre squares of the National Grid. Each file includes a register which details the accession number, the depth, the national grid reference and certain other details. This material is an essential component in the hydrogeological enquiry service operated by BGS and the register details are in the process of being transferred to a digital format.

The Archive is located at the Wallingford Office of BGS (address above) and all the non-confidential records are open to inspection by the general public. Those wishing to avail themselves of this facility should contact the BGS Records Section in advance to discuss access procedures and costs.

National Geosciences Information Centre

The NWRA is associated with the National Geosciences Information Service (NGIS), one of a number of computer-based data centres established at NERC Institutes. The NGIS is located at the BGS Headquarters, Keyworth, near Nottingham (Telephone: 011159363100) and provides access to a broad range of geological information (for example, geophysical and hydrogeological logs, core samples and chemical analyses).

LIST OF GROUNDWATER RETRIEVAL OPTIONS

OPTION TITLE
1 Table of groundwater levels

Table of annual maximum and minimum groundwater levels

NOTES
All recorded observations of groundwater level in metres above Ordnance Datum, with dates of observation and maximum and minimum levels for each year. Specific years, or ranges of years, may be requested, otherwise the full period of record is given.

Annual maximum and minimum groundwater and minimum groundwater levels in metres above Ordnance Datum levels with dates. of occurrence. Specific years, or ranges of years, may be requested, otherwise the full period of record is given.

Monthly maximum, minimum and mean groundwater levels in metres above Ordnance Datum, together with the number of years contributing values to the calculation of each monthly mean. A specific period of years may be nominated, otherwise the full period of record is given.

Provides a well hydrograph for a number of groundwater levels of specified years. Castellated annual plots of monthly maximum and mean groundwater levels calculated from a nominated period of years are superimposed upon the hydrograph, provided that the nominated period exceeds 10 years. Tabulations of the monthly maximum, minimum and mean values are also listed, together with the number of years of record used in the calculations, and the number of observations used for each month.

The output comprises the well reference number of the British Geological Survey, the original (Water Data Unit) station number (where applicable), the hydrometric area, the aquifer name and code, the site name and location, the National Grid Reference, the depth of the well, the datum points (from which measurements are made), the altitude of the ground surface, the period of record and the measuring authority area in which the well or borehole is located.

SURFACE WATER QUALITY DATA

Background

A national archive of water quality data is maintained by the Environmental Protection Statistics Division of the Department of the Environment to provide information concerning the quality of rivers throughout the United Kingdom and to satisfy certain international obligations including the estimation of riverborne inputs of selected contaminants (e.g. nutrients) to the sea. Data for this archive are collected as part of the Harmonised Monitoring programme which provides for the sampling and analysis of water quality on a national basis.

The Harmonised Monitoring Scheme was established, for England and Wales, in 1974; a similar scheme was instituted for Scotland in July 1975. In Scotland responsibility for the collection and analysis of the samples rests with the River Purification Boards; data acquisition is co-ordinated by The Scottish Office Environment Department. In England and Wales responsibility passed, on the 1st September 1989, from the former regional Water Authorities to the newly-created National Rivers Authority.

Measuring authorities send analytical results of routinely collected samples of river water from approximately 220 monitoring stations; sampling frequencies vary substantially but are, typically, in the range 6 to 52 per year. Most of the monitoring stations are located on major rivers at, or near, the tidal limit.

The monitoring programme can embrace a large number - over 80 - of physical and chemical attributes of river water but typically only 25 are measured at any given site. A number of determinands are measured as standard but a larger proportion are monitored only where it is considered necessary to do so.

Currently no data for Northern Ireland are held on the Harmonised Monitoring Archive. Water quality data are, however, routinely collected and archived by the Environmental Protection Division of the Department of the Environment (NI); data for two Northern Ireland monitoring sites are included in this publication.

The measuring authorities maintain major programmes of chemical and biological sampling of rivers for their own purposes; the monitoring networks involved provide a far more comprehensive coverage than the selected sites incorporated in the Harmonised Monitoring programme. From the 31st July 1985, the former Water Authorities were required, under the Control of Pollution Act, to maintain registers of the results of all samples of water and effluent taken for pollution control purposes together with details of all consented discharges. Following the enactment of the Water Bill 1989 this obligation passed to the National Rivers Authority. These registers are maintained at the regional headquarters of the NRA (see page 170) and are open
for inspection by the public - free of charge. Persons wishing to consult the registers are advised to first contact the individual regional headquarters; a list of addresses is given on pages 170 and 171.

Data Retrieval

A comprehensive range of retrieval options has been developed by DoE to make available the water quality data held on the Harmonised Monitoring Archive and to provide statistical summaries based on that data. Requests for data, and guidance concerning its availability, should be addressed to:

Department of the Environment Environmental Protection Statistics Division, Room A105
Romney House
43 Marsham Street
London SW1P 3PY

Telephone: 0712768245
Data listings for monitoring sites in Northern Ireland may be obtained from the Environmental Protection Division of the DOE (NI).

Figure 11 Water quality monitoring station location map

Scope of the Water Quality Data Tabulations

River water quality data are presented for 32 monitoring sites on rivers throughout the United Kingdom. The location of each monitoring site is given on Figure 11. For each site 1993, and period of record, data are given for a range of determinands; the determinands featured may differ between monitoring sites reflecting the character of the rivers themselves and differences in the sampling regimes between monitoring stations.

The following notes are provided to assist in the interpretation of particular data items.

Harmonised Monitoring Station Code

A reference number which serves as the primary identifier of the station. For stations on the Harmonised Monitoring Archive, the first two digits refer to the measuring authority, the remainder refer to individual sites within each measuring authority. For the Northern Ireland stations, the Department of the Environment (NI) reference code is given.

Measuring Authority

An abbreviation referencing the organisation responsible for the operation of the monitoring site. See pages 170 and 171 for a full list of the codes together with the corresponding authority names and addresses.

Grid Reference

The initial two-letter and two-figure codes each designate the relevant 100 kilometre National Grid square or Irish Grid square (see page 36); the standard six-figure map reference follows.

Associated Flow Measurement Station

For monitoring sites in Great Britain, the reference number, name, catchment area and grid reference of the gauging station which provides the discharge data stored on the Harmonised Monitoring Archive. At most sites the flow corresponding to the time the quality sample was taken is archived; at other locations the corresponding daily mean flow is utilised. Where the gauging station and water quality monitoring site are not coincident, some method of flow adjustment may have been employed to allow for the differing catchment areas.

For the Northern Ireland monitoring sites, reference details of the co-located gauging stations are given; the flow data for these stations are held on the National River Flow Archive.

1993 flow data for all but one of the relevant gauging stations in Great Britain may be found in the

River Flow Data section. The shortness of the flow record for the Fleet Weir gauging station on the River Aire precludes its incorporation in the River Flow Data section; summary river flow data for 1993 are, however, included at the head of the water quality listing.

Determinands

Inadequate or unrepresentative sampling frequencies, or the presence of a substantial number of samples with concentrations recorded at, or below, the limit of detection, will normally result in the omission of a particular determinand.

Notes:

i. Conductivity results are standardised to $20^{\circ} \mathrm{C}$.
ii. The biochemical oxygen demand data normally relate to the inhibited analytical results BOD (atu).
iii. Nitrate concentrations are normally derived by subtracting the nitrite concentration from the reported Total Oxidised Nitrogen (TON) concentration; if the nitrite determination is below the limit of detection, nitrate is recorded as equivalent to TON*.

Units

The standard units used to record and report each determinand. The number of significant figures given for each determinand corresponds to the way the data are stored on the Harmonised Monitoring or DOE (NI) Archives and reflects the uncertainty associated with the relevant analytical procedures.

1993 Data

Samples

The number of samples taken for each determinand during 1993. Where a proportion of analytical results were below the limit of detection (which may vary according to the analytical procedure used), the number of samples in this category is given in parentheses. Normally determinands are not featured when the number of samples in the year is less than about six. Exclusion may also resuit from a very uneven sampling pattern through the year.

The precision of the mean, maximum and minimum values computed on the basis of a limited number of samples will vary from determinand to determinand but statistics associated with sampling frequencies of lower than about once a month should be regarded as indicative only.

[^10]
Mean

The average* of all the sample values for each determinand in 1993. Where concentrations below the limit of detection are held on the Harmonised Monitoring Archive, the threshold value itself is used to compute the mean.

Maximum / Date

The maximum determinand value recorded during 1993 together with its date of occurrence. Where the maximum value recurs the date refers to the initial occurrence.

Minimum / Date

The minimum determinand value together with its date of occurrence. Where the minimum value recurs the date refers to the initial occurrence. A ' $<$ ' symbol indicates a value below the limit of detection.

Different limits of detection may apply throughout the year at certain monitoring sites, for further details contact the address given on page 159.

Period of Record Data

For half of the featured sites; the pre-1993 summary statistics are presented for the nineteen-year period beginning in 1974; where individual stations were not incorporated into the Harmonised Monitoring network until after 1974, the appropriate first year of data is given. For certain stations the sampling frequency varies significantly from year to year and data for a few determinands may not extend over the full period of record; in particular the first year of data will normally be incomplete.

Where the pre-1993 data series includes values below the limit of detection, the threshold value has been used in the computation of the summary statistics.

For a number of the featured monitoring stations, a considerable amount of pre-1974 data, at least for certain determinands, may be stored on local, or regional, archives maintained by the measuring authorities. Also, for the period 1974-92, such archives may hold analytical results for substantially -more samples than are represented on the Harmonised Monitoring Archive. Hence full equivalence between statistical summaries derived from national and regional databases cannot be expected for all monitoring sites.

Mean

The average* value of all the sample values for each determinand.

Percentiles

The 5,50 and 95 percentile values for each determinand based on all the samples taken over the pre-1993 period.

Quarterly Averages

The mean quarterly average* for each of the threemonthly periods: January to March; April to June, July to September and October to December.

[^11]Harmonised monitoring station number: 01001 Measuring authority : NRA-NW NGR : 33 (S.) 742938

Determinand	Units	1993					
		Samples	Mean	Max.	Date	Min.	Date
Temperature	${ }^{\circ} \mathrm{C}$	50	10.5	20.0	08/06	3.0	23/11
pH	pH units	51	7.5	8.0	14/09	6.9	16/11
Conductivity	$\mu \mathrm{S} / \mathrm{cm}$	51	405	593	05/01	153	14/09
Suspended solids	mg / l	51	18.6	152.0	07/12	4.0	23/11
Dissolved oxygen	$\mathrm{mg} / 1 \mathrm{O}$	47	9.05	12.56	11/05	6.56	25/05
BOD (inhibited)	$\mathrm{mg} / \mathrm{l} 0$	51 (4)	3.3	12.5	07/12	1.6	17/08
Aramoniacal nitrogen	$\mathrm{mg} / \mathrm{IN}$	51 (4)	1.033	3.410	30/11	0.050	30/03
Nitrite	$\mathrm{mg} / \mathrm{l} \mathrm{N}$	51 (1)	0.252	1.440	11/05	0.020	26/01
Nitrate	mg / l	51	4.98	16.40	30/03	0.60	21/12
Chloride	$\mathrm{mg} / \mathrm{Cl}$	51	47.5	140.0	30/03	15.0	14/09
Total alkelinity	$\mathrm{mg} / \mathrm{CaCO} 3$	50	78.0	102.0	23/03	29.0	14/09
Orthophosphate	mg / P	51	0.972	1.870	09/11	0.160	14/09
Silica	$\mathrm{mg} / \mathrm{SiO} 2$	51	8.42	- $\$ 7.50$	23/02	2.13	11/05
Calcium	$\mathrm{mg} / \mathrm{l} \mathrm{Ca}$	50	31.6	38.0	23/02	15.0	14/09
Magnesium	$\mathrm{mg} / \mathrm{Mg}$	50	7.22	13.40	03/08	3.40	14/09

Flow measurement station : 069007-Ashton Weir C. A. $\left(\mathrm{km}^{2}\right): 660.0$

NGR: 33 (S.) 772936

Period of record: 1975-1992							
Mean	Percentiles			Quarterty averages			
	5\%	50\%	95\%	J-M	A-J	J-S	0.0
10.8	3.9	10.1	19.1	5.8	12.5	16.4	8.7
7.3	6.9	7.3	7.6	7.3	7.3	7.3	7.3
487	286	469	748	461	503	520	453
39.2	3.8	19.9	113.5	43.5	29.6	26.8	53.5
7.98	4.54	7.91	11.24	9.91	7.16	6.04	8.69
6.3	2.7	5.2	12.9	6.4	6.5	5.4	6.3
1.90	0.37	1.67	4.20	2.00	2.28	1.74	1.56
0.26	0.06	0.20	0.67	0.10	0.33	0.47	0.18
4:1	2.0	3.9	7.0	3.1	4.5	5.1	3.7
53.2	27.0	49.4	86.7	59.6	51.7	54.0	46.9
92.1	53.9	90.5	134.3	84.5	98.9	97.3	85.6
1.15	0.20	1.05	2.61	0.69	1.40	1.67	0.93
8.07	5.11	8.11	10.30	8.05	6.83	8.75	8.45
32.9	25.6	33.4	38.6	32.7	33.9	33.4	31.3
7.2	4.8	7.2	9.1	6.9	7.9	7.5	6.7

Ribble at Samlesbury
Harmonised monitoring station number: 01008
Measuring authority : NRA-NW NGR: 34 (SD) 590305
Determinand

Temperature
pH
Conductivity
Suspended solids
Dissolved oxygen
BOD finhtibited)
Anmoniacal nitrogen
Nitrite
Nitrate
Chloride
Total alkalinity
Orthophosphate
Silica
Calcium
Magnesium
Potassium
Sodium

Units	1993					
	Samples	Mean	Max.	Date	Min.	Date
${ }^{\circ} \mathrm{C}$	50	9.5	19.0	01/07	2.0	25/11
pH units	46	8.0	9.4	13/05	7.4	14/01
$\mu \mathrm{S} / \mathrm{cm}$	46	397	581	04/03	166	09/12
mg / l	45 (2)	16.0	210.0	05/08	2.0	01/04
$\mathrm{mg} / 10$	47	10.22	$\$ 2.90$	25/11	7.20	05/08
$\mathrm{mg} / \mathrm{I} 0$	46	2.1	10.4	05/08	0.8	26/08
$\mathrm{mg} / \mathrm{IN}$	46 (5)	0.273	3.400	06/05	0.040	15/04
$\mathrm{mg} / \mathrm{l} \mathrm{N}$	46	0.059	0.180	18/03	0.010	21/01
mg / N	46	5.03	\$4.10	18/03	0.40	06/05
$\mathrm{mg} / \mathrm{l} \mathrm{Cl}$	46	32.3	72.0	04/03	10.0	13/08
$\mathrm{mg} / \mathrm{CaCO}_{3}$	46	128.5	217.0	06/05	43.0	16/12
mg / P	45	0.398	1.030	04/11	0.040	13/08
$\mathrm{mg} / \mathrm{SiO} \mathrm{SO}_{2}$	39 (2)	2.70	9.40	06/05	0.10	25/03
$\mathrm{mg} / \mathrm{l} \mathrm{Ca}$	42	50.4	64.0	27/05	29.0	09/12
$\mathrm{mg} / \mathrm{l} \mathrm{Mg}$	42	4.90	8.30	08/07	2.25	13/08
$\mathrm{mg} / \mathrm{IK}$	42	3.73	5.80	13/05	0.18	25/02
$\mathrm{mg} / \mathrm{l} \mathrm{No}$	41	29.5	57.0	09/09	4.4	25/02

Flow measurement station : 071001 - Samlesbury
C.A. (km²) : 1145.0 NGR : 34 (SD) 589304

Period of record: 1974-1992							
Mean	Percentiles			Quarterty averages			
	5*	50\%	95\%	J-M	A-J	J.S	O-D
9.8	1.0	9.8	18.0	4.2	11.8	15.2	7.6
7.8	7.0	7.8	8.6	7.5	7.9	8.0	7.6
416	235	411	626	409	451	437	368
19.1	1.7	8.1	65.9	21.0	13.6	16.3	25.0
10.13	7.19	10.16	12.83	11.59	9.75	8.73	10.66
2.8	1.1	2.5	6.1	2.7	3.2	2.7	2.7
0.26	0.03	0.16	0.85	0.51	0.17	0.14	0.25
0.08	0.02	0.06	0.21	0.06	0.12	0.09	0.06
4.2	1.3	3.3	9.9	3.3	5.2	5.0	3.2
33.2	14.6	30.2	56.0	37.8	35.9	32.7	26.5
115.6	66.7	119.5	152.8	109.5	121.5	120.1	110.5
0.44 .	0.07	0.30	1.24	0.25	0.60	0.62	0.30
3.26	0.15	3.53	5.79	4.22	1.84	2.49	4.59
51.1	34.0	51.2	63.9	50.6	52.0	50.7	49.9
5.2	2.8	5.1	7.5	4.9	5.7	5.3	4.7
4.0	2.0	3.8	7.0	3.5	4.6	4.5	3.4
30.8	9.5	26.1	64.2	28.1	35.4	35.2	21.8

Eden at Temple Sowerby

Harmonised monitoring station number : Measuring authority: NRA-NW NGR: 35 (NY) 604281

Temperature
pH
Conductivity Suspended solids BOD \{inhibited) Chloride Total alkalinity Orthophosphate
\section*{Silica}
Calcium Magnesium
Magnesium
Sodium

01017

1993

Samples	Mean	Max.	Date	Min.	Date
12	9.5	15.5	05/07	3.0	04/01
19	8.1	8.4	06/09	7.7	09/08
11	382	446	06/09	287	09/08
$11(1)$	5.4	8.0	05/04	2.0	08/11
12	11.00	13.70	04/01	9.10	09/08
10 (1)	1.4	2.4	01/02	0.5	07/06
11	17.0	25.0	06/09	13.0	07/06
11	168.0	190.0	04/01	125.0	09/08
11	0.070	0.205	08/11	0.020	04/05
10	2.34	4.70	04/01	0.70	05/04
10	61.7	70.0	07/06	40.0	09/08
10	10.41	13.20	05/07	6.20	09/08
10	2.62	4.10	08/11	1.64	01/02
9	11.4	16.2	06/09	8.6	07/06

Flow measurement station : 076005-Temple Sowerby
C.A. $\left(\mathrm{km}^{2}\right): 616.4$

NGR : 35 (NY) 605283

Mean	Percentiles			Quarterly averages			
	5\%		95\%	J.M	A-J	J.S	O-D
10.2	2.9	9.4	19.0	4.9	12.3	15.7	7.4
8.1	7.4	8.0	8.7	7.9	8.3	8.2	8.0
359	226	378	476	339	367	385	343
8.1	1.2	3.5	27.1	7.3	7.6	4.7	12.7
11.20	8.76	11.11	13.82	12.30	11.40	10.48	11.02
1.9	0.7	1.7	3.3	1.7	2.0	2.0	1.7
19.7	11.0	17.9	29.0	20.1	20.3	21.3	15.8
149.3	85.9	156.3	189.7	143.8	156.2	150.3	148.3
0.14	0.02	0.10	0.39	0.08	0.20	0.19	0.10
2.42	0.38	2.45	4.19	3.06	1.42	2.13	3.06
56.6	35.7	58.2	73.0	56.2	57.6	58.5	55.3
9.2	4.2	8.8	14.6	8.2	10.4	10.6	7.7
2.8	1.5	2.5	4.9	2.2	3.0	3.5	2.5
0.2	5.2	9.0	7.4	9.8	10.7	11.7	8.2

South Tyne at Warden Bridge

Harmonised monitoring station number:	02021
Measuring authority: NRA-N	NGR:
M	(NY) 910660

Determinand

Temperature
pH
Conductivity
Suspended solids
Dissolved oxygen
BOD (inhibited)
Ammoniacal nitrogen
Chloride

Units	1993					
	Samples	Mean	Max.	Date	Min.	Date
${ }^{\circ} \mathrm{C}$	12	9.3 -	15.0	21/07	4.9	07/12
pH units	12	7.7	8.0	15/06	7.2	11/11
$\mu \mathrm{S} / \mathrm{cm}$	12	334	1522	07/12	120	20/04
mg / l	12 (1)	4.4	14.0	07/12	1.0	24/05
$\mathrm{mg} / \mathrm{l} 0$	12	12.07	14.70	24/05	10.30	$21 / 07$
$\mathrm{mg} / \mathrm{l} 0$	10 (1)	1.5	2.2	11/11	1.0	16/02
$\mathrm{mg} / \mathrm{l} \mathrm{N}$	12 (3)	0.087	0.180	20/10	0.030	17/03
$\mathrm{mg} / \mathrm{l} \mathrm{Cl}$	12	14.6	18.0	16/02	11.5	16/09

Flow measurement station : 023004 - Haydon Bridge
C.A. $\left(\mathrm{km}^{2}\right)$: 751.1

Mean	Period of record: 1975-1992						
	Percentiles			Quarterty averages			
	5\%	50\%	95\%	J-M	A-J	J-S	O.D
9.3	1.9	8.4	19.0	4.0	11.3	15.1	6.5
7.8	7.2	7.8	8.5	7.6	8.0	7.9	7.7
247	119	241	405	248	263	268	208
11.2	1.3	4.4	27.6	11.3	11.1	13.5	9.0
11.30	9.02	11.41	13.68	12.35	10.94	10.02	11.66
1.7	0.5	1.5	3.2	1.5	1.8	1.8	1.5
0.07	0.01	0.03	0.20	0.08	0.04	0.10	0.06
13.9	7.8	12.8	24.1	16.9	14.4	12.1	12.3

Harmonised monitoring station number : 02058
Measuring authority : NRA-N NGR: 45 (NZ) 265131

Determinand	Unitz	. 1993					
		Samples	Mean	Max.	Date	Min.	Date
Temperature	${ }^{\circ} \mathrm{C}$	12	9.8	19.0	29/07	1.0	24/11
pH	pH units	10	7.9	8.3	24/11	7.4	17/05
Conductivity	$\mu \mathrm{S} / \mathrm{cm}$	4	420	1008	24/11	150	17/05
Suspended aolids	mg/l	10	16.4	123.0	17/05	2.0	15/02
Dissolved oxygon	$\mathrm{mg} / 10$	10	10.58	12.34	18/01	8.37	30/06
BOD (inhibited)	$\mathrm{mg} / 10$	10(1)	1.7	3.6	18/01	1.0	15/02
Ammoniacal nitrogen	$\mathrm{mg} / \mathrm{l} \mathrm{N}$	12	0.189	0.610	30/06	0.040	15/02
Nitrate	mg / N	12(1)	2.43	12.61	24/11	0.47	30/06
Chloride	$\mathrm{mg} / \mathrm{l} \mathrm{Cl}$	10	26.3	120.0	24/11	8.8	30/06
Total alkalinity	$\mathrm{mg} / \mathrm{CaCO} 3$	10	96.3	320.0	24/11	35.5	17/05
Ofthophozphate	mg / P	10(7)	0.022	0.050	24/11	0.010	21/04

Flow measurement station : 025001-Broken Scar C.A. $\left(\mathrm{km}^{2}\right): 818.4 \quad$ NGR : 45 (NZ) 259137

Period of record: 1975-1992							
Mean	Percentiles			Quarterty averages			
	5\%	50\%	95\%	J-M	A.J		O-D
9.2	1.6	8.4	18.0	3.7	11.8	15.3	6
7.6	6.9	7.7	8.2	7.6	7.6	7.6	7.
197	118	183	294	237	212	167	18
13.6	1.4	6.3	46.2	15.1	7.5	14.4	17.
10.96	8.29	11.02	13.27	12.43	10.43	9.36	11.4
1.8	0.9	1.7	3.2	1.9	1.8	1.9	1.
0.11	0.01	0.06	0.38	0.12	0.10	0.09	0.1
1.3	0.2	1.0	3.5	1.9	1.3	0.8	1
15.3	6.4	13.6	26.3	19.5	14.4	11.7	16
65.8	33.2	60.9	101.3	76.4	69.4	60.5	57
0.05	0.01	0.03	0.13	0.04	0.00	0.06	0.0

Trent at Nottingham

Harmonised monitoring station number : 03007
Measuring authority : NRA-ST NGR 43 (SK) 581383

Doterminand	Units	1993					
		Samples	Mean	Max.	Date	Min.	Date
Tomperature	${ }^{\circ} \mathrm{C}$	50	11.3	20.0	30/06	3.0	24/11
pH	pH units	50	8.0	8.5	30/06	7.5	15/11
Conductivity	$\mu \mathrm{S} / \mathrm{cm}$	50	884	1120	08/07	470	14/12
Suspended solids	mg / l	53	27.5	267.0	14/01	5.0	16/02
Dissolved oxygen	$\mathrm{mg} / 10$	50	10.59	13.20	14/01	7.20	03/06
BOD (inhibited)	mg/l 0	53	3.1	7.0	09/12	1.5	18/06
Tot. diss. org carbon*	$\mathrm{mg} / \mathrm{l} 0$	38	8.2	42.8	24/11	5.1	16/02
Ammoniacal nitrogen	mg / N	53 (4)	0.256	0.762	04/03	0.040	23/06
Nitrate	mg / N	50	8.50	11.00	08/03	5.46	14/12
Chioride	$\mathrm{mg} / \mathrm{ll}$	50	103.4	157.0	03/09	44.0	14/12
Total alkalinity	$\mathrm{mg} / \mathrm{CaCO} 3$	50	159.6	199.0	18/05	63.0	15/11
Orihophosphate	mg / P	27	1.280	2.090	23/08	0.482	14/12
Silica	$\mathrm{mg} / 1 \mathrm{SiO}_{2}$	14	8.05	11.10	24/11	3.90	18/05
Sulphate	$\mathrm{mg} / \mathrm{SO} 4$	14	145.02	198.00	03/09	64.90	14/12
Colcium	$\mathrm{mg} / \mathrm{Ca}$	14	88.6	110.0	24/11	59.8	14/12
Magnesium	$\mathrm{mg} / \mathrm{Mg}$	14	20.51	29.30	18/05	10.90	14/12
Potastium	mg/l K	14	9.99	13.70	03/09	6.50	14/12
Sodium	$\mathrm{mg} / 1 \mathrm{Na}$	14	66.4	1 14.0	03/09	24.7	14/12

Flow measurement station : 028009 - Colwick
C.A. $\left(\mathrm{km} \mathrm{m}^{2}\right): 7486.0 \quad$ NGR : 43 (SK) 620399

Period of record: 1974-1992							
Mean	Percentiles			Quarterty averages			
	5\%	50\%	95\%	J-M	A-J	J.S	O-D
12.7	5.1	12.0	21.1	7.7	15.0	18.5	10.6
7.8	7.4	7.8	8.3	7.7	7.8	7.9	7.7
884	611	904	1129	806	908	958	872
24.5	6.7	15.5	74.8	27.9	21.1	18.8	28.5
9.91	7.79	10.08	12.24	10.82	9.81	8.93	10.05
3.5	1.6	3.2	5.9	3.1	4.0	3.6	3.2
8.0	4.5	6.6	17.9	7.1	8.2	8.8	8.2
0.38	0.03	0.30	0.91	0.61	0.28	0.21	0.36
8.6	6.2	8.7	11.3	8.7	8.8	8.4	8.7
98.9	54.9	99.3	149.6	86.6	100.1	117.4	95.7
159.3	119.6	162.4	186.0	156.5	165.6	161.6	154.2
1.53	0.53	1.51	2.79	0.98	1.60	2.06	1.54
7.18	2.62	7.47	11.05	8.51	4.47	6.78	8.39
169.6	110.6	170.9	223.00	155.2	177.5	174.0	163.7
106.1	74.3	98.8	113.5	95.1	108.1	90.6	92.5
22.1	13.9	22.5	29.0	21.8	23.0	21.8	19.8
9.9	6.6	9.8	15.5	7.8	10.1	11.6	10.4
73.8	34.0	74.8	130.1	62.0	72.8	86.4	72.5

Derwent at Wilne

Harmonised monitoring station number
03011
Measuring authority : NRA-ST NGR : 43 (SK) 452315
Doterminand

Tomperaturo
pH
Conductivity
Suspended solids
Dissotved oxygen
BOD (inhibitod)
Tot. diss. Org. carton
Ammoniacal nitrogen
Nitrate
CCloride
Total atkalinity
Orthophosphate
Sitica
Sulphate
Calcium
Magnesium
Potassium
Sodium

1993

1993					
Samples	Mean	Max.	Date	Min.	Date
52	11.4	21.0	$07 / 06$	4.0	$22 / 11$
51	8.0	8.8	$07 / 06$	6.6	$29 / 10$
52	616	790	$06 / 07$	1	$29 / 10$
53	16.7	230.0	$07 / 10$	3.0	$18 / 08$
50	10.70	15.40	$07 / 06$	7.00	$11 / 06$
52	2.7	7.0	$13 / 07$	1.0	$17 / 03$
47	4.9	11.0	$26 / 02$	2.5	$27 / 01$
51	0.380	1.410	$30 / 11$	0.086	$29 / 06$
49	4.84	5.90	$17 / 03$	2.90	$17 / 12$
50	61.0	87.0	$07 / 01$	27.0	$17 / 12$
52	149.5	187.0	$09 / 11$	86.0	$07 / 10$
50	0.727	1.740	$29 / 10$	0.155	$17 / 12$
12	7.14	9.00	$30 / 11$	5.20	$23 / 04$
16	85.89	112.00	$25 / 06$	40.50	$17 / 12$
10	67.1	78.5	$03 / 12$	46.5	$17 / 12$
10	13.27	21.10	$08 / 02$	6.32	$17 / 12$
15	5.93	18.00	$11 / 06$	2.70	$17 / 12$
15	38.1	67.0	$25 / 06$	5.7	$03 / 12$

Flow measurement station : 028067 - Church Wilne C.A. $\left(\mathrm{km}^{2}\right): 1177.5$ NGR : 43 (SK) 438316

Period of record: 1975-1992							
Mean	Porcentiles			Quarterty averages			
	5\%	50\%	95\%	J-M	A-J		O-D
12.0	4.0	11.1	21.0	6.4	14.2	17.9	9.
7.8	7.5	7.8	8.2	7.8	7.9	7.9	7.7
660	435	663	901	559	671	767	645
14.7	1.9	8.1	46.9	20.9	9.6	9.8	18.6
10.03	6.93	10.20	13.09	11.68	10.10	8.48	10.33
2.6	1,2	2.5	4.2	2.3	2.7	2.6	2.6
4.9	2.4	4.4	9.3	3.8	5.0	5.8	5.1
0.31	0.06	0.26	0.73	0.40	0.29	0.23	0.34
4.4	3.1	4.5	5.8	4.3	4.3	4.5	4.4
67.6	35.3	66.7	109.8	55.8	66.8	84.6	64.7
155.7	112.1	159.5	189.0	139.1	162.1	173.4	149.9
0.89	0.21	0.84	1.90	0.50	0.90	1.37	0.82
5.27	0.46	5.61	8.08	6.07	3.27	4.46	6.61
103.2	60.6	99.5	168.50	81.1	108.0	125.9	95.5
73.0	55.5	75.0	86.0	68.5	75.9	76.8	67.9
17.0	9.1	15.9	24.9	13.8	17.9	20.4	15.5
5.2	3.0	5.1	7.7	4.5	5.1	6.3	5.
50.9	21.8	47.8	83.8	37.3	49.1	68.0	44.

Teme at Powick

Harmonised monitoring siation number
Measuring authority : NRA-ST NGR : 32 (SO) 836525

Unite	1993					
	Samples	Mean	Max.	Date	Min.	Date
${ }^{\circ} \mathrm{C}$	26	11.3	19.0	10/06	2.0	24/11
pH units	25	8.2	8.7	16/03	7.8	16/01
$\mu \mathrm{S} / \mathrm{cm}$	28	419	480	10/03	260	16/01
mg/l	26(1)	19.8	228.0	16/01	2.0	10/03
$\mathrm{mg} / \mathrm{l} 0$	26	10.90	13.80	24/11	8.80	10/06
mg / O	24(3)	1.6	2.5	16/06	0.7	19/01
mg / O	22	3.0	7.4	22/01	0.7	11/08
$m g / \mathrm{N}$	26(15)	0.077	0.545	22/01	0.040	16/01
mg / N	25	5.16	6.48	12/02	4.20	16/06
$\mathrm{mg} / \mathrm{l} \mathrm{Cl}$	26	25.5	33.0	$30 / 11$	17.5	16/06
$\mathrm{mg} / \mathrm{CaCO}_{3}$	26	145.7	176.0	10/03	86.0	16/01
mg / P	25	0.137	0.289	16/01	0.030	16/03

Flow measurement station : 054029 - Knightsford Br C.A. $\left(\mathrm{km}^{2}\right)$: 1480.0 NGR : 32 (SO) 735557

Mean	Period of record: 1975-1992						
	Percentiles			Quarterity averagea			
	5\%		95\%	J-M	A-J	J-S	O-D
10.5	3.0	9.9	19.1	5.2	12.5	16.4	7.9
8.0	7.5	8.0	8.5	7.9	8.1	8.2	7.8
424	270	409	521	368	422	441	399
40.4	1.9	11.8	189.4	67.9	34.2	12.6	48.3
10.67	8.29	11.03	13.37	12.02	10.83	9.85	11.14
1.9	0.8	1.6	4.2	1.7	2.2	1.9	1.9
4.9	1.9	3.5	13.1	4.5	5.1	4.8	5.2
0.11	0.01	0.08	0.23	0.10	0.22	0.06	0.08
4.3	2.3	4.2	6.5	5.4	4.4	3.3	4.2
23.3	15.2	22.9	31.4	23.0	22.6	25.4	22.3
138.0	76.3	141.0	190.0	117.8	149.3	164.1	122.9
0.19	0.03	0.15	0.40	0.13	0.10	0.25	0.27

Avon at Evesham Road Bridge

Harmonised monit Measuring authori	station nu RA-ST	ber : NGR	(SP)	$\begin{array}{r} 0341 \\ 03443 \end{array}$				Flow C. A. (k	$\begin{aligned} & \text { zasurer } \\ & 1^{2)}: 22 \end{aligned}$	$\begin{aligned} & \text { ment s } \\ & 210.0 \end{aligned}$	tation	$\begin{aligned} & 5400 \\ & \text { IGR : } \end{aligned}$	$2 \text { - Eves }$	ham 04043	
				199						Pariod of	of record	77-1			
Determinand	Units	Samples	Maan	Max.	Date	Min.	Date	Mean	5\%	$\begin{aligned} & \text { Parcentil } \\ & 50 \% \end{aligned}$	$\begin{array}{r} \text { tiles } \\ \mathbf{9 5 \%} \\ \hline \end{array}$	J.M	Quarter A.J	$\begin{gathered} \text { yevera } \\ \text { J-S } \end{gathered}$	O.D
Temperature	${ }^{\circ} \mathrm{C}$	48	10.6	20.0	10/06	2.0	04/01	11.3	3.5	11.0	20.0	5.4	13.4	17.1	8.7
pH	pH units	49	8.1	8.9	12/05	7.7	14/10	8.0	7.6	7.9	8.6	7.9	8.2	8.0	7.8
Conductivity	$\mu \mathrm{S} / \mathrm{cm}$	49	850	1030	22/03	530	14/12	932	608	950	1203	845	918	1030	934
Suspended solids	mg / l	49	25.0	166.0	14/10	4.0	04/03	27.7	5.1	15.9	86.7	41.7	26.4	16.9	24.4
Dissolved oxygen	$\mathrm{mg} / 10$	48	11.02	13.90	04/01	7.60	09/07	10.56	7.91	10.85	13.26	11.86	10.77	8.94	10.74
800 (inhibited)	mg/1 0	48	3.1	7.5	07/04	1.5	03/02	3.2	1.5	2.8	6.6	2.8	4.6	2.9	2.4
Tot, diss. org carbon	mg / O	27	6.6	10.6	14/12	3.0	07/04	8.9	5.4	7.2	18.7	8.7	8.9	9.0	9.1
Ammoniacal nitrogen	mg/IN	49 (8)	0.182	0.515	28/01	0.040	$22 / 03$	0.25	0.02	0.16	0.70	0.46	0.14	0.13	0.27
Nitrate	$m g / 1 N$	49	10.18	12.90	08/03	6.66	16/08	10.6	7.8	10.5	14.7	11.6	9.9	9.9	11.0
Chloride	$\mathrm{mg} / \mathrm{Cl}$	49	59.8	89.0	08/03	37.0	14/10	78.6	39.3	77.2	138.9	68.7	72.2	94.1	79.8
Total alkalinity	$\mathrm{mg} / \mathrm{CaCO} 3$	49	194.4	235.0	17/02	127.0	14/12	195.6	149.1	198.6	229.0	191.7	201.8	196.1	191.9
Orthophosphate	mg / P	14	1.415	2.440	$27 / 07$	0.535	19/01	1.80	0.52	1.62	3.92	1.11	1.60	2.57	1.98
Silica	$\mathrm{mg} / \mathrm{SiO}_{2}$	10	11.45	15.90	$28 / 10$	2.30	07/04	10.74	3.90	11.31	15.45	10.13	6.60	11.63	12.95
Sulphate	$\mathrm{mg} / \mathrm{S} \mathrm{SO}_{4}$	10	180.10	221.00	07/04	102.00	17/11	196.0	99.4	198.2	266.00	171.1	199.1	218.1	189.4
Calcium	$\mathrm{mg} / \mathrm{Ca}$	8	112.8	133.0	28/10	99.2	28/05	119.9	87.1	123.6	140.4	119.6	117.7 300	121.7	118.4
Magnesium	$\mathrm{mg} / \mathrm{lmg}$	8	28.42	32.00	29/09	17.10 700	$17 / 11$ $03 / 02$	28.4 9.9	15.7 6.3	27.2 9.1	39.3 14.7	24.5	30.0 10.2	31.2 12.1	10.3
Potassium Sodium	$\mathrm{mg} / \mathrm{l} \mathrm{K}^{\mathrm{mg} / \mathrm{Na}} \mathrm{C}$	10 9	9.65 45.9	11.60 60.0	$02 / 08$ $27 / 07$	7.00 24.5	03/02	9.9 57.9	6.3 21.7	9.1 56.9	14.7 99.8	74.7	57.3	72.2	59.7

Aire at Fleet Weir

$\begin{array}{lr}\text { Harmonised monitoring station number: } 04005 \\ \text { Measuring authority : NRA-Y } & 041285\end{array}$
Measuring authority : NRA-Y NGR : 44 (SE) 381285

Units						
	Samples	Mean	Max.	Date	Min.	Date
$\mathrm{m}^{3} \mathrm{~s}-1$	365	18.47	161.1	13/09	5.63	05/09
${ }^{\circ} \mathrm{C}$	33	10.0	16.7	07/06	3.3	18/03
pH units	50	7.5	7.8	07/08	7.1	$29 / 07$
$\mu \mathrm{S} / \mathrm{cm}$	50	737	1122	02/03	333	14/09
mg/l	50	20.1	125.0	05/08	4.0	18/03
$\mathrm{mg} / 10$	33	9.27	12.80	25/11	5.10	29/07
$\mathrm{mg} / 10$	50	7.1	15.0	05/04	3.9	25/01
$\mathrm{mg} / \mathrm{l} \mathrm{N}$	50	1.188	2.540	23/03	0.290	14/09
mg / N	50 (1)	0.138	0.370	16/06	0.010	25/01
$\mathrm{mg} / \mathrm{IN}$	50	5.41	9.10	03/09	1.51	14/09
$\mathrm{mg} / \mathrm{l} \mathrm{Cl}$	50	90.7	199.0	05/01	29.5	$14 / 09$
$\mathrm{mg} / \mathrm{CaCO} 3$	50	128.5	154.0	23/03	77.0	14/09
$\mathrm{mg} / \mathrm{l} \mathrm{P}^{\text {P }}$	50	0.817	1.670	23/03	0.060	25/01
$\mathrm{mg} / \mathrm{Ca}$	49	59.1	71.0	23/11	37.2	05/08
$\mathrm{mg} / \mathrm{Mg}$	49	11.69	16.00	24/02	6.26	14/09

Flow measurement station: 027080 - Fleet Weir
C.A. $\left(\mathrm{km}^{2}\right): 865.0$$\quad$ NGR: 44 (SE) 381295

Mean	Percentiles			Quartérit averaget			
	5\%	50\%	95\%	J-M	A.J	J-S	O-D
12.6	4.9	12.1	20.6	7.3	14.2	17.6	10.2
7.5	7.2	7.5	7.8	7.6	7.5	7.4	7.5
706	396	677	1076	668	712	790	639
27.0	3.4	17.7	78.2	30.8	24.8	22.7	31.5
7.56	2.64	7.87	11.63	10.25	6.88	5.20	8.50
8.0	3.5	7.1	13.8	7.8	8.3	8.3	7.6
2.22	0.42	1.59	4.90	1.95	2.24	2.44	1.80
0.34	0.05	0.26	0.86	0.15	0.40	0.52	0.25
5.2	2.6	4.8	8.7	4.3	5.6	5.9	4.8
82.9	36.5	76.3	152.4	82.5	84.4	92.1	71.8
123.1	76.6	125.4	165.4	114.1	124.1	134.6	118.7
1.35	0.16	1.16	3.37	0.83	1.50	1.96	1.03
60.8	45.8	60.3	74.0	59.3	60.9	60.8	60.9
12.7	4.8	11.7	20.5	12.1	13.1	14.4	11.2

Derwent at Loftsome Bridge

Harmonised monitoring station number :
Measuring authority : NRA-Y NGR : 44 (SE) 707302

Determinand

Temperature
pH
Conductivity
Suspended solids
BOO (inhibited)
Ammoniacal nitrogen
Nitrate
Chloride,
Total alkalinity
Orthophosphete
Silica
Sulphate
Calcium
Magnesium

Unity	1993					
	Samples	Mean	Max.	Date	Min.	Date
${ }^{\circ} \mathrm{C}$	49	10.0	18.5	06/07	3.0	14/01
pH units	51	7.7	8.1	08/02	6.4	16/12
$\mu \mathrm{S} / \mathrm{cm}$	44	593	749	14/01	436	16/08
mg / l	51	15.3	107.0	26/04	2.0	06/07
mgllo	46	10.66	16.00	11/01	7.50	22/09
mg / l	50, 2)	1.5	3.8	11/10	0.5	04/08
mg / l	51 (13)	0.121	0.850	16/12	0.030	04/06
mg / N	44	4.34	10.49	11/01	1.30	25/06
$\mathrm{mg} / \mathrm{Cl}$	51	38.6	68.0	14/01	17.2	11/01
$\mathrm{mg} / \mathrm{CaCO} 3$	44	156.1	179.0	02/03	112.0	16/08
$\mathrm{mg} / \mathrm{l} P$	51 (20)	0.067	0.350	19/05	0.030	22/01
$\mathrm{mg} / \mathrm{SHO}$	18	7.25	9.20	$02 / 11$	4.70	06/07
$\mathrm{mg} / 1 \mathrm{SO}_{4}$	19	86.47	106.00	22/01	18.90	22/10
$\mathrm{mg} / \mathrm{Ca}$	42	98.6	123.0	11/01	67.2	16/08
$\mathrm{mg} / 1 \mathrm{Mg}$	42	9.26	12.70	11/01	6.13	16/08

Flow measurement station : 027041 - Buttercrambe C.A. $\left(\mathrm{km}^{2}\right): 1586.0$ NGR : 44 (SE) 731587

Mean	Porcentiles			Quarterty averages			
	5\%	50%	95\%	J-M	A-J	J.S	O-D
10.5	3.1	10.1	19.5	5.3	13.0	16.8	7.8
7.9	7.4	7.9	8.3	7.8	8.0	7.9	7.8
532	370	531	654	535	525	538	527
24.8	2.1	11.7	78.9	32.1	18.2	10.1	29.0
10.63	8.22	10.66	12.62	11.80	10.55	9.23	10.57
1.7	0.7	1.5	3.1	1.8	2.0	1.4	1.7
0.11	0.01	0.09	0.26	0.14	0.09	0.08	0.11
4.2	2.3	4.0	7.0	5.3	4.4	3.2	4.2
32.1	22.9	30.9	42.2	35.3	30.5	31.0	32.1
148.8	100.3	153.8	182.0	146.3	153.9	152.6	141.5
0.10	0.02	0.08	0.24	0.07	0.10	0.13	0.11
6.20	2.47	6.27	8.99	7.05	4.78	6.14	6.94
80.9	45.0	80.7	105.80	77.9	81.8	82.4	80.3
91.8	65.8	92.0	109.5	99.9	90.7	87.1	90.0
9.7	3.8	8.8	18.9	11.5	9.3	9.2	9.4

Nene at Wansford
Harmonised monitoring station number :
Measuring authority : NRA-A

Daterminand	Units	1993					
		Somples	Mean	Max.	Dato	Min.	Date
Temperature	${ }^{\circ} \mathrm{C}$	48	11.8	21.6	10/06	2.5	22/11
pH	pH units	48	8.2	8.8	11/05	7.8	04/10
Conductivity	$\mu \mathrm{S} / \mathrm{cm}$	48	980	1120	09/03	636	14/06
Suspended solids	mg / l	26 (2)	17.8	76.0	12/01	5.0	21/07
Dissolved oxygen	mg / l	48	9.83	14.20	24/03	5.66	14/06
BOO (inhibited)	mg / l	48 (5)	2.8	12.4	11/05	1.0	02/08
Ammoniacal nitrogen	mg / N	48 (8)	0.115	0.412	22/11	0.023	15/03
Nitrite	mg / N	24	0.108	0.269	13/09	0.045	05/07
Nitrate	$\mathrm{mg} / \mathrm{l} \mathrm{N}$	48	10.15	13.90	06/01	6.75	21/07
Chlorite	$\mathrm{mg} / \mathrm{Cl}$	48	74.9	98.4	13/09	37.8	14/06
Total alkalinity	$\mathrm{mg}^{\prime} / \mathrm{CaCO}_{3}$	24	203.5	229.0	09/02	173.0	13/09
Silica	$\mathrm{mg} / \mathrm{S} \mathrm{SO}_{2}$	24	5.85	9.42	09/02	0.27	11/05
Calcium	$\mathrm{mg} / \mathrm{Ca}$	12	11.0	12.1	11/05	8.7	12/01
Magnesium	$\mathrm{mg} / \mathrm{Mg}$	24	161.15	202.00	24/05	97.70	12/01
Sulphate	$\mathrm{mg} / \mathrm{SO} \mathrm{SO}_{4}$	12	134.60	151.00	09/03	118.00	31/08
Potassium	$\mathrm{mg} / \mathrm{K} \mathrm{K}$	12	9.55	11.50	$31 / 08$	5.50	12/01
Sodium	$m g / 1 \mathrm{Na}$	12	52.1	66.0	05/04	29.3	12/01

Bure at Horstead Mill

Harmonised monitoring station number: 05722 Measuring authority: NRA-A NGR: 63 (TG) 267198

Determinand	Units	1993					
		Samplas	Mean	Max.	Date	Min.	Date
Temperature	${ }^{\circ} \mathrm{C}$	48	11.3	20.0	05/07	3.0	05/01
pH	pH units	48	8.0	8.5	12/07	7.7	15/11
Conductivity	$\mu \mathrm{S} / \mathrm{cm}$	48	799	883	18/01	585	15/11
BOD (intibited)	mg / O	48(1)]	1.5	3.0	04/05	1.0	18/01
Ammoniacal nitrogen	$\mathrm{mg} / \mathrm{l} \mathrm{N}$	48(14)	0.072	0.270	18/10	0.023	15/03
Nitrito	mg / N	24	0.054	0.112	15/11	0.018	29/03
Nitrate	mg / N	48	5.95	8.90	18/01	3.88	19/07
Chloride	$\mathrm{mg} / \mathrm{ll}$	48	62.0	75.8	01/03	53.3	15/11
Totat alkalinity	$\mathrm{mg} / \mathrm{CaCO}$	24	202.0	223.0	29/11	93.0	15/11
Silica	$\mathrm{mg} / \mathrm{/} \mathrm{SiO}_{2}$	24	9.12	13.60	04/10	2.84	04/05
Sulphate	$\mathrm{mg} / \mathrm{SO} \mathrm{S}_{4}$	24	100.37	122.00	01/02	76.20	15/11
Calcium	$\mathrm{mg} / \mathrm{Ca}$	12	126.8	141.0	18/01	110.0	12/07
Mognesium	$\mathrm{mg} / \mathrm{l} \mathrm{Mg}$	12	8.01	8.27	01/11	7.63	12/07
Potassium	mg / K	12	3.79	4.41	04/10	3.21	14/06
Sodium	$\mathrm{mg} / \mathrm{l} \mathrm{Na}$	12	28.1	29.1	29/11	26.2	04/10

Flow measurement station : 034003 - Ingworth
C.A. $\left(\mathrm{km}^{2}\right): 164.7$

NGR: 63 (TG) 192296

Period of record: 1975-1992							
Mean	Percentilas			Quarterty avoragea			
	6\%	50\%	95\%	J-M	A-J	J-S	O.D
10.7	4.0	10.0	19.9	6.1	12.8	16.9	8.3
7.8	7.4	7.9	8.3	7.7	7.9	7.9	7.7
744	656	751	877	763	716	729	764
1.7	0.9	1.6	3.0	1.8	2.2	1.6	1.3
0.13	0.01	0.07	0.40	0.21	0.09	0.08	0.13
0.07	0.02	0.05	0.11	0.06	0.05	0.07	0.07
5.8	3.5	5.5	8.7	7.5	5.7	4.5	5.8
58.6	48.5	58.4	71.8	61.1	56.3	56.7	60.8
217.8	179.8	213.1	253.0	218.7	206.2	215.2	233.1
7.39	2.92	8.03	12.38	8.90	4.73	6.33	10.53
90.7	57.8	82.1	129.30	90.0	85.2	84.4	92.2
119.0	98.4	117.8	142.7	122.3	117.2	114.7	123.3
7.6	5.0	7.6	9.3	7.7	7.7	7.2	7.3
4.0	2.5	4.0	5.6	4.1	3.6	4.0	4.5
30.6	20.3	27.8	47.1	29.6	29.2	29.3	29.2

Stour at Langham

Harmonised monitoring station number :
Measuring authority: NRA-A NGR: 62 (TM) 026345

Determinand	Units	Samples	Mean	Max.	Date	Min.	Date
Temperature	${ }^{\circ} \mathrm{C}$	45	11.9	18.0	25/05	1.0	04/01
pH	pH units	47	8.3	8.7	22/03	8.0	08/09
Conductivity	$\mu \mathrm{S} / \mathrm{cm}$	47	956	1290	26/01	659	15/11
Suspended solids	mg / l	251 5)	12.9	62.0	15/11	5.0	03/02
Dissolved oxygen	$\mathrm{mg} / \mathrm{l} 0$	47	10.46	15.70	29/03	6.11	28/06
BOD (inhibited)	$\mathrm{mg} / \mathrm{l} 0$	471 6)	2.1	9.2	25/08	1.0	18/01
Tot. diss. org. carbon	$\mathrm{mg} / 10$	23 (1)	8.1	48.5	01/02	0.2	01/08
Ammoniacal nitrogen	mghl	47 (14)	0.051	0.192	27/04	0.023	01/03
Nitrite	mg / N	23	0.050	0.091	04/01	0.028	07/07
Nitrata	mg / N	47	7.90	16.20	27/04	2.45	25/08
Chloride	$\mathrm{mg} / \mathrm{ll}$	47	80.1	158.0	26/01	32.5	15/11
Total alkalinity	$\mathrm{mg} / \mathrm{CaCO} 3$	23	258.7	287.0	04/05	193.0	15/11
Silico	$\mathrm{mg} / \mathrm{SiO} \mathrm{S}_{2}$	23	7.59	13.00	20/10	0.97	22/03
Sulphate	$\mathrm{mg} / \mathrm{SO} \mathrm{SO}_{4}$	23	91.86	128.00	03/03	45.70	15/11
Calcium	$\mathrm{mg} / \mathrm{Ca}$	12	135.6	156.0	04/01	107.0	23/08
Mognosium	$\mathrm{mg} / \mathrm{Mg}$	12	7.57	9.31	29/03	4.10	15/11
Potassium	mg / K	12	6.91	9.89	21/09	4.51	01/02
Sodium	$\mathrm{mg} / \mathrm{l} \mathrm{Na}$	12	40.9	56.0	21/09	15.6	15/11

Flow measurement station : 036006-Langham
C.A. $\left(\mathrm{km}^{2}\right): 578.0 \quad$ NGR : 62 (TM) 020344

Mean	Percentiles			Quarterty averages			
	6\%	50\%	95\%	J-M	A.J	J. 5	O.D
11.3	2.9	11.1	20.0	5.2	13.7	17.2	8
8.2	7.8	8.2	8.9	B. 1	8.5	8.3	8.
916	729	908	1079	931	877	887	98
16.4	2.5	10.0	48.0	16.6	20.9	10.9	17.
10.79	7.59	10.79	13.92	12.27	11.34	9.22	10.4
3.2	1.1	2.2	9.4	2.3	5.5	2.5	2.
6.3	4.3	6.3	10.1	5.8	7.6	6.5	6.
0.12	0.02	0.08	0.37	0.18	0.08	0.07	0.1
0.07	0.02	0.06	0.15	0.07	0.09	0.04	0.0
7.8	2.3	7.1	15.8	11.9	7.4	4.2	8
69.4	39.5	66.9	100.7	60.5	64.3	76.8	75
246.0	195.2	250.1	280.0	244.0	242.5	250.0	250
7.76	0.27	8.02	13.28	7.83	4.19	8.40	10.2
104.1	70.1	96.5	140.10	111.9	110.6	94.6	102
134.5	95.1	136.4	166.2	147.2	133.6	120.1	139
8.8	5.3	8.3	19.7	7.8	8.6	9.6	8
7.6	3.6	7.5	12.1	6.1	7.2	8.0	
43.7	20.7	43.7	69.9	34.2	40.5	50.4	49

Thames at Teddington Weir

Harmonised monitoring station number :
06010

Datorminand	Units	1993					
		Samples	Mean	Max.	Date	Min.	Date
Temperature	${ }^{*} \mathrm{C}$	29	13.1	21.1	29/06	3.0	04/01
pH	pH units	29	7.9	8.7	17/05	7.3	15/04
Conductivity	$\mathrm{ms} / \mathrm{cm}$	12	652	980	15/04	391	04/10
Suspended solids	mg / I	13	13.4	48.0	04/10	3.6	01/11
Disaolved oxygen	$\mathrm{mg} / 10$	21	9.71	12.70	19/04	6.60	23/08
600 (inhibited)	$\mathrm{mg} / \mathrm{l} 0$	28(17)	2.4	5.5	24/05	2.0	04/01
Ammoniacal nitrogen	$\mathrm{mg} / \mathrm{l} \mathrm{N}$	29(2)	0.402	1.080	28/07	0.050	18/03
Nitrite	mg / N	12	0.093	0.140	01/11	0.050	16/03
Nitrate	mg / N	12	7.19	8.80	15/02	4.50	04/10
Chlorido	$\mathrm{mg} / \mathrm{Cl}$	29	47.4	63.0	24/05	30.0	15/04
Total alkalinity	$\mathrm{mg} / \mathrm{CaCO} 3$	13	209.1	227.0	01/11	177.0	15/04
Orthophosphate	mg / P	29	0.964	1.740	18/08	0.400	20/01
Sulphate	$\mathrm{mg} / \mathrm{l} \mathrm{SO}_{2}$	13	72.08	105.00	04/10	64,00	15/02
Calciurn	$\mathrm{mg} / \mathrm{Co}$	13	105.1	118.0	20/01	55.0	04/10
Potastium	$\mathrm{mg} / \mathrm{l} K$	13	7.01	17.60	12/07	5.00	15/04
Sodium	$\mathrm{mg} / \mathrm{l} \mathrm{Na}$	13	32.8	42.5	09/08	20.2	04/10

:

Flow measurement station : 039001-Kingston
C.A. $\left\{\mathrm{km}^{2}\right\}$: 9948.0 NGR : 51 (TA) 177698

Period of record: 1974-1992							
Mean	Percentiles			Ouarterly averages			
	5\%	50\%	95\%	J-M	A-J	J-S	O-D
12.2	3.9	12.1	21.0	6.2	14.1	18.4	9.7
8.0	7.5	7.9	8.7	7.9	8.3	7.9	7.8
614	484	585	716	622	588	631	620
19.9	4.1	13.2	66.6	26.2	21.3	12.0	21.5
9.99	6.69	9.99	13.05	11.29	10.51	8.56	9.83
2.9	1.1	2.3	6.4	2.2	4.3	2.8	2.2
0.33	0.03	0.22	1.00	0.36	0.21	0.35	0.41
0.12	0.04	0.10	0.26	0.13	0.11	0.12	0.13
7.4	5.5	7.1	10.0	B. 4	6.6	6.5	7.9
44.9	30.0	42.2	65.8	42.8	41.3	48.3	46.1
186.1	146.2	189.0	213.0	183.6	196.7	189.8	179.3
1.49	0.38	1.22	3.78	0.89	1.20	2.15	1.65
70.2	49.0	64.4	82.00	68.2	66.0	65.3	71.1
98.7	77.7	99.7	116.2	102.8	102.7	95.4	96.7
7.2	4.3	6.6	10.5	6.3	6.3	8.1	7.5
34.7	19.8	30.5	55.7	28.7	30.6	41.6	36.2

Lee at Waterhall

Harmonised monitoring station number :
06101
Measuring authority : NRA-T NGR : 52 (TL) 299099

Determinand	Units	1993					
		Samplas	Mean	Max.	Date	Min.	Date
Tomperature	${ }^{\circ} \mathrm{C}$	25	12.3	20.2	23/07	5.0	03/03
pH	DH units	25	7.9	8.2	25/06	7.5	30/04
Conductivity	$\mu \mathrm{S} / \mathrm{cm}$	13	781	884	03/03	612	17/09
Suspended solids	mg/l	13	16.4	70.8	11/10	4.0	23/07
Dissolvod oxygen	$\mathrm{mg} / 10$	25	9.83	12.00	23/11	5.00	07/07
BOD (inhibited)	$\mathrm{mg} / 10$	24(19)	2.3	4.4	11/10	2.0	11/01
Tot. diss. org. carbon	$\mathrm{mg} / 10$	13	12.4	20.3	11/01	10.1	30/04
Nitrite	mg / N	13(5)	0.081	0.250	11/01	0.050	03/03
Nisrato	mg / N	13	9.83	12.50	20/08	4.40	10/12
Chioride	$\mathrm{mg} / 1 \mathrm{Cl}$	25	84.6	102.0	28/05	63.0	17/09
Total alkalinity	$\mathrm{mg} / 1 \mathrm{CaCO}_{3}$	13	211.3	250.0	03/03	138.0	28/05
Orthophosphate	mg / P	25	2.335	6.400	11/10	1.350	21/01
Sulphata	$\mathrm{mg} / \mathrm{SO} \mathrm{SO}_{4}$	13	89.62	100.00	28/05	70.00	17/09
Calciurn	$\mathrm{mg} / \mathrm{Ca}$	13	124.2	141.0	03/03	95.0	17/09
Magnasium	$\mathrm{mg} / \mathrm{Mg}$	13	3.93	4.40	10/12	3.10	17/09
Potasaium	mg / K	13	8.74	10.60	23/07	6.60	17/09
Sodium	$\mathrm{mg} / \mathrm{l} \mathrm{Na}$	13	63.1	80.0	28/05	44.9	17/09

Flow measurement station : 038018-Water Hall C. A. $\left(\mathrm{km}^{2}\right)$: 150.0 NGR: 52 (TL) 29909

Mean	Parcentiles			Quarterty averages			
	5\%	50\%	95\%	J-M	A-J	J.S	O.D
12.0	4.5	11.9	20.0	6.9	13.7	17.0	9.3
8.0	7.5	8.0	8.4	8.0	8.1	8.1	7.8
823	629	818	1116	880	814	782	859
14.3	2.8	9.9	45.4	15.9	13.1	18.7	13.4
10.27	7.93	10.27	12.81	11.31	10.36	9.29	10.18
2.6	1.3	2.4	4.3	2.6	3.0	2.2	2.5
18.4	3.3	14.1	53.1	17.6	17.5	10.5	20.7
0.17	0.05	0.11	0.28	0.11	0.12	0.29	0.18
12.2	7.4	11.1	16.2	12.6	11.8	11.4	13.4
80.1	47.0	71.6	121.7	90.3	71.3	79.6	81.3
212.2	138.9	224.3	255.0	206.8	219.8	212.9	204.6
2.60	1.16	2.50	4.64	2.42	2.50	2.73	2.78
83.4	58.8	83.8	127.30	84.6	84.2	78.5	88.2
119.1	93.3	118.0	139.7	122.5	120.4	114.1	116.0
4.2	3.1	4.0	5.0	4.6	4.0	4.2	3.9
9.3	5.9	9.0	15.8	B. 6	8.4	9.4	10.7
69.2	37.1	68.3	125.1	70.8	70.3	69.7	68.1

Great Stour at Bretts Bailey Bridge

Harmonised monitoring station number: 07003
Measuring authority : NRA-S NGR: 61 (TR) 187603
Deterininand
Temperature
pH
Suspended solids
BOD (inhibited)
Tot. diss. org, carbon
Ammoniacal nitrogen
Nitrite
Nitrate
Chloride
Total atkalinity
Orthophosphete

Units	1993					
	Samples	Mean	Max.	Date	Min.	Date
${ }^{\circ} \mathrm{C}$	52	11.6	19.6	01/07	4.0	24/11
pH units	52	8.0	8.3	29/06	7.8	27/04
mg / l	$51(3)$	11.7	72.0	07/01	3.0	06/05
$\mathrm{mg} / 10$	50(3)	2.0	3.7	05/03	1.0	21/01
$\mathrm{mg} / 10$	44	15.1	26.6	16/11	9.1	15/02
$\mathrm{mg} / \mathrm{l} \mathrm{N}$	51 (10)	0.124	0.400	06/05	0.050	15/03
mg / N	51	0.079	0.183	24/11	0.037	27/09
mg / N	50	8.13	10.20	20/08	5.94	27/09
$\mathrm{mg} / \mathrm{Cl}$	51	70.4	99.0	20/08	48.0	14/10
$\mathrm{mg} / \mathrm{CaCO}_{3}$	51	218.8	256.0	$28 / 06$	122.0	14/10
$\mathrm{mg} / \mathrm{lP}$	51	0.883	1.550	02/08	0.450	14/10

: 61 (TR) 187603
Measuring authority : NRA-S 1993

Temperature
pH
Suspended solic
Tot. diss. org, carbon
Nitrite
Chloride
Orthophosphate

Flow measurement station : 040011-Horton
C.A. $\left(\mathrm{km}^{2}\right): 345.0 \quad$ NGR : 61 (TR) 116554

Period of record: 1974-1992							
Mean	Percentlias			Quarterly averages			
	5\%	50\%	95\%	J-M	A-J	J-S	O-D
12.0	4.1	12.1	18.7	7.1	13.5	16.8	9.9
7.9	7.4	7.9	8.3	7.8	8.0	7.9	7.8
13.1	1.0	7.1	46.3	22.2	7.8	6.8	16.1
2.6	1.2	2.4	4.9	2.9	2.8	2.1	2.4
10.4	2.9	5.3	20.9	7.0	14.0	7.2	9.9
0.30	0.02	0.13	1.15	0.47	0.30	0.11	0.36
0.12	0.03	0.08	0.28	0.10	0.11	0.11	0.13
6.1	3.9	5.9	9.6	7.2	5.7	5.1	6.7
54.4	36.9	51.6	83.7	56.9	52.1	52.9	57.6
215.4	154.8	223.2	244.0	199.6	221.7	224.2	210.4
1.06	0.34	0.98	2.00	0.77	1.00	1.30	1.13

Itchen at Gatersmill

Measuring authority : NRA-S NGR:41 (SU) 434156
Determinand

Temperature
pH
Suspended solids
日OD (inhibited)
Tot. diss. org, carbon
Ammoniacal nitrogen
Nitrite
Nitrate
Chloride
Total alkalinity
Orthophosphate
Silica

1993						
Samples	Mean	Max.	Date	Min.	Date	
56	11.0	17.5	$02 / 07$	5.0	$01 / 03$	
65	8.1	8.4	$02 / 07$	7.8	$06 / 10$	
$56(3)$	14.0	48.0	$06 / 10$	3.0	$02 / 07$	
$56(1)$	2.1	3.9	$30 / 11$	1.0	$09 / 08$	
47	8.8	25.8	$11 / 10$	3.1	$10 / 03$	
$65(12)$	0.096	0.280	$02 / 08$	0.050	$10 / 03$	
65	0.049	0.086	$03 / 09$	0.030	$10 / 03$	
	61	5.32	6.40	$25 / 01$	3.03	$06 / 10$
65	23.0	32.0	$30 / 11$	19.5	$06 / 10$	
	56	237.0	254.0	$02 / 07$	160.0	$06 / 10$
3	65	0.276	0.440	$19 / 07$	0.160	$10 / 03$
	55	10.55	12.50	$12 / 01$	6.30	$06 / 05$

Flow measurement station : 042010-Highbridge
C.A. $\left(\mathrm{km}^{2}\right)$: 360.0

NGR : 41 (SU) 467213

Period of record: 1980-1992							
Mean	Percentiles			Quarterty averages			
	5\%	50\%	95\%	J.M	A-J	J-S	0.0
11.4	5.1	11.1	18.0	7.7	13.0	16.0	9.9
8.1	7.8	8.1	8.4	8.0	8.1	8.2	8.0
11.2	2.2	7.0	31.2	26.4	9.6	4.7	9.9
1.9	0.9	1.8	3.2	2.1	2.2	1.5	1.8
7.2	4.1	6.7	13.2	6.9	6.8	7.0	7.7
0.11	0.01	0.09	0.25	0.15	0.08	0.06	0.12
0.06	0.03	0.05	0.10	0.05	0.05	0.06	0.07
5.1	3.9	5.2	6.2	5.5	5.2	4.6	5.1
21.7	17.8	21.3	26.8	22.4	21.0	21.0	22.4
235.3	199.9	235.5	255.0	239.5	231.1	233.7	233.0
0.40	0.15	0.39	0.72	0.36	0.40	0.44	0.48
10.26	5.48	10.75	12.46	10.33	7.55	11.00	11.69

Stour at Bridge at Iford
Harmonised monitoring station number : 08200
Measuring authority : NRA-W NGR: 40 (SZ) 122955
Determinand

Temperature
pH
Suspended solids
Dissolved oxygen
BOD (inhibited)
Ammoniacal nitrogen
Nitrite
Nitrate
Chloride
Ortophosphate
Magnesium
Potassium

Unita	1993					
	Samplea	Mean	Max.	Date	Min.	Date
${ }^{\circ} \mathrm{C}$	51	12.3	19.4	30/06	3.6	23/11
pH units	54	7.9	8.3	29/03	7.5	15/01
$\mathrm{mg} / 1$	53	17.6	83.0	15/01	3.0	27/08
$\mathrm{mg} / 10$	51	9.34	12.23	23/11	7.02	13/09
$\mathrm{mg} / 10$	54	2.7	6.1	22/03	1.0	18/08
mg / l	54 (1)	0.182	0.850	12/05	0.020	29/03
mg / N	54	0.082	0.350	12/05	0.030	03/03
mg / N	54	6.40	8.46	08/02	3.65	12/05
$\mathrm{mg} / \mathrm{l} \mathrm{Cl}$	54	31.7	72.0	06/08	19.0	15/01
$\mathrm{mg} / \mathrm{l}{ }^{\text {P }}$	54	0.525	1.300	15/07	0.050	$12 / 05$
$\mathrm{mg} / \mathrm{Mg}$	24	3.37	4.20	13/04	3.00	17/02
mg/l K	24	4.41	6.70	29/09	3.20	03/03

Flow measurement station : 043007 - Throop Mill C. A. $\left(\mathrm{km}^{2}\right)$: 1073.0 NGR : 40 (SZ) 113958

Period of record: 1975-1992							
Mean	Percentiles			Quarterly averages			
	5\%	50\%	95\%	J.M	A-J	J-S	O.D
11.1	4.4	10.6	19.0	6.8	12.8	16.8	8.6
7.9	7.5	8.0	8.4	7.9	8.1	8.0	7.8
15.7	3.2	8.8	45.8	18.1	10.6	9.2	20.4
10.41	7.62	10.18	13.11	10.79	11.09	9.16	10.49
2.8	1.2	2.2	6.2	2.4	3.9	1.9	2.6
0.17	0.01	0.11	0.38	0.21	0.15	0.11	0.19
0.09	0.03	0.07	0.18	0.06	0.10	0.10	0.09
5.6	3.3	5.7	8.9	6.6	5.3	4.5	6.2
27.7	20.9	30.0	39.1	26.7	26.5	29.5	30.2
0.41	0.11	0.37	0.97	0.25	0.30	0.69	0.51
4.0	2.6	3.6	5.7	4.0	3.9	3.4	4.1
5.3	3.0	4.8	8.2	4.7	4.2	5.1	6.8

Axe at Whitford Road Bridge

Flow measurement station : 045004-Whitford
C. A. $\left(\mathrm{km}^{2}\right)$: $\mathbf{2 8 8 . 5}$ NGR : 30 (SY) 262953

Period of record: 1974-1992							
Mean	Percentiles			Quartarty averages J.M A.J J-S O-D			
10.8	3.9	10.2	18.1	5.9	12.2	16.0	8.8
7.9	7.4	8.0	8.5	7.8	8.1	8.0	7.8
385	304	394	453	374	388	412	376
14.5	1.6	5.6	51.2	16.8	10.0	5.6	24.5
10.94	8.30	10.89	13.57	12.05	11.24	9.79	10.72
2.1	0.9	1.7	4.2	2.1	2.2	1.7	2.2
12.8	3.7	11.1	25.3	11.0	12.3	11.4	15.7
0.10	0.01	0.06	0.30	0.16	0.08	0.05	0.12
0.05	0.02	0.04	0.10	0.04	0.05	0.03	0.06
3.9	2.2	3.5	5.9	4.4	3.4	3.1	4.6
24.1	19.2	22.9	31.9	25.2	21.9	24.0	24.9
135.7	89.3	139.6	167.8	120.9	143.5	154.1	126.6
0.26	0.12	0.23	0.46	0.22	0.30	0.34	0.24
9.49	4.49	9.95	12.73	9.19	7.54	10.25	10.88
33.7	23.1	34.3	43.10	32.6	32.5	35.2	34.4
62.5	44.3	63.4	77.5	57.8	63.8	70.2	59.4
6.1	4.8	6.0	7.5	6.1	6.1	6.2	6.2
4.2	3.0	3.8	6.6	4.1	3.7	4.2	4.7
13.4	10.4	12.9	18.1	13.5	13.0	14.2	13.2

Tamar at Gunnislake Newbridge
Harmonised monitoring station number :
09017
Measuring authority : NRA-SW NGR : 20 (SX) 433722
Daterminand

Tomperature
pH
Conductivity
Suspended solids
Dissolved oxygen
BoD (inhibited)
Tot, diss. org. carbon
Ammoniacal nitrogen
Nitrite
Nitrate
Chloride
Total alkalinity
Orhophosphate
Silica
Sulphate
Celcium
Magnasium
Potassium
Sodium

Units
 mg/I

	: 1993				
Samplas	Mean	Max.	Date	Min.	Date
25	10.5	15.8	$30 / 07$	3.9	$05 / 03$
25	7.6	8.3	$16 / 03$	7.3	$27 / 05$
25	174	197	$17 / 12$	132	$27 / 05$
$25(1)$	32.1	211.0	$30 / 09$	2.0	$17 / 08$
25	10.74	12.70	$22 / 10$	9.29	$30 / 07$
$25(5)$	2.1	6.2	$30 / 09$	1.0	$28 / 01$
25	11.1	29.3	$16 / 07$	4.0	$16 / 03$
$25(7)$	0.079	0.410	$16 / 07$	0.020	$08 / 02$
$25(1)$	0.030	0.080	$16 / 07$	0.006	$29 / 10$
25	2.78	3.88	$28 / 01$	1.77	$10 / 11$
25	22.3	27.0	$17 / 12$	16.0	$27 / 05$
25	36.7	44.0	$16 / 03$	27.0	$28 / 01$
$25(6)$	0.062	0.120	$16 / 07$	0.030	$22 / 10$
25	4.80	6.50	$10 / 11$	2.20	$31 / 08$
25	13.28	17.00	$08 / 04$	7.00	$12 / 01$
25	16.4	19.0	$30 / 06$	12.0	$16 / 07$
25	4.51	5.50	$31 / 08$	3.20	$16 / / 07$
25	3.00	5.90	$16 / 07$	1.00	$08 / 02$
25	12.2	16.0	$24 / 02$	9.0	$27 / 05$

Flow measurement station : 047001 - Gunnislake C. A. $\left(\mathrm{km}^{2}\right): 916.9$

NGR : 20 (SX) 426725

Period of record: 1975-1992							
Mean	${ }_{54}$ Percentiles			Quartorty averages			
	5*		95\%	J.M	A-J		O-D
11.3	4.9	10.9	18.7	7.0	12.6	16.3	9.4
7.4	6.8	7.4	8.1	7.2	7.5	7.5	7.2
183	14	180	231	171	186	- 198	179
23.9	1.1	7.5	110.5	30.7	11.7	12.1	39.1
10.66	8.68	10.70	12.47	11.74	10.49	9.53	10.85
2.1	0.8	1.9	4.6	2.1	2.1	1.8	2.4
10.5	3.0	8.5	23.7	8.4	9.8	10.4	12.4
0.08	0.01	0.05	0.23	0.10	0.05	0.05	0.09
0.03	0.01	0.02	0.06	0.03	0.02	0.02	0.03
2.7	1.5	2.5	4.1	3.2	2.6	2.1	2.9
22.9	18.0	22.2	28.9	23.7	22.0	22.9	23.7
36.3	23.0	35.1	51.9	30.4	39.4	42.5	33.6
0.09	0.03	0.07	0.15	0.06	0.10	0.11	0.08
4.79	1.57	5.11	6.56	5.09	3.92	4.53	5.57
15.6	11.2	15.5	21.00	14.8	16.5	16.9	15.2
17.3	14.0	17.4	21.9	16.7	17.4	18.3	17.0
4.8	3.4	4.8	6.6	4.3	5.0	5.4	4.6
3.2	1.9	3.0	5.3	2.7	2.9	3.9	3.4
12.6	9.7	12.3	15.8	12.3	12.5	13.4	12.5

Exe at Thorverton Road Bridge
$\begin{array}{lr}\text { Harmonised monitoring station number : } & 09036 \\ \text { Moasuring authority: NRA-SW NGR : } 21 \text { (SS) } 936016\end{array}$
Moasuring authority : NRA-SW NGR:21(SS) 936016

Temperature

pH

Conductivity
Suspended solids Dissolvod oxyge
Tot. diss. org. carbon
Ammoniacal nitrogen
Nitrite
Nitrato
Chloride
Total alkalinity
Orthophomphate
Sulpha
Calcium
Calcium
Magnosium
Potassium
Sodiurn

Units	Samples	Mean	Max.	Date	Min.	Date
${ }^{\circ} \mathrm{C}$	26	10.9	17.2	23/07	4.5	03/03
pH units	26	7.8	9.0	22/03	7.4	12/01
$\mu \mathrm{S} / \mathrm{cm}$	26	168	216	26/03	111	07/12
$\mathrm{mg} / 1$	26 (2)	13.3	162.0	07/12	2.0	06/09
$\mathrm{mg} / 10$	26	11.01	13.80	16/02	9.21	23/07
$\mathrm{mg} / 10$	$28(1)$	1.8	4.4	07/12	1.0	02/02
mg/1 0	26	5.8	12.0	07/12	2.9	14/07
mg / N	$28(5)$	0.056	0.430	22/03	0.020	26/03
mg / N	26	0.025	0.046	07/12	0.010	04/08
mg / N	26	2.39	3.18	03/03	1.45	07/12
$\mathrm{mg} / \mathrm{Cl}$	26	16.8	26.0	09/02	13.0	15/11
$\mathrm{mg} / \mathrm{CaCO} \mathrm{Ca}_{3}$	28	45.1	69.0	01/10	27.0	\$2/01
mg / P	28 (1)	0.090	0.180	22/03	0.040	13/10
$\mathrm{mg} / \mathrm{/} \mathrm{SiO}_{2}$	26 (1)	4.01	5.50	14/04	1.00	26/03
$\mathrm{mg} / \mathrm{SO}_{4}$	26	13.25	22.00	14/07	6.00	12/01
$\mathrm{mp} / \mathrm{lla}$	26	17.2	23.0	26/03	12.0	12/01
$\mathrm{mg} / \mathrm{Mmg}$	26	4.19	5.30	26/03	3.20	12/01
mg / K	26	1.95	2.80	14/07	1.30	04/08
$\mathrm{mg} / \mathrm{l} \mathrm{No}$	26	11.8	18.0	06/09	7.0	13/10

Flow measurement station : 045001-Thorverton C.A. $\left(\mathrm{km}^{2}\right): 600.9 \quad$ NGR : 21 (SS) 936016

Mean	Percontiles			Quarterty averages			
	5\%	50\%	95\%	J.M	A-J		O-D
10.9	4.3	10.3	19.0	6.1	12.5	16.4	9.0
7.5	7.0	7.5	8.1	7.4	7.7	7.6	7.4
171	124	163	241	161	184	186	160
12.6	1.4	5.1	46.1	16.4	7.9	7.3	13.5
11.05	8.66	11.19	13.21	12.31	10.86	9.69	11.31
1.8	0.8	1.6	3.4	1.8	2.0	1.6	1.6
7.1	2.6	6.6	13.9	5.5	7.3	8.0	7.1
0.06	0.01	0.05	0.16	0.08	0.07	0.05	0.05
0.03	0.01	0.02	0.05	0.02	0.04	0.03	0.02
2.5	1.4	2.3	3.7	2.9	2.5	2.0	2.5
17.8	13.2	17.1	26.6	17.8	18.1	19.0	16.7
40.0	23.3	37.7	64.1	33.7	45.5	46.7	35.6
0.11	0.03	0.08	0.29	0.06	0.10	0.18	0.08
3.99	1.71	4.18	5.28	4.51	3.13	3.52	4.62
13.8	8.8	12.8	24.96	12.5	15.1	15.1	13.1
16.6	11.8	16.1	23.9	16.0	18.4	17.6	15.0
4.1	2.9	4.0	5.4	3.9	4.4	4.3	3.8
2.0	1.3	1.9	3.5	1.9	2.0	2.4	1.9
10.8	7.2	9.8	19.1	9.7	11.5	13.1	9.9

Dee at Overton
Harmonised monitoring station number :
Measuring authority : NRA-WEL NGR: 33 (SJ) 354427

Units	1993					
	Samples	Mean	Max.	Date	Min.	Date
${ }^{\circ} \mathrm{C}$	17	10.0	18.0	30/07	4.0	04/03
pH units	17	7.5	7.8	15/02	6.8	05/11
$\mu \mathrm{S} / \mathrm{cm}$	17	162	231	04/03	102	05/11
mg / l	17 (6)	6.6	31.0	16/12	1.2	04/03
$\mathrm{mg} / 10$	17	11.03	13.10	04/03	9.30	30/07
mg / O	17 (2)	0.9	1.6	16/04	0.5	$30 / 07$
$\mathrm{mg} / \mathrm{l} \mathrm{N}$	17 (4)	0.041	0.160	04/03	0.010	30/07
mg / N	17(2)	0.016	0.075	22/09	0.002	05/11

Flow measurement station : 067015 - Manley Hall
C.A. $\left(\mathrm{km}^{2}\right): 1019.3 \quad$ NGR : 33 (SJ) 348415

Period of record: 1974-1992							
Mean	Porcentiles			Quarterty averages			
10.1	3.1	9.9	17.5	5.1	11.6	15.4	8.1
7.2	6.5	7.2	7.8	7.2	7.3	7.3	7.2
172	98	165	271	158	209	178	146
9.4	0.5	3.5	37.3	11.2	7.4	6.2	13.3
11.11	9.12	11.11	13.20	12.39	10.72	9.75	11.58
1.3	0.5	1.1	2.5	1.2	1.5	1.2	1.2
0.05	0.01	0.03	0.14	0.06	0.05	0.05	0.05
0.02	0.01	0.01	0.04	0.02	0.02	0.02	0.01

Taf at Clog-y-fran Bridge

Harmonised monitoring station number : 10027
Measuring authority: NRA-WEL NGR: 22 (SN) 238161

	1993					
Units	Samples	Mean	Max.	Date	Min.	Date
		23	10.6	16.0	$14 / 07$	5.0

Flow measurement station : 060003-Clog-y-fran C.A. $\left(\mathrm{km}^{2}\right): 217.3 \quad$ NGR: 22 (SN) 238160

Mean	Parcantiles			Quarterly averages			
	5\%	50\%	95\%	J-M	A.J	J-S	O-D
10.4	4.0	10.0	17.4	6.5	11.9	14.9	8.5
7.4	6.9	7.4	7.9	7.3	7.5	7.5	7.2
169	116	160	248	147	179	198	152
16.1	1.6	7.5	57.1	25.0	8.4	10.3	21.0
10.35	7.94	10.50	12.51	10.89	10.61	9.32	10.50
1.8	0.7	1.5	3.4	1.9	1.9	1.6	1.6
0.11	0.01	0.08	0.33	0.17	0.12	0.08	0.11
0.03	0.01	0.03	0.06	0.03	0.03	0.04	0.03
0.13	0.03	0.08	0.41	0.07	0.20	0.24	0.07

Carron at A890 Road Bridge
Harmonised monitoring station number: 11009
Measuring authority: HRPB NGR: 18 (NG) 938425

Determinand	Units	1993					
		Samples	Mean	Max.	Date	Min.	Date
Temperature	${ }^{\circ} \mathrm{C}$	12	8.2	15.6	11/06	2.4	19/01
pH	pH units	12	6.5	7.0	27/09	6.1	19/01
Conductivity	$\mu \mathrm{S} / \mathrm{cm}$	12	46	72	22/02	35	16/12
Suspended solids	mg / l	12 (3)	2.3	15.8	25/03	0.5	19/01
Dissolved oxygen	$\mathrm{mg} / 10$	12	11.42	13.26	22/02	9.75	11/06
BOD (inhibited)	$\mathrm{mg} / 10$	12	1.0	2.1	16/12	0.1	30/08
Ammoniacal nitrogen	$\mathrm{mg} / \mathrm{i} \mathrm{N}$	$12(3)$	0.008	0.022	08/11	0.002	19/01
Nitrite	mg / N	12 (5)	0.002	0.006	19/01	0.001	25/03
Nitrate	$\mathrm{mg} / \mathrm{l} \mathrm{N}$	12	0.06	0.25	16/12	0.02	08/07
Chloride	$\mathrm{mg} / \mathrm{Cl}$	12	10.5	18.7	22/02	7.2	08/11
Total alkalinity	$\mathrm{mg} / \mathrm{CaCO} 3$	12	3.6	6.2	30/08	1.5	22/02

Flow measurement station : 093001-New Kelso
C.A. $\left(\mathrm{km}^{2}\right)$: 137.8

NGR : 18 (NG) 942429

Period of record: 1979-1992							
Mean	Percentiles			Quarterly averages			
	5\%	50\%	95\%	J-M	A-J	J. 5	O-D
8.3	2.3	7.7	15.3	3.8	10.8	12.9	6.8
6.6	5.9	6.6	7.3	6.6	6.7	6.6	6.5
44	28	42	64	49	46	40	40
1.4	0.3	1.0	4.5	1.6	1.4	1.3	1.4
11.25	9.40	11,30	13.08	12.49	10.91	10.04	11.39
0.9	0.3	0.9	1.5	1.0	0.7	0.8	1.0
0.01	0.00	0.01	0.02	0.01	0.01	0.01	0.01
0.01	0.00	0.00	0.01	0.01	0.00	0.01	0.01
0.1	0.0	0.1	0.1	0.1	0.1	0.1	0.1
10.3	5.7	9.5	18.1	13.4	10.3	8.0	9.5
5.5	1.4	4.9	12.4	4.9	6.4	5.8	5.0

Spey at Fochabers

Harmonised monitoring station number:	12002
Measuring authority : NERPB	NGR:
M	(NJ) 341596

Determinand	Units	1993					
		Samples	Mean	Max.	Date	Min.	Date
Temperature	${ }^{\circ} \mathrm{C}$	39	10.1	17.0	13/06	1.5	29/11
pH	pH units	12	6.2	6.6	23/06	5.6	16/12
Conductivity	$\mu \mathrm{S} / \mathrm{cm}$	12	95	116	29/11	67	12/10
Suspended solids	mg / l	12 (6)	1.8	9.0	27/0\%	0.4	17/02
Dissolvad oxygen	$\mathrm{mg} / 10$	12	12.05	13.84	29/11	10.76	11/08
BOD (inhibited)	mg / O	12(1)	0.6	1.4	12/10	0.2	16/12
Ammoniacal nitrogen	mg / N	12 (2)	0.016	0.044	11/08	0.006	29/04
Nitrite	mg / N	12 (3)	0.008	0.013	16/12	0.005	27/01
Nitrate	mg/l N	12	0.35	0.63	29/11	0.22	23/06
Chloride	$\mathrm{mg} / \mathrm{ll}$	12	11.9	18.0	27/01	9.0	29/04
Total alkalinity	$\mathrm{mg} / \mathrm{CaCO}$	12	21.0	30.0	29/11	11.0	27/01
Orthophosphate	mg / P	12 (4)	0.007	0.016	29/11	0.003	27/01
Silica	$\mathrm{mg} / \mathrm{SiO} 2$	12	6.21	8.99	29/11	4.90	12/10

1993
Flow measurement station : 008006-Boat o Brig
C. A. $\left(\mathrm{km}^{2}\right): 28 \underset{1}{6} 1.2 \quad$ NGR : 38 (NJ) 318518

Period of record: 1975-1992							
Mean	Parcentiles			Quarterty averages			
10.0	2.4	11.5	18.5	3.6	10.5	15.0	6.2
7.1	6.1	7.1	7.8	6.8	7.1	7.3	6.9
77	49	77	109	81	73	86	72
3.8	0.2	1.8	14.1	3.1	3.9	3.6	3.6
11.42	9.26	11.3 ?	13.59	12.78	11.11	10.05	11.79
0.9	0.4	0.9	1.5	0.8	1.0	0.9	0.9
0.04	0.00	0.02	0.11	0.02	0.04	0.04	0.03
0.01	0.00	0.01	0.01	0.01	0.01	0.01	0.01
0.3	0.2	0.3	0.6	0.4	0.3	0.3	0.3
10.3	6.0	9.9	15.1	11.9	9.9	10.3	9.2
24.5	11.9	25.0	35.2	22.1	23.6	28.6	24.4
0.02	0.00	0.01	0.08	0.02	0.00	0.03	0.02
5.75	3.68	5.61	7.58	5.74	4.72	5.50	5.99

Almond at Craigiehall
Harmonised monitoring station number: 14008
Measuring authority : FRPB NGR : 36 (NT) 165752
Doterminand

pH
Conductivity
Suspended solids
Dissolved oxyen
BOD finhibited
Ammoniacal nitrogen
Nitrite
Nitrate
Total alkalinity
Onthophosphate
Sulphate

Units	1993					
	Samples	Mean	Max.	Date	Min.	Date
pH units	12	7.5	8.1	09/06	6.9	06/10
$\mu \mathrm{S} / \mathrm{cm}$	12	382	1220	03/03	68	04/08
mg / l	12	8.7	24.0	02/12	2.0	07/09
$\mathrm{mg} / 10$	11	9.28	11.50	02/12	5.71	04/08
$\mathrm{mg} / \mathrm{l} 0$	12	2.2	5.6	03/03	1.2	07/09
mg / N	12 (1)	0.764	4.800	03/03	0.020	07/09
$\mathrm{mg} / \mathrm{IN}$	12 (3)	0.084	0.570	09/06	0.010	06/07
$\mathrm{mg} / \mathrm{IN}$	12	4.40	6.80	07/09	2.85	02/12
$\mathrm{mg} / \mathrm{l} \mathrm{CaCO} 3$	12	75.6	166.0	03/03	19.0	08/10
$\mathrm{mg} / \mathrm{l} \mathrm{P}^{\text {P }}$	12	0.269	1.110	09/06	0.017	07/09
$\mathrm{mg} / \mathrm{SO} 4$	12 (2)	79.50	210.00	03/03	10.00	06/07

Flow measurement station : 019001-Craigiehall C.A. $\left(\mathrm{km}^{2}\right): 369.0 \quad$ NGR: 36 (NT) 165752

- Mean	Percentlles			Quarterly averages			
	5\%	50\%	95\%	J-M	A-J	J.S	O-0
7.6	7.1	7.6	8.0	7.5	7.8	7.6	7.5
608	317	602	890	521	693	662	522
20.4	2.2	10.2	61.5	32.4	10.4	13.0	27.0
9.23	5.33	9.58	12.20	11.23	9.13	7.37	9.69
3.5	1.5	3.0	7.2	3.3	3.8	3.2	3.9
1.25	0.26	0.98	3.08	- 1.22	1.57	1.13	0.95
0.27	0.04	0.15	0.85	0.13	0.35	0.46	0.15
3.8	2.2	3.7	5.9	3.5	4.0	3.9	3.8
121.2	59.3	123.9	179.9	98.9	140.9	130.4	105.9
0.77	0.09	0.50	2.08	0.27	1.00	1.31	0.44
125.7	54.0	128.6	198.70	103.2	140.4	142.5	117.7

Tweed at Norham

Harmonised monitoring station number: 15001
Measuring authority : TWRPB NGR: 36 (NT) 898477

Determinand	Units	1993					
		Samples	Maan	Max.	Date	Min.	Date
Temperature	${ }^{\circ} \mathrm{C}$	12	9.3	18.0	21/07	1.0	14/12
pH	pH units	12	7.9	9.8	24/08	7.2	20/01
Conductivity	$\mu \mathrm{S} / \mathrm{cm}$	12	226	269	16/03	147	20/01
Suspended solids	mg/l	10	3.8	9.0	22/04	1.0	10/02
Dissolved oxygen	mg / O	12	12.28	21.30	24/08	10.20	20/05
BOD (inhibited)	mg / O	12	2.6	4.5	24/08	1.4	15/06
Ammoniacal nitrogen	mg / N	12	0.057	0.250	14/12	0.010	28/09
Nitrite	$\mathrm{mg} / \mathrm{l} \mathrm{N}$	12	0.013	0.020	10/02	0.010	20/01
Nitrate	mg / l	12	1.87	3.05	14/12	0.65	24/08
Chioride	$\mathrm{mg} / \mathrm{Cl}$	12	15.9	20.5	16/03	13.0	28/09
Orthophosphate	$\mathrm{mg} / \mathrm{P} P$	12	0.043	0.070	20/01	0.010	16/03

Flow measurement station ; 021009 - Norham
C.A. $\left(\mathrm{km}^{2}\right): 4390.0 \quad$ NGR : 36 (NT) 898477

Mean	Percentilos			Quarterty averagea			
	5\%	50\%	95\%	J-M	A.J	J.S	O-D
10.1	2.6	9.1	19.9	4.5	13.3	16.1	6.3
8.0	7.1	7.9	9.3	7.6	8.3	8.5	7.7
234	165	226	292	234	234	225	228
9.6	1.4	4.6	32.1	15.7	5.1	7.2	9.5
11.57	9.09	11.39	14.63	11.92	11.54	11.42	11.47
2.3	1.0	2.2	4.0	2.2	2.5	2.6	2.0
0.09	0.03	0.08	0.16	0.10	0.07	0.08	0.09
0.02	0.01	0.01	0.04	0.02	0.02	0.02	0.02
1.8	0.8	1.7	3.4	2.5	1.7	1.1	1.8
16.1	10.4	15.5	22.1	17.4	16.2	15.7	15.0
0.14	0.02	0.07	0.40	0.14	0.10	0.15	0.14

Dee at Glenlochar-

Harmonised monitoring station number: 16005
Measuring authority : SRPB NGR : 25 (NX) 733642
Determinand

Temperatura
pH
Conductivity
Suspendod solids
Dissolved oxygen
BOD (inhibited)
Ammoniacal nitrogen
Nitrato
Chloride
Orthophosphate
Silics
Sutphata
Catcium
Magnasium
Potsssium
Sodium

Unita	1993					
	Samples	Mean	Max.	Date	Min.	Date
${ }^{\circ} \mathrm{C}$	11	10.0	20.0	01/07	2.0	01/02
pH units	12	6.8	7.7	01/02	6.3	01/10
$\mu \mathrm{S} / \mathrm{cm}$	12	57	73	01/02	46	02/08
mg/l	12	1.6	5.0	01/04	1.0	01/02
mg/f 0	12	10.40	12.70	01/03	8.70	01/07
mg / O	12	1.7	2.5	01/10	0.8	02/08
mg / N	12(1)	0.057	0.120	01/12	0.010	01/09
mg / N	12	0.20	0.38	01/04	0.07	01/09
$\mathrm{mg} / \mathrm{Cl}$	12	8.6	13.5	01/02	6.3	01/06
$\mathrm{mg} / \mathrm{l} P$	12	0.004	0.008	01/12	0.002	01/03
$\mathrm{mg} / \mathrm{SiO}$	12	1.72	2.90	05/01	0.10	01/09
$\mathrm{mg}^{\text {/ }} \mathrm{SO}_{4}$	12	4.59	5.79	01/12	3.61	01/09
$\mathrm{mg} / \mathrm{Ca}$	12	3.0	3.5	01/04	2.2	01/09
$\mathrm{mg} / \mathrm{Mg}$	12	1.39	1.78	01/04	1.19	02/08
mg / K	12	0.51	0.81	01/04	0.32	01/09
$\mathrm{mg} / 1 \mathrm{Na}$	12	5.2	7.0	01/02	3.9	01/06

Flow measurement station : 080002-Glenlochar C.A. $\left(\mathrm{km}^{2}\right): 809.0$ NGR : 25 (NX) 733641.

Pertod of record: 1975-1992							
Mean	Percentiles			Quarterty avaragea ${ }^{\text {- }}$			
10.0	1.9	9.1	20.0	3.7	11.4	16.8	8.2
6.7	6.2	6.7	7.3	6.6	6.7	6.9	6.6
61	40	54	78	56	58	65	60
3.4	1.1	1.9	6.9	4.8	3.4	2.5	2.7
10.87	8.68	10.83	13.10	12.40	11.10	9.46	10.66
2.0	1.0	1.9	3.1	2.1	2.0	1.7	1.9
0.06	0.01	0.04	0.14	0.06	0.05	0.07	0.05
0.3	0.1	0.3	0.7	0.5	0.3	0.2	0.3
9.1	5.1	8.8	13.7	9.9	9.4	8.7	8.5
0.01	0.00	0.01	0.03	0.01	0.00	0.02	0.01
2.25	0.32	2.30	4.31	3.24	1.68	1.22	2.91
5.5	3.5	5.1	9.32	5.4	5.2	5.7	6.2
3.9	2.3	3.3	5.8	3.4	3.4	4.6	3.8
1.5	0.7	1.4	2.2	1.4	1.4	1.5	1.5
0.6	0.3	0.5	0.8	0.8	0.5	0.5	0.6
5.1	3.4	5.1	7.0	5.5	5.2	4.8	4.9

Leven at Renton Footbridge
Harmonised monitoring station number :
Moasuring authority : CRPB NGR: 26 (NS) 389783
Oeterminand
Temporature
pH
Conductivity
Supponded solids
Dissolved oxygen
BOD (inhibited)
Ammoniacal nitrogen
Nitrato
Total alkalinity
Orthophosphate

Unita	Samples	Mean	Max.	Date	Min.	Date
${ }^{\circ} \mathrm{C}$	16	8.3	15.0	09/06	0.0	28/01
pHt units	11	6.9	7.3	10/09	6.5	17/03
$\mu \mathrm{S} / \mathrm{cm}$	11	65	93	10/11	54	07/05
mg / t	17 (3)	3.8	21.0	15/01	1.0	18/02
$\mathrm{mg} / \mathrm{t} 0$	12	11.14	12.50	18/02	9.00	10/09
mg / O	12	2.1	3.4	17/03	1.1	10/09
mgil ${ }^{\text {N }}$	12(3)	0.036	0.130	24/04	0.010	26/01
mg / l	11 (4)	0.15	0.28	10/11	0.10	18/02
$\mathrm{mg} / \mathrm{CaCO} 3$	11	\$1.1	17.0	10/11	1.7	24/04
mg / P	15 (7)	0.008	0.030	15/01	0.002	17/08

Flow measurement station : 085001-Linnbrane C.A.(km^{2}) : 784.3 NGR: 26 (NS) 394803

Mean	Parcentiles			Quarterty avarages			
	5\%	50\%	95%	J.M	A-J	J-S	O-D
9.6	3.0	9.0	17.0	4.1	10.9	14.9	8.2
7.1	6.7	7.1	7.5	7.0	7.2	7.1	7.0
71	58	69	95	72	73	70	70
4.6	1.1	3.2	12.0	6.4	3.7	3.7	4.3
10.94	9.29	10.99	12.61	12.26	11.28	9.67	10.68
1.8	0.9	1.8	3.2	2.2	2.2	1.5	1.7
0.05	0.01	0.02	0.19	0.05	0.04	0.06	0.04
0.3	0.1	0.3	0.5	0.3	0.3	0.3	0.3
16.0	10.1	15.7	22.1	14.7	16.3	16.3	16.2
0.02	0.00	0.01	0.04	0.01	0.00	0.03	0.02

Ballinderry at Ballinderry Bridge

DOE Northern Ire Measuring author		NGR :	(IH)	$\begin{aligned} & 03 / 07 \\ & 92775 \end{aligned}$	8100			Flow $\text { C.A. }(\mathrm{k}$	$\begin{aligned} & \text { asurer } \\ & 1: 41 \end{aligned}$	19.5	ation	$\begin{aligned} & 20301 \\ & \text { VGR : } \end{aligned}$	$\begin{aligned} & 2 \text { - Ballin } \\ & 23 \text { (IH) } 9 \end{aligned}$	derry 76	
				199						Period of	frecord	974.1			
Datarminand	Units	Samples	Mean	Max.	Date	Min.	Date	Mean	5\%	Porcent 50\%	95\%	J.M	Quartert A-J	$\begin{gathered} \text { avera } \\ \text { J.S } \end{gathered}$	${ }^{6} \mathrm{O}-\mathrm{D}$
Temperature	${ }^{\circ} \mathrm{C}$	24	9.5	17.0	28/06	2.5	22/11	9.9	3.0	10.0	17.0	5.2	11.9	14.8	8.0
pH	pH units	24	7.9	8.2	28/08	7.4	10/09	7.8	7.3	7.8	8.3	7.7	7.9	7.8	7.7
Conductivity	$\mu \mathrm{S} / \mathrm{cm}$	24	321	368	28/08	185	10/09	307	216	305	375	282	326	335	293
Suapended solids	$\mathrm{mg} / 1$	24	18.4	208.0	10/09	3.0	09/02	10.0	2.0	6.0	31.0	12.9	6.9	7.4	10.5
Dissolved oxygen	$\mathrm{mg} / 10$	24	11.04	23.60	27/05	7.80	10/09	10.11	6.80	10.20	12.70	11.20	9.90	8.70	10.40
800 (intribited)	mg/1	24	3.2	13.0	10/09	1.4	26/08	2.5	1.0	2.0	4.8	2.6	2.6	2.2	2.2
Ammoniacal nitrogen Nitrite	mg / N	24	0.263	0.730	14/05	0.080	28/07	0.25	0.04	0.20	0.53	0.35	0.25	0.16	0.24
Nitrite Chloride	$\mathrm{mg} / / \mathrm{N}$	24 (1)	0.055	0.150 320	14/07	0.020	09/11	0.05	0.02	0.04	0.13	0.04	0.05	0.06	0.05
Chtoride Orthophosphate	$\mathrm{mg}_{\mathrm{mg} / \mathrm{l}}^{\mathrm{Pl}}$	24	19.2 0.141	32.0 0.280	$25 / 01$ $10 / 09$	12.0 0.070	$23 / 09$ $11 / 01$	18.9 0.22	12.0 0.07	19.0 0.19	26.0 0.47	19.3 0.14	18.9 0.17	19.5 0.33	18.0 0.18
	¢日			0.280	10/09	0.070	1101	0.22	0.07	0.19	0.47	0.14	0.17	0.33	0.18

03/07/Q100
NGR : 23 (IH) 927798

1993
Flow measurement station : 203012 - Ballinderry Br .
C.A. $\left(\mathrm{km}^{2}\right): 419.5 \quad$ NGR : 23 (IH) 926799

Lagan at Shaws Bridge

DOE Northern Irela
Measuring authorit
Detorminand
Temperatura
pH
Conductivity
Suspended solids
Diszolvod oxygen
BOD (inhibited)
Ammoniacal nitrogen
Nitrite
Chlorido
Orthophosphate

05/01/0200
NGR : 33 (IJ) 325690

1993					
Sampias	Mean	Max.		Date	Min.
					Date
23	9.0	16.0	$07 / 07$	3.0	$01 / 12$
23	7.9	78.3	$07 / 05$	7.8	$21 / 07$
23	406	549	$03 / 09$	303	$22 / 04$
23	7.0	17.0	$04 / 01$	3.0	$24 / 03$
23	15.69	28.40	$04 / 01$	9.90	$21 / 05$
23	2.6	4.6	$01 / 12$	1.7	$03 / 09$
23	0.194	0.490	$01 / 12$	0.080	$18 / 01$
23	0.049	0.150	$07 / 07$	0.030	$18 / 01$
23	37.2	61.0	$07 / 07$	22.0	$04 / 10$
23	0.494	1.180	$03 / 09$	0.130	$22 / 04$

Flow measurement station : 205004 - Newforge C.A. $\left(\mathrm{km} \mathrm{m}^{2}\right): 490.4 \quad$ NGR : 33 (IJ) 329693

Period of record: 1973-1992							
Mean	Percentiles			Quarterty averages			
	5\%	50\%	95\%	J-M	A-J	J.S	0.0
10.2	4.0	9.5	16.5	5.3	12.0	15.0	8.1
7.7	7.2	7.7	8.0	7.6	7.6	7.5	7.6
428	282	410	601	381	446	520	389
11.7	2.0	6.0	36.0	14.9	8.3	6.9	15.9
11.39	3.90	11.00	21.90	12.80	10.20	6.90	11.50
3.2	1.3	3.0	6.4	2.9	4.1	3.3	3.0
0.75	0.08	0.48	2.03	0.66	0.91	1.47	0.84
0.16	0.03	0.08	0.45	0.09	0.22	0.31	0.10
41.1	21.0	37.0	70.0	36.3	42.1	45.1	34.3
0.87	0.16	0.62	2.30	0.35	1.05	1.29	0.62

DIRECTORY OF MEASURING
 AUTHORITIES

	Address	Code
National Rivers Authority	Rivers House, Waterside Drive, Aztec West, Almondsbury, Bristol BS12 4UD	NRA
	BSI	

NRA Regional Headquarters

Anglian	Kingfisher House, Goldhay Way, Orton Goldhay, Peterborough PE2 5ZR	NRA-A
Northumbria and Yorkshire*	Rivers House, 21 Park Square South, Leeds LS1 2QG	NRA-NY
North West	Richard Fairclough House, PO Box 12, Knutsford Road, Warrington WA4 1HG Sapphire East, 550 Streetsbrook Road, Solihull B91 1QT	NRA-NW
Severn-Trent	Guildbourne House, Chatsworth Road, Worthing, West Sussex BN11 1LD	NRA-S
Southern	Manley House, Kestrel Way, Sowton Industrial Estate, Exeter EX2 7LQ	NRA-SW
South Western*	Kings Meadow House, Kings Meadow Road, Reading RG1 8DQ	NRA-T
Thames	Relsh Rivers House/Plas-yr-Afon, St Mellons Business Park, St Mellons, Cardiff CF3 0LT	NRA-WEL

River Purification Boards

Clyde River Purification Board

Forth River Purification
Board

Highland River Purification Board

North East River
Purification Board
Solway River Purification Board

Rivers House, Murray Road, CRPB East Kilbride, Glasgow G75 0LA

Clearwater House,
Heriot Watt Research Park, Avenue North, Riccarton, Edinburgh EH14 4AP

Graesser House, Fodderty Way, HRPB Dingwall IV15 9XB

Greyhope House, Greyhope Road, NERPB Torry, Aberdeen AB1 3RD
Rivers House, Irongray Road,

FRPB SRPB Dumfries DG2 0JE
Tay River Purification
Board
Tweed River Purification
Board

Other measuring authorities

Borders Regional Council (Directorate of Water and Drainage Services)

Corby (Northants) and District Water Company
Department of the Environment for Northern Ireland
(Environmental Protection Division)

Dumfries and Galloway
Regional Council (Department of Water and Sewerage)

Essex Water Company
Geological Survey of Northern Ireland

Grampian Regional Council (Water Services Department)
Highland Regional Council (Water Department)
Institute of Hydrology

Lothian Regional Council (Department of Water and Drainage)

North East Water Plc

North West Water Plc

Scottish Hydro-Electric Plc

Southern Water

Strathclyde Regional Council (Water Department)

Tayside Regional Council (Water Services Department)

Yorkshire Water Services Ltd

1, South Street,
TRPB
Perth PH2 8NJ
Burnbrae, Mossilee Road, TWRP Galashiels TDI 1NF

West Grove, Waverley Road,
BRWD Melrose TD6 9SJ

Geddington Road, Corby,
CDWC Northants NN18 8ES

Water Executive, Northland House, DOEN 3 Frederick Street, Belfast BT1 2NS

Calvert House, 23 Castle Place, Belfast BT1 1FY

Marchmount House, Marchmount, DGRW Dumfries DG1 IPW

Hall Street, Chelmsford, Essex CM2 0HH EWC
20 College Gardens, GSNI
Belfast BT9 6BS
Woodhill House,
Westburn Road, Aberdeen AB9 2LU
Regional Buildings, Glenurquhart Road, HRCW Inverness IV3 5NX

Maclean Building, Crowmarsh Gifford, IH Wallingford OX10 8BB

55 Buckstone Crescent, LRWD Edinburgh EH10 6XH

PO Box 10, Allendale Road, NGWC Newcastle-upon-Tyne NE6 2SW
Dawson House, Liverpool Road, NWW Great Sankey, Warrington WA5 3LW

16 Rothesay Terrace, SE Edinburgh EH3 7SE

Southern House, Yeoman Road, SW Worthing, West Sussex BN13 3NX

419 Balmore Road, SRCW Glasgow G22 6NU

Bullion House, Invergowrie, TRWS Dundee DD2 5BB

West Riding House, 67 Albion House, YW Leeds LS1 5AA

PUBLICATIONS - in the Hydrological data UK series

Title	Published		sive of postage UK)
Yearbooks:		Loose-Leaj	Bound
Yearbook 1981	1985	¢10	£12
Yearbook 1982	1985	£10	$¢ 12$
Yearbook 1983	1986	out of	
Yearbook 1984	1986	out of	
Yearbook 1985	1987	¢12	$£ 15$
Yearbook 1986	1988	$¢_{612}$	¢15
Yearbook 1987	1989	¢12	¢15
Yearbook 1988	1989	E_{12}	¢15
Yearbook 1989	1990	¢15	¢18
Yearbook 1990	1991	£15	¢18
Yearbook 1991	1992	*	¢20
Yearbook 1992	1993	*	£20
Yearbook 1993	1994		$£^{20}$
Reports:			
Hydrometric Register and Statistics 1981-5	1988	$¢ 12$	$£ 15$
Hydrometric Register and Statistics 1986-901	1992		$£ 20$
The 1984 Drought ${ }^{\text {a }}$	1985		$¢ 12$
The 1988-92 Drought ${ }^{3}$	1993		$£^{20}$

Concessionary rates apply to the purchase of two or more of the pre-1989 Yearbooks.

All the Hydrological data UK publications may be obtained from:-

Institute of Hydrology
Maclean Building
WALLINGFORD
OXFORDSHIRE OX10 8BB
Telephone: Wailingford (01491) 838800
Facsimile: (01491) 832256
Enquiries or comments regarding the series, or individual publications are welcomed and should be directed to the National Water Archive Office at the above address.

1. Hydrometric Register and Statistics 1986-90

This reference volume includes maps, tables and statistics for over 1000 river basins and 150 representative observation boreholes throughout the United Kingdom. The principal objective of the publication is to assist data users in the selection of monitoring sites for particular investigations and to

[^12]allow more effective interpretation of analyses based upon the raw data. To this end, concise gauging station and catchment descriptions are given for the featured flow measurement'stations - particular emphasis is placed on hydrometric performance, especially in the high and low flow ranges, and on the net effect of artificial influences on the natural flow regime.

Summary hydrometric statistics, for each of the years 1986-90, are provided alongside the corresponding long term averages, or extremes, to allow the recent variability in surface and groundwater resources to be considered in a suitable historical context.

2. The 1984 Drought

This first, occasional report in the Hydrological data UK series concerns the 1984 drought. The structure of the report follows the hydrological cycle with chapters devoted to rainfall, evaporation, runoff and water storage in surface reservoirs and aquifers. The report documents the drought in a water resources framework and its development, duration and severity are examined with particular reference to regional variations in intensity.

3. The 1988-92 Drought Report

The objective of this report is to provide comprehensive documentation of the 1988-92 drought within a hydrological framework and to establish a benchmark against which future periods of severe rainfall deficiency may be compared. The spatial and temporal variations in the drought's intensity are examined and its severity assessed within the perspective provided by long-term rainfall and hydrometric records. An introductory hydrological overview of the United Kingdom is given to help place the volatile climatic conditions experienced in 1988-92 in a suitable context. The synoptic backcloth to the drought's development is also reviewed and the European perspective is examined using selected rainfall and river flow records to index drought severity. Additionally, a short review of water resource variability in Great Britain over the featured five years - and the water industry's response to the actual and protracted deficiencies is included to help appreciate the, often complex, linkages between hydrological stress and water supply impacts on the community.

Associated Publications

Hydrological Summaries for Great Britain

Since the winter of $1988 / 89$ these monthly reports have been prepared jointly by the Institute of Hydrology and the British Geological Survey on behalf of the Department of the Environment and the National Rivers Authority. Each report includes areal rainfall data - both recent and, where significant, longer term accumulations for the major administrative divisions in the water industry. Also featured are representative hydrographs of river flow and groundwater levels with supporting summary statistics and a tabulation of current stocks for a selection of major reservoirs. A commentary is provided on the cover page detailing notable hydrological events and summarising both the national hydrological status and the water resources outlook. Probability values are estimated for many of the events covered.

Subscription to the Hydrological Summaries $£ 48$ per year - may be arranged through the National Water Archive Office. The summaries are normally published within ten working days of the close of the month to which they refer.

Representative Basin Catalogué

Data collection for the National Flood Event Archive, sponsored by the Ministry of Agriculture, Fisheries and Food and maintained by the Institute of

Hydrology, concentrates on a selection of basins that form a representative sample of UK catchments. A catalogue providing comprehensive hydrological and reference information for 200 representative basins has been prepared and is available as national (five volumes) or regional sets; user-selected groups of catchments can be provided for particular investigations. Enquiries concerning the cost and availability of the catalogue should be directed to the above address.

Groundwater Level Hydrographs

In 1990 the British Geological Survey launched a series of wallcharts depicting long term variations in groundwater levels. The following are currently available:
i. Long term hydrograph of groundwater levels in the Chilgrove House well in the Chalk of southern England
ii. Long term hydrograph of groundwater levels in the Dalton Holme estate well in the Chalk of Yorkshire

Copies may be obtained from:
British Geological Survey
WALLINGFORD
OXFORDSHIRE
OX10 8BB
Telephone Wallingford (01491) 838800
Facsimile: (01491) 825338

ABBREVIATIONS

Note: The following abbreviations do not purport to represent any standardised usage; they have been developed for use in the Hydrological data UK series of publications only. Where space constraints have required alternative forms of these conventional abbreviations to be used, the meaning should be evident from the context.

AOD	Above Ordnance Datum
Bk	Beck
Blk	Black
Br	Bridge
Brk or B	Brook
Brn	Burn
Ch	Channel
C / m	Current meter(ing)
Com	Common
Dk	Dike
Dr or D	Drain
D / s	Downstream
DWF	Dry weather flow
E	East
Frm	Farm
G / s	Gauging station
Gw	Groundwater
HEP	Hydro-electric power
Ho	House
Hosp	Hospital
L	Loch or lake
Lb	Left hand river bank
	(looking downstream)
Ln	Lane
Lst	Limestone
Ltl	Little
MAF	Mean annual flood
Mkt	Market
Ml / d	Megalitres per day
Mnr	Manor
N	North
Ntch	Notch

NW	North-West
O/f	Outfall or outflow
ORS	Old Red Sandstone
Pk	Park
Pop	Population
POR	Period of record
PS	Pumping station
Pt	Point
PWS	Public water supply
Rb	Right hand river bank
	(looking downstream)
R/c	Racecourse
RCS	Regional communications system
Rd	Road
Res	Reservoir
Rh	Right hand
S	South
SAGS	Stour Augmentation Groundwater
	Scheme
Sch	School
S-D	Stage-discharge relation
SE	South-East
Sl	Sluice
SOE	The Scottish Office Environment
	Department (previously SDD)
Sp	Spring
St	Stream
STW	Sewage treatment works
SW	South-West
TS	Transfer scheme
US	Ultrasonic gauging station
U/s	Upstream
W	West
W'course	Watercourse
Wd	Wood
Wht	White
Wr	Weir
WRW	Water reclamation works
Wtr	Water
WTW	Water treatment works

[^0]: Note: In 1993, the Northumbria and Yorkshire and South-West and W'essex regions of the National Rivers Authority were amalgamated.

[^1]: -Based on the methods and findings of the Flood Studies Report' as implemented by the Met. Office' whereby a return period can be assigned to the catch at a particular raingauge. Those exceeding a 160 -year return period are classified as 'very rare' events. The return periods in Table 3 have been rounded to the nearest 10 years.
 ${ }^{1}$ Flood Studies Report 1975. Natural Environment Research Council (5 vols, reprinted-1993).
 ${ }^{2}$ Keers, J.F. and Wescott, P. 1977. A computer-based model for design rainfall in the United Kingdom: Meteorological Office Scientific Paper No. 36.

[^2]: \dagger For the 1 H research catchments, the monthly totals are subsequently updated using areal figures derived from a dease local raingauge network - As a consequence of leap years the runoff and mean low percentage may not be idenucal.

[^3]: - Additional data are beld on the flood peak arctives (page 134).
 ' Flood Studies Report 1975. Natural Environment Research Councal (5 vols. reprinted 1993).

[^4]: Station and catchment description
 Velocity-area siation. Straight reach (width: 35 m), nutural control. Flood flows spill over right bank. Public water supply impounding reservoirs in upland area whero there is mostly hill tarming Tregaron bog (10 sq. km .) has partial effect on flows: sensibly natural regirne Geology - mainly Ordovician and Silurian deposits. Dairy farming predominates in southern area Forest 5\%. Peaty soils on hills, seasonally wet. Apart from

[^5]: 993 runoff is 121% of previous mean

[^6]: Station type: MIS

[^7]: Note: In line with Natural Environmental Research Council policy, the provision of its own experimental catchment data now lodged with the National River Flow Archive confers only a right to use the data. Ownership of the data, or the associated Intellectual Property Rights, will not normally be transferred. Data received from the NRFA must not be sold, or passed on to any third party, but reproduction is permitted for the purposes of any fair dealing in the course of study, research, public debate or instruction, provided the source is acknowledged. However the bulk of the data held on the Archive is received from measuring authorities operating under Government legislation and is made available under the Access to Environmental Data Regulations.

 Through the use of quality control procedures every effort is made to maintain and improve the quality of data on the NRFA. However, the data derive from a variety of sources and, for historical data sets especially, the provenance and precision may be uncertain. Therefore the NRFA cannot guarantee the validity or accuracy of the data and NERC accepts no liability for any loss or damage, cost or claims'arising directly or indirectly from their use.

 * The format of this retrieval is currently under review. It is expected that each of the component plots will, in 1995 , be available to users in a variety of styles - for details contact the National Water Archive Office.

[^8]: aquifer of minor importance only
 ** aquifer producing small, but useful, local supplies
 *** aquifer of local importance, often providing public supplies
 **** aquifer of major importance

[^9]: Sites marked '**' are indicator wells; well hydrographs are shown in Figure 9. Where the annual percentage recharge cannot be estimated, the entry

[^10]: * Over recent years nitrate values for the featured Severn-Trent NRA sites have been reported as TON.

[^11]: * In all cases this refers to the temporal mean rather than the flow-weighted average.

[^12]: *Loose-leaf versions of the Hydrological data UK publications have been discontinued.

