Hydrological data UK

1991 YEARBOOK

INSTITUTE OF HYDROLOGY•BRITISH GEOLOGICAL SURVEY

HYDROLOGICAL DATA UNITED KINGDOM

1991

YEARBOOK

The acquisition, archiving and validation of the bulk of the hydrological data featured in this Yearbook is undertaken as part of the National Water Archive (NWA) project at the Institute of Hydrology. Under the leadership of M L Lees (NWA Manager) a team of regional representatives is responsible for liaison with the measuring authorities (see page 172). In addition to the editorial staff, this team currently includes:-

N W Arnell, D B Boorman, J D Dixon, I G Littlewood, S C Loader and D G Morris.
The style and contents of the Yearbook, and the scope of the data retrieval service which complements it, reflects a decade of archive system development supervised initially by D G Morris and latterly by R MacRuiri.

The British Geological Survey, is responsible for the acquisition and archiving of the featured groundwater level data. R A Monkhouse is the Groundwater Level Archive manager and provides hydrogeological appraisal and advice relating to the groundwater material which appears in the Yearbook. The associated archiving and measuring authority liaison duties are undertaken by P Doorgakant.

S Black was responsible for the preparation of the text and supervises the sale and distribution of the Hydrological data UK publications through the National Water Archive Office at the Institute of Hydrology.

Design: P A Benoist
Graphics: J J Carr
Typeset and printed in the United Kingdom by Burgess.
The materials used in the production of this volume are made from the pulp of softwood trees in managed Scandinavian forests, in which every tree cut down is replaced by at least one more, thus replenishing the Earth's resources.

Cover: The River Ver near Redbournbury Mill upstream of St. Albans. Photograph: Terry Marsh

HYDROLOGICAL DATA UNITED KINGDOM

1991 YEARBOOK

An account of
rainfall, river flows, groundwater
levels and river water quality
January to December 1991

FOREWORD

1991 saw a continuation of the very unusual climatic conditions which have characterised much of the United Kingdom since early in 1988. Over the ensuing four years, a substantial disturbance to the average rainfall patterns heavily accentuated the normal contrasts between the wettest and driest parts of the country. Whilst northern Scotland has had to cope with a number of notable flood events, eastern and southern England has been afflicted with a very persistent rainfall deficiency. The threat posed by the remarkably protracted drought in the English lowlands to water resources and the aquatic environment has attracted widespread scientific and public debate. The need for comprehensive data and authoritative documentation to inform this debate has never been greater. A principal function of the Hydrological data UK series is to disseminate information relating to contemporary hydrological conditions and to provide both a perspective within which to examine the recent exceptional events and a benchmark against which any future changes may be assessed.

The Hydrological data UK series of Yearbooks and reports was launched in 1985 as a joint venture by the Institute of Hydrology (IH) and the British Geological Survey (BGS); both organisations are component bodies of the Natural Environment Research Council (NERC). Such a collaborative enterprise arose naturally from the close liaison maintained between those responsible for the management of the national River Flow Archive at IH, and their counterparts at BGS concerned with the national Groundwater Level Archive. This collaboration was reinforced in 1992 by the inclusion of both archives as core datasets in the newly created National Water Archive, the latest of NERC's Designated Data Centres. A major objective of these Centres is to increase the use and utility of basic archived data. I believe that the National Water Archive will make a major contribution to the development of water science and, ultimately, to water management in the UK.

The work of the national River Flow and Groundwater Level Archives is overseen by a steering committee which includes representatives of Government departments, the National Rivers Authority and the water industry from England, Wales, Scotland and Northern Ireland.

Professor W.B. Wilkinson
Director, Institute of Hydrology

CONTENTS

Page
INTRODUCTION 1
SCOPE AND SOURCES OF INFORMATION 2
Rainfall and climatological data 2
HYDROLOGICAL REVIEW 3
Summary 3
Rainfall 3
Evaporation and soil moisture deficits 10
Runoff 13
Groundwater 23
1991 Hydrological diary 27
RIVER FLOW DATA 29
Computation and accuracy of gauged flows 29
Scope of the flow data tabulations 29
Gauging station location map 34
Daily flow tables 36
Monthly flow tables 93
THE NATIONAL RIVER FLOW ARCHIVE
DATA RETRIEVAL SERVICE 137
List of surface water retrieval options 138
Concise register of gauging stations 140
GROUNDWATER LEVEL DATA 147
Background 147
The observation borehole network 147
Measurement and recording of groundwater levels 147
Index borehole location map 149
Register of selected groundwater observation wells 150
Network changes 150
Hydrographs of groundwater level fluctuations 152
The Register 156
THE NATIONAL GROUNDWATER LEVEL ARCHIVE DATA RETRIEVAL SERVICE 159
List of groundwater retrieval options 160
SURFACE WATER QUALITY DATA 161
Background 161
Data retrieval 161
Water quality monitoring station location map 161
Scope of the water quality data tabulations 162
Water quality data tables 164
DIRECTORY OF MEASURING AUTHORITIES 172
PUBLICATIONS in the Hydrological data UK series, 174
ABBREVIATIONS 175

The 1991 Yearbook is the third edition since responsibility for the publication of data, upon which assessments of water resources in England and Wales may be made, was transferred (under the Water Act 1989) from the Department of the Environment to the National Rivers Authority.

It is the eleventh Yearbook in the Hydrological data UK series and the first volume in the third fiveyear publication cycle (1991-95).

The 1991 Yearbook represents the thirty-second edition in the series of surface water publications which began with the 1935~36 Surface Water Yearbook. As a result of the incorporation of groundwater data in the Yearbook, this volume is also the fifteenth edition in the series of groundwater data publications which began with the 1964-66 Groundwater Yearbook.

Apart from summary information, surface water and groundwater data on a national basis were published separately prior to the introduction of the Hydrological data UK series. In common with the earlier editions, the 1991 Yearbook brings together the principal data sets relating to river flow, groundwater levels and areal rainfall throughout the United Kingdom. Also included are water quality data for a selection of monitoring sites throughout the UK. A comprehensive hydrological review of the year includes an examination of the spatial and temporal variations in the intensity of the exceptionally persistent drought in eastern and southern Britain.

An outline description is given of the national River Flow and Groundwater Level Archives and the data retrieval facilities which complement them.

Publication of river flow data for Great Britain started with the series of Surface Water Yearbooks. The first edition, which was published in 1938 for the water-year (October-September) 1935-36, also included selected data for the previous fifteen years; the edition for 1936-37 followed in 1939. Both these publications were prepared under the direction of the Inland Water Survey Committee. Assisted by the Scottish Office, the Committee continued to publish hydrological data after the Second World War; the Yearbook for the period 1937-45 was published as a single volume in 1952. Due to economic stringency, the Survey was suspended in 1952 for a period of two years but was then re-formed as the Surface Water Survey Centre of Great Britain. A Yearbook covering the years 1945-53 was published in 1955.

In 1964 the Survey was transferred to the Water Resources Board where it remained until the Board was disbanded in 1974. The work of collecting and
publishing surface water information in England and Wales then passed to the newly created Water Data Unit of the Department of the Environment (DoE). Yearbooks were published jointly each year by these organisations and the Scottish Office for the wateryears 1953-54 to 1965-66; thereafter information for the five calendar years 1966 to 1970 was published in one volume in 1974. Following editions were renamed 'Surface Water: United Kingdom' to mark the inclusion of the first records from Northern Ireland and in recognition of the move away from single year volumes. Two volumes of Surface Water: United Kingdom, covering the years 1971-73 and 1974-76 were published jointly by the Water Data Unit, the Scottish Development Department (now The Scottish Office Environment Department) and the Department of the Environment for Northern Ireland.

Following the transfer of the Surface Water Archive to the Natural Environment Research Council in 1982, the final edition of Surface Water: United Kingdom, for the years 1977-80, was prepared by the Institute of Hydrology at the request of the Water Directorate of the Department of the Environment, and published in 1983.

The 1981 and 1982 Yearbooks were prepared concurrently and were, in 1985, the first Yearbooks published by the Natural Environment Research Council. Further Yearbooks - the editions for 1983 to 1990 - were published over the following six years.

A compilation of 'Groundwater levels in England during 1963', which was produced by the Geological Survey of Great Britain (prior to its incorporation into the Institute of Geological Sciences), was the precursor to the publication of groundwater level data on a national basis. The more formal Groundwater Yearbook series was instigated by the Water Resources Board which published the inaugural edition and a further volume for 1967, both covering England and Wales. In 1975 a third Yearbook, for 1968-70, was published by the Water Data Unit. The Groundwater: United Kingdom series was introduced in 1978 with the production of the 1971-73 volume, also published by the Water Data Unit.

Following the transfer of the Groundwater Archive to the Institute of Geological Sciences (now the British Geological Survey), the second edition of Groundwater: United Kingdom, covering the period 1974-80, was prepared by the Institute of Hydrology at the request of the Water Directorate of the Department of the Environment. Subsequently, groundwater level data have been included in the Hydrological data UK publications.

SCOPE AND SOURCES OF INFORMATION

The format of the 1991 Yearbook follows that of the recent editions in the Hydrological data UK series but an increased volume of basic data has been incorporated and some of the graphical presentations have been enhanced. The Hydrological Review examines rainfall, evaporation, soil moisture, river flow and groundwater conditions throughout the year. The following data sections provide detailed coverage for the featured year, and for comparison purposes, period of record reference statistics are also given.

Emphasis is placed upon ready access to basic data both within the Yearbook and through the complementary data retrieval facilities.

A companion publication to the individual Yearbooks - the 'Hydrometric Register and Statistics' volume - provides a comprehensive reference source for hydrometric information which does not change materially from year to year; the second edition (for 1986-90) is being published concurrently with this yearbook, see page 174 .

The Yearbook contents have been abstracted primarily from the National River Flow and Groundwater Level Archives. Water quality data have been provided from the Harmonised Monitoring Archive which is currently maintained by Her Majesty's Inspectorate of Pollution (DoE). Similar data from Northern Ireland have been provided by the Environmental Protection Division of the Department of the Environment (NI).

The National Rivers Authority (NRA) is responsible for the initial collection and processing of most river flow and groundwater level data in England and Wales. Following the 1989 Water Act, the new Water Service PLCs assumed responsibility
for a small number of important monitoring sites for which historical - and a few contemporary - data sets are held on the River Flow and Groundwater Level Archives. The seven River Purification Boards (RPBs) are responsible for most hydrometric data acquisition in Scotland. In Northern Ireland responsibility is shared between the Departments of Environment and Agriculture. These organisations also supplied valuable material relating to significant hydrological events during 1991.

The majority of the rainfall data, and some of the material incorporated in the Hydrological Review, has been provided by the Meteorological Office. For historical comparisons of the rainfall over England and Wales, a data set based upon the homogeneous series derived by the Climatic Research Unit of the University of East Anglia has been used.

Additional material has been provided by various research bodies and public undertakings.

Most of the rainfall data published in the Hydrological data UK series are in the form of monthly rainfall totals for catchment areas (see page 30). For details of monthly and annual rainfalls associated with individual raingauge sites reference should be made to the 'RAINFALL' series published regularly by the Met. Office. Brief details of the contents and availability of this publication, together with a short description of other rainfall and climatological data sets published by the Met. Office, are given below.

The National Environment Research Council acknowledges and extends its appreciation to all who have assisted in the collection of information for this publication.

Rainfall and Climatological Data

The Meteorological Office maintains the national archives of rainfall and climatological data at its headquarters at Bracknell. Specific items, such as daily and hourly rainfalls from gauges and radar (from the PARAGON system) may be obtained by application to the Commercial Services Division. Summaries of the data are also published regularly and a list of current titles is given below:

1. RAINFALL 19_/_

This contains monthly and annual rainfall totals for some 5000 raingauges and is available approximately one year after the title year at a cost of $£ 9$ (for the 1991 edition).
2. Snow Survey of Great Britain 19__-

This contains the daily and monthly reports of snow conditions from selected stations covering the winter and costs about $£ 5$.
3. Monthly Weather Report

This is published monthly and contains climato-
logical means for more than 550 UK observing stations; in addition an introduction and annual summary are produced yearly. The publication should be available six to nine months after the month concerned, costs around $\{3$ and is available only from Her Majesty's Stationery Office (HMSO) or their stockists.
4. MORECS (Meteorological Office Rainfall and Evaporation Calculation System).
This is a weekly issue of maps and tables of evaporation, soil moisture deficit, effective rainfall and the hydrometeorological variables used to calculate them. The data are used to provide values for 40 km squares and various sets of maps and tables are available according to customer requirements.
Further information about these and other publications may be obtained from:

Meteorological Office, Commercial Services, Johnson House, London Road, Bracknell, Berks RG12 2SY Tel: (0344) 420242

Summary

Following the remarkable hydrological and climatological conditions which characterised much of the preceding two years, 1991 saw a return to somewhat more familiar weather patterns. It was a quiet year for floods and there was no repetition of the inordinate temporal variations in rates of runoff and aquifer recharge which were a feature of 1990 especially. However, although less clear-cut than in 1989 and 1990, a strong accentuation in the normal north-west to south-east rainfall gradient across Britain was again evident in 1991. The exaggeration in the normal regional rainfall contrasts has been a persistent feature of the United Kingdom climate over much of the period beginning in the summer of 1988. As a consequence, long term rainfall deficiencies across a large proportion of eastern Britain already substantial at the end of 1990 - increased over 1991 as a whole.

Generally, a significant amelioration in the drought conditions which afflicted much of eastern, central and southern England occurred throughout the first half of the year although May was notably dry. From August, however, dry conditions prevailed and the drought re-intensified into the winter of 1991/92. As in 1989 and 1990, the drought achieved its greatest severity in those regions where rainfall, even in an average year, provides only a modest surplus over evaporation losses. Annual runoff totals for 1991 in many eastern catchments were without recorded precedent and, by the late autumn, river flows were exceptionally depressed throughout much of the English lowlands.

The drought was even more severe in groundwater terms. Near the eastern seaboard little substantial groundwater replenishment occurred over the period October 1990 to March 1991, the third successive winter with very meagre recharge in some parts of the Chalk outcrop. Following a sustained summer and autumn recession in 1991, groundwater levels were the lowest on record across the greater part of the English lowlands (and beyond). Evidence from a number of observation boreholes indicates that, in parts of eastern England, the late-1991 water-table depression is unparalleled since at least the turn of the century. As a consequence, many spring sources failed in 1991 and river headwaters contracted further representing a substantial loss of amenity and aquatic habitat.

1991 served to underline the particular vulnerability of lowland England - where population, commercial activity and intensive agriculture are concentrated - to periods of long term rainfall deficiency.

Rainfall

The 1991 rainfall total for the United Kingdom 1020 mm - is well within the normal range but, nonetheless, is the lowest countrywide total for 15 years. England and Wales registered its driest year since 1975 and the 1991 rainfall total ranks among the lowest dozen this century. By contrast, 1991 saw a continuation of a protracted wet phase in most of Scotland. A few Highland localities recorded annual precipitation totals exceeding 5000 mm but rainfall totals were generally much more modest than in 1990. For Scotland as a whole, rainfall was marginally above average, just maintaining a very notable sequence - above average rainfall totals have been registered in all but one of the last 13 years; the annual average over this period has been around 10 per cent greater than the 1941-70 mean. Taken together, the three years beginning with 1989 registered rainfall anomalies of more than 20 per cent over much of the Highlands. However, rainfall amounts declined very steeply to the east; near the eastern seaboard rainfall totals were considerably below average for each of the three years up to and including 1991.

The rainfall pattern throughout the United Kingdom relative to the 1941-70 average is shown in Figure 1. The range of isopleths testifies to a slightly more subdued areal variability than in either 1989 or 1990 but regional and local contrasts were again significant. The prevalence of westerly and southwesterly airstreams tended to accentuate the effect of relief on rainfall and convectional rainfall contributed little to precipitation totals in most areas. These factors help to explain the very moderate annual rainfall totals throughout much of eastern and central Britain. Rain-shadow effects were also very evident, in northern Scotland especially but also, for example, in the lee of the mountains of north Wales. Figure 2 maps the actual rainfall totals in 1991. As in 1990 exceptionally low annual totals were common in eastern England where a few districts recorded less than 400 mm ; Lowest Hilton (Cambridgeshire) registered a mere 345 mm . On a percentage basis, shortfalls relative to the 1941-70 average were greatest adjacent to the Humber estuary where a number of localities registered less than 65 per cent of the 1941-70 average. Dry conditions also characterised the Midlands and a zone extending westwards to the Cheshire Plain and south Lancashire - in the Manchester area, for instance, 1991 was the driest year since 1887. Parts of Northern Ireland were also particularly dry.

Table 1 provides a breakdown of monthly and half-yearly rainfall totals in 1991 both on a countrywide basis and according to the major administrative divisions within the water industry (see frontis-

TABLE 1 1991 RAINFALL IN MM AND AS A PERCENTAGE OF THE 1941-70 AVERAGE

1991				m	n	**			n		v	-	ν	Year	$\begin{gathered} \text { Oct- } \\ \text { Mer } \\ \text { 1990/91 } \end{gathered}$	$\begin{gathered} \text { Apr- } \\ \text { Sep } \\ 1991 \end{gathered}$
United	mm	111	70	94	89	22	102	75	43	84	107	140	83	1020	630	415
Kingdom	\%	108	90	134	129	29	142	86	42	82	101	125	73	94	108	82
England and	mm	92	65	75	69	14	93	68	31	62	77	95	49	790	503	337
Wales	\%	107	100	127	119	21	153	93	34	75	93	98	54	87	105	78
Scotland	mm	151	83	127	123	41	122	91	67	131	165	227	141	1469	867	575
	$\%$	110	80	138	137	45	133	81	52	96	111	160	90	103	111	88
Northern	mm	98	55	109	115	10	93	63	38	60	109	143	119	1012	669	379
Ireland	\%	94	73	156	169	14	118	68	37	56	102	140	104	92	117	72

North West	mm	98	94	110	72	18	105	67	65	69	125	169	119	1106	701	396
(NRA)	\%	87	116	153	94	22	127	65	52	56	106	140	99	91	112	67
Northumbria	mm	83	113	85	41	22	69	53	36	42	75	109	78	806	576	263
(NRA)	\%	104	171	163	75	34	113	69	36	53	100	116	104	92	130	60
Severn-Trent	mm	77	43	59	67	11	74	77	21	54	55	68	39	645	411	304
(NRA)	\%	112	81	113	129	17	132	119	26	81	85	86	56	83	106	79
Yorkshire	mm	71	88	63	49	14	73	36	21	40	63	94	62	674	490	233
(NRA)	\%	92	137	119	87	23	126	51	23	56	91	106	84	81	115	57
Anglian	mm	44	39	29	45	13	77	38	18	63	26	54	24	470	263	254
(NRA)	\%	85	93	73	113	28	157	67	28	121	50	87	45	77	87	82
Thames	mm	80	38	45	63	13	96	79	18	52	36	66	16	602	323	321
(NRA)	\%	129	81	98	137	23	185	132	26	84	56	90	24	86	90	93
Southern	mm	98	39	59	56	17	125	88	15	51	51	81	23	703	429	352
(NRA)	\%	129	68	113	117	31	250	149	21	72	65	86	28	89	98	99
Wessex	mm	108	40	81	72	10	107	73	19	71	83	72	30	766	'445	352
(NRA)	\%	129	68	140	133	15	198	118	23	90	101	74	33	88	95	88
South West	mm	153	82	127	100	9	127	90	32	85	123	112	52	1092	720	443
(NRA)	\%	119	91	151	141	11	195	107	32	82	109	84	39	91	105	87
Welsh	mm	151	94	127	124	15	111	97	54	85	154	142	65	1218	799	486
(NRA)	$\%$	111	98	146	144	17	135	102	45	68	119	99	45	91	109	81

Highland	mm	180	71	141	131	63	125	105	86	182	193	305	166	1748	1005	692
R.P.B.	\%	110	53	124	115	61	114	83	58	115	104	180	85	102	104	91
North East	mm	58	77	81	62	46	131	57	34	58	120	133	53	910	546	388
R.P.B.	\%	64	104	131	102	60	187	62	32	67	124	129	52	89	103	79
Tay	mm	154	90	117	110	23	135	93	40	111	155	154	97	1279	759	512
R.P.B.	\%	130	98	143	147	24	163	91	34	97	127	129	72	102	114	87
Forth	mm	133	86	103	90	18	110	97	38	103	111	124	108	1121	715	456
R.P.B.	\%	134	112	149	132	21	147	99	33	95	105	115	99	100	126	83
Clyde	mm	187	90	156	184	33	129	108	87	157	193	274	208	1806	1054	698
R.P.B.	\%	116	80	149	179	34	125	83	61	90	105	164	112	108	115	93
Tweed	mm	110	102	93	62	21	90	65	36	67	101	127	92	966	669	341
R.P.B.	\%	118	148	160	102	28	132	73	32	72	115	122	102	96	133	68
Solway	mm	144	108	150	148	17	122	77	69	81	173	203	162	1454	889	514
R.P.B.	\%	103	116	165	168	19	136	70	53	54	120	140	107	102	116	78
Western Isles	mm	136	68	104	80	48	68	76	87	147	154	240	124	1332	727	506
Orkney and	\%	100	66	113	96	71	89	90	93	117	107	175	81	103	95	95

piece). The main features of the temporal distribution of rainfall during 1991 were the wet conditions in the late winter and early spring, especially in western and northern Britain, a further unsettled interlude in the summer and notably dry conditions from August culminating in an exceptionally dry end to the year. Within individual regions these general characteristics were evident to a greater or lesser degree but in the English lowlands the wet episodes were of limited duration and, as in the previous three years, of less hydrological significance than the extended periods of low or exceptionally low rainfall.

Winter (December 1990-February 1991) rainfall was above average in northern Britain and well within the normal range, albeit appreciably below average, in most southern regions. The combined January and February rainfall total in the English lowlands closely approached the 1941-70 mean but did little to redress the exceptional accumulated rainfall deficiencies built up from the summer of 1988. Considering the full winter half-year (Octo-ber-March), precipitation totals were well within the normal range in most regions but, importantly, fell considerably below average in those areas where the drought had achieved its greatest intensity during 1990. Parts of Lincolnshire and Cambridgeshire, for instance, registered only around three-quarters of the average winter rainfall. Such a shortfall within a normal sequence of winters would not be a matter of concern. Following as it did an extended drought period, it signalled a further year of stress on water resources and the aquatic environment.

Unsettled conditions characterised the English lowlands in April, but although rainfall deficiencies were modestly reduced. the rain was too little to impact significantly on river flows or groundwater levels. May was the driest this century in England and Wales and, as in 1990, the hot, dry conditions foreshadowed a period of very low river flows and groundwater levels. In meteorological terms an amelioration of the drought occurred in June and July when rainfall was recorded on the majority of days in many areas. Taken together, the two months were the wettest June/July pairing in the Thames Valley for over 50 years and, with modest soil moisture deficits, an autumn recovery in runoff and recharge rates was anticipated. However in August, earlier in East Anglia, the drought reasserted itself.

Rainfall over the summer half-year tended to be very unevenly distributed but overall the regional six-month rainfall totals were generally well below average, notably so in northern England. The ratio of summer half-year (April-September) rainfall to that for the preceding winter half-year for England and Wales was close to $1: 1.5$, the fourth successive year that the ratio comfortably exceeded the average for the period 1941-70. This average has been surpassed in every year bar one since 1974 and the ratio over
the 1987-1991 period is without parallel in the last 200 years; in much of the nineteenth century values close to unity were typical. This tendency for the half-yearly partitioning of rainfall to favour the winter period, when evaporation losses are very modest, has considerable water resources benefits. These can however be counterbalanced when, as in 1990, a dry, hot spring and summer produces a very early onset of the seasonal decline in river flows and generates heavy water demand.

The dry end to the 1991 summer half-year heralded below average autumn rainfall, and a notably dry beginning to the winter served to ensure that the impact of an already very extended drought would continue well into 1992 at least. Some very notable rainfall deficiencies were registered during the second half of 1991. For England and Wales as a whole, drier August-December periods this century have occurred only in 1947 and 1933. The five-month rainfall total in parts of south-eastern England was below half the 1941-70 average. Yorkshire recorded only a little over half of average rainfall from July to September but conditions became relatively unsettled thereafter. A particularly vigorous frontal system - with associated thundery activity - terminated a prolonged dry spell on the 26-28th September in southern Britain. The scope and intensity of the precipitation on the 28th is confirmed by Table 2 which lists all daily rainfall totals for Britain in 1991 with associated return periods in excess of 100 years (those greater than 160 years are termed 'very rare' by the Meteorological Office). Thereafter, relatively dry conditions again prevailed.

Notable though the post-July 1992 deficiencies are, the severity of the drought in lowland Britain particularly in groundwater terms - reflects a shortage of rainfall extending over a far longer period. In much of eastern. England the modest autumn and early winter rainfall totals in 1991 overlay a substantial and remarkably persistent deficiency which can be traced back to the latespring of 1988. For Great Britain as a whole the subsequent period has seen near-average rainfall but regional contrasts have been extreme. These are well illustrated on Figure 3 which maps MORECS (Meteorological Office Rainfall and Evaporation Calculation System) rainfall, as a percentage of the average for each 40 kilometre square, for the period August 1988 to December 1991. Western Scotland was exceptionally wet over this timespan with large areas registering $15-20$ per cent above average rainfall. By contrast a few districts in eastern England experienced only around three-quarters of average rainfall. Long term rainfall data suggest that such notable and persistent anomalies would be expected less frequently, on average, than once in fifty years.

Whilst the protracted lowland drought has been punctuated by a number of wet interludes - most

TABLE 2 DAILY RAINFALLS IN 1991 WITH RETURN PERIODS EXCEEDING 100 YEARS

Date (Rain-day)	Station Number	Name	County	Grid Reference	Amount (mm)	Return Period (1 in X years)*
22.02.91	521437	Llanymawddwy, Troed-y-Foel	Gwynedd	SH910195	133.5	130
22.02.91	521469	Llanymawddwy	Gwynedd	SH901187	133.5	140
22.02 .91	542519	Tryweryn Dam No. 2	Gwynedd	SH881399	E126.7	160
28.09 .91	218699	Framlingham	Suffolk	TM304684	82.3	140
28.09.91	346876	Branksome, Bourne Valley	Dorset	SZ060925	E113.9	540
28.09 .91	346992	Poole Nuffield Road	Dorset	SZ016934	E101.3	260
28.09 .91	347013	Poole	Dorset	SZ006937	109.9	400
28.09 .91	398896	New Cross	Somerset	ST416191	83.0	130
28.09 .91	399762	Curry Rivel	Somerset	ST387250	80.5	130
28.09 .91	403138	East Lyng	Somerset	ST333287	93.3	240
28.09 .91	403143	Currymore .	Somerset	ST344289	106.2	510
28.09.91	403490	Durleigh Reservoir	Somerset	ST275363	84.5	110
28.09.91	470042	Velindre	Powys	SO186371	95.7	180
28.09.91	470080	Tregoyd	Powys	SO196378	87.3	110

*Based on the methods and findings of the Flood Studies Report Vol. ${ }^{1}$ (as implemented on the Meteorological Office Computer ${ }^{2}$) whereby a return period can be assigned to the catch at a particular raingauge. Those exceeding a 160 year return period are classified as 'very rare' events (the return periods in Table 2 have been rounded to the nearest 10 years.)
$\mathrm{E}=$ Estimated.
${ }^{1}$ Flood Studies Report 1975. Natural Environment Research Council (5 vols).
${ }^{2}$ Keers, J.F. and Wescott, P. 1977. A computer-based model for design rainfall in the United Kingdom: Meteorological Office Scientific Paper No. 36.

Figure 3. August 1988 to December 1991 rainfall as a percentage of the 1961-90 average

Data source: MORECS
notably the winter (December-February) of 1989/90 - the accumulated shortage of rainfall, within a number of timeframes, is without recent parallel. For the 22 -month period ending in December 1991 rainfall for England and Wales was around 20 per cent below average. More significantly, this timespan constitutes the second driest 22 -month period (starting in March) in the entire England and Wales rainfall series which extends back to 1767 . For accumulations beginning in any month, drier sequences this century are restricted to the droughts of 1975/76, 1933/34 and 1921/22. The very extended nature of the drought is underlined by the deficiencies over the period beginning in August 1988. The rainfall total for England and Wales up to the end of 1991, when the drought was still intensifying, is comparable to the 41 -month minima for the twentieth century - these were registered at the end of the summer in both 1944 and 1976. Appreciably drier periods in the 41 -month timeframe occurred only during the protracted droughts of the 1780 s, 1800 s and 1850s. The 1988-91 shortfalls were modest in parts of northern England, Wales and the West Country but exceptional in the east. The percentage rainfall figures and the associated return period estimates presented in Table 3 provide a guide both to the distinct regional variations in drought intensity and the spatial extent of the remarkably wet phase in western Scotland.

Substantial differences in drought severity could be recognised within the National River Authority regions - this was especially true of the SevernTrent and Yorkshire regions. The areal figures given in Table 3 also disguise the magnitude of the rainfall deficiency near to the north-eastern seaboard, in

TABLE 3 NATIONAL AND REGIONAL RAINFALL ACCUMULATIONS FOR SELECTED DURATIONS WITH ESTIMATES OF RETURN PERIODS

		$\begin{aligned} & \text { Aug- } \\ & \text { Dec } 91 \end{aligned}$	Est.R.P. (yrs)	$\begin{gathered} \text { Mar } 90- \\ \text { Dec } 91 \end{gathered}$	Est.R.P. (yrs)	May 89 - Dec 91	$\begin{aligned} & \text { Est.R.P. } \\ & \text { (yrs) } \end{aligned}$	$\begin{aligned} & \text { Aug } 88- \\ & \operatorname{Dec} 91^{\circ} \end{aligned}$	$\underset{\text { (yrs) }}{\text { Est.R.P. }}$
England and	mm,	314		1353		2132		2775	
Wales	\% LTA	71	10-20	81	40-60	86	15-25	87	20-30
NRA REGIONS									
North West	mm	547		1977		2993		4003	
	\% LTA	90	<	88	5-10	91	5-10	94	
Northumbria	mm	340		1424		2041		2640	
	\% LTA	80	5-10	88	5-10	86	20-30	86	25-45
Severn-Trent	mm	237		1117		1801		2306	
	\% LTA	66	15-25	78	40-60	86	10-25	86	20-30.
Yorkshire	mm	280		1221		1863		2447	
	\% LTA	71	10-20	80	30-50	83	30-60	85	30-60
Anglian	mm	185		815		1293		1672	
	\% LTA	65	15-25	72	>200	78	150-200	79	>200
Thames	mm	188		949		1560		2009	
	\% LTA	56	30-60	73	90-140	82	30-60	82	40-70
Southern	mm	221		1145		1813		2296	
	\% LTA	56	30-60	79	25-45	84	15-25	83	40-60
Wessex	mm	275		1226		2014		2603	
	\% LTA	64	10-20	77	40-60	86	10-20	86	15-25
South West	mm	404		1834		2963		3839	
	\% LTA	69	10-20	85	10-20	92		92	5-10
Welsh	mm	500		2065		3301		4322	
	\% LTA	76	5-10	85	10-20	92	5-10	93	5-10
Scotland	mm	731		2843		4188		5623	
	\% LTA	103	<5	109	5-10	108	5-10	112	40-60

RIVER PURIFICATION BOARDS

Highland	mm	932		3583		5250		7119	
	\% LTA	109	≤ 5	114	10-20	113	20-40	118	≤ 200
North East	mm	398		1733		2440		3184	
	\% LTA	80	5-10	92	5-10	88	15-25	89	15-25
Tay	mm	557		2267		3419		4631	
	\% LTA	92		99		101	≤ 5	106	
Forth	mm	484		2075		3089		4112	
	\% LTA	88		101	≤ 5	102	≤ 5	105	≤ 5
Tweed	mm	423		1747		2545		3268	
	\% LTA	87		95	-	93	-	93	5-10
Solway	mm	688		2565		3828		5144	
	\% LTA	95		98		99		103	≤ 5
Clyde	mm	919		3463		5115		6833	
	\% LTA	108	≤ 5	113	10-20	113	20-35	117	130-180
R.P. $=$ Return							\% LTA	age of	1-70 avera

Return period assessments are based on tables provided by the Meteorological Office*. These assume a start in a specified month; return periods for a start in any month may be expected to be an order of magnitude less - for the longest durations the return period estimates converge. "Wet" return periods are underlined. The tables reflect rainfall totals over the period 1911-70 only and assume a sensibly stable climate.
*Tabony, R.C., 1977, The variability of long duration rainfall over Great Britain, Scientific Paper No. 37, Meteorological Office (HMSO).
parts of Northumbria and the Grampian Region especially. Overall, the drought achieved its greatest severity, thus far, in a zone from Humberside to Bedfordshire. For some districts inland from the Wash both 1990 and 1991 rank amongst the three driest years this century. Over a larger proportion of East Anglia only two or three months with above average rainfall were experienced in the twenty-two months to December 1991. For some localities the rainfall deficiency from the late summer of 1988 to the end of 1991 was the equivalent of about a year's average rainfall; this was true of parts of the Thames Valley also. At the end of 1991 the drought showed no signs of ending and had already extended across twelve seasons. This, together with the persistently warm conditions, inevitably produced considerable hydrological stress (see pages 13 to 26) but an overall appraisal of the impact of the rainfall deficiency and an objective comparison with important historical droughts can only be undertaken following a full termination of the drought.

Evaporation and Soil Moisture Deficits

In 1991 temperatures and sunshine hours for much of Great Britain were well within the normal range in contrast to the record or near-record totals over the preceding two years. Nonetheless, potential evaporation (PE) losses were above average in most regions for the fourth successive year. Actual evaporation (AE) losses for 1991 were also relatively close to the long term average except near to the north-eastern seaboard where annual totals in some areas were the lowest in the 30 -year MORECS series. Soil moisture deficits (SMDs) were generally much less notable than in 1989 and 1990 throughout the spring and summer but the persistence of substantial deficits well into the autumn, and beyond in the lowlands, was an important factor in extending an already very protracted hydrological drought. In particular, the dry soils over the latter half of 1991 in eastern and southern England, where most of the major aquifer outcrops are located, served once again to greatly reduce the period over which groundwater recharge could occur.

Figure 4 maps 1991 MORECS potential evaporation totals for Britain. Over most of southern Britain PE losses were moderate by comparison with the exceptionally high totals recorded during 1989 and 1990. Nonetheless, in large parts of lowland England PE losses approached, and in some localities exceeded, 600 mm ; especially high annual totals were registered adjacent to the Thames Estuary and the Wash. By contrast, losses in the Scottish Highlands and parts of the Southern Uplands were close to 400 mm . Throughout most of southern Britain annual PE totals were appreciably above average but typically $80-100 \mathrm{~mm}$ or more below the remarkable totals

Figure 4. Potential evaporation (for a grass cover) in 1991 Data source: MORECS
calculated for 1989 and 1990. Conversely, AE totals in the English lowlands, although displaying considerable spatial variability, were, away from the London area, well below normal but still appreciably greater than in 1990 and 1976 - both exceptionally warm years when persistently high SMDs served to greatly inhibit transpiration losses.

Figure 5 illustrates the variation in PE, AE and SMDs for five representative MORECS squares; the locations of the featured squares are indicated on Figure 4. The persistence of substantial SMDs through the autumn has been a recurring feature of lowland England from the late 1980s (see, for instance, Square 108 in Figure 5). Whilst in 1991 SMDs were unremarkable through most of the summer they declined only sluggishly and by the end of October remained well above average.

The contrast between 1991 and the preceding two years is well illustrated in Kent (as represented by Square 174) where, following a rapid build-up of soil moisture deficits in May, the ensuing wet, cloudy conditions prevented a repetition of the parched summer soils which typified 1989 and 1990. In these two years significant deficits had become established by the late spring and the soils continued to dry out through the summer; SMDs (for a grass cover) exceeded 80 mm for five or six months of each year over much of lowland England. In 1991 SMDs failed

Figure 5. The variation in potential evaporation, actual evaporation and soil moisture deficits for five MORECS squares
to reach this threshold. As a consequence the shortfall of the annual AE total relative to PE (see Figure 5) was much lower than in the previous two years. Shortfalls were more substantial in a zone from the Thames Estuary to the Humber. As an example, the 1991 PE total for the lower Trent Valley (Square 108) exceeds the corresponding AE total by some 224 mm , around 100 mm greater than the annual average shortfall and closely comparable with the 1989 figure. In western regions both PE and AE losses, for 1991, tended to be well within the normal range (see Squares 55 and 134).

Entering 1991, soils throughout northern and western Britain were wet but appreciable soil moisture deficits were carried over from 1990 for an unusually large area of lowland Britain. Early January deficits were close to 50 mm in the Thames Valley and reached 60 mm in parts of Cambridgeshire. Very low evaporative demands during January allowed soils to moisten further despite the limited precipitation and, following healthy rainfall in February, early spring SMDs were at, or near, zero allowing infiltration to occur in some districts for the first time in about a year. The subsequent build-up of SMDs was gradual. By late April deficits in southern Britain were a little below the long term average for the month-end and some $40-60 \mathrm{~mm}$ below those calculated for the corresponding time in the previous year. Deficits increased briskly in May almost everywhere and by the start of summer had reached $55-80 \mathrm{~mm}$ across the greater part of Britain.

In an average year SMDs build rapidly in June, responding to the warmer weather and increased hours of daylight. However, sustained rainfall in June 1991 moderated, and in some regions reversed, the growth of SMDs - declines of 50 mm relative to late May were registered in parts of southern Britain. By the beginning of July soils throughout much of Scotland, the north especially, were close to saturation. More remarkably, zero deficits characterised a zone close to the Sussex coast at the end of both June and July, the first time such end-of-month values have been registered in the 30 -year MORECS data series.

The low rainfall and above average temperatures during August resulted in a steady and general rise in SMDs. Deficits reached 125 mm (the MORECS maximum for a grass cover) in Lincolnshire, south Humberside and the lower Trent Valley; on average, end-of-month MORECS soil moisture deficits do not reach the 125 mm ceiling anywhere in the UK. The spatial extent of the MORECS squares registering maximum SMDs at the end of August 1991 was, however, very limited in comparison with 1990 when such deficits were found throughout most of southern Britain.

Maximum month-end deficits were registered later in 1991 than in the previous two years and substantial SMDs existed well into autumn. SMDs everywhere continued to build throughout Septem-

Figure 6. Soil moisture deficits (for a grass cover) at the end of October 1991

Data source: MORECS
ber but in southern Britain they declined sharply during the final week as weather conditions became very unsettled. In parts of the Midlands and much of eastern England (extending north along the Scottish seaboard) the late-September deficits were equivalent to six to eight weeks of average autumn rainfall. By the end of October soils were wet over most of western and northern Britain but around the Thames Estuary SMDs remained close to 110 mm (see Figure 6), some $45-55 \mathrm{~mm}$ greater than the long term average for October and $10-30 \mathrm{~mm}$ greater than those computed for the same time in 1990. Although the substantial deficits in eastern England declined steadily through November and December significant year-end deficits remained in many areas; in parts of the Thames Valley they exceeded 80 mm . As in the preceding three years, the dry autumn soils greatly delayed the seasonal recovery in runoff and aquifer recharge rates.

The impact of the recent run of mild winters and mostly warm or hot summers on evaporation rates is readily apparent in Table 4 which ranks annual MORECS PE and AE losses. For the London area, four of the six highest annual PE totals, in a series from 1961, relate to the 1988-91 period. In Cambridgeshire, where in percentage terms PE losses for 1991 were rather more typical of Britain as a whole, the post-1987 annual PE totals do not form such an

TABLE 4 RANKED MORECS ANNUAL PE AND AE TOTALS (FOR A GRASS COVER)

MORECS SQUARE 161 (LONDON)				MORECS SQUARE 128 (CAMBRIDGESHIRE)			
year	$\begin{gathered} \text { PE } \\ (\mathrm{mm}) \end{gathered}$	year	$\begin{gathered} A E \\ (\mathrm{~mm}) \end{gathered}$	year	$\begin{gathered} \mathrm{PE} \\ (\mathrm{~mm}) \end{gathered}$	YEAR	$\underset{(\mathrm{mm})}{\mathrm{AE}}$
1981	506	1976	331	1968	540	1976	317
1978	514	1990	394	1978	543	1990	402
1979	531	1972	402	1981	549	1991	416
1977	536	1978	434	1987	553	1972	421
1980	549	1975	455	1972	555	1964	445
1963	551	1983	463	1963	563	1961	452
1962	551	1979	463	1971	568	1979	462
1968	554	1989	463	1969	569	1978	462
1965	558	1969	465	1977	573	1970	463
1971	561	1961	470	1966	578	1962	464
1987	565	1977	479	1965	579	1984	466
1972	565	1981	479	1979	580	1977	467
1966	571	1984	480	1980	580	1983	473
1982	575	1974	485	1988	581	1963	480
1974	578	1962	486	1962	582	1971	483
1973	578	1964	486	1982	586	1981	483
1964	583	1973	498	1991	587	1975	485
1975	586	1980	500	1985	587	1965	488
1961	586	1970	502	1983	590	1969	489
1983	588	1963	506	1973	591	1989	495
1985	591	1971	514	1984	606	1980	508
1969	594	1982	517	1986	619	1985	512
1986	598	1986	519	1964	621	1973	512
1967	598	1985	521	1974	621	1982	512
1970	612	1991	523	1967	626	1988	516
1988	612	1988	530	1961	636	1968	517
1984	627	1968	532	1970	638	1974	518
1991	637	1965	533	1975	646	1987	518
1976	672	1987	540	1976	683	1967	523
1989	731	1966	547	1989	689	1986	540
1990	741	1967	562	1990	725	1966	543
Av.	587		486		598		478

outstanding cluster. Nonetheless, the three- and four-year evaporation totals, up to and including 1991, are the highest on record. This is true of most of the country, the 1989-91 average annual PE totals commonly exceeding the mean for the preceding record by a considerable margin, around 100 mm in some areas.

A particular climatic feature of the four years beginning with 1988, in a large proportion of southern and eastern Britain especially, has been the extension of summer weather well into the autumn. Consequently SMDs have typically remained high for several months and have not become satisfied in some eastern districts until the following year. Inland from the Thames Estuary, for example, end-of-month SMDs have exceeded 80 mm for at least six months during 1989, 1990 and 1991 - appreciably longer than is normal. As a direct result, aquifer replenishment has been meagre and patchy, a tendency exacerbated in recent years by the dryness of the late winter and early spring in the lowlands. Taken together, these factors have led to a narrowing of the timespan over which significant recharge can
occur, in the east particularly. In turn this has resulted in a continual decline in groundwater levels.

Runoff

Runoff in 1991 for Great Britain totalled approximately 590 mm , significantly below average and the lowest annual total since 1976. In the 1961-90 national runoff series only 1964 and 1973 registered appreciably lower totals. The tendency towards increased GB runoff totals, which was evident over the 1977-87 period, has not been sustained in recent years, nationwide outflows being a little below average in 1989 as well as 1991. A notable feature of the runoff distribution since 1988 has been a strong accentuation in the normal west-to-east runoff gradient across Great Britain. The effect of evaporation losses has been to make the regional runoff contrasts more dramatic than for rainfall. An exaggeration in the normal regional runoff contrasts was very evident in 1989, achieved an extreme expression in 1990 and was again clearly discernible in the 1991 runoff pattern.

Figure 7 provides a guide to 1991 runoff totals expressed as a percentage of the 1961-90 mean. Notwithstanding recent extensions to the gauging station network, the map is least precise in northwestern Scotland, the Welsh mountains and parts of the coastal lowlands of eastern England where gauging station density is low or where data availability for 1991 was limited. In such areas assessments of residual rainfall (rainfall minus evaporation) totals were used to help delineate percentage runoff isopleths. Insufficient confirmatory flow data exist for the Scottish islands, and for Anglesey, to allow runoff to be assessed with any confidence. Due to a delay in the processing of the majority of the 1991 Northern Ireland river flow data, the runoff map covers Great Britain only.

Annual runoff totals for 1991 were close to, or a little above, average in most of Scotland, Wales, the West Country and northern England although in the latter two regions variations between catchments were notable. As in the previous three years especially, elevated runoff rates typified large parts of western Scotland. By contrast annual mean flows were amongst the lowest on record throughout the eastern lowlands. Runoff rates were also depressed over much of the Midlands, notably so throughout the Trent basin. New minimum runoff totals were registered in the headwaters and in the lower valley where most west-bank tributaries recorded very modest average flows in 1991. Average flows were even more depressed in parts of East Anglia and the Thames Valley - unprecedented in many rivers sustained principally from groundwater. Over a substantial proportion of Lincolnshire, Cambridgeshire, Bedfordshire and Norfolk, runoff in 1991

Figure 7. A guide to 1991 runoff expressed as a percentage of the 1961-90 average
was less than a quarter of the long-term average. For many gauging stations the minimum annual runoff totals established in 1976 or 1973 were eclipsed. Over a much wider area, spring-supported rivers commonly recorded substantially less than half the long term average and, typically, monthly runoff totals remained well below average throughout the whole of 1991. The failure of springs and shrinkage of headwater streams was commonplace in the latter half of 1991. For small headwater catchments annual percentage runoff totals will have been considerably lower than is suggested by the regionally smoothed isolines shown on Figure 7. The generalised isopleths also disguise considerable local variations in percentage catchment runoff totals especially where impervious and permeable catchments are in close juxtaposition. This is particularly true of the South-East.

The normal seasonal contrasts in runoff were evident in 1991 for most rivers in western and northern Britain. However only a modest seasonal flow variation could be recognised in most lowland catchments where the wet, late-winter early-spring rainfall helped to maintain baseflows, albeit at a very moderate level, through much of the summer. Subsequently, as in the three previous years, the autumn runoff recovery was a faltering and incomplete affair and from August runoff rates displayed a remarkable consistency in many eastern and southern catchments over the ensuing five months. The stability in monthly runoff totals from the summer of 1991 implies an increasing departure from the average monthly flow through the autumn and early winter. By year-end flows were exceptionally depressed relative to the early winter average in many lowland catchments.

Temporal variations in flow rates during 1991 are illustrated in Figure 8 which shows daily mean flows for eight representative catchments together with the daily extreme flows for the preceding record; the flows for the Kingston gauging station on the River Thames have been adjusted to take account of major upstream abstractions for public supply. The adjacent plots show the flow duration curves for 1991 and for the pre-1991 record; the flow duration curves enable the proportion of time that river flows fall below a given threshold to be identified. Figure 12 (page 34) maps the location of the featured gauging stations. A number of factors complicate comparisons between contemporary and early low flows on the River Thames (see page 21); the duration curves for the Trent and, particularly, the Little Ouse provide a more representative basis for comparisons between the 1991 and period-of-record flow regimes.

Figure 8 provides clear evidence of the disparity between the relatively normal 1991 flow regimes in western and northern catchments and the sustained low flows which characterised the lowlands. In the more maritime regions of the UK, spates and
recessions occurred throughout the year and seasonal contrasts were generally more muted than average, certainly much less exaggerated than in 1990. Winter/summer runoff differences in 1991 were, however, emphasised by the steep recessions which characterised May and the brisk recoveries, in western catchments, during October and November. By contrast, many eastern rivers supported principally from groundwater recorded notably low flows over the October-December period.

In 1991 extreme flood events were rare and the overall flow range was also considerably more restricted than in the previous year. Nonetheless, the range of recorded variation in runoff rates was extended downwards in a large number of eastern, and some southern, catchments. Table 5 provides a summary of river flow and runoff records established in 1991 at primary gauging stations in Great Britain; entries are confined to monitoring sites having at least 20 years of record on the River Flow Archive. A number of entries in Table 5 may be subject to revision as stage-discharge relations are reviewed in the light of recent current-metre gaugings. New hydrometric records of one category or another were established at the majority of gauging stations in 1990. 1991 was less outstanding but gauging stations where low flow records were eclipsed show a wide distribution. But for the low network density and the shortness of most river flow records in the Scottish Highlands, new annual maximum runoff totals would also have featured in Table 5 (the outstanding nature of the longer term runoff accumulations may be judged from the data presented in Table 6).

The new runoff records detailed in Table 5 confirm the unusual nature of 1991 in hydrological terms but the drought can only be properly characterised by examining flow patterns over the full period since appreciable runoff deficiencies became established - the late summer of 1988 in the lowlands. Table 6 confirms that runoff accumulations for the 20 months ending in December 1991 were the lowest, or close to the lowest, on record for a number of rivers in eastern and southern Britain. More notably, the 20 -month runoff totals for a significant proportion of lowland rivers sustained principally from groundwater - examples include the Lud (Lincolnshire) and the Hampshire Itchen were unprecedented for any start month. Evidence of the drought's persistence is provided by the rankings, in Table 6, of the runoff accumulations for the periods beginning in May 1989 and August 1988. A revealing counterpoint to the record, or near record, long term runoff minima in the English lowlands is furnished by the 41 -month runoff total for the Tay - the highest in a 36 -year record. The limited recovery in baseflows by the end of 1991 in the English lowlands heralded a continuation of seasonally depressed river flows well into 1992 with the expectation that extremely low long term runoff accumulations would result.

Figure 8. 1991 river flow patterns. The 1991 daily flow hydrographs and flow duration curves are shown in blue, the period-of-record max. and min. daily flows and the pre-1991 flow duration curves are shown in black.

Figure 8-(continued)

TABLE 5 RIVER FLOW AND RUNOFF RECORDS ESTABLISHED IN 1991

Station	River	Station Name	First	New		Pre-1991	Year
Number			Year of	Record		Record	
			Record	(mm)		(mm)	
Lowest Annual Runoff							
28040	Trent	Stoke on Trent	1968	242		276	1989
29001	Waithe Beck	Brigsley	1960	23		30	1976
30003	Bain	Fulsby Lock	1962	61		76	1990
30004	Partney Lymn	Partney Mill	1962	114		128	1990
31004	Welland	Tallington	1967	28		47	1990
33006	Wissey	Northwold	1956	78		115	1990
33007	Nar	Marham	1953	96		116	1990
33013	Sapiston	Rectory Bridge	1949	21		33	1973
33024	Cam	Dernford	1949	53		66	1973
33029	Stringside	White Bridge	1965	36		59	1973
33032	Heacham	Heacham	1965	30		33	1973
33034	Little Ouse	Abbey Heath	1968	78		80	1973
33037	Bedford Ouse	Newport Pagnell	1969	65		80	1976
34001	Yare	Colney	1959	93		104	1973
34003	Bure	Ingworth	1959	144		152	1973
34004	Wensum	Costessey Mill	1960	112		135	1990
34005	Tud	Costessey Park	1961	76		85	1973
34012	Burn	Burnham Overy	1966	37		43	1990
38016	Stanstead Springs	Mountfitchet	1969	34		52	1973
39027	Pang	Pangbourne	1970	48		50	1976
39029	Tillingbourne	Shelford	1968	194		208	1973
39036	Law Brook	Albury	1968	162		169	1973
68004	Wistaston Brook	Marshfield Bridge	1957	176		222	1985
Station	River	Station Name	First	New	Month	Pre-1991	Month/
Number			Year of	Record		Record	Year
			Record	(mm)		(mm)	

Lowest Monthly Runoff

54012	Tern	Walcot	1960	2.9	JUL	3.7	AUG 1976
30004	Partney Lymn	Partney Mill	1962	3.6	AUG	3.8	JUL 1976
30011	Bain	Goulceby Bridge	1971	1.7	AUG	1.7	JUL 1976
30012	Stainfield Beck	Stainfield	1970	0.3	AUG	0.4	JUL 1976
34003	Bure	Ingworth	1959	7.7	AUG	8.0	JUN 1976
34014	Wensum	Swanton Morley Total	1969	3.9	AUG	4.5	JUL 1976
34004	Wensum	Costessey Mill	1960	2.6	AUG	4.0	AUG 1990
68004	Wistaston Brook	Marshfield Bridge	1957	5.6	AUG	6.2	SEP 1989
21032	Glen	Kirknewton	1966	2.6	SEP	3.1	AUG 1990
24004	Bedburn Beck	Bedburn	1959	3.8	SEP	4.3	AUG 1976
29001	Waithe Beck	Brigsley	1960	0.4	SEP	0.6	JUL 1976
33006	Wissey	Northwold	1956	2.2	SEP	2.2	SEP 1990
33007	Nar	Marham	1953	3.6	SEP	4.0	SEP 1990
33014	Lark	Temple	1960	2.4	SEP	3.4	AUG 1990
33050	Snail	Fordham	1960	3.4	SEP	3.5	AUG 1976
34011	Wensum	Fakenham	1967	3.0	SEP	3.6	JUL 1976
34012	Burn	Burnham Overy	1966	2.0	SEP	2.3	SEP 1990
39029	Tillingbourne	Shalford	1968	12.3	SEP	14.8	AUG 1976
40013	Darent	Otford	1969	2.2	SEP	2.5	AUG 1990
42009	Candover Stream	Borough Bridge	1970	9.1	SEP	9.4	NOV 1973
33013	Sapiston	Rectory Bridge	1949	0.1	OCT	0.2	JUL 1949
38017	Mimram	Whitwell	1970	0.9	OCT	1.0	OCT 1973
55028	Frome	Bishops Frome	1971	1.8	OCT	2.0	SEP 1990
33032	Heacham	Heacham	1965	0.8	DEC	1.4	DEC 1990
38016	Stanstead Springs	Mountfitchet	1969	0.5	DEC	2.5	SEP 1976
39036	Law Brook	Albury	1968	10.2	DEC	12.2	APR 1974

Note: A number of entries may be revised following reviews of the stage-discharge relations.

Sution Number	River	Statiod Name	First Year of Record	$\begin{aligned} & \text { New } \\ & \text { Record } \\ & \left(m^{\prime} s^{\prime}\right) \end{aligned}$	Day/	Pre-1990 Recond ($\mathrm{m}^{1} \mathrm{~s}^{-1}$)	Day/Month/ Year
Highest Instantaneous Flow							
18005	Allan Water	Bridge of Allan	1971	137	01 JAN	113	31 DEC 83
74001	Duddon	Duddon Hall	1968	181	01 JAN	167	23 AUG 85
55025	Llynfi	Three Cocks	1970	183	09 JAN	167	27 JAN 90
27034	Ure	Kilgram	1968	383	23 FEB	368	03 JAN 82
27007	Ure	Westwick Lock	1958	625	24 FEB	538	03 JAN 82
58007	Llynfi	Coytrahen	1970	62.2	18 MAR	59.4	01 NOV 70
47007	Yealm	Puslinch	1963	28.8	23 JUN	28.3	31 AUG 88
40006	Bourne	Hadlow	1959	14.7	01 AUG	12.8	03 FEB 90
52004	Isle	Ashford Mill	1962	44.2	28 SEP	28.9	20 DEC 81
23004	South Tyne	Haydon Bridge	1962	718	21 DEC	599	28 JUL 88
25018	Tees	Middleton in Teesdale	1971	300	21 DEC	267	28 JUL 88
28031	Manifold	Ilam	1968	161	21 DEC	137	10 AUG 71
28046	Dove	Izaal Walton	1969	28.5	21 DEC	20.7	21 NOV 71
81002	Cree	Newton Stewart	1963	322	21 DEC	318	02 OCT 82
28018	Dove	Marston on Dove	1961	223	22 DEC	203	31 DEC 81
203010	Blackwater	Maydown Bridge	1970	174	23 DEC	164	FEB 90

Highest Daily Mean Flows

18002	Devon	Glenochil	1959	71.1	02 JAN	66.6	23 SEP 85
54022	Severn	Plynlimon Flume	1953	8.63	22 FEB	7.31	28 OCT 89
23003	North Tyne	Reaverhill	1959	328	23 FEB	314	09 OCT 67
23004	South Tyne	Haydon Bridge	1962	405	23 FEB	309	23 MAR 68
25001	Tees	Broken Scar	1956	427	23 FEB	392	03 JAN 82
27002	Wharfe	Flint Mill Weir	1936	292	23 FEB	288	03 JAN 82
27032	Hebden Beck	Hebden	1965	3.14	23 FEB	3.09	03 JAN 82
27034	Ure	Westwick Lock	1958	470	24 FEB	404	03 JAN 82
27034	Ure	Kilgram Bridge	1968	350	23 FEB	295	23 MAR 68
39004	Wandle	Beddington Park	1936	1.85	29 OCT	1.21	05 OCT 84
28008	Dove	Rocester Weir	1953	93.8	21 DEC	88.4	04 DEC 60
28031	Manifold	Ilam	1968	83.6	21 DEC	37.1	28 JAN 78
28046	Dove	Izaak Walton	1969	19.5	21 DEC	13.3	02 FEB 84
203010	Blackwater	Maydown Bridge	1970	172	22 DEC	156	07 FEB 90
55026	Wye	Ddol Farm	1937	291	21 DEC	199	28 OCT 89
71004	Calder	Whalley Weir	1963	156	21 DEC	153	27 OCT 80
81002	Cree	Newton Stewart	1963	248	21 DEC	206	02 OCT 81
27035	Aire	Kildwick Bridge	1968	67.6	22 DEC	64.6	05 DEC 72
83003	Ayr	Catrine	1970	92.1	22 DEC	89.3	02 JAN 81
84015	Kelvin	Dryfield	1965	66.1	22 DEC	60.1	22 SEP 85
85002	Endrick Water	Gaidrew	1963	101	22 DEC	84.9	26 SEP 81

Lowest Daily Mean Flows

54012	Tern	Walcot	1960	0.260	16 JUL	0.941	26 AUG 76
33014	Lark	Temple	1960	0.164	26 JUL	0.282	14 AUG 90
34004	Wensum	Costessey Mill	1960	0.298	07 AUG	0.482	10 SEP 90
34010	Waveney	Billingford Bridge	1968	0.013	27 AUG	0.017	12 JUL 76
28039	Rea	Calthorpe Park	1967	0.172	05 SEP	0.178	20 SEP 76
39029	Tillingbourne	Shalford	1968	0.255	12 SEP	0.281	23 JUN 74
42009	Candover Stream	Borough Bridge	1970	0.227	12 SEP	0.233	07 AUG 89
76005	Eden	Temple Sowerby	1964	0.880	13 SEP	0.956	08 AUG 89
34011	Wensum	Fakenham	1967	0.118	16 SEP	0.130	25 AUG 76
34001	Yare	Colney	1959	0.099	18 SEP	0.118	12 JUL 76
33006	Wissey	Northwold	1956	0.149	19 SEP	0.197	27 AUG 76
40013	Darent	Otford	1969	0.051	20 SEP	0.062	06 SEP 76
29001	Waithe Beck	Brigsley	1960	0.009	24 SEP	0.015	23 JUL 76
33013	Sapiston	Rectory Bridge	1949	0.001	05 OCT	0.017	02 SEP 65
33032	Heacham	Heacham	1965	0.015	12 DEC	0.026	23 DEC 90
38017	Mimram	Whitwell	1970	0.010	15 DEC	0.012	09 OCT 73
39036	Law Brook	Albury	1968	0.056	23 DEC	0.067	06 AUG 90
33024	Cam	Dernford	1949	0.177	28 DEC	0.182	24 AUG 74
38016	Stanstead Springs	Mountfitchett	1969	0.003	31 DEC	0.016	14 JUL 74

[^0]TABLE 6 CATCHMENT RUNOFF FOR SELECTED PERIODS 1988-91

River/ Station Name	Apr1991		$\begin{gathered} \text { Dec } \\ 1991 \end{gathered}$		$\begin{aligned} & 6 / 91 \\ & 10 \end{aligned}$		$\begin{gathered} 5 / 90 \\ \text { to } \end{gathered}$		5/89							
				-												
	1991				1991				12/91		12/91		12/91		12/91	
	mm	rank	mm	rank	mm	rank	mm	renk	mm	rank	mm	rank				
	\%LT	/yrs	\%LT	/yri	\%LT	/yrs	\%LT	/yrs	\%LT	/yrs	\%6LT	/yrs				
Tay at	34	11	118	19	613	26	1763	19	3217	28	4628	36				
Ballathie	66	139	84	/40	105	139	99	138	111	/37	120	/36				
South Tyne at	17	9	128	21	403	13	1178	14	1856	8	24	485				
,Haydon Bridge	43	/28	131	130	98	128	97	126	93	/24	91	/22				
Derwent at	6	3	14	2	68	3	350	3	520	1	709	1				
Buttercrambe*	42	130	35	/31	47	130	70°	129	62	/28	63	/27				
Dove at	10	3	56	12	144	3	519	2	911	1	1298	1				
Marston on Dove	44	130	87	131	61	129	68	/27	71	125	75	/23				
Lud at	7	3	7	2	53	1	173	1	317	1	451	1				
Louth	51	/24	36	124	53	123	45	122	50	121	53	/21				
Little Ouse at	4	2	6	1	33	2	119	1	230	1	362	1				
Abbey Heath	52	/24	36	/24	46	124	46	123	54	122	64	/21				
Lee at	7	13	4	1	37	13	123	6	267	12	385	13				
Feildes Weir (natr.)	46	$/ 107$	22	/107	51	/106	49	/104	65	/102	71	$/ 100$				
Thames at	7	43	10	9	64	19	211	7	455	12	608	10				
Kingston (natr.)	80	/109	33	/109	61	/109	58	/108	74	/107	74	/106				
Coln at	14	9	27	9	122	9	402	3	815	6	1016	2				
Bibury	83	128	70	/29	79	128	69	/27	83	126	78	/25				
.																
Great Stour at	11	7	16	3	104	5	304	3	503	1	657	1				
Horton	82	/27	47	/27	76	/26	67	/24	67	122	66	120				
Itchen at	23	5	26	3	176	4	552	1	969	1	1231	1				
Highbridge + Allbrook	82	133	63	134	79	133	76	132	81	131	80	130				
Stour at	9	11	25	5	114	5	389	1	831	4	1062	1				
Throop Mill	88	$/ 19$	46	/19	75	$/ 19$	68	$/ 18$	86	$/ 17$	81	/16				
Tone at	8	6	32	5	156	10	487	2	990	5	1314	2				
Bishops Hull	65	/31	48	/31	80	/31	70	/30	84	/29	82	/28				
Severn at	12	26	38	13	150	10	541	7	976	11	1346	, 13				
Bewdley	70	/71	61	171	69	/71	78	/70	85	$/ 69$	87	168				
Teme at	6	9	16	2	75	3	351	1	733	3	966	1				
Knightsford Bridge	71	/22	29	122	53	$/ 22$	66	$/ 21$	81	/20	78	$/ 19$				
Cynon at	24	11	63	1	508	8	1757	8	3200	15	4277	15				
Abercynon	48	/33	33	/34	77	/32	89	/30	99	/28	99	126				
Dee at	54	10	189	7	822	5	2459	3	4135	3	5807	4				
New Inn	59	/23	76	123	78	/22	84	/21	87	/20	91	/20				
Lune at	39	12	153	15	616	12	1658	7	2694.	7	3842	8				
Caton	57	/29	100	/29	95	/29	90.	/27	91	/25	97	123				
Clyde at	20	7	140	25	453	15	1372	20	2274	22	3082	22				
Daldowie	49	/28	143	$/ 29$	106	/28	111	/27	114	/26	116	125				

Notes: (i) Values are ranked so that lowest runoff is rank 1
(ii) $\% \mathrm{LT}$ is the percentage of the long term average (preceding the featured period)
${ }^{*}$ Includes the Stanford Bridge record (1961-73)

Figure 9. Monthly flow hydrograph for the River Little Ouse

Most UK river flow records extend back less than 40 years. A fuller historical context is provided by the Kingston (River Thames) and Feildes Weir (River Lee) flow records - continuous daily flow series extend back to 1883 and 1879 respectively. Direct comparisons between the current drought and its precursors are hampered by changes in flow measurement techniques, land-use and, especially, patterns of water utilisation. Nonetheless, such extended time series are of immense value for the detection of runoff trends, changes in flow regime and in indexing drought severity. On the Lee, the naturalised mean flow (see page 58) for December 1991 was the lowest in the 112-year record. In the post-1950 timeframe, the accumulated runoff over the 18 months ending in December exceeded only the estimated runoff totals registered at the end of 1976; appreciably lower accumulations were however recorded during the 1900-1903 and 1934-35 droughts and the protracted rainfall deficiencies in the 1940s. A similar picture emerges on the Thames where, over the 18 -month timespan, the 1921-22 drought also ranks as more severe than the 1990-91 runoff deficiency. However, the latter event was intensifying at the end of 1991 and, as at Feildes Weir, the significance of historical low flow sequences may well be exaggerated by the tendency for drought flows to be underestimated - leakage
through the original weir structures being a significant problem.

For the majority of lowland rivers the seasonal variation in monthly flows over the four years beginning in 1987 disguises, if only partially, a distinct downward trend in runoff. On the Little Ouse at Abbey Heath (near Thetford, Norfolk) runoff over the notably wet $1987 / 88$ water-year (October-September), was the highest on record - see Figure 9. For the water-year 1990/91 runoff had declined by 70 per cent to establish a new period-of-record minimum. Rivers draining the Chalk of southern England display a broadly similar runoff trend over recent years but the hydrological drought is divided into two distinct phases by the very wet winter of 1989/90; February 1990 produced the highest monthly runoff on record in, for example, the Itchen.

In the context of the last 15 years, 1988 may be considered as something of a hydrological watershed in much of England. It marks the end of a relatively wet period, which followed the 1976 drought, and the beginning of a period over which the low flow for many lowland rivers have been largely redefined. For a number of catchments close to the eastern seaboard, runoff in 1991 was less than half of the long term average for the third successive year and the persistence of low flows has been without recorded parallel. Table 7 provides a broader geo-

TABLE 7 A COMPARISON BETWEEN PRE- AND POST-1988 FLOW REGIMES

Stat. No.	River/Station	First Year of Record	$\begin{gathered} \text { Mean Flow } \\ \left(\mathrm{m}^{\prime} \mathrm{s}^{-1}\right) \end{gathered}$		95\% Exceedance Flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)		10\% Exceedance Flow ($\mathrm{m}^{1} \mathrm{~s}^{-1}$)	
			Pre-88	Post-88	Pre-88	Post-88	Pre-88	Post-88
015007	Tay at Pitnacree	1958	54.0	68.3	12.94	11.36	106.7	155.4
085001	Leven at Linnbrane	1964	41.2	47.6	8.18	8.64	80.0	100.4
084013	Clyde at Daldowie	1964	44.7	54.1	9.52	9.09	103.8	136.4
025005	Leven at Leven Bridge	1960	1.95	1.08	0.28	0.22	4.27	2.05
029003	Lud at Louth	1969	0.48	0.24	0.14	0.12	0.89	0.38
028009	Trent at Colwick	1958	85.7	65.4	28.8	23.1	170.7	133.1
033034	L. Ouse at Abbey Heath	1969	3.90	2.24	1.32	0.99	7.25	4.27
039016	Kennet at Theale	1962	9.72	7.21	4.03	3.33	16.53	12.6
040011	Great Stour at Horton	1965	3.32	2.14	1.26	0.85	6.11	3.91

[^1]

Figure 10. A comparison of pre- and post-1988 flow duration curves for the Rivers Little Ouse and Great Stour (The 1989-1991 duration curve is shown in blue).
graphical perspective and demonstrates that pre- and post-1988 regime differences are not confined to the low flow range. A comparison is presented between, mean, low and high flows for the 1989-91 period and the pre-1988 record for nine representative catchments. Considerable variation between time periods is to be expected but the abundant recent runoff in rivers draining from the Scottish Highlands and the very low 95 per cent exceedance flows recorded for many English lowland rivers over the post-1988 period are especially notable. The impact on the flow duration curves is illustrated in Figure 10. For both featured rivers the post-1988 runoff may be seen to be significantly below that for the preceding record throughout almost the entire flow range.

Although in many lowland rivers absolute daily minimum flows have been unremarkable in recent years, the protracted nature of low flow spells has been exceptional. This is particularly true of durations in excess of about 60 days. Table 8 confirms the degree to which a redefinition of annual n-day minimum flows has occurred in the post-1988 period. The pre-eminence of the 1989-91 low flows, is clearly evident in both the responsive Leven (a tributary of the Tees in Cleveland) and the springfed Itchen (where low flows have been augmented from groundwater over the 1989-91 period). The River Wissey (Norfolk) drains a catchment where drought conditions have remained severe throughout most of 1989, 1990 and 1991. A new minimum daily mean flow was registered in September 1991 but the drought's severity is better indexed by the $120-$ and 240-day annual minima rankings; 1989, 1990 and 1991 occupy the lowest ranking positions for each duration.

Depressed runoff rates over a very extended period have been associated with a substantial shrinkage in the lowland stream network. The downstream migration of headwaters has been exacerbated in those catchments where groundwater pumping, often over many years, has reduced groundwater levels and steadily reduced stream
flows. Since its creation in 1989, the National Rivers Authority has examined various strategies for combating the effect of groundwater abstraction on low river flows and rehabilitation programmes are well

TABLE 8 RANKED ANNUAL MINIMUM N-DAY FLOWS

River/Gauging station	Durations							
	30-day		60-day		120-day		240-day	
	Year	Mean flow $\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$	Year	Mean flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	Year	Mean flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$	Year	Mean flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)
River Leven	1976	0.121	1976	0.146	1964	0.239	1964	0.326
at Leven Br.	1990	0.186	1990	0.194	1990	0.272	1990	0.419
Period of record 1960-90	1964	0.188	1964	0.202	1991	0.324	1989	0.459
	1960	0.228 E	1991	0.280	1989	0.343	1991	0.524
	1989	0.240	1989	0.280	1975	0.331	1962	0.590
	1972	0.254	1975	0.284	1961	0.370	1970	0.613
	1965	0.256	1970	0.292	1977	0.384	1976	0.665
	1991	0.264	1961	0.296	1972	0.392	1975	0.693
	1975	0.267	1972	0.298	1962	0.399	1961	0.745
River Wissey at Northwold*	1991	0.200	1991	0.232	1990	0.282	1991	0.448
	1990	0.226	1990	0.247	1991	0.286	1990	0.493
Period of record 1956-90	1976	0.281	1976	0.301	1989	0.390	1989	0.697
	1989	0.341	1989	0.355	1976	0.409	1976	0.741
	1964	0.426	1964	0.472	1964	0.540	1959	0.818
	1957	0.431	1957	0.478	1959	0.565	1964	0.860
	1959	0.444	1959	0.479	1957	0.608	1956	0.920E
	1986	0.503	1974	0.567	1974	0.674	1957	0.941
	1960	0.534	1986	0.569	1960	0.678	1960	1.050
River Itchen at	1976	2.303	1976	2.389	1976	2.520	1976	3.002
	1989	2.575	1989	2.688	1989	2.796	1973	3.313
Highbridge/	1959	2.637	1973	2.738	1973	2.804	1989	3.112
Allbrook	1973	2.650	1959	2.757	1990	2.873	1990	3.341
Period of record	1990	2.736	1991	2.777	1959	3.026	1991	3.522
	1991	2.834	1990	2.964	1991	3.091	1965	3.826
1959-90	1961	2.956	1961	3.102	1978	3.267	1988	3.940
	1978	3.057	1972	3.120	1961	3.301	1959	3.965
	1987	3.064	1978	3.134	1978	3.303	1962	3.971

[^2]advanced on, for example, the River Ver (Hertfordshire - see cover) where the planned cessation of pumping from a major water supply borehole in the headwaters is expected to allow the water-table to rise and produce a healthy aquatic environment in reaches which have been dry for many years.

Groundwater

After a relatively quiescent period from the early 1980s when groundwater levels in most major aquifers remained close to, but normally above, the average, patterns of groundwater recharge entered an erratic phase in late 1987. Heavy and sustained recharge over the 1987/88 winter raised water-tables in most areas to their highest level for the decade prior to the 1988 recession; for some boreholes the 1988 spring levels were the highest on record. The groundwater hydrographs illustrated in Figure 14 (pages $152-155$) provide clear evidence of the very widespread and marked departures from average conditions which have characterised water-table variability since 1987. The regular seasonal cycle of groundwater level decline and recovery, well demonstrated throughout most of the 1980 s, became noticeably irregular from the spring of 1988 and barely identifiable in some eastern aquifer units.

Exceptionally prolonged declines in water-tables, interrupted by the very modest infiltration over the 1988/89 winter, produced notably low groundwater levels by late-1989. Recharge over the 1989/90 winter was also very modest in parts of eastern England, particularly over the Chalk outcrop from Humberside to Kent. To the west, recharge was generally above average, and in some districts substantially so, but - as in the east - the water-table recovery needed to be generated from an exceptionally low base. A further feature of the 1989/90 recharge was its very late start, generally between late-December 1989 and mid-January 1990 (in a normal year, the recovery commences between lateSeptember and late-October) and exceptionally early termination. Thus, although some extremely rapid recoveries were registered in the late winter (see, for example the hydrograph trace for the Compton borehole - page 153), steep recessions were often well established by early March and groundwater levels again fell well below the seasonal average through the spring.

The summer and autumn of 1990 saw the recession continue, apart from some modest and short-lived recoveries following heavy August rainfall in a few parts of southern England. Over most of Britain, water-tables, although very depressed, remained above the equivalent 1976 level into December. In eastern England, however, levels in some wells in the Chalk had reached an all-time low, the direct result of the 1990 recession starting from an unusually depressed state. As in the previous winter,

Figure 11. Generalised percentage of the mean annual replenishment to the main outcrops of the Chalk and Upper Greensand aquifer for 1990-91
the 1990/91 recovery started late. Only modest upturns in groundwater levels were apparent before December 1990 in much of Britain and, over the Chalk outcrop in eastern England, water-tables did not start to rise until early or even mid-January 1991.

The 1991 recovery began with groundwater levels over wide areas close to, or below, the lowest on record (for the winter) over much of eastern England. Brisk increases in level had been registered in the early winter in most aquifers to the north and west of a line from Dorset to Humberside but for the third successive year recoveries were greatly delayed in the lowlands. Above average rainfall from January to April generated increases in groundwater levels but the magnitude showed large variations even within the same aquifer.

The 1990/91 recharge to aquifers in eastern Kent, the Thames Valley, East Anglia and much of the Permo-Triassic sandstone aquifer in the Midlands and north Wales was generally of the order of 60 per cent or less of the mean replenishment. In these areas, the consequent recovery was meagre and water-tables failed to approach the seasonal average level. Elsewhere in Britain, recoveries in groundwater level started from somewhat less depressed conditions, and near-average to aboveaverage levels were reached by the late spring. A substantial recovery was also recorded in the Yorkshire Chalk, a marked contrast to the previous two winters, but levels scarcely attained the seasonal norm.

A comprehensive tabulation of estimated recharge over the 1990/91 winter - expressed as a percentage of the long term average - is given in the Register of Selected Groundwater Observation Wells (pages 156 to 158). The estimates are based on the cumulative rise registered over the full recharge period. Details of the method used are given on page 151. Figure 11 (page 23) is based on these assessments and provides a guide to the spatial variation in groundwater replenishment over the 1990/91 winter throughout the Chalk and Upper Greensand aquifer. Above average recharge was recorded at the northern and western extremities of the outcrop but replenishment diminished rapidly to the east. Large parts of the East Anglian Chalk, as in adjacent areas, recorded well below half of their average recharge. As may be judged from entries in the Register, recharge exhibited little spatial coherence in the eastern lowlands but notably low recharge was registered in most districts. For a few boreholes recharge was assessed as less than 10 per cent of the average. Substantial regional and local variability also characterised winter recharge in the other important aquifers. Above average recharge was recorded for the North-West region as a whole but this disguises a significant north-south gradient;

TABLE 9 ANNUAL REPLENISHMENT TO THE MORE IMPORTANT AQUIFERS IN ENGLAND AND WALES FOR THE YEAR 1990/91

NRA Region	Mean annual replenishment ($\mathrm{m}^{3} \times 10^{6}$)	$\begin{aligned} & 1990-91 \\ & \text { replenishment } \\ & \left(\mathrm{m}^{3} \times 10^{6}\right) \end{aligned}$
Chalk and Upper Greensand aquifer		
Anglian	953	569 (60)
Southern	1231	934 (76)
South West	202	79 (39)
Thames	976	525 (54)
Wessex	947	1111 (117)
Yorkshire	322	398 (124)
Total	4631	3616 (78)
Lincolnshire Limestone aquifer		
Anglian	86	' 84 (97)
Permo-Triassic sandstone aquifers		
Northumbria	11	7 (67)
North West	331	392 (118)
Severn-Trent	528	263 (50)
South West	205	150 (73)
Welsh	27	20 (72)
Wessex	39	45 (116)
Yorkshire	301	131 (44)
Total	1442	1008 (70)
Magnesian Limestone aquifers		
Northumbria	80	105 (131)
Severn-Trent	40	28 (69)
Yorkshire	127	125 (98)
Total	247	258 (104)

(Percentages of the annual mean in parentheses.)
recharge totals were especially low in parts of the Cheshire Plain. Table 9 presents estimates of the 1990/91 groundwater replenishment for each of the major administrative divisions in the water industry (for England and Wales).

The groundwater resource situation in much of the Chalk of eastern England remained extremely fragile throughout 1991 - the hydrograph traces on Figure 14 provide clear evidence of the very depressed condition of water-tables, particularly over the latter half of the year. For the Chalk and Upper Greensand wells in particular, the length of time water-tables remained below pre-1988 minima is notable as is the decline in levels from the 1988 spring peaks.

Depressed groundwater levels throughout 1991 reflect not only the limited 1990/91 recharge but the modest percolation over the two preceding winters also. Estimates of the overall recharge, in percentage terms, for the three winters are presented in Table 10 for a series of observation wells in the Chalk of the Yorkshire, Anglian, Thames and Southern regions; details of well locations are given in the Register. There have been instances in the past where infiltration over a single winter period has been very modest, and a number where there have been two

TABLE 10 ESTIMATES OF PERCENTAGE RECHARGE FOR THREE WINTER PERIODS

Well Site \dagger	Measuring Authority*		\% Recharge 1989/90	Recharge 1990/9	
Dalton Holme Estate	NRA-Y	40	59	138	79
Hunmanby Hall	NRA-Y	<10	33	171	71
Little Brocklesby	NRA-A	35	59	101	65
Off Farm	NRA-A	17	85	49	50
Washpit Farm	NRA-A	<10	76	25	37
The Spinney, Costessey	NRA-A	20	75	69	55
Fairfields	NRA-A	26	17	26	23
Dial Farm	NRA-A	59	30	84	58
Grange Farm	NRA-A	65	17	12	31
The Holt	NRA-T	29	117	16	54
Stonor Park	NRA-T	32	148	27	69
Little Bucket Farm	NRA-S	39	88	78	68
Alland Grange	NRA-S	31	93	104	76
Little Petts Farm	NRA-S	<10	17	40	22
Old Rectory, Pyecombe	NRA-S	12	187*	87	95

*see pages 172 and 173. †For locational details see pages 156 to 158
successive such winters. However, the situation in eastern England at the end of 1991 was unique, for this century at least, with estimates of three-year recharge generally less than 60 per cent, and in some districts less than 30 per cent of the long term mean. Close to the zone of maximum drought severity, the estimated recharge at the Washpit Farm borehole (Norfolk) was less than half that for any pre-1988 three-year sequence in a record from 1950.

By April to early May 1991, the summer recession had generally commenced everywhere. Groundwater levels continued to fall throughout the summer and autumn and, in eastern and south-eastern England, were mostly still falling at the end of December. The scope and general severity of the drought, at year-end, may be judged by reference to Table 11 which gives the year-end groundwater levels in 1989, 1990 and 1991 for a representative set of wells and boreholes; the December average levels are also given together with the ranking of the late-1991 (or early 1992) levels. By the end of 1991 levels at many of the eastern Chalk sites had reached the lowest for any December in the period of record, and a few had reached their lowest value for any month.

Evidence of the unprecedented magnitude of the drought in groundwater terms is provided by the levels at a number of long term index wells and boreholes. By late-1991, levels at Dalton Holme (in the Yorkshire Wolds) had declined to below any registered before 1990 (in a 103-year record). At Little Brocklesby (Lincolnshire), levels were closely comparable with the minimum in a series from 1926 and at Therfield - a deep well south of Royston (Hertfordshire) - groundwater levels, entering 1992, had declined by over 20 metres since the spring of 1988 and stood at their lowest level since the borehole was last dry in 1923. Late-December levels at Washpit Farm and Redlands Hall (Essex) - see Figure 14 - were unprecedented in records of 42 and 28 years respectively. The singular intensity of the drought is confirmed by the annual minimum levels presented in Table 12. Comparisons with early records need to be undertaken with caution measurement precision may have changed considerably through time and differences between annual minima are commonly small. Nonetheless, taking into consideration the inordinate nature of the long term rainfall deficiencies, the elevated evaporation

TABLE 11 A COMPARISON OF END-OF-YEAR GROUNDWATER LEVELS : 1991, 1990 AND 1989

Site	Aquifer	Records commence	Average December Level	Decernber 1989		December 1990		December and January* 1991-92		No. of years December levels <1991	Lowest pre-1991 level(any month)
				Day	Level	Day	Level	Day	Level		
Dalton Holme	C \& UGS	1889	15.79	28/12	10.89	6/12	10.34	3/01	10.62	1	10.34
Little Brocklesby	C \& UGS	1926	11.85	29/12	6.31	27/12	4.86	27/12	4.60	0	4.56
Washpit Farm	C \& UGS	1950	43.40	4/12	42.13	4/12	41.31	6/01	40.51	0	41.24
The Holt	C \& UGS	1964	86.79	21/12	86.04	6/12	85.81	5/01	84.74	2	83.90
Fairfields	C \& UGS	1974	23.01	18/12	22.77	6/12	22.16	10/12	22.05	0	22.15
Redlands Farm	C \& UGS	1964	39.36	27/12	35.68	21/12	34.04	24/12	32.46	0	34.04
Rockley	C \& UGS	1933	133.82	31/12	130.10	31/12	dry	5/01	130.11	>10	dry
Little Bucket Farm	C \& UGS	1971	64.05	6/12	57.81	31/12	57.63	27/12	61.97	7	56.77
Compton House	C \& UGS	1894	39.77	29/12	31.02	28/12	27.96	2/01	30.87	>10	27.64
West Dean	C \& UGS	1940	1.97	29/12	1.68	28/12	1.39	24/12	1.72	>10	1.01
Lime Kiln Way	C \& UGS	1969	124.92	9/12	124.27	5/12	124.69	2/01	124.18	0	124.09
Ashton Farm	C \& UGS	1974	67.15	15/12	63.80	5/12	63.20	30/12	68.60	9	63.10
West Woodyates	C \& UGS	1942	86.19	27/12	83.10	3/12	68.90	2/01	83.80	>10	67.62
New Red Lion	LLst	1964	12.70	18/12	7.20	31/12	5.49	17/12	5.68	1	3.29
Ampney Crucis	Mid Jur	1958	101.97	10/12	101.54	10/12	97.38	9/12	101.94	>10	97.38
Dunmurry (NI)	PTS	1985	28.24	30/12	27.79	31/12	28.53	19/12	28.02	2	27.47
Llanfair DC	PTS	1972	79.92	26/12	79.74	1/12	79.16	10/12	79.25	1	78.85
Morris Dancers	PTS	1969	32.61	11/12	32.20	28/12	32.11	19/12	32.11	3	30.87
Weeford Flats	PTS	1966	89.92	19/12	89.15	17/12	89.05	06/12	dry	-	dry
Bussels 7A	PTS	1972	23.79	17/12	23.60	19/12	23.46	31/12	23.63	>10	22.90
Rushyford NE	MgLst	1967	75.84	15/12	74.99	17/12	74.37	6/12	74.80	>10	64.77
Peggy Ellerton	MgLst	1968	34.14	11/12	33.15	6/12	32.40	10/12	32.71	2	31.10
Alstonfield	CLst	1974	192.33	12/12	175.96	18/11	186.64	10/12	178.23	2	174.22

Groundwater levels are in metres above Ordnance Datum
*January 1992 levels are featured where no late-December 1991 levels are available
C \& UGS
LLst
PTS

Chalk and Upper Greensand	Mid Jur
Lincolnshire Limestone	MgLst
Permo-Triassic sandstones	CLst

Middle Jurassic limestones
Magnesian Limestone PTS

Permo-Triassic sandstones MgLst
CLst
Carboniferous Limestone

TABLE 12 ANNUAL MINIMUM LEVELS IN THE CHALK AND UPPER GREENSAND AQUIFER

	Dalton Hotme (1989-1991)		Washpit Faru (1950-1991)		Redlands (1964-1991)	
Rank	Year	Min	Year	Min	Year	Min
1	1990	10.34	1991	40.61	1991	32.46
2	1991	10.59	1978	41.24	1990	34.04
3	1989	10.73	1973	41.25	1965	34.53
4	1988	11.51	1990	41.31	1976	35.30
5	1905	11.58	1976	41.50	1974	35.61
6	1921	11.81	1950	41.66	1989	35.68
7	1976	11.87	1960	41.80	1973	35.70
8	1984	11.88	1974	41.90	1986	36.59
9	1942	11.89	1989	42.13	1964	37.16
10	1949	12.09	1972	42.25	1963	37.25

losses and the substantial impact of increasing abstraction rates in some areas, it appears probable that the scale of the groundwater depletion in the Chalk of eastern England is without parallel this century.

Away from the English lowlands, drought conditions were generally less intense but late-1991 groundwater levels remained well below average throughout much of the southern Chalk, in Kent especially. Levels in the Lincolnshire Limestone were depressed also - at the New Red Lion borehole the minimum December level, established only in 1990, was closely approached in December 1991. In the Middle Jurassic of the Cotswolds, levels in the Ampney Crucis borehole were close to the seasonal average, a picture repeated in the Chalk and the Permo-Triassic sandstones of the West Country. A similar situation obtained in the Permo-Triassic aquifers of north-west England but the situation in the Midlands and north Wales was more difficult to interpret. The Weeford Flats well (Staffordshire) remained dry from the late summer (it was also dry in 1976) and at Llanfair DC (Clwyd) the dry December halted the recovery in levels and by midmonth the pre-1990 monthly minimum had been eclipsed. The hydrographs for these latter sites (see page 155) confirm the existence of a second zone of especially depressed groundwater levels extending across much of the Midlands and the Cheshire Plain.

The great majority of wells and boreholes in the national groundwater level network were selected, so far as is practicable, to avoid the worst effects of groundwater pumping on natural rest-water levels. Where, as in large parts of the English lowlands, heavy groundwater abstraction has produced local or regional depressions in the water-table, the depletion in groundwater resources has been even greater than the figures presented in Tables 10-12 suggest. Very large volumes of water are held in storage below the normal range of seasonal groundwater level fluctuation but evidence of decreasing borehole yields, as watertables fell to unprecedented levels in 1991, emphasised the fragile nature of the water resources outlook.

In London - and to a lesser degree in some other conurbations - groundwater abstractions have declined over many years and, in response, water-tables have maintained a steady increase. At the Trafalgar Square borehole, which penetrates the confined Chalk and Upper Greensand aquifer, levels have risen by an average of a little more than a metre a year since the late 1960 s and now stand at their highest since the early years of the century. This provides a somewhat incongruous comparison with the record low levels registered during 1991 in the Chalk outcrop to the west and north of London.

With no real recovery appearing to have started by the end of December 1991 over large tracts of England, the 1992 outlook for some groundwater resources was a matter of concern. Many dwellings and smallholdings located upon the Chalk outcrop of eastern and southern England obtain their water supplies from shallow shafts which have only a modest depth of water in the bottom at the best of times. Falling water-tables caused a number of such sources to fail as they dried out during 1991. The effect on surface waters was also readily apparent with lessening baseflows reducing river and streamflows.

Conclusion

The United Kingdom is blessed with considerable climatic diversity, annual rainfall amounts commonly varying by almost an order of magnitude betwees the mountain peaks of the Scottish Highlands, the Lake District and north Wales and the driest parts of the English lowlands. In the former regions an annual rainfall total of around 200 mm below average would be of little hydrological significance. But in much of eastern and southern England such a shortfall constitutes a severe drought. When, as over the 1988-91 period, accumulated rainfall dificiences greatly exceed this figure and elevated evaporation losses and parched summer and autumn soils account for the greater part of the available rainfall, the effect on river flows and groundwater levels may be expected to be severe. In terms of impact on the community the increasing integration, at the regional and local levels, of water supply systems - together with water conservation measures - allows the water industry to withstand even severe droughts without recourse to standpipes and water rationing. However, the decreasing margin between resources and growing demand, in south-eastern Britain especially, the threat posed by protracted shortages of rainfall to the aquatic environment and the possibility that drought conditions may be experienced with a somewhat greater frequency in the future, together emphasise the need for ever more effective and imaginative water management practices.

1991 Hydrological Diary

January

The year began in a very unsettled vein as a series of vigorous depressions brought widespread rainfall and, in Scotland, snowfalls. Subsequently anticyclonic conditions prevailed and, for the month as a whole, sunshine amounts were above average.
$1 s t-2 n d$: Following a wet end to 1990 , widespread heavy rainfall on already saturated catchments led to spate conditions over wide areas. Many upland areas in central and southern Scotland recorded more than 50 mm on the 1 st and at Balquhidder (Central Region) the accumulated total from the 21 st December exceeded 300 mm . Some notably high runoff rates resulted: on the 1st, the Allan Water at Bridge of Allan (Central Region) recorded a peak of $136.8 \mathrm{~m}^{3} \mathrm{~s}^{-1}$, an event with an estimated return period of 100 years, and the River Teviot at Hawick (Borders) recorded its second highest peak since records began in 1963. For the River Devon (Central Region) a 50 -year return period was ascribed to the peak flow of $89.4 \mathrm{~m}^{3} \mathrm{~s}^{-1}$ on the 2nd. In England, flows reached flood alert levels in the Severn, Avon (Warwickshire) and Soar valleys.

February

The coldest month in the UK since January 1987. The weather was dominated by a Scandinavian anticyclone, cold easterly winds predominated and snowfall in mid-month was considerable. Thereafter, westerly airstreams brought heavy rain and some moderately severe flooding to catchments draining the Pennines.
22nd-24th: Heavy rainfall occurred in north Wales and northern England on the 22nd; in Gwynedd, raingauges at Llanymawddy and Tryweryn Dam recorded daily falls of 133.5 and 126.7 mm respectively - the associated return periods exceed 100 years. The rain, augmented by a snowfall contribution, produced significant flooding on many eastward-flowing Pennine rivers. On the 23rd, record high daily flows were recorded on the Tees and in the headwaters of the Tyne, Wear and Wharfe. On the River Ure, a peak flow of $625.4 \mathrm{~m}^{3} \mathrm{~s}^{-1}$ occurred at the Westwick Lock gauging station on the 24th, the highest in a 31-year record; upstream flooding was severe at Boroughbridge (Yorkshire).

March

Generally very mild. A succession of fronts on a westerly airstream brought widespread rainfall to all areas early in the month, anticyclonic conditions prevailed towards month-end.

April

Again a wet month in western Britain. Both the Tay (at Ballathie) and Clyde (at Daldowie) recorded new maximum April runoff totals, in records of 40 and 29 years respectively. By contrast, the River Lymn (Lincolnshire) recorded its lowest April mean flow in a 30 -year series.
29th: A slow moving depression brought sustained rainfall to almost all areas except for northern Scotland; daily totals of $25-35 \mathrm{~mm}$ were widely recorded and nearly 80 mm fell in the headwaters of the River Tamar (Devon-Cornwall borders). The 29th was the wettest April day for 20 years over most of the South-East.

May

May was exceptionally dry in most areas. For Great Britain as a whole, it was the driest May since 1896; Glasgow experienced its driest May for 123 years. Large areas of Somerset and Dorset recorded no rain for 24 consecutive days. Low runoff totals were common in permeable eastern catchments; May runoff on the Little Ouse (Norfolk), for example, was the lowest in a 24 -year record.

June

In stark contrast to May, a continuous sequence of frontal systems made for a notably wet June; the wettest this century in Dover and third ranked for Great Britain as a whole. Some districts in the South-East and the Midlands experienced rainfall on all but two or three days.
23 rd . A vigorous depression produced heavy rain over much of southern England. Nearly 50 mm was measured at Denbury (Devon) and Dorchester (Dorset) registered its wettest June day - 45.9 mm - in 20 years. New maximum peak flows were recorded on a number of rivers draining southern Dartmoor; peak discharge rates on the Yealm and Erme were unprecedented in records of 28 and 17 years respectively.

July

A warm and mainly dry month, with rainfall mostly attributable to two or three wet interludes. The River Thames at Kingston recorded an above average monthly flow for the first time since March 1990. Runoff in many eastern spring-fed rivers, however, continued to decline.

1st. A precipitation total of 37.8 mm was recorded during a localised heavy downpour, of only 27 -minutes duration, at Cumbernauld (Strathclyde Region). Surface flooding was severe and a local sewage treatment works was inundated.

Sth. The Isles of Scilly recorded 107 mm of rain during a prolonged convectional storm. At Loughborough (Leicestershire), 31 mm of rain fell in 40 minutes, producing some localised flooding.

August

A very dry month over most of the UK; it was the sixth driest August this century in England and Wales, with less than 10 per cent of average rainfall experienced in parts of lowland England. There were, however, thundery outbreaks during the month in many localities.
1st. A notable thunderstorm produced 45 mm of rain in 90 minutes at Sheringham (Norfolk).

September

A month of contrasts. The first fortnight was dry, the culmination of a predominantly rainless six weeks in the English lowlands. Subsequently, unsettled cyclonic conditions produced some notable rainfall events. Nonetheless, new record low September runoff totals were registered on a number of eastern rivers, examples include the Wissey and Wensum in East Anglia which have records of 35 and 25 years respectively.

26th. A two-hour storm produced over 50 mm of rain at Doncaster (South Yorkshire).
28th. Localised flooding was reported across much of southern England and South Wales as a result of heavy and sustained frontal rainfall, with some thundery activity. Spatial variability was considerable, Portland (Dorset) recorded only 5 mm but 110 mm fell at nearby Poole, an event with an estimated return period of almost 400 years; a 106 mm rainfall total for Currymore (Somerset) is marginally rarer. The River Isle (Somerset) recorded its highest peak flow in a 30 -year record at the Ashford Mill gauging station.

October

A mainly dull and cool month with persistent anticyclonic conditions bracketed between vigorous frontal activity early and, especially, late in the month. Some areas in East Anglia recorded rainfall totals of less than 5 mm up to the 28 th. New monthly minimum runoff totals were established on the River Sapiston (Suffolk) and the Frome (Hereford and Worcester). Groundwater levels, already very depressed, continued to fall except in the West Country.
16 th . Severe westerly gales accompanied by heavy frontal rain affected northern Britain; 87.8 mm was measured at Achanalt (Highland Region).
31st. An exceptionally wet day for Great Britain as a whole. Heavy rain and gales crossed western and northern regions. Spate conditions prevailed in Scotland, the River Dee at Park (Grampian Region) recorded a peak flow of $748.2 \mathrm{~m}^{3} \mathrm{~s}^{-1}$, the second highest in a 20 -year record.

November

'A distinct north-west/south-east rainfall gradient persisted during November; rainfall totals in westernScotland were considerably above average, but the South-East remained relatively dry and runoff recessions continued; the River Mimram (Hertfordshire) recorded its second lowest November runoff total in a 40 -year record.

December

A cool and generally dry month although heavy rain in the third week brought considerable flooding to some areas. Apart from this wet interlude, anticyclonic conditions were dominant and the mean barometric pressure for December in south-eastern England was the highest for over 100 years.
20th-22nd. Heavy and persistent orographic rain occurred throughout the southern Pennines. Hollinsclough (Staffordshire) recorded 110 mm in 39 hours with an estimated return period of 80 years, and at Gorpley Reservoir (West Yorkshire) a similar total was measured for the $21 \mathrm{st}-22 \mathrm{nd}$. A total of 149 mm was recorded at Walshaw Dean (West Yorkshire) over the three days. Notable discharge rates were recorded in rivers draining the southern Pennines, examples include the Etherow, Goyt and Irwell. Localised flooding occurred in the Calder Valley in West Yorkshire where the peak flow had an estimated return period of 20 years. The Rivers Dove and Manifold (Derbyshire) recorded new highest peak flows in records of 22 and 23 years respectively; return period estimates exceeding 100 years were ascribed to these events. Very brisk flow increases also occurred in the Northumbria region and Wales, where the Wye at Ddol Farm (Powys) exceeded its previous highest daily flow in a 54 -year record by nearly 50 per cent. Flooding also occurred in the neighbouring Severn catchment, whilst in the Strathclyde Region, the River Clyde at Daldowie recorded its second highest peak flow.

Computation and Accuracy of Gauged Flows

Gauged flows are generally calculated by the conversion of the record of stage, or water level, using a stage-discharge relation, often referred to as the rating or calibration. Stage is measured and recorded against time by instruments usually actuated by a float in a stilling well. The instrument records the level either digitally, on a solid state logger, less commonly on punched tape, or continuously by pen and chart. At well over half the gauging stations in the United Kingdom provision is made for the routine transmission of river levels directly to the processing centre, by telephone line or, less generally, by radio; on occasions satellites have been used to receive and re-transmit the radio signal. The rapid growth in the use of the public telephone network for the transmission of river level and flow data is enabling hydrometric data acquisition to proceed on a near real-time basis in most areas. Typically, levels are recorded at 15minute intervals and stored on-site for overnight transmission to allow the initial processing to be completed on the following day. Normally, both digital and analogue recording devices are deployed at gauging stations to provide a measure of security against loss of record caused by instrument malfunction.

The stage-discharge relation is obtained either by installing a gauging structure, usually a weir or flume with known hydraulic characteristics, or by measuring the stream velocity and cross-sectional area at points throughout the range of flow at a site characterised by its ability to maintain the relationship.

The accuracy of the processed gauged flows therefore depends upon several factors:
i. accuracy and reliability in measuring and recording water levels,
ii. accuracy and reliability of the derived stagedischarge relation, and
iii. concurrency of revised ratings and the stage record with respect to changes in the station control.

Flow data from ultrasonic gauging stations are computed on-site where the times are measured for acoustic pulses to traverse a river section along an oblique path in both directions. The mean river velocity is related to the difference in the two timings and the flow is then assessed using the river's crosssectional area. Accurate computed flows can be expected for stable river sections and within a range in stage that permits good estimates of mean channel velocity to be derived from a velocity traverse set at a series of fixed depths.

Flow data from electromagnetic gauging stations may also be computed on-site. The technique requires the measurement of the electromotive force (emf) induced in flowing water as it cuts a vertical magnetic field generated by means of a large coil buried beneath the river bed, or constructed above it. This emf is sensed by electrodes at each side of the river and is directly proportional to the average velocity in the cross-section.

British and International Standards are followed as far as possible in the design, installation and operation of gauging stations. Most of these Standards include a section devoted to accuracy, which results in recommendations for reducing uncertainties in discharge measurements and for estimating the extent of the uncertainties which do arise.

The National Water Archive exists to provide not only a central database and retrieval service but also an extra level of hydrological validation. To further this aim, project staff at the Institute of Hydrology liaise with their counterparts in the water industry on a regional basis and, by visiting gauging stations and data processing centres, endeavour to maintain the necessary knowledge of local conditions and problems.

Scope of the Flow Data Tabulations

River flow data are presented in two parts. In the first, daily mean gauged flows are tabulated for 54 gauging stations; daily naturalised flows are also tabulated for the River Lee (page 58) and River Thames (page 61). Monthly flow data for a further 176 gauging stations are given in the second part. The featured gauging stations have been selected to give a broad geographical coverage and to typify a wide range of catchment types found throughout the United Kingdom. A map (Figure 12) is provided on page 34 to assist in locating the gauging stations featured in this section.

For each gauging station, basic reference information is given together with comparative average and extreme river flow and rainfall figures based upon the archived record.

Explanatory notes precede the two sets of tables and are provided to assist in the interpretation of particular items. The notes relating to the daily flow tables are given overleaf; those relating to the monthly data are given on page 92 .

Part (i) - the daily mean flow tabulations

Station Number

The gauging station number is a unique six-digit reference number which serves as the, primary identifier of the station record on the River Flow Archive. The first digit is a regional identifier being 0 for mainland Britain, 1 for the islands around Britain
and 2 for Ireland. This is followed by the hydrometric area number given in the second and third digits. Hydrometric areas are either integral river catchments having one or more outlets to the sea or tidal estuary or, for convenience, they may include several contiguous river catchments having topographical similarity with separate tidal outlets. In Britain they are numbered from 1 to 97 in clockwise order around the coastline commencing in north-east Scotland: Ireland has a unified numbering system from 1 to 40 , commencing with the River Foyle catchment and circulating clockwise; not all Irish hydrometric areas, however, have an outlet directly on the coast.

The numbers and boundaries of the United Kingdom hydrometric areas are shown in the frontispiece.

The fourth, fifth and sixth digits comprise the number, usually allocated chronologically, of the gauging station within the hydrometric area.

Where the leading digit, or digits, are zero they may be omitted giving rise to apparent four or fivedigit reference numbers.

Measuring Authority

An abbreviation referencing the organisation responsible for the provision of flow data to the River Flow Archive. A list of measuring authority codes together with the corresponding names and addresses for organisations currently contributing data to the River Flow Archive appears on pages 172 and 173.

Grid Reference

The initial two-letter and two-figure codes each designate the relevant 100 kilometre National Grid square or Irish Grid square; the standard six-figure map reference follows.
Note: Irish Grid references - which are italicised have only one prefix letter but it is common practice to precede it with the letter I to make the identification clear.

Catchment Area

The surface catchment area, in the horizontal plane, draining to the gauging station in square kilometres. There are a few gauging stations where, because of geological considerations, or as a result of water transfers - for instance, the use of catchwaters to increase reservoir yields - the actual contributing area may differ appreciably from that defined by the topographical boundary. In consequence, the river flows whether augmented or diminished, may cause the runoff (as a depth in millimetres) values to appear anomalous.

First Year

The year in which the station started producing daily mean flow data, usually the first year for which data are held on the River Flow Archive. Earlier data, often of a sporadic nature or of poorer quality, may occasionally be available from the measuring authorities or other sources.

Level of Station

The level of the station is, generally, the level of the gauge zero in metres above Ordnance Datum, or above Malin Head Datum for stations in Northern Ireland. Although gauge zero is usually closely related to zero discharge, it is the practice in some areas for an arbitrary height, typically one metre, to be added to the level of the lowest crest of a measuring structure to avoid the possibility of false recording of negative values by some digital recorders.

Maximum Altitude

The level to the nearest metre of the highest point in the catchment.

Table of daily mean gauged (or naturalised) discharges

The mean flow in cubic metres per second (abbreviated to $\mathrm{m}^{3} \mathrm{~s}^{-1}$ and sometimes also referred to as 'cumecs') in a water-day, normally 09.00 to 09.00 . The naturalised discharge is the gauged discharge adjusted to take account of net abstractions and discharges upstream of the gauging station.

Peak Flow: The highest flow in cubic metres per second for each month. The day of peak generally refers to the water-day but the calendar day is also used, particularly in Scotland. Normally the peak flow corresponds to the highest fifteen-minute flow where water levels are recorded digitally, or the highest instantaneous flow associated with maximum stage where analogue recorders are used.

Runoff: The notional depth of water in millimetres over the catchment equivalent to the mean flow for the month as measured at the gauging station. It is computed using the relationship:

$$
\begin{aligned}
& \text { Runoff in } \mathrm{mm}= \\
& \frac{\text { Average Flow in Cumecs } \times 86.4 \times \mathrm{n}}{\text { Catchment Area }\left(\mathrm{km}^{2}\right)}
\end{aligned}
$$

where n is the number of days in the month. The runoff total is rounded to the nearest millimetre.

Rainfall: The rainfall over the catchment in millimetres for each month. Each areal rainfall total is derived from a one kilometre square grid of rainfall
values generated from all daily and monthly rainfall data available from the Meteorological Office \dagger. Validation procedures allow for the rejection of obviously erroneous raingauge observations prior to the gridding exercise. A computer program then calculates catchment rainfall by averaging the values at the grid points lying within the digitised catchment boundary. Where, as for instance in some small mountainous catchments, raingauages are few and their siting and exposure are not ideal, great precision in the areal rainfall estimates cannot be expected.

Statistics of monthly data for previous record

Only complete monthly records are used in the derivation of the average, low and high values of river flow, runoff and rainfall. The rainfall and runoff statistics are normally directly comparable but full equivalence will not obtain where the pattern of missing data differs between the archived rainfall and runoff data sets.

Where applicable, a guide to the amount of missing data is given following the section heading. Some slight variations from the statistics held by the measuring authorities may occur; these may be due to the different methods of computation or the need for uniformity in presentation.

Summary statistics

Current year flow statistics are tabulated alongside the corresponding values for the previous record. Where appropriate, the current year figures are expressed as a percentage ${ }^{\star}$ of the preceding average.

Mean Flow: The average of all available daily mean flows during the term indicated.

Lowest Daily Mean: The value and date of occurrence of the lowest mean flow in cubic metres per second in a water-day during the term indicated. In a record in which the value recurs, the date is that of the last occasion.

River flow measurement tends to become more imprecise at very low discharges. Very low velocities, heavy weed growth and the insensitivity of stagedischarge relations combine with the difficulty of accurately measuring limited water depths to reduce the accuracy of computed flows. The reliability of both the lowest daily mean flow and the 95 per cent exceedance flows (see opposite) as representative measures of low flow must, therefore, be considered carefully and the values used with caution in view of the increasing proportional variability between the natural flow and the artificial influences, such as abstractions, discharges and storage changes as the river flow diminishes.

[^3]Peak: The peak flow in cubic metres per second during the term indicated. The date of occurrence, normally the water-day, is also indicated. Generally, the peak flows are derived from the record of monthly instantaneous maximum flows stored on the River Flow Archive*. As a result of particular flow measurement difficulties in the flood range, this peak flow series is often incomplete. Reference to Volume IV of the Flood Studies Report' should be made to check for historical flood events which may exceed the peak falling within the gauged flow record.
10% exceedance: The flow in cubic metres per second which was equalled or exceeded for 10 per cent of the specified term - a high flow parameter which, when compared with the mean may give a measure of the variability, or 'flashiness', of the flow regime. The 10 per cent exceedance value is computed using daily flow data only for those years with ten days, or less, missing on the River Flow Archive.
$\mathbf{5 0 \%}$ exceedance: The flow in cubic metres per second which was equalled or exceeded for 50 per cent of the specified term - the median value. The same conditions for completeness of the annual records apply as for the 10 per cent exceedance flow.

95\% exceedance: The flow in cubic metres per second which was equalled or exceeded for 95 per cent of the specified term - a significant low flow parameter relevant in the assessment of river water quality consent conditions. The same conditions for completeness of the annual records apply as for the 10 per cent exceedance flow.

Factors affecting runoff

An indication of the various types of abstractions from, and discharges to, the river operating within the catchment which alter the natural flow is given by a standard set of abbreviated descriptions. In Part (ii) - the monthly flow data - each description is shortened to a code letter. An explanation of the abbreviated descriptions and the code letters is given overleaf. With the exception of the induced loss in surface flow resulting from underlying groundwater abstraction, these codes and descriptions refer to quantifiable variations and do not include the progressive, and difficult to measure, modifications in the regime related to land-use changes.

Except for a small set of gauging stations for which the net variation, i.e. the sum of abstractions and discharges, is assessed in order to derive the 'naturalised' flow from the gauged flow, the record of individual abstractions, discharges and changes in storage as indicated in the code above is not held centrally.

[^4]
CODE EXPLANATION

N Natural, i.e., there are no abstractions and discharges, or the variation due to them is so limited that the gauged flow is within 10 per cent of the natural flow at, or in excess of, the 95 per cent exceedance flow.

Storage or impounding reservoir. Natural river flows will be affected by water stored in a reservoir situated in, and supplied from, the catchment above the gauging station.

Regulated river. Under certain flow conditions the river will be augmented from surface water and/or groundwater storage upstream of the gauging station.

Public water supplies. Natural river flows are reduced by the quantity abstracted from a reservoir or by a river intake if the water is conveyed outside the gauging station's catchment area.

Groundwater abstraction. Natural river flow may be reduced or augmented by groundwater abstraction or recharge. This category includes catchments where minewater discharges influence the flow regime.

Effluent return. Outflows from sewage treatment works will augment the river flow if the effluents originate from outside the catchment.

Industrial and agricultural abstractions. Direct industrial and agricultural abstractions from surface water and from groundwater may reduce the natural river flow.

H Hydro-electric power. The river flow is regulated to suit the need for power generation.

ABBREVIATED DESCRIPTION

Natural within 10 per cent at the 95 per cent exceedance flow.

Reservoirs in catchment.

Augmentation from surface water and/or groundwater.

Abstraction for public water supply.

Flows influenced by groundwater abstraction and/or recharge.

Augmentation from effluent returns.

Flow reduced by industrial and/or agricultural abstraction.

Regulation for HEP.

Station and catchment description

A short commentary providing a guide to the characteristics of the station, its flow record and the catchment it commands; refer to page 175 for an explanatory listing of the abbreviations and acronyms used. The principal objectives of this summary information are to assist data users in the selection of gauging station records appropriate to their needs and to assist in the interpretation of flow variability at individual gauging stations particularly where the natural flow pattern is significantly disturbed by artificial influences.

A comprehensive set of gauging station and catchment descriptions is provided in the 'Hydro-
metric Register and Statistics 1986-90' (see page 174). Further details of the net impact of abstractions and discharges on river flow patterns are given in: Gustard, A., Bullock, A. and Dixon, J.M. 1992. Estimating Low River Flows in the United Kingdom. Institute of Hydrology Report number 108.

Comment

A summary of any important factors influencing the accuracy of the current year's flow data specifically; for instance, the reconstruction of a gauging station or the use of extrapolated stage-discharge relations during periods of very low or very high flows.

STATIONS FOR WHICH DAILY OR MONTHLY DATA ARE GIVEN IN THE RIVER FLOW SECTION

STATION	river name and station name	SEE
NUMBER		page
3002	CARRON AT SGODACHAIL	93
D 3003	OYKEL AT EASTER TURNAIG	36
4001	CONON AT MOY BRIDGE	93
6008	ENRICK AT MILL OF TORE	93
D 7002	FINDHORN AT FORRES	37
D 8006	SPEY AT BOAT O BRIG	38
8007	SPEY AT INVERTRUIM	93
9001	DEVERON AT AVOCHIE	94
10002	UGIE AT INVERUGIE	94
11001	DON AT PARKHILL	94
D 12001	DEE AT WOODEND	39
12006	GAIRN AT INVERGAIRN	94
13007	NORTH ESK AT LOGIE MILL	95
13008	SOUTH ESK AT BRECHIN	95
14001	EDEN AT KEmback	95
D 15006	TAY AT BALLATHIE	40
15011	LYON AT COMRIE BRIDGE	95
16003	RUCHILL WATER AT CULTYBRAGGAN	96
16004	EARN AT FORTEVIOT BRIDGE	96
17001	CARRON AT HEADSWOOD	96
17002	LEVEN AT Leven	96
18003	TEITH AT BRIDGE OF TEITH	97
18005	ALLAN WATER AT BRIDGE OF Allan	97
D 19001	ALMOND AT CRAIGIEHALL	41
20001	TYNE AT EAST LINTON	97
21006	TWEED AT BOLESIDE	97
D 21009	TWEED AT NORHAM	42
21012	teviot at hawick	98
21018	LYNE WATER AT LYNE STATION	98
21022	WHITEADDER WATER AT HUTTON	
	CASTLE	98
21024	JED WATER AT JEDBURGH	98
D 22001	COQUET AT MORWICK	43
22006	BLYTH AT HARTFORD BRIDGE	99
23001	TYNE AT BYWELL	99
D 23006	SOUTH TYNE AT FEATHERSTONE	44
23011	KIELDER BURN AT KIELDER	99
24004	BEDBURN BECK AT BEDBURN	99
24009	WEAR AT CHESTER LE STREET	100
25001	TEES AT BROKEN SCAR	100
D 25006	GRETA AT RUTHERFORD BRIDGE	45
25019	LEVEN AT EASBY	100
25020	SKERNE AT PRESTON LE SKERNE	100
26003	FOSTON BECK AT FOSTON MILL	101
26005	GYPSEY RACE AT BOYNTON	101
D 27002	WHARFE AT FLINT MILL WEIR	46
27007	URE AT WESTWICK LOCK	101
27025	ROTHER AT WOODHOUSE MILL	101
27030	DEARNE AT ADWICK	102
D 27035	AIRE AT KILDWICK BRIDGE	47
D 27041	DERWENT AT BUTTERCRAMBE	48
27042	DOVE AT KIRKBY MILLS	102
27043	WHARFE AT ADDINGHAM	102
27047	SNAIZEHOLME BECK AT LOW HOUSES	102
27050	ESK AT SLEIGHTS	103
D 27053	NIDD AT BIRSTWITH	49
27071	SWALE AT CRAKEHILL	103
D 28009	TRENT AT COLWICK	50
28015	IdLE AT Mattersey	103
28018	DOVE AT MARSTON ON DOVE	103

STATION	RIVER NamE and station name	SEE
NUMBER		PAGE
28024	WREAKE AT SYSTON MILL	104
28026	ANKER AT POLESWORTH	104
28031	MANIFOLD AT ILAM	104
28039	REA AT CALTHORPE PARK	104
28052	SOW AT GREAT BRIDGEFORD	105
28067	DERWENT AT CHURCH WILNE	105
28080	TAME AT LEA MARSTON LAKES	105
28082	SOAR AT LITTLETHORPE	105
D 28085	DERWENT AT ST MARY'S BRIDGE	51
29003	LUD AT LOUTH	106
D 30001	WITHAM AT CLAYPOLE MILL	52
30004	Partney lym at partney mill	106
30012	STAINFIELD BECK AT STAINFIELD	106
31010	CHATER AT FOSTERS BRIDGE	106
31021	WELLAND AT ASHLEY	107
32003	HARPERS BROOK AT OLD MILL BRIDGE	107
D 32004	ISE BROOK ATHARROWDEN OLD MILL	53
D 33002	BEDFORD OUSE AT BEDFORD	54
33006	WISSEY AT NORTHWOLD	107
33012	KYM AT MEAGRE FARM	107
33024	CAM AT DERNFORD	108
33027	RHEE AT WIMPOLE	108
33032	HEACHAM AT HEACHAM	108
D 33034	LITTLE OUSE AT ABBEY HEATH	55
34003	BURE AT INGWORTH	108
34004	WENSUM AT COSTESSEY MILL	109
D 34006	waveney at needham mill.	56
35008	GIPPING AT STOWMARKET	109
D 36006	STOUR AT LANGHAM	57
37001	RODING AT REDBRIDGE	109
37005	COLNE AT LEXDEN	109
37010	BLACKWATER AT APPLEFORD BRIDGE	110
D 38001	Lee at feildes Weir	58
D 38003	MIMRAM AT PANSHANGER PARK	59
38018	UPPER LEE AT Water hall	110
38021	TURKEY BROOK AT ALBANY PARK	110
D 39001	THAMES AT KINGSTON	60
39002	THAMES AT DAYS WEIR	110
39005	BEVERLEY BROOK AT WIMBLEDON	
	COMMON	111
39007	BLACKWATER AT SWALLOWFIELD	111
39014	VER AT HANSTEADS	111
39016	KENNET AT THEALE	111
39019	LAMBOURN AT SHAW	112
D 39020	COLN AT BIBURY	62
39021	CHERWELL AT ENSLOW MILL	112
39023	WYE AT HEDSOR	112
39029	TILLINGBOURNE AT SHALFORD	112
39049	SILK STREAM AT COLINDEEP LANE	113
39069	MOLE AT KINNERSLEY MANOR	113
D 40003	MEDWAY AT TESTON	63
40009	TEISE AT STONE BRIDGE	113
40010	EDEN AT PENSHURST	113
D 40011	GREAT STOUR AT HORTON	64
40012	Darent at hawley	114
41001	NUNNINGHAM STREAM AT TILLEY	
	BRIDGE	114
41005	OUSE AT GOLD BRIDGE	114
41006	UCK AT ISFIELD	114
41012	ADUR EAST AT SAKEHAM	115

Figure 12. Gauging station location map.

STATION	river name and station name	SEE	station	RIVER NAME AND Station name	SEE
NUMBER		Page	NUMBER		page
D 41016	CUCKMERE AT COWBEECH	65	60003	TAF AT CLOG-Y-FRAN	126
41019	ARUN AT ALFOLDEAN	115	60010	TYWI AT NANTGAREDIG	126
41027	ROTHER AT PRINCES MARSH	115	D 62001	TEIFI AT GLAN TEIFI	78
42003	LYMINGTON AT BROCKENHURST PARK	115	63001	YSTWYTH AT PONT LLOLWYN	127
42004	TEST AT BROADLANDS	116	64001	DYFI AT DYFI BRIDGE	127
42006	MEON AT MISLINGFORD	116	64002	DYSYNNI AT PONT-Y-GARTH	127
42008	CHERITON STREAM AT SEWARDS		D 65001	GLASLYN AT BEDDGELERT	79
	BRIDGE	116	65005	ERCH AT PENCAENEWYDD	127
D 42010	ITCHEN AT HIGHBRIDGE/ALLBROOK	66	66006	ELWY AT PONT-Y-GWYDDEL	128
D 43005	AVON AT AMESBURY	67	67008	ALYN AT PONT-Y-CAPEL	128
43006	NADDER AT WILTON PARK	116	D 67015	DEE AT MANLEY HALL	80
43007	STOUR AT THROOP MILL	117	D 68001	WEAVER AT ASHBROOK	81
43012	WYLYE AT NORTON BAVANT	117	68004	WISTASTON BROOK AT MARSHFIELD	
44002	PIDDLE AT BAGGS MILL	117		BRIDGE	128
44006	SYDLING WATER AT SYDLING		69006	BOLLIN AT DUNHAM MASSEY	128
	ST NICHOLAS	117	69007	MERSEY AT ASHTON WEIR	129
44009	WEY AT BROADWEY	118	69035	IRWELL AT BURY BRIDGE	129
D 45001	EXE AT THORVERTON	68	70003	douglas at central park wigan	129
45003	CULM AT WOODMILL	118	71001	RIBBLE AT SAMLESBURY	129
45004	AXE AT WHITFORD	118	71004	CALDER AT WHALLEY WEIR	130
46003	DART AT AUSTINS BRIDGE	118	D 72004	LUNE AT CATON	82
46005	East dart at bellever	119	73005	KENT AT SEDGWICK	130
D 47001	TAMAR AT GUNNISLAKE	69	D 73010	LEVEN AT NEWBY BRIDGE	83
47007	YEALM AT PUSLINCH	119	74005	EHEN AT BRAYSTONES	130
47008	THRUSHEL AT TINHAY	119	75002	DERWENT AT CAMERTON	130
48004	WARLEGGAN AT TRENGOFFE	119	76005	EDEN AT TEMPLE SOWERBY	131
48005	KENWYN AT TRURO	120	D 76007	EDEN AT SHEEPMOUNT	84
48011	FOWEY AT RESTORMEL	120	76010	PETTERIL AT Harraby green	131
49001	CAMEL AT DENBY	120	77003	LIDDEL WATER AT ROWANBURNFOOT	131
49004	GANNEL AT GWILLS	120	78003	ANNAN AT BRYDEKIRK	131
D 50001	TAW AT UMBERLEIGH	70	78004	KINNEL WATER AT REDHALL	132
50002	TORRIDGE AT TORRINGTON	121	D 79006	NITH AT DRUMLANRIG	85
D 52005	TONE AT BISHOPS HULL	71	80001	URR AT DALBEATTIE	132
52007	Parrett at chiselborough	121	81002	CREE AT NEWTON STEWART	132
52010	BRUE AT LOVINGTON	121	81003	LUCE AT AIRYHEMMING	132
53004	CHEW AT COMPTON DANDO	121	82002	DOON AT AUCHENDRANE	133
53006	FROME (BRISTOL) AT FRENCHAY	122	83003	AYR AT CATRINE	133
53007	FROME (SOMERSET) AT TELLISFORD	122	83005	IRVINE AT SHEWALTON	133
D 53018	AVON AT BATHFORD	72	D 84005	CLYDE AT BLAIRSTON	86
D 54001	SEVERN AT BEWDLEY	73	84012	WHITE CART WATER AT HAWKHEAD	133
D 54002	AVON AT EVESHAM	74	84016	LUGGIE WATER AT CONDORRAT	134
D 54008	TEME AT TENBURY	75	85001	LEVEN AT LINNBRANE	134
54012	TERN AT WALCOT	122	D 85003	FALLOCH AT GLEN FALLOCH	87
54019	AVON AT STARETON	122	90003	NEVIS AT CLAGGAN	134
54020	PERRY AT YEATON	123	D 93001	CARRON AT NEW KELSO	88
54022	SEVERN AT PLYNLIMON FLUME	123			
54024	WORFE AT BURCOTE	123	94001	EWE AT POOLEWE	134
54034	DOWLES BROOK AT DOWLES	123	95001	INVER AT LITTLE ASSYNT	135
54038	TANAT AT LLANYBLODWEL	124	96001	Halladale at halladale	135
55008	WYE AT CEFN BRWYN	124	101002	MEDINA AT UPPER SHIDE	135
55013	ARROW AT TITLEY MILL.	124	D 201005	Camowen at camowen terrace	89
55014	LUGG AT BYTON	124	201007	BURN DENNET AT BURNDENNET	
55018	FROME AT YARKHILL	125		BRIDGE	135
55023	WYE AT REDBROOK	125	201008	DERG AT CASTLE DERG	136
D 55026	WYE AT DDOL FARM	76	D 203010	BLACKWATER AT MAYDOWN BRIDGE	90
D 56001	USK AT CHAIN BRIDGE	77	203012	BALLINDERRY AT BALLINDERRY	
56013	YSCIR AT PONTARYSCIR	125		BRIDGE	136
57008	RHYMNEY AT LLANEDERYN	125	203020	MOYOLA AT MOYOLA NEW BRIDGE	136
58009	EWENNY AT KEEPERS LODGE	126	D 203028	AgIVEY AT White hill	91
60002	COTHI AT FELIN MYNACHDY	126	205004	LAGAN AT NEWFORGE	136

Measuring authority: HAPB First year: 1977

Grid reference: 29 (NC) 403001
Level stn. (m OD): 15.60

Catchment area (sq km): 330.7 Max alt. (m OD): 998

Daily mean gauged discharges (cubic metres por second)

DAY	jan	FEB	MAR	APR	MAY	JuN	JuL	AUG	SEP	OCT	NOV	DEC
1	86.400	2.858	6.709	39.550	1.210	1.179	9.120	1.838	1.201	106.800	5.005	5.547
2	55.520	4.310	4.696	24.260	1.224	1.403	4.378	1.574	1.131	22.540	14.210	4.111
3	14.980	3.232	3.643	23.930	2.632	1.292	3.046	1.915	1.070	21.700	22.570	4.731
4	83.510	1.769	5.275	9.509	2.992	1.322	2.340	2.233	1.016	22.910	32.770	3.641
5	29.910	1.562	8.230	15.760	1.964	1.164	1.842	1.957	1.042	23.810	14.200	3.104
6	41.380	1.606	5.721	10.090	1.767	1.025	1.500	1.463	0.990	19.450	129.500	2.261
7	13.890	1.473	4.529	29.980	1.786	0.966	1.316	1.257	0.952	11.410	76.050	2.579
8	6.547	1.528	6.333	18.490	1.516	1.010	2.700	1.233	0.963	11.930	58.120	2.534
9	5.270	1.436	7.480	8.593	1.709	2.413	13.660	7.931	0.955	6.994	24.500	2.223
10	6.832	1.720	7.409	17.870	1.483	4.563	5.223	4.937	1.419	5.093	75.340	1.952
11	5.353	1.725	5.796	13.840	1.995	3.940	3.139	24.700	1.384	4.089	49.700	1.859
12	4.014	1.688	6.494	7.535	3.157	15.550	3.641	12.840	1.185	3.427	45.030	3.711
13	4.783	1.726	5.730	5.423	3.864	10.450	57.890	5.683	1.121	3.002	20.770	6.935
14	6.598	1.766	6.027	3.653	22.460	18.110	30.840	3.945	1.541	2.759	34.680	20.120
15	8.250	2.924	8.116	2.924	35.790	6.993	14.920	5.100	1.879	7.637	20.540	7.922
16	8.022	3.080	8.002	2.447	25.110	6.916	18.890	11.780	11.600	139.100	10.270	4.809
17	6.664	2.495	56.580	2.288	11.380	20.890	13.480	14.480	20.150	112.800	5.767	29.820
18	16.360	2.888	32.150	- 10.540	6.704	21.640	42.090	7.637	15.460	29.460	38.960	51.600
19	47.810	48.790	43.080	8.901	5.767	8.171	37.550	7.525	36.200	16.560	11.930	29.730
20	60.110	15.560	31.610	10.330	23.690	4.492	13.750	4.237	12.650	32.960	40.640	9.700
21	16.500	8.470	19.050	18.560	12.660	3.208	6.021	2.833	27.940	20.580	175.800	16.790
22	11.490	11.410	34.290	9.153	5.370	2.885	4.073	6.060	46.640	9.680	23.890	88.950
23	11.850	41.880	15.810	6.043	3.382	2.736	4.950	25.140	52.590	6.193	12.830	35.840
24	7.636	15.810	8.635	4.957	3.827	1.990	5.114	10.950	76.590	4.857	8.287	21.060
25	5.039	8.293	5.703	3.507	3.303	18.160	3.239	4.974	26.090	3.896	6.175	20.890
26	4.584	6.531	4.238	2.692	3.679	76.820	2.434	3.261	13.950	3.303	6.003	15.820
27	4.058	5.292	3.307	2.168	3.877	21.060	10.900	2.416	7.348	2.851	5.080	10.350
28	2.977	5.916	2.742	1.836	2.652	7.066	9.768	1.959	4.812	2.497	10.570	9.701
29	4.119		3.089	1.565	1.997	4.114	4.210	1.640	3.938	2.326	6.224	8.987
30	5.603		9.114	1.339	1.581	16.890	2.762	1.474	5.687	2.269	6.194	6.337
31	3.906		41.520		1.344		2.131	1.332		4.246		39.650
Average	19.030	7.419	13.260	10.590	6.512	9.614	10.870	6.010	12.650	21.520	33.050	15.270
Lowest	2.977	1.436	2.742	1.339	1.210	0.966	1.316	1.233	0.952	2.269	5.005	1.859
Highest	86.400	48.790	56.580	39.550	35.790	76.820	57.890	25.140	76.590	139.100	175.800	88.950
Peak flow	215.20	97.22	158.50	74.67	71.26	155.50	144.60	73.10	110.80	352.30	404.00	208.20
Day of peak	1	19	17	7	15	26	18	23	24	16	21	22
Monthly total (million cu m)	50.97	17.95	35.52	27.45	17.44	24.92	29.11	16.10	32.79	57.64	. 85.67	40.89
Runoff (mm)	154	54	107	83	53	75	88	49	99	174	259	124
Rainfall (mm)	156	64	140	116	94	136	121	87	176	203	330	161

Statistics of monthly data for previous record (Nov 1977 to Dec 1990)

Station and catchment description

40 m wide river section. Flows fully contained except in exceptional circumstances (e.g. October 1978). Construction of gabion groynes immediately downstream, in February 1986, has rendered the low flow rating less stable. 100\% natural flow regime with litile loch storage. Catchment is typical Highland mix of rough grazing and moorland with some afforestation in the middle reaches.

007002 Findhorn at Forres

Measuring authority: HRPB First year: 1958

Grid reference: 38 (NJ) 018583 Level stn. (m OD): 6.80

Daily mean gauged discharges icubic metres per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	43.510	8.644	17.430	43.790	6.711	4.421	24.990	3.671	2.951	57.950	23.270	15.110
2	120.400	7.147	14.470	25.970	7.274	5.648	17.010	3.569	2.920	26.140	24.440	11.510
3	41.010	6.675	11.860	13.820	40.760	8.873	12.530	3.463	2.903	30.730	13.590	9.871
4	45.870	6.785	10.950	11.790	33.850	13.090	10.070	3.421	2.850	65.310	73.190	8.763
5	45.560	6.330	33.700	15.020	14.870	9.181	8.127	3.814	2.877	22.180	29.680	8.155
6	41.280	7.065	24.830	16.210	15.250	6.462	7.056	4.391	2.891	12.970	64.110	6.801
7	27.760	6.212	16.050	39.820	26.770	5.335	9.493	3.554	2.870	30.770	50.300	6.360
8	19.410	6.182	24.630	21.510	14.940	4.884	12.670	3.554	2.834	13.860	24.980	7.177
9	16.140	6.205	38.190	30.030	11.340	7.502	11.250	4.094	2.817	11.130	16.660	6.657
10	15.520	6.342	37.390	32.580	9.892	27.600	8.549	4.892	2.816	B. 984	31.340	5.911
11	13.890	6.301	30.800	47.560	9.176	16.500	6.969	3.735	2.798	7.919	40.620	5.766
12	11.650	6.268	46.170	23.280	8.824	18.260	7.348	3.726	2.658	6.853	57.460	5.785
13	9.417	5.868	50.920	21.990	11.710	37.270	7.274	3.571	2.661	6.291	34.200	7.210
14	8.195	6.224	33.700	13.770	11.940	48.980	7.327	3.475	4.794	8.435	41.600	8.230
15	11.430	7.423	22.070	11.220	11.620	47.550	6.499	3.523	4.774	7.280	37.120	7.465
16	9.605	7.371	43.100	11.420	31.250	21.850	8.960	4.564	3.268	42.200	25.660	6.054
17	10.660	6.652	103.500	7.699	31.300	29.650	9.840	9.126	4.702	135.900	17.110	8.348
18	13.060	6.332	50.020	8.329	15.350	82.470	9.451	8.084	6.778	46.560	19.920	12.700
19	21.420	7.595	90.960	12.820	11.640	35.080	11.520	5.030	7.157	25.480	29.100	48.770
20	110.000	11.360	34.010	12.150	10.320	19.300	8.262	4.209	6.590	22.430	19.780	20.680
21	53.470	10.390	26.040	25.410	9.628	13.150	7.144	3.676	23.240	32.550	75.510	13.680
22	40.320	8.502	22.530	19.170	7.842	22.000	5.768	3.567	15.840	18.710	52.240	102.200
23	47.760	60.810	27.930	. 18.480	6.296	28.790	5.678	3.924	26.330	13.260	32.970	39.880
24	29.790	53.130	27.210	19.550	6.044	21.690	7.210	5.718	52.120	11.020	24.340	24.840
25	19.030	23.290	22.440	13.740	6.172	34.340	5.917	4.189	18.800	9.775	24.290	31.860
26	14.920	39.000	17.840	10.800	5.661	52.600	4.944	3.695	9.288	8.928	28.270	39.300
27	13.940	32.920	13.960	9.277	5.562	30.860	4.460	3.456	7.742	8.642	15.070	20.310
28	12.410	20.730	11.760	8.188	5.244	16.750	4.316	3.284	7.852	7.693	16.430	21.780
29	11.140		12.550	7.276	4.832	11.840	4.825	3.164	13.400	7.145	12.970	18.490
30	10.480		22.950	7.009	4.829	27.230	4.074	3.031	10.390	10.730	12.470	10.990
31	8.285		29.810		4.585		3.797	2.938		18.540		15.410
Average	28.950	13.850	31.280	18.660	12.950	23.640	8.494	4.133	8.664	23.750	32.290	17.940
Lowest	8.195	5.868	10.950	7.009	4.585	4.421	3.797	2.938	2.658	6.291	12.470	5.766
Highest	120.400	60.810	103.500	47.560	40.760	82.470	24.990	9.126	52.120	135.900	75.510	102.200
Peak flow	194.20	112.30	219.60	75.07	131.40	104.70	38.35	14.00	113.20	267.40	131.80	208.30
Day of peak	2	23	17	7	3	18	1	17	23	17	6	22
Monthly total (million cu m)	77.53	33.50	83.79	48.36	34.69	61.27	22.75	11.07	22.46	63.62	83.69	48.04
Runoff (mm)	99	43	107	62	44	78	29	14	29	81	107	61
Rainfall (mm)	112	57	72	72	58	142	55	40	77	140	143	94

Statistics of monthly data for previous record (Oct 1958 to Dec 1990)

Station and catchment description
50 m wide river section in a mobile gravel reach which necessitates frequent recalibration of low flow rating. Flows contained under cableway up to 3.8 m . Adequately gauged to bankfull. 100% natural catchment with minimal surface storage. Other than a narrow agricultural coastal plain the catchment drains the Monadhliath Mountains with an extensive blanket peat cover.

008006 Spey at Boat o Brig

Measuring authority: NERPB First year: 1952

Grid reference: 38 (NJ) 318518
Level stn: (m OD): 43.10

Catchment area (sq km): 2861.2
Max alt. (m OD): 1309

Daily mean gauged discharges (cubic metres per second)

DAY ${ }^{\text {i }}$	JAN	FEB	MAA	APR	MAY	JUN	JuL	AUG	SEP	OCT	NOV	DEC
1.	99.670	38.490	77.090	$\therefore 82.930$	33.390	28.680	93.260	23.130	. 16.310	58.860	118.900	53.410
2	261.100	35.920	62:540	100.700	33.190	32.660	82.640	22.470	$\cdots 15.980$	90.260	129.700	49.100
3 ;	180.600	33.770	53.240	76.540	52.090	37.450	67.460	21.700	15.860	76.270	95.770	43.740
4	154.100	32.620	51.330	62.890	86.580	49.520	55.230	21.260	15.530	86.090	203.800	40.250
5	160.700	30.750	101.100	65.050	56.710	39.690	47.740	20.990	15.410	:93.630	118.700	37.670
6	150.600	30.610	. 96.500	67.720	50.400	32.480	43.260	21.290	15.340	61.830	122.500	34.600
7	116.600	29.320	71.890	79.990	71.160	29.370	40.910	20.970	15.210	74.590	$\therefore 135.100$	32.700
8	90.190	28.890	76.540	88.920	53.960	28.060	r 45.570	20.700	15.130	66.170	90.410	32.560
9	73.600	28.630	105.400	77.600	45.260	30.570	42.700	21.840	14.950	54.510	68.320	31.390
10	65.620	28.340	120.400	80.500	41.930	63.080	40.320	21.940	14.940 -	44.990	73.830	29.850
11	58.980	27.730	-102.000	115.000	39.990	60.060	38.290	21.130	14.690	39.380	134.300	28.180
12	53.530	27.300	103.600	138.800	40.860	60.660	38.630 .	20.140	14.500	35.370	122.200	28.770
13	45.950	26.150	127.200	129.100	45.700	91.030	39.400.	19.490 :	14.570	32.840 ,	140.000	29.760
14	41.260	25.690	109.500	86.330	48.040	113.000	39.860	19.420	14.840	35.590	134.000	30.080
15	38.560	28.900	91.380	65.720	62.990	114.100	39.970	19.390	16.610	32.430	124.300	30.160
-												
16	40.780	29.650	102.700	57.060	107.300	81.360	48.000	19.810	16.960	38.490	87.720	28.860
17	42.740	28.470	-177.600	49.830	96.900	73.570	41.360	27.300	17.360	145.000 .	65.430	30.320
18	43.460	27.310	176.300	50.000	64.820	144.100	44.640	32.690	18.890	148.600	118.600	51.010
19	63.910	34.690	196.500	55.630	54.830	115.600	47.070	25.780	20.270	94.380	107.100	100.400
20	175.500	42.640	176.000	53.400	50.990	77.750	54.790	23.060	19.920	73.610	71.740	82.620
21	163.000	42.330	137.400	72.230	51.690	61.940	50.300	21.180	20.580	85.240	129.300	57.700
22	121.200	38.340	117.700	67.970	46.890	65.030	40.500.	20.430	40.430	64.850	125.100	180.400
23	108.500	122.000	114.800	58.240	40.540	69.600	41.940	20.420	42.960	50.060	99.610	159.700
24	94.780	145.600	98.690	56.260	37.810	65.620	43.400	21.100	93.360	43.330	84.960	111.800
25	73.930	95.150	82.440	52.350	$36.830{ }^{\text {- }}$	75.220	38.820	20.110	91.440	39.160	77.000	86.010
26	61.390	97.550	69.980	46.720	35.390	150.700	34.020	19.140	63.140	36.270	84.170	98.470
27	54.980	131.500	59.180	41.950	34.450	113.700	32.000	18.460	47.520	34.850	69.940	72.190
28	49.500	99.200	52.970	38.730	33.240	71.400	29.580	18.080	48.090	32.750	58.210	60.390
29	46.020		50.300	36.410	31.380	56.690	26.820	17.770	42.890	31.530	52.790	53.600
30	44.080		53.330	34.740	30.710	72.100	25.060	17.150	38.270	45.820	51.230	46.690
31	38.930		63.470		29.630		23.760	16.700		130.000		46.210
Average	90.770	49.550	99.320	69.640	49.860	70.160	44.430	21.130°	28.400	63.770	103.200	58.020
Lowest	38.560	25.690	50.300	34.740	29.630	28.060	23.760	16.700	14.500	31.530	51.230	28.180
Highest	261.100	145.600	196.500	138.800	107.300	150.700	93.260	32.690	93.360	148.600	203.800	180.400
Peak flow	297.50	188.30	260.20	164.90	127.60	186.30	117.30	39.82	107.50	233.80	237.90	251.70
Day of peak	2	23	17	12	16	26	1	18	24	17	4	22
Monthly total (million cu m)	243.10	119.90	266.00	180.50.	133.50	181.90	119.00	56.60	73.61	170.80	267.40	155.40
Runoff (mm)	85	42	93	63	47	64	42	20 ,	26	60	93	54
Rainfall (mm)	105	63	85	85	52	147	62	41	95	145	159	95

Statistics of monthly data for previous record (Oct 1952 to Dec 1990)

[^5]
012001 Dee at Woodend

Measuring authority: NERPB
First year: 1929

Grid reference: 37 (NO) 635956 Level stn. (m OD): 70.50

Catchment area (sq km): 1370.0 Max alt. (m OD): 1310

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	Jul	AUG	SEP	OCT	NOV	DEC
1	104.600	19.670	51.960	75.450	21.460	14.760	45.530	14.060	7.198	30.610	121.000	33.470
2	198.700	18.060	43.140	77.600	21.660	18.080	34.720	13.320	7.039	39.560	98.660	29.750
3	75.570	17.270	41.290	43.400	27.040	18.400	27.710	12.480	6.926	41.470	64.690	27.110
4	74.550	16.040	68.020	55.740	44.200	20.040	24.560	12.300	6.744	48.130	-103.300	24.970
5	77.320	15.750	173.700	62.190	29.050	17.080	21.710	12.250	6.647	38.890	61.680	23.430
6	61.210	15.340	91.450	53.920	29.940	14.330	19.940	12.160	6.657	24.970	72.360	21.650
7	46.310	14.530	77.730	81.320	38.870	15.330	18.650	11.930	6.456	90.540	73.260	20.070
8	38.130	15.130	102.700	53.640	27.640	19.250	19.870	11.190	6.294	52.520	47.070	19.430
9	33.610	15.100	143.700	44.170	25.100	47.090	20.290	12.700	6.363	35.890	37.000	18.450
10	31.670	15.780	116.500	62.870	24.040	63.480	18.440	12.160	6.341	28.310	54.740	16.560
11	28.780	15.970	85.170	112.700	23.800	39.630	17.400	10.440	6.316	24.420	66.120	15.650
12	25.050	15.510	99.110	123.000	25.290	40.990	21.020	9.839	6.148	21.230	102.000	16.870
13	21.800	13.830	136.300	82.470	30.520	50.370	24.090	9.560	6.145	19.080	68.210	17.900
14	21.270	13.790	94.220	53.720	28.690	50.710	20.660	9.447	6.399	18.910	59.950	17.380
15	20.560	15.430	73.930	44.650	34.800	44.500	19.020	9.309	7.558	16.890	53.970	17.000
16	20.560	14.200	115.100	40.380	48.300	35.040	21.750	9.876	6.975	24.410	38.110	15.470
17	23.200	13.510	151.500	34.180	43.840	31.420	18.500	18.340	7.225	50.590	32.150	15.980
18	26.940	13.050	107.200	34.100	34.580	42.930	19.100	15.240	6.729	58.230	132.100	21.140
19	33.920	19.100	162.600	34.250	30.920	42.070	30.180	12.180	6.953	35.890	86.510	44.000
20	132.500	27.510	92.830	32.880	32.060	32.720	53.420	10.940	6.772	31.620	51.070	26.610
21	70.760	27.020	69.200	43.340	35.430	27.710	33.900	9.970	10.360	44.070	109.800	21.690
22	41.780	22.900	56.810	37.380	28.500	37.590	24.050	9.788	20.600	33.930	98.540	102.900
23	47.030	117.600	52.130	33.360	22.840	43.430	31.240	9.628	18.000	26.930	75.180	52.680
24	43.040	108.800	48.550	38.120	21.790	34.160	33.890	9.471	45.100	24.440	63.600	32.000
25	33.770	55.170	42.060	35.520	22.060	38.650	24.850	9.165	24.300	21.970	68.280	28.650
26	28.660	130.700	38.290	30.720	20.550	49.200	20.400	8.765	18.430	21.210	64.430	44.250
27	26.110	110.100	33.090	27.510	20.450	49.680	18.290	8.479	15.060	22.120	47.780	29.180
28	23.690	76.730	30.680	25.280	19.250	32.940	17.410	8.212	36.020	19.560	41.630	27.020
29	22.090		30.260	23.730	17.350	27.230	16.400	8.008	19.490	23.540	37.780	24.530
30	21.190		34.920	22.710	16.690	32.440	15.310	7.673	15.730	92.020	36.350	21.310
31	17.640		47.610		15.870		14.590	7.416		266.800		22.990
Average	47.480	34.770	81.020	50.680	27.830	34.370	24.090	10.850	11.900	42.860	68.910	27.420
Lowest	17.640	13.050	30.260	22.710	15.870	14.330	14.590	7.416	6.145	16.890	32.150	15.470
Highest	198.700	130.700	173.700	123.000	48.300	63.480	53.420	18.340	45.100	266.800	132.100	102.900
Peak flow	305.40	245.30	218.90	172.70	67.79	107.70	71.01	26.15	79.04	549.70	234.80	188.60
Day of peak	2	26	5	12	3	9	20	17	24	31	18	22
Monthly total (million cu m)	127.20	84.12	217.00	131.40	74.53	89.10	64.53	29.06	30.84	114.80	178.60	73.45
Runoff (mm)	93	61	158	96	54	65	47	21	23	84	130	54
Rainfall (mm)	101	93	102	99	40	132	66	35	68	174	154	61

Statistics of monthly data for previous record (Oct 1929 to Dec 1990)

Mean flows:	Avg.	47.370	41.040	43.370	44.790	35.910	22.290	18.470	22.290	25.790	39.500	46.200	48.530
	Low	15.450	13.420	15.160	11.380	12.130	7.340	6.851	5.141	6.491	6.798	12.230	22.020
	(year)	1940	1947	1973	1938	1946	1940	1989	1984	1972	1972	1983	1976
	High	127.800	104.200	88.680	113.300	85.950	56.080	36.710	63.850	71.830	138.200	127.500	108.400
	(year)	1937	1990	1977	1947	1986	1948	1958	1948	1930	1982	1984	1954
Runoff:	Avg.	93	73	85	85	70	42	36	44	49	77	87	95
	Low	30	24	30	22	24	14	13	10	12	13	23	43
	High	250	184	173	214	168	106	72	125	136	270	241	212
Rainfall:	Avg.	120	79	78	69	80	67	88	94	93	119	113	118
	Low	36	10	16	12	21	16	22	13	13	8	22	43
	High	374	216	175	196	179	160	206	185	227	310	320	282

Summary statistics

Station and catchment description
Cableway rated, fairly stable natural control. Present station, built in 1972, replaced easlier station (flow records from 1929, chart records from 1934) on same reach (Cairnton; c/m measurements at Woodend) - established by Capt. McClean. Earlier staff gauge record dates from 1911. No regulation, littie natural storage, minor abstractions. Dairadian and Moinian metamorphic along most of the valley, flanked by igneous intrusive. Mountain, moorland, forestry, pastoral and some arable in the valley bottom.

Measuring authority: TRPB
First year: 1952

Grid reference: 37 (NO) 147367 Level stn. (m OD): 26.30

Catchment area (sq km): 4587.1
Max alt. (m OD): 1214

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SĖP	OCT	NOV	DEC
1	483.800	113.500	263.300	194.800	85.800	50.220	79.800	65.410	42.380	200.800	405.700	234.300
2	877.700	103.400	227.200	227.700	90.300	52.640	97.680	63.700	41.960	202.100	379.900	201.200
3	556.300	95.040	226.000	226.600	73.760	51.300	92.430	61.560	40.760	280.800	298.300	179.700
4	622.100	96.800	323.900	283.600	87.700	49.920	92.610	59.510	39.400	425.300	260.700	172.700
5	673.000	88.760	515.500	307.700	77.420	50.170	86.940	62.990	40.700	343.600	247.300	. 150.900
6	581.300	78.810	363.000	327.700	79.460	49.480	78.880	64.570	38.720	291.900	232.900	147.300
7	458.600	76.580	317.700	439.200	86.570	50.530	73.860	63.140	36.720	423.800	263.700	138.500
8	360.200	73.430	343.700	429.500	75.800	52.950	75.440	58.230	36.800	338.600	241.600	116.100
9	323.400	70.990	411.300	362.100	76.170	117.500	86.590	64.690	37.620	271.500	232.600	112.500
10	292.400	62.020	341.100	453.700	74.050	123.300	71.840.	67.870	37.340	217.800	349.900	109.300
11	283.200	62.210	263.800	619.000	73.760	79.230	71.720	57.880	38.250	196.000	362.300	108.900
12	252.800	59.370	252.500	612.100	62.050	112.300	96.260	54.120	37.450	193.800	544.700	105.400
13	186.700	57.250	293.000	495.000	62.910	. 140.100	122.600	53.320	36.080	172.700	524.600	103.400
14	173.000	57.770	272.300	366.300	63.020	124.900	104.000	53.220	38.630	166.700	395.600	88.800
15	163.900	60.130	265.800	311.000	60.330	102.000	95.790	53.210	42.490	151.700	333.300	94.800
16	155.800	58.480	369.500	259.100	61.110	96.880	93.180	53.580	40.350	214.900	290.700	97.850
17	152.200	56.630	532.700	233.000	59.250	79.240	90.060	70.170	45.740	266.400	258.900	110.100
18	181.100	55.900	465.600	208.300	58.370	79.830	88.180	64.280	49.740	238.000	321.500	135.600
19	246.600	61.530	713.200	198.600	57.890	85.920	103.000	58.710	55.170	197.100	299.100	312.200
20	587.900	81.440	512.000	189.300	57.380	72.640	168.100	61.090	65.910	153.500	235.000	214.300
21	442.900	89.990	403.500	181.000	57.450	71.110	121.900	58.730	104.200	146.900	288.200	235.500
22	341.200	91.670	320.100	164.900	55.150	108.400	88.210	57.050	150.400	131.700	261.700	577.000
23	331.800	287.400	276.400	146.600	56.760	117.200	142.300	55.960	194.200	121.400	268.600	460.000
24	289.300	348.100	220.000	146.100	55.560	88.800	138.200	52.220	346.100	116.200	253.900	336.200
25	261.500	249.600	209.000	136.200	54.090	105.600	98.980	50.310	246.700	101.200	325.000	281.900
26	228.600	346.800	192.000	133.300	52.310	108.300	104.700	46.880	205.500	90.260	320.200	295.700
27	217.700	379.000	185.500	118.600	52.040	105.100	95.850	45.230	190.400	84.820	258.300	256.800
28	210.300	366.600	171.300	109.900	51.410	92.040	87.860	43.240	230.900	82.350	281.900	227.600
29	158.700		162.500	105.000	51.000	80.430	84.850	46.800	154.700	78.330	256.300	204.300
30	147.500		135.800	96.900	50.620	73.170	85.190	43.060	150.300	223.900	261.200	207.000
31	121.000		124.300		50.220		66.340	42.550		426.800		205.700
Average	334.300	129.600	312.000	269.400	64.830	85.710	96.240	56.560	93.850	211.300	308.500	200.700
Lowest	121.000	55.900	124.300	96.900	50.220	49.480	66.340	42.550	36.080	78.330	232.600	88.800
Highest	877.700	379.000	713.200	619.000	90.300	140.100	168.100	70.170	346.100	426.800	544.700	577.000
Peak flow	1043.00	547.80	814.30	727.70	98.12	187.70	184.90	77.77	387,10	687.50	823.90	857.10
Day of peak	2	26	19	11	2	9	20	17	24	31	12	22
Monthly total (million Cu m)	895.30	313.60	835.80	698.30	173.60	222.20	257.80	151.50	243.30	566.00	799.50	537.50
Runoff (mm)	195	68	182	152	38	48	56	33	53	123	174	117
Rainfall (mm)	193	94	134	144	24	130	95	47	146	190	200	133

Statistics of monthly data for previous record (Oct 1952 to Dec 1990)

Station and catchment description
Velocity-area station with cableway. 90 m wide. The most d / s station on the Tay, records highest mean flow in UK. Since end of 1957.1980 sq. $\mathrm{km}(43 \%)$ controlled for HEP; there was some control prior to this. $73 \mathrm{sq} . \mathrm{km}$ controlled for water supply. Catchment is mostly steep, comprising mountains and moorland; exceptions are lower valleys. Mainly rough grazing and forestry. Geology: mainly metamorphics and granite, but lower 20\% (Isla valley) is Old Red Sandstone.

019001 Almond at Craigiehall

Measuring authority: FRPB
First year: 1957

Grid reference: 36 (NT) 165752
Level stn. (m OD): 22.90

Catchment area (sq km): 369.0 Max alt. (m OD): 518

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAA	APR	MAY	JUN	JUL.	AUG	SEP	OCT	NOV	DEC
1	63.470	2.530	8.175	5.528	1.613	1.324	4.514	1.858	0.938	2.932	18.920	3.004
2	49.600	2.316	6.982	16.200	1.541	3.927.	2.984	1.541	1.019	2.799	11.730	2.771
3	19.640	2.270	6.241	7.765	1.605	1.997	1.926	1.432	1.015	4.233	12.910	2.460
4	53.400	2.103	5.852	6.026	1.581	1.581	1.677	1.408	1.000	5.905	6.869	2.284
5	47.440	2.081	6.333	4.797	1.477	1.408	1.478	1.511	0.960	6.738	4.509	2.131
6	22.590	1.983	5.570	4.235	1.904	1.336	1.316	1.760	0.922	3.715	3.993	2.057
7	14.080	2.101	5.878	5.491	2.001	1.281	1.354	1.571	0.912	6.884	16.090	1.970
8	11.200	2.331	11.120	6.035	1.604	1.199	3.741	1.628	1.033	7.241	10.630	1.899
9	8.893	2.215	10.190	5.160	1.341	1.451	3.797	3.651	0.958	4.613	5.401	1.870
10	14.810	2.121	7.779	7.445	1.416	1.542	2.586	2.003	0.919	4.219	18.590	1.744
11	25.400	2.032	6.381	5.491	1.327	1.594	2.070	1.488	0.892	3.497	20.820	1.650
12	15.110	2.041	5.848	45.860	1.349	2.192	2.930	1.338	0.852	3.011	24.630	1.785
13	8.915	1.856	9.558	18.800	1.946	2.370	3.291	1.217	0.860	3.007	28.430	1.859
14	6.583	3.040	8.147	9.631	1.539	1.867	2.787	1.215	1.125	2.482	13.880	1.819
15	5.251	12.360	8.017	6.701	1.399	1.668	6.481	1.133	1.078	2.513	10.350	2.118
16	4.456	7.955	8.936	5.454	1.441	1.634	9.272	1.105	1.861	12.970	6.466	2.395
17	4.246	5.273	11.730	4.679	1.417	3.665	4.125	1.535	1.425	9.211	4.989	7.875
18	13.240	4.732	37.850	4.287	1.319	5.476	3.413	1.190	1.110	5.064	5.490	18.820
19	10.740	7.891	37.110	3.035	1.299	5.135	3.817	1.244	1.085	3.210	10.950	36.310
20	11.760	14.420	18.190	2.490	1.321	2.885	4.622	1.138	1.068	2.521	6.824	12.170
21	7.858	14.040	18.460	2.368	1.307	2.193	3.203	1.109	4.318	2.186	7.654	36.280
22	5.863	52.090	11.360	2.161	1.295	2.437	2.655	0.981	6.524	1.876	7.545	81.610
23	5.101	53.640	8.429	1.421	1.279	4.305	3.440	0.983	7.954	1.714	5.699	36.260
24	4.436	29.800	6.514	1.433	1.301	3.312	2.866	0.882	22.650	1.553	4.635	13.340
25	3.960	12.770	5.483	1.296	1.210	2.590	2. 198	0.832	8.315	1.587	4.081	9.787
26	3.503	10.220	4.781	1.193	1.224	2.128	1.825	0.877	4.041	1.611	3.367	9.968
27	3.307	8.809	4.334	1.100	1.282	1.830	1.574	0.905	2.806	1.545	3.253	6.940
28	3.166	8.575	3.924	1.047	1.148	1.709	1.479	0.925	3.694	1.433	3.875	5.892
29	2.970		- 3.638	1.585	1.233	1.540	1.474	0.919	2.818	1.418	4.341	4.999
30	3.048		3.399	1.683	1.304	1.581	1.456	0.870	2.322	2.451	3.668	4.410
31	2.808		3.264		1.291		1.530	0.818		10.060		5.535
Avarage	14.740	9.771	9.660	6.347	1.429	2.305	2.964	1.325	2.882	4.006	9.686	10.450
Lowest	2.808	1.856	3.264	1.047	1.148	1.199	1.316	0.818	0.852	1.418	3.253	1.650
Highest	63.470	53.640	37.850	45.860	2.001	5.476	9.272	3.651	22.650	12.970	28.430	81.610
Peak flow	113.70	108.20	87.93	87.79	3.38	8.56	12.43	4.83	31.30	19.82	40.89	108.80
Day of peak Monthly total	1	22	18	12	6	18	16	9	24	31	13	22
(million cu m)	39.47	23.64	25.87	16.45	3.83	5.97	7.94	3.55	7.47	10.73	25.11	27.99
Runoff (mm)	107	64	70	45	10	16	22	10	20	29	68	76 -
Rainfall (mm)	106	79	75	65	17	84	87	32	90	79	87	100

Statistics of monthly data for previous record (Jan 1957 to Dec 1990)

Moan	Avg.	9.615	7.899	6.664	4.282	3.095	2.420	2.366	3.174	4.488	6.475	8.924	9.284
flows:	Low	3.574	1.782	1.918	1.410	1.091	0.817	0.950	0.869	0.668	0.668	1.862	3.016
	(year)	1963	1963	1973	1974	1961	1961	1960	1983	1959	1972	1972	1975
	High	18.970	22.010	14.300	9.840	11.170	8.572	9.223	8.568	20.360	15.120	21.660	19.860
	(year)	1990	1990	1979	1986	1968	1966	1958	1985	1985	1981	1963	1986
funoff:	Avg.	70	52	48	30	22	17	17	23	32	47	63	67
	Low	26	12	14	10	8	6	7	6	5	5	13	22
	High	138	144	104	69	81	60	67	62	143	110	152	144
Rainfall:	Avg.	83	59	69	51	60	61	72	85	87	91	88	87
	Low	28	17	22	8	16	15	17	19	14	23	19	21
	High	178	167	127	89	123	136	173	142	195	177	190	179

Factors affecting runoff

Abstraction for public water supplies
Flow reduced by industrial and/or
agricultural abstractions

- Augmentation from effluent returns.

Station and catchment description
The recorder is well sited on a straight even reach with steep banks which have contained all recorded floods. Stable rating over the period of record. Weed growth in summer - some adjustment to stage is required. Low flows substantially affected by sewage effluent especially from Mid Calder. Abstraction at Almondell to feed a canal. A number of storage reservoirs are situated in the catchment. Geology - predorninantly Carboniferous rocks. Land use - mainly rural. Livingston new town and several small mining towns in catchment.
 First year: 1962

Grid reference: 36 (NT) 898477
Level stn. (m OD): 4.30
Catchment area (sq km): 4390.0
Max alt. (m OD): 839

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	354.000	51.870	165.100	55.710	27.320	15.870	25.530	21.100	13.090	15.600	292.600	67.440
2	560.000	48.230	131.500	103.900	25.900	17.080	32.640	21.640	13.020	24.840	253.800	61.890
3	257.400	45.710	121.200	86.070	25.660	23.830	28.820	19.310	12.330	37.680	231.300	56.110
4	276.700	43.050	168.500	102.600	28.630	20.020	25.220	18.820	12.240	36.790	210.700	51.640
5	492.000	40.650	313.000	124.100	29.130	17.850	23.050	18.610	12.640	30.710	160.100	48.500
6	474.200	39.260	178.300	97.710	27.230	16.640	20.750	21.190	13.950	32.910	114.300	45.380
7	264.600	38.840	149.500	156.200	26.900	16.220	19.800	28.090	12.100	64.880	124.100	42.350
8	192.700	38.540	163.100	107.800	25.860	15.750	21.360	20.390	11.870	98.250	150.200	39.850
9	161.400	38.410	153.900	84.750	25.420	15.610	23.730	19.790	11.470	64.660	103.100	37.190
10	159.800	38.010	137.800	99.130	23.860	20.310	28.610	26.130	11.630	47.310	150.700	36.000
11	216.200	35.050	114.600	90.490	21.900	21.950	23.170	19.290	11.360	40.930	260.300	36.000
12	196.400	34.540	99.360	138.300	21.140	21.600	21.540	17.380	11.250	35.270	236.000	36.000
13	131.300	32.880	91.790	145.800	21.780	27.450	26.860	16.440	13.690	30.690	216.400	34.180
14	105.100	32.470	92.960	100.800	22.920	29.580	26.130	16.000	11.650	28.520	148.100	32.190
15	93.120	74.070	85.500	81.800	21.890	28.210	23.370	16.440	11.640	28.570	132.000	30.620
16	82.720	94.190	106.000	70.160	23.140	33.320	25.110	17.400	12.400	44.730	105.600	30.780
17	80.980	69.340	156.900	62.100	23.530	31.430	29.720	15.880	12.180	58.130	90.630	31.500
18	158.100	59.160	128.700	57.180	21.660	30.250	25.700	17.210	12.460	47.770	104.600	85.370
19	221.500	70.720	387.200	53.180	20.480	32.660	26.440	16.700	11.660	36.100	167.600	164.300
20	243.500	230.900	248.500	48.900	19.510	31.600	29.460	15.950	12.990	29.940	114.500	112.600
21	175.400	233.400	393.900	47.120	18.880	25.840	33.750	15.790	11.640	27.130	113.900	194.900
22	123.400	305.000	219.700	47.500	18.320	24.380	28.280	15.520	23.680	24.960	121.600	414.400
23	107.300	663.500	160.600	42.230	19.060	24.690	25.800	15.410	21.930	22.920	96.430	597.700
24	99.850	581.600	129.000	39.540	19.670	23.440	28.300	15.740	33.510	21.480	84.170	280.300
25	89.660	272.100	107.300	37.570	18.140	22.590	27.900	16.820	31.040	20.370	78.300	181.800
26	78.230	191.600	92.930	34.680	17.740	25.210	25.860	14.720	22.100	19.890	102.400	152.300
27	70.150	167.200	82.050	32.520	17.520	23.560	23.490	14.680	19.170	19.780	93.930	119.700
28	64.730	211.000	72.760	30.820	17.320	21.560	22.110	14.170	18.570	18.730	92.950	102.000
29	60.260		65.780	29.310	16.690	20.400	21.390	14.160	18.940	17.730	84.140	87.810
30	56.480		60.280	28.700	17.090	21.190	20.710	16.090	17.000	42.140	77.120	77.620
31	54.630		56.230		18.310		20.250	13.890		148.700		74.270
Average	183.900	135.000	149.500	74.560	22.020	23.340	25.320	17.770	. 15.440	39.290	143.700	108.500
Lowest	54.630	32.470	56.230	28.700	16.690	15.610	19.800	13.890	11.250	15.600	77.120	30.620
Highest	560.000	663.500	393.900	156.200	29.130	33.320	33.750	28.090	33.510	148.700	292.600	597.700
Peak flow	888.60	775.40	507.90	184.20	30.00	37.19	35.90	31.36	51.15	369.10	476.40	826.20
Day of peak	2	24	21	12	4	19	21	10	24	31	11	23
Monthly total (million cu m)	492.60	326.70	400.40	193.20	58.98	60.49	67.81	47.58	40.02	105.20	372.50	290.50
Runoff (mm)	112	74	91	44	13	14	15	11	9	24	85	66
Rainfall (mm)	109	100	95	66	20	86	64	35	60	105	121	94

Statistics of monthly data for previous record (Oct 1962 to Dec 1990)

Station and catchment description
Lowest station on River Tweed. Velocity-area station at very wide natural section. Complex control. Moderate seasonal weed growth effects on rating. Reservoirs in headwaters have only a small impact on the flow regime - monthly naturalised flows available. Geology: mixed but principally impervious Palaeozoic formations. Moorland and hill pasture predominates; improved grasslands and arable farming below Melrose.

022001 Coquet at Morwick

1991

Measuring authority: NRA-N First year: 1963

Grid reference: 46 (NU) 234044 Level stn. (m OD): 5.20

Catchrment area (sq km): $\mathbf{5 6 9 . 8}$
Max alt. (m OD): 776

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	MAY	JuN	Jul	AUG	SEP	OCT	NOV	DEC
1	49.730	5.541	19.580	5.183	2.399	1.660	2.024	1.388	1.051	1.155	14.350	4.127
2	60.870	6.319	14.500	5.287	2.301	1.918	1.975	1.319	1.089	1.125	14.490	4.048
3	22.650	6.034	13.030	4.919	2.375	2.527	1.862	1.237	1.084	1.068	12.140	3.732
4	19.160	5.342	36.180	5.329	2.933	2.354	1.770	1.137	1.068	1.169	24.550	3.427
5	32.830	4.798	43.020	6.747	3.722	2.023	1.661	1.085	1.075	1.205	13.950	3.262
6	34.030	4.624	19.850	5.584	3.213	1.791	1.534	1.157	1.058	1.582	7.985	3.097
7	17.370	4.481	17.880	6.956	3.000	1.672	1.445	1.551	1.004	1.565	7.788	2.920
8	17.460	4.453	20.950	6.215	2.901	1.585	1.515	1.686	0.988	4.882	8.777	2.722
9	20.550	4.486	16.430	4.905	2.563	1.736	1.644	1.699	1.053	3.490	5.975	2.458
10	24.520	4.617	14.960	4.396	2.376	2.291	1.563	1.510	1.052	2.366	5.332	2.285
11	29.780	4.463	11.240	4.104	2.242	2.372	1.442	1.418	1.029	2.181	12.460	1.828
12	19.890	4.580	9.680	3.805 .	2.161	2.192	1.367	1.276	0.999	- 1.947	6.906	2.824
13	11.730	4.615	9.214	3.637	2.161	2.733	1.291	1.196	1.025	1.770	7.657	3.066
14	9.088	4.628	11.410	3.447	2.162	2.246	1.248	1.139	1.047	1.689	6.612	2.639
15	7.911	18.310	9.322	3.237	2.116	2.172	1.266	1.095	1.248	1.950	7.147	2.443
16	6.971	18.330	10.060	3.109	3.105	2.083	1.470	1.062	1.348	1.741	5.535	2.391
17	6.660	13.500	22.290	3.020	2.624	2.400	1.639	1.083	1.274	1.611	4.651	2.393
18	10.790	11.260	15.860	3.128	2.564	2.649	1.618	1.108	1.190	1.547	15.750	3.212
19	19.780	18.630	20.740	3.580	2.329	2.463	1.498	1.105	1.117	1.442	30.680	5.747
20	31.790	43.670	22.550	4.046	2.172	2.290	3.523	1.088	1.047	1.363	12.120	6.355
21	15.080	46.680	44.490	4.194	1.997	2.098	3.208	1.057	1.047	1.358	13.030	16.820
22	10.060	53.180	19.430	4.549	1.838	1.981	2.270	1.035	1.105	1.326	11.670	46.230
23	9.008	111.400	13.200	3.584	1.241	2.038	1.977	1.062	1.289	1.297	8.284	64.160
24	9.666	58.570	10.460	3.234	1.623	1.909	1.916	1.049	1.231	1.285	6.829	21.470
25	8.321	24.530	8.826	3.062	1.826	1.798	1.861	1.055	1.231	1.326	6.123	12.420
28	7.058	16.920	7.817	2.852	1.814	2.320	1.870	1.043	1.165	1.343	5.565	9.839
27	6.440	19.330	7.067	2.699	1.724	2.380	1.749	1.012	1.175	1.387	6.354	7.919
28	6.003	40.610	6.400	2.570	1.707	2.042	1.522	1.020	1.144	1.436	5.552	6.936
29	5.625		5.901	2.513	1.714	1.842	1.353	0.994	1.187	1.413	4.934	6.063
30	5.234		5.514	2.479	1.678	1.835	1.272	0.946	1.224	3.667	4.509	5.463
31	5.433		5.252		1.653		1.248	0.903		5.906		5.193
Average	17.470	20.140	15.910	4.079	2.266	2.113	1.729	1.178	1.121	1.890	9.923	8.629
Lowest	5.234	4.453	5.252	2.479	1.241	1.585	1.248	0.903	0.988	1.068	4.509	1.828
Highest	60.870	111.400	44.490	6.956	3.722	2.733	3.523	1.699	1.348	5.906	30.680	64.160
Peak flow	128.90	140.30	96.72	8.35	6.35	2.93	4.39	1.75	1.53	20.45	67.67	
Day of peak Monthly total	2	23	5	7	16	13	20	9	23	31	19	23
((milion cu m)	46.78	48.72	42.60	10.57	6.07	5.48	4.63	3.16	2.91	5.06	25.72	23.11
Runoff (mm)	82	86	75	19	11	10	8	6	5	9	45	41
Rainfall (mm)	76	116	81	35	25	72	57	29	28	66	102	60

Statistics of monthly data for previous record (Nov 1963 to Dec 1990 -incomplete or missing months total 0.2 years)

Station and catchment description
Velocity-area station with 34 m wide concrete Flat V weir (informal design, approx. 1:20 cross-slope) made with pre-cast segments (installed 1973). Cableway. Fairly straight section with high banks. Replaced earlier station at Guyzance.Responsive natural regime. A predominantly upland catchment draining from the Cheviots. Largely Carboniferous Limestone and Devonian lgneous series. Some afforestation.

023006 South Tyne at Featherstone

Measuring authority: NRA-N First year: 1966

Grid reference: 35 (NY) 672611 Level stn. (m OD): 131.70

Catchment area (sq km): 321.9 Max alt. (m OD): 893

DAY	JAN	FEE	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	100.400	3.503	9.488	14.630	2.263	1.526	3.135	4.739	1.560	6.171	74.950	4.523
2	28.280	3.360	7.371	31.020	2.102	1.956	2.703	2.373	1.497	5.716	74.340	4.458
3	13.530	3.120	10.330	10.500	2.168	2.086	2.712	1.966	1.451	11.690	48.370	3.998
4	13.750	2.864	56.850	41.920	3.420	1.751	2.555	1.746	1.413	8.958	39.940	3.624
5	58.230	2.693	28.010	33.880	4.590	1.607	2.115	1.725	1.394	20.630	12.420	3.559
6	40.040	2.595	13.510	27.170	3.366	1.547	1.974	13.530	1.361	6.023	34.830	3.314
7	12.190	2.333	12.840	21.800	4.664	1.515	2.029	5.877	1.328	40.100	56.560	2.998
8	8.711	2.622	15.710	9.391	3.126	1.521	2.254	3.295	1.310	19.920	21.730	2.746
9	9.682	2.839	18.530	6.794	2.461	11.260	5.244	14.110	1.303	8.843	11.020	2.653
10	14.030	2.679	14.740	5.554	2.180	10.650	2.970	16.060	1.282	7.835	81:680	2.285
11	18.970	2.555	8.440	4.847	2.181	8.633	2.230	7.678	1.252	5.385	22.280	1.842
12	12.330	2.773	7.546	4.466	2.361	16.370	2.218	4.147	1.241	4.503	36.110	3.039
13	7.449	2.563	7.630	4.088	6.336	29.810	2.336	3.169	1.235	8.299	17.620	2.996
14	6.252	3.264	8.987	3.708	3.758	13.730	2.036	2.697	3.992	7.148	17.410	2.853
15	5.245	11.140	6.122	3.374	2.703	7.218	3.261	2.514	2.949	9.136	15.840	2.597
16	4.965	6.383	10.900	3.115	2.779	6.309	9.605	2.515	3.027	34.510	8.644	2.476
17	25.710	4.543	12.250	2.962	2.951	6.812	4.132	5.397	2.307	25.190	6.972	5.026
18	52.820	3.803	18.050	2.967	2.716	8.886	3.276	4.216	1.845	9.775	29.120	51.110
19	24.420	4.326	45.390	3.153	2.468	8.303	6.042	4.933	1.656	5.908	25.480	46.280
20	50.120	23.310	61.220	3.014	2.213	4.945	3.408	3.824	1.512	4.854	9.546	12.360
21	13.620	37.900	36.430	4.363	2.134	3.924	2.361	2.531	8.589	4.297	27.710	162.800
22	8.075	99.300	13.140	4.436	1.982	7.868	2.072	2.284	12.980	3.793	12.720	67.390
23	6.828	163.000	8.969	3.482	1.890	4.706	2.136	5.248	17.950	3.431	7.764	76.910
24	7.692	47.360	6.871	3.066	1.886	3.462	12.540	4.461	11.800	3.203	6.063	14.240
25	5.752	14.640	5.573	2.694	1.809	5.145	8.096	2.750	5.316	3.143	5.552	14.890
26	5.022	16.770	4.970	2.437	1.761	6.741	4.317	2.241	3.851	3.173	5.639	12.430
27	4.687	14.250	4.563	2.278	1.706	3.820	2.877	2.218	3.553	2.933	5.598	7.883
28	4.322	17.260	4.184	2.175	1.651	3.180	2.359	2.279	4.799	2.715	6.012	6.800
29	3.988		3.828	2.208	1.620	2.748	2.058	2.070	5.905	10.070	5.536	5.982
30	3.851		3.633	2.630	1.613	2.839	1.878	1.870	3.694	18.090	4.843	5.626
31	3.760		4.007		1.595		3.217	1.683		58.200		5.256
Average	18.540	17.990	15.160	8.937	2.595	6.362	3.553	4.392	3.778	11.730	24.410	17.580 1.842
Lowest	3.760	2.333	3.633	2.175	1.595	1.515	1.878	1.683	1.235	2.715	4.843	1.842
Highest	100.400	163.000	61.220	41.920	6.336	29.810	12.540	16.060	17.950	58.200	81.680	162.800
Peak flow	236.90	225.10	173.80	71.78	8.33	49.50	28.09	41.16	53.97	148.80	254.60	276.00
Day of peak	1	22	20	6	13	13	24	6	23	31	10	21
Montsly total (miltion cu m)	49.66	43.52	40.61	23.17	6.95	16.49	9.52	11.76	9.79	31.42	63.27	47.08
Runoff (mm)	154	135	126	72	22	51	30	37	30	98	197	146
Rainfall (mm)	141	151	134	100	34	121	85	73	85	148	237	173

Statistics of monthly data for previous record (Oct 1966 to Dec 1990 -incomplote or missing months total 0.2 years)

Station and catchment description 15.2 m , upper crest $\mathbf{2 9 . 5 m}$. Theoretical rating. Structure contains all flows. Extreme peaks may be Compound Crump profile weir. Lower crest 15.2 m , upper crest 29.5 m . Theoretical rating. Structure contains all frows. Extreme peaks may be

025006 Greta at Rutherford Bridge

Measuring authority: NRA-N First year: 1960

Grid reference: 45 (NZ) 034122 Level stn. (m OD): 223.00

Catchment area (sq km): 86. Max att. (m OD): 596

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	23.950	0.562	1.999	0.506	0.356	0.124	0.226	0.126	0.106	0.397	12.260	0.713
2	4.564	0.521	1.660	5.194	0.278	0.137	0.210	0.113	0.104	0.474	14.030	0.708
3	1.531	0.425	3.744	2.517	0.254	0.138	0.405	0.105	0.104	1.785	8.063	0.646
4	2.051	0.364	18.720	5.880	0.351	0.128	0.386	0.100	0.104	0.505	10.550	0.570
5	22.610	0.472	5.593	4.086	0.391	0.126	0.264	0.107	0.104	1.950	2.698	0.564
6	13.990	0.409	3.050	6.760	0.316	0.126	0.217	0.350	0.100	0.671	2.997	0.570
7	3.633	0.263	3.538	5.039	0.331	0.127	0.199	0.276	0.095	2.559	16.900	0.431
8	2.123	0.303	5.790	2.278	0.296	0.142	0.204	0.247	0.094	3.277	5.602	0.370
9	2.301	0.445	4.562	1.382	0.239	3.651	0.383	0.184	0.093	0.975	2.524	0.348
10	4.819	0.518	3.847	0.935	0.211	2.575	0.271	0.161	0.092	0.842	16.370	0.270
11	5.751	0.598	2.066	0.733	0.199	1.591	0.201	0.146	0.095	0.605	5.932	0.259
12	3.847	0.593	1.583	0.634	0.196	1.382	0.167	0.129	0.094	0.490	6.376	0.369
13	2.323	0.513	1.304	0.556	0.205	1.857	0.157	0.118	0.095	2.344	4.165	0.476
14	1.448	0.615	1.030	0.492	0.196	2.980	0.148	0.110	0.105	1.448	5.571	0.455
15	1.138	1.391	0.864	0.435	0.186	1.286	0.143	0.106	0.142	0.769	4.853	0.389
16	5.662	2.301	2.265	0.386	0.209	0.970	0.142	0.108	0.164	1.598	2.188	0.360
17	16.220	1.824	2.772	0.353	0.230	0.748	0.129	0.117	0.174	3.939	1.646	3.110
18	9.019	1.139	7.194	0.352	0.233	0.792	0.127	0.114	0.121	1.544	15.250	3.103
19	8.489	1.297	16.120	0.354	0.201	2.551	0.134	0.109	0.120	0.684	8.527	8.996
20	2.948	10.830	9.399	0.334	0.182	1.524	0.172	0.106	0.102	0.488	2.818	2.555
21	1.645	19.640	6.036	0.371	0.172	0.964	0.137	0.101	0.108	0.415	4.259	34.460
22	1.467	41.210	2.389	0.476	0.157	1.412	0.127	0.100	0.222	0.365	2.727	11.130
23	2.782	51.040	1.676	0.368	0.151	1.668	0.137	0.135	0.290	0.325	1.737	20.360
24	1.559	12.580	1.280	0.326	0.142	0.708	0.219	0.252	0.981	0.303	1.392	3.407
25	1.140	3.606	0.967	0.290	0.136	0.738	0.402	0.170	0.446	0.327	1.382	2.174
26	0.951	2.674	0.816	0.260	0.134	0.618	0.243	0.135	0.263	0.394	1.133	1.727
27	0.828	2.990	0.714	0.241	0.136	0.451	0.172	0.137	0.199	0.373	0.925	1.354
28	0.737	5.056	0.626	0.228	0.133	0.400	0.145	0.141	0.958	0.342	1.217	1.117
29	0.651		0.571	0.275	0.130	0.312	0.129	0.131	1.179	4.157	1.029	0.931
30	0.620		0.523	0.484	0.130	0.257	0.118	0.120	0.447	5.612	0.787	0.849
31	0.575		0.498		0.131		0.122	0.111		16.210		0.774
Avarage	4.883	5.864	3.651	1.417	0.213	1.016	0.201	0.144	0.243	1.812	5.530	3.340
Lowest	0.575	0.263	0.498	0.228	0.130	0.124	0.118	0.100	0.092	0.303	0.787	0.259
Highest	23.950	51.040	18.720	6.760	0.391	3.651	0.405	0.350	1.179	16.210	16.900	34.460
Poak flow	62.25	93.06	54.65	13.98	0.43	7.30	0.58	0.62	3.52	38.49	52.21	85.67
Day of poak Monthly total	1	22	4	6	1	9	9	6	28	31	18	21
(million cu m)	13.08	14.19	9.78	3.67	0.57	2.63	0.54	0.39	0.63	4.85	14.33	8.95
Runoff (mm)	152	165	114	43	7	31	6	4	7	56	166	104
Painfall (mm)	153	159	98	71	18	95	38	41	51	116	174	118

Statistics of monthly date for previous record (Oct 1980 to Dec 1990)

Station and catchment description
Compound Crump profile weir total width 19.2 m , low flow crest 3 m broad. Theoretical rating with check gaugings.Responsive, natural regirne. An eastward-draining Pennine catchment developed largely on Millstone Grit.

Measuring authority: NRA-Y.
First year: 1936

Grid reference: 44 (SE) 422473 Lavel stn. (m OD): 13.70

Catchment area (sq km): 758.9

Daily mean gauged discharges (cubic motres per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	JuL	AUG	SEP	OCT	NOV	DEC
1	58.020	5.705	24.890	39.110	6.168	2.847	4.778	2.736	2.522	4.899	40.160	7.347
2	94.220	4.925	17.960	112.700	4.819	2.989	4.808	2.528	2.468	9.947	55.790	6.550
3	37.040	4.563	17.800	42.230	4.519	3.116	4.235	2.626	2.426	9.722	72.620	6.027
4	28.350	4.754	45.500	25.650	4.719	2.928	3.804	2.617	2.336	7.934	40.180	5.366
5	36.170	4.600	62.000	35.350	4.609	2.875	3.765	2.715	2.276	7.188	26.110	4.923
6	107.000	4.422	26.980	29.660	4.508	2.864	3.553	2.696	2.226	9.226	17.810	4.712
7	39.080	4.489	21.730	32.940	4.458	2.841	3.412	9.368	2.181	6.151	98.880	4.232
8	32.960	4.342	25.580	17.990	4.217	2.858	3.267	4.342	2.186	45.850	62.350	3.809
9	35.310	4.244	21.520	13.210	4.218	3.302	7.212	3.450	2.189	15.640	23.300	3.554
10	48.430	4.083	24.550	10.720	3.950	15.700	8.078	12.060	2.116	8.282	30.500	3.509
11	36.220	3.773	17.600	9.262	3.790	8.318	4.661	13.410	2.108	5.913	86.220	3.321
12	36.810	4.095	14.250	7.796	3.746	9.336	3.830	6.283	2.219	5.554	28.430	3.510
13	20.890	4.058	12.110	7.131	3.712	9.667	4.549	4.531	2.098	4.812	. 36.350	3.158
14	15.570	4.058	10.970	6.377	3.697	15.120	6.513	3.993	2.126	4.908	33.210	3.058
15	12.910	8.889	9.393	6.375	4.215	9.326	5.424	3.541	2.381	4.442	30.580	3.040
16	11.050	13.830	10.770	6.239	3.914	8.083	10.580	3.351	2.392	13.580	22.050	2.935
17	10.170	10.530	26.950	5.851	3.638	6.681	7.837	3.262	5.099	16.430	15.520	3.194
18	23.300	8.904	22.890	6.022	3.708	6.968	4.718	3.488	3.295	21.130	36.780	21.050
19	36.210	7.914	113.900	6.191	3.652	6.948	9.920	3.241	2.745	8.509	90.090	142.600
20	34.350	9.746	57.240	5.692	3.477	10.900	7.657	3.036	2.628	5.392	31.090	44.650
21	27.120	57.900	48.640	5.456	3.322	7.159	4.985	2.963	2.501	4.171	24.710	148.700
22	15.790	70.270	26.690	5.215	3.156	13.710	4.269	2.837	4.256	3.789	33.060	142.300
23	11.880	292.100	17.850	5.199	3.086	23.880	4.124	2.782	4.966	3.241	17.950	72.820
24	10.760	163.400	13.700	4.989	3.064	11.770	4.229	6.095	19.650	2.856	12.990	37.760
25	9.865	49.390	11.700	4.660	3.002	8.163	4.183	5.055	9.893	2.884	10.900	23.160
26	7.942	28.690	10.150	4.283	3.012	7.876	4.947	3.531	8.162	2.622	10.750	24. 190
27	7.126	25.080	8.900	4.464	3.150	7.437	3.852	3.243	10.010	2.645	8.914	17.660
28	7.077	39.170	7.983	4.309	2.967	13.460	3.513	3.026	6.737	2.563	8.759	13.260
29	6.686		7.386	4.917	2.909	7.153	3.477	2.888	7.125	2.593	11.040	11.180
30	6.197		7.585	6.951	2.899	4.783	2.976	2.775	6.415	17.940	8.744	10.240
31	5.823		7.004		2.892		2.955	2.633		53.650		9.173
Average	28.070	30.280	24.260	15.900	3.780	7.969	5.036	4.229	4.324	10.140	34.190	25.520
Lowest	5.823	3.773	7.004	4.283	2.892	2.841	2.955	2.528	2.098	2.563	8.744	2.935
Highest	107.000	292.100	113.900	112.700	6.168	23.880	10.580	13.410	19.650	53.650	98.880	148.700
Peak flow	197.20	337.20	136.30	156.90	7.01	36.11	18.89	17.77	47.00	124.90	191.20	240.60
Day of peak	2	23	4	2	1	23	9	11	24	31	11	21
Monthly total (million cu m)	75.20	73.26	64.99	41.21	10.13	20.65	13.49	11.33	11.21	27.17	88.63	68.34
Runoff (mm)	99	97	86	54	13	27	18	15	15	36	117	90
Rainfall (mm)	115	131	99	78	17	118	51	42	62	97	174	125

Statistics of monthly data for previous record (Oct 1955 to Dec 1990)

Station and catchment description
Broad-crested masonry weir 47 m wide with a current meter cableway $1.5 \mathrm{~km} \mathbf{u} / \mathrm{s}$ (moved to new US station at Tadcaster in 1990). Insensitive at low flows. Level data only from 1936 to 1955. Recalibration(from 1965) completed but flows reprocessed from 1982 only. Pre-1965 data less reliable. Regulation effect of headwater reservoirs evident at low flows. Smalt net export of water (inc. Bradford supply). Mixed geology - mainly Carboniferous Limestone, grits and Coal Measures. Predominantly rural catchment with moorland headwaters.

Measuring authority: NRA-Y First year: 1968

Grid reference: 44 (SE) 013457 Leval stn. (m OD): 87.30

Catchment area (sq km): 282.3 Max alt. (m OD): 593

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	30.770	2.628	11.360	13.420	1.307	0.550	2.060	0.605	0.497	0.948	11.750	4.003
2	38.350	2.540	8.394	36.290	1.159	0.812	1.627	0.539	0.481	0.970	16.540	3.623
3	21.710	2.411	8.390	15.710	1.185	0.724	1.406	0.515	0.433	1.246	35.990	3.267
4	14.110	2.271	15.540	10.920	1.154	0.597	1.212	0.508	0.413	1.113	28.930	3.015
5	21.890	2.104	15.030	13.550	1.055	0.559	1.067	0.517	0.405	1.070	12.920	2.766
6	32.340	1.999	10.040	9.812	1.035	0.615	1.074	1.040	0.389	1.006	16.520	2.564
7	17.190	1.936	8.607	8.612	1.016	0.587	1.020	1.234	0.379	1.027	44.210	2.367
8	18.450	2.089	8.732	6.099	0.877	0.667	1.037	0.769	0.380	7.352	27.170	2.203
9	23.410	2.040	8.911	4.923	0.832	0.865	1.158	2.177	0.383	3.174	13.830	2.081
10	24.860	1.994	8.161	4.243	0.807	1.334	0.975	3.527	0.386	2.016	28.680	1.961
11	15.460	1.799	6.243	3.727	0.785	1.051	1.018	3.112	0.360	1.538	35.160	1.797
12	12.200	1.861	5.320	3.289	0.788	1.132	1.118	1.716	0.360	1.286	20.520	1.749
13	8.454	1.721	4.846	2.903	0.814	1.864	1.347	1.261	0.339	1.202	25.880	1.762
14	6.580	1.814	4.595	2.587	0.830	2.032	1.270	1.029	0.559	1.104	26.690	1.757
15	5.689	7.628	4.314	2.355	0.863	2.124	1.198	0.890	0.525	1.005	17.530	1.656
16	4.783	6.397	6.069	2.093	0.970	2.036	1.872	0.850	0.668	1.877	11.070	1.656
17	5.190	5.086	8.185	1.963	0.882	1.836	1.352	0.876	0.648	2.815	10.080	3.131
18	7.033	4.509	14.770	1.842	0.838	1.670	1.147	0.765	0.447	2.971	33.530	11.170
19	8.030	3.812	35.360	1.777	0.800	2.649	1.447	0.704	0.398	1.763	26.950	44.460
20	9.553	7.022	24.010	1.632	0.733	1.894	1.190	0.679	0.370	1.381	13.820	27.890
21	7.757	26.240	17.840	1.589	0.702	3.255	1.000	0.640	0.527	1.228	12.780	60.050
22	5.614	36.410	10.820	1.415	0.665	7.529	0.917	0.611	0.687	1.147	12.720	67.640
23	4.682	61.510	8.036	1.299	0.676	6.084	0.996	0.715	0.702	1.058	9.056	52.810
24	4.703	61.530	6.321	1.244	0.684	3.368	1.024	1.147	2.660	0.975	7.125	30.690
25	4.185	30.820	5.238	1.275	0.666	2.973	0.990	0.871	1.336	0.769	7.662	18.010
26	3.672	20.560	4.521	1.158	0.645	2.394	0.810	0.746	2.748 .	0.756	6.061	13.420
27	3.334	16.630	3.872	1.120	0.625	9.255	0.740	0.661	3.623	0.720	5.342	9.657
28	3.136	20.860	3.418	1.096	0.675	5.481	0.699	0.610	1.650	0.676	5.786	8.018
29	3.022		3.065	1.706	0.615	2.935	0.667	0.573	1.195	0.787	5.473	6.648
30	2.723		2.801	1.829	0.593	2.136	0.651	0.540	0.945	3.668	4.587	5.664
31	2.537		2.671		0.585		0.643	0.515		8.371		4.962
Avarage	11.980	12.080	9.209	5.383	0.831	2.367	1.120	0.998	0.830	1.839	17.750	12.980
Lowest	2.537	1.721	2.671	1.096	0.585	0.550	0.643	0.508	0.339	0.676	4.587	1.656
Highest	38.350	61.530	35.360	36.290	1.307	9.255	2.060	3.527	3.623	8.371	44.210	67.640
Poak flow	56.08	70.78	42.79	50.44	1.50	16.49	2.53	4.19	7.04	18.71	54.54	75.22
Day of peak Monthly total	1	24	19	2	1	27	1	10	26	31	10	22
(million cu m)	32.09	29.22	24.67	13.95	2.23	6.13	3.00	2.67	2.15	4.93	46.00	34.77
Runoff (mm)	114	104	87	49	8	22	11	9	8	17	163	123
Painfall (mm)	97	112	90	78	15	121	53	47	67	76	195	133

Statistics of monthly data for previous record (Dec 1968 to Dec 1990 -incomplete or missing months total 0.1 years)

[^6]Velocity-area station rated by current meter cableway 150 m downstream. Low flow control is the sills of the bridge. Flows below one cumec are underestimated - recalibration scheduled. Washland storage, minor reservoirs and the Leeds-Liverpool Canal influence the flow pattern. Small overall impact; minor net export. Geology is mainly Carboniferous Limestone with some Millstone Grit series. Rural catchment draining part of the eastern Pennines.

027041 Derwent at Buttercrambe

Measuring authority: NRA-Y First year: 1973

Grid reference: 44 (SE) 731587
Level stn. (m OD): 9.50

Catchment area (sq km): 1586.0 Max alt. (m OD): 454

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	JuL	AUG	SEP	OCT	NOV	DEC
1	24.860	12.330	62.160	15.450	9.561	5.915	5.809	4.060	3.158	3.828	9.992	7.110
2	36.480	12.110	50.240	15.700	9.477	6.116	7.437	3.936	3.047	3.501	8.782	6.879
3	31.020	11.830	43.350	15.540	9.335	7.348	6.768	3.771	3.026	3.260	7.936	6.706
4	27.490	11.450	38.880	14.920	9.996	7.754	6.636	3.714	3.007	3.210	7.647	6.534
5	24.320	11.040	51.760	15.870	10.070	6.852	5.990	3.672	3.018	3.274	15.450	6.327
6	25.000	10.940	48.070	14.610	9.427	6.437	5.493	3.834	2.994	3.334	12.090	6.122
7	23.230	10.930	39.880	15.010	9.116	6.300	5.302	3.897	2.935	3.387	8.953	5.872
B	27.020	10.910	37.550	14.130	8.861	6.194	5.183	3.878	2.925	3.345	7.733	5.708
9	43.270	11.000	34.280	13.180	8.721	6.696	5.001	3.731	2.948	3.433	6.779	5.495
10	49.910	11.200	29.740	12.890	8.463	7.493	4.563	3.673	2.952	3.467	5.878	5.453
11	45.220	11.060	26.770	12.560	8.358	6.971	4.810	3.577	2.915	3.403	5.703	5.250
12	35.160	10.870	24.910	12.220	8.158	6.690	4.886	3.532	2.919	3.395	5.825	4.715
13	29.250	10.720	23.580	11.730	8.125	6.624	4.824	3.496	2.885	3.498	6.524	5.537
14	24.080	10.460	22.670	11.440	7.934	6.483	4.729	3.453	2.935	3.660	8.490	5.481
15	21.680	14.440	22.050	11.230	7.688	6.266	4.534	3.439	2.931	3.757	8.627	5.320
16	19.820	24.460	21.610	10.900	7.681	6.263	4.360	3.431	3.095	3.835	8.111	5.290
17	18.660	29.390	27.500	10.900	7.768	6.592	4.331	3.364	3.331	3.799	6.939	5.405
18	19.090	29.760	28.150	11.080	7.911	6.956	4.304	3.388	3.311	3.705	7.872	6.328
19	27.480	25.740	33.170	11.630	7.558	7.419	4.483	3.475	3.090	4.095	25.010	7.077
20	23.320	30.890	26.990	11.920	7.328	7.454	4.435	3.404	3.043	5.707	22.060	7.325
21	20.710	47.480	26.900	12.630	7.004	6.965	4.393	3.319	3.088	4.838	14.140	12.680
22	18.280	60.100	24.760	12.490	6.777	7.517	4.301	3.269	3.128	4.354	17.110	24.750
23	16.990	73.010	22.360	11.670	6.619	10.080	4.229	3.261	3.252	4.012	13.160	17.090
24	16.400	93.420	20.630	10.980	6.569	9.110	4.451	3.272	3.263	3.809	10.830	16.720
25	15.780	82.360	19.150	10.680	6.546	7.810	4.674	3.405	3.174	3.772	9.765	12.010
26	14.810	53.220	18.230	10.240	6.470	7.269	4.598	3.334	3.313	3.809	9.500	10.720
27	14.100	44.520	17.380	9.914	6.365	6.650	4.371	3.260	3.366	3.868	8.677	9.633
28	13.760	63.440	16.450	9.705	6.275.	6.399	4.221	3.265	3.483	3.881	8.248	8.898
29	13.510		15.890	9.612	6.117°	6.177	4.100	3.278	3.470	3.929	7.809	8.398
30	13.060		15.460	9.735	6.096	5.992	4.025	3.246	3.509	4.812	7.453	7.979
31	12.580		15.250		6.082		4.167	3.176		7.830		7.730
Average	24.080	29.610	29.220	12.350	7.821	6.960	4.884	3.510	3.117	3.929	10.100	8.276
Lowest	12.580	10.460	15.250	9.612	6.082	5.915	4.025	3.176	2.885	3.210	5.703	4.715
Highest	49.910	93.420	62.160	15.870	10.070	10.080	7.437	4.060	3.509	7.830	25.010	24.750
Peak flow	51.40	97.15	65.56	16.28	10.46	10.73	8.25	4.23	3.84	8.61	31.60	26.74
Day of peak Monthly total	10	24	1	5	4	23	2	1	26	31	19	22
(mitlion cu m)	64.48	71.63	78.26	32.02	20.95	18.04	13.08	9.40	8.08	10.52	26.19	22.17
Runoff (mm)	41	45	49	20	13	11	8	6	5	7	17	14
Rainfall (mm)	54	90	52	32	16	72	33	17	33	69	82	37

Statistics of monthly data for previous record (Jan 1973 to Dec 1990)

Maan flows:	Avg.	27.010	25.590	24.860	19.340	14.200	10.100	8.256	8.070	7.951	13.120	14.930	24.500
	Low	9.640	8.606	6.254	6.640	5.282	5.342	3.882	3.126	3.077	4.172	5.472	10.390
	(year)	1989	1973	1973	1990	1990	1974	1976	1990	1990	1989	1989	1989
	High	48.190	49.280	56.110	37.540	29.840	21.260	17.120	15.430	14.710	36.820	25.220	42.740
	(year)	1977	1978	1979	1986	1979	1979	1973	1980	1976	1976	1980	1978
Runoff:	Avg.	46	39	42	32	24	17	14	14	13	22	24	41
	Low	16	13	11	11	9	9	7	5	5	7	9	18
	High	81	75	95	61	50	35	29	26	24	62	41	72
fainfal:	Avg.	75	50	70	50	58	58	60	66	67	78	65	82
	Low	20	5	7	11	17	11	18	10	18	21	28	24
	High	132	101	143	113	142	149	138	126	192	158	111	180

Summary statistics	For 1991		For record preceding 1991			Factors affecting runoff - Abstraction for public water supplies. - Augmentation from surface water and/or groundwater.		
			$\begin{gathered} 1991 \\ \text { As \% of } \\ \text { pre-1991 } \end{gathered}$					
Mean flow ($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$)	11.890				16.460			72
Lowest yearly mean			7.900	1989				
Highest yearly mean			25.320	1979				
Lowest monthly mean	3.117	Sep	3.077	Sep 1990				
Highest monthly mean	29.610	Feb	56.110	Mar 1979				
Lowest daily mean	2.885	13 Sep	2.697	23 Aug 1976				
Highest daily mean	93.420	24 Feb	121.400	29 Dec 1978				
Peak	97.150	24 Feb	124.800	5 Jan 1982				
10\% exceedance	26.680		33.700		79			
50\% exceedance	7.399		12.270		60			
95\% exceedance	3.131		4.262		73			
Annual total (million cu m)	375.00		519.40		72			
Annual runoff (mm)	236		327		72			
Annuat rainfall $\{\mathrm{mm}$ \} [1941-70 rainfall average (mm)	587		$\begin{aligned} & 779 \\ & 784 \end{aligned}$		75			

Station and catchment description
Crump weir, 20 m wide; high flow rating derived from limited number of gaugings. Pre-October 1973 data (monthly only) of poorer quality; derives from Stamford Br. (27015) - slightly smaller catchment area (1586.0 sq km). Peak flows from the headwaters upstream of Forge Valley (8% catchment) are diverted down the Sea Cut (27033). Minor net impact of artificial influences (spray irrigation is appreciable). Mixed geology of clays, shales and limestone. Rural catchment draining the North York Moors.

027053 Nidd at Birstwith

Measuring outhority: NRA-Y First yoar: 1975

Grid reference: 44 (SE) 230603 Leivel stn. (m OD): 67.40

Catchment area (sq km): 217.6 Max alt. (m OD): 705

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	Jul	AUG	SEP	OCT	NOV	DEC
1	34.240	2.553	12.050	5.676	1.427	0.927	0.906	0.756	0.481	0.615	2.416	2.408
2	30.540	2.475	8.258	17.000	1.292	0.966	0.894	0.756	0.476	0.618	3.332	2.415
3	15.590	2.457	5.421	10.740	1.289	0.941	0.919	0.738	0.477	0.570	8.604	2.343
4	13.230	2.262	14.170	7.962	1.379	0.920	0.888	0.723	0.483	0.532	6.382	2.274
5	29.410	1.991	13.730	10,400	1.311	0.898	0.854	0.742	0.485	0.668	4.858	2.205
6	45.230	1.976	12.530	8.622	1.238	0.911	0.844	0.801	0.474	0.592	5.927	2.146
7	15.380	1.991	13.070	11.070	1.246	0.905	0.828	0.752	0.477	0.700	11.010	2.102
8	14.330	2.014	14.490	6.864	1.179	0.967	0.820	0.780	0.467	1.227	10.310	1.493
9	18.600	1.961	12.500	5.604	1.131	1.034	0.844	0.713	0.469	0.694	5.158	1.190
10	19.660	1.932	7.750	5.450	1.098	1.095	0.805	0.770	0.462	0.617	9.413	1.168
11	15.730	1.901	5.090	2.823	1.077	0.991	0.822	0.763	0.458	0.574	10.970	1.131
12	13.510	1.699	3.491	2.329	1.068	0.966	0.864	0.740	0.455	0.569	10.980	1.124
13	11.580	1.386	2.897	1.849	1.069	1.053	0.895	0.718	0.458	0.594	13.170	1.150
14	6.697	1.475	2.619	1.721	1.049	1.017	0.867	0.722	0.474	0.594	10.360	1.127
15	6.090	3.267	2.488	1.633	1.040	1.049	0.832	0.717	0.486	0.574	7.325	1.110
16	3.840	2.753	5.425	1.551	1.030	1.129	0.893	0.715	0.543	0.654	5.894	1.119
17	3.166	2.525	4.533	1.491	1.033	2.002	0.831	0.711	0.507	0.759	5.639	1.583
18	4.532	2.285	19.790	1.503	1.014	1.615	0.838	0.701	0.478	0.747	14.700	8.963
19	4.014	2.098	47.240	1.502	0.986	1.244	0.858	0.664	0.472	0.596	10.620	17.030
20	10.540	4.059	21.440	1.490	0.971	1.070	0.813	0.510	0.468	0.561	11.010	8.123
21	10.630	9.578	13.820	1.469	0.948	1.675	0.798	0.503	0.503	0.556	12.110	26.530
22	7.154	24.070	8.900	1.393	0.937	2.501	0.790	0.507	0.538	0.549	10.740	16.440
23	4.226	179.700	7.000	1.332	0.935	1.729	0.816	0.532	0.531	0.542	7.288	21.030
24	3.288	46.190	6.425	1.310	0.942	1.265	0.842	0.522	0.739	0.541	5.412	12.580
25	3.057	15.770	3.412	1.290	0.934	1.219	0.842	0.501	0.574	0.549	5.183	11.250
26	2.895	12.540	3.240	1.261	0.932	1.104	0.805	0.492	0.600	0.549	3.606	7.950
27	2.786	15.450	3.062	1.226	0.926	1.012	0.776	0.493	0.647	0.536	2.739	5.768
28	2.739	15.220	2.918	1.194	0.914	0.975	0.770	0.496	0.618	0.528	2.689	5.429
29	2.689		2.801	1.633	0.900	0.942	0.750	0.486	0.789	0.672	2.601	5.136
30	2.613		2.705	1.913	0.886	0.901	0.729	0.481	0.592	1.565	2.495	3.494
31	2.552		2.284		0.886		0.748	0.481		3.395		2.641
Average	11.630	12.980	9.211	4.043	1.067	1.167	0.832	0.645	0.523	0.743	7.431	5.821
Lowest	2.552	1.386	2.284	1.194	0.886	0.898	0.729	0.481	0.455	0.528	2.416	1.110
Highest	45.230	179.700	47.240	17.000	1.427	2.501	0.919	0.801	0.789	3.395	14.700	26.530
Pask flow	100.40	282.80	65.27	25.79	1.53	3.34	0.98	1.15	0.99	8.64	31.33	54.84
Day of peak	6	23	19	2	1	22	16	8	24	31	18	21
Monthly total (mitlion cu m)	31.15	31.41	24.67	10.48	2.86	3.03	2.23	1.73	1.35	1.99	19.26	15.59
Runoff (mm)	143	144	113	48	13	14	10	8	6	9	89	72
Rainfall (mm)	133	150	118	78	18	99	46	32	61	98	174	110

Statistics of monthly data for previous record (Apr 1975 to Dec 1990 -incomplete or missing months total 0.1 years)

Station and catchment description 17 m wide, rated by current metering (to 30 cumecs only) from bridge at the section. Riffle control, may be vabject to erosion. Heavily reservoired catchment with substantial effect on flows. Geology is mostly Millstone Grit. Rural catchment.

028009 Trent at Colwick

Measuring authority: NRA-ST First year: 1958

Grid reference: 43 (SK) 620399
Level stn. (m OD): 16.00

Catchment area (sq km): 7486.0 Max alt. (m OD): 636

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	Nov	DEC
1	144.700	55.700	112.700	52.000	123.400	31.100	31.160	71.000	24.430	48.310	84.080	33.740
2	189.400	53.160	89.010	58.480	79.660	30.650	31.740	44.680	24.010	33.730	79.290	33.060
3	165.800	51.240	81.570	73.870	61.860	31.960	46.120	35.480	24.060	29.490	69.540	32.320
4	139.100	50.090	80.530	67.940	56.960	31.850	65.290	31.820	23.530	31.310	66.990	31.730
5	132.800	48.780	100.100	74.870	51.280	31.140	44.730	30.290	23.610	28.790	61.590	31.380
6	162.200	47.040	103.400	68.290	46.180	33.100	54.380	35.160	24.070	30.020	45.220	30.520
7	142.800	47.340	117.200	79.940	44.630	39.520	58.900	37.040	23.880	27.980	42.790	30.520
8	180.600	48.970	156.400	84.520	43.820	37.260	42.680	34.650	23.850	26.060	53.370	29.690
9	307.300	48.430	156.300	71.580	41.980	37.510	37.690	29.470	23.670	28.950	49.020	29.650
10	388.800	46.310	134.200	64.410	40.180	36.480	34.350	28.430	24.070	27.950	48.680	30.630
11	376.900	47.630	122.000	61.140	38.340	34.870	29.430	27.100	23.600	26.620	58.840	28.350
12	333.000	46.880	107.000	57.160	37.430	33.750	34.260	26.960	23.960	26.870	63.530	29.070
13	221.400	48.490	94.930	53.510	37.190	35.740	34.540	26.270	23.740	25.900	64.690	28.170
14	155.100	47.620	84.680	49.740	36.410	34.000	34.810	25.840	23.550	24.980	54.580	29.490
15	126.100	64.830	79.280	47.590	36.770	40.890	31.460	25.430	25.090	25.550	45.340	29.150
16	108.700	132.200	80.110	45.810	39.510	52.240	30.100	25.230	29.660	26.480	40.620	29.170
17	99.200	119.800	93.220	45.670	39.880	49.780	29.910	26.280	26.100	28.180	39.740	34.900
18	94.580	105.400	99.570	47.930	37.960	38.950	32.980	27.700	25.340	28.170	44.380	47.370
19	154.900	96.740	140.200	59.430	35.800	38.930	36.840	25.740	24.180	32.340	110.000	62.150
20	138.500	90.420	129.900	53.740	33.190	44.370	33.370	26.040	23.630	27.760	101.200	80.490
21	111.000	104.900	138.000	47.160	34.280	41.890	30.250	26.510	23.700	25.330	68.410	164.300
22	95.620	136.500	110.700	51.610	32.850	41.260	28.780	26.520	25.150	25.740	57.330	331.900
23	86.380	148.700	93.060	47.320	33.810	43.090	29.080	28.940	27.430	25.060	49.190	307.700
24	81.430	126.100	81.050	43.950	32.040	39.390	35.270	31.610	26.240	25.180	43.970	161.100
25	74.940	109.700	73.580	42.010	34.360	55.560	46.330	29.620	26.630	25.740	40.380	106.800
26	69.810	93.900	68.960	41.920	31.060	60.760	44.010	26.050	26.100	25.950	38.550	84.410
27	66.720	89.650	64.810	43.230	30.110	56.240	34.930	25.130	31.270	26.060	36.770	73.430
28	64.170	125.400	60.200	38.970	31.640	51.290	31.520	25.040	49.800	25.210	37.060	64.020
29	62.140		57.240	49.860	31.520	41.880	31.970	24.640	90.540	27.000	35.340	56.930
30	60.340		54.920	134.200	30.700	35.090	33.090	24.890	81.440	39.880	35.430	52.060
31	57.420		53.370		31.000		54.280	25.270		49.080		49.060
Average	148.100	79.710	97.360	58.590	42.450	40.350	37.880	30.160	29.880	29.220	55.530	69.780
Lowest	57.420	46.310	53.370	38.970	30.110	30.650	28.780	24.640	23.530	24.980	35.340	28.170
Highest	388.800	148.700	156.400	134.200	123.400	60.760	65.290	71.000	90.540	49.080	110.000	331.900
Peak flow	401.90	156.50	170.20	159.80	159.40	72.25	82.24	80.22	100.60	68.99	139.80	351.90
Day of peak Monthly total	10	23	8	30	1	25	7	1	29	1	19	22
(million cu m)	396.70	192.80	260.80	151.90	113.70	104.60	101.50	80.77	77.44	78.25	143.90	186.90
Runoff (mm)	53	26	35	20	15	14	14	11	10	10	19	25
Rainfall (mm)	67	40	49	64	11	74	74	23	54	51	65	54

Statistics of monthly data for previous record (Oct 1958 to Dec 1990)

Station and catchment description
Velocity-area station in the navigable Trent. Main channel approx. 62 m ; cableway span 99 m . Holme sluices $750 \mathrm{~m} \mathrm{u} / \mathrm{s}$ affect water levels up to medium flows. Bypassed at high flows on rb when gravel workings inundated. Very substantial flow modifications owing to imports, WRW's, cooling water and industrial usage. Very large catchment with the garnut of land usage. Predominantly impervious - glacial clay and Triassic Marl, but some sandstone and limestone. Extensive terrace gravels and alluvium maintain baseflow.

028085 Derwent at St. Marys Bridge

Measuring authority: NRA-ST First year: 1936

Grid reference: 43 (SK) 355368 Level stn. (m OD): 44.00

Catchment area (sq km): 1054.0 Max alt. (m OD): 636

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	MAY	JuN	JUL	AUG	SEP	OCT	NOV	DEC
1	41.860	10.890	19.530	11.870	11.170	5.435	5.551	4.250	3.985	3.672	10.180	7.549
2	56.200	9.917	18.020	14.490	9.680	5.386	5.348	3.645	4.006	3.622	7.241	7.318
3	41.980	9.765	17.160	15.840	8.938	4.992	5.367	4.328	3.940	4.719	8.116	7.164
4	35.300	9.803	18.170	15.490	8.835	5.266	5.163	4.429	4.200	4.366	10.490	6.803
5	37.860	9.457	20.070	16.350	8.216	5.312	5.109	4.379	4.103	3.809	10.780	6.627
6	52.700	9.229	21.390	16.640	8.120	5.788	7.306	4.522	4.408	3.863	8.150	6.465
7	43.850	9.287	21.660	18.350	8.044	6.905	6.253	4.227	4.485	3.874	12.750	6.305
8	57.950	9.486	24.770	15.830	7.806	6.087	6.038	4.008	4.643	4.049	12.880	6.180
9	75.740	8.634	22.850	14.480	7.400	6.455	5.425	4.212	4.290	4.028	10.810	6.060
10	84.730	8.611	21.550	13.670	7.118	5.948	5.025	4.067	4.183	3.885	10.040	5.555
11	53.500	8.878	20.260	12.880	7.002	5.972	5.318	4.144	4.187	4.005	15.650	5.401
12	39.650	8.558	18.740	11.970	6.588	5.226	5.563	4.200	4.190	3.935	13.580	5.208
13	33.160	0.805	17.340	11.830	6.767	5.656	5.311	3.994	4.233	3.850	13.630	5.832
14	29.810	8.723	16.220	10.650	6.562	5.458	4.898	4.325	4.102	3.747	10.810	5.574
15	27.170	13.070	15.580	10.410	6.332	5.914	4.710	4.090	4.224	3.802	9.687	5.022
16	24.8B0	15.290	16.060	9.871	6.366	5.934	4.704	3.900	4.290	4.091	8.748	5.431
17	21.890	14.000	- 18.610	9.743	6.436	5.626	4.806	3.881	4.080	4.376	- 9.599	6.155
18	20.060	13.700	23.280	10.360	6.370	5.689	5.228	4.036	3.987	4.966	12.490	8.747
19	23.210	13.480	28.720	11.720	5.974	5.532	5.065	4.064	3.976	4.945	21.470	18.620
20	18.760	15.280	32.150	8.913	6.145	5.994	4.633	4.097	3.989	4.679	15.340	22.780
21	17.300	24.320	28.750	9.250	5.734	5.716	4.136	4.071	4.197	4.499	12.920	121.000
22	16.370	32.760	23.180	8.898	5.932	6.641	4.355	4.088	4.336	4.321	12.040	125.800
23	16.280	38.600	20.830	8.651	5.819	5.714	4.655	4.118	6.464	4.267	10.430	59.940
24	15.020	29.310	18.530	8.544	5.871	5.114	6.663	3.904	4.759	4.222	9.409	41.700
25	13.930	25.180	16.940	8.113	5.635	6.941	7.882	3.858	4.010	4.244	8.519	32.360
26	13.100	21.820	15.790	7.857	5.685	5.354	5.459	3.970	3.944	3.511	7.935	26.590
27	12.970	21.430	14.370	7.541	5.551	7.687	4.821	4.006	4.214	4.025	8.398	20.990
28	12.720	24.310	13.420	7.533	5.518	9.320	4.482	4.041	5.033	4.203	8.188	18.750
29	12.260		12.670	10.740	5.434	6.684	4.391	3.918	6.609	4.776	7.801	16.460
30	11.580		12.070	17.460	5.421	5.884	4.392	3.919	5.316	6.474	7.685	15.090
31	11.060		11.850		5.375		4.503	3.927		8.138		14.150
			- 9.370									
Average	31.380	15.450	19.370	11.860	6.834	5.988	5.244	4.084	4.413	4.354	10.860	20.890
Lowest	11.060	8.55B	11.850	7.533	5.375	4.992	4.136	3.645	3.940	3.511	7.241	5.022
Highest	84.730	38.600	32.150	18.350	11.170	9.320	7.882	4.522	6.609	8.138	21.470	125.800
Peak flow	105.40	44.93	34.28	22.44	13.22	11.28	10.41	5.86	14.55	12.49	24.30	173.60
Day of peak Monthly total	10	23	20	30	1	28	25	8	23	31	19	21
(million cu m)	84.05	37.38	51.89	30.75	18.30	15.52	14.05	10.94	11.44	11.66	28.15	55.95
Runoff (mm)	80	35	49	29	17	15	13	10	11	11	27	53
Rainfall (mm)	83	60	66	71	13	90	68	26	45	78	104	117

Statistics of monthly data for previous record (Jan 1936 to Dec 1990 -incomplete or missing months total 0.9 years)

Station and catchment description
Ten-channel, interleaved cross path US gauge in the centre of Derby, 1.75 km ds of Longbridge Weir (28010). Record continuous with 28010 : Peaks from 1976 only. Derby may flood but bypassing small. Substantial flow modification owing to Derwent reservoirs, milling and PWS abstractions, Large, predominantly upland catchment draining Millstone Grit and Carb. Lst. Lower reaches drain Coal Measures on the Ib and Triassic sandstones and marls on the rb. Peat moorland headwaters; forestry, pasture and some arable.

030001 Witham at Claypole Mill

Measuring authority: NRA-A First year: 1959

Grid reference: 43 (SK) 842480 Level stn. (m OD): 16.90

Catchment area (sq km): 297.9
Max att. (m OD): 158

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	1.052	1.453	4.708	1.429	1.696	0.704	0.730	0.404	0.313	0.962	1:211	0.591
2	1.199	1.438	3.330	1.600	1.336	0.735	0.677	0.421	0.284	0.702	0.804	0.626
3	1.181	1.355	2.820	1.526	1.288	0.773	0.644	0.441	0.302	0.689	0.957	0.511
4	1.057	1.320	2.725	1.594	1.481	0.733	0.639	0.506	0.299	0.602	0.988	0.567
5	1.274	1.351	2.563	1.430	1.231	0.701	0.559	0.474	0.303	0.595	0.789	0.534
6	1.264	1.372	2.803	1.408	1.151	0.693	0.420	0.480	0.305	0.604	0.777	0.551
7	1.293	1.257	3.010	1.504	1.194	0.769	0.508	0.530	0.317	0.546	0.691	0.556
8	2.193	1.360	3.006	1.346	1.139	0.790	0.590	0.486	0.351	0.546	0.646	0.552
9	4.301	1.329	2.916	1.283	1.158	0.724	0.552	0.499	0.317	0.572	0.614	0.550
10	5.694	1.441	2.609	1.327	1.083	0.611	0.483	0.450	0.295	0.561	0.598	0.533
11	3.780	1.387	2.499	1.296	1.087	0.565	0.465	0.427	0.303	0.563	0.609	0.505
12	3.623	1.388	2.394	1.263	1.062	0.575	0.519	0.367	0.324	0.554	0.602	0.536
13	2.321	1.378	2.292	1.212	1.036	0.615	0.516	0.338	0.361	0.537	0.632	0.565
14	2.002	1.297	2.287	1.185	1.017	0.598	0.651	0.363	0.375	0.531	0.582	0.548
15	1.796	2.352	2.198	1.170	1.039	0.730	0.553	0.360	0.377	0.513	0.562	0.538
16	1.716	3.878	2.230	1.116	0.953	0.887	0.525	0.348	0.404	0.512	0.555	0.541
17	1.646	3.514	2.220	1.147	0.958	0.840	0.505	0.359	0.405	0.524	0.566	0.633
18	1.942	2.898	2.248	1.206	0.886	0.713	0.603	0.429	0.358	0.449	0.718	0.752
19	2.991	2.564	2.261	1.370	0.908	0.720	0.662	0.437	0.287	0.435	1.237	0.649
20	2.473	2.548	2.233	1.221	0.855	0.840	0.539	0.334	0.283	0.422	1.109	0.711
21	2.089	2.686	2.142	1.110	0.746	0.696	0.498	0.282	0.298	0.428	0.967	1.280
22	1.872	2.328	2.015	1.017	0.702	0.682	0.487	0.317	0.413	0.444	0.734	1.694
23	1.731	2.194	1.924	0.996	0.692	0.658	0.532	0.474	0.371	0.430	0.663	1.267
24	1.638	2.079	1.852	1.030	0.701	0.666	0.466	0.395	0.333	0.429	0.665	0.987
25	1.597	1.928	1.831	1.005	0.700	0.867	0.602	0.417	0.385	0.458	0.651	0.877
26	1.598	1.838	1.879	1.088	0.764	0.843	0.538	0.385	0.567	0.486	0.700	0.807
27	1.530	4.818	1.707	1.033	0.721	1.202	0.463	0.378	1.068	0.484	0.644	0.772
28	1.567	9.032	1.748	0.958	0.797	1.528	0.449	0.363	0.973	0.489	0.632	0.755
29	1.559		1.711	1.308	0.745	1.052	0.420	0.318	4.318	0.487	0.630	0.727
30	1.512		1.563	1.996	0.741	0.807	0.417	0.277	1.456	1.043	0.590	0.723
31	1.498		1.467		0.686		0.408	0.310		0.683		0.724
Average	2.032	2.278	2.361	1.272	0.986	0.777	0.536	0.399	0.558	0.557	0.737	0.715
Lowest	1.052	1.257	1.467	0.958	0.686	0.565	0.408	0.277	0.283	0.422	0.555	0.505
Highest	5.694	9.032	4.708	1.996	1.696	1.528	0.730	0.530	4.318	1.043	1.237	1.694
Peak flow	6.91	11.63	6.04	2.60	2.00	2.64	0.87	0.58	6.81	1.88	1.71	1.92
Day of peak	10	27	1	30	1	27	18	4	29	30	1	22
Monthly total (million cu m)	5.44	5.51	6.32	3.30	2.64	2.01	1.44	. 1.07	1.45	1.49	1.91	1.91
Runoff (mm)	18	19	21	11	9	7	5	4	5	5	6	6
Rainfall (mm)	54	47	27	49	14	70	29	16	86	29	39	24

Statistics of monthly data for previous record (May 1959 to Dec 1990)

Station and catchment description

An old weir at three levels with a total width of 24.99 m converted into a standard Lea designed broad-crested weir. It is rated theoretically and there is no bypassing or drowning. Low flows in summer are moderately influenced by transfer of water from Rutland Water (since 1985) and abstractions for public supply at Saltersford. The catchmont is clay (50%) with limestone (40%) and gravel, and is largely rural.

032004 Ise Brook at Harrowden Old Mill

1991

Measuring authority: NRA-A
First year: 1943

Grid reference: 42 (SP) 898715 Level stn. (m OD): 45.30

Catchment area (sq km): 194.0 Max alt. (m OD): 197

Daily mean gauged discharges (cubic metres per second)

DAY	Jan	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	Nov	DEC
1	0.723	0.559	2.940	0.844	1.473	0.269	0.423	0.338	0.141	0.795	0.510	0.426
2	0.792	0.535	2.104	0.868	0.776	0.269	0.489	0.233	0.116	0.948	0.422	0.423
3	0.979	0.516	1.748	0.693	0.729	0.273	0.603	0.191	0.079	0.300	0.591	0.399
4	0.930	0.499	1.658	0.753	0.699	0.260	0.439	0.196	0.097	0.240	0.759	0.384
5	1.067	0.486	1.690	0.632	0.570	0.272	0.408	0.196	0.108	0.228	0.541	0.371
6	0.994	0.468	1.546	0.639	0.535	0.284	0.475	0.268	0.105	0.193	0.512	0.358
7	0.974	0.265	2.650	0.646	0.507	0.274	0.544	0.207	0.105	0.181	0.491	0.353
8	0.928	0.265	2.689	0.598	0.480	0.300	0.437	0.250	0.131	0.184	0.466	0.433
9	2.249	0.265	2.600	0.649	0.441	0.317	0.340	0.201	0.123	0.190	0.352	0.379
10	4.735	0.265	1.997	0.527	0.419	0.298	0.268	0.224	0.094	0.188	0.322	0.373
11	3.297	0.265	1.719	0.566	0.396	0.279	0.253	0.200	0.103	0.179	0.351	0.420
12	2.036	0.265	1.214	0.647	0.396	0.300	0.248	0.180	0.114	0.168	0.408	0.353
13	1.473	0.494	1.163	0.323	0.406	0.293	0.255	0.167	0.109	0.164	0.359	0.344
14	0.854	0.510	1.479	0.471	0.362	0.255	0.238	0.146	0.109	0.166	0.326	0.357
15	1.186	1.122	1.285	0.452	0.378	0.712	0.233	0.133	0.130	0.170	0.335	0.365
16	0.692	1.930	1.386	0.452	0.365	0.458	0.232	0.130	0.114	0.262	0.322	0.362
17	0.965	1.822	1.301	0.383	0.406	0.366	0.223	0.139	0.119	0.176	0.308	0.511
18	0.794	1.666	1.300	0.589	0.395	0.406	0.399	0.163	0.111	0.165	0.659	0.531
19	1.351	1.613	1.243	0.542	0.376	0.431	0.246	0.129	0.112	0.151	4.346	0.689
20	1.322	1.499	1.359	0.481	0.340	0.323	0.224	0.099	0.109	0.152	3.673	0.786
21	1.195	1.500	1.331	0.525	0.320	0.313	0.208	0.115	0.116	0.152	1.673	0.786
22	0.843	1.460	1.454	0.458	0.299	0.343	0.206	0.211	0.174	0.156	1.127	0.912
23	0.733	1.658	1.218	0.449	0.297	0.625	0.194	0.232	0.134	0.152	0.905	0.958
24	0.729	1.516	1.065	0.445	0.304	0.487	0.255	0.168	0.153	0.162	0.746	0.706
25	0.701	1.271	0.715	0.416	0.273	0.700	0.275	0.138	0.123	0.175	0.655	0.618
26	0.665	1.163	0.976	0.379	0.273	0.728	0.210	0.165	0.326	0.175	0.591	0.582
27	0.630	3.615	0.877	0.382	0.284	0.867	0.201	0.112	1.104	0.170	0.524	0.545
28	0.611	5.539	0.860	0.360	0.284	0.606	0.209	0.128	0.795	0.173	0.495	0.517
29	0.592		0.793	1.177	0.284	0.534	0.206	0.123	0.710	0.246	0.464	0.491
30	0.605		0.653	1.878	0.284	0.472	0.289	0.124	0.388	0.434	0.443	0.471
31	0.574		0.686		0.267		0.502	0.104		0.437		0.460
Average	1.168	1. 180	1.474	0.607	0.439	0.410	0.314	0.174	0.208	0.246	0.789	0.505
Lowest	0.574	0.265	0.653	0.323	0.267	0.255	0.194	0.099	0.079	0.151	0.308	0.344
Highest	4.735	5.539	2.940	1.878	1.473	0.867	0.603	0.338	1.104	0.948	4.346	0.958
Peak flow	5.47	6.72	3.93	2.88	2.48	1.28	0.93	0.57	1.93	1.76	5.75	1.27
Day of peak Monthly total	10	27	1	30	1	26	31	1	27	2	19	23
(million cu m)	3.13	2.85	3.95	1.57	1.18	1.06	0.84	0.47	0.54	0.66	2.05	1.35
Runoff (mm)	16	15	20	8	6	5	4	2	3	3	11	7
Painfall (mm)	56	44	32	59	10	80	56	18	68	33	62	21

Statistics of monthly data for previous record (Dec 1943 to Dec 1990-incomplate or missing months total 0.8 years)

Station and catchment description

Flume with low flow notch and side weir to 1965, compound Crump profile weir to April 1976, and theoretically-rated Flat V weir with 5.94 m crest since. Crump weir modular to 15.6 cumecs, but bypassed at 14.2 m . Flat V also bypassed. Two small storage reservoirs with minor influence on low flows. Underlain by clay (59\%) and sandstone (24\%), mostly rural but includes Kettering.

033002 Bedford Ouse at Bedford

Measuring authority: NRA-A First year: 1933

Grid reference: 52 (TL) 055495 Level stn. (m OD): 24.70

Catchment area (sq km): 1460.0 Max alt. (m OD): 247

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	5.400	4.800	28.700	5.700	26.600	3.000	4.200	10.600	1.700	11.400	5.400	5.400
2	6.300	4.600	16.600	6.200	12.900	2.900	4.000	10.200	1.700	7.700	5.800	5.000
3	7.400	4.400	12.800	6.300	9.200	2.900	6.800	6.700	1.700	4.800	9.500	4.600
4	7.700	4.300	10.800	6.200	8.200	2.900	16.300	5.000	1.700	3.900	10.700	4.500
5	6.900	4.200	10.500	6.200	6.700	3.100	13.500	3.700	1.700	3.600	10.700	4.400
6	8.900	4.000	13.000	6.200	5.300	3.300	7.600	3.500	1.700	3.100	8.300	4.300
7	11.900	3.800	20.100	6.800	5.100	4.200	5.700	3.400	1.700	3.200	6.300	4.200
8	11.100	3.700	28.000	6.400	4.900	3.900	5.100	3.000	1.700	3.000	5.100	4.000
9	16.100	3.900	29.400	5.700	4.600	3.900	4.500	2.800	1.700	2.900	4.900	3.900
10	25.600	4.100	20.100	5.200	4.400	5.400	3.900	2.700	1.700	2.700	4.300	4.000
11	30.900	4.000	16.300	5.000	4.300	5.000	3.700	2.400	1.700	2.600	4.100	3.800
12	19.900	4.000	16.300	4.900	4.300	3.900	3.300	2.300	1.700	2.500	4.400	3.600
13	13.300	4.000	14.300	4.800	4.200	3.500	3.100	2.200	1.700	2.500	5.000	3.500
14	10.600	4.400	12.100	4.500	4.000	3.000	3.100	2.200	1.600	2.400	6.400	3.400
15	8.900	5.200	11.000	4.300	3.900	3.500	3.200	2.200	1.700	2.400	6.900	3.500
16	8.200	10.100	10.500	4,100	4.100	6.400	3.200	2.200	1.700	2.300	6.200	4.000
17	7.400	13.800	11.100	3.900	3.900	5.700	3.600	2.100	2.000	2.700	5.200	4.400
18	6.300	12.000	11.500	4.000	4.200	4.800	4.100	2.000	2.400	2.800	5.000	5.900
19	9.800	10.500	11.400	4.900	4.200	3.900	5.200	1.900	2.200	2.700	9.600	9.600
20	15.000	9.400	11.400	5.200	4.000	3.700	4.900	2.000	2.300	2.500	35.300	15.000
21	11.500	8.400	11.700	4.800	3.800	3.400	4.000	2.100	2.400	2.300	41.000	11.200
22	9.000	7.800	11.700	4.900	3.500	3.200	3.500	1.900	2.300	2.300	21.200	9.400
23	7.800	9.300	10.100	4.300	3.400	3.500	3.000	2.100	2.200	2.500	13.200	8.500
24	6.100	10.900	8.700	3.900	3.400	6.000	2.200	2.800	2.400	2.600	11.700	7.600
25	5.800	10.100	7.900	3.800	3.500	8.400	2.300	2.900	2.100	2.600	9.500	5.600
26	5.600	8.700	6.400	3.700	3.400	8.400	4.900	2.300	2.800	2.500	9.000	5.300
27	5.300	12.400	6.200	3.700	3.300	7.300	4.400	2.200	6.100	2.500	7.800	5.000
28	5.000	29.600	6.000	3.600	3.300	7.100	3.800	2.100	13.800	2.600	5.900	4.900
29	4.800		5.900	4.600	3.300	8.000	3.300	2.000	12.600	2.700	6.000	4.600
30	4.800		5.400	15.400	3.200	6.400	4.000	1.800	15.600	3.100	5.900	4.500
31	4.600		5.600		3.100		4.800	1.700		4.500		4.400
Average	9.932	7.729	12.950	5.307	5.361	4.687	4.813	3.129	3.277	3.287	9.677	5.548
Lowest	4.600	3.700	5.400	3.600	3.100	2.900	2.200	1.700	1.600	2.300	4.100	3.400
Highest	30.900	29.600	29.400	15.400	26.600	8.400	16.300	10.600	15.600	11.400	41.000	15.000
Peak flow	32.70	35.70	35.70	29.70	30.70	9.90	17.20	12.00	16.50	13.40	44.90	16.40
Day of peak	11	28	1	30	1	26	4	2	30	1	21	20
Monthly total (million cu m)	26.60	18.70	34.69	13.75	14.36	12.15	12.89	8.38	8.49	8.80	25.08	14.86
Runotf (mm)	18	13	24	9	10	8	9	6	6	6	17	10
Rainfall (mm)	60	38	36	63	10	95	89	14	72	36	61	17

Statistics of monthly data for previous record (Jan 1933 to Dec 1990)

Station and catchment description

3 broad-crested weirs, $30 \mathrm{~m}, 20 \mathrm{~m}$ and 12 m wide supplemented by 3 vertical sluice gates which are either fully open or shut. High flow rating confirmed by current meter measurements. Records before 1959 based on daily gauge board readings and gate openings. (Improved flow record, from 1972, d/s at 33039). Significant surface and groundwater abstractions in catchment for PWS, Mitton Keynes' effluent now significant. Geology - predominantly clay. Land use - agricultural with substantial urban development over last 15 years.

033034 Little Ouse at Abbey Heath

1991

Moasuring authority: NRA-A
First yoar: 1968

Grid reference: 52 (TL) 851844
Level stn. (m OD): 7.20

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	2.085	1.968	3.300	2.500	2.571	1.313	1.415	1.231	0.997	1.651	1.130	1.319
2	2.367	1.951	3.426	2.601	2.279	1.348	1.353	1.110	0.990	1.479	1.154	1.320
3	2.450	1.924	3.198	2.586	2.141	1.358	1.375	1.146	0.973	1.406	1.104	1.309
4	2.350	1.881	2.988	2.592	2.162	1.377	1.297	1.129	1.022	1.368	1.272	1.307
5	2.296	1.866	3.173	2.648	2.223	1.368	1.223	1.174	1.058	1.346	1.301	1.304
6	2.263	1.888	3.432	2.519	2.214	1.502	1.115	1.118	1.080	1.333	1.318	1.275
7	2.252	1.828	4.021	2.482	2.128	1.449	1.057	1.116	1.069	1.339	1.255	1.184
8	2.359	1.839	4.011	2.450	2.019	1.736	1.099	1.085	1.070	1.270	1.070	1.195
9	2.450	1.869	4.003	2.395	1.947	1.729	1.062	1.094	1.065	1.399	1.082	1.361
10	2.499	1.899	3.698	2.399	1.921	1.578	1.025	1.107	1.063	1.366	1.215	1.176
11	2.409	2.013	3.357	2.234	1.885	1.534	0.935	1.105	1.058	1.259	1.211	1.208
12	2.249	1.937	3.227	2.265	1.912	1.445	0.891	1.087	1.077	1.134	1.316	1.189
13	2.159	1.978	3.088	2.216	1.701	1.414	0.883	1.050	1.047	1.052	1.291	1.212
14	2.079	1.994	2.673	2.144	1.744	1.402	0.873	0.908	0.998	1.032	1.304	1.247
15	2.114	2.472	2.803	2.166	1.743	1.574	0.851	1.194	1.048	0.905	1.317	1.261
16	1.955	3.478	2.961	2.114	1.737	1.536	0.854	1.150	1.136	0.981	1.306	1.280
17	1.915	4.381	2.984	2.103	1.665	1.478	0.834	0.778	1.113	1.003	1.267	1.472
18	1.975	4.556	3.336	2.158	1.659	1.395	0.999	0.744	1.124	0.968	1.372	1.535
19	2.070	4.716	3.140	2.255	1.723	1.353	1.086	0.811	1.100	0.980	1.909	1.744
20	2.162	4.897	3.110	2.246	1.707	1.327	1.229	0.814	1.123	1.111	1.725	1.748
21	2.171	4.500	2.966	2.226	1.470	1.323	1.256	0.853	1.167	1.052	1.638	1.880
22	2.123	4.349	2.927	2.030	1.480	1.261	1.199	0.868	1.218	0.998	1.574	2.293
23	2.090.	4.007	2.842	1.958	1.411	1.522	1.103	0.958	1.220	0.992	1.511	2.294
24	2.033	3.682	2.774	1.939	1.441	1.506	1.380	0.875	1.253	1.001	1.469	1.947
25	2.067	3.359	2.526	1.907	1.448	1.687	1.276	0.861	1.212	1.008	1.473	1.743
26	1.999	3.172	2.537	1.885	1.435	1.695	1.300	0.828	1.261	1.026	1.427	1.694
27	1.959	3.158	2.578	1.838	1.436	1.756	1.300	0.860	1.308	1.015	1.421	1.668
28	1.975	3.341	2.568	1.816	1.435	1.761	1.238	0.866	1.679	1.011	1.403	1.628
29	1.953		2.508	2,108	1.399	1.575	1.181	0.892	1.737	1.058	1.366	1.604
30	1.944		2.475	2.530	1.387	1.487	1.161	0.973	1.710	1.116	1.373	1.576
31	1.926		2.479		1.366		1.097	0.988		1.113		1.541
Averago	2.152	2.889	3.068	2.244	1.767	1.493	1.127	0.993	1.166	1.154	1.352	1.500
Lowest	1.915	1.828	2.475	1.816	1.366	1.261	0.834	0.744	0.973	0.905	1.070	1.176
Highost	2.499	4.897	4.021	2.648	2.571	1.761	1.415	1.231	1.737	1.651	1.909	2.294
Poak flow	2.76	6.18	4.49	2.96	3.04	2.41	2.06	2.13	2.29	1.78	2.33	2.62
Day of peak Monthly total	10	18	7	2	1	23	24	1	28	1	18	19
(million cu m)	5.76	6.99	8.22	5.82	4.73	3.87	3.02	2.66	3.02	3.09	3.51	4.02
Runoff (mm)	8	10	12	8	7	6	4	4	4	4	5	6
Rainfall (mm)	33	43	28	47	14	81	27	23	51	22	55	33

Statistics of monthly data for previous record (Apr 1968 to Dec 1990)

Station and catchment description
Rectangular section Crump profile weir with crest tapping. Replaced 33008 in 1968 . Weir subject to drowning and spills on rare occasions.
Flows augmented from groundwater in some years (e.g. 1990) Geology - Chalk with approx. 85\% Boulder Clay cover. Land use - predominately agricultural with large areas of forest and heathland

034006 Waveney at Needham Mill

Measuring authority: NRA-A
First year: 1963 First year: 1963
Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	MAY	JuN	Jul	AUG	SEP	OCT	NOV	DEC
1	1.726	0.664	2.812	0.561	1.170	0.755	0.863	0.347	0.282	0.576	0.359	0.327
2	2.481	0.629	2.281	0.579	0.839	0.714	0.858	0.322	0.267	0.452	0.311	0.331
3	2.233	0.581	1.841	0.597	0.675	0.759	0.598	0.325	0.262	0.413	0.378	0.356
4	1.787	0.572	1.456	0.598	0.708	0.759	0.385	0.296	0.289	0.394	0.368	0.434
5	1.716	0.562	1.697	0.630	2.220	0.759	0.346	0.280	0.304	0.384	0.432	0.283
6	1.735	0.540	1.984	0.579	1.645	0.774	0.343	0.304	0.289	0.364	0.462	0.310
7	1.776	0.536	2.408	0.541	1.136	0.842	0.328	0.328	0.302	0.354	0.424	0.329
8	1.711	0.535	2.825	0.541	0.887	0.956	0.316	0.368	0.319	0.372	0.383	0.317
9	1.901	0.532	2.981	0.529	0.757	0.833	0.311	0.351	0.343	0.371	0.352	0.314
10	2.126	0.541	2.223	0.511	0.634	0.778	0.309	0.322	0.373	0.370	0.340	0.328
11	1.879	0.570	1.816	0.501	0.582	0.761	0.308	0.306	0.298	0.366	0.414	0.324
12	1.598	0.577	1.609	0.498	0.539	0.774	0.292	0.298	0.270	0.363	0.462	0.320
13	1.285	0.570	1.446	0.480	0.510	0.760	0.283	0.286	0.260	0.346	0.485	0.322
14	1.083	0.570	1.262	0.448	0.503	0.748	0.268	0.295	0.277	0.345	0.478	0.320
15	0.990	1.158	1.108	0.415	0.480	0.834	0.264	0.292	0.263	0.363	0.437	0.310
16	0.927	4.322	1.059	0.450	0.466	0.914	0.255	0.277	0.243	0.400	0.415	0.325
17	0.887	5.724	1.152	0.453	0.451	0.863	0.254	0.271	0.276	0.373	0.388	0.410
18	0.891	5.311	0.982	0.462	0.426	0.800	0.280	0.254	0.318	0.348	0.404	0.528
19	1.313	5.746	1.152	0.505	0.408	0.807	0.297	0.246	0.343	0.362	0.615	0.650
20	1.666	4.858	1,117	0.528	0.402	0.801	0.297	0.259	0.327	0.355	0.940	0.728
21	1.513	5.298	1.091	0.504	0.392	0.784	0.277	0.266	0.277	0.358	0.761	1.223
22	1.314	4.860	0.941	0.485	0.377	0.736	0.247	0.277	0.323	0.351	0.594	1.713
23	1.159	3.751	0.869	0.474	-0.386	0.790	0.247	0.295	0.325	0.327	0.539	1.123
24	1.026	2.838	0.784	0.464	0.698	0.996	0.317	0.308	0.335	0.346	0.489	0.820
25	0.933	2.203	0.671	0.436	0.720	1.079	0.421	0.280	0.342	0.353	0.460	0.599
26	0.880	1.854	0.659	0.430	0.714	1.036	0.445	0.279	0.383	0.346	0.484	0.540
27	0.830	1.636	0.628	0.419	0.702	1.024	0.409	0.270	0.406	0.341	0.468	0.525
28	0.796	2.480	0.589	0.397	0.737	0.985	0.348	0.270	0.450	0.337	0.479	0.510
29	0.793		0.558	0.427	0.755	0.851	0.330	0.284	0.847	0.344	0.413	0.469
30	0.780		0.535	1.050	0.755	0.799	0.336	0.290	0.781	0.351	0.391	0.465
31	0.724		0.539		0.755		0.341	0.287		0.364		0.470
Average	1.370	2.143	1.390	0.516	0.723	0.836	0.360	0.295	0.346	0.371	0.464	0.517
Lowest	0.724	0.532	0.535	0.397	0.377	0.714	0.247	0.246	0.243	0.327	0.311	0.283
Highest	2.481	5.746	2.981	1.050	2.220	1.079 .	0.863	0.368	0.847	0.576	0.940	1.713
Peak flow	2.66	7.00	3.20	1.48	2.64	1.12	0.87	0.37	0.93	0.68	0.98	1.92
Day of peak	2	17	8	30	5	25	1	8	29	1	20	22
Monthly total (million cu m)	3.67	5.19	3.72	1.34	1.94	2.17	0.97	0.79	0.90	0.99	1.20	1.38
Runoff (mm)	10	14	10	4	5	6	3	2	2	3	3	4
Rainfall (mm)	34	41	25	44	21	77	29	17	59	23	54	31

Statistics of monthly data for previous record (Dec 1963 to Dec 1990)

Mean	Avg.	4.092	3.370	2.699	2.020	1.125	0.772	0.531	0.725	0.842	1.172	1.778	2.737
flows:	Low	0.609	0.722 .	0.591	0.487	0.369	0.285	0.242	0.281	0.281	0.330	0.386	0.492
	(year)	1973	1965	1973	1974	1974	1974	1990	1973	1964	1989	1989	1964
	High	14.260	10.670	7.665	5.646	3.254	4.302	1.197	6.958	9.753	10.260	8.852	8.379
	(year)	1988	1979	1981	1983	1969	1985	1987	1987	1968	1987	1974	1965
Runoff:	Avg.	30	22	20	14	8	5	4	5	6	8	12	20
	Low	4	5	4	3	3	2	2	2	2	2	3	4
	High	103	70	55	40	24	30	9	50	68	74	62	61
Rainfat;	Avg,	53	38	44	45	45	51	47	50	50	54	62	55
	Low	16	10	10	9	5	10	11	7	2	4	25	18
	High	122	76	96	86	97	132	93	110	161	118	150	100

Station and catchment description
A compound Crump weir 8.5 m wide in the main channel with a single crested Crump in the mill bypass. Sluice action at a mill 2.4 km upstream is infrequent but is evident in flow records. Surface water abstractions, and the use of river gravels as an aquifer, influence flows but the overall impact is minimal. Was affected by the Waveney Groundwater Scheme between 1975 and 1979. Predominantly a Boulder Clay catchment with largely rural land use.

036006 Stour at Langham

1991

Measuring authority: NRA-A
First year: 1962

Grid reference: 62 (TM) 020344 Level stn, (m OD): 6.40.

Catchment area (sq km): 578.0 Max alt. (m OD): 128

Daily mean gauged discharges (cubic metres per second)

Station and catchment description
Twin-trapezoidal flume, throat tapping. Spilway channel with weir constructed in $12 / 85$ takes some flow above 1.45 m . Bypassing also occurs over opposite bank above 1.85 m . More bypassing possible from $0.5 \mathrm{~km} u / \mathrm{s}$ during extreme events. Naturalised flows to $9 / 76$. Occasional high peaks due to gate action. Flow augmented by intermittent pumping from Ely/Ouse Transfer Scheme and occasional SAGS borehole pumping. Mainly rural catchment. Chalk outcrops in N, London Clay in S, all covered by semi-pervious Boulder Clay.

038001 Lee at Feildes Weir

Measuring authority: NRA-T First year: 1951

Grid reference: 52 (TL) 390092 Level stn. (m OD): 27.70

Catchment area (sq km): 1036.0 Max alt. (m OD): 229

Daily mean naturalised discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	4.510	2.760	4.450	2.580	7.910	1.980	3.400	3.510	1.450	1.810.	1.930	1.630
2	5.190	2.620	3.610	2.710	6.610	1.920	3.630	3.060	1.260	1.580	1.870	1.650
3	4.450	2.470	3.160	2.640	3.760	1.860	4.120	2.670	1.260	1.600	2.080	1.620
4	4.020	2.410	3.230	3.520	5.950	1.800	3.710	2.390	1.310	1.610	2.040	1.520
5	4.480	2.350	3.580	3.390	5.520	1.950	3.010	2.080	1.310	1.660	2.130	1.530
6	4.620	2.320	5.510	3.100	4.820	2.390	2.750	2.050	1.280	1.550	1.900	1.510
7	4.300	2.430	5.060	3.120	3.160	2.370	2.670	2.550	1.310	1.470	1.770	1.510
8	5.490	2.460	4.890	2.930	2.900	2.530	2.650	3.820	1.300	1.520	1.750	1.500
9	8.780	2.390	4.210	2.810	2.750	2.130	2.580	2.430	1.280	1.430	1.500	1.500
10	9.700	2.390	3.750	2.640	2.650	2.140	2.550	2.150	1.220	1.380	1.630	1.580
11	6.110	2.450	3.390	2.590	2.550	1.890	2.360	2.020	1.160	1.290	1.920	1.580
12	5.090	2.380	3.400	2.450	2.430	2.010	2.220	1.980	1.220	1.340	2.110	1.500
13	4.110	2.490	3.070	2.410	2.290	2.060	2.180	2.000	1.160	1.280	2.270	1.280
14	3.630	2.160	2.990	2.370	2.460	2.140	2.200	1.920	1.140	1.310	1.980	1.300
15	3.380	6.260	2.820	2.370	2.230	4.620	2.050	1.880	1.460	1.300	1.820	1.360
16	3.200	8.390	5.120	2.400	2.250	3.770	2.190	1.850	1.490	1.360	1.680	1.350
17	3.110	7.630	8.160	2.400	2.690	3.070	2.340	1.830	1.380	1.310	1.610	1.630
18	3.720	8.230	4.460	2.880	2.490	2.780	4.340	1.820	1.360	1.340	1.700	2.010
19	5.350	7.160	4.030	2.950	2.240	2.750	3.780	1.840	1.330	1.340	7.590	2.220
20	4.100	4.810	3.520	2.880	2.200	2.690	2.650	1.790	1.360	1.360	5.080	1.970
21	3.480	7.080	3.420	2.820	2.080	2.540	2.290	1.630	1.330	1.310	2.520	1.860
22	3.380	5.910	3.170	2.630	2.000	2.320	2.180	1.440	1.590	1.300	2.150	1.740
23	3.050	4.790	3.100	2.320	2.010	3.330	2.180	1.900	1.430	1.170	1.930	1.570
24	3.020	3.960	2.880	2.330	2.080	5.490	2.680	2.040	1.470	1.290	1.830	1.530
25	2.830	3.540	2.590	2.360	2.020	5.050	3.340	1.850	1.380	1.230	1.790	1.490
26	2.640	3.440	2.940	2.330	2.000	4.580	2.660	1.610	1.780	1.280	1.720	1.420
27	2.540	4.770	2.810	2.330	1.940	5.530	2.260	1.570	5.290	1.220	1.680	1.360
28	2.520	6.730	2.770	2.200	1.950	5.600	2.120	1.490	3.650	1.200	1.670	1.450
29	2.450		2.640	4.050	2.060	4.220	2.070	1.450	3.540	1.220	1.650	1.520
30	2.500		2.570	9.920	2.000	3.470	2.570	1.460	2.460	1.500	1.700	1.500
31	2.500		2.600		1.990		4.500	1.390		1.370		1.470
Average	4.137	4.171	3.674	2.948	2.967	3.033	2.782	2.047	1.665	1.385	2.167	1.570
Lowest	2.450	2.160	2.570	2.200	1.940	1.800	2.050	1.390	1.140	1.170	1.500	1.280
Highest	9.700	8.390	8. 160	9.920	7.910	5.600	4.500	3.820	5.290	1.810	7.590	2.220
Monthly total (miltion cu m)	11.08	10.09	9.84	7.64	7.95	7.86	7.45	5.48	4.32		5.62	4.20
Nat'ised runoff (mm)	11	10	10	7	8	8	7	5	4	4	5	4
Rainfall (mm)	63	42	28	62	18	95	62	27	55	22		

Statistics of monthly data for previous record (Oct 1883 to Dec 1990-incomplete or missing months total 2.2 years)

Station and catchment description
Thin-plate weir (insensitive - 29m wide) and 3 vertical-lift sluices; built 1978 to improve range and precision of flow measurement. Model rated. All flows (bar lockages) now contained. Pre-1978: barrage of gates/sluices; no peak flows, low flows probably under-estimated. Gauging instigated by Beardsmore in 1850s. Significant g/w abstraction; net export from catchment. Naturalised flows (New Gauge abstraction only) from 1883. A mainly pervious (Chalk) catchment. Predominately rural headwaters; significant urban growth in lower valleys.

038003 Mimram at Panshanger Park

Measuring authority: NRA-T
First year: 1952

Grid reference: 52 (TL) 282133
Level sin. (m OD): 47.10

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	0.491	0.311	0.327	0.311	0.335	0.260	0.267	0.306	0.186	0.244	0.289	0.212
2	0.346	0.298	0.316	0.327	0.315	0.260	0.375	0.235	0.188	0.230	0.223	0.211
3	0.366	0.293	0.308	0.300	0.378	0.264	0.299	0.231	0.190	0.230	0.253	0.211
4	0.297	0.294	0.326	0.420	0.341	0.271	0.272	0.219	0.187	0.223	0.238	0.210
5	0.405	0.294	0.394	0.331	0.298	0.275	0.259	0.213	0.191	0.224	0.218	0.211
6	0.376	0.289	0.384	0.356	0.290	0.296	0.249	0.216	0.187	0.218	0.201	0.210
7	0.301	0.282	0.362	0.309	0.290	0.340	0.239	0.461	0.185	0.218	0.192	0.211
8	0.440	0.289	0.347	0.308	0.281	0.298	0.242	0.281	0.187	0.216	0.205	0.206
9	0.565	0.282	0.327	0.310	0.276	0.293	0.238	0.233	0.190	0.214	0.196	0.208
10	0.417	0.289	0.326	0.305	0.274	0.294	0.227	0.226	0.192	0.210	0.217	0.210
11	0.376	0.295	0.324	0.305	0.272	0.276	0.233	0.224	0.194	0.207	0.230	0.208
12	0.333	0.301	0.324	0.303	0.262	0.286	0.230	0.216	0.192	0.206	0.251	0.206
13	0.321	0.309	0.322	0.297	0.257	0.252	0.236	0.216	0.192	0.212	0.230	0.208
14	0.316	0.294	0.314	0.295	0.253	0.406	0.241	0.221	0.197	0.210	0.215	0.206
15	0.312	0.417	0.313	0.296	0.253	0.460	0.245	0.220	0.240	0.209	0.214	0.207
16	0.309	0.327	0.448	0.286	0.271	0.280	0.270	0.212	0.227	0.221	0.208	0.214
17	0.309	0.308	0.326	0.276	0.277	0.264	0.271	0.201	0.201	0.192	0.203	0.295
18	0.419	0.307	0.326	0.370	0.252	0.279	0.479	0.204	0.202	0.194	0.260	0.291
19	0.341	0.301	0.306	0.309	0.247	0.264	0.253	0.204	0.201	0.188	0.644	0.248
20	0.320	0.301	0.327	0.290	0.248	0.256	0.242	0.195	0.200	0.188	0.244	0.227
21	0.307	0.309	0.304	0.311	0.246	0.254	0.240	0.196	0.230	0.187	0.225	0.227
22	0.305	0.363	0.330	0.284	0.242	0.249	0.244	0.198	0.253	0.189	0.223	0.224
23	0.304	0.304	0.303	0.273	0.237	0.483	0.233	0.322	0.210	0.190	0.215	0.219
24	0.304	0.312	0.299	0.277	0.239	0.514	0.444	0.210	0.221	0.189	0.213	0.213
25	0.303	0.295	0.297	0.276	0.237	0.376	0.293	0.199	0.210	0.189	0.217	0.213
26	0.301	0.300	0.298	0.268	0.241	0.298	0.245	0.197	0.494	0.190	0.215	0.215
27	0.300	0.536	0.297	0.261	0.246	0.424	0.231	0.195	0.431	0.190	0.213	0.213
28	0.300	0.359	0.293	0.255	0.255	0.362	0.222	0.194	0.430	0.189	0.214	0.215
29	0.300		0.292	0.675	0.261	0.281	0.210	0.185	0.300	0.218	0.214	0.214
30	0.299		0.293	0.513	0.276	0.271	0.437	0.180	0.248	0.228	0.213	0.215
31	0.317		0.293		0.266		0.310	0.186		0.208		0.216
Avorage	0.345	0.316	0.324	0.323	0.271	0.313	0.273	0.226	0.232	0.207	0.236	0.219
Lowest	0.297	0.282	0.292	0.255	0.237	0.249	0.210	0.180	0.185	0.187	0.192	0.206
Highest	0.565	0.536	0.448	0.675	0.378	0.514	0.479	0.461	0.494	0.244	0.644	0.295
Peak flow	0.90	0.95	0.81	1.20	0.71	0.95	1.09	0.87	0.79	0.31	1.47	0.41
Day of peak Monthly total	1	27	16	29	3	14	18	7	26	31	19	17
(million cu m)	0.92	0.77	0.87	0.84	0.73	0.81	0.73	0.60	0.60	0.55	0.61	0.59
Runoff (mm)	7	6	6	6	5	6	5	5	4	4	5	4
Rainfall (mm)	67	44	26	71	16	95	70	34	66	25	61	16

Statistics of monthly data for previous record (Dec 1952 to Dec 1990

Mean flows:	Avg.	0.581	0.647	0.670	0.659	0.617	0.559	0.485	0.445	0.416	0.412	0.447	0.502
	Low	0.244	0.289	0.259	0.261	0.216	0.187	0.163	0.145	0.195	0.175	0.176	0.189
	(year)	1974	1973	1973	1973	1976	1976	1976	1976	1973	1973	1973	1973
	High	1.102	1.167	1.119	1.050	1.084	0.971	0.803	0.764	0.632	0.638	0.739	1.005
	(year)	1961	1961	1961	1979	1979	1979	1979	1979	1968	1968	1960	1960
Runoff:	Avg.	12	12	13	13	12	11	10	9	8	8	9	10
	Low	5	5	5	5	4	4	3	3	4	4	3	4
	High	22	21	22	20	22	19	16	15	12	13	14	20
Rainfall:	Avg.	56	42	49	46	50	58	53	57	54	61	60	63
	Low	11	3	3	5	4	5	5	7	5	5	20	13
	High	121	99	116	105	115	122	123	127	121	171	151	141

Summary statistics

Catchment area (sq km): 133.9 Max alt. (m OD): 195

Daily mean gauged discharges (cubic metres per second)

Factors affecting runof

- Flow influenced by groundwater abstraction and/or recharge
- Flow reduced by industrial and/or agricultural abstractions.

Station and catchment description
Critical-depth flume: 5 m overall width. Theoretical calibration confirmed by gaugings. All flows contained. Appreciable net export of water (considerable groundwater abstraction in heedwaters). Very high baseflow component. A predominantly permeable catchment (Upper Chalk overlain by glacial deposits near headwaters); mainly rural but some urbanisation in the lower valley.

039001 Thames at Kingston

1991

Measuring authority: NRA-T First year: 1883

Grid reference: 51 (TQ) 177698 Level stn. (m OD): 4.70

Catchment area (sq km): 9948.0
Max alt. (m OD): 330

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	20.600	27.600	60.100	25.900	64.000	8.930	10.700	27.600	8.270	8.910	6.510	5.410
2	53.200	28.600	52.300	32.900	51.400	8.860	16.500	10.700	9.240	7.310	17.300	10.200
3	57.100	31.200	40.600	34.400	33.600	10.000	49.100	10.000	8.820	7.560	10.600	7.710
4	37.700	23.900	41.700	42.700	41.700	8.440	40.100	9.310	9.480	5.650	10.300	5.790
5	23.800	26.800	39.400	55.700	32.500	10.900	26.300	7.620	9.030	9.980	4.640	8.130
6	38.300	19.200	53.600	44.200	28.500	11.700	26.800	9.380	8.680	10.700	6.110	7.800
7	51.800	16.500	106.000	51.500	26.000	10.200	19.100	9.670	8.820	6.120	5.030	5.100
8	57.900	21.700	171.000	53.300	22.600	9.310	9.350	8.870	8.470	5.050	9.070	6.070
9	123.000	20.300	149.000	51.800	21.500	9.740	8.380	7.900	9.570	5.030	9.910	10.100
10	165.000	22.200	120.000	35.100	20.800	8.370	9.370	9.000	9.470	8.550	4.480	8.340
11	177.000	21.500	105.000	29.700	17.200	7.550	8.560	8.740	7.740	10.400	7.110	7.120
12	120.000	21.500	89.600	29.400	15.800	7.940	8.050	8.760	6.510	10.300	5.610	11.100
13	93.900	19.800	81.000	27.800	17.700	9.750	8.170	10.400	7.060	10.900	14.800	11.700
14	62.100	20.500	68.400	25.400	16.500	9.500	15.500	9.410	6.340	7.400	18.600	6.980
15 '	50.400	33.700	63.000	21.400	11.700	10.700	10.800	8.200	7.090	6.750	8.850	6.930
16	36.900	67.400	60.300	21.000	8.410	12.900	8.960	8.800	7.590	4.850	4.890	12.800
17	31.300	61.700	74.200	20.000	11.900	12.200	9.260	8.980	6.690	3.840	6.520	21.700
18	29.500	48.400	74.300	21.400	18.200	12.100	15.200	9.680	6.930	6.170	10.000	22.600
19	53.100	37.700	68.600	31.500	17.600	10.700	18.200	9.190	7.070	7.930	78.200	22.800
20	56.300	34.200	75.200	22.600	17.000	8.680	9.420	9.260	6.410	7.210	90.200	20.200
21	51.600	28.600	73.100	20.600	12.400	9.730	8.810	8.850	7.070	6.680	69.300	16.800
22	55.500	34.900	69.200	15.800	11.000	8.680	9.710	8.520	9.780	4.850	47.200	16.400
23	40.000	77.400	61.800	13.700	7.230	20.400	8.110	10.800	6.630	3.080	34.500	11.800
24	38.600	67.600	46.500	12.900	8.520	44.000	12.200	11.200	7.010	3.860	28.600	8.590
25	34.700	53.500	46.900	15.000	8.010	46.400	9.140	6.830	5.960	4.110	17.500	10.700
26	28.400	32.800	45.000	13.400	10.500	45.800	10.500	10.400	7.640	3.720	. 15.500	8.750
27	28.700	55.900	37.800	11.300	11.500	46.400	9.490	8.990	10.200	3.630	15.600	10.300
28	28.700	87.100	34.400	10.900	9.500	38.500	10.400	8.870	10.300	4.060	12.600	9.980
29	25.300		35,100	26.300	9.190	24.300	8.410	9.030	39.900	4.350	10.700	12.300
30 .	25.900		33.100	87.800	9.290	13.800	14.900	8.900	15.900	8.120	6.690	10.600
31	28.300		32.100		9.090		24.500	9.200		5.220		9.540
Average	55.630	37.220	68.010	30.180	19.380	16.550	14.640	9.776	9.322	6.525	19.560	11.110
Lowest	20.600	16.500	32.100	10.900	7.230	7.550	8.050	6.830	5.960	3.080	4.480	5.100
Highest	177.000	87.100	171.000	87.800	64.000	46.400	49.100	27.600	39.900	10.900	90.200	22.800
Peak flow	212.00	104.00	185.00	135.00	87.90	60.50	73.50	49.90	55.30	30.70	127.00	37.60
Day of peak	11	28	8	30	1	27	3	1	29	10	20	23
Monthly total (million cu m)	149.00	90.05	182.20	78.23	51.91	42.90	39.22	26.18	24.16	17.48	50.71	29.75
Runoff (mm)	15	9	18	8	5	4	4	3	2	2	5	3
Rainfall (mm)	84	37	51	63	12	96	84	17	52	41	69	16

Statistics of monthly data for previous record (Jan 1883 to Dec 1990)

[^7]
039001 Thames at Kingston

Measuring authority: NRA-T
First year: 1883

Grid reference: 51 (TQ) 177698 Level sin. (m OD): 4.70

Catchment area (sq km): 9948.0
Max alt. (m OD): 330

Daily mean naturalised discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APA	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	59.400	53.800	82.600	48.500	91.100	30.200	46.100	56.400	20.800	27.200	29.700	44.000
2	98.700	54.100	74.900	54.700	75.300	31.100	44.200	38.400	19.800	27.300	50.300	42.400
3	108.000	53.400	63.200	56.800	56.100	31.500	62.300	36.800	20.300	26.600	40.300	40.300
4	88.100	48.400	63.600	65.000	61.400	30.100	57.100	35.400	20.600	21.600	44.100	34.800
5	74.800	50.600	61.300	78.800	56.200	30.400	48.900	32.000	20.000	21.500	34.200	38.300
6	88.800	46.700	75.900	68.300	54.300	36.500	47.900	27.400	20.000	25.500	35.500	39.700
7	100.000	39.600	128.000	75.600	50.100	36.300	51.500	31.500	19.000	23.000	22.600	36.100
8	105.000	44.900	193.000	73.700	46.000	34.900	44.100	33.200	18.700	22.300	25.500	30.500
9	169.000	43.700	169.000	67.500	46.400	35.000	39.100	27.900	19.400	21.400	25.000	34.600
10	210.000	45.500	138.000	54.900	40.200	39.800	37.800	27.700	19.300	25.300	23.700	37.100
11	220.000	45.000	123.000	53.100	44.200	29.800	29.800	25.900	18.600	23.300	29.600	32.000
12	162.000	45.000	110.000	53.000	41.700	35.000	29.600	25.700	18.600	23.200	30.500	33.100
13	134.000	45.800	103.000	52.200	41.300	35.100	29.200	21.000	18.400	23.700	38.500	35.700
14	104.000	47.100	89.500	50.500	39.500	35.800	33.500	23.900	17.800	23.700	43.000	29.800
15	93.000	57.100	83.800	45.900	35.400	40.900	28.800	25.300	18.500	29.900	38.100	31.400
16	80.800	91.200	82.600	46.000	32.900	38.400	30.200	23.300	19.900	24.100	35.500	35.500
17	76.200	85.700	97.200	44.800	38.200	40.400	30.400	23.000	21.000	23.700	31.400	43.800
18	74.600	72.000	96.000	46.300	38.400	40.600	43.400	22.100	20.800	19.700	38.400	48.400
19	97.700	61.200	89.400	54.300	38.900	38.600	48.400	22.000	19.900	20.900	111.000	51.500
20	100.000	57.900	98.400	49.500	39.400	37.200	37.300	21.900	19.300	20.400	127.000	49.200
21	96.800	52.100	96.000	47.500	38.300	31.700	32.700	22.400	19.500	20.300	104.000	48.800
22	85.200	58.800	91.400	44.400	36.700	29.700	35.600	21.600	21.700	17.900	81.400	48.200
23	67.400	101.000	83.900	43.200	32.800	42.000	31.100	23.300	20.900	21.500	74.300	39.200
24	67.200	91.600	68.800	41.600	32.700	66.000	26.500	26.400	21.100	19.500	70.400	32.800
25	62.800	77.600	68.600	44.200	29.100	69.400	33.800	28.300	21.500	20.200	58.100	36.900
26	60.100	57.000	67.200	42.700	31.500	68.600	35.500	23.300	22.800	20.900	54.700	35.400
27	58.300	81.900	60.200	42.000	27.600	66.800	29.800	24.500	28.100	21.100	49.700	31.100
28	58.800	110.000	57.400	37.700	33.600	56.100	29.800	22.900	29.500	20.900	47.000	31.200
29	55.400		58.100	52.300	30.300	51.700	30.200	22.300	61.400	22.400	48.000	32.000
30	56.000		55.200	114.000	32.100	48.200	34.600	22.300	39.500	29.100	43.700	34.600
31	54.200		54.200		32.400		53.900	21.800		33.000		32.900
Average	95.620	61.380	89.790	54.970	42.710	41.260	38.490	27.090	22.560	23.260	49.510	37.780
Lowast	54.200	39.600	54.200	37.700	27.600	29.700	26.500	21.000	17.800	17.900	22.600	29.800
Highest	220.000	110.000	193.000	114.000	91.100	69.400	62.300	56.400	61.400	33.000	127.000	51.500
Monthly total (million cu m)	256.10	148.50	240.50	142.50	114.40	106.90	103.10	72.57	58.47	62.30	128.30	101.20
Nat ised runoff (mm)	26	15	24	14	12	11	10	7	6	6	13	10
Rainfall (mm)	84	37	51	63	12	96	84		52		69	16

Statistics of monthly data for previous record (Jan 1883 to Dec 1990)

[^8] goology and land use which - together with the pattern of water utilisation - has undergone important historical changes

Measuring authority: NRA-T First year: 1963

Grid reference: 42 (SP) 122062 Level stn. (m OD): 100.60

Catchment area (sq km): 106.7
Max alt. (m OD): 330

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	MAY	JuN	JUL	AUG	SEP	OCT	NOV	DEC
1	0.705	1.430	1.380	1.960	1.230	0.779	0.744	0.674	0.481	0.438	0.462	1.400
2	0.808	1.400	1.400	1.930	1.200	0.782	0.729	0.627	0.486	0.434	0.483	1.370
3	0.850	1.380	1.410	1.890	1.170	0.765	0.723	0.612	0.480	0.434	0.521	1.340
4	0.889	1.340	1,460	1.930	1.160	0.755	0.706	0.601	0.479	0.42 B	0.524	1.290
5	0.984	1.330	1.490 .	1.860	1.150	0.761	0.705	0.588	0.480	0.444	0.531	1.260
6	1.080	1.280	1.550	1.850	1.130	0.773	0.707	0.581	0.458	0.433	0.565	1.240
7	1.140	1.200	1.770	1.840	1.120	0.775	0.714	0.594	0.490	0.439	0.592	1.200
8	1.260	1.230	1.910	1.760	1.100	0.777	0.722	0.584	0.467	0.446	0.622	1.170
9	1.420	1.220	1.950	1.730	1.080	0.814	0.706	0.574	0.462	0.433	0.654	1.160
10	1.550	1.190	2.100	1.670	1.070	0.781	0.700	0.571	0.459	0.422	0.691	1.130
11	1.670	1.190	2.160	1.660	1.060	0.750	0.694	0.572	0.475	0.429	0.709	1.080
12	1.720	1.190	2.220	1.630	1.050	0.746	0.692	0.568	0.456	0.426	0.723	1.020
13	1.770	1.180	2.270	1.580	1.040	0.738	0.694	0.544	0.461	0.420	0.774	1.020
14	1.810	1.160	2.310	1.500	0.993	0.748	0.685	0.546	0.452	0.420	0.767	1.030
15	1.810	1.270	2.330	1.490	0.993	0.775	0.675	0.533	0.456	0.417	0.774	1.040
16	1.810	1.300	2.370	1.480	0.997	0.733	0.648	0.537	0.458	0.411	0.797	1.060
17	1.800	1.230	2.330	1.460	0.984	0.740	0.665	0.532	0.447	0.400	0.829	1.060
18	1.820	1.190	2.330	1.370	0.972	0.733	0.708	0.528	0.445	0.403	0.928	1.070
19	1.810	1. 180	2.290	1.320	0.957	0.731	0.692	0.535	0.444	0.399	1.020	1.050
20	1.740	1.170	2.280	1.300	0.950	0.721	0.649	0.523	0.446	0.409	1.110	1.010
21	1.690	1.190	2.200	1.290	0.939	0.722	0.633	0.524	0.446	0.413	1.260	1.030
22	1.650	1.240	2.190	1.250	0.913	0.717	0.629	0.516	0.439	0.406	1.420	0.984
23	1.630	1.260	2.150	1.230	0.900	0.791	0.629	0.521	0.437	0.409	1.530	0.965
24	1.600	1.250	2.120	1.230	0.893	0.836	0.633	0.523	0.437	0.413	1.560	0.946
25	1.590	1.280	2.100	1.210	0.880	0.823	0.636	0.521	0.436	0.408	1.570	0.943
26	1.560	1.290	2.100	1.190	0.862	0.807	0.636	0.515	0.464	0.413	1.560	0.936
27	1.550	1.320	2.090	1.150	0.853	0.816	0.613	0.514	0.443	0.411	1.520	0.928
28	1.530	1.360	2.070	1.140	0.820	0.816	0.608	0.505	0.470	0.406	1.520	0.917
29	1.500		2.030	1.270	0.812	0.799	0.597	0.504	0.468	0.422	1.470	0.912
30	1.470		2.000	1.350	0.814	0.757	0.616	0.504	0.456	0.422	1.430	0.918
31	1.480		1.980		0.803		0.670	0.500		0.428		0.907
Average	1.474	1.259	2.011	1.517	0.997	0.769	0.673	0.551	0.459	0.420	0.964	1.077
Lowest	0.705	1.160	1.380	1.140	0.803	0.717	0.597	0.500	0.436 .	0.399	0.462	0.907
Highest	1.820	1.430	2.370	1.960	1.230	0.836	0.744	0.674	0.490	0.446	1.570	1.400
Peak flow	1.92	1.45	2.53	2.08	1.31	1.01	0.78	0.72	0.58	0.56	1.74	1.43
Day of peak	15	1	16	7	1	15	1	1	26	22	23	1
Monthly total (million cu m)	3.95	3.05	5.39	3.93	2.67	1.99	1.80	1.47	1.19	1.13	2.50	2.88
Runoff (mm)	37	29	50	37	25	19	17	14	11	11	23	27
Rainfall (mm)	93	42	78	73	14	114	85	13	70	63	96	20

Statistics of monthly data for previous record (Oct 1963 to Dec 1990)

Station and catchment description
Crump weir (9.1 m broad). Modular throughout the range. Some overspill onto floodplain before design capacity reached. Limited impact of artificial influences on river flows - net import (sewage effluent). Baseflow dominated flow regime. Pervious (Oolitic Limestone) catchrnent on the dip-slope of the Cotswolds; predominantly rural.

040003 Medway at Teston

1991

Measuring authority: NRA-S First year: 1956

Grid reference: 51 (TQ) 708530 Level stn. (m OD): 7.00

Catchment area (sq km): 1256.1 Max alt. (m OD): 267

Day	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	10.970	6.367	5.300	4.260	14.030	1.964	6.768	12.570	2.102	2.517	3.866	3.957
2	24.670	5.458	5.512	4.877	9.576	2.421	11.020	6.298	2.155	1.941	6.957	3.822
3	22.530	4.816	5.148	4.707	6.857	2.316	50.290	3.514	2.281	2.534	8.068	3.463
4	12.060	4.253	5.461	9.022	7.762	2.363	28.340	2.994	1.858	2.749	7.628	3.142
5	17.140	4.089	5.515	9.385	13.160	2.609	8.862	2.496	1.962	3.235	4.950	3.099
6	15.440	4.135	7.277	6.901	15.130	3.353	6.249	2.383	1.842	2.443	4.977	1.872
7	12.920	3.513	6.785	8.629	9.339	3.260	3.999	3.200	2.002	3.053	3.224	2.713
8	60.330	4.208	9.817	7.113	6.351	2.974	3.953	4.229	2.044	2.801	2.766	2.753
9	107.900	3.762	8.845	5.593	5.300	3.323	4.062	2.980	1.929	2.400	3.200	2.800
10	97.930	3.327	7.153	4.736	4.828	3.388	3.397	2.662	2.074	2.127	2.826	2.724
11	61.940	3.511	10.010	4.186	4.621	2.822	3.145	2.484	2.019	2.182	7.492	2.611
12	37.900	3.531	6.183	4.198	3.917	2.613	2.826	2.481	2.033	2.303	9.261	2.646
13	18.590	3.847	6.502	3.869	4.329	2.718	4.458	2.250	2.038	2.811	11.900	2.661
14	13.640	4.222	5.660	3.679	3.394	2.317	4. 100	2.099	2.019	2.370	10.670	2.572
15	10.480	32.950	5.232	3.623	3.530	3.099	3.153	1.840	2.088	2.048	7.457	2.584
16	7.998	52.720	12.370	3.386	3.463	5.848	2.883	1.686	2.250	2.287	5.001	3.817
17	6.750	31.500	21.970	3.340	3.632	6.306	2.093	1.746	2.444	2.536	4.284	6.582
18	9.566	16.250	13.920	3.594	3.036	3.388	4.393	1.593	2.238	2.217	4.501	10.950
19	23.870	11.430	15.040	5.070	2.971	3.061	3.411	1.557	2.102	2.186	35.980	10.650
20	15.280	7.303	12.180	4.602	3.094	3.483	2.301	1.373	2.535	2.240	43.500	9.228
21	10.330	8.114	11.170	4.183	2.932	3.174	1.976	1.508	2.108	2.251	14.700	6.595
22	7.555	9.997	7.412	4.101	2.716	3.091	2.209	1.480	2.574	2.201	7.363	5.607
23	6.482	18.730	8.096	3.544	2.460	13.980	2.614	1.742	2.671	2.240	6.103	4.277
24	5.863	11.140	7.353	3.569	2.518	27.820	4.535	2.265	2.701	2.267	5.423	4.069
25	5.366	9.291	6.104	3.560	2.742	11.760	5.972	2.224	3.238	2.339	5.457	3.658
26	5.228	6.730	5.323	3.593	2.751	15.160	4.429	2.141	2.787	2.528	5.028	3.589
27	4.911	6.548	4.789	3.614	2.462	47.470	3.541	2.072	2.219	2.190	4.911	3.612
28	5.521	8.141	3.952	3.504	2.397	36.550	2.798	2.135	3.301	2.273	4.371	3.508
29	3.680		4.976	7.423	2.528	15.670	2.381	2.054	9.633	2.860	2.447	3.295
30	4.577		3.961	33.100	2.714	8.496	4.193	2.064	4.872	5.363	4.141	3.349
31	4.838		3.796		2.993		13.810	2.160		3.401		3.456
Average	21.040	10.350	7.833	5.832	5.082	8.227	6.715	2.719	2.604	2.545	8.282	4.183
Lowest	3.680	3.327	3.796	3.340	2.397	1.964	1.976	1.373	1.842	1.941	2.447	1.872
Highest	107.900	52.720	21.970	33.100	15.130	47.470	50.290	12.570	9.633	5.363	43.500	10.950
Peak flow Day of peak Monthly total (million cu m)												
	56.35	25.05	20.98	15.12	13.61	21.32	17.99	7.28	6.75	6.82	21.47	11.20
Runoff (mm)	45	20	17	12	11	17	14	6	5	5	17	9
Rainfall (mm)	91	37	38	64	22	123	85	18	49	36	78	21

Statistics of monthly data for previous record (Oct 1956 to Dec 1990 -incomplete or missing months total 1.5 years)

Station and catchment description
Crump profile weir plus sharp-crested weir superseded insensitive broad-crested weir. Flows greater than 27 cumecs measured at well calibrated river section $2 \mathrm{~km} \mathrm{~d} / \mathrm{s}$ (East Farleigh), updating of primary record incomplete. Responsive regime. Complex water utilisation Significant artificial disturbance; low flow augmentation from Bewl Water (via River Teise); >20 yrs of naturalised flows available. Mixed geology; impervious formations constitute up to 50% of the catchment. Diverse land use with significant areas of woodland and orchard.

040011 Great Stour at Horton

Measuring authority: NRA-S First year: 1964

Grid reference: 61 (TR) 116554 Level stn. (m OD): 12.50

Catchment area (sq km): 345.0 Max alt. (m OD): 205

Daily mean gauged discharges (cubic metres per second)

DAY.	JAN	FEB	MAR	APA	MAY	JUN	Jul	AUG	SEP	OCT	NOV	DEC
1	3.095	2.137	2.460	1.803	3.643	1.315	2.727	2.935	1.025	1.313	1.775	1.912
2	5.998	2.064	2.335	1.912	2.565	1.252	4.018	2.111.	1.051	1.151	1.520	1.797
3	5.560	1.985	2.206	1.862	2.117	1.228	7.274	1.519	1.056	1.121	1.650	1.715
4	4.216	1.934	2.185	2.160	2.036	1.145	5.137	1.595	1.062	1.139	2.604	1.666
5	4.584	1.858	2.316	2.143	2.813	1.350	3.184	1.559	1.022	1.180	2.187	- 1.640
6	4.477	1.898	2.561	1.989	4.125	1.456	2.577	1.550	1.077	1.227	1.735	1.567
7	3.901	1.874	2.531	2.143	2.921	1.465	2.049	1.522	1.092	1.179	1.467	1.524
8	5.670	2.008	2.991	1.915	2.397	1.789	1.887	1.625	0.906	1.139	1.497	1.509
9	11.800	1.960	2.771	1.879	2.026	1.544	1.938	1.611	0.974	1.249	1.392	1.487
10	12.240	1.911	2.574	1.822	1.843	1.545	1.838	1.545	1.049	1.173	1.285	1.468
11	12.640	1.944	2.541	1.770	1.821	1.416	1.697	1.379	0.991	1.154	2.847	1.435
12	9.946	1.949	2.459	1.704	1.727	1.345	1.673	1.340	1.137	1.137	3.916	1.405
13	7.272	2.015	2.358	1.640	1.713	1.299	1.733	1.374	1.095	1.127	3.684	1.423
14	6.092	1.935	2.217	1.684	1.716	1.262	2.055	1.399	0.973	1.193	4.939	1.408
15	5.125	4.593	2.245	1.765	1.624	1.347	1.926	1.352	0.949	1.239	3.552	1.395
16	3.928	7.746	2.578	1.816	1.587	1.395	1.754	1.237	1.117	1.137	2.411	1.845
17	3.358	6.106	3.512	1.731	1.541	1.479	1.446	1.147	1.076	1.129	2.018	3.418
18	3.489	4.508	2.957	1.745	1.474	1.469	1.663	1.153	1.047	1.122	2.212	4.020
19	6.413	3.531	3.044	1.796	1.496	1.581	1.960	1.131	1.009	1.071	8.319	5.624
20	5.303	3.061	2.930	1.853	1.576	1.722	1.792	1.135	0.980	1.057	11.840	3.926
21	4.288	2.981	2.838	1.805	1.495	1.853	1.474	1.125	0.985	1.198	7.673	2.922
22 '	3.653	2.881	2.658	1.896	1.408	1.924	1.420	1.113	1.066	1.012	5.623	2.459
23	3.273	2.906	2.504	1.753	1.423	2.027	1.380	1.121	1.061	0.968	4.143	2.170
24	3.011	2.682	2.462	1.840	1.402	4.956	1.779	1.081	1.149	0.942	3.268	1.915
25	2.848	2.573	2.265	1.753	1.292	4.499	4.055	1.017	1.304	0.912	2.956	1.822
26 !	2.662	2.523	2.262	1.762	1.382	3.842	4.412	0.986	1.370	0.917	2.735	1.770
27	2.616	2.499	1.973	1.792	1.314	5.470	2.803	1.072	1.426	0.958	2.485	1.736
28	2.522	2.622	1.806	1.732	1.363	6.219	2.142	1.352	1.388	1.035	2.289	1.652
29	2.517		1.732	1.797	1.427	4.392	1.733	1.082	1.591	1.035	2.114	1.608
30	2.265		1.725	4.015	1.349	3.068	1.601	1.080	1.507	1.908	2.028	1.570
31	2.152		1.687		1.345		2.637	1.062		1.589		1.580
Average	5.062	2.810	2.441	1.909	1.870	2.222	2.444	1.365	1.118	1.152	3.272	2.045
Lowest	2.152	1.858	1.687	1.640	1.292	1.145	1.380	0.986	0.906	0.912	1.285	1.395
Highest	12.640	7.746	3.512	4.015	4.125	6.219	7.274	2.935	1.591	1.908	11.840	5.624
Peak flow	13.35	9.08	4.43	4.58	4.85	7.65	8.29	3.47	2.01	2.42	13.01	6.38
Day of peak	11	15	19	30	6	27	3	1	10	30	20	19
Monthly total (million cu m)	13.56	6.80	6.54	4.95	5.01	5.76	6.55	3.66	2.90	3.08	8.48	5.48
Runoff (mm)	39	20	19	14	15	17	19	11	8	9	25	16
Rainfall (mm)	80	34	31	61	25	120	86	12	48	33	104	26

Statistics of monthly data for previous record (Oct 1964 to Dec 1990 -incomplete or missing months total 0.3 years)

Station and catchment description
Broad-crested weir (width: 10.7 m) in trapezoidal section plus a VA section for flows >20 cumecs. Minor impact of artificial influences on runoff (import of 0.03 cumecs in 1988), modest PWS and irrigation abstractions in lower valley. Flood storage reservoirs above Ashford. U/s mill regulation evident on the water level trace. Very limited amount of naturalised data available (1960s). The E. and W. branches of the Stour flow over Weald Clay; below the confluence (at Ashford) Chalk dominates. A rural catchment with mixed land use.

041016 Cuckmere at Cowbeech

Measuring authority: NRA-S
First year: 1939

Grid reference: 51 (TQ) 611150 Level stn. (m OD): 29.80

Daily mean gauged discharges (cubic metres per second).

DAY	JAN	feb	MAR	APR	MAY	JuN	JuL	AUG	SEP	OCT	Nov	DEC
1	0.579	0.125	0.180	0.130	0.147	0.051	0.403	0.105	0.032	0.034	0.056	0.113
2	0.969	0.116	0.159	0.132	0.109	0.049	2.780	0.082	0.031	0.027	0.083	0.104
3	0.474	0.113	0.140	0.128	0.099	0.048	1.021	0.077	0.031	0.027	0.104	0.102
4	0.276	0.109	0.137	0.167	0.110	0.048	0.373	0.071	0.030	0.027	0.093	0.095
5	0.301	0.097	0.194	0.157	0.116	0.048	0.244	0.067	0.027	0.033	0.057	0.091
6	0.217	0.093	0.345	0.148	0.116	0.056	0.190	0.066	0.027	0.041	0.045	0.089
7	0.212	0.089	0.293	0.153	0.104	0.057	0.160	0.070	0.027	0.034	0.041	0.084
8	1.202	0.091	0.385	0.127	0.096	0.057	0.160	0.080	0.028	0.033	0.047	0.084
9	2.027	0.089	0.231	0.117	0.091	0.062	0.137	0.059	0.027	0.033	0.052	0.080
10	1.950	0.084	0.264	0.115	0.085	0.062	0.120	0.055	0.027	0.032	0.061	0.079
11	1.560	0.084	0.309	0.112	0.084	0.062	0.112	0.055	0.027	0.030	0.805	0.075
12	0.805	0.085	0.264	0.108	0.080	0.062	0.107	0.054	0.027	0.034	0.536	0.075
13	0.436	0.089	0.214	0.098	0.076	0.059	0.156	0.050	0.026	0.031	0.682	0.075
14	0.337	0.089	0.183	0.089	0.074	0.052	0.120	0.047	0.026	0.029	0.422	0.075
15	0.275	0.565	0.170	0.075	0.071	0.053	0.107	0.045	0.044	0.027	0.194	0.075
16	0.232	0.568	0.491	0.076	0.070	0.062	0.102	0.045	0.034	0.034	0.137	0.154
17	0.219	0.349	0.412	0.075	0.070	0.072	0.090	0.042	0.029	0.031	0.133	0.364
18	0.563	0.244	0.383	0.077	0.070	0.065	0.275	0.041	0.027	0.027	0.566	0.332
19	0.632	0.192	0.569	0.083	0.070	0.061	0.133	0.041	0.027	0.027	1.375	0.341
20	0.342	0.171	0.445	0.079	0.069	0.071	0.102	0.041	0.027	0.027	0.464	0.227
21	0.266	0.179	0.450	0.076	0.064	0.078	0.091	0.041	0.026	0.027	0.243	0.176
22	0.223	0.244	0.383	0.074	0.061	0.083	0.079	0.040	0.041	0.026	0.203	0.146
23	0.200	0.314	0.269	0.070	0.059	2.140	0.076	0.040	0.031	0.025	0.174	0.126
24	0.183	0.217	0.218	0.070	0.057	0.759	0.396	0.036	0.030	0.024	0.159	0.104
25	0.169	0.202	0.194	0.070	0.057	0.899	0.223	0.035	0.047	0.024	0.174	0.097
26	0.158	0.181	0.178	0.066	0.057	0.962	0.120	0.035	0.037	0.025	0.210	0.099
27	0.151	0.185	0.160	0.065	0.054	2.804	0.098	0.035	0.033	0.025	0.164	0.097
28	0.144	0.231	0.145	0.061	0.053	0.927	0.084	0.033	0.055	0.021	0.146	0.090
29	0.138		0.137	0.198	0.053	0.428	0.071	0.033	0.086	0.026	0.135	0.089
30	0.128		0.133	0.344	0.053	0.453	0.226	0.033	0.041	0.130	0.126	0.089
31	0.126		0.131		0.053		0.196	0.033		0.050		0.089
Average	0.500	0.185	0.263	0.111	0.078	0.356	0.276	0.051	0.034	0.033	0.256	0.126
Lowest	0.126	0.084	0.131	0.061	0.053	0.048	0.071	0.033	0.026	0.021	0.041	0.075
Highest	2.027	0.568	0.569	0.344	0.147	2.804	2.780	0.105	0.086	0.130	1.375	0.364
Peak flow	3.93	0.85	0.99	0.55	0.18	10.38	10.33	0.13	0.13	0.21	2.45	0.51
Day of peak	9	15	16	29	1	27	2	1	29	30	19	17
Monthly total (million cu m)	1.34	0.45	0.71	0.29	0.21	0.92	0.74	0.14	0.09	0.09	0.66	0.34
Runoff (mm)	72	24	38	15	11	49	40	7	5	5	36	18
Rainfatl (mm)	107	41	60	53	22	187	108	9	53	50	126	27

Statistics of monthly data for previous record (Jan 1968 to Dec 1990-incomplete or missing months total 0.2 years)

Station and catchment description

Asymmetrical compound Crump profile weir (crests: 2.13 m and 2.97 m broad) with crest tapping - not currently used. Very limited head during droughts. Structure capacity exceeded in large floods. Early data (1939-67) is of poorer quality and relates to low flows only. Responsive to rainfall on impervious fraction of catchment. Flows diminished by surface and groundwater abstractions. A rural catchment developed on mixed geology (Hastings Beds predominate).

042010 Itchen at Highbridge + Allbrook

Station and catchment description

Crump weir 7.75 m broad (which can drown), superseded, in 1971 , a rated section with weedgrowth problems. Plus thin-plate weir (Allbrook) All flows contained frare bypassing resulted from wrong sluice settings). Flow augmentation from GW during droughts. GW catchment exceeds topographical catchment. Artificial influences have minor, but increasing, impact on baseflow dominated regime; small net export of water. Very permeable catchment (90% Chalk). Land use is mainly arable with scattered urban settlements.

043005 Avon at Amesbury

Measuring authority: NRA-W First year: 1965

Grid reference: 41 (SU) 151413 Level stn. (m OD): 67.10

Catchment area (sq km): 323.7
Max alt. (m OD): 294

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	MAY	JuN	Jul	AUG	SEP	OCT	NOV	DEC
1	1.955	2.843	3.278	3.993	3.813	2.277	2.363	1.849	1.309	1.436	1.414	1.738
2	2.299	2.843	3.169	4.146	3.544	2.286	2.329	1.870	1.367	1.358	1.466	1.645
3	2.636	2.827	3.172	4.123	3.358	2.275	2.297	1.784	1.326	1.306	1.620	1.622
4	2.489	2.779	3.185	4.348	3.368	2.274	2.179	1.756	1.311	1.284	1.625	1.613
5	2.503	2.781	3.231	4.540	3.274	2.184	2.087	1.692	1.306	1.293	1.618	1.613
6	2.772	2.708	3.467	4.410	3.211	2.236	2.226	1.699	1.305	1.284	1.590	1.613
7	3.105	2.720	4.589	4.636	3.236	2.210	2.101	1.685	1.291	1.284	1.564	1.613
8	3.112	2.749	5.074	4.354	3.179	2.203	2.088	1.691	1.269	1.295	1.532	1.613
9	3.824	2.746	4.769	4.241	3.157	2.200	2.054	1.611	1.159	1.350	1.548	1.608
10	5.236	2.730	4.646	4.127	3.040	2.221	1.962	1.590	1.142	1.344	1.560	1.602
11	4.688	2.720	4.456	4.070	3.048	2.197	1.954	1.587	1.139	1.363	1.591	1.600
12	3.726	2.720	4.168	3.987	2.999	2.191	1.927	1.588	1.123	1.378	1.617	1.600
13	3.389	2.720	4.102	3.914	2.944	2.149	1.950	1.587	1.129	1.351	1.670	1.602
14	3.213	2.726	3.992	3.863	2.858	2.089	1.927	1.583	1.130	1.358	1.713	1.600
15	3.121	2.916	3.933	3.832	2.744	2.103	1.920	1.572	1.133	1.322	1.695	1.602
16	2.960	3.119	4.023	3.724	2.829	2.085	1.909	1.562	1.163	1.325	1.670	1.633
17	2.898	3.041	4.167	3.694	2.829	2.112	1.897	1.557	1.139	1.287	1.674	1.703
18	2.994	2.986	4.207	3.699	2.807	2.055	2.063	1.550	1.122	1.284	1.710	1.762
19	3.592	2.928	4.402	3.733	2.759	2.146	2.065	1.509	1.113	1.272	2.237	1.819
20	3.458	2.880	4.402	3.661	2.679	2.134	1.981	1.488	1.113	1.272	3.156	1.817
21	3.205	2.966	4.349	3.634	2.621	2.070	1.918	1.478	1.113	1.272	2.579	1.804
22	3.029	3.438	4.298	3.619	2.548	1.927	1.872	1.482	1.114	1.243	2.116	1.775
23	2.999	4.082	4.222	3.530	2.485	2.325	1.860	1.538	1.107	1.237	2.009	1.739
24	2.989	3.653	4.152	3.515	2.468	2.587	1.920	1.528	1.129	1.237	1.943	1.702
25	2.896	3.358	4.132	3.477	2.459	2.416	1.937	1.495	1.114	1.237	1.895	1.666
26	2.882	3.378	4.127	3.457	2.380	2.400	1.917	1.478	1.146	1.237	1.853	1.661
27	2.874	3.326	4.136	3.422	2.362	2.668	1.868	1.423	1.207	1.235	1.817	1.676
28	2.860	3.300	3.972	3.390	2.340	3.290	1.859	1.393	1.482	1.242	1.747	1.667
29	2.845		3.986	3.659	2.329	3.035	1.771	1.366	1.616	1.264	1.742	1.649
30	2.843		3.991	4.256	2.321	2.599	1.758	1.363	1.540	1.338	1.741	1.649
31	2.843		3.986		2.295		1.837	1.349		1.358		1.677
Averago	3.105	2.999	4.058	3.902	2.848	2.298	1.993	1.571	1.222	1.301	1.790	1.667
Lowast	1.955	2.708	3.169	3.390	2.295	1.927	1.758	1.349	1.107	1.235	1.414	1.600
Highest	5.236	4.082	5.074	4.636	3.813	3.290	2.363	1.870	1.616	1.436	3.156	1.819
Peak flow	5.67	4.25	5.20	4.73	4.11	3.34	2.46	2.09	1.69	1.44	3.71	1.86
Day of peak Monthly total	10	23	8	7	1	28	2	1	29	1	20	19
((millian cu m)	8.31	7.26	10.87	10.11	7.63	5.96	5.34	4.21	3.17	3.49	4.64	4.46
Runotf (mm)	26	22	34	31	24	18	16	13	10	11	14	14
Rainfall (mm)	101	35	64	66	11	124	81	16	56	52	61	18

Statistics of monthly data for previous record (Feb 1965 to Dec 1990)

Station and catchment description
Crump profile weir (crest 9.14 m broad) flanked by broad-crested weirs. Small bypass channel approx. $2 \mathrm{~m} \mathbf{u} / \mathrm{s}$ of weir - included in rating. Full range station. Bankfull is 1.37 m . During summer flows are naturally augmented from groundwater draining from northern half of River Bourne catchment. Some groundwater pumping also takes place within the catchment. Predominantly permeable (Chalk) catchment with a small inlier of Upper Greensand and Gault. Land use-rural. Topographical and groundwater catchments do not coincide.

045001 Exe at Thorverton

Measuring authority: NRA-SW First year: 1956

Grid reference: 21 (SS) 936016 Level sin. (m OD): 25.90

Catchment area (sq km): 600.9 Max alt. (m OD): 519

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	73.800	8.335	17.670	8.552	8.712	3.055	7.994	5.480	2.188	7.343	31.020	7.925
2	108.100	7.731	15.910	13.750	7.508	3.038	7.560	4.844	2.210	6.101	29.630	7.342
3	77.210	7.158	14.280	11.870	7.176	2.975	7.733	4.596	2.196	6.306	46.060	6.887
4	59.550	6.889	23.570	17.070	7.543	2.861	6.484	4.343	2.078	5.765	47.150	6.580
5	60.450	6.481	23.630	21.130	6.698	3.462	6.127	4.173	2.060	5.568	37.980	6.190
6	60.630	6.022	22.330	26.350	6.344	3.504	5.606	4.723	2.026	5.097	31.200	5.849
7	54.060	5.355	22.320	25.990	6.610	3.177	6.498	4.237 ,	1.998	6.216	35.870	5.598
8	58.650	5.939	34.320	23.400	6.267	3.138	7.680	3.792	1.945	13.910	49.230	5.390
9	61.840	5.384	30.980	20.720	5.751	3.534	6.170	3.768	1.897	27.640	38.370	5.186
10	56.770.	5.607	37.350	18.250	5.420	3.430	5.155	3.708	1.916	20.510	32.030	4.961
11	53.190	5.332	33.730	16.080	5.230	3.226	5.060	3.808	1.899	21.160	31.580	4.763
12	41.180	5.551	31.110	14.710	5.082	3.556	5.301	3.842	1.872	21.900	29.270	4.435
13	34.040	5.561	26.230	12.560	4.872	3.271	6.587	3.477	1.868	. 17.660	37.460	4.409
14	28.420	5.549	22.410	10.900	4.632	3.168	5.742	3.493	1.849	15.490	52.170	4.321
15	23.710	28.230	20.250	9.893	4.396	6.010	5.409	3.321	1.882	13.350	41.360	4.604
16	20.990	25.420	28.710	8.984	4.286	4.758	5.045	3.274	2.026	13.350	33.440	5.456
17	19.790	21.140	23.090	8.247	4.244	3.602	5.135	3.109	2.240	12.510	30.320	7.703
18	26.770	18.440	36.700	7.800	4.121	3.079	19.970	2.935	2.108	13.140	34.450	8.561
19	25.740	16.160	39.280	7.230	4.030	2.920	11.490	2.817	2.040	11.380	35.700	21.840
20	22.320	15.090	37.860	6.717	3.936	3.007	9.614	2.784	1.903	11.020	31.560	27.500
21	20.370	$22.850{ }^{\text { }}$	33.090	6.321	3.727	2.855	8.632	2.754	1.860	12.820	27.340	97.090
22	18.270	54.980	28.450	6.022	3.522	3.599	7.831	3.043	2.032	11.000	22.960	66.500
23	16.580	54.350	24.180	5.701	3.398	13.300	7.590	3.444	2.238	10.190	19.220	44.770
24	15.020	44.050	20.130	5.486	3.588	9.994	12.360	3.002	2.486	9.647	16.470	33.460
25	13.520	34.660	17.190	6.034	3.718	10.430	9.639	2.778	2.523	9.110	15.320	27.110
26	12.280	28.970	15.260	5.496	3.308	12.600	7.815	2.742	2.145	8.814	12.750	22.870
27	11.270	25.050	13.330	5.060	2.982	13.920	7.375	2.634	2.165	8.273	11.270	18.870
28	10.430	20.880	11.600	4.703	2.975	10.810	6.754	2.470	19.740	8.104	10.240	16.070
29	9.677		10.430	13.530	3.269	9.371	6.147	2.330	14.130	11.150	9.377	13.910
30	9.213		9.532	14.240	3.158	8.950	5.784	2.242	8.537	12.460	8.675	12.380
31	8.904		8.830		3.137		5.719	2.153		29.260		11.210
Average	35.890	17.760	23.670	12.090	4.827	5.487	7.484	3.423	3.269	12.460	29.650	16.770
Lowest	8.904	5.332	8.830	4.703	2.975	2.855	5.045	2.153	1.849	5.097	8.675	4.321
Highest	108.100	54.980	39.280	26.350	8.712	13.920	19.970	5.480	19.740	29.260	52.170	97.090
Peak flow	161.50	109.00	56.72	37.61	9.68	27.83	34.85	6.14	34.25	59.87	64.06	182.70
Day of peak	2	23	19	6	1	24	18	1	28	1	8	21
Monthly total (million cu m)	96.14	42.95	63.40	31.35	12.93	14.22	20.05	9.17	8.47	33.37	76.85	44.91
Runoff (mm)	160	71	106	52	22	24	33	15	14	56	128	75
Rainfa! (mm)	163	85	110	102	10	130	95	28	106	140	. 138	88

Statistics of monthly data for previous record (May 1956 to Dec 1990)

Station and catchment description
Velocity-area station with cableway. Flat V Crump profile weir constructed in 1973 due to unstable bed condition. Minor culvert flow through mill \mathbf{u} / s of station included in rating. Wimbleball Reservoir has significant effect upon low flows. Control point for Wimbleball Reservoir operational releases. Headwaters drain Exmoor. Geology predominantly Devonian sandstones and Carboniferous Culm Measures, with subordinate Permian sandstones in the east. Moorland, forestry and a range of agriculture.

Measuring authority: NRA-SW First year: 1956

Grid reference: 20 (SX) 426725 Level stn. (m OD): 8.20

Catchment area (sq km): 916.9 Max alt. (m OD): 586

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	128.500	13.610	24.200	12.200	16.260	3.689	6.471	5.206	3.090	4.014	52.390	11.420
2	146.700	11.900	22.570	23.240	12.480	3.541	16.010	4.912	3.168	3.654	36.220	10.630
3	86.280	10.840	21.060	20.690	11.060	3.479	12.390	4.912	3.097	3.611	72.550	10.090
4	71.850	10.650	67.220	49.170	11.020	3.547	7.738	4.910	2.974	3.803	67.640	9.454
5	85.850	10.830	53.100	33.710	9.610	4.354	6.625	'4.857	2.849	3.945	51.710	8.935
6	66.840	9.922	41.750	44.730	8.851	4.541	6.108	5.230	2.785	3.844	37.480	8.419
7	61.600	8.408	35.420	35.770	8.964	4.189	7.300	5.018	2.780	5.944	37.790	8.057
8	99.350	8.580	60.030	28.920	8.360	4.167	10.060	4.453	2.753	12.760	58.810	7.799
9	111.300	7.733	54.280	24.690	7.644	5.153	7.993	4.202	2.749	9.302	38.680	7.530
10	88.360	7.902	59.740	21.830	7.201	4.695	6.795	4.167	2.726	7.183	29.990	7.239
11	80.220	7.461	47.480	20.130	6.948	4.318	6.738	4.255	2.732	7.046	33.870	6.931
12	53.910	17.460	42.350	27.510.	6.735	5.201	6.548	4.772	2.692	6.898	44.980	6.624
13	41.580	18.260	35.520	20.850	6.469	4.331	8.248	4.231	2.658	6.058	57.030	6.548
14	34.760	15.960	30.670	18.140	6.264	3.950	9.277	4.401	2.704	5.607	58.680	6.470
15	29.450	83.450	28.960	16.790	5.881	4.898	7.238	5.498	2.858	5.697	39.650	6.784
16	28.610	46.490	59.170	15.540	5.705	4.748	6.785	5.142	2.790	6.144	45.260	11.360
17	33.620	28.240	47.790	14.110	5.571	4.156	6.536	4.549	2.751	5.180	39.570	21.800
18	57.910	22.870	61.280	13.320	5.394	3.883	33.750	4.381	2.674	6.274	53.140	14.970
19	49.560	19.270	59.140	12.470	5.313	3.953	20.230	4.273	2.610	7.578	51.270	27.940
20	37.250	18.110	50.450	11.310	5.272	4.057	11.730	4.280	2.540	6.325	34.980	32.230
21	31.550	54.190	46.440	10.670	5.009	4.116	9.797	4.295	2.503	6.918	28.840	34.150
22	27.140	126.400	37.430.	9.926	4.793	4.592	8.660	4.344	2.675	6.293	25.330	27.640
23	23.690	85.610	$33.450{ }^{-}$	9.273	4.589	14.640	8. 184	4.793	2.850	5.917	22.480	21.950
24	20.970	60.990	27.690	9.200	4.415	11.610	8.587	4.328	3.024	5.614	20.870	18.200
25	18.700	45.530	23.990	10.250	4.259	9.844	8.743	4.091	3.156	5.480	20.790	16.060
26	16.800	38.390	21.410	8.797	4.113	10.050	7.333	3.923	2.979	5.484	17.050	15.240
27	15.340	33.830	18.830	8.069	4.005	11.560	6.688	3.776	3.442	5.460	15.460	14.360
28	14.300	28.860	16.730	7.507	3.888	8.269	6.321	3.635	7.204	5.390	14.380	12.890
29	13.280		14.900	25.090	3.794	6.963	5.838	3.531	7.276	13.440	13.430	11.930
30	13.970		13.650	43.710	4.007	6.706	5.625	3.358	4.701	17.720	12.520	10.940
31	15.530		12.700		4.006		5.596	3.001		60.170		10.480
Average	51.770	30.420	37.720	20.250	6.706	5.773	9.224	4.410	3.193	8.347	37.760	13.710
Lowest	13.280	7.461	12.700	7.507	3.794	3.479	5.596	3.001	2.503	3.611	12.520	6.470
Highest	146.700	126.400	67.220	49.170	16.260	14.640	33.750	5.498	7.276	60.170	72.550	34.150
Peak flow	258.80	182.90	108.20	75.80	20.31	22.96	61.26	5.62	10.42	100.30	86.17	47.27
Day of peak	2	23	4	4	1	24	18	15	29	31	8	19
Monthly total (million cu m)	138.70	73.59	101.00	52.50	17.96	14.96	24.71	11.81	8.28	22.36	97.88	36.73
Runoff (mm)	151	80	110	57	20	16	27	13	9	24	107	40
Rainfalt (mm)	161	94	118	109	10	115	94	30	67	126	128	50

Statistics of monthly data for previous record (Jul 1956 to Dec 1990)

Station and catchment description
Velocity-area station, wide, shallow channel. Cableway span 46.9 m . Low flows measured at another, narrower, site. High flow gauging difficult owing to standing waves. Roadford Reservoir from 1989 may have significant affect at low flows. Informal concrete control installed 1991. Rural catchment of moderate relief, draining very disturbed lower Carboniferous slates, shales, grits and volcanics. Significant alluvial flats in middle reaches, Devonian slates low down. Fairly responsive. A range of agriculture, grazing and forestry as land use.

050001 Taw at Umberleigh

Measuring authority: NRA-SW First year: 1958

Grid reference: 21 (SS) 608237 Level stn. (m OD): 14.10

Catchment area (sq km): 826.2
Max alt. (m OD): 604

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	MAY	- JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	101.600	8.685	19.030	8.183	14.630	2.155	6.332	5.109	1.470	3.854	38.680	7.984
2	132.400	7.894	16.950	14.050	12.180	2.059	6.076	4.398	1.526.	3.110	38.590	7.230
3	85.100	7.180	15.300	12.730	10.960	2.103	6.407	4.070	1.503	3.219	72.460	6.770
4	74.330	6.928	35.810	21.810	10.820	1.977	4.933	3.790	1.449	3.003	66.970	6.309
5	85.650	6.578	29.930	29.530	9.178	2.216	4.353	3.645	1.457	2.791	49.570	5.866
6	79.660	6.127	26.910	32.650	8.200	2.531	4.043	4.074	1.412	2.591	37.130	5.463
7	68.860	5.566	26.160	29.180	8.369	2.276	4.234	3.546	1.413	3.791	43.940	5.200
8	77.100	6.154	67.170	24.070	7.502	2.225	6.713	3.083	1.438	12.200	67.330	5.019
9	84.340	5.632	46.060	20.620	6.525	2.314	4.733	2.861	1.443	23.760	50.800	4.775
10	81.180	6.320	49.980	18.070	5.966	2.818	3.690	2.828	1.427	13.650	40.160	4.519
11	70.480	5.881	41.230	15.760	5.620	2.241	3.634	3.127	1.411	12.750	43.130	4.297
12	50.090	6.103	34.260	14.570	5.326	2.564	3.688	2.973 ,	1.408	13.940	43.710	3.999
13	38.250	6.720	27.720	12.410	5.049	2.314	4.365	2.683	. 1.378	10.530	64.260	3.953
14	29.800	7.247	22.950	10.800	4.706	2.190	4.184	2.570	1.362	8.958	77.790	3.927
15	24.150	72.260	20.780	9.690	4.288	3.794	3.663	2.537	1.445	7.729	53.200	4.202
16	20.990	42.570	34.970	8.516	4.116	3.041	3.475	2.580	1.492	7.531	42.570	6.341
17	23.070	28.600	27.100	7.629	4.014	2.400	3.391	2.335	1.395	7.548	36.190	10.440
18	31.840	22.070	37.570	7.075	3.816	2.055	22.040	2.192	1.216	10.130	55.650	9.976
19	31.330	17.970	42.030	6.528	3.730	1.915	13.260	2.104	1.157	8.816	59.530	22.130
20	25.170	16.130	38.110	5.891	3.616	1.781	10.930	2.081	1.090	8.173	45.260	40.790
21	22.810	29.590	33.550	5.464	3.362	2.113	9.314	2.027	1.122	12.980	34.280	85.680
22	19.860	75.050	27.100	5.291	3.138	2.449	7.999	2.062	1.377	10.560	27.060	64.400
23	17.550	69.220	23.070	5.135	2.930	11.220	7.291	2.262	1.313	9.706	22.210	43.450
24	15.550	55.190	19.020	5.051	2.775	8.811	13.020	2.344	1.561	9.005	18.510	30.500
25	13.820	41.450	16.250	5.618	2.624	8.581	10.520	1.951	1.609	8.276	16.780	23.840
26	12.260	33.410	14.440	5.495	2.535	10.300	8.676	1.778	1.415	7.931	13.780	20.520
27	11.090	28.240	12.570	4.831	2.535	13.730	7.981	1.620	1.610	7.383	11.950	16.960
28	10.250	23.340	10.970	4.359	2.414	9.644	7.202	1.598	15.750	7.524	10.690	14.480
29	9.396		9.853	24.390	2.284	8.076	6.405	1.534	10.860	13.200	9.719	12.550
30	9.263		9.008	26.690	2.307	7.237	5.835	1.479	5.024	15.730	8.882	11.120
31	9.236		8.361		2.256		5.498	1.457		34.820		10.160
Average	44.080	23.150	27.230	13.400	5.412	4.304	6.900	2.668	2.318	9.845	40.030	16.220
Lowest	9.236	5.566	8.361	4.359	2.256	1.781	3.391	1.457	1.090	2.591	8.882	3.927
Highest	132.400	75.050	67.170	32.650	14.630	13.730	22.040	5.109	15.750	34.820	77.790	85.680
Peak flow	195.00	133.10	82.40	54.28	16.73	22.49	42.80	5.51	29.50	71.76	94.25	144.40
Day of peak	2	23	8	30	1	23	18	1	28	31	14	22
Monthly total (million cu m)	118.10	56.00	72.94	34.74	14.50	11.16	18.48	7.14	6.01	26.37	103.70	43.45
Runoff (mm)	143	68	88	42	18	14	22	9	7	32	126	53
Rainfall (mm)	147	82	93	98	12	113	90	26	88	121	138	68

Statistics of monthly data for previous record (Oct 1958 to Dec 1990)

Mean	Avg.	35.790	29.580	20.960	14.020	9.050	5.044	4.678	5.725	7.637	19.300	28.570	36.280
flows:	Low	6.657	3.245	7.449	3.888	1.982	1.329	0.793	0.423	0.859	1.043	3.654	13.200
	(year)	1963	1959	1984	$1974{ }^{\text { }}$	1990	1984	1984	1976	1959	1978	1978	1963
1	High	62.100	68.000	52.140	32.800	37.000	16.630	23.390	19.130	47.670	77.360	58.500	73.670
	(year)	1984	1990	1981	1966	1983	1972	1968	1985	1974	1960	1963	1965
Runoff:	Avg.	116	87	68	44	29	16	15	19	24	63	90	118
	Low	22	10	24	12	6	4	3	1	3	3	11	43
	High	201	199	169	103	120	52	76	62	150	251	184	239
Rainfall:	Avg.	132	91	92	69	69	68	72	87	92	119	126	138
	Low	28	3	18	8	17	10	23	24	14	14	53	41
	High	242	225	183	145	146	164	156	160	247	278	239	271

Summary statistics					
	For 1991		For record preceding 1991		1991 As \% of pre-1991
Mean flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	16.250		18.010		90
Lowest yearly mean			11.310	1964	
Highest yearly mean			27.590	1960	
Lowest monthly mean	2.318	Sep	0.423	Aug 1976	
Highest monthly mean	44.080	Jan	77.360	Oct 1960	
Lowest daily mean	1.090	20 Sep	0.200	28 Aug 1976	
Highest daily mean	132.400	2 Jan	363.800	4 Dec 1960	
Peak	195.000	2 Jan	644.900	4 Dec 1960	
10\% exceedance	42.580		47.230		90
50\% exceedance	8.030		9.078		88
95\% exceedance	1.450		1.171		124
Annual total (million cu m)	512.50		568.30		90
Annual runoff (mm)	620		688		90
Annual rainfall (mm)	1076		1155		93
[194 1-70 rainfall avera			1193]		

Station and catchment description
Velocity-area station, main channel 34 m wide, cableway span 54.9 m . Rock step downstream forms control. Bypassing begins at about 3.7 m on right bank, but a good rating accommodates this. Significant modification to flows owing to PWS abstraction. Some naturalised fiow data available, Large rural catchment - drains Dartmoor (granite) in south and Devonian shales and sandstones of Exmoor in north. Central area underlain mainly by Culm shales and sandstones (Carboniferous). Agriculture conditioned by grade 3 and 4 soils.

052005 Tone at Bishops Hull

Measuring authority: NRA-W First year: 1961

Grid reference: 31 (ST) 206250 Level stn. (m OD): 16.20

Catchment area (sq km): 202.0 Max alt. (m OD): 409

Daily mean gauged discharges (cubic motres per socond)

DAY	JAN	FEB	MAR	APA	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	12.070	2.159	2.999	2.261	2.468	0.933	0.952	0.785	0.557	1.023	5.246	1.927
2	11.810	2.040	2.906	2.754	2.094	0.933	0.925	0.718	0.578	0.864	3.824	1.834
3	8.660	1.907	2.693	2.520	1.996	0.906	0.978	0.756	0.550	0.826	7.704	1.767
4	7.633	1.854	6.034	5.036	2.051	0.910	0.865	0.705	0.552	0.783	6.721	1.714
5	10.860	1.783	5.275	4.117	1.869	1.072	0.884	0.734	0.555	0.784	4.689	1.647
6	9.555	1.723	4.923	5.632	1.810	0.996	0.898	0.739	0.545	0.739	3.870	1.590
7	7.924	1.669	5.028	4.571	1.891	0.980	1.038	0.708	0.539	0.939	3.438	1.557
8	9.273	1.692	8.780	3.718	1.742	0.924	1.134	0.651	0.539	2.446	4.617	1.533
9	16.020	1.605	5.678	3.389	1.709	1.039	0.908	0.626	0.541	5.984	3.735	1.478
10	12.950	1.568	7.187	3.227	1.655	1.029	0.819	0.633	0.528	2.260	3.516	1.448
11	8.959	1.451	6.031	3.080	1.595	0.924	0.862	0.669	0.533	3.677	4.391	1.410
12	6.682	1.895	5.373	2.975	1.475	0.999	0.855	0.647	0.529	4.249	5.190	1.356
13	5.552	1.930	4.759	2.730	1.408	0.867	0.951	0.622	0.542	2.490	7.474	1.377
14	4.738	1.804	4.245	2.524	1.347	0.926	0.871	0.630	0.555	2.182	8.165	1.367
15	4.250	3.244	3.986	2.384	1.289	1.087	0.819	0.611	0.555	1.814	5.528	1.659
16	4.031	2.623	5.753	2.255	1.259	0.853	0.769	0.606	0.556	1.835	4.708	1.833
17	4.483	2.227	4.809	2.156	1.276	0.783	0.821	0.591	0.539	1.677	4.450	2.067
18	6.116	2.115	5.858	2.119	1.275	0.764	1.896	0.577	0.519	1.552	4.731	2.068
19	5.448	2.025	6.389	2.065	1.255	0.725	1.020	0.598	0.516	1.361	4.633	2.839
20	4.332	2.042	5.582	1.960	1.239	0.724	0.870	0.582	0.503	1.344	3.893	3.442
21	3.879	4.446	5.097	1.921	1.167	0.716	0.823	0.582	0.531	1.422	3.610	7.498
22	3.530	13.420	4.589	1.853	1.157	0.797	0.783	0.666	0.552	1.249	3.357	5.531
23	3.285	6.725	4.238	1.774	1.086	2.099	0.830	0.820	0.549	1.193	3.082	4.309
24	3.079	5.078	3.726	1.813	1.074	1.459	0.936	0.641	0.606	1.155	2.874	3.563
25	2.852	4.348	3.382	2.586	1.034	1.247	0.877	0.615	0.855	1.136	2.858	3.208
26	2.664	3.862	3.153	1.945	1.000	1.365	0.813	0.588	0.643	1.146	2.494	2.942
27	2.522	3.635	2.797	1.806	0.997	1.594	0.774	0.553	0.605	1.118	2.334	2.668
28	2.401	3.323	2.590	1.700	0.993	1.000	0.746	0.553	6.514	1.097	2.200	2.474
29	2.321		2.432	3.397	0.991	0.901	0.716	0.528	2.921	2.164	2.146	2.302
30	2.232		2.345	4.406	0.939	0.881	0.679	0.524	1.289	2.223	2.059	2.184
31	2.216		2.251		0.933		0.843	0.524		5.529		2.103
Avarage	6.204	3.007	4.545	2.822	1.422	1.014	0.902	0.638	0.863	1.879	4.251	2.410
Lowest	2.216	1.451	2.251	1.700	0.933	0.716	0.679	0.524	0.503	0.739	2.059	1.356
Highest	16.020	13.420	8.780	5.632	2.468	2.099	1.896	0.820	6.514	5.984	8.165	7.498
Peak flow	40.71	30.16	10.60	9.44	2.85	3.48	2.62	0.95	10.26	12.75	10.52	12.85
Day of paak	9	22	7	6	1	23	18	23	28	31	14	21
Monthly total (million cu m)	16.62	7.27	12.17	7.32	3.81	2.63	2.41	1.71	2.24	5.03	11.02	6.45
Runolf (mm)	82	36	60	36	19	13	12	8	11	25	55	32
Rainfall (mm)	129	55	83	89	9	97	65	19	94	127	97	49

Statistics of monthly data for previous record (Feb 1961 to Dec 1990)

Mean flows:	Avg.	6.024	6.257	4.358	3.009	2.070	1.367	1.161	0.933	1.188	2.000	3.230	5.025
	Low	1.246	1.746	1.552	1.176	0.734	0.456	0.326	0.266	0.501	0.580	0.651	1.821
	(year)	1976	1965	1982	1976	1976	1976	1976	1976	1964	1978	1978	1975
	High	14.560	14.160	9.259	6.655	6.562	2.770	5.628	1.685	4.892	9.873	7.611	11.280
	(yoar)	1984	1990	1981	1966	1983	1972	1968	1965	1974	1976	1982	1965
Runoff:	Avg.	80	75	58	39	27	18	15	12	15	27	41	67
	Low	17	21	21	15	10	6	4	4	6	8	8	24
	High	193	170	123	85	87	36	75	22	63	131	98	150
Rainfall:	Avg.	113	85	84	61	65	59	58	69	79	93	96	113
	Low	25	6	5	6	14	8	16	19	8	8	31	34
	High	250	194	170	150	137	147	144	126	202	249	192	205

Summary statistics	For 1991		For record preceding 1991			Factors affecting runoff		
			$\begin{gathered} 1991 \\ \text { As \% of } \end{gathered}$ $\text { pre. } 1991$	- Reservoir(s) in catchment. - Abstraction for public water supplies.				
Mean flow ($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$)	2.495				3.037		82	
Lowest yearly mean			1.600	1964				
Highest yearly mean			4.084	1974				
Lowest monthly mean	0.638	Aug	0.266	Aug 1976				
Highest monthly mean	6.204	Jan	14.560	Jan 1984				
Lowest daily moan	0.503	20 Sep	0.179	22 Aug 1978				
Highest daily mean	16.020	9 Jan	84.200	23 Feb 1978				
Peak	40.710	9 Jan	112.700	11 Jut 1968				
10\% exceodance	5.427		6.569		83			
50\% exceedance	1.787		1.759		102			
95\% exceedance	0.552		0.607		91			
Annual total (million cu m)	78.68		95.84		82			
Annual runoff (mm)	390		474		82			
Annusl rainfall (mm) \| 1941.70 rainfall average (mm)	913		$\begin{aligned} & 975 \\ & 995] \end{aligned}$		94			

Station and catchment description
Crump profile weir (breadth 12.2m) with crest tapping (not operationall. Full range station. Pre-March 1968: velocity-area station; flows inaccurate below 1.42 cumecs. Clatworthy and smaller Luxhay Reservoir in headwaters. Compensation flow maintains low flows. Reservoirs not large enough to influence fairly rapid response to rainfall. Minor surface water abstractions for PWS. Catchment geology - predominantly sandstones and marls. Land use - rural.

053018 Avon at Bathford

Measuring authority: NRA.W First year: 1969

Grid reference: 31 (ST) 786671 Leval stn. (m OD): 18.00

Catchment area (sq km): 1552.0 Max alt. (m OD): 305

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	33.420	- 12.050	16.060	13.050	12.470	4.202	7.039	4.673	2.134	4.520	14.200	10.550
2	63.990	11.450	15.030	16.090	10.100	4.230	6.592	3.959	2.306	3.737	11.780	9.967
3	48.820	11.140	14.650	15.150	9.185	4.097	6.947	3.300	2.383	3.362	. 14.410	9.697
4	38.720	10.770	14.860	21.870	9.117	4.190	5.737	2.777	2.273	3.248	16.270	9.419
5	45.700	10.200	16.930	24.630	8.497	4.522	5.224	2.915	2.230	3.564	13.530	8.809
6	49.740	9.834	24.510	22.600	7.921	4.742	6.469	2.868	2.065	3.612	10.730	8.475
7	53.730	9.568	52.330	26.930	8.039	4.529	5.111	3.302	1.885	3.469	10.520	8.354
8	53.700	9.612	66.450	21.220	8.272	4.587	4.851	3.121	1.734	5.861	14.190	8.153
9	71.530	9.289	48.410	18.020	7.772	4.914	4.675	2.744	1.888	11.610	12.850	7.943
10	96.730	9.029	39.940	16.120	7.472	5.939	4.240	2.754	1.977	9.960	11.170	7.553
11	62.930	8.898	37.980	14.360	6.929	4.985	3.868	2.710	2.028	7.098	11.380	7.452
12	44.840	8.694	30.150	13.530	6.526	5.542	3.958	2.677	2.246	6.494	12.840	7.135
13	34.190	8.911	25.390	12.500	6.847	4.984	3.893	2.496	2.028	5.819	18.560	6.763
14	29.020	8.810	22.770	11.610	6.354	4.669	3.675	2.552	1.675	5.624	23.690	6.953
15	25.940	13.310	20.690	11.400	5.986	5.972	3.512	2.630	1.839	5.343	18.880	7.265
16	22.690	15.400	23.580	11.110	5.693	5.922	3.248	2.387	2.414	5.295	15.850	8.192
17	22.270	13.270	28.680	10.690	5.941	6.225	3.357	2.289	2.580	5.040	14.810	9.267
18	28.290	11.950	39.440	10.630	5.821	5.591	9.296	2.244	2.421	4.632	16.240	13.590
19	41.110	10.930	50.400	10.410	5.659	5.143	6.770	2.092	2.232	4.481	44.050	17.920
20	28.730	11.130	35.950	9.955	5.419	4.876	5.086	2.147	2.146	4.144	37.800	16.860
21	23.940	17.710	32.750	9.809	5.143	4.437	3.957	2.194	2.249	4.224	24.720	18.300
22	21.160	31.180	28.180	10.130	5.109	3.791	3.509	2.492	2.557	4.058	20.770	15.730
23	19.170	42.240	24.350	9.436	4.991	8.210	3.250	4.457	2.510	4.066	18.320	13.820
24	17.720	27.560	21.200	9.274	4.955	11.840	3.764	3.259	2.437	3.962	16.620	11.870
25	16.660	23.230	19.120	9.298	4.804	10.900	5.408	2.468	2.626	3.865	15.280	11.040
26	15.540	20.610	17.780	8.977	4.427	12.140	4.433	2.289	3.119	3.723	13.930	10.820
27	14.620	18.840	16.820	8.670	4.336	13.410	3.770	2.196	3.367	3.653	12.890	10.220
28	13.540	18.120	15.600	8.584	4.396	11.740	3.124	2.174	6.640	3.753	12.360	9.731
29	13.020		14.410	11.990	4.335	8.955	3.003	2.252	9.415	4.180	11.480	9.216
30	12.450		13.770	17.620	4.223	7.658	3.019	2.137	5.914	5.844	11.050	9.036
31	12.410		13.310		4.191		5.310	2.066		7.092		8.938
Average	34.720	14.780	27.140	13.860	6.482	6.431	4.713	2.730	2.777	5.011	16.710	10.290
Lowest	12.410	8.694	13.310	8.584	4.191	3.791	3.003	2.066	1.675	3.248	10.520	6.763
Highest	96.730	42.240	66.450	26.930	12.470	13.410	9.296	4.673	9.415	11.610	44.050	18.300
Peak klow	116.10	49.12	72.25	28.66	14.52	14.26	12.08	5.43	12.47	17.40	58.69	22.31
Day of peak	10	23	8	7	1	27	18	1	29	9	19	19
Monthly total (million cu m)	92.99	35.75	72.70	35.91	17.36	16.67	12.62	7.31	7.20	13.42	43.30	27.56
Runoff (mm)	60	23	47	23	11	11	8	5	5	9	28	18
Rainfall (mm)	105	38	74	68	9	108	73	17	56	72	80	27

Statistics of monthly data for previous record (Dec 1969 to Dec 1990)

Station and catchment description
Velocity-area station with cableway. (Replacement station for Bath St James). Upstream of the city of Bath. Situated immediately downstream of confluence with Bybrook. Section by railway bridge; area widely inundated in flood conditions, but all flows contained through bridge. Flows below 5 cumecs are inaccurate. Flows augmented by groundwater scheme in catchment. Mixed geology - predominantly clays and limestone with eastern tributaries rising from Chalk. Land use - mainly rural, some urbanisation.

054001 Severn at Bewdley

Measuring authority: NRA-ST
First year: 1921

Grid reference: 32 (SO) 782762 Level stn. (m OD): 17.00

Catchment area (sq km): 4325.0 Max alt. (m OD): 827

Daily mean gauged discharges (cubic metres per second)												
DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	229.500	34.400	86.750	34.210	114.600	9.481	18.630	39.610	11.170	35.410	46.700	35.040
2	249.200	31.710	66.220	49.510	63.630	10.550	16.640	46.190	12.050	23.060	86.640	33.220
3	278.100	30.620	58.190	145.600	47.110	11.620	16.370	26.100	10.420	18.580	94.520	32.500
4	304.200	30.420	66.430	122.700	42.220	10.610	20.500	19.350	9.240	17.390	124.800	28.570
6	257.500	29.420	99.450	95.410	40.880	10.500	25.310	17.630	8.578	18.650	107.500	26.420
6	204.700	27.670	126.700	119.100	36.180	12.250	23.100	17.530	9.189	16.290	100.400	23.510
7	179.400	26.000	160.900	124.200	32.490	15.200	19.850	15.980	10.050	17.470	72.030	21.190
8	195.800	25.750	245.900	142.700	31.540	14.000	19.310	17.110	11.120	18.000	107.400	20.850
9	242.900	26.320	253.600	117.900	30.190	14.020	16.910	15.840	10.850	47.450	115.400	21.530
10	282.600	25.240	208.900	95.980	27.680	14.870	14.760	11.240	9.964	41.780	90.160	20.320
11	299.200	23.670	174.000	83.930	24.420	21.050	19.780	17.610	9.703	56.110	82.670	19.510
12	314.700	24.090	142.500	57.450	24.160	21.340	16.430	42.230	10.180	41.160	137.200	18.500
13	237.500	23.340	112.100	49.500	23.180	19.220	13.140	27.460	11.140	31.180	114.700	18.510
14	155.900	24.100	103.700	43.280	22.220	18.380	13.040	22.080	10.010	27.840	122.100	16.270
15	117.800	29.030	114.000	38.630	19.920	18.560	15.990	19.780	10.940	24.400	109.000	17.490
16	101.900	58.680	100.000	35.730	19.320	18.730	17.020	17.790	13.050	22.150	92.090	20.340
17	89.450	66.360	121.800	32.660	19.650	25.750	14.920	13.050	11.960	20.900	78.010	20.850
18	80.510	48.690	88.810	31.940	18.060	21.820	16.160	11.560	13.340	29.560	72.260	22.450
19	83.780	40.630	112.700	30.740	18.240	18.400	14.670	11.490	14.360	46.320	139.500	38.260
20	91.530	37.560	152.200	29.410	17.830	16.490	14.780	10.280	13.030	41.010	177.900	128.900
21	76.150	38.050	145.900	28.200	16.870	19.170	14.850	8.450	11.520	32.720	134.600	113.100
22	67.190	75.490	132.300	27.170	14.810	15.560	14.090	9.319	11.030	31.580	94.590	170.600
23	59.510	149.900	106.900	26.000	13.640	13.370	13.170	12.130	11.810	29.450	78.400	218.200
24	55.490	221.500	95.210	25.370	13.210	17.450	11.490	11.830	11.770	26.180	64.800	245.700
25	52.900	262.800	67.530	23.470	13.300	18.930	12.960	22.820	13.670	23.870	56.770	167.900
26	48.590	209.500	58.060	23.090	12.870	21.660	15.330	24.350	17.620	20.280	49.340	114.800
27	46.570	139.400	52.300	22.630	13.240	27.930	17.570	18.360	17.040	20.910	44.800	88.090
28	43.710	107.800	46.630	21.650	12.570	29.340	14.640	13.850	14.640	20.340	41.100	65.250
29	43.040		42.110	26.640	14.130	29.120	12.630	13.750	20.760	19.840	39.760	52.740
30	37.210		39.050	69.970	11.950	20.500	12.880	14.530	41.660	20.730	36.910	46.160
31	35.050		36.810		9.964		21.630	11.430		26.220		42.690
Averaga	147.100	66.720	110.200	59.160	26.450	17.860	16.400	18.730	13.060	27.960	90.400	61.600
Lowest	35.050	23.340	36.810	21.650	9.964	9.481	11.490	8.450	8.578	16.290	36.910	16.270
Highest	314.700	262.800	253.600	145.600	114.600	29.340	25.310	46.190	41.660	56.110	177.900	245.700
Peak flow	324.10	270.90	262.80	160.90	131.90	32.43	28.60	64.14	53.72	65.30	184.00	254.60
Day of poak	12	25	9	3	1	29	5	1	30	9	20	24
Monthly total (million cu m)	394.10	161.40	295.30	153.30	70.85	46.30	43.94	50.17	33.86	74.89	234.30	165.00
Runoff (mm)	91	37	68	35	16	11	10	12	8	17	54	38
Rainfoll (mm)	100	59	83	87	11	84	94	34	52	74	99	56

Statistics of monthly data for pravious record (Apr 1921 to Dec 1990)

Station and catchment description
Volocity-area station with rock control. Peak flows from 1972. Stage monitoring site relocated in 1950 and 1970; lowest flows not reliable in earlier record. US gauge since 1988. Sig. exports for PWS and CEGB; minimum flow maintained by Clywedog releases. Naturalised flow series from Drift covered Carboniferous to Liassic sandstones and marls. Moorland forestry mixed farming

Measuring authority: NRA-ST
First year: 1936

Grid reference: 42 (SP) 040438
Level stn. (m OD): 19.50

Catchment area (sq km): 2210.0 Max alt. (m OD): 320

Daily mean gauged discharges (cubic metres per second)												
DAY	JAN	FEB	MAR	APR	MAY	JuN	JUL	AUG	SEP	OCT	NOV	DEC
1	18.450	8.753	14.490	8.469	30.400	5.772	6.775	18.500	4.342	10.960	17.020	5.276
2	21.500	8.408	13.260	9.806	19.070	5.870	6.641	11.080	4.341	7.373	13.770	5.310
3	20.940	8.087	12.080	11.410	13.910	5.930	19.620	7.664	4.374	6.072	13.760	5.428
4	19.780	8.162	12.470	11.960	12.300	5.798	21.650	6.387	4.350	5.452	10.270	5.321
5	24.260	7.909	14.860	12.050	10.990	5.931	15.560	5.904	4.435	5.585	7.498	5.186
6	27.940	7.819	20.700	10.690	9.650	6.228	13.310	7.057	4.383	5.334	6.259	5.059
7	23.360	7.792	75.760	12.350	9.099	6.547	10.310	7.032	4.346	4.917	5.803	5.013
8	35.750	8.193	79.980	11.480	8.544	6.178	8.703	6.470	4.303	5.021	5.871	5.058
9	74.780	7.970	58.150	10.160	8.223	6.469	7.654	5.887	4.182	5.008	5.645	4.988
10	126.000	7.751	43.800	9.402	7.749	6.065	6.595	5.507	4.335	5.068	5.559	5.016
11	105.800	7.834	36.650	9.026	7.445	5.846	6.191	5.326	4.293	4.869	6.394	4.977
12	75.260	7.775	27.800	8.769	7.278	5.894	5.952	5.152	4.328	4.833	6.404	4.857
13	40.800	7.924	22.320	8.308	7.323	6.108	5.725	5.035	4.335	4.832	7.172	4.889
14	27.540	8.085	18.640	7.921	7.128	6.032	5.635	4.936	4.398	4.739	6.631	4.906
15	21.760	18.320	16.220	7.700	7.197	8.332	5.504	4.946	4.336	4.766	6.039	5.036
16	17.820	31.140	15.660	7.703	8.521	10.160	5.875	4.856	4.351	5.019	5.696	5.306
17	15.520	26.230	16.050	7.711	8.134	7.654	5.538	4.756	4.328	4.966	5.583	6.123
18	16.470	22.350	16.370	8.352	7.493	6.852	7.902	4.782	4.197	5.175	8.052	8.003
19	35.100	- 21.030	17.880	10.250	7.130	6.640	7.457	4.762	4.196	4.845	23.730	8.503
20	31.130	18.840	18.530	8.747	-6.853	6.931	5.929	4.749	4.295	4.625	22.870	8.245
21	23.360	20.340	20.450	8.062	6.702	6.312	5.350	4.705	4.332	4.514	17.700	7.989
22	18.510	21.680	17.690	8.738	6.412	6.336	5.067	4.694	4.575	4.559	11.310	7.307
23	16.030	24.620	14.720	7.440	6.170	7.701	5.111	4.753	4.509	4.511	8.506	7.273
24	14.190	22.740	12.470	7.116	6.153	9.784	5.326	4.587	4.393	4.569	7.169	6.461
25	12.810	19.670	11.280	7.189	6.007	11.820	6.308	4.565	4.553	4.597	6.761	5.735
26	11.680	16.850	10.790	7.163	5.948	11.100	5.872	4.502	5.050	4.558	6.407	5.414
27	10.900	14.740	10.190	7.205	6.010	12.670	5.409	4.536	18.800	4.501	6.017	5.254
28	10.620	14.390	9.477	7.159	5.911	12.220	5.103	4.536	13.810	4.604	5.909	5.225
29	10.190		9.055	13.290	5.850	9.354	4.873	4.544	23.990	5.058	5.728	5.446
30	9.743		8.792	36.170	5.931	7.681	6.787	4.462	17.590	9.287	5.506	5.341
31	9.147		8.417		5.850		29.040	4.362		8.526		5.343
Average	29.910	14.480	22.100	10.060	8.754	7.540	8.476	5.840	6.268	5.443	9.035	5.783
Lowest	9.147	7.751	8.417	7.116	5.850	5.772	4.873	4.362	4.182	4.501	5.506	4.857
Highest	126.000	31.140	79.980	36.170	30.400	12.670	29.040	18.500	23.990	10.960	23.730	8.503
Peak flow	134.30	31.98	92.18	38.96	35.11	15.03	38.18	25.78	28.37	14.01	28.43	9.14
Day of peak	10	16	7	30	1	27	31	1	27	1	19	19
Monthly total (million cu m)	80.10	35.03	59.18	26.08	23.45	19.54	22.70	15.64	16.25	14.58	23.42	15.49
Runoff (mm)	36	16	27	12	11	9	10	7	7	7	11	7
Rainfall (mm)	64	29	46	60	13	74	89	12	62	43	49	16

Statistics of monthly data for previous record (Dec 1936 to Dec 1990)

Mean flows:	Avg.	28.280	28.060	22.510	15.260	11.410	8.690	6.564	6.738	6.706	9.354	17.230	22.700
	Low	5.143	4.868	2.261	3.237	2.220	1.935	2.256	2.042	1.968	2.485	2.681	3.549
	(year)	1950	1944	1944	1938	1944	1944	1976	1943	1959	1959	1943	1943
	High	73.520	77.930	75.600	36.100	37.690	27.380	42.220	16.100	24.200	45.420	55.910	65.160
	(year)	1939	1977	1947	1987	1983	1977	1968	1969	1960	1960	1960	1965
Runoff:	Avg.	34	31	27	18	14	10	8	8	8	11	20	28
	Low	6	6	3	4	3	2	3	2	2	3	3	4
	High	89	85	92	42	46	32	51	20	28	55	66	79
$\begin{aligned} & \text { Rainfall: } \\ & \text { (1937. } \\ & \text { 1990) } \end{aligned}$	Avg.	60	44	48	43	54	54	56	70	. 54	59	63	61
	Low	13	3	5	5	8	10	8	5	3	6	8	15
	High	127	122	140	94	130	121	122	130	127	150	163	121

Summary statistics

	For 1991	
Mean flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	11.140	
Lowest yearly mean		
Highest yearly mean		
Lowest monthly mean	5.443	Oct
Highest monthly mean	29.910	Jan
Lowest daily mean	4.182	9 Sep
Highest daily mean	126.000	10 Jan
Peak	134.300	10 Jan
10\% exceedance	20.870	
50\% exceedance	7.187	
95\% exceedance	4.403	
Annual total (million cu m)	351.30	
Annual runoff (mm)	159	
Annual rainfall (mm)	557	

$\left.\begin{array}{crc} & & \\ \begin{array}{c}\text { For record } \\ \text { preceding }\end{array} & & \begin{array}{c}1991\end{array} \\ 15.230 & & \text { As \% of } \\ \text { pre-1991 }\end{array}\right)$

Factors affecting runoff

- Reservoir(s) in catchment

Flow influenced by groundwater abstraction
and/or recharge.
Abstraction for public water supplies

- Flow reduced by industrial and/or
agricultural abstractions.
- Augmentation from effluent returns.

Station and catchment description
Velocity-area station, Recording site, control and gauging site are widely separated; recording at a site where all flows contained. Gauge site can measure out-of-bank flows. Extensive modification to flow regime from abstractions and returns. Large catchment of low relief, draining argillaceous rocks almost exclusively. Contains many large towns, but chief land use is agriculture.

Measuring authority: NRA-ST First year: 1956

Grid reference: 32 (SO) 597686 Level stn. (m OD): 48.00

Catchment area (sq km): 1134.4 Max alt. (m OD): 546

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	45.300	9.689	17.730	10.790	15.830	3.893	3.992	8.124	1.886	4.072	15.270	7.081
2	65.250	8.920	16.170	12.260	12.970	3.772	3.922	5.695	1.876	3.232	13.840	6.509
3	54.380	8.432	16.570	12.720	11.740	3.763	4.863	5.013	1.817	2.880	22.030	6.166
4	45.940	7.959	30.890	15.700	13.820	3.732	4.914	4.420	1.784	2.661	19.180	5.911
5	52.590	7.554	54.300	17.210	11.770	3.745	3.947	4.070	1.772	2.620	15.460	5.651
6	42.020	7.233	48.360	18.290	10.680	3.895	4.898	4.134	1.746	2.531	12.220	5.350
7	37.680	6.811	114.500	25.790	10.280	3.883	4.604	4.025	1.686	2.476	11.300	5.142
8	58.640	7.145	101.800	23.850	9.591	3.850	4.089	3.530	1.654	4.695	11.140	5.015
9	96.600	6.824	73.370	20.170	9.091	4.130	4.240	3.191	1.618	5.060	10.070	4.854
10	122.200	6.630	63.060	17.840	8.346	4.124	3.895	3.141	1.606	10.140	9.562	4.707
11	87.350	6.274	52.610	15.980	7.950	4.008	3.579	3.011	1.611	8.399	14.770	4.556
12	66.240	6.178	42.310	14.480	7.482	3.900	3.535	2.870	1.624	6.940	16.350	4.300
13	50.490	6.046	34.650	12.720	7.091	3.834	3.542	2.721	1.603	5.815	25.550	4.342
14	37.560	5.938	30.070	11.320	6.667	3.699	3.500	2.583	1.570	5.016	20.560	4.250
15	29.870	13.630	26.200	10.510	6.350	3.992	3.182	2.492	1.617	4.510	16.520	4.317
16	24.710	19.240	26.690	9.965	6.232	4.251	3.117	2.419	1.689	4.134	14.010	4.616
17	24.200	14.290	27.220	9.415	6.145	3.918	3.057	2.351	1.599	3.950	12.660	5.080
18	24.820	12.260	26.320	9.376	5.910	3.709	3.672	2.253	1.546	3.797	18.010	7.878
19	28,900	10.960	32.190	9.018	5.648	3.667	3.595	2.171	1.486	3.717	43.690	9.466
20	22.960	10.740	37.340	8.401	5.367	3.547	3.134	2.117	1.440	3.502	30.210	10.760
21	20.260	21.580	36.180	8.065	5.048	3.435	2.856	2.052	1.467	3.789	22.570	25.410
22	18.210	42.910	29.780	7.559	4.827	3.627	2.744	2.080	1.482	3.649	18.540	31.600
23	16.970	52.410	24.940	7.136	4.763	4.014	2.661	2.393	1.466	3.424	15.340	22.640
24	15.990	42.250	20.950	6.947	4.631	3.957	2.931	3.338	1.456	3.284	13.260	16.800
25	14.690	32.620	18.530	6.849	4.463	5.111	3.694	2.875	1.415	3.217	11.770	14.010
28	13.520	26.740	16.840	6.589	4.372	5.313	3.437	2.455	1.448	3.200	10.410	12.590
27	12.520	22.840	15.100	6.272	4.261	5.480	3.001	2.278	1.487	3.167	9.196	11.030
28	11.880	20.860	13.470	5.992	4.183	5.585	2.824	2.178	2.300	3.125	8.659	9.949
29	11.260		12.440	11.270	4.178	4.702	2.649	2.107	10.550	3.166	8.147	9.048
30	10.600		11.760	28.270	4.080	4.254	2.888	1.997	6.022	5.279	7.679	8.249
31	10.160		11.100		4.055		12.800	1.925		7.702		7.829
Average	37.860	15.890	34.890	12.690	7.349	4.093	3.863	3.097	2.077	4.295	15.930	9.197
Lowest	10.160	5.938	11.100	5.992	4.055	3.435	2.649	1.925	1.415	2.476	7.679	4.250
Highest	122.200	52.410	114.500	28.270	15.830	5.585	12.800	8.124	10.550	10.140	43.690	31.600
Peak flow	133.40	58.79	140.20	35.41	19.05	5.90	18.15	11.49	14.95	18.43	51.74	36.69
Day of peak	10	22	7	30	1	25	31	1	29	31	19	22
Monthly total (million cu m)	101.40	38.44	93.44	32.90	19.68	10.61	10.35	8.29	5.38	11.50	41.30	24.63
Runoff (mm)	89	34	82	29	- 17	9	9	7	5	10	36	22
Rainfall (mm)	105	48	95	80	9	80	96	27	56	76	74	36

Statistics of monthly data for previous record (Oct 1956 to Dec 1990)

Station and catchment description
Velocity-area station with a gravel control. Upstream shoaling may render low flow rating variable from year to year. Rarely goes out of bank Adjustments small and dispersed; natural catchment. Left bank characterised by high relief hills and broad valleys. Steep and narrow on the righ bank. Geology mainly Palaeozoic sediments with Pre-Cambrian crystalline rocks of the Longmynd. Relatively Drift free; some valley gravel and Boulder Clay in the lower reaches. Forestry, grazing.

Measuring authority: NRA-WEL First year: 1937

Grid reference: 22 (SN) 976676 Level stn. (m OD): 192.80

Catchment area (sq km): 174.0
Max alt. (m OD): 752

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	69.640	2.198	5.699	8.518	6.989	0.501	2.512	2.583	1.268	4.681	21.430	2.700
2	34.020	2.009	4.896	32.850	5.254	0.510	2.257	2.009	1.136	3.585	28.200	2.526
3	21.010	1.884	5.390	13.360	4.303	0.563	3.135	1.832	0.988	5.823	31.990	2.386
4	79.350	1.739	20.030	18.290	3.969	0.475	2.267	1.622	0.895	3.906	24.240	2.262
5	22.140	1.606	15.460	48.570	3.249	0.477	1.793	1.591	0.806	4.788	16.380	2.139
6	11.960	1.268	11.460	28.490	2.989	0.495	1.593	2.876	0.733	3.544	29.220	2.025
7	12.590	1.342	18.740	26.430	2.926	0.458	1.345	2.325	0.674	11.290	63.040	1.929
8	22.950	1.464	15.100	14.790	2.509	0.532	2.579	1.712	0.605	12.420	26.940	1.835
9	46.560	1.335	17.120	9.466	2.218	1.139	4.777	10.930	0.555	15.000	15.350	1.746
10	36.140	1.439	13.150	6.823	1.983	2.062	2.449	20.470	0.516	12.670	38.920	1.656
11	25.250	1.236	9.508	6.109	1.856	1.270	2.058	9.785	0.496	8.542	26.880	1.530
12	'14.740	1.382	7.396	5.499	1.699	1.173	2.912	4.990	0.478	6.581	22.240	1.457
13	9.588	1.133	6.182	4.171	1.586	1.593	3.964	3.456	0.446	4.925	17.440	1.536
14	7.126	1.478	5.810	3.489	1.588	1.263	3.346	2.701	0.499	4.116	15.490	1.463
15	5.552	12.630	5.332	3.122	1.325	3.546	3.138	2.382	0.814	3.499	13.010	1.548
16	4.888	6.953	5.698	2.778	1.245	2.375	2.682	2.102	1.686	7.912	9.532	1.698
17	6.555	4.684	5.268	2.434	1.208	1.981	2.142	2.423	1.068	11.050	10.370	5.371
18	9.998	3.826	15.680	2.286	1.114	2.442	3.918	1.748	0.874	11.160	33.180	11.290
19	7.923	3.279	16.660	2.007	1.043	4.567	2.581	1.903	0.726	6.750	21.810	24.760
20	8.537	3.864	19.300	1.773	0.943	2.673	2.131	2.018	0.605	5.364	11.930	30.600
21	7.350	10.730	16.300	1.922	0.836	2.147	1.829	1.544	0.581	4.785	8.950	291.400
22	5.924	108.000	10.100	1.765	0.879	2.844	1.580	1.490	1.671	3.995	6.940	70.670
23	5.109	84.910	7.231	1.515	0.837	2.061	1.541	11.190	2.465	3.458	5.427	23.860
24	4.639	24.810	5.775	1.422	0.777	2.459	3.814	7.319	5.585	3.061	4.584	12.300
25	3.929	13.370	4.585	1.957	0.727	5.985	2.741	4.047	2.448	2.784	4.622	8.622
26	3.425	9.215	3.797	1.673	0.702	4.889	2.023	3.055	16.210	2.551	3.864	8.420
27	3.104	7.579	3.313	1.370	0.657	3.944	1.719	2.509	5.805	2.334	3.436	5.938
28	2.849	6.302	2.883	1.567	0.605	3.071	1.467	2.165	12.840	2.143	3.558	4.866
29	2.606		2.577	17.470	0.564	2.624	1.200	1.874	9.918	3.604	3.245	4.177
30	2.576		2.335	13.510	0.553	2.429	1.136	1.590	5.790	3.471	2.927	3.702
31	2.367		2.162		0.546		5.041	1.369		21.850		3.391
Average	16.140	11.490	9. 191	9.514	1.861	2.085	2.505	3.858	2.639	6.505	17.500	17.410
Lowest	2.367	1.133	2.162	1.370	0.546	0.458	1.136	1.369	0.446	2.143	2.927	1.457
Highest	79.350	, 108.000	20.030	48.570	6.989	5.985	5.041	20.470	16.210	21.850	63.040	291.400
Peak flow	149.00	246.00	39.70	81.00	8.40	10.00	12.00	34.00	48.00	48.00	128.00	487.00
Day of peak	1	22	18	5	1	25	8	23	26	31	7	21
Monthly total (million cu m)	43.23	27.79	24.62	24.66	4.98	5.40	6.71	10.33	6.84	17.42	45.37	46.64
Runoff (mm)	248	160	141	142	29	31	39	59	39	100	261	268
Rainfall (mm)	180	127	140	174	15	120	104	103	117	161	218	145

Statistics of monthly data for previous record (Oct 1937 to Dec 1990 -incomplate or missing months total 0.2 years)

Station and catchment description

Initially, gauged nearby at Rhayader (55005,1937-69); resited as velocity-area station with a rock bar as control. Informal Fiat V installed 1972. Bankfull width -30 m . Cableway span 54 m . All but exceptional floods contained. Lowest g / s on Wye unaffected by large water supply res (flows from the Elan valloy complex enter just d/s). Wet, upland catchment draining impermeable, metamorphosed Silurian sediments. High relief, headwaters reach over 600 m , and feature steep sided and high gradient streams. Moorland and forestry.

056001 Usk at Chain Bridge

Measuring authority: NRA-WEL
first year: 1957

Grid reference: 32 (SO) 345056
Level stn. (m OD): 22.60

Catchment area (sq km): 911.7 Max alt. (m OD): 886

Daily mean gauged discharges (cubic metres per second).

DAY	JAN	FEB	MAR	APR	MAY	JUN	Jul	AUG	SEP	OCT	NOV	DEC
1	200.000	17.660	34.170	18.960	26.430	5.816	8.783	10.060	3.915	12.000	75.160	16.610
2	165.100	16.120	31.840	68.200	21.690	5.702	8.338	7.751	3.906	9.424	88.910	15.520
3	92.030	15.350	33.390	43.860	19.280	5.660	8.630	7.099	3.793	16.990	119.800	14.690
4	78.020	14.500	85.430	73.970	18.220	5.513	7.929	6.871	3.711	12.000	93.230	13.990
5	132.900	13.790	86.430	85.590	16.660	5.779	7.130	6.600	3.660	12.460	69.650	13.280
6	78.000	13.050	63.600	95.540	15.340	5.869	6.941	7.680	3.576	11.290	49.070	12.580
7	79.880	11.860	68.710	73.290	16.040	5.681	6.608	9.097	3.485	13.510	42.420	12.060
8	170.300	12.590	84.900	51.850	14.630	5.893	7.619	7.096	3.428	48.370	40.980	11.640
9	268.800	12.140	83.970	42.000	13.470	7.197	12.310	6.293	3.389	95.930	37.310	11.270
10	206.800	11.200	77.520	36.210	12.810	12.070	8.459	6.254	3.319	60.420	39.710	10.740
11	128.800	11.010	60.070	31.960	12.170	8.476	7.119	6.388	3.301	37.660	86.900	10.290
12	94.100	11.080	50.500	31.750	11.720	11.600	7.277	6.333	3.293	33.070	70.870	9.796
13	70.920	11.120	42.820	26.960	11.150°	12.320	8.833	5.699	3.250	24.880	63.530	9.616
14	56.410	10.440	37.760	23.690	10.420	9.502	8.230	5.476	3.205	20.610	55.300	9.395
15	46.330	31.730	34.760	21.750	9.840	9.453	7.142	5.266	3.231	17.770	45.550	9.595
16	40.520	32.200	46.460	20.130	9.441	10.020	9.488	5.073	3.630	19.380	38.210	10.970
17	47.930	22.770	43.840	18.750	9.242	8.161	9.708	4.896	3.394	18.130	36.440	11.690
18	55.190	19.520	68.460	17.770	8.964	7.361	23.310	4.768	3.279	18.880	61.930	16.160
19	54.580	17.440	94.340	16.830	B. 688	7.139	15.280	4.644	3.090	16.670	76.060	31.800
20	44.830	18.570	107.000	15.620	8.342	6.835	11.680	4.459	3.074	14.750	48.060	25.760
21	40.810	66.120	81.050	15.080	7.842	6.448	10.030	4.396	3.025	14.820	39.770	68.600
22	34.530	150.600	54.940	14.540	7.568	7.070	9.083	4.567	3.058	13.490	35.170	61.110
23	31.640	202.100	45.260	13.540	7.330	10.740	8.511	-6.154	3.653	12:280	30.910	55.310
24	29.130	147.200	37.850	13.050	7.172	17.560	9.485	9.624	3.460	11.540	28.090	36.580
25	26.510	75.560	32.830	14.630	6.943	23.920	10.770.	6.616	4.897	10.940	27.910	29.410
26	24.330	57.900	29.570	14.860	6.786	17.090	8.378	5.366	3.959	10.420	24.890	26.070
27	22.640	47.170	26.800	12.880	6.608	16.550	7.569	4.875	4.105	9.934	21.440	22.660
28	21.310	40.140	24.020	11.530	6.368	12.630	7.130	4.596	36.830	9.452	20.230	20.350
29	20.010		22.060	27.820	6.182	10.500	6.622	4.377	39.990	12.590	19.450	18.270
30	19.190		20.570	43.810	6.104	9.493	6.511	4.172	16.320	22.680	17.920	16.830
31	18.760		19.340		5.984		13.900	3.986		78.180		15.970
Average	77.430	39.680	52.590	33.210	11.270	9.602	9.316	6.017	6.274	23.240	50.160	20.920
L.owest	18.760	10.440	19.340	11.530	5.984	5.513	6.511	3.986	3.025	9.424	17.920	9.395
Highest	268.800	202.100	107.000	95.540	26.430	23.920	23.310	10.060	39.990	95.930	119.800	68.600
Peak flow	465.10	202.10	186.40	174.00	30.78	30.72	42.28	13.63	94.80	174.50	162.90	107.70
Day of peak	9	23	4	6	1	25	18	1	28	9	11	21
Monthly total (miltion cu m)	207.40	95.98	140.90	86.09	30.19	24.89	24.95	16.12	16.26	62.25	130.00	56.04
Runoff (mm)	227	105	155	94	33	27	27	18	18	68	143	61
Rainfall (mm)	207	110	147	144	9	115	100	38	97	161	155	67

Statistics of monthly data for previous record (Mar 1957 to Dec 1990)

Mean flows:	Avg.	51.960	43.520	34.940	23.660	17.000	11.020	8.188	10.350	15.810	28.680	39.050	50.270
	Low	10.850	. 12.680	10.010	8.120	6.051	4.273	3.390	2.698	2.939	4.303	13.760	17.770
	(year)	1964	1963	1962	1974	1990	1957	1976	1976	1959	1978	1988	1988
	High	88.650	116.000	100.700	49.330	46.590	26.740	27.490	38.540	45.680	86.350	99.840	112.700
	(year)	1974	1990	1981	1985	1983	1972	1968	1985	1974	1967	1960	1959
Runoff:	Avg.	153	116	103	67	50	31	24	30	45	84	111	148
	Low	32	34	29	23	18	12	10	8	8	13	39	52
	High	260	308	296	140	137	76	81	113	130	254	284	331
Rainfall:	Avg.	160	116	115	84	89	76	76	96	121	140	146	170
	Low	28	10	15	8	16	17	21	25	8	19	55	46
	High	331	289	303	175	221	144	177	210	259	325	323	351
Summary statistics										affec	runo		
								1991					
				1991		For record ceding 19		As \% of pre-1991		voir(s)	atchm		
Mean flow ($m^{3} \mathrm{~s}^{-1}$)					27.			102					
Lowest yearly mean					14.		1973						
Highest yearly mean					44.		1960						
Lowest monthly mean							1976						
Highest monthly mean					116.		1990						
Lowest daily mean				2511		27	1976						
Highest daily mean			268		585.	027	1979						
Peak			465		945.	27	1979						
10\% exceedance					63.			113					
50\% exceedance					16.			90					
95\% exceedance								87					
Annual total (miltion cu m)					877			102					
Annual runoff (mm)					96			102					
Annual rainfall (mm) [194 1-70 rainfall average			135		138			97					
			[194 1-70 rainfall average (mm)		137								

Station and catchment description
Velocity-area station; permanent cableway. Low flows measured at complementary station downstream (56010-Trostrey weir). There is a partial impact on flows resulting from three large existing public water supply reservoirs in upper catchment. Intake to canal upstream of gauge. Some naturalised flows available. Geology - mainly Old Red Sandstone. Hill farming in upper areas, with dairy or livestock farming below; forest 3%. Peaty soils in uplands, seasonally wet.

062001 Teifi at Glan Teifi

Measuring authority: NRA-WEL
First year: 1959

Grid reference: 22 (SN) 244416 Level stn. (m. OD): 5.20

Catchment area (sq km): 893.6
Max alt. (m OD): 593
Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APA	MAY	JUN	- JUL	AUG	SEP	OCT	NOV	DEC
1.	160.000	17.360	39.920	16.380	26.170	5.631	8.759	20.290	8.138	11.420	159.700	19.930
2	169.000	15.970	37.660	33.580	19.840	5.565	8.685	15.790	7.776	9.996	136.400	18.650
3	114.800	14.830	39.150	32.910	18.050	5.297	8.900	13.460	7.336	11.450	131.400	17.620
4.	92.250	13.860	73.950	51.340	18.790	5.066	7.688	12.140	6.912	11.340	113.600	16.660
5	107.000	13.150	82.160	59.150	16.510	5.142	6.603	12.110	6.641	13.100	111.300	15.760
$6 ;$	82.020	12.220	64.770	83.640	15.180	5.180	5.854	14.050	6.371	13.660	. 86.770	14.980
7	79.720	11.200	55.350	80.330	16.250	4.988	5.482	14.780	6.146	36.780	68.250	14.220
8.	109.200	11.420	54.780	62.940	15.780	5.883	6.712	12.450	5.964	61.300	62.830	13.570
9	144.500	10.760	62.930	49.250	13.220	6.942	7.264^{*}	11.010	5.764	73.590	58.410	12.920
$10 ;$	146.300	10.180	57.170	41.220 .	12.250	7.582	7.293	11.150	5.561	75.510	57.750	12.330
11	114.900	9.883	49.650	38.640	11.710	7.611	6.626	13.660	5.327	55.870	67.750	11.030
12	85.410	14.170	44.930	55.940	11.270	7.023	7.005	13.290	5.118	45.670	83.320	10.460
13	64.290	13.000	40.520	42.780	10.930	6.363	7.091	11.540	5.036	37.070	78.970	10.370
14	51.630	14.840	37.340	36.440	10.610	5.667	6.687	10.180	5.426 ,	30.060	74.620	10.170
15	43.820	55.080	38.060	31.010°	10.170	5.597	6.604	9.487	6.324	25.670	64.640	11.160
16	39.660	48.850	50.770	26.950	9.712	6.860	11.100	8.887	6.293	25.560	56.150	12.620
17	44.490	38.490	46.540	23.940	9.469	6.439	9.841	8.355^{\prime}	5.672	24.380	52.510	14.450
18,	53.980	29.610	65.400	22.080 -	9.189	5.690	20.590	7.911	5.420	28.310	65.050	18.820
19.	55.440	25.420	69.650.	20.140	8.928	6.941	. 15.490	7.567	4.987	29.800	71.090	25.000
20.	46.990	24.000	73.860	18.240	8.551	8.965	12.340	7.311	4.824	30.090	62.120	22.420
21^{\prime}	44.750	44.800	65.780	17.130	8.203	7.032	10.900	7.110	4.938	44.680	51.140	28.590
22	38.730	93.540	54.740	16.520	7.821	9.846	9.969	7.134	5.775	37.590	44.680	29.720
23	33.390	127.300	47.070	15.320	7.511	9.710	9.802	24.050	6.062	30.240	39.310	29.980
24	30.180	112.800	40.820	14.600	7.301	11.330	10.170	26.820	5.573	26.510	33.980	24.820
25	26.530	78.860	34.540	14.930	7.047	17.550	11.970	$\because 17.600$	6.761	24.100	33.510	20.650
26	23.620	62.220	30.100	14.810	6.903	16.320	10.940	13.750 .	8.095	22.140	28.670	19.040
27	21.510	53.360	25.020	13.150	6.733	17.290	9.397	11.760	7.984	20.330	25.190	18.260
28	19.900	46.520	21.880	12.050	6.448	14.200	8.537	10.620	- 13.430	18.900	24.690	16.710
29.	18.400		19.670	24.210	6.198	11.180	7.699	9.821	16.710	24.690	24.750	15.580
30.	19.250		17.950	41.790°	6.007	9.632	7.678	9.116	13.550	27.650	21.880	14.720
31	19.550		16.690		5.860		28.730	8.473		156.600		14.120
Average	67.780	36.560	47.060	33.710	11.250	8.284	9.755	12.310	6.997	34.970	66.350	17.270
Lowest	. 18.400	9.883	, 16.690	12.050	5.860	4.988	5.482	7.110	4.824	9.996	21.880	10.170
Highest	169.000	127.300	82.160	83.640	26.170	17.550	28.730	26.820	16.710	156.600	159.700	29.980
Peak flow	217.00	134.70	97.85	98.07	31.18	20.59	34.54	35.73	18.97	191.90	178.00	30.92
Day of peak	1	23	4	6	1	25	31	24	29	31	1	21
Monthly total (million cu m)	181.50	88.45	126.00	87.39	30.12	21.47	26.13	32.98	18.14	93.66	172.00	46.25
Runoff (mm)	203	99	141	98	34	24	29	37	20	105	192	52
Rainfall (mm)	167	109	122	141	17	105	114	64	83	193	146	46

Statistics of monthly data for previous record (Jul 1959 to Dec $\mathbf{1 9 9 0 - i n c o m p l e t e ~ o r ~ m i s s i n g ~ m o n t h s ~ t o t a l ~} 0.3$ years\}

Station and catchment description
Velocity-area station. Straight reach (width: 35 m), natural control. Flood flows spill over right bank. Public water supply impounding reservoirs in upland area where there is mostly hill farming. Tregaron bog ($10 \mathrm{sq} . \mathrm{km}$.) has partial effect on flows; sensibly natural regime. Geology - mainly Ordovician and Silurian deposits. Dairy farming predominates in southern area. Forest: 5\%. Peaty soils on hills, seasonally wet. Apart from Tregaron bog, most of the lower areas have soils with permeable substrate.

065001 Glaslyn at Beddgelert

Meosuring authority: NRA-WEL
First year: 1961

Grid reference: 23 (SH) 592478 Level stn. (m OD): 32.90

Catchment area (sq km): 68.6 Max alt. (m OD): 1085

Daily mean gauged discharges (cubic matres per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	40.060	1.076	2.087	12.030	2.591	0.278	2.708	1.561	0.629	3.210	11.890	2.090
2	15.540	0.895	1.931	32.440	1.829	0.357	2.755	1.204	0.605	6.480	16.060	1.744
3	7.878	0.749	1.800	7.154	7.359	0.342	2.596	1.194	0.697	7.907	10.150	1.702
4	6.754	0.662	4.580	5.224	5.575	0.318	1.876	1.100	0.791	8.546	13.240	1.594
5	7.140	0.562	4.368	6.019	2.731	0.346	1.257	5.927	0.756	11.050	8.601	1.404
6	3.857	0.475	3.999	6.815	2.062	0.419	1.014	15.830	0.730	4.245	8.342	1.255
7	4.169	0.452	8.255	4.144	2.943	0.394	0.802	4.485	0.626	37.440	7.625	1.072
8	8.474	0.419	4.855	3.097	2.544	0.989	6.041	2.378	0.479	12.820	5.906	0.871
9	12.310	0.381	8.095	2.466	2.169	1.972	6.039	7.555	0.450	5.548	4.820	0.737
10	8.783	0.400	4.136	2.136	1.580	2.993	2.801	20.980	0.567	3.787	23.270	0.656
11	5.223	0.396	3.159	2.221	1.163	13.250	3.195	6.742	0.608	2.801	11.640	0.689
12	3.308	0.509	2.937	5.972	0.952	6.752	3.934	3.363	0.580	2.040	7.353	0.720
13	2.318	0.571	2.543	3.170	1.277	3.843	2.987	2.207	0.576	1.500	5.255	0.753
14	2.216	2.674	2.206	1.980	1.206	2.475	3.321	1.617	1.227	1.727	4.510	0.746
15	2.354	8.157	4.290	1.495	0.947	1.906	4.513	2.832	2.265	3.816	3.502	0.684
16	2.083	3.574	7.308	1.466	0.905	2.833	3.058	2.827	6.377	9.395	2.887	0.683
17	3.471	2.057	5.449	1.499	0.908	2.356	2.509	1.937	2.961	7.632	7.701	4.148
18	4.995	1.699	31.190	1.485	0.816	14.080	4.320	1.354	3.651	9.190	12.830	7.782
19	4.076	1.702	15.330	1.434	0.816	9.854	2.809	2.048	1.956	5.513	5.601	7.248
20	3.848	2.712	30.920	1.156	0.784	4.311	1.920	2.198	1.281	9.453	3.650	5.903
21	3.196	10.090	13.260	1.403	0.869	3.362	1.407	2.137	4.410	7.865	2.834	24.130
22	2.570	42.630	5.605	1.184	0.925	2.625	1.146	2.310	3.523	5.108	2.274	14.450
23	2.121	32.650	3.491	1.002	0.816	2.732	1.229	3.338	3.425	3.784	1.742	6.533
24	1.928	16.620	2.360	0.839	0.651	4.452	1.847	2.238	4.095	3.043	1.452	4.340
25	1.610	5.574	2.049	0.851	0.541	9.007	1.941	1.559	2.967	2.367	1.775	3.277
26	1.279	3.578	2.161	0.719	0.466	5.428	1.385	1.188	3.131	1.758	1.829	3.624
27	1.047	2.969	2.401	0.617	0.414	3.832	1.119	0.962	3.021	1.317	2.742	2.436
28	0.944	2.513	2.083	0.555	0.369	2.577	0.961	1.022	2.033	1.301	8.407	1.844
29	0.963		1.472	6.688	0.331	2.525	0.779	1.148	1.818	2.324	4.720	1.518
30	1.097		1.043	4.894	0.310	2.659	0.771	0.990	2.438	2.197	2.975	1.326
31	1.195		0.854		0.298		1.516	0.811		6.389		1.372
Avoroge	5.381	5.241	6.007	4.072	1.521	3.642	2.405	3.453	1.956	6.179	6.853	3.462
Lowost	0.944	0.381	0.854	0.555	0.298	0.278	0.771	0.811	0.450	1.301	1.452	0.656
Highest	40.060	42.630	31.190	32.440	7.359	14.080	6.041	20.980	6.377	37.440	23.270	24.130
Peak flow	78.08	65.82	60.78	56.18	21.94	25.69	12.65	28.42	10.80	52.34	48.67	41.36
Day of paak	1	22	18	2	3	18	8	10	16	7	10	21
Monthly total (million cu m)	14.41	12.68	16.09	10.55	4.07	9.44	6.44	9.25	5.07	16.55	17.76	9.27
Runoff (mm)	210	185	235	154	59	138	94	135	74	241	259	135
Rainfall (mm)	188	228	268	209	82	249	185	195	168	331	302	225

Statistics of monthly data for previous record (Dac 1961 to Dec 1990 -incomplete or missing months total 1.8 years)

Station and catchment description
A 20 m wide river section rated by current meter and, in the past, by dilution gauging. Rating tends to be insensitive at low flows due to subtle movements in the natural bed control downstream. High flow gauging restricted to peaks and troughs because of rapid water level changes. Station bypassed at high flows. Lakes (Dinas and Gwynant) and HEP discharge from the higher Llyn Llydaw marginally affect records. Catchment drains the southern flanks of Snowdonia with much bare rock exposure (impermeable Ordovician volcanics)

067015 Dee at Manley Hall

Measuring authority: NRA-WEL
First year: 1937

Grid reference: 33 (SJ) 348415 Level stn. (m OD): 25.40

Catchment area (sq km): 1019.3 Max alt. (m OD): 884

Daily mean gauged discharges (cubic metres per second)

day	Jan	FEB	MAR	APR	MAY	JuN	Jut	aug	SEP	OCT	nov	dec
1	149.600	13.820	41.990	13.740	22.460	10.410	11.100	16.130	12.880	12.520	86.200	16.960
2	158.900	13.010	37.280	77.330	16.330	10.650	11.000	14.450	12.950	11.700	98.650	15.590
3	122.200	11.970	38.450	89.650	14.000	10.870	17.950	13.530	13.160	12.410	120.900	14.930
4	94.360	11.100	58.390	82.870	18.770	10.800	18.030	13.220	13.490	12.540	104.900	14.740
5	100.100	10.400	68.900	70.750	14.750	10.770	15.340	13.410	13.740	10.660	101.700	13.810
6	79.110	12.130	59.950	76.840	13.380	11.000	13.390	14.520	13.570	10.550	75.400	11.900
7	65.220	9.689	87.100	80.140	13.780	11.090	11.830	14.700	13.040	12.770	64.350	10.820
8	71.380	9.727	81.380	62.940	12.860	11.090	12.090	13.890	12.950	37.790	61.720	10.160
9	100.900	9.100	83.210	47.650	11.930	13.260	13.660	13.770	12.440	31.380	58.710	9.667
10	120.600	8.640	72.220	44.240	11.400	13.300	12.290	17.800	10.680	20.950	59.840	10.310
11	91.560	8.569	61.260	35.280	10.970	11.460	11.490	26.970	10.600	15.250	80.970	9.715
12	74.390	8.720	51.570	28.720	10.660	11.410	11.270	22.710	10.630	14.030	81.120	8.942
13	57.630	8.576	43.000	26.310	10.740	12.490	11.100	12.210	10.770	12.690	72.630	9.965
14	46.520	8.231	37.900	24.390	11.860	11.650	11.120	10.500	10.840	11.870	61.510	10.820
15.	38.450	16.730	32.650	22.360	10.650	11.830	10.710	10.370	10.880	11.020	49.110	11.380
16 ,	33.040	17.220	32.650	18.810	10.170	12.180	10.500	10.560	11.160	10.740	39.670	12.140
17	32.710	14.130	32.130	14.670	10.380	11.840	11.380	12.940	11.150	11.850	34.670	12.740
18	34.680	12.890	33.090	12.620	9.949	11.200	11.500	13.190	10.330	25.170	65.950	18.240
19	38.010	11.380	51.820	11.680	9.770	12.140	11.400	13.340	10.130	28.220	80.530	55.260
20	34.450	11.070	52.080	10.900	9.565	11.660	11.230	13.250	10.390	27.510	62.380	51.900
21	32.090	21.570	55.520	10.820	9.348	10.870	11.090	13.160	10.540	30.720	51.260	133.000
22	28.860	61.380	47.340	10.330	9.310	11.380	10.980	13.260	11.060	25.190	41.170	162.600
23	26.240	228.500	40.800	9.617	9.996	11.770	11.020	14.990	10.840	21.260	33.670	153.300
24	25.850	170.400	34.710	9.206	10.580	11.340	13.940	15.440	10.940	18.410	28,460	95.440
25	23.800	124.700	30.310	9.320	10.460	13.350	15.340	13.670	10.910	16.220	25.230	64.840
26	22.130	85.600	25.120	8.938	10.420	13.210	14.900	13.770	10.840	14.530	22.400	48.570
27	20.810	63.600	23.040	8.857	10.360	12.570	14.550 *	13.600	11.150	12.880	19,800	38.660
28	18.690	50.860	21.330	9.177	10.410	14.150	14.260	13.720	11.780	12.020	20.310	31.890
29	16.820		15.180	19.280	10.710	12.090	14.080	13.540	17.270	13.920	20.580	26.830
30	15.460		13.620	29.100	10.480	11.360	14.160	13.420	13.740	19.530	18.620	23.300
31	14.570		12.680		10.510		17.850	12.920		55.180		21.630
Average	57.710	36.920	44.410	32.550	11.840	11.770	12.920	14.290	11.830	18.760	58.080	36.450
Lowest	14.570	8.231	12.680	8.857	9.310	10.410	10.500	10.370	10.130	10.550	18.620	8.942
Highest	158.900	228.500	87.100	89.650	22.460	14.150	18.030	26.970	17.270	55.180	120.900	162.600
Peak flow	217.73	278.03	108.21	107.01	25.12	17.01	20.13	28.87	20.06	103.57	144.20	179.12
Day of peak	1	23	7	2	1	28	31	11	29	31	3	21
Monthly total (million cu m)	154.60	89.31	118.90	84.37	31.71	30.52	34.61	38.27	30.66	50.24	150.50	97.64
Runoff (mm)	152	88	117	83	31	30	34	38	30	49	148	96
Rainfall (mm)	136	123	121	130	18	109	83	51	73	151	170	125

Statistics of monthly data for previous record (Oct 1937 to Dec 1990)

[^9] and Carboniferous rocks. 80% grazed open moorland. 12% forestry, remainder arable, urban negligible.

Measuring outhority: NRA-NW
First year: 1937

Grid reference: 33 (\$J) 670633
Level stn. (m OD): 16.30

Catchment area (sq km): 622.0 Max alt. (m OD): 222

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	22.230	4.811	7.157	3.280	4.311	1.524	1.769	1.709	0.975	1.456	3.571	1.775
2	26.360	4.557	6.079	3.995	3.356	1.694	3.067	1.488	0.983	1.291	2.801	1.723
3	17.740	4.330	6.872	3.922	3.188	1.667	3.672	1.507	0.998	1.535	3.093	1.712
4	15.250	4.135	9.916	3.639	3.361	1.703	2.712	1.400	1.030	1.270	2.723	1.670
5	16.420	3.874	15.630	3.816	2.971	1.709	2.128	1.828	0.887	1.309	2.192	1.622
6	13.530	3.726	14.080	3.606	2.671	1.764	2.692	2.025	0.961	1.192	2.094	1.578
7	16.510	3.619	23.080	3.632	2.722	1.840	2.087	1.988	0.895	1.307	2.560	1.543
8	24.280	3.716	26.240	3.383	2.559	1.843	1.892	1.619	0.906	1.984	2.602	1.525
9	33.510	3.411	17.150	3.163	2.221	2.257	1.846	1.841	0.888	1.584	4.199	1.506
10	37.530	3.228	13.110	3.030	2.087	2.017	1.597	1.715	0.924	1.394	3.194	1.478
11	-27.010	3.150	11.410	2.939	2.012	1.951	1.508	1.557	0.895	1.297	3.257	1.462
12	17.950	3.188	9.668	2.837	1.955	1.806	1.619	1.471	0.983	1.316	3.313	1.490
13	13.140	3.102	8.409	2.638	1.919	1.922	1.612	1.410	0.953	1.228	3.319	1.549
14	10.260	3.073	7.988	2.468	1.900	1.654	1.549	1.366	0.890	1.209	2.690	1.552
15	0.644	4.832	7.659	2.438	1.904	2.292	1.495	1.333	1.094	1.196	2.450	1.619
16	7.591	6.381	7.613	2.377	1.928	2.808	1.536	1.314	1.564	1.530	2.113	1.698
17	7.299	5.331	8.243	2.346	1.985	2.159	1.476	1.270	1.230	1.756	2.086	1.963
18	9.387	4.707	9.225	2.663	1.938	2.394	2.617	1.223	1.145	2.207	4.844	2.130
19	13.250	4.411	9.666	2.481	1.860	2.661	1.939	1.309	1.035	1.580	7.564	2.890
20	10.960	4.356	10.600	2.259	1.843	2.404	1.637	1.250	1.003	1.345	4.550	4.346
21	9.169	7.041	11.030	2.350	1.763	2.203	1.484	1.188	1.037	1.307	3.383	23.220
22	7.725	9.353	8.027	2.294	1.709	1.950	1.497	1.512	1.175	1.284	2.926	26.710
23	7.036	9.369	6.807	2.248	1.700	1.773	1.520	1.612	1.051	1.350	2.581	11.440
24	7.056	8.735	5.796	2.322	1.653	1.735	1.909	1.381	1.385	1.329	2.348	6.874
25	6.545	7.667	5.267	2.262	1.603	3.132	2.487	1.289	1.131	1.318	2.198	4.743
26	5.956	6.586	4.936	2.216	1.602	2.796	1.825	1.216	2.177	1.304	2.069	4.043
27	5.495	6.547	4.328	2.112	1.557	2.159	1.597	1.252	3.135	1.291	1.966	3.703
28	5.280	8.550	3.878	2.053	1.541	1.833	1.447	1.141	2.056	1.302	1.987	3.259
29	5.043		3.595	4.797	1.519	1.659	1.346	1.119	2.227	1.833	1.889	2.920
30	4.848		3.418	7.675	1.578	1.610	1.626	1.078	1.791	2.877	1.816	2.657
31	4.753		3.284		1.564		2.361	1.060		3.547		2.525
Average	13.480	5.207	9.360	3.041	2.145	2.031	1.921	1.435	1.247	1.540	2.946	4.159
Lowest	4.753	3.073	3.284	2.053	1.519	1.524	1.346	1.060	0.887	1.192	1.816	1.462
Highest	37.530	9.369	26.240	7.675	4.311	3.132	3.672	2.025	3.135	3.547	7.564	26.710
Peak flow	40.41	9.72	29.08	8.75	5.22	4.32	5.38	2.30	6.00	5.92	8.76	37.53
Day of peak	9	21	8	30	1	25	2	6	27	31	18	21
Monthly total (million cu m)	36.09	12.60	25.07	7.88	5.74	5.26	5.14	3.84	3.23	4.12	7.64	11.14
Runoff (mm)	58	20	40	13	9	8	8	6	5	7	12	18
Rainfall (mm)	55	27	52	44	9	66	67	22	41	59	62	47

Statistics of monthly data for previous record fOct 1937 to Dec 1990-incomplete or missing months total 1.8 years)

Station and catchment description

Natural river section. Accuracy of early ratings not known and gaugings lost. However, calibration came under suspicion in 1972 and previous records, particularly low flows, deemed to be of little value. Low flow rating then changed several times before station moved 400 m downstream and shallow V bed control constructed in August 1978. High flow rating (above 40 cumecs) has yet to be defined. Flat catchment includes western half of Crewe. Post glacial deposits over (mostly) Keuper Marl.

Measuring authority: NRA-NW First year: 1959

Grid reference: 34 (SD) 529653 Level stn. (m OD): 10.70

Catchment area (sq km): 983.0 Max alt. (m OD): 736

Daily mean gauged discharges (cubic metres per second)

DAY	Jan	FEB	MAR	APA	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1.	218.100	9.514	28.580	174.900	5.872	2.307	14.640	3.679	4.694	12.010	120.600	18.290
2	124.200	9.047	23.960	282.300	5.223	2.883	10.170	3.459	4.406	15.400	193.000	16.200
3	66.510	8.387	53.170	72.170	5.027	2.881	8.233	3.334	4.106	41.620	182.200	14.590
4	50.830	8.194	148.700	68.660	5.034	2.646	7.492	3.172	3.669	16.960	109.700	13.180
5	93.990	7.413	84.140	76.550	4.850	2.586	6.252	3.284	3.351	57.780	53.280	12.120
6	122.000	7.323	44.470	61.570	4.624	2.458	5.559	16.300	3.209	22.460	112.500	11.160
7	48.590	6.818	35.200	54.770	4.669	2.396	5.144	12.170	3.241	57.010	264.400	10.310
8	53.330	6.840	33.960	32.280	4.431	2.536	5.440	7.225	3.188	100.300	99.970	9.505
9	79.190	6.753	43.190	24.530	3.581	14.990	46.920	56.650	2.988	32.050	51.540	8.887
10	93.520	6.481	42.350	20.150	3.223	36.050	14.030	77.090	2.873	21.430	275.700	8.328
11	73.190	6.036	26.420	17.050	3.295	27.720	9.341	34.270	2.959	16.630	136.200	7.331
12	53.940	6.280	21.450	15.070	3.344	28.310	10.270	15.580	2.882	13.580	87.290	7.538
13	31.160	5.885	18.870	13.250	4.333	38.150	13.190	10.990	2.606	15.140	106.600	8.078
14	23.970	5.896	17.120	11.740	5.493	28.180	12.150	8.525	3.071	15.460	102.600	8.356
15	19.800	26.320	16.010	10.700	4.084	28.500	18.060	7.799	5.667	12.580	69.960	7.806
16	17.020	19.520	23.910	9.788	3.492	23.690	15.950	10.330	12.950	85.890	42.830	7.345
17	31.350	12.990	39.780	9.053	3.544	16.070	10.700	12.920	11.060	69.040	42.390	46.250
18	54.120	10.570	137.600	8.765	3.308	18.030	9.807	8.631	7.565	39.340	104.900	98.850
19	44.490	9.266	198.000	8.172	3.253	45.050	17.760	16.920	5.992	22.370	77.330	275.500
20	51.580	48.500	124.100	7.715	3.220	22.890	11.110	12.220	4.590	17.280	37.360	82.030
21	31.750	125.500	98.160	7.777	3.144	16.670	8.053	8.052	10.950	14.480	48.830	369.900
22	22.130	277.200	45.830	7.444	3.093	31.770	6.806	7.067	27.420	12.460	46.270	232.600
23	18.460	508.100	31.860	6.944	2.905	23.650	6.517	28.590	31.440	10.980	29.220	164.600
24	18.730	241.100	24.720	6.597	2.997	15.850	8.984	24.300	63.940	9.918	23.410	62.520
25	16.560	69.590	20.110	6.231	2.762	22.160	10.480	11.750	33.840	9.177	24.280	49.640
26 :	14.290	43.770	17.120	5.825	2.730	19.570	7.525	8.897	39.430	8.616	21.900	61.160
27	13.050	34.340	14.910	5.524	2.691	15.630	6.050	7.553	26.450	8.029	22.050	33.430
28	12.000	45.270	13.140	5.291	2.566	13.670	5.374	6.733	15.150	7.455	44.060	28.860
29	11.200		11.890	6.116	2.711	9.975	4.690	6.212	11.790	19.850	28.590	25.080
30	10.400		11.070	7.606	2.652	10.660	4.270	5.654	9.860	59.210	21.780	22.360
31	9.878		10.730		2.385		3.900	5.112		182.300		20.710
Average	49.330	56.180	47.110	34.820	3.695	17.600	10.480	14.340	12.180	33.120	86.020	56.210
Lowest	9.878	5.885	10.730	5.291	2.385	2.307	3.900	3.172	2.606	7.455	21.780	7.331
Highest	218.100	508.100	198.000	282.300	5.872	45.050	46.920	77.090	63.940	182.300	275.700	369.900
Peak flow	539.40	686.40	391.90	464.40	6.55	93.18	98.99	115.80	141.90	348.40	680.30	572.50
Day of peak	1	22	18	2	1	9	9	10	24	31	10	21
Monthly total (million cu m)	132.10	135.90	126.20	90.25	9.90	45.61	28.07	38.40 .	131.57	88.72	223.00	150.60
Runoff (mm)	134	138	128	92	10	46	29	39	32	90	227	153
Rainfall (mm)	122	162	168	86	22	143	68	96	98	150	237	161

Statistics of monthly data for previous record (Jan 1959 to Dec 1990 -incomplete or missing months total 4.0 years)

Station and catchment description
Bazin type compound broad-crested weir operated after 10/6/77 as full-range station. Previously used for low/medium flows; high flows from Halton 3 km downstream. High flows inundate wide floodplain. Transfers to river Wyre under Lancs. Conjunctive Use Scheme. Major abstractions for PWS. Headwaters rise from Shap Fell and the Pennines. Mixed geology: Carboniferous Limestone, Silurian shales, Millstone Grit and Coal Measures, substantial Drift cover. Agriculture in valleys; grassland rising to peat moss in highest areas.

073010 Leven at Newby Bridge

Daily mean gauged discharges (cubic metres per socond)

DAY	JAN	feb	MAR	APR	May	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	51.670	5.200	24.540	14.480	2.887	1.266	9.331	1.856	2.419	4.875	27.920	12.530
2	68.240	4.676	20.140	35.410	2.583	1.650	9.591	1.924	2.318	5.644	41.430	11.020
3	57.390	4.131	18.460	34.590	2.470	1.313	8.347	1.713	2.015	9.588	50.050	9.519
4	46.620	3.847	20.870	31.920	2.588	1.109	7.471	1.587	1.797	10.780	47.870	8.144
5	39.090	3.498	29.350	32.430	2.113	1.233	6.197	2.056	1.750	16.380	41.680	6.950
6	43.090	3.421	28.390	30.580	1.850	1.194	4.231	4.417	1.444	16.200	38.050	5.887
7	39.140	3.416	25.340	30.200	2.041	1.111	3.466	5.223	1.231	19.450	53.150	4.995
8	35.120	2.730	23.150	27.170	1.628	1.145	3.047	4.668	1.206	33.210	60.280	4.149
9	32.510	2.421	22.840	23.050	1.435	2.582	6.988	8.503	1.090	29.980	50.640	3.597
10	31.660	2.385	23.670	19.790	1.350	5.394	8.057	12.090	1.522	25.340	49.230	3.166
11	31.090	2.093	21.690	16.840	1.406	8.278	7.100	12.060	1.453	21.020	59.520	2.729
12	29.350	2.229	19.060	15.110	1.341	12.330	7.037	10.460	1.201	16.800	52.720	2.481
13	25.830	1.943	16.660	13.320	2.028	14.010	7.432	8.593	1.067	14.140	48.930	2.138
14	22.050	2.116	14.740	11.380	2.778	15.110	6.861	6.950	1.513	11.750	44.260	2.183
15	18.540	2.975	13.370	9.657	2.765	14.160	7.191	5.986	2.265	9.994	38.520	2.056
16	15.650	3.622	15.190	8.620	2.473	12.250	7.854	5.432	4.039	20.220	32.490	1.837
17	15.340	3.601	17.990	6.905	2.209	10.140	7.524	5.334	5.052	27.640	25.790	4.117
18	18.420	3.453	23.220	6.409	1.906	8.399	7.400	4.597	4.830	30.080	23.220	10.410
19	18.360	3.203	44.150	5.307	1.725	7.784	7.867	3.988	3.979	25.800	20.380	41.280
20	20.000	6.198	48.720	4.161	1.698	7.094	7.671	3.569	3.413	21.530	17.400	45.110
21	20.120	11.910	51.630	3.968	1.646	6.145	6.808	3.263	3.499	17.670	15.370	62.030
22	18.060	23.460	45.330	3.758	1.809	6.610	5.909	2.839	6.184	14.380	14.170	84.830
23	15.830	50.620	37.780	3.253	1.634	7.230	5.315	4.318	8.299	11.670	12.790	90.660
24	13.810	66.080	29.440	2.813	1.519	7.013	5.563	7.159	11.610	9.373	11.320	76.780
25	12.030	56.910	24.080	2.705	1.429	7.367	5.117	7.194	12.170	7.512	10.970	59.480
26	10.470	45.950	19.320	2.545	1.251	7.650	4.058	6.632	10.750	6.075	11.150	49.330
27	9.137	36.290	15.620	2.262	1.446	. 7.314	3.477	5.978	9.209	4.856	11.200	38.610
28	7.961	29.940	12.690	2.078	1.512	6.523	3.310	4.925	8.186	3.844	13.430	30.600
29	6.994		10.130	2.763	1.346	5.659	2.943	3.950	5.632	4.228	14.370	24.690
30	6.260		B. 196	3.434	1.125	7.109	2.517	3.409	4.164	10.670	13.700	19.980
31	5.659		6.905		1.603		2.147	2.797		18.970		16.010
Averago	25.270	13.870	23.630	13.560	1.858	6.539	6.059	5.273	4.177	15.470	31.730	23.780
Lowast	5.659	1.943	6.905	2.078	1.125	1.109	2.147	1.587	1.067	3.844	10.970	1.837
Highost	68.240	66.080	51.630	35.410	2.887	15.110	9.591	12.090	12.170	33.210	60.280	90.660
Poak flow	71.43	68.21	53.48	38.31	3.77	15.54	10.26	12.87	12.77	34.74	63.63	93.98
Day of peok	2	24	21	2	23	14	2	10	25	8	8	23
Monthly total (million cu m)	67.69	33.55	63.30	35.16	4.98	16.95	16.23	14.12	10.83	41.44	82.25	63.70
Runoff (mm)	274	136	256	142	20	69	66	57	44	168	333	258
Rainfall (mm)	226	187	257	155	29	185	103	120	122	279	334	283

Statistics of monthly data for previous record (Jan 1939 to Dec 1990)

Station and catchment description
Level record since 1939 from four different sites at Newby Bridge. All flow records from 1939 to 1974 combined into a single sequence. Since $5 / 5 / 71$ compound Crump profile weir - increased sensitivity at low flows. Full-range. Just d/s of Lake Windermere - highly regulated and Silurian slan in Major abstractions for PWS, sewage effuent from Ambleside. Predominantly impervious

076007 Eden at Sheepmount

Measuring authority: NRA-NW
first year: 1967

Grid reference: 35 (NY) 390571
Level stn. (m OD): 7.00

Catchment area (sq km): 2286.5 Max alt. (m OD): 950

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEa	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	353.400	27.640	82.140	50.130	16.550	11.400	19.710	14.470	10.610	15.000	221.800	37.040
2	388.500	26.020	65.850	171.900	15.790	12.400	17.710	12.500	10.220	16.000	281.500	33.490
3	162.600	24.170	62.850	90.610	15.700	12.420	15.620	11.610	10.020	24.930	308.800	30.910
4	137,100	22.750	120.900	108.300	16.150	11.870	14.760	10.990	9.807	23.660	179.700	28.480
5	216.800	21.000	172.100	132.300	15.880	11.590	13.870	10.760	9.580	58.970	116.000	26.420
6	306.800	20.770	94.460	103.100	15.670	11.390	13.160	18.940	9.416	36.670	93.390	24.780
7	141.600	19.780	81.810	131.500	15.930	11.310	12.720	20.840	9.341	36.020	203.200	23.210
8	113.600	19.040	90.190	88.990	15.180	11.500	12.920	15.450	9.163	97.760	163.100	21.560
9	120.300	19.640	86.530	70.810	14.550	13.720	18.790	19.830	9.074	48.420	94.320	20.370
10	192.200	19.090	100.000	61.620	14.090	27.150	18.400	24.330	8.964	35.990	193.500	19.390
11	191.700	18.210	72.570	51.670	14.030	21.580	15.090	22.300	8.759	29.140	259.200	18.270
12	157.500	18.300	58.970	46.800	13.840	29.760	14.130	16.470	8.551	24.450	167.000	17.630
13	89.840	17.700	54.280	41.150	15.590	43.610	14.400	14.170	8.506	22.480	164.700	18.750
14	67.760	17.930	61.130	35.740	14.750	35.000	14.300	12.980	9.944	25.390	146.000	18.930
15	56.630	47.310	50.680	31.970	13.890	29.030	14.310	12.480	12.050	23.430	113.100	18.310
16	48.640	50.110	52.090	29.020	13.680	28.560	34.650	12.180	12.550	68.840	79.940	17.440
17	66.960	33.380	87.990	26.800	13.580	27.420	22.070	12.900	13.740	71.830	64.760	19.460
18	110.200	27.160	99.530	25.590	13.560	28.430	16.070	14.390	12.170	62.380	68.060	63.160
19	120.800	25.530	293.500	23.770	13.410	29.860	16.300	13.700	10.810	37.100	112.700	207.700
20	115.400	60.450	239.600	22.450	13.130	25.310	16.400	13.820	10.160	28.700	65.830	102.900
21	87.080	129.300	267.400	22.580	12.970	19.380	15.470	12.370	11.770	24.390	84.610	326.600
22	64.590	228.300	124.700	22.440	12.610	21.960	14.050	11.740	20.640	21.610	84.080	312.100
23	56.860	587.000	91.230	20.890	12.500	27.520	13.520	11.720	23.590	19.550	57.760	388.300
24	54.210	523.200	72.110	19.770	12.510	22.220	16.300	14.500	31.700	18.030	47.220	160.800
25	48.460	161.400	59.300	18.710	12.380	23.560	18.060	14.210	25.310	17.030	42.950	106.200
26	42.160	115.200	50.940	17.820	12.150	28.260	15.490	12.870	19.430	16.110	43.590	90.420
27	38.200	95.620	44.740	17.170	11.940	19.290	13.790	12.650	16.360	15.460	42.270	69.940
28	35.030	111.600	39.330	16.560	11.690	16.800	12.690	12.790	16.660	14.750	49.320	59.860
29	32.460		35.720	16.530	11.570	15.890	12.040	13.190	14.880	14.450	49.320	52.690
30	30.320		33.010	17.350	11.490	17.390	11.350	12.000	14.040	41.520	42.430	47.230
31	28.930		31.310		11.440		11.930	11.230		143.300		43.380
Average	118.600	88.840	92.810	51.130	13.810	21.520	15.810	14.330	13.260	36.560	121.300	78.250
Lowest	28.930	17.700	31.310	16.530	11.440	11.310	11.350	10.760	8.506	14.450	42.270	17.440
Highest	388.500	587.000	293.500	171.900	16.550	43.610	34.650	24.330	31.700	143.300	308.800	388.300
Peak flow	680.00	750.10	431.00	227.40	17.02	56.36	50.59	30.73	39.69	262.00	453.10	468.50
Day of peak	2	24	21	2	1	13	16	6	24	31	11	23
Monthly total (million cu m)	317.70	214.90	248.60	132.50	37.00	55.78	42.34	38.39	34.37	97.92	314.50	209.60
Runoff (mm)	139	94	109	58	16	24	19	17	15	43	138	92
Rainfall (mm)	139	125	128	101	19	102	56	55	65	140	191	122

Statistics of monthly data for previous record (Oct 1967 to Dec 1990 -incomplete or missing months total 3.0 years)

Station and catchment description
Velocity-area station. Permanent cableway. Full-range. Most floods contained in immediate channel. Pre-1970 (when floodbanks constructed) bypassed via Caldew floodplain. Highly influenced by Ullswater, Haweswater and Wet Sleddale especially at low flows. Rural except for Carlisle, Penrith and Appleby. Headwaters in Carboniferous Limestone of Pennines to east, impervious Lower Palaeozoics of Lake District massif to west moorland. Extensive Boulder Clay covered Permo-Triassic sandstone in Vale of Eden. Arable and grazing.

079006 Nith at Drumianrigt

Measuring authority: SRPB First year: 1967

Grid reference: 25 (NX) 858994 Level stn. (m OD): 52.20

Daily mean gauged discharges (cubic motros per socond)

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	154.600	5.444	16.100	51.730	3.611	1.367	6.927	2.250	1.509	28.910	124.800	13.180
2	61.860	4.854	17.180	52.990	3.567	2.476	6.387	2.181	1.475	16.240	75.940	11.320
3	30.300	4.611	20.640	17.970	3.556	2.378	4.114	2.047	1.420	18.020	70.450	9.953
4	44.820	4.294	59.450	72.930	3.680	1.880	3.326	2.039	1.375	14.960	45.620	8.782
5	112.500	3.855	60.680	37.550	3.516	1.642	2.623	2.398	1.352	20.180	23.950	7.964
6	81.340	3.802	23.750	70.310	3.489	1.502	2.337	2.853	1.294	21.720	59.290	7.209
7	35.750	3.656	16.910	43.240	2.712	1.461	2.240	2.376	1.273	40.770	112.400	6.643
8	23.440	3.679	21.720	23.820	2.474	2.784	3.299	2.184	1.233	25.530	61.340	6.196
9	18.550	3.550	16.870	29.140	2.370	12.740	10.920	16.700	1.247	13.360	30.540	5.750
10	18.690	3.323	12.840	43.300	2.293	8.912	5.220	6.856	1.248	10.030	97.420	5.319
11	34.270	3.357	10.070	56.650	2.246	9.062	6.112	4.580	1.175	7.998	51.680	4.806
12	22.670	3.749	9.146	133.700	2.280	28.290	17.010	3.355	1.133	6.594	110.900	5.353
13	13.870	3.377	11.670	49.940	2.818	35.060	10.310	2.840	1.249	5.777	60.700	5.836
14	11.460	4.253	10.610	24.760	2.866	19.820	6.158	2.529	1.500	5.100	38.420	5.572
15	9.552	26.270	14.240	16.440	2.297	14.130	7.616	2.451	1.638	7.223	25.610	6.657
16	8.823	8.666	26.280	12.220	2.253	10.210	19.800	2.710	2.637	33.060	17.480	6.680
17	11.460	5.935	22.540	9.824	2.286	6.356	8.272	5.117	2.349	30.990	15.430	35.040
18	89.680	4.970	65.400	8.559	2.160	5.674	7.397	3.383	2.182	14.130	15.830	77.260
19	49.180	4.861	54.010	7.225	2.102	5.756	6.028	3.245	1.985	9.208	15.390	84.620
20	65.010	15.140	36.990	6.514	2.133	4.539	4.797	3.350	2.035	7.667	11.200	33.850
21	26.600	13.460	33.940	6.578	2.423	3.893	4.035	2.474	30.620	6.974	20.650	203.200
22	17.500	73.840	18.150	5.519	2.293	- 4.248	3.822	2.436	17.180	6.279	15.220	190.700
23	14.920	83.080	13.380	5.064	2.205	3.633	4.611	2.803	18.270	5.544	11.830	118.500
24	12.680	48.900	10.680	4.721	2.144	3.212	5.100	2.713	19.650	5.021	16.290	44.950
25	10.670	22.630	8.831	4.316	1.950	4.711	3.969	2.319	9.763	4.780	42.920	30.310
26	9.121	65.190	7.546	3.983	1.863	3.636	3.306	2.093	6.190	4.630	36.420	25.620
27	8.241	30.810	6.715	3.833	1.798	3.165	3.101	1.964	4.766	4.259	23.430	16.440
28	7.414	23.690	5.973	3.780	1.668	2.847	2.886	1.917	4.011	3.974	25.410	13.980
29	6.787		5.425	4.005	1.541	3.396	2.607	1.843	3.471	24.550	23.210	11.870
30	6.464		5.152	4.444	1.471	6.515	2.357	1.725	3.224	39.000	16.120	10.330
31	5.854		5.038		1.424		2.231	1.603		178.900		11.450
Average	33.030	17.190	20.900	27.170	2.435	7.176	5.772	3.204	4.948	20.040	43.200	33.080
Lowest	5.854	3.323	5.038	3.780	1.424	1.367	2.231	1.603	1.133	3.974	11.200	4.806
Highest	154.600	83.080	65.400	133.700	3.680	35.060	19.800	16.700	30.620	178.900	124.800	203.200
Peak flow	374,90	141.30	145.50	210.50	3.93	63.04	31.85	29.27	80.03	275.50	233.50	340.40
Day of peak Monthly total	1	23	4	12	4	13	16	9	21	31	12	22
(million cu m)	- 88.47	41.58	55.98	70.42	6.52	18.60	15.46	8.58	12.83	53.69	112.00	88.59
Runotf (mm)	188	88	119	150	14	39	33	18	27	114	238	188
Rainfall (mm)	188	107	140	175	21	128	85	65	97	200	236	203

Statistics of monthly data for previous record (Jun 1967 to Dec 1990)

Mean	Avg.	29.300	21.880	19.430	9.504	7.585	5.315	5.557	8.359	14.250	23.530	25.290	25.640
flows:	Low	9.037	4.288	4.427	2.457	1.390	1.489	0.668	0.841	1.260	2.744	5.268	12.770
	(yarar)	1985	1986	1969	1974	1980	1984	1984	1984	1972	1972	1983	1971
	High	61.220	60.660	34.800	24.190	27.570	14.660	15.780	38.280	39.000	39.200	49.350	55.190
	(year)	1974	1990	1989	1972	1986	1972	1988	1985	1985	1967	1982	1986
Runoff:	Avg.	167	114	111	52	43	29	32	48	78	134	139	146
	Low	51	22	25	14	8	8	5	5	7	16	29	73
	High	348	312	198	133	157	81	90	218	215	223	272	314
Rainfall:	Avg.	188	121	137	72	94	85	95	113	149	182	166	167
	Low	67	10	34	11	19	30	41	23	20	66	35	69
	High	398	382	239	175	230	163	211	302	247	301	285	345

Station and catchment description

Valocity-area station on long straight reach at particularly well confined site. Cableway. Gravel and rock bed. Natural channel control. Sensibly natural flow regime. Afton Reservoir has small influence

084005 Clyde at Blairston

Measuring authority: CRPB First year: 1958

Grid reference: 26 (NS) 704579 Level stn. (m OD): 17.60

Catchment area (sq km): 1704.2 Max alt. (m OD): 732

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	280.600	20.560	50.740	93.950	13.210	- 7.857	25.150	9.219	6.518	27.130	218.600	34.300
2	268.500	19.050	40.840	166.700	12.430	13.190	18.770	9.083	6.514	31.380	158.300	30.090
3	113.700	. 17.780	38.540	67.480	12.390	12.210	13.220	8.776	6.542	33.100	164.500	26.890
4	177.800	. 17.040	39.360	70.700	12.580	10.650	11.110	8.705	6.517	32.990	98.490	24.350
5	232.500	15.770	100.600	82.620	12.120	8.827	9.803	8.356	6.379	37.660	64.870	22.780
6	200.900	14.930	54.550	60.730	11.870	8.321	9.193	8.691	6.254	27.200	71.560	21.260
7	113.300	14.540	27.230	108.000	11.570	7.788	9.338	8.834	6.365	58.250	210.700	20.070
8	79.350	14.620	23.770	74.530	11.060	8.187	12.770	9.072	6.263	58.170	144.300	19.040
9	64.820	14.840	30.560	63.250	10.810	$\therefore 9.694$	16.450	27.890	6.244	39.200	74.070	17.720
10	78.490	13.940	21.790	119.500	10.380	12.460	17.370	21.080	6.202	29.210	146.200	16.120
11	126.100	13.490	16.690	91.490	10.260	14.570	13.180	13.560	5.824	24.610	187.700	14.360
12	92.110	13.770	11.900	280.800	10.550	24.040	19.190	11.120	6.422	21.140	209.000	15.920
13	51.750	11.890	12.760	182.100	11.960	39.370	30.830	10.140	6.231	19.020	211.400	18.140
14	39.420	15.750	16.890	83.330	11.940	37.830	22.320	9.348	7.408	17.530	117.200	17.870
15	33.380	57.170	11.540	55.590	10.450	26.300	25.660	8.604	7.793	18.060	93.590	19.750
16	30.820	36.410	17.800	42.550	10.180	21.180	52.240	8.940	9.795	78.320	63.170	19.540
17	31.680	23.410	31.860	34.940	10.020	17.060	29.670	9.366	9.903	77.560	51.920	65.530
18	115.200	20.380	38.250	30.430	10.040	19.080	20.450	10.400	9.022	48.190	55.010	127.300
19	134.700	21.560	224.400	26.700	9.968	20.970	18.890	9.708	8.984	29.710	71.930	233.700
20	140.200	46.850	114.000	24.370	9.999	14.330	15.530	8.880	8.194	24.590	46.280	91.310
21	85.380	50.200	132.300	23.460	10.180	13.020	13.890	8.393	28.530	21.930	50.520	232.400
22	56.570	156.100	75.610	20.930	10.080	12.850	13.140	9.117	57.480	19.700	49.650	551.200
23	47.610	273.100	54.100	19.850	10.100	13.450	13.320	9.478	52.410	17.750	38.340	349.200
24	41.070	201.600	43.180	18.610	10.080	12.050	11.750	10.630	70.420	16.370	32.740	134.000
25	35.670	89.150	36.000	16.570	9.858	11.370	10.540	8.751	40.620	15.390	34.200	103.700
26	31.460	81.180	31.120	15.260	9.703	11.400	10.080	7.763	23.070	15.290	49.270	97.710
27	28.970	79.350	28.120	14.310	9.617	10.350	9.831	7.428	17.410	14.730	48.050	61.860
28	26.690	63.740	25.310	14.130	9.800	9.727	9.582	7.311	14.260	13.860	58.960	52.710
29	25.000		23.170	14.500	8.875	9.627	9.928	7.126	13.350	14.280	50.120	45.530
30	23.580		22.090	14.490	8.374	11.320	9.457	7.203	13.260	36.880	39.550	40.270
31	21.800		21.400		8.023		9.254	6.897		196.300		50.400
Average	91.260	50.650	45.690	64.400	10.600	14.970	16.510	9.996	15.810	35.980	97.010	83.070
Lowest	21.800	11.890	11.540	14.130	8.023	7.788	9.193	6.897	5.824	13.860	32.740	14.360
Highest	280.600	273.100	224.400	280.800	13.210	39.370	52.240	27.890	70.420	196.300	218.600	551.200
Peak flow	414.90	341.20	282.00	354.60	14.18	43.33	60.18	34.13	81.76	252.00	317.60	611.60
Day of peak	2	23	20	13	1	14	17	10	24	31	13	23
Monthly total (million cu m)	244.40	122.50	122.40	166.90	28.38	38.80	44.23	26.77	40.97	96.38	251.40	222.50
Runoff (mm)	143	72	72	98	17	23	26	16	24	57	148	131
Rainfall (mm)	137	88	98	115	18	102	77	50	94	127	155	150

Statistics of monthly data for previous record (Oct 1958 to Dec 1990)

Mean	Avg.	67:170	53.940	47.820	29.830	22.840	16.910	15.880	24.900	36.260	52.130	62.250	65.290
flows:	Low	11.920	8.854	14.810	10.430	7.994	7.491	5.041	4.536	7.630	8.243	15.870	26.080
	(year)	1963	1963	1969	1974	1980	1984	1984	1984	1972	1972	1983	1963
	High	134.300	160.200	91.070	58.700	56.230	41.190	47.620	82.370 .	128.400	114.600	129.600	133.400
	(year)	1975	1990	1990	1972	1986	1972	1985	1985	1985	1967	1982	1986
Runoff:	Avg.	106	77	75	45	36	26	25	39	55	82	95	103
	Low	19	13	23	16	13	11	8	7	12	13	24	41
	High	211	227	143	89	88	63	75	129	195	180	197	210
Rainfall:	Avg.	117	79	95	64	72	72	81	101	114	124	120	119
	Low	25	16	28	9	18	17	32	24	16	33	24	38
	High	250	254	163	125	150	157	166	206	230	231	221	237

Station and catchment description
Recorder moved to present position in Nov. 1974 from opposite bank. Section is natural with steep grass and tree covered banks. Velocity profile slightly uneven due to upstream bend. Control - piers of redundant rail bridge, $300 \mathrm{~m} \mathrm{~d} / \mathrm{s}$. Section rated by current meter to 3.4 m , just below max. recorded stage. Some naturalised flows available. Very mixed geology with the older formations (Ordovician/Silurian) to the south. Hill pasture and moorland predominates but some mixed farming and urban development is found in the lower valley.

Moasuring authority: CRPB First yoar: 1970

Grid reference: 27 (NN) 321197 Level stn. (m OD): 9.50

Catchment area (sq km): 80.3 Max alt. (m OD): 1130

Daily mean gauged discharges (cubic metras par second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	78.450	0.718	1.680	58.690	0.420	0.293	11.690	0.510	0.351	23.490	21.640	1.999
2	11.210	0.654	2.487	11.450	0.419	0.779	2.040	0.549	0.330	15.860	5.290	1.435
3	5.400	0.586	2.670	10.850	0.446	0.425	1.149	0.692	0.301	16.370	1.371	1.222
4	27.820	0.557	22.450	19.460	0.445	0.354	0.758	6.921	0.287	33.980	0.949	1.040
5	19.340	0.514	15.480	6.818	0.376	0.313	0.531	2.997	0.276	3.982	0.747	0.910
6	9.527	0.459	3.699	28.460	0.383	0.295	0.437	1.040	0.264	22.600	36.420	0.796
7	2.555	0.463	3.980	27.460	0.383	0.301	0.427	0.706	0.252	8.026	19.830	0.740
8	1.797	0.476	5.403	6.723	0.348	3.697	5.580	9.630	0.254	6.079	6.158	0.722
9	1.498	0.535	4.207	22.770	0.338	5.201	10.000	5.732	0.258	1.895	2.423	0.654
10	4.064	0.512	2.955	33.380	0.393	1.392	1.285	2.618	0.252	1.325	39.090	0.608
11	6.935	0.454	2.155	26.480	0.483	5.912	5.706	3.016	0.235	1.134	18.580	0.568
12	1.760	0.408	3.759	9.477	0.645	14.530	14.530	1.869	0.229	0.944	44.980	2.712
13	1.641	0.437	3.573	2.635	3.037	10.490	13.890	3.608	3.227	0.852	4.729	6.383
14	1.155	0.712	2.968	1.490	0.734	2.324	3.248	2.564	5.282	0.741	4.489	7.625
15	0.887	1.049	11.310	1.197	0.547	1.688	3.887	5.019	1.927	9.555	2.224	1.559
16	0.942	0.624	10.320	0.875	0.485	1.113	2.716	7.893	13.790	16.420	1.460	1.261
17	1.898	0.508	6.379	0.707	0.441	0.763	1.339	2.973	9.890	11.920	1.561	13.510
18	19.010	0.502	43.710	0.619	0.581	0.699	2.206	1.283	5.248	1.115	6.642	33.260
19	32.830	3.960	27.250	0.535	0.821	0.607	3.124	1.677	13.720	0.748	2.164	6.863
20	27.920	5.342	6.957	0.601	5.827	0.502	1.050	0.904	2.355	0.609	3.403	2.472
21	3.760	1.810	2.754	0.766	2.941	2.330	0.697	0.743	30.150	0.514	17.680	41.830
22	4.235	12.190	1.479	0.558	0.918	1.581	0.946	1.003	14.490	0.412	8.506	57.870
23	7.132	18.240	1.180	1.606	0.781	0.898	5.097	0.842	53.270	0.350	13.610	6.085
24	2.976	7.613	1.000	2.668	0.665	1.089	1.545	0.697	16.720	0.357	22.190	2.507
25	1.824	4.136	0.906	1.182	0.524	7.931	0.813	0.590	6.704	0.345	17.760	26.350
26	1.530	25.920	0.776	0.758	0.466	2.636	0.644	0.571	1.947	0.403	10.070	3.297
27	1.376	8.079	0.680	0.618	0.422	4.879	1.672	0.537	1.605	0.364	10.560	1.993
28	1.161	3.418	0.654	0.545	0.374	1.439	2.331	0.478	1.259	0.330	8.582	3.304
29	1.150		0.718	0.524	0.344	3.086	0.816	0.443	1.091	12.670	6.727	2.281
30	0.969		1.135	0.470	0.320	7.056	0.580	0.400	4.569	10.760	3.158	1.569
31	0.827		5.230		0.296		0.475	0.374		21.750		25.200
Average	9.148	3.603	6.449	9.346	0.826	2.820	3.265	2.222	6.351	7.287	11.430	8.343
Lowest	0.827	0.408	0.654	0.470	0.296	0.293	0.427	0.374	0.229	0.330	0.747	0.568
Highest	78.450	25.920	43.710	58.690	5.827	14.530	14.530	9.630	53.270	33.980	44.980	57.870
Peak flow	154.80	54.33	98.11	168.90	10.11	50.58	47.11	59.07	187.60	104.70	180.30	217.10
Day of peak Monthly total	2	27	19	2	21	13	9	9	22	7	13	22
(million cu m)	24.50	8.72	17.27	24.22	2.21	7.31	8.74	5.95	16.46	19.52	29.63	22.35
Runotf (mm)	305	109	215	302	28	91	109	74	205	243	369	278
Rainfall (mm)	376	126	262	357	49	182	158	123	305	357	458	312 *

Statistics of monthly data for previous record (Oct 1970 to Dec 1990-incomplete or missing months total 0.3 years)

Station and catchment description
Velocity-area station with artificial low flow control (long broad-crested weir with rectangular low flow notch) - installed 1975 . Damage to part of the high flow crest results in a small discharge bypassing the central notch. All but very high flows contained. No significant abstractions or discharges. Very responsive flow regime. A very wet mountainous catchment developed on ancient metamorphic formations - some Drift cover.

093001 Carron at New Kelso

Station and catchment description
40 m wide river section with floodbank on right. Any bypassing in extreme floods will be over 30 m wide floodplain on left bank. Unstable grave control requires regular calibration of low flow range. Adequately gauged to bankfull. Computed flows are 100% natural. 70% of catchment drains through Loch Dughaill with little additional surface storage. Typical mix of rough grazing and moorland. One of the wetter Highland catchments currently gauged

Measuring authority: DOEN
First yorr: 1972

Grid reference: $\mathbf{2 3}(\mathbf{(H)} \mathbf{4 6 0} \mathbf{7 3 0}$ Level stn. (m OD): 66.00

Catchment area (sq km): 274.6 Max alt. (m OD): 539

Daily mean gauged discharges (cubic matres par socond)

DAY	JaN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	35.570	3.989	5.637	7.243	4.372	1.221	6.492	1.329	0.757	1.195	7.942	4.311
2	21.090	3.672	11.220	11.390	3.511	1.216	3.530	1.236	0.762	1.299	8.836	3.729
3	13.790	5.344	8.661	9.620	3.215	1.179	2.433	1.257	0.806	1.734	11.350	3.526
4	21.790	10.340	20.190	19.290	3.005	1.093	1.955	1.255	0.759	4.984	10.850	3.443
5	62.710	5.846	13.240	16.590	2.684	1.083	1.617	1.294	0.766	4.832	8.372	3.129
6	31.910	4.444	8.183	28.420	2.659	1.094	1.441	1.343	0.753	3.644	7.508	2.851
7	15.920	3.739	15.880	18.020	2.607	1.104	1.338	1.345	0.745	4.843	22.890	2.784
8	12.020	3.401	18.470	11.210	2.469	1.418	1.292	1.253	0.736	2.610	13.270	2.679
9	10.020	3.158	10.700	9.362	2.396	2.291	1.326	1.327	0.746	1.985	8.755	2.563
10	11.000	2.810	7.782	15.720	2.372	1.738	1.227	1.462	0.713	1.612	28.600	2.393
11	25.480	2.747	6.444	11.750	2.326	1.627	1.327	1.335	0.674	1.541	17.330	2.335
12	14.370	6.416	8.013	11.770	2.314	1.987	1.333	1.194	0.679	1.461	28.310	2.160
13	9.036	4.479	6.089	7.545	2.262	1.917	1.261	0.992	0.724	1.466	26.640	2.150
14	7.647	7.204	5.403	5.974	2.163	2.201	1.195	1.024	0.892	1.476	18.840	2.144
15	6.655	8.252	12.890	5.096	2.102	2.427	1.330	0.975	1.084	1.436	10.970	2.061
16	15.830	5.338	20.160	4.471	2.008	3.494	1.735	1.082	1.416	3.600	8.480	2.084
17	16.890	4.429	18.930	4.053	1.649	2.135	1.726	1.186	0.945	4.761	11.030	5.486
18	16.700	4.036	41.260	3.701	1.652	1.861	1.500	0.987	0.977	6.733	13.960	28.480
19	10.540	4.019	27.020	3.364	1.700	2.558	1.954	1.036	0.834	4.320	8.712	33.160
20	9.496	4.500	24.770	3.352	1.691	2.674	1.662	1.194	0.792	4.201	5.946	38.350
21	7.735	3.947	16.460	3.514	1.612	4.224	1.442	0.888	1.113	3.981	7.037	75.630
22	7.004	6.894	12.760	3.216	1.608	5.129	1.295	0.914	1.723	2.928	5.947	37.420
23	7.202	10.380	10.940	3.055	1.618	4.482	6.217	0.889	2.032	3.419	5.132	60.240
24	6.769	9.567	7.833	3.931	1.620	2.749	4.886	0.883	2.670	2.119	14.440	17.110
25	5.577	5.651	6.121	4.265	1.522	2.042	2.374	0.856	2.084	2.001	14.700	12.280
26	4.954	8.608	5.263	3.246	1.433	2.391	1.747	0.866	1.698	1.857	7.129	10.100
27	4.542	12.110	5.070	2.986	1.409	2.508	1.518	0.860	1.300	1.819	5.531	8.194
28	4.228	7.781	4.753	2.952	1.355	1.856	1.558	0.813	1.416	1.657	5.148	7.141
29	6.627		4.441	21.960	1.266	2.402	1.398	0.806	1.323	6.016	6.062	6.792
30	5.611		4.250	7.455	1.380	5.280	1.284	0.758	1.172	11.000	5.028	6.040
31	4.322		3.919		1.264		1.259	0.737		28.830		5.095
Averago	13.970	5.824	11.960	8.817	2.105	2.313	2.021	1.077	1.103	4.044	11.820	12.770
Lowast	4.228	2.747	3.919	2.952	1.264	1.083	1.195	0.737	0.674	1.195	5.028	2.061
Highost	62.710	12.110	41.260	28.420	4.372	5.280	6.492	1.462	2.670	28.830	28.600	75.630
Poak flow	93.58	16.44	64.46	40.97	5.17	8.41	11.37	1.60	3.07	58.76	52.37	96.76
Oay of poak	6	27	18	6	1	23	24	10	24	31	10	23
Monthly total (million cu m)	37.41	14.09	32.03	22.85	5.64	5.99	5.41	2.88	2.86	10.83	30.65	34.20
Runoff (mm)	136	51	117	83	21	22	20	11	10	39	112	125
Rainfall (mm)	123	57	130	123	11	105	68	37	69	108	146	142

Statistics of monthly data for previous record (May 1972 to Dec 1990)

Mean flows:	Avg.	12.530	9.537	8.739	4.889	3.526	2.715	2.254	3.854	5.099	7.944	9.034	11.050
	L.ow	7.334	2.992	2.210	1.701	1.076	0.911	0.554	0.927	0.680	1.215	3.757	5.000
	(year)	1989	1986	1973	1974	1980	1974	1989	1983	1972	1972	1983	1989
	High	19.140	19.580	13.630	9.765	9.152	5.471	5.542	13.070	14.560	14.560	18.020	17.330
	(year)	1984	1990	1981	1986	1986	1981	1985	1985	1985	1990	1979	1978
Runoff:	Avg.	122	85	85	46	34	26	22	38	48	77	85	108
	Low	72	26	22	16	11	9	5	9	6	12	35	49
	High	187	173	133	92	89	52	54	127	137	142	170	169
Rainfall:	Avg.	128	86	107	60	71	71	73	97	101	117	106	119
	Low	55	4	38	20	20	28	20	20	13	55	45	39
	High	194	199	156	118	145	129	146	188	177	208	182	183

Summary statistics

	For 1991		For record preceding 1991		1991 As \% of pre-1991
Mean flow ($\mathrm{m}^{\mathbf{3}} \mathbf{s}^{-1}$)	6.496		6.758		96
Lowast yearly mean			4.102	1975	
Highost yearly mean			8.435	1986	
Lowest monthly mean	1.077	Aug	0.554	Jul 1989	
Highest monthly mean	13.970	Jan	19.580	Feb 1990	
Lowest daily mean	0.674	11 Sep	0.367	14 Jul 1989	
Highest daily mean	75.630	210 Dec	139.600	21 Oct 1987	
Peak	96.763	23 Dec	180.200	21 Oct 1987	
10\% oxcoedance	16.030		15.380		104
50\% exceedance	3.429		4.180		82
95\% axceedance	0.823		1.029		80
Annual total (mitlion cu mid	204.90		213.30		96
Annual runoff (mm)	746		777		96
Annual rainfall (mm) [1941-70 rainfall average (mm)	1119		$\begin{aligned} & 1136 \\ & 1183] \end{aligned}$		99

Station and catchment description
Velocity-area station with cableway and weir control - informal broad-crested structure (for angling enhancement), dimensions not known. The net effect of abstractions for public water supply and augmentations from effluent returns is minor. Catchment geology: mixed impermeable rocks (granite, schist and gneiss, and sandstone) overlain by substantial deposits of till, sand and gravel. Largely upland given over mainly to grassland or heath.

Measuring authority: DOEN
First year: 1970

Grid reference: 23 (IH) 820519 Level stn. (m OD): 15.00

Catchment area (sq km): 951.4 Max alt. (m OD): 380

Daily mean gauged discharges (cubic metres per second)

DAY,	Jan	FEB	MAR	APR	MAY	Jun	JUL	AUG	SEP	OCT	NOV	DEC
1	58.370	11.700	16.610	9.774	13.460	2.775	6.720	2.471	1.836	2.246	24.480	. 11.350
2	78.720	10.450	16.240	22.360	10.080	2.706	5.775	2.555	1.805	2.820	18.860	10.090
3	47.980	10.000	19.630	15.460	8.653	2.614	4.633	2.475	1.865	4.342	21.120	9.356
4	46.090	21.810	18.660	34.300	7.866	2.524	4.017	2.313	1.801	4.292	13.340	8.760
5	9.175	17.240	31.550	36.440	6.980	2.472	3.549	2.294	1.752	9.697	11.870	8.136
6	37.130	13.330	19.780	68.320	6.461	2.464	3.217	3.942 -	1.687	5.770	10.080	7.597
7	66.900	11.240	29.950	56.860	6.213	2.477	2.997	4.375	1.665	6.163	37.960	7.185
8	37.420	10.110	48.090	26.500	5.826	2.491	2.882	3.053	1.665	5.221	36.780	6.875
9	27.310	9.385	37.250	20.680	5.617	3.752	2.810	2.608	1.660	3.874	18.110	6.544
10	38.340	8.392	32.900	49.240	5.549	5.342	3.747	2.959	1.637	3.303	30.860	6.285
11	39.010	8.019	18.140	39.040	5.247	4.347	2.668	3.466	1.637	3.030	52.800	6.068
12	35.900	9.497	22.900	55.220	5.014	5.365	2.717	2.903	1.637	3.390	44.880	5.940
13	22.030	10.630	19.410	36.380	4.978	5.241	2.791	2.497	1.634	4.649	55.240	5.836
14	17.850	10.040	15.860	21.580	4.768	4.632	2.701	2.337	1.633	4.182	47.530	5.680
15	15.930	16.380	24.340	16.490	4.423	4.602	2.655	2.330	1.613	3.661	23.360	5.578
16	17.480	13.090	53.690	13.590	4.306	4.382	2.559	2.162	2.205	3.985	17.050	5.516
17	22.990	10.890	68.860	11.680	4.129	4.157	2.690	2.280	3.162	6.018	18.100	7.463
18	24.640	9.875	86.620	10.540	4.085	3.539	2.608	2.724	2.510	5.998	32.150	37.670
19	24.820	9.286	129.500	9.522	4.076	3.349	2.974	2.507	2.176	6.115	30.540	123.800
20	18.050	12.850	92.890	8.827	3.926	3.555	3.437	2.330	2.041	4.865	17.680	108.100
21	15.560	12.340	84.830	8.639	3.795	3.944	2.884	2.205	1.976	5.178	15.350	163.600
22	14.450	13.300	39.800	8.012	3.619	5.945	2.644	2.093	3.097	4.817	14.850	172.000
23	13.880	21.410	28.020	7.479	3.523	6.746	3.679	2.080	3.646	4.195	12.900	171.800
24	13.960	27.730	20.940	7.441	3.433	5.653	8.687	2.092	5.395	3.760	18.390	160.600
25	12.910	18.370	16.950	8.659	3.362	4.308	5.759	2.102	4.123	3.474	41.350	107.500
26	11.440	17.080	14.640	7.795	3.243	4.577	3.965	2.026	3.067	3.315	20.150	51.660
27	10.520	23.840	13.320	6.949	3.134	7.866	3.312	2.032	2.610	3.314	14.590	31.010
28	9.968	22.680	12.190	6.486	3.029	5.090	2.940	2.010	2.443	3.252	13.040	23.260
29	16.060		11.220	45.060	2.981	4.233	2.734	1.943	2.460	5.180	14.410	20.100
30	19.990		10.370	30.510	2.920	8.014	2.547	1.915	2.305	11.880	13.280	18.410
31	13.750		9.624		2.857		2.432	1.885		61.150		16.980
Average	27.050	13.960	34.350	23.330	5.082	4.305	3.540	2.483	2.291	6.553	24.700	42.930
Lowest	9.175	8.019	9.624	6.486	2.857	2.464	2.432	1.885	1.613	2.246	10.080	5.516
Highest	78.720	27.730	129.500	68.320	13.460	8.014	8.687	4.375	5.395	61.150	55.240	172.000
Peak flow	159.51	31.85	141.20	95.05	16.68	9.45	9.74	5.71	6.32	87.42	81.39	174.22
Day of peak	5	24	19	6	1	27	24	7	24	31	11	23
Monthly total (million cu m)	72.46	33.78	92.00	60.47	13.61	11.16	9.48	6.65	5.94	17.55	64.03	115.00
Runoff (mm)	76	36	97	64	14	12	10	7	6	- 18	67	121
Rainfall (mm)	98	50	108	109	8	92	54	36	52	96	116	128

Statistics of monthly data for previous record (Jul 1970 to Dec 1990

Station and catchment description
Velocity-area station with cableway and natural control. Flows influenced by major arterial drainage scheme - stanted in 1988. A substantial portion of the catchment is in the lrish Republic where some groundwater may be abstracted but its hydrological significance is uncertain Geology: Carboniferous Limestone and Millstone Grit with sandstones overlain by substantial amounts of till. A predominantly rural catchment with limited afforestation. Monaghan Town (pop. 5,000) - in the lrish Republic - is the only significant urban centre.

Station and catchment description
Velocity-area station with cableway. Geology: mainly basalt overlain by till with some peat. Significant proportion of upland, predominantly grassland or heath. No urban areas or major industry.

Part (ii) - The monthly flow data

The introductory information (measuring authority etc.) is as described in Part (i).

Hydrometric statistics for the year

The monthly average, peak flow, runoff and rainfall figures are equivalent to the summary information following the daily mean gauged discharges in Part (i). Because of the rounding of monthly runoff values the runoff for the year may differ slightly from the sum of the individual monthly totals.

A 'comment' - appearing at the end of the station entry-may be used to draw attention to any particular factors influencing the accuracy of the data for the featured year or, more generally, to indicate that the published hydrometric data are subject to review.

Monthly and yearly statistics for previous record

Monthly mean flows (average, low and high) and the monthly rainfall and runoff figures are equivalent to those presented in Part (i). An asterisk indicates an incomplete rainfall series; the first and last years of data are given in parentheses. Due to the rounding of monthly runoff values, the average runoff for the year derived from the previous record may differ slightly from the sum of the individual monthly totals. The peak flow is the highest discharge, in cubic metres per second, for each month. For many stations the archived series of monthly instantaneous maximum flows, from which the preceding record peak is abstracted, is incomplete, particularly for the earlier years, and certain of the peak flows are known to be of limited accuracy. Where the peak value - in an incomplete series - is
exceeded by the highest daily mean flow on record, the latter is substituted; such substitutions are indicated by a ' d ' flag. An examination of the quality of the peak flow figures is underway and significant revision may be expected as this review proceeds. The figures are published primarily to provide a guide to the range of river flows experienced throughout the year at the featured gauging stations.

Factors affecting runoff

Code letters are used as described in Part (i).

Station type

The station type is coded by the list of abbreviations given below - two abbreviations may be applied to each station relating to the measurement of lower or higher flows.

B Broad-crested weir
C Crump (triangular profile) single crest weir
CB Compound broad-crested weir. The compounding may include a mixture of types such as rectangular profiles, flumes and shallow-Vs and with or without divide walls
CC Compound Crump weir
EM Electromagnetic gauging station
EW Essex weir (simple Crump weir modified with angled, sloping, triangular profile flanking crests) in trapezoidal channel
FL Flume
FV Flat-V triangular profile weir
MIS Miscellaneous method
TP Rectangular thin-plate weir
US Ultrasonic gauging station
VA Velocity-area gauging station
VN Triangular (V notch) thin-plate weir

003002 Carron at Sgodachail

1991

Meosuring authority: HRPB
Grid reference: 28 (NH) 490921
Level stn. (m OD): 70.70
Catchment area (sq km): 241.1 Max alt. (m OD): 954
Hydrometric statistics for 1991

	JaN	FEB	MAR	APR	MAY	Jun	JuL	AUG	SEP	OCT	Nov	DEC	Year
Flows Avg.	11.420	5.546	8.296	6.000	3.296	10.270	4.826	2.445	5.075	13.250	19.360	8.895	8.224
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	137.90	58.07	80.01	47.00	27.28	76.12	35.97	29.63	52.58	195.80	219.10	123.30	219.10
Runots (mm)	127	56	92	65	37	110	54	27	55	147	208	99	1076
Rainfall (mm)	163	76	141	123	65	154	106	67	142	220	352	168	1777
Monthly and yearly statistics for previous record (Jan 1974 to Dec 1990)													
Moan Avg.	14.550	10.270	11.580	7.467	4.727	3.831	3.571	4.495	8.665	11.870	12.500	13.400	8.909
flows Low	7.226	1.944	3.680	1.294	1.020	1.105	1.142	0.983	3.659	3.963	4.228	5.595	6.846
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	29.740	25.850	33.120	15.030	10.110	7.594	9.481	10.680	17.670	29.670	25.410	28.120	12.192
Poak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	281.80	264.70	225.00	98.60	101.20	140.40	165.20	112.00	340.30	288.90	194.00	255.70	340.30
Runotf (mm)	162	104	129	80	53	41	40	50	93	132	134	149	1166
Roinfall (mm)* -(1981-1990)	276	175	243	89	96	93	92	130	211	257	217	251	2130
Factors affecting runoff: \mathbf{H} Station type: VA										1991 runoff is 92% of previous mean rainfall 83\%			

004001 Conon at Moy Bridge

Moasuring authority: HRPB
First year: 1947
Hydrometric statistics for 1991

		JAN	FEB	MAR	APA	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	88.580	33.020	51.740	59.030	14.040	19.720	36.140	27.160	34.890	76.960	100.700	71.640	51.087
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$:	Peak	236.00	103.00	150.50	131.30	56.13	74.48	111.60	73.83	179.30	238.20	220.40	165.10	238.20
Runotf (mm)		241	83	144	159	39	53	101	76	94	214	271	200	1675
Rainfall (mm)		169	64	134	117	51	136	111	64	170	213	325	184	1738

Monthly and yearly statistics for previous record (Oct 1947 to Dec 1990 -incomplete or missing months total 5.7 years)

Moan Avg.	68.750	62.500	60.150	41.800	31.710	21.960	20.970	27.950	41.060	55.110	63.660	71.600	47.210
flows Low	31.690	25.810	18.670	13.940	10.940	8.861	2.959	8.162	12.510	23.090	24.090	27.970	29.991
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	138.300	164.600	191.500	75.730	53.050	47.560	40.010	45.140	94.870	94.030	121.700	165.100	77.537
Poak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	486.20	703.90	507.00	203.90	232,20	165.20	247.40	254.90	223.70	324.80	411.80	1076.00	1076.00
Runoff (mm)	191	159	168	113	88	59	58	78	111	153	172	199	1549
Rainfall (mm)*	198	142	171	102	103	95	106	127	167	214	199	226	1850

- 1953 -1990

Factors affecting runoff: H
Station fype: VA

Grid reference: 28 (NH) 482547
Level stn. (m OD): 10.00

Catchment area (sq km): 961.8 Max alt. (m OD): 1052

1991 runoff is 108% of previous mean rainfall 94\%

006008 Enrick at Mill of Tore

Grid reference: $28(\mathrm{NH}) 450300$ Level stn. (m OD): 109.40

Measuring authority: HRPB
First yoar: 1979
Hydrometric statistics for 1991

	JAN	FEB	MAR	APR	MAY	JUN	JuL	AUG	SEP
Flows Avg.	7.932	1.848	3.797	3.361	0.318	1.562	1.433	0.344	1.655
$\left(m^{3} s^{-1}\right)$: Peak	54.72	12.88	23.43	20.17	0.61	9.54	4.57	0.60	12.23
Runoff (mm)	201	42	96	82	8	38	36	9	41
Rainfall (mm)	147	48	101	110	30	123	80	51	133
Monthly and yearly statistics for previous record (Dec 1979 to Dec 1990)									
Moan Avg.	5.501	5.298	4.923	1.816	1.395	0.980	1.028	1.048	2.357
flows Low	1.947	0.707	1.154	0.422	0.184	0.119	0.070	0.020	0.397
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{High}$	9.679	18.220	13.880	3.466	4.386	1.959	3.332	3.235	3.994
Poak flow ($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$)	52.05	77.96	51.08	11.23	18.65	19.34	59.86	15.83	51.30
Runoff (mm)	139	122	125	44	35	24	26	27	58
Roinfall (mm)	184	12.1	164	58	72	75	71	89	138

Factors affecting runoff: N
Station type: VA
OCT NOV DEC Year Catchment area (sq km): 105.9
Max alt. (m OD): 678 OCT OCT NOV 27.17
$184 \quad 222$

4.388	4.381	5.378	3.201
2.654	1.685	1.422	2.118
7.068	7.360	9.554	4.986
50.41	36.09	49.71	77.96
111	107	136	954
169	153	188	1482

1991 runoff is 99% of previous mean rainfall 92%

008007 Spey at Invertruim

Moasuring authority: NERPB
First year: 1952
Hydrometric statistics for 1991

	JAN	FEB	MAR	APR	MAY	JUN	Jul	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	13.790	5.443	7.839	5.875	2.833	4.238	4.046	2.346	5.580	8.548	9.944	8.171	6.565
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	94.81	39.57	60.70	34.02	3.79	13.81	21.55	4.88	58.78	87.38	84.04	85.40	94.81
Runoff (mm)	92	33	52	38	19	27	27	16	36	57	64	55	517
Rainfall (mm)	192	82	118	131	35	110	85	49	182	213	225	161	1583
Monthly and yearly statistics for previous record (Oct 1952 to Dec 1990)													
Mean Avg.	9.151	7.550	7.548	4.190	3.577	2.934	2.838	3.347	4.710	6.872	7.438	9.371	5.791
flows Low	3.314	1.953	2.722	2.075	1.413	1.123	1.042	0.852	1.454	1.638	3.235	3.518	3.935
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	23.280	39.980	42.630	7.126	6.210	6.269	5.021	7.545	14.650	14.830	15.960	24.970	11.121
Peak flow ($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$)	264.50	269.10	274.50	61.90	43.92	45.93	72.83	75.00	108.00	106.90	170.60	259.50	274.50
Runotf (mm)	61	46	50	27	24	19	19	22	30	46	48	63	456
Rainfall (mm)	165	114	130	73	86	76	86	105	133	167	159	180	1474

Factors affecting runoff: H
Station type: VA

Grid reference: 27 (NN) 687962
Leval stn. (m OD): 242.50

Catchment area (sq km): $\mathbf{4 0 0 . 4}$ Max alt. (m OD): 951

Measuring authority: NERPB
First year: 1959
Hydrometric statistics for 1991

	JAN	FEB	MAR	APR	MAY	JUN	Jul	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	5.707	7.304	11.720	6.493	5.791	6.962	4.756	2.666	2.148	4.663	11.890	5.654	6.299
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	18.04	43.40	44.16	17.43	22.22	21.39	13.62	3.46	3.10	43.25	89.01	51.91	89.01
Runotf (mm)	35	40	71	38	35	41	29	16	13	28	70	34	450
Rainfall (mm)	25	74	78	61	67	133	50	33	43	103	132	45	844
Monthly and yearly statistics for previous record (Oct 1959 to Dec 1990)													
Mean Avg.	12.220	10.590	11.590	10.120	7.602	5.142	4.676	5.930	5.782	8.948	10.720	11.440	8.724
flows Low	3.527	3.052	3.391	4.314	3.274	2.610	1.766	1.621	2.092	1.934	2.668	3.504	4.051
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	24.440	19.720	22.230	21.500	21.930	11.130	9.841	19.110	16.040	28.210	29.790	23.590	12.437
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	120.50	84.90	118.00	76.13	183.70	153.10	146.40	236.50	155.70	221.90	177.70	157.10	236.50
Runoff (mm)	74	59	70	59	46	30	28	36	34	54	63	69	624
Rainfall (mm)	92	65	76	69	73	67	76	93	84	100	104	89	988
Factors affecting runoff: \mathbf{N} Station type: VA										1991 runoff is 72% of previous mean rainfall 85\%			

010002 Ugie at Inverugie

1991

Measuring authority: NERPB First year: 1971
Hydrometric statistics for 1991

Flows$\left(m^{3} s^{-1}\right):$		JAN	FEE	MAR	APR	MAY	JUN
	Avg.	3.318	6.268	9.750	3.702	2.415	2.318
	Peak	6.02	38.66	37.79	6.40	3.54	5.40
Runoff (mm)		27	47	80	30	20	18
Rainfall (mm)		24	81	80	35	29	74

Monthly and yearly statistics for previous record (Feb 1971 to Dec 1990)

Mean Avg.	7.813	6.431	5.577	4.243	3.382	2.296	2.006	2.135	2.454	4.776	6.220	7.213	4.53
flows Low	2.085	2.088	1.791	1.624	1.467	1.200	0.927	0.858	0.912	0.894	1.531	1.360	2.069
$\left(m^{3} s^{-1}\right) \quad$ High	11.300	14.620	9.576	7.785	8.103	4.296	4.901	6.225	7.052	9.079	18.230	13.320	6.505
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	66.40	96.74	66.40	40.26	35.57	13.29	23.66	21.24	36.25	94.52	99.28	87.75	99.28
Runoff (mm)	64	48	46	34	28	18	17	18	20	39	50	59	441
Rainfa! (mm)	79	47	65	51	50	53	58	64	80	86	87	77	797

Factors affecting runoff: N
Station type: VA

Grid reference: 48 (NK) 101485 Level stn. (m OD): 8.50

Catchment area (sq km): $\mathbf{3 2 5 . 0}$ Max alt. (m OD): 234

JAN
($\mathrm{m}^{3} \mathrm{~s}^{-1}$):
Runoff (mm)

Nonthly and yearly statistics for previous record (Fob 1971 to Dec 1990

JUL	AUG	SEP
1.877	1.263	1.044
2.41	2.11	1.81
15	10	8
37	23	34
2.006	2.135	2.454
0.927	0.858	0.912
4.901	6.225	7.052
23.66	21.24	36.25
17	18	20
58	64	80

1991 runoff is 85% of previous mean rainfall 84%

011001 Don at Parkhill

Maasuring authority: NERPB
First year: 1969
Hydrometric statistics for 1991

		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	16.870	21.100	40.210	18.200	12.170	13.670	13.180	7.901	6.036	8.851	30.970	13.390	16.84
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$:	Peak	42.14	72.92	103.00	26.84	25.48	29.49	34.88	10.04	8.06	66.22	116.10	37.14	116.10
Runoff (mm)		35	40	85	37	26	28	28	17	12	19	63	28	417
Rainfall (mm)		31	83	75	53	44	122	55	29	33	105	119	30	779

Monthly and yearly statistics for previous record (Dec 1969 to Dec 1990)

Mean	Avg.	29.510	27.540	27.490	24.420	16.340	11.840	10.450	11.510	10.920
flows	Low	8.070	6.557	6.274	8.487	7.514	6.424	5.128	4.644	5.019

$\begin{array}{llrrrrrrrrr}\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) & \text { High } & 48.660 & 52.240 & 48.950 & 44.750 & 34.770 & 27.560 & 27.530 & 40.150 & 36.470\end{array}$
$\begin{array}{lllllll}\text { Peak flow }\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) & 185.90 & 52.240 & 48.950 & 44.750 & 34.770 & 27.560 \\ \text { P } & 131.00 & 143.70 & 107.50 & 92.06 & 101.60\end{array}$
Runoff (mm)
Rainfall (mm)
Factors affecting
Station type: VA

Grid reference: 38 (NJ) 887141
Level stn. (m OO): 32.40

Catchment area (sq km): 1273.0 Max alt. (m OD): 872

013007 North Esk at Logie Mill

Measuring authority: TRPB
First year: 1976
Hydrometric statistics for 1991

Monthly and yearly statistics for previous record (Jan 1976 to Dec 1990 -Incomplete or missing months total 0.1 years)

Mosn Avg.	24.260	26.130	29.210	21.430	14.880	9.127	6.950	9.771	11.080	27.510	24.070	28.590	19.399
flows Low	12.460	9.795	16.190	7.156	4.110	3.684	2.685	2.548	3.622	4.099	5.281	15.760	11.043
$\left(\mathrm{m}^{3} \mathrm{~B}^{-1}\right)$ High	48.590	46.630	42.750	34.750	36.420	24.300	18.060	35.810	30.540	80.410	91.170	59.880	24.926
Poak flow ($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$)	240.80	195.00	169.10	230.40	180.80	271.90	133.00	199.20	342.80	452.80	462.10	398.10	462.10
Runoff (mm)	89	88	107	76	55	32	25	36	39	101	85	105	839
Rainfatl (mm)	118	B5	107	59	77	68	71	84	100	138	104	119	1130
Factors affecting runoff: S P Station type: VA										1991 runoff is 87% of previous mean rainfall 90\%			

013008 South Esk at Brechin

Measuring authority: TRPB
First yoar: 1983
Hydrometric statistics for 1991

	JAN	FEE	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	19.020	10.270	28.630	13.830	4.682	7.581	8.238	3.687	3.269	11.200	21.010	7.894	11.622
($\mathrm{m}^{3} \mathrm{~B}^{-1} \mathrm{l}$) Peak	104.60	42.68	107.00	38.96	8.85	30.18	39.43	7.10	21.02	107.50	91.68	39.59	107.50
Runotf (mm)	104	51	157	73	26	40	45	20	17	61	111	43	748
Rainfall (mm)	107	99	113	79	28	137	83	33	71	153	122	46	1071
Monthly and yearly statistics for previous record (Jan 1983 to Dec 1990)													
Mean ${ }^{\text {- Avg. }}$	15.930	15.630	16.900	13.310	11.140	6.648	4.938	7.409	8.040	12.930	14.470	15.490	11.889
flows Low	10.600	7.069	9.773	6.356	3.478	3.316	1.685	1.405	2.401	3.494	3.949	9.996	8.317
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	21.180	34.820	26.610	21.340	28.180	11.120	10.010	25.920	21.860	28.630	49.350	23.650	14.856
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	73.93	102.20	96.99	90.85	96.29	88.02	56.63	117.70	122.50	170.60	144.30	149.70	170.60
Runaff (mm)	87	78	92	70	61	35	27	40	43	71	77	85	766
Rainfall (mm)	134	85	104	64	78	74	67	96	88	125	106	113	1134
Factors affecting runoff: I Station type: VA										1991 runoff is 98% of previous mean rainfall 94\%			

Factors affecting runoff: I
Station type: VA

Grid reference: 37 (NO) 600596
Level stn. (m OD): 18.00

Catchment area (sq km): 490.0 Max alt. (m OD): 958

014001 Eden at Kemback

Moasuring authority: TRPB
Grid reference: $\mathbf{3 7}$ (NO) 415158
Level stn. (m OO): 6.20
Catchment area (sq km): 307.4
First yoar: 1967
Hydrometric statistics for 1991

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	10.300	6.018	8.238	3.647	2.012	2.094	1.576	1.092	1.086	1.500	2.860	3.049	3.616
$\left(m^{3} s^{-t}\right)$: Peak	31.73	31.02	31.16	9.43	2.42	3.62	2.06	1.59	2.09	3.53	6.24	14.21	31.73
Runoff (mm)	90	47	72	31	18	18	14	10	9	13	24	27	371
Rainfall (mm)	91	77	77	36	10	106	63	21	54	71	55	50	719
Monthly and yearly statistics for previous record (Oct 1967 to Dec 1990)													
Moan Avg.	6.890	6.465	4.968	3.673	3.016	2.183	1.535	1.697	1.993	3.197	4.471	5.644	3.799
flows Low	2.546	2.170	1.408	1.199	1.406	1.077	0.861	0.799	0.749	0.833	0.830	1.731	1.446
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{High}$	10.890	19.460	8.096	7.243	8.335	6.651	3.390	6.038	11.260	6.880	14.440	12.390	5.593
Poak flow ($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$)	59.05	71.31	54.89	52.69	47.48	41.93	26.20	17.19	53.64	35.97	39.37	47.82	71.31
Runoff (mm)	60	51	43	31	26	18	13	15	17	28	38	49	390
Rainfall (mm)	85	57	64	46	64	57	58	61	72	79	72	74	789
Factors affecting runoff: S GE: Station type: VA										1991 runoff is 95% of previous mean rainfall 91\%			

015011 Lyon at Comrie Bridge

1991

Moasuring authority: TRPB
First year: 1958

	JAN	FEB	MAR	APA	MAY	JUN	JUL	AUG	SEP	OCT	Nov	DEC	Year
Flows Avg.	21.360	11.170	18.640	17.390	4.889	6.858	7.363	3.938	7.810	15.310	20.990	11.560	\$2.271
$\left(\mathrm{m}^{3}-{ }^{-1}\right)$: Peak	223.20	100.80	115.80	129.00	8.73	27.93	26.26	14.87	84.84	128.30	158.40	199.60	223.20
Aunoff (mm)	146	69	128	115	33	45	50	27	52	105	139	79	989
Rainfall (mm)	299	122	173	216	24	136	110	67	212	261	307	205	2132
Monthly and yearly statistics for previous record (Jan 1958 to Dec 1990)													
Moan Avg.	17.560	14.920	15.790	9.976	9.484	6.514	6.179	7.517	10.300	15.030	14.410	15.830	11.955
flows Low	3.596	3.198	4.219	4.002	3.537	3.514	3.062	2.221	2.843	3.662	5.320	6.182	8.330
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	43.920	54.190	67.160	17.100	24.520	18.870	20.800	28.940	28.120	29.930	30.550	32.780	19.870
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	254.70	377.90	311.30	89.80	124.50	109.70	154.70	128.70	145.10	191.90	271.30	198.00	377.90
Runotf (mm)	120	93	108	66	65	43	42	51	68	103	96	108	965
Rainfall (mm)*	270	161	213	81	104	89	103	125	182	220	228	241	2017

Rainfall (mm)*

- (1971-1990)

Factors affecting runoff:
Station type: VA

Grid reference: 27 (NN) 786486
Level stn. (m OD): 92.10

Catchment area (sq km): 391. Max alt. (m OD): 1215

Hydrometric statistics for 1991

016003 Ruchill Water at Cultybraggan

1991

Measuring authority: TRPB
First year: 1970
Hydrometric statistics for 1991

	JAN	FEB	MAR	APR	MAY	JUN	Jul	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	6.524	3.668	7.106	7.108	0.448	2.099	3.588	1.077	2.928	5.858	8.216	4.880	4.458
$\left(\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}\right)$: Peak	72.95	50.28	66.40	60.02	0.85	34.46	39.73	9.23	134.00	75.86	110.50	85.38	134.00
Runoff (mm)	176	89	191	185	12	55	97	29	76	158	214	131	1413
Rainfall (mm)	266	101	178	224	11	151	162	66	168	222	252	169	1970

Monthly and yearly statistics for previous record (Oct 1970 to Dec 1990 -incomplate or missing months total 0.2 years)

Maan	Avg.	8.070	6.688	6.865	2.962	2.665	1.875	1.764	2.612	4.762	6.349	7.252	7.447	4.937
flows	Low	2.263	1.050	1.802	0.758	0.304	0.402	0.239	0.164	0.345	0.789	2.306	1.630	3.281
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$	High	15.240	20.280	13.660	5.156	10.120	4.562	5.739	9.246	10.260	12.130	16.550	12.350	6.586
Peak flow	$\mathrm{m}^{3} \mathrm{~s}^{-1}$	250.40	189.20	165.30	87.32	165.00	221.30	160.00	143.00	227.30	176.50	183.30	174.50	250.40
Runoff (mm)		217	164	185	77	72	49	47	70	124	171	189	200	1566
Rainfall (mm		246	172	189	87	115	97	112	. 137	193	214	224	233	2019
Factors affecting runoff: \mathbf{N} Station type: VA											1991 runoff is 90% of previous mean rainfall 98\%			

016004 Earn at Forteviot Bridge

Measuring authority: TRPB
First year: 1972
Grid reference: 37 (NO) 043184
Level stn. (m OD): 7.80
Catchment area (sq km): 782.2

Hydrometric statistics for 1991

		JAN	FEB	MAR	APR	MAY	JUN	JuL	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	72.440	26.040	46.830	45.860	9.231	B. 450	13.810	5.981	11.840	28.400	46.680	28.900	28.732
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$:	Peak	264.20	94.84	158.10	160.70	16.08	31.37	35.76	13.95	105.00	123.30	149.30	140.80	284.20
Runoff (mm)		248	81	160	152	32	28	47	20	39	97	155	99	1158
Rainfall (mm)		197	83	130	148	15	132	113	40	120	157	168	116	1419

Monthly and yearly statistics for previous record (Oct 1972 to Dec 1990 -incomplete or missing months total 0.3 years)

Mean Avg.	48.610	42.440	39.560	20.410	14.630	9.580	8.471	11.540	19.680	32.070	40.020	42.900	27.438
flows Low	19.630	16.070	12.310	8.389	4.906	4.095	2.658	2.456	5.302	5.984	15.120	15.060	15.508
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	85.510	127.100	74.340	33.790	47.200	20.070	24.620	46.660	55.680	61.980	89.750	79.160	33.908
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	277.50	337.00	264.60	162.20	155.20	114.90	142.30	169.70	271.80	241.20	328.60	238.70	337.00
Runoff (mm)	166	132	135	68	50	32	29	40	65	110	133	147	1107
Rainfall (mm)	174	119	145	57	81	73	83	104	147	155	157	165	1460
Factors affecting Station type: VA	off: P									$1991 \text { rur }$	ff is 105 all 97	of prev	us mean

017001 Carron at Headswood

1991

Measuring authority: FRPB
Grid reference: 26 (NS) 832820
Level stn. (m OD): 17.809
Catchment area (sq km): 122.3
First year: 1969
Hydrometric statistics for 1991

017002 Leven at Leven

1991

Measuring authority: FRPB
Grid reference: 37 (NO) 369006
Level stn, (m OD): 4.10
First year: 1969
Catchment area (sq km); 424.0

Hydrometric statistics for 1991

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	17.140	9.885	13.020	6.162	2.910	3.639	3.001	2.990	2.003	3.765	7.643	6.219	6.522
$\left(m^{3} \mathrm{~s}^{-1}\right)$: Peak	37.24	27.40	50.36	10.85	4.14	7.88	6.60	4.50	4.32	6.22	11.47	20.09	50.36
Runoff (mm)	108	56	82	38	18	22	19	19	12	24	47	39	485
Rainfall (mm)	110	77	95	45	18	122	77	29	74	87	81	76	891
Monthly and yearly statistics for previous record (Aug 1969 to Dec 1990)													
Mean Avg.	11.390	10.650°	7.803	5.078	3.613	3.050	1.987	3.189	3.747	6.015	8.234	10.230	6.229
flows Low	4.786	2.882	1.543	1.413	2.012	1.166	0.902	0.820	0.970	0.795	0.972	3.462	2.269
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	20.700	22.660	14.670	9.712	12.050	7.044	5.300	11.840	21.040	13.170	26.510	19.200	9.294
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	53.54	128.00	39.19	44.68	44.54	26.93	28.83	25.69	84.25	40.67	56.76	62.69	128.00
Runoff (mm)	72	61	49	31	23	19	13	20	23	38	50	65	464
Rainfall (mm)	98	65	79	49	61	67	64	75	87	91	93	94	923
Factors affecting runoff: SR EI Station type: VA										1991 runoff is 105% of previous mean rainfall 97\%			

018003 Teith at Bridge of Teith

Mensuring authority: FRPB
First year: 1957
Hydrometric statistics for 1991

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	53.820	14.070	34.780	44.110	4.689	9.251	14.900	7.146	15.610	26.250	44.930	33.110	25.278
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Poak	254.40	81.73	143.00	182.40	6.91	36.04	39.87	15.56	172.80	120.60	150.40	186.00	254.40
Runots (mm)	278	66	180	221	24	46	77	37	78	136	225	171	1539
Rainfall (mm)	263	100	188	243	19	156	143	67	194	245	283	209	2110
Monthly and yearly statistics for previous record (Jan 1957 to Dec 1990-incomplete or missing months total 0.1 yaars)													
Mean Avg.	35.900	30.710	28.910	15.740	14.500	9.373	9.538	13.350	20.020	28.160	30.760	34.390	22.590
flows Low	9.608	5.743	6.589	5.612	4.017	3.953	3.781	3.135	3.635	5.897	9.842	11.790	15.094
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	72.430	109.100	81.670	30.040	55.000	21.520	26.390	54.210	45.020	66.410	70.650	72.370	32.715
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	303.90	361.80	217.40	93.10	158.00	161.70	118.30	174.40	184.10	242.60	245.10	241.10	361.80
Runoff (mm)	188	144	149	79	75	47	49	69	100	146	154	178	1376
Rainfall (mm)" .(1963.1990)	238	158	185	90	119	104	109	135	199	223	216	220	1996
Factors affecting runoff: S P Station type: VA										1991 runoff is 112% of previous mean rainfall 106\%			

Grid reference: 27 (NN) 725011
Level stn. (m OD): 14.70

Catchment area (sq km): 518.0 Max att. (m OD): 1165

018005 Allan Water at Bridge of Allan

Measuring outhority: FRPB First yoar: 1971

Grid reference: 26 (NS) 786980
Level stn. (m OD): 11.20

Catchment area (sq km): 210.0 Max alt. (m OD): 633

Hydrometric statistics for 1991

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	18.630	6.307	9.980	9.120	1.524	2.970	5.587	1.715	3.308	6.991	9.912	8.919	6.925
($\left.\mathrm{m}^{3}{ }^{3}-1\right)^{\text {P }}$: Peak	136.80	48.44	83.31	64.09	2.12	12.53	30.15	5.11	50.52	54.58	65.47	80.34	136.80
Runoff (mm)	212	73	127	113	19	37	71	22	41	89	122	114	1040
Rainfall (mm)	173	81	123	122	13	127	121	45	123	135	140	127	1330
Monthly and yearly statistics for previous record (Jul 1971 to Dac 1990)													
Mean Avg.	11.130	9.213	9.265	4.609	3.717	2.618	2.128	3.129	4.935	7.313	8.872	9.909	6.395
flows Low	4.751	3.631	3.152	1.654	1.189	0.945	0.726	0.648	0.907	0.971	3.642	3.709	4.269
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	18.550	22.270	18.170	7.717	15.430	5.423	6.309	12.390	14.600	12.420	17.760	17.140	9.090
Poak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	98.20	81.93	83.43	69.62	72.11	61.86	66.37	67.48	105.60	111.00	97.89	112.60	112.60
Runoff (mm)	142	107	118	57	47	32	27	40	61	93	110	126	961
Rainfall (mm)	152	101	125	62	78	73	79	97	125	136	135	144	1307
Factors affecting runoff: I Station type: VA										1991 runoff is 108% of previous mean rainfall 102\%			

020001 Tyne at East Linton

Measuring authority: FRPB
First yoar: 1961
Hydrometric statistics for 1991

Factors affecting runoff: El
Station type: VA

Grid referance: 36 (NT) 591768
Level stn. (m OD): 16.50

Catchment ares (sq km): 307.0 Mex alt. (m OD): 528

021006 Tweed at Boleside

Hydrometric statistics for 1991

	JAN	FEB	MAR	APR	MAY	JUN	Jul	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	88.860	54.710	67.600	47.900	10.050	14.980	15.680	9.465	9.994	30.750	90.220	60.480	41.360
$\left(m^{3} s^{-1}\right)$: Peak	453.30	367.30	262.30	129.80	15.13	29.09	24.02	27.65	46.48	234.30	286.50	393.90	453.30
Runoff (mm)	159	88	121	83	18	26	28	17	17	55	156	108	876
Rainfall (mm)	146	105	118	106	17	112	70	43	81	148	159	130	1235
Monthly and yearly statistics for previous record (Oct 1961 to Dec 1990)													
Mean Avg.	58.580	49.740	45.960	31.190	25.210	16.400	19.390	21.960	31.440	40.970	48.620	54.330	37.030
flows Low	14.740	10.780	16.230	10.250	7.290	7.466	6.694	4.641	4.316	4.655	15.940	24.150	20.090
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High.	111.900	159.700	104.300	58.940	67.600	30.550	107.600	47.740	64.820	99.430	121.300	101.900	49.780
Peak flow ($\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$	678.60	507.60	470.10	248.90	182.80	126.00	342.60	444.30	496.30	1019.00	486.30	571.90	1019.00
Runoff (mm)	105	81	82	54	45	28	35	41	54	73	84	97	779
Rainfall (mm)	126	87	102	68	85	77	86	107	116	124	120	121	1219
Factors affecting runoff: S P Station type: VA										1991 runoff is 112% of previous mean rainfall 101\%			
Comment: Natura	lised flow	used											

Comment: Naturalised flows used

021012 Teviot at Hawick

Measuring authority: TWRP
First year: '1963
Hydrometric statistics for 1991

	JAN	FEB	MAR	APR	MAY	JUN	Jut	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	22.610	14.620	16.740	10.300	1.577	2.513	2.028	1.336	1.459	7.231	19.480	13.630	9.429
$\left(m^{3} s^{-1}\right)$: Peak	257.40	157.30	109.90	41.48	2.61	7.01	7.11	6.58	19.81	106.00	188.20	170.60	257.40
Runoff (mm)	188	110	139	83	13	20	17	11	12	60	156	113	921
Rainfa! (mm)	163	124	126	95	14	103	67	46	69	143	161	125	1236
Monthly and yearly statistics for previous record (Oct 1963 to Dec 1990)													
Mean Avg.	13.890	11.530	10.210	6.055	5.396	3.880	3.465	4.650	6.104	10.060	12.150	13.640	8.411
flows Low	6.981	4.234	2.991	2.189	1.296	1.099	0.675	0.734	0.915	0.816	2.555	4.522	4.183
$\left(m^{3} s^{-1}\right)$ High	28.560	34.800	21.640	13.030	17.340	10.500	12.300	19.120	18.960	25.690	29.930	25.460	10.959
Paak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	185.90	235.30	182.40	179.00	117.80	89.40	148.30	178.60	185.60	273.40	188.60	230.00	273.40
Runoff (mm)	115	87	85	49	45	31	29	39	49	83	98	113	822
Rainfa! (mm)	120	83	103	63	87	78	87	101	105	119	119	125	1190
Factors affecting runoff; N Station type: VA										1991 runoff is 112% of previous mean rainfall 104\%			

021018 Lyne Water at Lyne Station

Measuring authority: TWRP
First year: 1968
Hydrometric statistics for 1991

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	7.479	5.301	4.978	3.279	1.178	1.374	1.419	0.861	1.011	1.726	6.449	5.826	3.395
$\left(m^{3} s^{-1}\right)$: Peak	20.61	31.56	15.23	9.95	1.65	2.61	2.79	2.58	3.31	8.63	15.82	30.90	31.56
Runoff (mm)	114	73	76	49	18	20	22	13	15	26	96	89	611
Rainfall (mm)	96	91	82	65	24	94	74	37	80	92	120	119	974
Monthly and yearly statistics for previous record (Oct 1968 to Dec 1990)													
Mean Avg.	5.294	4.539	3.855	2.755	1.825	1.435	1.241	1.500	1.864	2.974	4.134	4.608	2.995
flows Low	1.956	2.443	1.491	1.197	0.881	0.795	0.683	0.522	0.542	0.540	1.100	1.756	2.220
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{High}$	8.911	11.260	7.613	5.173	3.602	2.693	2.639	3.198	3.653	7.194	7.183	8.581	4.304
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	47.50	41.55	27.65	21.46	17.36	16.46	31.72	20.77	58.74	73.75	53.60	37.98	73.75
Runoff (mm)	81	63	59	41	28	21	19	23	28	46	61	70	540
Rainfal: (mm)	95	63	82	51	62	64	70	79	92	98	94	91	941
Factors affecting runoff: S P Station type: VA										1991 runoff is 112% of previous mean rainfall 104\%			

Station type: VA
Grid reference: 36 (NT) 209401
Level stn. (m OD): 168.00
Catchment area (sq km): 175.0 Max alt. (m OD): 562

021022 Whiteadder Water at Hutton Castle

Measuring authority: TWRP
First year: 1969
Hydrometric statistics for 1991

	JAN	FEB	MAR	APR	MAY	JUN	JuL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	12.880	13.830	14.070	4.254	2.519	2.052	1.768	1.268	1.335	1.977	7.826	6.035	5.773
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	39.95	83.98	74.27	9.92	3.74	4.45	3.68	2.28	7.63	14.66	27.20	44.53	83.98
Runoff (mm)	69	67	75	22	13	11	9	7	7	11	46	32	383
Rainfall (mm)	73	85	72	31	27	69	66	30	64	66	89	51	723
Monthly and yearly statistics for previous record (Sep 1969 to Dec 1990)													
Mean Avg.	11.020	10.540	9.208	7.186	4.517	3.241	2.396	3.183	2.641	4.969	6.182	8.378	6.103
flows Low	2.616	1.806	1.295	1.456	1.390	1.421	1.223	0.998	1.056	1.021	1.283	1.569	2.098
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{High}$	21.270	27.460	19.270	16.170	9.384	7.728	5.287	8.413	5.063	17.890	11.010	20.830	8.746
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	265.90	160.90	133.90	103.10	226.20	75.82	84.85	181.10	105.80	226.20	279.80	108.10	279.80
Runoff (mm)	59	51	49	37	24	17	13	17	14	26	32	45	383
Rainfall (mm)	80	52	71	51	63	60	60	70	68	75	73	70	793
Factors affecting runoff: S P Station type: CC										1991 runoff is 95% of previous mean rainfall 91\%			

Station type: CC

Grid reference: 36 (NT) 881550
Level stn. (m OD): 29.00

Catchment area (sq km): 503.0 Max alt. (m OD): 533

021024 Jed Water at Jedburgh

Measuring authority: TWRP
First year: 1971
Hydrometric statistics for 1991

	JAN	FEB	MAR	APR	MAY	JUN	Jul.	AUG	SEP	OCT	Nov	DEC	Year
Flows Avg.	6.228	4.840	4.209	1.813	0.724	0.801	0.505	0.441	0.439	0.976	3.250	2.910	2.248
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	69.33	50.67	37.75	8.43	1.32	2.76	1.36	0.89	1.37	20.38	40.79	58.96	69.33
Runoff (mm)	120	84	81	34	14	15	10	9	8	19	61	56	510
Rainfall (mm)	107	112	91	54	22	84	49	30	46	89	107	81	872
Monthly and yearly statistics for previous record (Aug 1971 to Dec 1990)													
Mean. Avg.	4.135	3.352	3.048	1.924	1.499	1.140	1.174	1.253	1.135	2.119	2.989	3.628	2.280
flows Low	1.482	0.997	0.782	0.733	0.635	0.443	0.352	0.312	0.346	0.327	0.698	0.967	1.068
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	7.748	9.041	6.822	4.548	4.864	2.345	4.770	4.329	3.883	5.002	9.432	6.961	3.013
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	72.93	74.82	84.94	68.83	35.21	58.35	66.25	63.76	50.94	71.65	70.34	84.60	84.94
Runoff (mm)	80	59	59	36	29	21	23	24	21	41	56	70	518
Rainfall (mm)	94	63	83	51	67	64	74	82	70	88	86	96	918
Factors affecting runoff: N Station type: VA										1991 runoff is 98% of previous mean rainfall 95\%			

022006 Blyth at Hartford Bridge

1991

Moasuring authority: NRA-N
Grid reference: 45 (NZ) 243800
Level stn. (m OD): 24.60
Catchment area (sq km): 269.4
First voar: 1966
Max alt. (m OD): 259
Hydrometric statistics for 1991

	JAN	FEB	MAR	APR	MAY	JUN	Jul	AUG	SEP	O.T	NOV	DEC	Year
Flows Avg.	3.626	6.370	6.096	0.763	0.323	0.264	0.210	0.135	0.112	0.123	0.867	2.700	1.776
($\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	13.90	24.43	38.64	1.69	0.60	0.82	0.83	0.96	0.51	0.24	8.08	31.85	38.64
Runotf (mm)	36	57	61	7	3	3	2	1	1	1	8	27	208
Rainfall (mm)	46	94	74	20	18	56	59	34	33	39	85	58	616
Monthly and yearly statistics for previous record \{Oct 1966 to Dec 1990-incomplete or missing months total 0.4 years\}													
Moan Avg.	4.444	3.641	3.522	2.205	1.339	0.603	0.446	0.651	0.704	1.615	2.382	3.532	2.086
flows Low	0.587	0.398	0.245	0.359	0.212	0.177	0.096	0.067	0.107	0.111	0.162	0.274	0.537
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	10.150	7.997	11.090	6.281	4.948	1.895	1.800	2.963	2.695	9.680	5.735	12.500	3.410
Poak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	146.60	59.52	150.20	80.31	38.86	31.54	21.52	61.09	30.02	56.84	69.20	122.30	150.20
Runoff (mm)	44	33	35	21	13	6	4	6	7	16	23	35	244
Rainfall (mm)	65	46	60	44	56	52	57	69	61	61	64	64	699
Factors offocting runoff: E										1991 runoff is 85% of previous mean			

Factors offocting runoff: E
Station type: FV

023001 Tyne at Bywell

Measuring authority: NRA-N
First yoar: 1956

Grid reference: 45 (NZ) 038617
Level stn. (m OD): 14.00
Hydrometric statistics for 1991

		JAN	FEB	MAR	APR	MAY	JUN	JUL.	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	100.600	111.800	79.200	32.880	9.044	13.400	10.610	10.740	11.500	27.780	92.710	82.170	48.136
$\left(m^{3} s^{-1}\right)$:	Pook	958.00	1198.00	774.40	175.40	20.10	50.90	56.34	58.36	52.07	288.10	891.30	1114.00	1198.0
Runoff (mm)		124	124	98	39	11	16	13	13	14	34	110	101	698
Rainfals (mm)		114	138	106	58	26	90	68	50	61	100	156	115	1082

Monthly and yearly statistics for previous record (Oct 1956 to Dec 1990 -incomplete or missing months total 0.2 years)

Moan	Avg.	73.440	60.610	56.360	38.110	24.780	17.980	19.620	28.920	34.240	46.570	60.240	8.480	44.060
flows	Low	19.220	14.360	20.150	8.461	7.246	4.910	5.199	3.403	4.155	4.727	18.090	23.080	5.849
$\left(m^{3} s^{-1}\right)$	High	150.800	162.800	150.900	75.620	60.650	50.010	58.000	77.360	106.600	147.200	147.000	112.000	63.834
Paak flow	$\left.3^{-1}\right)$	1525.00	1137.00	1472.00	905.60	476.30	440.30	1105.00	1561.00	1243.00	1586.00	1382.00	1317.00	1586.00
Runoff (mm)		90	68	69	45	31	21	24	36	41	57	72	84	639
Rainfall (mm		104	75	85	62	68	69	83	96	89	96	102	106	1035

Factors affecting runoff: S
Station type: VA
Comment: Paak flows for May and June 1991 are estimates

023011 Kielder Burn at Kielder

Measuring authority: NRA-N First yoar: 1970			Grid reference: 35 (NY) 644946 Level stn. (m OD): 214.00							Catchment area (sq km): 58.8 Max alt. (m OD): 602			
Hydrometric statistics for 1991													
	JAN	FEb	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	Nov	DEC	Year
Flows Avg.	4.307	4.033	2.849	1.451	0.495	1.178	0.819	0.402	0.562	1.710	3.371	2.696	1.977
$\left(\mathrm{m}^{3} \mathrm{~B}^{-1}\right)$: Paak	83.02	66.12	41.71	8.94	1.59	12.30	17.03	1.18	4.65	33.34	42.43	46.50	83.02
Runoff (mm)	196	166	130	64	23	52	37	18	25	78	149	123	1060
Rainfall (mm)	170	178	131	78	26	121	70	46	72	131	169	122	1314
Monthly and yearly statistics for previous record (Jul 1970 to Dec 1990-incomplete or misaing months total 2.2 years)													
Mean Avg.	2.965	2.409	2.467	1.458	1.168	1.060	0.893	1.245	1.362	2.055	2.604	2.821	1.874
flows Low	1.646	0.722	0.945	0.389	0.331	0.316	0.302	0.243	0.316	0.247	0.694	1.011	1.201
$\left(m^{3} s^{-1}\right)$ High	4.893	6.677	4.882	2.842	2.605	2.134	2.632	4.407	3.296	3.589	6.000	4.705	2.470
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	63.03	73.28	44.44	35.55	60.14	95.07	39.21	138.90	56.86	128.80	118.70	67.89	138.90
Runotf (mm)	135	100	112	64	53	47	41	57	60	94	115	128	1006
Rainfall (mm)	138	97	116	66	77	75	91	105	101	124	132	143	1265
Factors affecting runoff: N										1991 runoff is 105% of previous mean rainfall 104\%			

024004 Bedburn Beck at Bedburn

1991

Measuring authority: NRA-N
First year: 1959
Hydrometric statistics for 1991

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	Nov	DEC	Year
Flows Avg.	3.103	3.093	2.607	0.809	0.320	0.234	0.153	0.124	0.110	0.244	1.505	1.546	1.143
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Poak	14.31	30.14	16.69	2.44	0.49	0.43	0.30	0.38	0.22	6.64	14.64	18.79	30.14
Runoff (mm)	111	100	93	28	11	8	5	4	4	9	52	55	481
Rainfall (mm)	101	130	93	44	20	58	39	37	41	73	110	77	823
Monthly and yearly statistics for previous record (Oct 1959 to Doc 1990-incomplete or missing months total 0.2 years)													
Moan Avg.	2.084	1.800	1.808	1.356	0.879	0.538	0.449	0.566	0.583	1.188	1.538	1.845	1.218
flows Low	0.515	0.471	0.436	0.316	0.270	0.191	0.152	0.120	0.124	0.146	0.244	0.444	0.667
$\left(m^{3} s^{-1}\right) \quad \mathrm{High}$	4.341	4.011	5.128	2.986	2.231	1.524	1.522	1.465	1.790	4.346	3.722	4.488	1.842
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	34.67	39.16	38.51	35.09	24.06	21.66	27.72	46.19	32.30	38.06	34.26	42.93	46.19
Runoff (mm)	75	59	65	47	31	19	16	20	20	42	53	66	513
Rainfall (mm)	90	66	73	58	63	58	64	76	70	82	88	87	875

Factors affocting runoff: N
Station type: CC
Grid reference: 45 (NZ) 118322
Catchment area (sq km): 74.9
Level sin. (m OD): 109.00
Max alt. (m OD): 535

024009 Wear at Chester le Street

Measuring authority: NRA-N First year: 1977				Grid reference: $\mathbf{4 5}$ (NZ) 283512 Level stn. (m OD): 5.50						Catchment area (sq km): 1008.3 Max att. (m OD): 747			
Hydrometric statistics for 1991													
	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	Nov	DEC	Year
Flows Avg.	33.760	37.330	31.280	10.050	4.758	4.662	3.506	3.055	3.053	5.204	18.250	19.020	14.366
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	198.00	263.70	222.10	48.90	7.77	7.64	10.45	6.39	7.29	80.67	141.90	228.00	263.70
Runotf (mm)	90	90	83	26	13	12	9	8	8	14	47	51	449
Rainfall (mm)	88	121	87	45	22	61	44	35	39	76	104	76	798
Monthly and yearly statistics for previous record (Sep 1977 to Dec 1990-incomplote or missing months total 0.1 years)													
Mean Avg.	24.330	22.020	24.030	16.590	10.070	7.177	5.900	6.982	6.115	11.230	16.710	23.820	14.558
flows Law	8.610	10.210	14.090	4.738	3.941	3.447	2.948	3.335	3.093	4.563	4.812	12.780	8.661
$\left(m^{3} s^{-1}\right)$ High	40.980	39.880	64.200	36.800	30.170	14.650	14.010	19.300	12.080	27.060	35.820	50.640	19.785
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	309.80	248.20	349.60	277.60	157.60	200.60	226.50	354.40	105.50	273.40	254.10	353.10	354.40
Runoff (mm)	65	53	64	43	27	18	16	19	16	30	43	63	456
Rainfall (mm)	88	62	84	54	60	65	56	79	63	84	87	100	882
Factors affecting runoff: G Station type: FV										$1991 \mathrm{r}$	off is 99 fall 90	of pre	us mean

025001 Tees at Broken Scar

Measuring authority: NRA-N
Grid reference: 45 (NZ) 259137
Level stn. (m OD): 37.20
Catchment area (sq km): 818.4 Max alt. (m OD): 893
Hydrometric statistics for 1991

025019 Leven at Easby

Measuring authority: NRA-N
First year: 1971
Hydrometric statistics for 1991

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	Nov	DEC	Year
Flows Avg.	0.273	0.411	0.255	0.144	0.092	0.074	0.056	0.049	0.042	0.053	0.163	0.129	0.143
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	1.08	2.96	1.29	0.31	0.16	0.13	0.12	0.15	0.08	0.31	1.10	1.11	2.96
Runoff (mm)	49	67	46	25	17	13	10	9	7	10	28	23	305
Rainfall (mm)	61	95	42	46	26	56	43	36	37	73	88	46	649
Monthly and yearly statistics for previous record (May 1971 to Dec 1990)													
Maan Avg.	0.296	0.285	0.287	0.243	0.172	0.126	0.106	0.125	0.115	0.162	0.193	0.270	0.198
flows Low	0.082	0.094	0.076	0.066	0.069	0.062	0.044	0.038	0.039	0.049	0.058	0.132	0.083
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	0.630	0.729	0.821	0.771	0.544	0.239	0.188	0.427	0.532	0.556	0.507	0.543	0.305
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	3.56	4.38	5.68	9.36	7.56	1.99	3.14	15.53	12.83	3.50	4.01	7.66	15.53
Runotf (mm)	54	47	52	43	31	22	19	23	20	29	34	49	422
Rainfall (mm)	78	51	71	56	59	63	61	74	69	78	76	78	814
Factors affecting runoff: N (1991 runoff is													

Factors affecting runoff: N
Station type: FV

Grid reference: 45 (NZ) 585087 Level stn. (m OD): 101.30

Catchment area ($\mathrm{sq} \mathbf{~ k m}$): 14.8
Max alt. (m OD): 335 rainfall 80%

025020 Skerne at Preston le Skerne

Measuring authority: NRA-N
First year: 1972
Hydrometric statistics for 1991

	JAN	FEB	MAR	APR	MAY	JUN	Jut	AUG	SEP	OCT	Nov	DEC	Year
Flows Avg.	1.326	2.471	1.792	0.373	0.242	0.258	0.189	0.157	0.133	0.145	0.305	0.477	0.645
$\left(m^{3} s^{-1}\right)$: Peak	7.45	12.83	13.16	0.69	0.67	0.64	0.54	0.65	0.37	1.31	1.56	5.90	13.16
Runoff (mm)	24	41	33	7	4	5	3	3	2	3	5	9	138
Rainfall (mm)	49	83	58	29	18	57	45	28	31	53	61	46	558
Monthly and yearly statistics for previous record (Dec 1972 to Dec 1990-incomplete or missing months total 0.3 years)													
Mean Avg.	1.532	1.209	1.294	0.941	0.649	0.435	0.386	0.380	0.324	0.763	0.837	1.353	0.841
flows Low	0.337	0.481	0.293	0.162	0.168	0.112	0.121	0.077	0.082	0.099	0.129	0.325	0.266
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ Migh	3.376	2.731	4.824	2.734	2.106	1.004	1.125	0.943	0.745	4.290	1.962	4.658	1.510
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	20.08	12.93	26.58	19.20	11.93	16.54	15.92	13.69	9.33	21.71	17.40	24.82	26.58
Runoff (mm)	28	20	24	17	12	8	7	7	6	14	15	25	181
Rainfall (mm)	59	38	54	43	51	54	48	62	56	60	57	60	642

Factors affecting runoff: E
Station type: VA

Grid reference: 45 (NZ) 292238
Level stn. (m OD): 67.50

1991 runoff is 77% of previous mean rainfall 87%

026003 Foston Beck at Foston Mill

Measuring authority: NRA-Y
First year: 1959
Hydrometric statistics for 1991

Factors affecting runoff: N
Station type: TP

Grid reference: 54 (TA) 093548 Level stn. (m OD): 6.40

Catchment area (sq km): 57.2
Max alt. (m OD): 164 rainfall 66\%

026005 Gypsey Race at Boynton

Measuring authority: NRA-Y First yoar: 1981
Hydrometric statistics for 1991

Factors affecting runoff: GI
Station type: FV

Grid reference: 54 (TA) 137677 Level stn. (m OD): 16.80

Catchment area (sq km): 240.0 Max att. (m OD): 211

027007 Ure at Westwick Lock

Measuring authority: NRA-Y
First year: 1958
Hydrometric statistics for 1991

	JAN	FEB	MAA	APR	MAY	JuN	Jut	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	46.090	52.260	37.460	20.660	4.920	8.896	4.686	3.529	4.662	12.380	43.950	26.560	21.953
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	251.30	625.90	170.20	164.80	- 8.63	46.05	21.19	11.12	39.61	156.70	187.50	191.80	625.90
Runoff (mm)	135	138	110	59	14	25	14	10	13	36	125	78	757
Rainfall (mm)	129	151	111	81	17	87	37	33	56	103	166	90	1061
Monthly and yearly statistics for previous record (Oct 1958 to Dec 1990-incomplete or missing months total 0.5 years)													
Mean Avg.	33.980	30.250	27.440	20.080	12.540	8.455	7.980	11.520	13.340	21.850	28.120	32.990	20.676
flows Low	4.009	3.886	10.250	5.674	3.831	3.024	2.202	1.287	1.450	5.856	7.078	11.330	12.946
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \quad \mathrm{High}$	59.590	84.770	60.330	40.980	29.500	21.400	20.130	31.600	33.030	68.480	65.010	57.370	27.066
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	537.90	307.70	413.10	263.30	170.80	161.50	153.30	271.90	296.20	266.50	288.80	304. 10	537.90
Runoff (mm)	100	81	80	57	37	24	23	34	38	64	80	97	713
Rainfall (mm)	121	87	96	77	72	71	75	90	93	108	117	126	1133
Factors affecting runoff: S P													

Monthly and yearly statistics for previous record (Oct 1958 to Dec 1990 -incomplete or missing months total 0.5 years)

Flows Avg.	46.090	52.260	37.460	20.660	4.920	8.896	4.686	3.529	4.662	12.380	43.950	26.560	21.953
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	251.30	625.90	170.20	164.80	- 8.63	46.05	21.19	11.12	39.61	156.70	187.50	191.80	625.90
Runoff (mm)	135	138	110	59	14	25	14	10	13	36	125	78	757
Rainfall (mm)	129	151	111	81	17	87	37	33	56	103	166	90	1061
Monthly and yearly statistics for previous record (Oct 1958 to Dec 1990-incomplete or missing months total 0.5 years)													
Mean Avg.	33.980	30.250	27.440	20.080	12.540	8.455	7.980	11.520	13.340	21.850	28.120	32.990	20.676
flows Low	4.009	3.886	10.250	5.674	3.831	3.024	2.202	1.287	1.450	5.856	7.078	11.330	12.946
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	59.590	84.770	60.330	40.980	29.500	21.400	20.130	31.600	33.030	68.480	65.010	57.370	27.066
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	537.90	307.70	413.10	263.30	170.80	161.50	153.30	271.90	296.20	266.50	288.80	304. 10	537.90
Runoff (mm)	100	81	80	57	37	24	23	34	38	64	80	97	713
Rainfall (mm)	121	87	96	77	72	71	75	90	93	108	117	126	1133
Factors affecting runoff: S P $\quad 1991$ runoff is 106% of previous mean													

Factors affecting runoff: S P
Station type: B VA

Grid reference: 44 (SE) 356671 Level stn. (m OD): 14.20

Catchment area (sq km): 914.6 Max alt. (m OD): 713

027025 Rother at Woodhouse Mill

Measuring authority: NRA-Y
First year: 1961
Grid reference: 43 (SK) 432857
Level stn. (m OO): 28.70
Catchment area (sq km): 352.2
Hydrometric statistics for 1991

Flows$\left(\mathrm{m}^{3} 5^{-1}\right)$:Runoff (mm)	JAN	FEB	MAR	APA	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
	8.999	4.984	5.099	2.730	1.639	1.543	1.577	1.059	1.402	1.367	2.629	3.926	3.075
	47.14	17.90	11.95	8.54	3.50	6.29	11.11	1.53	11.57	12.02	11.41	41.57	47.14
	68	34	39	20	12	11	12	8	10	10	19	30	275
Rainfall (mm)	75	50	48	56	13	59	51	9	43	54	68	53	579
Monthly and yearly statistics for previous record (Oct 1961 to Dec 1990-incomplete or missing months total 2.5 years)													
Mean Avg.	6.896	6.893	6.338	5.240	3.716	2.915	1.965	1.981	2.096	2.863	4.428	6.296	4.290
flows Low	1.287	1.424	1.830	1.400	1.257	1.166	0.934	0.760	0.712	0.693	1.023	2.393	2.540
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	13.000	22.440	14.330	13.160	10.110	10.840	4.907	3.323	7.786	7.600	8.200	18.140	6.364
Peak flow ($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$)	60.30	78.80	53.21	78.14	61.40	105.40	45.63	33.55	45.59	41.74	50.55	91.46	105.40
Runoff (mm)	52	48	48	39	28	21	15	15	15	22	33	48	384
Rainfall (mm)	72	60	67	62	61	65	53	62	60	65	72	77	776
Factors affecting runoff: SRPGEI Station type: VA										1991 runoff is 72% of previous mean rainfall 75\%			

027042 Dove at Kirkby Mills

Measuring authority: NRA-Y
First year: 1972
Hydrometric statistics for 1991

	JAN	FEB	MAF	APR	MAY	JUN	JUL	AUG	SEP	ОСT	NOV	DEC	Year
Flows Avg.	1.663	2.630	1.694	0.740	0.408	0.452	0.253	0.183	0.170	0.254	1.053	0.664	0.835
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	5.09	41.51	10.72	1.15	0.66	1.22	0.71	0.29	0.31	2.06	9.34	3.74	41.51
Runoff (mm)	75	107	77	32	18	20	11	8	7	11	. 46	30	445
Rainfall (mm)	69	100	65	38	19	69	29	26	43	79	113	43	693
Monthly and yearly statistics for previous record (Feb 1972 to Dec 1990)													
Mean Avg.	1.662	1.588	1.649	1.198	0.802	0.617	0.514	0.553	0.631	0.990	1.152	1.642	1.081
flows Low	0.589	0.541	0.347	0.376	0.329	0.279	0.211	0.161	0.186	0.251	0.499	0.853	0.576
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	2.861	3.180	4.701	2.915	1.702	1.099	1.021	1.397	2.743	2.683	2.032	3.237	1.554
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	37.45	36.68	40.93	27.63	30.01	7.43	19.33	32.36	56.38	24.71	23.85	53.38	56.38
Runoff (mm)	75	66	75	52	36	27	23	25	28	45	50	74	577
Rainfall (mm)	95	62	86	60	65	65	69	75	81	92	84	96	930
Factors affecting runoff: N										1991 runoff is 77% of previous mean rainfall 75%			

Grid reference: 44 (SE) 705855
Level stn. (m OD): 35.60

Catchment area (sq km): 59.2 Max alt. (m OD): 433

Measuring authority: NRA-Y
First year: 1970
Hydrometric statistics for 1991

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	8.342	12.560	6.718	2.217	1.181	1.195	0.802	0.499	0.446	0.949	5.813	3.476	3.624
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	42.68	107.20	56.65	5.38	2.11	3.07	2.78	1.01	0.76	9.46	63.61	28.27	107.20
Runaff (mm)	73	99	58	19	10	10	7	4	4	8	49	30	371
Rainfall (mm)	70	100	61	40	23	70	40	29	37	90	112	48	720

Monthly and yearly statistics for previous record (Oct 1970 to Dec 1990-incomplote or missing months total 1:6 years)

Mean Avg.	8.276	7.131	7.623	5.083	3.319	2.239	1.976	2.680	1.725	3.642	5.715	8.589	4.829
flows Low	1.823	1.917	1.497	1.041	1.004	0.827	0.453	0.268	0.497	0.675	1.794	2.539	2.228
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \quad \mathrm{High}$	13.110	21.220	30.470	19.380	9.565	5.231	6.585	8.766	3.742	11.350	13.140	18.770	7.574
Peak flow ($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$)	159.30	198.10	358.70	191.70	144.00	106.80	165.70	276.00	89.97	156.80	88.38	350.10	358.70
Runoff (mm)	72	57	66	43	29	19	17	23	15	32	48	75	495
Rainfall (mm)*	76	60	87	58	49	80	67	89	54	109	79	87	895

Rainfall (mm)*
Factors affecting runoff: N
Station type: VA

Grid reference: $45(\mathrm{NZ}) 865081$ Level stn. (m OD): 4.90

Catchment area (sq km): 308.0 Max alt. (m OD): 435

991 runoff is 75% of previous mean rainfall 80\%

027071 Swale at Crakehill

1991

Measuring authority: NRA-Y
Grid reference: 44 (SE) 425734 Level stn. (m OD): 12.00

Catchment area (sq km): 1363.0 Max alt. (m OD): 713
Hydrometric statistics for 1991

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	Nov	DEC	Year
Flows Avg.	44.070	47.040	40.570	15.350	5.802	7.954	4.024	2.997	3.625	7.451	29.990	19.010	18.812
$\left(m^{3} s^{-1}\right)$: Peak	179.00	225.50	146.20	84.08	8.92	35.17	8.37	5.66	14.31	74.56	112.60	113.20	225.50
Runoff (mm)	87	84	80	29	11	15	8	6	7	15	57	37	435
Rainfall (mm)	86	108	77	54	16	68	31	29	43	79	110	53	754

Monthly and yearly statistics for previous record (Nov 1955 to Dec 1990 -incomplote or missing months total 0.3 years)

| Mean | Avg. | 32.840 | 28.900 | 26.260 | 19.330 | 13.060 | 9.477 | B.716 | 12.140 | 11.570 | 18.890 | 23.280 | 29.360 | 19.454 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

lows	Low	6.906	5.465	7.465	7.120	4.	3.739	2.712	1.959	2.082	4.	7.131	7	
	High	56.800	64.050	71.680	46.690	32.370	23.110	21.790	50.310	33.140	53.710	52.200	62.830	
	${ }^{3} \mathbf{s}^{-1}$	230.70	192.90	255.70	183.30	165.90	129.80	136.50	199.80	175.10	232.70	97	207	255.7

Runoff (mm)
Rainfall (mm)
Factors affecting runoff: N
Station type: C VA
1991 runoff is 97% of provious mon rainfall 89%

028015 Idle at Mattersey

1991

Measuring authority: NRA-ST
First year: 1961
Hydrometric statistics for 1991

		JAN	FEB	MAR	APR	MAY	JUN	Jul.	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	4.209	3.013	3.175	2.366	2.029	1.682	1.072	0.807	0.990	1.452	1.896	1.697	2.028
$\left(\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}\right)$:	Peak	10.42	6.86	5.54	3.63	3.00	2.16	1.98	1.18	3.80	2.51	3.84	3.69	10.42
Runof (mm)		21	14	16	12	10	8	5	4	5	7	9	9	121
Rainfall (mm)		58	41	32	50	15	55	32	7	54	41	47	30	462

Monthly and yearly statistics for previous record (Jun 1965 to Dec $\mathbf{1 9 9 0 — i n c o m p l e t e ~ o r ~ m i s s i n g ~ m o n t h s ~ t o t a l ~} 12.4$ years)

Moan Avg.	4.470	4.819	4.439	4.396	3.762	3.072	2.473	2.574	2.462	2.702	2.965	4.020	3.506
flows Low	2.155	2.556	3.227	2.216	1.465	1.274	1.130	0.859	1.080	1.785	1.900	2.649	2.251
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	6.417	8.714	7.853	6.351	6.624	5.423	6.123	5.805	4.692	4.209	5.257	8.959	5.180
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	13.31	15.12	14.89	15.01	15.16	18.52	10.28	11.30	6.17	10.52	13.77	14.11	18.52
Runoff (mm)	23	22	22	22	19	15	13	13	12	14	15	20	209
Rainfall (mm)	60	41	56	58	64	56	48	53	47	56	64	59	662
Factors affecting Station type: EM	off: SR									1991 r	f is 5	of pre	mean

Station type: EM

Grid reference: 43 (SK) 690895
Level stn. (m OD): 3.80

Catchment area ($\mathrm{sq} \mathbf{~ k m}$): 529.0 Max att. (m OD): 195

028018 Dove at Marston on Dove

Measuring authority: NRA-ST
First year: 1961
Hydrometric statistics for 1991

	JAN	FEB	MAR	APA	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	21.000	11.860	15.460	9.305	5.971	5.660	4.256	3.267	2.775	3.220	10.290	18.450	9.297
($\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	93.93	34.52	37.13	18.70	- 12.47	11.07	7.41	4.18	3.66	7.71	42.77	223.40	223.40
Runoff (mm)	64	33	47	27	18	17	13	10	8	10	30	56	332
Rainfall (mm)	70	46	61	66	9	88	71	26	41	68	87	102	735

Monthly and yearly statistics for previous record (Oct 1961 to Dec 1990 -incomplete or missing months total 0.1 years)

Mean Avg.	22.400	19.970	17.790	14.550	11.590	8.904	7.438	7.578	8.157	10.830	16.280	21.190	13.865
flows Low	7.822	4.615	8.943	6.195	4.831	3.452	2.430	1.913	2.821	3.495	5.684	7.907	7.723
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \quad \mathrm{High}$	32.880	55.910	36.570	24.550	22.480	16.280	15.530	14.630	29.350	22.830	31.070	56.460	19.411
Poak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	191.40	194.60	129.70	121.00	121.40	73.02	77.10	113.60	113.90	132.10	130.80	202.80	202.80
Runoff (mm)	68	55	54	43	35	26	23	23	'24	33	48	64	495
Rainfall (mm)	92	69	78	66	72	76	65	80	' 79	83	93	95	948
Factors affecting	off: SR									1991 r	off is 67	of prev	us mean

Station type: FVVA
Grid reference: 43 (SK) 235288
Level stn. (m OD): 47.20
Catchment area (sq km): 883.2 Max alt. (m OD): 555 rainfall 78\%

028024 Wreake at Syston Mill
Measuring authority: NRA-ST First year: 1967
Hydrometric statistics for 1991

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	5.696	4.730	3.508	1.156	0.860	0.794	0.757	0.517	0.684	0.674	1.323	1.484	+:1.834
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	28.12	26.50	18.75	2.24	2.77	1.95	4.14	0.78	5.62	$2.6{ }^{\text { }}$	4.27	9.23	28.12
Runoff (mm)	37	28	23	7	6	5	5	3	4	4	8	10	140
Rainfall (mm)	64	43	31.	50	13	70	51	21	80	33	45	29	530
Monthly and yearly statistics for previous record (Aug 1967 to Dec 1990 -incomplete or missing months total 1.6 years)													
Meán Avg.	5.623	6.058	4.807	3.556	2.133	1.151	0.907	0.828	0.757	1.346	2.349	4.280	2.801
flows Low	0.959	0.619	0.494	0.358	0.286	0.222	0.137	0.122	0.254	0.264	0.418	0.745	0.923
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \quad \mathrm{High}$	10.150	21.740	12.630	8.772	8.117	2.776	4.547	3.230	5.367	6.897	7.087	11.850	4.396
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	43.11	73.37	99.82	97.07	51.83	39.17	26.88	30.44	21.61	31.68	50.25	52.95	99.82
Rurioff (mm)	36	36	31	22	14	7	6	5	5	9	15	28	214
Rainfall (mm) ${ }^{*}$ -(1971-1990)	54	46	53	47	51	60	45	59	50	53	50	58	626
Factors affecting runoff: GE Station type: EM										1991 runoff is 65% of previous mean rainfall 85%			

028026 Anker at Polesworth

Measuring authority: NRA-ST Firsst year: 1966
Hydrometric statistics for 1991

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	6.921	3.519	3.649	2.318	1.552	1.308	1.571	0.913	1.261	1.029	1.982	1.423	2.283
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	36.65	8.72	9.73	15.27	7.41	4.22	11.83	3.06	11.49	6.48	6.86	3.44	36.65
Runoff (mm)	50	23	27	16	11	9	11	7	9	7	14	10	196
Rainfall (mm)	68	35	42	68	11	67	84	19	71	45	44	20	574
Monthly and yearly statistics for previous record (Oct 1966 to Dec 1990-incomplete or missing months total 2.6 years)													
Mean Avg.	5.170	5.477	4.236	2.874	2.307	1.796	1.332	1.366	$1.234{ }^{\prime}$	1.882	2.516	4.156	2.851
flows Low	1.298	0.953	0.650	0.657	0.686	0.484	0.343	0.405	0.711^{\prime}	0.728	0.855	1.175	1.213
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	9.572	16.200	9.233	6.629	8.389	4.650	5.580	4.173	3.274	4.611	5.537	9.473	3.724
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	75.63	73.18	56.09	45.84	59.77	52.68	59.34	45.03	31.34	36.25	45.77	74.01	75.63
Runoff (mm)	38	36	31	20	17	13	10	10	9	14	18	30	244
Rainfall (mm)* '(1971-1990)	58	53	55	43	51	62	45	56	57	55	51	63	649
Factors affecting runoff: GE Station type: C VA										1991 runoff is 80% of previous mean rainfall $\mathbf{8 8} \%$			

-(1971-1990)
Factors affecting runoff: GE
Station type: C VA

Grid reference: 43 (SK) 263034 Level stn. (m OD): 60.40

Catchment area (sq km): 368.0 Max alt. (m OD): 278

Grid reference: 43 (SK) 615124
Level stn. (m OD): 47.70

Catchment area (sq km): 413.8
Max alt. (m OD): 230
Max alt. (m OD). 230

Monthly and yearly statistics for previous record (Aug 1967 to Dec 1990 -incomplete or missing months total 1.6 years)

Factors affecting runoff: GE rainfall 85%

199

028031 Manifold at Ilam

Measuring authority: NRA-ST
First year: 1968
Hydrometric statistics for 1991

	JAN	FEB	MAR	APR	MAY	JuN	JUL.	AUG	SEP	OCT	NOV		Year
Flows Avg.	5.455	3.265	4.119	2.278	1.114	1.086	0.781	0.574	0.462	0.716	3.728	6.231	2.484
$\left(m^{3} s^{-1}\right)$: Peak	33.41	17.02	12.24	6.00	2.77	3.30	1.15	0.78	0.58	11.67	22.36	160.50	160.50
Runoff (mm)*	98	53	74	40	20	19	14	10	8	13	.65	112	528
Rainfall (mm)	78	53	69	71	11	102	75	30	45	84	100	125	843
Monthly and yearly statistics for previous record (May 1968 to Dec 1990 -mincomplete or missing months total 0.1 years)													
Mean Avg.	6.224	5.197	5.003	3.720	2.406	1.890	1.535	1.810	1.770	3.011	4.898	5.321	3.558
flows Low	2.561	2.489	2.528	1.277	0.812	0.745	0.493	0.386	0.458	0.716	1.555	2.135	2.241
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \quad$ High	8.522	12.710	9.455	6.200	5.713	5.150	3.505	4.560	4.147	6.697	8.198	9.995	4.806
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	80.13	74.53	66.72	47.36	52.40	39.58	37.29	137.00	45.69	75.78	91.61	66.25	137.00
Runoff (mm)	112 '	85	90	65	43	33	28	33	31	54	85	96	756
Rainfall (mm)* -(1969-1990)	122	85	98	74	73	82	71	79	84	99	115	112	1094
Factors affecting runoff: P.E Station type: C										1991 runoff is 70% of previous mean rainfall 77\%			

028039 Rea at Calthorpe Park
Measuring authority: NRA-ST
First year: 1967
Hydrometric statistics for 1991

	JAN	FEB	MAR	APR	MAY	JuN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	1.533	0.868	1.008	0.819	0.380	0.491	0.776	0.287	0.505	0.483	0.753	0.380	689
$\left(m^{3} s^{-1}\right)$: Peak	22.41	3.67	8.35	11.97	1.37	7.63	23.38	4.18	14.36	16.71	11.30	3.52	23.38
Runoff (mm)	55.	28	36	29	14	17	28	10	18	17	26	14	294
Rainfall (mm)	88	39	66	76	12	68	100	21	72	53	65	15	675
Monthly and yearly statistics for previous record (May 1967 to Dec 1990 -incomplete or missing months total 1.1 vears)													
Mean Avg.	1.183	1.071	1.021	0.801	0.730	0.662	0.519	0.639	0.608	0.683	0.848	1.109	0.822
flows Low	0.483	0.549	0.475	0.316	0.319	0.287	0.257	0.356	0.295	0.320	. 0.493	0.490	0.602
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right.$) High	1.985	2.610	2.101	1.489	1.780	1.324	1.018	1.366	1.423	1.408	1.753	1.934	1.058
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	36.71	27.44	28.64	25.15	30.37	37.44	46.86	46.38	40.85	24.68	24.97	54.02	54.02
Runoff (mm)	43	35	37	28	26	23	19	23	21	25	30	40	351
Raintall (mm) ${ }^{*}$ -(1968-1990)	77	61	66	56	64	64	55	72	66	64	70	79	794
Factors affecting runoff: E Station type: CVA										1991 runoff is 84% of previous mean rainfall 85%			

028052 Sow at Great Bridgford

1991

Measuring authority: NRA-ST
First yoar: 1971
Hydrometric statistics for 1991

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	1.822	0.890	1.305	0.757	0.575	0.555	0.424	0.350	0.277	0.317	0.564	0.771	0.718
$\left(m^{3} s^{-1}\right)$: Poak	7.83	1.94	3.38	2.25	0.98	1.16	0.95	0.61	0.42	0.55	2.05	6.73	7.83
Runoff (mm)	30	13	21	12	9	9	7	6	4	5	9	13	139
Rainfall (mm)	60	29	54	55	10	78	76	27	41	48	67	54	599
Monthly and yearly statistics for previous record (Jun 1971 to Dec 1990-incomplete or missing months total 2.5 years)													
Mean Avg.	1.871	1.957	1.649	1.269	0.914	0.781	0.605	0.765	0.558	0.851	1.028	1.579	1.149
flows Low	0.753	0.789	0.832	0.520	0.474	0.315	0.174	0.138	0.328	0.334	0.379	0.524	0.711
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	2.715	4.607	3.448	2.258	1.925	1.426	1.388	3.047	0.818	1.731	2.030	2.561	1.593
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	11.07	18.82	9.21	9.86	18.05	9.78	10.89	15.11	3.51	9.54	7.20	12.72	18.82
Runoff (mm) .	31	29	27	20	15	12	10	13	9	14	16	26	223
Rainfall (mm)	71	58	64	46	58	63	52	60	72	67	69	72	752

Factors affecting runoff: G
Station type: FVVA

Grid reference: 33 (SJ) 883270 Level stn. (m OD): 77.10

Catchment area (sq km): 163.0 Max att. (m OD): 168

028067 Derwent at Church Wilne

1991

Measuring outhority: NRA-ST
First year: 1973
Hydrometric statistics for 1991

Grid reference: 43 (SK) 438316
Level sin. (m OD): 31.00
Catchment area (sq kmi: 1177.5 Max alt. (m OD): 636 rainfall 79%

028080 Tame at Lea Marston Lakes

Measuring authority: NRA-ST
First year: 1957
Hydrometric statistics for 1991

		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	20.780	13.110	15.840	12.870	9.390	10.290	12.070	8.746	10.360	9.352	13.200	9.168	12.094
$\left(m^{3} s^{-1}\right)$:	Peak	89.68	31.50	47.84	70.65	22.48	39.26	76.12	21.84	69.45	57.59	53.83	25.03	89.68
Runoff (mm)		70	40	53	42	31	33	40	29	34	31	43	31	477
Rainfall (mm)		77	34	55	72	12	68	95	21	71	48	58	17	628

Monthly and yearly statistics for previous record (Oct 1957 to Dec 1990 -incomplete or missing months total 0.3 years)

Mean Avg.	17.710	17.230	15.500	13.880	12.410	11.430	10.310	10.950	11.000	12.060	14.130	16.750	13.597
flows Low	8.994	8.855	8.797	7.259	7.321	6.655	6.369	6.978	6.655	7.852	7.876	9.057	9.699
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	26.700	35.140	26.590	22.000	24.690	18.990	17.210	16.970	19.440	25.600	27.880	32.880	17.355
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	122.20	133.40	86.27	110.80	121.60	159.70	94.78	153.20	92.33	76.24	127.60	219.20	219.20
Runoff (mm)	59	53	52	45	42	37	35	37	36	40	46	56	537
Rainfall (mm)	66	51	55	53	58	59	55	70	61	61	64	73	726

g runoff: E1
Station type: C
Grid reference: 42 (SP) 207937
Level stn. (m OD): 66.20
Catchment area (sq km): 799.0 Max alt. (m OD): 267 $\begin{array}{llllllllllllllll}\left(m^{3} s^{-1}\right) & H i g h & 26.700 & 35.140 & 26.590 & 22.000 & 24.690 & 18.990 & 17.210 & 16.970 & 19.440 & 25.600 & 27.880 & 32.880\end{array}$ $\begin{array}{lllll}\text { Peak flow }\left(\mathrm{m}^{3} \mathrm{~g}^{-1}\right) & 122.20 & 133.40 & 86.27 & 110.80\end{array}$ Runoff (mm)

028082 Soar at Littlethorpe

1991

Moosuring authority: NRA-ST
First yoar: 1971
Hydrometric statistics for 1991

	JAN	FEB	MAR	APA	MAY	JUN	Jut	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	2.854	1.660	1.555	0.996	0.743	0.580	0.628	0.366	0.419	0.425	0.756	0.554	0.959
$\left(m^{3} s^{-1}\right)$: Poak	16.32	4.49	4.06	5.27	3.07	1.41	3.73	1.07	3.17	2.17	5.56	1.10	16.32
Runoff (mm)	42	22	23	14	11	8	9	5	6	6	11	8	164
Rainfall (mm)	71	36	37	69	13	70	87	19	72	44	41	19	578
Monthly and yearly statistics for previous record (Aug 1971 to Dec 1990-incomplete or missing months total 0.2 years)													
Mean Avg.	2.663	2.696	2.307	1.565	1.041	0.937	0.531	0.666	0.541	0.888	1.257	2.317	1.445
flows Low	0.713	0.568	0.424	0.346	0.350	0.245	0.164	0.224	0.307	0.338	0.398	0.643	0.644
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	4.661	6.868	5.031	3.105	2.654	2.346	1.447	2.242	1.608	2.921	2.714	5.101	2.133
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	23.49	24.47	20.78	21.18	14.93	15.78	13.71	20.41	15.94	19.81	16.59	22.46	24.47
Runotf (mm)	39	36	34	22	15	13	8	10	8	13	18	34	248
Rainfall (mm)' -(1972-1990)	55	47	52	43	52	64	44	59	50	54	51	64	635
Factors affecting runoff: E Station typa: EM										1991 runoff is 66% of previous mean rainfall 91\%			

029003 Lud at Louth

Measuring authority: NRA-A
First year: 1968
Hydrometric statistics for 1991

$\begin{array}{ll} \text { Flows } & \text { Avg. } \\ \left(m^{3} s^{-1}\right): & \text { Peak } \end{array}$	$\begin{aligned} & \text { JAN } \\ & 0.184 \end{aligned}$	$\begin{aligned} & \text { FEB } \\ & 0.213 \end{aligned}$	$\begin{aligned} & \text { MAR } \\ & 0.242 \end{aligned}$	$\begin{aligned} & \text { APR } \\ & 0.225 \end{aligned}$	MAY 0.205	$\begin{aligned} & \text { JUN } \\ & 0.186 \end{aligned}$	$\begin{aligned} & \text { JUL } \\ & 0.168 \end{aligned}$	$\begin{aligned} & \text { AUG } \\ & 0.155 \end{aligned}$	$\begin{aligned} & \text { SEP } \\ & 0.166 \end{aligned}$	$\begin{aligned} & \text { OCT } \\ & 0.154 \end{aligned}$	NOV 0.152	$\begin{aligned} & \text { DEC } \\ & 0.153 \end{aligned}$	Year 0.183
Runoff (mm)	9	9	12	11	10	9	8	8	8	7	7	7	105
Rainfall (mm)	42	52	35	43	12	52	22	6	81	32	53	34	464
Monthly and yearly statistics for previous record (Aug 1968 to Dec 1990)													
Mean Avg.	0.624	0.790	0.751	0.692	0.562	0.435	0.336	0.281	0.240	0.248	0.308	0.398	0.470
flows Low	0.139	0.157	0.162	0.150	0.156	0.131	0.112	0.102	0.112	0.127	0.125	0.125	0.178
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	1.279	1.428	1.338	1.289	1.177	0.687	0.507	0.414	0.625	0.719	1.158	0.911	0.703
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	3.70	3.81	3.58	5.06	3.51	3.27	3.40	3.10	3.30	2.96	6.77	3.10	6.77
Runoff (mm)	30	35	36	33	27	20	16	14	11	12	14	- 19	269
Rainfall (mm)	66	47	63	51	54	58	49	60	52	57	66	65	688
Factors affecting runoff: G													

Factors affecting runoff: G
Station type: \mathbf{C}

Grid reference: 53 (TF) 337879
Level stn. (m OD): 15.40

Catchment area (sq km): 55.2 Max alt. (m OD): 149

1991 runoff is 39% of previous mean rainfall 67%

030004 Partney Lymn at Partney Mill

Measuring authority: NRA-A
First year: 1962
Hydrometric statistics for 1991

		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	0.428	0.435	0.410	0.220	0.192	0.161	0.115	0.083	0.119	0.134	0.190	0.217	0.224
$\left(\mathrm{~m}^{3} \mathbf{s}^{-1}\right):$	Peak	1.74	2.79	1.09	0.43	0.37	0.25	0.21	0.13	0.92	0.23	0.35	1.00	2.79
Runnff (mm)	19	17	18	9	8	7	5	4	5	6	8	9	115	
Rainfall (mm)	51	41	32	38	13	64	28	7	83	27	52	34	$\mathbf{4 7 0}$	

Monthly and yearly statistics for previous record (Jun 1962 to Dec 1990-incomplete or missing months total 0.3 years)

Mean Avg.	0.838	0.767	0.712	0.612	0.451	0.321	0.270	0.282	0.278	0.386	0.534	0.705	0.512
flows Low	0.351	0.300	0.276	0.222	0.196	0.116	0.088	0.107	0.121	0.157	, 0.193	0.210	0.251
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	1.574	1.838	1.538	1.518	0.886	0.691	0.862	0.593	0.917	1.144	1.112	1.804	0.754
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	10.01	12.59	7.71	13.34	11.30	8.13	13.38	7.06	6.64	8.07	10.17	8.48	13.38
Runotf (mm)	36	30	31	26	20	14	12	12	12	17	22	31	262
Rainfall (mm)	61	47	60	53	56	58	52	65	51	53	68	63	687
Factors affecting Station type: C	off: PI										off is 4 fall 68	of prev	s mea

030012 Stainfield Beck at Stainfield

1991

Measuring authority: NRA-A
First year: 1970
Hydrometric statistics for 1991

		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NoV	DEC	Year
Flows	Avg.	0.093	0.178	0.242	0.081	0.047	0.021	0.010	0.004	0.007	0.009	0.018	0.024	0.061
$\left(m^{3} s^{-1}\right)$:	Peak	0.40	2.10	0.68	0.15	0.10	0.04	0.03	0.01	0.08	0.03	0.04	0.17	2.10
Runoff (mm)		7	12	17	6	3	1	1	0	0	1	1	2	51
Rainfall (mm)		40	47	33	36	12	60	22	8	73	32	44	31	438

Monthly and yearly statistics for previous record (Dec 1970 to Dec 1990 -incomplete or missing months total 0.7 years)

| Mean | Avg. | 0.580 | 0.574 | 0.488 | 0.280 | 0.179 | 0.090 | 0.073 | 0.047 | 0.048 | 0.137 | 0.203 | 0.402 | 0.257 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| flows | Low | 0.163 | 0.114 | 0.077 | 0.050 | 0.032 | 0.019 | 0.006 | 0.006 | 0.008 | 0.011 | 0.017 | 0.027 | 0.100 |
| $\left(\mathrm{~m}^{3} \mathrm{~s}^{-1}\right)$ | High | 1.050 | 1.521 | 1.078 | 0.838 | 0.496 | 0.202 | 0.523 | 0.161 | 0.197 | 0.780 | 0.729 | 1.084 | 0.414 |
| Peak flow $\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ | 21.53 | 11.04 | 10.00 | 12.42 | 8.58 | 4.23 | 17.57 | 5.91 | 3.93 | 12.33 | 6.41 | 7.49 | 21.53 | |
| Runoff (mm) | 42 | 38 | 35 | 19 | 13 | 6 | 5 | 3 | 3 | 10 | 14 | 29 | 217 | |
| Rainfall (mm) | 60 | 44 | 59 | 46 | 50 | 54 | 44 | 55 | 47 | 52 | 55 | 58 | 624 | |

Factors affecting runoff: I
Station type: CC

Grid reference: 53 (TF) 127739
Level stn. (m OD): 7.70
Catchment area (sq km): 37.4
Max alt. (m OD): 134

991 runoff is 24% of previous mean rainfall 70\%

031010 Chater at Fosters Bridge

Measuring authority: NRA-A
First year: 1968
Grid reference: 43 (SK) 961030 Level stn. (m OD): 38,40

Catchment area (sq km): 68.9 Max alt. (m OD): 230

Hydrometric statistics for 1991

031021 Welland at Ashley

Moasuring authority: NRA-A
First year: 1970
Hydrometric statistics for 1991

	JAN	FEB	MAR	APR	MAY	JUN	JUl.	AUG	SEP	OC	NO	DE	Year
Flows Avg.	2.047	1.726	1.526	0.545	0.408	0.316	0.214	0.150	0.182	0.166	0.798	0.457	0.706
$\left(\mathrm{m}^{3} \mathrm{~B}^{-1} \mathrm{f}\right.$: Poak	19.24	14.59	4.74	5.04	2.22	1.01	0.78	0.59	1.38	1.54	9.31	2.09	19.24
Runotf (mm)	22	17	16	8	4	3	2	2	2	2	8	5	89
Rainfall (mm)	64	41	32	60	12	81	62	24	74	39	54	22	565
Monthly and yearly statistics for previous recoid (Oct 1970 to Dec 1990-incomplete of missing months total 2.2 years)													
Moan Avg.	2.481	2.499	2.448	1.656	0.820	0.479	0.330	0.479	0.283	0.513	0.954	2.071	1.246
flowa Low	0.370	0.301	0.228	0.174	0.180	0.130	0.095	0.114	0.109	0.151	0.187	0.284	0.691
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	3.886	5.844	5.431	4.131	2.560	1.330	1.205	3.202	0.707	2.406	3.274	4.472	2.235
Poak flow ($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$)	23.58	39.61	28.41	39.26	25.50	17.58	15.87	35.82	8.06	23.60	23.77	36.17	39.61
Runoff (mm)	27	24	26	17	9	5	4	5	3	5	10	22	157
Rainfall (mm)	57	43	54	46	52	61	48	62	49	57	56	60	645

Factors affecting runoff: El
Station type: C VA

Grid reference: 42 (SP) 819915
Level stn. (m OD): 55.70
Catchment area (sq km): 250.7 Max alt. (m OD): 210

1991 runoff is 57% of previous mean rainfall 88%

032003 Harpers Brook at Old Mill Bridge

Moasuring authority: NRA-A
First year: 1938
Hydrometric statistics for 1991

	JAN	FEB	MAA	APA	MAY	JUN	JUL	AUG	SEP	OCT	Nov	DEC	Year
Flows Avg,	0.334	0.489	0.423	0.155	0.123	0.117	0.089	0.075	0.085	0.074	0.191	0.117	0.187
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	3.01	7.98	1.66	0.74	0.41	0.35	0.30	0.18	0.44	0.26	2.74	0.28	7.98
Runoff (mm)	12	16	15	5	4	4	3	3	3	3	7	4	80
Rainfall (mm)	57	50	30	54	11	76	45	19	65	29	63	20	519

Monthly and yearly statistics for previous record (Dec 1938 to Dec 1990 -incomplete or missing months totat 0.6 yoars)

Moan	Avg.	0.778	0.807	0.708	0.493	0.307	0.198	0.145	0.152	0.142	0.213	0.419	0.582	0.410
flows	Low	0.097	0.080	0.076	0.066	0.056	0.049	0.052	0.048	0.049	0.057	0.069	0.077	0.159
$\left(m^{3} \mathrm{~s}^{-1}\right)$	High	2.766	2.485	2.363	1.334	1.246	0.606	0.685	0.791	1.147	1.176	1.688	1.762	0.676
Peak flow	$\left.\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$	16.06	18.58	17.01	22.00	18.65	10.54	12.49	20.50	6.80	16.58	11.74	17.90	22.00
Runotf (mm		28	26	26	17	11	7	5	5	5	8	15	21	174
Rainfall (mm		58	42	48	45	51	52	52	62	49	53	60	57	629

Factors affocting runoff: N
Station type: CC

Grid reference: 42 (SP) 983799 Level stn. (m OD): 30.30

Catchment area (sq km): 74.3
Max alt. (m OD): 146

1991 runoff is 46% of previous mean rainfall 83\%

033006 Wissey at Northwold

Moasuring authority: NRA-A
First yoar: 1956
Hydrometric statistics for 1991

	JAN	FEB	MAR	APR	MAY	JuN	JUL	AUG	SEP	OCT	Nov	DEC	'Year
Flows Avg.	0.969	1.244	1.344	1.014	0.766	0.689	0.499	0.292	0.228	0.242	0.419	0.536	0.683
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	1.49	2.14	2.08	1.54	1.21	1.71	0.73	0.45	0.57	0.45	1.06	1.29	2.14
Runaff (mm)	9	11	13	10	7	7	5	3	2	2	4	5	79
Rainfall (mm)	40	42	32	51	10	97	26	26	56	28	60	32	500
Monthly and yearly statistics for previous record (Mar 1956 to Dec 1990)													
Mean Avg.	2.959	3.042	2.747	2.457	1.867	1.382	1.118	0.938	0.896	1.100	1.607	2.303	1.862
flows Low	1.260	1.315	1.295	1.188	0.911	0.579	0.319	0.264	0.235	0.277	0.421	0.609	1.006
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \quad \mathrm{High}$	5.422	5.288	4.702	4.586	3.833	2.592	2.234	2.229	2.481	3.243	4.569	4.768	2.760
Poak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	9.31	11.29	12.23	8.47	5.81	3.50	3.39	4.00	4.06	7.15	13.30	8.72	13.30
Runoff (mm)	29	27	27	23	18	13	11	9	8	11	15	22	214
Rainfall (mm)	58	41	47	45	47	56	59	58	54	57	66	62	650

Factors affocting runoff: PGEI
Station type: FL

Grid reference: 52 (TL) 771965 Level stn. (m OD): 5.30

Catchment area (sq km): 274.5 Max alt. (m OD): 95

1991 runoff is 37% of previous mean rainfall 77%

033012 Kym at Meagre Farm
Measuring authority: NRA-A
First year: 1960
Hydrometric statistics for 1991

		JaN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT 0.037	NOV 0.105	DEC 0.058	Year 0.123
Flows	Avg.	0.130	0.397	0.417	0.079	0.077	0.075	0.044	0.034	0.037	0.037	0.105	0.058	0.123
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$)	Peak	0.57	9.45	2.13	0.49	0.44	0.20	0.18	0.18	0.17	0.14	0.71	0.10	9.45
Runoff (mm)		3	7	8	1	2	1	1.	1	1	1	2	1	28
Rainfall (mm)		48	48	33	47	14	76	63	14	61	23	55	14	496

Monthly and yearly statistics for previous record (May $\mathbf{1 9 6 0}$ to Dec $\mathbf{1 9 9 0 - i n c o m p l e t e}$ or missing months total 0.1 years)

Mean	Avg.	1.364	1.392	1.153	0.800	0.360	0.228	0.134	0.101	0.053	0.394	0.614	0.981	0.628
flows	Low	0.074	0.047	0.044	0.041	0.024	0.009	0.001	0.004	0.017	0.015	0.022	0.050	0.103
($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	High	3.296	5.577	3.474	2.107	1.469	1.489	2.438	1.096	0.158	3.515	3.718	3.328	1.048
Peok flow	$\mathrm{m}^{3} \mathrm{~s}^{-1}$	25.26	22.70	30.24	30.75	20.61	24.10	16.68	23.42	2.10	25.91	34.71	33.98	34.71
Runotf (mm		27	25	22	15	7	4	3	2	1	8	12	19	144
Rainfall (m)		49	39	46	49	51	57	49	55	46	52	53	56	602
Factors affocting runoff: EI Station type: CB											1991 runoff is 20% of previous mean rainfall 82\%			

Measuring authority: NRA-A
First year: 1949
Hydrometric statistics for 1991

	JAN	FEB	MAR	APR	MAV	JUN	JUL	AUG	SEP	OCT	Nov	DEC	Year
Flows Avg.	0.363	0.486	0.446	0.432	0.403	0.402	0.291	0.248	0.220	0.217	0.271	0.233	0.333
$\left(m^{3} s^{-1}\right)$: Peak	0.62		2.23	1.07	0.76	0.98	0.53	0.44	0.37	0.27		0.30	
Runoff (mm)	5	6	6	6	5	5	4	3	3	3	4	3	53
Rainfall (mm)	48	36	34	50	17	85	45	29	42	20	63	13	482

Monthly and yearly statistics for previous record (Mar 1949 to Dec 1990 -incomplete or missing months total 1.3 yaars)

Mean Avg.	1.446	1.501	1.359	1.201	0.982	0.780	0.631	0.598	0.570	0.746	0.936	1.159	0.990
flows Low	0.449	0.400	0.562	0.465	0.408	0.318	0.184	0.248	0.155	0.313	0.312	0.313	0.416
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{High}$	3.592	2.703	2.608	2.431	2.144	1.338	1.608	1.542	1.965	2.970	2.790	3.492	1.506
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	13.30	14.09	10.22	9.94	13.63	6.94	5.28	10.70	10.99	12.70	12.50	12.06	14.09
Runoff (mm)	20	18	18	16	13	10	9	8	7	10	12	16	158
Rainfall (mm)*	50	39	43	41	46	49	53	58	52	54	57	55	597

Factors affecting runoff: GEI
Station type: TP

Grid reference: 52 (TL) 466506
Level stri. (m OD): 14.70 .

Catchment area (sq km): 198.0 Max alt. (m OD): 146

033027 Rhee at Wimpole

1991

Measuring authority: NRA-A
First year: 1965
Hydrometric statistics for 1991

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	0.145	0.180	0.220	0.138	0.137	0.102	0.088	0.073	0.056	0.053	0.097	0.069	0.113
($\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	0.30	0.98	0.64	0.36	0.29	0.17	0.13	0.13	0.13	0.12	0.37	0.08	0.98
Runoff (mm)	3	4	5	3	3	2	2	2	1	1	2	2	30
Rainfall (mm)	41	37	26	48	16	78	56	29	74	20	57	10	492

Monthly and yearly statistics for previous record (Jul 1965 to Dec 1990 -incomplete or missing months total 0.1 years)

Factors affecting runoff: GEI Station type: FL

Grid reference: 52 (TL) 333485 Leval stn. (m OD): 17.90

Catchment area (sq km): 119.1 Max alt. (m OD): 168

033032 Heacham at Heacham

Measuring authority: NRA-A
First year: 1965
Hydrometric statistics for 1991

Factors affecting runoff: G I
Station type: C

Grid reference: 53 (TF) 685375
Level stn. (m OD): 9.40

Catchment area (sq km): 59.0 Max alt. (m OD): 88
rainfall 70%

034003 Bure at Ingworth

Measuring authority: NRA-A
First year: 1959
Hydrometric statistics for 1991

	JAN	FEB	MAR	APR	MAY	JuN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	1.129	0.974	0.909	0.747	0.637	0.632	0.545	0.472	0.563	0.649	0.982	0.827	0.752
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right):$ Peak	1.96	1.61	1.24	1.12	0.75	0.90	0.67	0.94	1.80	1.39	2.96	1.76	2.96
Runoff (mm)	18	14	15	12	. 10	10	9	8	9	11	15	13	144
Rainfall (mm)	47	31	27.	42	7	71	16	33	68	51	76	37	506
Monthly and yearly statistics for previous record (Jun 1959 to Dec 1990)													
Mean Avg.	1.549	1.461	1.299	1.217	0.984	0.800	0.780	0.801	0.845	0.998	1.216	1.383	1.109
flows Low	0.844	0.844	0.779	0.688	0.600	0.495	0.493	0.497	0.548	0.670	0.688	0.925	0.798
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \quad$ High	2.450	2.954	2.115	2.322	1.639	1.168	1.158	1.955	1.823	2.428	2.024	2.560	1.488
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	8.27	10.65	6.45	18.30	6.07	3.79	3.47	12.82	9.26	10.17	10.05	9.63	18.30
Runotf (mm)	25	22	21	19	16	13	13	13	13	16	19	22	213
Rainfat (mm)	61	42	50	49	47	50	58	59	55	62	72	66	671
Factors affecting runoff: G I Station type: MIS										1991 runoff is 68% of previous mean rainfall 75\%			

034004 Wensum at Costessey Mill

035008 Gipping at Stowmarket

Measuring outhority: NRA-A
First ybar: 1964
Hydrometric statistics for 1991

037001 Roding at Redbridge

Moasuring outhority: NRA-T
First year: 1950
Hydrometric statistics for 1991

Station typo: EW

Grid reference: 51 (TQ) 415884
Level stn. (m OD): 5.70

Catchment area (sq km): 303.3
Max alt. (m OD): 117
rainfall 84%

037005 Colne at Lexden

Measuring authority: NRA-A
First year: 1959
Hydrometric statistics for 1991

		JAN	FEB	MAR	APR	MAY	JUN	JUL
Flows	Avg,	0.721	1.036	0.746	0.473	0.439	0.452	0.370
$\left(m^{3} s^{-1}\right):$	Poak	1.37	2.38	1.18	1.02	1.10	0.78	0.78
Runoff (mm)	8	11	8	5	5	5	4	
Rainfall (mm)	41	40	25	46	20	85	44	

Monthly and yearly statistics for previous record (Oct 1959 to Dec 1990)

Mean	Avg.	2.057	1.814	1.653	1.228	0.780	0.496	0.370	0.358	0.388
flows	Low	0.460	0.346	0.380	0.358	0.229	0.146	0.100	0.088	0.175
($\left.^{3} \mathrm{~g}^{-1}\right)$	High	6.543	4.684	3.556	3.344	2.353	1.528	0.907	1.558	1.099
Poak flow $\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$	21.13	22.65	20.68	13.34	12.56	8.07	6.41	8.86	10.50	
Runoff (mm)	23	19	19	13	9	5	4	4	4	
Rainfall (mm)	49	34	44	43	43	48	47	49	49	

Factors affecting runoff: RP I
Station type: FL

Grid reference: 52 (TL) 96226 Level stn. (m OD): 8.20

Catchment area (sq km): 238.2 Max alt. (m OD): 114

OCT	NOV	DEC	Year
0.295	0.501	0.399	0.495
0.52	1.94	0.64	2.38
3	5	4	66
18	59	17	472

0.750	1.126	1.484	1.039
0.188	0.288	0.352	0.362
4.838	5.521	4.200	1.732
24.80	21.29	20.58	24.80
8	12	17	138
54	57	54	571

1991 runoff is 48% of previous mean rainfall 83\%

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP.	OCT	NOV	DEC	Year
Flows Avg.	1.327	1.615	1.284	1.580	1.637	$1.77{ }^{\circ}$	0.996	0.461	0.416	0.674	1.143	1.095	1.163
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	2.46	3.94	2.20	2.74	2.36	2.30	1.97	1.10	0.86	0.93	2.67	1.58	3.94
Runoff (mm)	14	16	14	17	18	19	11	5	4	7	12	12	148
Rainfall (mm)	47	37	26	49	19	88	44	27	54	17	59	17	484
Monthly and yearly statistics for previous record (Oct 1962 to Dec 1990)													
Mean Avg.	2.142	1.971	1.895	1.472	1.012	0.774	0.567	0.518	0.532	0.821	1.186	1.646	1.208
flows Low	0.532	0.460	0.479	0.479	0.341	0.356	0.182	0.161	0.215	0.288	0.325	0.379	0.822
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \quad \mathrm{High}$	7.181	4.889	3.583	3.843	2.860	1.750	1.359	1.738	1.651	4.955	4.676	4.307	1.659
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	26.80	21.60	20.00	12.31	17.80	7.75	4.10	13.75	15.25	26.08	20.20	21.60	26.80
Runoff (mm)	23	19	21	15	11	8	6	6	6	9	12	18	154
Rainfall (mm)	49	35	47	44	46	52	46	50	48	50	57	52	576
Factors affecting runoff: RP I Station type: FL										1991 runoff is 96% of previous mean rainfall 84\%			

	JAN	FEB	MAR	APR	MAY	JUN	Jul	AUG	SEP.	OCT	NOV	DEC	Year
Flows Avg.	1.327	1.615	1.284	1.580	1.637	1.776°	0.996	0.461	0.416	0.674	1.143	1.095	1.163
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	2.46	3.94	2.20	2.74	2.36	2.30	1.97	1.10	0.86	0.93	2.67	1.58	3.94
Runoff (mm)	14	16	14	17	18	19	11	5	4	7	12	12	148
Rainfall (mm)	47	37	26	49	19	88	44	27	54	17	59	17	484
Monthly and yearly statistics for previous record (Oct 1962 to Dec 1990)													
Mean Avg.	2.142	1.971	1.895	1.472	1.012	0.774	0.567	0.518	0.532	0.821	1.186	1.646	1.208
flows Low	0.532	0.460	0.479	0.479	0.341	0.356	0.182	0.161	0.215	0.288	0.325	0.379	0.822
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	7.181	4.889	3.583	3.843	2.860	1.750	1.359	1.738	1.651	4.955	4.676	4.307	1.659
Peak flow ($\mathrm{m}^{3} \mathbf{s}^{-1}$)	26.80	21.60	20.00	12.31	17.80	7.75	4.10	13.75	15.25	26.08	20.20	21.60	26.80
Runoff (mm)	23	19	21	15	11	8	6	6	6	9	12	18	154
Rainfall (mm)	49	35	47	44	46	52	46	50	48	50	57	52	576
Factors affecting runoff: RP I Station type: FL										1991 runoff is 96% of previous mean rainfall 84\%			

Measuring authority: NRA-A
First year: 1962
Hydrometric statistics for 1991
$\begin{array}{lllllll}\text { Rainfall }(\mathrm{mm}) & 47 & 37 & 26 & 49 & 19 & 88 \\ \text { Monthly and yearly statistics for previous record } & \text { Oct } & 1962 \text { to } & \text { Dec } & 1990)\end{array}$

Factors affecting runoff: RP I
Station type: FL

Grid reference: 52 (TL) 845158 Level stn. (m OD): 14.60

Catchment area (sq km): 247.3
Max alt. (m OD): 127

038018 Upper Lee at Water Hall

Measuring authority: NRA-T
First year: 1971
Hydrometric statistics for 1991

		JAN	FEB	MAR	APR	MAY	JUN
Flows	AVg.	1.078	0.879	0.858	0.763	0.700	0.867
$\left(\mathrm{~m}^{3} \mathrm{~s}-1\right):$	Peak	3.34	2.73	1.53	3.11	1.85	2.02
Runoff (mm)	19	14	15	13	13	15	
Rainfall (mm)	70	46	27	68	15	99	

Monthly and yearly statistics for previous record (Oct 1971 to Dec 1990)

Mean	Avg.	1.531	1.645	1.668	1.588	1.420	1.260	0.972	0.886
flows	Low	0.708	0.667	0.601	0.531	0.452	0.423	0.373	0.289
$\left(\mathrm{~m}^{3} \mathrm{~s}^{-1}\right) \quad$ High	2.747	2.778	2.383	2.951	2.601	1.977	1.400	.1 .301	
Peak flow $\left(\mathrm{m}^{3} \mathrm{~s}^{-9}\right)$	11.10	11.00	7.97	8.13	15.80	11.30	4.49	4.21	
Runoff (mm)	27	27	30	27	25	22	17	16	
Rainfall (mm)	60	44	58	48	54	54	43	50	

Factors affecting runoff: GEI
Station type: C

Grid reference: 52 (TL) 299099
Level stn. (m OD): $\mathbf{4 3 . 6 0}$

JUL	AUG
0.840	0.649
1.98	1.68
15	12
68	32

Max alt. (m OD): 229
T!
Catchment area (sq km): 150.0
Max alt. (m OD): 229
SEP
0.636
2.31
11
65

OCT	NOV	DEC	Year
0.588	0.779	0.581	0.767
0.89	2.61	1.03	3.34
11	13	10	161
26	61	16	593

593

0.855	1
0.439	0.4

0.439

1.004	1.094	1.293	1.266
0.496	0.496	0.546	0.611
2.387	2.305	2.303	1.702
9.34	12.20	12.60	15.80
18	19	23	266
66	57	63	651

1991 runoff is 61% of previous mean rainfall 91\%

038021 Turkey Brook at Albany Park

Measuring authority: NRA-T
First year: 1971
Hydrometric statistics for 1991

	JAN	FEB	MAR	APR	MAY	JUN	JuL	AUG	SEP	OCT	NOV	OEC	Year
Flows Avg.	0.370	0.223	0.145	0.099	0.067	0.082	0.050	0.011	0.016	0.013	0.051	0.022	0.095
$\left(m^{3} s^{-1}\right)$: Peak	2.92	1.62	0.95	2.16	0.66	0.49	0.89	0.11	0.40	0.63	1.16	0.22	2.92
Runatf (mm)	24	13	9	6	4	5	3	1	1	1	3	1	71
Rainfall (mm)	82	42	31	64	19	106	63	20	47	22	57	15	568
Monthly and yearly statistics for previous record (Sep 1971 to Dec 1990).													
Mean Avg.	0.436	0.372	0.351	0.228	0.166	. 0.091	0.042	0.052	0.055	0.176	0.231	0.323	0.210
flows Low	0.037	0.042	0.024	0.020	0.009	0.021	0.009	0.008	0.008	0.016	0.019	0.082	0.057
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	1.180	0.988	0.811	0.626	0.626	0.240	0.087	0.171°	0.228	0.941	1.158	0.704	0.339
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	10.50	11.50	7.68	7.72	20.69	15.30	2.38	2.76	7.55	10.70	12.80	10.50	20.69
Runoff (mm)	28	22	22	14	11	6	3	3	3	11	14	20	157
Rainfall (mm)	62	45	59	47	56	53	44	53	58	64	59	64	664

Factors affecting runoff: PG
Station type: FV

Grid raference: 51 (TQ) 359985
Level stn. (m OD): 16.60

Catchment area (sq km): 42.2 Max alt. (m OD): 128

991 runoff is 45% of previous mean rainfall 86%

039002 Thames at Days Weir

Measuring author First year: 1938	$i t y: \text { NRA-T }$				d refere Level	ce: 41 (S (m OD	$\begin{aligned} & 56893 \\ & 46.00 \end{aligned}$				tchment	rea (sq k Max alt.	$\begin{aligned} & : 3444.7 \\ & \text { OD): } 330 \end{aligned}$
Hydrometric statistics for 1991													
	JAN	FEB	MAR	APA	MAY	JUN	JuL	AUG	SEP	OCT	NOV	DEC	Year
$\begin{array}{ll}\text { Flows } & \text { Avg. } \\ \left(m^{3} s^{-1}\right): & \text { Peak }\end{array}$	36.510	20.160	39.380	18.510	11.890	9.793	7.398	4.651	3.142	3.450	18.510	14.110	15.622
Runoff (mm)	28	14	31	14	9	7	6	4	2	3	14	11	143
Ràinfall (mm)	77	30	58	62	11	96	81	10	53	45	75	16	614
Monthly and yearly statistics for previous record (Oct 1938 to Dec 1990)													
Mean Avg.	55.230	57.330	45.720	30.970	20.540	14.450	8.486	7.188	8.500	14.720	30.800	44.440	28.055
flows Low	6.250	5.554	5.620	4.253	2.855	1.502	0.399	0.296	1.741	2.778	3.748	5.312	10.095
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	133.600	120.800	163.200	85.070	61.140	41.560	48.820	18.690	38.630	74.570	128.100	128.700	51.292
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)													
Aunoff (mm)	43	41	36	23	16	11	7	6	6	11	23	35	257
Rainfall (mm)	66	48	54	46	58	55	53	66	59	64	70	73	712
Factors affecting runoff: PEI Station type: MIS										1991 runoff is 56% of previous mean rainfall 86%			

039005 Beverley Brook at Wimbledon Common
 1991

Measuring authority: NRA-T
First year: 1935
Hydrometric statistics for 1991

Moan Avg.	0.717	0.616	0.569	0.551	0.479	0.478	0.432	0.444	0.490	0.516	0.579	0.639	0.542
flows Low	0.280	0.244	0.290	0.257	0.214	0.157	0.211	0.189	0.224	0.160	0.274	0.247	0.291
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	1.237	1.208	1.023	1.538	1.092	0.956	0.920	0.970	1.340	1.321	1.415	1.057	0.695
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	10.90	14.10	7.51	22.40	14.80	12.90	16.51	17.30	16.50	15.90	10.90	14.00	22.40
Runotf (mm)	44	34	35	33	29	28	27	27	29	32	34	39	392
Roinfall (mm)	59	39	46	42	50	53	48	55	56	62	62	63	635
Factors affecting	notf: GE									991 ru	f is 101	of prev	us mean

Factors affecting runoff: GE
Station typo: FL

Grid reference: 51 (TQ) 216717
Level stn. (m OD): 11.00

Catchment area (sq km): 43.6 Max alt. (m OD): 190 rainfall 89%

039007 Blackwater at Swallowfield

Measuring authority: NRA-T
First yoar: 1952
Hydrometric statistics for 1991

Grid reference: 41 (SU) 731648
Level stn. (m OD): 42.30

Catchment area (sq km): 354.8 Max alt. (m OD): 225

039014 Ver at Hansteads

Mensuring authority: NRA-T
First year: 1956
Grid reference: 52 (TL) 151016
Lavel stn. (m OD): 61.30
Hydrometric statistics for 1991

	JAN ${ }^{\text {d }}$	FEB	MAR	APA	MAY	JuN	JUL	AUG	SEP	OCT	nov	DEC	Year
Flows Avg.	0.231	0.176	0.182	0.137	0.109	0.121	0.111	0.084	0.059	0.078	0.116	0.090	0.124
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	0.58	0.55	0.38	0.44	0.30	0.30	0.35	0.22	0.20	0.24	0.46	0.15	0.58
Runoff (mm)	5	3	4	3	2	2	2	2	1	2	2	2	30
Rainfall (mm)	82	52	32	71	15	105	80	31	63	30	64	17	642
Monthly and yearly statistics for previous record (Oct 1956 to Dec 1990)													
Mean Avg.	0.471	0.540	0.567	0.543	0.477	0.413	0.345	0.303	0.270	0.293	0.343	0.397	0.413
flows Low	0.126	0.190	0.138	0.114	0.069	0.045	0.028	0.016	0.025	0.057	0.039	0.048	0.095
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \quad$ High	0.981	1.336	1.312	1.254	1.028	0.857	0.651	0.564	0.660	0.668	0.791	0.977	0.752
Poak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	1.77	1.91	1.88	1.90	2.07	1.65	1.44	1.13	2.34	1.50	2.31	2.64	2.64
Runoff (mm)	10	10	11	11	10	8	7	6	5	6	7	8	99
Rainfall (mm)	65	48	57	51	54	59	52	57	60	68	65	74	710
Factors affecting runoff: G Station type: CC										1991 runoff is 30% of previous mean rainfall 90%			

Station type: CC
Catchment area (sq km): 132.0
Max alt. (m OD): 243

039016 Kennet at Theale

Measuring authority: NRA.T
First year: 1961
Hydrometric statistics for 1991

	JAN	FEE	MAR	APR	MAY	JUN	Jul	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	9.465	6.778	9.380	7.966	6.556	6.236	5.386	4.023	3.570	3.785	5.059	4.332	6.042
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	28.60	14.10	23.10	13.70	10.10	9.18	7.13	6.95	6.56	5.14	15.80	5.87	28.60
Runoff (mm)	25	16	24	20	17	16	14	10	9	10	13	11	184
Rainfall (mm)	107	38	65	67	10	106	72	19	47	51	70	18	670
Monthly and yearly statistics for previous record (Oct 1961 to Dec 1990)													
Mean Avg.	13.080	14.980	14.730	12.680	10.280	8.502	6.417	5.655	5.294	6.057	7.755	10.030	9.594
flows Low	4.144	4.401	4.190	3.429	2.739	2.041	1.620	1.377	2.787	3.596	3.943	4.576	4.056
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \quad \mathrm{High}$	22.680	27.780	22.010	19.790	15.430	18.600	11.120	9.542	10.000	13.970	17.710	18.240	12.882
Pook flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	48.30	52.10	44.30	36.90	30.10	70.00	19.00	20.50	33.40	29.60	43.50	47.30	70.00
Runotf (mm)	34	35	38	32	27	21	17	15	13	16	19	26	293
Rainfall (mm)	75	53	68	50	60	60	48	65	65	68	73	82	767
Factors affecting runoff: R G I Station type: C										1991 runoff is 63% of previous mean rainfall 87%			

039019 Lambourn at Shaw

Measuring authority: NRA-T First year: 1962			Grid reference: 41 (SU) 470682 Level stn. (m OD): 75.60							Catchment area (sq km): 234.1 Max alt. (m OD): 261			
Hydrometric statistics for 1991													
	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NoV	DEC	Year
Flows Avg.	1.033	0.986	1.099	1.135	1.091	1.152	1.019	0.864	0.781	0.774	0.825	0.786	0.962
$\left(m^{3} s^{-1}\right)$: Peak	1.50	1.20	1.45	1.45	1.25	1.42	1.24	1.06	1.07	0.94	1.43	1.00	1.50
Runoff (mm)	12	10	13	13	12	13	- 12	10	9	9	9	9	130
Rainfall (mm)	104	33	63	64	11	105	69	19	36	43	71	16	634
Monthly and yearly statistics for previous record (Oct 1962 to Dec 1990)													
Mean Avg.	1.732	2.232	2.497	2.425	2.144	1.840	1.510	1.282	1.161	1.134	1.209	1.378	1.709
flows Low	0.826	0.796	0.743	0.695	0.639	0.573	0.538	0.485	0.681	0.683	0.757	0.710	0.739
($\mathrm{m}^{3} 5^{-1}$) High	3.410	3.719	3.583	3.550	2.979	2.764	2.359	2.048	1.699	1.921	2.392	2.551	2.151
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	3.93	4.20	4.39	4.08	3.76	4.34	3.06	3.54	3.75	3.17	5.02	3.72	5.02
Runoff (mm)	20	23	29	27	25	20	17	15	13	13	13	16	230
Rainfall (mm)	68	50	64	48	59	58	49	61	61	63	71	77	729
Factors affecting runoff: R G Station type: C										1991 runoff is 56% of previous mean rainfall 87\%			

039021 Cherwell at Enslow Mill

Measuring authority: NRA-T
First year: 1965

		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG
Flows	Avg.	5.919	3.177	4.965	2.381	1.952	1.533	1.314	1.048
$\left(m^{3} s^{-1}\right)$:	Peak	15.70	5.23	11.40	6.17	7.70	3.30	2.68	3.34
Runoff (mm)		29	14	24	11	9	7	6	5
Rainfall (mm)		65	30	45	64	11	94	88	9

Monthly and yearly statistics for previous record (Feb 1965 to Dec 1990)

Mean Avg.	7.218	7.255	6.320	4.467	3.303	2.356	1.491	1.390	1.341	2.063	3.150	5.641	3.818
flows Low	0.919	0.905	0.754	0.566	0.445	0.309	0.156	0.132	0.468	0.630	0.730	0.915	1.370
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \quad \mathrm{High}$	12.040	15.900	12.090	8.710	8.674	6.632	4.997	2.618	4.610	5.780	8.567	13.330	5.373
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	22.50	23.80	26.70	20.70	19.30	17.60	24.50	10.30	9.80	17.40	22.00	30.20	30.20
Runotf (mm)	35	32	31	21	16	11	7	7	6	10	15	27	218
Rainfall (mm)	61	47	56	44	58	60	53	63	55	58	57	69	681
Factors affecting Station type: C	noff: P									1991	ff is 6 all 86	of prev	s mean

Station type: C

Grid reference: 42 (SP) 482183
Level stn. (m OD): 65.00

Catchment area (sq km): 551.7 Max alt. (m OD): 239

Hydrometric statistics for 1991
 Hydrometric statistics for 1991

039023 Wye at Hedsor

Measuring authority: NRA-T First year: 1964

Grid reference: 41 (SU) 896867
Level stn. (m OD): 26.80
Hydrometric statistics for 1991

		JAN	FEB	MAR	APR	MAY	JUN	JUL
Flows	Avg.	0.625	0.533	0.561	0.562	0.532	0.601	0.593
$\left(\mathrm{~m}^{3} \mathrm{~s}^{-1}\right):$	Peak	1.66	1.58	1.07	1.76	0.65	1.79	2.25
Runoff (mm)	12	9	11	11	10	11	12	
flainfall (mm)	79	46	46	68	10	109	96	

Monthly and yearly statistics for previous record (Dec 1964 to Dec 1990)

Mean Avg.	0.967	1.079	1.171	1.198	1.158	1.116	1.010	0.955	0.868	0.836	0.820	0.864	1.003
flows Low	0.419	0.483	0.488	0.470	0.432	0.380	0.370	0.314	0.381	0.395	0.375	0.340	0.442
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{High}$	1.518	1.933	1.976	1.891	1.842	1.582	1.434	1.317	1.182	1.180	1.329	1.373	1.365
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	3.49	2.92	3.21	3.26	3.98	3.51	2.94	4.17	4.43	3.15	2.79	3.19	4.43
Runoff (mm)	19	19	23	23	23	21	20	19	16	16	15	17	231
Rainfall (mm)	72	52	61	52	62	62	54	65	65	68	68	79	760
Factors affecting	off: G									1991	f is 5	of pre	s mean

Catchment area (sq km): 137.3 Max alt. (m OD): 244

039029 Tillingbourne at Shalford

First year: 1968
Hydrometric statistics for 1991

039049 Silk Stream at Colindeep Lane

Measuring authority: NRA-T
First year: 1973
Hydrometric statistics for 1991

		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	0.383	0.284	0.235	0.217	0.107	0.238	0.248	0.073	0.102	0.069	0.181	0.096	0.185
($\mathrm{m}^{3} \mathrm{~s}^{-1}$):	Peak	3.33	2.95	2.06	3.67	1.64	3.41	11.70	0.96	2.59	0.90	6.33	1.47	11.70
Runoff (mm)		35	24	22	19	10	21	23	7	9	6	16	9	202
Rainfall (mm)		82	47	35	62	16	96	76	16	49	21	60	17	577

Monthly and yearly statistics for previous record (Dec 1973 to Dec 1990 -incomplete or missing months total 4.4 years)

	Mean	Avg.	0.378	0.302	0.337	0.261	0.233	0.196	0.135	0.126	0.124	0.306	0.311	0.322
flows	Low	0.159	0.102	0.104	0.030	0.035	0.061	0.047	0.053	0.057	0.062	0.096	0.106	0.178
$\left(\mathrm{~m}^{3} \mathrm{~s}^{-1}\right)$	High	0.790	0.742	0.676	0.574	0.602	0.643	0.231	0.204	0.363	0.904	1.086	0.659	0.314
Peak flow $\left(\mathrm{mm}^{3} \mathrm{~s}^{-1}\right)$	9.00	16.90	8.89	10.26	39.80	32.80	16.50	30.50	27.90	40.50	24.30	36.31	$\mathbf{4 0 . 5 0}$	
Runoff (mm)	35	25	31	23	22	18	12	12	11	28	28	30	275	
Rainfall (mm)	63	41	60	48	63	58	48	52	60	$\mathbf{7 4}$	58	64	$\mathbf{6 8 9}$	

Factors affecting runoff:
Station type: FV

Grid reference: 51 (TQ) 217895
Level stn. (m OD): 39.90
Catchment area (sq km): 29.0 Max alt. (m OD): 153

991 runoff is 73% of previous mean rainfall 84\%

039069 Mole at Kinnersley Manor

Measuring authority: NRA-T
irst year: 1972
Hydrometric statistics for 1991

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	4.679	2.550	2.394	1.697	1.151	2.225	2.819	0.697	0.809	0.755	2.183	1.106	1.919
($\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	27.90	15.40	5.71	9.64	3.31	16.10	28.90	2.43	7.37	5.18	16.70	4.15	28.90
Runotf (mm)	88	43	45	31	22	41	53	13	15	14	40	21	426
Rainfall (mm)	97	46	43	67	20	114	104	14	51	47	70	21	694
Monthly and yearly statistics for previous record (Dec 1972 to Dec 1990 -incomplete or missing months total 1.5 years)													
Moan Avg.	3.881	3.193	2.652	1.861	1.399	0.989	0.675	0.797	0.951	1.976	2.250	3.453	2.003
flows Low	1.261	0.829	0.833	0.388	0.305	0.221	0.296	0.169	0.281	0.207	0.260	1.071	0.950
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	9.375	8.634	4.668	3.666	3.552	1.874	1.709	2.864	5.419	8.486	5.668	5.474	2.424
Peak flow ($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$ \}	42.30	46.50	22.30	47.00	32.90	23.30	14.90	29.80	40.70	56.40	56.10	68.50	68.50
Runoff (mm)	73	55	50	34	26	18	13	15	17	37	41	65	445
Rainfall (mm)	82	57	66	48	55	59	45	57	64	91	76	93	793

Factors affecting runoff: E.
Station type: MiS

Grid reference: 51 (TQ) 262462
Level stn. (m OD): 48.00

Catchment area (sq km): 142.0

1991 runoff is 96% of previous mean rainfall 88\%

040009 Teise at Stone Bridge

Measuring authority: NRA-S
First year: 1961
Hydrometric statistics for 1991

	JAN	FEB	MAR	APR	MAY	JUN	Jul	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	1.729	0.490	0.409	0.410	0.478	1.150	0.746	0.611	1.031	1.081	0.785	0.454	0.783
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Prak	19.45	6.15	4.85	2.43	1.24	10.00	7.12	2.73	2.57	1.40	8.52	1.12	19.45
Runoff (mm)	34	9	8	8	9	22	15	12	20	21	15	9	181
Rainfa! (mm)	101	37	43	61	22	139	80	20	51	38	94	24	710
Monthly and yearly statistics for previous record (Oct 1961 to Dec 1990)													
Mean Avg.	2.448	2.076	1.778	1.426	1.070	0.801	0.603	0.594	0.701	1.050	1.652	1.885	1.337
flows Low	0.463	0.522	0.405	0.323	0.238	0.130	0.231	0.100	0.170	0.128	0.276	0.471	0.559
\{ $\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	5.757	6.241	3.928	2.781	2.306	2.628	1.359	1.132	2.359	4.786	6.344	5.334	2.101
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	41.63	48.27	34.43	24.78	38.95	29.22	13.87	10.61	23.88	29.17	47.12	48.29	48.29
Runoff (mm)	48	37	35	27	21	15	12	12	13	21	31	37	310
Rainfall (mm)	81	56	67	54	55	56	49	58	69	84	87	84	800
Factors affecting runoff: RPGE Station type: B VA										1991 runoff is 59% of previous mean rainfall 89\%			

040010 Eden at Penshurst

Measuring authority: NRA-S
First year: 1961
Hydrometric statistics for 1991

	JAN	FEB	MAR	APR	MAY	JUN	Jut	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	2.716	1.518	1.379	0.877	0.805	1.333	2.125	0.451	0.372	0.361	1.376	0.733	1.170
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	19.02	13.25	3.98	7.56	4.39	16.55	24.70	2.58	3.62	0.91	12.45	2.40	24.70
Runoff (mm)	32	16	16	10	10	15	25	5	4	4	16	9	164
Rainfall (mm)	91	42	35	71	23	112	96	16	55	38	69	19	667
Monthly and yearly statistics for previous record (Oct 1961 to Dec 1990 -incomplete or missing months total 1.8 years)													
Mean Avg.	3.911	3.390	2.731	1.824	1.312	0.905	" 0.442	0.524	0.724	1.235	2.366	2.842	1.843
flows Low	0.412	0.629	0.605	0.395	0.283	0.193	0.182	0.201	0.223	0.265	0.314	0.672	0.810
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	9.957	8.346	6.040	4.373	4.842	4.132	1.231	1.438	5.243	4.276	8.909	7.260	2.627
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	45.56	64.44	32.28	34.03	39.16	31.85	9.92	17.42	22.02	31.43	55.21	60.00	64.44
Runoff (mm)	47	37	33	21	16	10	5	6	8	15	27	34	259
Rainfall (mm)	74	50	61	54	56	56	49	57	69	74	78	79	757

Factors affecting runoff: S E
Grid reference: 51 (TQ) 520437 Level stn. (m OD): 27.80

Catchment area (sq km); 224.3
Max alt. (m OD): 267

Station type: C

1991 runoff is 63% of previous mean rainfall 88%

040012 Darent at Hawley

1991

Measuring authority: NRA-S
Grid reference: 51 (TQ) $55 \uparrow 718$
Level stn. (m OD): 11.20
Catchment area (sq km): 191.4 Max alt. (m OD): 251
Hydrometric statistics for 1991

041001 Nunningham Stream at Tilley Bridge

Measuring authority: NRA-S
First year: 1950
Hydrometric statistics for 1991

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	0.502	0.161	0.196	0.069	0.037	0.182	0.151	0.030	0.022	0.023	0.221	0.103	0.142
$\left(m^{3} s^{-1}\right)$: Peak	4.89	1.23	0.83	0.39	0.11	1.89	1.89	0.10	0.08	0.15	1.68	0.50	4.89
Runoff (mm)	80	23	31	11	6	28	24	5	3	4	34	16	264
Rainfall (mm)	104	40	50	50	19	163	113	8	48	45	125	24	789
Monthly and yearly statistics for previous record (Apr 1950 to Dec 1990)													
Mean Avg.	0.430	0.340	0.240	0.144	0.077	0.051	0.033	0.038	0.051	0.125	0.284	0.356	0.180
flows Low	0.062	0.094	0.054	0.034	0.023	0.012	0.010	0.008	0.009	0.013	0.019	0.033	0.053
$\left(m^{3} s^{-1}\right) \quad$ High	1.108	0.958	0.577	0.390	0.195	0.319	0.210	0.125	0.359	0.576	1.017	1.082	0.306
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	8.84	8.60	8.49	5.94	6.20	7.92	1.89	9.32	8.92	8.82	11.90	8.84	11.90
Runoff (mm)	68	49	38	22	12	8	5	6	8	20	44	56	336
Rainfatl (mm)	85	59	60	50	51	55	55	69	73	92	96	94	839
Factors affecting runoff: R Station type: MIS										1991 runoff is 79% of previous mean rainfall 94%			

Station type: MIS

Grid reference: 51 (TQ) 662129 Level stn. (m OD): 3.80

Catchment area (sq km): 16.9 Max alt. (m OD): 137

041005 Ouse at Gold Bridge

Measuring authority: NRA-S
First year: 1960
Hydrometric statistics for 1991

		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	3.955	2.425	3.023	1.716	1.137	2.375	2.151	0.803	0.897	0.693	1.972	1.162	1.856
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$:	Peak	19.52	9.62	7.82	6.66	2.70	17.37	16.07	2.74	2.29	2.61	10.94	2.89	19.52
Runoff (mm)		59	32	45	25	17	34	32	12	13	10	28	17	324
Rainfall (mm)		98	45	54	64	21	140	99	13	47	54	87	24	746

Monthly and yearly statistics for previous record (Mar 1960 to Dac 1990 -incomplete or missing months total 0.3 years)

Mean Avg.	4.318	3.729	3.064	2.378	1.669	1.069	0.679	0.744	1.011	1.919	3.141	3.414	2.254
flows Low	0.887	1.240	0.793	0.611	0.450	0.283	0.219	0.157	0.230	0.275	0.384	0.723	0.934
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	10.330	9.852	6.888	4.318	3.657	3.829	1.903	2.458	4.296	12.660	12.030	7.657	3.334
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	49.14	71.85	29.86	31.57	26.35	27.91	16.52	33.15	49.01	73.71	86.92	81.06	86.92
Runoff (mm)	64	50	45	34	25	15	10	11	14	28	45	51	393
Rainfall (mm)	88	58	68	59	58	61	51	63	77	93	97	90	863

ff: SRPGE
Station type: CBVA

Grid reference: 51 (TQ) 429214 Level sin. (m OD): 11.40

Catchment area (sq km): 180.9

041012 Adur E Branch at Sakeham

1991

Measuring authority: NRA-S
First year: 1967
Hydrometric statistics for 1991

	JAN	FEB	MAR	APR	MAY	JUN	Jut	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	2.690	1.262	1.745	0.747	0.436	1.075	1.464	0.296	0.254	0.282	1.172	0.535	0.996
$\left(\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}\right)$: Peak	18.12	6.61	8.99	3.56	1.39	15.71	19.58	0.87	0.86	2.21	8.61	1.98	19.58
Runoff (mm)	77	33	50	21	13	30	42	9	7	8	33	15	337
Rainfall (mm)	101	47	61	63	19	135	118	10	42	58	86	20	760
Monthly and yearly statistics for previous record (Aug 1967 to Dec 1990-incomplate or missing months total 0.3 years)													
Moan Avg.	2.566	1.968	1.509	1.019	0.653	0.457	0.299	0.301	0.500	1.193	1.629	1.959	1.168
flows Low	0.346	0.526	0.379	0.266	0.196	0.141	0.112	0.076	0.144	0.131	0.162	0.398	0.479
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{High}$	5.835	5.803	3.642	2.337	1.567	1.339	1.006	0.882	2.877	7.901	4.596	4.064	1.716
Poak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	31.50	36.13	23.43	30.65	14.53	24.27	16.71	24.04	31.81	39.35	38.26	44.34	44.34
Runoff (mm)	74	51	43	28	19	13	9	9	14	34	45	56	395
Rainfall (mm)	93	58	67	52	56	57	46	58	72	93	89	86	827

Monthly and yearly statistics for previous record (Aug 1967 to Dec 1990 -incomplate or missing months total 0.3 yoars)

$\left(m^{3} g^{-1}\right)$	18.12	6.61	8.99	3.56	1.39	15.71	19.58	0.87	0.86	2.21	8.61	1.98	19.58
Runoff (mm)	77	33	50	21	13	30	42	9	7	8	33	15	337
Rainfall (mm)	101	47	61	63	19	135	118	10	42	58	86	20	760
Monthly and yearly statistics for previous record (Aug 1967 to Dec 1990 -incomplate or missing months total 0.3 years)													
Moan Avg.	2.566	1.968	1.509	1.019	0.653	0.457	0.299	0.301	0.500	1.193	1.629	1.959	1.168
flows Low	0.346	0.526	0.379	0.266	0.196	0.141	0.112	0.076	0.144	0.131	0.162	0.398	0.479
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	5.835	5.803	3.642	2.337	1.567	1.339	1.006	0.882	2.877	7.901	4.596	4.064	1.716
Poak flow ($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$)	31.50	36.13	23.43	30.65	14.53	24.27	16.71	24.04	31.81	39.35	38.26	44.34	44.34
Runoff (mm)	74	51	43	28	19	13	9	9	14	34	45	56	395
Rainfall (mm)	93	58	67	52	56	57	46	58	72	93	89	86	827

Factors affecting runoff: E
Station type: CC

Grid reference: 51 (TQ) 219190
Level stn. (m OD): 3.10
Catchment area (sq km): 93.3 Max alt. (m OD): 248

1991 runoff is 85% of previous mean rainfall 92\%

041019 Arun at Alfoldean

1991

Measuring authority: NRA-S
First yoar: 1970
Hydrometric statistics for 1991

	JAN	FEE	MAR	APR	MAY	JuN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	4.379	2.026	2.207	0.914	0.521	1.015	1.274	0.407	0.335	0.317	1.267	0.682	1.277
($\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	43.62	9.85	11.00	3.82	1.74	8.32	10.02	3.49	1.74	1.71	8.57	2.65	43.62
Runoff (mm)	84	35	43	17	10	19	25	8	6	6	24	13	290
Rainfall (mm)	99	47	49	60	17	121	103	17	48	52	67	20	700
Monthly and yearly statistics for previous record (May 1970 to Dec 1990-incomplete or missing months total 0.1 years)													
Moan Avg.	3.862	2.826	2.337	1.669	1.042	0.687	0.317	0.373	0.610	1.667	2.386	2.913	1.720
flows Low	0.621	0.689	0.469	0.277	0.223	0.131	0.138	0.078	0.161	0.150	0.167	0.492	0.589
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	10.770	9.827	4.413	3.829	3.313	3.055	1.116	1.618	5.443	11.580	10.030	6.152	2.845
Poak flow ($\mathrm{m}^{3} \mathbf{5}^{-1}$)	68.63	67.53	54.45	76.97	47.48	46.54	7.27	23.86	56.14	71.12	69.14	77.65	77.65
Runotf (mm)	74	50	45	31	20	13	6	7	11	32	44	56	390
Rainfall (mm)	86	53	69	51	55	57	45	57	67	85	82	86	793

Foctors affecting runoff: \mathbf{E}
Station type: CC

```
Grid reference: 51 (TQ) 117331 Level stn. (m OD): 21.40
```

Catchment area (sq km): 139.0 Max alt. (m OD): 294

1991 runoff is 74% of previous mean rainfall 88%

041027 Rother at Princes Marsh

Measuring authority: NRA-S
First year: 1972
Hydrometric statistics for 1991

Factors affacting runoff: GE
Station type: C
Station type: C

Grid reference: 41 (SU) 772270
Level stn. (m OD): 56.40

Catchment area (sq km): 37.2 Max alt. (m OD): 252

042003 Lymington at Brockenhurst Park
1991

Measuring authority: NRA-S
First yoar: 1960

Grid reference: 41 (SU) 318019
Level stn. (m OD): 6.10

Hydrometric statistics for 1991

	JAN	FEB	MAR	APA	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	1.946	0.843	1.949	0.580	0.221	0.784	0.474	0.057	0.155	0.291	0.871	0.619	0.733
($\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	10.01	6.10	7.66	3.05	0.99	9.94	6.73	0.14	4.38	5.35	5.79	3.00	10.01
Runoff (mm)	53	21	53	15	6	21	13	2	4	8	23	17	234
Rainfall (mm)	111	38	93	50	8	130	72	11	63	74	62	32	744
Monthly and yearly statistics for previous record (Oct 1960 to Dec 1990 -incomplete or missing months total 0.2 years)													
Mean Avg.	1.845	1.707	1.453	1.012	0.761	0.425	0.230	0.248	0.410	0.976	1.311	1.560	0.992
flows Low	0.330	0.439	0.327	0.168	0.128	0.042	0.013	0.014	0.042	0.128	0.198	0.522	0.407
$\left(\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}\right) \mathrm{High}$	3.723	3.680	3.089	2.169	1.569	1.247	1.603	0.847	2.308	4.841	5.283	3.294	1.340
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	10.13	13.62	10.13	10.13	13.98	7.95	11.38	8.16	8.47	11.28	13.54	14.91	14.91
Runoff (mm)	50	42	39	27	21	11	6	7	11	26	34	42	316
Rainfall (mm)	89	63	70	52	59	56	43	60	72	89	89	93	835
Factors affecting runoff: \mathbf{N} Station type: TP										1991 runoff is 74\% of previous mean rainfall 89\%			

042004 Test at Broadlands
1991

Measuring authority: NRA-S
First year: 1957
Hydrometric statistics for 1991

Flows Avg. $\left(m^{3} s^{-1}\right):$ Peak	$\begin{aligned} & \text { JAN } \\ & 9.811 \end{aligned}$	$\begin{aligned} & \text { FEB } \\ & 8.775 \end{aligned}$	$\begin{aligned} & \text { MAR } \\ & 10.280 \end{aligned}$	$\begin{aligned} & \text { APR } \\ & 9.708 \end{aligned}$	MAY 8.558	JUN 7.705	$\begin{aligned} & \text { JUL } \\ & 7.623 \end{aligned}$	$\begin{aligned} & \text { AUG } \\ & 6.359 \end{aligned}$	SEP 6.081	$\begin{aligned} & \text { OCT } \\ & 7.172 \end{aligned}$	NOV 8.281	$\begin{aligned} & \text { DEC } \\ & 7.651 \end{aligned}$	Year 8.164
Runoff (mm)	25	20	26	24	22	19	20	16	15	18	21	20	248
Rainfall (mm)	113	42	74	62	9	109	90	21	58	61	64	19	722
Monthly and yeasly statistics for previous record (Oct 1957 to Dec 1990 -incomplate or missing months total 0.2 years)													
Mean Avg.	14.640	15.920	15.350	13.640	11.650	9.756	7.959	7.420	7.546	8.833	10.320	12.220	11.247
flows Low	7.172	6.932	6.686	6.107	4.861	4.558	3.708	4.263	5.377	5.786	5.304	6.069	6.597
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	34.670	32.680	24.430	19.050	16.320	13.540	10.850	10.440	12.810	27.060	33.510	35.180	18.789
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)													
Runoff (mm)	38	37	40	34	30	24	20	19	19	23	26	31	341
Rainfall (mm)	85	57	68	50	57	57	47	64	68	80	80	92	805
Factors affecting runoff: \mathbf{N} Station type: VA										1991 runoff is 73% of previous mean rainfall 90\%			

Monthly and yeasly statistics for previous record (Oct 1957 to Dec 1990 -incomplete or missing months total 0.2 years)

Flows Avg. $\left(m^{3} s^{-1}\right):$ Peak	$\begin{aligned} & \text { JAN } \\ & 9.811 \end{aligned}$	$\begin{aligned} & \text { FEB } \\ & 8.775 \end{aligned}$	$\begin{aligned} & \text { MAR } \\ & 10.280 \end{aligned}$	$\begin{aligned} & \text { APR } \\ & 9.708 \end{aligned}$	MAY 8.558	JUN 7.705	$\begin{aligned} & \text { JUL } \\ & 7.623 \end{aligned}$	$\begin{aligned} & \text { AUG } \\ & 6.359 \end{aligned}$	SEP 6.081	$\begin{aligned} & \text { OCT } \\ & 7.172 \end{aligned}$	NOV 8.281	$\begin{aligned} & \text { DEC } \\ & 7.651 \end{aligned}$	Year 8.164
Runoff (mm)	25	20	26	24	22	19	20	16	15	18	21	20	248
Rainfall (mm)	113	42	74	62	9	109	90	21	58	61	64	19	722
Monthly and yeasly statistics for previous record (Oct 1957 to Dec 1990 -incomplate or missing months total 0.2 years)													
Mean Avg.	14.640	15.920	15.350	13.640	11.650	9.756	7.959	7.420	7.546	8.833	10.320	12.220	11.247
flows Low	7.172	6.932	6.686	6.107	4.861	4.558	3.708	4.263	5.377	5.786	5.304	6.069	6.597
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	34.670	32.680	24.430	19.050	16.320	13.540	10.850	10.440	12.810	27.060	33.510	35.180	18.789
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)													
Runoff (mm)	38	37	40	34	30	24	20	19	19	23	26	31	341
Rainfall (mm)	85	57	68	50	57	57	47	64	68	80	80	92	805
Factors affecting runoff: \mathbf{N} Station type: VA										1991 runoff is 73% of previous mean rainfall 90\%			

Peak flow $\left(\mathrm{m}^{3} \mathrm{~s}^{-1} \quad 34.6\right.$

Factors affecting runoff: \mathbf{N}
Station type: VA
Grid reference: 41 (SU) 354188 Level stn. (m OD); 10.10

Catchment area (sq km): 1040.0 Max alt. (m OD): 297

042006 Meon at Mislingford

Measuring authority: NRA-S
First year: 1958
Hydrometric statistics for 1991

	JAN	FEB	MAA	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	0.417	0.482	0.919	1.037	0.683	0.494	0.417	0.317	0.233	0.214	0.277	0.321	0.484
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	0.64	0.63	1.19	1.26	0.87	0.90	0.66	0.43	0.30	0.33	0.34	0.39	1.26
Runoff (mm)	15	16	34	37	25	18	15	12	8	8	10	12	210
Rainfall (mm)	106	51	103	51	9	151	103	22	61	66	63	30	816
Monthly and yearly statistics for previous record (Oct 1958 to Dec 1990)													
Mean Avg.	1.507	1.822	1.651	1.386	1.023	0.737	0.520	0.389	0.341	0.505	0.796	1.075	0.975
flows Low	0.355	0.467	0.427	0.335	0.164	0.120	0.079	0.068	0.102	0.110	0.124	0.179	0.334
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	3.470	3.310	2.820	2.024	1.738	1.220	0.827	0.657	0.882	2.309	4.126	3.917	1.813
Paak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	3.84	4.27	3.26	2.83	2.06	1.50	1.23	1.07	. 0.96	1.68	2.83	3.77	4.27
Runolf (mm)	55	61	61	49	38	26	19	14	12	19	28	40	423
Rainfall (mm)	99	64	76	58	63	58	53	69	78	95	97	103	913
Factors affecting runoff: G 1991 runoff is 50\% of previous mean													

Station type: FL

Grid reference: 41 (SU) 589141
Level stn. (m OD): 29.30

Catchment area (sq km): 72.8 Max alt. (m OD): 233 rainfall 89%

Measuring authority: NRA-S First year: 1970
Hydrometric statistics for 1991

Factors affecting runoff: \mathbf{N}
Station type: C

Grid reference: 41 (SU) 574323 Level stn. (m OD): 55.80

Catchment area (sq km): 75.1
Max alt. (m OD): 233

043006 Nadder at Wilton Park

Measuring authority: NRA-W
First year: 1966
Hydrometric statistics for 1991

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	3.695	2.511	3.912	3.567	1.926	1.496	1.254	0.938	0.950	1.154	1.468	1.503	2.029
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right):$ Peak	7.87	4.48	9.73	7.20	3.72	5.53	2.91	1.29	3.62	2.18	7.01	5.29	9.73
Runoff (mm)	45	28	48	42	23	18	15	11	11	14	17	18	290
Rainfall (mm)	115	38	92	74	11	103	79	17	65	81	61	35	771
Monthly and yearly statistics for previous record (Jan 1986 to Dec 1990)													
Mean Avg.	4.638	5.290	4.393	3.312	2.463	1.916	1.484	1.306	1.305	1.746	2.454	3.711	2.823
flows Low	1.011	1.263	1.358	1.048	0.993	0.839	0.684	0.595	0.801	0.829	0.878	1.219	1.535
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \quad \mathrm{High}$	6.773	12.290	6.732	5.936	4.044	3.283	2.234	2.040	3.093	3.537	6.413	7.030	3.821
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	22.71	26.61	18.80	14.27	28.13	8.83	13.39	6.61	16.68	10.99	22.90	47.88	47.88
Runoff (mm)	56	58	53	39	30	23	18	16	15	21	29	45	404
Rainfall (mm)	96	76	78	52	66	60	51	69	74	87	85	104	898
Factors affecting runoff: N Station type: C										1991 runoff is 72% of previous mean rainfall 86\%			

043007 Stour at Throop Mill

1991

Measuring authority: NRA-W
First year: 1973
Hydrometric statistics for 1991

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	23.780	11.540	23.210	14.550	8.123	6.003	5.660	3.784	3.360	5.500	12.120	9.920	10.639
$\left(m^{3} \mathrm{~s}^{-1}\right)$: Peak	76.58	34.22	81.54	36.29	31.42	11.87	9.38	5.85	10.95	13.47	33.82	29.30	81.54
Runoff (mm)	59	26	58	35	20	15	14	9	8	14	29	25	313
Rainfall (mm)	114	37	93	75	10	106	74	22	77	89	62	34	793
Monthly and yearly statistics for previous record (Jan 1973 to Dec 1990)													
Mean Avg.	23.960	26.930	20.760	14.270	9.387	6.406	4.384	4.112	4.796	8.470	12.610	21.690	13.084
flows Low	4.319	6.826	7.548	4.483	3.157	2.231	1.614	1.358	1.892	2.716	2.823	6.386	6.138
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	38.730	69.370	32.620	27.070	18.900	16.940	7.932	8.998	20.340	29.770	36.730.	40.270	17.377
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	116.60	137.70	110.20	88.24	150.00	180.00	47.60	32.41	90.33	101.90	133.40	280.00	280.00
Runoff (mm)	60	61	52	34	23	15	11	10	12	21	30	54	385
Rainfall (mm)	90	73	77	44	57	54	49	62	73	87	77	107	850
Factors affacting runoff: PGE Station type: CC										1991 runoff is 81% of previous mean rainfall 93\%			

Grid reference: 40 (SZ) 113958 Level stn. (m OO): 4.40

Catchment area (sq km): 1073.0 Max alt. (m OD): 277
rainfall 93%

043012 Wylye at Norton Bavant

Measuring authority: NRA-W
First year: 1971
Grid reference: 31 (ST) 909428
Level stn. (m OD): 96.70
Hydrometric statistics for 1991

		JAN	FEB	MAR	APR	MAY	JuN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	1.331	1.165	1.438	1.356	0.773	0.680	0.550	0.492	0.454	0.504	0.593	0.590	0.825
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$:	Pagk	2.66	1.69	2.72	2.42	1.19	1.84	1.08	1.24	1.34	2.14	1.58	0.85	2.72
Runoff (mm)		32	25	34	31	18	16	13	12	10	12	14	14	232
Rainfall (mm)		115	39	93	69	9	129	76	21	63	89	66	33	802

Monthly and yearly statistics for previous record (Jul 1971 to Dec 1990 -_incomplete or missing months tatal 0.1 years)

Moan Avg.	1.712	2.008	1.654	1.353	0.981	0.756	0.604	0.559	0.562	0.666	0.860	1.339	1.083
flows Low	0.454	0.468	0.503	0.482	0.450	0.335	0.279	0.287	0.405	0.413	0.456	0.523	0.652
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	2.444	4.465	2.403	2.230	1.454	1.238	0.771	0.694	1.033	1.387	1.731	2.411	1.362
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	5.90	7.26	5.24	3.84	6.74	2.98	3.44	2.76	4.81	2.88	3.27	6.33	7.26
Runoff (mm)	41	44	39	31	23	17	14	13	13	16	20	32	304
Rainfall (mm)	100	75	87	53	64	66	56	72	77	87	83	110	930
Factors affecting	off: E									1991	ff is 76	of prev	s mean

Station type: C

044002 Piddle at Baggs Mill

Measuring authority: NRA-W
First year: 1963
Hydrometric statistics for 1991

		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	2.492	2.176	3.604	3.317	1.932	1.627	1.444	1.023	1.085	1.547	2.093	1.955	2.023
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$:	Peak	5.72	4.24	6.02	4.61	2.86	3.43	1.87	1.32	6.35	4.50	4.16	2.44	6.35
Runoff (mm)		36	29	53	47	28	23	21	15	15	23	30	29	348
Hainfall (mm)		129	55	118	67	7	131	62	35	104	107	73	28	916

Monthly and yearly statistics for previous record (Oct 1963 to Dec 1990 -incomplote or missing months total 0.1 years)

Mean Avg.	3.573	4.481	3.895	2.997	2.171	1.649	1.218	1.059	1.064	1.389	2.024	2.811	2.350
flows Low	1.045	1.020	1.093	0.945	0.757	0.571	0.483	0.433	0.598	0.707	0.721	0.853	1.328
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{High}$	5.959	8.785	6.202	4.782	3.376	2.907	1.755	1.526	2.300	3.106	5.047	5.654	3.233
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	11.87	10.02	9.37	6.48	8.11	9.23	4.79	4.50	8.18	9.29	9.20	8.62	11.87
Runoff (mm)	52	60	57	42	32	23	18	15	15	20	29	41	405
Painfall (mm)	108	84	85	52	65	57	47	62	80	96	102	114	952
Factors affecting Station type: FL	ff: G									1991	ff is 8 all 96	of pro	s mean

Station type: FL

Grid reference: 30 (SY) 913876
Level stn. (m OD): 2.10

Catchment area (sq km): 183.1 Max alt. (m OD): 275

044006 Sydling Water at Sydling St Nicholas

Measuring authority: NRA-W
First year: 1969
Hydrometric statistics for 1991

	JAN	FEb	MAR	APA	MAY	JuN	Jul.	AUG	SEP	OCT	Nov	DEC	Year
Flows Avg.	0.194	0.128	0.278	0.205	0.155	0.125	0.114	0.092	0.079	0.102	0.138	0.105	0.143
$\left(m^{3} s^{-1}\right):$ Peak	0.32	0.20	0.40	0.28	0.20	0.31	0.16	0.12	0.23	0.15	0.17	0.12	0.40
Runoff (mm)	42	25	60	43	33	26	25	20	17	22	29	23	364
Rainfall (mm)	143	73	129	82	15	142	68	32	121	111	81	26	1023
Monthly and yearly statistics for previous record (Dec 1969 to Dec 1990)													
Mean Avg.	0.275	0.335	0.291	0.228	0.170	0.140	0.107	0.090	0.086	0.105	0.142	0.212	0.181
flows Law	0.060	0.070	0.092	0.087	0.069	0.060	0.051	0.045	0.052	0.053	0.048	0.057	0.103
$\left(m^{3} \mathrm{~s}^{-1}\right) \quad \mathrm{High}$	0.422	0.599	0.426	0.356	0.244	0.282	0.155	0.121	0.211	0.317	0.329	0.386	0.225
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	0.93	1.03	0.92	0.47	1.57	1.02	0.37	0.79	0.39	- 0.64	0.60 .	1.22	1.57
Runoff (mm)	59	66	63	48	37	29	23	19	18	23	30	46	460
Rainfall (mm)	127	92	97	55	69	61	50	68	87	94	109	127	1036
Factors affecting runoff: N Station type: C										1991 runoff is 79\% of previous mean rainfall 99\%			

044009 Wey at Broadwey

Measuring authority: NRA-W
First year: 1975
Hydrometric statistics for 1991

		JAN	FEB	MAR	APA	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	0.191	0.156	0.439	0.420	0.237	0.172	0.154	0.142	0.120	0.193	0.273	0.223	0.227
$\left(m^{3} s^{-1}\right):$	Peak	0.43	0.25	0.70	0.59	0.32	0.37	0.36	0.19	0.65	0.43	0.36	0.30	0.70
Runotf (mm)		73	54	168	155	91	64	59	54	45	74	101	85	1023
Rainfall (mm)		98	47	120	67	11	107	74	34	100	102	56	30	846

Monthly and yearly statistics for previous record (Jul 1975 to Dec 1990 -incomplate or missing months total 0.1 years)

| Mean | Avg. | 0.450 | 0.578 | 0.548 | 0.459 | 0.312 | 0.252 | 0.188 | 0.146 | 0.123 | 0.141 | 0.190 | 0.318 | 0.307 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| flows | Low | 0.100 | 0.100 | 0.126 | 0.117 | 0.099 | 0.093 | 0.095 | 0.085 | 0.076 | 0.067 | 0.070 | 0.076 | 0.188 |
| $\left(\mathrm{~m}^{3} \mathrm{~s}^{-1}\right)$ High | 0.698 | 0.970 | 0.895 | 0.730 | 0.486 | 0.450 | 0.318 | 0.211 | 0.178 | 0.290 | 0.390 | 0.698 | 0.410 | |
| Peak flow $\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ | 1.46 | 1.79 | 2.86 | 1.22 | 3.31 | 3.18 | 2.29 | 1.24 | 0.50 | 0.70 | 1.26 | 2.35 | 3.31 | |
| Runoff (mm) | 172 | 202 | 210 | 170 | 119 | 93 | 72 | 56 | 46 | 54 | 70 | 122 | 1385 | |
| Rainfall (mm) | 88 | 89 | 90 | 47 | 55 | 51 | 48 | 57 | 68 | 98 | 80 | 111 | 882 | |

Factors affecting runoff: N
Station type: FV

Grid reference: 30 (SY) 666839
Level stn. (m OD): 17.80

Catchment area (sq km): 7.0 Max alt. (m OD)

Comment: Contributing area exceeds the topographical catchment area

045003 Culm at Wood Mill

Measuring authority: NRA-SW First year: 1962
Hydrometric statistics for 1991

Factors affecting runoff PGEI

Comment: minor flow changes expected following station recalibration

Catchment area (sq km): 226.1
Max alt. (m OD): 293

045004 Axe at Whitford

Measuring authority: NRA-SW First year: 1964
Hydrometric statistics for 1991

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	9.903	4.379	9.179	4.781	2.456	3.555	2.289	1.454	2.395	4.838	6.704	2.832	4.568
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	56.32	32.73	35.14	24.73	6.41	26.97	9.94	5.04	32.50	41.72	31.70	6.87	56.32
Runoff (mm)	92	37	85	43	23	32	21	13	22	45	60	26	499
Rainfall (mm)	120	50	112	91	17	117	62	29	92	120	79	26	915
Monthly and yearly statistics for previous record (Oct 1964 to Dec 1990)													
Mean Avg.	9.270	8.665	6.498	4.234	3.562	2.476	1.965	2.086	2.485	4.165	5.620	8.343	4.933
flows Low	1.891	2.448	2.551	1.567	1.176	0.817	0.626	0.554	1.224	1.243	1.714	3.125	2.669
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	15.740	18.730	11.690	8.346	7.274	4.678	5.312	4.941	9.909	16.440	11.980	14.440	6.409
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	110.60	114.60	93.02	75.41	173.40	75.04	228.80	128.00	88.95	99.72	148.19	244.00	244.00
Runoff (mm)	86	73	60	38	33	22	18	19	22	39	50	77	540
Rainfall (mm)	122	90	82	55	69	64	59	70	79	96	94	119	999
Factors affecting runoff: PGE Station type: CC										1991 runoff is 93% of previous mean rainfall 92\%			

Comment: minor flow changes expected following station recalibration

Catchment area (sq km): 288.5
Grid reference: 30 (SY) 262953 Level sin. (m OD): 7.30 rainfall 92\%

046003 Dart at Austins Bridge

Measuring authority: NRA-SW
First year; 1958
Hydrometric statistics for 1991

	JAN	FEB	MAR	APR	MAY	JUN	JuL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	26.820	11.340	20.590	11.320	3.481	6.241	9.053	3.481	3.648	8.451	15.250	8.229	10.670
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	237.10	125.50	68.81	52.69	6.60	121.90	33.58	16.24	71.80	92.55	37.52	44.40	237.10
Runoff (mm)	290	111.	223	118	38	65	98	38	38	91	160	89	1359
Rainfall (mm)	273	142	225	154	14	198	153	53	138	193	156	96	1795
Monthly and yearly statistics for previous record (Oct 1958 to Dec 1990)													
Mean Avg.	19.770	17.710	13.910	9.856	7.026	4.821	3.761	4.621	5.734	10.850	14.680	19.120	10.963
flows Low	5.435	4.270	5.731	3.275	1.942	1.456	0.996	0.713	0.905	1.229	5.048	8.232	7.304
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	36.680	43.870	33.520	22.720	14.530	14.260	10.930	12.590	26.290	28.000	33.400	35.540	15.592
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	284.00	309.40	236.10	187.40	98.88	253.00	206.50	222.20	327.60	168.20	317.80	549.70	549.70
Runoff (mm)	214	175	151	103	76	50	41	50	60	117	154	207	1397
Rainfall (mm)	231	167	164	112	103	93	92	119	135	181	196	233	1826
Factors affecting runoff: SR Station type: VA										1991 runoff is 97% of previous mean rainfall 98\%			

046005 East Dart at Bellever

1991

Measuring authority: NRA-SW
First year: 1964
Hydrometric statistics for 1991

	JAN	FEB	MAR	APR	MAY	JUN	JUL	Aug	SEP	OCT	NOV	DEC	Year
Flows Avg.	2.677	1.451	1.967	1.346	0.441	0.930	1.188	0.500	0.646	1.203	1.674	0.998	1.251
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	38.69	18.70	8.78	8.22	0.80	15.26	11.64	4.21	20.44	15.57	5.81	8.87	38.69
Runotf (mm)	334	163	245	162	55	112	148	62	78	150	202	124	1835
Rainfall (mm)	315	180	234	192	19	223	199	71	156	215	198	128	2130
Monthly and yearly statistics for previous record (Apr 1964 to Dec 1990)													
Moan Avg.	2.094	1.851	1.429	0.938	0.747	0.629	0.525	0.610	0.762	1.269	1.637	2.103	1.214
flows Low	0.719	0.468	0.600	0.348	0.250	0.185	0.126	0.104	0.203	0.176	0.782	0.971	0.809
$\left(\mathrm{m}^{3}-1\right)$ High	3.830	5.103	3.639	1.990	1.605	1.589	1.303	1.571	3.306	2.903	3.586	3.756	1.775
Posk flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	47.28	45.63	32.53	26.80	18.89	47.89	59.67	54.01	53.35	32.71	53.76	67.06	67.06
Runoff (mm)	261	210	178	113	93	76	65	76	92	158	197	262	1782
Rainfall (mm)	258	185	186	113	117	115	109	129	154	200	214	270	2048

Factors affecting runoff: N
Station type: VA

Grid reference: 20 (SX) 657-775
Level stn. (m OD): 309.00

Catchment area (sq km): 21.5
Max alt. (m OD): 604

047007 Yealm at Puslinch
Measuring authority: NRA-SW First yoar: 1963
Hydrometric statistics for 1991

	JAN	FEE	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	3.164	1.437	3.582	1.280	0.451	1.205	1.991	0.764	0.607	1.286	2.126	1.293	1.603
($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$); Peak	24.09	19.84	23.85	3.67	0.91	28.83	8.62	2.51	9.08	19.69	4.43	5.15	28.83
Runoff (mm)	154	63	175	60	22	57	97	37	29	63	100	63	921
Rainfall (mm)	156	97	192	110	5	211	144	51	111	143	115	79	1414

Monthly and yearly statistics for previous record (Oct 1963 to Dec 1990 -incomplete or missing months total 0.2 years)

047008 Thrushel at Tinhay

Measuring authority: NRA.SW
First yoar: 1969
Hydrometric statistics for 199

	JAN	FEB	MAR	APA	MAY	JUN	JUL	AUG	SEP	OCT	Nov	DEC	Year
Flows Avg.	4.239	2.711	3.143	1.877	0.500	0.918	0.629	0.858	0.869	1.534	3.520	1.661	1.866
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	26.30	22.25	15.64	17.41	3.18	3.38	7.43	2.27	2.07	14.61	13.12	8.97	26.30
Runoff (mm)	101	58	75	43	12	21	15	20	20	36	81	39	522
Rainfall (mm)	141	82	104	97	12	104	85	28	67	111	121	50	1002
Monthly and yearly statistics for previous record (Nov 1969 to Dac 1990)													
Mean Avg.	5.071	4.137	3.104	1.610	1.064	0.675	0.434	0.733	1.004	2.442	3.659	4.658	2.376
flows Low	1.317	0.951	1.150	0.481	0.237	0.110	0.028	0.019	0.116	0.069	0.442	2.405	1.640
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	9.701	8.826	7.477	4.038	4.209	2.491	1.417	2.916	6.671	6.878	7.195	8.122	3.750
Poak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	53.32	61.78	61.46	27.72	38.72	57.13	- 10.91	33.64	75.12	66.18	57.07	124.40	124.40
Runoff (mm)	121	90	74	37	25	16	10	17	23	58	84	111	665
$\begin{aligned} & \text { Rainfall (mm) } \\ & \bullet(1970-1990) \end{aligned}$	145	104	101	60	66	74	68	88	93	119	127	139	1184
Factors affecting runoff: S H Station type: CC										1991 runoff is 78\% of previous mean rainfall 85\%			

048004 Warleggan at Trengoffe

1991

Measuring authority: NRA-SW
First yoar: 1969
Hydrometric statistics for 1991

		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	1.549	0.912	1.507	0.919	0.463	0.434	0.604	0.429	0.321	0.416	1.234	0.681	0.789
$\left(m^{3} \mathrm{~s}^{-1}\right)$:	Peak	3.46	2.73	2.61	2.12	0.83	2.41	1.98	0.67	1.14	2.85	2.00	1.00	3.46
Runotf (mm)		164	87	160	94	49	44	64	45	33	44	126	72	983
Rainfall (mm)		168	109	165	118	12	165	121	47	88	150	159	55	1357

Monthly and yearly statistics for previous record (Oct 1969 to Dec 1990 -incomplete or missing months total 0.3 years)

Factors affecting runoff: \mathbf{N}
Station type: CC

Grid reference: 20 (SX) 159674
Level sin. (m OD): 70.30
MAY JUN

048005 Kenwyn at Truro

1991

Measuring authority: NRA-SW
First year: 1968
Hydrometric statistics for 1991

	JAN	FEB	MAR	APR	MAY	JUN	JUL	aug	SEP	Oct	Nov	DEC	Year
Flows Avg.	1.172	0.537	0.997	0.445	0.182	0.135	0.120	0.076	0.066	0.117	0.459	0.218	0.377
($\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	3.58	1.93	3.08	1.88	0.35	2.34	0.71	0.14	1.15	1.99	1.70	0.44	3.58
Runof (mm)	164	68	140	60	26	18	17	11	9	16	62	31	622
Rainfall (mm)	152	90	145	100	6	99	79	28	65	136	101	35	1036
Monthly and yearly statistics for previous record (Oct 1968 to Dec 1990)													
Mean Avg.	0.821	0.800	0.547	0.322	0.190	0.135	0.088	0.086	0.108	0.256	0.459	0.733	0.377
flows Low	0.283	0.333	0.228	0.156	0.090	0.070	0.043	0.026	0.037	0.034	0.046	0.436	0.264
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	1.505	1.638	0.917	0.613	0.418	0.358	0.162	0.179	0.564	0.714	1.093	1.091	0.544
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	22.50	7.19	5.74	4.07	1.82	3.71	2.79	2.29	4.10	30.37	9.74	13.35	30.37
Runoff (mm)	115	102	77	44	27	18	12	12	15	36	62	103	623
Rainfall (mm)	146	106	97	56	61	64	56	73	83	113	127	142	1124
Factors affecting runoff: \mathbf{N} Station type: CC										1991 runoff is 100% of previous mean rainfall $\mathbf{9 2 \%}$			

Catchment area (sq km): 19.1 Max alt. (m. OD): 152

Grid reference: 10 (SW) 820450
Level stn. (m OD): 7.20
\qquad
runoff is 100% of previous mean
rainfall $\quad 92 \%$

048011 Fowey at Restormel

Measuring authority: NRA-SW First year: 1961
Hydrometric statistics for 1991

reference: 20 (SX) 0986
Level stn. (m OD): 9.20

049001 Camel at Denby

1991

Measuring authority: NRA-SW First year: 1964
Hydrometric statistics for 1991

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	13.600	7.256	12.210	5.780	3.014	2.610	4.012	2.441	1.568	3.045	10.180	4.184	5.822
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	40.44	27.08	24.29	14.60	5.83	16.13	19.64	3.67	10.10	26.07	17.01	6.68	40.44
Runoff (mm)	174	84	157	72	39	32	51	31	19	39	126	54	879
Rainfall (mm)	159	99	155	110	11	137	112	42	95	142	140	50	1252
Monthly and yearly statistics for previous record (Sep 1964 to Dec 1990)													
Mean Avg.	11.240	10.090	7.101	4.515	3.207	2.355	2.222	2.423	2.872	5.454	7.863	10.810	5.830
flows Low	4.833	4.249	2.835	2.081	0.960	0.888	0.582	0.421	0.798	0.882	1.371	6.135	4.081
$\left(\mathrm{m}^{3} \mathrm{~s}^{-t}\right) \quad \mathrm{High}$	19.600	23.260	16.420	9.395	8.491	5.463	7.322	7.858	11.920	16.640	17.990	19.110	8.165
Prak flow ($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$)	73.18	80.21	94.75	35.42	23.98	45.32	40.59	63.98	125.80	92.14	94.75	227.90	227.90
Runoff (mm)	144	118	91	56	41	29	29	31	36	70	98	139	881 1398
Rainfall (mm)	169	113	117	72	81	86	91	101	113	140	151	164	1398

Factors affecting runotf: SRP E
Station type: VA

Grid reference: 20 (SX) 017682 Level stn. (m OD): 4.60

1991

Catchment area (sq km): 169.1
Max alt. (m OD): 420

050002 Torridge at Torrington

Monsuring authority: NRA-SW
First yoar: 1962
Hydrometric statistics for 1991

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	40.096	23.934	23.938	14.642	3.973	3.506	6.327	1.603	1.712	7.064	31.617	11.523	14.095
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	264.43	194.43	84.17	91.89	22.58	27.28	55.07	3.24	20.75	74.25	94.53	59.70	264.43
Runoff (mm)	162	87	97	57	16	14	26	6	7	29	124	47	672
Rainfall (mm)	164	92	102	111	12	111	91	28	80	114	133	57	1095
Monthly and yearly statistics for previous record (Oct 1962 to Dec 1990)													
Moan Avg.	30.350	25.450	18.680	10.810	7.733	4.522	4.284	4.961	6.859	15.990	26.170	31.050	15.535
flows Low	5.018	4.695	5.792	3.082	1.399	1.092	0.443	0.252	0.954	0.668	3.798	10.270	8.968
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{High}$	57.510	63.970	51.280	28.120	31.290	14.960	21.540	19.690	45.910	49.230	55.730	64.530	21.036
Paak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	284.30	294.40	535.60	153.00	158.44	181.30	231.01	228.50	415.00	276.40	313.19	730.00	730.00
Runoff (mm)	123	94	75	42	31	18	17	20	27	65	102	125	739
Rainfall (mm)	131	94	98	66	72	74	73	85	97	117	132	133	1172

Factors affecting runoff: SRP EI
Station type: VA
Comment: minor changes to pre-1991 flows anticipated following re-calibration

Grid reference: 21 (SS) 500185
Level stn. (m OD): 13.90

Catchment area (sq km): 663.0 Max alt. (m OD): 621

052007 Parrett at Chiselborough

Moasuring authority: NRA-W First year: 1966
Hydrometric statistics for 1991

Factors affecting runoff: E
Station type: C

Grid reference: 31 (ST) 461144
Level stn. (m OD): 20.70

Catchment area (sq km): 74.8
Max alt. (m OD): 219

052010 Brue at Lovington

1991

Meosuring authority: NRA-W

Catchment area (sq km): 135.2 First year: 1964

Max alt. (m OD): 260
Hydrometric statistics for 1991

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	3.819	1.412	3.096	1.464	0.678	0.947	0.915	0.382	0.318	0.630	1.754	1.523	1.415
$\left(m^{3}-{ }^{-1}\right):$ Peak	18.52	4.64	23.20	7.54	2.16	8.14	16.61	0.79	2.10	4.61	14.43	7.03	23.20
Runoff (mm)	76	25	61	28	13	18	18	8	6	12	34	30	330
Rainfall (mm)	86	35	83	80	10	128	81	30	65	84	57	40	779
Monthly and yearly statistics for previous record (Oct 1964 to Dec 1990)													
Moan Avg.	3.526	3.375	2.568	1.553	1.171	0.776	0.821	0.761	0.780	1.367	2.164	3.441	1.853
flows Low	0.743	0.910	0.844	0.526	0.313	0.217	0.150	0.130	0.217	0.190	0.407	1.034	1.153
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{High}$	5.752	6.961	5.263	3.352	3.554	2.203	4.081	2.449	4.873	4.380	4.883	6.158	2.427
Pook flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	47.28	53.57	43.49	27.19	95.48	35.46	83.00	48.42	69.42	61.06	74.62	61.06	95.48
Runoft (mm)	70	61	51	30	23	15	16	15	15	27	41	68	432
Aainfoll (mm)	88	69	74	52	66	66	69	73	75	77	84	95	888
Factors affecting runoff: N Station type: C VA										1991 runoff is 76% of previous mean rainfall 88\%			

15311		11		1	1	d 1							91
Measuring authority: NRA-W First yoor: 1958			Grid reference: 31 (ST) 648647 Level stn. (m OD): 16.80							Catchment area (sq km): 129.5 Max alt. (m OD): 305			
Hydrometric statistics for 1991													
	JAN	FEB	MAR	APR	MAY	JUN	JuL	AUG	SEP	OCT	Nov	DEC	Year
Flows Avg.	2.511	0.927	1.301	0.948	0.605	0.512	0.442	0.384	0.399	0.439	1.011	0.701	0.849
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	19.59	4.80	4.34	3.14	0.88	0.97	0.91	0.47	0.64	1.71	2.60	2.34	19.59
Runoff (mm)	52	17	27	19	13	10	9	8	8	9	20	15	207
Rainfall (mm)	134	48	86	87	11	105	75	20	65	93	103	42	869
Monthly and yearly statistics for previous record (Mar 1958 to Dec 1990-incomplate or missing months total 1.0 years)													
Moan Avg.	1.868	1.767	1.410	1.007	0.820	0.596	0.461	0.457	0.564	0.806	1.203	1.721	1.054
flows Low	0.444	0.557	0.410	0.469	0.333	0.287	0.243	0.195	0.232	0.300	0.264	0.622	0.540
$\left(\mathrm{m}^{\mathbf{3}} \mathbf{s}^{-1}\right) \underset{\text { High }}{\text { H }}$	3.935	4.166	4.210	2.185	2.493	1.211	0.811	1.245	2.135	3.251	3.898	5.017	1.766
Poak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	39.43	48.99	50.00	14.19	67.50	13.00	6.23	6.09	59.26	49.56	38.83	63.78	67.50
Runoff (mm)	39	33	29	20	17	12	10	9	11	17	24	36	257
Rainfoll (mm)	102	72	80	60	70	70	69	83	90	93	100	113	1002
Factors affecting runoff: S P Station type: FL										1991 runoff is 81% of previous mean rainfall 87\%			

053006 Frome(Bristol) at Frenchay

Measuring authority: NRA-W
First year: 1961
Hydrometric statistics for 1991

	JAN	FEB	MAR	APR	MAY	JUN	JuL	AUG	SEP	OCT	Nov	DEC	Year
Flows Avg.	3.640	1.839	2.678	1.023	0.453	0.877	0.617	0.263	0.249	0.322	1.867	0.808	1.217
$\left(\mathrm{m}^{\mathbf{3}} \mathbf{s}^{-1}\right)$: Peak	16.31	13.00	11.32	3.22	1.29	5.70	6.06	1.03	2.93	3.13	7.86	2.51	16.31
Runoff (mm)	65	30	48	18	8	15	11	5	4	6	33	15	258
Rainfall (mm)	100	43	65	60	10	112	81	15	56	58	94	25	719
Monthly and yearly statistics for previous record (Sep 1961 to Dec 1990)													
Mean Avg.	3.360	2.936	2.362	1.397	1.146	0.765	0.599	0.533	0.711	1.216	2.145	3.068	1.682
flows Low	0.670	0.613	0.636	0.476	0.228	0.220	0.122	0.139	0.208	0.162	0.211	0.820	0.804
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{High}$	6.152	6.040	5.762	3.434	5.028	2.973	3.516	2.398	5.113	4.691	5.434	9.807	2.255
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	35.05	41.09	33.84	29.63	49.00	29.01	70.79	12.75	29.73	42.93	39.90	66.55	70.79
Rurioff (mm)	60	48	42	24	21	13	11	10	12	22	37	55	356
Rainfall (mm)	76	56	65	49	63	63	54	69	72	72	74	86	799
Factors affecting runoff: N Station type: FL										1991 nunoff is 72% of previous mean rainfall 90\%			

053007 Frome(Somerset) at Tellisford

1991

Measuring authority: NRA-W
First year: 1961
Hydrometric statistics for 1991

	JAN	FES	MAR	APR	MAY	JUN	JuL	AUG	SEP	OCT	NOV.	DEC	Year
Flows Avg.	7.028	3.186	6.564	3.410	1.386	1.659	1.232	0.693	0.639	1.175	3.475	2.330	2.732
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	28.03	12.33	39.16	10.02	3.22	6.37	5.76	1.73	4.13	8.42	18.35	9.73	39.16
Runoff (mm)	72	29	67	34	14	16	13	7	6	12	34	24	329
Rainfall (mm)	114	44	94	79	10	117	74	28	67	91	77	36	831
Monthly and yearly statistics for previous record (Sep 1961 to Dec 1990)													
Mean Avg.	6.862	6.529	5.504	3.662	2.650	1.794	1.385	1.414	1.689	2.739	4.435	6.378	3.742
flows Low	1.684	2.072	1.938	1.510	0.843	0.518	0.329	0.291	0.522	0.612	0.962	2.627	2.334
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	12.340	13.710	12.690	8.314	6.317	4.812	4.931	4.605	7.459	8.841	10.730	14.860	4.872
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	77.99	64.75	68.83	57.51	98.80	37.52	108.10	82.49	71.03	59.90	84.58	83.64	108.10
Runoff (mm)	70	61	56	36	27	18	14	14	17	28	44	65	451
Rainfall (mm)	97	72	85	60	72	66	64	78	85	85	93	105	962

Factors affecting runoff: PG
Station type: FL

Grid reference: 31 (ST) 805564
Level stn. (m OD): 35.10

Catchment area (sq km): 261.6 Max aft. (m OD): 305

054012 Tern at Walcot

Measuring authority: NRA-ST
First year: 1960

Grid rafarence: 33 (SJ) 592123
Level stn. (m OD): 44.60

Catchment area (sq km): 852.0 Max alt. (m OD): 366

Hydrometric statistics for 1991

	JAN	FEB	MAA	APR	MAY	JUN	Jul	AU	SEP
Flows Avg.	13.260	5.995	10.100	4.792	3.091	1.024	0.925	2.104	2.060
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	41.04	10.65	32.54	9.99	8.08	1.44	7.16	4.76	3.96
Runolf (mm)	42	17	32	15	10	3	3	7	6
Rainfall (mm)	62	31	59	53	10	63	79	23	34
Monthly and yearly statistics for previous record (Oct 1960 to Dec 1990)									
Mean Avg.	11.190	10.390	8.892	7.377	6.344	4.544	3.843	3.862	3.911
flows Low	4.018	4.002	4.800	3.557	2.904	2.199	1.393	1.171	1.680
$\left(m^{3} s^{-1}\right)$ High	20.320	22.280	17.810	12.320	22.390	9.069	14.060	6.655	9.490
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	60.05	45.98	40.53	40.73	40.35	27.00	48.71	38.53	32.17
Runoff (mm)	35	30	28	22	20	14	12	12	12
Rainfall (mm)	61	47	54	50	61	57	53	63	61

Factors affecting runoff: GEI
Station type: FV

OCT	NOV	DEC	Year
2.423	3.711	3.347	$\mathbf{4 . 4 0 6}$
4.50	7.96	7.37	$\mathbf{4 1 . 0 4}$
8	11	11	163
47	61	26	548

5.520	7.825	10.600	7.011
2.227	2.538	3.563	3.757
16.920	21.830	24.950	10.266
37.59	44.54	55.82	60.05
17	24	33	260
61	70	68	708

1991 runoff is $\mathbf{6 3 \%}$ of previous mean rainfall 78%

Comment: May-Sept. flows are overestimated due to the effect of weedgrowth; reprocessing anticipated

054019 Avon at Stareton

1991

Measuring authority: NRA-ST
First year: 1962
Hydrometric statistics for 1991

		JAN	FEB	MAR	APR	MAY	JUN
Flows	Avg.	4.192	2.594	3.085	1.440	1.137	0.971
$\left(\mathrm{~m}^{3} \mathrm{~s}^{-}\right):$	Peak	22.31	5.70	7.61	7.54	7.37	2.30
Runoff (mm)	32	18	24	11	9	7	
Rainfall (mm)	62	32	37	62	13	77	

JUL	AUG	SEP
1.185	0.680	0.671
7.30	3.96	3.22
9	5	5
91	16	75

OCT	NOV	DEC	Year
0.699	1.391	1.007	1.585
2.33	4.48	2.07	22.31
5	10	8	144
42	46	20	573

Monthly and yearly statistics for previous record (Oct 1962 to Dec 1990)

Mean Avg.	4.480	4.559	4.193	2.856	2.055	1.387	0.993	1.031	0.984	1.527	'2.314	3.935	2.518
flows Low	0.798	0.777	0.545	0.485	0.474	0.368	0.247	0.356	0.414	0.507	0.549 .	0.667	1.094
$\left(\mathrm{m}^{3} 5^{-1}\right)$ High	9.678	12.890	8.577	6.356	6.149	4.862	5.379	3.332	2.858	5.274	5.587	10.400	3.588
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	55.83	59.60	55.89	42.67	39.05	42.89	71.36	26.08	16.59	32.89	34.11	56.28	71.36
Runoff (mm)	35	32	32	21	16	10	8	8	7	12	17	30	229
Rainfall (mm)	55	46	55	49	56	60	54	68	52	54	57	62	668
Factors affecting Station type: CVA	off: S									1991	off is 63 fall 86	of pr	us mean

054020 Perry at Yeaton

Measuring authority: NRA-ST
First year: 1963
Hydrometric statistics for 1991

Station type: C

Grid reference: 33 (SJ) 434192 Level stn. (m OD): 61.30

Catchment area (sq km): 180.8 Max alt. (m OD): 356
runoff is 72%
rainfall 83%

054022 Severn at Plynlimon flume

Moasuring authority: tH
First year: 1953
Hydrometric statistics for 1991

		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	0.727	0.674	0.606	0.638	0.127	0.261	0.288	0.547	0.291	0.554	1.052	0.621	0.531
$\left(m^{3} \mathrm{~s}^{-1}\right)$:	Peak	10.77	16.99	6.46	6.34	0.55	1.46	2.59	5.97	3.73	3.17	8.30	14.45	16.99
Runoff (mm)		224	188	187	190	39	78	89	168	87	171	313	191	1924
Rainfoll (mm)		242	192	166	234	19	149	129	203	166	209	347	195	2251

Monthly and yearly statistics for previous record (Oct 1953 to Dec 1990 -incomplete or missing months total 10.4 years)

Mean	Avg.	0.773	0.599	0.616	0.334	0.232	0.220	0.280	0.391	0.505	0.640	0.772	0.770	0.511
flows	Low	0.363	0.136	0.171	0.046	0.046	0.045	0.043	0.032	0.073	0.059	0.268	0.174	0.317
$\left(m^{3} s^{-1}\right)$	High	1.567	1.249	1.566	0.878	0.818	0.638	0.754	0.935	1.092	1.464	1.420	1.313	0.646
Peak flow	$\mathrm{n}^{3} \mathrm{~s}^{-1}$	14.49	13.90	14.53	11.64	9.86	10.66	- 8.83	32.22	15.38	18.85	17.77	17.11	32.22
Runoff (mm)		238	168	190	100	72	66	86	120	151	197	230	237	1854
Rainfall (mm		291	190	215	128	128	136	149	184	222	251	275	284	2453
Factors affecting runoff: N Station type: FL											1991 runoff is 104% of previous mean rainfall $\mathbf{9 2 \%}$			

Station type: FL

Grid reference: 22 (SN) 853872 Level stn. (m OD): 331.00

Catchment area (sq km): 8.7 Max alt. (m OD): 740

054024 Worfe at Burcote

Moasuring authority: NRA-ST
First year: 1969
Hydrometric statistics for 1991

Moasuring authority: NRA-ST
First year: 1971
Hydrometric statistics for 1991

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	0.900	0.389	0.986	0.275	0.174	0.083	0.073	0.045	0.034	0.044	0.156	0.098	0.272
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	9.45	1.20	14.98	2.29	1.13	0.23	0.88	0.15	0.24	0.38	0.88	0.30	14.98
Aunoff (mm)	59	23	65	17	11	5	5	3	2	3	10	6	210
Rainfat (mm)	88	35	B1	64	8	74	89	26	50	51	55	20	641
Monthly and yearly statistics for previous record (Oct 1971 to Dec 1990-incomplete or missing months total 3.2 years)													
Moan Avg.	0.811	0.812	0.686	0.458	0.303	0.193	0.087	0.065	0.124	0.209	0.283	0.657	0.389
flows Low	0.097	0.220	0.278	0.116	0.073	0.033	0.017	0.019	0.020	0.036	0.046	0.072	0.240
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	1.617	1.738	1.637	1.090	1.016	0.691	0.254	0.130	0.880	1.047	0.765	1.414	0.508
Paok flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	16.57	9.67	12.43	12.90	12.14	16.28	4.73	2.69	19.35	5.09	7.72	18.90	19.35
Runoff (mm)	53	49	45	29	20	12	6	4	8	14	18	43	301
Rainfall (mm)	71	56	64	50	54	58	52	58	64	64	55	79	725
Factors affecting runoff: \mathbf{N} Station type: FVVA										1991 runoff is 70% of previous mean rainfall 88\%			

Factors affecting runoff: N
Station type: FVVA

Grid reference: $\mathbf{3 2}$ \{SO\} 768764 Level stn. (m OD): 24.20

Catchment area (sq km): 40.8 Max alt. (m OD): 230

054038 Tanat at Llanyblodwel

Measuring authority: NRA-ST
First year: 1973
Hydrometric statistics for 1991

	JAN	FEB	MAR	APA	MAY	JUN	JuL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	16.550	8.708	11.020	5.510	2.043	2.131	1.377	0.715	0.542	2.974	11.300		
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	123.10	101.20	45.38	24.40	5.71	9.09	4.52	1.85	7.71	22.29	36.98		123.10
Runoff (mm)	194	92	129	62	24	24	16	8	6	35	128	0	
Rainfall (mm)	151	103	127	104	11	111	84	33	67	115	142	91	1139
Monthly and yearly statistics for previous record (Jun 1973 to Dec 1990-incomplete or missing months total 0.4 years)													
Mean Avg.	11.670	10.270	8.951	5.317	3.204	2.182	1.332	2.415	3.278	6.944	9.484	11.830	6.392
flows Low	5.037	3.707	2.693	1.392	0.867	0.699	0.348	0.190	0.520	1.701	2.895	5.738	4.185
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \quad \mathrm{High}$	19.220	21.460	17.800	9.686	10.250	4.660	2.589	7.609	9.885	15.020	17.370	21.410	7.510
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	93.99	76.47	85.77	39.85	31.27	56.87	15.68	118.20	69.56	82.17	76.12	87.99	118.20
Runoff (mm)	137	110	105	60	37	25	16	28	37	81	107	138	881
Rainfall (mm)	137	102	111	65	74	69	61	89	105	122	130	151	1216

Factors affecting runoff: N El
Station type: FVVA

Grid reference: 33 (SJ) 252225 Level stn. (m OD): 77.00

Catchment area (sq km): 229.0
Max alt. (m OD): 827

91 runoff is $\%$ of previous mean
rainfall 94%

055008 Wye at Cefn Brwyn

Measuring authority: IH
First year: 1951
Hydrometric statistics for 1991

	JAN	FEB	MAR	APR	MAY	JUN	Jul	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	0.895	0.852	0.671	0.782	0.138	0.368	0.420	0.699	0.417	0.656	1.284	0.756	0.659
$\left(m^{3} s^{-1}\right):$ Peak	10.73	21.10	8.48	9.18	0.67	2.49	3.95	11.20	7.81	4.79	13.18	21.84	21.84
Runoff (mm)	227	195	170	192	35	90	107	178	103	167	315	192	1971
Rainfatl (mm)	223	205	173	245	26	162	144	211	177	206	316	206	2294
Monthly and yearly statistics for previous record (Aug 1951 to Dec 1990 -_incomplete or missing months total 2.5 years)													
Mean Avg.	0.969	0.754	0.696	0.511	0.378	0.344	0.431	0.563	0.668	0.826	1.020	1.108	0.689
flows Low	0.492	0.136	0.206	0.064	0.054	0.074	0.053	0.036	0.050	0.091	0.376	0.198	0.447
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	1.870	1.486	1.735	1.312	1.144	0.954	1.264	1.478	1.478	2.031	1.761	2.655	0.994
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	23.47	19.20	23:37	19.12	17.89	25.49	. 19.11	48.87	22.64	27.68	29.15	32.00	48.87
Runoff (mm)	246	174	177	126	96	84	109	143	164	210	251	281	2061
Rainfall (mm)	265	174	201	145	132	140	160	195	205	246	267	307	2437

Monthly and yearly statistics for previous record (Aug 1951 to Dec $\mathbf{1 9 9 0}$-incomplete or missing months total 2.5 years)

	JAN	FEB	MAR	APR	MAY	JuN	Jul	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	0.895	0.852	0.671	0.782	0.138	0.368	0.420	0.699	0.417	0.656	1.284	0.756	0.659
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right):$ Peak	10.73	21.10	8.48	9.18	0.67	2.49	3.95	11.20	7.81	4.79	13.18	21.84	21.84
Runoff (mm)	227	195	170	192	35	90	107	178	103	167	315	192	1971
Rainfall (mm)	223	205	173	245	26	162	144	211	177	206	316	206	2294
Monthly and yearly statistics for previous record (Aug 1951 to Dec 1990 -incomplete or missing months total 2.5 years)													
Mean Avg.	0.969	0.754	0.696	0.511	0.378	0.344	0.431	0.563	0.668	0.826	1.020	1.108	0.689
flows Low	0.492	0.136	0.206	0.064	0.054	0.074	0.053	0.036	0.050	0.091	0.376	0.198	0.447
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	1.870	1.486	1.735	1.312	1.144	0.954	1.264	1.478	1.478	2.031	1.761	2.655	0.994
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	23.47	19.20	23:37	19.12	17.89	25.49	. 19.11	48.87	22.64	27.68	29.15	32.00	48.87
Runoff (mm)	246	174	177	126	96	84	109	143	164	210	251	281	2061
Rainfall (mm)	265	174	201	145	132	140	160	195	205	246	267	307	2437

Factors affecting runoff: N
Station type: CC

Grid reference: 22 (SN) 829838
Level stn. (m OD): 341.00

Catchment area (sq km): 10.6 Max att. (m OD): 740

055013 Arrow at Titley Mill

Measuring authority: NRA-WEL
First year: 1966
Hydrometric statistics for 1991

	JAN	FEB	MAR	APR	MAY	Jun	'JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	6.017	2.617	4.643	1.981	1.341	0.516	0.386	0.295	0.269	1.282	3.078	1.872	2.026
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak.	37.00	10.60	18.00	6.30	3.50	0.86	1.30	0.57	3.00	7.90	8.40	8.60	37.00
Runotf (mm)	128	50	98	41	28	11	8	6	6	27	63	40	506
Rainfall (mm)	120	68	102	93	13	86	78	31	86	108	81	60	926
Monthly and yearly statistics for previous record (Oct 1966 to Dec 1990)													
Mean Avg.	4.759	4.219	3.528	2.239	1.687	1.080	0.703	0.610	0.825	1.956	3.021	4.266	2.401
flows Low	1.528	1.912	1.629	0.632	0.355	0.256	0.210	0.154	0.135	0.255	0.662	1.366	1.309
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \quad \mathrm{High}$	9.003	8.763	8.933	5.028	5.001	2.559	3.842	1.546	2.459	6.916	6.625	8.464	3.418
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	101.10	42.40	57.85	37.95	32.49	13.09	30.68	24.79	18.85	36.45	28.98	63.34	101.10
Runoff (mm)	101	81	75	46	36	22	15	13	17	41	62	90	599
Rainfall (mm)	111	85	87	58	72	65	54	74	88	97	97	112	1000
Factors affecting runoff: N Station type: VA										1991 runoff is 84% of previous mean rainfall 93\%			

055014 Lugg at Byton

Measuring authority: NRA-WEL
First year: 1966
Hydrometric statistics for 1991

	JAN	FEB	MAR	APA	MAY	Jun	JUt	AUG	SEP
Flows Avg.	10.370	4.316	8.408	3.925	2.334	. 1.243	1.078	0.870	0.701
$\left(m^{3} \mathbf{s}^{-1}\right):$ Peak	31.80	11.00	23.00	7.30	4.30	1.40	1.80	1.10	2.00
Runoff (mm)	137	51	111	50	31	16	14	11	9
Rainfall (mm)	132	64	109	102	9	86	85	26	73
Monthly and yearly statistics for previous record (Oct 1966 to Dec 1990)									
Mean \quad Avg.	7.479	7.159	5.911	4.127	3.058	1.972	1.386	1.137	1.284
flows Low	2.604	2.630	2.947	1.626	1.054	0.772	0.557	0.414	0.420
$\left(m^{3} s^{-9}\right)$ High	11.940	16.530	13.980	8.648	7.994	4.113	5.253	1.997	3.079
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	54.27	37.53	33.24	30.08	45.56	14.18	26.16	13.32	12.46
Runoff (mm)	99	86	78	53	40	25	18	15	16
Rainfall (mm)	117	87	90	63	76	64	56	74	87

fall (mm)
Factors affecting runoff
Station type: FVVA

Grid reference: 32 (SO) 328585 Level stn. (m OD): 129.00

Catchment area (sq km): 126.4 Max att. (m OD): 542

055018 Frome at Yarkhill

Measuring authority: NRA-WEL
First year: 1968
Hydrometric statistics for 1991

		JAN	FEB	MAR	APR	MAY	JuN	JUL	AUG	SEP	OCT	Nov	DEC	Year
Flows	Avg.	1.864	1.050	2.527	0.738	0.567	0.304	0.202	0.195	0.177	0.205	0.572	0.353	0.730
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$:	Peak	19.30	4.30	19.00	1.90	1.10	0.70	0.98	0.63	1.07	0.65	3.70	0.58	19.30
Runoff (mm)		35	18	47	13	11	5	4	4	3	4	10	7	160
Rainfall (mm)		95	36	83	62	5	74	82	17	61	54	64	15	648

Monthly and yearly statistics for previous record (Oct 1968 to Dec 1990 -incomplete or missing months total 0.1 years)

Mean Avg.	2.666	2.560	2.085	1.311	1.060	0.617	0.350	0.317	0.300	0.467	0.947	1.959	1.214
flows Low	0.214	0.389	0.560	0.359	0.274	0.146	0.091	0.063	0.096	0.142	0.119	0.210	0.672
$\left(m^{3} s^{-1}\right) \quad \mathrm{High}$	4.668	5.456	5.176	3.299	3.972	1.349	0.630	0.759	0.970	2.405	2.266	4.230	1.628
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	24.04	24.99	24.28	24.57	25.89	16.99	5.96	9.61	15.68	10.34	18.51	25.14	25.89
Runoff (mm)	50	43	39	24	20	11	7	6	5	9	17	36	266
Rainfall (mm)	74	54	61	46	58	57	46	64	58	60	62	74	714

Factors affecting runoff: E
Station type: VA

Grid reference: 32 (SO) 615428
Level stn. (m OD): 55.40

Catchment area (sq km): 144.0
Max alt. (m OD): 244

991 runoff is 60% of previous mean rainfall 91%

055023 Wye at Redbrook

Measuring authority: NAA-WEL
First year: 1936
Hydrometric statistics for 1991

		JaN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	191.700	93.570	153.000	82.380	37.010	24.090	22.780	22.300	18.350	51.280	130.000	75.660	75.151
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$:	Poak	569.00	455.00	368.00	262.50	185.00	\$8.00	44.80	66.70	141.60	205.00	269.00	428.90	569.00
Runoff (mm)		128	56	102	53	25	16	15	15	12	34	84	51	591
Rainfall (mm)		141	71	106	101	9	91	84	36	78	106	110	56	989

Monthly and yearly statistics for previous record (Oct 1936 to Dec 1990 -incomplate or missing months total 0.2 years)

Moan Avg.	132.500	124.400	93.330	64.720	43.800	33.960	24.210	27.890	39.490	59.860	100.400	123.800	72.115
flows Low	25.050	30.760	22.110	17.930	12.340	10.970	7.426	5.180	7.271	9.582	31.730	46.890	39.916
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \quad \mathrm{High}$	241.900	333.900	325.400	143.600	125.000	131.600	95.830	83.680	174.000	174.700	252.400	246.000	113.382
Patk flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	748.00	700.40	905.40	493.30	387.90	467.20	368.30	347.80	531.70	472.90	600.30	812.70	905.40
Runoff (mm)	89	76	62	42	29	22	16	19	26	40	65	83	567
Rainfall (mm)	112	80	77	63	73	63	67	82	86	97	110	114	1024

Factors affecting runoff: S P E
Station type: VA

Grid reference: 32 (SO) 528110 Level sin. (m OD): 9.20

Catchment area (sq km): 4010.0 Max alt. (m OD): 752

1991 runoff is 104% of previous mean rainfall 97%

056013 Yscir at Pontaryscir

Measuring authority: NRA-WEL
First year: 1972
Hydrometric statistics for 1991

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	4.549	2.600	3.047	2.228	0.746	0.579	0.790	0.426	0.428	1.903	3.544	2.173	1.915
$\left(m^{3} s^{-1}\right)$: Peak	27.29	25.21	11.47	11.87	2.25	2.92	7.52	1.87	6.33	29.16	19.46	22.52	29.16
Runotf (mm)	194	100	130	92	32	24	34	18	18	81	146	93	961
Rainfall (mm)	203	114	144	151	12	116	105	48	103	152	139	92	1379
Monthly and yearly statistics for previous record (May 1972 to Doc 1990-incomplete or missing months total 0.2 years)													
Mean Avg.	3.505	2.835	2.618	1.439	0.989	0.716	0.507	0.678	1.088	2.160	2.976	3.580	1.921
flows Low	1.146	0.998	0.852	0.431	0.269	0.214	0.150	0.104	0.251	0.214	0.941	1.540	1.286
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \quad \mathrm{High}$	5.795	5.914	6.303	3.211	3.041	1.788	1.758	2.964	3.947	4.279	5.291	6.324	2.465
Peak flow ($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$)	36.98	34.71	40.55	13.74	14.81	74.33	11.06	30.69	21.44	85.01	34.02	59.93	85.01
Runoff (mm)	149	110	112	59	42	30	22	29	45	92	123	153	965
Rainfall (mm)*	167	115	135	71	83	75	75	98	129	150	152	185	1435

Grid reference: 32 (SO) 003304
Level stn. (m OD): 161.20

Factors affecting runoff: N
Station type: C

Measuring authority: NRA-WEL
Grid reference: 21 (SS) 920782 Level stn. (m OD): 8.30

Catchment area (sq km): 62.5
Max alt. (m OD): 300

Hydrometric statistics for 1991

	JAN	FEB	MAR	APR	MAY	JUN	Jut	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	3.222	2.056	3.348	2:141	${ }^{\circ} 0.964$	1.322	1.515	0.841	0.960	2.382	2.984	1.637	1.948
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	23.48	17.38	51.23	27.50	2.17	10.09	23.60	2.27	19.46	36.60	18.39	6.97	51.23
Runaff (mm)	138	80	143	89	41	55	65	36	40	102	124	70	983
Rainfall (mm)	155	88	134	136	6	159	103	47	111	170	119	53	1281
Monthly and yearly statistics for previous record (Nov 1971 to Dec 1990 -incomplete or missing months total 0.2 years)													
Mean Avg.	2.910	2.634	2.308	1.448	1.086	0.898	0.794	0.972	1.221	2.081	2.585	2.822	1.810
flows Low	1.268	1.224	1.011	0.654	0.500	0.431	0.302	0.220	0.458	0.409	1.082	1.323	1.037
$\left(m^{3} s^{-1}\right)$ High	5.921	4.745	6.004	2.683	2.515	1.756	2.196	3.879	3.604	4.391	4.842	4.744	2.344
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	56.47	30.15	44.94	21.84	20.44	17.24	28.97	57.64	42.60	59.45	50.79	40.63	59.45
Runoff (mm)	125	103	99	60	47	37	34	42	51	89	107	121	914
Rainfall (mm)	145	105	115	66	79	88	78	109	129	146	142	145	1347
Factors affecting runoff: Station type: FVVA										1991 runoff is 108\% of previous mean rainfall 95\%			

060002 Cothi at Felin Mynachdy

Measuring authority: NRA-WEL
First year: 1961
Hydrometric statistics for 1991

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	25.600	13.990	18.100	11.970	3.462	5.090	5.575	4.347	1.908	12.560	19.250	5.749	10.618
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)^{1}$: Peak	219.10	110.60	89.01	78.50	9.35	24.95	36.26	23.56	10.35	123.90	72.96	14.10	219.10
Rurioff (mm)	230	114	163	104	31	44	50	39	17	113	168	52	1124
Rainfall (mm)	223	138	164	166	18	144	134	65	96	214	156	60	1578
Mónthly and yearly statistics for previous record (Oct 196\% to Dac 1990-incomplete or missing months total 2.0 years)													
Mean Avg.	18.550	14.860	13.050	8.563	6.326	4.158	3.537	6.072	7.702	15.230	18.040	20.170	11.349
flows Low	2.990	3.708	2.821	1.444	0.835	0.824	0.418	0.362	1.500	1.610	7.211	6.723	7.174
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	37.580	40.210	40.710	20.380	14.820	13.070	11.810	23.350	23.920	37.940	36.270	41.140	14.950
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	141.60	181.20	220.90	85.88	87.22	90.33	144.40	171.00	129.70	283.70	194.50	274.70	283.70
Runoff (mm)	167	122	117	75	57	36	32	55	67	137	157	181	1203
Rainfall (mm)	178	122	136	94	99	96	97	123	144	184	174	191	1638
Factors affecting runoff: \mathbf{N} Station type: VA										1991 runoff is 93% of previous mean rainfall 96%			

060003 Taf at Clog-y-Fran

Measuring authority: NRA-WEL
First year: 1965
Hydrometric statistics for 1991

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.		7.467	15.220	7.195	2.242	1.680	2.507	2.391	1.851	9.366	14.850	3.899	
($\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	65.60	39.70	59.92	25.54	4.10	7.39	20.37	12.75	17.74	82.47	41.35	6.21	82.47
Runoff (mm)		83	188	86	28	20	31	29	22	115	177	48	
Rainfall (mm)	165	104	160	135	13	118	127	59	102	202	136	37	1358
Monthly and yearly statistics for previous record fOct 1965 to Dec 1990-incomplete or missing months total 1.2 years)													
Mean Avg.	13.280	11.040	8.782	5.586	3.655	2.484	1.860	2.856	3.679	9.143	11.630	13.720	7.298
flows Low	4.835	3.858	3.796	1.735	1.017	0.781	0.375	0.363	0.687	1.018	3.757	5.075	4.672
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right.$) High	25.900	27.200	26.610	11.800	8.412	8.820	6.335	10.760	15.340	22.310	22.730	25.520	9.662
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	73.43	81.15	85.73	60.03	35.85	45.11	38.25	101.00	58.02	86.49	80.82	77.74	101.00
Runoff (mm)	164	124	108	67	45	30	23	35	44	113	139	169	1060
Rainfall (mm)	161	110	118	80	81	80	73	104	121	165	154	176	1423
Factors affecting runoff: \mathbf{N} Station type: VA										1991 runoff is \% of previous mean rainfall 95\%			

Station type: VA

Grid reference: 22 (SN) 238160 Level stn. (m OD): 7.00

Catchment area (sq km): 217.3 Max alt. (m OD): 395

060010 Tywi at Nantgaredig

Measuring authority: NRA-WEL First year: 1958
Hydrometric statistics for 1991

		JAN	FEB	MAR	APA	MAY	JUN	Jul	Aug	SEP	OCT	NOV	DEC	Year
Flows	Avg.	73.570	44.410	60.440	40.640	13.390	14.350	16.180	14.250	6.908	41.990	65.210	24.820	34.632
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$:	Peak	225.40	219.20	167.00	143.50	40.04	56.88	70.70	45.03	45.53	198.00	153.90	70.01	225.40
Runoff (mm)		181	99	148	97	33	34	40	35	16	103	155	61	1002
Rainfall (mm)		215	123	156	155	14	136	122	67	92	193	162	70	1505

Monthly and yearly statistics for previous record (Oct 1958 to Dec 1990 -incomplete or missing months total 2.1 years)

Comment: The period of record peak flow estimate may be subject to future review

063001 Ystwyth at Pont Llolwyn

Measuring authority: NRA-WEL
First year: 1963
Hydrometric statistics for 1991

	JAN	FEB	MAR	APA	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	9.677	7.452	6.353	6.653	1.935	1.979	2.498	3.379	2.094	5.620	12.220	5.066	5.390
$\left(m^{3} \mathrm{~s}^{-1}\right)$: Peak	59.70	69.35	22.61	41.01	6.92	13.28	18.17	34.07	31.86	45.09	48.96	65.41	69.35
Runoff (mm)	153	106	100	102	31	30	39	53	32	89	187	80	1002
Rainfall (mm)	140	118	109	156	21	114	116	94	107	162	197	91	1425
Monthly and yearly statistics for previous record (Oct 1963 to Dec 1990-incomplete or missing months total 0.4 years)													
Mean Avg.	9.395	7.083	6.237	4.279	3.113	2.459	2.603	3.322	4.359	7.327	9.263	10.770	5.850
flows Low	2.268	2.283	2.761	0.960	0.577	0.625	0.422	0.180	0.882	0.558	3.757	2.219	3.783
$\left(\mathrm{m}^{3} \mathrm{~s}-1\right)$ High	15.330	15.200	18.470	10.080	10.100	7.571	5.461	8.556	10.670	19.800	18.320	22.600	7.774
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	105.60	88.63	126.70	90.32	105.10	129.70	68.24	174.30	76.84	147.40	128.10	210.40	210.40
Punoff (mm)	148	102	99	65	49	38	41	52	67	116	142	170	1088
Rainfall (mm)	156	104	120	84	89	91	97	112	130	155	166	181	1485
Factors affacting runoff: Station typo: VA										1991 runoff is 92% of previous mean rainfall 96\%			

Grid reference: 22 (SN) 591774 Level stn. (m OD): 12.00

Catchment area (sq km): 169.6
Max att. (m OD): 611
runoff is 92% of previous mean
rainfall 96%

064001 Dyfi at Dyfi Bridge

1991

Measuring outhority: NRA-WEL
First year: 1962
Hydrometric statistics for 1991

	JAN	FEB	MAR	APR	MAY	Jun	JUL	AUG	SEP	OCT	NOV	DEC	Yoar
Flows Avg.	37.150	28.520	26.200	27.620	6.275	11.400	11.330	19.850	6.839	19.370	40.020	27.050	21.750
$\left(m^{3} s^{-1}\right)$: Pook	333.10	342.20	151.50	288.10	21.96	44.15	59.33	189.60	32.25	90.22	272.30	317.30	342.20
Runoff (mm)	211	146	149	152	36	63	64	113	38	110	220	154	1455
Rainfall (mm)	144	159	139	189	17	152	135	139	110	157	22.6	154	1721
Monthly and yearly statistics for previous record (Oct 1962 to Dec 1990-incomplate or missing months total 9.8 years)													
Mean Avg.	35.250	25.190	28.030	16.850	10.700	10.190	8.894	12.910	17.820	30.770	34.250	41.680	22.725
flows Low	6.245	5.174	5.789	2.626	1.295	1.618	0.822	1.819	5.966	10.770	14.530	7.501	18.343
$\left(m^{3} s^{-1}\right)$ High	68.810	55.560	75.790	42.490	23.600	21.770	18.780	40.440	36.260	76.960	70.470	88.280	26.520
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	350.20	340.00	360.70	271.30	337.20	402.10	162.00	210.00	329.80	344.00	375.50	580.50	580.50
Runoff (mm)	200	130	159	93	61	56	51	73	98	175	188	237	1521
Rainfall (mm)	207	138	168	107	107	110	109	147	167	208	202	245	1915
Factors affocting runoff: \mathbf{N} Station type: VA										1991 runoff is 96% of previous mean rainfall 90\%			

Grid reference: 23 (SH) 745019
Level stn. (m OD): 5.90

Catchment area (sq km): 471.3 Max alt. (m OD): 907

064002 Dysynni at Pont-y-Garth

Measuring authority: NRA-WEL
First yoar: 1966
Hydrometric statistics for 1991

	JAN	FEE	MAR	APA	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	7.295	4.492	6.024	5.573	1.721	2.682	3.167	6.119	2.377	5.596	10.890	5.202	5.097
$\left(m^{3} s^{-1}\right)$: Peak	55.99	36.39	30.74	48.57	5.59	13.49	12.76	56.75	13.89	23.77	37.90	37.96	56.75
Runotf (mm)	260	145	215	192	61	93	113	218	82	200	376	186	2140
Rainfall (mm)													
Monthly and yearly statistics for previous record (Jan 1966 to Dec 1990-incomplete or missing months total 1.8 years)													
Mean Avg.	6.199	4.968	5.021	3.427	2.351	2.282	2.679	3.230	4.093	5.858	6.791	7.097	4.500
flows Low	3.371	1.548	0.986	0.457	0.298	0.427	0.278	0.289	1.926	0.556	3.011	2.770	3.612
$\left(\mathrm{m}^{3} \mathrm{a}^{-1}\right) \quad \mathrm{High}$	11.830	10.330	14.780	7.209	7.602	5.921	5.407	8.899	7.285	12.350	12.680	12.580	5.434
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	61.40	41.34	98.71	36.85	76.32	48.42	53.35	51.62	70.14	107.70	121.30	84.70	121.30
Runoff (mm)	221	161	179	118	84	79	96	115	141	209	234	253	1891

Rainfall (mm)
Factors affocting runoff: N
Station type: VA
Comment: Raingauge network is inadequate for the accurate assessment of areal rainfall

1991 runoff is 113% of previous mean rainfall

065005 Erch at Pencaenewydd

Measuring authority: NRA-WEL
First year: 1973
Hydrometric statistics for 1991

		JAN	FES
		Avg.	0.804
Flows	0.519		
$\left(\mathrm{~m}^{3} \mathrm{~s}^{-1}\right):$	Poak	7.83	4.28
Runof (mm)	119	69	
Rainfall (mm)	98	100	

Monthly and yearly statistics for previous record (Jan 1973 to Dec 1990)

Mean Avg.	1.009	0.824	0.756	0.467	0.316	0.209	0.182	0.300	0.393	0.764	1.000	1.077	0.607
flows Low	0.629	0.365	0.311	0.177	0.120	0.089	0.081	0.061	0.103	0.236	0.264	0.600	0.430
$\left(m^{3} \mathrm{~s}^{-1}\right) \quad \mathrm{High}$	1.673	1.869	1.804	0.892	0.728	0.539	0.427	1.113	0.919	1.736	1.816	1.764	0.739
Peak flow ($\mathrm{m}^{3} \mathbf{s}^{-1}$)	10.41	15.45	19.78	11.00	4.68	6.99	5.52	9.22	7.42	25.01	16.91	15.49	25.01
Runoff (mm)	149	111	112	67	47	30	27	44	56	113	143	159	1059
Rainfall (mm)	152	100	128	71	74	72	79	118	125	162	160	168	1409
Factors affecting Station type: C	off: N									1991	oft is 7 fall 88	of pre	us mean

066006 Elwy at Pont-y-Gwyddel

Measuring authority: NRA-WEL
First year: 1973

Grid reference: 23 (SH) 952718
Level stn. (m OD): 87.90

Catchment area (sq km): 194.0 Max alt. (m OD): 518

Hydrometric statistics for 1991

067008 Alyn at Pont-y-Capel

Hydrometric statistics for 1991

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	4.659	2.270	4.149	1.412	1.101	0.658	0.615	0.438	0.390	0.569	2.931	1.773	1.747
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	16.32	6.88	19.03	6.91	3.22	1.00	2.26	0.69	0.82	4.27	9.78	14.40	19.03
Runoff (mm)	55	24	49	16	13	8	7	5	4	7	33	21	243
Rainfall (mm)	75	51	80	68	18	67	67	18	50	96	99	53	742
Monthly and yearly statistics for previous record (Jun 1965 to Dec 1990)													
Mean Avg.	4.304	3.906	3.209	2.582	1.728	1.155	0.856	0.878	0.955	1.921	2.998	4.241	2.388
flows Low	1.328	1.553	1.448	1.023	0.677	0.438	0.331	0.287	0.474	0.452	0.614	1.246	1.266
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	7.219	9.085	8.027	6.474	5.657	2.873	2.098	2.456	3.906	6.896	6.168	9.480	3.027
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	27.53	28.52	26.11	25.28	26.86	18.34	23.23	20.81	59.11	26.46	28.21	35.92	59.11
Runoff (mm)	51	42	38	29	20	13	10	10	11	23	34	50	332
Rainfall (mm)	86	66	74	61	69	65	59	72	80	87	103	97	919
Factors affecting runoff: S El Station type: CC										1991 runoff is 73% of previous mean rainfall 81\%			

068004 Wistaston Brook at Marshyield Bridge

Measuring authority: NRA-NW
First'year: 1957
Hydrometric statistics for 1991

Monthly and yearly statistics for previous record (Oct 1957 to Dec 1990 -incomplete or missing months total 4.2 years)

Mean Avg.	1.674	1.485	1.127	1.086	0.865	0.729	0.648	0.663	0.724	0.963	1.304	1.555 *	1.067
flows Low	0.538	0.603	0.638	0.464	0.355	0.330	0.235	0.227	0.221	0.277	0.522	0.650	0.655
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right.$) High	3.143	3.679	2.131	1.901	3.381	1.410	2.419	1.578	1.973	1.902	2.555	4.701	1.681
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	16.21	13.14	13.31	12.48	15.06	11.63	13.02	21.45	10.73	12.95	13.25	13.44	21.45
Runoff (mm)	48	39	33	30	25	20	19	19	20	28	36	45	363
Rainfall (mm)	67	47	51	54	61	62	60	68	69	70	73	67	749
Factors affecting	off: PG									1991	ff is	of pre	s mean

Factors afecting runoff: PGE
Station type: VA

Grid reference: 33 (SJ) $674552 \quad$ Catchment area (sq km): 92.7
Level stn (m OD). 30.10
Max alt. (m OD): 221
t runoff is 49% of previous mean rainfall 72\%

069006 Bollin at Dunham Massey

Measuring authority: NRA-NW
First year: 1955
Hydrometric statistics for 1991

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg,	7.030	3.622	4.333	2.332	1.850	2.846	2.759	2.320	2.222	2.303	3.983	5.758	3.452
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	20.99	9.39	11.35	7.97	2.70	7.28	7.76	3.67	9.44	12.07	11.38	43.69	43.69
Runoff (mm)	74	34	45	24	19	29	29	24	23	24	40	60	425
Rainfall (mm)	54	33	49	40	12	92	62	30	47	70	73	79	641
Monthly and yearly statistics for previous record (Oct 1955 to Dec 1990-incomplete or missing months total 1.1 years)													
Mean; Avg.	6.427	5.392	4.555	3.700	2.890	2.533	2.367	2.921	3.095	4.076	5.407	6.405	4.143
flows Low	1.639	1.686	1.694	1.742	1.286	0.707	0.875	0.464	0.651	1.300	1.804	2.296	2.728
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{High}$	10.960	12.880	11.470	8.732	5.781	9.203	5.626	11.410	8.963	11.340	9.425	14.510	6.307
Peak flow ($\mathrm{m}^{3} 5^{-1}$)	43.95	39.29	36.91	60.43	63.02	42.37	41.50	44.04	35.05	41.18	44.35	46.33	63.02
Runotf (mm) .	67	51	48	37	30	26	25	31	31	43	55	67	511
Rainfall (mm)	80	55	64	56	64	72	75	88	82	83	83	88	890
Factors affecting runioff: S PGEI Station type: VA										1991 runoff is 83% of previous mean rainfall 72\%			

069007 Mersey at Ashton Weir

1991

Measuring authority: NRA-NW
First year: 1958
Hydrometric statistics for 1991

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	12.960	9.297	9.128	5.712	3.479	6.203	4.906	3.757	3.395	4.403	11.760	29.370	8.714
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	44.24	59.04	23.87	27.43	8.55	27.75	22.72	15.03	14.47	26.67	48.85	563.40	563.40
Runoff (mm)	53	34	37	22	14	24	20	15	13	18	46	119	416
Rainfall (mm)	67	61	66	58	19	115	70	53	62	83	118	126	898
Monthly and yearly statistics for previous record (Jan 1981 to Dec 1990-incomplete or missing months total 0.1 years)													
Mean Avg.	20.190	12.760	16.070	10.780	6.273	6.807	4.715	6.513	7.235	11.670	14.840	18.120	11.336
flows Low	8.297	7.399	5.544	4.698	3.585	3.847	2.447	2.760	2.574	5.978	7.300	8.686	8.438
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	29.220	23.100	36.210	17.190	11.420	18.090	7.866	12.560	11.110	25.500	25.190	36.810	15.876
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	188.80	125.00	176.70	113.00	56.25	157.50	49.21	216.70	87.70	202.50	303.70	502.90	502.90
Runoff (mm)	82	47	65	42	25	27	19	26	28	47	58	74	542
Rainfall (mm)	124	65	114	75	64	87	64	100	92	128	116	122	1151

Factors affecting runoff: S PGEI
Station type: CB

Grid reference: 33 (SJ) 772936 Level stn. (m OD): 14.90

Catchment area (sq km): 660.0 Max alt. (m OD): 636

1991 runoff is 77% of previous mean rainfall 78%

069035 Irwell at Bury Bridge

Measuring authority: NRA-NW First year: 1953

Grid reference: 34 (SD) 797109
Level stn. (m OD): 75.00

Catchment area (sq km): 155.0 Max alt. (m OD): 473

Hydrometric statistics for 1991

		JAN	FEB	MAR	APR	MAY	JUN	Jut.	AUG	SEP	OCT	NOV	DEC,	Year
Flows	Avg.	7.378	6.937	6.010	3.377	0.622	2.152	1.082	0.819	0.930	2.603	11.500	12.070	4.606
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$:	Peak	269.40	144.80	92.63	71.70	1.79	12.38	4.47	5.36	7.58	37.96	245.20	285.90	285.90
Runoff (mm)		127	108	104	56	11	36	19	14	16	45	192	209	937
Rainfall (mm)		96	100	102	82	16	126	68	66	73	103	193	154	1179

Monthly and yearly statistics for previous record (Jan 1977 to Dec 1990 -incomplete or missing months total $\mathbf{4 . 3}$ years)

Mean Avg.	10.170	6.104	7.494	3.830	2.864	2.387	1.496	3.265	3.718	6.951	9.067	10.620	5.670
flows Low	4.855	1.071	1.678	0.445	0.072	0.713	0.295	0.421	1.256	2.961	3.323	5.006	4.031
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \quad \mathrm{High}$	14.620	12.150	20.260	6.043	6.797	4.626	3.211	5.915	7.908	16.280	13.540	17.450	8.405
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	187.50	189.10	219.90	120.00	58.91	125.20	31.42	171.80	131.70	185.50	218.30	227.70	227.70
Runotf (mm)	176	96	129	64	49	40	26	56	62	120	152	184	1154
Rainfall (mm)* -(1977-1985)	140	76	137	75	81	93	56	115	132	127	152	160	1344
Factors affecting Station type: VA	noff: S									1991	off is 8 fall 88	of pre	ous mean

070003 Douglas at Central Park Wigan

Measuring authority: NRA-NW
First year: 1973
Hydrometric statistics for 1991

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	1.454	1.184	1.141	0.736	0.380	0.488	0.512	0.480	0.542	0.768	1.735	1.271	0.889
$\left(\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}\right)$: Peak	9.35	9.19	5.47	4.77	0.72	2.98	4.30	2.35	3.35	7.45	12.30	12.68	12.68
Runoff (mm)	70	52	55	35	18	23	25	23	25	37	81	62	507
Rainfall (mm)	71	71	78	62	14	94	80	62	62	103	139	86	922
Monthly and yearly statistics for previous record (Jan 1977 to Dec 1990 -incomplete or missing months total 5.2 years)													
Mean Avg.	1.945	1.469	1.305	1.097	0.747	0.758	0.743	0.835	0.875	1.381	1.628	1.814	1.216
flows Low	0.976	0.642	0.739	0.417	0.384	0.513	0.425	0.321	0.353	0.729	1.111	0.917	0.875
($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$) High	2.890	2.226	2.099	1.828	1.519	1.107	1.199	1.451	1.291	2.252	2.910	3.312	1.476
Peak flow ($\mathrm{m}^{3} 5^{-1}$)	16.47	14.00	12.05	15.83	9.07	11.38	10.99	21.81	16.04	17.86	19.30	29.67	29.67
Runoff (mm)	94	65	63	51	36	36	36	40	41	67	76	88	694
Rainfall (mm)													
Factors affecting runoff: SRP El $\quad 1991$ runoff is 73% of prev													

Factors affecting runoff: SRP EI
Station type: VA

Grid reference: 34 (SD) 587061 Level stn. (m OD): 31.70

Catchment area ($\mathrm{sq} \mathbf{~ k m}$): 55.3 Max alt. (m OD): 457

071001 Ribble at Samlesbury

Measuring authority: NRA-NW
First year: 1960
Hydrometric statistics for 1991

	JAN	FE日	MAR	APR	MAY	JUN	${ }_{113}$	AUG 15.230	SEP 12.020	OCT	NOV 82.500	DEC 61.840	Year 30.803
Flows Avg.	40.830	45.380	33.150	26.650	5.890	15.320	11.330	15.230	12.020	21.340	82.500	61.840	30.803
$\left(m^{3} \mathrm{~s}^{-1}\right)$: Peak	438.00	463.80	209.20	350.20	9.59	76.09	35.78	112.10	94.85	254.10	505.70	739.70	739.70
Runoff (mm)	96	96	78	60	14	35	27	36	27	50	187	145	848
Rainfall (mm)	95	120	105	78	20	121	67	83	84	107	223	162	1265
Monthly and yearly statistics for previous record (May 1960 to Dec 1990)													
Mean Avg.	51.910	38.040	34.770	25.610	17.760	14.150	16.410	23.850	29.320	42.170	51.230	55.510	33.395
flows Low	10.610	9.565	11.790	5.601	4.048	5.031	2.638	2.958	4.263	5.716	20.770	15.190	22.045
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \quad \mathrm{High}$	82.510	80.890	104.700	54.820	46.460	33.520	40.500	68.920	65.820	118.400	88.610	120.200	45.022
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	754.60	513.10	643.30	466.60	319.10	494.80	399.80	520.80	619.30	810.00	613.20	891.30	891.30
Runoff (mm)	121	81	81	58	42	32	38	56	66	99	116	130	920
Rainfall (mm)* -(1961-1990)	136	88	107	79	81	90	91	118	129	143	139	149	1350
Factors affecting runoff; S E Station type: MIS										1991 runoff is 92% of previous mean rainfall 94\%			

071004 Calder at Whalley Weir

Measuring authority: NRA-NW
First year: 1963
Hydrometric statistics for 1991

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	11.060	10.740	8.433	6.996	2:499	4.601	2.730	3.232	3.097	4.922	19.730	15.680	7.777
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	121.40	114.40	65.60	74.68	5.11	27.01	7.46	17.33	17.22	64.96	132.50	199.50	199.50
Runotf (mm)	94	82	71	57	21	38	23	27	25	42	162	133	776
Rainfall (mm)	91	91	77	75	20	113	60	67	72	92	199	155	1112
Monthly and yearly statistics for previous record (Oct $\mathbf{1 9 6 3}$ to Dec $\mathbf{1 9 9 0}$-incomplete or missing months total 2.6 years)													
Mean Avg.	13.320	9.704	9.196	6.544	5.012	4.308	3.921	5.873	7.188	11.000	12.580	13.490	8.511
flows Low	5.766	3.320	3.989	2.272	2.053	1.888	1.773	1.564	1.921	2.397	5.625	4.886	6.225
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	20.590	17.170	25.320°	13.010	. 9.916	7.609	9.059	16.280	18.620	23.910	21.990	25.610	11.485
Peak flow $\left\{\mathrm{m}^{3} \mathrm{~s}^{-1}\right.$ \}	183.20 .	146.10	185.20	108.40	91.66	135.50	230.60	171.60	206.00	229.50	148.60	194.30	230.60
Runoff (mm)	113	75	78	54	42	35	33	50	59	93	103	114	- 850
Rainfall (mm)	126	80	103	71	76	87	B1	108	115	133	127	130	1237
Factors affecting runoff: El ; Station type: FV										1991 runoff is 91% of previous mean rainfall 90\%			

Grid reference: $\mathbf{3 4}$ (SD) $\mathbf{7 2 9} \mathbf{3 6 0}$
Level str. (m OD): 39.90

Catchment area (sq km): 316.0 Max alt. (m OD): 558

073005 Kent at Sedgwick

Measuring authority: NRA-NW
First year: 1968
Hydrometric statistics for 1991

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	14.240^{\prime}	11.080	13.610	8.196	1.394	4.079	3.805	3.381	3.162	10.810	19.030	14.280	8.908
$\left(m^{3} s^{-1}\right):$ Peak	166.40	122.40	108.90	59.53	2.10	18.68	20.19	19.08	17.44	71.57	133.50	139.90	166.40
Runotf (mm)	183	128	174	102	18	51	49	43	39	139	236	183	1344
Rainfall (mm)	163	164	185	143	14	165	84	87	104	210	254	203	1776
Morithly and yearly statistics for previous record (Nov 1968 to Dec 1990)													
Mean Avg.	13.160	10.640	9.926	6.400	4.145	3.661	3.926	5.615	7.864	10.850	13.400	13.240	8.562
flows Low	5.998	3.094	3.348	2.038	1.222	0.872	0.658	0.740	1.753	1.396	5.484	5.466	5.995
$\left(m^{3} \mathrm{~s}^{-1}\right) \quad \mathrm{High}$	20.950	27.410	23.030	12.620	11.580	13.010	10.570	18.810	15.680	18.1 .10	21.490	23.210	10.316
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	230.90 .	167.80	194.60	111.10	53.44	72.86	95.90	94.26	120.70	131.70	177.80	276.40	276.40
Runoff (mm)	169	124	127	79	53	45	50	72	98	139	166	170	1293
Rainfall (mm)	198	124	157	88	87	101	111	133	167	188	200	196	1750
Factors affecting runoff: N I Station type: CBVA										1991 runoff is 104% of previous mean rainfall 101\%			

074005 Ehen at Braystones

1991

Measuring authority: NRA-NW
First year: 1974
Hydrometric statistics for 1991

075002 Derwent at Camerton

Measuring authority: NRA-NW
First year: 1960
Hydrometric statistics for 1991

		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	47.900	28.070	42.040	29.390	4.133	8.946	8.176	8.566	6.724	26.610	72.000	38.510	26.717
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$:	Peak	214.20	138.20	179.20	79.22	5.55	16.89	10.86	21.93	15.30	99.19	226.40	234.80	234.80
Runoff (mm)		194	102	170	115	17	35	33	35	26	108	282	156	1271
Rainfall (mm)		187	156	216	129	31	137	82	104	99	241	300	183 -	1865

Monthly and yearly statistics for previous record (Sep 1960 to Dec 1990 -incomplete or missing months total 0.3 years)

Mean	Avg.	38.850	30.100	26.280	19.730	12.450	9.976	11.480	18.080	25.100	35.860	39.940	40.800	25.710
flows	Low	9.587	4.837	7.466	4.359	2.753	2.041	2.503	2.384	2.885	2.755	14.570	14.740	14.823
($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	High	84.550	84.850	66.470	38.940	36.280	34.800	23.140	55.940	62.980	107.800	76.340	75.840	34.235
Peak flow	$\mathrm{m}^{3} \mathrm{~s}^{-1}$	219.20	165.70	215.50	145.50	102.90	135.80	114.50	216.20	189.20	264.70	211.30	199.00	264.70
Runoff (mm		157	111	106	77	50	39	46	73	98	145	156	165	1224
Rainfall (mm) \cdot-1961-199		186	115	147	95	99	107	116	148	178	204	188	192	1775
Factors affecting runoff: S P Station type: VA											1991 runoff is 104% of previous mean rainfall 105\%			

076005 Eden at Temple Sowerby

1991

Messuring authority: NRA-NW First year: 1964
Hydrometric statistics for 1991

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	34.160	29.430	25.710	12.060	2.348	4.619	1.937	1.784	2.038	7.685	30.300	18.920	14.146
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	277.50	314.90	166.50	115.80	3.23	20.49	5.93	7.46	19.16	127.70	209.40	236.00	314.90
Runotf (mm)	148	116	112	51	10	19	8	8	9	33	127	82	724
Rainfall (mm)	142	138	128	80	15	91	41	43	59	124	179	104	1144
Monthly and yearly statistics for previous record (Nov 1964 to Dec 1990)													
Mean Avg.	23.970	19.770	16.760	10.560	7.210	5.289	5.506	7.919	11.200	16.750	21.200	25.460	14.282
flows Low	10.870	5.577	6.338	2.923	2.196	1.879	1.176	1.613	1.593	1.975	7.764	9.403	8.669
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \quad \mathrm{High}$	42.280	62.620	43.560	19.500	17.000	13.780	16.690	22.070	30.440	55.960	38.740	49.530	18.912
Poak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	283.30	307.20	346.30	165.80	150.40	139.40	230.50	204.00	280.20	271.00	279.30	323.20	346.30
Runoff (mm)	104	78	73	44	31	22	24	34	47	73	89	111	731
Rainfall (mm)	126	87	98	61	70	70	78	95	106	118	123	132	1164
Factars affecting runoff: Station type: VA										1991 runoff is 99% of previous mean rainfall 98\%			

Monthly and yearly statistics for previous record (Nov 1964 to Dec 1990)

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	34.160	29.430	25.710	12.060	2.348	4.619	1.937	1.784	2.038	7.685	30.300	18.920	14.146
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	277.50	314.90	166.50	115.80	3.23	20.49	5.93	7.46	19.16	127.70	209.40	236.00	314.90
Runotf (mm)	148	116	112	51	10	19	8	8	9	33	127	82	724
Rainfall (mm)	142	138	128	80	15	91	41	43	59	124	179	104	1144
Monthly and yearly statistics for previous record (Nov 1964 to Dec 1990)													
Mean Avg.	23.970	19.770	16.760	10.560	7.210	5.289	5.506	7.919	11.200	16.750	21.200	25.460	14.282
flows Low	10.870	5.577	6.338	2.923	2.196	1.879	1.176	1.613	1.593	1.975	7.764	9.403	8.669
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \quad \mathrm{High}$	42.280	62.620	43.560	19.500	17.000	13.780	16.690	22.070	30.440	55.960	38.740	49.530	18.912
Poak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	283.30	307.20	346.30	165.80	150.40	139.40	230.50	204.00	280.20	271.00	279.30	323.20	346.30
Runoff (mm)	104	78	73	44	31	22	24	34	47	73	89	111	731
Rainfall (mm)	126	87	98	61	70	70	78	95	106	118	123	132	1164
Factars affecting runoff: Station type: VA										1991 runoff is 99% of previous mean rainfall 98\%			

Grid reference: 35 (NY) 605283
Level stn. (m OD): 92.40

Catchment area (sq km): 616.4 Max alt. (m OD): 950

076010 Petteril at Harraby Green

1991

Grid reference: $\mathbf{3 5}$ (NY) 412545
Level stn. (m OD): 20.10
Catchment area (sq km): 160.0

		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year 2.386
Flows	Avg.	6.266	3.499	4.355	2.302	0.521	0.450	0.328	0.325	0.293	0.919	5.599	3.851	2.386
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$:	Peak	33.60	26.52	21.44	10.89	0.71	1.25	0.96	1.96	0.63	11.42	21.29	27.22	33.60
Runoff (mm)		105	53	73	37	9	7	5	5	5	15	91	64	470
Rainfall (mm)		116	82	98	74	17	80	48	48	54	122	158	96	993

Monthly and yearly statistics for previous record (Jan 1970 to Dec 1990 -incomplete or missing months total 5.8 years)

Moan Avg.	4.493	3.444	2.424	1.487	0.926	0.644	0.646	0.834	1.155	2.172	3.307	3.737	2.101
flows Low	1.826	1.148	1.040	0.667	0.413	0.286	0.279	0.251	0.303	0.277	1.162	1.260	1.065
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{High}$	7.125	9.440	4.286	3.007	3.898	1.469	1.944	2.699	4.975	5.669	7.146	6.439	2.672
Poak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	38.27	38.88	47.18	15.71	18.64	9.80	22.39	24.04	42.15	29.77	47.03	44.86	47.18
Runoff (mm)	75	53	41	24	16	10	11	14	19	36	54	63	414
Rainfall (mm)	105	62	70	46	58	61	79	78	84	95	97	92	927

Factors affacting runoff: N
Station type: MIS

077003 Liddel Water at Rowanburnfoot

1973
Hydrometric statistics for 1991

	JAN	FEB	MAR	APA	MAY	JUN	JuL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	21.580	17.730	14.810	8.008	1.416	4.928	4.357	2.530	2.657	9.269	17.510	13.910	9.828
($\mathrm{m}^{3} \mathrm{~S}^{-1}$): Posk	404.40	218.00	166.60	66.64	1.98	41.42	59.77	19.97	28.63	86.00	212.20	181.50	404.40
Runoff (mm)	181	134	123	65	12	40	37	21	22	78	142	117	972
Rainfall (mm)	164	160	138	94	18	136	85	63	78	148	183	150	1417
Monthly and yearly statistics for previous record (Oct 1973 to Doc 1990)													
Mean Avg.	16.650	12.980	13.260	6.301	4.883	4.224	5.172	6.314	8.919	12.410	14.310	16.350	10.145
flows Low	8.344	5.633	5.710	1.538	1.118	1.083	0.879	0.869	1.757	4.057	3.421	4.819	7.515
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	30.750	32.020	23.150	14.230	16.720	12.940	22.800	23.360	24.390	19.120	26.200	26.460	13.058
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	315.00	349.10	345.30	171.00	241.00	131.00	309.40	178.80	354.90	334.30	281.00	393.20	393.20
Runoff (mm)	140	99	111	51	41	34	43	53	72	104	116	137	1004
Rainfall (mm)	151	99	130	68	84	87	106	12.0	125	145	135	159	1409
Factors affecting runotf: Station type: VA										1991 runoff is 97% of previous mean rainfall 101\%			

078003 Annan at Brydekirk

Measuring authority: SRPB
Grid reference: 35 (NY) 191704
Level stn. (m 00): 10.00
First year: 1967

Catchment area (sq km): 925.0

Hydrometric statistics for 1991

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	59.010	36.710	51.810	38.840	5.210	7.407	9.804	7.006	5.967	32.280	65.780	44.740	30.338
$\left(m^{3} s^{-1}\right):$ Peak	332.30	235.50	279.60	145.20	9.78	21.07	33.89	47.16	45.97	268.10	231.20	235.00	332.30
Runott (mm)	171	96	150	109	15	21	28	20	17	93	184	130	1034
Rainfall (mm)	153	115	147	134	14	116	81	66	79	183	182	138	1408
Monthly and yearly statistics for previous record (Oct 1967 to Dec 1990)													
Mean Avg.	46.590	37.500	32.950	19.920	14.880	11.680	11.340	17.880	25.010	37.600	40.870	43.950	28.322
flows Low	17.820	12.820	8.402	6.124	3.519	2.937	1.944	2.007	3.362	3.592	11.490	19.530	16.402
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	83.440	105.700	63.910	40.600	53.160	32.150	34.940	76.390	76.320	86.820	77.930	87.020	36.424
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	405.40	305.00	293.30	213.30	172.50	171.30	253.10	378.90	446.60	499.10	325.00	355.40	499.10
Runof (mm)	135	99	95	56	43	33	33	52	70	109	115	127	966
Rainfall (mm)	146	100	119	67	86	83	95	111	131	149	132	143	1362
Factors affecting runoff: N Station type: VA										1991 runoff is 107% of previous mean rainfall 103\%			

078004 Kinnel Water at Redhall

Measuring authority: SRPB
First year: 1963
Hydrometric statistics for 1991

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	5.325	3.287	4.322	3.518	0.172	0.599	0.957	0.695	0.630	4.563	6.472	4.417	2.911
($\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	95.89	44.18	101.20	27.26	0.30	4.40	9.24	14.39	12.36	96.20	57.13	65.64	101.20
Runoff (mm)	187	104	152	120	6	20	34	24	21	161	220	155	1206
Rainfall (mm)	166	123	164	155	14	123	87	73	85	203	198	154	1545
Monthly and yearly statistics for previous record (Oct 1963 to Dec 1990 -incomplete or missing months total 1.0 years)													
Mean Avg.	4.279	3.230	2.913	1.620	1.501	1.088	1.045	1.687	2.694	3.659	3.851	4.133	2.641
flows Low	1.296	0.590	0.552	0.251	0.122	0.112	0.048	0.049	0.099	0.207	0.740	1.081	1.507
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{High}$	9.214	9.298	6.263	4.161	5.496	3.282	3.435	7.513	6.689	7.288	7.535	8.490	3.517
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	80.89	90.99	59.19	66.70	51.79	36.09	60.14	65.25	91.37	110.90	86.69	103.60	110.90
Runoff (mm)	151	104	103	55	53	37	37	59	92	129	131	145	1095
Rainfall (mm)	154	105	126	75	97	90	96	119	146	158	145	157	1468
Factors affecting runoff:													

Station type: VA

Grid reference: 35 (NY) 077868
Lavel stn. (m OD): 53.70

Catchment area (sq km): 76.1 Max alt. (m OD): 697

080001 Urr at Dalbeattie
1991

Measuring authority: SRPB
First year: 1963
Hydrometric statistics for 1991

	JAN	FEB	MAR	APA	MAY	JUN	JUL	Aug	SEP	OCT	NOV	DEC	Year
Flows Avg.	11.610	5.876	9.617	8.509	0.591	0.904	0.971	0.711	0.789	4.948	12.790	9.712	5.581
($\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	118.20	49.98	74.46	69.39	1.64	8.31	4.22	6.35	9.22	49.69	62.74	79.62	118.20
Runoff (mm)	156	71	129	111	8	12	13	10	10	67	167	131	884
Rainfall (mm)	143	99	142	145	9	108	69	69	78	159	168	128	1317
Monthly and yearly statistics for previous record (Nov 1963 to Dec 1990)													
Mean Avg.	9.810	8.056	6.460	3.607	2.953	2.016	1.476	2.943	5.196	8.306	9.227	9.801	5.813
flows Low	3.534	1.419	2.094	0.753	0.308	0.246	0.137	0.149	0.319	0.522	1.711	3.369	3.109
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{High}$	19.080	19.340	11.990	7.485	10.880	6.833	5.081	13.310	17.160	19.400	19.420	18.590	8.358
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	133.70	100.10	95.03	61.69	65.95	59.18	68.42	104.60	114.10	162.20	129.70	164.30	164.30
Runoff (mm)	132	99	87	47	40	26	20	40	68	112	120	132	922
Rainfall (mm)	139	98	113	68	82	78	80	104	131	149	138	142	1322
Factors affecting runoff: Station type: VA										1991 runoff is 96% of previous mean rainfall 100\%			

Station type: VA

Grid reference: 25 (NX) 822610
Level stn. (m OD): 4.00

Catchment area (sq km): 199.0 Max alt. (m OD): 432

081002 Cree at Newton Stewart

Measuring authority: SRPB
First year: 1963
Hydrometric statistics for 1991

		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	21.080	14.530	21.200	23.820	2.269	9.559	6.807	6.376	3.909	15.720	41.310	31.650	16.501
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$:	Peak	161.60	113.30	217.20	150.50	9.68	66.93	22.46	66.54	45.09	197.10	196.30	322.30	322.30
Runoff (mm)		153	96	154	168	17	67	50	46	28	114	291	230	1414
Rainfall (mm)		176	119	191	193	35	167	98	103	96	195	308	255	1936

Monthly and yearly statistics for previous record (Oct 1963 to Dec 1990)

Mean	Avg.	24.110	17.690	16.280	9.665	7.793	6.637	7.750

flows	Low	9.633	2.569	4.039	1.319	0.426	1.176	0.969	0.684	1.063

$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	45.820	42.490	28.180	20.820	22.960	15.620	0.969 19.710	0.684 36.030	1.063 43.310	6.495 36.720	43.910	58.750 48.050	9.965 18.979
Peak flow ($\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$	272.50	253.10	217.10	192.30	119.40	195.10	223.10	230.90	312.70	318.00	199.10	303.90	318.00
Runoff (mm)	175	117	118	68	57	47	56	79	117	161	161	170	1327

Runoff (mm)	175	117	118	68	57	47	56	79	117	161	161
Rainfall (mm)	198	127	155	93	98	101	110	138	171	200	197

Factors affecting runoff:
Station type: VA
Grid reference: 25 (NX) 412653 Level stn. (m OD): 4.80

Catchment area (sq km): 368.0 Max alt. (m OD): 843

082002 Doon at Auchendrane

Moasuring authority: CRPB
First year: 1974
Hydrometric statistics for 1991

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	10.330	6.875	6.826	10.520	2.519	3.484	3.608	3.211	3.825	7.488	16.330	12.300	7.268
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	38.06	35.52	32.89	61.06	4.99	13.94	12.79	7.19	11.79	63.81	83.78	75.80	83.78
Runolf (mm)	85	51	56	84	21	28	30	27	31	62	131	102	708
Rainfall (mm)	178	99	144	193	30	127	93	74	106	175	289	233	1741
Monthly and yearly statistics for previous record (Jul 1974 to Dec 1990)													
Mean Avg.	10.960	8.352	8.589	4.882	4.068	3.761	4.085	5.363	7.764	10.140	10.190	10.670	7.404
flows Low	5.203	3.685	4.270	3.157	2.390	2.265	2.397	2.557	4.101	4.732	4.785	6.247	5.559
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	15.120	18.360	13.320	6.740	8.006	4.981	6.945	10.930	17.680	14.610	17.290	20.680	8.698
Paak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	85.15	63.08	69.51	33.84	42.45	19.62	61.38	46.34	103.20	121.50	72.14	84.49	121.50
Runoff (mm)	91	63	71	39	34	30	34	44	62	84	82	88	722
Rainfall (mm)	205	119	136	62	73	79	89	114	194	198	189	181	1639
Factors affecting runoff: S Station type: VA										1991 runoff is 98% of previous mean rainfall 106\%			

Grid reference: 26 (NS) 338160 Level stn. (m OD): 22.20

Catchment area (sq km): 323.8 Max alt. (m OD): 844
runoff is 98% of previous mean
rainfall 106%

083003 Ayr at Catrine

Moasuring authority: CRPB
First yosr: 1970
Hydrometric statistics for 1991

	JAN	FEB	MAR	APA	MAY	JUN	JuL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	8.093	5.016	4.793	6.629	0.812	2.360	1.812	1.391	2.839	5.191	11.690	11.110	5.138
$\left(\mathrm{m}^{3} \mathbf{s}^{-1}\right)$: Poak	53.35	53.75	61.04	57.27	1.16	26.69	38.51	24.84	39.80	77.57	121.70	170.50	170.50
Runatf (mm)	130	73	77	103	13	37	29	22	44	84	182	179	974
Rainfall (mm)	144	87	97	129	29	110	86	66	111	136	200	192	1387
Monthly and yearly statistics for previous record (Sep 1970 to Dec 1990)													
Moan Avg.	8.818	5.916	5.975	2.929	2.005	1.940	2.041	3.282	5.209	6.754	7.740	7.536	5.011
flows Low	3.182	1.534	1.480	0.733	0.593	0.639	0.417	0.410	0.597	0.631	2.147	3.312	3.613
$\left(\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}\right) \mathrm{High}$	14.120	13.830	10.780	7.056	5.714	4.179	7.720	9.970	14.680	10.900	13.630	14.490	6.758
Pook flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	178.50	96.54	102.90	67.02	75.55	70.32	73.43	72.00	157.40	162.60	105.60	119.20	178.50
Runoff (mm)	142	87	96	46	32	30	33	53	81	109	121	121	951
Rainfall (mm)	148	90	116	65	69	81	86	103	128	148	143	137	1314
Factors affocting runoff: H Station type: VA										1991 runoff is 102% of previous mean rainfall 106\%			

Station typa: VA

084016 Luggie Water at Condorrat

Measuring authority: CRPB
First year: 1966
Hydrometric statistics for 1991

	JAN	FEB	MAR	APA	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	1.728	1.137	1.257	1.029	0.222	0.339	0.446	0.354	0.513	0.863	1.490	1.791	0.930
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	17.58	10.22	21.25	12.52	0.63	1.68	3.10	1.70	6.61	5.65	8.08	30.13	30.13
Runoff (mm)	136	81	99	79	18	26	35	28	39	68	114	142	865
Rainfall (mm)	133	85	92	96	14	109	95	51	104	107	121	144	1151
Monthly and yearly statistics for previous record (Oct 1966 to Dec 1990 -incomplate or missing months total 0.5 years)													
Mean Avg.	1.492	1.086	1.028	0.572	0.456	0.307	0.309	0.497	0.784	1.097	1.314	1.354	0.858
flows Low	0.680	0.415	0.370	0.287 .	0.166	0.138	0.147	0.123	0.125	0.129	0.367	0.592	0.539
$\left(m^{3} s^{-1}\right) \quad \mathrm{High}$	3.104	2.378	1.846	1.030	1.199	0.692	1.751	1.606	3.386	2.121	2.362	2.669	1.121
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	30.25	19.34	28.11	10.80	14.54	7.00	27.14	22.06	44.46	34.20	30.68	36.04	44.46
Runoff (mm)	118	78	81	44	36	23	24	39	60	87	100	107	798
Rainfall (mm)	111	76	95	52	68	67	73	92	111	120	113	108	1086

Factors affecting runoff:
Station type: VA

Grid reference: 26 (NS) 739725
Level stn. (m OO): 68.00

Catchment area (sq km): 33.9
Max alt. (m OD): 107

1991 runoff is 108% of previous mean rainfall 106\%

085001 Leven at Linnbrane

Measuring authority: CRPB
Grid reference: 26 (NS) 394803 Level stn. (m OD): 4.30

Catchment area ($\mathrm{sq} \mathrm{q}^{\mathrm{km}}$): $\mathbf{7 8 4 . 3}$ First year: 1963 Max alt. (m OD): 1130
Hydrometric statistics for 1991

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	91.670	23.620	59.510	73.990	12.290	12.540	21.600	12.210	24.230	58.610	76.660	62.200	44.232
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	133.80	57.32	84.49	112.40	16.73	16.99	48.68	17.99	65.59	79.56	102.40	96.34	133.80
Runoff (mm)	313	73	203	245	42	41	74	42	80	200	253	212	1779
Rainfall (mm)	255	101	195	237	28	160	129	83	197	237	294	228	2144
Monthly and yearly statistics for previous record (Jul 1963 to Dec 1990)													
Mean Avg.	64.550	57.400	49.550	33.970	24.660	19.860	18.900	24.090	36.430	55.200	60.160	60.700	42.057
flows Low	27.910	18.610	16.630	10.540	10.620	9.716	7.303	4.556	8.736	10.830	24.540	17.580	30.712
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	119.100	134.600	138.200	55.940	73.120	51.860	44.640	85.740	91.360	90.150	115.000	125.500	54.061
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	150.50	163.60	196.80	91.85	92.02	78.48	116.50	115.30	121.60	138.50	145.70	148.50	196.80
Runoff (mm)	220	179	169	112	84	66	65	82	120	189	199	207	1692
Rainfall (mm)	241	158	192	100	119	113	122	151	212	234	224	225	2091
Factors affecting runoff: S										1991 runoff is 105% of previous mean rainfall 103\%			

Station type: VA

090003 Nevis at Claggan

Measuring authority: HRPB
First year: 1982
Hydrometric statistics for 1991

	JAN	FEB	MAR	APR	MAY	JuN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	8.691	3.491	7.946	10.030	2.286	3.077	4.337	3.608	7.488	7.192	12.870	7.993	6.590
($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$): Peak	90.94	47.56	100.10	101.70	17.62	43.76	42.51	29.56	158.70	86.01	80.60	114.60	158.70
Runoff (mm)	303	110	277	339	80	104	151	126	253	251	434	279	2706
Rainfall (mm)	348	147	271	329	71	157	210	164	332	337	504	396	3266
Monthly and yearly statistics for previous record (Sep 1982 to Dec 1990)													
Mean Avg.	9.537	7.351	9.617	4.984	4.051	2.150	3.752	5.475	7.871	9.716	7.003	10.360	6.832
flows Low	2.517	0.690	2.188	3.017	1.123	0.970	0.907	1.116	2.909	6.446	3.755	2.831	5.186
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \quad \mathrm{High}$	17.790	17.990	25.920	6.953	12.600	3.211	8.608	10.580	11.010	16.380	15.360	15.480	9.050
Paak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	195.60	156.30	143.10	46.28	67.50	69.35	105.00	130.50	219.00	146.50	110.30	189.00	219.00
Runoff (mm)	333	233	335	168	141	73	131	191	266	339	236	361	2807
Rainfall (mm)* *(1986-1990)	428	358	488	114	138	89	189	245	275	381	258	382	3345
Factors affecting runoff: Station type: VA										1991 runoff is 96% of previous mean rainfall 98%			

094001 Ewe at Poolewe
Measuring authority: HRPB
First year: 1970
Hydrometric statistics for 1991

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	45.990	13.130	23.150	35.700	14.720	12.170	14.470	15.270	27.640	39.240	57.760	32.290	27.684
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	84.52	24.62	43.02	68.07	20.74	22.60	22.53	23.10	80.68	69.63.	93.86	51.40	93.86
Runoff (mm)	279	72	141	210	89	72	88	93	162	238	339	196	1979
Rainfall (mm)	268	86	193	196	102	122	131	112	279	265	469	244	2467
Monthly and yearly statistics for previous record (Nov 1970 to Dec 1990)													
Mean Avg.	42.650	33.550	31.990	22.840	15.330	12.870	14.140	18.110	32.350	36.540	45.080	45.440	29.218
flows Low	13.820	10.660	8.842	4.537	3.862	3.725	7.884	6.240	8.046	13.160	21.020	15.740	19.389
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \quad \mathrm{High}$	81.130	83.670	97.870	38.270	36.280	27.180	26.180	37.000	57.270	66.220	78.300	81.840	39.738
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	177.10	247.70	156.20	73.59	65.63	64.43	45.08	85.46	109.20	125.50	136.10	179.80	247.70
Runoff (mm) .	259	185	194	134	93	76	86	110	190	222	265	276	2090
Rainfall (mm)	278	193	240	125	111	119	138	164	251	289	309	308	2525
Factors affecting runoff: \mathbf{N} Station type: VA										1991 runoff is 95% of previous mean rainfall 98\%			

096001 Halladale at Halladale

Measuring authority: HRPB
First year: 1976
Hydrometric statistics for 1991

		JAN	FEE	MAR	APR	MAY	JUN	JUL
Flows	Avg.	6.685	2.649	5.696	1.939	1.601	3.111	2.630
$\left(m^{3} 5^{-1}\right):$	Peak	70.55	25.95	89.74	10.82	26.84	38.91	38.56
Runoff (mm)		88	31	75	25	21	39	34
Rainfall (mm)		71	40	91	46	58	91	67

Monthly and yearly statistics for previous record (Jan 1976 to Dec 1990)

Moan Avg.	8.324	6.781	6.154	2.832	1.957	1.832	1.942	2.928	4.777	7.012	8.654	7.692	5.067
flows Low	4.478	1.555	2.907	0.624	0.279	0.271	0.215	0.186	0.447	1.351	2.510	3.004	3.326
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	11.900	10.940	9.753	6.442	5.434	4.128	5.064	9.193	7.886	16.560	14.730	12.390	6.418
Peak flow ($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$)	98.96	86.24	122.60	69.28	108.00	140.80	129.10	172.00	189.10	169.10	163.20	162.00	189.10
Runoff (mm)	109	81	81	36	26	23	25	38	61	92	110	101	782
Rainfall (mm)	131	80	108	64	59	66	67	83	117	128	136	121	1160
Factors affecting runoff: N										1991 r			

Station type: VA

Grid reference: 29 (NC) 891561 Level stn. (m OD): 23.20

Catchment area (sq km): 204.6 Max alt. (m OD): 580
AUG
0.406
1.70
5
43
SEP
1.672
13.14
21
77

OCT	NOV	DEC	Year
5.822	12.570	3.627	4.037
46.55	148.20	68.70	148.20
76	159	47	622
107	182	71	$\mathbf{9 4 4}$

4.037
148.20
622
944 944

[^10]
101002 Medina at Upper Shide

Measuring authority: NAA-S
Grid reference: 40 (SZ) 503874
Level sin. (m OD): 10.40
Hydrometric statistics for 1991

201007 Burn Dennet at Burndennet Bridge

Measuring authority: DOEN
First year: 1975
Hydrometric statistics for 1991

	JAN	FEB	MAR	APR	MAY	JUN	Jul	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	0.418	14.140	7.639	4.813	2.982	4.635	3.915	2:561	1.857	9.979	6.525	7.404	5.514
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	47.56	9.15	25.69	18.39	4.03	11.99	28.47	5.58	14.63	55.78	29.21	66.99	66.99
Runoff (mm)	8	235	141	86	55	83	72	47	33	184	116	136	1197
Rainfall (mm)	128	60	125	125	25	119	66	57	66	103	160	138	1172
Monthly and yearly statistics for previous record (Jun 1975 to Dec 1990 -incomplete or missing months total 0.1 years)													
Mean Avg.	6.400	5.442	4.996	3.136	2.412	1.895	1.972	2.529	3.339	5.046	5.006	5.492	3.968
flows Low	3.410	2.244	2.441	1.687	0.925	0.843	0.832	0.579	0.664	2.596	2.130	3.203	2.634
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \quad \mathrm{High}$	9.542	14.320	7.811	6.115	5.024	3.649	3.990	7.213	8.151	9.913	7.351	8.156	6.211
Peak flow $\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right.$)	70.02	53.00	47.48	36.85	25.51	29.50	50.79	55.46	67.37	110.80	64.52	59.53	110.80
Runoff (mm)	118	92	92	56	44	34	36	47	60	93	89	101	862
Rainfall (mm)	133	83	110	61	68	73	86	93	105	135	107	113	. 1167
Factors affecting runoff: E Station type: VA										1991 runoff is 139% of previous mean rainfall 100\%			

Factors affecting runoff: E
Station type: VA
Grid reference: 24 (IC) 372047
Level stn. (m OD): 2.00
Catchment area (sq km): 145.3
Max alt. (m OD): 539

201008 Derg at Castlederg

Measuring authority: DOEN
First year: 1976
Hydrometric statistics for 1991

:	JAN	FEB	MAR	APR	MAY	JUN	JUL.	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	30.610	11.300	19.460	18.890	3.022	5.233	8.132	6.910	7.528	14.470	32.450	29.380	15.650
($\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	173.08	71.70	158.06	116.80	8.74	30.33	64.74	31.13	75.64	120.54	150.29	222.21	222.21
Runoff (mm)	243	81	155	145	24	40	65	55	58	115.	249	$233{ }^{\circ}$	1463
Rainfall (mm)	206	78	170	174	23	138	103	78	119	151	245	255	1740
Monthly and yearly statistics for previous record (Jan 1976 to Dec 1990)													
Mean Avg.	22.970	16.540	17.430	7.816	6.409	5.034	5.871	9.473	13.920	18.930	20.000	20.540	13.745
flows Low	12.090	2.356	8.844	1.862	0.534	1.048	1.142	0.258	1.703	9.480	7.358	8.234	11.403
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	33.100	$35.460{ }^{\text { }}$	28.480	15.360	17.200	11.230	11.710	30.260	30.630	32.270	35.830	32.690	16.941
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	202.60	187.30	159.50	135.60	163.50	87.33	161.00	176.90	232.90	223.20	205.20	187.30	232.90
Runoff (mm) ;	182	120	138	60	51	39	47	75	107	150	154	163	1286
$\begin{aligned} & \text { Rainfall (mm)* } \\ & *(1983-1990) \end{aligned}$	205	132	167	87	86	85	110	155	139	208	132	187	1693
Factors affecting runoff: E Station type: VA										1991 runoff is 114% of previous mean rainfall 103\%			

203012 Ballinderry at Ballinderry Bridge

Measuring authority: DOEN
First year: 1970

Grid reference: 23 (IH) 926799
Level stn. (m OD): 16.00.

Hydrometric statistics for 1991

203020 Moyola at Moyola New Bridge

Measuring authority: DOEN
First year: 1971
Hydrometric statistics for 1991

	JAN	FEB	MAR	APR	MAY	JUN	Jul	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	16.870	7.187	15.040	12.070	3.509	4.424	3.514	1.985	2.256	6.760	15.260	13.350	8.529
($\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	90.40	21.57	90.99	54.76	8.66	15.12	20.87	40.01	11.03	98.26	54.92	116.27	116.27
Runoff (mm)	147	57	131	102	31	37	31	17	19	59	129	117	878
Rainfall (mm)	126	58	135	127	10	115	71	28	66	118	165	135	1154
Monthly and yearly statistics for previous record (Feb 1971 to Dec 1990)													
Mean Avg.	15.070	11.950	10.270	5.956	4.617	3.537	2.867	4.421	5.765	9.490	11.150	13.000	8.163
flows. Low	7.707,	3.696	3.776	2.238	1.335	1.015	0.952	0.748	1.366	2.000	4.562	5.088	4.961
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	23.280	25.940	17.150	13.280	12.360	7.159	6.512	15.310	19.100	16.790	20.770	22.170	10.653
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	152.20	121.90	86.93	102.80	114.10	67.84	83.33	. 111.00	112.70	134.80	117.20	154.60	154.60
Runoff (mm)	132	95	90	50	40	30	25	39	49	83	94	114	841
Rainfall (mm)*	152	102	125	75	71	78	78	120	98	150	102	123	1274

Grid reference: $23(\mathrm{IH}) 955905$
Level stn. (m OD): 13.00

Catchment area (sq km): 306.5 Max alt. (m OD): 554

1991 runoff is 104% of previous mean rainfall 91%

Factors affecting runoff: S PG I
Station type: VA

205004 Lagan at Newforge

1991

Measuring authority: DOEN
First year: 1972
Hydrometric statistics for 1991

THE NATIONAL RIVER FLOW ARCHIVE dATA RETRIEVAL SERVICE

The National River Flow Archive comprises some 29,000 station-years of daily river flows and incorporates data from over 1400 gauging stations throughout the United Kingdom. In addition to gauged flow data, naturalised data (see page 30) have been derived from the records of a small number of gauging stations. Catchment areal rainfall and the highest instantaneous flow, when available, are also archived on a monthly basis.

In order that the contents of the archive may be readily accessible, a suite of programs has been developed to provide a selection of retrieval options. Descriptions of these options are listed below, and can also be found, together with examples of the computer output in the national River Flow Archive Data Retrieval Service Handbook which is available free from the address below. The data retrieval programs have been designed to allow flexibility in the presentation of the options, particularly those producing graphical output. Before finalising a data request it is recommended that the Concise Register of Gauging Stations on pages 140 to 146, be consulted, and that, where continuity of record is important, the availability of suitable data sets are checked by referring to the Summary of Archived Data in the Handbook. As an aid to data selection and to the interpretation of hydrological analyses the 1986-90 Hydrometric Register and Statistics (see page 174) is recommended as a source of indispensable reference material.

In response to user requirements the data retrieval facilities are being continually updated and extended. A wide range of specialist analyses and presentations is now available. Individuals having data requirements not catered for in the standard retrieval suite are invited to discuss their particular needs - address opposite.

Retrievals are normally available on line-printer listings, magnetic tape or IBM PC compatible disk, or as hydrograph plots.

Cost of Service

To cover the computing and handling costs, a moderate charge will be made depending on the output options selected. Estimates of these charges may be obtained on request; the right to amend or waive charges is reserved.

Requests for Retrieval Options

Requests for retrieval options should include: the name and address to which output should be
directed, the gauging stations for which data are required together with the period of record of interest and the title of the required options. Where possible, a daytime telephone number should be given.

Requests should be addressed to:

The National Water Archive Office
Institute of Hydrology
Maclean Building
WALLINGFORD
OXFORDSHIRE OX10 8BB UK

Telephone: Wallingford (0491) 38800
Fax: (0491) 32256

The National Water Archive

As of April 1992, the River Flow Archive was incorporated into the National Water Archive (NWA) - the most recently established of NERC's five Designated Data Centres. These Centres, located at NERC Institute sites, exist to hold data and provide information and advisory services to a wide range of users.

The national River Flow and national Groundwater Level Archives form the kernel of the National Water Archive but a very broad range of hydrological - and related - data sets are being assimilated into the co-ordinated management that the NWA provides. Data holdings range from the catchment scale (e.g. detailed climatological and hydrological data for a network of experimental catchments) to national (flood event data) and international coverage (world floods archive). The utility of the archived time series data is enhanced by the availability of complementary spatial information (for example the digitised river network and UK soils hydrology map) and by the manipulative potential provided by modern data handling systems and analytical packages.

Staff at the NWA maintain close contacts with measuring authorities and keep under review developments in the field of network design, instrumentation and information technology. A continuing dialogue with both data suppliers and an active community of users ensures that the databases and retrieval facilities are reviewed continuously to provide an effective and responsive service across a broad range of applications.

Data sets of particular hydrological interest include an archive of flood peaks from over 600 catchments, a flood event archive comprising rainfall and river flows at short time intervals for over 4000 individual events and extensive hydrometeorological
data sets for a variety of UK experimental catchments. Data may be retrieved from these sources in a variety of formats. Equivalent European data also exists as part of the FRIEND project of the International Hydrological Programme.

LIST OF SURFACE WATER RETRIEVAL OPTIONS

Table of daily mean naturalised discharges Yearbook data tabulation (daily)

Table of monthly extreme flows

Table of catchment monthly rainfall

Table of monthly mean naturalised discharges

Table of monthly mean gauged discharges Yearbook data tabulation (monthly)

Table of catchment monthly areal rainfall and runoff

Includes monthly and annual summary statistics. Flows in cubic metres per second.

River flow and catchment rainfall data for a specified year with basic gauging station and catchment details and flow statistics derived from the historical record.

Includes monthly and annual summary statistics. Flows in cubic metres per second.

Includes monthly and annual summary statistics. Flows in cubic metres per second.

Monthly river flow and catchment rainfall data for a specified year together with comparative statistics derived from the historical record. Naturalised flows (where available) - and the corresponding runoff may also be tabulated.

The lowest and highest daily mean flows, together with the highest instantaneous flow and date of occurrence (where available). Flows in cubic metres per second. Includes summary statistics.

Rainfall totals in millimetres and as a percentage of the 1941-70 catchment average. Includes summary statistics.
NOTES

Includes monthly and annual summary statistics. Flows in cubic metres per second.

Runoff is normally derived from the monthly mean gauged flow. An additional listing is provided for catchments with naturalised flow records. Includes summary statistics. Rainfall and runoff totals are in millimetres.

Hydrographs of daily mean flows

Hydrographs of monthly mean flows

Flow duration statistics

Table of gauging station reference information

Table of hydrometric statistics

Choices of scale, units, truncation level and overlay grid pattern are available. The period of record maximum and minimum flows, or the mean flow, may be included. The plots may be based on single or n -day means, or on n -day running meari flows.

Choices of scale, units and overlay grid pattern are available. The period of record maximum, minimum and mean flows may be included.

Tabulation of the 1-99 percentile flows with optional plot of the flow duration curve. The percentiles may be derived from daily flows or n-day averages and the analysis may be restricted to nominated periods within the year, e.g. AprilSeptember only. Choices of scales, grid marking and units are available and the percentiles may be expressed as a percentage of the average flow or of a nominated flow.

Tabulation of selected gauging station details and catchment characteristics for nominated gauging stations.

Provides a comparison between summary statistics for a selected year, or a group of years, and the corresponding statistics for a nominated period of record.

Gauging station and catchment description

River flow pattern plots
A brief summary of the gauging station, its history and major influences on the flow regime, together with catchment details.

Three plots on an A4 sheet:
a) daily mean flow hydrograph for a selected year
b) monthly mean flow hydrograph for the selected year. The maximum and minimum monthly flows, together with the 30 -day running mean for the preceding period of record may be included
c) flow duration curve for the specified year. A flow duration curve for the period of record may be included.

Gauging station summary sheet

Includes a daily flow hydrograph (with period of record extreme values) and flow duration curve together with summary statistics relating to river flow, catchment runoff and catchment rainfall. A description of the gauging station and catchment is also provided together with selected catchment characteristics and a concise summary of the archived data.

Concise Register of Gauging Stations

Station number	Aiver and station name	. Grid referance	Authority	Area (8 q km)	Station number	River and station name	Grid reference	Authority	Area (sq qm)
002001	Heimsdale at Kilphedir	29979181	HRPB	551.4	016003	Ruchill Water at Cultybraggan	. 27647204	TRPB	99.5
		; ${ }^{\text {a }}$			016004	Earn at Forteviot Bridge	30437184	TRPE	92.2
003001	Shin at Lairg	. 25819062	SE	$494.6{ }^{\text {b }}$	016006	Dunning Burn at Granco	30197147	THP犋	1208.0
003002	Carron at Sgodachail	24908921	HRPB	241.1	016007	Ruthven Water at Aberutiven	29757154	TRPB	49.0
003003	Oykel at Easter Tiurnaig	24039001	HRPB	330.7					
003004	Cassley at Rosehall	24729022	HRPB	187.5	017001	Carron at Headswood	28326820	FRPB	122.3
003005	Shin at Inveran	25749974	HRPB	575.0	017002	Leven at Levan	33697006	FRPB	424.0
					017003	Bonny Water at Bonnybridge	28246804	FRPB	50.5
. 004001	Conon at May Bridgs	24828547	HRPB	961.8	017004	Ore at Ealfour Mains	33306997	FRPB	162.0
004003	Alness et Alness	26548695	HRPB	201.0	017005	Avon at Polmonthill	29526797	FRPB	195.3
004004	Blackwater at Contin	24558563	HRPB	336.7	017008	South Queich at Kinross	-3122 7015	FRPB	33.7
004005	Meig at Clonimeannie	22868528	HRPB	120.5	017012	Red Burn at Castlecary	27886780	FRPB	22.0
004006	Bran at Dosmucheran	22058602	HRPB	116.1	017016	Loctuy Burn at Whinnytalll	32216987	FRPB	14.0
0					017017	Greens Burn at Killytord Eridge	31507053	FR	7.9
${ }^{005001}$	Beauly at Erchloss	24268405	SE	849.5					
005002	Farrar at Struy	23909405	HRPB	311.3	018001	Allan Water at Kinbuck	27927053	FRPB	1610
005003	Glass at Kerrow Wood	23548321	HRP8	481.8	018002	Devon at Glenochil	-2858 6960	FRPB	181.0
005004	Glass at Fosnakyle	23158288	HRPB	277.5	018003	Teith at Bridge of Teith	27257011	FRP8	518.0
					018005	Ailan Water at Bridge of Allan	27866980	FRPB	210.0
006001	Ness at Ness Castio Farm	26398410	SE	1792.3	018007	Devon at Fossoway Bridge	30117018	FRPB	69.5
006003	Moriston at invermoriston	24168169	SE	391.0	018009	Leny at Anie	25857096	FRPB	190.0
${ }^{066006}{ }^{\text {. }}$	Allt Ehlaraidh at Invermoriston	23778168	SE	27.5	018010	Forth at Gargunnock	27146953	FRPB	397.0
006007	Ness at Ness Side	26458427	HRPB	1839.1	$01801 ;$	Forth at Craigfort	27756955	fRPB	1036.0
006008	Enrick at Mill of Tore	24508300	HRPE	105.9	018012	Ardoch Burn at Doune Cas	27297008	FRPB	48.0
					018013	Black Devon at Fauld Mill	29146924	FRPB	${ }^{67.0}$
007001	Findhorn at Shenachis	28268337	HRPB	415.6	018014	Bannockbum at Bannock Burn	28126908	FRPB	23.7
007002	Findtorn at Forres	30188583	HRPE	781.9	018016	Kelly Water at Clashmore	24686968	FRPB	2.8
007003	Lossie at Sherifmill	31948626	NERPB	216.0	018017	Monachyle Burn at Ealquhidder	24757230		7.7
007004	Nairn at Firmall	28828551	HRPB	313.0	018018	Kirkton Burn at Ealquhidder	25327219	${ }^{\text {H }}$	6.9
007005	Divie at Dunphail	30058480	HRPB	165.0	018019	Comer Burn at Comer	23877042	FRP	0.9
007006	Lossie at Torwinny	31358489	NERPB	20.0					
					019001	Almond at Craigiehall	31656752	FRPB	69.0
${ }_{0}^{008001}$	Spay at Aberlour	32798439	NERPB	2654.7	019002	Almond at Almond Weir	30046652	FRPB	${ }_{518}^{43.8}$
	Spey at Kinrara				019003	Breich Water at Breich Weir			
${ }_{0}^{008003}$	Spey at Ruthven Bridge . Avon at Delnashough	27597996 31868352	${ }_{\text {NERPP }}^{\text {NEP }}$	533.8 542.8	019004 019005	North Esk at Dilmore Weir Almond at Almondell	32526616 30866888	${ }_{\text {FAPB }}$	81.6 229.0
008005	Spey at Bost of Garten	29468191	NERPB	1267.8	019006	Water of Leith at Murrayfield	32286732	fRPB	107.0
008006	Spey at Boat o Brig	33188518	NERPB	2861.2	019007	Esk at Mussellburgh	33396723	FRPB	330.0
008007	Spey at Inverruim	26877962	NERPB	400.4	019008	South Esk at Prestonto	33256623	FRPB	132.0
008008	Tromie at Tromie Bridge	27897995	NEAPB	130.3	019010	Braid Burn at Liberton	-32736707	FRPB	16.2
co8009	Duihain at Bainaan Bridge	29778247	NEAPB	272.2	019011	North Esk at Dalkeith Patace	33336678	FRPB	137.0
008010	Spey at Grantown ',	30338288	NERPB	1748.8	019012	Water of Leirh at Colinton	32126688	FRPB	72.0
008011	Livet at Mirmore.	32018291	NERPE.	104.0	$019014 \text {; }$	Brox Burn at Nowliston Gogar Burn at Turnhouse	$\begin{aligned} & 31146732 \\ & 316 \div 6733 \end{aligned}$	FAPB FAPB	34.1 38.8
009001	Deveron at Avochie	35328464	NERPB	441.6					
009002	Deveron st Muirsesk	37058498	NERP日	954.9	020001	Tyne at East Linton	35916768	FRPB	307.0
009003	Isla at Grange	34948506		176.1 .	020002	West Peffer Burn at Luffiness	34896811	FAPB	26.2
009004	Bogie at Redcraig	35198373		179.0	020003	Tyne at Spilmersford	34566689	FAPB	161.0
009005	Allt Deveron at Cabrach	33789291	grwd	67.0	020004	East Peffer Burn at Lochhous	36106824	${ }_{\text {FAPB }}$	31.1
					020005	Birns Water at Saltoun Hall	34576888	FAPB	93.0
010002	Ugie at Inverugie	41018485		325.0	020006	Biel Water at Belton House	36456768	FRPB	51.8
010003	Ythan at Ellon	39478303	NERPB	523.0	020007	Gifford Water at Lennoxiove	35116717	FRPB	64.0
					020008	Brox Burn at Broxmouth	36976776	FAPB	9.7
011001	Don at Parkhilt	3887 9141	NERPB	1273.0					
011002	Don at Haughton	37568201	NERPB	787.0	021001 .	Fruid Water at Fruid	30886205	LRWD	23.7
011003	Don at Bridge of Alford	35668170 .	NERPB	499.0	021002 .	Whiteedder Water at Hungry Snout	38636633	LRWD	45.6
011004	Urie at Pitcaple	37218260	NERPB	198.0	021003	Twead at Peebles	32576400	TWRP	694.0
011005	Don at Mill of Newe	33718121	NERPB	187.0	021004	Watch Water at Watch Water Reservoir	36646566	BRWD	10.7
					021005	Tweed at Lyne Ford	32066397	TWRP	373.0
012001	Dee at Woodend	36357956	NERPB	1370.0 .	021006	Tweed at Boleside	34986334	TWRP	1500.0
012002	Dee at Park	37987983	NERPB	1844.0	021007	Etrrick Water at Lindean	34866315	TWRP	499.0
012003	Dee at Poihollick	33447965	NERPB	690.0	021008	Teviot at Ormiston Mild	37026280	TWRP	1110.0
012004	Girmock Burn at Litrlamill	33247956	NERPB	30.3	021009	Tweed at Norham	38986477	TWRP	4390.0
012005	Muick at tnvermuick	33647947	NERP8	110.0	021010	Tweed at Dryturgh	35886320	TWRP	2080.0
012006	Gairn al tinvergairn	33537971	NERPB	150.0	021011	Yarrow Water at Philiphaugh	34396277	TWRP	231.0
012007	Dee at Mar Lodge	30987895	NERP8	289.0	021012	Teviot at Hawick	35226159	TWRP	323.0
012008	Feugh at Heigh Head	36877928	NERPB	229.0	021013	Gala Water at Galashiels	34796374	TWRP	207.0
012009	Water of Dye at Charr	36247834	NERP8.	41.7	021014	Tweed at Kingledoras	31096285	TWRP	139.0
					021015	Leader Water at Eeriston	35656368	TWRP	239.0
013001	Bervie at Inverbervis	38267733	NERP8	123.0	021018	Eye Water at Eyemouth Mill	39426635	TWRP	119.0
013002	Luther Water at Luther Bridge	36607668	TRPB	138.0	021017	Etrrick Water at Brockhoperig	32346132	TWRP	37.5
013003.	South Esk at Stannochy Eridge	35837593	TRPB	487.0	021018	Lyne Water at Lyne Station	32096401	TWRP	175.0
013004	Prosen Water at Prosen Bridga	33967586	TAPB	104.0	021019	Manor Water at Cademuir	32176369	TWRP	${ }^{61.6}$
013005	Lunan Water at Kirkton Mill	36557494	TAPB	124.0	021020	Yarrow Water at Gordon Armis	33096247	TWRP	155.0
013007	North Esk at Logie Mill	36997640	TRPB	730.0	021021	Tweed at Sprouston	37526354	TWRP	${ }^{3330.0}$
013009	South Esk at Erechin	36007596	THPB	490.0	021022	Whitaodder Water at Hutton Castle	38816550	TWHP	503.0
013009	West Water at Oalhousie Bridge	35927680	TRPB	127.2	021023	Leet Water at Coldstrearm	38396396	TWRP	113.0
013010	Brothock Watar at Brothock Bridga	36397418	${ }_{\text {TRPB }}$	50.0.	021024	Jed Water at Jedburgh	36556214	TWAP	139.0
013012	South Esk at Gella Bridga	33727653	TRPB	130.0	021025	Als Waser at Ancrum	36346244	TWRP	174.0
					021026	Tima Water at Deepho	32786138	TWRP	31.0
014009	Eden at Kemback	34157158	TPPB	307.4	021027	Blackadder Water at Mouth Bridge	38266530 32316232	TWRP	159.0 56.2
014002	Dighty Water at Balmossie Mill	34777324	TRPB	126.9	021030	Megget Watar at Henderiand	32316232	TWRP	56.2
014005	Motray Water at St Michaels	34417224	TRPB	52.0	021031	Till at Etal	39276396	NRA-N	648.0
014008	Monikie Burn at Panbride	35747361	TRPB	16.0	021032	Glen at Kirknewton	39198310	NRA-N	198.9
014007	Craigmill Burn at Craigmill	35757360	TRPB	29.0	021034	Yarrow Water at Craig Douglas	32886244	TWAP	46.0
014009	Eden at Strathmiglo	32267102	TRPB	26.0					
014010	Motray Water at Kilmany	33877217	TRPB	57.0	$\begin{aligned} & 022001 \\ & 022002 . \end{aligned}$	Coquet at Morwick Coquet at Bygate	$\begin{aligned} & 42346044 \\ & 38706083 \end{aligned}$	NRA-N NRA-N	569.8 59.5
015001 .	Isla at Forter	31877647	TRWs	70.7	022003	Usway Burn at Shillmoor	38866077	NRA-N	21.4
015002 .	Newton Burn at Newton	32307605	trws	15.4	022004	Aln at Hawkhill	42116129	NRA-N	205.0
015003.	Tay at Caputh	30827395	TRP8	3211.0	022008	Blyeh at Harford Bridge	42435800	NRAA N	269.4
015004 .	Inzion at Loch of Lintrathen	32807559	TRWS	24.7	022007	Wansback al Mitford	41755858	NRA-N	287.3
015005.	Melgan at Loch of Lintrathen	32757558	TRWS	40.9	022008	Alwin at Clennell	39256083	NRA-N	27.7
015006	Tay at Ballathe	31477367	TRP8	4587.1	022009	Coquat at Rothbury	40676016	NRA-N	346.0
015007	Tay at Pitracree	29247534	TRPB	1149.4					
015008	Desn Water at Cookston	33407479	TRPB	177.1	023001	Tyne at Bywell	40385617	NRA-N	2175.6
015010	Ista at Wester Cardean	32957466	TRPB	366.5	023002	Derwent al Eddys Bridge	40415508	NRA-N	118.0
015011	Lyon at Comrie Bridge	${ }^{2786} 7486$	TRPB	391.1	023003	North Tyne al Reavertill	39065732	NRA-N	1007.5
015012	Tummel al Port-n-craig	29407577	TRPB	1649.0	023004	South Tyne at Haydon Bridga	38565647	NRA-N	751.1
015013	Almond at Almondrank	30677258	TRP8	174.8	023005	North Tyne at Tarsat	37765861	nRA-N	284.9
015014	Ardie at Kindrogan	30567631	TRPB	103.0	023006	South Tyne al Featherstone	36725611	NRA-N	321.9
015015	Almond at Newton Bridge	28887316	TRP8	84.0	023007	Derwent at Rowlands Gill	41685581	NRA-N	242.1
015016	Tay at Kenmore	27827467	TRPB	600.9	023008	Rede ait fede Bridge	38685832	NRA-N	343.8
015017.	Braan st Batlinlosn	29797406	TRP8	197.0	023009	South Tyne at Alston	37165465	NRA-N	118.5
015018	Lyon at Moar	25347448	SE	161.4	023010	Tarset Burn at Greenhaugh	37895879	NRA-N	96.0
015021	Lunan Burn at Mill Bank	31827400	TRPB	94.0	023011	Kielder Burn at Kielder	36445946	NRA-N	58.8
015023	Brase at Hermitage	30147422	TRPB	210.0	023012	East Allen at Wide Eals	38025583	NRA -N	89.0
015024	Dochart at Killin	25677320	${ }_{\text {TRPB }}$	239.0	023013	West Allon et Hindley Wrae	37915583	NRA-N	75.1
015025 015027	Ericht at Craighall	31747472	TRPB	432.0	${ }_{0} 023014$.	Nornh Tyne at Kielder temporary	36315931	NRA-N	27.0
015027 015028	Garry Burn at Loakmill	30757339	TRPB	20.0	023015	North Tyne at Barrasford	39245721	NGWC	1043.8
015028 015029	Ordie Burn at Luncarty	30937306	TRPB	54.0	023016	Ouse Burn at Crag Hall	42545674	NRA-N	55.0
015029 015030	Alyth Bum al Pitcrocknie	32577485	TRPB	320	023017	Team at Team Valley	42495585	NRA-N	
015030 015032	Dean Water at Dean Bridge	32937458	TRPB	230.0	023022	Norih Tyne at Uglydub	37125875	NRA-N	241.5
015032 015034	Ordie Burn at Jackstone	30737337	TRPB	20.0	023023	Tyne at Riding Mill	40265619	NRA-N	2174.5
015034 015035	Garry at Killiecrankia	29017637	TPPB	745.0					
015035	Tummel at Kinloch Rannoch	26637588	TRPB	647.0	$\begin{aligned} & 024001 \\ & 024002 \end{aligned}$	Wear at Sunderland Bridge Gaunless at Bishop Auckland	$\begin{aligned} & 42645376 \\ & 42155306 \end{aligned}$	$\begin{aligned} & \text { NRA-N } \\ & \text { NFA-N } \end{aligned}$	$\begin{array}{r} 657.8 \\ 93.0 \end{array}$
016001	Earn at Kinkell Bridge	29337167	TRPB	590.5	024003	Wear at Stanhope	39845391	NRA-N	171.9
016002 -	Earn at Aberuchill	27547216	TAPB	176.9	024004	Bedturn Beck at Bectburn	41185322	NRA-N	74.9

Station number	Alver and station name	Grid reference	Auth. ority	Area (9 qkm)	Station number	River and station name	Grid reforence	Auth. ority	Aren
033003	Com al Botisham	55082657	NRA-A	803.0	037021	Roman at Bounstead Bridge	59852205	NRA.A	2.6
033004	Latk at isieham	56482760	NRA-A	466.2	037022	Holtand Arook at Thorpe le Soken	61792212	NRA.A	
033005	Bectord Ouse at Thormborough Mall	47362353	NRA-A	388.5	037024	Colne at Earts Colino	58552298	NRA-A	154.2
033006	Wissoy at Northwold	57712965	NRA-A	274.5	037025	Bourna Brook at Perces Bridge	58222276	NRA-A	32.1
033007	Nar at Mastham	57233119	NRA-A	153.3	037026	Tenpenny Brook at Tenpenny Bridga	60792207	nra-A	29.0
033008	Litile Ouse al Thertiord No 1 Staunct	58602832	NRA-A	699.0	037027	- Sixpenny Brcok at Ship House Endge	60542214	NRA-A	5.1
033009	Bedford Ouse al Herrodd Min	49512565	NRA-A	1320.0	037028	Bentley Brook at Sattwater Bridge	61092193	NRA-A	2.1
033011	Litrie Cusaa at County Eridge Euzion	58922801	nra-A	128.7	037029	- St Osyth Errook at Main Raod Briage	61342159	nfa-A	.
033012	Kym at Meagra Farm	51552631	NRA-A	137.5	037030	- Holland Brook at Cradle Bridga	61712217	NRA-A	48.6
033013	Sapiston al Rectory Bridga	58962791	NRA-A	205.9	037031	- Crouch at Wickford	57481934	NRA-A	71.8
033014	Lark at Templo	57582730	nRA-A	272.0	037033	Eastwood Erook ar Eastwood	$5859{ }^{1888}$	NRA-A	10.4
033015	Ouzel at Willon	48822408	NRA-A	277.1	037034	Mardyke at Sitford	55961806	NRA.A	90.7
033016	Cam ar Jesus Lock	54502593	NRA-A	761.5	037036	Ety Ouse Curfall at Great Sampford	56462351	NRA-A	
033018	Tove at Coppenhem Bridge	47142488	NRA-A	138.1	037037	Toppesfiatd Brook at Cornish Han En	56752377	NRA-A	1.3
033019	Thet at Melford Bridge	58802830	NRA.A	316.0	${ }^{037038}$	- Wid at Margaretting	56722000	NRA-A	98.8
033020	Alcontury Prook at Brempron	52082717	NRA-A	201.5	037039	Elackwater at Langiord fow flows)	58352090	NRA-A	337.0
033021	Rhee at Burnt Mull	54152523	NRA-A	303.0					
033022	Ivel at Buntiam	51532509	NRA.A	541.3	038001	Lee at Foldes Weir	53902092	NRA-T	038.0
033023	Lea Brook at Beck Bridga	56622733	NrA-A	101.8	038002	Asthat Mardock	53932148	NRA-T	78.7
033024	Cam at Dernford	54862506	NRA-A	198.0	038003	Mirruam at Panshanger Park	52822133	NRA-T	133.9
033025	Babingly at West Newton Mill	56963256	NRA-A	39.6	038004	Rib at Wadesma	53602174	NRA-T	136.5
033026	Beatord Ouse st Offord	52162669	NRA-A	2570.0	038005	Ash at Easneye	53802138	NRA-T	85.2
033027	Rhee at Wimpole	53332485	NHA-A	119.1	$038006{ }^{\text {- }}$	- Rib at Herts Training School	53352158	NRA-T	148.1
033028	Fiit st Sheflord	51432393	NAA-A	119.6	038007	Canons Erook at Elizabeth W	54312104	NRA-T	21.4
033029	Stringside at White Eridge	57163008	NAA.A	98.8	038011	- Mimram at Futuing Mia	52252169	NRA-T	98.7
033030	Clipsione Brook at Clipstione	49332255	NAA-A	40.2	038012	Stevenage Brook at Braghury Park	52742211	NRA-T	36.0
033031	Broughton Brook at Broughton	48892408	NAA-A	66.6	038013	Upper Lee at Luton Hoo	. 51182185	NAA-T	70.7
033032	Heachsm at Heacham	56853375	NRA-A	59.0	038014	Salmon Brook at Edmanton	53431937	NRA-T	20.5
033033	Hiz al Arnasay	51802379	NAA-A	109.0	038015 .	- Intercepting Drain at Enfield	53551932	NAA-T	7.4
033034	Little Ouse at Abbey Hesth	58512844	NRA-A	899.3	038016	Stanstead Springs at Mountifichet	55002248	NAA-T	20.5
033035	Ely Ouse al Denver Complox	55883010	NRA-A	3430.0	038017	Mimram at Whiswell	51842212	NAA-T	39.1
033037	Beatiord Cuse at Nowp't Pagneal Wr	48772443	NRA.A	800.0	038018	Upper Lee at Water Han	52992099	NRA-T	150.0
033039	Eedtord Ouse at Hoxtom	51602535	NRA.A	1660.0	038020	Cobbins Brook at Sowardstone Roed	53871999	NRA.T	38.4
033040	Rhee at Ashwell	52672401	NRA-A		038021	Turkey Brook at Albeny Park	53591985	NRA.T	42.2
033044	Thet at Enidgham	59572855	NRA-A	277.8	038022	Pymmes Brook at Edmonton Sidver Street	53401925	NRA-T	42.8
033045	Witrle at Quidenham	60272878	NRA-A	28.3	038024	Small River Lee at Ordnance Road	53701988	NRA-T	41.5
033046	Thet ot Red Eridge	59962923	NRA-A	145.3	038026	Pixcey Brook at Sheering Has	54952126	NRA-T	54.8
033048	Laring Brook at Stombtridgo	59222907	NRA-A	21.4	038027	Stor at Glen Fabe	53932093	NRA-T	280.2
033049	Stanford Water at Buckenham Totus	58342953	NRA.A	43.5	038028	Stansted Brook at Gypsy Lane	55062241	NRA-T	25.9
033050	Snail at fordham	56312703	NRA-A	80.6	038029	Quin at Griggs Bridge	53922248	NRA-T	50.4
033051	Cam at Chesterford	55052428	NRA-A	141.0	038030	Beane at Hartham	53252131	NRA.T	175.1
033052	Swatiham Lode at Swaftham Bulbeck	55532628	NRA-A	36.4					
033053	Granta at Staptaford	54712515	NRA-A	114.0	039001	Thames at Kingston	51711698	NRA-T	9948.0
033054	Babingley ar Castie Rising	56803252	NRA-A	47.7	039602	Thames at Days Weir	45881935	NRA-T	3444.7
033055	Granta at Babraham	55102504	NAA-A	98.7	039903	Wandle at Connotlys Mill	52651705	NRA-T	176.1
033056	Ouy Water at Lode	55312627	NRA-A	76.4	039004	Wandie at Beddington Park	52961655	Nha.t	122.0
033057	Ouzel at Leighton Buzzard	49172241	NFA-A	119.0	039005	Beveriey Brook at Wimbledon Common	52161717	NfA-T	43.6
033058	Ouzel al Blotchioy	48832322	NRA-A	215.0	039006	Windrush at Newbridge	44022019	NAA-T	382.6
033059	Cut-off Channel at Tolgata	57222757	NRA-A		039007	Blackwater al Swallowfield	47311648	nha-t	354.8
033060	Kings Dike at Stanground	52082973	NAA-A		039008	Thames at Eynsham	44452087	nha-t	1616.2
033082	Guidan Brook at Fowimera iwo	54032457	NRA-A		039010	Colne at Denham	50521864	NRA-T	743.0
033063	Little Ouse at Knetrishall	59552807	NRA-A	101.0	039011	Wey at Tilford	48741433	NRA-T	396.3
033064	Whaddan Brook at Whaddon	53592466	NRA-A	16.0	039012	Hogsmill at Kingston upon Thames	51821688	NFA.T	69.1
033065	Hiz at Hitchin	51852290	NRA-A	6.8	039013	Colne at Berrygrove	51231982	NAA-T	362.2
033066	Granta at Linton	55702464	NRA-A	59.8	039014	Ver at Hansteads	51512016	nha-t	132.0
033067	Now River at Burwell	56082696	nRa-A	19.6	039015	Whitewater at Lodge Farm	47311523	NAA.T	44.5
033068	Chanay Water at Gailey End	52962411	NRA-A	5.0	039016	Kenner at Theale	46491708	NAA.T	1033.4
					039017	Ray at Grendon Underwood	-4680 2291	NRA.T	18.6
034001	Yare at Colnay	81823082	NRA-A	231.8	039019	Lamtrourn at Shaw	44701882	NRA-T	234.1
034002	Tos at Shotesham	82262994	NRA-A	146.5	039020	Coln at Bibury	41222062	NAA-T	108.7
034003	Bure at Ingworth	81923296	NRA-A	164.7	039021	Cherwell at Enslow Mill	44822183	NRA.T	551.7
034004	Wensum at Costessay Mill	81773128	NRA.A	536.1	039022	Loddon al Sheepbridga	47201652	NRA.T	164.5
034005	Twi at Costessey Park	61703113	NRA-A	73.2	039023	Wye at Hedsor	48961867	NRA-T	137.3
034006	Waveney at Neadhem Mill	62292811	nfa-A	370.0	039025	Enbome at Erimpton	45681648	NRA-T	147.8
034007	Dove st Oakkoy Park	81742772	nra-A	133.9	039026	Cherwett at Banbury	44582411	NRA-T	199.4
034008	Ant et Honing Lock	63313270	nfa-a	49.3	039027	Parg at Pangloume.	46341766	NRA-T	170.9
034010	Wavaney at Pillingfard Eridge	61682782	nfa-a	149.4	039028	Duen at Hungerford	43211685	NRA.T	101.3
034011	Wensum at fakenhom	59193294	NTA-A	127.1	039029	Tillingboume at Shalford	50001478	NRA-T	59.
034012	Bum at Eurnham Ovary	58423428	NRA.A	80.0	039030	Gade ot Croxley Green	50821952	NRA.T	184.0
034013	Waveney at Ellingham Mill	63642917	NRA.A	670.0	039031.	Lambourn at Wellord	44111731	NRA-T	176.0
034014	Wensum at Swarion Mariay Total	60203184	NRA.A	363.0	039032 .	Lambourn at East Shefford	43901745	NRA.T	154.0
034018	Stufiey et Wartam All Soints	59443414	nra-A	77.1	039033	Wintertoume St at Bagror	44531694	nRA-T	49.2
034019	Bure at Horstesd Mill	-62873194	NRA-A	313.0	039034	Evenkede at Cassington Mal	44482099	nRA-T	430.0
					039035	Chumat at Cerney Wick	40761963	NRA-T	124.3
035001.	Gipping at Constantine	61542441	NRA.A	310.8	039036	Law Brook at Albury	50451468	NRA-T	16.0
035002	Doben at Naunton Holl	63222534	NRA.A	163.1	039037	Kennet at Martborough	41871686	NAA-T	142.0
035003	Alde al fernham	63602801	NRA-A	63.9	035038	Thame at Shabbington	46702055	NRA-T	443.0
035004	Ore at Beversham Bridgo	63592583	NRA-A	54.9	039040	Thames at West Mill Cricklode	40941942	NRA-T	185.0
035508	Gipping at Stowmerker	60582578	NRA-A	128.9	0393042	Leach at Priory Mal Lechlade	42271994	nat ${ }^{\text {a }}$	76.9
035010	Gipping at Eramtord	81272465	nRA-A	298.0	039043	Kernet at Knightion	42951710	NRA-T	295.0
035013	Btyh at totion	84062769	NRA-A	92.9	039044	Hart at Eramshid Houso -	47551593	NRA.T	84.0
					039046	Thernes at Sutton Courtenay	45161946	NRA.T	414.0
036001.	Stour at Stratford St M	80422340	EWC	844.3	039049	Sink Stream at Colindoep Lane	52171895	NRA-T	29.0
036002	Glem at Glemstord	58462472	NRA-A	87.3	039051	Sor Brook at Addertury	44752346	NRA-T	106.4
036003	Box at Polstesd	59852378	nfa-A	53.9	039052	The Cur at Binfield	48531713	NRA-T	50.2
036004	Chad Brook at Long Mefford	58682459	NRA-A	47.4	039053	Mole at Hortey	52711434	NRA-T	89.9
036005	Breft at Hasileigh	60252429	NRA-A	156.0	039054	Mole at Gatwick Airport	52601399	NRA-T	31.8
036006	Stour at Longhom	60202344	NRA-A	578.0	039055	Yeading Bk West at Yeading West	50831846	NRA-T	17.6
036007	Bach hamp Brook at Barctiedd Eridge	58482421	NRA-A	58.6	039056	Ravensbourne at Catrord Hill	53721732	NRA-T	67.6
036008	Stour at Westmid	58272463	NRA.A	224.5	039057	Crane at Crantort Park	51031778	nfa-T	61.7
036009	Bratt at Cockfield	59142525	nfata	25.7	039058	Pool at Winsford Riasd	53711725	nRA-T	38.3
036010	Bumpstead Brook at Eroad Green	56892418	nha.a	28.3	039061	Letcombe Prook at Letcombe Basset:	43751853	NRA-T	2.7
036011	Stour Brook ar Stumer	56962441	nfa-A	34.5	039065	Ewtme Brook ar Ewelme	46421916	nha-t	13.4
036012	Stour at Kedingion	57082450	NRA-A	76.2	039068	Mole at Cessile Mia	51791502	nfa-t	316.0
036013	Brett at Higham	60322354	nfa.a	195.0	039069	Mole at Kinnersley Manor	52621462	NRA-T	142.0
036015	Stour at Lamersh	58972358	NPA-A	480.7	039071	Thames at Ewer	40071973	nha-t	63.7
036016.	Alamsey at Grasa Oakley	62062288	NRA-A	13.9	039072	Thames at Royal Windsor Park	49921773	nfa-T	046.0
036017	Ely Ouse Outfall at Kirling Green	56812559	NRA-A		039073	Chume at Cirencester	40202028	nRa -T	84.0
					039074	Ampney Brook at Sheepen Bridge	41051950	NRA.T	74.4
037001	Roding at Redbridge	54151884	NRA.T	303.3	039075	Marston Meysey Bk at Whetstona Bridge	41281964	NFA-T	25.0
037002	Chelmer at Rushes Lock	57942090	NRA-A	533.9	039076	Windrush at Worsham	42992107	NRA-T	296.0
037003	Ter at Crabbs Bridge	57862107	NRA-A	77.8	039077	Og at Martborough Poution Fm	41941697	NRA-T	59.2
037004	Etackwater at Langtord	58362092	NRA-A	337.0	039078	Weythorih) at Farmham	48381462	NRA.T	191.1
037005	Colne at Lexden	59622261	NRA-A	238.2	039079	Wey at Weybridge	50681848	NRA-T	1008.0
037006	Can st Beach's Mill	56902072	NRA-A	228.4	039081	Ock at Allott Gardens	44811986	NRA-T	234.0
037007	Wid at Writitia	58862060	NRA-A	136.3	039085	Wandie at Wendie Park	52661703	NRA-T	176.1
037009	Cheimer as Springfield	57132071	NRA-A	190.3	039086	Gatwick Stream at Gatwick Link	52851417	NRA.T	33.8
037009	Brain at Guithevon Valley	58182147	NRA-A	60.7	039087	Ray at Water Eaton	41211935	NRA-T	84.9
037010	Blackwater at Appleford Bridge	58452158	NRA-A	247.3	039088	Chess at Rickmansworth	50661947	NRA-T	105.0
037011	Chelmer at Churchend	58292233	NRA-A	72.8	039089	Gade at Bury Mill	50532077	NRA-T	48.2
037012	Colne at Poolstreet	57712364	NRA A A	65.1	039090	Cole at inglesham	42081970	NRA-T	; 40.0
037013	Sandon Brook at Sandon Bridge	57552055	NRA-A	60.6	039091	Misbourne at Quarrencon Mill	49751963	NRA.T	66.3
037014	Roding at High Ongar	55612040	NRA-T	95.1	039092	Dollis Brook at Hendon Lane Bridga	52401895	NRA-T	25.1
037015	Cripsey Brook at Chipping Ongar	55482035	NRA-T	82.2	039093	Brent at Monks Park	52021850	NRA.T	117.6
${ }^{037016}$	Psnt at Copford Hall	56682313.	NRA.A	62.5	039094	Crane at Marsh Farm	51541734	NRA-T	1.0
037017	Blackwater al Stisited	57932243	NRA-A	139.2	039095	Ouaggy at Menor House Gardens	53941748	NRA-T	
037018	${ }^{\text {Ingrotourne al Gaynes Park }}$	55531862	nias	47.9	039096	Wealdstone Brook at Wembley	51921862	NRA-T	21.7
037019	Beam at Bretons Farm	55151953	NRA-T	49.7	039097	Thames st Buscot	42301981	NRA-T	997.0
037020	Chelmar at Felsted		NRA-A	132.1	039098	Pinn at Uxbridge	50621826	NRA.T	33.3

Station number	Rivar and station neme	Grid raterence	Authortiy	Arta (sq km)	Station number	River and station name	Grld raference	Authority	Areat (89 km)
038099	Amprey Arook at Ampray St. Peteor	40762013	NRA-T	45.3	043017	West Avon at Upavon	41331559	NRA.W	76.0
039100	Swill ercok mi Oaksoy	39971927	NRA-T	53.3	043018	Anen at Waiford Mill	40081007	NRA-W	176.5
039101	Alabourne at Ramabur	42881717	NRA.T	53.1	043019	Shreen Water at Colesbrook	38071278	NRA.W	29.1
039102	Misbourne al Denhsm Lodga	50481866	NRA-T	138.0	043021	Avon at Knopp Mill	4:550943	NRA-W	706.0
039103	Kennet at Nowbury	44721872	NRA-T	548.1					
039104	Mole at Eutar	51301853	NRA-T	469.6	044001	Frome at East Stoka total	38860867	NRA.W	414.4
039105	Theme at Wheatioy	48122050	NRA-T	533.8	044002	Piddic at Beggs Mill	39130976	NRA-W	183.1
039106	Mote ot Leatherthesd	51811564	NRA-T	371.4	044003	Agker al Bridport	34700928	NRA.W	49.1
039107	Hogmad at Ewall	52161833	NRA-T	33.7	044004	Frome at Dorchester total	37080903	NRA-W	206.0
039108	Chum at Perrotis Brook	40222057	NRA-T	59.0	044008	Syding Weter at Sydling St Nicholos	36320997	NPA.W	12.4
039109	Coln at Forsabridga	40802112	NRA.T	82.0	044008	Sth Winterbourne at Wbourna Steophtor	36290897	NRA.W	19.9
039110	Coln at fairford	41512012	NRA-T	130.0	044009	Wey at lroudwey	36880839	NRA.W	7.0
039111	Thames ot Stainea	50341713	NRA.T	8120.0					
039112	Letcombe Brook at Arabellas Lake	43741852	NBA. ${ }^{\text {d }}$		045001	Exe at Thorverton	29381018	NRA-SW	600.9
039113	Monor farm Brook at Letcombe Regis	43831861	nfas		045002	Exe at Stoodloigh	29431178	nhasw	421.7
039114 ,	Penig nt Frushem	45371730	NRA-T		045003	Cumm at Wood mill	30211058	nra-sw	228.1
038115°	Pang at luckiobury	45581710	NRA-T		045004	Axe al Whirford	32820953	nhasw	288.5
039118	Suhtom Brook at Sultham	48421741	NRA-T		045005	Otter at Dotion	30870885	NRA-SW	202.5
038117	Colnbrook at Hythe End	50191723	NRA-T		045006	Quarme at Enierwell	29191356	nfa ${ }^{\text {SW }}$	20.4
038118	Way st Alton	47171395	NRA.T		045008	Otter at Fenny Bridges	31150986	NRA-SW	104.2
039119	Way at Kingat Pond (Alton)	47241395	NHAT		045009	Exe at Pixion	29351260	NFA-SW	147.6
039120	Caker Streem at Ation	47291388	nhas ${ }^{\text {T }}$		045010	Hsaddeo at Herrtord	29521294	NRA-SW	50.0
039121	Themes at Wation		NFA.T		$\begin{aligned} & 045011^{\circ} \\ & 045012 \end{aligned}$	Earie at Bruahford Creedy at Cowlay	$\begin{aligned} & 29271258 \\ & 29010967 \end{aligned}$	NRA-SW NRA-SW	$\begin{aligned} & 128.0 \\ & 261.6 \end{aligned}$
040001	Meatway at Wair Wood Rerearvoir	54071353	sw	26.9	045013	Trale at Fairmile	30880972	NRA-SW	34.4
040002	Darwall at Dorwell Reservoir	57221213	Sw	9.6					
040003	Modway al Teston	57081530	NRA.S	1256.1	048002	Teign at Prestion	28560748	NRA-SW	380.0
040004	Rother at Udiam	57731245	NRAS	208.0	046003	Oart at Austins Bridge	27510859	NRA-SW	247.6
040005	Bouth at Stile Pridge	57581478	NRA-S	277.1	048005	East Darr at Betlever	26570775	nRa-SW	21.5
040006	Bourne at Hadiow	56321497	NRA.S	50.3	048006	Emre at Ermington	28420532	NRA.SW	43.5
040007	Medwiy al Chatiord Weir	55171405	NRAS	255.1	046007	West Dart at Dummebridgo	26430742	NRA-SW	47.9
040008	Great Stour al Wyo	60491470	NRAS	230.0	046008	Avon at Loddiswell	27190476	NRA-SW	102.3
040009	Teise at Stone Eridgo	57181399	NRA-S	136.2					
040010	Eden it Penathurst	55201437	NRA-S	224.3	047001	Tamar at Gunnislake	24280725	NRA-SW	916.9
040011	Graat Siour at Horto	61181554	NRA-S	345.0	047003	Tavy at Lopwell	24750652	NRA-SW	205.9
040012	Darent at Hawtay	55511718	NRAS	191.4	047004	Lymher at Pillaton Mill	23690626	NRA-SW	135.5
040013	Datent at Otrord	55251584	NRAS	100.5	047005	Ottery at Werrington Park	23360866	NRA-SW	120.7
040014	Wingthem at Durbock	62761576	NRA.S	37.7	047006	Lyd al Lition Park	23880842	NRA-SW	218.1
040015	White Drain it Fainbrook Farm	60551606	NfA.S	31.8	047007	Yasam at Pustionch	25740511	nfa-sw	54.9
040016	Cray an cravtord	55111746	NRA-S	119.7	047009	Thrushel at Tinhay	23980856	NRA-SW	112.7
040017	Dudwas at Burwash	56791240	NRA.S	27.5	047009	Tidody at Tidetord	23430595	nRa-SW	37.2
040018	Datent at Lullingatione	55301843	NFA-S	118.4	047010	Temar at Crowtord Bridge	22900991	NRA.SW	76.7
040020	Eridga Stramm at Hendal Pridge	55221367	NRA-S	53.7	047011	Phym at Carn Wood	25220813	NRA-SW	79.2
040021	Hexdan Chennel at Hopemilt Br Sandlurat	58131290	NHAS	32.4	047013	Withey Brook at Bastreet	22440763	nat-sw	16.2
040023	Eaut Stour at South Willouborough	80151407	NFA.S	58.8	047014	Walkham at Horrabridge	25130899	NRA-SW	43.2
040024	Bartioy Mill Si at Bartley Mih	56331357	NRA-S	25.1	047015	Tevy al Denhem / Ludbrook	24760681	nfa-sw	197.3
040027	Satre Pemn al Calcott	61741625	NRA-S	19.4	047018	Lumbum al Lumbumn Bridga	24590731	nfa-sw	20.5
040029	Len al lenside		NRAS		047017	Wort at Conte Park Farm	24190998	NRA-SW	1.1
040033	Dover at Crabble Mill	63001430	NRA-S						
041001	Nummingham Stroem at Tilley Brdga	58621129	NRA-S	16.9	$\begin{aligned} & 048001 \\ & 048002 \end{aligned}$	Fowoy at Trakoivesteps Fowey at Ratiormel one	22270698 21080613	NRA.SW NRA-SW	$\begin{array}{r} 36.8 \\ 171.2 \end{array}$
041002	Alth Bourne at Hammer Wood Bricgso	56841141	NRA-S	18.4	048003	Fal at Tregony	19210448	NRA-SW	87.0
041003	Cuckmort at Sherman Bridgo	55331051	NRA.S	134.7	048004	Warioggan at Trengotia	21590874	NRA-SW	25.3
041004	Ouse ot Bercombe Mills	54331148	NRA-S	395.7	048005	Kenwy at Trura	18200450	NRA-SW	19.1
041005	Onte it Gokd Briogo	54291214	NRA-S	180.9	048006	Cober al Heliston	16540273	NRA.SW	40.1
041006	Uck at istiold	54591190	NRA.S	87.8	048007	Kennall at Ponzanooth	17620377	NRA.SW	26.6
041009	- Rother al Horctham	50341178	NRA.S	345.8	048009	St Noot at Craightill Wood	21840662	NRA-SW	22.7
041010	Adur W Eranch it Mstrerall Bridge	51781197	NRA.S	109.1	048010	Seaton al Tretrownbridgo	22990596	NRA.SW	38.1
041011	Rother at lping M.ll	48521229	NHA-S	154.0	048011	Fowey al Restormal	20980624	NTA-SW	169.1
041012	Adur E Branch at Sakeham	52191190	NRA.S	93.3					
041013	Huggieate Stream at Henley Bridgo	56711138	NRA.S	14.2	049001	Camel at Denby	20170682	NRA.SW	208.8
041014	Arun at Pallinghem Ouay	50471229	NHAS	379.0	049002	Hesyta at St Ent	15490342	NHA.SW	48.9
041015	Ema it Weatboume	47551074	nRAS	58.3	049003	De Lonk at Oe Lank	21320765	NRA.SW	21.7
041016	Cuckmere at Cowbeech	58111150	NRA.S	18.7	049004	Garneel at Gwills	18290593	nfa-sw	41.0
041017	Combehoven at Crowturat	57651102	NRAS	30.5					
041018	Kird at Tenverde	50441256	NRA.S	66.8	050001	Taw at Umberreigh	28081237	NRA-SW	826.2
041019	Arun at Altodsasn	51171331	NRA.S	139.0	050002	Torriche at Torrington	25001185	NRA.SW	863.0
041020	Bevern Stresm at Clappera Bridgo	54231161	NRAS	34.6	050004	- Hole Water at Muxworthy	27051373	NRA-SW	5.4
041021	Claytill Stream al Old Ship	54481153	NRAS	7.1	050005	West Okement at Velloke	25570903	NRA-SW	13.3
001022	Lod at hastway Bricge	49311223	NRA-S	52.0	050006	Mote at Woodloigh	28601211	NRA-SW	327.5
041023	Lovant at Graytingwen	48711064	NRA-S	87.2	050007	Taw at Tow Bridge	26731068	NRA.SW	71.4
041024	Shal Brook at Sthell Brook P S	53351286	NRA.S	22.6	050011.	- Okemeni at Jacobstowe	25921019	NAA.SW	82.1
041025	Loxwood Streem at Durngowick	550601309	NRA-S	${ }^{91.8}$	${ }_{05012}^{05013}$	Yeo at Veraby	27751267	NRA.SW	$\stackrel{53.7}{17.6}$
041028	Cockheice Brook at Holywall	53761262	NRAS	36.1	050013	Eray ot Loenmentord Bridge	26771399	NRA.SW	17.6
041027	Rother at Princos Mersh	47721270	NRA-S	37.2					
041028	Chass Stroam at Chess Bridgo	52171173	NRA-S	24.0	051001	Doniford Stream at Swill Bridga	30881428	NRA.W	75.8
041029	Bull at Letionds	55751131	NRAS	. 8	05:002	Horner Water at West Luccombe	28981458	NRA.W	20.8
041031	Fulking Stramm at Fuking	52471113	NRA-S		051003	Washford at leggearn Huish	30401395	NRA.W	36.3
041033	Costera Brook at Cocking	48801174	NRA.S						
041034	Ems al Walicorion	47881104	Nfa-s		052001	Are at Wookey	35271458	NRA.W	18.2
041035	North Piver or Prookhurat	551301325	NRA.S		052002	Yoo at Sution Bingham Res.	35551116	NRA. ${ }^{\text {N }}$	30.3
041037	Winterbourne Stroam at Lewes	54031098	NRA.S		$\begin{aligned} & 052003 \\ & 052004 \end{aligned}$	Holse Water al Bishops Hull Isles at Ashford Mill	$\begin{array}{ll} 32061253 \\ 33611188 \end{array}$	NRA.W NAA	87.8 90.1
042001	Wallington at North Fareham	45871075	NRA.S	111.0	052005	Tone at Bishope Hull	32061250	NAA.W	202.0
042003	Lymington at Erockenhurst Park	43181019	NRA.S	98.9	052006	Yeo at Pan Mill	35731162	NRA.W	213.1
042004	Test at erondismds	43541188	NRA.S	1040.0	052007	Parrett at Chiseblorrough	34811144	NRA-W	74.8
042005	Watop Brook at Broughion	43111330	NHAS	53.6	052009	Tomen at Clatworthy Reservoir	30441313	nra.w	18.1
042008	Moon at Mistingford	45891141	NRA-S	72.8	052009	Sheppey at fenny Castio	34981439	NAPA.W	59.6
042007	Atre al Drove Lone Alrestord	45741326	NRA-S	57.0	052010	Brue ar Lovington	35901318	nfa.w	135.2
042008	Cheriton Stream at Sewards Bridge	45741323	NRA-S	75.1	052011	Cory at Somertion	34981291	NRA W	82.4
042009	Candover Stream at Brough Bridgo	45681323	NRA-S	71.2	052014	Tone at Greenham	30781202	NRA.W	57.2
042010	lichen al Highbridgs + Allbrook	44671213	NHA-S	360.0	052015	Land Yeo al Wraxill Bridge	34831716	NRA.W	23.3
042011	Hamble at Froq Mill	45231149	NRA-S	56.6	052016	Currypool Stream at Currypool Farm	32211382	NRA-W	15.7
042012	Anton at fullorton	43791393	NRA-S	185.0	052017	Congreabury Yeo at hwood	34521831	nra w	66.6
${ }^{0} 22014$	Btackwster at Ower	43281174	NRA.S	104.7	052020	Gealica Stroem at Gatica Bridga	35711100	NRA.W	18.4
042015	Dever al Wesion Collay	44961394	NRA.S	52.7					
O22016	Itchen at Eorton	45121325	NRA-S	2368	053001.	Avon at Molksham	39031641	NRA-W	${ }^{655.6}$
042017 042018	Mermitago al Mavent Monks Brook at Eaptaigh	47111087 44431179	${ }_{\text {NRA-S }}$	17.0 43.3	053002 053003	Saminglon Arook at Sernimgton Avon ar Bath St James	39071605 37531645	NRA.W NHA	1557.7
042020	Todturn Lake al homsay	43621212	NRA-S	19.0	053004	Chew at Compton Dando	36481647	NRA.W	129.5
042021	- Brench of Test st Nursting	43551169	NRA-S	1050.0	053005	Mitford Brook at Mifford	37831611	nRa ${ }^{\text {W }}$	147.4
042023	Hichen at Riverside Park	44451154	NRA-S	415.0	053006	Frome(Enisiofol al Frenchoy	36371772	NRA $\cdot \underline{W}$	148.9
042024	Test at Cmilbction frotal)	43881394	NRA-S	453.0	053007	Frome(Somersat) at Tellizford	38051564	NRA.W	261.6
042025	Lavant Stroom at Leigh Park	47211072	NRA.S	54.5	053008	Avon al Grast Sommerford	39681832	NRA.W	303.0
					053009	Welhow Erook at Wellow	37415151	nha.w	72.6
043001	Avan at Ringwood	41421054	NRA.W	1649.8	053013	Merden at Sioniey	39551729	NRA.w	99.2
${ }^{043003}$	Avon at Eat Mills	41581144	nha ${ }^{\text {W }}$	1477.8	053017	Boyd at Bitron	36811698	NRA.W	48.0
043004	Bourne at Lsverstock Mill	41571304	nra.w	163.6	053018	Avon al bathord	37811671	nta ${ }^{\text {a }}$	1552.0
043005	Avon at Amesbury	415:1413	nha.w	323.7	053019	Woodbridge Arook at Crab Mill	39491866	NRA \cdot W	48.8
${ }^{043006}$	Nodder al Witom Perk	40981308	nha.w	220.6	053020	Gauze Prook at Rodtbourne	39371840	nra.w	28.2
043007	Stour at Throop Mill	41130958	nhas w	1073.0	053022	Avon at Easth ulirasonic	37381651	NRA.W	1805.0
043008	Wytre at South Newton	40861343	nRa.w	445.4	${ }^{053023}$	Sherston Avon at Fossoway	38911870	NRA W	89.7
043009	Stour al hammoon	38201147	NRA.w	523.1	053024	Teibury Avon at Erokenborough	39141893	nra w	73.6
${ }_{0}^{043010} 0$	Athen at Loverray Mill	400611085	NRA.W	94.0	053025	Molls al Volisa	37571491	NRA W	19.0
${ }^{0433011} 0$	Ebble at Bodenhom	41621263 39091428	NRA. ${ }_{\text {NRA }}$	109.0 112.4	053026	Fromei(Bistol) at frampton Cotreran	38671822	NRA.W	78.5
043012 043013	Wytre at Norton Bavant	38091428 41840938	NRA.W NRA.w	112.4 12.4	053028 053029	By Brook at Middlehill Biss at Trowbridge	38151888 3854 1579	NRA.W NRA	102.0
043014	East Avon at Upevon	41331559	NRA.W	86.2		Gisa ar rowbiga	3 -		
043015.	Wrytyo al Longbridge Deverill	38881413	nRa-w	69.0	054001	Severn al Bewdioy	37822762	NRA-St	4325.0

Station number	River and station name	Grid reforence	Auth orlty	Area (sq km)	Station number	River and station name	Grld referance	Authority	Area (39 km)
054002	Avor at Eveshem	40402438	NfA-St	2210.0	057001	Taffechan at Tat fechan Rezervoir	30602117	NRA-wel	33.7
054004	Sowe at Stoneloigh	43322731	NRA.ST	262.0	057002	Taf Fowt at Ulwynon Reservair	30122111.	NRA-wEL	43.0
054005	Sovern at Montrord	34123144	NRA-ST	2025.0	057003	Taff at Tongwntais	31321818	NHA-WEL	486.9
054006	Stour at Kidderminster	38292768	NRA-ST	324.0	057004	Cynon at Abercynon	30791956	NRA-WEL	106.0
054007	Afrow al Broom	40862536	NRA-ST	319.0	057005	Toff at Pontypridd	30791897	NRA-WEL	454.8
054008	Teme at Tenbury	35972686	NRA-ST	1134.4	057006	Rhondda at Trehsfod	30541909	NRA-WEL	100.5
054010 .	Stour at Alscot Park	42082507	NRA-ST	379.0	057007	Taff at Fiddlers Elbow	30891951	NRA-WEL	194.5
054011.	Solwarpe at hastord Mil	38682618	NRA-ST	184.0	057008	Rhymney at Lanedigy	32251821	NRA-WEL	178.7
054012	Tem at Walcoi	35923123	NRA-ST	852.0	057009	Ely at St Fagans	31211770	NRA-WEL	145.0
054013.	Clywedog at Cribynau	29442855	NRA-ST	57.0	057010	Ely at Lonelay	30341827	nfa-wel	39.4
054014	Severn at Abermule	31642958	NRA-ST	589.0	057011	Blaen Taf Fowr at Bescons Reservoir	29872193	NRA.WEL	5.1
054015	Bow Brook at Besiford Bridge	39272463	NRA-ST	156.0	057012	Garwnant at Llwymon Reservoir	30042129	NRA-WEL	4.3
054016	Roden at Rodingion	35893141	NRA-ST	259.0	057015	Taff at Merthyr Tydifil	30432068	NRA-WEL	104.1
054017	Leadon at Wedderturn Bridge	37772234	NRA-ST	293.0	057016	Tat Fechan at Pontsticill	30602115	NRA-WEL	33.8
054018	Het Erook al Hookagate	34663092	NRA-ST	178.0					
054019	Avon st Staraton	43332715	NRA-ST	347.0	058001	Ogmere at Bridgend	29041794	NRA-WEL	158.0
054020	Perry at Yeston	34343192	NRA-ST	:80.8	058002	Neath al fesolven	28152017	NRA-WEL	190.9
054022	Severn at Plyrimmon thume	28532872	${ }^{1}$	8.7	058003	Ewenny at Ewenny Priory	29141780	NRA-WEL	82.9
054023 .	Bedsey Brook at Offentam	40632449	NRA-ST	95.8	058005	Ogmora at Erymmenty	29041844	NRA-WEL	74.3
054024	Worte at Burcote	37472953	NRA.ST	258.0	058006	Meilte at Pontredatrechan	29152082	NRA-WEL	65.8
054025	Dulas et Rhos. $\%$-pentraf	29502824	NRA-ST	52.7	058007	Llynti at Coytratien	28911855	NRA-WEL	50.2
054026.	- Chelt at Slate Mill	38922264	NRA-ST	34.5	058008	Oulais ol Clitrew	27782008	NRA.WEL	43.0
054027	- Frome at Ebley Mill	38312047	NRA-ST	198.0	058009	Ewerny at Kebpers Lodgo	29201782	NRA-WEL	62.5
054028	Vymwy at Lanymynech	32523195	NRA-ST	778.0	058010	Hepste at Esgair Carnau	29692134	NRA-WEL	14.0
054029	Teme at Knightsford Bridge	37352557	NRA-ST	1480.0	058011	Thaw al Gigman Bridge	. 30171716	NRA-WEL	49.2
054032	Severn at Sexans Lode	38632390	NRA-ST	6850.0	058012	Atan at Marcroft Weir	27711910	NRA-WEL	97.8
054034	Dowles Brcok at Dowies	37682764	NRA-ST	40.8					
054036	Isboume at Hintion on the Green	40232408	NRA-ST	90.7	059001	Tawe at Yynstangtws	26851998	NRA-WEL	227.7
054038	Tanat at Lanybbedwel	32523225	NFA-ST	229.0	059002	Loughtor st Tir-y-dait	26232127	NRA-WEL	46.4
054040	Mrese al Tibbertion	36803205	NRA-ST	167.8					
054041	Tern at Eaton On Tern	36493230	NRA.ST	192.0	060002	Cothi at Fstin Myrachdy	25092225	NHA-WEL	297.8
054042 .	- Ciywedog at Clywedog Om Lower Weir	29142867	NAA-ST	49.0	060003	Taf at Clog.y-fran	22382160	NRA-WEL	217.3
054043 .	- Severn at Upton On Severn	38632399	NAA-ST	6850.0	060004	Dewi Fewf at Glastryn Ford	22902175	NRA-WEL	40.
054044	Tern at Ternhill	36293316	NRA.ST	92.6	060005	Bren at Llandovery	. 27712343	NRA-WEL	66.8
054045 .	Perry at Perry Farm	33473303	NRA-ST	49.1	060006	Gwili at Clengwili	24312220	NRA-WEL	129.5
054046	Worfe at costord	37813046	NAA-ST	54.9	060007	Trwi at Dolasu Hision	27822362	NRA-WEL	231.8
054047 .	- Perry at Ruyton Enidge	34033223	NAA.ST	155.0	060008	Trwi at Y stradtion	27862472	NFA-WEL	89.8
054048	Dene at Wallosbourne	42732556	NAA-ST	102.0	060009	Sawdde at felin-y-cwm	27122266	NRA-WEL	81.1
054049	Leam at Princes Drive Weir	43072654	NAA-ST	362.0	060010	Tywi al Nantgaredig	24852206	NRA-WEL	090.4
054050	Leam at Eathorpe	43982688	NRA-ST	300.0	080012	Twrch at Ddol tas	26502440	NHA-WEL	20.7
054052 :	- Bailey Brook at Ternhill	36293316	NRA-ST	34.4	060013	Cothi at Pont Ynys Brechfa	25372301	NRA-WEL	261.6
054055	- has ot Nean Sollars	36642724	NRA.ST	129.0					
054056 .	- Clun at Clunguntord	33932786	NRA-ST	195.0	061001 .	Western Cloddau at Prendergost Mill	19542177	NRA-WEL	197.6
054057	Savern at Haw Bridgo	38442279	NRA-ST	9895.0	061002	Eastern Cloddzu at Canaston Bridgo	20722153	NRA-WEL	183.1
054058	Stoke Park Brook at Stoke Park	36443260	NRA-ST	14.3	061003	Gwaun at Ciurredyn Bridg	20052349	NRA-WEL	31.3
054059 -	- Allford Brook at Allford	36543223	NRA-ST	10.2	061004	Western Clocdau at Redinil	19422184	NRA-WEL	197.6
054060	- Pottord Brook at Pottord	36343220	NRA-ST	25.0					
054061	Hodnet Brook st Hodnet	36283288	NRA-ST	5.1	062001	Teifi at Glan Teifi	22442416	NRA-WEL	893.6
054062	Stoke Brook at Stoke	36373280	NRA-ST	13.7	062002	Teifi at Llanfair	24332406	NRA-WEL	510.0
054063 .	- Stour at Prestwood Hospital	38652858	NRA-ST	99.9					
054065 .	Roden et Stanton	35653241	NRA-ST	210.0	063001	Ystwyth at Pont Lolwy	25912774	NRA-WEL	169.6
054066	Platt Brook st Platt	36283229	NRA-ST	15.7	063002	Rheistol at Lanbadam Fawr	26012804	NRA-WEL	182.1
054067	- Smestow Brook at Swindon	38612906	NRA-ST	81.3	063003	Wyre at Lenctivstry	25422698	NRA-WEL	40.6
054068 .	Tetchin Brook at Hordiey	33793288	NRA-ST	21.2	0633004	Ysiwyth at Cwn Ystwyth	27912737	NRA-WEL	32.1
054069	Springs Brook at Lower Hordley	33873297	NRA-ST	10.4	063005	Maesmant at Nant - -Moch C	27782977	$\mathrm{IH}^{\text {H}}$	0.6
054070 .	- War Arook at Wattord	34323198	NRA-ST	22.5	063006	Maesnent Fach of Nant-r-Moch E	27652865	IH	0.8
054080	- Severn at Dolwen	29962851	NRA.ST	187.0					
05408)	Crywedog at Eryntail	29132868	NRA.ST	49.0	064001	Dyti at Dyyi Bridge	27453019	NRA-WEL	471.3
054083.	- Crow Brook at Horton	36783141	NRA.ST	16.7	064002	Dysynni at Pont---garth	26323066	NRA-WEL	75.1
$054084{ }^{\text {. }}$	- Csnnop Prook st Parkend	36162075	NRA-ST	31.5	064006	Leri at Dolybont	26352882	NRA-WEL	47.2
054085.	- Connop Brook at Connop Cross	36092115	NRA.ST	10.4	064007	Detyn at Lenbrynmair	28993062	H	1.1
054086	Cownwy Diversion st Cownwy Weir	29993179	NRA.ST	13.2	064008	Cwm at Lentorymmait \mathbf{E}	29163087	IH	3.0
054087.	- Altord Brook at Chides Ercall	36673228	NRA.ST	4.7					
054088	Littio Avon at Berkeley Kernels	36831988	natas	134.0	065001	Glaslyn at Beadgetert	25923478	NRA-WEL	68.6
054089	Avon al Bredon	39212374	NAA ST	2674.0	065002	Dwyryd at Maentwrog	26703415	NRA WEL	78.2
054090	Tanllwyth at Tanllwyth Flume	28432876	${ }_{\text {I }}$	0.9	065004	Gwyrta at Bontnewydd	24843599	NRA-wEL	47.9
054091	Severn at Hafion Flume	28432878	${ }^{1+4}$	3.6	085005	Erch at Pencasnewydd	24003404	NRA WEL	18.1
054092	Hore at Hore Flume	28462873	1 H	3.2	085006	Soiom at Pablig Mill	24933623	NRA.WEL	74.4
054094	Strine at Crudgington	36403175	NRA.ST	134.0	065007	Dwyfawr at Garndolbenmaen	24893429	NRA-wEL	52.4
054095	Savern at Euidwas	36443044	NRA-ST	3717.0					
054096	Hedly Brook at Words Eridge	38702631	NAA-St	53.4	$\begin{aligned} & 066001 \\ & 066002 \end{aligned}$	Cluwd at Pont-y-cambwh Elwy at Pant yr Onen	$\begin{aligned} & 30693709 \\ & 30213704 \end{aligned}$	NRA.WEL NRA-WEL	$\begin{aligned} & 404.0 \\ & 220.0 \end{aligned}$
055002	Wye at Betrmont	34852388	NRA-WEL	1895.9	066003	Aled at Bry Aled	29573703	NRA-WEL	70.0
055003	Lugg at Lugwardine	35482405	NRA-WEL	${ }^{885.8}$	066004	Wheoler at Bodfari	31053714	NHA-WEL	82.9
055004	Irfon al Abernant	28922460	NRA.WEL	72.8	066005	Clwyd at Ruthin Weir	31223592	NRA-WEL	95.3
055005	Wye at Rhayader	29692676	NRA-WEL	186.8	066006	Elwy at Pont. γ-gwyddel	29523718	NRA-WEL	194.0
055006	Elan at Caban Coch Reservor	29262645	NRA.WEL	184.0	066008	Aled et Alig Isaf Raservoir	29153598	NaA Wel	11.6
055007	Wye at Erwood	30762445	NRA-WEL	1282.1	066011	Conwy at Cwm Llanerch	28023581	NRA-WEL	344.5
055008	Wye at Cefn Erwyn	28292838		10.6					
055009	Mornow at Kentchurch	34192251	NRA.WEL	357.4	067001	Doe at Bats	29423357	NRA-WEL	261.6
055010	Wre at Pant Mowr	28432825	NRA.WEL	27.2	067002	Deen at Erbistock Rectory	33573413	NRA-WEL	1040.0
055011	thton at Lardewi	31052683	NRA-WEL	111.4	067003	Brenig at Uym Brariqg outtiow	29743539	NRA-WEL	20.2
055012	trion at Cilmery	29952507	NRA.wEL	244.2	067005	Ceiriog al Brynkinalt Weir	32953373	NRA-WEL	113.7
055013	Arrow at Titlay Mil	33282595	NRA.WEL	126.4	067006	Alwen al Druid	30423436	NRA-WEL	184.7
055014	Lugg at Byton	33642647	NHA-wEL	203.3	067008	Alyn at Pont-y-capal	33363541	NRA-WEL	227.1
055015	- Honddu at Tatolog	32772294	NRA.WEL	25.1	067009	Alyn al Rixydymwyn	32063687	NRA-WEL	77.8
055016	then at Dissorth	30242578	NRA-WEL	358.0	067010	Gelyn at Cynotai	28433420	NRA-WEL	13.1
055017	Chwetu at Carreg. y -wen	29982531	NRA.WEL	29.0	$067011^{\text {. }}$	Nant Aberderifel at Nant Aberdertel	28513392	NRA-WEL	3.7
055018	Frome at Yarkhial	36152428	NRA.WEL	144.0	067012.	Trwervin at Upper Trweryn	28383398	NRA.WEL	27.2
055021	Lugg at Buts Eridge	35022589	NAA.wEL	371.0	067013	Hismont at Plas Rtiwedog	29463349	NRA-WEL	33.9
055022	Trothy at Mirchel Troy	35032112	NFA-WEL	142.0	067015	Dee at Maniley Hay	33483415	NRA-WEL	1019.3
055023	Wre at Redbrook	35282110	NRA-WEL	4010.0	067016 .	Worthenbury Brook at Worthenbury	34183464	NRA WEL	142.1
055025	Llyntiat Three Cocks	31662373	NRA.WEL	132.0	067017	Trywaryn at Lyn Calyn oufflow	28803399	NRA-WEL	59.9
055026	Wye at Ddol farm	29762676	NRA-WEL	174.0	067018	Dees al New inn	28743308	NRA-WEL	53.9
055027	Rudhail Brook at Sandford Eridga	36412257	NAA.WEL	13.2	067025 .	Clywedog at Bowling Bank	33963483	NRA-WEL	98.6
055028	Frome at Bishops Frome	36672489	NRA-WEL	77.7	067026	Dee al Eccleston Ferry	34153612	NRA-WEL	818.8
055029	Monnow at Gosmont	34152249	NAA.WEL	354.0	${ }_{0}^{067028}$	Ceidiog at Llandrillo	30343371	NRA-WEL	36.5
055030	Cliserwen at Dot γ-mynoch	29102620	nha.wel	95.3	067029	Trystion at Pen-y-felin fawr	30663405	NRA-WEL	12.3
055031	Yaxor Erook at Three Elms	34922415 29342653	NRA-WEL	42.3 880					
${ }_{055032} 05$	Elan at Elan Village	29342653	NRA-WEL	184.0	068001	Weover at Ashbrook	36703633 34433714	NTA-NW	622.0 156.2
055033	Wyo at Gry flume cytf at Cytf flums	28242853 .28242842	$\underset{1}{1+}$	3.9	${ }_{0}^{0688003}$	Gowy at Piction	+36483718	NAA -NW	407.1
055035	- lago at lago flume	28262854	$1{ }^{+}$	1.1	088004	Wistaston Brook at Marshtield Bridge	36743552	NRA-NW	92.7
					088005	Weaver at Audierm	36533431	NRA-NW	207.0
056001	Usk at Crasin Bridge	33452056	NRA-WEL	911.7	068006	Dene at tulme Waltield	38453644	NRA-NW	150.0
056002	Ebow al Rhiwderyn	32591889	NRA.WEL	216.5	0868007	Winchamm Brook at Lostock Gralem	36973757	NRA.NW	148.0
056003	Hondot at The Forge Brecon	30512297	NRA WEL	62.1	068010	Fender at ford	32813880	NRA-NW	18.4
056004	Usk at Llandety	31272203	NRA WEL	543.9	068015	Gowy at thuxley	34973824	NRA-NW	49.0
${ }_{0}^{0560006}$	Lerd at Ponthir	33301924 29472295	NRA-WEL	98.1 183.8	068018 068020	Done at Congloton Park Gowy at Bridge Traftord	38813632 34483711	NRA - NW NRA - W	145.0 156.0
056008 056007	Usk at.Trallong	29472295 29282255	NRA-WEL	183.8	068020	Gowy at Bridge Traftord	34483711	NRA-NW	156.0
056007 056008	Senni at Pont Hen Hatod Monks Ditch at Llanwern	29282255 33721885	NRA-WEL	19.9 15.4	069001 .	Mersay at Itram Weir	37283936	NRA-NW	679.0
056010	Usk at Trostrey Weir	33582042	NRA WEL	927.2	069002	Irwell at Adelphi Weir	39243987	NRA-NW	559.4
056011	Sirhowy al Wattrsvilt	32061912	NRA.WEL	76.1	069003	lrk at Scotland Weir	38413992	NRA-NW	72.5
056012	Grwyme at Milibrook	32412176	NRA WEL	82.2	069004	Etherow et Botroms Reservo	40233971	NRA-NW	78.2
056013	Yecir at Pontaryscir	30032304	NRA-WEL	${ }^{62.8}$	069005	Giaze Brook at Litrle Wookden Hell	3685 3939	NRA.NW	152.0
056014	Usk at Usk Reservoir	28402290	NRA-wEL	17.0	069006	Bollin at Ounham Massey	37273875	NRA-NW	256.0
056015	Otway Brook at Olway inn	33842010	NRA.WEL	105.1	069007	Mersey at Ashton Weir	37723936	NRA-NW	660.0
056016	Caerfanes Cutiall ac Talytont Meservoir	31042206	nfa-wel	32.4	069008	Dean al Stanneylands	38463830	NRA-NW	51.8

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Station number \& River and station name \& Grid raference \& Authorty \& Ares (sa km) \& Station number \& River and station name \& Grid raference \& Authorty \& Area (sq km) \\
\hline 069011 \& Micker Brook at Cheadie \& 38553889 \& nRa-NW \& 67.3 \& 080005 \& Dargall Lane at Loch Diee \& 24515787 \& SRPE \& 2.1 \\
\hline 069012 \& Bollin at Wilmslow \& 38503815 \& NRA.NW \& 72.5 \& 08000 \& Bleckwater at Loch Dees \& 24785797 \& SR \& 5.6 \\
\hline 069013 \& Sindertand Ercok at Paringron \& 37263905 \& NRA-NW \& 44.8 \& \& \& \& \& \\
\hline 069015 \& Etherow at Compasit \& 39623908 \& NRA.NW \& 158.0 \& 081001 \& Ponwtim Burn at Pernwhirn Reservoir \& 21285694 \& OGRW \& 18.2 \\
\hline 069017 \& Goyr at Marpie Eridpe \& 39643898 \& NRA-NW \& 183.0 \& 081002 \& Crees at Newlon Stewa \& 24125653 \& \& 68.0 \\
\hline 089018 \& Newton Brook al Newton Le Willowa \& 35853933 \& nfa-nW \& 32.8 \& 081003 \& Luce at Airy hermming \& 21805599 \& SRP8 \& 171.0 \\
\hline 069019 \& Worsloy Prook at Eecles \& 37533980 \& NRA.NW \& 24.9 \& 081004 \& Elistroch at Low Malzie \& 23825545 \& SRPB \& 334.0 \\
\hline 069020 \& Mectiock al London Rosd \& 38493975 \& NRA-NW \& 57.5 \& 081005 \& Pitanton Burn al Bortowz \& . 21075564 \& \& 2 \\
\hline 069023 \& Roch at Blacktord Enidge \& 38074077 \& NRA-NW \& 186.0 \& 081006 \& Water of Minnoch al Minnoch Bridge \& \(\begin{array}{r}23635748 \\ \hline 2592559\end{array}\) \& SRPP \& 141.0 \\
\hline 069024 \& Croal at Fernworth Weir \& 37434068 \& NRA.NW \& 145.0 \& 7 \& Water of Fibet al R \& 25925590 \& \& \\
\hline 069027 \& Tame si Portwood \& 39063918 \& NRA.NW \& 150.0 \& \& \& \& \& \\
\hline 069030 \& Sankey Brook at Causay Bridga \& 35883922 \& NRA-NW \& 154.0 \& 082001 \& Giivan at Robatona \& 22175997 \& CRPB \& 245.5 \\
\hline 069031 \& Ditton Brook at Greens Bridge \& 34573865 \& NRA-NW \& 47.9 \& 082002 \& Doon at Auchendrane \& 23388160 \& \({ }_{\text {CRPB }}\) \& 323.8 \\
\hline 069032 \& All at Kirkby \& 33923983 \& NRA-NW \& 90.1 \& 082003 \& Stinchar at Bathowiart \& 21086832 \& 8 \& 341.0 \\
\hline 069034 \& Musbury Brook at Helmencore \& 37754213 \& NHA ANW \& 3.1 \& \& \& \& \& \\
\hline 069035 \& Irweil at Eury Bridga \& 37974109 \& NRA.NW \& 155.0 \& 083001 \& Cast Water at Knockendon \(\begin{aligned} \& \text { a } \\ \& \text { a }\end{aligned}\) \& 22458514 \& SRPCW \& 8 \\
\hline 069037 \& Mersey at Westy \& 36173877 \& NRA-NW \& 2030.0 \& 083002 \& Garmock at Dotry \& 22936488 \& CRP压 \& 88.8
166.3 \\
\hline 089040 \& trwell at Slubbins \& 37934188 \& NRA-NW \& 105.0 \& 083003 \& Avt at Catrine \& 2525 6259 \& \({ }_{\text {chrs }}\) \& 166.3
181.0 \\
\hline 069041 \& Tome at Eroomstair Pridge \& 39383953 \& NRA \(\cdot\) NW \& 113.0 \& \[
\begin{aligned}
\& 083004 \\
\& 083005
\end{aligned}
\] \& Lugar at Langhorn Irvine at Shewalton \& \[
\begin{aligned}
\& 25086217 \\
\& 23456369
\end{aligned}
\] \& \begin{tabular}{l}
CRPB \\
CRPB
\end{tabular} \& 181.0
380.7 \\
\hline 070002 \& Douglos at Wanes Blades Bridge \& 34764128 \& NRA.NW \& 198.0 \& 083008 \& Ayr ot Mainholm \& 23616218 \& CRP限 \& 574.0 \\
\hline 070003 \& Dougtas at Central Park Wigan \& 35874061 \& NRA-NW \& 55.3 \& 083007 \& Lugton Water at Eglinton \& 23156420 \& CRP8 \& 54.6 \\
\hline 070004 \& Yarrow at Croston Min \& 34984180 \& NRA.NW \& 74.4 \& 083008 \& Annick Water at Dregho \& 23526384 \& \({ }^{\text {CRPE }}\) \& 95.3

83.8

\hline 070005 \& Lottock at Littewood Bridge \& 34974197 \& NAA.NW \& 56.0 \& $$
\begin{aligned}
& 083009 \\
& 083010
\end{aligned}
$$ \& Garnock at Kilwinning Invine at Newmins \& \[

$$
\begin{array}{r}
23076424 \\
25326372
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& \text { CRPB } \\
& \text { CRPB }
\end{aligned}
$$
\] \& 183.8

72.8

\hline 071001 \& Risble at Samiesbury \& 35894304 \& NRA.NW \& 1145.0 \& \& \& \& \&

\hline 071003 \& Croosdate at Croosdere furme \& 37064546 \& NWW \& 10.4 \& 084001 \& Kawin at Killermont \& 25586705
2309638 \& ${ }_{\text {CRPG }}^{\text {CRCW }}$ \& 335.1

\hline 071003 \& Caber ot Whetley Weir \& 37294360 \& NAA.NW \& 316.0 \& 004002 \& Calder at Muirshiol \& 23096838 \& SACW \& 12.4

\hline 071005 \& Bottoms Beck al Botioms Beck lume \& 37454565 \& NWW \& 10.6 \& 084003 \& Clyde at Haretbank \& 28356452 \& Crpa \& 74.9

\hline 071006 \& Ribble ot Henthom \& 37224392 \& NRA-NW \& 456.0 \& 084004 \& Cyye ar Silas \& 29278424 \& ${ }_{\text {CRP }}$ \& 74.8

\hline 071007 \& Ribbie at Hodderf \& 37094379 \& NRA.NW \& 720.0 \& 084005 \& Clyde et Blairston \& 27046579 \& CRPP \& 704.2
63.7

\hline 071008 \& Hooder at Hodder Place \& 37044399 \& NRA-NW \& 261.0 \& 084006 \& Kehin of Bricgend \& 26728749 \& CRP8 \& 63.7
93

\hline 071009 \& Rrible at Jumbler Rock \& 37024376 \& NRA.NW \& 1053.0 \& 084007 \& South Calder Wir as Forgawood \& 27516585
26796804 \& ${ }_{\text {CRPP }}$ \& 93,
51.3

\hline 071010 \& Pendia Watar at Earden Lone \& 38374351 \& NRA.NW \& 108.0 \& 084008 \& Rotten Cabder Wtr at Redlees \& 26796604 \& ${ }^{\text {CRPB }}$ \& 51.3
88.0

\hline 071011 \& Ritble at Amford \& 38394556 \& NRA.NW \& 204.0 \& 084009 \& Nethan al Kirkmuirthill \& 28096429 \& ${ }^{\text {CRPP }}$ \& 68.0
710

\hline 071013 \& Darwen at Ewood Bridge \& 36774262 \& NRA.NW \& 39.5 \& 084011 \& Ginte at Craigend \& 24158864 \& CRP8 \& 71.0
227.2

\hline 071014 \& Dorwen at Eve Bridge \& 35654278 \& NRA-NW \& 128.0 \& $$
\begin{aligned}
& 084012 \\
& 084013
\end{aligned}
$$ \& Wrice Cart Water at Hewkhead

Clyde at Daxdowia \& $$
\begin{aligned}
& 24996829 \\
& 28726816
\end{aligned}
$$ \& CRPE \& ${ }_{1903.1}^{227.2}$

\hline 072001 \& Lune \& 35034647 \& NRA.NW \& 994.6 \& 084014 \& Avon Water at faino \& 27556518 \& CPP \& 285.5

\hline 072002 \& Wrie al St Mxchata \& 34634411 \& NRA-NW \& 275.0 \& 084015 \& Kolvin at Dryfield \& 26388739 \& CRPB \& 235.4

\hline 072004 \& Lune at Caton \& 35294653 \& NRA NW \& 983.0 \& 084018 \& Luggie Water at Condorrat \& 27396725 \& ${ }^{\text {CPPPP }}$ \& . 9

\hline 072005 \& Lune at Kililimpion Now Enidge \& 36224907 \& NRA-NW \& 219.0 \& 084017 \& Etack Cart Water at Mmiken Pork \& 24118820 \& CRP8 \& 103.1

\hline 072008 \& Lune al Kimboy Lonstale \& 36154778 \& NRA AWW \& 507.1 \& 084018 \& Clyde at Tulitiord Mia \& 28916404 \& ${ }_{\text {CRPB }}$ \& 932.6

\hline 072007 \& Brock at U/S AB \& 35124405 \& NRA-NW \& 32.0 \& 084019 \& North Calder Wir at Caldorpork \& 28818825 \& CRPB \& 129.8

\hline 072008 \& Wyre at Gorstang \& 34884447 \& NRA NW \& 114.0 \& 084020 \& Glazert Water at Milton of Compxis \& 28568763 \& CAPP \& 51.9

\hline 072009 \& Wenning at Wernnington Road B \& 36154701 \& NRA NW \& 142.0 \& 084021 \& White Cart Water et Notherico \& 25878597 \& ${ }^{\text {CPPP }}$ \& 91.6

\hline 072011 \& Rawihay ot Brigg Flatts \& 36394911 \& NRA-NW \& 200.0 \& 084022 \& Duneaion at Moidencota \& 29296259 \& CAPP \& .

\hline 072014 \& Conder nt Galgaste \& 34814554 \& NRA NW \& 28.5 \& 084023 \& Bothlin Bum at Auchangeich \& ${ }_{298986877}$ \& ${ }_{\text {CPPP }}$ \& 35.7

\hline 072015 \& Lune at Lumas Brioga \& 36125029 \& NRA-NW \& 141.5 \& 084024 \& North Calder Wtr at hillend \& 28286678 \& CRPB \& 19.9

\hline 072016 \& Wyre al Scorton Weir \& 35014500 \& NRA-NW \& 88.8 \& 084025 \& Luggio Water at Oxpang \& 26868734 \& CRPP \& 87.7

\hline 073001. \& Leven at Nowby Bridge \& 33714863 \& NRA-NW \& 241.0 \& 084027 \& Norts Calder Wir al Calioribenk \& 27656624 \& CRPB \& 60.8

\hline 073002 \& Crake at Low Nibthw \& 32944882 \& nha.nw \& 73.0 \& 084028 \& Mankiond Conal it Woodtrall \& 27658626 \& CRPB \& 60

\hline 073003. \& Kont al Burnezide \& 35074958 \& NRA.NW \& 73.6 \& 084029 \& Cender Water at Candormil \& 27656471 \& CRPB \& 24.5

\hline 073005 \& Kanl al Sedgwick \& 35094874 \& nfa NW \& 209.0 \& O84030 \& White Cart Wester at Overioe \& 25796575 \& CAPE \& 111.8

\hline 073008 \& Cunnay Beck at Eel House Bridge \& 33694940 \& NRA-NW \& 18.7 \& \& \& \& \&

\hline 073008 \& Bots at Beotham \& 34964806 \& NRA.NW \& 131.0 \& 085001 \& Laven at Linnbrana \& 23946803 \& CAPs \& 78.3

\hline 073009 \& Sprint al Sprin! Mill \& 35144961 \& NRA-NW \& 34.6 \& 085002 \& Endrick Water at Gaidrow \& ${ }^{248568686}$ \& ${ }_{\text {CRPP }}$ \& 219.9
80.3

\hline 073010 \& Laven at Nawby Brid \& 33674883 \& NRA NW \& 247.0 \& 085003 \& Fblloch wi Glan Folloch \& 23217197
2366929 \& ${ }_{\text {CRPP }}$ \& 80.3
35.3

\hline 073011 \& Mint at Mrit Bridge \& 35244844 \& NRA-NW \& 65.8 \& 095004 \& Luss Water at Luss \& 23566929 \& CRPB \& 35.3

\hline 073013 \& Rothay at Mullor Bridge House \& 33715042 \& NRA.NW \& 84.0 \& \& \& \& \&

\hline 073014 \& Brathay at Jefty Knotis \& 33605034 \& NRA-NW \& 57.4 \& $$
\begin{aligned}
& 086001 \\
& 086002
\end{aligned}
$$ \& Little Eachaig at Oalintongart Eachaig at Eckford \& \[

$$
\begin{aligned}
& 21436821 \\
& 21406843
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { CRPB } \\
& \text { CRPB }
\end{aligned}
$$
\] \& 30.8

139.9

\hline 074001 \& Ouddon al Duddon Hall \& 31964896 \& NFA-NW \& 85.7 \& \& \& \& \&

\hline 074002 \& \& 31385038 \& nfa.nw \& 44.2 \& 089000 \& Eas Doimh at Eat Drimh \& 22397278
22097265 \& ${ }_{\text {CRPP }}$ \&

\hline 074003 \& Enen at Ennordata Wor \& 30845154 \& NRA-NW \& 44.2 \& 08900 \& Eas AGraill at Succoth \& 22097265 \& CRP8 \& 9.7

\hline 074005 \& Ethen al Braytiones \& 30095061 \& NRA.NW \& 125.5 \& \& \& \& \&

\hline 074006 \& Caidor at Cader Hall \& 30355045 \& NRA-NW \& 44.8 \& 090003 \& Nevis at Claggen \& 1167742 \& HRP \& 76.8

\hline 074007 \& Esk at Cropplo How \& 31314978 \& NRA-NW \& 70.2 \& \& \& \& \&

\hline 074008 \& Duddon ol Uipho \& 32094947 \& NRA-NW \& 47.9 \& 091002 \& Lochy at Camisky \& 21457805 \& HRPB \& 1252.0

\hline 075001 \& St Johna Beck at Thirlmere Renervoir \& 33135195 \& NRA-NW \& 42.1 \& 093001 \& Carron at New Kelso \& 9428 \& HRPE \& 137.8

\hline 075002 \& Dorwent at Camerion \& 30385305 \& NRA.NW \& 663.0 \& \& \& \& \&

\hline 075003 \& Dewwent al Ouse Bridgo \& 31995321 \& NRA-NW \& 363.0 \& 094001 \& Ewe at Poolewe \& 18598803 \& HRPG \& 441.

\hline 075004 \& Cocker at Southwaite Bricge \& 31315281 \& NRA.NW \& 116.6 \& \& \& \& \&

\hline 075005 \& Oerwent tet Porinscala \& 32515239 \& NRA.NW \& 235.0 \& 095001 \& therer at littie Alsynt Broom at Invertroom \& $$
\begin{aligned}
& 21479250 \\
& 21848842
\end{aligned}
$$ \& HRPB HRPS \& 137.5

141.4

\hline 075006 \& Nowlands Beck at Ereithwaito \& 32405239 \& NRANW \& 33.9 \& 095002 \& Broom at invertriomm \& 21848842 \& \&

\hline 075007 \& Giandaramackin al Threlkeld \& 33235248 \& NRA-NW \& 64.5 \& \& \& \& \&

\hline 075009 \& Grata at Low Ariory \& 32865242 \& \& 145.6
64.0 \& \& Hathadale at holladale
Never at Apigil \& 27139568 \& HRPP \& 477.0

\hline 075018 \& \& 31495214
3096584 \& NRA.NW \& 64.0
96.0 \& 098002
096003 \& \& \& \&

\hline 075017 \& Ellon st Bullgill \& \& NRA-NW \& 96.0 \& $$
\begin{aligned}
& 096003 \\
& 096004
\end{aligned}
$$ \& Strathy at Strathy Bridgo Allnabad at Strathmore \& \[

$$
\begin{aligned}
& 28389652 \\
& 24539429
\end{aligned}
$$
\] \& ${ }_{\text {HRPP }}^{\text {HR }}$ \& 110.8

1050

\hline 07800 \& Howatwater Bock at Burnbenks \& 35085159 \& NRA.NW \& 33.0 \& \& \& \& \&

\hline 076002 \& Eden al Warwick Bridga \& 34705587 \& NRA-NW \& 1366.7 \& $097001^{.}$ \& Caxder Bum at Achavam \& 30859596 \& HRCW \& 24.5

\hline 076003 \& Eamont ot Udiord \& 35785306 \& NRA.NW \& 396.2 \& 097002 \& Thurso at Holkind \& 31319595 \& HRPP \& 412.8

\hline 076004 \& Lowither at Eamont Bridge \& 35275287 \& NRAANW \& 158.5 \& \& \& \& \&

\hline 078005 \& Edeor at Tample Sowerty \& 36055283 \& NRA-NW \& 816.4 \& $101001^{.}$ \& Eastam Yar it Alvertione Milt \& 45770857 \& NRA-S \& 57.5

\hline 078007 \& Eden at Sheopmount \& 33905571 \& NRA.NW \& 2286.5 \& 101002 \& Medira at Upper Shicte \& 45030874 \& NRA.S \& 29.8

\hline 076008 \& 1 rtring at Greentoime \& 34865581 \& NRA-NW \& 334.6 \& 101003 \& Lukety Erook at Newpors \& 44910886 \& NRAS \& 18.2

\hline 076009 \& Caldew at Holm Hill \& 33785469 \& NRA-NW \& 147.2 \& 101004 \& Eastem Yar at Burnt House \& 45830853
45310835 \& NRAS \& 59.6
22.5

\hline 076010 \& Patleril al Harraby Groen \& 34125545 \& NRA-NW \& 160.0 \& 101005 \& Eastern Yor at Budibridge \& \& NRASAS \& ${ }_{15.8}^{22.6}$

\hline 076011
076014 \& Coas Burn at Coaslurn
Eden at Kirkby Stephen \& 36935777
37735097 \& IH ${ }_{\text {NFA.NW }}$ \& 1.5
69.4 \& 101006
101007 \& Wroxat Stream at Weightahole
Scotchalls Brook at Burnt House \& 45383839
45830852 \& NRAS \& 8.2

\hline \& Eamont at Pooley Pridge \& 34725249 \& NBA.NW \& 145.0 \& \& \& \& \&

\hline \& \& \& \& \& 102001 \& Cefni at Bodftordd \& 24293770 \& NRA-WEL \& ,

\hline 077001 \& Esak at Netherby \& 33905718 \& NRA.NW \& 841.7 \& \& \& \& \&

\hline 077002 \& Eak at Cemonbie \& 33975751 \& SAPB \& 495.0 \& 201002 \& Fairy Water at Dudgeon Bridge \& 24063758 \& DOEN \& 161.2

\hline 077003 \& Lidder Witer al Rowanburntool \& 34155759 \& SAP8 \& 319.0 \& 201005 \& Camowan at Cannowen Terrace \& 24803730 \& DOEN \& 274.6

\hline 077004 \& Kirrie Witer at Moskknowe \& 32855693 \& SRPB \& 72.0 \& 201008 \& Drumragh at Compsio Eridge \& 24583722 \& Doen \&

\hline 077005 \& Lyne of Clift Eridge \& 34125662 \& NRA.NW \& 191.0 \& $$
\begin{aligned}
& 201007 \\
& 201008
\end{aligned}
$$ \& Burn Dennat ot Burndennet Aridge \& 23724047

22653842 \& DOEN \& 145.3
337.3

\hline 078001 \& Annan at St Mungos Menze \& 31255755 \& SAPP \& 730.3 \& 201009 \& Owenkitaw at Crosh \& 24183866 \& DOEN \& 44.4

\hline 078002 \& As at Elatiesthelda \& 30685852 \& SRPB \& 143.2 \& 201010 \& Moume at Drumnabuoy House \& 23473960 \& doen \& 1844.5

\hline 078003 \& Annan at Ardeckirk \& 31915704 \& SRPB \& 925.0 \& \& \& \& \&

\hline 078004 \& Kinnol Water al fedhall \& 30775888 \& SRPB \& 76.1 \& 202001 \& Roe at Ardnargle \& 26744247 \& DOEN \& ${ }^{365.6}$

\hline 078005 \& Kinnel Water al Bridgemuif \& 30995845 \& SRPP \& 229.0 \& 202002 \& Foughan at Orumahoe \& 24644151 \& OOEN \& 272.3

\hline 078008 \& Annan at Woodtcot \& 30996010 \& SAPB \& 217.0 \& \& \& \& \&

\hline 079001 \& Atton Water at Atton Reservoir \& 26316050 \& SRPG \& . 5 \& 203011. \& Main at Dromons \& 30524086 \& Doen \& 229.8

\hline 079002 \& Nuth al Friers Carso \& 29235851 \& SRPB \& 799.0 \& 203012 \& Baliinderry at Eatincoerry Eridgo \& 29263799 \& Doen \& 419.5

\hline 079003 \& Nath at Mall eridge \& 26846129 \& SRPB \& 155.0 \& 203013 \& Main at Andraid \& 30923973 \& DOEN \& 646.8

\hline 079004 \& Scar woiter at Capenoch \& 28455940 \& SAPP \& 142.0 \& 203017 \& Upper Bemm at Dynos Eriogo \& 30433509 \& Doen \& 335.6

\hline 079005 \& Civden Woter at Fidderata ford \& 29285795 \& SAPP \& 238.0 \& 203018 \& Six Mise Water at Antrim \& 31463887 \& ${ }^{\text {DOEN }}$ \& 277.3

\hline 079008 \& Nuth at Drumlantig \& 28585994 \& SRPQ \& 471.0 \& 203019 \& Clavicy at Glonone Bridgo \& 29624037 \& DOEN \& 130.1

\hline \& \& \& \& \& 203020 \& Moyola at Moyola Now Bridga \& 29553955 \& Doen \&

\hline 080001 080002 \& Uri nt Dolbsatie \& $$
\begin{aligned}
& 28225810 \\
& 27335641
\end{aligned}
$$ \& SRPE \& 199.0

809.0 \& 203021
203023 \& Kells Wotar at Curya Bridge \& 31083971
2858 \& DOEN \& 127.0
59.9

\hline 080003 \& Whita Laggan Burn at Loch Deg \& 24685781 \& SRPB \& 5.7 \& 203024 \& Cusher at Gamblos Bridge \& 30483471 \& DOEN \& 176.7

\hline 080004 \& Greonburn at Loch Doen \& 24815791 \& SRPE \& 2.6 \& 203025 \& Collan at Callan Now Bridgo \& 28933524 \& DOEN \& 164.1

\hline
\end{tabular}

Station number	Alver and station name	Grid reference	Auth. ority	Ares (sa km)	Station number	River and station name	Grid reference	Auth. orty	Area (5q km)
203028	Glenavy at Glenavy	31493725	doen	44.8	205003	Lagan at Dunnwurry	32993679	DOEN	444.7
203027	Braid at Balloe	30974014	DOEN	177.2	205004	Lagan at Newforge	33293693	DOEN	490.4
203028	Agiver at White Hill	28834193	DOEN	98.9	205005	Ravernet at Ravermet	32673613	DOEN	69.5
203029	Six Milo Weter at Ballyclare	32823902	DOEN	58.4	205006 *	Lagan al Blaris	32593628	DOEN	315.9
203033	Upper Bemn at Benntield	32333341	DOEN	100.9	205008	Lagan at Drummiler	32363525	DOEN	85.2
203038	Rocky at focky Mountain	32433265	DOEN	6.7	205010	Lagan at Eanoge	31233540	DOEN	189.8
203040	Lower Bann at Movanagher	29314154	DOEN	5209.8	205020	Enier at Comber	34593697	DOEN	59.8
203042	Crumlin at Cidercourt Bridge	31353765	doen			Enor an Combr	34593697	DOEN	5.8
203092	Main at Ounminning Lower	30514111	DOEN	211.7	206001^{*}	Clanrye at Mount Mill Bridge	30863309	doen	132.7
203093	Msin at Shane's Viaduct	30863896	DOEN	704.2	206002	Jerretspssa at Jerretspass	30643332	DOEN	41.6
204001	Bush at Soneirl	29424362	DOEN	306.1	$\begin{aligned} & 236005 \\ & 236007 \end{aligned}$	Colebrooke at Baliindarragh Bridge Silleas at Drumratiny Bridge	$\begin{aligned} & 23313359 \\ & 22053400 \end{aligned}$	$\begin{aligned} & \text { DOEN } \\ & \text { DOEN } \end{aligned}$	$\begin{aligned} & 309.1 \\ & 167.6 \end{aligned}$

\uparrow trish Grid references are italicised.

- - closed, or no data for post-1988 have been received.

Refer to pages 172 and 173 for key to measuring authorities.

GROUNDWATER LEVEL DATA

Background

Groundwater may be obtained from almost any stratum in the sedimentary succession in the British Isles, as well as from igneous and metamorphic rocks. In many, such as clays and shales, volcanics and metamorphics, the permeable zone may well be limited to the depth to which weathering may reach, this is unlikely to be more than some 50 metres beneath the ground surface. In those strata which are not generally recognised to be aquifers, well-yields tend to be small (of the order of only a few cubic metres per day), uncertain as a continuous source (tending to fail in prolonged droughts), with an indifferent groundwater quality, and with the sources vulnerable to pollution.

The more generally recognised aquifers are listed in Table 13, with the Chalk and Upper Greensand, the Lincolnshire Limestone and the Permo-Triassic sandstones as the most important from the viewpoint of public supply. From such aquifers as these, yields of 3000 to 4500 cubic metres a day are not unusual. For the next category, including the Lower Greensand and the Magnesian Limestone, yields to individual wells of 1500 to 3000 cubic metres a day can generally be expected. In the other aquifers, whilst occasional sources sufficient for large supplies may be developed, they tend to be important only locally. The outcrop areas of the major aquifers are shown in Figure 13; throughout Wales, Scotland and Northern Ireland, aquifers are less extensively developed and tend to be only of relatively local importance.

The groundwater resources of an aquifer are naturally replenished from rainfall. During the summer months, when the potential evapotranspiration is high and soil moisture deficits are appreciable, little infiltration takes place. There is a notable exception to this rule in the Eden valley of Cumbria where, enclosed between the massifs of Cross Fell and the Lake District, sufficiently heavy and continuous summer rainfall occurs to maintain infiltration through part at least of most summers. The normal recharge of an aquifer takes place during the winter months when the potential evapotranspiration is low and soil moisture deficits are negligible.

Only the largest artificial reservoirs in the United Kingdom have sufficient capacity to support demands through the driest summers, assuming that they were full at the start of the summer, without some continuous contributions from river intakes. Prolonged dry spells lead, in many rivers, to reduced flow, particularly where the natural groundwater contribution (baseflow) is limited. Consequently, while surface water droughts may be in part due to the failure of runoff from winter rainfall to fill the reservoirs, they are more frequently caused by a decrease in the summer flows of streams and rivers. Surface water droughts do, however, lead to increased consumption of groundwater (where avail-
able). By way of contrast, a groundwater drought is caused by a lack of winter rainfall. Potentially, the most serious droughts occur when, as in 1975/76, a dry summer succeeds a notably dry winter, or as in 1988-91 in eastern England, recharge is significantly below average over two or three successive winters.

The Observation Borehole Network

Groundwater level observation wells (in this context, a well includes both shafts - constructed by hand digging - and boreholes - constructed by machinery) are generally used for one of two purposes: to monitor levels regionally and thus to estimate groundwater resource fluctuations, or to monitor the effects locally of groundwater abstractions. The number of observation wells required in different areas varies widely. Over the last two decades, a target density was sought of one well to 25 to $35 \mathrm{~km}^{2}$. During the last few years, it has become apparent in some districts that satisfactory information can be obtained with fewer wells, while in others the densities had to be substantially increased.

The observation well network was reviewed in 1981 by the British Geological Survey (then the Institute of Geological Sciences) with the aim of selecting 200 to 300 sites from the existing national archive, to be used for periodical assessments of the national groundwater situation. The selection was based upon the hydrogeological units identified in an investigation of the groundwater resources of the United Kingdom'; one site was chosen for each aquifer present within each unit. For Scotland and for Northern Ireland this was not possible due to the very limited number of observation wells available. In England and Wales, the total number finally selected was 175^{2}.

Details of the wells in this national network are given in the Register of Selected Groundwater Observation Wells (see page 156).

Measurement and Recording of Groundwater Levels

The majority of observation wells are measured manually either weekly or monthly. The usual instrument is an electric probe suspended upon a graduated cable or tape, contact being made by the water to complete a circuit which gives either an audible or visual signal at the surface. Measurements are normally made to the nearest 10 millimetres, although instruments may be accurate to 1 mm .

Some observation wells are equipped with continuous water level recorders, almost invariably activated by a float on the water surface. These recorders may be driven by clockwork or by electric battery power, and are capable of running unattended for periods of one to six months. Levels are

TABLE 13 GENERALISED LIST OF AQUIFERS IN THE UNITED KINGDOM

Figure 13. Principal aquifers and representative borehole locations
usually recorded on paper charts or on punched paper tapes, but a number of solid state loggers have been deployed in recent years. At a relatively small but increasing number of observation boreholes provision is made for the routine transmission usually by telephone line - of groundwater levels to local, or regional, centres.

Pressure transducers have also been considered for water level measurement. The design and performance of pressure transducers has improved in recent years and they are being used more frequently but are still not yet in general use.

Observation Well Hydrographs 1988-91

Well hydrographs for 32 observation sites are shown in Figure 14. For each borehole the 1988 to 1991 groundwater hydrographs are illustrated, as a blue trace, together with the average and extreme monthly levels for the pre-1988. record (provided sufficient historical data are available). A break in the well hydrograph trace indicates an interruption in the record of greater than eight weeks. Four-year plots have been used both to illustrate the dramatic changes in groundwater levels over the recent past and because the volume of groundwater stored in aquifers can reflect not only the infiltration taking place during the winter months of $1990 / 91$, but also that occurring in previous years. When comparing the hydrographs for a number of sites, account should be taken of the differing scales used to illustrate the water-table fluctuations.

Register of Selected Groundwater Observation Wells

Scope

The listed sites were selected so as to give a reasonably representative cover for aquifers through-out England and Wales. The wells are grouped according to the aquifer to which the water level variations in the wells are attributed. A generalised list of aquifers is given on page 148 , while the aquifers are tabulated in stratigraphical order, most of the local names for individual strata are omitted and the intervening aquicludes are not shown.

Network Changes

Since the original selection of boreholes for incorporation in the national network a number of changes have been made to the list of selected wells. At some locations, observations could no longer be continued, and new sites have been added from time to time. In the Coal Measures and the Millstone Grit, certain
sites have not been monitored for some years due to the presence of methane in the wells; these sites have been discarded until either they have been made safe or have been replaced. Details of the wells in the national network are given in the Register of Selected Groundwater Observation Wells (see page 156).

The following sites have been added to the Register for 1991:

Chalk and Upper Greensand

SE95/6 Wetwang
Permo-Triassic sandstones

SE61/11 Sykehouse

The following sites have been removed from the Register for 1991:

Chalk and Upper Greensand

SE93/4 Dale Plantation
TM17/1 Old Parsonage House

Permo-Triassic sandstones

SE55/4 Clifton Hospital
SE64/1 Wheldrake Station
ST12/48 Milverton Bypass

The Register

The six columns of the Register are:

Well Number

The well numbering system is based on the National Grid. Each 100 kilometre square is designated by prefix characters, e.g. SE, and is divided into 100 squares of 10 kilometre sides designated by numbers 00 (in the south-west corner to 99 (in the north-east corner). Thus, the site SE93/4, is located in the 10 kilometre square SE93, while the number after the solidus denotes that the site is the fourth accessed in this square in the National Well Record collection. A suffix such as A, B, etc., defines the particular well when there are several at the same site. For Northern Ireland, which is on the Irish Grid, the first of the prefix characters is always ' I '.

Two asterisks following the well number indicates a well or borehole for which hydrographs are shown on pages 152 to 155 . The location of the index wells, and the outcrop areas of the principal aquifers, are shown on Figure 13.

Grid Reference

The six or eight figure references given in the Register relate to the 100 kilometre National (or Irish) Grid square designated by the preceding two figure code; the corresponding two-letter code appears as the prefix characters in the Well Number. The Irish Grid References are italicised.

Site

The name by which the well or borehole is normally referenced. The location of all the sites listed in the Register are shown on Figure 13.

Measuring Authority

An abbreviation referencing the organisation responsible for groundwater level measurement. A full list of codes, together with the corresponding names and addresses appears on pages 172 and 173.

Records Commence

The first year for which records are held on the Groundwater Level Archive.

Indicated \% Annual Recharge

The difference between the level measured at the end of the summer recession of groundwater levels and that measured at the beginning of the summer recession of the following year reflects the amount of recharge received in that period. This method, detailed in the Hydrometric Register and Statistics 1981-5 volume, is most suited to circumstances when a single peak is readily identifiable in each recharge season. Where recharge follows an uneven pattern resulting in poorly defined or multiple peaks, the percentage of the mean annual recharge is often unrepresentative. Consequently, the original method has been modified to produce more realistic values of recharge and to allow more accurate comparison between sites. First, the recharge period has been arbitrarily defined as the first day of August to the end of the followingJuly. Next, the water level at each site was estimated, by extrapolation
where necessary, for the last day of each month. Finally; all the rises in successive months were summed over each recharge period. The use of end-ofmonth levels was dictated to a large extent by the existence of end-of-month data alone for the longest pre-1991 records. However, where some sites are measured at close time intervals (weekly or daily), the summed cumulative rises give a significant larger total than the rise determined by end-of-monthly levels alone. To compare sites with differing intervals between measurements, it is thus necessary to resort to a common base.

The summed rise for each year is called the 'annual fluctuation', and the mean of the annual fluctuations over the period of record is termed the 'mean annual recharge' (MAR). This also assumes that the natural discharge (via, for instance, springs and seepages) is constant; while this is not the case in view of the large differences of head that are recorded in some observation wells, there is insufficient information currently available to permit corrective factors to be detemined. It is considered that for most wells the errors caused by this assumption will be small.

The annual infiltration is then expressed as a percentage of the MAR and thus represents the percentage of the mean annual recharge received for that year. It is this figure that appears in the last column of the Register. Exceptionally low percentage recharge values are conventionally presented as ' <10 '. Where data for the year are inadequate for the purpose of calculating the annual percentage recharge, no value is given.

References

Monkhouse, R.A. and Richards, H.J. 1983. Groundwater resources of the United Kingdom. Commission of the European Communities, pub. Th. Schaeffer Druckerei GmbH, Hannover, 252 pages.
2. Monkhouse, R.A. and Murti, P.K. 1981. The rationalisation of groundwater observation well networks in England and Wales. Institute of Geological Sciences, Report No. WD/81/1, 18 pages.

Figure 14. Hydrographs of groundwater level fluctuations 1988-91

Figure 14-(continued)

Skirwith

Figure 14-(continued)

Figure 14-(continued)

Well Number	Grid Reference	Site	Measuring Authority	Records Commence	Indicated \% Annual Recharge 1990/91
Aquifer: Superficial Deposits					
IJ28/1	22488620	Dunadry	GSNI	1985	73
SO44/4	46834253	Stretton Sugwas	NRA-WEL	1973	43
Aquifer: Chalk and Upper Greensand					
ID30/1**	36630310	Killyglen	GSNI	1985	93
SE94/5**	96514530	Dalton Holme	NRA-Y	1889	138
SE95/6**	95785939	Wetwang	NRA-Y	1971	106
SE97/31	93457079	Green Lane	NRA-Y	1971	132
SP90/26	94700875	Champneys	NRA-T	1962	31
SP91/59	93801570	Pitstone Green Farm	NRA-A	1970	---
ST30/7**	37630667	Lime Kiln Way	NRA-SW	1969	39
SU01/5B**	01601960	West Woodyates Manor	NRA-W	1942	124
SU17/57**	16557174	Rockley	NRA-T	1933	66.
SU32/3	38172743	Bailey's Down Farm	NRA-S	1964	59
SU35/14	33155645	Woodside	NRA-S	1963	62
SU51/10	58751655	Hill Place Farm	NRA-S	1965	148
SU53/94	55863498	Abbotstone	NRA-S	1976	106
SU57/159	56287530	Calversleys Farm	NRA-T	1974	19
SU61/32	65781775	Chidden Farm	NRA-S	1958	85
SU61/46	68901532	Hinton Manor	NRS-S	1953	48
SU64/28	63604049	Lower Wield Farm	NRA-S	1962	123
SU68/49	64428525	Well Place Farm	NRA-T	1976	---
SU71/23**	77551490	Compton House	NRA-S	1894	79
SU73/8	70483491	Faringdon Station	NRA-T	1966	72
SU76/46	73676251	Riseley Mill	NRA-T	1975	---
SU78/45A	74198924	Stonor Park	NRA-T	1961	27
SU81/1	83561440	Chilgrove House	NRA-S	1836	111
SU87/1	83367885	Folly Cottage, Coldharbour	NRA-T	1950	68
SU89/7	81039417	Piddington	NRA-T	1966	46
SY68/34**	66158805	Ashton Farm	NRA-W	1974	145
TA06/16	04906120	Nafferton	NRA-Y	1964	150
TA07/28	09407740	Hunmanby Hall	NRA-Y	1976	171
TA10/40**	13710888	Little Brocklesby	NRA-A	1926	101
TA21/14	26701890	Church Farm	NRA-Y	1971	62
TF72/11	77102330	Off Farm	NRA-A	1971	49
TF80/33	87300526	Houghton Common	NRA-A	1971	42
TF81/2**	81381960	Washpit Farm	NRA-A	1950	25
TF83/1	85783606	South Creake School	NRA-A	1952	75
TF92/5	98692183	Tower Hills P.S.	NRA-A	1974	86
TG00/92	04400020	High Elm Farm, Deopham	NRA-A	1971	39
TG03/25B	0382.3583	The Hall, Brinton	NRA-A	1952	---
TG11/5	16911101	The Spinney, Costessey	NRA-A	1952	69
TG12/7	11262722	Heydon Pumping Station	NRA-A	1974	55
TG21/9	24001657	Frettenham Depot	NRA-A	1952	82
TG21/10	26991140	Grange Farm	NRA-A	1952	12
TG23/21	29323101	Melbourne House	NRA-A	1974	129
TG31/20	33651606	Woodbastwick Hall	NRA-A	1974	131
TG32/16	37002682	Brumstead Hall	NRA-A	1978	48
TL11/4	15601555	Mackerye End House	NRA-T	1963	93
TL11/9**	16921965	The Holt	NRA-T	1964	16
TL13/24	12003026	West Hitchin	NRA-A	1970	101
TL22/10	29782433	Box Hall	NRA-T	1964	150
TL33/4**	33303720	Therfield Rectory	NRA-T	1883	<10
TL42/6	45362676	Hixham Hail	NRA-T	1964	<10
TL42/8	46692955	Berden Hall	NRA-T	1964	47
TL44/12**	45224182	Redlands Hall	NRA-A	1963	35
TL55/109	59255605	Lower Farm	NRA-A	1983	21
TL72/54	79822516	Rectory Road	NRA-A	1968	101
TL84/6	84654106	Smeetham Cottages, Bulmer	NRA-A	1963	30
TL86/110	88506470	Cattishall Farm	NRA-A	1969	58

Well Number	Grid Reference	Site	Measuring Authority	Records Commence	Indicated \% Annual Recharge 1990/91
TL89/37	81319001	Grimes Graves	NRA-A	1971	50
TL92/1	96572562	Lexden Pumping Station	NRA-A	1961	---
TM15/112	12015618	Dial Farm	NRA-A	1968	84
TM26/46**	24616109	Fairfields	NRA-A	1974	26
TM26/95	27866397	Strawberry Hill	NRA-A	1974	---
TQ01/133	08501170	Chantry Post, Sullington	NRA-S	1977	76
TQ21/11	28501289	Old Rectory, Pyecombe	NRA-S	1958	87
TQ28/119B	29968051	Trafalgar Square	NRA-T	1901	---
TQ31/50	32201180	North Bottom	NRA-S	1979	61
TQ35/5**	33635924	Rose \& Crown	NRA-T	1974	83
TQ38/9	35098536	Hackney Public Baths	NRA-T	1953	---
TQ50/7	55920380	Old Rectory, Folkington	NRA-S	1965	108
TQ56/19	56486124	West Kingsdown	NRA-T	1961	---
TQ57/118	58807943	Thurrock A13	NRA-A	1979	80
TQ58/2B	56228408	Bush Pit Farm	NRA-T	1967	86
TQ86/44	85956092	Little Pett Farm	NRA-S	1982	40
TQ99/11	94709710	Burnham-on-Crouch	NRA-A	1975	56
TR14/9**	12254690	Little Bucket Farm	NRA-S	1971	78
TR14/50	12654167	Glebe Cottage	NRA-S	1970	<10
TR24/26	27874003	Church House	NRA-S	1971	38
TR35/49	33305090	Cross Manor Cottages	NRA-S	1971	---
TR36/62	32086634	Alland Grange	NRA-S	1969	104
TV59/7C**	52909920	Westdean 3	NRA-S	1940	63
Aquifer : Lower Greensand					
SU82/57	88882505	Madam's Farm	NRA-S	1984	59
SU84/8A	87164087	Tilford Pumping Station	NRA-T	1971	72
TL45/19	41105204	River Farm	NRA-A	1973	130
TQ41/82	43701320	Lower Barn Cottages	NRA-S	1975	113
TR13/21	11323881	Ashley House	NRA-S	1972	147
TR23/32	20753650	Morehall Depot	NRA-S	1972	61
Aquifer : Hastings Beds					
TQ22/1	23482770	The Bungalow	NRA-S	1964	188
TQ42/80A	47252990	Kingstanding	NRA-S	1979	160
TQ61/44	66581803	Dallington Herrings	NRA-S	1964	127
TQ62/99	61992282	Whiteoaks	NRA-S	1978	72
TQ71/123	79691659	Red House	NRA-S	1974	129
Aquifer : Upper Jurassic					
SE68/16	68908590	Kirkbymoorside	NRA-Y	1975	95
SE77/76	76907300	Broughton	NRA-Y	1975	99
SE98/8	99108540	Seavegate Farm	NRA-Y	1971	136
SU49/40B	41179307	East Hanney	NRA-T	1978	64
Aquifer : Middle Jurassic					
SP00/62**	05950190	Ampney Crucis	NRA-T	1958	131
SP20/113	27210634	Alvescot Road	NRA-T	1983	167
ST51/57	59311691	Over Compton	NRA-W	1971	77
ST88/62A	82758743	Didmarton 1	NRA-W	1977	122

Aquifer : Lincolnshire Limestone					
SK97/25	98007817	Grange de Lings	NRA-A	1975	67
TF03/37**	08853034	New Red Lion	NRA-A	1964	111
TF04/14	04294273	Silk Willoughby	NRA-A	1972	119

Aquifer : Permo-Triassic sandstones

IJ26/1**	29076943	Dunmurry	GSNI	1985	72
NX97/1**	96677432	Redbank	SRPB	1981	86
NY00/328**	05110247	Brownbank Layby	NRA-NW	1974	137
NY45/16	49475667	Corby Hill	NRA-NW	1977	100

Well Number	Grid Reference	Site	Measuring Authority	Records Commence	Indicated \% Annual Recharge 1990/91
NY63/2**	61303250	Skirwith	NRA-NW	1978	161
NZ41/34	48611835	Northern Dairies	NRA-N	1974	67
SD27/8	21727171	Furness Abbey	NRA-NW	. 1972	128
SD41/32**	44001164	Yew Tree Farm	NRA-NW	1973	181
SD44/15	43964928	Moss Edge Farm	NRA-NW	1961	137
SE36/47	39456575	Kelly's Cafe	NRA-Y	1977	79
SE39/20B	30049244	Scruton Village	NRA-Y	1969	36
SE45/3	44705580	Cattal Maltings	NRA-Y	1969	122
SE52/4	54732363	Southfield Lane	NRA-Y	1955	---
SE54/32A	55324646	Bilborough	NRA-Y	1984	26
SE60/76**	67840709	Woodhouse Grange	NRA-ST	1980	---
SE61/11**	62701710	Sykehouse	NRA-Y	1971	33
SE72/3B	70472149	Rawcliffe Bridge	NRA-Y	1971	54
SE83/9	80403640	Holme on Spalding Moor	NRA-Y	1972	92
SJ15/15**	13745556	Llanfair D.C.	NRA-WEL	1972	88
SJ33/39	38143831	Eastwick Farm.	NRA-WEL	1974	71
SJ56/45E	50426953	Ashton 4	NRA-NW	1969	109
SJ83/1A	89693474	Stone	NRA-ST	. 1974	41
SJ87/32	89697598	Dale Brow	NRA-NW	1973	21
SJ88/93	86118645	Bruntwood Hall	NRA-NW	1972	63
SK00/41	06700120	Nuttal's Farm	NRA-ST	1974	12
SK10/9**	14400464	Weeford Flats	NRA-ST	1966	18
SK21/111	27311419	Grange Wood	NRA-ST	1967	73
SK24/22	25394431	Burtonshuts Farm	NRA-ST	1972	46
SK56/53	56326440	Peafield Lane	NRA-ST	1969	---
SK67/17	64487257	Morris Dancers	NRA-ST	1969	---
SK68/21	61008374	Crossley Hill	NRA-ST	1969	---
SK73/50	76933228	Woodland Farm	NRA-ST	1980	60
SO71/18	71701970	Stores Cottage	NRA-ST	1973	115
SO87/28	81607970	Hillfields	NRA-ST	1961	---
SX99/37B**	95289872	Bussels 7A	NRA-SW	1971	73
SY09/21A	06669235	Heathlands	NRA-SW	1951	167

Aquifer: Magnesian Limestone

NZ22/22**	28752896	Rushyford NE	NRA-N	1967	---
NZ32/19	35752650	Heley House	NRA-N	1969	103
NZ33/20	33493501	Garmondsway	NRA-N	1974	149
SE28/28	24608520	Bedale	NRA-Y	1972	106
SE35/4	38305830	Castle Farm	NRA-Y	1970	176
SE43/9**	45353964	Peggy Ellerton Farm	NRA-Y	1968	95
SE43/14	46603550	Coldhill Farm 35	NRA-Y	1971	166
SE51/2	52101530	Westfield Farm	NRA-Y	1971	12
SK46/71	48006030	Stanton Hill	NRA-ST	1973	68
SK58/43	52488018	Southards Lane	NRA-ST	1973	---

Aquifer : Coal Measures					
SE23/4	28503414	Trident House	NRA-Y	1971	72
Aquifer : Millstone Grit					
SE02/46	07712528	Thrum Hall			
SE04/7	02954792	Lower Heights Farm	NRA-Y	1977	69
SE24/2B	20674053	Green Lane Dyeworks	NRA-Y	1971	102
SE27/8	21207380	Kirkby Moor Farm	NRA-Y	1971	--7
Aquifer : Carboniferous Limestone	NRA-Y	1971	22		
NT95/21	96955055	Middle Ord			
SE06/1	02416183	Jerry Laithe Farm			
SK15/16**	12925547	Alstonfield	NRA-N	1974	64
SK17/13	17787762	Hucklow South	NRA-Y	1971	96
ST64/33	65604790	Oakhill 1	NRA-ST	1974	66

[^11]
THE NATIONAL GROUNDWATER LEVEL ARCHIVE DATA RETRIEVAL SERVICE

The national Groundwater Level Archive includes water level data for around 170 representative wells and boreholes in the United Kingdom; the average length of record is about 20 years. This archive is supplemented by historical (up to 1974 generally) water level data for approximately 3000 additional monitoring sites.

A suite of retrieval programs has been written in order to facilitate data usage. Retrievals using the options described below are available for all of the sites listed in the Register of Selected Groundwater Observation Wells, although not all the data contained within this archive have been validated.

Five options are available for retrieving data. A description of each option is given overleaf. Options 1 to 4 give details of the well site, the period of record available, and maximum and minimum recorded levels in addition to the output specific to each option. Data may be retrieved for a specific well or for groups of wells by well reference numbers, by area (using National Grid References), by aquifer, by hydrometric area, by measuring authority, or by any combination of these parameters. Data for the observation boreholes in the national network are stored on a database system which allows for a range of user-defined queries to be processed. Users having requirements not catered for in the standard options described below should contact the British Geological Survey to discuss their particular needs.

Cost of Service

To cover the computing and handling costs, a moderate charge will be made depending on the output options selected. Estimates of these charges may be obtained on request; the right to amend or waive charges is reserved.

Requests for Retrieval Options

Requests for retrieval options should include: the name and address to which the output should be directed, the sites, or areas, for which data are required together with the period of record of interest (where appropriate), and the title of the required option. Where possible, a daytime telephone number should be given.

Requests should be addressed to:

The British Geological Survey
Hydrogeology Research Group
Maclean Building
WALLINGFORD
OXFORDSHIRE OX10 8BB

Telephone: (0491) $38800 \quad$ Fax: (0491) 25338

The National Well Record Archive

The British Geological Survey also maintains the National Well Record Archive (NWRA) for England and Wales. Currently this archive includes hydrogeological details and reference information for over 150,000 shafts, boreholes and some springs - predominantly constructed or used for water supply or the monitoring of groundwater levels or quality. The archive is organised into paper files based upon the 10 kilometre squares of the National Grid. Each file includes a register which details the accession number, the depth, the national grid reference and certain other details. This material is an essential component in the hydrogeological enquiry service operated by BGS and the register details are in the process of being transferred to a digital format.

The Archive is located at the Wallingford Office of BGS (address above) and all the non-confidential records are open to inspection by the general public. Those wishing to avail themselves of this facility should contact the BGS Records Section in advance to discuss access procedures and costs.

National Geosciences Information Centre

The NWRA is associated with the National Geosciences Information Service (NGIS), one of a number of computer-based data centres established at NERC Institutes (see page 137). The NGIS is located at the BGS Headquarters, Keyworth, near Nottingham (Telephone: 06077 6111) and provides access to a broad range of geological information (for example, geophysical and hydrogeological logs, core samples and chemical analyses).

LIST OF GROUNDWATER RETRIEVAL OPTIONS

OPTION TITLE

1 Table of groundwater levels

Table of annual maximum and minimum groundwater levels

Table of monthly maximum, minimum and mean groundwater levels

NOTES

All recorded observations of groundwater level in metres above Ordnance Datum, with dates of observation and maximum and minimum levels for each year. Specific years, or ranges of years, may be requested, otherwise the full period of record is given.

Annual maximum and minimum groundwater and minimum groundwater lèvels in metres above Ordnance Datum levels with dates of occurrence. Specific years, or ranges of years, may be requested, otherwise the full period of record is given.

Monthly maximum, minimum and mean groundwater levels in metres above Ordnance Datum, together with the number of years contributing values to the calculation of each monthly mean. A specific period of years may be nominated, otherwise the full period of record is given.

Provides a well hydrograph for a number of groundwater levels of specified years. Castellated annual plots of monthly maximum and mean groundwater levels calculated from a nominated period of years are superimposed upon the hydrograph, provided that the nominated period exceeds 10 years. Tabulations of the monthly maximum, minimum and mean values are also listed, together with the number of years of record used in the calculations, and the number of observations used for each month.

The output comprises the well reference number of the British Geological Survey, the original (Water Data Unit) station number (where applicable), the hydrometric area, the aquifer name and code, the site name and location, the National Grid Reference, the depth of the well, the datum points (from which measurements are made), the altitude of the ground surface, the period of record and the water authority area in which the well or borehole is located.

SURFACE WATER QUALITY DATA

Background

A national archive of water quality data is maintained by Her Majesty's Inspectorate of Pollution (Department of the Environment) to provide information concerning the quality of rivers throughout the United Kingdom and to satisfy certain international obligations including the estimation of riverborne inputs of selected contaminants (e.g. nutrients) to the sea. Data for this archive are collected as part of the Harmonised Monitoring programme which provides for the sampling and analysis of water quality on a national basis.

The Harmonised Monitoring Scheme was established, for England and Wales, in 1974; a similar scheme was instituted for Scotland in July 1975. In Scotland responsibility for the collection and analysis of the samples rests with the seven River Purification Boards; data acquisition is co-ordinated by the Scottish Office Environment Department. In England and Wales responsibility passed, on the 1st September 1989, from the former regional Water Authorities to the newly-created National Rivers Authority.

Measuring authorities send analytical results of routinely collected samples of river water from approximately 220 monitoring stations; sampling frequencies vary substantially but are, typically, in the range 6 to 52 per year. Most of the monitoring stations are located on major rivers at, or near, the tidal limit.

The monitoring programme can embrace a large number - over 80 - of physical and chemical attributes of river water but typically only 25 are measured at any given site. A number of determinands are measured as standard but a larger proportion are monitored only where it is considered necessary to do so.

Currently no data for Northern Ireland are held on the Harmonised Monitoring Archive. Water quality data are, however, routinely collected and archived by the Environmental Protection Division of the Department of the Environment (NI); data for two Northern Ireland monitoring sites are included in this publication.

The measuring authorities maintain major programmes of chemical and biological sampling of rivers for their own purposes. From the 31st July 1985, the former Water Authorities were required, under the Control of Pollution Act, to maintain registers of the results of all samples of water and effluent taken for pollution control purposes together with details of all consented discharges. Following the enactment of the Water Bill 1989 this obligation passed to the National Rivers Authority. These registers are maintained at the regional headquarters of the NRA and are open for inspection by the public - free of charge. Persons wishing to consult the registers are advised to first contact
the individual regional headquarters; a list of addresses is given on pages 172 and 173.

Data Retrieval

A range of retrieval options has been developed by Her Majesty's Inspectorate of Pollution to make available the water quality data held on the Harmonised Monitoring Archive and to provide statistical summaries based on those data. Requests for data, and guidance concerning its availability, should be addressed to:

Department of the Environment
HMIP, Room 504
Romney House
43 Marsham Street
London SW1P 3PY
Telephone: 0712768245

Data listings for monitoring sites in Northern Ireland may be obtained from the Environmental Protection Division of the DOE (NI) - see page 173.

Figure 15. Water quality monitoring station location map

Scope of the Water Quality Data Tabulations

River water quality data are presented for 32 monitoring sites on rivers throughout the United Kingdom. The location of each monitoring site is given on Figure 15 (previous page). For each site 1991, and period of record, data are given for a range of determinands; the determinands featured may differ between monitoring sites reflecting the character of the rivers themselves and differences in the sampling regimes between monitoring stations.

The following notes are provided to assist in the interpretation of particular data items.

Harmonised Monitoring Station Code

A reference number which serves as the primary identifier of the station. For stations on the Harmonised Monitoring Archive, the first two digits refer to the measuring authority, the remainder refer to individual sites within each measuring authority. For the Northern Ireland stations, the Department of the Environment (NI) reference code is given.

Measuring Authority

An abbreviation referencing the organisation responsible for the operation of the monitoring site. See pages 172 and 173 for a full list of the codes together with the corresponding authority names and addresses.

Grid Reference

The initial two-letter and two-figure codes each designate the relevant 100 kilometre National Grid square or Irish Grid square (see page 30); the standard six-figure map reference follows.

Associated Flow Measurement Station

For monitoring sites in Great Britain, the reference number, name, catchment area and grid reference of the gauging station which provides the discharge data stored on the Harmonised Monitoring Archive. At most sites the flow corresponding to the time the quality sample was taken is archived; at other locations the corresponding daily mean flow is utilised. Where the gauging station and water quality monitoring site are not coincident, some method of flow adjustment may have been employed to allow for the differing catchment areas.

For the Northern Ireland monitoring sites, reference details of the co-located gauging stations are given; the flow data for these stations are held on the River Flow Archive at Wallingford.

1991 flow data for all but one of the relevant gauging stations may be found in the River Flow

Data section. The shortness of the flow record for the Fleet Weir gauging station on the River Aire precludes its incorporation in the River Flow Data section; summary river flow data for 1991 are, however, included at the head of the water quality listing.

Determinands

Inadequate or unrepresentative sampling frequencies, or the presence of a substantial number of samples with concentrations recorded at, or below, the limit of detection, will normally result in the omission of a particular determinand.

Notes:

i. Conductivity results are standardised to $20^{\circ} \mathrm{C}$.
ii. The biochemical oxygen demand data normally relate to the inhibited analytical results BOD(atu).
iii. Nitrate concentrations are normally derived by subtracting the nitrite concentration from the reported Total Oxidised Nitrogen (TON) concentration; if the nitrite determination is below the limit of detection, nitrate is recorded as equivalent to TON.

Units

The standard units used to record and report each determinand. The number of significant figures given for each determinand corresponds to the way the data are stored on the Harmonised Monitoring or DOE (NI) Archives and reflects the uncertainty associated with the relevant analytical procedures.

1991 Data

Samples

The number of samples taken for each determinand during 1991. Where a proportion of analytical results were below the limit of detection, the number of samples in this category is given in parentheses. Normally determinands are not featured when the number of samples in the year is less than about nine or when more than half the analytical results are below the limit of detection. Exclusion may also result from a very uneven sampling pattern through the year.

Mean

The average* of all the sample values for each determinand in 1991. Where concentrations below the limit of detection are held on the Harmonised Monitoring Archive, the threshold value itself is used to compute the mean.

Maximum / Date

The maximum determinand value recorded during 1991 together with its date of occurrence. Where the maximum value recurs the date refers to the initial occurrence.

Minimum / Date

The minimum determinand value together with its date of occurrence. Where the minimum value recurs the date refers to the initial occurrence. A ' $<$ ' symbol indicates a value below the limit of detection.

Different limits of detection may apply throughout the year at certain monitoring sites, for further details contact the address given on page 161.

Period of Record Data

For half of the featured sites, the pre-1991 summary statistics are presented for the seventeen-year period beginning in 1974; where individual stations were not incorporated into the Harmonised Monitoring network until after 1974, the appropriate first year of data is given. For certain stations the sampling frequency varies significantly from year to year and data for a few determinands may not extend over the full period of record; in particular the first year of data will normally be incomplete.

Where the pre-1991 data series includes values below the limit of detection, the threshold value has
been used in the computation of the summary statistics.

For a number of the featured monitoring stations, a considerable amount of pre-1974 data, at least for certain determinands, may be stored on local, or regional, archives maintained by the measuring authorities. Also, for the period 1974-90, such archives may hold analytical results for substantially more samples than are represented on the Harmonised Monitoring Archive. Hence full equivalence between statistical summaries derived from national and regional databases cannot be expected for all monitoring sites.

Mean

The average* value of all the sample values for each determinand.

Percentiles

The 5, 50 and 95 percentile values for each determinand based on all the samples taken over the pre-1991 period.

Quarterly Averages

The mean quarterly average* for each of the threemonthly periods: January to March, April to June, July to September and October to December.

[^12]Harmonised monitoring station number : 01001 Measuring authority : NRA-NW NGR: 33 (SJ) 742938

Determinand	Units	1991					
		Samples	Mean	Max.	Data	Min.	Date
Temperature	${ }^{\circ} \mathrm{C}$	49	10.8	20.0	30/07	1.0	12/02
pH	pH units	49	7.3	7.9	05/11	6.9	03/01
Conductivity	$\mu \mathrm{S} / \mathrm{cm}$	49	484	117 ?	12/02	290	03/01
Suspended solids	mg / l	49	21.3	158.0	05/11	7.0	12/03
Dissolved oxygen	$\mathrm{mg} / 10$	49	7.61	11.76	05/02	2.70	24/09
BOD (inhibited)	$\mathrm{mg} / \mathrm{l} 0$	48(1)	4.8	29.0	24/09	1.0	29/10
Ammoniacal nitrogen	mg / N	49	1.552	3.980	12/02	0.240	20/08
Nitrite	mg / N	48	0.298	0.700	10/09	0.060	03/01
Nitrate	mg / N	48	5.43	9.60	04/06	2.75	05/11
Chloride	$\mathrm{mg} / \mathrm{l} \mathrm{Cl}$	48	67.7	790.0	12/02	30.0	03/01
Total alkalinity	$\mathrm{mg} / / \mathrm{CaCO}_{3}$	46	83.2	149.0	24/09	47.0	05/11
Orthophosphate	$\mathrm{mg} / \mathrm{l} \mathbf{P}$	49	1.370	2.420	10/09	0.260	03/01
Silica	$\mathrm{mg} / \mathrm{SiO}{ }_{2}$	49	7.84	17.30	13/08	0.960	14/05
Calcium	$\mathrm{mg} / \mathrm{Ca}$	49	34.2	43.5	12/02	26.0	05/11
Magnesium	$\mathrm{mg} / \mathrm{Mg}$	49	9.07	66.50	18/06	4.60	05/11

Flow measurement station : 069007-Ashton Weir C. A. $\left\{\mathrm{km}^{2}\right\}$: 660.0

NGR : 33 (S.J) 772936

Poriod of record: 1975-1990							
Mean	Percentiles			Quarterty averages			
	5\%	50\%	95\%	J-M	A-J	J-S	O-D
10.8	4.0	10.0	19.5	5.8	12.5	16.4	8.8
7.3	6.9	7.3	7.6	7.3	7.3	7.3	7.3
491	285	472	750	462	507	525	481
41.1	9.3	20.8	112.7	46.0	30.9	27.7	56.3
8.0	4.5	7.9	11.2	9.8	7.2	6.1	8.6
6.8	3.1	5.5	13.0	6.7	6.8	5.5	6.7
1.99	0.40	1.77	4.30	2.02	2.42	1.87	1.64
0.26	0.06	0.20	0.68	0.09	0.32	0.48	0.18
3.9	2.0	3.7	6.8	3.0	4.3	5.1	3.6
52.7	27.9	50.0	85.9	56.8	51.6	53.8	47.7
93.5	54.0	91.9	135.0	85.6	100.2	98.9	87.6
1.15	0.20	1.05	2.65	0.67	1.35	1.70	0.93
8.01	5.10	8.10	10.14	7.80	6.89	8.71	8.43
32.9	25.5	33.0	38.5	32.4	33.8	33.6	31.7
7.0	4.7	7.0	9.0	6.6	7.1	7.6	6.7

Ribble at Samlesbury
Harmonised monitoring station number
Measuring authority : NRA-NW NGR:34 (SD) 590305
Doterminand

Temperature
pH
Conductivity
Suspended solids
Oissolved oxygen
BOD (inhibited)
Ammoniacal nitrogen
Nitrite
Nitrate
Ctloride
Total alkalinity
Orthophosphate
Silica
Calcium
Magnesium
Potassium
Sodium

Units	Samplas	Mean	Max.	Date	Min.	Date
${ }^{\circ} \mathrm{C}$	46 (1)	10.9	19.0	11/07	0.0	07/02
pH units	46	7.9	8.9	05/09	7.5	10/01
$\mu \mathrm{S} / \mathrm{cm}$	46	425	883	14/02	218	07/11
mg / l	46 (2)	11.2	143.0	07/11	1.0	25/04
$\mathrm{mg} / \mathrm{l} 0$	45	9.56	13.19	07/02	3.16	29/08
$\mathrm{mg} / \mathrm{l} 0$	46	2.2	4.6	07/11	1.1	21/11
mg / f	46 (3)	0.346	2.300	14/02	0.010	02/05
$\mathrm{mg} / \mathrm{l} \mathrm{N}$	46	0.068	0.290	08/08	0.020	04/04
mg / N	46	4.71	14.30	05/09	1.60	10/01
$\mathrm{mg} / \mathrm{Cl}$	45	38.1	163.0	14/02	20.0	07/11
$\mathrm{mg} / \mathrm{CaCO} 3$	46	125.9	153.0	12/12	82.0	10/01
mg / P	46	0.538	1.600	12/09	0.080	03/01
$\mathrm{mg} / \mathrm{SiO} \mathrm{S}_{2}$	46 (3)	2.87	6.49	12/12	0.100	18/04
$\mathrm{mg} / \mathrm{Ca}$	46	49.4	67.9	31/01	25.3	27/06
$\mathrm{mg} / \mathrm{Mg}$	46	5.03	7.44	12/12	0.65	01/08
mg / K	46	4.38	8.15	23/05	1.89	03/01
$\mathrm{mg} / \mathrm{l} \mathrm{Na}$	46	34.4	109.1	14/02	8.1	07/11

Flow measurement station : 071001 - Samlesbury C.A. $\left(k m^{2}\right): 1145.0 \quad$ NGR : 34 (SD) 589304

Period of record: 1974-1990							
Mean	Percentiles			Quarterly averagea			
	5\%	50\%	95\%	J-M	A.J	J-S	O.D
9.8	1.0	10.0	17.5	4.1	11.7	15.0	7.7
7.7	7.0	7.8	8.6	7.5	7.9	7.9	7.6
416	234	410	630	407	455	434	367
20.1	2.9	8.1	69.0	21.8	14.4	17.4	25.8
10.2	7.3	10.2	12.8	11.6	9.8	8.8	10.7
2.9	1.1	2.5	6.3	2.8	3.3	2.7	2.8
0.28	0.05	0.16	0.80	0.50	0.18	0.14	0.25
0.08	0.02	0.06	0.20	0.06	0.12	0.09	0.06
4.1	1.3	3.3	9.7	3.3	5.2	4.7	3.1
33.1	14.9	30.0	56.1	37.5	36.2	32.7	28.3
114.5	65.0	118.9	153.0	108.3	120.9	118.9	108.8
0.43	0.10	0.30	1.20	0.24	0.58	0.59	0.29
3.32	0.20	3.60	5.80	4.22	1.90	2.61	4.65
51.2	34.0	51.1	64.0	50.3	52.3	51.1	49.9
5.2	2.7	5.0	7.6	4.9	5.7	5.3	4.7
4.0	2.0	3.7	7.0	3.4	4.6	4.5	3.4
30.5	9.5	25.8	63.3	28.0	35.7	34.0	21.2

Eden at Temple Sowerby
Harmonised monitoring station number: 01017
Measuring authority : NRA-NW NGR : 35 (NY) 604281
Determinand

Temperature
pH
Conductivity
Suspended solids
Dissolved oxygen
BOD (inhibited)
Ammoniacal nitrogen
Nitrite
Nitrate
Chloride
Total alkalinity
Orthophosphate
Silica
Calcium
Magnesium
Potassium
Sodium

Units	1991					
	Samples	Mean	Max.	Dato	Min.	Date
${ }^{\circ} \mathrm{C}$	11	9.9	19.5	10/07	0.2	11/12
pH units	11	8.2	8.8	15/05	7.8	12/06
$\mu \mathrm{S} / \mathrm{cm}$	11	393	533	13/02	278	12/06
mg / l	11(1)	4.7	11.0	12/06	1.0	11/09
$\mathrm{mg} / 10$	11	10.97	14.77	13/02	8.90	14/08
$\mathrm{mg} / 10$	11	1.7	2.5	12/06	0.6	11/12
mg / l	11 (2)	0.074	0.200	17/01	0.010	15/05
$\mathrm{mg} / \mathrm{l} \mathrm{N}$	11	0.021	0.060	15/05	0.010	13/03
mg / N	11	1.84	2.71	13/02	0.64	11/09
$\mathrm{mg} / \mathrm{Cl}$	11	23.6	59.0	13/02	13.0	12/06
$\mathrm{mg} / \mathrm{CaCO}_{3}$	11	154.6	177.0	15/05	123.0	13/11
$\mathrm{mg} / \mathrm{/P}$	11	0.088	0.230	11/09	0.020	12/06
$\mathrm{mg} / \mathrm{SSO} 2$	11	2.64	4.20	11/12	0.120	15/05
$\mathrm{mg} / \mathrm{l} \mathrm{Ca}$	11	57.3	72.0	17/01.	37.6	13/11
$\mathrm{mg} / \mathrm{Mg}$	11	10.07	14.48	11/09	4.26	13/11
mg/ K	11	3.01	6.32	11/12	1.85	14/08
$\mathrm{mg} / 1 \mathrm{Na}$	11	13.6	33.1	13/02	6.7	13/11

1991

Flow measurement station : 076005 - Temple Sowerby
C. A. $\left(k m^{2}\right): 616.4 \quad$ NGR : 35 (NY) 605283

Period of record: 1975-1990							
Mean	Percentiles			Quarterty averages			
	5\%	50\%	95\%	J-M	A.J	J-S	O-D
10.2	3.0	9.5	18.5	4.7	12.2	15.7	7.7
8.1	7.4	8.0	8.7	7.9	8.2	8.2	8.0
356	225	378	475	331	365	383	345
7.6	1.0	4.0	28.0	7.8	7.9	5.0	9.8
11.3	8.9	11.2	13.8	12.3	11.6	10.6	11.0
1.9	0.8	1.7	3.3	1.7	2.0	2.0	1.6
0.06	0.01	0.04	0.18	0.07	0.04	0.06	0.06
0.02	0.01	0.02	0.06	0.02	0.03	0.02	0.02
1.4	0.2	-1.2	2.8	1.9	1.4	1.0	1.5
19.0	11.0	18.0	29.0	19.1	20.3	21.7	15.9
148.6	85.0	156.0	191.0	143.3	155.8	149.8	147.8
0.14	0.02	0.10	0.39	0.08	0.18	0.20	0.10
2.45	0.39	2.50	4.20	3.08	1.42	2.18	3.04
56.4	35.0	57.6	74.1	55.9	57.6	58.3	55.5
9.1	4.1	8.7	14.5	8.1	10.4	10.4	7.7
2.8	1.6	2.5	4.9	2.2	3.0	3.6	2.4
9.9	5.0	9.0	16.5	9.3	10.7	11.6	7.9

South Tyne at Warden Bridge

Harmonised moni Measuring author	station A-N	nber : NGR :	(NY)	$\begin{array}{r} 0202 \\ 91066 \end{array}$				Flow C.A. ${ }^{\prime}$	$\begin{aligned} & \text { asurer } \\ & 7: 75 \end{aligned}$	ment sta 1.1	tion :	$\begin{aligned} & 3004 \\ & \text { iR : } 3 \end{aligned}$	$\begin{aligned} & - \text { Hayd } \\ & 5(N Y) 8 \end{aligned}$	$\begin{gathered} \text { n Bri } \\ 566 \end{gathered}$	
				199						Period of	record:	5-19			
Daterminand	Units	Samples	Mean	Max.	Date	Min.	Date	Mean	5\%	$\begin{aligned} & \text { Percenti } \\ & 50 \% \end{aligned}$	95\%	J-M	Quarte A-J	$\begin{gathered} \text { avera } \\ \text { J.S } \end{gathered}$	0.0
Temperature	${ }^{\circ} \mathrm{C}$	11	8.1	18.1	22/08	0.6	12/12	9.3	2.0	8.4	19.0	4.0	11.3	15.2	6.6
pH	pH units	12	7.3	8.6	23/05	3.6	14/02	7.8	7.3	7.8	8.5	7.7	8.0	8.0	7.7
Conductivity	$\mu \mathrm{S} / \mathrm{cm}$	11	227	380	14/02	74	29/01	251	128	244	410	256	265	275	204
Suspended solids	mg/l	12 (1)	14.9	92.0	17/07	1.0	12/12	10.8	1.1	4.1	21.9	10.2	11.9	11.2	9.8
Dissolved oxygen	mg / O	11	11.78	14.30	14/02	8.30	17/07	11.3	9.0	11.4	13.7	12.3	10.9	10.0	11.6
BOD (inhibited)	$\mathrm{mg} / \mathrm{l} 0$	11	1.6	2.9	14/02	0.4	10/04	1.7	0.6	1.5	3.2	1.5	1.9	1.9	1.6
Ammoniscal nitrogen	mg/i N	12 (4)	0.120	0.400	22/08	0.010	10/04	0.06	0.01	0.03	0.18	0.07	0.04	0.10	0.05
Nitrite	mg / N	12 (4)	0.025	0.080	17/07	0.010	18/09	0.01	0.01	0.01	0.02	0.01	0.02	0.01	0.01
Nitrate	mg/l N	12	0.93	2.95	23/05	0.04	18/09	0.6	0.1	0.5	1.4	1.0	0.6	0.3	0.6
Chloride	$\mathrm{mg} / \mathrm{l} \mathrm{Cl}$	12 (1)	18.3	41.0	14/02	9.5	17/07	13.6	7.5	13.0	23.0	16.2	14.0	12.1	12.1

1991
Flow measurement station : 023004 - Haydon Bridge
C.A. $\left.\left(k^{2}\right)^{2}\right): 751.1 \quad$ NGR : 35 (NY) 856647

Tees at Broken Scar

Harmonised moni Measuring author	station nu A-N	ber: NGR	(NZ)	$\begin{array}{r} 020 \\ 65 \cdot 1 \end{array}$			
				199			
Determinand	Units	Samples	Mean	Max.	Date	Min.	Date
Temperature	${ }^{\circ} \mathrm{C}$	19	9.6	17.0	09/07	1.0	10/12
pH	pH units	20	7.4	8.0	19/06	6.6	21/10
Conductivity	$\mu \mathrm{S} / \mathrm{cm}$	19	285	1500	25/06	108	28/08
Suspended solids	mg/l	20	13.9	125.0	08/10	1.0	12/12
Dissotved oxygen	$\mathrm{mg} / \mathrm{l} \mathrm{O}$	19	11.10	15.00	12/12	9.18	08/10
BOD (inhibited)	$\mathrm{mg} / \mathrm{l} \mathrm{O}$	18 (1)	1.9	3.9	09/07	0.4	09/04
Ammoniacal nitrogen	mg / l	18 (3)	0.210	0.510	21/10	0.020	26/06
Nitrito	mg / N	19 (3)	0.057	0.500	12/12	0.020	08/01
Nitrate	mg / N	19 (1)	1.77	6.65	09/07	0.10	08/10
Chloride	$\mathrm{mg} / \mathrm{ll}$	17 (3)	14.0	29.0	$21 / 02$	9.0	09/04
Total alkalinity	$\mathrm{mg} / \mathrm{CaCO}$	19 (1)	56.8	100.0	28/08	10.0	14/05
Orthophosphate	mg / P	16(3)	0.054	0.150	21/02	0.020	01/10

Flow measurement station: 025001 - Broken Scar C. A. $\left(\mathrm{km}^{2}\right): 818.4$ NGR : 45 (NZ) 259137

Period of record: 1975. 1990							
Mean	Percentiles				Quarterty averages		
	5%	50%	95%	J.M	A.J	J.S	O.D
9.1	1.5	8.0	18.1	3.6	11.8	15.3	6.2
7.6	6.9	7.7	8.2	7.6	7.7	7.6	7.5
192	114	185	286	225	202	167	177
14.0	1.1	6.0	48.9	15.2	7.7	15.3	17.4
11.0	8.2	11.0	13.3	12.5	10.5	9.3	11.5
1.8	0.8	1.7	3.2	1.9	1.8	1.9	1.7
0.11	0.01	0.06	0.32	0.12	0.10	0.09	0.13
0.02	0.01	0.02	0.04	0.02	0.02	0.02	0.02
1.3	0.3	1.0	3.0	1.8	1.3	0.6	1.5
15.4	66.0	14.1	26.0	19.2	14.5	11.9	16.4
65.6	33.9	60.0	95.1	77.5	69.1	58.8	58.0
0.05	0.01	0.03	0.13	0.04	0.04	0.06	0.05

Trent at Nottingham
Harmonised monitoring station number: 03007
Measuring authority : NRA-ST NGR 43 (SK) 581383
Determinand
Temperature
pH
Conductivity
Suspended solids
Dissolved oxygen
BOD (inhibited
Tot. diss org. carton
Ammaniacal nitrogen
Nitrate
Chloride
Total atkalinity
Orthophosphate
Silica
Sulphate
Calcium
Magnesium
Potassium
Sodium

Units	Samples	Mean	Max.	Date	Min.	Date
${ }^{\circ} \mathrm{C}$	33	9.4	20.0	09/07	1.0	16/01
pH units	34	7.9	8.3	16/04	7.7	16/01
$\mu \mathrm{S} / \mathrm{cm}$	34	936	1250	13/02	510	26/03
$\mathrm{mg} / 1$	34	11.9	27.0	27/11	5.0	13/02
$\mathrm{mg} / 10$	32	11.15	13.40	17/01	8.10	11/03
mg / O	34	2.8	4.5	17/04	1.5	17/01
$\mathrm{mg} / 10$	24	6.7	8.4	25/06	5.5	16/01
$\mathrm{mg} / \mathrm{IN}$	34 (1)	0.266	1.550	13/02	0.040	17/04
$\mathrm{mg} / \mathrm{IN}$	34	9.82	11.80	16/12	6.80	09/07
$\mathrm{mg} / \mathrm{l} \mathrm{Cl}$	34	117.0	210.0	13/02	75.0	24/01
$\mathrm{mg} / \mathrm{CaCO} 3$	34	161.1	179.0	17/04	119.0	02/10
mg / P	24	1.702	2.950	24/09	0.670	16/01
$\mathrm{mg} / \mathrm{SiO}$	12	8.22	12.00	16/12	2.200	$17 / 04$
$\mathrm{mg} / \mathrm{SO} \mathrm{SO}_{4}$	12	207.00	300.00	15/06	158.0	$17 / 01$
$\mathrm{mg} / \mathrm{l} \mathrm{Ca}$	11	102.5	113.0	21/05	94.0	16/07
$\mathrm{mg} / \mathrm{Mg}$	10	26.79	30.00	13/02	22.50	18/03
mg / K	12	13.04	24.60	21/05	8.20	15/06
$\mathrm{mg} / \mathrm{l} \mathrm{Na}$	12	103.3	162.0	13/02	48.0	17/01

Flow measurement station : 028009-Colwick C. A. $\left(\mathrm{km}^{2}\right)$: 7486.0

Period of record: 1974-1990

Mean	Percentiles				Quarterly averages			
	$\mathbf{5 \%}$	$\mathbf{5 0 \%}$	$\mathbf{9 5 \%}$	J.M	A.J	J.S		

-Total dissolved organic carbon is converted to $\mathrm{mg} /$ / of oxygen when entered on the Harmonised Monitoring Archive.

Derwent at Wilne

1991
Flow measurement station : 028067 - Church Wilne C.A. $\left(\mathrm{km}^{2}\right): 1177.5$ NGR : 43 (SK) 438316

Period of record: 1975-1990							
Maan	Percentiles			Quarterly averages			
	5\%	50\%	95\%	J.M	A.J		O-D
12.0	4.0	11.8	21.0	6.4	14.2	17.9	9.4
7.8	7.4	7.8	8.2	7.8	7.9	7.9	7.7
660	430	660	930	549	672	771	647
15.3	2.1	8.5	51.0	22.4	10.0	10.4	19.1
10.0	7.0	10.1	12.8	11.6	10.0	8.5	10.3
2.6	1.0	2.5	4.3	2.3	2.6	2.6	2.6
4.9	2.2	4.3	9.6	3.8	5.0	5.8	5.2
0.31	0.05	0.26	0.72	0.38	0.29	0.24	0.34
4.3	3.1	4.4	5.7	4.2	4.3	4.4	4.3
66.9	34.0	65.0	110.0	54.1	66.4	84.6	64.4
155.8	109.9	160.0	190.0	138.4	162.5	174.0	149.9
0.89	0.22	0.85	1.95	0.50	0.94	1.36	0.82
5.23	0.50	5.60	B. 10	5.98	3.60	4.27	6.54
102.8	60.0	99.0	169.1	79.2	110.2	125.8	96.5
73.4	55.0	75.0	87.0	68.0	77.2	77.8	68.0
16.3	9.0	15.8	24.0	13.3	18.0	19.1	15.4
5.2	3.1	5.0	7.0	4.6	5.2	6.1	5.0
49.6	22.0	47.4	77.0	35.0	53.2	65.8	45.0

Teme at Powick

1991

Flow measurement station : 054029-Knightsford 8 Br. C.A. $\left(\mathrm{km}^{2}\right): 1480.0$ NGR : 32 (SO) 735557

Period of record: 1975-1990

Mean	Percentiles			Quarterty averages			
	5\%	50\%	95\%	J.M	A-J	J-S	O-D
10.5	3.0	10.0	19.5	5.3	12.7	16.5	7.6
8.0	7.4	8.0	8.5	7.8	8.1	8.2	7.8
430	270	415	521	366	426	447	407
41.1	2.9	12.0	189.0	70.2	36.8	12.8	46.5
10.6	8.0	11.0	13.2	11.8	10.8	9.8	11.1
1.9	0.7	1.6	4.3	1.7	2.2	1.9	1.8
5.1	1.9	3.5	14.1	4.7	5.4	4.9	5.4
0.12	0.01	0.05	0.22	0.10	0.24	0.07	0.08
4.3	2.2	4.2	6.4	5.3	4.4	3.3	4.1
23.0	15.0	22.0	31.0	22.4	22.1	25.2	22.4
139.3	76.1	141.0	190.0	117.5	150.7	167.0	124.1
0.20	0.03	0.15	0.40	0.12	0.14	0.25	0.27

Avon at Evesham Road Bridge

				199			
Determinand	Units	Samples	Mean	Max.	Date ${ }^{\text { }}$	Min.	Date
Temperature	${ }^{\circ} \mathrm{C}$	44	12.0	21.0	19/07	2.0	08/02
	pH units	44	8.0	8.8	15/05	6.5	24/09
Conductivity	$\mu \mathrm{S} / \mathrm{cm}$	44	993	1340	10/09	630	10/01
Suspended solids	mg / l	44	18.7	288.0	10/01	4.0	24/09
Dissolved oxygen	$\mathrm{mg} / \mathrm{l} 0$	44	11.12	15.00	24/04	8.00	25/07
800 (inhibited)	$\mathrm{mg} / \mathrm{l} 0$	42	3.3	8.5	10/01	1.0	19/07
Tot. diss. org carbon	mg / O	22	7.2	9.4	09/07	5.1	04/04
Ammoniacal nitrogen	mg / N	44 (9)	0.181	0.600	16/01	0.030	13/06
Nitrate	mg / N	44	12.73	19.00	16/01	5.80	02/10
Chloride	$\mathrm{mg} / \mathrm{ll} \mathrm{Cl}$	44	108.5	185.0	10/09	58.0	14/03
Total alkalinity	$\mathrm{mg} / \mathrm{CaCO} 3$	31	183.5	210.0	16/09	108.0	02/10
Orthophosphate	$\mathrm{mg} / \mathrm{l} \mathrm{P}$	23	1.914	4.300	24/09	0.750	16/01
Silica	$\mathrm{mg} / \mathrm{SiO} 2$	14	10.48	13.80	25/07	3.800	24/05
Sulphate	$\mathrm{mg} / \mathrm{SO} \mathrm{SO}_{4}$	11	201.82	280.00	04/09	138.0	21/01
Calcium	$\mathrm{mg} / \mathrm{Ca}$	9	116.7	128.0	18/01	74.0	02/10
Magnesium	$\mathrm{mg} / \mathrm{Mg}$	9	29.71	42.50	04/09	17.00	02/10
Potassiutn	$\mathrm{mg} / \mathrm{LK}$	11	9.86	15.50	04/09	6.60	14/03
Sodium	$\mathrm{mg} / \mathrm{l} \mathrm{Na}$	11	73.2	110.0	04/09	40.0	14/03

Flow measurement station : 054002 - Evesham
C. A: $\left(\mathrm{km}^{2}\right): 2210.0$ NGR : 42 (SP) 040438

Period of record: 1977-1990							
Mean	Percentiles			Quarterly everages			
	5\%	50\%	95\%	J-M	A-J	J-5	O-D
11.2	3.5	11.0	20.0	5.2	13.2	17.0	8.7
8.0	7.6	7.9	8.6	7.9	8.2	8.0	7.8
931	620	952	12:0	831	907	1041	948
27.8	6.9	17.1	78.1	43.8	27.3	17.7	22.2
10.5	7.7	10.6	13.2	11.8	10.6	8.9	10.7
3.2	1.4	2.8	6.7	2.8	4.5	3.0	2.4
9.1	5.2	7.3	19.2	9.0	9.2	9.2	9.2
0.26	0.01	0.19	0.75	0.48	0.15	0.13	0.28
10.4	7.4	10.3	13.6	11.1	9.7	9.9	11.0
76.5	40.0	74.0	113.0	65.0	68.3	92.8	80.8
197.0	150.0	200.0	231.0	193.7	202.3	197.8	194.2
1.81	0.50	1.60	4.00	1.07	1.53	2.59	2.10
10.74	4.00	11.15	15.50	9.85	7.04	11.41	13.09
195.9	97.1	197.0	266.0	167.4	195.8	219.6	194.0
121.3	88.0	125.0	140.0	-119.4	117.7	123.5	121.5
28.0	15.6	27.0	39.0	24.5	28.7	30.9	27.9
9.9	6.1	9.0	14.5	7.3	10.2	12.0	10.5
56.4	21.9	55.0	100.0	42.5	53.5	70.2	61.8

Aire at Fleet Weir

Harmonised monitoring station number : 04005
Measuring authority : NRA-Y NGR :'44 (SE) 381285
Determinand

Flow
Temperature
pH
Coriductivity
Suspended solids
Dissolved axygen
BOD firhibited)
Ammoniacal nitrogen
Nitrite
Nitrate
Chloride
Total alkalinity
Ortophosphate
Calcium
Magnesium

Units	1991					
	Samples	Mean	Max.	Date	Min.	Date
$\mathrm{m}^{3} \mathrm{~s}-1$	365	16.2	128.7	21/12	4.1	12/9
${ }^{\circ} \mathrm{C}$	46	11.8	20.1	11/07	2.4	21/11
pH units	48	7.5	7.7	21/01	7.1	29/10
$\mu \mathrm{S} / \mathrm{cm}$	48	851	2310	13/02	252	02/01
mg / l	48	24.8	137.0	02/0:	7.0	20/08
. $\mathrm{mg} / 10$	45	7.58	12.90	27/03	3.20	01/08
mg/t 0	48	7.5	13.4	08/03	1.8	28/08
$\mathrm{mg} / \mathrm{l} \mathrm{N}$	48	1.546	2.890	06/06	0.170	03/04
mg / N	48 (2)	0.224	0.510	28/05	0.010	02/01
mg / N	48	6.49	11.79	29/05	1.62	14/03
$\mathrm{mg} / \mathrm{Cl}$	48	91.7	201.0	13/02	31.8	03/04
$\mathrm{mg} / \mathrm{l} \mathrm{CaCO}_{3}$	48	137.9	203.0	19/02	73.0	02/01
$\mathrm{mg} / \mathrm{l} \mathrm{P}$	48	. 1.257	2.670	12/09	0.140	25/02
$\mathrm{mg} / \mathrm{Ca}$	46	60.0	89.0	19/02	36.1	02/01
$\mathrm{mg} / \mathrm{Mg}$	46	10.40	23.42	17/04	3.16	15/01

1991

Flow measurement station : 027080-Fleet Weir C.A. $\left(\mathrm{km}^{2}\right): 865.0 \quad$ NGR : 44 (SE) 381295

Poriod of record: 1975-1990							
Mean	Percentiles			Quarterly averages			
	5\%	50\%	95\%	J-M	A.J	J-S	O-D
12.7	5.0	12.0	21.0	7.3	14.4	17.8	10.4
7.5	7.2	7.5	7.8	7.6	7.5	7.4	7.5
696.	389	661	1091	657	701	780	626
27.7	7.5	16.5	85.0	31.1	25.7	23.8	32.1
7.5	2.5	7.8	11.6	10.3	6.6	5.1	8.5
8.1	3.9	7.2	14.2	7.9	8.4	8.6	7.8
2.33	0.43	1.67	5.15	2.05	2.36	2.58	1.88
0.36	0.06	0.28	0.89	0.16	0.42	0.56	0.26
5.1	2.6	4.7	8.2	4.2	5.4	5.8	4.6
82.5	35.8	74.0	154.0	81.9	84.2	91.9	70.9
122.0	74.2	124.9	165.0	112.7	123.6	133.6	116.9
1.38	0.17	1.19	3.50	0.87	1.52	2.01	1.06
61.0	44.9	60.1	74.5	59.4	60.9	61.1	60.9
13.0	5.1	12.4	20.9	12.7	13.4	14.8	11.4

Derwent at Loftsome Bridge

Harmonised monitoring station number :
Measuring authority : NRA-Y NGR : 44 (SE) 707302
Determinand

Temperature
pH
Conductivity
Suspended solids
Dissolved oxygen
BOD (inhibited
Ammoniacal nitrogen
Nitrate
Chloride
Total alkalinity
Orthophosphate
Silica
Suphate
Calcium
Magnesium

Units	Samples	Mean	Max.	Date	Min.	Date
${ }^{\circ} \mathrm{C}$	22	12.3	21.7	11/07	5.6	21/01
pH units	36	7.7	8.3	17/06	7.1	13/11
$\mu \mathrm{S} / \mathrm{cm}$	30	612	790	21/08	283	08/09
mg/l	36(2)	6.2	19.0	09/01	1.0	11/06
$\mathrm{mg} / \mathrm{l} 0$	21	9.87	12.20	26/03	7.00	18/10
$\mathrm{mg} / 10$	36(1)	1.9	3.1	05/06	0.5	21/08
$\mathrm{mg} / \mathrm{IN}$	35 (13)	0.107	0.400	13/12	0.010	05/06
$\mathrm{mg} / \mathrm{IN}$	29	3.31	6.98	11/03	1.92	02/08
$\mathrm{mg} / \mathrm{l} \mathrm{Cl}$	35	36.7	54.2	09/01	27.0	13/11
$\mathrm{mg} / \mathrm{CaCO} 3$	29	169.1	223.0	25/09	88.0	13/11
mg / P	28(7)	0.112	0.300	07/10	0.030	21/01
$\mathrm{mg} / \mathrm{SiO} \mathrm{S}_{2}$	14	5.80	8.80	02/12	2.100	24/05
$\mathrm{mg} / \mathrm{SO} \mathrm{S}_{4}$	16	96.26	124.00	18/10	57.00	21/01
$\mathrm{mg} / \mathrm{Ca}$	28	97.6	113.0	11/06	68.0	27/11
$\mathrm{mg} / \mathrm{Mg}$	28	6.49	25.61	15/04	0.97	11/07

Flow measurement station : 027041 - Buttercrambe C. A. $\left(\mathrm{km}^{2}\right): 1586.0 \quad$ NGR : 44 (SE) 731587

Mean	Percentiles			Quarterty averages			
	5\%	50\%	95\%	J-M	A-J	J-S	O-D
10.4	3.0	10.0	19.5	5.2	12.8	16.7	. 7.9
7.9	7.5	7.9	8.3	7.8	8.0	7.9	7.8
523	366	527	630	524	515	528	521
26.7	3.2	12.3	83.9	34.9	19.2 ,	10.7	30.7
10.7	8.6	10.7	12.6	11.8	10.6	9.4	10.6
1.7	0.7	1.5	3.1	1.7	2.0	1.4	1.7
0.11	0.01	0.09	0.25	0.14	0.09	0.08	0.11
4.2	2.4	4.0	7.0	5.3	4.4	3.3	4.1
31.5	22.5	30.0	41.0	34.5	29.9	30.1	31.6
147.6	104.0	153.0	174.0	146.2	152.5	150.0	141.6
0.10	0.01	0.09	0.24	0.07	0.08	0.13	0.11
6.29	3.00	6.28	9.02	7.01	5.04	6.24	6.72
79.9	44.9	80.0	101.9	76.7	80.6	82.2	78.3
91.4	65.0	91.4	106.0	100.5	89.7	86.1	89.6
9.8	4.4	8.8	19.6	17.9	9.4	9.0	9.6

Nene at Wansford
Harmonised monitoring station number :
Measuring authority : NRA-A NGR : 52 (TL) 082996

Determinand	Units	1991					
		Samples	Mean	Max.	Date	Min.	Date
Temperature	${ }^{\circ} \mathrm{C}$	48	11.0	21.0	09/07	0.2	30/01
pH	pH units	48	B. 1	8.7	10/04	7.8	03/07
Conductivity	$\mu \mathrm{S} / \mathrm{cm}$	48	1060	1317	20/02	82 :	07/10
Suspended solids	mg/l	24 (4)	22.1	264.0	28/02	5.0	07/08
Dissolved oxygen	$\mathrm{mg} / \mathrm{l} 0$	47	10.37	14.90	10/04	6.50	31/07
BOD (inhibited)	$\mathrm{mg} / \mathrm{l} 0$	48(2)	2.9	8.3	22/04	1.0	07/08
Ammoniacal nitrogen	$\mathrm{mg} / \mathrm{IN}$	$48(14)$	0.158	1.244	20/02	0.023	10/04
Nitrite	$\mathrm{mg} / \mathrm{IN}$	24	- 0.099	0.211	04/11	- 0.026	21/08
Nitrate	mg / N	48	9.99	18.07	28/02	0.42	11/02
Chtoride	$\mathrm{mg} / \mathrm{l} \mathrm{Cl}$	48	98.2	164.9	20/02	75.3	07/10
Total alkalinity	$\mathrm{mg} / \mathrm{CaCO} 3$	24	176.1	220.0	11/02	125.0	14/01
Silica	$\mathrm{mg} / \mathrm{SiO} 2$	24(1)	5.70	10.75	17/12	0.200	15/05
Calcium	$\mathrm{mg} / \mathrm{l} \mathrm{Ca}$	24	186.26	242.40	23/09	141.6	28/02
Magnesium	$\mathrm{mg} / \mathrm{Mg}$	12	126.6	156.0	11/02	92.9	07/10
Sulphate	$\mathrm{mg} / \mathrm{SO} 4$	12	10.45	13.05	11/02	7.72	07/10
Potassium	mg / K	12	11.17	16.50	04/11	6.20	11/03
Sodium	$\mathrm{mg} / \mathrm{l} \mathrm{Na}$	12	65.9	91.6	02/09	42.4	14/01

Flow measurement station: 032001-Orton
C.A. $\left(\mathrm{km}^{2}\right): 1634.3$ NGR : 52 (TL) 166972

Period of record: 1974-1990							
Mean	Percentiles			Quarterly avarages			
	5\%	50\%	95\%	J-M	A-J		O-D
11.5	3.0	11.3	20.5	5.5	13.8	17.8	8.2
8.1	7.7	8.0	8.8	7.9	8.3	8.2	7.9
949	720	939	1200	907	926	985	978
22.0	4.0	13.2	63.7	28.9	22.8	13.9	18.6
10.6	7.9	10.6	13.1	11.9	10.8	9.1	10.8
3.7	1.2	2.9	8.8	3.2	5.9	3.2	2.5
0.35	0.04	0.17	1.04	0.66	0.18	0.11	0.52
0.10	0.03	0.10	0.20	0.09	0.12	0.08	0.13
9.5	5.4	9.1	15.1	12.0	9.2	6.9	10.1
73.7	43.0	72.0	109.2 .	64.7	69.2	84.1	77.2
207.3	170.0	210.0	235.1	206.1	208.7	209.8	205.1
5.88	0.17	6.10	9.35	6.95	3.11	4.76	7.95
167.6	106.0	167.0	229.0	155.6	165.5	192.9	179.1
128.4	87.0	139.5	155.0	128.4	140.9	130.4	130.6
11.0	7.9	11.4	13.2	10.5	11.1	11.9	10.8
10.5	5.3	9.8	19.1	7.7	10.5	12.9	11.3
53.2	22.2	49.7	95.3	41.3	50.8	65.1	59.9

Harmonised monitoring station number: $\quad 05722$
Measuring authority : NRA-A NGR : 63 (TG) 267198

Determinand	Unita	1991					
		Samples	Mean	Max.	Date	Min.	Date
Tomperature	${ }^{\circ} \mathrm{C}$	49	11.0	22.0	08/07	2.0	13/12
pH	pH units	49	8.0	8.4	08/07	7.5	25/11
Conductivity	$\mu \mathrm{S} / \mathrm{cm}$	49	799	931	14/01	712	19/08
BOD (ínhibitod)	$\mathrm{mg} / \mathrm{l} \mathrm{O}$	$49(6)$	1.6	2.8	28/05	1.0	15/07
Ammoniacal nitrogen	mg / N	49 (21)	0.044	0.137	11/02	0.023	25/02
Nitrite	mg / N	24	0.045	0.070	29/07	0.026	06/03
Nitrate	$m g / \mathrm{N}$	49	5.36	7.99	07/01	2.84	15/07
Chlorida	$\mathrm{mg} / \mathrm{Cl}$	49	60.9	72.0	25/11	54.1	05/08
Total alkalinity	$\mathrm{mg} / \mathrm{CaCO}_{3}$	24	199.7	215.0	04/02	185.0	08/04
Silica	$\mathrm{mg} / \mathrm{l} \mathrm{SiO} 2$	24(1)	7.50	13.46	09/12	0.200	20/05
Sulphate	$\mathrm{mg} / \mathrm{SO} \mathrm{SO}_{4}$	24	100.95	154.10	25/11	56.01	21/01
Calcium	$\mathrm{mg} / \mathrm{Ca}$	12	125.7	157.4	07/01	110.0	27/08
Magnesium	$\mathrm{mg} / \mathrm{Mg}$	12	7.73	9.30	04/02	5.43	30/09
Potassium	mg / K	12	3.66	4.47	28/10	2.90	01/07
Sodium	$\mathrm{mg} / \mathrm{Na}$	12	28.3	30.0	06/03	23.0	25/11

Flow measurement station : 034003 - Ingworth
C. A. $\left(\mathrm{km}^{2}\right): 164.7$

Period of record: 1975-1990							
Mean	Percentiles			Quarterty averages			
	5\%	50\%	95\%	J.M	A-J	J.S	O.D
10.6	3.5	10.0	19.5	6.0	12.6	16.8	8.4
7.8	7.4	7.8	8.2	7.7	7.8	7.9	7.7
736	625	740	835	750	709	726	753
1.7	0.7	1.6	3.1	1.8	2.2	1.7	1.3
0.14	0.01	0.09	0.47	0.23	0.10	0.09	0.14
0.07	0.01	0.06	0.13	0.07	0.06	0.08	0.07
5.8	3.4	5.5	8.8	7.6	5.8	4.5	5.8
58.2	47.0	57.0	75.4	60.7	55.7	56.4	60.5
220.1	179.9	216.1	255.1	221.2	208.0	217.1	237.3
7.33	3.07	8.12	12.30	8.75	4.81	6.41	10.36
88.6	56.9	79.9	112.0	85.6	83.2	83.8	87.7
118.2	95.3	117.1	142.0	120.5	117.2	114.4	122.1
7.5	4.9	7.6	9.4	7.6	7.7	7.2	7.3
4.0	2.5	4.0	5.6	4.1	3.7	4.0	4.5
30.9	20.0	27.5	47.0	29.7	29.3	29.4	29.6

Stour at Langham

Harmonised monitoring station number :
Measuring authority : NRA-A NGR : 62 (TM) 026345
Doterminand

Tomperatura
pH
Conductivity
Suspended solids
Dissolved oxygen
BOD (inhibited)
Tot. diss. org, carbon
Ammeniacal nitrogen
Nitrite
Nirrate
Chioride
Total akalinity
Silica
Sulphate
Calcium
Magnesium
Potassium
Sodium

	1991					
Units	Samplos	Mean	Max.	Date	Min.	Date
		38	11.9	22.0	$23 / 07$	2.0

Flow measurement station : 036006 - Langham
C.A. $\left(\mathrm{km}^{2}\right): 578.0 \quad$ NGR : 62 (TM) 020344

Period of record: 1974-1990							
Mean	Percentiles			Quarterly avarages			
	5\%	50\%	95\%	J-M	A-J	J.S	O.D
11.2	3.0	11.0	20.0	5.1	13.6	17.1	8.
8.2	7.8	8.2	8.9	8.1	8.4	8.3	8.
903	730	910	1100	922	876	885	944
16.1	3.0	9.9	47.0	17.7	19.5	10.9	16.0
10.8	7.6	10.9	14.0	12.2	11.5	9.3	10
3.2	1.0	2.3	9.4	2.3	5.5	2.5	2.
6.2	4.2	6.3	10.4	5.4	7.8	6.8	6
0.12	0.02	0.08	0.38	0.19	0.09	0.07	0.1
0.07	0.02	0.06	0.16	0.07	0.09	0.04	0.0
8.0	2.2	7.3	16.0	12.2	7.7	4.3	8.
67.7	39.1	65.1	99.8	55.8	62.9	75.4	74.
246.3	195.0	250.0	283.0	244.2	243.3	250.2	251.
7.72	0.22	7.95	13.00	7.55	4.18	8.34	10.2
104.7	70.0	97.1	136.0	112.3	110.7	96.1	103
134.5	95.0	137.0	166.0	147.3	133.5	120.0	139
8.9	5.3	8.4	20.0	7.7	8.7	9.8	8
7.5	3.5	7.3	12.0	5.8	7.0	7.7	
43.5	20.0	42.0	70.0	32.7	39.9	50.5	50

Thames at Teddington Weir

Harmonised monitoring station number :
Measuring authority : NRA-T NGR : 51 (TQ) 171714
Determinand

Temperature
pH
Conductivity
Suspended solids
Dissolved oxygen
BOD finhibited)
Ammoniacal nitrogen
Nitrite
Nitrate
Chloride
Total alkalinity
Ortophosphete
Sulphate
Catcium
Potassium
Sodiurn

	1991				
Samples	Mean	Max.	Date	Min.	Date
24	12.6	22.0	$11 / 07$	4.0	$01 / 02$
23	7.9	8.6	$22 / 04$	7.1	$27 / 06$
11	721	1343	$12 / 02$	576	$18 / 06$
23	11.8	36.0	$12 / 04$	2.4	$10 / 09$
9	10.08	12.00	$16 / 12$	7.50	$16 / 07$
$2113)$	3.1	7.7	$22 / 04$	1.3	10112
$23(7)$	0.390	1.200	$12 / 02$	0.050	$08 / 01$
10	0.163	0.709	$08 / 01$	0.040	$09 / 12$
10	8.17	12.10	$13 / 03$	5.80	$16 / 07$
21	61.8	76.0	$12 / 02$	500.0	$27 / 106$
9	174.0	189.0	$14 / 05$	147.0	$08 / 01$
$21(1)$	1.576	2.370	$10 / 09$	0.016	$22 / 01$
9	73.56	79.00	$14 / 05$	65.00	$16 / 07$
8	100.6	115.0	$12 / 02$	810	$13 / 03$
8	8.40	10.50	$09 / 12$	5.60	$13 / 03$
8	46.7	58.0	$23 / 09$	28.0	$13 / 03$

Flow measurement station : 039001-Kingston C.A. $\left(\mathrm{km}^{2}\right): 9948.0$ NGR : 51 (TQ) 177698

Lee at Waterhall

Harmonised monitoring station number : 06101
Measuring authority : NRA-T NGR : 52 (TL) 299099
Daterminand

Tomperature
pH
Conduativity
Suspended solids
Dissolved oxygen
BOD \{inhibited)
Tot diss. org. carbon
Nitrite
Nitrate
Chloride
Total alkalinity
Orthophosphate
Sutphate
Calcium
Magnesium
Potassium
Sodium

Units	Samples	Mean	Max.	Oate	Min.	Dato
${ }^{\circ} \mathrm{C}$	24	12.1	21.0	12/08	3.0	13/02
pH unita	25	7.8	8.2	26/03	7.5	24/05
$\mu \mathrm{S} / \mathrm{cm}$	13	882	1058	06/12	690	31/01
mg/l	13	13.1	58.0	06/03	2.0	31/01
mg / O	24	9.67	12.00	13/02	7.00	19/07
$\mathrm{mg} / \mathrm{l} 0$	19, 6\}	2.4	4.0	13/02	2.0	12/03
mg / l	8	19.6	40.5	03/01	11.5	06/03
mg / N	10	0.155	0.400	06/03	0.061	03/01
mg / N	8	9.03	11.90	26/03	6.30	12/08
$\mathrm{mg} / 1 \mathrm{Cl}$	24	102.3	156.0	13/02	64.0	18/01
$\mathrm{mg} / \mathrm{CaCO} 3$	14	223.9	278.0	$16 / 09$	149.0	22/11
mg / P	23	3.816	6.470	13/10	0.050	18/01
$\mathrm{mg} / \mathrm{SO} \mathrm{SO}_{4}$	11	109.18	243.00	06/03	80.00	12/08
$\mathrm{mg} / \mathrm{Ca}$	11	140.9	353.0	06/03	96.0	03/01
$\mathrm{mg} / \mathrm{l} \mathrm{Mg}$	11 (1)	6.30	22.40	06/03	3.60	19/07
$\mathrm{mg} / \mathrm{l} \mathrm{K}$	10	12.59	21.20	13/10	8.70	06/03
$\mathrm{mg} / \mathrm{l} \mathrm{Na}$	11	98.8	131.7	06/03	74.1	03/01

Flow measurement station : 038018 - Water Hall C.A. $\left(\mathrm{km}^{2}\right): 150.0$ NGR : 52 (TL) 299099

Period of record: 1975-1990							
Mean	Percentiles			Quarterty averages			
	5\%	50\%	95\%	J-M	A-J	J-S	O-D
12.0	4.5	12.0	20.0	6.9	13.7	16.9	9.3
8.0	7.6	8.0	8.4	8.0	8.1	8.1	7.8
814	594	802	1133	867	798	779	860
14.4	3.0	10.0	46.5	15.5	13.1	16.9	14.1
10.4	8.0	10.3	13.0	11.4	10.4	9.5	10.2
2.8	1.3	2.4	4.4	2.6	3.0	2.2	2.5
18.1	3.0	12.4	52.8	15.2	17.5	9.4	21.8
0.17	0.05	0.11	0.29	0.11	0.12	0.31	0.18
12.4	7.7	11.1	16.3	12.6	12.0	11.9	13.7
77.2	46.1	68.0	111.9	85.6	67.0	78.4	79.8
210.7	130.9	222.5	254.0	203.2	218.0	212.4	203.0
2.48	1.12	2.42	4.24	2.20	2.42	2.66	2.71
79.9	58.0	79.0	110.0	78.4	79.9	76.9	86.4
117.6	93.1	117.9	140.0	118.5	119.4	114.4	115.7
4.1	3.1	3.9	4.9	4.2	4.0	4.3	3.9
8.8	5.9	8.3	14.2	7.9	7.6	9.1	10.4
65.2	37.0	62.0	113.6	63.9	64.1	68.4	65.6

Great Stour at Bretts Bailey Bridge

Harmonised monitoring station nu Measuring authority : NRA-S		mber: NGA : 61 (TR)		$\begin{array}{r} 07003 \\ 187603 \end{array}$				Flow measurement station C. A. $\left(\mathrm{km}^{2}\right): 345.0$				040011 - Horton NGR: 61 (TR) 116554			
Determinand	Units	1991						Period of record: 1974-1990							
		Samples	Mean	Max. .	Date	Min.	Date	Mean		Percentil			Quartert	avera	
									5\%	50\%	95\%	J.M	A.J	$\mathrm{J}-\mathrm{s}$	O-D
Temperature	${ }^{\circ} \mathrm{C}$	25	10.3	18.0	29/07	3.0	05/02	12.1	4.5	12.0	18.5	7.2	13.5	16.7	9.9
pH	pH units	24	8.0	8.3.	13/08	6.9	29/07	7.8	7.4	7.8	8.3	7.7	8.0	7.9	7.7
Suspended solids	mg/l	28	11.7	35.0	24/05	1.5	20/06	12.9	2.0	6.9	44.2	23.7	7.6	6.6	15.1
日OD (inhibited)	$\mathrm{mg} / 10$	24 (1)	2.4		24/05	1.0	29/07	2.6	1.1	2.5	5.1	3.0	2.9	2.2	2.4
Tot. diss. org. carbon	mg/io	13	14.8	25.1	13/11	9.9	16/12	6.1	3.1	4.3	13.9	4.2	4.4	5.7	7.4
Ammoniacal nitrogen	mg/l N	28 (5)	0.154	0.880	10/12	0.030	22/04	0.32	0.01	0.14	1.24	- 0.50	0.33	0.11	0.37
Nitrite	mg / N	28	0.092	0.280	01/11	0.030	05/02	0.12	. 0.03	0.08	0.30	0.10	0.12	0.12	0.13
Nitrate	mg / N	28	8.31	13.30	13/11	4.44	04/07	5.9	3.9	5.7	8.7	6.8	5.4	4.8	6.4
Chloride	$\mathrm{mg} / \mathrm{l} \mathrm{Cl}$	25	71.9	115.0	16/10	42.0	04/07	52.2	37.0	49.0	76.0	54.2	49.8	50.6	55.8
Total alkalinity	$\mathrm{mg}^{\prime} / \mathrm{CaCO}_{3}$	24	218.0	245.0	24/05	155.0	18/02	215.8	156.0	224.5	247.0	199.0	221.5	224.4	211.7
Orthophosphate	$\mathrm{mg} / \mathrm{l} \mathrm{P}$	28	1.447	3.400	16/10	0.720	04/01	1.03	0.33	0.91	2.10	0.71	1.00	1.27	1.12

Itchen at Gatersmill
Harmonised monitoring station number :
Measuring authority : NRA-S NGR : 41 (SU) 434156

Determinand	Units	1991					
		Samplea	Mabn	Max.	Date	Min.	Date
Temperature	${ }^{\circ} \mathrm{C}$	25	11.2	17.0	10/07	5.0	04/02
pH	pH units	27	8.1	8.4	22/04	7.8	10/01
Suspended solids	mg/l	37	10.4	62.0	10/01	1.0	02/10
BOD (inhibited)	$\mathrm{mg} / 10$	23	1.8	3.2	06/03	1.0	10/07
Tot, diss. org. carbon	$\mathrm{mg} / 10$	16	6.9	13.3	10/01	3.7	22/04
Ammoniacal nitrogen	$\mathrm{mg} / \mathrm{IN}$	35	0.085	0.210	17/06	0.020	06/03
Nitrite	mg / N	35	0.074	0.330	04/11	0.030	11/04
Nitrate	$m g / \mathrm{N}$	35	5.49	9.60	04/11	4.06	25/07
Chloride	$\mathrm{mg} / \mathrm{Cl}$	26	22.8	31.1	10/01	18.0	10/10
Total alkalinity	$\mathrm{mg} / \mathrm{CaCO} 3$	22 ,	234.6	258.0	04/02	168.0	10/01
Orthophosphate	mg / P	34	0.392	0.800	28/08	0.150	10/10
Silica	$\mathrm{mg} / \mathrm{l} \mathrm{SiO}_{2}$	20	9.86	12.90	04/12	3.530	22/04

1991
Flow measurement station : 042010 - Highbridge C.A. $\left(\mathrm{km}^{2}\right): 360.0 \quad$ NGR : 41 (SU) 467213

Period of record: 1980-1990							
Mean	Percentiles			Quarterty averagea			
	5\%	50\%	95\%	J-M	A.J	J.S	O-D
11.4	5.0	11.0	18.0	7.7	12.9	16.0	10.0
8.1	7.7	8.1	8.4	8.0	8.1	8.2	8.0
11.5	2.3	7.1	34.2	28.4	9.6	4.8	10.2
1.9	0.9	1.9	3.3	2.1	2.2	1.5	1.9
7.3	4.0	6.7	13.6	7.0	6.9	7.0	8.0
0.11	0.01	0.09	0.28	0.15	0.08	0.06	0.12
0.06	0.03	0.05	0.11	0.04	0.05	0.06	0.07
5.1	3.9	5.2	6.2	5.5	5.2	4.6	5.1
21.5	17.7	21.0	26.7	22.0	20.8	20.8	22.2
235.5	200.0	235.0	259.9	240.4	231.4	233.9	231.7
0.41	0.14	0.40	0.74	0.36	0.36	0.44	0.50
10.24	5.43	10.70	12.50	10.43	7.65	10.96	11.65

Stour at Hurn Court School

Harmonised mon Measuring author	$\begin{aligned} & \text { station } \\ & \text { RA-W } \end{aligned}$	NGR :	(SZ)	$\begin{array}{r} 0820 \\ 12295 \end{array}$				Flow C. A. k	$\begin{aligned} & \text { asure } \\ & 7 \end{aligned}$	ment 73.0	ation	04300 NGR:	$\begin{aligned} & \text { Thro } \\ & 0(\$ Z) \end{aligned}$	op Mill 11395	
				199						Partod of	record:	1975-1			
Determinand	Units	Samples	Mean	Max.	Date	Min.	Date	Mean		Porcenti			Quartert	avera	
									5\%	50\%	95\%	J-M	A.J	$. \mathrm{J}-\mathrm{s}$	O-D
Temperature	${ }^{\circ} \mathrm{C}$	31	10.4	17.6	02/08	4.0	14/01	11.1	4.0	10.8	19.0	6.8	12.7	16.9	8.4
pH	pH units	55	8.0	8.3	29/04	7.0	16/05	7.9	7.5	7.9	8.5	7.9	8.1	8.0	7.8
Suspended solids	mg / l	55(3)	10.3	43.0	11/03	2.0	21/06	16.0	3.0	8.9	54.0	18.8	10.3	9.6	21.4
Dissolved oxygen	mg / O	28	10.59	13.80	22/01	8.00	18/09	10.5	8.1	10.2	13.2	10.6	11.3	9.4	10.7
800 (inhibited)	$\mathrm{mg} / 10$	$54(2)$	2.4	6.5	06/06	1.0	22/07	2.9	1.1	2.3	7.3	2.4	4.0	2.0	2.8
Ammoniacal nitrogen	mg/l N	55 (17)	0.071	0.230	07/04	0.020	14/01	0.18	0.02	0.14	0.40	0.22	0.16	0.12	0.21
Nitrite	mg / N	55 (1)	0.083	0.380	19/06	0.010	19/03	0.09	0.03	0.08	0.19	0.06	0.11	0.11	0.09
Nitrate	mg / N	55	6.70	13.80	09/01	4.30	18/09	5.5	2.7	5.4	8.5	6.4	5.2	4.4	6.2
Chloride	mghl Cl	54 54,	32.5 0.346	74.0 0.840	22/05	27.0	19/03	27.1	20.0	28.0	38.0	25.6	25.8	28.7	29.9
Orthophosphate Magnesium		$54{ }^{16}$ (1)	0.346 3.21	0.840 4.28	10/09	0.030 203	29/08	0.41	0.10	0.36	1.03	0.25	0.30	0.69	0.51
Magnesium	$\mathrm{mg}_{\mathrm{mg} / \mathrm{Mg}}^{\mathrm{mg}}$	16	3.21 4.36	4.28 7.70	$22 / 01$ $02 / 07$	2.03 1.80	$06 / 06$ $06 / 06$	4.1 5.6	2.7	3.7 5.1	6.0	4.1	4.1	3.4	4.3
Potassium	mg/k	17	4.36	7.70	02/07	1.80	06/06	5.6	2.9	5.1	9.1	4.8	4.3	5.1	7.0

Axe at Whitford Road Bridge

Harmonised moni Measuring authori	station nu NRA-SW	umber : NGR	$(S Y)$	$\begin{array}{r} 0900 \\ 26295 \end{array}$				Flow C. A. (k	$\begin{aligned} & \text { suren } \\ & : 28 \end{aligned}$	ment st 38.5	tation :	04500 NGR :	$\begin{aligned} & \text { - Whitf } \\ & 0(S Y) 2 \end{aligned}$	$\begin{aligned} & \text { tford } \\ & 26295 \end{aligned}$	
				199						Period of	f record	1974.1		;	
Determinand	Units	Samples	Mean	Max.	Date	Min.	Oate	Mean	5\%	Percent 50\%	iles 95\%	J-M	Quartarly A.J.	y averag J.S	0.0
Temperature	${ }^{*} \mathrm{C}$	27	9.6	18.0	01/08	1.0	12/02	10.9	4.0	10.5	18.5	5.9	12.3	16.0	8.9
	pH units	29	8.0	8.8	15/05	7.1	03/01	7.9	7.4	8.0	8.5	7.8	8.1	8.0	7.8
Conductivity	$\mu \mathrm{S} / \mathrm{cm}$	29	386	455	12/02	334	25/06	385	304	392	452	372	390	412	376
Suspended solids	mg / l	29	17.2	30.0	25/06	2.0	14/08	14.1	2.1	5.9	45.0	17.2	9.7	5.8	23.4
Dissolved oxygen	$\mathrm{mg} / \mathrm{I} 0$	27	11.36	14.60	15/05	6.70	14/08	10.9	8.3	10.8	13.5	12.0	11.2	9.8	10.6
BOD (inhibited)	mg / O	$29(4)$	1.8	3.0	15/05	0.8	18/01	2.1	0.8	1.7	4.4	2.1	2.2	1.7	2.2
Tot. diss. arg. carbon	mg/l 0	29	9.9	23.7	25/06	2.4	12/02	12.9	4.2	11.2	25.6	11.4	12.4	11.4	15.7
Ammoniacal nitrogen	mg / N	29 (2)	0.075	0.220	18/01	0.010	26/04	0.10	0.01	0.06	0.31	0.16	0.08	0.06	0.12
Nitrite	mg / N	29 (1)	0.052	0.169	15/07	0.005	26/04	0.05	0.02	0.04	0.10	0.04	0.05	0.03	0.05
Nitrate	mg / N	29	4.75	10.00	03/01	3.00	29/08	3.8	2.1	3.4	5.8	4.3	3.4	3.1	4.5
Chloride	$\mathrm{mg} / \mathrm{lCl}^{\mathrm{mg} / \mathrm{CaCO}_{3}}$	29	29.5 133.5	46.2 .1720	12/02	22.5	25/06	23.5	19.0	23.0	30.5	24.3	21.4	23.4	24.6
Total alkalinity Orthophosphate	$\mathrm{mg}_{\mathrm{mg} / \mathrm{l} \mathrm{CaCO}}^{3} \mathrm{P}$	2911	133.5 0.261	172.0 0.530	06/09 $12 / 02$	78.0 0.010	$03 / 01$ $25 / 06$	135.9 0.26	89.0 0.12	140.0 0.23	168.0 0.45	120.2	144.2 0.26	153.3 0.33	127.0 0.24
Silica	$\mathrm{mg} / \mathrm{l} \mathrm{SiO}_{2}$	29	9.86	12.50	17/12	0.800	15/05	9.44	4.40	9.85	12.71	9.12	7.47	10.21	10.24
Sulphate	$\mathrm{mg} / \mathrm{SO} \mathrm{SO}_{4}$	29	35.85	53.70	19/:1	12.00	25/06	33.6	23.4	34.2	42.1	31.9	32.2	35.0	34.8
Calcium	$\mathrm{mg} / \mathrm{Ca}$	29	66.2	83.2	29/08	53.5	03/01	62.4	44.0	63.5	77.0	57.3	63.8	69.7	59.4
Magnesium	$\mathrm{mg} / \mathrm{Mg}$	29	6.56	8.20	01/08	5.10	25/06	6.1	4.7	6.0	7.2	6.1	6.0	6.1	6.1
Potassium	mg/l K	29	3.86	5.60	01/10	2.50	15/05	4.2	3.0	3.9	6.6	4.2	3.8	4.2	4.7
Sodium	$\mathrm{mm} / \mathrm{l} \mathrm{Na}$	29	15.9	21.8	06/09	12.3	25/06	13.0	10.3	12.7	17.1	13.1	12.7	13.6	13.0

Tamar at Gunnislake Newbridge
Harmonised monitoring station number : 09017
Measuring suthority : NRA-SW NGR: 20 (SX) 433722

Doterminand Temperature pH Conductivity Susponded solids Dissolved oxygen BOD (inhibited) Tot. tists. org. carbon Ammoniacal nitrogan Nitrite Nitrito Criboride Total alkslinity Orthophosphate Silica Sulphate Calcium Magnesium Potassium Sodium

Units	1991					
	Samples	Mean	Max.	Date	Min.	Date
${ }^{\circ} \mathrm{C}$	28	10.7	17.5	05/09	1.5	12/12
pH units	25	7.5	7.7	12/12	7.2	23/01
$\mu \mathrm{S} / \mathrm{cm}$	25	198	234	11/04	163	05/03
mg / l	25 (1)	14.7	127.0	05/03	1.0	29/08
mg/l 0	25	10.86	18.20	23/01	8.30	05/09
$\mathrm{mg} / \mathrm{l} 0$	25 (2)	1.6	4.5	09/10	0.7	14/03
mg / O	24	4.9	21.3	09/10	2.0	23/01
$\mathrm{mg} / \mathrm{l} \mathrm{N}$	25 (3)	0.058	0.260	05/03	0.010	15/04
mg / N	25 (1)	0.022	0.070	05/03	0.010	15/04
mg / N	24	2.85	4.10	23/01	0.40	03/06
$\mathrm{mg} / \mathrm{ll}$	25	25.6	30.8	09/10	22.0	12/12
$\mathrm{mg} / \mathrm{CaCO} \mathrm{Ca}_{3}$	25	32.9	43.0	07/08	23.0	04/02
mg / P	25	0.067	0.120	05/03	0.020	14/03
$\mathrm{mg} / \mathrm{ASiO}$	25	4.69	6.40	04/12	2.100	29/08
$\mathrm{mg} / 1 \mathrm{SO}_{4}$	25	15.80	22.00	18/06	11.20	03/01
$\mathrm{mg} / \mathrm{Ca}$	25	17.7	21.0	12/11	14.0	05/03
$\mathrm{mg} / \mathrm{IMg}$	25	4.76	5.90	09/10	3.40	05/03
mg / K	25	2.86	5.40	09/10	2.00	23/01
$\mathrm{mg} / \mathrm{l} \mathrm{Na}$	25	13.5	16.4	17/09	10.0	14/03

Flow measurement station : 047001-Gunnislake C. A. $\left(\mathrm{km}^{2}\right): 916.9$

Period of record: 1975-1990							
Mean	Percentiles			Quarterty averages			
	5\%		95×	J-M	A-J	J. 5	0.0
11.3	4.9	11.0	19.0	7.0	12.6	16.3	9.5
7.4	6.8	7.4	8.1	7.2	7.5	7.5	7.2
181	140	180	233	168	185	199	177
24.9	2.0	6.9	112.7	31.8	11.9	12.5	41.1
10.8	8.7	10.7	12.5	11.7	10.5	9.5	10.8
2.1	0.8	2.0	4.8	2.2	2.1	1.9	2.5
10.9	4.1	9.1	24.5	9.0	10.6	10.9	12.8
0.08	0.01	0.05	0.24	0.10	0.06	0.06	0.10
0.03	0.01	0.02	0.06	0.03	0.02	0.02	0.03
2.6	1.5	2.5	4.1	3.2	2.6	2.1	2.8
22.7	18.0	22.0	29.0	23.3	21.7	22.8	23.5
36.4	22.9	35.0	53.0	30.4	40.0	42.8	33.4
0.09	0.03	0.07	0.16	0.06	0.08	0.11	0.09
4.79	1.30	5.10	6.70	5.07	3.88	4.57	5.60
15.6	11.0	15.6	21.0	14.9	16.6	17.1	15.3
17.3	14.0	17.5	22.0	16.7	17.4	18.5	16.9
4.8	3.4	4.7	6.5	4.3	5.0	5.4	4.6
3.2	1.9	3.0	5.3	2.7	2.9	4.0	3.5
12.4	9.4	12.2	15.7	12.2	12.4	13.3	12.3

Exe at Thorverton Road Bridge

Harmonised monitoring station number: 09036
Measuring authority : NRA-SW NGR:21(SS) 936016
Determinand

Tamperature
pH
Conductivity
Suspended solids
Dissolved oxygen
BOD linhibited)
Tot, diss. org, carbon
Ammoniscal nitrogen
Nitrite
Nitate
Chloride
Total alkalinity
Orthophosphate
Sillica
Sulphate
Calcium
Magnesium
Potasium
Sodium

Units	1991					
	Samplea *	Mean	Max.	Date	Min.	Date
${ }^{\circ} \mathrm{C}$	28	10.1	18.5	06/09	1.0	11/02
pH units	29	7.5	7.8	28/11	7.0	11/01
$\mu \mathrm{S} / \mathrm{cm}$	29	171	238	21/06	132	02/08
mg / l	29	10.2	68.0	09/10	1.0	22/09
$\mathrm{mg} / 10$	28	10.82	14.60	12/12	8.60	14/08
mg / O	29	1.9	4.1	30/10	0.6	14/08
mg / O	25	6.2	15.1	30/10	1.8	17/01
mg / N	29 (2)	0.051	0.113	09/10	0.010	09/04
mg / N	29 (1)	0.026	0.083	21/06	0.001	07/08
mg/in	29	2.75	7.10	11/02	1.70	25/06
$\mathrm{mg} / \mathrm{Cl}$	29	19.6	26.8	17/01	14.6	02/08
$\mathrm{mg} / \mathrm{CaCO}_{3}$	29	35.9	52.0	10/06	23.0	11/01
$\mathrm{mg} / \mathrm{l} P$	29	0.098	0.270	25/06	0.040	11/01
$\mathrm{mg} / \mathrm{SiO}$	29	4.08	5.60	05/12	1.300	13/05
$\mathrm{mg}_{\mathrm{g}} \mathrm{SO}_{4}$	29	15.11	40.20	22/09	7.30	07/08
$\mathrm{mg} / \mathrm{l} \mathrm{Ca}$	29	16.5	22.5	10/06	12.5	01/10
$\mathrm{mg} / \mathrm{llg}$	29	3.98	5.20	10/06	3.10	01/10
mg / K	29	2.00	3.40	27/03	1.00	04/03
$\mathrm{mg} / \mathrm{l} \mathrm{Na}$	29	12.7	26.6	22/09	7.8	02/08

Flow measurement station: 045001-Thorverton
C. A. $\left(\mathrm{km}^{2}\right): 600.9$ NGR : 21 (SS) 936016

Period of record: 1974-1990							
Mean	Percentiles			Quarterty averages			
	5\%	50\%	95\%	J.M	A 3	J-S	O-D
11.0	4.5	10.5	19.0	6.1	12.5	16.5	9.1
7.5	6.9	7.5	8.1	7.4	7.7	7.6	7.4
172	123	164	244	159	185	188	160
12.1	2.0	5.1	44.0	15.5	8.2	6.6	12.6
11.0	8.6	11.2	13.1	12.3	10.9	9.7	11.3
1.8	0.8	1.6	3.3	1.7	2.1	1.6	1.5
7.2	2.6	6.8	13.6	5.7	7.6	8.0	7.1
0.07	0.01	0.05	0.17	0.08	0.07	0.05	0.05
0.02	0.01	0.02	0.05	0.02	0.04	0.03	0.02
2.4	1.4	2.3	3.7	2.9	2.5	2.0	2.4
17.8	13.0	17.0	27.0	17.5	18.0	19.0	16.7
40.3	23.0	38.0	65.1	33.7	46.0	47.5	35.7
0.11	0.03	0.08	0.30	0.07	0.12	0.19	0.08
3.97	1.60	4.20	5.30	4.54	3.09	3.47	4.61
13.7	9.4	13.1	23.3	12.4	14.9	14.8	13.5
16.7	11.6	16.1	24.0	16.0	18.4	17.7	15.0
4.1	2.9	4.0	5.4	3.8	4.5	4.4	3.7
2.1	1.3	1.9	3.6	1.9	2.1	2.4	1.9
10.7	7.1	9.6	19.0	9.4	11.4	13.0	9.9

Dee at Overton

Harmonised monitoring station number : 10002
Moosuring authority : NRA-WEL NGR: 33 (SJ) 354427
Daterminand
Temperatura
pH
Conductivity
Sunpended solids
Distolved oxygen
BOD (inheibited)
Ammoniacal nitrogen
Nitrite
Orthophosphate

Units

${ }^{\mathrm{C}} \mathrm{C}$
pH units
$\mu \mathrm{S} / \mathrm{cm}$
mg / I
$\mathrm{mg} / \mathrm{IO}$
$\mathrm{mg} / \mathrm{IO}$
mg / N
mg / N
mg / P

1991					
Samples	Mean	Max.	Date	Min.	Date
10	10.5	19.0	$14 / 08$	1.5	$19 / 02$
9	7.2	7.5	$03 / 05$	6.9	$04 / 04$
9	188	238	$19 / 02$	90	$04 / 04$
$9(2)$	15.7	65.0	$11 / 11$	1.0	$19 / 02$
10	11.11	13.20	$19 / 02$	9.30	$02 / 07$
$9(2)$	1.8	2.7	$04 / 04$	0.9	$16 / 09$
$10(1)$	0.063	0.280	$16 / 09$	0.010	$11 / 01$
10	0.018	0.036	$14 / 08$	0.008	$11 / 01$
$9(2)$	0.047	0.080	$02 / 07$	0.020	$11 / 01$

Harmonised monitoring station number: 10027
Measuring authority : NAA-WEL. NGR: 22 (SN) 238161
Oeterminand

Temperature
pH
Conductivity
Susponded solids
Dissolvod oxygen
BOD (inhibited)
Ammoniacul nitrogen
Nitrite
Orthophosphate

Units	Samplet	Mean	Max.	Date	Min.	Date
${ }^{\circ} \mathrm{C}$	20	9.3	18.0	20/08	3.0	11/02
pH units	20	7.4	7.9	13/05	6.4	11/02
$\mu \mathrm{S} / \mathrm{cm}$	11	177	211	17/06	147	11/11
mg / l	20 (2)	14.8	67.0	08/03	3.0	08/05
$\mathrm{mg} / 10$	20	10.65	13.10	11/02	9.30	01/11
$\mathrm{mg} / 10$	20	1.8	3.8	21/02	0.7	15/04
$\mathrm{mg} / \mathrm{IN}$	20 (1)	0.139	0.660	21/02	0.010	15/04
mg / l	20	0.032	0.071	13/09	0.014	08/05
mg / P	11 (1)	0.161	0.380	17/06	0.030	11/03

Flow measurement station : 060003-Clog-y-fran
C. A. $\left(\mathrm{km}^{2}\right)$: 217.3 NGR : 22 (SN) 238160

Mean	Percentiles			Quarterty averages			
	5\%	50\%	95\%	J.M	A-J	J.S	0.0
10.5	4.0	10.0	17.5	6.5	11.9	14.8	8.6
7.4	6.9	7.4	7.9	7.3	7.5	7.5	7.2
169	115	158	248	145	179	200	151
16.4	1.9	6.2	60.0	26.1	8.3	10.9	21.0
10.3	7.5	10.5	12.7	10.8	10.6	9.3	10.5
1.8	0.8	1.6	3.6	1.9	2.0	1.6	1.6
0.12	0.02	0.08	0.34	0.17	0.13	0.08	0.12
0.03	0.01	0.03	0.07	0.03	0.03	0.04	0.03
0.13	0.03	0.09	0.41	0.07	0.17	0.23	0.07

Carron at A890 Road Bridge
Harmonised monitoring station number: . 11009
Measuring authority : HRPB NGR: 18 (NG) 938425
Determinand

Temperature
pH
Conductivity
Suspended solids
Dissolved oxygen
BOD finhibitited)
Ammoniacal nitrogen
Nitrite
Nitrate
Charide
Total alkalinity

Units	Samples	Maan	Max.	Date	Min.	Date
${ }^{\circ} \mathrm{C}$	12	7.1	16.0	10/07	-0.1	02/05
pH units	12	6.5	7.5	15/04	6.1	14/08
$\mu \mathrm{S} / \mathrm{cm}$	12	46	67	23/10	33	14/08
mg / l	12 (3)	1.6	6.0	07/06	0.5	10/07
mg/l 0	12	10.92	13.72	12/02	8.13	14/08
mg/l 0	12	1.0	1.5	09/12	0.4	14/08
mg / N	12(2)	0.008	0.026	12/02	0.002	07/03
mg / N	12 (4)	0.001	0.002	10/07	0.001	17/01
mg / N	12	0.07	0.12	12/02	0.03	$10 / 07$
$\mathrm{mg} / \mathrm{Cl}$	11	10.5	16.7	23/10	5.2	14/08
$\mathrm{mg} / \mathrm{CaCO} \mathrm{Ca}_{3}$	12	4.1	7.1	07/06	1.9	14/08

Flow measurement station : 093001-New Kelso C. A. $\left(\mathrm{km}^{2}\right): 137.8$ NGR: 18 (NG) 942429

Period of record: 1979-1990							
Mean	Percentiles			Quarterty averages			
	5\%	50\%	95\%	J-M	A-J	J-S	O.D
8.5	2.5	8.4	15.3	3.8	11.1	13.0	7.1
6.6	5.8	6.6	7.4	6.6	6.7	6.7	6.5
44	28	43	65	50	47	41	39
1.4	0.3	1.0	4.4	1.7	1.1	1.3	1.5
11.3	9.7	11.3	13.0	12.5	10.9	10.2	11.3
0.9	0.3	0.9	1.4	0.9	0.7	0.8	1.0
0.01	0.00	0.01	0.03	0.01	0.01	0.01	0.01
0.01	0.00	0.01	0.01	0.01	0.01	0.01	0.01
0.1	0.0	0.1	0.1	0.1	0.1	0.1	0.0
10.4	5.9	9.6	18.2	14.0	10.6	8.1	9.1
5.8	1.2	5.0	12.5	5.1	6.6	6.2	5.4

Spey at Fochabers
Harmonised monitoring station number :
12002
Measuring authority : NERPB NGR : 38 (NJ) 341596

Units	1991					
	Samples	Mean	Max.	Date	Min.	Date
${ }^{\circ} \mathrm{C}$	7	8.4	16.5	13/08	2.5	06/02
pH units	7	6.5	7.2	06/02	6.0	07/11
$\mu \mathrm{S} / \mathrm{cm}$	7	84	115	06/02	57	07/11
mg/l	71)	2.7	4.0	09/04	0.2	03/12
mg / O	7	11.64	13.72	06/02	10.24	13/08
mg / O	7	0.9	1.2	06/06	0.4	06/02
mgil N	7	0.026	0.051	13/08	0.011	07/11
$\mathrm{mg} / \mathrm{l} \mathrm{N}$	7	0.006	0.009	13/08	0.003	06/02
mg / N	7	0.31	0.58	06/02	0.15	07/11
$\mathrm{mg} / \mathrm{l} \mathrm{Cl}$	7	- 9.3	12.0	06/02	7.0	09/04
$\mathrm{mg} / \mathrm{CaCO}_{3}$	7	17.4	28.0	13/08	8.0	07/11
$\mathrm{mg} / \mathrm{l} P$	7	0.013	0.025	13/08	0.007	09/04
$\mathrm{mg} / \mathrm{SiO} 2$	7	5.62	7.96	06/02	3.700	07/11

Flow measurement station : 008006 - Boat o Brig C.A. $\left(\mathrm{km}^{2}\right)$: 2861.2 NGR : 38 (NJ) 318518

Period of record: 1975-1990							
Mean	Percentiles			Quarterty averages			
	5\%	50\%	95\%	J.M	A-J	J.S	$0 \cdot 0$
9.6	2.0	11.0	18.0	3.5	10.1	15.1	6.4
7.2	6.5	7.2	7.8	6.9	7.2	7.4	7.0
76	50	76	100	78	71	85	72
4.0	0.1	2.0	18.0	3.3	4.0	3.6	3.7
11.4	9.3	11.3	13.5	12.7	11.1	10.0	11.8
0.9	0.4	0.9	1.5	0.8	1.0	0.9	0.8
0.04	0.00	0.02	0.11	0.02	0.04	0.04	0.03
0.01	0.00	0.01	0.01	0.01	0.01	0.01	0.01
0.3	0.2	0.3	0.6	0.4	0.3	0.3	0.3
10.4	6.0	10.0	15.0	11.9	10.0	10.4	9.2
25.2	14.0	25.0	35.0	22.6	24.1	29.2	25.9
0.02	0.00	0.01	0.08	0.02	0.02	0.03	0.02
5.80	3.66	5.73	7.53	5.21	4.80	5.55	6.14

Almond at Craigiehall

Harmonised monitoring station number : 14008
Measuring authority : FRPB NGR : 36 (NT) 165752

```
Determinand
```


'pH

```
Conductivity
Suspended solids
DOD
BOD (inhibited) Ammoniacal nitrogen
Nitrite
Nitrete
Total alkalinity
Orthophosphate Sulphate
```


Flow measurement station : 019001 - Craigiehall C.A. (km²) : $369.0 \quad$ NGR: 36 (NT) 165752

Period of record: 1975-1990							
Mean	Porcentilas			Quarterty averages			
	5\%	50\%	95\%	J-M	A-J		0.0
7.6	7.1	7.6	8.0	7.4	7.7	7.6	7.5
610	320	600	900	512	705	669	522
20.7	3.0	10.0	62.9	34.3	10.0	13.6	26.2
9.1	5.3	9.5	12.1	11.2	9.0	7.3	9.6
3.3	1.6	2.8	6.7	3.2	3.7	3.1	3.1
1.24	0.24	0.93	3.10	1.19	1.54	1.14	0.94
0.28	0.03	0.15	0.85	0.14	0.36	0.47	0.15
3.8	2.1	3.7	5.9	3.5	4.1	3.9	3.7
121.7	60.0	124.0	180.0	98.3	141.8	132.8	104.8
0.78	0.09	0.47	2.10	0.25	1.00	1.32	0.43
127.5	56.1	130.5	202.0	106.9	141.1	147.0	117.2

Tweed at Norham

Harmonised monitoring station number: 15001
Measuring authority: TWRPB NGR: 36 (NT) 898477

Determinand	Units	1991					
		Samples	Mean	Max.	Date	Min.	Date
Temperature	${ }^{\circ} \mathrm{C}$	12	9.9	18.5	17/07	0.5	12/12
pH	pH units	12	8.0	9.1	17/07	7.1	20/11
Conductivity	$\mu \mathrm{S} / \mathrm{cm}$	12	245	353	20/02	166	20/03
Suspended solids	mg/l	12	8.0	43.0	20/02	1.0	23/10
Dissolved oxygen	$\mathrm{mg} / \mathrm{l} 0$	12	11.87	14.60	17/07	10.00	28/08
BOD (inhibited)	$\mathrm{mg} / \mathrm{l} 0$	12	2.2	3.8	18/09	1.3	19/06
Arrmoniacal nitrogen	$\mathrm{mg} / \mathrm{IN}$	12	0.071	0.160	20/11	0.010	23/05
Nitrite	mg / N	12	0.015	0.025	20/02	0.005	17/07
Nitrate	$\mathrm{mg} / \mathrm{IN}$	12	2.09	5.95	20/02	1.05	28/08
Chloride	$\mathrm{mg} / \mathrm{l} \mathrm{Cl}$	12	17.8	30.5	20/02	11.5	20/03
Orthophosphate	mg / l P	11	0.059	0.110	18/09	0.010	23/05

1991
Flow measurement station : 021009 - Norham
C.A. $\left(\mathrm{km}^{2}\right): 4390.0 \quad$ NGR: 36 (NT) 898477

Period of record: 1975-1990							
Mean	Percentloz			Quarterty averages			
	5\%	50\%	95\%	J-M	A.J	J-S	O-D
10.1	2.5	9.5	20.0	4.4	13.3	16.1	6.4
8.0	7.1	7.9	9.4	7.6	8.3	8.5	7.7
236	169	225	292	232	235	224	235
9.9	1.1	4.9	32.0	16.0	5.0	7.8	10.1
11.6	9.0	11.4	15.3	12.0	11.6	11.5	11.4
2.3	1.0	2.2	4.2	2.2	2.5	2.6	1.9
0.09	0.03	0.08	0.16	0.11	0.08	0.08	0.09
0.02	0.01	0.01	0.05	0.02	0.02	0.02	0.02
1.7	0.8	1.7	3.4	2.5	1.8	1.1	1.8
16.1	10.5	15.8	22.5	17.3	18.5	15.7	15.0
0.15	0.02	0.08	0.43	0.15	0.13	0.16	0.15

Harmonised monitoring station number : 16005
Measuring authority: SRPB NGR: 25 (NX) 733642
Oeterminand

Tempersture
pH
Conductivity
Suspended solids
Dissolved oxygen
BOD (inhibitited
Ammoniacal nitrogen
Nitrate
Chlorido
Orthophosphate
Silics
Sulphote
Calcium
Magnasium
Potassium
Sodium

Unit

| | |
| :--- | :--- | :--- | :--- | :--- |
| Samples Mean Max. Date Min. Date | |

${ }^{\circ} \mathrm{C}$	13	10.5	21.0	02/09	2.0	01/02
pH units	13	6.6	6.9	01/05	6.4	01/02
$\mu \mathrm{S} / \mathrm{cm}$	13	57	86	01/11	47	01/08
mg/l	13	2.5	6.0	01/08	1.0	03/04
mg / O	12	11.17	13.20	01/02	9.20	01/07
$\mathrm{mg} / 10$	13	2.2	3.2	03/01	0.8	01/08
$\mathrm{mg} / \mathrm{l} \mathrm{N}$	13	0.053	0.190	01/10	0.020	01/03
mg / N	13	0.35	0.67	03/01	0.05	02/09
$\mathrm{mg} / \mathrm{ll} \mathrm{Cl}$	13	9.7	13.8	01/11	6.5	01/08
mg/l P	13	0.007	0.039	01/11	0.001	03/06
$\mathrm{mg} / \mathrm{SiO}$	13	1.81	2.70	01/03	0.100	02/09
$\mathrm{mg} / \mathrm{SO} \mathrm{SO}_{4}$	13	5.03	7.33	01/11	4.22	02/09
$\mathrm{mg} / \mathrm{Ca}$	13	3.3	5.0	01/11	2.6	03/04
$\mathrm{mg} / \mathrm{Mg}$	13	1.41	2.14	01/11	1.16	03/04
mg / K	13	0.62	1.45	01/11	0.36	01/08
$\mathrm{mg} / \mathrm{l} \mathrm{No}$	13	5.6	7.3	01/11	4.4	01/08

Flow measurement station : 080002-Glenlochar C.A. $\left(\mathrm{km}^{2}\right): 809.0$ NGR: 25 (NX) 733641

Period of record: 1975-1990							
Moan				Quarterty averages			
				J-M	A.J	J.S	O-D
10.0	2.0	9.0	20.0	3.6	11.4	16.7	8.3
6.7	6.2	6.7	7.3	6.6	6.7	6.9	6.6
62	40	55	78	55	59	67	60
3.5	1.0	2.0	8.0	5.1	3.6	2.5	2.7
10.9	8.7	11.0	13.1	12.4	11.1	9.5	10.7
1.9	1.0	1.9	3.1	2.1	1.8	1.7	1.9
0.06	0.01	0.04	0.15	0.06	0.06	0.07	0.05
0.3	0.1	0.3	0.7	0.5	0.3	0.2	0
9.1	5.0	9.0	13.8	9.6	9.6	8.9	8.4
0.01	0.00	0.01	0.04	0.01	0.01	0.02	0.01
2.32	0.40	2.30	4.40	3.38	1.67	1.30	2.99
5.6	2.1	5.4	10.2	5.6	5.3	5.8	6.5
4.0	2.4	3.3	6.0	3.5	3.5	4.8	3.8
1.5	0.7	1.4	2.2	1.4	1.5	1.5	1.4
0.5	0.3	0.5	0.8	0.6	0.5	0.5	0.
5.0	3.4	5.0	7.0	5.3	5.3	4.8	4.

Leven at Renton Footbridge
Harmonised monitoring station number : Measuring authority : CRIPB

NGR : 26 (NS) 389783

Detorminand

Temperature

pH
Concluctivity
Sunpended solids
BIssolvod oxygen
Ammoniacal nitrogen
Nitrate
Total alkalinity
Orthophosphate

Units	1991					
	Samples	Moan	Max.	Date	Min.	Date
${ }^{*} \mathrm{C}$	17	10.4	17.0	22/07	3.0	13/02
pH units	10	7.2	7.5	11/06	6.9	25/01
$\mu \mathrm{S} / \mathrm{cm}$	10	68	78	13/02	58	07/11
mg/l	19	2.4	6.0	19/03	1.0	19/02
$\mathrm{mg} / 10$	10	11.16	13.00	13/02	9.30	22/07
$\mathrm{mg} / 10$	10	2.5	3.9	13/02	1.0	20/08
mg / l	10(1)	0.054	0.160	22/07	0.010	11/06
mg / l	9	0.32	0.98	22/07	0.10	11/06
$\mathrm{mg} / \mathrm{CaCO} \mathrm{Ca}_{3}$	10	13.8	24.0	19/04	11.0	25/01
mg / P P	18 (3)	0.007	0.025	10/04	0.002	17/07

Flow measurement station : 085001 - Linnbrane C. A. (km²) : 784.3 NGR : 26 (NS) 394803

Period of record; 1975-1990							
Mean	Percentiles			Quarterty averages			
	5\%	50\%	95\%	J.M	A-J	J-S	O.D
9.5	3.0	9.0	17.0	4.0	11.0	14.9	8.3
7.1	6.7	7.1	7.5	7.0	7.2	7.1	7.0
72	60	69	95	72	73	71	72
4.9	1.0	4.0	13.0	7.0	3.9	4.0	4.4
10.9	9.3	11.0	12.6	12.3	11.3	9.7	10.7
1.7	0.9	1.8	2.9	2.1	2.1	1.4	1.6
0.05	0.01	0.02	0.20	0.05	0.05	0.05	0.04
0.3	0.1	0.3	0.5	0.4	0.3	0.2	0.3
16.3	10.0	16.0	22.0	15.1	16.4	16.8	16.6
0.02	0.00	0.01	0.05	0.02	0.02	0.02	0.02

Ballinderry at Ballinderry Bridge

DOE Northern Irel Measuring author	ation num OEN	NGR :	$(1 H)$	$\begin{aligned} & 93 / 07 / \\ & 92779 \end{aligned}$	10001			Flow C.A. k	asures	ment st 9.5	ion	301	- Ball 3 (H)	$\begin{aligned} & \text { derry } \\ & 2675 \end{aligned}$	
				199						Period of	record	4-19			
Determinand	Units	Samples	Mean	Max.	Date	Min.	Date	Mean	5\%	$\begin{aligned} & \text { Percentil } \\ & 50 \% \end{aligned}$	95\%	J.M	Ouarterl A.J	$\begin{gathered} \text { evera } \\ \text { J.S } \end{gathered}$	O.D
Tomperaturo	${ }^{\circ} \mathrm{C}$	24	10.0	18.0	31/07	3.0	07/01	9.8	3.0	10.0	17.0	5.0	12.0	14.9	8.1
pH	pH units	24	8.0	8.7	17/05	7.4	26/11	7.7	7.3	7.7	8.3	7.6	7.9	7.8	7.6
Conductivity	$\mu \mathrm{S} / \mathrm{cm}$	24	325	400	29/08	206	07/02	305	215	303	375	278	326	336	292
Suspended aolids	mg / l	24 (1)	8.1	78.0	02/07	2.0	12/10	9.3	2.0	6.0	30.0	12.6	7.1	7.0	10.1
Oissolved oxygen	$\mathrm{mg} / 10$	24	11.6	15.90	17/05	8.10	$31 / 07$	9.9	6.7	10.0	12.5	11.2	9.7	8.5	10.4
BOD (inhibited)	$\mathrm{mg} / \mathrm{l} 0$	24 (1)	2.4	5.2	02/07	1.0	27/09	2.4	1.0	2.0	4.2	2.6	2.7	2.2	2.1
Ammoniacal nitrogen	$\mathrm{mg} / \mathrm{l} \mathrm{N}$	24 (3)	0.220	0.750	06/03	0.040	16/07	0.26	0.04	0.20	0.53	0.35	0.27	0.17	0.24
Nitrito	mg / N	24 (1)	0.06	0.15	14/08	0.05	07/01	0.05	0.02	0.04	0.13	0.03	0.05	0.06	0.05
Chioride	$\mathrm{mg} / \mathrm{lCl}$	24	22.0	27.0	07/01	16.0	02/07	18.8	11.0	18.0	26.0	19.1	18.9	19.5	18.0
Orthophosphate	mg / P	24	0.20	0.64	02/07	0.05	07/01	0.23	0.07	0.20	0.50	0.14	0.18	0.34	0.20

Lagan at Shaws Bridge

Flow measurement station : 205004 - Newforge C.A. $\left(\mathrm{km}^{2}\right)$: 490.4 NGR : 33 (IJ) 329693

Mean	Percentilea			- Quarterty averages			
	5\%	50\%	95\%	J-M	A.J	J-S	O-D
10.5	4.0	10.5	17.0	5.2	12.8	15.5	8.2
7.6	7.2	7.6	8.0	7.6	7.6	7.5	7.5
425	278	407	601	376	445	522	385
13.1	2.0	7.0	41.0	15.3	8.4	7.2	16.8
9.4	3.5	9.8	13.4	12.1	9.4	5.7	10.7
3.4	1.3	3.0	7.0	2.9	4.2	3.5	3.1
0.91	0.17	0.60	2.40	0.71	0.97	1.61	0.90
0.20	0.02	0.12	0.50	0.10	0.23	0.36	0.10
40.9	21.0	37.0	68.0	35.4	42.3	44.2	33.7
0.92	0.11	0.68	2.30	0.32	1.14	1.33	0.64

DIRECTORY OF MEASURING AUTHORITIES

	Address	Code
National Rivers Authority	Rivers House, Waterside Drive, Aztec West, Almondsbury, Bristol BS12 4UD	NRA

NRA Regional Headquarters

Anglian	Kingfisher House, Goldhay Way, Orton Goldhay, Peterborough PE2 5ZR	NRA-A
Northumbria	Eldon House, Regent Centre, Gosforth, Newcastle-upon-Tyne NE3 3UD	NRA-N
North West	Richard Fairclough House, PO Box 12, Knutsford Rd, Warrington WA4 1HG Sapphire East, 550 Streetsbrook Road, Solihull B91 1QT Guildbourne House, Chatsworth Road, Worthing, West Sussex BN11 1LD	NRA-NW
Severn-Trent	Manley House, Kestrel Way, Sowton Industrial Estate, Exeter EX2 7LQ	NRA-ST
Southern	Kings Meadow House, Kings Meadow Road, Reading RG1 8DQ	NRA-T
South West	Rivers House/Plas-yr-Afon, Thames St Mellons Business Park, St Mellons, Cardiff CF3 0LT	NRA-SW
Welsh	Rivers House, East Quay, Bridgwater TA6 4YS	NRA-WEL
Wessex	Rivers House, 21 Park Square South,	NRA-w
Yorkshire	Leeds LS1 2QG	NRA-Y

River Purification Boards

Clyde River Purification Board

Forth River Purification Board

Highland River Purification Board
North East River Purification Board

Solway River Purification Board

Rivers House, Murray Road,	CRPB
East Kilbride, Glasgow G75 0LA	
Clearwater House,	FRPB
Heriot Watt Research Park,	
Avenue North, Riccarton,	
Edinburgh EH14 4AP.	HRPB
Strathpeffer Road,	
Dingwall IV15 9QY	NERPB
Greyhope House, Greyhope Road, Torry, Aberdeen AB1 3RD Rivers House, Irongray Road, Dumfries DG2 0JE	SRPB

Tay River Purification	1, South Street,	TRPB
Board	Perth PH2 8NJ	
Tweed River Purification	Burnbrae, Mossilee Road,	TWRP
Board	Galashiels TD1 1NF	

Other measuring authorities

Borders Regional Council
(Directorate of Water
and Drainage Services)
Corby (Northants) and
District Water Company
Department of the
Environment for Northern
Ireland
Dumfries and Galloway
Regional Council
(Department of Water
and Sewerage)
Essex Water Company
Geological Survey of
Northern Ireland
Grampian Regional Council
(Water Services
Department)
Highland Regional Council
(Water Department)
Institute of Hydrology
Lothian Regional Council
(Department of Water
and Drainage)
Newcastle and Gateshead
Water Plc
North West Water
Scottish Hydro-Electric Plc
Southern Water
Strathclyde Regional
Council (Water Department)
Tayside Regional Council
(Water Services Department)
Yorkshire Water
West Grove, Waverley Road, BRWD
Melrose TD6 9SJ Melrose TD6 9SJ

Geddington Road, Corby, CDWC Northants NN18 8ES
Water Service, Northland House, DOEN
3 Frederick Street, Belfast BT1 2NS
Environmental Protection Division, Calvert House, 23 Castle Place, Belfast BT1 1FY
Marchmount House, Marchmount, DGRW Dumfries DG1 1PW

Hall Street, Chelmsford CM2 OHH EWC
20 College Gardens, GSNI
Belfast BT9 6BS
Woodhill House, GRWD
Westburn Road, Aberdeen AB9 2LU
Regional Buildings, Glenurquhart Road, HRCW Inverness IV3 5NX
Maclean Building, Wallingford OX 10 8BB IH
6 Cockburn Street, LRWD
Edinburgh EH1 1 NZ

PO Box 10, Allendale Road, NGWC
Newcastle-upon-Tyne NE6 2SW
Dawson House, Liverpool Road, NW
Great Sankey, Warrington
WA5 3LW
16 Rothesay Terrace, SE
Edinburgh EH3 7SE
Southern House, Yeoman Road, SW
Worthing BN13 3NX
419 Balmore Road,
SRCW
Glasgow G22 6NU
Bullion House, Invergowrie, TRWS
Dundee DD2 5BB
2, The Embankment, YW Sovereign Street, Leeds LS1 4B6

PUBLICATIONS - in the Hydrological data UK series

$\left.\begin{array}{lccc}\text { Title } & \text { Published } & \begin{array}{c}\text { Price (inclusive of } \\ \text { second class postage }\end{array} \\ \text { within the UK) }\end{array}\right\}$

Concessionary rates apply to the purchase of two or more of the pre-1988 Yearbooks.

All the Hydrological data UK publications may be obtained from:-

Institute of Hydrology
Maclean Building
WALLINGFORD
OXFORDSHIRE OX10 8BB
Tel: (0491) 38800
Fax: (0491) 32256
Enquiries or comments regarding the series, or individual publications are welcomed and should be directed to the National Water Archive Office at the above address.

1. Hydrometric Register and Statistics 1986-90

This reference volume includes maps, tables and statistics for over 1000 river basins and 150 representative observation boreholes throughout the United Kingdom. The principal objective of the publication is to assist data users in the selection of monitoring sites for particular investigations and to allow more effective interpretation of analyses based upon the raw data. To this end, concise gauging station and catchment descriptions are given for the

[^13]featured flow measurement stations - particular emphasis is placed on hydrometric performance, especially in the high and low flow ranges, and on the net effect of artificial influences on the natural flow regime.

Summary hydrometric statistics, for each of the years 1986-90, are provided alongside the corresponding long term averages, or extremes, to allow the recent variability in surface and groundwater resources to be considered in a suitable historical context.

2. The 1984 Drought

This first, occasional report in the Hydrological data UK series concerns the 1984 drought. The report documents the drought in a water resources framework and its development, duration and severity are examined with particular reference to regional variations in intensity. Assessments are made of the likely frequency of occurrence of the drought and its magnitude is considered in the perspective provided by historical records of rainfall and runoff.

Associated Publications

Representative Basin Catalogue

Data collection for the national Flood Event Archive, maintained by the Institute of Hydrology, concentrates on a selection of basins that form a representative sample of UK catchments. A catalogue providing comprehensive hydrological and reference information for 200 representative basins has been prepared and is available as national (five volumes) or regional sets; user-selected groups of catchments can be provided for particular investigations. Enquiries concerning the cost and availability of the catalogue should be directed to the above address.

Groundwater Level Hydrographs

In 1990 the British Geological Survey launched a series of wallcharts depicting long term variations in groundwater levels. The following are currently available:
i. Long term hydrograph of groundwater levels in the Chilgrove House well in the Chalk of southern England
ii. Long term hydrograph of groundwater levels in the Dalton Holme estate well in the Chalk of Yorkshire

Copies may be obtained from the Wallingford office of the British Geological Survey (address on page 159).

ABBREVIATIONS

Note: The following abbreviations do not purport to represent any standardised usage; they have been developed for use in the Hydrological data UK series of publications only. Where space constraints have required alternative forms of these conventional abbreviations to be used, the meaning should be evident from the context.

AOD	Above Ordnance Datum
Bk	Beck
Blk	Black
Br	Bridge
Brk or B	Brook
Brn	Burn
Ch	Channel
C / m	Current meter(ing)
Com	Common
Dk	Dike
Dr or D	Drain
D / s	Downstream
DWF	Dry weather flow
E	East
Frm	Farm
G / s	Gauging station
Gw	Groundwater
HEP	Hydro-electric power
Ho	House
Hosp	Hospital
L	Loch or lake
Lb	Left hand river bank
	(looking downstream)
Ln	Lane
Lst	Limestone
Ltl	Little
MAF	Mean annual flood
Mkt	Market
Ml / d	Megalitres per day
Mnr	Manor
N	North
Ntch	Notch

NW	North-West
O/f	Outfall or outflow
ORS	Old Red Sandstone
Pk	Park
Pop	Population
POR	Period of record
PS	Pumping station
Pt	Point
PWS	Public water supply
Rb	Right hand river bank
	(looking downstream)
R/c	Racecourse
RCS	Regional communications system
Rd	Road
Res	Reservoir
Rh	Right hand
S	South
SAGS	Stour Augmentation Groundwater
	Scheme
Sch	School
S-D	Stage-discharge relation
SDD	Scottish Development Department
SE	South-East
Sl	Sluice
SOE	The Scottish Office Environment
	Department (previously SDD)
Sp	Spring
St	Stream
STW	Sewage treatment works
SW	South-West
TS	Transfer scheme
US	Ultrasonic gauging station
U/s	Upstream
W	West
W'course	Watercourse
Wd	Wood
Wht	White
Wr	Weir
WRW	Water reclamation works
Wtr	Water
WTW	Water treatment works
SD	

[^0]: Note: Only stations with 20 or more years of data on the River Flow Archive are featured. Some flows are estimated.

[^1]: The National Grid Reference of each station is given in the Concise Register of Gauging Stations

[^2]: $\mathrm{E}=$ estimated
 *Changes to the arrangement of the gauging facilities imply that there is not full equivalence between the pre- and post-1980 flow data. The featured rankings are, however, largely unaffected.

[^3]: \dagger For the IH research catchments, the monthly totals are subsequently updated using areal figures derived from a dense local raingauge network. * As a consequence of leap years the runoff and mean flow percentage may not be identical.

[^4]: * Additional data are held on the flood peak archive (page 137).
 ' Flood Studies Report 1975. Natural Environment Research Council (5 vols.).

[^5]: Station and catchment description
 Lowest station currently operating on the Spey. Cableway rated 65 m wide section with natural control, (limited stability) extreme floods bypass station on left bank. $380 \mathrm{sq} . \mathrm{km}$. developed for hydro-power with diversions and storage; limited net impact on annual runoff (small loss). Mainly granites and Moinian metamorphics. Some Dalradian and a little Old Red Sandstone. Mountain (includes all northern slopes of Cairngorms) moorland, hill grazing and some arable. Forestry.

[^6]: Station and catchment description

[^7]: Station and catchment description
 Ultrasonic station commissioned in 1974; multi-path operation from 1986. Full range. No peak flows pre-1974 when dmfs derived from Teddington weir complex (70 m wide); significant structural improvements since 1883. Some underestimation of pre-195 1 low flows. Baseflow sustained mainly from the Chalk and the Oolites. Runoff decreased by major PWS abstractions - naturalised flows available. Diverse topography, geology and land use which - together with the pattern of water utilisation - has undergone important historical changes.

[^8]: Station and catchment description
 Ultrasonic station commissioned in 1974; multi-path operation from 1986. Full range. No peak fows pre-1974 when dmfs derived from Teddington weir complex (70 m wide); significant structural improvements since 1883 . Some underestimation of pre-195 1 low flows. Baseflow sustained mainly from the Chalk and the Oolites. Runoff decreased by major PWS abstractions - naturalised flows available. Diverse topography.

[^9]: Station and catchment description
 Asymmetrical compound Crump profile weir, checked by current meter. Drowns at flows above 200 cumecs. Low flows maintained by releases from major river regulating res. (Celyn and Brenig). Data prior to February 1970 is poorer quality - based on d/s Erbistock (67002, area: 1040.0 sq. km.) flow record. D/s flood attenuation is notable. Geology is 75% shales, slates, mudstones and palaeozoic grits; 25% extrusive igneous

[^10]: rainfall 81%

[^11]: Sites marked ' **' are indicator wells; well hydrographs are shown in Figure 14. Where the annual percentage recharge cannot be estimated, the entry ' - --' is substituted.

[^12]: * In all cases this refers to the temporal mean rather than the flow-weighted average.

[^13]: *Loose-leaf versions of the Hydrological data UK publications have been discontinued.

