ih
 Hydrological data UK

1988 YEARBOOK

INSTITUTE OF HYDROLOGY•BRITISH GEOLOGICAL SURVEY

HYDROLOGICAL DATA UNITED KINGDOM

1988

YEARBOOK

HYDROLOGICAL DATA UNITED KINGDOM

1988 YEARBOOK

An account of
rainfall, river flows, groundwater
levels and river water quality
January to December 1988

Published by the Institute of Hydrology, Wallingford, Oxon OX10 8BB

ISBN 0948540192

Design: P A Benoist
Graphics: J J Carr
Typeset and printed by Burgess \& Son (Abingdon) Lid.

FOREWORD

The last eighteen months has been a period of major re-organisation for the water industry in England and Wales. The creation, under the Water Act 1989, of a new body - the National Rivers Authority - to assume the regulatory and river management functions of the former regional Water Authorities represents a major new departure. One important thread of continuity is the degree to which the rational development and exploitation of water resources depends on access to hydrological data. Such data underpin operational water management and serve as the raw material which hydrological science uses to develop prediction techniques and design procedures and to support strategic research. The ready availability of basic data - together with information to aid their interpretation - is of particular importance at a time of growing public awareness of water issues. This Yearbook, together with the data retrieval facilities which complement it, is a vehicle for the dissemination of a range of hydrometric data; a principal objective is the promotion of the fullest exploitation of such data across a broad spectrum of applications.

The Hydrological data UK series of Yearbooks and reports was launched in 1985 as a joint venture by the Institute of Hydrology (IH) and the British Geological Survey (BGS); both organisations are component bodies of the Natural Environment Research Council (NERC). Such a collaborative enterprise arose naturally from the close liaison maintained between those responsible for the management of the national Surface Water Archive, at IH, and their counterparts at BGS concerned with the national Groundwater Archive. The work is overseen by a steering committee which includes representatives of Government departments, the National Rivers Authority and the water industry from England, Wales, Scotland and Northern Ireland.

The published series - Hydrological data $U K$ - includes an annual yearbook and, every five years, a catalogue of river flow gauging stations and groundwater level recording sites together with statistical summaries. These six volumes of the 5 -year cycle are available individually but are also designed to be inserted in a ring binder. Further details of these arrangements are given on page 191.

The series - but not the binder - also includes occasional reports dealing with significant hydrological events and analyses.

Professor W.B. Wilkinson Director, Institute of Hydrology

CONTENTS

Page
INTRODUCTION 1
SCOPE AND SOURCES OF INFORMATION 2
Rainfall and climatological data 2
HYDROLOGICAL'REVIEW 3
Summary 3
Rainfall 6
Evaporation and'soil moisture deficits 8
Runoff 10
Groundwater 20
1988 Hydrological diary 23
HYDROLOGICAL ANALYSIS OF THE TRURO FLOODS OF JANUARY AND OCTOBER 1988 27
RIVER FLOW DATA 35
Computation and accuracy of gauged flows 35
Scope of the flow data tabulations 35
Gauging station location map 40
Daily flow tables 42
Monthly fow tables 94
THE SURFACE WATER DATA RETRIEVAL SERVICE 135
List of surface water retrieval options 135
Concise register of gauging stations 146
Summary of archived data 152
GROUNDWATER LEVEL DATA 161
Background 161
The observation borehole network 161
Measurement and recording of groundwater levels 161
Index borehole location map 163
Observation well hydrographs 1985-88 164
Register of selected groundwater observation wells 164
Network changes 164
Hydrographs of groundwater level fluctuations 166
The Register 172
THE GROUNDWATER DATA RETRIEVAL SERVICE 177
List of groundwater retrieval options 177
SURFACE WATER QUALITY DATA 181
Background 181
Data retrieval 181
Scope of the water quality data tabulations 181
Water quality data tables 184
DIRECTORY OF MEASURING AUTHORITIES 188
PUBLICATIONS in the Hydrological data UK series 191
ABBREVIATIONS 192

$$
\curvearrowleft
$$

This volume is the eighth Yearbook in the Hydrological data UK series and the third volume in the second five-year publication cycle (1986-90).

The 1988 Yearbook represents the twenty-ninth edition in the series of surface water publications which began with the 1935-36 Surface Water Yearbook. As a result of the incorporation of groundwater data in the Yearbook, this volume is also the thirteenth edition in the series of groundwater data publications which began with the 1964-66 Groundwater Yearbook.

Apart from summary information, surface water and groundwater data on a national basis were published separately prior to the introduction of the Hydrological data UK series. In common with the earlier editions, the 1988 Yearbook brings together the principal data sets relating to river flow, groundwater levels and areal rainfall throughout the United Kingdom. Also included are water quality data for a selection of monitoring sites throughout the UK.

A description is given of the surface water and groundwater archives together with illustrative examples of a range of standard data retrieval options developed to service user requirements.

A special feature article is devoted to two remarkable flood events which caused considerable damage in Truro (Cornwall). The floods are examined within a hydrological framework and emphasis is placed on the value of historical information when assessing the rarity of such extreme events.

Publication of river flow data for Great Britain started with the series of Surface Water Yearbooks. The first edition, which was published in 1938 for the water year (October-September) 1935-36, also included selected data for the previous fifteen years; the edition for 1936-37 followed in 1939. Both these publications were prepared under the direction of the Inland Water Survey Committee. Assisted by the Scottish Office, the Committee continued to publish hydrological data after the Second World War; the Yearbook for the period 1937-45 was published as a single volume in 1952. Due to economic stringency, the Survey was suspended in 1952 for a period of two years but was then reformed as the Surface Water Survey Centre of Great Britain. A Yearbook covering the years 1945-53 was published in 1955.

In 1964 the Survey was transferred to the Water Resources Board where it remained until the Board was disbanded in 1974. The work of collecting and publishing surface water information in England and Wales then passed to the newly created Water Data Unit of the Department of the Environment (DOE). Yearbooks were published jointly each year by these
organisations and the Scottish Office for the water years 1953-54 to 1965-66; thereafter information for the five calendar years 1966 to 1970 was published in one volume in 1974. Following editions were renamed 'Surface Water: United Kingdom' to mark the inclusion of the first records from Northern Ireland and in recognition of the move away from single year volumes. Two volumes of Surface Water: United Kingdom, covering the years 1971-73 and 1974-76 were published jointly by the Water Data Unit, the Scottish Development Department and the Department of the Environment for Northern Ireland.

Following the transfer of the Surface Water Archive to the Natural Environment Research Council in 1982, the final edition of Surface Water : United Kingdom, for the years 1977-80, was prepared by the Institute of Hydrology at the request of the Water Directorate of the Department of the Environment, and published in 1983.

The 1981 and 1982 Yearbooks were prepared concurrently and were, in 1985, the first Yearbooks published by the Natural Environment Research Council. Further Yearbooks - the editions for 1983, 1984, 1985, 1986 and 1987 - were published over the following four years.

A compilation of 'Groundwater levels in England during 1963', which was produced by the Geological Survey of Great Britain prior to its incorporation into the Institute of Geological Sciences, was the precursor to the publication of groundwater level data on a national basis. The more formal Groundwater Yearbook series was instigated by the Water Resources Board which published the inaugural edition, and a further volume for 1967, both covering England and Wales. In 1975 a third Yearbook, for 1968-70, was published by the Water Data Unit. The Groundwater: United Kingdom series was introduced in 1978 with the production of the 1971-73 volume, also published by the Water Data Unit.

Following the transfer of the Groundwater Archive to the Institute of Geological Sciences (now the British Geological Survey), the second edition of Groundwater: United Kingdom, covering the period 1974-80, was prepared by the Institute of Hydrology at the request of the Water Directorate of the Department of the Environment. Subsequently, groundwater level data have been included in the Hydrological data UK publications.

The Natural Environment Research Council acknowledges and extends its appreciation to all who have assisted in the collection of information for this publication.

SCOPE AND SOURCES OF INFORMATION

The format of the 1988 Yearbook follows that of the recent editions in the Hydrological data UK series. The rainfall, runoff and groundwater review material - compiled in separate sections prior to 1986 is incorporated in a single hydrological review of the year. Data presentation in the water quality section is consistent with the established Yearbook pattern data are given both for the featured year and, to provide a suitable perspective, for the preceding period of record.

Emphasis is placed upon ready access to basic data both within the Yearbook and through the complementary data retrieval facilities.

A companion publication to the individual Yearbooks - the 'Hydrometric Register and Statistics' volume provides a comprehensive reference source for hydrometric information which does not change materially from year to year; the first edition (for 1981-5) was published in 1987, see page 191.

The Yearbook contents have been abstracted primarily from the Surface Water and Groundwater Archives. Water quality data have been provided from the Harmonised Monitoring Archive which is maintained by Her Majesty's Inspectorate of Pollution (DOE - see page 181).,

Much of the data for England and Wales featured in this volume were assembled, initially, under the aegis of the former regional Water Authorities. From the 1st September 1989 their regulatory and river management functions passed formally to a new body, the National Rivers Authority (NRA). The NRA is now responsible for the initial collection and processing of most river flow and groundwater level data. The new Water Service PLCs have assumed responsibility for a small number of important
monitoring sites for which historical - and a few contemporary - data sets are held on the Surface Water and Groundwater Archives. The seven River Purification Boards (RPBs) are responsible for most hydrometric data acquisition in Scotland. In Northern Ireland responsibility is shared between the Departments of Environment and Agriculture. These organisations also supplied valuable material relating to significant hydrological events during 1988.

The majority of the rainfall data, and some of the material incorporated in the hydrological review, has been provided by the Meteorological Office. For historical comparisons of the rainfall over England and Wales, a data set based upon the homogeneous series derived by the Climatic Research Unit of the University of East Anglia has been used.

Additional material has been provided by the Geological Survey of Northern Ireland, the Borders Regional Council and by various research bodies and public undertakings.

Most of the rainfall data published in the Hydrological data UK series are in the form of monthly rainfall totals for catchment areas (see page 37). For details of monthly and annual rainfalls associated with individualıraingauge sites reference should be made to the 'RAINFALL' series published regularly by the Met. Office. Brief details of the contents and availability of this publication, together with a short description of. other rainfall and climatological data sets published by the Met. Office, are given below.

Some slight variations from the contributors' figures may occur; these may be due to different methods of computation or the need for uniformity in presentation.

Rainfall and Climatological Data

The Meteorological Office maintains the national archives of rainfall and climatological data at its headquarters at Bracknell. Specific items, such as daily and hourly rainfalls from gauges and radar (from the PARAGON system) may be obtained by application to the Advisory Services Branch Mict. O. 3b. Summaries of the data are also published regularly and a list of current titles is given below:

1. RAINFALL 19__

This contains monthly and annual rainfall totals for some 5000 raingauges and is available approximately one year after the title year at a cost of about $£ 8$.
2. Snow Survey of Great Britain 19___ This contains the daily and monthly reports of snow conditions from selected stations covering the winter and costs about $£ 4$.
3. Monthly Weather Report

This is published monthly and contains climato-
logical means for more than 550 UK observing stations, in addition an introduction and annual summary are produced yearly. The publication should be available, 6 to 9 months after the month concerned, costs around ' $£ 2$ and is available only from Her. Majesty's Stationery Office (HMSO) or their stockists.
4. M.O.R.E.C.S. (Meteorological Office Rainfall and Evaporation Calculation Service).
This is a weekly issue of maps and tables of evaporation, soil moisture deficit, effective rainfall and the weather variables used to calculate them. The data are used to provide values for 40 km squares and various sets of maps and tables are available according to customer requirements.

Further information about these and other publications may be obtained from:

[^0]
HYDROLOGICAL REVIEW

Summary

United Kingdom rainfall and runoff totals for 1988 fell well within the normal range and notable rainfall and flood events were relatively rare. Nonctheless 1988 was - in hydrological terms - exceptional, principally as the result. of the remarkably uneven spatial and temporal distribution of rainfall throughout the year. Regional and seasonal variations in runoff and infiltration: rates were large with a particularly striking contrast between the first three months of 1988 - when rivers were in spate and groundwater levels, generally, stood at their highest for at least five years - and late December by which time a substantial winter drought had developed over an extensive area of southern Britain.

United Kingdom rainfall in 1988 totalled 1155 mm , a little above average and the ninth occasion since 1976 when annual precipitation has exceeded the 1941-70 mean. Scotland, Wales and Northern Ireland were somewhat wetter than average and lowland England a little drier, but most regions recorded annual rainfall totals within 10 per cent of the average. On a yearly basis, no regions registered substantial rainfall deficits although annual totals were a little below normal in the outcrop areas of most major aquiférs. Conversely, some tendency could be identified for the higher percentage rainfalls to favour the important reservoir gathering grounds in the west and north. However, the very atypical temporal distribution was a more significant factor with regard to the adequacy of water supplies - both within the year and in relation to prospects for 1989. January and March were both wet, the former especially so in the South-East. Total precipitation over the January to March period for the UK is unsurpassed this century and only three corresponding periods, in a data series extending back to 1766, have produced more abundant rainfall over England and Wales; the years concerned were 1937, 1951 and 1977. Hence, early in 1988, the replenishment of reservoirs and aquifers was plentiful and the water resources outlook was reassuring. Subsequently, regional rainfall totals in England remained below the average for almost all of the ensuing months; July was a notable exception but the hydrological effectiveness of the sustained rainfall was limited by evaporative losses. In southern Britain conditions became particularly dry from early August as many of the rain-bearing low pressure systems followed a north-easterly track distant from the English lowlands. By late autumn, dry and seasonally very warm conditions predominated over most of the UK. The combined November and December rainfall total was less than one-third of the long term average in parts of lowland England; a shortfall of this magnitude may be expected perhaps once in every $30-50$
years. For England and Wales as a whole, the two months were the driest this century with the exception of the notable drought of 1933/34.

In response to the unusual rainfall pattern, the temporal distribution of runoff differed markedly from the normal seasonal cycle. Early in the year, very high - sometimes unprecedented - runoff rates obtained throughout much of the UK. As a consequence, and notwithstanding the substantial rainfall deficits which developed over the latter part of the year, a relatively large number of catchments registered new maximum annual runoff totals in 1988. By late March steep recessions had become established: In the South, these recessions - although interrupted by a number of significant runoff events - continued into the early autumn. Nonetheless, with some important exceptions, summer flows did not diverge greatly from the seasonal average and, after June, summer runoff rates in northern Britain were well above the average for the fourth year in succession. From a water resources viewpoint, the most significant aspect of the 1988 runoff distribution was the absence of any substantial recovery in river flows as evaporative demands declined into the autumn. Over wide areas, especially in central and southern England, the limited autumn and early-winter rainfall resulted in very meagre increases in river discharge and monthly flow rates showed a remarkable stability over a period when a strong seasonal upturn would normally be expected. In Scotland and north-west England river discharges certainly increased through the autumn and large within-month flow variations were common but; by December, runoff rates in some areas had declined to their lowest - in winter - for a decade or more. Entering 1989, river flows especially in lowland catchments were more characteristic of a typical summer and, in some districts, below comparable flows recorded at the same stage during the 'Great Drought' of 1976.

In 1988 a number of observation boreholes registered their largest annual variation in groundwater levels for a decade or more as water tables initially responded to abundant infiltration over the winter of $1987 / 88$ and then, in most areas, declined throughout the rest of the year. During the late-winter of 1987/88 near-record levels typificd large parts of the outcrop areas of some major aquifers, especially the Chalk and Upper Greensand. From late-March the dry, mild spring led to a rapid decrease in infiltration rates and water tables began a steep decline. By May, groundwater levels were well within the normal range in most areas. Near-average levels characterised much of the summer although some recharge to shallow, fissured aquifers resulted in temporary rises in July. A moderate amount of

Figure 1. Annual rainfall in 1988 as a percentage of the 1941-70 average.

Figure 2. Annual rainfall in 1988.
infiltration in October appeared to presage the normal autumn increase in water levels but subsequently, with significant soil moisture deficits continuing in most areas, the upturn stalled and virtually no further increases occurred. In some southern areas, and also in the Yorkshire Chalk, the modest infiltration amounts were more than counterbalanced by aatural outflows to low level springs and gentle recessions continued into 1989 by which time groundwaters stood at, or below, those registered during the drought of 1975/76. Many springs and winterbournes remained dry entering 1989 giving rise to concern about the continuing loss of amenity and of aquatic habitats - this assumed a particular importance with the imminence of the breeding season.

Rainfall

The rainfall pattern throughout the United Kingdom in 1988, relative to the 1941-70 average is illustrated in Figure 1; Figure 2 illustrates actual annual rainfall totals. In contrast to 1987, a general reinforcement of the normal west to east gradient - reflecting the influence of relief on rainfall amounts - may be recognised. Also noticeable - in Figure 2 - is the very restricted area, the smallest since 1976, enclosed by the 600 mm isohyet. Only a few districts received below 85 per cent of mean annual rainfall. These included areas in the lee of the Brecon Beacons and to the south of the Moray Firth where rain shadow effects would have been influential; precipitation over the mountains themseives tended to be above average. The exaggerated influence of relief was in part associated with the predominance of westerly low pressure systems which, especially in the latter part of the year, tended to skirt the western seaboard leaving much of southern and eastern Britain dominated by anticyclonic conditions. The persistence of a high pressure cell over Europe throughout much of the autumn and well into the winter of 1988/89 was a major factor contributing to the dry conditions which characterised the English lowlands for much of the year. As a result, rainfall - which is usuallyfairly uniformly distributed - was spread very unevenly through the year. Table 1 provides a breakdown of monthly and half-yearly rainfall totals in 1988 both on a countrywide basis and according to the major administrative divisions within the water industry (see frontispiece; generally the boundaries of the National Rivers Authority regions coincide with those of the new Water Services PLCs).

Examination of Table 1 reveals that more than one-third of the 1988 rainfall for England and Wales fell before the end of March; in a more typical year the proportion is $20-25$ per cent. In some southern districts almost half of the 1988 rainfall occurred during the first 13 weeks. Northern Ireland experienced its wettest opening three months to the year this century. An appreciation of the peculiar distri-
bution of rainfall in 1988 may be obtained by comparing the corresponding ranking for the November and December rainfall totals; Northern Ireland ranked the fifth driest on record and the England and Wales rainfall series, commencing in 1766, contains only one lower total since 1879. Scotland was rather less dry at the end of the year and the most notable features of the rainfall distribution were the limited amount of rainfall in the late spring and early summer and the subsequent wet episode stretching well into the autumn; the combined rainfall total for the three months beginning in July was the third wettest such sequence in a rainfall series extending over 120 years. The net result of this extremely uneven distribution of precipitation was near-normal annual rainfall totals in all regions with the exception of western Scotiand.

The spatial rainfall distribution during 1988 wetter in the maritime west and north (relative to the average) and drier throughout much of the English lowlands - has been a recurring theme in the recent past. As a result of this contrast, rainfall totals for the UK tend to obscure important regional differences in rainfall trends. Over the last decade - including 1988 - average UK rainfall has been approximately five per cent greater than the average for 1900-1978. In much of central and southern England rainfall, overall, since 1978 has been close to the average or, in some districts, a little below. Such minor deficits are more than counterbalanced by the sequence of remarkable yearly rainfall totals registered for Scotland since the mid-1970s. Rainfall in 1988 was the eighth highest this century and every annual total since 1976 falls into the upper quartile of a series extending back to 1869 . The average for the last ten years is some 15 per cent above the twenticth century mean; there is no modern precedent for the recent sequence of wet years. The additional rainfall, relative to the average, is not uniformly distributed throughout the year; there has been a marked tendency for the winter and spring periods to register especially high precipitation totals. The 1987/88 winter half-year (October to March) registered the tenth highest rainfall total since 1869 but was, nonetheless, drier than five of the last eight winters. Winter rainfall in Scotland since 1978 has been over 20 per cent greater than the mean for the preceding record.

In England and Wales there has also been, over recent years, a tendency for a greater proportion of the annual precipitation to fall in the winter. Considering the England and Wales rainfall series, the average winter rainfall for the ten years up to, and including, $1987 / 88$ is 541 mm - this closely approaches the wettest ten-year sequence of winters. (ending in 1916) in the entire record. Conversely, summer rainfall beginning in 1979 is marginally below the full record mean. Thus, the ratio of winter to summer precipitation has risen in recent years. 1987/88 was notable in this respect; the winter was

TABLE 1 1988 RAINFALL IN MM AND AS A PERCENTAGE OF THE 19.1-70 AVERAGE

the tenth wettest this century and some 1.58 times the rainfall total for the ensuing summer. The mean ratio for the ten years ending in 1988 is 1.33 ; this is significantly above the mean for the period 1900-1978 and in marked contrast to the nineteenth century when, on average, winter and summer rainfall totals were similar. The somewhat arbitrary division of the year into winter and summer periods tends to obscure some important variations within seasons, for instance, much of the recent increase in 'winter' rainfall is due to enhanced rainfall in the autumn or the early spring rather than over the December to February period. Equally, too much can be made of the apparent strengthening of the seasonal rainfall contrasts. Although 18 of the 22 winters following the series of dry winters up to 1964/65 have registered above average rainfall (relative to the full record mean), this represents an increase in winter rainfall of only 10 per cent. Interestingly, this wet sequence has included several very dry winters, notably those of $1972 / 3$ and 1975/6.

Evaporation and Soil Moisture Deficits

The highly seasonal nature of evaporation was, as usual, clearly evident in 1988 but the unusual rainfall distribution, especially away from the highland regions, led to the shortfall between potential evaporation (PE) and actual evaporation (AE) being considerably larger than in a typical year and substantially greater than in the preceding three years. Although soil moisture deficits (SMDs) were often modest in early spring they increased sufficiently to inhibit transpiration rates significantly by late May and June. Many western and northern parts of the UK recorded their maximum deficits for 1988 in early July. Deficits then declined - spectacularly in western areas - but throughout the Midlands and the South-East they increased again in August and continued to build into the autumn. Exceptionally high SMDs obtained over wide areas in late September and no real approach to field capacity (which was reached early in the west) was evident at the turn of the year; the only recent parallel to this situation occurred in 1975.

Figure 3 shows 1988 potential evaporation totals for a network of climate stations throughout the United Kingdom together with the corresponding percentage of the 1956-75 mean (values are omitted where the historic record is incomplete or short). With the exception of Northern Ireland, PE totals are generally above average - this has been a recurring feature, especially in the South-East, of annual totals for the last seven years. By contrast, actual evaporative losses were often below average particularly throughout lowland England. This is a reflection of the persistence of substantial SMDs throughout the latter part of the year. Figure 4

Figure 3. Potential evaporation in 1988-in mm and as a percentage of the long term average.
illustrates the variation in PE, AE and SMD for three MORECS (Meteorological Office Rainfall and Evaporation Calculation Service - see page 2) grid squares for the period 1984-88. A clear distinction may be drawn, especially after June, between the more maritime areas - as represented by squares 55 and 177 - where evaporation profiles are typical of recent years and those regions more remote from the westerly influence where actual evaporation fell well short of PE, and substantially below the average, from August to December. The large spatial variations in the limited rainfall in the autumn and early winter led to important regional and local variations in SMD;; calculated deficits for some parts of lowland England were 50 mm above average at the end of the year. Not since 1975 has there been such a substantial carryover of SMDs into the following year.

The difference between catchment rainfall and runoff is known as the 'loss'. Because of the natural and artificial storages in most catchments, annual 'losses' rarely equate closely to yearly totals of actual evaporation. Where baseflow is limited however, and the net effect of abstractions and discharges on annual runoff is negligible, the loss may normally be considered a reasonable guide to the annual evaporation total provided that - as in 1988 - SMDs had been practically eliminated by the end of the previous year. Catchment losses for a selection of

Figure 4. Potential and actual evaporation with soil moisture deficits for three MORECS squares.
(The location of the featured grid squares is shown on the map.)

TABLE 21988 WATER BALANCES FOR SELECTED CATCHMENTS IN GREAT BRITAIN

Statroon Number	River end Six:m	Name		Rainall	Racoof	Loss			Abstrations. and
							1988	10	Dextarger
12001	Dee	Woodend	1988 mm	1219	943	276	77	74	N
			as a \% of la	109	112	98			
21012	Teviot	Hawick	1988 mm	1266^{*}	912	354	72	68	N
			as a \% of lta	107	112	96			
27002	Wibarfe	Flint Mill Weir	1988 mm	1306	798	508	61	62	SRP1
			as a \% of Ita	113	110	118			
28008	Dove	Rochester Weir	1988 mm	1109	693	416	62	57	G F
			as a \% of lta	106	116	93			
30001	Witham	Claypole Aill	1988 mm	598	204	394	34	30	P
			as a \% of lta	95	107	89			
34003	Bure	Ingworth	1988 mm	624	262	362	41	31	G I
			as a \% of lia	91	121	77			
37001	Roding	Redbridge	$1988 \mathrm{~mm}$	638	233	405	36	31	SE1
			as a \% of lta	101	117	94			
39007	Blackwater	Swallowfield	1988 mm	653	300	353	45	36	F
			as a \% of Ita	91	114	77			
42004	Test	Broadlands	1988 mm	719	314	405	43	42	N
			as a \% of liz	89	92	87			
50001	Saw	Umberleigh	1988 mm	1261	768	493	60	60	S PE
			, as a \% of lia	109	110	107			
55008	Wye	Cefn Brwyn	1988 mm	2574	2327	247	90	8.4	N
			as a \% of lta	105	112	65			
5700.4	Cynon	Abercynon	1988 mm	1927	1421	506	73	68	SE
			as a \% of lta	106	114	88			
62001	Teifi	Glan Teifi	1988 mm	1421	1136	285	79	74	S P
			as a \% of lta	105	113	81			
75002	Derwent	Camerton	1988 mm	1974	1406	568	71	68	S P
			as a \% of ita	113	116.	104			
84005	Clyde	Blairston	1988 mm	1221	881	340	\because	65	
			as a \% of la	106	116	80			
$112-$ long term average						Or an	lanatı	be cod	letters see pr

representative catchments in the UK are given in Table 2. Particular care needs to be exercised when interpreting the figures for high rainfall catchments; the annual loss is very sensitive to relatively small systematic errors in the assessment of rainfall and runoff totals. In some northern and western catchments where, for all but a few weeks, evaporation was able to proceed at the potential rate, annual losses exceeded the long term mean. Elsewhere, a more complex picture emerges. Transpiration rates were relatively high during the mild conditions early in 1988 but then the persistence of large SMDs served as an inhibiting factor and, in some areas, the enhanced baseflows arising from above average recharge in 1987 provided a further counterbalancing effect. Overall, the dominating influence was the concentration of runoff during a period when evaporative losses were only moderate. Consequently low, or very low, losses characterised most regions and runoff constituted an unusually high proportion of annual rainfall.

Runoff

Runoff in 1988 for the United Kingdom totalled approximately 750 mm ; about 15 per cent above the long term average. Figure 5 provides a guide to annual runoff totals for 1988 expressed as a percentage of the 1961-87 average. The map is least precise in northern Scotland and in the Welsh mountains where the gauging station network is sparse; insufficient flow data exist for the Scottish islands to allow the drawing of isopleths with any confidence. The main features of the map are the limited area registering below average runoff - most catchments recorded between 100 and 120 per cent of the long term mean - and the notably high runoff rates experienced in parts of Northern Ireland, western Scotland, South Wales and East Anglia. Annual runoff totals are normally below 200 mm in East Anglia and exhibit considerably greater year-on-year variability than in northern Britain; the high percentage runoff isopleths shown on Figure 5 are the result

Figure 5. A guide to 1988 runoff expressed as a percentage of the 1961-87 average.

TABIE 3 RIVER FLOW AND RUNOFF RECORDS ESTABLISHED IN 1988

33013	Sapiston	Rectory Bridge	1949	46	JAN	39	FEB 79
33014	Lark	Temple	1960	44	JAN	36	MAR 69
33021	Rhee	Burnt Mill	1962	41	JAN	41	JAN 69
33023	Lea Brook	Beck Bridge	1962	36	JAN	30	AIAR 69
33024	Cam	Dernford	1949	49	JAN	47	DEC 60
33027	Rhee	Wimpole	1965	60	JAN	47	MAR 79
33028	Flit	Shefford	1966	50	JAN	41	FEB 77
33050	Snail	Fordham	1961	34	JAN	27	MAY 83
33055	Granta	Babraham	1963	41	JAN	33	OCI 87
34006	W/aveney	Needham Hill	1963	103	JAN	70	FEB 79
34007	Dore	Oakley Park	1966	99	JAN	80	FEB 79
35002	Deben	Naunton Hall	1964	97	JaN	63	FER 79
35003	Alde	Farnham	1961	113	JAN	85	OCT 87
35004	Ore	Beversham Bridge	1965	113	JAN	92	FEB 79
35008	Gipping	Stowmarket	1964	91	JAN	66	FEB 79
35010	Gipping	Bramford	1969	59	JA.	48	FEB 79
36002	Glem	Gilemsford	1960	84	JaN	61	FER 79
36003	Box	Polstead	1960	72	JaN	45	FEB 79
-36004	Chad Brook	Long Melford	1965	96	JaN	77	FEB 79
36006	Stour	Langham	1962	75	JAN	61	OCI 87
36007	Belchamp Brook	Bardfield Bridge	1960	83	JaN	64	OCT 87
36008	Stour	Westmill	1960	85	JaN	83	FEB 79
36009	Brett	Cockfield	1968	103	JAN	85	FEB 79
36010	Bumpstead Brook	Broad Green	1968	92	JAN	90	OCT 87
36011	Stour Brook	Sturmer	1968	93	JAN	67	FEB 79
36012	Stour	Kedingion	1968	91	JAN	83	MAR 73
36015	Stour	L.amarsh	1972	75	JAN	53	FEB 79
37005	Coine	Lexden	1959	74	JAN	60	NOV 60
37006	Can	Beachs Mill	1962	86	JAN	73	NOV 74
37007	Wid	Writte	1964	105	JAN	79	DEC 65
37008	Chelmer	Springfield	1965	82	JAN	62	N()V 74
37009	Brain	Guithavon Valle)	1962	86	JAN	8.4	OCT 87
37010	Blackwater	Appleford Bridge	1962	78	JAN	54	OCT 87

TABI.E 3-(continued)

S41000 Nomber	River and Summo Siser		Fust Yex of Record		Moab	Pre-1985 Recourd (mm)	Month/ Yex:
Highest \Ionthly Runoffs (continued)							
37011	Chelmer	Churchend	1963	84	JAN	70	OCT 87
37019	Beam	Bretons Park	1965	76	JAN	68	NOV 74
38007	Canons Brook	Elizabeth Way	1965	96	JAN	92	Nov i4
38014	Salmon Brook	Edmonton	1956	100	JAN'	85	OCI 87
38020	Cobbins Brook	Sewardstone Road	1971	105	JAN	93	OCT 87
38021	Turkey Brook	Albany Park	1971	75	JAN	71	NOV 74
39012	Hogsmill	Kingston upon Thames	1956	89	JAN	74	NOV 74
39038	Thame	Shabbington	1968	69	JAN	53	FEB 77
39053	Miole	Horley	1961	159	JAN	143	OCII 87
40008	Great Stour	Wye	1962	104	JAN	92	MAR 75
40011	Great Stour	Horton	1964	85	JAN	71	DEC 66
40018	Darent	Lullingston	1968	45	JAN	42	AUG 68
41001	Nunningham	Tilley	1950	176	JAN	175	JAN 84
41002	Ashbourne	Hammer Wood Bridge	1951	176	JAS	170	NOY 60
41013	Huggletts Stream	Henley Bridge	1950	180	JAN	159	NOV 63
41016	Cuckmere	Cowbeech	1939	163	JAN	159	OCI 87
41018	Kird	'I'anyards	1969	212	JAN	181	NOV 74
41026	Cockhase Brook	Holywell	1971	128	JAN	121	NOV 74
39016	Kennet	Theale	1961	58	FER	53	EER 74
39019	Lambourn	Shaw	1962	40	FEB	37	FEB 69
39020	Coln	Bibury	1963	87	FEB	82	FEB 77
40012	Darent	Hawley	1963	27	FEB	25	SEP 68
41023	Lavant	Graylingwell	1971	75	FEB	48	FEB 75
42008	Cheston Stream	Sewards Bridge	1970	49	FEB	46	FEB 75
39023.	We	Hedsor	1964	39	MAR	36	APR 75
39030	Gade	Croxicy Green	1970	32	MAR	26	MAS 79
Station	Rivet and Station Name		Firs	New	Moais	Pre-1988	Month/
Number			Yeat of	Record		Record	Yeai
			Recots	(m.m)		(mm)	
Lowest Monthly Runoff							
94001	Ewe	Poolewe	1970	22	JUN	24	MAY 80
Station	Ruver amd Sutuon Name		Fist	New	Day'	Pre-1988	Day/Monts/
Number			Yest of	Recors	Mon:b	Recors	Yeat
			Record	(m')		(m's')	
Highest Instantaneous Flows							
28026	Anker	Polesworth	1966	75.630	24 JAN	74.010	30 DEC: 81
28086	Sence	South Wigston	1971	30.210	24 JAN	24.420	19 JUN 87
33029	Stringside	White Bridge	1965	4.580	29 Jan	4.552	28 MAR 79
36003	Box	Polstead	1961	10.050	29 JAN	8.987	01 FEB 79
36007	Belchamp Brook	Bardfeld Bridge	1964	12.150	29 JAN	11.360	09 OCT 87
37010	Blackwater	Appleford Bridge	1962	26.800	29 JAN	26.080	11 OCT 87
39010	Colne	Denham	1952	17.700	29 JAN	15.400	21 OC- 87
49002	Hayle	St Erth	1957	9.160	31 JAN	6.730	14 FEB 74
42006	Meon	Mislingford	1958	4.102	01 FEB	4.020	20 FEB 77
23004	South Tyne	Haydon Bridge	1962	598.810	28 JUL	538.050	26 AUG 86
47007	Yealm	Puslinch	1963	28.370	31 AUG	27.860	25 AUG; 86
48005	Kenwyn	Truro	1968	30.400	110 OCT	13.350	27 DEC 79
58009	Ewenny	Keepers Lodge	1971	59.450	05 OCT	57.638	25 AUG 86
Statos	Rivet and Staion Name		First	New	Day'	Pre-1988	Day/Moath/
Number			Yeas of	Record	Mocib	Record	Yeat
			Record	(m's')		(m', ')	
Highest Daily Mean Flows							
54028	Vyrnwy	Llanymynech	1971	278.190	02 JAN	250.100	06 AUG 73
09003	1sla	Grange	1969	56.110	25 JAN	39.630	01 DEC: 85
33023	Lea Brook	Beck Bridge	1962	4.370	29 JAN	4.330	26 Alji 87
36005	Brett	Hadleigh	1962	19.240	29 JAN'	19.220	10 OC.T 87
38001	Mimram	Panshanger Park	1952	2.050	29 JAN	1.810	15 SEP 68
39035	Churn	Cerney Wick	1969	4.530	04 JAN	4.360	31. MAR 79
39019	I.ambourn	Shaw	1962	4.020	14 FEB	4.010	09 MAR 67

TABIEE 3-(contınued)

Station	River ard Staton Nate		Fis:	New	Maith	P:e 1988	[Day/Mor:r
Number			rear of	$\begin{aligned} & \text { Reto: } \\ & \left(m^{\prime} s^{\prime}\right) \end{aligned}$		- Record	
			Record				
Lotwest Danly Mean Flow's							
82001	Girvan	Robstone	1963	0.023	29 JLN	0.100	21 All 84
75004	Cocker	. Southwate Bridge	196\%	0.255	$06 . \mathrm{JLL}$	0.280	07 SEP 76
41002	Ashbourne	Hammer Wiood Bridge	1960	0.022	17 SEP	0.025	28 ALCG 53

Notes: New record entries appear in date order.
Highest daily mean flows are featured only where there is no corresponding highest instantaneous flow entry. Only the highest or lowest value is featured where more than one reco:d was established at a station during the year. Due to rounding, some new runoff records appear equivalent to the previous record.
of runoff totals around $50-70 \mathrm{~mm}$ greater than normal. Runoff increments of this magnitude would be of minor significance throughout much of Scotland where runoff totals of several hundred millimetres above average were common, particularly in the west. Unprecedented runoff totals were registered in Galloway and parts of the Clyde valley and the annual mean flow for the River Tay very nearly reached the highest on record. In England and Wales there is far less evidence of the gradation from maritime to more continental regions which characterises the corresponding rainfall map (Figure 1). Although rainfall totals were below 90 per cent of the mean in large parts of southern and eastern England, runoff throughout most of the English lowlands was generally more than ten per cent above average especially in East Anglia. This partly reflects the greater natural ability of catchments in eastern England to store water (which is subsequently released as baseflow); this ability enabled the high recharge rates experienced in the autumn of 1987 October was exceptionally wet - to contribute significantly to 1988 runoff totals. Geological controls over runoff were also important at the subregional scale. For instance, streams draining the Chiltern Hills (a chalk escarpment) remained close to, or above, previous maximum flows for much of the spring reflecting the lagged response to the winter rainfall. The abundant recharge to the Chalk and Upper Greensand aquifer in recent years (sce page 21) will also have contributed to the enhanced baseflows. Runoff totals were more modest in the Cotswolds where the fissured nature of the Jurassic Limestone aquifer allows it to respond more rapidly to rainfall but reduces its ability to sustain spring flows over prolonged periods without further infiltration. Some of the lowest runoff totals in the UK, both in absolute terms and relative to the average, were found in parts of Sussex and Kent where limited rainfall coincided with low baseflow rivers draining catchments situated mostly on Tertiary clays.

Table 3 provides a summary of river flow and runoff records established at primary gauging stations in 1988; entries are confined to monitoring sites
having at least 15 years of data on the Surface Water Archive. New maxima, both in terms of annual and monthly flows are relatively common; the former are well distributed but the record monthly flows are concentrated in hydrometric areas 33 to 42 (see frontispiece). As with most extreme flows, the uncertainty associated with some of the quoted runoff or discharge rates can be considerable; large extrapolations of the stage-discharge relation may be involved and, in the case of low flows, artificial disturbances to the natural flow regime can exert a substantial influence. A number of the entries in Table 3 may be subject to review; subsequent revisions to the listed flows will appear in future yearbooks.

Although in terms of annual runoff totals 1988 was fairly typical of recent years, the distribution of river flows throughout the year was very unusual. Figure 6 (a-d) illustrates the variation in flows through 1988 for four representative gauging stations in Scotland, England, W ales and Northern Ireland. Daily and monthly hydrographs are shown for each monitoring site. The monthly mean flows are shown together with the corresponding maximum and minimum flows for the preceding record. The 1988 trace is shown as a solid black line and the blue line represents the 30 -day running mean for the pre1988 record. Data featured for the Kingston gauging station have been adjusted to account for the major public water supply abstractions from the Thames above London (see page 16).

UK rivers exhibit a clear seasonal flow pattern with runoff generally peaking in late winter or early spring, and the summer six months (April to September) contributing typically only about 30 per cent of the annual runoff total. An exaggerated measure of seasonal variation characterised the January-June half-year throughout much of the UK. Most rivers were in spate early in 1988 with sustained sequences of bankfull, or above, flows until mid-February. Some notable peak flow rates were registered at the end of January (see Table 3) and flows in the River Thames - at Kingston - remained above $300 \mathrm{~m}^{3} \mathrm{~s}^{-1}$ for 13 successive days beginning on the 25 th of January. This is the longest such

Figure 6(a). River flow patterns: Tay at Ballathie.

Figure 6(b). River flow patterns: Thames at Kingston.

56001

Previous record: 1958-1987

MONTHLY MEAN FLOWS

FLOW DURATION CURVES

Figure 6(c). River flow patterns: Usk at Chain Bridge.
 MONTHLY MEAN FLOWS

Figure 6(d). River flow patterns: Camowen at Camowen Terrace.
sequence since the major flooding of March 1947. Many catchments recorded their highest combined January and February runoff totals for at least a decade; sustained periods of bigh discharge rates were especially common in East Anglia. High baseflows in England and snowmelt in Scotland contributed significantly to discharge rates over this period, and well into the spring. From late-March, the decline in discharge rates was dramatic. By the end of May, and especially in June, some exceptionally low flows were reported in Scotland although to the south, runoff rates remained well within the normal seasonal range. July was to prove something of a watershed. The sustained and heavy rainfall produced very brisk flow increases in western and northern regions but, by and large, failed to satisfy the existing SMDs in lowland England. Thereafter, monthly runoff totals displayed a remarkable stability especially in rivers with a large baseflow component; this implies an increasing divergence from the monthly mean flows such that by December runoff rates were very depressed over wide areas. Monthly runoff totals during the latter half of 1988 serve to illustrate how the persistence of relatively uniform mean discharge rates can change the hydrological perspective dramatically. In northern and western Britain, and in Northern Ireland, substantial flow rates were recorded in the autumn, October especially, when the River Tay (at Ballathie) peaked at over $1000 \mathrm{~m}^{3} \mathrm{~s}^{-1}$, but by mid-November runoff rates had declined to below average and December flows fell into the lowest quartile - for the month - at most gauging stations.

One measure of the uneven distribution of lowland runoff in 1988 is the inordinate proportion of total runoff attributable to the initial half-year. In Scotland runoff totals for the first and last six months of the year were broadly similar; catchments in the far north tended to record slightly higher totals in the second half of 1988. A relatively balanced runoff division could be recognised in upland catchments of England and Wales also, especially those draining to the west, but a tendency for a disproportionate part of the total runoff to occur early in the year became increasingly evident in a southerly direction. This characteristic achieved an extreme expression in some southern and eastern catchments where its significance was enhanced by the very limited flow rates late in the year. The River Medway (Kent), for example, recorded only 20 per cent of its 1988 runoff during the six months beginning in July. This lack of balance is most extraordinary and somewhat understates the peculiar temporal distribution of runoff. For instance, almost three-quarters of the annual runoff of the Medway is attributable to the January to March period. In terms of runoff volume, this three-month total is unsurpassed in a thirty-year record and stands in stark contrast to the flows experienced in November and December; runoff over this period was also unprece-
dented being significantly lower than that recorded during the 1975/76 drought.

The flow duration curves featured in Figure 6 allow the proportion of time that river flows fell below a given threshold to be identified. Broadly speaking, the most striking element in the duration curves for 1988 - not just those shown on pages 15 to 18 - is the very high median flows which characterise much of Scotland and northern England; in many catchments where the gauged flow record is shorter than 15 years, the 50 per cent exceedance flow was without precedent. In common with the previous three years, low flows - as represented by the 95 per cent exceedance flow rate - were also significantly greater than average in northern Britain and, especially, in south-west England and South Wales. Median flows in lowland England were less notable than further north and were somewhat below the mean in parts of the South-East. Even here, however, although flows declined to near to the seasonal minima in November and December, the 95 per cent exceedance flows generally remained considerably above those likely to occur in a more typical year.

The above average runoff totals in 1988 have given a greater emphasis to the contrast between the recent abundant runoff and that experienced up to the mid-1970s. Since 1978, only 1987 has registered below average runoff (and then only marginally so) and the mean annual runoff for the last decade is some 15 per cent higher than for the preceding record; the United Kingdom runoff series commences in 1961. The increase in annual runoff displays important regional differences with the greatest increases occurring in northern Britain. Over the last decade, for instance, the Clyde shows a 22 per cent increase relative to the preceding average; at the Blairston gauge the 1988 runoff total has been exceeded on only four occasions - all in the post-1976 period.

The few long runoff records available in the UK provide a broader historical perspective within which to examine the significance of the 1980 s runoff patterns. Figure 7 illustrates the ten-year running mean annual rainfall and runoff totals for the Rivers Dee (Grampian Region) and Thames; the ten-year mean is plotted against the final year in the sequence. Both rainfall and runoff plots for the Dee exhibit no definite overall trend but the upward movement in both traces, is a feature of recent years. Annual runoff for the period 1979 to 1988 is about ten per cent greater than for the preceding record; the associated increase in runoff exceeds the additional rainfall over the same period. Partly, this reflects the greater hydrological effectiveness of the recent precipitation - a higher proportion falling in the winter half-year when evaporative losses are greatly reduced. Much of the increased runoff is concentrated in the March-June period and, at least in the spring months, this may - in addition to greater rainfall - be associated with meltwater arising from

Figure 7. Ten-year running means of annual rainfall and runoff for the River Dee and the River Thames.
increased accumulations of snow. Hydrologically, the Thames is very different from the Dee but a recent, if rather subdued, increase in runoff may also be detected from the running mean trace. Rainfall over the Thames catchment during the last decade has been only a little in excess of the 1941-70 mean but, again, a greater proportion has fallen during the October-March period. As a consequence baseflows in the Thames have increased and the benefit, in terms of increased runoff, is most noticeable during the spring and summer periods.

Although moderate runoff increases over the last 15 years or so may be identified in many catchments, the natural variability of runoff is such that interpretation of any apparent trend needs to be undertaken with caution. Where flow records commence during a particularly dry period - the mid-1960s and 1973-1976 are recent examples - it is necessary to examine the time series in conjunction with other, substantially longer, hydrometric records to place any apparently compelling trends in an appropriate context. In relation to water resources, the recent high runoff is clearly beneficial but, within a framework of enhanced runoff, river flows have displayed a notable volatility. Exceptionally low
discharge rates have been experienced during the summer droughts of 1975,1976 and 1984; equally important, in terms of hydrological stress, has been the limited runoff during the winters of 1975/76 and 1988/89.

Groundwater

Since the drought of 1976, when record low groundwater levels were registered throughout both major and minor aquifers, water tables have generally stood near to, or above, average levels. This is a response to the relatively abundant winter rainfall over the last dozen years; typically, October-March rainfall over the major aquifers has been ten per cent greater than the preceding average. In the winter 1987/88 half-year, many aquifer outcrops received their highest rainfall since $1976 / 77$ with a few chalk areas registering their second wettest winter since 1940. Hence, peak groundwater levels in the spring of 1988 stood above, to well above, the seasonal mean. As a result of the unusually high water tables, especially in parts of the Chalk, bourne flows broke in some districts, particularly in the South-East where they had not previously been seen for many years. Table 1 confirms that rainfall during the winter half-year was well above the 1941-70 mean, with the Southern region reaching 145 per cent of the average. However, the overall winter rainfall totals create a rather misleading picture since the months of October, January, and March were particularly wet, whilst November and December were dry, April 1988 was also dry. Recharge was consequently somewhat erratic and this gave rise to marked 'peaking' as some well hydrographs responded to both wet and dry periods; see, for example, the hydrographs for the Compton (Sussex), New Red Lion (Lincolnshire) and Bussels (Devon) boreholes - pages 166 to 171 . Notwithstanding the interrupted nature of the winter infiltration, overall recharge was heavy in most regions. In the 'Hydrometric Register and Statistics 1981-5' (see page 191), a method was proposed which both permitted comparisons between groundwater levels in different observation wells and related those fluctuations to aquifer replenishment expressed as a percentage of the long term average. Using the same methods, the apparent replenishment for the winter of 1987/88 has been estimated and is shown in the Register of Observation Wells (pages 172 to 175). In interpreting these figures account should be taken of the period over which the mean annual recharge has been established; 1987/88 recharge will, for instance, appear less impressive for boreholes whose records commence during the sequence of wet winters following the 1975/76 drought. The 'Indicated \% Annual Recharge' figures listed in the Register confirm that abundant percolation typified most monitoring boreholes but there were some important regional variations; for instance, recharge to the Permo-

Triassic aquifer in the Midlands and in the Lincolnshire Limestone was below average. For the main outcrop of the Chalk and Upper Greensand aquifer, the percentage mean annual recharge is also shown areally on Figure 8. A feature of the recharge map is

Figure 8. Generalised percentage of the mean annual replenishment to the Chalk and Upper Greensand aquifer for 1987/88.
the particularly high replenishment to the Chalk in parts of the Chilterns and to the north of London one consequence was the very high 1988 spring runoff rates recorded in these areas (see page 14). Using the observed groundwater level fluctuations, and the unit mean annual replenishment figures ${ }^{1}$ the actual volume of recharge for the four major aquifers has been estimated and is shown in Table 4.

In the spring, water tables stood generally at their highest levels for at least five years. Groundwater levels were especially high in the Chalk and Upper Greensand; the Compton site registered its highest level since 1974 and the Washpit Farm (Norfolk) borehole recorded a new maximum level in a 30 -year record. Recharge in some areas continued beyond the 'normal' infiltration season (October to March) but then accelerating evaporation rates and the limited rainfall resulted in steep groundwater level recessions which, in most areas, left water tables well within the normal range by early summer. Although in general recharge does not occur between April and September, summer infiltration can take place under favourable conditions. The latter usually entails a fissured aquifer with the water table fairly close to
the ground surface, together with higher than normal rainfall. The Ampney Crucis (Gloucestershire) well hydrograph - see page 168 - shows a response to the heavy rainfall of July 1988 and minor responses, believed to be related to locally intense rainfall, also characterise the 1985-88 hydrograph for Rushyford (Northumbria).

The decline in groundwater levels was arrested and, in some regions, reversed in October when infiltration appears generally to have restarted; an upturn in a few wells could be recognised as early as September or even August (see, for example, the Ampney Crucis, Redbank and Killyglen hydrographs - pages 166 to 171). However, the anticipated strong increase in groundwater levels through the autumn failed to materialise as notably low infiltration rates created a very unusual situation by November and December. With few exceptions, well hydrographs for sites in eastern and southern England showed no significant upturn by the end of the year, inviting comparisons with the similar conditions pertaining towards the end of 1975. Table 5 compares the

TABLE 4 ANNUAL REPLENISHMENT TO THE MORE IMPORTANT AQUIFERS IN ENGLAND AND WALES FOR THE YEAR 1987/88
(Units are in $\mathrm{m}^{3} 10^{6}$. Figures in parentheses are percentages of the annual mean.)

NRA RegionMean annual Replenishment	$1987-88$ Replenishment	
Chalk and Upper Greensand aquifer		
Anglian	953	$1103(116)$
Southern	1231	$1551(126)$
South West	202	$148(73)$
Thames	975	$1157(119)$
Wessex	947	$1070(113)$
Yorkshire	322	$357(111)$
Total	4630	$5385(116)$
Lincolnshire Limestone aquifer		
Anglian	86	$68(79)$

Permo-Triassic sandstones aquifer		
Northumbrian	123	$135(91)$
North West	331	$378(114)$
Severn Trent	528	$509(96)$
South West	205	$207(101)$
Welsh	27	$34(124)$
Wessex	39	$35(92)$
Yorkshire	301	$372(123)$
Total	1554	$1491(96)$
Magnesian Limestone aquifer		
Northumbrian	80	$65(81)$
Severn Trent	40	$34(84)$
Yorkshire	127	$120(94)$
Total	247	$219(89)$

October-December rainfall figures for 1975 and 1988; all the 1988 values are substantially below the 1941-70 means, while those for the Severn-Trent, Anglian and Thames regions are very close to the 1975 values, and for the Southern region the value is well below that for 1975. At the turn of the year

TABLE S OCTOBER TO DECEMBER RAINFALL FOR 1988 AND 1975 IN MM AND AS A PERCENTAGE OF THE 1941-70 AVERAGE

	1888		1975	
	mom	(${ }^{\text {a }}$	mm	(\%)
England and Wales	184	(68)	159	(59)
Scotland	418	(94)	296	(66)
Northern Ireland	285	(88)	203	(63)
NRA Region:				
North West	306	(85)	229	(64)
Northumbrian	228	(93)	113	(46)
Severn Tirent	133	(62)	+ 128	(60)
Yorkshire	192	(83)	148	(64)
Anglian	109	(65)	104	(62)
Thames	110	(54)	105	(52)
Southern	135	(53)	154	(61)
Wessex	156	(58)	130	(48)
South West	258	(68)	220	(58)
Welsh	267	(64)	220	(53)

groundwater levels were depressed over wide areas, particularly in the Chalk. The Dalton Holme borehole (Yorkshire), which has a 100 -year record, registered its lowest ever groundwater level in midDecember, marginally below the minima recorded during the droughts of 1905,1921 and 1976. Levels elsewhere were generally less extreme but water tables throughout the major aquifers fell to levels last experienced during the 1984 drought. The groundwater situation at the end of 1988 suggested that, unless there was substantial infiltration in the spring, overall recharge through the 1988-89 winter would be markedly less than average, while for eastern and southern England it was likely to approach the negligible infiltration recorded, in most areas, over the winter of 1975/76.

The majority of observation boreholes for which contemporary data are held on the Groundwater Archive monitor the natural variation in groundwater levels. However, in parts of the United Kingdom, groundwater levels have been influenced, sometimes over long periods, by pumping at rates exceeding the natural rate of replenishment. As a consequence the regional water table may become substantially depressed.

Equally, where such depressions have become established, groundwater levels may be expected to
rise in response to a decrease in the pumping rate to below the rate of natural replenishment. In the confined Chalk and Upper Greensand aquifer beneath London, groundwater levels - as evidenced by the hydrograph for the Trafalgar Square well (see page 171) - had been depressed by some 60 metres by 1940 relative to the late eighteenth century when the first deep wells penetrated the Chalk. Following the Second World War abstracters increasingly switched to piped supplies drawn predominantly from reservoirs in the Thames and Lee basins. Consequently groundwater levels gradually stabilised and, from about 1965, began a discernible recovery ${ }^{2}$. In recent years a contributory factor will have been the above average recharge in the outcrop areas of the Chalk on the periphery of the London Basin. The annual mean groundwater levels for this site show that the recovery is continuing at a rate of approximately one metre a year. Given the changing patterns of groundwater exploitation throughout England and W ales it is to be expected that such rises would not be confined to the London Basin; increased groundwater levels have been reported for other urban areas including Birmingham, Leeds and Merseyside. The implications of rising groundwater levels range from the more immediate water resources effect on potential groundwater supplies (in terms of both water quantity and quality) to geotechnical problems relating to foundation and tunnel flooding and to the design of deep underground structures ${ }^{3.4}$.

References

1. Monkhouse, R.A. and Richards, H.J. 1983. Groundwater resources of the United Kingdom. Commission of the European Communities, pub. Th. Schaeffer Druckerei GmbH, Hanover, 252 pages.
!. Water Resources Board. 1972. The hydrogeology of the London Basin. ${ }^{-}$HMSO (London) and: Artificial recharge of the I.ondon Basin I. Hydrogeology. HMSO (London).
2. Wilkinson, W.B. 1985. Rising groundwater levels in London and possible effects on engineering structures. Proc. 18th Congress of the Int. Soc. of Hydrogeologists, Cambridge.
3. CIRIA. 1989. The engineering implications of rising groundwater levels in deep aquifers beneath London. Construction Industry Research and Information Association (CIRIA) Special Publication No. 69.

1988 Hydrological Diary

January

2nd-4th: A series of active frontal systems brought gale force winds and heavy rainfall to all parts of the UK. The River Vyrnwy (Powys) recorded its highest daily mean flow in 18 years and many rivers throughout Wales overtopped their banks. Flooding was particularly severe in the upper Severn Valley where roads were impassable and farmland inundated. A flood warning was issued for the River Severn, when it reached its highest level in Shropshire for 20 years. In the centre of York, the Ouse rose several metres flooding river-side roads and some buildings.

19th-31st: Low pressure dominated the British Isles for several weeks and associated frontal systems gave rise to widespread and often heavy rainfall. Rivers consequently remained in spate during this period and several notable discharge rates (see page 12) were registered. Floodplain inundation was common. In the South-East many rivers recorded their highest January runoff on record.

19th: The Colebrooke, gauged at Ballindarragh (County Fermanagh) recorded its highest flow in a 14-year record. Four days later, the River Camowen (County Tyrone) also recorded a peak flow which surpassed all previous January discharge rates in its 17 -year record.

24th: Discharge rates increased throughout the Midlands; the Sence at South Wigston and the Anker at Polesworth both recorded new maximum levels in records which began in 1971 and 1966 respectively.

26th-27th: An active low pressure system brought heavy rainfall and strong winds to the South. Much of central Cornwall was affected and intense rainfall on the 27 th , following significant precipitation during the previous week, caused serious flooding in Truro (see page 27).

29th-3/st: In the Thames region, where baseflows were already bigh, sustained precipitation caused rivers draining the lower Thames catchment, in particular, to exceed bankfull. The Colne, gauged at Denham, recorded its highest peak flow and, in the Lee Basin, the Mimram registered its highest daily mean flow; both rivers have 37 -year records. In Kent, notably high river levels were recorded on the Stour and Medway. Several small villages in Gloucestershire were cut-off as the Severn, already in spate due to a large meltuater contribution from the headwaters, overtopped its banks causing floods.almost two metres deep near Tewkesbury. Further south, the River Hayle, gauged at St Erth (Cornwall) recorded its highest fiow (on the 31st) since records began in 1957.

February

Ist: The passage of active frontal systems continued and many rivers remained in spate. In Devon, the Otter, Clyst, Ax and Culm overtopped their banks and in Helston (Cornwall) homes were flooded to a depth of more than a meire - the second time in less than a week.

The weather system which had affected southern areas moved rapidly northwards causing heavy rainfall in the Scottish Borders. Rivers draining the Southern Uplands peaked; the Teviot, gauged at Hawick, exceeded its previous February maximum flow rate in a 25 -year record. In Dumfries, properties were flooded when the River Nith rose above bankfull.

9th-10th: A deep Atlantic depression tracked due east across the UK bringing storms and widespread, although moderate, flooding to many areas as river levels exceeded bankfull. In Northern Ireland several rivers recorded their highest February peak flow on record.

13th-14th: A continuation of cyclonic conditions brought heavy frontal rainfall to the South and the West. On the 14 th, the Lambourn, gauged at Shaw (Berkshire), recorded its highest daily mean flow since monitoring began in 1962 .

March

Throughout most of the UK, steep flow recessions, many of which began in mid-February continued into early March as dry conditions prevailed. By the end of the first week, daily mean flows in Devon and Cornwall approached the minimum on record for the month. Thereafter however, river levels quickly recovered in response to frontal rainfall.

April

A decline in river levels became re-established in many parts of the UK as high pressure dominated southern Britain. In Scotland and the north of England a notable interruption in the flow recession occurred in midmonth as a result of heavy rainfall associated with a vigorous Atlantic depression.

Abstract

May 8th: In the early hours a shallow low pressure system moved northwards from France causing hot humid air to abut a colder air mass over south-east England. A series of intense thunderstorms were triggered along a front extending through the Thames Valley; particularly active convective cells were located over London. At Ruislip, two separate storms were registered. During the first - when 53 mm was recorded in a two and a half hour period beginning at 05.00 hrs - a peak intensity of 11.8 mm in 15 minutes was recorded. A return period of over 100 years was associated with the whole storm. At 17.00 hrs , a separate downpour produced over 30 mm of rain (with a maximum intensity of 16 mm in 15 minutes). Several districts recorded rainfall totals exceeding 70 mm for the two events. With both storm cells centred over urban areas, runoff was extremely rapid and localised flooding was common together with widespread transport disruption. Flooding along the Silk Stream in north London was exacerbated by the inability of a downstream culvert to cope with the floodwaters - local roads were inundated to a depth of one metre. The impact of the storms in the nearby River Yeading catchment (close to the centre of the storm) was ameliorated by the recently completed channel widening scheme which substantially increased the carrying capacity of the channel in a vulnerable reach.

Several other rivers also registered high discharge rates and the Colne recorded a highest instantaneous flow which exceeded all previous peaks with the exception of the January maximum.

June

Anticyclonic conditions dominated the weather pattern throughout the UK for most of June. A gradual decline in river levels was noticeable over many parts of the country following frontal rainfall at the start of the month. Flows in Scotland and in the north-west of England were particularly low and several rivers registered their lowest June runoff on record. In the Highland Region, the Ewe at Poolewe recorded its lowest monthly runoff in a 19-year record and the River Cocker, gauged at Southwaite Bridge (Cumbria), recorded a new minimum daily mean flow - in a 21 -year record - on the 30 th ; six days later an even lower flow was recorded. A Drought Order was obtained for Ennerdale Water - West Cumbria's main water supply - as a precautionary measure to help conserve the diminishing reservoir storage:

July

Early in the month.there was a marked change in river flow patterns as the first of a succession of depressions and associated frontal systems crossed the UK giving rise to widespread thunderstorms and heavy rainfall. Rivers in western and northern areas exhibited an abrupt increase in flow and discharges remained high throughout the month in many areas; some rivers had their highest July runoff on record.

On the 28th, both the South Tyne (at Haydon Bridge) and the Tees (at Middleton in Teesdale) recorded new maximum instantaneous flows in records which began in 1962 and 1971 respectively.

August

12th: Fronts associated with an Atlantic low pressure system moved eastwards across parts of Great Britain. Exceptionally heavy rainfall was recorded at Dingwall in the north of Scotland. The resulting runoff caused sewers to surcharge - consequently several properties and roads were flooded. The storm was of a remarkable intensity - during seven hours, commencing at $17.23 \mathrm{hrs}, 76 \mathrm{~mm}$ of rain (equivalent to the average monthly rainfalt for August) was recorded at the Highland River Purification Board's climatological station in Dingwall. Associated intensities approached those ascribed to the 1000 -year event for a number of durations ranging up to five hours.

3/st: Thunderstorms associated with an active frontal system moved eastwards across the country during the last fer days of the month. Rainfall amounts were greatest in South W ales and the South-West. The River Lwyd, which has been gauged at Ponthir (Gwent) since 1966, registered a peak discharge which exceeded its previous August maximum by over $35 \mathrm{~m}^{3} \mathrm{~s}^{-1}$.

September

1st-2nd: A deep depression moved north across Ireland bringing heavy rainfall and flooding to many parts of the UK. Nantmor, in Gwynedd, received more than 50 mm of rain and the Glaslyn, at Beddgelert, subsequently recorded a flood discharge of $155 \mathrm{~m}^{3} \mathrm{~s}^{-1}$, some $50 \mathrm{~m}^{3} \mathrm{~s}^{-1}$ greater than its previous September maximum.

October

5th: Cyclonic conditions prevailed and significant rainfall was associated with a sequence of troughs crossing all areas from the west. In South Wales, the Rivers Ewenny and Thaw both recorded new maximum flows in 18 and 12-year records respectively.

10th-11th: A depression which became slow moving over southern England resulted in the second intense rainfall episode this year in Cornwall and again the impact on Truro was severe (see page 27).

19th: Thunderstorms prevalent over Liverpool and the Wirral resulted in localised flooding. The only 'very rare'* daily rainfall registered during 1988 was associated with these storms - 82 mm of rain fell in Crosby with most of the rain falling in less than 2 hours. A return period of 175 years was attributed to the event.

25th: More than 80 mm of rain was recorded in parts of the Mourne Mountains (Northern Ireland), including 97 mm at Trassey. The Upper Bann, gauged at Bannfield, subsequently registered its highest October peak flow since records began in 1975. Flooding was reported throughout the Province.

November

Anticyclonic conditions prevailed throughout the greater part of the month and rainfall amounts were well below normal in all regions of the UK; southern areas were particularly dry and river flows declined steadily. Only widespread, heavy rainfall on the 29th prevented the month from being remarkably dry over England and Wales as a whole; many places in Wales and south-western England had falls over 30 mm and rivers peaked in response.

December

In England and Wales, rainfall was largely confined to the first five days of the month when river flows remained relatively high. Subsequently, most frontal systems failed to penetrate much beyond western Scotland and parts of northern England; lowland England, in particular, remained very dry. Recessions were steep and sustained and, by late December, some concern was expressed in relation to the declining river flows; many rivers throughout England and Wales recorded new low runoff totals for the last two months of the year. A few small rivers draining predominantly impervious catchments recorded flows less than 25 per cent of their mean December flow and discharge ceased in many chalk springs.

[^1]
HYDROLOGICAL ANALYSIS OF THE TRURO FLOODS OF JANUARY AND OCTOBER 1988

Dr M. C. Acreman
Institute of Hydrology

Introduction

On the 27th of January 1988 heavy rainfall over much of Cornwall caused flooding in many places including Helston, Penryn and Perranporth. The most serious flooding occurred in the city of Truro from the River Kenwyn. Fifteen residential and 50 commercial properties were flooded. Using procedures recommended in the Flood Studies Report ${ }^{1}$, a return period of 350 years was assigned to the Truro flood; thus most residents considered that it would be unlikely to occur again in their lifetime. On the 10th and 11th of October 1988 further heavy storms occurred. The distribution of rainfall over Cornwall was different to that in January thus, although many properties in Perranporth were again inundated, Penryn did not suffer the same fate. In Truro flooding was even more severe than in January causing further disruption and anxiety. Taken together the two events resulted in damage estimated at over two million pounds.

Given the small probability of experiencing two such extreme floods within 10 months, a major investigation was undertaken to assess the future flood risk in Truro. An important facet of this study was the appraisal of contemporary reports of historical floods in order to refine the assessment of the rarity of the 1988 events.

Truro and the Kenwyn Catchment

The city of Truro is sited on the banks of the Rivers Kenwyn and Allen in central Cornwall. Flow measurement facilities have existed on the Kenwyn since 1968; the gauging station is situated just inside the city limits. Flows are measured by a three-bay compound Crump weir which allows flood flows, up to a stage of 1.98 metres (the height of the piers and wing walls), to be measured accurately. Some 30 metres downstream of the station a low twin-arch
bridge carries the main road over the river. It is thought that throttling of flows by the bridge culverts may cause drowning of the gauging structure during extreme floods.

Above the flow measurement station, water levels are controlled by the natural variations in channel geometry and roughness. Within the city, the river flows in an easterly direction and is confined within artificial banks. Some 200 metres downstream of the gauging station, in Waterfall Gardens, a pair of sluice gates, which are normally closed, are used to provide sufficient head to supply water to the Truro leat system. These can be opened (raised) in times of high flows to alleviate flooding upstream. Below the sluices, the river flows between a high right-bank retaining wall and a vertical left bank which carries a footpath. The wall protects basement properties in St George's Road which, given their very low level relative to the river bed, are at risk from surcharging drains and, more seriously, from failure of the wall (see Figure 9).

Further downstream the river is culverted under the city centre for about 250 metres. The culvert was constructed in Victorian times, a period of major change in Truro with the development of River Street and the construction of St George's Road. The original capacity of the culvert was around $15 \mathrm{~m}^{3} \mathrm{~s}^{-1}$. Inevitably, silting occurred over the years and a major clearance operation was undertaken in February 1956 removing silt and debris from the culvert. Substantial structural improvements and maintenance were also carried out around 1971. In particular the tunnel was lined to improve its hydraulic efficiency and thus its capacity was increased to around $18 \mathrm{~m}^{3} \mathrm{~s}^{-1}$. A debris screen in the Waterfall Gardens prevents material from entering the culvert and is regularly cleaned. However, its blockage may have contributed to flooding immediately upstream in the Gardens on a few occasions.

Figure 9. Location details of the River Kenwyn in Truro showing areas inundated during the 1988 floods.

Physical Characteristics

The catchment above the flow measurement station has a drainage area of $19.1 \mathrm{~km}^{2}$. At present, just over six per cent of the catchment is urbanised. Upstream of the centre of the city the catchment area is 19.4 km^{2}. The extra $0.3 \mathrm{~km}^{2}$ is entirely developed and, in total, just over seven per cent of the catchment is urbanised.

There is an abrupt change in land use at the city limits. Outside the city the catchment is almost entirely rural with only a few small villages and farms. Land use is predominantly pasture though there are small areas of copse and woodland. The terrain is broadly rolling, with rounded hills, though locally steep.

The Kenwyn and Allen catchments are underlain by rocks of Devonian age, predominantly slates and greywackes. Soils are mostly typical brown earths consisting of slightly stony clay loam ${ }^{2}$. These soils are permeable, naturally well drained and accept most rainfall, but temporary water storage capacity is limited by rock or, locally, compact drift at less than 0.8 metre depth which causes some runoff.

Hydrological Characteristics

A typical hydrograph describing the response of the River Kenwyn to rainfall, over a period of a month or so, is dominated by a slow rise in baseflow which lasts for many days before recessing slowly to a residual level. There are a number of wells and springs along the watercourse. However, the hydrogeology of the catchment is not well understood. Geological survey records indicate that several exploratory boreholes sunk in the area have yielded little commercially exploitable water; thus there is no evidence for a large deep aquifer. Nevertheless subsurface storage is clearly sufficient to delay runoff for several days.

Superimposed on the baseflow are short-lived, fairly steep rises, followed, within a few hours, by a recession to a slightly higher baseflow level. Analysis has shown ${ }^{3}$ that the quick response runoff typically comprises only a small percentage (less than 10 per cent) of the rainfall volume, due mainly to the permeable soils. The major proportion of rainfall supplies the slowly responding baseflow component. The flow at the peak of the flood is therefore controlled by a combination of the quick response from immediately preceding rainfall and the slower response from rainfall several days earlier. Thus antecedent conditions are very important in the flood hydrology of this catchment. Large floods are less likely to occur in the summer when a significant soil moisture deficit has normally developed. In August 1959, for example, no river flooding occurred even when more than 50 mm of rainfall was recorded in one day.

There is a daily-read raingauge in Truro, but the
nearest autographic gauge is at Rosewarne, some 20 km WSW of the city. Until the summer of 1988 a weather radar was operating at Camborne. It was then moved to Predannack. The average annual rainfall for the Kenwyn catchment is around 1120 mm , for the period 1941-70, with the major proportion (over 70 per cent) falling in the months September to March ${ }^{4}$. These are therefore the critical months for flooding.

The Flood of the 27th January 1988

On the afternoon of the 27th January 1988 an occluded front moved very slowly eastwards across Cornwall. The Meteorological Office at Plymouth warned that heavy rainfall was likely over north Devon where the front could become stationary. In the event the heaviest rain fell over central Cornwall with an area of $100 \mathrm{~km}^{2}$ receiving more than 50 mm (Figure 10) on the 27th. The highest daily fall recorded on the 27th was 91 mm at Trevince, 10 km

Figure 10. Isohyetal maps for the Ganuary and October Truro floods-rainfall totals are in mm .

Figure 11(a). Rainfall hyetograph and runoff hydrograph for the fanuary, 1988 flood.

WSW of Truro, whilst 58.1 mm was measured in Truro itself. During the previous five days over 68 mm had fallen in Truro, saturating the Kenwyn catchment. A catchment average rainfall of 67 mm was calculated for the two rainfall-days starting at 09.00 hrs on the 26 th. This total was apportioned between the 48 hours using data from the Camborne weather radar. It is noteworthy that, when compared with raingauge data, the weather radar generally underestimated rainfall totals, although it gave a good indication of the relative amounts at different times and of the areas worst affected. The catchment average rainfall hyetograph for the event is shown in Figure 11a. The peak intensity is almost $12 \mathrm{~mm} \mathrm{hr}^{-1}$, lasting for two hours. Also shown in Figure 11(a) is the runoff hydrograph for the Kenwyn at the Truro gauging station. After rising at a rate of 10 millimetres per minute, a peak stage of 2.12 m was reached at 17.30 hrs. Extrapolation of the stagedischarge relation to this level gives a flow of over 30 $\mathrm{m}^{3} \mathrm{~s}^{-1}$. However, the peak flow was revised to 22.5 $\mathrm{m}^{3} \mathrm{~s}^{-1}$ following evidence that the water level had been elevated by debris which had collected across the weir ${ }^{5}$. This may also have contributed to the flooding which occurred upstream of the gauging station at St George's Villas.

Further downstream, the force of the flood led to

Figure 11(b). Rainfall hyetograph and runoff hydrograph for the October, 1988 flood.
the failure of the river retaining wall behind St George's Road. The resultant rapid surge of water flooded several basement flats to a depth of 1.5 m , endangering the life of one of their residents. The leat sluices were already open, perhaps preventing more serious flooding upstream. At around 16.45 hrs the culvert beneath the city centre reached capacity and the excess water flooded approximately 50 commercial properties in River Street and Victoria Place, some to a depth of over half a metre. The total cost of damage exceeded one million pounds. A postflood survey of the city centre culvert found no evidence of obstructions or debris.

The largest flow previously recorded at the gauging station was only $13.4 \mathrm{~m}^{3} \mathrm{~s}^{-1}$, hence a standard assessment by South West Water*, based on the annual maximum flood series from the gauging station and the Flood Studies Report recommended procedures, put the return period of the flood at 350 years. Although flows were high in most other watercourses in the area, the next largest flood recorded was on the River Kennel at Ponsanooth where the return period was of the order of 10 years.

[^2]
The Flood of 11th October 1988

Heavy rainfall returned to Cornwall on the 10th and 11th October, associated with a trough of low pressure, following a week of widespread rain which had saturated the catchment; several gauges in the area recorded over 100 mm in seven days and one, Hessary on Dartmoor, exceeded 200 mm . The highest two-day fall on the 10th and 11th was 68.3 mm recorded at St Agnes. The vast majority of this rain fell between 06.00 and 17.00 hrs on the 11 th, thus spanning the two rainfall-days. As in January, all of central Cornwall received more than 30 mm (Figure 10). High flows were again recorded on many rivers with a flood of around the 20 -year return period on the River Gannel at Gwills. In Truro, 31.9 mm was recorded for the 24 hours up to 09.00 hrs on the 12th. The average rainfall over the Kenwyn catchment for the two-day period commencing 09.00 hrs on the 10 th was 45.1 mm . This total was apportioned amongst the 48 hours using data from the weather radar at Predannack. The catchment average storm rainfall is depicted in Figure 11b. The level of the River Kenwyn reached 2.11 m at the gauging station at 15.15 hrs on the 11 th , corresponding to a peak flow of almost $31 \mathrm{~m}^{3} \mathrm{~s}^{-1}$. The flood hydrograph is also shown in Figure 11b.

A photograph of the gauging station was taken just after the peak of the flood (Plate 1), showing

Plate 1. The Truro gauging station-during the October 1988 flood and close to median flow conditions.

Plate 2. Surcharging of manholes in River Street, Truro during the October 1988 flood.
that water levels were very high both upstream and downstream of the measuring structure. However, there appeared to be sufficient drop in head across the structure to assume that the weir was not significantly drowned. The lower photograph shows the same structure at normal flow.

St George's Villas escaped flooding on this occasion due to river maintenance after the January flood. The leat sluices had been raised on the evening of the 10th, after a flood warning was issued, and no major blockages of the channel were reported. Nevertheless, the high river flows led to a further failure of the retaining wall behind St George's Road, immediately downstream of the section re-built following the January event, and one basement property was flooded. However, other flooding in the St George's Road area appears to have been primarily the result of surcharging drains. As in the January event, flooding in the city centre occurred once the capacity of the culvert had been exceeded. Plate 2 shows the culvert surcharging through access manholes in River Street.

Assessment of Return Period using Annual Maximum Floods

The return period - the average interval between years containing a flood equal to, or greater than, a given discharge rate - can be estimated by analysing records of previous floods.

The Flood Studies Report recommends that for return periods greater than twice the length of record (in this case 42 years) the mean annual flood should be calculated from the flood data and then scaled up to the required return period using an appropriate regional growth factor. New growth factors were produced by Whiter ${ }^{6}$ as part of a revision of the flood frequency estimation procedures for the South West region using the Flood Studies Report methodology. Excluding both floods from the calculation of the mean, since they could be considered as outliers, results in the 350 -year return period assessment of the January flood obtained by South West Water. However, return periods for the January and October
floods of 100 and 400 years respectively are given when these events are included.

If the period of record is considered to be representative of the long-term flow regime, the entire flood frequency curve may be derived directly from the observed flood data. Table 6 shows the results of fitting a generalised extreme value (GEV) distribution to the 21 annual maximum floods from 1968 to 1988. This gives a flood frequency curve much steeper than using the regional average growth factors (see Figure 12). For example the 100 -year flood is 5.4 times larger than the mean annual flood (which is $7.7 \mathrm{~m}^{3} \mathrm{~s}^{-1}$). The South West area growth curve suggests that the regional average 100 -year flood is only 2.93 times the mean.

TABLE 6 FLOOD QUANTILES FROM FITTING A GEV DISTRIBUTION (1968-1988)

Return Period (years)	Peak Flow $\left(\mathrm{m}^{2} \mathrm{~s}^{-1}\right)$	Return Period (years)	Peak Flow $\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$
5	8.67	50	28.82
10	12.41	100	41.72
25	19.99		

The fact that the two 1988 floods are considerably larger than all previously recorded floods strengthens the possibility that they may be considered outliers and therefore the period of flow record may not be representative of the long-term flow regime. Under such circumstances the flood frequency curve based on the regional analysis should normally be adopted. Individual events were analysed in order to check whether there was a physical justification for adopting the steeper curve based on the local data.

Figure 12. Flood frequency diagram for the River Kenwyn at Truro based on data for the water years 1968/69 to 1988/89.

Analysis of Event Data

Individual flood events on the River Kenwyn have been studied on several occasions, most recently by Boorman ${ }^{3}$ as part of a revision of the Flood Studies Report rainfall-runoff model ${ }^{7}$. The percentage runoff (PR) was found to be less than 20 per cent for all events. These findings are comparable with values of PR evaluated for five events by MacGregor and Cameron ${ }^{8}$ on the Kenwyn catchment which ranged from six per cent for a July event to 20 per cent for a January event. For both the 1988 events PR was around 40 per cent. It is important to note that relative to the 1988 events all these other events were small in terms of peak flow, the largest being only $4.3 \mathrm{~m}^{3} \mathrm{~s}^{-1}$.

Data collected on these individual events showed that the 1988 floods were not particularly extreme in terms of rainfall intensity. The physical nature of the Kenwyn catchment is such that it is particularly susceptible to the amount of rain falling over a 5hour period. This is thus the critical duration for flood generation. The Flood Studies Report gives the 5-year return period rainfall, of 5 hours duration, as 31 mm , the 10 -year as 37 mm and the 20 -year as 44 mm . The January storm, for which the maximum five-hour rainfall was 38.2 mm , thus has a return period of around 12 years, whilst the October storm (32.5 mm) would occur once, on average, about every seven years. Both are considerably more frequent than the resulting floods. Furthermore, the peak flow for the January event was less than that for the October flood despite the higher rainfall. Thus 5-hour storm rainfall intensity is not the only important flood producing factor. This is clear from the event of the 13 th September 1975, in Boorman's data set, which exceeded both 1988 events in terms of rainfall but only resulted in a peak flow of 3.7 $\mathrm{m}^{3} \mathrm{~s}^{-1}$ because of low antecedent wetness. Percentage runoffs and hence peak flows have a wide range and are strongly influenced by antecedent rainfall. Heavy rainfall alone is rarely sufficient to both satisfy the soil moisture deficit and generate high river flows. Large floods result from the joint occurrence of a saturated catchment and heavy rainfall.

The Flood Studies Report rainfall-runoff model can also be used to estimate floods of various return periods. Results suggest that the January flood has a return period of around 17 to 30 years whilst the October flood would be exceeded once, on average, every 70 to 110 years, supporting the case for adopting a steep flood frequency curve. This suggests that the Kenwyn may not be typical of catchments in the South West region and that the regional growth curve may be inapplicable. To examine this hypothesis further information on historical floods was sought.

Historical information

The 1988 events showed that when flood flows exceed the capacity of the city centre culvert, water overflows into the streets and properties causing obvious damage and distress. It may be assumed, therefore, that if the culvert capacity had been exceeded in the past (a flow of at least $15-18 \mathrm{~m}^{3} \mathrm{~s}^{1}$) the event would have made local news. Truro is fortunate in having an extensive archive containing rainfall records, manuscripts, journals and newspapers. The historical rainfall data were used to indicate potential dates of flooding, and a search of papers was undertaken for reports of flooding in the city on those days. Unfortunately newspaper accounts do not always differentiate between flooding from blocked or inadequate surface drains and river flooding. Another problem is that there has not been a consistent relationship between level and flow, because of changes in the culvert capacity, so that the events are not directly comparable hydrologically. During the search, additional flood events were discovered showing that flooding in Truro is not a new phenomenon. A summary of the history of flooding in Truro described in the newspapers is given in Table 7.

TABLE 7 SUMMARY OF FLOODING HISTORYIN TRURO 1830-1987

Date			Subrective assesment
c 1830-1870			Development of River Street, construction of St George's Road and culvert.
13	November	1875	Gales and flords. High tide.
04/05	October	1880	Heavy rain. Surface water?
28	Scptember	1882	High tide.
02	February	1885	Extreme tide.
12	November	1894	Serious flood. Wet catchment.
06	February	1899	Heavy rain. Surface water?
07/08	October	1924	Heavy rain. Mainly, River Allen.
25-30	November	1954	Storms across Curnwall. Flooding from Kenwyn and Allen.
12	January	1955	Serious flonding from Kenwign. Channel and tunnel capacities exceeded.
		1956	Improvements to culver, removal of silt.
25	December	1956	Fluoding St George's Villas.
10/11	August	1959	Heavy rain. Surface water?
		1971	Hydraulic improvements, culvert capactry increased.
29	November	1971	Heavy rain. Surface water.
08	August	1975	Thunderstorm. Surface water.
23/24	August ${ }^{\text {d }}$	1977	Heavy rain. Surface water.
05/06	October	1977	Heavy rain. Surface water.
27/28	December	1979	Flooding of River Allen.

Serious flooding from the River Kenwyn certainly occurred both in November 1894 and again in January 1955, however, the impact of the November 1954 flood is less clear. The most likely interpreta-
tion of the history of flooding is that between 1870 and 1967 there were only two events, 1894 and 1955, which exceeded $18 \mathrm{~m}^{3} \mathrm{~s}^{-1}$ (the present culvert capacity). This historical information, combined with the annual maximum flood peaks recorded at the gauging station, can be used in a statistical analysis to better determine the shape of the flood frequency curve ${ }^{9}$. Results, using this approach, suggest that the return period of the January flood is approximately 50 years and that for the October flood is around 100 years. Various other scenarios were investigated, for example that there were three events in the same period which exceeded $15 \mathrm{~m}^{3} \mathrm{~s}^{1}$ (the previous culvert capacity), though this only marginally altered the resulting return period assessments.

Conclusions

The most recent recorded event which caused serious river flooding prior to 1988 would appear to have been in 1956. Consequently, residents of the city, many of whom will have moved into the area since 1956 would - before January 1988 - have assumed that Truro had no river flooding problem, and others may simply have forgotten. It is not surprising, therefore, that the residents were somewhat alarmed to experience two very serious floods within 10 months. The small degree of urbanisation of the catchment is not sufficient to have caused a significant change in its response. Other characteristics of the catchment, such as land use practices do not appear to have altered for many years; for example there is little evidence of widespread artificial drainage, afforestation or mining. Furthermore, despite evidence for global temperature changes, it is unlikely to have been sufficient to have altered the climate of Cornwall to such an extent as to radically change the flood frequency. Thus, there is no reason to suppose that the two 1988 floods were other than chance occurrences.

Assuming that the relative size of floods on the Kenwyn is close to the average for the South West region, implies that the October flood would have a return period in excess of 400 years. Direct analysis of the annual maximum flood series suggests a much lower return period. This is supported by analysis of the historical information which assigns return periods of 50 and 100 years to floods of 22.5 and 30.4 $\mathrm{m}^{3} \mathrm{~s}^{-1}$ which are the estimated peak flows for the January and October floods respectively. Use of these historical data probably provides the best estimate of flood frequency, although only a lengthy record of accurately measured peak flows would be able to confirm this. Such a steep flood frequency curve is also suggested by an investigation of individual flood events which showed the large range in response to rainfall occurring between events is strongly influenced by antecedent catchment conditions. It is unrealistic to expect all catchments in a region to have identical flood growth curves. How-
ever; unless strong evidence is available, it is advisable to use the regional growth curve. In the Truro case, departure from the standard procedure was justified through the analysis of historical data and an understanding of the hydrological response of the catchment during extreme events.

It may be small comfort to the residents of Truro to know that the probability of getting both a 100 year and a 50 -year flood in consecutive water years is 0.0004 (or 1 in 2500), but it is important in relation to the development of any future flood alleviation strategy. Thus the occurrences in 1988 were exceptional, but not implausibly so.

Acknowledgements

This article forms part of a hydrological study of the Truro floods undertaken at the Institute of Hydrology and funded by South West Water with whose permission this report is published. Richard Horrocks researched the historical floods. Invaluable comments and criticisms were provided by Dr Duncan Reed of the Institute of Hydrology.

The views expressed in this report are those of the author and not necessarily those of South Wiest Water or its successor bodies.

References

'. Natural Environment Research Council. 1975. Flood Studies Report. NERC, London.
2. Findlay, D.C. et al. 1984. Soils and their uses in South West England. Soil Survey of England and Wales.
3. Boorman, D.B. 1985. A review of the Flood Studies Report rainfall-runoff model parameter estimation equations. Institute of Hy drology, Report No. 94.
4. Institute of Hydrology. 1988. Hydrological data UK: 1986 Yearbook, Institute of Hydrology.
5. Horrocks, R.J. 1988. Report on the Truro flood 27 January 1988. South West Water, Internal Report.
6. Whiter, N.E. 1983. The derivation of a SWW flood growth curve. South West Water, Internal Report.

1. Institute of Hydrology. 1985. The FSR rainfallrunoff model parameter estimation equations updated. Flood Studies Supplementary Report 16, Institute of Hydrology.
2. MacGregor, W.G. \& Cameron, R.J. 1977. Radar research project, unit hydrograph analysis for five Cornish catchments, South West Water, Internal Report.
3. Leese, M.N. 1973. Use of censored data in the estimation of Gumbel parameters for annual maximum flood series. Water Resources Research, 9, 1534-42.

Computation and Accuracy of Gauged Flows

Gauged flows are generally calculated by the conversion of the record of stage, or water level, using a stage-discharge relation, often referred to as the rating or calibration. Stage is measured and recorded against time by instruments usually actuated by a float in a stilling well. The instrument records the level either continuously by pen and chart, or digitally on punched-tape or solid-state logger, generally at regular (normally 15 minute) intervals. These stage data are normally collected routinely, typically at weekly or monthly intervals, and taken to a regional centre for processing. At more than half of the gauging stations in the United Kingdom provision is made for the routine transmission of river levels directly to the processing centre, by telephone line or, less commonly, by radio; on occasions, satellites have been used to receive and re-transmit the radio signal. The rapid growth in the use of the public telephone network for the transmission of river level - and, occasionally, river flow. - data is enabling hydrometric data acquisition to proceed on a near real-time basis in many areas. Typically, the data are stored on site, using a solid-state logger, and transmitted overnight for initial processing the following day. Normally, both digital and analogue recording devices are deployed at gauging stations to provide a measure of security against loss of record caused by instrument malfunction.

The stage-discharge relation is obtained either by installing a gauging structure, usually a weir or flume with known hydraulic characteristics, or by measuring the stream velocity and cross-sectional area at points throughout the range of flow at a site characterised by its ability to maintain the relationship.

The accuracy of the processed gauged flows therefore depends upon several factors:
i. accuracy and reliability in measuring and recording water levels,
ii. accuracy and reliability of the derived stagedischarge relation, and
iii. concurrency of revised ratings and the stage record with respect to changes in the station control.

Flow data from ultrasonic gauging stations are computed on-site where the times are measured for acoustic pulses to traverse a river section along an oblique path in both directions. The mean river velocity is related to the difference in the two timings and the flow is then assessed using the river's cross-sectional area. Accurate computed flows can be expected for stable river sections and within a
range in stage that permits good estimates of mean channel velocity to be derived from a velocity traverse set at a single depth, or at a series of fixed depths.

Flow data from electromagnetic gauging stations may also be computed on-site. The technique requires the measurement of the electromotive force (emf) induced in flowing water as it cuts a vertical magnetic field generated by means of a large coil buried beneath the river bed, or constructed above it. This emf is sensed by electrodes at each side of the river and is directly proportional to the average velocity in the cross-section.

British and International Standards are followed as far as possible in the design, installation and operation of gauging stations. Most of these Standards include a section devoted to accuracy, which results in recommendations for reducing uncertaintics in discharge measurements and for estimating the extent of the uncertainties which do arise.

The Surface Water Archive exists to provide not only a central database and retrieval service but also an extra level of hydrological validation. To further this aim, project staff at the Institute of Hydrology liaise with their counterparts in the water industry on a regional basis and, by visiting gauging stations and data processing centres, endeavour to maintain the necessary knowledge of local conditions and problems.

Scope of the Flow Data Tabulations

River flow data are presented in two parts. In the first, daily mean gauged flows are tabulated for 50 gauging stations; daily naturalised flows (see page 42) are also tabulated for the River Thames at Kingston. Monthly flow data for a further 159 gauging stations are given in the second part. The featured gauging stations have been selected to give a broad geographical coverage and to typify a wide range of catchment types found throughout the United Kingdom. A map (Figure 13) is provided on page 40 to assist in locating the gauging stations featured in this section.

For each gauging station, basic reference information is given together with comparative average and extreme river flow and rainfall figures based upon the archived record.

Explanatory notes precede the two sets of tables and are provided to assist in the interpretation of particular items. The notes relating to the daily flow. tables are given overleaf; those relating to the monthly data are given on page 93.

Part (i) - the daily mean flow tabulations

Station Number

The gauging station number is a unique six-digit reference number which serves as the primary identifier of the station record on the Surface Water Archive. The first digit is a regional identifier being 0 for mainland Britain, 1 for the islands around Britain and 2 for Ireland. This is followed by the hydrometric area number given in the second and third digits. Hydrometric areas are either integral river catchments having one or more outlets to the sea or tidal estuary or, for convenience, they may include several contiguous river catchments having topographical similarity with separate tidal outlets. In Britain they are numbered from 1 to 97 in clockwise order around the coastline commencing in north-cast Scotland: Ireland has a unified numbering system from 1 to 40 , commencing with the River Foyle catchment and circulating clockwise; not all Irish hydrometric areas, however, have an outlet directly on the coast.

The numbers and boundaries of the United Kingdom hydrometric areas are shown in the frontispiece.

The fourth, fifth and sixth digits comprise the number, usually allocated chronologically, of the gauging station within the hydrometric area.

Where the leading digit, or digits, are zero they may be omitted giving rise to apparent four or fivedigit reference numbers.

Measuring Authority

An abbreviation referencing the organisation responsible for the provision of river flow data to the Surface Water Archive. Most stations designated with 'Water Authority' codes in previous yearbooks have been transferred to the National Rivers Authority. In a few cases responsibility for individual stations remains a matter for further discussion between the NRA and the relevant Water Services PLC. A list of measuring authority codes together with the corresponding names and addresses for all organisations currently contributing data to the Surface Water Archive appears on pages 188 to 190.

Grid Reference

The initial two-letter and two-figure codes each designate the relevant 100 kilometre National Grid square or Irish Grid square (distinguished by the italicised two-figure code); the standard six-figure map reference follows.
Note: The Irish Grid has only one prefix letter but it is common practice to precede it with the letter I to make the identification clear.

Catchment Area

The surface catchment area, in the horizontal plane, draining to the gauging station in square kilometres. There are a few gauging stations where, because of geological considerations, the groundwater catchment area differs appreciably from the surface water catchment area and, in consequence, the baseflow, whether augmented or diminished, may cause the runoff values to appear anomalous.

First Year

The year in which the station started producing daily mean flow data, usually the first year for which data are held on the Surface Water Archive. Earlier data, often of a sporadic nature or of poorer quality, may occasionally be available from the measuring authorities or other sources.

Level of Station

The level of the station is, generally, the level of the gauge zero in metres above Ordnance Datum, or above Malin Head Datum for stations in Northern Ircland. Although gauge zero is usually closely related to zero discharge, it is the practice in some areas for an arbitrary height, typically one metre, to be added to the level of the lowest crest of a measuring structure to avoid the possibility of false recording of negative values by some digital recorders.

Maximum Altitude

The level to the nearest metre of the highest point in the catchment.

Table of daily mean gauged (or naturalised). discharges

The mean flow in cubic metres per second (abbreviated to $\mathrm{m}^{3} \mathrm{~s}^{-1}$ and sorretimes also referred to as 'cumecs') in a water-day, normally 09.00 to 09.00 . The naturalised discharge is the gauged discharge adjusted to take account of net abstractions and discharges upstream of the gauging station.

Peak Flow: The highest flow in cubic metres per second for each month. The day of peak generally refers to the water-day but the calendar day is also used, particularly in Scotland. Normally the peak flow corresponds to the highest fifteen-minute flow where water levels are recorded. digitally, or the highest instantancous flow associated with maximum stage where analogue recorders are used.

Runoff: The notional depth of water in millimetres over the catchment equivalent to the mean flow for the month as measured at the gauging station. It is computed using the relationship:

> Runoff in $\mathrm{mm}=$ $\frac{\text { Average Flow in Cumecs } \times 86.4 \times \mathrm{n}}{\text { Catchment Area }\left(\mathrm{km}^{2}\right)}$
where n is the number of days in the month. The runoff total is rounded to the nearest millimetre.

Rainfall: The rainfall over the catchment in millimetres for each month. Except for the Institute of Hydrology's research catchments each areal rainfall total is derived from a one kilometre square grid of rainfall values generated from all available daily and monthly rainfall data - these data are provided by the Meteorological Office. Validation procedures allow for the rejection of obviously erroneous raingauge observations prior to the gridding exercise. A computer program then calculates catchment rainfall by averaging the values at the grid points lying within the digitised boundary of the catchment.

Statistics of monthly data for previous record

Only complete monthly records are used in the derivation of the average, low and high values of river flow, runoff and rainfall. The rainfall and runoff statistics are normally directly comparable but full equivalence will not obtain where the pattern of missing data differs between the archived rainfall and runoff data sets.

Where applicable, a guide to the amount of missing data is given following the section heading.

Summary statistics

Current year flow statistics are tabulated alongside the corresponding values for the previous record. Where appropriate, the current year figures are expressed as a percentage* of the preceding average.

Mean Flow: The average of all available daily mean flows during the term indicated.

Lowest Daily Mean: The value and date of occurrence of the lowest mean flow in cubic metres per second in a water-day during the term indicated. In a record in which the value recurs, the date is that of the last occasion.

River flow measurement tends to become more imprecise at very low discharges. Very low velocities, heavy weed growth and the insensitivity of stagedischarge relations combine with the difficulty of accurately measuring limited water depths to reduce the accuracy of computed flows. The reliability of

[^3]both the lowest daily mean flow and the 95\% exceedance flows (see below) as representative measures of low flow must, therefore, be considered carefully and the values used with caution in view of the increasing proportional variability between the natural flow and the artificial influences, such as abstractions, discharges and storage changes as the river flow diminishes.

Peak: The peak flow in cubic metres per second during the term indicated. The date of occurrence, normally the water-day, is also indicated. Generally, the peak flows are derived from the record of monthly instantaneous maximum flows stored on the Surface Water Archive. As a result of particular flow measurement difficulties in the flood range, this peak flow series is often incomplete. Reference to Volume IV of the Flood Studies Report: should be made to check for historical flood events which may exceed the peak falling within the gauged flow record.
10% exceedance: The flow in cubic metres per second which was equalled or exceeded for 10 per cent of the specified term - a high flow parameter which, when compared with the mean may give a measure of the variability, or 'flashiness', of the flow regime. The 10 per cent exceedance value is computed using daily flow data only for those years with ten days, or less, missing on the Surface Water Archive.
50% exceedance: The flow in cubic metres per second which was equalled or exceeded for 50 per cent of the specified term - the median value. The same conditions for completeness of the annual records apply as for the 10 per cent exceedance flow.

95\% exceedance: The flow in cubic metres per second which was equalled or exceeded for 95 per cent of the specified term - a significant low flow parameter relevant in the assessment of river water quality consent conditions. The same conditions for completeness of the annual records apply as for the 10 per cent exceedance flow.

Factors affecting flow regime

An indication of the various types of abstractions from, and discharges to, the river operating within the catchment which alter the natural flow is given by a standard set of abbreviated descriptions. In Part (ii) - the monthly flow data - each description is shortened to a code letter. An explanation of the abbreviated descriptions and the code letters is given overleaf. With the exception of the induced loss in surface flow resulting from underlying groundwater abstraction, these codes and descriptions refer to quantifiable variations and do not include the progressive, and difficult to measure, modifications in the regime related to land-use changes.

[^4]
CODE EXPLANATION

N Natural, i.e., there are no abstractions and discharges or the variation due to them is so limited that the gauged flow is within 10 per cent of the natural flow at, or in excess of, the 95 per cent exceedance flow.

Storage or impounding reservoir. Natural river flows will be affected by water stored in a reservoir situated in, and supplied from, the catchment above the gauging station.

R Regulated river. Under certain flow conditions the river will be augmented from surface water and/or groundwater storage upstream of the gauging station.

Public water supplies. Natural river flows are reduced by the quantity abstracted from a reservoir or by a river intake if the water is conveyed outside the gauging station's catchment area.

Groundwater abstraction. Natural river flow may be reduced or augmented by groundwater abstraction or recharge. This category includes catchments where minewater discharges influence the flow regime.

Effluent return. Outflows from sewage treatment works will augment the river flow if the effluents originate from outside the catchment.

Industrial and agricultural abstractions. Direct industrial and agricultural abstractions from surface water and from groundwater may reduce the natural river flow.

Hydro-electric power. The river flow is regulated to suit the need for power generation.

Except for a small set of gauging stations for which the net variation, i.e. the sum of abstractions and discharges, is assessed in order to derive the 'naturalised' flow from the gauged flow (see page 36), the record of individual abstractions, discharges and changes in storage as indicated in the code above is not held centrally.

Station and catchment description

A short commentary providing a guide to the characteristics of the station, its flow record and the catchment it commands; refer to page for an explanatory listing of the abbreviations and acronyms used. The principal objectives of this summary information are to assist data users in the selection of gauging station records appropriate to their needs and to assist in the interpretation of flow variability at individual gauging stations particularly where the

ABBREVIATED DESCRIPTION

Natural within 10 per cent at the 95 per cent exceedance flow.

Reservoirs in catchment.

Augmentation from surface water and/or groundwater.

Abstraction for public water supply.

Flows influenced by groundwater abstraction and/or recharge.

Augmentation from effluent returns.

Flow reduced by industrial and/or agricultural abstraction.

Regulation for HEP.
natural flow pattern is significantly disturbed by artificial influences.

The descriptive material will be updated and revised to reflect the availability of more information and in response both to changing hydrometric conditions at the measuring site and changing patterns of land use and water utilisation in the catchment.

A comprehensive set of gauging station and catchment descriptions is provided in the 'Hydrometric Register and Statistics 1981-5' (see page 191).

Comment

A summary of any important factors influencing the accuracy of the current year's flow data specifically; for instance, the reconstruction of a gauging station or the use of extrapolated stage-discharge relations during periods of very low or very high flows.

STATIONS FOR WHICH DAILY OR MONTHLY DATA ARE GIVEN IN THE RIVER FLOW SECTION

Station	river name and station same	SFE
stimber		Page
3003	OYKEL. AT EASTER TURNAIG	94
4001	CONON AT MOY BRIDGE	94
7002	FINDHORN AT FORRES	94
D 8006	SPEY AT BOAT O BRIG	42
8007	SPEY AT INVERTRUIM	94
9001	DEvERON at avochie	95
10002	UGIE AT INVERUGIE	95
11001	DON AT PARKHHLL	95
D 12001	DEE AT WOODEND	43
13007	NORTH ESK AT LOGIE MII.I.	95
13008	SOUTH ESK AT BRECHIN	96
$1+001$	eden at kemback	96
DIS00s	tay at bal.lathie	44
15011	L.YON AT COMRIE BRIDGF:	96
10003	RUCHILL WATER AT Clilitibraggan	96
16004	EARN AT FORTEVIOT BRIDGE	97
17001	Carron at headswood	97
13002	Leven at leven	97
18003	TEITH AT BRIDGE OF TEITH	97
18005	alian water at bridge of alitan	98
D19001	alamond at craigiehail.	45
20001	TYNE AT EAST IINTON	98
21006	TWEED AT BOLESIDE	98
D 21009	THEED AT NORHAM	46
21012	TEVIOT AJ hawick	98
21018	LYNE EATER AT. LYNE STATION	99
21022	Whiteadder water at hijtron	
	Castle	99
D 22001	COQUET AT MORTEICK	17
22006	BI.)TH AT HARTFORD 8RIDGF	99
23001	TYNE AT BYWEIL	99
D) 23006	SOUTH TYNE AT FEATHERSTONE	48
23007	derment at rowlands gill	100
24004	BEDBLIRN BECK AT BEDBLIR	100
24009	Wear at chester le street	100
D) 25001	tehes at broken scar ${ }^{-}$	49
25006	GRETA AT RUTHERFORD BRIDGE.	100
25019	LEvEN AT EASBY	101
25020	SKERNE AT PRESTON L.E SKERNE	101
26003	FOSTON BECK AT FOSTON MILI.	101
26005	GYpSEY RACE AT BOYNTON	101
D 27002	Wharfe at flinit mil.l Weir	50
27007	L LRE AT WESTWICK L.OCK	102
27025	ROTHER AT MOODHOLSE MILL	102
27030	DEARNF AT ADWICK	102
D 27035	AIRE A' KILDWICK BRIDGE	- 51
D) 27041	DERWENT AT BITITERCRAMBE	52
27042	DOVE AT KIRKBY MILIS	102.
27043	Wharfe at addingham	103
D) 27053	NIDD AT BIRSTWITH	53
27059	LAVER AT RIPON	103
27071	SWALE AT CRAKEhill.	103
1) 280009	TRENT AT COIVFICK	54
28018	DOVE AT MARSTON ON DOVE	103
28024	WREAKE AT SYSTON MILL	104
28026	ANKER AT POLESTKORTH	10.
28031	manifolid at ilam	104
28039	REA AT CALTHORPE PARK	10.4

statoon rifer mame and station name stimber		seE
		Page
28030	tame at lea marston lakes	105
28082	soar at littiemthorpe	0s
D 28085	derment at st marys bridge	5
29003	llidat louth	105
D 30001	mithamat claypole mill.	36
30004	partsey lymi at partsey mili.	OS
31002	glen at kates bridge (total.)	106
31007	weiland at barrowdes	106
32003	harpers brook at old mill	
	bridge	106
D 32004	ise broon at harrowden olid	
	MIIL	37
D) 33002	bedford olise at bedfurd	58
33012	Kymat meagre farm	100
33013	SAPISton at rectory bridge	107
33024	camat dernford	107
33032	heacham at heacham	07
3.4001	yare at colney	107
34002	tas at shotesham	108
D 34006	waveney at nemblam mill	9
35002	deben at nauyton hali,	108
D 36006	stour at langham	∞
37001	roding at redbridge	108
37005	colne at lexden	108
37010	blackuaterat appleford bridge	109
38001	l.ee at felldes weir	109
D) 38003	mimram at panshavger park	61
38007	canons brook at elizabeth diay	108
38021	turkey brook at albasy park	09
D) 39001	thames at kingston	62
39002	thames at days weir	110
39005	beveriey brook at wimbledon	
	common	10
D 39007	blacku'ater at swallowfield	3
39014	ver at hansteads	110
39016	kexnet at theale	10
39019	lambolirs at shaw	1
D) 39020	col.n at bibury	64
39021	cherwelli at meslow mill	111
39023	wyeat hedsor	1
39029	tillingbourne at shalford	111
39099	silk streamat colindeep lane	112
39669	mole at kinnersley manor	12
D 40003	medvai at teston	65
+000	Rother at udiam	2
40009	teise at stone brioge	2
40011	great stour at horton	13
40012	darestat hamiey	113
41001	nunsingham stream at tildey	
	bridge	113
+1005	ouse at golid bridge	13
+1006	cock at isfield	11.4
D +1016	cuckmerlat cowbeech	60
+1019	arun at alfoldean	114
\$1027	rother at princes marsh	14
+2003	f.ymingtonat brockenhlirst park	114

Staton river mame and station mamenumber		SEE
		Page
42004	TEST AT BROADLANDS	115
42000	MEON AT MISLINGFORD	415
42008	CHERITON STREAM AT SEWARDS	
	BRIDGE	115
D 42010	ITCHEN AT HIGHBRIDGE AND	
	ALLBROOK	67
D 43005	ALON AT AMESBLIRY	08
+3006	NADDER AT WILTON PARK	115
43007	STOUR AT THROOP MILL	116
$4+002$	piddle at baggs mill.	116
D 45001	FXEAT THORVERTON	69
45003	CULMAT WOODMILL	116
45005	OTTER AT DOTTON	116
46003	darti at austins bridge	117
D) 47001	tamar at glinvislake	10
47007	yealmat plislinch	117
47008	thrushel at tinhay	117
48004	Warleggan at tregoffe	117
48003	KENWYN AT TRURO	118
48011	fowey at restomel	118
49001	Camel at denby	118
49002	hayle at st erth	118
D 50001	TAGT AT UMBERI.EIGH	71
50002	TORRIDGE AT TORRINGTON	119
1) 52005	TONE AT BISHOPS HLIII.	72
52000	YEO AT PEN MILI.	119
52007	PARREIT AT CHISEIBOROUGH	119
52010	BRLEF AT L.OVINGTON	119
53004	CHEW AT COMPTON DANDO	120
53006	FROME (BRISTOL) AT FRENCHAY	120
53007	FROME (SOMERSHI) AT TELLISFORD	120
D) 53018	AYON AT BATHFORD	73
D 54001	SEVERN AT BEWDLEY	74
D 54002	avon at evesham	75
54006	STOLR AT KIDDERMINSTER	120
54008	TEMEAT TENBURY	121
54012	TERN AT WALCOT	121
54019	avon at stareton	121
54020	PERRY AT YEATON	121
54022	SEVERN AT PLYNLIMON FL.UME	122
54038	Tanat at imanybiodmel.	122
55008	WYE AT CEFN BRWYN	122
55013	ARROW AT TITIEY Mlil.	122
55014	LUGG AT BYTON	123
55018	FROAE AT YARKHIILL	123
55023	WYE AT RED8ROOK	123
D 55026	WYE AT DDOL FARM	76
D 56001	USK at chaln bridge	77
56013	YSCIR AT' PONTARYSCIR	123
57008	RHYMNEY AT LLANEDERYN	124
58006	MELITE AT PONTNEDDFECHAN	124
60002	Corhiat feilin mynachdy	124
60003	TAF at Clog-y-fran	124

STATON	riner mame and station same	SEE
NLimber		page
60010	TYWI AT NaNTGAREDIG	125
D 62001	TEIFI AT GLaN TEIFI	is
63001	YSTWYTH AT PONT ELOOLWYN	25
64001	DYFI AT DYFI BRIDGE	125
6, 602	DYSYNSI AT PONT-Y-GARTH	25
65005	ERCH AT PENCAENETYDD	126
D 65006	SEIONT AT PEBLIG MII.I.	79
66006	F.I.WY AT PONT.Y-GW'YDDEI.	126
67008	AISN AT PONT.Y-CAPEL	126
D 67015	dee at manley hall.	80
D 68001	WEAVER AT ASHRROOK	81
69002	IRWELL AT ADELPHi Weir	126
69006	BOLLIN AT DLiNham massey	127
69015	ETHEROW AT COMPSTAII.	127
71001	RIbBLE AT SAMLESBLRY	127
71004	Calder at whalley weir	127
72002	WYRF AT ST MiChafl.S	128
D 72004	lune at caton	32
73005	KENT AT SEDGWICK	128
D) 73010	I.EVEN AT NEWBY BRIDGE	83
74002	IRT AT GALESYKE	128
74005	EHEN AT BRAYSTONES	128
75002	DERWENT AT CAMERTON	129
D) 76007	EDEN AT SHEEPMOLSNT	84
78003	ANNAN AT BRYDEKIRK	129
$7800-4$	KINNEL Water at rediall	129
D 79006	NITh at drlimlantig	85
80001	likr at dal.beattit	129
81003	1.LCE AT AIRYHEMMMING;	130
82001	GIRVAN AT ROBSTONE	i30
83003	ayr at catrine	130
1) 88005	CI.YDE AT BLAIRSTON	86
84012	WhITE CART WATER AT HAEKHEAD	130
84016	LUGGGE WATER AT CONIDORRAT	131
85001	LEVEN AT LINNBRANE	131
D 85003	falloch at glen falloch	87
D 93001	carron at new kelso	88
94001	EWE AT POOLEWE	131
95001	INSER AT LITTLE ASSYNT	131
96001	halladale at halleadal.e	132
101002	MEDINA AT UPPER SHIDH:	132
1) 201005	camowen at camomen terrace.	89
201007	bltrn dennet at burndeninet	
	BRIDGE	132
201008	DERG AT CASTLE DERG	132
D 203010	blackwater at maydown	90
	BRIDGI:	90
203012	bat.l.INDERRY AT bal.t.inderry	
	BRIDGE	133
203020	moyola at moyol.a new	
	BRIDGE	133
D 203028	AGIVEY AT WHITE HILL	91
205005	Ravernet at ravernfit	133

008006 Spey at Boat o Brig

Grity reference 38 (NJ) 3 ’ 8518
Level \sin (m (1) (D) 4310

Catchren: area (sq kin) 2861.2 Max alt (m OD) 1309

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	-te	MAR	APR	MAV	Juv	JLL	AUG	SEP	OC:	vov	D: C
1	136600	66300	67290	99950	57720	318:0	18380	72920	61770	44730	66430	53210
2	128900	16040	65980	145700	110400	35520	25450	60790	80740	40050	59570	43440
3	102200	104200	75040	102400	121800	35160	28270	50940	68680	41890	49110	39370
4	76550	92080	60560	864.40	1015003	36260	27540	43690	60930	S0 580	44050	47780
5	59770	70310	815%	80310	77240	35410	81340	38440	54940	48940	42350	66320
6	52090	63020	133800	89480	70240	31790	6. 350	34950	49350	48240	40550	53500
7	48870	54150	90170	93380	75380	30350	50190	$32 \cdot 70$	45810	1193 (K)	39800	53300
8	44280	5: 120	111300	89210	79970	29580	56540	29950	44750	. 201900	39630	76670
9	78180	56820	110400	69990	72950	28620	41730	30410	47280	307400	43890	15930
10	99440	88360	92060	72150	68070	21580	40490	30980	4.3720	- 81400	43800	76610
11	13930	77070	100300	89030	62940	26550	40620	30600	4. 210	- 15000	60) 060	60780
12	101700	61160	98940	76070	63680	25660	39210	38340	97640	100200	54360	56730
13	149200	68470	13230	60300	71480	24830	38820	92290	146000	109300	54910	51560
14	100900	93640	60730	55460	73840	24350	106600	66760	88620	75720	52540	46570
15	75690	209300	88540	80420	65410.	23820	1:9200	03960	60750	62380	46120	43320
16	62010	150600	131900	114700	56200	23510	70340	49340	49600	55100	41880	4229
17	53430	106400	83800	121900	52.310	23180	96620	418.0	43390	50490	44060	41480
18	46370	143100	69240	152800	4) 230	22220	67510	94700	39410	46500	62290	45220
19	52350	169600	130300	197700	43180	21660	53300	103600	36360	76340	48470	6. 830
20	73640	146400	159000	171300	39810	21700	43670	169200	34020	74720	43200	63460
21	57380	121000	118400	185800	31350	22480	38640	203200	32290	51920	38840	57940
22	46940	111700	96360	112300	35830	21880	35590	103700	31160	50560	-40630	56790
23	40360	94460	i4) 100	84960	35940	20440	32860	11840	31040	46310	52020	53870
24	86850	16510	144400	70450	37120	19570	31990	62930	32430	45270	5.000	56830
25	162600	67380	$\cdot 54500$	67180	40530	19020	50530	69690	30870	47250	54670	62800
26	119700	108300	270200	16010	38540	18650	86510	93600	31810	102500	48520	75900
27	15570	179800	206400	63990	37610	- 8580	60.670	. 85130	31870	85280	43170	76580
28	60180	136500	140100	55730	35960	-8 220	46450	68820	42520	:4280)	457.0	65510
29	54710	84390	. 109.100	5: i>0.	$35: 50$	i 7830	51590	57330	84120	86220	50700	67320
30	81440		10:200	48760	38550	17730	68600	52910	58780	66260	61210	70490
31	72000		${ }^{\prime} 94^{\circ} 00$		39270		78200	54720		63420		67070
Average	80000	101000	110200	95500	58810	25350	54470	61930	53410	85290	48920	58340
Lowes:	40360	51120	60560	48760	35150	17730	: 8380	29950	30870	40050	38840	39.370
H:ghest	162600	209300	220200	197700	$17 \cdot 800$	37810	1:9200	203200	146 (00	307400	66430	76670
Peak flow	187:00			262500	140700	41500	$1 / 3300$	299800	160300	383900	. $74: 20$	84120
Day ol weak Monthly to:al	25	15	26°	2:	2.		14	21	. 1.3	9	1	9
(nillion cu m)	$2 \cdot 430$	25300	29520	24150	15750.	6571	14590	18190	13840	22840	12680	15630
Runotf (mm)	75	88	103	87	bs	23	31	64	48	80	44	55
Rainfall (rom)	: 42	114	141	15	44	23	150	126	96	140	64	$8)$

Statistics of monthly data for previous record (Oct 1952 to Dec 1987)

Mean	Avg	84540	69770	73940	69670	59450	42.930	39740	49180	50060	68340	16720	87680
flows	Low	41080	26470	35760	33580	26910	- 1900	17910	1.310	14090	13350	30130	38180
	(year)	1979	1963	- 964	1974	1960	1961	1984	1955	$\cdot 972$	1972	1958	1976
	H.gh	145900	159100	145300	135200	103400	103000	19860	1:9600	105500	: 53900	147000	198600
	(year)	1983	1962	:978	1979	; 968	1966	1980	1956	:965	1981	1984	-954
Runoti	Avg	79	59	69	63	56	39	37	46	45	64	69	82
	Low	38	22	33	30	25	16	17	11	13	12	27	36
	High	137	135	:36	122	97	93	15	112	96	:44	1.33	186
Hanfall	Avg	108	69	81	63	18	75	86	98	96	i15	115	119
	Low	38	26	29	19	24	26	20	21	2 :	30	33	46
	Higr	185	123	179	128	146	18 :	158	188	- 78	205	2:3	211

Summary statistics

	Fot 1988		For record preceding 1988		1988 As \% of pre-1988
Mean flow ($\mathrm{r}^{3} \mathrm{~s}^{-1}$)	69920		64340		109
Lowest yedrly mean			44200	1972	
Heghest yeatly mean			828.0	1954	
Lowest monthly mean	25350	Jun	11310	Aug 1955	
Highasi monthly mean	110200	Mar	198600	Oec 1954	
Lowest daly mean	17730	30 Jun	9311	16 Aug 195s	
Highes: daly tieun	307400	90 cl	1089000	17 Aug 1970	
Puak	383900	90 ct	$16 / 5000$	17 Aug 1970	
10\% excentance	170400		120000		100
50\% axceedance	60390		49800		121
95* oxceedance	24980		19450		128
Annual :nas (fmilton cum)	221100		203000		109
Annual runotf (mm)	773		1:0		109
Annual tanta'l (mm)	1202		; 103		109
: 1941.70 ranfall average (mm)			1184\|		

Factors affecting flow regime

- Regulation for HEP

Station and catchment description
Lowest station currently operating on the Spey Cabloway rated 65 m wide section with natural control. extreine floods bypass station on left bank. 380 sq km developed for hydro-power with diversions and storage Mainly granites and Moinian metamorphics Some Dalradian and a little Old Red Sundsione Mountain fincludes all northern slopes of Cairngorms). moorland, hill grazing and sorne arabie Foresiry

day	Jan	FE日	MAA	APA	MAY	JuN	0	Aug:	S ${ }^{\circ}$	OCT	NOV	$0 \in C$
1	71270	58.940	33.220	50090	43.760	25100	9459	51610	113700	18350	41570	35480
2	59020	55410	34250	57.480	60680	21.480	21.060	35.290	82.700	19380	38240	28.090
3	41.990	55460	35.760	46630	54750	22.520	18.570	28.560	52.960	20450	32060	28.300
4	32600	45.980	29.000	42150	48490	27.960	28.100	23.700	39580	30700	29.100	46450
5	26920	36860	32680	44980 .	42750	23040	83050	21.150	39800	32.610	28.430	42.780
6	28490	31.620	58210	60510	45310	18.880	41860	19.650	31.880	28560	26050	29520
7	24300	27.660	42140	64010	54320	17680	25.540	17.690	32380	61460	24840	29730
8	21880	-27880	51460	57070	56.660	17030	24440	15970	48440	106600	25.250	63.920
9	68300	28740	62120	40390	49800	16.490	20560	16250	35150	118600	45580	45860
10	47870	35730	$46 / 70$	41010	47460	15.570	32.120	15360	29950	57.690	35070	52060
11	31060	29410	56080	51570	41710	14.810	28670	16350	25860	41.140	41.560	39.020
12	105000	25100	51600	40730	41470	14.230	22140	17320	47020	68910	37730	35390
13	108.500	35.720	35450	31180	48650	13600	30480	38640	67030	55.540	42.410	30990
14	53450	46960	29560	28500	51430	13340	42960	47.320	42450	40800	31.790	27.460
15	42.930	115800	51460	49180	44.970	12890	40480	40560	32310	33840	21410	25290
16	34030	68.750	64830	78670	38110	12360	30570	24510	27230	29950	24.880	24560
17	29460	46.100	40.940	90860	35.140	12.260	55610	21.220	23.760	27190	33480	23050
18	23880	64.990	35410	115700	29.170	11.560	34.210	51430	21.160	25500	45400	23800
19	59460	93.740	81050	128200	25.360	10850	26060	64360	19710	159200	29.320	28540
20	47080	75860	104700	94590	22.390	10790	21360	71380	18300	89580	26340	26360
21	31330	59.800	67680	38740	20.390	11.210	20010	86320	17250	61250	23450	27.320
22	25220	53410	56100	61390	20150	10930	18.740	47290	16660	48680	24450	27520
23	21.450	43940	39750	48040	21.370	9632	17650	38120	18990	41430	27450	24250
24	. 68220	35430	90570	41190	24070	9276	19440	32110	20150	47640	26700	24210
25	69610	31660	84480	39320	32.320	9.058	69660	34240	16630	88410	31900	30.970
26	54730	39080	9:050	44010	25220	8993	54910	33920	18070	218600	28520	41440
27	41020	108700	86360	37260	25430	8653	31970	36340	15830	75680	25400	35.100
28	35840	75400	75.530	32. 040	23020	8037	25.560	28150	17.810	82480	32280	27.810
29	34050	40540	55840	29300	22530	7.696	34400	24520	37430	57620	36350	33070
30	58780		52790	27990	34230	$75: 9$	4: 420	23620	22960	48820	49180	35360
31	44.210		49590		28140		4) 280	27650		45480		34700
Average	46450	51540	57630	53.760	37400	14110	32850	33890	34480	60740	32410	33.170
Lowes:	21.450	25100	29000	27990	20:50	7.519	9459	15360	15830	18350	23450	23050
Highess	108500	115800	104700	128200	60680	27960	83050	86320	113100	218600	49180	63920
Peak flow	169300	148500	148100	240400	80010	31.630	137500	126400	227500	4.39900	18290	73.100
Day ot peak Monthly total	13	: 5	26	- 8	1	4	25	19	1	26	17	8
(milion cu m)	12440	12910	15430	14450	10020	3659	8738	9077	8937	16270	8400	8885
Runotf (mm)	91	94	1:3	105	73	27	64	66	65	119	61	65
Rainiay (mm)	167	100	127	73	55	25	162	104	93	178	81	54

Statistics of monthly data for previous record (Oct 1929 to Dec 1987)

Station and catchment description
Cableway rated. fairly stable natural control. Present stathn, buit in 1972, replaced eartier station flow records from 1929 . chart records from 1934) on same reach (Cairnton: c/m measurements at Woodend) - established by Capt. McClean Earlier siaff gauge record dates from 19it No regulation. little natural storage. minor abstractions. Datradian and Moinian metamorphic along most of the valley. flanked by igneous intrusive. Mountein, moorland, foresiry. pastoral and some arable in the valley bottom

Grid referenct 37 (NO) 147367 Leved stn (m OD): 2630

Caichunent area (sq kin) 4587) Max ah. (m OD) 1214

Daily mean gauged discharges (cubic metres per second)

UAV	JAN	FEB	MAR	APA	MAY	JuN	Jul	AUG	SEP	0 C	MKJ	OEC
1	583067	258677	135854	277.115	151979	65.239	36633	199466	493.747	169413	194063	240129
2	515911	311.513	132383	258121	159857	65640	54.802	177.683	509094	185726	183192	180993
3	432616	359952	137413	22.1858	140842	64406	52133	153144	421265	262490	161645	'5's22
4	$3911 / 5$	$316: 23$	126364	225316	139757	66355	45.337	132422	378899	284278	151489	238493
5	341.379	291297	116922	211.895	132975	61.167	69932	121930	399445	288.271	135190	199003
6	298771	241827	130246	180161	126786	59687	63113	106.267	386773	277060	127199	$186.3{ }^{\circ}$
7	250102	215680	117986	163105	122099	59429	60.454	96794	38139 :	370119	124174	191052
8	222384	215305	138567	165114	103717	57488	55782	93938	394323	442863	134251	262819
9	369203	255354	138393	183352	104049	54084	55015	115087	308368	567703	166973	237388
10	324599	277484	144818	159937	98423	52744	109396	115.405	274015	419720	215625	198007
11	282940	241106	162385	- 37521	93904	53.103	110679	135984	244.849	345.671	222870	177048
12	571658	228.299	148.129	-36039	35.401	49435	97097	170227	251286	358613	221383	156174
13	614384	267147	127441	166964	106411	47682	158822	174944	235334	377782	225292	147036
14	437793	310710	140325	152134	98635	46649	1687×7	2.77873	203.957	309579	- 82241	138707
15	$38 / 828$	439 9:0	216918	59678	86195	45.947	130045	216312	183313	261784	171633	130382
16	329310	340469	249889	203010	96803	45.618	134119	173254	174453	240199	180866	122442
17	292. 168	270874	148371	258699	85398	47480	169282	153592	163031	228018	193231	101817
18	273763	342680	194288	374153	80800	45749	125019	270383	143231	244739	-91928	131049
19	403325	364373	270240	429455	80114	43718	110718	$2710 / 9$	150163	852.439	155269	144 i31
20	388274	332285	311.946	255.735	77.386	43235	93403	292.993	146.829	103713	151.286	147952
21	325477	269402	291629	242.731	76756	44370	89325	203009	136.843	488128	148422	167158
22	281508	248680	283786	233 64	74733	43253	86415	-67446	135861	401885	- 36923	178143
23	247898	226212	39: 220	225729	12355	40413	91151	:57023	149.362	330415	124025	203386
24	353.756	206289	448.584	171.210	80527	38.882	104.178	151053	129348	312658	115206	188586
26	344249	193197	577717	158452	93659	39026	314712	156390	123529	348639	108/16	213867
26	291207	175063	514038	169073	75206	39547	328901	146245	139.823	739.918	96683	308177
27	265298	190230	429113	176020	18111	38966	251.986	193.738	152.666	454194	93.314	310180
28	219431	190303	394039	162124	70061	36.443	225241	154267	202894	398734	121426	278439
29	179880	159474	335483	146772	64077	35531	232.145	160972	199.962	345016	-34 055	290730
30	219625		338690	141582	71053	35.554	199632	. 93412	188671	3026.7	314746	287343
31	204293		296625		67.799		192423	225.523		260.759		251750
Averege	343500	266900	244900	204900	96960	48.890	129600	173000	247000	373400	163000	198900
Lowns:	179880	159474	116922	136039	64077	35531	36633	939.38	123529	169.4 3	33314	101817
Highes:	614384	439910	5\%117	429455	159857	66.355	328.901	292993	509094	852439	314746	3:0180
Peak flow	761.161	484503	606753	640310	196474	10395	514243	415391	745.307	1087570	- $365 / 36$	347832
Day of peak	12'	15	25	18	2	4	25	:9	1	19	30	27
Monthy total (milion cu m)	92020	66870	65580	53110	25970	12670	34700	46340	640:0	100000	42240	53280
Runoff (mm)	201	146	143	116	57	28	76	101	140	218	92	:16
Ruintall (mmt	212	128	185	70	56	23	219	161	137	215	94	-3:

Statistics of monthly data for previous record fOet 1952 to Dec 1987

Maran	Avg	235900	198500	200400	144500	122000	81470	66920	86650	121.900	186400	215000	247100
'ows.	Low	92900	52560	69380	75210	45500	42080	31390	14700	40660	39690	89160	112800
	(year)	1963	1963	i953	1974	1980	1957	- 1984	:955	1955	1972	1972	1952
	Hagh	515800	353700	424800	231.200	321100	190400	126.100	286100	283900	390500	407700	491400
	(year)	1974	1962	1967	1960	1986	1966	1985	1985	1985	1982	1984	1954
Runotf	Avg	i38	106	1:7	82	71	46	39	51	69	:09	121	144
	Low	54	28	41	43	27	24	18	9	23	23	50	66
	Hegh	301	187	- 248	131	188	108	74	167	160	228	230	287
Rantall	Avg	153	98	1:7	71	99	84	92	107	133	: 50	148	i 70
	Low	33	29	39	10	26	49	2 i	14	11	63	38	64
	High	393	182	224	150	214	181	169	250	266	269	311	304

Station and catchment description
Velocity-area stetion with cableway. 90 m wide. The most d / s station on the Tay . records highesi mean flow in UK. Since end of 1957 . 1980 sq km (43%) controlled for HEP: there was some control prior to this 73 sq km controlled for wator supply Cutchment is mostly steep, cornprising mountans and moorfand: exceptions are lower valleys. Mainly rough grazing and torestry Geology manly metamorphics and granites, but lower 20\% (Isla valley) is Otd Red Sandsione

Mossunng authonty: FRPB
First year: 1957

Grid reference: $\mathbf{3 6}(\mathrm{NT}) 165752$ Lovel sin. (m OO): 22.90

Catchment aros (sq km): 369.0 Max alt. (m OO): 518

Station and catchment description
The recorder is well sited on a siraight oven reach with steep banks which hive contained all recorded floods. Stable rating over the period of record. Weed growth in summer some adjustment to stage is requised. Low flows substantally affectod by sewage effluent especially from Mid Calder Abstraction al Almondell to feed a canal A number of storage reservoirs are situated in the catchment. Geology predominantly Carboniferous rocks. Land use - mainly rural Levingston new town and several small mining towns in catchment.

Grid roturence 36 (NT) 898477 Level sin (m OD) 430

Catchment area (SQ kmi) 43900 Max alt. (m. OD) 839

oay	JAN	FE8	MAR	APA	MAY	UN	Jt	AuG	SEP	OCT	NOV	DEC
1	2.52655	451375	45.3 .4	54826	36903	33127	14787	1*7.573	81.032	43933	67.593	214207
2	424354	461537	42.452	63.182	59.25 :	26.939	17306	90126	116622	48470	59911	140315
3	321.194	259526	44710	55058	53331	25423	17.293	68.527	82014	61986	55713	115827
4	228786	204839	39991	50.285	108997	29887	18681	56832	85325	56323	52.551	246.650
5	170.743	160616	37656	46300	80938	27780	36133	48.600	159.182	53952	49184	154959
6	462.372	138.207	37885	43961	58307	23979	34897	43.673	113400	102194	- 45773	116468
1	331242	120376	36.360	40.499	49.194	21903	33611	39733	126177	132637	43.834	93.437
8	198.116	122229	34361	40521	56218	20178	34.529	36551	94.788	84.887	41804	83930
9	270992	258508	33995	42.820	65492	19330	28951	35220	79897	97302	69.941	81413
10	221215	268.738	35288	38.608	48723	21851	49060	33210	68476	74404	-0244\%	18755
11	182.111	159496	34.812	36.367	43193	19.783	37.372	32315	63.976	62.746	92347	67567
12	200306	127131	53905	34993	49000	18285	31136	43423	58181	91225	61.951	59814
13	215749	154056	48390	33739	43621	17568	31888	56826	53.161	95975	54916	55977
14	160267	179334	4250 :	31943	38463	16794	42659	114719	46625	7'56:	48566	53.240
15	160825	164696	79454	30567	34535	16255	$\left.45{ }^{\circ} 0\right)$	102. 164	43.522	58.649	44762	49331
16	133884	151.182	147367	34255	32744	18365	31423	58848	38794	. 53.430	42058	47683
17	117767	116337	87605	45742	31.275	19.611	83.420	46863	37.153	48840	40213	45506
18	105979	109782	66709	125601	30922	-6897	46842	57684	335.5	45476	48929	43698
19	209831	106:62	102571	213.071	30.268	15942	34880	113451	32387	12784%	45011	50154
20	167366	94589	87.378	89200	28743	15488	30157	143401	31167	143.638	46808	47083
21	130328	83634	77906	69925	27089	15735	30623	106229	30210	116306	45188	43520
22	109400	74025	70681	6. 064	25997	153.8	207366	74496	31047	85887	41133	48310
23	96706	67512	68.960	52684	24721	:5 891	203159	60485	63935	74868	41967	74539
24	158887	62.960	80939	46.584	28517	17063	198057	54.249	72.726	98239	57.775	73055
25	150.721	60.720	87.227	43.934	33978	14.420	205.860	49526	53912	105494	83379	58.218
26	131:08	57880	78:61	45036	33449	15834	- 75.491	45201	122.079	$33534^{\text {, }}$	69695	83 ! 0^{\prime}
21	117759	60032	70042	44820	37.918	15.999	133963	46518	67995	188354	58384	126981
28	$105: 140$	54.861	71.112	40048	30850	14954	172982	44.936	74161	133.016	17.953	93073
29	124.995	48442	71.186	37275	26.495	14.741	212.604	40045	67176	103237	71798	78023
30	127.677		65328	34874	35038	15877	i32091	51402	50627	86253	272550	66423
31	:29538		62361		35256		-1. 720	98.802		7505		58378
Average	190900	151.000	62660	54260	42580	19370	80130	64890	69.310	95400	64470	85490
Lowest	96.706	48442	33995	30567	24.72 .1	14.420	14787	32315	30210	43933	40.213	43520
Highest	462372	461.537	147367	213071	10899%	33121	212604	143401	159182	335.341	272550	246650
Peak flow		835560			131.313	38.193	33:171	$: 73440$	238536	478326	351945	299486
Day of peak	6	1	15	18	- 4	1	22.	14	5	26	30	4
Monthly total (milion cu m)	51130	37830	16780	14060	11400	5022	21460	17380	17960	255.50	\$67.10	22900
Runotf (mm)	1.6	86	38	. 32	26	1 i	49	40	4 :	58	38	52
Ruintal (mm)	136	75	72	55	65	20	186	100	86	97	69	54

Statistics of monthly dats for previous record (Oct 1962 to Dec 1987)

Station and catchment description
Lowest station on River Tweod. Velocity-aroa station at very wide natural section Complex control Moderate seasonal weed growith effects on rating. Reservoits in headwaters have only a small impact on the flow regime - monthiy naturalised flows available Geology: mixed but principally impervious Palaeozoic formations. Moorland and hill pasture prodominates: improved grasslands and arable farming below Melrose

Measurang authonty: NRA-N

Fust year. 1963
Daily mean gauged discharges (cutic metres por second)

DAY	JAN	feb	MAR	APR	mar	INN	H	Aug	SEP	OCT	NOV	OEC
1	15504	23153	4446	4.153	3.280	4611	1.746	15429	4.786	3629	6801	57.701
2	24401	24564	4487	4211	4641	3053	2.508	9.105	1508	3.156	6.075	27987
3	18464	13848	4286	4474	10432	3461	2.369	6.581	4306	2.929	5.390	26.274
4	13682	11.703	4000	4.277	9.626	4975	3.809	5097	4.479	3.358	5073	39.705
5	10340	11.367	4120	3896	5.822	3.145	7.345	4287	5549	6250	4938	17303
6	116028	10451	4024	3676	4274	2567	4.720	3.747	4.764	B. 183	4.787	12.016
7	38560	9187	3827	3.563	3649	2.303	5427	3279	1983	7.781	4.454	9900
8	19.931	9271	3888	3.551	3636	2.143	5.179	3.050	5857	5.158	4.620	8.872
9	21850	26402	4396	3.682	4.177	2006	3.630	3110	5.258	6143	7667	8.309
10	15624	28577	4245	3453	3678	1.974	3.355	2853	4047	7.295	5913	7732
11	12202	13904	8787	3216	3.213	1.955	3459	2720	4.388	6000	5.216	6735
12	11563	10290	6597	3.150	4035	1.935	3412	2.739	3969	33.030	4.638	6.091
13	10.564	8977	5622	3042	3917	1784	3819	3.063	4198	18.834	4.391	5.783
14	8967	11366	18493	2.919	3297	1717	4474	3626	3.431	9838	4146	5.358
15	8165	10887	32195	2.902	2.859	1.717	5163	5264	3003	7.254	3.964	5196
16	7.549	10290	13372	3.135	2871	1717	3.599	3240	2768	6.190	3815	4.917
17	7038	8092	10528	3143	2.515	1717	3463	2.715	2577	5.380	3698	4649
18	9360	7.286	13610	3.291	2489	1.717	3.380	3663	2387	6514	4463	4511
19	21915	6902	9.651	8.275	2492	1.615	2754	6493	2286	60345	4943	4712
20	12269	6262	9608	4426	2647	1577	2530	7212	2251	53434	7065	4219
21	9.189	5771	8828	3.623	2.410	1.577	3.178	7916	2201	23363	6532	4151
22	7.831	5.336	8226	3310	2210	1.564	32.448	4921	2210	13.699	5881	4191
23	7.180	5065	7399	3070	2180	1506	21386	3848	4274	10.710	8832	11458
24	21452	5021	6793	2.888	2494	1447	9155	3406	6256	31.729	11799	7920
25	13453	5684	5727	2.771	2804	1.444	6.456	3089	4023	22615	15915	6258
26	10775	6270	5.210	2954	2.875	1590	6935	2910	6429	45.301	11844	6825
27	9770	8773	5099	3792	5.311	1714	5489	2889	4118	24.728	9482	9082
28	9139	6978	4946	3630	3363	1.563	24.555	2853	1678	14133	16434	7996
29	24317	¢ 300	4.600	3091	2677	1504	3864%	2850	6969	10214	22397	1139
30	17774		4323	2906	2633	1534	15801	3307	4.415	8568	121170	5834
31	14215		4153		3.697		12.077	3435		7.574		5156
Average	17710	10350	1596	3618	3.750	2104	$8: 38$	4474	4.479	15270	11080	1) 100
Lowns:	1038	5021	3827	2771	2180	1.444	1746	2715	2201	2929	3698	4151
Highes 1	116028	28577	32.195	8275	10432	4975	38.647	15.429	7983	60345	121.170	$5 / 701$
Peak thow	155246	44670	44925	13.764	12494	7385	88252	37164	15.110	81.608	163316	86305
Day of peak	6	9	15	19	3	3	29	1	28	13	30	1
Monthly sotal (trallion cu m)	4744	2744	2035	938	1005	545	21.80	1198	1161	4090	$28.7{ }^{\prime}$	2972
Runoty (mm)	83	48	36	16	18	10	38	21	20	72	50	52
Ramiall (mm)	120	48	61	39	67	19	169	70	74	119	89	43

Statistics of monthly data for previous record (Nov 1963 to Dec 1987 -incomplete or missing months total 0.2 yeare)

Mosn	Avg	15180	13050	13.000	9186	5837	3859	3299	4.570	4.765	1.686	12410	13210
llows	Low	5420	2672	$1 / 29$	2.929	2039	1140	1.168	1.232	1418	1084	1.926	. 4.563
	(yeer)	1973	1973	1973	1974	1984	1970	1984	1983	1972	1972	1973	1971
	High	32310	26350	31.390	20980	15410	6441	7969	12950	14240	26860	31370	33340
	(year)	1982	1978	1979	1987	1983	1987	1968	1986	1965	:976	1965	:978
Rursoty.	Avg	11	56	61	42	27	18	16	21	22	36	56	62
	low	25	11	8	13	10	5	5	6	6	5	9	21
	High	152	112	148	95	72	29	37	61	65	126	143	157
Rainial	Avg.	90	58	81	57	67	58	65	77	18	75	87	85
11966	Low	38	15	18	8	18	8	19	18	15	19	19	31
1987)	High	140	120	144	118	127	129	108	161	215	176	214	251

Summary statistics

寿	For 1988		For record preceding 1988		$\begin{gathered} 1988 \\ \text { As \% of } \\ \text { pre. } 1988 \\ 95 \end{gathered}$	- Natural to within 10\% at 95 percentile flow
Nean flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	8374		8820			
Lowes: yearly mean			3716	1973		
Highesi yearly moan			; 1380	1969		
Lowest montily mean	2104	Jun	1084	Oct 1972		
Hrghess monthly mean	17.710	Jan	33340	Dec 1978		
Lowest didy moon	1444	25 Jun	0721	20 Jun 1970		
Highes: daly mean	121170	30 Nov	203200	3 Jan 1982		
Peak	163.316	30 Nov	289100	4 Jan 1982		
10\% exceedance	16630		19230		86	
50\% exceodance	5.000		$5050-$		99	
95\% exceodance	1799		1378		131	
Annual total (milion cu m)	26480		27830		95	
Annual rumotf (mm)	465		488		95	
Anmual rantall (mm)	918		878		105	
[194 1-70 rainfall averopo (mm)			884]			

Station and catchment description
Velocity-area station with 34 m wide concrete Flat V weir made with pro-cast segments (installed 1969). Cableway Fairly straghi section with high banks. Replaced earlier station at Guyzance. Natural catchment

Measuring authority: NRA.N First year 1966

Grid reference 35 (NY) 672611
Levelstn. (m OD) 13170

Catchment area (sqkm). 321.9
Max al; (mOD) 893

DAY	JAN	FEB	MAR	APR	MAY	JuN	Jur	AUS	SfP	OCT	NOV	DEC
1	44003	110571	3072	7034	4376	2747	2120	8.783	24960	5401	4425	16317
2	98292	34.760	8.592	- 6521	9015	3644	2086	6315	21091	4.656	4053	8.052
3	49602	23590	10090	7112	10511	17609	1810	5.214	11390	4134	3655	51236
4	18321	16.959	4576	5329	17195	9888	10555	4510	1990	3802	3.341	27.559
5	11970	11328	4068	4550	8411	6331	13562	3978	8070	5391	3243	1088°
6	62097	9136	14201	4121	4668	3548	6942	3.461	5967	32.081	3137	7077
7	13340	7.844	6.414	3883	3642	2756	6652	3121	4978	22718	3102	6.064
8	30413	9903	7684	4693	10402	2314	11855	2841	5011	20968	3009	10375
9	34.636	33607	2.0563	4627	5797	2125	10637	2388	4339	11288	4861	17087
10	16785	26001	13736	4147	4271	2015	10692	2668	4254	9316	7642	3353
11	13.800	10780	38932	3802	3682	1942	7.101	2625	6615	6401	6.166	6311
12	20.154	7939	25.452	3413	3955	1803	7233	5617	5942	12129	4472	5.277
13	15448	41476	10471	3149	3322	1.657	21792	4744	4274	11963	4.278	5100
14	9944	29224	9512	2853	2954	1594	25068	9740	3501	6548	3636	4779
15	8906	28654	47616	2.809	2.583	1512	8.312	5156	3170	5193	3267	4417
16	6884	17.719	25.218	3.324	2351	1.482	11.968	3262	2937	4632	3011	5879
17	7497	11298	10.167	4283	2215	1482	13853	2.711	2793	4213	3570	5063
18	8831	20.715	12439	21.628	2279	1465	16.307	10231	2667	4370	6729	22270
19	25991	13428	19500	10569	2250	1406	7.564	22. 182	2571	8157	4275	20256
20	9439	10280	$1 \cdot 128$	11946	2139	1403	5532	33:37	2490	-9829	3971	7772
21	7000	8255	8477	15928	2042	1432.	12.489	11402	2436	8016	3306	16260
22	5.832	6930	- 8857	6376	- 966	1393	54891	5805	2686	5664	3319	80935
23	6.979	5825	13861	4698	2091	1331	16980	4.792	42953	4318	3.323	54261
24	50546	4.711	14408	3.741	5929	1302	14.540	5358	21451	: 3702	10920	12327
25	11554	4321	7229	3350	5689	1463	, 427°	22618	21975	- 7339	7513	14301
26	11.204	4129	14760	5.866	1:356	1.967	15771	9.503	13792	26 49:	4.911	66425
27	7.533	5016	9888	¢ 389	6594	1494	10778	16316	10485	17487	5017	17465
28	6145	5347	13.965	4218	3332	1410	104102	8753	51913	9687	17.881	11.729
29	6635	3603	11429	3405	2684	1382	32.330	13170	11350	6364	21319	8174
30	47792		12729	3139	2962	- 351	3687°	33028	6931	5295	38411	6472
31	38795		8937		298 i		'762*	15397		4164		5652
Average	22.790	18050	13810	5863	4.960	2775	17170	9336	10700	10420	6659	17.580
Lowes:	5832	3603	3072	2809	1966	1.302	1.810	2.625	2436	3802	3009	4417
Highoss	98292	110.571	47616	21.628	17195	17609	104102	33137	51913	32081	38417	80935
Peak llow	195078	198069	137155	66141	29008	42124	273593	:26 262	107580	65559	67165	253057
Day of puak Monthly total	6	1	11	18	26	3	28	30	28	25	29	22
(milion cu mi	6103	4522	36.98	1520	1329	719	4599	2501	2773	2790	1726	47.10
Runotf (imm)	190	140	115	47	41	22	143	18	86	81	54	146
Rainfall (mr)	212	131	136	59	72	39	253	1.31	126	107	69	139

Statistics of monthty data for previous record (Oct 1968 to Dec 1987 -incomplete or missing months total 02 vears)

Mean	Avg	15790	11370	13680	8975	6318	5333	4.909	6926	9731	12790	15.930	15310
flows:	Low	7738	3380	5861	- 851	1312	1465	1255	0960	1467	1182	6616	5110
	(year)	1985	1986	1975	1974	:980	1978	1984	:976	1972	1972	1983	. 971
	Hegh	$255^{\circ} 0$	19760	. 30210	16210	13850	12740	$\therefore 1060$	19.240	23670	30330	24670	28810
	(year)	1975	1974	1979	1979	1983	1980	1987	1985	1985	1967	1984	1974
Runot:	Avg	131	86	114	72	53	43	41	58.	78	106	128	127
	Low	64	25	49	15	i1	12	10	8	12.	10	53	43
	High	212	148	251	- 31	$1 \cdot 5$	103	97.	160	191	252	199	240
Rainfall	Avg	133	80	122	74	87	93	97	: 13	130	140	141	136
	Low	74	28	44	11	40	44	43	25	40	21	63	42
	Hxyh	213	166	200	133	178	215	165	248	239	331	245	253
Summ	ary st	istics								s affe	g flow	ime	
								1988					
				1988		or record		As \% of					
						ceding 19		pre-1988		al 10 w	וn 10\%	5\% ex	dance
Mean flo	ow (m)							110					
Lowest	yearty						1971						
Highas:	yearly						1379						
Lowes:	inonthl	man					1976						
teghost	monthl	nean			30.		1967						
Lowest	darly m			24			1976						
Hyyhes:	daity m		110		177.		1985						
Peak			273	38	309		1984						
10\% ex	ceedon				25.			100					
50\% ex	condan							128					
95\% ex	ceedan							135					
Annual	total (m)	Cu ms			334			111					
Annual	runoff		11		103			111					
Annumi	rainfall		14		135			109					
[194	1.70 re	llaverago			146								

Station and catchment description
Compound Crump weir. Lower crest 15.2 m , upper cresi 29.5 m . Theoretical rating. Natural flow ragime

Oaity mean gauged discharges (cubic metres per socond)

ofy	JaN	FEB	MAR	APR	MAY	N(N	rr	AUG	SEP	OCI	NOV	OEC
1	110586	176551	13064	19206	8681	4925	3.939	23030	38.164	8.143	10681	80533
2	185.670	107034	13092	19.987	23805	3286	3823	18302	26796	6227	9320	37001
3	128027	67.419	15392	19262	34285	3841	3235	15.436	19473	6958	8317	91.190
4	61.439	62.188	12001	17.583	40203	5794	4356	11.368	16.721	5.453	7.377	97695
5	42.302	48.946	11376	15.735	21.642	8.171	12.612	9501	15.855	8.595	7014	40970
6	140922	41.917	20.551	14644	11232	4498	5404	8.153	10126	41.710	6637	29306
7	46950	38948	16.111	14285	7554	2862	13660	5559	7.313	60.515	7.511	24838
8	36.930	42396	12603	16.748	6076	2.835	4.967	4914	5.652	42.438	8.322	27660
9	66996	101475	21997	22617	5951	3607	8465	4870	5218	27.546	27.268	30252
10	43652	91919	22.834	19.787	5274	3437	13663	4675	4352	17.792	14883	25376
11	31.490	49562	18379	13726	4572	3277	6.732	4761	7912	14.397	16266	20980
12	42745	41.355	44020	12798	4334	3287	10366	7026	6791	53770	16168	17475
13	47110	81.776	19419	12293	4211	2.870	28484	7516	5.175	39397	16509	14.561
14	27.562	82983	17501	11850	3587	3.130	22.649	18072	4104	17.854	10001	14339
15	26343	64.871	90691	11667	3065	3477	15864	11412	3400	12.954	7.943	12.835
16	21.936	52601	55533	11.650	2.880	3206	7660	4976	3704	9181	7225	9742
17	20265	40622	27031	16459	2925	4058	14575	4286	3920	8226	8029	9208
18	31363	54096	22265	12284	3024	3426	10470	10739	3.558	13.746	12.211	16845
19	68.372	46834	53237	18595	3695	3. 128	6. 189	23155	3764	54.509	13.763	47565
20	38631	39.638	33800	9814	3.275	3457	6163	24127	3932	96436	13782	18614
21	27933	34840	2)741	19.555	2334	3554	23399	16898	3975	34087	12811	21132
22	24325	32479	31215	12347	2466	5382	67.585	7793	4197	21.174	11208	49946
23	24525	27.581	43.760	9290	2.934	4820	44224	4936	29.547	15.377	12.549	109180
24	98985	17644	51352	6.508	4822	3721	30004	4469	32385	28081.	19627	37053
25	56416	17133	30488	5463	5554	3218	29697	22963	14573	29749	25241	29.492
26	46699	15632	45557	732.4	6363	4236	38191	19216	28987	92349	16701	78730
27	37924	15939	33094	12417	13313	3362	23190	29.186	17491	87079	12.680	45634
28	36.461	18.310	27079	9803	5.514	3179	149.166	14345	34956	37.941	25530	33099
2.9	44634	14.723	27481	5672	3627	3.160	82282	21439	21560	21.582	29.943	26027
30	73534		23085	4209	13907	3.463	52454	31245	12.358	15855	149704	22822
31	93901		22885		8.354		33829	28536		11832		21065
Average	57570	52670	29.180	13450	8.692	3822	25090	13640	13.200	29.710	18170	36810
Lowest	20265	14723	11376	4.209	2334	2.835	3235	4286	3400	5453	6637	9208
Highost	185670	176551	90631	22617	40203	8171	149166	31245	38164	96436	149704	109180
Poak 'ow	285045	290944	162009	42172	54111	12097	380732	50005	84814	- 55864	228559	251107
Doy of peak Monthy total	6	:	15	18	3	5	28	27	1	20	30	3
(rnuman cu m)	15420	13200	7816	3487	2328	991	6721	3654	3421	7957	47.11	9860
Runoti [mm	188	161	96	43	28	12	82	45	42	97	58	120
Rainfal (mm)	186	111	103	51	66	27	206	105	84	139	89	107.

Statistics of monthly data for previous record (Oct 1956 to Dec 1987 —incomplete or missing months total 0.1 years)

Mean	Avg	28950	22520	23.180	18700		10480	6690	6302	10140	11270	18010	23190	28190.
flows	Low	2907	2803	5480	2538		2009	0502	1194	0458	0636	2.709	4061	5180
	(va3+)	- 963	1963	1975	195\%		1959	. 1957	1969	1959	:959	1969	1958	1971
	Hign	50240	51540	68660	60870		27020	15210	15090	28520	25800	53940	51580	50040
	(year)	1982	1966	1979	1977	1	1967	1972	1961	1985	1985	1967	1963	1979
Punoff	Avg	95	67	76	59		34	21	21	33	36	59	73	92
	Low	10	8	: 8	8		7	2	6	2	2	9	13	:9
	High	164	152	225	193		88	48	49	93	82	177	163	164
Ramiall:	Avg.	119	82	96	16		80	76	81	102	99	104	114	123
	Low	51	16	29	10		18	22	28	23	19	27	25	43
	High	183	175	224	150		167	182	150	190	222	226	221	268
Summ	ary st	stics									affec	flow	me	
									1988					
				1988			recors		$\begin{aligned} & \text { As } \% \text { of } \\ & \text { pra. } 1988 \end{aligned}$		ervour $\{\mathrm{s}\}$ traction	catchme public	ter sup	
Moon fio	W \{m's					90			146		mentation	from sur	wate	andor
Lowest	voarty					382		$19 / 3$			ndwate			
Highest	yearty					20		1979						
Lowest	monthly	mon				58		1959						
Higheist	monthy	nean			68	60		1979						
Lowest	daty m			214		23		1959						
Highest	caily m		185		39 ;	00		1982						
Peak			380		709			1386						
10\% exc	ceedane					50			126					
50\% ex	ceodanco					95			196					
95\% exc	ceordanc					08			232					
Annual tor	total (m)	on cum)			545	60			146					
Anexual	unotf (66				146					
Annual	ainfall	I)	. 12		115				111					
\|1941	1.70 re.	all averay	(mm)		12									

Station and catchment description
Compound Crump weir with total crest length of 63.9 m . Two low-flow crests total 9 . 1 m . Theoreticat rating A manly impervious catchment developed on Millstone Grit and Carbonferous Limestone Headwaters dran the Pennines Moorland and rough pasture give way to more intensive agriculture in the lower reaches

027002 Wharfe at Flint Mill Weir

Measuring outhority: NRA.Y Fifst year: 1936

Grad reference 44 (SE) 422473
Level $\sin (\mathrm{m} \mathrm{OD}) 1370$

Daily mean gauged discharges (cubic metes per second)

UAY	JAN	ret	MAR	APR	MAV	JJV	UL	AUG	SiP	OCT	nov	OEC
1	85.050	95600	6801	13020	4.805	3915	2340	15190	39430	. 9636	3917	42410
2	144300	115.700	6448	17410	7190	3399	2317	11870	40400	7527	8784	24650
3	106000	76.180	12230	13.450°	15850	3392	2449	8926	41550	6.298	7800	26900
4	82030	71.660	11110	12.110	17110	3197	4245	7117	40460	6493	7319	88140
5	54040	47040	7831	:0470	12.930	3190	3564	6828	23.830	7383	7087	43470
6	67030	35300	7439	9236	8188	3025	3936	6:29	14940	30070	6795	24490
7	37300	28000	10440	8490	6532	2956	9510	5825	11390	67950	6526	17270
8	25670	30310	7547	82.38	5943	5086	10620	5229	9.379	36850	6531	14.730
9	30320	63.840	8653	7899	5407	3022	9835	4.662	7838	31.960	30740	18860
10	27870	103100	13990	7.167	4991	2800	11560	A 204	6.893	23080	19470	16410
11	28880	48680	:2580	6825	4433	2665	9756	3975	7.231	16230	2.130)	, 2480
12	29760	31420	: 3 /20	6502	4836	2564 .	59:5	20960	7293	23240	11920	:) 950
13	31.460	53.870	16090	6086	4861	2352	2640	20240	7014	25250	11270	9572
14	20220	11.640	17970	5.731	4474	2183	15370	55230	5952	16230	9.511	8.710
15	15580	43570	62330	5498	4072	2091	10810.	24520	5313	12.190	8176	7964
16	13.760	36650	47600	5434	3599	2. 283	7543	12410	4932	10230	7340	7537
17	$14 \cdot 00$	23820	20770	5493	3518	2241	12130	8345	4568	8906	7110	7208
18	36720	21600	15240	5861	3697	22.34	8857	32040	4494	9052	16530	7353
19	35310	21.350	35720	6614	3809	2193	6609	48880	4.152	18900	11840	60580
20	22.970	16620	35320	6111	3478	2189	5524	82650	4126	39760	10160	23060
21	19450	13640	24950	5400	3036	2168	16800	33290	4242	26050	8584	16400
22	16710	12000	24490	5137	2956	2159	12780	18270	4210	15630	7512	19950
23	15900	10940	47150	5192	2938	235%	27470	12650	7276	12280	7449	1.6500
24	86000	9638	40860	5149	3164	2049	176.0	10380	27860	14120	7629	56470
25	46.160	8658	21460	4906	3288	2003	14500	9353	19490	16010	9413	29:40
26	28.780	7.983	19650	4899	4782	3428	11120	10160	52700	61510	9863	38.020
27	20650	7919	22250	4834	5992	2373	7861	34040	16340	50780	8054	49900
28	16850	8157	252.40	5289	4965	2135	36140°	17910	30770	31810	17070	23650
29	20330	7.594	24480	4495	3794	2224	51430	44460	28550	19090	17230	-7130
30	28280		17270	4027	3817	2790	40980	31580	14520	14070	51950	13500
31	55340		15860		4297		31340	35190		$1: 530$		10830
Averoge	40740	38710	21270	7236	5573	2689	14110	20730	16.570	21940	12360	27880
Lownst	13760	7594	6448	4027	2938	2003	2317	3.975	4126	6298	6526	7.208
Highesi	144300	$: 15700$	62330	$174^{\prime} 0$	17110	5086	51430	82650	52700	67950	51950	1.6500
Pesk flow	168.900	185.400	95590	23260	22390	6786	123500	143300	96160	99040	70120	175500
Oay of pesk Montily total	2	1	15	2	3	8	28	20	26	6	30	23
(milion Cu m)	109.10	9698	5698	18.76	1493	697	3779	5551	- 4295	5876	3204	7467
Runoff (mr)	144	128	75	25	20	9	50	73	57	77	42	98
Resinfall (mm)	187	130	119	36	61	32	185	154	93	127	69	113

Statistics of monthly data for previous record (Oct 1955 to Oec 1987)

Station and catchment description
The control is a broad-crested masonry weir 47 m wide with a current meter cableway 15 km upstream Insensitive at low flows Level data only from June 1936 to October 1955 Pre-October 1965 rating may be less reliable Headwaters contan numerous reservoirs which exert a substantial influence on flows. Mixed geology comprising mainly Carboniferous Limestone. grits and Coal Measures with some Permian sand and Magnesian Limestone and maris in the lower catchment. Predominantly rural catchment with moorland headwaters

027035 Aire at Kildwick Bridge

Measuring authority: NRA.Y Fust year: 1968

Gind reference: 44 (SE) 01345 leved \sin ($\mathrm{m} O \mathrm{O}$): 87.30

Catchment area (sq km): 282.3 Max att. (m OO): 594

Daily mean gauged discharges (cubic metres per eecond)

Dar	JAN	FEB	MAR	AP9	may	UN	Ω	Aug	SrP	OCT	Nov	Dec
1	39.890	38.670	1.961	4.781	1389	1094	0602	7.320	19.890	4599	4504	11.790
2	58.920	38.990	2.118	4835	2714	0844	0.595	4890	27.550	3.745	3.885	7.761
3	50410	30610	3921	5.044	3.710	0.767	0565	3721	23110	3.188	3423	15660
4	44460	24790	2.494	4.435	3.317	0839	1.579	3.190	13790	2957	3.116	26.870
5	28.790	20.310	2099	3645	2.200	0804	1.581	2.667	8890	3389	2.810	15.660
6	28.580	14200	3206	3.215	1.750	0719	1.105	2244	6490	22490	2.668	9264
7	16.550	16.690	2.866	2.978	1521	0655	5644	1914	5.175	32.880	2623	7210
8	13.620	19440	2.411	2814	1449	0652	5156	1.723	4.380	21980	8694	7.112
9	13.560	38000	3517	2613	1.346	0665	2.750	1688	3673	18060	15610	6.780
10	12270	36560	4.189	2.370	1.249	0634	2460	1499	3.775	22.730	7.606	7008
11°	13080	21.760	3289	2.145	1239	0630	1.844	1653	3.725	11070	6432	5716
12	10080	14340	3894	1.977	1378	0609	1.669	9291	3420	12.940	5204	4785
13	8.383	16350	9046	1841	1.174	0.568	12250	13840	2794	13.780	4839	4293
14	6.888	19870	9.981	1890	1043	0538	4.301	15310	2403	8341	4093	3.869
15	6722	13.910	24820	1887	0999	0.525	2686	7467	2151	6438	3571	3534
16	5960	12.140	12430	1929	0952	0536	3668	4516	1998	5347	3.110	3445
17	8721	9015	7226	1852	0948	0.565	5820	3321	1.866	4617	3677	3189
18	17260	7.944	9.444	1.887	0935	0549	2.889	19.940	1.719	5668	7028	13360
19	12020	6.590	18.120	1850	0892	0527	2.108	30880	1605	9188	4550	30410
20	9.168	5463	12770	1691	0861	0482	1847	43770	1552	22740	4469	11.770
21	10.170	4.708	11050	1.637	0836	0461	7.590	21010	1500	10400	3711	9232
22	8.199	4234	11.910	1610	0821	0429	5.192	11810	1536	7344	3297	17670
23	12980	3662	12790	1.504	r. 0977	0414	7150	7447	3160	6162	3100	48200
24	46630	3196	12.780	1426	$\therefore 1100$	0411	4993	5.895	7.197	8572	3794	29130
25	25.400	2905	8675	1386	0996	1941	3829	5.413	11040	7584	3948	16420
26	14560	2.758	7.683	1.419	1.408	3035	2794	5856	14890	22500	3450	24.580
27	9853	2697	6.573	1489	1347	0902	-2579	14.740	7161	16020	2946	19930
28	8039	2541	9386	1289	$\bigcirc 989$	0.684	19390	7021	15590	10970	4355	11390
29	8294	2299	8392	1.254	0903	0.588	15250	16430	10150	7.606	10500	8417
30	13.850		6.381	1213	1.104	0593	19.740	11890	6129	6205	25310	6813
31	19470		5382		1462		15.930	9804		5156		5745
Ave.age	18800	14990	7.768	2332	1389	0753	5341	9618	7277	11120	5570	12810
Lowest	5960	2.299	1961.	1.254	0821	0411	0565	1499	1500	2957	2623	3189
Highest	58920	38990 :	24820	5044	3710	3035	19.740	43770	27550	32880	25970	48200
Pask flow	62360	56770	28800	5488	4958	6090	38530	53480	42730	49200	40420	56500
Day of peak	2	9	15	1	3	25	28	19	2	6	8	22
Monthly total (madron cu m)	5035	3755	2081	6.04	372	196	1430	2516	18.86	2978	1444	3448
Aunoti (mm)	178	133	74	21	13	7	51	91	67	105	51	122
Aanfall (mm)	186	114	112	27	59	32	179	155	101	127	66	125

Statistics of monthly data for previous record (Dec 1988 to Dec 1987 -incomplete or missing months total 02 years)

Station and catchment description
Velocity-area station rated by current meter cableway 150 m downstream Low flow control is the sills of the bridge. Washland storage and headwater reservoirs influence the flow pattern Geology is mainly Carboniferous Limestone with some Millstone Grit series. Rutal catchment draining part of the eastern Pennines.

Measuring authority. NRA.Y First year 1973

Grid raference 44 (SE) 731587 Level stin (in OD) 950

Caich.ment area (sq km) 1586.0 Max alt. (m OD). 454

Daily mean gauged discharges (cubic motres per second)

Day	JJAN	FEB	MAA	APA	MAY	JN	Ju	AUG	SEP	OC ${ }^{\text {P }}$	NOV	OfC
1	20520	43500	24510	22250	13470	9436	17.630	11 100	11.780	7102	12630	50870
2	24000	53590	28630	21500	18280	9:48	- 5080	10530	22670	7056	12 (40	39780
3	29720	38660	35410	20930	20230	8791	. 0480	10170	-5.970	6936	11.460	37220
4	35400	55.570	33060	20260	18190	8785	10840	9512	11990	6985	11100	42590
5	35150	61000	25520	19350	17180	8713	12.820	8924	10.660	7401	10.890	31340
6	45700	45740	27390	18670	14300	8313	10910	8.558	9870	7.994	10660	23440
7	45810	36050	30340	: 8540	:3030	8220	12900	8180	9450	$: 2030$	10340	20390)
8	32270	37370	24720	18200	13340	9221	10650	7.962	9213	:0500	10310	18850
9	29810	36440	26000	17870	16260	8.502	9780	7890	9049	8702	14810	$1 / 830$
10	26660	38120	33620	17370	14270	8119	8.977	7630	8.948	8.274	14.860	17.250
11	25590	31450	26830	16770	13160	7868	8526	7712	9681	9385	12.660	16160
12	23730	26900	33000	16200	13080	7.682	7.915	8.299	9361	10090	11410	15150
13	24150	28800	34680	15640	12320	7623	10050	8604	9285	12860	10810	14420
14	22860	35770	34500	15270	11730	7424	13340	8734	10850	11210	10240	14010
15	20890	32720	44110	15210	11180	7346	10610	8407	9455	9305	3790	13630
16	19730	32200	S5 560	15190	10890	7297	9273	7502	8479	8795	970°	13290
17	19460	28030	42130	14800	11.100	7282	9156	$7169{ }^{\circ}$	8052	8.530	9755	12760
18	21.250	24.980	32270	14.620	10730	7147	9226	11.250	7807	8529	10120	12480
19	29190	23090	46410	16180	10620	6969	8314	21570	7646	18770	11060	12390
20	24360	21850	58390	19580	10460	6853	7829	23570	7.507	27200	13420	1-7:0
21	21380	20810	56750	15300	10:40	6856	8.327	19010	7508	23470	14910	11500
22	19.730	19950	49.960	14140	9957	6695	11270	13870	7717	16610	13200	11370
23	20200	19350	59270	13740	9.768	6451	2.1 .990	11.400	8.778	14120	12010	11700
24	36160	24290	4/910	13380	10050	6260	27240	10660	10950	13890	12510	11790
25	42290	28940	38850	13070	9751	$6: 71$	15930	9982	9690	14240	13690	11140
26	29060	26560	32440	13900	9866	6116	11250	9393	8.713	20630	14.170	11060
27	24920	30810	28860	14170	10100	6158	9802	9849	8199	29650	13020	11380
28	23510	32000	28000	$13 / 30$	9491	6022	9554	10750	7877	21280	13380	11020
29	27930	23780	26800	:3040	9.3:8	6002	28.100	10340	7823	16140	16920	10530
30	27870		24850	'2690	9835	6099	20310	9592	7368	: 4180	38760	10230
31	26190		23260		9651		13150	9578		13.310		9919
Average	27790	33030	35930	16390	12310	7451	12620	10570	9745	13070	13020	17970
l.owest	1.4460	19350	23260	12690	9318	6002	7829	7.169	7368	6.936	9701	9919
Hi:Gnest	45870	61000	59270	22.250	20230.	9.436	$28 \cdot 00$	$23570{ }^{\circ}$	22670	29650	38760	50870
Pook fkw	52340	66290	63300	22570	21580	10.080	34400	25.110	24750	31.100	49930	52270
Day of poak Monthly to:al	6	5	20	1	3	8	29	20	2	27	30	1
(million cu m)	7444	8276	9624	4247	3298	1931	3380	2831	2526	3501	33.75	4814
Runots (mm)	47	62	61	27	21	12	21	18	16	22	21	30
Rainfall (mmp	83	74	98	29	53	26	138	81	49	76	60	24

Statistics of monthly data for previous record (Oct 1973 to Dec 1987).

Meat	Avg.	30230	27410	27080	21310	15750	10940	7815	8.391	8265	14240	i6040	25460
flows	Low	16780	15260	8799	6928	7849	5342	3882	3214	$472{ }^{\circ}$	5.555	7401	13460
	(year)	1983	1982	1976	1976	1982	1974	1976	1976	1975	1975	1978	1984
	High	48190	49280	56110	37540	29840	21260	11.810	15430	14710	36820	25220	42740
	(year)	:977	i9/8	1979	1986	'9/9	1979	$198{ }^{\circ}$	1380	1976	-976	1980	1978
Runot:	Avg	51	42	46	35	27	18	13	14	14	24	26	43
	Low	28	23	15	11	13	9	7	5	8	9	12	23
	High	81	75	95	61	50	35	20	26	24	62	41	12
Rasifall	Avg.	77	47	13	53	62	51	59	68	73	78	68	84
	Low	34	5	6	11	2.2	11	18	10	2 i	21	28	36
	High	132	101	143	113	142	149	123	126	192	158	111	180

Summary statistics.

Station and catchment description

Compound Crurnp woir. 20 m wide. with current meter rating for high flows Supersedes 27015 . Peak flows from the headwaters upstream of Forge Valley (8% catchment) are diverted down the Sea Cul (27033). Mixed geology of clays, shales and linestone Rufal catchment draining ine North York Moors

027053 Nidd at Birstwith

Measuring authorty: NRA-Y Fust year: 1975

Grid reference: 44 (SE) 230603
level sin. (m OO) 67.40

Daily mean gauged discharges (cubic metres per aecond)

DAY	JAN	FEB	MAR	AP9	may	JN0	ra	auc	SEP	OCT	NOV	OfC
1	49.820	56480	2.555	2451	2235	1.267	0.974	2400	12250	1.904	5.781	20480
2	84.180	56.790	1.978	2.486	4152	1.195	0976	2469	10.780	1.824	5.522	12.210
3	40.110	32.130	2309	2484	3303	1176	0963	2.128	8814	1.790	5338	18880
4	34630	25670	1.884	2401	3.576	1.198	1572	1.996	8070	1.909	5.192	17.850
5	21.500	17.180	1.797	2.271	2480	1.171	1365	1847	6662	2.045	3.167	13550
6	26280	13.720	1.853	2200	2.109	1.121	1.126	1.752	2879	9009	2.234	11.750
7	$13 / 10$	14440	1.735	2.164	1970	1096	1398	1661	2364	17800	2.463	10940
8	14.900	16130	1687	2276	1950	1069	1295	1647	2392	7.998	2.994	10520
9	14.680	36.780	1815	2.199	1.897	1064	1.146	1613	2240	6825	3.613	6562
10	14050	30030	1884	2.108	1831	1.057	1281	1.571	2.572	6670	6.327	5723
11	14130	16.440	1771	2040	1.826	1048	1096	1.625	2352	7.263	3462	3695
12	8568	13390	1871	1.983	1.848	1036	1138	2.591	2. 180	9.372	2.530	2795
13	7763	17110	4.984	1917	1.178	1013	3199	3389	2051	7.556	2.495	2702
14	6993	18050	4516	1893	1.712	1011	1762	6.155	1953	6.635	2415	2605
15	6659	15690	9600	1891	1654	1005	$1 / 39$	5558	1865	6.361	2339	2.540
16	6408	12850	7376	1.909	1627	1005	1639	5118	1823	6144	2288	2369
17	8383	11590	6767	1839	1643	1006	1766	2348	1781	5.354	2.312	2590
18	8.542	11130	4241	2445	1.620	0995	1272	5959	1.754	8346	2.613	3381
19	11790	6929	5866	2.154	1.646	0973	1162	20620	1.720	11040	2.393	4.624
20	12280	6021	6513	1.902	1587	0975	1263	10160	1.727	15000	2516	2965
21	7163	5.784	6789	1834	1.559	0973	3529	6628	1750	8227	2441	2811
22	4322	3514	7862	1832	1415	0.952	2848	5630	1780	6868	2.370	4384
23	4252	3074	8.493	1781	1.248	0938	4366	5242	2139	6.608	2.467	13110
24	23740	3082	12.540	1739	1267	0937	2191	5058	2559	7362	3125	12210
25	13680	2.997	7331	1722	1238	1027	1603	4876	2914	7.844	3193	7.139
26	9408	2.944	6584	1759	1373	1095	1374	2860	2.890	33.630	2.776	6853
27	6867	2.941	4.101	2.014	1295	0973	1334	3556	2.183	18120	2.575	6395
28	5787	2764	4063	1833	1.207	0959	9505	2664	5305	10090	3439	5825
29	6068	2622	3.649	1.743	1.437	0948	3673	4607	6236	6.860	8.412	5575
30	5611		2.690	1.786	1687	0957	5321.	6108	4113	6338	17070	3413
31	7108		2364		1486		3210	6084		6034		2921
Average	16110	15.800	4499	2035	1860	1041	2. 164	4385	3670	8.349	3862	7405
Lowesi	4252	2622	1687	1.722	1.207	0932	0963	1571	1720	1790	2234	2540
Highest	84180	56.790	12.540	2.486	4152	1267	9505	20620	12250	33630	17070	20480
Paak flow	111500	134700	17190	3.375	7111	1389	29500	67770	20960	49240	32090	42.370
Day of peak Mon:ily total	2	1	22	18	4	25	28	19	1	26	30	. 3
(miluton cu m)	4315	3959	1205	527	498	270	580	1174	9.51	2236	1001	1983
Runot (mm)	198	182	55	24	23	12	27	54	44	103	46	91
Rainfal (m (m)	186	158	110	44	68	23	191	148	98	144	78	104

Statistics of monthly date for previous record (Apr 1975 to Oec 1987 -incomplete or missing monthe total 0.1 yeare)

Maan	Avg	9605	7.229	8111	4540	3001	$191 i$	1218	1869	2207	4999	73.4	10040
flows	10 w	4432	3068	- 915	1681	1064	1013	O) 814	0655	1263	1508	1893	36:2
	(year)	1985	1986	1985	1984	-984	1975	1984	1984	-917	1978	1975	1975
	High	15960	16010	21.140	12770	7061	3131	1546	¢ 690	3955	15120	- 2.830	20280
	(vear)	1984	1984	1979	1986	1983	1982	i982	- 385	1985	1976	1984	:979
Runot	Avg	118	81	100	54	37	23	: 5	23	26	62	87	124
	Low	55	34	24	20	13	12	10	8	15	19	23	44
	High	196	184	260	152	87	31	19	70	47	186	153	250
Rantall	Avg	143	82	133	76	86	83	54	106	118	136	; 38	163
11976.	Low	57	16	75	11	27	16	18	27	22	36	62	80
198〕	High	250	182	243	165	149	185	114	192	253	223	208	258

Station and catchment dascription
Velocity-area station approximately 17 m wide. rated with current metering from bridge at the section. Heavily reservoired catchment with substantial effect on flows. Geology is mostly Millstone Grit Rural catchmen:

028009 Trent at Colwick

Measuring authority NRA.ST Firsl yeat 1958

Gird teferonce: 43 (SK) 620399 Lavel $\sin ^{\circ}(\mathrm{m} ~ O D) 1600$

Caichment area (sq km) 74860 Max alt (m OD) 636

Daily mean gauged discharges (cublc motrea per aecond)

DAY	JAN	FfB	MAR	APA	MAY	JuN	川	AUS	SEP	OCT	vov	DEC
1	113670	246718	68.826	100036	69760	52.720	49682	46929	. 77518	4867 :	45913	199590
2	264556	273044	64737	35604	94457	45431	43234	44453	114543	43921	49314	135873.
3	343415	204636	68417	93577	91078	44369	40628	43405	99785	41088	48744	1:6824
4	311635	261276	72876	88710	108531	69333	68928	40916	64313	40969	4) 342	124168
5	278892	324360	63782	83302	116.560	56488	83.249	40.221	52263	45431	43587	110177
6	315435	275639	61330	79320	82.498	45467	60429	39110	46910	47.491	42532	99683
7	330940	191802	69936	76118	67203	42881	59896	36492	44447	$651 / 4$	43311	99893
8	237199	196.919	64572	75324	67.825	52.258	48.564	36163	42.809	72.143	43727	80367
9	202771	191.335	65.253	79168	67309	68662	4371	34883	40093	58666	31366	76213
10	181611	214.548	87593	76082	57.162	53514	70519	35493	39140	56052	50978	83362
11	158711	195832	77692	71639	54881	47.522.	102112	36243	38081	53488	45453	68498
12	138434	177097	92890	70.421	56070	43481	65855	43462	36470	69613	42335	65453
13	128470	153702	195.983	60671	58853	40382	79869	46089	39888	84969	4) 263	6095.3
14	117562	214073	286446	60.571	50384	41173	73930	39.726	40543	63194	39649	57282
15	104450	190789	401.204	60933	45356	39878	57.902	37.322	36768	53240	38657	56337
16	97.388	167299	409163	70186	44889	39320	57248	35820	35488	47.691	37.982	53786
17	92529	144556	342.770	68865	44370	37516	116753	34.185	34491	45698	37891	49721
18	112875	127664	200881	63.469	44.758	38191	97757	35814	33882	$46 / 24$	38818	4) 661
19	119994	114572	256157	67268	43407	36087	66888	68614	33897	89.416	38935	66190
20	107360	101.886	315945	60840	42608	36935	54334	56950	33036	161599	46516	18452
21	96460	94749	264.890	56.942	42052	36860	63997	60770	33042	119026	48945	62.113
22	110626	90884	208428	55844	42081	37784	142225	51912	34734	80.872	42216	6: 188
23	193442	87667	236.262	54306	40609	36049	159709	44166	37064	68080	39110	$654 / 9$
24	392539	83.767	208811	51107	42.275	31851	164.703	40520	44232	61.817	39965	73739
25	489.755	79018	261921	50466	45266	32319	112098	40530	4) 480	59051	40610	79.987
26	455294	74005	256361	51.556.	51265	52.518	88607	39242	47958	58909	$38 / 16$	69916
27	305322	71.684	187.564	70204	52.175	56310	72.543	39751	58269	61044	37507	82545
28	219453	69921	152326	77203	40779	42456	59328	57088	70622	62189	39395	15426
29	260426	69.620	141.006	59885	41.560	40744	54169	76755	75307	53380	55595	65193
30	241301		123829	55497	49.901	37.981	51.612	50045	60.676	46894	210842	60116
31	187412		112481		57669		47523	52832		46.912		54008
Averoge	216400	161700	174800	69500	58500	44550	76070	44710	49790	63030	48880	80030
Lowest	92.529	69.620	61330	50466	40609	31851	40628	34185	33036	40969	37507	47661
Highest	489755	324360	409163	100036	116560	69.333	164703	76755	114543	161599	210842	199590
Peak flow	520052	328.116	479938	:07.336	136373	76472	183177	105871	135046	190036	248456	246761
Day of peak	25	5	16	1	5	4	24	29	2	20	30	1
Monithy total [milion cu m)	57970	40510	468.30	18020	15670	1.550	20370	11970	12910	16880	12670	21430
R.jnolf (mm)	77	54	63	24	21	15	27	16	17	23	17	29
Ras niyll (mm)	116	49	108	37	51	51	125	66	46	59	42	40

Statistics of monthly data for previous record (Oct 1958 to Dec 1987)

Whan	Avg	140800	132000	111300	93830	72.780	56470	44.460	47790	49960	67520	91270	124700
flows	Low	52910	49990	47130	35220	32260	24690	19460	18440	$230 \% 0$	25260	34110	46240
	(year)	1963	:976	1976	1976	1976	1976	1976	1976	1959	1959	1975	1975
	H.gh	210800	384000	227600	179500	175100	103100	$104 \cdot 00$	76480	121100	187000	.231700	351600
	(vear)	1959	1977	1981	1966	1969	198'7	1968	- 966	1965	-960)	1960	1965
Runofl	Avg	50	43	40	32	26	20	16	1%	1%	24	32	43
	Low	19	17	17	12.	12	9	7	7	8	9	12	17
	Hrgh	$\therefore 75$	124	81	62	63	36	37	27	42	67	80	- 26
Rainfall	Avg	72	53	60	58	61	62	55	72	66	66	74	78
	Low	23	8	13	9	:8	14	:8	21	3	12	38	15
	High	138	175	116	116	144	148	114	120	149	141	145	173

Summary statistics							
					1988		
	For 1988		For record preceding 1988		As \% of		
			pre. 1988				
Mean flow (m's ${ }^{-1}$)	90690						106
Lowes: yearly mean			47030	1976			
Highosi yaarly mean			124000	1966			
Lowest monthly mean	44.550	Jun	18.440	Aug 1976			
Hrghest mon: hly mean	216400	Jan	384000	Fob 1977			
Lowest dity mean	31851	24 Jm	14700	23 Aug 1976			
Highest daly mean	489755	25 Jan	854.910	26 fob 1977			
Peak	520052	25 Jan	956684	25 Fob 1977			
10\% exceedance	200500		170700		117		
50\% excoedence	60930		61.230		100		
95\% exceedance	36.410		28760		127		
Anmial total (mallion cumb	286800		271000		106		
Annual tunott (mm)	383		362		106		
Annual rainfall (mm)	790		777		102		
(1941.70 rainfall average (mm)			771				

Factors affecting flow regime

Reservoir(s) in catchment

- Flow influenced by ground waier abstraction and/or rechargo
- Austraction for public water supplies
- Fiow reduced by indusirial and/or
agricultural abstractions.
Augmentation from surface waier and/or
groundwater.
- Augmentation from effluent returns

Station and catchment description
Velocity-area station in the navigable Trent. Main channel approx 62 m . cableway span 99 m . Holme stuices $750 \mathrm{~m} \mathrm{u} / \mathrm{s}$ affect water levels up to nedium flows. Bypassed at high flows on ro when gravel workings inundated. Very substantial flow modifications owing to imports. WRW s. cooling water and industrial usage. Very large catchment with the gamut of land usage. Predominantly impervious - glacial chays and Triassic Marls, but some sandstones and limestones. Extensive terrace gravels and alluvium maintain baseflow

028085 Derwent at St. Marys Bridge

Measuring authority: NRA.ST
Fust year: 1936

Gid reference: 43 (SKK) 355368 Level stn. (m OO): 44.00

Catchnent arca (sa km): 1054.0 Max alt (m OO) 636

DAY	Jan	FEB	MAR	APR	May	AN	Ω	AUS	SrP	OCT	NOV	OEC
1	18.187	59599	12899	22.179	12345	7.542	6637	8506	16804	13.654	13.964	24046
2	58.717	54.950	12.697	21.693	15581	7.020	5.185	8242	26.358	12.211	17.142	24092
3	57.904	41.414	12894	20577	14.196	7.680	4801	8223	23905	11240	16.566	23.742
4	75246	63336	12332	19487	20313	8406	9.100	7949	16160	11.393	15.524	23.638
5	68.115	45324	11918	17891	15286	8.187	7.926	8347	13216	11.319	12.976	20476
6	80.106	37.546	12.640	16901	12.500	7083	7.778	5951	11613	11265	12665	18.068
7	48.163	34398	13043	15904	11054	6.789	6902	6269	10525	27553	13.371	16204
8	40475	34852	11.918	16620	10690	11222	6.711	6275	9343	26.608	13491	14.888
9	39959	45.525	12671	16491	13241	9405	7048	6107	8941	20387	16151	15.789
10	33.589	63.920	13.263	14920	9.788	7.314	9809	5883	8.561	17.094	13.750	14832
11	29774	47467	11277	14233	9818	7017	8424	6019	8433	16.130	11.189	13.621
12	27076	37592	24498	15.136	9873	6.689	7535	8048	8527	22.692	10870	13440
13	25604	44291	60354	11076	9.337	5967	11702	6756	7903	23134	10566	12.578
14	23352	66.246	65129	12694	8135	5978	8752	6523	7640	17115	10.161	12.165
15	19.950	46377	121108	12270	5407	6369	8595	5.990	1688	15383	8857	11.637
16	18424	40827	83569	12.476	8087	6044	10433	5525	7.389	14079	8524	11114
17	18.573	32.431	47555	11537	8.194	6082	14326	5141	7049	13.179	8537	9.595
18	24.614	29100	39128	12312	8069	6.182	10327	9410	1.206	14110	7.544	10049
19	22469	26.179	57227	12041	7977	5.148	8614	11212	6873	22.100	8100	21348
20	20016	22565	57361	11045	7838	4906	8506	10095	6315	59.861	9721	18068
21	18.110	20.428	42.364	10524	7441	5.206	9991	10347	6515	31.696	8242	15690
22	20152	18684	41.783	10302	8030	5.321	11180	9013	7065	24600	8013	15820
23	33815	17995	53356	9286	7.433	4.851	12287	8062	9036	20720	7795	17031
24	104399	16906	43982	9044	7923	4948	16681	7827	11656	19.120	8322	15.788
25	56.788	15581	51634	9.712	7.868	5.565	12.674	7.910	8862	17252	8964	15.122
26	48535	14853	44364	9971	10673	7.277	10924	7720	14908	17633	8373	15.844
27	36.519	14.305	39317	10931	- 6.593	5.665	8917	1817	15494	17365	7.943	17059
28	33834	13.995	35058	10292	5838	5.637	8.954	11712	17377	15891	8506	14997
29	38883	14800	31434	9368	7618	5896	8939	9805	19493	13503	19026	14120
30	34.273		26650	8801	8968	6400	8.812	8699	15999	- 2742	41.835	13481
31	40868		23940		8686		8594	9467		:3055		11771
Average	39240	35240	36390	13520	9.832	6.593	9.262	1900	11560	18840	12.220	16000
Lowest	18110	13995	11277	8801	5407	4851	4807	5141	6315	11240	7544	9595
Highas	104399	66246	121108	22179	20313	11222	i6681	11712	26358	59861	4:835	24092
Peak flow	126122	85388	137702	29.069	36017	18023	23.953	16627	38679	86196	. 5488 l .	31504
Day of peak Monthly total	24	- 14	15	7	9	8	23	18	2	20	30	19
(milion cu m)	10510	8831	9746	35.05	2633	1709	2481	2116	2997	5046	31.68	4286
Runotf (mm)	100	84	92	33	25	16	24	20	28	48	30	41
Rainfoll (mm)	161	79	158	41	58	58	- 38	99	89	105	54	64

Statistics of monthly data for provious record (fan 1936 to Dec 1987 -incomplete or missing months total 0.9 years)

Station and catchment description
Ten channel. interteaved cross path US gauge in the centre of Derbiy. 1.75 km ds of Longbridge Weir (28010) Record continuous with 28010 . At high flows Derby may flood but bypassing small Substantial flow modification owing to Derwent reservors. milling and PWS absiractions. Large, predominantly upland catchment draining Millstone Grit and Carb. Lst. Lower reaches drain Coal Measures on the lb and Trassic sandsiones and marls on the rb. Peat moorland headwaters. forestry. pasiure and some arable

030001 Witham at Claypole Mill

Station and catchment description

An old weir at three levels with a total width of 2499 m converted into a standard Lea designed broad-crested weir It is rated theoretically and there is no bypassing or drowning Low flows in summer are moderately influenced by iransfor of water from Rutland Water and abstractions for public supply at Salersiord The catchinunt is clay (50\%) with limestone (40%) and gravel, and is largely rural

Measurang authorily: NRA.A
Fust year. 1943

OAY	JAN	fe8	MAR	APA	MAY	UN	ur	AUG	S¢P	OCT	NOV	DEC
1	1.942	1.653	1.249	1.727	0914	0537	0724	0523	1.154	0315	0.365	1667
2	4.533	5.103	1205	1.659	0875	0.512	0.712	0576	0865	0.248	0361	1.636
3	3.666	4.504	1258	1.553	0979	0.723	0683	0453	0565	0276	0.354	2067
4	2.572	7850	1154	1.496	1332	0.785	0.819	0439	0409	0292	0354	2648
5	2697	4716	1061	1.439	0991	0615	0693	0428	0369	0311	0352	1.748
6	6078	3691	1064	1.382	0862	0524	0751	0414	0355	0602	0.362	1152
7	4.760	4242	0.780	1.354	0829	0493	0535	0398	0339	0791	0356	0930
8	2.746	4668	1009	1.325	2354	0926	0502	0402	0339	0369	0373	0874
9	2.673	4351	0965	1.334	1549	0.997	0460	0.383	0325	0.746	0385	0.927
10	2.300	3.448	0947	1.149	1065	0759	0736	0365	0319	0640	0.311	1045
11	2.028	3016	0925	1138	0960	0.606	0.557	0361	0310	0.562	0374	0.920
12	1864	2640	1039	1060	0900	0522	0615	0418	0366	0795	0368	0837
13	1.747	2.554	1423	1.038	0825	0495	0960	0351	0.321	0874	0361	0731
14	1.548	2965	5.143	1014	0763	0434	0623	0352	0313	0619	0358	0685
15	1426	2545	8517	1060	0704	0432	0727	0333	0.311	0481.	0.352	0668
16	1360	2279	4901	1160	0671	0426	0515	0.320	0308	0434	0341	0675
17	1335	2080	2.500	1047	0640	0411	0694	0310	0305	0408	0364	0618
18	1404	1.943	2360	1.244	0641	0412	0604	0372	0300	0406	0363	0600
19	1440	1826	6285	1143	0618	0.399	0487	0348	0296	0522	0366	0821
20	1372	1730	7526	0945	0596	0414	0466	0450	0294	0887	0529	0688
21	1325	1.653	6422	0899	0606	0.397	1017	0364	0302	0665	0401	0604
22	2074	1.608	4048	0885	0571	0412	1122	0.335	0.305	0539	0403	0588
23	8.168	1.540	5.838	0.755	0605	0393	1.129	0344	0377	0481	0371	0575
24	16512	1.519	4363	0.580	0594	0402	1490	0410	0354	0.445	0354	0626
25	11783	1340	4584	0780	0569	0405	0750	0.334	0349	0418	0362	0578
26	8886	0821	3.343	0917	- 0636	0468	0617	0326	0342	0408	0358	0629
27	5132	0864	2518	1018	0577	0494	0.536	0332	0361	0407	0356	0.629
28	8003	1.309	2371	0905	0541	0455	0534	0358	0309	0393	0395	0629
29	9859	1525	2074	0817	0569	0445	0482	0338	0295	0.375	1073	0617
30	6615		2063	0901	0734	0715 :	0458	0338	0285	0372	2901	0600
31	4955		1873		0639		0655	0560		0366		0577
Average	4284	2965	2.931	1124	0829	0534	0698	0388	0381	0498	0) 480	0922
Lowest	1325	0821	0780	0580	0541	0397	0458	0310	0285	0.248	0.341	0575
Highest	16512	7850	8511	1.727	2354	0997	1490	0516	1154	0887	2901	2.648
Peak flow	17522	9687	10.186	2442	3649	1865	2.551	0976	1954	1581	3764	3075
Day of peak	24	4	15	2	8	8	21	$3 i$	1	10	30	4
Monthly iotal (midior cu m)	1147	743	785	291	222	- 38	1.87	104	0.99	133	124	241
Runotf (mm)	59	38	40	15	11	7	10	5	5	7	6	13
Raunfall (mm)	100	34	81	31	43	56	102	49	29	56	33	29

Grid reference: 42 (SP) 898715
Level sin. (m OO): 45.30
Catchment area (sq km): 1940 Max alt. (m OO): 197

Daity mean gauged discharges (cubic metres per aecond)

Statistics of monthly data for previous record (Dec 1943 to 0 ec 1987 -incomplete or missing months total 0.8 years)

Station and catchment description

Flume with low flow notch and side weir to 1965, compound Crump weir to April 1976, and theoretically-rated Flat V weir with 594 m crest since. Crump weir modular to 15.6 cumecs. but bypassed at 142 . Flat V also bypassed Two small storage reservorrs with minot influence on low flows Underlain by clay (59%) and sandstone (24%), mosily rural but ancludes Kettering

033002 Bedford Ouse at Bedford

Grad reference. 52 (TL) 055495 Level \sin (m OD) 24.70

Catchment area (sq km): 14600

Daily mean gauged discharges (cubic motres per second)

DAY	JAN	FfB	MAR	APR	MAY	n人	Jut	ALG	SED	OCT	Nov	$0 \in C$
'1	22600	60.300	10800	- 100	7100	5700	6.200	4500	10200	5.100	4400	34000
2	17600	62100	. 10200	:0700	7600	5.000	5900	4500	17900	4300	4300	20300
3	21000	51600	9.900	10100	7300	4500	7.200	4600	13.100	3.900	4300	16600
4	21900	42300	10500	9400	8 500	5100	8.700	4400	7400	3900	4100	19800
5	25.200	54.100	10500	9300	9100	5600	10.300	4100	4600	3.900	4100	26500
6	37000	40600	9800	9900	6900	5100	11.100	4000	4100	4000	4300	18500
7	52100	30500	9600	9.300	6300	4200	14100	3900	3800	4300	4300	11100
8	37500	32.200	9500	9100	1400	4600	12.300	3800	3500	4600	4300	10100
9	25200	34100	9400	9.800	11100	5600	7700	3600	3400	4.900	4300	8500
10	26000	30.100	9300	10000	9800	7300	6000	3600	3400	10100	4600	8000
11	25000	27400	9200	8200	7200	5300	5100	3500	3500	10600	4300	7600
12	20800	25400	8900	8600	6100	5100	6.500	3500	3200	8700	4200	6800
13	18900	21800	9200	8000	7100	4600	6200	3.500	3400	- 0700	4300	6300
14	18600	23900	14100	7300	6300	4200	6400	3700	3600	- 2100	4300	6000
15	16.900	25900	30700	6.300	6000	4100	6700	3400	3600	8200	4.100	5800
16	14600	22500	47200	8000	5600	4000	6000	3300	3300	6.200	3800	5700
17	13800	19200	29900	8700	5400	3900	8400	3300	3300	4700	3800	5700
18	12400	16700	18800	8200	6200	3800	15700	3300	3300	5.100	3800	5700
19	12.700	15300	20800	8300	6400	3700	$\bigcirc 500$	3300	3500	5400	4300	5800
20	12100	14500	31100	8500	5300	3600	6400	3400	3400	7200	4300	6000
21	11400	14000	54.300	8300	5000	3.500	5.900	3800	3200	9500	5900	5800
22	17.600	13500	64500	7.200	4300	3400	8500	3800	$3400)$	6900	6000	5400
23	44000	13.100	45400	6800	4800	3300	13100	3400	3500	5700	5200	5600
24	73700	12700	33900	6400	5000	3300	. 4000	3300	4200	5300	4800	5800
25	88.400	12300	$26500)$	6300	4900	3200	- 0800	3600	5360	$5 \cdot 00$	$4500)$	6000
26	118000	11600	24100	6300	5000	3200	8600	3300	6800	5000	4300	5600
27	98.600	11100	16000	9100	5300	5300	6.900	3300	5800	4.900	4300	5800
28	65500	11100	13300	10500	4800	5300	6200	3200	8000	4.900	4400	6400
29	69500	11400	13900	7600	4800	4900	5400	32.00	13400	4800	6500	5900
30	82.100		13700	7200	6400	5300	5.300	3300	7700	4400	i8900	5400
31	87200		11100		6200		4800	4 :00		4300		5100
Averagu	38960	26250	20520	8483	6465	- 4523	8.287	3661	5560	608%	4967	$96: 9$
Lowest	11400	11100	8900	6300	4300	3200	4800	3200	3200	3900	3800	5100
Hegriesi	118000	62.100	64500	11.100	11100	7300	15.700	4600	17900	12.100	18900	34000
Peak low	125000	81500	64800	12900	11900	7600	16500	5800	19000	13400	31400	36700
Day of poak Monthly total	26	1	22	27	10	10	18	31	2	14	30	:
(mill:on cu m)	104.40	. 6318	5496	2199	1731	1172	2220	981	1441	1630	.1287	2576
Hunoff (mm)	71	45	38	15	12	8	15	7	10	11	9	18
Rauntal (mme)	104	31	67	28	50	49	107	47	51	46	33	21

Statistics of monthly data for previous record Jan 1933 to Dec 19871

Mean	Avg	19480	19970	$\cdots 190$	i i 280	7243	4656	3158	2812	2786	5.536	1:390	-5370
flows	Low	2608	2232	2410	1.996	141 ;	0.483	0100	0040	0268	0454	. 1152	1531
	(year)	1934	1965	1944	1976	1934	1934	1934	1934	1934	1934	. 1934	1964
	Hugh	.55.190	53300	62020	31.470	28280	14280	19080	14400	18000	30420	43800	40400
	(year)	1939	1977	1947	1951	1983	1985	1968	1980	1968	1987	1960	1960
Runor*	Avg	36	33	32	20	13	8	6	5	5	: 0	20	28
	Low	5	4	4	4	3	1	0	0	0	1	2	3
	High	101	88	114	56	52	25	35	26	32	56	. 18	74
Rainfall 11934. 1987)	Avg	57	42	49	44	56	53	52	62	53	60	64	60
	Low	14	3	5	3	10	8	5	3	3	4	10	13
	High	124	111	140	96	113	. 119	120	138	110	147	178	128

Summary statistics.

Siation and catchment description

3 broad-crested weirs. $30 \mathrm{~m}, 20 \mathrm{~m}$ and 12 m wide supplemented by 3 vertical sluce gates which are either fully open or shut High flow rating confirmed by current meter measurements Records before 1959 basud on daly gauge board readings and gate operangs in 1972 . siation bult at Roxton (d/s) - to acheve a better record. Significant surface water and groundwater abstractions in catchment for PWS. Geology: predominantly clay Land use - egricultural with substantial urban dovelopment over last 15 years finc. Milton Keynes)

034006 Waveney at Needham Mill

Measurng authonty: NRA-A First year: 1963

Grid reference: 62 (TM) 229811 Level sin (m OO): 16.50

Catchment grea (sq km: 370.0 Max alt. (m OD): 65

Daity mean gauged discharges (cubic motres per eocond)												
Day	Jan	FEB	MAR	APA	may	M	18	aUg	SEP	OCT	NOV	OEC
1	4.514	13.798	10087	5318	2.441	0.952	0.703	0589	0683	0499	0621	3.568
2	6667	10272	10.958	4015	1.924	0838	0748	0601	0747	0489	0609	2.158
3	4454	6459	9.981	3.100	2349	0803	0762	0610	0568	0.487	0608	1835
4	3.135	5278	8080	2.681	2.570	0797	1.072	0609	0494	0474	0604	3.134
5	4899	4.172	5421	2372	2417	0.755	1.102	0594	0476	0474	0596	2.532
6	9.178	3508	5.536	2.106	1710	0720	0941	0.572	0476	0504	0588	1832
7	6400	3248	5173	2.014	1.520	0701	0882	0540	0472	0484	0603	1565
8	4.136	5.510	3924	1891	2038	0.729	0823	0.542	0472	0462	0609	1.472
9	3484	4.706	3.208	1651	1.955	1029	0744	0.566	0473	0643	0781	$16 / 9$
10	3363	3783	2.866	1.617	1679	0920	0652	0.567	0461	0.780	0801	1821
11	4174	3840	2.588	1559	1562	0795	0644	0547	0426	0618	0712	1715
12	3.765	3727	2482	1.530	1.513	0722	0674	0.558	0428	0859	0633	1511
13	4470	3.182	2875	1396	1.354	0.668	0.917	0540	0450	1458	0602	1.258
14	10.268	3615	7063	1313	1173	0638	0988	0512	0451	0923	0598	1.138
15	6430	3396	15644	1.399	1050	0622	0807	0488	0457	0.706	0615	1085
16	4326	2.900	14.310	1448	1002	0609	0748	0487	0464	0597	0608	1068
17	3529	2542	6099	1.368	0991	0607	0874	0485	0462	0590	0641	1042
18	3007	2.284	4048	1273	0949	0.598	0870	0512	0455	0596	0653	0.930
19	2914	2.130	3.868	2665	0903	0584	0785	0593	0460	0905	0639	1033
20	2673	1967	3891	6.394	0855	0588	0741	0665	0489	8082	0772	1006
21	2.465	1.853	10.536	3063	0817	0.577	0.675	0.734	0490	4861	0820	0914
22	11976	1820	11422	2.138	0756	0585	0728	0454	0560	2.235	0.786	0908
23	22188	1967	9006	1700	0791	0589	0844	0563	0632	1546	0742	0917
24	41800	4285	8327	1490	0802	0.586	0830	0558	0610	1248	0682	0937
25	47838	4.206	9896	1370	0778	0573	0749	0.573	0602	0.970	0664	0915
26	37.700	3094	8028	1642	0795	0.566	0696	0560	0592	0981	0642	0819
27	19027	2.608	4829	3805	0811	0589	0736	0543	0567	0911	0612	0922
28	18969.	2443	3.819	5379	0.758	0684	0703	0527	0600	0.831	0661	0913
29°	57.463	4874	3640	4216	0790	0657	0645	0517	0586	0140	0930	0891
30	65275		8224	2.918	0855	0.602	0614	0493	0539	0668	4821	0874
31	21603		9.954		0877		0589	0.523		0620		0867
Averaye	14260	4051	6961	2494	1.316	0.689	0784	0555	0521	1169	0809	1397
Lowest	2465	1.820	2482	1273	0756	0.566	0589	0454	0426	0462	0588	0861
Hinghest	65275	13798	15644	6.394	2.570	1029	1. 102	0734	0.747	B 082	4821	3.568
Pejk flow	72.100	14606	17986	8118	2918	1.136	1215	0936	0829	9183	5868	4936
Day of neak	29	1	15	20	4	9	4	21	7	20	30	1
Monshly 10ial (miluion cu m)	3820	10.15	1864	646	352	1.79	210	149	135	3.13	2. 10	374
Runutf (mms	103	27	50	17	10	5	6	4	4	8	6	10
Rantal (mm)	122	41	81	48	42	24	77	38	38	78	34	24

Statistics of monthiy data for previous recordiDec 1983 to Dec 19871

Station and catchment description
A compound Crump weir 8.5 m wide in the main channel with a single crested Crump in the mill bypass. Sluice action 81 a mill 24 km upstream is infrequent but is ovident in flow records Surface water abstractions. and the use of river gravels as an aquifer, influence ilows but the overall impact is minımal Predominantly a Boulder Clay catchment with largely rural land use

036006 Stour at Langham

Measuring authority NRA A
First year 1962
Daily mean gauged discharges (cubic metres per second)

DAY	JAV	FEB	NAR	APR	MAY	JN	N	AUK,	Scf	OCT	NOV	Dec
1	5956	27.850	3373	6.077	$300:$	2165	1495	13:	: 543	1.322	- 353	5.05
2	5707	20650	3099	5367	2865	1434	1656	1.366	1618	1195	i 343	2871
3	6.585	11.881	3.280	4.593	3084	1615	1.567	1.263	1418	1261	1.378	2374
4	4775	10099	3964	4206	2880	2042	1851	1320	1234	1265	1404	4253
5	9428	822.5	3.457	3886	2768	2088	2007	1268	1.279	1425	1393	4.864
6	19.640	6980	3402	3253	2517	1973	1904	1234	1205	1610	1399	2979
7	13775	6.383	3978	3301	2131	1652	1839	1124	1122	1.548	1385	2414
8	7039	10470	3466	3330	3255	2042	1579	1054	1.231	1469	1.424	: 861
9	5992	9172	3444	3632	3.240	3601	1447	1.243	1245	2549	1918	$13: 3$
10	7697	7665	3282	3381	2568	3326	- 350	1085	1070	2973	1579	2025
11	7781	7010	3.189	3083	2224	2126	1292	1060	1146	2421	1258	2084
12	6471	5.979	3.144	3211	2498	1.995	1255	1174	1112	2034	1.526	2006
13	6345	5222	3751	3122	2160	1598	1477	1177	1158	2653	1433	1780
14	13435	4993	11197	3078	- 533	1.577	1593	1248	- 234	2.519	1452	1814
15	8853	4811	23065	3244	2408	1574	1645	1195	1179	1996	1547	1860
16	6258	4525	22410	3428	1883	1.693	1786	1234	1.213	1619	1566	2100
17	5.242	4.352	9806	3.326	1845	: 717	2342	-180	1281	1.656	1172	2096
18	464%	3839	6490	3178	1890	- 722	3023	: 159	1172	1652	- 373	1981
19	4.592	3.778	7110	3226	1918	1565	2156	: 264	1096	1.719	-400	1940
20	4591	3705	1519	3404	1811	1495	1.395	1304	1.118	2030	1.524	2080
21	4716	3606	18125	3168	1611	1566	1583	1298	1189	2856	1538	2066
22	16.040	3663	17180	3029	1846	- 473	1658	1315	1390	1.997	1532.	1883
23	28.490	3525	12337	3.011	1837	1336	1.972	$1: 20$	1.569	1309	1624	1800
24	33680	3657	11358	2777	1784	1265	1761	1068	1647	1836	1.816	1.798
25	42.870	3778	7.888	3.161	1.739	1.243	1648	1098	2005	1643	1840	1886
26	40990	3.646	6 15:	2.886	1859	1272	1546	1124	2055	- 602	1796	2051
27	28050	3348	4940	2959	1701	1378	1447	1135	1634	: 6 is	1589	2099
28	23980	3369	4516	3065	1398	1659	1383	1063	1848	1633	1492	2039
29	36.030	3.326	4.770	2959	1.948	1.609	1405	1.087	1648	1574	1909	1898
30	46400		9177	2603	2181	1275	1371	0992	1490	1776	5866	1791
31	42560		- 021 .		2147		1356	1306		142.4		- 798
Average	16080	6880	7712	3431	2211	1769	1671	1189	1372	1831	1661	2307
Lowest	4.591	3326	3099	2603	1398	1243	1255	0992	1070	1195	1.172	1780
Hiģhas:	46400	27.850	23085	6077	3.255	3.601	3023	1.366	2055	2973	5866	5105
Peak flow	48470	33800	26070	7411	4594	5262	5175	2059	2192	3740	9.371	8785
Day of peak Monthry total	30	1	16	1	8	9	18	9	26	9	30	1
(milhon cu m)	4308	1724	2066	889	532	453	447	318	355	490	4.30	6.18
Runotf (mm)	75	30	36	is	: 0	8	8	6	6	8	7	11
Ras ntas (mm)	125	26	75	24	50	44	77	31	52	52	30	26

Statistics of monthly data for previous record (Oct 1962 to Dec 1987)

Mean	Avg	5293	4.908	4657	3652	2424	1649	1078	$1: 77$	1:68	2002	2945	4 :28
flows	Low	1.398	0883	1.597	1217	0.758	0454	0191	0210	0395	0510	0578	0692
	(year)	1965	1965	1976	1974	1974	1965	1976	1976	1964	1970	1964	1964
	High	9.263	12.980	9775	9.334	7253	5999	2.957	6.236	4945	13170	11340	10550
	(yea')	19%	1979	1981	1983	1983	1987	1981	1981	1968	1987	-974	1965
Rumbt ${ }^{\text {- }}$	Avg	25	21	22	16	11	7	5	5	5	9	13	19
	Low	6	4	7	5	4	2	1	1	2	2	3	3
	High	43	54	45	42	34	27	14	29	22	61	51	49
Rainfall	Avg	47	. 34	46	45	49	53	46	53	51	52	61	52
	Low	14	13	12	11	12	10	8	11	1	3	20	13
	High	85	63	33	39	100	132	93	105	118	128	155	107

Summary statistics	For 1988		For record precod.m 1988		$\begin{gathered} : 988 \\ \text { As } \% \text { of } \\ \text { pre } 1988 \\ 138 \end{gathered}$	Factors affecting flow regime
			- Flow reduced by industrial and/or agricultural abstractions - Augmentation from surface water and/or groundwate? - Augmentation from effluent returns			
Mean flow (m)s 's	4015			2915		
Lownst yency mean				- 428		
Highest yeurly mean				5.119		
Lowest monthly mean	1.189	Aun	0191			
Highas: monily moan	16080	dan	13.170			
l owesi daily mean	0992	30 Aug	0094			
Highes: daly rean	46400	30 Jan	50280	12 (
Peak	48470	30 Jan	91000	17 S		
10\% exceedance	7.546		6434		117	
50\% excoedence	1944		1676		116	
95\% oxcandame	1152		0517		223	
A.nial totul (milion cum)	12700		9. 39		138	
Annual runott (mm)	220		159		138	
Anmual rainfall (rmm) [1941-70 rainfell average (mm)	612		$\begin{aligned} & 589 \\ & 598{ }^{\circ} . \end{aligned}$		104	

Station and catchment description
Twin-trapezoidal flume with throat tapping. Spillway channol with weir constructed Dec 85 takes some flow above $145 m$ Bypass:ng also occurs over opposite bank above 1.85 m . Additional bypassing possibie from $0.5 \mathrm{kin} \mathrm{u} / \mathrm{s}$ during extrome events Naturalised fows up to Sept. 76 Flow augmented by intermittent pumping from Ely/Ouse Transter Scheme and occasional SAGS boreholo puinping. Pradorninantly fural catchment underlain by Chalk - outcropping in N , London Clay in S . all covered by semimervious Boulder Clay

038003 Mimram at Panshanger Park

Measuring authority: NRA.T
fitsi year: 1952

Grd reterence: 52 (TL) 282133 Level sin. (m OD): 47.10

Calchment area (sq km) 133.9 Max ali. (m OD): 193

DAY	JAN	ris	man	APA	may	JN	M	AUS	SEP	OCT	mov	OEC
1	0.720	1.220	1050	1.080	0935	0793	0149	0608	0334	0.476	0.522	0533
2	0810	1.110	1040	1.070	0891	0797	0694	0610	0605	$0.4 / 4$	0.518	0502
3	0.724	1.150	1130	1060	0907	0827	0909	0.601	0568	0472	0.516	0657
4	0.796	1.160	1060	1.060	0890	0829	0885	0605	0548	0482	0.516	0.511
5	0983	1.090	1050	1.060	0872	0778	0732	0595	0543	0516	0513	0521
6	0803	1.100	1050	1060	0859	0.792	0856	0.575	0535	0550	0.513	0.502
7	0738	1230	1040	1040	0961	0797	0719	0559	0530	0485	0516	0496
8	0745	1150	1040	1070	1.340	1110	0692	0535	0529	0712	0540	0494
9	0.768	1.170	1040	1050	0953	1010	0681	0545	0522	0837	0540	0493
10	0738	1170	1030	0993	0906	0842	0.753	0.546	0.511	0567	0522	0486
11	0724	1110	1030	0984	0920	0802	0645	0560	0495	0577	0528	0483
12	0728	1080	1040	0983	0890	0.761	0687	0546	0508	0756	0521	0481
13	0854	1.140	1120	0974	0858	0726	0.179	0538	0489	0620	0514	0479
14	0755	1090	1200	0976	0833	0706	0673	0538	0485	0561	0513	0478
15	0717	1080	1.300	0979	0814	0105	0654	0532	0481	0541	0511	0477
18	0.711	1070	1110	0994	0808	0712	0809	0523	0477	0536	0510	0474
17	0.710	1060	1070	0946	0861	0706	0863	0523	0472	0533	0.508	0472
18	0707	1060	1140	0928	0832	0699	0683	0529	0470	0530	0503	0473
19	0712	1060	1100	1010	0805	0689	0655	0533	0466	0857	0525	0493
20	0757	1060	1270	0890	0793	0684	0645	0542	0473	0.736	05.36	0469
21	0813	1050	1170	0867	0785	0619	0763	0545	0480	0594	0493	0469
22	1000	1050	1.150	0848	0.778	0664	0132	0539	0488	0569	0484	0464
23	1030	1050	1.160	0837	0180	0667	0663	0.535	0515	0512	0505	0462
24	1100	1090	1110	0849	0779	0662	0639	0534	0691	0578	0488	0455
25	1100	1120	1160	0849	0774	0651	0637	0528	0520	0560	0487	0453
26	0934	1050	1100	0908	0923	0665	0625	0524	0543	0543	0484	0467
27	1080	1060	1090	1090	0790	0791	0619	0521	0586	0536	0479	0460
28	1.160	1080	1100	0951	0793	0699	0619	0519	0550	0531	0474	0449
29	2050	1050	1160	0918	0332	0680	0612	0511	0493	0523	0699	0447
30	1.160		1110	0910	0839	0750	0604	0515	0480	0526	0580	0445
31	1220		1080		0808		0606	0792		0530		0443
Average	0898	1102	1108	0974	0868	0756	0706	0555	0533	0577	0519	0485
Lowest	0707	1050	1030	0837	$01 / 4$	0657	0604	0511	0466	0412	0474	0443
Highest	2050	1230	1300	1090	1340	1110	0909	0192	0934	0857	0699	0657
Poak flow	3500	1620	1830	1550	2370	2070	1730	1250	1670	1940	1110	1020
Day of smak	29	7	16	27	8	8	16	31	1	19	29	3
Mon:hly total (miltion cu m)	241	2.76	297	253	232	196	189	149	138	154	134	130
Runofí (mm)	18	21	22	19	17	15	14	11	10	12	10	10
Re:nfall (mmi\}	121	33	63	36	57	48	86	55	50	63	29	19

Statistics of monthly data for previous record toen 1952 to Dec 1987)

Mean	Avg	0577	0634	0660	0651	0616	0560	0485	0449	0420	0415	0454	0510
flows	Low	0244	0289	0259	0261	0216	0187	$0: 63$	0145	0195	0175	0176	0189
	(year)	1974	1973	$19 / 3$	1973	$19 / 6$	1976	1976	$19 / 6$	1973	1913	1973	1973
	High	1102	1167	1119	1050	1084	0911	0803	0764	0632	0638	0139	1005
	(year)	1961	1961	1961	1919	1979	1979	1979	1979	1368	1968	1960	1960
Runoti.	Avg	12	12	13	13	12	11	10	9	8	8	9	10
	Low	5	5	5	5	4	4	3	3	4	4	3	4
	High	22	21	22	20	22	19	16	15	12	13	14	20
Raintal	Avg.	54	41	49	45	52	60	53	58	56	62	62	62
	Low	11	3	3	5	13	5	5	1	5	5	20	13
	High	102	96	116	105	115	122	123	127	12 i	171	151	119

Summary statistics	For 1988		For record procedsy 1988			$\begin{gathered} 1988 \\ \text { As \% of } \\ \text { ne. } 1988 \\ 141 \end{gathered}$	Factors affecting flow regime - Flow influenced by groundwater abstraction and/or rechistge - Flow reduced by indusirial and/or agricultural abstractions
Mean flow (m's - ${ }^{\text {] }}$)	0756		0335				
Lowesi yearly mean			0231		1973		
Highest yearly inears			0767		1961		
Lowest monthty mean	0485	Dec	0145		1976		
Highest monthly mean	1.108	Mar	1167		1961		
Lowost daty mean	0443	3100	0135	21 A	1976		
Highesi daily mean	2050	29 Jan	1810	15 S	1968		
Peak	3500	29 Jan	3.541	30 M	$19 / 9$		
10\% exceodence	1093		0.791			138	
50\% exceodince	0714		0507			141	
95\% exceodance	0474		0243			195	
Annual toral (mumon cu mi)	2389		1690			141	
Annual runoff (mm)	178		126			141	
Annual rainfall (mun) f194 1.70 ra:niall average (nm)	659		$\begin{aligned} & 654 \\ & 6411 \end{aligned}$			101	

Station and catchment description
Critical-depth flume. 5 m overall width Theoretical calibration confirmed by gaugings. Alt flows contaned. Singht diminution of flows due to groundwater ebstiaction. Very high baseflow component. A predominantly permeable catchment Uuper Chalk overlain by glacial deposits near headwaters): mainly rural but some urbanisation in the lower valley

039001 Thames at Kingston

chid reference 51 (TQ) 177698
Level s:n (m ODJ 470

Caichment area \{sta km\} 99480 Max alt (m OD) 330

Daily mean gauged discharges \{cubic metres per second)

DAY	-AN	ftB	MAR	APA	MAY	JUN	Ju	AUK:	SEP	OCT	Nov	$\bigcirc \subset$
1	105996	335996	83500	81800.	48400	35300	2590	:32.99	59398	21597	21400	78700
2	107003	341991	.81300	74700	57100	27300	14701	16204	6. 401	23901	20) 600	59700
3	143993	301991	86900	17000	53700	27400	52.397°	17396	16597	18495	21900	32600
4	137003	303994	84700	72600	53300	28600	52502	$13 / 96$	26597	19595	23300	66400
5	183993	301991	86400	64 अ)	53200	33500	41400	12604	15602	16296	27300	12700
6	245996	285000	79400	68500	47500	29000	39305	11597	12998	30405	24800	14.400
7	218994	266991	74300	75000	40600	30400	34396	12604	10799	26701	26000	38700
8	192998	272003	73300	66000	60) 900	21000	$1 / 695$	9120	1:505	23102	26600	4010
9	$15 / 003$	251998	68600	71800	86300	. 28100	20200	11806	8924	75301	30100	34700
10	:60996	240996	72800	12000	57000	33100	20605	11700	9301	84202	37900	31400
11	. 45996	2.15000	67800	69400	61900	31300	16901	10602	9201	49398	33100	$29)$
12	- 30000	i83 393	62400	68700	57200	22300	17501	- 9699	14896	64398	31500	28800
13	- 32998	- 65000	53100	65000	52000	25300	19595	10995	14398	60301 .	32400	29000
14	:62003	:88993	64100	62.900	50200	21900	27603	$1030{ }^{\circ}$	11701	60104	26800	28100
15	130996	:97998	79500	59500	47200	20700	25104	11898	92.25	38796	25300	23000
16	107003	182003	117000	$1 \cdot 90$	37800	20200	22305	12002	11701	37691.	22200	26300
11	97604	152998	114000	78000	35800	20000	39595	$10 \cdot 97$	10706	. 282.06	20500	25500
18	89595	140996	93600	12400	33600	15900	44004	15706.	11505	40106	21900	24700
19	90405	135996	98700	87500	36800	19300	29203	13704	12002	49398	20100	25600
20	92894	127003	135000	¢ 300	36600	15900	32802	13600	10405	42199	21100	25100
2 *	102003	120080	215000	61900	$3470{ }^{+}$	14600	29803	12801	9630	$411(0)$	25000	21400
27	155996	117998	$1 / 8000$	52200	30700	1: 100	25304	10301	10799	25000	21100	14800
23	206991	11500	142000	51300	34 ¢KO	10800	- $3580{ }^{\circ}$	10) 498	11898	31701	22300	17400
24	232 (03	107998	125000	46000	34600	9810	31899	10799	14 502	25602	2:500	19800
25	305000	101003	125000	62.000	3290	10900	39700	8657	22500	30301	2:000	22800
26	325996	100996	123 (000)	45800	$36400{ }^{\circ}$	11) 500	30797	20191	25498	3. 101	19300	23800
27°	312998	88692	$1 i 3000$	40000	34700	22500	23.04	16505	-26204	29005	19000	21500
28	332000	97697	82300	48800	33000	$26100)$	25993	10405	42408	27303	18800	: 7300
29	380000	91894	94800	44800	$35600)$	20700	22094	- 0199	40600	23495	26000	- 6200
30	385000		1:3000	43 BlO	40600	19700	i 9595	9780	29502	22600	51300	24300
31	327998		$103000)$		40300		-5996	23403		22500		25800
Average	190100	191500	991.0	64120	45020	22110	28840	: 2680	19430	36160	252.0	33130
Lowest	89595	88692	53700	42. 000	30100	9810	14701	8657	8974	16296	$\because 8800$	14800
H ghest	385000	341991	2.15000	81800	86300 .	35300	52502	23403	61401	84202	..51300	18700
Peak fow	399000	363000	248000	$\cdot 24000$	97400	84300	98900	54900	109000	136000	64700	102000
Day of peak	30	2	21	11	9	28	3	31	-	9	30	1
Monthly total (m.llior c: \quad (n)	50930	$4 / 910$	26710	-6620	12060	5731	7726	3335	5037	9686	6534	8812
Runot (mm)	51	48	27	17	\cdots	6	8	3	5	10	1	9
Rairial (mm)	129	43	67	31	4)	42	99	31	47	66	- 28	16

Statistics of monthly data for previous record (Jan 1883 to Dec 1987)

Station and catchment descripition
Ultrasonic gauging station cornmissioned in 1974: multı-path operation from 1986. Full range. No peak flows pre-1974 when dmis derived from Teddington wear complex (70 m wide). significant structural improvements since 1883 Some underestimation of pre-1951 low flows Substantial baseflow- sustained from the Chalk and the Oolites. Daily naturalised flows avalable for POR - allowing for major PWS abstractions only. Diverse topography, geology and land use which has undergone important historical changes

039007 Blackwater at Swallowfield

Measuring authority: NRA-T
First year: 1952

Grad reference. 41 (SU) 731648 Level stn. (m OD): 42.30

Catchment area (sq km): 3548 Man alt. (m OD): 225

Daity mean gauged discharges (cubic mbtres per cecond)

dar	JAN	FEB	MAR	APR	may	ON	μ	AUS	StP	OCT	MOV	DEC
1	3.910	19.200	3.240	3920	3400	2.180	1.970	1.780	7.980	1880	2.180	2.730
2	6980	11400	3220	3560	3040	2020	2.010	1830	4800	1.800	2.150	2.520
3	5.330	8. 160	3690	3.340	3.110	2240	4030	1690	2.860	1840	2.110	3.650
4	4680	11.100	3.800	3240	3280	2.740	6090	1.710	2.320	1.730	2.110	4.990
5	9700	7500	3.390	3.140	2960	2.510	S.800	1680	2.160	2.120	2.130	3510
6	7.270	6060	3370	3090	2.670	2.110	5720	1650	1.960	3250	2110	2.960
7	5020	8020	3290	3010	2570	1990	3.630	1.580	1870	2.460	2.140	2660
8	4330	9.810	3.190	3020	6950	2290	2.820	1.580	1.780	2.200	2.110	2.500
9	4490	9.120	3210	3.910	4.640	3. 180	2400	1620	1.750	9340	2250	2480
10	4460	7690	3.330	3290	3330	2420	2450	1.560	1.670	5.640	2140	2370
11	4020	6.580	3160	3.160	3020	2250	2470	1550	1.630	4380	2140	2.320
12	3990	5610	3140	2900	3.350	2080	2180	1490	1.670	5820	2130	2390
13	6740	7.470	3.170	2730	2850	1960	2860	1550	1800	4.310	2.080	2250
14	5.900	8.070	3.460	2.750	2630	1890	2.500	1550	1840	3.280	2060	2.120
15	4820	6.360	5650	2820	2.530	1820	2170	1560	1680	2910	2040	2.110
16	4120	5.170	5060	4080	2370	1160	2410	1.500	1600	2.680	2060	2. 160
17	3820	4680	4.190	3.150	2320	1750	3.590	1500	1630	2570	2.060	2150
18	3830	4470	4630	5300	2320	1740	2650	1470	1610	2720	1940	2110
19	3700	4290	5880	5230	2240	1690	2150	1820	1660	2.990	1910	2090
20	4610	4110	8380	4160	2160	1680	2000	1770	1.740	2.510	2.250	2040
21	4310	3990	8550	3510	2.160	1680	2210	1680	1670	2310	2040	2020
22	9430	3900	5630	3200	2110	1650	2860	1600	- 740	2.330	1.890	2030
23	6530	3980	4770	2960	2170	1620	3390	1540	1990	2230	1890	2030
24	9070	3.750	4.320	2810	2.220	1630	2710	1550	1860	2290	1.870	2010
25	17600	3530	5320	2.710	2090	1630	2290	1590	1.690	3490	1.910	1900
26	9600	3440	4. 160	2610	2100	1650	2150	1570	1740	2750	1920	1900
27	8720	3460	3140	2710	2010	1700	7050	1530	2100	2.550	1900	1990
28	15300	35:0	3750	2660	2060	2190	2260	1510	3310	2390	1980	1940
29	22400	3400	4.720	2.710	2.310	2040	2070	1470	2410	2.290	2.880	1890
30	13200		5330	2.780	2410	1870	1910	1550	1.980	2.220	4.100	1890
31	9850		4300		2480		1920	2950		2240		1900
Avarage	7330	6517	4356	3282	2770	1999	2830	1645	2.217	30:7	2149	2375
Lownst	3700	3400	3140	2610	2010	1620	1910	1470	1600	1.730	1.870	1890
Hightest	22400	19200	8.550	5.300	6.950	3180	6090	2950	7980	9340	4.100	4990
Peak flow	24800	22100	13.200	8790	13800	3660	7020	3800	3820	11.500	4.950	5570
Oay of weak	29	1	20	18	8	9	5	31	1	3	30	4
Monthy total (milhon cu m)	1963	1633	1167	851	742	518	158	440	575	8.08	557	6.36
Runots (tmm)	55	46	33	24	21	15	21	12	16	23	16	18
Rainfall \{mm	123	44	65	38	44	31	103	54	43	73	20	15

Statistics of monthly data for provious record (Oct 1952 to Dec 1987)

Station and catchment description
Two Crump wairs (main 4.6 m , side 2.7 m wide) superseded original flume, plus side-spilling weir, in 1970 . Minor bypassing of the side weir in flood conditions: overflows more frequent pre-1970. Somo nei import of water - sewage effluent augments flows. Exact delineation of the hydrological catchment is difficult. Chalk in the hesdwaters. clay. sands and alluvium in the valley Substantial and expanding urban development in the catchment but large rural tracts remarn; significant areas of heath and woodland.

039020 Coln at Bibury

Gid reference 42 (SP) 122062 Level stn. (in OD). 10060

Catchment area (59 km) 1067
Daily mean gauged discharges (cubic metres per second)

day	JAN	feb	NAR	APA	MAV	UN	ル	AUS;	SEP	0 OT	Wov	DEC
1	1520	3660	2810	2320	1360	0918	0720	0655	0585	0521	062;	0721
2	1.760	3730	2750	2210	1.300	0879	0.717	0636	0661	0514	0621	0671
3	1980	3.900	2710	2.220	1300	0880	0710	0629	0640	0515	0619	0637
4	2.070	4.110	2630	2180	1.290	0869	0163	0629	0601	0517	0618	0649
5	2210	4150	2560	2130	1260	0838	0734	0625	0) 586	0522	0618	0736
6	2390	4150	2510	2090	1210	0833	0762	0625	0.569	0518	0619	0755
7	2470	4190	2440	2060	1210	0830	0766	0616	0565	0518	0617	0701
8	2570	4150	2380	2030	1190	0812	0139	0611	0.563	0509	0615	0704
9	2650	4110	2320	2000	1180	0826	0699	0615	0559	0515	0614	0714
10	2.690	3990	2270	1950	1150	0827	0688	0606	0558	0521	0607	0728
11	2650	3970	2220	1940	1.100	0815	0125	0609	0.557	0558	0602	0740
12	2640	3890	2190	1880	1150	080:	$074 i$	0618	0553	0567	0599	0747
13	2630	3790	2160	1860	1090	0797	0696	0636	0562	0651	0600	0.750
14	2570	3910	2150	1830	1060	0790	0711	0618	0571	0653	0.597	0748
15	2.490	3800	2300	1830	1.050	0779	0696	0613	0.555	0595	0592	0752
16	2430	3760	2300	1870	1050	0176	() 683	0599	0547	0582	0) 592	0735
$17 \cdot$	2390	3.790	2130	1150	1030	0780	0.692	05:6	0545	0578	0593	0732
18	2370	3780	2120	1760	1020	0181	0102	05:0	0.546	0593	0.585	0727
19	2.330	3740	2. 240	1710	1020	0771	0679	0522	0546	0647	0591	0720
20	2.270	3660	2.260	1670	1000	0742	0669	0541	0551	0644	0595	0.717
21	2270	3590	2200	1630	0996	0744	$066{ }^{\circ}$	0521	0544	0632	0603	0.729
22	2420	3490	2240	1610	0982	0735	0667	05:9	0540	0634	0587	0725
23	2550	3380	2. 310	1570	0958	() $7 \cdot 9$	0.688	05.0	0529	0633	0582	0) 706
24	2700	3290	2350	1560	0966	07:7	0705	05.0	0546	0624	0587	0.699
25	2860	3200	2440	1530	0953	0709	0682	05:0	0558	0629	0581	0690
26	2.970	3130	2420	1500	0.940	0715	0665	0505	0545	0629	0576	0.881
27	3100	3040	2390	1440	0935	0728	$066{ }^{\circ}$	0504	0540	0632	0574	0680
28	3320	2950	2410	1390	0912	0723	0653	0504	() 535	0645	0518	0669
29	3350	2860	2400	1350	0904	0719	0652	0507	0535	0634	0.579	0661
30	3330		2390	1360	0957	O 729	0654	0.508	0520	0640	0611	0655
31	3430		2360		0949		0658	0549		0625		0.649
Averege	2561	3695	2368	1810	1080	0786	0698	0570	0560	0587	0599	0707
Lowast	1520	2860	2120	1350	0904	0709	0652	0504	0520	0509	0574	0637
Highost	3430	419	2810	2320	1360	0918	0766	0655	$06{ }^{\circ}$	0657	0621	0755
Peak flow	3690	4320	2840	2.340	1380	1000	0857	0.749	0111	0730	0702	0827
Oay of peak Moniny intal	31	7	1	I	1	5	4	2	2	13	4	5
(mulion cu m)	686	926	634	469	289	204	187	153	145	157	155	189
Al,noid (mm)	64	81	59	44	27	19	18	14	14	15	- 5	i8
Painfall (mm)	142	64	81	34	55	27	110	68	47	66	30	24

Statistics of monthty data for previous record tOct 1963 to Oec 1987].

Station and catchment description
Crump weir (9.1 m broad) Modular throughout the range. Surne overspill onto floodplan before design capacity reachec Vory limited impact of artificial influences on river flows. Baseflow dominated flow regime Pervious (Oolitic liriestone) catchment on the dip-slope of the Cotswo'ds. predominantly rural.

Measuring muthority: NRA-S
Fust year: 1956
Daily mean gauged discharges (cubic metres per second)

Statistics of monthly data for previous record (Oct 1956 to Dec 1987 -incomplete or missing months total 15 years)

Station and catchment description
Crump weir plus a sharp-crested weir (top of a flood gate)-superseded an insensitive broad-crested weir Flows in oxcess of about 27 cumecs measured at a well calibrated river section 2 km d/s (East Farfeght) but updating of the primary racord is incomplete. Teston rating makes an allowance for lock spills. Some monthly naturalised flows available laccounting for the operation of Weir Wood res) A largely impervious (Hastings Beds) catchment: very responsive to rainfall. Mixed land use with significant areas of woodland and orchard

041016 Cuckmere at Cowbeech

Metasuring at First year 193	Nity NRA		Grid reference 51 (TQ) 611 • 50 Level stn (m OD) 2980							Catcnmer: area (sn km) 187 Max alt. (m OD) 183		
Daity mean gauged discharges (cubic metres per second)												
UAY	JAN	FEB	MAR	APA	MAY	Jun	Ju .	AJG	StP	OCT	NOV	08
1	0803	2432	0149	0306	0: 1	0070	0076	00.35	0225	0028	0056	0:60
2	0994	0857	0144	() 255	0.3:	0069) 064	0035	0125	0029	0056	():27
3	0420	0695	0171	02:8	0:24	0066	0089	0031	0068	0033	0054	0148
4	0457	0791	0162	0198	$0 \cdot 26$	0019	0079	0033	0052	. 0034	0053	0466
5	1411.	1227	0145	0186	0109	0068	. 01043	0035	0040	0061	0055	$023{ }^{\prime}$
6	0935	0764	0139	0.96	0106	0062	0038	0034	0039	0209	0053	0.50
7	0432	0169	0) 137	$0 \cdot 89$	0114	0056	0036	0026	0039	0064	0055	0. 19
8	0463	0699	0111	0178	0129	0041	(3)335	0033	0038	0096.	0062	0.15
9	0739	() 820	0123	0160	0104	0060	0031	0034	0037.	1.11	. 0064	0:02
10	- 344	0785	0126	0165	0102	$0(62$	0035	0035	0036	$0 \cdot 75$	0068	011 :
11	0715	0525	0122	0162	0106	0 O5\%	0036	0034	0036	0137	0069	0112
12	0470	0383	0121	0152	. 0115	0055	0034	0035	0037	0297	0082	0116
13	2855	0566	0) 118	0139	$\bigcirc 101$	0053	0039	0030	0039.	0338	0078	0113
14	0840	0440	0122	0138	0088	0052	0031	0033	0036	0141	0064	0114
15	0498	0362	0336	0159.	0084	0042	0037	0025	0033	0101	0039	0082
16	0425	0312	O 782.	0206	0081	0033	0040	0025	(0) 03.3	0086	0045	0078
17	0371	02.86	0180°	0167	0073	0033	0048	0026	0034	0083	0056	0082
18	0334	0251	0261	0166 .	0018	0040	0038	0040	0034	0080	005	0081
.. 13	0341	0249	0773	0222	0069	0042	0036	0067	0033	0011	0050	0090
20	0477	0230	19\%	0) 188	0073	0042	0036	0055	0033	0072	0073	0089
21	O) 990	0216	0621	0154	0063	0042	0) 0.37	0041	0036	0069	0081	$019.3{ }^{-}$
22	1395	0214	0349	0140	0010	0041	0045	0035	0035	0061	() 073	0088
23	1544	0207	0321	0121	0077	0040 .	$0 \cdot 0$	0035	0053	0 (6)	0071	0080
24	1953	0189	0439	0126	0074	0040	0046	0042	0037	0066	0066	0084
25	1563	0176	0546	0119	0068	0041	0041	0038	0041	0066 .	0066	0082
26	0755	0168	0294	0115	0076	0041	0038	0036	0039	0067	0064	0084
21	4574.	0166	0232	0165	0070	0041	0044	0037.	0046	0057	0064	0093
28	1907	0165	0230	0132	0072	0041	0039	0039	0048	0055	0068	() 094
29	2888.	0162	0767	0128	0086	0042	0037	0035	0)0.39	0055	0248	0094
30	. 0726		$\bullet 333$.	0123	0078	0040	0035	. 0000	0036	0056.	0353	0069
$3!$	1687 .		0406		0080		() 035	0041		0056		$\bigcirc 069$
Average	1139	0521	0363	0169	- 0093	0050	0046	0036	0049	0:27	0079	$0^{0} 17$
Lowes:	0334	0162	0111	0115	0063	0033	0031	0025	0033	0028	0045	0069
Hghest	4574.	2432	1970	. 0306	017	0079	0110	0067	0225	$1 \cdot 17$	0353.	0466
Peak flow	13646	3153	7526	0337	0215	0103	0227	0096	0398	$3: 89$	0571	0141
Diay of pedk Monthly :otal	21	1	20	1	1	4	23	:9.	1	9	29	4
(milion ct m)	305	: 31	097	044	025	$0 \cdot 3$	012	010	013	0.34	020	031
Hunof (mm)	163	10	52	23	13	7	7	5	7	18	11	1)
Rasitall (mm)	- 208	58	104	36	44	17	88	54	63	98	40	74

Statistics of monthly data for previous record (Jan 1968 to Dec 1987 —incomplete or missing months total 0.2 years) ,

Station and catchment description

Asymmetrical compound Crump weir (crests 213 m and 297 m broad) with crest tapping - not currently used Structure capacity exceeded in large floods Early data (1939-67) is of poorer quality and relates to low flows only Catchment is substantrally natural but flows are diminished by water supply offtake upstroarn of the gauging station A rural catchment developed on mixed geology (Hastings Beds predorninate)

042010 Itchen at Highbridge + Allbrook

Grod reference: 41 (SUS 467213
Loved stn. (m OO). 17.10
Daity mean gauged discharges (cubic metoes per stocond)

oay	JAN	FEB	MAA	APPA	may	90	12	AUG	SrP	OCT	NOV	$0 \in C$
1	5.712	9.521	9.047	7.413	6826	5.127	4425	3.721	5226	3065	3.776	3.701
2	6035	9010	8.931	7455	6608	5031	4.265	3.731	4.338	3101	3.755	3.611
3	5.782	9142	8.935	7379	6.570	5023	4600	3694	3849	3123	3.709	3691
4	5.918	9856	8824	7.307	6447	5081	4536	3612	3651	3158	3.740	4036
5	6329	9.574	8666	7.098	6334	4915	4261	3593	3432	3283	3691	3941
6	6.017	9.251	8.543	7064	6.152	4879	4429	3480	3480	3.571	3.653	3.726
7	5.779	9.388	8337	7.042	6052	4791	4.348	3369	3285	3.477	3694	3731
8	5.742	9226	8190	6.977	5.911	4.671	4.134	3351	3212	3.435	3511	3.705
9	5826	9979	8153	7.166	5821	4.721	4018	3389	3250	4955	3.621	3.617
10	5.844	9.886	0.072	7017	5.800	4668	4.153	3347	3.242	4.210	3830	3596
11	5.793	9766	7.987	6.755	5.740	4.647	4215	3.392	3.278	3.995	3920	3.635
12	5.923	9.514	7.921	6761	5.116	4570	4059	3448	3316	4.113	3.854	3.597
13	6549	10025	1878	6869	5604	4445	4.158	3415	3354	3898	3888	3603
14	6217	10012	7.903	6847	5.529	4181	4122	3429	3.282	3740	3888	3584
15	6.027	9739	8219	6960	5485	4.146	3897	3357	3227.	3.623	3.902	3576
16	5887	9660	7.991	7.358	5.323	4209	3967	3292	3.199	3551	3.531	3600
17	5.869	9.503	7.910	1025	5285	4082	4047	3232	3187	3574	3439	3587
18	5893	9331	8068	7.123	5404	4128	3962	3484	3137	3649	3463	3.555
19	5894	9384	8067	7.145	5319	4025	3808	3572	3122	4146	3.436	3.655
20	6.344	9.436	8766	6999	5241	4019	3833	3418	3032	3.893	3.711	3552
21	6319	9412	8775	6816	5318	3.966	3.977	3409	3102	3.712	3.738	3534
22	6.941	9.326	8.045	6710	5083	3893	4.138	3491	3144	3.701	3561	3527
23	6.890	9.267	7.990	6629	4985	3815	4354	3546	3315	3664	3516	3534
24	7200	9255	7826	6514	5081	3790	4191	3474	31/9	3.740	3502	3500
25	7.740	9414	7694	6388	5083	3.724	4048	3397	3.184	3806	3455	3.510
26	7.278	9358	7545	6439	5100	3910	3997	3450	3161	3.710	3417	3.567
27	7189	9.268	1.521	6377	5064	4146	3919	3363	3394	3726	3428	3.632
28	7967	9.152	7.564	6318	5.165	4304	3.939	3244	3660	3722	3.431	3.548
29	8.929	9095	7602	6385	5423	4229	3331	3299	3332	3.786	3632	3463
30	8167		7882	6541	5301	4421	3840	3337	3212	3154	4002	3458
31	8360		7642		5289		3.763	3808		3780		3446
Average	6530	9.474	8145	6898	5617	4385	4108	3456	3393	3699	3.659	3613
Lowest	5742	9010	1521	6318	4985	3724	3763	3232	3032	3065	3417	3446
Highes:	8929	10025	9047	7473	682.6	5.127	4600	3808	5226	4955	4002	4036
Peak flow Day of peak Monithy total (milion cu m)	1749	23.74	2182	1/88	1504	1137	1100	926	879	991	348 .	968
Runaif (trum)	49	66	61	50	42	32	3.	26	24	28	26	27.
Rainfall (mm)	152	59	76	46	38	25	96	66	46	96	28	19

Statistics of monthly data for previous record (Oct 1958 to Dec 1987

Mean	Avg	6632	7183	6998	6541	5769	4.893	4. 163	3862	3718	4150	4885	5.773
tows.	Low	4208	4.163	3644	3203	3093	2581	2474	2331	2670	2702.	2840	3136
	(year)	1976	1964	1976	1976	1976	1976	1976	1976	1973	1959	1973	1973
	Higt)	10520	10850	9923	8521	7311	6.549	5219	¢ 244	5127	7.867	9858	10.860
	(yesr)	1969	1969	1977	1969	1966	1979	1979	1979	1968	1960	1960	1960
Punot!	Avg	49	49	52	47	43	35	31	29	21	31	35	43
	Low	31	29	27	23	23	19	18	17	19	20	20	23
	H2.gh	78	73	74	6 i	54	47	39	39	37	59	71	81
Runfall.	Avg	89	52	82	47	70	61	56	59	78	83	85	89
(1971.	Low	12	12	24	2	19	10	22	18	19	30	31	25
1987)	High	159	137	172	97	131	113	87	120	195	206	197	153

Summary statistics

					$\begin{gathered} 1988 \\ \text { As \% of } \\ \text { pra }-1988 \\ 97 \end{gathered}$
	For 1988		For record preceding 1988		
Mean flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	5.232		5371		
Lowest yearly maan			3708	1973	
Hinghest yearly mean			6594	1960	
Lownst montity mean	3393	Sop	2.331	Aus 1976	
Highest monthly mean	9.474	Fab	10860	Dec 1960	
Lowest daly mean	3032	20 Sep	2167	24 Aug 1976	
Heghest daly mean	10025	13 Fob	12.800	29 Jan 1969	
Paek					
10\% oxceedance	8623		7.735		111
50\% exceedance	4183		4981		84
95\% oxceedance	3244		3106		104
Anmual total (milmon cu m)	165.40		16950		98
Ansuas runoff (mm)	460		471		98
Annuat rainfall (mm)	747		851		88
[1941-70 tainfall avorage (mm)			8731		

Factors affecting klow regime

- Flow influenced by groundwater abstracion and/or recharge
- Abstraction lor public water supplies
- Augmentation from surface water and/or groundwater.

Station and catchment description
Crump weir (7.75 m broad) installed in 1971 (superseded a rated section with weedgrowth problems) plus thin-plate weir (Altbrook). Loca bypassing ai Albrook during exceptional flows. Flow augmentation from Gw during droughts. Gw catchment $>$ topographical catchment Artificial influonces have minor, but increasing. impact on the beseflow dominated regime; small net export of water. Very perineable catchmen (90% Chalk). Land use is mainly arable with scattered urban settements.

Measuring authority. NRA.W
Firsi year: 1965

Gird reference: 41 (SU) 151413 Level sin (m OD): 67.10

Catchment area (sq kra) 3237 Max alt (m OD) 294

Daily mean gauged discharges (cubic motres per second\}

Jay	JAN	feg	MAR		- mar	UN	JJl	AUS	SEP	OC'	NOV	JEC
1	3486	10903	6.889	5154	4081	2796	2074	: $59{ }^{\circ}$	1873	1488	2092	3058
2	3636	1:015	6674	5.142	4255	2.750	1965	1580	2261	145.	2036	2727
3	4467	10915	6682	5030	430 i	2715	2045	1527	1940	1414	2031	2.686
4	4259	11.922	6.575	4984	4202	2959	2120	1530	1676	1.402	2055	2914
5	4388	11831	6389	4345	4022	3013	-2064	1525	1.562	1439	2059	3016
6	5309	10806	6231	4911	3742	2759	2015	1512	1.512	1537	2076	2.826
7	4759	- 0589	6.082	4906	3674	2507	1973	1478	1525	1754	2082	2680
8	4367	:1320	5355	4861	3647	2440	1897	1.449	1.488	- 820	2113	2601
9	4391	i1 472	5874	4844	3551.	2441	1873	1395	1427	2435	2144	2583
10	4.398	11447	5789	4801	3466	2439	1931	1402	1.427	2874	2154	2550
11	4332	11117	5663	4757	3369	2.381	1.994	1427	1427	2479	2101	2551
12	4264	10124	5611	4685	3363	2320	: 924	1455	1427	2659	2187	2528
13	4417	10)234	5612	4635	3246	2.264	- 909	: 480	1439	3455	2164	2. $502{ }^{\circ}$
14	4371	10845	5752	4593	$3!39$	220%	- 920	- 402	1427	2689	2130	2515
15	4201	9972	6094	4618	3049	2.167	-842	- 355	1414	2362	2134	2503
16	4108	9202	6173	4698	3066	2138	1828	1387	1414	2175	2131	2.445
17	4074	8603	5.772	4651	2.975	2.139	1816	1366	. 1414	2022	2. 156	2464
18	4071	8352	607%	4512	2906	2097	1.781	1498	1402	2479	2.140	2472
19	4103	8192	6.568	4551	2903	2061	1680	1642	1360	4335	2129	2476
2.)	4108	8 O5 1	6686	4388	2838	2002	1640	1565	1.378	3466	2245	2436
21	4.150	8092	7088	4223	2817	2017	1.677	1489	1.378	2768	2. 2.84	2436
22	5020	8107	6.355	4164	2806	2011	1732	1475	1390	2541	2221	2440
23	5098	1908	6312	4083	2806	1887	1817	1447	1.414	2426	2193	2.449
24	5913	7680	6128	4050	2796	1925	1847	1447	1427	2363	$21 / 8$	2443
25	6767	7461	6138	3981	2825	1891	1788	1459	1402	2235	2160	2420
26	6561	7300	5920	3853	2833	1906	1733	1454	1421	2245	$21 / 2$	2433
27	5934	7236	5615	3860	2801	1984	1702	1448	1463	2271	2.167	2467
28	6486	7154	5525	3854	2183	1985	1674	1494	1.512	2234	2185	2441
29	8553	6992	5.534	3892	2774	1.961	1664	1652	1.525	2170	2346	2421
30	8788		5461	3930	2831	1877	1638	2137	1.517	2155	3095	2424
31	7847		5280		2833		1613	2183		2081		2415
Avarage	5052	9477	6081	4519	3249	2268	1844	1573	1508	22.98	2179	2559
Lowest	3486	6992	5280	3853	2774	1877	16.3	1365	1366	1402	$203{ }^{\circ}$	2415.
Highast	$8 / 88$	11922	7.088	5154	430 i	3.013	$2 \cdot 20$	2 ;83	2261	4335	3095	3058
Peak flow	10387	12601	7325	5184	4360	3.111	2289 ,	2921		4488	3356	3306
Day of poak	30	4	21	1	3	4	1	30		19	30	1
Monitry tolal (millon cu m)	1353	2375	1629	1171	870	588	494	408	$39:$	615	565	685
Rurkuff (mm)	42	73	50	36	27	: 8	15	13	12	19	17	21
Rasafat (mm)	129	56	70	27	39	45	9 i	75	41	. 103	34	17

Statistics of monthly data for previous record ifeb 1985 to Dec 1987)

Station and catchment description
Compound siructure: Crump crest $(9.14 \mathrm{~m}$ broad) flankod by broad-crested weirs. Small bypass channel approx. 2 m upstream of weir - included in rating. Fult rantie station Bankfull $\cdot 1.37 \mathrm{~m}$ During the summer frows aro naturally augmented from groundwater draining from the northern half of the River Bourne catchment Toporgraphical and groundwater catchments do not coincide. Predominantly permeable (Chalk) catchment with a small inlier of Upper Greensand and Gault Land use - rural

Measuring au:hority: NRA-SW First year: 1956

Grid reference. 21 (SS) 936016 tevel stn. (m OD). 25.90

Catchment ares (sa k(n), 600.9
Max ath. (m OO): 519

Daily mean gauged discharges (cubic mazes per second)

day	JAN	res	MAR	APR	MAY	UN	er	AUG	SEP	OCT	NOV	$0 \in C$
1	46.266	74086	6.984	16134	5.957	5968	4294	5884	63.556	22482	7.000	13.791
2	80.949	65952	6510	21367	10238	6210	5149	5.365	73.731	17.926	6686	12249
3	58934	61.469	7.496	16266	13.139	6945	8904	4.972	46574	14.896	6458	14.891
4	47.817	66043	6.611	14841	11.647	7704	14676	4.780	32.126	13601	6. 107	47.545
5	40849	58508	6045	13447	9068	6362	11.094	4638	23478	20.180	5.767	34787
6	52.833	46509	5994	12464	8181	6.189	12062	4.322	18285	78.573	5.572	28267
7	40465	45998	6537	11.507	7.835	6254	9616	4042	14765	56.621	5405	23344
8	39.962	51994	5815	10587	7.420	5793	8966	3834	12487	60.093	5.259	20.509
9	37.933	54431	5568	9803	6865	6116	8110	3800	10633	108871	5313	17685
10	33.183	52917	5.532	9049	6350	5611	23550	3.598	9281	59.923	5157	15261
11	30.977	45441	5239	8443	6.171	5060	18997	3809	8.282	53.767	5.204	13433
12	31325	37.586	5055	7.887	6001	4597	1634 !	4.383	7502	42.769	4691	11.985
13	31516	44611	5045	7244	5680	4309	25895	3886	7149	33671	4782	10758
14	28.401	40122	6.550	7047	5.271	4073	18658	4900	6325	27352	4298	9902
15	23725	35606	14831	1459	5014	3848	15773	4384	5704	22.253	4186	9.173
16	20771	30795	16096	10489	4.569	3681	14186	3622	5340	19033	4107	8.579
17	18485	25.871	24931	8835	4.318	3614	13348	3275	5000	16527	4281	7869
18	17.173	21.120	50405	8357	4234	3614	10821	6565	4782	16.907	6364	7610
19	15411	18420	44234	7507	4438	3480	9485	6. 195	4499	15.076	4851	7.967
20	14399	15958	54.167	6806	4026	3.343	8477	12.780	4270	12.305	4.960	7405
21	17.235	14104	43479	6389	3847	3089	8259	7833	4077	11093	4587	7142
22	27044	12576	37.449	6068	3661	3142	11089	6892	4354	11250	4301	6639
23	57221	11347	56016	5771	3584	3112	12386	6549	5380	10976	4320	7338
24	72.937	10236	46.086	5529	3755	2.999	9403	6746	8054	11.132	4233	6666
25	64040	9296	44521.	5316	3958	2956	8.975	6058	13153	10516	4172	6483
26	47328	8481	36403	3.136	5131	6453	8356	6.838	34701	9.998	4144	6482
27	47894	8026	30713	5071	3969	4710	7.583	8.962	36580	9555	4063	6625
28	59934	7528	27.713	4847	5.610	3633	7401	12155	34168	8813	4255	6277
29	73962	7:35	24.643	b 038	7610	3257	7032	10788	37373	8108	1306%	6061
30	62390		21711	5125	6384	3162	6664	11661	28711	7684	23552	5938
31	75117		17885		8056		8487	30:79		7.374		5803
Avorape	42470	33890	21810	8994	6195	4643	11360	6893	19010	26430	5905	12120
Lowest	14399	7.135	5045	4847	3.584	2956	4294	3275	4017	7374	4063	5803
Hinghest	80949	74086	56016	21361	13139	1704	25835	30179	73731	108871	23552	47.545
Peak flow	130263	104089	84270	26634	15090	9368	50053	55.244	93933	160905	42421	77740
Day of peak	31	1	23	7	3	4	10	3 .	2	9	- 29	4
Monthly total (mulion cu m)	11370	8491	5843	2331	1659	$: 203$	3042	1846	4928	7079	15.31	3408
Rumoff (mm)	189	141	97	39	28	20	51	31	82	118	25	57
Rainfall (mm)	231	107	148	45	93	58	148	131	114	140	51	57

Statistics of monthly data for previous record (Mey 1956 to Dec 1987)

Station and catchment description
Velocity-area station with cableway. Flat V Crump weir constructed in 1973 due to unstable bed condition Minor culvert flow through mill u/s of station included in rating. Significant abstractions for PWS. Control point for Wimbleball Reservoir operathonal releases. Headwaters drain Exmoor Geology predominanily Devonian sandstones and Carboniferous Culm Measures. with subordinate Permian sandstones in the easi Moorland, forestry and a range of agriculture.

Messuring authority: NRA-SW Fusi year. 1956

Gard reference $20(S X) 426725$ Level sin. (m OD): 820

Catchment area (sq km) 9169 Max att (m OD). 586

Daily mean gauged discharges (cubic metes per eocond)

DAY	JAN	FES	MAR	APA	MAY	NiN	Jul	AUG	SEP	OCT	Nov	CEC
1	74.185	113636	10340	22346	8736	4876	3121	8.542	107174	13516	10651	27.904
2	115083	83775	9260	67358	13503	4.732	3679	7743	45.217	11933	10118	19359
3	69.513	75343	11000	29713	12647	5062	4992	7033	33091	$10 / 81$	9575	23718
4	59.396	86975	10346	25165	- 12752	4919	6814	6589	24388	10950	9141	97046
5	57296	71196	9523	21601	9051	4517	8922	6206	19851	21625	8754	110.273
6	76580	63289	8860	+19.123	8038	4062	10640	5784	16880	149339	8385	64761
7	45.552	51707	8338	17233	8000	4420	6142	5.431	14689	71411	8.101	40402
8	47.778	59921	7890	15514	8312	4467	5.621	5.186	13096	85459	8284	32648
9	56038	62.525	7687	14.114	7278	4210	5020	5051	11780	232962	8956	27.913
10	46483	71804	7802	12887	6878	4052	16028	4.946	10584	80206	8395	23.565
11	46.387	52863	7203	- 2027	6699	3786	15294	5074	9796	116080	8120	20.303
12	62153	42560	7023	11233	6.647	3469	9736	5836	9067	69238	7592	180.0
13	62.285	122295	6868	10228	6339	3287	13819	5139	8619	48395	7129	16.211
14	50674	76874	6958	9903	5943	3187	11980	5668	7894	36373	6.818	14986
15	49312	53019	25854	10668	5731	3024	8977	5.380	7155	29371	6694	14016
16	35061	40370	22549	19428	5421	2952	7984	4466	6800	24341	6642	13897
17	30304	32820	60654	13447	5132	2881	8692	4136	6504	2. 801	6829	$13 \cdot 85$
18	26986	27791	159058	14008	$500:$	277	7562	10026	6166	19158	7124	12042
19	24479	23939	77586	12508	5046	2694	6418	10226	5.903	17957	6699	12590
20	24.991	21001	98350	11411	4.765	2.612	5888	16.455	5728	15313	7.553	13695
21	28.275	18725	58.31 :	10337	4544	2560	8019	10118	5603	14469	7313	14.024
22	39537	16988	41982	9628	4345	2492	1.799.	$8 \cdot 87$	6863	15089	$64 \% 0$	12029
23	- 67044	15624	36520	8939	4347	2.348	22.446	7956	7436	15260	6.278	12.508
24	100451	14461	33629	B511	4500	2280	15008	8464	. 6078	15416	6301	11470
25	116.501	13233	45638	8172	4580	2251	11.993	8111	7451	14250	6.198	10914
26	77.742	12026	29161	7832	4460	2827	10131	12.174	20285	13817	6057	10744
27	69897	11384	24849	7641	4499	3022	10370	17087	39149	15880	5850	11261
28	82875	10798	24480	7423	6384	2714	- 1688	27.514	27662	13943	5993	10333
29	132721	10374	32005	7.763	9407	2499	10603	17559	22140	12317	41585	9730
30	87.550		25749	7951	6929	2471	9445	18201	16341	1:610	55.985	9366
31	119592		22881		5626		8855	59.573		11147		9029
Avarage	63.960	46800	30270	15140	6843	3380	9642	10640	17650	40030	10340	23.800
l.owest	24479	10374	6868	7423	4345	2251	3121	4136	5.603	$1078{ }^{\circ}$	5850	9029
H.ghest	132721	122295	159058	67358	-13503	5062	22446	$59573-$	107174	232962	55.985	1.0273
Pask flow	228943	-214316	193759	125134	17467	5323	35487	144579	177596	319502	105104	155281
Day of peak	31	1	18	2	4	3	10	31	1	9	29	5
Monthly total (million cu m)	17130	$\cdot 11730$	8108	3924	1833	876	2582	2850	45.74	10720	2679	6376
Ruา0't (mT)	. 187	128.	88	43	20	10	28	31	- 50	111	29	70
Reinfall (mm)	227	106	840	58	73	41	- 57	:38	76	. 156	57	70

Statistics of monihly data for previous record (Jul 1956 to Dec 1987

Mean	Avg	45.360	35610	25640	16870	11710	7016	6045	8698	. 11930	22480	35300	45660
fkws	Low	8475	9162	1:250	6422	3487	1994	: 82	0758	1117	1540	4212	'8340
	(yed)	1964	1965	: 961	'974	1976	1976	- 976	1976	1959	1978	1978	1963
	High	89410	84270	65520	35200	32370	20630	- 28770	42100	59840	65080	78760	9:690
	(year)	1974	1974	1981	1985	1983	1972	1968	1958	1974	1981	1959	1959
Punoft:	Avg	133	95	75	48	34	20	18	25	34	66	100	133
	Low	25	24	33	18	10	6	3	2	3	5	12	54
	High	261	222	19:	100	95	58	84	123	169	190	223	268
Rasinfall	Avg	142	95	99	68	75	72	81	94	104	123	139	147
	Low	23	3	14	7	25	11	13	18	10	12.	58	41
	Hight	301	206	219	151	149	167	160	179	251	258	274	266

Factors affocting flow regime

- Reservoir(s) in catchmen
- Flow influenced by groundwater absiraction and/or recharge
- Abstraction for public water supplies
- Fiow reduced by industrial and/or
agricultural abstractions.
- Augmentation from surface water and/or groundwater.
- Augmentation from effluent returns

Station and catchment description
Velocity-area station, wide, shallow channel. Cableway span 469 m . Low flows measured at another, narrower. site High flow gaugings difficult owing to standing waves Moderate influence from PWS and diversions Rural catchment of moderate reliét draining very disturbed lower Carboniferous slates. shales. grits and volcanics. Significant alluvial flats in middle reaches. Devonian slates low down. Fairly responsive A range of agriculture. grazing and forestry as land use

050001 Taw at Umberleigh

Measuring authonty. NRA.SW First year. 1958

Grid reterence: 21 (SS) 608237 level sin (m OD). 14.10

Caichment area isq kmy 8262 Max alt. (m OD). 604

Statistics of monthly data for previous record (Oct 1958 to Dec 1987)

Natan	Avg	35650	. 27830	20560	14590	960 i	5358	4547	5966	1875	19190	29330	36850
flows	Low	6651	. 3245	7449	3888	2073	- 329	0793	0423	0859	1043	3654.	i3200
	(year)	1963	1959	1984	:974	1976	1984	1984	1976	1959	- 978	$1918{ }^{\circ}$	1963
	Hgh	62100	54760	52. 140	32800	37000	16630	23390	19130	47670	77360	58500	73670
	(year)	1984	1970	1981	i966	1983	19/2	1968	1985	$19 / 4$	- 360	1963	1965
Rursit	Avg	- 16	82	67	46	31	17	15	19	24	62	92	119
	l.ow	22	10	24	: 7	7	4	3	1.	3	3	11	43
	Hgh	2.01	160	169	103	120	52	16	62	150	251	184	239
Ranfali	Avg.	- 79	84	91	71	73	68	$1:$	87	92	- ${ }^{6}$	130	139
	Low	28	3	18	8	28	10	23	24	14	14	56	4.
	Hogl:	242	1/3	183	145	i46	'64	157	160	241	218	239	27°

Station and catchment description

Velocity-area station, main channet 34 m wide, cab'eway span $54 \cdot 9 \mathrm{~m}$. Rock step d / s forms the control. Bypassing begins at about 3 mm on the rb. but d good rating accommodates this. Significant modification to flows owing to PWS absiraction Some naturalised flow cata available. Large rural catchment - drains both Dartmoor (granite) to the south and Devonan shales and sandstones of Exmoor to the north Central area is underlain mainly by Culm shales and sandstones (Carboniferous) Agriculture is conditioned by the grade 3 and 4 soils

052005 Tone at Bishops Hull

1988

Measuring authorily NRA.W
first year: 1961

Gris re'erence 31 \{ST\} 206250
levelsti (m OD). 1620

Catchment area (sq km) 202.0

Daily mean gauged discharges (cubic motres per second)

Day	JAN	FEB	NAA	$A P R$	MAY	Jun	-ル	A.(;	Sip	OS:	Nov	re
1	4963	26290	2523	3700	2018	1249	- 393	1167	6313	: 661	1724	1785
2	6947	15253	2359	3628	2556	1216	- 237	1162	4297	-618	1688	1630
3	5872°	12691	$23 / 5$	3225	2762	1229	2138	1043	3061	- 549	1666	2216
4	6032	15589	7296	30.31	2278	1307	:7'6	1033	2511	- 61.3	1657	4730
5	6646	1. 53	224.	2146	: 792	$1 \cdot 63$	$1 / 56$	1146	2202	18/4	1616	3585
6	9363	9250	2154	2678	1666	1048	2331	1 (1)3	1960	4634	- 592	2896.
7	6453	-10496	2142	2609	1675	1090	1658	1027	1847	3645	- 576	2565
8	6223	16935	2048	2510	1616	1101	1312	0893	1727	3846	- 644	2492
9	5723	13326	2018	2439	1550	1205	1246	0902	1638	14545	: 644	2364
10	- 5262	150124	-918	2325	1520	1168	2452	0861	1562	5126	1527	2228
11	5062	10497	:906	2216	1505	1122	1963	0894	1475	1121	1502	2127
12	5258	8289	1818	2197	1505	104°	1530	0992	1404	5801	1433	2011
13	5958	11824	1816	2!03	1485	1030	3056	0308	1418	4332	1394	1915
14	5507	. 10156	i 885	2083	1438	090	2. 230	: 099	1335	3707	1382	1868
15	4683	H 344	2948	$2 \cdot 08$	$\cdot 1386$	0325	1828	0918	1241	3234	1375	1769
16	4292	7180	2555	2372	1301	. 0921	$1 / 42$	0875	1221	2961	1369	1704
17	4055	6292	4292	2:66	1331	0)921	1650	0870	12.2	7762	1419	1633
18	3151	5648	10072	2338	1309	0891	151.	1367	1183	$31 / 8$	1632	1610
19	3438	4922	6 59.92	2:15	: 504	0 ¢ 84	1420	1209	1161	3291	1423	1588
20	3275	4210	11986	2063	- 364	0855	- 365	1.95	1167	2554	1442	1505
71	3703	3936	710	1864	- 304	0835	- 432	1002	- 167	2358	1346	1573
22	5083	3548	5108	1761	- 258	0826	- 659	0916	- 186	2211	1308	1532
23	7790	3443	$74: 8$	1691	- $194{ }^{\circ}$	0767	-761	0908	- 356	2247	1324	; 633
24	9890	3172	7325.	1686	194	0703	- 460	0933	- 252	2 26	1312	: 523
25	: 1388	2919	1810	1623	- 223	0183	- 320	0881	- 404	$2 \cdot 13$	1300	- 496
26	8346	2832	6327	1625	i 432	2933	1670	0946	- 598	2:13	1282	- 508
21	- 1240	2697	5401	16.3	1245	$13 / 5$	- 432	0911	- 893	2025	1262	- 462
28	:6358	$2.598{ }^{\circ}$	5.106	1565	1646	1:34	1332	1363	2151	1916	1295	: 401
29	23830	2514	¢ 116	165%	1300	1140	1281	1054	2095	- 812	1863	: 380
30	\cdots ¢08		4728	1854	1462	1105	12.6	1025	: 741	1767	$272{ }^{\circ}$	1306
$3 i$	24671		4085		1335		1167	1306		1736		- 214
Average	7899	8658	4329	2757	1572	1095	1656	1032	1859	3282.	- 524	1948
Lowest	3275	2514	1816	1.565	$1 \cdot 94$	0703	1161	0861	1167	1549	- 262	1274
Higharst	24671	26290	11986	3700	2742	29.33	3056	1367	6313	14545	2.72,	4730
Datak flow	67546	66513	22154	$316:$	3151	441°	4658	2724	- 219°	297104	4007	6997
Day of pujk Mon:Fly total	31	1	20	2	7	26	13	31	1	9	29	4
(n on cum	2116	2•69	- 160	585	421	284	443	276	482	879	395	522
HLnoff (mr)	105	101	57	29	21	14	22	14	24	44	20)	26
Rusirisll (mm)	172	92	108	31	68	59	119	89	66	99	31	34

Statistics of monthly data for previous record (feo 1961 to Dec 1987

Mean	Avg	6087	5940	4356	3089	2157	- 422.	1179	0961	. 209	2042	3401	5-68
fows	Low	1246	$1 / 46$	1552	: 16	0134	0456	0326	0266	0501	0580	0651	1871
	(yays)	- 976	1965	-962	1976	1976	- 1976	1976	-976	1964	1978	1978	19\%
	$\mathrm{H}_{3} \mathrm{P}$	14560	- 4000	9259	6655	6562.	2770	5628	- 685	4892	9873	16:1	-1280
	(year)	$\cdot 984$	1918.	1981	1960	1983	$19 / 2$	1368	:965	1974	1976	1982	1965
Runoff	Avg	81	72	58	40	29	18	16	13	16	27	44	69
	Low	: 1	21	21	is	10	6	4	4	6	8	8	24
	High	193	i68	123	85	81	36	15	22	63	$\cdot 31$	98	150
Ras.niall	Avg	- 112	19	85	62	68	59	47	10	81	92	99	- 14
	Low	25	6	5	6	25	B	16	19	8	8	4	60
	High	250	-170	- 170	150)	137	147	144	126	202	249	192	205

Factors affecting flow regime

- Reservoir(s) in catehment

Summary statistics					
	Fcr 1988		for teco ${ }^{\circ}$ pracen..19:988		$\begin{gathered} 1988 \\ \text { As \% of } \\ \text { itt } 1988 \end{gathered}$
Maar. flow [m³ $^{-1}$ - $]$	3077		307		- 00
Lowest yeatly mean			1600	1964	
Highest yearly mean			4084	1974	
Lowes: rronth y mean	1032	Aug	0266	AL@ $19 / 6$	
shighes: month y mean	8658	Feb	14560	Jan 1984	
towus: cialy mean	0703	24 Jun	0:79	22 Auç 1976	
Highes: do.ly mean	26290	1 FeO	84200	23 Fab 1978	
Pank	67546	31 Jan	112730	1: Ju 1968	
10\% exceecance	6639		6631		100
50\% exceecance	1741		1817		96
95\% exienciance	09.0		0645		$14 i$
Annual to:al (milon cu m)	9730		96.1		100
Anmial runoff (trm)	482		480		100
Annsal rarnall (mm)	968		918		99

Highest yeatly mean
Highes: month y mean
towus: cialy mean
Patk
50\% exceecance
95\% exienciance
Anmal runoff (rim)
Annial raיndall (mn)
(1941.70 is.ntal average (mm)

Station and catchment description
Crump weir (breadth 122 m) with crest tapping (not operational) Full range siation Pre-March 1968. velocity-area slation. flows inaccurate below 142 cumecs Clatworthy and smaller Luxhay Reservois in headwaters Compensation flow maintans low flows Reservoirs not large enough to influence farly rapid response to rainfall - Minor surface water and groundwater abstractions Catchment geology - predominantly sandstones and marls. Land usat fural

Grid reference: $31(\mathrm{~S} \mid) 786671$ Level sin (m OD): 18.00

Catchment area (sq kmi: 15520 Max alt. (m OO): 305

Daily mean gauged discharges (cutbic metres per seconol)

day	JAN	FEB	MAA	APR	may	un	18	AUG	SEP	OCT	Nov	OEC
1	29.144	110253	14.082	16062	10.139	6.023	4.776	4456	28342	10.957	10525	21590
2	51.725	126471	13.678	15009	9885	5457	5.171	4312	32018	9636	10313	16.160
3	61505	84.100	14173	14117	9370	6.973	7069	4007	18.594	8829	9887	18.197
4	53220	96079	13809	13918	9.271	9.129	8.778	3806	13013	8848	9366	36442
5	47.899	71.132	12.583	13085	8.545	7.062	6626	3637	11063	11.111	9.163	21.716
6	63052	49092	12.597	12428	7458	5435	11438	3451	8907	29636	9.048	19692
7	41.804	43659	12195	12049	7061	4972	10083	2445	8495	28637	8.921	16599
8	33.268	51.788	11864	11.855	6.932	4841	8001	2213	7.582	20190	9092	15.306
9	33690	59.027	11.611	11.505	6525	6680	6503	2057	6974	70115	8.665	14243
10	32.541	50055	11430	11.182	6363	6002	7.674	2668	6796	40.227	8437	13.175
11	28288	45429	11102	10853	6190	4311	10237	3001	6.584	29355	8130	12.279
12	27066	35278	10029	10438	5900	4650	7918	3069	6351	42.306	8164	11972
13	37.234	41.529	10267	9935	5881	3957	10259	3.141	6221	39575	7897	11.306
14	31.177	59008	10882	9891	5392	3.111	9913	3426	5.788	25480	7.724	10.981
15	26.504	39043	18.774	10026	5389	3014	7066	3880	5572	20479	7.518	10337
16	23751	32171	21149	14201	5171	3445	6278	2.959	5.164	18135	1380	10408
17	21.676	28714	16436	11824	5012	3964	6780	2545	4792	16396	7598	9779
18	20705	26.008	31006	11763	5194	3819	6815	3.271	4616	31.733	8.017	9581
19	19687	23806	38658	11397	5091	3111	5623	4484	4657	53.714	7359	9846
20	18656	22246	43.577	10594	4779	3.680	¢ 160	9024	4494	29.553	10170	9130
2 i	18130	20907	49620	10377	4328	3558	5139	5853	4360	22290	9712	8835
22	47036	19.861	30266	9496	4252	3717	6314	4525	4.909	19257	8775	8865
23	53337	18799	29872	3089	4575	3.296	9022	3560	6653	17479	8265	8821
24	75390	17956	27889	8990	4393	3150	9389	3624	5.781	15882	8033	8402
25	81099	16843	36725	8770	4895	3182	7552	3514	7836	15564	7.823	7.970
26	53074	$1600{ }^{\text {i }}$	27126	8460	6154	4263	7298	3148	6988	14.997	7540	1975
27	38.930	15646	21927	8480	5075	3992	6989	3.248	11748	14061	7472	1.757
28	52.356	15.157	20180	8190	5039	3745	5.719	4.068	20387	12781	7364	7.620
29	74.766	14458	19416	8350	6310	4137	6030	3733	20.356	11879	13.778	7279
30	55.582		19.779	7792	7045	4355	513.3	3493	13315	11.157	39.997	7232
31	$5090:$		17475		6856		4767	4858		10.964		6.952
Avarage	42040	43120	20650	11000	6293	4608	7279	3125	9.945	22940	9738	12.660
Lowest	18.130	14458	10029	7.792	4252	3014	4767	2057	4360	8.829	7.359	6952
Heghes:	81099	128471	49620	16062	10139	9129	11438	9024	32018	10115	39.997	36442
Puak flow	110.909	137251	61293	17081	10982	10051	13860	10607	41635	87097	47898	42188
Day of peak	31	2	21	16	1	4	6	20	1	9	30	4
Monthly total (manon cu m)	112.60	10800	55.31	2852	16.85	11.94	1950	998	2578	6145	2524	3391
Runoff (mm)	73	70	36	18	11	8	13	6	17	40	16	22
Ras riall (mm)	134	62	81	38	49	48	112	81	64	100	35	20

Statistics of monthly data for previous record (Dac 1969 to Dec 1987)

Mean	Avg	32600	30.740	25960	17280	. 12190	9956	5802	5914	6.540	10800	19900	29190
flows	Low	9227	11370	10080	7719	5048	3891	2410	1715	3.320	3:15	4406	12110
	(yeo.)	1976	1976	1973	1976	1976	1976	1976	1976	-987	:978	1978	1975
	Heyh	51270	64.730	54230	26520	31020	30:10	9356	13830	25450	28180	39810	48270
	(yed)	1984	1977	1981	1987	1983	13/1	1973	1985	1974	1976	1986	1976
Hisnoty-	Avg	56	48	45	29	22	17	10	10	11	19	33	50
	Low	16	18	17	13	9	7	4	3	6	5	7	21
	H9 ${ }^{\text {h }}$	88	101	94	44	54	5)	17	24	43	49	66	83
Ramfall	Avg	86	58	78	48	63	67	52	66	77	73	83	92
11970.	Low	18	7	17	2	29	3	25	18	15	6	38	33
19871	High	148	143	163	: 10	142	151	115	140	178	149	178	144

Summary statistics	For 1988		For record procording 1988			$\begin{gathered} 1988 \\ \text { As } \% \text { of } \\ \text { pre } 1988 \\ 93 \end{gathered}$	Factors affecting flow regime - Flow influenced by groundwater abstraction and/or recharge - Augmentation from surface water and/or groundwater
Mean flow (m 's-:)	16100		17230				
Lowost yejrly mean			10360		1973		
Heghest yearly moan			22160		1917		
Lowest montily mean	3.725	$A{ }_{\text {Ang }}$	1.715		1976		
Highes! monithy mean	43.120	fob	64.730		1977		
Lowest dayy mean	2.057	9 Aug	1093	29 A	$19 / 6$		
Highes: daly mean	126471	2 feb	253648	280	1979		
Peak	137251	2 Fob	300500	28 D	1979		
10\% exceedanca	39330		36350			108	
50\% oxceedence	9553		11.430			84	
95\% exceordance	3448		3341			103	
Annual total (miltorn cu m)	50910		54370			94	
Annual runaff (mm)	328		350			94	
Annual tanfall (men) [1941.70 rantall avoraye (mm)	82.4		$\begin{aligned} & 843 \\ & 840 \text {] } \end{aligned}$			98	

Station and catchment description
Velocity-area station with cableway. (Replacement station for Bath Si James) Situated immediately downstream of confluence with Bybrook Section by ralway bridge. area widely inundated in flood conditions. but all flows contairud through bridge Flows augmented by groundwater scheme in catchment Mixed geology - predominantly clays and limestone with eastern tributaries fising from Chalk. Land use - mainly rural some urbanisation

Measuring authonity NRA ST First year: 1921

Grid relerence 32 (SO) 782762
Level stn. (m OO) 1700

Catchment area (sq km) 43250 Max a't (m OD) 827

DAY	JAN	FE8	MAR	APR	MAY	JUN	Nr	AUK;	SEP	OCT	NOV	$0 ¢ C$
1	145954	152434	25044	60189	25578	60318	14680	43.831	58008	83.174	53937	130198
2	220569	219257	23745	60976	29377	43974	13760	31110	58290	73884	50074	88978
3	274884	242061	23164	154500	34058	34660	16437	26168	107971	67.733	45831	69656
4	343.127	255613	24534	112640	43241	31023	34743	23241	132186	58119	41.953	80775
5	353095	256735	23352	77092	49368	35807	40509	21.481	96435	44167	37482	105574
6	343704	232509	$215 \% 7$	58340	38278	30559	36136	18433	73104	43836	33711	84282
7	301580	176012	23795	48371	29554	25518	24933	18171	58.197	67349	33.193	73887
8	252603	156618	29230	42802	26746	26077	35181	17843 .	48938	111.870	32251	64.654
9	205805	145097	26513	41302	26425	30766	36857	16012	43131	84231	35.167	55979
10	196891	156.336	29885	42760	24967	33755	32838	15440	39730	73589	48537	50.989
11	180693	:68904	35198	36885	23478	26.85	35104	. 5056	37008	71864	41406	48.771
12	157944	152.959	27567	32072	23869	22386	32419	16884	37695	68751	38449	43365
13	136206	118599	29093	28893	24321	21.197	29252	19861	38233	86603	34986	39245
14	132099	150930	44586	26470	21533	19381	40226	25066	39859	71462	33098	35.950
15	.105486	180036	108404	25585	19301	17910	33 4:2	30564	38771	55193	32816	34017
16	91290	131127	198350	24318	20611	16488	28409	29694	33895	45448	31430	32620
11	83970	100) 986	193097	24865	19752	15311	30829	22188	$331 / 4$	40071	30008	30786
18	84358	80043	129757	24875	19478	13004	33058	21465	27.249	44940	30240	31901
19	99739	67142	141328	29159	18319	12633	28604	67652	23174	90272.	36942	30974.
20	92384	56662	216345	33181	21361	'3 575	23021	9. 23.3	19432	12004.3	35668	56541
21	86302	47149	216480	25713	19452	13031	25628	99622	17685	95580	39639	47.562
22	96026	43370	144357	23452	17629	12374	34603	80711	17765	69.784	39251	39221
23	156948	39035	129044	21768	19787	12050	42809	55911	18806	56311	31.419	37685
24	273277	36459	136263	20378	19386	10862	40530	42571	29734	53.367	31019	66192
25	321124	33003	. 132619	19994	19056	9238	34184	35808	89539	49531	31372	93641
26	366344	30353	164091	19.824	24656	10813	29295	31621	107258	67796	27181	66513
27	303253	21349	139429	18915	28526	14485	25937	28361	174429	99156	26226	61836
28	212651	27502	:0i799	$183: 5$	31090	15326	25.297	72825	1408:8	i28 225	27190	73529
29	176730	27700	- 2625	17545	26030	14267	268:0	58071	141282	95754	33447	60.289
30	143141		74560	16391	33252.	14330	24638	47067	117604	71749	81.568	54.222
31	134229		66436		58621		35588	49245		60510	8.568	47388
Averagn	:96100	121100	89100	39590	27020	21910	- 30510	37850	63310	72610	37540	59270
lowest	83970	27.349	21517	i6 391	17629	9238	13760	15056	17685	40071	26226	30786
trighest	366344.	256735	216480	154500	5862 :	60318	42809	99622	174429	128225	81568	130198
Peak fow	375245	261146	234249	170693	63988	65581	54129	107.236	183708	142924		
Oay o! neak Monitidy total	26	4	21	3	31	1	23	19	27	28	30	1
(mill on cu m)	52520	30330	23870	10260	7238	5679	8172	10140	16410	19450	9730	158.70
Runofi (mm)	121	70	55	24	11	13	19	23	38	45	23	37
flantall (mm)	161	74	116	44	76	41	118	91	75	80	46	44

Statistics of monthly data for previous record (Apr 1921 to Dec 1987)

Mean	Avg	114100	101300	73640	53070	39040	29840	22930	28.190	36460	54570	90910	101.100
thows	Low	. 22100	21200	23200	15880	10230	9804	9587	7461	7668	10490	21730	17850
	(year)	1963	1934	1943	1938	1938	1976	1976	1976	1949	1947	1942	1933
	Hign	250600	232300	26.900	112400	13.600	117400	91240	92360	126700	- 40700	238300	297400
	(year)	1939	1946	1947	1947	1969	1931	1968	1927	1946	1967	1940	1965
Punotf	Avg	71	51	46	32	24	18	14	17.	22	34	54	63
	Low	14	12	14	10	6	6	6	5	5	7	13	il
	High	155	130	162	67	81	70	51	57	76	87	143	184
Rasifat.	Avg	91	67	63	60	70	61	71	18	78	85	97	95
	Low	23	8	3	5	18	5	10	13	5	13	13	10
	Hogh	226	170	175	128	186	136	193	160	209	174	244	294
Summ	ary st	tistics								8 affec	g flow	ime	
								1988		.			
				or 1988		For incord		As * of		servoir(s)	catchm		
						coding 198		Dre. 1988		winfluen	by grou	water a	traction
Mean ik	ow [m³ 3							107		/or rech			
Luwest	vearly	can					1964			straction	pubic	ater sup	
thghest	y marly	\%an					1960			w reduce	by indus	al and/or	
Lowest	montht	mean					ug 1976			culfural	stractio		
Highest	monthly	mean	196		n 297		-c 1965			gmentatı	from su	ace wate	and/or
Lowist	dady m			3825			Sop 1976			undwate			
Higrest	daly m		366	4426	n 631		Mat 1947			gmentat	from eff	ent return	
Peak			375		n 362		ec 1972						
10\% ex	ceedan		152		148			103					
50\% ex	coedan							103					
95\% ex	ceodan							141					
Annual	total (m)	lon cu m)	209		195			107					
Anmual r	runoif				45			107					
Annual	rainfoll	(n)			91			105					
\|194	1.70 ras	fall averag	(mm)										

[^5]
054002 Avon at Evesham

Gind reference: 42 (SP) 040438 Level stn. (m OO) 19.50

Catchment arca (sq km) 22100 Max alt. (m OO) 320

Day	Jan	FEB	MAR	APPA	may	UN	μ	aug	SEP	Oct	Nov	ถ¢
1	29.750	91.546	13030	16089	15284	7241	8078	8.376	16633	5215	5.968	32245
2	83.014	75276	12505	15038	16127	7.131	7.016	7832	14.822	5031	6010	20641
3	90.748	50.793	13.744	14071	14997	7558	9231	7.195	9818	5012	6089	19337
4	58854	67.742	14.214	13.700	19381	10.127	16572	6885	7409	5185	5741	27.167
5	45490	56658	12.768	13.106	19353	8443	16946	6.705	6428	5944	5665	25625
6	91.437	41.045	12292	12904	12823	7465	16867	6437	5.925	6.125	5.707	20604
7	90718	38495	12.342	12837	10399	7107	12.656	6042	5658	6104	5693	15852
8	54240	53121	12079	12310	10178	8521	8729	5.746	5.714	5472	5.782	13.042
9	44.565	46695	12.181	13542	11268	10016	7.687	5.723	5.451	7.963	6097	11.508
10	38.534	38.401	13393	12.755	10.263	9505	10107	5632	5438	12.312	6203	10.521
11	33745	32758	12197	11947	9831	8105	13512	6007	- 5.300	8517	5.963	9803
12	28094	26.184	12171	11176	10.784	7293	10085	7259	5.506	14.496	5963	9253
13	28045	25468	13.470	10490	10089	6890	12038	6802	6034	14401	5.660	8511
14	25.118	42387	28417	10122	9125	6365	10048	6412	5.519	8942	5.541	7.972
15	21.636	37.392	74816	10564	8542	6.138	8761	6239	5414	7047	5.715	7.874
16	19658	30588	80154	15310	8194	6.111	8729	5988	5.228	6383	$5 / 12$	7799
17	18333	25.338	44871	13576	7752	6133	15699	5680	5.177	6.429	5893	7471
18	19246	22395	32.555	11845	1430	6099	14075	6279	5081	1830	5.904	7028
19	20119	20726	57508	12295	7343	6105	10769	7494	5048	10166	5.891	7358
20	19237	19.054	76.785	i0845	7267	6128	8606	6675	5060	8469	7568	7440
21	18207	17899	19116	10176	6813	5991	9331	6757	4881	7193	8190	1116
22	68241	16.992	52078	9817	7009	6.133	21343	6389	4.939	6.685	6741	6753
23	103425	16.667	50178	9680	7.103	5926	30580	5663	5352	6437	6570	6864
24	175939	15594	46.630	9145	6892	5778	19989	5.705	7811	6358	6361	7573
25	167.932	14507	45837	9113	7044	5737	13126	5677	10040	6527	6056	8713
26	121550	13794	40.880	9664	8429	20715	. 10028	5605	7360	6582	5892	8211
21	68026	13494	27281	13585	7921	16.131	6 $1 / 5$	5.788	6.757	6.928	5797	9486
28	16085	13.559	22416	11944	7034	10091	7923	7668	7.050	6737	6694	9484
29	94478	${ }^{1} 13500$	20886	10493	7169	8139	6.986	7914	6604	6358	13693	8556
30	69625		19581	10761	7822	7610	6484	6268	5688	6012	45512	1827
31	47742		18330		7850		7822	:0954		5886		$738:$
Average	60380	33730	31760	11960	9320	8027	11910	6639	6771	1379	7676	11770
Lowest	18.207	13494	12079	9113	6813	5131	6484	5605	4881	5012	5.541	6153
Highast	175.939	91546	80154	16089	19381	20715	30580	10954	16633	14496	45512	32245
Peak flow	192475	98989	95.794	:8032	26145	32283	34509	14908	19594	2:336	33901	37097
Day of peak Mon:hly total	24	1	15	16	4	26	23	31	1	12	30	1
(milion cu m)	16170	8450	85.08	3101	2651	2080	3190	1778	1755	1976	1990	3154
Runotf (mm)	73	38	39	14	12	9	14	8	8	9	9	i4
Ris-ntall (mm)	110	35	76.	33	41	52	- 09	54	36	48	34	26

Statistics of monthly data for previous record (Dec 1936 to Dec 1987

Station and catchment description
Velocity-area station. Recording site. control and gauging site aro widely separated. retording at a site where all flows contanced. Gauge site can measure out-of-bank flows Extensive modification to flow regime from abstractions and returns Large catchment of low reine draining argilaceous rocks almost exclusively Contains many large towns. but chief land use is agriculture

Daily mean gauged discharges (cubic metres par socond\}

DAY	JAN	FER	MAR	APR	MAY	UN	μ	AUG	StP	(CI	NOV	DEC
1	39361	27.103	1356	8777	1749	5.963	0850	3567	15537	6955	3759	8739
2	57916	27166	1311	15014	$40: 8$	4548	0835	3035	31698	5371	3305	6352
3	24046	25166	3058	8430	3604	7648	0.990	2574	17919	4435	2909	8546
4	21909	21238	1884	6.499	4421	6350	2923	2558	10445	4541	2633	14.066
5	17049	14564	1685	5227	2811	4339	1462	2. 232	6986	9755	2431	8496
6	225.33	10122	5025	4344	2377	3698	1456	1822	5270	20373	2 24:	733%
7	14685	10839	3522	3.704	2176	3075	6566	1504	4198	242.1	2038	5.695
8	13429	9976	2802	3482	2085	3344	5678	1286	3586	13852	2985	6023
9	14561	11085	3.449	3241	1861	2924	3694	1213	2996	$137 / 4$	3456	9078
10	12506	10311	3253	2725	1671	2.558	4685	1235	2614	12488	3830	5503
11	3893	0948	4239	2403	1508	2099	$33: 3$	2230	2657	9125	3199	4598
:2	14088	$701{ }^{\circ}$	6.792	2076	1426	1693	3377	4039	2374	8894	2681	3944
13	12401	i678:	15643	1858	1271	1380	4152	3898	5826	6181	2492	3545
14	9424	12941	29206	1.715	1.124	1168	7939	5241	3161	5110	2318	3154
15	7460	9637	30066	1717	1.003	1013	2275	3.232	2513	4423	2139	2842
16	6140	7674	16162	2247	0841	0860	3787	2390	2164	3922	2061	2909
17	6500	6060	10531	1920	0715	0779	4878	1911	- 956	3505	2.8:5	2676
18	8750	5083	21890	2916	0.693	0747	2869.	14586	1742	5693	3905	3434
19	6324	4356	34.949	2410	0842	0665	2554	10561	1581	6737	2.759	10060
20	7225	3826	18583	1.828	0692	0572	2.322	19095	1443	4619	4034	5.743
21.	6880	3330	1)395	1641	0577	0494	8348	11985	: $36{ }^{\circ}$	3975	2331	5597
22	6628	2921	11152	1498	0473	0416	7917	6820	1646	4047	2698	5616
23	52594	2639	13475	1333	0.857	0330	7336	5271	6065	3.932	2852	14653
24	34491	2334	14452	1.163	1480	0291	5791	5353	34454	3951	2.599	10729
25	16815	2062	22365	1071	1.370	0277	5.068	4121	34893	5.943	2384	7671
26	1:166	- 944	15450	0977	2550	0453	4449	4296	32244	8330	2243	3.86
27	8389	1890	10188	0887	1.746	0.377	4212	10869	19826	8911	2102	8241
28	7873	1.660	9804	0844	1673	0475	4272	7304	21620	7446	7303	6409
29	7355	1.447	8081	0828	5.150	0.307	4028	8731	14673	5863	14920	5253
30	13042.		8527	0916	11959	0316	5307	6500	9665	4929	15.819	4492
31	18863		6168		$122: 4$		4451	6212		4231		3931
Aversje	16440	9337	11200	3121	2482	1972	396.	5344	$10 \cdot 20$	7600	3795	6598
Lowest	6.140	1447	1311	0828	0479	0277	0835	1213	1361	3505	2038	2676
Hughest	57916	27703	34949	15014	12.214	7.648	8348	19095	34893	24211	15819	14653
Peak flow	103923	37605	54086	21401	28076	12808	19932	304.39	119:01	40362	33601	23304
Day of neak	2	:	19	2	30	3	21	18	25	,	29	23
Moniliy total (milion cu m)	4405	2340	29.99	8.11	665	511	1061	1431	2634	2036	984	1761
Rumolf (mun)	253	134	172	47	38	29	61	82	151	117	57	102
Ra ntall (mm)	278	123	251	55	120	45	174	169	203	143	83	110

Statistics of monthly data for previous record (Oct 1937 to Dec 1987 -incomplete or missing months total 0.2 vears)

Maan	Avg.	10540	8596	65.35	4929	3242	2732	2714	3767	5211	1208	10310	10970
flows	low	1972	1476	1.373	1014	0485	0497	0316	$0: 77$	0291	0683	2011	1.947
	(year)	1940	1947	1943	1974	1980	1975	1984	1976	1959	1973	1945 .	1963
	Hign	20990	18000	19610	12.460	8773	8867	8455	10370	16830	18840	22030	23930
	(yew)	1948	1946	1981	$19 \% 2$	1979	1985	1939	1367	1946	1981	1939	1965
Runot	Avg.	162	120	10:	73	50	41	42	58	18	111	154	169
	Low	30	21	21	15	7	7	5	3	4	11	30	30
	Hign	323	250	302	186	135	132	130	160	251	290	328	368
Rainial	Avg	180	131	119	97	99	93	103	123	141	153	186	193
	Low	41	10	25	11	25	21	14	13	13	28	28	28
	High	386	310	310	206	204	202	267	251	325	329	356	452

Station and catchment description
Initially. gauged nearby at Rhayader l055005 1937-69) - records continuous, resited as a velocity-grea station with a rock bar as control Informal flat V control installed 1972 . Bankfull width approx. 30 m Cabloway span 54 mr . All but exceptional floods coniained. Lowest extent of gauging unaffected by Caban Coch Wet, upland catchment draining impermeable, metamorphosed Silunan sedimenis High relief, headwaters reach over 600 m . and feature steep sided and high gradient streams Moorland and forostry

Gind inference 32 \{SOl 345056 Level \sin (m OD) 2260

Catchment atea (sq km). 911.7 Max alt. (m OD) 886

Daily mean gauged discharges (cubic metres per socond)

DAY	JAN	FEB	MAR	APR	may	9*	吹	AUG	SEP	OCT	NOV	OtC
1	99015	148820	15462	26490	11526	29.621	7081	22431	81.690	23.211	16.153	21472
2	279803	96491	14615	43944	26054	26.846	8.516	18854	66421	20244	15142	18033
3	137096	76375	16163	31123	41956	25791	9438	16529	43780	18.025	14.019	25.331
4	109279	83270	15158	26408	38819	26.148	$150 / 4$	15282	32.139	11.126	13449	4478.3
5	83794	70125	13486	23.592	25298	19487	10615	14156	26240	21567	12794	29566
6	150859	55447	13021	21519	19950	11428	9391	13068	21.159	3) 324	12278	27666
7	83.897	61.836	13695	20055	17.415	16066	8934	11958	19325	36636	11896	23399
8	72.223	61.582	12700	18736	16139	15683	9369	10748	17270	28797	$1230{ }^{\circ}$	21202
9	99678	81928	11891	18412	14607	17991	8469	9340	16988	58606	21462	19537
10	11838	61.568	$11 / 89$	16867	13251	15838	45144	8931	14642	45335	18583	18278
11	58735	53812	11341	15870	12557	14052	26688	9199	13746	42809	19549	16769
12	61800	45843	11256	14852	11964	12512	17.232	13044	13069	55260	14735	15884
13	81.928	144465	11022	14254	11467	11305	35773	10302	13007	36084	13.384	14769
14	54054	89981	14781	14682	10668	10274	21261	23094	12445	29017	12536	13908
15	46752	62255	74530	; 4645	10102	9640	16726	14351	11313	25210	12015	13414
16	40544	51619	59847	17943	9547	9.596	15.729	10807	10754	22692	11597	13041
17	36710	44055	37421	16714	8942	9197	16765	9430	10315	21074	11544	12540
18	39749	39271	73738	17103	8566	9026	13794	27704	9196	23.311	13294	11840
19	3/5/3	34900	145459	13 is2	10368	8.138	12.113	23910	9.286	29438	11770	12411
20	38033	31360	88282	15398	10021	8306	11543	20370	8201	24528	12364	12670
21	36394	28694	59375	14151	8609	8518	10676	18029	8009	20853	12016	12248
22	44341	26049	54062	12183	8040	1422	19325	15158	8092	19921	10900	11633
23	110251	23837	55597	11619	7857	7019	57573	13513	1:464	20213	10689	15595
24	133 380	21871	50813	1; 077	10779	6866	40801	13043	42536	18493	10630	14902
25	93303	20463	69301	10593	13717	6686	38909	i2188	36581	18773	10419	13426
26	65801	:8969	47222	10251	22376	7021	30143	10990	59979	19528	9999	- 3192
27	53871	18253	40749	9909	159.2	7328	24800	$1 / 805$	40904	28663	9631	20) 169
28	62234	11285	$3889)$	9532	13553	6806	24669	2881.	5373.	22813	9704	:7417
29	65568	16179	34348	9367	24845	7454	24736	18848	37156	1929 i	12496	16230
30	61691		33107	10012	48795	6867	20803	18723	21141	$1 / 893$	35473	15094
31	83015		29016		41421		27407	$546: 9$		16914		13991
Average	80430	54710	38010	:7240.	17780	12820	20610	16350	25900	21090	: 3760	- 17770
Lowest	36394	$161 / 9$	11022	3361	7857	6686	7087	8931	8009	16914	96.31	11633
Heghast	279803	- 48820	145459	43944	48795	29627	57573	54619	81690	58606	$354 \% 3$	44783
Peak flow	401198	. 234134	229150	55735	63286	34864	80901	91810	i(4)466	80033	45627	63286
Day of meak	2	13	19	2	30	1	10	3.	1	9	30	4
Monithly total (malior cu m)	215.40	13):0	10180	4461	4/62	3322	3521	4540	6712	7255	3567	4760
Rutioff (:mm)	236	i 50	117	49	53	36	61	50	74	80	39	¢2
Hainfal (n m)	251	102	16 i	48	:33	45	111	130	$\cdot 00$	106	55	58

Statistics of monthly data for previous record (Mar 1957 to Dec 1987)

Station and catchment description
Velocity-area station: permanent cableway Low flows measured at complementary station downs:feam (O560 10 Trostrey weir) There is a partal impact on flows resulting from three large existing publec water supply reservoirs in upper ca:chment. Intake to canal upsiream of gauge. Some naturalised flows available Geology mainly ()id Red Sandsione fill farming in upper areas. with dairy or livestock farming be!uw, torest 3\% Peaty soils in uplands. seasonally wet

Measuring authority NRA.WEL First year 1959

Grid reference 22 (SN) 244416 level sin. (m OD] 520

Catchment area (sq km) 8936 Maxalt (m ()O) 595

Daily mean gauged discharges (cubic metres per second)

day	JAN	Frb	NAP	APR	MAV	JuN	Jut	aug	Sf	OC:	NOV	OLC
1	106812	83590	12.732	33979	8891	19535	7365	21369	54532	42098	38194	45259
2	150439	67391	11731	60.755	11312	15.610	7746	18632	71066	36678	32.476	41336
3	129.500	70162	16589	45181	18543	13427	8266	16443	59765	30904	2 C 121	47849
4	92967	70754	16401	39629	19848	15105	16.286	15.190	53117	30917	25.161	55595
5	75.035	60139	14604	33560	15324	13820	12880	14418	43853	35658	22999	47613
6	106.839	49.957	14013	28617	12.714	11087	9730	13.283	35315	45.948	21:20	43344
7	82586	51357	17388	25 11:	11730	10378	12051	12101	29157	44393	19485	39765
8	72.430	50460	17803	22530	1:016	9979	12708	1. 708	25246	43402	20444	35683
9	82276	49859	15874	20.331	10354	9797	11657	1:047	22517	4914	30266	33821
10	73.174	43060	16958	18328	9803	9354	19596	10566	20268	$488: 8$	3:352	33098
11	63207	39155	15.568	16875	9222	8360	18109	11661	18983	45538	28816	28293
12	81235	34489	15518	15491	8838	7.504	25924	15.967	17533	43166	24275	25533
13	96.562	83813	21536	14253	8440	6894	42204	15125	17.117	39052	21460	22750
14	79.746	84.392	51417	13.138	8105	6.395	31833	32012	16801	33094	20035	21312
15	66.271	61168	91.184	13211	7811	6086	25038	21.911	14696	28.971	18306	20129
16	56272	52391	85762	16124	7296	5832	22369	17343	13508	25750	17646	19248
11	51774	44002	70611	13966	6987	5656	30006	15738	12805	23404	$13^{\circ} 05$	18889
18	62277	39264	9*:91	15873	6794	$541{ }^{\text {a }}$	26830	56525	11958	2150%	21945	17602
19	51.672	33975	153 - 54	$1542{ }^{\circ}$	6531	5233	21763	50079	111/5	21.458	$21 \cdot 69$	20510
20	S2 595	29:15	150037	13024	6319	5067	-89.9	44096	10439	212:6	24199	23191
21	52486	25594	96008	11972	6089	4938	19668	41845	9801	20628	21638	23:91
22	66988	22632	76.748	11188	5822	4674	36123	38870	10620	24216	18324	21564
23	100518	20306	65306	10398	6119	4.466	43304	34400	13666	29457	22147	26069
24	128.531	18309	57392	9832	7793	4322	40311	29443	42586	33161	20739	24899
25	109425	16502	55392	9377	9373	4.225	41123	26050	49695	40303	19340	22939
26	78.124	15171	47405	9005	8792	4416	36109	23 2:7	63705	89000	18571	21650
27	59156	14322	40670	8.632	- 0298	4329	29388	24638	$61{ }^{\circ} 04$	-112895	17951	39073
28	56339	13351	37956	8343	9149	4225	34580	27000	63526	73834	20618	33028
29	52042	12888	33515	8.134	17149	4355	33177	23858	56022	50584	27729	28639
30	51030		3:842	8080	19320	6299	26678	2:633	48918	46865	51455	25426
31	72.914		31147		23657		23824	26.279		41272		23048
Average	79.390	43390	47.530	19030	10630	7896	24070	23950	32650	41270	24170	30200
Lowest	51030	12888	11731	8080	5822 .	4.225.	1365	10566	9801	20628	17646	17602
Highest	150439	84392	153154	60765	23657	19635	43304	56525	71066	112895	51455	55595
Peak fow	156379	101186	180070	68452	25265	21525	48335	65108	7522.7	133334	55059	57445
Day of peak Month'y total	2	1	19	2	31	1	12	18	2	26		
(milion cum)	21260	10870	12730	4933	2846	20.47	6447	64'5	8463	11050	6265	8090
Runotf (mm)	238	122	142	53	- 32	23	72	72	95	124	70	91
Hairiall (rmm)	244	93	169	54	100	52.	166	142	122	:35	75	69

Statistics of monthly data for previous record (Jut 1959 to Dec 1987 -incomplete or missing months total 0.3 years)

Mean	Avg	46.700	37.400	30290	22590	18280	11520	8045	12230	16760	35920	46450	54090
flows	Low	7.086	11140	8280	7481	4228	2975	1819	1127	1013	3886	16060	17820
	(year)	1963	1965	1962	1974	1984	1984	1984	:976	1959	1972	1983	1963
	$\mathrm{H}_{4 \text { ç }}$	106000	81100	36730	4:810	36780	41700	24930	392:0	48680	102000	85130	93960
	(year)	1974	:974	-981	1985	-979	-972	1968	$\cdot 985$	-974	198:	1986	1965
Runotf	Avg	140	102	91	66	55	33	24	37	49	108	135	162
	Low	21	30	25	22	13	9	5	3	3	12	47	53
	ligh	318	220	290	121	110	121	75	118	141	306	247	287
Rainiall	Avg.	143	91	103	85	80	81	18	99	118	151	157	163
	Low	28	2	25	10	29	17	25	16	10	40	76	28
	High	326	213	312	163	168	148	140	180	242	293	279	315
Summ	ry st	istics								s affe	gifow	me	
								1988					
				1988		or reco:c		As \% of		rvoir (s)	catchir		
						atding 19		¢⿴囗. 388		raction	or public	r sup	
Mean flo	ow [m's							113					
Lownst	yearty	-an			18		, 964						
Highas:	vearty	dan			38		1974						
Lowest	monihl	maen					1959						
Highest	monthi	mean			106		1974						
Lowest	daty m			525			1976						
Highest	daly m		153	419	373		1987						
Peak			180	O 19 M	448		1987						
10\% ex	ceedanc				63			105					
50\% ex	ceedan				18			122					
95\% ex	ceaddre							198					
Anmual 1	otal (m	non cu mb	101		894			1:3					
Annual 1	unoi!		11		100			11.3					
Annual	ainfall	(1)	14		134			105					
\|194	1.70 ro	fay averag			136								

Station and catchment description

Velocily-area station. Siraight reach (width: 35 m), natural control Flood flows spill over right bank. Public water supply ifnpounding reservoirs in upland area whero thero is mostly hill farming Tregaron bog (10 sq km) has partial effect on flows. sensibly natural regime. Geology - mainly Ordovician and Silurian deposits. Dairy farming predominates in southorn area Forest: 5%. Peaty soils on hills. seasonally wet Apart from
Tregaron bog. most of the lower areas have soils with permeable substrate.

| Measuring authority: NRA.WEL | Gnd ieference. 23 (SH) 493623 |
| :--- | ---: | :--- |
| First year: 1976 | Level stn (m On): 1860 |

Catchment area (sq km): 74.4

Daity mean gauged discharges (cubic metres per second)

DAY	JAN	ffa	MAR	APR	mar	Jw	0	AUG	SEP	OCT	NOV	ofe
1	17944	14494	1.423	6.303	1206	1893	0492	3510	13.109	2.194	2394	8068
2	26277	9494	1113	9414	1581	2406	0462	2663	26513	1809	2.104	6.116
3	14610	7.382	4029	7.339	2958	2.915	0409	2125	12650.	1560	1798	6.591
4	9066	7621	3781	6.772	4553	2264.	0530	1953	5946	2. 162	2019	4987
5	7594	6716	3301	4315	3456	1.434	0.317	1723	3895	5622	3.135	3409
6	12031	5.051	4443	3.199	2216	1109	0546	2216	3004	5.663	1810	2713
)	8265	5030	4398	2.610	1736	0864	0642	2782	7.383	4.996	1467	2.332
8	11072	4791	3848	2.394	1419	0980	0.719	1584	3070	7781	2238	3096
9	21929	5975	4791	2.176	1226	1027	0965	1335	5126	1.584	4615	4680
10	11920	4793	4721	1886	1093	0821	6534	1207	4321	5616	8.565	3530
11	1263	4310	4168	1.678	16\%	0736	3051	2016	3066	3.935	5482	2.818
12	7.142	4822	3721	1502	2754	0664	2687	6871	2220	3.476	3230	2.424
13	8199	16547	1889	1323	1748	0577	5.982	5703	3441	2819	2410	2.202
14	5795	15574	16863	1225	1184	0564	3426	14336	2709	2335	1994	2089
15	6313	10297	26286	1916	0860	1343	2240	7107	2058	1.358	$1 / 10$	1909
16	5895	7460	14581	5281	0763	1311	2.111	3745	1703	1682	1516	2536
11	7888	5193	7648	4240	0700	0846	2314	2662	1501	1542	2005	2.722
18	11448	5793	8053	5722	0642	0682	1893	3287	1348	1.845	2363	1983
19	11067	5582	14030	5692	0602	0518	1702	3987	1209	2.469	2065	2083
20	9358	3739	9470	3962	0581	0511	1591	6311	1103	3497	2309	2379
21	6916	2949	7714	4026	0561	0474	1441	9436	1065	5855	1900	3926
22	7056	2504	10047	3710	0567	0440	1691	5177	1318	5090	1839	11616
23	12850	3182	8943	2954	0646	0402	5065	3507	4550	3355	3373	21226
24	18255	3278	6774	2113	- 420	0378	4649	427 i	4198	3354	2885	19988
25	9584	2304	7517	1734	: 904	0379	7921	4782	4745	3605	3301	10273
26	6251	: 934	5256	1527	- 449	04.38	4520	6310	6530	. 7145	4470	23669
27	6291	: 809	4266	1367	: 156	0404	3161	10:65	5894	:6133	2423	18820
28	5481	; 58]	6290	1233	: 158	0316	12382	$5 \cdot 13$	5677	8147	6440	9374
23	4519	, 462	4885	1114	: 599	0370	9824	3581	3666	4895	6099	7757
30	3811		5009	1053	- 529	0426	6587	6945	2765	3552	10628	8763
31	7113		4163		2022		5654	7734		28.39		6014
Aversye	9311	5920	7098	3326	, 517	0920	3280	4691	4753	4681	3292	6786
Lowest	3871	: 462	: 423	1053	0.567	0370	0403	1207	1065	1542	1461	1903
thghest	26277	16547	26286	9414	4553	29.5	12382	14.936	26513	. 7145	10628	23669
Peak 'low	$303: 7$	20816	30965	11510	5180	35:3	18208	17600	31978	$23225{ }^{\circ}$	12715	33465
Day of neak	2	13	15	2	4	2	28	14	2	26	30	26
Muntily total (milion cu m)	2672	: 483	1901	867	406	238	878	1256	12.32	1254	853	18 is
Runots (mm)	359	199	256	- 16	55	32	1:8	169	$\cdot 66$	169	115	764
Rairfall (inmy	343	146	297	99	104	35	30°	765	${ }^{7}{ }^{\prime}$	19 ${ }^{\circ}$	120	226

Statistics of monthly data for previous record (Aug 1976 to Dec 1987)

Mean	Avg	$55: 7$	4828	5610	3187	2522	2252	2232	3401	4304	6714	1123	1726
fows	Low	3148	1852	1.153	0812	0487	1061	0586	0411	1666	7970	1880	3161
	(ymar)	1985	1986	1984	1984	1980	1984	:984	:9/6	1986	1978	1983	1976
	Hugh	'02:0	1:510	10860	5866	5785	4386	$53: 7$	8256	6681	:0640	11120	- 2060
	(year)	1983	1977	1981	1985	1979	1987	1918	-985	1983	1981	1986	1986
R.נา0'f	Avg	199	. 158	202	-1.	91	78	80	172	- 50	242	248	278
	Low	11.3	60	63	28	18	31	2 .	-5	58	107	65	114
	High	368	376	391	204	208	153	19:	291	233	383	387	434
Rainfail	Avg	220	160	236	$: 13$	127	155	129	197	224	294	289	307
	Low	61	25	82	20	47	58	63	29	24	117	93	136
	Hegh	38 i	388	457	207	275	225	228	373	382	423	454	455

Summary statistics					
	For : 988		For eecord precesing 1988		$\begin{gathered} 1988 \\ \text { As \% of } \\ \text { De } \cdot 1988 \end{gathered}$
Nean flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	4697		4621		- 02
Lowes: yearly mean			3813	1984	
Higres: yeath mean			5126	1986	
Lowns: monthly mean	$0920{ }^{\circ}$.Jun	0411	Aun 1976	
Hgres: iswrithly mean	9977	Jan	12060	Dac 1986	
I owes: daly mean	O 370)	29 Jun	0158	24 Aus 1976	
H.gres: disly mean	$265 \cdot 3$	2 Sen	51836	$180 \mathrm{c}: ~: 987$	
Peak	33465	26 Dec	64550	18 Oc: 1987	
10\% enceedance	9767		10510		92
50\% exccedance	3326		3015		110
95\% exceadance	0569		0589		91
	- 4850		14580		102
Anrual runotf (mm)	1996		1960		102
A nnual ra c:lal (mm)	2298		$\begin{aligned} & 245^{\circ} \\ & 2298^{\circ} \end{aligned}$		34

Factors affecting flow regime

- Reg:lation fo HEP

Station and catchment description
A rated river section in a straight reach which has not yet been bypassed Control provided by a roughly Crump straped structure or ginally built as part of investigations prior to construction of the Dinorwic pumped storage scherme. which very margirally affects the recurd. A steep catchrnent with much bare rock surface Contains two large rivbon lakes. Padarn and Peris. the latter actikg as the lower reservoir of the Dinorwic scheme

067015 Dee at Manley Hall

Daily mean gauged discharges (cubic metres per second)

Jay	JAN	fCB	MAR	APR	MAY	-UN	ת.	Aus;	Sff	crit	Nov	DEC
1	99926	121911	14591	31036	- 2964	21183	10703	$40 \cdot 25$	5: 203	41400	34304	38045
2	208077	121491	13323	72802	- 7004	18548	10485	30518	68869	34105	30532	32757
3	:94987	100210	16311	60590	-6989	16256	10474	21028	$78 \cdot 33$	29572	27527	36683
4	166487	103728	16198	$53 \cdot 72$	28620	15128	:2610	-7280	78218	26703	24919	41955
5	120900	98032	14838	45053	24191	13202	: 2871	- 5 678	55348	2686%	22886	36649
6	119435	83996	17829	36706	- 21155	12503	-1 283	- 3187	37254	36322	20504	30272
1	91297	73120	18977	29410	17585	1. 926	- 8023	- 1360	26843	48281	19463	32588
8	76160	64678	18936	24750	15387	15196	' 8683	- 0298	24918	4: 218	21461	30012
9	19850	12232	19533	22151	13315	14.21.	-1318	- 0319	27.301	43507	27536	28842
10	75767	69952.	24909	19332	12.051	12. 389	21614	10576	26749	42-32	24639	26669
11	72301	63256	21904	17564	11442	1: 783	20909	11452	24944	36881	24901	23456
12	66639	54165	22312	16232	11863	1:63	$\cdot 9538$	13816	22726	39047	22.098	2:778
13	69750	112609	27438	14972	1i579	11028	24126	14083	27161	33 us)	19044	21346
14	67872	110886	50703	1.3218	10844	1:020	25857	26749	23403	29615	18521	20641
'5	55050	93750	'00 219	12979	10466	11089	20395	31351	21251	26981	19984	19401
$\cdot 6$	48751	80617	88407	12992	10198	11:10	$1 / 291$	23015	20060	2508.3	20) 374	20154
' 1	44471	61623	80763	1.3441	10227	11442	18553	15153	18827	23561	22814	18837
:8	54799	50910	77743	16789	10145	11038	15215	19414	17896	36212	26237	16893
$\cdot 9$	50181	43398	89457	18384	1.642.	10855	1):48	25018	17108	37569	23270	26104
20	46741	$37 \cdot 37$	84123	17535	10862	10687	10771	40218	133/4	309:2	24156	26061
21	44802°	32096	81667	16927	10466	10716	11143	43795	19154	29802	22394	24483
22	41865	28532	75923	14806	10284	$133 / 5$	11419	33411	195.35	29788.	20735	24982
23	68385	26349	69754	13356	10732	13.303	10724	26841	291.6	30776	20101	42439
24	104206	24445	65023	12660	1267°	13.95	10425	2181%	34935	29625	18882	83176
25	87543	22788	68625	11895	14482	$13 \cdot 59$	11333	18204	. 36233	35649	17684	6/515
26	. 77842	21355	67432	10527.	1707°	15662	12358	$1 / 415$. 80265°	78475	16107	66166
27	59744	20065	55942	:03.2	15015	13424	11641	41483	73199	91269	14791	08012
28	52831	18229	53253	! 0399	12946	11424	1897	40738	79394	82726	15952	51605
2.9	48956	16878	46757	:0229	19034	11193	27081	31310	10489	60207	27886	46003
30	53092		42426	:0503	23598	11127	368.3	39801	52661	47369	50603	ל5s 38
31	55978		39605		23463		48728	43373		$397 \% 9$		32126
Average	80630	63260	4/900	22580	1480	12960	174.30	24680	39420	40140	23340	35690
Lowes:	41865	16878	13323	- 0229	10145	10687	10424	10298	:7108	23561	14791	- 6893
Hegrest	208077	127917	100219	72802	28620	21183	48128	43195	80265	. 91269	50603	83170
Peak flow	229091.	170082	127174	88692	34892	22298	58005	48392	101058	1.9269	61043	105957
Day o! peak Moninly intal	2	1	15	2	4	1	31	71	26	26	30	24
(millo)n cu (a)	21600	15850	12830	1852	3965	3359	4668	66199	:02 20	-0750	6051	9549
Rumolf (mm)	212	155	126	57	39	33	46	65	100	105	59	94
Ras.ofa'l (mm)	248	131	183	60	101	41	152	139	140	139	74	114

Statistics of monthly data for previous record (Oct 1937 to Dec 1987)

Station and catchment description
Asymmetrical compound Crump weir, checked by current meter. Drowns at flows in excess of 200 cumecs Low flows maintamed by releases from inajor niver regulating resorvoirs (Celyn and Brenig) Data prior to February 1970 is of noorer quality - based on the d/s Erbistock (67002 area 10400 sq km flow record Geology is 75% shales. slates. mudstones and palacozoic grits. 25% extrusive igr.enous and Carboniferous rocks 80\% grazed open moorland. 12% torestry, remainder arabte. urban neggigible

Measunng authority: NRA-NW
Fust vear: 1937
id reference: 33 (SN) 670633
level str. (m OD): 16.30

Catchment ares (sq kmi): 622.0 Max ali. (m OD): 222

Daity mean gauged discharges (cubic metres per second)

day	JAN	FEB	MAR	APR	may	JN	Mr	AUG	SEP	OCT	NOV	OEC
1	8.579	19.170	3.793	7344	4054	3259	2.285	2.556	2.887	2.227	2341	15.150
2	36.800	16.380	3653	13260	4.113	2.760	2.141	2.375	4956	1.999	2313	7.914
3	33690	11.120	3.947	8848	4417	3.650	2225	2.134	3.012	2003	2.130	6910
4	22780	14.120	3.708	7.110	7206	3841	3034	2.065	2.310	2050	2.116	7478
5	23.200	13.940	3.512	5.100	5243	2686	2868	2.063	2089	2574	2083	6561
6	38.850	11.180	3.186	5.514	3884	2.556	2269	1.981	1.992	2698	2071	12290
7	28.370	10430	3.753	5231	3432	2.451	2313	1906	1.870	2481	2188	8120
8	17980	12.820	3808	6502	3227	4025	4300	$18 / 8$	1828	2000	2424	6656
9	15290	12.190	5.495	8578	3060	3818	2.934	1861	1825	2075	2.944	15160
10	12.640	11.340	7.775	6.163	2.931	311	2426	1904	1825	2.113	2771	8831
11	12600	15680	5.318	5296	2878	2698	2294	1978	1825	2176	2563	6201
12	10400	16.260	9145	4997	2.917	2512	2492	2605	1808	2484	2365	4962
13	B 640	12630	30320	4394	2.816	2336	3659	2.120	2325	2429	2.292	4247
14	7352	12660	45530	4221	2.659	2216	2736	1.991	2313	2.215	2213	3928
15	6506	11000	44720	4098	2.595	2.139	2.300	1925	2.113	2036	2184	3810
16	6218	11610	30590	4132	2612	2106	8145	1863	2069	1978	2181	3675
17	7068	9042	16050	3858	2579	2081	11990	1809	1950	1956	2269	3464
18	13830	7856	16.630	3856	2584	2071	4.806	9.965	1.909	4634	2311	3348
19	10890	6.963	36070	3.931	2.627	2013	3274	5422	1882	7672	2219	3951
20	8. 166	6037	36500	3653	2583	19.33	2350	4384	1878	10850	3356	4001
21	7.779	5411	20440	3626	2.444	1936	3156	3743	1834	5479	3.139	3.919
22	18.550	4964	15990	3600	2396	1894	3630	2889	1.942	3.510	2.772	4760
23	29.260	4.785	17880	3344	3042	1819	3931	2525	2319	3012	2601	5100
24	38.230	4696	12720	3090	3068	1.826	3392	2323	2418	2762	2531	11650
25	24940	4566	24520	2934	2705	1946	2956	2185	2196.	3042	2421	9090
26	28440	4288	14280	3080	3676	6678	2845	2154	2326	3691°	2.374	13030
27	17810	4199	9.528	3297	3.219	2920	2350	2251	2.197	5396	2291	17060
28	12630	4238	8895	3019	2.708	2491	22.59	4729	2627	3980	2691	9267
29	-1690	4012	7860	2912	3204	2356	2225	3238	2135	2972	11720	6515
30	9543		6809	2928	3.381	2145	2201	2543	2382	2608	30750	5138
31	10200		6319		3.737		2493	2439		2427		4569
Avarage	17380	9779	14820	4953	3290	2674	3319	2768	2255	3211	3689	7336
I ownst	62.8	4012	3512	$29^{\circ} \mathrm{F}$	2396	1819	2141	- 809	1808	1966	2071	3348
Heyhest	38850	19110	45.530	13260	7206	6628	11990	9365	4956	10850	30750	17060
Peak flow	43610	21000	47360	16100	8001	11230	17.310	14740	5949	13150	36000	24.790
Day of peak	2	1	15	2	4	26	16	i8	2	20	30	26
Vonthly inia' (milhon cu m)]	4656	2450	3969	1284	881	693	889	741	584	860	356	1965
Runoff (mm) Rantall (mm)	75 102	39 37	64 106	21 40	14 55	11 43	14 101	12 74	9 43	14 52	15 42	32 46

Statistics of monthly data for previous record (Oct 1937 to Dec 1987 -incomplete or missing months total 1.8 years)

Mean	Avg	10330	9136	6611	4931	3817	2818	2774	3063	3306	4561	7818	3391
fows.	Low	1966	2376	2:83	1491	0904	1125	0737	0641	0918	1184	1302	24.30
	(year)	1964	-965	1938	1938	1946	1967	$19 / 6$	1976	1964	1947	1942	1947
	Hingh	21950	19860	18580	11760	22720	6996	12750	8405	16990	15970	22540	22250
	(year)	1939	1980	1947	1386	1969	1954	1968	1971	1957	1954	1954	1965
Runotf	Avg	44	36	28	21	16	12	12	13	14	20	33	40
	Low	8	9	9	6	4	5	3	3	4	5	5	10
	High	95	80	80	49	98	29	53	36	1i	69	94	96
Rainfal.	Avg	61	49	51	49	60	59	68	72	66	69	77	69
	Low	18	2.	18	2	18	13	16	6	5	15	13	10
	Hig̣h	:45	145	127	98	194	142	i68	175	169	137	170	140

Summary statistics	for 1988		For tecors procecting 1988		$\begin{gathered} 1988 \\ \text { As \% of } \\ \text { pre. } 1988 \\ 111 \end{gathered}$	Factors affecting flow regime	
			- Flow influenced by groundwater abstraction and/or recharga.				
Moan flow (m's ${ }^{-1}$)	6302				5698		- Abstractron for public water supplies.
Lowest yearty meen			2752	1964		- Augmentation from effluent returns.	
Highest yearly mean			9209	1354			
l ownst morthly mean	2.255	Sep	064 :	Alg 1976			
thighosi monthy mean	i) 380	Jon	22720	May 1969			
Lowest disty mrean	1808	12 Sep	0394	17 Aug 1976			
Highast daily mean	45.530	14 Mar	84950	3 Fob 1946			
Pask	4) 360	15 Mor	212400	8 Fab 1946			
10\% excoedance	14.010		12.490		112		
S0\% oxceodance	3346		3261		:03		
95\% exceedance	1917		1133		169		
Annual total (mition cu (ti)	199.30		17980		111		
Annuel tunotf (mm)	320		289		111		
Annua rainfal (mm)	741		756		98		
[1941.70 rainfon averago (mm)			165;				

Station and catchment description
Natural river section Accuracy of early rating curves not known and gaugings losi However. calibration came under suspicion in 1972 and previous records, particularly low flows. deemad to be of little value Low flow rating then changed suveral times before station raved aOM downstream and shallow vee bed control constructed in August 1978 High flow rating (above 40 cumecs) has yet to be defined Flat catchment includes western half of Crewe. Post glacial deposits over (mostly) Keuper Mart.

Measuring buthority NRA.NW Firs: year 1959
Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	AP9	NAY	sun	JU.	Aus:	S:P	0 O	Nov	$0!C$
1	3.2300	253700	8458	44880	8428	10650	2831	31060	85490	26080	i6800	35100
$?$	339800	160800	9390	42190	14650	8378	12790	23.910	78810	20810	14630	23880
3	166500	97090	35230	32.620	18230	7394	6029	18950	$74 / 80$	17740	12.850	73.860
4	127200	74730	13730	25880	28620	7110	5418	15810	77580	16690	12. 10	10/200
5	71060	73840	10640	20200	22420	6383	9947	13650	48420	28180	$\cdot 1290$	49950
6	149700	51.790	21090	17270	12560	5797	10460	11970	29970	156900	10540	30050
7	62060	50110	16610	15220	10030	5257	43490	10310	23010	137500	10080	23050
8	49810	56880	12.810	14110	8957	$47 / 3$	25920	9179	18910	147900	15300	27860
9	39600	150 अ)	33180	-3620	8890	4466	$1) 080$	9481	16200	89530	¢0 240	43950
10	67400	121.100	30250	12200	8.091	4306	77490	8366	15970	65130	68190	28610
11	59090	57860	19940	11260	7453	3926	19920	11260	27350	36290	38860	22230
12	44630	38910	30960	10310	7640	3659	18640	69220	21920	32450	26160	18850
13	50970	125000	33550	9.450	7381	3508	80350	72940	16400	32420	25840	16520
14	29820	87490	33580	8810	6598	3402	29490	81.430	12860	23620	18820	14920
15	25220	59490	152.700	8594	5909	3300	19570	37610	11280	19190	15980	13670
16	22870	52.680	67510	12130	5491	3236	36350	20220	10220	16820	14100	15020
11	30.750	32890	31960	25060	5:76	3220	$42: 30$	15090	3405	14940	36690	14020
18	56310	29310	38260	30860	5126	3208	20520	73410	8701	24430	51190	62420
19	61240	25.990	33030	37310	5024	3.133	21180	139000	8103	35890	22000	81920
20	39.760	21660	50620	19270	4916	2165	20240	108100	7652	$486: 0$	19530	28:40
21	40420	18630	37460	. 7600	4667	2674	62530.	49920	7459	27000	16330	28260
22	28.490	16520	56360	14750	4.416	2624	62.860	28040	7747	19570	13840	142200
23	53890	15.030	73700	12600	4833	2531	65310	21060	46860	16540	13200	290100
24	209800	13120	92500	10850	9212	2446	62920	21080	88960	20460	14590	19170
25	59560	12000	40040	3846	12.620	2520	45670	41850	- 28500.	25630	17130	52470
26	37240	11140	40300	9448	10890	4315	32990	41260	93060	146800	14230	301300
27	28030	10730	31.880	8894	14670	3265	23320	145400	77170	94300	12250	106200
28	23350	10580	62890	8.366	8146	2745	178300	43.670	154900	51420	55490	74840
29	24140	9311	42370	7716	6602	2584	99860	113400	66110	2980	44270	43650
30	52680		38240	7414	11560	25.32	119100	100600	36310	23040	86340	3:950
31	93130		31.170		17.280		54190	78.050		19120	80	25980
Aversgo	81190	60000	41630	17290	9881	4206	42800	47270	43610	47270	25960	61550
Lowest	22870	$931{ }^{\circ}$	8458	74:4	4416	2446	2837	8360	7459	14940	- 0080	13610
Hingrest	339.800	253.700	152.700	44880	28620	10650	178.300	145400	154900	156900	86340	301300
Peak flow Day of onak M(x):hy to:al	$\begin{gathered} 490800 \\ 2 \end{gathered}$	$\begin{gathered} 403200 \\ 1 \end{gathered}$	$\begin{gathered} 213900 \\ 15 \end{gathered}$	$\begin{gathered} 80640 \\ 1 \end{gathered}$	61.260	$\begin{gathered} 13190 \\ 1 \end{gathered}$	$\begin{gathered} 388100 \\ 28 \end{gathered}$	$\begin{gathered} 295200 \\ 27 \end{gathered}$	$\begin{gathered} 312300 \\ 25 \end{gathered}$	$\begin{gathered} 302300 \\ 8 \end{gathered}$	$\begin{gathered} 160800 \\ \cdot 0 \end{gathered}$	$\begin{gathered} 589100 \\ 23 \end{gathered}$
(mition Cu m)	217.50	15030	11150	4482	2648	1090	11460	:26 60	11320	12660	6129	16480
Rumolf (mm)	221	153	113	46	27	11	117	129	115	129	68	168
Rainfar (mm)	236	131	156	55	77	22.	245	196	146	155	90	178

Statistics of monthly data for previous record (Jan 1959 to Dec 1987-incomplete or missing months total 4.0 yeara)

Station and catchment description
Bazin typa compound broad-cresied weir operated after 10/6/77 as full range station Previously used for low/medium flows. nigh tlows from Halion 3 km d/s. High flows inundatu wide floodplain. Transfers to river Wyre under Lancs. Conjunctive Use Scheme Major abstractions for PWS. Headwaters rise from Stap Fell and the Pennines Mixed geology Carbonferous Limestone. Silurian shales. Millstone Grit and Coal Measures, substantial Orift cover. Agriculture in valleys: grassland rising to peat moss in highest areas.

073010 Leven at Newby Bridge

Grid reference: 34 (SO) 367863 level stn. (m OO): 3730

Catchment area (sq km): 247.0 Max alı in OO): 873

Daily mean gauged discharges (cubic metres per eecond)

day	JAN	FEB	MAR	APR	may	UN	0	AUs,	5×8	OCT	MOV	$0 \times C$
1	56630	31.800	4.075	17.630	7.228	4.979	0941	27.760	40630	26830	14.780	16.170
2	69600	44470	3458	17.830	8.333	4269	0900	23440	41.460	20930	12620	14360
3	10540	45050	5615	16.590	8688	4416	1.194	20.700	38100	18300	10650	14290
4	63.750	40840	5868	15040	9557	4345	1074	16.970	34.310	16.370	8.980	19910
5	53.800	35.260	5.293	13.260	9.707	3840	0856	13.790	31.550	16600	7.653	20350
6	51.240	30600	5907	11200	9295	3417	0888	11450	28.210	24190	6681	18.510
7	46.710	26810	6414	10270	8438	3412	1.005	9497	24.130	35.530	5.881	16250
8	41010	25.280	6156	9.542	7.367	3291	1.344	7.556	20.530	40890	5596	15.200
9	50.750	26560	6891	8319	6.666	2.354	1863	6.770	17360	43050	7.785	15450
10	53210	35470	7.769	7394	5771	1875	8 302	5884	14970	38.160	13030	14920
11	46.610	36000	7.738	6.860	5.251	1844	10830	5380	13970	32460	17.230	13650
12	39330	31.660	9.949	6358	4990	1579	11330	8218	13610	27360	16.910	12.370
13	34810	33.780	11.260	5435	4341	1.319	18.890	10.920	12940	23.530	15710	10.950
14	78450	39.900	11810	4734	4233	1079	20.220	22.720	10.990	17510	14.170	9697
15	23750	38060	19200	4775	3556	0968	18040	26370	9395	14100	12520	8584
16	20.120	34.230	26.530	6817	2.955	1.067	17350	23470	8.159	12.040	11020	8042
17	18660	28.170	24690	10860	2832	0942	18740	19850	7016	10250	10960	7378
18	18780	23.870	22250	18300	2378	0846	17.380	20140	6041	10.520	13260	8.881
19	21.480	21150	26.700	27200	2072	0869	15520	21520	5177	17480	12360	16400
20	22520	18330	21480	25680	1899	0667	13.390	23060	4.591	20340	12270	17080
21	21910	15580	24.880	24220	1847	0.707	12460	23040	4. 163	19790	10330	16260
22	19880	13170	22.720	21.640	1809	0641	11.650	20420	4598	18030	9098	19870
23	19280	11600	24380	18470	1946	1179	11660	17660	12220	16070	8.120	44700
24	26390	9803	25650	15680	2775	1068	11410	15340	21130	15.360	7372	45030
25	29.690	7899	24220	13.240	4.807	1.247	14.340	15.930	24840	15390	6763	39770
26	27080	6821	22300	11750	5737	1608	16400	17800	31390	25940	6.094	42960
27	23720	5961	20450	10150	5663	1 384	. i 5570	25490	30.340	29:80	5565	47030
28	20360	5791	20500	8493	5087	1137	21.970	28090	35120	27580	10470	42.120
29	1/930	4586	20840	7.190	4914	0988	36550	26840	36240	24040	13200	37.150
30	17630		20340	6461	4950	0961	40560	29230	31790	20570	16450	29530
31	21260		18510		5.109		39.130	36710		17410	\checkmark	24800
Average	34740	25. 120	15800	12.710	5168	1943	13300	18.710	20500	22450	10800	21.540
Lowest	17630	4586	3458	4.734	1809	0641	0856	5.380	4.163	10250	5565	7378
thighest	70540	45050	27480	27200	9707	4.979	40560	36.710	41460	43.050	17230	47030
Paak llow	13550	46770	28390	21830	9944	i1 240	$42: 20$	37670	43220	44590	17770	48280
Doy of peak Monthly total	2	3	20	19	4	1	30	31	1	9	$1 ;$	23
(malion cu m)	3304	6294	4232	3295	1384	504	3563	5029	5313	6012	2801	5769
Aunots (mm)	377	255	171	133	56	20	144	204	215	243	113	234
Rantal (mm)	392	200	226	130	98	32	309	291	238	254	138	252

Statistics of monthly data for previous record (Jan 1939 to Dec 1987)

Station and catchment description
Lovel record since 1939 from four different sites at Newby Bridge All flow records from 1939 to 1974 combined into a single sequence Since 5/5/7 1 compound Crump wair - increased sensitivity at low flows. Full range Just d/s of Lake Windermere - highly regulated. compensation flow Major abstractions for PWS. sewage effluent from Ambleside Predominantly impervious, Borrowdate Volcanicis in norti and Silurian slates in south. Boulder Clay along river valleys. Mainly grassland, very wooded in lower reaches

Measuring authority NRA.NW First year. 1967

Gid reference 35 (NY) 390571
Levelstin (m OD) 700

Catchment ared $\{\mathrm{scq} \mathrm{km}$) 22865 Max alt (m OD) 950

Daily mean gauged discharges (cubic metres per second)

day	JA,	${ }^{1} \mathrm{fB}$	MAR	APH	NAY	JUN	Ju.	Aut;	Srp	0.1	vov	rr:
1	194000	382300	25780	44360	23760	20000	11120	72310	i06 200	46640	38470	83260
2	358800	265800	25.730	44420	26820	17270	11930	56370	106300	39960	34410	50100
3	294000	172000	35900	42350	$36: 10$	26600	11.670	45890	90.020	35530	30930	60240
4	157400	12.3200	28660	37620	36410	22860	12490	38790	81120	32480	28480	169110
5	110700	102300	25060	33730	41180	17730	16.250	33590	75560	35430	26700	76060
6	328.600	91000	30770	30930	27.210	15750	16.410	29.410	58600	90970	25030	55940
7	138.700	85960	30390	28970	22740	14560	17910	26130	49580	119400	23800	46250
8	- 02800	107800	27300	29180	29270	13690	27090	23780	42720	96650	22870	45240
9	203500	23420	48760	29810	27660	13130	25200	23000	37.250	104300	32410	56360
10	149400	209900	57440	27450	21680	12950	35710	21220	34090	70050	41880	50900
11	121700	105400	46200	25300	19700	12680	26860	27480	43120	55800	54350	40460
:2	107500	80360	91610	23600	19250	12.370	3. 10	26.280	39580	59670	39900	35030
13	124000	140400	57850	22520	18570	12020	66190	26380	32720	66630	37300	32700
14	85550	150200	53830	21480	17500	11.690	59610	41.970	27310	50210	32410	30450
15	73790	121100	126300	20980	16520	11370	40730	43740	24360	40890	28990	28660
16	63900	123300	116300	71500	15860	1. 110	41920	31030	22540	36030	26840	28360
17	61630	85860	61620	25300	15.520	11.160	62.300	26.700	21220	32.700	2.6870	27580
18	73540	75450	56180	84010	15290	11160	44010	44120	20180	31460	38220	34390
19	13.100	61550	14860	81130	14990	1.010	33490	65390	19.180	4:480	33080	67570
20	85110	59070	67590	48650	14790	10930	2800	93130	- 8460	62910	31160	46220
21	72440	52390	55490	56390	14350	11040	40370	56190	18110	57.820	29170	46470
22	60450	47310	50000	42. 130	- 13910	10800	1:7.100	38510	18.560	43250	26030	81710
23	68590	42830	$6) 580$	36120	$13.9 \% 0$	10530	105700	$32 \cdot 20$	50120	37990	25070	282700
24	216000	38440	76480	31.520	16780	10300	53.780	30760	91760	49820	27550	98630
25	108900	35450	62.520	28500	19880	10700	59450	38.160	57930	49030	35220	79910
26	77650	32440	52880	27900	19000	12680	66500	39860	109000	122200	31090	165200
27	63740	31130	51050	26130	24080	11760	57060	82880	56190	126900	26.570	164800
28	55380	30330	56640	25410	18830	11080	217.800	48240	130200	84150	42090	$98 / 60$
29	54100	21800	61260	22340	17010	10770	249200	68520	83.560	59990	49690	76870
30	64480		53810	2:530	17810	10640	139200	87580	57230	49800	: 26400	60760
31.	113500		51420		21070		110300	109000		43080		31410
Average	126500	107600	55930	34730	21210	13340	59240	46100	54090	60430	35790	73290
Lowes:	54700	27800	25060	20980.	13.910	10300	11.120	21220	18.170	31460	22870	21580
Highas:	358800	382300	126300	84010°	41180	26600	249200	109000	130200	126900	126400	282700
Peak thow Day of neak Monthly total	$\begin{gathered} 4425000 \\ 6 \end{gathered}$	$\begin{gathered} 505800 \\ 1 \end{gathered}$	$\begin{gathered} 212800 \\ 15 \end{gathered}$	$\begin{gathered} 147400 \\ 18 \end{gathered}$	$\begin{gathered} 53.210 \\ 5 \end{gathered}$	$\begin{gathered} 49.120 \\ 3 \end{gathered}$	$\begin{gathered} 492800 \\ 28 \end{gathered}$	$\begin{gathered} 156.700 \\ 31 \end{gathered}$	$\begin{gathered} 173300 \\ 26 \end{gathered}$	$\begin{gathered} 159000 \\ 21 \end{gathered}$	$\begin{gathered} 147800 \\ 30 \end{gathered}$	$\begin{gathered} 410800 \\ 23 \end{gathered}$
(7:illor cum)	33890	26970	149.80	9002	5681	3459	15870	12350	14020	16190	9276	19630
Runotf (mm)	148	118	66	39	25	15	69	54	61	71	41	86
Pdinfal (mm)	189	112	106	56	61	27	22.1	122	107	110	60	115

Statistics of monthly data for previous record (Oct 1967 to Dec 1987 -incomplete or missing months total 30 years)

Station and catchment description
Velocity-area station Permanent cableway. Full range. Mosi floods contained in immedrato channel. Pre-1970 (when floodbanks constructed) bypassed via Caldew floodplain. Highly influenced by Ullswater. Haweswater and Wet Sleddale especially at low flows Rural excepi for Carlisle. Penrith and Appleby. Headwaters in Carboniferous Limestone of Pennines to E. impervious Lower Palaeozoics of Lake Disitict massif to W. moorland Extensive Boulder Clay covered Permo-Triassic sandstones in Vale of Eden Arable and graaing

079006 Nith at Drumlanrig

Measuring authonty: SPPB
Fust year 1967

Grad reference: 25 (NX) 858994
Level \sin (m OO) 52.20

Catchment area (sq km): 4710 Max alt. (m OO): 725

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	may	0 N	μ	aug	SrP	OCT	Nov	OEC
1	62.486	205.945	4488	31.145	5426	2518	1.799	8908	50213	8594	7826	11.356
2	75.947	80893	5656	17340	5.206	2522	1.649	6910	50007	11.424	6879	8576
3	69.032	45820	9001	11.521	5.840	10.911	1.332	6285	26.327	12329	6.157	50204
4	39443	30515	5587	9265	6766	6839	1.254	5686	49296	14816	5819	67443
5	32.635	22494	5.341	7.869	5.315	3.711	2281	5014	41.819	14115	5.538	31840
6	23.579	16.920	10979	6978	4330	2967	2.619	4441	57281	65.129	5.260	19630
7	16321	$16 \mathrm{B50}$	7.926	6362	3.984	2520	5033	3935	31.414	54.620	4986	15.076
8	19984	31868	7.018	6100	4031	2.065	4.811	3917	31.626	36949	22621	17081
9	60.703	101727	8251	6135	3697	1868	13133	4.223	18391	28196	27942	47293
10	22026	62427	8909	5885	3343	1717	18964	3636	14270	18.984	43.531	21088
11	39.331	32.711	29025	6588	3.118	1605	6.226	4825	12360	12.872	17022	14461
12	151068	21.846	32174	6100	2.920	1488	8789	25.545	17165	13094	13204	11334
13	79575	97114	13800	5450	2711	1415	20734	21587	10709	11.922	11886	9.775
14	62624	56.765	11449	4102	2.596	1347	11.061	65393	8043	$9 / 64$	9858	9.249
15	34.161	6411	99.167	5338	2385	1.306	6663	21.398	6846	1.972	8505	8804
16	22.562	33010	48342	9009	2161	1310	12818	11359	6083	7051	7.791	10154
17	18753	24026	20060	8554	2.146	1.308	15218	22048	5411	6402	14317	8.935
18	15491	31383	33521	46805	2.101	1.272	8841	77377	4943	20.808	11248	86827
19	80699	20.649	44905	23888	2040	1217	6760	41081	4655	45365	8507	68726
20	33.397	15105	20129	15238	1943	1211	5253	43425	4233	22436	7735	28102
21	21.421	12.124	17638	15.589	1886	1.249	27882	19938	4092	13437	6449	23184
22	16416	10.978	19825	10262	1798	1236	55483	12854	6916	12379	6684	25925
23	14288	9152	20462	8155	2190	1163	26998	10402	38218	10471	9.175	41182
24	60557	7480	27075	6893	6006	1093	35967	9477	29802	14196	12266	22.702
25	29.341	6735	17.105	6.133	5213	1073	47.872	31.171	35259	77062	9577	23329
26	27111	6552	3:009	6132	4.737	1.200	31011	9970	25008	71974	1572	52207
27	16087	6734	16842	5.328	4950	1113	20076	10651	14304	28236	9126	25933
28	12.718	6.052	29485	4822	3211	1071	25286	5338	14925	18703	22.858	17.623
29	17050	4896	21941	4391	3000	1050	28724	6132	13164	12002	17905	13164
30	54686		20616	4066	3028	1025	21772	32405	9521	10160	22449	10918
3:	62361		13791		2547		12807	21189		8850		9380
Average	41.680	37340	21340	10420	3569	2080	15.780	17970	21410	22.590	12360	26180
Lowest	12718	4.896	4488	4066	1798	1025	1254	3636	4092	6402	4986	8576
Highest	15*068	205945	39167	46805	6766	10911	55483	77311	5728 :	77062	43531	86827
Peak flow	184678	401.478	164011	119.968	10668	29581	113300	153.224	135262.	252.790	62528	144740
Day of peak	12	1	15	19	25	4	22	18	5	26	10	:9
Monthly total (milaon cu m)	11160	9357	57:6	270 :	9.56	5.39	4226	48.13	5550	6051	3203	101 :
Runotf (mm)	237	199	121	57	20	11	90	102	118.	128	68	149
Ra.nfall (mm)	278	168	188	78	64	30	2:1	194	'6:	: 61	92	175

Statistics of monthly data for previous record (Jun 1967 to Dec 1987)

Mean	Avg.	27.850	18.840	18220	9238	8.239	5486	5275	7877	14160	23420	27020	25540
fows	Low	9037	4288	4427	2457	1390	1489	0868	084.	1260	2164	5.268	12%
	(ruar)	1985	1986	1969	1974	1980	1984	1984	1984	1972	1972	1983	1971
	Pingh	61220	38900	33190	24190	27570	14660	13620	38280	39000	39200	49.350	55190
	(yoser)	1974	1984	1978	1972	1986	1972	1985	1985	1985	1967	1982	1986
Runot	Avg.	158	98	104	51	47	30	30	45	78	133	149	145
	Low	51	22	25	14	8	8	5	5	1	16	29	73
	High	348	201	189	133	157	81	77	218	215	223	272	314
Rainfoq	Avg	176	102	129	71	99	87	93	104	153	182	119	166
	Low	67	10	34	11	19	52	4 i	23	20	66	35	69
	High	398	170	217	175	230	163	165	302	247	301	285	345

Summary statistics

Maan flow (n's-')	:9380	
Lowest yeatly mean		
Highesi yearty mean		
Lowest monihly mean	2080	Jun
Highest month'y mean	41680	Ja
Lowest dady mean	1025	30 Jun
Highest daty mean	205.945	1 Fou
Pakk	401478	1 fob
10\% exceodance	4) 790	
50\% exceodance	11410	
95\% excoedance	1360	
Annual total (rwilion cu m)	61280	
Anmust runotf (mm)	1301	
Anmual caintall (mm)	: 800	
[1941.70 ramiall overage (mm)		

Station and catchment description
Velocity-area station on long straight reach at particularly well confined site. Cableway. Gravel and rock bed. Natural channel control. Sensibly natural flow regime. Afton Reservort has small influence

Measuring authority CRPB	Gridroference 26 (NS) $704579 \quad$ Catchmert area (sakmy 17042
Level stn im 00) 1760	

UAY	JAN	rif	MAR	APR	M.AY	UN	Jul	AUS	SE?	\bigcirc	NOV	Of C
1	201880	252446	17345	65592	25853	12477	7027	26851	65665	26452	23791	49754
2	266746	254.395	18.324	68313	25178	11926	7904	25535	112460	37517	21869	33546
3	192235	. 53526	26712	41106	27061	12665	6933	21005	70081	50786	20112	50023
4	130768	95162	19.459	33433	42921	14 i66	6462	20536	69236	42804	19668	170137
5	97806	14683	16754	29180	28720	12740	8024	18174	164.905	43871	19.243	80375
6	98883	61855	17485	26204	20.515	11119	8762	17911	125529	16806°	18339	49301
7	70398	62616	17565	23865	17248	10401	1984	16246	101261	114623	17514	$395 / 4$
8	58.358	86763	16301	25.126	17011	9.764	11617	14622	81.551	78397	19847	42559
9	110813	209.885	15867	23865	18910	3165	9985	16.158	53620	60611	$35.1 / 8$	59018
10	88291	184365	17398	22983	16441	8650	16:96	14392	41.284	42689	86491	51293
11	77.886	88953	20449	30284	15369	8631	15409	14510	38.675	34.704	54876	37364
12	148162	66475	41373	24588	15017	8492	11328	36698	49132	$41.20{ }^{4}$	35444	$30 / 84$
:3	142495	99893	29.7:6	21029	14135	8334	17148	33201	$322: 5$	39602	- 3036.3	27.353
14	97497	106427	25602	:8978	13206	7943	-4 173	1033.8	25811	35549	25785	25264
15	91938	.136507	112249	19.036	12355	7918	i4936	60960	22569	31496	23263	23772
16	68452	103809	127290	27565	11867	7827	13048	31655	20369	27443	22068	23880
17	59056	68110	$5413:$	27.681	12546	7750	23286	30617	18622	23394	21645	22809
18	54122	63073	45840	104466	12473	7624	17696	129186	17398	3: 687	24239	68159
19	125500	55101	115531	109885	12590	1450	14313	144882	16523	59334	23303	109130
20	84513	48527	57770	43383	12.354	7471	13126	139.363	16.228	71.769	22527	51248
21	63314	42638	55.163	46.611	:2.040	7528	15593	65496	15.965	47966	19375	48868
22	52999	38156	43321	34813	1175	1461	15831	41137	22 261	33485	1/9/6	64260
23	49239	33181	44.105	28.277	13274	7077	76680	32714	96.776	30547	20941	108867
24	$16 \cdot 908$	28190	89237	23 9*1	i6 35\%	6728	65948	29.77	78.337	37348	32185	66140
25	112641	25469	:02512	22043	19674	7251	77824	43274	71233	7865%	28866	66571
26	101536	23988	130176	21282	17393	7446	69833	32.917	89543	146610	22493	156128
27	62150	23.44^{*}	60133	19998	18489	6887	53965	32128	56.257	66767	20606	115014
28	48372	24646	82188	18164	$156 / 4$	1354	43672	26665	46621	43750	50595	67969
29	46.861	20851	64.929	16991	15081	6653	58586	28210	34689	34.576	71993	51680
30	46484		62853	16367	15414	6564	42928	45338	27.211	29189	108634	41.146
31	74872		45494		13707		33515	61618		26630		35783
Averag*	93320	87370	31400	34500	17440	8 182	27570	43690	56070	52840	31910	60290
l owest	46484	20851	15867	16367	11755	6.564	6462	14392	15.965	23 394	17514	22809
Hinghast	266746	254395	130.176	109885	42921	14166	77824	144.882	164905	. 168041	108634	170137
Park !low	303211	337411	193900	184361	51532	16021	98379	186921	$20604 ;$	216524	162030	203105
Day of peak	3	2	16	19	4	5	23	20	6	7	30	5
Montily total ('nill on ct. m)	26600	21890	13770	8943	4671	2276	- 7385	: 1710	14530	14150	8287	i6150
Runolf (mm)	156	128	81	52	21	13	43	69	85	83	49	95
Rainial (mm)	160	111	124	65	58	11	160	137	120	101	65	103

Statistics of monthly data for previous record (Ocr 1958 to Oec 1987)

Station and catchment description

Recorder moved to present position in Nov 1974 from opposite bank. Section is natural with steep grass and tree covered banks Velocity profile slightly uneven due to upstrearn bend. Control - piers of redundant rail bridge. 300 m d/s. Section rated by curtent meter to $34 m$. just below max. recorded stage Some naturalised flows available. Very mixed geology with the older formations (Ordivician/Silurian) to the south. Hill pasture and moorland prodominates but some mixed farming and urban development is found in the lower valley

085003 Falloch at Glen Falloch

Measuring a Fwst year: 1	hortit: CRP 10		Gerd reference: 27 (NN) 321197 Level sin. (m OD) 9.50							Catchment area (sq km): 803 Max alt. (m OOY 1130		
Daity mean gauged discharges (cubic meves per seconol)												
day	JAN	FEB	MAR	APA	MAY	U*	0	AUG	SEP	OCT	NoV	DEC
1	24.649	14577	0.725	S 216	1097	2362	0466	1423	30669	8.292	0901	1.507
2	10.124	29275	6.725	2.210	1112	2323	3728	1.253	20504	10704	0774	1.115
3	10467	15090	1.813	1497	1.769	3440	1281	1819	14.740	14114	0697	21563
4	2.745	2891	1.123	1 392	2098	1364	0.738	1290	18.162	12.241	1158	13.167
5	2.129	3113	3256	1.574	1261	0810	1.336	3.325	4885	5208	1053	3632
6	1522	1692	4202	2.381	1.167	4451	2.604	3.786	19075	32.569	0852	2107
7	1278	2.018	1646	2017	1262	2.386	3.176	1458	5583	26988	0763	12665
8	15252	4.181	6079	1627	1050	0.947	4.392	3.511	5924	19797	4624	13442
9	16.585	18315	2.854	1.532	0939	0623	16057	1.926	3622	4698	7.948	19822
10	4359	4667	4.789	3.195	0790	0486	15582	4966	4.225	1.972	9.678	5245
11	25.214	1.931	10680	3329	0.720	0417	11195	8217	12782	1.433	5073	4281
12	68158	2.181	2.514	1506	0972	0311	8602	7284	4.855	2867	14257	2061
13	6051	17.500	1491	1061	0874	0330	9991	7953	1.783	2323	6.092	1.569
14	5869	11.371	1273	6548	0809	0308	3521	15381	1.250	1.852	2.722	1277
15	8370	19304	9011	9460	0593	0288	1420	3420	1000	1.290	1.504	2043
16	4989	4624	2.899	12326	0461	0290	2225	1682	0.824	1.123	1242	1960
17	4142	9300	1492	6032	0392	0303	2651	7.935	0680	0963	2218	6818
18	2.516	14225	9285	16120	0381	0271	2204	8088	0685	16838	1248	21786
19	20015	7913	17042	3710	0378	0253	2.147	7.953	0.876	14672	1.195	6211
20	4.700	8.169	1492	2.985	0343	0264	1245	3214	0849	7421	1073	3805
21	2274	4505	5582	2858	0328	0491	1418	1423	1585	23 i4	0944	9564
22	1732	7039	9317	1408	0332	0333	5.293	1066	2.742	2319	0935	10317
23	1977	1.864	12496	1068	$1 / 18$	0278	5034	0961	8834	1788	1818	13188
24	7.439	1.302	39065	0930	5.788	0253	20375	11.004	3256	2932	1768	10710
25	4376	1.166	25286	1035	1 390	0233	54.166	5017	25.400	39861	1.224	23878
26	2466	1423	8368	1139	0398	0235	18336	6.671	10440	4987	0971	15246
27	1.278	3518	11908	0829	0888	0232	7.695	5693	19019	6103	5532	8017
28	1182	1.519	11007	0658	0650	0211	9119	15865	10.608	2.259	3.643	7494
29	1.395	0946	8203	0605	13050	0711	3729	20.740	2325	1419	5814	8071
30	1846		3627	0583	4728	0233	6933	33692	1.446	1223	4332	14787
31	3623		6431		3256		2. 159	13240		1054	-	3470
Averoge	8668	7.435	7669	3228	1664	0833.	7401	6815	7.954	8181	3068	8 820
Lowest	1.182	0.946	0725	0583	0328	0211	0466	0961	0680	0963	0691	1115
Highest	68.158	23275	39065	-6120	13050	4457	54166	33.692	30669	39861	14257	23878
Peak flow	121444	64315	65368	28555	31919	i1367	144533	69497	115.220	i98421	65812	76618
Day of poas Mon:hly total	: 3	3	25	15	30	7	25	31	7	26	13	26
(milion cu m)	2322	1863	2054	837	446	216	1982	1825	2062	21.91	795	2362
Runotf (mm)	289	232	256	104	56	27	247	227	257	273	99	294
	418	299	337	102	104	42	365	303	307	332	148	$3 / 3$

Statistics of monthly data for previous record fOct 1970 to Dec 1987 -incomplese or misaing manthe total 0.3 years)

Station and catchment description
Velocity-area station with artifcial low flow control (long broad-crested wer with rectangular low flow notch). installed 1975 Damage to part of the high flow crest results in a small discharge bypassing the central notch. All but very high flows contained. No significant absiractions or discharges. Very responsive flow regine. A very wet mountainous caichment developed on ancient metamorphic formations - some Dift cover

Grid roferonce :8 (VG) 942429 Leve: $\sin (m$ OD) 560

Ca:cnoment area (sq k:n) 137.8 Max alt. (m OD) 1053

day	- $A v$	1tis	MAR	$A^{\text {PR }}$	vay	Ju\	Jul	Al, ${ }^{\text {c }}$	\$8.F	OC	Kov	vec
1	47662	5162	4001	17917	1469	1523	0693	5703	8052.	12188	3328	$4: 53$
2	34361	16074	22746	6.781	1631	2.227	1716	5072	11812	$89 / 3$	2824	2954
3	16865	18414	11803	4702	1719	5528	1627	6839	38.468	9074	2282	2. 707
4	10297	8359	5882	3706	1536	5999	1452	5115	20756	6212	3456	1/988
5	5690	6.404	23801	3583	1500	3131	1752	3325	7968	5057	3846	. 2341
6	6619	6099	22. 042	3732	1567	2436	3451	11041	5072	20206	3152	11463
1	8002	4855	10 (665	3537	1556	3064	5.853.	5414	5516	129061	2505	20539
8	13216	7662	14229	$30: 6$	1.488	6394	¢ 345	4312	14654	68135	6540	44438
9	31435	20610	11.710	2954	1426	3822	4978	4119	9473	37920	10503	62815
10	19.192	28895	19267	6184	1456	2356	9096	5486	10313	10429	20091	23709
1 -	142.1	10249	32135	7072	- 379	- 744	35336	13251	$\cdot 7019$	5148	15622	25942
12	40396	5647	9954	4009	: 350	1436	19 605	20610	32140	4359	21645	18552
13	18162	21.847	b 262	2800	1339	1.140	8778	12252	13943	3640	11864	11.967
14	7309	20080	3817	9.558	1313	0968	7834	34092	- 6520	3220	8018	6693
15	13807	$41 / 26$	8694	25717	: 157	0851	4890	21615	4399	2152	5885	6024
16	12180	16160	8032	18152	1022	0.764	3970	7810	3480	2436	3968	1103
17	14419	14920	4798	12.915	0943	0719	4.377	- 5134	3677	2212	3734	13610
18	6341	22460	5076	7789	0939	0.673	5090	7486	4855	1397	3785	26098
19	9279	19117	24921	7893	0956	06.7	5.768	:0.895	5660	1777	3357	24224
20	9975	1851 i	- 4696	13352.	0921	0605	4136	14098	7204	-611	2800	: 0766
21	6683	13244	7.887	11713	0861	0593	3149	7880	6992	1609	2333	25045
22	5016 .	23158	- 6392	5159	0798	1.586	2461	5193	8294	$2 / 49$	3842	15423
23	4844	9027	. $940{ }^{\circ}$	3445	0767	1477	2.456	4477	8000	2.060	3995	$\cdot 42 \cdot 8$
24	11445	5471	28538	2816	08:2	1235	2404	18946	13982	: 722	4744	11864
25	10.513	4295	47840	2497	0.835	1.055	18367	25275	27003	1899	5339	29446
26.	5452	:1678	3.68*	2309	() $8 \cdot 2$	092.3	44581	9305	24024	3330	6243	28478
27	3139	13837	22091	2022	0786	0841	33110	12336	27747	26868	i6 083	13875
28	30.34	8.575	22188	1782	0751	0689	12029	14821	32333	1604 :	31892	67795
29	2621	5030	10653	1.614	0732	0590	9496	43.114	21617	6.532	11557	$5 / 987$
30	2776		5869	1497	3061	0556	8499	30974	9015	$50{ }^{\circ}$	7258	29138
31	5333		11898		2149		7897	13983		4078		14343
Average	12930	14050	15080	6674	1259	1851	9139	12780	13670	13190	7750	21340
Lowes:	2621	4295	3.817	1.497	0732	0556	0693	4119	3480	1609	2282	2707
Highas:	47662	41726	4)840	25711	3067	6394	44687	43114	38468	129067	3.892	67795
Pajk llow	61257	60985	57.975	31429	3.615	8289	72488	59744	57975	167153	44521	135211
Day of peak	1	15	25	15	30	4	27	25	4	7	28	29
Month'y total (millon c.s m)	3462	352 :	4038	i730	337	480	2448	3472	3543	3533	20.09	5717
Runolf (mm)	251	256	293	126	24	35	178	2.48	257	256	146	415
Ramiall (min)	293	325	328	111	41	50	238	332	269	283	192	450

Statistics of monthly data for previous record (Jan 1979 to Dec 1987)

Mean	Avg	13390	8068	11.620	6834	5269	4336	6055	7390	14540	13690	17430	18890
flows	Low	6148	1361	4103	2863	0.698	0921	2.426	2703	7086	6332	8851	5.646
	(years)	i985	1986	1980	1980	1980	1982	1984	1984	-986	1979	1985	1981
	High	28470	13610	18250	:3440	14120	8623	10530	15070	19100	24070	31120	30710
	(year).	1983	1981	1983	1984	1986	1980	1985	1985	1980	1983	1981	1983
Runat:	Avg	260	143	226	129	:02	82	118	144	2/4	266	328	367
	low	120	24	80	54	14	17	47	53	1.33	123	:66	110
	High	553	239	355	253	274	162	203	293	359	468	585	597
Rainfall	Avg	283	136	257	124	121	128	15.3	176	327	319	364	386
	Low	94	6	95	70	36	28	96	85	150	182	133	124
	High	553	225	397	217	295	275	248	321	425	532	629	546

Station and catchment description
40 m wide river section with floodbank on right benk. Any bypassing in exireme floods will be over 30 m wide floodplan on left bank. Unsiable gravel control requires regular calibration of low flow range. Adequately gauged to bankfull. Computed flows are 100% natural 70% of catchment drains through Loch Dughaill with litle additional surface storage Typical mix of rough grazing and moorland One of the wetter Highland catchments currently gauged

201005 Camowen at Camowen Terrace

Grid reference. 23 (iM) 460730 level sin (m OD): 6600

Caicłurent area (sq km): 274 First year: 1912

Daily mean gauged discharges (cubic metues per second)

DAY	JAN	feb	MAR	APR	MAY	sun	0	Al/G	SfP	0 O	MOV	DEC
1	18.961	20142	3609	9.529	2022	2208	0.946	1469	43637	2.542	2361	4535
2	20420	24.984	3789	6.192	1822	3764	1366	1.231	25.061	2434	2110	3.243
3	19.726	17.941	4855	4876	1611	14.699	1561	0990	8.038	3.615	1895	20817
4	11571	16011	4129	4339	1526	5.209	1.033	0874	14716	33.895	1.714	9962
5	11.183	10656	4778	4018	1534	2616	0819	0 O28	11860	i1025	1.713	5095
6	8330	8.705	8136	3571	1375	11.185	1200	0805	38.557	20616	1.697	5131
7	8357	12341	6883	3222	1297	11422	2605	0776	10259	12.805	1621	3952
8	11470	14.129	4917	2.955	1342	4246	2904	1078	6140	7794	3013	3893
9	10930	52665	20202	2853	1281.	2.619	3396	1546	4467	5.982	4041	5419
10	11672	17.102	7017	2795	1368	2050	5.802	2654	3898	4950	3618	3804
11	11.533	14000	6268	2614	1311	$1 / 42$	2842	3767	3496	4232	2573	3101
12	26218	15.171	7005	2589	1.314	1.608	2.183	5518	3794	10762	2.181	2654
13	$109 / 8$	18018	53187	2.538	; 088	1429	2352	5946	2.171	3521	2045	2507
14	7212	9944	26079	2175	0935	1313	1568	8932	2031	$b 991$	1856	2. 356
15	6432	19166	24623	2621	0872	1 169	1 299	3297	1668	4241	1.722	2206
16	9538	11748	:0681	3442	0920	1079	1 238	2240	1546	3442	1828	2038
17	i2 580	9703	7863	2430	0929	1101	1210	5098	1497	3039	6.629	1354
18	48409	1828	29618	2.159	0901	1008	1158	8452	1288	$3 / 14$	4592	9214
19	46967	6423	16590	2001	0833	1029	0977	9597	1127	1968	3268	10444
20	15993	5808	8932	9227	0670	1040	0871	6135	1073	3710	3498	13148
21	10127	5236	7351	6984	0529	0953	; 100	3598	0995	21000	2448	6169
22	8928	4626	10509	4865	0635	0857	1349	2485	4421	14128	1875	is 249
23	31998	43.30	:0968	3142	0861	0829	- 298	2162	:9390	8176	1615	10025
24	29032	3830	10843	2438	: 122	0773	4628	2024	8293	6332	1455	6787
25	11614	3830	6637	2293	- 006	0811	8007	3008	9202	27614	: 361	5803
26	8636	3862	6394	2202	; 139	0855	5616	4196	4856	-3691	: 390	99.95
27	6952	3508	6446	2040	i 025	0892	4092	4676	3905	6364	1679	6135
28	i2 128	3408	7360	1694	: 183	0811	6:06	5589	4405	4729	3912	¢ 256
29	33267	3475	9254	1692	2569	0763	6837	9435	3771	3916	10085	3909
30	19444		9443	1109	2576	0799	5743	5149	2895	3185	9917	3275
31	28753		6917		2981		3455	9448		2582		2943
Average	17270	12020	- 1350	3507	1309	2698	2166	3923	8284	8790	2995	6162
Lowest	6432	3408	3609	1692	0529	0763	0877	0116	0395	2434	: 367	1954
Higherst	48409	52665	53187	9529	. 2381	14699	8007	9597	43637	33895	10085	208:7
Patk flow	101396	67168	9048	:5/32	3593	30372	9 ; 39	50400	68924	61755	19649	38958
Oay of phask	19	9	13	20	30	6	9	31	6	25	29	3
Voninly total (:milior cu m)	4625	3012	3040	909	351	699	74°	10 bl	2:47	2354	776	1650
Runotf (Tm)	168	-10	111	33	13	25	21°	38	78	86	28	60
Ranlar (imm)	187	: 11	156	43	42	45	146	131	131	137	57	84

Statistics of monthly data for previous record (May 1972 to Dec 1987)

Vear.	Avg	11420	1963	7488	4352	3638	2645	$2 \cdot 10$	3582	4759	6102	8694	10640
flows	Low	7010	2862	2210	1701	0993	0911	0819	0845	0680	: 215	3422	5062
	(year)	: 985	1986	1973	1974	1980	1974	1984	1983	:9/2	1972	1983	:975
	High	16:70	: $/ 200$	12340	8687	7946	4954	5:14	: 1320	12730	$\cdots 260$	1s 270	17330
	(year)	-984	1977	$19 / 8$	1986	1986	1981	1985	1985	:985	1976	1979	1978
R3not	Avg	1:1	$7{ }^{\circ}$	13	41	35	25	21	35	45	65	82	104
	Low	68	25	22	16	10	9	3	8.	6	- 12	32	49.
	High	158	152	120	82	18	47	50	110	120	110	144	169
Rainfal	Avg	125	75	104	58	77	71	71	92	105	108	114	124
	Low	55	4	38	20	20	28	20	20	i3	55	45	39
	High	194	161	145	118	145	: 18	131	188	171	111	:82	183

Summary statistics

Sumary					$\begin{gathered} 1988 \\ \text { As } \% \text { of } \\ \text { pro } 1988 \\ 110 \end{gathered}$
	For i988		For incorce preceding 1988		
Mean fluw (:n ${ }^{3} \mathrm{~s}$'s	$6 / 53$		6164		
Lowes: yeatly mean			4102	1975	
Hyhins: yearty mean			1648	1978	
Lowest monitly muan	1309	Nay	0680	Sep 9772	
Hughest montrly mean	17270	Jan	17330	Dec 1978	
Lowest da ly mean	0529	21 Noy	04:1	23 Aug 1984	
Highest daly mear.	5.3187	13 Mar	138424	21 ()ct -987	
Preas	107396	19 Jan	i83468	$210 \mathrm{Cl} \mathrm{I}^{\prime} 987$	
:0\% exceedance	15260		13570		i12.
50\% exceadance	3864		. 4081		95
95\% exceedance	0882		$10 \cdot 5$		87
Annual to:al (milhon cu m)	21350		19450		$: 10$
Annual tunoft (rrm)	178		708		$\cdot 10$
Annual carifall (mm)	1270		1:24		$: 13$
. 1941.70 rashtall average (mm)			920.		

[^6]Station and catchment description
Velocity area station with cableway and weir control - informal broad-crested structure (for angling enhancement). dirnensions not known The net effect of abstractions for public water supply and augrmentations from effluent returns is inmor. Caichment geology mixed impermeable rocks (granite. schist and gneiss. and sandsione) overlain by subsianial deposits of ill. sand and gravel Largely upland given over mainly to grassland or heath

203010 Blackwater at Maydown Bridge

Station and catchment description
Velocity-area station with cableway and natural control a substantial porton of the catchment area is in'the lrisn Republic where some groundwater inay be abstracted but its hydrological significance is uncertain Geology Carboniterous Limestone and Millstone Grit with sandstones overlain by substantial amounts of til A piedominantly rural catchment with limitedafforestation Monaghan Town (pup 5 . OoO) - in the Irish Republic - is the only significant urban centre

Measuring authority. OOEN
Furst year: 1972

Grid reference: 24 (IC) 883193 Lovel stn. (m OO): 11.00

Caichment area (sq km): 98.9 Max alt. (m OO). 461

day	JAN	feb	MAA	APR	may	UN	Ω	AUG	StP	OCI	NOV	OfC
1	6.850	16.918	1.719	2315	1.180	0806	0319	1078	16717	1.235	1.627	2.996
2	5.434	14.466	2.373	1.719	0829	0.736	0371	0.755	8898	1104	1.506	2004
3	5662	5387	2.779	1.304	0885	3255	0538	0622	2847	2466	1440	15.772
4	2807	5420	2000	1086	0611	1.441	0368	0555	6.169	17.183	1344	7.084
5	2546	4507	2.541	0993	0578	0880	0305	0495	4400	5.175	1.434	5590
6	2.752	3331	4.687	0946	0527	6.202	0460	0404	14823	11.816	1305	5322
7	2.434	4670	4012	0900	0490	5.196	1.182	0376	3625	6411	1.201	3045
B	2.823	7.013	1.963	0738	0482	1.428	0925	0876	3500	4018	1.660	4837
9	3323	30939	4.448	0683	0474	0.774	0940	0924	2200	8737	7196	6246
10	2.305	8921	2472	0720	0448	0551	1.577	5.704	1847	4055	1980	2748
11	4.154	5588	3.751	0670	0485	0455	0791	4403	1652	2443	1472	2218
12	19584	8722	11.408	1176	0510	0424	1.464	5436	2429	5.841	1.231	1901
13	3807	10.598	14213	0958	0526	0390	1309	2.716	2265	4549	1.146	1.355
14	2284	5729	10.784	0741	0489	0360	1746	4989	1494	2.612	1086	1833
15	1.704	8.690	11.142	0763	0440	0329	0695	2190	1154	1890	1.016	1540
16	1.958	3406	3430	1029	0401	0291	2.230	1284	1028	1.638	0964	1427
11	3.925	2.626	2436	0780	0351	0254	1327	2021	0932	1471	7.166	1.373
18	20752	2.993	8.376	1.866	0401	0222	0830	3615	0868	10539	3785	9189
19	16558	2595	4546	1029	0421	0235	0575	7984	0808	12.316	2010	6488
20	4539	1946	2.674	0.937	0422	0277	0445	11540	0764	4266	1.790	9881
21	2892	1562	2.131	1007	0414	0274	0670	3213	0731	11.521	1334	4329
22	2530	1534	3659	0995	0448	0265	0745	1574	2154	7071	1312	3659
23	13000	1.440	4050	0778	0492	0255	0783	1349	6435	7081	1158	3953
24	13640	1.249	3124	0621	1768	0246	3858	1679	3263	4849	0856	3244
25	3675	1593	2268	0.532	0888	0238	3421	1731	3700	23881	0828	3043
26	3.726	1.784	2709	0525	0595	0234	1329	3171	2408	7216	0793	4488
27	2415	1.611	2827	0505	0516	0270	0752	2552	1567	3398	1285	3886
28	5049	1504	2.480	0465	0484	030%	0683	2013	2142	305 ;	2295	2622
29	21055	1596	3531	0484	0847	0279	0957	2313	2276	2400	5598	2.166
30	14275		3537	0543	1226	0252	1513	1932	1.580	2059	8292	1915
31	15675		2045		1257		1650	4241		1.809		1760
Avarago	6909	5.805	4326	0927	0635	0904	1121	$210:$	3489	5958	2021	$4 \cdot 46$
Lowest	1.704	1249	1719	0465	0351	0222	0305	0376	0731	1.104	0793	1.373
Heghest	21055	30939	14213	2315	1768	6202	3858	11540	16717	23881	8292	15772
Peak fow	86560	47527	25.780	2853	5065	18513	8561	29665	31110	62388	23677	28159
Day of peax Monthly total	18	9	13	18	24	6	24	31	1	25	$1 /$	3
(minton cu m)	1851	1454	1159	240	170	234	300	723	304	1596	524	1110
Runnif (mm)	187	147	117	24	17	24	30	13	91	161	53	112
Rairifal (mm)	221	178	154	41	51	63	: 64	:59	128	208	69	12.4

Statistics of monthly data for previous record (Dec 1972 to Dec 1987)

Mean	Avg	5369	3708	3132	1718	1.610	1017	0940	1527	2357	3675	3895	4623
Sows	Low	2351	0847	1384	0870	0282	0340	0190	0) 212	0421	1841	$08: 5$	2218
	(vear)	1985	1986	-973	1984	1984	1984	1984	1983	1986	$\cdot 373$	1983	1987
	High	7.902	7416	4.770	2991	3909	2.389	1775	5077	6371	6337	8405	1017
	(year)	$19 / 4$	1977	1982	1986	1981	1982	1973	1985	1985	1981	1982	- 1978
Runot	Avg	145	92	85	45	44	27	25	41	62	100	102	125
	Low	80	21	37	23	8	9	5	6	11	50	2.1	60
	High	214	185	129	78	106	63	48	; 37	167	172	220	192
Rainfal.	Avg	147	84	104	60	78	68	75	89	105	126	124	129
	Low	63	5	36	22	20	37	26	23	15	53	33	58
	High	212	-95	147	1:7	161	137	1.36	218	213	186	196	206

Summary statistics

					$\begin{gathered} 1988 \\ \text { As } \% \text { of } \\ \text { pre } i 988 \\ 116 \end{gathered}$
	for 1988		For record preceding 1988		
Mean flow [$\mathrm{m}^{3} \mathrm{~s}^{-1}$]	32.47		2791		
Lowest yearty mean			2165	1983	
Highest yearty mean			3599	1981	
Lowest moninty meen	0635	May	0190	Jul 1984	
Highest monity ingan	6909	Jan	8.405	Nov 1982	
luwest daly mean	0222	18 Jun	0080	7 Sep 1976	
Hinghest dirly mean	30939	- 9 Feb	76503	21 (xct 1987	
Palk	86560	18 Jan	159276	$210<11987$	
10\% exceediance	7695		6529		118
50\% exceedance	1854		1570		118
95\% enceectancat	0350		0300		117
Ar.mual :otal (milion eu m)	10270		8827		116
Annual sunoti (mm)	1038		892		116
Anmusa rantell (mm)	1540		1189		130
[1941.70 rainfoll avaregje (mm)]		

Factors affecting flow.regime

- Na:ural to w.thin 10% at 95% exceedance 'low

Station and catchment description
Velocity-area station. no cableway. Geology mainly basalt overlain by till with some peat Significant proportion of upland. predominantly grassland or heath. No urban areas or major industry.

Mesasuring authority NRA.T First year. 1883

Grid reforence 51 (TQ) 177698
Levelsth (m OD) 470

Catchrnent ared (sq km) 99480 Max alt. (m OD) 330

Daity mean naturalised discharges (cubic motres per ancond)

DAY	JAN	FEB	MAR	APA	MAY	JN	Mr	AUG	SEP	OCT	NOV	Dec
1	127000	352.000	105000	108000	70900	55400	43600	37400	$1 / 300$	36200	37500	94400
2	129000	359000	102.000	94800	79400	4) 200	44900	40000	91.000	38500	36700	78300
3	167.000	319000	107000	96600	75.900	47600	57800	40500	48400	33000	37900	52.200
4	160000	321000	105000	91900	76000	50900	73.100	40000	53.700	30.900	35600	84.300
5	203000	319.000	105000	84.700	72600	56200	71000	36800	43100	34300	38800	90900
6	264000	303000	102.000	88400	65.500	48100	69300	36300	38400	49000	36100	94000
7	232.000	284000	35600	86900	58800	49000	64000	35800	36800	45500	37100	58300
8	208000	288000	95900	81100	79000	44300	46400	33.100	37400	41600	37.600	59.700
9	172.000	274.000	91400	86.700	104000	52300	50800	32100	34700	94100	38600	50200
10	176000	258000	95500	87600	68300	55400	49300	32100	35300	104000	40600	54400
11	167000	231000	93400	81800	73700	57.600	49000	31600	32.100	63900	38.100	48300
12	148000	201000	90600	80600	69.900	44900	47900	30500	32600	78800	38600	47600
13	150000	183000	81400	76700	67500	48400	45400	30000	32600	76200	39500	48600
14	179000	207000	90600	74700	65400	43300	49800	31000	33700	75200	37900	46000
15	149.000	215000	105000	71300	62100	42800	46900	30500	27400	53400	37500	41800
16	125000	199000	143000	83600	54400	42300	44600	27400	28900	52400	33700	45900
17	115000	170000	137000	89800	53.700	41100	57000	30500	28400	42900	34600	44.700
18	108000	: 58000	115000	84200	51400	37000	56900	28400	29500	52700	38000	43300
19	-109000	:50000	12.0 .000	100000	54.000	40.400	45900	32100	30000	62100	36800	44300
20	112000	146000	154000	88500	54200	40500	50700	33700	30000	59600	35900	43700
21	119000	139000	235.000	79000	52200	40800	47100	36300	28900	58800	41100	43600
22	173000	:35000	198000	70500	48500	38100	42200	33.700	29500	42000	37900	38900
23	226000	132000	162.000	71700	50.700	36.300	53000	34200	31600	48200	38600	37000
24	251000	125000	146000	66800	49800	33700	48700	34700	31000	42300	36900	38400
25	323000	124000	148000	63.500	47800	34800	55600	32.600	36800	46900	37.300	37700
26	343000	i18000	144000	67600	50200	34200	47100	31600	37900	47900	36000	3890
27	331000	106000	134000	65400	48400	38400	44.100	28.900	38400	44900	35600	39300
28	349000	115000	102.000	69500	46.800	44500	46300	29500	54200	43400	35100	39100
29	394000	117000	114000	66500	49200	47400	46200	31000	52600	39700	40400	38100
30	402000		134000	66700	53800	40600	40200	30000	43700	38800	66300	38500
31	342000		124000		59000		39500	45300		38600		40900
Avaragn	208200	208.600	121800	80840	61.710	44450	50780	33470	39530	52120	38410	51.670
Lowest	108000	106000	81400	63500	46800	33700	39500	27.400	27400	30.900	33700	37000
Highest	402000	359000	235000	108000	104.000	57600	73100	45.300	91000	104000	66300	94400
Mon:hy total (mation cu m)	557.50	52250	32620	209.50	16530	11520	13600	8965	10250	13960	9956	13840
Nat isam runo4 (mm)	56	53	33	21	17	12	14	9	10	14	10	14
Rasiall (mm)	129	43	67	31	47	42	99			66	28	

Stasistics of monthly data for previous record (Jan 1883 to Dec 1987)

Mean	Avg	137900	134100		900	86500	65300	$490: 0$	35180	32710	34.400	50100	84170	112700
natised	Low	32.210	25100		320	26510	18200	13470	- 10760	11040	11230	15120	17750	22480
flows	(year)	1905	1905		944	1976	1944	1944	1921	1976	1898	1934	1921	1921
	High	332900	348100		900	199800	181300	178700	88840	88.780	139400	185300	339600	343900
	(year)	1915	1904		947	1951	1932	1903	1968	1931	1968	1903	1894	1929
natisod		37	33			23	18	13	9	9	9	13	22	30
runoft	Low	9	6		7	7	5	4	3	3	3	4	5	6
	High	90	88	10		52	49	47	24	24	36	50	88	93
Rantell	Avg.	64	49	5	3	48	55	53	58	64	58	73	73	72
	Low	14	3		3	3	8	3	8	3	3	5	8	13
	High	137	127	14		104	137	137	130	147	157	188	188	185
Summ	ary st	istics									rs affec	ng flow	gime	
(natural	sed flow								1988					
				19			For record		As \% of		arvoir (s)	catchm		
							ecoding 19		pre. 1988		influen	by groun	dwater	traction
Maan flo	W im^{3}								106		/or rech			
Lowest	yoarly	ean						1934			straction	p public	ater sup	
Highest	yesty	can				131		1951			w reduce	by indus	ıal and/o	
Lowest	montht	mean						Hul 1921			icultural	straction		
Highest	monthl	mean				6370		Adr 1947			gmentat	from su	ace wate	and/or
Lowest	doily m				16 A		70	Jul 1934			undwate			
+highest	caily m		402		30	ก 1065		ov 1894			grmentation	from ef	ent retur	
10\% exc	cesdanc		166			172			97					
50\% exc	coedan								91					
95\% oxc	ceedanc								168					
Annual	cotal (m	mon cu m]	260			245			106					
Annual	unot!								106					
Annusal	ainfall	nm)							93					
11941	1.70 rs	fas avorag	(mm)											

Station and catchment description
Ulsasonic gauging station commissioned in 1974 : multi-path operation from 1986 Full range. No peak flows pre- 1974 when dmis derived irori Teddington weir cornplex (70 m wide). significant structural improvements since 1883 Some underestimation of pre-1951 low flows. Substantial baseflow - sustained from the Chalk and the Oolites Daty naturalised flows available for POR-allowing for major PWS abstractions only Diverse topography. geology and land use which has undergone important historicial changes

Part (ii) - The monthly flow data

The introductory information (measuring authority etc.) is as described in Part (i).

Hydrometric statistics for the year

The monthly average, peak flow, runoff and rainfall figures are equivalent to the summary information following the daily mean gauged discharges in Part (i). Because of the rounding of monthly runoff values the runoff for the year may differ slightly from the sum of the individual monthly totals.

A 'comment' - appearing at the end of the station entry-may be used to draw attention to any particular factors influencing the accuracy of the data for the featured year or, more generally, to indicate that the published hydrometric data are subject to review.

Monthly and yearly statistics for previous record

Monthly mean flows (Average, Low and High) and the monthly rainfall and runoff figures are equivalent to those presented in Part (i). An asterisk indicates an incomplete rainfall series; the first and last years of data are given in parentheses. Due to the rounding of monthly runoff values, the average runoff for the year derived from the previous record may differ slightly from the sum of the individual monthly totals. The peak flow is the highest discharge, in cubic metres per second, for each month. For many stations the archived series of monthly instantaneous maximum flows, from which the preceding record peak is abstracted, is incomplete, particularly for the earlier years, and certain of the peak flows are known to be of limited accuracy. Where the peak value - in an incomplete series - is
exceeded by the highest daily mean flow on record, the latter is substituted; such substitutions are indicated by a ' d ' flag. An examination of the quality of the peak flow figures is underway and significant revision may be expected as this review proceeds. The figures are published primarily to provide a guide to the range of river flows experienced throughout the year at the featured gauging stations.

Factors affecting flow regime

Code letters are used as described in Part (i)

Station type

The station type is coded by the list of abbreviations given below - two abbreviations may be applied to each station relating to the measurement of lower or higher flows.

B Broad-crested weir

C Crump (triangular profile) single crest weir
CB Compound broad-crested weir. The compounding may include a mixture of types such as rectangular profiles, flumes and shallow-Vs and with or without divide walls
CC Compound Crump weir
EM Electromagnetic gauging station
EW Essex weir (simple Crump weir modified with angled, sloping, triangular profile flanking crests) in trapezoidal channel
FL Flume
FV Flat-V triangular profile weir
MIS Miscellaneous method
TP Rectangular thin-plate weir
US Ultrasonic gauging station
VA Velocity-area gauging station
VN Triangular (V notch) thin-plate weir

003003 Oykel at Easter Turnaig

1988

Measuring authori First year 1977	HRPB				refere Level	$\begin{gathered} 290 \\ \\ 1 \mathrm{mOU} \end{gathered}$	$\begin{aligned} & 14030 \\ & 1560 \end{aligned}$				chmen	rea (sc) ax alt $\{m$	$\text { n\} } \begin{array}{r} 3307 \\ \text { ODJ } 998 \end{array}$
Hydrometric statistics for 1988													
	JAN	Fra	MAR	APR	MAY	πN	Ju.	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg	19.590	24550	26240	7894	3392	2753	9259	16320	16820	16:00	13520	32 280)	15738
($\mathrm{m}^{\text {'s }}{ }^{-1}$) Peak	116.86	15041	14444	3407	3430	6746	10499	28892	10599	23803	13909	36773	367.73
Ruroft (mm).	159	186	213	62	27	22	75	132	132	130	106	261	1505
Roinfall \{mm	203	226	231	67	50	48	166	208	- 170	$1 / 4$	122	294	1959
Monthly and yearly statistics for previous record (Nov 1977 to Dec 1987)													
Mean ${ }^{\text {- }}$ Avg.	25.840	14660	20220	9695	6681	6331	1178	9950	22090	24520	28200	24290	16.704
Hows Low	13550	2376	6.649	5445	1067	0.751	2853	2337.	-4.540	7328	14420	8245	13019
($n^{3} s^{-1}$) H.ģn	43.980	25370	40740	$\cdot 7710$	14380	14140	15690	22590	31870	41100	49380	38210	20.249
Puak flow ($\mathrm{r}^{3} \mathrm{~s}^{-}$)	51066	46646	47084	20827	12964	:6990	19107	19676	42338	84750	407.70	39415	84750
Runotf (mm)	209	108	164	76	54	50	63	81	173	. 199	221	191	1594
Ru ntal (mm)	$23:$	34	187	88	84	99	107	129	228	238	268	226	1979
Factors affec:ing flow regime. N Station type. VA										1988 runofl is 94% of previous mean raintall 99\%			

004001 Conon at Moy Bridge

Merasuring authorily HRPE
Grid reference. 28 (Nid) 482547 Level sin (m OD) 1000

Catchment area (sqk:ㄱ) 9618 Nax alt (m OD) 1052
Hydrometric statistics for 1988

		JAN	f68	MAR	APH	MAY 16760	JUN	JU10	AUG 41470	${ }_{\text {SEP }}$	OCT 65990	NOV 53950	OEC 78730	Year 51.137
Flows	Avg	67510	66990	73.290	49430	16760	17020	28610	41470	53340	65990	53950	78730	51.137
($\mathrm{m}^{3} \mathrm{~s}^{-1}$	Peak	15624	11854	13827	11632	6207	6238	6977	9965	12104	20129	137.71	18572	201.29
Runolf (mm)		188	175	204	133	- 47	46	80	115	145	184	145	219	1681
Ra:n!all (mme)		193	214	225	59	44	37	163	180	146	182	117	290	1850

Monthly ánd yaarly statistics for provious record (Oct 1947 to Dec 1987 -incomplete or missing months total 57 years)

Noan Avg	66800	56950	54810	40400	32080	22030	20220	26980	40280	5.3240	63670	72230	45.769
flows low	31690	25810	18670	- 3940	:0940	8861	2959	8162	12510.	23090	24.090	27970	29.991
(m's'') High	138300	121000	127900	75730	53050	47560	36690	45140	94870	94030	121100	165100	59.238
Peak ikw (m)'s	40956	46720	36290	20390	23220	16520	24741	25490	223.72	. 32480	41185	107600	1076.00
Runot (mm)	186	145	153	109	89	59	56	75	109	148	172	201	1502
Rainial (mmi* $\cdot(1953-1987)$	189	122	157	104	107	96	107	123	170	21.3	208	227	1823
factors affecumg Station lype VA	low regim									$1988 \mathrm{n}$	off is 112 ainfall 10	\% of pre \%	ous mean

007002 Findhorn at Forres

Measuring authority. HRPB Firsi year 1958

Grid reference 38 (NJ) 018583
Level sin (m OD): 960

Caichment area (sq km) 7819 Max alt. (I OD). 941
Hydrometric statistics for 1988

		JAN	$1 \mathrm{i}_{3}$	MAA		MAY	Juis	π	AUG	SEP	OC:	NOV	DEC	Year
Hows	Avg	20600	$345^{\circ} 0$.	35650	29430	16460	4106	il 040	24470	14550	21380	12820	22320	21.661
(m's ')	Peax	9338	9974	107.92	11786	. 4191	743	17619	22980	13942	22435	4350	7698	22980
Runotf (mm)		71	111	i22	98	56	14	58	84	48	94	42	. 79	876
Rainfall $\{\mathrm{mm}$)		:29	116	129	68	48	22	132	138	78	;35	66	83.	1144.

Monthly and yearly statistics for previous record (Oct 1958 to Dec 1987)

Mean Avg.	24.200	19530	22.660	21380	15910	10430	9104	13760	15370	20780	23660	25240	18.553
flows Low	9429	5259	8615	5.560	3836	3321	2744	2478	2863	3.547	9300	8332	11.994
$\mathrm{fm}^{1} \mathrm{~s}^{-1} \mathrm{l} \mathrm{Heg}^{\text {h }}$	51190	44700	54320	54110	41990	41900	24650	58840	37870	49540	39710	61.550	25.482
Payk flow ($\mathrm{m}^{\prime} \mathrm{s}^{-1}$)	36111	53770	41000	17347	29432	43020	46914	241000	86111	51203	46520	6169	2410.00
Ruant! (min) -	83	61	78	71	54	35	33	47	51	71	78	86	749
Rainfall (r.m)	103	62	84	63	74	78	85	, 04	102	110	118	108	1091
Facturs alfecting	w regir	N								1988 'un	14 is 11	of pre	Ous mo

Station type VA

008007 Spey at Invertruim

Measuring authority: NERPB
First year 1952
Hydrometric statistics for 1988

	JAN	FEB	MAR	APR	MAY	תN	Jut	AUS	St:
Flows Avg.	8.542	7232	7213	5148	2329	1426	4700	4812	5153
[m's-1. Peak	5015	3408	3961	6190	602	287	6004	2156	1659
Rumoti (mm)	57	45	48	33	16	9	31	32	33
Rainfall (men)	202	149	203	73	36	23	193	162	136
Monthly and vearly statistics for previous record (Oct 1952 to Dec 19871									
Mean Avg.	8.719	6309	6.438	4170	3665	2972	2833	3357	4746
Hows Low	3314	1953	2722	2075	1413	1123	1042	0852	1454
(m's ') High	23280	21020	20600	$7 \cdot 26$	6210	6.269	502:	7545	14650
Puak flow ($\mathrm{mr}^{-3} \mathrm{~s}^{-1}$)	-53.70	- 9820	27450	60.85	4.392	4593	1283	7500	10800
Runotf (mers)	58	38	43	21	25	19	19	22	31
Risniay (mm)	155	98	117	72	90	77	85	101	135
Factors affecing flow regime: H Station irpe: VA									

Grid reference 27 (NN) 687962.
level sth (m OD) 24250

Catchment area (sq km) 4004

Max alt (m) OD) 951

		Jan	FE8	MAR	APP	MAY	UN	Ω	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg:	11.200	17.530	18770	12.090	6.968	3.903	4394	4977	5.655	13.950	8.995	7.844	9.669
($\mathrm{m}^{3} \mathrm{~s}^{-1} \mathrm{l}$)	Peak	74.69	5069	6620	4503	2346	7.90	1645	3644	32.11	8247	3666	1804	8247
Rumott (mm)		68	99	114	71	42	23	27	30	33	85	53	48	692
Rainfall (mms		134	93	123	85	48	40	100	96	93	157	74	46	1089

Mcan	Avg.	12.840	10.670	11.590	10420	7.836	5283	4.763	6.188	5.953	8.913	10.920	11.900	8.935
Sows	Low	3688	3052	3391	4314	3631	2610	1766	1621	2092	1.934	3389	3504	5.233
(m's ${ }^{-1}$)	High	24.440	19.720	22.230	21.500	21930	11.130	9.841	19.110	16.040	28210	29.130	23.590	12.437
Peak flow	$\mathrm{n}^{2} \mathrm{~s}^{-1}$	120.50	84.90	11800	1613	183.70	15310	14640	23650	15570	22190	177.70	157.10	238.50
Rumoft imm		78	59	70	61	48	31	29	38	35	54	64	72	639
Rautal (mm		95	63	16	70	74	67	78	94	84	98	107	94	1000

Factors affectung flow regime. N
Station type: VA

Measuring authorily: NEFPPB
Fust year: 1959
Hydrometric statistics for 1988

Montilly and vearty statistics for previous record (Oct 1959 to Dec 1987)
Grid reference: 38 (N) 532464
lovel sin. (m OOf: 81.80
$\begin{array}{llllllll}\text { Montity and vearty statisics } \\ \text { Mean } & 12840 & 10670 & 11.590 & 10420 & 7.836 & 5283\end{array}$
(ms s^{-1}) Hagh 24.440
cak low (m² m^{-1}
Rumot iman
$\begin{array}{ll}78 & 59 \\ 95 & 63\end{array}$
70
16
70

1988 runoff is 108\% of previous mean ramfal 109\%

Catchment area (sq km): 441.6 Max alt. (m OD): 775

010002 Ugie at Inverugie

1988

Measuring authority: NERPB
First year 1971
Hydrometric statistics for 1988

	JAN	Ft8	MAR	APR	MAY	ON	Jn	AUG	SfP	OCT	Nov	DEC	Yoar
Flows Avg	9.151	7.509	1990	5.237	4.906	2.389	2.104	2562	3.501	8.913	5.822	4971	5.423
($\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	6703	2203	2896	1745	25.61	4.38	472	537	1752	2960	1156	960	67.03
Runoff (mum)	75	58	66	42 ,	40	19	17	21	28	73	46	41	528
Rainfar (mm)	115	62	87	59	51	11	86	74	81	128	67	32	853
Monthly and yearty statistics for previous record (Fob 1971 to Dec 1987)													
Mean Avg	8467	. 6444	5504	4180	3138	2244	1930	2092	2393	4426	6620	1812	4.598
fows Low	2285	1.999	1593	1246	1542	0913	0904	0764	0791	0.869	1942	1413	3.003
(m)'s) High	13.270	14320	9460	7541	6.197	4372	4487	6404	7092	8075	18350	13280	6.445
Pesk fluw (m's ')	6104	8356	3661	4084	3164	1300	2379	2075	38.80	8772	10610	9552	106.10
Runot (mme)	70	48	45	33	26	18	16	17	19	36	53	64	447
Risulall [mm]	83	45	67	51	51	54	60	63	83	82	93	83	815
Factors affecting flow reg.me: \mathbf{N} Station type VA										1988 runof! is 118% of previous mean rainfall 105\%			

Gid reference: 48 (NK) 101485
Level stn. (m OD) 8.50

Catchment area (sq km) 325.0 Max alt. (m OD): 234

$$
\text { rainfall } 105 \%
$$

\qquad

011001 Don at Parkhill

1988

Measuring authority. NERPB
first year 1969
Hydrometric statistics for 1988

		JAN	rca	MAR	APR	NAY	IN	JUL	AUG	SEP	OCT	vov	DEC	Yea'
Flows	Avg	32650	40890	45240	29480	17280	9016	10710	12220	14940	34290	24040	20) 140	24.204
($\mathrm{m}^{3} \mathrm{~s}$,)	Peak	15540	82.55	10920	7535	3934	16.33	3033	4127	4815	13460	5934	5477	15540
Runot: (ח:sm)		69	80	95	60	36	18	23	26	30	72	43	42	601
Ra.nfall (mm)		132	76	10)	75	43	30	;06	89	78	150	70	33	989

Monthly and yearly statistics for previous record (Dec 1969 to Dec 1987)

Mean Avg.	31.550	28300	21840	25700	17080	12490	$10 / 20$	12120	11.300	18740	22860	28100	20.535
flows Low	9259	6557	6274	9174	9.544	6424	5128	4644	5019	4.567	6856	7738	10.694
(m)'s if High	48660	52.240	48950	44750	34770	27.560	27530	40150	36470	51340	86230	50960	29.185
Peak flow (m) ${ }^{-1}$)	18590	13100	143.70	107.50	9206	10160	11810	27740	107.20	27310	21320	15450	277.40
Runoff (mm)	66	54	59	52	36	25	23	26	23	39	47	59	509
Rainldu (mmm)	98	56	74	64	65	61	71	74	76	83	90	83	895
Factors affecting Station type VA	v regır	N								$1988 \mathrm{ru}$!f is 11 ildill 1	of prov	us mean

013007 North Esk at Logie Mill

Measurimg authority. TRPB
First year 1976
Hydrometric statistics for 1988

	JAN	FEB	MAR	APR	MAY	NN	Ju	AUG	SEP	OCT	M M	OfC	
Flows Avg	36150	30.540	25570	22430	12240	5078	12230	16160	21.170	47.060	19730	15950	22.084
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) Peak	162.62	10446	9091	23038	8234	1061	5971	6262	342.79	45276	13/.44	5238	452.78
Runotf (mm)	133	105	94	80	45	18	45	62	75	173	70	59	957
Roinfal (mm)	180	77	97	78	66	25	155	121	99	202	87	28	1215
Monthly and vearty statistics for previous record (Jan 1976 to Dec 1987 -incomplete or missing months total 0.1 years)													
Mean Avg	24290	25200	30370	23140	16450	9975	6806	10220.	11290	28020	26090	31740	20.291
Jows Low	13.770	9795	16450	9071	6.179	3.684	2993	2548	3622	4099	5281	17440	15.314
. [m's 'j High	48590	45670	42750	34150	36420	24300	18060	35810	30540	80410	91170	59.880	24.926
Peak ! 1 W ($\mathrm{m}^{\prime} \mathrm{s}^{-1}$)	24080	8831	16910	11.40	:8080	27190	13300	19920	19600	27469	46210	39810	46210
Runutf (:mm)	89	84	111	82	60	35	25	37	40	103	93	116	877
Rainfal (:nm)	116	78	113	60	83	69	12	82	107	135	114	134	1183
Factors affecting flow regime. S P I Station type: VA										1988 runoff is 109% of pretious mean rainfall 104%			

013008 South Esk at Brechin

Meastifing authority I RPB First year 1983
Hydrometric statistics for 1988

Station type VA

Grid :eference 37 (NO) 600596 Level sin (m OD) 1800

Catchment arta \{sq km) 490 Max alt (m OD) 958 ramfa!l : 09%

014001 Eden at Kemback

Measuring authority TRPB
Girid reference 37 (NO) 415158 Level siri (m OD) 620

Catchment area (sq km) 3014
Hydrometric statistics for 1988

	JAA	F:3	MAR	APR	MAY	Juv	-6L	AU;	SiP
Fows Avg	8798	7130	4767	5200	3216	1786	1864	3041	283°
(m's'-) Peak	3244	1902	220°	5269	689	244	32.6	1140	84 :
Rumblt (пıT)	77	58	37	44	28	15	16	27	24
Rantal (mm)	120	47	73	93	58	21	136	98	59
Monthly and yearly statistics for previous record (Oct 1967 to Dec 19871									
Mean Avg	6910	6294	4978	3696	3136	2276	1519	1698	2059
'bws Low	2546	2170	, 408	1:99	1406	i 077	$09: 4$	0199	0749
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{Hrgh}$	10890	19460	8096	7243	8335	665°	3390	6038	11260
Peak flow [m's ')	5905	1131	5489	2827	4748	4193	2670	1719	-3364
R, nots (min)	60	50	43	3.	27	19	13	15	17
Rairfall (mm)	83	53	64	45	68	55	58	59	76

Factors affectirg flow regime $S G E I$ Station lype VA
\qquad

016004 Earn at Forteviot Bridge

1988

Measurng authorty: TRPB
First year: 1972
Hydrometric statistics for 1988

		JAN	FE8	MAR	APR	May	20N	ra_{24620}	AUG	SEP	OC7	NOV	O6C	Yeat 33908
f fows	Avg.	65.720	51.050	33600	28290	14770	5.090	24620	28410	34610	61.980	28.700	29.910	33.908
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$:	Peak	22632	141.31	131.68	162.22	32.63	11.55	10351	111.53	16631	23828	9890	95.64	238.28
Punotf (mm)		225	164	115	94	51	17	84	97	115	212	95	102	1371
Roinfall (mm)		217	128	148	90	65	19	225	176	134	217	35	110	1624

Monthly and yearty statistics for previous record \{Oct 1972 to Dec 1987 -incomplote or missing months total 03 years)

Mean	Avg.	45040	34.640	35.760	19.740	15.500	10240	7554	10.900	19640	30650	43050	45.900	26.526
flows	Low	19.630	16070	12310	8389	4.906	4095	2.658	2456	5.302	5984	15.120	15060	15.508
($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	Hegh	85.510	58640	58620	33.190	47.200	20070	18350	46660	55680	59.340	89750	79160	33.594
Poak thow	m^{-1}	27750	21460	194.10	10600	15520	114.90	142.30	169.70	27180	24120	32860	23869	32860
Punotf (mm)		154	108	122	65	53	34	26	37	65	105	143	157	1070
Roiniall imm		158	93	136	55	88	73	79	98	157	147	$1 / 3$	172	1429
Factors affecting thow regune: PH Station type VA											1988 runoff is 128% of provious mean rainfal 114\%			

Grid reference: 37 (NO) 043184
Level sts (m OD): 7.80
Catchment area (sq kmy: 782.2
Max alt. (m OO): 985

017001 Carron at Headswood

Measuring authority: FRPB
Grid reference 26 (NS) 832820 Level stn (m OD): 1710

Catchment area (sq km) 1223 Maxatt (m OD) 570

Hydrometric statistics for 1988

	JAN	feb	MAR	APP	MAY	JUN	ת	AUG	SEP	${ }^{(C T}$	NOV	DEC	Yeat
Flows Avg	5723	6325	4371	3444	1.523	0839	2611	4942	4428	8372	2188	3286	4.006
$\left.(m)^{-1}\right)$ Peak	4441	59.66	3505	3961	778	260	1984	8448	2121	6750	1866	3988	8448
Runotf (mm)	125	130	98	73	33	10	67	108	94	i83	46	72	1036
Rainlal (mm)	195	142	193	\$10	81	15	218	223	157	2.15	113	142	1804
Monthly and yearty statistics for previous record (Aug 1969 to Dac 1987)													
Mean Avg	5488	3549	3506	1919	1.570	1240	1060	1450	3.062	3841	5694	5500	3.158
tows. Low	1943	1018	1232	0801	0.590	0580	0549	0557	0461	0424	1412	1084	2108
(m's-') Hegh	10890	7578	7463	3165	5724	2.834	4650	8092	16720	10210	9759	10.470	4.575
Peak frow (m's ${ }^{-1}$)	13030	6320	9283	4362	5135	33.74	6538	6172	12430	12480	10580	14790	147.90
Rumotf (mm)	120	71	77	41	34	26	23	32	65	84	121	120	814
Rainfall (mm)	165	97	131	11	91	87	85	105	157	160	191	173	1513

Factors affecting flow regume: SE
Station iype VA
\qquad

018005 Allan Water at Bridge of Allan
Measuring authority FRPB
First year. 1971
Hydrometric statistics for 1988

020001 Tyne at East Linton

1988

Measurting authortiy. FRPB
First year 1961
Hydrometric statistics for 1988

	JAN	HEB	MAA	APR	MAY	JuN	J川	AUG	SEP
Flows Avg	6311	4882	2878	2090	1.790	0788	1611	1356	1002
(m's ') Peak	5719	3918	2355	2284	828	122	1401	1013	188
Runoff (mm)	55	40	25	18	16	7	14	12	8
Raintall (mm)	92	36	55	56	49	16	134	78	5:
Monthiy and yearly statistics for previous record (Jan 1961 to Dec 1987)									
Mnan Avg	4699	3806	4065	2.955	2495	1528	1.295	1721	1.864
Hows Low	1032	0783	0531	0644	0926	0586	0500	0468	0461
(m's-1) High.	11540	8624	8789	7824	11.600	6142	4393	9855	8430
Puak flow ($\mathrm{n}^{3} \mathrm{~s}^{-1}$	9302	3939	6617	5088	11970	$59 \cdot 2$	70 ' 8	11270	9) 84
Ruroff (T.m)	41	30	35	25	22	13	11	15	16
Ranfall (mm)	64	40	59	48	61	54	61	78	69

Factors alfocting flow regime. EI
Staton type: VA

Grad reterence 36 (NT) 591768 Level sin (m OD): 1650

Catchment area (sq kin) 3070 Max alt (m OD): 528

OCI	VOV	Of:	Yodr
1817	1839	1977	2.354
654	3031	9.13	5719
16	16	17	242
59	50	22	698
2237	3666	3756	2.838
0.450	0523	0582	0709
1000	11210	8405	4.146
82.71	12750	5202	12750
20	31	33	292
67	73	61	735
1988 runoff is 83%	of prevous mean		
ranfall	95%		

1988

Cetchmen: area (sq k.n). 1500.0 Max alt (m OD) 839
Firsi year 1961
Hydrometric statistics for 1988

		JAN	1te	NAH	$A P R$	Nay	.JUN	Jul	AlG	SE ${ }^{\text {P }}$	OCt	V)V	OfC	Yeat
Flows	Avg	83760	73270	29550	25.750	17100	9323	35820	32820	38820	44.140	25530	37680	37.744
(m's ' ${ }^{\text {) }}$)	Peak	24067	39159	8043	17801	4) 30	1641	14957	10791	15530	24845	9853	14767	39159
Runott (mm)		150	122	53	45	31	16	64	59	67	79	44	67	796
Ramfall (mm)		177	112	98	62	66	22	197	134	115	116	67	85	1251.

Monthly and yearly statistics for previous record (Oct 1981 to Dec 1987)

Muan	Avg	54310	42430	43520	29.870	24.950	16700	14530	21810	30150
flows	Low	14300	10480	14.930	9896	7605	7413	6362	5017	4.572
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$	High	110700	81860	101000	57330	64330	32820	40970	81400	95510
Peak flow	$\mathrm{m}^{\mathbf{3}}{ }^{-1}$	67860	48390	47010	24890	18280	12600	34260	44430	49630
Runotf (mm		97	69	78	52	45	29	26	39	52
Rainfall \{m		120	77	101	69	88	79	85	105	120

factors affecting flow regime $S P$
Station type. VA

G:rd reference 36 (NT) 498334 Level stn (m OD) 9450

Catchment area (sq km). 2100
Max alt (m OO): 633

Grid reforence 26 (NS) 786980 Level stn (mOD) 11 20

021018 Lyne Water at Lyne Station

Messuring authorily: IWRP Fust year: 1968				Grid reference: $\mathbf{3 6}$ (NT) 209401 Level sin. (m 00): 168.00					Caichment atea (sq kmi: 175.0 Max ali. (m OOH: 592				
Hydrometric statistics for 1988													
	JAN	HEB	- MAR	APA	may	10 N	M	AUG	SEP		M MV	OtC	Year
Fkows Avg.	7.061	5.863	2.398	2544	1.940	1.149	2.192	2813	3.236	3490	1953	3369	3.214
(m's ${ }^{-1}$): Peak	30.15	22.74	9.15	1224	5.90	232	12.39	17.58	1701	14.77	1485	921	30.75
Punat (mm)	108	84	46	38	30	17	34	43	48	53	29	52	581
Ramfal (mm)	127	16	85	52	57	21	153	106	102	82	50	61	978
Monthly and yearty statistics for previous record (Oct 1968 to Dec 1987)													
Mean Avg.	4.841	3.993	3.590	2.646	1.797	1.451	1.202	1.400	2013	2887	4.338	4432	2877
Hows Low	1682	2.158	1357	1.127	0882	0.787	0.713	0605	0591	0597	0.977	1618	1428
$\mathrm{fm}^{3}-1 / \mathrm{High}$	8.774	8698	7.325	5028	4104	2653	3.884	5364	10440	5684	8611	8374	3.704
Posk (low (in's ${ }^{-1}$)	4750	41.55	2765	2146	1736	1646	31.72	2077	58.74	4049	5360	3798	58.74
funott (mm)	74	56	55	39	27	21	18	21	30	44	64	68	519
Reintal (mm)	89	55	81	53	64	65	69	75	95	96	102	91	935
Factors affecting flow regime. S P Station type. VA										$1988 \text { run }$	H is 112 nish 105	of peev	us mean

021022 Whiteadder Water at Hutton Castle

Measuring authority: TWRP First year 1969			Grid reference: $\mathbf{3 6}$ (NT) 881550 Leved stn (m OO) 29.00							Catchment area (sq km). 5030 Max alt. (m OD) 533			
Hydrometric statistics for 1988													
	JAN	FEB	MAR	AP\%	may	JN	vr	AUG	SEP	OCT	Nov	OtC	Year
Flows Avg.	16660	10620	6289	4561	4554	1951	4463	3524	3602	8406	6502	6381	6.513
($\mathrm{n}^{3} \mathrm{~s}^{-1}$). Peak	23358	6248	3281	4779	2942	296	3367	1649	: 157	3280	5899	5036	23358
Punoff (imm)	89	53	33	24	24	:0	24	19	19	45	34	37	409
Rainfat (mm)	117	40	62	49	56	2.2	162	63	67	83	71	23	821
Monthly and yeasty statistics for previous record iSep 1989 to Dec 1987-incomplete or missing months tatal 0.1 vears)													
Mean Avg	1:420	10290	9913	7776	5.490	3658	2360	3.114	32.04	4961	1899	8748	6552
lows Low	2143	1357	1108	1.325	2113	1.403	1315	1162	0990	1001.	1100	134%	4.540
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	25990	27300	19220	15.850	24050	8835	6626	8184	16360	16670	27680	20660	8.847
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	26590	16090	133.90	10306	22620	7582	8485	181.10	10580	19000	279.80	10810	279.80
Runotf (mm)	61	50	5.3	40	29	19	13	17	17	26	41	47	411
Riunt31 (mm)	81	5:	75	53	67	60	58	70	69	71	76	12	803
factors affecung flow regime: S P Station type: CC										$1988 \mathrm{ru}$	If is 100 infall 102	ol prev	us mean

022006 Blyth at Hartford Bridge

1988

Measuring authority NRA.N
First year 1966
Hydrometric statistics for 1988

Grid reference 45 (NZ) 243800
Caichment area (sq km) 2694

		JAN	FEB	MAR	APR	MAY	JN	μ	AUG	Sf:	OCT	NOV	OfC	Year.
Flowe	Avg	5352	2.548	2297	0818	1044	0379	1800	0866	0418	3569	2833	3940	2.165
($\mathrm{n}^{3} \mathrm{~s}^{-1}$)	Peak	5944	879	875	110	300	147	2152	410	0.96	19.17	4386	4331	59.44
Hunofl (men)		53	24	23	8	10	4	18	9	4	35	27	39	254
Raın!all (mm)		83	25	51	31	60	13	158	58	49	92	70	3:	721

Monthty and yearly statistics for previous record (Oct 1966 to Dec 1987 -incomplete or missing months total 0.4 vears)

Mean	Avg	4707	3731	3789	2408	1441	0644	0405	0689	0.771	1649	2548	3658	2.199
frows	Low	0587	0398	0245	0359	0212	0177	0096	0067	0107	0111	0162	0214	0.537
($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$)	High	10150	7997	11090	6281	4948	1895	1250	2.963	2.695	9680	5735	12500	3.410
Peak flow	m^{-1}	14660	5952	15020	8031	3886	31.54	1295	6109	3002	5684	6920	12230	150.20
Runot: (m)		41	34	38	23	14	6	4	7	7	16	25	36	258
Hisinfall (m		67	45	64	46	57	54	55	71	64	60	66	64	713

ractors atfecting !low regime: E
Station type FV
1988 runoff is 99% o! previous mean rantall ${ }^{1} 01 \%$

023001 Tyne at Bywell

1988

Measuring authority NHA-N Firs: year 1956
Hydrometric statistics for 1988

	JAN	FEB	MAR	APR	MAY	JUN	Jut	AUG	SEP	0 OT	NOV	OtC	Yea:
Flows Avg	100400	70930	44590	24060	18600	8537	57990	32.130	36660	50730	37210	61430	45336
(m's']) Peak	93079	497:4	25801	12554	96.79	4931	1105.12	16251	186.15	19264	41720	62807	1105.12
Runolf (mm)	124	82	53	29	23	10	71	40	44	62	44	76	659
Rainfall (ram)	144	78	90	45	73	26	209	95	89	102	70	11	1098
Monthly and yearty statistics for previous record (Oct 1956 to Dec 1987 -incomplete or missing months total 0.2 years)													
Menn Avg	73470	56610	56130	39090	25730	18.630	18920	29.880	35550	47310	63130	69120	44.430
flows Low	19220	14360	20150	8461	7246	4910	5.199	3403	4155	4727	18090	23080	25849
$\left(m^{\prime} s^{-2}\right) \quad \mathrm{Hegh}$	150800	98140	150900	75620	60650	50010	46230	77.360	106600	147200	147000	112.000	63834
Peak flow ($\mathrm{m}^{\prime} \mathrm{s}^{-1}$)	152500	92210	147200	90560	47630	44030	758.90	156148	124300	158600	138200	131700	1588.00
Runoff (mm)	90	63	69	41	32	27	23	37	42	58	75	85	644
Rainiall (mm)	102	68	86	63	70	70	81	97	92	35	; 06	105	1035
Faciors affectiog flow regume S													

Station iype VA

Grid reference 45 (NZ) 038617 Lovel s:n. (m OD) 1400

Messuring authority NRA-N First year. 1962
Hydrometric statistics for 1988

		JAN	FE8	MAR	APR	May	AN	ת	AUG	SEP	OCI	NJV	OEC	Yeat
Flows	Avg	7.692	5557	2783	1788	1888	1.125	1911	1200	1094	2251	1877	2523	2.638
(m's-')	Peak	6729	2828	1.41	309	3.96	396	3065	27°	213	2390	1802	1759	67.29
Alnoff (mm)		85	58	31	19	2:	12.	21	13	12	25	20	28	345
Raintat (mm)		124	46	62	42	63	21	150	51	50	110	64	50	833

Monthly and yearly statistics for previous record (Nov 1962 to Dec 1987 -incomplete or missing months total 0.3 vears)

Mean	Avg	3687	3666	4580	3484	2351	1642	1369	: 630	1684	1994	3042	3.156	2.684
flows	Low	1148	0.9'1	0749	1149	0973	0844	0796	0656	0626	0791	0903	0882	1119
[$\mathrm{m}^{\text {3 }} \mathrm{s}^{-1}$ \}	High	7320	10490	-3570	7760	7851	4222	4087	4667	7.264	8.971	11780	7.826	5.573
Peak flow	$\mathrm{m}_{3} \cdot 1$	5499	34.46	9373	7025	3688	4591	2083	6069	3641	5887	9798	6302	9798
Runoff (mm		41	37	51	37	26	18	15	- 18	18	22	33	35	350
Rainlall \{m		82	58	76	61	64	63	60	85	73	68	89	71	856
Fecters \boldsymbol{y} Station	ecting	regir	P								1988	off is 98 fall 97	$o!~ p r e$	3 mean

024004 Bedburn Beck at Bedburn

Merasuring authority: NRA.N
Gris reference 45 (NZ) 118322 Leve; stn. (m OD) 10900

Cuichmer: area (sq km) 749 First year 1959 Max all (mOD) 53 !
Hydrometric statistics for 1988

Monthly and yearly statistics for previous record (Oct 1959 to Dec 1987 —incomplete or missing months total 02 years)

Factors affecting flow regime. N
Station typo CC
Comment. Runoff data tor 1988 under review

Gerd reference 45 (NZ) 16858
Leval sin. (m OD) 2930

Catchment area (sq km) 2421 Max alt (m OD). 560 ainfall 97\%

Measuring authority: NRA-N
First yoar. 1971
Hydrometric statistics for 1988

025020 Skerne at Preston le Skerne
1988

Measuring authority NRA-N
First year 1972
Hydrometric statistics for 1988

		JAN	FE8	MAR	APP	MAY	Jur	Mr	AUG	SfP	$\bigcirc{ }_{0}$	NOV	OEC	Year
Flows	Avg	2.351	1.438	1.170	0490	0511	0303	0748	0419	0299	0855	1.427	1.090	0926
$\left(m^{2} s^{-1}\right)$	Pesk	1282	676	468	107	294	065	560	208	1.28	880	14.41	12.31	14.41
Runotf (mm)		43	25	21	9	9	5	14	8	5	16	25	20	199
Rusifall (mm)		81.	38	56	31	52	27	122	51	38	78	72	25	671

Monthly and yearly statistics for provious record (Dec 1972 to Dec 1987 -incomplete or missing months total 0.3 years)

Moan Avg	1608	1240	1.422	1056	0717	0475	0395	0418	0360	0835	0.881	1.418	0902
flows Low	0486	0481	0293	0247	0199	0112	0.121	0086	0082	0093	0204	0553	0.558
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	3376	2731	4824	2734	2106	1004	1.125	0.943	0745	4290	1962	4658	1510
Puok flow ($\mathrm{m}^{3} \mathrm{~s}^{+1}$)	2008	1293	2658	19.20	1193	-654	1592	1369	933	2171	1740	2482	2658
Runoff (mm)	29	21	26	19	13	8	7	8	6	15	16	26	194
Rasnfall (mm)	60	36	58	46	54	56	47	65	61	57	58	60	658
Factors affecling	reg̣n	E								988	$\begin{aligned} & \text { is } 10 \\ & \text { fall } 10 \end{aligned}$	of pre	mean

026003 Foston Beck at Foston Mill

1988

Measuring authorlly: NRA.Y
First year: 1959
Hydrometric statistics for 1988

		JAN 0632	FE8 1.018	MAR 1.340	$\begin{aligned} & \text { APR } \\ & 1416 \end{aligned}$	MAY 0982	JUN 0660	JUL 0506	AUG 0387	$\begin{aligned} & \text { Srp } \\ & 0316 \end{aligned}$	$\begin{aligned} & \AA^{\circ} \\ & 0312 \end{aligned}$	NOV 0257	UEC 0246	Year 0.671
Flows	Avg	0632	1.018	1.340	1416	0982	0660	0506	0387			0257 0.36	0246 032	0.671 180
($\mathrm{m}^{2} \mathrm{~s}^{-1}$)	Peak	1.01	1.18	1.80	1.56	121	090	062	046	038	042	0.36	032	1.80
Rumott (mm)		30	45	63	64	46	30	24	18	14	15	12	12	371
Rainiall (mmy		79	72	89	26	47	45	32	49	42	66	52	20	679

Monthly and yearly statistics for previous record (Oct 1959 to Dec 1987 -incomplete or missing months total 0.6 years)

Factors affecting flow regime: \mathbf{N}
Station type TP
lovel stn (m OD): 6.40

Catchment area (si kin) 57.2 Max alt (m OD) 164

Measuring authority. NRA:Y
First year 1958
Grid reference 44 (SE) 35667
Level sin (m OD) 1420
Catchment ares (sq km). 9146
Hydrometric statistics for 1988

		JAN	FEB	MAH	APR	MAY	JUN	Ur	AUG	SEP	OCT	NOV	OEC	Year
Flows	Avg	51740	53280	24390	8480	9.212	3684	20130	18670	19010	31.750	16580	36080	24.396
($\mathrm{m}^{2} \mathrm{~s}^{-1}$).	Pesk	19440	23510	11230	2394	5695	8.34	15330	10490	113.10	12770	10400	19520	235.10
Ruroll (mm)		152	:46	71	24	27	10	59	55	54	93	47	106	843
Rainfall (mm)		175	140	98	39	65	22	176	117	87	:36	78	102	1235

Monthly and yearly statistics for previous record (Oct 1958 to Dec 1987 -incomplote or missing months total 0.5 years)

Menn Avg	33370	27720	27070	20630	13180	8.959	7754	11870	13870	21910	29340	32790	20.679
flows Low	4009	3886	10250	5674	3831	3024	2202	1287	1450	5856	7078	11330	12.946
$\left(\mathrm{m}^{2} \mathrm{~s}^{1}\right) \mathrm{Hagh}$	59590	84770	60330	40980	29500	21400	$16 \mathrm{i80}$	31600	. 33030	68480	$650{ }^{\circ} \mathrm{O}$	57370	27.066
Peak flow (m's ${ }^{-1}$)	53790	30730	41310	26330	17080	16150	14450	27190	29620	26650	28880	30410	537.90
Runofi (mm)	98	74	79	58	39	25	23	35	39	64	83	96	714
Rainfall (mm)	119	78	96	79	75	72	14	92	97	106	122	125	1135
Factors affecting Staton type B V	w regim	S P								1988	$\begin{gathered} \text { off is } 118 \\ \text { on'al } 109 \end{gathered}$	o of pre	s mean

027025 Rother at Woodhouse Mill

Measuring authority NRA.Y
First year: 1961
Hydrometric statistics for 1988

	JAN	frb	MAR	APR	MAY	MR	Јル	AUG	SEP	OC.t	Nov	DEC	Year
Flows Avg	11590	9113	7589	3.394	3318	2478	3225	2.018	$2093{ }^{-}$	4413	2133	3614	4.628
($\mathrm{m}^{\mathbf{s}} \mathrm{s}^{-1}$). Peak	4565	4280	3509	583	19.92	1644	1048	615	881	4080	2700	1055	45.65
Runoty (mm)	88	65	58	25	25	18	2.5	15	15	34	20	27	416
Raınfall (mm)	130	51	88	40	52	56	104	66	43	76	41	3 .	, 784
Monthly and yearty statistics for previous record 10ct 1961 to Dec 1987 -incomplote or missing months total 2.5 vears)													
Mean Avg.	6874	6780	6413	5259	3879	3026	1.950	2034	2171	2865	4110	6240	4338
flows Low	1287	1424	1830	1400	1569	1166	0934	0760	0712	0693	1023	2393	2.540
	13000	22440	14330	13.:60	:0.1:0	:0840	4907	3323	7.786	7600	8200	18140	6.364
Paisk flow ($\sim^{3} \mathrm{~s}^{-}$)	6030	7880	5321	7814	6140	10540	4563	335	4539	4174	505	9146	10540
Runotf ($\cdot \mathrm{r} \cdot \mathrm{n}$)	52	47	49	39	30	22	15	15	16	22	35	47	389
Rainta! (mm)	- 70	58	68	63	65	65	53	64	64	62	16	75	783
Factors affecting flow regime S PGEI Staton type: VA										1988 runoff is 107\% of prevrous mean ra:nidll 100\%			

027030 Dearne at Adwick

,	JAN	5 f	MAR	APR	MAV	- (N)	.JUI	AUK;	Srp	O:T	sov	DEC	\checkmark ear
Flows . Avg.	7558	7208	5222	3365°	2379	2007	2752	1863	1568	2770	1929	2/43	3.440
\{m's ${ }^{\text {d }}$, Peak	2685	3591	1365	749	566	924	1663	727	330	1477	1373	8.91	35.91
Rumoff (mm)	65	58	45	28	21	17	74	16	13	24	16	24	350
Rainfall (mm)	108	66	80	41	37	53	98	63	31	11	37	28	713
Monthly and yearly statistics for provious record (Nov 1963 to Dec 1987 -incomplete or missing months total 07 years)													
Mean Avg	4932	¢ 322	4828	4288	3126	2674	1881	1932	1907	2476	36.4	4368	3435
flows Low	1946	1648	1433	1.223	1303	1106	0806	0765	0873	0922	1029	1245	2.104
(m's if Higt	9214	14340	10750	8866	7.380	7299	3699	3054	5658	5171	1632	10980	5.264
Peak llow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	5176	56.32	4185	5842	4391	5558	3194	2740	2897	2656	5152	5665	58.42
Runotf (mme)	43	42	42.	36	27	22	16	: 7	16	2.1	30	38	349
Rain'a! (mm)	63	52.	61	57	60	58	48	65	59	5%	13	61	720
Factors affecuing flow rogime. GEI Stathon type: C VA										1988 runoff is 100% of prevtous meman rainfall 99\%			

027042 Dove at Kirkby Mills

Measuring abihority: NRA.Y
First year 1972
Hydrometric statistics for 1988

	JAN	Frb	MAR	APA	MAY	UN	Jut	AUS	SEP	OCT	Nov	DEC	Year
Flows Avg	1738	2053	2395	0865	0662	0342	: 021	0736	0761	0993	0995	: 051	1.134
(m's-'r. Peak	580	9.13	980	131	2.14	054	1230	267	434	333	555	406	12.30
Runoff (mm)	79	87	108	38	30	15	46	33	33	45	44	48	606
Rainfall (mm)	93	90	120	32	59	14	175	90	64	85	69	29	920
Monthly and yearly statistics for previous record (Feb 1972 to Dec 1987)													
Moan Avo	1747.	1614	: 692	: 273	0.864	0662	0501	0585	0678	1056	1199	1660	1.126
flows Low	0698	0541	0347	0376	0.368	0279	0211	0.161	0.245	0251	0543	0853	0.640
(m's.'l Migh	2861	3180	4701	2.915	1702	1099	0922	1397	2743	2683	2032	3237	1554
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	3745	3668	4093	27.63	3001	743	1933	32.36	5638	24.71	2385	5338	5638
Runoff (mm)	79	67	77	56	39	29	23	26	30	48	52	75	601
Rainfall (mm)	99	59	89	64	70	66	66	78	87	92	87	99	956
Factors affocting flow regime N 1988 runoff is 101% of previous meman													

Factors affocting flow regime N
Station type FV

Grid reforence: 44 (SE) 705855
Level stn (m OD) 3560

Ca:cnment area (squcr) 592 Max 3: (m OD) 429

027043 Wharfe at Addingham

1988

Measuring authority: NRA.Y
Frst year: 1974
Hydrometric statistics for 1988

	JAN	FEB	MAR	\triangle APA	may	NN	\%	AUG	StP	OCT	Nov	DEC	Yea
Flows Avg	33340	28360	15990	5.027	4028	1.722	12.740	18990	15010	18.170	9.784	23890	15.602
$\left(\mathrm{m}_{3}\right)^{-1}$: Peak	20130	21640	9208	22.12	2322	307	15610	17450	10830	96.89	7032	23690	238.90
Runotf (mm)	209	166	100	31	25	10	80	119	91	114	59	150	1155
Ramiat (mm)	221	164	146	41	67	24	217	191	126	142	BS	152	1576
Monthly and yearty statistics for previous record (Jan 1974 to Dec 1987-incomplete or missing months total 0.3 years)													
Mean Avg	25.190	15.830	20380	10380	7597	5.587	4402	8688	13010	18250	22930	24.930	14828
flows Low	11.760	5157	6.391	2.453	1623	1.740	1245	1.143	3.799	6422	8.263	5.912	10.487
$\left(\mathrm{m}^{3} s^{-1}\right) \mathrm{Hugh}$	32.590	28410	52490	21.970	16.100	10320	9543	26270	23450	37.310	32450	44680	19.543
Poak flow ($\mathrm{m}^{\left(\mathrm{s}^{-1} \text {) }\right.}$	50900	34200	552.60	20510	100.90	11470	16380	27380	244.90	37000	40000	32030	552.60
Punoti (mm)	158	91	132	63	48	34	28	54	79	114	139	156	1096
Ramiall (mm)	161	80	133	72	81	85	74	114	135	143	153	175	1406
Factors affecting flow regime S P Station Iype C VA										1988 runoff is 105\% of previous mean ranfal 112\%			

Grid reference. 44 (SE) 092490
Level stn. (m (0)): 79.70

Catchonent area (sq km): 4270 Max ati. (m OOf: 704 rainfall 112\%

027059 Laver at Ripon

Measuring authority. NRA.Y
Firsl year 1977
Hydrometric statistics for 1988

	JAN	fEB	MAR	APR	mar	JN	\cdots	AUG	Sff	OCT	Nov	OEC	Year
flows Avg	2.834	2.958	1015	0490	0614	0233	0696	0609	0546	1.736	1033	1487	1184
($\mathrm{m}^{3}-{ }^{-1}$) Peak	1662	1875	561	1.15	9.79	041	1126	834	627	11.85	865	1467	1875
Runots (mm)	87	85	31	15	19	7	21	19	16	53	31	46	428
Ranioll (mm)	140	106	69	36	61	26	150	99	61	131	66	56	1001
Monthly and yearly statistics for previous record (Nov 1977 to 0ec 1987 -incomplete or missing montins total 0.2 vears)													
Moan Avg	2043	1494	1885	; 360	0802	0565	0.251	0431	0329	0739	1333	1999	1.102
flows Low	1.136	0659	0721	0453	0272	0241	0098	0096	0224	0167	0419	0848	0.837
(m's m^{-1}) Hagh	3.265	3090	3850	3.063	1881	1264	0480	0952	0618	1.587	2400	3786	1211
Peak flow (m's ${ }^{-1}$)	2406	1685	2265	3695	13.32	1675	629	1148	1021	1108	1501	39.14	3914
Runofi (mxm)	63	42	58	40	25	17	8	13	10	23	39	61	397
$\begin{aligned} & \text { Ra.n'all (mm) } \\ & \text { (1978-1987) } \end{aligned}$	104	55	104	65	65	68	44	88	73	90	100	123	979
Factors aflecting flow regime $S P$ Station type C										1988 runoff is 108% of previous mean ramlal 102\%			

027071 Swale at Crakehill

Measuring authority: NRA.Y
First year 1980
Hydrometric statistics for 1988

Monthly and yearly statistics for previous record (Jun 1980 to Dec 1987)

	JAN	FEB	MAN	APR	MAY	Juv	JuL	AVG	SEP	OCT	NOV	OtC	Yea.
Flows Avg	46.230	46530	25530	9957	10610	. 4726	19.160	12810	12160	26.100	18220	32.520	22079
$\left.\left(m^{2}\right)^{-1}\right)$. Prak	12450	111.70	9143	1605	4518	918	12300	5042	51.11	10870	13700	13740	171.70
Runotf (mm)	91	86	50	19	21	9	38	25	24	51	35	64	512 .
Rainfall (mm)	118	84	74	32	60	31	150	84	53	109	74	49	918
Monthly and yearly statistics for previous record (Jun 1980 to Dec 1987)													
Mean Avg	35.980	22.300	30940	25620	15200	$: 1770$	7.377	10970	10500	21430	28090	31450	20981
flows Low	25210	16050	15520	7.819	5.557	6121	2.712	3684	6442	9089	7541	17470	18.599
(m's s^{-1}) Hoyh	56.800	44450	60040	46.690	32370	17180	12870	24220	16090	39340	44280	41.050	23.498
Peak flow (m's ${ }^{-1}$)	23070	18790	18830	18330	9462	10760	10350	19980	11450	18450	161.40	18370	23070
Rumity (mm)	71	40	61	49	30	22	14	22	20	42	53	62	488
Rainfa!l (mmis) -(1983.1987)	93	38	76	79	72	5	48	85	67.	87	87	91	884
Faciors affecting flow rogime. N Station type. C										1988 runoff is 105\% of previous mean rainfall 104\%			

Station aype. C

Grid reforence: 44 (SE) 425734
Level sin (m OD). 1200

Catchment area (sq km): 13630 Max ali (m OD) 713

028018 Dove at Marston on Dove

Measuring authority NRA.ST
First year. 1961
Hydrometric statistics for 1988

	JAN	FEB	MAR	APR	MAY	JUN	μ	Aug	SEP	OCT	NOV	OfC	Year
Flows Avg.	31.830	21580	32120	11.510	9925	6.981	12.710	9561	11050	13.310	10380	15040	15.527
(m) s^{-1}) Peak	15510	5793	$121 / 8$	1885	2962	1537	5610	3284	5062	4729	9507	3330	155.10
Runotf (mm)	97	61	97	34	30	20	39	29	32	40	30	46	558
Rainfall (mm)	135	54	158	40	68	59	141	93	74	77	52	56	1007
Monthly and yearly statistics for provious record (Oct 1961 to Dec 1987 -incomplete or missing months total 0.1 years)													
Mean Avg	22490	19780	1/220	14630	12040	9245	7433	1816	8409	11080	16.190	21610	14.022
flows Low	7.822	4.615	8943	6195	4831	3452	2.430	1.913	2821	3495	5684	7907	7.723
$\left.\left(m^{2}\right)^{-1}\right) \quad H \mathrm{mgh}$	32.880	55910	36570	24550	22480	16280	15530	14630	29350	22830	31070	56460	19.411
Peak flow \{in's '1/	19136	19462	129.73	12:00	12142	7302	7710	11360	11381	132.10	13080	20280	202.80
Runoll (mm)	68	55	52	43	37	27	23	24	25	34	49	66	501
Rairfal (min)	91	66	76	66	76	76	65	82	81	81	96	96	952

Factors affecting flow regime SRPG
Stalion type FV

Grad reference 43 (SK) 235288
leval \sin (in DO) 47.20

Catctunem area (sq km) 8832 Max ait (in OD) 555

[^7]028024 Wreake at Syston Mill

1988

Measuring authority NRA.ST
First year 1967
Hydrometric statistics for 1988

Monthly and yearly statistics for provious record (Aug 1967 to Dec 1987--incomplete or missing months toted 16 years)

Moon	Avg	5688	6170	5007	3590	2314	1.207	0923	0874	0791	1456	2552	4361	2.896
flows	Low	0959	0.619	0494	0358	0286	0222	0137	0122	0.254	0264	0418	$0 / 45$	0923
\{ $\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$)	Hing	10150	21740	12630	8772	8117	2776	4.547	3230	5367	6897	7087	11.850	4.396
Peok flow	$\mathrm{m}^{3} \mathrm{~s}^{-1}$	4311	7337	99.82	9707	5183	3911	2688	3044	2161	3168	5025	5295	9982
Runotf (mm		37	36	32	22	15	8	6	6	5	9	16	28	221
Rainfall (mm $\cdot(1971.19$		53	45	54	46	56	61	42	62	54	53	5 :	51	634
Factors alfecuing flow regime GE Station type CVA											1988 runoff is 84% of prevrous mean ra:n!a! 94\%			

028026 Anker at Polesworth

Measuring muthority NRA.ST
First year 1966
Hydrometric statistics for 1988

		JAN	FER	MAR	APR	MAY	UN	\cdots	AUS,	SrP	OCT	NOV	04 C	Yoar
Flows	Avg	9572	6213	6823	1918	1836	1558	3000	12.29	1282	1213	1381	2359	3.200
($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$)	Peak	7563	2661	30.16	394	679	1270	2. 83	349	561	2.57	-2.84	$18 \cdot 1$	75.63
Hunolf (mm)		70	42	50	14	13	1 :	22	9	9	9	10	17	275
Rainfall (mur)		103	43	88	32	43	56	111	53	26	39	36	34	684

Monthly and yearly statistics for previous record (Oct 1986 to Dec 1987 -incomptete or missing months total 2.6 years)

Mean Avg	5067	5374	4254	2.831	2443	1882	1281	1421	1272	1976	2652	3933	2854
flows Low	1298	0953	0650	0657	0686	0484	0343	0405	0711	0728	0855	1175	1.213
	9061	16200	9233	6629	8389	4650	5580	4 i/3	3274	4611	5537	94/3	3.724
Poak flow ($\mathrm{m}^{3} \mathbf{s}^{-1}$)	4757	7318	5609	4584	5911	5268	5934	4503	3134	3625	4577	7401	74.01
Runotf (mm)	37	36	31	20	18	13	9	10	9	14	19	29	245
Rainfall (mm)*	54	52	55	41	50	63	41	58	62	54	52	60	648

Factors affocung fow regrmo GE
Siation type C VA

Gid reference 43 (SK) 263034
Level stn (m OO) 6040
\qquad

Measuring authority NRA.ST First year 1968
Hydrometric statistics for 1988

	JAN	ffr	MAR	APR	MAY	UN	JUL	AJ;	SEP	OC	NCV	Of C:	Year
Flows Avg	7963	5.191	8658	2615	2260	. 493	3505	2818	3385	3877	2427	3727	4.00
($\mathrm{m}^{3} \mathrm{~s}^{-1} \mathrm{l}$. Poak	5644	2082	5338	512	1060	2.72	32.61	1514	3110	:985	4042	1739	564
Rumoti (mm)	144	88	156	46	41	26	63	51	59	70	42	67	852
Rainfall (mm)	148	63	193	44	72	61	155	111	94	93	58	73	1165
Monthly and yearly statistics for previous record (Moy 1968 to Dec 1987--incomplete or missing months total 01 years)													
Mean Avg	6321	5150	4823	3795	25.31	- 991	1482	1883	$: 803$	3064	5107	5407	3.60
flows Low	3651	2489	2528	1277	0.812	0743	0493	0.386	0535	0.716	$1 \mathrm{bS5}$	2.135	2.24
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	8522	12710	9455	6200	5113	5150	3481	4560	414%	6697	8198	9995	480
Pook flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	8013	74.53	6672	47.36	5240	39.58	37.29	13100	4569	75.78	9161	6625	137.00
Rumoty (inin)	114	85	87	66	46	35	27	34	31	55	89	98	766
Plainfall (mm)*	123	82	. 95	74	77	81	70	80	85	95	123	113	1098

Monthly and yearly statistics for pravious record (Moy 1968 to Dec 1987 --incomplete or missing months total 01 years)

	JAN		MAR	APR	MAY	JuN	JuL	AJK;	SEP	O^{-}	NCV	Ofe:	Year
Flows Avg	7963	5.191	8658	2615	2260	$\cdot 493$	3505	2818	3385	3877	2427	3727	4.003
($\mathrm{m}^{3} \mathrm{~s}^{-1} \mathrm{l}$. Peak	5644	2082	5338	512	1060	2.72	32.61	1514	3110	:985	4042	1739	5644
Rumoti (mm)	144	88	156	46	41	26	63	51	59	70	42	67	852
Rainfall (mm)	148	63	193	44	72	61	155	111	94	93	58	73	1165
Monthly and yearly statistics for provious record (May 1968 to Dec 1987--incomplete or missing months total 01 years)													
Mean Avg	6321	5150	4823	3795	25.31	- 991	1482	1883	: 803	3064	5107	5407	3.60
flows Low	3651	2489	2528	1277	0.812	0743	0493	0386	0535	0.716	1 hss	2.135	2.24
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right.$) High	8522	12710	9455	6200	5113	5150	3481	4560	4147	6697	8198	9995	480
Peok flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	8013	74.53	6672	47.36	5240	39.58	37.29	13100	4569	75.78	9161	6625	137.00
Rumoft (imin)	114	85	87	66	46	35	27	34	31	55	89	98	766
Plainfall (mm)*	123	82	. 95	74	77	81	70	80	85	95	123	113	1098

Factors affocing flow regume: $P \varepsilon$
Station type: C

Grid reference 43 (SK) 140507 Level sin. (m OD) 13100

Catchment area (sq kmi. 148 Max alt (mODr 513

028039 Rea at Calthorpe Park

Measuring authority: NRA-ST
First year. 1967
Hydrometric statistics for 1988

	JAN	FEB	MAR		may	JUN	JuL	AUS	SEP	OCT	NKV	OfC	Yabr
Flows Avg	1.985	1047	1138	0563	0702	0584	1018	0553	0549	0603	0.527	0489	0.815
($m^{3} s^{-1}$). Peak	3671	7.34	974	4.22	1334	1059	2475	1193	1181	1542	861	2.94	38.71
Punotf (mm)	72.	35	41	20	25	20	37	20	19	22	18	18	348
Rainfall (intm)	134	44	92	47	60	43	130	71	37	58	38	33	787
Monthly and yearly statistics for provious record (May 1967 to Dec 1987-incomplete or missing months total 1.1 years)													
Maan Avg	1172	1048	1.059	0.807	0767	0.685	0507	0671	0638	0679	0889	1.104	0.835
flows Low	0601	0549	0483	0316	0355	0287	0257	0367	0295	0320	0493	0.530	0.602
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	1.634	2610	2101	1489	1780	1.324	0890	1366	1423	1408	1753	1934	1.058
Pand flow (m's ${ }^{-1}$)	2642	2744	2864	25.15	3037	3744	4686	4638	4085	23.28	2497	5402	54.02
Runots (mm)	42	35	38	28	28	24	18	24	22	25	31	40	358
Hainfoll (mm)* (1968-1987)	-75	59	68	56	69	66	52	75	70	61	74	78	803
Factors affecting flow regime: E Station type. C										1988 runolf is 98% of provious mean ranfell 98\%			

028080 Tame at Lea Marston:Lakes

1988

Measuring authorty: NRA.ST Fusi year: 1957			Gind referenct: 42 (SP) 207937 Level stn. (m OO): 6620							Catchment area (sq km): 7990 Max alt. (m OD) 267			
Hydrometric statistics for 1988													
	JAN	FEB	MAR	APR	may	UN	Ut	AUG	SrP	OCI	Nov	OLC	Yeas
Flows Avg	26.700	19480	19350	17050	12.660	10890	16090	10330	10250	10.560	10.180	11330	14.163
(m) ${ }^{-1}{ }^{-1}$) Pesk	122.20	6435	62.61	4660	4087	3904	7065	4623	4447	42.34	5642	2770	122.20
Rumotf (mm)	89	61	65	39	42	33	54	35	33	35	33	38	560
Ranial (mm)	116	43	87	44	48	47	125	61	35	46	36	34	722

Monthly and yearty statistics for previous record (0ci 1957 to Dec 1987 -incomplete or missing months total 0.3 years)

Mean Avg	17.530	16.900	15.550	13880	12.630	11550	10200	11.150	11.210	12.160	14.470	16670	13.639
fowe Low	8.994	8855	8.797	1.259	7.321	6655	6.369	6.978	6655	1852	7876	9057	9.699
	24.130	35140	26.590	22000	24690	18390	17.210	16970	19440	25600	27880	32.880	17.355
Peak flow (m)'s	11582	3405	8627	11084	121.58	159.70	9478	15320	9233	7624	127.60	21920	21920
Rumoff (mm)	59	52	52	45	42	37	34	37	36	41	47	56	539
Ranial (mm)	65	49	55	53	61	60	54	72	63	60	66	72	730
Factors affectung	w regra									1988	1 is 10	of pre	me

Station type C

028082 Soar at Littlethorpe

Measuring auihorily: NRA.ST
First year 1971
Hydrometric statistics for 1988

	JAN	HEE	MAR	APA	MAY	JUN	JUL	AUG	SEP	OCT	Nov	Dre	Yasr
flows Avg	4267	2707	3018	0883	0855	0558	0723	0482	0413	0527	0617	1003	1.343
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ Peak	2349	1039	1239	$1 / 1$	310	147	324	136	169	099	419	253	23.49
Rursoif (mm)	62	37	44	12	12	8	11	7	7	8	9	15	231
Raunall (mm)	103	40	83	30	41	50	105	56	24	41	37	32	642
Monthly and yearty statistics for previous record (Aug 1971 to Dec 1987 -incomplete or missing months total 0.2 years)													
Maan Avg	2683.	2112	2400	1592	1.113	1015	0533	0108	0563	0950	1.352	2.355	1.493
flows Low	0.713	0568	0424	0346	0350	0245	0164	022.4	0307	0338	0398	0643	0.644
(m3s ${ }^{-1}$) Hegh	4661.	6868	5031	3105	2654	2346	: 447	2242	1608	2921	2714	5101	2.133
Poak flow (m)'	1774	2447	2078	21 i8	1493	1578	1311	2041	:594	1981	16.59	2246	24.47
Runott (mm)	39	36	35	22	16	14	8	io	8	14	19	34	256
Ramian (mm) $\cdot(1972 \cdot 1987)$	52	45	53	41	56	65	39	61	55	53	53	62	635
Factors affecting flow regime E Staton type EM										1988 runoff is 90% of provious mean rainfall 101\%			

Staton type EM

029003 Lud at Louth
1988
Measuring authority NRA-A
Grid reference 53 (TF) $3378 \% 9$
Lovel sin (m OD) 1540
Caichment area (sq km) 552

Hydrometric statistics for 1988

Flows Avy	JAN 0879	$\begin{aligned} & \text { FEB } \\ & 1100 \end{aligned}$	MAR 1.089	APR 0966	MAY 0612	JN 0502	μ 0401	AUG 0316	$\begin{aligned} & \text { SEP } \\ & 0.270 \end{aligned}$	$\begin{aligned} & \text { OCT } \\ & 0293 \end{aligned}$	NOV 0279	OtC 0354	Year 0.587
tm's-1. Peaj.	+35	191	210	126	0.89	146	105	$\cdots 116$	062	196	119	092	3.35
Runotf (mm)	43	50	53	45	30	24	19	15	13	14	13	17	336
Reinlall (mm)	121	45	95	25	49	46	96	58	41	68	44	20	708
Monthly and yearly statistics for provious record (Aug 1968 to Doc 1987)													
Muan Avg	064%	0817	0.772	07:5	0589	0451	0347	0290	0.247	0256	0326	0422	0.488
flows low	$0: 39$	0157	0162	0150	0156	013 i	0112	0102	0112	0130	0132	0125	0178
$\left(m^{\prime} s^{-1}\right.$) Hiņh	1.279	1428	1.338	1289	1.177	0687	0.507	0414	0625	0719	1.158	0911	0.703
Peak flow (m's ')	370	381	358	506	3.51	327	340	310	3.30	296	677	310	6.77
Runolf \{mm	31	36	37	34	29	2.1	17	14	12	12	15	20	279
Rainfan (mm)	66	47	64	53	57	59	50	63	54	57	69	66	705

Factors affecting flow regime
Staion type C

Gird relerence 42 (SP) 542973
Level sin (m OOf: 61.40

Catchoment area (sq km): 1839 Max ali (m OD): 15)
somlall 101% provious man rainlall 101%
\qquad

031007 Welland at Barrowden

Masasuring authority NRA A
First yoar 1968
Hydrometric statistics for 1988

	JAN	FEB	MAR	APPA	MAY	JUN	jur	AUG	Step	OCT	NOV	OtC	Year
Fiows Avg	10300	5839	5764	1863	1012	0522	0112	0372	0394	0596	0104	1156	2.435
(m's ') Poak	5891	21.99	2292	283	430	092	380	073	149	30°	1049	700	58.91
Runot ((rim)	67	36	38	12	7	3	5	2	2.	4	4	8	187
Aainfay (mm)	100	38	80	29	42	44	102	52	26	63	35	28	839
Monthly and vearly statistics for previous record (Feb 1968 to Dec 1987 -incomplete or missing months total 0.2 vears)													
Noan Avg	4814	5041	4375	3088	1768	1.201	0797	0833	0684	1337	2.159	3655	2.468
flows Low	0516	0426	0352	0257	0232	0159	0092	0:54	0271	0226	03.8	0410	1.034
(m's-1) Pligh	8885	17030	970 :	7700	7.3:0	3093	4477	4500	4322	S 150	64.36	7509	3.667
Poak flow ($\mathrm{m}^{3} \mathrm{~s}^{-}$)	3999	7442	10780	1943	4695	2744	3823	3991	1255	2287	5037	4013	10780
Runoti (mun)	31	30	28	19	12	8	5	5	4	9	14	24	189
Ramial (mm)	56	43	53	47	b)	59	49	67	$5 i$	51	58	59	650
Factors affecting flow regirne $S E$ Station type C										1988 runo'4 is 99\% of previcus mean ranfall 98\%			

032003 Harpers Brook at Old Mill Bridge

Measuring authority NRA-A
First year. 1938
Hydrometric statistics for 1988

		JAV	FEB	MAP	ADA	MAY	ON	.JU.	AicG	Sip	00.1	nov	Dec	vear
flows	Avg		0.871	1018	0291	0286	0:71	0232	0120	0.128	0.172	0:65	0311	
($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	Peak		524	598	113	221	078	114	029	121	136	2.29	. 158	
Runotf (mm)			29	37	10	10	6	8	4	4	6	6	11	
Rainfall (mm)		99	34	77	33	44	51	108	43	30	54	33	26	632

Monthly and yearly statistics for previous record (Dec 1938 to Dec 1987 -incomplete or missing monthe total 05 vears)

| Mean | $A v g$ | 0194 | 0809 | 0717 | 0492 | 0313 | 0201 | 0145 | 0155 | 0144 | 0219 | 0434 | 0581 | 0416 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Aainfo! (mm)
Station type: CC

Grid reference 42 (SM 983799
Level stn (m OD). 30.30
Caschment area (sq km) 743 Max ald (in OD) 146
\qquad 632 1988 tuncff is \% of previcus mean ranfall 100\%

033012 Kym at Meagre Farm

Measurim authority NRA.A
First year 1960
Hydrometric statistics for 1988

033013 Sapiston at Rectory Bridge

Measurng authority: NRA-A
Firsi year: 1949
Hydrometric statistics for 1988

		JAN 3511	FEB 1.818	MAR 2170	$\begin{aligned} & A P A \\ & 1.260 \end{aligned}$	MAY 0868	JUN 0607	ת 0.564	AUS: 0.369	$\begin{aligned} & \mathrm{SfP} \\ & 0.353 \end{aligned}$	$\begin{aligned} & \text { OCI } \\ & 0638 \end{aligned}$	NOV 0443	$\begin{aligned} & \text { of } \\ & 0652 \end{aligned}$	$\begin{aligned} & \text { Year } \\ & 1.105 \end{aligned}$
Flows (in's '1	Avg Peak		$\begin{array}{r} 1.818 \\ 5.26 \end{array}$	2170 594	1.260 277	0808 136	0607 093	0.564 132	. 045	0.353 0.49	0638 361	1.95	1.65	11.00
fiumoff (mm)		46	22	28	16	11	8	7	5	4	8	6	8	170
Rounfar (mm)		118	30	77	44	44	26	84	39	45	15	32	27	641

Monthly and yearty statistics for previous record (Jan 1949 to Dec 1987 -incomplete or missing months total 28 years)

Mean	Avg.	1184	1222	1.026	0804	0608	0467	0320	0303	0299	0409	0635	0.868	0.676
Nows	Low	0226	0221	0150	0079	0193	0133	0015	0045	0051	0066	0087	0139	0219
($\mathrm{m}^{\prime} \mathrm{s}^{-1}$)	Hing	2417	3295	2491	1.947	1.802	1744	0651	1.441	1682	2922	2404	2396	1.141
Pesk !ow	$\mathrm{m}^{\prime} \mathrm{s}^{\text {'j }}$	993	1090	1085	876	7.31	520	739	1060	895	1260	697	1045	12.60
Runotf (mm		15	14	13	10	8	6	4	4	4	5	8	1 i	104
Raintall (m $\cdot(196019$		50	35	44	44	48	52	51	63	54	51	62	55	605
Factors affecling thow regime: GEI Station type: TP										1988 runcif is 164% of prevous mean rainfall 106\%				

033024 Cam at Dernford

Measuring authority NRA.A
First year 1949
Hydrometric statistics for 1988

	JAV	ret	MAR	APH	MAY	.JN	M	AUG	StP	(x)	NOV	Dre	Year
Fkws Avg	3592	2402	2299	1539	1224	1008	0987	0616	0642	0737	0692	0781	1.381
(m's ') Peak	1330	488	19 i	281	192	178	224	10)	111	: 63	252	156	13.30
Runots (mm)	49	30	31	20	17	13	13	9	8	10	9	il	221
Raintall (mm)	112	26	70	25	48	55	89	31	49	51	32	27	621
Monthly and yearly statistics for previous record (Mar 1949 to Dec 1987 - incomplate or missing months total 13 vears)													
Mean Avg	1413	$14 / 2$	1343	1196	0988	0786	0629	0608	0580	0767	0914	1197.	0994
flows Low	0449	0400	0562	0465	. 0408	0318	0184	c) 248	0 iss	0313	0.361	0356	0.416
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) $\mathrm{H}_{\text {kgh }}$	2845	2703	2608	2431	2144	1338	- 608	1542	1965	2970	2790	3492	1.506
Park flow ($\mathrm{m}^{3} \mathrm{~s}^{-}$)	1038	1409	1022	$934{ }^{-}$	1363	694	528	1070	1099	1270	1250	1206	1409
Runolf (mm)	19	i8	18	16	13	10	9	\%	8	\bigcirc	13	16	158
$\begin{aligned} & \text { Raintall ('mmi) } \\ & \text { (1950-1987) } \end{aligned}$	48	38	43	41	48	50	53	60	53	54	59	54	601
Factors affecting flow rey.me GEI Staitun lype TP										1988 runoff is 139% of previous mean ranall 103%			

033032 Heacham at Heacham

Measutirg suthority NRA-A
First year. 1965
Hydrometric statistics for 1988

		JAN	- 6	MAR	$A \cdot P$	MAY	JUV	.U1
Flows	Avg	0315	0640	0473	0472	0365	0268	0207
($\mathrm{r}^{\prime} \mathrm{s}^{-}$)	Pedr	() 70	087	062	058	050	035	026
Rurotl (mm)		17	27	21	21	11	- 2	-9
Ranfall (rrm)		106	37	85	19	49	38	98

Monthly and yearly statistics for previous record (Nov 1965 to Dec 19871

Nean Avg	0236	0319	0332	() 313	0275	0231	0181	0151
flows Low	0064	0067	0071	0072) 068	0060	0043	0034
(m's) High	() 435	0671	0671	0116	0636	0441	0300	0256
Prak flow (m)s ${ }^{-1}$)	061	035	104	$1 \cdot 1$	082	090	068	121
Runoty (tom)	11	13	is	14	2	10	8	1
	58	42	53	49	62	57	57	6

Factors atfect'ng flow regirnat ;
Stat on iype C

Grid reference: 52 (TL) 466506 Level sin ${ }^{(m) O D} 1470$

Grad reference: 52 TTLI 896791 Level sin. (m OD) 15.60

Casctment ares (sq km): 205.9
Max att. (m ODj 97
Catchment ares (sq km): 205.9
Max alt. (m ODi 97
$\begin{array}{ccl}\text { NOV } & \text { OfC } & \text { Yes } \\ 0443 & 0652 & 1.105 \\ 1.95 & 1.65 & 11.00 \\ 6 & 8 & 170 \\ 32 & 27 & 641\end{array}$

Measting autho:ity NRA.A
First year 1957
Hydrometric statistics for 1988

		JAN	168	NAR	APR	MAV	- 0 ¢	JU.	AUS	Ste	$0 C^{-}$	NOV	U\#:	Year
flows	Avg	224:	1229	1822	0880	0672	0472	0) 565	0339	0359	0120	0511	0726	0880
$\left(n^{3} s^{-1}\right)$	Peak	19:	402	529	$3 \cdot 8$	142	133	182	053	1 60	44°	2 E2	198	791
Huาoff (mm)		41	21	33	16	:2	8	10	6	6	13	9	13	190
Raintall (tre)		1:5	50	84	42	38	$\cdot 7$	109	35	5 .	70	31	74 -	672

Monthly and yearly statistics for previous record (Nov 1957 to Dec 1987 —incomplete or missing monthe total 06 years)

Mean Avg	1482	13.0	0.976	0775	$0522^{\prime \prime}$	0413	0.346	0337	0408	0490	0184	1.59	0748
flows Low	0) 787	0368	0275	0303	O 219	0175	0109	() 176	0158	018.3	0) 279	0.300	0280
($\mathrm{n}^{\text {S }} \mathrm{s}^{-1}$) High	3101	3709	2435	- Geg	1539	1515	0962.	1464	3425	- 474	2946	3239	1299
Peak liow lirs's ',	$14 \cdot 6$	1358	1153	569	6. 65	680	5:1	1900	6230	184	1. 31	-331	6230
Runoff (mm)	21	27	18	14	10	7	6	5	,	9	'4	2 .	161
Raınfall (.mm)	55	38	42	45	47	49	51	56	52	57	63.	6^{\prime}	616
Factors affecting Siation type FV	w regir	(i)								1988	$\begin{array}{ll} f \text { is } 118 \\ \text { fall } 10 \end{array}$	$0^{\prime} \text { pre }$	3 meser

035002 Deben at Naunton Hall

Merasuring au:hority NRA.A
Grid refererce 62 (TM) 322 534
Letel st- (m OD) 550
(atcr.ment area (sq ant) : 631
First year 1964
Hydrometric statistics for 1988

		JAN	: 8	MAR	APR	MAY	J.N	JM	AJ	St ${ }^{\text {F }}$	(X.T	Yov	Itc	Year
Flows	Avg	5897	- 897	3252	1005	0580	0357	0311	() 93	0247	0739	() 47°	0735	1313
($\mathrm{m}^{2} \mathrm{~s}$. \cdot)	Py;3k	1630	988	1231	510	286	082	045	03°	061	575	465	453	1630
Runut (\%) (m)		97	29	53	16	10	6	5	3	4	- 2	,	$\cdot 7$	254
Rainfall (mm)		137	48	83	48	47	27	12	33	48	86	34	26	689

Monthly and yearly statistics for previous record (Aug 1964 to Dec 1987 -incomplete or missing months total 05 vears)

Mrean	Avg	1803	. 431	1058	0819	0412	0252) ; 95	02.43	0331	0) 544	0.935	1332	0777
fluws	Low	0259	0247	0228	0176	0107	0052	0044.	0054	0076	0.39	0:13	() 192	0.204
(m's ')	High	2894	4262	3366	2162	: 148	-1/4	0 811	1964	2825	$4 \cdot 98$	3 il 3	3585	1418
Puak fiow	$\mathrm{m}^{\prime} \mathrm{s}^{-1}$	- 118	167°	1480	$16 \cdot 0$	- 280	154	1162	261	2945	1653	'680	1186	2945
Rus.off (mr		30	21	: 1	$\cdot 3$	7	4	3	4	5	9	15	27	150
Racrial (m)		54	31	14	43	4%	$4)$	50	48	50	54	63	56	599

Fiactors affocling flow regime R (; 1
Station typer. CC
1988 ri.-offs $.69 \%$ of previous mean ranfa 115\%

037001 Roding at Redbridge

Measuring authority IW
First year 1950
Hydrometric statistics for 1988

Flow	JAN	rtb	NAR	APP	mar	JU*	Jul	AUG	Ster	(x)	NOV	UtC	Yea,
Flows Avg	10920	4002	4.73	: 399	0)735	0553	071	0359	0523	- 308	0638	$1 \cdot 46$	2.250
(m's 's Poak	4200	1980	-650	5194	397	279	446	365	319	970	604	604	42.00
Runulf (inm)	96	33	38	12	6	b	9	3	4	$1)$	5	10	235
Hainfall (mm)	136	27	79	28	42	44	88	41	47	60	23	17	638
Monthly and yeariy statistics for previous record (Feb 1950 to Dec 19871													
Mean Avg	3701	3424	2727	- 936	1242	0864	0632	0692	0) 854	- 445	2240	2913	1887
Hows law	0675	0608	0331	0482	0373	0226	0280	01224	0197	0283	0412	0412	0801
\|ras ${ }^{-1}$ Hingh	7282	10610	6858	6768	4045	2953	-975	3975	4012	J883	10340	9454	2809
Peak flow (m^{3} 's ')	3474	3080	3808	2772	3270	2170	2450	3:30	2562	3560	624 :	3640	6241
Re.nul' (anci)	33	27	24	17	11	7	6	6	7	:3	19	26	196
Pairfall (mm)	51	41	46	43	0	52	52	58	58	57	63	b)	628

Factors aflecting flow regime S EI
Sta:con typo. EW

Grid rederence 51 (TQ) 415884
leval stn (m OD) 510

1988 runotf is 120% of bevious mear ainfall 102\%

037005 Colne at Lexden

Measuring a.rthority NRA.A
firsi yarar 1959
Hydrometric statistics for $\mathbf{9 8 8}$

	JAN	163	MAH	Ark	MAY	UN	Mr	AJ	Sf ${ }^{\text {P }}$	CCI	sov	OEE	Yo.st
Flows Avg	6543	2374	2688	1743	0789	0611	0584	0.393	0415	() 767	0061	0) 344	1.509
(m's';) Peak	2:13	985	92°	330	145	737	163	070	: 33	299	300	406	2113
Runolf (\%ere)	74	25	30	. 4	9	7)	4	5	9	7	-1	200
Rasmial (mm)	- 29	23	76	23	4	41	78	30	44	56	30	25	616
Monthly and yearly statistics for previous record (Oct 1959 to Dec 1987)													
Mean Avg	: 959	: 752	1634	1221	0801	0)501	0366	0361	0396	0779	1190	1542	1.040
Hows Low	0460	0346	0380	0358	0729	0146	$0 \cdot 00$	0088	$0: 79$	$0 \cdot 88$	0288	0352	0362
	3731	4634	3556	3344	2353	1528	0907	1558	1099	4838	5521	4200	1732
Peak flow lir ${ }^{\text {S }}$: ${ }^{\text {j }}$,	1420	2265	2068	13 34	1256	807	$64^{\text { }}$	886	1050	2480	2; 29	2058	24.80
Runolt (min)	22	18	- 8	13	9	5	4	4	4	9	13	17	138
Rdirlall (mm)	$4)$	33	44	42	46	48	47	51	51	bs	59	¢ 4	577

Factors affecting flow regirne REI
Station typo FL

Grid reftrence 52 (TI) 9622.61 level sin (m OD) 820

Colcmment area isc krr; 2382 Maxalt (mOD) 114

1988 runoff is 45% of previous mean ra ncall 107%

Catchment ares (sq km): 247.3 Max alf (m OD): 12

First year: 1962
Hydrometric statistics for 1988

	JAN	FEB	MAR	APA	mar	UN	0	auc	StP	0×1	NOV	OtC	Yoar
Flows Avg	7.180	2526	2.781	1.298	0.789	0699	0.766	0491	0590	0825	0.656	1094	1.645
$\left(\mathrm{m}^{2} \mathrm{~s}^{-1}\right)$: Peak	2680	9.90	976	3.41	147	231	1.43	137	125	3.72	2.76	332	26.80
Runoty (mms)	78	26	30	14	9	1	8	5	6	9	7	12	210
Rasial (mm)	130	21	77	21	42	52	80	31	51	53	30	25	613
Monthly and yearty statistics for previous record (Oct 1962 to Dec 19871													
Mean Avg	2004	1905	1891	1.485	1.018	0139	0526.	0519	0535	0840	1207	1.662	1.191
flows Low	0.532	0.460	0479	0479	0341	0356	0.182	0161	0215	0288	0325	0379	0.822
($\mathrm{m}^{3} \mathrm{~s}^{-3}$) ligh	3916	4889	3583	3.843	2.860	1.583	1.007	1.741	1651	4.955	4676	4307	1.659
Pesk now (m)' ${ }^{\text {' }}$)	1410	21.60	2000	12.31	1780	7.76	4.10	1375	1525	2608	2020	2160	28.08
Runotf (mm)	22	19	20	16	11	8	6	6	6	9	13	18	152
Raintall (mm)	46	33	41	44	48	53	45	51	51	51	60	51	580
Factors affeciing thow regirse. R GEI Station Iype: Ft										1988 runoff is 138\% o! previous mean rainfall 106\%			

1988

Messuring authority: NRA-T First year. 1936 (naturalised data from 1883)
Hydrometric statistics for 1988

Hydrometric statistics for 1988													
	JAN	FEB	MAR	APA	may	Juv	Jul	AUG	SEP	\bigcirc	NOV	OfC	Year
Fiows Avg	19220	10260	10660	6030	5507	4337	5000	2172	2608	3430	2.593	3061	8.244
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right.$). Peak	8500	3810	8840	1890	2050	25.80	2600	7.74	1250	1690	1800	1360	88.40
Runolf (min)	50	25	28	15	14	11	13	6	7	9	6	8	191
Rantan (mm)	125	31	70	32	54	55	93	48	48	61	31	21	669
Monthly and yearly statistics for previous record (Oct 1936 to Dec 1987 -incomplete or misung months total 19 vears)													
Mean Avg	6.655	6605	6172	4558	3636	2609	1.794	1696	1776	2.663	4280	5195	3.957
flows Low	1052	0959	0460	0484	0302	02.24	0081	0085	0132	0.302	0416	1099	0886
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{High}$	17200	17800	29430	12000	12260	7618	4994	4363	7063	15920	13880	13210°	7.182
Peak flow ($\mathrm{m}^{3}{ }^{-1}$)	5610	7430	4720	- 5220	9690	6530	1280	2750	4956	7360	5230	7700.	96.90
Runotf (mm)	17	16	i6	11	9	7	5	4	4	7	11	13	121
Ris.nfall (mm)	57	41	$4!$	43	51	S0	55	58	55	62	66	58	643
Factors affecting llow regirre PGEI Station type MIS										1988 runolt is 158% o! pevicus mean ránlall 104%			

Monthly and yearly statistics for previous record (Oct 1936 to Dec 1987 —incomplete or misung months total 19 vesrs)

Hydrometric statistics for 1988													
	JAN	FEB	MAR	APA	may	Juv	Jul	AUG	SEP	\bigcirc	NOV	OfC	Year
Fiows Avg	19220	10260	10660	6030	5507	4337	5000	2172	2608	3430	2.593	3061	8.244
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right.$). Peak	8500	3810	8840	1890	2050	25.80	2600	7.74	1250	1690	1800	1360	88.40
Runolf (min)	50	25	28	15	14	11	13	6	7	9	6	8	191
Rantan (mm)	125	31	70	32	54	55	93	48	48	61	31	21	669
Monthly and yearly statistics for previous record (Oct 1936 to Dec 1987 -incomplete or misung months total 19 vears)													
Mean Avg	6.655	6605	6172	4558	3636	2609	1.794	1696	1776	2.663	4280	5195	3.957
flows Low	1052	0959	0460	0484	0302	02.24	0081	0085	0132	0.302	0416	1099	0886
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{High}$	17200	17800	29430	12000	12260	7618	4994	4363	7063	15920	13880	13210°	7.182
Peak flow ($\mathrm{m}^{3}{ }^{-1}$)	5610	7430	4720	- 5220	9690	6530	1280	2750	4956	7360	5230	7700.	96.90
Runotf (mm)	17	16	i6	11	9	7	5	4	4	7	11	13	121
Ris.nfall (mm)	57	41	$4!$	43	51	S0	55	58	55	62	66	58	643
Factors affecting llow regirre PGEI Station type MIS										1988 runolt is 158% o! pevicus mean ránlall 104%			

Factors affecting low regire PGEI
Station type MIS

Grid reference: 52 (TL) 390092
Leval sin. (m OD). 27.70

Catchumem area (sq km): 10360 Max alt (m OD) 229
rainlall 104%

038001 Lee at Feildes Weir

038007 Canons Brook at Elizabeth Way

Measuring authority: NRA-T
First year 1965

		JAN	Fter	NAR	APA	May	Juw	Ju,	AUG	SEP	OC:	NOV	CEC	Yes
Flows	Avg	0768	0259	0340	0148	0156	0141	0241	0085	0116	0170	0106	0121	0.222
[$\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$ \}	Peak	8.16	232	251	3.46	4.48	355	489	233	314	519	184.	354	8.16
Runotf (mm)		96	30	43	18	20	17	30	11	14	21	13	16	329
Restall (mm)		134	30	75	25	48	41	92	38	41	72	29	11	654

Monthly and yearly statistics for previous record (Oct 1965 to Oec 1987)

Gridreference $52(\mathrm{IL}) 431104$ Level sin (m ODf 3750

Catchment area (sq krn). 214 Max alt. (m.OD) 110

Hydrometric statistics for 1988 .

Station type FL

038021 Turkey Brook at Albany Park

Measuring authority: NRA T
First year 1971

Grid reforence. 51 (TQ) 359985 Level $\sin (\mathrm{m} \mathrm{OD}): 16.60$

	JAN	feb	MAR	APA	Nay	JN	ur	AUG	Sep	OCT	Nov	OfC	Yeor
Hows Avg	1.180	0435	0550	0.117	0153	0046	0080	0028	0083	0291	0088	0115	0.263
$\left(m^{2} s^{-1}\right.$) Peak	1030	453	4.17	212.	440	084	1.17	065	133	645	164	179	10.30
Runotf (mm)	75	26	35	7	10	3	5	2	3	18	5	1	197
Rainiay (mm)	146	35	85	39	57	43	81	41	48	81	30	14	700
Monthly and yearly statistics for previous record (Sep 1971 to Dec 1987)													
Maon Avg	0409	0339	0351	0228	0184	0102	0042	0058	0060	0187	0263	0336	0.213
flows Low	0037	0042	0024	0020	0014	0021	0013	0008	0012	0016	0019	0086	0.057
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	0.760	0.988	0811	0626	0.626	0240	0087	0.171	0278	0.941	1158	0704	0339
Posk flow ($\mathrm{m}^{\prime} \mathrm{s}^{-1}$)	1050	1100	514	772	2069	1530	238	2.16	755	10.70	1275	1050	20.69
Runoft $\{\mathrm{mm}$)	26	20	27.	14	12	6	3	4	4	12	16	21	159 .
Ralnfall \{mm:	58	4.	59	45	62	35	44	54	6 *	65	64	63	672

Factors affecting flow regime G
Station type FV

Catchment area (sq km) 42.2
Max alt (m ODI: 127
: 988 tunoff is 126% of previous mean rainlall 104%

039002 Thames at Days Weir

Measuring suthority NRA.T
First year 1938
Hydrometric statistics for 1988

Flows$\left(m^{3} s_{s}-\right.\text { : }$		JAN		MAR										
		84810	82.590	$38: 10$	21070	12.750	8552	10610	$\begin{aligned} & A \cup G \\ & 5410 \end{aligned}$	$\begin{aligned} & S \in P \\ & 6991 \end{aligned}$	$\begin{aligned} & \text { OCI } \\ & 12020 \end{aligned}$	$\begin{aligned} & \mathrm{NOV} \\ & 9279 \end{aligned}$	$\begin{aligned} & \text { OEC } \\ & 16620 \end{aligned}$	Yeat 25585
	$\begin{aligned} & \text { Avg } \\ & \text { Peak } \end{aligned}$													
Rumolt (mm)		66	60	30	16	10	6	8	4	5	9	7	- 3	235
		118	44	64	30	45	50	102	51	45	56	31	18	680

Monthly and yearly statistics for previous record (Oct 1938 to Dec 1987)

Mean Avg	55.510	56190	46140	31320	21100	14930	8639	7400	8.763	15200	32150	45300	28.418
fiows Low	6250	5.554	5620	4253	2855	1502	0399	0296	1741	2778	4040	5312	10.095
$\left(n^{3} s^{-1}\right) \mathrm{Hgh}$	i 33600	120800	163200	85070	61.40	41560	48820	18690	38630	14570	128100	128700	51.292
Puak flow (m) ${ }^{\text {d }}{ }^{-1}$)								-					
Runotf (mm)	43	40	36	24	16	11	7	6	7	12	24	35	260
Rauntall (mm)	66	47	54	46	60	55	53	68	60	64	72	72	717
Factors affocting	w regirn	P Fl								1988	noff is 90	\% of prev	ous mea

039005 Beverley Brook at Wimbledon Common
1988

Measuring outhority NRA.
First year 1935
Hydrometric statistics for 1988

	JAN	${ }^{1} \mathrm{C} 8$	MAR	APA	MAY	MN	JuL	AUG	SE ${ }^{\text {P }}$	OCT	Nov	OC	Year
Flows Avg	1237	0709	0660	0515	0500	0461	0582	0427	0475	0540	0408	0432	0.57
(m's-1) Peak	1030	540	311	3.64	3.85	2.86	675	623	721	808	343	$55 i$	10.30
Runotf (mm)	76	41	41	31	31	27	36	26	28	33	24	27	420
Rainfa! (mm)	134	35	62	26	43	24	81	41	42	59	21	15	583
Monthty and yearly statistics for previous record (Mar 1935 to Dec 1987 -incomplate or missing months total 234 years)													
Mean Avg	0707	0593	0566	0545	0481	0479	0429	0445	0499	0520	. 0597	0640	0.542
flows Low	0280	0244	0290	0257	0214	0.157	0211	0189	0224	0160	0214	0247	0291
(m's ${ }^{-1}$) High	1112	1196	1023	1538	1092	0956	0920	0970	1340	1321	14.5	1057	0.695
Peux tow ($\mathrm{r}^{3} \mathrm{~s}^{-}$)	1090	904	751	2240	1480	1290	. 65°	1730	16.50	- 5.90	1090	1400	2240
Runoti (mm)	43	33	35	32.	30	28	26	27	30	32	35	39	392
Ranial (mm)	57	38	46	41	52	54	49	56	58	62	65	63	641
Factors affecting flow rogime GE													

Monthty and yearly statistics for previous record (Mar 1935 to Dec 1987 -incomplate or missing months total 234 years)

	JAN	${ }^{1} \mathrm{~B}$	MAR	APA	MAY	MN	JuL	AUG	SE:	OCT	NOV	¥C	Year
Flows Avg	1237	0709	0660	0515	0500	0461	0582	0427	0475	0540	0408	0432	0.57
(m's-1) Peak	1030	540	311	3.64	3.85	2.86	675	623	721	808	343	$55 i$	10.30
Runotf (mm)	76	41	41	31	31	27	36	26	28	33	24	27	420
Rainfa! (mm)	134	35	62	26	43	24	81	41	42	59	21	15	583
Monthty and yearly statistics for previous record (Mar 1935 to Dec 1987 -incomplate or missing months total 234 years)													
Mean Avg	0707	0593	0566	0545	0481	0479	0429	0445	0499	0520	. 0597	0640	0.542
flows Low	0280	0244	0290	0257	0214	0.157	0211	0189	0224	0160	0214	0247	0291
(m's ${ }^{-1}$) High	1112	1196	1023	1538	1092	0956	0920	0970	1340	1321	$16: 5$	1057	0.695
Peax ${ }^{\text {a }}$ (0w ($\cdot \mathrm{r}^{3} \mathrm{~s}^{-}$)	1090	904	751	2240	1480	1290	. 65°	1730	16.50	- 5.90	1090	1400	2240
Runoti (mm)	43	33	35	32.	30	28	26	27	30	32	35	39	392
Ranial (mm)	57	38	46	41	52	54	49	56	58	62	65	63	641
Factors affecting flow rogime GE													

Factors affocting flow rogime GE
Station type FL
Grid raference 51 (TQ) 216717
Level \sin (m ODf 1100
Catchment area (sq km): 436 Max att (m OD) 190
ranfa! 91%

039014 Ver at Hansteads

Measuring authority NRA.T Grid reference 52 (TL) 151016
leval in OD 61
Hydrometric statistics for 1988

	JAN		MAR	APA	MAY	MN	Jul	AUS;	Sff	CLT	Nov	OEC	\checkmark Var
Flows Avg	0.772	0989	1024	0812	0743	0572	0537	0354	0349	0393	0261	0263	0593
(m's-') Peak	- 1.71	145	135	102	138	093	; 09	080	087	089	060	0.57	171
Rursti (mum)	16	19	21	17	15	11	11	7	7	8	5	5	142
Rainfall (mm)	136	37	11	27	55	47	91	61	54	66	29	19	693
Monthly and vearly statistics for previous record (Oct 1956 to Doc 1987)													
Moan Aug	0475	0532	0564	0543	0483	0422	0352	$03: 3$	0278	0302	0361	0415	0.419
flows Low	0126	0190	0138	0.114	0069	0045	0028	0016	0025	0057	0039	0048	0.095
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{Hyg}$	0981	1336	1312	. 1254	1028	0857	0651	0.564	0660	0668	0191	0977	0.752
Panak flow (m) ${ }^{-1}$)	177	131	188	190	207	1.65	144	113	234	1.50	231	264	2.64
Runoff (mm)	10	10	11	11	10	8	7	6	5	6	7	8	100
Roirfal (mmp	62	46	61	51	57	61	52	58	62	68	68	73	715

Factors affacting flow regime G
Station iype: CC

Catchment areá (sa km) 1320 Max all (m OD) 243

1988 runoff is 142\% of prevrous mean raınfall 97%

039016 Kennet at Theale

Measuring authority NRA.T
First year 1961
Hydrometric statistics for 1988

	JAN	rcb	MAR	APA	Mav	JN	ur	AUG	SEP	${ }_{\text {OCT }}$	NOV	DEC	Vegr
Frows Avg	:7930	23910	16850	12090	3134	1172	6606	4330	5.148	7143	5706	6111	10.182
(m's -') Poak	4500	4030	2820	1450	12.10	1020	970	82.	1650	1690	$\cdot 060$	905	45.00
Runotf (mm)	46	58	44	30	24	18	17	13	13	19	14	16	312
Rainfall (mm)	133	53	69	26	40	51	100	73	50	85	33	15	728
Monthly and yearty statistics for previous record (Oct 1961 to Dec 1987)													
Majan Avg	- 3210	14410	14680	12.790	10500	8.740	6541	5822	5432	6185	8086	10360	9.705
flows Low	4144	4401	4190	3429	2.739	2041	1620	1317	2787	3897	3943	5159	4.056
$\left(m^{\prime}{ }^{\text {s }}\right.$; Hegh	22680	22720	22010	19790	15430	18600	11120	9.542	10000	13970	17710	18240	12.882
Peak flow (m's ${ }^{-1}$)	48.30	4480	4430	36.90	3010	59.80	1900	20.50	3340	29.60	4350	4) 30	59.80
Runotf (mm)	34	34	38	32	27	22	17	15	14	16	20	27	298
Rainial (mm)	73	48	70	51	65	62	47	67	68	68	77	82	778

[^8]Grid raference 41 (SU) 649708 Level sin (m OD). 4340

Catchment area (sakm) 1033 Max alt (mOD): 29)

039019 Lambourn at Shaw

1988

039021 Cherwell at Enslow Mill

1988

Measurng avthority. NRA.T
First year: 1965
Hydrometric statistics for 1988

039023 Wye at Hedsor

1988

Measuring authority. NRA.T
 Hydrometric statistics for 1988

Grid reference 41 (SU) 896867
Level sth (m OD) 2680
Catchment area (sq km): 1373

	JAN	ffi	MAR	APK	MAY	JW	Jul	AUC	StP	OCT	NOV	DrC	Year
Fluws Avg	1518	1933	1.976	1696	1.564	1395	1255	1067	0998	0996	0804	0734	1.326
($: \mathrm{n}^{\prime} \mathrm{s}^{-1}$) Perak	274	260	3.19	225	303	136	276	266	253	230	141	145	3.19
Runotf (mm)	30	35	39	32	31	26	24	21	19	i9	'5	14	305
Rusinial (mm)	138	44	75	30	59	42	104	63	61	61	30	16	729
Monthly and yearty statistics for previous record (Dece 1964 to Dec 1987)													
Mean Avg	0958	1044	1.146	1189	1.163	1.127	1025	0.977	0882	0841	0.844	0886	1.007
flows Low	0419	0483	0488	0470	0432	0380	0310	0314	0381	0395	0375	0340	0.442
($\mathrm{m}^{\text {s }} \mathrm{s}^{-1}$) High	1506	1675	1.800	1891	1842	. 1582	1434	1317	1182	1.180	1.329	1373	1.365
Peak ! ${ }^{\text {dow }}$ ($\mathrm{m}^{3} \mathrm{l}^{-1}$ '\}	349	216	321	326	398	$35:$	294	417	443	315	279	285	4.43
Runolf (mm)	$\cdot 9$	19	22	22	23	21	20	19	17	17	$\cdot 6$	11	231
Rainfall (mm)	69	48	62	53	67	64	55	66	67	69	72	79	771

Factors affecting flow regume Gi
Siaton type: C
Grid reference 42 (SP) 482183
Level stn (m OD) 6500
Catchment area isq kmi: 5517 Max alt. (m OD) 239

Hydrometric statistics for 1988

Monthly and yearty statistics for previous record (fab 1985 to Dec 1987)
factors affecting fow regime: $P E$
\qquad
ramlall 94%.
\qquad
\qquad

Measuring authority. NRA-T
First year 1973
Hydrometric statistics for 1988

		JAN	CEB	NAR	APR	MAY	JN	Ju	AUG	SfP	CX. ${ }^{\text {P }}$	NOV	Dic	Ya,
Flows	Avg	0790	0.265	0378	0131	0301	0093	0231	O 095	0131	0239	0096	0.106	0.239
(m's ${ }^{-1}$).	Pesk	8.54	200	364	142	1770	316	378	609	534	481	208	289	1770
Runofl (min)		73	23	35	12	28	8	21	9	12	22	9	10	261
Rantall (mm)		139	31	81	30	75	39	96	55	39	12	26	is	698

Monthly and yearly statistics for previous record (Dec 1973 to Dec 1987 —incomplete or missing months total 44 years)

Moan	Avg	0359	0.265	0350	() 279	0261	0226	0133	0.131	0:35	0352	0.379	0329	0.267
flows	low	0204	0102	0151	0030	0.035	0061	0047	0053	0057	0062	0108	0138	0.178
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$	High	0580	0.472	0676	0574	0602	0643	0.213	0204	0363	0904	1086	0659	0314
Peak fow	$\mathrm{m}^{3}{ }^{\text {a }}$	900	620	889	1026	3980	3280	1650	3050	27.90	4050	2430	3631	40.50
Runofl (mm		33	22	32	25	24	20	12	12	12	33	34	30	290
Rainfall (in)		57	36	62	48	71	62	46	52	68	77	65	62	706
Factors affecting flow reg̣me: Station type FV											1988 runoff is 90% of previous mean rain!ald 99\%			

Grd reterence: 51 (TO) 217895 lovel sin (m ODF 3990 ain!ad 99\%

Calchrrent area (sq k km). 290 Max alt. (m OD) 146

039069 Mole at Kinnersley Manor

Measuring authority NRA.T First year 1972

Grid reference 51 (TQ) 262462
Level stn (m OD) 4800

Catchment area (sq km) 1420 Hydrometric statistics for 1988

		JAN	FEB	MAR	AP*	MAY	UN	JUL	AUG	SIP	$0 C T$	NOV	DEC	Yeat
Flows	Avg	9375	4.502	3043	1662	1.242	0621	1411	0622	0987	1386	0861	1071	2238
($n^{3} \mathbf{s}^{-1}$)	Peak	4190	2890	2020	623	465	124	962.	333	9.78	1550	441	5.82	4190
Runct (mm)		177	79	57	30	23	:	28	12	18	26	i0	20	498
Ru-nfall $\langle\mathrm{mm}$)		-91	49	81	48	41	1 -	97	38	50	10	29	18	723

Monthly and yearly statistics for previous record (Dec 1972 to Dac 1987 - incomplete or missing months total 1.5 vears)

Mean Avg.	3573	2672	2651	1816	1.497	1011	0624	0832	0997	2116	2565	3679	2007
flows Low	1364	0829	0833	0388	0305	0221	02.96	0169	0.281	0207	0260	1100	0.950
$\left(\mathrm{m}^{2} \mathrm{~s}^{-1} \mathrm{l} \mathrm{H}^{\text {ch }}\right.$)	62.68	5.883	4668	3666	3552	1874	1109	2864	5419	8486	5068	5474	2.424
Poak flow (m's ${ }^{-}$)	4:30	46.50	22. 30	4700	3290	23.30	1490	2980	4) 70	5640	5610	6850	6850
Runolf (mm (m)	67	46	50	33	28	18	i2	16	18	41	47	69	446
Remias (mm)	74	50	68	45	63	61	46	61	69	94	84	95	810

Remias (mm) 74

Factors affecting flow regimo:
Station type MIS
\qquad
\qquad

Measuring authority: NRA-S
Fust year: 1964
Grid raference: 61 (TR) 116554
Level sin. (m OO): 1250
Coichrnent area (sq kon): 345.0 Max alt. (m OO): 205
Hydrometric statistics for 1988

		JAN 10940	FEB $\mathbf{8 . 1 8 9}$	$\begin{aligned} & \text { MAR } \\ & 6.490 \end{aligned}$	$\begin{aligned} & \text { APR } \\ & 4907 \end{aligned}$	$\begin{aligned} & \text { MAY } \\ & 3.762 \end{aligned}$	$\begin{aligned} & \text { JNN } \\ & 2.534 \end{aligned}$	$\begin{aligned} & \Omega \\ & 2438 \end{aligned}$	$\begin{aligned} & \text { AUG } \\ & 1.872 \end{aligned}$	$\begin{aligned} & \text { SFP } \\ & 1808 \end{aligned}$	$\begin{aligned} & \text { OC1 } \\ & 1.891 \end{aligned}$	$\begin{aligned} & \text { NOV } \\ & 1.747 \end{aligned}$	$\begin{aligned} & \text { OEC } \\ & 1.951 \end{aligned}$	Year 4.036
Flows $\left(\pi^{2} s_{s}^{-1}\right):$	Avg Peak	$\begin{array}{r} 10940 \\ 3108 \end{array}$	$\begin{aligned} & 8.189 \\ & 2346 \end{aligned}$	6.490 28.10	12.98	370	2.534	249	3.18	308	439	639	3.75	31.08
Rumoff (mm)		85	59	50	37	29	19	19	15	14	15	13	15	370
Rainfal (imil)		192	51	96	50	63	12	72	28	44	72	45	17	742

Monthly and yearty statistics for previous record (Oct 1964 to Dec 1987 -incomplete or missing months total 0.3 years)

Mean	Avg	5211	4.701	4416	3.566	2.833	2095	: 833	1.800	1.914	2791	3.749	4.630	3.289
Sows	low	2293	2.366	1.812	1654	1324	1079	0.965	0.877	1.119	1085	1.328	1687	1.808
$\left(m^{3} s^{-1}\right)$	Hing	8455	7.377	9086	7.144	5811	3.221	3229	3091	3626	8687	8.195	9089	4.717
Peak flow	$\mathrm{n}^{3} \mathrm{~s}^{-1}$	27.41	27.89	24.19	3829	2505	1087	1142	11.99	2938	27.18	2885	3044	38.29
Runotit mm		40	33	34	27	22	16	14	14	14	22	28	36	301
Raintal (mm		71	49	59	48	53	52	58	59	71	79	85	76	760
Factors affecting flow regime. GE Station type B VA											1988 runoff is 123\% of provious mean rantal 98\%			

040012 Darent at Hawley

1988

Measuring suthority NRA-T
First vear 1963
Hydrometric statistics for 1988

flow regime.
Station type C

Grid reference. 51 (TQ) 551718
Level sin (m OD) 1120

Catchment area (sq km) 1914 Max alt (m OD) 251
\qquad
\qquad
041001 Nunningham Stream at Tilley Bridge

Measuring authority. NRA.S
First year 1950
Hydrometric statistics for 1988

		JAN	HE8	MAR	APA	MAY 0049	MiN 0029	JUL 0032	AUG 0021	$\begin{aligned} & \text { SEP } \\ & 0022 \end{aligned}$	$\begin{aligned} & 0 C 1 \\ & 0049 \end{aligned}$	NOV 0037	DeC 0019	Year 0.187
Flows	Avg Pugk	1.108 884	0471 568	0241 189	$\begin{array}{r} 0103 \\ 025 \end{array}$	0049	0029	0032			$\begin{array}{r} 0049 \\ 092 \end{array}$			$\begin{array}{r} 0.187 \\ 8.84 \end{array}$
($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	Puak	884	568	189	025			009	008	014	092	054		8.84 350
Runoft (mm)		176	70	38	16	8	4	5	3	3	8	6	13	350
Rainfall \{mm\}		198	56	94	33	38	16	73	49	58	83	34	25	757

Monthly and yearly statistics for previous record (Apr 1950 to Dec 1987 -incomplete or missing months total 01 veare)

Moan	Avg	0420	0331	0245	0148	0080	0053	0033	0040	0053	$0 \cdot 32$	0302	0371	0.184
!lows	Low	0076	0094	0054	0034	0023	0012	0010	0008	0009	0013	0.019	0033	0.053
$\left.\left(\mathrm{cn}^{3}\right)^{-1}\right)$	High	1. 105	0958.	0577	0390	0195	0319	0210	0.125	0359	0576	1017	1082	0.306
Pook thow	$\mathrm{m}^{3} \mathrm{~s}^{-1]}$	8.84	860°	849	594	6.20	7.92	189	932	892	882	11.90	884	11.90
Rumolf (m		67	48	39	23	13	8	5	6	8	21	46	59	343
Rainis: (mm		82	58	60	49	54	56	b)	72	76	31	99	96	850
Factors affecting 'low regire N Sta:ion type. MIS											1988 runol! is 102% of previous mean - ג!nfall 89\%			

Grid reference 51 (TQ) 662129
Level \sin (m OD) 380
Catchment area (sq km)• 169 Mox all (m OD). 137

Measuring authority NRA-S
First year 1964
Hydrometric statistics for 1988

041019 Arun at Alfoldean

1988

Measuring authority NRA.S
NAA.S Gridreference 51 (TQ):17331

Hydrometric statistics for 1988

	JAN	FCB	MAR	APR	MAY	JUN	Ju	AUG	SEP	$0 \cdot 7$	NOV	utc	Yedr
1 lows Avg	10.770	3666	2515	1520	0767	0318	0476	0246	0361	0671	0389	0600	1.862
$\left(m^{\prime} s^{-1}\right)$. Peak	5341	4613	3856	1982	370	054	171	086	274	116	322.	412	5941
Runot (m.m)	207	66	48	28	15	6	9	b	7	13	1	12	423
Raırfall (mm)	183	48	8 ;	58	4.	:2	94	42	50	11	28	19	727

Monthly and yearty statistics for previous record (May 1970 to Dec 1987-incomplete or missing months total 01 vears)

Mesn Avg	3569	2.372	2375	1718	1.136	0749	0321	0403	0670	1872	2.719	3107	1.749
flows Low	0.664	0689	0469	0277	02.23	0131	0138	0078	0161	0150	0167	0492	0589
($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$) H	6327	6708	4413	3.829	3313	3055	1116	1618	5443	11580	10030	6:52	2845
Peak' ow ($\mathrm{m}^{2} \mathrm{~s}$ ')	6863	6753	5445	7697	4748	4658	727	2386	5614	7•2	6914	1165	7765
Runafl ('nin)	69	42	46	32	22	14	6	8	12	36	51	60	397
Ramfal (m.m)	82	48	71	49	61	59	45	60	71	86	89	87	B08
Factors affecting Station type CC	rogim										$\begin{aligned} & \text { ff is } 107 \\ & \text { an } 90 \end{aligned}$	of m	mean

041027 Rother at Princes Marsh

1988

Measuring authority NRA-S
First year. 1972
Hydrometric statistics for 1988

		JAN	FEB	MAR	APA	MAY	M N	תr	AUS;	SEP	OCT	NOV	DfC	Year
Flows	Avg.	1321	1121	0599	0405	0284	0191	0226	0164	0226	0566	0434	0499	0.501
($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	Peak	907	907	501	074	050	025	060	019	102	361	. 164	194	907
Runoff (mm)		95	75	43	28	20	13	16	12	:6	40	30	36	426
Rasifall (mm)		190	7	89	52	41	2 :	113	71	55	97	30	2.5	855

Monthly and yearly statistics for previous record (Nov 1972 to Dec 1987 -incomplete or missing monthe total 0.3 years)

Mean	Avg	0855	0672	0674	0504	0396	0288	0218	0231	0278	0507	0615	0809	0.504
flows	Low	0273	0320	0237	0194	0158	0121	0120	0106	0164	0165	0.167	0348	0288
(m's-i)	High	1.485	1409	1220	0694	0641	0.47 i	0300	0493	0.949	1088	1855	1299	0.696
Peok flow ($\mathrm{n}^{3} \mathrm{~s}^{-1}$	1563	1312	1071	683	720	468	217	455	1297	6803	1660	2219	6803
Runoll (mm)		62	44	49	35	29	2.0	: 6	: 1	19	37	43	58	427
Ramfall imm		92	54	83	45	67	56	53	67	81	91	90	109	889
Factors affectinģ flow regime GE Station type: C											1988 runolf is 100% of previous meman rainfall -96\%			

042003 Lymington at Brockenhurst Park

Messurim authority: NRA.S
Furst year 1960
Hydrometric statistics for 1988

	JAN		MAR	APR	NAY	JUV	\cdots	AUG	SEP	OCT	NOV	DEC	Yea-
Flows Avg	3514	1994	1379	0.770	0401	0103	0207	0085	0323	0950	0335	0522	0881
(m's-1) Peak	1013	1001	1011	507	382	040	137	179	711	1005	266	535	10.13
Runolf (mm)	95	51	31	20	11	3	6	2	8	26	9	14	282
Ramiall (mm)	174	54	87	45	28	29	69	72	42	111	24	21	756
Monthly and yearly statistics for previous record [Oct 1960 to Dec 1987-incomplete or missing months total 02 years]													
Mean Avg	1812	1633	1.469	1043	0日1)	0458	0243	0271	0441	1028	1407	1607	1.018
flows Low	0.330	0439	0321	0168	0128	0.042	0013	0014	0084	0128	$0: 98$	0541	0.407
($\mathrm{m}^{\text {s }} \mathrm{s}^{-1}$) Howh	3723	3459	3.089	2.169	1569	1.247	1603	0847	2308	4841	5283	3294	1.340
Pask flow (m's ${ }^{-1}$)	991	1362	10.13	1013	1398	795	1138	816	847	1128	1354	1491	14.91
Runoff (mm)	49	40	40	27	22	12	7	7	12	28	37	44	324
Rainfall \{min\}	86	57	70	52	64	57	44	62	75	88	94	93	842
Factors affecting low regime. N Station type VN										1988 runoff is $8 / \%$ of prev ous mean rain!all 90\%			

042004 Test at Broadlands

1988

Measurng authority: NRA.S
Furst year: 1957
Hydrometric statistics for 1988

		JAN 12660	$\begin{aligned} & \text { FEB } \\ & 17.640 \end{aligned}$	MAR 15910	$\begin{aligned} & \text { APR } \\ & 12.910 \end{aligned}$	may 10150	$\begin{aligned} & \mathrm{AN} \\ & 8405 \end{aligned}$	un 8114	AUG 6.967	$\begin{aligned} & \text { SEP } \\ & 7416 \end{aligned}$	OCI 8130	Nov 8.121	DEC 7.780	Year 10.323
$\begin{aligned} & \text { Lows } \\ & \left(m^{\prime} \text { 's }\right) \text { i: } \end{aligned}$	Peak													
Rumots (mmi		33	43	41	32	26	21	21	18	18	21	20	20	314
Rasias (imms		137	54	74	29	37	36	100	72	42	92	30	16	719

Monthly and yearty statistics for previous record (Oct 1957 to Dec 1987 -incomplete or miseing months total 0.6 years)

Mean	Ang	15.090	15.760	15380	13.790	11.830	9884	8034	7.462	7616	9022	9.855	11.800	11.270
thows	Low	7.172	6932	6.686	6107	4861	4558	3.708	4.263	5.377	5.786	5633	6069	6.597
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$	Hagh	34.670	32680	24430	19050	16320	13540	10850	10440	12.810	27060	16460	17450	16057
Peak thow (m) m^{-1}														
Runolf imm		39	37	40	34	30	25	21	19	19	23	25	30	342
Ranial (rnm		84	52	69	51	60	59	$4)$	65	71	80	84	92	814

Station type VA

Grid refernnce 41 (SU) 354188
Level sin. (m OD): 10.10

Catchment area (sq kra): 10400 Max alt (m OOH: 297

042006 Meon at Mistingford

Measuring authority: NRA-S
First year 1958
Hydrometric statistics for 1988

	JAN	FFB	MAR	APR	may	UN	JH	AUG	SEP	0×1	NOV	OfC	Year
Flows Avg	1896	3310	2039	1392	0918	0611	0483	0324	0278	0351	0378	0380	1.022
[m's 'J Paak	384	410	2.60	204	128	101	068	058	066	066	045	061	4.10
Runotf (mm)	70	114	75	50	34	22	18	12	10	13	13	14	444
Raintall (mm)	180	60	87	55	39	19	104	74	48	. 108	30	23	827
Monthly and yearly statistics for previous record (Oct 1958 to Dec 1987$)$													
Moan Avg.	1.562	1768	1.639	1394	1044	0757	0537	0404	0357	0535	0853	1153	0996
flows Low	0463	0480	0427	0335	0164	0120	0079	0068	0102	0110	0124	0186	0.334
(m's ') Hagh	3470	3300	2.820	2021	1.738	1.220	0827	0657	0882	2309	4126	3911	1.815
Peak flow (m) m^{-1})	3.51	402	326	283	206	150	123	107	096	168	2.83	377	402
Runotf (mms)	57	59	60	50	38	27	20	15	13	20	30	42	432
Rasiall (mm)	97	58	77	58	68	59	54	71	82	95	102	104	925
Factors affecting flow regime G Staton type FL										1988 runofl is 103% of pievious mean rainfall 89\%			

Grad refarence 41 (SU) 589141
Lovel stn. (m OD) 2930

Catchment area (sq km). 728 Max alt. (m OD) 233

042008 Cheriton Stream at Sewards Bridge

Measuring authority NRA.S
First year 1970
Hydrometric statistics for 1988

	JAN	FEB	NAA	APR	MAY	JUN	Jut	AUK;	SEP	0 OT	NOV	OLC	Year
Flows Avg	0879	1481	1128	0900	0717	0527	046.	0390	0385	0439	0427	0419	0.676
(m's-:) Peak	146	174	139	106	092	080	061	079	075	079	060	058	174
Runoff (mm)	31	49	40	31	26	18	16	14	13	i6	15	15	285
Panfall (myn)	172	65	83	54	40	20	107	80	49	108	30	23	831
Monthly and yearly statistics for previous record (Jut 1970 to Dec 1987)													
Mean Avg	0835	0930	0894	0838	0688	0572	0472	0409	0379	0431	0.535	0710	0640
flows Low	0.521	0495	0409	0.320	0271	0218	0183	0165	0.207	0279	0278	0320	0.408
(m's m^{-1}) High	- 1293	1443	1410	- 1065	0857	0959	0797	0708	0.560	0672	0980	1.278	0.768
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{1}{ }^{1}$)	169	183	1.68	139	126	2.02	125	1.28	077	091	123	185	202
Runotf (mm)	30	30	32	2.9	25	20	17	15	13	15	18	25	269
Ranfall (mm)	95	59	8 :	49	64	60	55	64	76	89	100	104	896

Factors affecing flow rogimo. N
Station typo: C

Grid reference 41 (SU) 574323
Level sin (m OD): 5580

Catchment area (sq km) 75 Max alt (m OO) 234

1988 runoff is 106% of previous mear: ra nfall 93\%

043006 Nadder at Wilton Park

Measuring authority NRA.W
Fist year 1966
Fisst year 1966
Hydrometric statistics for 1988

	JAN	FEB	MAR	APA	MAY	JUN	NL	AUG	SEP	OCT	NOV	Of ${ }^{\text {c }}$	car
Flows Avg	4.200	5646	3530	2588	1.966	1.398		1055	1.168	2258	1590	1.650	
(m's ') Peak	1217	1343	6.11	457	306	1.76		140	477	1073	526	491	
Runotf (mm)	51	64	43	30	24	16		13	14	27	19	20	
Rainfal (mm)	152	63	88	34	47	39	100	81	45	112	35	21	817
Monthly and yearly statistics for previous record (Jan 1966 to Dec 1987)													
Mean Avg	4792	5072	4406	3332	2516	1981	1516	1.350	1351	1796	2624	3918	2.877
fows Low	1011	1263	1358	1048	0993	0.839	0684	0595	082.3	0829	0905	1219	1.535
(m 's ' ') Hgh	6773	8196	6732	5936	4044	3283	2. 234	2040	3093	3537	$64: 3$	7030	3821
Peak flow (m's ${ }^{-1}$)	2271	$1 / 51$	1880	1427	2813	883	i339	661	1668	1099	2290	4788	47.88
Rumotf (mm)	58	56	53	39	31	23	18	16	16	22	31	48	412
Ruinfall (imm)	95	70	80	52	70	63	51	71	78	85	91	105	911

Factors affecting flow regume: N
Station type C

Grid relerence 41 \{SU) 098308
Levul stn (m OD) 5110

Catchment area (sq km) 220.6 Max al! (m OD) 277

1988 runoff ts \% of previous mean rainfall 90\%

043007 Stour at Throop Mill

1988

Measuring authority NRA.W
First year 1973
Hydrometric statistics for 1988

	JAN	FEB	MAR	APR	MAY	JUN	Nr	AuKi	StP	OCT	NOV	OfC	Year
Fiows Avg	28800	38.660	20.740	11350	7309	4686	4250	3441	4288	10080	5504	8315	12.205
(m's ${ }^{-1}$) Peak	8222	8807	5321	1781	1041	603	490	717	1113	3714	1964	2780	88.07
Runoff (mm)	12	90	52	27	18	i1	11	9	10	25	13	21	360
Raintal (mm)	i55	67	90	36	47	31	88	82	37	107	33	23	796
Monthly and yearly statistics for previous record (Jan 1973 to Dec 1987)													
Mean Avg	24570	24040	20790	14610	9.865	6789	4596	4405	5173	9055	14060	22970	13.365
flows Low	4319	6826	7.548	4.483	3157	2231	1614	1358	2.413	2716	2823	6386	6.138
(in's ${ }^{-1}$) $\mathrm{H}: \mathrm{gh}^{\text {h }}$	38730	42200	32620	27070	18900	16940	7932	8998	20340	29770	$36 \% 30$	40270	17.377
Peak !low (m's ${ }^{-1}$)	11660	13150	11024	8824	15000	180 (0)	47.60	3241	9033	10190	13340	28000	280.00
Runoll (inm)	61	55	52	35	25	- 6	11	$\cdot 1$	12.	23	34	57	393
Rainfal (mm)	86	64	80	43	62	57	49	64	78	85	83	110	861
Factors affecting flow regime. I Station iypo. CC										1988 tunoff is 92% of previous mean rainfall 92\%			

Monthly and yearly statistics for previous record (Jan 1973 to Dec 1987)

	JAN	FEB	MAR	APR	MAY	תUN	Nr	AUK;	SEP	OCT	NOV	OfC	Year
Fows Avg	28800	38.660	20.740	11350	7309	4686	4250	3441	4288	10080	5504	8315	12.205
(m's -') Peak	8222	8807	5321	1781	1041	603	490	717	1113	3716	1964	2780	88.07
Runoff (mm)	12	90	52	27	18	i1	11	9	10	25	13	21	360
Rainfal (mm)	:55	67	90	36	47	31	88	82	37	107	33	23	796
Monthly and vearly statistics for previous record (Jan 1973 to Dec 1987)													
Mean Avg	24570	24040	20790	14610	9.865	6789	4596	4405	5173	9055	14060	22970	13.365
flows Low	4319	6826	7.548	4.483	3157	2231	1614	1358	2.413	2716	2823	6386	6.138
	38730	42200	32620	27070	18900	16940	7932	8998	20340	29770	36730	40270	17.377
Peak ! 10 w (m's ${ }^{-1}$)	11660	13150	11024	8824	15000	180 (0)	47.60	3241	9033	10190	13340	28000	280.00
Runoll (inm)	61	55	52	35	25	- 6	11	-1	12.	23	34	57	393
Rainfal (mm)	86	64	80	43	62	57	49	64	78	85	83	110	861
Factors affecting flow regime. I Station iypo. CC										1988 runoff is 92% of previous meen taınfall 92\%			

Faciors affecting flow regime. I
Station iypo. CC

Grid references 40 (S7.) 113958 Luvel sin. (m OD) 440

Catchment aree (sq kin) 1073.0 Max 3i (m OD): 277

044002 Piddle at Baggs Mill

Measuring au:hority NRA.W
First vear 1963
Hydrometric statistics for 1988

		JAN	${ }^{\text {c E }}$ (NAR	APP	MAY	MN	Jut	AJ:	Sr.p	OC	vov	Orc	Year
Fows	Avg	3682	7062	4069	2907	2.035	1365	: $\cdot 25$	094 ,	092 i	- 219	1.132	1281	2.299
(m 's ${ }^{\text {- }}$)	Penk	B 13	853	735	358	305	- 84	1.36	132	270	410	- 79	207	8.53
Hunoff (mm)		54	97	60	41	30	19	16	14	13	19	16	19	397
Ranntal (mm)		187	81	109	45	52	29	67	90	42	118	37	28	885

Monthly and yearly statistics for previous record (Oct 1963 to Dec 1987 - -incomplate or missing months total 0.1 vears)

Station type: FL

Grid reference 30 (SY) 913876
Level stn (m OD) 210

Caschmen: area (sq km). 1831 Max ilt (mOO) 275

045003 Culm at Wood Mill

Mesasuring authority NRA.SW
First year 1962
Hydrometric statistics for 1988

	JAV	fig ${ }^{\text {c }}$	Mar	ADR	MAY	.JU	..	AUG	Sto	${ }^{(0)}$	NCV	Cec	Year
flows Avg	9110	8597	6055	2718	2441	1.616	2730	1504	2507	5092	2049	2890	3.936
($\mathrm{m}^{3} \mathrm{~s}^{-1}$). Peak	3923	3811	2782	543	988	159	1158	1187	2989	4907	12.49	1904	4907
Ruinoff (mm)	108	95	72	31	29	19	32	18	29	60	23	34	550
Hainfall (mml	164	84	113	36	71	. 52	121	90	55	111	31	34	962
Monthly and yearly statistics for previous record (Oct 1962 to Dec 1987)													
Mean Avg	6671	6248	5049	3508	2854	2041	- 755	- 6.35	1898	2914	4489	6081	3.757
flows Low	- 930	2251	2392	13.8	- 085	080.3	0650	0569	0971	0971	1287	2419	2277
(m's-') $\mathrm{HyN}^{\boldsymbol{N}}$	12870	11820	9184	7445	6337	4449	5200	2181	7.328	1.430	8191	$\cdots 1880$	4.840
Peak ! ${ }^{\text {dow (}}$ (m) ${ }^{-1}$)	11070	10010	5011	6198	3382	3058	20220	5862	9416	4581	13450	14280	202.20
Runotf (mm)	79	67	60	40	34	23	21	19	22	35	51	12	524
Roomiay (mm)	109	80	87	53	11	63	58	61	78	89	98	112	971
Fac:ors affecting flow regime: PGEI Station type VA										1988 runoff is 105% of previous mean rainfall 99%			

045005 Otter at Dotton

Measuring authority: NRA.SW
First year. 1963
Hydrometric statistics for 1988

046003 Dart at Austins Bridge
1988

Measuring suthorrty: NRA-SW
Furst year 1958
Hydrometric statistics for 1988

	JAN	PEB	MAR	APR	MAY	MN	${ }^{1}$	AUG	SEP	OCr	NOV	OLC	Year
Flows Avg	27810	23830	12100	7. 107	6338	3541	8239	7602	9094	16920	6273	8.232	11.410
(m) s^{-1}). Peak	14036	15231	5546	1959	2440	762	82.69	207.15	179.95	14251	7.363	6033	207.15
Rumotf (mm)	301	241	131	74	69	37	89	82	95	183	66	89	1457
Ranfal (mml	349	182	198	74	115	61	204	189	107	223	85	88	1875
Monthly and yearty statistics for previous record (Oct 1958 to Det 1987)													
Mean Avg	19730	16660	13900	10.130	7353	5058	3.720	4731	5778	10900	15160	19000	11.044
fows Low	5435	4270	5.731	3566	2720	1456	0996	0713	0905	1229	5048	8650	7.304
$\left(\mathrm{m}^{3} \mathrm{~s}^{1} \mathrm{f}\right.$ Hingh	36680	37760	33520	22720	14530	14260	10930	12590	26.290	28000	33400	35540	15.592
Preak flow \{ $\mathrm{m}^{3} \mathrm{~s}^{-1}$ \}	28400	30940	23612	18140	9888	25300	20650	222.i6	32760	16820	31780	54970	549.70
Runaft (mm)	213	164	150	107	80	53	40	51	60	118	159	212	1408
Rasialal (mm)	227	155	165	114	108	94	91	119	135	179	203	236	1826
Factors affecting flow regime. SRPGEI Station type: VA										1988 runoff is 104% of previuus mean rainfall 103\%			

Grad reference 20 (SX) 751659
Level stn. (m OO): 2240
Catchument area $(\mathrm{sq} \mathrm{km}): 247.6$
Mix alt. (m OD): 604

047007 Yealm at Puslinch

1988

Measuring authority: NRA.SW
Firsi year 1963
Hydrometric statistics for 1988

	JAN	FEB	MAM	AP4	MAY	JN	JUL	AUK;	s?	OC.T	vov	DEC	Yuar
Hows Avg	4347	3953	1592	1099	0575	0334	0691	0891	1276	2516	1032	1667	1716
(m's ${ }^{1}$ ') Peas	2749	2309	174°	396	191	0%	818	2832	2121	2666	1825	1114	2832
Rurotf (mm)	241	180	78	b2	28	16	34	43	60	- 26	49	81	988
Rasatal (imm)	291	134	151	65	73	47	159	162	83	:74	89	11	1511
Monthly and yearly statistics for previous record \{Oct 1963 to Dec 1987 - incomplemte or missing months total 0.2 yearst													
Nean Avg	2979	2148	2115	14:1	1000	OR:O	0567	0667	0797	- 410	2 25)	2915	1635
fkws low	056.3	1015	0659	0572	0327	0171	0095	0057	0183	$012 i$	0313	$11 / 1$	1052
(T)'s ') High	4814	5806	5290	3646	1997	2311	1863	i 931	3630	3808	488 :	6:08	2.210
	2666	2324	2454	2411	-153	2341	2522	2786	2.33	2329	2662	2518	27.86
Runotf (mm)	145	122	103	67	'49	38	78	33	38	69.	101	$\cdot 42$	940 .
Rusinall (rome:)	165	125	130	79	96	92.	81	10:	1:2	133	16°	: 7.4	1449

Fac:ors affect.ng flow regirne PGEI
Staton type FIVA

Grid reference 20 (SX) 574511 level s:n (m OD) 550

Catchment area (sq km) 54.9 Max al: (m OD): 492

1988 runoff is 105% of orevious med raialall 104\%

047008 Thrushel at Tinhay

Measuring auttority NHA-SW
Firsl yedr. 1969
Hydrometric statistics for 1988

	JAN	FEB	MAR	APR	V.AY	Juns	NL	Aus	Stp	Oct	Nov	Dic:	\checkmark ras
Hows Avg	1141	. 4832	3448	1588	0652	() 2.15	14.7	1432	1910	4644.	0991	2537	2.570
$\left(\mathrm{m}^{3} \mathrm{~s}\right.$ ') Pe.sk	2998	1805	2874	2122	391	052	1091	3196	3'11.	6618	2212	2532	66.18
Alnoft (mm)	170	107	82	31	10	5	34	34	44.	110	2.3	63	721
Rain'all (mm)	191	93	:30)	56	69	40	-61	129	76	152	52	64	1211
Monthly and yearly statistics for previous record (Nov 1969 to Dec 1987)													
Vean Avg	5112	3879	3133	-655	1154	0743	0388	0748	0995	2422	3871	4908	, 2414
flows low	1317	095.	- 428	0481	0237	$01: 0$	0 028	0019	0116	0 069	() 4.42	2405	1640
($m^{3} s^{-1}$) Hing	970 :	8826	7477	4038	4209	2491	1095	2916	6671	6878	7195	8172	3.750
Puak ikw $\left\{\mathrm{mb}^{3} \mathrm{~s}\right.$]	5332	6178	6146	2772	3872	5713	989	3364	75 12	SS 86	3101	12440	12440
Runotf (min)	-2:	84	.14	38	21	: 7	9	18	23	58	89	117	676
Ra.nial (mmy*	; 44	94	103	59	70	75	65	87	94	1.4	-35	143	1183

-1970.1987)
Factors affecting flow reg me GE
Sta:ion type CC

Grid reference 20 (SX) 398856
Leve' st? (m OD) 5550

048005 Kenwyn at Truro

1988

Meastiring authorily NHA-SW
FI'st уна: 1968
Hydrometric statistics for 1988

	JAN	fib	MAR	APR	nar	Niv	JuL	AUG	Srp	0 O	NCV	OLC	Yeat
flows Avg	1sus	1057	0702	0423	0202	0117	0:32.	O. 13	0135	07:4	O) 291	O532	0.493
(r3s 1 Peak	2250	355	382	182	182	027	076	140	050	3040	186	323	3040
Runotf (imi)	211	139	99	57	28	16	19	16	18	100)	40	5	817
Rs-ntall (rm)	253	-00	is4	61	61	29	133	92	52	153 .	59	57	1204
Monthly and yearly statistics for previous record (Oct 1968 to Dec 1987)													
Mean Avg	() 80)2	0757	0537	0326	$0: 97$	0:41	0089	0089	0113	0250	0485	0744	0.376
flows low	0283	0333	0228	0162	0124	0070	0043	0026	0031	0034	0046	0436	0284
(m's s^{-}) High	1322	1536	0917	0613	04.8	0358	() 62	0:79	0564	0) 633	: 093	1091	0544
Priak flow (m's ${ }^{-1}$)	588	7:9	574	407	41	371	279	729	4.0	594	974	1335	1335
Runoft \{(mm)	112	97	75	44	28	-9	13	12	15	35	60	104	621
Rainlall (mm)	143	$: 00$	97	55	66	66	54	74	B	109	:31	144	1126

Factors aflecting llow regime G
Station typo CC

Grid reference $10(S W) 820450$
leve $\sin (\because$ OO $) / 20$.

Catchment ated (sq kir) 19 Maxalt (m OC) 152
ramfall 107\%

048011 Fowey at Restormel

Measuring author ty NRA.SW f.'s: yHar 1961

Hydrometric statistics for 1988

		JAN	FEB	MAR	APK	MAY	MN	Jul	ALC	SFP	O. ${ }^{1}$	NCV	UEC	Yedr
Flows	Avg	. 2840 .	11140	6250	4449	2500	1545	2375	2402	3519	7535	2685	4621	5.151
[$\mathrm{n}^{2} \mathrm{~s}^{-1}$]	Peas	4569	2787	2505	1550	803	228	165	2276	2295	2923	-5 50	1534	4569
Runols \{mat		203	165	99	68	40	24	38	38	55	$1 \cdot 9$	41	73	963
Rainfall (mm)		281	123	169	84	89	44	- 83	150	90	182	80	76	1551
Monthly and yearly statistics for previous record (Oct 1961 to Dec 1987)														
Nean	Avg	9282	8184	6040	4140	307 :	2211	. 1844	2071	2595	4 ¢ 4	6833	9281	4.997
flows	low	301 :	3304	2727	1808	: 048	0693	() 563	0343	0673	0617	0921	440°	3.493
($\mathrm{m}^{\text {s }}{ }^{-}$)	Hrgh	17.330	21180	12130	764 :	6441	5479	4859	fi)44	10490	11720	15450	20890	7.440
Peak fow (m)	$\mathrm{m}^{\prime} \mathrm{s}^{-1}$	10480	11:90	4562	2457	2262	3944	$31^{\circ} 0$	4851	7002	3501	22310	12660	22370
Runuft (mm)		141	1:8	96	63	49	34	29	33	40	72	105	147	932
Rairfall (mm		179	118	131	79	94	90	97	${ }^{\circ} \mathrm{O} /$	122	139	177	187	1510
Factors affectirg flow reytre SRPGEI 1988 runoff s 103\% of prev ous medin														

Stalion type CC

Gritd reference 20 (SX) 098 62t Leve $\operatorname{stn}(\mathrm{mOD}) 920$

Catch ment ared (su krr) -69 1 Naxalt (m OD, 420

1988 runoff s 103% of preve ous metan rainfa.: 03\%

049001 Camel at Denby

Measu'ing authority NRA.SW First year 1964
Hydrometric statistics for 1988

	JAN	Ffi	NAH	APH	NAY	JuN	H2	AUG		(x:1	(i)	UtC	Year
Flows Avg	16540	13360	8717	5470	2845.	; 842	3016	$31 \cdot 3$	5011	11450	4475	7129	6908
(m's-1) Peak	7318	3997	5235	2.66	126	295	1181	2740	26.93	1223	3548	3503	73.18
Runo! (:xat)	212.	160	1:2	68	36	23	39	40	62	147	56	91	1046
Rainfall (mim)	258	101	. 173	70	87	44	173	147	80	$1 / 8$	85	75	1477
Monthly and yearly statistics for previous record (Sep 1964 to Dec 1987)													
Mean Avg	: 1180	9416	6914	4560	3336	2460	2259	2522	2917	5419	1933	$\therefore 1100$	5823
tows low	4833	4249	2835	2081	0960	0888	0 ¢82	0421	0798	0882	1.371	6135	4.081
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	i9600	20940	16470	9395	8491	5463	7322	7853	1.920	16640	17990	19110	8165
Peak flow ($\mathrm{m}^{\prime} \mathrm{s}^{-1}$)	6771	8021	9475	3542	2398	4532	4059	6398	12580	9214	9415	22790	22790
Ruroff (mm)	143	- 10	83	57	43	31	29	32	36	70	98	142	880
Ras 1 'a:l (mm)	161	:05	-18	12	85	88	91	101	-16	- 36	155	168	1402

Factors affecting flow regime PGE
Station type VA

Grid references 20 (SX) 017682 Levelstn (m (DD) 460

Catchmer: arca (sq kn) 2088 Mox all \{n OJ) 420
\qquad
049002 Hayle at St Erth

Measuring authority NRA.SW
Firsi year 1957
Hydrometric statistics for. 1988

		JAN	FEB	MAR	APR	Mar	J.N	Jut	AUS	SEP	OCT	NOV	OEC	Yea,
Fkws	Avg	3009	3288	1534	: 391	0825	0564	0492	0402	0450	1180	0860	1262	1265
($\mathrm{rr}^{\text {] }}$ S ${ }^{1}$)	Peak	$9 \cdot 6$	138	307	221	- 21	072	097	081	080	402	160	174	9.16
Hunots (mm)		165	168	84	74	45	30	27	22.	24	65	46	69	818
Raintall (mm)		246	93	141	62	10	35	-13	97	55	143	63	61	1179

Monthly and yearly statistics for previous record (Oct 1957 to Dec 1987 -incomplete or missing months total 9.3 years)

050002 Torridge at Torrington

Measuring authonty: NRA-SW Fust year: 1962			Grid reference: 21 (SS) 500185 level \sin. (m OO): 13.90							Catchurent asea (sq km): $\mathbf{6 6 3 . 0}$ Max ali. (m OO): 621			
Hydrometric statistics for 1988													
	JAN	FEB	MAR	APR	may	UN	Ot	AUG	SEP	OCi	NuV	orc	Year
Flows Avg.	48.260	33090	22.340	8.059	3.356	1.576	8273	7.425	15.770	30.750	6956	17980	16.995
[$\mathrm{m}^{\mathbf{\prime}} \mathrm{s}^{-1} \mathrm{l}$: Peak	156.37	119.81	138.11	5962	1848	355	66.99	7337	115.77	27640	10189	$15 / 22$	276.40
Runots (mmi)	195	125	90	32	14	6	33	30	62	124	27	13	811
Raintall (mm)	225	109	139	47	69	45	158	132	99	148	56	71	1298
Monthly and yearty statistics for previous record (Oct 1982 to Dec 1987)													
Mean Avg	29.750	23470	18470	11250	8328	4886	4279	5.179	6823	15.570	27040	31640	15.531
Sows low	5018	4695	5.792	3082	1.594	1092	0443	0252	0.954	0.668	3798	10270	8.968
(m's-1) High	57.510	47.590	51.280	28120	31290	14.960	21540	19690	45910	49230	55730	64.530	21.036
Poak flow (m's ${ }^{-1}$)	391.10	29440	53560	16440	205.70	181.30	31060	228.50	41500	22500	37040	73000	730.00
Rumaft (mm)	120	86	75	44	34	19	17	21	27	63	106	128	739
Rainiall (trmi	126	85	98	68	76	74	72	84	96	113	137	133	1160
Factors affecting flow regine SRPGEI													

Station type: VA

052006 Yeo at Pen Mill

Measuring authority NRA.W
First year 1963

Gradrolerence 31 (ST) 573162
Level sti. (m OD) 2390

Catchment area (sq kmf 2131 Max ah (m OD) 265

Hydrometric statistics for 1988

	JAN	FEB	MAR	APA	MAY	Juv	R	AUG	StP	OCT	NOV	DEC	Year
Flows Avg	6200	6116	3112	1226	0748	0542	0.722	0503	0804	1643	0142	1311	1.982
(m's 'I Puak	3667	61.15	23.00	, 2.34	1.00	0.74	495	710	1327	1486	624	650	61.15
Runoff (mm)	78	72	39	15	9	7	9	6	10	21	9	16	291
Rauniall (mm)	148	80	91	31	58	34	116	81	36	88	33	21	817
Monthly and yearly statistics for previous record (Now 1983 to Dec 1987)													
Masan Avg	5214	4389	3639	2042	1628	1091	0646	0696	0923	2018	3518	4.562	2523
flows Low	0485	1.168	0909	0.532	0356	0229	0.193	0165	0316	0312	0455	1079	1.093
(m)s-: Hirgh	8612	10060	7060	4223	4510	2498	1909	1607	5174	9808	12780	9099	3.594
Poak flow ($n^{3} s^{-1}$)	9993	11930	5733	3877	13000	3938	3574	2753	2764	5494	1752	:3890	138.90
Runiolf (mm)	66	50	46	25	20	13	8	9	11	25	43	57'.	374
Rainfal (mm)	95	68	78	49	70	61	53	66	75	82	91	102	890

Factors affecting flow rogime. S
Siation type CVA

1988 runoff is 78% of previous mean raintall 92\%

052007 Parrett at Chiselborough

Measuring authority: NRA W
First year 1966

Gird reference: 31 (ST) 461144 Level str (m OD) 20.70

Catchment area (sq km): 748 Max al: (m OD) 219

Hydrometric statistics for 1988

Factors affecting flow regime. N
Sia:ion type: C

052010 Brue at Lovington

Measuring suthority. NRA.W
First year: 1964
Gind reference: 31 (ST) 590318 Leved stn. (m OD): 1980

Catchment area (sq km) 1352 Max alt. (mOD) 244
Hydrometric statistics for 1988

	JAN	reb	MAR	APR	MAY	JN	Ju
Flows Avg	4.183	4.237	2.052	0944	0534	0.389	1.788
. $\mathrm{m}^{\mathbf{\prime}} \mathrm{s}^{\text {' }}$ ': Paak	3051	3026	12.27	182	094	094	1665
Runoff (mm)	83	79.	41	18	11		35
Ram'all (mm)	: 30	63	82	33	54	38	157

Monthly and yearly statistics for previous record (Oct 1964 to Dec 1987).

Meart	Avg	3563	3.200	2598	1.582	1252	0.828	0825	0810	0786	1347	2317	3523	1.882
flows	Low	0.743	0910	0844	0526	0313	0217	0150	0130	0247	0190	0407	1034	1153
($\mathrm{m} \mathrm{m}^{3} \mathrm{~s}^{-1}$)	Hign	5752	6872	5263	3352	3554	2203	4081	2449	4873	4380	4883	6.158	2.427
Peak flow	$\mathrm{n}^{2} \mathrm{~s}^{-1}$	4728	4707	4349	2719	9548	3546	83.00	4842	6942	4405	7462	51 16	9548
Runotf (mm		71	58	51	30	25	16	16	16	15	27	44	70	439
Rainfall (mm		86	65	75	51	70	68	67	74	77	74	88	96	891

Factors affecing flow rogime. N Statm type CVA

1988 runoff is 100% of arevious mean ra:nfall 98\%

053004 Chew at Compton Dando

1988

Measuring ou:hority NRA.W
First year 1958
Hydrometric statistics for 1988

		JAN	FEB	MAR	APA	MAY	JUN	JI	AU;	SEP	OCT	NUV	DtC	Year
Flows	Avg	2193	2390	1400	0870	0582	0488	0566	0479	0865	1627	0770	0829	1.085
(m's ')	Pask	1820	i 759	1075	154	123	169	- 65	210	622	1526	349	406	1820
Ruroff (int)		45	46	29	17	12	10	12	'0	17	36	15	17	265
Ra.nial (mm)		167	81	$!02$	42	77	56	131	104	95	115	42	24	1036

Monihly and yearly statistics for previous record (Mar 1958 to Dec 1987 -incomplete or missing morths total 1.0 vears)

Moan Avg.	1896	1693	1400	1006	0845	0611	0463	0461	0568	0.805	1261	1768	1.062
flows Low	0444	0557	0410	0469	0.333	0287	0243	0195	0232	0300	0) 264	0622	0540
[$\mathrm{m}^{3} \mathrm{~s}^{-1}$] $\mathrm{High}^{(0)}$	3935	4166	4210	2185	2493	1211	0811	: 245	2135	325 ,	3898	5017	1.766
Peak flow (m's ${ }^{\text {- }}$)	3943	4899	5000	; 419	6750	. 13.00	623	609	5926	4956	3883	6378	6750
Runut! (mm)	39	32	29	20	17	12	10	10	11	17	29	37	259
Rainfall (mm)	100	68	80	61	73	70	69	84	93	91	104	115	1008

Factors alfocting flow regime S PG I
Station type FL

and ieference 31 (ST) 648647

Catchment stes (sq km). 129.5 Levels s:n (m OD) 1680

Max alt (in OD) 305
\qquad

053006 Frome(Bristol) at Frenchay

Measuring authority NRA.W
First year 1961
Hydrometric statistics for 1988

	JAN	FtB	MAH	APR	May	JN	Ju.	aus	SEP	OCT	NOV	DEC	Year
Flows Avg.	4.962	3378	2075	0853	0547	0366	0808	0421	0.964	2251	0845	0993	1.537
($\mathrm{m}^{1} \mathrm{~s}^{-1} \mathrm{l}$: Peak	19.10	1800	1604	421	2.73	305	438	5021	769	14.84	8.96	563	19.10
Runofl (mm)	89	57	37	15	10	6	15	8	17	41	: 5	18	326
Rainfall (T / n)	127	54	78	39	61	37	116	82	60	100	39	17	810
Monthly and yearly statistics for previous record (Sep 1981 to Dec 1987)													
Mean Avg.	3381	2175	2399	1.432	1.229	0.812	0615	0557	0734	1219	2. 282	3170	1714
kows Low	0670	0613	0636	0416	0290	0220	0:22	0139	0208	0162	0211	0820	0.804
(m's ${ }^{-1}$) Higgh	6152	6040	5762	3434	5028	2973	3516	2. 398	5113	4691	5434	9807	2.255
Peak 'ow ($r^{3} \mathrm{~s}^{-}$)	. 3505	4109	3384	2963	4900	2901	7019	1275	2973	6293	4912	66\%	70.79
Runolf (Tm)	61	45	43	25	22	ia	11	- 0	13	22	40	57	363
Ramial (mm)	74	52	66	49	66	64	53	69	74	70	78	87	802

Faciors affecting flow regime GEI
Station type: FL

Grid reforence 31 (ST) 6.37772 Level stn. (m OD) 2000

Calchment ares (sq km): 148.9

Loff is 102% of provious mean rainfall ${ }^{\circ} 03 \%$

Measuring authority: NRA-ST
Fust year: 1956
Hydrometric statistics for 1988

		JAN	FEB	MAR	APP	MAY	UN	Mr_{8022}	AUG	SYP 7789	OCI 14520	NOV 7.411	DEC 10860	Year 15.014
Flows	Ang	45.640	37.990	20590	11.180	6.544	4872	8022	5298	7.789	14.520	7.411	10860	15.014
($\mathrm{m}^{2} \mathrm{~s}^{-1}$):	Peak	15676	8990	5672	2401	13.15	984	3125	1336	21.38	47.94	2889	2802	156.78
Runotf (mm)		108	84	49	26	15	11	19	13	18	34	17	26	418
Rantaf (mm)		145	66	92	38	73	44	122	77	53	76	33	28	847

Monthly and yearty statistics for previous record (Oct 1956 to Dec 1987)

Nean Avg	28230	24680	21.660	15290	10920	6324	4.134	4150	6.152	11.530	17.210	25.040	14.572
flows Low	6281	8009	7433	4692	2.571	1558	1008	0745	1085	1.347	3085	5.565	7.278
$\left(m^{3} s^{-1}\right)$ Hiogh	51.630	56000	51.940	34.440	35.380	14.i60	21.920	16670	29650	43130	50140	57290	23.489
Peak flow (m^{1} 's ${ }^{1}$)	25660	191.80	16540	17111	200.30	7952	114.10	15800	196.20	232.80	168.30	26650	266.50
Runoff (mm)	67	53	51	35	26	14	10	10	14	27	39	59	405
Rumiall \{mm	84	62	70	59	65	59	56	73	81	74	84	92	859
Factors affecting Station type: VA	regrm	N								$1988 \text { rur }$	ff is 10	of pre	us mean

054012 Tern at Walcot

1988

Measuring authority. NRA-S T
Gididelerence. 33 (SJ) 592123
Level stn. (m OD): 4460
Hydrometric statistics for 1988

		JAN	FtB	MAR	APR	MAY	JuN	NL	AUG	StP	OCT	NOV	OfC	Year
Flows	Avg.	19.320	13290	13020	7044	5148	4130	5361	4274	3926	4029	4408	5914	7.536
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$	Peak	4751	2999	3395	1218	11.42	8.96	1360	740	556	590	1757	1574	47.51
Runotf (mme)		61	39	41	21	18	13	17	13	12	13	13	19	280
Ruinfoll (mm)		109	42	89	36	60	39	106	73	39	45	39	30	707
Monthly and yearly statistics for pravious record (Oct 1960 to Dec 1987)														
Mean	Avg	10990	10250	8885	7391	6576	4711	3896	3966	4012	5749	8211	10740	7.102
Hlows	Low	4018	4.002	4800	3551	2917	2199	1.393	1.171	1680	2227	2538	3563	3.757
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$	High	20320	22280	17810	12320	22390	9069	14060	6655	9490	16.920	21830	24950	10.266
Poak flow (m)	$\mathrm{s}^{-1 /}$	4531	4598	4053	4073	40.35	2700	4871	3853	3217	3759	4454	5582	55.82
Runo!t (mm)		35	29	28	22	21	14	12.	12	12	18	25	34	263
Ranfal (1.mm)		59	45	54	50	64	58	53	65	63	$6{ }^{1}$	72	68	712
Factors alfecting flow regirne G Statran type FV											1988 runoff is 106% of previous mean rainfall 99\%			

054019 Avon at Stareton

Measuring authorty: NRA-ST First year 1962

Grad reforencer. 42 (SP) 333715
Level $\operatorname{stn}(\mathrm{mOO}) 5470$

	JA.N	FEB	MAR	APR	MAY	JuN	JUL
Flows Avg.	9.678	5002	6162	1.638	1152	1039	1612
($\mathrm{m}^{\mathbf{3}} \mathrm{S}^{-1}$): Peak	5583	15.22	2345	2.60	302	485	523
Runoff (mm)	75	36	48	12	9	8	12
Aaintall (mm)	. 103	36	84	27	42	61	105

Monthly and yearly statistics for previous record (Oct 1962 to Dec 1987)

| Mean Avg 4.377 | 4460 | 4235 | 2835 | 2185 | 1444 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Miean	Avg	4.377	4460	4235	28.35	2185	1444	0992	1077	1024
flows	Low	0798	0777	0545	0485	0474	0368	0247	0356	0442
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$	Hingh	8143	12.890	8577	5945	6149	4862	5.379	3332	2858
Peak flow	$\mathrm{m}^{1} \mathrm{~s}^{-1}$)	3823	59.60	5589	4267	3905	4289	71.36	2608	1659
Runolf (m		34	31	33	21	17	$1:$	8	8	8
Ha nfall (m)		53	45	55	48	60.	50	53	70	54

Factors affecting flow rogimo. S EI
Station type C

Gnd reference: 32 (SO) 597686
Level st . (m OD). 48.00

Catchment ares (sq km): 1134.4 Max att (m OD): 546

054022 Severn at Plynlimon flume

Measuring authority. IH
First year 1953
Hydrometric statistics for 1988

		JAN	fe8	MAR	APR	MAY	JUN	JuL	AUS	SEP	OCT	NOV	OtC	Yoar
Flows	Avg	1.111	0565	1009	0323	0206	0144	0455	0708	0982	0561	0371	0636	0.591
(m's ')	Peak	878	406	581	208	363	054	232	444	1538	449	430	445	15.38
Ruroff (mm)		342	163	311	96	63	43	140	218	293	173	111	196	2148
Reinta' (mm)		361	164	383	80	154	39	278	287	360	193	144	195	2637

Monthly and yearty statistics for provious record foct 1953 to Dec 1987 -incomplete or missing months total 10.8 vears)

054038 Tanat at Llanyblodwel

Measuring authority NRA.ST
First year: 1973
Hydrometric statistics for 1988

		JAN	5 fB	MAR	Aipa $^{\text {a }}$	MAY	JUN	JUI	AUG	SE ${ }^{\text {P }}$	(CT	NOV	DEC	Yod:
Flows	Avg	19220	14250	9487	5157	3704	2250	2589	4294	5868	8542	4433	5738	7.118
($\mathrm{m}^{2} \mathrm{~s}^{-1}$)	Posk	6690	5193	3814	2661	11.95	520	159	1538	2926	4965	1323	1895	66.90
Aunotf (mm)		225	156	111	58	43	25	30	50	66	100	50	67	983
Rainfal (mm)		241	127	156	61	115	38	131	125	104	129	64	16	1367

Monthty and yearly statistics for previous record (Jun 1973 to Dec 1987 —incomplete or missing montins total 0.4 years)

Moan Avg	11310	9151	8688	5379	3466	2384	1336	2.565	3477	7.332	10:70	11.980	6.428
flows Low	5203	3707	2693	1392	0867	0728	0348	0190	1199	1701	2895	6.595	4.185
(m's ') Migh	15860	;9900	17800	9686	10250	4660	2722	7.609	9885	15020	17370	21410	7.510
Pouk flow ($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-}$)	9399	6477	BS 11	3985	3127	5687	30:1	11820	6956	82:7	1612	8799	118.20
Runoff (mm)	132	98	102	6 .	4 :	27	: 6	30	39	86	115	140	886
Rantil (tmm)	127	86	111	64	77	11	57	90	112	121	139	150	1205
Factors affecting Station lypu VA	$N \text { reg }$									1988	$\text { off is } 111$ $\text { infall } 113$	of prev	us mean

055008 Wye at Cein Brwyn

Measuring suthority IH
First year: 1951
Hydrometric statistics for 1988

		JAN	reb	MAR	APM	MAY	JuN	Ju	AUE	StP	OCT	Nov	De.	Year
Fiows	Avg	1430	0655°	1348	0313	0273	- 0168	0697	0890	1248	0738	0500	1022	0.777
($\mathrm{m}^{\prime} \mathrm{s}^{-1}$)	Pask	15.34	447	844	413	665	1.15	447	604	2282	702	739	3227	32.27
Runoti (mm)		363	156	342	77	69	41	177	226	307	187	123	259	2328
Rainfall (mm)		371	190	379	80	143	37	279	278	332	187	141	186	2602

Monthly and yearly statistics for previous record (Aug 1951 to Dec 1987 -incomplete or missing months total 2.5 yeara)

Mean Avg	0950	0733	0665	0.527	0398	0358	0439	0570	0665	08:0	1044	1124	0.690
Sows Low	0492	0144	0.206	0064	0054	0074	. 0053	0036	0050	0092	$03 / 6$	0198	0.447
($\mathrm{m}^{\prime} \mathrm{s}^{-1}$) Hagh	1870	1486	1.135	1312	1144	0.954	1264	1478	1478	2031	1797	2.655	0.994
Pask flow ($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$)	23.47	1320	2351	19.12	1789	2549	1911	4887	1693	24.32	2915	3200	48.87
Runuff (mm)	241	169	169	130	101	88	:11	145	163	206	256	285	2065
Rairfall (mm)	259	i66	194	147	136	142	:62	192	204	241	274	3:0	2427
Factus affocting flow regime: N													

Station type: CC

Grid refotence 22 (SN) 829838
Level s:n (m ODJ 34100

Caichrnent area (sq km) 106 Max alt. (m OD) 752 ceinfall 107\%

055013 Arrow at Titley Mill

Measuring authority NRA.WEL
First year 1966
Hydrometric statistics for 1988

	JAN	ftB	MAR	APR	MAY	UN	N	AUG	SEP	OCT	NOV	Dec	Year
Flows Avg	6045	5184	2679	1567	1.230	i : 86	0982	0708	1299	3065	1182	1366	2.201
($\mathrm{m}^{3} \mathrm{~s}$ i) Peok	2028	1182	1038	437	372	2.70	347	3:9	4.32	1482	288	282	20.28
Rurnoff (mm)	128	103	57	32	26	24	21	15	27	65	24	29	551
Rainfoll (mm)	179	66	110	43	101	53	134	92	77	99	34	40	1028
Monthly and yearly statistics for provious record (Oct 1966 to Dec 1987)													
Mean Avg	4781	4022	3.578	2322 .	1816	1147	0729	0644	0866	2049	3201	4281	2.447
flows Low	1886	1912	1629	0962	0526	0332	0210	0.154	0235	0294	0662	1694	1.309
(m's ${ }^{-1}$) High	9003	7677	8933	5028	5001	2559	3842	1546	2459	6916	6625	7566	3418
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	10112	3994	5785	3795	3249	1309	3068	24.79	1885	3645	2898	6334	101.12
Runoty (mm)	101	78	76	48	38	24	15	14	18	43	66	91	611
Reinfall (mm)	107	78	87	59	76	66	51	77	92	94	101	112	1000
Factors affecting flow reginne P Stalion typa: VA										1988 runoff is 90% of previous mean rainfall 103\%			

Grid returtince 32 (SO) 328585
Level stn (m OD): 12900
Catchment area (sq km) :264 Max alt. \{m OD\} 542

055014 Lugg at Byton

Messuring authority: NRA.WEL
First year: 1966
Hydrometric statistics for 1988

055018 Frome at Yarkhill

Measuring authomy: NRA.WEL Fust year. 1968			Grid reference: 32 (SO) 615428 Level stn (m OD): 55.40							Catchment ares (sq km): 1440 Max att (m OD): 244			
Hydrometric statistics for 1988													
	JAN	1tb	MAA	APM	MAY	JUN	Nr	AUG	SEP	OCT	NOV	UEC	Year
Flows Avg	4510	2898	1200	0696	0588	0324	0546	0284	0274	0590	0422	0551	1.071
(m's'1\}: Pedk	2384	1235	3.93	100	120	090	584	064	080	551	2.98	152	23.84
Runot (mm)	84	50	22	13	11	6	10	5	5	11	8	10	235
Rannfal (mm)	119	42	63	28	48	45	110	31	32	16	30	15	665
Monthly and yearty statistics for previous record (Oct 1988 to Dec 1987 -incomplete or missing months totat 0.1 years)													
Mren Avg	2650	2.508.	2244	1348	1135	0665	0360	0341	0321	0493	1045	1999	1.254
flows Low	0214	0389	0560	$\bigcirc 359$	0274	0146	0091	0063	0146	$0 \cdot 55$	0171	0210	0.672
(m's:') Pigr	4668	5456	5176	3299	3.972	1349	0630	0759	0.970	2405	2266	3594	1628
Poak tow (m's ')	2384	2499	2428	2451	2589	1699	596	96:	1568	1034	1851	$25^{\circ} 14$	25.89
Runoff (mm)	49	42	42	24	21	12	7	6	6	9	19	37	275
Rainfay (mm)	72	51	64	46	63	59	44	67	62	57	66	72	723
Faciors affecing flow regime E Station typa: VA										1988 tunoff is 86% of prevrous mean ranfall 92\%			

055023 Wye at Redbrook

Measuring authority NRA-WEL
First year 1936
Hydrometric statistics for 1988

		JAN	FEB	MAA	APA	NAY	JuN	Mr	AUG	58 P	OT	NOV	Of $\mathrm{C}^{\text {. }}$	Yaar
Flows	Avg	229300	181000	115000	52190	36.120	40140	56270	44810	66.460	79160	35.900	57880	82.690
(m's ${ }^{-1}$)	Peak	537.88	46147	38090	15359	10471	113.18	15739	12233	22284	14611	10763	13993	53788
Runotf (mm)		153	113	77	34	24	26	38	30	43	53	23	39	652
Ranfoll (mm)		180	15	114	39	85	45	131	94	76	94	41	41	1015

Monthly and yearty statistics for previous record (Oct 1938 to Dec 1987)

Mean Avg	$130 \cdot 00$. 19600	91.420	$65 \cdot 10$	44.880	34640	23980	27950	39500	60220	102500	174000	71757
flows Low	25050	30760	22110	: 1930	12340	10910	7426	5180	7271	9582	31730	46890	39.916
($\mathrm{m}^{\text {' }}{ }^{-1}$) Hegh	241.900	234000	325400	143600	125.000	131600	95830	83680	174000	$1 / 4700$	252400	246000	113.382
Peak llow (m's ${ }^{-1}$)	68880	70040	30540	49330	387.90	467.20	36830	34780	53170	47290	60030	81270	90540
Rumoti (miti)	87	73	61	42	30	22	16	19	26	40	66	83	565
Rainfall (mm)	110	77	76	63	75	63	66	83	88	95	113	114	1023
Factors affocung	w regim	SPE								1988 run	off is 115	\% of mev	ous mean

flow regime: SPE
Station tyive VA

Grid reterence. 32 (SO) 528110
Level sin. (in OD\} 920

Catchment 3 res $\left\{\begin{array}{l}\text { sq km). } 40100\end{array}\right.$ Max ali. (m OD) 752

 $\begin{array}{lrlllllllllll} & 87 & 73 & 61 & 42 & 30 & 22 & 16 & 19 & 26 & 40 & 66 & 83 \\ \text { Rumor (mmin } & 87 & 110 & 77 & 76 & 63 & 75 & 63 & 66 & 83 & 88 & 95 & 113 \\ \text { Rainfall }(\mathrm{mm}) & 114 & 1023\end{array}$

056013 Yscir at Pontaryscir

Measuring authority NRA.WEL First year. $19 / 2$
Hydrometric statistics for 1988

		JAN	FE日	MAR	APA	MAY	JN	Jul	Aus	SEP	(C)	NOV	UeC	Year
Flows	Avg.	5357	3100	2980	1074	1337	1067	1.758	1246	2.344	2134	0941	1540	2075
($\mathrm{m}^{\mathbf{\prime}} \mathrm{s}^{-1}$)	Peak	32.11	1077	2020	384	7.28	490	9.76	880	1238	906	513	S 60	32.11
Runofi (mm)		228	124	127	44	57	44	75	53	97	91	39	66	1045
Rairfall (mm)		265	97	177	43	138	51	184	134	129	104	59	67	1448

Monthly and yearly statistics for previous record (May 1972 to Dec 1987 -incomplete or missing months total 0.2 years)

Meen	Avg	3354	2575	2.557	1477	1038	0749	0450	0705	$1: 13$	2189	3141	3639	1.914°
flows	Low	1146	0998	0852	0431	0269	0214	0.150	0104	0283	0214	1475	2196	1.286
(m's ${ }^{-9}$	Hayt	5795	4959	6303	3211	3041	1788	1117	2964	3.947	4279	5.291	6324	2.465
Payk flow	n^{-11}	36.98	3178	4055	1374	14.81	7433	1106	3069	2144	8501	3402	5933	8501
Runots (mm		143	100	109	61	44	31	19	30	46	93	130	155	962
$\begin{aligned} & \text { Hantall im } \\ & -(1973.19 \end{aligned}$		157	100	136	72	86	75	70	99	136	148	164	188	1431
Factors alfecuing flow regime N Station type C											1988 reofl is 109% of prevous mean rainfa! 101\%			

Grid reference 32 \{SO\} 003304
level s:n (m OD) 16120

Catchment area (sq kn) 628
Max al: (m OO) 474

057008 Rhymney at Llanedeyrn

Measuring authonity First year 1973	NRA-W				id refer Level	$\begin{aligned} & \text { o: } 31 \\ & \text { im O } \end{aligned}$	$\begin{gathered} 2258 \\ 1180 \end{gathered}$				thment	rea (sq k ax alt \{m	$\begin{aligned} & \text { nj- } 1787 \\ & \text { OD) } 617 \end{aligned}$
Hydrometric statistics for 1988													
	JAN	FEB	MAA	APA	MAY	JUN	Jul	Aug	SEP	OCT	NOV	OEC	Yoer
Flows Avg.	17500	11130	6.795	32.77	3613	2046	4236	4205	6818	6664	3268	3671	6.099
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) Peak	10339	5486	3916	1344	1888	589	2551	1609	8229	3056	1384	1694	103.39
Runoti (mm)	262	156	102	48	54	30	63	63	99	100	41	55	1079
Raintall (mir)	286	118	155	59	122	37	193	167	:06	125	57	SO	1475
Monthly and yearly statistics for previous record (Jan 1973 to Doc 1987)													
Moan Avg	9169	7460	7009	4327	3085	2100	1419	2527	3531	6146	8226	9675	5383
flows Low	3313	3199	2889	1754	1276	0813	0602	0511	0913	0748	2355	3218	2.903
(m's-1) Hign	1/200	15620	20360	9695	8340	4604	2.371	10450	$\because 1500$	13.700	16560	15730	7153
Pnas fiow ($\mathrm{m}^{2} \mathrm{~s}^{-1}$)	10825	7222	11050	4'55	313 :	54.30	2139	(141	10160	, 1850	11346	14730	147.30
Runoff (m)	137	102	105	63	46	30	21	38	51	92	119	145	951
Raıinfat (mm)	154	105	128	68	84	71	64	102	142	148	$i 54$	$1 / 6$	1396
Factors affecting flow regime: PGE Station type fVVA										1988 runoff is 114% of previcus mean rainfall 106\%			

058006 Mellte at Pontneddfechan

Measuring iuthority NRA.WEL
First year 1971
Hydrometric statistics for 1988

	Jain	fe8	MAR	A ${ }^{\text {P }}$	may	JN	. M	AlJg	SEP	OCT	NOV	DEC	Year
Flows Avg	818.	4057	4598	1.445	2317	1309	4270	4070	4209	3104	- 983	2166	3478
[m's'] Peak	1956	3756	4240	685	1848	685	4498	3583	3726	2407	: 700	1623	79.56
Runnil (mm)	333	155	187	57	94	52	174	166	166	126	74	88	1671
Rainfall (mm)	367	134	250	77	179	57	317	238	1/9	141	103	89	2131
Monthly and yearly statistics for previous record \{Oct 1971 to Dec 1987-incomplate or missing months total 0.3 years\}													
Mean Avy	4800	3.539	3709	2160	1681	1271	0930	1654	2393	3568	4814	5410	2999
flows Low	1932	09.3	- 378	0 497	0383	0322	() 242	0207	0562	0548	2063	2641	1.985
($\mathrm{m}^{3} \mathrm{~s}^{\text {') }} \mathrm{High}$	8274	7.231	10670	5095	4283	3.559	2608	6802	6.876.	6305	9471	8139	3.814
Peak flow $\left\langle\mathrm{m}^{3} \mathbf{s}^{-1}\right.$ \}	8230	6612	8230	3902	2145	3356	3914	5852	8101	3678	10685	:2760	'127.60
Rumott (mm)	195	131	151	85	68	50	38	67	94	145	192	220	1438
Rainfall (mm)	238	148	191	105	122	110	94	149	179	212	245	267	2060
Factors affectiog flow rogime. S P Stalion type FVVA										1988 rumif is 116% of previous mean rainfall 103\%			

	Jain	fe8	MAR	A ${ }^{\text {P }}$	may	JN	. M	AlJg	SEP	OCT	NOV	DEC	Year
Flows Avg	818.	4057	4598	1.445	2317	1309	4270	4070	4209	3104	- 983	2166	3478
[m's'] Peak	1956	3756	4240	685	1848	685	4498	3583	3726	2407	: 700	1623	79.56
Runnil (mm)	333	155	187	57	94	52	174	166	166	126	74	88	1671
Rainfall (mm)	367	134	250	77	179	57	317	238	1/9	141	103	89	2131
Monthly and yearly statistics for previous record \{Oct 1971 to Dec 1987-incomplate or missing months total 0.3 years\}													
Mean Avy	4800	3.539	3709	2160	1681	1271	0930	1654	2393	3568	4814	5410	2999
flows Low	1932	09.3	- 378	0 497	0383	0322	() 242	0207	0562	0548	2063	2641	1.985
($\mathrm{m}^{3} \mathrm{~s}^{\text {') }} \mathrm{High}$	8274	7.231	10670	5095	4283	3.559	2608	6802	6.876.	6305	9471	8139	3.814
Peak flow $\left\langle\mathrm{m}^{3} \mathbf{s}^{-1}\right.$ \}	8230	6612	8230	3902	2145	3356	3914	5852	8101	3678	10685	:2760	'127.60
Rumott (mm)	195	131	151	85	68	50	38	67	94	145	192	220	1438
Rainfall (mm)	238	148	191	105	122	110	94	149	179	212	245	267	2060
Factors affectiog flow rogime. S P Stalion type FVVA										1988 rumif is 116% of previous mean rainfall 103\%			

Stalion type FVVA

Grid refferevee 22 (SN) 915082 Leversin. (m OD) 9000

Cistchinent aroa (sq km) 658
Max all (:n OD) 734

060002 Cothi at Felin Mynachdy

1988

Measuring authority NRA.WEL
First year. 1961
Graj reterence: 22 (SN) 508225
Level stn. (m OD) 1610

Catchment area (sq km). 2978
Hydrometric statistics for 1988

		Jan	FEB	MAn	APA	NAY	תN	Jul	AU;	58	OTT	NKN	DEC	Yog'
Flows	Avg	30270	17110	19450	7126	4042	3208	9907	10680	10080	11.990	7211	7612	11.583
(m's ${ }^{-1}$	Poak	9879	11249	17025	4046	1920	10.57	4032	6938	4363	7111	2606	3912	17025
Runolf (mm)		272	144	175	62	36	28	89	96	, 88	108	63	69	1230
Ra:n!al (mm)		298	128	214	73	129	53	$23 ;$	192	144	144	94	78	1778

Monthly and yearty statistics for previous record (Oct 1961 to Now 1987 -incomplote or misaing months total 19 years)

Mean Avg.	17630	13690	:2620	8 833	6784	4428	3398	6299	8067	15630	18630	20790	11.398
flows Low	2990	3.708	2821	1444	08.35	0.824	0.418	0362	1500	1.610	8903	6.123	7.174
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{l}$	37580	31100	40.710	20380	14820	13.070	11810	23.350	23.920	37940	36210	41.140	14950
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	14160	18120	22090	8588	8122	9033	14440	17100	12970	28374	17580	27470	283.74
Runoff (mm)	159	:12	$1 \cdot 3$	77	61	39	31	57	70	141	162	187	1208
Rasial (mm)	168	112	132	95	. 03	97	95	123	-48	185	:80	193	1631

Faciors affecting flow regime. PE
Station type: VA
1988 runcif is 102% of previous mean
rainfall 109\% Max alt (m OD) 484
Ma

Measurng authonty: NRA.WEL
Gid reference. 22 (SN) 485206
Level \sin (m OD): 7.80
Catchment area (sq kmi): 10904
fust year: 1958
Hydrometric statistics for 1988

		JaN	FE8	MAR	APP	Mar	NN	M	AUG	SEP	OCT	NOV	DEC	Year
Flows	Ang.	101.400	59610	61410	27480	15070	13870	40810	37.980	41290	42.810	27.530	30810	42.237
(m) ${ }^{-1}$ '):	Peak	27758	21888	397.32	13303	5782	4070	15055	15309	123.56	106.99	91.56	8199	397.32
Rumoty (rum)		249	137	166	65	37	33	100	93	98	105	65	16	1225
Ranise (mm)		274	112	211	67	128	51	222	178	143	130	87	77	1680

Monthly and yearty statistics for previous record (Oct 1958 to Nov 1987 -incomplete or missing momths total 2.0 years)

063001 Ystwyth at Pont Llolwyn

Measuring authority: NRA.WEL First year. 1963
Hydrometric statistics for 1988

	JAN	FEB	MAR	APR	MAV	JUN	\cdots	Auc	SEP	OCT	Nov	Ot C	Year
Flows Avg	12400	5.910	9534	3421	1684	1127	4919	4.775	7.541	7066	3757	7517	5873
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) Poak	6319	1803	4807	1889	2202	13.16	2435	32.59	7684	2874	3026	2156	76.84
Runots (mm)	196	87	151	52	27	26	78	75	115	112	57	119	1095
Rainiall (mm)	230	78	217	42	103	39	188	164	186	138	84	110	1579
Monthty and yearly statistics for previous record (Oct 1963 to Dec 1987-incomplete or missing months total 0.3 years)													
Mran Avg	9279	6886	6075	4374	3346	2621	2500	3352	4350	7210	9475	11000	5.872
flows low	2.268	2.283	2816	0.960	0577	0625	0422	0180	0882	0.558	3.959	2213	3.783
(m's-1) High	15.330	15200	18470	10080	10100	75%	5461	8556	10610	19800	18320	22.600	7.774
Peak flow (m's ${ }^{-1}$)	10560	8863	12670	3032	10510	12910	6824	17430	7102	129.90	12810	21040	210.40
Runoll (mm)	147	99	96	67	53	40	39	53	66	114	145	174	1092
Re:nfal (mm)	150	98	117	85	93	92	96	-10	129	151	11°	:82	1474
Factors affecting flow regime Station type VA										1988 runoff is 100% of preveous mean rainfall 107\%			

Monthty and yeaply statistics for previous record (Oct 1963 to Dec 1987-incomplete or missing months total 0.3 years)

	JAN	FEB	MAR	APR	MAV	JUN	\cdots	Auc	SEP	OCT	Nov	Ot C	Year
Flows Avg	12400	5.910	9534	3421	1684	1127	4919	4.775	7.541	7066	3757	7517	5873
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) Poak	6319	1803	4807	1889	2202	13.16	2435	32.59	7684	2874	3026	2156	76.84
Runots (mm)	196	87	151	52	27	26	78	75	115	112	57	119	1095
Rainiall (mm)	230	78	217	42	103	39	188	164	186	138	84	110	1579
Monthty and yearly statistics for previous record (Oct 1963 to Dec 1987-incomplete or missing months total 0.3 years)													
Mran Avg	9279	6886	6075	4374	3346	2621	2500	3352	4350	7210	9475	11000	5.872
flows low	2.268	2.283	2816	0.960	0577	0625	0422	0180	0882	0.558	3.959	2213	3.783
(m's-1) High	15.330	15200	18470	10080	10100	75%	5461	8556	10610	19800	18320	22.600	7.774
Peak flow (m's ${ }^{-1}$)	10560	8863	12670	3032	10510	12910	6824	17430	7102	129.90	12810	21040	210.40
Runoll (mm)	147	99	96	67	53	40	39	53	66	114	145	174	1092
Re:nfal (mm)	150	98	117	85	93	92	96	-10	129	151	11°	:82	1474
Factors affecting flow regime Station type VA										1988 runoff is 100% of preveous mean rainfall 107\%			

fact allang flow tegime
Staion type VA

Gid relerence. 22 (SNI 591774
Level sin (m OD): 12.00

Ca:chment area (sq km). 169.6 Max atr (m ODI: 611

064001 Dyfi at Dyfi Bridge

Measuring authority: NRA.WEL
First yeat 1962
Hydrometric statistics for 1988

		JAN	FEB	NAR	APM	Nay	JN	Jus	Aus,	Scp	OCT	Nov	DFC	Year
Flows	Avg	54310	26510	41930	13310	6595	5108	18.780	24620	36260	27.480	15970	26350	24.837
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$	Peak	326.63	9032	21153	6095	3059	1760	52.67	9951	32983	14828	10303	9486	329.83
Runotf (mm)		309	141	238	73	37	28	107	140	199	156	88	150	1866
Rainfal (mm)		299	134	295	68	115	40	210	215	236	168	111	142	2033

Monthly and yearly statistics for previous record (Oct 1962 to Dec 1987 -incomplete or missing months total 98 years)

Mean Arg	33.960	22400	26500	:7710	11940	1:270	8469	13210	17970	30.950	$356: 0$	43370	22.807
fows low	6245	5.174	5789	2626	1.295	1618	0822	1.819	5966	10770	14530	7501	18.343
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{High}$	68810	46060	75790	42490	23600	21710	16680	40440	34110	76960	10470	88280	26.520
Prath flow (m's ')	35020	34000	36070	271.30	33720	40210	16200	21000	254.90	34400	37550	58050	580.50
Runol! (mm)	193	116	151	97	68	67	48	75	99	176	196	246	1527
Rain'all (mm)	198	123	161	$: 11$	1 ; 3	$1 \cdot 2$	109	144	: 72	206	212	251	1912
Factors affec:ing Station type VA	w reg̣!	N								$1988 \text { un }$	if is 10 niall 10	of pre	ous mean

Station type VA

Gird reference $23\{\mathrm{SH}\} 745019$ Level sin (m OD) 5.90

Catchment area (sq km). 471.3 Max alt (m ODf 905

064002 Dysynni at Pont-y-garth

Measuting authority NRA.WEL
Firsi year 1966
Hydrometric statistics for 1988

	JAN	feb	MA9	APR	Vit	Jun	Jur	AUG	SEP	OCT	Nov	DEC	Year
Flows Avg	11830	4565	9375	3282	1491	1066	4763	5.815	7112	5.722	3978	5889	5.434
(m)'s'l) Peak	46.20	1285	3822	1444	859	446	1343	1919	3882	3805	2871	22.56	48.20
Runotl (mm)	422	152	334	113	53	31	170	207	248	204	131	210	2288
Ra nfall (miri)	294	119	350	88	123	42	244	238	224	183	137	172	2214
Monthly and yearly statistics for previous record (Jan 1986 to Dec 1987-incomplete or missing months total 1.8 years)													
Masn Avg	5823	4.715	4615	3509	2531	2404	2585	3218	4072	5.743	6861	7141	4.435
flows Low	3371	1.548	0986	0457	0298	0427	0278	0289	1926	0556	3011	2170	3.612
(m's ${ }^{-1}$) Hrgh	11040	8809	14.780	7.209	7602	592.1	5407	8899	7285	12.350	12680	12580	5.416
Peak flow ($\mathrm{m}^{\prime} \mathrm{s}^{-1}$)	6140	4134	38.71	3685	1632	4842	5335	51.62	7014	10770	12130	8410	121.30
Prunofi (mm)	208	153	165	121	90	83	92	115	14:	205	237	255	1863
Rasinfall (mm)	219	145	181	, 25	131	143	143	166	200	249	254	257°	2213

factors affecting flow regime. N
Station type: VA
Grad reference 23 (SHi) 632066
Level sin. (m OD)• 230
Catchment area (sq km): 75.1
Max alt. (m OD) 892

1988 runofl is 123% of previous mean rain!all 100%

065005 Erch at Pencaenewydd

Measuring authority NRA.WEL
First year. 1973
Grad reference: 23 (SH) 400404 Leval stn (M OD) 5610
Hydrometric statistics for 1988

	JAN	FEB	MAA	APA	MAY	UN	Nr	AUG	SEP
Flows Avg	1.673	0186	1051	0590	0314	0.143	0268	0520	0442
(m's ') Peak	9.50	322	922	557	371	0.67	334	342	339
Runot! (imm)	248	103	156	85	47	20	40	77	63
Rainlall (mm)	288	102	189	82	62	42	145	165	1:1
Monthly and yearly statistics for previous record (Jan 1973 to Dec 1987)									
Mean Avg.	0963	0811	0734	0471	0335	0225	0.184	0310	0428
flows Low	0629	0365	0311	0177	0.120	0089	0081	0061	0167
firns ') Hayh	1396	1869	1804	0892	0728	0539	042.7	1113	03.9
Poak flow (m's ${ }^{-9}$)	1041	1545	$19 / 8$	1100	468	699	532	927	742
Runots (mm)	142	109	109	68	50	32	27	46	61
Rainfall (mm)	139	93	125	70	79	73	18	116	135

Factors affecting flow regime N
Station type C
\qquad

Catchment orea (sq km) 18.1 Max alt (m OO) 564

OCT	NOV	OEC	Year
0569	0492	0627	0.624
451	286	639	9.50
84	70	93	1091
$13:$	95	102	1514
0812	1050	1118	0.619
0236	0264	0.600	0.430
1736	1816	1764	0.739
2501	1691	1549	25.01
120	150	165	1080
162	165	168	1403
1988 runolf is 101%	of previous mean		
rainlall 108%			

066006 Elwy at Pont-y-gwyddel

Measuring authorily: NRA-WEL
First year 1973
Hydrometric statistics for 1988

	JAN	FEB	MAR	APR	mav	JUN	Ω	AUG	SED	$0 \subset 1$	rov	DEC	Year
Frows Avg	11660	7106	7122	2376	0760	0482	0763	1756	2.341	4848	2646	5239	3929
(m's-i) Peak	49.83	3991	3011	17.84	281	097	275	1929	15.85	4690	2162	3243	49.83
Runotf (mm)	161	92	98	32	10	6	11	24	31	67	35	72	640
Rainia'l (mim)	184	99	151	36	65	41	-19	105	94	122	. 62	:0:	1179
Monthly and yearty statistics for provious record (Dec 1973 to Dec 19871													
Moen Avg.	7788	5755	5.134	3064	1.865	1381	0703	1301	2634	5504	7561	7.890	4.210
flows Low	3115	2650	1539	0823	0479	0359	0.278	0242	0629	1360	2263	4644	2.908
(m's 'i) High	11430	12050	11950	6.939	5918	3300	1402	4351	7450	11530	11850	14450	5.094
Puak flow (m's ${ }^{-1}$)	8242	5082	7659	5016	2166	1800	2705	3813	5857	$\cdot 43.00$	10160	7542	143.00
Runolf (rm)	108	72	11	41	26	18	10	18	35	76	10i	-09	685
Rentall (mma)	126	80	102	60	76	15	65	91	126	131	149	142	1223
Factors affocting flow regume SRP. Station type VA										1988 runoff is 94% of prevrous mean ratnfall 96\%			

067008 Alyn at Pont-y-capel

Measuring authority NRA.WEL
First year: 1965
Hydrometric statistics for 1988

069002 Irwell at Adelphi Weir

Measuring autherity NRA.NW
First year: 1949
Hydrometric statistics for 1988

		JAN	reb	MAR	APR	NAY	JN	Jut	Aus	SEP	OCT	NOV	Vtc	Yoat
Fluws	Avg	36760	24190	29360	9997	8381	7267	15050	19130	18450	21270	12910	22.340	18.798
($\mathrm{r}^{\text {' }} \mathrm{S}^{-1}$)	Peak	20900	9059	15610	2499	25.87	6485	7277	11880	16060	8925	8777	12100	209.00
Runofy (mm)		176	108	141	46	40	34	72	92	85	102	60	107	1063
Rainfall (mm)		193	88	175	42	59	55	175	156	121	122	74	109	1369

Monthly and yearly statistics for previous record (Oct 1949 to Dec 1987 -incomplate or missing months totat 2.0 years)

Mean	Arg.	25050	21580	17250	'4310	11.900	10330	11100	158.0	16.620	20600	25180	29670	18.27
flows	Low	3705	4787	7803	5408	4348	2750	4031	3.676	2991	4990	1534	7.469	10.46
(m's ${ }^{-1}$)	High	40.260	67230	48030	27070	21.530	18900	26150	56000	43.480	52510	51100	84660	3046
Poak flow	m^{-1}	43040	40030	29560	184.20	14160	23800	38560	395.70	39080	48510	33490	41950	485.1
Runolf (rx		120	94	83	66	57	48	53	76	77	99	1:1	142	1031
Ranial (m		118	82.	91	76	82	87	98	124	119	125	134	140	1276

Factors affectimg flow regime. S PGEI 1988 runotf is 103% ot previous mean
Station type. 8

Grid reference 33 (SJ) 824987
Lavel stn (m OD): 2410 rainfall 107\%

069006 Bollin at Dunham Massey

Measunng authority: NRA-NW
First year: 1955
Mydrometric statistics for 1988

Monthly and yearty statistics for previous record (Oct 1955 to Dec 1987 -kncomplete or missing months total 1.1 vears)

Mesn Avg.	6312	5.325	4339	3661	2.946	2.533	2.272	2902	3140	4091	5.429	6.357	4.104
Sows Low	1.639	1.686	1694	1.742	1286	0707	0875	0.464	0651	1300	1.804	2.296	2.728
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \quad \mathrm{Hagh}^{\text {a }}$	10.280	12.880	11.470	8732	5781	9203	5626	11410	8.963	11340	9425	14510	6.307
Peak frow (m) ${ }^{-1}$	4335	3929	3691	6043	6302	4237	41.50	4404	3505	41 i8	44.35	4633	63.02
Ruxoty (mm)	66	51	45	37	31	26	24	30	32	43	55	61	506
Resufalil (mm)	79	54	63	56	66	71	76	89	84	82	85	88	893

Ranfall (mm) $79 \quad 54$
Siavon lype: VA
Grud reference: 33 (SN) 727875
Level stn. (m OO): 12.80
Catchment area (sq km): 256.0
Max alt. (m OU): 483
\qquad

069015 Etherow at Compstall

Hydrometric statistics for 1988

		JAN	FEB	MAR	APK	MAY	HW	4	AUG	SEP	OCT	NOV	DFC	Year
Flows	Avg.	7583	5.404	7337	1912	1.224	1083	1980	3381	4192	3446	1.847	3822	3.606
($\mathrm{m}^{3} \mathrm{~s}^{-1}$):	Peak	4093	2829	3439	632	227	245	807	35.56	4308	2280	12.57	956	43.08
Runotf (mm)		130	87	126	32	21	18	34	58	70	59	31	66	731
Ranfal (mm)		199	100	207	50	50	59	$1 / 4$	187	120	113	68	103	1430

Monthly and yearly statistics for previous record (Jan 1977 to Dec 1987 -incomplete or missing months total 0.3 years)

Mean Avg	5891	4294	4.809	3397	2109	1779	1240	1.748	1895	3310	5015	5236	3.391
fows Low	3445	2141	1365	1070	0539	0835	0118	0691	1178	- 264	2276	2413	2.440
($\mathrm{m}^{\prime} 3^{-1}$) High	8964	8539	10080	6325	4870	4758	2265	3572	2692	9424	7471	9.286	4.169
Peak $\left\{\right.$ low $\left(\mathrm{m}^{\prime} \mathbf{s}^{-1}\right.$ \}	4263	4446	46.03	3266	i879	2864	1547	24.43	37.45	4212	4015	6296	62.95
Runoti (mm)	101	67	83	56	36	30	21	30	31	51	83	90	686
Rainfal (mm)	150	88	142	86	80	. 109	10	122	120	139	153	158	1417

Factors affactung flow regime: S PGEI
Station iype C
988 runoff is 107% of previnus mean ramfall 101\%

071001 Ribble at Samlesbury

Measurimg authority: NRA.NW
Grid reforence. 34 (SD) 589304 Level \sin (m OD) 600

Hydrometric statistics for 1988

	JAN	FEB	MAR	APR	MAY	JUN	ar	AUG	SEP	$0 \subset T$	NOV	DEC	Year
Flows Avg.	70060	50730	47020	12610	10330	7518	40500	44030	38300	44.300	27.620	60310°	37.940
(m's-1. Peak	46450	286.60	24580	6045	4557	68.93	23620	31850	21850	21630	20010	58520	585.20
frunotf (mm)	164	111	110	29	24	17	95	103	87	105	63	141	1048
Rainlal (mm)	203	102	160	39	66	42	225	175	131	136	85	154	1518
Monthly and yearly statistics for previous record (May 1960 to Dec 1987)													
Mean Avg	51090	35910	34070	26420	18590	i4560	15/60	24230	30410	41920	53200	56420	33558
tows Low	10610	9565	11790	5601	4048	5031	2638	2958	5782	5716	20770	15.190	22045
($\mathrm{m}^{\prime} \mathrm{s}^{-1}$) Hrgh	82510	80.890	104.700	54820	46.460	33520	40220	68.920	6582.0	118.400	88610	120200	45.022
Peak tlow (m's ${ }^{-1}$)	75460	513.10	64330	46660	319.10	49480	39980	52080	61930	81000	613.20	89130	891.30
Runot (rmm)	120	76	80	60	43	33	37	57	69	98	120	132	925
Hainfall (mm)*	132	82	106	81	84	91	89	117	135	139	145	150	1351

factors affecting flow reghime SE
Station type MIS

071004 Calder at Whalley Weir

Measurung authority. NRA-NW
fitst year. 1963
Grik reference 34 (SD) 729360
Leval stn. (m OD). 3990
Catchment area (sq km). 316.0 Max alt. (m OO): 558
Hydrometric statistics for $\$ 988$

1988 runoff is 113% of previous mean
rainlall 112\%
Catchment area (sq km) 11450 Max alt. (m OD). 680
\qquad

Station type FV ranfall 111\%

073005 Kent at Sedgwick

Measuring authority NRA.NW
Grid reference 34 (SD) 509874
Leval stn (in OO): 18.90
First year. 1968

Catchment area (sq km): 2090

Hydrometric statistics for $\$ 988$

	JAN	cra	MAA	APA	MAY	LN	5Ω	AUG	SE:	OCT	NOV	vec	Yea'
flows Avg	20350	15320	:0 120	7477	3.591	1335	85:7	11070	11970	12930	6765	12670	10235
$\left(m^{3} s^{-1}\right)$ Prak	814.3	6977	3332	4581	1755	250	6988	40.92	4791	87.16	38.98	7040	87.16
Runoff (mme)	268	184	130	93	46	17	109	142	148	166	84	162	1548
Rasiall (mm)	303	155	$1 / 3$	96	84	73	262	214	182	189	111	180	1972
Monthty and yearty statistics for previous record (Nov 1968 to Dec 1987)													
Nana Avg	12490	9199	9364	6433	4318	3982.	3734	5.583	8196	10.670	13960	1.3510	8451
flows low	5998	3094	3348	2038	1222	0872	0658	0740	1753	1.396	5484	5466	5.995
[$\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$] High	20820	16.800	22750	12620	11580	13010	10550	18730	15630	17940	21410	23200	10.316
Peat (low (m's ${ }^{-1}$)	19770	11400	16610	11110	53.44	72.86	9465	88.68	12070	12350	17500	23140	231.40
Runotf (mm)	160	107	120	80	55	49	48	72	102	137	173	173	1276
Rainfall (mm)	189	102	153	88	90	105	108	129	$1 / 8$	183	213	198	1736

Factors affecting flow regimo. N
Stalion type CBVA
\qquad .
\qquad
1988 Maxalt (m ODi 817
\qquad
\qquad .

074002 Irt at Galesyke

Measurimg authority: NRA NW
First year 1967
Hydrometric statistics for 1988

	JAN	fEB	MAR	APR	MAY	MN	\cdots M	AuK;	SfP	OCI	NOV	Cre:	Yoa'
Flows Avg	6261	3537	4200	3325	0623	0545	3836	5:36	4298	42.56	2. 212	4.888	3.604
(m's ${ }^{-1}$) Poak	1541	6.48	907	893	133	115	927	1160	989	925	448	1456	15.41
Runotf (mm)	379	200	254	195	38	32	237	311	257	258	130	296	2579
Rantall (mm)	418	182	331	154	78	39	362	363	244	261	157	298	2887
Monthly and yearty statistics for previous record (Dec 1967 to Dec 1987 -incomplete or missing months total 0.1 years)													
Moen Avg	4400	2879	3004	27:0	1521	1861	2233	2580	3679	4586	4872	4329	3.223
flows Low	1321	0736	0737	0430	0.257	0638	0467	0286	0400	0554	1885	: 802	2440
$\left(\mathrm{m}^{3} z^{-1}\right)$ High	8242	5117	6375	5.947	3901	¢ 216	4.667	6757	7630	8.174	7094	7645	3.950
Poak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	3173	1867	2002	3404	684	1027	21.26	1846	1789	2729	2185	2033	34.04
Runotf (inin)	267	159	182	159	92	109	135	156	216	278	286	262	2301
Rdinfall (mm)	31:	174	241.	149	131	169	188	212	281	314	330	310	2810

Factors affecting flow regime SP I
Station typ: VA

Grid refurence: 35 (NY) 136038 Level \sin (m OO). 54.20

Catchment area (sq km) 44.2 M3xalt (m OD). 978 samiall 114%

074005 Ehen at Braystones

1988

Measuring authority: NRA-NW
First year 1974
Hydrometric statistics for 1988

	JAN	FE8	MAP	APP	MAY	MiN	\wedge,	AUS	StP	OCT	WV	OR:	Yeat
Flows Avg	11.680	7393	6980	5.301	1353	0887	4.106	6705	¢ 209	6.470	32.79	6160	5.520
$\left(\mathrm{m}^{3} s^{-1}\right)$ Peak	6356	2766	4085	35.10	2.68	126	31.28	3708	22.25	3494	2046	4839	63.56
Runot (mm)	249	148	149	109	29	18	88	143	108	138	68	144	1391
Rainta's (mm)	270	127	208	113	54	25	268	254	149	176	87	180	1911
Monthly and yoarly statistics for previous record (Jan 1974 to Dec 19871													
Moan Aug	7671	5491	5540	3288	2.137	1959	2069	3781	5558	8101	- 353	8285	5.188
flows Low	2220	1.856	2225	0993	0771	0779	0789	0661	: 694	3.640	3121	3136	3.963
$\left(m^{3} s^{-1}\right) \mathrm{High}$	16.030	15890	10220	7.046	6877	4371	5444	12260	12840	14080	12470	13380	6328
Peak ! low (m's ${ }^{-1}$)	9785	79.36	6947	8107	4697	3825	5692	73.04	76.40	11590	6449	9147	115.90
Runolf (mm)	164	107	118	68	46	40	44	81	115	173	173	111	1305
Ranial (mm)	198	106	173	84	84	100	124	143	200	229	211	213	1865

Fac:ors affecting flow regime S P
Station type. VA

Grid reforence. 35 (NY) 00906 : Level stn (m OD): 1010

Catchment area (s) kmi): 125.5 Max alt (m OD): 899

1988 runoff is 107% of urevious mean rantall 102\%

075002 Derwent at Camerton

Measunng authority: NRA-NW
Fust year. 1960
Hydrometric statistics for 1988

		JAN	feb	MAR	APR	MAY	UN	Mr	AUG	SEP	OCr	NOV	Df	Yod
Flows	Avg	63.910	46750	28020	20670	6174	3268	23.140	32620	34.150	38280	- 6850	39420	29.461
(m)s ${ }^{\text {a }} \mathrm{r}$	Pesk	21300	14190	6375	6265	1081	546	9050	94.62	85.30	8025	3051	14010	213.00
Runots (mm)		258	177	113	81	25	13	93	132	134	155	66	159	1405
Ramiat (mm)		281	162	182	94	62	33	270	230	168	190	89	207	1974

Monthly and yearty statistics for previous record (Sep 1960 to Dec 1987 -incomplete or missing months total 03 years)

Mean	Avg.	3/420	26660	24770	19810	13200	10540	11370	18060	25700	35800	41510	41420	25.525
dows	l ow	9587	4837	1466	4.359	2.153	2041	2503	2384	2885	2755	14570	14740	14.823
(m's ${ }^{-1}$	tingh	84550	56570	51550	38.940	36280	34800	21110	45940	62980	107800	76340	75840	34.235
Peak flow	$\mathrm{m}^{3} \mathrm{~s}^{-1}$	21920	16570	21550	14550	10290	13580	11450	21620	18920	26470	211.30	19900	26470
Rumoif (imm		151	98	100	17	53	41	46	73	100	145	162	167	1215
Hainfall (m		177	98	142	35	104	110	114	144	184	201	198	189	1756

$\cdot(1961 \cdot 1987)$
Factors affecting low regrme S P
Station type VA

Grad relerence 35 (NY) 038305 Level sin. (in OO): 1670

Catclument area (sq km): 663.0 Max als. (m OO): 950

Nov Dec $\begin{array}{cc}\text { CfC } & \text { Yedr } \\ 39420 & 29.461 \\ 14010 & 213.00 \\ 159 & 1405\end{array}$ 1974

1988 runolf is 116% of previous mean rainfall 112\%

078003 Annan at Brydekirk

Measuring authority SRP8
Furst year 1967
Hydrometric statistics for 1988

		JAS	FFB	Man	APR	MAV	JN	JUL	AUG	StP	0 C	NOV	$0 \in C$	car
Fluws	Avg	62980	Sb 800	28730	28220	8491	4666	31760	38110	43950	4:770	25.520	3i920	33457
(m)s. ${ }^{1}$	Peak	14359	30499	14913	21329	2734	1617	13972.	171 i8	17263	24412	13866	12558	304.99
Runotf (mm)		182	151	83	19	25	13	92	110	123	121	72	92	1144
Rain'sill $\{\mathrm{mm}$ \}		195	121	127	83	63	21	229	184	130	139	83	105	1500

Monthly and vearly statistics for previous record (Oct 1967 to Dec 1987)

Nesn Avg	44040	32 680)	30960	19850	15910	- 2160	10410	i74:0	25080	37480	43350	44750	27.831
flows Low	17820	12820	8402	6124	3513	2931	1944	2007	3362	3592	11490	19.30	16.402
$(\mathrm{m})^{3} \mathrm{~s}$: $)$ Hight.	83440	55440	53770	40600	$53 \cdot 60$	32150	34940	76390	76320	86820	77930	87020	36424
Peak fluw (m)',	40537	29130	24211	18250.	17251	17126	25307	37889	44663	49910	32504	35541	49910
Ruanots (mer)	128	86	90	56	46	34	30	50	70	109	121	130	950
Ra.ntall (mm)	138	87	116	67	90	85	92	105	135	148	142	143	1348
Facto's affecting Station type VA	w rẹ̆m									$1988 \mathrm{r}$	$\text { off is } 12$ $\text { in!all } 11$	6 of prev	ous mean

Station type VA

Grad reference 35 (NY) 191704 Level $\sin (m$ OD) 1000

Catchment area (sq kmp 9250 Max ali (m OD) 821

078004 Kinnel Water at Redhall

1988

Measuring asthority SRPB
Firsi year 1963
Hydrometric statistics for 1988

		Jan	F68	MAM	APi	MAV	Jun	JUL	AUG	SrP	\cdots	vov	OEC	Year
P bws	Avg	5 287	5165	2690	2530	0656	0310	3321	39:0	4494	4348	2335	$3409{ }^{\circ}$	3208
'\{m's '\}	Peak	1945	9099	3943	6863	1177	752	3272	$52 \cdot 4$	4832	6314	274°	3156	90.99
Rurkotf (mm)		186	170	96	86	23	13	117	138	15.3	153	80	120	1333
Rain'all (mm)		214	132	:34	82	60	$2:$	240	221	161	155	89	116	1625

Monthly and yearly statistics for previous record (Oct 1963 to Dec 1987 —incomplete or missing months total 1.0 yeara)

Nean Avg	4004	2821	2722	1608	1611	i 121	0964	1623	27.5	3628	4080	4 150)	2588
flows Low	1296	0590	0552	025 i	$0 \cdot 22$	0112	0048	0049	0099	0207	0740	1081	1.507
(im)'s ') Hagn	8456	5362	b 124	$4{ }^{4}{ }^{\text {. }}$	5496	3282	3435	7513	6689	1288	7535	8490	3.517
Peak flow (m^{3} 's ')	79.34	7768	5919	4240	5179	3609	6016	6575	9137	11090	8669	i0365	110.90
Riunoff (mm)	141	91	96	55	b)	38	34	57	92	12.8	139	146	1073
Raintall (mm)	144	92	122	75	-01	92	92	-13	150	137	155	157	1450

Factors at'reting flow regrime
Station type VA

Grad reterence 35 (NY) 077868 Level sin (im OD) 5370

Catchment areas (sq km) 761 Max all (m OD) 697
\qquad .

080001 Urr at Dalbeattie

1988

Measuring authority SHPU
Grid reference 25 (NX) 822610
Level sin (m OD) 400

Ca:chment ares (sq kin) 199.0 M3x 3: (m OD) 432

Hydrometric statistics for 1988

	Jain	ret	NAR	APR	May	- .J.JN	JUi	AUG	SEP	OCT	nov	Of:	Ymist
Flows Avg	14560	:2610	6395	5488	1700	0709	4565	7591	9518	12750	5616	5991	7.294
(m)'s) Pask	4627	10010	4587	5593	1353	327	3094	4840	5124	5959	4541	2523	10010
Runot (mm)	- 96	- 5.9	86	1:	23	9	61	- 02	125	172	74	81	1159
Ris intall (mm)	225	130	131	9:	7:	14	196	:77	156	192	91	93	1573
Monthly and yearly statistics for previous record (Nov 1963 to DAC 19871													
Muan Avg	9422	1346	6200	3547	3172	2132	1395	2895	5264	8245	9719	- 00070	5.779
fows Low	3534	1419	2094	0) 153	0308	0246	0140	0149	0319	0522	-711	3369	3.109
$\left(m^{3} s^{-1}\right) \quad \mathrm{H}$ ¢gh	19080	13750	11780	7485	10880	6433	$\bigcirc 081$	13310	17160	19400	19420	18590	8358
Peak flow (m]'s')	13372	9145	9503	6169	6595	59.8	6842.	10459	11406	$162 \cdot 6$	- 2974	16430	164.30
Runoff (mm)	127	90	83	46	43	28	19	39	69	-11	121	136	916
Rairifal (mm)	131	87	1:0	66	84	81	11	100	$\cdot 35$:46	146	$\cdot 42$	1305

Factors alfecting flow reg me
Station tyoo. VA

081003 Luce at Airyhemming

Measuring duthority SRPB
First year. 1967
Hydrometric statistics for 1988

	JA,	FEB	NAR	APA	May	N*	Jut	AUG	StP	OCT	Nov	DEC	Y
Fows Avg	' 12730	11.760	12600	6370	0923	0.319	5512	1) 590	9013	- 0500	7521	7558	7.952
(m's-') Peak	105.49	6629	18412	. 9327	17.83	151	7015	10140	6040	:2163	91.72	6:13	184.12
Rurn'f (mm)	193	172	:97	97	14	5	86	166	131	164	114	118	1471
Rainfas (mm)	209	156	222	104	49	44	204	226	161	180	135	127	1817
Monthly and yearly statistics for previous record (Jan 1987 to Dec 1987)													
Mran Ava	10220	6.658	6078	3.354	2653	2006	2187	3.371	6237	8759	10010	9.187	5.893
flows low	4.540	0789	1359	0454	0260	0225	0191	0277	0365	1689	3857	2445	3691
(m)'s ${ }^{-1}$) righ	15600	12110	11300	8289	7597	5360	6445	14290	17660	16.750	15.940	17090	7.625
Poak flow ($\mathrm{m}^{3} \mathrm{~s}$ ')	17710	14610	19730	19760	6364	19033	13150	28362	19240	23179	168.40	20404	28362
Ruinol: \{inm\}	160	95	95	51	42	30	34	53	95	137	152	144	1088
Ruinfall \{mm\}	166	93	1:6	73	81	84	93	110	150	161	167	151	1445
Factors affecting flow reg me S P Stalior :ype VA										1988 'uno!! is 135% of previnus moan rainfall 126%			

Monthly and yearly statistics for previous record (Jan 1987 to Dec 1987)

	JA,	FEB	NAR	APA	May	N*	Jut	AUG	StP	OCT	Nov	DEC	Y
Fows Avg	' 12730	11.760	12600	6370	0923	0.319	5512	1) 590	9013	- 0500	7521	7558	7.952
(m's-') Peak	105.49	6629	18412	. 9327	17.83	151	7015	10140	6040	:2163	91.72	6:13	184.12
Rurn'f (mm)	193	172	:97	97	14	5	86	166	131	164	114	118	1471
Rainfas (mm)	209	156	222	104	49	44	204	226	161	180	135	127	1817
Monthly and yearly statistics for previous record (Jan 1987 to Dec 1987)													
Mran Ava	10220	6.658	6078	3.354	2653	2006	2187	3.371	6237	8759	10010	9.187	5.893
flows low	4.540	0789	1359	0454	0260	0225	0191	0277	0365	1689	3857	2445	3691
(m)'s ${ }^{-1}$) righ	15600	12110	11300	8289	7597	5360	6445	14290	17660	16.750	15.940	17090	7.625
Poak flow ($\mathrm{m}^{3} \mathrm{~s}$ ')	17710	14610	19730	19760	6364	19033	13150	28362	19240	23179	168.40	20404	28362
Ruinol: \{inm\}	160	95	95	51	42	30	34	53	95	137	152	144	1088
Ruinfall \{mm\}	166	93	1:6	73	81	84	93	110	150	161	167	151	1445
Factors affecting flow reg me S P Stalior :ype VA										1988 'uno!! is 135% of previnus moan rainfall 126%			

Grid roference 25 (NX) 180599
Level sin (m OD) 1900

Catchment area \{sq kmp 1710 Max alt (m OD) 438

082001 Girvan at Robstone

Measurimg auihority CRP8
First year. 1963
Hydrometric statistics for 1988

		JAN	FEB	MAR	APR	MAY	JuN	Jul	AUS	StP	OCT	YOV	OEC	Year
Flows	Avg	18160	14940	9866	3863	0.832	0402	3731	6408	8837	8542	5208	1) 980	7.641
(n 's-:	Prak	10368	85.62	8329	24.73	265	283	2851	$37 .{ }^{\circ}$	5824	7421	4378	7946	103.68
Runnt (mm)		:98	152	108	41	9	4	4:	70	93	93	55	120	984
Rairfall (mm)		236	141	175	61	49	38	176	168	144	139	89	142	1558

Monthly and yearly statistics for previous record (Oct 1983 to Dec 1987 -incompleto or missing montha total 0.1 years)

Moan Avg.	10350	6.992	6.392	3764	2.969	2.004	2366	3.417	6354	9.535	11380	10690	6.351
flows Low	3846	1736	1595	0923	0521	0310	0487	0301	0546	1191	2.755	2893	4.222
$\mathrm{mm}^{\mathbf{3}} \mathrm{s}^{-1} \mathrm{H}$	19.370	13240	11520	11330	8583	5687	7.087	12930	21830	17380	20230	24350	8101
Peak flow (in's ${ }^{-1}$),	100.96	8494	8954	65.23	6187	5291	11065	92.54	15760	14717.	9082	182.98	182.98
Runotf (mm)	113	70	70	40	32	21	26	37	67	104	120	117	816
Rainiall (mm)	136	77	111	66	82	80	94	102	145	160	166	145	1364
Factors affecting fion Station :ype VA	$w \text { reg:m }$	S								$1988 \text { ir }$	$\begin{array}{ll} \text { if } 12 \\ \text { infa:l } & 12 \end{array}$	of pre	us mean

083003 Ayr at Catrine

Measuring authority CRPE
First vear: 1970
Hydrometric statistics for 1988

	JAN	FEB	MAR	APA	MAY	JN	.Jul	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg	10730	9703	7741	3920	1320	0639	315.	6.270	6199	5423	3540	8514	5.650
fm's '). Peak	6639	87.25	5942	51.56	988	121	2363	6691	4626	4324	3378	6303	87.25
Runot (mm)	173	146	:25	6:	2:	10)	51	101	-06	87	55	:38	1074
Rainfall (mom)	182	132	- 63	74	5.	23	161	173	148	122	75	145	1455
Monthly and yearly statistics for previous record (Sep 1970 to Dec 1987)													
Maman Avg	8624	5.085	3442	2.726	2089	2072	2066	2.926	5309	6702	8.433	7565	4.922
flows, Low	3182	1534	1480	0733	0593	0658	0417	0410	0.597	0631	2.147	3312	3613
($\mathrm{m}^{3} \mathrm{~s}^{1}$) High	14120	11280	10180	7056	5714	4179	7120	9.970	14680	10900	13630	14490	5.926
Poak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	17853	9654	9230	67.02	7555	7032	7343	7200	15742	16259	10557	11915	178.53
Runots (mm)	139	75	88	42	34	32	33	47	83	108	131	122	934
Rainfal (mm)	140	76	106	63	72	83	86	92	131	147	157	137	1290
Factors affecung flow regime H 1988 runoff is 115% of peevious mean Stainfall 113%													

Grwd teference 26 (NS) 525259
Level sin (m OD) 8990

Catchment area (sq km) 1663
Maxalt. (in OD) 548

084012 White Cart Water at Hawkhead

	JAN	FtB	MAR	APA	May	JuN	Juk	Aug	SEP	OCT	Nov	Of. ${ }^{\text {- }}$	Year
Flows Avg	15130	12280	10390	6119	2050	1052	4185	8.833	11330	10900	6756	11170	350
(m)'s ${ }^{-1}$) Peak	7821	3459	8632	7152	i7.93	821	$38 \cdot 1$	7470	4564	7019	7508	5860	94.59
Ruroff (mm)	178	135	: 23	70	24	:2	49	104	129	:29	77	132	1162
Rantall (mm)	174	122	158	79	67	20	164	169	152	131	93	125	1460
Monthly and yearly statistics for previous record (Oct 1983 to Dec 1987)													
Mean Avg	10.810	7.341	7090	3970	3512	2587	2.357	3.798	7356	10960	11840	10880	6.877
Slows Low	5142	2.480	1676	1112	0973	0998	0824	0.885	1141	1212	3259	3211	4.419
($\mathrm{m}^{2} \mathrm{~s}^{-1}$) High	21190	14.260	15630	8523	10330	. 6542	8806	14220	24360	46570	20730	20850	10.946
Pouk flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	18740	13925	11707	82.46	11513	6513	9351	11127	13291	13442	13405	18710	187.40
Runolf (mm)	127	79	84	45	41	30	28	45	84	129	135	128	955
Ramial (rxm)	122	74	103	61	81	74	76	96	138	142	150	132	1249

[^9]Station type: VA

Measunng authonty: CRPB
First year. 1966
Hydrometric statistics for 1988

		JAN	FFB	MAR	APP	MAY	UN	Nr	AUG	SEP	OCI	Nov	OfC	Yem
Fiows	Avg.	1.759	1.281	1079	0867	0362	0.182	0578	1327	1.109	1089	0.792	1.123	0.963
(m) $\mathrm{m}^{2}-1 \mathrm{y}$	Peak	11.84	603	1301	1080	1.30	062	301	2206	7.88	609	11.98	9.95	22.06
Rumatt (mmin		139	95	85	66	29	14	46	105	85	86	61	89	898
Ranfall (mmil		142	92	125	19	68	16	163	171	120	119	79	94	1268

Monthly and yearty statistics for previous record (Oct 1966 to Dec 1987 -incomplete of misaing momets total 0.5 years)

085001 Leven at Linnbrane

Measuring authority: CRPB
First year 1963
Hydrometric statistics for 1988

			FER	MAR	APR 52580	MAY 12930	JUN	M	AUG	SEP	OCT	NOV 43280	DEC	Year
Flows	Avg	95400	78560	41580	52580	12.930	10430	28880	59490	63410	68340	43280	55.750	51335
($\left.m^{3} s^{-1}\right)$	Pesk	11752	9622	8104	7680	3794	1549	6366	7327	8310	8427	63.20	7190	11752
Rumbif (mun)		326	251	162	174	44	34	99	203	210	233	143	190	2070
Rainfall (mmi)		291	207	248	103	97	31	275	256	220	255	131	234	2348

Monthly and yearly statistics for previous record (Jul 1963 to Dec 1987)

Mean Avg.	61850	bl 360	44370	31760	26190	20470	18520	23040	35300	54200	61670	63510	41.017
llows Low	27860	18610	16630	10540	10620	9716	6706	3974	8194	10830	24.540	35880	30712
$\left(\mathrm{m}^{3}{ }^{-1}\right) \mathrm{Hryh}$	119100	102100	98410	51390	73060	51860	44640	85.140	90470	90150	112700	122400	52.218
Poak flow (m)s ${ }^{-1}$)	15048	14083	12221	8314	3120	7832	8561	11302	11882	13854	14091	14349	150.48
R.unots (mm)	211	160	152	105	89	69	63	79	117	185	204	217	1650
Rasifall \{mm\}	228	135	: 75	99	125	116	i19	142	216	228	238	2.27	2048
Factors affocting Station type VA	w regin									1988	off is 125 anfall 115	\% of pre \%	us mean

094001 Ewe at Poolewe

1988

Measuring authority HRPE
Filst year 1970
Hydrometric statistics for 1988

		JAN	ffi	MAR	APP	MAY	JuN	תィ	AUG	SEP	OCT	NOV	OEC	Year
Flows	Avg.	47630	41070	41390	21420	5440	3725	14150	29200	$39 / 60$	40450	21020	50680	29.688
($\mathrm{m}^{3} \mathrm{~s}^{-}$: $)$	Peok	8941	6329	6079	4566	1021	528	3021	4758	6546	12545	3253	9069	125.45
Runots (mm)		289	233	251	126	33	22.	86	177	234	246	124	308	2128
Rainfal (inm)		272	296	285	79	39	45	213	257	266	250	169	388	2559

Monthly and yearty statistics for previous record (Nov 1970 to Dec 1987)

Muan Avg	40210	27750	27030	22800	16130	13410	14010	16090	31480	35020	47940	47410	28271
!lows Low	13820	10660	8842	4537	3862	4675	7884	6240	8046	13160	22680	16500	19.389
($\mathrm{m}^{3}-\mathrm{z}_{-1}^{1}$) Hrgh	81130	46880	54440	38270	36280	27180	26180	33070	57.270	66220	78300	81840	35.549
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-}$)	17708	10496	11100	7359	6563	6443	4508	8546	10922	11900	13610	17982	179.82
Runotf (mm)	244	153	164	134	98	79	85	98	185*	$2 \cdot 3$	282	288	2022
Rainfall (men)	257	153	20.4	128	118	122	138	149	253	286	331	3:1	2458
Factors affectung Siam tyoe: VA	w regin									1988	if is 10 niall 10	of pre	misan

Grid reforence 18 (NG) 859803
Lever sin. (m OD) 460

Catchment area (sq kmi. 441 Max alt: (m OD): 1014
rainfall 104\%

095001 Inver at Little Assynt

Hydrometric statistics for 1988

	JAN	FEB	MAR	APA	MAY	UN	Ω	AUG	SEP	OCT	NOV	ULC	Year
Fiows Avg	11650	11460	13110	6112	- 2352	1812	3702	8425	11450	8 604	$65 / 2$	13070°	8.194
(m's ${ }^{-1}$) Peak	2181	1611	:885	-3.38	387	286	614	1559	1853	1634	1051	2193	21.93
Runot! (mm)	227	209	255	115	46	34	72	164	216	168	124	255	1884
Rainlat (mm)	222	207	244	. 82	58	54	163	208	242	153	134	282	2055
Monthly and yearly statistics for previous record (Aug 1977 to Oec 1987)													
Mean Avg	10600	7006	8824	5562	4151	3384	5057	5736	10610	13200	14000	:1400	8.302
fows Low	4082	2397	4179	3453	1660	1915	2.432	3394	5263	6227	8.605	4631	6.956
($\mathrm{m}^{\prime} \mathrm{s}^{-1}$) High	19950	11330	19400	7552	7131	5636	10340	8579	16390	21180	23960	17580	10.784
Peak flow (m)'s	5524	3102	6282	14.93	2092	1972	i5 19	1780	5650	5751	5006	4665	62.82
Runoff (T.m)	206	124	: 12	105	81	64	99	112	200	257	264	2.22	1905
Ramial (mm)* $\cdot(1978.1987)$	228	106	203	95	84	109	136	151	256	263	305	257	2193
Factors affecting flow regime N Station typa VA										1988 runuff is 99\% of provious mean rainfall 94%			

Measuring authority HRPB
First year: 1976
Hydrometric statistics for 1988

Flows$\left(\mathrm{m}^{3} \mathrm{~s}^{\prime}\right)$	Avg. Peak	JAN	5f8	MAR	APR	MAY	JNN
		7227	1632	7612	2132	1425	0379
		54.88	5623	6736	37.45	2154	393
Rurolf (imm)		95	93	100	21	19	5
Ras n 'all (mm)		117	107	107	49	49	33

Monthly and yeariy statistics for previous record (Jan 1976 to Dec 1987)

Sta:ıon iype VA

Grid relerence: 29 (NC) 891561
Leval stn (m OD): 2320
Catchment area (sq kmi): 204.6
Max alt (m OD) 580

101002 Medina at Upper Shide

Measuring authority NRA-S
First year: 1965
Hydrometric statistics for 1988

		JAN	5 FB	MAR	APP	Mav	JUง	M	AlG	SE ${ }^{\circ}$	(ct	N()V	DSC	Year
Flows	Avg	0928	0612	0460	0297	0203	0164	0171	0129	0.156	0240	0162	0202	0.310
($\mathrm{m}^{3} \mathrm{~s}^{-1}$).	Peak	647	443	540	160	0.50	036	038	041	049	233	() 52	109	6.47
Runotf (inm:)		83	51	41	26	18	14	15	12	14	22	14	18	329
Raintall (rm)		201	54	108	51	37	23	64	55	51	102	27	30	803

Runoff (mm : 1)
Monthly and yearly statistics for previous record (Oct 1965 to Dec 1987 -incomplete or missing months total 6.8 years)

Mean Avg.	0429	0393	0337	0270	0.208	0145	0126	0120	0159	0241	0351	0392	0.264
flows Low	0.150	0160	0121	0104	0094	0069	0073	0044	0080	0.110	0088	0116	0.122
(m's ') High	0688	0760	0903	0522	0356	0212	0199	0180	0.365	0555	0169	0663	0.335
Pook flow (in)' ${ }^{-1}$)	647	600	728	544	700	173	372	$1 / 4$	374	473	864	630	8.64
Rurolf (mm)	39	32	30	23	19	13	11	11	, 4	22	31	35	279
Ra.n!all (tmm)*	85	67	96	47	66	52	51	61	61	109	84	109	888

(1966-1987)
factors affecting flow regime: N I
Station type FL

Cinid roference 40 (\$2) 503874 Lovel sin (m OO): 1040

Catchment area (sq km) 29.8
Max alt (m OD) 167

201007 Burn Dennet at Burndennet Bridge

1988

Measuring authority DOEN
First year: 1975
Hydrometric statistics for 1988

		Jan	186	NAR	APR	NAY	UN	Ju1	AUG	SEP	${ }^{1} \mathrm{C}^{\circ}$	N(JV	Cre	Yout
Flows	Avg	9542	8897	6393	2.597	- 320	1380	2302	3/12	5894	5280	2973	4731	4.577
($\mathrm{m}^{3} \mathrm{~s}^{-}$)	Peak	1002	5300	3902	795	164	1171	1465	1989	5191	3796	2236	25.56	70.02
Ruwntt (\%ur)		176	153	118	46	24	25	42.	68	105	97	53	87	996
Rainfal (mm)		183	155	148	29	38	46	161	143	137	115	68	104	1327

Monthly and yearly statistics for previous record (Jun 1975 to Dec 1987 -incomplete or missing months total 0.1 years)

201008 Derg at Castlederg

Hydrometric statistics for 1988

	JAN	ff 8	MAA	APF	MAY	JN	M	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg	29490	23730	2.0630	5465	1157	1.913	10760	17080	25140	19.110	9946	19890	15.365
(m's s^{-1}) Peak	14604	$\bigcirc 7165$	10334	31.70	859	-19 93)	5676	8480	. 6444	- 3430	864 :	12328	171.65
Runolf (mms	234	176	164	42	9	- 5	85	136	193	152	76	158	1440
Rastall (mm)	212	166	190	42	46	42	213	$1 / 6$	198	151	84	156	1676
Monthly and yearly statistics for previous record (Jan 1976 to Dec 1987)													
Nean Avg	22030	13310	16040	7189	7375	b 320	5769	8687	14.130	17.320	21/10	21490	13378
flows Low	:2030	2356	8844	1862	0.534	1048	1336	0258	1.703	9480	7358	13420	11.403
(m's ${ }^{-1}$) H:gh	33100	24550	23410	15360	17200	11230	$111: 0$	30260	30630	30740	35830	32690	15.763
Peok flow ($\mathrm{m}^{\prime} \mathrm{s}^{-1}$)	202.57	18/29	15372	13564	16353	8733	16101	17693	232.85	192.94	20522	18729	23285
Runoff (mm)	175	97	127	55	59	41	46	69	109	138	167	171	1252
Rental (mm) ${ }^{-}$ $\cdot\{1983.1987\}$	197	80	160	91	110	86	106	150	149	198	156	209	1692
Factors affecting flow regime E Station type VA										1988 runolf is 115% of previous mean rainfa! 99%			

203012 Ballinderry at Ballinderry Bridge

1988

Measuring authorty: DOEN
Fust year: 1970
Hydrometric statistics for 1988

	JAN	res	MAR	APA	MAY	UN	M	Aug	SEP	OCT	nov	OEC	Year
Flows Ang.	24690	19.600	16.560	5978	3597	4429	3493	8246	13050	17200	8032	13550	11.531
($\mathrm{m}_{3} \mathbf{s}^{-1}$). Peak	18321	13988	98.37	1793	1097	4696	8.37	4801	10056	123.92	7004	6601	18321
Runotl imms	158	117	106	37	23	27	22	53	81	110	50	80	869
Ranntal	187	113	153	41	52	44	128	144	113	138	59	92	1264
Monthly and yearly statistics for previous record (Jul 1970 to Dec 1987)													
Mean Avg.	16030	11.780	10210	6449	5479	3713	2.829	4927	5866	8879	12480	14320	8.573
flows Low	9.339	4805	5.502	3.515	2454	1.627	1.518	1060	1965	2331	5122	4946	5.251
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{Hrgh}$	24270	24430	15270	13140	12.740	7524	7496	17640	21020	16060	21860	21490	10.693
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{1}$)	14848	11488	9019	10669	10923	6160	127.21	14006	14101	194.80	117.73	13801	194.80
Runotf (mm)	102	69	65	40	35	23	18	31	36	57	77	91	645
Ramfall (mmi* ‘\{1983-1987)	122	54	102	64	72	68	62	114	93	112	94	118	1075
Factors affectung flow reyme. S Station type VA										1988 sunoff is 135% of previous mean - tainfall 118\%			

203020 Moyola at Moyola New Bridge

Measuring authority DOEN First year 1971					Grid reference 23 (11-1) 955905 Level sin (m OD) 13.00					Catchment area (sq km): 3065 Max all (m OO). 55			
Hydrometric statistics for 1988													
	JAN	FEB	MAR	APR	MAY	JUN	תr	AUG	S:P	OCT	NOV	OEC	Yalar
Flows Avg	23.280	19.760	15590	4464	2.819	3228	4250	8194	11730	15880	6415	11620	10.598
(m's ${ }^{-1}$ \% Peak	152.22	119.72	7067	1945	849	3755	2011	5711	8308	114.09	5728	7025	152.22
Runoti (mm)	203	162	136	38	25	27	37	72	99	139	54	102	1093
Rainlall (mm)	219	154	160	41	57	48	138	157	136	163	66	110	1449
Monthly and yearty statistics for previous record (Feb 1971 to Dec 1987)													
Mean Avg	14.610	10480	9351	5283	4688	3282	2.532	4174	5623	8405	11130	13.230	7.728
flows Low	9101	1.552	3776	2238	1335	1015	0952	0748	1050	2000	4562	5088	4.981
(m's m^{-1}) High	20980	21510	15580	8875	12360	6900	6496	15310	19100	14.220	20770	22.170	9.645
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	12849	12191	8102	7038	11414	61.84	83.33	10372	11270	13411	11651	15462	15462
Runoff (mm)	128	84	82	45	41	28	22	36	48	73	94	116	796
Rainfar (mm)* -1983.:98 $\}$	149	6.	120	69	82	69	70	120	107	129	113	:35	1224
factors affecting flow regime S Station type VA										$1988 \mathrm{r}$	If is 137 nfall 118	of prev	us mean

205005 Ravernet at Ravernet

1988

Measuring authority: DOEN
Fust year 1972
Hydrometric statistics for 1988

Fac:ors affecting flow regime N
Stathon type: FV

Grid eference: 33 (IJ) 267613 Level sin (m OD). 3100

Catchment area (sq km) 695 Maxall (m OD). 163
rainfall 121%

THE SURFACE WATER DATA RETRIEVAL SERVICE

The Surface Water Archive comprises some 26,000 station-years of daily river flows and incorporates data from over 1200 gauging stations throughout the United Kingdom. In addition to gauged flow data, naturalised data have been derived from the records of a small number of gauging stations. Catchment areal rainfall and the highest instantaneous flow, when available, are also archived on a monthly basis.

In order that the contents of the archive may be readily accessible, a suite of programs has been developed to provide a selection of retrieval options. Descriptions of these options are listed below, and examples of the computer output are given on pages 137 to 145 . The data retrieval programs have been designed to allow flexibility in the presentation of the options, particularly those producing graphical output. Before finalising a data request it is recommended that the Concise Register of Gauging Stations on pages 146 to 151, and the Summary of Archived Data on pages 152 to 159 , be consulted to check the availability of suitable data sets.

To enable the suitability of individual flow records for particular applications to be assessed more effectively all retrievals are accompanied by the relevant gauging station and catchment details (where available).

In response to user requirements the data retrieval facilities are being continually extended. A wide range of specialist analyses and presentations is now available. Individuals having data requirements not catered for in the standard retrieval suite are invited to discuss their particular needs - address below.

Retrievals are normally available on line-printer listings, magnetic tape or IBM compatible disk, or as hydrograph plots.

Cost of Service

To cover the computing and handling costs, a moderate charge will be made depending on the
output options selected. Estimates of these charges may be obtained on request; the right to amend or waive charges is reserved.

Requests for Retrieval Options

Requests for retrieval options should include: the name and address to which output should be directed, the gauging stations for which data are required together with the period of record of interest and the title of the required options. Where possible, a daytime telephone number should be given.

Requests should be addressed to:

Surface Water Archive Office
Institute of Hydrology
Maclean Building
Crowmarsh Gifford
WALLINGFORD
OXFORDSHIRE OX 10 8BB

Telephone: Wallingford (0491) 38800
Fax: (0491) 32256

Hydrological Data at the Institute of Hydrology

The Surface Water Archive is one of several major sources of hydrological data held at Wallingford. Others include an archive of flood peaks from over 600 catchments and a flood event archive comprising rainfall and river flows at short time intervals for over 4000 individual events. Data may be retrieved from these sources in a variety of formats. Enquiries concerning the availability and use of such data should be directed to the above address.

LIST OF SURFACE WATER RETRIEVAL OPTIONS

OPTION TITLE
NUMBER

Table of daily mean naturalised discharges

Yearbook data tabulation (daily)

Table of monthly mean gauged discharges

NOTES
Includes monthly and annual summary statistics. Flows in cubic metres per second.

Includes monthly and annual summary statistics. Flows in cubic metres per second.

River flow and catchment rainfall data for a specified year with basic gauging station and catchment details and flow statistics derived from the historical record. Naturalised, flows (where available) - and the corresponding runoff - may also be tabulated.

Includes monthly and annual summary statistics. Flows in cubic metres per second.

Table of monthly mean naturalised discharges
Yearbook data tabulation (monthly)

Table of monthly extreme flows

Table of catchment monthly rainfall

Table of catchment monthly areal rainfall and runoff

Hydrographs of monthly mean flows

Flow duration statistics

Table of gauging station reference information

Table of hydrometric statistics

Gauging station and catchment description

River flow pattern plots

Gauging station summary sheet

Includes monthly and annual summary statistics. Flow's in cubic metres per second.
Monthly river flow and catchment rainfall data for a specified year together with comparative statistics derived from the historical record. Naturalised flows (where available) - and the corresponding runoff may also be tabulated.
The lowest and highest daily mean flows, together with the highest instantancous flow and date of occurrence (where available). Flows in cubic metres per second. Includes summary statistics.
Rainfall totals in millimetres and as a percentage of the 1941-70 catchment average. Includes summary statistics.
Runoff is normally derived from the monthly mean gauged flow. An additional listing is provided for catchments with naturalised flow records. Includes summary statistics. Rainfall and runoff totals are in millimetres.

Choices of scale, units, truncation level and overlay grid pattern are available. The period of record maximum and minimum flows, or the mean flow, may be included. The plots may be based on single or n -day means, or on n -day running mean flows.
Choices of scale, units and overlay grid pattern are available. The period of record maximum, minimum and mean flow's may be included.
Tabulation of the 1-99 percentile flows with optional plot of the flow duration curve. The percentiles may be derived from daily flows or n-day averages and the analysis may be restricted to nominated periods within the year, e.g. AprilSeptember only. Choices of scales, grid marking and units are available and the percentiles may be expressed as a percentage of the average flow or of a nominated flow.
Tabulation of selected gauging station details and catchment characteristics for nominated gauging stations.
Provides a comparison between summary statistics
for a selected year, or a group of years, and the corresponding statistics for a nominated period of record.
A brief summary of the gauging station, its history and major influences on the flow regime, together with catchment details.
Three plots on an A4 sheet:
a) daily mean flow hydrograph for a selected year
b) monthly mean flow hydrograph for the selected year. The maximum and minimum monthly flows, together with the 30 -day running mean for the preceding period of record may be included
c) flow duration curve for the specified year. A flow duration curve for the period of record may be included.
Includes a daily flow hydrograph (with period of record extreme values) and flow duration curve together with summary statistics relating to river flow, catchment runoff and catchment rainfall. A description of the gauging station and catchment is also provided together with selected catchment characteristics and a concise summary of the archived data.

OPTION 1 TABLE OF DAILY MEAN GAUGED DISCHARGES

OPTION 2 TABLE OF DAILY MEAN NATURALISED DISCHARGES

OPTION 3 YEARBOOK DATA TABULATION (DAILY)

OPTION 4 TABLE OF MONTHLY MEAN GAUGED DISCHARGES

OPTION 5 TABLE OF MONTHLY MEAN NATURALISED DISCHARGES

OPTION 6 YEARBOOK DATA TABULATION (MONTHLY)

OPTION 7 TABLE OF MONTHLY EXTREME FLOWS

－09900：													
：	J．n	＇：．：	： 2	8	\cdots	Jm	\cdots	20：	$3: \%$	\％$\because:$	\because	－$\because 6$	\％ 0
： 7248 ：	：110，	26．190	310	$\because 29 n$	\％	2．940	$\because \cdot 0_{1}$ ？	0	：$\because 1: 0$	…00	：8，\％os	20：030	
＇0，	14．42才	3：＊＊	＂；： $12 ;$	¢1：13，	2：0，${ }^{1}$	！	，$\because 2=1$	1：140	3	Y：1803	3，4i4：	13：400	136：190
1930 41		12．73 16.000	$\therefore+\infty$ $\therefore 2+0$	30．131			1．303：						112.00 110
70	$\begin{gathered} 10: 3+3 \\ 1: 380 \end{gathered}$	10．mid	－2\％	10：19	4．119	＂：313	2．：4\％：	30：1313	21：00	＂：139	1？：470\％		${ }^{170} 1.808$
47 is is	（02，133		（32．002					：	：$\because 172$	$\xrightarrow{111} \begin{array}{r}1900 \\ 7.11 \\ 1.11\end{array}$	（131．609	！ $1: 119$	
$4 t$		$\begin{aligned} & 0 ; \%: 0 \\ & i, i_{i} \end{aligned}$	131／＊＊		90900		$\xrightarrow{13,030} 1$		（				230．893
as				$\begin{aligned} & 41: 0, \\ & 1 \\ & 1 \end{aligned}$			象:						1，40\％
（）	$\begin{aligned} & n, 0, \\ & n i+i \\ & i \neq i \end{aligned}$	${ }_{20}^{24}$		， 380		？	$\xrightarrow{1.808}$	边	1	！oy	2．9\％：		

OPTION 8 TABLE OF CATCHMENT MONTHLY RAINFALL

－100：													
：$:$ ：	\pm－：	：$:$ ：	：$:$	：．：	：$:$ ．	ภ．	\ldots	：$:$	：$:$ ：	a：	：	：：	：．：
	\％	：	汸	is	80	䐖；	\therefore	19\％	\because	i；	\because	iir	18：
	iif	；	10：	米	iis	\therefore	＂	$1: 3$	3：	；1：	：3	12.	iii
	\％	$\because 0$	$12 i$	ii	；	iii	$:$	；	\because	翗	1；	＂	10%
－＇in＇，	；	\％${ }_{1}$	18%	䓶	：	\because	；	iii	3	：$: 8$	180	ios	1：\％
（i．i）	？	1．1．	唯	，iii	，		？	＋10	nid	＂i！	，	：	：
net \quad＇i：	：	\％igi	$\begin{array}{r} 104 \\ 1020 \\ 1206 \end{array}$	（ib）	4；	\％oid	iif	： 10	\because	？	[103	i\％	：3íd
－106－\％no．	＂＇1	＂	＂	＂	4	\bullet	12	102	104	13	：3	$1 \cdot$	14

OPTION 9 TABLE OF CATCHMENT MONTHLY AREAL RAINFALL AND RUNOFF

[^10]
OPTION 10 HYDROGRAPH OF DAILY MEAN FLOWS

050001	TAW AT UMBERLEIGH	1981
Previlous record	1958-1980	Cotchment area 826.2 km

OPTION 11 HYDROGRAPH OF MONTHLY MEAN FIOWS
15006
tay at ballathie
1981
Previous record 1953-1980
Cotchment area $4587.1 \mathrm{~km}^{2}$

OPTION 12 FLOW DURATION STATISTICS

OSOOOL TAN AT UMBEALEICH GAUGED rLONS ISZD

OPTION 13 TABLE OF GAUGING STATION REFERENCE INFORMATION

visote	niven	sfat:cs	csie 210	operetok		Liss yess	3190	easte ate 10 8 *	$\begin{aligned} & \text { yput } \\ & \text { iyy } \\ & \text { age } \end{aligned}$		sessencserosus
06800 :	10.9	1r8etinesteps	st27 909	seo-be	1009		ec	36.1	1179	480	3076
964000	P0.0\%	cesteresi emp	32106613	400-80	1901	1012	78	131.2	\%:	178	300 ! 1
964033	1	trezoav	SA2149	ate-:d	191		'17\%	37.8	$0 \cdot 9$	316	611
918036	Nar:03d9	Trenselto	3t1300\% ${ }^{\text {a }}$	4rtis	1949		cs	23.1	70.1	308	
343005	<-morn	trme	Setsesss	cta-sd	1969		8	14.2	\% 2	138	6
948506	coser	-trom	scrsalis	Het-s\%	1948		* ${ }^{4}$	10.1	\% ${ }^{\text {a }}$	231	06
268037		pontameotn	surozs?	-14-84	1908		c	86.6	13.6	231	30p6
368798	32 avotelt	Cllnjer	5190759\%	414-50	1971	1976	is	\% 9	11.3	$3: 3$	${ }_{61} 1$
345907	31 veot	Cralamill	31.96040	404-5d	1971		${ }^{6}$	27.7	70.3	338	${ }^{61}$
06s919	resten	Troveconbriase	318980%	ctero	1931		e	35.2	86.4	149	4
B6to:	po.er	cestoreor	31078026	-88-3.	1961		ce	150.1	-. 7	40	serse:

OPTION 14 TABLE OF HYDROMETRIC STATISTICS

STATICH minete	nex	ans	ancil	anduac	mak	0.	not	M:01257	2ate	wisst	me: 1	10	\%	ys
		1941	Min	cauczo	Linuco	ns	neas	cally		3alty		13L	114	11.
		1970	fall	alawit	f19	RLC	How	CAK		n+4.				
		Ns	\% ${ }^{1}$	Ns	a m/s			cos m/s		c) m/s		W m/s	a nos	CU N/s
02100s	Wh	1320	12\%	614	7.99	(1)		1es. 50	30101/12	1.19	01/10/72	18.20	3.34	1.4)
	191)		1636	829	9.80		123	92.38	31/10	1.34	$22 / 0 \mathrm{~b}$	20.20	1.03	t.0s
	1978		1317	131	4.93		112	13.14	13/11	1.35	14106	20.23	0.01	2.23
	1979		1387	913	10.10		133	-1.13	2b/t 1	2.25	23101	26.29	0.71	8.04
	1980		1280	793	9.36		11)	49.39	24/11	2.01	$01 / 06$	19.90	7.00	2.19
021000	row	1221	1100	-96	32.99	is		393.40	30/01/16	3.60	01/10/12	08. 19	21.22	0.83
	1911		121)	3s	40.20		122	353. 10	31/10	4.13	18108	86.42	4.60	3.66
	1978		1264	131	34.17		108	320.20	15/11	3.62	20/00	18.17	12.80	1.01
	197\%		1250	881	41.70		121	202.70	28/11	7.21	$21 / 07$	43.82	27.06	8. 81
	1900		118)	140	35.88		:08	11.et	20/11	0.31	14/cs	78.83	24.41	3.60
021007	Por	1413	1321	878	13.69	1s		209.40	30/01/1:	0.31	017091\%	31.59	1. 50	1.71
	1917		1324	1108	17.84		120	288.20	11/10	0.81	14103	41.20	10.86	1.1t
	1978		1396	sto	16.02		101	210.00	13/t1	0.91	1910)	12.00	1.24	1.21
	1979		1620	1103	17.48		126	120.90	26111	1.62	$24 / 07$	21.36	10.8s	1.23
	1400		1500	96.	16.93		107	96.07	20/11	1.18	$14 / 05$	35.2]	9.10	1.35
021008	run	1008	9.9	sor	17.16	: ${ }^{\text {a }}$		108.00	$06 / 03 / 03$	1.71	1210u/70	58.44	$11.0 s$	2.85
	1917		1019	-0,	21.25		120	18).20	$31 / 10$	3, 84	1700	-6.30	14.01	2.38
	1470		10us	sa:	19.0)		107	:11.90	13/11	2.04	2010	is. 34	11.6	2.31
	1979		jais	OyJ	[4.43		130	213.10	23103	2.23	05/0b	3s.6:	19.31	3.01
	1980		982	S50	20.62		116	122.00	20/11	3.33	as/os	63.15	:6.3	6.1.

OPTION 15 GAUGING STATION AND CATCHMENT DESCRIPTION

48003 Fal at Tregony
Urlginally velocity-area station In forealised trapezoldal chamel: augeented by a louflou, side contracted fluee 2.30 ulde in august 1967. Site not ldeal for hlgh flous. Data avallable fros June 1978. Earlier data unceliable dut to silting of Inlet pipes. moderate sodification to flous oufing to industrial abstractions and returns.
Moderate to low rellef catchaent dralining oevontan sletes, shales and oritso Upper reaches plateau-like alluvial flats. iraverses the kaollinised st austell Granlte. Lov grade darlculture and orazing.

48004 Varlegoan at Trengoffe
Three-bay compound cruap proflie weir, crest lengths l.520 and 8. Ssa ttotall,
Uing valls at 1.67 a . Flood banks contain flous up to ving wall helght. Overtopped
at the hlghest flovs. The only gauged natural catcheent on iodeln Moor.
The upper 70 it dralns the kalinisad granite of bodeln Maore the relief is eaderate
to steep. the lover sot traverses attaeorphosed Devonlian blatese iaseflou high for an ugland catchaent oulng to storage In the grantie.

48005 Kenuyn at $\operatorname{Tr} u r$ o
Threctby compound Cruap proflle velf, crest lengths 1.220 and 3.05 itotali. Pler
and ving vall height lo9se. contalins all flows potential for non-sodularlity at the highest flous. variable shoalling affects lou flou prectsion. substantially the highest flous. Varlable shoalling affects lov loupreclsion. Substantialiy
 Catcheent of eoder

OPTION 16 RIVER FIOW PATTERN PLOTS

56001
USK AT CHAIN BRIDGE
1983
Previous record 1958-1982 Cotchment orea $911.7 \mathrm{~km}^{2}$

Percentage of time flow exceeded (Nornal proboblity scale)

OPTION 17 GAUGING STATION SUMMARY SHEET

Station and Catchment Description
velocity-eres station, min chernel 340 wide, coblcroy upen 54.9 m . Rock itep d / s forms the control. Bypessing begine ot about 3.7n on the ro, but - good rating eccommodeter this. Significant modification to llows owing to pres abstraction. Som neturalised flow dete evaileble.
Large rural cetctment - drains both Dartmoor (armita) to the south and Devonimen stheles and sende tones of Expoor to the north. Central ares is undorloin mainly by culu shalos end sandztones (Corboniferous). Agriculture is conditioned by the grede 3 and 4 soile.
Summary of Archived Data

Gauged Flous and Rainfall

Station number	River name	Gid reterence	Meazuring euthonty	Area (sa lund	Station number	Rivert name	Grad reference	Measuring authority	Area (89 km)
041003	Cuxkmer	51 (10) 533051	Nats	1347	049002	Hosto	10 SWW 549 342	nfa Sw	489
041004	Ous	S) (10) 433148	notas	395.7	049003	Oetink	20 [SX] 132765	Nra. SW	217
041005	ause	51 (10) 429214	notas	1909	0×9004	Gernal	10 5WW 829393	NRa.SW	110
0 O 1006	Ukt	51 (10) 459190	neras	87.8					
041009	- Rotron	51 (10) 034178	neras	3458	050001	Tow	21 [SS 600237	nRa. SW	8262
O4 1010	Adar W branen	51 तoi 178197	Notas	109.1	050002	Torrage	21 [SS 500185	Nara. Sw	6630
041011	Rouser	81 sen 852229	nota S	1540	050004	Hocto	21858705373	Nat. SW	54
O< 1012	Aoux E Bramet	51 T01 219190	NRA.S	933	050005	West Oioment	20 (Sx) 557903	MaA. SW	133
041013	Hexpoters Siram	51 (10) 611138	NRA.S	142	050006	Moter	21 15S 660211	NRA.SW	327.5
041014	Arun	51 101047229	NRA.S	3790	050007	Tow	21 [SS4 6/3068	neat SW	714
$0<1015$	Ems	41 sSen 755074	NRA.S	583					
081016	Custmere	51 (10) 611150	nRa S	187	051001	Dorstord Stieam	31 (5T) 089828	neatic	158
041017	Comberoven	51 त01 765102	NRA.S	305	051002	Hornes Water	21) 654898458	nata.w	208
O< 1018	Kıd	511101044256	NRA.S	668	OS 1003	Wastiord	31 1511 040393	nat w	363
OS 1019	Arun	51 101 117331	nras	1390					
O4 1020	Bevern Siram	St 180) 23161	NRA. ${ }^{\text {S }}$	346	052001	Are	31 ctil 527 css	nat w	182
O4 1021	Clayta Suam	51 (10) 448153	nras	7.1	052002	Y	31 (ST) 556116	NRA.w	303
041022	1∞	41)	NRA. 5	520	052003	Mase Water	31 (ST) 206253	NRA.w	878
041023	Luvant	41 rsen 871064	nRa S	872	052004	tst	31 (5) 361188	NRA.W	901
041024	Shell Brook	51 त0\% 335286	NRA.S	228	O0, 2000	Tone	31 (ST) 206250	NRA.W	2020
041025	Lorwood Stiesm	S1 (10) 060309	NRA.S	916	052006	Yoo	31 'STI 573162	NRA.W	2:31
041026	Cockhenso Brook	51 त0t 376262	NRA.S	361	Cos207	Paxtelt	31 (ST) 461144	NRA.W	148
041027	Roiner	41 isun 772270	nhas	372	052008	Tone	31 ז5T1 044 313	NRA.W	181
041028	Cress Sumem	51 त01 217173	NRA. 5	240	0 O2009	Shapper	31 151 498439	NRA.W	596
041029	But	S1 (10) 575131	NRA.S	408	052010	But	31 [STI 590 3:8	NRA.w	1352
041030	Ouse	51 त0\% 333283	NRA.S	37.2	052011	cory	31 (ST) 498291	NRA.W	824
					052014	Tose	31 (STI 078202	NRA.W	572
042001 042003	Woburgon	4) ISUN 587075	natas	1110	$00^{0} 2215$	und	31 (STI 483716	NRA.W	233
042003 042004	tymung:on	41) rsun 318019	NAA S	989	052016	Curivool Suesti	31 (ST) 221382	NRA.W	157 666
042005	Wator Brook	${ }_{41} 1$ ISU 311330	NHAS	536	052020	Gonfa Sireat	31 (ST) 571100	NRA.W	666 164
042006	mear	4) ISMC 589 141	NAA.S	728					
042007	Alte	41 (SU) 514328	nat	570	053001	Avon	31 (ST) 903641	NRA.w	6656
042008	Craerion Stream	${ }^{41}$ ISUI 574323	NAA.S	751	05.3002	Samington Brock	31 (ST) 907605	NRA.W	1577
042009	Candovar Stresm	41 (SU) 568323	natas	712	053003	Avon	31 (ST) 753645	NRA. W	is950
042010	$1:$ Cher	${ }^{41}$ (sun 467213	NAA.S	3600	053004	Chow	31 (ST) 648647	NRA. w	1295
042011	Hambie	${ }^{41}$ (SU) 523149	NAAS	566	053005	Mutiout Brook	31 [51 163611	npa.w	$14 / 4$
042012	Anton	4) 1SU) 379393	NRA.S	1850	053006	Fromalisision	31 (ST) 637172	nat.w	1489
042014	Backwater	${ }^{41}$ (SU] 328174	nhas	104.7	053007	Fromersomersel)	31 (ST) 800564	nat.w	2616
042015	Duver	41 (SU) 496394	MRAS	52.7	053008	Avon	31 IST) 966832	nha.w	3030
042016	Itchem	\&1 1547512325	NRAS	2368	05.3009	Wanlow Brook	31 (SI) 741581	nata.w	126
042018	Morks Biook	41 (SU) 443179	NRA S	433	053013	Marcerl	31 (ST) 955729	nata.w	992
042020	Tadturn lake	${ }_{4} 1$ (SSA 362212	NRAS	-190	0530:7	Boyo	31 15i) 681698	nha.w	480
042021	Branct ot Test	41 (SU) 355 159	nhas	- 0	0530:8	Avon	31 IS:) 146611	Aba.w	S20
					0.53019	Woontricge Armat	31 15:) 943866	SAA.w	466
043001	Avon	4) (SUת 162054	NRA.W	$\bigcirc 6498$	O53020	Gevze Brook		NHA.W	282
043003	Avon	4) (su) 158154	NRA.W	14778	053022	Avor	31 15\%) 238651	noa.w	6050
043004	Bourn	4) (san 157304	NRA.W	1636	053023	Sherston Avon	31 'STi 891870	NiRA.w	897
043005	Avon	41 (ser 151413	NRA W	323.7	053024	Talbury Avon	31 1ST) 914893	NRA.W	736
043006	Nacker	${ }^{41}$ (sun 098308	nRa.w	2206	053025	mels	31 [5T1 757491	NRA.W	1190
043007	Stour	40 (52) 113958	NRA W	10730	053026	Franemitis:of)	31 (SI) 661822	NRA.W	785
043008	Wrye	41 rswn 086343	NRA.W	4454	05.3028	By Brook	${ }^{31}$ ¢ST) 815 688	NRA.W	1020
043009	Slux	31 (SI) 820147	NRA.W	5231	Co3029	813s		NRA.W	
043010	Allen	${ }^{41}$ (SU) 008088	NRA.W	940					
063011	¢0wn	${ }^{41}$ (SU) 162263	NaA.W	1090	(0,4001	Sover-	32 (SC) $182 / 62$	NRA.S:	43250
043012	Wripe	31 (S5) 909428	NQA.W	1124	054002	Avon	42.581040438	NRA.ST:	2.2100
043013	Nuste	40 (S 2$) 184936$	nas.w	124	$0 \leq 4004$	Sown	42 [(SP) $332 / 31$	NRA.S	2620
043014	East Avors	4^{41} (SU) 133559	NRA.W	882	054005	Sovern	${ }^{33}$ (SN) 412144	NRA.ST	20250
083015	Wryan	31 (55) 868413	nas.w	690	054006	Stour		NRA.SI	3240
043011	Wos: Avon	4) (SU) 133559	NAA.w	780	054007	Arrow	42 SSp 086536	NRA.ST	3:30
0430:8	Altan	41 (SU) 008007	nat ${ }^{\text {N }}$	1765	054008	Tome	32 (50) 591686	NRA.SI	11344
043019	Streen Water	31 (SI) 801278	NRA.W	29.1	054010	S:Our	42 (S9) 208507	NRA.ST	3190
043021	Avon	40 [157) 155943	NRA.W	17060	054011	Salwarpe	32 [501 868618	NRA.SI	1840
		30 (sv) 960867	NRA.W	4144	054012	Cron	33 SNI $592: 23$	NRAST	8570
044002	Pasce	30 :Sv) 913876	NRA.W	$183:$	054014	Sovern	32 1501 1649.98	NRAST	5800
044003	Asto ${ }^{\text {a }}$	30 (Sv) 470928	sraw	491	054013	Bow B -00k	32 (50) 921463	NHA.SI	-560
044004	Frome	30 (SV) 708903	traw	2.060	054016	Roden	33 ISJI 589:41	NRAST	2590
044006	Syciom Ws:or	30 \{SY\} 632997	nra.w	124	054011	Lrack	32 (SO) 117234	neasis	2930
044008	Sth Wn:erbourne	30 [SYY 629897	ara w	199	054018	Res Brock	33 IS. 466093	- NRAST	: 780
044009	wor	30 (SY) 666839	NRA.W	0	054019 054020	Avon Porry		NRA.ST MRA.ST	3410 1808
045001	Exe	21 (SS) 936016	NRA.SW	6009	054022	Sovern	22 [SM 853 8/2	- ${ }^{-1}$	180
045002	$f 10$	21 (SS) 943178	NRA.SW	4217	O54023	Bedsoy Brock	42 1SP9 063449.	NRA.ST	958
045003	Curn	31 (ST) 021058	nRa SW	2261	054024	Worte	32 [SO $747953{ }^{\circ}$	NiRA.ST	250
045004	Axe	30 (SY) 262953	NRA.SW	288.5	054025	Du'ss	22 [SN 950 824	nRast	32 !
045005	O:tat	30 (SY) 08\% 885	NPA SW	2025	054026	C-W1	32 (SO) 892264	NRA.ST	345
045006		21 (SS) 9.9356	NRA.SW	204	054027	romn	32 (SO) 833104 (nhas.	1980
045008	0:10r	30 (SY) 1.9986	NRA.SW	1042	Of,4028	Vyrowy	33 (S.) 252195	NRA.ST	7780
085009	Exe	21 (SS) 935260	NHA SW	1476	054023	Tome	32 (50) 735557	NRA.S:	14800
045010	hadueo	21 (SS) 952234	NRA.SW	500	054032	Severn	32 isct 863390	NRA.SI	6850
045011	Bate	21 (SS) 921 258	NAA.SW	1280	054034	Downes Brouk	32 [50\% 768764	NRA.ST	408
045012	Creody	20 (SX) 901367	NAA SW	2616	054036	isbourne	42 (597 023408	NRA.ST	907
					054038	1 mos 1	33 [5] 2522225	NRAST	2290
046002	Tmpn	20 (SX) $856 / 46$	NAA.SW	3800	054040	Meese	33 [SN/ 680205	NRAST	1678
046003	Dart	20 (SX) 751659	NRA.SW	2476	054041	${ }^{1} \cdot{ }^{\text {en }}$	33 [5s 649230	nrast	1920
046005	Eas: Datt	20 (SX) 657775	NRA.SW	215	054042	- Crywaky	22 ISV\| 914867	NRAST	490
046006	E.mm	20 (SX) 642532	NTAASW	43.5	054043	- Sovern	32 (50) 863399	NRA.ST	68500
046007	West Das		trasw	479	354044	To'n	33 ISJ 629316	MAA.ST	926
046008	Avo	20 (SX) 119478	vRa sw	1023	054045	Perty		NRAST	431
					054046	Wortn	33 (SJ) 78:046	NHAST	549
047001	Toms:	$20\langle S \times\rangle 428725$	nRasw	9169	054047	- Perir	33 ISN 403223	NRA.ST	i550
047003	Tow	20 (SX) 474650	NRA.SW	2059	054048	- Dane	42 159 273 556	NQA.ST	1020
047004	tyntur	20 (SX) 368624	NRA.SW	1355	054049	leam	42 [SP9 301654	nha.st	3620
047005	Otity	20 (SX) 336866	NRA SW	1207	054052	Benoy Brook	33 (SNO 629316	NRA.ST	344
047006	tyd	20 [SX1 388882	NRA.SW	2181	O34054	Omy	32 4SO9 453 189	NRA.ST	2350
047007	Yosm	20 (SX) 574511	NRA.SW	549	054055	Ros	32 (50) 664724	NRA.ST	1290
047008	Trushal	20 [5x1 3988556	NRA.SW	1127	054056	cma	32 (50) 393788	NRA.ST	1950
047009	Tuktr	20 (SX) 343595	nha SW	372	054057	Sovern	32 (SO) 844279	NRA.ST	38950
047010	Tamat	20 (SX) 2930991	NRA.SW	767	054058	- Stoka Para Brsok	33 (S) 644280	NRA.ST	143
04701.	${ }^{\text {Piymi}}$	20 (Sx) 522 5:3	NHA.SW	792	054059	Alloct Eroses	33 (S). 654223	NRA.S:	102
047013	Wither Broch	20 (SX) 244763	NRA SW	162	054060	Po:10.0 8.cok	33 (S) 634220	NRA.S:	250
047014	Wa'khsm	20 (SX) 5:3699	NAA.SW	432	054061 .	- Motnal trosk	33 (S) 6288288	NRA.S;	51
047015	Iury	$20[5 \times 14 / 8681$	nha SW	197.3	054082	Stoko Bricuk	33 (SJl 637280	NRA.ST	137
047016	Lumexan	20 (SX) 4593731	NRA.SW	205	054063	Stax	32 (SO) 8658888	NRAST	899
047017	wot:	20 (SX) 419898	NAA.SW	31.1	054065	Roden	33 rsf 565241	NRA.ST	2100
					054066	Platt Brook	33 [SN 628229	NRA.ST	157
0048001. 048002	Foway	20 (SX) 227698	NRA.SW	368	054067	Smasiow 9rook	32 (50) 861906	NRASI	8:3
048002	Fower	20 (SX) 108613	NRA.SW	1712	054068	- Toterni brata	33 ISJ 379288	NRA.ST	2: 2
048003	Fal	10 (SW) 92: 447	ARA.SW	870	054069	Spumgs Brook	33 15J) 387297	NRAST	104
048004 0.88045			ARA.SW	253	054070	Wat brock	33 ISJ $432 \cdot 98$	NHA.ST	225
0481055 048008	Keriwm	10 [SW1 820450	vRasw	191	054080	Sevntr		NRAST	870
048008 048007	Camar	10 (SW) 654273							
048007 048009	Kannall Si Nool		MRASW	269 227	054083 054084	Crow brook Cannos Brouk		NRAAST	161 315
048010	Sealon	20 (Sx) 299598	NRA SW	381	054085	Cannos Brook	32 (SO) 609115	NHAAST	104
048011	fowey	20 (5x) 098624	NRA. SW	1691	054086	Cownwy Diversion	23 (SH) 999 $1 / 9$	nfa St	132
					054087	Allodericon	33 [54 667228	NRA.ST	$4{ }^{4} 7$
049001	Cames	20 [$\mathrm{SX}^{\text {] }} 017682$	nha SW	2088	054088	Litio Avon	31 (ST) 683 988	NRA.W	1340

Station number	River nome	Grid refarance		Measuring suthority	Ares (89 km)	Station number	River name		d mence		Messuring euthority	Ares (sq km)
054090	Tastmy:n	22 ISN	844876	in	09	065007	Owylowr	23	(SH)	499429	nata.wel	524
054091	Sovern	22 \|SN/	843878	In	36							
054092	Hore	22 [SN	846813	${ }^{\text {H }}$	32	065001	Cowre	33	[S]	069709	nWa wet	4040
054094	Strme	33 [S]	640175	NRA.ST	1340	066002	Emvr	33	[S]	021704	NRA.WEL	2200
054095	Severn	33 (S.)	684044	NRA.ST	37170	066003	Alod	23	(St)	957703	NRA. WrL	700
054096	Healy Brook	32 [SO)	870631	nRA.ST	534	068004	Whaeler	33	(S/	105714	NRA. WII	629
						$0 \in 6005$	Clurd	33	(S)	122592	NRA WEL	953
055002	Wre		485388	nRa. WEI	8959	${ }_{0} 66008$	Elwy	23	(SH)	9527:8	NRA.WEL	1940
1055003	1.89	32 (SO)	548405	hra. WEL	8858 728	066008 0660	${ }^{\text {A od }}$ conmy	23	(S-1i	9.5598 802581	NRA WFI	116 344
OS5004	Itton	22 (SN)	892460	ARA.WEL	728	0660.1	Conwy	23	(S-1)	802 581	NRA.WEL	3445
055005	wre	22 (Sis)	969616	nRa.wel	1668							
055006	Elom	22 (SN)	926645	nra wei	1840	067001	Dat	23	(SM)	942357	NAA. WEL	2616
055007	Wra	32 15SO	076445	NRA.WEL	12821	067002	${ }^{0}$	33	ISn	357413	NRA.WEL	10400
055008	Wre	22 [SN	829838	${ }^{14}$	106	067003	Brenas	23	(Sti)	974539	nata. WIt	202
055009	Monn	32 (S0)	419251	nra. wel	3574	067005	Corios	33	(S)	295373	nata wel	1137
055010	Wyo	$22.15 \mathrm{~N} /$	843825	NRA. WEL	272	067008	Alwon	33	[S]	042436	NRA WEL	1847
055011	thon	32 (SO)	105683	NAA.WI:	1114	061008	Alyn	33	(S)	336541	NRA.WEL	2271
055012	kton	22 (SN)	395507	NHA.WE!	2442	067009	Alyn	33	(S)	206667	Nra.wit	778
055013	Arrow	32 is 01	328585	NAA.WEL	1264	067010	Cimyn	23	(Sid)	843420	NRA.wEL	131
055014	lugg	32 (SU)	364647	NAA.WEL	2033	067011	N3nt Aberdartel	23	(SH)	851392	NRA WEL	37
055015	Hond	32 (50)	277294	NAA.WII	25 :	061012	Tirwe'ri	23	(SH)	${ }^{838} 398$	NRA WEL	272
055016	lithon	32.1501	024578	nRa wel	3580	067013	Hinom:	23	[SH1	946349	NRA. WEL	339
055017	Chwatru	22 (SN)	998531	nha wel	290	067015	Don	33	[S/]	348415	NRA. WEL	0193
055018	Froms	32 isol	615428	NRA.WEL	1440	067016	Worisentury Arock	33	(SJ)	418464	NRA WEL	142.1
$0 \mathrm{OS5021}$	Lu99	32 (50)	502589	NRA.WFI	3710	061017	Truery:	23	(SM)	880899	NRA. WEL	593
055022 .	Trothy	32 (SO)	503112	ARA.WEL	1420	067018	${ }^{\infty}$	23	(517)	874308	NRA. WII	539
055023	$\mathrm{W}_{\text {re }}$	32 (SO)	528110	nRa. WEL	40100	067025	cruwnicas	33	(SJ)	396483	AHA.WEL	986
055025	Lyynt	32 (50)	:66 373	ARA. WFI	1320	067026	Due	33	(SJ)	415612	TAA. WEL	. 68
055026	Wrn	22 IS. ${ }^{\text {a }}$	9/6 676	ntia.wel	, 740	067028	Condros	33	(SJ)	03437	TRA WCL	365
$00^{3} 5021$	A.çiall Brook	32 (SO)	641257	NRA WEL	13.2	067029	trystion	33	(SJ)	086405	vha.wel	23
055028	Frome	32 (SO)	667489	NRA. WEI	777							
055029	Monnow	32 (SO)	415249	NRA WEL	3540	068001	Wosver	33	(S)	670633	nga.aw	6220
O55030	Clsorwon	22 [SN]	910620	NRA. WLL	95.3	068002	Gowr	33	[s,	443714	NHA NW	1582
055031	Yeror frook	32 (50)	492415	NRA.WUL	423	068003	Dana	33	(S)	668718	Mra.nw	401
055032	Elan	22 ISNT	934653	nRa wet	1840	068004	Wisision Broch	33	(S)	674552	Nra.NW	92.7
055033	Wro	22 (SNH	824853	: ${ }^{\text {d }}$	39	068005	Weavm	33	[S]	653431	NRA NW	2010
055034.	$\mathrm{CrH}^{\text {H }}$	22 (SN)	874842	${ }^{\text {H }}$	31	068006	- Same	33	(S.)	845644	NRA.NW	1500
(055035	Lago	22 (SN)	826854	H	1.1	068007 068010	Wincram Brook Eordet	3.3	$\begin{aligned} & \text { © } \mathrm{SJ} \\ & \text { iSJ } \end{aligned}$	$\begin{aligned} & 697757 \\ & 281880 \end{aligned}$	NRA NW NRA.NW	1480 184
056001	Usk	32 (S)	345006	NRA WEL	91.7	068815	Gowy	33	[SJ]	497624	NRA.NW	<90
$0_{0} 56002$	Ebow	31 (ST)	259889	NRA.WCI	216.5	068018	Oame	33	[S]	861632	NRA NW	1450
056003	Hondou	32. ${ }^{\text {SOOf }}$	051297	NAA.WEL	621	068020	cowy	33	(SJ)	448711	NRA.NW	1560
056004	Usk	32 (SO)	121203	NRA.WEL	543.9							
-056005	tryo	31 (ST)	330924	NRA. Wri	98.1	069001	Mersey	33	ISN	128936	NRA NW	6790
056006	Usk	22 SSM	947295	NRA. WEL	1838	069002	Inwol	33	IS.A	824987	NRA.NW	5594
056007	Somm	22 (SN)	928255	nRa. WEL	19.9	069003	1 l	33	(SN)	841992	NHA.NW	725
OSGCOP	Monks Chtch	31 (ST)	372885	nra. WFI	154	069004	- Einorow	43	ISK1	023971	SRANW	782
056010	Usk	32 [S (\%)	358042	NHA.WEI	9272	069005	Gase 3rock	33	(SJ)	685939	drainw	520
056011	Sumowy	31 (S1)	206912	nRa-WEL	761	069006	Bain	33	(SJ)	127875	tha.nw	2560
OSGOHO^{2}	Gewym	32 (150)	241176	NRA. WFI	822	O6900	Mossoy	33	(SJ)	112936	TRA.AW	6600
056013	Year	32 (SU)	003304	NRA.WEL	628	069008	Oean	33	(S.)	846830	SRa.aw	518
056014	Uk	22 [SN]	840290	NRA.WEL	170	069011	Macker Brath	33	((s)	855889	NHA.NW	673
056013	Orway Brook	32 (50)	384010	NFA.wIt	1051	069012	Boln	33	(S)	850815	NRA.NW	725
056016	Csortmoll Outs:	32 (SO)	104206	NHA WEL	324	069013	Smacortend Brosk	33	(S.)	726905	NRA.NW	448
057001	Tat fecthas	32 (SO)	060117	NRA. Wfi	337	0609017	E:hert	33 33	(SS)		NRRA.NW	1560 1830
057002	Tor fowt	32 (SO)	01211	naa wel	430	069018	Sinuton Pros.	33	is,	585933	NRA.NW	328
057003	Te'4	31 (ST)	132818	nha.writ	4869	¢0i9019	Wo'shiy B'ook	33	iSл	153980	NRA NW	249
057004	Crmon	31 (ST)	079956	NHA.WEL	1060	089020	Vedock	33	(SN)	849975	NRA.NW	575
057005	Tast	31 (ST)	079897	NAA.WEL	4548	069323	Rach	34	(S)	807077	NRA.NW	1860
051006	Prondas	3: (ST)	054909	NRA. Wri	1005	069024	c.an	34	(SU)	743068	NRA NW	1450
057007	TaH	3^{31} (SI)	089951	NRA WEL	1945	063027	Tamo		(S.l\|	906918	NRA.NW	1500
057008	Pemprney	31 (ST)	225821	NRA. WEL	178.7	069030	Sminey Etook	33	IST	588922	NHA.NW	1540
0 057009	El	31 rSt	121770	NRA. WEL	1450	069031	Dillori Broat	33	ISA	457865	NRA.NW	479
057010	Er_{6}	31 (SI)	034827	NRA. WEL	394	069032				392983	TRA.NW	901
051011 057012	- Blaen Tat Fuwi	22 32 32 (SN) (SO)	987193 004129	NRA WEL WEL	43 4i	${ }_{069035}^{0693}$	Musbury Brock		(SU)	115213 797109	NAA NW	31 1550
-057012	Toft	32 32 (S)	0041298 043	NRAA WEL	${ }^{1} 8$.	${ }_{066937}$	Mursay	33	(SS)	$61 / 871$	WHa \W	20300
057018	Tal focham	32 (S))	061 115	NRA WEL	338	063040	liwel	34	[SD1	793188	NAAMV	1050
058001	Ogmore	$21.15 S t$	904794	nRa. WEL	588	070002	Dourys	34	(SO)	476126	NRA.NW	1980
058002	Nosth	22 (SNT	815017	NRA. WEL	1309	070003	Doundss	34	(S5)	587061	Natasw	553
058003	Ewamy	21 ISSI	914780	NAA. Wri	629	010005	Yarrow	34	(SSH)	498180	NRA NW	74.
058005	Ogmoro	21 (SS)	904 844	NRA WEL	743	070005	lostock	34	(SO)	497197	NRA.NW	560
058006	melte	22 (SN)	315082	NRA. WEI	658							
058007	tirnt	21 (SS)	891855	NAA WEL	502	071001	hablo	34	(SO)	589304	NRA.NW	1450
058008	Oumg	22 (SNS)	77808	NAA. WEL	430	071003	C.0ascate	34	(S0)	706546	NWW	104
058009	Ewanny	$2^{2} \cdot(\mathrm{SS})$	920782	nat. Wel	625	071004	Coldee		(SS)	729360	NRA.NW	3.60
058010	tops:0	22 (SN)	969134	NAA. WEL	110	071005	Bolioms beck	34	(SN)	745565	NWW	106
058011	Thaw	3: (ST)	017716	NRA. Wri	492	071006	Rasere	34	(SS)	122392	NRA NW	4560
058012	Atm		111910	nRa WEL	878	071007 071009	Rubblo Hoction		(SD)	709379 704999	NRA.NW	720 2610
059001	Towe	21 (SS)	685998	nra. wel	2277	011009	Rusolo	34	(SU)	702376	NAA NW	10530
059002	Levitor	22 (SN)	623127	NRA. WEL	464	071010	Ponstie Wator	34	[SD]	837351	NRA.NW	1080
						01101	${ }^{\text {Rubube }}$	34	ISD)	839556	ATA.NW	2040
060002	Coth	22 ISN	508225	NRA WEL	2978	071013	Darwen	34	(SD)	677262	NRA.NW	395
080003	Tat	22 [SN	238160	NRA. WEL	2173	07.014	Drwen	34	rsol	565278	NRA.VW	1280
050004	Dow fawt	22 ISN	290175	NRA. WEI	401							
060005	8ran	22 (SN)	111343	NRA WEL	868	072001	- Line	34	ISO)	503647	NRA. VW	9946
060006 060007	$\mathrm{Cum}_{\text {Tmum }}$	22 22 22 (SN (SN	431220 762362	NRAA. WEL	- 2735	072002 012004	Wyra	34 34	isot	463411 52965	NRA.NW	2750 9830
060007 060008	Trum		/ 786812	- NRAA WEL	2318 898	072005	lunt	34	(S)	622907	NRA NW	29190
060009	Sowdie	22 [SNT	712286	NRA. WEL	81.1	072006	tune	34	(SD)	615778	NRA.NW	5071
060010	Trm	22 [SN\}	485206	NRA. Wri	10904	012007	8 Brock	34	(SO)	512403	NRA.NW	320
060012	Twich	22 (SN)	650440	NRA WEL	20.7	072008 072009	Wrore	34 34	(SD)	488447 615701	NRA NW	1140 1420
060013	Cotm	22 (SN)	537301	NRA. WEL	261.6	072009 0120.1	Wannerg	34 34	(SD)	615701 6399.1	NRA.NW	1420 200
061001	Wastern Clardisu	12 (SM)	954:77	vAA WEL	1976	0720:5	Lune	35	(NY)	612029	NRA NW	14.4 888
061002 061003	Eas:orn Criocasu Gwaun	22 (SN)	$072: 53$ 005349	ARA.WEL	183.1 313	0720:6	Wyra		(SO)	501500	nra.NW	888
061004	Wostorn Cloedau	12 (SMM)	942184	ara wel	1976	073001				371863	nta nw	
						073002	Crana	34	\{SO)	294882	NGA.NW	730
062001	Toul	22.15 N	244416	NRA. WEI	8936	013003	Kent	34	(SO)	- 507956	NHA.NW	136
062002	Iatit	22 (SN	433406	NAA WEL	5100	073005	Kent	34	ISD)	509874	NRA NW	2900
						073008	${ }^{\text {8nis }}$	34	(SD)	496806	NRA.NW	1310
063001	Ysturich	$22^{\circ} \mathrm{ISN}$	591774	Nat Wil	1698	073009	Sprint	34	(s)	514961		346 2470
063002 063003	Rhautor Wyta	22 22 22 [SN [SN	601804 542698	NRA WEL	1821 406	073010 073011	cevan	34 34	(SD)	367863 524944	NRA.NW	2470 658
063004	Ystwyth	22 (SN)	791737	NPA.WFL	321	073013	Ho:hay	35	(NY)	371042	NRA NW	640
						073014	Bratay	35	(NY)	360034	NRA.NW	574
064001	Ora	23 [SH)	745019	NPA. WEt	471.3							
064002	Derarnom	23 [SHM	${ }_{6} 632066$	NAA. WEL	751	074001	Duxdoon		${ }_{(0)} \mathrm{SO}$	196896	NRA.NW	
064008		22 (SN)	635882	NRA. WEt	472	074002 074003	${ }_{\text {kin }}$	$\begin{aligned} & 35 \\ & 35 \end{aligned}$	(NY)	$\begin{aligned} & 136038 \\ & 084154 \end{aligned}$	NRA.NW NRA NW	442
065001	Glasyn	23 (SH)	592478	NRA. WEL	686	074005	Ehan	35	(NY)	009061	NRA.NW	1255
065002	Owyrro	23 (SH)	670415	NRA. WEL	782	074008	Csicn.	35	(AY)	035045	nRa nw	448
065004	Gwyrta	23 (SH4)	484599	TRA. Wrt	479	074007	cak	34	(SO)	131978	NRA.NW	702
065005	E'ch	23 (SH)	400404	TRA.WEL	181	074008	Dustion	34	(50)	209947	NRA.NW	47.9
065008	Sownt	23 (SH)	493623	NRA. WEL	744							

- - cloved. or no cata tor posi. 1985 havi been recerved

Gauged daily flows，monthly peaks and monthly rainfall
KEY：

	Complete raintall	Incomplete or missing rainfall
Complete daily and complete peaks	A	－
Complete daily and partial poaks	8	b
Complete daily and no peaks	C	c
Partial daily and complete poaks	0	d
Partial daity and partial peaks	E	－
Partial daily and no peaks	F	f
No flow data	\dagger	－

Summary is presented in decade blocks

Sin number	Gauged delly fiowe． monthir peake and remitall			
002001	10.	－－－8＊ess	80．	oamanamat
003001	50	Aatan	$6{ }_{63}$	
	10		H08	－－－－－－＇11
003002	70.	－－6asas	H0\％	－AAAAAAA：
003003	703	－8AA	803	AAAAAAAAA
003004	10.		$8{ }^{8}$	AAAAAAM，
003005	80	－هeceAe日		
004001	40	c1	$5 \mathrm{SO}_{3}$	ccibagamaa
	603	bababaAaAa	70．	t：：ItIAAAA
	80_{3}	acabakama		
004003	104	－－－－＊esse	80،	aAAAAAAA．
004004	803	－－aname		
004005	H_{3}			
005001	507	－－－aAAAAAA	602	AAE－1：：111
	10	$1: 1$		
005002	80			
006001	302	－－－－－AAAAA	406	b98abreraa
	SOs	！$\because: 14 A A A A A$	602	
	70	：＇t		
006003	204		30	escestectes
	403	ceccci－－－－	503	
	603		70\％	
	803 504	－daAAAAB		
006008	501	－daAAAab	603	8Ab－－－
004007	\％	－－AAAAAAA	BO_{3}	－－－－－1I＇
008008	103	－－－－－－－F	801	amakamas．
007001	60s	－AaAasamat	70s	afahamabat
	${ }^{\text {ara }}$	AAAAAAAA：		
007002	503	－＊A	CO_{2}	AAAAAAAAAA
	106	aAaAAAAAAA	OSt	ababacama
007003	603	－－－iAAAAAA	104	AAABAAAAAA
	${ }^{\text {cos }}$	AAAAAADOI		
007004	70	－－－－－	803	ofabatakt
007005	10，	－ 11	86	1－－cosas．
007006	80：			
008001	303	－t	402	Hecceecee
	$5 \mathrm{SO}_{3}$	bebaacaaka	603	amatamakat
	103	AAAAAII：－－	B63	1 $:$
008002	S03		605	abacamabas
	10	AAABAAAAAA	80	AAAAAARAI
008003	503	－A AAAAAAAA	60．	AAAAAAAAAA
	70	AAAA TTM ${ }^{\text {a }}$		
008004	SO3	－－taAAAAAA	60s	AAAAAAAAAA
	70.	AaAAAAAAAA	20．	asaceasaa
003005	Sos	－oramaAAAA	H03	AAAAAAAAAA
	70	acasamakab	80	AAAAAAAAI
008006	506	－－oAAAAAAA	fich	AAAAAAAAAA
	103	AAAAAAAAAA	80	AAMAAAAAA
008007	SOS	，AAAAAAA	cos	AAAAAAAAAA
	103	AAAAAAAAAA	45	AAAAAAAAA
008008	50.	－qAAAAAAA	CO3	AAAAAAAAAA
	70	AAAAAAAAAA	803	AAAAAACse
008009	50.	－－cabrabia	GOS	acasamatam
	70	AAAAAAAAAA	80s	AAAACAAAA
008010	SOM	－－－AAAAAA	605	AAAAABAAAA
	20．	ahacasacha	RO\％	ahamcaaka
008011	70x	－－－1！	80\％	＇esceakat
009001	5\％		60．	AAAAAAAAAA
	10，	atamatakam	80	amabamata
009002	60．	ocamakama	30．	amambacama
	803	AAAAAAAIt		
009003	60.	－1ttitite	703	AAAAAAAAAA
	80	AAAAIAAAA		
$\begin{aligned} & 009004 \\ & 009005 \end{aligned}$	80	mesacaAat		
	40．	－－－－－－－－tc	3 SH	
	603	cececseric	10	cesesesice
	$\left.{ }^{8}\right)_{3}$	ciccicast		
010002	603	．111：：tII：	10	itacianama
	AOB	AAAAAAAAA		
010003	803	－－maAAa		
011001	804	－11：111－t	704	AAAAAAAAAA
	B03	abamakama		
011002	（5）3	${ }^{1+\cdots+1 t^{\prime}} \mathrm{F}$	102	CRAAAAAAAA
	803	AAAACAAAA		
011003	604	－tt：ttit	905	I：teamakaa
	80．	aAAACAAAA		
012001	20.	－	30\％	8bbsbeaAAA
	403	8absaabccc	$5 \mathrm{SO}_{2}$	CCCCCCCCCC
	80	cccccoanaa	703	ocbaamaaa
	80s	alamabasa		
012002	70，	－－atababa	B0．	abamababa
012003	70．	－－هoser	80，	－AAAAAAAA
012004	60s	－1	10．	－
	B63	bCCCCAAAt		
012005	70，	－－－－－8ан	005	gacamaka：
012008	703	－－－－＊＊	408	saAAAAAAA
012007	B03	－－madaAAA		
012008	B0，	－－－－tsoce		
$\begin{aligned} & 013001 \\ & 013002 \end{aligned}$	$\begin{aligned} & 708 \\ & 806 \end{aligned}$	－cccAAAC	00，	atamakak

Sin number	Geuged dety thowe． monthit peeke and rainfall			
013003	704		B0s	ccc－－－1：
013004	80.	Acce		
013005	Bos	－receasac		
013007	70	－CCCC	805	CCCOAAAAA
013008	001	－－amaka		
013009	8 OH	－tasa		
014001	603	－11：－＞EAA	10.	AAADAAAAAA
	804	acamamaka		
014002	60s	－tr：！11tt	203	amakamaka
	80．	accrcalac		
014005	20．	－creac		
015001	Sos	－ 4 －	60．	nAAAAAAA： 1
	10，	＇ $11 \cdots \cdot 1{ }^{\prime}$	80	$1: \cdots 1111$
015002	5 C		［6\％	afacamaff
	70.	：11：＂：1：	803	＂：＇गו＂
015003	40.	－－－．－－tc	50.	cbacamaaka
	603	AAAAAAAAAA	10s	ahakamaka
	806	abcricasa		
015004	203	－－－CCC	30	cCCCCCRan
	403	－－1：\cdot	SOs	t¢： $1 \cdots \cdots$
	cos	AAAAAAAFEt	73．	：－
	80.	1110：11：		
015005	20.	－－－－－CCC	304	Cccecceas－
	403	－：	50	Cereetite
	60.	AEAAAAAAEI	103	1：11：71：
	80．	11：：17t		
015008	SOM	－－ataAaAas	6037	achacamak
	708	AAAAAAAAAA	80\％	BAAAAAAAA
015007	SO4	－－AA	603	acharamaab
	th	AAAAAAAAAA	H	AACCCAns
015008	SOs	－－EA	60	achamabala
	30	ahamabamaa	80\％	barccas．x
$\begin{aligned} & 015010 \\ & 015011 \end{aligned}$	10．	－－caAAAAAA	80．	arcicasac
	Sos	ce	603	сесеесессе
	70	ccbaAAAAAA	$6{ }^{6} 3$	accccaama
$\begin{aligned} & 015012 \\ & 015013 \end{aligned}$	10．	－baAagee．	80\％	a 4 Cccaccc
	50，	－－ccees	603	－CCCCこcccc
	${ }^{\prime}$	cctpanasa	（1）	aamccaabe
015015	503	－－－－－－çe		
015016	703	－－daama	80\％	a acccasx
01501］	10.	－－－－－AAAA	BO_{2}	All－－－：11
015018	503	－－－90asse		
015021	${ }_{\text {H6M }}$	－－－tc－c		
015023	cos	－－－ccasac		
015024	80，	ccedanc		
015025	80，	－1A arc		
015027	80：	－		
016001	403	－ Ce	50，	CBAADJAAAA
	603	acacamatak	708	amabamaka
	803	butccasac		
018002	504	－－هAAAA	603	amamamaat
	10s	asamasabll		
018003	601	1t：－：！t	70s	coambaamaa
	80）	AAAAAAAAA		
018004	20s	－－abababa	60：	adoamakaa
017001	60s	－	102	abaAAAAAAB
	8 BC	AAAAAAPAA		
017002	603	－－－－－－－－¢	102	amalamaba
	803	atamamaka		
017003	103	－lasamasaa	802	AAAAAAAAD
017004	70．	－EAAAAAAA	80s	abakabato
017005	\％ 0	－facasasap	8 C.	amamasfan
017008	00：	－－－－－－－ه		
017012	803	－ttead		
017018	OS3	－800		
017017	004	\propto		
018001.	504	－－－－－－－EAA	60.	AAMAAAAAAA
	10	AAAAAAAAAA	8 S 3	amamaatad
018002	SC_{3}	－－b	$6{ }^{6}$	abacamama
	70．	B＝DAAAAAAA	80	asabamosc
018003	SO_{4}	－－－－－－cce	COS_{3}	cccoamamaa
	10．	ateamamaa	80	amamamaa
018005	70．	：EAAaAAAAA	30\％	anamakaba
018007	803	－－t：000		
018008	103	－－oacamaa	88	amamaakad
018010	80	－－－－：＇seo		
018011	89	icasamad		
018012	89\％	－－－：＇an		
018013	89	－－－－rescl		
018014	803	－－1．asc		
018016	\％03	－－－－AAO		
018017	80	－－－boocc：		
018010	80	－－－besct：		
018019	80	ar		
019001	304	－AAA	503	AAAAAAAAAA
	20	AAAAAAAAAA	$8{ }^{8}$	andababab
019002	CO_{3}	：amakama	70.	amagamabas
	B6	AAAAAAAAO		
019003	603	－acapamaka	706	acamamaba
	80	Dit－－－til		
019004	60.	analamaka	20．	amacaamaka
	803	asacaika？		
019005	60	－－amababa	10	AAAAAAAAA
	fios	amakama］		
019004	603	－\quad AAAAAAA	10.	AAAAAAAAAA

Stn number	Gauged daly flows． monthy poaky and rantal			
019007	$\begin{aligned} & 604 \\ & 805 \end{aligned}$	－：BAAAAAAA AAAAAAAAD	tor	anamanama
019008	603	－itraakab	708	amabababab
	803	acaAasam		
019010	60.	－－－－－－A	10	AAAAAAAAAA
	803	amatalcte		
019011	$\begin{aligned} & 60 \% \\ & 60 \% \end{aligned}$	cccec： AAAAAAAAD	3 Cl	ccceecasas
019012 019014 019017	O0s	－ 1 －000		
	80	－tici		
	80.	Ilaso		
020001	60%	AAAAAAAAA	70．	AAAAAAAAAA
	\％${ }^{\text {a }}$	AAAAAAAAA		
020002	cos	－\cdots IIEAAA	ts	AAAAAAAAAA
	80	AAAMAAAAD		
020003	bios	－＂iacasa	703	ahamakamat
	806	amamameao		
020004	GO3	－tititaAA	70．	Aasabataba
	804	AAAAAEsed		
020005	60.	－1：11CCCCC	10．	CCCCCCAAas
020008	70	ARAAAAEA	HOS^{2}	AAAAAAAA）
020007	6．0\％	－－－－t＇	20．	$\cdots C=C A A A A$
	HO_{4}	AAAAAAAA！）		
020008	80．	－：tabt		
021001	$5 \mathrm{SO}_{3}$		603	AAMAFFAAFt
	703	11：11t：1	806	－－111
021002	Sor	$\cdot 1$	50	－bCBAAAAE：
	70．	けい1：	HO_{2}	－－－－－－111
021003	50%	－－．．	603	abacamabaa
	70\％	AAMAAAAAAA	Br	Abrccianal
021004	6 C 3	－AAs－	10．	II＇
021005	60	－fachatak	70．	AAAAAAAAAA
	cos	AABCCAAAA		
021006	SOH_{3}	casamaka	70．	amakamasam
	80	amabamaa		
021007	60，	－faAamasa	102	AAAAAAAAAA
	80，	AABCCAAAA		
021000	CH_{4}	namasamam	103	abamamaka
	803	ambccaama		
021009	503	－EAAAAAAA	70，	asacaiabat
	80	AAAAAAAAA		
021010	603	It：casabab	104	anabambana
	803	A：1t＇1t		
021011	604	－：llamasaa	OH	AAAAAAAAAA
	80	AabCCAAAA		
021012	CO_{3}	－－1rAAAAAA	\％s	AAAAAAAAAA
	80s	afacaabaa		
021013	60．	－：tifacaab	70．	abamamaba
	603	atcccaama		
021014	GO3	－fachasama	70，	acamamaba
	003	AABCCAAAA		
021015	60．	tr：：IEAAA	20．	amamabama
	OOS	AACCCAAAA		
021010	cos	tl：＇：team	30s	asabababam
	80，	ancclamaa		
021017	603	－tit：EAAAA	703	abamatabas
	HOS_{3}	a A BCCAAAA		
021018	603	－1tIItIEA	70n	AAAAAAAAAA
	8 SO	AAAAAAAAA		
021019	605	－11：11t：CA	103	AAAAAAAAAA
	803	AAT：A AAA		
021020	60.	－11．11tida	10	amakaramak
	80	a ${ }^{\text {abccana }}$		
021029	cos	－	70，	AAAAAAAAAA
	80	AABCCAAAA		
021022	CO	．11：t1t：${ }^{\text {c }}$	106	asadamama
	80	AAAMAAAAA		
021023	COH	－1t：1t1：	10s	taAAAAAAAA
	803	AAbCCAAAA		
021024	cos	－1：11：${ }^{\text {a }}$	203	tiamamabas
	Nos	AACCCAAAA		
021025	6 H	－1： 111	20\％	：＇tasamata
	80．	atcccanaa		
021028	cos	－11：t1t：	102	Heakamaa
	80s	ancccamaa		
021027	GO_{3}	．1：17tit	703	I： fanamax
	80\％	amcccamaa		
021030	60s	－： $11: 11+A$	104	bababamata
	807	asbccaama		
021031	30，	－－－－＊AAB	bin	afachatama
	10．	AAAAAAAAAE	60s	－1＇1
021032	60\％	－－－－＊AAA	703	amakamagas
	cos	AAAE－－：tt		
021034	$6{ }_{6}$	－：：111：1f	703	CCCCCAAAAA
	807	a AaCCadea		
022001	603	－－－11：jAAA	103	amakamaba
	80，	afamabbaa		
022002	504	－－－－nAA	607	eaeamabaaa
	703	amakamaka	$8{ }^{2}$	＊－－－－－1：
022003	Sos	－－－9AA	603	bagamamaa
	703	AAAAAAAAAS	80_{0}	－ti：
022004	BO_{5}	－－－－－－AAAA	108	AAAAAAAAAF
	803	11：1－－111		
022008	603	－－－－mAA	703	daamamaab
	B0：	basamataa		
022007	603	－－－－－7f	70，	AAAAAAAAAA
	Br_{4}	AAAAAAAAA		

Sen． ramber	Gevoed aply thown． morritioy peeke and raintan				58. กumber	Geuged diny hown． montist paskes and reinfall				Stn． reander	Gevged daty fami． monety peoke and rantan			
22008	60	E	10	aacaaaabaa	027013	500	¢8889	604	sqapas	028019	606	－－－－－－AAD	100	amagamabas
	80，	ataftitit				10，	anabascicit	803	817ti		80	acamakatam		
022009	10n	－－wasaak	808	AAMAAAAAA	027014	506	－A	606	abacaamaba	02802	50	－－－rcicta	60	bamamafeo
						${ }^{100}$	Etitm：	803	－－17mit		10	maamataaa	80	AMEIT：
023001	Sob	－－－－－－aAa	B0，	atamearaca	02701	606	－ataak	106	athatet：	028	800	¢ ${ }^{\text {a }}$	100	¢
	10，	acaacaacaa	00\％	amamaaca		80.					©			
023002	Sos	－－10000	cos	acaacaacaa	027018	504	A	604	bearbeatab	02802	SO_{0}	－	706	matahasaa
	100	acabaacala	CO_{3}	AAAAAAAAE		103		803	－－：${ }^{\text {r }}$		005	asactitam		
023003	Son		cos	acaacaaco	02701	5 SO	－－．－－•AAA	60%	acfbaA	02	60		0	matabatil
	${ }^{703}$	acaabaacaa	${ }^{80}$	EAfacaem		${ }^{20}$	EAAA	803	－－－：11		${ }^{80}$	1－17t1＇		
023004	802	－－aAABAAA	104	atamambaa	027021	504		603	deaamaaba	02	603		70.	coataAaAaA
	00\％	amacaapab．				102	aAaAAAET	803	thasema		${ }_{80}$	affaeftana		
023005	${ }^{60}$	－－－AAADAD	10．	AAAAAAAAAA	027022	${ }^{603}$	oanacambaa	20\％	EEItItIt：	028025	${ }^{605}$	－＊＊	70	coanamata
	${ }^{803}$	atapacaft					$---t: 1-t t$				${ }^{80}$	AAAAEIt！：		
023008	${ }^{80}$		10．	ababamaria	027023	603	oanaanaak aAAAAAEDA	100	atabamaka	028026	601	$-m----\operatorname{Hn}$ AAAAETIAAE	70	mangamaa
023007	60\％	－oanamaka	\％	abababafal	021024	${ }_{60} 8$	－A AAAAMAA		atabaamaat	02802	60：	Ahatitatat	10	atamatiol
	${ }_{0} 0$	baamaamea				802	Et－titit				005	［raot－it		
023009	${ }^{60}$	－－－EA	10：	alacasabaa	021025	${ }^{60}$	－A AAAAAA	10	AaAEtiAAAA	028029	${ }^{605}$	－－－－－ono	70	famameat
023009	${ }^{80}$	alaakat	10．	anadoa	027025	${ }_{5} 80$	anamataa	Ion	ahacaasaak	028030	${ }^{\infty}$	AAA		
	${ }^{60} 9$	FAat：：1：1		a amozaati		806	ttraâá		angamamat		80	AAAAE：II：		
023010	80\％		\％	at	02702	${ }_{603}$	－qaabarama	\％	alamat	803	603	－－－－${ }^{\text {e }}$	70．	atan
	80										cos			
023011	${ }^{603}$	EAAAAAAEE	70	coanaabaa	027028	6026	－amakamaka AAAAADOE	703	atamataaga	02803	80	－－－－－โAAAA AfAAF：－．：	70\％	AAA
$\begin{aligned} & 023012 \\ & 023013 \\ & 023014 \end{aligned}$	703	：LBAAAAAAA	son	－－tr－m＇t	02702	${ }_{60} 0$	－ofasamaag	10\％	teamaaama	02803	600		70	anatabatat
	70	teababaaba	80	A：1t：1］t		son^{2}	acearagno				80	AAE：IItit		
023015	40%	tffeffegf	50	fafafterea	02703	60	－－－－AAAAAA	10．	amacaigata		800	－t：		atat
						${ }^{80}$	atacamata			028038	© 0		70.	doatameata
024001	50			cercec	02703	SO_{3}	：EfaA	70.	aamareaba		803	AAE：1t：！		
024002	507	atamata	000	AAAAAAAAAA	027033	COS^{1}	alabaaka	70	cccccarana		20.	anamakamar	20．	
	${ }^{3} \mathrm{O}$	amambacaa	日03	aatitit：		${ }^{50}$	alamana			028040	60	－－－－－－－－at	70	amamababa
024003	503		00\％	ataataafai	027034	60.	－8A	10%	pataA		80	ababalaba		
024004	10	AAMAAAMAAA	${ }^{000}$	AMAaADaAa		${ }^{80}$	amanatara			02800	${ }^{603}$		103	mataataat
	50	AMAMAAAEA	∞	abacaataa				70，	AAA		80	atetit！t		
024005	102 503	atamatala	${ }_{602}^{60}$	AAAAAAAA	02703	－804	tapacaAaA	703		028043	600	－－－－：：1t A	10	aoamamaaka
	10．	atababatea	O6	abaambata	027038	702	eabaataaaa	89.	famadama	02804	601		10	－abasama
024006	50	tec	${ }_{60}$	batamataa	02704	10	tbabaacaat	803	aramataa		80	atabet－${ }^{\text {a }}$		
	10\％	AAAAAAAAAA	－ 0		027041	70	－－teatabab	${ }^{80}$	ababamaba	80	604	－－ow	104	enataoanaa
024007	60.	＇EA	70.	asamakamaa	027042	${ }_{7} 7$	$\cdots \mathrm{FAAAAAA}$	88	AAAAAABAA		${ }^{803}$	atamet		
	80	At			027043	708	－atacaa	80	gaatapaaa	0280	603		104	AAAAAAAAAA
$\begin{aligned} & 024008 \\ & 024009 \end{aligned}$	30	－230020	${ }^{803}$	Aafacaial	027044	70	－－trfachat	${ }_{30}$	AASADAAAA		${ }^{80}$	AAAAAAAAA		
	108	－AA	B0\％	AAAAAADAA	027047	702	－：8aAAAAAL	${ }^{90}$	afadatdooa	0280	70.	chanaial	80	\triangle Aft El
					0270	70	：faAat	80	AAAAAEA	02804	70	－mataAaA	${ }^{20} 8$	ahacaaca
025001	${ }^{500}$	－rAAA	${ }^{+0} 0$	AABAAAAOAA	027049	${ }^{10}$	－－－aAaAaa	－ 808	afacapas	028009	701	esmanala	${ }^{800}$	AAAAEIII：
	${ }^{703}$	ataAaparama	${ }^{80}$	AAAAAAAA	027030	${ }^{7}$	${ }^{10 x+m}$	${ }^{803}$	Itrodat	028050	70	－matamaa	804	AaAAETIT：
025002	50\％		Son	a A abalamab	027051	10	－alafamal	802	atoasamat	028052	70	－DCAAAAAA	804	aAacklian
	${ }^{10}$	HaAto－－：：	804	＇I＇	027052	${ }^{2} 8$	－886	804	ababamata	028053	${ }^{703}$	：tieata	${ }^{804}$	ataE！
025003	50\％	－AA	60.	acafacaat	027033	10	caAa	803	acasamam	028054	70.	－\quad Aasamasa	80\％	AaAAEIT：
	108	anabamaba	804		027054	70	bffate	203	amatasaa	028055	703	－A ablama	O03	AAEI：It＇．
025004	508	－AAA	60，	ataramaa	027055	\％	－tcceat	808	acharama	028056	10	－－－ataAata	802	asamftab
	70.	AAAAAAAAAO	BO_{3}	atiadocas	027058	${ }^{10}$	－hictag	203	ababamata	028058	103	－－titaAaba	803	AAAAEII：
025005	50		60	ababactaaa	027037	70	－trceam	${ }^{803}$	asamamaa	028059	${ }^{80}$		\％	eatamabaab
	70	abaabaataa	80	abasamaka	027058	10	－tcletat	${ }^{03}$	achasasab		${ }^{80}$	atac		
025008	cos	－acasaacaa	70．	amabasbaat	027059	703	－－－－AE	803	facaataa	028000	103	－－mataata	803	atacetit
	${ }_{80} 8$	abababata＊			027080	${ }^{10}$		803	acaabaat	028001	70	－－H－AAAAA	80	AAAAEIIAAA
025007	80	－atamasa	On	AAAAAAA	027081	${ }^{703}$		003	aramatasa	028082	10	析	003	tIt：
	${ }^{803}$	Et－ 1 ！			027082	${ }^{703}$		${ }^{8}$	atamanala	028005	102	－：17：		－－－11
025008	803	－－－Itata	10	atambaata	027054	106		BO_{3}	emeadaá	028086	\％	－ataAa	${ }^{80}$	acaablata＊
	803	afagli			027085	70		803	atenataA	028087	Tos	－－．eAAAA	${ }^{803}$	akamakaka．
025009	603	－－－－－－－－＊	O．	abaffacasa	027086	${ }_{80}^{80}$	－AAAAA			028070	${ }^{602}$	－－－－－1＋4	10.	－®＂beoson
	8 Cos	AAASAC			027007	${ }^{80}$	AAAAA				80	AAE＇TH＇t		
$\begin{aligned} & 025010 \\ & 025011 \end{aligned}$	603	－EAA	70.	afametit＇	027088	${ }^{\mathrm{HO}} 3$	－10es			0280	102	－－－ta	${ }_{\text {Hes }}$	AAAE
	${ }_{8}^{80}$	－－－－－－－－	10.	AAAAAAAAAA	027069	${ }^{80}$	Aatas			028073	10	－－－－－－8ses	${ }_{80}^{80}$	
	80\％	alti：			027070	${ }_{80}^{80}$				028075	70		80	
0250	cos_{3}		102	baacaas	027071	80	atama			028079	${ }^{80}$	－meneaA		
$\begin{aligned} & 25013 \\ & 25014 \end{aligned}$	${ }_{8}^{20}$	AAAAA			027072	80	－AAAMA			028080	SO2	－caf	60	eangaanat
	${ }_{603}^{60}$	－E	100		－027073	${ }_{303}^{803}$	AAAAABA				${ }^{80}$	Aahanata	S	asaAAAAAAE
O25015	60，		70.	\ldots	027075	80.	－－－－－AAA			02808	10.	－mAAAAAAA	80	aamatabat
	70	iffacamaá	${ }^{802}$	aftamamaa	027076	204				028083	${ }^{\text {B0，}}$	－－meortie		
025019	9	lfamamaar	00	asababata	027077	803				028085	30	－－riccc	204	cccrecccec
O23020	70	－facafafa	${ }^{003}$	AAAAAAAAA	027030	905	－－－－－8AA				503	ceccrccecc	cos	сccccccccc
	${ }^{70}$	：Ilcbaabaa	${ }^{03}$	amaacama	027082	${ }^{80}$					70.	ciclamana	${ }_{3}{ }_{20}$	AAAADOAAAO
$\begin{aligned} & 025022 \\ & 025023 \end{aligned}$	70	－assmas	${ }^{0} 03$		027083	80，				028086	703	－oatamataa	80.	abaateama，
	${ }^{102}$	－lactastan	BO\％	AAll：：						028091	${ }_{80}^{80}$	－－－oaAAA		
029024	70.	－om			020001	$\begin{aligned} & 303 \\ & 50 n \end{aligned}$	－－－cectaAa AAABPAAAAA	${ }_{603}^{203}$	BCCCCCCCCB AAAAAAAAAA	028093 028094	（e）	［AA．		
028001	502	－AAAB88	60.	bsbebababn		10	AAAAAAEAAA	803	AAAAAAAAAO	028095	80			
	${ }^{700}$	AtAbstil：	${ }^{800}$		02	303	A AAAA	${ }^{20} 4$	AAAAAAAAAA	028101	${ }_{80}^{80}$			
028002	600	－ataceeber	706	taababajez		50.	aabamaacaa	SO2	AaAaAAADt	028102	80			
	${ }^{80 \%}$	BtCcCrece				${ }^{706}$	facaataaaa	O\％	arametit					
026003	${ }_{50} 0$		${ }^{80}$	anatacaaab	28003	${ }^{503}$		$\mathrm{COM}^{\text {cos }}$	AAAAAAAAAA	2900	${ }_{80}^{\infty}$	－boacaamay	10．	asamanamat
	104	abacefata	803	atabataca		${ }^{1}$	alfanalaba	B0：			80	amababaa		
020004020005	ton	HE：6ticya	80	atanabit：	028004	50	－bat	cos	fasfacasa	02900	${ }_{60} \mathrm{SO}_{2}$	－－aAasaba	\％	asaamdana
	${ }_{80}^{80}$	－Uasamasa				${ }^{203}$	AAAAAAAAA	$\mathrm{BOM}^{\text {ch }}$	Aat：II		${ }^{80}$	AAAAAAFAA		
$\begin{aligned} & 028008 \\ & 026007 \end{aligned}$	${ }^{80}$	－			028005	50	－－－－－－${ }^{\text {ccoba }}$	con	AAAAAAAAA	02900	${ }_{60}$	－－ta	10	atamakama
	${ }^{3} \mathrm{O}$	Hece	10	Itcertcoce		${ }^{70}$	AAAAAAAAAA	${ }_{\text {80，}}$	AAAAF：		${ }_{60}^{80}$	ataAAAAAAB		
	880	－11			028008	50.		${ }_{800}^{600}$	AAAAC：11	029004	${ }_{806}^{60}$	－－－－－－－－la	70	ababamanas
028009	80.					${ }^{20}$	：111：11＂	${ }_{80}^{80}$	11：1t		${ }^{206}$	AAAAAMAAA		
					026001	302	－－aAA	60%	ababacet！	029005	70	－eamataata	${ }^{0} 3$	amatacaa
027001	30\％	－atas：	403	teaaabcch		102	：：1t：：11	803	：：：7：1	029	102	＊AAAAA	803	abacaatel
	506	Itramatat	©0，	atamachasa	028008	50	－－－aAAAAAA	${ }^{603}$	AAAMAAAAAA					
	103	AAAAAAAAAA	00\％	AEITItI＇		703	amacaakama	803	AAAARAAAA．	03000	503		60.	asamamasa
027002	303		${ }^{40}$	I＇IT：${ }^{\text {a }}$	028009	$5{ }_{3}$	－A	503	AAAAAAAAAB		${ }^{70 .}$	AAAAAAAAAA	${ }^{80} 1$	AAAAAABAA
	Sos	titieataa	60_{3}	aharababaa		70	AAAAAAAAAA	${ }^{60}$	asaatapata	030002	cos	－aAasamaab	70．	atabatabet
	10．	abaabasaba	803	atamasama	02801	303	－－iffcc	203	cccreccecc		${ }^{80}$	efeagat		
027003	50.	－－－－ヵ	603	ffatarama		SO_{2}	cccecccecc	60.	сcceccccce	03000	CO_{3}	\cdots－－atababr	10	atamataraa
	703	abaabegaft	80	Aabababes		70	ccccbaaaaa	803	AAAAAAA：		002	atamabzas		
$\begin{aligned} & 027004 \\ & 027008 \end{aligned}$	603	matabatakt	703	Ifatafil＇	028011	503	－－at	60.	framarama	03000	Con	－－atabaAab	10	AAAAARAAA
	60\％	－Aata	72	amamamaaka		704	efamanaasa	806	AAAAAAAAAP		$8{ }^{80}$	amabamata		
	803	abacaamaa			028012	50	－－－－－－－．－	${ }^{\text {cos }}$	AAAAAOAAAE	030005	${ }^{60}$	－－－－－－－－ic	20，	cecceocce
027007	503		es	aparamaraa		703	amaamaral	803	abamababa		${ }^{80}$	cecet－－＊		
	10	eboamaate	80	AaAAAAAAA	028013	70	－－－－：11＇	${ }_{0}^{103}$	\because	030008	704	－－－－¢888aA	${ }^{807}$	aefanafat
027000	50	－AAAE	60\％	aabababaab	028014	${ }_{80}$	labscitaa	103	afacaamal	030011	704	－fanamaba	803	afamateda
	70.	abamatelat	80	Atoctil＇		${ }_{80}^{80}$	tirti：			030012	${ }^{10}$	！AAAAAAAAA	${ }^{80}$	Cebameit
027009	60，		103	AAABOCAAAD	028015	${ }^{60}$	－－－－－oot 14	708	EEE：$\cdot:!1 \%$	030013	${ }^{20}$	－－－－－－AAA	${ }^{802}$	AAAAAAAAA
	${ }^{80}$	ajamataa				${ }^{80}$	－－－affata．			030014	70.	－－ocabasa	803	batamatat
027010	30	－－－tetc	40_{2}	mertrict	028016	cos_{3}	－A	\％	AAAAAAAAET	030015	704	Aat	${ }^{803}$	AAAAAAA
	503	thtoanaat	802	baafamaaba		HO_{2}	I＇1			030017	10.		Bos	AAAAAAC
	70	ababacieat	${ }^{80}$		028017	603	II	20．	AEt					
7012	SOn	－－－－0AAAAA	609	asamamama		${ }^{80}$				031001		－－－－－－－－1Cr		
	70	AAAftr：			028018	$\begin{aligned} & 603 \\ & 808 \end{aligned}$	－aAAAAAAAA AAAAAAAAAE	70．	anataacaak		$\begin{aligned} & 508 \\ & 104 \end{aligned}$	－－－ 1888888 afgaakalab	$\begin{aligned} & 803 \\ & 800 \end{aligned}$	Besberana A BAAAAABEP

Sin sumber	Geuged deity fowe． monthy peeks and rainfar				Sin number	Gauged dairy flowe． momitur pooke and tainfoll				Stn number	Gouged dentry fow． montity pecks and tanlen			
031002	30．	－－． 1	40		033044	cos		70	cocabsaama	037003	30.	－－scceccec	40	cccecccecc
	503		© 0	кеccececes		803	abaaatbes				50	cccocceccc	60.	ccchaamaat
	70	соcceccecc	© 01	cccccccab	033045	603		10．	cccasaa		70.	AAAAAAAAAA	BO_{3}	AAAAABALL
$\begin{aligned} & 031005 \\ & 031006 \end{aligned}$	80	－－－：11：1				203	babaabbaa			037005	50.		60%	AaAAbaAAA
	603	－EAa	20.	babaaamaan	033040	603	－tes	T03	sccaabaaaa		70，	AMAAAA	${ }^{80}$	atamabaá
	${ }^{8} 3$	abasamak				80	baamabhaa			037008	60	－－ataacaa	703	ataramabas
031007	${ }^{60}$	－ct	O6	өвCCCectaa	033048	$6{ }_{3}$	．－－－－－－－	708	cecaamana		${ }^{80}$	AAAAAAAAA		
	O0s	amabamab				${ }^{\text {80\％}}$	brhatsaa．			03700	60，	－－－mata	70	AAAAAAB
03101	60.		10.	as	0330	10	－1	${ }_{80}$			${ }^{80}$	aAAabasaa		
	BO_{3}	anamabbac			03305	cos	Hretese	70：	t－－－rccece	037008	80.	－A Aas	70	abamababab
031012	${ }^{8} C_{3}$	－－－．	O3	EEEEEEEE		${ }^{\text {AOS }}$	BCCA＋4020				${ }_{60}{ }^{\text {OS }}$	AAAAAAAAA		
	802	ceememi．			033051	60．	cceo	70.	inamaanaa	03700	60.	－－oatababa	70.	AAAAAASAAA
031010	${ }^{603}$		70．	abaramataa		${ }^{803}$	abababel：				${ }_{603} 8$	AMAAAAAMA		
	${ }^{\text {H03 }}$	asamatat			033052	603	1－cce－cce	103	：	03701	60.	－－raasasa	10.	atamanaa
031021	70	of afebbeaa	80\％	ateffete		${ }_{80}$	amabata				B0，	abamamaka		
031023	70	－rbabriab	8	AAAAAAAAE	033053	403		50，	Hecerecec	03701	603	－－－qaataa	100	abamabama
031025	70	－－A	806	eataatabe		603	cectirioce	708	«есесесеся		203	aramamata		
$\begin{aligned} & 031028 \\ & 031028 \end{aligned}$	10	－1：	803	amabacale		${ }^{803}$	ccbos00s			037012	${ }^{604}$	－－－craAaAa	104	asamabata
	80%	－bmate			033054 033055	$\begin{aligned} & 73 \\ & 60_{3} \end{aligned}$	$\begin{aligned} & \text {------ICAA } \\ & \text {---tece!-- } \end{aligned}$	$\begin{aligned} & 802 \\ & 702 \end{aligned}$	AABAABens	$03 / 013$	900 603	AAAABAAAA		A
032001	304		40	coatanamat		808	anafacaso				30.	AAAABAAAI		
	503	abaamatabb	603	baacabaabcc	033056	60.	cett	10．	ctethecla	037014	60\％	－－icbaaaa	10.	A
	${ }^{70}$	baaarbccaa	${ }^{805}$	baAAAAAF		BOO_{3}	bacasas				80	abaababab		
032002	30		403	abbabababa	033	${ }^{708}$	－－－－－－bAA	BO_{3}	a a a A	037	10	寿	802	Aatas
	${ }^{503}$	bababbaach	${ }^{60}$	acboataaka	033058	70		${ }_{80}^{80}$	AAAAbsoce		${ }_{605}$	－－faAAA	10.	alamabakaa
	${ }^{20}$	bapabaaka	${ }^{808}$	acacaacae	033059	cos		70	cctec		80.	amamatab		
032003	301 503	－－－－	${ }_{\text {cos }}^{40}$		033080	803 603	ctct	10	cseccece	0370	803 80.	AAAAAAA	103	anabatakam
	108	AAAAAAAAADA	${ }_{80}$	AAAAAAAA！	03306	e0s	ccecel	10.	cseccecec	037018	70\％	EAAMAAAAAA	80	anabagama
032004	40.	－－caabasa	508	AAAAAAAAAB	03308	60		O		037019	cos	－eatae	10．	anajaskla
	60.	bebartaAab	702	aramagaat		mos	cecct ${ }^{\text {e }}$				HO．	AAAAAAAAA		
	${ }_{30}$	abababata			033083	P0，	－abmaa			037020	60.		10	fanabasab
032006	308	－${ }^{-0}$	403	bacabaaba	${ }^{033086}$	${ }^{80}$	$\bullet 30500$				803	ataagata．		
	503	ababalarpa	603	brbbataa	033008	${ }^{80}$	＇ccesafer			03702	cos		10s	canamasab
	${ }^{703}$	eccesecccc	${ }_{80} 0$	Cicceccas	033086	${ }^{80}{ }^{\text {c／}}$					${ }^{80}$	AAAAAAAE，		
032007	303		408	abacabaaba	033007	80，	－－cesat			037022	60		103	A日
	50.	ASAABARAAA	cos_{3}	baacaabaad	033068	80s	－1c80．				${ }^{80}$	AAAAB88A，		
	703	eccecceccc	50	eccececat						037023	${ }^{10}$	－EAAAAAAA	803	AAETH：
032008	403	orame	503	abaambabaa	034001	503		603	anamaaba	037024	103	－eamakasa	603	ataberat：
	${ }^{60}$	brprabafaba	70	acaamakama		${ }^{70}$	atachataka	${ }^{80} 0^{2}$	AAAAAAAAA	037025	${ }_{608}^{60}$	－－－－caata		ttet
032029032031	${ }_{80} 8$	＋m＋t			03400	Sos		80\％	AAAAAAAAA	03702	60.		703	
						70.	ababaacaab	800	albataab	037028	${ }_{6} 63$	t－atesbece	701	\％sapes
033001	303	－－－－－1ccc	403	Eccceccec	034004	cos^{2}	ofacaataat	103	amasaAAAAB	037029	60.	cesom	70	veceen
	50	ricceccecc		CCFII：1：		${ }^{00}$	abaamamar			0370	60	－－EEEBaAB	108	
	70	： 11 ：$:$ ：	${ }^{6}$	－	034005	Cos	－eamatama	103	atamatasab		${ }^{\text {B O }}$			
033002	30	－－－c¢Cccess	${ }^{402}$	у \quad bsaccicc		803	abamamata			037031	103	－8A		afabasal：
	508	cccececece	603	baacaataab	034006	cos	－A acada	103	AA	037033	10	AA	80	AAAAAES
	70	gaamanamar	803	basbasama		803	Aasamalaa			037034	${ }^{10}$	－－－－100208	B0s	－socusen
033003	30	－ICCC	${ }^{40,}$	ecrerccecc	034007	cos	－AAB	10．	amamamamar	037036	${ }^{178}$	－bis	B，	
	508	bafabsabcic	cos	fabaamccaa		9\％	ababamat			037037	${ }^{8} \mathrm{O}$	－ 20000 C		
	708	scecocecce	＊＊	cccecrir	03400	60.	－caea	10	Aatliasar	037038	50	－ancor	cos	besobadoso
033004	30.	KCC	${ }^{40} 9$	ccceccrfec		80	ecrobebee				${ }^{2} 0$	－6000		
	So8	cecccramecc	${ }_{80} 8$	ccccectic	034010	603	－－－－－－－kA	10	asamamama	03703	103	$\cdots{ }^{--+600}$	80，	ctettm
	70	сccorccecc	00，	CFCCCsfit		80.	eababiana							
033005	50	－cisercecerc	${ }^{003}$	8AAAABBCC	03401	${ }^{60}$	－－－－－－AAA	10．	afacamarbs	038001	306	－－－－－－ccc		ccceccicce
	${ }^{70}$	ВСввввввсе	0_{03}	вв8в88¢		${ }^{80}$	abamaAAAB				son	cccecceccc	503	CCCCCAAAAB
033006	503	acc	cos_{3}	bapaaaab	034012	60，	－AAa	10	amdabaataa		704	baAabcfica	0	afacamamao
	\％ 70	ababbababa	${ }_{603}^{80 \%}$	Аеве8в8в88		${ }_{7} 98$	alamalamb			0380	${ }_{500}^{80}$	Sensencos		
033007	$\begin{array}{r} 506 \\ 108 \end{array}$		${ }_{603}$	сссссвв8А ${ }^{\text {a }}$	034013	${ }^{708}$		80	a0toot	3600	${ }_{10}{ }^{5}$	－－caAAAAA		AAMAAAAAAA
033008	50		${ }_{603}$	alchanata comeobot－	034014	${ }_{8}$	arcte			038	70.	abababaata	${ }_{\text {cos }}{ }^{80}$	AAARAAAAAO
	70		204	－r：	034018	20	irccadot	SO3	anamagala	038005	30.	－－－－－－tr：	40	1tirtit：
033009	502	－AHCC	603	batamatab	0340	10	－facasa	803	atababamb		503		60%	［aAaAbab
	70	babbaabaat	203	basabatit							${ }^{70}$	amanamaae	004	cti：
033011	${ }_{6}^{20}$	为	50	＇ricticet	035001	CO_{5}	：tric．	103	： t ：FFCFE	38008	${ }^{50}$	－ccc	${ }^{602}$	c：batamalab
	60.	matasamia	10	basamasam		BO_{2}	tridnsbo				103	abaabanaba	003	
	${ }^{0} 03$	bacaatabo			035002	cos	－－matama	10．	acaabatasb	038007	cos_{2}	－－EAAAA	70.	alababamab
033012	${ }^{0} 8$	manabamafa	103	bachatasat		${ }_{803}$	AAAAAABA				${ }^{80}$	AAAAAAAAA．		
	${ }^{\text {OH：}}$	abababasa			035003	$6{ }^{6}$	－ramanaba	10，	abanamaasa	038011	503	－－－－－－－ICC	603	cceccouses
13	${ }^{40}$		503	＇H＇scく＊＇		${ }_{6}^{80}$	AB3AAAABA	23				－	${ }_{\text {O2，}}$	AAAAE．
	${ }_{80}$	AAAABABAA			3500	${ }_{8} \mathrm{O}_{2}$ ．	ABzaAAAAE					－－7－－－7AAAA		
033014	603	－abaramaaa	10．	abaacaa	3500	6，	heama	0	abasaba	0360	30.	－－－－－111！	${ }_{40}$	11：！t11！
	${ }^{\text {BOS }}$	asamasama				H5\％	abtamaam				503		603	－s．0060men
033015	603	－－aAaAbaba	70	AAAAAAAABE	01	cos	－	0．	ataacaasa		10	20enosore	80	alacaboss
	B0\％	damabaff：				80 x	absataos			038014	50.	－－－－－－eccc	6_{62}	ссccecrecr．
033010	$\begin{aligned} & 502 \\ & 704 \end{aligned}$	bcccccecce	$\begin{aligned} & 605 \\ & 906 \end{aligned}$	daAEEEFEB CCCF：：	035013	$\begin{aligned} & 60_{2} \\ & 808 \end{aligned}$	abacaa	10	casaasaab	038015	70 60.	ccceccoana	\％00	EAAAAAAAA＊ AAAABAAAAA
033018	CO_{2}	－icaacalia	10	abasamama							80，	${ }^{1} 10$		
	80\％	baaabaab			036001	20.	－－－－－－cc	304	：rcceccccc	038018	60	－－	70	ccbobcccoa
033019	50.	－1：1	${ }^{60}$	hioanamat		$4{ }^{4}$	ссcccaccec	${ }_{3} 30$	ccccccana		${ }^{803}$	AABCCCet		
	70n	abasamatas	80	atamabaa		Cos	bgbaabaaa	10	вв88авcclc	032017	20	coamakata	204	AAAAAACsom，
033020	504		602	t－oateret		80	cciccer if			038018	704	－A AAABAAA	BO_{3}	alamacaata
	70	Їbebaacaa	${ }^{80}$	actanbata	c002	${ }^{603}$	－atarataba	\％ 0	atana	038020	${ }^{70}$	－EAAAAAAAA	${ }^{203}$	AALlAAAAAR
033021	${ }^{603}$	－${ }^{\text {a }}$ AAAABB	10．	braakamata		8	AABAAAAAA			038021	10	－eacaacaab	803	AAAAAAAAA
	806	baAbabbea			036003	${ }^{602}$	：yamamata	10.	abaramama	038022	100	－－cccaama	80	amacaamat
033022	50，		60	abooratan		BO_{6}	AAAAAAAA			038023	${ }^{80}$	orraenaspo		
	90．	AAAAAAAAAA	808	AAAASABBS	036004	${ }_{803} 6$	－－－－－19AAA	10.	AAAAAAAAAA	038024	10	－－－EAAAAAA	803	AAAAAAAAAO
033023	${ }^{80}$	－－ataabea	10：	ambakaakaa		${ }^{803}$	abatamata			032028	703	－－－EAAAAA	80.	AAAAAAAAA
	${ }_{40}^{80}$	AAAAAABRA	50\％	efeccercce	0360	${ }_{80}^{60}$	－－oramatan	70.	ataakana	－ 038027	${ }_{7}^{180}$	－－－－－－0：0cta		AAAAAAAAAO
033024	603	cccoanama	103	AbAAAAAAAA	036000	503	－pataraaa	70，	anamaamak	038029	row		80	atababasam
	80	AAAAAAAA				80	amasamas			038030	10		804	abacaamat
033025	60	feamaa	10\％	ateabchil	036007	50	ccirboabaa	10.	anamanama					
033027	${ }^{703}$	¢Ccccccec	RO_{2}	ccccecr $\cdot 1$		80，	AAAAABTAA			039001	803	－－－ecccccc	90.	ccecceccce
	${ }^{0} 0_{3}$	－－${ }^{\text {a A A ABE }}$	0.	bracamakal	036008	503	facaabacaa	70	acasabasam		∞	сссссссссс	10.	сccccccecc
	$8{ }^{20}$	Absacaabe				${ }^{80}$	acamamama				20	сссесесссс	30	ссccectcce
033028	${ }^{605}$	－fatt	10	abahasaaka	038009	60	－－EA	70.	aAAABAAAAA		40	сссссссcce	SO_{3}	cceccecccc
	80	abaacabaa				803	abanamaa				601	сссccccece	10.	ссССсяăaa
033029	60．	－oatea	O	abcasaabaa	038010	603	－－EA	702	AaAAAAAAAA		${ }^{306}$	banamaama．		
	80\％	atabbabaa				803	ataasama			039002	30	－－－－－－－＋6	40.	ccccccecce
033030	30	ce	${ }^{603}$	oct－－${ }^{\text {ames }}$	038011	603	－－－－－¢A	103	atamataama		Sob	сccccccecc	60，	ссçccecce
	106	－abs：masos	${ }^{80}$			80%	amababaa				10.	cccecccecc	803	ccceccccor
$\begin{aligned} & 033031 \\ & 033032 \end{aligned}$	To	－amababbaa	80	atamameti	038012	603	－－－－－EA	10．	amasabasa	03900	cos	－－dateeee	10	of eateema
	606	－－tama	10	acamabaa		803	abacaabaa				806	atabrasose		
	803	abacaabab			038013	60	11！：1：11	T0．	Itterthr	039004	30.	－－－－－seta	40	atitifeet
$\begin{aligned} & 033033 \\ & 033034 \end{aligned}$	Tos	－－－eamata	80	anamacaba		80	frffrio				506	tI＇－EAAAAA	604	AAAAF AgEE
	Cos	－－：CA	10，	amabamatak	03801	10．	－famarama	80.	anagamata		10	tefateaf－E	80	tereamata
	${ }^{80}$	AaAAAAAAA			036016	\％	nremens			03900	30	－－－－－atami	43	$\because 1$.
033035	${ }^{30}$	－ccescit：${ }^{-18}$	${ }^{603}$	cscccecesc	038017	tos	－elisensos	803	ba		SO_{3}	t：¢EAAAA	${ }_{603}$	EEAtitet
033037	Hos	cestes．	104	ababasala	03700	503	－anamataab	605	anamanama	039008	${ }_{5}$	，AAAAAAAAA	60	aceebarat
	${ }^{80}$	atababuba				70	anasasalat	${ }^{6}$	AAAAAAAAA．		10	AAAAAAAAAA	80.	AAAAAAAAO
033039	10.	－－lamanbaa	${ }^{\text {PO}} 3$	a4beababi	037002	308	＇CCCCBsa	${ }^{0}$	crabababaa	039007	503	－－oatamata	CO3	abababamat
033040	${ }^{80}$	－－－－n＋4	10	cbababamat		503	Авя88ввев8	80	bicorabbiat		70	anabaatala	SO_{3}	atababata，
	${ }^{\boldsymbol{O} / 4}$	AAAABBOD				10	gasasalama	80.	amabacasa	039008	$\begin{aligned} & 50 \\ & 302 \end{aligned}$	－teccectec ccccececce	$\begin{aligned} & 601 \\ & 800 \end{aligned}$	cccccccccc ccccccect

Sen. number	Geuped day fown. montont peeke and isintal			
039010	son	-AA	608	ababaamaak
	70	abababataa	803	anatataa
039011	son	-AAAAA	Con	alacaacala
	106	amaramataa	804	AAAAAAAAAO
039012	503	-faAA	cos	alacaacaá
039013	70%	araabaataa	HOS	atileatiaf
	304	eamaka	203	alabaatal
	Sot	atarataAas	603	alamamaaka
	70,	abacabamea	203	acaraadata
9014	${ }^{503}$ O.	*AA	${ }^{60}$	AAAAAAAAMA
	${ }^{20}$	AAAAAAAAAA	80%	AAMAAAAAA:
035018	${ }_{0}^{0}$	-nAAAAAAAA	10.	amakamakaa
039017	${ }_{603} 0$	AAAAAAAAAE - - ABAABBC	70	ссссесесce
	cos	rcrecrie:		
039019	503	--famacaak	\%	alamakama
020	${ }_{503}$	akarataka	70	anamacaama
	Bos	asabaAAABA		
039021	$50 \times$	-faAA	103	asamamaaka
	${ }^{80} 4$	acaramatas		
039022	80	AAAAAAAAAA		anamakata
039023	508	-eatapa	on	AAAAAA
	804	abasaasama		
039025	(601	$\text { -- } A A A A A A A A A$	10.	abababacaa
039026	cos	-	10.	amanamataa
	80	asabacate,		
039027	$6{ }_{6}$	-A	0.	akamaakAas
	80	asamasama,		
039028	${ }_{903}^{603}$	AAAAAAAAAAB	703	afatabababa
039029	603	IA	10	amamaataka
	${ }^{80}$	atanamasao		
$\begin{aligned} & 039030 \\ & 039031 \end{aligned}$	70	tapaaamaab	150	anabaua
	60_{3}	- oAAAAMAAA	904	atamataka
039032	B0:	-AAA	O4	atabab
	Bus	ataktr::		
039033	${ }^{606}$	-AAAAAAA	O6	ataa
	80\%	AAAAAAAAAF		
$\begin{aligned} & 039034 \\ & 039035 \end{aligned}$	${ }^{20}$	- abamababa	${ }^{80}$	AABAAAAAAE
	${ }^{60}$	${ }^{\prime \prime}$		amakraskas
	803	atanat		
039036	603	${ }^{-4}$	10	acaabamaaa
${ }_{0}^{039037}$	70.	anabafoan	80.	acaamamat
	esos		10	anababamá
	80.	atebecua.		
039040	>os	tfacasama	80.	abababaato
$\begin{aligned} & 039042 \\ & 039043 \end{aligned}$	70.	--tabababa	80	anamababam
	cos	mfatama	10.	amamabamas
	9\%	atababas.		
039044	10.	obabataa	801	asabasama
039046	10	matlea	803	illtiokton
$\begin{aligned} & 039049 \\ & 039051 \end{aligned}$	70	EEETIte	809	daabeaaat
	603	-ta	10s	asabamama
	80,	acamanaf		
039052	50	AA	608	tuasasa
	703	د320303s	80.	amabababac
039063	502	-acasamaa	tos	AAAAAAAAAA
	${ }^{807}$	amamaamab		
039054	604	-nAAAAAAAA	\%	AAAAAAA
	${ }^{80} 3$	AAAMAAAAAO		
039056	\%		но	fffacasa
	70	-------**	80	n-5060eson
039057	${ }^{1}$		80.	
039058	10		$8{ }^{\text {S }}$	¢000-3men
039081	9		80.	-0643006 日l
039065039008	70.		80.	memetaAABI
	70	eatatefa	904	ababababat
039089	10,	--At:fata	80.	AAAAAAAAAO
039071039072	70		${ }^{00}$	munomuco
	70		203	esobesso
0398073	103		804	ת-mata*
	80s	-352neata		
039075	${ }^{80}$	-		
039078	${ }^{10}$	------ mas	Bon	semenatan
039077039078	${ }^{80}$	gaseseAAAP		
	${ }^{10}$		${ }^{803}$	\%xensa
$\begin{aligned} & 039079 \\ & 039081 \end{aligned}$	108		${ }^{80}$	$4 \times$ cmatasm
	${ }^{60}$	nAAAAAAA	20	abababate.
	80	$A A A B m A A A B$		
039085	303	--ms	40.	
	503	anabat	60	
039086	70	-mama	86	AAAnAAman-
	${ }^{2}$	casama	903	-amaariaa.
039088	10.	-acama	804	asamabasao
039099	70	-8sas	80,	¢00\%
-39090	80			
039091	70		802	
039092 039093	70	-	804	asoser A A
	${ }^{10}$		${ }^{00}$	mrenseram
039093 039094	10.	0	cos	Dessesase
039095	\%	0	BO_{3}	-mmenser
039098 039097	70		Bor	marsoses
	${ }_{\text {s\% }}$	licarccel		
039098	8 m	--mek:mon		
039099	${ }^{80}$	-		
$\begin{aligned} & 039100 \\ & 039101 \end{aligned}$	яo,	-ourch		
	80	--		
039102	88	-mixian		
040001	50	--fababat	6^{60}	AAAAABA
040002	70	H-TH		
	508 70.	$\begin{aligned} & \text { OAAA } \\ & \text { ERAAA -: } 11 \end{aligned}$	603	abaAaAaAEA
040003	50.		603	afamabeff
	70:	i ferceccce	BO_{2}	busaaccer.
040004	BOM	--ababili	$t \%$	anamamamar
	804	amababama		
040005	50	--A	604	AAAAAAAAGE
	103	atagaeamag	803	aAaAadSou
040008	503		60_{0}	anamababre
	10	Aabtutatt	HOS	
040007	$\begin{aligned} & 603 \\ & 803 \end{aligned}$	oaAAAAFtEA efectbaad	70	A

Stn 04000 04000 Geuged doty fows. 60
60
60
60
60
60
60
60
60
80
60
80
10
60
60
60
60
80
70
60
20
10
70
1

 040018

04

0
 $\begin{array}{ll}A A & 04 \\ A A\end{array}$

0
0

0

04101

0

0
041
041
041
041
0410
041
041
041
041
0410
0410
041
0411
0410
0410
0410
041
0420
0420

04200
ก
ก N
0420
0420
0420
0420
0420
0420
04201
0420
0420
042
042
042
0420
0420
0420
04202
043001
043004

0430

0430

04300
043008

043009
043010
603
043011 tos Enccuttil

Stn. nurber	Geuged driy hown. montiny packis and ramrtal			
043012	603	-----:: $:$	70,	:facamabaa
043013				
	${ }^{603}$	arcr	704	:EBABb8AAA
043014	${ }_{8}^{80}$	AEE: $:$: $: 1$		
	603	---- $1: 3$	206	: EAaAaAa
	808	anamanata.		
$\begin{aligned} & 043015 \\ & 043017 \end{aligned}$	S03	1! ${ }^{\text {c }}$	0	:fffim:
	603		0	ifacaamat
	80\%	aAababsge		
043018	10	-atama	nos	araacadom
043019	70	eatabaa	H02	alibalab
043021	10	--838ab	80\%	rabiccecr
044001	603	-----cocc.	20\%	cccecccoco
044002	${ }_{\text {cos }}^{60}$	conctiala	70.	ababamakaa
	${ }^{80}$	alababala		
044003	60	--taAa	10*	aamabbbaaa
044004	183			
	CO_{6}	---:'t	10.	AAAAABUAAA
	${ }^{803}$	a A AAARRAG:		
$\begin{aligned} & 044008 \\ & 044009 \end{aligned}$	${ }^{3}$:ClaAAA	802	
	103	-AAAA	80	abaaboabet
045001	503	----.odata	con	abaabamaba
	703	abaabgabaa	403	AAAAAAAAA
045002	603	- AaAaAaAb	\% 0	atabababas
	804	asabasasa		
045003	603	eamataab	70.	asabababas
	cos_{3}	asamamata		
04s004	cos_{4}	- A anab	103	AAAAAAAAAA
	BO_{3}	aramamab		
045005	${ }^{603}$	- AAAAAAA	103	AAAAAAAAAA
	80	alamataa		
0450	${ }^{604}$	---matr:	\%\%	"1'T
	70:	teamata	BO3	abababaab
045009	BO_{2}	- AAanact		
(045010	10,	\cdots - сеcecec	80	----'t'
	bos		108	.. teses
045012	sor			
	$\begin{aligned} & 503 \\ & 805 \end{aligned}$'s'sec cuccecaA:	104	cccces
002	Sos	-rata	6_{0}	amamababab
	Tor	ababamata	${ }^{\text {PO}}$	ababasabi
046003	${ }^{3} \mathrm{SH}$		00	ababababaa
	c)	afababama	00\%	AAAAAAAAA!
046005	SO_{6}	--facata	20	afababamaa
	$80:$	abababami		
048008 046007 046008	\%	afaba	O,	abababaa
	20s.	-abasama	H03	
	10,	+2,	$8{ }_{3}$	ar---->:
047001	Son	---- taAa	6as	a abaaabueg
	10s	ababamabaa	803	Aamamaba
041003	sis	erf	cos	t!:'r.'
	10.	H?telaal	(8),	tin:'
047004	${ }^{6} 10$	--ratafá	20s	amamamaba
	80\%	amabaiama		
047005	${ }_{50} \mathrm{cos}^{2}$	"AABAAA	104	agetl \cdots ita
	60\%	:11		
041008		eatafet	10:	ce:icamal.
	${ }_{50}^{98}$	- $:$		
047007	90.	AAAAAAAAA	0	artiamata
047008	cos		70	anabamabas
	8 C,	ababasam		
047009	cos_{3}	--	70.	asiamasaba
	${ }^{83}$	AAAAAAAAA		
O47010	10:	- liabababa	H0\%	atabliaac
	10.	Eataramat	${ }^{80}$	$A^{+}---\cdot \cdot$
047013047014	${ }^{102}$	- icasaama	\% 2 ,	ARAAAAAA
	${ }^{80}$	د2moat		
047015047016	$8 \mathrm{8k}$	-unat:		
	${ }^{703}$	\%	808	"1'.acer
047017	103	'cc	80,	ccceccall
048001	50	-閁	60\%	atambathe
	${ }^{10}$	AAAAAAAAAA	803	amababao
048002	603	-ictanabia	1 \%	anababfice
	${ }_{\text {a }}^{\text {a }}$	't		
$\begin{aligned} & 048003 \\ & 048004 \end{aligned}$	10.		gO_{3}	CAABAAAAA
	40s	AAAAAAAAA		anabasamaf
048005	603	-1A		
	AC:	asamamaba		ahamata
048006	601	--------ta	10\%	Aamamabab
	808	abatabaac		
048007	${ }_{604}$	-------FA	70.	asabamama
	203	amanamac		
$\begin{aligned} & 048009 \\ & 048010 \end{aligned}$	10	ffacamama	808	
	50.		${ }^{8} 01$	
	203	ecbacaabaa	B0،	afabamata
048011	603	-rcuacabya	\cdots	anamabama
	80	aramamaba		
049001	63	-aAAAAA	70	amamamasa
	63	amanamama		
043002	cos	-. $\mathrm{Ef}^{\text {¢ }}$	60.	
	10	ababasama	80	amamamab
043003	cos_{3}	- . e	70.	cbeetamaoa
	$80:$	abababate		
049004	(0):		70.3	asamasabas
	803	amatabiaa		
050001	st	-------nA	B0,	amanamama
	703	afacamaata	30,	abanamasal
050002	603	--atabaaba	10.	babamama
	803	anamakam		
050004	${ }_{803}$	$)^{\text {ort' }}$	20.	t! \cdot -
$\begin{aligned} & 050005 \\ & 050006 \end{aligned}$	10s	--tecs:	$\mathrm{H}_{\text {ch }}$: cesce.est
	63	-----cosa	70.	-xeomenero
050007 051001	es,	somon'1A		
	13:	kcecce	80.	sccicce
	6,0 80%	.- .- AAA AAAImAAAn	\%	amamatama

Stn number	Geuged dedy fikws． monthly peaks and raintell				Sin number	Gouged daly thows． monthly peent and rainfall				Stn number	Geuged denty flowe． monthly peake and rainfall			
051002	\％ 0		$\xrightarrow{\text { 80\％}}$	！	054028	$\mathrm{P} \mathrm{O}_{3}$ 80.		70：	fes	055033	$\begin{aligned} & 603 \\ & 803 \end{aligned}$		10.	－－－mber：＊＊
${ }_{051003}$	${ }_{\text {cos }}^{601}$	$------{ }^{\circ}+5$ －cesAAAP												
					054029	${ }^{7} 1$	frbaabaaba	80，	amamamamat		10		83	
					054032	${ }^{10}$	feramamaan	${ }^{003}$	abaamamate	055035	103		HO_{2}	
052001	50		80，	a：sabibat	054034	${ }^{\text {\％}}$	－facamama	80＊	AAAA ${ }^{\text {a }}$／fat					
	10.	11			054036	70\％	－tabababa	Bcs	AAAA！ 1 ．${ }^{\text {a }}$	0560	sor	EA	60\％	ababamama
052002	50.	AAB	608	зobebsat．	O54038	70s	teabaama	OO：	ababgamata		10.	anamambaa	H_{6}	asamabas
	70.	\ldots			054040	70.	fasamaa	80.	AaAAAAOSSC	05600	50		604	afabamama
052003	to3	chasamasa	70，	AAAAAAAA	054041	10，	－－rccecaaba	8 m	AAAAASAAA		103	ababactiaa	808	ababababa
	903	aramababan			054042	${ }^{1}$	－talamll：			0500	（is	－${ }^{\text {aramaa }}$	10．	anamababab
052004	60	－－mamataba	02	a	054043	50.	fecs：	60	stc		90.			
	804	abababafa，				${ }_{7}$	${ }^{\prime \prime}{ }^{\prime \prime}$	89		058004	COS	－－－－ataba	70s	abamamabas
052005	cos_{3}	eatamaaba	70．	AA	054044	${ }^{10}$	－HaAAAAAA	803	AAAAAAAAA		60.	${ }^{\prime} \cdot{ }^{\prime \prime}$		
	803	AAAAAAAAAO			OS404s	$7{ }_{3}$	abasa			OS 80	sor	Ifata	Tos	AAAAAAAAAA
0 Cos 2008	tion	－－－abaaba	10．	asamamaial	054066	70	－	80	dabalt		s0s	AAAAAAAA		
	80.	ababababay			054047	10.	Tose	80	$1{ }^{1} \cdot$	03600	603	afabaa	70.	ata
052007	60.	casa	O	AAAABA	054048	10	－－－－－raAA	How	anat ${ }^{\text {ant }}$		Bos	AA：rm		
	803	AAAAAAAAB			054049	${ }^{10}$		${ }^{3} \mathrm{O} 3$	ensenatio	06800	${ }^{6}$	＇far	108	facamamaa
$\begin{aligned} & 052008 \\ & 052009 \end{aligned}$	${ }_{6}^{60}$	－bbobzaa：－	70	＇11－：17：	054052	70	ccamamaaa	${ }^{804}$	abat：${ }^{\text {a }}$		${ }^{80} 8$	aAaAaAAAA		
	60 s	AAAAAA	103	amabamak	054034	70s	－tamaf－	803	－．\cdot ．．．1	0380	708	cosaditi：－	803	
	${ }^{80}$	abrastrasm			05403s	${ }^{10}$		HO		Obso	S0．		10．	
0s2010	${ }^{603}$	－aAataa	29	abamamaaba	054058	70	－－ctete				${ }^{80}$			
	80	abamabatae			054057	70	ficibessa	803	mosmata	05	20：	cojabamata	803	
032011	SOH_{3}	－nAAAA	gon	abhamasama	O54058	${ }^{3}$	－＊tux			056012	${ }^{102}$	－AAAAAAARA	8 m	AA．$\cdots \cdot \cdot \cdot$
	${ }_{803} 8$	ababamjaan			054059	${ }^{70}$	dent	8_{083}	－－－－1．0	056013	${ }_{7}^{70}$	－－abamaba	${ }^{\text {\％}}$	AAAAAAAAL
052014	${ }^{603}$	＇tas	20	baaaceeet	054060	${ }^{72}$	cosones	803	tcte＇EA	056014	${ }^{208}$		${ }^{80}$	－®：＇
	803	＇rtmatat			054081	${ }^{3}$	T：Mm：m			056015	10.	－\cdot fataf	80	AA：1－－．
201	70．	－fabababai	80\％		054082	3o	－calcetal	803	a	056018	20，		H\％	د
032016	70	－facabacaa	803	ababsaat	054083	70	ax	${ }^{80}$						
$\begin{aligned} & 052017 \\ & 052020 \end{aligned}$	fos	硣	8 Br		054065	$7{ }^{1}$	faAFs A	${ }^{\text {Bon }}$	－－－\cdot	057001	36.	mref	43	
	603，		m	\＃ltasat	$\begin{aligned} & 054086 \\ & 054067 \end{aligned}$	$\begin{aligned} & 704 \\ & 7 \end{aligned}$	－isevana	$8{ }^{3}$	atab：II．		502	－madAbAAA AAAA…T：－	60	$\stackrel{\text { abrabsata }}{ }$
053001					054088	） 0 ，	mar			057002	30.	entasasa	40	atabatama
	50.	－－mataba	sor	A A	054089	\％					SOs	at $(x) A A B A A$	（6）${ }^{1}$	acasamasas
053002	\％ 0.	amababamaa	80，	${ }^{\text {¢ }}$	054070	70		6as			70.	abaali：＇t	80.	
	508	madasaa	from	Aasamala	054080	${ }^{10}$		$\left.{ }^{83}\right)$		05700	60	＊AA＾	20．	adalti： 1
	70.	atabamabaa	B0x	AAAmanat：	054081	os	¢9A	${ }^{80} 3$	atabab			1		
051003	30，		$4{ }^{2}$	iccsobor	054083	${ }^{3}$	c	${ }^{80}$	23	05700	${ }^{5} \mathrm{C}$		60	altamasasa
	50.	bersaAAA	5	ababacaa	05408	70		（\％），			70	anababab	90	amama
	70.	$\cdots 1711$	${ }^{802}$	1：－－－1＇1	054085	${ }^{10}$		${ }^{80} 0^{3}$	cosa－－－	Ob7005	${ }^{\prime \prime}$	mabaAAAAAA	${ }^{80} 3$	AAAAAAAAA
053004	50s	EA	608	fataiamabe	054086	${ }^{2} 1$	c	${ }^{\text {cas }}$	cess	057006	104	－A AAAAAAAAA	gis	Flabasa
	${ }^{103}$	AAAAAAAAAAA	${ }^{30}$	abasamabar	054087	${ }^{2}$		${ }_{\text {Pras }}$	Asme．－1	057007	70	－EaAamab	80.	atafacasa
053005	603	－tamamaaba	70：	amabababaa	054088	70		0^{001}	esocenata	057008	10，	－ 4 AAAAAA	Hos	amabamak
	${ }^{80}$	AAAAAAAAAI			034090	${ }^{70}$	coseris	${ }^{803}$	Pose	057009	70	－ababa	803	ababasama
053008	60.	－vasasasas	\％）	afasamasa	054091	${ }^{\text {ros }}$	－AJAA	${ }_{8} 8$	AAARa－T：	057010	${ }^{3}$	－ababa	604	tabamabat
	80\％	abacamaabl			054092	708	－${ }^{\text {a }}$ ababa	OOH	AAAso－1：－	057011	103	man	Hor	
053007	${ }^{603}$	－caacaaba	0．	AAAAA	054094	80s	cocecesas			057012	${ }^{208}$	－s，	803	
	Hos	AAAAAAAAAI			054095	Hor	NAn			057015	70．	${ }^{04}$	603	abacccara
053009	${ }_{901}^{60}$	－acanam	Os	Aa	054098	803				057016	10		\％	AAAAAAN．L
053009	$\begin{aligned} & 80 \mathrm{~s} \\ & 60 \mathrm{~s} \end{aligned}$	AAAAAAAAAE	$10 \times$	AAAAAAAAAA	055002	30，	tra	（ 3	AA	0s800		mAA	703	anamatakar
	$8{ }^{8}$	anabababa				508	abababiama	60,	analamabaa		30．	abamatat		
3013	m	AAAAAAAAAA	80，	AAAAAAAA		20	cicraamaa	80\％	abacieama	0580	10.	a atcb	cos	famoama
$\begin{aligned} & 053017 \\ & 053018 \end{aligned}$	70.	－－－fabaama	808	afmatama	055003	301		40．	abamababas	058003	tios	－rat＇l：：	20．	
	cos		70	AAAAAAAAA		50	AAAAAAAAAA	cos	amaramabaa		806			
	803	AAAAAAAAA				${ }^{10}$	asambaama	80x	At	0580	108	caAAAAAAAA	803	a Aadrajba
053019	${ }_{6} 0_{1}$	${ }^{\circ}$	70.	－320020）3	055004	303	－AA	${ }^{40}$	anabaanab	05800	${ }^{10}$	－caAAAAAAA	ar	facamama
	90					8；	AAAAAAABAA	（6）	abafasama	03800	10\％	eramamaba	B03	gamaabama
053020	60	－－－－s	$0 \cdot$	¢5enseas		$7{ }^{2}$	amabamataa	$8{ }^{2}$	［！F：：1：1	058008		－HAAAAAAAA	${ }^{3}$	framajaca
	$9{ }^{9} 1$				05500	3 Ca	${ }^{\text {ra }}$	${ }^{403}$	amatamaza	058009	70	－famabamaa	BO_{2}	abauabua
3022	10	－	${ }^{80} 8$			${ }^{56}$	AAABAA	60.	abatamaama	05801	102	$\cdots \times 1$	80，	ot ${ }^{\prime}$ ：\cdots
－053023	TO．	casf	80．	ababasabal		${ }^{76}$	＇t＇	$8{ }^{2}$	＇t＇	058011	70．	－ AAA $^{\text {a }}$	（8）	AAAAAAA
	10.		B03	AaAAAAAAAM	055008	${ }_{2} \mathrm{O}_{2}$	－－－－－－－cc	10.	－rccoccese．	058012	88_{3}			
O53023	${ }^{803}$	AAAAAAAAA，				2 Cs	cecceccces	304	ecccceamaa					
	10	－AA	80	AAAA		403	AAAAAAAAAA	50	abamabamas	90	$5{ }_{3}$	ma	60，	amabababaa
$\begin{aligned} & 083028 \\ & 053028 \end{aligned}$	${ }_{80}^{80}$	andata				${ }_{6}^{60}$	amamamaaba	70	ababababce		10．	$A t A t: A A A A A$	${ }^{8013}$	dacamaka
033029	${ }^{\text {a }}$					${ }_{8}^{80}$	ccerc：			059002	60.		10.	acberaanaa
					056007	30.	－－－－－aAa	45	amamamama		${ }_{\text {H }}$（\％）	acamamata		
034001	$\begin{aligned} & 206 \\ & 405 \end{aligned}$	$\begin{aligned} & \text { FCcesccc: } \\ & \text { cccccccccc } \end{aligned}$	$\begin{aligned} & 304 \\ & 502 \end{aligned}$	cccccectec ＝ccccecccc		$\begin{aligned} & 5 \mathrm{CO}_{1} \\ & \mathrm{O}_{2} \end{aligned}$	AAAAAAAAAA ミこccrcoccce	$\begin{aligned} & 60 \\ & 80 \\ & 80 \end{aligned}$	AAAFAAAAAA ：AACCCm，	060002			70．	
	CO_{3}	coccecccoc	70.	こCAAAABAAA	OS5008	502	OAAAACEJA	CO：	anamamilta	06002	80	tanuabama		bafababati
	8	AAAAAAAAA				\％	AAAAA JAAAA	\％\％	AAAAAAAAA	06000	$6{ }^{6}$	－－famaa	10．	clamaama
054002	304	fbat	40	ababaamabc	5500	458		50，	amabababa		His	amamamaa		
	503	clccraama	80\％	atamababa		cos	AAAFAAAAAA	103	AAET，\times＇t	06000	60		\％ 3	tabamama
	10	bcrababaaa	904	anamamaban		803	：1				${ }^{\text {®O\％}}$	AA ${ }^{\text {P }}$		
OSA004	503	＇caababa	\％	Aabalamata	501	${ }_{5} 5$	－${ }^{\text {atamab }}$	ω_{0}	anatana	00	${ }_{6}^{60}$		\％，	badamaacaa
	20．	BtFrbasat	80	ababhamat		时	abacasafa	Hon	＋H＋1\％		80.	anamabama		
OS4003	S04	－－icbabaa	60.	afabamama	OS501	50，	－－－－－－－－	60s	atabamasa	08000	son	${ }^{\text {fr }}$	70．	rabar
	70	abramabaia	${ }^{80}$	AAAAAAAAAE		39，	alabambata	${ }^{83}$	c．asfin＇		${ }^{80}$	abasamasa．		
054008	son	－－mbaaaa	60.	afacamaba	03501	6\％	－－－－－－raAa	ior	AAAAAAAFHA	06000	CO_{3}		703	atamatal
	108	bcbaaabiab	${ }^{80}$	AAAAAAAAAAC		${ }^{80}$	alamabata				${ }_{80}^{\mathrm{Mm}}$	AAAAAAAAD		
054007	$\xrightarrow{\text { cos }}$	bcciereanat	${ }_{80}^{60}$	AAAAAAAAAA AAAAE $\cdot \rightarrow A A_{0}$	OS501	8\％	－－－－－7AAAAAAAA	On	A	$\begin{aligned} & 060008 \\ & 060009 \end{aligned}$	${ }_{703}^{803}$	－－－lyanta ：CCCCEF：－：		
054008	30.	－${ }_{\text {－} A A A}$	（1）	AAAAAAAABA	035014	（2）	nata	103	afacaiamaa	060010	30	－－．－－－－－	COH_{3}	AAAAAAAAAA
	70	CCAAAAAAAA	$8{ }^{8}$	AAAAAAAAAO		tos	AAAAAAAAA				20：	anabazost－	Ba_{4}	－swasom
054010	som		CO_{3}	abacaakaba	O55015	603	－－－－AAA	TOS	atabamaal	000012	108	tababaatea	80	EET ${ }^{1}$
	70：	BCianaAaij）	$\mathrm{Hin}^{\text {a }}$	AADE III：		$\mathrm{HO}^{\text {chen }}$	taditl．			060013	102	－tyction	80.	
054011	co．	－abaabaiab	10．	ccbabsabab	055016	${ }_{604}^{604}$	－－－－－－nA	Or	FAAAAAA					
	Hos	afacit：				80	anamabas			6100		－－－－oafat	78	eanc．${ }^{\text {a }}$ ： $1:$
054012	${ }_{808}^{60}$	－AAAAAAAAB AAAAAAAAAE	\％	abaambbaa	035	80\％		\％	baaffacasa	061002	${ }_{80}^{80}$	\cdots	70．	afiauaa
054013	50	－－－－	605	afatamaab	055018	60	－－－－－－－－A	10.	atamaramal		${ }^{80}$	ataAafato		
	．tos	anbabobat	803	＂：＇：•		88	anabalama			061003 ．	60x		70	afababa
054014	${ }_{\substack{60 \\ 005}}$	－－IBAAAAAB	107	baacaamaak	5502	${ }_{601}^{60}$		10：	amamababas		${ }^{80} 8$	AAAAAAAFE		
	${ }^{0} \mathrm{O}$	abababamá				H\％	AAF－Faldas			081004	BOS	．．－ACAF	10	
054015	${ }^{60}$	\cdots	\％	lhfriasas	055022	${ }^{\text {sch }}$		10	alambasa		80，	easctact		
	RO：	AsAA ${ }^{\text {a }}$ It				BO_{3}	＂f＇ll＂							
054016	B0．	ofacasama	10	babamaaba	055023	303	－－－－－ta A	40，	anbabababa	08200	SO_{2}	－－¢	60.	AAAAAAAAAA
	${ }^{80} 1$	atabababa				${ }_{5} \mathrm{O}_{3}$	AAAAAAAAAA	603	achamabama		70．	fabasamaan	80.	amababama
054017	$0_{0} 0^{1}$	－－ataataaa	10．	baacamata		103	cccocccicc	${ }^{8} 1$	caamamaa	062002	20，	－manamat	80，	C¢：－－－＊
	${ }_{\text {cha }}$	AAAAP＂			053025	Bar	－－－－－1：	70s	facasamasa					
054018	${ }_{603}^{603}$	－AAAAAAA $A A A A!\cdots A A$	\％	AAAAAAAATA	055026	$\begin{aligned} & 804 \\ & 303 \end{aligned}$	AAAAAAAA	40.	abababaaba	00300	807 ECH_{3}	－AAAAAA tAAAAAAAA	\％	ababakama
054019	cos_{3}	－－ababata	10：	amabamaata		so，	abababamat	604	atafamama	083002	${ }_{60} 0$	－－－oagaa	70	atabasar
	${ }_{603}^{803}$	AAAAAAAAAO				${ }_{7}^{703}$	AAAAAAAAAA	${ }^{801}$	AAMAAAAA		${ }_{7} 80$	AAAAUT		
054020	${ }_{803}^{603}$	－${ }^{\text {a }}$ AAAAAAB ${ }^{\text {a }}$	70.	ababamakas	${ }^{055027}$ 055028	${ }_{7} 103$	obacaamet	${ }^{80}$	$\cdots \cdot: 1$	083003	$7{ }^{70}$	monatalat	HO_{3}	＇\quad＂
	${ }_{50}^{80}$	AAAAAAAAAT			055028 055029	$\xrightarrow{104}$	－nAAAAAAA	（0）${ }_{\text {cos }}$	ASAAAACAA	083004	80，	＂1：		
054022	$\xrightarrow{503}$	－－－nAEAALT agaahjacaa	$\begin{aligned} & 608 \\ & 605 \end{aligned}$	AAAAAAAAD	055029	408 603		$\xrightarrow{306}$	AAAAAAAAAA	084001	6C，	－fabatiab	70\％	Af：tetit
054023	bo		10.	bealityaaa		003	caamacaaa				${ }^{\text {B0，}}$	：uabasama		
	${ }^{0} 0$	AAAA ${ }^{\text {a }}$＇I＇			055030	20	－－licic	30.	ciesice：to	064002	601	－－－－－acta	10	bidmonaaa
054024	603	：11：－117	10：	atababakas		40	cuiciece：e	Sox			80.	abamamaba		
	$8{ }^{80}$	AAAAAAmen				602		10.	－－	084005	${ }^{\text {cor }}$	＇c：cesecce	\％${ }^{2}$	ctabamaa
054025	${ }_{603}{ }^{60}$	－－－－－－－－t	70．	abaamatala	055031	\％ 0	－＇lfacaasa	${ }_{\text {303 }}$	AAAAAAAAA		8 Cos	afasamasa		
054020	$80 \times$	amatana	108	－fatafacasa		203	cococcocec	30．	CCCCCCAAAA	085001	603	－${ }^{\text {ababaayaf }}$	\％ 0	feetataato
	80	AALA \cdot II＇				40.	AAAAAAASAA	Som	abasamabat		80.	amababasa		
054027	$\begin{aligned} & 60 \mathrm{~s} \\ & 80 \mathrm{~s} \end{aligned}$	－－－－－${ }_{\text {AAAC }}$	70.	－abamamam		$\begin{aligned} & 604 \\ & 800 \end{aligned}$	AAAAAAAAAA CAAAAAS： 10	10．	a A amababcc	$\begin{aligned} & 085002 \\ & 085004 \end{aligned}$	$\begin{aligned} & 6 O_{1} \\ & 103 \end{aligned}$	HEIAAAAAA	$\begin{gathered} 701 \\ \mathrm{HOH} \end{gathered}$	 AAAAAAAAA

Stn. ramber	Genged deity trows. mantily penke end raintall				Stn. murrber	Geuged deny fows. montoty panka and raintal				Stn rumber	Geuged dnity flowt. montity peeks and rountel			
065005	704	tamaaka	60\%	amababaaa	070005	20.		0,	-2000--*	073002	60	--- -AE:IT!	\%	: $: 11:--$
065006	30	-aAAA	80	AAAAAAMAA							${ }_{603}$			
085007	700	tfacaa	603	acaacapaa	071001	60	focooamana	70n	bcssbanaAa	078003	${ }_{800}^{600}$	- : : tt:tDAA mamaAaAa	70.	amatakatas
068001	503	----	605	amaamaabaa	071003	50:	-...---هAA	${ }^{6} 0$	anamamaama	078004	603	-1:cbeiata	70.	ababasabas
	702	amabaAacos	80.	c::!1!!		102	AAAEI-17t	83	'11		803	acamababa		
068002	60	-onbaacaac	10	taate	1004	600	ceataaa	10.	AEttagatab	0780	100		80.	atama
056003	S0\%	---1]	10.	:1: $:$ ceter	071003	${ }_{605}^{80}$	¢ \triangle AAAAAAA	10.	ane					
	$8{ }^{2}$	AADIt:m		\%ritar		803				079001	00.	- t:rtв8¢	10n	Hcocrocos
086004	10.	- amabatit	30	11:---:!	071006	con		102	crocamaaa		${ }^{10} 5$			
068005	70.	eafacaili	800	: A -.- 't"		803	oaacaakat			079002	50.	AMAAAA	COH^{2}	AAAAAMAAAA
0 ccos	10	-fanaaa	don	amabacaba	071008	80	1::				${ }^{704}$	AAAAAAAAAA	800	AAAMAAAAA
Oseol:	203	-me	800	domedata	071009	${ }^{70}$		Son	taAABAaA:	079003	50.		${ }^{60 \%}$	AAAAAAAAAA
	cos	Cefera	10:	alfatamaaa	071009	${ }^{80}$	cala				703	acabatacal	${ }^{806}$	AaAAAAAAA
	80,	anaabalaba			071010	10	-	${ }^{80}$	tamaAate	078004	80	-ticaamaa	704	acamakasal
						60		70			${ }^{80}$	a		
087001	503	-AA	602	aAAAAAAA		${ }^{80}$	earamiane			079005	${ }^{6} 0$	-timataka	70	abamatabaa
	70	abacaamata	808	aAACccand	071013	${ }^{608}$	-------m				${ }_{500} 8$	ataamataa		
067002	308		403	ahamakamaa	0710	709		-03	-4000	9008	$\begin{aligned} & 602 \\ & 80 \% \end{aligned}$	-TI:ITIEAA mamakaAak	70	atabaa
	70	Altit-:11			072001	SO3	-------	60.	лсcccecbec					
067003	203	--atapasaa	301	AaAAAAA		10	CAAAABIIt	-0,		080001	${ }^{8} 0$	- heamaaka	70.	amamabasab
	20\%	atababaaka	506	abamatamaa	072002	603	---qaacaaa	0	a Aabccaaa		00	atabata		
	603	aaabaataat	70.	albabicaaa		${ }^{80}$	Aasaatapa			080002	700	-dat	© 0	atabaten
	803	anatfacaa				50	-.....	60.	eccccccceb	030003	${ }^{0} 0$	वевоеавA		
067003	Son	-::1caaa	603	atamaamaka		70.	ccececill	${ }^{800}$	-maAAAAA	0800005	-	--		
	206	ataacaat:	${ }^{80}$	IT-1"	072005	${ }^{60}$	----..----	10	cceccerat	280005	${ }^{000}$	----cota		
067000	$\begin{aligned} & 602 \\ & 806 \end{aligned}$	maAaAAAAAA aAaAAAAAA	70.	bacasamaka	072008	${ }_{600}^{600}$	tacamadal	10	111:11"	$\begin{aligned} & 080008 \\ & 080007 \end{aligned}$	${ }_{805}$	-		
087008	60	--tbaaa	103	ababaama		803	:11							
	806	abaabaaca			07	${ }^{80}$	-A:A			081001	${ }_{60}^{60}$	-----¢080-	700	
067003	60	-tt	704	brbarfafaab	07200	${ }^{60}$		106	CA	081002	${ }^{604}$: HEAAAAAA	10	amamatasas
087010	60	Brbocosed	70	abababill!	072009	10.	ttt:!:!	80	tamaarat	08100	60.	-:tttrasa	is	aparamaa
	803	"t t :			072011	603		105	-Ef		303	afacaataa		
067011	60,		700	octreect		${ }^{80}$	toafeatal			0810	${ }^{20}$	daA	801	anamatama
	SOS	* 1			072015	${ }^{80}$	-eot			${ }_{0} 0810$	${ }_{80}^{80}$			
067012 087013	${ }_{600}^{60}$		$\begin{aligned} & 70_{3} \\ & \hline \end{aligned}$	t:r::1-11:	101	80	-1			0 ¢1006				
	BO_{1}	11			073001	10.	tcecect:-	80		022001	606	- :ieatamat	10.	amaakabat
067015	303	eAA	403	atacaataat	073002	${ }^{604}$	---EAAAADA	70	bobcasaaka		${ }^{80}$	AAAAAAAA		
	50,	abababasaa	60	ataAAAAAA		${ }^{30}$	ataAAAAA			O42002	700	-..ecaapaa	son^{2}	atas
	10	ataamatapa	80	AAAAAAAAA	073003	${ }^{20}$	-		geamacan	0820	70.	amaktá	808	amachata
2016	${ }_{800}$	-tal	200	:::		$\begin{aligned} & 606 \\ & 805 \end{aligned}$		102	88				70.	-farfry
-687017	603	--18	10	acamakataa	3008	60.		On	ametamatt:		80	\%		
	BO	anamatace				803	:AAAAAAAA			30	606	-AAAA	106	anabatat -
067	60	- ${ }^{\text {IF }}$	10	anaat	073009	10	::!til"	80	tanaanama		${ }^{80}$			
	${ }_{\text {gon }}$	AAAAAAAAA			07301	30.	CCCCACCCCC		ccccccecce Ccccecccc	033003	${ }_{803}^{603}$	-1•1::::t!	10.	eataatasaa
$\begin{aligned} & 067025 \\ & 087028 \\ & 087028 \end{aligned}$	102	1	$\begin{aligned} & 806 \\ & 80 \\ & 80 \end{aligned}$	sAAAEIII eCCCCC		${ }_{30}^{30}$	ссссвссссС свввсССААА	802	сccceccccc	083004	${ }_{706}^{80}$	- teanahana	BOS	abaamabaa
	10	. 0	80		07301	70	нccecc:alt	BO_{3}	tamateat	08300	70	--fanamaA	B0\%	atakabaka
068001	305	eat	402	AABCP8AB8B						083008	${ }^{80}$	nesoeso		
	50	baamamama	CO_{3}	asabasafat	0	60	-...----¢¢	20.	CCO	083009	203		sO_{2}	-sosiata
	10.	atamagabat	$\mathrm{BO}^{\text {S }}$	fabasamaa		${ }^{80}$	amababaka			0830	${ }^{10}$		cos	нessaAA
068002	403	-	503	ARAAAAAMA	074002	606	-re8	10	aAAAAB8ada					
	${ }_{80}^{60}$	AAAAAAAEAA	10.	ababatl:-		$\begin{aligned} & 804 \\ & 70_{4} \end{aligned}$	AAAAAAAAA $---t A C A A A$		atamatana	084001	60	AAAAAAAAAA	$\begin{aligned} & 50_{3} \\ & 703 \end{aligned}$	eEEBRarffa AAAAAAAAAA
088003	40	It 17	504	ababaabaa	074003	10\%	----batana	${ }_{00} 0$	AMAAAARAA		Q0:	AMAAAAAAA		
	608	aramamafat	tor	ababaEt \cdots :	074006	cos_{5}	- Cc ¢ CC	10.	ccr begaat	08402	50	--at:EAESE	cos_{3}	AAFta
	80	10AAAAAAA				88	abbanamaa		abababaca	08000		anetienti		
088004		--Masarabar.	CO_{5}	taAAAAA:1	074008	70:	硣	906	- Dosesea		ic,	AAAAAAAAAA	80	asabamasa
088005	30.	---aAAAAA	B03	ababyafaa						08400	Son	--AA	60,	AAAAAAAAAA
	20	anamafthat	803	afababat	075001	308	-it'raf.	403	- iti:caAaA		103	alamabaAAA	${ }^{80}$	AAAAAAAAA
088008	Sor	---vabaaa	603	asabamat		${ }^{30}$	$\triangle A A A A A A A A$	63	AAABAAAAE	SAOS	${ }^{50}$		${ }^{60,}$	AAAAAAAAAA
	70	AAAAAFFIT:	${ }^{60} 3$	iftabl::		708	ctiamatama	80.	AAAAAAAAA		70.	AAAAAAAAA	${ }_{703}^{803}$	AAAAAAAAA
08800	800	--EAAAAAAA	0	Aabastaa	500	801 905	 AAAAAAEAA	104	anamamas		${ }_{80}{ }^{6}$	AAAC ${ }^{\text {a }}$		
088010	70	---:1tr:	©0\%	-----!	5003	601		103	bacrama	8400	$6{ }_{6}$	----rata	70.	ba
	SO3	- asasat $^{\text {a }}$				${ }^{808}$	AaAbamata				${ }_{60}^{80}$	AAAAABDO		
$\begin{aligned} & 068018 \\ & 008020 \end{aligned}$	20				075004	${ }^{600}$	---.---'BA	\%	AAA	0ca00s	${ }_{80}^{60}$	------nAAA	70.	4
	80.	A				${ }^{80} 10$	AAAAAAAA		AAABA	024009	CO_{3}	atamabat	70	atanasalata
009001	308		403	ярнзнания	075008	60.	---\----*A	70,	AAAAAMAAAA		${ }_{\text {HOS }}$	alaf:c.fa		ahamataka
	50.	AAAAAAAABA	603	gaamamabe		80	------. ${ }^{\text {a }}$			034011	cos_{3}	---AAAAAA	104	A
	100	amabababa:	803	'AAAncas	5001	${ }^{60}$		10:	atamamata.		${ }_{6}^{802}$	AAAAAAAAA	10.	anamama
069002	${ }_{60}^{40}$	--̈AAabatáa	502	AAAAAAAAAAA Afta-AAAA	075009		--Aabrbaak	80.	ababasasa	Sa	80.	AAAAAAAA	10	amamataraa
	80	abacabaá			075016	3	--090	80.	AaAbaamas	840	CO_{3}	---acaacaa	10.	aAAAAAAAAA
089003	301	ef.	400	…:miti	075017	803	-aAasa				${ }^{800}$	aracharab		
	50,	abasababa	cos	ahamatafat						4014	${ }^{60}$	--acaaka	03	asAAAAAAAA
	101	ataje:afay	$8{ }^{80}$	AAAAAAAII	070001	50.	--:	${ }_{80}^{80}$	cangakaraa	080015	800 60.	CAAAAAAA	70	aramaatam
069004	CO_{2}	amaakamat	10	marccceccec	078002	30	----itbsa	70.	atgabrcaal		nor	anamamaa		
	803	cc:t				006	AbAAAAAAA			084016	603	-rit	10	aAaAabbaAa
069005	50	--*AEAAA	000	atacamafat	076003	${ }^{60}$	-apamaamea	70	aqamamaraa		${ }^{803}$	atakataa		
069006	103 504	atacamefa	803	faAC::	07800	${ }_{603}^{60}$	AgoaAABAI	70.	agalama:aa	084017	${ }_{80}^{80}$	-------EAA	70.	\wedge
	\%	dateamana	803	AAAAAAAAA		CO_{2}	-acapaaka		aracaatata	08401	603		103	amakamaar
009007	108	.1711t:	8	:AAAAAAA:	078005	603	----AAB8A	70.	asambebaan		${ }^{003}$	AMAAAAAAA		
069011	${ }^{80}$:!:1met:				${ }_{8}^{80}$	AAMAAAAA	70		084019	${ }_{803}^{603}$	--AAAAAAA	10	abacasaaka
009012	${ }_{803}^{802}$: $: 1-\mathrm{H}-\mathrm{O}$			0760	${ }_{808}^{602}$	---7AAAAAAA	10.	askarama	084020	${ }_{60} 0^{4}$	-------aE	70.	auaamoatac
06901	88	n-all!			076003	60	-AA	70.	easameetal		808	AAAAAAAAA		
	${ }^{102}$	Aff	$8{ }^{80}$	AAAAAAAAA		${ }_{80}^{80}$:AAAAAAAA			0802021	${ }_{60} 8$		700 108	
049017 065018	${ }^{108}$		18	laAAAAAA:		608 803	ibabasala	704	basakatit		${ }_{000}^{60}$	------6tet		
	803	It	10	(117\%-11	078010	${ }^{60}$		70	tama	. 64023	10	---taamafa	© 0	amaaamaa
069019	604		10.	-5asescto		${ }^{80}$	taAAAAAAA			084024	70	--baAakate	${ }^{00} 1$	AaEAAABHA
	80\%	neo--t:			076011	${ }^{50}$	ecc	70.	critcscees	084025	70	---lacaag	${ }^{80}$	ABAAAAAAA
065020	70	------AaAa	80%	AaAAAAAAA		$8{ }^{8}$	cececoatar			084028	702	--accos	${ }^{308}$	amnatat
- 0×023	70	-fa	80	1AAAAACse	076014	70:	-taAAAAATI	80\%	:aAAAAAAA	084027	${ }^{60}$	-------¢	10.	\%sf
O5S024065027	808	: AAAAACos			078015	70.	faabamaaa	${ }^{80} 2$	abaAadaak		803	+0000		
	70	- ${ }^{\text {: }}$	80	iamakama:						084028	70	-----6men	80	305nems
$\begin{aligned} & 085030 \\ & 069031 \end{aligned}$	708	--:0A	80%	AAAAAAS	077001	${ }^{60}$	---dateac	70.	ceidamaaal	084029	702	-----	808	ת-matata
	803.	-				${ }^{603}$	taAAAAAA			034030	80	cos		
$\begin{aligned} & 065032 \\ & 069034 \end{aligned}$	70,	--------A	803	anacaa	071002	${ }^{60}$	-thccoamal	103	aramana					
	80	-1'		a ${ }^{\text {a }}$	70	${ }^{80}$	AAAAAAAA			085001		---AAAAAAA	10\%	A
$\begin{aligned} & 089035 \\ & 069037 \end{aligned}$	80	ICCr			077004 077005	703		${ }_{80}^{80}$	-atamataa	085002	${ }_{80}^{60}$	-iteataka	108	amaamakaak
O65040	80	---2800			077005	10:			---areata	035003	803	Aatabitak	70	fatameatef
070002	803	bacbaama:			078001	50	--------*A	60\%	AEti:----		${ }^{80}$	amacasama		
$\begin{aligned} & 070003 \\ & 070004 \end{aligned}$	102 102	${ }_{\text {A A A }}$	800	---800		70		80	IIt	0350	10:	------	802	asos-4

Summary of Archived Data-2

Naturalised daily and monthly flows

KEY:
Complete daily and complete monthly
Partial daily and complete monthly
Partial daily and partial monthly
Partial daily and no monthly
No daily and complete monthly
No daily and partial monthly
No naturalised flow data

Stn
numb
0

GROUNDWATER LEVEL DATA

Background

Groundwater may be obtained from almost any stratum in the sedimentary succession in the British Isles, as well as from igneous and metamorphic rocks. In many, such as clays and shales, volcanics and metamorphics, the permeable zone may well be limited to the depth to which weathering may reach, this is unlikely to be more than some 50 metres beneath the ground surface. In those strata which are not generally recognised to be aquifers, well-yields tend to be small (of the order of only a few cubic metres per day), uncertain as a continuous source (tending to fail in prolonged droughts), with an indifferent groundwater quality, and with the sources vulnerable to pollution.

The more generally recognised aquifers are listed in Table 8, with the Chalk and Upper Greensand, the Lincolnshire Limestone and the Permo-Triassic sandstones as the most important from the viewpoint of public supply. From such aquifers as these, yields of 3000 to 4500 cubic metres a day are not unusual. For the next category, including the Lower Greensand and the Magnesian Limestone, yields to individual wells of 1500 to 3000 cubic metres a day can generally be expected. In the other aquifers, whilst occasional sources sufficient for large supplies may be developed, they tend to be important only locally. The outcrop areas of the major aquifers are shown in Figure 14; throughout Wales, Scotland and Northern Ireland, aquifers are less extensively developed and tend to be only of relatively local importance.

The groundwater resources of an aquifer are naturally replenished from rainfall. During the summer months, when the potential evapotranspiration is high and soil moisture deficits are appreciable, little infiltration takes place. There is a notable exception to this rule in the Eden valley of Cumbria where, enclosed between the massifs of Cross Fell and the Lake District, sufficiently heavy and continuous summer rainfall occurs to maintain infiltration through part at least of most summers. The normal recharge of an aquifer takes place during the winter months when the potential evapotranspiration is low and soil moisture deficits are negligible.

There are few artificial reservoirs in the United Kingdom which are sufficiently large to support demands through the driest summers, assuming that they were full at the start of the summer, without some continuous contributions from river intakes. Prolonged dry spells lead in many rivers to reduced flow, particularly where the natural groundwater contribution (baseflow) is limited. Consequently, while surface water droughts may be in part due to the failure of runoff from winter rainfall to fill the reservoirs, they are more frequently caused by a decrease in the summer flows of streams and rivers. Surface water droughts do, however, lead to increased consumption of groundwater (where avail-
able). By way of contrast, a groundwater drought is caused by a lack of winter rainfall. Potentially, the most serious droughts occur when, as in 1975/76, a dry summer succeeds a notably dry winter.

The Observation Borehole Network

Groundwater level observation wells (in this context, a well includes both shafts - constructed by hand digging - and boreholes - constructed by machinery) are generally used for one of two purposes: to monitor levels regionally and thus to estimate groundwater resource fluctuations, or to monitor the effects locally of groundwater abstractions. The number of observation wells required in different areas varies widely. Over the last two decades, a target density was sought of one well to 25 to $35 \mathrm{~km}^{2}$. During the last few years, it has become apparent in some districts that satisfactory information can be obtained with fewer wells, while in others the densities had to be substantially increased.

The observation well network was reviewed in 1981 by the British Geological Survey (then the Institute of Geological Sciences) with the aim of selecting 200 to 300 sites from the existing Water Data Unit archive, to be used for periodical assessments of the national groundwater situation. The selection was based upon the hydrogeological units identified in an investigation of the groundwater resources of the United Kingdom ${ }^{1}$; one site was chosen for each aquifer present within each unit. For Scotland and for Northern Ireland this was not possible due to the very limited number of observation wells available. In England and Wales, the total number finally selected was 175^{2}.

Details of the wells in this national network are given in the Register of Selected Groundwater Observation Wells (see page 172).

Measurement and Recording of Groundwater Levels

The majority of observation wells are measured manually either weekly or monthly. The usual instrument is an electric probe suspended upon a graduated cable or tape, contact being made by the water to complete a circuit which gives either an audible or visual signal at the surface. Measurements are normally made to the nearest 10 millimetres, although instruments may be accurate to 1 millimetre.

Some observation wells are equipped with continuous water level recorders, almost invariably activated by a float on the water surface. These recorders may be driven by clockwork or by electric battery power, and are capable of running unattended for periods of one to six months. Levels are usually recorded on paper charts or on punched

TABLE 8 GENERALISED LIST OF AQUIFERS IN THE UNITED KINGDOM

Suaternary		Sussuter

Figure 14. Principal aquifers and representative borehole locations.
paper tapes, but a number of solid state loggers have been deployed in recent years.

At a relatively small but increasing number of observation boreholes provision is made for the routine transmission - usually by telephone line - of groundwater levels to local, or regional, centres.

Pressure transducers have also been considered for water level measurement. However, available transducers will measure accurately over only a narrow range of fluctuation (up to 2 to 3 metres), or much less accurately over a wide range. They are being used more frequently but are still not yet in general use.

Observation Well Hydrographs 1985-88

Well hydrographs for 18 observation sites are shown in Figure 15. For all boreholes except Trafalgar Square (Fig. 15a), where the historical data are unrepresentative of current conditions (see page 171), the 1985 to 1988 groundwater hydrographs are illustrated together with the average and extreme monthly levels for the pre-1988 record (provided sufficient historical data are available). A break in the well hydrograph trace indicates a recording interval of greater than eight weeks; where intermittent, or very infrequent, level records extend over a substantial period the trace is shown as a broken line. Four-year plots have been used because the volume of groundwater stored in aquifers can reflect not only the infiltration taking place during the winter months of $1987 / 88$, but also that occurring in previous years. When comparing the hydrographs for a number of sites, account should be taken of the differing scales used to illustrate the water table fluctuations. The behaviour of several wells is influenced by local, or regional, pumping for water supply or for other purposes. For instance, the levels at the Eastwick Farm site demonstrate a regional decline while those at Rushyford now stand some 10 metres higher than a decade ago (due partly to a rundown of the coal industry and the consequent cessation of continuous pumping for mine dewatering).

Register of Selected Groundwater Observation Wells

Scope

The listed sites were selected so as to give a reasonably representative cover for aquifers throughout England and Wales. The wells are grouped according to the aquifer to which the water level variations in the wells are attributed. A generalised list of aquifers is given on page 162. While the aquifers are tabulated in stratigraphical order, most of the local names for individual strata are omitted and the intervening aquicludes are not shown.

Network Changes

Since the original selection of boreholes for incorporation in the national network a number of changes have been made to the list of selected wells. At some locations, observations could no longer be continued, and new sites have been added from time to time. In the Coal Measures and the Millstone Grit, certain sites have not been monitored for some years due to the presence of methane in the wells; these sites have been discarded until either they have been made safe or have been replaced. Details of the wells in the national network are given in the Register of Selected Groundwater Observation Wells (see page 170).

The following site has been added to the Register:

Millstone Grit

SE02/46 Thrum Hall
The following sites have been deleted from the Register:

Chalk and Upper Greensand
TF74/1A Choseley Farm
TL66/2. Hall Farm

Middle furassic

SJ89/32 Westonbirt School

Magnesian Limestone

NZ33/20 .Garmondsway

Millstone Grit

SD92/8 Horsehold Farm

The Register - data items

The six columns of the register are:

Well Number

The well numbering system is based on the National Grid. Each 100 kilometres square is designated by prefix characters, e.g. SE, and is divided into 100 squares of 10 kilometre sides designated by numbers 00 (in the south-west corner to 99 (in the north-east corner). Thus, the site SE93/4, is located in the 10 kilometre square SE93, while the number after the solidus denotes that the site is the fourth accessed in this square into the National Well Record collection. A suffix such as A, B, etc., defines the particular well
when there are several at the same site. For Northern Ireland, which is on the Irish Grid, the first of the prefix characters is always ' I '.

Two asterisks following the well number indicates a well or borehole for which hydrographs are shown on pages 166 to 171 . The location of the index wells, and the outcrop areas of the principal aquifers, are shown on Figure 14.

Grid Reference

The six or eight figure references given in the register relate to the 100 kilometre National (or Irish) Grid square designated by the preceding two figure code (shown in italics when referring to the Irish Grid); the corresponding two-letter code appears as the prefix characters in the Well Number.

Site

The name by which the well or borehole is normally referenced. The location of all the sites listed in the register are shown on Figure 14.

Measuring Authority

An abbreviation referencing the organisation responsible for groundwater level measurement. A full list of codes, together with the corresponding names and addresses appears on pages 188 to 190.

Records Commence

The first year for which records are held for the groundwater archive.

Indicated \% Annual Recharge

The difference between the level measured at the end of the summer recession and that measured at the beginning of the summer recession in the following year; expressed as a percentage of the mean fluctuation. Details of the method of calculation are given in the Hydrometric Register and Statistics 1981-85 (see page 191).

References

1. Monkhouse, R.A. and Richards, H.J. 1983. Groundwater resources of the United Kingdom. Commission of the European Communities, pub. Th. Schaeffer Druckerei GmbH, Hannover, 252 pages.
2. Monkhouse, R.A. and Murti, P.K. 1981. The rationalisation of groundwater observation well networks in England and Wales. Institute of Geological Sciences, Report No WD/81/1, 18 pages.

Figure 15. Hydrographs of groundwater level fluctuations

Figure 15-(continued)

Figure 15-(continued)

Figure 15-(continued)

Figure 15-(continued)
Site name: Rushyford North East
National grid reference: NZ 28752896
Aquifer: Magnesian Limestone

Figure 15(a) Annual mean groundwater levels in the National Gallery (Trafalgar Sq.) borehole 1953-88.

Well Number	Grid Reference	Site	Measuring Authority	Records Commence	Indicated \% Annual Recharge
Aquifer: Superficial Deposits					
IJ28/1	33225862	Dunadry	GSNI	1985	64
SO44/4	3246834253	Stretton Sugwas	NRA-WEL	1973	---

Aquifer : Chalk and Upper Greensand

ID30/1**	34368030	Killyglen	GSNI	1985	129
SE93/4	4492123634	- Dale Plantation	NRA-Y	1970	90
SE94/5**	4496514530	Dalton Holme	NRA-Y	1889	120
SE97/31	4493457079	Green Lane	NRA-Y	1972	124
SP90/26	4294700875	Champneys	NRA-T	1962	169
SP91/59	4293801570	Pitstone Green Farm	NRA-A	1970	75
ST30/7	3137630667	Lime Kiln Way	NRA-SW	1969	73
SU01/5B	4101601946	Woodyates	NRA-W	1942	120
SU04/2	4103104883	Tilshead	NRA-W	1966	110
SU17/57**	4116557174	Rockley	NRA-T	1933	118
SU32/3	4138172743	Bailey's Down Farm	NRA-S	1963	123
SU35/14	4133155645	Woodside	NRA-S	1963	147
SU51/10	4158751655	Hill Place Farm	NRA-S	1965	102
SU53/94	4155863498	Abbotstone	NRA-S	1976	67
SU57/159	4156287530	Calversleys Farm	NRA-T	1973	123
SU61/32	4165781775	Chidden Farm	NRA-S	1958	111
SU61/46	4168901532	Hinton Manor	NRA-S	1953	138
SU64/28	4163604049	Lower Wield Farm	NRA-S	1958	130
SU68/49	4164428525	Well Place Farm	NRA-T	1976	145
SU71/23**	4177551490	Compton House	NRA-S	1893	144
SU73/8	4170483491	Faringdon Station	NRA-T	1961	127
SU78/45A	4174198924	Stonor Park	NRA-T	1961.	90
SU81/1	4183561440	Chilgrove House	NRA-S	1836	69
SU87/1	4183367885	Farm Cottage, Coldharbour	NRA-T	1950	110
SU89/7	4181039417	Piddington	NRA-T	1966	124
SY68/34	30662881	Ashton Farm	NRA-W	1977	107
TA06/16	5404906120	Nafferton	NRA-Y	1964	88
TA07/28	5409407740	Hunmanby Hall	NRA-Y	1976	96
TA10/40	54.13750885	Little Brocklesby	NRA-A	1926	102
TA21/14	5426701890	Church Farm	NRA-Y	1971	148
TF72/11	5377102330	Off Farm	NRA-A	1971	138
TF80/33	5387380526	Houghton Common	NRA-A	1971	80
TF81/2A**	5381381960	Washpit Farm	NRA-A	1950	179
TF92/5	5398692183	Tower Hills P.S.	NRA-A	1977	119
TF94/1	5391604135	Cuckoo Lodge	NRA-A	1952	160
TG00/92	6304400020	High Elm Farm, Deopham	NRA-A	1971	90
TG03/25B	6303823583	The Hall, Brinton	NRA-A	1952	81
TG11/5	6316911101	The Spinney, Costessey	NRA-A	1952	127
TG12/7	6311262722	Heydon Pumping Station	NRA-A	1974	107
TG21/9	6324001657	Frettenham Depot	NRA-A	1952	100
TG21/10	6326991140	Grange Farm	NRA-A	1952	
TG23/21	6329323101	Melbourne House	NRA-A	1974	90
TG31/20	6333651606	Woodbastwick	NRA-A	1974	141
TG32/16	6337002682	Brumstead Hall	NRA-A	1978	141
TL11/4	5215601555	Mackerye End House	NRA-T	1960	171
TL11/9	5216921965	The Holt	NRA-T	1964	
TL13/24	5212003026	West Hitchin	NRA-A	1970	
TL22/10	5229782433	Box Hall	NRA-T	1964	178

Well Number	Grid Reference	Site	Measuring Authority	Records Commence	Indicated \% Annual Recharge
TL33/4**	5233303720	Therfield Rectory	NRA-T	1883	---
TL42/6	5245362676	Hixham Hall	NRA-T	1964	159
TL42/8	5246692955	Berden Hall	NRA-T	1964	135
TL44/12	5245224182	Redlands Hall	NRA-T	1964	---
TL72/54	5279822516	Rectory Road	NRA-A	1968	---
TL84/6	5284654106	Smeetham Cottages, Bulmer	NRA-A	1963	124
TL86/110	5288506470	Cattishall Farm	NRA-A	1969	147
TL89/37	5281319001	Grimes Graves	NRA-A	1971	99
TL92/1	5296572562	Lexden Pumping Station	NRA-A	1961	---
TM15/112	6212015618	Dial Farm	NRA-A	1968	141
TM26/46	6224616109	Fairfields	NRA-A	197	488
TM26/95	6227866397	Strawberry Hill	NRA-A	1974	118
TQ01/133	5108501170	Chantry Post, Sullington	NRA-S	1977	105
TQ21/11	5128501289	Old Rectory, Pyecombe	NRA-S	1958	126
TQ28/119B	5129968051	Trafalgar Square	NRA-T	1845	---
TQ31/50	5132201180	North Bottom	.NRA-S	1979	145
TQ35/5	5133635924	Rose \& Crown	NRA-T	1876	61
TQ38/9A	5135098536	Hackney Public Baths	NRA-T.	1953	---
TQ50/7	. 5155920380	Old Rectory, Folkington	NRA-S	1965	---
TQ56/19	5156486124	West Kingsdown	NRA-T	1961	---
TQ57/118	5158807943	Thurrock Al3	NRA-A	1979	124
TQ58/2B	5156228408	Bush Pit Farm	NRA-T	1967	121
TQ66/48**	5166496873	Owletts	NRA-S	1968	---
TQ86/44	5185956092	Little Pett Farm	NRA-S	1982	133
T'Q99/11	51947971	Burnham	NRA-A	1975	---
TR05/11	6101425874	Portway House, Faversham	NRA-S	1964	---
TR14/9	6112254690	Little Bucket Farm	NRA-S	1971	163
TR14/50	6112654167	Glebe Cottage	NRA-S	1970	---
TR34/81	6131734725	Church Farm	NRA-S	1971	---
TR35/49	6133305090	Cross Manor Cottages	NRA-S	1971	. 83
TR36/62	6132086634	Alland Grange	NRA-S	1969	144
TV59/7C	5052909920	Westdean 3	NRA-S	1904	86
Aquifer : Lower Greensand					
SU82/57	4188882505	Madam's Farm	NRA-S	1984	
SLi84/8A	4187164087	Tilford Pumping Station	NRA-T	1971	
TL45/19	5241105204	River Farm	NRA-A	1973	
TQ41/82	5143701320	Lower Barn Cottages	NRA-S	1975	---
TR13/21	6111323881	Ashley House	NRA-S	1972	---
Aquifer : Hastings Beds					
TQ22/1	. 5123482770	The Bungalow	NRA-S	1964	117
TQ32/19	5137602890	Horsted Keynes	NRA-S	1968	56
TQ42/80A	5147252990	Kingstanding	NRA-S	1979	37
TQ61/44	5166581803	Dallington Herrings	NRA-S	1964	---
TQ62/99	5161992282	Whiteoaks	NRA-S	1978	---
TQ71/123	5179691659	Red House	NRA-S	1974	78
Aquifer : Upper Jurassic					
SE68/16	4468908590	Kirkbymoorside	NRA-Y	1973	108
SE77/76	4476907300	Broughton	NRA-Y	1975	99
SE98/8	4499108540	Seavegate Farm	NRA-Y	1971	87
SU49/40B	4141179307	East Hanney	NRA-T	1978	140

Well Number	Grid Reference	Site	Measuring Authority	Records Commence	Indicated \% Annual Recharge
Aquifer : Middle Jurassic					
SP00/62**	4205950190	Ampney Crucis	NRA-T	1958	98
SP20/113	4227210634	Alvescot Road	NRA-T	1975	65
ST51/57	31591169	Over Compton	NRA-W	1971	110
ST88/62A	3182758743	Didmarton 1	NRA-W	1977	120
Aquifer : Lincolnshire Limestone					
SK97/25	4398007817	Grange de Lings	NRA-A	1975	76
TF03/37**	5308853034	New Red Lion	NRA-A	1964	91
TF04/14	5304294273	Silk Willoughby	NRA-A	1972	77

Aquifer : Permo-Triassic sandstones

1J26/1	33291694	Dunmurry	GSNI	1985	113
NX97/1**	2596677432	Redbank	DGRW	1981	109
NY00/328	3505110247	Brownbank Layby	NRA-NW	1974	158
NY45/16	3549475667	Corby Hill	NRA-NW	1977	---
NY63/2**	3561303250	Skirwith	NRA-NW	1978	130
NZ41/34	4548611835	Northern Dairies	NRA-N	1974	91
SD27/8	4321727171	Furness Abbey	NRA-NW	1972	72
SD41/32	4344001164	Yew Tree Farm	NRA-NW	1971	77
SD44/15	4343964928	Moss Edge Farm	NRA-NW	1961	---
SE36/47	4439456575	Kelly's Cafe	NRA-Y	1977	123
SE39/20B	4430049244	Scruton Village	NRA-Y	1969	151
SE45/3	4444705580	Cattal Maltings	NRA-Y	1969	75
SE52/4	4454732363	Southfield Lane	NRA-Y	195	559
SE54/32A	4455324646	Bilborough	NRA-Y	1984	100
SE55/4	4458295383	Clifton Hospital	NRA-Y	1967	118
SE60/76**	4467840709	Woodhouse Grange	NRA-ST	1980	120
SE64/1	4467514463	Wheldrake Station	NRA-Y	1971	191
SE72/3B	4470472149	Rawcliffe Bridge	NRA-Y	1971	---
SE83/9	4480403640	Holme on Spalding Moor	NRA-Y	1972	---
SJ15/15	3313745556	Llanfair D.C.	NRA-WEL	1972	---
SJ33/38	3338093112	Hordley Wharf	NRA-ST	1975	---
SJ33/39**	3338143831	Eastwick Farm	NRA-WEL	1974	124
SJ56/45E	3350426953	Ashton 4	NRA-NW	1969	---
SJ83/1A	3389693474	Stone	NRA-ST	1974	118
SJ87/32**	3389697598	Dale Brow	NRA-NW	1973	---
SJ88/93	3386118645	Bruntwood Hall	NRA-NW	1972	---
SJ96/41	3393106301	Rushton Spencer 1	NRA-NW	1969	---
SK00/41	43067012	Nuttal's Farm	NRA-ST	. 1974	75
SK21/111	4327311419	Grange Wood	NRA-ST	1967	79
SK24/22	4325394431	Burtonshuts Farm	NRA-ST	1972	71.
SK56/53	4356326440	Peafield Lane	NRA-ST	1969	--
SK73/50	4376933228	Woodland Farm	NRA-ST	1980	---
SO71/18	3271701970	Stores Cottage	NRA-ST	1973	77
SO87/28	3281607970	Hillfields	NRA-ST	1961	90
ST12/48	31108267	Milverton Bypass	NRA-W	1972	---
SX99/37B**	2095289872	Bussels 7A	SWWA	1972	92
SY09/21A	3006669235	Heathlands	SWWA	1951	109

Well Number	Grid Reference	Site	Measuring Authority	Records Commence	Indicated \% Annual Recharge
Aquifer : Magnesian Limestone					
NZ22/22**	4528752896	Rushyford NE	NRA-N	1967	81
NZ32/19	4535752650	Heley House	NRA-N	1969	---
SE28/28	4424608520	Bedale	NRA-Y	1972	128
SE35/4	4438305830	Castle Farm	NRA-Y	1970	82
SE43/9**	4445353964	Peggy Ellerton Farm	NRA-Y	1968	94
. SE43/14	4446603550	Coldhill Farm 35	NRA-Y	1971	75
.SK46/71	4348006030	Stanton Hill	NRA-ST	1973	---
SK58/43	4352488018	Southeads Lane	NRA-ST	1973	84
Aquifer : Coal Measures					
SE23/4	4428503414	Silver Blades Ice Rink	NRA-Y	1971	---
Aquifer : Millstone Grit					
SE02/46	4407712528	Thrum Hall	NRA-Y	1977	42
SE04/7	4402954792	Lower Heights Farm	NRA-Y	1971	161
SE24/2B	4420674053	Green Lane Dyeworks	NRA-Y	1971	65
SE27/8	4421207380	Kirkby Moor Farm	NRA-Y	1971	---
Aquifer : Carboniferous Limestone					
NT95/21	3696955055	Middle Ord	NRA-N	1974	154
SE06/1	4402416183	Jerry Laithe Farm	NRA-Y	1971	90
SK15/16	- 4312925547	Alstonfield	NRA-SI	1974	91
SK17/13	4317787762	Hucklow South	NRA-ST	1969	70
ST64/33	3165604790	Oakhill 1	NRA-W	1977	---

Sites marked 'o.' are indicator wells; well hydrographs are shown in Figure 15. W'here the annual percentage recharge cannot be estimated, the entry • . - ' is substituted.

THE GROUNDWATER DATA RETRIEVAL SERVICE

A suite of retrieval programs has been written in order to facilitate data usage. At the present time, retrievals using the options described below are available for most of the sites listed in the Register of Selected Groundwater Observation Wells, although not all the data contained within this archive have been validated.

Five options are available for retrieving data. A description of each option is given below and examples of the computer listings and graphical output are given on pages 178 to 180 . Options 1 to 4 give details of the well site, the period of record available, and maximum and minimum recorded levels in addition to the output specific to each option. Data may be retrieved for a specific well or for groups of wells by well reference numbers, by area (using National Grid References), by aquifer, by hydrometric area, by measuring authority, or by any combination of these parameters.

Cost of Service

To cover the computing and handling costs, a moderate charge will be made depending on the
output options selected. Estimates of these charges may be obtained on request; the right to amend or waive charges is reserved.

Requests for Retrieval Options

Requests for retrieval options should include: the name and address to which the output should be directed, the sites, or areas, for which data are required together with the period of record of interest (where appropriate) and the title of the required option. Where possible, a daytime telephone number should be given.

Requests should be addressed to:

The British Geological Survey
Hydrogeology Research Group
Maclean Building
Crowmarsh Gifford
WALLINGFORD
OXFORDSHIRE OX10 8BB

Telephone: (0491) 38800
Fax: (0491) 25338

LIST OF GROUNDWATER RETRIEVAL OPTIONS

1 Table of groundwater levels

Table of annual maximum and minimum groundwater levels

Table of monthly maximum, minimum and mean groundwater levels

Hydrographs of groundwater levels

NOTES
All recorded observations of groundwater level in metres above Ordnance Datum, with dates of observation and maximum and minimum levels for each year. Specific years, or ranges of years, may be requested, otherwise the full period of record is given.
Annual maximum and minimum groundwater levels in metres above Ordnance Datum with dates of occurrence. Specific years, or ranges of years, may be requested, otherwise the full period of record is given.
Monthly maximum, minimum and mean groundwater levels in metres above Ordnance Datum, together with the number of years contributing values to the calculation of each monthly mean. A specific period of years may be nominated, otherwise the full period of record is given.

Provides a well hydrograph for a number of specified years. Castellated annual plots of monthly maximum and mean groundwater levels calculated from a nominated period of years are superimposed upon the hydrograph, provided that the nominated period exceeds 10 years. Tabulations of the monthly

Site details
maximum, minimum and mean values are also listed, together with the number of years of record used in the calculations, and the number of observations used for each month.
The output comprises the well reference number of the British Geological Survey, the original (Water Data Unit) station number (where applicable), the hydrometric area, the aquifer name and code, the site name and location, the National Grid Reference, the depth of the well; the datum points (from which measurements are made), the altitude of the ground surface, the period of record and the measuring authority area in which the well or borehole is located.

OPTION 1 TABLE OF GROUNDWATER LEVELS

Station number	TFO3/37
Station name	NEW RED LION, ASLACKBY (CONTINUES OLD RED LION)
Grid Reference	TF 08853034
Measuring Authority	ARA-A
Hydrometric Area	30
Aquifer	Lincolnshure Limestone
Aquifer Code	13
EEC Unit	ANO3
Surface Level (MOD)	33.82
Datum Point (MOD)	33.45
Well Depth (M)	50.00
Max. Expected (MOD)	33.45
Min. Expected (MOD)	5.00
Period of records in Arcbive:-	1964 to 1985
Maximum GW Level for period of records	23.69
Number of Maxima 1	
Date(s):-	
14031977	
Minimum GW Level for period of records	3.29
Number of Minima 1	
Date(s):-	
24081976	

(Note: The above reference information is also provided with the output from options 2-4).

Station Number Year of record Date	TF03/37 Level (MOD)
03 Jan	17.29
31 Jan	16.68
28 Feb	17.85
04 Apr	20.31
24 Apr	20.12
02 May	20.13
30 May	18.58
13 Jun	17.34
11 Jul	15.77

01 Aug	14.44
29 Aug	13.24
26 Sep	12.11
10 Oct	11.57
07 Nov	10.42
21 Nov	9.85
19 Dec	8.98
Maximum GW level for year	20.31
Number of maxima	
Dates 04 Apr	
Minimum GW Level for year	8.98
Number of minima	
Dates 19 Dec	

OPTION 2 TABLE OF ANNUAL MAXIMUM AND MINIMUM GROUNDWATER LEVELS

Yeat	Maz/Mia	Leve!(MOD)	Date(0)	No of ocasons
1965	Max	21.50	26 Dec	1
	Min	7.85	24 Jan	
1966	Max	23.51	06 Mar	1
	Min	14.43	09 Oct-16 Oct	1 Period
1967	Max	19.79	04 Jun	
	Min	12.69	29 Oct	
1968	Max	22.06	17 Nov	
	M1n	14.08	07 Jul	
1969	Max	23.17	30 Mar	
	Min	11.83	16 Nov	
1970	Max	20.21	26 Apr	
	Min	10.76	15 Nov	1

OPTION 3 TABLE OF MONTHLY MAXIMUM, MINIMUM AND MEAN GROUNDWATER LEVELS

Period maximum, minimum and mean groundwater levels for years 1964 to 1985

	Maruaca	Manmuan	Meso	No. of rean
Jan	22.58	7.85	14.75	21
Feb	23.29	7.97	16.50	21
Mar	23.69	6.14	17.27	21
Apr	22.97	5.61	17.17	22
May	22.00	4.80	16.52	21
Jun	21.28	4.11	15.40	21
Jul	19.69	3.42	14.03	21
Aug	17.08	3.29	12.97	21
Sep	18.84	3.37	12.23	21
Oct	17.98	3.82	11.78	21
Nov	22.06	7.03	12.08	21
Dec	21.51	7.81	13.04	21

OPTION 4 HYDROGRAPHS OF GROUNDWATER LEVELS

Hydrograph of monthly maximums, minimums and means calculated from years 1964 to 1982
Therefore maximum number of years from which monthly maxs, mins and means may be calculated is 19

	Мелиזum	Mintruam	Mean	No of Years
Jan	22.58	7.85	14.77	18
Feb	23.29	7.97	16.47	18
Mar	23.69	6.14	17.34	18
Apr	22.97	5.61	17.23	19
May	22.00	4.80	16.42	19
Jun	21.28	4.11	15.23	19
Jul	19.69	3.42	13.97	19
Aug	17.08	3.29	12.98	19
Sep	18.84	3.37	12.28	19
Oct	17.98	3.82	11.85	19
Nov	22.06	7.03	12.20	19
Dec	21.51	7.81	13.09	19

Hydrograph(s) plotted for year ranges:- 1973 to 1977

OPTION 5 SITE DETAILS

gas NUMBER	COMPUTER NUMBER	HA	AQ	name-location REC-TERIOD-MA AQLIFER	GRID REF.	DEPTH (M)	DATLM POINT	surface LEVEL
NZ22/22	25624	25	17	RUSHYFORD NORTH EAST, GREAT CHILTON 1957-1985 SRA-N Mag.NESIAN LIMESTONE	NZ 28752896	62.50	92.65	92.53
SE94/5	26352	26	6	DALTON ESTATE, DALTON HOLAE 1889-1985 NRA-Y CHALK AND UPPER GREENSA	$\begin{aligned} & \text { SE } 96514530 \\ & \mathrm{ND} \end{aligned}$	28.50	34.57	33.50
SE43/9	27360	27	17	PEGGY ELLERTON FARM, HAZEL WOOD 1968-1985 NRA-Y MAGNESIAN LIMESTONE	SE 45353964	55.42	51.40	51.40
TF03/37	30229	30	. 13	```NEW RED LION, ASLACKBY (CONTINUES OLD RED LION) 1964-1985 NRA-N I.INCOLNSHIRE LIMESTONE```	TF 08853034	50.00	33.45	33.82

SURFACE WATER QUALITY DATA

Background

A national archive of water quality data is maintained by Her Majesty's Inspectorate of Pollution (Department of the Environment) to provide information concerning the quality of rivers throughout the United Kingdom and to satisfy certain international obligations - mostly concerned with the exchange of information. Data for this archive are collected as part of the Harmonised Monitoring programme which provides for the sampling and analysis of water quality on a national basis.

The Harmonised Monitoring Scheme was established, for England and Wales, in 1974; a similar scheme was instituted for Scotland, under the aegis of the Scottish Development Department, in July 1975. In Scotland responsibility for the collection and analysis of the samples rests with the seven River Purification Boards. In England and Wales responsibility passed, on the 1st September 1989, from the former regional Water Authorities to the newly-created National Rivers Authority.

Measuring authorities send analytical results of routinely collected samples of river water from approximately 220 monitoring stations; sampling frequencies vary substantially but are, typically, in the range 6 to 52 per year. Most of the monitoring stations are located on major rivers at, or near, the tidal limit.

The monitoring programme can embrace a large number - over 80 - of physical and. chemical attributes of river water but typically only 25 are measured. A number of determinands are measured as standard but a larger proportion are monitored only where it is considered necessary to do so.

The measuring authorities maintain major programmes of chemical and biological sampling of rivers for their own purposes. From the 31st July 1985, the former Water Authorities were required, under the Control of Pollution Act, to maintain registers of the results of all samples of water and effluent taken for pollution control purposes together with details of all consented discharges. Following the enactment of the Water Bill 1989 this obligation passed to the National Rivers Authority. These registers are maintained at the regional headquarters of the NRA (see page 188) and are open for inspection by the public - free of charge. Persons wishing to consult the registers are advised to first contact the individual regional headquarters; a list of addresses is given on pages 188 to 190.

Data Retrieval

A comprehensive range of retrieval options has been developed by Her Majesty's Inspectorate of Pollution to make available the water quality data held on
the Harmonised Monitoring Archive and to provide statistical summaries based on those data. Requests for data, and guidance concerning its availability, should be addressed to:

Department of the Environment
HMIP
Room A4. 26
Romney House
43 Marsham Street
London SW1P 3PY
Telephone: 012768245

Scope of the Water Quality Data Tabulations

River water quality data are presented for 16 monitoring sites on rivers throughout the United Kingdom. The location of each monitoring site is given on Figure 16. For each site 1988, and period of record, data are given for a range of determinands; the determinands featured may differ between monitoring sites reflecting the character of the rivers themselves and differences in the sampling regimes between monitoring stations.

Figure 16. Water quality monitoring station location map.

The following notes are provided to assist in the interpretation of particular data items.

Harmonised Monitoring Station Code

A five-digit reference number which serves as the primary identifier of the station on the Harmonised Monitoring Archive. The first two digits refer to the measuring authority, the remainder refer to individual sites within each measuring authority.

Measuring Authority

An abbreviation referencing the organisation responsible for the operation of the monitoring site. See pages 188 to 190 for a full list of the codes together with the corresponding authority names and addresses.

Grid Reference

The initial two-letter and two-figure codes each designate the relevant 100 kilometre National Grid square; the standard six-figure map reference follows.

Associated Flow Measurement Station

The reference number, name, catchment area and grid reference of the gauging station whose flow record is used to determine the discharge data stored on the Harmonised Monitoring Archive. For most sites the flow corresponding to the time the quality sample was taken is archived; at other locations the corresponding daily mean flow is utilised. Where the gauging station and water quality monitoring site are not coincident some method of flow adjustment may have been employed to allow for the differing catchment areas.

1988 flow data for all but one of the relevant gauging stations may be found in the River Flow Data section. The shortness of the flow record for the Fleet Weir gauging station on the River Aire precludes its incorporation in the River Flow Data section; summary river flow data for 1988 are, however, included at the head of the water quality listing.

Determinands

Inadequate or unrepresentative sampling frequencies, or the presence of a substantial number of samples with concentrations recorded at or below the limit of detection, will normally result in the omission of a particular determinand.

Notes:

i. Conductivity results are standardised to $20^{\circ} \mathrm{C}$.
ii. The biochemical oxygen demand data normally relate to the inhibited analytical results BOD (atu).
iii. Nitrate concentrations are normally derived by subtracting the nitrite concentration from the reported Total Oxidised Nitrogen (TON) concentration; if the nitrite determination is below the limit of detection, nitrate is recorded as equivalent to TON.

Units

The standard units used to record and report each determinand. The precision with which individual data values, for each determinand, are presented corresponds to the way the data are stored on the Harmonised Monitoring Archive and reflects the uncertainty associated with the relevant analytical procedures.

1988 Data

Samples

The number of samples taken for each determinand during 1988. Where a proportion of analytical results were below the limit of detection, the number of samples in this category is given in parentheses.

Mean

The average* of all the sample values for each determinand in 1988. Where concentrations below the limit of detection are held on the Harmonised Monitoring Archive, the threshold value itself is used to compute the mean.

Maximum / Date

The maximum determinand value recorded during 1988 together with its date of occurrence. Where the maximum value recurs the date refers to the initial occurrence.

Minimum / Date

The minimum determinand value together with its date of occurrence. Where the minimum value recurs the date refers to the initial occurrence. A ' $<$ ' symbol indicates a value below the limit of detection.

Period of Record Data

For half of the featured sites, the pre-1988 summary statistics are presented for the thirteen-year period beginning in 1974; where individual stations were not incorporated into the Harmonised Monitoring network until after 1974, the appropriate first year of data is given. For certain stations the sampling frequency varies significantly from year to year and
data for a few determinands may not extend over the full period of record; in particular the first year of data will normally be incomplete.

Where the pre-1988 data series includes values below the limit of detection, the threshold value has been used in the computation of the summary statistics.

For a number of the featured monitoring stations, a considerable amount of pre-1974 data, at least for certain determinands, may be stored on local, or regional, archives maintained by the measuring authorities. Also, for the period 1974-87, such archives may hold analytical results for substantiaily more samples than are represented on the Harmonised Monitoring Archive. Hence full equivalence between statistical summaries derived from national and regional databases cannot be expected for all monitoring sites.

Mean

The average* value of all the sample values for each determinand.

Percentiles

The 5, 50 and 95 percentile values for each determinand based on all the samples taken over the pre-1988 period.

Quarterly Averages

The mean quarterly average* for each of the threemonthly periods: January to March, April to June, July to September and October to December.

- In all cases this refers to the ten:poral mean rather than the flow-weighted average.

Flow measuement station 071001 - Sampestury Catchment area (sq km) 11450
Girid reference $\quad 34$ (SD) 589304

Perind of racord 1974.1987							
Menn	Percentiles			Quartorly averages			
	5\%	50\%	95\%	J.M	A.J	J. 5	0.0
94	10	96	171	38	$: 16$	51	77
77	70	11	86	18	19	79	16
421	234	414	647	425	449	439	364
200	30	90	700	210	156	169	177
103	77	103	130	118	99	89	108
30	11	26	65	32	38	38	33
028	005	018	089	052	014	014	021
008	003	008	020	006	012.	009	007
42	13	35	97	35	$5)$	49	30
33 :,	140	300	6010	398	35	333	25.5
013	008	01.	020	$0 \cdot 1$	$0 \cdot 6$	$0 \cdot 4$	012
038	010	030	100	024	042	055	025

Trent at Nottingham

Harmonised momitoring code	03007
Measuring authority	NRA ST
Grid refertnce.	43 (SK) 581383

Units	Somples	1988			Min	Date
		Mean	Max	Data		
	- .					
${ }^{\circ} \mathrm{C}$	24	- 18	-90.	2206	60	25/0
	24	79	82	22/06	75	2510:
usicm	24	A 15	-1:1)	22/0¢	4 si	25,0:
$\mathrm{mp/I}$	24	$23:$, 280	25:01	50	13/04
ringli 0	24	990	-160	04/02	810	12/07
$\mathrm{mg} / 1 \mathrm{l}$	24	31	40	03/03	$\therefore: 0$	22108
mg/l	24	0323	0801	04/03	0070	22i06
mojin	24	780	1050	22:1	520	$25 / 107$
mg/I Cl	24	892	1410	22/06	470	C6,01
$\mathrm{mg} / \mathrm{CuCO}$	2.4	1569	1860	23/02	950	25.01
mg/ir	12	036	(1) ${ }^{1}$	22;	021	25,0)
matip	24	1382	2400	22:1.	0470	25/01

Flow measuremen: station	028009 -Colwick
Catchment area (sq km)	74860
Grid reference	43 (SK) 620399

Mean	Percentilas			Quarterly averapma			
	5*	50\%	95×	J M	A J		0 O
133	60	134	220	19	154	193	$1 \cdot 1$
77	73	77	82	76	78	73	77
891	621	910	1739	809	902	9\%)	876
257	80	17 C	756	285	223	138	305
97	76	97	1:8	107	95	88	37
35	11	34	62	32	38	38	33
0.39	00°	030	108	068	029	023	037
86	61	86	112	8!	81	84	86
988	543	980	1485	862	966	171	989
-999	1200	1650	1880	1573	1679	1637	155
036	022	035	0:2	032	034	041	032
50	050	- 46	270	033	154	203	- 46

Avon at Evesham Road Bridge

Harmonised montoring code	03 4.16
Measuring authority	NRA-ST
Grid reference	42 (SP) 034431

NRA-S \dagger
42 (SP) 034431

Flow measurement station 054002-Evesham Catchment area (sq km) 22100
Grid reference 42 (SP) 040438

Mran	Period of record 19771				1987		
	Parcentiles			Quarteriy averagns			
	5\%	50\%	95*	J M	A J	J S	00
111	30	11 c	200	48	129	1/1	81
80	76	79	87	73	82	81	78
920	621	930	1 (x)	830	887	1030	933
286	70	180	870	428	235	180	244
'0	18	10.3	$1 ? 2$	1.9	105	89	$\bigcirc 5$
32	-1	28	74	28	45	3.	24
026	001	019	077	052	$0 \cdot 4$	$0 \cdot 4$	027
. 04	76	:02	136	112	96	99	. 09
129	371	720	1059	655	641	865	750
:961	:490	2000	2304	1914	1983	1985	96.3
037	071	035	05.	030	034	052	037
166	045	140	344	102	131	239	18

Aire at Fleet Weir

Harmonised monito Measuring authorit Girid reference
Determinand
Flow Inmperaluto pH
Conductivity
Suspuedect somb
Dissolved oxygen 900 (inmbited)
writa
Vireato
cinorida
total ulabhm:y
Fluornde
Orcherros, ${ }^{\text {ate }}$

04005
NRA.Y
44 (SE) 381285

Units	Samples
$\ldots y^{\prime}-1$	363
${ }^{\circ} \mathrm{C}$	42
OH unis	51
${ }_{3} \mathrm{~S} / \mathrm{c} \cdot{ }^{\text {n }}$	49
mg / l	50
$\mathrm{mmg} / 10$	45
$\mathrm{mg} / 10$	48
$\mathrm{mg} / 1 \mathrm{~N}$	$5{ }^{\circ}$
mg/l ${ }^{\text {d }}$	51 (1)
mg / V	5.
$\mathrm{mg} / \mathrm{Cl}$	$5:$
mg/I CaCO_{3}	28
mgll 5	7
$\mathrm{mg} / 1 \mathrm{P}$	50

Mean	Man	Dete	Min.	Date
1995	1:70	02/0 ${ }^{\circ}$	4906	20/06
123	2:5	22/106	45	$10_{i}(32$
15	80	13/10	11	16/03
55.	835	10,03	310	09/08
257	1.990	10/02	20	0×103
140	1250	-0/02	140	22,06
15	188	:8/01	13	$04 / 03$
1317	¢ 800	29,01	<0040	16/08
0273	0900	28/07	0039	28/12
470	1510	-04/03	150	-6/03
696	1420	2/05	258	28/12
1325	1670	28107	$5 \cdot 9$	2/05
$0 \cdot 5$	020	29/11	$0 \cdot 2$	08/01
0999	3000	-6;06	$\therefore 0.00$	22/07

Flow measurement station 027080 - Fleet Weir Catchment area (sq km) Gid reference

1988

1988

Harmonised monitoring code Measuring authority: Grid reference		$\begin{aligned} & 05810 \\ & \text { NRA-A } \\ & 62 \text { (TM) } 026345 \end{aligned}$						Flow measurement station Catchinent area (sq km) Grid reference				$\begin{aligned} & 036006 \text { - Langham } \\ & 5780 \\ & 62 \text { (TM) } 020344 \end{aligned}$			
Determinend	Units	Samplas	Moan	1988		Min.	Date	Mean	Period of record: 1974-1987						
				Men.	Date					Percent			Ouerte	ty avar	
									5\%.	50\%	95\%	J.M	A.J	J.S	0.0
Temporatisa	${ }^{\circ} \mathrm{C}$	54	$1 ; 2$	190	23/06	40	11/02	111	25	110	200	49	134	69	83
pH	¢H unis	52	82	87	18/08	7.7	21/07	82	78	82	89	81	85	83	81
Conductrvity	${ }^{\boldsymbol{u}} \mathrm{S} / \mathrm{cm}$	30	896	1200	$10 / 10$	110	28/01	916	130	910	1:00	932	878	882	944
Suspended solds	mg/I	52 (2)	121	750	07101	<10	10/10	163	30	100	500	184	2:9	118	163
Onseotved orygon	mg/io	52	1110	1620	03/03	820	10/10	109	15	109	140	123	116	92	105
800 (inmbiter)	$\mathrm{mg} / 10$	51 (3)	21	64	26/05	$\leqslant 10$	11/08	31	11	23	97	23	96	27	23
Ammonsalal nitrogon	$\mathrm{mg} / 1 \mathrm{~N}$	52	0095	0300	$17 / 03$	0020	01/04	013	002	008	040	021	008	008	015
Nitrite	$\mathrm{mg} / 1 \mathrm{~N}$	11	0051	0087	:6/06	0018	06/10	008	002	007	016	008	0:1	004	009
$\mathrm{N}=1$-0: ${ }^{\text {a }}$	$m \mathrm{mb} / 1 / \mathrm{y}$	52	722	16 cm	:1/03	400	18/08	87	20	77	160	130	$\bigcirc 9$	43	30
Cricrics	$\mathrm{mg} / \mathrm{ll}_{1}$	52	359	810	27/10	260	07101	666	390	650	974	568	${ }^{6} \cdot 6$	733 74	101
Total a hainity	$\mathrm{mol/} \mathrm{CaCO}_{3}$	25	2720	2950	01/12	2500	28/01	2436	1900	2500	2800	2412	2406	247.7	2483

Thames at Teddington Weir

Harmonised monitoring code : O6 010	Flow measurement station $039001 \cdot$ Kingston	
Measuring authority	NRA.T	Catchment area (sa km)
Grid reference	51 (TO) 171714	Grid reference

Determinand

1 emperstur 0

OH
Conductivi:y
Susponiand soltes
BOD (nhbiter)
Ammonacal mitrogen
Nitrite
Nitrate
Criondo
Toid shatmiy
Otthoptiosutiale

Units	1988					Date
	Samples	Mepn	Max.	Date	Min.	
${ }^{\circ} \mathrm{C}$	16	118	200	05/09	50	03/03
DH unts	22	80	87	05/05	74	08/10
-S/cm	20	672	762	24/11	575	07/0:
-ng/l	21	205	960	07/0:	55	15/08
mg / O	:7	1080	1300	16/105	860	06/10
magio	22	21	80	05/05	12	18/01
$\mathrm{mg} / 1 \mathrm{~N}$	22 (i)	0254	0640	06/10	<0050	01/04
mg / l	21	0.107	0180	06/10	0054	07/04
rmill N	22	670	630	18/01	520	05/09
mg/l CI	22	412	540	19/09	310	04/02
$\mathrm{mb}_{6} / \mathrm{CaCO}_{3}$	20	1941	2190	03/03	1520	07/01
$\mathrm{mb}_{3} / \mathrm{P}$	21	1387	2.700	19/09	0350	04/02

Mean	Poriod of record 19741987						
	Percentilas			Quarterly averages			
	5\%	50\%	93\%	J.M	A.J		0.0
116	40	115	200	57	138	181	95
81	76	80	88	80	83	80	73
581	484	580	704	590	514	565	591
222	49	, 44	769	284	226	13.7	254
101	7	-02	132	113	108	86	\%0
30	10	24	68	22	43	30	22
032	001	022	091	035	020	039	036
011	006	010	022	010	010	010	013
74	54	71	103	82	67	56	77
412	300	400	$3) 0$	400	384	450	421
1881	1479	1900	2140	1863	1942	1899	1785
1.30	0.39	1 여	276	079	106	198	138

Great Stour at Bretts Bailey Bridge

Harmonised monitoring code	07003
Measuring authority	NRA-S
Grid reference:	61 (TR) 187603

Grid reference: $\quad 61$ (TR) 187603

Determinand	Units	1988*					
		Sample:	Meen	Max.	Date	Min.	Date
Tempmaturo	${ }^{\circ} \mathrm{C}$	14	148	210	20/09	70	02/1:
pH	pH unis	14	1.7	79	20/09	76	11/10
Conductivir	${ }^{4} \mathrm{~S} / \mathrm{cm}$	14	631	711	26/10	513	09/0s
Surpanded sotds	$\mathrm{mg} / 1$	14	42	140	09/03	<00	21/06
Ohssotrod oxygen	$\mathrm{mg} / \mathrm{l})$	12	140	950	02/11	450	09/08
800 \nh metad)	-my/l 0	14	19	3 .	099/05	06	21/01
Ammon acal mi: oxpun	$\mathrm{mg} / \mathrm{IN}$	$\cdot 4$	$0 \cdot 04$	0240	02/1'	0030	20/09
Nits 10	mg / N	$\cdot 4$	0071	0130	02/1:	0020	3:100
Nitrate	mg / N	14	560	650	21/06	450	20/09
Crionct	$\mathrm{mg} / \mathrm{Cl}$	14	481	610	26/10	320	09/05
Orithaphosphar	пrg/ P	14	1240	1900	14/11	0500	24/0.3

Flow measurement station	040011
Catchment area (sq km)	345.0
Grid reference	61 (TR) 116554

	Pariod of record. 1974 - 1987						
Menn	Parcentila			Quarterty		everes	
	5*	50\%	95\%	J.M	A.J	J. 5	D
116	40	120	180	66	132	165	99
78	73	78	43	77	79	79	77
686	560	694	785	690	675	677	700
12.7	20	70	441	218	19	70	167
108	73	107	150	115	109	93	104
28	11	26	53	32	30	23	26
035	002	016	136	058	038	012	042
012	003	008	033	010	013	013	014
56	36	55	86	67	b 2	47	63
495	362	480	700	524	473	485	529
090	032	086	162	064	090	115	096

[^11]| Harinonised monit Measuring authorit Grid reference | code | 7013 8A.S
 (SU) 43 | | | | | Flow Caic
 Grid | asuram nt area rence | | $\begin{array}{r} \text { Ion } \\ 360 \\ 41 \end{array}$ | $\begin{aligned} & 2010 \\ & (\mathrm{SU}) \end{aligned}$ | | dge - | $1800 \mathrm{k}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | 198 | | | | | | Pariod of | cord | 980.19 | 87 | | |
| Determinend | Unite | Samples | Maan | Max | Date | Min. | Date | Mean | $5 \times$ | Percentil 50\% | 95\% | J.M | Ouartart A.J | $\begin{gathered} \text { everag } \\ \text { J.S } \end{gathered}$ | 0.0 |
| Tamontasuta | - C | 30 | 117 | :70 | 10/08 | 30 | 24/11 | 108 | 40 | 100 | 180 | 12 | :28 | 160 | -00 |
| ¢H | PH unis | 30 | 82 | 86 | 11/05 | 77 | 14/01 | 81 | 78 | 81 | 84 | 81 | 81 | 82 | 81 |
| Suspended solve | $\mathrm{mg} / 1$ | 28 | 122 | 42.1 | 28/07 | 02 | 25/08 | 12 s | 26 | 81 | 328 | 303 | 104 | 46 | 121 |
| BOC (nintored) | $\mathrm{mg} / 10$ | 27 | 18 | 30 | 15/04 | 06 | 06/10 | 2.1 | 10 | 20 | 36 | 23 | 23 | 16 | 20 |
| Ammonibcal mirogan | $\mathrm{mg} / \mathrm{IN}$ | 30 (2) | 0089 | 0240 | 09/03 | <0010 | 25/03 | 011 | 001 | 009 | 028 | 017 | 006 | 006 | 011 |
| N.tuto | $m \mathrm{~m} / \mathrm{N}$ | 30 | 0083 | 0120 | 07/09 | 0030 | 10/02 | 005 | 003 | 004 | 009 | 004 | 005 | 005 | 006 |
| Nirate | mg/iN | 29 | 510 | 700 | 07/09 | 280 | $28 / 01$ | 52 | 40 | 57 | 61 | 54 | 52 | 46 | 51 |
| cintoricte | $\mathrm{mg} / \mathrm{Cl}$ | 30 | 239 | 317 | 09/11 | 172 | 14/01 | 209 | 174 | 203 | 253 | 216 | 200 | 208 | 246 |
| Orimaphosphata | 79/1p | 30 | 0449 | 0790 | 25/08 | 0140 | 14/01 | 037 | $0 \cdot 4$ | 037 | 068 | 034 | 032 | 040 | 048 |

Axe at Whitford Road Bridge
1988

Harmonised monitoring code	09001
Measuring authority	NRA-SW
Grid reference :	30 (SY) 262953

low measurement station	045004	Whitford
atchment area $(5 \mathrm{~km})$	288.5	
Gid reference	$30(\mathrm{SY}) 262953$	

Determinend	Units	1988				Min. ${ }^{-}$	Date	Mean	Pariod of record. 1974 - 1987						
		Somples	Meen	Max	Date				Parcantiles			Querterly svorages			
									5\%	50\%	95\%	J.M	A.J	J. S	0.0
1 ar:parature	${ }^{\circ} \mathrm{C}$	26	91	165	20106	30	25/11	-10	36	104	185	57	121	160	88
pH	OH units	26	80	84	23/05	77	14/03	79	74	79	85	78	81	80	78
Conoructrisy	$\mu \mathrm{S} / \mathrm{cm}$	25	384	442	20/06	301	10/02	385	294	390	453	373	387	$4: 3$	368
Suspended somds	mg/I	26	14.1	790	14/03	20	19/09	131	20	59	450	174	96	54	255
Oassoned oxrgen	$\mathrm{mg} / 10$	26	1090	1360	25/11	790	14/07	109	84	108	135	121	113	100	107
BCO linhixied)	mglo	26	23	110	30/11	06	23/11	2:	09	17	44	2.2	23	17	23
Ammomacsi nitiogon	$\mathrm{mmg} / \mathrm{N}$	2611	0108	0540	30111	<0010	19,09	011	001	006	032	017	008	006	0:3
Nu 1 ta	mg / N	26	0048	$0 \cdot 03$	-4/07.	0014	'9/09	015	002	004	010	006	006	003	006
N 1 -317	mg / N	26	4.0	580	-1/01	230	23/1:	36	21	33	56	42	61	30	46
Criornde	mg/l C1	26	242	306	30/11	205	20/06	231	190	22.0	290	238	210	230	237
Totel alasinity	$\mathrm{mg} / \mathrm{COCO} 3$	26	1342	1650	20106	910	14/03	1360	- 870	1390	:680	1200	1427	1551	1251
Orithourosphate	$\mathrm{mg}_{\mathrm{g}} \mathrm{P}$	26	0281	0440	:5/12	0140	10/02	024	012	022	041	020	024	025	022

Exe at Thorverton Road Bridge

Harmonised monitoring code	09036
Measuring authority	NRA-SW
Grid reference	21 (SS) 936016

Grid reference $\quad 21$ (SS) 936016

Units	Semplos	1988				Date
		Masan	Max	Oete	Min	
	-					
${ }^{\circ} \mathrm{C}$	13	83	185	08/08	40	04/03
pH unis	13	75	80	24/03	11	01/02
$\mu \mathrm{S} / \mathrm{cm}$	13	:56	201	1711:	104	01/02
$\mathrm{mg} / 1$	13	286	1620	08/02	20	17/11
$\mathrm{mg} / \mathrm{l} 0$	13	1140	1280	04/03	920	08/08
$\mathrm{mg} / 10$	13	18	35	08/02	06	06/04
raghl N	13 (2)	0059	0180	08/02	0010	08/08
mg / N	13	0022	0037	08/02	0008	01/02
mighin	13	240	320	04/03	160	07/07
$\mathrm{mg} / \mathrm{Cl}$	13	15.7	183	$21 / 01$	12.7	01/02
	13	367	530	17111	210	01/02
mg / P	13	0101	0170	17111	0050	11/01

Flow measurement station 045001 . Thorverton Catchment area (Sq km) Grid reference

21 (SS) 936016

Mean	Period of record 1974 - 1987						
	Parcentiles			Quarterty averages			
	5\%	50\%	95\%	J.M	A. J		0.0
113	44	108	190	60	126	164	9.3
75	69	75	82	73	71	75	74
17:	121	161	244	159	183	189	155
112	20	60	$4 \cdot 1$, 29	91	67	12.9
110	87	113	133	24	1.1	98	$1 \cdot 3$
17	08	16	33	16	22	6	15
007	001	005	017	008	008	005	005
003	001	002	006	002	004	003	002
25	14	23	36	29	25	20	24
$1 / 8$	130	170	270	174	178	192	161
407	240	380	667	338	461	482	349
012	003	008	031	006	$0: 2$	019	008

Dee at Overton

Harmonised monitoring code	10002
Measuring authority	NRA.WEL
Grid roference :	33 (S.J) 354427

Determinend	
phrerature	
	onouctivir
Suspended sounds	
Dissotred oxrgen 800 untribied	
Ammomaced nittogen	
Nitresa	
Criorits	
Orthophosonate	

Unts	Samples	1988			Min.	Date
		Mom	Max	Date		
${ }^{\circ} \mathrm{C}$	12	97	149	05/07	46	:6/02
pH unis	12	73	81	03/11	56	13/01
$\mu \mathrm{S} / \mathrm{cm}$	12.	144	239	13/05	45	$13 / 01$
mg/	12	120	470	18/03	30	13/05
$\mathrm{mg} / 10$	12	1070	1200	16/02	940	05/07
mg/l 0	12	13	23	01/08	05	03/11
$\mathrm{mg} / \mathrm{IN}$	11	0047	0080	18/01	<0010	06/09
mb / N	11	0016	0050	13/05	0008	03/11
mg/in.	11	090	120	13/05	040	06/09
$\mathrm{mq} / \mathrm{Cl}$	11	186	330	13/05	40	03/10
$\mathrm{mof} / \mathrm{P}$	11	0059	0080	:6/03	<0050	13/01

Flow measurement station 067015 - Mantey Hall Cutchment area (sq km) 10193 Grid reference : $\quad 33$ (SJ) 348415

Mem	Percentiles			Ouarterty avarages			
	5\%	50\%	95\%	J.M	A.J		0.0
$\bigcirc 0$	30	98	:16	46	- 16	153	77
72	6.5	72	78	72	73	72	71
173	98	165	272	164	214	172	139
88	10	30	359	108	58	67	122
111	91	11.1	133	127	108	98	118
12	05	1.1	25	1.2	14	12	11
005	001	003	013	007	004	004	006
002	001	001	005	002	002	002	002
11	05	10	21	13	; 2	08	10
+93	$\bigcirc 03$:80	320	202	226	202	154
005	001	005	015	005	006	007	005

Carron at A890 Road Bridge
Harmonised monitoring code : 11009
Measuring authorty
Girid reference

HRPB
18 (NG) 938425

1988
Flow measurement station : 093001 New Kelso Catchment area (sq km) 137.8
Gind reference: $\quad 18$ (NG) 942429
Peniod of record: 1979 • 1987

Mean	Perceurtion			Ougrterty averages			
	5\%	50\%	95\%	J.M	A.J		0.0
85	21	85	152	35	116	129	7.1
67	58	67	7.4	67	67	67	66
45	27	44	66	51	48	42	40
15	02	10	48	18	12	14	16
11.3	98	$1: 3$	132	127	109	10.1	114
08	02	08	14	07	07	08	0
001	000	001	003	001	001	001	001
001	000	001	001	001	001	001	001
01	00	01	01	01	01	01	0
108	60	100	189	143	107	83	95
63	1.9	so	150	63	70	69	60
000	000	000	001	000	001	001	000

Mear

Spey at Fochabers

Harmonised montoring code	12002
Measuring authority:	NERPB
Grid reference.	38 (NJ) 341596

38 (NJ) 341596

Grid reference

1988

Determenend
OH
Conouximiy
Suspended eotids
Oispolved oxygen
Nutreto
Criorcte
Toun athebr
Orthophosphate

Semplea	
12	
12	
12	
12	
12	
12	0
12	0
12	
12	
12	0

Mean	Max.	Dase	Min.	Dase
91	153	$14 / 06$	38	$17 / 02$
65	69	$14 / 06$	60	$07 / 12$
33	44	$24 / 05$	28	$04 / 10$
12	20	17102	06	$28 / 07$
1120	1260	$17 / 02$	940	$14 / 08$
09	14	$20 / 01$	03	$14 / 06$
0006	0018	$17 / 02$	0002	$07 / 09$
0001	0003	$23 / 08$	0001	$20 / 01$
005	010	$24 / 05$	000	$28 / 07$
69	88	$20 / 01$	48	$28 / 07$
38	71	$24 / 05$	1.7	$07 / 12$
0004	0005	$28 / 07$	0002	$28 / 04$

\qquad -

Determinand	Units	Samples	1988				Date
			Mrean	Max.	Date	Min	
						-.	-..-
Tamperatura	${ }^{\circ} \mathrm{C}$	16	99	160	20/00	25	15/03
OH	OH unis	18	70	75	18,05	65	20/04
Conducimiy	$\mu \mathrm{S} / \mathrm{cm}$	16	71	96	22/06	45	20/04
Suspended colds	$\mathrm{mmg} / 1$	16	23	60	26/10	01	21/09
Dessolved orygen	mg/ 0	15	1090	1210	19/01	930	20/07
850 (intribited)	$\mathrm{mg} / 10$	16	10	14	22/06	03	21/09
Amimoriscal nitrogen	mg / N	16	0037	0120	22/06	0004	15/03
N irita	mg / N	18	0005	0007	20/07	0002	-0/05
N Lirate	$\mathrm{mg} / \mathrm{l} \mathrm{N}$	16	040	080	16/11	020	24/08
Crioride	$\mathrm{mg} / \mathrm{Cl}$	16	19	110	15/03	60	20/04
Iotal athelinty	$\mathrm{mg} / \mathrm{CHCO}$	16	193	350	19/01	70	14/12
Orhophouphate	mg / P	16	0014	0044	26/10	0002	24/08

Almond at Craigiehall

Harmonised monitoring code	14008
Measuring authority	FRPB
Grid reference	36 (NT) 165752

14008
36 (NT) 165752

Units	1988					
	Samplea	Mean	Mex.	Date	Min	Date
${ }^{\circ} \mathrm{C}$	19	98	180	20/06	30	:9/01
Del units	11	17	81	09/05	72	08/03
$\mu \mathrm{S} / \mathrm{cm}$	11	586	950	20/06	250	09/02
mg / l	11	145	630	19/10	<10	20106
mp / O	11	24	32	19/01	16	11/10
$\mathrm{mg} / \mathrm{l} \mathrm{N}$	10	1484	3900	20106	0440	11/07
$\mathrm{mm} / / \mathrm{N}$	10	0434	1930	08/03	0010	$06 / 09$
mg/l N	$1:$	340	510	20106	190	06/09
$\mathrm{mg} / \mathrm{ll}$	11	707	1370	09/02	250	06/09
mog/I CaCO	11	1142	1580	20/06	630	06/09
mg / F	10	017	024	09/08	010	09/05
mg / P	11	0784	2100	20/06	0170	09/02

1988
Flow measurement station 019001 Crargiehall Catchment area (sq km) 369.0
Grid reference

$$
36 \text { (NT) } 165752
$$

Parrod of record. 1973 - 1987							
Masan	Percentiler			Ouarterty averagas			
	5\%	50\%	95\%	J. M	A.J	J.S	0.0
93	20	93	178	40	118	146	73
75	70	76	80	74	7.7	75	75
599	312	580	887	521	688	657	512
244	30	110	914	351	108	156	304
33	16	28	68	33	39	31	33
120	022	095	301	- 24	151	119	084
024	004	014	083	006	031	043	013
38	21	36	56	36	4:	47	36
628	266	600	1030	395	710	695	487
1210	51.7	1200	1900	1010	1414	1344	1032
022	003	019	044	019	026	018	022
072	009	044	208	024	090	: 26	038

Leven at Renton Footbridge

DIRECTORY OF MEASURING AUTHORITIES

The enactment of the Water Act 1989 facilitated the creation of ten Water Services PLCs to take over the former Water Authorities' responsibilities for water supply and sewerage and for the setting up of a new body, the National Rivers Authority, to operate their regulatory and river management functions. Responsibility for most hydrometric activities has passed to the NRA. As part of the necessary restructuring prior to this major water industry reorganisation, 'shadow' regional NRA Units were established in each Water Authority. The Units began operating as fully independent units within each Water Authority on the 1st April 1989 and, formally, became regional divisions of the National Rivers Authority on the lst September 1989.

	Address	Code
National Rivers Authority	$30-34$ Albert Embankment, London SE1 7TI. Tel: 01-820-0101	NRA

NRA Regional Headquarters

Water Services PLCs

Northumbrian Water	PO Box 4, Regent Centre, Gosforth, Newcastle-upon-Tyne NE3 3PX	NW
North West Water	Dawson House, Great Sankey, Warrington WA5 3LW	NWW
SevernTrent Water	Abelson House, 2297 Coventry Road, Sheldon, Birmingham B26 3PU	STW
Southern Water	Guildbourne House, Chatsworth Road, Worthing, West Sussex BN11 1LD	SW
Fouth West Water	Southern House, Yeoman Road, Durrington, Worthing, West Sussex	
Thames Water	Peninsula House, Rydon Lane, Exeter EX2 7HR	
Welsh Water	Nugent House, Vastern Road; Reading RG1 8DB	SWW
Wessex Water	Plas y Ffynnon, Cambrian Way, Brecon, Powys LD3 7HP Workshire Water	Wessex House, Passage Street, Bristol BS2 0JQ

River Purification Boards

Clyde River Purification Board

Forth River Purification Board

Highland River Purification Board

North East River Purification Board

Solway River Purification Board

Tay River Purification Board

Tweed River Purification Board
$\begin{array}{ll}\text { Rivers House, Murray Road, } & \text { CRPB } \\ \text { East Kilbride, Glasgow G75 0LA } & \\ \text { Colinton Dell House, West Mill Road, } & \text { FRPB }\end{array}$ Colinton, Edinburgh EH13 0PH

Strathpeffer Road, HRPB Dingwall IV15 9QY

Greyhope House, Greyhope Road, NERPB Torry, Aberdeen AB1 3RD

Rivers House, Irongray Road, SRPB Dumfries DG2 0JE

1, South Street, TRPB Perth PH2 8NJ
Burnbrae, Mossilee Road, TWRP Galashiels TD1 1NF

Borders Regional Council (Directorate of Water and Drainage Services)

Corby (Northants) and District Water Company

Department of the Environment for Northern Ireland

West Grove, Waverley Road, BRWD Melrose TD6 9SJ

Geddington Road, Corby, CDWC Northants NN18 8ES

Water Service, Northland House, DOEN

Belfast BT1 2NS

Dumfries and Galloway Regional Council (Department of Water and Sewerage)	Marchmount House, Dumfries DGI INR	DGRW
Essex Water Company	Hall Street, Chelmsford; Essex CM2 OHH	EWC
Geological Survey of Northern Ireland	20 College Gardens, Belfast BT9 6BS	GSNI
Grampian Regional Council (Water Services Department)	Woodhill House, Ashgrove Road West, Aberdeen AB9 2LU	GRWD
Highland Regional Council (Water Department)	Regional Buildings, Glenurquhart Road, Inverness IV3 5NX	HRCW
Institute of Hydrology	Maclean Building, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB	IH
Lothian Regional Council (Department of Water and Drainage)	8 Cockburn Street, Edinburgh EHI INZ	LRWD
Newcastle and Gateshead Water Company	PO Box 10, Allendale Road, Newcastle-upon-Tyne NE6 2SW	NGWC
North of Scotland Hydro-Electric Board	16 Rothesay Terrace, Edinburgh EH3 7SE	NSHE
Strathclyde Regional Council (Water Department)	419 Balmore Road, Glasgow G22 6NU	SRCW
Tayside Regional Council (Water Services Department)	Bullion House, Invergowrie, Dundee DD2 5BB	TRWS

Tiute	Published	Prece (inclusive of second class postage within the UK)	
Yearbooks:		Loose Leaf	Bound
Yearbook 1981	1985	610	612
Yearbook 1982	1985	$¢ 10$	[12
Yearbook 1983	1986	612	$615{ }^{\circ}$
Yearbook 1984	1986	612	¢15
Yearbook 1985	1987	612	[15
Yearbook 1986	1988	612	(15
Yearbook 1987	1989	612	615
Yearbook 1988	1989	C12	615
Repors:			
Hydrometric Register and Statistics 1981-5	1988	¢12	615
The 1984 Drought ${ }^{2}$	1985		612

The Yearbooks are available as bound volumes or as sets of pre-punched sheets for insertion in a ring binder designed to hold the five yearbooks in each publication cycle together with the five-yearly cata-
logue of summary statistics. The ring binder for 1981-5 may be purchased for $\{40$ to include the 1981 to 1985 Yearbooks and the statistical volume. The ring binder to hold the Yearbooks for 1986-90 may be purchased for \mathcal{L}.

All the Hydrological data UK publications and the ring binder may be obtained from:-

Institute of Hydrology
Maclean Building
Crowmarsh Gifford
WALLINGFORD
OXFORDSHIRE OX 10 8BB
Telephone: Wallingford (0491) 38800
Enquiries or comments regarding the series, or individual publications are welcomed and should be directed to the Surface Water Archive Office at the above address.

I. Hydrometric Register and Statistics 1981-5

This reference volume includes maps, tables and statistics for over 800 river basins and 150 representative observation boreholes throughout the United Kingdom. The principal objective of the publication is to assist data users in the selection of monitoring sites for particular investigations and to allow more effective interpretation of analyses based upon the raw data. To this end, concise gauging station and catchment descriptions are given for the featured flow measurement stations - particular emphasis is placed on hydrometric performance, especially in the high and low flow ranges, and on the net effect of artificial influences on the natural flow regime.

Summary hydrometric statistics, for each of the years 1981-5, are provided alongside the corresponding long term averages, or extremes, to allow the recent variability in surface and groundwater resources to be considered in a suitable historical context.

The 1984 Drought

This first, occasional report in the Hydrological data UK series concerns the 1984 drought. The report documents the drought in a water resources frame.work and its development, duration and severity are examined with particular reference to regional variations in intensity. Assessments are made of the likely frequency of occurrence of the drought and its magnitude is considered both in the perspective provided by historical records of rainfall and runoff, and in the context of the recent somewhat crratic climatic behaviour.

[^12]
ABBREVIATIONS

Note: The	following abbreviations do not purport to	NW	North West
represent	any standardised usage; they have been	O/f	Outfall or outflow
developed	for use in the Hydrological data CK series	ORS	Old Red Sandstone
of publica	ions only. Where space constraints have	Pk	Park
required	alternative forms of these conventional	Pop	Population
abbreviati	ns to be used, the meaning should be	POR	Period of record
evident fr	m the context.	PS	Pumping station
		Pt	Pont
AOD	Above Ordnance Datum	PWS	Public water supply
Bk	Beck	Rb	Right hand river bank
Blk	Black		(looking dounstream)
Br	Bridge	R/c	Racecourse
Brk or B	Brook	. RCS	Regional communications system
$\mathrm{Br} n$	Burn	Rd	Road
Ch	Channel	Res	Reservoir
C/m	Current meter(ing)	Rh	Right hand
Com	Common	S	South
Dk	Dike	SAGS	Stour Augmentation Groundwater
Dr or D	Drain		Scheme
D/s	Downstream	Sch	School
E	East	S-D	Stage-discharge relation
Frm	Farm	SDD	Scottish Development Department
G/s	Gauging station	SE	South East
Gw	Groundwater	Sl	Sluice
HEP	Hydro-electric power	Sp	Spring
Ho	House	St	Stream
Hosp	Hospital	STW	Sewage Treatment Works
L	Loch or lake	SW	South West
Lb	Left hand river bank	TS	Transfer scheme
	(looking downstream)	LS	Ultrasonic gauging station
Ln	Lane	U/s	Upstream
Lst	Limestone	W	West
Ltl	Little	W'course	Watercourse
MAF	Mean annual flood	Wd	Wood
Mkt	Market	Wht	White
M1/d	Megalitres per day	Wr	Weir
Mnr	Manor	WRW	Water reclamation works
N	North	Wtr	Water
Nich	Notch	WTW	Water treatment works

Natural
Environment
Research

[^0]: Meteorological Office, Advisory Services, London Road, Bracknell,
 Berks RG12 2SZ Tel. (0344) 420242

[^1]: - The Meterological Office designates as 'very rare' all daily ranfall totals with return periods assessed as greater than 160 years.

[^2]: * South West Water had operational responsibility for the gauging station prior to the transfer of hydrometric activities to the National Rivers Authority (see page 188).

[^3]: - As a coosequence of leap years the runoff and mean flow percentage may not be identical.

[^4]: ${ }^{1}$ Flood Studies Repori 1975. Natural tinvironment Research Council (5 vols.).

[^5]: Station and catchment description
 Velocity-area station with rock control Stage monitoring site reloceted in 1950 and 1970: lowest fiows not relable in tartier record Peak flow ecord commences 1971. US gauge undergoing calibration Sig. exports for PWS and CEGB: minimum flow maintainea by Crywedog releases. Naturalised flow series accommodates major usages. Diverse catchment. wet western 50\% from impermeable Palaeozoic rocks and river gravels: drier northern 50% from Drift covered Carboniferous to Liassic sandstonos and marls. Moorland. forestiy. mixed farming

[^6]: Factors affecting flow regime

 - Anstracion for public water supplies
 - Augmentation from effluent reiurns

[^7]: 1988 runoff is 111% of previous mean ranfall 106\%

[^8]: Factors affec:ing flow regime R G I
 Station iypo: C
 1988 runoff is 105% of previous mean raintall 94%

[^9]: Factors affectung flow regime. S

[^10]: the sugoty celates ecciuntroiv te the veors whem．

[^11]: - Oste refer to the period 24/3/88 to 28/11/88 only

[^12]: - Bound edinons of the 1983 and 1984 Yearbooks are in very limited supply.

