ih
 Hydrological data UK

1987 YEARBOOK

INSTITUTE OF HYDROLOGY•BRITISH GEOLOGICAL SURVEY

HYDROLOGICAL DATA UNITED KINGDOM

1987

YEARBOOK

HYDROLOGICAL DATA UNITED KINGDOM

1987 YEARBOOK

An account of rainfall, river flows, groundwater levels and river water quality
January to December 1987

© 1989 Natural Environment Research Council
 Published by the Institute of Hydrology, Wallingford, Oxon OX10 8BB.

FOREWORD

In April 1982, care of the United Kingdom national archive of surface water data passed from the Department of the Environment's Water Data Unit (which was disbanded) to the Institute of Hydrology (IH). In a similar move, the Institute of Geological Sciences, subsequently renamed the British Geological Survey (BGS), took over the national groundwater archive. Both IH and BGS are component bodies of the Natural Environment Research Council (NERC). The BGS hydrogeologists are located with IH at Wallingford and close co-operation between the two groups has led, among other things, to the launching - in 1985 - of a new series of yearbooks and reports dealing with nationally archived surface and groundwater data and the use made of them. The work is overseen by a steering committee with representatives of Government departments and the water industry from England, Wales, Scotland and Northern Ireland.

The published series - Hydrological data $U K$ - includes an annual yearbook and, every five years, a catalogue of river flow gauging stations and groundwater level recording sites together with statistical summaries. These six volumes of the 5 -year cycle are available individually but are also designed to be inserted in a ring binder. Further details of these arrangements are given on page 187.

The series - but not the binder - also includes occasional reports dealing with significant hydrological events and analyses.

Professor W.B. Wilkinson
Director, Institute of Hydrology

CONTENTS

Page
INTRODUCTION 1
SCOPE AND SOURCES OF INFORMATION 2
Rainfall and climatological data 2
HYDROLOGICAL REVIEW 3
Summary 3
Rainfall 3
Evaporation and soil moisture deficits 7
Runoff 8
Groundwater 17
1987 Hydrological diary 19
THE OCTOBER 1987 FLOOD ON THE RIVER TYWI 23
RIVER FLOW DATA 31
Computation and accuracy of gauged flows 31
Scope of the flow data tabulations 31
Gauging station location map 36
Daily flow tables 38
Monthly flow tables 89
THE SURFACE WATER DATA RETRIEVAL SERVICE 129
List of surface water retrieval options 129
Concise register of gauging stations 140
Summary of archived data 146
GROUNDWATER LEVEL DATA 155
Background 155
The observation borehole network 155
Measurement and recording of groundwater levels 155
Observation well hydrographs 1984-87 157
Register of selected groundwater observation wells 157
Network changes 157
Index borehole location map 159
Hydrographs of groundwater level fluctuations 160
The Register 166
THE GROUNDWATER DATA RETRIEVAL SERVICE 171
List of groundwater retrieval options 171
SURFACE WATER QUALITY DATA 175
Background 175
Data retrieval 175
Scope of the water quality data tabulations 175
Water quality data tables 178
DIRECTORY OF MEASURING AUTHORITIES 183
PUBLICATIONS in the Hydrological data UK series 187
ABBREVIATIONS 188

This volume is the seventh Yearbook in the Hydrological data UK series and the second volume in the second five-year publication cycle (1986-90).

The 1987 Yearbook represents the twenty-eighth edition in the series of surface water publications which began with the 1935-36 Surface Water Yearbook. As a result of the incorporation of groundwater data in the Yearbook, this volume is also the twelfth edition in the series of groundwater data publications which began with the 1964-66 Groundwater Yearbook.

Apart from summary information, surface water and groundwater data on a national basis were published separately prior to the introduction of the Hydrological data UK series. In common with the earlier editions, the 1987 Yearbook brings together the principal data sets relating to river flow, groundwater levels and areal rainfall throughout the United Kingdom. Also included are water quality data for a selection of monitoring sites throughout the UK.

A description is given of the surface water and groundwater archives together with the data retrieval facilities which complement this volume.

October 1987 was notable for several remarkable meteorological and hydrological events. Details of these are given in the Hydrological Diary and a feature article is devoted to a major flood event on the River Tywi in Dyfed.

Publication of river flow data for Great Britain started with the series of Surface Water Yearbooks. The first edition, which was published in 1938 for the water year (October-September) 1935-36, also included selected data for the previous fifteen years; the edition for 1936-37 followed in 1939. Both these publications were prepared under the direction of the Inland Water Survey Committee. Assisted by the Scottish Office, the Committee continued to publish hydrological data after the Second World War; the Yearbook for the period 1937-45 was published as a single volume in 1952. Due to economic stringency, the Survey was suspended in 1952 for a period of two years but was then reformed as the Surface Water Survey Centre of Great Britain. A Yearbook covering the years 1945-53 was published in 1955.

In 1964 the Survey was transferred to the Water Resources Board where it remained until the Board was disbanded in 1974. Yearbooks were published in collaboration with the Scottish Office for the water years 1953-54 to 1965-66; thereafter information for the five calendar years 1966 to 1970 was published in one volume in 1974. The work of collecting and publishing national surface
water information then passed to the newly created Water Data Unit of the Department of the Environment. To mark the inclusion of the first records from Northern Ireland, and in recognition of the move away from single year volumes, the publication series was renamed 'Surface Water : United Kingdom'. Two volumes of Surface Water : United Kingdom, covering the years 1971-73 and 1974-76 were published jointly by the Water Data Unit, the Scottish Development Department and the Department of the Environment for Northern Ireland.

Following the transfer of the Surface Water Archive to the Natural Environment Research Council in 1982, the final edition of Surface Water : United Kingdom, for the years 1977-80, was prepared by the Institute of Hydrology at the request of the Water Directorate of the Department of the Environment, and published in 1983.

The 1981 and 1982 Yearbooks were prepared concurrently and were, in 1985, the first Yearbooks published by the Natural Environment Research Council. Further Yearbooks - the editions for 1983, 1984, 1985 and 1986 - were published over the following three years.

A compilation of 'Groundwater levels in England during 1963', which was produced by the Geological Survey of Great Britain prior to its incorporation into the Institute of Geological Sciences, was the precursor to the publication of groundwater level data on a national basis. The more formal Groundwater Yearbook series was instigated by the Water Resources Board which published the inaugural edition, and a further volume for 1967 , both covering England and Wales. In 1975 a third Yearbook, for 1968-70, was published by the Water Data Unit. The Groundwater: United Kingdom series was introduced in 1978 with the production of the 1971-73 volume, also published by the Water Data Unit.

Following the transfer of the Groundwater Archive to the Institute of Geological Sciences (now the British Geological Survey), the second edition of Groundwater: United Kingdom, covering the period 1974-80, was prepared by the Institute of Hydrology at the request of the Water Directorate of the Department of the Environment. Subsequently, groundwater level data have been included in the Hydrological data UK publications.

The Natural Environment Research Council acknowledges and extends its appreciation to all who have assisted in the collection of information for this publication.

SCOPE AND SOURCES OF INFORMATION

The format of the 1987 Yearbook follows that of the 1986 edition in the Hydrological data UK series. The rainfall, runoff and groundwater review material compiled in separate sections prior to 1986 - has been brought together into a single hydrological review of the year. Data presentation in the water quality section is consistent with the established Yearbook pattern - data are given both for the featured year and, to provide a suitable perspective, for the preceding period of record.

Emphasis is placed upon ready access to basic data both within the yearbook and through the complementary data retrieval facilities.

A companion publication to the individual Yearbooks - the 'Hydrometric Register and Statistics' volume provides a comprehensive reference source for hydrometric information which does not change materially from year to year; the first edition - for 1981-5 - was published in 1987, see page 187.

The Yearbook contents have been abstracted primarily from the Surface Water and Groundwater Archives. Water quality data have been provided from the Harmonised -Monitoring Archive (see page 175) maintained by Her Majesty's Inspectorate of Pollution (Department of the Environment).

Responsibility for the collection and initial processing of the data featured in this volume currently rests mainly with the ten Water Authorities in England and Wales, the seven River Purification Boards- in Scotland and the Department of the Environment (NI) in Northern - Ireland. These organisations also supplied valuable material relating to significant hydrological events.

The Government's current legislative programme provides for the creation of water utility PLCs to take over the Water Authority's responsibilities for water supply and sewerage and for the setting up of a new body, the National Rivers Authority, to operate their regulatory and river management functions. Responsibility for most hydrometric activities will pass to the NRA (see page 183).

The majority of the rainfall data, and some of the material incorporated in the hydrological review, has been provided by the Meteorological Office. For historical comparisons of the rainfall over England and Wales, a data set based upon the homogeneous series derived by the Climatic Research Unit of the University of East Anglia has been used.

Additional material has been provided by the Geological Survey of Northern Ireland, the Borders Regional Council and by research bodies and public undertakings.

Most of the rainfall data published in the Hydrological data UK series are in the form of monthly rainfall totals for catchment areas. For details of monthly and annual rainfalls associated with individual raingauges reference should be made to the 'RAINFALL' series published regularly by the Met. Office. Brief details of the contents and availability of this publication, together with a short description of other rainfall and climatological data sets published by the Met. Office, are given below.

Some slight variations from the contributors' figures may occur; these may be due to different methods of computation or the need for uniformity in presentation.

Rainfall and Climatological Data

The Meteorological Office maintains the national archives of rainfall and climatological data at its headquarters at Bracknell. Specific items, such as daily and hourly rainfalls from gauges and radar (from the PARAGON system) may be obtained by application to the Advisory Services Branch Met. 0 . 3b. Summaries of the data are also published regularly and a list of current titles is given below:

1. Monthly and Annual Totals of RAINFALL 19_ for the United Kingdom.
This contains the values for some 5000 raingauges and is available one year after the title year at a cost of $£ 6.00$.
2. Snow Survey of Great Britain 19_This contains the daily and monthly reports of snow conditions from selected stations covering the winter and costs $£ 3.00$.
3. Monthly Weather Report

This is published monthly and contains climatological means for more than 550 UK observing
stations, in addition an introduction and annual summary are produced yearly. The publication should be available 6 to 9 months after the month concerned, costs around $£^{2}$ and is only available from Her Majesty's Stationery Office (HMSO) or their stockists.
4. M.O.R.E.C.S. (Meteorological Office Rainfall and Evaporation Calculation Service).
This is a weekly issue of maps and tables of evaporation, soil moisture deficit, effective rainfall and the weather variables used to calculate them. The data are used to provide values for 40 km squares and various maps and tables are available according to customer requirements.

Further information about these and other publications may be obtained from:

[^0]
Summary

The United Kingdom rainfall total for 1987 was close to the long term average but regional variations were significant. Compared to an average year there were no notable rainfall deficits at the regional scale but, generally, the distribution of rainfall throughout the year was not particularly beneficial from a water resources viewpoint. The seasonal variation in rainfall was subdued - especially in relation to the volatility which characterised the previous 15 years with spring, autumn and winter precipitation totals all around the mean. Considerable within-season variability was a feature of the rainfall distribution; this had a substantial impact on the availability of runoff to sustain river flows and infiltration to replenish aquifers. With the exception of the north of Scotland, March, June and, especially, October tended to be very wet. Rainfall in most of the remaining months was below average. Precipitation was particularly deficient early and late in the year when - due to the low evaporation rates - it is hydrologically most effective. Consequently total runoff in some areas was below expected values and some new annual runoff minima were established, especially in Scotland. By contrast, very high, often unprecedented, runoff totals were recorded in many parts of East Anglia and southern England; in part this reflects the impact of a sequence of vigorous low pressure systems often accompanied by thundery activity. This very unsettled period culminated in October which will be remembered as one of the most remarkable months - in hydrometeorological terms - of modern times. The storm which tracked across southern England on the night of the 15/16th was of an extraordinary ferocity and the scale of the resulting damage and disruption has very few historical parallels. Fluvial flooding associated with the storm was however minor by comparison with that resulting from the passage of a subsequent low pressure system which produced a remarkable flood in South Wales, on the 19 th, and widespread floodplain inundation throughout western Britain. Two days later serious flooding was also experienced in Northern Ireland. Although not comparable with the magnitude of these major hydrological events, a number of intense localised storms produced high runoff totals at irregular intervals throughout the year.

Few notable departures from the normal cyclic variation in groundwater levels were evident in 1987. Abundant infiltration to most major aquifers over the last two months of 1986 ensured that water tables generally stood at, or a little above, average levels early in 1987. The low January and February rainfall served to delay the seasonal peak in some areas but, subsequently, characteristic recessions were readily
recognisable. Notwithstanding the considerable summer rainfall, the May to October levels remained remarkably close to their respective long term averages with only patchy evidence of short term recoveries in June. By the end of the year a decidedly sluggish further rise followed the brisk increase in recharge rates through October and, entering 1988, water tables were generally a little below average.

Rainfall

Precipitation over the United Kingdom in 1987 totalled $1053 \mathrm{~mm}, 97$ per cent of the 1941-70 average, with the England and Wales total falling only 6 mm below the long term mean. Scotland was drier; the annual total being 6 per cent short of the 1941-70 average bringing to an end a notable sequence of wet years - each of the previous ten years registers in the upper quartile of a record extending back to 1869; the mean for the decade 1977-86 is almost 200 mm greater than the overall average.

The rainfall pattern throughout the United Kingdom, relative to the 1941-70 average, is illustrated in Figure 1. Comparatively dry areas may be identified in northern Scotland - especially the Cairngorms - and in the Pennines. An exaggeration in the normal rain shadow effect may be detected in some areas - for instance to the east of the Brecon Beacons and Exmoor. Unlike 1986, the normal west to east rainfall gradient over Great Britain was somewhat subdued in 1987 reflecting the relative wetness of a number of eastern districts. Parts of East Anglia, for instance, recorded over 130 per cent of the annual average. Although this represents only about an additional 100 mm of rainfall, it is particularly significant in a region where potential evaporation, on a yearly basis, closely equates to the average annual rainfall. Rainfall over the major aquifers, apart from the Chalk of Wessex, was generally a little above average and annual totals within 10 per cent of the mean typified the important reservoir gathering grounds in the Pennines and in Wales. Precipitation was more limited in the SouthWest and in parts of the Lake District where there was a continuation of the marked degree of spatial variability which has been evident over the last decade or so.

Actual rainfall totals for 1987 are illustrated in Figure 2. Although the normal regional differences may be readily discerned, the overall range in rainfall totals is somewhat restricted as compared to a typical year and forms a particularly marked contrast with 1986. In 1987 few districts received below 600 mm of rainfall - the area to the south-west of the Wash

Figure 1. 1987 Annual rainfall as a percentage of the 1941-70 average.

Figure 2. Annual rainfall in 1987.

TABLE 1 1987 RAINFALL IN MM AND AS A PERCENTAGE OF THE 1941-70 AVERAGE

1987						m		,	n		\sim		D	Year	Oct-Mar Rainfall 1986/87	Apr-Sep Rainfall 1987
United	mm	45	69	111	64	55	102	85	87	94	163	90	88	1053	689	487
Kingdom	\%	43	88	158	92	73	141	97	84	92	154	80	78	97	118	96
England and	mm	30	59	89	64	46	105	73	67	65	166	79	63	906	540	420
Wales	\%	35	91	151	110	69	172 .	100	74	78	200	81	70	99	113	97
Scotland	mm	72	88	153	68	74	98	109	120	150	161	113	141	1347	983	619
	\%	53	85	166	76	81	107	97	93	109	108	80	90	94	126	95
Northern	mm	49	63	104	47	41	94	72	120	88	136	83	67	964	609	462
Ireland	\%	47	84	149	69	56	119	77	117	82	127	81	59	88	106	88
North West	mm	44	76	140	59	57	138	126	107	119	182^{*}	89	115	1252	818	606
Water	\%	39	94	194	77	69	166	122	86	97	154	74	96	103	131	102
Northumbrian	mm	60	53	101	72	46	101	95	91	68	122	85	64	958	482	473
Water	\%	75	80	194	131	72	166	123	90	86	163	91	85	109	109	108
Severn Trent	mm	24	46	76	63	39	116	50°	63	53	133	65	43	771	427	384
Water	\%	35	87	146	121	61	207	77	78	79	205	82	61	100	110	100
Yorkshire	mm	35	48	92	62	39	104	71	72	64	121	64	55	827	479	412
Water	\%	45	75	174	111	64	179	101	80	89	175	72	74	99	112	101
Anglian	mm	24	33	50	45	49	93	69	85	41	121	49	26	686	303	382
Water	\%	46	79	125	113	104	190	121	133	79	235	79	49	113	101	124
Thames	mm	15	37	59	53	52	93	63	45	41	164	64	28	714	361	347
Water	\%	24	79	128	i15	93	179	105	64	66	256	88	42	101	101	101
Southern	mm	23	43	76	55	40	84	87	54	41	208	78	35	824	461	361
Water	\%	30	75	146	115	73	168	147	74	58	267	83	43	104	105	101
Wessex	mm	16	66	78.	68	32	82	45	26	50	160	75	50	748	505	303
Water	\%	19	112	133	126	47	152	73	32	63	195	77	56	86	107	76
South West	mm	26	99.	108	91.	49	97	61	28	67	231	127	97	1081	750	393
Water	\%	20	100	129	128	58	149	73	28	64	204	95	72	91	109	77
Welsh	mm	'37	102	140	85	47	125	74	65	105	250	128	137	1295	906	501
Water	\%	27	106	161	99	52	152	78	55	84	194	89	95	97	123	84
Highland	mm	82	109	181	64	91	91	124	108	202	161	150	171	1534	1211	680
R.P.B.	\%	50	82	159	56	88	83	98	73	128	87	89	87	89	126	89
North East	mm	47	68	106	73	63	94	110	69	59	108	77	54	928	508	468
R.P.B.	\%	52	92	171	120	82	134	120	65	68	111	75	53	91	96	95
Tay	mm	63	63	116	64	56	107	75	92	126	149	75	122	1108	786	520
R.P.B.	\%	53	69	141	85	59	129	73	78	110	122	63	91	88	118	88
Forth	mm	74	70	115	65	53	105	66	113	. 104	135	70	120	1090	757	506
R.P.B.	\%	75	91	167	96	63	140	67	97	96	127	65	127	98	133	92
Clyde	mm	84	104	186	71	86	97	117	153	194	202	129	193	1616	261	718
R.P.B.	\%	52	92	177	69	89	94	90	108	111	110	77	104	97	138	96
Tweed	mm	67	44	103	76	57	103	96	116	70	126	79	86	1023	577	518
R.P.B.	\%	72	64	178	125	75	151	108	102	75	143	75	143	96	114	103
Solway	mm	66	91	176	75	58	127	137	192	140	- 199°	121	168	1550	997	729
R.P.B.	\%	47	98	193	85	63	. 141	125	148	93	138	83	111	. 109	130	110
Western Isles	mm	82	96	189	49	80	63	118	120	147	186	122	154	1406	1001	577
Orkney and Shetland	\%	60	93	205	59	118	83	140	128	117	129	89	101	108	131	109

being the most extensive - and annual totals of less than 550 mm were confined to a small area in the central Thames Valley; it is unusual for the minimum to occur so far west. Annual rainfalls for individual raingauges did not reach the notable totals registered in recent years -5000 mm being recorded in 1986 - and raingauge catches exceeding 3000 mm were confined to the mountains of Wester Ross, certain peaks in the Lake District and to Snowdon where the Crib Goch site recorded 4322 mm .

Table 1 provides a breakdown of monthly and half-yearly rainfall totals in 1987 both on a countrywide basis and according to the major administrative divisions within the water industry (see frontispiece). On average, rainfall is fairly evenly distributed throughout the year but, in individual years, large month by month variability may be expected; such was the case in 1987. January, for instance, was the third driest this century for the UK as a whole and the combined England and Wales rainfall total for January and February was the lowest since 1963 when similar Arctic conditions were experienced at the beginning of the year. June registered its fifth highest England and Wales rainfall total this century but, in precipitation terms, was widely eclipsed in October when parts of southern and western Britain recorded three times the mean monthly rainfall. October 1987 ranks as the sixth wettest, for England and Wales as a whole, in a rainfall series extending back over 250 years. In Northern Ireland, October was the wettest for twenty years and in Scotland, although the monthly rainfall was only marginally. above average, several 'very rare' daily totals were recorded (see Table 2). Autumn rainfall in 1987 was
unevenly distributed in time and, from the end of October, dry conditions prevailed throughout England, Wales and Northern Ireland, although Scotland was a little wetter than average. Similarly, total autumn (September-November) precipitation was a little greater than the long term mean in Scotland. Nonetheless, only 1968 and 1975 recorded lower totals in the preceding twenty years and, remarkably, autumn rainfall since 1975 has been some 28 per cent greater than the 1869-1975 mean.

Evaporation and Soil Moisture Deficits

Although climatological conditions, amounts of sunshine in particular, were not conducive to high rates of evaporative loss during much of 1987, the distribution of rainfall throughout the year mitigated against the development of large soil moisture deficits (SMDs) and allowed transpiration to continue for longer than normal. Thus actual evapotranspiration was significantly above average throughout most regions.

Figure 3 illustrates the annual potential evaporation (PE) total together with the corresponding percentages of the 1956-75 average for a network of climatological stations throughout the UK (values are not given where the historical record is too short or includes significant gaps). Little year on year variation occurs in PE totals and the majority, in 1987, fell within 10 per cent of the average. Spatial variations are more interesting and, although few clear patterns may be discerned, the contrast between PE totals in the South West, which experi-

TABLE 2 VERY RARE' DAILY RAINFALL TOTALS IN 1987

Date (Rain-day)	Station Number	Name	County	Grid Reference	Amount (mm)	Return Period (1 in X years)*
17.07 .87	313494	Brighton, Lewes Rd	East Sussex	TQ 320061	E 95	190
22.08 .87	99828	Elford, The Rectory	Staffordshire	SK 183104	85.0	200
23.08 .87	94145	Fradley Junction	Staffordshire	SK 142140	82.2	170
23.08 .87	148676	Heckington	Lincolnshire	TF 144443	80.1	160
23.08.87	156677	Holbeach	Lincolnshire	TF 355241	86.3	220
23.08 .87	156709	Holbeach STW	Lincolnshire	TF 358258	115.0	>500
21.10 .87	942279	Ballylane STW	Armargh	IH 965352	87.0	160
25.10 .87	703556	Inverailort	Highland	NM 764816	117.0	170
25.10 .87	719395	Rhum: Kinloch	Highland	NM 402996	150.5	520
31.12 .87	650872	Abington	Strathclyde	NS 932230	125.0	1350

[^1]

Figure 3. Potential evaporation in 1987-in mm and as a percentage of the long term average.
enced a relatively sunny summer, and East Anglia where wet and cloudy conditions prevailed, is notable - in a typical year the PE totals in both regions tend to be very similar.

Over the last dozen years soil moisture deficits have displayed rather greater variability than is characteristic of the historical record. For example, relative to average conditions, maximum deficits tended to be very high in 1983 and 1984 but rather modest in the ensuing two years. In 1987, maximum SMDs over large parts of the United Kingdom were similar to 1985 and 1986 but the build-up and decline in deficits was rather more dramatic. Both regional and temporal variations in soil moisture were far from typical and the dates of peak deficits showed little spatial coherence. In some areas monthly, and weekly changes were of greater significance than the normal seasonal cycle and the below average deficits throughout much of the summer allowed actual evaporation (AE) to closely equate to PE for a large part of the year. The normal spatial pattern of maximum deficits obtaining throughout the English lowlands did not become established although maximum values, in excess of 120 mm , did obtain in coastal districts of southern England and in the Isle of Wight. The large deficits which normally
characterise the late summer and early autumn in East Anglia did not fully develop in 1987 as a consequence of the plentiful, if spatially very variable, rainfall especially in June and October. Thus, parts of Norfolk and Suffolk, for instance, recorded maximum SMDs appreciably lower than those registered in north-east Scotland. Many climate stations in Scotland recorded their peak SMD for the year in late May whereas little spatial consistency was evident further south. Some areal coherence was achieved in September, however, when significant deficits, in England and Wales, existed around the end of the month. October witnessed an extremely sharp decline in deficits such that, except for a few isolated localities, soils had returned to field capacity by the first week in November. The build-up and decline in SMDs is illustrated in Figure 4 which also shows the variation in PE and AE for three MORECS grid squares over a five-year period.

The difference between catchment rainfall and runoff is known as the 'loss'. Because of the natural and artificial storages available in most catchments, annual 'losses' rarely equate closely to yearly totals of actual evaporation. However, where baseflow is limited and the net effect of abstraction and discharges is negligible, the loss may be considered a reasonable guide to the annual evapotranspiration total provided that - as in 1987 - SMDs had been sensibly eliminated by the end of the previous year. Catchment losses in 1987 (see Table 3) were generally below average in most regions apart from East Anglia and runoff as a percentage of rainfall was somewhat higher than the period of record average. In East Anglia the diminished hydrological effectiveness of the rainfall may be more marked than the data suggest due to the counterbalancing influence of enhanced baseflows arising out of the substantial rainfall in the last three months of 1986 . Those rivers almost totally dependent on spring sources, for instance the River Test in Hampshire, generally registered below average losses for 1987. Caution needs to be exercised when interpreting the computed losses in high rainfall areas. In the Cefn Brwyn catchment, for instance, the annual loss - which was exceptionally low in 1987 - is very sensitive to relatively small systematic errors in the assessment of rainfall and runoff totals.

Runoff

Runoff in 1987 for the United Kingdom totalled approximately 650 mm . This is marginally below the 1961-86 average, the first time since 1978 that annual runoff has been below the long term mean. Figure 5 confirms the general tendency towards greater runoff over the last decade; average runoff over the period 1978-87 has been about 15 per cent greater than the average for the preceding twenty years.

Figure 4. Potential and actual evaporation with soil moisture deficits for three MORECS squares.
(The location of the featured grid squares is shown on the map).

TABLE 31987 WATER BALANCES FOR SELECTED CATCHMENTS IN GREAT BRITAIN

Station Number	River and Station Name			Rainfall	Runoff	Loss	Runoff as \% of Rainfall		Abstractions* and
							1987	Ita	Discharges
12001	Dee	Woodend	1987 mm	976	723	253	74	74	N
			as a \% of lta	87	86	89			
18001	Allan Water	Kinbuck	1987 mm	1216	871	345	71	72	N
			as a \% of lta	92	90	96			
21012	Teviot	Hawick	1987 mm	1212	836	376	68	68	N
			as a \% of lta	103	103	102			
24004	Bedburn Beck	Bedburn	1987 mm	946	626	320	66	58	N
			as a \% of lta	108	123	87			
28008	Dove	Rocester Weir	1987 mm	1016	673	343	66	56	G E
			as a \% of lta	97	113	76			
30001	Witham	Claypole Mill	1987 mm	682	241	441	35	29	P
			as a \% of lta	108	128	100			
34003	Bure	Ingworth	1987 mm	788	278	510	35	31	G I
			as a \% of lta	116	130	109			
37001	Roding	Redbridge	1987 mm	727	281	446	38	31	SEI
			as a \% of lta	116	143	104			
39007	Blackwater	Swallowfield	1987 mm	720	309	411	42	36	E
			as a \% of lta	100	119	90			
42004	Test	Broadlands	1987 mm	711	318	393	44	42	N
			as a \% of 1ta	88	93	84			
50001	Taw	Umberleigh	1987 mm	1066	617	449	57	60	S PE
			as a \% of lta	92	88	97			
55008	Wye	Cefn Brwyn	1987 mm	2357	2186	171	92	84	N
			as a \% of Ita	96	105	44			
57004	Cynon	Abercynon	1987 mm	1679	1211	468	72	68	S E
			as a \% of Ita	92	97	80			
62001	Teifi	Glan Teifi	1987 mm	1291	964	327	74	74	S P
			as a \% of lta	95	96	93			
73005	Kent	Sedgwick	1987 mm	1825	1416	409	77	73	N
			as a \% of lta	105	111	90			
84005	Clyde	Blairston	1987 mm	1124	784	340	69	65	
			as a \% of lta	97	104	85			
$\underline{\text { lta }=\text { long term average }}$						For an	planat	he codes	letters see

Figure 5. Annual rainfall and runoff totals for the United Kingdom, 1961-87.

Figure 6 provides a guide to runoff in the United Kingdom for 1987 expressed as a percentage of the 1961-1986 average. 1961 has been selected as the start year for the first standard runoff period in the United Kingdom to allow direct comparisons to be made with rainfall when the Meteorological Office introduces the next thirty-year standard rainfall period (1961-90). In recognition of the growth of the primary network of flow-measurement stations,
isopleths for Northern Ireland are featured on the runoff map for the first time. A significant proportion of the gauging stations have records in excess of 15 years allowing a reasonable estimate of the long term average to be determined. The runoff map is least precise in northern Scotland and in the Welsh mountains where the monitoring network is sparse; insufficient flow data exist for the Scottish islands to allow the drawing of isopleths with any confidence. A feature of Figure 6 is the marked degree of spatial variability throughout the United Kingdom; 1987 runoff ranged from less than 80 per cent of the average in parts of Somerset and northern Scotland to more than 200 per cent in parts of East Anglia. In general, the majority of catchments in England registered above average runoff, whilst in Wales and Scotland runoff was predominantly below average. This represents an interesting contrast to the exaggerated runoff gradient which characterised 1986. The rather unusual runoff conditions experienced during 1987 were exemplified in the Anglian Water Authority area where nearly a third of all catchments - with ten or more complete years of record established new maximum annual runoff totals. The frequency of high flow events in the South-East

Figure 6. A guide to 1987 runoff expressed as a percentage of the 1961-86 average.
during 1987 was somewhat greater than that of recent years. A notable example occurred north-east of London where the Cobbins Brook, which has a 17year flow record, registered peak discharges in July and October which each surpassed the previous maximum; the July peak was over two and a half times the previous maximum. A marked contrast to the abundant runoff in the English lowlands may be found in northern Scotland where some catchments registered their lowest annual runoff on record. For instance the River Naver in the Highlands, which has a 10 -year record, registered a 1987 runoff total about 15 per cent less than its previous minimum.

Whilst an abnormally high number of spates was typical only of the English lowlands in 1987, some evidence points to a tendency for flood events to be somewhat larger and more numerous during the 1980 s as compared with the previous decade. However, the differences with earlier periods are less significant and there is no clear evidence to suggest that extreme floods in the UK - on a par with the Tywi event (see page 23) - are occurring with greater frequency. This inference is consistent with similar patterns recognised for other river systems in western Europe ${ }^{1}$. However, the contrast between the last ten years and the preceding $10-15$ years assumes a particular importance in the UK where the average length of river flow records is less than 20 years and the general perception of hydrological extremes is heavily influenced by the post-1960 period.

The distribution of runoff throughout the year is illustrated in Figure 7 (a-d). Daily and monthly hydrographs are shown for individual gauging stations in England, Scotland, Wales and Northern Ireland. The monthly mean flows are shown together with the corresponding maximum and minimum flows for the preceding record. The 1987 trace is shown as a solid black line and the solid blue line represents the 30 -day running mean for the pre-1987 record. In a normal year, periods of reduced flow can be expected during the summer months when evapotranspiration rates are at their maximum. Whilst the overall range of flows experienced during 1987 was significantly greater than in a typical year, the expected seasonal variations in runoff were little in evidence in most regions. Although flows began a general decline in early April, a sequence of depressions crossing the UK during the summer months sustained predominantly higher than average summer discharges. Exceptions to this pattern included South Wales and South-West England where August, in particular, was dry and flows over the summer months remained somewhat below average. Substantial within-season flow variability was, however, a feature in all areas. Generally, minimum flows - for the time of year - were closely approached during late January and early February and again in late November and early December in the majority of catchments where there is limited
baseflow support. By contrast, significant high flow events were registered in the late March/early April period and during October throughout most of the UK.

The flow duration curves illustrated in Figure 7 allow the proportion of time that river flows fell below a given threshold to be identified. Low flows (those flows which are exceeded for 95 per cent of the time) were in general higher than average - and significantly higher in those regions where groundwater comprises a significant component in runoff. Since the early 1970s, low flows have displayed considerable variability and the 95 per cent exceedance flow has often - as in 1987 - departed substantially from the long term average. Apart from the South-East, where frequent and intense localised storms were prevalent, high flows (those flows which are exceeded for 10 percent of the time) were unexceptional being generally close to, or lower than, the period of record average.

Rivers throughout the UK were in spate during much of December 1986 and high discharges were sustained into early January. However, total runoff over the 1986/7 winter period (December-February) was below average in south-east and south-west England, south-east Wales and Northern Ireland. From the second week in January through to early February, river flows declined throughout the UK, although snowmelt caused an interruption in the recession in most areas around the 20th. The recessions were particularly prolonged in Wales, western areas of England and in Northern Ireland where the River Ravernet recorded its lowest January flow in a 15 -year record. The exceptionally low temperatures experienced during part of this period combined with the much reduced runoff gave rise to local water supply problems - see the Hydrological Diary.

Above average runoff totals typified the spring period (March-May) throughout the UK, particularly in the south of England. High discharges obtaining in late March and early April, served to counterbalance the lower than average runoff during May. By the end of the spring, reservoir levels stood close to capacity in most regions.

Except in the South-West where minor water shortages were reported as consumer demand increased through the summer, total June-August runoff was predominantly above average. Catchments in eastern England, the Midlands, Lancashire, south-east Scotland and Northern Ireland registered runoff totals which approached the highest on record. The River Trent (gauged at Colwick), recorded a summer runoff total which exceeded the previous maximum in a 29 -year record and, in southeast England, the Rivers Gipping (gauged at Stowmarket) and Turkey Brook (gauged at Albany Park) recorded their highest summer runoff in 24-year and 12-year records respectively. By and large, summer flows had more affinity with conditions in 1985 and

Figure 7(a). River flow patterns: Tay at Ballathie.

Previous record: 1883-1986
Catchment area: $9950.0 \mathrm{~km}^{2}$

Figure 7(b). River flow patterns: Thames at Kingston.

MONTHLY MEAN FLOWS

FLOW DURATION CURVES

Figure 7(c). River flow patterns: Usk at Chain Bridge.

Figure 7(d). River flow patterns: Camowen at Camowen Terrace.

1986 than in the notably dry summers of 1983 and 1984 when, in many areas August flows were only about one quarter of the corresponding flows in 1987.

During the autumn (September-November) river flows varied dramatically but, overall, runoff was above the mean throughout the UK. The majority of rivers peaked in mid-October; many recorded their highest daily mean flows for the year and some peak flows were unprecedented. Discharge rates in excess of bankfall were especially common in Dyfed where the Rivers Cothi, Gwaun, Tywi and Teifi registered their highest flows on record. The previous maxima were often superseded by a wide margin and return periods ascribed to the flood events on the 18th/19th October ranged up to $200-300$ years. Several towns and villages were affected by floodwaters - in Carmarthen flooding was particularly severe (see page 25), transport was disrupted over large areas and widespread floodplain inundation occurred. Several catchments - with river flow records in excess of 25 years - registered October runoff totals which had only been exceeded 2 or 3 times in the past. The River Teifi at Glan Teifi, registered the second highest October runoff since records began in 1959. Runoff in south-east England was also remarkable, many gauging stations recorded runoff totals which surpassed the previous October maximum by wide margins. For instance, the River Sapiston (gauged at Rectory Bridge since 1950), recorded nearly 3 times the previous highest October runoff and the October mean flow for the Pymmes Brook catchment (north-east of London) is unsurpassed, in any month, in its 16-year record.

Dry weather prevailing from late November to mid-December caused a decline in river flows. Apart from some high baseflow rivers in the South-East, flows almost everywhere approached the minimum recorded for early winter and in some cases fell below. A large measure of flow volatility was, in some areas, a feature of the December runoff especially in north-east Scotland: the River Spey (gauged at Kinrara) recorded its lowest daily mean flow for the year early in the month, only to register its 1987 maximum on the 31st. Despite significant flow variability, gauging stations in some catchments recorded December runoff totals close to the driest on record; the Taw at Umberleigh registered the second driest December in a 30 -year record. The passage of a couple of very active frontal systems late in December resulted in high runoff rates, in most regions, at the turn of the year.

Groundwater

Since the drought of 1976, when unprecedented low groundwater levels were recorded throughout both major and minor aquifers, water tables have generally stood near to average. In 1986, levels by the end of the summer also remained close to the average.

Judging from the well hydrographs, over most of England and Wales, infiltration appears to have started in November 1986 and continued to the end of April 1987: In Yorkshire and Northumbria, infiltration started in December and ended by the beginning of May, although in Humberside it appears to have continued to the end of the latter month. On the South Downs, where September rainfall was heavier, infiltration started in October. In southern Scotland, infiltration commenced in November, but seems to have ceased by the end of March.

Rainfall over England and Wales during the infiltration months (October-March) was generally fairly close to the 1941-70 mean, varying from marginally above in the Anglian and Thames Water Authority areas to 131 per cent of the average for the North West Water Authority - see Table 1. The most notable feature was the low rainfall in January, which was followed on the eastern side of the country (Northumbrian, Yorkshire, Anglian, Thames and Southern Water Authorities) by limited February rainfall. These months of low rainfall are reflected in the well hydrographs for Compton, Rockley, Ampney Crucis, Redbank, Bussels and Woodhouse Grange (Figure 13 - see page 160). At the Rockley site, the autumn and early winter rise in water level was of the order of 10 m ; a fall of some 3.5 m was consequent on the low January and February infiltration, and was followed by a recovery of about 2 m through March and April.

Peak groundwater levels normally occur at the end of winter or early in the spring, except in deep boreholes where a substantial lag between rainfall and water table response may be expected. As a consequence of the winter rainfall distribution, peak groundwater levels in 1987 were commonly delayed, often until April. In some aquifers this late peak served to emphasise the steepness of the subsequent spring recession but, by and large, water tables followed the normal monthly average into the autumn. Although summer recharge can take place where the water table is close to the ground surface and where infiltration is rapid, this does not appear to have happened to any significant extent in 1987. The well hydrograph for the Ampney Crucis site, where this phenomenon is often portrayed, shows only a slowing of the recession, probably due to the above-average June rainfall.

Towards the end of 1987, the September rainfall was generally below average, but October was very wet. The succeeding months were, by contrast, dry. Consequently, the well hydrographs show a large rise in water levels due to the October rainfall, but with either a slowing of the rise, or even a fall in levels, by the end of December.-

In the publication 'Hydrometric Register and Statistics 1981-5', a method was proposed which both permitted comparisons between groundwater levels in different observation wells and related those fluctuations to aquifer replenishment. The proce-
dure relies on a comparison between the range in groundwater levels for a particular infiltration year and the mean annual range - this is defined as the difference between the mean maximum and mean minimum levels - normally derived from at least ten years of data. By plotting the annual fluctuations as a percentage of the mean annual range for each observation site on a map of the aquifer outcrop areas, it is possible to delimit zones of high or low recharge for a particular year. Using the same methods, the apparent replenishment for the winter of $1986 / 87$ has been estimated and is shown in the Register of Selected Groundwater Observation Wells as the percentage mean annual recharge (see page 166). For the main outcrop of the Chalk and Upper Greensand aquifer, the percentage mean annual recharge is also shown areally on Figure 8;

Figure 8. Generalised percentage of the mean annual replenishment to the Chalk and Upper Greensand aquifer 1986-7.
reference to pages 166 and 167 will confirm that, generally, those areas shown as 'below mean' tended to closely approach the threshold of 85 per cent replenishment. Using the observed groundwater level fluctuations and the unit mean annual replenishment figures from Monkhouse and Richards (1982), the actual volume of recharge for the four major aquifers has been estimated and is shown in Table 4.

TABLE 4 ANNUAL REPLENISHMENT TO THE MORE IMPORTANT AQUIFERS IN ENGLAND AND WALES FOR THE YEAR 1986-87.
(Units are in $\mathrm{m}^{3} 10^{6}$. Figures in parentheses are percentages of the annual mean.)
$\left.\begin{array}{lcc}\hline \begin{array}{l}\text { Water } \\ \text { Authority }\end{array} & \begin{array}{c}\text { Mean annual } \\ \text { Replenishment }\end{array} & \begin{array}{c}\text { 1986-87 } \\ \text { Replenishment }\end{array} \\ \hline \text { Chalk and Upper Greensand aquifer }\end{array}\right]$

Lincolnshire Limestone aquifer

Anglian	86	$84(98)$
Permo-Triassic sandstones	aquifer	
Northumbrian	123	$98(80)$
North West	331	$336(102)$
Severn-Trent	528	$554(105)$
South West	205	$201(85)$
Welsh	27	$23(85)$
Wessex	39	$20(51)$
Yorkshire	301	$247(82)$
TOTAL	1554	$1479(95)$

Magnesian Limestone aquifer

Northumbrian	80	$72(90)$
Severn-Trent	40	$47(117)$
Yorkshire	127	$89(70)$
TOTAL	247	$208(84)$

Reference

1. Arnell, N.W. 1989. Changing frequency of extreme hydrological events in northern and western Europe. In: FRIENDS IN HYDROLOGY. Proc. Bolkesjoe Conference. IAHS Publication, No. 187.

1987 Hydrological Diary

Abstract

January 8th-20th: Much of Europe experienced exceptionally low temperatures when a ridge of high pressure extended southwards from an anticyclone centred over Scandinavia. Strong winds increased the chill factor and some regions experienced the lowest temperatures this century. Frozen catchments resulted in a sustained decrease in runoff at a time when water wastage was increasing rapidly due to fractured mains and other pipework. The London area was severely affected; water-tankers and stand-pipes were required to provide an effective supply to 250,000 consumers in the lower Thames Valley. Stocks in some service reservoirs, particularly in the SouthWest, Derbyshire and Wales, declined to almost zero (wastage of water was an important factor) and appeals were made to limit demand. Water-tankers were drafted into west Cornwall after a local service reservoir ran dry. A few supply reservoirs were frozen, and with drifting snow making access to several treatment works in the South difficult, the water supply situation in some areas was the worst since the drought of 1976.

The last 10 days of the month were dry in western regions of England and Wales. Runoff in these areas continued to decline and, by the end of the month, flows in a few rivers fell below their minimum recorded January discharge. For instance, the Thrushel (Cornwall), and the Gwaun (Dyfed), established new January daily mean minima - in 18-year and 19-year records respectively. Elsewhere milder weather brought a slow thaw. In parts of Northern Ireland and Scotland the ensuing increase in runoff was accelerated by rainfall and some localised flooding occurred.

February

Following heavy rainfall early in the month, a brisk decline in runoff rates soon became re-established.
As a result of limited recharge at the beginning of the year groundwater levels were significantly below the end-of-winter average except in the deeper Chalk wells where the lag between rainfall and water table response is lengthy.

March

26th-27th: An intense depression brought heavy rain and storm force winds to all areas. Many rivers recorded high flows and localised flooding was common. On the 26th the Glaslyn, in North Wales, registered a peak discharge which considerably exceeded the previous maximum. The following day many roads in highland Britain were impassable due to flooding and several rivers recorded their highest daily flow of the year. New maximum levels were established on, amongst others, the River Isla (Grampian Region) where the Grange gauging station has been operational since 1969. In Cumbria, the River Petteril also recorded a new maximum peak level whilst the daily mean flow registered on the River Cocker was the highest in its 10 -year record.

April

2nd-6th: A sequence of fronts, associated with a deep depression close to the Bay of Biscay, tracked across the south-west of England. River levels in Devon and Cornwall rose in response to heavy downipours. The River Creedy, gauged at Cowley, recorded a daily mean flow of $60 \mathrm{~m}^{3} \mathrm{~s}^{-1}$ on the 3 rd - the highest in a 24 -year record. New maximum daily mean flows for April were also registered for the majority of rivers in east Devon. Exeter, which - on the 3rd - recorded its wettest day on record, experienced serious flooding. During the ensuing few days high river discharges became established throughout Great Britain.

May

A gradual decline in river flows, which began in most areas at the end of the first week in April, continued during May. In some areas flows approached the minimum on record for the late spring period.

June

5th-7th: A frontal system, associated with an Atlantic depression, crossed the UK. Southern areas of Britain, in particular, were affected by heavy rainfalls and some flooding resulted. On the 5th, the River Erme, which drains from Dartmoor, registered its highest June daily mean flow in a 14 -year record. During the next two days the depression moved northwards across Northern Ireland and Scotland where the Findhorn recorded its highest daily mean flow, at Forres, for the year.

11th-15th: Thunderstorms, accompanied by heavy rainfall, were widespread over Wales, the Midlands and south-east England. On the 14th, intense thundery activity throughout the South-East, and over London especially, caused flooding which severely disrupted traffic. The following day, $30-50 \mathrm{~mm}$ of rain was recorded throughout much of Essex and Suffolk. In Sudbury (Suffolk) 71 mm fell in 24 hours resulting in moderate flooding. Subsequently, the Stour (at Langham) registered its highest summer daily mean flow in a 26-year record.
$18 t h-20 \mathrm{th}$: Low pressure was re-established on the 18 th followed by a sequence of fronts and troughs which affected much of the UK. Several rivers in the Midlands recorded their highest June peak flow on record; the Sence - which has a 17 -year record at the South Wigston gauging station - exceeded its all-time maximum flow on the 19th. The following day, the record summer (June-August) daily mean flow established on the Suffolk Stour a few days earlier, was eclipsed.

July

High pressure predominated over southern areas of Britain for the first two weeks. With the associated hot weather increasing demand, water tankers, static tanks and stand-pipes were drafted into East London and Essex to ease supply problems caused, principally, by operational difficulties at Chigwell Reservoir. In east Devon some water shortages were reported, but no alternative water supply was necessary.

10th: A series of fronts crossed all areas giving rise to heavy downpours. At Girvan in Strathclyde 70 mm of rain fell in 24 hours and the River Girvan recorded its highest daily mean flow for the year at Robstone.

17th-19th: A slow moving depression extended across the UK bringing widespread rainfall; on the 17th, 88 mm was received at Slapton in Devon and, at Brighton, a 'very rare' rain-day total estimated at 95 mm was registered. Rivers were soon in spate; on the 19th the River Lod in Sussex recorded the highest July daily mean flow in its 17 -year record. Many roads were awash and holiday traffic was disrupted.

29th: A cold front associated with a depression situated over north-east England triggered a series of thunderstorms; several particularly intense cells were centred over North London. During one storm 53 mm of rain was recorded in 21 minutes at a raingauge in Thornwood; a return period exceeding 1000 years has been ascribed to this event. The extremely localised nature of the storm was highlighted by the weather radar installation at Chenies (Bucks); at the time of the heaviest rainfall only one 5 km grid square registered a high intensity on the display monitor. Local flooding followed as rivers overtopped their banks and drainage systems - some of which became choked with debris - were unable to cope with the volume of runoff. Properties had to be evacuated in Waltham Abbey, Thornwood Common and North Weald. A landslide which had been triggered by the heavy downpours partially blocked the M25. On the Cobbins and Cripsey Brooks, peak flows were recorded which exceeded their previous maxima. An 80 mm SMD prior to the event somewhat mitigated the effect of the storm, but the flood return period was still estimated at greater than 100 years.

August

12th-13th: Weakening troughs crossed all areas resulting in heavy downpours in northern England and southern Scotland. Rivers peaked in response. The Water of Luce (Dumfries and Galloway) recorded a flood discharge of $284 \mathrm{~m}^{3} \mathrm{~s}^{-1}$; some $50 \mathrm{~m}^{3} \mathrm{~s}^{-1}$ greater than the previous maximum in a 20 -year record.

16th: The most notable of several very wet days during an exceptionally unsettled period; in Dumfries and Galloway, falls of 87 mm at Creebridge and 86 mm at Bargrennan, were recorded. Localised flooding resulted in Scotland, Northern Ireland and some northern parts of England and Wales.
Remarkably, on the River Cree in Galloway the four highest August daily mean flows, in a 25-year record, all occurred during three runoff events over a 9 -day period from the 12th.

21st-26th: Widespread and violent thunderstorms, resulting from substantial convergence and instability associated with twin fronts, gave rise to heavy rainfall in a broad band from North Wales to East Anglia. The rainfall total for the 21 st-23rd in Preston (Lancashire) - estimated using radar data - has an associated return period of greater than 150 years. Severe local flooding was reported in Lancashire, Merseyside and Cheshire; and, on the M61 near Preston, floodwater reached a depth of one metre. In Appleby Bridge near Wigan residents had to be rescued when the village was inundated by floodwater.

Essex was severely affected by thunderstorms. River response was rapid; on the 22nd, the River Beam at Bretons Farm registered the highest flow in its 24 -year record. The Rom and Roding overtopped their banks and the heavy rainfall triggered a landslide which blocked a railway line at Manningtree. Chelmsford town centre was flooded during an especially intense downpour - 62 mm of rain was recorded in 40 minutes. Unusually large hailstones (up to 30 mm in diameter) caused extensive damage to property, vehicles and crops. Many rivers in the London area exceeded bankfull and considerable transport disruption was reported.

On the 23rd in the Midlands, rainfall over the headwaters of the Rivers Blithe and Trent registered a peak intensity of 114 mm in 9.3 hours - with a maximum of 29 mm in an hour; the estimated return period of this event is greater than 1000 years. The resulting discharge rate on the Trent at Stoke was three times that of the previous maximum and the flood return period is estimated at several hundred years. Widespread washland inundation occurred throughout the region.

In Lincolnshire; a remarkable rainfall event occurred at Holbeach on the 23rd. A recording raingauge located close to the centre of an intense thunderstorm registered a total rainfall of 115 mm in two and threequarter hours; an estimated return period in excess of 1000 years was ascribed to this event. At the height of the storm 15 mm fell in five minutes with a peak intensity in excess of $200 \mathrm{~mm} /$ hour. Severe local flooding
resulted and the A151 road was impassable for two days; the Rivers Wittle, Granta, Larling Brook and Lea Brook (all in the Great Ouse catchment) registered their highest flows on record.

In Norfolk and Suffolk, rainfall up to 75 mm was recorded on the 25 th; the 26 th was also wet. With SMDs well below average, some rivers recorded discharges which had been exceeded on only two or three occasions in the past. Several villages were flooded as the Waveney, Bure, and Gipping overtopped their banks.

By contrast the south-west of England experienced a very dry month; North Wyke in Devon recorded its driest August since records began in 1959.

September

Rainfall over the major aquifer outcrops was generally well below average but, in most regions, groundwater levels were close to the mean for early autumn.

October

5th: Local flooding occurred again in Preston when $\mathbf{2 5 - 3 5} \mathbf{~ m m}$ of rain fell in less than an hour. A return period of around 100 years was ascribed to the event.

9th-10th: The British Isles was dominated by a low pressure system to the west of Scotland. An associated trough brought prolonged heavy rainfall - more than 40 mm - which particularly affected the south-east of England and caused widespread flooding. In Essex some river levels reached 1 in 30 -year highs. New absolute peak discharges were established on the Cripsey, Pymmes and Stansted Brooks. The nearby Cobbins Brook recorded a highest instantaneous flow which exceeded all previous peaks with the exception of the July maximum. On the 10th the River Lee, gauged at Feildes Weir, recorded its highest October daily mean flow in a 105 -year record. Several villages were virtually cut off when the River Stour burst its banks following 50 mm of rain in less than 24 hours. Residents living near Brent Reservoir (north-west London) were advised to take flood precautions when the reservoir threatened to overspill and, near Chelmsford, bulldozers were needed to clear large quantities of mud washed onto the roads. In Kent, the Leigh flood barrier, constructed in 1981, reached its maximum storage capacity for the first time and protected Tonbridge from extensive flooding.

15th-16th: Late on the 15th and throughout the early hours of the 16 th, a vigorous depression was responsible for an extremely severe storm. Strong winds - gusting to hurricane force - swept across the south-east of England causing devastation and destruction on both sides of the English Channel. .

Some aspects of the synoptic development of the mid-latitude depression responsible for the storm have yet to be fully explained, although the deepening, and intensification of the depression has been associated with the activities of Hurricane Floyd off the east coast of North America. A further factor was the convergence of polar and tropical air which produced a large temperature gradient over the Atlantic ${ }^{1,2}$. Initially the depression's central pressure (970 millibars) was not unusual for the time of year. However, with a large anticyclone blocking its movement into Europe, the system moved north-eastwards across the western part of the Bay of Biscay, and deepened rapidly. The storm intensified as the central pressure dropped below 960 millibars - winds gusted to hurricane force (greater than 100 miles per hour) over wide areas of southern Britain; millions of trees were uprooted, structural damage was severe and electricity supplies were disrupted as power lines were brought down. By 1300 hours on the 16 th, the centre of the storm had moved to the North Sea; its central pressure remained low but the winds were less intense than over southern England.

The ferocity of the storm has no modern parallel over southern Britain, it is considered to be the worst since the Great Storm of 1703 . The damage and destruction attributed to the winds - which have been ascribed a return period of 200 years - was very considerable. Apart from the toppling of at least 15 million trees, 19 deaths were directly associated with the event. The insurance bill, estimated at almost $£ 2$ billion exceeds the combined costs to UK insurance companies of specific major weather incidents over the preceding decade.

Whilst the meteorological conditions were remarkable the storm was less notable in hydrological terms. Rainfall totals were unexceptional although, with catchments saturated from heavy rain during the previous few weeks, the potential for infiltration was minimal. Also, as many watercourses became choked with trees and other debris their normal carrying-capacity was substantially reduced. Several flood warnings were issued over parts of the South-East as river levels rose. The Rivers Wittle (Cambridgeshire), White Drain (Kent), and Combehaven (East Sussex), exceeded their maximum levels on record, on the 15th, as did the River Brain and the Holland Brook, in Essex, on the following day. Flooding was reported over wide areas but was serious in only a few districts.

Power failures were one of the most disrupting results of the storm's passage. Where telemetry links were severed, river level data were unable to be transmitted; in parts of Kent telecommunication lines were interrupted for up to a week following the storm although some satellite-based telemetry remained in operation. On some major rivers power failures left weirs and sluices inoperable and in parts of Sussex and Kent, water supplies were severely affected when the collapse of power lines disabled water treatment works. Broken water mains and pipes increased supply problems and the deployment of generators to isolated supply boreholes was difficult due to blocked roads. Appeals were issued to consumers to conserve supplies and, in Essex, tankers and stand-pipes were used to service a few small communities.

The most enduring hydrological impact of the storms, in many areas, may well be the effect on the catchment water balance due to the devastation of thousands of acres of mature woodland by the gale force winds; the saturated soil and the fact that the autumn leaf fall was not advanced increased the vulnerability of many trees to the exceptional wind gusts experienced during the night of the 15/16th.

17th-19th: Another intense depression began tracking across parts of Britain affecting, in particular, western and northern areas of Wales as it moved towards Cumbria. The associated rainfall was heavy and sustained bringing widespread flooding. Welsh Water issued flood alerts for several main rivers. The most severely affected area was the River Tywi floodplain in Carmarthen and upstream where four fatalities resulted from the collapse of a railway bridge (see page 23). Widespread floodplain inundation also occurred in the Teifi Valley causing the contamination of a treatment works; more than 20,000 consumers throughout West Wales were advised to boil their drinking water. In Haverfordwest, floodwater spilled into the main streets when the River Cleddau bursts its banks and, in Goodwich (near Fishguard), floodwater nearly two metres deep swept through parts of the town. The River Dulas, in the headwaters of the River Severn, reached the highest level in its 19-year record. Further north, the heaviest rainfall was confined to Snowdonia but was sufficient to sustain high runoff rates well downstream. The Rivers Gwyrfai, Seiont, Dwyfawr and Aled all established new maximum peak levels. The River Dee, gauged at Manley Hall, recorded its highest discharge ($370 \mathrm{~m}^{3} \mathrm{~s}^{-1}$) in 22 years. Near Bangor, a fatality occurred when a man out walking was swept away in the floodwaters. Farmland in the affected areas was inundated and the receding flood-waters left a considerable residue of boulders, silt and debris littering the valley floors. In Cumbria, the River Greta overtopped its banks flooding low-lying parts of Keswick and floodwater from the River Eden isolated a few villages.

19th-21st: A slow-moving cold front brought torrential rain and flooding to all areas of Northern Ireland. A number of localities registered daily rainfall totals in excess of 100 mm and the return period associated with a remarkable 20 -hour total of 137 mm at the Glenanne Saws raingauge (Armargh) is estimated at 2000 years. The resulting floods were the worst for at least a decade. The River Mourne in Strabane overtopped its banks sending floodwater through the main streets; emergency services were fully stretched and many families were evacuated. Tentative estimates of the peak discharge suggest a flow which may have approached $1000 \mathrm{~m}^{3} \mathrm{~s}^{-1}$ at the Drumnabuoy gauging station just upstream of Strabane. Severe flooding also occurred in the town of Omagh. A number of major rivers recorded their highest peak flows; the River Drumragh at Campsie Bridge, for example, recorded a peak flow $120 \mathrm{~m}^{3} \mathrm{~s}^{-1}$ greater than the previous maximum.

In a separate event, a depression centred off the north coast of the Iberian Peninsula brought intense frontal rainfall to the south of England. Flooding was widespread - forty major roads, including the A40 and M25, were closed. The situation was exacerbated by debris in waterways following the severe gales during the night of the 15th-16th. In the London area, the Rivers Wandle, Crane, Brent and Beverely Brook exceeded bankfull. Flood warnings were issued for the River Colne (Hertfordshire); at the Berrygrove gauging station the highest daily mean flow in a 53-year record was established. The River Lee caused flooding in Luton town centre and, in Kent, flood warnings were issued for the Rivers Darent, Medway, Eden and Teise.

November

A dry month in most areas; groundwater levels rose sharply following the October rainfall.

December

Dry weather conditions continued from the end of November into December; river flows declined throughout most of the UK in response. At some gauging stations new daily mean minima - for the time of year - were recorded. In Northern Ireland the River Camowen, which has a 16-year record, registered a new December daily mean minimum. In many areas the runoff pattern changed dramatically in mid-month when widespread rainfall caused runoff to increase abruptly.

29th-30th: A frontal system associated with a mid-Atlantic depression affected all parts of the UK. 100 mm of rain fell in 24 hours at Nantmoor - the most notable rainfall in this area for 25 years and substantial flooding occurred in central and northern areas of Wales. In Powys, the River Dyfi recorded its highest daily mean flow for the year (on the 29th) and the consequential flooding isolated the market town of Machynlleth.

References

1. Woodruffe, A. 1988. Summary of weather pattern developments of the storm of 15/16 October 1987 . Meteorological Magazine, 117, 99-103.
2. Lorenc, A.C., Bell, R.S., Davies, T. and Shutts, G.J. 1988. Numerical forecast studies of the October 1987 storm over southern England. Meteorological Magazine, 117, 118-130.

THE OCTOBER 1987 FLOOD ON THE
 RIVER TYWI

J.R.FROST and E.C.JONES

Welsh Water Consultant

Introduction

October 1987 will be remembered for several remarkable hydrometeorological events - the 'hurricane' during the night of the 15/16th and the widespread flooding associated with the passage of a series of vigorous low pressure systems which affected various parts of the United Kingdom. Flooding was particularly severe in south-west Wales where media attention focused on the overtopping of flood defences in Carmarthen (Caerfyrddin) and the fatalities resulting from the collapse of a railway bridge over the River Tywi. This article draws on a number of contemporary reports - particularly those completed on behalf of the Welsh Water Authority - to examine the development of the flood event and to consider its impact on the community. Attention is directed to the problems of assessing the peak discharge rate and of estimating the rarity of events of such a notable magnitude.

The Tywi Catchment

The River Tywi is the sixth longest river in the British Isles. It rises in the Cambrian Mountains of central Wales and flows, eventually, into Carmarthen Bay (see Figure 9). From its headwaters, the Tywi flows south through the Tywi Forest and thence to Llandovery where it trends south-west picking up tributaries draining from the Caeo Forest to the north and from the Black Mountains which form the south-eastern watershed. Its course is well defined and flooding in the upper reaches is not generally a problem. Below Llandeilo, the river strikes westwards and meanders gently across a floodplain which achieves its maximum width about 1.5 km - near Nantgaredig just upstream of Carmarthen. Most of the Tywi's tributaries are short and fast flowing but a major tributary - the Cothi joins the main river a few kilometres upstream of the flow measurement station at Ty-Castell where the floodplain narrows to little more than river width as a result of a geological constriction. There has been development over the years on the floodplain in and around Carmarthen; the Pensarn district has been heavily exploited with a significant growth of service and light engineering industry. This development, together with the bridges over the Tywi constitutes
an artificial constriction which impedes flow especially during periods of high discharge.

The catchment area of the Tywi above Carmarthen is $1300 \mathrm{~km}^{2}$ with a maximum altitude of 792 metres on the summit of The Black Mountain. The relief is generally rugged with steep slopes descending to the Tywi and Cothi valleys. Average annual rainfall closely reflects the relief and exceeds 2000 mm in the northern headwaters with a maximum of approximately 2500 mm in the Black Mountains. Even at the catchment outfall - about 3 maOD - the average annual rainfall exceeds 1200 mm . Precipitation is well distributed throughout the year with a discernible winter maximum, a consequence of the predominant maritime influence on the regional climate. The long term catchment average rainfall is $1560 \mathrm{~mm}, 70$ per cent greater than the England and Wales mean. In relation to large river basins - those exceeding $1000 \mathrm{~km}^{2}$ - the Tywi catchment is the wettest in England and Wales of those for which flow records are held on the Surface Water Archive.

Geologically, the Tywi catchment is dominated by impervious metamorphosed sediments of Ordovician and Silurian age. Some younger series outcrop in the south of the basin but natural storage is

Figure 9. The catchment of the River Tywi - location details and 2-day rainfall totals for October 17-18th 1987.
generally limited to valley gravels and alluvium and peaty soils in the headwaters. The principal land use is hill farming with dairying practised in the valleys and on the gentler slopes. Forestry is important in the headwaters and, overall, coniferous forest comprises about 15 per cent of the catchment. Llandovery, Llandeilo and Carmarthen are the only substantial settlements and the population is generally sparsely distributed. The flow regime of the Tywi is natural apart from the effect of regulation releases from Llyn Brianne Reservoir in the headwaters (see page 26).

Overture to the Flood

Following below average summer rainfall, rivers throughout much of Wales were close to or below the mean, for the time of year, by the end of August 1987. The Tywi flows - at Nantgaredig - had declined to $3 \mathrm{~m}^{3} \mathrm{~s}^{-1}$ by the 30th of August, the lowest flow for three years, and soil moisture deficits, at least in the lower catchment, were substantially above the long term average. Runoff rates climbed steadily throughout September in response to a series of rain-bearing low pressure systems which crossed the British Isles. The sustained rainfall saw the virtual elimination of soil moisture deficits by the 22nd but some modest deficits became re-established during the dry spell which lasted from the 23rd of September to the 2nd of October. This interlude was terminated by belts of thundery rain moving up from the Western Approaches and, on the 5th, longer outbreaks of rain occurred as a sequence of cold fronts crossed the country. Weather patterns over the subsequent fortnight were influenced by a stationary high pressure zone over western Siberia; a series of depressions tracking along its western flank brought remarkably heavy and sustained precipitation to the British Isles. During the 14th a deepening low swung north-eastwards across central Britain and gave rainfall amounts exceeding 20 mm over wide areas. As a consequence of a fortnight of exceptionally unsettled conditions catchments in South Wales had become saturated with minimal potential for any further infiltration. The situation was then exacerbated by the rainfall associated with the intense low pressure system which brought devastation to much of southern England on the night of the $15 / 16$ th October. Although South Wales escaped relatively lightly, many rivers were in spate and the catchments were dangerously vulnerable to any further precipitation.

The northward drift of the 'hurricane' presaged the arrival of another intense system which skirted the western seaboard on the 17th and 18th. As the associated cold front became slow moving over western Britain, a rainfall warning was received on the 17 th from Cardiff Weather Centre which indicated that 25 mm of rain could be expected over higher ground between midnight and 09.00 on the

18th. In the event, between 75 and 200 mm of rain fell over the Tywi catchment within two days (Figure 9) and, for short periods, intensities of 17 $\mathrm{mm} / \mathrm{hr}$ were registered. The highest accumulated rainfall totals were reported to the north of the Preselis massif, in the Upper Cothi catchment extending into the Teifi basin, and on the Black Mountains. Most of the rain was recorded over a 27hour period commencing on Saturday the 17th October and the prevailing soil conditions ensured that the precipitation was very hydrologically effective.

The Flood

The network of flow measurement stations in the central Welsh uplands is relatively sparse but, by the evening of the 18 th , it was evident that a major flood event was developing. Runoff rates in many headwater tributaries increased immediately in response to rainfall especially where the higher intensities were experienced. For instance, the secondary flow measurement station at Llangadog on the Sawdde, which drains westwards from the Black Mountains, recorded a peak flow rate of $230 \mathrm{~m}^{3} \mathrm{~s}^{-1}$ at 15.30 (BST); this discharge is unprecedented in a 20 -year record. At 18.00 the River Gwili, which joins the Tywi near Carmarthen, peaked at a flow of about $114 \mathrm{~m}^{3} \mathrm{~s}^{-1}$ - the highest flow since 1981 (although the November 1986 flood was of a similar magnitude). In the northern headwaters, the Dolau Hirion gauging station registered a peak at 21.00 and, one hour later, the Bran - which drains a heavily forested catchment away from the most intense rainfall episodes - recorded $62 \mathrm{~m}^{3} \mathrm{~s}^{-1}$; a flow rate exceeded on only three occasions in a 20 -year record. Elevated discharge rates were not confined to the Tywi. Unprecedented flows occurred in the upper reaches of the neighbouring River Teifi where an examination of wrack marks revealed a peak 0.26 m higher than the previous maximum (see cover) and, to the east, rivers flowing into the Bristol Channel were in spate. In this latter region flows were, however, substantially less than those associated with the flood of December 1979. Noteworthy, rather than remarkable, discharge rates also characterised rivers in North Wales.

By the early hours of the 19th, the Cothi and Tywi were both flowing bankfull and a number of bridges across smaller tributaries were washed away. Floodwaters blocked many minor roads and inundated low lying sections of the railway between Llandovery and Llandeilo. A major tragedy occurred when the 05.27 Swansea to Shrewsbury train was brought to a stop on the bridge over the Tywi at Glanrhyd; a partial collapse had resulted from the undermining of the bridges foundations by the river in spate prior to the train's arrival. Four lives were lost when the leading coach fell into the river and became submerged.

Damage to roads, bridges and other structures was widespread; many were rendered unsafe as foundations became undermined by the fast flowing floodwaters. Fallen trees, and other debris, were a danger in themselves and choked some waterways giving rise to further localised flooding. The Dyfed County Surveyor estimated the cost of repairs to be borne by the County Highways Department at $£ 1.5$ million most of which is attributable to bridge repair and reconstruction.

Plate 1. Flooding in the Pensarn district of Carmar-then-19/10/87.
Photo: Elwyn fones.
Below the confluence with the Cothi the peak discharge estimated for the Ty-Castell monitoring site was significantly greater than the design capacity of the Carmarthen Flood Alleviation Scheme which was completed in 1984. As a consequence, the Pensarn flood defence wall was overtopped for a period of fourteen hours. An early casualty of this inundation was the post office. Mail services were suspended after floodwaters swamped the site housing the main sorting office, transport workshops and vehicle depots. The sorting office had been built only 3 years previously with a ground floor level 0.6 m above the previous maximum recorded level at that location. On the north bank, damage to vital equipment in the Carmarthen telephone exchange caused widespread and serious disruption of communications and hampered the implementation of

Plate 2. Inundation of Carmarthen Station-19/10/87. Photo: The Western Mail.
flood emergency procedures throughout the stricken region. Routine data gathering in the Tywi catchment is similar to that throughout the rest of the Welsh Water Authority area. It is based upon strategically placed recording raingauges and gauging stations which are linked to processing centres by telemetry systems relying on rented telephone lines. With the Carmarthen exchange disabled, operational control during the flood event was severely limited by the absence of on-line data. The main route for the dissemination of flood warnings is via the police at Carmarthen - they are responsible for passing on information to the media. At one stage, on the 19th October, the only means of communication was via the Radio Amateurs Emergency Network.

Throughout the Tywi catchment the number of properties flooded was limited - about 250 overall. However, because of the nature of the development on the floodplain south of the river in Carmarthen, flood damage was very substantial in financial terms; the overall cost approached $£ 7$ million in the Pensarn Industrial Estate (see Plate 1). Road and rail communications throughout the Tywi, and adjacent valleys, were severely disrupted and access to and from Carmarthen was particularly difficult inundation of the railway station echoed the flooding during the 1931 event (see Plate 2). Apart from the

Plate 3. Pumping floodwaters back to the River Tywi over the flood retention wall. Photo: Yeff Tucker.

Industrial Estate, the Johnstown district of Carmarthen was most severely effected as the Tawelan Brook backed up and overflowed its banks. Following the steep decline in river levels after the passage of the flood peak, considerable inconvenience was caused in some low-lying districts by the limited ability of floodwaters to drain back to the main channel; pumps were deployed close to the flood retention wall in order to accelerate this process (see Plate 3).

Less tangible, but nonetheless of substantial importance, was the shock to a community which assumed itself safe from the threat of flooding following the construction of the floodwall. Inevitably, the general perception of the security associated
with a scheme providing protection against a flood with a return period assessed at 100 years pays limited regard to the strict statistical implications of such a design objective. A series of public meetings were arranged to provide information concerning the flood, explain the particular difficulties experienced with regard to flood warning and to discuss the broader issues raised by floodplain development generally.

The Effect of Llyn Brianne

One of the topics addressed at the public meetings, and in the media, was the contribution, if any, of the outflow from Llyn Brianne Reservoir on the degree of flooding experienced downstream, particularly in Carmarthen. Llyn Brianne Reservoir was constructed in 1972 as an integral part of the River Tywi water supply scheme. Its function is to act as a regulating reservoir, conserving water for release during dry periods and droughts in order to supplement the natural river flow and thereby permit abstraction at Nantgaredig to continue. The control rules for the reservoir are designed to optimise its role for water supply purposes, no allowance has been made for flood storage.

From October, the reservoir was at full capacity and overspilling continuously. The outflow from Llyn Brianne was therefore closely equivalent to the natural runoff resulting directly from the rainfall in the catchment above the reservoir; the effect of the lake is to reduce the flow rate and attenuate the flood hydrographs of the tributary streams. A study undertaken by Welsh Water concluded that the reservoir delayed the peak, at the outlet, by about three hours and reduced it by over 20 per cent. Nonetheless the overspill itself was a significant component in the flood flows in the upper Tywi. At Dolau Hirion, for instance, it accounted for 33 per cent of the discharge at the peak of the flood. The relatively small size of the reservoired catchment meant, however, that the overspill could have only a minor impact on the flooding experienced in Carmarthen. Calculations show that water level increases in the lower Tywi of six or seven centimetres only are attributable to reservoir outflows. This increase is placed in appropriate perspective by the 70 cm overtopping of the flood wall in Pensarn and by the fact that a slightly higher discharge rate could have been expected had the reservoir not been built.

Assessing the Peak Flow

For planning purposes and especially for the design of flood alleviation schemes a knowledge of the peak flow and its rarity is essential. Unfortunately, considerable practical difficulties attend the precise measurement of maximum discharge rates during flood events. Direct measurement is often precluded by the urgent need to assign field personnel to other tasks designed to ameliorate the impact of the flood.

Access to the gauging section may also be difficult or hazardous during rare runoff events. Recourse is therefore normally made to the stage-discharge relation in order to derive flows based upon a record of water levels. The stage-discharge relation is developed over a period of years using a series of current meter gaugings to define a sensibly unique relationship. This 'rating' may be assumed to remain valid whilst the factors which influence the association between stage and flow (for instance the slope and roughness of the channel bed) remain unchanged. Scour and fill during the passage of a flood may alter the stage discharge relation and other factors, such as bridges and floodplain development, may exert an increasingly important influence in the extreme flow range. The change in rating consequent upon a rare event may be immediately evident after several further gauging results but the development of a revised stage-discharge relation can be a lengthy process. It will be appreciated that considerable uncertainty may often be associated with estimates of the highest floods. This uncertainty can have serious implications in connection with engineering design procedures.

The principal gauging station on the River Tywi is at Ty-Castell, 6 km upstream of Carmarthen - low flows are measured at the nearby Nantgaredig gauging station. The measuring section is sited about 200 m downstream of Pont Llandeilo-yr-ynys at a reach where most flows are contained within the channel. At stages above 5.2 m , however, water begins to spill onto the narrow floodplain - most of the inundation occurs over the right hand bank. The peak staff gauge reading during the October 19th flood was 6.76 m (13.99 m aOD). Considerable extrapolation of the stage discharge relation is thus necessary to assess the maximum rate. However, some confidence may be placed in the below bankfull component; the maximum gauging corresponds to a stage of 5.09 m and the rating may be considered well defined below this level. By extrapolation, the peak between-bank flows were assessed at approximately $1200 \mathrm{~m}^{3} \mathrm{~s}^{-1}$. Floodplain discharge tends to be rather more difficult to assess - direct measurement of velocities being rare - but in the case of the Tywi a reasonable estimation could be attempted since a major proportion of the overspill was confined to a 100 m wide channel. The flow rate was sufficient to flatten hedges and an assumed average of velocity of 1.0 to 2.0 metres per second would place the floodplain discharge in the range $100-200 \mathrm{~m}^{3} \mathrm{~s}^{-1}$ and the total discharge of the order of $1300-1400 \mathrm{~m}^{3} \mathrm{~s}^{-1}$. As with many assessments of extreme discharge rates, the uncertainty band is wide; ± 20 per cent is not exceptional where significant overbank flow is involved. It is necessary to stress also that the potential systematic error in peak flow assessment is considerable where few gaugings exist to define the stage-discharge relation in the high flow range.

On the Tywi, as elsewhere, a continuing pro-
gramme of current metering represents the only way to maintain and improve the precision of flood discharge data. Nonetheless the October peak flow estimate may be expected to compare favourably with many instantaneous maxima registered for historically noteworthy floods - in a substantial proportion of cases the required flow rate would, of necessity, be based on the cross sectional area at the target site, the assumed water surface slope (commonly approximated using wrack mark evidence) and an informed guess at the frictional resistance of the channel. Preliminary results from a physical model of the Carmarthen reach (see below) suggest that the maximun flow rate during the 1987 Tywi flood has been realistically estimated, although a downward adjustment of approximately $100 \mathrm{~m}^{3} \mathrm{~s}^{-1}$ may be warranted.

Flows in excess of $1000 \mathrm{~m}^{3} \mathrm{~s}^{-1}$ are very rarely exceeded in England and Wales and some measure of the extreme nature of the October flood may be gauged by the fact that a flow rate of $1350 \mathrm{~m}^{3} \mathrm{~s}^{-1}$ would represent the greatest flow registered on the Surface Water Archive for any river south of the Tyne.

Assessing the Rarity of the Flood

Whilst a number of standard procedures exist for the estimation of the rarity of extreme events - most based on the Floods Study (FS) proposals ${ }^{1}$ - in practice the most appropriate methodology is often largely determined by the availability of data and the results are clearly sensitive to the quality of the hydrometric and other data which are employed. The difficulty of precisely establishing the flow has already been considered but uncertainties in the assessment of storm rainfall are equally important. Raingauge distribution throughout the Tywi catchment is relatively sparse - less than one per $100 \mathrm{~km}^{2}$. With such a network density the potential for under or over-estimation is considerable. Figure 9 suggests that the scope for error may be greatest in the high rainfall zones along the north-west catchment divide and to the south-west of the Black Mountains. Thus the results given below should be treated with caution. This is especially true at a time when the hydrological impact of climatic change may shed further doubt on inferences drawn on the basis of historical associations between rainfall and runoff (but see page 12).

Table 5 lists the series of annual maximum flows for the River Tywi from 1958. By analysing this series it is possible to derive a relation between flood magnitude and return period - the average interval between years with a flood exceeding a given magnitude. The selection of an appropriate statistical distribution to fit to the annual maxima series has important implications. On the basis of an assumed GEV-PWM distribution which gives particular weight to extreme events ${ }^{2}$, for instance, a very long

TABLE 5 ANNUAL MAXIMUM SERIES FOR THE RIVER TYWI ÄT TY-CASTELL

Water Year (Oct-Sep)	Date	Max. Stage (Metres)	Peak Flow (cumecs)
1958	19/01/59	4.08	272.8
1959	03/02/60	4.94	456.4
1960	04/12/60	5.21	526.6
1961	12/09/62	4.41	336.3
1962	09/03/63	4.08	272.8
1963	-19/11/63	4.08	272.8
1964	13/12/64	5.36	568.4
1965	18/12/65	5.36	568.4
1966	13/12/66	4.60	376.7
1967	17/10/67	5.12	502.5
1968	21/01/69	4.40	334.2
1969	11/11/69	4.31	316.2
1970	02/11/70	3.87	237.8
1971	19/10/71	4.18	291.2
1972	06/08/73	4.50	$355.1{ }^{\text {. }}$
1973	30/01/74	4.75	410.7
1974	22/12/74	4.37	328.2
1975	01/12/75	4.04	265.7
1976	03/02/77	4.15	285.6
1977	31/10/77	4.71	401.4
1978	01/02/79	4.20	294.9
1979	28/12/79	5.89	779.8
1980	22/03/81	5.62	645.7
1981	09/10/81	4.65	387.8
1982	06/01/83	4.12	280.1
1983	16/10/83	4.30	314.2
1984	23/11/85	4.02	262.1
1985	22/12/85	4.57	370.1
1986	27/03/87	4.84	431.9
1987	19/10/87	6.76	1378.0

Note: Llyn Brianne began to fill in March 1972 and was full by December 1972.
return period might be proposed for the Tywi flood (see Figure 10); incorporating the October 19th flow in the analysis would reduce the rarity significantly. In the absence of a long series of good quality annual maxima for the target site, it is often better to base the choice of distribution upon an examination of the flood data from a number of stations in a region. The Flood Studies Report divided Great Britain into nine regions one of which corresponds to the Welsh Water area. For each region a growth curve associates a return period with the ratio of a flood discharge to the mean annual flood (MAF) at that location ${ }^{1,3}$. A flow rate of $1378 \mathrm{~m}^{3} \mathrm{~s}^{-1}$ comfortably exceeds three times the MAF and reference to the growth curve for Wales (FS Vol I, page 174) suggests a return period in excess of 500 years - see Figure 10.

Even by exploiting the additional information provided by regional flood data the estimated return period represents an initial appraisal only and further information merits consideration before a judgement is made regarding the most realistic return period to assign to the 1987 event. Evidence

Figure 10. Flood frequency diagram for the River Tywi at Ty-Castell based on data for the period 1958-86.
assembled following a major flood on the Tywi in 1931 suggests that the maximum flow on that occasion approached that experienced during the 1987 flood; an estimated flow of $1270 \mathrm{~m}^{3} \mathrm{~s}^{-1}$ is quoted in the Interim Report on Floods published in 1933^{4}. With a far greater measure of uncertainty, anecdotal evidence indicates that the 1894 flood - which affected wide areas of southern Britain - was also a flood of greater magnitude than is represented in the record of gauged flows (from 1958). The presence of three such notable events in a hundred year period raises questions about how representative the recent data can be considered to be and confirms that great care needs to be exercised regarding certain of the very long return periods ascribed to the 1987 flood. More detailed investigation of other historical floods - for example, those which occurred in 1852 and 1875^{5} - allowing useful estimates of the peak flow rates to be determined - may further emphasise the need for caution. The significance of this early data may be appreciated by assuming that both the 1894 and 1931 events produced maximum discharge rates in excess of $1000 \mathrm{~m}^{3} \mathrm{~s}^{-1}$; under such circumstances the return period of the 1987 flood would be closer to 100 years.

An alternative and more deterministic approach to the assessment of the return period is recommended for very rare events when regional curves become increasingly poorly defined. The Unit Hydrograph (UH) technique is widely used where the record of actual annual maxima is relatively short. A detailed explanation of the methodology is given in the Flood Studies Report. In essence, the technique involves the assessment of the rainfall input - for a particular catchment - corresponding to a given
return period followed by the estimation of several parameters in a rainfall-runoff model to facilitate the conversion of storm rainfall into the consequent runoff. That proportion of the rainfall contributing immediately to runoff (the Percentage Runoff) is one of these parameters; it comprises two components: a constant depending on the soil type and a second factor relating to the magnitude and duration of the storm together with a measure of antecedent catchment wetness. The unit hydrograph, from which the duration of the design storm is derived, may be developed using actual event data or, with less precision, from catchment characteristics.

The Consultants for the design of the Carmarthen Flood Alleviation Scheme derived a unit hydrograph from the rainfall and runoff data associated with the floods of December 1979 and March 1981 and - on this basis - ascribed a flow of the order of $800 \mathrm{~m}^{3} \mathrm{~s}^{-1}$ to the 100 -year flood at Ty-Castell; this analysis was central to the design of the flood retention wall in Carmarthen. Following the 1987 flood, an initial analysis suggested that under certain conditions some of the assumptions inherent in the UH approach require further examination. The peak flow, for instance, occurred some eight hours earlier - and was consequently substantially greater - than would be expected on the basis of unit hydrograph analysis discussed above; a time to peak of about 24 hours was used by the Consultants. This discrepancy may be partially explained by the decline in the rate of storage which results when all of the floodplain has been inundated, but the percentage runoff appears to have been appreciably greater during the October 1987 flood than would be expected on the basis of the FSR equations model (and in relation to earlier flood events on the Tywi when, typically, percentage runoffs were below 50). Analysis of a series of high flow events in the Cothi catchment indicated that the difference between the observed runoff rate and that estimated using standard values (following Flood Studies recommendations) may be greatest for the rarer floods. Such differences may, of course, reflect limitations in the accuracy of the basic rainfall and/or the runoff data. It is also possible that the occurrence of the highest rainfall intensities towards the end of a storm - a feature of the October 18/19th rainfall distribution - may exert an important influence. Accepting that one or more of these factors may justify a later review of the analytical procedure, a departure from the standard method was adopted and the percentage runoff value increased to equate more closely with the observed value (about 65 per cent). The Cothi catchment was also considered separately from the Tywi catchment in this revised treatment. The associated computation revealed that storms of about 41 hours duration were critical in relation to the production of very high discharge rates at Ty-Castell. This analysis ascribed a flow of around $1040 \mathrm{~m}^{3} \mathrm{~s}^{-1}$ to the 100 year flood and associated a return period of approxi-
mately 250 years with the October 1987 event. The assumptions involved, together with uncertainties in the rainfall and runoff data, imply that a wide error band should be associated with this, and the-other, return period estimates.

It is important to recognise that water levels in the vicinity of Carmarthen may be influenced by factors other than the upstream discharge as measured at Ty-Castell. Tidal effects, local tributaries and the hydraulic characteristics of the river and its floodplain (which has undergone significant changes over the last century) can all contribute to the scale of any inundation. A provisional examination of water levels recorded at the Quay in Carmarthen suggests that, although the tidal influence was negligible, the 1987 October peak appreciably exceeds all previous maxima; the data series extends back to the beginning of the nineteenth century ${ }^{6}$. The construction of the 1984 flood retention wall will have increased water levels at the Quay somewhat but its submergence by almost two metres confirms the singular nature of the 1987 flood.

Conclusion

The perverse nature of the British climate may be held principally responsible for a major flood event occurring within three years of the completion of a retention wall designed to give a measure of protection which, to the layman, must have seemed very comforting prior to the October 1987 inundation. Important lessons of general significance have been learnt as a result of this exceptional flood. These range from a fuller appreciation of the vulnerability of emergency communication systems in flood conditions to a demonstration of the critical importance of hydrometric data in the development and application of engineering design procedures.

In the short term, river improvement works in Carmarthen will increase the river's carrying capacity but, more significantly, the investment in a physical model of the Carmarthen reach - commissioned by Welsh Water - together with further research into the flood generating and routing processes should provide a firm basis upon which to develop a comprehensive flood alleviation strategy for the lower Tywi.

References

1. Flood Studies Report. 1975. Natural Environment Research Council (5 Vols.).
2. Hosking, J.R.M., Wallis, J.R. and Wood, E.F. 1984. Estimation of the general extreme-value distribution by the method of probability weighted moments (GEV-PWM). Institute of Hydrology Report No. 89.
3. Anon. 1983. Review of regional growth curves. Floods Studies Supplementary Report No. 14. Institute of Hydrology.
4. Anon. 1933. Interim Report of the committee on Floods. Institution of Civil Engineers.
5. Symons, G.J. 1876. On the Floods in England and Wales during 1875 and on the Water Economy. Proc. Inst. Civ. Engrs. Paper No. 1464.
6. Spurrell, W. 1879. Carmarthen and its neighbourhood - notes topographical and historical. (2nd. Edition). William Spurrell.

Bibliography

Frost, J.R. 1988. The Tywi at Ty-Castell - the October 1987 Flood. Paper presented to the Welsh Hydrological Group, Cardiff, September 1988.

Jones, E.C. 1988. Flooding in South West Wales 18/19th October 1987. Unpublished report commissioned by the Institute of Hydrology.

Widnall, T.J. 1988. Communications in the Carmarthen Flood 1987. Paper presented to the Conference of River and Coastal Engineers, Loughborough, July 1988.

Anon. 1988. A report on the October 1987 flood in the Tywi catchment. Welsh Water, unpublished report.

Anon. 1950. Daily height of the River Towy at Llandilo-Yr-Ynys (1935-50). Unpublished graphical record (incomplete) collated by Watson Hawksley (consulting engineers) and made available through Binnie and Partners (consulting engineers).

Computation and Accuracy of Gauged Flows

Gauged flows are generally calculated by the conversion of the record of stage, or water level, using a stage-discharge relation, often referred to as the rating or calibration. Stage is measured and recorded against time by instruments usually actuated by a float in a stilling well. The instrument records the level either continuously by pen and chart, or digitally on punched-tape or solid-state logger, generally at regular (normally 15 minute) intervals. This stage data is normally collected routinely, typically at weekly or monthly intervals, and taken to a regional centre for processing. At more than half of the gauging stations in the United Kingdom provision is made for the routine transmission of river levels directly to the processing centre, by telephone line or, less commonly, by radio; on occasions, satellites have been used to receive and re-transmit the radio signal. The rapid growth in the use of the public telephone network for the transmission of river level - and, occasionally, river flow - data is enabling hydrometric data acquisition to proceed on a near real-time basis in many areas. Typically, the data are stored on site, using a solid state-logger, and transmitted overnight for initial processing the following day. Often, both digital and analogue recording devices are deployed at gauging stations to provide a measure of security against loss of record caused by instrument malfunction.

The stage-discharge relation is obtained either by installing a gauging structure, usually a weir or flume with known hydraulic characteristics, or by measuring the stream velocity and cross-sectional area at points throughout the range of flow at a site characterised by its ability to maintain the relationship.

The accuracy of the processed gauged flows therefore depends upon several factors:
i. accuracy and reliability in measuring and recording water levels,
ii. accuracy and reliability of the derived stagedischarge relation, and
iii. concurrency of revised ratings and the stage record with respect to changes in the station control.

Flow data from ultrasonic gauging stations are computed on-site where the times are measured for acoustic pulses to traverse a river section along an oblique path in both directions. The mean river velocity is related to the difference in the two timings and the flow is then assessed using the river's cross-sectional area. Accurate computed flows can be expected for stable river sections and within a range in stage that permits good estimates of mean channel velocity to be derived from a velocity
traverse set at a single depth, or at a series of fixed depths.

Flow data from electromagnetic gauging stations may also be computed on-site. The technique requires the measurement of the electromotive force (emf) induced in flowing water as it cuts a vertical magnetic field generated by means of a large coil buried beneath the river bed, or constructed above it. This emf is sensed by electrodes at each side of the river and is directly proportional to the average velocity in the cross-section.

British and International Standards are followed as far as possible in the design, installation and operation of gauging stations. Most of these Standards include a section devoted to accuracy, which results in recommendations for reducing uncertainties in discharge measurements and for estimating the extent of the uncertainties which do arise.

The Surface Water Archive exists to provide not only a central database and retrieval service but also an extra level of hydrological validation. To further this aim, project staff at the Institute of Hydrology liaise with their counterparts in the water industry on a regional basis and, by visiting gauging stations and data processing centres, endeavour to maintain the necessary knowledge of local conditions and problems.

Scope of the Flow Data Tabulations

River flow data are presented in two parts. In the first, daily mean gauged flows are tabulated for 49 gauging stations; daily naturalised flows (see page 87) are also tabulated for the River Thames at Kingston. Monthly flow data for a further 160 gauging stations are given in the second part. The featured gauging stations have been selected to give a broad geographical coverage and to typify a wide range of catchment types found throughout the United Kingdom. A map (Figure 11) is provided on page 36 to assist in locating the gauging stations featured in this section.

For each gauging station, basic reference information is given together with comparative average and extreme river flow and rainfall figures based upon the archived record.

Explanatory notes precede the two sets of tables and will assist in the interpretation of particular items. The notes relating to the daily flow tables are given below; those relating to the monthly data are given on page 88.

Part (i) - the daily mean flow tabulations

Station Number

The gauging station number is a unique six-digit reference number which serves as the primary identifier of the station record on the Surface Water Archive. The first digit is a regional identifier being 0 for mainland Britain, 1 for the islands around Britain and 2 for Ireland. This is followed by the hydrometric area number given in the second and third digits. Hydrometric areas are either integral river catchments having one or more outlets to the sea or tidal estuary or, for convenience, they may include several contiguous river catchments having topographical similarity with separate tidal outlets. In Britain they are numbered from 1 to 97 in clockwise order around the coastline commencing in north-east Scotland: Ireland has a unified numbering system from 1 to 40 , commencing with the River Foyle catchment and circulating clockwise; not all Irish hydrometric areas, however, have an outlet directly on the coast.

The numbers and boundaries of the United Kingdom hydrometric areas are shown in the frontispiece.

The fourth, fifth and sixth digits comprise the number, usually allocated chronologically, of the gauging station within the hydrometric area.

Where the leading digit, or digits, are zero they may be omitted giving rise to apparent four or fivedigit reference numbers.

Measuring Authority

An abbreviation referencing the organisation responsible for the operation of the gauging station. A list of measuring authority codes together with the corresponding names and addresses for all organisations currently contributing data to the Surface Water Archive appears on pages 183 to 185.

Grid Reference

The initial two-letter and two-figure codes each designate the relevant 100 kilometre National Grid square or Irish Grid square (distinguished by the italicised two-figure code); the standard six-figure map reference follows.
Note: The Irish Grid has only one prefix letter but it is common practice to precede it with the letter I to make the identification clear.

Catchment Area

The surface catchment area, in the horizontal plane, draining to the gauging station in square kilometres. There are a few gauging stations where, because of geological considerations, the groundwater catchment area differs appreciably from the surface water
catchment area and, in consequence, the baseflow, whether augmented or diminished, may cause the runoff values to appear anomalous.

First Year

The year in which the station started producing daily mean flow data, usually the first year for which data are held on the Surface Water Archive. Earlier data, often of a sporadic nature or of poorer quality, may occasionally be available from the measuring authorities or other sources.

Level of Station

The level of the station is, generally, the level of the gauge zero in metres above Ordnance Datum, or above Malin Head Datum for stations in Northern Ireland. Although gauge zero is usually closely related to zero discharge, it is the practice in some areas for an arbitrary height, typically one metre, to be added to the level of the lowest crest of a measuring structure to avoid the possibility of false recording of negative values by some digital recorders.

Maximum Altitude

The level to the nearest metre of the highest point in the catchment area.

Table of daily mean gauged (or naturalised) discharges

The mean flow in cubic metres per second (abbreviated to $\mathrm{m}^{3} \mathrm{~s}^{-1}$ and sometimes also referred to as 'cumecs') in a water-day, normally 0900 to 0900 . The naturalised discharge is the gauged discharge adjusted to take account of net abstractions and discharges upstream of the gauging station.

Peak Flow: The highest flow in cubic metres per second for each month. The day of peak generally. refers to the water-day but the calendar day is also used, particularly in Scotland. Normally the peak flow corresponds to the highest fifteen-minute flow where water levels are recorded digitally, or the highest instantaneous flow associated with maximum stage where analogue recorders are used.

Runoff: The notional depth of water in millimetres over the catchment equivalent to the mean flow for the month as measured at the gauging station. It is computed using the relationship:

```
Runoff in \(\mathrm{mm}=\)
Average Flow in Cumecs \(\times 86.4 \times\) n
            Catchment Area (km²)
```

where n is the number of days in the month. The runoff total is rounded to the nearest millimetre.

Runoff is computed on the basis of naturalised flows (see 'Factors affecting the flow regime') for the minority of catchments where daily, or monthly, naturalised flows are available.

Rainfall: The rainfall over the catchment in millimetres for each month. Except for the Institute of Hydrology's research catchments each areal rainfall total is derived from a one kilometre square grid of rainfall values generated from all available daily and monthly rainfall data - these data are provided by the Meteorological Office. Validation procedures allow for the rejection of obviously erroneous raingauge observations prior to the gridding exercise. A computer program then calculates catchment rainfall by averaging the values at the grid points lying within the digitised boundary of the catchment.

Statistics of monthly data for previous record

Only complete monthly records are used in the derivation of the average, low and high values of river flow, runoff and rainfall. The rainfall and runoff statistics are normally directly comparable but full equivalence will not obtain where the pattern of missing data differs between the archived rainfall and runoff data sets.

Where applicable, a guide to the amount of missing data is given following the section heading.

Summary statistics

Current year flow statistics are tabulated alongside the corresponding values for the previous record. Where appropriate, the current year figures are expressed as a percentage* of the preceding average.

Mean Flow: The average of all available daily mean flows during the term indicated.

Lowest Daily Mean: The value and date of occurrence of the lowest mean flow in cubic metres per second in a water-day during the term indicated. In a record in which the value recurs, the date is that of the last occasion.

It should be emphasised that river flow measurement tends to become more imprecise at very low discharges. Very low velocities, heavy weed growth and the. insensitivity of stage-discharge relations combine with the difficulty of accurately measuring limited water depths to reduce the accuracy of computed flows.

The reliability of both the lowest daily mean flow and the 95% exceedance flow (see opposite) as representative measures of low flow must be considered carefully and the values used with caution in view of the increasing proportional variability between the natural flow and the artificial influences, such as abstractions, discharges and storage changes as the river flow diminishes.

Peak: The peak flow in cubic metres per second during the term indicated. The date of occurrence, normally the water-day, is also indicated. Generally, the peak"flows are derived from the record of monthly instantaneous maximum flows stored on the Surface Water Archive. As a result of particular flow measurement difficulties in the flood range, this peak flow series is often incomplete. Consequently, in some cases, the peak flow from the previous period of record has been abstracted from Volume IV of the Flood Studies Report ${ }^{1}$. Reference to this report should be made to check for historical flood events which may exceed the peak falling within the gauged flow record.
10% exceedance: The flow in cubic metres per second which was equalled or exceeded for 10 per cent of the specified term - a high flow parameter which, when compared with the mean may give a measure of the variability, or 'flashiness', of the flow regime. The 10% exceedance value is computed using daily flow data only for those years with ten days, or less, missing on the Surface Water Archive.

50\% exceedance: The flow in cubic metres per second which was equalled or exceeded for 50 per cent of the specified term - the median value. The same conditions for completeness of the annual records apply as for the 10% exceedance flow.

95\% exceedance: The flow in cubic metres per second which was equalled or exceeded for 95 per cent of the specified term - a significant low flow parameter relevant in the assessment of river water quality consent conditions. The same conditions for completeness of the annual records apply as for the 10% exceedance flow.

Factors affecting flow regime

An indication of the various types of abstractions from, and discharges to, the river operating within the catchment which alter the natural flow is given by a standard set of abbreviated descriptions. In Part (ii) - the monthly flow data - each description is shortened to a code letter. An explanation of the abbreviated descriptions and the code letters is given overleaf. With the exception of the induced loss in surface flow resulting from underlying groundwater abstraction, these codes and descriptions refer to quantifiable variations and do not include the progressive, and difficult to measure, modifications in the regime related to land-use changes.

[^2]
CODE EXPLANATION

N Natural, i.e. there are no abstractions and discharges or the variation due to them is so limited that the gauged flow is within 10% of the natural flow at, or in excess of, the 95 percentile flow.
Storage or impounding reservoir. Natural river flows will be affected by water stored in a reservoir situated in, and supplied from, the catchment above the gauging station.
R Regulated river. Under certain flow conditions the river will be augmented from surface water and/or groundwater storage upstream of the gauging station.
Public water supplies. Natural river flows are reduced by the quantity abstracted from a reservoir or by a river intake if the water is conveyed outside the gauging station's catchment area.

Groundwater abstraction. Natural river flow may be reduced or augmented by groundwater abstraction or recharge. This category includes catchments where minewater discharges influence the flow regime.

Effluent return. Outflows from sewage treatment works will augment the river flow if the effluents originate from outside the catchment.

Industrial and agricultural abstractions. Direct industrial and agricultural abstractions from surface water and from groundwater may reduce the natural river flow.
H Hydro-electric power. The river flow is regulated to suit the need for power generation.

Except for a small set of gauging stations for which the net variation, i.e. the sum of abstractions and discharges, is assessed in order to derive the 'naturalised' flow from the gauged flow, the record of individual abstractions, discharges and changes in storage as indicated in the code above is not held centrally.

Station and catchment description

A short commentary providing a guide to the characteristics of the station, its flow record and the catchment it commands; refer to page 188 for an explanatory listing of the abbreviations and acronyms used. The principal objectives of this summary information are to assist data users in the selection of gauging station records appropriate to their needs and to assist in the interpretation of flow variability at individual gauging stations particularly where the

ABBREVIATED DESCRIPTION

Natural within 10% at the 95 percentile flow.

Reservoirs in catchment.

Augmentation from surface water and/or groundwater.

Abstraction for public water supply.

Flows influenced by groundwater abstraction and/or recharge.

Augmentation from effluent returns.

Flow reduced by industrial and/or agricultural abstraction.

Regulation for HEP.
natural flow pattern is significantly disturbed by artificial influences.

The descriptive material will be updated and revised to reflect the availability of more information and in response both to changing hydrometric conditions at the measuring site and changing patterns of land use and water utilisation in the catchment.

A comprehensive set of gauging station and catchment descriptions is provided in the 'Hydrometric Register and Statistics 1981-5' (see page 187).

Comment

A summary of any important factors influencing the accuracy of the current year's flow data specifically; for instance, the reconstruction of a gauging station or the use of extrapolated stage-discharge relations during periods of very low or very high flows.

STATIONS FOR WHICH DAILY OR MONTHLY DATA ARE GIVEN IN THE RIVER FLOW SECTION

STATION	river name and station name	SEE
number		Page
3003	OYKEL AT EASTER TURNAIG	89
4001	CONON AT MOY BRIDGE	89
7002	FINDHORN AT FORRES	89
D 8006	SPEY AT BOAT O BRIG	38
8007	SPEY AT INVERTRUIM	89
9001	DEVERON AT AVOCHIE	90
10002	UGIE AT INVERUGIE	90
11001	DON AT PARKHILL	90
D 12001	DEE AT WOODEND-	39
13007	NORTH ESK AT LOGIE MILL	90
13008	SOUTH ESK AT BRECHIN	91
14001	EDEN AT KEmback	91
D 15006	TAY AT Ballathie	40
15011	LYON AT COMRIE BRIDGE	91
16003	RUCHILL WATER AT CULTYBRAGGAN	91
16004	EARN AT FORTEVIOT BRIDGE	92
17001	CARRON AT HEADSWOOD	92
17002	LEVEN AT LEVEN	92
18003	TEITH AT BRIDGE OF TEITH	92
18005	ALLAN WATER AT BRIDGE OF ALLAN	93
D 19001	al.mond at craigiehall	41
20001	TYNE AT EAST LINTON	93
21006	TWEED AT BOLESIDE	93
D 21009	TWEED AT NORHAM	42
21012	TEVIOT AT HAWICK	93
21018	LYNE WATER AT LYNE STATION	94
21022	WHITEADDER WATER AT HUTTON	94
	CAStLe	
D 22001	COQUET AT MORWICK	43
22006	BLYTH AT HARTFORD BRIDGE	94
23001	TYNE AT BYWELL	94
D 23006	SOUTH TYNE AT FEATHERSTONE	44
23007	DERWENT AT ROWLANDS GILL	95
24004	BEDBURN BECK AT BEDBURN	95
24009	WEAR AT CHESTER LE STREET	95
D 25001	TEES AT BROKEN SCAR	45
25006	GRETA AT RUTHERFORD BRIDGE	95
25019	LEVEN AT EASBY	96
25020	SKERNE AT PRESTON LE SKERNE.	96
26003	FOSTON BECK AT FOSTON MILL	96
26005	GYPSEY RACE AT BOYNTON	96
D 27002	Wharfe at flint mill weir	46
27007	URE AT WESTWICK LOCK	97
27025	ROTHER AT WOODHOUSE MILL	97
27030	DEARNE AT ADWICK	97
D 27035	AIRE AT KILDWICK BRIDGE	47
D 27041	DERWENT AT BUTTERCRAMBE	48
27042	DOVE AT KIRKBY MILLS	97
27043	WHARFE AT ADDINGHAM	98
D 27053	NIDD AT BIRSTWITH	49
27059	LAVER AT RIPON	98
27071	SWALE AT CRAKEHILL	98
D 28009	TRENT AT COLWICK	50
28012	TRENT AT YOXALL	98
28018	dove at marston on dove	99
28024	WREAKE AT SYSTON MILL	99
28031	MANIFOLD AT ILAM	99
28039	REA AT CALTHORPE PARK	99

Station river name and station name NUMBER		SEE
		PAGE
28080	TAME AT LEA MARSTON LAKES	100
28082	SOAR AT LITTLETHORPE	100
D 28085	DERWENT AT ST MARY'S BRIDGE	51
29003	LUD AT LOUTH	100
D 30001	WITHAM AT CLAYPOLE MILL	52
30004	PARTNEY LYMN AT PARTNEY MILL	100
31002	GLEN AT KATES BRIDGE (TOTAL)	101
31007	WELLAND AT BARROWDEN	101
D 32001	NENE AT ORTON	53
32003	HARPERS BROOK AT OLD MILL	101
	BRIDGE	
32004	ISE BROOK AT HARROWDEN OLD	101
	MILL	
D 33002	BEDFORD OUSE AT BEDFORD	54
33003	CAM AT BOTTISHAM	102
33012	KYM AT MEAGRE FARM	102
33013	SAPISTON AT RECTORY BRIDGE	102
33014	LARK AT TEMPLE	102
33024	CAM AT DERNFORD	103
34001	Yare at colney	103
34002	TAS AT SHOTESHAM	103
D 34006	Waveney at needham mill	55
35002	deben at naunton hall	103
D 36006	STOUR AT LANGHAM	56
37001	RODING AT REDBRIDGE	104
37005	COLNE AT LEXDEN	104
37010	BLACKWATER AT APPLEFORD BRIDGE	104
38001	LEE AT FEILDES WEIR	104
D 38003	MIMRAM AT PANSHANGER PARK	57
38007	Canons brook at elizabeth way	105
38021	TURKEY BROOK AT ALBANY PARK	105
D 39001	THAMES AT KINGSTON	58
39002	THAMES AT DAYS WEIR	105
39005	BEVERLEY BROOK AT WIMBLEDON	105
	COMMON	
D 39007	BLACKWATER AT SWALLOWFIELD	59
39014	VER AT HANSTEADS	106
39016	KENNET AT THEALE	106
39019	LAMBOURN AT SHAW	106
D 39020	COLN AT BIBURY	60
39021	CHERWELL AT ENSLOW MILL.	106
39023	WYE AT HEDSOR	107
39029	TILLINGBOURNE AT SHALFORD	107
39049	SILK STREAM AT COLINDEEP LANE	107
39069	MOLE AT KINNERSLEY MANOR	107
D 40003	MEDWAY AT TESTON	61
40004	ROTHER AT UDIAM	108
40009	TEISE AT STONE BRIDGE	108
40011	GREAT STOUR AT HORTON	108
40012	Darent at hawley	108
41001	NUNNINGHAM STREAM AT TILLEY	109
	BRIDGE	
41005	OUSE AT GOLD BRIDGE	109
41006	UCK AT ISFIELD	109
D 41016	CUCKMERE AT COWBEECH	62
41019	ARUN at alfoldean ${ }^{\text {- }}$	109

STATION	river name and station name	\cdots SEE `\%	Station	RIVER NAME AND Station name	SEE
NUMBER		ヶ \because Prage	Number	- -	Page
41027	ROTHER AT PRINCES MARSH	110	57008	RHYMNEY AT LLANEDERYN	119
42003	LYMINGTON AT BROCKENHURST PARK	- 110	58006	MELLTE AT PONTNEDDFECHAN	120
42006	MEON AT MISLINGFORD	110	60002	COTHI AT FELIN MYNACHDY	120
42008	CHERITON STREAM AT SEWARDS		60003	TAF AT CLOG-Y-FRAN	120
	BRIDGE	110	60007	TYWI AT DOLAU HIRION	120
D 42010	ITCHEN AT HIGHBRIDGE AND		D 62001	TEIFI AT GLAN TEIFI	74
	ALLBROOK	63	63001	YSTWYTH AT PONT LLOLWYN	121
42012	ANTON AT FULLERTON	111	64001	DYFI AT DYFI BRIDGE	121
D 43005	AVON AT AMESBURY	64	64002	DYSYNNI AT PONT-Y-GARTH	121
43006	NADDER AT WILTON PARK	111	65005	ERCH AT PENCAENEWYDD	121
43007	STOUR AT THROOP MILL	111	D 65006	SEIONT AT PEBLIG MILL	75
44002	PIDDLE at baggs mill	111	66006	ELWY AT PONT-Y-GWYDDEL	122
D 45001	EXE AT THORVERTON	65	67008	ALYN AT PONT-Y-CAPEL	122
45003	CULM AT WOODMILL	112	D 67015	DEE AT MANLEY HALL	76
45005	OTTER AT DOTTON	112	D 68001	WEAVER AT ASHBROOK	77
46002	TEIGN AT PRESTON	112	68003	DANE AT RUDHEATH	122
46003	DART AT AUSTINS BRIDGE	112	69002	IRWELL AT ADELPHI WEIR	122
D 47001	TAMAR AT GUNNISLAKE	66	69006	BOLLIN AT DUNHAM MASSEY	123
47007	YEALM AT PUSLINCH	113	69015	ETHEROW AT COMPSTALL	123
47008	THRUSHEL AT TINHAY	113	71001	RIbBLE AT SAMLESBURY	123
48004	WARLEGGAN AT TREGOFFE	113	71004	Calder at whalley weir	123
48005	KENWYN AT TRURO	113	72002	WYRE AT ST MICHAELS	124
48011	FOWEY AT RESTOMEL	114	D 72004	LUNE AT CATON	78
49001	CAMEL AT DENBY	114	73005	KENT AT SEDGWICK	124
49002	HAYLE AT ST ERTH	114	D 73010	Leven at newby bridge	79
D 50001	Taw at umberleigh	67	74002	IRT AT Galesyke	124
50002	TORRIDGE AT TORRINGTON	114	74005	EHEN AT BRAYSTONES	124
D 52005	TONE AT BISHOPS HULL	68	75002	DERWENT AT CAMERTON	125
52006	YEO AT PEN MILL	115	D 76007	EDEN AT SHEEPMOUNT	80
52007	Parrett at chiselborough	115	78003	ANNAN AT BRYDEKIRK	125
52010	BRUE AT LOVINGTON	115	78004	KINNEL WATER AT REDHALL	125
53004	CHEW AT COMPTON DANDO	115	D 79006	NITH AT DRUMLANRIG	81
53006	FROME (BRISTOL) AT FRENCHAY	116	80001	URR AT DALBEATTIE	125
53007	FROME (SOMERSET) AT TELLISFORD	116	81003	LUCE AT AIRYHEMMING	126
D 53018	AVON AT BATHFORD	69	82001	GIRVAN AT ROBSTONE	126
D 54001	SEVERN AT BEWDLEY *	70	83003	AYR AT CATRINE	126
D 54002	AVON AT EVESHAM	71	D 84005	CLYDE AT BLAIRSTON	82
54006	STOUR AT KIDDERMINSTER	116.	84012	WHITE CART WATER AT HAWKHEAD	126
54008	TEME AT TENBURY	116	84016	LUGGIE WATER AT CONDORRAT	127
54012	TERN AT walcot	117	85001 L	LEVEN AT LINNBRANE	127
54019	AVON AT STARETON	117	D85003 F	FALLOCH AT GLEN FALLOCH	83
54020	PERRY AT YEATON	117	D 93001	CARRON AT NEW KELSO	84
54022	SEVERN AT PLYNLIMON FLUME.	117	94001, E	EWE AT POOLEWE	127
54038	TANAT AT LLANYBLODWEL	118	95001 I	INVER AT LITTLE ASSYNT	127
55008	WYE AT CEFN BRWYN	118	96001 H	halladale at halladale	128
55013	ARROW AT TITLEY MILL	118	101002 M	MEDINA AT UPPER SHIDE	128
55014	LUGG AT BYTON	118	D 201005	CAMOWEN AT CAMOWEN TERRACE	85
55018	FROME AT YARKHILL	119	201007 B	BURN DENNET AT BURNDENNET	
55023	WYE AT REDBROOK	119		BRIDGE	128
D 55026	WYE AT DDOL FARM	72	D 203010 B	BLACKWATER AT MAYDOWN	
D 56001	USK AT CHAIN BRIDGE	73		BRIDGE	86
56013	YSCIR AT PONTARYSCIR	119	205005 R	RAVERNET AT RAVERNET	128

008006 Spey at Boat o Brig

Measuring authority: NERPB
First year: 1952

Grid reference: $\mathbf{3 8}(\mathrm{NJ}) 318518$ Level stn. (m OD): 43.10

Catchment area (sq km): 2861.2 Max alt. (m OD): 1309

DAY	JAN	FEB	MAA	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV.	DEC
1	77.410	32.280	193.400	122.800	71.260	38.060	36.030	39.340	38.420	30.860	43.290	51.770
2	63.610	36.930	172.200	91.430	85.960	37.770	34.930	35.840	35.130	29.560	40.240	44.910
3	51.870	41.660	90.220	95.670	100.500	35.390	33.810	37.130	33.010	28.630	37.940	39.500
4	88.120	38.500	68.170	90.640	89.220	33.620	33.060	43.560	31.290	27.940	36.290	40.190
5	86.980	45.520	57.980	79.880	86.500	32.310	32.200	42.090	35.940	27.380	34.720	38.930
6	65.420	87.990	54.890	67.370	70.530	53.160	31.960	42.140	45.410	33.130	33.420	39.600
7	54.860	81.700	49.690	61.060	59.300	180.300	32.940	61.320	38.110	41.240	32.480	35.910
8	43.790	67.690	44.740	66.320	54.480	165.600	32.230	54.150	36.890	77.960	31.780	32.250
9	38.620	59.340	41.250	84.290	53.410	126.100	30.700	40.370	34.380	61.610	31.160	34.870
10	41.200	91.150	41.240	87.640	53.180	86.920	36.370	35.700	37.730	72.780	30.920	32.820
11	36.890	75.650	39.560	114.100	63.420	69.780	81.090	33.280	43.570	57.040	33.420	33.060
12	30.750	59.710	35.930	91.730	100.400	70.150	60.500	32.310	51.270	44.580	35.170	32.320
13	31.230	49.490	36.760	155.900	100.600	63.460	44.300	33.120	55.910	43.360	41.190	27.230
14	33.210	43.790	38.890	132.100	87.340	67.850	38.100	32.660	75.980	37.840	107.800	24.110
15	37.370	39.790	41.900	142.800	87.490	67.090	35.210	32.770	76.040	39.370	70.850	24.810
16	37.370	36.760	47.440	105.300	66.810	58.540	37.680	48.380	55.150	58.760	72.630	38.090
17	35.670	36.320	92.310	89.840	57.620	52.150	84.570	48.430	46.200	56.370	75.160	81.800
18	38.470	36.450	72.780	101.100	58.370	46.810	155.900	38.960	42.680	84.780	66.860	96.830
19	44.720	65.910	52.340	115.700	55.890	43.140	100.600	34.370	41.250	80.510	73.750	89.550
20	77.060	70.060	45.040	97.550	51.860	40.280	79.640	34.560	38.510	77.580	79.480	84.840
21	122.400	56.930	40.680	85.430	51.290	38.300	61.930	48.720	40.290	113.600	62.010	75.740
22	121.500	75.650	39.330	78.520	55.660	39.860	50.430	42.520	49.420	100.600	64.300	62.820
23	94.530	58.310	40.280	73.530	50.900	66.220	43.840	48.430	46.880	72.790	156.700	52.370
24	77.080	47.170	39.320	67.240	46.760	103.600	42.940	40.200	43.840	59.060	127.000	47.380
25	62.410	42.680	52.020	63.360	43.980	64.010	44.330	37.150	42.820	51.690	96.460	44.980
26	59.980	40.120	53.680	62.270	42.280	52.850	40.730	73.330	49.480	52.320	66.610	45.630
27	51.250	52.810	166.500	62.990	40.020	47.120	44.630	59.060	42.710	65.990	57.300	56.070
28	46.500	118.200	179.900	66.650	37.730	43.670	41.520	64.700	38.370	81.820	57.150	75.550
29	42.130		95.460	63.650	36.480 .	39.800	41.020	77.210	34.950	60.220	64.410	63.500
30	38.670		90.820	62.850	41.460	37.310	39.770	51.030	32.590	50.870	66.040	88.310
31	35.650		164.800		39.290		41.340	42.670		46.090		115.800
Avarage	56.990	56.730	73.530	89.320	62.580	63.370	49.820	44.690	43.810	56.980	60.880	53.280
Lowest	30.750	32.280	35.930	61.060	36.480	32.310	30.700	32.310	31.290	27.380	30.920	24.110
Highest	. 122.400	118.200	193.400	155.900	100.600	180.300	155.900	77.210	76.040	113.600	156.700	115.800
Peak flow	146.500	143.700	337.100	190.000	123.500	249.100	185.600	103.100	102.300	136.100	211.300	152.000
Day of peak	21	28	27	13	12	7	28	28	14	21	23	31
Monthly total (million cu m)	152.60	137.30	197.00	231.50	167.60	164.30	133.40	119.70	113.50	152.60	157.80	142.70
Runoff (mm)	53	48	69	81	59	57	47	42	40	53	55	50
Rainfall (mm)	41	73	107	55	80	101	90	79	87	100	101	74

Statistics of monthly data for previous record (Oct 1952 to Dec 1986)

Station and catchment description
Lowest station currently operating on the Spey. Cableway rated 65 m wide section with natural control, extreme floods bypass station on left bank. 380 sq km developed for hydro-power with diversions and storage. Mainly granites and Moinian metamorphics. Some Dalradian and a little Old Red Sandstone. Mountain (includes all northern slopes of Cairngorms), moorland, hill grazing and some arable; forestry also.

Measuring authority: NERPB First yoar: 1929

Daily mean gauged discharges (cubic motres por second). . .

DAY	JAN	FEB	MAR	APR	MAY	JUN	Ju.	AUG	SEP	OCT	NOV	DEC
1	33.420	15.760	82.130	55.000	49.100	19.120	17:220	15.800	15.450	13.780	22.860	22.750
2	29.490	23.380	75.150	40.500	48.440	18.680	16.560	14.280	13.760	13.020	21.270	20.830
3	22.480	26.100	38.920	49.830	48.440	16.990	15.360	14.200	12.800	12.470	19.740	18.720
4	54.420	21.260	30.080	54.660	46.230	16.270	15.050	15.470	12.650	12.200.	18.780	18.910
5	43,400	39.130	26.850	46.810	43.070	15.340	14.320	15.520	28.100	12.150	17.760	18.270
6	28.180	75.710	27.220	37.000	36.350	41.670	13.750	14.920	27.710	23.140	16.910	18.450
7	26.470	44.750	23.860	33.010	32.030	49.700	13.700	14.610	18.520	41.470	16.380	15.280
8	20.390	34.610	21.080	43.640	30.600	44.470	12.750	15.620	15.460	46.000	15.890	12.880
9	20.730	32.350	20.500	53.700	29.380	40.660	12.350	13.590	14.120	27.730	15.910	17.100
10	22.760	31.450	19.270	53.320	29.410	31.670	13.860	12.850	17.120	25.730	22.320	14.890
11	20.410	27.270	17.730	55.810	32.940	32.970	24.760	12.170	16.540	21.110	26.630	15.500
12	19.050	24.670	17.260	49.340	47.540	45.460	18.970	12.240	23.280	19.020	23.100	14.800
13	18.950	22.120	18.350	99.400	47.330	39.050	16.940	14.940	26.390	23.680	24.010	11.900
14	19.810	18.210	18.740	89.440	46.290	42.730	15.510	13.150	49.490	19.280	39.150	10.730
15	20.390	17.560	19.590	110.500	42.240	36.330	17.360	12.640	30.710	22.090	32.780	14.370
16	19.370	17.040	18.880	67.480	31.780	37.620	23.790	34.690	21.400	26.240	42.640	20.240
17	16.500	16.710	51.350	60.340	29.530	31.430	41.110	20.670	18.240	30.460	40.020	38.730
18	16.670	16.540	34.850	75.200	30.450	25.630	130.000	16.220	16.450	158.200	39.570	50.680
19	17.640	20.220	22.930	99.530	27.620	23.040	67.440	13.760	15.030	65.010	43.290	43.830
20	41.490	29.080	19.740	69.080	26.070	21.290	49.030	33.050 .	14.730	78.100	34.610	51.720
21	111.300	24.850	18.580	60.850	28.560	19.930	36.530	37.000	21.180	131.000	26.340	42.300
22	94.420	24.430	18.220	55.380	32.100	21.940	29.070	25.000	37.140	100.200	24.980	32.910
23	81.810	21.720	18.060	51.150	27.060	27.820	24.520	27.220	36.470	57.330	42.600	25.550
24	58.160	18.430	17.030	47.080	24.450	35.390	22.340	19.600	26.010	44.690	50.210	23.510
25	42.540	16.910	20.830	45.000	23.210	25.800	21.690	17.200	21.110	37.390	36.710	25.810
26	37.750	16.090	21.080	43.840	22.370	22.540	19.930	21.770	23.160	37.980	27.780	25.720
27	31.610	20.470	56.920	47.840	20.090	22.340	19.850	21.200	19.480	42.690	25.110	37.370
28	27.700	51.130	55.000	50.760	18.550	22.920	18.450	18.990	17.360	46.760	23.290	43.190
29	24.590		32.510	44.510	17.770	19.690	17.090	24.540	15.830	32.360	26.550	37.420
30	21.930		35.090	42.900	22.290	18.100	16.510	18.220	14.680	27.740	29.910	53.460°
31	16.730		97.160		20.960		16.930	15.640		25.090		144.100
Average	34.150	26.710	32.100	57.760	32.650	28.890	25.570	18.610	21.350	41.100	28.240	30.380
Lowest	16.500	15.760	17.030	33.010	17.770	15.340	12.350	12.170	12.650	12.150	15.890	10.730
Highest	111.300	75.710	97.160	110.500	49.100	49.700	130.000	37.000	49.490	158.200	50.210	144.100
Peak flow	144.900	89.160	144.900	139.100	73.100	61.670	171.000	89.920	104:400	270.100	75.330	214.900
Day of poak Monthly total	21	6	31	13	2	7	18	20	14	18	23	31
(million cu m)	91.46	64.62	85.96	149.70	87.46	74.87	68.49	49.83	55.33	110.10	73.19	81.38
Runoff (mm)	67	47	63	109	64	55	50	36	40	80	53	59
Rainfall (mm)	51	59	91	69	79	100	97	73	70	134	91	62.

Statistics of monthly data for previous record (Oct 1929 to Dac 1986)

Station and catchment description
Cableway rated, fairly stable natural control. Present station, built in 1972, replaced earlier station (flow records from 1929 , chart records from 1934) on same reach (Cairnton; c/m measurements at Wooderid) - established by Capt. McClean. Earlier staff gauge record dates from 1911. No regulation, little natural storage, minor abstractions. Dalradian and Moinian metamorphic along most of the valley, flanked by igneous intrusive. Mountain, moorland, forestry, pastoral and some arable in the valley bottom.

Grid reference: 37 (NO) 147367 Level stn. (m OD): 26.30

Catchment area (sq km): 4587.1 Max alt. (m OD): 1214
.Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	Jul	AUG	SEP	OCT	NOV	DEC
1	372.621	115.545	237.710	261.232	126.464	52.686	57.701	51.206	81.325	129.428	177.759	115.872
2	350.692	130.233	236.624	213.518	120.875	51.288	58.442	49.695	75.508	133.797	175.995	130.608
3	277.831	139.692	195.362	189.355	120.709	51.064	55.517	48.594	74.645	128.599	141.031	133.306
4	379.808	140.401	176.664	180.183	121.571	53.742	54.004	47.150	74.423	120.572	134.771	127.470
5	354.442	219.341	173.783	175.632	124.597	53.235	51.698	48.369	131.101	131.880	130.893	109.981
6	294.793	315.588	189.775	157.723	100.339	114.430	50.195	46.285	118.545	143.510	126.290	94.764
7	265.227	230.593	173.083	125.021	99.192	108.707	48.974	44.838	110.809	211.430	119.355	91.592
8	229.575	213.498	161.258	136.785	94.547	88.848	48.325	44.066	109.583	208.140	115.074	86.650
9	203.681	215.668	158.143	- 142.607	85.278	79.206	46.781	42.256	122.317	172.193	116.976	89.937
10	167.510.	198.483	145.361	172.582	78.928	77.844	46.769	42.285	141.962	172.598	140.525	84.331
11	152.267	164.702	123.809	199.846	85.071	88.185	63.080	40.979	144.886	152.161	157.073	82.353
12	165.594	155.565	119.320	172.390	98.481	125.185	55.167	42.285	198.504	149.840	158.505	68.846
13	147.919	154.483	117.225	204.741	93.529	100.652	50.869	63.326	228.482	144.824	159.938	64.770
14	$148.77{ }^{\text {. }}$	141.003	133.735 *	199.742 '	97.175	122.047	55.743	53.079	327.404	135.780	161.385	66.638
15	142.872	135.947	137.092	235.247	91.553	121.694	81.324	56.698	259.596	135.791	162.834	71.932
16	138.251	140.801	129.655	173.779	82.910	114.378	132.363	122.335	219.128	144.960	201.231	93.185
17	132.454	152.832	192.081	162.397	85.705	96.547	104.206	88.231 .	193.080	157.360	240.075	119.208
18	127.517	146.295	163.341	149.107	89.612	76.652	133.289	80.285	184.879	376.370	245.902	124.029
19	133.306	105.043	154.124	188.146	82.823	70.434	136.277	74.746	173.104	287.089	267.008	101.250
20	178.351	108.367	148.151	174.052	79.344	76.281	96.263	214.139	167.308	393.824	238.926	122.179
21	305.952	103.710	139.753	152.184	64.972	73.501	75.792	186.632	215.172	523.511	199.554	140.735
22	336.596	98.804	130.475	135.620	63.055	76.126	67.245	147.936	256.310	446.994	180.237	149.766
23	286.453	104.995	129.643	116.978 .	59.233	76.783	63.945	141.821	252.121	323.000	177.579	134.421
24	229.138	103.241	127.296	108.748	54.341	81.815	59.505	107.934	225.088	266.453	161.390	135.824
25	196.835	102.710	145.631	103.703	60.277	75.070	55.281	98.068	195.094	225.672	156.304	133.751
26	191.985	105.079	149.916	98.897	50.563	71.434	53.896	95.729	171.724	279.730	157.098	198.281
27	169.088	115.486	350.180	97.693	49.360	75.818	55.957	89.831	159.481	311.817	152.812	296.313
28	158.620	145.482	276.858	96.590	48.407	82.318	52.610	86.641	152.163	284.099	124.843	336.267
29	151.295		228.070	101.279	48.924	69.512	53.052	82.548	140.310	237.998	119.443	352.681
30	143.989		200.989	100.262	56.094	60.024	52.942	75.339	131.132	219.247	122.786	424.210
31	132.752		268.188		53.574		52.182	73.768		188.675		675.060
Average	215.000	150.100	174.600	157.500	82.820	82.180	66.750	80.230	167.800	223.800	164.100	159.900
Lowest	127.517	98.804	117.225	96.590	48.407	51.064	46.769	40.979	74.423	120.572	115.074	64.770
Highest	379.808	315.588	350.180	261.232	126.464	125.185	136.277	214.139	327.404	523.511	267.008	675.060
Peak flow	455.873	370.199	438.531	304.531	142.298	136.077	172.623	418.839	453.627	618.734	297.098	718.336
Day of peak	4	6	27	1	1	14	16	20	14	21	18	31
Monthly total (million cu m)	576.00	363.20	467.70	$408.30{ }^{*}$	221.80	213.00	178.80	214.90	435.00	599.40	425.40	428.20
Runoff (mm)	126	79	102	89	48	46	39	47	95	131	93	93
Rainfall (mm)	57	73	128	56	62	103	77	97	167	161	94	152

Statistics of monthly data for previous record (Oct 1952 to Dec 1986\}

Mean flows:	Avg.	: 236.600°.	200.000	201.200	144.100	123.200	81.450	66.930	86.840	120.600	185.300	216.400	249.600
	Low	92.910	52.560	69.380	75.210	45.500	42.080	31.390	14.690	40.650	39.680	89.160	112.800
	(year)	1963	1963	1953	1974	1980	1957	1984	1955	1955	1972	1972	1952
	High	515.800	353.700	424.800	231.200	321.100	190.400	126.000	286.100	283.900	390.500	407.700	491.400
	(year)	1974 .	1962	1967	+1960	1986	1966	1985	- 1985	1985	1982	1984	1954
flunoff:	Avg.	138	108	117	81	72	46	39	51	68	108	122	146
	Low	54	28	41	43	27	24	18	9	23	23	50	66
	High	301	187	248	131	188	108	74	167	160	228	230	287
Rainfall:	Avg.	156	99	117	72	100	84	93	107	132	150	149	171
	Low	33	29	39	10	26	49	21	14	11	63	38	64
	High	393	182	224	150	214	181	169	250	266.	269	311	304

Station and catchment description
Velocity-area station with cableway. 90 m wide. The most d / s station on the Tay, records highest mean flow in UK. Since end of $1957,1980 \mathrm{sq}$ $\mathrm{km}(43 \%)$ controlled for HEP; there was some control prior to this. 73 sq km controlled for water supply. Catchrnent is mostly steep, comprising mountains and moorland; exceptions are lower valleys. Mainly rough grazing and forestry. Geology: mainly metamorphics and granites, but lower 20\% (Isla valley) is Old Red Sandstone.

019001 Almond at Craigiehall

Measuring authority: FRPB
First year: 1957

Grid reference: 36 (NT) 165752 Level stn. (m OD): 22.90

Catchment area (sq km): $\mathbf{3 6 9 . 0}$ Max alt. (m OD): 518

Daily mean gauged discharges (cubic matrea per sacond),

day	JAN	FEB	MAR	APP	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	31.618	3.082	17.356	10.555	2.796	1.7 .16	1.496	1.477	5.178	1.710	3.692	2.545
2	29.701	3.698	19.570	10.651	2.401	2.510	1.456	1.315	3.234	1.822	3.364	2.513
3	13.785	3.968	7.992	6.973	1.935	4.377	1.337	1.477	2.478	1.955	3.065	2.252
4	21.932	3.999	6.530	5.280	1.635	3.446	1.231	1.648	2.111	1.785	2.905	2.240
5	20.035	15.623	9.599	7.674	1.555	3.245	1.148	1.284	3.267	4.227	2.533	2.074
6	11.456	15.348	16.250	11.777	1.445	14.832	1.110	1.263	3.500	7.110	2.572	2.071
7	7.565	7.748	8.900	8.180	1.399	15.773	1.047	1.337	3.408	13.846	2.321	2.141
8	5.924	7.371	6.467	10.599	1.355	8.742	1.027	1.298	3.043	9.666	2.284	2.006
9	5.189	23.548	5.642	9.808	1.372	4.689	1.021	1.151	3.878	7.685	2.960	1.943
10	4.206	24.701	4.355	15.970	1.327	3.389	2.691	1.157	8.078	7.151	5.809	1.703
11	3.440	10.818	3.771	15.126	1.347	3.305	4.253	1.932	8.784	4.981	6.747	1.703
12	3.041	7.444	3.355	7.958	1.690	2.762	2.603	2.981	11.095	3.906	11.242	1.683
13	3.008	5.783	3.140	6.361	1.781	2.700	1.747	3.036	6.074	3.942	8.703	1.589
14	3.102	4.613	3.379	5.258	2.602	5.217	1.505	2.210	9.611	3.734	5.273	1.650
15	3.499	3.881	3.507	4.485	1.789	4.190	1.860	4.620	7.145	35.652	7.632	1.726
16	3.372	3.577	3.221	3.711	1.465	2.796	1.790	27.744	4.364	24.863	15.216	3.692
17	3.042	3.118	3.345	3.305	1.990	2.284	1.751	34.541	3.084	29.257	9.248	10.168
18	2.922	3.035	3.047	3.037 x	1.957	1.934	23.086	4.776	2.603	38.929	14.281	8.101
19	17.563	2.852	2.696	3.095	1.706	1.723	10.468	1.739	2.472	22.810	21.618	8.526
20	88.934	2.780	2.452	3.240	1.436	1.458	5.015	3.116	3.133	17.618	10.458	15.788
21	36.527	2.827	2.133	2.843	1.375	1.779	3.521	3.643	12.474	30.390	6.839	15.916
22	20.211	2.805	2.286	2.562	1.306	7.758	2.769	1.593	12.160	28.329	5.492	8.469
23	11.819	2.824	2.890	2.536	1.272	4.840	2.361	1.152	8.182	12.545	4.338	5.992
24	8.861	2.557	2.894	2.411	1.292	4.457	2.075	0.923	5.535	8.344	3.660	4.845
25	7.288	2.532	9.503	2.209	1.285	2.842	1.648	2.302	4.222	6.662	3.239	4.558
26	6.140	2.811	9.184	2.099	1.489	2.200	2.499	3.605	3.413	5.519	2.939	27.351
27	5.223	4.922	17.629	2.002	1.497	1.974	2.016	3.352	2.857	7.621	2.854	36.699
28	4.446	5.718	15.248	1.848	1.583	2.034	1.527	2.709	2.411	7.787	2.751	31.387
29	3.956		6.695	1.796	2.344	1.900	1.681	2.288	2.184	5.385	2.785	24.180
30	3.405		5.019	2.331	2.727	1.650	1.743	1.880	1.946	4.549	2.761	14.532
31	2.902		4.992		1.970		1.673	1.657		4.117		21.965
Average	12.070	8.570	6.866	5.856	1.714	4.084	2.940	4.039	5.064	11.740	5.986	8.774
Lowest	2.902	2.532	2.133	1.796	1.272	1.458	1.021	0.923	1.946	1.710	2.284	1.589
Highest	68.934	24.701	19.570	15.970	2.796	15.773	23.086	34.541	12.474	38.929	21.618	36.699
Poak flow	86.413	49,089	45.766	23.721	3.707	19.916	41.476	55.035	25.121	57.929	31.221	70.517
Day of paak Monthly total	20	9	,	10	1	6	18	17	21	18	19	27
(million cu m)	32.32	15.89	18.39	15.18	4.59	10.59	7.88	10.82	13.13	31.44	15.52	23.50
Runotf (mm)	88	43	50	41	12	29	21	29	36	85	42	64
Rainfall (mm)	66	55	82	57	. 43	95	76	106	77	125	51	95

Statistics of monthly data for previous record (Jan 1957 to Dec 1986)

Station and catchment description
The recorder is well sited on a straight even reach with steep banks which have contained all recorded floods. Stable rating over the period of record. Weed growth in summer - some adjustment to stage is required. Low flows substantially affected by sewage effluent especially from Mid Calder. Abstraction at Almondell to feed a canal. A number of storage reservoirs are situated in the catchment. Geology - predominantly Carboniferous rocks. Land use - mainly rural. Livingston new town and several small mining towns in the catchment.

Grid referance: 36 (NT) 898477
Level stn. (m OD): 4.30
Catchment area (sq km): 4390.0

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	283.134	54.594	48.372	154.426	38.433	30.017	38.383	31.949	56.304	36.012	66.844	83.145
2	341.448	51.668	205.905	165.686	39.584	25.943	33.773	27.977	56.044	32.812	59.396	77.154
3	201.151	55.152	98.054	128.144	38.641	32.077	31.167	25.504	46.208	31.915	53.861	71.376
4	382.256	50.837	77.240	114.339	34.997	35.537	28.872	25.358	41.885	30.699	51.048	65.108
5	285.642	65.643	77.083	131.013	32.108	29.962	27.500	24.911	40.543	30.629	47.272	59.835
6	186.414	106.576	152.683	176.914	30.643	157.699	25.689	23.275	51.338	42.369	44.553	56.617
7	142.031	71.892	130.412	138.647	28.767	164.669	24.772	21.876	48.377	42.019	43.031	55.830
8	118.120	64.951	96.637	251.953	27.751	143.552	24.112	21.809	40.359	69.788	43.084	50.750
9	'103.244	74.073	83.354	176.042	26.762	95.190	23.646	21.688	38.025	56.151	47.560	48.321
10	90.317	160.487	72.843	175.875	26.187	72.462	34.512	20.711	40.896	70.248	44.387	48.086
11	78.338	96.409	67.317	358.471	26.319	63.396	153.843	19.621	38.603	56.435	84.687	47.279
12	69.653	75.901	61.642	228.503	28.601	84.788	72.959	25.247	57.119	48.279	147.778	45.391
13	67.358	68.280	58.925	178.920	29.448	69.097	50.413	62.316	58.042	45.143	144.420	42.091
14	64.877	62.188	58.461	139.436	32.157	69.794	43.111	37.133	43.792	53.241	82.362	40.477
15	62.125	56.108	61.528	113.562	34.472	76.470	40.878	27.757	47.479	59.480	78.607	39.460
16	59.677	52.495	62.609	96.193	29.444	72.032	46.790	80.243	44.197	185.484	103.621	47.010
17	57.154	47.854	91.215	83.158	27.729	71.346	47.695	229.124	39.850	120.555	95.177	65.611
18	54.624	45.878	79.971	74.034	31.249	53.213	200.070	130.173	36.624	472.890	89.797	84.642
19	- 52.349	44.581	58.488	74.629	28.062	46.717	214.655	75.006	34.712	417.175	115.045	71.753
20	230.193	53.497	52.019	77.669	25.606	42.765	100.959	67.446	53.518	311.867	87.578	80.114
21	372.323	51.323	47.799	64.476	25.906	40.355	73.556	234.556	55.709	406.679	72.019	107.528
22	278.597	47.320	45.774	57.862	26.001	52.694	61.336	105.000	161.519	284.988	67.025	92.073
23	172.174	45.077	43.719	53.493	23.679	59.524	53.860	81.406	115.365	176.194	78.492	71.354
24	135.368	42.218	42.040	48.381	22.879	57.823	51.218	69.568	85.170	133.262	172.667	64.502
25	114.973	40.204	49.996	45.210	22.351	51.170	47.196	55.177	67.272	107.688	236.494	67.061
26	98.346	38.044	67.086	42.435	21.450	44.084	42.758	192.198	56.749	90.024	185.914	107.360
27	82.908	49.450	379.715	40.500	22.841	40.122	51.918	187.935	49.967	103.280	119.036	321.714
28	73.960	49.538	287.162	37.520	23.719	44.871	42.718	97.761	44.805	138.497	97.911	304.498
29	66.078		148.443	37.237	23.015	54.070	39.883	70.515	41.313	91.626	87.005	282.866
30	61.790		110.749	36.475	28.722	48.562	43.967	56.615	38.664	76.631	93.735	170.643
31	57.264		96.784		32.521		39.061	48.079		71.143		281.575
Average	143.400	61.510	97.230	116.700	28.710	64.330	58.430	70.900	54.350	125.600	91.350	98.430
Lowest	52.349	38.044	42.040	36.475	21.450	25.943	23.646	19.621	34.712	30.629	43.031	39.460
Highest	382.256	160.487	379.715	358.471	39.584	164.669	214.655	234.556	161.519	472.890	236.494	321.714
Peak flow Day of peak	$\begin{gathered} 572.348 \\ 4 \end{gathered}$	$\begin{gathered} 214.583 \\ 10 \end{gathered}$	$\begin{gathered} 497.975 \\ 27 \end{gathered}$	$\begin{gathered} 417.753 \\ 11 \end{gathered}$	$\begin{gathered} 40.381 \\ 1 \end{gathered}$	$\begin{gathered} 200.405 \\ 6 \end{gathered}$	$\begin{gathered} 345.257 \\ 18 \end{gathered}$	$\begin{gathered} 370.964 \\ 21 \end{gathered}$	$\begin{gathered} 236.293 \\ 22 \end{gathered}$	$\begin{gathered} 781.341 \\ 18 \end{gathered}$	$\begin{gathered} 298.139 \\ 25 \end{gathered}$	$\begin{gathered} 595.355 \\ 27 \end{gathered}$
Monthly total (million cu mi)	384.00	148.80	260.40	302.50	76.90	166.80	156.50	189.90	140.90	336.40	236.80	263.60
Runoff (mm)	87	34	59	69	18	38	36	43	32	77	54	60
Rainfall (mm)	64	46	106	73	55	100	95	117	74	128	82	92

Statistics of monthly data for previous record (Oct 1962 to Dec 1986)

Station and catchment description
lowest station on River Tweed. Velocity-area station at very wide natural section. Complex control. Moderate seasonal weed growth effects on rating. Reservoirs in headwaters have only a small impact on the flow regime - monthly naturalised flows available. Geology: mixed but principally impervious Palaeozoic formations. Moorland and hill pasture predominates; improved grasslands and arable farming below Melrose.

022001 Coquet at Morwick

Measuring authority: NWA First year: 1963

Grid reference: 46 (NU) 234044 Level stn. (m OD): 5.20

Catchment area (sq km): 569.8 Max alt. (m OD): 776

Daily mean gauged discharges (cubic metres per second) ",

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV.	DEC
1	66.077	5.160	14.500	41.613	3.768	2.426	3.750	2.534	4.940	2.610	6.284	10.008
2	56.401	6.531	41.026	27.493	3.748	2.303	3.226	2.375	4.930	2.554	5.635	8.803
3	22.580	8.784	13.436	18.046	3.719	3.957	2.938	2.318	3.967	2.502	5.230	8.114
4	36.980	7.734	10.131	14.880	$3.436{ }^{\text {- }}$	4.009	2.684	2.488	3.864	2.438	4.956	7.330
5	25.524	13.284	12.138	62.902	3.188	4.034	2.498	2.379	3.821	2.607	. 4.675	6.614
6	15.472	15.373	33.822	34.852	3.016	18.668	2.293	2.246	4.225	6.373	4.501	6.159
7	11.978	9.156	16.952	39.692	2.819	18.232	2.187	2.195	4.076	4.431	4.403	5.928
8	9.478	8.431	11.544	57.597	2.756	14.235	2.078	2.204	3.655	5.214	4.931	5.239
9	8.171	20.016	9.358	27.962	2.711	9.507	2.033	2.293	2.326	5.289	5.347	4.751
10	7.263	38.066	8.161	38.373	2.641	7.269	3.010	2.118	2.949	4.735	21.864	4.880
11	6.173	14.218	7.666	81.529	2.666	5.415	8.670	2.002	1.909	5.641	25.163	4.856
12	4.670	10.070	7.576	37.623	2.799	5.520	5.053	3.844	5.240	4.466	21.218	5.124
13	4.166	8.641	7.151	27.158	2.875	5.219	3.415	9.435	4.146	4.166	10.425	4.595
14	4.878	8.260	6.794	17.669	3.093	8.509	2.956	4.241	3.066	4.512	11.036	4.502
15	5.934	7.111	7.045	13.340	3.866	6.754	2.850	3.133	1.775	5.758	13.261	4.525
16	5.970	6.416	7.349	10.819	3.565	6.231	3.494	6.863	1.844	32.837	9.321	11.102
17	5.406	6.031	13.427	9.297	3.176	8.883	3.160	44.943	2.734	12.603	7.987	12.569
18	4.909	5.644	8.309	8.305	3.786	5.162	28.968	11.729	2.750	32.754	8.692	22.454
19	4.768	5.937	6.278	7.640	3.082	4.248	21.269	7.210	3.049	42.350	7.368	11.801
20	32.921	7.613	5.404	6.768	2.671	3.789	8.819	5.400	4.535	24.128	6.234	10.677
21	67.399	6.965	5.022	5.978	2.501	4.118	6.350	4.814	3.842	65.364	8.218	15.764
22	45.352	6.345	4.847	5.457	2.731	5.054	5.259	4.737	5.826	21.730	32.191	10.517
23	26.942	5.889	4.655	5.155	2.718	5.767	4.586	5.218	6.389	13.052	55.491	8.315
24	20.396	5.205	4.531	4.857	2.530	5.023	4.187	5.098	5.402	9.822	54.607	7.411
25	15.708	4.806	13.496	4.569	2.365	4.912	3.934	4.324	4.028	8.341	37.707	6.776
26	12.829	7.648	13.438	4.332	2.250	4.274	3.526	68.918	3.504	7.260	18.840	6.501
27	10.276	10.473	42.275	4.095	2.199	3.868	3.973	24.905	3.153	24.472	13.813	49.266
28	8.669	7.991	52.525	3.870	2.214	5.842	3.448	10.986	2.940	19.360	11.568	31.559
29	7.611		19.749	3.735	2.367	5.271	3.203	8.610	2.802	9.836	12.209	21.024
30	6.841		13.380	3.667	2.979	4.738	2.894	6.956	2.685	8.078	9.961	15.830
31	5.356		11.458		2.891		2.718	5.556		7.676		15.777 .
Average	18.290	9.564	13.980	20.980	2.940	6.441	5.143	8.777	3.679	13.000	14.770	11.250
Lowest	4.166	4.806	4.531	3.667	2.199	2.303	2.033	2.002	1.775	2.438	4.403	4.502
Highest	67.399	38.066	52.525	81.529	3.866	18.668	28.968	68.918	6.389	65.364	55.491	49.266
Peak flow	113.331	65.570	70.180	110.925	4.303	39.313	44.365	109.371	8.428	101.564	-71.388	85.638
Day of peak Monthly total	1	10	28	11	15	6	- 18	26	12	18	23	- 27
(million cu m)	49.00	23.14	37.45	54.37	7.87	16.70	13.77	23.51	9.54	34.82	38.29	30.13
Runoff (mm)	86	41	66	95	14	29	24	41	17	61	. 67	53
Rainfall (mm)	71	52	107	93	48	94	83	106	53	114	94	70

Statistics of monthly data for previous record (Nov 1963 to Dec 1986 -incomplete or missing months total 0.2 years)

Station and catchment description
Velocity-area station with 34 m wide concrete Flat V weir made with pre-cast segments (installed 1969). Cableway. Fairly straight section with high banks. Replaced earlier station at Guyzance. Natural catchment.

Measuring authority: NWA First year: 1966

Grid reference: 35 (NY) 672611 Level stn. (m OD): 131.70

Catchment area (sq km): 321.9 Max alt. (m OD): 893

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	42.749	4.060	32.110	31.651	2.625	2.275	5.438	6.198	4.025	3.547	4.961	6.415
2	23.868	6.440	24.737	19.137	3.710	4.353	4.462	4.668	3.557	3.330	4.611	7.195
3	10.991	7.486	8.986	23.328	3.997	7.608	3.573	4.442	3.135	3.166	4.265	5.695
4	76.533	5.470	6.931	23.735	3.015	4.543	3.029	4.106	2.940	3.419	3.955	4.870
5	28.380	31.864	8.104	17.120	2.575	10.980	2.654	3.319	13.673	25.652	3.726	4.477
6	12.063	28.635	13.489	12.111	2.306	51.395	2.365	2.970	6.875	25.462	3.550	4.199
7	7.875	13.526	7.298	17.765	2.163	30.501	2.188	2.855	5.701	10.969	3.397	3.876
8	5.979	27.419	6.329	25.395	2.050	16.691	2.091	2.734	4.506	43.557	4.608	3.035
9	5.723	58.971	5.109	18.063	1.978	8.423	2.155	2.587	33.056	19.057	4.819	3.181
10	4.899	38.170	4.310	37.477	1.946	6.769	49.739	2.396	14.016	12.173	7.995	3.313
11	3.736	15.345	3.864	21.956	2.724	8.660	27.203	2.498	19.659	13.922	20.553	3.295
12	3.694	10.211	3.745	14.536	9.065	8.336	7.452	18.398	30.387	10.260	55.657	3.222
13	3.596	8.026	3.656	12.193	6.407	7.389	5.079	13.239	8.472	15.190	17.016	2.957
14	3.619	6.905	3.707	9.038	14.220	11.730	4.293	4.741	9.247	39.154	8.021	2.864
15	4.230	5.620	4.888	7.300	6.817	9.246	3.861	3.936	9.418	21.369	$16.584^{\text { }}$	2.544
16	3.983	4.965	16.037	6.208	4.311	5.351	4.249	8.841	6.710	77.957	27.766	4.230
17	3.464	4.443	28.920	5.250	7.926	4.053	4.234	8.911	5.425	22.631	12.506	13.975
18	3.584	3.975	9.420	4.666	6.333	3.402	72.004	4.894	4.481	103.392	21.916	19.305
19	5.706	4.070	5.552	4.925	3.797	3.043	14.206	3.733	26.229	40.436	13.243	22.166
20	54.668	3.883	4.432	7.203	3.038	2.736	7.541	$3.30{ }^{\text { }}$	13.052	18.899	9.906	25.415
21	43.069	3.695	4.226	6.084	2.707	2.468	5.794	3.753	25.336	38.801	17.364	19.653
22	20.242	3.813	5.933	4.501	2.840	3.848	5.173	8.341	23.670	19.114	14.901	9.285
23	11.378	3.788	8.923	3.801	2.571	3.403	4.254	11.101	28.933	10.072	38.399	6.346
24	9.481	3.484	11.592	3.385	2.267	3.781	4.059	6.390	13.148	7.731	20.427	5.540
25	8.080	3.200	28.483	3.138	2.101	15.022	3.528	4.305	10.116	6.538	16.727	6.891
26	6.854	3.712	64.185	2.935	1.989	8.208	20.746	43.180	7.747	5.761	10.018	22.695
27	5.736	14.052	115.961	2.730	1.909	10.024	11.355	9.153	5.799	20.370	6.824	50.784
28	5.040	17.350	45.358	2.556	1.903	17.769	10.370	15.434	4.927	10.868	6.016	31.623
29	4.579		17.460	2.434	2.037	18.793	29.114	10.101	4.339	6.752	6.272	30.931
30	3.512		32.293	2.473	4.483	8.334	12.470	5.373	3.880	5.788	8.597	17.109
31	2.832		44.474		3.082		8.109	4.093		5.312		28.298
Average	13.880	12.230	18.730	11.770	3.835	9.971	11.060	7.419	11.750	20.990	13.150	12.110
Lowest	2.832	3.200	3.656	2.434	1.903	2.275	2.091	2.396	2.940	3.166	3.397	2.544
Highest	76.533	58.971	115.961	37.477	14.220	51.395	72.004 ,	43.180	33.056	103.392	55.657	50.784
Peak flow Day of peak	$\begin{gathered} 196.686 \\ 4 \end{gathered}$	$\begin{gathered} 149.446 \\ 9 \end{gathered}$	$\begin{gathered} 169.676 \\ 27 \end{gathered}$	$\begin{gathered} 92.168 \\ 10 \end{gathered}$	$\begin{gathered} 22.161 \\ 14 \end{gathered}$	$\begin{gathered} 81.071 \\ 6 \end{gathered}$	$\begin{gathered} 170.108 \\ 10 \end{gathered}$	$\begin{gathered} 105.090 \\ 26 \end{gathered}$	$\begin{gathered} 129.529 \\ 9 \end{gathered}$	$\begin{gathered} 263.111 \\ 18 \end{gathered}$	$\begin{gathered} 103.326 \\ 12 \end{gathered}$	$\begin{gathered} 176.436 \\ 27 \end{gathered}$
Monthly total (million cu m)	37.16	29.60	50.16	30.51	10.27	25.85	29.62	19.87	30.45	56.22	34.09	32.43
Runoff (mm)	115	92	156	95	32	80	92	62	95	175	106	101
Rainfall (mm)	82	99	200	85	73	144	156	109	149	206	119	128

Statistics of monthly data for previous record (Oct 1966 to Dec 1986 -incomplete or missing months total 0.2 years)

Station and catchment description
Compound Crump weir. Lower crest 15.2 m , upper crest 29.5 m . Theoretical rating. Natural flow regime.

025001 Tees at Broken Scar

Measuring authority: NWA
First year: 1956

Grid reference: 45 (NZ) 259137 Level stn. (m OD): 37.20

Catchment area (sq km): $\mathbf{8 1 8 . 4}$ Max alt. (m OD): 893

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	MAY	JuN	Jut	aug	SEP	OCt	NOV	DEC
1	100.946	8.456	10.969	59.829	4.477	3.578	9.583	12.637	4.497	8.447	16.700	14.112
2	72.640	8.070	35.058	35.891	4.725	4.904	7.882	10.164	4.303	9.039	15.100	14.769
3	32.192	10.806	12.522	27.434	5.490	17.309	6.719	7.935	4.596	9.038	11,123	13.332
4	84.695	8.748	8.449	45.064	4.479	7.311	4.868	5.202	4.396	9.994	10.704	17.447
5	50.384	35.040	10.852	82.004	4.822	14.266	4.342	4.007	9.180	17.236	10.305	16.390
6	30.457	55.811	21.945	35.154	4.649	55.296	4.049	3.538	9.166	30.831	10.565	14.677
7	21.244	18.912	20.274	75.727	3.909	23.436	3.891	3.908	5.769	20.521	12.209	9.239
8	17.797	35.058	17.523	82.267	3.594	16.057	3.582	6.570	4.348	32.766	11.122	5.796
9	16.311	106.328	13.771	34.779	3.616	11.597	3.366	4.153	11.761	28.397	6.048	5.113
10	14.729	74.600	9.472	47.847	3.589	12.918	5.407	3.912	14.154	27.203	6.625	5.734
11	13.842	32.287	8.873	48.157	4.057	15.992	44.635	4.302	20.340	18.132	30.775	7.109
12	12.432	21.470	8.781	26.296	6.194	18.871	11.286	5.009	42.997	15.124	88.141	11.311
13	9.912	15.418	8.618	22.539	5.866	13.459	5.982	20.381	11.191	16.351	49.659	10.321
14	10.037	13.473	8.749	19.060	11.431	12.640	4.676	6.774	34.195	52.837	25.848	5.306
15	11.604	11.171	. 12.074	15.783	7.219	15.033	4.323	5.160	24.827	45.201	26.546	4.953
16	10.767	9.405	12.913	12.466	5.090	8.721	4.249	5.375	20.860	95.995	43.987	10.381
17	9.998	7.354	52.240	9.831	6.206	7.357	4.165	5.502	11.472	35.488	22.514	21.777
18	9.108	6.906	24.143	9.536	8.925	8.008	68.576	4.316	9.979	157.915	21.102	34.688
19	9.113	6.357	11.107	7.609	4.361	8.204	42.346	3.996	28.022	100.789	23.774	22.029
20	37.018	5.507	9.577	10.637	3.836	8.713	12.290	3.844	27.163	47.340	17.761	19.266
21	71.050	5.144	12.247	9.407	3.371	7.814	7.773	5.545	21.347	108.909	16.586	18.576
22	53.299	5.279	11.386	6.816	3.423	8.058	6.180	27.832	27.843	46.312	23.064	11.644
23	28.948	5.579	9.710	6.398	3.252	8.041	5.758	19.688	28.525	31.006	90.768	8.271
24	25.535	5.012	8.747	6.044	3.341	8.663	5.194	13.697	18.609	26.043	79.369	7.610
25	19.519	4.425	33.390	6.615	3.454	15.444	4.422	5.204	14.047	23.428	50.966	13.278
28	15.602	4.746	71.879	4.978	3.261	20.338	5.274	16.846	12.101	19.442	34.566	19.808
27	12.576	16.951	155.922	4.345	3.430	16.513	17.674	9.930	8.635	48.413	26.369	69.307
28	9.160	15.772	80.118	4.494	3.246	28.327	5.190	7.080	7.553	34.082	21.780	66.871
28	8.130		29.127	4.416	3.412	25.566	15.066	11.970	9.555	22.299	18.866	71.128
30	6.817		27.860	4.089	6.342	14.508	18.119	5.966	8.452	18.800	16.156	50.097
31	4.011		43.306		4.710		8.542	4.699		16.700		50.501.
Average	26.770	19.720	25.860	24.840	4.767	14.560	11.460	8.230	15.330	37.870	27.970	20.990
Lowest	4.011	4.425	8.449	4.089	3.246	3.578	3.366	3.538	4.303	8.447	6.048	4.953
- Highest	100.946	108.328	155.922	82.004	11.431	55.296	68.576	27.832	42.997	157.915	90.768	71.128
Poak flow	177.350	208.056	230.517	153.995	19.633	100.292	112.072	90.752	115.315	248.517	184.499	206.107
Day of poak	4	9	27	7	14	5	18	22	11	18	12	27
Monthly total (million cu m)	71.70	47.70	69.26	64.39	12.77	37.75	30.71	22.04	39.73	101.40	72.49	56.23
Runoff (mm)	88	58	85	79	16	46	38	27	49	124	89	69
Rainfall (mm)	69	73	127	72	51	129	110	73	115	157	118	103

Statistics of monthly data for previous record (Oct 1956 to Dec 1986-incomplate or missing months total 0.1 years)

Station and catchment description
Compound Crump weir with total crest length of 63.9 m . Two low-flow crests total 9.1 m . Theoretical rating. Substantial artificial influences. Contains Cow Green and 5 smaller reservoirs on Lune and Balder. Major intake just above gauge site. Occasional transfers from Tyne (Keilder) at Eggleston. A mainly impervious catchment developed on Millstone Grit and Carboniferous Limestone. Headwaters drain the Pennines. Moorland and rough pasture give way to more intensive agriculture in the lower reaches.

027002 Wharje at Flint Mill Weir

Measuring authority: YWA First year: 1936

Grid reference: 44 (SE) 422473
Level stn. (m OD): 13.70

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	73.180	5.001	14.600	50.320	4.631	2.889	9.595	7.791	4.614	5.163	9.756	8.794
2	62.330	6.330	30.240	34.130	5.128	3.583	6.892	6.499	4.148	5.071	8.450	8.100
3	31.720	8.324	16.410	21.850	5.247	10.330	5.621	5.607	3.325	4.956	7.560	7.669
4	67.480	8.357	11.330	18.450	5.086	10.330	4.799	6.097	3.168	5.050	7.025	7.255
5	61.730	11.340	11.800	30.550	4.438	7.494	3.871	5.286	3.693	5.012	6.551	6.771
6	40.530	29.140	21.170	22.720°	4. 109	45.950	3.591	4.349	17.920	6.929	6.187	6.486
7	24.470	17.330	17.530	51.370	4.196	36.310	3.601	3.953	12.590	9.427	6.057	6.176
8	18.260	23.980	14.440	49.560	3.974	16.760	3.310	3.559	8.266	13.620	5.910	5.843
9	14.850	55.450	11.890	32.250	3.850	10.410	3.279	3.598	6.185	35.300	5.695	5.728
10	12.770	60.870	10.430	29.770	3.739	12.570	3.816	3.354	19.550	33.950	5.790	5.602
11	10.660	31.350	10.010	43.200	3.721	22.350	15.850	3.262	11.090	16.850	15.280	5.573
12	8.541	20.860	9.631	24.400	3.933	14.850	. 9.821	3.517	71.950	10.780	44.240	5.354
13	8.766	15.160	9.253	17.650	4.270	10.600	5.759	16.240	25.900	11.550	52.320	5.174
14	8.341	12.300	8.985	14.620	5.212	9.488	4.262	9.785	13.840	29.800	21.500	5.037
15	8.040	10.420	9.059	12.440	7.026	8.002	3.792	5.826	9.918	24.510	32.460	4.990
16	7.251	9.115	12.010	10.970	5.716	6.812	3.399	4.519	8.375	71.950	60.160	8.931
17	6.808	8.109	25.060	9.799	5.255	6.166	3.474	4.018	10.590	34.420	38.600	18.390
18	6.631	7.482	24.720	8.897	6.046	5.515	24.910.	6.116	9.907	38.160	24.340	36.070
19	6.400	7.109	14.810	8.279	5.642	5.158	35.170	5.592	16.430	59.430	36.210	19.450
20	7.529	6.789	10.720	11.290	4.151	4.259	16.490	4.210	49.230	33.410	25.550	26.090
21	15.650	6.507	8.754	9.878	3.272	4.009	8.989	3.770	16.980	55.620	17.010	26.400
22	16.480	6.368	7.959	7.762	3.698 '	4.136	6.823	53.890	16.990	37.360	14.580	24.970
23	12.310	6.225	8.738	. 6.840	3.800	3.734	5.793	28.980	12.560	22.280	22.580	13.910
24	10.800	6.084	12.310	6.220	3.434	3.628	5.370	14.880	13.860	15.740	39.500	10.930
25	9.983	5.729	30.740	5.779	3.344	4.540	4.961	9.315	18.320	12.580	25.500	11.650
26	8.802	6.346	30.440	5.435	3.100	11.260	4.756	7.635	11.730	10.520	18.630	25.840
27	7.758	9.722	110.900	5.157	3.050	7.898	9.725	7.741	8.676	27.940	14.210	44.520
28	7.099	17.490	89.370	5.457	3.054	9.946	6.875	6.179	7.059	34.380	11.460	54.500
29	6.505		37.110	5.166	2.874	29.450	5.618	5.553	6.108	17.100	10.160	97.910
30	6.059		23.030	5.267	2.877	20.460	10.720	5.107	5.430	12.950	9.480	49.780
31.	5.275		18.330		3.023		7.504	4.418		11.210		36.260
Average	-19.130.	14.970	21.670	18.850	4.222	11.630	8.014	8.408	14.280	23.000	20.090	19.360
Lowest	5.275	5.001	7.959	5.157	2.874	2.889	3.279	3.262	3.168	4.956	5.695	4.990
Highest	73.180	60.870	110.900	51.370	7.026	45.950	35.170	53.890	71.950	71.950	60.160	97.910
Peak flow	137.600	98.930	161.200	81.430	7.872	72.560	65.090	91.250	112.000	98.580	101.700	135.900
Day of peak	4	9	27	7	15	6	18	22	12	16	12	29
Monthly total (million cu m)	51.24	36.23	58.04	48.86	11.31	30.14	21.46	22.52	37.01	61.60	52.08	51.85
Runoff (mm)	68	48	76	64	15	40	28	30	49	81	69	68
Rainfall (mm)	49	72	123	68	44	121	- 91	86	105	140	95	101

Statistics of monthly data for previous record (Oct 1955 to Dec 1986)

Station and catchment description
The control is a broad-crested masonry weir 47m wide with a current meter cableway 1.5 km upstream. Insensitive at low flows. Level data only from June 1936 to October 1955. Pre-October 1965 rating may be less reliable. Headwaters contain numerous reservoirs which exert a substantial influence on flows. Mixed geology comprising mainly Carboniferous Limestone, grits and Coal Measures with some Permian sand and Magnesian Limestone and marls in the lower catchment. Predominantly rural catchment with moorland headwaters.

027035 Aire at Kildwick Bridge

Grid reference: 44 (SE) 013457
Level stn. (m OD): 87.30

Catchment area (sq km): 282.3
Max alt. (m OD): 594
Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAA	. APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	27.360	1.912	7.637	24.600	1.549	0.892	2.793	3.729	2.192.	2.283	4.428	3.462
2	20.470	5.716	10.880	13.070	1.631	1.444	2.014	2.825	1.875	1.998	3.976	3.310
3	11.640	5.536	5.657	8.481	1.443	2.760	1.635	2.624	1.649	1.841	3.666	3.075
4	26.390	3.935	4.903	6.919	1.326	2.885	1.410	2.474	1.431	2.292	3.341	2.916
5	24.650	6.264	8.199	6.976	1.279	3.422	1.232	1.928	1.547	3.920	3.130	2.728
8	14.750	12.280	13.620	5.912	1.157°	8.416	1.093	1.677	2.512	5.292	3.004	2.531
7	9.748	6.731	9.205	18.200	1.090	7.630	0.996	1.654	2.595	4.501	2.801	2.331
8	7.393	18.760	7.282	16.590	1.079	4.211 .	0.942	1.530	1.966	9.826	2.693	2.111
9	6.144	31.830	5.759	11.090	1.070	3.396	1.047	1.399	2.136	27.710	2.524	2.029
10	5.178	21.380	5.026	12.630	1.047	4.428	1.398	1.368	3.261	16.440	2.964	2.009
11	4.328	. 14.030	4.695	12.650	1.137	4.929	2.702	1.454	8.309	8.281	10.080	1.997
12	3.912	9.232	4.208	7.921	1.280	4.017	1.493	1.779	19.000	6.776	25.300	1.896
13	3.493	6.892	3.941	6.234	1.125	2.946	1.150	4.884	7.067	7.530	19.400	1.813
14	3.186	5.543	3.589	5.078	2.261	2.367	1.045	2.445	5.009	8.678	9.023	1.748
15	3.299	4.573	4.290	4.204	1.647	. 2.051	1.040	1.832	3.685	12.890	15.290	1.941
16	2.977	3.923	4.118	3.709	1.296	2.006	0.935	. 1.640	3.772	39.800	23.790	5.486
17	2.739	3.476 ,	8.115	3.423	1.632	1.718	0.980	1.555	5.473	16.250	13.750	11.420
18	2.547	3.034	6.637	3.129°	1.793	1.434	19.480	3.470	3.564	14.190.	11.560	15.360
19	2.277	2.775	4.368	2.970 .	1.338	1.247	12.040	2.384	13.820	16.010	12.640	8.606
20	3.561	2.573	3.379	3.008	1.163	1.079	5.060	1.820	12.330	13.130	10.130	8.634
21	5.780	2.432	2.932	2.494	1.120	1.009	3.346	9.407	7.588	22.470	7.463	8.120
22	5.495	2.310	2.725	2.344	1.074	1.290	2.545	35.380	8.272 .	11.490	6.700	6.494
23	4.413	2.220	3.638	2.159	1.057	1.080	2.022	14.930	6.599	- 8.371	8.110	5.227
24	4.195	2.080	3.723	2.046	0.952	1.027	1.847	8.168	8.220	6.882 .	8.449	4.642
25	3.860	1.887	16.360	1.877	0.941	2.342	1.599	5.548	6.771	5.882	6.587	4.733
26	3.303	4.954	16.680 ,	1.784	0.924	2.533	2.826	4.391	4.716	4.961	5.461	9.058
27	2.841	6.532	46.360	1.659	0.933	2.215	4.489	3.484	3.756	18.870	4.641	17.440
28	2.519	6.669	38.950	1.566	0.956	2.417	2.482	2.978	3.240	11.410	4.161	19.660
29	2.242		17.420	1.696	0.936	7.089	8.592	2.697	2.844	7.169	4.040	40.090
30	2.161		10.450	1.733	0.991	5.214	6.915	2.334	2.587	5.800	3.771	22.750
31	2.035		8.239		0.950		4.488	2.198		5.031		16.140
Average	7.254	7.124	9.451	6.538	-1.232	2.983	3.279	- 4.387	5.260	10.580	8.096	$\cdot 7.734$
Lowest	2.035	1.887	2.725	1.566	0.924	0.892	0.935	1.368	1.431	1.841	2.524	1.748
Highest	27.360	31.830	46.360	24.600	2.261	8.416	19.480	35.380	19.000	39.800	25.300	40.090
Peak flow	42.520	46.880	55.890	30.410	2.788	11.740	30.440	45.690	36.760	50.610	48.150	
Day of peak Monthly total	4	9	27	7	14	29	18	22	11	16	12	29
(million cu m)	19.43	17.23	25.31	16.95	3.30	7.73	8.78	11.75	13.63	28.34	20.98	20.71
Runoff (mm)	69	61	90	60	12	27	31	42	48	100	74	73
Rainfall (mm)	45	80	126	57	43	115	103	90	102	138	88	98

Statistics of monthly data for previous record (Dec 1968 to Dec 1986 -incomplete or missing months tota! 0.2 years) '

Mean flows:	Avg.	10.910	7.773	7.459	4.984	3.128	2.412	1.633	3.037	3.733	6.964	. 10.630 :	10.970
	Low	4.463	3.529	2.390	0.922	0.611	0.604	0.298	0.289	1.147 ,	0.788	3.583	3.175
	(year)	1973	1986	1985	1974	1974	1970	1984	1976	1971	1972	. 1975	1971
	High	18.580	13.220	22.520	11.400	8.174	6.416	5.927	11.410	10.360	17.570	16.540	20.820
	(year)	1984	1984	1981	1986	1983	1982	1973	1985	1974	1981	1984	1979
Runoff:	Avg.	104	67	71	46	30	22	15	- 29	34	66	98	104
	Low	42	30	23	8	6	6	3	3	11	7	33	30
	High	176	117	214	105	78	59	56	108	95	167	152	198
Rainfall:	Avg.	124	70	102	71	77	76	72	93	111	113	133	125
	Low	67	13	44	3	10	23	17	17	22	37	55	42
	High	222	139	233	135	142	155	151	171	250	213	187	238

Station and catchment description
Velocity-area station rated by current meter cableway 150 m downstream. Low flow control is the sills of the bridge. Washland storage and headwater reservoirs influence the flow pattern. Geology is mainly Carboniferous Limestone with some Millstone Grit series. Rural catchment draining part of the eastern Pennines.

027041 Derwent at Buttercrambe

1987

Measuring authority: YWA First year: 1973

Grid reference: 44 (SE) 731587 Level stn. (m OD): 9.50

Catchment area (sq km): 1586.0 Max alt. (m OD): 454

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	153.400	14.450	26.530	35.100	14.330	9.027	11.020	8.742	10.850	7.947	19.400	24.430
2	59.330	15.240	50.800	51.990	14.750	9.264	9.545	8.242	10.550	7.721	17.920	21.160
3	- 47.440	14.850	47.640	41.160	14.440	10.830	9.197	8.011	9.652	7.585	16.760	19.540
4	36.980	14.710	31.450	31.660	13.600	10.360	8.886	7.783	9.251	7.647	15.940	18.270
5	32.200.	15.130	26.670	29.680	13.070	10.420	8.441	7.637	- 8.894	7.827	15.270	17.200
6	29.190	16.300	41.560	28.750	12.700	18.660	8.165	7.574	9.268	8.928	14.580	16.290
7	28.610	14.640	44.240	41.200	12.430	16.220	7.831	7.579	9.255	. 9.516	14.230	15.580
8	- 26.890	14.900	34.150	56.030	12.160	14.190	7.609	7.574	8.684	8.918	14.010	14.630
9	23.990	21.300	28.010	43.450	11.900	15.220	7.440	7.398	8.260	10.150	13.870	14.240
10	21.680	30.100	24.640	37.020	11.740	13.510	7.496	7.160	8.231	25.870	13.690	13.990
11	19.610	21.440	22.970	48.350	12.080	12.850	7.995	7.018	8.365	47.850	15.650	13.970
12	18.060	18.750	22.220	55.940	12.320	13.310 .	7.762	7.061	14.670	42.600.	20.430	13.720
13	17.250	18.300	21.250	40.290	12.090^{*}	14.490	7.309	7.216	14.020	25.080	20.030	13.330
14	16.400	17.160	20.150	32.540	12.820	12.590	7.115	7.669	10.100	18.870	16.690	13.190
15	16.570	16.250	20.130	28.920	13.400	13.660	7.677	6.981	8.585	18.110	16.750	12.930
16	16.260	15.710	22.460	26.540	12.850	12.530	7.887	6.812	8.310	32.760	19.810	15.740
17	- 15.670	15.970	40.570	25.030	12.030	11.290	7.956	6.853	9.174	31.690	18.140	26.150
18	15.210	16.140	35.740	23.530	12.430	10.460	15.260	7.725	9.808	23.210	15.660	35.610
19	14.750	16.110	24.440	22.420	11.510	9.944	31.900	7.839	9.148	24.440	14.740	25.790
20	14.400	15.440	21.590	21.130	10.820	9.593	17.480	7.282	22.230	30.560	14.100	21.340
21	17.960	16.570	20.200	19.780	10.400	9.326	12.980	6.917	15.630	55.120	13.450	23.580
22	36.030	23.980	19.030	19.060	10.260	9.685	12.560	15.140	11.930	53.720	14.620	21.860
23	40.840	27.140	19.110	18.410	10.190	-10.750	11.990	18.070	10.640.	38.460	30.140	18.500
24	36.210	21.270	18.940	17.630	9.944	10.780	11.140	14.920	9.808	27.990	51.300	17.440
25	27.510	18.470	32.090	16.980	9.632	11.070	10.550	12.260	9.454	22.490	42.790	16.820
26	23.000	20.110	30.770	16.410	9.400	15.890	9.809	17.250	9.054	20.230	33.190	16.260
27	20.880	39.530	34.770	15.810	9.248	14.230	10.800	45.580	8.753	23.260	26.860	18.860
28	19.200	34.540	52.280	15.300	9.288	13.310	10.820	35.430	8.293	39.710	22.850	23.890
29 :	18.210		44.540	14.940	9.405	11.920	10.550	19.540	8.210	28.420	20.430	22.800
30	17.150		28.910	14.640	9.636	11.740	10.890	13.430	8.097	22.420	20.940	19.700
31	15.460		24.940		9.319		9.312	11.560		20.490		22.760
Average	25.690	19.450	30.090	29.660	11.620	12.240	10.500	11.620	10.240	24.180	20.140	19.020
Lowest	14.400	14.450	18.940	14.640	9.248	9.027	7.115	6.812	8.097	7.585	13.450	12.930
Highest	59.330	39.530	52.280	56.030	14.750	18.660	31.900	45.580	22.230	$\cdot 55.120$	51.300	35.610
Peak flow	61.080	41.470	59.090	60.010	15.260	23.320	35.620^{\prime}	47.900	26.740	58.880	53.560	37.340
Day of peak Monthly total	2	27	2	12	2	6	19	27	20	21	24	18
((million cu m)	-68.80.	47.04	80.59	76.87	31.12	31.72	. 28.11	31.13	26.54	64.76	52.21	50.94
Runoff (mm)	43	30	51	48	20	20	18	20	17	41	33	32
Rainfall (mm)	34	52	94	60	48	94	75	80	55	117	58	46

Statistics of monthly data for previous record (Oct 1973 to Dec 1986)

Station and catchment description Forge Valley (8% catchment) are diverted down the Sea Cut (27033). Mixed geology of clays, shales and limestone. Rural catchment draining the North York Moors.

027053 Nidd at Birstwith

Measuring authority: YWA
First year: 1975

Grid reference: 44 (SE) 230603 Leval stn. (m OD): 67.40

Catchment area (sq km): 217.6 Max alt. (m OD): 705

Daily mean gauged discharges (cubic motres par tocond).

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	27.580	2.262	2.455	7.107	1.770	1.078	1.713	1.135	1.405	2.092	2.956	3.153
2	18.120	2.582	3.218	6.974	1.888	1.324	1.604	1.101	1.347	2.068	2.793	3.029
3	11.330	2.161	2.208	3.935	1.736	1.713	1.559	1.121	1.322	2.050	2.689	2.920
4	18.590	1.804	2.088	4.445	1.677	1.583	1.529	1.089	1.305	2.197	2.586	2.792
5	18.630	2.113	2.951	8.115	1.645	2.128	1.510	1.049	1.425	2.132	2.502	2.711
${ }^{6}$	12.560	3.436	3.740	7.942	1.620	2.382	1.190	1.051	1.663	2.172	2.447	2.632
7	10.610	2.867	2.920	26.400	1.586	1.928	1.083	1.072	1.538	2.161	2.396	2.560
8	9.848	3.278	2.693	17.720	1.563	1.494	1.062	1.044	1.367	2.207	2.366	2.478
9	6.311	9.570	2.446	10.130	1.544	1.404	1.060	1.023	1.364	5.303	2.359	2.423
10	5.614	10.890	2.431	10.950	1.538	1.788	1.139	1.013	1.498	4.199	2.460	2.421
11	3.705	6.694	2.573	11.750	1.290	1.771	1.264	1.044	6.301	2.981	5.226	2.516
12	3.201	3.812	2.511	6.801	1.298	2.040	1.117	1.099	4.903	2.585	10.500	2.445
13	3.118	3.195	2.506	6.217	1.273	1.537	1.085	1.316	4.576	2.932	11.210	2.404
14	2.924	3.026	2.435	3.511	1.366	1.476	1.082	1.091	4.960	3.038	6.208	1.738
15	2.759	2.838	2.926	2.894	1.322	1.671	1.111	1.055	4.701	7.245	9.101	1.755
16	2.679	2.742	2.576	2.710	1.266	1.678	1.081	1.027	2.285	13.220	10.360	3.374
17	2.635	2.720	2.952	2.587	1.338	1.488	1.109	1.013	2.520	6.962	11.020	4.390
18	2.559	2.663	2.524	2.462	1.318	1.393	3.238	1.520	2.042	7.700	6.700	4.086
19	2.507	2.608	2.154	2.384	1.250	1.288	2.291	1.260	6.565	8.903	6.288	3.387
20	3.781	2.570	1.987	2.299	1.205	1.203	1.555	1.110	5.797	15.150	5.762	3.300
21	3.983	2.541	1.910	2.192	1.204	1.175	1.429	3.171	5.514	24.970	6.140	3.559
22	3.540	2.533	1.859	2.081	1.202	1.229	1.496	5.751	5.170	8.942	6.115	3.150
23	3.131	2.470	2.194	1.997	1.188	1.187	1.304	4.266	4.919	6.600	12.070	2.900
24	3.002	2.381	2.471	1.945	1.159	1.152	1.281	3.987	2.858	6.100	11.870	2.874
25	2.830	2.343	4.698	1.903	1.137	2.042	1.212	2.506	2.520	5.768	12.610	2.939 .
26	2.711	2.753	5.818	1.849	1.122	2.049	1.221	2.213	2.257	5.525	7.074	3.144
27	2.826	3.028	24.590	1.818	1.112	2.040	1.273	1.779	2.129	11.930	4.230	4.730
28	2.515	2.782	20.330	1.796	1.112	1.868	1.158	1.560	2.057	- 6.932	3.665	7.146
29	2.439		11.890	1.953	1.102	2.279	1.230	1.490	1.976	6.075	3.487	16.690
30	2.317		6.824	1.793	1.102	1.989	1.232	1,400	2.094	5.777	3.398	15.320
31	2.231		4.417		1.089		1.158	1.372		3.753		13.670
Avarago	6.464	3.381	4.493	5.555	1.356	1.646	1.367	1.669	3.013	6.118	5.953	4.279
Lowast	2.231	1.804	1.859	1.793	1.089	1.078	1.060	1.013	1.305	2.050	2.359	1.738
Highost	27.580	10.890	24.590	26.400	1.888	2.382	3.238	5.751	6.565	24.970	12.610	16.690
Peak flow	32.440	17.150	41.690	55.460	2.011	4.863	4.952	16.270	30.810	60.430	22.690	26.430
Day of poak Monthly total	1	9	27	7	2	5	18	21	11	. 20	12	
(million cu m)	17.31	8.18	12.03	14.40	3.63	4.27	3.66	4.47	7.81	16.39	15.43	11.46
Runoff (mm)	80	38	55	66	17	20	17	21	36	75	71	53
Rainfall (mm)	57	74	126	73	43	125	79	93	114	144	107	108

Statistics of monthly data for previous record (Apr 1975 to Dec 1986 -incomplate or missing months total 0.1 years)

Station and catchment description
Velocity-area station approximately 17 m wide, rated with current metering from bridge at the section. Heavily reservoired catchment with substantial effect on flows. Geology is mostly Millstone Grit. Rural catchment.

Grid reference: 43 (SK) 620399 Level stn. (m OD): 16.00

Catchment area (sq km): 7486.0 Max alt. (m OD): 636

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APA	MAY	JUN		AUG	$\begin{gathered} \text { SEP } \\ 5 \cap 6 \Delta 6 \end{gathered}$	$\begin{gathered} \text { OCT } \\ 37.146 \end{gathered}$	NOV 110.327	DEC 68.809
1	453.705	67.367	92.820	157.570	61.196	40.431	58.023	45.340	50.646	37.146	110.327	68.809
2	452.700	74.063	147.044	249.392	58.751	60.623	54.184	46.871	48.003	36.302	97.654	63.446
3	357.480	83.162	115.373	181.130	60.987	61.016	52.273	48.957	46.232	36.589	83.168	60.056
4	232.266	82.745	89.115	143.673	-55.410	66.993	48.428	41.330	46.936	47.011	75.592	59.666
5	226.666	85.156	81.930	237.055	52.803	64.943	46.684	40.443	43.483	60.850	69.445	57.925
6	211.496	88.665	116.693	263.696	52.021	98.835	42.620	38.815	44.115	63.023	68.264	57.324
7	172.318	79.443	161.892	284.873	52.147	81.272	42.857	37.587	68.087	61.426	62.670	55.589
8	148.309	75.793	153.489	371.607	51.491	73.357	42.070	37.222	56.697	79.698	60.650	54.995
9	131.451	112.106	147.291	348.672	49.184	125.610	41.800	41.075	47.721	127.418	76.770	52.828
10	114.145	135.749	117.800	253.001	46.337	125.185	43.195	47.527	44.129	214.344	77.615	52.931
11	101.728	125.278	112.189	218.613	47.168	91.936	42.149	42.318	42.994	226.516	107.582	53.224
12	94.422	164.101	111.839	171.213	56.120	88.529	41.184	42.152	44.643	139.408	168.203	58.740
13	91.321	149.986	102.871	136.321	61.642	72.279	40.347	59.436	41.185	105.865	129.199	58.210
14	85.369	113.068	94.612	119.416	63.850	68.245	40.439	63.661	39.325	92.345	93.935	56.285
15	79.019	93.047	90.513	107.414	64.993	121.021	42.926	47.352	39.852	236.677	110.696	57.598
16	80.492	83.699	99.395	97.497	57.484	117.470	46.444	$\cdot 41.096$	41.823	288.925	126.590	97.388
17	84.271	76.837	100.692	90.921	55.061	98.794	46.840	42.698	62.480	197.159	103.523	133.035
18	79.531	71.870	151.567	84.638	60.444	81.346	51.486	41.661	67.135	142.210	88.823	174.660
19	78.862	68.187	126.195	80.230	57.436	214.084	59.340	41.777	54.670	134.069	128.407	137.626
20	73.519	64.918	97.135	78.580	49.458	278.160	44.586	36.701	66.581	129.720	229.267	99.032
21	97.172	60.979	86.401	77.372	46.389	234.396	43.972	35.760	55.866	230.960	169.652	86.952
22	149.664	58.796	79.553	71.369	45.992	132.576	49.953	38.090	53.457	231.976	126.859	77.642
23	168.789	58.089	82.254	68.916	47.046	101.894	42.060	113.922	58.243	154.155	146.677	71.570
24	175.471	57.996	96.247	65.380	- 48.327	84.659	44.401	211.744	59.238	114.833	216.452	68.025
25	162.647	56.816	176.948	63.803	44.480	80.539	41.869	222.756	51.794	96.365	190.049	65.021
26	133.301	65.963	201.586	60.846	43.685	126.043	43.421	172.654	44.449	89.184	144.527	60.643
27	113.279	91.078	234.313	60.445	42.158	98.260	52.689	106.098	42.576	109.955	118.776	105.842
28	97.024	83.540	266.872	58.741	42.155	81.262	58.962	74.355	42.003	195.760	101.227	127.534
29	86.301		207.922	62.724	42.176	71.836	51.424	49.617	40.114	150.623	92.050	102.890
30	78.257		143.940	67.685	40.757	64.091	54.452	46.605	37.057	114.015	90.769	110.563
31	68.541		119.770		41.162		48.078	45.696		101.367		118.616
Average	151.000	86.730	129.200	144.400	51.560	103.500	47.070	64.560	49.380	130.500	115.500	80.800
Lowest	68.541	56.816	79.553	58.741	40.757	40.431	40.347	35.760	37.057	36.302	60.650	52.828
Highest	453.705	164.101	266.872	371.607	64.993	278.160	59.340	222.756	68.087	288.925	229.267	174.660
Peak flow	469.984	170.044	276.651	373.904	72.473	297.142	77.972	230.480	91.849	305.202	240.598	195.505
Day of peak	1	12	28	8	15	19	19	25	7	16	24	18
Monthly total (million cu m)	404.30	209.80	346.10	374.40	138.10	268.30	126.10	172.90	128.00	349.60	299.40	216.40
Runoff (mm)	54	28	46	50	18	36	17	23	17	47	40	29
Rainfall (mm)	28	42	80	58	41	127	49	81	55	122	59	42

Statistics of monthly data for previous record (Oct 1958 to Dec 1986)

Station and catchment description
Velocity-area station in the navigable Trent. Main channel approx 62 m ; cableway span 99 m . Holme sluices 750 m u/s affect water levels up to medium flows. Bypassed at high flows on rb when gravel workings inundated. Very substantial flow modifications owing to imports, WRW's, cooling water and industrial usage. Very large catchment with the gamut of land usage. Predominantly impervious - glacial clays and Triassic Marls, but some sandstones and limestones. Extensive terrace gravels and alluvium maintain baseflow.

028085 Derwent at St. Marys Bridge

1987

Measuring authority: STWA First year: 1936

Grid reference: 43 (SK) 355368
Level stn, (m OD): 44.00 .

Catchment area (sq km): 1054.0 Max alt. (m OD): 636

Daily maan gauged discharges (cubic metres per second)												
DAY	JAN	FEB	MAR	APR	MAY	JuN	JUL	AUG	SEP	OCT	NOV	DEC
1	114.751	14.131	16.398	41.993	10.593	6.678	13.696	7.770	5.679	6.478	19.699	18.484
2	87.382	16.540	20.582	38.192	10.599	8.832	12.674	7.488.	-5.654	6.285	18.707	14.545
3	64.929	16.088	15.712	28.849	10.157	9.773	12.128	7.148	6.178	5.900	12.962	13.377
4	62.074	16.030	14.946	27.589	9.593	22.201	10.646	6.918	5.893	7.798	12.975	13.082
5	61.599	16.774	15.425	36.574	9.451	16.304	10.292	6.994	6.422	7.491	11.552	11.321
6	55.849	18.065	23.260	29.455	9.259	20.344	10.411	6.823	8.666	10.362	11.750	10.790
7	49.005	15.658	21.309	72.556	9.501	16.325	9.343	6.478	8.334	10.193	10.255	11.314
8	44.098	15.581	20.373	61.179	9.336	15.574	9.084	6.884	6.351	25.107	10.946	11.144
9	38.264	26.932	18.476	45.573	7.901	21.547	9.097	7.197	6.445	38.310	11.632	11.023
10	31.145 ,	24.593	17.877	40.502	7.397	18.960	9.074	6.999	6.102	50.701	11.340	10.606
11	28.665	22.529	19.997	42.657	8.345	15.825	7.810	6.403	6.266	34.447	16.576	10.449
12	28.025	20.258	18.072	30.978	9.725	18.488	7.564	6.436	5.914	29.039	16.019	9.707
13	26.390	18.228	17.187	28.983	9.533	14.382	8.409	8.685	4.862	26.609	13.039	9.948
14	21.430	16.956	16.461	25.105	9.585	16.901	8.313	6.315	6.211	25.103	11.109	9.748
15	19.435	15.863	17.467	22.628	9.252	31.371	9.037	5.141	6.407	39.716	18.302	10.964
16	19.314	14.692	17.848	20.195	8.753	21.256	8.445	5.475	6.735	57.400	16.296	20.357
17	23.340	13.990	21.930	18.815	8.953	16.835	8.411	6.067	15.564	32.862	14.884	24.549
18	23.106	13.483	29.197	17.368	8.985	16.402	8.346	6.315	7.967	26.807	14.606	31.930
19	19.624	12.822	23.573	17.330	8.226	50.097	10.414	5.873	9.168	25.047	20.823	21.119
20	17.430	12.205	20.692	17.191	7.585	27.342	11.448	5.619	10.924	25.774	20.386	16.826
21	26.321	10.775	18.782	15.902	7.513	20.652	9.205	4.846	9.658	41.833	16.339	16.139
22	33.170	10.488 .	17.555	15.162	7.500	16.934	8.847	5.594	11.469	28.720	16.250	14.792
23	28.749	11.170	18.357	13.954	8.394	15.847	7.642	7.619	14.006	28.652	24.678	13.949
24	30.310	10.887	25.662	13.304	7.614	15.229	7.183	$7.57{ }^{\text {. }}$	13.093	24.989	56.578	13.132
26	25.112	10.614	48.726	11.823	7.479	21.119	6.826	6.115	11.676	23.248	34.634	12.842
26	23.048	14.803	42.453	11.232	7.277	47.854	6.408	7.574	9.204	23.197	29.944	12.313
27	20.867	14.341	55.023	11.668	7.153	26.909	9.888	7.953	10.023	29.180	26.018	16.450
28	18.956	11.757	65.398	12.024	6.991	22.403	8.471	6.110	9.861	28.813	22.607	15.679
29	17.218		47.216	12.265	6.928	18.316	9.280	5.844	8.478	24.694	21.418	16.204
30	15.806		36.589	10.765	6.914	15.882	8.876	5.410	6.676	22.796	21.366	19.798.
31	14.254		30.287		6.852		7.842	5.788	6.67	20.484	21.366	18.181.
Average	35.150	15.580°	25.580	26.390	8.495	20.220	9.197	6.563	8.330	25.420	18.790	14.860
Lowast	14.254	10.488	14.946	10.765	6.852	6.678	6.408	4.846	4.862	5.900	10.255	9.707
Highost	114.751	26.932	65.398	72.556	10.599	50.097	13.696	8.685	15.564	57.400	56.578	31.930
Poak flow	130.754	34.166	75.230	97.976	11.395	66.454	15.697	10.528	22.790	69.576	83.656	
Day of peak Monthly total	1	9	28	7	2	19	2	13	17	16	24	18
(million cu m)	94.15	37.69	68.50	68.41	22.75	52.41	24.63	17.58	21.59	68.09	48.70	39.81
Runoff (mm)	89	36	65	65	22	50	23	17	20	- 65	46	38
Rainfall (mm)	50	51	120	65	51	163	65	62	77	150	78	61

Statistics of monthly data for previous record (Jan 1936 to Dec 1986-incomplete or missing months total 0.9 years)

Station and catchment description
Ten channel, interleaved cross path US gauge in the centre of Derby, $1.75 \mathrm{~km} \mathrm{~d} / \mathrm{s}$ of Longbridge Weir (28010). Record continuous with 28010 At high flows Derby may flood but bypassing small. Substantial flow modification owing to Derwent reservoirs, milling and PWS abstractions. Largo, predominantly upland catchment draining Millstone Grit and Carb. Lst. Lower reaches drain Coal Measures on the lb and Triassic sandstones and marls on the rb. Peat moorland headwaters; forestry, pasture and some arable.

030001 Witham at Claypole Mill

Statistics of monthly data for previous record (May 1959 to Dec 1986)

Station and catchment description
An old weir at three levels with a total width of 24.99 m converted into a standard Lea designed broad-crested weir. It is rated theoretically and there is no bypassing or drowning. Low flows in summer are moderately influenced by transfer of water from Rutland Water and abstractions for public supply at Saltersford. The catchment is clay (50\%) with limestone (40%) and gravel, and is largely rural

Measuring authority: AWA First year: 1939

Grid reference: 52 (TL) 166.972 Level stn. (m OD): 3.40

Catchment area (sq km): 1634.3 Max alt. (m OD): 224

Daily mean gauged discharges (cubic matres per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	Jul	AUG	SEP	OCT	NOV	DEC
1	44.754	6.809	22.199	12.567	6.163	5.410	5.545	4.360	4.023	4.313	15.447	11.470
2	42.892	8.667	29.744	28.616	7.680	5.702	5.605	4.254	3.879	. 4.508	18.800	10.617
3	37.990	8.948	28.999	25.425	6.984	6.403	5.453	4.625	3.759	4.520	15.295	10.468
4	24.019	9.265	13.462	14.715	5.133	6.634	5.245	4.504	3.712	4.826	12.526	9.184
5	25.766	9.580	12.642	40.569	6.017	6.314	4.958	4.228	3.683	5.263	9.718	8.983
6	22.024	10.065	20.300	44.574	5.704	6.384	5.842	4.331	4.135	4.835	9.434	9.028
7	14.862	9.426	30.728	48.900	5.524	7.057	5.814	4.320	5.322	5.157	9.904	10.617
8	14.877	8.480	31.662	54.200	6.218	6.090	5.164	4.112	5.465	8.382	9.666	10.742
9	12.276	9.103	32.267	54.300	5.181	6.795	4.681	4.208	4.784	8.402	10.883	8.521
10	10.899	10.462	24.423	52.800	5.126	8.374	4.311	3.946	4.069	26.902	13.837	8.288
11	9.729	11.148	15.742	43.000	5.281	9.870	3.524	4.282	3.974	43.841	16.891	7.676
12	11.000	13.266	16.428	25.343	5.336	11.056	4.032	4.090	3.916	28.857 .	42.801	6.683
13	10.700	20.554	15.261	25.595	5.723	9.962	4.148	4.319	3.194	13.769	38.619	5.817
14	10.000	14.022	13.367	14.623	6.051	8.352	4.259	4.596	3.578	13.286	32.381	7.536
15	9.500	12.309	10.568	17.926	6.845	9.277	4.671	4.350	4.672	10.685	20.000	8.084
16	9.300	11.340	11.424	13.263	5.894	11.857	5.640	3.899	4.744	47.297	21.603	10.810
17	9.000	9.101	11.107	12.631	5.541	8.937	5.949	3.676	4.846	44.851	18.987	17.248
18	9.000	10.089	12.380	13.769	5.354	8.551	4.865 .	4.133	5.211	36.017	20.879	20.925
19	8.700	9.403	13.262	13.370	5.628	11.465	5.181	4.055	6.295	17.260	29.500	19.368
20	8.200	8.923	10.419	13.301	6.672	29.895	6.318	3.740	6.491	22.727	46.500	11.856
21	9.584	6.820	11.249	11.750	6.772	21.794	7.038	3.378	6.784	56.511	42.761	11.698
22	12.818	8.026	8.774	10.474	6.084	11.927	6.150	3.714	5.894	52.577	40.485	10.547
23	21.444	7.498 .	10.328	10.076	5.541	10.402	5.467	6.359	5.354	43.166	29.431	8.518
24	16.687	7.271	11.122	9.574	5.578	5.840	5.045	6.134	4.910	21.200	22.961	8.717
25	16.960	7.202	10.892	9.537	5.488	9.169	5.718	5.815	4.674	19.109	18.355	9.076
26	14.132	7.548	11.532	9.369	4.089	12.959	5.805	6.927	4.591	13.739	18.278	7.876
27	13.180	10.770	17.087	8.724	3.651	11.868	4.906	6.812	4.442	15.585	13.245	7.751
28	9.807	22.069	31.243	6.344	4.702	12.021	6.977	5.701	4.271	14.513	13.470	10.274
29	9.682		21.687	8.007	5.289	8.741	6.641	5.536	3.764	16.259	12.137	9.511
30	9.810		11.307	7.337	4.913	6.889	6.725	4.595	4.273	13.133	11.868	9.422
31	7.864		12.842		5.231		6.432	4.313		12.622	11.86	15.943
Average	15.720	10.290	17.240	22.020	5.658	9.866	5.423	4.623	4.624	20.460	21.220	10.430
Lowest	7.864	6.809	8.774	6.344	3.651	5.410	3.524	3.378	3.194	4.313	9.434	5.817
Highest	44.754	22.069	32.267	54.300	7.680	29.895	7.038	6.927	6.784	56.511	46.500	20.925
Poak flow Day of peak Monthly total	$\begin{gathered} 56.856 \\ 1 \end{gathered}$	$\begin{gathered} 25.024 \\ 13 \end{gathered}$	$\begin{gathered} 43.093 \\ 28 \end{gathered}$	$\begin{gathered} 56.200 \\ 8 \end{gathered}$	10.192	38.730 20	7.457 28	$\begin{aligned} & 9.498 \\ & 29 \end{aligned}$	$\begin{aligned} & 7.137 \\ & 20 \end{aligned}$	$\begin{aligned} & 65.803 \\ & 21 \end{aligned}$	$\begin{gathered} 56.371 \\ 12 \end{gathered}$	$\begin{gathered} 22.758 \\ 18 \end{gathered}$
(miltion cu m)	42.12	24.90	46.18	57.08	15.15	25.57	14.52	12.38	11.98	54.79	55.01	27.93
Runotf (mm)	26	15	28	35	9	16	9	8	7	34	34	17
Rainfall (mm)	15	34	55	56	41	100	48	57	38	132	54	27

Statistics of monthly data for previous record (Jan 1939 to Dac 1986-incomplate or missing months total 1.3 years)

Mean	Avg.	17.180	18.180	16.270	10.470	7.525	5.118	3.727	3.730	3.237	4.431	9.331	13.040
flows:	Low	2.020	1.608	1.440	1.299	0.915	0.536	0.842	0.482	0.738	1.013	1.141	13.040 1.641
	(year)	1939	1939	1939	1939	1939	1944	1943	1944	1943	1947	1947	1947
	High	48.170	49.750	79.840	35.040	27.690	13.010	20.060	20.470	20.090	22.120	40.560	42.550
	(year)	1959	1977	1947	1979	1983	1977	1968	1980	1968	1960	1960	1954
Runotf:	Avg.	28	27	27	17	12	8	6	6	5	7	15	21
	Low	3	2	2	2	2	1	1	1	1	2	2	3
	High	79	74	131	56	45	21	33	34	32	36	64	70
Rainfall:	Avg.	55	41	48	42	55	54	51	64	52	51	61	
(1940.	Low	20	3	5	8	10	5	6	3	3	5	10	13
1986)	High	109	111	132	91	117	156	123	122	127	130	155	124
Summ	ary 8	stics								affe			
								1987					
				1987		or record		As \% of		voir(tch		
						eding 19		pre-1987		traction	public	er sup	
Mean flo	(im 3							132		reduce	y indu	1 and/	
Lowest	yoarly						1944			ultural	tractio	,	
Highest	yearty				16.		1979		- A	mentatio	from eff	nt retur	
Lowest	monthl	ean					1944						
Highest	month	esan			79.		1947						
Lowest d	deily m			413			1948						
Highest d	daily m			121	319.		1947						
Peak				31	382.		1947						
10\% exc	eedan				24.			105					
50\% exc	eedan							194					
95\% exc	ceedan							372					
Annual to	otal (m	n cum)			293			132					
Annual run	unotf		23		18			132					
Annual re	rainfall	I)	65		63			104					
[1941	. 70 ra	ll averag			62								

Station and catchment description

Series of sluices, weirs and a lock. Ratings revised and historical data altered in 1975 and 1983. Ultrasonic gauge tested in 1976 but abandoned. Flows above 17 cumecs measured at Wansford (32010) 12 km upstream and corrected for smaller area. Wansford is a rated section, and ratings and data were revised in 1981. Water abstracted at Wansford and sent to Rutland Water, with significant effect on low flows. Lowest gauging point on Nene. Mostly clay (72%) and rural, but includes some towns and small reservoirs.

033002 Bedford Ouse at Bedford

Veasuring authority: AWA

First year: 1933

Grid reference: 52 (TL) 055495 Level sin. (m OD): 24.70

Catchment area (sq km): 1460.0
Max alt. (m OD): 247

DAY	JAN	FEB	MAR	APA	MAY	JUN	Jul	AUG	SEP	OCT	NOV	DEC
1	54.300	7.600	16.700	12.500	7.100	5.000	7.400	6.900	2.800	2.800	30.900	11.700
2	55.600	8.200	26.700	16.900	7.200	4.600	5.600	5.600	3.800	2.800	40.200	11.600
3	49.400	8.200	21.400	20.100	6.800	5.000	5.800	6.300	3.800	2.800	27.400	11.100
4	32.000	8.800	13.000	18.600	6.400	5.100	5.400	5.700	4.800	2.800	19.900	10.800
5	33.900	10.500	12.700	33.100	6.000	4.900	5.100	5.600	4.500	3.500	15.600	10.600
6	34.900	10.900	16.200	49.400	6.000	5.700	4.800	5.600	4.100	3.800	14.300	10.100
7	29.200	10.100	29.900	42.400	5.800	8.800	3.700	4.600	4.200	5.600	12.400	9.500
8	19.300	9.100	30.100	60.800	5.300	9.600	4.300	3.700	4.000	13.500	12.100	9.100
9	15.400	9.600	26.500	72.000	5.700	10.800	4.200	4.400	3.600	12.400	15.300	8.600
10	13.700	11.400	21.200	64.800	5.400	17.000	4.000	4.800	3.300	36.400	22.400	8.300
11	11.900	10.600	15.800	38.000	5.400	13.800	4.000	4.800	3.100	51.800	27.600	8.200
12	7.500	9.800	13.500	26.700	5.600	11.400	3.900	4.200	3.100	59.500	50.100	8.100
13	8.200 .	11.400	12.100	21.400	5.800	9.300	4.200	4.800	3.200	28.300	62.100	8.000
14	8.700	10.800	10.700	19.700	6.300	6.500	4.900	4.900	3.100	17.100	47.000	7.900
15	9.200	11.500	10.300	17.400	7.700	9.200	5.000	4.900	3.000	22.400	27.400	8.300
16	7.700	11.700	12.700	14.900	6.300	13.100	5.000	4.000	3.000	53.100	23.200	10.500
17	8.100	10.200	12.100	13.900	5.700	13.800	4.800	3.700	3.100	67.500	20.800	18.000
18	7.700	8.600	13.500	12.900	6.000	17.900	5.000	3.600	3.000	75.400	17.000	20.500
19	7.300	8.300	12.900	12.000	6.300	33.900	5.800	3.500	3.700	43.500	31.300	18.500
20	7.200	7.200	9.100	11.900	5.200	41.300	7.400	3.600	4.200	44.700	57.800	14.800
21	7.300	7.200	7.200	9.600	4.600	34.200	9.000	3.200	4.500	64.800	68.900	12.000
22	9.100	6.900	7.700	9.200	4.900	17.900	6.900	3.300	4.100	73.700	50.600	11.000
23	12.800	6.700	8.000	8.700	5.800	14.000	6.000	4.500	3.600	84.500	27.400	9.300
24	14.400	6.600	9.500	8.400	6.700	11.900	5.800	4.300	3.200	39.100	21.200	9.500
25	16.500	6.500	11.100	8.000	5.900	12.400	5.200	4.500	3.400	23.200	16.800	9.200
26	17.300	6.400	13.200	7.800	4.900	23.900	5.100	6.900	3.100	18.800	11.700	8.700
27	14.700	9.500	15.400	7.700	4.600 ،	25.600	5.100	6.900	3.000	17.600	10.100	8.700
28	12.800	14.000	35.300	7.200	4.900	14.100	4.900	6.300	2.900	18.900	8.600	8.700
29	11.100		21.700	7.200	4.600	10.500	-5.800	5.200	2.800	19.900	7.600	8.700
30	10.800		14.100	7.100	4.800	8.600	6.700	5.200	2.800	16.400	7.500	9.800
31	8.600		14.400		4.600		9.300	3.900		16.400		21.000
Average	17.950	9.225	15.960	22.010	5.752	13.990	5.487	4.819	3.493	30.420	26.840	10.990
Lowest	7.200	6.400	7.200	7.100	4.600	4.600	3.700	3.200	2.800	2.800	7.500	7.900
Highest	55.600	14.000	35.300 .	72.000	7.700	41.300	9.300	6.900	4.800	84.500	68.900	21.000
Peak flow	58.200	16.200	39.100	78.900	8.800	43.500	16.100	8.900	5.700	88.400	73.700	25.800
Day of peak	3	28	28	10	15	20	21	1	5	23	22	31
Monthly total (million cu m)	48.09	22.32	42.74	57.05	15.41	36.27	14.70	12.91	9.05	81.48	69.57	29.45
Runoff (mm)	33	15	29	39	11	25	10	9	6	56	48	20
Rainfall (mm)	14	31	51	54	45	118	57	47	33	147	55	26

Statistics of monthly data for previous record (Jan 1933 to Dec 1986)

Station and catchment description
3 broad-crested weirs, $30 \mathrm{~m}, 20 \mathrm{~m}$ and 12 m wide supplemented by 3 vertical sluice gates which are either fully open or shut. High flow rating confirmed by current meter measurements. Records before 1959 based on daily gauge board readings and gate openings. In 1972, station built at Roxton (d/s) - to achieve a better record. Significant surface water and groundwater abstractions in catchment for PWS. Geology predominantly clay. Land use - agricultural with substantial urban development over last 15 years (inc. Milton Keynes).

034006 Waveney at Needham Mill

Measuring authority: AWA
First yoar: 1963

Grid reference: 62 (TM) 229811
Level stn. (m OD): 16.50

Catchment area (sq km): 370.0 Max alt. (m OD): 65

Daily mean gauged discharges (cubic metres per second)-

DAY	JAN	FE日	MAR	APR	MAY	JUN	JUL	AUG	SEP			
1	14.748	1.634	6.793	2.377	0.779	0.658	0.666	2.020	3.094	0.664	2.193	DEC 1.984
2	17.811	1.647	9.321	11.371	0.760	0.715	0.611	1.337	3.051	0.636	2.013	2.606
3	9.167	1.581	5.290	8.689	0.721	0.990	0.590	1.119	2.916	0.617	1.771	2.497
4	7.691	1.696	3.812	4.695	0.702	0.891	0.563	0.953	2.303	0.644	1.608	2.294
5	10.449	2.888	2.820	3.279	0.647	0.802	0.517	0.839	2.232	0.992	1.339	1.982
6	6.578	3.525	2.298	2.608	0.625	0.842	0.508	0.763	3.557	1200		
7	4.424	2.039	2.035	2.949	0.611	0.862	0.509	0.712	5.395	3.200	1.412 1.401	1.795
8	3.652	1.756	1.858	3.527	0.600	0.824	0.495	0.624	3.234	10.973	1.386	1.457
9	3.378	2.618	1.623	3.199	0.595	1.211	0.477	0.672	2.364	7.034	1.360	1.457
10	2.726	3.177	1.453	5.293	0.552	1.504	0.470	0.833	2.364 1.910	7.034 14.210	1.360 1.306	1.406 1.195
11	2.041	2.368	1.150	4.674	0.615	2.833	0.462	0.740	1.471	40.938	1.823	1319
12	1.953	1.950	1.198	4.007	1.042	2.508	0.440	0.646	1.512	29.088	7.823	1.319
13	1.938	1.661	1.200	3.407	0.970	1.587	0.430	0.655	-1.454	12.323	5.889	1.283
14	1.380	1.528	1.124	2.832	1.044	1.225	0.443	0.644	1.334	8.035	3.379	1.294
15	1.092	1.408	1.106	2.421	1.201	1.051	0.499	0.587	1.112	20.001	3.623	1.318
16	1.215	1.205	1.131	2.087	0.947	0.906	0.672	0.546	1.033	57.375	5.053	2.470
17	1.308	1.337	1.431	1.681	1.008	0.808	0.788	0.524	1.065	49.100	3.602	5.650
18	1.454	1.285	1.974	1.649	2.061	0.761	0.661	0.527	1.017	17.225	2.783	7.308
19	1.530	1.229	1.863	1.512	1.335	0.954	0.655	0.514	1.069	10.006	7.499	4.648
20	1.530	1.168	1.550	1.533	0.989	1.133	0.790	0.495	1.323	5.698	15.050	3.362
21	1.687	1.162	1.374	1.300	0.863	1.089	1.080	0.505	1.228	4.818		
22	4.525	1.122	1.227	1.136	0.843	1.013	1.370	0.962	1.116	4.818	10.958 5.953	2.781 2.368
23	9.783	1.084	1.250	1.034	0.895	1.120	1.046	1.218	1.000	3.156	4.380	2.077
24	10.506	1.096	1.328	1.011	0.843	0.994	0.889	1.523	0.969	2.629	3.334	2.017
25	6.885	1.127	1.772	0.979	0.759	0.908	0.847	13.390	0.896	2.213	3.042	1.849
28	5.190	1.401	1.964	0.904	0.701	0.965	0.783	66.200	0.797	2.045	2.910	1.535
27	3.992	7.682	2.485	0.841	0.651	0.954	0.830	67.250	0.752	1.990	2.662	1.531
28	3.147	9.975	2.390	0.792	0.626	0.879	0.873	28.118	0.723	1.855	2.292	1.389
29	2.558		2.513	0.786	0.607	0.807	4.113	11.698	0.715	1.607	1.884	1.509.
30	2.026		2.212	0.785	0.607	0.744	9.188	5.503	0.693	1.527	1.841	1.902
31	1.769		1.940		0.749		4.841	3.596	0.653	1.584	1.841	1.902 3.505
Average	4.778	2.227	2.306	2.779	0.837	1.085	1.197	6.958	1.711	10.260	3.717	2.298
Lowest	1.092	1.084	1.106	0.785	0.552	0.658	0.430	0.495	0.693	0.617	1.306	1.195
Highest	17.811	9.975	9.321	11.371	2.061	2.833	9.188	67.250	5.395	57.375	15.050	7.308
Peak flow	19.114	13.037	10.142	13.314	2.379	3.671	9.620	78.000	6.322			
Day of peak Monthly total	2	28	2	2	18	11	30	. 26	6.32	16	$\begin{gathered} 15.97 \\ 20 \end{gathered}$	$\begin{gathered} 8.14 \\ 18 \end{gathered}$
(million cu m)	12.80	5.39	6.18	7.20	2.24	2.81	3.21	18.64	4.43	27.47	9.63	6.16
Runoff (mm)	35	15	17	19	6	8	9	50	12	74	26	
Rainfatl (mm)	32	29	40	43	59	75	93	110	43	118	46	27.

Statistics of monthly data for previous record (Dec 1963 to Dec 1986

Station and catchment description

A compound Crump wair 8.5 m wide in the main channel with a single crested Crump in the mill bypass. Sluice action at a mill 2.4 km upstream is infrequent but is evident in flow records. Surface water abstractions, and the use of river gravels as an aquifer, influence flows but the overall impact is minimal. Predominantly a Boulder Clay catchment with largely rural land use.

036006 Stour at Langham

Measuring authority: AWA First year: 1962

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APA	MAY	JUN	JuL.	AUG	SEP	OCT	NOV	DEC
1	18.087	1.826	6.266	4.555	1.528	1.252	2.179	4.659	4.148	1.837	3.396	3.571
2	22.670	1.817	14.991	18.590	1.607	1.783	2.029	3.758	7.617	1.848	3.595	3.429
3	11.882	1.764	6.808	21.645	1.611	1.313	1.940	3.047	9.437	1.739	3.007	3.085
4	7.592	1.797	3.659	10.718	1.577	1.364	1.726	2.458	4.495	1.852	2.875	3.263
5	10.188	1.868	3.551	10.792	1.533	1.396	1.590	1.585	4.242	1.985	2.677	3.234
6	7.184	1.998	2.941	7.358	1.460	1.590	1.491	1.910	7.328	2.166	2.852	3.007
7	4.300	1.873	4.367	6.599	1.519	1.644	1.312	1.861	8.480	2.456	2.689	2.857
8	3.810	1.849	3.746	10.336	1.386	1.583	1.263	1.794	6.077	10.519	2.920	2.469
9	3.638 ,	3.576	2.602	6.841	1.308	4.099	1.294	2.393	3.974	8.312	3.160	2.324
10	3.500	6.582	2.657	8.995	1.187	5.456	1.244	3.050	3.670	19.730	3.354	2.509
11	2.946	3.227	2.363	7.506	1.153	7.179	1.316	2.682	3.099	43.980	4.825	2.518
12	2.102	3.014	2.203	6.017	1.257	6.575	1.359	2.411	2.822	50.280	16.650	2.512
13	2.372	2.734	2.030	3.999	1.449	3.159	1.221	1.547	3.023	36.240	20.000	2.508
14	2.251	2.023	2.093	3.748	1.528	2.485	1.212	1.900	3.198	18.650	9.497	2.468
15	2.236	2.585	1.965	2.787	1.730	12.228	1.197	1.785	2.768	20.180	6.492	2.666
16	2.225.	2.736	1.953	3.160	1.384	17.676	1.508	1.464	2.259	34.400	8.040	5.241
17	1.960	2.413	2.038	2.533	1.402	11.063	2.152	1.466	2.430	43.410	5.860	11.808
18	1.813	2.038	2.891	2.705	1.968	6.553	2.404	1.483	2.662	32.980	4.577	10.985
19	1.915	2.200	2.990	2.551	1.861	8.692	2.069	1.519	2.488	17.012	10.462	6.425
20	1.898	2.089	2.619	2.435	1.433	18.413	3.839	1.429	3.088	10.039	22.970	4.495
21	2.126	2.008	1.973	2.241	1.266	16.143	3.867	1.447	3.710	7.981	26.650	4.036
22	2.160	1.947	2.129	2.275	1.208	7.363	5.810	4.238	2.706	6.554	12.321	3.574
23	3.017	1.875	2.226	2.095	1.521	5.550	3.246	4.627	2.433	5.290	8.797	3.333
24	3.826	1.717	1.823	2.075	1.600	4.378	2.616	2.686	2.395	4.298	9.943	3.365
25	3.716	1.789	2.384	2.037	1.325	4.495	1.228	9.040	2.209	4.087	6.845	3.247
26	3.688	1.976	3.053	1.963	1.309	9.668	1.911	17.954	2.168	3.995	5.606	2.869
27	3.267	3.203	3.301	1.779	1.297	6.320	2.035	27.352	1.997	3.789	4.711	2.740
28	2.939	6.140	4.690	1.695	1.256	4.627	2.694	39.150	1.824	3.380	4.128	2.867
29	2.589		7.361	1.809	1.032	3.257	5.226	27.152	1.807	3.219	3.877	2.865
30	1.670		4.106	1.619	1.175	2.682	15.241	9.941	1.875	3.254	3.625	3.186
31	1.669		3.974		1.338		13.440	5.541		2.873		9.421
Average	4.685	2.524	3.605	5.449	1.426	5.999	2.957	6.236	3.681	13.170	7.547	3.964
Lowest	1.669	1.717	1.823	1.619	1.032	1.252	1.197	1.429	1.807	1.739	2.677	2.324
Highest	22.670	6.582	14.991	21.645	1.968	18.413	15.241	39.150	9.437	50.280	26.650	11.808
Peak flow	24.530	12.691	17.028	26.020	3.386	20.637	17.057	39.520	11.916	53.630	32.020	13.668
Day of peak	2	9	2	3	24	21	31	28	3	11	21	17
Monthly total (million cu m)	12.55	6.10	9.65	14.12	3.82	15.55	7.92	16.70	9.54	35.28	19.56	10.62
Aunotf (mm)	22	11	17	24	7	27	14	29	17	61	34	18
Rainfall (mm)	14	27	45	46	54	132	93	92	47	128	55	27

Statistics of monthly data for previous record (Oct 1982 to Dec 1986)

Station and catchment description
Twin-trapezoidal flume with throat tapping. Spillway channel with weir constructed Dec. 85 takes some flow above 1.45 m . Bypassing also occurs over opposite bank above 1.85 m . Additional bypassing possible from $0.5 \mathrm{~km} \mathrm{u} / \mathrm{s}$ during extreme events. Naturalised flows up to Sept. 76 Flow augmented by intermittent pumping from Ely/Ouse Transfer Scheme and occasional SAGS borehole pumping. Predominantly rural catchment underlain by Chalk - outcropping in N, London Clay in S, all covered by semi-pervious Boulder Clay

038003 Mimram at Panshanger Park

Grid reference: 52 (TL) 282133
Level stn. (m OD): 47.10
Catchment area (sq km): 133.9
Max alt. (m OD): 193
Daily mean gauged discharges (cubic matres per second)

DAY	JAN	FE日	MAR	APR	MAY	JUN	Jul	AUG	SEP	OCT	Nov	DEC
1	0.625	0.457	0.600	0.640	0.503	0.456	0.427	0.449	0.405	0.333	0.638	0.681
2	0.524	0.466	0.464	0.501	0.489	0.467	0.425	0.471	0.394	0.321	0.605	0.676
3	0.507	0.472	0.440	0.476	0.483	0.473	0.420	0.399	0.392	0.377	0.590	0.685
4	0.600	0.453	0.441	0.637	0.467	0.467	0.404	0.399	0.366	0.356	0.591	0.690
5	0.531	0.452	0.514	0.506	0.461	0.535	0.406	0.381	0.394	0.329	0.586	0.688
6	0.514	0.448	0.574	0.519	0.453	0.544	0.406	0.377	0.406	0.349	0.584	0.684
7	0.506	0.445	0.490	0.668	0.448	0.509	0.404	0.372	0.370	0.537	0.586	0.685
8	0.508	0.451	0.498	0.574	0.447	0.604	0.405	0.371	0.361	0.370	0.668	0.680
9	0.511	0.483	0.465	0.548	0.443	0.618	0.398	0.392	0.364	0.767	0.639	0.680
10	0.503	0.452	0.457	0.567	0.441	0.529	0.396	0.375	0.355	0.972	0.627	0.677
11	0.492	0.462	0.453	0.517	0.465	0.612	0.397	0.379	0.355	0.547	0.903	0.678
12	0.488	0.482	0.450	0.505	0.556	0.501	0.384	0.370	0.374	0.470	0.756	0.677
13	0.489	0.486	0.450	0.510	0.502	0.484	0.381	0.374	0.402	0.451	0.684	0.676
14	0.493	0.512	0.474	0.500	0.588	0.677	0.382	0.371	0.359	0.649	0.658	0.674
15	0.498	0.446	0.439	$0.500{ }^{\text { }}$	0.528	0.505	0.390	0.360	0.350	0.904	0.677	0.725
16	0.499	0.448	0.444	0.501	0.476	0.579	0.484	0.349	0.355	0.745	0.658	0.793
17	0.490	0.448	0.505	0.499	0.559	0.578	0.401	0.371	0.356	0.577	0.638	0.718
18	0.489	0.461	0.483	0.503	0.530	0.639	0.419	0.347	0.357	0.520	0.636	0.699
19	0.488	0.459	0.454	0.513	0.462	0.736	0.498	0.335	0.414	0.512	1.090	0.683
20	0.489	0.457	0.448	0.514	0.451	0.511	0.452	0.331	0.369	0.999	0.764	0.679
21	0.496	0.465	0.445	0.514	0.451	0.481	0.552	0.357	0.349	0.822	0.719	0.672
22	0.501	0.466	0.471	0.511	0.509	0.502	0.462	0.365	0.340	0.664	0.700	0.665
23	0.500	0.451	0.492	0.522	0.519	0.489	0.421	0.329	0.382	0.615	0.746	0.670
24	0.496	0.450	0.496	0.510	0.460	0.469	0.416	0.332	0.347	0.603	0.704	0.669
25	0.491	0.452	0.484	0.502	0.457	0.580	0.403	0.576	0.338	0.592	0.766	0.661
26	0.480	0.539	0.521	0.485	0.455	0.492	0.447	0.425	0.336	0.613	0.698	0.670
27	0.477	0.489	0.569	0.478	0.450	0.470	0.425	0.366	0.335	0.608	0.692	0.668
28	0.481	0.466	0.563	0.481	0.456	0.451	0.392	0.363	0.334	0.595	0.688	0.662
29	0.516		0.476	0.485	0.446	0.436	0.609	0.358	0.335	0.593	0.687	0.675
30	0.485		0.454	0.494	0.495	0.430	0.421	0.351	0.336	0.591	0.677	0.772
31	0.467		0.447		0.493		0.398	0.349		0.739		0.722
Avarage	0.504	0.463	0.483	0.523	0.482	0.527	0.427	0.379	0.364	0.584	0.688	0.688
Lowest	0.465	0.445	0.439	0.476	0.441	0.430	0.381	0.329	0.334	0.321	0.584	0.661
Highost	0.625	0.539	0.600	0.668	0.588	0.736	0.609	0.576	0.414	0.999	1.090	0.793
Poak flow	0.994	0.702	1.040	1.110	0.938	1.110	0.896	0.810	0.613	2.020	1.770	1.050
Day of peak	1	13	1	7	14	19	29	25	1	20	19	30
Monthly total (million cu m)	1.35	1.12	1.29	1.35	1.29	1.37	1.14	1.01	0.94	1.57	1.78	1.84
Runoff (mm)	10	8	10	10	10	10	9	8	7	12	13	14
Rainfall (mm)	11	28	50	42	56	94	68	57	54	171	56	26.

Statiatics of monthly data for previous record (Dec 1952 to Dec 1986

Mean flows:	Avg.	0.579	0.639	0.685	0.655	0.619	0.561	0.487	0.451	0.422	0.410	0.448	0.505
	Low	0.244	0.289	0.258	0.260	0.216	0.186	0.163	0.144	0.195	0.175	0.176	0.189
	(year)	1974	1973	1973	1973	1976	1976	1976	1976	1973	1973	1973	1973
	High	1.102	1.167	-1.119	1.050	1.084	0.971	0.803	0.764	0.632	0.638	0.739	1.005
	(yoar)	1961	1961	1961	1979	1979	1979	1979	1979	1968	1968	1960	1960
Runotf:	Avg.	12	12	13	13	12	11	10	9	8	8	9	10
	Low	5	5	5	5	4	4	3	3	4	4	3	4
	High	22	21	22	20	22	19	16	15	12	13	14	20
Rainfall:	Avg.	55	41	49	45	52	59	53	58	56	59	63	63
	Low	17	3	3	5	15	5	5	7	5	5	20	13
	High	102	96	116	105	115	122	123	127	121	142	151	119

Summary statistics					
	For 1987		For record preceding 1987		$\begin{gathered} 1987 \\ \text { As \% of } \\ \text { pre- } 1987 \end{gathered}$
Mean flow ($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$)	0.510		0.536		95
Lowest yearly mean			0.231	1973	
Highest yearly mean			0.767	1961	
Lowest monthly mean	0.364	Sep	0.144	Aug 1976	
Highest monthly mean	0.688	Nov	1.167	Feb 1961	
Lowest daily mean	0.321	2 Oct	0.135	21 Aug 1976	
Highest daily mean	1.090	19 Nov	1.810	15 Sep 1968	
Paak	2.020	20 Oct	3.541	30 May 1979	
10\% exceodance	0.680		0.795		86
50\% exceodanco	0.487		0.509		96
95\% exceodance	0.349		0.240		145
Annual total (million cu m)	16.07		16.92		95
Annual runoff (mm)	120		126		95
Annual rainfall (mm)	713		653		109
[194 1-70 rainfall average (mm)			641]		

Factors affecting flow regime

- Flow influenced by groundwater abstraction and/or recharge.
Flow reduced by industrial and/or agricultural abstractions.
Moan flow ($\left(\mathrm{m}^{3} \mathrm{~s}\right.$) Highest yearly mean Highest monthly mean Lowest daily mean Peghat daily mean
\qquad
$090 \quad 19$ Nov $\quad 1.810 \quad 15$ Sep 1968
$020 \quad 20$ Oct $3.541 \quad 30$ May 1979
[194 1-70 rainfall average (mm)

Station and catchment description

Critical-depth flume: 5 m overall width. Theoretical calibration confirmed by gaugings. All flows contained. Slight diminution of flows due to groundwater abstraction. Very high baseflow component. A predominantly permeable catchment (Upper Chalk - overlain by glacial deposits near headwaters); mainly rural but some urbanisation in lower valley.

039001 Thames at Kingston

Measuring authority: TWA First year: 1883

Grid reference: 51 (TO) 177698 Level str. (m OD): 4.70

Catchment area (sq km): 9948.0 Max alt. (m OD): 330

Daily mean gauged discharges (cubic metres per second)

Statistics of monthly data for previous record (Jan 1883 to Dec 1986)

Station and catchment description
Jltrasonic gauging station commissioned in 1974; multi-path operation from 1986. Full range. Peak flows from 1975 only. Pre-1974 flows derived from Teddington weir complex (70 m wide); significant structural improvements have been made since 1883 . US data led to revision of 1951-74 flows (in 1981). Substantial baseflow - sustained from the Chalk and the Oolites. Daity naturalised flows available for POR - allowance is made for major PWS abstractions only. Diverse topography, geology and land use which has undergone important historical changes.

039007 Blackwater at Swallowfield

Measuring authority: TWA First year: 1952

Grid reference: 41 (SU) 731648 Level stn. (m OD): 42.30

Daily mean gauged discharges (cubic metres per second).

Daily m	drd			8e								
DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	11.500	2.660	5.710	5.690	2.540	2.270	1.760	1.700	2.570	1.560	4.220	3.180
2	6.410	2.890	4.480	4.960	2.460	2.420	1.700	1.750	4.000	1.590	3.650	3.060
3	4.910	2.760	3.490	4.100	2.310	2.300	1.650	1.760	2.220	1.600	3.380	2.940
4	5.060	2.830	3.340	16.100	2.250	2.740	1.610	1.670	1.810	2.300	3.150	2.960
5	4.660	2.840	3.240	10.300	2.270	3.420	1.600	1.600	2.500	1.710	3.220	2.910
6	3.930	2.880	4.980	6.790	2.260	3.790	1.590	. 1.530	2.430	1.980	3.090	2.860
7	3.530	2.840	6.960	15.400	2.170	2.590	1.540	1.490	1.930	5.670	3.000	2.830
8	3.370	2.790	8.210	8.590	2.140	3.260	1.480	1.480	1.840	4.280	3.670	2.780
9	3.330	3.050	6.210	6.890	2.110	3.700	1.470	1.460	1.690	7.090	6.170	2.730
10	3.160	2.870	4.760	6.030	2.060	3.230	1.470	1.460	1.620	20.200	4.330	2.700
11	2.890	2.700	4.060	5.590	2.150	2.900	1.450	1.520	1.630	15.500	11.300	2.710
12	2.700	2.590	3.570	4.650	2.320	2.500	1.440	1.580	1.800	6.600	16.800	2.740
13	2.870	3.060	3.360	4.140	2.260	2.290	1.460	1.520	2.970	4.850	9.490	2.730
14	2.770	5.330	3.210	3.760	3.570	2.170	1.460	1.480	1.990	5.630	6.490	2.660
15	2.830	3.630	3.080	3.540	2.870	2.180	1.520	1.400	1.750	$\cdot 10.700$	6.130	3.050
16	2.890	3.270	3.000	3.410	2.350	2.540	1.870	1.380	1.750	15.500	5.120	4.160
17	2.760	3.110	3.060	3.250	2.470	2.380	2.640	1.390	1.730	10.400	4.310	3.600
18	2.760	2.930	3.230	3.080	3.060	2.660	2.110	1.440	1.680	6.840	3.890	3.530
19	2.720	2.830	2.920	2.930	2.550	3.800	3.340	1.390	1.980	6.060	7.100	3.230
20	2.780	2.720	2.800	2.840	2.260	2.920	4.070	1.380	1.870	11.700	6.020	3.080
21	3.320	2.670	2.780	2.790	2.180	2.350 .	3.000	1.350	1.730	19.400	4.850	3.010
22	4.140	2.660	3.340	2.730	2.430	2.330	2.730	1.900	1.660	9.610	4.610	2.890
23	4.190	2.610	4.650	2.630	2.830	2.310	2.350	2.820	2.780	6.130	4.450	2.850
24	3.920	2.570	4.580	2.580	2.350	2.130	2.140	1.720	2.100	4.880	4.000	2.880
25	3.670	2.540	5.210	2.530	2.220	2.270	1.980	2.240	1.740	4.060	3.870	2.760
26	3.490	3.490	5.030	2.450	2.150	2.260	1.870	2.500	1.550	3.800	3.740	2.730
27	3.300	4.630	12.900	2.430	2.080	2.100	1.810	1.970	1.510	4.240	3.540	2.750
28	3.090	3.910	6.880	2.350	2.110	1.990	1.760	1.660	1.540	3.950	3.310	2.710
29	2.880		4.920	2.570	2.160	1.930	2.140	1.590	1.510	3.520	3.170	2.960
30	2.750		4.480	2.410	2.080	1.830	2.090	1.530	1.500	3.420	3.100	3.690
31	2.660		4.040		3.770		1.800	1.500		4.570		4.240
Average	3.717	3.059	4.596	4.917	2.413	2.585	1.965	1.650	1.979	6.753	5.106	3.029
Lowest	2.660	2.540	2.780	2.350	2.060	1.830	1.440	1.350	1.500	1.560	3.000	2.660
Highest	11.500	5.330	12.900	16.100	3.770	3.800	4.070	2.820	4.000	20.200	16.800	4.240
Peak flow	14.600	6.710	17.100	22.300	4.920	4.680	4.380	4.090	6.080	23.400	21.400	4.780
Day of peak Monthly total	1	14	27	4	31	6	20	23	1	10	12	16
(million cu m)	9.96	7.40	12.31	12.74	6.46	6.70	5.26	4.42	5.13	18.09	13.23	8.11
Runoff (mm)	28	21	35	36	18	19	15	12	14	51	37	23.
Rainfall (mm)	14	34	69	57	52	73	58	36	56	186	60	25.

Statistics of monthly data for previous record (Oct 1952 to Dec 1986)

Station and catchment description
Two Crump weirs (main 4.6 m , side 2.7 m wide) superseded original flume, plus side-spilling weir, in 1970 . Minor bypassing of the side weir in flood conditions; overflows more frequent pre-1970. Some net import of water - sewage effluent augments flows. Exact delineation of the hydrological catchment is difficult: Chalk in the headwaters, clay, sands and alluvium in the valley. Substantial and expanding urban development in the catchment but large rural tracts remain; significant areas of heath and woodland.

039020 Coln at Bibury.

Measuring authority: TWA First year: 1963

Grid reference: 42 (SP) 122062 Level stn. (m OD): 100.60

Catchment area (sq km): 106.7 Max alt! (m OD): 330

Daily mean gauged discharges (cubic metres per second)

Station and catchment description
Crump weir ($9: 1 \mathrm{~m}$ broad). Modular throughout the range. Some overspill onto floodplain before design capacity reached. Very limited impact of artificial influences on river flows. Baseflow dominated flow regime. Pervious (Oolitic Limestone) catchment on the dip-slope of the Cotswolds; predominantly rural.

040003 Medway at Teston.

Measuring authority: SWA
First year: 1956

Grid reference: 51 (TQ) 708530 Level stn. (m OD): 7.00

Catchment area (sq km): 1256.1 Max alt. (m OD): 267

Daily mean gauged discharges (cubic matrea par second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	54.027	6.870	34.273	13.618	4.736	4.639	2.871	3.835	3.646	2.658	9.202	6.948
2	31.343	7.410	31.727	24.373	4.674	3.254	2.738	3.668	6.202	2.602	8.454	7.584
3	16.387	7.814	14.731	18.228	4.412	3.240	2.717	3.598	4.292	2.661	7.989	7.052
4	16.209	6.549	12.111	19.445	4.133	3.093	2.744	3.646	3.259	3.188	7.925	6.672
5	22.392	8.657	10.755	22.264	4.046	3.875	2.690	3.704	4.187	4.243	5.862	6.500
6	13.364	10.767	9.987	11.913	3.415	5.737	2.484	3.498	3.366	3.935	6.068	6.256
7	10.171	10.209	8.734	42.453	3.595	4.283	2.466	3.517	3.975	40.977	6.026	5.941
8	7.268	7.988	9.524	32,436	3.576	5.011	2.530	3.250	3.134	84.297	6.496	5.802
9	8.613	8.234	9.130	21.114	3.890	9.305	2.341	3.447	2.740	56.454	9.020	5.752
10	7.958	8.222	7.649	14.905	3.870	7.609	2.200	4.398	2.818	109.618	7.701	5.793
11	6.942	7.165	6.881	14.969	3.686	19.838	2.332	3.931	2.824	123.734	55.634	5.737
12	6.954	7.036	6.828	10.044	4.625	9.350	2.722	3.459	3.308	98.889	132.070	5.598
13	7.330	7.542	5.035	8.912	4.318	4.839	2.120	3.132	6.875	72.635	109.231	5.537
14	7.085	39.799	5.960	7.941	6.260	7.062	2.833	2.971	5.563	44.983	79.330	5.577
15	5.772	21.922	5.781	9.087	5.721	5.249	2.057	2.736	3.927	108.282	24.931	5.789
16	6.274	13.658	5.367	6.663	3.962	3.667	4.350 .	2.564	3.370	155.900	24.938	11.007.
17	7.359	11.549	5.342	7.261	3.836	4.351	4.143	2.592	3.210	167.889	19.990	14.448
18	7.953	8.292	5.570	6.716	5.018	5.219	13.598	2.609	3.101	128.851	14.280	14.706
18	8.712	8.525	5.226	6.643	4.139	5.867	15.266	2.491	3.265	67.908	18.495	12.853 .
20	8.197	7.805	4.894	7.064	3.052	8.231	14.851	2.445	3.448	32.314	24.349	9.210
21	11.410	7.230	6.997	4.818	3.054	3.457	17.130	3.411	3.194	78.268	17.030	7.341
22	36.305	6.717	5.787	5.433	3.375	3.693	21.934	12.478	3.071	74.233	14.187	6.849
23	51.160	6.358	26.355	5.344	3.697	4.027	19.138	8.993	3.322	65.808	12.433	6.430
24	39.274	6.126	30.120	5.093	3.569	3.857	9.725	4.942	3.806	24.194	11.395	6.385
25	23.443	6.503	23.788	4.885	3.221	3.990	5.957	17.953	3.638	19.443	9.692	6.508
26	19.780	8.574	17.672	4.773	3.456	4.130	4.490	22.887	3.008	17.254	9.799	6.074
27	15.527	18.069	49.881	4.768	3.337	3.695	4.159	9.637	2.788	15.200	7.672	5.926
28	12.506	12.505	29.026	4.301	2.979	3.472	3.795	5.924	2.731	12.328	7.583	5.925
29	10.133		22.723	4.408	3.419	3.331	15.119	3.990	2.729	10.948	6.971	5.984
30	7.951		13.648	4.698	3.146	3.065	11.773	3.752	2.714	10.383	7.175	8.333
31	7.066		11.222		3.064		6.185	3.655		9.757		10.349
Average	15.960	10.290	14.280	11.820	3.912	5.348	6.757	5.262	3.584	53.220	22.730	7.447
Lowest	5.772	6.126	4.894	4.301	2.979	3.065	2.057	2.445	2.714	2.602	5.862	5.537
Highest	54.027	39.799	49.881	42.453	6.260	19.838	21.934	22.887	6.875	167.889	132.070	14.706
Peak flow Day of peak Monthly total (million cu m)	42.76	24.89	38.25	30.63	10.48	13.86	18.10	14.09	9.29	142.50	58.92	19.95
Runoff (mm)	34	20	30	24	8	11	14	11	7	113	47	16
Rainfall (mm)	33	37	61	42	46	81	101	67	39	198	70	24

Statistics of monthly data for previous record (Oct 1956 to Dec 1986 -incomplete or missing months total 1.5 years)

Mean	Avg.	22.840	18.990	14.860	10.740	7.096	4.840	2.853	3.361	4.999	7.360	15.810	19.830 .
flows:	Low	4.910	5.296	3.381	2.326	1.749	1.139	- 1.116	0.577	1.066	1.402	2.341	4.361
	(year)	1973	1981	1976	1976	1976	1976	1976	1976	1959	1972	1978	1971
	High	45.360	49.150	31.600	23.470	20.820	21.690	7.550	9.877	30.080	37.860	66.830	37.330
	(year)	1975	1957	1975	1983	1978	1964	1980	1985	1968	1960	1960	1965
Runoff:	Avg.	49	37	32	22	15	10	6	7	10	16	33	42
	Low	10	10	7	5	4	2	2	1	2	3	5	9
	High	97	95	67	48	44	45.	16	21	62	81	138	80
Rainfall:	Avg.	73	49	57	49	55	54	52	59	71	73	83	84
	Low	13	3	3	7	21	B	20	10	5	5	14	23
	High	135	123	113	108	112	127	103	122	183	185	169	. 168
Summ	ary st	tics								s affection	flow r	me	
								1987					
				1987		or record		As \% of		ervoir(s)	catchme		
						ceding 1987		pre-1987		influen	by grou	water	action
Mean flow	W ${ }^{\left(m^{3}\right.}$							121		or rech			
Lowest	yearty						1962			traction	public	ar sup	
Highest	yearly						1960						
Lowest	monthl	mean					1976						
Highest	monthl	mosn			66.		1960						
Lowest	daily m					04 S	1973						
Highest	daily m		167		269.	4 Nov	1960						
Peak					294.	4 N	1960						
10\% ex	ceedan				25.			99					
50\% ex	ceodan							126					
95\% ex	ceedan							185					
Annual	total (m	on cum)			350			121					
Annual	runoft				27			121					
Annual	rainfall				75			105					
[194	1.70 ra	all averag											

Station and catchment description
Crump weir plus a sharp-crested weir (the top of a flood gate) - superseded an insensitive broad-crested weir. Flows in excess of about 27 cumecs are measured at a well calibrated velocity-area section $2 \mathrm{~km} \mathrm{~d} / \mathrm{s}$ (East Farleigh) but updating of the primary record is incomplete The Teston calibration mekes an allowance for lock spills. Some monthly naturalised flows available (1956-68; accounting for the operation of Weir Wood reservoir). A predominately impervious (Hastings Beds) catchment; very responsive to rainfall. Mixed land use with significant areas of Wood reservoir). A pre
woodland and orchard.

1987

Measuring authority: SWA
First year: 1939

Grid reference: 51 (TQ) 611150 Level stn. (m OD): 29.80

Catchment area (sq km): 18.7
Max alt. (m OD): 183

DAY	JAN	FEB	MAR	APR	MAY	JuN	Jul	AUG	SEP	OCT	NOV	DEC
1	1.962	0.128	0.936	1.099	0.113	0.039	0.042	0.025	0.052	$0.049^{\text { }}$	0.184	0.165
2	0.627	0.127	0.571	0.622	0.108	0.060	0.040	0.030	0.053	0.055	0.163	0.161
3	0.392	0.129	0.286	0.386	0.100	0.066	0.038	0.027	0.053	0.058	0.161	0.157
4	0.579	0.137	0.242	0.808	0.093	0.064	0.037	0.033	0.049	0.070	0.155	0.150
5	0.499	0.156	0.217	0.440	0.098	0.063	0.036	0.026	0.096	0.094	0.139	0.139
6	0.333	0.216	0.212	0.416	0.074	0.078	0.036	0.026	0.083	0.185	0.138	0.141
7	0.264	0.174	0.208	1.376	0.067	0.067	0.036	0.023	0.095	5.172	0.136	0.136
8	0.235	0.162	0.216	0.598	0.067	0.174 ,	0.034	0.022	0.067	1.053	0.146	0.124
9	0.230	0.172	0.179	0.403	0.065	0.106	0.030	0.022	0.060	1.485	0.161	0.121
10	0.192	0.153	0.166	0.320	0.054	0.084	0.035	0.024	0.071	2.594	0.144	0.118
11	0.181	0.140	0.148	0.283	0.067	0.084	0.037	0.022	0.062	1.175	3.416	0.118
12	0.165	0.131	0.145	0.234	0.071	0.065	0.039	0.022	0.120	1.025	0.993	0.117
13	0.164	0.166	0.141	0.144	0.067	0.128	0.038	0.022	0.362	0.884	1.218	0.116
14	0.153	0.630	0.135	0.172	0.149	0.099	0.051	0.016	0.147	3.434	0.496	0.109
15	0.160	0.249	0.138	0.200	0.080	0.072	0.040	0.014	0.091	3.921	0.914	0.450
16	0.164	0.185	0.134	0.192	0.069	0.064	0.058	0.014	0.071	1.896	0.559	0.541
17	0.153	0.164	0.135	0.189	0.079	0.120	0.073	0.015	0.069	1.626	0.389	0.430
18	0.154	0.155	0.141	0.179	$0.111^{\text {. }}$	0.095	0.141	0.015	0.060	0.862	0.326	0.555
19	0.143	0.141	0.126	0.181	0.070	0.166	0.233	0.014	0.064	0.653	0.539	0.288
20	0.135	0.138	0.121	0.164	0.067	0.100	0.150	0.012	0.065	3.494	0.408	0.222
21	0.239	0.134	0.210	0.159	0.067	0.073	0.244	0.183	0.065	1.276	0.326	0.194
22	0.593	0.130	0.681	0.159	0.067	0.072	0.898	0.136	0.056	0.800	0.325	0.180
23	0.579	0.124	1.895	0.125	0.067	0.068	0.229	0.039	0.056	0.460	0.280	0.162
24	0.404	0.121	0.882	0.114	0.065	0.064	0.112	0.033	0.054	0.372	0.243	0.161
25	0.305	0.117	0.846	0.111	0.064	0.063	0.063	0.355	0.053	0.306	0.222	0.174
26	0.279	0.297	0.801	0.111	0.055	0.069	0.044	0.222	0.048	0.288	0.206	0.162
27	0.242	0.409	0.941	0.108 .	0.035	0.071	0.036	0.114	0.056	0.269	0.184	0.159
28	0.192	0.263	0.403	0.111	0.033	0.067	0.035	0.076	0.047	0.217	0.172	0.148
29	0.166		0.286	0.126	0.039	0.054	0.041	0.067	0.053	0.228	0.169	0.227
30	0.145		0.254	0.122	0.040	0.051	0.037	0.063	0.048	0.216	0.167	0.485
31	0.135		0.235		0.038		0.029	0.055		0.201		0.345
Average	0.328	0.187	0.388	0.322	0.072	0.082	0.097	0.057	0.078	1.110	0.436	0.218
Lowest	0.135	0.117	0.121	0.108	0.033	0.039	0.029	0.012 ,	0.047	0.049	0.136	0.109
Highest	1.962	0.630	1.895	1.376	0.149	0.174	0.898	0.355	0.362	5.172	3.416	0.555
Peak flow	5.062	1.246	3.265	2.825	0.223	0.455	1.823	1.054	0.571	18.791	10.628	1.292
Day of peak Monthly total	1	14	23	1	14	8	22	25	13	7	11	15
(million cu m)	0.88	0.45	1.04	0.83	0.19	0.21	0.26	0.15	0.20	2.97	1.13	0.58
Runoff (mm)	47	24	56	45	10	* 11	14	8	11	159	60	31
flainfall (mm)	29	45	82	56	46	91	118	84	49	244	79	45

Statistics of monthly data for previous record (Jan 1968 to Dec 1986 -incomplete or missing months total 0.2 years)

Station and catchment description
Asymmetrical compound Crump weir (crests: 2.13 m and 2.97 m broad) with crest tapping - not currently used. Structure capacity exceeded in large floods. Early data (1939-67) is of poorer quality and relates to low flows only. Catchment is substantially natural but flows are diminished by water supply offtake upstream of the gauging station. A rural catchment developed on mixed geology (Hastings Beds predominate).

042010 Itchen at Highbridge + Allbrook

Mensuring authority: SWA
First year: 1958

Grid reference: 41 (SU) 467.213 Level stn. (m OD): 17.10

Catchment area (sq km): 360.0 Max alt. (m OD): 208

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	8.408	6.390	6.252	6.486	7.371	5.162	4.108	3.614	3.033	2.844	4.817	5.691
2	7.821	6.975	5.984	6.352	7.229	5.323	4.110	3.617	3.017	2.841	4.713	5.978
3	7.454	6.399	5.756	6.197	7.181	5.260	3.995	3.646	3.105	2.859	4.580	5.856
4	7.548	6.408	5.785	7.562	6.996	5.256	3.940	3.543	3.127	3.018	4.732	5.872
5	7.306	6.338	5.635	6.937	6.851	5.576	3.892	3.444	3.222	2.972	4.692	5.806
6	7.215	6.308	5.618	6.740	6.834	5.626	3.743	3.414	3.147	2.979	4.646	5.822
7	7.153	6.233	5.977	7.281	6.290	5.260	3.661	3.357	3.181	3.987	4.555	5.792
8	7.110	6. 192	6.012	6.982	6.466	5.134	3.655	3.357	3.197	3.918	4.780	5.652
9	7.037	6.208	5.796	7.103	6.478	5.106	3.706	3.319	3.105	4.420	5.563	5.619
10	7.115	6.243	5.740	6.126	6.146	5.123	3.658	3.337	3.072	6.177	5.182	5.683
11	7.094	6.201	5.710	7.057	6.411	5.106	3.552	3.351	3.050	4.769	6.414	5.608
12	7.042	6.142	5.606	6.862	6.135	4.979	3.471	3.399	3.218	4.205	6.800	5.540
13	7.055	6.177	5.566	6.899	6.209	4.927	3.359	3.485	3.388	4.017	6.674	5.496
14	7.085	6.253	5.538	6.880	6.528	4.838	3.407	3.337	3.274	4.058	5.980	5.506
15	7.003	6.084	5.517	6.897	6.368	4.758	3.475	3.158	3.177	4.635	6.079	5.653
16	6.807	5.999	5.566	7.009	6.187	4.606	3.631	3.106	3.145	5.018	5.913	6.209
17	6.723	5.908	5.553	6.974	6.156	4.876	3.668	3.133	3.145	4.788	5.779	5.983
18	6.652	5.858	5.610	7.056	6.204	5.003	3.832	3.141	3.123	4.601	5.757	5.790
19	6.736	5.810	5.655	7.118	6.097	5.359	5.022	3.130	3.182	4.603	5.936	5.611
20	6.828	5.762	5.523	7.107	5.857	5.044	5.093	3.076	3.179	5.042	6.026	5.494
21	7.035	5.696	5.372	7.089	5.834	4.765	4.659	3.012	3.062	5.698	5.887	5.467
22	7.057	5.675	5.622	7.116	5.829	4.708	4.416	3.180	2.977	5.367	5.844	5.407
23	6.967	5.647	6.445	7.083	5.809	4.716	4.243	3.141	3.072	5.116	5.879	5.431
24	6.838	5.585	6.226	7.017	5.715	4.759	4.060	3.167	3.158	4.903	6.027	5.521
25	6.758	5.542	6.299	7.075	5.638	4.773	4.010	3.290	3.071	4.760	5.905	5.510
28	6.727	5.900	6.190	7.065	5.568	4.687	3.987	3.444	2.970	4.785	5.979	5.451
27	6.689	6.171	7.107	7.056	5.418	4.601	3.919	3.346	2.919	4.850	5.821	5.415
28	6.629	5.964	6.517	7.122	5.275	4.497	3.801	3.188	2.959	4.710	5.719	5.503
29	6.431		6.131	7.417	5.089	4.323	3.811	3.130	2.899	4.647	5.662	5.623
30	6.393		5.989	7.356	5.205	4.115	3.746	3.158	2.877	4.589	5.677	5.740
31	6.395		5.898		5.515		3.665	3.116		4.894		5.830
Avarage	7.004	6.074	5.877	6.967	6.158	4.942	3.913	3.295	3.102	4.389	5.597	5.663
Lowest	6.393	5.542	5.372	6.126	5.089	4.115	3.359	3.012	2.877	2.841	4.555	5.407
Highest	8.408	6.975	7.107	7.562	7.371	5.626	5.093	3.646	3.388	6.177	6.800	6.209
Paak flow Day of peak Monthly total (million cu m)	18.76	14.69	15.74	18.06	16.49	12.81	10.48	8.82	8.04	11.76	14.51	15.17
Runoff (mm)	52	41	44	50	46	36	29	25	22	33	40	42
Rainfoll (mm)	12	45	86	71	40	77	64	26	43	206	80	44

Statistics of monthly data for previous record (Oct 1958 to Dec 1986

Mean	Avg.	6.618	7.223	7.038	6.526	5.755	4.892	4.172	3.883	3.740	4.141	4.861	5.777
flows:	Low	4.208	4.162	3.644	3.203	3.093	2.582	2.474	2.331	2.669	2.702	2.840	3.136
	(year)	1976	1964	1976	1976	1976	1976	1976	1976	1973	1959	1973	1973
	High	10.520	10.850	9.923	8.521	7.312	6.550	5.219	5.245	5.128	7.867	9.857	10.860
	(year)	1969	1969	1977	1969	1966	1979	1979	1979	1968	1960	1960	1960
Runoff:	Avg.	49	49	52	47	43	35	31	29	27	31	35	43
	Low	31	29	27	23	23	19	18	17	19	20	20	23
	High	78	73	74	64	54	47	39	39	37	59	71	81
Rainfall:	Avg.	95	53	82	45	73	60	55	62	81	73	85	93
(1971.	Low	39	12	24	2	19	10	22	18	19	30	31	25
1986)	High	159	137	172	97	131	113	87	120	195	177	197	153

Station and catchment description
Crump weir (crest 7.75 m broad) installed in 1971 (superseded a velocity-area station which suffered severely from weedgrowth) plus a rectangular thin-plate weir at Allbrook. Peak flows not derived. Local bypassing occurs at Allbrook during exceptional discharges. The groundwater catchment substantially exceeds the topographical catchment area. Artificial influences have a minor impact on flows; small net export of water. Very permeable catchment $\{90 \%$ Chalk). Land use is mainly arable with scattered urban settlements.

043005 Avon at Amesbury

Measuring authority: WWA First year: 1965

Grid referance: 41 (SU) 151413
Level stn. (m OD): 67.10

Catchment area (sq km): 323.7
Max att. (m OD): 294

Daily mean gauged discharges (cubic metres per second)

Station and catchment description
Compound structure; Crump crest $(9.14 \mathrm{~m}$ broad) flanked by broad-crested weirs. Small bypass channel approx. 2 m upstream of weir - included in ring Full rane station Bankfull - 137 m . During the summer flows are naturally augmented from groundwater draining from the northern half of the River Bourne catchment. Topographical and groundwater catchments do not coincide. Predominantly permeable (Chalk) catchment with a small inlier of Upper Greensand and Gault. Land use - rural.

045001 Exe at Thorverton

Measuring authority: SWWA
First year: 1956

Grid reference: 21 (SS) 936016 Level sti. (m OD): 25.90

Catchment area (sq km): 600.9
Max alt. (m OD): 519

Daily mean gauged diacharges (cubic motres per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	83.894	7.079	33.696	26.139	6.004	3.235	3.957	3.130	1.978	2.889	17.359	11.049
2	61.014	16.771.	32.494	64.624	5.519	4.229	3.759	3.423	1.956	3.453	14.938	10.220
3	45.462	12.110	27.470	97.102	5.229	4.754	3.518	3.576	2.027	6.263	13.372	9.745
4	47.420	10.717	24.560	75.203	4.784	4.206	3.350	3.049	1.983	5.892	12.027	10.389
5	38.053	10.799	20.166	50.928	4.493	12.349	3.175	2.720	4.621	4.885	10.966	9.583
6	32.237	22.247	17.731	42.715	4.295	11.707	3.018	2.555	3.112	4.638	10.121	8.843
7	27.184	17.889	24.123	58.872	4.127	8.371	3.021	2.441	3.425	38.458	9.359	8.177
8	23.238	19.508	19.396	42.826	4.025	7.277	3.062	2.443	2.725	42.230	12.942	7.650
9	22.462	22.818	16.958	35.454	3.877	6.777	3.019	2.461	2.389	58.449	14.887	7.337
10	18.705	22.892	15.313	32.924	3.745	6.050	3.084	2.601	2.479	48.037	13.090	7.057
11	15.031	26.050	14.019	28.133	4.368	5.535	2.946	2.421	2.565	35.450	57.325	6.859
12	11.681	23.899	12.701	23.146	5.530	5.114	2.868	2.679	3.066	28.537	63.506	6.716
13	11.709	23.471	11.738	20.716	4.249	4.796	2.772	2.462	3.673	25.394	52.588	6.402
14	10.872	21.812	10.753	18.012	4.664	4.592	3.217	2.524	2.893	36.960	39.816	6.133
15	10.913	18.775	9.952	15.826	4.104	4.716	4.182	2.355	2.606	45.030	58.078	9.105
16	9.737	16.821	9.211	14.097	3.758	4.291	5.654	2.276	2.713	63.003	41.511	19.425
17	8.837	15.316	9.057	12.597	3.739	4.659	6.084	2.235	2.808	42.843	33.969	18.442
18	8.402	13.677	9.623	1.1.476	3.661	5.235	4.386	2.173	2.976	44.454	29.303	23.201
19	8.037	12.245	8.820	11.502	3.445	7.425	7.495	2.221	2.971	41.300	46.613	19.802
20	7.906	11.411	7.864	10.216	3.318	4.905	5.474	2.214	3.017	35.561	34.030	18.657
21	9.944	10.627	7.268	8.955	3.212	4.409	4.231	2.104	2.833	33.000	29.593	17.562
22	11.282	9.903	10.715	8.200	3.211	4.812	4.017	2.248	2.701	26.316	26.327	15,936
23	11.238	8.911	46.457	7.543	3.420	5.425	3.662	2.236	2.858	21.670	22.855	14.328
24	10.453	8.142	33.484	7.132	3.685	4.453	3.473	2.320	4.673	18.294	20.591) 13.937
25	9.811	7.673	29.242	6.712	4.058	4.952	3.356	2.214	4.043	15.728	17.153	12.620
28	9.317	13.318	34.855	6.281	4.240	5.485	3.198	2.458	3.485	13.898	15.355	12.955
27	8.691	28.531	58.287	5.939	4.274	5.201	3.284	2.396	3.318	41.019	13.818	17.493
28	8.076	28.993	43.727	5.709	3.447	5.244	3.206	2.143	3.238	29.577	12.641	14.603
29	7.514		34.288	5.435	3.108	4.804	3.495	2.112	3.086	24.765	13.086	38.127
30	6.926		28.130	5.337	3.435	4.258	3.332	2.057	2.952	21.001	13.430	37.134
31	6.411		23.463		3.700		3.191	2.042		21.343		32.761
Average	19.430	16.440	22.110	25.320	4.088	5.642	3.757	2.461	2.972	28.400	25.690	$14.590 \cdot$
Lowest	6.411	7.079	7.268	5.337	3.108	3.235	2.772	2.042	1.956	2.889	9.359	6.133
Highest	83.894	28.531	58.287	97.102	6.004	12.349	7.495	3.576	4.673	63.003	63.506	38.127
Pook flow	113.676	37.458	93.433	144.285	6.553	34.853	11.378	4.139	6.469	88.179	102.035	66.497
Day of peak	1	27	27	5	12	7	19	10	5	16	11	29
Monthly total (million cu m)	52.05	39.78	59.23	65.64	10.95	14.62	10.06	6.59	7.70	76.06	66.58	39.07
Runoff (mm)	87	66	99	109	18	24	17	11	13	127	111	65
Rainfall (mm)	36	106	114	108	60	90	73	33	71	253	128	92

Statistics of monthly data for previous record (May 1956 to Dec 1986)

Station and catchment description

Velocity-area station with cableway. Flat V Crump weir constructed in 1973 due to unstable bed condition. Minor culvert flow through mill u/s of station included in rating. Significant abstractions for PWS. Control point for Wimbleball Reservoir operational releases. Headwaters drain Exmoor. Geology predominantly Devonian sandstones and Carboniferous Culm Measures, with subordinate Permian sandstones in the east.
Moorland, forestry and a range of agriculture.

047001 Tamar at Gunnislake

Measuring authority: SWWA
First year: 1956

Grid reference: 20 (SX) 426725 Level stn. (m OD): 8.20

Catchment area (sq km): 916.9 Max alt. (m OD): 586

DAY	JAN	fEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	94.383	9.129	- 39.413	30.042	8.134	4.269	5.693	3.713	2.064	2.036	18.998	20.237
2	61.093	18.242	35.906	39.815	7.697	4.557	5.132 *	3.677	2.095	2.067	16.141	18.358
3	42.196	13.091	25.298	67.784	7.046	6.035	4.708	4.997	2.199	3.173	14.533	16.844
4	47.889	11.976	22.694	45.776	6.631	6.118	4.383	4.211	2.257	4.496	13.440	16.010
5	39.809	11.764	19.848	35.790	6.218	14.800	4.104	3.414	5.380	3.404	12.529	18.565
6 '	31.052	23.731	17.888	36.377	5.984	15.441	3.855	3.157	3.838	3.641	11.468	23.881
7	26.250	21.369	26.325	43.772	5.796	8.010	3.699	3.070	3.245	44.945	10.941	17.684
8	23.752	20.396	21.103	37.024	5.631	6.828	3.494	3.000	2.802	25.796	18.455	15.698
9	24.618	26.925	17.485	31.243	5.498 ,	6.822	3.331	2.889	2.539	64.980	36.831	14.501
10	22.791	26.027	15.265	31.645	5.320	5.975	3.275	2.762	2.376	54.778	21.641	13.648
11	18.151	27.072	13.689	28.658	5.245	5.490	3.152	2.803	2.321	29.690	125.654	13.101
12	14.324	27.159	12.598	23.307	8.044	5.471	3.058	2.896	2.593	30.610	106.464	12.391
13	14.564	28.817	11.972	21.625	5.749	4.968	2.919	2.775	3.218	31.911	81.673	11.653
14	13.978	26.213	11.417	19.740	6.146	4.625	3.087	2.770	2.635	34.055	54.400	10.992
15	13.022	21.171	10.878	17.754	5.599	4.968	4.701	2.625	2.311.	53.935	112.311	13.679
16	12.113	18.881	10.456	16.248	4.985	4.538	5.127	2.452	2.353	145.242	61.486	31.936
17	11.477	17.552	10.188	14.975	4.846	4.306	6.158	2.385	2.448	61.758	42.088	27.508
18	11.772	15.929	10.841	14.090	4.768	4.694	5.936	2.347	2.426	189.566	33.559	33.545
19	11.669	14.547	12.373	14.064	4.486	6.021	21.546	2.347	2.529	143.019	48.376	24.963
20	12.299	13.469	11.258	12.539	4.262	4.811	10.608	2.310	2.588	74.460	37.655	22.022
21	12.898	12.364	10.806	11.425	4.116	4.154	7.235	2.283	2.469	55.275	27.600	20.554
22	13.079	11.764	17.250	10.698	4.059	4.166	6.228	2.252	2.487	45.084	26.655	19.961
23	12.254	11.189	108.262	10.074	4.025	8.163	5.623	2.234	2.646	33.360	29.527	17.881
24	11.160	10.682	49.394	9.550	4.350	6.003	5.135	2.176	3.179	26.735	28.024	19.612
25	10.352	10.480	37.878	9.138	4.509	5.351	4.753	2.181	3.680	22.552	22.176	18.194
26	9.768	21.631	60.948	8.615	4.380	7.399	4.469	2.360	2.696	19.813	19.443	17.768
27	9.272	36.694	118.641	8.177	4.410	11.605	4.379	2.555	2.371	47.902	17.445	26.875
28	8.695	30.803	48.750	7.830	3.944	10.740	4.342	2.210	2.259	33.318	15.983	23.174
29	8.122		37.462	7.580	3.742	7.831	4.555	2.049	2.203	25.198	35.057	82.060
30	7.681		30.488	7.571	3.980	6.446	4.445	2.034	2.113	21.748	28.589	71.714
31	7.130		26.504		5.686		3.911	1.989		20.408		61.763
Average	21.210	19.250	29.140	22.430	5.332	6.687	5.259	2.739	2.677	43.710	37.640	24.410
Lowest	7.130	9.129	10.188	7.571	3.742	4.154	2.919	1.989	2.064	2.036	10.941	10.992
Highest	'94.383	36.694 ,	118.641	67.784	8.134	15.441	21.546	4.997	5.380	189.566	125.654	82.060
Peak flow	147.990	62.960	220.854	93.634	10.041	36.007	30.843	6.183	8.762	260.673	177.945	120.955
Day of peak	1	27	27	3	12	6	19	4	5	19	11	29
Monthly total (million cu m)	56.82	46.58	78.04	- 58.14	14.28	17.33	14.09	7.34	6.94	117.10	97.56	65.38
Runoff (mm)	62	51	85	63	16	19	15	8	8	128	106	71
Rainfall (mm)	27	93	116	69	54	99	70	30	69	247	137	102

Statistics of monthly data for previous record (Jul 1956 to Dec 1986)

Station and catchment description
Velocity-area station, wide, shallow channel. Cableway span 46.9 m . Low flows measured at another, narrower, site. High flow gaugings difficult veling-a俍 Fairly responsive. A range of agriculture, grazing and forestry as land use.

050001 Taw at Umberleigh

Measuring authority: SWWA
First year: 1958

Grid reference: 21 (SS) 608237 Level stn. (m OD): 14.10

Catchment area (sq km): $\mathbf{8 2 6 . 2}$
Max alt. (m OD): 604

Daily mean gauged discharges (cubic metres per second).

DAY	JAN	FEB	MAR	APA	MAY	JUN	JuL	AUG	SEP	OCT	Nov	DEC
1	99.938	6.484	51.162	24.220	5.373	2.648	5.013	2.429	1.141	1.811	20.735	18.623
2	66.248	18.644	44.076	81.698	4.719	3.885	4.503	2.475	1.172	1.849	16.777	16.008
3	45.976	12.271	33.575	148.760	4.331	4.139	4.193	3.273	1.166	3.210	14.516	14.246
4	47.200	10.187	27.539	89.476	3.991	4.273	3.971	2.792	1.210	6.118	12.721	13.540
5	37.632	10.398	21.773	55.061	3.815	12.407	3.650	2.268	3.774	3.010	11.316	11.734
6	30.440	25.251	18.651	50.960	3.622	12.241	3.345	2.067	2.151	3.846	10.518	10.508
7	25.150	22.149	34.798	65.419	3.468	7.274	3.115	1.976	1.962	39.199	10.020	9.678
8	21.645	24.156	25.233	51.487	3.334	5.840	2.878	1.913	1.767	41.426	15.753	8.731
9	23.001	27.976	20.365	39.739	3.229	5.217	2.710	1.756	1.505	67.030	18.624	8.054
10	18.960	28.333	17.666	34.978	3.103	4.746	2.595	1.773	1.468	58.237	16.584	7.493
11	14.255	32.362	15.546	28.700	3.575	4.307	2.614	1.767	1.390	39.415	105.118	7.312
12	10.932	28.773	13.746	22.613	6.134	3.939	2.469	1.845	1.507	31.776	100.687	7.025
13	11.649	28.739	12.435	19.928	3.828	3.702	2.352	1.703	1.943	30.431	73.975	6.557.
14	11.477	27.796	11.262	17.190	4.316	3.529	2.693	1.724	1.631	38.188	52.287	6.192
15	10.660	21.563	10.305	15.025	3.640	3.412	3.731	1.577	1.385	47.095	73.128	8.246
16	9.556	18.490	9.410	13.385	3.110	3.115	4.276	1.454	1.413	72.486	57.019	22.683
17	8.515	16.200	9.175	12.068	3.046	3.642	5.293	1.419	1.567	45.820	42.902	19.760
18	8.235	14.124	10.229	10.949	2.990	4.092	4.814	1.397	1.689	45.620	33.685	22.211
19	8.067	12.339	11.112	11.578	2.759	5.185	9.105	1.382	1.681	42.312	59.878	18.177
20	8.658	11.343	9.564	10.241	2.588	3.626	5.139	1.368	1.740	33.426	46.644	17.059
21	11.874	10.161	8.343	8.531	2.475	3.180	3.927	1.377	1.631	36.385	36.696	16.300
22	13.230	9.516	12.707	7.712	2.488	4.032	3.422	1.367	1.601	28.476	31.204	15.302
23	12.564	8.745	86.439	7.079	2.573	5.341	3.148	1.406	1.654	23.518	27.429	14.031
24	10.795	8.128	52.996	6.604	2.937	4.111	2.922	1.374	3.023	19.458	23.831	14.006
25	9.855	7.918	39.486	6.274	4.366	5.176	2.719	1.334	2.744	16.275	19.072	13.787
26.	9.063	15.475	40.139	5.758	4.908	5.864	2.636	1.957	2.399	14.246	16.258	13.586
27	0.394	44.159	68.909	5.365	4.705	6.321	2.722	1.722	2.175	79.914	14.127	16.486
28	7.612	42.836	44.769	5.062	2.954	6.176	2.863	1.377	2.071	47.438	12.668	15.254
29	6.824		33.888	4.882	2.584	5.816	3.149	1.287	1.986	33.681	21.006	43.326
30	6.074		27.389	4.807	2.661	5.344	2.791	1.241	1.889	25.842	30.031	41.806
31	5.682		22.950		3.365		2.562	1.199		26.223		36.974
Avarago	20.010	19.450	27.280	28.850	3.580	5.086	3.591	1.742	1.814	32.380	34.170	15.960
Lowest	5.682	6.484	8.343	4.807	2.475	2.648	2.352	1.199	1.141	1.811	10.020	6.192
Highest	99.938	44.159	86.439	148.760	6.134	12.407	9. 105	3.273	3.774	79.914	105.118	43.326
Peak flow	167.229	67.805	152.611	205.452	13.822	31.960	13.650	3.630	6.122	113.889	153.449	65.149
Day of peak Monthly total	2	27	23	5	28	7	19	3	5	27	11	29
(million cu m)	53.58	47.05	73.06	74.78	9.59	13.18	9.62	4.66	4.70	86.72	88.58	42.74
Runoff (mm)	65	57	88	91	12	16	12	6	6	105	107	52.
Rainfoll (mm)	29	99	104	97	61	92	61	31	65	222	130	75

Statistics of monthly data for previous record (Oct 1958 to Dec 1986)

Station and catchment description
Velocity-area station, main channel 34 m wide, cableway span 54.9 m . Rock step d / s forms the control. Bypassing begins at about 3.7 m on the rb , but a good rating accommodates this. Significant modification to flows owing to PWS abstraction. Some naturalised flow data available. Large rural catchment - drains both Dartmoor (granite) to the south and Devonian shales and sandstones of Exmoor to the north. Central area is underlain mainly by Culm shales and sandstones (Carboniferous). Agriculture is conditioned by the grade 3 and 4 soils.

052005 Tone at Bishops Hull

Measuring authority: WWA
First year: 1961

Grid reference: 31 (ST) 206250 Level stn. (m OD): 16.20

Catchment area (sq km): 202.0 Max alt. (m OD): 409

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	- AUG	SEP	OCT	NOV	DEC
1	12.732	2.232	4.755	4.482	2.120	1.098	0.824	0.742	0.636	0.616	3.587	2.397
2	9.420	4.548	3.917	19.169	1.945	1.399	0.785	0.806	0.632	0.750	2.892	2.242
3	7.460	3.219	3.437	34.522	1.840	1.297	0.806	0.793	0.653	1.750	2.546	2.151
4	7.334	2.783	3.379	15.614	1.803	1.286	0.780	0.716	0.643	1.266	2.326	2.363
5	6.446	$2.61{ }^{\text {. }}$	3.095	9.980	1.823	2.204	0.759	0.677	0.832	1.039	2.193	2.228
6	5.483	2.978	2.981	9.195	1.792	1.766	0.719	0.688	0.756	0.972	2.101	2.167
7	4.767	2.663	4.160	14.249	1.753	1.312	0.704	0.673	0.761	3.719	2.019	2.007
8	4.404	2.696	3.512	10.075	1.734	1.249	0.700	0.671	0.675	2.483	2.682	1.893
9	4.484	3.088	3.054	8.296	1.708	1.181	0.687	0.662	0.659	4.482	3.338	1.826
10	4.093	3.083	2.783	7.737	1.614	1.162	0.676	0.685	0.667	- 3.331	2.625	1.792
11	3.577	3.592	2.624	6.635	1.682	. 1.086	0.699	0.743	0.693	2.257	13.781	1.763
12	3.182	3.342	2.518	5.444	1.655	1.086	0.679	0.695	0.744	1.950	9.460	1.744
13	3.016	3.438	2.445	4.710	1.541	1.076	0.686	0.670	0.769	1.796	6.319	1.727
14	2.862	3.773	2.349	4.215	1.711	1.056	0.782	0.658	0.661	3.216	4.933	1.689
15	2.757	3.167	2.269	3.961	1.425	1.003	1.035	0.641	0.620	5.186	6.276	2.625
16	2.612	2.926	2.213	3.730	1.368	1.011	1.658	0.628	0.719	6.270	5.017	5.238
17	- 2.530^{-1}	2.779	2.245^{*}	3.462	1.396	1.009	1.745	0.636	0.708	4.203	4.165	3.816
18	2.517	2.614	2.336	3.220	1.365	1.197	1.171	0.619	0.664	6.663	3.812	3.225
19	2.453	2.500	2.208	3.090	1.282	1.145	1.337	0.646	0.811	5.873	4.657	2.887
20	2.455	2.408	2.056	2.855	1.251	1.000	1.109	0.619	0.750	4.364	4.105	2.724
21	2.714	2.319	2.011	2.630	1.240	0.975	1.007	0.620	0.663	4.074	3.652	2.608
22	2.836	2.227	3.032	2.522	1.276	1.074	0.976	0.621	0.631	3.182	3.704	2.464
23	2.888	2.152	7.420	2.431	1.312	0.993	0.929	0.607	0.809	2.759	4.098	2.424
24	2.736	2.110	4.484	2.349	1.345	0.938	0.889	0.740	0.719	2.445	3.901	2.464
25	2.588	2.070	3.696	2.280	1.329 -	1.033	0.873	0.682	0.665	2.240	3.313	2.326
26.	2.453	3.586	8.184	2.169	1.239	0.987	0.868	0.843	0.627	2.128	2.937	2.294
27	2.366	6.729	17.978	2.125	1.241	1.024	0.883	0.641	0.613	6.019	2.753	2.315
28	2.228	4.536	6.974	2.053	1.158	0.989	0.857	0.630	0.617	3.790	2.643	2.248
29.	2.108 ${ }^{\text {' }}$		5.386	2.017	1.170	0.938	0.751	0.642	0.613	2.997 *	2.653	3.500
30	1.992		4.623	2.018	1.273	0.861	0.758	0.648	0.609	2.776	2.560	4.468
31	1.927		4.244		1.192		0.773	0.643		4.276		4.302
Average	3.917	3.077	4.076	6.574	1.503	1.148	0.900	0.677	0.687	3.189	4.035	2.578
Lowest	1.927	2.070	2.011	2.017	$\cdot 1.158$	0.861	0.676	0.607	0.609	0.616	2.019	1.689
Highest	+ 12.732	6.729	17.978	34.522	2.120	2.204	1.745	0.843	0.832	6.663	13.781	5.238
Peak flow	23.691	12.595	51.050	75.376	2.457	3.700	3.000	1.873	1.194	11.431	30.296	7.224
Day of peak	1	27	27	3	9	5	17	4	19	15	11	16
Monthly total (million cu m)	10.49	7.44	10.92	17.04	4.02	2.97	2.41	1.81	1.78	8.54	10.46	6.90
Runoff (mm)	52	37	54	84	20	15	12	9	9	. 42	52	34
Rainfall (mm)	26	71	83	95	32	64	. 58	25	49	218	81	58

Statistics of monthly data for previous record (Feb 1961 to Dec 1986)

Station and catchment description
Crump weir (breadth 12.2 m) with crest tapping (not operational). Full range station. Pre-March 1968: velocity-area station; flows inaccurate below 142 cmess, Clatworthy and smaller Luxhay Reservoir in headwaters. Compensation flow maintains low flows. Reservoirs not large enough to influence fairly rapid response to rainfall. Minor surface water and groundwater abstractions: Catchment geology - predominantly sandstones and marls. Land use - rural.

053018 Avon at Bathiord

Measuring authority: WWA First yoar: 1969

Grid reference: 31 (ST) 78667 Leval stn. (m OD): 18.00

Catchment area (sq km): 1552.0 Max alt. (m OD): 305

Daily mean gauged discharges (cubic metres per second)								\& .				
day	JAN	FEB	MAR	APA	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	88.505	11.056	32.820	28.640	11.959	5.931	4.395	2.853	2.405	2.794	34.334	12.483
2	56.832	20.328	29.570	28.334	11.212	6.941	3.896	2.492	2.455	3.120	20.244	11.610
3	37.089	21.251	22.120	25.690	10.600	8.313	3.714	2.487	2.428	3.486	16.391	11.450
4	37.937	18.577	19.700	67.707	10.125	7.714	3.637	2.445	2.486	4.343	14.443	11.220
5	36.835	16.599	18.380	70.521	10.018	9.649	3.551	2.300	4.086	3.939	13.079	11.110
6	29.415	$\cdot 18.409$	17.210	37.454	10.050	14.170	3.395	2.150	3.860	3.797	12.145	10.810
7	25.257	18.056	25.670	55.456	9.855	10.122	3.051	1.900	3.892	9.228	11.414	10.519
8	23.121	16.471	33.280	53.602	9.470	9.140	2.910	1.828	3.384	11.198	13.347	9.861
9	22.328	18.499	26.830	47.671	8.997	9.358	2.790	1.800	3.050	12.136	38.585	9.673
10	21.643	18.950	21.360	38.422	8.569	7.834	2.855	1.760	2.866	26.773	24.060	9.515
11	18.991	17.900	18.540	35.230	8.603	6.284	2.689	2.123	2.638	18.717	54.635	9.146
12	17.446	19.400	16.581	27.534	8.770	5.287	2.728	3.207	2.930	11.168	91.324	9.165
13	16.294	18.050	15.800	24.154	8.204	5.059	- 2.798	3.291	3.427	9.550	57.855	8.769
14	15.397	26.220	14.652	21.925	9.057	5.051	3.681	3.184	2.967	11.348	35.476	8.961
15	14.969	22.040	14.267	20.177	8.487	5.238	3.678	3.061	2.540	15.052	38.078	9.709
16	14.505	18.880	13.665	18.425	7.727	6.203	3.396	2.684	3.739	38.323	34.580	19.193
17	14.107	17.680	13.469	17.692	7.682	5.807	3.643	2.456	3.393	24.217	29.007	23.991
18	13.509	16.630	14.352	16.826	8.217	6.243	4.139	2.486	3.034	17.570	24.073	19.047
19	13.027	15.440	17.845	16.415	7.396	8.145	7.056	2.283	3.799	23.683	36.374	16.375
20	12.945	14.700	19.190	15.629	6.859	6.935	6.908	2.349	4.224	19.673	46.604	14.478
21	13.506	13.150	19.484	14.723	6.797	5.556	4.891	2.103	3.498	-19.201	29.163	13.676
22	15.030	12.700	22.630	13.765	7.204	6.103	4.099	2.513	3.300	17.229	25.088	12.786
23	15.963	12.650	40.006	13.388	7.270	5.991	3.573	2.741	4.146	14.211	22.205	12.295
24	16.154	12.300	34.137	12.886	7.194	5.293	3.179	3.409	5.098	12.305	19.420	12.151
25	15.934	11.800	25.697	12.464	6.508	6.374	3.208	3.008	4.171	11.534	18.134	11.983
28	15.133	14.150	24.072	12.361	6.401	8.727	2.758	4.130	3.544	10.996	16.376	11.480
27	14.254	38.130	74.646	11.979	6.332	6.510	2.772	3.274	3.393	12.029	15.255	12.666
28	13.436	43.260	45.386	11.677	5.970	5.798	3.092	2.717	3.108	13.292	14.225	12.644
29	12.397		30.199	12.609	5.845	5.053	3.556	2.312	2.909	11.804	13.704	16.563
30	11.714		25.055	12.155	5.916	4.902	3.299	2.533	2.817	10.761	12.754	30.336
31	10.883		22.779		6.952		3.016	2.302		29.395		36.738
Avarago	22.080	18.690	24.820	26.520	8.201	6.991	3.624	2.586	3.320	13.960	27.750	13.880
Lowost	10.883	11.056	13.469	11.677	5.845	4.902	2.689	1.760	2.405	2.794	11.414	8.769
Highost	88.505	43.260	74.646	70.521	11.959	14.170	7.056	4.130	5.098	38.323	91.324	36.738
Peak flow	97.214	61.760	83.628	92.246	14.673	16.921	9.368	4.562	5.350	45.405	100.833	40.742
Day of poak Monthly total	1	27	27	5	2	5	19	28	24	31	12	31
(mitlion cu m)	59.15	45.21	66.48	68.73	21.97	18.12	9.71	6.93	8.60	37.40	71.92	37.19
Runoff (mm)	38	29	43	44	14	12	6	4	6	24	46	24
Rainfall (mm)	18	62	75	65	40	99	50	24	55	149	74	47

Statistics of monthly data for previous record (Dec 1969 to Dec 1986)

Mean	Avg,	33.220	31.450	26.030	16.740	13.060	10.130	5.930	6.110	6.730	10.610	19.440	30.040°
flows:	Low	9.225	11.370	10.080	7.718	5.047	3.898	2.411	1.715	3.748	3.117	4.407	
	(year)	1976	1976	1973	1976	1976	1976	1976	1976	1978	1978	1978	
	High	51.280	64.730	54.220	22.690	31.020	30.110	9.955	13.830	25.450	28.180.	39.810	48.270
	(year)	1984	1977	1981	1979	1983	1971	1973	1985	1974	1976	1986	1976
Runoff:	Avg.	57	49	45	28	23	17	10	11	11	18	32	52
	Low	16	18	17	13	9	7	4	3	6	5	7	21
	High	88	101	94	38	54	50	17	24	43	49	66	83
Rainfall:	Avg.	89	58	78	47	64	65	52	69	78	68	84	94
(1970.	Low	23	7	17	2	29	5	25	18	15	6	38	33
1986	High	148	143	163	110	142	151	115	140	178	135	178	144
Summ	ary 8	stics								affec	flow	me	
								87					
				1987		racord				influen or rech	by gro	water	raction
Moan flo	W (m) 3				17.			82		mentati	from su	ce wat	d/or
Lowost	yearly				10.		1973			ndwate			
Highest	yoarly				22.		1977						
Lowost	month	cean					1976						
Highost	monthly	mean			64.		1977						
Lowest	daily m			10			1976.						
Highest	daily m			12	253.		1979						
Paok			100	12	300.		1979						
10\% ex	coedan				36.			81					
50\% exc	ceodan				11.			02					
95\% exc	coedan							72					
Annual tor	cotal (m	(cu m)			549			82					
Annual r	runoft				35			82					
Annual	ainfall	I)			84			90					
$\mid 1941$	$1-70$ ra	all averag											

Station and catchment description
Velocity-area station with cableway. (Replacement station for Bath St James). Situated immediately downstream of confluence with Bybrook Section by railway bridge; area widely inundated in flood conditions, but all flows contained through bridge. Flows augmented by groundwater scheme in catchment. Mixed geology - predominantly clays and fimestone with eastern tributaries rising from Chalk. Land use - mainly rural, some urbanisation.

054001 Severn at Bewdley

Measuring authority: STWA First year: 1921

Grid reference: $\mathbf{3 2}$ (SO) 782762 Level stn. (m OD): 17.00

Catchment area (sq km): 4325.0 Max alt. (m OD): 827

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	319.850	21.199	47.423	111.957	19.345	13.237	23.785	15.131	12.918	17.019	54.293	44.876
2	342.459	27.112	52.304	128.819	17.924	13.720	21.560	16.569	12.692	15.886	50.551	39.508
3	294.807	49.161	61.300	99.529	18.345	14.919	19.812	17.165	12.726	15.063	44.408	36.036
4	198.361	49.472	43.299	114.064	17.891	16.896	16.524	20.814	12.603	18.547	40.894	32.607
5	192.358	41.870	38.482	230.936	16.939	19.897	14.772	16.110	11.460	21.227	37.808	29.055
6	183.978	43.356	37.636	259.770	16.130	21.257	14.052	14.237	11.687	24.034	35.199	27.010
7	151.662	66.931	38.962	229.867	15.654	37.840	13.180	13.881	17.973	25.455	31.892	26.473
8	117.765	49.647	52.353	211.874	-15.100	47.802	12.442	12.200	34.358	33.430	31.120	24.609
9	93.710	84.911	54.989	167.696	13.449	40.590	11.925	12.473	22.319	73.897	55.278	22.947
10	78.709	143.358	48.717	124.282	. 12.896	- 36.748	11.147	14.321	17.827	147.757	86.771	21.425
11	67.154	130.506	45.710	117.371	13.583	30.358	10.076	14.445	14.290	144.767	72.439	20.301
12	54.675	91.001	49.914	110.756	14.148	26.764	9.784	14.328	14.406	82.790	128.340	19.028
13	40.218	71.457	47.410	111.654	14.784	23.828	11.171	16.148	31.514	63.498	147.294	19.239
14	37.269	56.436	44.311 .	79.466	16.839	23.152	11.334	18.142	27.700.	78.822	111.273	19.749
15	36.086	49.075	51.561	-53.934	16.722	25.630	11.961	19.686	20.381.	162.878	85.213	19.961
16	36.117	43.558	63.702	46.653	16.033	25.226	13.980	15.670	19.860	214.948	97.775	24.444
17	31.172	38.412	59.872	42.214	16.112	27.676	15.662	14.493	19.330	228.135	116.384	55.703
18	29.236	33.258	63.071	36.845	17.285	29.605	19.539	13.135	35.687	199.717	103.418	93.935
19	28.336	30.018	65.797	34.276	15.345	67.250	42.474	12.831	30.560	190.531	111.664	115.559
20	28.350	27.668	51.639	32.378	14.919	82.829	90.367	12.578	23.759	234.488	180.608	69.046
21	48.524	25.745	42.746	39.413	14.235	50.810	61.127	11.658	26.307	269.474	153.137	58.263
22	74.413	24.619	39.402	33.332	13.917	35.959	35.439	11.058	23.587	226.739	112.537	51.592
23	69.726	23.887	40.108	28.529	13.053	31.111	26.934	18.265	34.249	177.725	105.034	46.977
24	59.513	23.061	49.977	26.385	13.913	28.965	22.868	37.624	29.297	137.802	119.416	40.337
25	48.860	22.832	78.075	23.480	14.800	28.301	19.980	37.256	33.281	107.505	135.636	36.543
26	44.444	22.742	112.012	22.171	14.589	27.221	17.655	27.497	30.801	85.126	96.272	36.256
27	38.915	31.743	171.102	21.974	14.000	27.469	17.793	19.599	24.091	97.464	72.685	51.063
28	34.660	50.906	233.810	20.295	13.920	24.766	16.655	16.629	21.107	127.757	56.266	122.434
29	31.700		257.103	19.839	14.396	24.250	17.192	14.647	19.106	118.729	49.983	103.531
30	29.198		192.595	20.269	12.462	24.049	16.444	13.928	18.252	77.006	48.908	132.177
31	23.496		129.613		12.997		17.549	13.423		60.312		137.125
Average	92.440	49.070	76.290	86.670	15.220	30.940	21.460	16.970	22.140	112.200	85.750	50.900
Lowest	23.496	21.199	37.636	19.839	12.462	13.237	9.784	11.058	11.460	15.063	- 31.120	19.028
Highest	342.459	143.358	257.103	259.770	19.345	82.829	90.367	37.624	35.687	269.474	180.608	137.125
Peak flow	351.948	156.605	262.365	266.912	20.865	92.549	101.944	40.540	45.335	276.346	195.172	150.088
Day of peak	2	10	29	-6	1	20	20	25	18	21	20	30
Monthly total (million cu m)	247.60	118.70	204.30	- 224.60	40.76	80.19	57.47	45.44	57.38	300.50	222.30	136.30
Runoff (mm)	57	27	47	52	9	19	13	11	13	. 69	51	32
Rainfall (mm)	30	58	95	69	40	104	60	65	68	162	87	63.

Statistics of monthly data for previous record (Apr 1921 to Dec 1986)

Station and catchment description
Velocity-area station with rock control. Stage monitoring site relocated in 1950 and 1970; lowest flows not reliable in earlier record. US gauge undergoing calibration. Sig. exports for PWS and CEGB; minimum flow maintained by Clywedog releases. Naturalised flow series accommodates major usages. Diverse catchment; wet western 50% from impermeable Palaeozoic rocks and river gravels; drier northern 50% from Drift covered Carboniferous to Liassic sandstones and marls. Moorland, forestry, mixed farming.

054002 Avon at Evesham

Meosuring outhority: STWA
First year: 1936
Daily mean gauged discharges (cublc metres per second)

DAY	JaN	FEB	MAR	APA	MAY	JUN	Jul	aug	SEP	OCT	nov	DEC
1	96.677	12.523	46.897	42.102	12.331	7.585	9.887	7.162	6.296	5.509	41.743	15.949
2	79.529	20.982	50.181	60.869	12.297	9.568	8.748	7.803	6.260	5.541	30.396	15.873
3	48.658	25.305	35.237	39.535	11.278	11.068	8.181	7.543	6.022	5.677	21.710	14.929
4	35.205	25.213	25.030	69.228	10.617	9.677	7.817	6.876	5.909	9.390	17.882	14.475
5	33.984	25.809	20.328	115.552	10.233	11.094	7.691	7.147	6.918	8.580	15.797	13.810
6	29.682	24.649	19.877	79.115	9.860	17.375	7.437	6.584	8.775	8.262	14.389	13.200
7	23.342	19.775	34.468	90.433	9.561	12.254	7.117	6.483	11.316	10.448	13.634	12.284
8	20.128	17.992	43.797	108.268	9.505	13.408	6.923	6.334	8.366	15.477	14.837	11.511
9	18.593	23.368	40.545	83.672	9.434	18.998	6.556	6.239	7.156	18.084	29.508	11.092
10	17.170	25.892	33.270	55.074	9.177	21.800	6.635	8.451	6.949	51.004	28.619	10.764
11	14.914	31.448	30.141	41.880	9.350	16.886	6.500	7.548	6.622	45.464	53.111	10.594
12	13.378	63.829	27.176	30.606	9.838	16.582	6.181	7.320	6.843	28.577	82.176	10.344
13	13.489	49.397	23.450	24.571	11.191	15.123	6.237	8.376	6.330	17.166	60.428	10.297
14	14.983	34.325	20.477	21.195	13.567	13.906	6.709	7.957	6.208	13.639	33.980	10.303
15	13.932	27.645	20.587	18.848	11.669	17.906	7.320	6.818	5.826	32.222	28.681	11.748
16	12.655	22.706	18.718	17.995	10.215	25.669	7.112	6.276	5.876	83.786	27.953	19.735
17	12.017	19.713	17.160	16.501	9.855	23.784	7.321	6.279	7.595	60.507	23.261	30.873
18	11.801	17.721	20.180	15.757	10.893	20.030	7.745	6.618	8.609	32.659	19.700	37.778
19	11.257	15.912	17.509	15.673	9.786	81.012	9.450	6.781	8.126	24.452	90.817	29.270
20	12.293	14.652	15.036	14.848	8.849	77.315	10.786	6.516	8.894	21.714	116.753	21.805
21	16.571	13.632	14.192	13.912	8.635	66.855	8.911	6.501	8.011	64.411	70.649	18.569
22	27.978	13.180	13.687	13.042	8.548	39.146	8.113	7.968	7.162	63.673	40.091	16.261
23	35.861	12.785	14.657	12.881	9.378	24.654	7.639	18.844	7.065	34.970	36.358	14.897
24	39.146	12.266	15.009	12.472	9.373	19.486	7.491	16.996	6.786	21.205	32.951	14.264
25	40.898	11.980	24.111	12.169	8.460	20.677	7.049	11.441	6.747	16.745	30.766	13.551
28	35.841	13.101	23.715	11.830	8.175	25.057	6.734	9.127	6.046	14.658	26.101	12.733
27	28.002	37.063	62.514	11.238	7.784	21.176	6.993	9.070	5.718	21.845	21.298	16.373
28	22.074	37.507	54.037	11.058	8.252	16.117	7.241	7.936	5.607	43.807	18.604	17.308
29	18.375		30.865	11.383	8.157	13.725	8.392	7.149	5.475	31.045	16.820	15.895
30	15.418		21.943	11.397	7.999	11.439	8.378	6.728	5.589	21.387	16.341	19.324
31	13.055		19.044		8.013		7.782	6.361		31.097		32.800
Average	28.670	23.940	27.540	36.100	9.751	23.310	7.648	8.040	6.970	27.770	35.850	16.730
Lowest	11.257	11.980	13.687	11.058	7.784	7.585	6.181	6.239	5.475	5.509	13.634	10.297
Highest	96.677	63.829	62.514	115.552	13.567	81.012	10.786	18.844	11.316	83.786	116.753	37.778
Poak flow	104.055	65.953	74.875	128.772	14.607	99.773	12.084	22.117	13.646	90.006	137.629	39.566
Day of poak	1	12	27	5	14	19	19	23	7	16	20	18
Monthly total (million Cu m)	71.44	57.92	73.77	93.58	26.12	60.42	20.48	21.53	18.07	74.39	92.91	44.81
Runoff (mm)	32	26	33	42	12	27	9	10	8	34	42	20
Rainfall (mm)	18	47	53	57	43	121	38	54	44	127	60	29

Statistics of monthly data for previous record (Dec 1936 to Dec 1986)

Station and catchment description
Velocity-area station. Recording site, control and gauging site are widely separated; recording at a site where all flows contained. Gauge site can measure out-of-bank flows. Extensive modification to flow regime from abstractions and returns. Large catchment of low relief, draining argilaceous rocks almost exclusively. Contains many large towns, but chief land use is agriculture.

055026 Wye at Ddol Farm

Measuring authority: WELS First year: 1937

Grid reference: 22 (SN) 976676
Level stn. (m OD): 192.80

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG*	SEP	OCT	NOV	DEC
1	30.840	1.633	15.430	8.304 -	1.468	0.742	2.345	7.752	0.219	1.893	3.646	3.030
2	23.272	2.564	11.377	6.982	1.403	1.730	1.923	10.058	0.224	1.725	3.159	2.668
3	12.871	3.045	6.876	5.834	1.250	3.571	1.582	3.986	0.218	1.572	2.795	2.397
4	41.033	2.677	6.043	31.940	0.957	2.576	1.254	2.658	0.185	1.599	2.539	2.238
5	20.471	4.157	4.794	17.549	0.768	3.853	1.026	1.976	0.655	1.476	2.267	2.036
6	12.510	10.604	4.484	11.254	0.629	8.135	0.814	1.540	3.523	4.004	2.054	1.856
7	9.126	5.468	4.246	10.524	0.547	11.318	0.656	1.233	2.199	5.411	1.933	1.660
8	6.739	11.675	3.813	10.540	0.454	8.685	0.538	1.153	1.241	22.879	4.892	1.360
9	5.586	19.037	3.331	10.128	0.370	5.668	0.465	0.974	1.151	36.500	5.081	1.104
10	4.600	17.427	3.015	12.126	0.301	4.350	0.477	0.718	1.381	16.345	7.449	0.920
11	3.267	10.022	2.678	9.416	2.770	3.535	0.724	1.062	1.357	9.335	19.574	1.287
12	2.491	6.981	2.541	7.166	5.336	2.898	0.499	1.245	3.461	6.946	16.446	1.087
13	2.734	5.667	2.490	6.092	2.748	2.867	0.352	3.025	2.268	12.173	12.049	0.992
14	2.252	4.833	2.555	4.852	5.597	2.830	0.548	1.617	2.077	21.794	11.637	0.837
15	2.325	3.959	3.193	4.117	3.479	2.304	0.775	1.054	. 1.511	19.465	13.790	1.172
16	2.144	3.350	3.254	3.545	2.441	1.979	0.797	0.784	1.691	34.520	20.438	6.837
17	1.858	2.933	5.532	2.991	2.427	2.873	1.122	0.632	4.292	21.815	11.914	15.953.
18	1.729	2.547	6.933	2.705	2.180	8.177	2.942	0.539	2.488	96.981	12.204	15.369^{\prime}
19	1.697	2.319	5.590	4.843	1.724	8.754	6.833	0.455	3.075	35.733	34.993	6.919
20	4.016	2.077	4.903	7.559	1.375	4.980	3.426	0.353	2.636	22.984	15.142	9.052
21	4.581	1.860	5.059	4.020	1.137	4.016	2.380	0.593	4.214	28.400	9.785	9.337
22	4.531	1.817	6.453	3.195	0.974	4.412	1.879	0.446	4.066	15.975	9.111	7.148
23	4.221	1.750	15.991	2.707	1.508	3.491	1.440	0.682	10.091	10.115	9.230	5.305
24	3.993	1.557	. 10.912	2.362	1.250	3.056	1.160	0.947	11.060	7.281	10.217	4.727
25	3.656	1.387	10.428	2.072	0.897	4.449	0.879	0.463	6.640	5.697	7.088	4.076
26	3.232 .	3.360	34.077	1.864	0.703	3.361	1.115	0.464	4.716	4.663	5.797	7.610
27	2.825	6.144	44.464	1.637	0.574	3.646	5.863	0.378	3.736	9.132	4.756	18.804
28	2.483	4.629	20.661	1.382	0.598	3.902	3.106	0.274	3.066	5.912	4.187	10.709
29	2.072		12.309	1.605	0.492	3.882	5.286	0.251	2.583	4.817	3.998	27.724
30	1:594		9.194	1.310	0.837	3.083	3.035	0.216	2.207	4.330	3.546	14.584
31	1.547		7.918		0.871		2.858	0.169		4.198		11.358
Average	7.300	5.196	9.050	6.687	1.550	4.237	1.874	1.539	2.941	15.340	9.057	6.457
Lowest	1.547	1.387	2.490	1.310	0.301	0.742	0.352	0.169	0.185	1.476	1.933	0.837
Highest	41.033	19.037	44.464	31.940	5.597	11.318	6.833	10.058	11.060	96.981	34.993	27.724
Peak flow	86.850	27.560	69.520	52.780	9.258	22.570	9.840	29.420	17.790	164.600	49.190	44.180
Day of peak	4	10	27	4	12	18	27	1	23	18	19	17
Monthly total (million cu m)	19.55	12.57	24.24	17.33	4.15	10.98	5.02	4.12	7.62	41.10	23.48	17.29
Runoff (mm)	112	72	139	100	24	63	29	24	44	236	135	99
Rainfall (mm)	81	111	165	121	73	134	90	55	132	299	165	158

Statistics of monthly data for previous record (Oct 1937 to Dec 1986-incomplete or missing months total 0.2 years)

Station and catchment description
nitially gauged nearby at Rhayader (055005: 1937-69) then resited as a velocity-area station with a rock bar as control. Informal Flat V control installed. 1972 . Bankfull width approx. 30 m . Cableway span 54 m . All but exceptional floods contained. Lowest extent of gauging unaffected by Caban Coch reservoir. Wet, upland catchment draining impermeable, metamorphosed Silurian sediments. High relief, headwaters reach over 600 m , and feature steep sided and high gradient streams. Moorland and forestry

Measuring authority: WELS First year: 1957

Grid reference: $\mathbf{3 2}$ (SO) 345056 Level stn. (m OD): 22.60

Catchment area (sq km): 911.7 Max alt. (m OD): 886

Daily mean gauged discharges (cubic matres per second).

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	98.058	13.319	37.113	55.770	12.680	6.817	11.836	5.563	3.299	6.103	27.433	21.011
2	67.121	23.232	43.389	60.813	12.309	6.879	10.690	5.751	3.267	6.151	23.259	19.279
3	51.546	19.985	30.838	75.103	11.416	9.693	9.974	6.196	3.262	6.345	21.002	18.134
4	74.191	16.967	27.834	143.749	10.717	11.772	9.352	5.460	3.280	6.492	19.304	17.937
5	58.615	17.942	24.808	94.714	10.130	17.289	8.765	5.023	3.719	6.350	17.930	17.125
	,											
6	48.095	35.550	22.971	76.146	9.931	39.828	8.209	4.867	4.510	7.843	16.788	16.000
7	39.941	23.542	25.126	75.840	9.702	25.635	7.728	4.730	8.937	12.425	16.096	14.842
8	35.251	23.054	23.861	74.197	9.439	20.476	7.374	4.613	5.585	15.075	17.793	13.774
9	33.048	41.914	21.688	65.012	9.050	17.564	7.158	4.565	4.752	32.278	33.331	13.076
10	29.979	49.574	19.783	64.331	8.746	14.472	7.005	4.483	4.712	43.253	23.501	12.735
11	25.754	39.716	18.730	55.866	8.581	12.635	6.823	4.732	5.271	22.376	82.655	12.149
12	21.942	32.158	17.955	43.074	9.336	11.305	6.675	5.168	18.129	26.033	66.185	11.770
13	20.035	27.249	17.486	38.431	9.235	10.330	6.388	4.864	11.768	28.006	43.633	11.450
14	19.969	25.441	17.164	33.365	8.984	10.444	6.923	4.596	7.799	49.043	35.559	11.140
15	19.073	22.028	17.771	29.338	9.734	10.055	8.057	4.317	6.933	66.967	40.516	12.139
16	17.986	19.926	17.392	26.578	8.757	9.571	7.539	4.134	5.846	120.179	38.959	35.042
17	16.974	18.310	17.089	24.449	8.274	9.870	7.275	4.057	7.864	104.870	32.205	71.127
18	16.233	17.104	18.102	22.642	8.135	10.531.	10.182	4.049	9.511	299.394	28.487	95.488
19	15.710	15.927	17.637	23.582	7.859	24.659	13.673	3.997	7.269	170.402	95.301	43.059
20	16.598	15.142	17.081	24.102	7.542	15.046	11.650	3.931	6.862	85.797	57.950	35.481
21	21.627	14.187	16.095	20.161	7.284	12.594	8.756	3.787	6.262	92.437	42.657	28.341
22	24.453	13.796	16.467	18.366	7.108	12.118	7.833	3.749	12.159	65.132	40.270	25.416
23	23.961	13.290	22.962	17.124	7.512	12.059	7.352	3.899	12.465	48.084	38.149	25.416
24	22.078	12.843	21.727	16.173	7.780	10.591	6.882	3.980	12.607	39.243	42.158	24.272
25	20.718	12.278	37.859	15.352	7.266	23.149	6.483	3.728	9.216	33.402	33.825	27.216
26	18.893	25.259	123.836	14.475	6.839	21.280	6.158	3.802	7.808	29.488	29.558	30.367
27	17.428	70.875	342.897	13.789	6.529	16.408	6.040	3.788	7.023	54.729	26.204	77.598
28	16.168	39.064	101.264	13.042	6.364	15.165	6.351	3.623	6.433	44.410	24.039	55.412
29	14.793		65.255	12.497	6.322	16.534	6.203	3.405	6.285	34.110	22.766	236.494
30	13.706		52.508	12.252	6.344	13.224	6.529	3.376	6.322	29.185	25.009	109.111
31	12.462		44.647		7.356		5.726	3.329		29.282		107.777
Average '	30.080	24.990	41.910	42.010	8.621	14.930	7.987	4.373	7.305	52.090	35.420	40.330
Lowest	12.462	12.278	16.095	12.252	6.322	6.817	5.726	3.329	3.262	6.103	16.096	11.140
Highest	98.058	70.875	342.897	143.749	12.680	39.828	13.673	6.196	18.129	299.394	95.301	236.494
Peak flow	124.200	128.200	526.800	204.400	13.430	71.080	16.870	6.715	24.620.	399.600	165.800	352.400
Day of peak Monthly total	1	27	27	4	1	5	19	3	12	18	11	29
	80.56	60.45	112.30	108.90	23.09	38.71	21.39	11.71	18.93	139.50	91.80	108.00
Runoff (mm)	88	66	123	119	25	42	23	13	21	153	101	118
Rainfall (mm)	35	100	150	102	45	124	54	36	94	265	119	155

Statistics of monthly data for previous record (Mar 1957 to Dec 1986)

Station and catchment description
Velocity-area station; permanent cableway. Low flows measured at complementary station downstream (056010-Trostrey weir). There is a partial impact on flows resulting from three large existing public water supply reservoirs in upper catchment. Intake to canal upstream of gauge. Some naturalised flows available. Geology - mainly Old Red Sandstone. Hill farming in upper areas, with dairy or livestock farming below; forest 3%. Peaty soils in uplands, seasonally wet.

062001 Teifi at Glan Teifi

Measuring authórity: WELS First year: 1959

Grid reference: 22 (SN) 244416 Level stn. (m.OD): 5.20

Catchment area (sq km): 893.6
Max alt. (m OD): 595

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
:1	. 107.612	9.082	32.301	53.097	8.850	4.433	- 10.079	16.592	4.290	11.274	30.392	24.609
2	76.902	13.536	43.814	52.876	8.348	4.515	8.619	21.816	4.216.	10.399	25.377	22.231
3	62.257 \%	11.954	36.504	48.380	8.047	5.093	7.922	20.293	4.323	9.768	22.442	20.438
4	75.464	10.855	30.357	63.990	. 7.786	6.766	7.273	15.746	4.607	9.195	20.283	20.295
5	71.237	10.860	26.852	67.724	7.316	9.594	6.780	11.003	6.011	9.296	18.673	18.585
6	61.181'	14.832	23.277	57.490	6.918	'16.149	-6.315	9.079	10.211	12.087	17.273	17.828
7	47.602*	14.736	24.149	49.360	6.648	12.880	5.985	8.022	13.615	21.164	16.182	16.175
B	+ 41.060	15.463	24.363	53.787	6.397	17.684	5.500	7.485	8.543 .	19.507	32.778	14.811
9	38.330	65.479	20.010	50.273	6.071	16.872	5.269	6.999	6.797	48.318	42.735	13.775
10	35.569	63.542	17.296	48.714	5.841	11.593	5.162 .	6.665	6.884	57.225	35.302	13.031
11	27.176	48.269	15.916	46.505	6.168	9.213	5.152	6.976	9.657	48.821	67.414	12.391
12	20.629	39.360	14.818	39.985	7.852	7.975	4.995	7.669	18.935	43.769	58.695	12.075
13	18.364	32.234	14.076	- 36.345	7.760	7.411	4.752	8.059	13.406	50.451	52.629	11.593
14	17.320 ,	27.133	13.722	31.952	7.687	6.953	- 4.695	10.646	10.184	60.831	45.868	10.814
15	15.802:	22.967	13.309	26.237	8.196	6.395	5.190	7.295	8.772	76.054	54.656	11.526
						,						
16	15.002	20.039	12.672	23.231	6.966	6.205	- 5.346	6.210	. 8.583	150.704	45.397	21.840
17	14.109	17.685	13.189	20.470	6.510	8.601	5.298	5.824	14.768	129.308	41.068	38.953
18	13.962	15.800	17.392	19.465	6.284	12.573	5.682	- 5.562	14.561	373.572	41.692	48.268
19	14.034	14.635	18.315	20.536	6.150	29.747	12.330	5.223	11.757	361.441	128.225	39.494
20	16.333	13.615	17.847	22.784	5.735	19.598	10.889	5.076	12.162	211.750	116.243	34.016
21	: 17.036	12.593	17.222	19.234	5.454	12.282	7.181.	4.971	16.731	137.488	82.083	34.594
22	16.299	11.952	21.029	15.561	5.146	10.796	5.960	7.003	20.048	92.455	64.459	30.627
23	14.919	11.503	31.451	14.034	4.989	10.585	5.386	5.549	32.287	70.083	59.731	26.432
24	13.842	10.713	32.796	13.060	5.056	8.953	4.968	5.245	28.831	54.327	50.670	30.613
25	13.099	10.642	41.248	12.315	5.150	13.517	4.636	- 5.056	23.865	45.106	43.841	29.107
26	12.241°	19.174	95.254	11.510	4.726	17.965	4.390	6.196	19.351	40.188	38.652	36.351
27	11.433	34.890	190.584	10.784	4.463	12.328	11.406	6.826	16.350	49.207	32.476	80.021.
28	10.492	25.913	123.901	10.052	4.236	11.490	20.071	5.775	14.656	47.269	28.471	71.940
29	9.581		72.086	9.402	$4.05{ }^{+}$	11.504	- 21.816	5.103	13.331	39.425	33.798	112.747
30	8.807 -		57.988	8.507	4.283	12.222	18.426	4.793	12.264	33.234	29.460	121.829
31	8.062 .		48.422		4.567		20.402	4.504		31.038		132.482
Average	- 29.860	22.120	37.490	31.920	6.247	11.400	8.319	8.170	13.000	75.960	45.900	36.440
Lowest	8.062	9.082	12.672.	8.507	4.052	. 4.433	4.390	4.504	4.216	9.195	.16.182	10.814
Highest	107.612	65.479	190.584	67.724	8.850	29.747	21.816	21.816	32.287	373.572	128.225	132.482
Peak flow	138.500	81.590	202.100	82.240	8.990	37.900	24.260	26.560	39.610	448.800	-146.700	167.000
Day of peak	1	9	27	4	1	19	29	2	23	18	19	30
Monthly total (million cu m)	$79.98{ }^{\text {: }}$	53.52	100.40	82.74	16.73	29.54	22.28	21.88	33.70	203.50	119.00	97.59
Runoff (mm)	90	60	. 112	93	19	33	25	24	38	228	133	109
Rainfall (mm)	36	88	; 34	83	42	123	79	53	. 111	274	137	131

Statistics of monthly data for previous record (Jul 1959 to Dec 1986 --incomplete or missing months total 0.3 years)

Station and catchment description
Velocity-area station. Straight reach (width: 35 m), natural control. Flood flows spill over right bank. Public water supply impounding reservoirs in upland area where there is mostly hill farming. Tregaron bog (10 sq km) has partial effect on flows; sensibly natural regime. Geology - mainly Ordovician and Silurian deposits.-Dairy farming predominates in southern area. Forest: 5%. Peaty soils on hills, seasonally wet. Apart from Tregaron bog, most of the lower areas have soils with permeable substrate.

065006 Seiont at Peblig Mill

Measuring authority: WELS First year: 1976

Grid reference: 23 (SH) 493623 Level stn. (m OD): 18.60
)

* ¢ - \% \%							
MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1.765	1.379	3.608	4.833	3.550	1.542	2.080	2.624
1.633	2.277	2.672	6.791	2.584	1.389	1.883	2.162
1.628	3.417	2.160	4.575	2.514	1.299	1.721	1.942
1.458	2.784	1.766	3.338	2.489	1.387	1.581	1.759
1.340	6.208	1.499	2.632	7.558	1.877	1.467	1.547
2.154	15.053	1.300	2.234	5.795	3.171	1.383	1.426
2.098	14.522	1.149	3.261	4.291	4.785	1.314	1.285
1.580	13.825	1.037	4.036	3.263	11.377	2.019	1.170
1.287	8.163	1.013	5.017	3.305	17.047	2.493	1.084
1.032	5.143	1.487	3.553	3.543	10.881	2.836	1.033
1.176	3.891	2.593	3.624	7.236	6.257	5.070	1.011
1.770	3.393	1.836	4.791	15.373	5.341	4.179	0.959
1.662	6.467	1.388	10.815	8.058	7.112	4.876	0.904
2.430	4.346	1.209	9.602	4.648	6.394	4.879	0.862
2.204	2.536	1.968	6.131	5.822	9.755	5.506	1.074
1.739	1.930	2.244	3.335	9.393	13.965	5.328	2.274
1.830	1.711	1.819	2.581	10.914	13.951	4.491	10.113
1.866	1.669	5.140	2.628	7.099	51.836	8.831	14.413
1.682	1.884	7.821	2.244	7.486	28.288	13.781	7.684
1.445	1.625	4.718	2.928	5.865	17.873	8.309	6.877
1.345	1.443	3.196	9.277	7.248	22.520	8.329	5.962
1.372	1.525	2.441	10.449	8.373	14.207	7.020	4.708
1.481	2.145	1.989	9.002	7.933	9.350	7.925	4.360
1.384	2.228	1.807	6.230	5.469	11.961	11.580	5.353
1.186	2.622	1.559	4.425	4.089	7.925	6.694	5.479
1.040	2.434	1.750	5.519	3.320	4.335	4.690	10.765
0.910	2.060	3.413	5.322	2.718	. 4.497	3.633	23.267
1.158	2.640	3.909	3.714	2.315	3.716	4.238	18.271
1.389	7.203	5.215	4.261	2.014	2.954	4.110	26.439
1.479	5.259	4.444	4.493	1.748	2.505	3.502	17.177
1.396		4.553	3.009		2.294		16.187
1.546	4.386	2.668	4.989	5.534	9.735	4.858	6.457
0.910	1.379	1.013	2.234	1.748	1.299	1.314	0.862
2.430	15.053	7.821	10.815	15.373	51.836	13.781	26.439
$\begin{gathered} 3.327 \\ 6 \end{gathered}$	$\begin{gathered} 17.740 \\ 6 \end{gathered}$	$\begin{aligned} & 9.758 \\ & 18 \end{aligned}$	$\begin{gathered} 13.070 \\ 22 \end{gathered}$	$\begin{gathered} 18.150 \\ 12 \end{gathered}$	$\begin{gathered} 64.550 \\ 18 \end{gathered}$	$\begin{gathered} 15.630 \\ 19 \end{gathered}$	$\begin{gathered} 30.900 \\ 29 \end{gathered}$
4.14	11.37	7.15	13.36	14.34	26.07	12.59	17.29
56 83	153 225	96 147	180 181	193 179	350 334	169 174	232 310

Statistics of monthly data for previous record (Aug 1976 to Dec 1986)

Station and catchment description
A rated river section in a straight reach which has not yet been bypassed. Control provided by a roughly Crump shaped structure originally built as part of investigations prior to construction of the Dinorwic pumped storage scheme, which very marginally affects the record. A steep catchment with much bare rock surface. Contains two large ribbon lakes, Padarn and Peris, the latter acting as the lower reservoir of the Dinorwic scheme.

1987

Measuring authority: WELS First year: 1937

Grid reference: 33 (SJ) 348415 Level stn. (m OD): 25.40

Catchment area (sq km): 1019.3 Max att. (m OD): 884

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	JuL	AUG	SEP	OCT	NOV	DEC
1	153.944	14.295	19.938	57.696	10.403	9.436	14.158	10.250	11.625	11.047	32.030	25.851
2	121.547	17.348	26.008	48.937	10.588	10.335	9.683	11.236	11.328	10.143	30.367	24.272
3	86.819	17.984	22.783	41.173	10.521	12.423	9.067	10.435	10.852	9.811	26.876	22.848
4	88.165	17.741	20.372	56.454	9.582	11.027	9.923	9.782	10.604	16.051	24.676	21.880
5	85.444	19.330	18.431	68.247	9.204	13.093	10.304	9.484	11.893	13.381	23.340	19.769
6	82.026	25.410	18.025	54.206	8.958	23.894	10.008	9.380	18.422	19.533	22.037	17.171
7	74.766	22.750	18.087	57.407	8.997	30.465	9.764	9.820	19.129	22.084	21.027	16.033
8	57.616	39.190	17.387	50.473	8.739	38.092	9.832	10.054	16.884	41.237	26.565	15.857
9	48.270	69.387	16.312	44.530	8.884	30.452	9.754	11.411	12.976	90.521	32.307	15.368
10	39.667	80.260	15.323	45.888	8.723	23.310	9.684	11.328	13.067	92.802	27.826	15.311
11	32.947	75.417	14.758	46.139	8.758	21.063	9.588	11.100	16.008	72.714	47.697	15.215
12	27.486	56.915	14.326	38.063	9.686	17.143	9.414	11.181	41.330	51.855	52.247	14.307
13	24.695	44.556	14.245	33.853	10.832	17.396	9.358	12.543	35.015	48.198	49.464	12.229
14	23.339	35.213	15.271	32.230	11.353	18.387	9.644	11.348	24.132	54.673	43.198	11.714
15	22.474	28.654	20.652	30.294	11.598	22.858	10.480	10.355	20.704	60.895	43.906	12.768
16	23.101	25.199	20.884	24.792	10.190	20.313	10.407	10.181	18.518	117.570	52.701	17.090
17	22.234	23.337	27.708	20.693	10.614	16.091	10.888	10.474	33.802	122.337	52.207	27.763
18	21.747	21.673	31.698	19.054	11.786	15.069	14.624	11.955	30.557	- 238.467	46.551	51.304
19	22.950	20.126	26.329	18.185	10.308	22.594	31.103	11.098	32.206	280.367	70.448	40.853
20	32.411	19.179	24.204	19.218	9.912	16.705	24.849	10.503	30.993	159.982	63.298	37.590
21	29.095	17.448	24.481	17.222	9.562	15.289	17.962	10.454	28.227	115.817	55.874	34.829
22	27.439	15.643	25.822	16.046	9.816	15.715	14.074	12.380	30.906	97.344	53.708	33.831
23	25.696	14.710	30.938	15.173	10.908	14.566	12.329	15.569	30.303	77.096	62.885	34.179
24	23.266	14.215	33.123	14.364	10.577	13.679	11.628	16.560	26.455	59.435	67.493	30.753
25	20.512	13.529	40.017	13.672	9.886	12.673	10.905	11.695	23.895	49.626	54.321	26.786
26	19.429	15.553	67.630	13.235	9.614	12.227	9.889	12.870	22.941	42.950	46.299	27.279
27	19.412	22.130	170.233	12.782	9.309	10.915	10.717	13.857	21.956	50.118	39.664	53.651
28	18.838	20.303	125.780	12.169	9.330	10.332	10.326	11.398	19.678	46.334	34.557	63.174
29	18.083		91.037	10.715	9.358	10.543	10.486	10.871	17.603	39.193	30.553	108.106
30	17.030		67.823	10.489	9.336	11.870	10.087	10.811	14.147	35.759	27.673	114.476
31	15.105		52.272		9.320		10.011	10.489		33.978		98.480
Average	42.760	28.840	36.510	31.450	9.892	17.270	11.970	11.320	21.870	70.370	42.060	34.220
Lowest	15.105	13.529	14.245	10.489	8.723	9.436	9.067	9.380	10.604	9.811	21.027	11.714
Highest	153.944	80.260	170.233	68.247	11.786	38.092	31.103	16.560	41.330	280.367	70.448	114.476
Peak flow Day of peak	$\begin{gathered} 171.300 \\ 1 \end{gathered}$	$\begin{gathered} 83.690 \\ 9 \end{gathered}$	$\begin{gathered} 189.100 \\ 27 \end{gathered}$	$\begin{gathered} 80.140 \\ 5 \end{gathered}$	$\begin{gathered} 12.300 \\ 18 \end{gathered}$	$\begin{gathered} 42.760 \\ 8 \end{gathered}$	$\begin{gathered} 34.070 \\ 19 \end{gathered}$	$\begin{aligned} & 20.060 \\ & 24 \end{aligned}$	$\begin{gathered} 50.170 \\ 12 \end{gathered}$	$\begin{gathered} 370.200 \\ 18 \end{gathered}$	$\begin{gathered} 88.270 \\ 19 \end{gathered}$	$\begin{gathered} 135.900 \\ 29 \end{gathered}$
Monthly total (million cu m)	114.50	69.77	97.80	81.51	26.49	44.75	32.05	30.32	56.69	188.50	109.00	91.65
Runoff (mm)	112	68	96	80	26	44	31	30	56	185	107	90
Rainfall (mm)	, 49	93	148	75	53	118	78	80	120	261	120	135

Statistics of monthly data for previous record (Oct 1937 to Dec 1986)

Station and catchment description
Asymmetrical compound Crump weir, checked by current meter. Drowns at flows in excess of 200 cumecs. Low flows maintained by releases Asymmetrical compound Crump weir, checked by current meter. Drowns at fows in excess of 200 cualitecs. Lesed on the d/s Erbistock (67002 . area: 1040.0 sq km) flow record. Geology is 75% shales, slates, mudstones and palaeozoic grits; 25% extrusive igneous and Carboniferous rocks. 80% grazed open moorland, 12% forestry, remainder arable, urban negligible.

Measuring suthority: NWWA
First yoar: 1937

Grid reference: 33 (SJ) 670633 Level stn. (m OD): 16.30

Catchment area (sq km): 622.0
Max alt. (m OD): 222

Daily mean gauged discharges (cubic metres per second)												
DAY	JAN	FEB	MAR	APR	MAY	JUN	Jul	AUG	SEP	OCT	Nov	DEC
1	36.680	3.124	4.773	14.070	2.462	2.315	2.497	2.826	3.578	2.003	6.650	4.962
2	26.940	4.455	5.646	14.310	2.716	3.021	2.347	2.718	3.444	1.943	5.514	4.685
3	15.060	6.278	3.971	9.141	2.862	3.690	2.218	2.442	3.272	1.919	5.159	4.450
4	16.380	5.949	3.999	7.291	2.488	3.244	2.106	2.291	3.091	4.551	4.789	4.277
5	14.640	5.135	4.265	16.110	2.417	2.979	2.061	2.153	3.209	3.887	4.431	4.265
6	12.960	4.895	6.458	12.390	2.375	3.422	1.998	2.191	4.939	3.493	4.131	3.921
7	8.975	4.256	8.072	19.370	2.346	3.174	1.880	2.253	5.497	3.146	3.905	3.610
8	7.122	5.503	12.770	21.810	2.322	5.693	1.914	2.457	3.978	5.850	5.619	3.433
9	6.163	11.020	11.130	14.300	2.288	7.728	1.822	2.855	3.325	14.060	9.862	3.273
10	6.676	10.430	8.949	11.860	2.247	3.983	2.388	2.670	3.043	30.500	14.770	3.244
11	4.316	6.627	8.537	13.470	2.350	5.148	2.227	2.494	2.856	15.230	16.630	3.225
12	4.328	5.334	7.913	8.606	3.588	6.515	2.066	2.582	3.025	7.935	15.190	3.253
13	5.086	4.810	6.756	6.530	3.447	3.824	1.977	5.740	2.697	5.975	11.770	3.253
14	4.247	4.203	6.333	5.733	3.306	3.074	1.983	4.738	2.488	9.534	14.480	3.249
15	3.738	3.781	7.914	4.847	3.057	6.644	2.692	3.113	2.396	30.090	14.470	3.840
16	3.444	3.569	7.806	4.313	2.863	4.272	2.766	2.584	2.810	44.680	12.160	8.218
17	3.313	3.391	7.650	4.150	3.613	5.150	4.035	2.501	6.769	30.610	8.373	9.760
18	3.248	3.157	11.070	3.918	3.714	6.854	6.323	2.591	4.059	15.350	7.284	13.580
19	3.280	2.993	- 7.204	3.715	2.907	21.280	10.600	2.411	3.804	12.040	26.170	8.100
20	4.396	2.912	5.875	4.028	2.619	14.220	6.461	2.196	3.745	10.020	21.530	6.551
21	7.185	2.826	5.291	3.450	2.478	6.307	3.899	2.267	3.262	13.580	11.660	5.646
22	7.919	2.806	4.659	3.247	2.438	6.035	3.270	2.221	3.009	10.410	17.460	5.197
23	7.872	2.891	6.868	3.063	2.637	4.935	2.791	35.660	2.740	7.605	20.600	4.792
24	7.072	2.904	10.730	2.943	2.509	4.422	2.549	46.190	2.785	6.426	26.290	4.569
25	6.545	2.817	27.390	2.822	2.384	3.995	2.361	23.180	2.597	5.443	14.530	4.284
26	5.750	3.106	15.760	2.730	2.334	3.877	3.794	11.170	2.370	4.959	9.947	3.946
27	4.803	3.578	18.530	2.684	2.304	3.606	7.481	7.148	2.188	27.900	7.775	8.646
28	4.535	3.399	14.070	2.589	2.464	3.054	3.943	5.944	2.122	33.050	6.618	7.792
29	4.003		9.167	2.566	2.360	2.836	4.537	5.010	2.108	14.700	5.878	6.275
30	3.505		6.847	2.554	2.396	2.704	3.395	4.238	2.035	9.664	5.365	7.021
31	3.063		6.080		2.316		2.994	3.763		7.747		9.012
Average	8.137	4.505	8.790	7.620	2.658	5.267	3.335	6.535	3.241	12.720	11.300	5.494
Lowest	3.063	2.806	3.971	2.554	2.247	2.315	1.822	2.153	2.035	1.919	3.905	3.225
Highost	36.680	11.020	27.390	21.810	3.714	21.280	10.600	46.190	6.769	44.680	26.290	13.580
Peak flow	38.630	12.570	31.750	26.530	4.790	23.610	11.610	51.360	8.294	47.340	32.180	16.220
Day of peak Monthly total	1	10	25	8	12	19	19	23	17	16	19	18
(million cum)	21.79	10.90	23.54	19.75	7.12	13.65	8.93	17.50	8.40	34.07	29.29	14.72
Runoff (mm)	35	18	38	32	11	22	14	28	14	55	47	24.
Roinfall (mm)	19	29	74	39	50	106	75	87	46	122	69	32.

Statistics of monthly data for previous record (Oct 1937 to Dec 1986 -incomplete or missing months total 1.8 years)

Mean	Avg.	10.370	9.232	6.566	4.873	3.842	2.767	2.763	2.991	3.307	4.388	7.743	9.474
flows:	Low	1.965	2.376	2.183	1.490	0.903	1.125	0.736	0.641	0.919	1.184	1.303	2.429
	(year)	1964	1965	1938	1938	1946	1962	1976	1976	1964	1947	1942	1947
	High	21.950	19.860	18.580	11.760	22.720	6.995	12.750	8.404	16.980	15.970	22.540	22.250
	(year)	1939	1980	1947	1986	1969	1954	1968	1971	1957	1954	1954	1965
Runoff:	Avg.	45	36	28	20	17	12	12	13	14	19	32	41
	Low	8	9	9	6	4	5	3	3	4	5	5	10
	High	95	80	80	49	98	29	55	36	71	69	94	96
Rainfatl:	Avg.	68	50	50	49	60	58	68	72	67	68	77	70
	Low	18	2	18	2	18	13	16	6	5	15	13	10
	High	145	145	127	98	194	142	168	175	169	137	170	140
Summ	ary 8	stics								s affec	flow	ime	
				1987				1987		influen		vater	
				1987		coding		pre-1987		or recha			
Mean flow	\% ${ }^{\left(m^{3}\right.}$							117		traction	public	ter supp	
Lowest	yoarly						1964			mentati	from ef	nt retur	
Highost	yearly						1954						
Lowost	month	nean					1976						
Highost	month	nean			22.		1969						
Lowost	daily m					417	1976						
Higheat	daily m			24	84.		1946						
Peak				023	212.		1946						
10\% ox	ceedan							115					
50\% ex	coedan							131					
95\% ox	coedon							195					
Annual	total (m	on cum)						117					
Annual	runaff				28			117					
Annual	rainfall				75			99					
[194	$1-70$ ra	all averag	mm)										

Station and catchment description
Natural river section. Accuracy of early rating curves not known and gaugings lost. However, calibration came under suspicion in 1972 and previous records, particularly low flows, deemed to be of little value. Low flow rating then changed several times before station moved 400 m downstream and shallow vee bed control constructed in August 1978. High flow rating (above 40 cumecs) has yet to be defined. Flat catchment includes western half of Crewe. Post glacial deposits over (mostly) Keuper Mar.

072004 Lune at Caton

Measuring authority: NWWA First year: 1959

Grid reference: 34 (SD) 529653
Level stn. (m OD): 10.70

Catchment area (sq km): 983.0 Max alt. (m OD): 736

Daily mean gauged discharges (cubic metres per socond)

DAY ${ }^{\text {- }}$	JAN	FEB	MAR	APR	MAY	JUN	Jul	AUG	SEP	OCT	NOV	DEC
1	127.900	7.432	35.310	135.000	8.190	5.856	27.570	21.200	9.932	11.210	17.940	13.750
2	73.780	16.500	56.390	60.590	8.172	8.637	19.470	15.110	9.182	10.170	16.050	12.860
3	41.040	21.910	23.250	37.040	9.534	22.450	14.800	18.620	8.328	9.374	14.490	11.930
4	215.600	14.020	18.130	27.620	7.431	13.100	12.360	19.870	7.932	9.248	13.160	11.010
5	92.680	59.690	21.740	24.410	6.676	19.420	10.530	12.290	17.990	50.760	12.190	10.220
6	52.470	75.210	33.620	20.960	6.184	184.000	8.953	10.110	22.090	80.960	1.1.400	9.522
7	33.820	37.290	24.800	28.220	5.770	88.600	8.376	9.541	17.910	33.530	10.670	8.980
8	25.610	96.530	19.730	38.410	5.472	37.790	7.558	9.060	13.590	72.460	10.290	7.993
9	- 21.450	200.000	16.320	29.080	5.181	26.280	7.227	9.679	69.590	104.200	9.941	7.365
10	18.440	128.700	13.890	$63.20{ }^{\text { }}$	4.994	26.170	43.790	8.999	55.320	56.480	13.590	7.921
11	13.920	59.610	12.750	47.860	5.328	21.620	134.800	15.410	78.700	29.250	55.260	7.684
12	12.070	36.090	11.760	26.140	6.829	24.630	29.240	38.420	148.000	36.720	125.600	7.663
13	28.250	26.830	11.550	21.970	6.797	21.390	18.530	91.220	43.670	70.270	61.320	7.303
14	36.160	21.560	11.170	18.840	14.780	16.430	14.280	25.510	30.100	204.000	29.890	7.067
15	12.800	17.780	12.330	15.860	10.530	15.400	12.660	17.890	29.510	86.190	96.150	6.598
16	10.700	15.450	12.560	14.050	7.351	12.890	13.390	15.840	39.270	177.400	125.400	11.290
17	9.855	13.320	31.580	12.700	8.938	11.770	11.870	13.820	32.700	77.280	58.350	44.800
18	9.132	11.980	25.130	11.500	12.240	10.470	199.200	22.340	21.430	207.800	166.800	75.310
19	9.063	11.090	15.980	28.570	7.560	8.609	87.370	13.840	117.600	165.200	93.340	50.110
20	18.120	10.470	12.120	43.830	6.188	7.600	38.680	11.870	68.340	78.920	54.500	80.100
21	$31.290{ }^{\prime}$	9.694	11.750	18.910	5.455	6.933	24.580	40.200	53.780	146.800	35.560	109.400
22	26.830 +	9.488	13.820	14.650	5.041	7.263	18.920	113.200	65.520	129.400	36.150	48.790
23	19.190	9.334	19.640	12.570	4.759	8.343	15.100	77.730	47.560	55.980	40.880	29.370
24	16.740	8.703	16.750.	11.070	4.406	8.497	13.540	36.940	41.920	37.830	42.330	23.630
25	14.940	8.021	55.500	9.916	4.161	14.420	11.980	23.240	37.430	29.600	26.940	31.700
26	13.550	10.860	132.800	9.080	3.887	22.150	41.630	24.670	24.780	24.140	22.080	133.400
27	11.770	38.940	392.500	8.405	3.615	12.390	40.910	21.510	19.280	66.180	18.550	184.700
28	10.390	34.100	144.000	7.715	3.672	127.300	20.570	15.230	16.270	46.020	16.420	220.400
29	9.354		57.730	7.444	3.877	148.600	29.190	14.350	14.080	28.130	15.700	359.900
30	7.970		38.360	7.784	6.400	51.710	24.740	12.100	12.450	22.860	15.290	94.100
31	6.225		61.060		7.443		26.720	10.510		20.160		84.190
Average	33.260	. 36.090	44.000	27.110	6.673	. 33.020	31.890	25.490	39.140	70.270	42.210	55.450
Lowest	6.225	7.432	11.170	7.444	3.615	5.856	7.227	8.999	7.932	9.248	9.941	6.598
Highest	215.600	200.000	392.500	135.000	14.780	184.000	199.200	113.200	148.000	207.800	166.800	359.900
Peak flow	443.200	333.100	530.100	189.800	17.790	280.200	347.800	209.800	332.600	382.400	396.000	673.900
Day of peak	4	9	27	1	14	6	11	13	11	18	18	29
Monthly total (million cu m)	89.09	87.32	117.90	70.28	17.87	${ }^{*} 85.60$	85.41	68.28	101.50	188.20	109.40	148.50
Runoff (mm)	91	89	120	71	18	87	87	- 69	103	191	111	151
Rainfall (mm)	59	110	167	66	57	165	152	109	158	234	123	195

Statistics of monthly data for previous record (Jan 1959 to Dec 1986-incomplete or missing months total 4.0 years)

Station and catchment description
Bazin type compound broad-crested weir operated after 10/6/77 as full range station. Previously used for low/mediurn flows; high flows from Halton $3 \mathrm{~km} \mathrm{~d} / \mathrm{s}$. High flows inundate wide floodplain. Transfers to river Wyre under Lancs. Conjunctive Use Scheme. Major abstractions for PWS. Headwaters rise from Shap Fell and the Pennines. Mixed geology: Carboniferous Limestone, Silurian shales, Millstone Grit and Coal Measures, substantial Drift cover. Agriculture in valleys; grassland rising to peat moss in highest areas.

073010 Leven at Newby Bridge

Mossuring authority: NWWA
First year: 1939

Grid reference: 34 (SD) 367863 Level str. (m OD): 37.30

Catchment area (sq km): 247.0
Max alt. (m OD): 873

Daily mean gauged discharges (cubic metres per second). . .:

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	50.490	3.383	10.490	45.390	3.468	2.176	18.310	5.359	4.009	9.252	10.410	6.242
2	50.480	3.610	16.860	40.860	4.198	2.709	16.100	4.875	3.505	7.725	9.150	5.549
3	43.290	3.763	17.140	34.780	4.159	3.353	13.450	4.694	2.745	6.420	7.985	4.730
4	49.430	3.541	15.830	27.690	3.579	3.347	11.180	4.350	2.703	5.590	7.045	4.313
5	50.090	7.034	14.940	22.080	3.354	3.874	9.303	3.807	5.740	7.110	6.218	3.892
6	43.050	13.050	14.680	18.470	2.942	15.790	7.578	3.213	8.359	10.970	5.527	3.465
7	35.420	14.470	14.650	16.390	2.692	24.970	6.226	2.883	8.690	12.340	4.873	3.027
8	29.260	16.470	13.580	15.020	2.425	22.550	4.821	2.615	8.140	16.200	4.595	2.769
9	22.170	21.150	12.380	13.790	2.294	18.760	4.116	2.490	11.510	19.930	4.069	2.525
10	17.850	29.360	10.990	13.610	1.997	15.580	6.029	2.231	18.040	20.740	4.758	2.427
11	14.640	28.530	9.961	15.860	2.306	13.050	14.770	2.737	19.630	18.750	7.029	2.383
12	12.010	24.910	8.918	14.700	3.098	11.650	15.690	5.580	33.210	17.890	11.070	2.306
13	10.360	21.360	8.098	13.740	3.236	10.320	14.020	12.890	33.350	17.670	16.000	2.183
14	8.929	18.040	7.475	12.460	4.465	9.206	12.460	13.240	29.270	22.210	16.240	2.019
15	7.116	15.160	6.998	11.420	4.282	8.318	- 12.230	11.940	24.470	25.110	18.630	2.126
16	5.934	12.870	6.824	10.200	3.793	7.209	12.780	10.550	21.630	27.480	23.590	2.657
17	5.169	10.660	9.073	8.904	4.203	6.421	12.040	9.058	18.760	31.850	25.450	4.360
18	4.604	B. 870	11.670	7.694	4.221	5.573	14.420	7.584	15.990	42.660	28.400	9.353
19	4.247	7.358	11.140	7.700	3.799	5.035	19.740	6.404	15.890	57.350	36.840	11.710
20	4.664	6.451	10.020	10.270	3.514	3.955	19.220	5.738	18.600	55.660	33.870	17.200
21	5.488	5.457	9.003	10.470	3.409	3.563	16.850	6.361	19.260	49.940	29.330	22.180
22	6.127	4.764	8.404	9.750	2.806	3.600	14.130	8.243	22.380	49.570	25.920	23.440
23	6.267	4.215	8.270	8.953	2.323	3.457	11.760	11.540	25.120	43.770	20.140	21.290
24	6.141	3.806	8.049	7.936	1.998	3.448	10.180	10.710	25.020	36.470	17.030	19.250
25	5.799	3.383	10.080	6.925	1.697	4.069	8.194	9.484	23.790	30.140	14.210	19.360
26	5.508	4.149	16.140	5.907	1.688	4.536	7.535	8.603	21.300	23.200	12.000	28.200
27	5.054	6.292	61.720	5.185	1.391	5.113	8.762	6.954	18.270	20.040	10.280	44.170
28	4.709	8.113	82.660	4.586	1.255	8.920	8.181	6.196	15.510	18.130	8.878	53.480
29	4.286		69.020	3.922	1.339	18.790	7.578	5.659	13.050	15.830	7.770	72.830
30	3.896		54.570	3.628	1.991	19.960	6.400	5.126	10.950	13.670	6.876	66.730
31	3.597		47.590		2.080		5.736	4.421		11.980		57.410
Average	16.970	11.080	19.590	14.280	2.903	8.977	11.280	6.630	16.630	24.050	14.470	16.890
Lowest	3.597	3.383	6.824	3.628	1.255	2.176	4.116	2.231	2.703	5.590	4.069	2.019
Highost	50.490	29.360	82.660	45.390	4,465	24.970	19.740	13.240	33.350	57.350	36.840	72.830
Peak flow	53.380	30.350	86.440	46.420	5.803	25.530	20.810	14.070	36.390	59.190	39.450	76.020
Day of peak	5	10	28	1	2	7	20	13	12	19	19	29
Monthly total (million cu m)	45.45	26.80	52.46	37.00	7.78	23.27	30.22	17.76	43.10	64.42	37.51	45.24
Runoff (mm)	184	109	212	150	31	94	122	72	175	261	152	183.
Rainfall (mm)	99	150	310	89	76	202	165	124	252	304	158	288.

Statistics of monthly data for previous record (Jan 1939 to Dec 1986)

Station and catchment description
Leval record since 1939 from four different sites at Newby Bridge. All flow records from 1939 to 1974 combined into a single sequence. Since 5/5/71 compound Crump weir - increased sensitivity at low flows. Full range. Just d/s of Lake Windermere - highly regulated, compensation flow. Major abstractions for PWS, sewage effluent from Ambleside. Predominantly impervious, Borrowdale Volcanics in north and Silurian slates in south. Boulder Clay along river valleys. Mainly grassland, very wooded in lower reaches.

076007 Eden at Sheepmount

Measuring authority: NWWA First year: 1967

Grid reference: 35 (NY) 390571 Level stn. (m OD): 7:00

Catchment area (sq km): 2286.5 Max alt. (m OD): 950

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	JuL	AUG	SEP	OCT	Nov	DEC
1	192.300	21.860	62.790	202.200	20.360	16.280	33.330	31.270	23.910	29.080	42.950	34.780
2	159.500	29.150	109.400	126.300	21.060	17.180	26.820	26.080	22.100	26.640	39.180	33.160
3	99.200	41.470 ,	50.480	88.920	20.770	25.450	22.760	26.890	20.330.	24.780	36.080	31.500
4	175.700	33.930	40.350	75.360	19.480	21.810	20.230	26.900	19.060	24.570	33.500	28.920
5	136.600	86.130	43.950	71.990	18.550	17.940	18.360	22.380	21.760	32.830	31.430	27.040
6	95.100	109.700	73.700	62.670	17.800	96.970	17.100	19.980	36.280	107.600	29.660	25.370
7	70.030.	59.840	60.960	62.610	17.400	119.500	16.060	19.020	31.900	68.190	28.180	23.820
8	57.100	102.200	46.430	99.460	17.020	66.010	15.310	18.340	29.730	107.800	30.270	23.130
9	49.500	165.800	39.810	82.330	16.520	42.770	15.840	17.520	55.720	89.250	30.500	20.900
10	43.900	221.500	34.230	102.700	16.130	35.030	71.000	17.010	85.640	83.480	33.070	21.130
11	37.690	96.350	31.320	109.500	16.380	31.610	140.500	16.710	57.610	62.310	55.680	21.130
12	33.990	68.790	29.280	68.660	18.790	32.120	44.950	50.150	136.500	52.350	145.200	21.070
13.	31.830 .	56.390	28.600	60.390	21.190	28.630	30.030	78.380	73.540	55.890	142.500	20.420
14	32.150	48.220	29.310	53.360	25.400	25.830	27.250	34.690	57.940	145.100	72.840	19.810
15	29.510	41.410	30.620	45.510	23.420	26.230	31.230	25.930	57.070	- 106.400	72.100	19.250
16	29.130	37.290	32.240	40.590	19.370	22.540	30.160	73.900	59.210	248.600	112.500	21.470
17	27.450	33.660	62.840	36.810	20.360	21.000	29.270	73.060	47.630	146.100	85.240	35.820
18	26.050	30.760	53.670	33.830	24.990	19.170	227.400	35.590	40.360	396.100	96.270	98.100
19	27.190	28.800	35.790	34.120	19.560	17.760	125.300	25.990	66.180	361.400	117.900	56.670
20	70.830	27.770	30.080	42.970	17.210	16.750	57.080	22.990	104.900	170.800	77.630	65.210
21	103.500	26.190	28.710	37.130	16.220	16.130	41.930	36.350	79.550	210.100	72.690	86.700
22	87.450	25.440	32.080	32.280	15.750	22.380	34.290	41.350	126.400	-183.700	83.780	62.730
23	61.430	24.610	34.220	29.220	15.310	22.280	29.390	69.690	103.500	113.000	79.930	42.130°
24	50.320	23.530	33.060	26.920	14.790	19.490	27.270	44.750	85.220	87.310	95.160	36.060
25	44.770	22.190	66.180	25.080	14.370	22.640	24.300	31.730	73.090	72.130	67.380	36.400
26	40.470	21.770	132.000	23.510	13.940	29.180	36.390	60.480	59.260	61.620	55.870	111.500
27	35.000	46.600	557.300	22.230	13.560	28.500	62.680	49.750	47.760	82.720	45.560	235.300
28	30.980	58.010	357.300	21.320	13.580	83.670	36.330	36.310	40.760	96.260	40.320	216.900
29	28.010		141.300	20.690	15.590	99.390	52.890	41.310	35.960	62.350	37.940	330.000
30	25.370		106.600	20.470	20.220	51.750	53.460	30.730	32.200	52.300	37.790	156.300
31	21.670		121.300		21.300		35.920	24.920		47.090		156.900
Average	63.020	56.760	81.800	58.640	18.270	36.530	46.280	36.460	57.700	109.900	64.300	68.370
Lowest	21.670	21.770	28.600	20.470	13.560	16.130	15.310	16.710	19.060	24.570	28.180	19.250
Highest	192.300	221.500	557.300	202.200	. 25.400	119.500	227.400	78.380	136.500	396.100	145.200	330.000
Peak flow	254.700	. 366.500	723.300	235.000	27.720	197.100	308.700	140.900	184.400	621.300	261.700	387.700
Day of peak	4	10	27	1	14	6	18	12	22	18	12	29
Monthly total (million cu m)	168.80	137.30	219.10	152.00	48.94	94.69	124.00	97.64	149.60	294,40	166.70	183.10
Runoff (mm)	74	60	96	66	21	41	54	43	65	129	73	80
Rainfall (mm)	50	81	156	58	51	123	132	93	132	195	94	129

Statistics of monthly data for previous record (Oct 1967 to Dec 1986 -incomplete or missing months total 3.0 years)

[^3] moorland. Extensive Boulder Clay covered Permo-Triassic sandstones in Vale of Eden. Arable and grazing.

079006 Nith at Drumlanrig

Measuring authority: SRPB First yeer: 1967

Grid reference: 25 (NX) 858994 Level stn. (m OD): 52.20

Catchment area (sq km): $\mathbf{4 7 1 . 0}$
Max alt. (m OD): 725

Daily mean gauged discharges (cubic motras per aecond) . .iv

DAY	JAN	FEB	MAR	APR	MAY	JuN	JuL	AUG	SEP	OCT	Nov	DEC
1	48.048	5.048	41.770	23.747	4.886	6.417	6.097	6.555	14.535	5.325	7.569	7.246
2	34.745	5.577	34.674	19.446	7.173	4.243	3.314	5.301	6.055	4.764	6.950	6.567
3	21.855	6.045	13.927	14.417	5.554	5.017	2.626	4.343	6.347	4.355	6.312	6.037
4	68.952	5.488	12.582	11.203	4.023	3.893	2.408	3.746	5.404	4.084	5.766	5.608
5	48.336	17.675	15.358	10.941	3.593	18.001	2.173	3.233	64.719	22.854	5.341	5.309
6	26.237	19.534	27.031	11.499	3.469	72.734	2.004	2.898	17.768	20.972	5.093	5.010
7	16.434	16.837	14.740	12.498	3.396	36.121	1.810	2.737	13.077	71.017	4.813	4.543
8	12.912	23.126	13.250	19.841	3.343	21.531	1.717	2.741	10.771	44.053	6.950	4.045
9	11.137	23.908	10.598	15.717	3.296	14.419	2.270	2.683	18.642	27.013	6.468	4.252
10	9.404	26.021	9.327	39.958	3.273	11.382	117.023	2.642	13.565	16.907	12.356	4.148
11	7.239	15.884	8.574	28.861	3.660	9.481	50.359	2.702	19.700	11.943	21.786	4.042
12	6.815	11.489	8.098	16.089	5.161	7.752	17.416	34.560	29.324	11.476	42.215	3.843
13	7.079	8.997.	8.196	17.059	4.284	6.762	10.610	17.059	13.040	17.108	22.489	3.353
14	7.025	7.772	11.924	12.077	5.867	6.945	8.700	9.150	16.533	11.154	14.462	3.275
15	6.281.	6.646	16.745	9.718	4.191	6.378	12.148	10.906	17.321	21.917	42.158	2.970
16	5.492	6.018	23.878	8.504	3.392	5.329	8.683	68.622	9.944	34.602	46.717	3.778
17	4.841	5.195	45.760	7.339	5.937	4.126	6.545	69.139	7.619	33.087	26.101	8.037
18	4.666	5.090	18.373	8.871	7.077	3.652	10.474	25.528	6.894	127.795	42.762	8.240
19	9.680	5.172	11.540	19.119	4.043	3.427	10.512	15.174	16.305	73.366	35.216	28.808
20	43.786	5.258	9.089	15.166	3.340	3.218	6.042	86.480	15.406	49.869	23.087	30.636
21	24.047	4.760	8.061	10.336	3.194	3.154	4.819	45.701	78.581	38.311	16.773	34.802
22	19.189	4.627	7.553	8.019	3.126	4.112	4.071	19.346	31.207	65.105	17.836	15.095
23	13.177	4.548	7.222	6.632	3.074	5.388	3.561	12.830	22.334	29.356	12.827	11.147
24	10.304	4.091	6.925	5.834	2.877	5.355	3.260	9.553	20.807	18.564	10.123	27.713
25	9.188	3.937	15.428	5.194	2.738	3.692	3.045	7.373	16.960	14.039	8.714	20.109
26	8.283	7.224	65.046	4.689	2.659	3.393	6.415	6.523	11.609	15.553	7.517	57.890
27	7.452	12.338	114.124	4.248	2.518	3.627	6.470	5.577	9.218	17.874	6.904	58.886
28	6.552	12.504	61.848	3.870	2.477	8.839	4.333	6.200	7.773	15.904	6.588	84.165
29	5.830		25.406	3.683	3.490	5.896	6.290	8.659	6.553	11.012	16.527	40.568
30	5.094		19.767	3.772	5.667	5.116	4.637	5.127	5.810	9.149	9.771	71.908
31	4.360		20.957		4.771		6.409	4.162		8.800		80.105
Avarage	16.590	10.030	22.820	12.610	4.050	9.980	10.850	16.360	17.790	27.660	16.610	21.040
Lowest	4.360	3.937	6.925	3.683	2.477	3.154	1.717	2.642	5.404	4.084	4.813	2.970
Highest	68.952	26.021	114.124	39.958	7.173	72.734	117.023	86.480	78.581	127.795	46.717	84.165
Poak flow	121.453	40.018	164.708	67.731	14.878	125.452	193.314	150.633	136.638	272.469	77.145	154.950
Day of peak Monthly total	5	10	27	11	18	7	11	21	22	18	19	31
(million cu m)	44.45	24.26	61.13	32.69	10.85	25.87	29.05	43.83	46.12	74.07	43.04	56.34
Runoff (mm)	94	52	130	69	23	55	62	93	98	157	91	120
Rainfall (mm)	67	79	171	91	72	119	130	173	162	209	122	173

Statistics of monthly data for previous record (Jun 1967 to Dec 1986)

Station and catchment description
Velocity-area station on long straight reach at particularly well confined site. Cableway. Gravel and rock bed. Natural channel control.

084005 Clyde at Blairston

Station and catchment description in Nov 1974 from opposite bank. Section is natural with steep grass and tree covered banks. Velocity profile slightly uneven due to upstream bend Control - piers of redundant rail bridge, $300 \mathrm{~m} \mathrm{~d} / \mathrm{s}$. Section rated by current meter to 3.4 m , just helow max, recorded stage. Some naturalised flows available. Very mixed geology with the older formations (Ordivician/Silurian) to the south. Hill pasture and moorland predominates but some mixed farming and urban development is found in the lower valley.

085003 Falloch at Glen Falloch

Measuring authority: CRPB First year: 1970

Grid reference: 27 (NN) 321197 Level stn. (m OD): 9.50

Catchment area (sq km): 80.3 Max alt. (mOD): 1130

Daily mean gauged discharges (cubic metres per second), :;

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	5.213	0.530	18.398	3.098	2.459	3.183	8.533	1.182	0.728	0.563	1.181	0.657
2	2.214	1.750	2.800	1.664	3.191	1.299	2.236	0.768	0.575	0.496	1.248	0.620
3	13.718	1.434	1.307	1.391	1.117	1.486	1.155	1.024	8.364	0.473	0.980	0.608
4	20.624	12.826	1.660	2.473	0.881	1.166	1.196	0.717	21.315	0.446	0.842	0.583
5	6.206	37.699	3.562	1.585	0.724	17.128	1.069	0.516	11.548	9.805	0.781	0.575
6	1.868	10.008	5.233	1.160	0.613	9.325	0.904	0.437	8.318	6.146	0.732	0.545
7	1.615	6.451	1.557	1.388	0.522	2.776	0.598	0.403	11.218	19.308	0.684	0.423
8	1.650	5.125	1.643	2.497	0.490	1.276	0.586	0.379	4.472	4.027	1.694	0.479
9	1.101	4.338	1.272	5.029	0.601	1.074	0.513	0.353	27.050	4.171	1.118	0.439
10	0.861	2.969	1.219	4.672	1.927	1.683	10.186	0.345	19.312	1.849	13.560	0.452
11	0.634	1.599	1.283	3.457	2.947	3.909	3.653	0.369	14.409	3.253	11.368	0.435
12	0.473	1.132	1.291	3.054	1.974	1.953	1.161	3.445	18.318	4.027	15.814	0.445
13	0.518	1.002	1.368	7.232	1.528	3.759	0.907	4.682	15.942	1.660	6.528	0.401
14	0.559	0.867	4.283	3.977	2.066	4.144	6.280	6.778	14.053	4.616	3.667	0.367
15	0.557	0.809	3.126	4.206	0.939	2.080	12.379	29.384	7.107	4.742	27.342	0.373
16	0.524	0.546	22.228	1.561	0.915	1.077	3.604	11.093	2.337	11.753	19.705	1.142
17	0.491	0.585	14.404	1.724	1.786	0.755	3.545	2.621	3.645	26.130	9.500	2.711
18	0.661	0.540	2.700	3.244	0.995	0.572	1.889	1.218	2.312	7.917	20.624	10.158
19	18.601	0.717	1.477	11.771	0.655	0.476	1.382	3.246	2.506	7.349	13.662	47.024
20	21.538	0.759	1.024	5.847	0.503	0.433	0.952	22.321	9.500°	5.115	2.964	10.405
21	14.279	0.689	1.023	3.913	0.437	0.428	0.643	2.207	17.654	16.252	2.723	12.422
22	5.283	0.638	1.309	1.923	0.390	0.571	0.481	2.369	16.428	9.930	1.949	3.072
23	3.067	0.544	1.396	1.472	0.364	0.842	0.411	1.612	10.085	2.648	1.317	2.995
24	1.633	0.495	1.527	1.268	0.340	0.597	0.361	0.919	4.361	2.907	1.010	8.667
25	1.277	0.445	2.827	1.087	0.318	0.455	0.334	0.706	1.781	23.816	0.833	19.337
26	1.073	6.467	15.368	0.938	0.305	0.406	1.319	0.583	1.241	11.177	0.840	19.371
27	0.878	24.584	22.319	0.872	0.295	0.823	0.669	0.529	1.007	9.490	0.891	21.256
28	0.746	6.598	4.365	0.763	0.285	1.301	0.980	3.357	0.870	3.671	1.034	38.252
29	0.656		3.908	0.669	1.845	0.592	0.945	1.478	0.708	1.823	1.273	11.210
30	0.573		10.297	1.594	5.102	2.759	0.715	1.160	0.614	1.386	0.773	34.061
31	0.413		15.928		9.249		3.089	0.721		1.226		33.276
Average	4.178	4.719	5.552	2.851	1.476	2.278	2.344	3.449	8.593	6.715	5.555	9.121
Lowest	0.413	0.445	1.023	0.669	0.285	0.406	0.334	0.345	0.575	0.446	0.684	0.367
Highest	21.538	37.699	22.319	11.771	9.249	17.128	12.379	29.384	27.050	26.130	27.342	47.024
Poak flow	86.570	98.052	52.395	27.504	13.010	78.186	60.129	155.802	111.907	140.950	104.605	89.599
Day of peak Monthly total	4	6	27	20	31	6	11	16	10	18	19	31
(million cu m)	11.19	11.42	14.87	7.39	3.95	5.90	6.28	9.24	22.27	17.99	14.40	24.43
Runotf (mm)	139	142	185	92	49	74	78	115	277	224	179	304
Rainfall (mm)	111	175	243	90	106	117	122	181	368	294	223	377

Statistics of monthly data for previous record (Oct 1970 to Dec 1986 -incomplete of missing months total 0.3 years)

Station and catchment description
Velocity-area station with artificial low flow control (long broad-crested weir with rectangular low flow notch) - installed 1975 . Damage to part of the high flow crest results in a small discharge bypassing the central notch. All but very high flows contained. No significant abstractions or discharges. Very responsive flow regime. A very wet mountainous catchment developed on ancient metamorphic formations - some Drift cover.

Measuring authority: HRPB	Grid reference: 18 (NG) $\dot{9} 4242 \dot{9}$
First year: 1979	Level stn. (m OD); 5.60

Catchment area (sq km): 137.8 Max alt. (m OD): 1053

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	Jut	AUG	SEP	OCT	NOV	DEC
1	5.205	1.623	19.911	10.530	13.775	8.566	21.880	9.223	2.660	2.507	3.132	2.811
2	4.000	1.907	10.600	5.567	12.098	4.291	7.083	6.176	2.280	2.201	3.361	2.292
3 *	14.183	2.580	5.237	4.488	7.202	2.690	12.386	6.076	2.659	1.977	3.413	1.930
4	31.041	6.410	5.290	5.495	6.464	2.085	21.770	3.596	9.154	.1.835	3.074	1.772
5.	16.375	48.467	5.153	4.944	5.634	2.007	43.808	2.703	9.130	7.131	2.678	1.666
$6{ }^{\prime}$	7.615	$\cdot 42.589$	5.793	3.897	4.304	6.785	15.020	2.261	- 15.101	12.870	2.343	1.587
7	4.631	13.073	3.848	3.677	3.131	7.507	12.059	2.423	26.598	15.489	2.129	1.442
8	3.473	10.070	2.821	3.546	4.634	5.558	8.008	2.140	15.542	14.324	1.958	1.385
9	2.744	9.404	2.274	4.015	6.216	4.201	6.014	1.784	30.372	8.667	1.792	1.366
10	2.328	9.433	1.928	5.201	12.080	3.065	5.278	1.570	49.830	4.863	3.797	1.360
11	1.908	8.192	1.710	6.018	23.678	2.483	8.383	1.402	41.372	3.430	10.290	1.358
12	1.587	5.221	1.584	5.491	8.677	2.096	4.579	1.448	36.882	3.052	12.025	1.221
13	1.545	3.737	3.067	14.138	9.240	2.333	3.126	6.131	30.688	2.685	19.972	1.131
14	1.591	2.910	5.351	9.247	9.594	3.934	2.442	32.671	30.955	2.852	13.131	1.040
15	.1.550	2.415	4.523	11.155	5.372	3.690	2.421	18.350	11.366	2.614	19.544	0.982
16	1.460	2.090	29.533	5.219	4.471	2.494	2.950	13.629	6.356	7.361	35.514	1.337
17	1.440	1.904	28.121	3.663.	6.746	1.872	7.088	6.866	6.899	7.817	29.971	3.527
18	3.047	2.173	9.467	3.320	4.616	1.464	6.425	4.210	9.376	4.610	43.914	16.574
19	36.437	6.989	5.333	4.281	3.571	1.217	4.417	3.495	6.623	3.210	31.760	58.889
20	30.334	6.034	4.079	6.383	2.712	1.073	3.079	27.606	7.786	2.718	15.237	31.114
21	31.365	4.592	3.289	6.320	2.293	0.996	2.359	11.674	30.600	3.387	18.122	21.007
22	12.608	5.928	3.942	4.122	1.984	1.027	1.860	5.458	15.400	8.579	17.898	9.847
23	6.501	4.218	4.023	3.138	1.793	1.530	1.579	3.538	23.429	7.552	13.691	8.894
24	4.391	2.852	3.972	2.728	'1.578	2.491	1.460	2.657	37.352	11.845	6.910	7.995
25	3.684	2.246	7.706	2.294	1.346	1.940	1.460	2.167	18.207	43.787	4.396	32.437
26	3.626	2.779	11.516	2.047	1.265	1.530	4.997	1.862	11.066	34.696	3.424	23.653
27	3.188	27.034	35.044	1.886	1.140	1.340	5.015	1.780	6.263	11.504	3.204	22.393
2B	2.735	19.314	15.905	1.800	$\cdot 1.035$	1.319	4.056	7.779	4.518	13.291	3.266	58.719
29	2.313		9.584	1.820	1.042	1.210	4.352	4.875	3.535	6.623	4.248	28.970
30	2.025		25.674	15.107	1.961	11.793	4.810	3.466	2.890	4.303	3.524	14.153
31	1.783		45.851		6.848		16.791	2.562		3.583		58.106
Average	7.958	9.149	10.390	5.385	5.694	3.153	7.966	6.503	$16.830{ }^{\circ}$	8.431	11.260	13.580
Lowest	1.440	1.623	1.584	1.800	1.035	0.996	1.460	1.402	2.280	1.835	1.792	0.982
Highest	36.437	48.467	45.851	15.107	23.678	11.793	43.808	32.671	49.830	43.787	43.914	58.889
Peak flow	61.401	79.370	75.729	23.083	46.528	32.009	64.937	53.617	80.820	61.960	65.657	105.444
Day of peak	20	6	31	30	11	30	6	21	11	26	19	31
Monthly total (million cu m)	21.32	22.13	27.83	13.96	15.25	8.17	21.34	17.42	43.62	22.58	29.18	36.37
Runoff (mm)	155	161	202	- 101	111	59	155	126	317	164	212	264
Rainfall (mm)	94	170	280	75	124	100	161	148	389	206	244	331

Statistics of monthly data for previous record (Jan 1979 to Dec 1986)

Station and catchment description
40 m wide river section with floodbank on right bank. Any bypassing in extreme floods will be over 30 m wide floodplain on left bank. Unstable gravel control requires regular calibration of low flow range. Adequately gauged to bankfull. Computed flows are 100% natural. 70% of catchment drains through Loch Dughaill with little additional surface storage. Typical mix of rough grazing and moorland. One of the wetter Highland catchments currently gauged.

201005 Camowen at Camowen Terrace

Moasuring authority: DOEN First year: 1972
Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APP	MAY	JuN	JUL	aug	SEP	OCT	NOV	OEC
1	22.053	3.845	8.793	7.397	2.881	1.184	2.124	1.395	2.031	2.238	2.740	3.476
2	15.320	5.040	6.472	6.816	6.486	1.948	1.794	1.377	1.955	2.064	2.446	3.359
3	9.248	4.498	5.436	5.518	3.912	3.481	1.594	1.195	2.031	1.905	2.218	3.213
4	12.001	3.683	5.788	4.958	2.666	3.498	1.642	1.155	1.957	1.878	2.082	3.119
5	11.165	3.630	5.146	4.643	2.343	21.745	1.430	1.141	1.989	1.913	1.881	2.885
6	8.716	3.654	9.550	4.499	2.026	15.302	1.217	1.127	1.873	2.200	1.862	2.696
7	6.702	6.473	35.885	4.146	1.819	8.255	1.181	1.098	1.860	5.843	1.733	2.392
8	6.220	6.663	11.122	4.012	1.719	6.008	1.212	1.079	1.853	7.191	5.527	2.325
9	14.098	9.753	6.559	4.577	1.608	4.301	1.147	1.030	2.480	4.581	3.495	1.984
10	7.810	8.155	5.398	13.024	1.487	3.056	1.912	0.982	2.634	3.287	5.309	1.676
11	5.541	5.522	4.507	6.524	1.559	3.106	1.825	0.941	4.031	2.747	12.393	2.140
12	5.636	4.383	3.922	4.915	1.922	2.601	1.423	14.711	5.250	2.945	22.083	2.051
13	5.381	3.781	3.749	5.310	1.952	2.186	1.438	5.204	3.299	3.388	9.193	2.010
14	5.002	3.212	4.330	4.413	2.317	2.035	1.204	2.379	2.747	3.598	11.022	1.958
15	3.983	2.838	3.546	3.913	1.933	2.330	7.316	13.896	3.008	5.658	19.731	1.913
16	3.753	2.611	3.359	3.446	1.767	2.080	3.732	12.174	2.535	3.926	16.266	2.731
17	6.315	2.399	3.849	3.170	1.714	1.938	2.133	27.648	2.096	4.905	8.545	7.263
18	17.191	2.399	4.393	2.885	1.662	1.660	1.514	7.423	1.970	5.860	6.873	4.619
19	11.974	2.325	5.449	3.298	1.606	1.600	1.352	14.895	7.685	3.570	6.020	4.573
20	8.795	2.252	6.364	3.353	1.497	1.541	1.167	44.500	5.449	4.337	5.250	6.445
21	6.344	2.181	7.966	3.128	1.306	1.463	1.176	10.328	28.819	138.424	4.562	7.892
22	5.244	2.130	9.879	2.862	1.294	1.390	1.048	6.195	8.403	21.373	6.819	4.640
23	4.574	2.088	7.427	2.620	1.266	1.651	0.951	4.526	7.670	9.226	7.323	3.950
24	4.199	2.105	7.097	2.341	1.098	1.825	0.913	3.736	5.944	6.901	5.363	4.298
25	4.125	2.121	6.408	2.315	1.112	5.638	0.946	4.731	4.536	6.897	4.200	4.532
28	3.957	12.360	19.814	2.063	1.082	3.197	1.557	4.533	3.550	9.738	4.410	9.371
27	3.610	7.423	26.579	1.891	1.029	3.973	2.251	2.963	3.075	5.945	4.268	22.306
28	3.412	5.431	17.850	1.818	1.082	4.641	1.395	2.890	2.679	4.550	3.887	8.049
29	3.080		14.874	1.814	1.314	2.750	1.194	2.599	2.388	3.795	5.053	8.009
30	2.797		9.340	2.270	1.313	2.576	1.153	2.224	2.363	3.522	3.906	21.171
31	2.652		8.508		1.252		1.288	2.075		3.193		12.113
Average	7.448	4.391	9.012	4.131	1.872	3.965	1.685	6.521	4.272	9.277	6.548	5.457
Lowost	2.652	2.088	3.359	1.814	1.029	1.184	0.913	0.941	1.853	1.878	1.733	1.676
Highost	22.053	12.360	35.885	13.024	6.486	21.745	7.316	44.500	28.819	138.424	22.063	22.306
Poak flow	42.035	23.372	55.074	20.628	9.801	39.131	13.048	68.758	61.597	183.468	35.273	45.951
Day of peak Monthly total	1	28	7	10	2	5	15	20	21	21	12	27
(million cu m)	19.95	10.62	24.14	10.71	5.01	10.28	4.51	17.47	11.07	24.85	16.97	14.62
Runoff (mm)	73	39	88	39	18	37	16	64	40	90	62	53
Rainfall (mm)	55	60	120	47	40	113	61	128	90	129	97	81

Statistics of monthly data for previous record (May 1972 to Dec 1986)

Mean flows:	Avg.	11.710	8.208	7.379		4.368		3.756	2.557	2.138	3.386	4.791	6.531	8.837	10.990
	Low	7.011	2.862	2.209		1.701		0.993	0.911	0.879	0.846	0.680	1.215	3.422	5.062
	(year)	1985	1986	1973		1974		1980	1974	1984	1983	1972	1972	1983	1975
	High	16.170	17.200	12.340		8.687		7.946	4.955	5.114	11.310	12.730	11.260	15.270	17.330
	(year)	1984	1977	1978		1986		1986	1981	1985	1985	1985	1976	1979	1978
Runotf:	Avg.	114	73	72		41		37	24	21	33	45	64	83	107
	Low	68	25	22		16		10	9	9	8	6	12	32	49
	High	158	152	120		82		78	47	50	110	120	110	144	169
Rainfall:	Avg.	129	76	103		58		80	68	71	90	106	106	115	127
	Low	81	4	38		20		20	28	20	20	13	55	45	39
	High	194	161	145		118		145	118	131	188	177	171	182	183
Summary statistics											Factors affecting flow regime - Abstraction for public water supplies. - Augmentation from effluent returns.				
			For 1987			For record receding 1987				1987As \% ofpre. 1987					
Mean flow ($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$)			5.397			6.217				${ }_{87}$					
Lowest yearly mean						4.102			1975						
Highost yearly moan						7.64 B			1978						
Lowesi montrly mean			1.685		Jul		0.680		1972						
Highest monthly meanLowest daily mean			9.277		Oct		7.330		1978						
			0.913		24 Jul		0.411	23 A	1984						
Lowest daily mean Highest daily mean			$138.424 \quad 2$		21 Oct		4.714	19 De	1973						
Highest daily mean Paak			183.46821		1 Oct		8.417	1 D	1978						
Poak j 10% exceedance			9.763				3.700			71					
10\% exceadance		50\% exceedance	3.492				4.144			84					
95\% exceedance			1.156				1.006			115					
Annual total (million cu m)			170.20				96.20			87					
Annual runoff (mm)			6201021				715			87					
Annual rainfall (mm) ${ }^{\text {a }}$ (1941.70 reinfall averag						$\begin{gathered} 1129 \\ 920 \end{gathered}$				90					
			(mm) 1021												

Station and catchment description
Velocity-area station with cableway and weir control - informal broad-crested structure (for angling enhancement), dimensions not known. The net effect of abstractions for public water supply and augmentations from effluent returns is minor. Catchment geology: mixed impermeable rocks (granite, schist and gneiss, and sandstone) overlain by substantial deposits of till, sand and gravel. Largely upland given over mainly to grassland or heath.

203010 Blackwater at Maydown Bridge

Grid reference: $23(\mathrm{IH}) 820519$ Level stn. (m OD): 380.00

Catchment area (sq km): 951.4 Max alt. (m OD): 362

Daily mean gauged discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APA	MAY	JUN	Jul	AUG	SEP	OCT	NOV	DEC
1	47.993	11.218	23.466	24.950	7.946	1.487	6.016	2.125	5.881 .	6.607	17.667	17.229
2	54.490	13.458	41.619	20.615	13.956	1.725	4.536	2.627	5.147	5.839	16.310	16.563
3	35.171	15.821	. 23.475	16.551	12.832	7.926	3.527	2.805	4.813	5.423	15.222	16.029
4	33.978	18.299	23.355	14.135	7.677	12.783	3.084	1.958	4.456	5.233	14.424	15.121
5	39.157	20.886	18.036	12.906	6.017	23.747	2.580	1.658	4.189	5.093	13.664	14.286
6	30.823	23.578	22.042	11.913	5.104	44.074	2.241	1.515	4.217	5.626	13.093	13.453
7.	21.426	26.368	51.972	11.037	4.514	25.326	1.986	1.450	3.915	11.779	12.868	12.680
8	16.975	29.254	52.747	10.405	4.106	15.281	1.806	1.324	3.283	13.771	17.637	12.286
9	29.406	32.231	31.535	10.567	3.683	10.676	1.702	1.266	3.690	11.705	22.841	11.629
10	28.758	28.916	21.579	23.862	3.411	9.907	1.880	1.245	6.065	9.004	20.895	10.708
11	19.224	21.095	15.881	27.022	3.289	16.587	2.333	1.390	7.014	7.173	31.641	10.742
12	12.955	15.461	13.119	17.493	3.266	15.730	2.094	13.760	21.001	6.401	40.906	10.651
13	11.434	12.351	11.736	14.022	3.293	9.061	1.779	26.654	11.969	8.805	42.055	10.996
14	12.465	10.806	11.473	12.181	3.388	8.117	1.720	9.678	10.134	11.376	33.262	10.916
15	11.246	. 9.362	10.696	10.759	3.458	10.106	3.641	8.906	8.302	9.771	69.640	10.612
16	10.476	8.132	9.578	9.845	3.189	7.112	7.440	12.397	7.674	9.073	59.239	12.357
17	11.832	7.228	9.420	8.630	3.019	5.789	4.373	66.083	6.246	10.266	44.694	24.704
18	48.914	7.088	10.239	7.676	2.967	4.996	3.289	46.538	5.297	19.754	34.640	23.755
19	53.789	6.723	12.205	7.275	2.391	4.486	2.770	20.762	20.279	12.972	31.262	21.327
20	42.959	6.735	14.020	7.501	2.272	3.941	2.405	52.619	27.821	7.266	26.455	21.530
21	26.009	6.555	14.969	7.089	2.052	3.664	2.036	52.787	52.033	109.414	23.321	28.035
22	18.561	6.274	13.543	6.165	1.929	4.014	1.805	23.387	59.766	143.845	21.857	22.570
23	15.165	5.967	13.213	5.651	2.074	3.610	1.737	14.428	34.245	140.763	23.679	19.314
24	12.963	5.349	11.998	5.347	1.887	3.394	1.524	11.252	25.942	117.034	21.506	17.998
25	11.858	5.135	11.987	4.904	1.785	5.486	1.415	9.778	18.861	63.043	19.067	17.527
26	10.936	16.551	18.057	4.510	1.671	6.837	1.358	11.286	14.289	46.001	18.022	36.213
27	10.039	31.870	63.131	4.199	1.614	7.078	1.631	8.567	11.811	33.327	18.559	59.379
28	9.362	18.209	61.462	3.856	1.450	9.219	3.525	6.986	10.107	27.311	17.464	42.678
29	8.595		47.543	3.749	1.512	7.061	2.704	6.258	8.982	23.633	21.045	38.223
30	7.610		36.666	4.145	1.811	5.623	2.222	5.547	7.083	20.867	20.417	46.114
31	6.876		27.052		1.679		1.861	5.042		19.180		57.078
Average	22.950	15.030	24.120	10.970	3.847	9.828	2.678	13.940	13.820 ,	29.910 ,	26.110	22.020
Lowest	6.876	5.135	9.420	3.749	1.450	1.487	1.358	1.245	3.283	5.093	12.868	10.612
Highest	54.490	32.231	63.131	27.022	13.956	44.074	7.440	66.083	59.766	143.845	69.640	59.379
Peak flow	66.439	37.552	66.151	36.877	19.520	51.069	9.556	74.191	70.988	144.847	76.411	68.994
Day of peak Monthly total	1	27	7	10	2	6	16	17	22	22	15	27
(million cu m)	61.47	36.37	64.61	-28.42	10.30	25.47	7.17	37.33	35.81	80.12	67.68	58.99
Runoff (mm)	65	38	68	30	11	27	8	39	38	84	71	62
Rainfall (mm)	46	53	94	43	28	106	41	122	85	111	71	66

Statistics of monthly data for previous record \{Jul 1970 to Dec 1986)

Station and catchment description
Velocity-area station' with cableway and natural control. A substantial portion of the catchment area is in the Irish Republic where some groundwater may be abstracted but its hydrological significance is uncertain. Geology: Carboniferous Limestone and Millstone Grit with sandstones overlain by substantial amounts of till. A predominantly rural catchment with limited afforestation. Monaghan Town (pop. 5,000) - in the Irish Republic - is the only significant urben centre.

039001 Thames at Kingston

Measuring authority: TWA
First year: 1883

Grid reference: 51 (TO) 177698
4.- Level stn. (m OD): 4.70

Catchment area (sq km): 9948.0 Max alt. (m OD): 330

Daily mean naturalised discharges (cubic metres per second)

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	221.000	70.500	127.000	119.000	78.700	64.000	49.500	42.100	32.300	30.800	95,400	94.100
2	239.000	75.900	128.000	178.000	77.800	55.300	50.000	41.600	34.100	28.700	133.000	92.800
3	197.000	79.200	121.000	156.000	76.400	58.000	42.100	42.100	40.500	31.200	115.000	87.100
4	169.000	86.100	89.600	171.000	69.700	62.500	44.700	40.500	35.500	34.400	95.700	90.500
5	172.000	86.300	86.500	264.000	70.900	64.100	38.900	37.400	36.200	38.500	89.600	90.100
6	153.000	92.700	86.100	250.000	72.300	75.900	41.000	34.700	39.500	35.500	69.100	85.200
7	134.000	81.100	106.000	266.000	68.500	82.600	40.500	34.700	38.600	52.800	80.900	79.700
8	113.000	74.300	139.000	304.000	64.800	77.600	40.000	31.600	36.000	105.000	73.200	77.300
9	113.000	81.300	147.000	261.000	65.500	80.300	35.300	31.000	36.100	95.000	110.000	75.400
10	110.000	81.600	128.000	246.000	63.100	88.900	32.600	35.300	32.200	227.000	142.000	68.200
11	101.000	85.300	105.000	226.000	62.800	80.900	31.600	34.700	33.400	228.000	164.000	71.600
12	90.100	82.700	98.800	179.000	65.600	76.000	36.300	36.300	33.900	169.000	260.000	70.500
13	83.400	87.000	90.400	155.000	65.000	55.500	33.700	37.400	37.400	79.000	293.000	71.100
14	73.300	119.000	83.600	138.000	78.700	61.900	33.700	36.300	42.200	87.600	256.000	71.200
15	84.800	113.000	82.500	130.000	76.100	57.500	36.300	34.200	36.300	144.000	197.000	68.900
16	82.400	103.000	77.400	118.000	68.200	57.500	42.100	33.100	32.300	205.000	171.000	84.000
17	91.100	89.000	81.600	116.000	68.400	60.000	47.400	33.100	32.600	240.000	157.000	112.000
18	85.900	81.500	82.400	110.000	66.700	62.600	45.800	33.700	32.100	203.000	134.000	119.000
19	日1.200	78.500	81.400	102.000	68.000	85.300	64.200	33.100	34.900	139.000	144.000	101.000
20	81.900	68.700	79.300	102.000	65.700	86.100	77.300	31.600	36.000	163.000	208.000	90.100
21	81.700	72.600	74.700	102.000	54.000	78.900	73.700	31.600	36.200	251.000	211.000	78.000
22	95.400	71.000	73.900	96.700	56.900	73.100	63.700	41.500	32.800	270.000	206.000	80.400
23	110,000	70.400	93.100	95.600	71.800	59.400	44.700	38.100	34.200	204.000	197.000	79.600
24	113.000	69.800	127.000	81.700	70.900	58.800	50.000	36.000	35.400	145.000	161.000	73.600
26	112.000	61.500	120.000	91.000	60.700	57.000	45.800	48.700	35.300	132.000	145.000	73.900
26	109.000	68.500	109.000	87.900	59.200	72.100	43.700	44.400	32.700	94.500	124.000	73.700
27	97.500	108.000	173.000	85.700	57.600	74.600	44.700	43.100	32.100	108.000	113.000	72.000
28	92.300	113.000	237.000	83.300	57.100	69.100	42.600	37.400	30.600	85.400	100.000	71.800
29	83.500		188.000	79.200	54.200	59.500	46.800	35.100	30.100	92.700	104.000	69.900
30	80.400		130.000	80.100	55.200	51.500	50.000	33.800	31.600	93.300	102.000	74.500
31	71.300		107.000		71.800		46.800	31.600		91.000		107.000
Avarage	113.600	83.980	111.400	149.100	66.530	68.220	45.660	36.640	34.770	125.900	148.400	82.390
Lowost	71.300	61.500	73.900	79.200	54.000	51.500	31.600	31.000	30.100	28.700	69.100	68.200
Highost	239.000	119.000	237.000	304.000	78.700	88.900	77.300	48.700	42.200	270.000	293.000	119.000
Monthly total (million cu m)	304.30	203.20	298.40	386.60	178.20	176.80	122.30	98.13	90.12	337.30	384.60	220.70
Nat'ised												
runoff (mm)	31	20	30	39	18	18	12	10	9	34	39	22
Rainfall (mm)	14	39	63	57	51	92	58	36	42	163	65	32

Statistics of monthly data for previous record (Jan 1883 to Dec 1986)

Maan	Avg.	138.100	134.500	116.000	85.890	65.270	48.790	35.060	32.660	34.380	49.370	83.530	113.000
not ised	low	32.200	25.080	27.340	26.520	18.200	13.470	10.770	11.030	11.250	15.120	17.730.	22.470
flows:	(year)	1905	1905	1944	1976	1944	1944	1921	1976	1898	1934	1921	1921
	High	332.900	348.100	370.900	199.800	181.300	178.700	88.840	88.770	139.400	185.300	339.600	343.900
	(year)	1915	1904	1947	1951	1932	1903	1968	1931	1968	1903	1894	1929
nat ised	avg.	37	33	31	22	18	13	9	9	9	13	22	30
runotf:	Low	9	6	7	7	5	4	- 3	3	3	4	5	6
	High	90	88	100	52	49	47	24	24	36	50	88	93
Rainfall:	Avg.	65	49	53	48	55	52	58	65	58	72	73	73
	Low	18	3	3	3	8	3	8	3	3	5	8	13
	High	137	127	142	104	137	137	130	147	157	188	188	185

Station and catchment description
Ultrasonic gauging station commissioned in 1974; multi-path operation from 1986. Full range. Pre-1974 flows derived from Teddington weir complex (70 m wide): significant structural improvements have been made since 1883: US data led to revision of 1951-74 flows (in 1981)
Substantial baseflow - sustained from the Chalk and the Oolites. Daily naturalised flows available for POR - allowance is made for major PWS abstractions only. Diverse topography, geology and land use which has undergone important historical changes.

Part (ii) - The monthly flow data

The introductory information (measuring authority etc.) is as described in Part (i).

Hydrometric statistics for the year

The monthly average, peak flow, runoff and rainfall figures are equivalent to the summary information following the daily mean gauged discharges in Part (i). Because of the rounding of monthly runoff values, the runoff for the year may differ slightly from the sum of the individual monthly totals.

Monthly and yearly statistics for previous record

Monthly mean flows (Average, Low and High) and the monthly rainfall and runoff figures are equivalent to those presented in Part (i). An asterisk indicates an incomplete rainfall series; the first and last years of data are given in parentheses. Due to the rounding of monthly runoff values, the average runoff for the year derived from the previous record may differ slightly from the sum of the individual monthly totals. The peak flow is the highest discharge, in cubic metres per second, for each month. For many stations the archived series of monthly instantaneous maximum flows, from which the preceding record peak is abstracted, is incomplete, particularly for the earlier years, and certain of the peak flows are known to be of limited accuracy. Where the peak value - in an incomplete series - is exceeded by the highest daily mean flow on record, the latter is substituted; such substitutions are
indicated by a ' d ' flag. An examination of the quality of the peak flow figures is underway and significant revision may be expected as this review proceeds. The figures are published primarily to provide a guide to the range of river flows experienced throughout the year at the featured gauging stations.

Factors affecting flow regime

Code letters are used as described in Part (i).

Station type

The station type is coded by the list of abbreviations given below - two abbreviations may be applied to each station relating to the measurement of lower or higher flows.

B Broad-crested weir

C Crump (triangular profile) single crest weir
CB Compound broad-crested weir. The compounding may include a mixture of types such as rectangular profiles, flumes and shallow-Vs and with or without divide walls
CC Compound Crump weir
EM Electromagnetic gauging station
EW Essex weir (simple Crump weir modified with angled, sloping, triangular profile flanking crests) in trapezoidal channel
FL Flume
FV Flat-V triangular profile weir
MIS Miscellaneous method
TP Rectangular thin-plate weir
US Ultrasonic gauging station
VA Velocity-area gauging station
VN Triangular (V notch) thin-plate weir

003003 Oykel at Easter Turnaig

Moasuring authority: HRPB
First yoar: 1977
Hydrometric statistics for 1987

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	17.430	12.470	19.730	6.681	8.203	6.392	9.881	9.735	18.740	10.640	19.600	16.650	13.013
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	165.24	82.92	180.08	45.05	128.77	69.88	116.19	181.66	241.62	93.61	142.49	251.07	251.07
Runoff (mm)	141	91	160	52	66	50	80	79	147	86	154	135	1242
Rainfall (mm)	113	118	195	56	104	96	129	106	214	117	188	165	1601
Monthly and yearly statistics for previous record (Nov 1977 to Dec 1986)													
Moan Avg.	26.770	14.900	20.280	10.030	6.512	6.325	7.544	9.973	22.470	26.060	29.060	25.050	17.098
flows Low	13.550	2.376	6.649	5.445	1.067	0.751	2.853	2.332	14.540	7.328	14.420	8.245	14.287
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{High}$	43.980	25.370	40.740	17.710	14.380	14.140	15.690	22.590	31.870	41.100	49.380	38.210	20.249
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	510.66	466.46	470.84	208.27	129.64	169.90	191.07	196.76	423.38	847.50	407.70	394.15	847.50
Runoff (mm)	217	110	164	79	53	50	61	81	176	211	228	203	1632
Rainfall (mm)	244	91	186	92	82	99	105	132	230	252	276	232	2021

Foctors affecting flow regime: N
Station type: VA
Grid reference: 29 (NC) 403001
Level stn. (m OD): 15.60
Catchment area (sq km): $\mathbf{3 3 0 . 7}$ Max alt. (m OD): 998

004001 Conon at Moy Bridge

Measuring authority: HRPB
Grid reference: 28 (NH) 482547
Level stn. (m OD): 10.00

Hydrometric statistics for 1987

		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	69.800	48.560	41.240	37.840	27.640	29.820	29.450	31.950	45.150	40.910	61.350	41.180	42.074
$\left(\mathrm{m}^{3} \mathrm{~B}^{-1}\right)$:	Peak	173.32	137.74	91.09	127.70	84.32	75.17	52.69	72.55	89.73	80.28	168.07	140.08	173.32
Runoff (mm)		194	122	115	102	77	80	82	89	122	114	165	115	1377
Rainfall (mm)		92	103	184	50	96	99	96	80	241	118	180	172	1511

Monthly and yearly statistics for previous record (Oct 1947 to Dec 1986 -incomplete or missing months total 5.7 years)

| 8.861 | 2.959 | 8.162 | 12.510 | 23.090 | 24.090 | 27.970 | 29.991 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{lllllllllllllllll} \\ m^{-1}-1 & H i g h .300 & 121.000 & 127.900 & 75.730 & 53.050 & 47.560 & 36.690 & 45.140 & 94.870 & 94.030 & 121.700 & 165.100 & 59.238\end{array}$ $\begin{array}{llllllllllllll} \\ \text { Poak flow }\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) & 409.56 & 467.20 & 362.90 & 203.90 & 232.20 & 165.20 & 247.41 & 254.90 & 223.72 & 324.80 & 411.85 & 1076.00 & 1076.00 \\ \text { Runoff }(\mathrm{mm}) & 186 & 145 & 154 & 109 & 90 & 59 & 56 & 75 & 108 & 149 & 172 & 204 & 1508\end{array}$ Rainfall (mm)*

(1953-1986)
Factors affecting flow regime: H
Station type: VA

1987 runoff is 91% of previous mean rainfall 82\%

007002 Findhorn at Forres

Measuring authority: HRPB
First year: 1958
Hydrometric statistics for 1987

		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	17.510	20.090	24.530	27.750	17.740	21.180	14.900	11.810	12.380	17.840	20.320	16.340	18.532
$\left(\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}\right)$:	Peak	84.22	90.23	155.96	105.94	64.84	167.94	125.52	56.48	53.83	69.32	78.22	104.37	167.94
Runoff (mm)		60	62	84	92	61	70	51	40	41	61	67	56	746
Rainfall (mm)		40	74	114	52	79	120	93	84	83	93	88	71	991

Monthly and yearly statistics for previous record (Oct 1958 to Dec 1986)

Mean Avg.	24.440	19.510	22.590	21.150	15.840	10.050	9.518	13.830	15.480.	20.880	23.780	25.550	18.553
flows Law	9.429	5.259	8.615	5.560	3.836	3.321	2.744	2.478	2.863	3.547	9.300	8.332	11.994
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	51.190	44.700	54.320	54.170	41.990	41.900	24.650	58.840	37.870	49.540	39.710	61.550	25.482
Poak flow ($\mathrm{m}^{3} \mathbf{s}^{-1}$)	361.11	537.70	410.00	173.47	294.32	430.20	469.14	2410.00	861.11	512.03	465.20	616.90	2410.00
Runoff (mm)	84	61	77	70	54	33	33	47	51	72	79	88	749
Rainfall (mm)	105	61	83	64	74	77	85	104	102	111	119	109	1094

Factors affecting flow regime: N
Station type: VA

Grid reference: 38 (NJ) 018583
Level stn. (m OD): 9.60

Catchment area (sq km): 781.9 Max alt. (m OD): 941

987 runotf is 100% of previous mean rainfall 91\%

008007 Spey at Invertruim

Measuring authority: NERPB
First year: 1952
Hydrometric statistics for 1987

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	4.575	3.814	5.092	3.643	2.990	2.511	2.845	2.417	4.754	5.458	4.564	4.545	3.934
$\left(m^{3} s^{-1}\right)$: Peak	18.47	10.82	20.73	9.32	7.19	6.62	11.77	8.50	23.09	16.15	16.81	52.26	52.26
Runotf (mm)	31	23	34	24	20	16	19	16	31	37	30	30	310
Rainfall (mm)	56	81	133	41	82	95	83	74	164	134	118	148	1209
Monthly and yearly statistics for previous record (Oct 1952 to Dec 1986)													
Moan Avg.	8.841	6.382	6.478	4.185	3.685	2.986	2.833	3.385	4.745	6.902	7.795	9.848	5.675
flows Low	3.314	1.953	2.722	2.075	1.413	1.123	1.042	0.852	1.454	1.638	' 3.235	3.518	4.211
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	23.280	21.020	20.600	7.126	6.210	6.269	5.021	7.545	14.650	14.830	15.960	24.970	8.037
Poak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	153.70	198.20	274.50	60.85	43.92	45.93	- 72.83	75.00	108.00	106.90	170.60	259.50	274.50
Runoff (mm)	59	39	43	27	25	19	19	23	31	46	50	66	447
Rainfall (mm)	158	98	116	73	90	77	85	102	134	167	167	181	1448
Factors affecting flow regime: H Station type: VA										1987 runoff is 69% of previous mean rainfall 83\%			

009001 Deveron at Avochie

Measuring authority: NERPB
First year: 1959
Hydrometric statistics for 1987

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SE	OC	NOV	OEC	Year
Flows Avg.	8.532	10.210	13.950	14.170	6.439	8.619	9.842	5.684	3.603	6.843	$8.581{ }^{\prime}$	6.819	8.608
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	36.96	30.03	93.47	35.05	18.28	43.20	84.43	16.63	6.32	29.06	57.25	17.19	93.47
Runoff (mm)	52	56	85	83	39	51	60	34	21	42	50	41	614
Rainfall (mm)	51	89	108	76	73	96	124	75	40	93	100	40	965
Monthly and yearty statistics for previous record (Oct 1959 to Dec 1986)													
Mean - Avg.	13.000	10.680	11.500	10.280	7.888	5.159	4.575	6.207	6.040	8.987	11.000	12.080	8.946
flows Low	3.688	3.052	3.391	4.314	3.631	2.610	1.766	1.621	2.092	1.934	3.389	3.504	5.233
$\left(m^{3} s^{-1}\right)$ High	24.440	19.720	22.230	21.500	21.930	11.130	9.761	19.110	16.040	28.210	29.790	23.590	12.437
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	120.50	84.90	118.00	76.13	183.70	153.10	146.40	236.50	155.70	221.90	177.70	157.10	236.50
Runoff (mm)	79	59	70	60	48	30	28	38	35	55	65	73	639
Rainfall (mm)	97	62	75	70	74	66	76	95	86	98	107	95	1001
Factors affecting flow regime: N													

Factors affecting flow regime: N Station type: VA

Grid reference: 38 (NJ) 532464 Level stn. (m OD): 81.80

Catchment area (sq km): 441.6 Max alt. (m OD): 775
runoff is 96% of previous mean rainfall 96\%

010002 Ugie at Inverugie
Measuring authority: NERPB First year: 1971
Hydrometric statistics for 1987

	JAN	FE8	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	6.846	7.081	9.460	7.540	3.123	3.097	3.801	2.598	2.278	7.900	5.080	4.063	5.239
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right.$): Peak	22.71	31.73	34.57	40.84	6.82	5.46	20.16	10.50	7.48	30.41	11.31	7.94	40.84
Runoff (mm)	56	53	78	60	26	25	31	21	18	65	41	33	508
Rainfall (mm)	59	74	118	77	37	60	101	64	58	117	54	42	861
Monthly and yearly statistics for previous record (Fob 1971 to Dec 1986)													
Mean Avg.	8.575	6.404	5.256	3.970	3.139	2.191	1.813	2.061	2.400	4.209	6.716	8.047	4.559
flows Low	2.285	1.999	1.593	1.246	1.542	0.913	0.904	0.764	0.791.	0.869	1.942	1.473	3.003
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \quad \mathrm{High}$	13.270	14.320	9.291	7.464	6.197	4.372	4.487	6.404	$7.092{ }^{\circ}$	8.075	18.350	13.280	6.445
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	61.04	83.56	36.61	30.50	31.64	13.00	-23.79	20.75	38.80	87.72	106.10	95.52	106.10
Runotf (mm)	71	48	43	32	26	17	15	17	19	35	54	66	443
Rainfall (mm)	84	43	64	50	52	54	57	62	84	80	95	86	811
Factors affecting flow regime: N Station type: VA										1987 runoff is 115% of previous mean rainfall 106%			

011001 Don at Parkhill

Hydrometric statistics for 1987

		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	25.490	23.230	28.660	39.000	15.240	14.740	19.690	11.320	8.019	16.590	17.010	15.900	19.574
$\left(m^{3} \mathbf{s}^{-1}\right)$:	Peak	66.79	49.56	76.58	87.42	23.25	32.25	90.21	18.20	10.36	64.60	53.38	27.83	90.21
Runoff (mm)		54	44	60	79	32	30	41	24	16	35	35	33	484
Rainfall (mm)		48	62	98	78	61	88	112	62	37	97	74	41	858

Monthly and yearly statistics for previous record (Dec 1969 to Dec 1986 -incomplete or missing months total 0.1 years)

Mean Avg.	32.290	29.260	28.250	25.410	17.600	12.820	11.130	12.680	12.110	20.120	23.780	29.410	21.207
flows Low	9.453	6.846	6.587	9.317	9.567	6.773	4.335	3.346	4.194	3.631	6.542	7.951	10.623
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	49.160	52.540	49.590	47.000	35.460	28.930	29.190	42.320	38.350	60.580	86.420	57.360	30.365
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	185.90	165.10	159.80	132.30	110.70	101.60	119.30	251.20	121.20	. 347.20	215.90	198.30	347.20
Runoff (mm)	68	56	59	52	37	26	23	27	25	42	48	62	526
Rainfall (mm)	101	55	72	63	65	59	68	75	79	82	91	86	896
Factors affecting	v regim									1987	ff is 92	of pre	s mean

Station type: VA

013007 North Esk at Logie Mill

Measuring authority: TRPB
Grid reference: 37 (NO) 699640 Level stn. (m OD): 10.60

Catchment area (sq km): 730.0 Max alt. (m OD): 939

Hydrometric statistics for 1987

		JAN	FEB	MAR	APR	MAY	JUN	Jut	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	22.220	15.990	21.970	25.260	8.243	12.190	11.130	6.651	8.147	27.500	16.340	17.440	16.090
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right):$	Peak	90.61	58.58	99.81	80.50	16.20	68.33	94.79	54.05	31.18	274.69	41.35 .	118.65	274.69
Runoff (mm)		82	53	81	90	30	43	41	24	29	101	58	64	695
Rainfall (mm)		70	56	101	70	55	108	91	73	67	157	70	77	995

Monthly and yearly statistics for previous record (Jan 1976 to Dec 1986 -incomplete or missing months total 0.1 years)

Mean Avg.	24.480	26.040	31.130	22.940	17.190	9.774	6.412	10.540	11.570	28.070	26.980	33.040	20.673
flows Low	13.770	9.795	16.450	9.071	6.179	3.684	2.993	2.548	3.622	4.099	5.281	20.790	15.314
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	48.590	45.670	42.750	34.750	36.420	24.300	18.060	35.810	30.540	80.410	91.170	59.880	24.926
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	240.80	88.31	169.10	111.40	180.80	271.90	133.00	199.20	196.00	97.64	462.10	398.10	462.10
Runotf (imm)	90	87	114	81	63	35	24	39	41	103	96	121	894
Rainfall (mm)	120	80	114	59	85	65	70	83	110	132	118	139	1175
Factors affecting Station type: VA	regim	SPI								1987	off is 78 nfall 85	\% of pre \%	ous mean

013008 South Esk at Brechin

1987

Moasuring authority: TRPB
First year: 1983
Hydrometric statistics for 1987

	JAN	FEB	MAR	APR	MÄY'	JUN	JUL
Flows Avg.	12.950	10.910	13.580	13.640	6.100	7.494	6.065
$\left(\mathrm{m}^{3} \mathbf{s}^{-1}\right)$: Peak	50.84	36.93	56.16	29.93	13.18	20.87	32.96
Runotf (mm)	71	54	74	72	33	40	33
Rainfall (mm)	80	53	110	68	59	111	80

Monthly and yearly statistics for previous record (Jan 1983 to Doc 1986

Mosn	Avg.	16.760	12.870	17.610	15.080	16.200	6.828	4.205	8.684
flows	Low	10.160	7.000	9.358	11.510	6.529	3.577	1.712	1.403

$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$	High	22.320	21.550	25.730

Pask flow ($\mathrm{m}^{3} \mathrm{~g}^{-1}$)
Runoff (mm)
Rainfall (mm)
Factors affecting flow regime:
Station type: VA
Grid reference: 37 (NO) 600596
Level stn. (m OD): 18.00

Catchment area (sq km): 490.0 Max alt. (m OD): 958

014001 Eden at Kemback

1987

Measuring authority: TRPB
Grid reference: 37 (NO) 415158

Hydrometric statistics for 1987

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	8.080	5.357	5.683	5.872	2.800	3.370	1.778	1.652	1.820	4.918	3.611	3.515	4.038
$\left(m^{3} \mathrm{~s}^{-1}\right):$ Peak	37.15	17.96	18.78	25.41	5.85	15.48	5.49	4.68	5.91	22.82	8.13	18.55	37.15
Runoff (mm)	70	42	50	50	24	28	15	14	15	43	30	31	414
Rainfall (mm)	77	50	82	75	53	104	63	75	57	109	40	60	845
Monthly and yearly statistics for previous record (Oct 1967 to Dec 1986)													
Mean Avg.	6.848	6.343	4.940	3.581	3.153	2.219	1.506	1.701	2.071	3.058	4.718	6.032	3.836
flows Low	2.546	2.170	1.408	1.199	1.406	1.077	0.914	0.799	0.749	0.833	0.830	1.731	1.446
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \quad \mathrm{High}$	10.890	19.460	8.096	7.243	8.335	6.651	3.390	6.038	11.260	6.880	14.440	12.390	5.593
Poak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	59.05	71.31	54.89	28.27	47.48	41.93	26.20	17.19	53.64	35.97	39.37	47.82	71.31
Runotf (mm)	60	50	43	30	27	19	13	15	17	27	40	53	394
Rainfall (mm)	84	53	63	43	69	53	58	58	77	73	77	79	787

Factors affecting flow regime: S GEI Station type: VA

Level stn. (m OD): 6.20

1987 runoff is 105% of previous mean rainfall 107\%

015011 Lyon at Comrie Bridge

Measuring authority: TRPB

First year: 1958
Hydrometric statistics for 1987

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	12.330	8.257	10.830	8.671	5.404	6.954	5.638	5.785	13.210	13.800	10.080	12.840	9.483
($\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	78.51	59.34	56.43	26.47	11.16	30.37	32.42	93.41	86.27	77.01	40.33	107.76	107.76
Runoff (mm)	84	51	74	57	37	46	39	40	88	94	67	88	765
Rainfall (mm)	65	106	158	57	69	101	84	105	257	198	140	251	1591
Monthly and yearly statistics for previous record (Jan 1958 to Dac 1986)													
Maan Avg.	17.060	13.110	13.710	10.020	9.963	6.619	6.039	7.470	10.310	14.790	15.060	16.100	11.689
flows Low	3.596	3.198	4.219	4.002	3.537	3.514	3.062	2.221	2.843	3.662	5.320	6.182	8.330
$\left(m^{3} s^{-1}\right)$ High	43.920	28.580	37.440	17.100	24.520	18.870	20.800	28.940	28.120	29.930	30.550	32.780	19.870
Pook flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	271.20	149.10	254.70	62.02	124.86	56.93	84.85	128.70	131.40	160.90	270.40	198.00	271.20
Runaff (mm)	117	82	94	86	68	44	41	51	68	101	100	110	943
Rainfall (mm)* $\cdot(1971-1986)$	262	120	188	82	116	91	99	115	185	212	258	247	1975
Foctors affecting flow regime: H Station type: VA										1987 runoff is $\mathbf{8 1 \%}$ of previous mean rainfall 81\%			

Grid reference: 27 (NN) 786486
Level stn. (m OD): 92.10

Catchment area (sq km): 391.1 Max alt. (m OD): 1215

016003 Ruchill Water at Cultybraggan

Moasuring authority: TRPB
First year: 1970
Hydrometric statistics for $\mathbf{1 9 8 7}$

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	4.006	3.459	5.855	2.986	0.866	3.147.	0.933	2.532	5.865	6.591	4.799	6.467	3.959
$\left(\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}\right)$: Peak	48.07	48.00	100.96	22.16	6.86	92.78	10.21	111.12	48.41	77.35	57.87	86.93	111.12
Runoff (mm)	108	84	158	78	23	82	25	68	153	177	125	174	1255
Painfall (mm)	86	113	182	78	68	130	67	138	214	223	143	236	1678
Monthly and yearly statistics for previous record (Oct 1970 to Dec 1986-incomplete or missing months total 0.2 years)													
Mean Avg.	7.656	5.645	6.286	2.911	3.059	1.890	1.650	2.358	4.758	6.072	8.068	7.976	4.860
flows Low	2.263	1.050	1.802	0.758	0.304	0.402	0.239	0.164	0.345	0.789	2.306	1.630	3.281
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \quad \mathrm{High}$	15.240	9.995	11.100	5.156	10.120	4.562	4.812	9.246	10.260	12.130	16.550	12.350	6.586
Poak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	250.40	130.20	165.30	61.27	165.00	221.30	160.00	143.00	227.30	136.60	183.30	174.50	250.40
Runoff (mm)	208	139	189	76	82	49	44	63	124	163	210	215	1542
Rainfall (mm)	234	144	173	85	128	96	112	128	202	206	252	241	2001
Factors affecting flow regime: \mathbf{N} Station type: VA										1987 runoff is 81% of previous mean rainfall 84%			

016004 Earn at Forteviot Bridge

Measuring authority: TRPB
First year: 1972
Hydrometric statistics for 1987

	Jan	FEB	MAR	APA	MAY	JUN	JUL.	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	36.710	22.350	32.540	21.630	9.654	14.250	6.390	10.310	26.090	36.390	29.590	28.040	22.829
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	131.88	82.68	176.14	52.59	16.73	96.79	18.78	132.65	83.95	111.64	101.25	137.50	176.14
Runoff (mm)	126	69	111	72	33	47	22	35	86	125	98	96	921
Rainfall (mm)	72	77	135	66	52	116	66	109	140	164	92	154	1243
Monthly and yearly statistics for previous record (Oct 1972 to Dec 1986 -incomplete or missing months total 0.3 years)													
Mean Avg.	45.630	35.510	35.990	19.600	15.910	9.932	7.643	10.950	19.140	30.270	43.940	47.090	26.775
flows Low	19.630	16.070	12.310	8.389	4.906	4.095	2.658	2.456	5.302	5.984	15.120	15.060	15.508
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	85.510	58.640	58.620	33.790	47.200	20.070	18.350	46.660	55.680	59.340	89.750	79.160	33.594
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	277.50	214.60	194.10	106.00	155.20	114.90	142.30	169.70	271.80	241.20	328.60	238.69	328.60
Runoff (mm)	156	111	123	65	54	33	26	37	63	104	146	161	1080
Rainfall (mm)	164	95	136	54	91	70	80	97	158	146	179	173	1443
Factors affecting flow regime: $\mathbf{P H}$ Station type: VA										1987 runoff is 85% of previous mean rainfall 86%			

Grid reference: 37 (NO) 043184 Level stn. (m OD): 7.80

Catchment area (sq km): 782.2
Max alt. (m OD): 985

Max all. (m OD):

017001 Carron at Headswood

Measuring authority: FRPB
First year; 1969
Hydrometric statistics for 1987

	JAN	FEB	MAA	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	3.736	2.172	3.557	2.567	0.732	1.831	0.704	1.230	3.232	3.831	2.464	3.991	2.504
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	39.23	14.16	53.71	16.84	1.54	33.74	1.19	27.60	31.10	16.58	11.77	51.92	53.71
Runoff (mm)	82	43	78	54	16	39	15	27	68	84	52	87	646
Rainfall (mm)	96	95	159	81	62	120	58	125	170	165	105	190	1426
Monthly and yearly statistics for previous record (Aug 1969 to Dec 1986)													
Mesn * Avg.	5.592	3.630	3.503	1.881	1.619	1.205	1.081	1.462	3.052	3.841	5.874	5.584	3.193
flows Low	1.943	1.018	1.232	0.807	0.590	0.580	0.549	0.557	0.467	0.424	1.412	1.084	2.108
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	10.890	7.576	7.463	3.165	5.724	2.834	4.650	8.092	16.720	10.270	9.759	10.470	4.575
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	130.30	63.20	92.83	43.62	51.35	31.82	65.38	61.72	124.30	124.80	105.80	147.90	147.90
Runoff (mm)	122	72	77	40	35	26	24	32	65	84	124	122	824
Rainfall (mm)	169	97	129	70	93	85	86	104	156	159	195	172	1515
Factors affecting flow regime: S E $\quad 1987$ runoff is 78% of previous mean													

Station type: VA

Grid reference: $\mathbf{2 6}$ (NS) 832820 Level stn. (m OD): 17.10

Catchment area (sq km): 122.3
Max alt. (m OD): 570 rainfall 94%

017002 Leven at Leven

Measuring authority: FRPB
First year: 1969

Grid reference: 37 (NO) 369006
Level stn. (m OD): 4.10

Catchment area (sq km): 424.0

Hydrometric statistics for 1987

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	0	NO	OEC	Yea
Flows Avg.	17.480	10.920	9.617	9.315	3.392	6.672	2.817	3.102	4.543	9.443	8.129	6.660	7.674
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	53.54	27.29	27.03	28.67	6.44	21.35	- 5.22	9.90	10.54	32.00	13.56	28.78	53.54
Runoff (mm)	110	62	61	57	21	41	18	20	28	60	50	42	569
Rainfall (mm)	87	65	102	66	50	116	62	90	80	123	52	83	976
Monthly and yearly statistics for previous record (Aug 1969 to Dec 1986)													
Mean Avg.	10.890	9.737	7.038	4.733	3.703	2.967	1.775	2.991	3.718	5.699	8.582	11.080	6.060
flows Low	4.786	2.882	1.543	1.413	2.012	1.166	0.902	0.820	0.970	0.795	0.972	3.462	2.269
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	20.700	22.660	11.240	9.712	12.050	7.044	5.300	11.840	21.040	13.170	26.510	19.200	9.294
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	51.59	128.00	39.19	26.41	44.54	26.93	28.83	25.69	84.25	40.67	56.76	62.69	128.00
Runoff (mm)	69	56	44	29	23	18	1.1	19	23	36	52	70	451
Rainfall (mm)	93	57	74	48	65	63	63	69	92	84	102	98	908

Factors affecting flow regime: SR EI
Station type: VA

1987 runoff is 126% of previous mean rainfall 107%

018003 Teith at Bridge of Teith

Measuring authority: FRPB
First year: 1957
Hydrometric statistics for 1987

		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	23.780	17.210	29.160	16.010	5.831	11.520	7.062	11.550	25.930	31.800	25.310	30.260	19.619
($\mathrm{m}^{3} \mathrm{~s}^{-1}$):	Peak	80.44	65.38	112.15	43.91	9.70	- 60.23	14.81	93.25	84.09	108.03	82.46	149.43	149.43
Runoff (mm)		123	80	151	80	30	58	37	60	130	164	127	156	1196
Rainfall (mm)		91	125	196	67	73	125	75	150	237	237	155	265	1796

Monthly and yearly statistics for previous record (Jan 1957 to Dec 1986 -incomplete or missing months total 0.1 years)

018005 Allan Water at Bridge of Allan

Measuring authority: FRPB
First year: 1971
Hydrometric statistics for 1987

	JAN	FEB	MAR	APR	MȦY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	10.020	6.530	8.829	5.460	2.140	4.517	1.738	2.871	5.565	6.651	5.899	7.776	5.666
$\left(m^{3} \mathrm{~s}^{-1}\right)$: Poak	66.47	42.61	79.21	23.41	6.22	58.10	5.27	57.55	34.93	32.39	25.76	63.11	79.21
Runoff (mm)	128	75	113	67	27	56	22	37	69	85	73	99	850
Rainfals (mm)	85	75	133	72	53	116	60	104	119	138	80	145	1180
Monthly and yearly statistics for previous record (Jul 1971 to Dec 1986)													
Mean Avg.	10.710	8.048	8.588	4.446	4.096	2.603	1.895	2.816	4.969	7.034	9.710	10.520	6.283
flows Low	4.751	3.631	3.152	1.654	1.189	0.945	0.726	0.648	0.907	0.971	3.642	3.709	4.269
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{High}$.	18.550	16.610	18.170	7.717	15.430	5.423	6.309	12.390	14.600	12.420	17.760	17.140	9.090
Poak flow ($\mathrm{m}^{3} \mathrm{~s}^{-\mathrm{t}}$)	98.20	67.84	83.43	52.05	72.11	55.39	66.37	67.48	105.60	111.00	97.89	112.60	112.60
Runoff (mm)	137	94	110	55	52	32	24	36	61	90	120	134	944
Rainfall (mm)	143	83	114	59	85	70	76	86	132	129	151	148	1276
Factors affecting flow regime: I Station type: VA										1987 runoff is 90% of previous mean rainfall $\mathbf{9 2 \%}$			

Catchment area ($\mathrm{sq} \mathbf{~ k m}$): 210.0 Max att. (m OD): 633

Grid reference: 26 (NS) 786980
Level stn. (m OD): 11.20
rainfall 92%

020001 Tyne at East Linton

Moasuring authority: FRPB
First year: 1961
Hydrometric statistics for 1987

		JAN	FEB	MAR	APR	MAY	JUN
Flows	Avg.	5.658	3.044	4.649	5.303	1.701	2.010
($\left.\mathrm{m}^{3} \mathrm{~s}^{-1}\right):$	Pask	29.27	10.10	42.81	30.42	2.99	9.50
Runoff (mm)	49	24	41	45	15	17	
Rainfall (mm)	48	42	84	68	50	83	

Catchment area (sq km): 307.0 Max alt. (m OD): 528

Grid reference: 36 (NT) 591768
Level stn. (m OD): 16.50

Monthly and yearly statistics for previous record (Jan 1961 to Dec 1986)

Mean	Avg.	4.663	3.835	4.042	2.865	2.526	1.510	1.279	1.647	1.868	2.181	3.701	3.770	2.820
flows	Low	1.032	0.783	0.531	0.644	0.926	0.586	0.500	0.468	0.461	0.450	0.523	0.582	0.709
$\left(m^{3} \mathrm{a}^{-1}\right)$	High	11.540	8.624	8.789	7.824	11.600	6.142	4.393	9.855	8.490	7.000	11.210	8.405	4.146
Peak flow	$\mathrm{m}^{3} \mathrm{~s}^{-1}$	93.02	39.39	66.17	50.88	119.70	59.12	70.18	112.70	90.84	82.71	127.50	52.02	127.50
Runoff (mm)		41	31	35	24	22	13	11	14	16	19	31	33	290
Rainfall (mm)		64	40	58	47	61	53	60	76	70	67	73		

Factors affecting flow regime: El
Station type: VA

1987 runoff is 117% of previous mean rainfall 109\%

021006 Tweed at Boleside

Moasuring outhority: TWRP
First year: 1961
Hydrometric statistics for 1987

		JAN	FEB	MAR	APA	MAY	JUN	Jul.	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	59.740	25.260	41.850	40.420	12.710	27.000	22.860	27.720	28.510	55.230	37.990	43.450	35.228
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$:	Peak	293.73	65.18	246.84	96.77	17.96	100.48	98.00	195.95	176.92	403.91	97.30	201.99	403.91
Runoff (mm)		107	41	75	70	23	47	41	50	49	99	66	78	743
Rainfall (mm)		72	58	126	69	60	110	107	123	107	154	90	128	1204

Monthly and yearly statistics for previous record (Oct 1961 to Dec 1986)

Moan Avg.	54.090	43.120	43.580	29.450	25.440	16.290	14.190	21.640	30.210	40.460	51.820	53.560	35.300
flows Low	14.300	10.480	14.930	9.896	7.605	7.413	6.362	5.012	4.572	4.435	11.570	22.450	18.577
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{High}$	110.700	81.860	101.000	57.330	64.330	32.820	40.970	81.400	95.510	96.720	119.800	100.400	44.323
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	678.60	483.90	470. 10	248.90	182.80	126.00	342.60	444.30	496.30	1019.00	486.30	571.90	1019.00
Runotf (mm)	97	70	78	51	45	28	25	39	52	72	90	96	743
Rainfall (mm)	122	78	100	69	89	78	84	104	120	122	129	120	1215
Factors affecting Station type: VA	w regim	S P								$1987 \text { rur }$	off is 100	\% of prev \%	ious mean

Station type: VA

Grid reference: 36 (NT) 498334
Level stn. (m OD): 94.50

Catchment area (sq km): 1500.0 Max alt. (m OD): 839

021012 Teviot at Hawick

Measuring authority: TWRP
First year: 1963
Hydrometric statistics for 1987

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	10.970	6.895	10.890	9.818	1.986	5.547	6.053	6.951	5.737	14.980	10.730	11.950	8.542
$\left(m^{3} a^{-1}\right):$ Peak	85.90	51.41	150.20	71.87	5.11	37.86	48.17	103.07	35.69	166.59	71.97	164.42	166.59
Runoff (mm)	91	52	90	79	16	45	50	58	46	124	86	99	836
Rainfall (mm)	74	60	130	68	52	109	115	120	91	160	102	131	1212
Monthly and yearly statistics for previous record (Oct 1963 to Dec 1986)													
Mean Avg.	13.370	10.200	9.735	5.988	5.882	4.097	3.107	4.527	6.270	9.889	12.950	13.700	8.306
flows Low	6.981	4.234	2.991	2.189	1.296	1.099	0.751	0.734	0.915	0.816	2.555	4.522	4.183
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{High}$	28.560	18.510	20.250	13.030	17.340	10.500	11.020	19.120	18.960	25.690	29.930	25.460	10.959
Pook flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	185.90	228.60	142.00	86.03	117.79	89.40	148.30	178.60	185.60	273.40	188.60	210.70	273.40
Runaff (mm)	111	77	81	48	49	33	26	38	50	82	104	114	811
Alainfa! (mm)	116	72	100	64	92	79	83	98	108	116	127	124	1179
Factors offecting flow regime: N Stetion type: VA										1987 runoff is 103% of previous mean rainfall 103\%			

021018 Lyne Water at Lyne Station

1987

Measuring authority: TWRP
First year:. 1968
Hydrometric statistics for 1987

	JaN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	5.610	2.744	3.506	3.133	1.204	2.305	2. 106	2.610	2.439	4.787	2.864	4.173	3.123
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	21.40	8.34	11.65	6.73	1.93	9.05	13.63	11.73	8.36	24.95	6.76	19.40	24.95
Runoff (mm)	86	38	54	46	18	34	32	40	36	73	42	64	564
Rainfall (mm)	59	49	94	50	53	109	96	115	83	122	59	97	986
Monthly and yearly statistics for previous record (Oct 1968 to Dec 1986)													
Mean Avg.	4.798	4.062	3.595	2.618	1.830	1.404	1.151	1.333	1.989	2.787	4.416	4.446	2.863
flows Low	1.682	2.158	1.357	1.127	0.882	0.787	0.713	0.605	0.591	0.597	0.977	1.618	1.428
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	8.774	8.698	7.325	5.028	4.104	2.653	3.884	5.364	10.440	5.684	8.611	8.374	3.704
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-\dagger}$)	47.50	41.55	27.65	21.46	17.36	16.46	31.72	20.77	58.74	40.49	53.60	37.98	58.74
Runoff (mm)	73	57	55	39	28	21	18	20	29	43	65	68	516
Rainfall (mm)	91	55	80	53	65	62	67	73	96	95	104	91	932

Factors affecting flow regime: S P
Station type: VA

Grid reference: 36 (NT) 209401
Level stn. (m OD): 168.00

Catchment area (sq km): 175.0
Max alt. (m OD): 592

1987 runoff is 109% of previous mean rainfall 106\%

021022 Whiteadder Water at Hutton Castle

Measuring authority: TWRP
First year: 1969
Hydrometric statistics for 1987

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	13.860	5.708	11.090	15.860	3.927	6.739	5.060	8.108	4.209	8.974	9.037	8.226	8.400
($\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	69.01	15.97	75.30	103.06	10.44	75.82	55.78	181.10	8.52	70.71	47.96	63.43	181.10
Runoff (mm)	74	27	59	82	21	35	27	43	22	48	47	44	528
Rainfall (mm)	57	37	98	91	63	90	81	122	51	100	74	58	922
Monthly and yearly statistics for previous record (Sep 1969 to Dec 1986 -incompleto or missing months total 0.1 years)													
Mean Avg.	11.280	10.560	9.845	7.300	5.582	3.477	2.201	2.820	3.148	4.738	7.833	8.777	6.444
flows Low	2.143	1.557	1.108	1.325	2.113	1.403	1.315	1.162	0.990	1.001	1.100	1.347	4.540
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	25.990	27.300	19.220	15.700	24.050	8.835	6.626	8.184	16.360	16.670	27.680	20.660	8.847
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	265.90	160.90	133.90	88.04	226.20	64.98	84.85	86.71	105.80	190.00	279.80	108.10	279.80
Runoff (mm)	60	51	52	38	30	18	12	15	16	25	40	47	404
Rainfall (mm)	82	52	74	51	67	58	56	68	70	69	76	73	796
Factors affecting flow regime: S P										1987 runoff is 130% of previous mean rainfall 116\%			

Monthly and yearly statistics for previous record (Sep 1969 to Dec 1986 -incomplete or missing months total 0.1 years)

Factors affecting flow regime: S P
Station type: CC

Grid reference: 36 (NT) 881550
Level stn. (m OD): 29.00

Catchment area (sq km): 503.0 Max alt. (m OD): 533

022006 Blyth at Hartford Bridge

Measuring authority: NWA
First year: 1966
Hydrometric statistics for 1987

	JAN	FEB	MAR	APR	MAY	JUN	JuL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	5.470	3.936	4.291	6.043	0.391	0.547	1.250	1.349	0.768	3.453	5.290	3.289	3.006
$\left(\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}\right)$: Pesk	42.21	32.48	33.36	43.40	0.67	1.05	12.95	8.51	4.31	32.80	45.65	24.91	45.65
Runoff (mm)	54	35	43	58	4	5	12	13	7	34	51.	33	351
Rainfall (mm)	69	51	77	74	39	84	88	83	60	83	81	50	839
Monthly and yearly statistics for previous record (Oct 1966 to Dec 1986 --incomplete or missing months total 0.4 years)													
Mean Avg.	4.669	3.721	3.763	2.217	1.503	0.649	0.360	0.656	0.771	1.559	2.417	3.676	2.159
flows. Low	0.587	0.398	0.245	0.359	0.212	0.177	0.096	0.067	0.107	0.111	0.162	0.274	0.537
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	10.150	7.997	11.090	6.281	4.948	1.895	1.242	2.963	2.695	9.680	5.735	12.500	3.410
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-9}$)	146.60	59.52	150.20	80.31	38.86	31.54	7.60	61.09	30.02	56.84	69.20	122.30	150.20
Runoff (mm)	46	34	37	21	15	6	4	7	7	15	23	37	253
Rainfall (mm)	67	44	83	44	58	52	53	70	65	59	65	65	705

Factors affecting flow regime: E
Station type: FV

Grid reference: 45 (NZ) 243800
Level stn. (m OD): 24.60
Catchment area (sq km): 269.4 Max alt. (m OD): 259

1987 runoff is 139% of previous mean rainfall 119\%

023001 Tyne at Bywell

Mesisuring authority: NWA
First year: 1956
Hydrometric statistics for 1987

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	78.180	61.240	64.080	57.290	13.940	30.390	42.500	29.890	39.510	84.100	58.140	60.790	51.671
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	528.53	567.38	524.08	302.68	38.52	128.97	525.67	188.30	162.87	803.19	424.93	826.59	826.59
Runoff (mm)	96	68	79	68	17	36	52	37	47	104	69	75	749
Rainfall (mm)	74	77	127	69	51	118	115	98	93	149	102	101	1174
Monthly and yearly statistics for previous record (Oct 1956 to Dec 1986-incomplate or missing months total 0.2 yaars)													
Mean Avg.	73.310	56.460	55.870	38.480	26.120	18.230	18.140	29.880	35.420	46.120	63.290	69.390	44.191.
flows Low	19.220	14.360	20.150	8.461	7.246	4.910	5.199	3.403	4.155	4.727	18.090	23.080	25.849
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	150.800	98.140	150.900	75.620	60.650	50.010	46.230	77.360	106.600	147.200	147.000	112.000	63.834
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	1525.00	922.10	1472.00	905.60	476.30	440.30	758.90	1561.48	1243.00	1586.00	1382.00	1317.00	1586.00
Runoff (mm)	90.	63	69	46	32	22	22	37	42	57	75	85	641
Rainfall (mm)	103	68	84	63	70	69	80	97	92	93	106	105	1030

Factors affecting flow regime: S
Station type: VA
Grid reference: 45 (NZ) 038617
Level stn. (m OD): 14.00
Catchment area (sq km): 2175.6 Max alt. (m OD): 893

023007 Derwent at Rowlands Gill

Measuring suthority: NWA
First year: 1962
Hydrometric statistics for 1987

	JAN	FEB	MAR	APR ${ }^{*}$	MAY ${ }^{\text {M }}$	JUN	JUL	AUG	SEP	OCT	Nov	DEC	Year
Flows Avg.	4.749	2.237	2.609	7.101	1.256	1.847	2.042	2.007	1.575			2.657	
$\left(\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}\right)$: Poak	20.83	10.49	13.48	31.66	2.19	5.89	20.83	17.28	3.48			7.68	
Runoff (mm)	53	22	29	76	14	20	23	22	17			29	
Rainfall (mm)	64	44	90	73	45	108	103	92	69	124	101	44	957
Monthly and yearly statistics for previous record (Nov 1962 to Dec 1986-incomplate or missing monthe total 0.1 years)													
Moan Avg.	3.642	3.728	4.662	3.334	2.403	1.633	1.320	1.614	1.689	1.994	3.042	3.176	2.681
flows Low	1.148	0.911	0.749	1.149	0.973	0.844	0.796	0.656	0.626	0.791	0.903	0.882	1.119
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) H lgh	7.320	10.490	13.570	7.760	7.851	4.222	4.087	4.667	7.264	8.971	11.780	7.826	5.573
Pook flow ($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$)	54.99	34.46	93.73	70.25	36.88	45.91	19.10	60.69	36.41	58.87	97.98	63.02	97.98
Runoff (mm)	40	38	52	36	27	17	15	18	18	22	33	35	350
Rainfall (mm)	82	59	76	61	65	61	58	84	73	66	88	78	851
Factors affecting flow regime: P Station type: CC										1987 runoff is \% of previous mean rainfall 112\%			

Factors affecting flow regime: P
Station type: CC

Grid reference: 45 (NZ) 168581
Level stn. (m OD): 29.30

Catchment area (sq km): 242.1 Max alt. (m OD): 560
rainfall 112\%

024004 Bedburn Beck at Bedburn

Moasuring outhority: NWA
First yoar: 1959
Grid reference: 45 (NZ) 118322 Level stn. (m OD): 109.00
Hydrometric statistics for 1987

		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	2.211	$1.372{ }^{\text {. }}$	1.690	2.946	0.429	1.102	1.062	0.524	0.708	2.226	2.222	1.361	1.488
($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$):	Poak	7.65	9.00	7.30	14.80	1.02	4.11	9.29	3.35	4.89	24.68	15.48	7.32	24.68
Runoff (mm)		78	44	60	102	15	38	38	19	25	80	77	49	626
Rainfall (mm)		61	48	100	64	44	101	99	56	72	140	101	60	946

Monthly and yearly statistics for previous record (Oct 1959 to Dec 1986 -incomplete or missing months total 0.2 years)

Mean Avg.	2.098	1.750	1.851	1.344	0.937	0.549	0.404	0.573	0.589	1.115	1.534	1.796	1.210
flows Low	0.515	0.471	0.436	0.440	0.270	0.196	0.152	0.120	0.157	0.146	0.244	0.444	0.667
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	4.341	4.011	5.128	2.986	2.231	1.524	1.056	1.465	1.790	4.346	3.722	4.488	1.633
Paak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	34.67	39.16	38.51	35.09	24.06	21.66	21.92	46.19	32.30	38.06	34.26	42.93	46.19
Runotf (mm)	75	57	66	47	34	19	14	21	20	40	53	64	510
Rainfall (mm)	91	62	74	59	66	58	61	BO	73	78	91	87	880
Factors affecting	v regim									987 ru	is 12	p	s mean

Station type: CC
Station type: CC
Catchment area (sq km); $\mathbf{7 4 . 9}$ Max alt. (m OD): 531

1987 runoff is 123% of previous mean rainfall 108\%

024009 Wear at Chester le Street

Measuring authority: NWA
First year: 1977
Hydrometric statistics for 1987

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	27.130	14.690	21.320	26.160	5.971	11.730	11.790	8.130	9.332	27.060	27.700	14.540	17.129
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right):$ Peak	106.60	112.59	100.59	167.42	9.38	43.10	110.18	85.75	58.01	235.20	254.14	92.44	254.14
Runoff (mm)	72	35	57	67	16	30	31	22	24	72	71	39	536
Rainfall (mm)	55	46	101	66	47	107	96	67	70	127	97	53	932
Monthly and yearly statistics for previous record (Sep 1977 to Nov 1986)													
Mean Avg.	24.480	20.840	26.680	17.840	11.950	7.706	4.919	7.647	6.341	9.724	17.710	25.380	15.089
flows Low	15.780	10.210	14.090	5.489	4.386	3.945	2.948	3.335	3.777	4.834	5.022	13.230	12.556
($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$) High	40.980	37.620	64.200	36.800	30.170	14.650	9.731	19.300	12.080	26.170	35.820	50.640	19.785
Poak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	309.80	248.20	349.60	277.60	157.60	200.60	82.95	354.39	105.55	273.40	215.20	353.10	354.39
Punoff (mm)	65	51	71	46	32	20	13	20	16	26	46	67	472
Rainfall (mm)	91	53	92	57	68	66	47	88	69	75	94	107	907

Factors affocting flow regime: G Station type: FV

Grid reference: 45 (NZ) 283512
Level stn. (m OD): 5.50
Catchment area (sq km): 1008.3 Max alt. (m OD): 747

1987 runoff is 113% of previous mean rainfall 103\%

025006 Greta at Rutherford Bridge

Maasuring authority: NWA
First yoar: 1960
Hydrometric statistics for 1987

		JAN	FEB	MAR	APR
	Flows	Avg,	2.546	1.982	3.480
$\left(\mathrm{~m}^{3}-1\right)$:	Poak	28.11	25.16	37.54	32.65
Runoff (mm)	79	56	108	82	
Rainfall (mm)		60	69	128	71

Grid reference: 45 (NZ) 034122
Level sin. (m OD): 223.00

Catchment area (sq km): 86.1 Max alt. (m OD): 596

Monthly and yearly statistics for previous record (Oct 1960 to Dec 1986)

Mean Avg.	3.766	2.609	3.275	2.168	1.385	0.864	0.619	1.407	1.529	2.448	3.421	3.647	2.262
flows Low	0.291	0.280	0.842	0.375	0.148	0.130	0.092	0.098	0.146	0.195	0.951	0.944	1.447
$\left(\mathrm{m}^{3} \mathrm{~B}^{-1}\right) \quad \mathrm{High}$	7.155	6.881	8.926	4.682	3.951	2.502	2.013	4.107	4.067	6.665	6.878	6.406	2.926
Poak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	118.00	88.63	79.00	70.36	56.35	51.74	52.83	210.40	109.00	93.85	68.81	73.77	210.40
Runoff (mm)	117	74	102	65	43	26	19	44	46	76	103	113	829
Rainfall (mm)	121	80	99	76	80	71	69	100	95	102	116	121	1130
Factors affecting flow regime: Station typo: CC										1987 runoff is 98% of previous mean rainfall 100\%			

025019 Leven at Easby

Measuring authority: NWA
First year: 1971
Hydrometric statistics for 1987

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	Nov	DEC	Year
Flows Avg.	0.289	0.261	0.305	0.296	0.115	0.165	0.181	0.427	0.169	0.373	0.262	0.201	0.254
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	0.95	1.48	1.03	1.09	0.21	0.68	2.25	15.53	2.51	3.50	1.85	0.51	15.53
Runoff (mm)	52	43	55	52	21	29	33	77	30	67	46	36	541
Rainfall (mm)	61	61	91	58	50	103	90	141	57	137	77	39	965
Monthly and yearly statistics for previous record (May 1971 to Dec 1986)													
Mean Avg.	0.323	0.301	0.302	0.260	0.191	0.133	0.106	0.120	0.125	0.167	0.200	0.278	0.208
flows Low	0.115	0.100	0.076	0.085	0.072	0.075	0.044	0.039	0.059	0.063	0.092	0.132	0.143
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{High}$	0.630	0.729	0.821	0.771	0.544	0.239	0.188	0.364	0.532	0.556	0.507	0.543	0.305
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	3.14	4.38	5.68	9.36	7.56	1.99	3.14	3.98	12.83	3.08	4.01	7.66	12.83
Runoff (mm)	58	50	55	46	35	23	19	22	22	30	35	50	445
Rainfall (mm)	83	48	73	60	63	59	60	76	75	74	76	81	828
Factors affecting flow regime: N Station type: FV										1987 runoff is 122% of previous mean rainfall 117\%			

025020 Skerne at Preston le Skerne

1987

Measuring authority: NWA
Grid reference: 45 (NZ) 292238
Level stn. (m OD): 67.50
Catchment area (sq km): 147.0
First year: 1972
Hydrometric statistics for 1987

	JJAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	1.702	0.917	1.624	1.598	0.280	0.676	1.125	0.451	0.487	1.660	1.873	1.166	1.130
($\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	13.85	4.03	8.43	11.42	0.47	4.15	15.92	2.97	5.90	15.89	17.04.	5.83	17.04
Runoff (mm)	31	15	30	28	5	12	21	8	9	30	33	21	243
Rainfall (mm)	33	36	80	54	36	100	93	54	51	101	67	41	746
Monthly and yearly statistics for previous record (Dec 1972 to Dec 1986 -incomplete or missing months total 0.3 years)													
Mean Avg.	1.602	1.263	1.408	1.017	0.748	0.461	0.343	0.415	0.349	0.776	0.810	1.435	0.885
flows Low	0.486	0.481	0.293	0.247	0.199	0.112	0.121	0.086	0.082	0.099	0.204	0.553	0.558
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	3.376	2.731	4.824	2.734	2.106	1.004	0.760	0.943	0.745	4.290	1.962	4.658	1.510
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	20.08	12.93	26.58	19.20	11.93	16.54	9.23	13.69	9.33	21.71	17.40	24.82	26.58
Runoff (mm)	29	21	26	18	14	8	6	8	6	14	14	26	190
Rainfall (mm)	61	36	57	45	55	53	44	65	62	54	57	61	650

Factors affecting flow regime: E
Station type: VA
1987 runoff is 128% of previous mean rainfall 115\%

026003 Foston Beck at Foston Mill

Measuring authority: YWA
First year: 1959
Hydrometric statistics for 1987

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	0.649	0.900	1.030	1.264	1.106	0.723	0.535	0.397	0.318	0.324	0.333	0.383	0.664
$\left(m^{3} s^{-1}\right)$: Peak	0.87	1.17	1.49	1.55	1.34	0.93	0.79	0.45	0.37	0.57	0.51	0.56	1.55
Runoff (mm)	30	38	48	57	52	33	25	19	14	15	15	18	365
Rainfsll (mm)	42	51	76	62	42	81	49	62	49	102	55	38	709
Monthly and yearly statistics for previous record (Oct 1959 to Dec 1986-incomplate or missing months total 0.6 years)													
Mean Avg.	0.897	1.181	1.097	0.980	0.850	0.668	0.523	0.412	0.342	0.328	0.430	0.607	0.690
flows Low	0.199	0.183	0.174	0.150	0.174	0.110	0.112	0.105	0.101	0.125	0.148	0.195	0.155
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \quad \mathrm{High}$	2.224	2.332	2.242	2.070	1.708	1.231	0.882	0.675	0.567	0.612	1:845	2.379	1.282
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	2.89	3.31	2.69	2.70	1.95	2.01	1.47	0.99	0.80	1.22	2.49	2.86	3.31
Runoff (mm)	42	50	51	44	40	30	25	19	16	15	19	28	381
Rainfall (mm)	73	49	56	53	56	51	54	66	59	66	76	77	736

Factors affecting flow regime: N
Station type: TP
Grid reference: 54 (TA) 093548
Level stn. (m OD); 6.40
Catchment area (sq km): 57.2
Max alt. (m OD): 164

1987 runoff is 96% of previous mean rainfall 96%

026005 Gypsey Race at Boynton

1987

Measuring authority: YWA
First year: 1981
Hydrometric statistics for 1987

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg,	0.162	0.234	0.433	0.637	0.529	0.304	0.158	0.052	0.013	0.020	0.017	0.018	0.215
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	0.23	0.33	0.54	0.74	- 0.72	0.44	0.22	0.09	0.02	0.07	0.03	0.03	0.74
Runoff (mm)	2	2	5	7	6	3	2	1	0	0	0	0	28
Rainfall (mm)	39	51	77	60	43	80	54	69	47	105	52	40	717
Monthly and yearly statistics for previous record (Feb 1981 to Dec 1986)													
Mean Avg.	0.297	0.493	0.466	0.609	0.616	0.386	0.222	0.107	0.053	0.022	0.019	0.049	0.277
flows Low	0.071	0.120	0.116	0.118	0.225	0.132	0.104	0.026	0.014	0.004	0.009	0.020	0.143
$\left\langle\mathrm{m}^{3} \mathrm{~s}^{-1}\right\rangle$ High	0.475	0.887	0.872	1.585	1.217	0.623	0.351	0.184	0.098	0.055	0.033	0.082	0.349
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	0.72	1.00	1.86	1.87	1.58	0.86	0.60	0.28	0.29	0.14	0.08	0.27	1.87
Runoff (mm)	3	5	5	7	7	4	2	1	1	0	0	1	36
Rainfal (mm)	81	39	81	63	64	36	51	72	73	57	82	71	770
Factors affecting flow regime: G I Station type: FV										1987 runoff is 77% of previous mean rainfall 93\%			

027007 Ure at Westwick Lock

1987
Measuring authority: YWA
Grid reference: 44 (SE) 356671
Level stn. (m OD): 14.20
Catchment area (sq km): 914.6
Max alt. (m OD): 713
Hydrometric statistics for 1987

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	Nov	DEC	Year
Flows Avg.	24.790	17.140	26.340	25.370	5.315	14.710	11.760	9. 140	16.030	34.650	27.830	25.710	19.899
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	140.90	118.70	212.40	97.41	9.81	70.25	76.08	59.00	133.80	167.20	148.70	169.10	212.40
Runotf (mm)	73	45	77	72	16	42	34	27	45	101	79	75	687
Rainfall (mm)	47	63	120	69	42	119	84	75	95	158	101	103	1076

Monthly and yearly statistics for previous record (Oct 1958 to Dec 1986 -incomplete or missing months total 0.5 years)

Mean	Avg.	33.880	28.100	27.090	20.450	13.460	8.754	7.611	11.980	13.790	21.430	29.390	33.040	20.704
flows	Low	4.009	3.886	10.250	5.674	3.831	3.024	2.202	1.287	. 1.450	5.856	7.078	11.330	12.946
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$	High	59.590	84.770	60.330	40.980	29.500	21.400	16.180	31.600	33.030	68.480	65.010	57.370	27.066
Pook flow	${ }^{3} \mathrm{~s}^{-1}$	537.90	307.30	413.10	263.30	170.80	161.50	144.50	271.90	296.20	266.50	288.80	304.10	537.90
Runoff (mm)		99	75	79	58	39	25	22	35	39	63	83	97	714
Rainfall (mm		121	78	95	79	77	71	74	92	97	104	123	126	1137

Factors affecting flow regime: S P
Station type: B VA
1987 runoff is 96% of previous mean rainfall 95\%

027025 Rother at Woodhouse Mill

Measuring authority: YWA
First year: 1961
Hydrometric statistics for 1987

		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	Nov	DEC	Year
Flows	Avg.	8.294	3.796	6.404	7.933	2.138	6.023	2.504	2.037	2.228	7.601	4.748	3.948	4.804
$\left(m^{3} \mathrm{~s}^{-1}\right)$:	Peak	48.49	11.11	21.27	54.94	3.94	28.78	10.64	5.64	10.10	41.74	34.45	14.10	54.94
Runoff (mm)		63	26	49	58	16	44	19	15	18	58	35	30	431
Rainfall (mm)		38	31	87	63	34	135	57	47	62	121	51	36	762

Monthly and yearly statistics for pravious record (Oct 1961 to Dec 1986 -incomplate or missing months tatal 2.5 years)

Mean Avg.	6.812	6.910	6.414	5.142	3.955	2.896	1.925	2.034	2.169	2.660	4.709	6.340	4.318
flows Low	1.287	1.424	1.830	1.400	1.569	1.166	0.934	0.760	0.712	0.693	1.023	2.393	2.540
$\left(\mathrm{m}^{3} \mathrm{~B}^{-1}\right)$ High	13.000	22.440	14.330	13.160	10.110	10.840	4.907	3.323	7.786	6.596	8.200	18.140	6.364
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	60.30	78.80	53.21	78.14	61.40	105.40	45.63	33.55	45.59	40.80	50.55	91.46	105.40
Runoff (mm)	52	48	49	38	30	21	15	15	16	20	35	48	387
Rainfall (mm)	71	59	67	63	67	62	53	65	64	60	77	76	784
Factors affecting Station type: VA	w regim	S PGEI								$1987 \text { rur }$ rair	$\begin{aligned} & f \text { is } 11 \\ & \text { if } \end{aligned}$	of pre	us mean

027030 Dearne at Adwick

Hydrometric statistics for 1987

		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	5.138	3.364	4.978	6.920	2.223	3.715	2.297	2.056	1.990	4.848	3.928	2.962	3.701
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right):$	Peak	24.87	12.84	15.16	45.63	4.48	10.53	5.99	6.30	7.04	20.69	19.94	7.27	45.63
Runoff (mm)		44	26	43	58	19	31	20	18	17	42	33	26	375
Rainfall (mm)		31	33	81	64	34	123	60	56	53	111	53	32	731

Monthly and yearly statistics for previous record (Nov 1963 to Dec 1986 -incomplete or missing months total 0.7 years)

Mean Avg.	4.923	5.407	4.822	4.173	3.167	2.626	1.860	1.926	1.904	2.373	3.601	4.427	3.423
flows Low	1.946	1.648	1.433	1.223	1.303	1.106	0.806	0.765	0.873	0.922	1.029	1.245	2.104
$\left(\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}\right) \mathrm{High}$	9.214	14.340	10.750	8.866	7.380	7.299	3.699	3.054	5.658	5.171	7.632	10.980	5.264
Peak flow ($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$)	51.76	56.32	41.85	58.42	43.97	55.58	31.94	27.40	28.97	26.56	51.52	56.65	58.42
Runoff (mm)	42	42	42	35	27	22	16	17	16	20	30	38	348
Rainfall (mm)	65	53	60	56	61	55	47	65	59	55	74	69	719

Factors affecting flow regime: GEI
Station type: C VA
1987 runoff is 108% of previous mean rainfall 102\%

027042 Dove at Kirkby Mills

Measuring authority: YWA
First year: 1972
Hydrometric statistics for 1987

	JAN	FEB	MAR	APA	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Fiows Avg.	1.592	1.319	2.148	1.715	0.641	1.027	0.771	1.068	0.876	1.917	1.459	1.220	1.313
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	7.49	5.04	10.54	8.56	1.31	4.56	5.98	21.42	5.55	13.63	11.86	2.73	21.42
Runoff (mm)	72	54	97	75	29	45	35	48	38	87	64	55	700
Rainfall (mm)	42	66	128	66	60	118	77	99	73	144	78	57	1008
Monthly and yearly statistics for previous record (Feb 1972 to Dec 1986)													
Mean Avg.	1.758	1.633	1.681	1.243	0.879	0.637	0.489	0.553	0.665	0.998	1.182	1.689	1.114
flows Low	0.698	0.541	0.347	0.376	0.368	0.279	0.211	0.161	0.245	0.251	0.543	0.853	0.640
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{High}$	2.861	3.180	4.701	2.915	1.702	1.099	0.922	1.397	2.743	2.683	2.032	3.237	1.554
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	37,45	36.68	40.93	27.63	30.01	7.43	19.33	32.36	56.38	24.71	23.85	53.38	56.38
Runoff (mm)	80	68	75	54	40	28	22	25	29	45	52	76	594
Rainfall (mm)	103	58	87	64	70	63	65	76	87	89	87	101	950

Factors affecting flow regime: N
Station type: FV

Grid reference: 44 (SE) 705855
Level stn. (m OD): 35.60

Catchment area (sq km): 59.2
Max alt. (m OD): 429

1987 runoff is 118% of previous mean rainfall 106\%

027043 Wharfe at Addingham

1987

Measuring authority: YWA
First year: 1974
Hydrometric statistics for 1987

Monthly and yearly statistics for previous record (Jan 1974 to Dec 1986 -incomplete or missing months total 0.3 years)

Mean Avg.	26.070	16.110	21.220	10.240	7.988	5.192	4.182	8.773	12.980	18.150	23.460	25.510	15.003
flows Low	11.760	5.157	6.391	2.453	1.623	1.740	1.245	1.143	3.799	6.422	8.263	5.972	10.487
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	32.590	28.410	52.490	21.970	16.100	9.551	9.543	26.270	23.450	37.310	32.450	44.680	19.543
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	509.00	342.00	552.60	205.10	100.90	114.70	163.80	273.80	244.90	370.00	400.00	320.30	552.60
Runoff (mm)	164	92	133	62	50	32	26	55	79	114	142	160	1109
Rainfall (mm)	168	79	132	73	83	81	72	115	135	142	156	177	1413
Factors affecting	w regim	S P								1987	off is 83	\% of prev	ous mean

Station type: C VA

Grid reference: 44 (SE) 092494 Level stn. (m OD): 79.70

Catchment area (sq km): 427.0
Max alt. (m OD): 704

027059 Laver at Ripon

Measuring authority: YWA
First year: 1977
Hydrometric statistics for 1987

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	1.135	0.776	1.273	1.775	0.343	0.545	0.275	0.455	0.618	1.587	1.487	1.013	0.940
($\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	10.37	5.48	10.10	21.88	0.47	2.15	0.92	5.71	5.63	17.08	8.94	7.54	21.88
Runotf (mm)	35	21	39	53	11	16	8	14^{-}	18	49	44	31	339
Rainfall (mm)	34	54	92	68	32	106	65	79.	72	116	79	62	859

Monthly and yearly statistics for previous record (Nov 1977 to Dec 1986 -incomplete or miasing months total 0.2 yoars)

Mean	Avg.	2.144	1.584	1.953	1.314	0.853	0.568	0.249	0.429	0.297	0.645	1.318	2.097	1.120
flows	Low	1.376	0.659	0.721	0.453	0.272	0.247	0.098	0.096	0.224	0.167	0.419	0.848	0.837
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$	High	3.265	3.090	3.850	3.063	1.881	1.264	0.480	0.952	0.462	1.506	2.400	3.786	1.211
Peak flow	$\mathrm{m}^{3} \mathrm{~s}^{-1}$	24.06	16.85	22.65	36.95	13.32	16.75	6.29	11.48	10.21	13.64	15.01	39.14	39.14
Runoff (mm)		66	44	60	39	26	17	8	13	9	20	39	64	404
Rainfall (m		112	56	106	65	68	64	42	89	73	87	102	130	994

-(1978-1986)
Factors affecting flow regime: S P
Station type: C

Grid reference: 44 (SE) 301710
Level stn. (m OD): 29.60
硅

Catchment area (sq km): 87.5 Max alt. (m OD): 406

027071 Swale at Crakehill

Measuring authority: YWA
First year: 1980
Hydrometric statistics for 1987

Monthly and yearly statistics for previous record (fun 1980 to Dec 1986)

Mean	Avg.	37.720	22.860	31.140	25.060	16.540	11.480	6.592
flows	Low	25.210	16.050	15.520	7.819	5.557	6.121	2.712

flows
$\begin{aligned} & \left.\text { (} \mathrm{m}^{3} \mathrm{~s}^{-1}\right) \quad \text { High } \\ & \text { Peak flow }\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)\end{aligned}$
Peak flow (m^{3}
Rainfall (mm)*
-(1983-1986)
Factors affecting flow regime: N
Station type: C

Grid reference: 44 (SE) 425734
Level stn. (m OD): 12.00

Catchment area (sq km): 1363.0 Max alt. (m OD): 713
987 runoff is 84\% of provious mean rainfall 86\%

028012 Trent at Yoxall

Measuring authority: STWA
First year: 1959
Hydrometric statistics for 1987

	JAN	FEB	MAA	APR	MAY	JuN	JuL	AUG	SEP	OCT	Nov	- DEC	Year
Flows Avg.	23.360	15.760	22.460	22.930	12.650	20.060	11.350	19.730	10.760	24.600	23.830	16.420	18.659
- $\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	73.61	24.17	52.38	50.59	19.01	55.16	22.12	128.35	15.67	62.17	50.34	25.33	128.35
Runoff (mm)*	51	31	49	48	28	42	25	43	23	54	50	36	479
Rainfall (mm)	20	34	76	48	45	123	54	114	50	115	61	37	777

Monthly and yearly statistics for previous record (Oct 1959 to Dec 1986 -incompiete or missing months total 0.2 years)

| Mean | Avg. | 18.470 | 17.760 | 14.090 | 12.350 | 10.560 | 8.805 | 8.661 | 9.590 | 10.270 | 10.860 | 13.500 | 17.780 | 12.702 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| flows | Low | 6.268 | 5.886 | 6.640 | 4.950 | 5.258 | 4.827 | 3.611 | 2.482 | 4.874 | 5.621 | 5.898 | 6.424 | 7.404 |
| $:\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ | High | 33.150 | 48.650 | 33.900 | 24.530 | 25.480 | 12.910 | 15.520 | 20.230 | 22.650 | 25.890 | 34.800 | 50.320 | 18.198 |
| Peak flow $\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ | 118.10 | 112.70 | 79.18 | 72.32 | 75.20 | 47.60 | 52.25 | 115.25 | 77.02 | 66.26 | 83.25 | 126.60 | 126.60 | |
| Runoff (mm) | 40 | 35 | 31 | 26 | 23 | 19 | 19 | 21 | 22 | 24 | 28 | 39 | 326 | |
| Rainfall (mm) | 71 | 51 | 57 | 55 | 66 | 61 | 57 | 71 | 70 | 63 | 76 | 77 | 775 | |

$\begin{array}{lll}\text { Rainfall (mm) } & 71 & 51\end{array}$
Factors affecting flow regime: SRPGE
Station type: VA
-data under review

1987 runoff is 147% of previous mean rainfall 100\%

028018 Dove at Marston on Dove

Measuring authority: STWA First year: 1961				Grid reference: $\mathbf{4 3}$ (SK) 235288 Level stn. (m OD): 47.20						Catchment area (sq km): 883.2 Max alt. (m OD): 555			
Hydrometric statistics for 1987													
	JAN	FEB	MAF	APR	MAY	JUN	Jul	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	22.780	12.830	22.870	19.250	8.044	16.280	8.139	11.990	7.785	21.650	18.100	14.070	15.316
$\left(\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}\right)$: Peak	123.63	33.79	74.00	64.03	11.04	73.02	27.39	113.60	22.80	69.92	62.44	55.43	123.63
Runoff (mm)	69	35	69	57	24	48	25	36	23	66	53	43	548
Rainfall (mm)	39	45	110	55	50	159	67	96	66	136	76	57	956
Monthly and yearly statistics for previous record (Oct 1961 to Dec 1986-incomplate or miasing months total 0.1 years)													
Mean Avg.	22.480	20.060	16.990	14.450	12.200	8.963	7.405	7.649	8.435	10.680	16.740	21.900	13.970
flows Low	7.822	4.615	8.943	6.195	4.831	3.452	2.430	1.913	2.821	3.495	5.684	7.907	7.723
$\left\{\mathrm{m}^{3} \mathrm{~s}^{-1}\right\}$ High	32.880	55.910	36.570	24.550	22.480	14.700	15.530	14.630	29.350	22.830	31.070	56.460	19.411
Peak flow ($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$)	191.38	194.62	129.73	121.00	121.42	69.70	77.10	101.86	113.87	132.10	130.80	202.80	202.80
Runoff (mm)	68	55	52	42	37	26	22	23	25	32	49	66	499
Rainfsll (mm)	93	67	75	67	77	73	65	82	81	79	97	97	953
Factors affecting flow regime: SRPG Station type: FV										$1987 \text { r }$	off is 11 rinfall 100	of prev 6	us mean

028024 Wreake at Syston Mill

Measuring authority: STWA
First year: 1967
Hydrometric statistics for 1987

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	6.131	4.730	5.400	5.710	0.971	1.450	0.644	0.818	0.804	4.619	4.484	3.898	3.305
$\left(\mathrm{m}^{3} \mathbf{s}^{-1}\right)$: Peak	25.23	22.68	14.82	28.93	1.90	9.57	1.09	3.42	2.40	25.00	12.39	16.67	28.93
Runoff (mm)	40	28	35	36	6	9	4	5	5	30	28	25	251
Rainfall (mm)	41	43	61	52	37	92	46	70	49	116	42	32	681
Monthly and yearly statistics for previous record (Aug 1967 to Dec 1986 -incomplete or missing months total 1.6 years)													
Moan Avg.	5.663	6.254	4.985	3.472	2.393	1.192	0.939	0.878	0.791	1.289	2.451	4.387	2.876
flows Low	0.959	0.619	0.494	0.358	0.286	0.222	0.137	0.122	0.254	0.264	0.418	0.745	0.923
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{High}$	10.150	21.740	12.630	8.772	8.117	2.776	4.547	3.230	5.367	6.897	7.087	11.850	4.396
Peak flow ($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$)	43.11	73.37	99.82	97.07	51.83	39.17	26.88	30.44	21.61	31.68	50.25	52.95	99.82
Runoff (mm)	37	37	32	22	15	7	6	6	5	8	15	28	219
Rainfall (mm)*	53	45	54	45	57	59	42	61	54	49	52	59	630

Monthly and yearly statistics for previous record (Aug 1967 to Dec 1986 -incomplete or missing months total 1.6 years)

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	6.131	4.730	5.400	5.710	0.971	1.450	0.644	0.818	0.804	4.619	4.484	3.898	3.305
$\left(\mathrm{m}^{3} \mathbf{s}^{-1}\right)$: Peak	25.23	22.68	14.82	28.93	1.90	9.57	1.09	3.42	2.40	25.00	12.39	16.67	28.93
Runoff (mm)	40	28	35	36	6	9	4	5	5	30	28	25	251
Rainfall (mm)	41	43	61	52	37	92	46	70	49	116	42	32	681
Monthly and yearly statistics for previous record (Aug 1967 to Dec 1986 -incomplete or missing months total 1.6 years)													
Moan Avg.	5.663	6.254	4.985	3.472	2.393	1.192	0.939	0.878	0.791	1.289	2.451	4.387	2.876
flows Low	0.959	0.619	0.494	0.358	0.286	0.222	0.137	0.122	0.254	0.264	0.418	0.745	0.923
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{High}$	10.150	21.740	12.630	8.772	8.117	2.776	4.547	3.230	5.367	6.897	7.087	11.850	4.396
Peak flow ($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$)	43.11	73.37	99.82	97.07	51.83	39.17	26.88	30.44	21.61	31.68	50.25	52.95	99.82
Runoff (mm)	37	37	32	22	15	7	6	6	5	8	15	28	219
Rainfall (mm)*	53	45	54	45	57	59	42	61	54	49	52	59	630

Factors affecting flow regime: GE
Grid reference: 43 (SK) 615124
Level stn. (m OD): 47.70
Catchment area (sq km): 413.8
Max alt. (m OD): 230

1987 runoff is 114% of previous mean rainfall 108%

028031 Manifold at Ilam

Measuring authority: STWA
First year: 1968
Hydrometric statistics for 1987

	JAN	FEB	MAR	APR	MAY	Jun	JUL	AUG	SEP
Fiows Avg.	5.341	3.062	6.159	4.692	1.806	5.150	2.157	2.719	2.024
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	37.33	12.90	38.11	23.29	3.74	34.73	12.58	41.75	12.44
Runoff (mm)	96	50	111	82	33	90	39	49	35
Rainfall (mm)	46	51	128	62	62	181	81	91	73

Monthly and yearly statistics for previous record (May 1968 to Dac $\mathbf{1 9 8 6 - i n c o m p l e t e ~ o r ~ m i s s i n g ~ m o n t h s ~ t o t a l ~} 0.1$ years)

Moan Avg,	6.378	5.266	4.748	3.745	2.569	1.825	1.447	1.839	1.791	2.884	5.131	5.515	3.587
flows Low	3.657	2.489	2.528	1.277	0.812	0.745	0.493	0.386	0.535	0.716	1.555	2.135	2.241
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	8.522	12.710	9.455	6.200	5.713	3.443	3.481	4.560	4.147	6.697	8.198	9.995	4.806
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	80.13	74.53	66.72	47.36	52.40	39.58	37.29	137.00	45.69	75.78	91.61	66.25	137.00
Punoff (mm)	115	87	86	65	46	32	26	33	31	52	90	99	762
Hainfall (mm)*	127	84	93	75	78	75	69	80	86	91	124	115	1097

Factors affecting flow regima: PE
Station type: C

Grid reference: 43 (SK) 140507 Level stn. (m OD): 131.00

Catchment area (sq km): 148.5 Max alt. (m OD): 513
——

028039 Rea at Calthorpe Park

Measuring authority: STWA
First year: 1967
Hydrometric statistics for 1987

		JAN	FEB	MAR	APR	MAY	JUN	JUL
Flows	Avg,	0.776	0.662	0.973	1.388	0.485	1.102	0.423
($^{3} \mathrm{~s}^{-1}$):	Peak	6.07	3.33	7.56	20.76	2.96	31.75	4.59
Runoff (mm)	28	22	35	49	18	39	15	32.38
Rainfall (mm)	17	46	63	75	41	124	41	92

Monthly and yearly statistics for previous record (May 1967 to Dec 1986 -incomplete or missing months total 1.1 years)

| Mean | Avg. | 1.193 | 1.069 | 1.064 | 0.777 | 0.782 | 0.665 | 0.511 | 0.659 | 0.648 | 0.642 | 0.882 | 1.125 | 0.834 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| flows | Low | 0.601 | 0.549 | 0.483 | 0.316 | 0.355 | 0.287 | 0.257 | 0.367 | 0.295 | 0.320 | 0.493 | 0.530 | 0.602 |
| $\left(\mathrm{~m}^{3} \mathbf{s}^{-1}\right)$ | High | 1.634 | 2.610 | 2.101 | 1.489 | 1.780 | 1.324 | 0.890 | 1.366 | 1.423 | 1.408 | 1.753 | 1.934 | $\mathbf{1 . 0 5 8}$ |
| Poak flow $\left(\mathrm{m}^{3} \mathbf{s}^{-1}\right)$ | 26.42 | 27.44 | 28.64 | 25.15 | 30.37 | 37.44 | 46.86 | 41.25 | 40.85 | 23.28 | 24.97 | 54.02 | 54.02 | |
| Runoff (mm) | 43 | 35 | 39 | 27 | 28 | 23 | 19 | 24 | 23 | 23 | 31 | 41 | 356 | |
| Rainfall (mm) | 78 | 60 | 68 | 55 | 71 | 63 | 53 | 74 | 72 | 57 | 74 | 80 | 805 | |

Rainfall (mm)

Grid reference: 42 (SP) 071847
Level stn. (m OD): 104.20

Factors affecting flow regime: E
Station type: C

Catchment area (sq km): 74.0 Max alt. (m OD): 286
87 runoff is 111% of previous mean
rainfall 99%

028080 Tame at Lea Marston Lakes

Measuring authority: STWA
First year: 1957
Hydrometric statistics for 1987

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	15.630	13.650	16.220	21.560	10.500	18.990	10.490	15.020	10.820	19.560	17.340	12.780	15.213
($\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	63.62	33.38	56.01	110.84	24.38	159.70	27.46	153.20	38.30	71.11	74.08	42.78	159.70
Runoff (mm)	52	41	54	70	35	62	35	50	35	66	56	43	600
Rainfal (mm)	17	42	59	71	37	124	38	95	49	124	58	35	749

Monthly and yearly statistics for previous record (Oct 1957 to Dec 1986 -incomplete or miasing months total 0.3 years)

Mean Avg.	17.600	17.010	15.530	13.620	12.700	11.290	10.190	11.010	11.230	11.910	14.380	16.750	13.586
flows Low	8.994	8.855	8.797	7.259	7.321	6.655	6.369	6.978	6.655	7.852	7.876	9.057	9.699
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	24.130	35.140	26.590	22.000	24.690	16.540	17.210	16.970	19.440	25.600	27.880	32.880	17.355
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	115.82	94.05	86.27	90.46	121.58	75.20	94.78	142.20	92.33	76.24	127.60	219.20	219.20
Runoff (mm)	59	52	52	44	43	37	34	37	36	40	47	56	537
Rainfall (mm)	66	50	55	52	61	58	54	71	64	57	67	73	728

Factors affecting flow regime: EI Station type: C

Grid reference: 42 (SP) 207937
Level stn. (m OD): 66.20

Catchment area (sq km): 799.0 Max alt. (m OD): 267

1987 runoff is 112% of previous mean rainfall 103\%

028082 Soar at Littlethorpe

Measuring authority: STWA
First year: 1971
Hydrometric statistics for 1987

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	2.385	1.952	2.467	2.974	0.743	1.928	0.620	0.810	0.649	2.350	2.355	1.351	1.715
$\left(m^{3} s^{-1}\right)$: Peak	10.89	8.32	10.97	16.32	1.46	14.93	1.32	3.74	1.68	11.57	9.96	3.81	16.32
Runoff (mm)	35	26	36	42	11	27	9	12	9	34	33	20	293
Rainfall (mm)	23	41	62	61	40	121	42	51	47	115	51	29	683
Monthly and yearly statistics for previous record (Aug 1971 to Dec 1986-incomplete or missing months total 0.2 years)													
Mean Avg.	2.703	2.763	2.396	1.500	1.138	0.954	0.527	0.702	0.557	0.862	1.290	2.418	1.479
flows Low	0.713	0.568	0.424	0.346	0.350	0.245	0.164	0.224	0.307	0.338	0.398	0.643	0.644
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \quad \mathrm{High}$	4.661	6.868	5.031	3.105	2.654	2.346	1.447	2.242	1.608	2.921	2.714	5.101	2.133
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	17.74	24.47	20.78	21.18	14.93	15.78	13.71	20.41	15.94	19.81	16.59	22.46	24.47
Runoff (mm)	39	37	35	21	17	13	8	10	8	13	18	35	254
Rainfall (mm)*	55	46	52	40	58	61	39	62	55	49	53	64	634

-(1972-1986)
Factors affecting flow regime: E
Grid reference: 42 (SP) 542973
Level stn. (m OD): 61.40
Catchment area (sq km): 183.9
Max alt. (m OD): 151

Station type: EM

1987 runoff is 116% of previous mean rainfall 108\%

029003 Lud at Louth

Measuring authority: AWA
First year: 1968
Hydrometric statistics for 1987

Factors affecting flow regime:
Station type: C

Grid reference: 53 (TF) 337879 Level stn. (m OD): 15.40

Catchment area (sq km): 55.2 Max alt. (m OD): 159

030004 Partney Lymn at Partney Mill

Measuring authority: AWA Grid reference: 53 (TF) $402676 \quad$ Catchment area (sq km): 61.6

First year: 1962
Level stn. (m OD): 14.90
Max alt. (m OD): 142
Hydrometric statistics for 1987

	JAN	FEB	MAA	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	1.059	0.805	0.846	0.898	0.408	0.381	0.283	0.478	0.406	1.080	0.691	0.621	0.663
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	5.10	3.16	2.42	4.95	0.78	1.27	0.54	3.78	1.65	7.25	2.26	2.22	7.25
Runoff (mm)	46	32	37	38	18	16	12	21	17	47	29	27	339
Rainfall (mm)	40	48	74	44	47	78	58	112	49	111	52	32	745
Monthly and yearly statistics for previous record (Jun 1962 to Dec 1986-incomplete or missing months total 0.3 years)													
Mean Avg.	0.826	0.786	0.713	0.624	0.474	0.329	0.274	0.286	0.283	0.374	0.555	0.743	0.521
flows Low	0.351	0.300	0.276	0.228	0.200	0.116	0.088	0.107	0.151	0.190	0.193	0.210	0.292
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	1.475	1.838	1.538	1.518	0.886	0.691	0.862	0.593	0.917	1.144	1.112	1.804	0.754
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	10.01	12.59	7.71	13.34	11.30	8.13	13.38	7.06	6.64	8.07	10.17	8.48	13.38
Runoff (mm)	36	31	31	26	21	14	12	12	12	16	23	32	267
Raintall (mm)	61	48	60	55	60	57	51	65	53	51	71	66	698
Factors affecting flow regime: G 1 Station type: C										1987 runoff is 127% of previous mean rainfall 107\%			

031002 Glen at Kates Brdg and King St Brdg

1987

Measuring authority: AWA First year: 1960			Grid reference: 53 (TF) 106149 Level stn. (m OD): 6.10							Catchment area (sq km): 341.9 Max alt. (m OD): 129			
Hydrometric statistics for 1987													
	JAN	fEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NoV	OEC	Year
Flows Avg. $\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right):$ Peak	1.955	1.703	2.189	2.578	0.752	0.581	0.298	0.280	0.252	2.197	1.204	1.152	1.262
Runotf (mm)	15	12	17	20	6	4	2	2	2	17	9	9	116
Rainfall (mm)	32	39	62	45	41	81	57	83	50	117	36	27	670
Monthly and yearly statistics for previous record (Oct 1980 to Dec 1986)													
Moan Avg.	1.999	2.476	2.364	1.892	1.505	0.808	0.444	0.379	0.326	0.465	0.844	1.450	1.240
flows Low	0.093	0.048	0.033	0.018	0.008	0.004	0.000	0.001	0.008	0.024	0.020	0.078	0.154
$\left(m^{3} s^{-1}\right)$ High	6.351	10.110	6.317	4.903	5.060	2.182	1.465	1.615	1.873	2.267	5.552	7.868	2.333
Pook flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)													
Runoff (mm)	16	18	19	14	12	6	3	3	2	4	6	11	114
Rainfall (mm)	52	41	49	53	53	53	46	63	51	48	57	58	624
Factors affecting flow regime: G Station type: FV										1987 runoff is 102% of previous mean rainfall 107\%			

Station type: FV

031007 Welland at Barrowden

Measuring authority: AWA
First year: 1968
Hydrometric statistics for 1987

	JAN		MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	5.500	3.381	4.782	6.566	1.005	2.342	0.618	0.606	0.697	4.298	4.946	2.845	3.132
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	27.03	12.86	14.31	42.26	1.69	18.67	1.03	1.33	1.53	22.75	20.19	5.81	42.26
Runotf (mm)	36	20	31	41	7	15	4	4	4	28	31	19	239
Rainfall (mm)	23	41	60	59	44	102	44	61	47	121	53	32	687
Monthly and yearly statistics for previous record (Fab 1968 to Dec 1986-incomplete or missing months total 0.2 years)													
Mean Avg.	4.776	5.129	4.354	2.895	1.811	1.141	0.807	0.845	0.683	1.182	2.012	3.698	2.433
flows Low	0.516	0.425	0.352	0.257	0.232	0.159	0.092	0.154	0.271	0.226	0.318	0.410	1.034
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	8.885	17.030	9.701	7.700	7.310	3.093	4.477	4.500	4.322	5.150	6.436	7.509	3.667
Pook flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	39.99	74.42	107.80	79.43	46.95	27.44	38.23	39.91	12.55	22.87	50.37	40.13	107.80
Runoff (mm)	31	30	28	18	12	7	5	6	4	8	13	24	186
Rainfall (mm)	58	43	53	46	57	57	49	67	51	47	59	61	648

Factors affecting flow regime: S E
Station type: C

Grid reference: 42 (SP) 948999 Level stn, (m OD): 34.90

Catchment area (sq km): 411.6 Max alt. (m OD): 228

032003 Harpers Brook at Old Mill Bridge

Measuring authority: AWA
First year: 1938
Hydrometric statistics for 1987

	JAN	FEB	MAR	APR	MAY	JUN	Jul.	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	0.715	0.499	0.868	1.167	0.188	0.277	0.128	0.129	0.124	1.176	0.748	0.420	0.537
($\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	9.77	2.38	3.26	18.20	0.35	2.46	0.35	0.44	0.55	16.58	6.34	1.50	18.20
Runotf (mm)	26	16	31	41	7	10	5	5	4	42	26	15	228
Rainfal (mm)	15	36	57	55	39	88	48	61	44	134	50	28	655

Monthly and yearly statistics for previous record (Dec 1938 to Dec 1986 -incomplete or missing months total 0.5 years)

Mean Avg.	0.795	0.816	0.714	$0.478{ }^{\circ}$	0.315	0.200	0.146	0.156	0.144	0.199	0.428	0.590	0.413
flows Low	0.097	0.080	0.076	0.066	0.056	0.049	0.052	0.048	0.049	0.057	0.069	0.077	0.159
$\left(\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}\right)$ High	2.766	2.485	2.363	1.334	1.246	0.606	0.685	0.791	1.147	0.979	1.688	1.762	0.676
Poak flow ($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$)	16.06	18.58	17.01	22.00	18.65	10.54	12.49	20.50	6.80	7.73	11.74	17.90	22.00
Runoff (mm)	29	27	26	17	11	7	5	6	5	7	15	21	175
Rainfall (mm)	58	42	48	43	53	52	51	64	50	52	61	58	632
Factors affecting Station type: CC	w regi									$1987 \text { run }$	ff is 13 fall 10	of pre	5 mean

032004 Ise Brook at Harrowden Old Mill

Moasuring authority: AWA
First year: 1943
Hydromatric statistics for 1987

		JAN	FEB
Flows	Avg.	2.222	1.497
$\left(\mathrm{~m}_{\mathrm{s}}-1 \mathrm{y}\right.$:	Peak	8.63	3.39
Runotf (mm)	31	19	
Rainfall (mm)	15	36	

Grid reference: 42 (SP) 898715 Level stn. (m OD): 45.30

Grid reference: 42 (SP) 983799 Level stn. (m OD): 30.30

Catchment area (sq km): 74.3 Max alt. (m OD): 146

Monthly and yearly statistics for previous record (Dec 1943 to Dec 1986 -incomplete or missing months total 0.8 years)

| | | | | | | | | | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mean | Avg. | 2.493 | 2.655 | 2.279 | 1.524 | 1.142 | 0.756 | 0.565 | 0.547 | 0.513 | 0.721 | 1.382 | 1.958 | 1.372 |
| flows | Low | 0.458 | 0.324 | 0.219 | 0.329 | 0.143 | 0.128 | 0.166 | 0.110 | 0.128 | 0.185 | 0.176 | 0.219 | 0.422 |
| $\left(\mathrm{~m}^{3} 8^{-1}\right)$ | High | 6.441 | 6.949 | 7.984 | 3.834 | 3.606 | 2.421 | 3.018 | 2.655 | 2.315 | 4.384 | 5.331 | 5.827 | 2.337 |
| Peak flow $\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ | 17.10 | 17.51 | 28.39 | 20.77 | 17.73 | 24.04 | 19.54 | 25.10 | 7.79 | 13.08 | 16.00 | 16.99 | 28.39 | |
| Runoff (mm) | 34 | 33 | 31 | 20 | 16 | 10 | 8 | 8 | 7 | 10 | 18 | 27 | 223 | |
| Rainfall (mm) | 55 | 42 | 49 | 45 | 55 | 54 | 50 | 66 | 54 | 51 | 60 | 59 | 640 | |

Factors affecting flow regime: S E
Station type: FV

033003 Cam at Bottisham
Measuring authority: AWA
Grid reference: 52 (TL) 508657 Level stn. (m OD): 2.40

Catchment area (sq km): 803.0
First year: 1936
Hydrometric statistics for 1987

Flows Avg. $\left(m^{3} s^{-1}\right)$: Peak	$\begin{aligned} & \text { JAN } \\ & 5.052 \end{aligned}$	$\begin{aligned} & \text { FEB } \\ & 4.064 \end{aligned}$	MAR 4.987	$\begin{aligned} & \text { APA } \\ & 5.800 \end{aligned}$	MAY 3.178	$\begin{aligned} & \text { JUN } \\ & 4.236 \end{aligned}$	$\begin{aligned} & \text { JUL } \\ & 3.167 \end{aligned}$	$\begin{aligned} & \text { AUG } \\ & 4.260 \end{aligned}$	$\begin{aligned} & \text { SEP } \\ & 3.818 \end{aligned}$	$\begin{aligned} & \text { OCT } \\ & 9.503 \end{aligned}$	NOV	DEC	Year
Runoff (mm)	17	12	17	19	11	14	11	14	12	32			
Rainfall (mm)	10	27	45	39	49	96	83	86	40	126	57	22	680
Monthly and yearly statistics for previous record (Oct 1936 to Dec 1986-incomplete or missing months total 1.2 years)													
Mean Avg.	5.905	6.198	5.893	4.594	3.385	2.442	1.919	1.770	1.697	2.107	3.432	4.201	3.616
flows Low	1.058	1.202	1.142	1.159	0.944	0.750	0.621	0.603	0.784	0.803	. 0.880	0.995	1.062
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	19.210	16.410	19.610	18.430	8.775	5.400	6.419	5.471	6.698	6.503	12.120	12.070	8.279
Peak flow ($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$)													
Runoff (mm)	20	19	20	15	11	8	6	6	5	7	11	14	142
Rainfall (mm)	51	36	43	40	48	48	52	57	51	53	59	51	589

Factors affecting flow regime: GEI
Station type: MIS

1987 runoff is $\begin{gathered}\text { rainfall } 115 \%\end{gathered}$
rainfall 115\%

033012 Kym at Meagre Farm

Measuring authority: AWA
First year: 1960.
Hydrometric statistics for $\mathbf{1 9 8 7}$

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg	1.049	0.538	1.128	1.450	0.078	0.479	0.119	0.185	0.083	3.515	2.007	0.598	0.936
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	14.20	4.37	6.98	11.90	0.17	8.18	0.81	1.43	0.15	23.30	17.90	2.60	23.30
Rưnoff (mm)	20	9	22	27	2	9	2	4	2	68	38	12	215
Rainfall (mm)	12	32	47	49	42	101	66	69	29	149	49	24	669

Monthly and yearly statistics for previous record (May 1960 to Dec 1986 -incomplete or missing months total 0.1 years)

Mean Avg.	1.361	1.430	1.166	0.766	0.381	0.236	0.138	0.105	0.051	0.316	0.617	1.005	0.627
flows Low	0.074	0.047	0.044	0.041	0.024	0.009	0.001	0.004	0.017	0.015	0.022	0.050	0.103
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{High}$	3.296	5.577	3.474	2.107	1.469	1.489	2.438	1.096	0.158	2.200	3.718	3.328	1.048
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	25.26	22.70	30.24	30.75	20.61	24.10	16.68	23.42	1.34	25.91	34.71	33.98	34.71
Runoff (mm)	27	25	23	14	7	4	3	2	1	6	12	20	144
Rainfall (mm)	50	38	47	47	54	57	47	57	48	50	54	57	606

Factors affecting flow regime: El Station type: CB

Grid reference: 52 (TL) 155631
Level stn. (m OD): 17.20

Catchment area (sq km): 137.5
Max alt. (m OD): 101
rainfall 110%

033013 Sapiston at Rectory Bridge

Measuring authority: AWA
First year; 1949
Hydrometric statistics for 1987

		JAN	FEB	MAR	APR	MAY	JUN	Jut	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	1.304	0.758	0.901	1.176	0.518	0.655	0.519	1.441	0.792	2.922	1.582	1.073	1.137
, $\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$)	Peak	5.40	- 2.84	2.96	4.31	1.38	1.99	1.97	10.60	1.95	12.60	4.56	2.31	12.60
Runoff (rnm)		17	9	12	15	7	8	7	19	10	38	20	14	175
		1	28	45	46	58	93	86	110	42	127	47	26	729

Monthly and yearly statistics for previous record (Jan 1949 to Dec 1986 -incomplete or missing months total 2.8 years)

Mean Avg.	1.180	1.235	1.030	0.793	0.611	0.461	0.314	0.270	0.284	0.339	0.609	0.862	0.663
flows Low	0.226	0.221	0.150	0.079	0.193	0.133	0.015	0.045	0.051	0.066	0.087	0.139	0.219
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	2.417	3.295	2.491	1.947	1.802	1.744	0.651	0.734	1.682	1.008	2.404	2.396	1.071
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	9.93	10.90	10.85	8.76	7.31	5.20	2.39	2.93	8.95	6.26	6.97	10.45	10.90
Runoff (mm)	15	15	13	10	8	6	4	4	4	4	8	11	102
Rainfall (mm)*	51	35	44	44	48	51	50	51	54	54	62	56	600

1986)

Factors affecting flow regime: GEI
Station type: TP

Grid reference: 52 (TL) 896791
Level stn. (m OD): 15.60

Catchment area (sq km): 205.9 Max alt. (m OD): 97

1987 runoff is 172% of previous mean rainfall 122\%

033014 Lark at Temple

1987

Measuring authority: AWA
First year: 1960
Hydrometric statistics for 1987

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	1.813	1.386	1.657	2.205	1.274	1.859	1.251	1.891	1.493	2.942	2.463	1.923	1.846
- $\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	7.55	2.96	3.89	8.24	2.16	7.38	3.13	9.10	3.54	9.63	7.68	3.44	9.63
Runoff (mm)	18	12	16	21	13	18	12	19	14	29	23	19	214
Rainfall (mm)	17	28	51	51	57	113	77	104	40	124	51	25	738
Monthly and yearly statistics for previous record (Nov 1960 to Dec 1986)													
Mean Avg.	1.805	1.848	1.787	1.607	1.388	1.071	0.881	0.801	0.818	0.846	1.164	1.487	1.289
flows Low	0.728	0.645	0.675	0.691	0.641	0.548	0.409	0.385	0.440	0.493	0.509	0.600	0.620
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	3.062	3.562	3.614	2.999	3.476	1:878	1.422	1.267	2.893	1.847	2.677	2.662	2.014
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	11.08	12.05	12.12	10.31	11.83	5.46	3.31	5.24	22.06	8.25	10.12	11.22	22.06
Runoff (mm)	18	17	18	15	14	10	9	8	8	8	11	15	150
Rainfall (mm)	52	35^{\prime}	45	45	50	51	50	52	54	55	63	58	610

Factors affecting flow regime: GEI
Station type: CB

Catchment area (sq km): 272.0 Max alt. (m OD): 125

1987 runoff is 143% of previous mean rainfall 121\%

Measuring authority: AWA
First year: 1949
Hydrometric statistics for 1987

								$\cdots 8$					
	JAN	feb	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	1.255	1.032	1.222	1.424	0.922	1.073	0.958	1.542	1.408	2.970	2.388	1.688	1.490
$\left(m^{3} \mathrm{~s}^{-1}\right)$: Peak	4.97	1.66	3.44	5.57	1.24	4.20	5.28	10.70	9.14	12.70	9.95	2.96	12.70
Runotf (mm)	17	13	17	19	12	14	13	21	18	40	31	23	238
Rainfall (mm)	10	28	46	41	51	101	88	102	51	130	66	22	736
Monthly and yearly statistics for previous record (Mar 1949 to Dec 1986 -incomplete or missing months total 1.3 years)													
Mean Avg.	1.418	1.484	1.346	1.190	0.990	0.778	0.620	0.582	0.558	0.705	0.935	1.183	0.980
Hows Low	0.449	0.400	0.562	0.465	0.408	0.318	0.184	0.248	0.155	0.313	0.361	0.356	0.416
$\left(\mathrm{m}^{\mathbf{3}} \mathbf{s}^{-1}\right) \quad \mathrm{High}$	2.845	2.703	2.608	2.431	2.144	1.338	1.608	1.457	1.965	2.088	2.790	3.492	1.506
Poak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	10.38	14.09	10.22	9.94	13.63	6.94	3.60	4.79	10.99	9.10	12.50	12.06	14.09
Runoff (mm)	19	18	18	16	13	10	8	8	7	10	12	16	156
Rainfall (mm)*	49	38	42	41	48	48	52	59	53	52	59	55	596

Grid reference: 52 (TL) 466506 Levet str. (m OD): 14.70

Catchment area (sq km): 198.0 Max alt. (m OD): 146

Factors affecting flow regime: GEI
Station type: TP

1987 runoff is 152% of previous mean rainfall 123\%

034001 Yare at Colney

Measuring authority: AWA
First yoar: 1959
Hydrometric statistics for 1987

	JAN	FEB	MAR	APR	MAY	JUN	JuL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	2.807	1.515	1.882	2.196	0.838	1.326	0.831	2.482	1.411	3.798	2.433	1.891	1.951
$\left(\mathrm{m}^{\mathbf{3}}{ }^{-1}\right)$: Peak	6.50	3.18	3.87	5.13	1.21	3.98	3.74	16.92	3.47	13.00	4.39	3.36	16.92
Runotf (mm)	32	16	22	25	10	15	10	29	16	44	27	22	266
Rainfall (mm)	38	27	47	49	51	96	79	120	35	120	56	30	748
Monthly and yearly statistics for previous record (Oct 1959 to Dec 1986)													
Mean Avg.	2.631	2.593	2.021	1.761	1.136	0.741	0.582	0.559	0.675	0.882	1.468	2.203	1.432
flows Low	0.779	0.947	0.842	0.623	0.462	0.285	0.189	0.200	0.272	0.381	0.440	0.714	0.770
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{High}$	5.181	4.931	4.783	3.442	2.487	2.069	1.043	1.607	3.420	2.898	3.971	5.904	2.230
Pask flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	18.97	18.63	16.90	20.51	10.10	4.01	4.54	6.34	21.61	7.48	11.20	21.15	21.61
Runoff (mm)	30	27	23	20	13	8	7	6	8	10	16	25	195
Rainfall (mm)	59	41	46	49	48	52	54	57	55	58	69	65	653

Factors affecting flow regime: GI
Station type: MIS

Grid reference: 63 (TG) 182082 Lovel stn. (m OD): 8.20

986)

037001 Roding at Redbridge

Measuring authority: TWA
First year: 1950
Hydrometric statistics for 1987

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	2.489	1.282	2.154	3.362	0.684	1.719	1.771	3.925	0.764	7.882	4.673	1.303	2.667
$\left(m^{3} s^{-1}\right):$ Peak	13.30	4.36	6.10	15.80	5.20	7.82	16.10	31.30	2.05	32.40	27.80	2.87	32.40
Runoff (mm)	22	10	19	29	6	15	16	35	7	70	40	12	279
Rainfall (mm)	12	27	47	46	57	99	87	97	33	144	59	19	727
Monthly and yearly statistics for previous record (Feb 1950 to Dec 1986]													
Mean Avg.	3.733	3.482	2.742	1.897	1.257	0.841	0.601	0.604	0.857	1.271	2.174	3.018	1.866
flows Low	0.675	0.608	0.537	0.482	0.323	0.226	0.280	0.224	0.197	0.283	0.412	0.412	0.801
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	7.282	10.670	6.858	6.768	4.045	2.953	1.975	1.315	4.012	6.834	10.340	9.454	2.809
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	34.74	30.80	38.08	27.72	32.70	21.70	24.50	19.81	25.62	35.60	62.41	36.40	62.41
Runoff (mm)	33	28	24	16	11	7	5	5	78	11	19	27	194
Rainfall (mm)	52	41	46	43	50	51	51	56	58	55	63	58	624
Factors affecting flow regime: S El $\quad 1987$ runoff is 144% of previous mean													

Factors affecting flow regime: SEI
Station type: EW

Grid reference: 51 (TQ) 415884
Level stn. (m OD): 5.70

Catchment area (sq km): 303.3 Max alt. (m OD): 117

1987 runoff is 144% of previous mean rainfall 117\%

037005 Colne at Lexden

1987

Measuring authority: AWA First year: 1959
Hydrometric statistics for 1987

	JAN	FEB	MAR	APR	MAY	JUN	JuL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	1.587	0.825	1.255	1.848	0.503	1.528	0.907	1.558	0.975	4.838	2.490	1.186	1.625
($\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	8.84	1.52	6.55	10.26	0.89	8.07	4.77	8.86	5.15	24.80	12.51	3.37	24.80
Runaff (mm)	18	8	14	20	6	17	10	18	11	54	27	13	216
Rainfall (mm)	14	23	42	43	44	120	89	86	41	127	52	23	704
Monthly and yearly statistics for previous record (Oct 1959 to Dec 1986)													
Mean (Avg.	1.972	1.786	1.648	1.204	0.812	0.463	0.346	0.322	0.375	0.634	1.143	1.555	1.018
flows Low	0.460	0.346	0.380	0.358	0.229	0.146	0.100	0.088	0.179	0.188	0.288	0.352	0.362
$\left(m^{3} s^{-1}\right) \quad$ High	3.737	4.684	3.556	3.344	2.353	1.011	0.687	0.554	1.099	3.930	5.521	4.200	1.732
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	14.20	22.65	20.68	13.34	12.56	6.26	6.41	2.38	10.50	18.55	21.29	20.58	22.65
Runoff (mm)	22	18	19	13	9	5	4	4	4	7	12	17	135
Rainfall (mm)	48	33	44	42	46	45	45	49	52	52	60	55	571

Factors affecting flow regime: R El
Station type: FL

Grid reference: 52 (TL) 962261 Level stn. (m OD): 8.20

Catchment area (sq km): 238.2 Max alt. (m OD): 114

1987 runoff is 160% of previous mean rainfall 123\%

037010 Blackwater at Appleford Bridge

Measuring authority: AWA
First year: 1962
Hydrometric statistics for 1987

	JAN	FEB	MAR	APP	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	1.575	0.946	1.403	1.868	0.551	1.143	0.768	1.741	1.078	4.955	2.597	1.213	1.653
($\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	7.91	2.30	5.49	8.84	0.97	4.95	4.10	13.75	5.93	26.08	11.10	3.61	26.08
Runotf (mm)	17	9	15	20	6	12	8	19	11	54 130	27	13	212 693
Rainfall (mm)	13	23	43	41	39	113	83	93	42	130	52	21	
Monthly and yearly statistics for previous record (Oct 1962 to Dec 1986).													
Mean Avg.	2.022	1.945	1.912	1.469	1.037	0.722	0.516	0.468	0.513	0.676	1.151	1.680	1.172
flows Low	0.532	0.460	0.479	0.479	0.341	0.356	0.182	0.161	0.215	0.288	0.325	0.379	0.822
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	3.916	4.889	3.583	3.843	2.860	1.583	1.007	0.837	1.651	1.955	4.676	4.307	1.642
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	14.10	21.60	20.00	12.31	17.80	7.76	2.92	3.28	15.25	10.00	20.20	21.60	21.60
Runotf (mm)	22	19	21	15	11	8	6	5	5	7	12	18	150 578
Rainfall (mm)	47	34	47	44	49	51	44	50	51	48	60	53	578
Factors affecting flow regime: R GEl $\quad 1987$ runoff is 141\% of previous mean										1987 runoff is 141% of previous mean			

Station type: FL

Grid reference: 52 (TL) 845158
Level stn. (m OD): 14.60

Catchment area (sq km): 247.3 Max alt. (m OD): 127 rainfall 120%

038001 Lee at Feildes Weir

Measuring authority: TWA
First year: 1936 (naturalised data from 1883)
Hydrometric statistics for 1987

		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	4.705	3.015	4.956	5.359	2.485	4.381	3.027	4.363	3.706	15.290	10.260	4.874	5.535
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$:	Peak	24.60	6.32	13.20	28.00	7.40	12.70	12.80	27.50	25.90	73.60	52.30	16.90	73.60
Runoff (mm)		12	7	13	13	6	11	8	11	9	40	26	13	169
Rainfall (mm)		10	27	50	42	55	99	75	76	49	157	59	24	723

Monthly and yearly statistics for previous record (Oct 1936 to Dec 1986 -incomplete or missing months total 1.9 years)

Mean	Avg.	6.695	6.680	6.197	4.541	3.660	2.572	1.769	1.641	1.735	2.392	4.150	5.201	3.923
flows	Low	1.052	0.959	0.460	0.484	0.302	0.224	0.081	0.085	0.132	0.302	0.416	1.099	0.866
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$	High	17.200	17.800	29.430	12.000	12.260	7.618	4.994	3.841	7.063	10.420	13.880	13.210	7.182
Peak flow	$\mathrm{m}^{3} \mathrm{~s}^{-1}{ }^{1}$)	56.10	74.30	47.20	52.20	96.90	65.30	9.71	13.90	49.56	67.60	48.50	77.00	96.90
Runoff (mm		17	16	16	11	9	6	5	4	4	6	10	13	119
Rainfall (m)		57	41	47	43	51	49	54	58	55	60	66	59	640
Factors affecting flow regime: PGEI Station type: MIS											1987 runoff is 141% of previous mean rainfall 113\%			

Grid reference: 52 (TL) 390092
Level sin. (m OD): 27.70

Catchment area (sq km): 1036.0 Max alt. (m OD): 229
rainfall 113\%

038007 Canons Brook at Elizabeth Way

1987

Moasuring authority: TWA
First year: 1965
Hydrometric statistics for 1987

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	0.152	0.129	0.221	0.271	0.121	0.206	0.226	0.321	0.091	0.719	0.312	0.124	0.241
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	1.55	1.03	1.89	3.42	2.33	2.77	7.68	10.90	2.04	12.00	5.59	1.15	12.00
Runoff (mm)	19	15	28	33	15	25	28	40	11	90	38	16	357
Rainfall (mm)	11	25	48	43	57	101	80	92	27	167	57	20	728
Monthly and yearly statistics for previous record (Oct 1965 to Dec 1986-incomplete or missing months total 0.4 years)													
Moen Avg.	0.310	0.285	0.259	0.204	0.185	0.132	0.109	0.118	0.121	0.153	0.222	0.267	0.197
flows Low	0.059	0.062	0.054	0.074	0.073	0.067	0.056	0.034	0.056	0.043	- 0.058	0.092	0.095
$\left(m^{3} s^{-1}\right)$ High	0.470	0.883	0.468	0.520	0.415	0.253	0.210	0.193	0.294	0.468	0.794	0.507	0.253
Poak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	8.25	11.50	6.56	10.31	12.20	10.10	10.97	10.61	9.00	10.60	9.85	9.36	12.20
Runoff (mm)	39	32	32	25	23	16	14	15	15	19	27	33	290
Rainfall (mm)	53	37	48	43	55	52	48	54	56	53	61	58	618

Foctors affecting flow regime:
Station type: FL

Grid reference: 52 (TL) 431104
Level stn. (m OD): 37.50

Catchment area (sq km): 21.4
Max alt. (m OD): 110

1987 runoff is 123% of provious mean rainfall 118\%

Measuring authority: TWA First year: 1971

		JAN	FEB	MAR	APR	MAY	JUN
Flows	Avg.	0.219	0.135	0.350	0.392	0.078	0.225
(m $^{3}{ }^{-1}$):	Peak	2.79	1.36	2.49	4.85	0.74	2.09
Runoff (mm)	14	8	22	24	5	14	1.32
Rainfall (mm)	12	28	60	44	68	91	74

Monthly and yearly statistics for previous record (Sep 1971 to Doc 1986)

Moan	Avg.	0.422	0.352	0.351	0.217	0.191	0.094	0.041	0.054	0.062
flows	Low	0.037	0.042	0.024	0.020	0.014	0.021	0.013	0.008	0.012
(mas $\left.^{3}-1\right)$	High	0.760	0.988	0.811	0.626	0.626	0.240	0.087	0.171	0.228
Poak flow $\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$	10.50	11.00	5.14	7.72	20.69	15.30	2.38	2.76	7.55	
Runoff (mm)	27	20	22	13	12	6	3	3	4	
Rainfall (mm)	61	42	59	45	62	53	42	53	63	

Runof (mm)
Factors affecting flow regime: G
Station typs: FV

Grid reference: 51 (TO) 359985
Level stn. (m OD): 16.60

Hydrometric statistics for 1987

038021 Turkey Brook at Albany Park

039014 Ver at Hansteads

Measuring authority: TWA
First year: 1956
Hydrometric statistics for 1987

	JAN	FEB	MAA	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	0.357	0.298	0.281	0.321	0.250	0.284	0.212	0.190	0.140	0.461	0.564	0.501	0.322
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	0.71	0.48	0.70	0.81	0.61	0.58	0.56	0.37	0.29	, 1.50	0.99	0.66	1.50
Runoff (mm)	7	5	6	6	5	6	4	4	3	9	11	10	77
Rainfall (mm)	15	31	58	51	64	104	72	53	48	198	57	31	782
Monthly and yearly statistics for previous record (Oct 1956 to Dec 1986-incomplete or missing months total 0.1 years)													
Mean Avg.	0.479	0.540	0.573	0.551	0.491	0.426	0.357	0.317	0.283	0.301	0.354	0.412	0.423
flows Low	0.126	0.190	0.138	0.114	0.069	0.045	0.028	0.016	0.025	0.057	0.039	0.048	0.095
. $\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	0.981	1.336	1.312	1.254	1.028	0.857	0.651	0.564	0.660	0.668	0.791.	0.977	0.752
Peak flow ($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$)	1.77	1.91	1.88	1.90	2.07	1.65	1.44	1.13	2.34	1.35	2.31	2.64	2.64
Runoff (mm)	10	10	12	11	10	8	7	6	6	6	7	8	101
Rainfall (mm)	64	47	57	51	56	59	52	58	62	64	68	74	712
Factors affecting flow regime: G $\quad 1987$ runoff is 76% of previous mean													

Factors affecting flow regime: G
Station type: CC

Grid reference: 52 (TL) 151016
Level stn. (m OD): 61.30

Catchment area (sq km): 132.0
Max alt. (m OD): 243 rainfall 110\%

039016 Kennet at Theale

Measuring authority: TWA
First year: 1961
Hydrometric statistics for 1987

		JAN	FEB	MAR	APR	MAY	JUN	JUL	A
Flows	Avg.	14.730	12.260	12.910	15.240	10.630	9.698	6.817	5.70
$\left(\mathrm{~m}^{3} \mathrm{~s}^{-1}\right.$):	Peak	24.70	16.40	24.30	36.90	12.40	13.20	10.70	
Runoff (mm)	38	29	33	38	28	24	18		
Rainfall (mm)	13	49	66	62	44	101	58		

Monthly and yearly statistics for previous record (Oct 1961 to Dec 1986)

Mean Avg.	13.150	14.490	14.750	12.690	10.490	8.702	6.530
flows Low	4.144	4.401	4.190	3.429	2.739	2.041	1.620
$\left(m^{3} 5^{-3}\right)$ High	22.680	22.720	22.010	19.790	15.430	18.600	11.120
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	48.30	44.80	44.30	31.70	30.10	70.80	19.00
Runoff (mm)	34	34	38	32	27	22	17
Rainfall (mm)	75	48	70	50	66	61	47

Factors affecting flow regime: R G I
Station type: C

Grid reference: 41 (SU) 649708
Level stn. (m OD): 43.40

Catchment area (sq km): 1033.4 Max alt. (m OD): 297

Measuring authority: TWA
Grid reference: 41 (SU) $896867=2$
Level stn. (m OD): 26.80

Catchment area (sq km): 137.3 Max alt. (m OD): 244

Hydrometric statistics for 1987

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	1.068	1.043	1.118	1.227	1.057	1.148	1.092	1.024	0.941	1.167	1.184	1.167	1.103
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	1.92	2.49	2.05	2.95	2.14	2.31	2.83	1.52	1.43	3.15	2.39	2.13	3.15
Runoff (mm)	21	18	22	23	21	22	21	20	18	23	22	23	253
Aainfall (mm)	15	37	65	62	64	99	70	44	45	176	68	37	782
Monthly and yearly statistics for previous record (Dec 1964 to Dec 1986)													
Moan Avg.	0.953	1.044	1.147	1.187	1.168	1.126	1.022	0.975	0.879	0.832	0.829	0.874	1.003
flows Low	0.419	0.483	0.488	0.470	0.432	0.380	0.370	0.314	0.381	0.395	0.375	0.340	0.442
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \quad \mathrm{High}$	1.506	1.675	1.800	1.891	1.842	1.582	1.434	1.317	1.182	1.180	1.329	1.373	1.365
Peak flow ($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$)	3.49	2.76	3.21	3.26	3.98	3.51	2.94	4.17	4.43	3.14	2.79	2.85	4.43
Runotf (mm)	19	19	22	22	23	21	20	19	17	16	16	17	230
Rainfall (mm)	72	49	62	52	67	63.	54	67	68	64	72	80	770

Factors affecting flow regime: G I Station type: C
rainfall 102%

039029 Tillingbourne at Shalford

Measuring authority: TWA
Grid reference: 51 (TQ) 000478
Level stn. (m OD): 31.70

Catchment area (sq km): 59.0 Max alt. (m OD): 294

Hydrometric statistics for 1987

Flows Avg.	JAN 0.555	FEB 0.525	MAR 0.563	APR 0.616	MAY 0.507	JUN 0.506	JUL 0.450	AUG 0.424	SEP 0.432	OCT 0.937	NOV 0.641	DEC 0.550	Year 0.559
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	0.91	0.73	0.89	1.09	0.70	0.84	0.82	0.75	0.63	5.09	1.64	0.61	$\begin{array}{r} 0.559 \\ 5.09 \end{array}$
Runoff (mm)	25	22	26	27	23	22	20	19	19	43	28	25	299
Rainfall (mm)	23	40	66	62	60	83	82	54	47	215	70	28	830
Monthly and yearly statistics for previous record (Jun 1968 to Dec 1986)													
Mean Avg.	0.671	0.635	0.639	0.608	0.575	0.521	0.470	0.469	0.489	0.509	0.570	0.622	0.565
flows Low	0.457	0.423	0.398	0.398	0.376	0.353	0.340	0.326	0.357	0.362	0.354	0.392	0.389
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	0.965	0.857	0.900	0.897	0.819	0.830	0.599	0.619	0.885	0.701	0.883	0.840	0.686
Poak flow ($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$)	2.70	2.26	3.23	3.00	1.91	2.79	1.65	2.36	6.09	2.10	3.65	3.25	6.09
Runoff (mm)	30	26	29	27	26	23	21	21	21	23	25	28	302
Rainfall (mm)	86	48	71	53	65	58	49	63	78	73	86	85	815

Factors affecting flow regime: G 1
Station type: C

1987 runoff is 99% of previous mean rainfall 102\%

039049 Silk Stream at Colindeep Lane

Measuring authority: TWA
First year: 1973
Hydrometric statistics for 1987

		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	0.209	0.196	0.322	0.309	0.149	0.299	0.179	0.145	0.095	0.904	0.412	0.138	0.280
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$:	Peak	2.76	6.17	2.40	3.78	3.67	3.28	7.57	6.39	1.95	22.80	13.00	1.95	22.80
Runoff (mm)		19	16	30	28	14	27	17	13	8	84	37	13	305
Rainfall (mm)		16	37	57	46	64	93	78	56	38	175	59	26	745

Monthly and yearly statistics for previous record (Dec 1973 to Dec 1986 -incomplete or missing months total 4.4 years)

Mean	Avg.	0.373	0.273	0.354	0.274	0.276	0.218	0.127	0.131	0.140	0.283	0.375	0.351	0.265
flows	Low	0.204	0.102	0.151	0.030	0.035	0.061	0.047	0.053	0.057	0.062	0.108	0.143	0.178
$\left(\mathrm{~m}^{3} \mathrm{~s}^{-1}\right)$	High	0.592	0.472	0.676	0.574	0.602	0.643	0.213	0.216	0.363	0.507	1.086	0.659	0.314
Poak flow $\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$	9.00	6.20	8.89	10.26	39.80	32.80	16.50	30.50	27.90	40.50	24.30	36.31	40.50	
Runoff (mm)	34	23	33	24	25	20	12	12	13	26	34	32	288	
Rainfall (mm)	61	36	63	48	72	59	43	51	71	68	65	65	702	

Factors affecting flow regime:
Station type: FV

Grid reference: 51 (TO) 217895
Level stn. (m OD): 39.90
Catchment area (sq km): 29.0 Max alt. (m OD): 146

987 runoff is 106% of previous mean rainfall 106\%

039069 Mole at Kinnersley Manor

Measuring authority: TWA
First year: 1972
Hydrometric statistics for 1987

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	Nov	DEC	Year
Flows Avg.	2.455	1.589	2.832	2.749	0.692	1.540	1.357	0.748	0.695	8.486	4.356	1.494	2.416
$\left(m^{3} s^{-1}\right):$ Peak	17.00	10.60	18.80	19.70	3.75	12.70	12.60	6.34	3.78	56.40	34.10	3.58	56.40
Runotf (mm)	46	27	53	50	13	28	26	14	13	160	80	28	538
Rainfall (mm)	26	36	64	55	46	94	80	49	50	206	76	28	810
Monthly and yearly statistics for previous record (Dec 1972 to Dec 1986 -incomplete or missing months total 1.5 years)													
Mean Avg.	3.666	2.762	2.636	1.745	1.559	0.970	0.568	0.838	1.020	1.650	2.416	3.847	1.972
flows Low	1.364	0.829	0.833	0.388	0.305	0.221	0.296	0.169	0.281	0.207	0.260	1.100	0.950
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{High}$	6.268	5.883	4.668	3.666	3.552	1.874	1.709	2.864	5.419	6.062	5.668	5.474	2.313
Poak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	41.30	46.50	22.30	47.00	32.90	23.30	14.90	29.80	40.70	45.90	56.10	68.50	68.50
Runoff (mm)	69	47	50	32	29	18	11	16	19	31	44	73	438
Rainfall (mm)	78	51	69	45	64	59	43	62	71	85	85	100	812
Factors affecting flow regime: Station type: MiS										1987 runoff is 123% of previous mean rainfall 100\%			

040004 Rother at Udiam

Measuring authority: SWA
First year: 1962
Hydrometric statistics for 1987

		JAN	FEB	MAR	APR	MAY	JUN	JUL.	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	3.436	1.903	3.609	2.922	0.639	0.764	1.612	0.826	0.713	10.750	4.458	2.181	2.818
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$:	Peak	17.20	8.33	20.02	13.61	1.50	4.01	22.20	7.51	2.23	42.76	31.63	7.24	42.76
Runoff (mm)		45	22	47	37	8	10	21	11	9	140	56	28	434
Rainfall (mm)		30	47	82	52	49	96	108	77	42	226	82	38	929

Monthly and yearly statistics for previous record (Oct 1962 to Dec 1986 -incomplete or missing months total 1.6 yesrs)

Mean	Avg.	3.862	3.368	3.164	2.287	1.423	1.008	0.597	0.692	0.866	1.505	3.202	3.706	2.134
flows	Low	0.945	0.792	0.657	0.343	0.338	0.268	0.231	0.182	0.245	0.179	0.184	0.427	0.756
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$	High	9.397	10.370	6.927	4.533	2.817	4.157	2.790	2.682	3.952	5.708	12.360	9.547	3.322
Peak flow	$\mathrm{n}^{3} \mathrm{~s}^{-1}$	41.57	44.74	49.84	25.43	24.09	23.08	21.64	14.36	33.98	29.17	50.43	51.82	51.82
Runoff (mm)		50	40	41	29	19	13	8	9	11	20	40	48	327
Rainfall (mm		85	60	72	56	60	. 62	50	64	79	85	103	94	870
Factors affecting flow regime: S GE Station type: VA											1987 runoff is 133% of previous mean rainfall 107\%			

Grid reference: 51 (TQ) 773245
Level stn. (m OD): 1.90
Catchment area (sq km): 206.0
Max alt. (m OD): 197

040009 Teise at Stone Bridge

1987

Measuring authority: SWA
Grid reference: 51 (TO) 718399 Level stn. (m OD): 24.50
First year: 1961

Catchment area (sq km): 136.2 Max alt. (m OD): 201

Hydrometric statistics for 1987

\%	JAN	fEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	1.289	0.652	1.243	1.576	0.840	0.901	1.128	1.133	0.885	4.786	1.878	0.645	1.413
$\left(m^{3} s^{-1}\right):$ Peak	7.33	5.11	8.54	7.48	1.57	2.42	5.53	8.71	2.11	19.77	19.23	2.93	19.77
Runoff (mm)	25	12	24	30	17	17	22	22	17	94	36	13	329
Rainfall (mm)	34	. 41	70	45	48	76	101	74	37	210	75	28	839
Monthly and yearly statistics for previous record (Oct 1961 to Dec 1986)													
Mean Avg.	2.483	2.054	1.877	1.420	1.095	0.785	0.534	0.535	0.679	0.955	1.767	2.059	1.350
flows Low	0.553	0.522	0.413	0.323	0.238	0.130	0.231	0.100	0.170	0.128	0.276	0.471	0.559
($\left(\mathrm{m}^{3} s^{-1}\right)$ High	5.757	6.241	3.928	2.781.	2.306	2.628	0.977	1.021	2.359	3.173	6.344	5.334	2.101
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	41.63	48.27	34.43	24.78	38.95	29.22	13.87	10.61	23.88	29.17	47.12	48.29	48.29
Runotf (mm)	49	37	37	27	22	15	10	11	13	19	34	40	313
Rainfall (mm)	78	52	68	52	59	57	47	60	74	77	91	87	802
Factors affecting flow regime: PGE Station type: B VA										1987 runoff is 105% of previous mean rainfall 105\%			

040011 Great Stour at Horton

1987

Measuring authority: SWA
First year: 1964
Hydrometric statistics for 1987

Monthly and yearly statistics for previous record (Oct 1964 to Dec 1986 -incomplete or,missing months total 0.3 .years)

Mean Avg.	5.269	4.766	4.427	3.568	2.864	2.079	1.781	1.741	1.900	2.534	3.656	4.667	3.265
flows Low	2.293	2.366	1.812	1.654	1.324	1.079	0.965	0.877	1.119	1.085	1.328	1.687	1.808
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{High}$	8.455	7.377	9.086	7.144	5.811	3.221	3.229	2.802	3.626	8.045	8.195	9.089	4.717
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	27.41	27.89	24.19	38.29	25.05	10.87	8.60	11.57	29.38	27.18	28.85	30.44	38.29
Runoff (mm)	41	34	34	27	22	16	14	. 14	14	20	27	36	299
Rainfall (mm)	72	49	59	49	53	51	56	57	73	74	85	78	756

Factors affecting flow regime: GE
Station type: B VA

Grid reference: 61 (TR) 116554 Level stn. (m OD): 12.50

Catchment area (sq km): $\mathbf{3 4 5 . 0}$ Max alt. (m OD): 205

1987 runoff is 118% of previous mean rainfall 109\%

040012 Darent at Hawley

Measuring authority: TWA
First year: 1963
Hydrometric statistics for 1987

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCt	NOV 1.321	DEC 0.852	Year 0.737
Flows Avg.	0.836	0.802	0.782	0.788	0.450	0.517	0.412	0.367	0.288	1.428	1.321	0.852	0.737
($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$) : Peak	2.44	1.52	1.54	1.47	0.69	1.10	1.07	0.82	0.44	3.77	2.96	0.99	3.77
Runoff (mm)	12	10	11	11	6	7	6	5	4	20	18	12	121
Rainfall (mm)	35	36	58	41	49	101	102	70	39	185	71.	18	805
Monthly and yearly statistics for previous record (Dec 1963 to Dec 1986)													
Mean Avg.	0.989	0.990	0.930	0.827	0.649	0.483	0.324	0.302	0.326	0.376	0.557	0.816	0.629
flows Low	0.194	0.219	0.124	0.174	0.076	0.041	0.000	0.000	0.000	0.000	0.000	0.011	0.101
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) High,	1.817	1.718	1.804	1.515	1.509	0.982	0.617	0.690	1.817	1.516	1.448	1.674	1.067
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	3.88	3.23	4.05	3.09	13.10	3.06	2.35	2.27	10.05	2.97	4.91	4.36	13.10
Runoff (mm) ,	14	13	13	11	9	7	5	4	4	5	8	11	104
Rainfall (mm)	68	46	59	53	60	56	53	59	71	62	76	76	739
Factors affecting flow regime: Station type: C										1987 runoff is 117% of previous mean rainfall 109\%			

041001 Nunningham Stream at Tilley Bridge

Measuring authority: SWA
First year: 1950
Hydrometric statistics for 1987

	JAN	FEB	MAR	APR	MAY	JUN	Jul	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	0.269	0.163	0.325	0.188	0.044	0.033	0.063	0.045	0.043	0.503	0.432	0.171	0.190
($\mathrm{m}^{3} \mathrm{~s}^{-1}$): Poak	7.04	1.15	2.31	1.89	0.11	0.11	0.84	0.62	0.35	1.89	8.75	0.85	8.75
Runoff (mm)	43	23	51	29	7	5	10	7	7	80	66	27	355
Rainfall (mm)	28	43	76	52	42	75	111	81	54	232	77	44	915
Monthly and yearly statistics for previous record (Apr 1950 to Dec 1986-incomplete or missing months total 0.1 years)													
Mean Avg.	0.424	0.336	0.243	0.147	0.081	0.054	0.033	0.040	0.054	0.122	0.299	0.377	0.183
flows Low	0.076	0.094	0.054	0.034	0.023	0.012	0.010	0.008	0.009	0.013	0.019	0.033	0.053
$\left(m^{3} \mathrm{~s}^{-1}\right) \mathrm{High}$	1.105	0.958	0.577	0.390	0.195	0.319	0.210	0.125	0.359	0.576	1.017	1.082	0.306
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	8.84	8.60	8.49	5.94	6.20	7.92	1.89	9.32	8.92	8.82	11.90	8.84	11.90
Runoff (mm)	67	48	39	22	13	8	5	6	8	19	46	60	342
Rainfall (mm)	83	58	60	49	54	56	55	72	76	87	100	97	847

Factors affecting flow regime: \mathbf{N}
Station type: MIS

Grid reference: 51 (TO) 662129
Level stn. (m OD): 3.80

Catchment area (sq km): 16.9
Max alt. (m OD): 137

1987 runoff is 104% of previous mean rainfall 108\%

041005 Ouse at Gold Bridge

Measuring authority: SWA
first year: 1960
Hydrometric statistics for 1987

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	3.120	1.873	3.402	3.392	1.197	2.345	1.778	1.019	0.870	12.660	5.998	2.190	3.320
$\left(\mathrm{m}^{\mathbf{3}}{ }^{-1}\right)$: Peak	14.87	6.62	13.46	12.00	2.50	16.61	9.40	3.83	2.08	73.71	42.90	7.34	73.71
Runoff (mm)	46	25	50	49	18	34	26	15	12	187	86	32	581
Rainfall (mm)	21	39	76	54	44	128	103	57	52	257	83	35	949
Monthly and yearly statistics for previous record (Mar 1960 to Dec 1986-incomplete or missing months total 0.3 years)													
Mean Avg.	4.274	3.501	3.075	2.358	1.749	1.062	0.642	0.746	1.054	1.643	3.312	3.663	2.251
flows Low	1.142	1.240	0.793	0.611	0.450	0.283	0.282	0.157	0.230	0.275	0.384	0.846	0.934
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	7.762	8.214	6.888	4.318	3.657	3.829	1.903	2.458	4.296	6.602	12.030	7.657	3.261
Peak flow ($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$)	46.80	71.85	29.86	31.57	26.35	27.91	16.52	33.15	49.01	47.59	86.92	81.06	86.92
Runoff (mm)	63	47	46	34	26	15	10	11	15	24	47	54	393
Rainfall (mm)	87	55	69	58	63	61	50	67	82	86	103	94	875
Factors affocting flow regime: SRPGE Station type: CBVA										1987 runoff is 148% of pravious mean rainfall 108\%			

Monthly and yearly statistics for previous record (Mar 1960 to Dec 1986-incomplete or missing months total 0.3 years)

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	3.120	1.873	3.402	3.392	1.197	2.345	1.778	1.019	0.870	12.660	5.998	2.190	3.320
($\mathrm{m}^{\mathbf{3}}{ }^{-1}$): Peak	14.87	6.62	13.46	12.00	2.50	16.61	9.40	3.83	2.08	73.71	42.90	7.34	73.71
Runoff (mm)	46	25	50	49	18	34	26	15	12	187	86	32	581
Rainfall (mm)	21	39	76	54	44	128	103	57	52	257	83	35	949
Monthly and yearly statistics for previous record (Mar 1980 to Dec 1986-incomplete or missing months total 0.3 years)													
Mean Avg.	4.274	3.501	3.075	2.358	1.749	1.062	0.642	0.746	1.054	1.643	3.312	3.683	2.251
flows Low	1.142	1.240	0.793	0.611	0.450	0.283	0.282	0.157	0.230	0.275	0.384	0.846	0.934
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{High}$	7.762	8.214	6.888	4.318	3.657	3.829	1.903	2.458	4.296	6.602	12.030	7.657	3.261
Peak flow $\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$	46.80	71.85	29.86	31.57	26.35	-27.91	16.52	33.15	49.01	47.59	86.92	81.06	86.92
Runoff (mm)	63	47	46	34	26	15	10	11	15	24	47	54	393
Rainfall (mm)	87	55	69	58	63	61	50	67	82	86	103	94	875
Factors affocting flow regime: SRPGE Station type: CBVA										1987 runoff is 148% of pravious mean rainfall 108\%			

Factors affocting flow regime: SRPGE
Station type: CBVA

Grid reference: 51 TTQ) 429214 Level stn. (m OD): 11.40

Catchment area (sq km): 180.9 Max alt. (m OD): 203

041006 Uck at Isfield

Measuring authority: SWA
First year: 1964
Hydrometric statistics for 1987

Station type: C

Grid reference: 51 (TQ) 459190 Leval stn. (m OD): 11.30

Catchment area (sq km): 87.8 Max alt. (m OD): 221

Monthly and yearly statistics for previous record (Dec 1964 to Dec 1986)

041019 Arun at Alfoldean

Measuring authority: SWA
First year: 1970
Hydrometric statistics for 1987

		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	2.161	1.194	2.636	3.189	0.445	0.966	0.857	0.340	0.350	11.580	4.783	1.063	2.464
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$:	Peak	27.68	8.50	25.46	38.52	1.28	5.85	6.26	1.24	1.01	71.12	58.13	3.46	71.12
Runoff (mm)		42	21	51	59	9	18	17	7	7	223	89	20	562
Rainfall (mm)		20	36	67	61	45	98	92	45	50	224	77	29	844

Monthly and yearly statistics for previous record (May 1970 to Dec 1986 -incomplete or missing months total 0.1 years)

Mean	Avg.	3.657	2.446	2.358	1.626	1.177	0.736	0.290	0.407	0.689	1.301	2.598	3.227	1.707
flows	Low	0.664	0.689	0.469	0.277	0.223	0.131	0.138	0.078	0.161	0.150	0.167	0.492	0.589
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$	High	6.927	6.708	4.413	3.829	3.313	3.055	1.116	1.618	5.443	6.614	10.030	6.152	2.845
Poak flow	$\mathrm{m}^{3}{ }^{-1}$	68.63	67.53	54.45	76.97	47.48	46.54	7.27	23.86	56.14	68.58	69.14	77.65	77.65
Runoff (mm		70	43	45	30	23	14	6	8	13	25	48	62.	388
Rainfall (mm		86	49	71	48	62	57	42	61	73	78	90	91	808
Factors affecting flow regime: E Station type: CC											1987 runoff is 145% of previous mean rainfall 104\%			

041027 Rother at Princes Marsh

Measuring authority: SWA
First year: 1972
Hydrometric statistics for 1987

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	0.613	0.439	0.666	0.694	0.298	0.253	0.204	0.165	0.164	1.088	0.747	0.410	0.478
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	11.34	- 1.49	5.59	2.85	0.37	1.24	0.80	0.36	0.56	17.84	8.88	1.44	17.84
Runotf (mm)	44	29	48	48	21	18	15	12	11	78	52	30	406
Rainfall (mm)	19	46	98	73	46	85	79	33	42	261	83	49	914
Monthly and yearly statistics for previous record (Nov 1972 to Dec 1986 -incomplete of missing months total 0.3 years)													
Mean Avg.	0.872	0.688	0.674	0.491	0.403	0.290	0.219	0.236	0.286	0.459	0.607	0.837	0.505
flows Low	0.273	0.320	0.237	0.194	0.158	0.121	0.120	0.106	0.168	0.165	0.167	0.348	0.288
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	1.485	1.409	1.220	0.684	0.641	0.471	0.300	0.493	0.949	1.011	1.855	1.299	0.696
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	15.63	13.72	10.71	6.83	7.20	4.68	2.17	4.55	12.97	68.03	16.60	22.19	68.03
Runoff (mm)	63	45	49	34	29	20	16	17	20	33	42	60	428
Rainfall (mm)	98	55	82	43	69	54	52	64	84	85	90	113	889

Factors affecting flow regime: GE Station type: C

Grid reference: 41 (SU) 772270
Level stn. (m OD): 56.40

Catchment area (sq km): 37.2
Max alt. (m OD): 252

1987 runoff is 95% of provious mean rainfall 103\%

042003 Lymington at Brockenhurst Park

Measuring authority: SWA
First year: 1960
Hydrometric statistics for 1987

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	1.106	1.350	2.309	1.906	0.278	0.346	0.460	0.073	0.125	1.653	1.628	1.027	1.022
($\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	9.14	8.96	10.13	10.13	0.72	3.76	7.69	0.23	0.40	10.13	10.09	4.79	10.13
Runotf (mm)	30	33	63	50	8	9	12	2	3	45	43	28	325
Rainfall (mm)	17	69	104	74	26	67	70	19	39	186	79	54	804

Monthly and yearly statistics for previous record (Oct 1960 to Dec 1986 -incomplete or missing months total 0.2 years)

Mean Avg.	1.839	1.644	1.437	1.009	0.838	0.462	0.235	0.279	0.454	1.005	1.398	1.628	1.016
flows Low	0.330	0.439	0.327	0.168	0.128	0.042	0.013	0.014	0.084	0.128	0.198	0.541	0.407
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right\}$ High	3.723	3.459	3.089	2.169	1.569	1.247	1.603	0.847	2.308	4.841	5.283	3.294	1.340
Peak flow ($\mathrm{m}^{\mathbf{3}} \mathbf{s}^{-1}$)	9.91	13.62	8.64	8.32	13.98	7.95	11.38	8.16	8.47	11.28	13.54	14.91	14.91
Runoff (mm)	50	41	39	26	23	12	6	8	12	27	37	44	324
Rainfall (mm)	89	57	69	51	65	57	43	64	77	84	94	95	845

Factors affocting flow regime: \mathbf{N}
Station type: VN
Level stn. (m OD): 6.10
Catchment area (sq km): 98.9 Max alt. (m OD): 114

042006 Meon at Mislingford

Measuring authority: SWA
Grid reference: 41 (SU) 589141
Level stn. (m OD): 29.30
Hydrometric statistics for 1987

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
Flows Avg.	1.759	1.286	1.243	2.021	1.310	0.824	0.496	0.349	0.256
$\left(m^{3} s^{-1}\right)$: Peak	2.48	1.65	2.20	2.48	1.79	1.10	1.02	0.52	0.34
Runoff (mm)	65	43	46	72	48	29	18	13	9
Rainfall (mm)	13	51	106	79	40	76	72	29	41
Monthly and yearly statistics for previous record (Oct 1958 to Dec 1986)									
Mean Avg.	1.555	1.785	1.653	1.371	1.035	0.754	'0.539	0.406	0.360
flows Low	0.463	0.480	0.427	0.335	0.164	0.120	0.079	0.068	$0.102^{\text { }}$
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	3.470	3.300	2.820	1.988	1.738	1.220	0.827	0.657	0.882
Peak flow ($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$)	3.51	4.02	3.26	2.83	2.06	1.50	1.23	1.07	0.96
Runoff (mmi)	57	60	61	49	38	27	20	15	13
Rainfall (mm)	100	59	76	57	69	58	53	73	83

Monthly and yearly statistics for previous record (Oct 1958 to Dec 1986)

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
Flows Avg.	1.759	1.286	1.243	2.021	1.310	0.824	0.496	0.349	0.256
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	2.48	1.65	2.20	2.48	1.79	1.10	1.02	0.52	0.34
Runoff (mm)	65	43	46	72	48	29	18	13	9
Rainfall (mm)	13	51	106	79	40	76	72	29	41
Monthly and yearly statistics for previous record (Oct 1958 to Dec 1986)									
Mean Avg.	1.555	1.785	1.653	1.371	1.035	0.754	'0.539	0.406	0.360
flows Low	0.463	0.480	0.427	0.335	0.164	0.120	0.079	0.068	$0.102{ }^{\prime}$
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	3.470	3.300	2.820	1.988	1.738	1.220	0.827	0.657	0.882
Peak flow ($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$)	3.51	4.02	3.26	2.83	2.06	1.50	1.23	1.07	0.96
Runoff (mm)	57	60	61	49	38	27	20	15	13
Rainfall (mm)	100	59	76	57	69	58	53	73	83

Factors affecting flow regime: G
Station type: FL
First year: 1958

Catchment area (sq. km): 72.8 Max alt. (m OD): 233

1987 runoff is 113% of previous mean rainfall 98%

042008 Cheriton Stream at Sewards Bridge

Measuring authority: SWA
First year: 1970
Hydrometric statistics for 1987

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	0.916	0.758	0.727	0.984	0.823	0.588	0.457	0.382	0.324	0.548	0.789	0.762	0.671
($\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	1.09	0.88	0.98	1.09	1.02	0.81	0.57	0.50	0.40	0.85	1.13	1.07	1.13
Runoff (mm)	33	24	26	34	29	20	16	14	11	20	27	27	282
Rainfall (mm)	14	48	98	81	40	77	71	29	41	241	87	50	877
Monthly and yearty statistics for previous record (Jul 1970 to Dec 1986)													
Mean Avg.	0.830	0.940	0.904	0.829	0.680	0.571	0.473	0.410	0.382	0.424	0.520	0.707	0.638
flows Low	0.521	0.495	0.409	0.320	0.271	0.218	0.183	0.165	0.207	0.279	0.278	0.320	0.408
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	1.293	1.443	1.410	1.065	0.857	0.959	0.797	0.708	0.560	0.672	0.980	1.278	0.768
Peak flow ($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$)	1.69	1.83	1.68	1.39	1.26	2.02	1.25	1.28	0.77	0.91	1.23	1.85	2.02
Runoff (mm)	30	31	32	29	24	20	17	15	13	15	18	25	268
Rainfall (mm)	100	59	80	47	66	59	54	66	78	80	10.	107	897
Factors affecting flow regime: N Station type: C										1987 runoff is 105% of previous mean rainfall 98%			

042012 Anton at Fullerton

1987

Measuring authority: SWA
First year: 1975
Hydrometric statistics for 1987

	JAN	FEB	MAR	APR ${ }^{\text {a }}$	MAY	JUN	JUL	AUG*	SEP	OCT	NOV	DEC	Year
$\begin{array}{cc}\text { Flows } \\ \left(m^{3}{ }_{8}-t\right): & \begin{array}{c}\text { Avg. } \\ \text { Peak }\end{array}\end{array}$	2.493	2.195	2.260	2.618	2.143	1.856	1.526	1.278	1.259	1.459	1.828	1.747	1.888
Runoff (mm)	36	29	33	37	31	26	22	19	18	21	26	25	321
Rainfall (mm)	13	47	71	64	37	86	57	17	49	147	69	37	694
Monthly and yearly statistics for previous record (Jan 1975 to Dac 1986)													
Mean Avg.	2.254	2.495	2.525	2.454	2.141	1.861	1.523	1.376	1.301	1.382	1.523	1.866	1.888
flows Low	1.301	1.215	1.047	0.948	0.830	0.691	0.626	0.548	0.688	1.015	1.003	1.417	1.010
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	3.132	3.691	3.373	3.123	2.842	2.817	2.196	1.784	1.536	1.888	2.116	2.855	2.242
Pask flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)													
Runotf (mm)	33	33	37	34	31	26	22	20	18	20	21	27	322
Rainfall (mm)	80	47	81	41	66	49	40	64	65	71	72	107	783

Factors affecting flow regime: N
Station type: C

Grid reference: 41 (SU) 379393
Level stn. (m OD): 40.50

Catchment area (sq km): 185.0 Max alt. (m OD): 253

1987 runoff is 100% of previous mean rainfall 89%

043006 Nadder at Wilton Park

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	4.766	3.223	3.863	5.936	2.995	1.793	1.360	1.028	1.005	1.739	2.803	2.466	2.748
$\left(m^{3} s^{-1}\right)$; Peak	11.68	6.15	11.00	11.04	4.15	2.44	2.82	1.35	1.82	6.59	9.77	5.00	11.68
Runoff (mm)	58	35	47	70	36	21	17	12	12	21	33	30	392
Rainfals (mm)	16	65	96	70	33	76	45	24	51	162	74	56	768
Monthly and yearly statistics for previous record (Jan 1986 to Dec 1986)													
Moan Avg.	4.793	5.160	4.432	3.208	2.493	1.990	1.523	1.365	1.367	1.799	2.615	3.987	2.884
flows Low	1.011	1.263	1.358	1.048	0.993	0.839	0.684	0.595	0.823	0.829	0.905	1.219	1.535
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{High}$	6.773	8.196	6.732	5.272	4.044	3.283	2.234	2.040	3.093	3.537	6.413	7.030	3.821
Poak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	22.71	17.57	18.80	14.27	28.13	8.83	13.39	6.61	16.68	10.99	22.90	47.88	47.88
Runoff (mm)	58	57	54	38	30	23	18	17	16	22	31	48	412
Rainfall (mm)	98	70	80	51	72	62	52	73	79	82	91	107	917
Factors affecting flow regime: N													

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	4.766	3.223	3.863	5.936	2.995	1.793	1.360	1.028	1.005	1.739	2.803	2.466	2.748
$\left(m^{3} s^{-1}\right)$; Peak	11.68	6.15	11.00	11.04	4.15	2.44	2.82	1.35	1.82	6.59	9.77	5.00	11.68
Runoff (mm)	58	35	47	70	36	21	17	12	12	21	33	30	392
Rainfall (mm)	16	65	96	70	33	76	45	24	51	162	74	56	768
Monthly and yearly statistics for previous record (Jan 1986 to Dec 1986)													
Mean Avg.	4.793	5.160	4.432	3.208	2.493	1.990	1.523	1.365	1.367	1.799	2.615	3.987	2.884
flows Low	1.011	1.263	1.358	1.048	0.993	0.839	0.684	0.595	0.823	0.829	0.905	1.219	1.535
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{High}$	6.773	8.196	6.732	5.272	4.044	3.283	2.234	2.040	3.093	3.537	6.413	7.030	3.821
Poak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	22.71	17.57	18.80	14.27	28.13	8.83	13.39	6.61	16.68	10.99	22.90	47.88	47.88
Runoff (mm)	58	57	54	38	30	23	18	17	16	22	31	48	412
Rainfall (mm)	98	70	80	51	72	62	52	73	79	82	91	107	917
Factors affecting flow regime: N													

Moasuring authority: WWA
First year: 1966
Hydrometric statistics for 1987

Monthly and yearly statistics for previous record (Jan 1986 to Dec 1986)

Factors affecting flow regime: N
Station type: C

Grid reference: 41 (SU) 098308 Level stn. (m OD): 51.10

Catchment area (sq km): 220.6
Max alt. (m OD): 277 rainfall 84%

043007 Stour at Throop Mill

Measuring authority: WWA First year: 1973
Hydrometric statistics for 1987

	JAN	FEB	MAR	APA	MAY	JUN	JUL	AUG	SEP	OCT	Nov	DEC	Year
Flows Avg.	22.180	17.930	22.150	27.060	9.548	6.236	4.428	3.248	3.121	8.335	16.060	10.320	12.551
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	63.59	45.72	69.55	88.24	15.18	9.78	7.17	4.26	3.88	23.94	57.81	33.51	88.24
Runoff (mm)	55	40	55	65	24	15	11	8	8	21	39	26	367
Rainfall (mm)	14	75	84	72	28	74	44	25	47	163	74	56	758
Monthly and yearly statistics for previous record (Jan 1973 to Dec 1986)													
Moan Avg.	24.740	24.480	20.700	13.720	9.888	6.828	4.608	4.488	5.319	9.107	13.920	23.870	13.427
flows Low	4.319	6.826	7.548	4.483	3.157	2.231	1.614	1.358	2.413	2.716	2.823	6.386	6.138
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	38.730	42.200	32.620	22.660	18.900	16.940	7.932	8.998	20.340	29.770	36.730	40.270	17.377
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	116.60	131.50	110.24	61.56	150.00	180.00	47.60	32.41	90.33	101.90	133.40	280.00	280.00
Runoff (mm)	62	56	52	33	25	16	12	11	13	23	34	60	395
Rainfall (mm)	91	63	79	41	65	56	50	66	80	79	84	114	868

Factors affecting flow regime: I
Station type: CC

Grid reference: 40 (SZ) 113958 Level stn. (m OD): 4.40

Catchment area (sq km): 1073.0 Max aft. (m OD): 277

1987 runoff is 93% of previous mean rainfall 87\%

044002 Piddle at Baggs Mill

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	4.446	3.284	3.335	4.726	2.638	1.868	1.278	0.985	0.914	1.351	1.846	1.904	2.381
$\left(m^{3} \mathrm{~s}^{-1}\right)$: Peak	8.02	6.78	6.39	8.63	3.88	3.23	1.73	1.14	1.14	1.66	4.83	2.98	8.63
Runoff (mm)	65	43	49	67	39	26	19	14	13	20	26	28	409
Rainfall (mm)	14	95	94	81	23	90	39	19	52	181	83	75	846
Monthly and yearly statistics for previous record (Oct 1963 to Dec 1986)													
Moan Avg.	3.689	4.359	3.925	2.947	2.192	1.685	1.249	1.102	1.116	1.448	2.154	2.998	2.395
flows Low	1.045	1.020	1.093	0.945	0.757	0.571	0.483	0.433	0.604	0.805	0.721	0.853	1.328
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	5.959	6.616	6.202	4.782	3.376	2.907	1.755	1.526	2.300	3.106	5.047	5.654	3.233
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	11.87	9.18	9.37	6.48	8.11	9.23	4.79	4.50	B. 18	9.29	9.20	8.62	11.87
Runoff (mm)	54	58	57	42	32	24	18	16	16	21	30	44	413
Painfall (mm)	110	77	85	50	72	59	49	66	86	90	109	117	970
Factors affecting flow regime: I Station type: FL										1987 runoff is 99% of previous mean rainfall 87\%			

Measuring authority: WWA
First year: 1963
Hydrometric statistics for 1987

Factors affecting flow regime: I
Station type: FL

Grid reference: 30 (SY) 913876
Level stn. (m OD): 2.10

Catchment area (sq km): 183. Max alt. (m OD): 275

Measuring authority: SWWA
First year: 1962
Hydrometric statistics for 1987

	JAN	FEE	MAR	APR	MAY	JUN	Jul	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	4.531	5.150	4.637	7.445	1.948	2.044	1.440	1.090	1.179	5.324	5.111	3.076	3.581
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak.	30.56	23.56	22.15	61.98	2.78	11.49	6.12	2.52	2.55	23.59	27.01	13.10	61.98
Runoff (mm)	54	55	55	85	23	23	17	13	14	63	59	36	497
Rainfall (mm)	24	85	72	102	38	79	51	26	45	201	79	54	856
Monthly and yearly statistics for previous record (Oct 1962 to Dec 1986)													
Mean Avg.	6.760	6.294	5.066	3.344	2.891	2.041	1.768	1.658	1.928	2.880	4.464	6.201	3.765
flows Low	1.930	2.251	2.392	1.318	1.085	0.803	0.650	0.569	0.971	0.971	1.287	2.479	2.277
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \quad \mathrm{High}$	12.870	11.820	9.184	6.649	6.337	4.449	5.200	2.787	7.328	11.430	8.191	11.880	4.840
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	110.70	100.10	50.11	41.63	33.82	30.58	202.20	58.62	94.16	45.87	134.50	142.80	202.20
Runoff (mm)	80	68	60	38	34	23	21	20	22	34	51	73	525
Rainfall (mm)	113	80	87	57	72	63	58	68	79	84	99	115	975
Factors affecting flow regime: PGEI Station type: VA										1987 runoff is 95% of previous mean rainfall 88\%			

045005 Otter at Dotton

Measuring authority: SWWA
First year: 1963
Hydrometric statistics for 1987

	Jan	FEB	MAR	APR	MAY	JuN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	2.974	3.974	3.274	5.944	1.519	1.721	1.168	1.004	1.101	3.932	3.489	2.290	2.699
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	24.01	35.86	21.17	66.70	2.97	6.89	2.71	1.96	2.08	22.64	19.45	9.76	66.70
Runoff (mm)	39	47	43	76	20	22	15	13	14	52	45	30	418
Rainfall (mm)	22	96	70	108	40	96.	37	22	52	200	76	60	879
Monthly and yearly statistics for previous record (Mar 1963 to Dec 1986)													
Mean Avg..	5.798	5.160	4.282	2.759	2.466	1.793	1.536	1.440	1.643	2.547	3.717	5.175	3.186
flows Low	1.502	1.308	1.908	1.150	0.941	0.716	0.587	0.542	0.980	1.051	1.257	1.758	2.071
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	9.989	10.880	7.293	5.391	5.354	3.080	4.771	2.568	4.580	9.655	8.772	9.875	3.946
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	100.80	73.08	65.25	69.66	80.38	45.87	346.90	51.03	66.91	47.58	84.95	123.60	346.90
Runoff (mm)	77	62	57	35	33	23	20	19	21	34	48	68	496
Rainfall (mm)	120	84	89	58	74	62	57	67	75	87	99	117	989
Factors affecting flow regime: SRPGEI Station type: VA										1987 runoff is 84% of provious mean rainfall 89\%			

046002 Teign at Preston

Measuring authority: SWWA First year: 1956
Hydrometric statistics for 1987

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	9.718	9.423	10.950	19.820	3.685	3.803	1.978	1.295	1.512	10.200	10.930	10.550	7.822
($\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	29.09	33.21	106.66	134.47	5.79	37.26	4.44	2.63	3.26	51.01	66.12	44.63	134.47
Runoff (mm)	69	60	77	135	26	26	14	9	10	72	75	74	647
Rainfall (mm)	28.	103	104	130	45	82	59	15	65	235	109	110	1085

Monthly and yearly statistics for previous record (May 1956 to Dec 1986 -incomplete or missing months total 0.1 yaars)

Mean Avg.	19.620	18.090	12.990	8.406	5.750	3.651	2.410	2.566	3.564	7.58	11.280	17.210	9.391
flows Low	3.341	5.534	4.878	3.514	1.827	1.114	0.731	0.472	0.752	0.916	1.976	4.954	5.212
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \quad$ High	36.080	38.750	29.940	21.960	17.270	9.522	7.334	5.993	14.080	41.570	28.960	37.820	15.681
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	172.70	198.20	146.60	122.50	86.08	81.35	98.87	96.61	312.80	190.00	169.99	248.40	312.80
Runoff (mm)	138	116	92	57	41	25	17	18	24	53	77	121	780
Rainfall (mm)	161	113	111	74	84	67	67	88	101	119	135	162	1282
Factors affecting	regirm	SRPGEI								1987	off is 8	of pre	us mean

Station type: VA

Grid referenca: 20 (SX) 856746 Level str. (m OD): 3.80

Catchment area (sq km): 380.0 Max alt. (m OD): 604

047007 Yealm at Puslinch

Measuring authority; SWWA
First year: 1963
Hydrometric statistics for 1987

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	Nov	DEC	Year
Flows Avg.	1.387	1.517	2.142	2.931	0.455	0.866	0.465	0.236	0.268	1.837	2.363	1.763	1.353
$\left(m^{3} s^{-1}\right)$: Peak	9.69	10.20	24.54	24.11	1.10	21.74	3.05	0.51	0.97	9.01	18.39	18.53	24.54
Runoff (mm)	68	67	105	138	22	41	23	12	13	90	112	86	775
Rainfall (mm)	21	134	149	122	55	138	68	25	79	240	153	141	1325
Monthly and yearly statistics for previous record (Oct 1963 to Dec 1986-incomplete or missing months total 0.2 years)													
Mean Avg.	3.052	2.801	2.114	1.342	1.024	0.808	0.572	0.686	0.820	1.392	2.252	2.963	1.647
flows Low	0.563	1.015	0.659	0.572	0.327	0.171	0.095	0.057	0.183	0.121	0.373	1.171	1.052
$\left(m^{3} \mathrm{~s}^{-1}\right) \quad \mathrm{High}$	4.814	5.806	5.290	3.646	1.997	2.377	1.863	1.957	3.630	3.808	4.881	6.108	2.210
Poak flow ($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$)	26.68	23.24	24.11	20.53	17.53	23.47	25.22	27.86	21.33	22.29	26.62	25.18	27.86
Runoff (mm)	149	125	103	63	50	38	28	33	39	68	106	145	947
Rainfall (mm)	171	125	130	77	98	90	81	104	114	129	161	176	1458
Factors affecting flow regime: PGE Station typa: FLVA										1987 runoff is 82% of previous mean rainfall 91\%			

Catchment area (sq km): 54.9
Max alt. (m OD): 492

ainfall 91%

047008 Thrushel at Tinhay

Measuring authority: SWWA
First year: 1969
Hydrometric statistics for 1987

		JAN	FEB	MAR	APR	MAY	JUN	JUL
Flows	Avg.	2.214	2.232	3.418	2.218	0.410	0.683	0.537
$\left(\mathrm{~m}^{3} \mathbf{s}^{-1}\right):$	Poak	13.73	14.94	34.53	11.87	1.36	7.60	5.56
Runoff (mm)	53	48	81	51	10	16	13	
Rainfall (mm)	28	89	114	61	55	94	69	

Monthly and yearly statistics for previous record (Nov 1969 to Dec 1986)

Mean Avg.	5.282	3.976	3.116	1.622	1.198	0.746	0.379	0.781	1.044	2.261	3.858	5.027	2.436
flows Low	1.317	0.951	1.428	0.481	0.237	0.110	0.028	0.019	0.116	0.069	0.442	2.405	1.640
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{High}$	9.701	8.826	7.477	4.038	4.209	2.491	1.095	2.916	6.671	6.878	7.195	8.122	3.750
Peak flow ($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$)	53.32	61.78	61.46	27.72	38.72	57.13	9.89	33.64	75.12	55.86	57.07	124.40	124.40
Runoff (mm)	126	86	74	37	28	17	9	19	24	54	89	119	682
Rainfall (mm)* -(1970-1986)	151	94	102	58	71	74	65	90	96	107	135	146	1189
Factors affecting	w regim									1987	ff is 83	of pre	s me

Station type: CC

Grid reference: 20 (SX) 398856
Level stn. (m OD): 55.50

048004 Warleggan at Trengoffe

Measuring authority: SWWA
First year: 1969

Grid reference: 20 (SX) 159674 Level stn. (m OD): 70.30

Catchment area ($\mathrm{sq} \mathbf{~ k m}$): 25.3 Max alt. (m OD): 308

Hydrometric statistics for 1987

	JAN	FEB	MAR	APR	MAY	JUN	JuL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	0.954	0.831	0.907	1.051	0.436	0.434	0.541	0.395	0.312	1.247	1.272	0.843	0.769
$\left(m^{3} \mathrm{~s}^{-1}\right)$: Peak	2.39	2.17	3.57	3.30	0.77	2.00	2.31	1.00	0.91	5.17	3.84	2.19	5.17
Runoff (mm)	101	79	96	108	46	44	57	42	32	132	130	89	958
Rainfall (mm)	30	128	120	87	58	120	129	44	73	285	160	110	1344
Monthly and yearly statistics for previous record (Oct 1969 to Dec 1986-incomplete or missing months total 0.3 years)													
Mean Avg.	1.489	1.404	1.024	0.711	0.531	0.426	0.328	0.384	0.465	0.653	1.015	1.399	0.816
flows Low	0.744	0.751	0.585	0.403	0.288	0.208	0.151	0.118	0.177	0.208	0.233	0.907	0.624
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	2.584	2.906	1.588	1.234	0.978	0.904	0.688	0.950	1.677	1.557	1.775	1.949	1.228
Poak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	14.31	14.85	5.27	4.59	3.19	5.96	4.35	8.60	14.85	7.86	15.38	11.25	15.38
Runoff (mm)	158	135	108	73	56	44	35	41	48	69	104	148	1018
Rainfall (mm)* $\cdot(1970-1986)$	190	116	130	68	84	88	84	109	126	135	170	185	1485
Factors affecting flow regime: \mathbf{G} Station type: CC										1987 runoff is 94% of previous mean rainfall 91\%			

048005 Kenwyn at Truro

Moasuring authority: SWWA
irst year: 1968
Hydrometric statistics for 1987

048011 Fowey at Restormel

Measuring authority: SWWA
First year: 1961
Hydrometric statistics for 1987

	JAN	FEB	MAR	APR	MAY	JUN.	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	5.141	4.748	5.620	6.176	1.619	1.756	2.603	1.530	1.324	7.554	7.114	. 40	132
($\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	14.64	10.93	24.34	20.20	2.88	9.80	13.20	3.11	3.40	31.09	24.34	12.78	31.09
Runoff (mm)	81	68	89	95	26	27	41	24	20	120	109	70	770
Rainfall (mm)	31	128	129	90	57	119	112	42	77	285	160	122	1352
Monthly and yearly statistics for previous record (Oct 1961 to Dec 1986)													
Mean Avg.	9.448	8.321	6.057	4.059	3.129	2.236	1.814	2.093	2.646	4.436	6.822	9.469	5.032
flows Low	3.071	3.304	2.727	1.808	1.048	0.693	0.563	0.343	0.673	0.617	0.921	5.796	3.493
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	17.330	21.780	12.130	7.641	6.447	5.479	4.859	6.044	10.490	11.720	15.450	20.890	7.440
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$).	104.80	111.90	45.62	24.52	22.62	39.44	31.10	48.51	70.02	35.07	223.70	126.60	223.70
Runoff (mm) .	150	120	96	62	50	34	29	33	41	70	105	150	939
Rainfall (mm)	185	117	131	79	95	89	91	110	124	133	173	190	1517
Factors affecting flow regime: SRPGEI Station type: CC										1987 runoff is 82% of previous mean rainfall 89\%			

Station typa: CC

Catchment area (sq km): 169.1
Max alt. (m OD): 420

049001 Camel at Denby

Measuring authority: SWWA First year: 1964

Grid reference: 20 (SX) 017682
Leval stn. (m OD): 4.60

Catchment area (sq km): 208.8

Hydrometric statistics for 1987

Factors affecting flow regime: PGE
Station type: VA

049002 Hayle at St Erth

runoff is 97% of previous mean
rainfall 88% rainfall 88\%

Measuring authority: SWWA
First year: 1957

Monthly and yearly statistics for previous record (Oct 1957 to Dec 1986 -incomplete or missing months total 9.3 years)

Mean	Avg.	1.948	2.044	1.587	1.051	0.680	0.508	0.402	0.347	0.361	0.462	0.904	1.579	0.985
flows	Low	0.746	0.863	0.810	0.573	0.445	0.335	0.237	0.167	0.193	0.179	0.181	0.503	0.653
$\left(\mathrm{~m}^{3} \mathrm{~s}^{-1}\right)$	$H i g h$	2.849	3.426	2.582	1.641	1.464	0.859	1.063	0.743	1.067	1.140	2.297	2.584	1.258
Peak flow $\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$	6.20	6.73	5.83	3.07	2.36	1.72	1.99	2.27	1.88	2.02	3.81	6.31	6.73	
Runoff (mm)	107	102	87	56	37	27	22	19	19	25	48			
Rainfall (mm)	139	107	103	52	66	68	58	77	94	100	124	140	1128	

Factors affecting flow regime: G
Station type: CC

Grid reference: 10 (SW) 549342
Level stn. (m OD): 7.00

Catchment area (sq km): 48.9 Max alt. (m OD): 238

Hydrometric statistics for 1987

1987 runaff is 101% of previous mean rainfall 88%

050002 Torridge at Torrington

Measuring authority: SWWA
First year: 1962
Hydrometric statistics for 1987

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	16.210	16.060	27.750	18.950	2.421	4.310	2.448	1.141	1.492	37.210	37.160	9.2	5.363
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	184.73	86.48	264.39	151.25	'5.20	31.75	16.04	4.25	6.03	194.41	263.75	150.39	264.39
Runotf (mm)	65	59	112	74	10	17	10	5	6	150	145	78	730
Rainfall (mm)	28	95	121	75	54	94	63	29	73	245	149	97	1123
Monthly and yearly statistics for previous record (Oct 1962 to Dec 1986)													
Mean Avg.	30.320	23.780	18.080	10.930	8.574	4.910	4.355	5.347	7.045	14.700	26.640	32.140	15.541
flows Low	5.018	4.695	5.792	3.082	1.594	1.092	0.443	0.252	0.954	0.668	3.798	10.270	8.988
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	57.510	47.590	51.280	28.120	31.290	14.960	21.540	$19.690 \therefore$	45.910	49.230	55.730	64.530	21.036
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	391.10	294.40	535.60	164.40	205.70	181.30	310.60	228.50	415.00	225.00	370.40	730.00	730.00
Runoff (mm)	122	87	73	43	35	19	18	22	28	59	104	130	740
Rainfall (mm)	130	85	97	66	76	74	72	86	97	108	137	134	1162
Factors affecting flow regime: SRPGEI Station type: VA								, \cdot		1987 runoff is 99% of previous mean rainfall 97%			

052006 Yeo at Pen Mill

1987
Measuring authority: WWA
Grid reference: 31 (ST) 573162 Level stn. (m OD): 23.90

Hydrometric statistics for 1987

Station type: C VA

1987 runoff is 77% of previous mean rainfall 84\%

052007 Parrett at Chiselborough

Measuring authority: WWA
First year: 1966
Hydrometric statistics for 1987

Station typa: C

Grid reference: 31 (ST) 461144 Level stn. (m OD): 20.70

052010 Brue at Lovington

Measuring authority: WWA
First year: 1964
Hydrometric statistics for 1987

	JAN	FEB	MAR	APA	MAY	JuN	Jul	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	2.259	2.197	2.870	2.836	0.451	0.541	0.342	0.275	0.276	1.557	2.623	1.221	1.454
$\left(m^{3} s^{-1}\right):$ Peak	19.65	8.51	22.44	23.97	0.89	10.04	0.82	0.75	0.54	15.46	18.42	4.83	23.97
Runotf (mm)	45	39	57	54	9	10	7	5	5	31	50	24	337
Rainfall (mm)	19	74	70	73	48	89	37	36	54	138	71	45	754
Monthly and yearly statistics for previous record (Oct 1984 to Dac 1986)													
Morn Avg.	3.623	3.246	2.586	1.525	1.288	0.841	0.847	0.835	0.809	1.338	2.304	3.623	1.901
flows Low	0.743	0.910	0.844	0.526	0.313	0.217	0.150	0.130	0.247	0.190	0.407	1.034	1.153
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	5.752	6.872	5.263	3.352	3.554	2.203	4.081	2.449	4.873	4.380	4.883	6.158	2.427
Paak flow ($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$)	47.28	47.07	43.49	27.19	95.48	35.46	83.00	48.42	69.42	44.05	74.62	57.76	95.48
Runoff (mm)	72	59	51	29	26	16	17	17	16	27	44	72	444
Painfall (mm)	90	65	75	51	71	67	69	75	78	71	89	98	899
Factors affecting flow regime: N 1987 runoff is 76% of													

Factors affecting flow regime: N
Station type: CVA

Grid reference: 31 (ST) 590318 Level stn. (m OD): 19.80

Catchment area (sq km): 135.2 Max alt. (m OD): 244

o Dec 1986)

\qquad

053004 Chew at Compton Dando

Measuring authority: WWA First yaar: 1958

	JAN	FE,	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	1.525	1.425	2.316	1.771	0.795	0.584	0.427	0.454	0.413	0.805	1.689	0.763	1.081
($\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	9.90	7.90	19.88	7.04	1.30	1.34	0.67	0.76	0.59	3.55	15.77	2.31	19.88
Runoff (mm)	32	27	48	35	16	12	9	9	8	17	34	16	262
Rainfall (mm)	25	78	81	63	37	85	47	29	60	169	93	58	825

Monthly and yearty statistics for previous record (Mar 1958 to Dec 1986 -incomplete or missing months total 1.0 years)

Mean Avg.	. 1.909	1.703	1.368	0.978	0.847	0.612	0.464	0.462	0.574	0.806	1.246	1.804	1.062
flows Low	0.444	0.557	0.410	0.469	0.333	0.287	0.243	0.195	0.232	0.300	0.264	0.622	0.540
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \quad \mathrm{High}$	3.935	4.166	4.210	2.185	2.493	1.211	0.811	1.245	2. 135	3.251	3.898	5.017	1.766
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	39.43	48.99	50.00	14.19	67.50	13.00	6.23	6.09	59.26	49.56	38.83	63.78	67.50
Runoff (mm)	39	32	28	20	18	12	10	10	11	17	25	37	259
Rainfall (mm)	102	67	80	61	74	70	70	86	94	89	105	117	1015

Factors affecting flow regime: S PG I
Station type: FL

Grid reference: 31 (ST) 648647 Level stn. (m OD): 16.80

Catchment area (sq km): 129.5 Max alt. (m OD): 305

Hydrometric statistics for 1987

Hydrometric statics for 1987

1987 runoff is 101% of previous mean rainfall 81%
\qquad

053006 Frome (Bristol) at Frenchay

Méasuring authority: WWA
First year: 1961
Hydrometric statistics for 1987

	JAN	FEB	MAR	APR	MAY	JuN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	3.500	2.164	3.600	2.738	0.491	0.688	0.380	0.230	0.284	2.632	3.831	1.505	1.837
$\left(m^{3} s^{-1}\right)$: Peak	16.02	8.90	21.81	24.67	2.17	3.82	2.73	1.09	2.31	16.81	19.17	9.21	24.67
Runoff (mm)	63	35	65	48	9	12	7	4	5	47	67	27	388
Rainfall (mm)	13	63	86	61	39	99	49	25	51	168	81	49	784
Monthly and yearly statistics for previous record (Sep 1961 to Dec 1986)													
Mean Avg.	3.449	2.799	2.351	1.380	1.259	0.817	0.624	0.570	0.752	1.165	2.220	3.234	1.715
flows Low	0.670	0.613	0.636	0.476	0.290	0.220	0.122	0.139	0.208	0.162	0.211	0.820	0.804
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	6.152	6.040	5.762	3.434	5.028	2.973	3.516	2.398	5.113	4.691	5.434	9.807	2.255
Peiak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	35.05	41.09	33.84	29.63	49.00	29.01	70.79	12.75	29.73	42.93	49.12	66.55	70.79
Runoff (mm)	62	46	42	24	23	14	11	10	13	21	39	58	363
Rainfall (mm)	76	51	65	48	67	63	53	71	75	66	78	89	802
Factors affecting flow regime: GEI Station type: FL										1987 runoff is 107% of previous mean rainfall 98%			

053007 Frome (Somerset) at Tellisford

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	5.225	4.392	5.659	5.804	1.677	1.919	1.047	0.741	0.754	- 3.845	5.762	2.733	3.296
($\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	35.89	12.88	25.39	22.40	2.52	7.69	2.46	1.42	1.26	19.05	34.47	12.09	35.89
Runoff (mm)	53	41	58	58	17	19	11	8	7	39	57	28	396
Rainfall (mm)	28	74	88	72	44	101	49	34	63	159	84	56	852
Monthly and yearly statistics for previous record (Sep 1961 to Dec 1986)													
Mean Avg.	6.946	6.242	5.516	3.659	2.839	1.896	1.424	1.515	1.744	2.670	4.663	6.667	3.806
flows Low	1.684	2.072	1.938	1.510	0.843	0.518	0.329	0.291	0.649	0.612	0.962	2.795	2.334
($\mathrm{m}^{\mathbf{3}} \mathbf{s}^{-\dagger}$) High ${ }^{\text {' }}$	12.340	12.460	12.690	8.314	6.317	4.812	4.931	4.605	7.459	8.841	10.730	14.860	4.872
Peak flow ($\mathrm{m}^{3} \mathbf{s}^{-1}$)	77.99	64.75	68.83	57.51	98.80	37.52	108.11	82.49	71.03	40.24	84.58	83.64	108.11
Runoff (mm)	71	58	56	36	29	19	15	16	17	27	46	68	459
Rainfall (mm)	97	66	86	60	79	66	63	81	88	79	98	107	970
Factors affecting flow regime: PG I Station type: FL										1987 runoff is 86% of previous mean rainfall 88\%			

Measuring authority: WWA
First year: 1961
Hydrometric statistics for 1987

Factors affecting flow regime: PG I
Station type: FL

Grid reference: 31 (ST) 805564
Lavel stn. (m OD): 35.10

Catchment area (sq km): 261.6 Max alt. (m OD): 305

054006 Stour at Kidderminster

Measuring authority: STWA
Grid reference: 32 (SO) 829768
Catchment area (sq km): 324.0
First yoar: 1953 Level stn. (m OD): 30.50

Max alt (m OD):316
Hydrometric statistics for 1987

	JAN	FEB	MAR	APR	MAY	JuN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	3.080	2.683	3.509	4.773	2.609	4.224	2.815	3.090	2.407	4.755	4.205	2.865	3.418
$\left(m^{3} s^{-t}\right)$: Peak	13.57	6.48	9.46	19.74	4.44	20.16	7.05	17.73	6.69	16.89	18.93	7.64	20.16
Runoff (mm)	25	20	29	38	22	34	23	26	19	39	34	24	333
Rainfall (mm)	17	39	59	64	36	124	39	65	45	124	60	35	707
Monthly and yearly statistics for previous record (Oct 1953 to Dec 1986)													
Mean Avg.	3.673	3.439	3.327	2.792	2.626	2.346	2.151	2.346	2.366	2.454	3.020	3.431	2.828
flows Low	1.703	1.527	1.762	1.344	1.424	1.127	1.049	0.895	1.367	1.335	1.576	1.537	1.865
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	7.409	6.537	6.244	4.844	6.468	3.438	4.404	4.057	4.057	5.713	6.386	7.062	4.136
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	67.96	20.96	81.55	16.90	20.94	18.52	19.20	34.50	19.40	22.96	16.44	45.46	81.55
Runoff (mm)	30	26	27	22	22	19	18	19	19	20	24	28	275
Rainfall (mm)	63	47	54	49	62	56	57	70	65	57	66	68	714
Factors affecting flow regime: GEI Station type: VA										1987 runoff is 121% of previous mean rainfall 99\%			

054008 Teme at Tenbury

1987

Measuring authority: STWA
First year: 1956
Grid reference: 32 (SO) 597686 Level stn. (m OD): 48.00

Catchment area (sq km): 1134.4

Hydrometric statistics for 1987

Measuring authority: STWA
First year: 1960
Hydrometric statistics for 1987

	JAN	FEB	MAR	APR	MAY	JUN	JuL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	9.279	6.447	9.317	10.550	4.402	6.547	4.012	6.519	4.233	11.540	11.020	6.998	7.572
($\left.\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}\right)_{\text {\% }}$: Peak	39.31	10.69	19.19	27.98	5.63	24.03	8.39	32.57	5.41	37.59	25.49	11.68	39.31
Runoff (mm)	29	18	29	32	14	20	13	20	13	36	34	22	280
Reinfall (mm)	15	33	70	49	43	109	59	92	43	112	62	31	718
Monthly and yearty statistics for previous record (Oct 1960 to Dec 1986)													
Mean Avg.	11.050	10.390	8.869	7.270	6.659	4.640	3.891	3.868	4.004	5.534	8.107	10.880	7.084
flows Low	4.018	4.002	4.800	3.557	2.917	2.199	1.393	1.171	1.680	2.227	2.538	3.563	3.757
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	20.320	22.280	17.810	12.320	22.390	9.069	14.060	6.655	9.490	16.920	21.830	24.950	10.266
Peak flow ($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$)	45.31	45.98	40.53	40.73	40.35	27.00	48.71	38.53	32.17	37.38	44.54	55.82	55.82
Runoff (mm)	35	30	28	22	21	14	12	12	12	17	25	34	262
Rainfoll (mm)	61	46	54	51	65	56	53	64	64	59	72	69	714
Fectors affocting flow regime: G Station type: FV										1987 runoff is 107% of previous mean rainfall 101\%			

Factors affocting flow regime: G Station type: FV

Grid reference: 33 (SJ) 592123
Level stn. (m OD): 44.60
Catchment area (sq km): 852.0 Max alt. (m OD): 366

054019 Avon at Stareton

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	4.201	3.792	4.918	5.946	0.998	4.862	1.003	0.984	0.964	4.964	5.586	3.024	3.437
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Poak	18.54	12.79	16.09	33.37	1.77	42.89	1.83	3.64	2.24	20.79	21.68	7.48	42.89
Runotf (mm)	32	26	38	44	8	36	8	8	7	38	42	23	311
Rainfall (mm)	18	44	60	58	49	135	42	57	50	120	59	31	723
Monthly and yearly statistics for previous record (Oct 1962 to Dec 1986)													
Meon Avg.	4.384	4.488	4.206	2.705	2.234	1.301	0.991	1.081	1.027	1.470	2.333	4.053	2.516
flows Low	0.798	0.777	0.545	0.485	0.474	0.368	0.247	0.356	0.442	0.507	0.549	0.667	1.094
$\left(\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}\right)$ High	8.143	12.890	8.577	5.558	6.149	3.202	5.379	3.332	2.858	5.274	5.454	10.400	3.588
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	38.23	59.60	55.89	42.67	39.05	27.34	71.36	26.08	16.59	32.89	34.11	56.28	71.36
Funotf (mm)	34	32	32	20	17	10	8	8	8	11	17	31	229
Rainfall (mm)	54	45	55	48	60	57	53	70	54	50	59	64	669

Factors affecting flow regime: S EI

054020 Perry at Yeaton

Grid reference: 33 (SJ) 434192 Level stn. (m OD): 61.30

Catchment area (sq km): 180.8
First year: 1963
Hydrometric statistics for 1987

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	2.079	1.760	2.576	2.895	0.866	0.985	0.646	0.665	0.676	2.259	2.450	1.773	1.636
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$; Peak	9.73	4.75	8.57	10.83	1.08	2.41	1.27	2.22	1.16	7.52	5.87	3.75	10.83
Runoff (mm)	31	24	38	42	13	14	10	10	10	33	35	26	285
Rainfal (mm)	19	44	82	59	32	91	56	66	53	124	70	42	738
Monthly and yearly statistics for previous record (Oct 1983 to Dec 1986)													
Moan Avg.	2.883	2.728	2.362	1.705	1.465	0.973	0.739	0.726	0.734	1.110	1.801	2.679	1.655
flows Low	0.901	0.859	1.257	0.742	0.583	0.379	0.271	0.208	0.350	0.412	0.427	0.848	0.809
${ }^{\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)} \mathrm{High}$	4.777	6.507	4.265	3.041	4.232	2.046	2.735	1.416	1.785	3.308	3.103	6.244	2.335
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	14.23	11.29	11.12	8.57	10.41	8.49	7.87	5.49	7.32	7.25	10.02	12.57	14.23
Runotf (mm)	43	37	35	24	22	14	11	11	11	16	26	40	289
Rainfall (mm)	68	53	62	48	66	57	56	64	67	64	81	80	766
Factors affocting flow regime: N G Station typa: C										1987 runoff is 99% of previous mean rainfall 96%			

054022 Severn at Plynlimon $\boldsymbol{f l u m e}$

Grid reference: 22 (SN) 853872
Level sin. (m OD): 331.00

Catchment area (sq km): 8.7.
Max alt. (m OO): 740
irst year: 1953
Hydrometric statistics for 1987

	JAN	FEB	MAR	APR	MAY	JUN	Jut	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	0.510	0.551	0.724	0.477	0.193	0.430	0.288	0.265	0.369	1.070	0.680	0.814	0.531
$\left(m^{3} g^{-1}\right)$: Peak	10.12	5.40	7.28	4.38	1.52	2.91	1.89	4.69	2.21	13.72	5.52	8.26	13.72
Runoff (mm)	157	153	223	142	60	128	89	82	110	330	203	251	1926
Rainfall (mm)	140	185	247	146	125	207	147	110	175	373	221	278	2354
Monthly and yearly statistics for previous record (Oct 1953 to Dec 1986-incomplete or missing months total 10.8 years)													
Masn Avg.	0.762	0.562	0.582	0.333	0.247	0.220	0.279	0.398	0.505	0.605	0.799	0.776	0.506
flows Low	0.363	0.136	0.171	0.046	0.048	0.045	0.054	0.037	0.073	0.059	0.268	0.174	0.334
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{High}$	1.571	1.104	1.567	0.878	0.818	0.638	0.754	0.935	1.092	1.463	1.434	1.328	0.646
Paak flow ($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$)	14.49	14.00	14.53	11.64	9.86	10.66	8.84	24.99	12.91	17.22	17.76	17.11	24.99
Runotf (mm)	234	157	179	99	76	66	86	123	151	186	238	239	1834
Rainfall (mm)	289	175	205	130	135	135	150	183	225	240	288.	283	2438
Factors affecting flow regime: N Station typo: FL										1987 runoff is 105% of previous mean rainfall 97%			

054038 Tanat at Llanyblodwel
1987

Measuring authority: STWA
First year: 1973
Hydrometric statistics for 1987

	JAN	FEB	MAR	APR	MAY	Jun	JUL	AUG	SEP	OCT ${ }^{*}$	NOV	DEC	Year
Flows Avg.	7.653	6.603	10.130	8.102	1.366	2.175	2.722	1.217	3.817	13.830	9.441	6.629	6.140
$\left(m^{3} s^{-1}\right):$ Peak	39.45	25.89	72.94	30.27	2.29	14.67	30.11	2.41	25.81	82.17	32.65	24.95	82.17
Runot (mm)	90.	70	118	92	16	25	32	14	43	162	107	78	845
Rainfall (mm)	39	92	143	78	41	96	64	67	118	207	119	108	1172
Monthly and yearly statistics for previous record (Jun 1973 to Dec 1986 -incomplete or missing months total 0.4 years)													
Mean Avg.	11.590	9.347	8.577	5.169	3.641	2.401	1.229	2.669	3.451	6.868	10.220	12.370	6.452
flows Low	5.203	3.707	2.693	1.392	0.867	0.728	0.348	0.190	1.199	1.701	2.895	6.595	4.185
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	15.860	19.900	17.800	9.686	10.250	4.660	1.930	7.609	9.885	15.020	17.370	21.410	7.510
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	93.99	64.77	85.77	39.85	31.27	56.87	15.68	118.20	69.56	59.64	76.12	87.99	118.20
Runoff (mm)	136	100	100	59	43	27	14	31	39	80	116	145	889
Rainfall (mm)	133	86	108	63	79	69	57	92	112	115	141	153	1208
Factors affecting flow regime: N Station type: VA										1987 runoff is 95% of previous mean rainfall 97\%			

Monthly and yearly statistics for previous record (Jun 1973 to Dec 1986-incomplete or missing months total 0.4 years)

	JAN	FEB	MAR	APR	MAY	Jun	JUL	AUG	SEP	OCT ${ }^{*}$	NOV	DEC	Year
Flows Avg.	7.653	6.603	10.130	8.102	1.366	2.175	2.722	1.217	3.817	13.830	9.441	6.629	6.140
$\left(m^{3} s^{-1}\right):$ Peak	39.45	25.89	72.94	30.27	2.29	14.67	30.11	2.41	25.81	82.17	32.65	24.95	82.17
Runot (mm)	90.	70	118	92	16	25	32	14	43	162	107	78	845
Rainfall (mm)	39	92	143	78	41	96	64	67	118	207	119	108	1172
Monthly and yearly statistics for previous record (Jun 1973 to Dec 1986 -incomplete or missing months total 0.4 years)													
Mean Avg.	11.590	9.347	8.577	5.169	3.641	2.401	1.229	2.669	3.451	6.868	10.220	12.370	6.452
flows Low	5.203	3.707	2.693	1.392	0.867	0.728	0.348	0.190	1.199	1.701	2.895	6.595	4.185
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	15.860	19.900	17.800	9.686	10.250	4.660	1.930	7.609	9.885	15.020	17.370	21.410	7.510
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	93.99	64.77	85.77	39.85	31.27	56.87	15.68	118.20	69.56	59.64	76.12	87.99	118.20
Runoff (mm)	136	100	100	59	43	27	14	31	39	80	116	145	889
Rainfall (mm)	133	86	108	63	79	69	57	92	112	115	141	153	1208
Factors affecting flow regime: N Station type: VA										1987 runoff is 95% of previous mean rainfall 97\%			

Station type: VA
Grid reference: 33 (SJ) 252225
Level stn. (m OD): 77.00
Catchment area (sq km): 229.0
Max alt. (m OD): 827

Measuring authority: IH
First year: 1951
Hydrometric statistics for 1987

	JAN	FEB 0.680	MAR	APR 0.621	MAY 0.325	JUN 0.610	JUL 0.597	AUG 0.472	SEP 0.535	$\begin{aligned} & \text { OCT } \\ & 1.318 \end{aligned}$	NOV 0.986	$\begin{aligned} & \text { DEC } \\ & 1.008 \end{aligned}$	Year 0.730
Flows Avg.	$\begin{aligned} & 0.648 \\ & 14.73 \end{aligned}$	$\begin{array}{r} 0.680 \\ 6.29 \end{array}$	$\begin{aligned} & 0.960 \\ & 10.12 \end{aligned}$	0.621 7.34	0.325 3.22	$\begin{array}{r}2.95 \\ \hline 1\end{array}$	3.77	14.73	3.88	19.85	8.64	11.70	19.85
Runoff (mm)	165	156	244	153	82	150	151	120	132	335	242	256	2185
Rainfall (mm)	140	185	247	148	136	201	156	115	175	355	242	257	2357
Monthly and yearly statistics for previous record (Aug 1951 to Dec 1986 -incompiete or missing months total 2.5 years)													
Mean Avg.	0.961	0.735	0.657	0.525	0.400	0.351	0.434	0.573	0.670	0.796	1.046	1.128	0.690
flows Low	0.492	0.146	0.206	0.064	0.054	0.074	0.053	0.036	0.050	0.092	0.376	0.198	0.447
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{High}$	1.870	1.486	1.735	1.312	1.144	0.954	1.264	1.478	1.478	2.031	1.823	2.655	0.994
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	23.47	19.20	23.18	19.12	17.89	25.49	19.11	48.87	16.93	24.32	29.15	32.00	48.87
Runoff (mm)	244	170	167	129	102	86	110	146	165	202	257	286	2063
Rainfall (mm)	262	165	193	147	136	140	162	195	205	238	275	311	2429
Factors affecting flow regime: \mathbf{N} Station type: CC										1987 runoff is 106% of previous mean rainfall 97\%			

055013 Arrow at Titley Mill

Measuring authority: WELS
First year: 1966
Hydrometric statistics for 1987

	JAN	FEB	MAR	APR	MAY	JuN	Jul	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	3.217	2.093	4.083	5.028	0.724	0.713	0.530	0.292	0.236	3.869	3.362	1.936	2.174
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	15.73	6.00	34.05	37.95	1.08	3.44	1.91	0.52	0.54	15.86	14.14	5.58	37.95
Runotf (mm)	68	40	87	103	15	15	11	6	5	82	69	41	542
Rainfall (mm)	33	71	105	89	33	99	52	28	73	184	92	79	938
Monthly and yearly statistics for previous record (Oct 1966 to Dec 1986)													
Mean Avg.	4.859	4.118	3.553	2.187	1.870	1.169	0.739	0.662	0.898	1.962	3.193	4.392	2.461
flows Low	1.886	1.912	1.629	0.962	0.526	0.332	0.210	0.154	0.277	0.294	0.662	1.694	1.309
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	9.003	7.677	8.933	4.176	5.001	2.559	3.842	1.546	2.459	6.916	6.625	7.566	3.418
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	101.12	39.94	57.85	19.41	32.49	13.09	30.68	24.79	18.85	36.45	28.98	63.34	101.12
Runoff (mm)	103	79	75	45	40	24	16	14	18	42	65	93	614
Rainfall (mm)	111	79	87	58	78	65	51	79	93	90	102	113	1006
Factors affecting flow regime: P										1987 runoff is 88% of previous mean rainfall 93%			

Station type: VA

Grid reference: 32 (SO) 328585 Level stn. (m OD): 129.00

Catchment area (sq km): 126.4 Max alt. (m OD): 542

055014 Lugg at Byton

1987

Measuring authority: WELS
First year: 1966
Hydrometric statistics for 1987

	JAN	FEB	MAR	APR	MAY	JUN	JUL.	AUG	SEP	OCT	NOV	DEC	- Year
Flows . Avg.	6.118	3.565	6.134	8.648	1.847	1.447	1.255	0.823	0.706	4.588	4.830	3.404	3.614
$\left(m^{3} \mathrm{~s}^{-1}\right)$: Peak	19.79	4.82	25.27	30.08	2.94	3.23	2.43	- 1.05	1.16	16.00	8.28	7.14	30.08
Runoff (mm)	81	42	81	110	24	18	17	11	9	60	62	45	560
Rainfall (mm)	32	65	103	92	35	99	56	31	71	182	91	72	929
Monthly and yearly statistics for previous record (Oct 1966 to Dec 1986)													
Mean Avg.	7.531	6.872	5.881	4.017	3.314	2.105	1.411	1.180	1.340	2.718	4.583	6.628	3.954
flows Low	2.991	2.630	2.947	2.016	1.186	0.772	0.557	0.414	0.678	0.657	1.219	2.978	2.321
$\left(m^{3} \mathrm{~s}^{-1}\right) \mathrm{High}$	11.940	12.870	13.980	7.106	7.994	4.113	5.253	1.997	3.079	7.962	8.774	10.350	4.954
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	54.27	37.53	33.24	18.82	45.56	14.18	26.16	13.32	12.46	28.51	27.22	37.49	54.27
Runoff (mm) .	99	82	77	51	44	27	19	16	17	36	58	87	614
Rainfall (mm)	118	81	90	63	82	64	54	78	92	89	103	115	1029
Factors affecting flow regime: Station type: FVVA										1987 runoff is 91% of previous mean rainfall 90\%			

Measuring authority: WELS
First year: 1968
Hydrometric statistics for 1987

	JAN	FEB	MAR	APR	
Flows	Avg.	1.891	1.558	2.246	3.29
$\left(\mathrm{~m}^{3}{ }_{\mathrm{s}}-1\right):$	Poak	11.52	7.09	9.85	24.57
Runoff (mm)	35	26	42	59	
Rainfall (mm)	17	49	64	70	

Grid reference: 32 (SO) 615428
Level stn. (m OD): 55.40

Catchment area (sq km): 144.0 Max alt. (m OD): 244

Monthly and yearly statistics for previous record (Oct 1968 to Dec 1986 -incomplete or missing months total 0.1 years)

Mean Avg.	2.692	2.561	2.244	1.233	1.157	0.664	0.361	0.350	0.331	0.491	1.010	2.051	1.257
flows Low	0.214	0.389	0.560	0.359	0.274	0.146	0.091	0.063	0.174	0.155	0.171	0.210	0.672
$\left(m^{3}-1\right)$ High	4.668	5.456	5.176	2.298	3.972	1.349	0.630	0.759	0.970	2.405	2.266	3.594	1.628
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	23.84	24.99	24.28	14.74	25.89	16.99	5.96	9.61	15.68	10.34	18.51	25.14	25.89
Runoff (mm)	50	43	42	22	22	12	7	7	6	9	18	38	275
Rainfall (mm)	75	51.	64	45	64	57	44	70	63	53	65	74	725
Factors affocting	w regim									1987	ff is 95	prev	s mean

Station type: VA

MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
0.736	0.678	0.337	0.191	0.145	0.545	1.714	1.006	1.196
1.03	3.88	0.61	0.45	0.32	4.73	12.76	4.55	24.57
14	12	6	4	3	10	31	19	261
38	99	42	22	44	120	71	37	673

055023 Wye at Redbrook

Measuring authority: WELS
First year: 1936
Hydrometric statistics for 1987

		JAN	FEB	MAR	APR	MAY	JUN	JUL ${ }^{\text { }}$	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	113.100	75.560	123.800	143.600	28.960	45.840	21.620	18.820	19.810	124.900	115.100	83.900	76.251
$\left(m^{3} s^{-1}\right)$:	Peak	466.20	169.30	541.80	493.30	41.80	139.40	50.43	55.73	55.15	447.20	360.60	332.60	541.80
Runoff (mm)		76	46	83	93	19	30	14	13	13	83	74	56	599
Rainfall (mm)		33	69	102	84	41	103	53	34	73	195	93	82	982

Monthly and yearly statistics for previous record (Oct 1936 to Dec 1986)

Maan Avg.	130.400	120.400	90.770	63.530	45.200	34.410	24.020	28.130	39.900	58.950	102.300	124.800	71.669
flows Low	25.050	30.760	22.110	17.930	12.340	10.970	7.426	5.180	7.271	9.582	31.730	46.890	39.916
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \quad$ High	241.900	234.000	325.400	133.100	125.000	131.600	95.830	83.680	174.000	174.700	252.400	246.000	113.382
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	688.80	700.40	905.40	365.30	387.90	467.20	368.30	347.80	531.70	472.90	600.30	812.70	905.40
Runoff (mm)	87	73	61	41	30	22	16	19	26	39	66	83	564
Rainfall (mm)	111	77	76	63	75	62	66	84	88	93	113	115	1023
Factors affecting Station type: VA	w regirn	SPE								$1987 \text { rur }$ rair	off is 106 fall 94	\% of prev \%	ious mean

056013 Yscir at Pontaryscir

1987

Measuring authority: WELS
First year: 1972
Hydrometric statistics for 1987

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	Nov	DEC	Year
Flows Avg.	2.125	2.053	3.298	2.495	0.434	1.336	0.626	0.291	0.457	4.279	2.687	2.902	1.915
$\left(\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}\right)$: Peak	13.01	12.95	33.15	13.74	0.72	8.20	2.11	0.63	2.22	30.96	16.89	27.36	33.15
Runoff (mm)	91	79	141	103	19	55	27	12	19	183	111	124	962
Painfall (mm)	39	107	160	108	48	133	57	36	104	267	119	155	1333
Monthly and yearly statistics for previous record (May 1972 to Dec 1986 --incomplete or missing months total 0.2 years)													
Mean Avg.	3.442	2.612	2.505	1.404	1.078	0.710	0.439	0.733	1.157	2.050	3.173	3.692	1.914
flows Low	1.146	0.998	0.852	0.431	0.269	0.214	0.150	0.104	0.283	0.214	1.475	2.196	1.286
$\left(m^{3} s^{-1}\right)$ High	5.795	4.959	6.303	3.211	3.041	1.788	1.117	2.964	3.947	4.182	5.291	6.324	2.465
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	36.98	31.78	40.55	13.54	14.81	74.33	11.06	30.69	21.44	85.01	34.02	59.93	85.01
Runoff (mm)	147	101	107	58	46	29	19	31	48	87	131	157	962
Rainfall (mm)* \cdot - 1973 -1986	165	100	135	69	89	71	71	104	139	140	167	190	1440
Factors affecting flow regime: N Station typo: C										1987 runoff is 100% of previous mean rainfall 93%			

057008 Rhymney at Llanedeyrn

Measuring authority: WELS
First year: 1973
Hydrometric statistics for 1987

	JAN	FEB	MAR	APR	MAY	JUN	JuL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	5.837	6.093	8.207	7.925	1.828	2.287	1.303	0.840	1.356	9.091^{1}	7.714	8.499	5.082
$\left(\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}\right)$: Peak	41.04	20.31	110.50	35.93	3.99	25.43	12.44	1.84	7.62	56.66	68.06	102.70	110.50
Runoff (mm)	87	82	123	115	27	33	20	13	20	136	112	127	896
Rainfall (mm)	25	126	152	113	37	116	61	29	107	255	129	179	1329
Monthly and yearly statistics for previous record (Jan 1973 to Dec 1986)													
Mean Avg.	9.407	7.558	6.924	4.070	3.174	2.086	1.427	2.648	3.687	5.935	8.263	9.759	5.405
flows Low	3.313	3.199	2.889	1.754	1.276	0.873	0.602	0.571	0.913	0.748	2.355	3.218	2.903
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{High}$	17.200	15.620	20.960	9.695	8.340	4.604	2.371	10.450	11.500	13.700	16.560	15.730	7.153
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	108.25	72.22	105.80	41.55	31.31	54.30	27.39	87.41	101.60	118.50	113.46	147.30	147.30
Runoff (mm)	141	103	104	59	48	30	21	40	53	89	120	146	954
Rainfall (mm)	163	104	126	65	88	68	64	107	145	140	156	176	1402
Factors affecting flow regime: PGE Station type: FVVA										1987 runoff is 94% of pravious mean rainfall 95\%			

058006 Mellte at Pontneddfechan
Maasuring authority: WELS Grid reference: 22 (SN) 915082
Catchment area (sq km): 65.8
First year: 1971
Level stn. (m OD): 90.00
Max att. (m OD): 734
Hydrometric statistics for 1987

		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	2.571	3.530	4.452	3.184	0.730	2.883	0.987	0.473	1.685	6.200	3.831	84	3
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$:	Peak	24.52	24.88	82.30	18.43	1.84	33.56	6.79	0.85	12.38	53:28	40.76	83.17	83.17
Runoff (mm)		105	130	181	125	30	114	40	19	66	252	151	244	1457
Rainfall (mm)		52	191	239	150	71	190	76	47	166	338	189	318	2027

Monthly and yearly statistics for previous record (Oct 1971 to Dec 1986 -incomplete or missing months total 0.3 yaars)

Mean Avg.	4.959	3.540	3.660	2.092	1.745	1.163	0.926	1.733	2.440	3.392	4.939	5.372	2.996
flows Low	1.932	0.913	1.378	0.497	0.383	0.322	0.242	0.207	0.562	0.548	2.063	2.641	1.985
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	8.274	7.231	10.670	5.095	4.283	3.559	2.608	6.802	6.876	6.305	9.471	8.739	3.814
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	82.30	66.12	72.93	39.02	21.45	32.54	39.14	58.52	81.01	96.78	106.85	127.60	127.60
Runoff (mm)	202	131	149	82	71	46	38	71	96	138	195	219	1437
Rainfall (mm)	250	146	188	102	126	105	95	155	180	205	248	264	2084
Factors affecting	regim	S P								$\begin{array}{r} 1987 \text { rur } \\ \text { rair } \end{array}$	$f f$ is 10	of prev	us mean

060002 Cothi at Felin Mynachay
1987

Measuring authority: WELS First year: 1961

Grid reference: 22 (SN) 508225 Level stn. (m OD): 16.10

Catchment area (sq km): 297.8 Max alt. (m OD): 484

Hydrometric statistics for 1987

		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	9.767	12.030	16.720	12.360	2.296	7.225	3.767	2.161	6.374	27.580			
' $\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$:	Peak	60.74	74.48	156.07	44.22	4.15	33.52	9.72	8.72	35.55	- 283.74	95.62		
Runoff (mm)		88	98	150	108	21	63	34	19	55	248	169		
Rainfall (mm)		42	136	179	104	50	151	76	46	138	331	155	212	1620

Monthly and yearly statistics for previous record (Oct 1961 to Dec 1986 -_incomplete or missing months total 1.9 years)

Mean Avg.	17.970	13.760	12.440	8.686	6:971	4.312	3.383	6.479	8.138	15.110	8.590	6.723	7174
flows Low	2.990	3.708	2.821	1.444	0.835	0.824	0.418	0.362	1.500	1.610	8.903	6.723	7.174
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	37.580	31.100	40.710	20.380	14.820	13.070	11.810	23.350	23.920	. 37.940	36.270	41.140	14.950
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	141.60	181.20	220.90	85.88	87.22	90.33	144.40	171.00	129.70	188.60	175.80	274.70	274.70
Runoff (mm)	162	113	112	76	63	38	30	58	71	136	162	187	1206
Rainfall (mm)	174	111	130	95	105	95	96	126	149	179	181	193	1634
Factors affecting	w regim									1987	off is fall	$\%$ of pre	us me

Factors affecting
Station type: VA
rainfall 99%

060003 Taf at Clog-y-fran

Measuring authority: WELS
First year: 1965
Hydrometric statistics for 1987

		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	$\begin{aligned} & \text { OCT } \\ & 16.710 \end{aligned}$	$\begin{aligned} & \text { NOV } \\ & 12.360 \end{aligned}$	$\begin{aligned} & \text { DEC } \\ & 12.250 \end{aligned}$	Year 7.094
Flows	Avg.	7.888	8.625	9.551	8.763	2.073	1.990	1.518	1.141	2.256	16.710	12.360	12.250	7.094
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$:	Peak	41.55	35.74	64.78	35.21	3.59	13.54	3.02	1.82	10.79	86.49	45.87	59.68	86.49
Runoff (mm)	.	97	96	118	105	26	24	19	14	27	206	147	151	1029
Rainfall (mm)		33	134	128	85	34	114	49	61	122	270	176	156	1362

Monthly and yearly statistics for previous record (Oct 1965 to Dec 1986 -incomplete or missing months total 1.2 years)

Mean	Avg.	13.140	10.770	8.425	5.641	3.956	2.652	1.724	2.853	3.888	9.248	11.980	14.490	7.387
flows	Low	4.835	3.858	3.796	2.179	1.207	0.781	0.375	0.363	0.983	1.018	3.757	9.027	4.672
($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	High	25.900	27.200	26.610	11.800	8.412	8.820	5.330	10.760	15.340	22.310	22.730	25.520	9.662
Peak flow	$\mathrm{m}^{3} \mathrm{~s}^{-1}$	73.43	73.97	85.73	60.03	35.85	45.11	19.86	100.95	58.02	84.98	80.82	77.74	100.95
Runotf (mm)		162	121	104	67	49	32	21	35	46	114	143	179	1072
Rainfall (mm		160	105	117	81	87	80	70	104	127	160	160	183	1434
Factors affecting flow regime: N Station type: VA											1987 runoff is 96% of previous mean rainfall 95\%			

060007 Tywi at Dolau Hirion

Measuring authority: WELS
First year: 1971
Hydrometric statistics for 1987

	JAN	FEE	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	8.539	8.473	13.840	10.300	3.938	7.564	3.670	3.278	6.165	21.000	13.310	13.720	9.483
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	46.19	31.47	145.70	33.66	7.18	23.57	13.46	20.27	22.92	233.20	57.45	81.90	233.20
Runoff (mm)	99	88	160	115	46	85	42	38	69	243	149	159	1291
Rainfall (mm)	55	121	184	111	71	156	98	65	136	316.	153	189	1655
Monthly and yearly statistics for previous record (Oct 1968 to Dec 1986)													
Mean Avg.	16.410	11.990	10.620	7.058	5.909	4.601°	3.579	5.714	5.655	10.130	15.720	19.410	9.732
flows Low	5.583	3.711	2.975	2.546	2.335	2.111	1.401	1.958	1.122	2.756	6.504	6.551	6.306
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	27.600	28.920	37.370	16.110	11.840	10.230	5.826	18.280	16.350	30.450	30.420	59.050	15.559
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	241.40	358.50	300.30	125.90	63.46	299.00	35.42	264.80	132.00	204.00	258.00	533.80	533.80
Runoff (mm)	190	126	123 ,	79°	68	51	41	66	63	117	176	224	1325
Rainfall (mm) ${ }^{*}$ -(1969-1986)	203	136	145	93	97	91	87	123	140	161	208	210	1694
Factors affecting flow regime: SR EI Station type: VA										1987 runoff is 97% of previous mean rainfall 98\%			

063001 Ystwyth at Pont Llolwyn

Mensuring authority: WELS First year: 1963
Hydrometric statistics for 1987

	JAN	FEB	MAR	APA	MAY	JUN	JUL	AUG	SEP	OCT	NOV	OEC	Year
Flows Avg.	5.950	3.990	7.339	6.405	2.334	3.880	3.590	3.182	3.159	12.210	9.221	5.803	5.589
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	49.89	17.69	42.09	41.29	11.29	18.46	30.42	36.72	14.96	127.70	57.36	31.55	127.70
Runoff (mm)	94	57	116	98	37	59	57	50	48	193	141	92	1041
Rainfall (mm)	59	83	152	104	74	129	124	71	111	256	163	137	1463
Monthly and yearly statistics for previous record (Oct 1963 to Dec 1986 -incomplete or missing months total 0.3 years)													
Man Avg.	9.424	7.012	6.020	4.285	3.390	2.566	2.452	3.360	4.404	7.001	9.485	11.220	5.884
flows Low	2.268	2.283	2.818	0.960	0.577	0.625	0.422	0.180	0.882	0.558	3.959	2.219	3.783
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{High}$	15.330	15.200	18.470	10.080	10.100	7.571	5.461	8.556	10.670	19.800	18.320	22.600	7.774
Peak flow ($\mathrm{m}^{3} \mathrm{~B}^{-1}$)	105.60	88.63	126.70	90.32	105.10	129.70	68.24	174.30	71.02	129.90	128.10	210.40	210.40
Runotf (mm)	149	101	95	65	54	39	39	53	67	111	145	177	1095
Reinfall (mm)	154	98	115	84	93	91	95	111	130	147	171	184	1473
Factors affocting flow regime: Station type: VA										1987 runoff is 95% of previous mean rainfall 99\%			

064001 Dyfii at Dyfi Bridge

Measuring authority: WELS
First vear: 1962
Hydrometric statistics for 1987

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	27.130	27.890	33.300	22.420	4.890	16.600	11.540	8.671	18.660	45.520	28.920	35.360	23.408
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	276.50	172.50	244.50	77.24	12.43	77.34	73.76	48.08	86.43	290.60	157.90	301.60	301.60
Runoff (mm)	154	143	189	123	28	91	66	49	103	259	159	201	1565
Rainfall (mm)	86	178	193	99	79	147	118	89	155	311	177	236	1868
Monthly and yearly statistics for previous record (Oct 1962 to Dec 1986-incomplete or missing months total 9.8 years)													
Mean Avg.	34.390	22.030	26.010	17.380	12.450	10.910	8.265	13.540	17.920	29.980	36.060	43.900	22.785
flows Low	6.245	5.174	5.789	2.626	1.295	1.618	0.822	1.819	5.966	10.770	14.530	7.501	18.343
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \quad \mathrm{High}$	68.810	46.060	75.790	42.490	23.600	21.770	16.680	40.440	34.110	76.960	70.470	88.280	26.520
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	350.20	340.00	360.70	271.30	337.20	402.10	162.00	210.00	254.90	344.00	375.50	580.50	580.50
Runoff (mm)	195	114	148	96	71	60	47	77	99	170	198	249	1524
Rainfall (mm)	205	120	159	112	115	110	108	148	173	200	214	252	1916
Factors affecting flow regime: N Station type: VA										1987 runoff is 103% of previous mean rainfall 97\%			

064002 Dysynni at Pont-y-garth

Measuring authority: WELS
First yoar: 1966
Hydrometric statistics for 1987

Grid reference: 23 (SH) 632066
Level stn. (m OD): 2.30

Catchment area (sq km): 75.1
Max alt. (m OD): 892

065005 Erch at Pencaenewydd

Measuring authority: WELS
First year: 1973
Grid reference: 23 (SH) 400404
Level sin. (m OD): 56.10
Catchment area (sq km): 18.1

Hydrometric statistics for 1987

	JAN	FEB	MAR	APR	MAY	Jun	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	0.713	0.655	0.962	0.698	0.224	0.353	0.313	0.536	0.696	1.446	1.018	0.920	0.711
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	5.51	5.37	10.18	4.45	0.40	2.62	4.61	6.02	4.89	25.01	7.31	5.73	25.01
Runoff (mm)	108	88	142	100	33	51	46	79	100	214	146	136	1240
Rainfall (mm)	49	127	181	68	41	127	89	146	131	269	154	165	1547
Monthly and yearly statistics for previous record (Jan 1973 to Dec 1986)													
Moan Avg.	0.980	0.822	0.718	0.455	0.343	0.216	0.175	0.294	0.408	0.767	1.052	1.132	0.613
flowa Low	0.629	0.365	0.311	0.177	0.120	0.089	0.081	0.061	0.167	0.236	0.264	0.600	0.430
$\left(\mathrm{m}^{3} \mathrm{~B}^{-1}\right) \quad \mathrm{High}$	1.396	1.869	1.804	0.892	0.728	0.539	0.427	1.113	0.919	1.736	1.816	1.764	0.739
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	10.41	15.45	19.78	11.00	4.68	6.99	5.52	9.22	7.42	11.84	16.91	15.49	19.78
Runoff (mm)	145	111	106	65	51	31	26	44	58	113	151	168	1068
Rainfall (mm)	146	91	121	70	82	69	77	114	135	154	166	168	1393

Factors affecting flow regime: N
Station type: C
1987 runoff is 116% of previous mean rainfall 111\%

066006 Elwy at Pont-y-gwyddel

Measuring authority: WELS
First year: 1973
Hydrometric statistics for 1987

	JAN	FEB	MAR	APR	MAY	JUN	Jul	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	4.119	2.815	4.322	4.268	0.733	2.557	0.987	2.085	3.719	9.612	4.972	4.644	3.736
$\left(m^{3} s^{-1}\right):$ Peak	23.21	15.55	38.40	16.08	1.57	11.83	3.55	9.44	17.56	119.10	16.51	35.35	119.10
Runoff (mm)	57	35	60	57	10	34	14	29	50	133	66	64	608
Rainfall (mm)	31	54	110	69	47	122	79	98	104	203	85	102	1104
Monthly and yearly statistics for previous record (Dec 1973 to Dec 1986)													
Mean Avg.	8.070	5.982	5.197	2.972	1.952	1.291	0.681	1.241	2.551	5.188	7.760	8.122	4.244
flows Low	3.115	2.650	1.539	0.823	0.479	0.359	0.278	0.242	0.629	1.360	2.263	4.879	2.908
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	11.430	12.050	11.950	6.939	5.918	3.300	1.402	4.351	7.450	11.530	11.850	14.450	5.094
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	82.42	50.82	76.59	50.76	21.66	18.00	27.05	38.13	58.57	143.00	101.60	75.42	143.00
Runoff (mm)	111	75	72	40	27	17	9	17	34	72	104	112	690
Rainfall (mm)	133	82	101	59	78	72	64	91	127	126	154	144	1231
Factors affecting flow regime: SRP Station type: VA										1987 runoff is 88% of previous mean rainfall 90\%			

067008 Alyn at Pont-y-capel

Measuring authority: WELS
First year: 1965
Hydrometric statistics for 1987

	JAN	FEB	MAA	APR	MAY	JUN	JUL.	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	2.869	1.627	3.130	2.950	0.975	2.132	1.121	1.123	0.985	5.078	2.900	1.475	2.197
$\left(\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}\right)$: Peak	13.88	4.25	8.36	11.95	1.57	12.31	4.86	5.75	3.21	26.46	7.76	2.71	26.46
Runoff (mm)	34	17	37	34	12	24	13	13	11	60	33.	17	306
Rainfall (mm)	22	41	92	53	49	126	84	86	63	165	71	43	895
Monthly and yearly statistics for previous record (Jun 1965 to Dec 1986)													
Меап Avg.	4.439	3.993	3.222	2.594	1.876	1.173	0.879	0.917	1.007	1.898	3.120	4.414	2.455
flows Low	1.753	1.959	1.448	1.023	0.712	0.438	0.331	0.287	0.474	0.452	0.614	1.246	1.266
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	7.219	9.085	8.027	6.474	5.657	2.873	2.098	2.456	3.906	6.896	6.168	9.480	3.027
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	27.53	28.52	26.11	25.28	26.86	18.34	23.23	20.81	59.11	21.90	28.21	35.92	59.11
Runoff (mm)	52	43	38	30	22	13	10	11	11	22	36	52	341
Rainfall (mm)	88	65	74	61	73	64	58	73	82	81	109	99	927
Factors affecting flow regime: El Station type: CC										1987 runoff is 90% of previous mean rainfall 97\%			

068003 Dane at Rudheath

Measuring authority: NWWA
First year: 1949
Hydrometric statistics for 1987

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	OEC	Year
Flows Avg.	9.221	4.227	7.293	5.614	2.648	6.860	3.172	11.650	3.754	9.842	8.246	5.090	6.468
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	71.08	14.71	55.86	19.07	8.43	25.77	23.89	270.20	18.48	66.26	47.31 .	33.06	270.20
Runoff (mm)	61	25	48	36	17	44	21	77	24	65	53	33	503
Rainfal! (mm)	34	33	89	47	59	136	83	109	57	129	74	45	895
Monthly and yearly statistics for previous record (Nov 1949 to Dec 1986 -incomplete or missing months total 5.5 years)													
Mean Avg.	7.364	5.805	4.688	4.190	3.030	2.475	2.593	3.386	3.590.	4.313	6.574	7.785	4.645
flows Low	2.183	1.545	1.277	0.988	0.720	0.746	0.734	0.654	0.633	0.877	1.396	1.803	2.333
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \quad \mathrm{High}$	15.330	12.760	17.210	10.290	7.335	6.864	8.012	14.360	11.920	14.350	16.290	22.920	8.662
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	134.50	80.81	134.00	68.32	63.60	41.96	82.83	67.96	84.20	66.26	103.90	193.60	193.60
Runoff (mm)	48	35	31	27	20	16	17	22	23	28	42	51	360
Rainfall (mm)	77	53	60	61	65	66	78	88	81	75	90	86	880

Factors affecting flow regime: S PGEI
Station type: VA

Grid reference: 33 (SJ) 668718 Lovel stn. (m OD): 13.20

Catchment area (sq km): 407.1
Max alt. (m OD): 547

1987 runoff is 140% of previous mean
rainfall 102\%

069002 Irwell at Adelphi Weir

Measuring authority: NWWA
First year: 1949 ,
Hydrometric statistics for 1987

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.-	18.950	14.250	19.220	15.420	8.506	16.400	12.460	15.060	15.980	27.620	21.290	16.680	16.819
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	162.30	77.58	93.00	89.99	20.78	99.14	93.15	95.28	71.02	187.30	144.70	84.69	187.30
Runoff (mm)	91	62	92	71	41	76	60	72	74	132	99	80	950
Rainfall (mm)	46 .	74	116	66	66	153	113	115	113	169	104	96	1231
Monthly and yearly statistics for previous record'(Oct 1949 to Dec 1986-incomplete or missing months total 2.0 years)													
Mean Avg.	25.220	21.790	17,190	14.270	12.000	10.150	11.060	15.830	16.640	20.400	25.290	30.040	18.317
flows Low	3.705	4.787	7.803	5.408	4.348	2.750	4.031	3.676	2.991	4.990	7.534	7.469	10.469
$\left(m^{3} s^{-1}\right)$ High	40.260	67.230	48.030	27.070	21.530	18.900	26.150	56.000	43.480	52.510	51.100	84.660	30.469
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	430.40	400.30	295.60	184.20	141.60	238.00	385.60	395.70	390.80	485.10	334.90	419.50	485.10
Runoff (mm)	121	95	82	66	57	47	53	76	77	98	117	144	1033
Rainfall (mm)	120	82	91	77	82	85	97	124	120	124	134	141	1277
Factors affecting flow regime: S PGE1 Station type: B										1987 runoff is 92% of previous mean rainfall 96\%			

Factors affecting flow regime: S PGEI Station type: B

Grid reference: 33 (SJ) 824987 Level stn. (m OD): 24,10

Catchment area (sq km): 559.4
Max alt. (m OD): 473

069006 Bollin at Dunham Massey

Measuring outhority: NWWA
First year: 1955
Hydrometric statistics for 1987

Monthly and yearly statistics for previous record (Oct 1955 to Dec 1986 -incomplete or missing montis total 1.1 years)

Mean Avg.	6.296	5.374	4.305	3.622	2.956	2.303	2.217	2.801	3.093	3.889	5.376	6.404	4.048
flows Low	1.639	1.686	1.694	1.742	1.286	0.707	0.875	0.464	0.651	1.300	1.804	2.296	2.728
$\left(\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}\right) \mathrm{High}$	10.280	12.880	11.470	8.732	5.781	5.953	5.628	11.410	0.963	11.340	9.425	14.510	6.307
Peok flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	43.95	39.29	36.91	60.43	63.02	34.19	41.50	41.47	35.05	41.18	44.35	46.33	63.02
Runaff (mm)	66	51	45	37	31	23	23	29	31	41	54	67	499
Rainfall (mm)	80	54	62	56	66	68	76	89	84	80	86	89	890
Factors affecting Station type: VA	w regim	S PGEI								$1987 \text { rur }$	f is 143 fall 102	of pre	s mean

069015 Etherow at Compstall

Measuring authority: NWWA
First year: 1977
Hydrometric statistics for 1987

	JAN	FEB	MAR	APR	MAY	JUN	JuL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	4.999	2.585	2.724	3.761	1.486	4.758	2.265	3.191	2.641	3.668	3.328	2.413	3.152
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	25.47	13.77	11.45	15.09	4.15	28.64	15.47	11.91	15.17	27.26	26.48	18.49	28.64
Runoff (mm)	86	40	47	62	26	79	39	55	44	63	55	41	637
Rainfall (mm)	60	79	126	76	88	192	113	105	107	151	115	83	1295
Monthly and yearly statistics for previous record (Jan 1977 to Dec 1986 -incomplato or missing months total 0.3 years)													
Mean Avg.	5.980	4.465	5.017	3.360	2.178	1.481	1.137	1.603	1.820	3.275	5.203	5.550	3.420
flows Low	3.445	2.141	1.365	1.070	0.539	0.835	0.718	0.691	1.178	1.264	2.276	2.767	2.440
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	8.964	8.539	10.080	6.325	4.870	2.997	1.993	3.572	2.692	9.424	7.471	9.286	4.169
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	42.63	44.46	46.03	32.66	18.79	24.95	15.22	24.43	37.45	42.12	40.15	62.95	62.95
Runoff (mm)	103	70	86	56	37	25	20	28	30	56	86	95	692
Rainfall (mm)	159	89	144	87	79	101	66	124	121	138	157	165	1430

Factors affecting flow regime: S PGEI
Station type: C

Grid reference: 33 (SJ) 962908
Level stn. (m OD): 73.50

Catchment area (sq km): 156.0 Max alt. (m OD): 628

Mean Avg.	5.980	4.465	5.017	3.360	2.178	1.481	1.137	1.603	1.820	3.275	5.203	5.550	3.420
flows Low	3.445	2.141	1.365	1.070	0.539	0.835	0.718	0.691	1.178	1.264	2.276	2.767	2.440
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	8.964	8.539	10.080	6.325	4.870	2.997	1.993	3.572	2.692	9.424	7.471	9.286	4.169
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	42.63	44.46	46.03	32.66	18.79	24.95	15.22	24.43	37.45	42.12	40.15	62.95	62.95
Runoff (mm)	103	70	86	56	37	25	20	28	30	56	86	95	692
Rainfall (mm)	159	89	144	87	79	101	66	124	121	138	157	165	1430
Factors affecting flow regime: S PGEI Station typo: C										1987 runoff is 92% of previous mean rainfall 91\%			

071001 Ribble at Samlesbury

Messuring authority: NWWA
First year: 1960
Hydrometric statistics for 1987

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flowa Avg.	35.140	31.640	40.420	24.700	8.906	26.580	27.190	31.670	32.440	54.840	41.000	39.880	32.867
$\left(m^{3} \mathbf{s}^{-1}\right)$: Peak	396.10	213.40	367.40	146.90	29.59	236.70	229.80	409.80	242.10	231.00	269.70	322.00	409.80
Runoff (mm)	82	67	95	56	21	60	64	74	73	131	93	93	909
Rainfall (mm)	54	94	138	63	60	142	127	121	122	177	106	129	1333
Monthly and yearly statistics for previous record (May 1960 to Dec 1986)													
Mean Avg.	51.710	36.070	33.820	26.490	18.950	14.110	15.340	23.960	30.340	41.410	53.650	57.040	33.582
flows Low	10.610	9.565	11.790	5.601	4.048	5.031	2.638	2.958	5.782	5.716	20.770	15.190	22.045
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	82.510	80.890	104.700	54.820	46.460	33.520	40.220	68.920	65.820	118.400	88.610	120.200	45.022
Peak flow ($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$)	754.60	513.10	643.30	486.60	319.10	494.80	399.80	520.80	619.30	810.00	813.20	891.30	891.30
Runoff (mm)	121	77	79	60	44	32	36	56	69	97	121	133	925
Rainfall (mm)* - $(1981-1988$)	135	81	105	82	85	89	87	117	135	138	146	151	1351
Factors affecting flow regime: S E Station type: MIS										1987 runoff is 98% of previous mean rainfall 99\%			

Station type: MIS

071004 Calder at Whalley Weir

Moasuring authority: NWWA
First year: 1963
Hydrometric statistics for 1987

	JAN	FEB	MAR	APR	MAY	JUN	JuL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	8.742	7.526	10.170	7.353	3.435	7.609	6.825	8.452	7.562	14.180	10.340	7.665	8.322
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Paak	107.80	53.51	81.68	48.18	13.55	59.30	67.59	138.30	51.17	149.60	90.96	44.71	149.60
Runotf (mm)	74	58	86	60	29	62	58	72	62	120	85	65	831
Rainfall (mm)	46	74	122	62	60	141	118	118	105	160	98	89	1193
Monthly and yearly statistics for previous record (Oct 1963 to Dec 1986 -incomplete or missing months total 2.6 years)													
Mean Avg.	13.340	9.401	8.959	6.641	5.372	4.233	3.599	5.862	7.522	10.980	13.310	14.040	8.608
flows Low	5.766	3.320	3.989	2.272	2.053	1.888	1.773	1.564	2.065	2.397	5.625	4.886	6.225
$\left(\mathrm{m}^{\mathbf{3}} \mathbf{3}^{-1}\right)$ High	20.590	17.170	25.320	13.010	9.916	7.372	9.059	16.280	18.620	23.910	21.990	25.610	11.485
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	183.20	146.10	185.20	108.40	91.66	135.50	230.60	171.60	206.00	229.50	148.60	194.30	230.60
Runoff (mm)	113	73	76	54	46	35	31	50	62	93	109	119	859
Rainfoll (mm)	126	74	101	72	81	84	77	109	122	129	135	133	1243

Factors affecting flow regime: El
Station type: FV

Grid reference: 34 (SD) 729360
Level stn. (m OD): 39.90

072002 Wyre at St Michaels

Measuring authority: NWWA
First year: 1963
Hydrometric statistics for 1987

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows ${ }^{\text {a }}$ Avg.	7.457	6.778	7.790	5.886	2.340	5.804	7.271	9.467	6.616	15.880	9.014	10.190	7.874
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	51:42	43.94	51.69	41.17	12.32	64.94	148.10	118.40	58.89	108.00	82.70	118.70	148.10
Runoff (mm)	73	60	76	55	23	55	71	92	62	155	85	99	905
Flainfa! (mm)	43	88	129	63	71	138	150	134	113	188	91	128	1336
Monthly and yearly statistics for previous record (Oct 1963 to Dec 1986-incomplate or missing months total 0.2 years)													
Mean Avg.	9.981	6.834	6.957	4.784	3.412	2.842	2.743	4.516	6.636	9.195	10.610	11.340	6.658
flows Low	3.983	1.746	2.270	0.774	0.732	0.444	0.431	0.248	0.902	0.617	4.859	2.581	3.186
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	17.820	16.030	25.920	12.090	10.450	7.096	5.690	16.240	13.290	25.500	18.510	26.530	10.329
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	156.50 .	145.60	168.90	123.00	128.20	146.60	96.89	162:10	176.50	180.40	163.10	190.50	190.50
Runoff (mm)	97	61	68	45	33	27	27	44	63	90	100	110	764
Rainfall (mm)	122	69	98	71	80	90	86	112	134	138	141	132	1273
Factors affecting flow regime: S PG Station type: FV										1987 runoff is 119% of previous mean rainfall 105\%			

073005 Kent at Sedgwick

1987

Measuring authority: NWWA
First year: 1968
Hydrometric statistics for 1987

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	8.297	8.729	12.710	7.698	2.328	7.603	8.264	5.657	11.810	15.440	9.890	14.180	9.384
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$; Peak	72.31	60.02	108.40	38.26	4.07	58.95	63.00	43.08	61.20	90.21	62.40	134.70	134.70
Runotf (mm)	106	101	163	95	30	94	106	72	146	198	123	182	1417
Rainfall (mm)	71	125	222	77	56	185	151	110	209	244	130	245	1825
Monthly and yearly statistics for previous record (Nov 1988 to Dec 1986)													
Mean Avg.	12.730	9.225	9.178	6.363	4.428	3.781	3.482	5.579	7.995	10.400	14.180	13.480	8.398
flows Low	5.998	3.094	3.348	2.038	1.222	0.872	0.658	0.740	1.753	1.396	5.484	5.466	5.995
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \quad \mathrm{High}$	20.820	16.800	22.750	12.620	11.580	13.010	10.550	18.790	15.630	17.940	21.410	23.200	10.316
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	197.70	114.00	166.10	111.10	53.44	72.86	94.65	88.68	120.70	123.50	175.00	231.40	231.40
Runoff (mm)	163	108	118	79	57	47	45	71	99	133	176	173	1268
Raintall (mm)	195	101	149	89	92	101	106	130	176	180	217	195	1731
Factors affecting flow regime: N Station type: CBVA										1987 runoff is 112% of previous mean rainfall 105%			

Station type: CBVA

Grid reference: 34 (SD) 509874 Level stn. (m OD): 18.90

Catchment area (sq km): 209.0 Max alt. (m OD): 817

074002 Irt at Galesyke

1987

Measuring authority: NWWA
First year: 1967
Hydrometric statistics for 1987

	JAN	EB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OC	NO	DEC	Yea
Flows Avg:	3.754	2.525	4.180	3.589	1.290	2.751	3.348	2.761^{\prime}	3.954	4.695	2.577	4.154	3.298
$\left(m^{3} s^{-1}\right)$: Peak	16.96	9.86	20.02	12.39	2.34	8.16	8.29	7.75	10.28	10.96	8.63	16.36	20.02
Runotf (mm)	227	138	253	211	78	161	203	167	232	284	151	252	2358
Rainfall (mm)	111	171	334	124	117	234	254	165	262	323	162	315	2572
Monthly and yearly statistics for previous record (Dec 1967 to Dec 1986 -incomplete or missing months total 0.1 years)													
Mean Avg.	4.434	2.898	2.942	2.664	1.533	1.811	2.174	2.570	3.664	4.581	4.993	4.337	3.218
flows Low	1.321	0.736	0.737	0.430	0.257	0.638	0.467	0.286	0.400	0.554	1.885	1.802	2.440
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	8.242	5.117	6.575	5.947	3.901	5.216	4.667	6.757	7.630	8.174	7.094	7.645	3.950
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	31.73	18.67	16.74	34.04	6.84	10.27	27.26	18.46	17.89	27.29	21.85	20.33	34.04
Runoff (mm)	269	160	178	156	93	106	132	156	215	278	293	263	2298
Rainfall (mm)	321	174	236	151	132	165	185	214	282	314	339	310	2823
Factors affacting flow regime: S P I Station type: VA										1987 runoff is 103% of previous mean rainfall 91\%			

074005 Ehen at Braystones.

Factors affecting flow regime: S P
Factors affecting flow regime: S P
Station type: VA

Measuring authority: NWWA
First year: 1974
Hydrometric statistics for 1987

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	4.981	3.494	7.778	5.203	1.399	3.035	4.860	4.162	6.836	9.293	4.761	7.305	5.259
$\left(m^{3} s^{-1}\right):$ Peak	37.66	29.30	67.40	38.78	2.82	24.49	56.92	69.89	46.97	77.92	28.73	48.45	77.92
'Runoff (mm)	106	67	166	107	30	63	104	89	141	198	98	156	1326
Rainfall (mm)	62	105	228	91	67	162	185	125	188	245	106	201	1765
Monthly and yearly statistics for previous record (Jan 1974 to Dec 1986)													
Mean Avg.	7.878	5.645	5.368	3.141	2.194	1.876	1.854	3.752	5.460	8.009	8.629	8.360	5.181
flows Low	2.220	1.856	2.225	0.993	0.771	0.779	0.789	0.661	1.694	3.640	3.121	3.136	3.963
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \quad \mathrm{High}$	16.030	15.890	10.220	7.046	6.877	4.371	5.444	12.260	12.840	14.080	12.470	13.380	6.328
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	97.85	79.36	69.47	81.07	46.97	38.25	53.72	73.04	76.40	115.90	64.49	91.47	115.90
Runoff (mm)	168	110	115	65	47	39	40	80	113	171	178	178	1303
Rainfall (mm)	208	106	169	83.	86	95	119	144	201	228	219	214	1872

Grid reference: 35 (NY) 00906
Level stn. (m OD): 10.10

Catchment area (sq km): 125.5
Max alt. (m OD): 899

987 runoff is 102% of previous mean rainfall 94%

075002 Derwent at Camerton

Moasuring authority: NWWA
First year: 1960
Hydrometric statistics for 1987

		JAN	FEB	MAR	APR	MAY ${ }^{\text {- }}$	JuN	JUL.	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	32.860	18.720	39.780	29.100	6.128	14.610	20.750	14.340	31.130	52.240	26.750	32.180	26.549
$\left(\mathrm{m}^{1} \mathrm{~s}^{-1}\right)$:	Peak	143.60	76.77	215.50	104.70	8.69	43.97	111.20	54.39	90.28	191.40	70.34	190.20	215.50
Runoff (mm)		133	68	161	114	25	57	84	58	122	211	105	130	1267
Rainfall (mm)		68	106	241	82	65	154	176	114	192	276	127	219	1820

Monthly and yearly statistics for previous record (Sep 1960 to Dec 1986 -incomplete or missing months total 0.3 years)

Meon	Avg.	37.590	26.970	24.200	19.460	13.480	10.380	10.990	18.200	25.500	35.190	42.050	41.760	25.482
flows	Low	9.587	4.837	7.466	4.359	2.753	2.041	2.503	2.384	2.885	2.755	14.570	14.740	14.823
$\left(m^{3} \mathrm{~s}^{-1}\right)$	High	84.550	56.570	51.550	38.940	36.280	34.800	21.110	55.940	62.980	107.800	76.340	75.840	34.235
Pook flow	$\mathrm{n}^{3} \mathrm{~s}^{-1}$	219.20	165.70	175.40	145.50	. 102.90	135.80	114.50	216.20	189.20	264.70	211.30	199.00	264.70
Runoff (mm		152	99	98	76	54	41	44	74	100	142	164	169	1213
Rainfall (mm		182	98	138	95	105	109	111	145	184	199	201	188	1755

Factors affecting flow regime: S P
Station type: VA

Grid reference: 35 (NY) 038305
Level stn. (m OD): 16.70

Catchment area (sq km): 663.0 Max att. (m OD): 950

1987 runotf is 104% of provious mean rainfall 104\%

078003 Annan at Brydekirk

Meosuring authority: SRPB
Grid reference: 35 (NY) 191704
Level stn. (m OD): 10.00 First yeor: 1967

Catchment area (sq km): 925.0

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	33.100	26.150	46.140	30.140	7.680	23.400	23.040	46.740	32.720	50.200	34.190	46.750	33.354
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right):$ Peak	138.78	120.70	242.77	133.24	22.67	152.15	253.07	378.89	262.51	333.32	163.88	252.22	378.89
Runoff (mm)	96	68	134	84	22	66	67	135	92	145	96	135	1140
Rainfall (mm)	60	87	165	77	61	118	134	180	137	186	108	174	1487
Monthly and yearly statistics for previous record (Oct 1967 to Dec 1986)													
Moan Avg.	44.610	33.030	30.160	19.310	16.350	11.550	9.742	15.860	24.680	36.840	43.810	44.650	27.537
flows Low	17.820	12.820	8.402	6.124	3.519	2.937	1.944	2.007	3.362	3.592	11.490	19.530	16.402
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \quad \mathrm{High}$	83.440	55.440	53.770	40.600	53.160	32.150	34.940	76.390	76.320	86.820	77.930	87.020	36.424
Poak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	405.37	291.30	235.95	182.50	172.51	171.26	217.59	254.51	446.63	499.10	325.04	355.41	499.10
Runoff (mm)	129	87	87	54	47	32	28	46	69	107	123	129	940
Rainfall (mm)	142	87	114	66	91	83	90	101	135	146	143	141	1339

Factors affecting flow regime:
Station type: VA
1987 runoff is 121% of previous mean rainfall 111\%

078004 Kinnel Water at Redhall

1987

Measuring authority: SRPB
Firat year: 1963
Hydrometric statistics for 1987

		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	2.242	2.112	4.151	2.118	0.510	1.638	2.018	4.030	3.277	4.119	3.087	4.713	2.835
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$:	Peak	21.33	17.96	55.23	16.11	1.90	24.57	41.50	65.25	72.02	72.72	30.39	44.98	72.72
Runoff (mm)		79	67	146	72	18	56	71	142	112	145	105	166	1178
Rainfall (mm)		64	90	169	80	57	127	141	189	150	193	115	185	1560

Monthly and yearly statistics for previous record (Oct 1963 to Dec 1986 -incomplete or missing months total 1.0 years)

Mosn Avg.	4.084	2.853	2.657	1.585	1.668	1.098	0.916	1.513	2.690	3.607	4.123	4.126	2.577
flows Low	1.296	0.590	0.552	0.251	0.122	0.112	0.048	0.049	0.099	0.207	0.740	1.081	1.507
$\left(\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}\right) \mathrm{High}$	8.456	5.362	5.124	4.161	5.496	3.282	3.435	7.513	6.689	7.288	7.535	8.490	3.517
Pesk flow ($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$)	79.34	77.68	59.19	42.46	51.79	36.09	60.14	58.54	91.37	110.90	86.69	103.65	110.90
Runoff (mm)	144	92	94	54	59	37	32	53	92	127	140	145	1089
Rainfall (mm)	148	92	120	75	103	90	90	110	150	155	156	155	1444

Foctors affecting flow regime:
Station type: VA

Grid reference: 35 (NY) 077868 Level stn. (m OD): 53.70

Catchment area (sq km): 76.1 Max alt. (m OD): 697

081003 Luce at Airyhemming

Measuring authority: SRPB
First year: 1967
Hydrometric statistics for 1987

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG
Flows Avg.	5.916	5.280	9.772	3.433	1.561	5.360	6.445	11.670
$\left(m^{3} s^{-1}\right)$: Peak	100.75	47.47	77.67	58.45	10.51	190.33	114.44	283.62
Runoff (mm)	93	75	153	52	24	81	101	183
Rainfall (mm)	77	97	172	72	77	143	169	237
Monthly and yearly statistics for previous record (Jan 1967 to Dec 1986)								
Mean Avg.	10.440	6.725	5.893	3.351	2.707	1.838	1.974	2.956
flows Low	4.540	0.789	1.359	0.454	0.260	0.225	0.191	0.277
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	15.600	12.110	11.300	8.289	7.597	4.587	6.436	14.290
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	177.10	146.10	197.30	197.60	63.64	64.10	131.50 .	171.80
Runoff (mm)	164	96	92	51	42	28	31	46
Rainfall (mm)	170	93	113	73	81	81	90	104

Factors affecting flow regime: S P
Station type: VA

Grid reference: $25(\mathrm{NX}) 180599$ Level stn. (m OD): 19.00

Catchment area (sq km): 171.0 Max alt. (m OD): 438

082001 Girvan at Robstone

Measuring authority: CRPB
First year: 1963
Hydrometric statistics for 1987

		JAN	FEB	MAR	APR	MAY	JUN	Jut.	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	6.558	3.483	9.872	4.621	1.690	2.997	7.103	7.915	7.818	11.660	7.166	8.640	6.627
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$:	Peak	48.49	17.57	89.50	23.57	6.17	25.16	110.88	88.73	42.85	91.34	34.23	68.71	110.88
Runoff (mm)		72	34	108	49	18	32	77	86	83	127	76	94	856
Rainfall (mm)		59	67	167	63	70	105	153	158	123	180	95	140	1380

Monthly and yearly statistics for previous record (Oct 1963 to Dec 1986)

Mean	Avg.	10.520	7.145	6.239	3.726	3.025	1.962

	Avg,		.52	7.145	0.239	3.726	3.025	1.962	2.081	3.221
flows	Low	3.846	1.736	1.595	0.923	0.521	0.370	0.487	0.301	0.546

$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ Low $\quad 3.846 \quad 1.736 \quad 1.595-0.923 \quad 0.521 \quad 0.37$

Peak flow $\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$
Runoff (mm)
Rainfall (mm)
Factors affecting flow regime: S
Station type: VA

Grid reference: 25 (NX) 217997
Level stn. (m OD): 9.10

SEP	OCT	NOV	DEC	Year
6.267	10.780	7.303	8.843	6.886
56.64	117.47	93.66	70.24	283.62
95	169	111	139	1275
137	200	132	160	1673
6.236	8.657	10.150	9.204	5.842
0.365	1.689	3.857	2.445	3.691
17.660	16.750	15.940	17.090	7.625
192.40	231.79	168.40	204.04	231.79
95	136	154	144	1078
151	159	169	150	1434
	1987 runoff is 118%	of previous mean		

rainfall 117%

083003 Ayr at Catrine

Grid reference: 26 (NS) 525259
Leval stn. (m OD): 89.90

Catchment area (sq km): 166.3
First year: 1970
Hydrometric statistics for 1987

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	5.726	3.568	6.725	3.088	1.410	3.937	3.429	5.766	5.831	6.619	5.008	7.684	4.899
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	46.23	24.89	68.20	11.65	8.65	69.39	73.24	67.24	28.80	60.93	39.59	90.78	90.78
Runoff (mm)	92	52	108	48	23	61	55	93	91	107	78	124	932
Rainfall (mm)	72	66	137	64	71	98	99	143	125	153	83	152	1263
Monthly and yearly statistics for previous record (Sep 1970 to Dec 1986)													
Mean Avg.	8.805	5.183	5.357	2.703	2.132	1.950	1.981	2.750	5.278	6.705	8.638	7.556	4.921
flows Low	3.182	1.534	. 1.480	0.733	0.593	0.658	0.417	0.410	0.597	0.631	2.147	3.312	3.613
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ High	14.120	11.280	10.780	7.056	5.714	4.179	7.720	9.970	14.680	10.900	13.630	14.490	5.926
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	178.53	96.54	92.30	67.02	75.55	60.69	70.77	72.00	157.42	162.59	105.57	119.15	178.53
Runoff (mm)	142	76	86	42	34	30	32	44	82	108	135	122	934
Rainfall (mm)	144	76	105	63	72	82	85	89	132	147	162	136	1293
Factors affecting flow regime: H 1987 runoff is													

Station type: VA

084012 White Cart Water at Hawkhead

Grid reference: 26 (NS) 499629
Level str. (m OD): 4.10

	JAN	FEB	MAR	APR	MAY.	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	10.850	7.254	9.741	5.344	1.398	2.858	1.469	3.616	8.617	11.210	7.816	10.080	6.688
$\left(m^{3} s^{-1}\right)$: Peak	89.02	36.04	93.21	31.98	7.24	28.44	12.19	57.84	61.00	91.80	40.27	78.29	93.21
Runoff (mm)	128	77	115	61	16	33	17	43	98	132	89	119	929
Rainfall (mm)	88	87	137	67	61	100	62	117	141	167	88	144	1259
Monthly and yearly statistics for previous record (Oct 1963 to Dec 1986)													
Mean Avg.	10.810	7.344	6.975	3.911	3.604	2.575	2.395	3.806	7.301	10.950	12.010	10.910	6.884
flows Low	5.142	2.480	1.676	1.112	0.973	0.998	0.824	0.885	1.141	1.212	3.259	3.211	4.419
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{High}$	21.190	14.260	15.630	8.523	10.330	6.542	8.806	14.220	24.360	46.570	20.730	20.850	10.948
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	187.40	139.25	117.02	82.46	115.13	65.13	93.51	111.27	132.91	134.42	134.05	187.10	187.40
Runoff (mm)	127	79	82	45	42	29	28	45	83	129	137	129	956
Rainfall (mm)	123	74	101	61	82	73	77	95	138	141	152	132	1249

	JAN	FEB	MAR	APR	MAY.	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	10.850	7.254	9.741	5.344	1.398	2.858	1.469	3.616	8.617	11.210	7.816	10.080	6.688
$\left(m^{3} s^{-1}\right)$: Peak	89.02	36.04	93.21	31.98	7.24	28.44	12.19	57.84	61.00	91.80	40.27	78.29	93.21
Runoff (mm)	128	77	115	61	16	33	17	43	98	132	89	119	929
Rainfall (mm)	88	87	137	67	61	100	62	117	141	167	88	144	1259
Monthly and yearly statistics for previous record (Oct 1963 to Dec 1986)													
Mean Avg.	10.810	7.344	6.975	3.911	3.604	2.575	2.395	3.806	7.301	10.950	12.010	10.910	6.884
flows Low	5.142	2.480	1.676	1.112	0.973	0.998	0.824	0.885	1.141	1.212	3.259	3.211	4.419
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{High}$	21.190	14.260	15.630	8.523	10.330	6.542	8.806	14.220	24.360	46.570	20.730	20.850	10.948
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	187.40	139.25	117.02	82.46	115.13	65.13	93.51	111.27	132.91	134.42	134.05	187.10	187.40
Runoff (mm)	127	79	82	45	42	29	28	45	83	129	137	129	956
Rainfall (mm)	123	74	101	61	82	73	77	95	138	141	152	132	1249

	JAN	FEB	MAR	APR	MAY.	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	10.850	7.254	9.741	5.344	1.398	2.858	1.469	3.616	8.617	11.210	7.816	10.080	6.688
$\left(m^{3} s^{-1}\right)$: Peak	89.02	36.04	93.21	31.98	7.24	28.44	12.19	57.84	61.00	91.80	40.27	78.29	93.21
Runoff (mm)	128	77	115	61	16	33	17	43	98	132	89	119	929
Rainfall (mm)	88	87	137	67	61	100	62	117	141	167	88	144	1259
Monthly and yearly statistics for previous record (Oct 1963 to Dec 1986)													
Mean Avg.	10.810	7.344	6.975	3.911	3.604	2.575	2.395	3.806	7.301	10.950	12.010	10.910	6.884
flows Low	5.142	2.480	1.676	1.112	0.973	0.998	0.824	0.885	1.141	1.212	3.259	3.211	4.419
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{High}$	21.190	14.260	15.630	8.523	10.330	6.542	8.806	14.220	24.360	46.570	20.730	20.850	10.948
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	187.40	139.25	117.02	82.46	115.13	65.13	93.51	111.27	132.91	134.42	134.05	187.10	187.40
Runoff (mm)	127	79	82	45	42	29	28	45	83	129	137	129	956
Rainfall (mm)	123	74	101	61	82	73	77	95	138	141	152	132	1249

Monthly and yearly statistics for previous record (Oct 1963 to Dec 1986)

	JAN	FEB	MAR	APR	MAY.	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	10.850	7.254	9.741	5.344	1.398	2.858	1.469	3.616	8.617	11.210	7.816	10.080	6.688
$\left(m^{3} s^{-1}\right)$: Peak	89.02	36.04	93.21	31.98	7.24	28.44	12.19	57.84	61.00	91.80	40.27	78.29	93.21
Runoff (mm)	128	77	115	61	16	33	17	43	98	132	89	119	929
Rainfall (mm)	88	87	137	67	61	100	62	117	141	167	88	144	1259
Monthly and yearly statistics for previous record (Oct 1963 to Dec 1986)													
Mean Avg.	10.810	7.344	6.975	3.911	3.604	2.575	2.395	3.806	7.301	10.950	12.010	10.910	6.884
flows Low	5.142	2.480	1.676	1.112	0.973	0.998	0.824	0.885	1.141	1.212	3.259	3.211	4.419
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{High}$	21.190	14.260	15.630	8.523	10.330	6.542	8.806	14.220	24.360	46.570	20.730	20.850	10.948
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	187.40	139.25	117.02	82.46	115.13	65.13	93.51	111.27	132.91	134.42	134.05	187.10	187.40
Runoff (mm)	127	79	82	45	42	29	28	45	83	129	137	129	956
Rainfall (mm)	123	74	101	61	82	73	77	95	138	141	152	132	1249

Factors affecting flow regime: S
Station type: VA
Measuring authority: CRPB
First year: 1963
Hydrometric'statistics for 1987

1987 runoff is 97% of previous mean rainfall 101\%

084016 Luggie Water at Condorrat

1987

Measuring authority: CRPB
First year: 1966
Hydrometric statistics for 1987

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AU' ${ }^{\text {a }}$	SEP	OCT	NOV	DEC	Year
Flows Avg.	1.747	1.037	1.204	0.691	0.256	0.637	0.228	0.862	0.704	1.117	0.867	1.238	0.882
($\mathrm{m}^{3} \mathrm{~B}^{-1}$): Poak	14.97	6.96	13.27	7.42	1.13	6.19	0.77	14.56	4.78	7.22	5.02	17.04	17.04
Runoff (mm)	138	74	95	53	20	49	18	68	54	88	66	98	821
Rainfall (mm)	79	75	110	57	47	90	60	124	103	125	64	127	1081
Monthly and yearly statistics for previous record (Oct 1966 to Dec 1986 -incomplate or missing months total 0.5 years)													
Mean Avg.	1.464	0.997	0.953	0.552	0.492	0.300	0.302	0.446	0.821	1.093	1.433	1.405	0.855
flows Low	0.680	0.415	0.370	0.287	0.166	0.138	0.147	0.123	0.125	0.129	0.367	0.592	0.539
($\mathrm{m}^{\mathbf{3}} \mathrm{s}^{-1}$) High	3.104	1.944	1.636	1.030	1.199	0.692	1.751	1.606	3.386	2.121	2.362	2.669	1.121
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	30.25	19.34	28.11	8.86	14.54	6.05	27.14	20.88	44.46	32.53	30.68	36.04	44.46
Runoff (mm)	116	72	75	42	39	23	24	35	63	86	110	111	795
Rainfall (mm)	106	67	87	49	73	67	72	83	115	117	124	108	1068

Factors affecting flow regime:
Station type: VA
Grid reference: 26 (NS) 739725
Level \sin. (m OD): 68.00
Catchment area (sq km): 33.9
Max alt. (m OD): 283

1987 runoff is 103% of previous mean rainfall 99%

085001 Leven at Linnbrane

1987

Measuring authority: CRPB
First year: 1963
Hydrometric statistics for 1987

	JAN	FEB	MAR	APR	MAY	JUN	JUt	AUG	SEP	OCT	Nov	DEC	Year
Flows Avg.	72.490	36.020	44.380	35.560	12.910	14.640	10.990	23.840	53.020	51.230	53.810	35.880	37.064
$\left(m^{3} s^{-1}\right\}$: Poak	114.74	54.17	68.09	62.96	31.00	32.30	15.91	55.88	72.01	68.96	72.45	102.31	114.74
Runotf (mm)	248	111	152	118	44	48	38	81	175	175	178	123	1490
Rainfall (mm)	99	136	215	73	86	111	85	162	244	227	159	262	1859
Monthly and yearly statistics for previous record (Jul 1963 to Dec 1986)													
Mean Avg.	61.380	52.030	44.370	31.600	26.770	21.140	18.830	23.010	34.560	54.320	62.000	64.660	41.185
flows Low	27.860	18.610	16.630	10.540	10.620	9.716	6.706	3.974	8.194	10.830	24.540	36.270	30.712
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \mathrm{High}$	119.100	102.100	98.410	51.390	73.060	51.860	44.640	85.140	90.470	90.150	112.700	122.400	52.218
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	150.48	140.83	122.21	83.14	91.20	78.32	85.61	113.02	118.82	138.54	140.91	143.49	150.48
Runoff (mm)	210	162	152	104	91	70	64	79	114	186	205	221	1657
Rainfall (mm)	233	135	173	100	127	116	121	141	215	228	242	226	2057
Factors affecting flow regime: \mathbf{S} Station type: VA										1987 runoff is 90% of previous mean rainfall 90%			

Station type: VA fow regime:
\qquad
094001 Ewe at Poolewe
1987
Measuring authority: HRPB Grid reference: 18 (NG) $859803 \quad$ Catchment area (sq km): 441,1
First year: 1970
Level stn. (m OD): 4.60
Max alt. (m OD): 1014
Hydrometric statistics for 1987

	JAN	FEB	MAF	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	28.330	22.260	24.940	24.580	17.570	8.077	13.480	20.900	39.020	24.510	32.090	24.870	23.386
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	67.94	40.95	63.01	62.31	28.03	11.29	21.22	37.66	71.12	48.74	63.72	83.72	83.72
Runotf (mm)	172	122	151	144	107	47	82	127	229	149	189	151	1671
Rainfall (mm)	93	156	273	72	122	88	132	144	332	184	223	253	2072
Monthly and yearly statistics for previous record (Nov 1970 to Dec 1986)													
Mean Avg.	40.980	28.090	27.160	22.690	16.050	13.750	14.040	15.790	31.010	35.680	48.870	48.730	28.566
flows Low	13.820	10.660	8.842	4.537	3.862	4.675	7.884	6.240	8.046	13.160	22.680	16.500	19.389
$\left(\mathrm{m}^{\mathbf{3}} \mathrm{a}^{-1}\right) \mathrm{High}$	81.130	46.880	54.440	38.270	36.280	27.180	26.180	33.070	57.270	66.220	78.300	81.840	35.549
Poak flow ($\mathrm{m}^{3} \mathrm{a}^{-1}$)	177.08	104.96	117.00	73.59	65.63	64.43	45.08	B5.46	109.22	119.00	136.10	179.82	179.82
Runoff (mm)	249	155	165	133	97	81	85	96	182	217	287	296	2044
Rainfall (mm)	267	152	200	131	118	124	138	149	248	293	344	314	2478
Factors affecting flow regime: \mathbf{N} Station type: VA										1987 runoff is 82% of previous mean rainfall 84\%			

095001 Inver at Little Assynt

Measuring authority: HRPB
First yoar: 1977
Hydrometric statistics for 1987

	JAN	FEB	MAR	APR	MAY	JUN	JuL
Flowa Avg.	8.137	6.489	8.189	6.435	4.850	2.768	4.633
($\mathrm{m}^{3} \mathrm{~s}^{-1}$): Peak	17.39	11.19	15.60	14.07	8.68	4.15	13.49
Runoff (mm)	159	114	160	121	94	52	90
Rainfall (mm)	106	129	206	73	112	100	144
Monthly and yearly statistics for previous record (Aug 1977 to Doc 1986)							
Mean Avg.	10.870	7.064	8.895	5.465	4.073	3.453	5.104
flows Low	4.082°	2.397	4.179	3.453	1.660	1.915	2.432
$\left(\mathrm{m}^{3} 3^{-1}\right) \quad \mathrm{Hligh}$	19.950	11.330	19.400	7.552	7.131	5.636	10.340
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	55.24	31.02	62.82	14.93	20.92	19.72	15.19
Runotf (mm)	212	125	173	103	79	65	99
Rainfall (mm)'	241	103	203	98	81	110	135

(1978-1986)
Factors affecting flow regime: N
Station type: VA

Grid reference: 29 (NC) 147250
Level stn. (m OD): 60.30
Catchment area (sq km): 137.5 Max alt. (m OD): 988

AUG
AUG
7.598
14.16
148
121
$\begin{array}{ll}18.2 \\ 121 & 167 \\ & 226\end{array}$

AUG	SEP
7.598	8.840
14.16	18.21
148	167
121	226
5.550	10.780
3.394	5.263
8.579	16.390
17.80	56.50
108	203
155	260

OCT	NOV	DEC	Year
8.314	10.050	7.129	6.953
17.35	21.23	19.39	21.23
162	190	139	1595
141	193	196	1747
13.690	14.390	11.820	8.440
6.227	8.605	4.631	7.152
21.180	23.960	17.580	10.784
57.51	50.06	46.65	62.82
267	271	230	1937
276	317	263	2242

[^4]096001 Halladale at Halladale

Measuring authority: HRPB First year: 1976			Grid reference: 29 (NC) 891561 Level stn. (m OD): 23.20							Catchment area (sq km): 204.6 Max alt. (m OD): 580			
Hydrometric statistics for 1987													
	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	Nov	DEC	Year
Flows Avg.	5.353	7.785	8.820	1.980	1.068	2.242	3.108	2.655	3.980	6.610	7.308	3.523	4.536
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$: Peak	55.20	62.43	122.59	26.76	6.56	20.73	44.38	29.83	31.22	90.71	77.88	41.48	122.59
Runoff (mm)	70	92	115	25	14	28	41	35	50	87	93	46	696
Rainfall (mm)	63	99.	144	43	51	74	102	58	98	107	105	66	1010.
Monthly and yearty statistics for previous record (Jan 1976 to Dec 1986).													
Mean Avg.	9.318	5.989	5.714	2.987	2.288	1.832	1.480	2.443	4.975	7.117	9.289	8.568	5.165
flows Low	5.333	1.555	2.907	0.624	0.279	0.271	0.215	0.186	2.181	1.441	2.510	3.004	3.420
$\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right) \quad \mathrm{High}$	11.900	10.940	9.753	6.442	5.434	4.128	4.943	9.192	7.886	16.560	14.730	12.390	6.418
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	98.96	68.52	106.96	69.28	108.00	140.81	129.10	76.64	189.13	125.96	163.22	161.96	189.13
Runoff (mm)	122	72	75	38	30	23	19	32	63	93	118	112	797
Rainfall (mm)	146	62	106	67	62	66	63	78	126	132	152	134	1194
Factors affecting flow regime: N Station type: VA										1987 runoff is 87% of previous mean rainfall 85\%			

101002 Medina at Upper Shide

Measuring authority: SWA
First year: 1965
Hydrometric statistics for 1987

	JAN	FEB	MAR	APA	MAY	JUN	JUL	AUG	SEP	OCT	Nov	DEC	Year
Flows Avg.	0.309	0.268	0.473	0.450	0.201	0.179	0.125	0.115	0.140	0.555	0.499	0.239	0.296
$\left(m^{3} s^{-1}\right)$: Peak	3.49	0.83	4.08	3.85	0.36	0.40	0.49	0.20	0.38	3.74	4.89	1.02	4.89
Runoff (mm)	28	22	42	39	18	16	11	10	12	50	43	22	313
Rainfall (mm)	18	54	104	74	30	58	56	29	43	236	91	41	834
Monthly and yearty statistics for previous record (Oct 1965 to Dec 1986-incomplete or missing months total 6.8 years)													
Mean Avg.	0.436	0.401	0.325	0.257	0.209	0.143	0.127	0.120	0.161	0.220	0.341	0.402	0.261
flows Low	0.150	0.160	0.121	0.104	0.094	0.069	0.073	0.044	0.080	0.110	0.088	0.116	0.122
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	0.688	0.760	0.903	0.522	0.356	0.212	0.199	0.180	0.365	0.413	0.769	0.663	0.335
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	6.47	6.00	7.28	5.44	7.00	1.79	3.72	1.74	3.74	4.73	8.64	6.30	8.64
Runoff (mm)	39	33	29	22	19	12	11	11	14	20	30	36	277
Rainfall (mm)*	92	68	95	44	69	52	51	63	63	98	83	115	893

Catchment area (sq km): 29.8 Max alt. (m OD): 167
(1966-1986
Factors affecting flow regime: Ni
Station type: FL
1987 runoff is 113% of previous mean rainfall 93%

201007 Burn Dennet at Burndennet Bridge.

Measuring authority: DOEN
First year: 1975
Hydrometric statistics for 1987

205005 Ravernet at Ravernet

1987

Measuring authority: DOEN
First year: 1972
Hydrometric statistics for 1987

	JAN	FEB	MAR	APR	MAY	JuN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg.	1.107	0.986	1.812	0.913	0.155	0.153	0.175	1.261	0.751	3.242	1.572	0.755	1.073
($\mathrm{m}^{3} \mathrm{~s}^{-1}$): Paak	4.81	6.12	9.31	5.45	0.47	0.40	0.51	19.43	3.27	56.41	6.11	5.01	56.41
Runoff (mm)	43	34	70	34	6	6	7	49	28	125	59	29	489
Rainfall (mm)	31	60	90	46	28	87	72	133	69	136	66	51	869
Monthly and yearly statistics for previous record (Aug 1972 to Dec 1986)													
Mean Avg.	2.708	1.986	1.402	0.967	0.660	0.414	0.201	0.462	0.686	1.425	1.655	2.557	1.258
flows Low	1.494	0.563	0.313	0.199	0.055	0.040	0.006	0.008	0.013	0.066	0.285	0.573	0.724
($\mathrm{m}^{3} \mathrm{~s}^{-1}$) High	4.254	5.670	2.543	3.425	2.282	1.593	1.185	3.385	3.355	4.361	4.093	9.416	2.196
Peak flow ($\mathrm{m}^{3} \mathrm{~s}^{-1}$)	24.68	40.11	29.09	42.56	26.00	21.16	4.03	36.14	19.72	30.13	34.76	52.07	52.07
Runoff (mm)	104	70	54	36	25	15	8	18	26	55	62	99	572
Rainfall (mm)	102	57	74	47	68	60	54	75	90	88	83	99	897
Factors affecting flow regime: I Station type: FV										1987 runoff is 85% of previous mean rainfall 97\%			

THE SURFACE WATER DATA RETRIEVAL SERVICE

The Surface Water Archive comprises some 24,000 station-years of daily river flows and incorporates data from over 1200 gauging stations throughout the United Kingdom. In addition to gauged flow data, naturalised data have been derived from the records of a small number of gauging stations. Catchment areal rainfall and the highest instantaneous flow, when available, are also archived on a monthly basis.

In order that the contents of the archive may be readily accessible, a suite of programs has been developed to provide a selection of retrieval options. Descriptions of these options are listed below, and examples of the computer output are given on pages 131 to 139 . The data retrieval programs have been designed to allow flexibility in the presentation of the options, particularly those producing graphical output. Before finalising a data request it is recommended that the Concise Register of Gauging Stations on pages 140 to 145 , and the Summary of Archived Data on pages 146 to 154 , be consulted to check the availability of suitable data sets.

To enable the suitability of individual flow records for particular applications to be assessed more effectively all retrievals are accompanied by the relevant gauging station and catchment details (where available).

In response to user requirements the data retrieval facilities are being continually extended. A wide range of specialist analyses and presentations is now available. Individuals having data requirements not catered for in the standard retrieval suite are invited to discuss their particular needs - address opposite.

Retrievals are normally available on line-printer listings, magnetic tape or IBM compatible disk, or as hydrograph plots.

Cost of Service

To cover the computing and handling costs, a moderate charge will be made depending on the
output options selected. Estimates of these charges may be obtained on request; the right to amend or waive charges is reserved.

Requests for Retrieval Options

Requests for retrieval options should include: the name and address to which output should be directed, the gauging stations for which data are required together with the period of record of interest and the title of the required options. Where possible, a daytime telephone number should be given.

Requests should be addressed to:

Surface Water Archive Office
Institute of Hydrology
Maclean Building
Crowmarsh Gifford
WALLINGFORD
OXFORDSHIRE OX10 8BB

Telephone: Wallingford (0491) 38800
Fax: (0491) 32256

Hydrological Data at the Institute of Hydrology

The Surface Water Archive is one of several major sources of hydrological data held at Wallingford. Others include an archive of flood peaks from over 600 catchments and a flood event archive comprising rainfall and river flows at short time intervals for over 3000 individual events. Data may be retrieved from these sources in a variety of formats. Enquiries concerning the availability and use of such data should be directed to the above address.

LIST OF SURFACE WATER RETRIEVAL OPTIONS

OPTION TITLE

1 Table of daily mean gauged discharges
Table of daily mean naturalised discharges

Yearbook data tabulation (daily)

Table of monthly mean gauged discharges

NOTES

Includes monthly and annual summary statistics. Flows in cubic metres per second.
Includes monthly and annual summary statistics. Flows in cubic metres per second.
River flow and catchment rainfall data for a specified year with basic gauging station and catchment details and flow statistics derived from the historical record. Naturalised flows (where available) - and the corresponding runoff - may also be tabulated.
Includes monthly and annual summary statistics. Flows in cubic metres per second.

Table of monthly mean naturalised discharges
Yearbook data tabulation (monthly)

Table of monthly extreme flows

Table of catchment monthly rainfall

Table of catchment monthly areal rainfall and runoff

Hydrographs of monthly mean flows

Flow duration statistics

Table of gauging station reference information

Table of hydrometric statistics

Gauging station and catchment description

River flow pattern plots
Hydrographs of daily mean flows

Includes monthly and annual summary statistics. Flows in cubic metres per second.
Monthly river flow and catchment rainfall data for a specified year together with comparative statistics derived from the historical record. Naturalised flows (when available) - and the corresponding runoff may also be tabulated.
The lowest and highest daily mean flows, together with the highest instantaneous flow and date of occurrence (when available). Flows in cubic metres per second. Includes summary statistics.
Rainfall totals in millimetres and as a percentage of the 1941-70 catchment average. Includes summary statistics.
Runoff is normally derived from the monthly mean gauged flow. An additional listing is provided for catchments with naturalised flow records. A monthly summary is provided and all rainfall and runoff totals are in millimetres.

Choices of scale, units, truncation level and overlay grid pattern are available. The period of record maximum and minimum flows, or the mean flow, may be included. The plots may be based on single or n -day means, or on n -day running mean flows.
Choices of scale, unit and overlay grid pattern are available. The period of record maximum, minimum and mean flows may be included.
Tabulation of the 1-99 percentile flows with optional plot of the flow duration curve. The percentiles may be derived from daily flows or n-day averages and the analysis may be restricted to nominated periods within the year e.g. April-September only. Choices of scale, grid marking and units are available and the percentiles may be expressed as a percentage of the average flow or of a nominated flow.
Tabulation of selected gauging station details and catchment characteristics for nominated gauging stations.
Provides a comparison between summary statistics for a selected year, or a group of years, and the corresponding statistics for a nominated period of record.
A brief summary of the gauging station, its history and major influences on the flow regime, together with catchment details.
Three plots on one sheet:
a) daily mean flow hydrograph for a selected year;
b) monthly mean flow hydrograph for the selected year together with the maximum and minimum monthly flows plus the 30-day running mean for the preceding period of record;
c) flow duration curves for the selected year and for the period of record.
Includes a daily flow hydrograph (with period of record extreme values) and flow duration curve together with summary statistics relating to river flow, catchment runoff and catchment rainfall. A description of the gauging station and catchment is also provided together with selected catchment characteristics and a concise summary of the archived data.

OPTION 1 TABLE OF DAILY MEAN GAUGED DISCHARGES

OPTION 2 TABLE OF DAILY MEAN NATURALISED DISCHARGES

OPTION 3 YEARBOOK DATA TABULATION (DAILY)

darly mean galuged discibarges icubic eetres per secondi

Day	Jan	feb	mar	Adr	May	Jun	Jul	Aug	Sep	Dct	Hov	Dec
1	45.922	16.995	3.441	31.022	11.699	6.458	4.707	3.768	15.832.	3.356	42.287	24.618
2	45.671	15.510	3.541	26.433	10.648	5.673	S. 970	3.945	13.766	3.249	31.469	22.286
3	33.091	14.188	3.499	21.680	9.470	5.371	3.617	3.033	13.607	3.018	28.826	18.010
4	37,836	12.695	9.708	18.030	12.338	5.018	4.544	9.236	10.314	2.861	23.480	16.196
5	33.756	11.366	21.279	15.390	10.182	4.621	8.672	5.398	9.181	2.784	22.010	21.573
6	28.560	10.417	10.379	13.834	8.294	4.282	5.403	5.377	8.412	2.708	19.850	19.573
7	62.257	9.347	8.387	14.586	3. 795	4.127	4.203	7.406	7.693	2.657	19.707	24.982
8	47.415	8. 383	7.546	19.408	8.632	3.935	4.538	5.801	7.056	2.578	23.696	68.161
9	33.912	7.508	10.315	14.122	8.156	12.460	3.770	4.976	6.326	2.552	29.678	47.764
10	70.537	7.249	9.515	11.702	8.123	36.598	5.414	12.831	5.789	2.663	37.135	37.830
11	59.483	6.796	7.739	10.316	7.324	37.555	\$.788	45.093	5.434	2.570	31.705	67,360
12	51.120	6. 554	7.043	10.111	7.436	20.524	5.544	14.651	5.058	2.405	25.056	49.886
13	44.068	6.389	0.513	11.176	7.135	16.077	3,184	11.316	17.067	2.403	40.861	68.780
14	40.020	5.735	6.018	21.978	44.508	13.286	2.978	9.582	21.159	2.423	127.383	50.837
15	36.337	5.361	5.753	31.328	37.785	11.171	2.812	7.743	11.432	2.325	57.152	89.636
16	32.206	5.179	5.368	25.399	25.283	9.558	2.468	6.513	9.663	2.147.	47.402	75.175
17	31,718	4.861	5.915	22.478	27.619	8.339	2.272	5.821	7.866	2.037	48.472	66.340
18	36.256	4.414	6.608	19.092	21.358	7.399	2.158	21.257	6.809	2.156	109.704	60.550
19	38.588	4.223	7.124	25.908	17.116	6.633	2.062	13.425	6.159	3.303	176.727	63.493
20	32.951	4.099	7.807	43.695	16.262	5.986	2.131	9.174	5.758	19.324	104.940	60.592
21	52.741	3.944	6.475	50.704	15.649	7.548	2.236	8.659	5.431	29.031	80.859	48.165
22	74.491	3.726	7.267	46.683	12.802	8.406	2.109	20.983	5.104	55.352	66.497	36.562
23	89.088	3.903	14.096	47.316	11.208	6.503	1.941	20.255	4.871	45.550	66.009	29.293
24	60.162	3.641	37.112	41.624	10.076	7.160	1.861	20.968	4.563	34.370	63.318	25.077
25	44.132	4.131	23.093	34.778	9.168	5.670	1.992	70.828	4.244	45.962	71.424	67.277
26	34.842	4.976	22.505	27.679	8.483	4.666	2.253	57.460	4.032	34.072	75.556	43.610
27	30.735	4.649	29.560	22.322	7.809	4.137	2.141	44.335	3.899	56.152	56.160	37.013
28	30.342	4.296	65.032	19.819	7.208	3.957	2.764	38.560	3.790	77.385	43.063	34.930
29	26.791		42.048	15.700	6.561	6.985	3.030	29.169	3.607	60.458	33.020	32.123
30	21.077		49.238	13.274	6.330	6.086	3.301	22.587	3.408	47.819	26.239	70.373
31	13.521		39.862		8.266		4.837	18.122		37.569		79.129
Averase	42.730	7.155	15.190	24.090	13.280	9.540	3.315	18.010	7.911	19.150	54.320 19.707	47.040
Lovest	18.521	3.641	3.441	10.111	6.330	3.935	1.861	3.033	3.608	2.037	19.707	16.196
Highest	89.088	16.995	49.238	50.704	44.508	37.555	8.672	70.828	21.159	77.835	170.727	89.636
Peak flou	103.526	18.293	60.897	65.314	99.689	79.066	10.855	124.530	41.049	97.651	251.996	123.93R
Day of peak	10	1	24	21	15	10	5	11	14	28	19	15
```Monthly total fellllon cu 0)```	114.50	17.31	40.67	62.43	35.56	24.73	8.87	48.23	20.51	51.30	140.80	126.00
Runoff (es)	139	21	49	76	43	30	11	58	25	62	170	152
Ralnfall tent	148	3	106	97	93	. 97	65	151	30	138	183	196

STATISTICS Of monthly ofja for previous record doct 195s to dec 1985)

Mean flows:	${ }^{\text {a }}$ Avg.	35.970	28. 910	20.510	13.710	9.688	5.213	4.628	5.676	7.776	18.720	28.200	57.230 13.210
	Lov	6.657	3.244	7.449	3.888	2.073	1,329	0.793	0.423	0.861	1.043	3.653	13.210
	'yearl	1963	1959	1984	1974	1976	1984	1984	1976	1959	1978	1978	1963
	, HIgh	62.100	54.760	52.140	32.800	37.000	16.630	23.390	19.130	47.670	77.360	58.500	73.670
	tyear)	1984	1970	1981	1966	1983	1972	1968	1985	1974	1960	1963	1965
Runoff:	fug.	117	85	67	43	31	16	15	18	24	61	89	121
	Loy	22	10	24	12	7	4	5	1	3	3	11	43
	High	201	160	169	103	120	52	76	62	150	251	184	239
Rainfall:	Avg.	132	86	90	69	72	66	71	87	95	112	128	140
	Lov	28	5	18	8	23	10	23	24	14	14	56	41
	High	242	173	183	145	146	164	152	180	267	278	239	271


summary statistics	FOR	1986	1986					factiors affecting flow regise
			FOR RE	COR			AS OF	* Reservoirisi in catchaent.
			PrECED		19		PRE-1986	* Abstraction for public vater supplites.
Mean flou (e3/s)	21.910		17.990				122	Auggentation froe effluent returns.
Lovest vearly vean			11.320			1964		
Highest yeariy mean			27.590			1960		
Lovest eonthly mean	3.313	Jul	0.423		Aug	1976		
Hidhest monthly mean	54.320	Nov	77.360		act	1960		
Lowest daily mean	1.861	24 Jul	0.200		Aug	1976		
Highest dally mean	176.727	19 Nov	363.800		Dec	1960		
Peak	251.996	19 Nov	644.900	4		1960		
10 lle	53.770		46.690				115	
50 tile	11.450		$9.29:$				123	
95 tile	2.472		1.174				211	
Annual total (elllion cu a)	691.00		567.70				122	
Annual runaff (an)	836		687				122	
Annual ralinfall inal	1316 (Es)		1148 11831				115	

station and catchment description
 about 3.7a on the rb, but dood rating accopodates thls. significant nodification to flous ouling to pus abstraction.
Sone naturallsed flou data avallable. north. Central area is underlain dalily by cula shales and sandstones icarboniferausi. Agriculture is canditioned by the grade 3 and 4 soils.

OPTION 4 TABLE OF MONTHLY MEAN GAUGED DISCHARGES

옹ㅇㅇ													
:.:	¢	: $:=$	2.4	ner:	!	$\ldots$	…	‥2	s.:	gest	ํ."	:..	$\cdots$
${ }^{19 \%}$	5a, 20	4ib:30	20,	11:90,	Li:23	号:4id	coin	S. 2,20	迷:30,	ciolit		cosme	
\%	- $2: 1280$	\%	,	,	Si:2ais		bites	\%:002	j:>8,	citaide	cindisio	Stis	
, 19	cial	10, 10.93	12:328	coin	, 13,262	):8\%	3:37	Hi: 10.120	9:412			30, 3 3080	cisitis
nun	3.,30	22.30	25.220	16.200	10.530	.011	4.12	0.156	0.672	20.140	32.70	so.	
10	${ }^{20} 10900$	${ }^{12185}$	? i ¢ ${ }^{\text {a }}$	S:94	2:2?	1989	9,9\%'	9:90, ${ }^{2}$	1981	itis ${ }^{\circ}$	:963s	${ }_{15}^{13} 86$	
m*	4ifitio	${ }^{118880}$		${ }^{29} 18989$	5120\%	\% 4 \% $0^{\circ}$	${ }^{\text {P2, } 28 .}$	"18is\%	${ }^{11} 1880^{\circ}$	4i,bio	Sifisi		21,822

OPTION 5 TABLE OF MONTHLY MEAN NATURALISED DISCHARGES


The suptery ralates erchusively to the yaters shoun.

## OPTION 6 YEARBOOK DATA TABULATION (MONTHLY)



## OPTION 7 TABLE OF MONTHLY EXTREME FLOWS



OPTION 8 TABLE OF CATCHMENT MONTHLY RAINFALL

; pata	$\pm$ 去.	: 8	\% 2	A ${ }_{\text {are }}$	:	$\underset{y=n}{ }$	$\stackrel{\text { sur }}{ }$	2..	sep	$\stackrel{\text { cet }}{ }$	nov	2.es	Ya.r
	75	4	23	20 218	${ }_{60}$	170	78	${ }_{1}^{190}$	51	${ }_{59} 6$	${ }_{31}^{71}$	119	${ }_{9}{ }^{\text {dos }}$
	117	3	${ }_{3}^{106}$	135	1i3		${ }_{98}^{68}$	- $\begin{array}{r}151 \\ -165\end{array}$	$3{ }_{3}$	${ }_{122}$	183	${ }^{196}$	:121
	${ }_{23}^{29}$	${ }_{28}$	${ }_{132}^{194}$		8	${ }_{151}{ }^{2}$	${ }_{74}^{68}$	${ }_{30}$	85	222	190	${ }_{53}$	1080
noan (ii)	${ }_{12}$	${ }_{51}$	${ }_{130}^{202}$	${ }_{132} 9$	88	\% 162	89	114	${ }_{30}^{52}$	124	${ }_{96}^{128}$	3.85	114
		$195^{3}$	$\begin{aligned} & 97 \\ & \text { an } \\ & 1929 \end{aligned}$	$\begin{array}{r} 120 \\ 19295 \\ 1995 \end{array}$	(1985	$\begin{gathered} 921 \\ 1,95 \\ 195 \end{gathered}$	$\begin{aligned} 92 \\ 9.9 \end{aligned}$	+380	(3968	${ }_{\substack{60 \\ 1565}}$			
	$\begin{aligned} & 140 \\ & \text { 1990 } \end{aligned}$	$\begin{aligned} & 194 \\ & 1949 \end{aligned}$	$\begin{gathered} 1064 \\ \text { 1986 } \end{gathered}$	$\begin{aligned} & 197 \\ & 1959 \\ & 195 \end{aligned}$	$\begin{aligned} & 9.95 \\ & 198 \end{aligned}$	$\begin{gathered} 108 \\ 1985 \\ 1985 \end{gathered}$	\% ${ }_{\text {7 }} 9$	$\begin{gathered} 1965 \\ 1985 \\ 1985 \end{gathered}$	69 289			196 1868 186	1316 1196
1961-70 noon	127	92	79	12	01	61	82	102	194	113	136	136	${ }_{1253}$

The surrery roheter octiustualy to the yerss shoun.

OPTION 9 TABLE OF CATCHMENT MONTHLY AREAL RAINFALL AND RUNOFF

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \& \& \& \& \& soos, \& İ..s \& unber \& \& \& \& \& \& <br>
\hline : \& دan \& ! \& $\cdots$ \& aer \& ner \& $\stackrel{\text { sun }}{ }$ \& $\stackrel{\text { Ju }}{\sim}$ \& **9 \& sep \& as: \& nov \& $\bigcirc$ \& y..r <br>
\hline  \& ${ }_{34} 8$ \& 50 \& ${ }_{51}$ \& ${ }^{78}$ \& 50 \& 108 \& 19 \& ${ }^{160}$ \& 51 \& 38 \& ${ }_{21}^{71}$ \& 119 \& ${ }^{1055}$ <br>
\hline 1966 Reinnt ${ }^{\text {Sunot }}$ \& 138 \& $2{ }^{3}$ \& ${ }^{106}$ \& 76 \& 3 \& ${ }_{30}$ \& ${ }_{11} 1$ \& ${ }_{\text {si }}^{151}$ \& 39

25 \& ${ }^{138}$ \& ${ }_{170}^{173}$ \& 1968 \& ${ }^{1316}$ <br>
\hline - ${ }^{1981}$ Aanintal \& ${ }_{6}^{29}$ \& 39 \& ${ }^{104}$ \& 9 \& ${ }_{12}$ \& 920 \& ${ }_{12} 12$ \& ${ }_{6} 8$ \& ${ }_{6}^{68}$ \& 205 \& 130 \& ${ }_{88}$ \& ${ }^{1288}$ <br>
\hline  \& 91 \& 4 \& 102 \& s \& 68 \& 9 \& as \& 14. \& $52 \cdot$ \& 140 \& 120 \& 14 \& 134 <br>
\hline (0.8) \& 1939 \& 1986 \& 2989 \& $19{ }^{98}$ \& 1985 \& 1988 \& 1987 \& 1937 \& 1988 \& 1989 \& ${ }_{1085} 18$ \& 1979 \& 1095 <br>
\hline \%oir \& 196\% \& $19 \%$ \& 1968
1986 \& 1997 \& 1986 \& 1988 \& 1798 \& ${ }_{\text {120\% }}^{108}$ \& 1985 \& ${ }_{1}^{222}$ \& 1883
189 \& +1968 \&  <br>
\hline Nunotr \& ${ }^{9}$ \& * \& ${ }^{3}$ \& ${ }^{2}$ \& ${ }^{22}$ \& ${ }^{22}$ \& -12 \& 4 \& ${ }^{20}$ \& 66 \& 9 \& 108 \& 07 <br>
\hline (ix) \& 1985 \& ${ }_{19}{ }^{21} 0^{21}$ \& 1986 ${ }^{40}$ \& 1976 \& $1{ }^{1987}$ \& 1985 \& +986 \& $1987^{6}$ \& 1997 \& 1931 \& 198\% \& 1987 \& 2789 <br>
\hline 家: \& 138
1986 \& 1995 \& ${ }^{1988}$ \& 199\% \& ${ }^{1986}$ \& 1985 \& ${ }_{193}{ }^{19}$ \& 1985 \& 1995 \& 109
198 \& +1790 \& +1920 \& ${ }^{\text {8386 }}$ <br>
\hline  \& 2100 \& 9 \& ${ }^{2}$ \& 86 \& 32 \& 22 \& 18 \& 37 \& ! \& ${ }^{7}$ \& 7 \& 76 \& 50 <br>
\hline Nin ran \& 1959 \& 198 \& 19.6 \& 1085 \& ${ }^{188}$ \& 197 \& 1919 \& 198 \& 1989 \& 10485 \& 1285 \& 1989 \& $19{ }^{\text {² }}$ <br>
\hline rear \& - \& ${ }^{21909}$ \& 1985 \& 1989 \& 1986 \& 2988 \& ${ }_{198}^{20}$ \& 1985 \& ${ }_{1986}$ \& ${ }^{198}{ }^{\frac{3}{2}}$ \& 9936 \& 1988 \& ${ }_{1986}$ <br>
\hline
\end{tabular}

the suepary ralates exclusively to the years shoun

## 050001

TAW AT UMBERLEIGH
1981
Previous record 1958-1980
Catchment area 826.2 km


OPTION 11 HYDROGRAPH OF MONTHLY MEAN FLOWS

15006
Previous record
1953-1980
tay at ballathie
1981
Cotchment area $4587.1 \mathrm{~km}^{2}$


## OPTION 12 FLOW DURATION STATISTICS




## OPTION 13 TABLE OF GAUGING STATION REFERENCE INFORMATION

number	hivek	station	crid kef	uptikator	kECOKD		STNTYPE	basin   AkEA	Level	max	abstkacTIUNS
					1ST	Last			STN	ALT	
					YEAK	neak		SQ KM	M10	MOL	hetukn
048001	POWEY	Theikivesteps	Sx227696	Swind	1969		cc	36.8	157.80	420	Skpe
048003	FAL	treciony	SW1921447	sн\%a	1977		flva	97.0	0.95	226	GEI
048004	haflelgan	TKENCOHFE	5x159674	swra	1969		cc	25.3	70.26	308	
048005	KEminn	thukg	Swb20450	SWHA	1968		cc	19.1	7.16	152	c
048006	coser	helston	SW654273	SWHA	196b		VA	40.1	4.69	251	YC:
048007	kenmalit	PONSANCOTM	SW762377	SWHA	1968		c	20.6	13.56	251	SKPC 1
048009	St neot	CkAigshill wood	SX184062	SWria	1971		cc	22.7	70.53	339	CE
048010	seaton	TREbROWNBKIDGE	SX299596	Stria	1972		cc	34.1	26.60	369	6 I
048011	ruey	restormel twu	5x098624	SWWWA	1972		cc	169.1	9.24	420	SKPCEI

OPTION 14 TABLE OF HYDROMETRIC STATISTICS

station	TERM	AkF	areal	annual	MEAN	No.	zrox	H1GHEST	date	LOWEST	date	10	Su	45
number		1941	MAIN	gaves	gavaid	YRS	mean	baily		daily		ス1LE	(1LE	314.
		1970	fall	kunofy	rlow	REC	flow	CEAN		HEAN				
		mm	нм	ha	Cl m/s			CJ m/s		$\mathrm{Cu} \mathrm{m} / \mathrm{S}$		$\mathrm{Cu} \mathrm{m} /$	Cu m/s	cu m/s
021005	pux	1320	1250	676	7.99	15		185.50	30/01/74	1.19	07/10/72	10.20	5.39	1.97
	1971		1436	829	9.80		123	92.38	31/10	1.34	22/08	20.26	7.03	1.65
	1978		1317	757	8.95		112	75.74	15/11	1.75	19106	20.23	6.03	2.25
	1979		1387	913	10.80		135	82.15	26/11	2.21	23/07	24.29	6.71	2.60
	1980		1288	793	9.38		137	49.24	24/14	2.01	01/06	19.96	7.00	2.19
021006	POK	1227	1180	694	32.94	15		393.40	30/01/74	3.40	07/10/12	88.79	22.22	6.23
	1971		1271	845	40.20		122	555.30	$31 / 10$	4.13	18/08	84.42	29.40	5.44
	1978		1244	731	36.71		105	320.30	15/11	5.62	20/06	78.17	22.26	7.01
	1979		1230	881	41.90		127	262.70	26/11	7.21	23/07	93.82	27.64	8.51
	1980		1187	140	35.48		108	171.60	20/11	0.37	19/05	18.83	24.91	7.46
021007	pok	1413	1321	878	13.89	15		209.80	30/01/74	0.57	07/69/76	31.59	8.50	1.71
	1977		1524	H0b	17.54		126	28 c .30	31/10	0.87	18/08	41.40	10.84	1.11
	1978		1394	B86	14.02		101	210.80	15/11	0.97	$19 / 07$	12.60	8.24	1.21
	1979		1420	1105	17.48		126	120.90	26/11	1.42	24/07	41.36	10.83	1.83
	1980		1366	944	14.93		107	98.07	20/11	1.18	19/05	35.27	9.16	1.35
021008	PUR	1006	$949{ }^{\circ}$	504	17.74	16		304.66	06/03/03	1.71	22/06/76	38.44	11.05	2.69
	1977		1019	604	21.25		120	187.20	31/10	1.49	17/08	44.36	14.81	2.58
	1978		1008	541	19.03		107	171.90	15/11	2.04	20/07	43.34	14.09	2.53
	1979		1005	693	24.40		138	273.10	25/03	2.22	05/08	55.84	15.31	3.67
	1980		962	586	20.62		116	122.00	20/11	3.35	03/06	43.35	14.30	4.14

Not: Thfe example illustrates only e ifaited amount of the atatistical inforation that may be output.

## OPTION 15 GAUGING STATION AND CATCHMENT DESCRIPTION

48003 fal at Tregony
arjginally a velocity-area station in formalised trapezoldal channel; augiented by lou flow, side contracted fluete 2.8n wide ln August 1967. Site not ldeal for high flows. Data avallable from June 1978. Earlier data unreliable due to silting of Inlet pipes. Moderate codlfication to flous ouing to industrial abstractions and returns.
Moderate to lou rellef catchment dralining devonian slatesp shales and gritso Upper reaches plateaumlike alluvidilflats. Jraverses the kaollnised st austell Granite. Lou grade agriculture and grazing.

Warleggan at Trengoffe
Threebay conpound crump proflle welr, crest lengths 1:52a and 8.53e ftotall. Wing walls at 1,67 . flood banks contain flous up to wing wall helght. overtopped at the hlghest flous. The only gauged natural catchent on bodmin moor. The upper $70 t$ drains the kalinised granite of Bodifn moor. The rellef is ooderate to stepp. The lower 30 traverses eetamorphosed Devonlan slates. ibaseflou high for an upland catchment ouing to starage in the granlte.
and ulng vall height 1.98 . contalins all flowsi potentlal for non-modularity at
the highest flous. Varlable shoallng affects lou flou preclsion. substantially
the hlghest flous. Varlable shoallng affects lou flou preclsion. Substantially

arlts and shales.

## OPTION 16 RIVER FLOW PATTERN PLOTS



## OPTION 17 GAUGING STATION SUMMARY SHEET



Measuring Authority: South West Water
Grid Reference: 21 (SS) 608237



IN Basof inciex
1941-70 rainfall (mm)
1193
FSR stream freq. (junctions $/ \mathrm{km}^{2}$ )
FSR parcentage urban

## Factors Affecting Flow Regime

- Resorvoiris) in catchmant.
- Abstraction for public water supply.
- Augmentation from offluant raturns.


## Station and Catchment Description

Velocity-area station, main charmel 34 m wida, cableway span 54.9 m . Rock $s$ tep $\mathrm{d} / \mathrm{s}$. forms the control. Bypassing begins at about 3.7 m on the rb , but a good rating mccommodates this. Significant modification to flows owing to PHS abstraction. Some naturalised flow data available.
Large rural catchment - drains both Dartmoor (granite) to the south and Devonian shales and sandstones of Exmoor to the north. Central area is undarlain mainly by Culm shales and sandstones (Carbonifarous ). Agriculture is conditionad by the grade 3 and 4 soils.

Summary of Archived_Data

## Gauged Flows and Rainfall

Koy:	${ }^{11}$	Someormoronn-follfil	$\begin{aligned} & 1950 \mathrm{~s} \\ & 1960 \mathrm{~s} \end{aligned}$	01234 AAAAA	56789 ---aA AAAAA	Key:			0123456789	
	$\begin{gathered} \text { All } \\ \substack{11 n \\ f \in 12} \end{gathered}$					All onily. all monthly	A	1950 s		-DA
						All daliv. some monthiv	${ }_{8}$	1960s	AAAAA	AAAAA
All gally, oll peoki	$\wedge$	foil	1970*	AAAAA	AAAAA	All delly. no monthly	c	1970s	AAAAA	AAAAA
All dolly. some pataz	${ }_{0}$	-	1980s	AAAAA	AAA	Some dally, come monthly	E	1980s	AAAAA	AAAD
All dolly, no peaks	c	-				Some dilly, no monthly	F			
Somp deliv. ell peakz	0	$d$				No noturalimed flou deto	-			
Some dally, some pebkt	E	-								
Some desiv, no megks No gnued fiou dote	F	'								



Station number	River name	Grid reference		Masazuring authority	Area ( 8 q km )	Station number	River namb		rence	Measuring suthority	Area   ( sq km )
026001	Wost Beck	54 (TA)	064560	YWA	192.0	028046	Dove		(SK) 146509	stwa	83.0
028002	Hull	54 (TA)	080498	YWA.	. 378.1	028047	Oldcoates Dyke	43	(SK) 615876	STWA	85.2
028003	Forton Bock	54 (TA)	093548	YWA	57.2	028048	Amber		(SK) 376520	STWA	139.0
028004	Gypsey Race	54 (TA)	165875	YWA	253.8	028049	- Arion		(SK) 575794	STWA	77.0
026005	Gypsey Race	54 (TA)	137677	YWA	240.0	028050	- Tome		(SE) 646012	STWA	135.5
028008	Elmswell Beck	54 (TA)	009575	YWA	136.0	028052	Sow		(SJ) 883270	STWA	163.0
028007	Catchwater	54 (TA)	171403	YWA	15.5	028053	Penk	33	(S.) 923144	STWA	272.0
						028054	- Sence		(SP) 566985	STWA	133.0
027001	- Niod	44 (SE)	428530	YWA	484.3	028055	- Ecclesboume		(SK) 320447	STWA	50.4
027002	Wharte	44 (SE)	422473	YWA	758.9	028056	Rothley Brook	43	(SK) 580121	STWA	94.0
027003	Aira	44 (SE)	534255	YWA	1932.1	028058	- Henmore Brook		(SK) 176483	STWA	42.0
027004	Coldor	44 (SE)	365220	YWA	899.0	028059	- Maun		(SK) 548623	STWA	28.8
027008	Don	43 (SK)	390910	YWA	373.0	028060	- Dover Beck	43	(SK) 653479	sTwa	69.0
027007	Ure	44 (SE)	356871	YWA	914.6	028061	Churnet		(SJ) 983520	stwa	139.0
027009	Swato	44 (SE)	415748	YWA	1345.6	028062 .	- Trent		(SK) 815715	STWA	8433.0
027009	Ouse	44 (SE)	588554	YWA	3315.0	028065	Trent	43	(SK) 827780	STWA	8547.0
027010	- Hodge Beck	44 (SE)	627944	YWA	18.9	028068	Cole	42	(SP) 183874	STWA	130.0
027012	- Hebden Water	34 (SD)	973309	YWA	36.0	028067	Derwent		(SK) 438316	STWA	177.5
027013	Ewden Beck	43 (SK)	289957	YWA	26.4	028070	Burbage Brook	43	(SK) 259804	STWA	9.9
027014	- Ayo	44 (SE)	743771	YWA	679.0	028072	- Great	43	(SK) 711541	STWA	46.2
027015	- Dorwent	44 (SE)	714557	YWA	1634.3	028073 .	- Ashop		(SK) 171896	STWA	42.0
027018	- Ryburn	44 (SE)	025187	YWA	10.7	028075	- Derwant	43	(SK) 169951	STWA	17.0
027019	Booth Dean Clough	44 (SE)	033168	YWA	15.9	028079	Meoce	33	(S) 874291	STWA	86.3
027021	Don	44 (SE)	569040	YWA	1258.2	028080	Tame.		(SP) 207937	STWA	799.0
027022	- Don	43 (SK)	427928	YWA	828.0	028081	Tame		(SP) 012958	STWA	169.0
027023	Dastno	44 (SE)	350073	YWA	118.9	028082	Soar	42	(SP) 542973	STWA	183.9
027024	Swate	45 (NZ)	146006	YWA	381.0	028083	Trent		(S.) 8885355	STWA	195.2
027025	Rother	43 (SK)	432857	YWA	352.2	028084	Tame		(SP) 029927	stwa	
027028	Rother	43 (SK)	394744	YWA	165.0	028085	Derwent	43	(SK) 355368	STWA	1054.0
027027	Wharte	44 (SE)	112481	YWA	443.0	028086	Sence		(SP) 588977	STWA	113.0
027028	Aire	44 (SE)	281340	YWA	691.5	028087	Tame		(SP) 061919	STWA	
027029	Calder	44 (SE)	124219	YWA	341.9	028091	Ryton	43	(SK) 631871	STWA	231.0
027030	Doame	44 (SE)	477020	YWA	310.8	028093	Soar	43	(SK) 565182	stwa	1108.4
027031	Colno	44 (SE)	174199	YWA	245.0	028094	Blythe	42	(SP) 213888	STWA	183.8
027032	Hobden Beck	44 (SE)	025643	YWA	22.2	028095	Tame	43	(SK) 182052	STWA	1421.7
027033	Soa Cut	54 (TA)	028908	YWA	33.2	028102	Blythe	42	(SP) 212911	STWA	194.3
027034	Uro	44 (SE)	190860	YWA	510.2						
027035	Alre	44 (SE)	013457	YWA	282.3	029001	Waithe Beck	54	(TA) 253016	AWA	108.3
027036	- Dorwont	44 (SE)	789715	YWA	1421.0	029002	Great Eau		(TF) 416793	AWA	77.4
027038	Conta Bock	44 (SE)	774836	YWA	7.8	029003	Lud		(TF) 337879	AWA	55.2
027040	Doe los	43 (SK)	443746	YWA	67.9	029004	Ancholme		(TF) 032911	AWA	54.7
027041	Dorwent	44 (SE)	731587	YWA	1586.0	029005	Rase	53	(TF) 032912	AWA	68.6
027042	Dove	44 (SE)	705855	YWA	59.2	029009	Ancholme		(T) 033877	AWA	27.2
027043	Wharfo	44 (SE)	092494	YWA	427.0						
027044	Btackioss Beck	44 (SE)	725475	YWA	47.0	030001	Witham	43	(SK) 842480	AWA	297.9
027047	Snaizoholma Beck	34 (SD)	833883	YWA	10.2	030002	Bartings Eau		(TF) 066766	AWA	210.1
02704 a	Darwent	44 (SE)	990853	YWA	127.0	030003	Eain		(TF) 241611	AWA	197.1
027049	Rye	44 (SE)	696791	YWA	238.7	030004	Partney Lymn		(TF) 402678	AWA	61.8
027050	Esx	45 (NZ)	865081	YWA	308.0	030005	Witham		(SK) 927335	AWA	126.1
027051	Crimplo	44 (SE)	284519	YWA	8.1	030006	Slea		(TF) 088485	AWA	48.4
027052	Whitting	43 (SK)	378747	YWA	50.2	030011	Qsin		(TF) 246795	AWA	62.5
027053	Nidd	44 (SE)	230803	YWA	277.6	030012	Stainfiedd Beck	53	(TF) 127739	AWA	37.4
027054	Hodge Bock	44 (SE)	652902	YWA	37.1	030013	Heighington Beck		(TF) 042639	AWA	21.2
027055	Ryo	44 (SE)	560883	YWA	131.7	030014	Pointon Lode		(TF) 128313	AWA	11.9
027056	Pickering Back	44 (SE)	791819	YWA	68.6	030015	Cringla Brook	43	(SK) 925297	AWA	50.5
027057	Seven	44 (SE)	736821	YWA	121.6	030017	Witham	43	(SK) 929246	AWA	51.3
027058	Riccal	44 (SE)	661810	YWA	57.6						
027059	Lever	44 (SE)	301710	YWA	87.5	031001	Eye Brook		(SP) 853941	CDWC	60.1
027080	Kyle	44 (SE)	${ }_{136} 5092$	YWA	167.6	031002	Wion ${ }^{\text {Welland }}$		(TF) 106149	AWA	341.9
027082	Nstdd	44 (SE)	482581	YWA	516.0	031008			(F) 038097	AWA	150.0
027084	Wont	44 (SE)	551163	YWA	83.7	031007	Welland		[SP] 948999	AWA	411.6
027085	Holme	44 (SE)	142157	YWA	97.4	031010	Chater		(SK) 961030	AWA	68.9
027088	Blackburn Brook	43 (SK)	393914	YWA	42.8	031012	Tham		(TF) 016179	AWA	24.9
027087	Shast	43 (SK)	357863	YWA	49.1	031016	North Brook	43	(SK) 957089	AWA	38.5
027068	Ryburn	44 (SE)	035 188	YWA	33.0	031021	Welland	42	(SP) 819915	AWA	250.7
027069	Wiske	44 (SE)	375844	YWA	25.5	031023	West Glan	43	(SK) 965258	AWA	4.4
027070	Eller Bock	14 (S8)	984502	YWA	35.3	031025	Gwash South Arm	43	(SK) 875051	AWA	24.5
027071 027072	Swale	44 44 4 (SE) (SE)	425734 064408	YWWA	1363.0	031026 031028	Egitan Brook	4	(SK) 878073	AWA	2.5
027072	Worth	44 (SE)	064408	YWA	71.7	031028	Gwash	43	(SK) 951082	AWA	76.5
027073	Brompton Beck	44 (SE)	936794	YWA	12.9						
027074	Spen Back	44 (SE)	225210	YWA	46.3	032001	Nene		(TU) 166972	AWA	1634.3
027075	Bedsle Beck	44 (SE)	306902	YWA	160.3	032002	Willow Brook		(T) 067933	AWA	89.6
027078	Biallby Bock	44 (SE)	760444	YWA	103.1	${ }_{0} 032003$	Harpers Brook		(SP) 983799	AWA	74.3
027077.	Brodtord Beck	44 (SE)	151375	YWA	58.0	032004	Ise Brook		(SP) 898715	AWA	194.0
${ }^{027080}{ }^{\circ}$	Aire	44 (SE)	381285 419724	YWA		032006	Nene/Kislingbury		(SP) 721592	AWA	223.0
027082	Cundall Beck	44 (SE)	419724	YWA		032007	Nene Brampton		(SP) 747817	AWA	232.8
						032008	Nene/Kislingbury		(SP) 627607	AWA	107.0
$\begin{aligned} & 028001 \\ & 028002 \end{aligned}$	Derwent	$\begin{array}{ll} 43 \\ 43 & \text { (SK) } \end{array}$	198851	STWA	126.0	032029			(SP) 660610	AWA	7.0
028003			109915 169	STWA	163.0 408.0	032031	Wootton Brook		(SP) 726577	AWA	73.9
028004	Tame	42 (SP)	206935	STWA	795.0	033001	Bedford Ousa	52	(T) 369727	AWA	3030.0
028005	Tame	43 (SK)	173105	STWA	1475.0	033002	Bedford Ouse		(TL 055495	AWA	1460.0
028008	Tront	33 (SN)	994231	STWA	325.0	033003	Cam		(TL) 508657	AWA	803.0
028007	Trent	43 (SK)	448299	STWA	4400.0	033004	Lark		(TL 648780	AWA	466.2
028008	Dove	43 (SK)	112397	STWA	399.0	033005	Bedford Ouse		(SP) 736353	AWA	388.5
028009	Trent	43 (SK)	${ }^{620} 399$	STWA	7486.0	033006	Wissey		(TL) 771985	AWA	274.5
028010 028011	Darwent	43 (SK)	356363	STWA	1054.0	033007	Nar		(TF) 723119	AWA	153.3
028011 028012	Derwent			STWA	699.0	033008			(TL) 860832	AWA	699.0
028012	Tront	${ }_{43}^{43}$ (SK)	131177 498240	STWA	1229.0	033009	Bedford Ouse		(SP) 951565	AWA	1320.0
028013 028014	Soar	43 (SK)	498240	STWA	1289.8	033011	Litrie Ouse		(TU) 892801	AWA	123.7
028015	lalo	43 (SK)	690895	STWA	529.0	033013	Sympiston			AWA	137.5 205.9
028018	- Ryton	43 (SK)	641897	STWA	231.0	033014	Lark		(TL) 758730	AWA	272.0
028017 028018	- Davon	43 43 43 (SK)	787486	STWA	284.0	033015 033016	Ouzes		(SP) 882409	AWA	277.1
028018 028019	Dove	43 43 43 (SK)	235288	STWA	883.2 30720	O33016	Cam		(TL) 450593	AWA	761.5
028019 028020	- Trent	43 (SK)	239204	STWA STWA	3072.0 238.0	033018 033019	Tove		(SP) 714488	AWA	138.1
028021	- Dorwent	43 (SK)	443327	STWA	1175.0	033020	Alconbury Brook		(TL) 208717	AWA	201.5
028022	Trent	43 (SK)	801601	STWA	8231.0	033021	Rhee	52	(TL) 415523	AWA	303.0
028023	Wyo	43 (SK)	182696	STWA	154.0	033022	Ivel		(TL) 153509	AWA	541.3
028024 028025	- Wranake	${ }^{43}$ (SK)	615124 321998	STWA	413.8 169.4	0333023	${ }^{\text {Les B Brook }}$		T4 682733	AWA	101.8
O28025	- Sence	${ }^{42}$ (SP)	321996 263034	STWA	169.4 368.0	033024 033025	${ }_{\text {Cam }}$ Cabingly	52 53	(TU) 466506	AWA	198.0 39.6
028027	- Erewash	43 (SK)	482364	STWA	182.2	033026	Bedford Ouse	52	(TL) 216669	AWA	2570.0
028029	- Kingaton Brook	43 (SK)	503277	STWA	57.0	033027	Rhee	52	(TL) 333485	AWA	119.1
028030	- Black Brook	43 (SK)	468171	STWA	8.4	033028	Flit	52	(TL) 143393	AWA	119.6
028031	Manifold	43 (SK)	140507	STWA	148.5	033029	Stringside	53	(TF) 716006	AWA	98.8
${ }_{028033} 028$	Madon	${ }^{43}$ (SKK)	563 5868	STWA	${ }_{80}^{62.8}$	033030	Clipstone Brook	42	(SP) 933255	AWA	40.2
028035	Loon	43 (SK)	549392	STWA	18.0	033031 033032			(SP) 889409 (TF) 685375	AWA	66.6 59.0
028036	Pouttor	43 (SK)	700752	STWA	128.2	033033	${ }_{\text {Hiz }}$		(TU) 190379	AWA	108.0
028038	Monitold	43 (SK)	106595	STWA	46.0	033034	Litio Ousa	52	(TL) 851844	AWA	699.3
028039	Roa	42 (SP)	071847	STWA	74.0	033035	Eny Ouse	53	(T) 588010	AWA	3430.0
028040	Trent	33 (SJ)	892467	STWA	53.2	033037	Bedford Oust	42	(SP) 877443	AWA	800.0
028041	- Hamps	43 (SK)	082502	STWA	35.1	033039	Eedford Ouse	52	(TLL 160535	AWA	1860.0
028043	Dorwent	43 (SK)	261683	STWA	335.0	033040	Rhee	52	(TL) 267401	AWA	
028044	Poutter	43 (SK)	563714	STWA	65.0	033044	Thet	52	(TL) 957855	AWA	277.8
028045	Medon	43 (SK)	681732	STWA	106.2	033046	Witule	62	(TM) 027878	AWA	28.3



Station number	Rlver nama	Grid reference	Measuring authority	Area (sq km)	Station number	River name	Grid raference		Measuring authority	Area ( sq km )
041010	Adur W Branch	51 (Ta) 178197	SWA	109.1	050006	Mole	21 (SS)	660211	swwa	327.5
041011	Rother	41 (SU) 852229	SWA	154.0	050007	Taw	21 (SS)	673068	SWWA	71.4
041012	Adur E Branch	51 (TO) 219190	SWA	93.3						
041013	Hugglotis Stroam	51 (TO) 671138	SWA	14.2	051001	Donitord Stream	31 (ST)	088428	WWA	75.8
041014	Arun	51 (TO) 047229	SWA ${ }^{\text {S }}$ ( ${ }^{\text {d }}$	- 379.0	051002	Horner Woter	21 [SS]	898458	WWA	20.8
041015	Ema	41 (SU) 755074	SWA	58.3	051003	Washford	31 (ST)	04039	WWA	36.3
041016	Cuckmore	51 (Ta) 611150	SWA	18.7						
041017	Combehaven	51 (Ta) 765102	SWA	30.5	052001	Axe	31 (ST)	527458	WWA	18.2
041018	Kird	51 (Ta) 044256	SWA	66.8	052002	Y	31 (ST)	556116	WWA	30.3
041019	Arun	51 (Ta) 117331	SWA	139.0	052003	Halse Water	31 (ST)	206253	WWA	87.8
041020	Bevorn Stream	51 (TO) 423161	SWA	34.6	052004		31 (ST)	361188	WWA	90.1
041021	Clayhill Stream	51 (TO) 448153	SWA	7.1	052005	Tone	31 (ST)	206250	WWA	202.0
041022	Lod	41 (SU) 931223	SWA	52.0	052006	Yeo	31 (ST)	573162	WWA	213.1
041023	Lavant	41 (SU) 871064	SWA	87.2	052007	Parrett	31 (ST)	461144	WWA	74.8
041024	Shell Brook	51 (TO) 335286	SWA	22.6	052008	Tone	31 (ST)	044313	WWA	18.1
041025	Loxwood Stroam	51 (Ta) 060309	SWA	91.6	052009	Sheppey	31 (ST)	498439	WWA	59.6
041026	Cockhaiso Brook	51 (TO) 376262	SWA	36.1	052010.	Brue	31 SST	590318	WWA	135.2
041027	Rother	41 (SU) 772270	SWA	37.2	052011	Cary	31 (ST)	498291	WWA	82.4
041028	Chers Stroam	51 (TO) 217173	SWA	24.0	052014	Tone	31 (ST)	078202	WWA	57.2
041029	Bull	51 (TO) 575131	SWA	40.8	052015	Land Yeo	31 (ST)	483716	WWA	23.3
041030	Ouse	51 (TO) 333283	SWA	37.2	052016 052017	Curtypool Stream	31 31 31 31 $(S T)$	$\begin{aligned} & 221382 \\ & 452631 \end{aligned}$	WWA	15.7 66.6
042001	Wallington	41 (SU) 587075	SWA	111.0	052020	Gallica Stream	31 (ST)	571100	WWA	16.4
042003	Lymington	41 (SU) 318019	SWA	98.9						
042004	Tost	41 (SU) 354188	SWA	1040.0	053001	Avon	31 (ST)	903641	WWA	665.6
042005	Wallon Brook	41 (SU) 311330	SWA	53.6	. 053002	Semington Brook	31 (ST)	907605	WWA	157.7
042008	Maon	41 (SU) 589141	SWA	72.8	$\cdot 053003$	Avon	31 (ST)	753645	WWA	1595.0
042007	Alra	41 (SU) 574326	SWA	57.0	053004	Chow	3) (ST)	648647	WWA	129.5
042008	Chariton Straem	41 (SU) 574323	SWA	75.1	053005	Midford Brook	${ }^{31}$ (ST)	763611	WWA	147.4
042009	Candover Stream	41 (SU) 568323	SWA	71.2	053006	Frome(Bristol)	31 (ST)	637772	WWA	148.9
042010	Itchon	41 (SU) 467213	SWA	360.0	053007	Frome(Somerset)	31 (ST)	805564	WWA	261.6
042011	Hamblo	41 (SU) 523149	SWA	56.6	053008	Avon	31 (ST).	966832	WWA	303.0
042012	Anton	41 (SU) 379393	SWA	185.0	053009	Wellow Brook	31 (ST)	741581	WWA	72.6
042014	Blackwater	41 (SU) 328174	SWA	104.7	053013	Marden	31 (ST)	955729	WWA	99.2
042016	Itchen	41 (SU) 512325	SWA	235.8	053017	Boyd	31 (ST)	681698	WWA	48.0
042021	Branch of Test	41 (SU) 355159	SWA	1050.0	053018	Avon	31 (ST)	786671	WWA	552.0
		4) (SU) 142054			053019	Woodbridge Brook	$31(\mathrm{ST})$	949866	WWA	46.6
0433003	Avon	${ }_{41} 1$ (SU) 158154	WWA	1649.8 1477.8	-053020	Gauze Brook	${ }_{31}($ ST)	738651	WWA	1605.0
043004	Bourno	41 (SU) 157304	WWA	163.6	053023	Sherston Avon	31 (ST)	891870	WWA	89.7
043005	Avon	41 (SU) 151413	WWA	323.7	053024	Tetbury Avon	31 (ST)	914893	WWA	73.6
043006	Nodder	41 (SU) 098308	WWA	220.6	053025	Mells	31 (ST)	757491	WWA	19.0
043007	Stour	40 (SZ) 113958	WWA	1073.0	053026	Frome(Bristol)	31 (ST)	667822	WWA	78.5
043008	Wrive	41 (SU) 086343	WWA	445.4	053028	By Brook	31 (ST)	815688	WWA	102.0
043009	Stour	31 (ST) 820147	WWA	523.1	053029	Biss			WWA	
043010	Allon	41 (SU) 006085	WWA	94.0						
043011	Ebble	41 (SU) 162263	WWA	109.0	054001	Sovern	32 ( $\mathrm{SO}{ }^{\text {a }}$	782762	STWA	4325.0
043012	Wylve	31 (ST) 909428	WWA	112.4	054002	Avon	42 (SP)	040438	STWA	2210.0
043013	Mude	40 (SZ) 184936	WWA	12.4	054004	Sowe	42 (SP)	332731	STWA	262.0
043014	Esast Avon	${ }^{41}$ (SU) 133559	WWA	86.2	054005	Savern	33 (S)	${ }^{412144}$	STWA	2025.0
043015	Wrlye	31 (ST) 868413	WWA	69.0	054006	Stour	32 (SO)	829768	STWA	324.0
043017	West Avon	${ }^{4}$ ( (SU) 133559	WWA	76.0	054007	Arrow	42 (SP)	-086536	STWA	319.0
043018	Allen	${ }^{41}$ (SU) 008007	WWA	176.5	054008	Teme	32 (SO)	597686	STWA	1134.4
043019	Shreen Watar	31 (ST) 807278	wWA	29.1	054010	Stour	42 (SP)	208507	STWA	319.0
043021	Avon	40 (SZ) 155943	WWA	1706.0	054011	Salwarpe	32 (SO)	868618	STWA	184.0
					054012	Tern	33 (S)	592123	STWA	852.0
044001	Fromo		WWA	414.4 183.1	054013 054014	Clywedog	${ }_{32} 22$ (SNO)	944855	STWA	57.0 580.0
044003	Asker	30 (SY) 470928	WWA	49.1	054015	Bow Brook	32 (SO)	927463	STWA	156.0
044004	Frome	30 (SY) 708903	WWA	206.0	054016	Roden	33 (SJ)	589141	STWA	259.0
044008	Syding Water	30 (SY) 632997	WWA	12.4	054017	Leadon	32 (SO)	777234	STWA	293.0
044008	$\sin$ Winterbourne	30 (SY) 629897	WWA	19.9	054018	Aea Brook	33 (SJ)	466092	STWA	178.0
044009	Wey	30 (SY) 666839	WWA	7.0	054019	Avon	42 (SP)	333715	STWA	347.0
					054020	Perry	33 (S.J)	434192	STWA	180.8
045001	Exo	21 (SS) 936018	SWWA	600.9	054022	Severn	22 (SN)	853 B72		8.7
045002	Exa	21 (SS) 943178	SWWA	421.7	054023	Badsey Arook	42 (SP)	063449	STWA	95.8
045003	Culm	31 (ST) 021058	SWWA	226.1	054024	Worte	32 (SO)	747953	STWA	258.0
045004	A× ${ }^{\text {¢ }}$	30 (SY) 262953	SWWA	288.5	054025	Dulas '	22 (SN)	950824	STWA	52.7
045005	Oiter	30 (SY) 087885	SWWA	202.5	054026	Chelt	32 (SO)	892264	STWA	34.5
045006	Quarme	21 (SS) 919356	SWWA	20.4	054027	Frome	32 (SO)	831047	STWA	198.0
045008	Oiter	30 (SY) 115986	SWWA	104.2	054028	Vyrnwy	33 (SJ)	252195	STWA	778.0
045009	ExA	21 (SS) 935260	SWWA	147.6	054029	Teme	32 (SO)	735557	STWA	1480.0
045010	Haddeo	21 (SS) 952294	SWWA	50.0	054032	Severn	32 (SO)	863390	STWA	6850.0
045011	Barle	21 (SS) 927258	SWWA	128.0	054034	Dowles Brook	32 (SO)	768764	STWA	40.8
045012	Cready	20 (SX) 901967	SWWA	261.6	054036	Isbourne	42 (SP)	023408	STWA	90.7
					054038	Tenat		252225	STWA	229.0
046002	Teign	20 (SX) 856746	SWWA	380.0	054040	Meese	33 (SJ)	680205	STWA	167.8
046003	Oart	20 (SX) 751659	SWWA	247.6	054041	Tern	33 (S)	649230	STWA	192.0
046005	East Datt	20 (SX) 657775	SWWA	21.5	054042	Crywedog	22 (SN)	914867	STWA	49.0
048008	Erme	20 (SX) 642532	SWWA	43.5	054043	Severn	32 (SO)	863399	STWA	50.0
046007	West Oart	20 (SX) 643742	SWWA	47.9	054044		33 (SN)	629316 347303	STWA	${ }^{92.6}$
048008	Av	20 (SX) 719476	SWWA	102.3	054045 054046		33 (SJ)	347303 781046		49.1 54.9
047001	tamar	20 (SX) 426725	SWWA	9:6.9	054046 054047	Worfe	${ }^{33}$ (S)]	781046 403223	STWA	54.9 155.0
047003	Tavy	20 (SX) 474650	SWWA	205.9	054048	Dene	42 (SP)	273556	STWA	102.0
047004	Lynhor	20 (SX) 368624	SWWA	135.5	054049	Leam	42 (SP)	307654	STWA	362.0
047005	- Ontery	20 (SX) 336866	SWWA	120.7	054052	Bailey Brook	33 (SJ)	629316	STWA	34.4
047006	tyd	20 (SX) 3888842	SWWA	218.1	054054	Onny	32 (SO)	455789	STWA	235.0
047007	Yoo!m	20 (SX) 574511	SWWA	54.9	054055	Rea	32 (SO)	664724	STWA	129.0
047008	Thruathol	20 (SX) 398885	SWWA	112.7	054056	Clan	32 (SO)	393788	STWA	195.0
047009	Tiday	20 (SX) 343595	SWWA	37.2	054057	Severn	32 (SO)	844279	STWA	9895.0
047010	Tamar	20 (SX) 290991	SWWA	76.7	054058	Stoke Park Brook	33 (SJ)	644260	STWA	14.3
047011	Plym	20 (SX) 522613	SWWA	79.2	054059	Allford Brook	33 (SJ)	654223	STWA	10.2
047013	Withey Brook	20 (SX) 244763	SWWA	16.2	054060	Potford Brook	33 (S)]	634220	STWA	25.0
047014	Watkham	20 (SX) 513699	SWWA	43.2	054061	Hodnet Brook	33 [SJ]	628288	STWA	5.1
047015	Tavy	20 (SX) 476681	SWWA	197.3	054062	Stoke Brook	33 [S.J.	637280	STWA	13.7
047016 047017	Lumburn	20 (SX) 459731	SWWA	20.5	054063	Stour	32 (SO)	865858	STWA	89.9
047017	Wolt	20 (SX) 419898	SWWA	31.1	054085	Roden	33 (S).	565241	STWA	210.0
					054066	Plati Brook	33 (S.J)	628229	STWA	15.7
048001	Fowey	20 (SX) 227698	SWWA	36.8	054067	Smestow Brook	32 (SO)	861906	STWA	81.3
048002	foway	20 (SX) 108613	SWWA	171.2	054068	Tetchill Brook	33 (SS)	379288	STWA	21.2
048003		10 (SW) 921447	SWWA	87.0	054069	Springs Brook	33 (S)	387297	STWA	10.4
048004	Warioggon	20 (SX) 159674	SWWA	25.3	054070	War Brook	33 (SU)	432198	STWA	22.5
048005	Kenwyn	10 (SW) 820450	SWWA	19.1	054080	Severn	22 (SN)	996851	STWA	187.0
048008	Cober	10 (SW) 654273	SWWA	40.1	054081	Clywedog	22 (SN)	913868	STWA	49.0
048007	Konnoll	10 (SW) 762377	SWWA	${ }_{22}^{26.6}$	054083					16.7 315
048009 048010	Si Noot Soator	$\begin{array}{ll}20 & \text { (SX) } \\ 20 & 184662 \\ 20 & \text { (SX) } \\ 299959\end{array}$	SWWA	22.7 38.1	054084 054085	Cannop Erook Cannop Brook	32 32 (SO)	616075 609115	STWA	31.5 10.4
048010 048011	Soway	20 (SX)   20 299   (SX) 09896   204	SWWA	-38.1	${ }^{054086}$	Cannop Broiok	23 (SH)	699175 999	STWA	13.2
					054087	Allford Brook	33 (SJ))	667228	STwa	4.7
049001	Camol	20 (SX) 017682	SWWA	208.8	054088	Little Avon	31 (ST)	683988	WWA	134.0
049002	Hayla	10 (SW) 549342	SWWA	48.9	054090	Tanlwyth	22 (SN)	844876		0.9
049003	De Lank	20 \{SX\} 132765	SWWA	21.7	054091	Savern	22 (SN)	843878	${ }^{1+1}$	3.6
049004	Gannol	10 (SW) 829593	SWWA	41.0	054092	Hare	22 (SN)	846873	${ }^{1 / 4}$	3.2
					054094	Strine	33 (SJ)	640175	STWA	134.0
050001 050002	Taw Torridgo	$\begin{array}{llll}21 & \text { (SS) } & 608 & 237 \\ 21 & \text { (SS) } & 500 & 135\end{array}$	SWWA	826.2 663.0	054095	Severn		644044	STWA	3717.0
050004	Hole Water	21 (SS) 705373	SWWA	5.4	055002	Wye	32 (SO)	485388	WELS	1895.9
050005	West Okement	20 (SX) 557903	SWWA	13.3	055003	Lugg	32 (S0)	548405	WELS	885.8




Refor to page 183 for key to measuring authorities.

Gauged daily flows, monthly peaks and monthly rainfall
KEY:
Complete daily and complete peaks
Complete daily and partial peaks
Complete daily and no peaks
Partial daily and complete peaks
Partial daily and partial peaks
Partial daily and no peaks
No flow data

Complete	Incomplete or
rainfall	missing rainfall
A	a
B	b
C	c
D	d
E	e
F	$f$
t	-

Summary is presented in decade blocks

90908 O 003001
003002
003003
003
00305 Gauged dally flows.
monthly peaks and rainfall 3001
03002 03002 003004

004001

## 004003

004005
005002 00600

## 008003

006006
006007
006008
007001 007002 007003 00700 007005
007006 008001 8
00800 00800 008005 008006 00800

## 00800

 008000080

0090

00900
00900
00900


01000
01100
01100
011003

012001

## 012002

012003
012004
$\begin{array}{lllll}012005 & 70 \mathrm{~s} & \text { DCCCCAAA } & \\ 012006 & 70 \mathrm{~s} & - & \text { 80s aAAAAAAA } \\ 012007 & 80 \mathrm{~s} & -0.0-e 8 & 80 \mathrm{~s} \text { aAAAAAAA }\end{array}$
012007
012008
$\begin{array}{lll}013001 & 70 s \\ 013002 & 80 s & --c-0-0-0 \\ 01302 & \text { BOAAAAAAAA }\end{array}$

013003
013004
013004
013005

Stn. number	Gauged dally flows. monthly peaks and rainfall			
013007	70s	------CCCC	B0s	CCCDAAAA
013008	80s	---AAAAA		
013009	80s	----tAA		
014001	60s	-tt1ttteas	70s	AAAAAAAAAA
	80s	anamabas		
014002	603	-ttttttie	70s	AAAAAAAAAA
	80:	ACCFCAAA		
014005	80:	----casa		
015001	50s	---eo	60 s	eatababaEt
	703	1ttitttit	80 s	T!titit
015002	50.		60s	AAAAAAAEEt
	703	tttittit	80s	ttitttit
015003	403	--fcc	50s	CBAAAAAAAA
	60:	AAAAAAAAAA	70s	AAAAAAAAAA
	80s	ABCFCAaa		
015004	20s	-------CCC	30s	CCCCCCBAe-
	40s	---t1tt	50s	EEttitttie
	60s	AAAAAAAEEt	70s	ttttttit
	B0s	ttitttt		
015005	20s	------CCC	30 s	CCCCCCBAa-
	408	-------ttt	50s	EEtEEETtIE
	60 s	aEAAAAAAEt	70 s	t1ttittit
	80:	tittitt		
015008	508	--eAAAAAAA	60s	AAAAAAAAAA
	70,	AAAAAAAAAA	80s	baAAAAAA
015007	50\%	--eAA	60s	AAAAAAAAAA
	70 s	AAAAAAAAAA	80 s	AACCCAsa
015008	509	-------EA	60 s	AAAAAAAAAA
	703	AAAAAAAAAA	80 s	BaFCCAsa
$\begin{aligned} & 015010 \\ & 015011 \end{aligned}$	70s	--caAAAAAA	80 s	AFCFCAAA
	50s	--~+----cc	60s	cecccccece
	70 s	ecbataiama	80 s	accccaaa
015012	703	---baAAaaa	80s	AACCCACC
015013	50s	----- сcccc	608	ecccccccccc
	70s	cccbaamaia	803	a ${ }^{\text {abccaba }}$
015015	80:	------cc		
015016	70s	---baAAAA	80s	AACCCAsa
015017	70.	-----8AAAA	B0s	Att---it
015018	50s	--- вазазя		
015021	80 s	----tc		
015023	803	---ccaAA		
015024	803	--cccDAA		
015025	80 s	----tAaa		
016001	403	--------Cc	50s	cBaAbbaAas
	60 s	AAAAAAAAAA	70s	afamabama
	80s	bDFCCAAA		
016002	50.	-----8AAAA	60s	AaAAAAAAAA
	703	asabamatt		
016003	60 s	- $\dagger \uparrow t \dagger t \dagger t 11$	70 s	eoambasama
	80s	AAAAAAAA		
016004	70s	--gAAAAAAA	80 s	ADOAAAAA
017001	605	---------E	70 s	AAAAAAAAAS
	803	AAAAAAAA		
017002	603	-	70s	AAAAAAAAAA
	803	AAAAAAAA		
017003	70.	teasabasas	80s	AAAAAAAA
017004	70:	--EAAAAAAA	805	AAAAAAAA
017005	703	-EAAAAAAAB	808	atamakea
017012	B0:	----11EA		
017016	803	------a		
017017	B0:	--ac		
018001	508	-------EAA	60s	AAAAAAAAAA
	70s	AAAAAAAAAA	80 s	AAAAAAAA
018002	50 s	-------b	60s	ababamabaa
	70:	Btbabaiala	80 s	AAAAAAas
018003	50s	-------ccc	605	cccbaiamaia
	703	aseanamana	80 s	AAAAAAAA
018005	70.	feakamamaa	808	afasamaa
018007	808	----ttaa		
018008	70s	---gAAAAAA	B0s	AAAAAAAA
018010	808	----tta		
018011	803	-icaAAAA		
018012	804	----tias		
018013	80\%	----tta		
018014	B63	----tta		
018016	80:	------AA		
018017	80s	---bbbcc		
018018	80:	---bbbct		
018019	80s	------†A		
019001	50 s	-------AAA	60s	AAAAAAAAAA
	703	AAAAAAAAAA	80s	AAAAAAAA
019002	B03	-taAAAAAAA	70s	asacaiamaa
	803	AAAAAAAA		
019003	608	-eataAasaa	70 s	AAAAAAAAAA
	808	Dt1---tt		
019004	603	AAAAAAAAAA	70s	AAACAAAAAA
	803	AAAAAAAA		
019005	603	-- $A$ AAAAAA	70s	AAAAAAAAAA
	803	AAAAAAAA		
019008	608	-itababasa	70s	AAAAAAAAAA
	808	AAAAAAAA		
019007	60:	-tganamana	70s	AAAAAAAAAA
	80 s	afatabab		
019008	608	- $\dagger$ +1BAAAAA	70s	AAAAAAAAAA

Stn. Gauged daily flowt. number monthly peaks and rainfall 019010 60s ---------A 70 s AAAAAAAAAA $019011 \begin{aligned} & 80 \mathrm{~s} \text { AAAAAEBE } \\ & 60 \mathrm{~s} \text {--cccccec }\end{aligned} \quad 70 \mathrm{~s}$ ceccccaasa 019012 80s AAAAAAAA 019014 BOs ----ttea 019017 BOs ----ItAA

020002
6Os - AAAAAAAAAA 305 AAAAAAAA BOs AAAAAAAA020003

## 020005

## 020006

020008
0210
0210
021003
021004
21005

## 021007

021008
021009
021010
021011
021013
021014
021015
021016
021017
021019
021020
021021
021022
021023
021024
021025
021026
021027
021030
021031
021032
021034
022001
022002
022003
022004
022006
022007
022008
$022009-70 \mathrm{~s}$

70s AAAAAAAAAA
70s AAAAAAAAAA
70s AAAAAAAAAA
70s. AAAAAAAAAA
70s CCCCCCAAas
80 s AAAAAAAA
70s tttCCCAAAA

60s AAAAEEAAET
80s ------It
Os $-\cdots-\cdots$
b0s ABBCCAAA
80s
70 s
ABBCCAAA
Os AAAAAAAAAAA
70s AAAAAAAAAA
70s AAAAAAAAAA
70 s AAAAAAAAAA
705 AAAAAABAAA
703 AAAAAAAAAA
70 s AAAAAAAAAA
70s AAAAAAAAAA
70 s AAAAAAAAAA
$70 s$ AAAAAAAAAAA
70 s AAAAAAAAAA
708 AAAAAAAAAA
70s AAAAAAAAAA
70s AAAAAAAAAA
10s AAAAAAAAAA
$70 s$ AAADAAAAAA
70 s EAAAAAAAAA
70 s teanamanaa
70s tiEAAAAAAA
70s itteanalana
70s titeananaa
70s BAAAAAAAAA
60s AEAAAAAAAA
80s e----- $\dagger 1$
708 AAAAAAAEAA
TOs CCCCCAAAAA

70s AAAAAAAAAA
60s EAEAAAAAAA
Os e-…- $\dagger \dagger$
Os BAEAAAAAAA

Os DAAAAAAAAA
70s AAAAAAAAAA
70s AAAAAAABAA
80s AAAAAAAAE

8 tn. number	Gauged dally fown, monthty peaks and reinfall			
023001	503	$\square A A A$	60.	anameatama
	70:	atanamana	80.	AAAAAAAB
023002	SO2	cccca	60.	amanamasa
	70:	asabasamaa	80.	AAAAAAAA
023003	504		603	a $A$ AAAAAA
	708	anambabasa	80.	eama
023004	608	--daAAAAA	70.	a $A$ EAA
	803	AAAAAAA		
023005	${ }^{603}$	--sabadad	70.	alamanama
	${ }^{80}$	AAAAAAAE		
023006	603		10.	anaiabaeea
	803	AAAAAAAA		
023007	603	- $\quad$ alamaaa	70.	afabamama
	${ }^{80}$	baAaAAAE.		
023008	${ }^{003}$	-------EA	70.	abamababaa
023009	603	AeAAAAAE	703	AAADO
	80:	EAA		
023010	60:		70.	easanamaba
	B0:			edabababaa
11	803	easamases		
023012	70	tebaamaaa		
$\begin{aligned} & 023013 \\ & 023014 \end{aligned}$	70	teasamana	${ }^{803}$	Alt
	${ }^{60}$	fecec	70.	cBA
023016	40		503	eafaembbe
024001	508		603	
	70:	atamameata	B0s	eatasad
024002	50:		60.	AAA
	70	anambanama	803	AAAETITI
024003	50		${ }^{80}$	AAAAAAAE
	70	alabamaba	80	AAA
024004	${ }^{501}$		${ }^{60}$	AAAAAAAAAAA
	70	anamaanaea	80.	AAAAAA
024005	50	noEAAA	60	AA
	70 s	alamamaeea	80,	AAAAABAAE
024008	${ }^{50}$		${ }^{80}$	basamana
	70	ababataba		
024007	$\begin{aligned} & 601 \\ & 804 \end{aligned}$	AAAEITI:	70	AAA
	708	csamoass	${ }^{803}$	
	70	------aA	80\%	afabambae
025001	50		603	
	702	AAAAAAAAA	80.	AAAAAAA
	50:		60.	-abababab
	70:	BA	80.	
025003	508	--ata	${ }^{60}$	alaeama
	70.	a $A$ anababBa	80:	
004	508	aAAA	60	afanamaba
	${ }^{70}$	AAAAAAAAAD	80:	AAEADDDA。
025005	502		60 B	afacamamaa
	70.	anabbasea	80.	AAAAAAA
025008	60.		70.	a abiambaa
	${ }^{808}$	AAAAAAAAe		
025007	${ }^{60}$		70.	afacamana
	80.	Et----1:		
025008	603	-tEAAA	703	atabas
	${ }^{80}$	AEAEt!		
025009	603		703	a
	${ }^{80}$	AAAAAABas		
$\begin{aligned} & 025010 \\ & 025011 \end{aligned}$	${ }^{60}$	-EAA	70.	aeamet:1tt
	603	---------E	70.	A
	${ }^{80}$	AAAET: 1		
025012	${ }^{604}$		70.	badaanamaa
	80	asabasabe		
028014	${ }^{60}$	-E		EEAE
	60s		70.	AEE
	${ }^{60}$	----	703	
025018	708	teeamanaaa	${ }^{80}$	AEEAAAAAs
	70.	teanamasa	B0:	anabamag
025 025	${ }^{7} 0$.	--EAAAEAEA	${ }^{80}$	anamabame
025021	70.	ittebabaab	80	AAAAADA
0250	70.		B0:	a---1!
	70:	-eaEEAAEAA	B0.	
02	70:			
028001	502	---өaAabib	60	bвbbeamabs
	703	aeabetitt	80:	---titt
028002	603	-sAAAEEBBE	70*	easadaAE
	B0.	BtCCCFce		
026003	50		80	asabasam
	70	ataateeaa	80	AAAAAAAA
	70.	tEEt日EFEBA	80:	AAAAABIt
026005	во	-dabaAas		
028008	${ }^{\text {BO}}$	-88as		
026007	80.	-	70^	tccefticece
	80			
027001		-----aAAEt		IEbaAbcc
	50.	ttteamabas	60	AAAAAAAAAA
	70.	atanamana	803	AEttitt
027002	30*		40	titittt
	50:	ittieata	803	anamababa
	70.	asamababa	80:	$\triangle A A A A A A A$
027003	50.	--------*E	${ }^{60}$	examanama
	70.	a 4 alabbaeE	B0\%	abababas
$\begin{aligned} & 027004 \\ & 027008 \end{aligned}$	60.	daAasabatet	70.	thasaett
	60.	-eatas	70.	AAA
	808	AAAAAAAA		
027007	503	--------A	608	anamatana
	70:	Ebdamataek	80:	asamama
027008	50.	-----dAAAE	60.	asababamas
	703	atanaeesae	80,	AEDEETIt
027009	${ }^{602}$	-Ittitite	70.	anabdeamad
	80.	adataata		
027010	303	------tctc	40.	1 tfft
	50.	effibasaas	60	bacmanama
	703	abadatageat	803	------11
027012	503	----abaAa	60:	amabasaba
	70,	AAAEttItt		
027013	50,	-e8B888	608	bbbbsbaAAA
	10.	AaABBBCBEE	80:	Bttit
027014   027016	${ }^{50} 5$	---------a	${ }^{608}$	AAAAAAAABA
	703 803 808	EETHATIIT	803 70	AAAAAET


Stn.   number	Gouged daily flows, monthly paaks and rainfall			
027018	50.	--dAA	603	bbabbbaab
	70	'BBbbo-ttt	803	--7th
027019	508	-----bAAA	603	AAEbAAAAEE',
		EAAAE--ttt	${ }^{80}$	---tti
027021	503		603	aEEAAAAAA
	${ }^{70}$	AAAAAAEEtI	80 s	\#tasasa
027022	$60 \mathrm{~s}$ $80 \mathrm{~s}$	OAAAAAABAA	705	EEttittt
027023	603	  eAAAAAAAA	703	AAAAAAAAAA
	803	AAAAAAED		
027024	${ }^{60}$	- acamamasa	70s	asabaseasa
	${ }^{80}$	Et-titil		
027025	${ }^{608}$	-aAAAAAAAA	703	AAAEttaAAA
	${ }^{803}$	AAAAAAAA		
027026	$60:$	--- AAAAAAA	70s	AaAAAAA
027027	$60 \pm$	-eAAAAAAEA	70s	aAAAAEttIt
	808 60			
027028	$\begin{aligned} & 603 \\ & 805 \end{aligned}$	-AAAAAAAAA AAAAADa3	70s	AAAAAAAAEA
027029	60	-eababasaE	70s	teatababaa
	${ }^{808}$	aAEAAAba		
027030	$603$	---gAAAAAA   AADAAAAA	70s	a ${ }^{\text {a }}$ aEEAAEA
027031	60	---AAAAAA	70s	anamateaea
	80	AAAAAAAA		
027032	603	teEAA	70s	asamaeeaaa
	BO:	AEAAAAAA		
027033	60:	AAAAAABB	70s	cccccbeaaa
027034	$\begin{aligned} & 80: \\ & 60: \end{aligned}$	AAAAAAB	0s	basamaiasa
	${ }_{80}{ }^{8}$	AAAAAAAA		bamazaAas
027035	${ }^{60}$	EA	708	atabbaeasa
	${ }^{804}$	EAAAAAAA		
$\begin{aligned} & 027038 \\ & 027038 \end{aligned}$	${ }^{60}$		703	EEt
	70	EAAAAAAAAA	BO5	eatadadaa
027040027041	70	ebaacanama	${ }^{80}$	AAAAAAAA
	${ }^{70}$	-tEAAAAAA	${ }^{\text {BOs }}$	atamama
027042027043	70	treabaabaa	${ }^{80}$	AAAAAAAA
	${ }^{70}$	----AAAAAA	${ }^{80}$	EaAAAA
02704027047	708	--tteasaba	${ }^{80}$	aAaAdaas
	704	-tbasamase	BOs	aEADaEDO
-027048	${ }^{704}$	-teataeeaa	808	AAAAAAas
027049027050	704	-aAAAAA	${ }^{803}$	AAAAAAAA
	70	fcectif---	808	traddAA
027051	${ }^{70}$	--eaAEAAAE	803	Aadaama
027052	${ }^{70}$	------ esaa	${ }^{803}$	afabama
027053	${ }^{703}$	-----eEAAA	803	AAAAAAAAA
	${ }^{70}$	----FFFAAE	80\%	AAAAAAAA
027055	70	----ICCEAE	80.	asdanama
027056027057	70	-----fFCEAE	803	asabama
	703	----fFCEAE	80s	asamama
027058	70	fCCEAE	808	asabama
027059	703	--eAE	80 s	easamana
027060	703		80 s	ababama
027081	${ }^{708}$	---------A	80s	asabama
$\begin{aligned} & 027062 \\ & 027064 \end{aligned}$	${ }^{70}$	--8	${ }^{808}$	amanama
	703		${ }^{80}$	aasaba
027065027068	70:		${ }^{80} 8$	-daoata
	80	--AAAA		
027067	${ }^{80}$	----AAAA		
027068	${ }^{80}$	-asas		
027069	${ }^{80}$	----AAAA		
027070	${ }^{80}$			
	${ }^{80}$	anamata		
027072027073	${ }^{80}$	----AAAA		
	${ }^{80}$	----AAas		
$\begin{aligned} & 027073 \\ & 027074 \end{aligned}$	$\mathrm{BO}_{3}$	----AAAA		
027075	${ }^{80}$	------a $A$		
027078027077	${ }^{80}$	--		
	${ }^{808}$	------as		
$\begin{aligned} & 027080 \\ & 027082 \end{aligned}$	${ }^{80}$	--8A		
	80:			
028001	30:	--cccbaAA	403	вссccccecb
	50.	asabiabaat	60s	AAAAAAAAAA
028002	70	AAAAAABAAA	803	anaAAAAA ${ }^{\text {a }}$
	30.	-aA	${ }^{403}$	AAAAAAAAAAA
	50.	AABAAAAAAA	${ }^{60 s}$	AAAAADDIEE
	70,	eanaseasaa	803	AAAAETI:
028003	502	-----eAAAA	60 s	AAAAAAAAAA
	${ }^{70}$	aseanaaba	803	AAEIt
028004	50.	-----fbat	${ }^{605}$	EAAEAAAAAA
	70.	AAAAAAAAAA	808	AAEIII
028005	${ }^{50}$	----fccta	60\%	AAAAAAAAAA
	70.	AAAAAAAAAA	803	AAAAEET
028006	${ }^{508}$	-1.-...-ea $A$	${ }^{608}$	AAAAETt
	70:	1tttttt	905	${ }^{\text {ttitt }}$
028007	${ }_{7}^{503}$	----.-.o.aA	${ }^{608}$	AAAAAAEt!
	${ }^{704}$	H1ttittt	80 s	AAAAAAAAA
028008	50.	---aAAAAAA	60 s	AAAAAAAAAA
	70:	AAAAAAAAAAA	803	AAAAAAAA ${ }^{\text {a }}$
028009	${ }^{503}$	-----.-ata	603	afamabaamb
	70.	atabamamaa	80s	alamamas
028010	30	----fFFCC	408	сссғсccecc
	50.	сcccfccecc	603	cccecccecc
	70.	ccccbanama	80:	anamasat
028011	503		${ }^{603}$	EebaAaAAAAA
	70.	examanasa	80 s	anababase
028012	503		60s	AAAAADAAAE
	70.	AAAAAAAAAAA	803	asamasabe
$\begin{aligned} & 028013 \\ & 028014 \end{aligned}$	70.	----ttttt	${ }^{\text {bos }}$	
	${ }^{608}$	b8abbcteaa	703	AAAAAAAEtt
028015	60	------eotta	70 s	
	80.	- $-\operatorname{AEEAAB}$		
028016	60:	-----oAAAA	708	AAAAAAAAET
	80*	tttilt		
028017	603	------ вasa	703	asaEAAEAEt
028018	${ }^{80}$	T11!		
	608	- $\quad$ AAAAAAAA	703	AAAEAAAAAA
	80:	aAAAAAAAE		
028019	603	$-G A A D$	70:	AAAEAAAAAA
028020	B0	anamabase		
	50	---- CCFCFF	603	bataAateg
	${ }^{70}$	anabasabas	${ }^{80}$	AAETti
028021	$\begin{aligned} & 60 \mathrm{n} \\ & \mathrm{BO} \end{aligned}$	$\begin{aligned} & ---\mid E A A E A \\ & ---\dagger \dagger t \dagger \end{aligned}$	70s	EeEEAAAAtt

Stn.
Stn. Gauged daily flows.
number
monthly peake

## 028022 028023 028024 028025 028028 028027 028029 028030 028031 028032 028033 028035 028036 028038 028039 028040 028041 028043 028044 028045 028046 028047 028048

70: $8 \triangle A A A A A A A A$
70. asAAAAAEtt

70s eaAAAAAAAA
70s asAAAAAAAA
70. asAAEAAAAA

703 AAAAAAETt
0s eefanameat
70z AEEAAAAAAA
703 ABAAAAAAAAA
70s AAAAAAEAAA
703 aaAAAAAAAA
80s tEAas
70s aaAEAETIt
70: aaAEAAEAAA
70s ageagainat
70. AAAAAAAAAA

703 geamalaman
70 s AAAAAAAAAAA
70.
70. asAAAAAAAA

O8 AAAAAAAAAA
B03 AAEEE $\dagger$
B0s AAABAAAA
O3 AAAAEtt
03s AAAAAETtA
Os AAAEtt
803 AAAAE $1!$
B0: AAEttIt

00s AAAAEtt1
70s aAAAAAAAAA
80 s AAAEE $\dagger \dagger 1$
80s AAAEE $\dagger \dagger 1$
80s AAAAE $\dagger 1$ Ae
80 s t $+\dagger t \dagger$
80s $\mathrm{OTt+1}$ Os AAABAEAAE
703 eneeresaas
80\% sase
BOs
aso
03 EAAEAAAAAAA
BOs AAAAEAAAB

40s CCCFCCCCCC B0s CCCCCCCCCCC
80 s AAAADDAAe
028086
028086
028097
028091
028093
028094
02809580

029001
029002
29003
029005
029009
030001
030002
030003
030004
030005
030006
030012
030013
030014
030015
030017
031001
031005 80s

70: AAAAAAAAAE
705 AAAAADAAAA
70s AAAAAAAAAA
703 AAAAAAAAAA
80: AAAAAAEA
803 AAAAAAAE
603 AAAAAAAAAA
80: AAAAAAAA
20: AAAAAAAAAA
10s AAAAAAAAAE
70. cccececcec

20s AEEAAAEA
80: DEBABBEE
80: AAAAAAAA
80s AAAAAAas
40: CCCCCf--..
60s babBbeama
80: BAAAAAaz
80: fcccecceco

Stn. number	Gauged daily flows. monthly peake and rainfall			
006	60.		70.	bababanama
	80	AAAAAAAA		
031007	${ }_{\text {803 }}^{603}$	AAAAAAAA	70.	ввCCCBCBAA
1010	${ }^{60}$		70	ababias
	${ }^{803}$	AaAAAAB		
	${ }_{80} 8$	EEEobef		
31016	${ }^{60}$		70.	ababaiaias
	80	asababal		
1021	70	oEAEEbbeat	803	AEEEEEEE
1023	70	--Ebabbbab	80	AAAAAAA
1025	702	$\cdots{ }_{\text {-----A }}$ A	80	EaAaAAAB
1026	$\begin{aligned} & 703 \\ & 803 \end{aligned}$	-tttttteA	803	AAAAAAAA
032001	30:		4	-babaacaab
	50:	ababamasab	80	ba
	70	baAABbccaa	80*	baAmada
032002	${ }^{30}$	OA	40	a ababababa
	${ }^{50}$	bababbaAab	60	asebabaAas
	${ }^{708}$	basamanaaa	${ }^{80}$	AAAAAA
032003	$30:$		408	AbbaABA
	50s	AaAaAbabab	60	braabeamaa
	${ }^{708}$	AAAAAAAADA	B0	AAAAAAAA
032004	602	bbabeeamab	70.	AAAAAAEAA
	803	AAAAAAAB		
032006	302		40.	
	503	ABAA	60:	bbbaadaAab
	${ }^{703}$	cccc	808	Cccecec
032007	308		405	alamabamba
	50a	AbaAbabas	60:	beanasbasb
	708	cccecceccc	808	
032008	40	AA	50	abaambabaa
	${ }^{80}$	bBBBEAEABA	70	afatamata
	BO	AAAAAAAA		
	70			
032031	BOz	Oef		
033001	${ }^{303}$	$-\mathrm{HCC}$		
	50:	ffcccecccc	${ }^{603}$	CCFTTITTt
	70	tttttttt	80	
033002	30:	---cccacis	408	188
	${ }^{50}$	сссссccccb	${ }^{608}$	basamata
	70s	BAAAAAAAA	808	basbabia
033003	30	${ }_{\text {fCCC }}$	${ }^{40}$	CCFCFCCCCC
	50:	baeabsabc	${ }^{6}$	basamama
	70.	вcccccocec	80	ccccciff
033004	308	---->+ +CCC	40	CCCCCCFFCC
	50:	cccccbabc	60	ccccecfec
	703	ccccfccecc	802	CFCCCF
3005	50.	- cbeccccec	60	baAasbBC
	70.	всввв8ввсв	${ }^{803}$	b8Bbabee
300	50:	------8BCC	${ }^{60}$	baAasaa
	70.	Ababbbabab	${ }^{\text {BOs }}$	AB8B88BB
033007	508	--- 8 BCCCCC	60	cceccabbab
	704	basamabas	808	aAbbaAaA
033008	503		603	cboasbbbt-
	70			
03300	503	BC	${ }^{608}$	BA
	703	babgaiaha	${ }^{803}$	
011	403		508	
	${ }^{803}$	oaAAAAAAEA	70.	batamanaia
	${ }^{80}$	BAAAAAAB		
033012	${ }^{60}$	amatasaE	70.	baialaatas
	${ }^{80}$	AA		
033013	40:		50.	硣
	${ }^{60}$		70.	AAAA
	B0.	AaAababa		
033014	${ }^{60}$	faAAAAAAA	70	AAAAAAAA
	${ }^{80}$	AAAAAAAA		
033015	${ }_{80}^{60}$	- AAAAAAA	70	AA
	${ }^{80}$	daamaaee		
03301	50			baA
	703	всссссccec	${ }^{808}$	CCCFF
033018	${ }^{604}$	--EAAAAEE	70.	asamanama
	${ }^{808}$	baAabbaa		
033019	503	tt	${ }^{60}$	ttaAaAasea
	70.	AbaAasama	$\mathrm{BO}^{3}$	AAAAAABA
033020	50.		${ }^{802}$	T-eatebeee
	${ }^{70}$	ElbibaAaAA	${ }^{\text {BOa }}$	anamaa
033021	602	--dAAAABB	70	baAasal
	803	basababba		
033022	50			ebeoeiAAAB
	${ }^{704}$	AAAAAAAAAAA	${ }_{70}^{88}$	AAAAAAABB
033023	${ }^{80}$	--saAAAAEA	70:	aABaAasama
	80	AAAAAABE		
033024	403		503	EEBC
	${ }^{603}$	ccceamaaa	703	AA
	${ }^{80}$	AAAAAAAA		
	${ }^{60}$	--feasaia	70.	AAEABCF
033027	703	tccccceccc	${ }^{80 .}$	ccceccft
	$60$ $80 \%$	ABBAAAAABE	703	beamamaata
033028	60:	-EAEE	70	abasamaan
	808	ABAAAABA		
3029	$\begin{aligned} & 60: \\ & 80 \mathrm{~s} \end{aligned}$	$\text { ----- } \triangle A A E A$   AAAABABA	703	abcaababaa
033030	50	------ff	602	ccct-- вasa
	${ }^{70}$	asbobsasaa	B0:	------t
$\begin{aligned} & 033031 \\ & 033032 \end{aligned}$	70:	-amabaabaa	B0\%	AAAAAAET
	${ }^{60}$	----EAAAA	70.	asalabaana
	${ }^{80}$	asamana		
033033	70*	---EAAAAAA	BO2	AAAAAAAB
033034	60\%	tEA	70:	asamasama
	803	AAAAAAAA		
033035	504	-	60:	cccccccc
	70:	cccceccitt	808	
033037	60:	-	70:	ABAAAAAAAA
	${ }^{808}$	AAAAABBE		
$\begin{aligned} & 033039 \\ & 033040 \end{aligned}$	708	--EAAADBAA	808	BA
	${ }^{60}$	-ffff	70:	CbaAasaiaa
	${ }^{80}$	AAAABRab		
$\begin{aligned} & 033044 \\ & 033045 \end{aligned}$	802		70.	ceabbaama
	803	ABAAAABB		
	$\begin{aligned} & 802 \\ & 803 \end{aligned}$	foc	70.	ccCAAAAAAA



Stn. number	Gauged daily flows. monthly peakz and rainfall			
037006	${ }_{605}^{60}$	--aAAAAAAA	70 s	afamatana
037007	808 608	AAAAAAAA		ababamabab
	80 s	AAAABAAA		amanamaka
037008	60 s	- ${ }^{\text {a }}$ A $A$ a	70 s	AAAAAAAAAA
	808	AAAAAAAA		
037009	603	- ${ }^{\text {a }}$ AAAAA $A$	20s	afacaanaa
	${ }^{80}{ }^{\text {8 }}$	AAAAAAAA		
037010	60s	--beabaama	70s	atanataAas
037011	${ }^{80} 80$	AAAAAAAA		
037011	60s 80 s	$\cdots-\theta A A A A A A$ AAAAAAAA	70s	anamaanaaa
037012	608	--ebaAAA	70s	anamaabaaa
	80s	a $A$ abbasa		
037013	60s	-aAasama	70s	AAAAAA
037014	${ }^{805}$	AAAABAAA		a
	80 s	AAAAAAAAA		asama
037015	70s	-------etE	80 s	Aas
037016	60s	-----EAAAA	708	AAAAAAAAA
	805	AAAAAAAA		
037017	60 s	---E	70s	AAAAA
	80s	AAAAAAAA		
	70s	EAAAAAAAAAA	80 s	abababaag
037019	60s	--EAAAE	70s	atadaabeea
	803	AAAAAAAA		
037020	608	--------'	70s	EaAamanaia
037021	60 s	AAAABAA	70s	easama
	$\mathrm{BO}_{3}$	aAababae		
037022	60s		70s	AAAA
	${ }^{80} 3$	AAAAB		
037023	70s	- EAAAAAAAAA	${ }^{805}$	AAEtt
-037025	70s 60 s	-eamanamaa		AAABE
037025	${ }_{\text {80s }}^{600}$	-----CBAAE	705	EEEE 1
037028	60s	-ebanabasa	70s	asasaoe
037027	$6^{65}$	feenobses	70 s	$\cdots$
037028	60s	toesobbs3s	70 s	a00500e
037029	${ }^{608}$	ceasabceasa	${ }_{7}^{708}$	basase
037030	60s	--EEEbBAAB	70s	
037031	70s	-----e8A	80 s	atabaame
037033	70s	----oAAAA	803	AAA
037034	708	--teeasa	${ }^{80}$	agedaesa
037036	705	-bbasasasa	80 s	nsas
037037	80s	- ebobeek		
037038	$\begin{aligned} & 50 \mathrm{~s} \\ & 70 \mathrm{~s} \end{aligned}$	$\begin{aligned} & \text { - essose--85 } \\ & \text { abbies } \end{aligned}$	60s	beaebabcob
037039	70s	---feabbeE	808	EEE
038001	30s	------ICCC		cccccccccc
	505	ccccccccec	608	$\operatorname{cccccaabab}$
	70s	baAABCFIEA	B0s	afacababe
038002	${ }^{803}$	езasaasbe		
038003	50s	--eataAAAAA	60s	AAA
	${ }^{70 s}$	AAAAAAAAAA	BOs	AAAAAAAAG
038004	${ }^{705}$		${ }^{80} 8$	afacaab
03800	30s	------ttt	40	tttit
	50s	1t+11-----	60s	eataabab
	${ }^{708}$	AAAAAAAAAE	80s	EE1tt
038006	508	HCCC	60s	cbatamaba
	70s	aAAABAAAAA	80s	EEE
038007	605	--EAAAA	70s	afabasead
	${ }^{805}$	AAAAAAAAB		
038011	${ }^{508}$	-----ACC	${ }^{60}$ s	сссссвввв
	${ }^{705}$	babbbabaaa	${ }^{805}$	AAAAEt
038012	50s		60 s	tittit
	70s	titreataha	$\mathrm{BO}_{3}$	alamakag
038013	${ }^{305}$	ttit	405	tittititt
	50s		$60_{68}$	eaabbbos
	703	assassbasa	805	AAAAABane
038014	50s		60s	cccccceccc
	70s	ccccccbaaa	80s	eatamamag
38015	605		70s	afacbanama
	${ }^{80}$	Ate		
038016	${ }^{605}$		708	ссвb8cccba
	BOs	AABCCCcf		
038017	703	ebabaianaia	${ }^{80} 8$	asaanadae
038018	703	-aAAAABAAA	80s	abababas
038020	70s	- EAAAAAAAAA	80s	ateEatida
038021	70 s	-eAAAAAAAAA	80s	AAAAAAAA
038022	70s	-fcccaaba	803	afacasama
038023	${ }^{80}$	aedoasose		
038024	70 s	---EAAAAAA	808	AAAAAA
${ }_{0}^{038028}$	70s	----EAAAAA	B0s	afasabaia
${ }_{0} 038027$	${ }^{80}{ }^{\text {8 }}$	-----edses		
${ }^{038028}$	70s	------8EAA	80 s	AAAAAAAAa
038029	70s	--------t $A$	bos	afacaidag
038030	70s	-----*	bos	AAAAAAAAa
039001		---ccccccc		ccccccccec
	005	cccececcec	10 s	ccceccccce
	208	сссссссссс	303	сссссссссс
	403	сссссссссс	50 s	ccceccecce
	603	сссссссссс	70s	cccc
	80 s	bBAAAAAA		
039002	30s	-------tC	403	сссссcccec
	50s	сссcccecce	60 s	cceccecece
	70 s	сccceccecc	80 s	ccccecccr
039003	60s	--aAAEEEEE	70s	eEEAEEEEDA
	80s	AABAAABar		
039004	30s	------eEEA	40s	AAEtteeest
	50s	Itteamama	60 s	ataAEAEEEE
	70s	teeageafte	$\mathrm{BO}_{3}$	eeesababe
039005	30 s	-----eaAEt	40s	trittitt
	50s	ttteeasaa	60 s	eeaeeeeeee
	705	efeameeeea	805	aEEBBDAA
039006	50s	ofatamalam	60s	abababasal
	70s	asamanama	80s	afababame
039007	50 s		60 s	AaAAAAAAAA
	70s	AAAAAAAAAA	80 s	AaAAAAAAB
039008	50 s	- ¢ссccecce	60s	ccccccecce
	70s	сccccccecc	808	cccceccat
039010	50s	--babamaab	60 s	AAAAAAAAAA
	70s	AAAAAAAAAA	bos	AAAAAADAB
039014	$\begin{aligned} & 50 \mathrm{~s} \\ & 70 \mathrm{~s} \end{aligned}$	$\qquad$ -AAAAA AAAAAAAAAA	${ }^{605}$	AAAAAAAAAA AAAAAAAAE


Stn, number	Gauged dally nowe, monthly peake end raintall			
012	50.	------EAAA	603	amamana
	70,	alabanama	803	ateeeate
039013	30.	---raAaAa	40:	AAAAAAAAAA
	50.	AAAAAAAAAA	603	AAAAAAAAAA
	70	anamanamea	808	anamanama
039014	50.	-AAA	603	afamanama
	704	ataatanama	${ }^{803}$	AAAAAAD
039016	60.	- a a AaAAAAA	70:	alamanama
	803	AAAAAAAA.		
039017	${ }_{80}^{60}$	-- $A B A A B B C$ CCFCCFtE	70:	cccccccc
019	${ }^{80}$	CCFCCFTE		asamanama
039020	80.	AAAAAAAAa		
	80		70.	afacamana
	80.	AAAAAAAA		
9021	${ }^{60}$	-EAAA	0:	atabalama
	808	anamaama		
039023	$600$	- $-=-\infty A A A$ AAAAAAAAE	70:	asabasamas
	60	----aAAAAA	703	asamaana
	80	AAAAAAAA		
039028	${ }^{60}$	-------aAA	70:	anamaabaab
	${ }^{60}$	AAAAAAABE		
039027	80	AAAAAAAE	\%	anamazaza
	60		70:	AAAA
	80	AAAAAAAA		
039028	608	---EA	702	a anamaana
29	808 608		703	anaiaiamaa
	80	AAAAAAAB		
039031	70	eatabamaat	80a	aAAAADaB
	$60$	- $\quad$ AAAAAAAA   AAAETI!	70,	anamabasaa
039032	60	------ $A$	703	anamanama
	80	AAAETIIt		
039033	60,	--baAaAaAa	O2	AAAAAAAAAA
	80:	AAAAAAAA		
$\begin{aligned} & 039034 \\ & 039035 \end{aligned}$	70.	- $A$ abasama	B0.	asab
	${ }^{6}$		70:	AAAAAAA
	80	AAAAAAase		
90	${ }^{6}$		O3	anamanama
	${ }^{803}$	anaAaEDas		
$\begin{aligned} & 039037 \\ & 039038 \end{aligned}$	703	-teasalaaa		
	${ }^{603}$	A	701	a AaAAAA
039040		-teana		atana
$\begin{aligned} & 039042 \\ & 039043 \end{aligned}$	70	--EAAAAAAA	90,	AAAAAAA
	80	--afamaba	70.	AAAAAAA
	B0:	$\triangle A A A A A A A B$		
	700	--sAAAAAA	${ }^{804}$	afatasato
	70	---ateeEEA	803	EttIED
039049 039051	70	---EEETtie	${ }^{80}$	datieatas
	${ }^{60}$	------EAA	70.	asababasaa
	80:	AAEAAA		
039052	50	-------aAA		EdaAAAAAAA
	70	sosaose	803	aAAAAAAA
03905	802	- $A$ alamana	70.	asamanaias
	${ }^{80}$	AAAAAAAAA		
039054	${ }^{807}$	-sabaAasaa	70.	alaasala
	803	Aababama		
039085039058039058	703			EEEAAEEAe
	${ }^{70}$		808	00508
${ }_{039058}^{039058}$	70.	-------*	803	dizanasoas
	70,		803	dienacesa
-039061	70	-	808	veca
	70	08asoso--	808	sbeabbata
	70.	- 4 AAAEETEA		AAAAAAAB
O3900	702	--eAEtEAAA	80s	AAAAAAAA,
039071	70.		80	000000000
	70		80	bddoeddee
339072	70		80.	assasaAA
$\begin{aligned} & 039074 \\ & 039075 \end{aligned}$	80	anasazAA		
	${ }^{\text {BO }}$	sasaoa $A$ D		
339078	70,		80.	easa
939077	${ }^{80}$	sasa		
	${ }^{70}$		${ }^{80}$	sasocsaA
O39078	70	----	803	Hededdat
039081	$803$ $80$	-- $\quad$ AAAAAAA   AAAasaAA	70.	atanamateo
039095	30			
	50	-..- $\sin A A A A$	60.	
039086	70.	--aAAAA	80:	atabanasa
	70	----dAAAA	808	bababaias
$\begin{aligned} & 039088 \\ & 039089 \end{aligned}$	70.	---aAbasa	803	AAAABBAA
	702	-asa	80	caoceadse
339090	${ }^{\text {Bos }}$			
33909139092	70.	-----	80\%	sa
	B0:	$00-$		
039093	${ }^{80}$	se		
${ }^{0393994}$	70:		B0:	bsa
	80.	80		
239096	80			
039097	80,	reeceecct		
039098	803	----edden		
039099	80.	--- вое208		
039100	80	----oedd		
$039101$	80.	- -asaa $A A_{0}$		
	80.	dad		
040001	50.	---EAAAAAA		ataAaba
040002	70.	tittilt	803	tr---t1
	50.	------AAA	60:	atanamatea
	70.	bbasao-til	80	tt---tt
040003	50:	--sAAA	60:	AAAAABEEFF
	70.	FFCFCCCCCC	${ }^{80}$	bbbatacc
040004	60.	--ataAaEeb	70s	a a amaeanae
	80.	AAAAADAA		
040005	50:		${ }^{60}$	atamatabig
	70	ataeamanae	802	AAAAADDA
040006	${ }^{503}$		602	AAAAAAABBB
	70.	Aabeamaek	B02	EEETITE
040007	${ }^{603}$	ofacameena	70.	AA
	${ }^{80}$	EEEEEBAA		
040008   040009	80.	--eEAAAABA	70.	afabeeanee
	80	ADODDDD		
	$\begin{aligned} & 803 \\ & 803 \end{aligned}$	AAAAAAAA	70	asamabiana

Stn. Gauged dally flowe
040010
040011
040011
040013


Stn. number 043
043
043
043
04

Gauged dalty flows.

047003
047004

## 047005

047006
047007
047008
047009
04701
047013
04701
047014
047015
047016
047017
048001
048002
048003
048004
048005
04800

048007
048010
049001
049002
049003
049004

050001

050004
050005
050007
051001
051002

052001

O3 Etttt!t!
O. AEEttItIEA

70s EEttIEAAAE 70. AAEEAAAAAA 20 $A A A A A A A A A A$ 70. AAAAAAAAAB

80s. AAAAETAA O. AF-CMAAAAA
80. HffecC
60. AAAAEAAEEE 60. AAAAEAAEEE
80s AAAAAAAA AAABABFccc 70: CAAABAAAAAAAE 70: AAAAAAAAAAA 70s AAAAAAAAAA 70: AAAAAAAAAA 80s Attitt: A AAAAAAAA s AAAAAAAAAA = tittittteA Os CBEEEAAADA O2 $A A A A A A A A A A$
60. AAAAAAAAAA

70s : :1t1!tift
80s cececcaC


80: coctcecF
70s AAAAAAAAAA
BO3 - - -- -AAA
70 s bbbaabfec

043014 80s AEBEtt! $\begin{aligned} & \text { B0s } \\ & \text { B0s }\end{aligned}$ 70s TEAAAAAAAAA

043015808
------t:t
703 TFFFFFFIt

Stn. number	Gauged daily flows. monthly peaks and ralnfall				Stn. number	Gauged daily flows. monthly peaks and ralnfall				mber	Gauged daily flows. monthly peaks and rainfall			
2002	50	AAB	60s	8	054038	70s	--teabasaa	$\mathrm{BO}_{5}$	AAAAEAAAE	056002	50s	-------AA	60s	atabamatae
	703					70s	FABAA	B6s			70 s	AAEtta	S	
2003	608	-ebasamana	70s	AAAAAAAAA	054041	70	--fcccaama	80s	AA	5600	60 s	aAAAAA	70:	asamababas
	803	aeabamab			054042	70s	teamaseett				80s	AA:---tt		
052004	60	- ${ }^{\text {a }}$ AAAAAA	os	AAA	0540	503	ccec	${ }^{60}$	cccot	50	60s		70.	anamadata
	808	AAAAAAAAA				705	Ft-----tit	${ }^{803}$			80 s	Ett--- ${ }^{\text {H }}$		
052005	60s	- eamanamaa	70s	AAAAAAAA	054044	70s	AAAAAA	803	AAAAAAAA	0560	60s	TE	70s	asadasamaa
	${ }^{80} 5$	AAAAAAAAB			0540	70 s	--taAAAA				305	AAAAAAAA		
052006	60 s	---AAAAAAA	70s	a amanamaa	0540	70s	¢ааз	803	aAAAE $\dagger$	600	${ }^{60}$	-AAAAAA,	70	ataA
	803	AAAAAAAA			0540	70s	--fbae	808	$-\mathrm{ttrit}$		80 s	AAttit		
052007	603	-aAAA	70s	abaambaasa	0540	70s	-eAA	808	AAAAEt	056	60s		70.	easamanaia
	803	AaAAAAAA			054049	70		80	азasas AA		${ }^{\text {B0s }}$	AAAAAAAA		
052008	60:	e8B8abaAEt	${ }^{703}$	ttt-titti	054052	70s	todata	80\%	asaattte	056008	708	ebaAAEEtit	${ }^{803}$	
052009	60:	- $A$ AAA	70s	afasamana	0540	70s	--EAAA	$\mathrm{BO}_{3}$		0560	60s		70:	авеевевөа
	${ }^{80} 8$	AbbaAEEAe			0540	70 s	¢5EE	805			${ }^{\text {B0s }}$	A		
052010	608	---eataba	70s	anababa	0540	70s	--EEEEE			056011	70s	ebsaAAAAA	80.	AAt---tt
	80s	AAAAAAAAe			0540	70s	-fcccb	803	massas $A$ A	05	70s	-aAAAAAA	80	
052011	${ }^{601}$	atama	70s	AABAAAAAAA	0540	708	sabb			056013	${ }^{70}$	--gAAAAAAA	808	AaAAAAAA
	803	AAAADADAe			05405	${ }^{70}$	-	803		056014	70s			
05201	${ }^{603}$	-----tea	Os	bAAAEEEEE	0540	70s	--bbe	803	-fcid	056015	70s	EAA	808	Aatt--:
	80s	+EEaasEAe			05406	70 s	--8basbe							вaabaaas
052015	70 s	-eatasaas	80s	----8899	05406	70 s	--EAEEBEA	80 s	AA					
	70	teasasama	80 s	AAAAbaAA	0540	70s	-- вababaee	80 s	asae					
052020	708	EEETTT	${ }^{808}$	-88as	0540	70	---EAABEAE	808	------t!		${ }^{505}$	--eaAABAAA	$60:$	${ }^{\text {ABbe }}$
	803	fect	70s	ffifeasaat	05	70	---EbebaAa	805	AAAATt!		70s	asabtitt:	803	
	802					705	----bbbae			05	30 s	-өasasas AA	403	AAAAAEA
					054	70	----ees				50s	amdoambaa	603	AAAAAAA
053001	503	atama		A	05	70 s	硅				${ }^{\text {70s }}$	ABAAttitt	${ }_{708}$	
	70	AAAAAAAAA		Et	05	70	-өabaas	${ }^{808}$	asa		60	-eAAA	70s	
053002	50:	--bAAAAAA	60s	AAAAAAAA	0540	70s	-fed	BOs	aวae		BOs	ttttyt		
	${ }^{708}$	AAAAAAAAAA	${ }^{808}$	$A A A_{8 a s} A A^{\prime}$	0540	705	-EBA	${ }^{805}$	AAAAAA	0570	50 s	------eAA	60.	aekanamana
053003	308		4 ds	fcctbobe-	0540	${ }^{708}$		808	taas--ti		70 s	AaAAAAAA	803	AAAAAAAA
	50 s	dbabaabasa	60 s	AAAAAAAA	0540	70s	-a	808	ааза--:	0570	70s	eafacamana	803	anamama
	708	tttittt	80 s	t1---- $\dagger 1$	05	70		${ }^{8085}$	asa	0570	${ }^{70}$	eadasamana	${ }^{80}$	EtifaAAA
053	50s	-------EA	60s	AAAAAAAA	05	708		${ }^{80} 8$	bøą-	0570	70 s	-teamaana	${ }^{803}$	anamaaba
	708	afamamana	808	AAAAAAAA	054	70 s	BA	803	азев--1	057008	${ }^{7} \mathbf{0}$	--taAAAAAA	Bos	afabamas
053005	${ }^{603}$	- EAAAAAAAA	70s	AAAAAAA	0540	${ }^{708}$	-------ө	${ }^{808}$	азазая $A$	057009	${ }^{708}$	--aAaA	${ }^{80}$	AAAAAAAA
	${ }^{\text {BOs }}$	AAAAAAAAB			05	705	---edaddaa	808	zasae-t1	057010	${ }^{70}$	---bAAAAA	${ }^{\text {B08 }}$	easamasa
053006	603	-eatamanaa	70s	AAAA	${ }^{054091}$	${ }^{70}$	---ADAA	Bos	AAAae	057011	70s	-83e	B0:	
	${ }^{\text {BO\% }}$	AAAAAAAAa			054092	70 \%	-- ${ }^{\text {DAAAAAA }}$	${ }^{808}$	AAAJe-	057012	${ }^{705}$	-8a	${ }^{808}$	
053007	603	- $\quad$ abamama	Os	AAAAAAAAA	054094	BOs	--			057015	70s		803	Abaccc
	80:	AAAAAAAAB			0540	80 s	esees			057018	70s		80s	afacaiaa
053008	${ }_{80 \mathrm{~s}}^{60}$	----AAAAAA	s	anatanama										asamata
053009	$\begin{aligned} & 80 s \\ & 60: \end{aligned}$	AAAAAAAAA	70s	asamanama	0550	$\begin{aligned} & 30 \mathrm{~s} \\ & 50 \mathrm{~s} \end{aligned}$		$\begin{aligned} & 40 \mathrm{~s} \\ & 60_{8} \end{aligned}$		80	$\begin{aligned} & 60 \mathrm{~s} \\ & \mathrm{BO} \end{aligned}$	---eAAAAAAA	703	asamatas
	${ }_{80}$	AAAAAAAD				70 s	cccbana ${ }^{\text {a }}$	80 s	AaAccca	05800	70 s	--aageb	${ }_{80}$	EAADAAAA
053013	${ }^{70}$	ababasama		asamaname	500	30 s		405	AAAAAAAAA	058003	60s	--aAAEtit:	702	
$\begin{aligned} & 053017 \\ & 053018 \end{aligned}$	70	-eamasaa	${ }^{\text {bos }}$	AAAAAAAA		50s	AaAAAAAAA	60s	AAAAAAAAA		80 s			
	60s		70 s	afacaamaa		70s	anambaama	$\mathrm{BO}_{5}$	AEt	0580	70s	oasamanama	803	AAADFADB
	808	aAaAasame			055004	305	-eAA	40s	Aasamana	0580	70s	-EaAamanaa	80 s	EAAAAAAA
053019	60 s		70s	азаазавзая		50s	anamanama	60s	asaeamaad		70s	eramamama	808	easamasa
	${ }^{80}$	AAAAasaae	70s	saasabbasa	05500	708	AAAAAAAAAA	${ }^{80}$	EEFFtttt	058008	${ }^{70}$	-EAAAAAAA	${ }^{803}$	EDADADAC
053020	${ }^{60}$					30 s		408	AAAAAAA	058009	708	-eataanaa	808	AAADAA
	808	AAAasazae				50 s	AAAAAAAAA	60s	AaAeAAAA	05	70 s		80	ofti--tt
053022	${ }^{708}$	-----AA	${ }^{808}$	AAAAEItt		${ }^{705}$	-tto	${ }^{808}$	-ccoscct	058011	70 s 80 s	$\cdots-\cdots e a A A$	808	atamat
3023	70	------ $A$	B0s	${ }_{\text {AAAAAAAA }}$		-00s	cccocccocc	108 308	cccccccccc $\operatorname{cccccba~}$	058012	80s			
053025	80s	AAAAAAAAO				40 s	AAAAAAAAAA	508	AAAAAAAAAA	059001	50s	--bEA	603	asabaiaas
053026	708	-AA	80s	AAA		60 s	AAAAAAAAA	70	AAAAAAABCC			aEAEEAAAAA	803	dasamama
053028	803	masaAAe				${ }^{80}$	aCCFCt			059002	60s	FFE	703	aAbsbBAaA
053029	803	-a3a			550	305	------aA	40s	AAAAAAAAA		80s	AAAAAAAA		
						50s	AAAAAAAAAAA		AAAEAAAAAA					
054001	208	-	${ }^{30}$	ccccc		708	cceccccccc	808	caacccas	080002	60 s	- $\operatorname{eapaAa}$	70s	batamataee
	${ }^{408}$	сссссссссс	508	ссссессесс	5500	50s	-ataAAEEaA	60s	AAAEAAAEE		80 s	EAADAAAD		
	${ }^{608}$	сcccceccec	s	CCAAAABAAA		708	AAAAADAAAA	${ }^{808}$	AAAAAAAA	0600	60	-----EAAAA	70s	aemaaiaiaa
	80.	amacamas			055009	40s		50s	AAAAAAAAA		80 s	AAAAAADA		
054002	$\begin{aligned} & 302 \\ & 508 \end{aligned}$	$-\overline{\text { ccccaiAAAA }}$	$\begin{aligned} & 40 \mathrm{~s} \\ & 60 \mathrm{~s} \end{aligned}$	AAAAAAAABC AAAAAAAAAA		$\begin{aligned} & 60 \mathrm{~s} \\ & 80 \mathrm{~s} \end{aligned}$	AaAEAAAAAA	70s	AAEtt	06000	$605$	$\text { AAt--- } \ddagger 1$	70s	easamata
	703	bcrabababa	${ }^{80}$	AAAAAAAA ${ }^{\text {e }}$	550	50 s	-----bAAA	603	Aatea	00	605		70.	AA
054004	50	--fcbasasa	605	asamamasa		70s	anamamaeas	803	Effitti		80s	AAAAAAAA		
	${ }^{708}$	beeebaala	${ }^{80}$	AAAABAAAe	055091	50s		${ }^{608}$	AAAAAAA	060006	${ }^{605}$	-------FB	70s	bbbabataaa
005	50a	--fcbaAAA	${ }^{605}$	AAAAAAAAA		${ }^{70}$	AAAAAABAA	808	DBFititi			AAAAAAAA		
	702	AbBAAABAAA	${ }_{605}^{808}$	AAAAAAAAE	0550	${ }_{80}^{605}$	-----iAAA	708	aAaAAAAEEA	6000	${ }_{805}^{805}$	--MAAMA- ${ }^{\text {a }}$	70:	atama
05400	$\xrightarrow{703}$	--fbatanaba	60s 80 s		13	${ }_{\text {cos }}^{\text {gos }}$	AAAAAAAA	70s	AaAAAAAAAA	600	${ }_{80 \mathrm{~s}}^{88}$	aAAAAAAA		
054007	50 s	------aA	608	afaAamasa		80 s	Aatanama				70s	FCCCCFFtit	80s	1 ttri
	${ }^{708}$	bceebbbaat	${ }^{805}$	AAAAETHA	055014	${ }^{605}$	-----raA	Os	AAA	00	${ }^{50 \mathrm{~s}}$	-----8B	608	AAAAAAAAAA
	${ }^{508}$	CCAAAAAAAA	60s	AA		${ }_{60 \text { 80 }}$	AAAAAAAA	Os	anababaies		705	AaAAABaso-	808	
054010	50		60s	${ }_{\text {AAAAAAAA }}$		80s	EADtttt		anaba	00	70s	-EBCCCFtt	803	
	70:	bcbasabadd	${ }^{80}$	AADEItt:	055016	60s	---8A	70s	eaeamaaba					
054011	608	-aAAAAAAAE	70s	ccbabbab		${ }^{805}$	AAAAAAAA			061001	${ }^{605}$	-----0A	70.	EAAEtittt
	${ }^{808}$	AAAAEttt	70 s		05501	${ }^{603}$	-------- ${ }^{\text {A }}$	708	baAEEAAAA		${ }^{\text {B0s }}$	trititit		
054012	${ }_{80 \mathrm{~s}}$	AAAAAAAAAB			18	60 s	--------AA	\%	amatanama		Bos	AAAAAFAE		
054013	50s			afaadata		805	AAAAAAAA			06100	${ }^{605}$		70	EaAAAAAAA
	${ }_{60} 6$	abababsabe	${ }_{708}^{808}$	1117-1t	055021	${ }^{605}$	AaEI	30.	AAA		${ }_{605}^{\text {Bos }}$	AAAAA		
054014	${ }_{80}^{60}$	AAAAAAAAE		bacahamata	05502	${ }^{60}$	AaErada	103	asaabaamat	061004	${ }^{\text {bos }}$	sactAE	Tos	
054015	608		70s	EEEEEEAAAA		${ }^{\text {Bos }}$	tffitit							
	808	AsAAttt			05502	30 s	-----fBAA	408	Aabasamana	200	50 s	---E-E		
054016	${ }^{603}$	-eAAAAAAAA	70s	baamanama		${ }^{508}$	AAAAAAAAA	${ }^{608}$	AAAAAAAAA		${ }^{70}$	EAAAAAAAAA	${ }^{80} 8$	AAAAAAAA
	${ }^{808}$	AAAAAAAAA				${ }^{708}$	cccccccccc	$\mathrm{BO}_{3}$	Casamaa	062002	70s	-seaAameaf	803	+1
054017	${ }^{60}$	--aAAAAAAA	70s	b8aAaAAAAA	502	60s	------ttrt	703	AAAAAAA					
	808	AAAA:t				$\mathrm{BO}_{3}$	AAAAAAAA			06300	60 s	---eaAaAaA	703	afasabasaa
054018	60:	- $\quad$ AAAAAA	70s	AAAAAAAAEA	5502	30s	------eBA	408	AAAAAAAAAA		${ }_{605}^{808}$	EAAAAAAA		
	$80 \mathrm{~s}$	AAAAEttAa				50s	anamanamaa	60s	AAAEAAAAAA	08300	60 s	----aAEAA	70s	AAAAAAAA
054019	608	--gataAaAa	70s	a		70s	asamanama	B0s	AAAAAAAA		80s	AAAAOt		
	${ }^{808}$	AaAaAAAAg			055027	70s	-aAAAAAAEt	808	tto---1t	083003	70s	eeagatatam	80 s	tt----tt
054020.	${ }^{60}$	--aAAAAAB	70s	AAAAAAAAAA	055028	70s	-atamamate	${ }^{80} 3$	Adataaca	06300	BOs	t		
	${ }^{808}$	AAAAAAAAO			055029	405		${ }^{503}$	AAAAAAAAAAA					
054022	$\begin{aligned} & 50 \mathrm{~s} \\ & 70 \mathrm{~s} \end{aligned}$	---هAEAAEt aEAAADAEAA	$\begin{aligned} & 60 \mathrm{~s} \\ & 80 \mathrm{~s} \end{aligned}$	tittitten AAAAAAAA		$\begin{aligned} & 60 \mathrm{~s} \\ & 80 \mathrm{~s} \end{aligned}$	AAAEAAAAAA EAAAADAA	70.	asamasamas	064001	$\begin{aligned} & 60 \mathrm{~s} \\ & 80 \mathrm{~s} \end{aligned}$	--EAAAAEAA tDAAAAAA	703	AEttetitt
054023	609	-------*A	70s	bbaetrbasa	55030	205	--	308	coccccocto	4002	60s	----tamea	70	eedddodaa
	${ }^{80} 8$	AaAATt				40 s	cecceccecc	508			BOs	ababasaa		
054024	602	11tmitte	s	afacaamaad		${ }^{60}$		70:	---tttt	06400	60s	fccrececec	70.	babaama
	808	AAAAAAase			055031	70s	-tieatasaa	805	afanama		BOs	afasama		
054025	602		70s	abaaamaaaa	32	005	~------cc	10:	cccccceccc					
	803	AADAAAAA				20 s	cccccceccc	30s	cccccbaaaa	065001	60s	-taAbaABAE	70	EEEEAAAAAD
054028	603		70s	teaaeaaaaa		405	anamatana	508	AAAAAAAAAAA		${ }^{\text {B0 }}$	atabamaa		
	${ }^{80}$	aseattt				60 s	AAAAAAAAAA	70s	aAaAaAabce	065002	60s		\% 3	eEEEETEEt
054	60s		70s	aAAAAAAAAA		803	casamasd			065004	70s	eEEEAAAAAA	808	AAAAAAAA
	808	AAAAETH:			555033	60s		70:	dasd	06500	70s	-tamabasa	80:	AAAAAAAA
054028	603		70s	fbraanaiaa		80 s	abase-:1			065008	${ }^{70}$	------aAAA	${ }^{808}$	AAAAAAAA
	803	AAAAAAaso			34	70s	---	80s	өasae-:1	06500	70 s	----teaAAA	805	asamana
054029	70	framasama	80s	AAAAAAAAE	055035	70 s	---eadazaa	80 s	өаая--tt					
054032	708	flianamana	808	AAAAAAAAE		50 s		60.	a $A, A A A B A A B$	066001	$50 \mathrm{~s}$ $70 \mathrm{~s}$	AAAAAAACCF	60s	AAAAAAAAAA Cttttttt
054036	70	- teamana	80 s	AAAAEtt		70s	AAAAAABAA	803	AAAAAAAAA					


Stn． number	Gauged daily flows． monthly peake and ralnfall				Stn． number	Gauged daily flows． monthly peaka and rainfall				Stn． number	Gauged daily flows， monthly peaks and rainfall			
086002	${ }^{60}$	－sabaamaac	20．	babaettit	071004	603	－－－ebaAasa	70s	AEttaEAAAB	078008		esaAAa		
	80	－－－－－tit				${ }^{80}$	AAAAAAAA							
066003	${ }_{80}^{608}$	－－－eAETEAT   AADttta	70．	ttteeeeee	071005	$60_{3}$	－AAAAAAAAA	108	Aabdet－tit	079001	$60 \mathrm{~s}$	－ttttebref	70s	FCCCFCCce
066004	70	a $A$ AAAAAIT，	B0s	tt－	071008 ．	． 803	$\cdots$	70s	CFCCAAFAAA：－	079002	80s	ct－－－－－eAA	60 s	afanamana
006005	70．	－EAEAAATIt	${ }^{803}$			${ }^{803}$	daAasa				703	AAAAAAAAAA	80 s	AAAAAAAAE
086006	70	－－－eabaaba	80.	AAAAAAAA	071007	${ }_{803}$				079003	508		60 s	AAAAAAAAAA
086011	70.	$--\mathrm{asa}$	${ }^{808}$	bbasedAA	071009	${ }^{704}$	－－－－－－－AEt	803	tasabasa		${ }^{703}$	AAAAAAAAAAA	80 s	AAAAAAAAe
	${ }^{60}$	－－－－eEEEEA	${ }^{2} 8$	AaEAAAAAAA	071009	${ }^{80}$				07900	60s	－tifcbaama	70s	a $A$ amamana
	80.	AAAAAAAA			071010	${ }^{70}$	－feccefat	803	taAabab：		${ }^{803}$	alamanabe		
007001					071011	603	FFC	708	CCFFitteas	079005	${ }^{60}{ }^{\text {s }}$	－tteamana	70s	ataramasaa
	${ }^{50 .}$	ABAAAAAAAA		AAAAAAAAA			EAAA				80	AAAAAAAA		
067002	30.	abananata	${ }^{804}$	AAACCCoa	071013	$88$	－800e	80		079006	${ }^{603}$	－ttrtiteas	70	AAAAAAAAAA
	50	AAAAAAAAAA	60.	AAAAAAAAAA				80：	－88809		808	anamaname		
	70	Allit－ilt			07200	508			ccccccce	8800	603	－tieama	Os	
067003	20.	－－aAAAAAAA	303	AAAAAAAAAA		${ }^{70 .}$	CAAAAABT：${ }^{\circ}$	80	－19		803	alamana ${ }^{\text {e }}$		
	${ }^{400}$	AAAAAAAAAAA	${ }^{504}$	AAAAAAAAAA	072002	${ }^{60}$	－－－saAAAAA	70s	aAabccaame		703		80s	AAA
	${ }^{604}$	asabbaacaa	70，	ambaabcaaa		80	AAAAAAAA			080	803	соззаа $A$ Be		
	800．	AAATFAAA		amabaacama	072004	${ }^{504}$		60\％	ccccccccbe	080004	803	－－easbt		
067005	70	AAAAAAATI＇	${ }_{80}$	t 1	072005	60		20	CCCCCCCFAA		80	－－－8aat		
067008	60：	－$A$ asamana	70．	basaama		803	taAAAADA		cccccra			＊as		
087008	${ }^{80}$	AAAAAAAA			072006	603	－－－－－－－－11	702	tttittrt	081001	603	ebi	70s	
	${ }^{803}$	－－EbAAA	70．	asamaamaa		${ }^{80}$	1tt－－${ }^{\text {a }}$			81002	603	－tteataias	70s	AAAAAAAAA
067009	${ }_{803}^{803}$	AAAAAAAA			072007	${ }_{80}^{803}$	：A：				${ }^{808}$	AAAAAAAAB		
	603 803	$\begin{aligned} & \text { BIODDODEB } \end{aligned}$	70．	bebeebebat	072008	$\begin{aligned} & 602 \\ & 80 \end{aligned}$	AAAAAAEE	703	eabcccaana	081003	$80 \mathrm{~s}$ $\mathrm{BOs}$	－ItItitaAA	703	asabaanaat
67010	80	－－easa	70．	abasatil：	072009	702	t！tittt	803	tababaa	0810	${ }^{70}$	－	BOs	ababamate
	${ }^{80}$	t－－－－11			072011	${ }^{80}$		70，	：－－－－－EEA	081005	${ }^{80}$	－－－－－еазe		
087011	${ }^{603}$		70.	ceftccceth		${ }^{80}$	toateata			081006	$\mathrm{BO}_{3}$	－－－－－－ese		
$\begin{aligned} & 067012 \\ & 087013 \end{aligned}$	603	－－－－－－－EEt	70	t1！tit－t！	072018	${ }_{80}$								
	60	－－－－－EDE	70	AAAAAast！						082001	$\begin{aligned} & 60 \mathrm{~s} \\ & \mathrm{BO} \end{aligned}$	－：IEAAAAAA	70 s	ababamama
	${ }^{803}$	－1t			073001	70：	Icceccft－－	${ }^{80} 8$		082002	70s	－－－teasaba	808	a $A$ AAA
087015	303 503	AAAAAAAAAA	${ }_{608}^{408}$	AAAAAAAAAAA	073002	${ }^{602}$	－－－EAAAADA	70\％	begcaAAAAA	082003	70s	－－－AAAEEAA	80 s	ababamame
		AAAAAAAAAA	80	AAAAAAAA		${ }^{808}$	AAAAAAAA							
087	60		703	amamama	${ }_{0} 73005$	${ }_{603}^{803}$		70.	bababacana	08300	603	－ttit	70 s	－ffFFFFtff
	80：	\＃				${ }^{80}$	AAAAAAAA			083002	60 s	－－－eaAAAas	70s	AAAAAAAO－
087017	608	－－－－－－－t8	703	afaAaAasaa	73008	${ }^{60}$		70s	afeiamatit		803	－$\dagger$		
087018	${ }_{60}^{80}$	AAAAAAGA	708	AAAAAAAAAA		${ }^{803}$	IAAAAAAA			08300	60：	－rıititit	70s	easaanama
	80：	AAAAAAAA	70	anamakama	073009 073010	$\begin{aligned} & 708 \\ & 308 \end{aligned}$		$\begin{aligned} & 80 \mathbf{x} \\ & 408 \end{aligned}$	taAAAAAA CCCCCCCCCC	083	${ }^{80}$	AAAAAAAAA		
067025067026	70．	－－－3s30	803	aAast		503	ссссессссс	60：	сccceccocc	083005	${ }^{708}$	－－EAAAAAAAA	${ }^{805}$	AAAAAAAAE
	70．	－ccecoc	${ }^{80}$	cttit		70	cвbвсссаAa	80	AAAAAAAA	083008	70 s	－dsb	80 s	азазаз $A A^{\prime}$
$\begin{aligned} & 067028 \\ & 067029 \end{aligned}$	70.	－－－－－－－－88	${ }^{80} 8$	${ }^{\bullet 3}$	073011	703	FCCCCCtat	808	tabameea	083007	70s	－－－－－－－өa	808	atasaaAAE
	70.	－－－－－－－вas	80	veditido	073013	803	＋17t1－8			083009 083010	70s		${ }_{808}^{805}$	яаязаяААА
088001	30．	${ }^{\text {AB }}$	40	abcbeabba										аиазадAAe
	50.	basamaAAAA	${ }^{60} 5$	afacamaeae	74001	602	－－－－－－－－EC	20s	ccbeccaana	084001	40s	－－－－－－eE	50s	Eefbabbeeb
	${ }^{70 .}$	AAAAAEAAAT	80،	EAAAAAAAA		${ }^{80} 8$	AAAAAAAA				${ }^{603}$	AAAAAAAAAA	708	AAAAAAAAAA
068002	${ }_{80} 0$	abasalameab	${ }_{70} 5$	AAAAAAAAA	07400	${ }^{603}$	AAbAAABA	\％ 3	AaAAABBada		${ }^{80}$	asamatais		
	80	${ }_{\dagger T--7 \dagger}$		anabaatt	074003	${ }_{70 .}$	AAAAADA	80s	AAAAAAAA	0840	$\begin{aligned} & 508 \\ & 70 \mathrm{~s} \end{aligned}$	－－AATEAEEE	$\begin{aligned} & 60 \mathrm{~s} \\ & 80 \mathrm{~s} \end{aligned}$	AAEEAEEE かtt！t！t
068003	40		50．	anamanama	074005	702	－－tbaAAAA	803	AAAAAAAA	084003	50s	－e80	60 s	anamamana
	${ }^{80}$	AAAAAAAEAA	70．	AAAAAEt！${ }^{\text {t }}$	074006	603	－－－－fccfec	70.	Ccf tbrbaba		70 s	anamanama	80 s	AAAAAAAA ${ }^{\text {a }}$
088004	80．	tDAAAAAA				${ }^{802}$	AABAAAAA			004	508	AA	605	afababasaa
	${ }_{70}$	A－AAAEAEAA	${ }_{80}^{80}$	lanat	$\begin{aligned} & 074007 \\ & 074008 \end{aligned}$	70. 70.	－－taA	$\begin{aligned} & 90 \mathrm{~s} \\ & 80 \mathrm{~s} \end{aligned}$	AAAAAAAA	0840	708 508	AAAAAAAAA	80s	AAAAAAAAE
088005	508	－－	60：	amababeas							70 s	AAAAAAAAAA	${ }^{605}$	AAAAAAAAA
	70：	ataaneekaa	80	AAAAAAAE	075001	30	－ttteaett	408	tititeabas	084006	608	－tteamana	70s	afacamafa
088006	${ }_{7}^{508}$	－－－aAAAAAA	60：	AAAAAAAEE		508	AAAAAAAAAA	808	atabamatee		${ }^{\text {a }}$	AAAETtt		
	70，	AAAAAEETIt	80	teeastit		708	Ettabamaa	803	afabama	084007	60s	- －${ }^{\text {EAAAA }}$	70	afamaambia
088007	603	－－8BAAAAAA	70	anabaeamea	075002	${ }^{80}$	tebcbsbiba	70	AAAAAAAAA		${ }^{805}$	AAAAAAbsg		
068010   088015   008018	70．	AAEEAAA	${ }^{80}$		075003	80	anabasea	Os	baabaabaa	084008	${ }_{808}^{608}$	－$A$ AAA	70 s	AAAAAAAAAA
	80	－anaga $A$ a				B0：	AAAAAAAA		babaa		60 s	AAAAAAAA	70s	
	70				75004	80：	－－－ba	70：	bbabaacaaa		${ }_{80} 8$	AAAEtETEs		a
068020	80	－AAAAAAA				${ }^{\text {B0}}$	AAAAAAAA			08401	603	－－－gAAAAAA	70s	atamabasa
		－－ebabib	408	в8ввввввв8	0750	${ }^{708}$	－－AAABCAAA	${ }_{708} 808$	AAABAAA		${ }_{80}^{80}$	AAAAAAAAB		
069001	SO2	AAAAAAAABA	608	bacaacabea		808		70s	Aasaba	O8，	${ }_{80}$	－	70 s	abasamana
	70：	a $A$ ababatat	${ }^{804}$	taAAocao	075007	60	－－－－－－－－	70s	asamanamat	084013	60 s	－－gAAAAAA	70s	abasamata
069002	403		${ }^{503}$	AAAAAAAAAA		803					809	ababamas		
	${ }^{608}$	AAAAAAAAEAA	70	afeeatamaa	750	${ }^{708}$	－eatabbada	808	abasamas	084014	80s	－－－sabaAa	70	asamatama
069003	${ }^{80 .}$	AAAAAAAAE		＇H1T11E	07509	${ }^{70}$	－－DDD	B0s	AAABAAEa		${ }^{808}$	AAAAAAAA		
	50.	a $A$ AAAAAAAA	60	amamabaeas							${ }^{809}$	AAAAAAAA	70	AAAAAAAEA
	70.	asaEetaeam	806	anabamat	07600	503	－－teabaett	60	eambataa	084016	603	－ttrteeda	70s	ataAab
069004	40	－－－－－18日B女	50	bbberaba $A$		703	Ettteetea	808	AEAAAAba		${ }^{\text {B0s }}$	AAAAAAAA	Os	amamabaan
	80.	AAAAAAAAEt	70	өвCccccccc	076002	${ }^{60}$	－－－－t＋ebba	70s	AABABBCAAE	084017	${ }^{608}$	－－－EAA	70s	afamanasa
	80：	CCIt ${ }_{\text {ata }}$	B0．	anamaakeas	076003	803 60	ABAAAAAA	70．	ababamama	084018	${ }^{803}$	AAAAAABas	70.	ababababaa
	70：	ataeameena	802	easett		80	Abeaanaa				${ }_{80}$	AAAAAAAA ${ }^{\text {a }}$	70s	asamabasa
069006	${ }^{50}$	－－－－－aAAA	${ }^{602}$	AAAAAAAAAAA	076004	${ }^{602}$	－－saAaADAA	70.	aeaeamataa	084019	603	－－－AAAAAAA	70	afamamasa
089007089009	70.	OAAEAEAAAA	${ }_{80}^{808}$	AAAAAAAA	07	${ }_{608}^{808}$	tanaAAAA				${ }_{608}^{808}$	AAAAAAsae		
	80．	ittraet				80.	AAAAAAAA		a ${ }^{\text {a }}$ abbbaa	084020	803   80   80	AAAAAAAAB	70s	adaatoatal
069011089012	808.	ttr－－tt			078007	603	－－－－－－aAA	70.	asabasaatt	084021	60 s	－－－－－－－－E	70s	AAEFFt＋tt
		－－－－9AA				${ }_{8}^{80}$	taAAAAAA			084022	${ }^{603}$	－－－－－eEEE	70 s	EEEAAEAAEA
${ }_{0}^{069013} 0$	${ }_{70:}^{80}$	－－b－80tt	80	aAAAAAAA	076008	${ }_{803}^{803}$	tAAAAAAA	03	easaleetat		${ }^{808}$	AAAAAABAE		
$\begin{aligned} & 069017 \\ & 069018 \end{aligned}$	70，	－－－－－－AAA	B0：	tamababa	078009	80	－－－－－－oE	70	baAaAAEttt	084024	70	－－eAAAAAAAE	8	${ }_{\text {a }}^{\text {AAAAAAAAAS }}$
	${ }^{60}$	－	70：	t1t！t－11		80	tramaAAA			084025	703	－－ttaAAAE	803	AAAAAAAAE
069019	${ }^{808}$	t1－－－－t｜			076010	${ }^{60}$		703	EAAAAAEt！t	084026	70s	－－－－өasbae	805	разаяа $A A$
	$\begin{aligned} & 60 \mathrm{~m} \\ & 80 \mathrm{~s} \end{aligned}$	bso－－－t｜	70	e03asaccbb	078	${ }_{80}$	taAAAAAA	703	coftccccece	084027	${ }^{605}$		70s	easEAEEDEt
0690200699023	70：	－－－－－AAAA	80	AABAAAAA		80	cccc－－tt			084028	708	－－－－－－eene	803	
	70	－－－－－－－EA	$8{ }^{8}$	$t A A A A A B A$	076014	70．	－easamaatt	${ }^{80}$	taabiama	084029	703	－－－－－өваая	80 s	зазаза $A$ A
069024	80：	taAaAasa			078015	70：	eambabiaba	808	anamada	084030	80 s	－өоазавse		
069027	70：	－－－－－－－－D：	80	lamanama								－03030		
089030	70：	－－－－－－stDA	80	asabasa	077001	60	－－－dDaEEAE	708	eeebaacaat	085001	608	－－－aAAAAAA	70s	anamamama
069031	88	－asoeeA 1				$\mathrm{BO}_{3}$	taAAAAAA				80 s	ababamab		
069032089034	70：	－－－－－－A	80	AAAAAA	077002	60\％	－tfCCBAAAA	70：	asamabasas	085002	603	－tteasama	70s	afabamaata
	${ }^{80}$	－－8－11				${ }^{801}$	AAAAAAAAA				${ }_{605}$	AAAAAEAAB		
069035	70.	－－－AEA	80	taAadas	077003	${ }^{704}$	－－－DAAAAAA	${ }^{802}$	AAAAAAAA	085003	60 s	－titittt	703	EAAAAEAAEE
$069037$	${ }^{806}$	－－．．－：CC1			077004	70＊		B0：	ofacaamab		${ }^{80}$	anamabase		
069040	80،				077005	70：	－b－－	803	－easaA	085004	70：	－asaa	80s	asae－eAAe
	80，	bacbasaa			078001	$50=$	－－－－－－－－8A	603	AEtt－－－－－	086001	603	－A	708	AAAAAABBBB
070003	70.	－－－	80	－as		70．	ttiti－－－	802	－－－－－－tt		B0s	AAAAABsoe		
$\begin{aligned} & 070004 \\ & 070005 \end{aligned}$	70．	－－－－－AAAA	80	AAAAAAAT	078002	603	－－－sAETtIt	70：	11711	088002	603	－tititite	70s	anamabeaa
	70\％		80	－saos－－＊		${ }^{803}$	－－－－－－1t				BOs	anamaname		
070005   071001					078003	603	－tititioa	03	afanamana					
071001	$\begin{aligned} & 803 \\ & 803 \end{aligned}$	fCCCbAAAAA AAAAAAAE	70．	bcbabaacaa		${ }_{803}^{80}$	AAAAAAAA	70.	AaAAAAAAAA	090003	BOs	－－eassAA		
071003	50	－		AAA		50	俋	\％	anazamata					
	70．	AAAEET－It	80	Aabaa＇ll	078005	70，	－－－－－－－A	803	ababababe			anaba		


Stn. number	Gauged daily frows, monthly peaks and rainfall			
093001	703	-A	80s	AAAAAAAA
094001	$\begin{aligned} & 60 \mathbf{6} \\ & \mathbf{8 0 3} \end{aligned}$	-tけttittt   AAAAAAAA	70s	EAAAAAAAza
095001	703	------- $A$ A	803	AAAAAAAA
095002	804	\%		
098001	70.	------AAAA	80s	AAAAAAAA
096002	70:	-------8AA	B0s	AAAAAAAA
096003	80:	- -asa		
097001	503	------1--	80s	----ttit--
	70:	-tittto--	803	tt-ttt
097002	$\begin{aligned} & 80: \\ & 80 s \end{aligned}$	- $\dagger$ tttttttt   AAAAAAAA	70 s	$\dagger$ ttaAAAAAAA
101001	60s	-fcffFcfFF	70s	FeCCfectit
	80s	けttttti		
101002	$\begin{aligned} & 60 . \\ & 803 \end{aligned}$	EBEABAAAc	70s	enebbaekE
101003	B0:	f--		
101004	BO.	-- easaA		



Str. number	Gauged daily flows, monthly peaks and raintall			
203020	70,	- esasasasa	803	asaAAAsag
203021	702	- osasaasas	$80 \%$	asaAAAase
203024	703	- casasases	803	easaasaae
203025	703	-e83asas3s	80:	asaAAAtae
203026	70.	- вaecassaa	808	агзавзвае
203027	70s	-tEAAAAAAA	803	AAAAAAaze
203028	703	-tEAAAAAAA	80\%	AAAAAAAAB
203029	703	---easassa	80s	aаsasaase
203033	703	-83sas	80s	aAaAAEaas
203040	80\%	axamberae		
203042	803	- -asosese		
204001	703	-- esaaseas	B0s	saaAAAsae
205003	703	-cbaasaasa	B0s	aaasa
205004	703	--esasasas	$\mathrm{BO}_{5}$	masAAAase
205005	70.	--EAAAAAAA	80s	AAAAAAAA
205006	70:	-- вaasasaa	80s	s
205008	70s	----808sas	805	asaAAAase
205010	70\%	--- easaas	808.	-азавзеве
208001	703	-----8389	80s	a
206002	70:	---- -3asa	80 s	a-------a

Naturalised daily and monthly flows
KEY:
Complete daily and complete monthly
Partial daily and complete monthly
Partial daily and partial monthly
Partial daily and no monthly
No daily and complete monthly
No daily and partial monthly
No naturalised flow data

Stn. number	Naturallaed daily and monthly flowe				Stn. number	Neturalised daily and montity flow:				Stn. number	Neturalised dally and monthly flows			
006007		---EEEEEEF			021003	503	---------F	603	eeeeeeeeee	027019	50.	--feEE	603	EEfEEEEEFF
						702	EEEEEEEEEE	808	EF----EE		70.	-FEF		
007003	604	---FEEEE	70^	EEEEEEEEEE	021004	603	-----FEEF			027021	602	Ffreeefeee	703	EF
	80,	$F$			021005	60\%	-fEEEEEEEE	70^	EEEFEEEEEE	027022	80.	----FEEEEE	70,	FF
						803	EF----EE			027023	80,	----FEEEEE	70.	EF
008001	30ı	--FE	403	FFEEEEEEE	021008	60	-fEEEEEEEE	70\%	EEEEEEEEEE	027024	602	-fEEEF		
	50.	EEEEEEEEE	60:	FEEEEF		B0:	F-----EE			027025	60:	-feeeeeeee	70.	Ef
008005	70:	-F-E			021007	80:	------EE			027026	80,	---FEEEEEF		
					021009	803	--FEEEEEEE	703	EEEFEEEEEE	027027	603	-FEEFFEEFE	70.	EEEF
012002012004	70.	--FF------	803	F		80	F-----EE			027028	802	-EEEEEEEEE	70.	EF
	70.	-EEE	80\%	E	021010	603	---FEEEEEE	70.	EF-FF-EE--	027029	803	-FEEEEFEEF		
						80\%	E			027030	603	----FEEEEE	70,	EF
013007	70:	------EEEE	803	EEEEEE	$021011$ $021014$	$8 O_{2}$ $803$	------EE   -FEEEEEEEE	70.	EEEEEEEEEE	027031 027032	$603$ $603$	----EEEEFE	70:	EF
014001	703	---F--E				803	F----EE							
014002	703	-E-E			021018	802	-FE	70:	EEEFEEEFFE	028001	307	-------FEE	403	F
						803	F-----EE				50.	EEffeEEEEE	803	eeeeebaaaa
015003	70	---EEEEEEE	808	EEEEEE	021019	80.	---	703	EeEEEEEEEE		70s	amasacaa		
018006	80:	-------FEE	70:	F--EEEEEEE		802	F-----EE			028002	40:	----FEEEE	50.	eEEEEEEEEE
	80:	EEEEEE			021020	80\%	------EE				603	eEfeebaacc	70.	CC--CC
018007	70.	---EEEEEEE	80	EEEEEE	021021	${ }^{60}$		703	EEEEEEEFEE					
015008	703	---EEEEEEE	802	EEEEEE		803	F----EE			030003	60\%	-FF		
015010	70.	---EEEEEEE	803	EEEEEE	021022	603	--F	70:	EeEeEeEEEE					
015011	702	---EEEEEEE	804	EEEEEE		${ }^{80}$	F-----EE			031001	403	FEFFEF----	50\%	FEEEEEF
015012	703	---EEEEEEE	802	EEEEEE	021025	703	--FEEEEEFE	803	F-----EE		603	EEFEEBAACA	70.	ABFEEFFFFE
016013	70.	---EEEEEEE	803	EEEEEE	021030	802	------EE				80.			
015018	702	----EEEEEE	803	EEEEEE	021034	803	------EE			031006	${ }^{703}$	feeeer		
015017	${ }^{70}$	F								031007	${ }^{608}$	--fF	70:	FF--FF
015024	803	--EEEE			023001	503	--FEEE	60s	EEEEFEACAA	031010	70.	-FEEEF		
						70.	CC			031012	70s	---ffr		
016001	60:	---fEEEEEE	70\%	EEEEEEEEE	023002	60.	-----CAAAA	70.	AC	031018	70.	-FEEEF		
	803	EEEEEE			023003	50:		60.	eEeEESAAAA	031021	70s	-ffFfF		
016004	70.	-----EEEEE	B0:	E		70.	AAAC							
					023007	80:	---CAAAA	70.	BCAC	032001	40:	feteefeexf	50.	exeeeeeeee
017001	60:	-------F	70\%	EF----E	023008	70،	--CC				60.	EEEEEEEEE	70.	feEEF
017002	603	-------F	703	EF----E	023015	40\%	--FFFFFFFFF	503	FEFEFFEEEF	032002	30:	-----.--FF	403	EEEEEEEEEE
017003	$7{ }^{7}$	----E									503	EEEEEF-	60.	-FEEFEEEEE
017004	70a	----E			024001	60.	--------CA	703	AC		70.	EEEEEF		
017005	703	----E			024003	50.	--------FE	604	EEEEEbACAA	032003	70:	EEEEEF		
						70.	AC-CC			032004	403	---FEEEEEE	50.	EEEEEEEEEE
018001	70.	------E									60	EEEEFFEEEF	70.	FEEEEF
018002	60:	-----FEEEE	70.	F----E	025001	50s	------FEEE	603	EEEEEBAAAA	032008	308		40.	EEEEEEEEEE
018003	${ }^{60}$	----FEEEEE	70.	EF----E		70.	AC--CAAAC				50.	EEEEEEEEEE	60.	EEEEEEEEEF
018005	70.	------E			025002	70.	FFFF			032007	30:	---------	40	EEEEEEEEE
018008	70:	----E			025004	50,	-FEE	60:	EEEEEBAACC		50	EEEEEEEEEE	60.	EEEEEEEEEF
						706	C			032008	40\%	--1--FFEEE	503	EEEEEEEEEE
019001	$\begin{aligned} & 603 \\ & 703 \end{aligned}$	--------EEE	603	EEEEEEEEEE	025008	60.	------CAAB	70.	b8EF		60.	EEEEEEFEEE	70.	EEEEEF
019002	803	--EEEEEEEE	703	EEE-EEE	026002	60.	-ffeef	70:	ffff	033001	503	-feeeeef		
019003	803	-FEEEEEEEE	70.	EEEEEEE						033002	602	--feebaiaa	70^	AAAAAAA
019004.	603	EEEEEEEEEE	70.	EEE-EEE	027001	30.	-------FF-	403	-FEEEF----	033003	503	FF-FEFEF		
019005	802	--FEEEEEEE	703	EfEEEEE		50.	---FEEEEEF	80:	EEEEEEEF-F	033004	403	-----FFFEE	50.	eeeefeer
019006	${ }^{80}$	---EEEEEEE	70.	EEEEEEE		70.	E			033005	50.	--FEEEEEEE	603	EEEEEEBBAA
019007	60a	--FEEEEEEE	70.	EEEEEEE	027002	50	--FEEEE	603	EEEEEEEEEE		70:	AC		
019008	80.	----FEEEEE	70.	EEEEEEE		708	E			033006	503	------FEEE	60:	EEEEF
019010	603	---------E	70.	EEEEEEE	027003.	60.	--FEEEEEEE	70,	EF	033007	50	---FEEEEEE	603	EEEFEECCCF
019011	70.	----E			027004	603	FEEEEEEEF				703			
					027008	60:	-----FEEEE	70\%	EF	033011	60:	-fEEF		
020001	60:	-EEEEEEEEE	70.	EEEEEEE	027007	50.	FE	608	EEEEEEEEEE	033026	703	-CAAAAC		
020002	60:	--------EE	70.	EEEEEEE		70,	EF			033035	503	-------CA	603	anambabama
020003	603	-----EEEEE	70:	EEEEEEE	027009	603	----------F	702			703	afaAac		
020004	60\%	-------EEE	. 70	EEEEEEE	027012	$50_{3}$	----FEEEEE	603	EeEeeeeeee					
020005	70.	------E				70,	EF			036001	303	--CAAAAAAA	403	AAAAAAAAAAA
020006	70.	-----E			027013	503	----FEEEEE	60.	EEEEEEEEFE		503	AAAAAAAAAA	60.	AAAAAAAAAA
020007	70.	-E				70.	EF				70.	AAAAAAC		
					027015	803	----CAAC			038002	803	CAAAAAAAAAA	70.	AAAAAC
021001	50.	--------F	608	EEEEFFEEF	027018	50:	------FEEE	803	EEEEEEEEEE	036003	60:	-casaiama	70:	ababasc
021002	50.	---m----F	${ }^{60}$	EEEEEEEEF		70:	EEEF			036004	603	----CAAAA	70	AAAAAAC
036005	60:	--caAaAAAA	70.	AAAAAAC	047005	603	-------C			086011	60	CA	703	AC
038006	60.	--caAaAAAA	70.	asalama	047015	50.	------AAA	60:	AAAAAAAAAA					
036007	60.	----caAAA	70.	AAAAAAC		703	alamanaial	B0:	AAAAAA	087001	503	-------FEE	60.	EEEEEEEEEE
036009	60.	caanamataa	70.	AAAAAAC							70.	FEEE		
036009	60.	------CC	70.	AAAAAAC	048001	803	----FBACCC			087002	503	---FEEEEEE	602	eeteeeffer
038010	60.	--------CA	70:	AAAAAAC	048002	60.	----FF---C			067003	603	--------FE	703	EEEE
036011	60*	-----CA	70.	AAAAAAC	048008	602	--------CC			087008	60.	FEEEEEEEEF		
036012	60:	--------CA	70.	AAAAAAC	048007	60.	--------CC			087015	708	FFEE-	80	
036015	70.	--caatac								087017	60:	---E	70s	EE
					049003	60:	------CCC							
037001	50.	CAAAAAAAAA	604	AAAAAAAAC-						068001	603	-FEEEEEFEF	70.	----E
	70.	-CAAC			050001	503	--------DA	602	AAAAAAAAAA	088003	408	--------F	50.	CEEEEEEEEE
037002	30.	--caataian	406	accanamana		70.	AAAAAAAAAA	80\%	AAAAAAAAD		808	EEEEF-----	70.	---FE
	50.	AAAAAAAAAA	604	AAAAAAAAAA	050002	603	--FEEBBEBA	70.	C	088004	60	-feeeeeeef	70:	---FE
	70.	asabaac			050006	603	-----DAAAA	70:	asabainama	088005	603	-FEEEEEFEF	70.	---FE
037003	$\begin{aligned} & 308 \\ & 508 \end{aligned}$	--caAAAAAA aAAAAAAAAAA	$\begin{aligned} & 40: \\ & 60: \end{aligned}$	AAAAAAAAAA AC--CAAAAA		B\%	AAAAAAAAD			088008	608	-FEEFFEFFF	70\%	----E
	70.	a $A$ alaac			051002	70n	---feeef			089004	403	-----FEEEE	50.	effeefeeee
037005	50:	--------C	60:	AAAAAAAAAA							603	EEEEEEEEF		
	70:	AAAAAAC			052002	503	------FEEE	60:	Eefecbeer					
037000	60:	--caAaAAAA	70:	AAAAAAC	052005	80.	-FEEEBEEEE	703	EEEEEEEF	071001	60:	-----cc		
037007	${ }^{60}$	---CAAAAA	70	AAAAAAC	052006	${ }^{603}$	---FEEEEEE	708	EEEEfEEF					
037009 037009	60:	-----CAAAA	70:	AAAAAAC	052008	60.	FEEEEBEEEF			072001	60s	--feeeeeex	70.	FFEF
037009 037010	60.	--caAAAAAA	70:	AAAAAAC	052014	80.	-fEE.	702	FEEEFFFF					
037010	60.	--caAamaAa	70	AAACCAC						076001	60:	----FEF		
037011	${ }^{60}$	---caaiana	703	AAAAACC	053004	50.	--------FE	${ }^{803}$	EEEEEEEEFF	076002	608	-FEEEEF		
037012	60.	--caAAAAA	70\%	AAAAAAC		70.	feEEEEEAAA	80	A					
037013	${ }_{60}^{60}$	---CAAAAAA	702	AAAAAAC						076001	508	---FEEEF--	60\%	feeteeeeex
037014	60\%	-CAAAAAA	703	AAAAAC	054001	203	-caAamaAAA	303	AAAAAAAAAA		70.			
037018	603	-----CAAAA	702	AAAACAC		40	AAAAAAAAAA	503	AAAAAAAAAA	076003	60:	-FEEEEF		
037017	${ }^{603}$	--------C	70.	AAAACAC		60,	AAAAAAAAAA	70.	AAAAAAAAAA	076004	608	--FEEF		
. 037018	70.	CAAAC				80.	AAAAA							
037019	B0	-----CAAAC	70.	AAAAC	054005	50.	------FEEE	60.	feeeeebaac	077002	603	-------FEE	70.	EF
037020	70.	CAAAAAC				70s	-----AA							
037021	70.	CAAAAAC			054010	80:	-------CC			. 078004	703	-F		
037022	70:	CAAAAAC			054013	603	------CACA	70:	C----AA					


Str. number	Gauged dally flown. monthly peaks and rainfall				Stn, number	Gauged daily flows. monthly paskes and rainfall				Stn. nurnber	Gsuged dally flows. monthly peske and rainfall				
$\begin{aligned} & 037023 \\ & 037024 \end{aligned}$	$\begin{aligned} & 70 a \\ & 70: \end{aligned}$	-CAAC   -CAAAAC			054014 054017	$\begin{aligned} & 60 \mathrm{~s} \\ & 60 \mathrm{~s} \end{aligned}$	---------CAA	708	C-----AA	079002	$\begin{aligned} & 50 \mathrm{~s} \\ & 70 \mathrm{~s} \\ & 50 \mathrm{~s} \end{aligned}$		60 s	EEEFFEEEEE	
										EF					
										079003		---------F	60s	EEEEEEEEEE	
038001	803	---DAAAAAA	90s	amamanama		055002	303	-------FEE	408	Eexeeeeexe		70s	EEF		
	00.	AAAAAAAAAA	10s	AAAAAAAAAA		508	EEEEEEEEEE	60s	EEEFFEEEEE	079006	60s	---FEE	70s	EF	
	20s	AAAAAAAAAA	30s	AAAAAAAAAA		708	AAAAAAAAAA	80s	AAD						
	40\%	AAAAAAAAAA	50s	AAAAAAAAAA	055006	303	-----FEEEE	408	EEEEEEEEEE	081003	60 s	--------FE	703	FF	
	60\%	AAAAAAAAAA	705	AAAAAAC-CA		503	EEEEEEEEEE	603	EEEEEEEEEE						
	803	AAAAAAAA				70s	EEEEEEEF			082001	60s	---FEEEEEE	703	EF	
					055007	30s	--7----FE	40 s	eexeegeeee						
039001	803	---AAAAAAA	905	AAAAAAAAAA		503	EEEEEEEEEE	608	EEEFFEEEFE	084001	70s	FEEEF			
	001	AAAAAAAAAA	103	alamanama		703	AAAAAAAAAA	80 s	ADA	084002	60s	-------FE	703	EEFFF	
	203	AAAAAAAAAA	30s	AAAAAAAAAA	055023	603	-F	70s	AAAAAAAAAA	084003	60s	-----FEEEE	703	EEEEF	
	403	AAAAAAAAAA	50 s	alamalama		803	AAA			084004	50s	--...---FEE	603	EEEEEEEEEE	
	80s	alamanala	70s	AAAAAAAAAA							70s	FFEEF			
	B0s	AAAAAAAAEF			056001	50s	--FEE	60s	EEEEEEEEE	084005	50s	--fE	60s	EfEEEEEEEE	
039002	30:	-CA	40s	AAAAAAAAAA		70s	FEEEEEFF				70 s	EEEEEF			
	503	AAAAAAAAAA	60s	AAAAAAAAAA	056002	50s	-FEE	60s	EEEEEEEEEF	084006	70 s	FEEEF			
	703	AAAAAAAAAA	80s	AAAAAAAA		70s	EEEEEF			084007	60s	-------FEE	703	FEEEF	
039008	503	-CAAAAAAAA	60s	AAAAAAAAAA	056003	603	----FEF			094008	605	-------FEE	702	FEEEF	
	703	AAAAAAAAAA	80s	AAAAAAAD	056004	60s	-----FEEEE	703	EEEEEEF	084009	605	-------FFF	70s	EEEEF	
					056008	60:	---FEEEEEE	70s	FFEEEEF	084011	60 s	----FEEEEE	703	EEEEF	
040001	503	---FEEEEF-	603	-FEEFEEF	058011	70s	FEEEEEFF			084012	60s	---FEEEEEE	70.	EEEEF	
040002	502	------FFEF	60s	FFFFFFEEF	056012	70s	-EEEEEF			084013	605	-------FEE	708	EEEEF	
040003	503	------FEEE	603	EEEEEEFF						084014	60 s	FICEFEEEEE	702	EEEEF	
040004	803	--FEEEEF			057001	50s	--- FEEEEEEE	60s	EEEEEEEBC	084015	70 s	FEEEF			
040005	608	-----FEE			067002	30s	-------FEE	40s	EEEEEFEEEE	084016	70 s	FEEEF			
040008	603	-----FEF				50s	EEEEEFFEF-	60 s	-FEEEEBAAA	084017	${ }^{60}$	-------FEE	708	EEEEF	
040007	60s	FEEEEEFF				70s	C			084018	${ }_{605}$	-F	708	EEEEF	
040008	603	-----FEE			057003	60 s	-----CAAAC			084019	60s	-FE	70s	EEFFF	
040009	80\%	-----FEE			057004	50 s	--FEE	60 s	EFFEEBAAAC	084020	705	FEEEF			
040010	603	-----FEE								084021 084022	70s	FEF			
040011	803	-----FEEF			$\begin{aligned} & 058001 \\ & 058003 \end{aligned}$	$\begin{aligned} & 608 \\ & 60 s \end{aligned}$	$\begin{aligned} & \text {---FEF---C } \\ & \text {--FEEF } \end{aligned}$	70s	C	$\begin{aligned} & 084022 \\ & 084023 \end{aligned}$	$\begin{aligned} & 70 \mathrm{~s} \\ & 70 \mathrm{~s} \end{aligned}$	$\begin{aligned} & --F F \\ & ---F F \end{aligned}$			
043005	603	-----FEEEF	70s	EF						084024	70 s	---FF			
					059001	50.	---FE	603	EEEEEBACC	084027	70s	---FF			
045003		--FEEEEEF													
045004 045005	803 603		708 708	C	061002	608	FEEEEBCC			$\begin{aligned} & 085001 \\ & 085002 \end{aligned}$	60s	---FEEEEEE	$\begin{aligned} & 708 \\ & 70: \end{aligned}$	$\begin{aligned} & \text { EEEEF } \\ & \text { EEEEF } \end{aligned}$	
					062001	50s	--------	603	EeEeeeef	085003	70s	FEEEF			
046002	608	FEEEEEEEF													
046003	80s	-------CA	70s	C	084001	60s	---FF			086001	70 s	FEEEF			
046008	708	----AAAAAA	80s	AAAAAAA						086002	70s	FEEEF			
047004	603	----FBCEFF			066002   086003	$608$ $60:$	-FEEEEEEE-	70s	FFE	097002	70s	--EEEEEF			

Produced 13th March 1989. New summaries available on request.

# GROUNDWATER LEVEL DATA 

## Background

Groundwater may be obtained from almost any stratum in the sedimentary succession in the British Isles, as well as from igneous and metamorphic rocks. In many rocks, such as clays and shales, volcanics and metamorphics, the permeable zone may well be limited to the depth to which weathering may reach, this is unlikely to be more than some 50 metres beneath the ground surface. In those strata which are not generally recognised to be aquifers, well-yields tend to be small (of the order of only a few cubic metres per day), uncertain as a continuous source (tending to fail in prolonged droughts), with an indifferent groundwater quality, and with the sources vulnerable to pollution.

The more generally recognised aquifers are listed in Table 6, with the Chalk and Upper Greensand, the Lincolnshire Limestone and the Permo-Triassic sandstones as the most important from the viewpoint of public supply. From such aquifers as these, yields of 3000 to 4500 cubic metres a day are not unusual. For the next category, including the Lower Greensand and the Magnesian Limestone, yields to individual wells of 1500 to 3000 cubic metres a day can generally be expected. In the other aquifers, while occasional sources sufficient for large supplies may be developed, they tend to be important only locally.

The groundwater resources of an aquifer are naturally replenished from rainfall. During the summer months, when the potential evapotranspiration is high and soil moisture deficits are appreciable, little infiltration takes place. There is a notable exception to this rule in the Eden valley of Cumbria where, enclosed between the massifs of Cross Fell and the Lake District, sufficiently heavy and continuous summer rainfall occurs to maintain infiltration through part at least of most summers. The normal recharge of an aquifer takes place during the winter months when the potential evapotranspiration is low and soil moisture deficits are negligible.

There are few artificial reservoirs in the United Kingdom which are sufficiently large to support demands through the driest summers, assuming that they were full at the start of the summer, without some contributions from runoff or river intakes. Prolonged dry spells lead to reduced river flows, particularly where the natural groundwater contribution (baseflow) is limited. Consequently, while surface water droughts may be in part due to the failure of runoff from winter rainfall to fill the reservoirs, they are more frequently caused by a decrease in the summer flows of streams and rivers. Surface water droughts do, however, lead to increased consumption of groundwater (where available). By way of contrast, a groundwater drought is caused by a lack of winter rainfall. Potentially, the most serious droughts occur when, as in 1975/6, a dry summer succeeds a notably dry winter.

## The Observation Borehole Network

Groundwater level observation wells (in this context, a well includes both shafts - constructed by hand digging - and boreholes - constructed by machinery) are generally used for one of two purposes, either to monitor levels regionally and thus to estimate groundwater resource fluctuations, or to monitor the effects locally of groundwater abstractions. The number of observation wells required in different areas varies widely. Over the last two decades, a target density was sought of one well to 25 to $35 \mathrm{~km}^{2}$. During the last few years, it has become apparent in some districts that satisfactory information can be obtained with fewer wells, while in others the densities had to be substantially increased.

The observation well network was reviewed in 1981 by the British Geological Survey (then the Institute of Geological Sciences) with the aim of selecting 200 to 300 sites from the existing Water Data Unit archive, to be used for periodical assessments of the national groundwater situation. The selection was based upon the hydrogeological units identified in an investigation of the groundwater resources of the United Kingdom ${ }^{1}$; one site was chosen for each aquifer present within each unit. For Scotland and for Northern Ireland this was not possible due to the very limited number of observation wells available. In England and Wales, the total number finally selected was $175^{2}$.

Details of the wells in this national network are given in the Register of Selected Groundwater Observation Wells (see page 166).

## Measurement and Recording of Groundwater Levels

The majority of observation wells are measured manually either weekly or monthly. The usual instrument is an electric probe suspended upon a graduated cable or tape, contact being made by the water to complete a circuit which gives either an audible or visual signal at the surface. Measurements are normally made to the nearest 10 millimetres.

Some observation wells are equipped with continuous water level recorders, almost invariably activated by a float on the water surface. These recorders may be driven by clockwork or by electric battery power, and are capable of running unattended for periods of one to six months. Levels are usually recorded on paper charts or on punched paper tapes, but a number of solid state loggers have been deployed in recent years. At a small but ever increasing number of observation boreholes provision is made for the routine transmission - usually by telephone line - of groundwater levels to local, or regional, centres. Water levels are generally recorded to the nearest 10 millimetres, although instruments may be accurate to 1 millimetre.

TABLE 6 GENERALISED LIST OF AQUIFERS IN THE UNITED KINGDOM


Pressure transducers have also been considered for water level measurement. However, available transducers will measure accurately over only a narrow range of fluctuation (up to 2 to 3 metres), or much less accurately over a wide range. They are not yet in general use.

## Observation Well Hydrographs 1984-7

The main aquifers in the United Kingdom are the Chalk (with the Upper Greensand), the PermoTriassic sandstones, the Magnesian Limestone and the limestones of the Middle Jurassic (principally the Lincolnshire Limestone). Outcrop areas of the major aquifers are shown in Figure 12; throughout Wales, Scotland and Northern Ireland, aquifers are less extensively developed and tend to be only of relatively local importance.

Well hydrographs for 18 observation sites are shown in Figure 13. Except for the Killyglen borehole in Northern Ireland which has only recently been incorporated in the index of indicator sites, the 1984 to 1987 groundwater levels are illustrated; a break in the well hydrograph trace indicates a recording interval of greater than eight weeks. For comparison, the average and the extreme monthly levels for the pre-1987 period of record are shown where sufficient historical data are available. Fouryear plots have been used because the volume of groundwater stored in aquifers can reflect not only the infiltration taking place during the winter months of 1986-1987, but also that occurring in previous years. When comparing the hydrographs for a number of sites, account should be taken of the differing scales used to illustrate the water table fluctuations. The behaviour of several wells is influenced by local, or regional, pumping for water supply or for other purposes. For instance, the Westonbirt borehole provides water for Westonbirt School, and groundwater levels at Rushyford now stand some 10 metres higher than a decade ago (due partly to a rundown of the coal industry and the consequent cessation of continuous pumping for mine dewatering).

## Register of Selected Groundwater Observation Wells

The listed sites were selected so as to give a reasonably representative cover for aquifers throughout England and Wales. The wells are grouped according to the aquifer to which the water level variations in the wells are attributed. A generalised list of aquifers is given opposite. While the aquifers are tabulated in stratigraphical order, most of the local names for individual strata are omitted and the intervening aquicludes are not shown.

## Network Changes

Since the original selection of boreholes for incorporation in the national network a number of changes have been made to the list of selected wells. At some locations, observations could no longer be continued, and new sites have been added from time to time. In the Coal Measures and the Millstone Grit, certain sites have not been monitored for some years due to the presence of methane in the wells; these sites have been discarded until either they have been made safe or have been replaced.

The following sites have been added to the Register:

## Superficial Deposits

SO44/4 Stretton Sugwas

## Chalk and Upper Greensand

TF92/5 Tower Hills Pumping Station
TG31/20 Woodbastwick
TG32/16 Brumstead Hall
TQ86/44 Little Pett Farm
TR05/11 Portway House, Faversham
TR14/9 Little Bucket Farm
TR14/50 Glebe Cottage
TR35/49 Cross Manor Cottages
Lower Greensand
SU82/57 Madam's Farm
Hastings Beds
TQ42/80A Kingstanding
TQ62/99 Whiteoaks
Permo-Triassic sandstones

SE54/32A Bilborough
SE83/9 Holme on Spalding Moor

## The Register - data items

The five columns of the register are:

## Well Number

The well numbering system is based on the National Grid. Each 100 kilometres square is designated by prefix characters, e.g. SE, and is divided into 100 squares of 10 kilometre sides designated by numbers 00 (in the south-west corner) to 99 (in the north-east corner). Thus, the site SE93/4, is located in the 10 kilometre square SE93, while the number after the solidus denotes that the site is the fourth accessed in this square in the National Well Record collection.

A suffix such as A, B, etc., defines the particular well when there are several at the same site. For Northern Ireland, which is on the Irish Grid, the first of the prefix characters is always ' I '.

Two asterisks following the well number indicates a well or borehole for which hydrographs are shown on pages 160 to 165 . The location of the index wells, and the outcrop areas of the principal aquifers, are shown on Figure 12.

## Grid Reference

The six or eight figure references given in the register relate to the 100 kilometre National (or Irish) Grid square designated by the preceding twofigure code (shown in italics when referring to the Irish Grid); the corresponding two-letter code appears as the prefix characters in the Well Number.

## Site

The name by which the well or borehole is normally referenced. The location of all the sites listed in the register are shown on Figure 12.

## Water Authority

An abbreviation referencing the water authority, or other body, responsible for groundwater level measurement. A full list of codes, together with the corresponding names and addresses appears on pages 183 and 185.

## Records Commence

The first year for which records are held for the groundwater archive.

## Indicated \% Annual Recharge

The difference between the level measured at the end of the summer recession and that measured at the beginning of the summer recession in the following year; expressed as a percentage of the mean fluctuation. Details of the method of calculation are given in the Hydrometric Register and Statistics 1981-85.

## References

1. Monkhouse, R.A., and Richards, H.J. 1983. Groundwater resources of the United Kingdom. Commission of the European Communities, pub. Th. Schaeffer Druckerei GmbH, Hannover, 252 pages.
2. Monkhouse, R.A., and Murti, P.K. 1981. The rationalisation of groundwater observation well networks in England and Wales. Institute of Geological Sciences, Report No WD/81/1, 18 pages.


Figure 12. Principal aquifers and representative borehole locations.



Site name: Rockley
National grid reference: SU 16557174
Well number: SU 17/57
Measuring level: 146.39 mOD


Figure 13. Hydrographs of groundwater level fluctuations 1984-7.


Figure 13 - (continued)




Figure 13 - (continued)




Figure 13 - (continued)


Figure 13 - (continued)




Figure 13 - (continued).

Well   Number	Grid   Reference	Site	Measuring Authority	Records Commence	Indicated \% Annual Recharge
Aquifer: Superficial Deposits					
IJ28/1	33225862	Dunadry	GSNI	1985	---
SO44/4	3246834253	Stretton Sugwas	WELSH	1973	---


Aquifer : Chalk and Upper Greensand					
ID30/1**	34368030	Killyglen	GSNI	1985	-
SE93/4	4492123634	Dale Plantation	YWA	1970	---
SE94/5**	4496514530	Dalton Holme	YWA	1889	119
SE97/31	4493457079	Green Lane	YWA	1972	146
SP90/26	4294700875	Champneys	TWA	1962	---
SP91/59	4293801570	Pitstone Green Farm	AWA	1970	112
ST30/7	3137630667	Lime Kiln Way	SWWA	1969	79
SU01/5B	4101601946	Woodyates	WWA	1942	89
SU04/2	4103104883	Tilshead	WWA	1966	103
SU17/57**	4116557174	Rockley	TWA	1933	93
SU32/3	4138172743	Bailey's Down Farm	SWA	1963	89
SU35/14	4133155645	Woodside	SWA	1963	---
SU51/10	4158751655	Hill Place Farm	SWA	1965	95
SU53/94	4155863498	Abbotstone	SWA	1976	45
SU57/159	4156287530	Calversleys Farm	TWA	1973	82
SU61/32,	4165781775	Chidden Farm	SWA	1958	103
SU61/46	4168901532	Hinton Manor	SWA	1953	100
SU64/28	$4163604049{ }^{\circ}$	Lower Wield Farm	SWA	1958	86
'SU68/49	4164428525	Well Place Farm	TWA	1976	139
SU71/23**	4177551490	Compton House	SWA	1894	102
SU73/8	4170483491	Faringdon Station	TWA	1961	106
SU78/45A	4174198924	Stonor Park	TWA	1961	90
SU81/1	4183561440	Chilgrove House	SWA	1836	91
SU87/1	4183367885	Folly Cottage	TWA	1950	86
SU89/7	4181039417	Piddington	TWA	1966	79
SY68/34	30662881	Ashton Farm	WWA	1977	93
TA06/16	5404906120	Nafferton	YWA	1964	93
TA07/28	5409407740	Hunmanby Hall	YWA	1976	87
TA10/40	5413750885	Little Brocklesby	AWA	1926	122
TA21/14	5426701890	Church Farm	YWA	1971	82
TF72/11	5377102330	Off Farm	AWA	1971	108
TF74/1	5375414087	Choseley Farm	AWA	1950	86
TF80/33	5387380526	Houghton Common	AWA	1971	---
TF81/2A**	5381381960	Washpit Farm	AWA	1950	84
- TF92/5	5398692183	Tower Hills P.S.	AWA	1977	95
- TF94/1	5391604135	Cuckoo Lodge	AWA	1952	98
TG00/92	6304400020	High Elm Farm, Deopham	AWA	1971	77
TG03/25B	6303823583	The Hall, Brinton	AWA	1952	136
TG11/5	6316911101	The Spinney, Costessey	AWA	1952	87
TG12/7	6311262722	Heydon Pumping Station	AWA	1974	81
TG21/9	6324001657	Frettenham Depot	AWA	1952	91
TG21/10	6326991140	Grange Farm	AWA	1952	---
TG23/21	6329323101	Melbourne House	AWA	1974	100
TG31/20	6333651606	Woodbastwick	AWA	1974	123
TG32/16	6337002682	Brumstead Hall	AWA	1978	94
TL11/4	52.15601555	Mackerye End House	TWA	1960	---
TL11/9	5216921965	The Holt	TWA	1964	---
TL13/24	5212003026	West Hitchin	AWA	1970	. 61


Well   Number	Grid   Reference	Site $\quad . \%$	Measuring   .. Authority	Records Commence	Indicated \% Annual Recharge
TL22/10	5229782433	Box Hall	TWA	1964	106
TL33/4**	5233303720	Therfield Rectory	TWA	1883.	62
TL42/6	5245362676	Hixham Hall	TWA	1964	. 105
TL42/8	5246692955	Berden Hall	TWA	1964	83
TL44/12	5245224182	Redlands Hall	TWA	1964	80
TL66/2	5261916013	Hall Farm	AWA	1964	67
TL72/54	5279822516	Rectory Road	AWA	1968	---
TL84/6	5284654106	Smeetham Cottages, Bulmer	AWA	1963	132
TL86/110	5288506470	Cattishall Farm	AWA	1969	87
TL89/37	5281319001	Grimes Graves	AWA	1971	115
TL92/1	5296572562	Lexden Pumping Station	AWA	1961	---
TM15/112	6212015618	Dial Farm	AWA	1968	120
TM26/46	6224616109	Fairfields	AWA	1974	79
TM26/95	6227866397	Strawberry Hill	AWA	1974	---
TQ01/133	5108501170	Chantry Post, Sullington	SWA	1977	90
TQ21/11	5128501289	Old Rectory, Pyecombe	SWA	1958	---
TQ28/119B	5129968051	Trafalgar Square	TWA	1845	---
TQ31/50	. 5132201180	North Bottom	SWA	1979	64
TQ35/5	5133635924	Rose \& Crown	TWA	1876	61
TQ38/9	5135098536	Hackney Public Baths	TWA	1953	---
TQ50/7	5155920380	Old Rectory, Folkington	SWA	1965	---
TQ56/19	5156486124	West Kingsdown	TWA	1961	74
TQ57/118	5158807943	Thurrock Al3	AWA	1979	144
TQ58/2B	5156228408	Bush Pit Farm	TWA	1967	129
TQ66/48**	5166496873	Owletts	SWA	1968	86
TQ86/44	5185956092	Little Pett Farm	SWA	1982	110
TQ99/11	51947971	Burnham	AWA	1975	---
TR05/11	6101425874	Portway House, Faversham	SWA	1964	---
TR14/9	6112254690	Little Bucket Farm	SWA	1971	84
TR14/50	6112654167	Glebe Cottage	SWA	1970	---
TR34/81	6131734725	Church Farm	SWA	1971	---
TR35/49	6133305090	Cross Manor Cottages	SWA	1971	---
TR36/62	6132086634	Alland Grange	SWA	1969	55
TV59/7C	5052909920	Westdean 3	SWA	1904	75

## Aquifer: Lower Greensand

SU82/57	4188882505	Madam's Farm	SWA	1984	102
SU84/8A	4187164087	Tilford Pumping Station	TWA	1971	104
TL45/19	5241105204	River Farm	AWA	1973	130
TQ41/82	5143701320	Lower Barn Cottages	SWA	1975	103
TR13/21	6111323881	Ashley House	SWA	1972	127

## Aquifer: Hastings Beds

TQ22/1	5123482770	The Bungalow	SWA	1964	135
TQ32/19	5137602890	Horsted Keynes	SWA	1968	87
TQ42/80A	5147252990	Kingstanding	SWA	1979	92
TQ61/44	5166581803	Dallington Herrings	SWA	1964	82
TQ62/99	5161992282	Whiteoaks	SWA	1978	--
TQ71/123	5179691659	Red House	SWA	1974	--

Aquifer: Upper Jurassic

SE68/16	4468908590	Kirkbymoorside	YWA	1973	94
SE77/76	4476907300	Broughton	YWA	1975	79
SE98/8	4499108540	Seavegate Farm	YWA	1971	107
SU49/40B	4141179307	East Hanney	TWA	1978	134


Well   Number	Grid   Reference	Site	Measuring Authority	Records   Commence	Indicated \% Annual Recharge
Aquifer : Middle Jurassic					
SP00/62**	4205950190	Ampney Crucis	TWA	1958	98
SP20/113	4227210634	Alvescot Road	TWA	1975	108
ST51/57	31591169	Over Compton	WWA	1971	100
ST88/62A	3182758743	Didmarton 1	WWA	1977	---
ST89/32**	3186429030	Westonbirt School	WWA	1932	85
Aquifer : Lincolnshire Limestone					
SK97/25	4398007817	Grange de Lings	AWA	1975	114
TF03/37**	5308853034	New Red Lion	AWA	1964	83
TF04/14	5304294273	Silk Willoughby	AWA	1972	88
Aquifer: Permo-Triassic sandstones					
IJ26/1	33291694	Dunmurry	GSNI	1985	70
NX97/1**	2596677432	Redbank	SRPB	1981	109
NY00/328	3505110247	Brownbank Layby	NWWA	1974	120
NY45/16	3549475667	Corby Hill	NWWA	1977	---
NY63/2**	3561303250	Skirwith	NWWA	1978	72
NZ41/34	4548611835	Northern Dairies	NWA	1974	80
SD27/8	4321727171	Furness Abbey	NWWA	1972	104
SD41/32	4344001164	Yew Tree Farm	NWWA	1971	---
SD44/15	4343964928	Moss Edge Farm	NWWA	1961	156
SE36/47	4439456575	Kelly's Cafe	YWA	1977	55
SE39/20B	4430049244	Scruton Village	YWA	1969	51
SE45/3	4444705580	Cattal Maltings	YWA	1969	73
SE52/4	4454732363	Southfield Lane	YWA	1955	---
SE54/32A	4455324646	Bilborough	YWA	1984	148
SE55/4	4458295383	Clifton Hospital	YWA	1967	70
SE60/76**	4467840709	Woodhouse Grange	STWA	1980	122
SE64/1	4467514463	Wheldrake Station	YWA	1971	---
SE72/3B	4470472149	Rawcliffe Bridge	YWA	1971	---
SE83/9	4480403640	Holme on Spalding Moor	YWA	1972	---
SJ15/15	3313745556	Oaklands Bridge	WELSH	1972	---
SJ33/38	3338093112	Hordley Wharf	STWA	1975	104
SJ33/39**	3338143831	Eastwick Farm	WELSH	1974	86
SJ56/45E	3350426953	Ashton 4	NWWA	1969	---
SJ83/1A	3389693474	Stone	STWA	1974	132
SJ87/32**	3389697598	Dale Brow	NWWA	1973	---
SJ88/93	3386118645	Bruntwood Hall	NWWA	1972	---
SJ96/41	. 3393106301	Rushton Spencer 1	NWWA	1969	---
SK00/41	43067012	Nuttal's Farm	STWA	1974	145
SK21/111	4327311419	Grange Wood	STWA	1967	60
SK24/22	4325394431	Burtonshuts Farm	STWA	1972	77
SK56/53	4356326440	Peafield Lane	STWA	1969	62
SK73/50	4376933228	Woodland Farm	STWA	1980	---
SO71/18	3271701970	Stores Cottage	STWA	1973	72
SO87/28	3281607970	Hillfields	STWA	1961	---
ST12/48	31108267	Milverton Bypass	WWA	1972	53
SX99/37B**	2095289872	Bussels 7A	SWWA	1972	92
SY09/21A	3006669235	Heathlands	SWWA	1951	105


Well   Number	Grid Reference	Site	Measuring Authority	Records Commence	Indicated \% Annual Recharge
Aquifer: Magnesian Limestone					
NZ22/22**	4528752896	Rushyford	NWA	1967	89
NZ32/19	4535752650	Heley House	NWA	1969	---
NZ33/20	4533493501	Garmondsway	NWA	1974	91
SE28/28	4424608520	Bedale	YWA	1972	51
SE35/4	4438305830	Castle Farm	YWA	1970	43
SE43/9**	4445353964	Peggy Ellerton Farm	YWA	1968	91
SE43/14	4446603550	Coldhill Farm 35	YWA	1971	69
SK46/71	4348006030	Stanton Hill	STWA	1973	148
SK58/43	4352488018	Southeads Lane	STWA	1973	100
Aquifer: Coal Measures					
SE23/4	4428503414	Silver Blades Ice Rink	YWA	1971	55
Aquifer: Millstone Grit					
SD92/8	3498332660	Horsehold Farm	YWA	1971	---
SE04/7	4402954792	Lower Heights Farm	YWA	1971	---
SE24/2B	4420674053	Green Lane Dyeworks	YWA	1971	165
SE27/8	4421207380	Kirkby Moor Farm	YWA	1971	---
Aquifer : Carboniferous Limestone					
NT95/21	3696955055	Middle Ord	NWA	1974	---
SE06/1	4402416183	Jerry Laithe Farm	YWA	1971	111
SK15/16	4312925547	Alstonfield	STWA	1974	116
SK17/13	4317787762	Hucklow South	STWA	1969	58
ST64/33	3165604790	Oakhill 1	WWA	1977	---

Sites marked '**' are indicator weils; well hydrographs are shown in Figure 13. Where the annual percentage recharge cannot be estimated, the entry '---' is substituted.

# THE GROUNDWATER DATA RETRIEVAL SERVICE 

A suite of retrieval programs has been written in order to facilitate data usage. At the present time, retrievals using the options described below are available for most of the sites listed in the Register of Selected Groundwater Observation Wells, although not all the data contained within this archive have been validated.

Five options are available for retrieving data. A description of each option is given below and examples of the computer listings and graphical output are given on pages 172 to 174 . Options 1 to 4 give details of the well site, the period of record available, and maximum and minimum recorded levels in addition to the output specific to each option. Data may be retrieved for a specific well or for groups of wells by well reference numbers, by area (using National Grid References), by aquifer, by hydrometric area, by water authority, or by any combination of these parameters.

## Cost of Service

To cover the computing and handling costs, a moderate charge will be made depending on the output options selected. Estimates of these charges
may be obtained on request; the right to amend or waive charges is reserved.

## Requests for Retrieval Options:

Requests for retrieval options should include: the name and address to which the output should be directed, the sites, or areas, for which data are required together with the period of record of interest (where appropriate) and the title of the required option. Where possible, a daytime telephone number should be given.

## Requests should be addressed to:

The British Geological Survey<br>Hydrogeology Research Group<br>Maclean Building<br>Crowmarsh Gifford<br>WALLINGFORD<br>OXFORDSHIRE OX10 8BB

Telephone (0491) 38800
Fax: (0491) 25338

## LIST OF GROUNDWATER RETRIEVAL OPTIONS

## OPTION TITLE

1 Table of groundwater levels

Table of annual maximum and minimum groundwater levels

Table of monthly maximum, minimum and mean groundwater levels

Hydrographs of groundwater levels

## NOTES

All recorded observations of groundwater level in metres above Ordnance Datum, with dates of observation and maximum and minimum levels for each year. Specific years, or ranges of years, may be requested, otherwise the full period of record is given.
Annual maximum and minimum groundwater levels in metres above Ordnance Datum with dates of occurrence. Specific years, or ranges of years, may be requested, otherwise the full period of record is given.
Monthly maximum, minimum and mean groundwater levels in metres above Ordnance Datum, together with the number of years contributing values to the calculation of each monthly mean. A specific period of years may be nominated, otherwise the full period of record is given.
Provides a well hydrograph for a number of specified years. Castellated annual plots of monthly maximum and mean groundwater levels calculated from a nominated period of years are superimposed upon the hydrograph, provided that the nominated period

Site details
exceeds 10 years. Tabulations of the monthly maximum, minimum and mean values are also listed, together with the number of years of record used in the calculations, and the number of observations used for each month.

The output comprises the well reference number of the British Geological Survey, the original (Water Data Unit) station number (where applicable), the hydrometric area, the aquifer name and code, the site name and location, the National Grid Reference, the depth of the well, the datum points (from which measurements are made), the altitude of the ground surface, the period of record and the water authority area in which the well or borehole is located.

## OPTION 1 TABLE OF GROUNDWATER LEVELS

Station number

Station name
Grid Reference
Water Authority
Hydrometric Area
Aquifer
Aquifer Code
EEC Unit
Surface Level (MOD)
Datum Point (MOD)
Well Depth (M)
Max. Expected (MOD)
Min. Expected (MOD)
Period of records in Archive:-

Maximum GW Level for period of records
23.69

Number of Maxima $\quad 1$
Date(s):-
14031977

Minimum GW Level for period of records
3.29

Number of Minima 1
Date(s):-
24081976
(Note: The above reference information is also provided with the output from options 2-4)

Station Number	TF03/37
Year of record	1975
Date	Level (MOD)
03 Jan	17.29
31 Jan	16.68
28 Feb	17.85
04 Apr	20.31
24 Apr	20.12
02 May	20.13
30 May	18.58
13 Jun	17.34
11 Jul	15.77


01 Aug	14.44
29 Aug	13.24
26 Sep	12.11
10 Oct	11.57
07 Nov	10.42
21 Nov	9.85
19 Dec	8.98
GW level for year	
maxima 1	20.31
or	
GW Level for year	8.98
minima 1	
ec	

OPTION 2 TABLE OF ANNUAL MAXIMUM AND MINIMUM GROUNDWATER LEVELS

Year	Max/Min	Level(MOD)	Date(s)	No. of occasions
1965	Max	21.50	26 Dec	1
	Min	7.85	24 Jan	
1966	Max	23.51	06 Mar	1
	Min	14.43	09 Oct-16 Oct	1 Period
1967	Max	19.79	04 Jun	
	Min	12.69	29 Oct	
1968	Max	22.06	17 Nov	
	Min	14.08	07 Jul	
1969	Max	23.17	30 Mar	
	Min	11.83	16 Nov	
1970	Max	20.21	26 Apr	
	Min	10.76	15 Nov	1

OPTION 3 TABLE OF MONTHLY MAXIMUM, MINIMUM AND MEAN
GROUNDWATER LEVELS
Period maximum, minimum and mean groundwater levels for years 1964 to 1985

	Maximum	Minimum	Mean	No. of years
Jan	22.58	7.85	14.75	21
Feb	23.29	7.97	16.50	21
Mar	23.69	6.14	17.27	21
Apr	22.97	5.61	17.17	22
May	22.00	4.80	16.52	21
Jun	21.28	4.11	15.40	21
Jul	19.69	3.42	14.03	21
Aug	17.08	3.29	12.97	21
Sep	18.84	3.37	12.23	21
Oct	17.98	3.82	11.78	21
Nov	22.06	7.03	12.08	21
Dec	21.51	7.81		21

## OPTION 4 HYDROGRAPHS OF GROUNDWATER LEVELS

Hydrograph of monthly maximums, minimums and means calculated from years 1964 to 1982
Therefore maximum number of years from which monthly maxs, mins and means may be calculated is 19

	Maximum	Minimum	Mean	No. of Years
Jan	22.58	7.85	14.77	18
Feb	23.29	7.97	16.47	18
Mar	23.69	6.14	17.34	18
Apr	22.97	5.61	17.23	19
May	22.00	4.80	16.42	19
Jun	21.28	4.11	13.23	19
Jul	19.69	3.42	12.98	19
Aug	17.08	3.29	12.28	19
Sep	18.84	3.37	11.85	19
Oct	17.98	3.82	12.20	19
Nov	22.06	7.03	13.09	19
Dec	21.51	7.81	19	

Hydrograph(s) plotted for year ranges:- 1973 to 1977


Max, Min and Mean values calculated from years 1964 to 1982

## OPTION 5 SITE DETAILS

BGS   NUMBER	COMPUTER   NUMBER	HA		NAME-LOCATION REC-PERIOD-WA AQUIFER	GRID REF.	DEPTH   (M)	DATUM point	SURFACE   LEVEL
NZ22/22	25624	25	17	RUSHYFORD NORTH EAST, GREAT CHILTON 1957-1985 NWA MAGNESIAN LIMESTONE	NZ 28752896	62.50	92.65	92.53
SE94/5	26352	26	6	DALTON ESTATE, DALTON HOLME 1889-1985 YWA CHALK AND UPPER GREENSAND	SE 96514530	28.50	34.57	33.50
SE43/9	27360	27	17	PEGGÝ ELLERTON FARM, HAZLEWOOD 1968-1985 YWA MAGNESIAN LIMESTONE	SE 45353964	55.42	51.40	51.40
TF03/37	30229	30	13	NEW RED LION, ASLACKBY   (CONTINUES OLD RED LION)   1964-1985 AWA LINCOLNSHIRE LIMESTONE	TF 08853034	50.00	33.45	33.82

# SURFACE WATER QUALITY DATA 

## Background

A national archive of water quality data is maintained by Her Majesty's Inspectorate of Pollution (Department of the Environment) to provide information concerning the quality of rivers throughout the United Kingdom and to satisfy certain international obligations - mostly concerned with the exchange of information. Data for this archive are collected as part of the Harmonised Monitoring programme which provides for the sampling and analysis of water quality on a national basis.

The Harmonised Monitoring Scheme was established, for England and Wales, in 1974; a similar scheme was instituted for Scotland, under the aegis of the Scottish Development Department, in July 1975. Responsibility for the collection and analysis of the samples rests with the 10 Water Authorities in England and Wales and the 7 River Purification Boards in Scotland.

Measuring authorities send analytical results of routinely collected samples of river water from approximately 220 monitoring stations; sampling frequencies vary substantially but are, typically, in the range 6 to 52 per year. Most of the monitoring stations are located on major rivers at, or near, the tidal limit.

The monitoring programme can embrace a large number - over 80 - of physical and chemical attributes of river water but typically only 25 are measured. A number of determinands are measured as standard but a larger proportion are monitored only where it is considered necessary to do so.

The measuring authorities maintain major programmes of chemical and biological sampling of rivers for their own purposes. From the 31st July 1985, Water Authorities have been required, under the Control of Pollution Act, to maintain registers of the results of all samples of water and effluent taken for pollution control purposes together with details of all consented discharges. These registers are open for inspection by the public - free of charge - at the offices of the Water Authorities. Persons wishing to consult the registers are advised to first contact the individual authorities; a list of addresses is given on pages 183 to 185 .

## Data Retrieval

A comprehensive range of retrieval options has been developed by Her Majesty's Inspectorate of Pollution to make available the water quality data held on the Harmonised Monitoring Archive and to provide statistical summaries based on that data. Requests for data, and guidance concerning its availability, should be addressed to:

Department of the Environment HMIP<br>Room A4. 26<br>Romney House<br>43 Marsham Street<br>London SW1P 3PY

Telephone: 012768245

## Scope of the Water Quality Data Tabulations

River water quality data are presented for 16 monitoring sites on rivers throughout the United Kingdom. The location of each monitoring site is given on Figure 14. For each site 1987, and period of record, data are given for a range of determinands; the determinands featured may differ between monitoring sites reflecting the character of the rivers themselves and differences in the sampling regimes between monitoring stations.


Figure 14. Water quality monitoring station location map.

The following notes are provided to assist in the interpretation of particular data items.

## Harmonised Monitoring Station Code

A five-digit reference number which serves as the primary identifier of the station on the Harmonised Monitoring Archive. The first two digits refer to the measuring authority, the remainder refer to individual sites within each measuring authority.

## Measuring Authority

An abbreviation referencing the organisation responsible for the operation of the monitoring site. See pages 183 to 185 for a full list of the codes together with the corresponding authority names and addresses.

The Government's legislative programme provides for the setting up of a new body, the National Rivers Authority, which will assume responsibility, in England and Wales, for much of the sampling and analysis of the data submitted to the Harmonised Monitoring Archive for water quality stations in the national network.

## Grid Reference

The initial two-letter and two-figure codes each designate the relevant 100 kilometre National Grid square; the standard six-figure map reference follows.

## Associated Flow Measurement Station

The reference number, name, catchment area and grid reference of the gauging station whose flow record is used to determine the discharge data stored on the Harmonised Monitoring Archive. For most sites the flow corresponding to the time the quality sample was taken is archived; at other locations the corresponding daily mean flow is utilised. Where the gauging station and water quality monitoring site are not coincident some method of flow adjustment may have been employed to allow for the differing catchment areas.

1987 flow data for all but one of the relevant gauging stations may be found in the River Flow Data section. The shortness of the flow record for the Fleet Weir gauging station on the River Aire precludes its incorporation in the River Flow Data section; summary river flow data for 1987 are, however, included at the head of the water quality listing.

## Determinands

Inadequate or unrepresentative sampling frequencies, or the presence of a substantial number of samples with concentrations recorded at or below the
limit of detection, will normally result in the omission of a particular determinand.

## Notes:

i. Conductivity results are standardised to $20^{\circ} \mathrm{C}$.
ii. The biochemical oxygen demand data normally relate to the inhibited analytical results BOD (atu).
iii. Nitrate concentrations are normally derived by subtracting the nitrite concentration from the reported Total Oxidised Nitrogen (TON) concentration; if the nitrite determination is below the limit of detection, nitrate is recorded as equivalent to TON.

## Units

The standard units used to record and report each determinand. The precision with which individual data values, for each determinand, are presented corresponds to the way the data are stored on the Harmonised Monitoring Archive and reflects the uncertainty associated with the relevant analytical procedures.

## 1987 Data

## Samples

The number of samples taken for each determinand during 1987. Where a proportion of analytical results were below the limit of detection, the number of samples in this category is given in parentheses.

## Mean

The average* of all the sample values for each determinand in 1987. Where concentrations below the limit of detection are held on the Harmonised Monitoring Archive, the threshold value itself is used to compute the mean.

## Maximum / Date

The maximum determinand value recorded during 1987 together with its date of occurrence. Where the maximum value recurs the date refers to the initial occurrence.

## Minimum / Date

The minimum determinand value together with its date of occurrence. Where the minimum value recurs the date refers to the initial occurrence. $\mathrm{A}<$ symbol indicates a value below the limit of detection.

## Period of Record Data

Generally, the pre-1987 summary statistics are presented for the thirteen-year period beginning in 1974; where individual stations were not incorporated into the Harmonised Monitoring network until after 1974, the appropriate first year of data is given. For certain stations the sampling frequency varies significantly from year to year and data for a few determinands may not extend over the full period of record; in particular the first year of data will normally be incomplete.

Where the pre-1987 data series includes values below the limit of detection, the threshold value has been used in the computation of the summary statistics.

For a number of the featured monitoring stations, a considerable amount of pre-1974 data, at least for certain determinands, may be stored on local, or regional, archives maintained by the measuring authorities. Also, for the period 1974-86, such archives may hold analytical results for substantially more samples than are represented on the Harmonised Monitoring Archive. Hence full equivalence between statistical summaries derived from national and regional databases cannot be expected for all monitoring sites.

## Mean

The average* value of all the sample values for each determinand:-

## Percentiles

The 5, 50 and 95 percentile values for each determinand based on all the samples taken over the 1974-86 period.

## Quarterly Averages

The mean quarterly average* for each of the threemonthly periods: January to March, April to June, July to September and October to December.

[^5]| Harmonised monitoring code: 01008 |  |
| :--- | :--- |
| Measuring authority : | NWWA |
| Grid reference : | $\mathbf{3 4}$ (SD) 590305 |


Daterminand	Units	- 1987					
		Samples	Mean	Max.	Date	Min.	Date
Temperature	${ }^{\circ} \mathrm{C}$	48	9.4	17.5	20/08	0.0	15/01
pH	pH units	48	7.7	8.6	09/07	. 6.8	12/11
Conductivity	$\mu \mathrm{S} / \mathrm{cm}$	48	379	533	17/12	218	19/11
Suspended solids	$\mathrm{mg} / \mathrm{l}$	48 (2)	18.4	182.0	04/06	$<1.0$	05/11
Dissolved oxygen	$\mathrm{mg} / 10$	48	9.64	13.04	10/12	4.20	04/06
Biochemical oxygen demand	$\mathrm{mg} / \mathrm{l} 0$	47	2.8	13.4	04/06	0.6	01/10
Chemical oxygen demand	$\mathrm{mg} / \mathrm{l} 0$	48 (2)	25.9	101.0	30/07	$<4.0$	23/07
Ammoniacal nitrogen	$\mathrm{mg} / \mathrm{IN}$	48 (2)	0.226	1.250	15/01	$<0.005$	28/05
Nitrite	$\mathrm{mg} / \mathrm{N}$	48	0.072	0.160	08/10	0.028	15/10
Nitrate	$\mathrm{mg} / \mathrm{l} \mathrm{N}$	46	3.64	9.25	28/05	0.63	23/04
Chtoride	$\mathrm{mg} / \mathrm{Cl}$	48	33.4	144.0	09/04	12.0	15/10
Total alkalinity	$\mathrm{mg}_{\mathrm{fl}} \mathrm{CaCO}_{3}$	36	118.4	156.0	12/03	62.0	12/02
Orthophosphate	$\mathrm{mg} / \mathrm{l} P$	34	0.510	1.475	30/04	0.075	23/04

$\mathrm{mg} / \mathrm{IP}$

Nene at Wansford
1987
$\begin{array}{ll}\text { Harmonised monitoring code: } 05511 \\ \text { Measuring authority: } & \text { AWA } \\ \text { Grid reference: } & 52 \text { (TL) } 082996\end{array}$

-     - 1987

Units Samplea Mean Max. Date Min Date
Determinand
Temperature pH
Conductivity
Suspended solids
Bischemed oxygen
Berngen dernand
Ammoniacal nitrogon
Nutrit
Chloride
Total alkalinity
Orthophosphate

Units	Sample	Mean	Max.	Date	Min.	Date
${ }^{\circ} \mathrm{C}$	50	11.3	21.0	14/07	1.0	12/01
pH units	49	8.0	9.0	26/05	7.0	02/12
$\mu \mathrm{S} / \mathrm{cm}$	42	952	1127	05/10 ${ }^{\text {² }}$	476	23/07
$\mathrm{mg} / \mathrm{l}$	49	16.9	120.0	06/04	1.0	14/08
$\mathrm{mg} / \mathrm{l} 0$	50	10.35	13.60	20/01	7.30	14/07
mrg/l 0	49 (2)	3.2	11.0	28/05	0.2	08/09
$\mathrm{mg} / \mathrm{fl}$	50 (1)	0.283	1.010	02/02	0.010	14/08
$\mathrm{mg} / \mathrm{N}$	50 (2)	0.108	0.280	23/07	$<0.010$	15/12
$\mathrm{mg} / \mathrm{N}$	49	10.93	17.51	22/04	6.56	14/07
$\mathrm{mg} / \mathrm{Cl}$	49	70.6	125.0	26/08	44.0	06/04
$\mathrm{mg} / \mathrm{CaCO}_{3}$	42	211.7	375.0	09/09	178.0	21/10
$\mathrm{mg} / \mathrm{P}$	45	1.260	2.400	23/07	0.311	25/11

Flow measurement station : 032001-Orton Catchment area (sq km) : $\quad 1634.3$ Grid reference: $\quad 52$ (TL) 166972
$\qquad$

## Stour at Langham

1987
Flow measurement station : 036006 - Langham
Catchment area ( sq km ) : $\quad 578.0^{\circ}$
Grid reference :
62 (TM) 020344

Harmonised monitoring code: 05810
Measuring authority:
Grid reference :
AWA

62 (TM) 026345

Units	1987					
	Samples	Mean	Max.	Date	Min.	Date
${ }^{\circ} \mathrm{C}$	48	10.6	21.0	20/08	2.0	29/01
pH units	48	8.2	8.8	28/05	7.9	29/01
$\mu \mathrm{S} / \mathrm{cm}$	48	919	1100	05/03	690	09/07
$\mathrm{mg} / \mathrm{l}$	47	20.5	120.0	12/11	3.0	05/02
$\mathrm{mg} / 10$	48	11.31	16.50	09/07	5.50	16/07
$\mathrm{mg} / 10$	48 (1)	2.8	9.0	14/05	$<1.0$	19/02
$\mathrm{mg} / \mathrm{l} \mathrm{N}$	48(10)	0.138	1.100	22/01	$<0.020$	30/04
$\mathrm{mg} / \mathrm{l} \mathrm{N}$	13	0.078	0.150	29/10	0.030	06/08
$\mathrm{mg} / \mathrm{N}$	48	8.68	15.00	08/01	3.80	09/07
$\mathrm{mg} / \mathrm{lCl}$	48	55.4	88.0	01/10	30.0	18/06
$\mathrm{mg} / \mathrm{CoCO} 3$	28	271.0	335.0	29/10	180.0	09/07
$\mathrm{mg} / \mathrm{P}$	47	0.580	1.500	11/06	0.100	09/07


Mean	5\% $\begin{gathered}\text { Percentiles } \\ 50 \%\end{gathered}$			Quarterty averages			
				J-M	A-J	J.S	O-D
$\therefore 11.2$	2.0	11.0	20.0	4.7	13.5	17.1	8.3
8.2	7.8	8.1	8.8	8.0	8.4	8.2	8.0
915	749	920	1100	937	884	894	951
16.0	3.0	9.0	50.5	19.1	19.8	11.1	16.1
10.8	7.5	10.9	14.0	12.2	11.4	9.2	10.6
3.2	1.0	2.3	9.4	2.3	5.3	2.7	2.3
0.13	0.02	0.08	0.42	0.23	0.09	0.08	0.15
0.08	0.02	0.07	0.16	0.07	0.10	0.05	0.09
8.7	2.8	8.0	16.0	13.3	8.3	4.6	9.2
67.4	39.0	65.0	97.0	58.7	61.2	75.0	71.8
242.4	195.0	250.0	280.0	238.1	240.8	248.5	246.0
0.66	0.15	0.60	1.40	0.45	0.51	0.81	0.83

## Thames at Teddington Weir

1987

Harmonised monitoring code : 06010
Measuring authority: TWA
Grid reference :

TWA
51 (TQ) 171714

1987

Unita	Samples	Mean	Max.	Date	Min.	Date
${ }^{\circ} \mathrm{C}$	23	11.8	21.0	29/06	1.5	21/01
pH units	23	7.8	8.8	13/05	7.3	07/10
$\mu \mathrm{S} / \mathrm{cm}$	21	735	805	09/09	674	13/05
$\mathrm{mg} / \mathrm{l}$	21	18.8	37.3	11/11	5.5	07/10
$\mathrm{mg} / \mathrm{l} 0$	9	9.75	14.30	21/05	6.40	15/07
$\mathrm{mg} / \mathrm{O}$	24 (1)	2.6	7.8	13/05	$<1.0$	02/04
mg/l N	24 (3)	0.350	1.100	07/10	$<0.050$	13/05
$\mathrm{mg} / \mathrm{N}$	20	0.093	0.170	12/02	0.029	07/10
$\mathrm{mg} / \mathrm{N}$	24	8.85	8.90	02/04	5.18	17/06
$\mathrm{mg} / \mathrm{ll}$	24	43.0	54.0	12/01	34.0	14/04
$\mathrm{mg/f} \mathrm{CaCO}_{3}$	21	200.2	223.0	13/05	165.0	20/10

Flow measurement station : 039001 - Kingston
Catchment area (sq km) : 9948.0 Grid reference : 51 (TQ) 177698

Period of record: 1974-1986								
Mean	Percentiles				Ouarterty averages			
	$5 \%$	$50 \%$	$95 \%$	J-M	A-J	J-S	O-D	
11.5	3.0	11.0	20.0	5.7	13.6	18.0	9.4	
8.0	7.6	8.0	8.7	8.0	8.3	8.0	7.9	
580	485	585	706	584	568	608	587	
22.8	4.8	14.5	77.0	27.8	22.8	13.5	26.2	
10.1	7.1	10.1	13.1	11.4	10.5	8.6	9.8	
2.9	1.0	2.3	6.5	2.1	4.1	3.0	2.1	
0.32	0.01	0.22	0.94	0.32	0.22	0.40	0.36	
0.12	0.06	0.10	0.22	0.10	0.10	0.10	0.13	
7.5	5.5	7.2	10.6	8.6	6.7	6.8	7.8	
41.3	30.0	40.0	59.0	40.0	38.2	45.3	42.2	
185.8	149.0	190.0	213.6	184.7	192.3	190.9	177.0	
1.33	0.40	1.08	2.94	0.81	1.08	2.08	1.40	


Harmonised monitoring code : 07003	
Measuring authority:	SWA
Grid reference:	61 (TR) 187603


Doterminand	Unita	1987					
		Samples	Mean	Max.	Date	Min.	Date
Temperature	${ }^{\circ} \mathrm{C}$	15	10.7	18.0	24/08	1.0	20/01
pH	pH units	18	7.8	8.0	09/03	7.4	22/07
Conductivity	$\mu \mathrm{S} / \mathrm{cm}$	16	683	774	05/02	504	22/07
Suspended solids	$\mathrm{mg} / \mathrm{l}$	16	9.3	21.0	22/07	3.3	24/08
Disnolved oxygen	$\mathrm{mg} / \mathrm{O}$	15	9.96	16.30	04/03	4.10	22/07
Biochemical oxygen demend	$\mathrm{mg} / 10$	16	2.6	6.6	20/01	1.1	12/08
Ammoniscal nitrogan	$\mathrm{mg} / \mathrm{l} \mathrm{N}$	16 (1)	0.548	1.800	16/12	<0.020	13/07
Nitrite	$\mathrm{mg} / \mathrm{N}$	16	0.093	0.150	27/10	0.030	07/09
Nitrate	$\mathrm{mg} / \mathrm{N}$	16	5.93	8.70	09/03	4.20	22/07
Chlorido	$\mathrm{mg} / \mathrm{Cl}$	16	61.1	87.0	20/01	42.0	07/09
Orthophosphate	$\mathrm{mg} / \mathrm{P}$	16	0.879	1.500	13/07	0.500	25/11


Period of record: 1974-1986							
Mean	Porcentiles			Quarterty averages			
	5\%	50\%	95\%	J-M	A-J	J-S	O-D
11.8	4.0	11.9	18.0	6.6	13.2	18.4	10.3
7.8	7.3	7.8	8.3	7.7	7.9	7.9	7.7
693	590	695	785	693	677	688	714
12.8	2.0	7.0	44.3	21.8	7.6	5.7	15.6
11.0	7.6	10.8	15.1	11.8	11.7	10.0	10.3
2.8	1.2	2.6	5.2	3.2	3.1	2.3	2.6
0.33	0.02	0.15	1.39	0.53	0.36	0.10	0.37
0.10	0.03	0.08	0.28	0.09	0.12	0.10	0.12
5.8	3.9	5.6	8.6	6.9	5.3	4.8	6.3
49.4	37.0	48.0	70.5	52.1	46.0	48.7	53.2
0.93	0.33	0.87	1.64	0.65	0.89	1.13	1.05


Harmonised monitoring code : 07013	
Measuring authority:	SWA
Grid reference :	41 (SU) 434156

SWA
41 (SU) 434156

Flow measurement station : 042010-Highbridge + Allbrook Catchment area (sq km) :
Grid reference :
360.0

41 (SU) 467213

Determinand	Unita	1987					
		Samplez	Mean	Max.	Date	Min.	Date
Temperature	${ }^{\circ} \mathrm{C}$	27	11.3	17.0	18/09	3.0	22/01
pH	pH units	29	8.2	8.7	01/10	7.5	03/06
Conductivity	$\mu \mathrm{S} / \mathrm{cm}$	29	545	619	05/08	487	09/04
Suspended solids	$\mathrm{mg} / \mathrm{l}$	29	10.9	26.9	02/04	2.6	18/09
Biochernical oxygen demand	$\mathrm{mg} / \mathrm{l} \mathrm{O}$	29	1.9	4.4	13/01	0.3	17/07
Ammoniacal nitrogen	$\mathrm{mg} / \mathrm{N}$	27 (4)	0.137	0.640	01/10	$<0.005$	10/11
Nitrite	$\mathrm{mg} / \mathrm{l} \mathrm{N}$	28 (1)	0.065	0.571	27/05	$<0.010$	05/08
Nitrate	$\mathrm{mg} / \mathrm{IN}$	24	5.15	7.58	01/10	3.54	23/04
Chloride	$\mathrm{mg} / \mathrm{Cl}$	28	21.2	30.7	04/11	15.4	08/10
Total alkalinity	$\mathrm{mg} / \mathrm{CaCO} 3$	2	230.0	236.0	03/06	224.0	04/03
Fluoride	$\mathrm{mg} / \mathrm{F}$	29	0.08	0.10	02/09	0.08	06/05
Orthophosphate	$\mathrm{mg} / \mathrm{P}$	28 (1)	0.368	0.860	01/10	$<0.010$	27/05


Period of record: 1974-1986							
Mean	Percentilas			Quarterly avarages			
	5\%	50\%	95\%	J-M	A-J		O-D
10.7	4.0	10.0	18.0	6.9	12.7	16.1	10.1
8.1	7.8	8.1	8.4	8.1	8.1	8.2	8.0
496	440	498	576	502	494	503	508
12.8	2.6	8.1	32.8	23.7	10.6	4.6	12.1
2.1	1.0	2.0	3.6	2.2	2.4	1.5	2.0
0.11	0.01	0.09	0.28	0.17	0.07	0.07	0.12
0.05	0.03	0.04	0.09	0.04	0.05	0.05	0.06
5.2	4.0	5.2	6.1	5.5	5.2	4.6	5.1
20.9	17.4	20.3	25.3	21.0	20.1	20.2	22.2
228.5	179.0	230.0	260.0	235.0	227.0	230.0	223.0
0.07	0.04	0.07	0.10	0.07	0.07	0.08	0.08
0.37	0.14	0.37	0.68	0.31	0.32	0.42	0.48

Axe at Whitford Road Bridge
Harmonised monitori
Measuring authority
Grid reference :
09001
30 (SY) 262953

Samples	Mean	Max.	Date	Min.	Date
22	9.5	16.5	19/08	3.0	13/03
24	8.2	8.6	06/07	7.7	19/10
24	388	456	19/08	294	19/10
24	9.3	40.0	19/10	2.0	19/08
24	11.21	13.90	19/05	8.50	19/10
24	2.0	4.0	23/01	0.9	14/10
24 (2)	0.092	0.380	23/01	$<0.010$	15/06
24	0.045	0.089	28/10	0.018	14/12
24	4.11	5.50	28/10	2.30	19/11
24	23.9	30.5	23/01	14.0	19/05
24	135.3	170.0	19/08	74.0	19/10
24	0.237	0.370	01/09	0.060	03/11

1987
Flow measurement station : 045004 - Whitford Catchment area (sq km) : 288.5
Grid reference: $\quad 30$ (SY) 262953
Period of record: 1974-1986

Mean	Percentiles			Quarterly averages			
	5\%	50\%	95\%	J-M	A-J		O-D
10.8	3.5	10.0	18.0	5.9	12.3	16.2	8.8
7.9	7.4	7.9	8.5	7.8	8.1	8.0	7.8
382	293	387	483	361	387	420	364
15.1	2.0	6.0	55.2	18.2	11.0	5.9	23.0
11.0	8.5	10.9	13.7	12.0	11.1	10.1	10.7
2.1	0.9	1.7	4.4	2.2	2.3	1.8	2.0
0.11	0.01	0.07	0.35	0.17	0.08	0.06	0.13
0.05	0.02	0.04	0.10	0.04	0.06	0.03	0.06
3.7	2.1	3.5	5.7	4.1	3.2	3.0	4.8
23.2	18.6	22.0	29.2	23.9	21.0	23.1	24.9
133.8	82.3	138.0	167.0	116.8	140.9	155.1	124.3
0.24	0.12	0.22	0.44	0.18	0.23	0.31	0.23

Exe at Thorverton Road Bridge

Harmonised monitoring code : 09036
Measuring authority
Grid reference :

Determinand	Units	1987					
		Samples	Mean	Max.	Date	Min.	Dato
Temperature	${ }^{\circ} \mathrm{C}$	16	8.9	16.5	04/08	3.0	19/01
pH	pH units	16	7.7	8.4	12/05	7.4	24/03
Conductivity	$\mu \mathrm{S} / \mathrm{cm}$	16	169	212	18/05	126	24/03
Suspended solicts	$\mathrm{mg} / \mathrm{l}$	16	10.9	31.0	24/03	3.0	03/11
Dissolved oxygen	$\mathrm{mg} / 10$	16	11.68	14.00	19/01	8.70	16/07
Biochemical oxygen demand	$\mathrm{mg} / 10$	16	1.8	4.0	16/12	0.7	04/08
Ammoniacal nitrogen	$\mathrm{mg} / \mathrm{N}$	16 (1)	0.082	0.290	16/12	$<0.010$	18/05
Nitrite	$\mathrm{mg} / \mathrm{N}$	16	0.027	0.050	16/07	0.013	18/11
Nitrate	$\mathrm{mg} / \mathrm{N}$	16	2.58	3.30	03/02	1.90	08/06
Chloride	$\mathrm{mg} / \mathrm{Cl}$	16	16.4	23.0	03/02	12.2	24/03
Total alkalinity	$\mathrm{mg} / \mathrm{CaCO} 3$	16	39.5	56.0	12/05	25.0	24/03
Orthophosphate	$\mathrm{mg} / \mathrm{P}$	16	0.093	0.200	04/08	0.040	30/03

Flow measurement station : 045001-Thorverton Catchment area ( sq km ) : 600.9 Grid reference:

21 (SS) 936016

Period of record: 1974-1986							
Man	Percentiles			Quarterty averages			
	5\%	50\%	95\%	J-M	A.J	J-S	$0 \cdot 0$
11.3	4.0	10.5	19.0	6.1	13.0	16.6	9.5
7.4	6.8	7.5	8.1	7.3	7.7	7.5	7.3
171	122	160	244	155	178	193	157
11.7	2.0	6.0	41.2	13.9	10.9	6.8	15.0
11.1	8.8	11.3	13.3	12.4	11.0	9.7	11.2
1.7	0.8	$1.6{ }^{\circ}$	3.3	1.6	2.2	1.5	1.6
0.07	0.01	0.05	0.19	0.08	0.08	0.05	0.06
0.03	0.01	0.02	0.06	0.02	0.04	0.03	0.02
2.5	1.5	2.4	3.8	2.9	2.4	2.0	2.5
17.9	12.9	17.0	27.4	17.4	17.4	20.0	18.4
40.1	24.0	37.0	65.0	32.6	44.2	48.4	35.8
0.12	0.03	0.08	0.31	0.06	0.13	0.20	0.08

Dee at Overton
Harmonised monitoring code : 10002
Measuring authority: WELS
Grid reference :
Determinand

Temperature
pH
Conductivity
Suspended solids
Dissolved oxygen
Ammoniaca! nitrogen
Nitrite
Nitrate
Choride
Orthophosphate

33 (SJ) 354427

Flow measurement station : 067015 - Manley Hall Catchment area ( sq km ) : 1019.3 Grid reference :

33 (SJ) 348415

Period of record: 1974-1988							
Mean	Percentiles			Quarterly averages			
	5\%	50\%	95\%	J.M	A.J	J-S	O-D
9.9	2.7	9.6	17.6	4.6	11.5	15.3	8.0
7.2	6.5	7.2	7.8	7.2	7.3	7.2	7.1
171	97	163	267	161	211	177	136
8.9	1.0	3.0	38.3	11.2	5.8	5.8	13.3
11.2	9.1	11.2	13.3	12.7	10.8	9.8	11.7
0.05	0.01	0.04	0.15	0.06	0.04	0.04	0.06
0.02	0.01	0.01	0.05	0.02	0.02	0.02	0.02
1.2	0.5	1.1	2.2	1.5	1.2	0.9	1.1
19.6	10.0	18.2	33.0	19.7	22.9	20.7	15.4
0.06	0.01	0.05	0.16	0.05	0.06	0.07	0.05

Harmonised monitoring code: 11009
Measuring authority :
Grid reference :
HRPB
18 (NG) 938425

Flow measurement station : 093001 - New Kelso Catchment ares (sq km) : $\quad 137.8$ Grid reference :

8 (NG) 942429

Mean	Porcentiles			Quarterly averages			
	5\%	50\%	95\%	J-M	A.J	J.S	O-D
8.5	2.1	8.6	15.2	3.6	11.0	12.9	7.1
6.7	5.8	6.7	7.4	6.7	6.7	6.7	6.6
46	27	44	66	51	48	42	40
1.6	0.2	1.0	4.8	1.8	1.3	1.4	1.6
11.4	9.8	11.3	13.2	12.7	11.0	10.1	11.4
0.8	0.2	0.8	1.4	0.8	0.7	0.8	0.9
0.01	0.00	0.01	0.03	0.01	0.01	0.01	0.01
0.01	0.00	0.01	0.01	0.01	0.01	0.01	0.01
0.1	0.0	0.1	0.1	0.1	0.1	0.1	0.1
11.2	6.0	10.0	18.9	14.3	19.0	8.5	9.5
6.9	1.9	5.0	15.0	6.6	6.8	6.9	6.0
0.00	0.00	0.00	0.01	0.00	0.01	0.01	0.00

Spey at Fochabers
Harmonised monitoring code : 12002
Measuring authority:
Grid reference :

## NERPB

38 (NJ) 341596

Flow measurement station : 008006-Boat o Brig
Catchment area ( sq km ) : $\quad 2861.2$
Grid reference :
$38(\mathrm{NJ}) 318518$

Period of record: 1974-1986							
Mean	Percentiles			Quarterty averages			
	5\%	50\%	95\%	J.M	A-J	J-S	0.0
9.1	1.7	9.3	18.7	3.2	9.8	14.3	6.0
7.1	6.3	7.2	7.8	6.9	7.2	7.4	6.9
77	50	76	109	81	70	83	69
3.7	0.0	2.0	19.2	3.0	4.0	4.9	4.2
11.3	9.2	11.2	13.6	12.8	11.0	9.9	11.7
0.9	0.5	0.9	1.5	0.8	1.0	0.9	0.9
0.04	0.00	0.02	0.12	0.03	0.04	0.05	0.03
0.01	0.00	0.01	0.02	0.01	0.01	0.01	0.01
0.3	0.2	0.3	0.7	0.5	0.3	0.3	0.3
10.9	7.0	10.0	16.0	12.7	10.2	10.6	9.3
27.4	17.0	25.0	40.0	23.6	25.4	30.1	27.7
0.03	0.00	0.01	0.12	0.02	0.02	0.04	0.02

Almond at Craigiehall

Harmonised monitoring code:	14008
Measuring authority :	FRPB
Grid reference:	36 (NT) 165752

Grid reference : $\quad 36$ (NT) 165752
Oeterminand
Temperature
pH
Conductivity
Suspended solids
Dissolved oxygen
Biochamical oxygen demand
Ammoniscal nitrogen
Nitrita
Nitrate
Chloride
Totel alkalinity
Fluoride
Orthophosphate

Daterminand	Unite	1987					
		Samplos	Masn	Max.	Date	Min.	Dat*
Tomporature	${ }^{\circ} \mathrm{C}$	17	10.7	16.5	18/08	1.5	26/02
pH	pH units	16	7.2	7.6	02/06	6.7	15/09
Conductivity	$\mu \mathrm{S} / \mathrm{cm}$	16	75	88	04/08	48	15/09
Suspended solids	$\mathrm{mg} / \mathrm{l}$	17	8.6	38.0	04/08	0.1	01/12
Dismolvad oxygen	mg/l 0	8	11.53	13.15	28/02	9.25	18/08
Biochemical oxygen demand	$\mathrm{mg} / \mathrm{l} 0$	17	0.9	1.7	18/08	0.4	07/07
Ammoniacal nitrogen	$\mathrm{mg} / \mathrm{N}$	17	0.046	0.231	16/08	0.003	16/06
Nitrite	$\mathrm{mg} / \mathrm{N}$	17	0.007	0.016	25/08	0.003	02/08
Nitrate	$\mathrm{mg} / \mathrm{N}$	17	0.34	0.99	04/08	0.18	15/09
Chlorite	$\mathrm{mg} / \mathrm{Cl}$	17	8.7	11.0	26/02	6.0	15/09
Total elkalinity	$\mathrm{mg} / \mathrm{CaCO} 3$	17	26.5	35.0	15/07	15.0	15/09
Orthophosphate	$\mathrm{mg} / \mathrm{P}$	17	0.026	0.107	11/08	0.004	02/06

# DIRECTORY OF MEASURING <br> AUTHORITIES 

The Government's current legislative programme provides for the creation of water utility PLCs to take over the Water Authorities' responsibilities for water supply and sewerage and for the setting up of a new body, the National Rivers Authority, to operate their regulatory and river management functions. Responsibility for most hydrometric activities will pass to the NRA. As part of the necessary restructuring prior to this major water industry reorganisation, 'shadow' regional NRA Units have been established in each Water Authority. The Units began operating as fully independant units within each Water Authority on the 1st April 1989. The official addresses of each Unit appears in the list below. Some further relocation of offices is expected; an updated address list will appear in the 1988 Yearbook.

Water Authorities	Address	Code
Anglian Water	Ambury Road, Huntingdon PE18 6NZ	AWA
NRA Regional Unit	Aqua House, London Road, Peterborough PE2 8AG	
Northumbrian Water	PO Box 4, Regent Centre, Gosforth, Newcastle-upon-Tyne NE3 3PX	NWA
NRA Regional Unit	Eldon House, Regent Centre, Gosforth, Newcastle-upon-Tyne NE3 3UD	
North West Water	Dawson House, Great Sankey, Warrington WA5 3LW	NWWA
NRA Regional Unit	PO Box 12, New Town House, Buttermarket Street, Warrington WA1 2QG	
Severn-Trent Water	Abelson House, 2297 Coventry Road, Sheldon, Birmingham B26 3PU	STWA
NRA Regional Unit	Sapphire East, 550 Streetsbrook Road, Solihull B91 1QT	
Southern Water	Guildbourne House, Chatsworth Road, Worthing, W. Sussex BN11 1LD	SWA
NRA Regional Unit	Guildbourne House, Chatsworth Road, Worthing, W. Sussex BN11 1LD	
South West Water	Peninsula House, Rydon Lane, Exeter EX2 7HR	SWWA
NRA Regional Unit	Manley House, Kestrel Way, Exeter EX2 7LQ	
Thames Water	Nugent House, Vastern Road, Reading RGl 8DB	TWA
NRA Regional Unit	Kings Meadow House, Kings Meadow Road, Reading RG1 8DQ	
Welsh Water	Plas-y-ffynnon, Cambrian Way, Brecon, Powys LD3 7HP	WELS   (WELSH)

NRA Regional Unit

Wessex Water

NRA Regional Unit

Yorkshire Water

NRA Regional Unit

Rivers House/Plas-yr-Afon, St Mellons Business Park, St Mellons, Cardiff CF3 0EG

Wessex House, Passage Street, WWA Bristol BS2 0JQ

Bridgwater House, King Square, Bridgwater, Somerset TA6 3EA

West Riding House, 67 Albion Street, YWA Leeds LSI 5AA

21 Park Square South, Leeds LS1 2QG

Rivers House, Murray Road, CRPB East Kilbride, Glasgow G75 0LA
Colinton Dell House, West Mill Road, FRPB Colinton, Edinburgh EH13 0PH

Strathpeffer Road, HRPB Dingwall IV15 9QY

Greyhope House, Greyhope Road, NERPB Torry, Aberdeen AB1 3RD
Rivers House, Irongray Road, SRPB Dumfries DG2 0JE

1 South Street, TRPB Perth PH2 8NJ

Burnbrae, Mossilee Road, TWRP Galashiels TD1 1NF

West Grove, Waverley Road,
BRWD Melrose TD6 9SJ

Geddington Road, Corby,
CDWC Northants NN18 8ES

Water Service, DOEN 3 Federick Street, Belfast BT1 2NS

Marchmount.House,
DGRW
Dumfries DG1 INR

Hall Street, Chelmsford,	EWC
Essex CM2 OHH	
20 College Gardens,	GSNI
Belfast BT9 6BS	

Woodhill House, GRWD

Ashgrove Road West, Aberdeen AB9 2LU

Highland Regional Council (Water Department)	Regional Buildings, Glenurquhart Road, Inverness IV3 5NX	HRCW
Institute of Hydrology	Maclean Building, Crowmarsh Gifford, Wallingford OX10 8BB	IH
Lothian Regional Council (Department of Water and Drainage)	8 Cockburn Street, Edinburgh EH1 1NZ	LRWD
Newcastle and Gateshead Water Company	PO Box 10, Allendale Road, Newcastle-upon-Tyne NE6 2SW	NGWC
North of Scotland Hydro-Electric Board	16 Rothesay Terrace, Edinburgh EH3 7SE	NSHE
Strathclyde Regional Council (Water Department)	419 Balmore Road, Glasgow G22 6NU	SRCW
Tayside Regional Council (Water Services Department)	Bullion House, Invergowrie, Dundee DD2 5BB	TRWS

# PUBLICATIONS - in the Hydrological data UK series 

Title	Published	Price (inclusive of second class postage within the UK)	
Yearbooks:		Loose Leaf	Bound
Yearbook 1981	1985	$¢_{10}$	¢12
Yearbook 1982	1985	¢10	$£ 12$
Yearbook 1983	1986	¢12	$£ 15$
Yearbook 1984	1986	¢12	¢15
Yearbook 1985	1987	$¢ 12$	$£ 15$
Yearbook 1986	1988	£12	$£ 15$
Yearbook 1987	1989	$¢ 12$	¢15
Reports:			
Hydrometric Register and Statistics 1981-5	1988	$¢ 12$	$£ 15$
The 1984 Drought ${ }^{\text {² }}$	1985		$£ 12$

The Yearbooks are available as bound volumes or as sets of pre-punched sheets for insertion in a ring binder designed to hold the five yearbooks in each publication cycle together with the five-yearly catalogue of summary statistics. The ring binder for 1981-5 may be purchased for $£ 40$ to include the

## 1. Hydrometric Register and Statistics 1981-5

This reference volume includes maps, tables and statistics for over 800 river basins and 150 representative observation boreholes throughout the United Kingdom. The principal objective of the publication is to assist data users in the selection of monitoring sites for particular investigations and to allow more effective interpretation of analyses based upon the raw data. To this end, concise gauging station and catchment descriptions are given for the featured flow measurement stations - particular emphasis is placed on hydrometric performance, especially in the high and low flow ranges, and on the net effect of artificial influences on the natural flow regime.

Summary hydrometric statistics, for each of the years 1981-5, are provided alongside the corresponding long term averages, or extremes, to allow the recent variability in surface and groundwater resources to be considered in a suitable historical context.

1981, 1982, 1983, 1984 and 1985 Yearbooks and the statistical volume. The ringbinder to hold the Yearbooks for 1986-90 may be purchased for $£ 5$.

Organisations and individuals purchasing the ring binder will be entitled to receive free updates of the data sheets for individual Yearbooks when a significant revision to the published data is made.

All the Hydrological data UK publications and the ring binder may be obtained from:-

Institute of Hydrology
Maclean Building
Crowmarsh Gifford
WALLINGFORD
OXFORDSHIRE OX10 8BB
Telephone: Wallingford (0491) 38800
Enquiries or comments regarding the series, or individual publications are welcomed and should be directed to the Surface Water Archive Office at the above address.

## 2. The 1984 Drought

This, the first, occasional report in the Hydrological data UK series concerns the 1984 drought. The report documents the drought in a water resources framework and its development, duration and severity are examined with particular reference to regional variations in intensity. Assessments are made of the likely frequency of occurrence of the drought and its magnitude is considered both in the perspective provided by historical records of rainfall and runoff, and in the context of the recent somewhat erratic climatic behaviour.

## ABBREVIATIONS

Note: The following abbreviations do not $p$ represent any standardised usage; they h developed for use in the Hydrological data of publications only. Where space constra required alternative forms of these con abbreviations to be used, the meaning s evident from the context.	
AOD	Above Ordnance Datum
Bk	Beck
Blk	Black
Br	Bridge
Brk or B	Brook
Brn	Burn
CEGB	Central electricity generating board
Ch	Channel
C/m	Current meter(ing)
Com	Common
Dk	Dike
Dr or D	Drain
D/s	Downstream
E	East
Frm	Farm
G/s	Gauging station
Gw	Groundwater
HEP	Hydro-electric power
Ho	House
Hosp	Hospital
L	Loch or lake
Lb	Left hand river bank (looking downstream)
Ln	Lane
Lst	Limestone
Ltl	Little
MAF	Mean annual flood
Mkt	Market
M1/d	Megalitres per day
Mnr	Manor
N	North


Ntch	Notch
NW	North West
O/f	Outfall or outflow
ORS	Old Red Sandstone
Pk	Park
Pop	Population
POR	Period of record
PS	Pumping station
Pt	Pont
PWS	Public water supply
Rb	Right hand river bank
	(looking downstream)
R/c	Racecourse
RCS	Regional communications system
Rd	Road
Res	Reservoir
Rh	Right hand
S	South
SAGS	Stour Augmentation Groundwater
	Scheme
Sch	School
S-D	Stage-discharge relation
SDD	Scottish Development Department
SE	South East
Sl	Sluice
Sp	Spring
St	Stream
STW	Sewage Treatment Works
SW	South West
TS	Transfer scheme
US	Ultrasonic gauging station
U/s	Upstream
W	West
W'course	Watercourse
Wd	Wood
Wht	White
Wr	Weir
WRW	Water reclamation works
Wtr	Water
WTW	Water treatment works
WR	


[^0]:    Meteorological Office, Advisory Services
    London Road
    Bracknell
    Berks RG12 2SZ Tel: (0344) 420242

[^1]:    * Based on the methods and findings of the Flood Studies Report Vol II' (as implemented on the Meteorological Office computer ${ }^{2}$ ) whereby a return period can be assigned to the catch at a particular raingauge. Those exceeding a 160 year return period are classified as 'very rare' events (the return periods in Table 2 have been rounded to the nearest 10 years).
    $\mathbf{E}-$ rainfall total estimated.
    ${ }^{1}$ Flood Studies Report 1975. Natural Environment Research Council (5 vols).
    ${ }^{2}$ Keers, J.F. and Wescott, P. 1977. A computer-based model for design rainfall in the United Kingdom: Meteorological Office Scientific Paper No. 36.

[^2]:    * As a consequence of leap years the runoff and mean flow percentage may not be identical.
    ${ }^{1}$ Flood Studies Report 1975. Natural Environment Research Council (5 vols.).

[^3]:    Station and catchment description
    Velocity-area station. Permanent cableway. Full range. Most floods contained in immediate channel. Pre-1970 (when floodbanks constructed) bypassed via Caldew floodplain. Highly influenced by Uliswater, Haweswater and Wet Sleddale especially at low flows. Rural except for Carlisle,
    Penrith and Appleby. Headwaters in Carboniferous Limestone of Pennines to E, impervious Lower Palaeozoics of Lake District massif to W.

[^4]:    1987 runoff is $82 \%$ of previous mean rainfall $78 \%$

[^5]:    * In all cases this refers to the temporal mean rather than the flowweighted average.

