
Hydrological data UK

1986 YEARBOOK

INSTITUTE OF HYDROLOGY • BRITISH GEOLOGICAL SURVEY

•			

HYDROLOGICAL DATA UNITED KINGDOM

1986

YEARBOOK

	•	

HYDROLOGICAL DATA UNITED KINGDOM

1986 YEARBOOK

An account of rainfall, river flows, groundwater levels and river water quality January to December 1986

© 1988 Natural Environment Research Council

Published by the Institute of Hydrology, Wallingford, Oxon OX10 8BB

ISBN 0 948 540 095

Design: P A Benoist

Graphics: J J Carr

Typeset and printed by Burgess & Son (Abingdon) Ltd.

Cover: A Crump weir on the Horner Water at West Luccombe.

Photograph: Martin Lees

FOREWORD

In April 1982, care of the United Kingdom national archive of surface water data passed from the Department of the Environment's Water Data Unit (which was disbanded) to the Institute of Hydrology (IH). In a similar move, the Institute of Geological Sciences, subsequently renamed the British Geological Survey (BGS), took over the national groundwater archive. Both IH and BGS are component bodies of the Natural Environment Research Council (NERC). The BGS hydrogeologists are located with IH at Wallingford and close co-operation between the two groups has led, among other things, to the launching – in 1985 – of a new series of yearbooks and reports dealing with nationally archived surface and groundwater data and the use made of them. The work is overseen by a steering committee with representatives of Government departments and the water industry from England, Wales, Scotland and Northern Ireland.

The published series – Hydrological data UK – includes an annual yearbook and, every five years, a catalogue of river flow gauging stations and groundwater level recording sites together with statistical summaries. These six volumes of the 5-year cycle are available individually but are also designed to be inserted in a ring binder. Further details of these arrangements are given on page 195.

The series – but not the binder – also includes occasional reports dealing with significant hydrological events and analyses.

Professor W.B. Wilkinson Director, Institute of Hydrology

CONTENTS

	Page
INTRODUCTION	1
SCOPE AND SOURCES OF INFORMATION	2
HYDROLOGICAL REVIEW Summary Rainfall Evaporation and soil moisture deficits Runoff Groundwater Hydrological diary The wettest day on record for England and Wales	3 3 8 8 17 20 23
THÈ ACQUISITION AND ARCHIVING OF RIVER FLOW DATA - PAST AND PRESENT	25
RIVER FLOW DATA Computation and accuracy of gauged flows Scope of the flow data tabulations Gauging station location map Daily flow tables Monthly flow tables	39 39 39 44 46 97
THE SURFACE WATER DATA RETRIEVAL SERVICE List of surface water retrieval options Concise register of gauging stations Summary of archived data	137 137 147 153
GROUNDWATER LEVEL MEASUREMENT Background The observation borehole network Index borehole location map Observation well hydrographs 1983-86 Register of selected groundwater observation wells	163 163 163 167 168 174
THE GROUNDWATER DATA RETRIEVAL SERVICE List of groundwater retrieval options	179 179
SURFACE WATER QUALITY DATA Scope of the water quality data tabulations Water quality data tables	185 185 188
DIRECTORY OF MEASURING AUTHORITIES	192
PUBLICATIONS in the Hydrological data UK series	195
ABBREVIATIONS	196

		,
,		

INTRODUCTION

This volume is the sixth Yearbook published in the Hydrological data UK series and the initial volume in the second five-year cycle (1986-90).

The 1986 Yearbook represents the twenty-seventh edition in the series of surface water publications which began with the 1935-36 Surface Water Yearbook. As a result of the incorporation of groundwater data in the Yearbook, this volume is also the eleventh edition in the series of groundwater data publications which began with the 1964-66 Groundwater Yearbook.

Apart from summary information, surface water and groundwater data on a national basis were published separately prior to the introduction of the Hydrological data UK series. In common with the earlier editions, the 1986 Yearbook brings together the principal data sets relating to river flow, groundwater levels and rainfall throughout the United Kingdom. Also included – for the first time in Yearbooks – are water quality data for a selection of monitoring sites.

A description is given of the surface water and groundwater archives together with the data retrieval facilities which complement this volume.

The last decade has witnessed major changes in river flow measurement and data acquisition practices and procedures. These changes are reviewed in a special article which examines the historical background and considers the impact of new technology with particular reference to the maintenance of hydrometric standards in the UK.

Publication of river flow data for Great Britain started with the series of Surface Water Yearbooks. The first edition, which was published in 1938 for the water year (October-September) 1935-36, also included selected data for the previous fifteen years; the edition for 1936-37 followed in 1939. Both these publications were prepared under the direction of the Inland Water Survey Committee. Assisted by the Scottish Office, the Committee continued to publish hydrological data after the Second World War; the Yearbook for the period 1937–45 being published as a single volume in 1952. Due to economic stringency, the Survey was suspended in 1952 for a period of two years but was then reformed as the Surface Water Survey Centre of Great Britain. A Yearbook covering the years 1945-53 was published in 1955.

In 1964 the Survey was transferred to the Water Resources Board where it remained until 1974 when the work of collecting and publishing surface water information in England and Wales was again transferred, this time to the Water Data Unit of the Department of the Environment. Yearbooks were published jointly each year by these organisations and the Scottish Office for the water years 1953-54

to 1965-66, but thereafter information for the five calendar years 1966 to 1970 was published in one volume in 1974. Following editions were renamed 'Surface Water: United Kingdom' to mark the inclusion of the first records from Northern Ireland and in recognition of the move away from single year volumes. Two volumes of Surface Water: United Kingdom, covering the years 1971-73 and 1974-76 were published jointly by the Water Data Unit, the Scottish Development Department and the Department of the Environment for Northern Ireland.

Following the transfer of the Surface Water Archive to the Natural Environment Research Council in 1982, the final edition of Surface Water: United Kingdom, for the years 1977-80, was prepared by the Institute of Hydrology at the request of the Water Directorate of the Department of the Environment, and published in 1983.

The 1981 and 1982 Yearbooks were prepared concurrently and were, in 1985, the first Yearbooks published by the Natural Environment Research Council. Further Yearbooks – the editions for 1983 and 1984 – were published in 1986 with the 1985 volume following in 1987.

A compilation of 'Groundwater levels in England during 1963' which was produced by the Geological Survey of Great Britain prior to its incorporation into the Institute of Geological Sciences, was the precursor to the publication of groundwater level data on a national basis. The more formal Groundwater Yearbook series was instigated by the Water Resources Board which published the inaugural edition, and a further volume for 1967, both covering England and Wales. In 1975 a third Yearbook, for 1968–70, was published by the Water Data Unit. The Groundwater: United Kingdom series was introduced in 1978 with the production of the 1971–73 volume, also published by the Water Data Unit.

Following the transfer of the Groundwater Archive to the Institute of Geological Sciences (now the British Geological Survey), the second edition of Groundwater: United Kingdom, covering the period 1974-80, was prepared by the Institute of Hydrology at the request of the Water Directorate of the Department of the Environment.

The 1986 Yearbook may be seen as part of the United Kingdom's contribution to UNESCO's International Hydrological Programme in continuing the exchange of hydrological information begun in 1965 for the International Hydrological Decade.

The Natural Environment Research Council acknowledge and extend their appreciation to all who have assisted in the collection of information for this publication.

SCOPE AND SOURCES OF INFORMATION

The format of the 1986 Yearbook follows that of earlier editions in the Hydrological data UK series. However, the rainfall, runoff and groundwater review material - previously compiled in separate sections - has been brought together into a single hydrological review of the year. Data presentation in the new water quality section is consistent with the established Yearbook pattern - data are given both for the featured year and, to provide a suitable perspective, for the preceding period of record.

Emphasis is placed upon ready access to basic data both within the yearbook and through the complementary data retrieval facilities.

A companion publication to the individual Yearbooks – the 'Hydrometric Register and Statistics' volume provides a comprehensive reference source for hydrometric information which does not change materially from year to year; the first edition – for 1981-5 – has recently been published, see page 195.

The Yearbook contents have been abstracted primarily from the Surface Water and Groundwater Archives. Water quality data have been provided from the Harmonised Monitoring Archive (see page 185) which is maintained by Her Majesty's Inspectorate of Pollution (Department of the Environment).

Responsibility for the collection and initial processing of the data featured in this volume currently rests mainly with the ten Water Authorities in England and Wales, the seven River Purification

Boards in Scotland and the Department of the Environment for Northern Ireland. These organisations also supplied valuable material relating to significant hydrological events. The majority of the rainfall data, and some of the material incorporated in the hydrological review, has been provided by the Meteorological Office. For historical comparisons of the rainfall over England and Wales, a data set based upon the homogeneous series derived by the Climatic Research Unit of the University of East Anglia has been used.

Additional material has been provided by the Geological Survey of Northern Ireland, the Borders Regional Council and by research bodies and public undertakings.

Most of the rainfall data published in the Hydrological data UK series are in the form of monthly rainfall totals for catchment areas (see page 41). For details of monthly and annual rainfalls associated with individual raingauge sites reference should be made to the 'RAINFALL' series published regularly by the Meteorological Office. Brief details of the contents and availability of this publication, together with a short description of other rainfall and climatological data sets published by the Meteorological Office, are given below.

Some slight variations from the contributors' figures may occur; these may be due to different methods of computation or the need for uniformity in presentation.

Rainfall and Climatical Data

The Meteorological Office maintains the national archives of rainfall and climatological data at its headquarters at Bracknell. Specific items, such as daily and hourly rainfalls from gauges and radar (from the PARAGON system) may be obtained by application to the Advisory Services Branch Met. 0. 3b. Summaries of the data are also published regularly and a list of current titles is given below:

- Monthly and Annual Totals of RAINFALL 19_ for the United Kingdom.
 This contains the values for some 5000 raingauges and is available one year after the title year at a cost of £6.00.
- Snow Survey of Great Britain 19__/_
 This contains the daily and monthly reports of snow conditions from selected stations covering the winter and costs £3.00.
- Monthly Weather Report
 This is published monthly and contains climatological means for more than 550 UK observing

- stations, in addition an introduction and annual summary are produced yearly. The publication should be available 6 to 9 months after the month concerned, costs around £2 and is only available from Her Majesty's Stationery Office (HMSO) or their stockists.
- 4. M.O.R.E.C.S.

This is a weekly issue of maps and tables of evaporation, soil moisture deficit, effective rainfall and the weather variables used to calculate them. The data are used to provide values for 40 km squares and various sets of maps and tables are available according to customer requirements.

Further information about these and other publications may be obtained from:

Meteorological Office Advisory Services London Road Bracknell Berks RG12 2SZ

HYDROLOGICAL REVIEW

Summary

1986 was a notably wet year throughout most of the United Kingdom and runoff, overall, was substantially greater than average. The recent tendency towards higher annual rainfall and runoff totals – often coupled with greater flow variability than is typical of the historical record – continued in 1986.

Both the amount and the temporal distribution of rainfall was beneficial from a water resources viewpoint. Although February was very dry, the spring was wet and some exceptionally high rainfall totals were recorded over the October-December period. For much of the summer, rainfall remained a little below average in most regions but unsettled conditions became established in the latter half of August culminating in the remarkably widespread and sustained rainfall associated with an intense depression which tracked across Great Britain in late August (see page 23). Significant localised flooding was associated with this storm but, generally, 1986 was a quiet year for hydrological events with relatively few storms or floods of a notable magnitude. Hydrographs displayed considerable volatility - a feature of runoff patterns in recent years - with a notable range of flows recorded in some regions. Although a number of rivers recorded annual minimum flows in July, the normal seasonality in river flow patterns was less evident in 1986 even in those regions where a distinct winter maximum may be expected as a result of a high baseflow contribution to river flow. Groundwater levels remained around, or above, the average throughout the year in most aquifers; reflecting the normal - if rather discontinuous - replenishment over the winter of 1985/6 and the abundant infiltration which has typified recent winters. The persistence of soil moisture deficits through the dry early autumn served to inhibit infiltration and delay the seasonal upturn in groundwater levels.

Rainfall

Precipitation over the United Kingdom during 1986 totalled 1211 mm; 10 per cent above the 1941-70 average. Although 1986 ranks as the sixth wettest year this century, an identical rainfall total was registered for 1982 and totals approaching 1200 mm were recorded in 1979, 1980 and 1981. Thus five of the fifteen highest annual rainfall totals since 1900 have occurred over the period 1979-86; the last rainfall total to fall significantly below the twentieth century average was that for the drought year of 1976. There is no modern parallel with the recent

sequence of wet years. The contrast with average rainfall conditions is most marked in Scotland where each yearly rainfall total since 1977 has fallen within the upper quartile of a rainfall series extending back to 1869.

The apparently persuasive evidence for an increase in annual precipitation, for the UK as a whole, needs to be considered in the perspective provided both by the relatively modest exceedances of the average - 121 mm is the maximum in recent years and the unstable nature of the average itself; variations of ± 10 per cent over ten-year periods are, for instance, typical of the general rainfall record for England and Wales which commences in 1766. Nonetheless, the ten-year period up to, and including, 1986 remains the wettest this century and forms a notable contrast with the predominantly dry 1970s - the decade commencing in 1969 is the driest on record for the UK. The apparent tendency towards greater precipitation has been associated with a discernible increase in seasonality. Compared to the 1900-71 average, for instance, summer rainfall over the subsequent 15 years has been about 13 per cent lower whereas spring, autumn and winter rainfall has been somewhat higher.

The rainfall pattern throughout the United Kingdom, relative to the 1941-70 average, is illustrated in Figure 1. Eastern Scotland is the only region showing a significant shortfall compared to the average annual rainfall. The normally steep rainfall gradient from west to east was exaggerated in Scotland during 1986 when maximum - in percentage terms - annual rainfall totals were recorded for the mountains of Wester Ross and around Ben More: an interesting reversal of the pattern experienced in 1985. A considerable measure of uniformity characterised the percentage rainfall totals recorded for England and Wales; most areas received between 100 and 110 per cent of the 1941-70 average. Some slight tendency for the spatial distribution to favour the important reservoir gathering grounds in Wales, the Pennines and South West England may be detected. In the Lake District, rainfall was above average but significant local variability, which has typified the rainfall distribution in recent years, was also recognisable.

Figure 2 illustrates actual rainfall totals for 1986; the regional variations conform to the normal pattern but the overall range was substantially greater than in a typical year. Although annual rainfalls below 500 mm were confined to a very restricted area, a minimum annual total of only 450 mm was, nonetheless, recorded near Shoeburyness, north of the

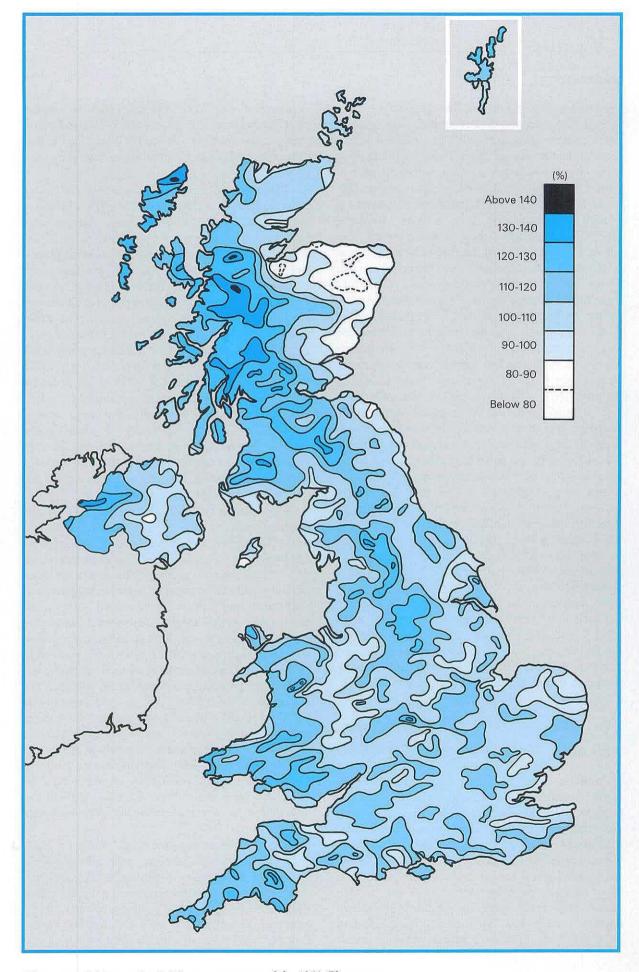


Figure 1. 1986 annual rainfall as a percentage of the 1941-70 average.

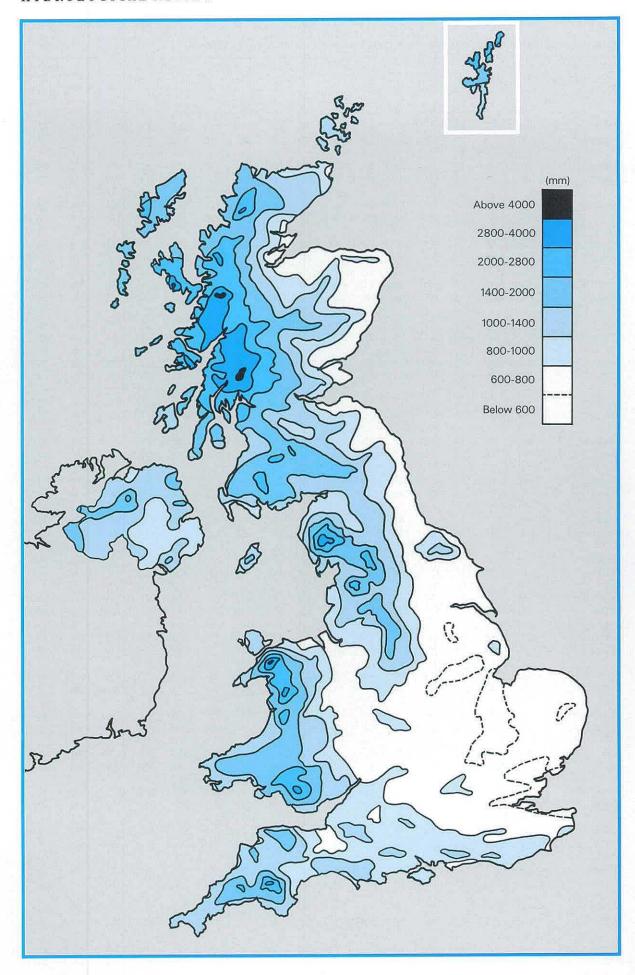


Figure 2. Annual rainfall in 1986.

TABLE 1 1986 RAINFALL IN MM AND AS A PERCENTAGE OF THE 1941-70 AVERAGE

1986		J	r	191	a	æ	j		٥	э	v			Year	Oct-Mar Rainfall 1985/86	Apr-Sep Rainfall 1986
United	mm	145	18	111	84	117	50	66	119	37	117	160	187	1211	579	473
Kingdom	%	139	23	158	121	155	69	75	115	36	110	142	165	110	99	93
England and	. mm	120	17	80	84	85	43	54	117	26	95	124	143	988	470	409
Wales	96	139	26	135	144	126	70	73	129	31	114	127	158	108	98	95
Scotland	mm	192	21	169	80	176	63	87	120	63	161	232	277	1641	801	589
	%	140	20	183	88	193	68	77	93	45	108	163	177	114	103	90
Northern	mm	155	5	115	106	124	46	74	141	9	102	131	160	1168	508	500
Ireland	%	149	6	164	155	169	58	79	136	8	95	128	140	106	89	96
North West	mm	147	7	122	88	114	62	73	115	22	164	161	233	1308	616	474
Water	%	131	8	169	114	139	74	70	91	17	138	133	194	107	99	80
Northumbrian	mm	107	43	59	107	89	40	45	155	27	69	74	125	940	414	463
Water	96	133	65	113	194	139	65	58	153	34	91	78	166	106	94	106
Severn Trent	mm	108	15	63	76	75	39	43	112	12	70	99	112	824	402	357
Water	%	156	28	121	146	117	69	66	138	17	107	125	159	106	104	93
Yorkshire	mm	113	31	70	113	95	40	32	120	17	83	84	137	935	433	417
Water	96	146	48	132	201	155	68	45	133	23	120	94	185	112	102	103
Anglian	mm	61	21	53	62	65	23	51	88	25	62	63	71	645	296	314
Water	96	117	50	133	155	138	47	89	137	48	119	102	134	106	98	102
Thames	mm	98	16	57	67	68	21	46	102	31	76	94	80	756	355	335
Water	96	158	34	124	146	121	40	77	146	50	119	129	121	107	99	97
Southern	mm	127	17	· 71	67	58	23	40	86	37	92	125	102	845	431	311
Water	%	167	29	136	139	105	45	67	117	52	117	132	125	106	99	87
Wessex	mm	131	6	66	73	91	30	51	109	35	85	131	129	937	449	389
Water	96	155	10	113	135	133	55	82	132	44	103	135	143	107	96	97
South West	mm	171	8	107	90	98	102	64	149	37	123	193	201	1343	611	540
Water	96	132	8	127	126	116	156	76	147	35	108	144	148	112	89	106
Welsh	mm	183	6	124	109	116	59	85	155	19	144	228	255	1483	734	543
Water	96	134	6	142	126	127	71	89	130	15	111	159	175	111	100	91
Highland	mm	242	16.		78	193	57	99	121	100	203	303	333	1964	1003	648
R.P.B.	96	147	12	192	68	187	51	77	81	63	109	179	169	114	104	85
North East	mm	126	38	58	72	91	65	62	117	38	61	75	151	954	520	445
R.P.B.	96	138	51	93	118	118	92	67	109	43	62	72	148	93	98	90
Tay	mm	168	33	135	64	182	59	65	103	25	117	187	240	1378	701	498
R.P.B.	96	142	35	164	85	191	71	63	87	21	95	157	179	109	105	85
Forth	mm	152	28	124	86	156	64	73	96	41	122	167	209	1318	622	516
R.P.B.	96	153	36	179	126	185	85	74	82	37	115	154	191	117	110	94
Clyde	mm	216	9	229	85	224	66	105	134	70	215	312	360	2025	910	684
R.P.B.	%	134	7	218	82	230	64	80	94	39	117	186	193	121	99	91
Tweed	mm	123	37	72	92	129	64	63	140	28	93	111	159	1111	486	516
R.P.B.	96	132	53	124	150	169	94	70	122	30	105	106	176	110	97	102
Solway	mm	175	7	151	93	193	72	96	129	22	163	217	284	1602	728	605
R.P.B.	%	125	7	165	105	209	79	87	99	14	113	149	188	112	95	91
Western Isles	mm	162	18	169	70	149	48 '	87	82	99	177	221	236	1518	790	535
Orkney and Shetland	96	119	17	184	84	219	63	183	87	79	123	161	154	117	103	101

Thames Estuary. By contrast precipitation totals were an order of magnitude greater in mountainous parts of the Lake District and Snowdonia – the Crib Goch raingauge recorded a notable total for the year of 5057 mm.

Table 1 provides a breakdown of monthly and half-yearly rainfall totals in 1986 both on a countrywide basis and according to the major administrative divisions within the water industry (see frontispiece). Rainfall is normally fairly evenly distributed throughout the year although a discernible seasonality may be recognised in western regions where less than 40 per cent of annual rainfall usually falls in the period April-September.

January was wet with all regions of the UK receiving above average precipitation but, with high pressure established early in the month, the intense cold of February was associated with very low rainfall totals – less than 5 mm were recorded over large areas of Northern Ireland which experienced its driest February this century. March, however, was wet and any lingering fears regarding the adequacy of water resources were allayed by an inordinately wet spring. The March-May UK rainfall total of 312

mm has been exceeded only twice this century although similarly wet springs were also experienced in 1979 and 1983; remarkably, four of the six wettest spring periods this century have occurred since 1978. Scotland and Northern Ireland both recorded new maximum spring rainfall totals in records extending back 117 and 86 years respectively. The summer witnessed a return to generally drier conditions especially in Scotland. A minor summer drought would have been rather more evident in England and Wales but for the precipitation associated with the slow passage of an intense depression (the remnant of Hurricane Charley) which followed a northeasterly track across Great Britain on the 25th and 26th of August. The former was the wettest day on record over England and Wales (see page 23) and features prominently in the Meteorological Office's listing of 'very rare' daily rainfalls for 1986 (see Table 2); to qualify as 'very rare' a daily rainfall total requires an estimated return period in excess of 160 years.

Dry conditions were re-established in September - Northern Ireland was particularly dry - and by early October consideration was being given to the

TABLE 2 'VERY RARE' DAILY RAINFALL TOTALS IN 1986

Date (Rain-day)	Station Number	Name		Grid Reference	Amount (mm)		Return Period (1 in X years)*
25.08.86	28677	Bar Gap Farm	N	Y 960107	104.6		190
25.08.86	497993	Gowerton S. Wks	SS	5 594970	105.5		230
25.08.86	508614	Cosheston	Si	N 004037	97.3		250
25.08.86	508729	Jeffreston, Millards Farm	SI	N 076074	99.1		250
25.08.86	509793	Canaston Bridge	SI	N 066149	101.0		200
25.08.86	532550	Anglesey: Llyn Alaw	SI	H 376853	93.5		180
25.08.86	534257	Aber, College Farm	SI	H 656732	134.9		600
25.08.86	540856	Dyserth, Trecastell Tr. Wks	S]	064793	79.5		180
25.08.86	544636	Vivod	S]	191424	98.5		170
25.08.86	547250	Loggerheads, Colomendy Centre	S]	201622	109.0		370
25.08.86	547300	Cilcain Res. No. 2	S]	162645	95	E	180
25.08.86	547371	Moel-y-crio	Sj	194699	88.4		160
25.08.86	77255	Walshaw Dean Lodge	SI	964336	121.1		320
25.08.86	78475	Wessenden Head	SI	€ 068077	120	E	190
25.08.86	85831	Stocksbridge, Wortley Res.	SI	308998	100	E	250
25.08.86	102521	Ashbourne W. Wks	SI	K 187459	95	E	260
25.08.86	953635	Killylane Res.	IJ	286986	100.0		160
09.11.86	502167	Waen Sychlwch	Si	N 804221	147.4		240
01.12.86	667581	Gt. Cumbrae: Millport Res.	N	S 158558	95.0		430
01.12.86	891909	Glengyle	N	N 388133	203.3		2660
02.12.86	802141	Bhlaraidh Headpond	N	H 355184	162	E	1800
29.12.86	521909	Aberangell, Esgairangell	SI	H 829105	158.0		420
29.12.86	523151	Machynlleth	i: Si	H 756045	141.8		210
29.12.86	523417	Glaspwll	SI SI	N 733978	170	E	2010

^{*} Based on the methods and findings of the Flood Studies Report Vol II (as implemented on the Meteorological Office computer²) whereby a return period can be assigned to the catch at a particular raingauge. Those exceeding a 160 year return period are classified as 'very rare' events (the return periods in Table 2 have been rounded to the nearest 10 years).

E - rainfall total estimated

¹ Flood Studies Report 1975. Natural Environment Research Council (5 vols).

² Keers, J.F. and Wescott, P. 1977 A computer-based model for design rainfall in the United Kingdom: Meteorological Office Scientific Paper No. 36.

introduction of measures to conserve reservoir stocks (e.g. by North West Water). In the event, precipitation for the remainder of the year was well above average for most regions of the UK – the combined total for October, November and December was the fourth highest this century.

Evaporation and Soil Moisture Deficits

Annual potential evaporation (PE) in 1986 was somewhat above the average throughout virtually the whole of the United Kingdom with climate stations in Scotland registering particularly high annual PE totals. Figure 3 shows the annual total together with the corresponding percentages of the 1956–75 mean (values are not given when the historical record is either incomplete or short).

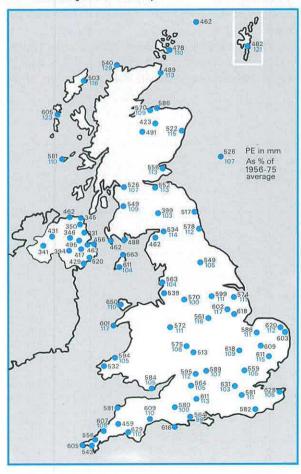


Figure 3. Potential evaporation in 1986—in mm and as a percentage of the long term average.

Maximum soil moisture deficits (SMDs) generally occurred in July throughout much of Scotland but significantly later further south; mid-October maxima were common in the English lowlands. Maximum SMDs were significantly greater than in 1985, especially in eastern Scotland and in Northern Ireland but they were still somewhat more modest than would be expected in a typical year and very much less than the substantial deficits obtaining

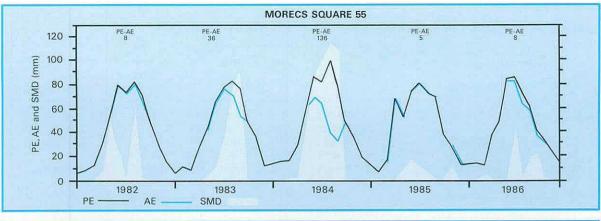
during early autumn in 1983 and 1984. Figure 4 illustrates the variation in PE, AE (Actual Evaporation) and SMD for three MORECS (Meteorological Office Rainfall and Evaporation Calculation System – see page 2) grid squares for the period 1982–1986. Dry periods during the summer at Renfrew and Swincombe were rather too short for transpiration rates to be greatly inhibited by the limited availability of soil moisture, thus actual evaporation rates remained close to the potential values throughout 1986. At Wittering, however, the soil moisture deficit was a constraining factor throughout much of the autumn.

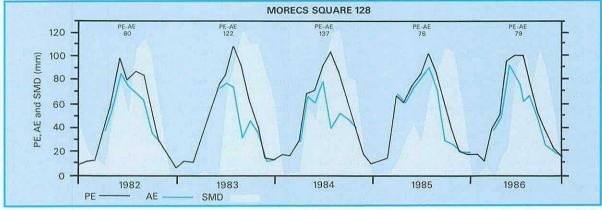
The difference between catchment rainfall and runoff is known as the 'loss'. Because of the natural and artificial storages available in most catchments, annual 'losses' rarely equate closely to yearly totals of actual evaporation. However, when – as in 1986 – SMDs had been eliminated by the end of the previous year, the loss can be taken as a reasonable guide to the annual evapotranspiration total at least in those catchments where baseflow is limited and the net effect of abstractions and discharges is negligible.

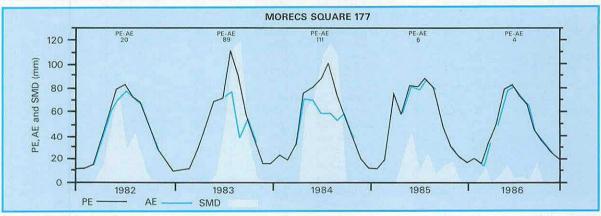
A considerable measure of stability typifies year to year variations in catchment losses. Nonetheless, catchment losses for 1986 were generally higher than average throughout Great Britain (see Table 3) and significantly greater than in the preceding few years. The unusually high figures for 1986 occurred in a year when temperatures, sunshine and wind conditions were not especially conducive to elevated rates of evaporative loss. This suggests that the extended periods during which soil moisture was at, or close to, field capacity were a major factor in sustaining evapotranspiration throughout the year in most regions.

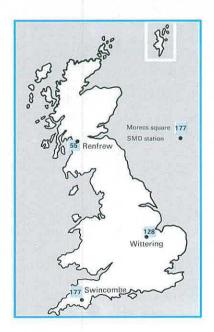
Runoff

Runoff in 1986 for Great Britain totalled approximately 730 mm, some 20 per cent above the long term average - reinforcing the tendency towards higher runoff rates which has been a feature of the last decade. Figure 5 illustrates the post-1976 annual runoff totals for Great Britain expressed as a percentage of the 1961-76 mean; a notable feature is the eight-year sequence of above average runoff commencing in 1979. For several of these years, and for 1977, runoff was substantially greater than the mean reflecting, principally, the elevated discharge rates obtaining through the winter months. Plentiful runoff over the October-March period has been particularly prevalent in Scotland. For England and Wales a rather different picture emerges with annual runoff totals for 1983, 1984 and 1985 all slightly below average.


The paucity of catchments with extended river flow records poses problems in determining a reliable long term runoff value for Great Britain; fewer than a dozen gauging stations have sensibly continuous


TABLE 3 1986 WATER BALANCES FOR SELECTED CATCHMENTS IN GREAT BRITAIN


Station River and Station N		ame	Reinfall	Runoff	Loss	Runoff as % Rainfall	Abstractions*		
· umoci							1986	lta	Discharges
7002	Findhorn	Forres	1986 mm	1157	756	401	65	69	N
2001	Dee	Woodend	as a % of lta 1986 mm	105 1231	98 902	119 329	73	75	N
1001	Dec	woodena	as a % of Ita	111	107	122	13	15	14
5006	Tay	Ballathie	1986 mm	1691	1356	335	80	76	SPIH
	,		as a % of Ita	117	122	101			
8001	Allan Water	Kinbuck	1986 mm	1612	1210	402	75	72	N
			as a % of Ita	123	127	113			
9001	Almond	Craigiehall	1986 mm	1098	699	399	63	55	PEI
			as a % of Ita	125	144	101			
1012	Teviot	Hawick	1986 mm	1449	1068	381	73	68	N
4004	D-JL DL	D - 41	as a % of Ita	124	134	104	62		
4004	Bedburn Beck	Bedburn	1986 mm as a % of Ita	971 112	610 122	361 98	62	57	N
7002	Wharfe	Flint Mill Weir	1986 mm	1366	875	491	64	63	SRPI
1002	Whatte	riiit Miii weii	as a % of Ita	118	119	115	04	U.S	3 K F I
8008	Dove	Rocester Weir	1986 mm	1163	733	430	63	56	GE
,000	Dore	Motester wen	as a % of Ita	113	125	96	03	,,,	G E
0001	Witham	Claypole Mill	1986 mm	660	213	447	32	29	RPGI
-		••	as a % of lta	107	116	103			. -
2001	Nene	Orton	1986 mm	701	236	465	33	31	SPEI
			as a % of Ita	112	122	108			
3002	Bedford Ouse	Bedford	1986 mm	704	281	423	39	34	SPGEI
			as a % of lta	109	125	101			
4003	Bure	Ingworth	1986 mm	687	227	460	33	31	G I
	_		as a % of Ita	102	107	99			
6006	Stour	Langham	1986 mm	636	149	487	23	26	REI
7001	D 11	D U ' I	as a % of Ita	109	95	114	22	22	6.5.1
7001	Roding	Redbridge	1986 mm as a % of Ita	646	211	435	32	33	SEI
8003	Mimram	Panshanger Park	as a 90 or ita 1986 mm	104 705	102 108	106 597	15	19	G I
COOC	Millialli	i anshanger i ark	as a % of Ita	108	85	114	13	1,	O I
9001	Thames	Kingston	1986 mm	777	287	489	٠ 36	36	Naturalised
			as a % of Ita	109	110	108			
9007	Blackwater	Swallowfield	1986 mm	772	310	462	40	38	E
			as a % of Ita	108	113	104			
0003	Medway	Teston	1986 mm	783	286	497	36	36	SPG
			as a % of Ita	105	105	104			
2004	Test	Broadlands	1986 mm	874	310	564	35	41	N
4000	PS: 1-11	D 1411	as a % of Ita	108	92	120			
4002	Piddle	Baggs Mill	1986 mm	1111	453	658	40	42	1
5001	E	Thomseton	as a % of Ita	115	110	118	60	£ 4	D C E I
1000	Exe	Thorverton	1986 mm as a % of Ita	1455 116	1006 124	449 102	69	64	PGEI
0001	Taw	Umberleigh	1986 mm	1316	836	480	63	60	SPE
1			as a % of Ita	116	123	106		-	J. D
2005	Tone	Bishops Hull	1986 mm	1051	497	554	47	48	s
		•	as a % of lta	106	102	110		-	
4005	Severn	Montford	1986 mm	1265	834	431	65	56	SRP
			as a % of Ita	109	127	85			
5008	Wye	Cefn Brwyn	1986 mm	2834	2416	418	85	84	N
			as a % of Ita	115	116	111			
7004	Cynon	Abercynon	1986 mm	2151	1623	528	75	67	SE
	T : C	O) T 10	as a % of Ita	121	135	91	•		6.5
2001	Teifi	Glan Teifi	1986 mm	1547	1150	397	74	74	S P
7015	Dec	Mosley U-11	as a % of Ita	116	117	115	60	67	CDDI
7015	Dee	Manley Hall	1986 mm	1555 111	1063	492 107	68	67	SRPI
8001	Weaver	Ashbrook	as a % of Ita 1986 mm	751	113 290	461	38	39	PGE
5001	Weater	TENTOLOUK	as a % of Ita	102	100	103	<i>ن</i> ر	J7	1,0 E
3005	Kent	Sedgwick	1986 mm	1924	1475	449	76	73	N
			as a % of Ita	112	116	99			- -
4005	Clyde	Blairston	1986 mm	1377	981	396	71	66	N
-			as a % of Ita	120	129	102			-


lta=long term average

^{*} For an explanation of the code letters see page 42

 $\label{potential} Potential\ and\ actual\ evaporation\ with\ soil\ moisture\ deficits\ for\ three\ MORECS\ squares.$ Figure 4. (The location of the featured grid squares is shown on the map.)

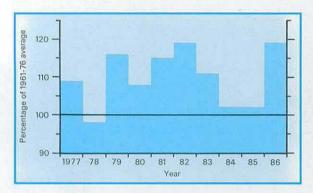


Figure 5. 1977-1986 runoff for Great Britain as a percentage of the 1961-76 average.

(Based on 30 representative catchments.)

flow records of fifty years or more. 1961 was selected as the start year for the first standard runoff period in the United Kingdom, not simply in recognition of the rapid growth in the gauging station network at that time but also to allow direct comparisons to be made with rainfall when the Meteorological Office introduces the next thirty-year standard rainfall period (1961–90).

Figure 6 provides a guide to runoff in Great Britain for 1986 expressed as a percentage of the 1961-1985 average. The map is least precise in northern Scotland and in the Welsh mountains where the monitoring network is sparse. Insufficient long term river flow records exist for Northern Ireland (and for the Scottish islands) to allow the drawing of isopleths with any confidence. A significant degree of spatial variability, in terms of percentage runoff, is evident throughout GB; 1986 runoff ranged from less than 80 per cent of the average in parts of East Anglia to more than 150 per cent for some rivers draining southwards from the Pennines and the Brecon Beacons. Away from the north-eastern lowlands, runoff was particularly abundant in Scotland, approximately half the country being enclosed by the 120 per cent isopleth. Regional variations were rather more subdued in England and Wales where the majority of catchments registered between 110-120 percent of their respective averages.

The runoff pattern over the UK reflected the dominant maritime influence on rainfall; by far the greater proportion of precipitation during the year was associated with the passage of Atlantic depressions; this led to an exaggeration in the normal west to east runoff gradient. Those regions which registered below average runoff generally coincide with areas where surface water resources are most vulnerable. However, the high runoff conditions experienced in the west provided plentiful inflows for many strategically important water supply reservoirs. Overall, approximately ten per cent of UK catchments established new maximum annual runoff totals in 1986. Prominent in this category

were river basins in the west of Scotland and in Wales where, for instance, the River Dyfi – gauged at Dyfi Bridge – recorded a notable annual runoff total exceeding 1770 mm, the highest yearly total in a record extending back to 1962. Similarly, the annual runoff total for the Eastern Cleddan, in Dyfed was some 10 per cent greater than the previous maximum.

The distribution of runoff throughout the year is illustrated in Figure 7 (a-d). Daily and monthly hydrographs are shown for individual gauging stations in England, Scotland, Wales and Northern Ireland. The monthly mean flows are shown together with the corresponding maximum and minimum flows for the preceding record. The 1986 trace is shown as a solid black line and the solid blue line represents the 30-day running mean for the pre-1986 record. As in 1985, the distribution of river flows throughout 1986 was characterised by several periods of unseasonally low and high flows.

The flow duration curves illustrated in Figure 7 allow the proportion of time that river flows fell below a given threshold to be identified. Both low flows (those flows which are exceeded for 95 per cent of the time) and high flows (those flows which are exceeded for 10 per cent of the time) during 1986 were generally greater than average a situation similar to 1985 - and in the majority of areas significantly so. In the very highest flow range - corresponding, generally, to bankfull and above - discharge rates in 1986 were also significantly above normal except in the English lowlands where the relative remoteness from maritime influences, and the ameliorating effect of aquifer storage on the flow regimes, resulted in a muted overall flow range.

Exceptions to the general runoff pattern were the north-east of Scotland where high and low flows were little different to the long term average and in the chalk downlands of south-east England where low flows were substantially greater than normal – reflecting the enhanced winter infiltration in recent years. In Devon and north Cornwall, low flows were even more atypical; the flow exceeded 95 per cent of the time for some catchments being more than double the corresponding figure for the preceding record.

In a normal year, periods of significantly reduced flow may be expected during the summer months when evapotranspiration is at its highest. During 1986, although low flows did occur, intermittently, over the summer months there were also other significant periods of very modest runoff following steep recessions in those rivers with limited baseflow support. The River Tay (Figure 7a) exemplified conditions throughout much of the UK. Minimum flows – for the time of year – were closely approached in February and in early October whilst, by contrast, very high discharges were recorded at the beginning of the year and in March, May, August

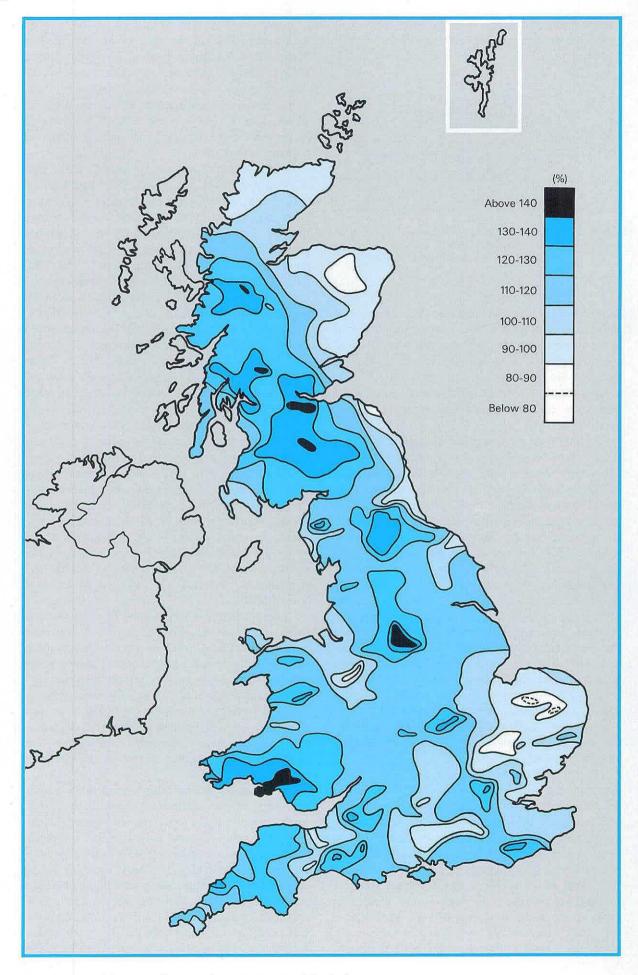


Figure 6. A guide to runoff expressed as a percentage of the the long term average.

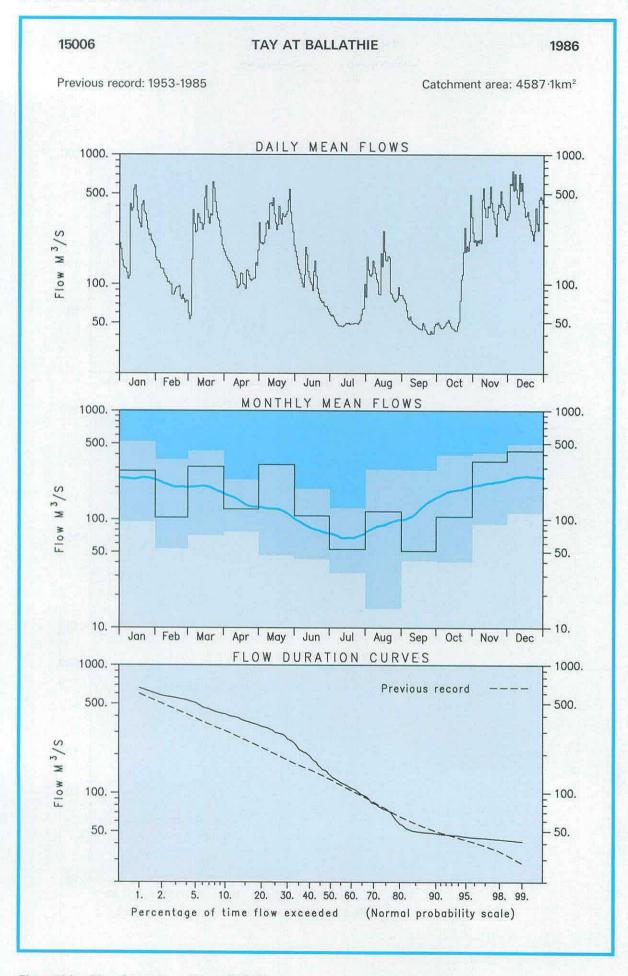


Figure 7(a). River flow patterns: Tay at Ballathie.

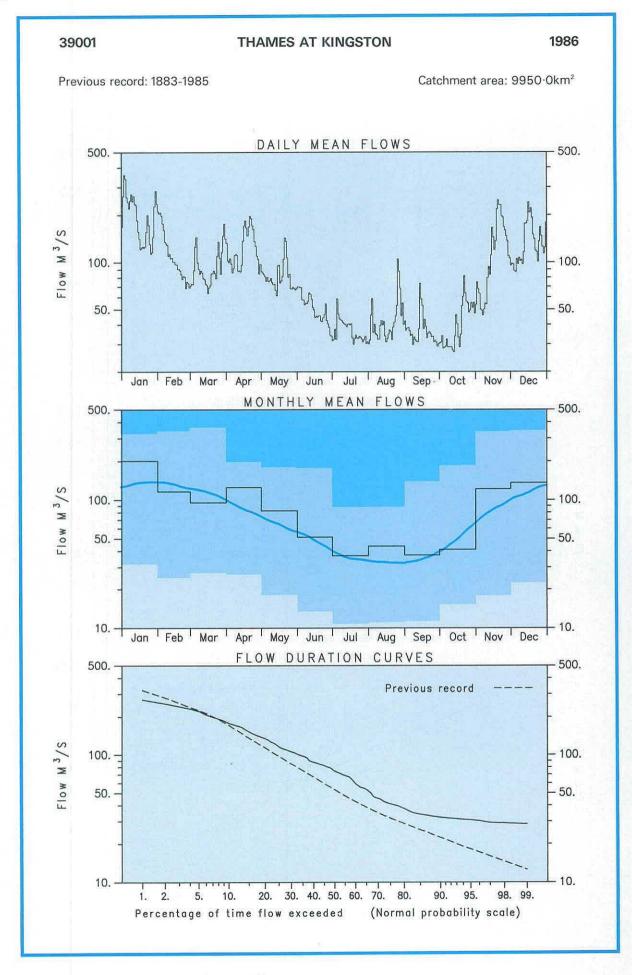


Figure 7(b). River flow patterns: Thames at Kingston.

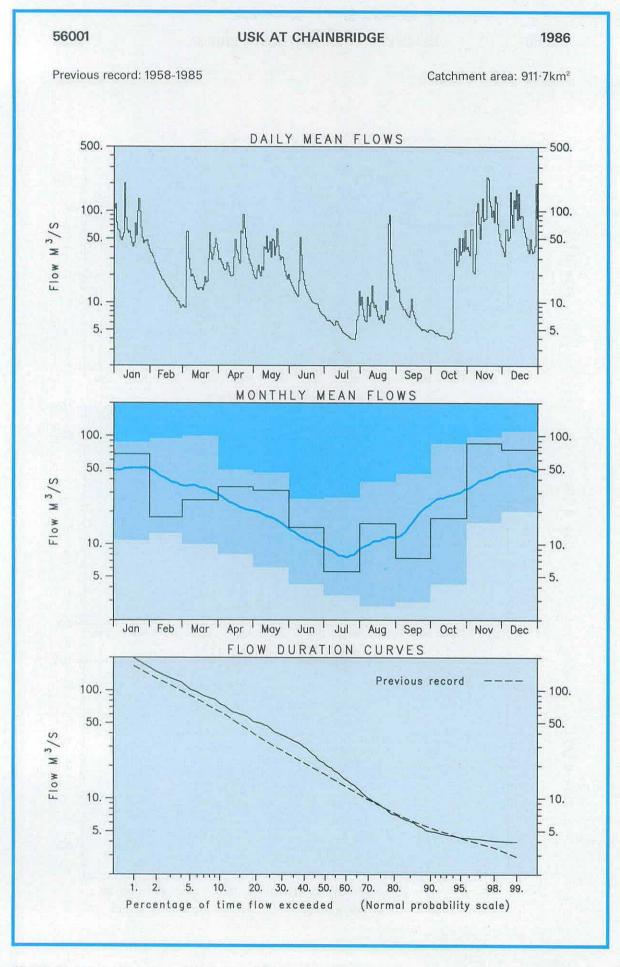


Figure 7(c). River flow patterns: Usk at Chain Bridge.

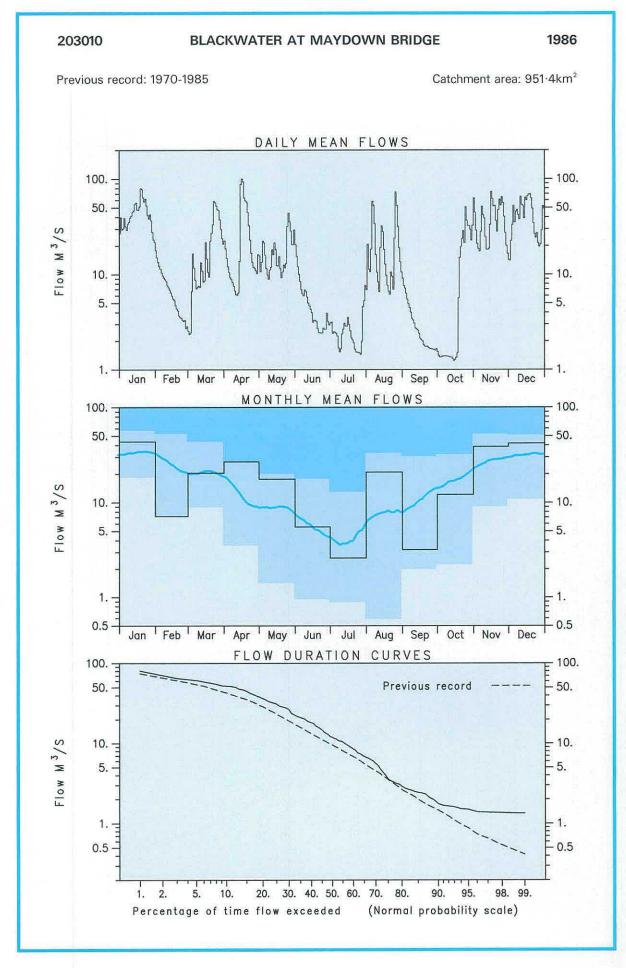


Figure 7(d). River flow patterns: Blackwater at Maydown Bridge.

and from late October until the year's end. However, in regions where runoff includes a high baseflow component, the February and October recessions were unremarkable and monthly runoff totals throughout the year were, in general, reasonably stable.

High seasonal runoff totals typified the spring period (March-May) throughout the UK. In Scotland and the extreme north of England this was principally a consequence of the high discharges sustained during May; several rivers in the east of Scotland, including the Tay, registered new maximum runoff totals for the month. As in the two previous months, snowmelt was a significant contributor to river flow in many catchments and snowpack storage served to disturb any simple relation between precipitation - which can be difficult to assess when a major proportion is in the form of snow - and runoff. Despite the low discharges during February, most of the UK registered runoff totals over the 1985/86 winter half-year close to the average. By April, groundwater and reservoir levels were high and the water resources outlook was reassuring.

Overall, runoff during the summer (June-August) was slightly above average but the flow regime on many rivers exhibited large variations giving greater emphasis to the somewhat atypical distribution of flows throughout the year. The summer ended with most rivers in spate following the passage of 'Hurricane' Charley. New August maximum daily mean discharges were registered over a wide area of Yorkshire and in Northumbria many peak flows were the largest for the year; several were unprecedented.

During the autumn (September-November), runoff tended to be slightly below average in Scotland and the north of England, but above average in Wales and central and southern England. The wetter than average November, throughout most of the country, counterbalanced the fairly dry conditions during the first two months of autumn. This contrast was associated with substantial withinmonth variability; this reached an extreme expression in some western regions. For example, on the River Dyfi during the four weeks prior to the 17th of October, flows were below the previous minimum for that period. Three days later, however, discharges had recovered from less than 2 cumecs to well over 30 cumecs. By November flows in most rivers were above the seasonal average and the wet December over the UK maintained high runoff rates until the end of the year.

Groundwater

Since the drought of 1976, when unprecedented low groundwater levels were recorded throughout both major and minor aquifers, water tables have generally stood near to average levels. In both 1984 and 1985, levels had generally fallen below the seasonal means by the end of the summer, in the first case following a spring and summer drought, and in the second due to a late onset of infiltration – October 1985 being relatively dry.

The annual rainfall for 1986 was generally near to, or a little above, average for those regions within the United Kingdom most dependent upon groundwater supplies (see page 163). The winter half-year rainfall for 1985-1986 was also close to the average, but it was unevenly distributed with heavy precipitation in December and January, little rainfall in February, and then wet throughout March. At the end of 1986, rainfall was generally above the average from October to the end of December.

Table 1 lists the half-year rainfall totals for the Water Authority and River Purification Board areas. Although the replenishment of aquifers is heavily dependent upon winter rainfall; when losses due to evapotranspiration are limited, the actual pattern of water table fluctuations throughout 1986 also reflects rainfall variability within the seasons to a significant degree.

In 1985, well hydrographs generally showed a continuation of the summer recession into November, or even December. Consistent with the pattern of recent years, steep recoveries in groundwater levels during December and January were widespread. For instance in the Rockley borehole, which penetrates the Chalk of the Marlborough Downs, a rise of about ten metres was recorded - the water level response was delayed slightly by the lag between rainfall and the infiltrate reaching the water table (see page 168). The dry conditions prevalent almost everywhere in February led to a widespread decline in water levels but, apart from a few sites, the ensuing wet spring led to continued replenishment of the aquifers in most areas into May, and possibly in some districts into June.

When the water table is close to the ground surface and where infiltration is rapid, replenishment can take place in the summer months. High rainfall in June 1986 resulted in a slowing of the recession in the Ampney Crucis borehole, near Cirencester, and in a sharp rise in the Redbank borehole (Dumfries). There was a similar reaction to the high August rainfall in Northern Ireland (see the Killyglen hydrograph – page 168). Rainfall over each of the last three months of 1986 was generally either near to or above average, and in some districts well above average. Upturns tended, therefore, to reflect the onset of infiltration in October. In some wells, the lag time delayed the upturn, at Washpit Farm (Norfolk) into December, and at Therfield Rectory,

near Royston, beyond the end of December. By and large, groundwater levels at the end of 1986 were close to the average.

In the 'Hydrometric Register and Statistics 1981-5' (see page 195), a method was proposed which permitted comparisons between groundwater levels in different observation wells and related water table fluctuations in response to aquifer replenishment. Using the same methods, the apparent replenishment for the winter of 1985-86 has been estimated and is shown in the Register of Selected Groundwater Observation Wells (see page 174) as the percentage mean annual recharge; for the main outcrop of the Chalk and Upper Greensand aquifer, the percentage mean annual recharge is also shown areally on Figure 8. Peak groundwater levels in the spring of 1986 fell a little short of those recorded in recent years for the Chalk and Upper Greensand aquifer in many parts of East Anglia. This reflects the late onset of percolation following the dry autumn of 1985 and is considered to be the principal cause of the low percentage replenishments, for the South-East, illustrated in Figure 8. Using the observed groundwater level fluctuations and the unit mean annual replenishment figures from Monkhouse and Richards (1982), the actual volume of recharge for the four major aquifers in England and Wales, has been estimated and is shown in Table

The majority of observation boreholes in the national network monitor the natural variation in groundwater levels. In parts of the United Kingdom, water levels have been influenced, sometimes over long periods, by varying abstraction rates from the aquifer concerned. As a consequence the regional water table may become substantially depressed below the levels obtaining before the widespread exploitation of the resource began. Equally, where such depressions have become established groundwater levels may be expected to rise in response to a decrease in the volume of water extracted. Such is the case with the standing water levels in the confined Chalk and Upper Greensand aquifer below London. Figure 9 confirms that the recovery, first evident about twenty years ago, is continuing. A steady increase of about one metre per year has returned the water table to a level comparable with that following the First World War. When the first deep wells penetrated the Chalk of the London Basin in the late eighteenth century, the artesian conditions ensured that standing water levels were relatively close to the surface but the decline in groundwater levels below Trafalgar Square exceeded 60 metres by 1940. Subsequently, as abstractions switched to piped supplies drawn predominantly from reservoirs in the Thames and Lee basins, groundwater levels gradually stabilised and, from about 1965, began a discernible recovery. The implications of rising groundwater levels range from the more immediate water resources effect on potential groundwater

supplies - in terms of both water quantity and quality - to geotechnical problems relating to foundation and tunnel flooding and the design of deep underground structures.

TABLE 4 ANNUAL REPLENISHMENT TO THE MORE IMPORTANT AQUIFERS IN ENGLAND AND WALES FOR THE YEAR 1985-86.

(Units are in m' 10°. Figures in parentheses are percentages of the annual mean)

Water Authority	Replenishment mean annual	Replenishment 1985-86
Chalk and Upper G	reensand aquifer	
Anglian	953	693 (73)
Southern	1231	1097 (89)
South West	202	119 (59)
Thames	975	837 (86)
Wessex	947	980 (103)
Yorkshire	322	327 (102)
TOTAL	4630	4053 (88)
Lincolnshire Limest	one aquifer	
Anglian	86	72 (86)
Permo-Triassic sand	dstones aquifer	
Northumbrian	123	89 (72)
North West	331	332 (100)
Severn-Trent	528	484 (92)
South West	205	175 (85)
Welsh	27	20 (74)
Wessex	39	37 (95)
Yorkshire	301	354 (118)
TOTAL	1554	1491 (96)
Magnesian Limestor	ne aquifer	
Northumbrian	80	91 (114)
Severn-Trent	40	45 (113)
Yorkshire	127	115 (91)
TOTAL	247	251 (102)

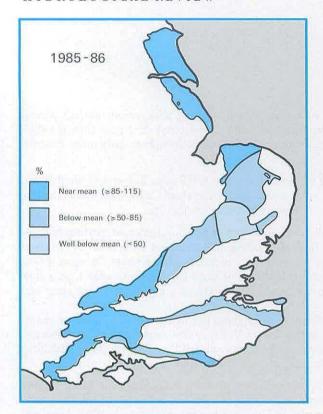


Figure 8. Generalised percentage of the mean annual replenishment to the Chalk and Upper Greensand aquifer 1985–6.

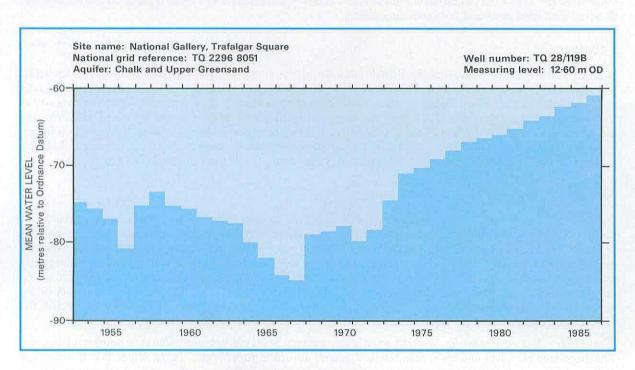


Figure 9. Groundwater level fluctuations in the National Gallery (Trafalgar Sq.) borehole 1953-86.

Hydrological Diary

January

1st-2nd: A depression moved across southern areas of Great Britain bringing widespread rainfall; several localities recorded over 50 mm. Many rivers in the South-East which had registered their peak flow for 1985 late in December remained in spate until early January; a number registered their highest daily mean flow for 1986 on the second day of the year.

7th-8th: The south-west of England was affected by torrential rain; the A382 near Exeter was flooded and hundreds of acres of farmland in Devon and Somerset were under water. The river Culm, which joins the Exe just upstream of Exeter, recorded its highest daily mean flow for the year on the 7th.

10th-12th: A mild westerly airstream brought rainfall to all areas and resulted in the rapid melting of snow accumulations. In response river levels increased and limited flooding occurred over wide areas of Scotland and northern England. Maximum daily mean flows for the year were recorded on the rivers Deveron, Eden, Dean Water and Dighty Water. The Luss Water, a western tributary of Loch Lomond, recorded a peak flow which exceeded the previous maximum by more than 20 cumecs. In Glasgow a child was swept away and drowned when a small burn became a torrent.

Snowmelt was not a significant factor in central and southern England but heavy rainfall increased runoff rates in several regions. Significant flooding occurred in the Severn Valley, particularly around Tewkesbury, when the river equalled its highest recorded January flow. The peak flow on the River Arrow (Herefordshire) was unprecedented and in Somerset, a young child drowned in the swollen river Yeo at Stoford.

28th-29th: Rainfall associated with further frontal activity caused an abrupt discharge increase in many rivers in the basin of the Bristol Avon. The River Frome at Frenchay, in Bristol, recorded a peak flow of 35 cumecs on the 28th – the largest instantaneous flow recorded in January since records began in 1961. Localised flooding disrupted road and rail communications.

February

High pressure systems dominated the British Isles during the month and the UK, as a whole, experienced its second driest February this century. Temperatures throughout the month were also remarkable; in England and Wales it was the coldest February since 1947. A marked decline in flow was evident on the majority of rivers throughout much of the UK during the month; a significant number of rivers registered new February daily mean minima and the Blackwater, in Northern Ireland, recorded its lowest winter discharge in a fifteen year record. The combined effect of frozen supply reservoirs and wastage arising from damaged plumbing systems fuelled concern regarding the adequacy of water resources to meet demands later in the year.

March

3rd-4th: The cold spell which dominated the British Isles during February was broken when Atlantic air penetrated the country. The mild conditions brought a steady thaw and the subsequent runoff was enhanced by significant rainfall in some areas. Many rivers which had experienced steep recessions throughout February peaked early in March. On the River Wye for instance, at the Ddol Farm gauging station, new minimum daily mean flows for March were recorded at the beginning of the month – less than one cumec was registered on the 3rd – on the 4th, the flow increased to greater than fifty cumecs. In Scotland, the Teviot – a tributary of the River Tweed – also recorded a new daily mean minimum discharge for March (7 cumecs) on the 3rd, the following day witnessed a twenty-fold increase at the Ormiston Mill gauging station.

20th-22nd: A deep depression centred over north-western Scotland brought gales to a number of regions. The associated rain, hail and snow resulted in a general upturn in runoff rates. In the Clyde R.P.B. area, peak daily mean flow values for the year were reported for the rivers Eachaig, Gryfe and Endrick on the 22nd.

April

14th-15th: Rivers throughout Northern Ireland were in spate following rainfall associated with a vigorous depression centred over Great Britain; more than 50mm of rain was recorded over a large area. The River Camowen registered a daily mean flow of nearly 60 cumecs (on the 15th) – over twice the maximum daily mean flow previously recorded for April.

17th-20th: A complex Atlantic low pressure system brought rain to all areas. In North Wales runoff increased sharply and record April daily mean flows were established on the rivers Alyn, Aled and Elwy. The succession of fronts during the month gave rise to several particularly wet spells and by the end of April discharge rates were well above average in most regions throughout England, Wales and Northern Ireland. Some monthly runoff totals were also notable, for instance the Blackwater, in Northern Ireland, registered a runoff total which equalled the previous highest April runoff.

May

During the first week of May the Government advised the public to avoid drinking rainwater and streamwater in Scotland and northern England; runoff in these areas was at risk as a result of the north-westward drift of radioactive material following the major accident at the Chernobyl nuclear power plant, in the USSR, on April 26th

19th-21st: Thunderstorms - particularly in the Midlands - produced some exceptionally intense rainfalls. Several noteworthy three and four-hour precipitation totals were reported including a 60 mm fall in the vicinity of Spalding (Lincolnshire). A return period of 1 in 120 years was ascribed to this event; a few raingauges in south Derbyshire also registered three-hourly totals of a similar rarity. Notwithstanding the very localised nature of the most vigorous storm cells, and the mitigating influence of significant soil moisture deficits, the river flow response was rapid in some catchments. Over 120 properties were inundated in Spalding - the inability of culverts and sewerage networks to cope with the rapid runoff was a primary factor in the flooding. The Rivers Bain and Partney Lymn, in Lincolnshire, recorded their highest daily mean flows for May on the 20th. In Derbyshire, the River Amber recorded a new maximum daily mean flow for May and, below the confluence with the Derwent, local flooding and transport disruption resulted. Peak river flows for the year were not confined to the Midlands. The headwaters of the River Lee - which are mainly fed by baseflow from the Chalk - showed an unusually rapid response to rainfall and the daily mean flow of 1.63 cumecs recorded on the 20th for the heavily urbanised Stevenage Brook catchment has been exceeded on only three occasions.

June

9th-10th: Substantial rainfall totals were recorded as a frontal system crossed the British Isles on a north-easterly track. Among the heaviest falls recorded were 69 mm at Princetown in Devon on the 9th, 55 mm at Rothes, in the Grampian Region, and 66 mm at Penzance, in Cornwall, on the 10th. Runoff rates increased substantially throughout much of Great Britain. Rivers draining Dartmoor and the Brecon Beacons exhibited an abrupt increase in flow interrupting the recessions which, in many areas, had continued since mid-May. On the 10th, the river Taff, at Fiddlers Elbow, recorded its highest June daily mean flow in 13 years and in the Grampians, the Isla, gauged at Grange, registered its maximum daily mean flow for the year.

21st: Frontal activity associated with a complex low-pressure system in the south of England resulted in heavy downpours. The river Gannel, gauged at Gwills, in Cornwall registered the highest summer daily mean flow in a 17-year record.

July

Anticyclonic conditions dominated most of the British Isles until the middle of the month by which time flow recessions in some regions had been established for six weeks. Several rivers – for example the Spey and the Greta (Northumbria) – approached their July minimum flows before recovering strongly at the month-end.

August

11th: In the early hours a short-lived, and very intense, thunderstorm occurred above the Knowstone district of North Devon. No recording raingauges are sited in the area affected, but by using daily gauges and the evidence of local inhabitants, the peak rainfall intensity was estimated at 100 mm per hour for a restricted locality near the headwaters of the Crooked Oak and Lower Silver streams. Streamflow, assessed using wrack marks beside the Crooked Oak stream, was estimated at 80 cumecs – equivalent to a runoff rate of about 17 mm/hr. An event of this magnitude has an extremely long return period – up to 1000 years – but the sudden collapse of a debris dam upstream causing a very transient (but, nonetheless, real) peak may be a source of overestimation. Flooding was very localised and the impact on the rural community limited but local roads and tracks were heavily eroded and some became impassable. Several small bridges and vehicles were destroyed.

22nd-23rd: Instability, associated with a complex area of low pressure crossing southern Britain, was sufficient to generate several vigorous thunderstorms. Daily rainfalls exceeding 60 mm were recorded at Bushey (Herts) and Oakley (Bucks) – such amounts represent about ten per cent of the 1986 total; return periods of about 100 years were ascribed to these events (recording raingauge evidence suggested that virtually all the precipitation fell in a six-hour period).

25th-26th: A deepening intense depression - the remnant of Hurricane Charley - crossed the UK bringing widespread and heavy rainfalls - see 'The Wettest Day on record in England and Wales' (page 23).

September

Dry conditions were re-established during September when the UK was influenced by a sequence of anticyclones. The last two weeks were particularly dry with parts of south-east England having no rain for 28

days following the 16th; only 1959 and 1976, in recent years, have experienced longer dry spells. The consequent flow recessions were widespread, although interrupted in some areas by several wet interludes, and the re-commencement of infiltration to the major aquifers was delayed.

October

October was a month of contrasts. High pressure dominated the weather pattern until the 19th. The dry spell then ended as a series of vigorous frontal systems crossed the UK bringing sustained rainfall, with some thunderstorms, to many places. Precipitation totals were not particularly remarkable but the decline in soil moisture deficits increased the effectiveness of the rainfall and caused flow rates to rise from close to the seasonal minimum to well above average in most regions. Flow in the rivers Dee, Don and Muick rose in response to rainfall associated with a deep depression, which crossed northern areas of Great Britain on the 24th – several days prior to this they had recorded their lowest daily mean flow for the year.

November

9th: A sequence of Atlantic depressions crossed the UK during the month bringing widespread and heavy rainfall. The Waen Sychlwch raingauge, in the Brecon Beacons, registered a 'very rare' rainfall total – 147mm (corresponding to a return period of greater than 200 years) – and recorded 433 mm over the twelve-day period commencing on the 7th November; a precipitation total of this order is comparable to the 1986 rainfall total in some parts of Essex.

18th-21st: Severe storms caused disruption in southern areas; homes were flooded, overhead power cables brought down and cross-channel ferry sailings postponed. Heavy rain affected Wales and south-west England. On the 18th, 79 mm was recorded at Princetown, Devon, and 73 mm at Moel Cynedd, Powys. Houses at Cwmaman, Mid Glamorgan, were cut off for several hours due to floodwater and three properties were overwhelmed when heavy rain triggered a landslide in Graig-y-Merchyd. At Ystalyfera, West Glamorgan, another landslide damaged two houses. In Port Talbot and Neath, roads and some properties were affected by floods. In the Whitland district of Dyfed there was serious flooding and transport disruption; emergency services were fully stretched. Rivers were in spate throughout the area affected and a Red Alert was declared when the rivers Ogmore, Neath, Tawe, Loughor and Gwendraeth reached critical levels for a four-hour period during the night of the 20th. The River Senni recorded a new maximum daily mean flow, for November, in a twenty-year record and the peak flow on the Eastern Cleddau was, with the exception of that on the 25th of August, the highest since 1964.

December

1st-2nd: A depression centred to the north of Scotland resulted in a number of localised storms producing three 'very rare' rainfall events. Two occurred on the 1st - on the Island of Great Cumbrae, in the Firth of Clyde where a daily rainfall of 95 mm was measured and at Glengyle - near Loch Katrine - 203 mm was recorded; the latter total having an estimated return period of over 2600 years. On the 2nd, 162 mm fell at Bhlaraidh Headpond, west of Loch Ness. Subsequently, downstream of the Loch, the river Ness registered its highest daily mean flow of the year.

3rd-5th: A deep mid-Atlantic depression moved north-eastwards whilst its associated frontal system skirted western regions of Great Britain. On the 3rd and 4th, parts of Lancashire received 50-60 mm of rain causing the Garstang Flood Basin to be used for the first time in order to prevent flooding of the St Michaels area. A separate storm, with similar rainfall totals, in North Cumbria on the 4th and 5th caused the River Greta to rise to its highest level of the year posing a serious risk of flooding in Keswick.

28th-30th: A deep Atlantic depression caused torrential rain to sweep across northern and central Wales and northern England resulting in floods which cut off villages, blocked roads and inundated hundreds of acres of low-lying land. In the River Dyfi catchment, a number of 'very rare' daily rainfall totals were recorded including an estimated 170 mm at Glaspwll – the maximum daily rainfall recorded for 1986 in England and Wales. Large areas received over 50 mm and Dolgellau suffered its heaviest rainfall in twenty six years; the nearby village of Pennal was evacuated. The peak discharge on the River Glaslyn was a record for December and the River Conwy, in Gwynedd, overtopped its banks resulting in substantial flooding downstream of Llanrwst. The maximum instantaneous flows on the Rivers Ystwyth and Rheidol had return periods estimated at around ten years; the associated inundation caused considerable concern, as elsewhere in Wales, given the imminence of the lambing season. Rainfall in north-west England was less extreme but several noteworthy flows resulted. The peak discharge monitored at the Rudheath gauging station on the River Dane exceeded the maximum on record by more than 50 m³s⁻¹. In addition, the two Mersey Flood Basins were used together for the first time to reduce peak river levels and alleviate flooding.

The Wettest Day on record for England and Wales

The most significant meteorological event of the year occurred towards the end of August when a deepening, intense depression – the remnant of Hurricane Charley – followed a north-easterly track from South Wales across the United Kingdom. The slow passage of the depression brought heavy rainfalls accompanied by gale force winds to many areas.

It became clear that the ex-tropical depression would cross the UK over the Bank Holiday as surface pressure fell on the 25th to 990 millibars south west of Ireland. By the following morning the low pressure cell had intensified, 981 millibars being recorded to the north west of London. The associated widespread and sustained frontal rainfall resulted in the highest single day (0900-0900) rainfall total for England and Wales in a record extending back to 1766 (see page 2). Figure 10 illustrates the daily rainfall totals for August the 25th. Almost the whole of England and Wales recorded more than 25 mm of rainfall and the areal average was marginally greater than 40mm; a mean of 61 mm was registered for Wales alone. A feature of the rainfall distribution was the relatively subdued influence exerted by relief

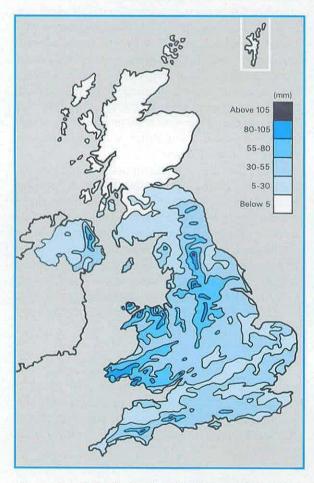


Figure 10. Rainfall for the 25th August (09.00-09.00) 1986.

on the spatial variation. Daily rainfall totals for seventeen well distributed sites in Great Britain qualified as 'very rare' (see page 7); eight of the rainfall totals exceeded 100 mm and 24-hour rainfall totals greater than 50mm were experienced over wide areas. By contrast in Scotland north of a line from Glasgow to Edinburgh, precipitation amounts were negligible; few districts recorded more than 2 mm over the same period. Some care is necessary in interpreting Figure 10; the somewhat arbitrary nature of the rainfall-day detracts from the significance of the rainfall episode in some regions. For instance, in Northumbria a considerable proportion of the rainfall associated with the frontal system occurred after 0900 hours on the 26th August.

North-east England and Wales were the most severely affected regions both meteorologically and hydrologically. The highest daily rainfall total during this event - 135 mm - was recorded at Aber in Gwynedd. Using evidence from an hourly recording raingauge on Anglesey, it was estimated that the rainfall accumulated over a period of just 18 hours; on this basis the associated return period would approach 600 years. Return periods exceeding 100 years were ascribed to rainfall totals throughout large areas in south Dyfed where precipitation was especially noteworthy in coastal districts. In Northumbria and much of Yorkshire, more than 90 mm of rain was recorded over the 24-hour period beginning late on the 25th in the majority of river catchments; only a few areas received less than 50 mm. The maximum fall in this region - 105 mm - was recorded at Bar Gap Farm near Bowes during the 25th-26th. Rainfall throughout Northern Ireland was only a little less noteworthy with 90 mm reported in Lowtown, County Antrim, on the 25th. Some very intense rainfall episodes were also reported. A peak hourly rainfall amount of 38.2 mm was recorded at Preston, Lancashire, on the 26th and a fall of 27mm in three-quarters of an hour near Burton in the Midlands caused localised flooding in Staffordshire and south Derbyshire.

Substantial soil moisture deficits have normally become established by late summer throughout most of the UK. In August 1986, despite the dryness of the first three weeks, SMDs were lower than expected over much of upland Britain. However the deficits - particularly in the north-east of England, where they were somewhat above expected values were of sufficient magnitude to ameliorate the impact of the heavy rainfall and to reduce the extent and magnitude of flooding. Following the rainfall over the Bank Holiday weekend, deficits over much of England were reduced by 30 or 40 millimetres and in North Wales deficits exceeding 80 mm - on the 24th - had been eliminated a week later; soils also returned to field capacity in other upland, and a few coastal, areas.

Generally, river flows were close to the average in the majority of rivers in England and Wales during

(b)
Plate 1. River Tyne at Prudhoe—(a) under dry weather flow conditions and (b) at the peak of the 26/8/88 flood.
Photos: Malcolm Newsom.

mid-August with Scotland and Northern Ireland registering slightly above average discharges. By the evening of the 25th, however, flood warnings had been issued on most rivers in South Wales. The Taff together with three tributaries overtopped their banks and the Gronw Stream, reaching a depth of one and half metres, was responsible for severe flooding in the town of Whitland (Dyfed). New absolute peak discharges were recorded at gauging stations on the rivers Taf, Ewenny and East Cleddau, each with flow records exceeding 25 years and, in Clwyd, a young boy was swept away as the river Alyn burst its banks. The impact of the gales and floods was most severe in coastal districts where camping and caravan sites, especially, suffered considerable devastation.

In Northumbria and parts of Yorkshire, river levels rose sharply on the 25th and record flows were established on the Rivers Tees, Greta, and South Tyne. Plate 1 illustrates the contrast between the discharge rate sustained during this event and typical low flow conditions on the Tyne. A return period of 50 years was estimated for to the flood discharge at Haydon Bridge (South Tyne) and a similar magnitude was ascribed to the maximum instantaneous flow recorded at Broken Scar, on the Tees, where the previous peak flow was surpassed by 120 cumecs.

At Bywell, the principal gauging station on the Tyne, a highest instantaneous flow greater than 1500 m³s⁻ was registered. Such a flow rate exceeds the maximum discharges, stored on the Surface Water Archive, for all other rivers in England and Wales. Even allowing for the margin of uncertainty associated with flow assessments in the higher flood ranges, it is a measure of the remarkable nature of the runoff following the August 25/26th rainfall. On the Greta at Rutherford Bridge - where water levels exceeded the previous maximum by a metre the return period was assessed at greater than 100 years. The River Snaizeholme which drains from the Pennines, peaked at 15 cumecs, the highest discharge measured in its 14-year record and most rivers in North Yorkshire were in spate. Reservoir replenishment was also extremely rapid - 4 m and 5 m water level increases being recorded at Burnhope Reservoir and Tunstall Reservoir respectively; a few small impoundments filled to overflowing. The artificial storage in the headwaters of several of the most critically affected rivers served to reduce peak levels downstream and ameliorate the extent of flooding on the river Tees it was estimated that levels would have been almost half a metre higher downstream of Darlington but for the effect of the Pennine reservoirs. This, together with the recently constructed floodbanks on the Coquet and Tees, resulted in few properties being affected although road and rail communications were disrupted over a wide region and considerable areas of farmland were inundated. Small bridges and dry stone walls in the Yorkshire Dales were swept away and rock/debris obstructions in the rivers caused widespread ponding in the shallower valleys. Flooding in the Bowmont Valley, on the border with Scotland, caused the death of a man whose Land Rover was swept into the swollen Bowmont Water.

The damage and disruption caused by the passage of 'Hurricane' Charley was very considerable. However, the costs attributable to fluvial flooding were moderate given the magnitude of the rainfall. In part, this reflects the natural ability of catchments, especially in the summer, to store water and attenuate the runoff response, but in many areas it testifies also to the effectiveness of flood warning and flood alleviation schemes designed to mitigate the threat posed by rare precipitation events.

References

- Shawyer M. S. 1987. The rainfall of 22-26 August 1986. Weather, 42 (4), pages 114-117.
- Mayes J. C. 1986. Charley comes to Wales. Department of Geography, University College Swansea.

THE ACQUISITION AND ARCHIVING OF RIVER FLOW DATA – PAST AND PRESENT

T. J. MARSH

Institute of Hydrology

Background

The rational exploitation and management of water resources depends to a considerable degree on the ready availability of hydrological data. For scientifically based management strategies and optimal engineering design procedures to be developed, large volumes of river flow data need to be collated, organised and analysed. Whether designing a dam or assessing the volume of contaminants which without detriment to the aquatic environment - may be discharged into a particular river or stream, a detailed knowledge of the expected range of flows is required. The uncertainty associated with the data is also an important factor in determining the limits to which a river system may be managed or the margin of safety which needs to be incorporated into the design of river works. Precision can only be obtained at a cost, of course, and designers of hydrological archives must demonstrate that the resources devoted to data acquisition are justified by the benefits accruing in terms of improved management performance or the prospect thereof based upon the research potential of large hydrological databases.

The processing of river flow data embraces many tasks between the sensing – normally of river levels – on the one hand and the dissemination of information on the other (Figure 11)¹. The information requirements of managers, planners, researchers and others together with the available instrumentation technology and data handling expertise all have important implications for the optimal system design. The success of any system may normally be judged by its ability to allow for the differing demands of a wide spectrum of data users and, in particular, to ensure that suitably filtered information is available at the right time and at an accuracy level appropriate to the application in hand.

The Character of Rivers in the United Kingdom

The data acquisition practices and procedures followed throughout the United Kingdom reflect the

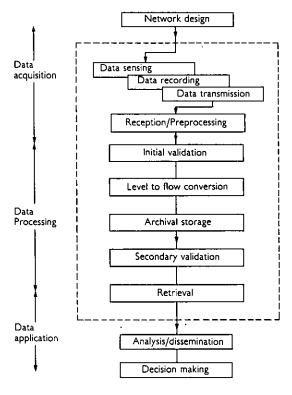


Figure 11. River flow information system flow chart.

characteristics of both the rivers themselves and the catchments they drain. By international standards the UK maintains a relatively dense network of flow measurement stations² – approximately one per 150 km². This is a necessary response to the diversity of the United Kingdom in terms of its climate, geology, land use and pattern of water utilisation.

UK rivers - mere streams in a global context - are typically short, shallow and subject to substantial artificial disturbance. The total annual discharge of all the rivers in England and Wales barely equates to the average weekly runoff for the Amazon and - nearer to home - the River Rhine contributes a greater input of freshwater into the North Sea than the combined total for all the rivers along our eastern seaboard. With many small basins draining to a convoluted coastline, water resource assessment and

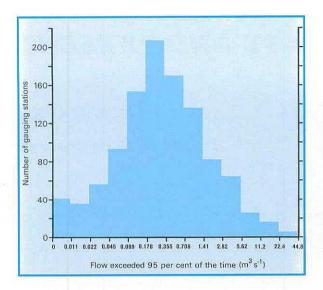


Figure 12. The distribution of 95 per cent exceedence flows for gauging stations in the United Kingdom.

management in the UK inevitably involves considerable monitoring effort – the ten largest rivers in the UK account for only 30 per cent of the overall runoff.

The depth of major international rivers may be measured in a few tens of metres; decimetres are more typical of most UK rivers. This limited water depth places a high premium on reliable instrumentation and rigorous gauging station maintenance procedures to ensure that accurate and representative records of water level - from which river flows are derived - are available. The 95 per cent exceedence flow for more than three-quarters of UK gauging stations is less than one cubic metre per second (see Figure 12). The equivalent water depth for a significant proportion of these stations is below 80 mm - often substantially so - thus any errors resulting from, say, the imprecise setting of the zero of a water level recorder or limitations in the inherent accuracy of the sensing and recording devices may have serious implications (see below).

In order to reduce the uncertainty associated with computed flow values, especially in the low flow range, gauging stations are commonly sited where any significant change in discharge is accompanied by a substantial change in water level; thus, by natural or artificial means, attempts are made to maximise what is termed the 'sensitivity' of the measuring station. Despite some careful documentation of the importance of sensitivity3 and an enterprising approach to gauging station design, the margin of uncertainty associated with discharge values can remain substantial. Figure 13 illustrates how a modest error in the determination of water depth can result in a substantial error in the computed discharge rate. Notwithstanding the skill with which gauging reaches are selected or measuring weirs designed, the penalties associated with imprecise stage monitoring can remain obdurately severe. Table 5 lists the percentage errors in discharge arising out of a ten millimetre systematic error in the measurement of water level at a stage corresponding to the 95 per cent exceedence flow (see page 41). Taken together, the featured stations are typical of UK flow measuring conditions but individual gauging stations may not be representative of any particular river or region. Not surprisingly the larger errors tend to correspond with the smaller catchments which, generally, are among the most hydrologically valuable; the flow regimes tending to be little disturbed by artificial influences. It is evident also from Table 5 that hydrometric standards need to be maintained at a high level if confidence is to be placed in flow values particularly those likely to be experienced during periods of drought.

River Flow Measurement

In antiquity, despite the crucial importance of water to all civilisations, river flows were invariably determined on the basis of depth alone; water velocity was ignored even by the Romans whose artefacts testify to a considerable water engineering expertise. Hero of Alexandria is credited with the initial suggestion (circa 100 A.D.) that discharge was, indeed, the product of cross-sectional area and speed of flow; he used a volumetric method to determine the outflow from a spring and to demonstrate the importance of velocity4. This fundamental principle was forgotten and practical application awaited its independent discovery by Castelli in 16285. Perhaps inevitably, it fell to Leonardo Da Vinci to demonstrate a measurement technique employing simple floats - to investigate changes in river velocity^{6,7}. With a pioneering understanding of velocity distribution Leonardo was able to appreciate that surface floats suffer from a number of disadvantages - principal among these being the inability to assess the mean velocity in the vertical profile. A more sophisticated approach was heralded by Sartorio's initial design for a flow measuring device8 and,

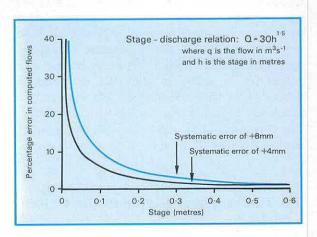


Figure 13. The effect of systematic errors in stage measurement on computed flows.

TABLE 5 THE SENSITIVITY OF UK GAUGING STATIONS

Note: The 'sensitivity error' referred to in this table relates to the percentage change in flow associated with a 10 mm change of water level at a stage corresponding to the 95 per cent exceedence flow. For an explanation of the Station Type codes see page 96.

Station	River	Station	Catchment	Mean	95%ile	Sensitivity
Number		Type	Area	Flow	Flow	Error
			km²	m³s−1	m³s-1	%
004001	Conon	VA	961.8	45.62	8.59	5.5
007001	Findhorn	VA	415.6	13.22	2.05	13.9
008006	Spey	VA	2861.2	64.61	19.18	4.9
800800	Tromie	VA	130.3	2.40	1.18	7.3
012001	Dee	VA	1370.0	36.40	8.40	5.2
15006	Tay	VA	4587.1	158.10	42.84	1.9
21009	Tweed	VA	4390.0	76.71	14.02	4.5
23001	Tyne	VA	2175.6	43.87	5.44	6.5
24005	Browney	CB	178.5	1.73	0.34	13.7
24009	Wear	FV	1008.3	14.78	3.29	7.8
25019	Leven	FV	14.8	0.20	0.06	25.0
27029	Calder	C VA	341.7	8.74	2.30	5.0
027035	Aire	VA	282.3	6.04	0.52	15.9
027041	Derwent	С	1586.0	17.53	4.92	5.5
027051	Crimple	FV	8.1	0.11	0.01	54.0
27055	Rye	C	131.7	2.36	0.55	22.1
028003	Tame	VA	408.0	5.84	2.70	3.3
028012	Trent	VA	1129.0	12.52	5.04	3.6
028025	Sence	,C	169.4	1.51	0.25	22.4
028026	Anker	C VA	368.0	2.82	0.61	13.6
)28044	Poulter	С	65.0	0.33	0.17	21.2
031006	Gwash	С	150.0	0.86	0.29	23.3
033012	Kym	CB	137.5	0.63	0.02	65.0
036006	Stour	FL	578.0	2.83	0.50	7.9
037008	Chelmer	EW	190.3	1.02	0.27	15.6
38007	Canons Brk	FL	21.4	0.20	0.05	32.0
39016	Kennet	С	1033.4	9.65	3.98	6.4
39019	Lambourn	C	234.1	1.72	0.79	13.3
39020	Coln	С	106.7	1.34	0.38	21.3
043005	Avon	С	323.7	3.43	1.15	8.9
143006	Nadder	C	220.6	2.88	0.94	18.8
48005	Kenwyn	CC	19.1	0.38	0.05	15.6
049004	Gannel	С	41.0	0.69	0.10	38.2
)52004	Isle	C VA	90.1	1.31	0.26	22.7
052010	Brue	C VA	135.2	1.89	0.26	21.5
53017	Boyd	FV	48.0	0.57	0.05	27.5
54004	Sowe	С	262.0	2.94	1.03	8.6
54012	Tern	FV	852.0	7.09	2.41	4.2
054019	Avon	С	347.0	2.50	0.48	15.0
056001	Usk	VA	911.7	27.67	4.34	5.1
065005	Erch	С	18.1	0.60	0.09	45.0
075001	St John's Beck	MIS	40.9	0.88	0.16	12.5
090003	Nevis	VA	76.8	6.28	0.57	8.8

subsequently, the important development work undertaken by Estevao Cabral; the two-hundredth anniversary of his first rotating-vane current meter (see Figure 14) was celebrated in 1986. Considerable further research and refinement has resulted in the modern family of current meters which provide a robust and reliable means of measuring flow except at the very extremes of the velocity range.

Current meters generally provide a measure of flow rate at an instant of time only. For continuous discharge monitoring a relation is required between water level and discharge to permit a continuous, or intermittent, record of river stage to be converted into discharge. A primary objective in selecting gauging stations is thus to locate a reach characterised by its ability to maintain a sensibly unique relation between water level and discharge – where water levels are then determined by a permanent 'control' (see below). World-wide, some 90 per cent of all gauging stations are of the open river section, or velocity-area, type. Consistent with the somewhat singular hydrometric conditions experienced in the UK, simple velocity-area stations make up well below half of the national network. The small size and minimal navigational use of most UK rivers, together with the attraction of grant-aid (until the mid – 1970s), served to stimulate the design and installation of a versatile group of gauging weirs¹⁰.

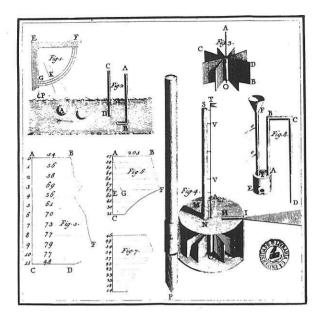


Figure 14. Eighteenth century design sketch for Estavao Cabral's rotating-vane current meter.

Although the requirements of migratory fish and the need to avoid substantial afflux (the increase in upstream water levels resulting from the installation of a weir) were, often, important design constraints, a large proportion of the gauging stations constructed over the last 40 years are weirs with known hydraulic characteristics. Such structures allow a laboratory derived, or theoretical, calibration to be used for the conversion of upstream water level to flow. A wide variety of weirs and flumes, reflecting significant regional preferences, were constructed after the Second World War but a greater measure of uniformity followed the development - in the 1950s - of a triangular profile weir designed by E.S. Crump (see cover)11. This robust and easily constructed weir is capable of monitoring flows with considerable precision and is, potentially, able to measure discharges in the non-modular range (when downstream water levels disturb the simple relationship between upstream head and the flow across the structure - see page 35). The desire to increase sensitivity in the low flow range led to two important design innovations¹². The first involved compounding - providing several crests set at different levels normally separated by divide piers. The second, more aesthetically pleasing, adopted a shallow 'V' profile to achieve a greater depth for a given discharge. Table 6, which provides a breakdown of the different types of flow measurement stations in the United Kingdom, testifies to the success of the Crump profile weir. Whilst measuring structures predominate - this is especially true of England and Wales - it should be noted that the distinction between station categories can, in reality, be rather artificial. Many Flat V weirs, for instance, are effectively river sections (calibrated by current meter) above the lowest flow range; in any case, all types rely on the velocity-area principle. Work on refining the calibration of standard weirs continued in the 1960s and 1970s, mostly government funded and much of it undertaken at the then Hydraulics Research Station; many of the results were subsequently consolidated into a fund of practical guidelines which form the basis of a number of British and International Standards.

By the late 1960s runoff from approximately two-thirds of Britain was gauged, directly, at least once. However, the arrangements for flow measurement remained unsatisfactory in a number of areas; a stable stage-discharge relation cannot be expected where, for example, confluences with other streams, tidal influences, sluice gates and other features such as weedgrowth, limit the range of effectiveness of the station control. The effect of these disturbances tends to be especially severe on rivers with a very shallow bed gradient. A number of novel attempts were made to utilise water surface slope to help determine discharge (see Plate 2) but most encountered formidable practical difficulties - most critically the inability to detect (at that time) very small differences in water level over the measuring reach13. Such problems served to stimulate research interest in new flow measurement techniques. Ultrasound appeared to offer considerable promise; by timing acoustic pulses traversing a river section along an oblique path, in both directions, a measure of the mean velocity can be obtained from the differences in the timings of the pulses - flow may then be computed from a knowledge of the cross-sectional area corresponding to a given depth14. Much important development work was completed in Britain and a prototype ultrasonic station was installed on the Thames, at Sutton Courtenay, in 197315. Further

TABLE 6 TYPES OF GAUGING STATION IN THE UK

Station Type	Number
Velocity-area	416
Flume	77
Flume/Velocity area	4
Broad-crested weir	24
Compound Broad-crested weir	36
Broad-crested weir/Velocity-area	16
Crump Weir	149
Compound Crump Weir	97
Flat Vee weir	112
Flat Vee weir/Velocity-area	45
Essex Weir	23
Thin-plate weir	56
Thin-plate weir/Velocity-area	5
Ultrasonic	16*
Electromagnetic	5*
Miscellaneous	110
Total	1191

^{*} A significantly larger number of ultrasonic and electromagnetic gauging stations have been, or are being, installed and await final calibration and commissioning.

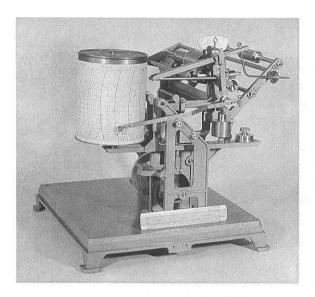


Plate 2. Gradometric Recorder—designed by Thames
Conservancy to record flow rate based upon the
water surface slope as measured between two
stilling wells in the same reach.

research, building on field experience, led to the introduction of more sophisticated, and reliable, multi-path systems backed up by considerable onsite computing capabilities. Following the successful deployment of an early ultrasonic system relying on a single pair of transducers¹⁶, a milestone was passed in 1985 when a multi-path system was commissioned at Kingston on Thames to continue the 100 year flow record derived, until 1975, from the complex barrage of weirs and sluices just downstream at Teddington¹⁷.

The limited range of levels in regulated rivers like the Thames is well suited to the ultrasonic technique but by the late 1970s versatile systems were being deployed on rivers with substantially greater water level variation. Plate 3 illustrates a modern ultrasonic gauging station which incorporates 16 pairs of transducers with an on-site microcomputer to determine mean velocity; a complicating factor at this site is the skewed flow pattern which necessitated the installation of two sets of transducers on each bank in order to make allowance for the non-uniform flow.

A feature of many modern installations is the attention paid, at the design stage, to ensuring – as far as is practicable – a sensibly continuous flow record; access and site facilities are normally excellent with the tranducers and instrumentation amply protected against accidental or deliberate damage; some duplication is also common to provide a measure of security against instrument malfunction. Several modern stations, provide for pairs of transducers to measure velocities beyond bankfull; the magnitude of floodplain discharge rates is often the least convincingly assessed component in the overall flow.

More than 30 ultrasonic stations are currently in operation; the technique has proved particularly successful in rivers subject to intermittent reverse flow (for instance in tidal reaches). However it is not a suitable method for channels affected by heavy weedgrowth or significant bed instability; steep temperature gradients or high concentrations of suspended solids can also degrade performance by refracting, or attenuating, the ultrasound beam albeit for a limited period. Under such circumstances - and where the need for flow data can justify the expense - an electromagnetic gauging station is often a viable alternative. The electromagnetic technique is only an innovation in relation to river applications. The method was first suggested by Michael Faraday18 and early estimates of the flow through the Straits of Dover relied on the same basic principle - that an emf will be induced in flowing water as it cuts a magnetic field. For hydrometric applications a vertical magnetic field is created by a coil buried in the bed of the river or installed above the measuring section (Plate 4). Considerable refinement - mostly relating to the need to distinguish the very small induced voltage from a background emf - was necessary before a practical river flow measurement technique evolved. A small experimental installation19 at Princes Marsh on the Rother provided much valuable design information and, over the last decade, a number of primary electromagnetic stations have been installed. Early field experience was a little mixed with a few sites operating unsatisfactorily under very low discharge conditions (when only

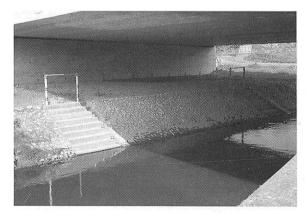


Plate 3. Ultrasonic gauging station on the River Trent at Darleston (Severn-Trent Water). The transducers mounted on the steps are used to access velocity in the channel; those mounted on the gantry help provide a measure of overbank velocity (the ultrasound flightpath extends to a corresponding set of transduces on the bridge abutment).

Note: Following a major flood in 1987 this station is being recommissioned with a different configuration of transduces. Out-of-bank velocities will be measured using a single-path ultrasonic system—the flightpath extending across the full width between the bridge abutments.

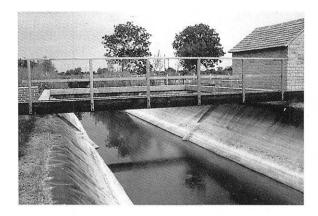


Plate 4. Electromagnetic gauging station on the Swill Brook (Thames Water) showing the overhead coil and bed insulation.

minute voltages are generated). The cost and power consumption have tended, also, to limit the method's application to rivers where other techniques are inappropriate. Nonetheless, the aesthetic advantages of a system which, like the ultrasonic method, can be designed to have very little visual impact (see Plate 5) may well stimulate its wider use especially where the need for bed insulation becomes unnecessary as ever more discriminating means of signal detection are developed.

Stage Sensing

Stage is the elevation of the water surface with respect to the established datum – typically the level of zero flow or the crest of a measuring structure. It is the most fundamental measurement in hydrometry and, in the UK, the uncertainty in the stage measurement largely determines the accuracy of the derived discharge data.

Until the nineteenth century, water level measurement normally involved the direct reading of levels marked on a graduated scale in, or beside, the river. Such measuring devices are considered the oldest hydrometric instruments - records of flood levels on the Nile date back about 5000 years20. The sensing mechanism is, of course, the human eye and the use of graduated scales in the form of gaugeboards continues to play a dominant role in hydrometry in many parts of the world. At all but secondary gauging stations in the UK, however, the sensing of stage had, by the 1950s, become entrusted to float-based systems. Normally the float is housed in a stilling well (or tube), to allow the water level to be sensed and recorded by one of a variety of methods undisturbed by surface oscillations or wind effects. Float-activated water level sensing is a simple and reliable technique which has found wide application where stilling well construction is practicable and its cost justifiable; it remains by far the most widely used sensing method in the UK. At a very small number of primary gauging stations more commonly where only short-term surveillance

Plate 5. Electromagnetic gauging station on the West Beck (Yorkshire Water) installed with the coil in the bed of the channel; the insulating material is held in place by a concrete-lattice revetment through which vegetation will recolonise the river banks.

is involved - water level sensing exploits the relation between water depth and hydrostatic pressure. Pneumatic sensing devices (or 'bubble' gauges) in which a continuous stream of bubbles are emitted through an orifice are normally installed in the river itself; the gas pressure in the tube leading to the orifice is dependent on the water depth. Rather more popular are pressure transducers which allow water levels to be monitored by a semiconductor sensing element which measures the hydrostatic pressure of the water column over a diaphragm transducer and transforms it into an electrical signal. Before the introduction of the ultrasonic gauging method, acoustic level gauges were rarely used for routine hydrometric monitoring. However, at a number of modern installations ultrasound transducers are deployed both to measure water velocity and to determine water depth - the pulse of ultrasound normally being reflected from the water surface allowing the water depth to be determined from the travel time to and from the transducer21.

Recording

Water level recording technology evolved at a relatively gentle pace until a decade or so ago. Principally this reflects the reliable performance of the instruments which gradually superseded the original manual recording of water levels. The floatdriven chart (or analogue) recorder was introduced in the middle of the nineteenth century and, with a number of important refinements, continues to dominate stage recording on a world-wide basis. Over 1200 - of various designs - are still used within the UK. The instrument is essentially simple in principle and in construction; a pen being driven by the angular movement of a pulley which responds to the rise and fall of the float in the stilling well below. Some early recorders were designed with a built-in calibration to allow flows to be registered directly.

By providing a visual record, in trace form, of water levels over a chosen period, typically a week or a month, important information concerning the flow pattern may readily be identified²². However, the analogue trace requires the extraction of individual stage values to facilitate the derivation of flows. This digitising phase provides the opportunity to filter out erroneous or unrepresentative levels but it is a labour intensive exercise and can be the source of significant error when untrained personnel are employed.

The introduction of more sophisticated digitising systems - often incorporating a graphical presentation of the abstracted level values - now provide a versatile means of extracting hydrometric data but the perceived need both for greater inherent accuracy and a greater measure of computer capability led to the introduction of the punched tape recorder (PTR); a major technological innovation at the time. The Surface Water Survey and, later, the Water Resources Board encouraged the deployment of the 16-channel punched tape recorder pioneered by the United States Geological Survey. For a time a five channel instrument also found favour in some parts of the UK. Properly installed such recorders are capable of registering water levels to an accuracy of better than ± 5 mm²³. By 1975 over 800 punched tape recorders had been installed. Such devices are robust, well understood and trusted. As a consequence most measuring authorities, eventually, adopted PTRs as the primary measuring instrument with a suitable analogue device to provide a back-up in case of punched tape recorder malfunction. Although water levels were recorded in digital form, conventionally at 15 minute intervals, the punched paper tape is only nominally computer compatible; custom made 16-channel readers are required to facilitate computer processing.

After a relatively quiescent period a number of factors combined to place the existing data recording facilities under considerable stress. The requirement for accuracy and reliability levels beyond what was achievable using mechanical devices allied to an increasing need, by water management, for near real-time data served to stimulate the search for alternative recording methods. A further factor was the increasing age of the PTRs and the vulnerability of acquisition systems relying on a technology which had declined to a single manufacturer status.

Ten years ago solid state logging equipment began to be deployed for the recording of river level data in the field²¹. A number of design problems were encountered, particularly in relation to logger capacity and battery performance. In addition, attempts to harness electronic loggers to existing PTRs proved an unhappy marriage of somewhat incompatible technologies²¹. Float-driven potentiometer systems (changing water levels producing a varying electrical resistance) offered a greater compatibility but rather limited precision. A far more effective solution involved the use of optical shaft encoders –

the incremental version relies on float movement to rotate a disc on which is engraved a pattern that alternatively transmits and obscures a beam from a light source; by accumulating the pulses a record of water level changes may be made.

In the absence of any national co-ordination, considerable experimentation took place over the period 1978-83 and a number of technical backwaters were explored before suitable recording options were identified. However, innovative enterprise and the pressure of user requirements resulted in logger technology rapidly passing through several generations. From costly, unreliable and relatively clumsy devices with limited storage capabilities evolved 'smart' or 'intelligent' field recording units capable of storing a range of variables, undertaking field processing and data validation and controlling, where appropriate, the transmission of data to processing centres. The associated need for suitable software to receive, archive and utilise the data, however, did not always evolve at the same pace so that, initially, the full potential of the new logging systems remained unrealised.

Transmission

Since hydrometric data were first collected, it has almost invariably been the case that the location, or locations, where the flow information was required was removed - often distantly - from the point at which water levels were sensed. The necessary data transmission involving muscle power or, later, the internal combustion engine, has always been an important feature, and often the weakest link, of any data acquisition system. Notwithstanding its inherent unreliability, the 'manual' form of data transmission served the water industry effectively until the growing operational need for data focused attention on the limitations of traditional data gathering procedures. The collection of water level charts or punched tapes in the 1970s was normally scheduled on a routine basis, typically weekly or monthly. It had the important incidental benefit of allowing for regular site inspections and, where necessary, the carrying out of station maintenance and instrument checks. For particular applications, especially those concerned with flood warning or alleviation, however, data accessibility needed to be (sensibly) immediate. This real-time requirement led directly to the introduction of a variety of telemetry arrangements.

Any telemetry system may be regarded as consisting of essentially four elements: the sensor, an encoding device to convert the sensor output to a format suitable for transmission, a transmission system linking the sensor to a receiving station and a data reception and distribution facility²⁴. In the United Kingdom, private or public telephone lines and radio links are used for transmission purposes. The dense, and generally reliable, telephone network encouraged the introduction of interrogable, or dial-

out, flood warning facilities at many gauging stations in the 1960s and 1970s. Radio-based systems were also deployed to give wide-area coverage. These developments often resulted in the creation of dual monitoring systems, one for operational purposes (where, commonly, no elaborate provision for the systematic storage of the data was considered appropriate), the other to service archiving needs. Whilst potential advantages of combining the two systems could be readily identified, the complete unification of different acquisition systems (with differing objectives and, often, separately staffed) raised a number of practical problems; in particular reconciling the archiving need for continuous good quality data with the less stringent but urgent operational demands proved difficult until recently.

The last five years has, however, seen new technology exploited successfully to allow single data acquisition systems to meet the full range of user needs. In some areas the current data acquisition instrumentation may be regarded as transitional as strategies for the deployment of unified systems are examined and refined.

Typically the modern system consists of a floatdriven shaft encoder interfaced to a logging device linked by the PSTN (Public Switched Telephone Network) to a processing centre - see Plate 6. Provision may be made for immediate alarm conditions to be transmitted from the field but, under normal circumstances, 15 minute water levels are stored on site for cheap overnight transmission to microcomputers where the data await initial validation and conversion to flow. The first such systems were introduced in the early 1980s^{25,26} and proved themselves both flexible and reliable. Following initial promise, further deployment was rapid. Between 1983 and 1984, for instance, Severn-Trent Water installed a large number of outstations replacing - among other instruments - all the existing PTRs and, now, well over 200 telemetered outstations comprise the principal method for the routine collection of hydrometric data²⁶. A major stimulus towards the wider use of telemetry has been the potential for savings resulting from the reduced need to visit sites on a routine basis to collect chart, tapes or removable loggers. Conceptually, sophisticated loggers are able to help determine maintenance schedules by providing warnings relating to, say, battery performance, or unusual patterns of river levels which require investigation.

Not all gauging authorities are responsible for the same range of operational activities and, as a result, the incentive to introduce telemetry schemes may vary as between, for instance, Water Authorities and River Purification Boards. Even where the responsibilities of measuring authorities are identical, very clear contrasts in the rate of deployment of new data acquisition technology have been identified²⁷. Nonetheless, over half the flow data submitted to the Surface Water Archive is now been derived from

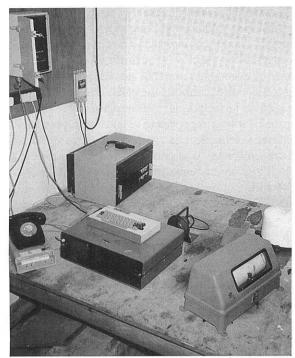


Plate 6. Hydrometric data acquisition facilities at the Spilmersford gauging station on the River Tyne (Forth R.P.B.). The shaft encoder is partially hidden behind an intelligent logger which provides forecasts as part of the Haddington Flood Alleviation Scheme. For the derivation of daily mean flows, 15 minute water levels are transmitted – in batches – to a processing centre in Edinburgh. The analogue recorder (right foreground) provides a back-up to the primary instrumentation.

telemetered water levels (compared with about five per cent, seven years ago) and the PSTN systems in particular are being rapidly extended to embrace most primary monitoring sites. The cost benefits have been clearly demonstrated and evaluated in a number of regions. Generally, PSTN systems have proved more suitable than terrestrial radio links which can be more vulnerable to meteorological conditions and may require unsightly masts to allow line-of-site communication. However, system designers need to keep under review the relative merits of each transmission option. The damage associated with the storms of October 1987 provided a timely reminder of the vulnerability of telephone-based systems. In parts of Kent telecommunication lines were interrupted for up to a week following the nearhurricane force winds on the night of the 15/16th but river level data were still successfully telemetered from stations provided with a satellite transmission link. Two days later in South Wales, flood warning and flood alleviation procedures were severely hampered when floodwaters from the River Tywi incapacitated the Carmarthen telephone exchange for a critical period.

Data Processing

Most river flow measurement, and the bulk of the data processing, in the United Kingdom is carried out by regional gauging authorities. Currently these comprise the ten Water Authorities in England and Wales, the seven River Purification Boards in Scotland (see page 192) and the Departments of the Environment and Agriculture which undertake a joint operation in Northern Ireland.

The principal data processing task is to reduce a mass of water level data - over three million data items per month - into discharge values, and to provide storage facilities for all the basic data. An important subsidiary activity involves the assembly, or computation, of other gauging station or catchment information which serve to increase the utility of the flow data. For instance, a catchment boundary needs to be delineated and the basin area established before values of runoff can be assessed. The efficiency with which a processing system handles both time series information (e.g. daily flows) and time invariate or feature information (gauging station type, drainage density, proportion of lake in the catchment etc) is a crucial influence on how successfully the archive can be exploited.

When computer-based hydrometric data processing was first introduced in the UK much of the routine conversion of water level to flow was undertaken at a national centre, the Water Resources Board. This made sense at a time when there was limited hydrological and computing expertise available in the measuring authorities (then the River Authorities in England and Wales). The ensuing two decades have witnessed a migration of processing capability to the regions and, in some areas, thence to local offices and eventually into the field itself? This has brocken down, or circumvented, some of the traditional divisions in the acquisition of river flow data (see Figure 11).

From about 1975 considerable effort was devoted to developing flexible user-friendly processing systems but most were linked to mainframe computers and substantial user frustration resulted from the lack of priority afforded to the development and refinement of software required for hydrometric data processing. A positive development, however, was the rapid spread of microcomputer systems designed to undertake the initial processing and quality control of the river level data, allowing archiving and retrieval to remain a mainframe function. Conceptually this approach has a number of advantages; in particular the expertise of local staff with a sound knowledge of river behaviour can be capitalised on to ensure effective validation of the data at source whereas the data handling and analytical capability of the mainframe has until recently made it the preferred choice for data retrieval and analysis. The advent of cheap, powerful microcomputers encouraged many regional and local initiatives. In a negative sense such initiatives were also born out of the lack of any effective co-ordination and standardisation of processing methods and procedures; in any case off-the-shelf systems were unavailable until recently.

A particular complication for the system designer is the number of different data streams with which any comprehensive system has to contend. The revolution in instrumentation and data transmission facilities has not been an overnight phenomenon; the old technology is yielding in a more or less graceful manner, to the new. Consequently, for extended periods, both traditional and innovative acquisition systems are likely to co-exist and provision has to be made to cater for a diverse set of inputs. In 1987, for instance, the Thames Water system was required to handle data from analogue charts, 16-channel punched tape recorders, PSTN and radio telemetered data (every 15 minutes) and from two different solid state logging systems. At many of the gauging stations the downstream water level and/or crest level is monitored as well as the upstream level to facilitate the conversion to discharge. Additionally, input facilities were required for ultrasonic and electromagnetic stations where flows are directly computed on site. Clearly a flexible data processing system was needed and Thames Water adopted a modular approach to system design. Each individual data stream is treated separately and the data transferred into temporary data files which have a common format. From this stage all data are treated in a common fashion. Consequently if a new type of data input (perhaps to capitalise on satellite telemetry) is required, all that is needed is a new input module28.

Depending on the scope of the archiving system, a range of additional environmental data may be stored alongside the basic flow data. Provision may be made to store both level and flow data together with short time-interval and catchment average rainfall totals. Of particular importance in relation to some strategically important rivers is the need to allow for the impact of man's activities on the natural flow regime. The heavy, and widespread utilisation of water in the UK, combined with the modest flows typical of most rivers, results in artificial influences having a major impact on the flow regime. In 1986, for instance, water abstracted to meet London's water supply needs reduced the flows measured at the Kingston gauging station by over 20 cumecs on average (equivalent to the mean August discharge); this represents a ten-fold increase over the net abstraction at the beginning of the flow record in 1883. Planning and policy development relating to the exploitation of water may be distorted if account is not taken of the quantifiable variations in flow patterns due to artificial disturbance of the flow regime. Equally, unless determined attempts are made to appraise and categorise the hydrometric characteristics of each gauging station - especially their performance in the low flow and flood ranges - inappropriate or misleading deductions may be drawn from the raw flow data.

Data Quality Control

The UK gauging station network represents a public investment approaching 100 million pounds and considerable resources are devoted to the collection and archiving of hydrological and hydrometric data. A proportion of these resources should be used to ensure that the data are of a quality commensurate with the needs of water management and other data users. The presence of large volumes of erroneous data can easily undermine the confidence of both data suppliers and users in any archiving enterprise.

A hydrometric data archive, as with most databases, depends for its success on the ready availability of sensibly continuous data sets of known accuracy. Network design, instrument performance, staff education, training and motivation all play a part in determining the quality of the archived data. A further significant factor is the priority afforded by management to hydrometric activities. The statutory framework within which flow measurement in the UK is organised is of an enabling nature; no direct obligation to gauge rivers exists beyond that necessarily arising out of the operational responsibilities of the water undertakings*. During periods of economic stringency there are inevitably pressures on measuring authorities to reduce monitoring effort and to critically review the functioning of their gauging station networks29. Recently such reviews have led to the closure of stations which - in a national perspective - contributed valuable data to the UK hydrological database. A relaxation in standards is evident at other sites. This may, for instance, take the form of a sharp decline in flood gauging at stations perceived, locally, to exist principally to provide flow information relating only to resource management or pollution control.

The non-hydrological aspects of data quality control are of particular importance during a period when hydrometric data acquisition is in a state of flux with major developments in the instrumentation and data communication fields having a substantial impact on the way river flow data are handled and processed. As with much technological progress, dangers can attend the rapid introduction of new systems into a discipline used to a rather pedestrian pace of change. The ability to sense, record, transmit and process flow data untouched by human hand and, more crucially, unseen by human eye may not represent an unmitigated blessing. The contribution to data quality control made by experienced personnel engaged upon laborious manual data examination and processing has not been easy to fully codify and effectively mimic in computer software form.

It will be clear from the above that the quality control of hydrometric data involves a wide range of activities. If hydrometric data acquisition is considered as a production line, it is useful to recognise four reasonably distinct areas where quality control procedures may be applied to good effect 10.

i. Hydrometric field practice and the recording of water level

Virtually every part of a river flow archiving system depends for its input, either directly or indirectly, on the original measurement process. Errors in depth assessments may be a consequence of poorly set-up, or poorly maintained, instruments or the use of sensing and recording devices inappropriate for the precise measurement of water level. In addition, inadequate site maintenance may result in water levels, however accurately recorded, being unsuitable for direct conversion into river flow. For instance, a weir may have algal or plant growth along the crest which raises upstream water levels - stage increases exceeding a centimetre are not uncommon - whilst the water level recorder faithfully monitors the river level relative to the crest itself.

A continuing commitment to good practice in the field is the only way to ensure that precise and representative river level data are recorded.

ii. The checking of river stage data

Many hydrometric data processing systems in the United Kingdom now incorporate a facility for the automatic checking of water level data. Early systems provided for the examination of water level sequences to ensure that none fell outside a prescribed range. A refinement of this approach involved checking that the difference between consecutive readings remained below a selected threshold. By choosing a threshold value appropriate to the individual gauging stations, this simple method was able to identify most erroneous data sequences other than those which are essentially systematic in nature. Graphical plots of river level hydrographs are now favoured - often being presented for visual scrutiny immediately prior to the conversion of depth to flow; the need to do this explains the continued popularity of chart recorders in some areas. Powerful editing facilities, including the ability to add, subtract or apply a gradually changing adjustment (for instance, to counter the effect of seasonal weedgrowth) are necessary to allow rectification of the many possible sources of anomalous stage values. More sophisticated techniques are available; most capitalise on the high serial correlation normally found in time series of river stage values but their use has generally been restricted to research applications.

The existence of impressive computer software, alone, does little to guarantee the quality of stage

^{*} The obligations to be placed upon the National Rivers Authority (see page 192) in relation to hydrometric data collection are currently under consideration.

data. Error recognition is a computer assisted – not computer controlled – procedure and the integrity of the final data will reflect the expertise, enthusiasm and commitment of the operator together with priority afforded by management to data validation activities.

iii. The stage-discharge relation

After the measurement of stage, the precision of the stage-discharge relation is the most important influence in determining the quality of river flow data. Both the procedures used to derive a calibration and the form in which it is expressed may limit the accuracy of the computed discharges. A knowledge of the physical characteristics and behaviour of the river concerned together with an appreciation of the hydraulic and statistical principles underlying the calibration exercise is necessary to achieve the most productive interaction with computer based rating programs. A failure to detect significant shifts in the stage-discharge relation may seriously threaten the accuracy of a river flow time series. Such a failure is most likely to result from a decline in local current metering programmes and, inevitably reduces the confidence that can be placed in computed flows. To facilitate reprocessing of stage data when rating changes have been detected, and to permit data users to appreciate how historical flow computations have been effected, it is essential that a register of calibrations be maintained preferably within the computer system.

Artificial controls are not subject to the same degree of scour and fill under high flow conditions which commonly alter stage-discharge relations at velocity-area stations. However, the cross-section of the approach channel may be altered by accretion. Sediment build up in this area will result in increased approach velocities to the structure (the opposite is true in the case of scour). Unless allowed for in the calibration, a systematic error in flow computation will result. An examination of Figure 15 reveals that errors in the computed discharges can be large; however, effective monitoring of the accretion and its removal when a suitable threshold is exceeded can ensure that the weir performance is not seriously degraded.

A less tractable problem concerns the computation of flows in the non-modular range. Drowning may result from a number of causes including weedgrowth or poor channel maintenance downstream. In theory, data from an additional recorder – monitoring the head above the crest or downstream of the structure – should enable a suitable flow reduction factor to be chosen. In practice, it has proved difficult to determine the reduction factor with any certainty and flows are consistently overestimated using the modular flow calibration. This problem is known to affect over 150 gauging stations in the UK and may be considered typical of those

which can introduce bias into computed flows. Random uncertainties in stage measurements tend to be of much less significance – with 96 readings normally contributing to the daily mean flow, the residual random error will, in general, be very modest.

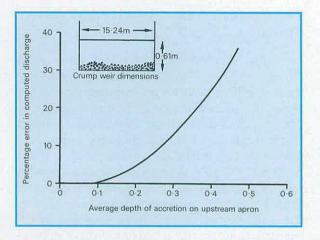


Figure 15. The impact of weir accretion on the accuracy of computed discharges.

iv. The validation and flagging of archived flow data

Hydrological data, along with most categories of environmental data, may be most effectively validated in one, or a combination, of three modes:

- a. Temporally: fluctuations in a time series may be examined to ascertain whether they could reasonably be expected in a natural situation given the characteristic behaviour evident from the entire period of record.
- b. Spatially: data from adjacent, or analogous, catchments may be examined to check whether they behave sympathetically, within an appropriate tolerance range.
- c. By comparison with other related variables. In the case of river flow this is normally rainfall.

Any comprehensive quality control system should attempt to provide for the routine screening of all submitted data to identify obviously erroneous figures. It has been widely recognised that a measure of hydrological validation, involving inter-station comparisons, should form an essential component of any such system³¹. However, a number of data validation systems have met with limited success in the past primarily because they have been too ambitious. A common failing has been the continuing detection of trivial errors which then occupy precious staff time during the error rectification phase. No system will ever identify all possible errors; what is required is a practical, efficient set of procedures

designed to minimise the volume of significant errors on the river flow archive. In the more sophisticated systems, data flagging options may complement the validation procedures in order to better assess the suitability of particular data sets for given applications.

The Surface Water Archive Validation System

River flow data will often have been subjected to differing degrees of initial validation in local and regional offices before they are transferred to a regional or national centre. Additionally the validation applied is likely to vary significantly between contemporary and historical data sets. Such is the case with data submitted to the Surface Water Archive. To handle all categories of data a suite of validation programs and procedures has been developed. The Institute of Hydrology's validation procedures aim to complement those employed in the regions and to provide a systematic check prior to entry onto the national archive. Upon receipt, data are compared with any already held for the same period - it is normal practice for some authorities to forward magnetic tapes containing their entire archive at suitable intervals. Where this comparison reveals differences exceeding a threshold percentage, the new data are automatically queried and the source of the difference investigated prior to archiving. This serves to prevent the overwriting of valid data by corrupted, or inappropriate, data sequences. Although not strictly a component in a validation system, painstaking quality control arrangements may be wasted if attention is not paid to the data security aspects of archive management - it is too easily forgotten that a hydrological database is an irreplaceable resource with a value far outweighing that of the computer system that houses it.

Following security and reference information checks to determine the status of the submitted data the initial quality control phase involves a comparison between the incoming data and a selection of statistical parameters derived from the the historical record for individual gauging stations. Each flow value which falls outside one, or more, of the reference ranges is automatically flagged for subsequent investigation. To avoid querying an unreasonably high proportion of valid daily flows – for instance when flooding occurs extensively – several filters are used to allow the reference limits to be overridden when, say, similar flow patterns are registered by more than 25 per cent of the gauging stations in a given area.

Many of the queries can be rapidly resolved by calling upon the expertise of regional representatives familiar with river behaviour supported by hydrometric and hydrological information collated in a series of complementary computer and manual files. Where further investigation is merited, several hydrographs - normally for the same river system - may be displayed simultaneously in order to better determine the cause of unusual data sequences. Visual checking of flow hydrographs is, perhaps, the most effective method of isolating sequences of dubious flows and is a valuable aid to correcting the queried data.

The considerable effort devoted to data validation by Surface Water Archive staff of the Institute of Hydrology at Wallingford is underpinned by the hydrometric and hydrological expertise – much of it acquired through field visits and regional office discussions – of the team of regional representatives which is responsible for liaison with the gauging authorities. Error rectification normally involves an initial inspection by the appropriate representative prior to the despatch of query forms to the measuring authorities for their comment and, where necessary, the provision of revised flow figures.

Data Dissemination

River flow data archiving is not an end in itself. The value of any archive is, perhaps, best reflected in the volume of usage and the breadth of its application. Data dissemination – to provide for the information needs of a wide spectrum of data users – may be achieved in various ways. In relation to the Surface Water Archive, data are made available through a comprehensive suite of retrieval options (see page 137) and through the Hydrological data UK series of publications.

Effective dissemination facilities allow the data user to concentrate on analysis and interpretation; this requires not simply a sophisticated retrieval system but, also, ready access to specialised advice and guidance regarding the availability, and suitability, of particular data sets for given applications. Without such guidance, the potential of the basic data may go unrealised or, even worse, result in misleading deductions being drawn. Assessments of drought severity, for instance, may be severely jeopardised if the uncertainties associated with low flow measurement at individual gauging stations are not considered and if allowance is not made for the net effect of upstream abstractions and discharges.

A continuing dialogue with the user community is essential to ensure that means of access, and forms of presentation, remain relevant and appropriate to user requirements which may change substantially with time; there is, for instance, a far greater need to address the problem of water quantity and quality interactions than was recognised a decade ago. Equally, continuing development of the national hydrological database is the necessary cornerstone of any attempt to measure the impact of climatic change on water resources and, thence, to assess the implications for water management.

Conclusion

The two decades since the initial computerisation of the national river flow archive have witnessed, perhaps, as much change in methods of hydrometric data acquisition and handling as in the previous two thousand years. The coming twenty years is likely to witness a revolution in the way hydrological data are handled, presented and analysed with particular emphasis placed on the co-ordinated exploitation of a broad range of environmental data. Digital cartography and geographical information systems offer exceptional potential and the growth of microcomputer based analytical packages will greatly increase the power of water managers, and others, to marshall and utilise a formidable amount of environmental data. Faced with such a beguiling prospect it is necessary to remind ourselves that, ultimately, the benefits will only be fully realised if attention is not diverted from the humbler virtues upon which hydrometric monitoring is grounded: accurate field measurements, station maintenance and instrument performance, careful derivation and monitoring of stage discharge relations, and due emphasis on data quality control. Equally it is only by recognising that river flow data have a great intrinsic, and enduring, value with a potential for application extending far beyond the operational requirements of individual collecting agencies" that the costs, and the benefits, of data acquisition and archiving can be considered in an appropriate perspective.

Acknowledgement

A review of this type would not have been possible without the help and advice of many individuals engaged upon the collection and archiving of hydrometric data. A source of particularly valuable information was a questionnaire circulated by the Institute of Hydrology to the measuring authorities in connection with the development of a British Standard for hydrometric data management.

References

- Marsh, T.J. 1978. The acquisition and processing of river flow data. In: Hydrometry (Ed: R.W.Herschy). John Wiley and Sons, Chichester, 399-427.
- World Meteorological Organization. 1987. Infohydro Manual Operational Hydrology Report No. 28 (WMO No. 683). Geneva.
- Lambie, J.C. 1970. Some specific problems in the operation of a gauging station. Paper presented to the ICE Scottish Hydrological Group, March 1970.
- Cohen, M.R. and Drabkin, I.E. 1948. A source book in Greek Science. Harvard University Press, Cambridge, page 241.

- 5. Castelli, B. 1628. Della misura dell'acque correnti. Roma, Nella Stamperia Camerale.
- 6. Biswas, A.K. 1970. History of Hydrology. North Holland Publishing Company, 136-148.
- Macagno, E.O. 1987. Leonardo da Vinci: Engineer and Scientist. In: Hydraulics and Hydraulics Research A Historical Review. (Ed: G. Garbrecht). IAHR. A.A. Balkerna, 33-54.
- Frazier, A.H. 1969. Dr Sartorio's water current meter, circa 1610. Journal of the Hydraulics Division, ASCE 95, 249-254.
- 9. Direccao-Geral dos Recursos e Aproveitamentos Hidraulicos. 1986. Estevao Cabral segundo centenario da publicacao. Lisbon. 68 pages.
- Lees, M.L. 1987. Inland water surveying in the United Kingdom - a short history. 1985 Yearbook, Hydrological data UK series. Institute of Hydrology, Wallingford, 35-47.
- Crump, E.S. 1952. A new method of gauging stream flow with little afflux by means of a submerged weir of triangular profile. Proc. ICE Paper No. 5848, 223-242.
- Ackers, P., White, W.R., Perkins, J.A. and Harrison, A.J.M. 1978. Weirs and flumes for flow measurement. John Wiley and Sons, Chichester.
- Anon. 1965. The gradometric flow recorder synopsis. Unpublished report, Thames Conservancy. 3 pages.
- Swengel, R.C., Hess, W.B. and Waldorf, S.K. 1955. Principles and application of the ultrasonic flowmeter. Electrical Engineering, 74 (4), 112-118.
- 15. Herschy, R.W. and Loosemore, W.R. 1974. The ultrasonic method of river flow measurement. Water Research Centre and Department of the Environment Water Data Unit symposium on River Gauging by Ultrasonic and Electromagnetic methods, University of Reading.
- Mander, R.J. 1978. Aspects of unsteady flow and variable backwater. In: Hydrometry (Ed. R.W. Herschy). John Wiley and Sons, Chichester, 205-246.
- Anon. 1986. Flow gauging on the River Thames

 the first 100 years. 1983 Yearbook, Hydrological data UK series. Institute of Hydrology.
 Wallingford.
- 18. Faraday, M. 1832. Phil. Trans. of the Royal Society, page 175.
- Green, M.J. and Herschy, R.W. 1975. Site calibration of electromagnetic and ultrasonic river gauging stations. International seminar on Modern Developments in Hydrometry. WMO/UNESCO/IAHS, Padua.
- 20. Bell, B. 1970. The oldest records of the Nile floods. Geogr. Journal CXXXVI.
- Walker, S.T. 1986. Data collection and instrumentation. In: New Technology in Hydrometry. (Ed: R.W. Herschy). Adam Hilger Ltd, 35-66.

- 22. Kitson, T. and Poodle, T. 1971. River hydrograph study as an aid to river pollution control. Effluent and Water Treatment, Sept. 1971.
- Herschy, R.W. 1970. The magnitude of errors at flow measurement stations. Proceedings of International Symposium on Hydrometry, Koblenz. UNESCO/WMO/IAHS pub. No. 99, 109-126.
- 24. Halliday, R.A. 1977. Hydrologic relay by satellites from remote areas. Proc. of World Water Conference, Technical and Scientific Session on Water Resources. Mar Del Plata, Argentina.
- Willis, A. 1986. Data processing in Wessex. Hydrological Data Management in the UK -Paper presented to British Hydrological Society Meeting.
- Grimshaw, D.L. 1987. The operation of a telemetry-based hydrometric data processing system. Proc. of the National Hydrological Symposium, Hull, 281-287.
- Sargent, R.J. 1986. Hydrometry in Scotland. Hydrological Data Management in the UK –

- Paper presented to British Hydrological Society Meeting.
- Glenny, C. 1987. Overview of the Thames Water river level and flow processing package. Unpublished report, Thames Water, 13 pages.
- Poodle, T. 1987. Factors affecting the future of the Scottish hydrometric network. Trans. Royal Soc., Edinburgh. Earth Sciences, 78, 269-274.
- 30. Littlewood, I.G. 1979. Data Quality Assurance in the Water Industry. Paper presented to the Instrumentation and Methods of Observation Group, October 1979.
- Anon. 1982. Report on a quality assurance system. Hydrological projects group, North West Water. Warrington. 40 pages.
- 32. Morris, S.E. 1988. The surface water archive river flow validation system. Unpublished report. Institute of Hydrology, 10 pages.
- 33. Leopold, L.B. 1987. The Alexandrian Equation. In: History of Geophysics, Vol. 3. (Ed: E.R. Landa and S. Ince.), American Geophysical Union, 27-29.

RIVER FLOW DATA

Computation and Accuracy of Gauged Flows

Gauged flows are generally calculated by the conversion of the record of stage, or water level, using a stage-discharge relation, often referred to as the rating or calibration. Stage is measured and recorded against time by instruments usually actuated by a float in a stilling well. The instrument records the level either continuously by pen and chart, or digitally on punched-tape or solid-state logger, generally at regular (normally 15 minute) intervals. These stage data are normally collected routinely. typically at weekly or monthly intervals, and taken to a regional centre for processing. At an increasing number of gauging stations provision is made for the routine transmission of river levels directly to the processing centre, by telephone line or, less commonly, by radio; on occasions, satellites have been used to receive and re-transmit the radio signal. The rapid growth in the use of the public telephone network for the transmission of river level - and, occasionally, river flow - data is enabling hydrometric data acquisition to proceed on a near real-time basis in many areas. Typically, the data are stored on site, using a solid state-logger, and transmitted overnight for initial processing the following day. Often, both digital and analogue recording devices are deployed at gauging stations to provide a measure of security against loss of record caused by instrument malfunction.

The stage-discharge relation is obtained either by installing a gauging structure, usually a weir or flume with known hydraulic characteristics, or by measuring the stream velocity and cross-sectional area at points throughout the range of flow at a site characterised by its ability to maintain the relationship.

The accuracy of the processed gauged flows therefore depends upon several factors:

- accuracy and reliability in measuring and recording water levels,
- accuracy and reliability of the derived stagedischarge relation, and
- concurrency of revised ratings and the stage record with respect to changes in the station control.

Flow data from ultrasonic gauging stations are computed on-site where the times are measured for acoustic pulses to traverse a river section along an oblique path in both directions. The mean river velocity is related to the difference in the two timings and the flow is then assessed using the river's cross-sectional area. Accurate computed flows can be expected for stable river sections and within a range in stage that permits good estimates of mean channel velocity to be derived from a velocity

traverse set at a single depth, or at a series of fixed depths.

Flow data from electromagnetic gauging stations may also be computed on-site. The technique requires the measurement of the voltage (electromotive force – emf) induced in flowing water as it cuts a vertical magnetic field generated by means of a large coil buried beneath the river bed, or constructed above it. This emf is sensed by electrodes at each side of the river and is directly proportional to the average velocity in the cross-section.

British and International Standards are followed as far as possible in the design, installation and operation of gauging stations. Most of these Standards include a section devoted to accuracy, which results in recommendations for reducing uncertainties in discharge measurements and for estimating the extent of the uncertainties which do arise.

The Surface Water Archive exists to provide not only a central database and retrieval service but also an extra level of hydrological validation. To further this aim, project staff at the Institute of Hydrology liaise with their counterparts in the water industry on a regional basis and, by visiting gauging stations and data processing centres, endeavour to maintain the necessary knowledge of local conditions and problems.

A more detailed review of current data acquisition practices in the UK is given in the article on pages 25 to 38.

Scope of the Flow Data Tabulations

River flow data are presented in two parts. In the first, daily mean gauged flows are tabulated for 49 gauging stations; daily naturalised flows (see page 40) are also tabulated for the River Thames at Kingston. Monthly flow data for a further 160 gauging stations are given in the second part. The featured gauging stations have been selected to give a broad geographical coverage and to typify a wide range of catchment types found throughout the United Kingdom. A map (Figure 16) is provided on page 44 to assist in locating the gauging stations featured in this section.

For each gauging station, basic reference information is given together with comparative average and extreme river flow and rainfall figures based upon the archived record.

Explanatory notes precede the two sets of tables and will assist in the interpretation of particular items. The notes relating to the daily flow tables are given below; those relating to the monthly data are given on page 96.

Part (i) - the daily mean flow tabulations

Station Number

The gauging station number is a unique six-digit reference number which serves as the primary identifier of the station record on the Surface Water Archive. The first digit is a regional identifier being 0 for mainland Britain, 1 for the islands around Britain and 2 for Northern Ireland. This is followed by the hydrometric area number given in the second and third digits. Hydrometric areas are either integral river catchments having one or more outlets to the sea or tidal estuary or, for convenience, they may include several contiguous river catchments having topographical similarity with separate tidal outlets. In Britain they are numbered from 1 to 97 in clockwise order around the coastline commencing in north-east Scotland: Ireland has a unified numbering system from 1 to 40, commencing with the River Foyle catchment and circulating clockwise; not all Irish hydrometric areas, however, have an outlet directly on the coast.

The numbers and boundaries of the United Kingdom hydrometric areas are shown in the frontispiece.

The fourth, fifth and sixth digits comprise the number, usually allocated chronologically, of the gauging station within the hydrometric area.

Where the leading digit, or digits, are zero they may be omitted giving rise to apparent four or fivedigit reference numbers.

Measuring Authority

An abbreviation referencing the organisation responsible for the operation of the gauging station. A list of measuring authority codes together with the corresponding names and addresses for all organisations currently contributing data to the Surface Water Archive appears on pages 192 and 193.

Grid Reference

The initial two-letter and two-figure codes each designate the relevant 100 kilometre National Grid square or Irish Grid square (distinguished by the italicised two-figure code); the standard six-figure map reference follows.

Note: The Irish Grid has only one prefix letter but it is common practice to precede it with the letter I to make the identification clear.

Catchment Area

The surface catchment area, in the horizontal plane, draining to the gauging station in square kilometres. There are a few gauging stations where, because of geological considerations, the groundwater catchment area differs appreciably from the surface water

catchment area and, in consequence, the baseflow, whether augmented or diminished, may cause the runoff values to appear anomalous.

First Year

The year in which the station started producing daily mean flow data, usually the first year for which data are held on the Surface Water Archive. Earlier data, often of a sporadic nature or of poorer quality, may occasionally be available from the measuring authorities or other sources.

Level of Station

The level of the station is, generally, the level of the gauge zero in metres above Ordnance Datum, or above Malin Head Datum for stations in Northern Ireland. Although gauge zero is usually closely related to zero discharge, it is the practice in some areas for an arbitrary height, typically one metre, to be added to the level of the lowest crest of a measuring structure to avoid the possibility of false recording of negative values by some digital recorders.

Maximum Altitude

The level to the nearest metre of the highest point in the catchment area.

Table of daily mean gauged (or naturalised) discharges

The mean flow in cubic metres per second (abbreviated to m³ s⁻¹ and sometimes also referred to as 'cumecs') in a water-day, normally 0900 am to 0900 am. The naturalised discharge is the gauged discharge adjusted to take account of net abstractions and discharges upstream of the gauging station.

Peak Flow: The highest flow in cubic metres per second for each month. The day of peak generally refers to the water-day but the calendar day is also used, particularly in Scotland. Normally the peak flow corresponds to the highest fifteen-minute flow where water levels are recorded digitally, or the highest instantaneous flow associated with maximum stage where analogue recorders are used.

Runoff: The notional depth of water in millimetres over the catchment equivalent to the mean flow for the month as measured at the gauging station. It is computed using the relationship:

Runoff in mm =

Average Flow in Cumecs × 86.4 × n

Catchment Area (km²)

where n is the number of days in the month. The runoff total is rounded to the nearest millimetre.

Runoff is computed on the basis of naturalised flows (see 'Factors affecting the flow regime') for the minority of catchments where daily, or monthly, naturalised flows are available.

Rainfall: The rainfall over the catchment in millimetres for each month. Each areal rainfall total is derived from a one kilometre square grid of rainfall values generated from all available daily and monthly rainfall data – these data are provided by the Meteorological Office. Validation procedures allow for the rejection of obviously erroneous raingauge observations prior to the gridding exercise. A computer program then calculates catchment rainfall by averaging the values at the grid points lying within the digitised boundary of the catchment.

Statistics of monthly data for previous record

Only complete monthly records are used in the derivation of the average, low and high values of river flow, runoff and rainfall. The rainfall and runoff statistics are normally directly comparable but full equivalence will not obtain where the pattern of missing data differs between the archived rainfall and runoff data sets.

Where applicable, a guide to the amount of missing data is given following the section heading.

Summary statistics

Current year flow statistics are tabulated alongside the corresponding values for the previous record. Where appropriate, the current year figures are expressed as a percentage of the preceding average.

Mean Flow: The mean flow for the record preceding 1986 is the average – weighted to account for the different number of days per month – of the mean monthly flows.

Lowest Daily Mean: The value and date of occurrence of the lowest mean flow in cubic metres per second in a water-day during the term indicated. In a record in which the value recurs, the date is that of the last occasion.

It should be emphasised that river flow measurement tends to become more imprecise at very low discharges. Very low velocities, heavy weed growth and the insensitivity of stage-discharge relations combine with the difficulty of accurately measuring limited water depths to reduce the accuracy of computed flows.

The reliability of both the lowest daily mean flow and the 95 percentile flows (see below) as representative measures of low flow must be considered carefully and the values used with caution in view of the increasing proportional variability between the natural flow and the artificial influences, such as abstractions, discharges, and storage changes as the river flow diminishes.

Peak: The peak flow in cubic metres per second during the term indicated. The date of occurrence, normally the water-day, is also indicated. Generally, the peak flows are derived from the record of monthly instantaneous maximum flows stored on the Surface Water Archive. As a result of particular flow measurement difficulties in the flood range, this peak flow series is often incomplete. Consequently, in some cases, the peak flow from the previous period of record has been abstracted from Volume IV of the Flood Studies Report¹. Reference to this report should be made to check for historical flood events which may exceed the peak falling within the gauged flow record.

10 Percentile: The flow in cubic metres per second which was equalled or exceeded for 10 per cent of the specified term – a high flow parameter which, when compared with the mean may give a measure of the variability, or 'flashiness', of the flow regime. The 10 percentile is computed using daily flow data only for those years with ten days, or less, missing on the Surface Water Archive.

50 Percentile: The flow in cubic metres per second which was equalled or exceeded for 50 per cent of the specified term – the median value. The same conditions for completeness of the annual records apply as for the 10 percentile flow.

95 Percentile: The flow in cubic metres per second which was equalled or exceeded for 95 per cent of the specified term – a significant low flow parameter relevant in the assessment of river water quality consent conditions. The same conditions for completeness of the annual records apply as for the 10 percentile flow.

Factors affecting flow regime

An indication of the various types of abstractions from, and discharges to, the river operating within the catchment which alter the natural flow is given by a standard set of abbreviated descriptions. In Part (ii) – the monthly flow data – each description is shortened to a code letter. An explanation of the abbreviated descriptions and the code letters is given below. With the exception of the induced loss in surface flow resulting from underlying groundwater abstraction, these codes and descriptions refer to quantifiable variations and do not include the progressive, and difficult to measure, modifications in the regime related to land-use changes.

Except for a small set of gauging stations for which

¹ Flood Studies Report 1975, Natural Environment Research Council (5 vols.).

CODE EXPLANATION

N Natural, i.e. there are no abstractions and discharges or the variation due to them is so limited that the gauged flow is within 10% of the natural flow at, or in excess of, the 95 percentile flow.

Storage or impounding reservoir. Natural river flows will be affected by water stored in a reservoir situated in, and supplied from, the catchment above the gauging station.

Regulated river. Under certain flow conditions the river will be augmented from surface water and/or groundwater storage upstream of the gauging station.

Public water supplies. Natural river flows are reduced by the quantity abstracted from a reservoir or by a river intake if the water is conveyed outside the gauging station's catchment area.

Groundwater abstraction. Natural river flow may be reduced or augmented by groundwater abstraction or recharge. This category includes catchments where minewater discharges influence the flow regime.

Effluent return. Outflows from sewage treatment works will augment the river flow if the effluents originate from outside the catchment.

Industrial and agricultural abstractions. Direct industrial and agricultural abstractions from surface water and from groundwater may reduce the natural river flow.

H Hydro-electric power. The river flow is regulated to suit the need for power generation.

ABBREVIATED DESCRIPTION

Natural within 10% at the 95 percentile flow.

Reservoirs in catchment.

Augmentation from surface water and/or groundwater.

Abstraction for public water supply.

Flows influenced by groundwater abstraction and/or recharge.

Augmentation from effluent returns.

Flow reduced by industrial and/or agricultural abstraction.

Regulation for HEP.

the net variation, i.e. the sum of abstractions and discharges, is assessed in order to derive the 'naturalised' flow from the gauged flow (see page 40), the record of individual abstractions, discharges and changes in storage as indicated in the code above is not held centrally.

Station and catchment description

A short commentary providing a guide to the characteristics of the station, its flow record and the catchment it commands; refer to page 196 for an explanatory listing of the abbreviations and acronyms used. The objectives of this summary information are to assist data users in the selection of gauging station records appropriate to their needs and to assist in the interpretation of flow variability at individual gauging stations particularly where the

natural flow pattern is significantly disturbed by artificial influences.

The descriptive material will be updated and revised to reflect the availability of more information and in response both to changing hydrometric conditions at the measuring site and changing patterns of land use and water utilisation in the catchment.

A comprehensive set of gauging station and catchment descriptions is provided in the 'Hydrometric Register and Statistics 1981-5' (see page 195).

Comment

A summary of any important factors influencing the accuracy of the current year's flow data specifically; for instance, the reconstruction of a gauging station or the use of extrapolated stage-discharge relations during periods of very low or very high flows.

STATIONS FOR WHICH DAILY OR MONTHLY DATA ARE GIVEN IN THE RIVER FLOW SECTION

STATION	RIVER NAME AND STATION NAME	SEE	STATION	RIVER NAME AND STATION NAME	SEE
NUMBER		PAGE	NUMBER		PAGE
3003	OYKEL AT EASTER TURNAIG	97	28080	TAME AT LEA MARSTON LAKES	107
4001	CONON AT MOY BRIDGE	97	28082	SOAR AT LITTLETHORPE	108
7002	FINDHORN AT FORRES	97	29003	LUD AT LOUTH	108
D 8006	SPEY AT BOAT O BRIG	46	D 30001	WITHAM AT CLAYPOLE MILL	60
8007	SPEY AT INVERTRUIM	97	30004	PARTNEY LYMN AT PARTNEY MILL	108
9002	DEVERON AT MUIRESK	98		GLEN AT KATES BRIDGE (TOTAL)	108
	UGIE AT INVERUGIE	98		WELLAND AT BARROWDEN	109
11001	DON AT PARKHILL	98		NENE AT ORTON	61
D 12001	DEE AT WOODEND	47		HARPERS BROOK AT OLD MILL	٠.
13007	NORTH ESK AT LOGIE MILL	98	,,,,,	BRIDGE	109
	SOUTH ESK AT BRECHIN	99	32004	ISE BROOK AT HARROWDEN OLD	109
	EDEN AT KEMBACK	99	,1004	MILL	109
	TAY AT BALLATHIE	48	D 33002	BEDFORD OUSE AT BEDFORD	
	LYON AT COMRIE BRIDGE	99		· · · -	62
	RUCHILL WATER AT CULTYBRAGGAN	99		CAM AT MEAGRE SARA	109
				KYM AT MEAGRE FARM	110
	EARN AT FORTEVIOT BRIDGE CARRON AT HEADSWOOD	100		SAPISTON AT RECTORY BRIDGE	110
		100		LARK AT TEMPLE	110
	LEVEN AT LEVEN	100		CAM AT DERNFORD	110
	TEITH AT BRIDGE OF TEITH	100		YARE AT COLNEY	111
	ALLAN WATER AT BRIDGE OF ALLAN	101		TAS AT SHOTESHAM	111
	ALMOND AT CRAIGIEHALL	49		WAVENEY AT NEEDHAM MILL	63
	TYNE AT EAST LINTON	101		DEBEN AT NAUNTON HALL	111
	TWEED AT BOLESIDE	101		STOUR AT LANGHAM	64
	TWEED AT NORHAM	50		RODING AT REDBRIDGE	111
	TEVIOT AT HAWICK	101	37005	COLNE AT LEXDEN	112
	LYNE WATER AT LYNE STATION	102		BLACKWATER AT APPLEFORD BRIDGE	112
21022	WHITEADDER WATER AT HUTTON		38001	LEE AT FEILDES WEIR	112
	CASTLE	102	D 38003	MIMRAM AT PANSHANGER PARK	65
	COQUET AT MORWICK	51	38007	CANONS BROOK AT ELIZABETH WAY	112
	BLYTH AT HARTFORD BRIDGE	102	38021	TURKEY BROOK AT ALBANY PARK	113
	TYNE AT BYWELL	102	D 39001	THAMES AT KINGSTON	66
	SOUTH TYNE AT FEATHERSTONE	52	39002	THAMES AT DAYS WEIR	113
23007	DERWENT AT ROWLANDS GILL	103	39005	BEVERLEY BROOK AT WIMBLEDON	
	WEAR AT SUNDERLAND BRIDGE	103		COMMON	113
24004	BEDBURN BECK AT BEDBURN	103	D 39007	BLACKWATER AT SWALLOWFIELD	67
	TEES AT BROKEN SCAR	53		VER AT HANSTEADS	113
25006	GRETA AT RUTHERFORD BRIDGE	103	39016	KENNET AT THEALE	114
	LEVEN AT EASBY	104	39019	LAMBOURN AT SHAW	114
25020	SKERNE AT PRESTON LE SKERNE	104	D 39020	COLN AT BIBURY	68
26003	FOSTON BECK AT FOSTON MILL	104	39023	WYE AT HEDSOR	114
26005	GYPSEY RACE AT BOYNTON	104	39026	CHERWELL AT BANBURY	114
D 27002	WHARFE AT FLINT MILL WEIR	54	39029	TILLINGBOURNE AT SHALFORD	115
27007	URE AT WESTWICK LOCK	105	39049	SILK STREAM AT COLINDEEP LANE	115
27025	ROTHER AT WOODHOUSE MILL	105	39069	MOLE AT KINNERSLEY MANOR	115
27030	DEARNE AT ADWICK	105	D 40003	MEDWAY AT TESTON	69
D 27035	AIRE AT KILDWICK BRIDGE	55	40004	ROTHER AT UDIAM	115
D 27041	DERWENT AT BUTTERCRAMBE	56	40009	TEISE AT STONE BRIDGE	116
27042	DOVE AT KIRKBY MILLS	105	40011	GREAT STOUR AT HORTON	116
27043	WHARFE AT ADDINGHAM	106	40012	DARENT AT HAWLEY	116
D 27053	NIDD AT BIRSTWITH	57	41001	NUNNINGHAM STREAM AT TILLEY	
27059	LAVER AT RIPON	106		BRIDGE	116
27071	SWALE AT CRAKEHILL	106	41005	OUSE AT GOLD BRIDGE	117
D 28009	TRENT AT COLWICK	58	41006	UCK AT ISFIELD	117
D 28010	DERWENT AT LONGBRIDGE WEIR	59	D 41016	CUCKMERE AT COWBEECH	70
28012	TRENT AT YOXALL	106	41019	ARUN AT ALFOLDEAN	117
28018	DOVE AT MARSTON ON DOVE	107		ROTHER AT PRINCES MARSH	117
28031	MANIFOLD AT ILAM	107			
28039	REA AT CALTHORPE PARK	107		continue	d on p. 45
					•

STATION	RIVER NAME AND STATION NAME	SEE	STATION	RIVER NAME AND STATION NAME	SEE
NUMBER		PAGE	NUMBER		PAGE
42003	LYMINGTON AT BROCKENHURST PARK	118	58006	MELLTE AT PONTNEDDFECHAN	127
42006	MEON AT MISLINGFORD	118	59001	TAWE AT YNYSTANGLWS	128
42008	CHERITON STREAM AT SEWARDS		60002	COTHY AT FELIN MYNACHDY	128
	BRIDGE	118	61003	GWAUN AT CILRHEDYN BRIDGE	128
D 42010	ITCHEN AT HIGHBRIDGE AND		D 62001	TEIFI AT GLAN TEIFI	82
	ALLBROOK	71	63001	YSTWYTH AT PONT LLOLWYN	128
42012	ANTON AT FULLERTON	118	64001	DYFI AT DYFI BRIDGE	129
D 43005	AVON AT AMESBURY	72	64002	DYSYNNI AT PONT-Y-GARTH	129
43006	NADDER AT WILTON PARK	119	D 65001	GLASLYN AT BEDDGELERT	83
43007	STOUR AT THROOP MILL	119	65005	ERCH AT PENCAENEWYDD	129
44002	PIDDLE AT BAGGS MILL	119	66006	ELWY AT PONT-Y-GWYDDEL	129
D 45001	EXE AT THORVERTON	73		ALYN AT PONT-Y-CAPEL	130
45003	CULM AT WOODMILL	119		DEE AT MANLEY HALL	84
45004	AXE AT WHITFORD	120		WEAVER AT ASHBROOK	85
46002	TEIGN AT PRESTON	120		DANE AT RUDHEATH	130
46003	DART AT AUSTINS BRIDGE	120	69002	IRWELL AT ADELPHI WEIR	130
D 47001	TAMAR AT GUNNISLAKE	74		BOLLIN AT DUNHAM MASSEY	130
47007	YEALM AT PUSLINCH	120		ETHEROW AT COMPSTALL	131
47008	THRUSHEL AT TINHAY	121		YARROW AT CROSTON MILL	131
48004	WARLEGGAN AT TREGOFFE	121		RIBBLE AT SAMILESBURY	86
	KENWYN AT TRURO	121		CALDER AT WHALLEY WEIR	131
48011	FOWEY AT RESTOMEL	121		PENDLE WATER AT BARDEN LANE	131
49001	CAMEL AT DENBY	122		WYRE AT ST MICHAELS	132
49002	HAYLE AT ST ERTH	122		KENT AT SEDGWICK	132
	TAW AT UMBERLEIGH	75		LEVEN AT NEWBY BRIDGE	87
	TORRIDGE AT TORRINGTON	122		IRT AT GALESYKE	132
D 52005	TONE AT BISHOPS HULL	76		EHEN AT BRAYSTONES	132
52006	YEO AT PEN MILL	122		COCKER AT SOUTHWAITE BRIDGE	133
52007	PARRETT AT CHISELBOROUGH	123		EDEN AT SHEEPMOUNT	88
	BRUE AT LOVINGTON	123		ANNAN AT BRYDEKIRK	133
53004	CHEW AT COMPTON DANDO	123		KINNEL WATER AT REDHALL	133
D 53006	FROME (BRISTOL) AT FRENCHAY	77		NITH AT DRUMLANRIG	89
53007	FROME (SOMERSET) AT TELLISFORD	123	80001	URR AT DALBEATTIE	133
	AVON AT BATHFORD	124		LUCE AT AIRYHEMMING	134
D 54001	SEVERN AT BEWDLEY	78		GIRVAN AT ROBSTONE	134
D 54002	AVON AT EVESHAM	79		AYR AT CATRINE	134
54006	STOUR AT KIDDERMINSTER	124		CLYDE AT BLAIRSTON	90
54008	TEME AT TENBURY	124		WHITE CART WATER AT HAWKHEAD	134
54012	TERN AT WALCOT	124		LUGGIE WATER AT CONDORRAT	135
	AVON AT STARETON	125		LEVEN AT LINNBRANE	135
54020	PERRY AT YEATON	125		FALLOCH AT GLEN FALLOCH	91
54022	SEVERN AT PLYNLIMON FLUME	125		CARRON AT NEW KELSO	92
54038	TANAT AT LLANYBLODWEL	125		EWE AT POOLEWE	135
55008	WYE AT CEFN BRWYN	126		INVER AT LITTLE ASSYNT	135
55013	ARROW AT TITLEY MILL	126		HALLADALE AT HALLADALE	136
55014	LUGG AT BYTON	126		MEDINA AT UPPER SHIDE	136
55018	FROME AT YARKHILL	126		CAMOWEN AT CAMOWEN TERRACE	136
55023	WYE AT REDBROOK	127		BURNDENNET AT BURNDENNET	
D 55026	WYE AT DDOL FARM	80		BRIDGE	136
D 56001	USK AT CHAIN BRIDGE	81	D 203010	BLACKWATER AT MAYDOWN	
56013	YSCIR AT PONTARYSCIR	127		BRIDGE	93
	RHYMNEY AT LLANEDERYN	127	D 205005	RAVERNET AT RAVERNET	94

Spey at Boat o Brig 008006

1986

Measuring or First year: 15	uthority: NERI 952	PB		C	Grid referen Level sti	ce: 38 (NJ) n. (m OD).					t area (s q ki Max alt. (m	m): 2861.2 OD): 1309
Daily mean	ı gauged dis	scharges (cubic metres	per secon	d)							
DAY	JAN	FEB	MAR	APR	MAY	JUN	ж	AUG	SEP	OCT	NOV	DEC
2	72 270 62 320	48 420 46.100	23.190 25.270	50.740 52 630	149 200 126 000	70 780 62 740	27 370 26 550	56 400 57 770	65 790 52.650	27.720 26.580	91 610 68 270	61 090 60 450
3	52 140	44.730	26 700	52.990	107 600	5B 150	25 880	54 940	48 570	26 170	58 470	113 000
4	45 620	43.590	113 300	51 650	101 200	56.680	25 390	57 500	43 520	25 730	53 950	140 400
5	43 450	42.510	196 400	51 980	102 600	62 540	24 860	64 950	39.280	25 160	50 310	162 200
6	40 210	39 830	120 000	49 120	98.820	58 770	24.260	51,520	36 650	24 830	51 840	126 300
7	37.080	38.510	89 970	44 580	100 300	47 790	23 740	119 700	35 580	25.000	47 630	224 BOO
8	38 240	38 210	98.770	40 470	108 100	43 240	23 690	132 300	35 580	25.740	54 660	195.600
9 10	40 610	37 200	130 900	39 450 39 860	87 890 99 940	45 280 167 800	23.190 23.270	67 740 49 550	34 440 33.970	25 240 24.390	126.500 184.200	149 600 100 100
10	149 000	35.900	123.300	33 000	33 340	107 500	23 270	45 330	33.570	24.350	104 200	100 100
11	132.700	33.760	102.500	42.180	133 400	137.900	23.070	41 660	38 180	23 600	124 900	160 700
12 13	135 400 191.400	33.350 31.670	114 500 90.610	55.960 50 470	111 000 126 100	82 880 65 290	22 520 22 270	43 360 35 600	42 720 37 070	23.100 22.590	92.950 75.020	117 800 123 700
14	287 100	32 950	91 060	47 610	103 700	57 340	22 080	40 690	39 010	22 430	80 180	90 380
15	257.500	32 410	189.500	45 360	85 100	52 860	21 550	41 540	39 670	22 110	96.050	71 820
16	154.200	32.620	196 800	50 680	78 100	49 120	21 290	68 690	38 890	21 950	99 170	61 030
17	113 700	32.150	144 700	46 530	63 850	83.830	20 9:0	65 590	35 810	21 720	97 030	55 460
18	114,900	31,460	99 710	46 750	78 270	114 300	20 570	50 480	34 560	21.610	73.630	70 710
19	94 820	31 050	75 300	51.320	85 390	69.430	20.510	53 180	31 500	21 690	60 750	64 320
20	106 900	30 440	68 730	77 110	73 940	54 490	20 3 10	50 830	29.860	22.5 9 0	52 010	59 500
21	159.100	30 020	72.850	68 390	75 490	47.140	19 960	43 570	28 600	24.550	46 120	61 600
22	109 800	28.700	161 700	84 660	69.800	42 410	20 750	39 420	28 380	30 850	46 720	51 970
23 24	88.960 72.770	28 200 28.160	180.600 138.000	76 680 69 200	67 600 66 780	39 200 37.150	22.790 23.470	38.190 39.990	27 950 27 330	34.120 33.720	79 350 87 080	51 090 102,700
25	63 510	27 440	102.500	63 070	64 810	36 130	22 680	36 830	26 990	89.710	107.700	180 700
26	61.220	25.030	04 630	66.240	00 430	24 700	21.620	33 700	22.500	95 970	98 670	100 200
26 27	61 330 63 910	25 070 23.460	84.530 76.630	75 360	88 430 98 650	34 790 33 070	21 620 20 840	52 810	32.590 32.700	73 180	80 380	100 300 75 050
28	59 580	22 390	75 200	79 490	94 810	31 610	22 040	125 500	29 960	71 820	73 350	130 600
29	55 750 54 270		67.110	70 920	86 370 76 040	29 970	23 280	176 600	29 680	67.340	61.240	177 900 129.600
30 31	54 270 51 000		51.840 55.130	77 730	81 810	28 490	24 940 63 010	116 800 79 660	29 190	158 900 131 700	58 180	101 000
Average Lowest	97 080 37 080	33 940 22 390	103.100 23.190	57 310 39 450	93 260 63 850	60 040 28 490	24.150 19.960	64 080 33 700	36 220 26 990	41.670 21.610	79 260 46 120	108 800 51 090
Highest	287 100	48 420	196.800	84 660	149 200	167 800	63 010	176 600	65 790	158 900	184.200	224 800
	202 400	40.540	242.000	133 500	165 000	225 200	02.040	220 200	14.050	202.000	225 500	375 600
Peak flow Day of peak	392 400 14	49 540 1	243 600 22	123.500 30	165 600 1	326 900 10	92.940 31	228 300	74 950 1	203 800 30	225 600 9	275 600 7
Monthly total)											
(million cu m)	260 00	82.11	276.20	148.50	249.80	155 60	64 68	171 60	93 89	111 60	205 50	291 30
Runoff (mm)	91	29	97	52	87	54	23	60	33	39	72	102
Reinfall (mm)	185	36	101	67	110	70	66	130	40	99	120	190
Statistics	of monthly (data for pr	evious rec	ord (Oct 15	952 to Dec	1985)						
	04.000	3. 250	70.070	60.440		41.300	20.010	40.070	E0 630	60.460	77	00.010
Moon Avg. Hows: Low	. 84 990 41 070	71 250 26 470	73 070 35 750	69 450 33 580	58 330 26 910	41 790 17 890	39 9 10 17 9 10	48 870 11 310	50.670 14.090	69.460 13.340	77 110 30 140	88 070 38 790
(409)		1963	1964	1974	1960	1961	1984	1955	1972	1972	1958	1976
High		159.100	145 300	135.200	103 400	103 000	79 860	119 600	105 500	153 900	147 000	198 600
(yuai	1983	1962	1978	1979	1968	1966	1980	1956	1965	1981	1984	1954
Runoff, Avg.	. 80	61	68	63	55	38	37	46	46	65	70	82
Low High		22 135	33 136	30 122	25 97	16 93	17 75	11 112	13 96	12 144	27 133	36 1 8 6
-												
Reinfall Avg		70 26	80 29	64 19	77 24	74 30	87 20	98 19	98 21	125 30	112	114 11
Low High		123	179	128	146	181	158	188	178	335	12 213	211
C								F				
Summary	STOTISTICS						1986	rac	tors anect	ting flow r	egime	
		F	or 1986		For record		As % of	● Re	egulation fo	or HEP.		
Mont flow (n	m3e - 11	22	930	64 ·	receding 191	86	pre-1986 104					
Lowest year		00	330	44		1972	104					
Highest yearl	ly mean			82 1	810	1954						
Lowest mon				ul 11;		Aug 1955 Dec 1954						
Highest moni		108. 19.	.800 De .9 6 0 21 J			Dec 1954 Aug 1955						
Highest daily		287.	ىل 14 100.	n 1089 (000 17	Aug 1970						
Paak			400 14 Ju			Aug 1970	105					
10 %ila 50 %ila			.800 .530	120 49	600 680		105 110					
95 %iki		22	270	19	180		116					
	(million cu m)		1 00	2033			104					
Annual runof Annual rainfa		73 121		71 110			104 110					
	rainfall average			116			•					

95 %ills Annual total (million cu m) Annual runoff (mm) Annual runifall (mm) [1941-70 rainfall average (mm)

Station and catchment description
Lowest station currently operating on the Spey. Cableway rated 65m wide section with natural control, extreme floods bypass station on left bank. 380 sq km developed for hydro-power with diversions and storage. Mainly granites and Moinian metamorphics. Some Dalradian and a little Old Red Sandstone. Mountain (includes all northern slopes of Cairngorms), moorland, hill grazing and some Brable. Forestry

Dee at Woodend 012001

1986

	ring aut aar: 19:	hority: NERI 29	PB		C		ce. 37 (NO) n. (m. QD): 1				Catchman		m) 1370 0 (OD) 1310
Daily	mean	gauged dis	scharges (cubic metres	per secon	d)							
DAY		JAN	FEB	MAR	APR	MAY	JUN	ж	AUG	SEP	ост	NOV	Dŧ-C
1		28.920	23 930	10.170	26 110	162 800	54.520	13.500	20 620	28.680	8.534	27 710	27 810
2		29.210 23.550	22.480 22.550	10 350 12 660	25.880 26.290	112.100 90.800	48 170 43 830	12.910 12.470	61 710	21 500	8.228	21.550	26 300
4		19.780	22.100	34 180	25.120	95 180	38 930	12 470	34 480 37 730	18.900 17.080	7.958 7.801	20 530 19.430	66 020 71 5 0 0
5		21.630	21 070	99.530	24 510	95 500	37 440	11 670	34 850	15.210	7 666	18 930	120 500
6		19.490	19 340	55.630	23 130	93 100	33.270	10 990	26 160	13.860	7 6 1 6	20.110	EE 2E0
7		18.760	19.720	43 050	22 850	112 200	28 870	10 340	73 760	13.500	7 5 5 6	20 110 19 000	56 350 173 600
8		19.280	19 720	59.300	21.230	104 000	27.340	10.120	64 240	13 380	7 641	24 560	85 040
9 10		20 450 125.400	18 820 17.620	93.660 89.420	20 530 20.790	74.470 129.700	37 290 93.280	9 867 9.801	36.170 26.640	12.490 12.010	7 442	113 000	64 070
		123.400	17.020	03 420	20.750	125.700	93.260	3.001	20 040	12 010	7.354	146.600	51.910
11 12		62 120 55.210	16 220 16.920	69.350	19 720	121.100	72 580	10 050	21.540	11 940	7 082	59 170	140 400
13		111 800	15.780	83 080 61.590	26 540 26 770	102 900 117 800	48 040 42 560	9.426 9.105	18 290 16 290	12 4 10 11 870	6 794 6 587	41 700 44 400	83 820 97 020
14		:39 800	16 280	87.110	27 920	76 200	39 660	8 835	27 610	12 370	6 460	84.750	48 660
15		107 500	15 050	231 800	26 5 10	61.730	36 710	8 607	21 180	11 930	6 557	71 880	41 170
16		57.990	15 840	215 100	30 120	58 640	33.590	8 4 1 9	43 270	11.640	6 435	110 700	35.740
17		47 880	15.720	94.510	27 450	55.370	56 230	8 585	28 250	11.020	6 339	59.550	33.730
18 19		48.500 40.900	15 230 15 110	61.370	29 930	95 530	59 5 10	8.443	22 010	10 900	6 341	42 840	37 070
20		64.620	14.700	47.900 64 220	33 400 65 230	76 660 64 240	35.610 29.780	8.043 7.819	19 370 18 970	10 310 10 000	6 653 6.722	. 34.170 28.190	28 560 25 910
21 22		75.600 45.650	14.060 13.410	56 020 17 8 300	52.810 47.320	84 600 64 620	25 B50 23 070	7 4 1 2 7 2 4 9	16 960 17 100	9 64 1 9 328	7 002 8 198	23.790 39 190	26 6 10
23		36.450	13.630	98 110	37 930	52.900	21 300	7 920	15 340	9 278	7 762	59.010	23 830 25 060
24		27.140	14 070	57.290	38 280	50 850	20 160	9 620	15 000	8.932	8 472	51 010	47 500
25		24 750	13.270	48 010	43 060	53.550	20 520	8 747	14 040	8 697	64 950	67.630	97 140
28		25 600	11.920	41 470	48 840	91.170	19 580	8 231	13.370	8.780	39.530	41.130	42 980
27		26.030	10 900	40 050	56.220	115 500	17 720	7.708	17.770	9 23 1	30 580	33 270	32.320
28 29		26.900 25.600	10 4 10	36 970 33 640	68 840 56 160	72 190 61 840	16 520 15 370	9 056 11 200	45 090 56 120	8.756 9.742	27 850 23 970	34 470 29 100	77.630 76.710
30		27 350		32 720	78 090	53 670	14 370	11 430	42 680	9 4 1 5	100 400	27 900	45 610
31		25.340		28.770		63 560		26 830	31 220		43 740		41 460
Average	0	46 100	16 640	70 170	35 920	85.950	36 390	10 2 10	30.250	12 430	16 330	47 180	59.740
Lowest		18.760	10 4 10	10 170	19 720	50.850	14 370	7 249	13 370	8 697	6 339	18.930	23 830
Highest		139 800	23.930	231 800	78 090	162 800	93 280	26.830	73 760	28 680	100 400	146 600	173 600
Poak fic		215.800	24.920	273.900	155.100	188 600	162 500	47 540	103 600	32.580	144 300	225.200	288 900
Day of Monthly		14	1	22	30	1	10	31	2.	١	30	9	7
(m llion		123.50	40.25	187 90	93.10	230 20	94 32	27 34	81 03	32 21	43 74	122 30	160 00
0	,	••	20		40								
Runoff		90 186	29 57	137 96	68 88	168 135	69 68	20 49	59 128	24 24	32 80	89 126	117 194
			_							•-		.20	134
Statis	tics of	monthly o	lata for pr	evious reco	rd (Oct 19	29 to Dec	1985)						
Mean	Avg.	47 850	40.490	42 000	45 170	35 550	22 280	18.370	22 380	26 250	39.760	47 370	49 530
flows:	Low	15 450	13.420	15.160	11 370	12.130	7 342	7 258	5 141	6 49 1	6 798	12 230	22 020
	(year) High	1940 127.800	1947 90.110	1973 88 680	1938 113.300	1946 77 100	1940 56 080	1984 36 710	1984 63 860	1972 71 82 0	1972 138 200	1983 127 500	197 6 108 400
	(YOUr)	1937	1945	1977	1947	1951	1948	1958	1948	1930	1982	1984	1954
Runoff:	A.co	94	72	on.	oe.	70	43	20	4.4	50			45
MUIIQII,	Low	30	24	82 30	85 22	70 24	42 14	36 14	44 10	50 12	78 13	90 23	97 43
	High	250	159	173	214	151	106	72	125	136	270	241	212
Rainfall:	Ava	119	75	76	69	80	67	89	95	96	119	115	119
	Low	36	10	16	12	21	16	24	13	13	8	22	43
	High	374	148	175	196	179	160	206	185	227	310	320	282
Summ	ary st	atistics							Fact	ors affect	ing flow re	egime	
				or 1986		En		1986			•	•	
			,	01 1980		For record sceding 198		As % of ire-1986	• Na	tural to wit	thin 10% at	95 percen	tile flow.
Mean fk			39.	190	36 4	00		108				, o o p o . o o	
Lowest					24.1 49.0		1973 1982						
Lowest			10.	210 Ju			lug 1984						
Highest	month	y mean	85.	950 May	138 2		Oct 1982						
Lowest				339 17 Oct			Aug 1976						
Highest Peak	υυιγ m	ugli	231. 288				Jan 1937 Jan 1937						
10 %ile			88.	750	72 6	20		122					
50 %ile				070	25 5			106					
95 %ile Annual		illion cu m)	1236	651 3 00	8 3 1149			91 108					
Annual	runoff (r	mm)	90	2	838			108					
	rainfall (123	1	1119			110					
[194	1170 10	nfall average	(mm)		1156	?;							

Station and catchment description
Cableway rated, fairly stable natural control. Present station, built in 1972, replaced earlier station (flow records from 1929, chart records from 1934) on same reach (Cairnton; c/m measurements at Woodend) - established by Capt. McClean. Earlier staff gauge record dates from 1911 No regulation, little natural storage, minor abstractions. Dalradian and Moinian metamorphic along most of the valley, flanked by igneous intrusive. Mountain, moorland, forestry, pastoral and some arable in the valley bottom.

Tay at Ballathie 015006

1986

Measuring au First year: 19	uthority: TRP 952	В		(Grid referenc Level str	ce: 37 (NO) n. (m OD)					t area (sq k Max alt. (m	m): 4587 1 OD) 1214
Daily mean	gauged dis	scharges (cubic metres	per secon	d)							
CAY	JAN	FEB	PAN	APR	MAY	JUN	ж	AUG	SFP	OCT	NOV	DEC
i i	206.848	159.853	59.283	176 827	298 499	178 797	57871	78 914	81 035	48 532	250 571	339 051
2	186 319	151.569	53 095	166.365	207 294	163 399	56 423	162 532	77 420	50 235	213 357	358 459
3	151 544	150.390	56.583	159 014	209 111	142 475	57 535	129 151	74 713	47 860	219 854	598 414
4	136 015	144 987	155 255	152 209	203.425	129 981	55 4 16	118,114	70 779	45 750	199 899	585 034
5	132 826	132.715	374 031	149 020	209.110	120 748	52 313	115 350	62.236	44.950	217.876	748 963
6	131.633	131.896	291.772	142 584	235 521	110 283	50 845	120 440	54 778	45 262	211.415	531,134
7	121.953	130.424	251.607	137 270	295.390	101.545	49 124	151.248	52 850	46 302	221,156	712 669
8	109 447	120.212	256.748	126 563	307 666	94 355	47 382	134 888	55 776	47.427	208.145	542.540
9	115 373	114.796	347.955	123.879	267.074	117 669	47 112	121 219	51 469	49 639	450 022	470 244
10	414 574	111 199	325 424	115 948	418.253	192 647	47.255	108.602	49.239	50 623	553.160	418 998
11	367.193	102 777	296.408	107.715	424,585	167 957	46 724	103 784	48 450	52 595	389.139	707 664
12	385 8 19	103 683	297 907	92 793	402 091	124 677	46 365	83 261	47 857	49 684	331 158	526 674
13	539 168	99 56 1	262.178	95 36	462.635	112 207	47 627	82 733	47 170	46 970	330.876	609 959
14	578 202	98.773	288 953	98 562	346 180	103 664	48 155	172 816	45 991	45 149	401 766	440 796
15	473 642	82 827	463 599	121 065	296 717	98 950	49 569	136 761	45 214	44 971	393.130	393 610
16	366.609	82.359	573 465	119.739	262.174	88.854	48 998	256 138	44 990	44 004	569 768	333 527
17	318.648	86.771	373 624	100 279	287 010	124 922	49.728	177.783	44.338	43.261	426.722	339.141
18	294.982	92.293	327.590	98.438	398 882	150 550	48 653	153 214	44 285	43 208	366.537	364.123
19	272 972	94 717	292 394	91 713	318.151	115.280	48 856	151,440	49 779	47 175	325.271	316 868
20	408.447	94.291	347.150	128 554	289 740	92 321	49 068	164 137	47 255	50 6 5 6	2 9 0 672	288.685
21	436.222	96.422	339.221	125 391	349 784	84 507	48.839	160.596	44.223	74 110	236 390	260 935
22	359 4 12	80.060	613 774	116.724	333.251	77 853	49 62 1	85 048	42 883	107 825	353 006	244 821
23	347.193	76 131	549 219	108 261	331 113	74 755	49 432	83.367	41,199	117 995	413.898	218 574
24	307 585	82.198	431 173	105.961	345 554	71 639	49 360	78 05 1	40 922	176 947	396 119	258 571
25	265 865	76 514	359.913	108 369	365.166	72 704	48 692	74 821	40 738	273 158	524 103	387 902
28	236 681	71 457	322 480	110 419	446 146	67 791	50 187	72 801	43 013	177 961	418.328	296 302
27	242.071	74.365	310.960	110 816	540 536	66 814	52 274	74 645	41 066	196 741	401 581	260 924
28	218 761	73.522	274 457	146 043	358 537	66 946	57 819	76 939	41.217	181.637	375.848	451.603
29	210 487		235 071	138 730	292 498	63 700	63 650	94.420	47 060	214.813	323.236	474.424
30	202 079		199 920	182 395	253 253	60 711	64 431	82 166	49 208	490 115	314 864	453 437
31	192.755		186.486		199 442		99 720	81.571		330 610		423 502
Average	281 700	104,200	307 000	125 200	321,100	108 000	52 870	118 900	50 930	106 000	344.300	430.900
Lowesi	109 447	71.457	53 095	91 713	199 442	60 711	46 365	72.801	40 738	43 208	199.899	218 574
Highest	578.202	159.853	613.774	182.395	540.536	192.647	99 720	256 138	81 835	490 115	569.768	748 963
0 6.	740 222	105 220	000 000	201.010	505 000	207.000	114 663	244.007	02.021	617.207	747.000	006 270
Pask flow Day of peak	748.322 13	185 330 1	906 082 22	291 91 8 30	685 896 27	307 880 10	114 663 31	344 097 16	82 93 i	617 302 30	743.960 16	896 270 6
Monthly total		•		30	• •		٠.		•	50		•
(million cu m)		252.00	822 30	324.60	860 10	279.80	141 60	3 8.60	132 00	283 90	892 30	1154 00
Runoff (mm)	164	55 29	179	71 61	188	61 57	31 68	69 111	29 33	62	195	252 304
Reinfall (mm)	211	29	190	01	214	5/	66	• • • • • • • • • • • • • • • • • • • •	33	159	254	304
Statistics of	of monthly	data for pr	evious rec	ord (Oct 1	952 to Dec	1985)						
	•	·										
Mean Avg.	235.200	202.900	198 000	144.700	117.200	80.650	67 350	85.860	122 700	187 700	212 700	244 200
flows: Low	92 9 10	52 560	69 380	75 210	45.500	42 080	31 390	14.690	40 650	39 680 1972	89.160 1972	112 800
(year High) 1963 515.800	1963 353.700	1953 424.800	1974 231.200	1980 230 800	1957 190 400	1984 126 000	1955 286.100	1955 283 900	390 500	407,700	1952 491 400
(4001		1962	1967	1960	1983	1966	1985	1985	1985	1982	1984	1954
											_	
Runoff: Avg.	137	108	116 41	82	68	46 24	39	50 9	69	110	120	143
Low High	54 301	28 187	248	43 131	27 135	108	18 74	167	23 160	23 228	50 230	66 287
,	•	,	2-0		.55				.00			20.
Rainfal: Avg.	154	101	115	72	97	84	94	107	135	149	146	167
Low	33	31	39	10	26	49	21	14	11	63	38	64
High	393	182	224	150	200	181	169	250	266	269	311	271
Summary :	statistics							Fac	tors affec	ting flow r	egime	
•							1986	_		•	•	
		ſ	For 1986		For record	••	As % of			in catchme	ent.	
Mean flow (m	3 :	107	.100	158.	receding 198	36	pre-1986 125		gulation for		water supp	line
Lowest yearly		137	.100	107		1955	125				trial and/or	
Highest yearl				207		1954				bstraction		
Lowes: mont			930 Sc			Aug 1955		Ì				
Highest mont			900 D			Jan 1974						
Lowns: daily			.738 25 Sc			Aug 1955						
Highest daily Peak	1.18811		.963 5 Di .082 22 M			Nov 1954 Jan 1974						
10 %ito			.400	307.		Jan 1374	135					
50 %ilo			900	127			107					
95 %ila			500		840		106					
	(million cu m)		6.00	4989			125					
Annual runofi		135		108			125					
Annual rainfa [1941-70	ll (mm) roinfoll evereg	16! • (mm)	91	142 144			119					
(1341-70		- 11.1111/		, •••	-1							

Station and catchment description
Velocity-area station with cableway. 90m wide. The most d/s station on the Tay, records highest mean flow in UK. Since end of 1957, 1980 sq. km (43%) controlled for HEP; there was some control prior to this. 73 sq.km controlled for water supply. Catchment is mostly steep, comprising mountains and moorland; exceptions are lower valleys. Mainly rough grazing and forestry. Geology; mainly metamorphics and granites, but lower 20% (Isla valley) is Old Red Sandstone.

Almond at Craigiehall 019001

1986

	ring aut oar: 195	hority: FRPE 37	3		C	Grid reference Level str.	e: 36 (NT) , (m OD): 1				Catchme		km): 369 0 m OD): 518
Daily	mean (gauged dis	charges (cubic metres	per secon	d)							
DAY		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC
1		5 679	12 136	2 253	4.652	7 430	3.274	1 453	3 6 1 3	1 379	1.165	6 396	5 030
2		8.259	8.359	2 015	4,170	5 320	2 9 1 4	1 439	3.553	7 733	1 127	4.562	40 329
3		4.526	8 8 15	2.394	3.860	4 663	2.583	1 437	3 092	17 493	1 096	4 /33	45 335
4		3.731	7.984	51 959	3 581	4 323	2 254	1 506	3.507	4.907	1 027	4 067	31 118
5		3.506	6 395	24 486	3.362	5.268	2 018	1 4 1 7	4 554	3 624	1 042	10.720	51 945
6		3.095	5.388	14 654	3 289	5 369	1 885	1 290	19.373	9.373	1 113	6 076	16.646
7		2.934	4 82 1	9.608	3.261	50 64 1	1 825	1 349	19 886	4 064	1 127	15 4 14	16 646 11 013
8		2 955	4 397	7.103	3 226	17 569	1 776	1 369	7 856	2.853	1 163	23 040	20 046
9		9.545	4 073	5 8 1 3	3 05 1	15 024	2 836	1 322	4 303	2.314	1 141	19.783	28 923
:0		44.929	3 862	5.388	2.845	38 854	28 124	1 3 1 1	3 180	1,941	1 073	10 936	11 746
11		40 370	2.420	4 5 7 4	2 500				2.502				
12		49.378 28.010	3 420 3 250	4 574 3 953	2.596 2.492	12 5 1 2 10 4 3 7	8 239 5 042	1 285 1 243	2 502 2 220	1.736 1.609	0 936	7 250	11 879
13		27.263	3 156	4 045	2.536	8 068	4.748	1 266	2 692	1.609	0 867 0 935	5 791 9 309	10 152 9 690
14		30 293	3 039	3.921	2.639	6 440	3.533	1 248	2 904	1 364	1.140	12 798	7 148
15		13.967	2.848	3 593	11.797	5.503	2.982	1 371	7 934	1.285	1 078	9.680	9 7 1 9
_													
16		8.788	2.782	3 332	37.986	4.105	2.604	1.505	14 530	1.208	0.918	8 529	10 132
17		7.437	2 808	3 268	25 050	3 6 1 3	9 337	1 365	5 787	1 193	0.851	11624	37 400
18 19		14 404 24,253	2 83 1 2.788	3 168 3 224	21.786	3.712	7.938	1 249	5 406	1.180	0 834	14 800	15 465
20		23 604	2.800	10 715	19.731 28.891	3 163 3.023	4.295 3.136	1 227 1 290	4 403 3.967	1 113 1.129	2 757 3 776	8 441	10 825
••		15 004	2.000	10 7 13	20 03 1	3.023	3 130	1 2 3 0	3.307	1.129	3 770	6 046	7.974
21		18 776	2.628	9 637	13 384	3.497	2 663	1 188	2 893	1.110	20 152	5 073	6 307
22		24 000	2 54 1	29 338	15 339	3 7 18	2 379	1.212	2 990	1 167	18.434	11 525	5 097
23		16.773	2 555	35.821	18 520	3.421	2 235	1 194	2 292	1 145	9 970	13 181	4.411
24		9.202	2 524	20 283	12.100	2 857	2 13:	1 045	1 90 1	1 137	6.802	25 962	10 895
25		6 163	2 564	14 329	8 842	3 695	2 068	1 032	1 802	1 05 1	12.169	36 606	11 753
26		5 627	2.303	9 349	7 292	8.695	1 875	0 937	4 866	1.272	5 698	12 587	7 872
27		6 5 7 7	2 250	8 429	6.017	9.083	1 685	1 155	2.973	1.272	11 840	8 660	7 385
28		5 552	2 401	6 604	5 663	5.951	1 5 10	5 355	2.121	1.161	13 994	6 491	11 349
29		5 060		6 65 1	5.271	3 829	1 509	9.941	1 757	1 179	16.059	5 556	20 939
30		18.180		6 421	11 982	3 123	1 451	4 961	1 494	1 206	30 795	4 988	94 4 1 7
31		19.976		5 572		3.353		5 751	1 349		11 792		42 748
Avereg	•	14.530	4.133	10 380	9.840	8.589	4 028	1 958	4.894	2 686	5 000	11.020	10.000
Lowest		2.934	2 250	2 015	2.492	2.857	1 451	0 937	1.349	1.051	5 899 O 834	11 020 4 06 7	19 860 4 4 1 1
Highest		49.378	12 136	51.959	37.986	50 64 1	28.124	9.941	19 886	17 493	30.795	36 606	94 4 1 7
•												55 555	
Posk fic		64.165	15.499	80 477	44,194	87 7 96	64 5 14	17 701	39.820	40 987	41 035	61863	166 047
Day of		10	1	4	20	10	10	29	6	3	30	25	30
Monthli- (million		38.92	10 00	27.81	25 51	23 00	10 44	E 25		£ 86		2017	
(masor)	CO III,	30.32	10 00	27.01	23 51	23 00	1044	5.25	13.11	6 96	15.80	28 57	53 20
Runoff	(mm)	105	27	75	69	62	28	14	36	19	43	77	144
Romfall	(mm)	123	28	83	89	109	62	70	99	42	101	113	179
A													
Statis	tics of	monthly d	lata for pri	eviaus recor	d (Jan 19	57 to Dec 11	985)						
Mean	Αvg	8.863	7 402	6 226	4.065	3 029	2 360	2 292	3 069	4 665	6 185	0.420	0.053
flows	Low	3.574	1 782	1.918	1.409	1091	0.817	0 951	0 869	0 668	0.668	9 430 1 862	8 953 3 016
	(you/)	1963	1963	1973	1974	1961	1961	1960	1983	1959	1972	1972	1975
	High	16 300	15 450	14 300	8 374	11 '70	8 572	9 2 2 4	8 568	20 360	15.120	21 660	16.280
	(year)	1984	1984	1979	1972	1968	1966	1958	1985	1985	1981	1963	1974
D. aatt.	A		49	**	20	20							
Runoff:	Low	64 26	12	45 14	29 10	22 8	17 6	17 7	22 6	33 5	45 5	66	65 33
	High	118	105	104	59	81	60	67	62	143	110	13 152	22 118
	•						•	•	V .	5			
Rainfall	Avg.	78	55	66	49	61	60	72	82	91	87	93	83
	Low	28	17	22	8	16	24	23	19	14	23	19	21
	High	145	107	127	88	123	136	173	142	195	177	190	154
Sumn	nary st	atistics							Fact	ore affect	ing flow re	voime.	
00	, 2.							1986	1 400	UIS BIIIECU	III III III WA TE	- Allina	
			F	or 1986		For record		As % of	● At	straction f	or public v	vater supp	lies
	_					eceding 1986	ŗ	re-1986			by indust		
	ارس) wo		8.	199	5 5			148			estractions		
	yearly r				2.8		1973		● At	ugmentatio	n from effli	vent return	15
	vearly remonthly			958 Jul	75		1985						
	monthly		19.6				ip 1959 ov 1963						
	daily m			934 18 Oct			ct 1959						
	daily m		94.4				ip 1985						
Paak	•		166.0				v 1984						
10 % iki			:9 (126			157					
50 %iki				386	2.7			159					
95 %iki		dian a mi		121	0.8			131					
~0000	rotal (m	il'ion cu m)	258	30	174	,,,		148					

[1941-70 rainfall average (mm)

Annual total (million culm) Annual runoff (mm) Annual rainfa1 (mm)

1098

Station and catchment description
The recorder is well sited on a straight even reach with steep banks which have contained all recorded floods. Stable rating over the period of record. Some adjustment to stage is required to accommodate weed growth in the summer. Low flows are substantially affected by sewage affluent especially from Mid Calder. There is an abstraction at Almondell to feed a canal. A number of storage reservoirs are situated in the catchment. Geology - predominantly Carboniferous rocks, Land use - rural with several small mining towns.

Tweed at Norham 021009

1986

Measu First ye		thority: TWI 62	RP		•	Grid referen Løvel st	ce: 36 (NT in. (m OD)						m). 4390 0 m OD) 839
Daily	mean	gauged di	scharges (cubic metres	per secon	d }							
DAY		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1 2		90.834	133.835	29 792	64 005	82.699	66 962	23 866	41.326	56.659	21 683	87 073	80 193
3		106 130 91.356	107 413 114.218	27 611 27 288	60 39 1 60 57 7	66 065 57.996	59.185 55.862	22.291 21.593	46.512 54.604	52 356 164 915	21.977 19.658	72 331 68 195	97 331 163 453
4		69.316	102.977	333.473	62 256	53.710	51 256	21 396	39.866	89 803	19 15 1	61 631	157 165
5		65.832	88.071	511.151	55 273	51,414	47 568	21 859	42.615	66 640	24.088	72 096	353 318
6		61.209	78.038	218.132	51 768	62.194	42 401	21.202	62 026	E0 466	22 202	60.100	102 100
ž		54.727	70.497	139 117	53 242	231 048	40 257	21 202 20 053	63 876 96.879	58 466 52 288	23.387 19.074	69 168 85.527	182 108 189 689
8		52.011	65.004	117 051	55 211	149 330	36 633	19 136	71.168	46.670	19.300	160 000	373 963
9		54.515	60.426	121.581	48 795	101 755	55.849	18.860	51.706	42.562	19 303	237 354	356 708
10		378 992	56 208	110 398	45.071	140 532	135 558	18 664	41 592	40 477	19 928	308 483	199 332
11		224.830	47.630	96 180	41 370	121 730	105 224	19.254	34.700	36 761	20 508	168 683	290 575
12		185.655	49.445	82 403	41.510	103 663	64 750		31 103	35 597	18 701	130 723	207 904
13 14		208.665 284.854	48.034 45.288	72 526 65 318	42 930 46 778	142 399 114 110	57.056 50.367	17.418 17.328	29.139 30 269	33.847 32 392	17 995 17 691	136 477 150 670	359 254 193 141
15		214.351	43.128	80 532	141 683	92 734	44 079		90 274	30.563	18 542	162 737	254 715
16 17		141.242 113.569	41 377 40.060	79 457 78 242	340 558 258 826	77.427 70.023	39 675 75 207	17 5 17 16 439	. 79 175 57.310	29 081 28,192	19 6()1 17 002	161 719	190 271
18		123 554	39 410	63 892	172 565	128 283	130 447	16.575	49 167	27 209	17 331	137 756 127 6 20	217 117 227 850
19		210.837	39.978	65 765	143 849	86 832	69 862		70 539	27.509	20 162	121 913	160 290
20		212.979	37 031	109 208	236 963	72 676	55 268	15 258	68 022	25 396	27 347	99 848	132 508
21		233.959	37.229	106 839	176 506	130 269	47 712	15.050	53 286	24 473	40 334	86 054	121 967
22		212 397	33 102	182 480	142 698	152 726	42 859		51 810	24 340	74 736	145 432	107 838
23		168.191	33.180	258 082	141 150	117 775	40 122		45 861	23.783	81 295	189 057	93 467
24 25		138 5 16 106.94 1	33 475 34.238	153 618 117 772	119 787 101 403	94 532 195 242	37 527 37 422	16 509 14 5 18	39 814 37.388	25 050 24 285	55 671 166 793	136 992 363 900	90 285 158 8 05
			0 - 200		.000	.05	J. 122			44.600	.00.703	303 300	130 003
26		91.905	29 984	100 493	89 472	176 460	34.544		339 483	22 292	87 055	190 222	107 982
27 28		92.900 85.570	28.398 31.423	100.304 98.122	78 8 13 71 161	153.603 129.475	30 904 28 670		338 681 158,865	22 106 21 491	98 600 102 519	136.141 113.708	94 835 96 949
29		80 039		97.407	71 254	103 652	26 896		94.950	21 348	102.451	98 988	139 487
30		137.515		84 835	74 227	80 537	25 216		72.977	21 361	177.554	87 796	388 791
31		175 304		71 853		75 567		63 295	60 857		121,184		331 121
Averag		144.200	56.040	122.600	103 000	110 200	54 510		76.900	40 260	48.730	138 900	197 400
Lowest		52 011 378.992	28.398	27.288	41 370	51 414	25.216		29.139	21 348	17 002	61 631	80 193
Highest		376.332	133 835	511,151	340 558	231 048	135.558	63.295	339 483	164.915	177.554	363 900	388 791
Peak fic		578 506	155.957	694.331	428.942	359 616	244 763		520 018	209 880	274.949	481.348	543 566
Day of		10	1	5	15	,	10	31	26	3	30	25	30
Monthly (million		386.10	135 60	328 40	267 00	295 20	141 30	55.33	206 00	104 40	130 50	360 10	528 60
			••										
Runoff Rainfa#		88 123	31 36	75 80	61 93	67 133	32 61	13 64	47 142	24 27	30 98	82 122	120 172
								0.0		•	50		
Statis	tics of	monthly	data for pr	evious reco	rd (Oct 19	962 to Dec	1985)						
Mgan	Avg.	120 200	102.200	102 700	67 440	56 320	36 670	31 250	42 670	56 000	80 160	112 700	113 400
flows:	Low	50 320	37,180	26 290	25 180	17 950	15 550	11 640	9 883	10 990	10 180	24 710	40 700
	(year)	1973	1963	1973	1974	1980	1974 66 210	1984 85 330	1976	1972	1972	1973	1975
	High (year)	249 700 1982	173.300 1978	236 400 1963	142 200 1979	153 300 1967	1981	1985	146 300 1985	179 900 1985	176.300 1967	271 700 1963	197 900 1979
Aunoff	Avg Low	73 31	57 20	63 16	40 15	34 11	22 9	19 7	26 6	· 33 6	49 6	67 15	69 25
	High	152	99	144	84	94	39	5 2	89	106	108	160	121
													_
Rentell	Low	94 45	64 15	82 21	58 12	75 22	69 25	73 24	88 21	98 19	92 25	102 16	91 23
	High	165	125	138	98	181	129	160	188	164	163	224	175
Suma		atistics							6	**** * #***	ing flow r		
Summ	1017 5	dustics						1986	rac	LUIS BITECT	ing now r	eyune	
			F	or 1986		For record		As % of			in catchme		•
Mean fi	low im ³ i	g = 13	97	180	76.7	eceding 198	16	pre-1986 121	• A	ostraction	for public i	water supp	olles.
	yearly		•••		33 9		1973						
Highest					102 4		1963						
		ly meen ly mean	20. 197	660 Ju 400 De			lug 1976 Nov 1963						
Lowest			13	694 27 Ju			Aug 1976						
	daily m	ngan	511.				Jan 1982						
Poot. 10 %ilo	,		694. 191		1518 (163 (Jan 1982	117					
50 % iki				740	51 3			136					
95 %iki			17.	660	14 (020		126					
	total (m runoff (nillion cu m)	2935 66		2421 55			121 121					
	rainfall		115		98			117					
		infall average			103								

Station and catchment description
Lowest station on River Tweed. Velocity-area station at very wide natural section. Complex control. Moderate seasonal weed growth effects on rating. Reservoirs in headwaters have only a small impact on the flow regime - monthly naturalised flows available. Geology: mixed but principally impervious Palaeozoic formations. Moorland and hill pasture predominates; improved grasslands and arable farming below Melrose

022001 Coquet at Morwick

1986

Maasuring au First year: 19		4		Gr	id referenc Level str	e: 46 (NU) n. (m OD)				Catchme	nt area (sq.) Max alt. (n	km), 569 8 n OD) 776
Daily mean	gauged die	charges (cubic metres	per second	l							
DAY	JAN	FEB	MAR	APR	MAY	JUN	ж	AUG	SEP	OCT	NOV	DEC
1 2	12.560 39.605	17 143 16 011	4.155	5 544	6 127	4 278	1 982	4.175	8 064	1 984	5 473	4 174
3	17.278	22 277	3.965 3.765	5 501 6 221	5.534 5.095	3 865 3.705	1 931 1.801	4.000 4.638	18 015 44 900	1 915 1 896	6 474 4 647	3 844 4 004
4	10 472	14 705	63.115	6 267	4 777	4.375	1 775	3.292	13 909	1 894	3 972	4 626
5	9.159	11 042	77 600	5 402	4.674	3 888	1 793	3.366	9 283	1 894	3.516	10 430
6	9.375	9.359	24 595	5.194	5.957	3 505	1.834	5 5 1 4	7 582	1 907	3 189	6 748
7 8	8 09 1	8 420	15.313	5 625	33.970	3 462	1 782	9.505	6 117	1.909	2.957	8 444
9	7 752 9.006	7.841 7.330	12.582 11.588	6 304 5.651	12.820 7.919	3 194 2.952	1.706 1.702	6 556 4 669	5 221 4,701	1 854 1 848	11.938 6 52 1	31 944 29 279
10	44.070	6 499	11.596	5 170	6 9 1 2	7,461	1 664	3 592	4 281	1 861	7.194	12 950
11	21.674	4 975	10 477	4.663	5 839	7.735	1,671	2.978	3 931	1 921	5 671	10.600
12	15.003	5.794	9.286	4 996	5 258	4 400	1.702	2.578	3 7 18	1.907	5 420	18 600 13 93 1
13	15.936	5.480	8.025	5.223	4 930	3.640	1.702	2.376	3 530	1.851	4 742	37 810
14 15	15 744 11,742	5 225 4.947	7 068 10.561	6.831 75.160	4.612 4.429	3 4 1 3 3 0 3 3	1 689 1 660	2 331 2.338	3 343 3 038	1.778 1.775	5 74 <i>2</i> 6 599	14 697 22 096
											0 333	11 030
16 17	8 974 8 208	4 819 4.789	9.801 7.945	65 060 50 910	4.702 4.420	2.762 4.470	1 660 1.591	2.810 2.412	2 873	1.775	5 058	21 042
18	10 138	4 685	6.713	28.560	5.893	5.785	1 500	2 131	2.781 2.713	1.775 1.778	4 450 4 509	22.665 22.701
19	30 849	4.792	7 087	19 430	4 929	4.425	1 497	2 352	2 606	2 020	6 243	12.848
20	20 811	4 634	7,778	43 650	5.952	3 666	1.497	3 963	2 481	2 258	5 253	9 974
21	22.807	4.609	7,371	26 010	11 820	3.271	1 496	3 484	2.403	2.079	4 439	12 442
22 23	17.590 16 263	4 230 4.291	7 847 16.511	25 140 17.850	7.384 5.619	2 970	1 434	3 475	2.432 2.423	2.212	7 625	13 443
24	10.763	4 275	11.076	13 770	4 729	3 526 2.096	1.510 1.550	3 371 2.612	2.298	2 55 1 2 5 10	13 532 7 567	12.165 11.510
25	8.028	4 390	11.364	11 970	6 588	2 696	1 502	2 491	2.235	5.981	8 287	18 027
26	7 361	4 047	8 674	10.150	5.850	2 540	1 465	162,181	2 199	4 436	8 056	9 746
27	7 454	4 006	7 672	8.775	4.836	2 334	1 442	88 499	2.180	3 055	6.158	1 973
28 29	6.867 7.753	4 155	7.671 7.882	7 876 7 05 1	5 187 5 056	2 222 2 106	1.543 3.807	27.362 14.160	2 130	3 576	5 221	7 634
30	33.770		6.931	6 253	4.339	2 026	3 054	10 04 1	2 070 2 00 2	5 234 8 325	4 /64 4 5 1 7	18 617 67 768
31	23 348		5.979		4.403		3.729	8 203		6 147		31 263
Average	15 760	7.313	13 290	16.540	6 792	3 660	1 828	12 950	5 849	2 707	5 991	16 880
Lowest	6 867	4 006	3.765	4 663	4 339	2 026	1 434	2.131	2 002	1775	2 957	3 844
Highast	44 070	22.277	77 600	75.160	33.970	7 735	3.807	162 181	44.900	8 325	13 532	67 768
Peak flow	57.914	24 552	136 963	150 900	49 680	15.700		234.412	79 761	16 197	20 687	93 604
Day of peak Monthly total	10	3	5	15	7	10		26	3	30	23	30
(million cu m)	42 20	17 69	35 59	42 87	18.19	9 49	4.90	34 69	15 16	7 25	15 53	45 22
Bushill town	74	21	6.0	7.5	20							
Runolf (mm) Rainfall (mm)	98	31 53	62 47	75 116	32 82	17 39	9 55	61 161	27 32	13 54	27 56	79 125
Ci											•	
Statistics of	monthly d	ata for pr	evious recoi	rd (Nov 196	3 to Dec 1	985—inco	implete or n	nissing mon	the total 0 3	2 years)		
Mean Avg.	15 010	13.470	12 940	8 315	5.925	3 751	3 281	3 97 1	4 765	7 671	12 590	13 130
flows. Low (year)	5 421 1973	2 673 1973	1 730 1973	2 928 1974	2 038 1984	1,141 1970	1 168	1 232	1 4 1 8	1 083	1 926	4 563
High	32.310	26 350	31 390	15 8 10	15 4 10	6 355	1984 7 969	1983 12 720	1972 14 240	1972 26 860	1973 31 370	1971 33 340
(year)	1982	1978	1979	1983	1983	. 969	1968	1966	1965	1976	1965	1978
Runott: Avg.	71	58	61	38	28	17	15	19	22	36	57	62
Low	25	11	. 8	13	10	5	5	6	6	5	9	21
H∙gh	152	112	148	72	72	29	37	60	65	126	143	157
Rainfoll: Avg.	90	59	82	52	67	57	65	71	82	74	89	84
(1966- Low 1985) High	38 140	15 120	18 144	8 118	18 127	8 129	19 10 8	18	15	19	19	31
-	140	120	1-1-1	110	127	129	108	132	215	176	214	251
Summary st	atistics						1000	Fact	ors affecti	ng flow re	gime	
		F	or 1986	F	or record		1986 As % of					
		_			eding 1986		re-1986	● Na	tural to with	hin 10% at	95 percent	ile flow.
Mean flow (m ³) Lowest yearly r		9	157	8 71! 3.71i		1973	105					
Highest yearly i	meen			11.38		1969						
Lowest months Highest months			828 Jul 880 Dec			ct 1972 tc 1978						
Lowest daily m			434 22 Jul			in 1970						
Highest daily m	ean	162	181 26 Aug	203.20) 3 Ja	in 1982						
Poak 10 %do		234.6 18.	412 26 Aug 160	289.700 19.010		n 1982	96					
50 % de		5 :	233	4.99	1		105					
95 %ile Annual total (m	ithoo cu mì		592 580	1 360 275 O			124					
Annual runoff (50		483	•		105 105					
Annual rainfall (91		872			105					
[1941-70 ra	an svorsge	finitil		880								

Station and catchment description
Velocity-area station with 34m wide concrete Flat V weir made with pre-cast segments (installed 1969). Cableway, Fairly straight section with high banks. Replaced earlier station at Guyzance, Natural catchment.

023006 South Tyne at Featherstone

1986

	_												_ •
Measur First yo		hority, NWA 36	\		Gr		ce 35 (NY) n (m (ID) 1				Catchme	nt area (sq Max alt. (r	km) 321.9 n OD) 893
Daily r	nean (gauged dis	charges (cubic matres	per second)								
DAY		JAN	FEB	MAG	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1 2		5.810 7.209	6 186 5 97 1	1 968 2 929	9 5 1 7 8 190	7 003 5 096	4 857 4 204	1 634 1 513	7 335 9 975	11 799 35 893	1 5 7 7 1 6 2 1	35 351 12 461	7 509 24 5 1 6
3		4.488	5 988	2.538	8 803	4 559	4 2 1 5	1 470	5 401	26 214	1 559	19.736	63 403
4		4.271	5 226	105 863	B 066	3 744	3 9 1 9	1 526	4 643	8 444	1 479	9 4 7 5	46 362
5		4 191	4 720	42 049	7 352	4 557	4 247	1 535	3 474	6 104	1 448	18 665	39 857
6		3.332	4,371	13 841	6 637	10 650	3 422	1 510	10 683	6 301	1 458	9 2 1 1	12 904
7 8		3.450 3.702	4 205 3 960	11 567 10 479	7 894	42 830 10 130	3 1 15 -	1 499	32 300	4 865	2 628	30 938	16 376
9		18.535	3 729	11 016	B 190 10 400	6 405	2.821 3.192	1 572 1 561	9 853 5 550	4 004 3 470	1 950 1 995	25 066 18 692	54.790 17.775
10		58.923	3 037	10 240	6 844	8 011	41 200	1 585	3 846	3 118	2 842	15 407	10 685
11		13,913	3 207	8 770	6.011	7 487	·8 563	1 460	3 131	2 863	2 0 1 9	16 536	40 213
12		48 606	3 267	8 302	9 388	12 540	4 980	1 4 1 8	2 759	2 656	1 777	9 455	27 242
13 14		61.654	3.045	5 768 9 949	7 982 7 752	10 5 10	4 434	1 4 10	2 753	2 507	1 677	14 143	22 621
15		21 789 12.386	3 035 2 906	15 848	48 690	8 59 1 8 269	3 895 3 176	1 398 1 476	3 059 12 057	2 340 2 200	1 623 1 554	23 957 12 620	9 824 23 730
		3.504											
16 17		7.504 8.350	2.797 2.721	11 695 6 737	20 860 16 640	5 808 5 467	2 791 2 747	1 390 1 343	6 691 4 665	2 086 2 034	1 483 1 431	9 297 12 893	13 860 37 214
18		31.929	2.668	5 872	11 560	6 774	2 773	1 322	4 731	1 965	3 384	26 071	19 621
19		54 520	2 603	5 547	19 770	4 473	2 558	1 333	10 222	1 886	9 833	15 964	12 362
20		92.885	2.304	9 376	53 350	12 300	2 360	1 521	6 086	1 833	14 603	9 132	8 883
21		27.964	2.651	12 333	18 320	17 690	2 196	1 378	6 528	1 800	44 712	6 865	7 349
22		63.315	2 428	84 '53	13 180	7 713	2 129	1 384	14 176	1 962	19 453	41 046	6 099
23 24		15 674 8 534	2 311 2 540	23 381 10 596	10 020 8 679	5 202 23 590	2 161 2 393	1 720 1 62 6	6 737 4 405	1 B70 1 778	15 148 35 678	40 075 56 916	5 594 39 248
25		6 024	2 242	17 871	8 108	23 130	2 204	1 867	37 559	1 715	67 811	66 657	24 324
26		5 832	1 954	17 835	7 009	10 220	1 99:	1 676	132 745	1 671	14 173	32 305	9 363
27		6 023	2 335	22 433	5 670	7 660	1873	1 513	35 335	1 645	27 046	13 622	14 382
28		5 232	2.232	24 416	5 842	14 730	1811	10 227	12 865	1 708	35 561	9 279	13 395
29 30		5 29 1 8 045		19 402 11 590	5 014 9 111	8 2 1 1 5 37 1	1 690 1 645	9 678 10 340	8 281 6 316	1 710 1 672	23 371 41 243	7 303 6 245	84 365 62 777
31		8 423		10 885	5	5 473	. 05	11 902	6 270	1072	20 385	0143	54 435
Average	n	20 250	3 380	17 910	12 490	10 140	4 452	2 671	13 560	5 004	12 980	20 850	26 810
Lowest	-	3 332	1 954	1 968	5 014	3 744	1 645	1 322	2 753	1 645	1 431	6 245	5 594
Highest		92 885	6 186	105 863	53 350	42.830	41 200	11 902	132 745	35 893	67 811	66 657	84 365
Posk flo	₩	164 731	6.864	189 607	104 000	107 900	129 000	41 522	297 252	111 724	164 091	169 459	186 896
Day of		18	1	22	20	24	10	28	26	2	24	25	3
Monthly (πillion		54.24	8 18	47 97	32 39	27 15	11 54	7 15	36 33	12 97	34 78	54 03	71 80
			05										
Runoff (Rainta I		169 190	25 33	149 134	101 114	84 138	36 53	22 89	113 169	40 44	108 185	168 188	223 253
_		monthly d	ata for nr	evious reco	rd (Oct 198					the rotal O			
									_				
Mean flows:	Avy Low	15 660 7,739	11 740 5 122	13 190 5 860	8 642 1 850	6 248 1 311	5 136 1 465	4 704 1 255	6 530 0 960	9 882 1 467	12 370 1 181	15 820 6 616	14 890 5 1 10
	(YOU')	1985	1968	19/5	1974	1980	1978	1984	1976	1972	1972	1983	1971
	High	25 5 0	19 760	30 210	16 2 10	'3 850	12 740	9 889	19 240	23 670	30 330	24 670	28 810
	(460.)	1975	1974	1979	1979	1983	1980	1985	1985	1985	1967	1984	1974
Runoll		130	89	110	70	52	41	39	54	80	103	127	124
	Low High	64 212	40 148	49 251	15 131	11 115	12 103	10 82	8 160	12 191	.10 252	53 199	43 240
	=							02	100	131	152	133	240
Painta1	Avg Low	133 74	82 28	117 44	72 1	85 40	92 44	95 43	111 25	134 40	134 27	146 63	130 42
	Hgh	213	166	199	133	178	215	165	248	239	331	245	215
Summ	any et	atistics							Enc		ting flow re	naime	
3011111		01131108						1986	180	tors allect	ing now n	RAIIIIA	
			F	or 1986		ar record ceaing 198	96	As% of pre-1986	♠ N:	atural to wi	thin 10% at	96 50,000	tila flore
Mean fi	ow (m³s	s ^{- 1} }	12	640	10 40		50	122	V 110	3(() 6) (() 44)	ини тожа	33 percen	the now
Lowest					7 63		1971						
Highest Lowest			,	671 Jul	12 92 0 96		1979 Aug 1976						
Highest				810 Dec			Oct 1967						
Lowest				322 18 Jul			Aug 1976						
Highest Peak	Gaily to	ดูยูก	132 297				Sep 1985 Nov 1984						
10 %ilo				252 26 AUG 940	24 54			142					
50 %ilo			6	740	5 27	1		128					
95 %ire Annual		illion cu m)		496 3 6 0	1 36 328 2			110 121					
Annual			123		1020	•		121					
Annual			159		1331			119					
194	1-70 ra	infall average	(mm)		1464)								

Station and catchment description
Compound Crump weir Lower crest 15 2m, upper crest 29 5m. Theoretical rating. Natural flow regime

Tees at Broken Scar 025001

1986

	ring sut par: 199	hority; NW/ 56	λ		G	Grid reference Level stn.					Catchme		km); 818.4 m OD); 893
Daily	mean	gauged dis	charges (cubic metres	per second	d)							
DAY		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	001	NOV	DEC
1		17.926	20 390	3 486	17.100	18.240	9 262	3 190	4 693	13 582	3.374	86.481	18 690
2 3		33 221 17,687	24 316 22.190	3 722 4 510	13.860 11.640	14 120 11 630	8 032 6 850	3 323 3 516	11 605	11 762	3 3 1 5	26 573	19 9 12
4		10 447	17 292	126.409	9.577	9.988	6 937	3 064	5 587 4.177	39.767 14.250	3 090 3 677	24 053 16 722	45 469 80 374
5		9.670	13.953	128 366	9 092	13 420	6 494	3 187	4 055	9.144	3 607	14 633	95 115
		7040											
6 7		7.948 5.470	12 165 10 990	44 562 27 714	10 200 15 230	16 920 96 350	5 522 5.041	3 208 3 236	5 006 21 745	6 527 6.135	3 277 3 695	12 725 16 870	30 669
8		5.606	8 965	23 79:	29.230	38 680	4 964	3 115	9 346	4.856	3 730	36.386	37 011 106 235
9		5 987	B 246	20 167	31.020	21 570	4 869	3 03 1	5 346	4 165	3 358	27 000	49 010
10		140.485	7.202	19 563	24 040	23 190	40 400	3 03 1	4 105	4 305	5 060	51 015	27 183
11		45.656	7.032	19.227	17 580	17 620	16.750	3 3 1 8	3.588	4.094	8.179	40 645	69 950
12		49.144	8 04 1	16 640	25.610	25 360	7 969	3 552	3.619	3 964	7 364	24.691	42 878
13		117 890	7 050	12 627	21.470	24.950	5 099	3 146	3 5 1 1	3 679	3 631	23 248	74 761
14 15		47.366 33.410	5 376 4 955	10 504 29.782	22.120 194.500	15.550 18.260	4 653 4 320	3 085 2.999	4 177 6 134	4.111 4.172	3.355	33 697	29 196
.,		33.410	7 333	23.702	134.300	16 200	4 320	2.333	0 134	4 172	3.153	30 449	67 718
16		21.450	5 592	24.136	87.450	15.390	4 022	3 279	5 857	4 062	3.614	22.729	37 488
17		14.666	4 954	15.728	85 410	17 280	4 203	3 177	5 211	3.902	3.242	23 322	75 412
18 19		39.229 120.787	4 70 6 4 556	10 415 11 385	37.490 28.000	25.300 13.950	4 199 4 111	3 293	5 4 1 1	3 814	3.362	43.774	49 257
20		152 584	4 074	19.450	87 440	31 350	3 931	3 677 3.808	15 019 9.180	3 584 3.738	6 426 7.794	46 807 22 709	30 853 25 067
													2000
21		91.397	4 708	21.412	53.510	39 020	3 865	3 394	5 756	3 871	17 087	18 747	24 657
22 23		92.389 47.709	5 007 4 327	104 834 68 510	38 990 28 470	27 450 14.240	3.834 3.899	3 456 3 871	17 504 9 769	3.370 3.278	17.250 18.388	59 613	19 832
24		25.266	5 474	28.615	32 370	9 8 18	4 199	3 729	6 355	3.278	11 981	84 732 61 682	16 469 18 697
25		18 668	4 249	43 595	34 590	56.220	3 495	3 5 1 8	36 550	2.915	53 587	95 345	49 820
28		17.200	3 44 1	EC 050	25 200	22.400	2 002	0.200	200 300				
27		17.26B 16.000	5 04 1	56 952 86.943	25 080 19 000	23 490 16 120	2 992 3 604	3 709 3 697	309 790 54 425	3.323 3.395	16 771 17 890	64.366 35.163	19 133 20 984
28		13.916	4.347	42 567	17 580	17.940	3 486	4 626	26 594	3 668	21 842	23 862	29 370
29		15.327		44 796	16 570	16 050	3 394	10 355	18 260	3.589	14 612	20 730	41 311
30 31		18.651 25.090		27 403	16 950	10 280	3 243	4 500	15 035	3 49 1	38 293	18.667	119 525
31		25 030		22.126		11.610		11 383	13 183		23 481		107.926
Average	0	41.240	8 523	36.130	34 710	22 950	6 455	3 9 1 8	20 990	6 252	10 890	36 9 10	47 740
Lowest		5.470	3 44 1	3.486	9 092	9 8 18	2.992	2 999	3.511	2 9 1 5	3 090	12 725	16 469
Highest		152.584	24.316	128 366	194.500	96.350	40 400	11 383	309 790	39.767	53.587	95 345	119 525
Peak fic	w	321.273	27 937	311.224	350 900	181 100	94.630	26 401	709 829	71.351	121.927	166 327	221 902
Day of		20	2	4	15	7	10	31	26	3	31	25	8
Monthly		110.40	20.62	96.76	89 96	61.46	16 72	10.50	56.31	15.01	20.10	05.60	
(million	CO III,	110.40	20.02	30.70	65 50	61 46	16.73	10 50	56 21	16 21	29.16	95 68	127.90
Runoff		135	25	118	110	75	20	13	69	20	36	117	156
Rainfall	(mm)	166	48	109	116	128	38	43	176	26	110	127	210
Statis	tics of	monthly d	ata for pr	evious reco	rd (Oct 19	56 to Dec 19	985—inc	omplete or n	nissina man	the total O	l veers)		
											, , , , , , ,		
Mean	Avg	28.600	23.100	22 640	17 930	10.250	6 427	6 206	9 83 1	11.300	17 590	22 570	27 760
flows:	(year)	2.906 1963	2.804 1963	5 482 1975	2 539 1957	2.007 1959	0 502 1957	1 794	0 458	0 638	2 707	4 060	5 778
	High	50 240	51 540	68 660	60 870	27.020	15 270	1969 15 090	1959 28.520	1959 25.800	1969 53 940	1958 51 580	1971 50 040
	(ynar)	1982	1966	1979	1977	1967	1972	1961	1985	1985	1967	1963	1979
D a # 1.	4	0.4	co	54	63	•		••					
Runoff:	LOW	94 10	69 8	74 18	57 8	34 7	20 2	20 6	32 2	36 2	58 9	71 13	91 19
	High	164	152	225	193	88	48	49	93	82	177	163	164
Rainfoli:	Low	119 51	84 16	95 29	75 10	79 18	75 22	82 28	100 23	101 19	102	114	121
	High	183	175	224	150	167	182	150	190	222	27 226	25 221	43 268
_	-					_							
Summ	nary st	atistics							Fact	ors affect	ing flow r	egime	
				or 1986		For record		1986 As % of	■ Re	ennorie)	in catchme	un t	
			•	G 1500		ceding 1986		pre-1986				nit. Water supp	lies
	ow (m³i		23	200	17 0	00		136	● Ai	ugmentatio	in from sui	face water	
Lowest					9.3		1973		gr	oundwater			
	yearty i		3	ىد 918	23.2. il 0.4!		1979 n 1959						
	month			740 Dec			M 1979						
	daily m			915 25 Sep			ct 1959						
	quily m	ean	309				in 1982						
Poak 10 %ilo			709 53	829 26 Aug 440	679 30 42 70		₩ 1968	125					
50 %ile				140	7 9			177					
95 %ra			3	264	1.3	49		242					
	total (m runoff (a	ilkon cu m)	73 ° 89	1 60	536			136					
	ronos (i raintas (129		656 1147			136 113					
		nfall average			1226								
		,											

Station and catchment description
Compound Crump weir with total crest length of 63 9m. Two low-flow crests total 9.1m. Theoretical rating, Substantial artificial influences, Contains Cow Green and 5 smaller reservoirs on Lune and Balder. Major intake just above gauge site. Occasional transfers from Tyne (Keilder) at Eggleston, Mainly Millstone Grit, Upper- and Middle-Limestone.

Wharfe at Flint Mill Weir 027002

1986

Moasur First ye		hority. YWA 17			G	irid referenc Level str	ce: 44 (SE) i (m OD).				Catchine	ntarea (sq.) Maxalt (m	km) 758 9 n OD) 704
Daily (maan (gauged dis	charges (cubic metres	per second	1)							
DAY		JAN	FEB	RAM	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1		24 800	27.230	4.881	26.720	12.290	8 235	3 000	5 940	6 740	2.546	82.690 31.680	12.540
2 3		23 510 16 370	29 080 24 010	4 674 4 914	22.320 17.400	10.750 12.660	7 384 6 873	2.890 2.846	6.891 7.051	7 398 24 250	2 442 2 384	24 050	12 090 18 740
4		12.280	19.530	49 660	13.750	14.320	6.173	2.747	4 797	13 830	2 524	18 400	71 810
5		11.070	15.720	127.700	12,110	12 390	5.793	2 894	4 308	B 622	2 674	21.730	54 540
6		9.845	13.540	39.390	12 390	15 470	5 407	2.957	4 205	6.713	2 383	21 250	31 260
7		8 630	12 040	21.820	14.650	60.880	5 172	2 868	14 820	5 871	2 484	14 450	19 850
В		8.369	10.800	17 270	32 630	40.790	4.953	2.701	10 300	5 374	4 227	16 120	57.930
9 10		8.456 89.280	10.080 9.151	17.260 16.950	23 610 22.530	23.790 21 400	4 823 23 540	2.699 2.544	6 181 4 800	4 995 4 497	3.524 4.744	14 570 34 750	48 760 26 650
11 12		51.270 35.370	8.206 8.011	15 620 13.240	14 9 10 14 780	24.240 27.480	24 750 13.600	2.502 2.578	3.718 3.206	4.137 3.875	5 511 3 760	23 830 18 150	61 540 42 860
13		73.070	7 569	11 670	16.110	20.570	8.979	2.599	3 073		3 289	14 900	86 470
14		56.940	7.258	10 040	17 550	15 190	7 579	2 531	3.028	3 501	3.164	25 420	35 190
15		40 440	6.955	14.100	130.900	16.760	6 5 1 4	2 5 1 4	3 002	3 361	3 934	30 700	78 230
16		22.160	6.616	17 020	82 040	13 020	5 720	2 706	3 0 1 6	3.256	3 894	19.680	55.190
17 18		16.220	6.422 5.806	17.250 12.420	121.600 62.870	11.600 23.670	5.272 4.847	2 305 2.316	3 694 3.870	3 195 3 119	3 185 2.969	22.690 46.450	80 920 66 670
19		35 600 91.920	5.336	13.590	36.970	13,980	4.509	2.310	3.587	2 989	8.111	73 420	47 460
20		69 120	5 560	14 430	67 830	28 680	4 221	2 252	2.975	2.999	22 160	30 170	35.260
21		114 800	5.568	15 640	50 230	37.340	3.948	2 358	2.748	2 964	45 300	27 800	29.220
22		69 230	5.570	33.470	46 020	25 710	3 855	2 301	3 040	3 001	40 830	26.400	23 620
23		54.540	5 542	83.110	31 450	16.620	4.278	2 456	3.147	2 853	31.030	57 730	18 300
24 25		32 090 21 680	5 372 5.434	35.490 35.530	25 390 23 880	13 440 44.380	5 775 4.266	2 570 2 278	3 079 7 452	2.796 2.759	19 370 56 590	58.160 76.200	15 590 74 810
26		16 640	c 152	70 500	20.250	24 800	3.942	2 235	136 500	2 742	27 980	70 910	32 750
26 27		16.540 15.160	5.152 4.947	38.580 67.130	20 350 18 020	16 010	3.942	2.183	42.030	2.591	46 070	39 3 10	25 960
28		14,470	5 113	36 570	14 400	13 860	3 162	2 254	19 560	2 576	56 200	24 130	41 940
29		19.830		45 360	13 450	11 230	3 241	2 4 1 9	12 260	2 599	30 380	17 860	40 630
30 31		32.400 33.860		29 050 28 380	11.470	9.257 8 646	3 131	5 205 6 135	8 965 7 642	2 571	29 050 23 250	14 340	101 800 81 130
					22.040		6 702			4.004		22.260	
Averag Lowest		36 430 8 369	10.060 4.947	28 780 4 674	33.940 11.470	20 680 8 646	6 782 3 131	2 747 2.183	11 250 2 748	4 994 2 571	16 000 2 383	33 260 14 340	46 120 12 090
Highest		114 800	29 080		130 900	60.880	24 750	6 135	136 500	24 250	56 590	82 690	101.800
Peak fic	w	157 000	31 050	191 800	18: 800	92 050	52 890	8 980	172 500	37 590	98.700	138 300	137.500
Day of		21	2	5	15	25	10	31	26	3	27	19	13
Monthli (million		97 57	24.33	77 09	87 98	55 40	17 58	7 36	30 14	12 94	42 85	86 22	123 50
Runoff	lmmi	129	32	:02	116	73	23	10	40	17	56	114	163
Renfall		182	26	118	147	122	46	46	141	22	158	142	216
Statis	tics of	monthly d	ata for pr	evious reco	rd (Jan 19	37 to Dec 1	1985—inc	omplete or n	nissing mon	ths total 17	.7 years)		
		•	_						_			22.070	27 200
Mean flows.	Avg Low	27 470 4,471	23 750 2.974	21 050 6 741	15 480 4.389	11.190 2.312	7.65* 1.546	7.722 1 675	11.700 0.992	13.590 1.420	18 120 3 026	23 070 5 027	10 230
	(year)	1963	1983	1961	1982	1980	1957	1976	1976	1959	1972	1937	1963
	High	42.880	54,590	53 940	35 240	26 750	18 520	16 440	41 340	33 520	54 000	51 090	62 090
	(yuar)	1984	1966	1981	1970	1967	1972	1963	1956	1968	1967	1963	1965
Runoff		97 16	76 9	74 24	53 15	39 8	26 5	27 6	41 4	46 5	64 11	79 1 <i>7</i>	96 36
	Low High	151	174	190	120	94	63	58	146	115	191	174	219
On of all	A	114	83	86	72	78	76	84	98	104	108	112	121
Rainfall	Low	41	14	28	8	13	18	20	18	8	32	33	41
	High	217	194	222	147	181	183	185	226	241	229	211	233
Sumn	nary st	atistics							Fact	tors affect	ing flow r	egime	
			F	or 1986		For record		1986 As % of	• Re	servoir(s)	ın catchme	int	
						ecediny 198	6	pre-19 86	• Al	bstraction	for public v	water supp	
	low (m³: Lyosrly i		21.	.020	17 3 11 4		1975	121		ow reduce: pricultural a		trial and/or	
	Lyosriy i Lyosriy i				23 3		1966					rface water	and/or
	monthi		2.	.747 Ju	I 0.9	192 4	lug 1976		gr	oundwater			
	month			120 Doc			Dec 1965						
	daily m t daily m			183 27 Ju 500 26 Aug			Jun 1957 Dec 1960						
Peak			191.	.800 5 Mai	380.0	3.	Jan 1982						
10 %ile				650	41.2			133					
50 %ile 95 %ile				420 .517	9 6 2.1			139 116					
		nillion cu m)		2 90	546			121					
Annual	runoff (mm)	87	73	720)		121					
	ramiali - L1.70 ce		136 (mm)	56	1136			120					
[194	. 1-70 18	infall average	i (rinis)		116	11							

Station and catchment description
The control is a broad-crested mesonry weir 47m wide with a current meter cableway 1.5km upstream. Insensitive at low flows. Headwaters contain numerous reservoirs which exert a substantial influence on flows. Mixed geology comprising mainly Carboniferous Limestone, grits and Coal Measures with some Permian sand and Magnasian Limestone and marls in the lower catchment. Predominantly rural catchment with moorland headwaters.

027035 Aire at Kildwick Bridge

1986

	ring autl	hority: YWA	x		Grid	i reference Level stn.		013 457 87 30			Catchme	nt area (sq.) Max alt. (n	km). 282.3 n OD). 594
Daily	mean (auged dis	charges (cubic metres	per second)								
DAY	•	JAN	FEB	MAR	APR	MAY	MUL	JUI.	AUG	SEP	OC1	NOV	DEC
1		17.260	9.800	1 505	10 930	3 391	2 456	0 870	1.255	2 064	0 574	26 590	6 3 1 6
2 3		13.160 7.951	10 080 8.261	1 480 1 461	7.650 5.930	2 912 7 614	2 245 2.099	0 870 0 742	1 271 1 013	3 057 10 820	0 554 0 540	11.310 8 909	5.374 17.730
4		6 192	6 998	21 190	4.857	5 462	1 864	0 859	0 938	3 938	0 541	6.689	26.900
5		5.481	5.732	25 730	4 393	5.118	1.723	1 05 1	0 946	2 68 1	0.640	7 398	19 170
6		4.560	4.922	9 475	4 009	5 2 1 7	1.622	0 880	2.197	2 145	0.572	6 221	11.070
7		4 007	4 325	6 381		25 750	1.022	0 829	4 080	1 743	0.572	5.589	11 970 10 310
8		3 760	4 058	5 031	6 361	13 200	1 436	0 761	1 937	1 503	0 814	6 015	24 050
9 10		7,177 41 960	3 901 3 328	5 821	4 743	9 046	1 639	0 69 1	1 332	1 305	0 712	9611	18.810
10		41 300	3 320	5.433	3.632	7 978	7 623	0 699	1 056	1 201	0819	14.940	11 280
11		18.670	3 036	4 458	3 053	9 200	7 114	0 678	0 951	1 094	0.790	12 750	25.180
12 13		13 680 23 420	2.811 2.653	3 770 3 200	2.889 3.187	8 155 5 739	3 398 2 779	0 696 0 685	0 862 1 012	1 026 0 988	0 689 0 659	8.046 8.193	15.320 19.670
14		19.250	2 58 1	2 775	7 666	5 3 1 6	2 341	0 656	0 962	0 942	0 696	10 810	11 620
15		12 760	2 429	2.790	51.850	5 779	1.909	0 635	0 927	0 888	0 794	9.457	30.770
16		8 528	2 320	3 207	25 600	4 262	1 768	0 624	0 902	0 855	0 690	7 8 18	25 240
17		7.475	2.208	3 057	39 830	5 870	1.611	0 6 1 9	0 864	0 779	0 664	8.486	32.770
18		21 440	2 080	2.871	17 480	5 534	1 509	0 728	0 805	0 725	0.790	26.810	30 340
19 20		40.680 35.250	2 015 1.973	3 374 3.188	11 350 27 89 0	4 04 1 8 385	1 401 1 313	0 656 0 589	0 688 0 728	0.681	2 496	28.680 15.830	27.040
		35 230	1.373	3.100	27 050	0 303	1.313	0 369	0 /28	0 680	5 835	15.630	18 670
21		44 800	1.929	2.805	17 410	9 669	1 236	0 69 1	0 680	0 664	20 350	15.350	12.690
22 23		37,100 27,040	1 829 1 732	15.350 19.350	15 140 10 360	6 534 4 509	1.325	0 710 0 647	0 767 0 730	0 694 0.693	17.230 12.890	15 040	8.612
24		15 070	1 636	13.050	12 430	3 786	2011	0 654	0 663	0.663	9 490	21 950 21.770	7 008 7 802
25		9 430	1.588	15 790	10 210	8 227	1 386	0 683	9.741	0 643	26 130	33 090	17.060
26		7 692	1.555	12 710	7 739	5 226	1 162	0 6 18	29 440	0 633	10 530	28 550	9 639
27		7.355	1.508	16.830	6 044	3 849	1 092	0 575	8 237	0 604	16 970	15.780	10 930
28		6 6 1 3	1.519	10 120	5 376	3 294	1 023	0 666	4 860	0 595	22 310	10.380	11.260
29 30		8 606 18 330		13 000 10 360	4 740 4 034	2.745 2.511	0 930 0 9 01	0 853 1 383	3 478 2 554	0.607 0.604	13 510 15 780	7 903 6 443	15 430
31		13 210		12.940	4 034	2 561	0 301	1 884	2 028	0.604	15 320	6 443	42 010 27.620
•	_	16 200	2 6 0 0										
Average Lowest		16 380 3 760	3.529 1.506	9.339 1.461	11 400 2 889	6 480 2 5 1 1	2 066 0 901	0.780 0.575	2 836 0 663	1 5 1 7 O 5 9 5	6 488 0 540	13 880 5 589	18 020 5 374
Highest		44 800	10 080	25 730		25.750	7 623	1 884	29 440	10 820	26 130	33 090	42 010
Peak 1kg	N. 44	59 490	11 000	47.340	64 870	35 210	13 680	2.607	60.260	10.000	44 700	54.460	47.050
Day of		20	1	22	15	7	10	31	50.350 26	19 880 3	44 700 31	54 460 18	47.950 30
Monthly	y total										-		
(million	¢u m)	43.88	8.54	22 33	29 55	17.36	5.35	2 09	7.59	3 93	17 38	35 98	48 26
Runoff		155	30	79	105	61	19	7	27	14	62	127	171
Rainfall	(mm)	161	13	113	130	112	47	49	113	22	. 159	141	217
Statis	tics of	monthly d	ata for pro	evious reco	rd (Dec 1986	to Dec 1	9 85 —inc	omplete or m	nissing mon	the total 0.2	years)		
	A	10.570	9.022	7.407	4 606	2.020	2 424		2.040	2 002			
Moan flows.	Avg. Low	10.570 4.463	8 022 3 8 18	7.407 2.390	4 606 0 922	2.930 0.611	2 434 0 604	1 683 · 0 298	3 049 0 289	3.863 1,147	6 992 0 788	10 440 3.583	10 580 3 175
	(year)	1973	1985	1985	1974	1974	1970	1984	1976	1971	1972	1975	1971
	High	18.580	13.220	22.520	9 586	B 174	6 4 1 6	5 927	11 4 10	10 360	17.570	16.540	20 820
	(Year)	1984	1984	1981	1970	1983	1982	1973	1985	1974	1981	1984	1979
Runoff.	-	100	69	70	42	28	22	16	29	35	66	96	100
	Lo w High	42 176	33 117	23 214	8 88	6 78	6 59	3 56	3 108	11 95	7 167	33 152	30
		.,,	•••		00		3.5	30	100	33	107	132	198
Raintall		122	74	102	67	75	78	73	92	116	111	132	120
	Lo w High	67 222	14 139	44 233	3 135	10 142	23 155	17 151	17 171	27 250	37 213	55 187	42 238
_	-						.00						130
Summ	ary st	etistics						1986	Fact	ors affect	ing flow re	agime	
			F	or 1986	Fo	r record		As % of	• Re	servoir(s) i	n caichme	nt.	
		-1.				ding 1986	1	pre-1986					
	ow (m³s yearly n		/ '	581	6 04 1 3 655		1971	127					
	yearly n				8 060		1981						
	monthly			ابلا 780			9 1976						
	monthly daily me		18 (020 Dec 540 3 Oct			ır 1981 g 1976						
	daily m		51.4				g 1970 :i 1980						
Peak	•		64 1	870 15 Apr	98.130	5 De	c 1972						
10 %44			19 9		15 260			131					
50 % do 95 % ila				102 550	3 055 0 516			134 126					
Annual	total (mi	Dion cu m)	242	20	190 70			127					
	runoff (n		85		675			127					
	ramiali (d 1-70 rad	mm) nfall average	127 (mm)	′	1162 1134)			110					
,													

Station and catchment description
Velocity-area station rated by current meter cableway 150m downstream. Low flow control is the sill of the bridge. Washland storage and headwater reservoirs influence the flow pattern. Geology is mainly Carboniferous Limestone. Rural catchment.

Derwent at Buttercrambe 027041

1986

thority: YW# 73	١.		Grid						Catchment		
gauged dis	charges (c	ubic metres (per second)								
JAN 36 820 48 060 49 650 34 100 27 480	FEB 35 210 59 290 64 460 50 370 39 690	MAR 13.600 13.180 12.950 21.160 54.340	23 350 23.460 20.140	21 190 20 250 19 380	JUN 16 270 15 810 17 110 16 610 15 460	JUL 8 762 8 770 8.493 8 266 8 232	AUG 7 642 6 972 6.802 6 735 6 694	SEP 10 490 10 680 21 250 27 120 14 570	OCT 5 907 5 861 5.849 5 871 6 069	NOV 17 700 21.400 11 790 9 433 8 500	DEC 9 453 9.162 9 055 8 957 9.451
25 080 23 430 21.940 21 810 44 250	32 880 29 070 26 950 25 400 23 890	60 720 40 560 27.210 24 230 22 170	50 490 44 070	39.270 26.320	15 080 14 990 14 260 13.950 18 310	8 215 8.047 8 096 8 107 7 852	6 722 6.585 6.969 7 050 6.587	11 120 9.720 8.939 8.310 8.039	6 033 5.851 5 727 5 727 5.732	8 076 7 539 7 375 7 231 9 629	8 996 8 582 10 850 23 330 15 500
55.750 39.890 32.110 29.430 24.420	21.920 21.730 20.480 19.730 19.020	21 650 20.530 18 760 17.250 18 270	25.500 26.060 24.680 27.600 42.220	20 880 19 400 18 570 17 860 21 530	20 770 15.560 14 230 13 620 13 090	7 457 7 363 7 361 7 252 6 997	6 404 6 472 6 502 6 552 6 627	7 707 7 519 7.339 7 323 7 257	5 606 5 564 5 597 5 691 5 756	10.580 9 141 8.377 10 270 16.830	23.890 32.040 44.930 44.750 39.490
22.900 20.990 21.430 25.040 26.800	18.330 17.960 17.730 17.240 16.760	18 900 18.990 17 130 20 160 18 850	61 130 58.670 73 730 66 490 60.600	19.980 17 720 18 290 16 560 38 920	12 730 12:350 12 050 11 800 11 380	6 812 6 643 6 577 6 615 6 629	6 435 6.165 6 152 6.341 6.601	7 065 6 952 6 839 6 746 6 663	5 717 5 598 5 703 6 080 6 531	13.420 10.470 10.080 21.870 16.530	47.610 35.520 32.740 28.690 23.370
27.260 25.340 23.770 20.720 18.300	16 110 16 200 15 310 14 750 14 750	17 040 16 110 16 060 28 410 33 220			10 970 10 790 10 770 10 850 10 590	6.578 6.473 6.554 6.698 6.739	6.390 6.468 6.570 6.404 7.181	6.563 6.548 6.585 6.511 6.432	6 476 6 485 6 244 6 052 6 044	13 800 13 230 11 860 10 690 10 790	22 250 39 250 41 820 39 620 38 990
17.190 17.370 17.260 32.740 42.080 38.030	14.050 13.810 13.960	32 300 37 450 32 610 28 740 25 750 25 990	33.680 29.610 27.440 25.300 23.440	20 470 19.050 18 140 17 500 16 740 16 380	9 995 9 510 9 234 8.973 8.833	6 584 6 441 6 432 6 681 7 022 7 793	18 490 40 990 33 130 16,160 11,560 10 240	6 321 6 319 6 259 6 062 5 916	6 135 6 490 7 219 6.938 6 721 6 772	15.730 13.610 11.260 10.310 9.717	35 820 26.120 23.550 24 410 49.960 61.010
29 400 17 190 55 750	24 890 13.810 64 460	24.980 12.950 60 720	37.540 18.370 73.730	25.680 16.380 73.750	13 200 8 833 20 770	7 308 6 432 8 770	9.567 6 152 40 990	8 839 5.916 27 120	6 066 5 564 7 219	11 910 7 231 21 870	28 040 8.582 61.010
59.660 11 78.75	68 140 3	64 390 6	78 820 18	75 710 21 68 79	25 790 10	8 859 1	42.720 27 25.63	35 330 3	7 726 31	29 490 1	63.590 31 75.10
50	38	42	61	43	22	12	16	14	10	19	47
82	46	58	113	92	35	33	112	27	61	57	118
monthly d	ata for pre	evious recor	d (Oct 1973	to Dec 1	985)						
30.670 16.780 1983 48.190 1977	28 280 15 260 1982 49 290 1	27 000 8 799 1976 56.110 1979	19 270 6 927 1976 33 670 1979	15 260 7.852 1982 29 840 1979	10 640 5 342 1974 21 260 1979	7 634 3 884 1976 11 810 1981	8 024 3 215 1976 15,440 1980	8 053 4,730 1975 14,710 1976	14 110 5 554 1975 36 810 1976	16 040 7 404 1978 25 220 1980	25.760 13.460 1984 42.740 1978
52 28 81	44 23 75	46 15 95	31 11 55	26 13 50	17 9 35	13 7 20	14 5 26	13 8 24	24 9 62	26 12 41	43 23 72
80 34 132	47 5 101	72 6 143	48 11 102	61 22 142	55 11 149	60 18 123	64 10 126	77 21 192	77 21 158	69 28 111	85 36 180
tatistics						1005	Fact	ors affect	ing flow re	gime	
s") moan maan ly moan	18 9	910 066 Oct	preci 17 530 11.720 25 320 3 215	rding 198))) i A	6 1975 1979 1976	As % of	● AI	ostraction	for public v	vater suppl	ies.
oan ngan nalion cu m) (mm) (mm)	5.9 73.7 78.1 39.0 15.0 6.0 598 37 83	564 12 Oct 750 21 May 820 18 Apr 660 600 013 530 6	2.697 121 400 124 800 35 060 12 980 4.921 553 20 349 795	23 A 29 C 3 5 .	lug 1976 Dec 1978	113 120 122 108 108					
	gauged dis JAN 36 820 48 060 49 650 34 100 27 480 25 080 21 940 21 810 44 250 55 750 39 890 22 4 420 22 900 20 930 25 040 26 800 27 260 27 260 27 260 27 260 27 260 27 260 27 260 27 260 27 260 27 260 27 260 27 260 27 260 27 260 27 260 27 260 27 260 27 260 28 300 29 400 17 370 20 720 18 300 17 190 55 750 59 660 11 78 75 50 82 f monthly d 30 670 1983 48 190 1977 52 88 1 80 34 132 2 tatistics	gauged discharges (c JAN 52 10 48 060 59 290 49 650 64 460 34 100 50 370 27 480 39 690 25 080 32 880 23 430 29 070 21 940 26 950 44 250 23 890 55.750 21 920 39 890 21 730 32 110 20 480 29 430 19 730 24 420 19 020 22 900 18 330 29 990 17 960 21 430 17 240 26 800 16 760 27 260 16 110 25 340 16 200 23 770 15 3 10 25 740 42 080 38 030 29 400 24 890 17 190 14 050 17 190 13 810 17 190 13 810 17 260 13 960 32 740 42 080 38 030 29 400 24 890 17 190 13 810 17 190 13 810 17 190 13 810 17 78 75 60 22 50 38 82 45 6 monthly data for present the service of th	gauged discharges (cubic matres (about matres) (bit matres) (cubic	gauged discharges (cubic metres per second) JAN FEB MAR APR 36 820 35 210 13.600 26.120 48 060 59 290 13 180 23 350 49 650 64 460 12 950 23 460 34 100 50 370 21.160 20.140 27 480 39 690 54 340 19 120 25 080 32 880 60 720 18.370 23 430 29 070 40 560 22 590 21.940 26.950 27.210 50 490 21.940 25.950 27.210 50 490 21.810 25 400 24 230 44 070 44 250 23 890 22 170 33 570 55.750 21.920 21.650 25.500 32.110 20 480 18 750 24 680 29 430 19 730 17.250 27 660 21.420 19 020 18 270 42.220 22.900 18.330 18 990 56 670 21.430 17.730 17.250 27 660 22.5040 17 240 20 160 66 690 27.260 16 110 17 040 59.000 25.540 16.200 16.110 52.490 23.770 15 3 0 16 060 43.170 20.720 14 750 28 410 43 000 17.370 13.810 12.950 18.30 680 17.370 13.810 37 450 29 810 17.190 14.050 32 2300 33.680 17.370 13.810 37 450 29 810 17.260 13 960 32 610 27 440 32.740 28 740 25 300 33 8 030 25 990 29 400 24 890 24 980 37 540 17.190 13.810 12.950 18.370 55.750 64 480 60 720 19 270 18.30 17 260 13 960 32 610 27 440 32 740 28 740 25 300 32 770 13 810 37 450 29 810 17.260 13 960 32 610 27 440 32 740 28 740 25 300 32 740 42 890 24 980 37 540 17.370 13.810 12.950 18.370 55.750 64 480 60 720 73.730 59.660 68 140 64 390 78 820 11 3 6 18 78 75 60 22 66.90 97.30 50 38 42 61 17.190 13.810 12.950 18.370 55.750 64 480 60 720 73.730 50 38 42 61 17.190 13.810 12.950 18.370 55.750 64 480 60 720 73.730 50 38 42 61 17.390 13.810 12.950 18.370 55.750 64 480 60 720 73.730 50 38 42 61 17.190 13.810 12.950 18.970 1977 1978 1979 1979 52 44 46 31 36 60 37 560 1986 772 38 50 21 May 78 820 1979 1979 1979 52 44 46 31 37 540 48 50 555 55 50 64 60 60 60 60 60 60 60 60 60 60 60 60 60	gauged discharges (cubic metres per second) JAN FEB MAR APR MAY 36 820 35 210 13 600 26 120 22 230 48 060 59 290 13 180 23 350 21 190 49 650 64 460 12 950 23 460 20 250 27 480 30 690 54 340 19 120 18 870 27 480 30 690 54 340 19 120 18 870 23 430 29 770 40 560 22 590 43 680 21 940 25 950 27 210 50 490 39 270 21 810 25 400 24 230 44 070 26 320 44 250 23 890 22 170 33 570 23 210 55 750 21 920 21 650 25 500 20 880 39 880 21 730 20 530 26 080 19 400 29 430 19 730 17 250 27 600 18 570 24 420 19 020 18 270 42 220 21 530 22 900 18 330 18 900 61 130 19 980 24 420 19 020 18 270 42 220 21 530 22 900 18 330 18 900 61 130 19 980 25 040 17 240 20 160 66 490 16 560 25 340 16 200 16 110 52 490 62 760 25 340 16 200 16 110 52 490 62 760 25 340 16 200 16 110 52 490 62 760 25 340 16 200 16 110 52 490 62 760 25 340 16 200 16 110 52 490 62 760 25 340 16 200 16 110 52 490 62 760 25 340 16 200 16 110 52 490 62 760 25 340 16 200 16 110 52 490 62 760 25 340 16 200 16 110 52 490 62 760 25 340 16 200 16 110 52 490 62 760 25 340 16 200 16 110 52 490 62 760 25 340 16 200 16 110 52 490 62 760 25 340 16 200 16 110 52 490 62 760 25 340 16 200 16 110 52 490 62 760 27 260 16 110 17 040 59 000 73 750 27 270 14 750 28 410 43 000 26 100 18 300 14 750 33 220 40 640 22 340 17 190 14 050 32 300 33 880 20 470 17 370 13 810 37 450 29 810 19 050 17 260 13 960 32 610 27 400 18 140 32 740 28 740 25 300 17 500 29 400 24 890 24 980 37 540 25 680 17 190 13 810 12 950 18 370 16 380 29 400 24 890 24 980 37 540 25 680 19 33 1982 1976 1976 1973 10 Dec 1 11 3 6 8 79 63 27 78 52 1983 1982 1976 1976 1979 1979 1978 1978 1979 1979 1979 1978 1978 1979 1979 1979 1978 1979 1979 1979 1979 1979 1980 1990 1990 1990 1990 1990 1990 1990	gauged discharges (cubic matres par second) JAN FEB MAR APR MAY JUN 36 820 35 210 13 600 20 120 22 230 16 270 48 060 59 290 13 180 23 350 21 190 15 270 34 100 50 370 21 160 20 140 19 380 16 610 27 480 30 680 60 720 18 370 19 670 15 880 23 430 29 070 40 560 22 550 43 680 14 990 21 1940 26 950 27 210 50 490 39 270 14 260 21 1940 25 950 23 350 26 800 14 990 21 1940 26 950 27 210 50 490 39 270 14 260 21 1940 25 950 27 210 50 490 39 270 14 260 21 1940 25 900 24 230 44 070 26 320 13 950 24 42 50 23 890 21 770 33 570 23 210 18 310 25 100 20 180 20 180 20 180 20 180 25 110 20 480 18 760 24 680 18 570 14 30 22 4 420 19 730 17 250 27 600 17 860 13 620 24 420 19 730 17 250 27 600 17 860 13 620 24 420 19 730 17 250 27 600 17 860 13 620 24 420 19 020 18 270 42 220 21 530 13 090 22 990 17 960 18 390 58 670 17 720 12 350 21 40 17 730 17 130 73 730 18 290 12 250 22 900 18 330 18 900 61 130 19 980 12 730 22 900 17 960 18 990 58 670 17 720 12 350 21 440 17 730 17 130 73 730 18 290 12 050 21 440 17 730 17 130 73 730 18 290 12 050 21 440 17 730 17 130 73 730 18 290 12 050 21 440 17 730 17 130 73 730 18 290 12 050 21 440 17 730 17 130 73 730 18 290 12 050 21 440 17 730 17 130 73 730 18 290 12 050 21 450 17 240 23 200 33 880 20 470 995 21 440 17 730 17 130 73 730 18 290 12 050 21 450 17 740 25 340 27 760 10 970 21 450 18 350 60 600 38 920 11 380 22 900 17 960 18 950 58 670 17 720 19 750 25 340 16 760 18 850 60 600 38 920 11 380 27 260 18 110 17 040 59 000 73 750 10 970 28 27 28 28 28 28 28 29 20 27 440 28 160 10 70 29 20 14 750 18 18 18 18 18 18 18 18 18 18 18 18 18	gauged discharges (cubic matres per second) JAN FEB MAR APR MAY JUN B 700 36 820 35 210 13 600 26 120 22 230 16 270 8 762 48 650 64 460 12 950 23 460 20 250 17 110 8 493 34 100 50 370 22 1160 20 140 19 380 16 610 8 266 27 480 30 690 54 340 19 120 18 870 15 660 8 232 25 080 32 880 60 720 18 370 19 670 15 080 8 215 22 14 30 29 070 40 560 22 590 43 680 14 990 8 104 21 940 25 950 27 210 50 490 39 270 14 260 8 096 44 250 23 890 22 170 33 570 23 210 18 310 7 852 55 750 21 920 21 650 26 800 19 800 15 560 7 363 32 10 20 480 18 760 22 680 19 800 15 560 7 363 32 110 20 480 18 760 24 260 17 680 18 670 17 720 22 94 30 19 730 17 250 27 660 17 680 12 300 6 597 22 94 00 18 330 18 990 58 670 17 770 12 350 6 643 22 94 00 17 240 20 160 66 490 16 560 11 800 65 77 25 040 17 240 20 160 66 490 16 560 11 800 65 77 25 040 17 240 20 160 66 490 16 560 11 800 67 79 25 27 260 16 100 17 040 59 000 73 750 10 970 65 78 26 800 18 760 18 880 60 60 38 920 11 380 66 23 27 260 16 100 17 040 59 000 73 750 10 970 65 78 25 340 16 200 16 110 52 490 62 760 10 790 67 73 27 26 00 13 800 25 910 13 800 13 800 13 800 27 27 26 16 110 17 040 59 000 73 750 10 970 65 78 28 30 30 30 890 30 890 30 890 30 80 30 88 33 7 022 29 400 24 890 24 890 37 540 22 300 13 800 66 49 11 7 30 13 810 23 500 33 890 20 470 995 65 84 11 7 30 13 810 23 500 33 890 20 470 995 65 84 11 7 30 13 810 23 500 33 890 20 470 995 65 84 11 7 30 13 810 23 500 33 890 20 470 995 65 84 11 7 30 13 810 23 500 33 890 20 470 995 65 84 12 82 440 46 31 26 113 39 10 19 90 13 800 24 800 24 800 24 800 24 800 24 800 14 800 30 800 30 800	gauged discharges (cubic metres per seculo 1	gauged discharges (cubic matries per sectors) JAN FEB MAR ARP MAY JUN B 760 7 842 10 490 10 800 10	gauged discharges (cubic metrus per sections) JAN 178	gauged discharges (cubic matters per second) ***Total Company************************************

Station and catchment description
Compound Crump weir, 20m wide, with current meter reting for high flows. Supersedes 27015. Peak flows from the headwaters upstream of Forge Valley (8% catchment) are diverted down the Sea Cut (27033). Mixed geology of clays, shales and limestone. Rural catchment draining the North York Moors.

027053 Nidd at Birstwith

1986

	ring aut ear: 19	hority: YWA 75	X		Gri	d reference: Level stn. (Catchme	nt area (sq.) Max alt. (n	km): 217 6 n OD): 705
Daily	mean	gauged dis	charges (d	ubic metres	per second)								
DAY		JAN	FEB	MÁR	APR	MAY	JUN	JUL	AUG	SEP	120	NOV	DEC
1		4.465	8.169	1.385	4 288	2.384	2.033	1.100	1.106	2 083	1 056	18.700	3 246
2 3		7.166 3.959	7.524 5.708	1 368 1.389	3.777 6.299	2.304 2.241	1.907 1.889	0.990 1.016	1.108 1.045	2.258 3.884	1.048 1.039	12 080 11.140	3 101 4.075
4		3.191	4 791	22.940	3 174	2.179	1.812	1 063	1.062	2 288	1 050	5.729	8 602
5		3 097	4.258	19 770	2 747	2.879	1.770	1 059	1 030	2 030	1 05 1	5 361	8611
6		2.919	3 9 1 7	11.910	2 667	3 207	1 743	1 038	1 241	1 938	1 049	4.775	7 522
7		2 831	3.650	6 546	3 184	9 204	1.703	1 063	1 494	1 858	1 086	4 613	4 24 1
8		2 8 1 0	3 459	3.192	9.087	5 970	1 695	1 076	1 107	1 832	1 066	4.783	11 180
9 10		8.551 27.350	3 321 3 101	2 408	5.939	3 707	1.753	1 063	1 039	1 793.	1 057	6 065	11 350
10		27.330	3 101	2.263	5.617	3 456	3 493	1 046	0 998	1 430	1 059	6.069	10.550
1.1		15.950	3 05 1	2.052	5.375	4 0 1 9	2.703	1 038	0.991	1 193	1 04 1	5.652	20.980
12 13		14 470 23.240	2.930	1 949	5 3 1 6	3.867	1.984	1 057	0 985	1.169	1.045	5 729	17 280
14		24 020	2 861 2 823	4.898 3.592	4.077 6.184	3 436 3.139	1 811 1,744	1 042 1 017	1 040 1.001	1 154 1 147	1 074 1 097	7.167 9.958	37 110 13 650
15		13 320	2 754	1.994	80 120	3 449	1 654	1 008	0.972	1 143	1 052	7.496	47 880
1.0		11.440	3 703	2016	22.22	2 6 4 2		0.000	0.000				
16 17		11 440 6 979	2 703 2 649	2.016 1.848	32.220 87.540	2 643 2.702	1 634 1 613	0.990 0.962	0 980 0 964	1 131 1 116	1.045 1.038	6.490 6.736	23 760 31 990
18		7 836	2 594	1,747	20 810	3 035	1.569	0 965	0 962	1 109	1 119	14.390	23.320
19		20.900	1.916	1.797	12 340	2 399	1.540	0 973	0.951	1 099	1.489	13 340	17 120
20		53.920	1 657	6 968	20 670	8 347	1.526	0 963	0.934	1 09 1	1.675	12 230	13 550
21		46 540	1.612	3.524	13 320	10 330	1.508	0 958	0.948	1 089	4 808	9.529	13 950
22		28 770	1.574	7.039	10 0 10	7 555	1.505	0 962	1.181	1 100	3.343	9.415	7 484
23 24		20 370	1 543	11 320	8 466	4.547	1.516	0 997	1 061	1.093	3.325	12 9 10	6 142
25		12.860 11.350	1 5 19 1.502	11.7 6 0 17.920	6.983 6.314	3 469 5 492	1.537 1.473	0 978 0 960	0.956 10.570	1 082 1 083	2.673 4.861	12.820 17.580	7.385 7.939
26 27		7.097 6.320	1 452 1 435	14 110 22,240	5 803 3 774	4 679 3 599	1 429 1 412	0 952	18 940 6.992	1 072	2.946	14 940	8 643
28		6 104	1,427	14 490	2 966	2 883	1 387	0 941 1.067	5.992 5.458	1 064 1 ⁷ 059	5 778 7 310	12 190 7.218	10.570 10.5 9 0
29		4.411		13.640	2 653	2 339	1 365	1 069	4 999	1 064	6.380	4 692	12 660
30		5.115		12 370	2.506	2 1 1 4	1 363	1 150	4 786	1 062	6 284	3 638	20 760
31		8.205		9 646		2 1 1 5		1 146	2811		12.990		15 110
Averag	ю	13.340	3.068	7.745	12.770	3.990	1.736	1 023	2 571	1.450	2 675	9 114	14 200
Lowest		2.810	1 427	1.368	2.506	2.114	1 363	0 94 1	0.934	1 059	1 038	3 638	3 101
Highest	•	53.920	8.169	22.940	87 540	10 330	3 493	1 150	18 940	3 884	12 990	18.700	47 880
Poak flo		150.300	10 090	39 760	154.700	13 100	4 754	1 367	37.810	6 154	44 020	34 120	66 560
Day of		20	2	4	15	21	10	1	25	3	31	1	13
Monthly (million		35 73	7 42	20.74	33 11	10 69	4.50	2 74	6 89	3 76	7.16	23 62	38 05
											_		
Runoff Rainfall		164 210	34 39	95 132	152 165	49 120	21 41	13 43	32 159	17 22	33 163	109 149	175 219
												143	213
Statis	tics of	monthly d	ata for pre	ovious recor	d (Apr 1975	5 to Dec 198	85—inc	omplete or m	issing mont	hs total 0.1	years)		
Mean	Avg	9.546	8 030	8.510	3 699	3 06 1	1.951	1 222	1 823	2 203	5.109	7 274	10 200
flows	Low	4.432	3 215	1 916	1 681	1.064	1 015	O B15	0.655	1.263	1 508	1 893	3 612
	(year)	1985	1982	1985	1984	1984	1975	1984	1984	1977	1978	1975	1975
	(year)	15.960 1984	16.010 1984	21 140 1979	7.247 1979	7 06 1 1983	3 131 1982	1 556 1982	5.690 1985	3 955 1985	15 120 1976	12.830	20 280
	(700.)	1304	1304	.373	1373	1363	1502	1302	1363	1985	1970	1984	1979
Runoff		117	91	105	44	38	23	15	22	26	63	87	126
	Low High	55 196	36 184	24 260	20 86	13 87	12 37	10 19	8 70	15 47	19 186	23 153	44 250
	_								, ,	~,	.00	133	230
Rainfall: (1976-		145 106	88 16	133 75	67 11	87 27	83 16	53 18	102	128	132	140	163
1985)		250	182	243	144	149	185	114	22 192	80 253	36 223	62 208	80 258
c		_at_at											
Sumn	nary st	atistics						1986	Facto	ors affecti	ing flow re	gime	
			Fo	or 1986		or record		As % of	● Res	servoir(s) i	n catchmei	nt.	
Mana fi	low (m³	Iu		165	preci 5 214	ed.ng 1986		pre-1986 118			or public w		
	yearly i		•	103	4 024		1985	118		gmentatio pundwater.	n from sur	ace water	and/or
Highest	yearly i	mean			7 148		1979		5.0				
	month)23 Jul	0.655		1984						
	i monthi I daily m		14 2	200 Dec 334 20 Aug	21 140 0 392		1979 1984						
	daily m		87.5		109 400								
Posk	•		154.7	700 15 Apr	204 400) 13 Jan							
10 %/d 50 %/da			13 6		12.670			110					
95 % iki				317 384	2.655 1.009			110 98					
Annual	total (m	illion cu m)	194	40	164 60			118					
	runoff (893		756			118					
	rainfall i L1-70 ra	(mm) infall average	1462 (mm)	4	1321			111					
1.34			4 m 4]								

Station and catchment description
Velocity-area station approximately 17m wide, with current metering from bridge at the section. Heavily reservoired with substantial effect on flows. Geology is mostly Millstone Grit. Rural catchment.

Trent at Colwick 028009

1986

Measuring author First year: 1958	rity: STW	/A			Grid referenc Level str	e: 43 (SK) i (m OD): 1				Catchmen		m): 7486.0 n OD): 636
Daily mean gat	uged dis	charges (cubic metres	per secon	d)							
2 1 2	JAN 97 054 71.387 07.966	FEB 321 376 333.753 324 286	MAR 56.867 54 949 50 503	APR 165 196 143 128 116 859	MAY 79 447 73.298 71.327	JUN 60.629 58.364 59.290	JUL 37.515 36.957 35.838	AUG 47 020 41 146 39 588	SEP 49 632 47.178 49 071	OCT 31.956 31.587 31.707	NOV 104 250 121 630 77 440	DEC 97 273 90.244 82 293
5 1:	41.677 30.573 11.381	264.874 192.298 154.266	59.797 191.507 146.835	98 120 86 706 80 979	69.672 68.224 67.816	63 646 55.872 53.533	35 469 37.484 36 427	41 736 39 346 38 642	49 071 43 307 41.365	31.163 31.734 30.323	63 138 54 442 50.934	79 084 85 370 96 368
7 9 8 10 9 10	97.630 00.480 03.616 85.985	129.997 114.016 103.704 96.267	101.569 84.415 78.062 76.311	83 202 105 74 1 95 345 83.229	81.149 80 657 79 977 76.973	52 285 50.696 50 746 91 992	35 087 35 521 35.235 33 919	35.746 35.332 34.819 33.915	38 220 38.572 37.250 38.237	31.243 31.185 30.960 31.931	47 728 56 021 67 897 66 682	81 298 121 517 198 078 156 940
12 4: 13 3: 14 2:	33 003 31.807 68.086 81 572 19.072	88.634 88.049 81.175 79.012 75.167	74.623 70.152 66.632 62.948 60.334	72.705 71.148 70.811 83.005 205.890	73.235 77.966 77.615 75.938 120.830	95.532 63.249 54.448 50.948 48.006	34 793 37 100 36.787 34 974 35.072	66 347 67,769 46 531 40,141 36,929	37.276 37.210 38.283 44.206 40.645	31.821 30.443 31.171 31.925 33.898	65 860 61 534 59 577 101 607 131 367	148 183 179 360 218.397 220 396 219 888
17 1: 18 1: 19 2:	72.899 39.847 43.458 01.488 21.806	72.711 75.035 73.300 71.708 63.816	62 438 66 423 65 252 83 578 79 620	301 423 337 219 309 922 202.268 242 194	106 561 80 283 88 281 76 934 243 608	46 691 45 767 44 717 44 325 42 380	34 638 32.280 31 796 32 372 32.662	34.854 32.626 32.973 41.362 38.158	37 770 36 835 36 742 35 068 35.520	32 231 30 538 30 776 34 512 58 275	108 497 87 698 119 916 203 799 175 062	279 381 210.856 228 456 286 897 254 299
22 20 23 20 24 10	11.401 08.453 09.641 82.262 32.455	62.290 58.711 56.323 58.035 56.563	70 238 63 395 80 912 130 526 149 190	252 917 226 932 220 617 184 986 157 608	276 735 191 280 126 155 101 238 87 605	41 700 41 140 44 227 65 836 57 864	34 538 33.429 36 747 42 273 40.798	36.220 35.148 45.147 37.527 59.283	34.674 34.172 33.461 33.055 32.785	67 948 65 585 51,427 50 490 48,723	248 616 223 210 184 874 178 994 157 381	225 032 201 782 155 915 131 400 136 268
27 10 28 11 29 11 30 30	09 678 08.460 25.808 95.678 00.948 28.718	55.152 53.518 55.956	125 393 139 582 143 275 150 969 154 310 161 497	130 866 114 787 102 857 95 524 86 594	80 613 73 394 67 860 61,759 58 036 58 319	47 598 42.651 41 017 39 189 37 478	41 089 36.090 38 735 45 590 51.093 60 512	220 570 217 676 158 535 96.897 67.298 56.937	33.267 32.412 31.720 32.187 32.245	59 712 58 248 77 351 58 664 50 522 55 914	271 894 253 891 169 892 126 227 107 097	145 800 129 702 119 077 120 834 278 517 398 733
Lowesi	99.200 97.054 33.003	116.300 53.518 333.753	95.550 50 503 191.507	151 000 70 811 337 219	95 250 58 036 276 735	53 060 37,478 95 532	37 510 31.796 60.512	59 880 32 626 220.570	38 050 31 720 49.632	42 060 30 323 77 351	124 900 47 728 271 894	173 500 79 084 398 733
Day of peak Monthly total	50.456 12 533.50	343.185	225 561	359 593 17	303 924	121.633	65 624 31	263 709 26	66 254	91 363 28	299.791 27	430 039 31
(milhon cu m) ! Runoff (mm) Renfall (mm)	71 109	281.30 38 18	255 90 34 65	391.30 52 76	255 10 34 76	137 50 18 40	100.50 13 48	160 40 21 110	98 62 13 12	112 70 15 76	323.80 43 91	464 60 62 120
Statistics of me	onthly d	lata for or										
Moon Avg. 1: flows: Low (year)	38.200 52.910 1963 10.900 1959	134 300 49.980 1976 384 000 1977	111 200 47 180 1976 227 600 1981	89 860 35 240 1976 179 500 1966	72 830 32 250 1976 175 100 1969	54 950 24 690 1976 87 220 1982	44 840 19.450 1976 104 100 1968	46 900 18.450 1976 76 470 1966	50.630 23.080 1959 121.100 1965	66 300 25 270 1959 187 000 1960	89 490 34 170 1975 231 700 1960	124 600 46 260 1975 351 600 1965
Runoff: Avg. Low Hgh	49 19 75	44 17 124	40 17 81	31 12 62	26 12 6 3	19 9 30	16 7 37	17 7 27	18 8 42	24 9 67	31 12 80	45 17 126
Rainfa¥: Avg. Low High	72 23 138	54 8 175	59 13 116	57 9 116	62 18 144	60 14 148	56 18 114	70 21 120	68 3 149	64 12 141	74 38 145	78 15 173
Summary stati	stics						1000	Fact	ors affect	ing flow r	egime	
Meen flow (m³s-1) Lowest yearly mea Highest yearly mea Lowest monthly m Highest monthly mean Highest daily mean Peak 10 %do 50 %do	in an Ioan Ioan	98 37. 199. 30. 433. 450. 217. 69.	510 Jh 200 Ja 323 6 Oc 003 11 Ja 456 12 Ja	85 1 47 0 124 0 18 4 1 384 0 1 14 7 n 854 9	20 00 50 A 00 F 00 23 A 10 26 F 84 25 F		1986 As % of re-1986 116	● Flo an ● At ● Flo ag ● Au gro	w influence d/or rechar estraction ow reduced ricultural a agmentation	for public vides for pu	ndwater ab water supp trial and/or s face water	lies and/or
95 % ig Annual total (millio Annual runoff (mm Annual rainfull (mm 1941-70 rainfa	n) n)	31.5 3115 41 84	990 600 6	28 5 2687 359 774 776	40 00		112 116 116 109					

Station and catchment description
Velocity-area station in the navigable Trent. Main channel approx 62m; cableway span 99m. Holme sluices 750m u/s affect water levels up to medium flows. Bypassed at high flows on rb when gravel workings inundated. Very substantial flow modifications owing to imports, WRW's, cooling water and industrial usage. Very large catchment with the gamut of land usage. Predominantly impervious - glacial clays and Triassic Marls, but some sandstones and limestones. Extensive terrace gravels and alluvium maintain baseflow.

Derwent at Longbridge/St Mary's Bridge 028010 1986

Measuring au First year: 19		VA.		Gri	d reference Level stn.	a 43 (SK) (m OD) 4				Catchmen		m): 1054 0 m OD) 636
Daily mean	gauged di	scharges (ci	ubic metres	per second)							,	
DAY	JAN	FEB	MAR	APR	MAY	JUN	м	AUG	SEP	OCT	NOV	DEC
1	20.401	49 077	9.737	37 010	19.361	13 457	6 682	5.533	7 826	4 369	29 073	27.273
2 3	36 867 30.211	59 096 49 119	9 5 58 9.777	35 143 29 289	15.910 15.702	12 975 13 056	6.447 6.420	5 323 5.064	7.342 7.910	4 228 4.213	17.927 14 037	26 104
4	23 146	37.979	19 927	24.968	15.514	12.550	6.525	5 265	6718	4.213	11.838	23 493 22 487
5	21.580	30 826	64 657	22 155	15 440	12 111	6 584	4 952	6 404	4 380	10 587	20 829
6	18,188	28.728	40 925	19.915	15 351	11 625	6.675	4 694	6.443	4 200	10 200	
ž	16.749	23.723	30 646	22 475	20 473	11 179	6 539	4.832	6.145	4 386 4.590	10.299 9.452	18.978 18.075
8	16 244	21.962	25.703	24.461	17 269	10 962	6.338	5 238	5 813	4 343	9 974	34 478
9 10	16.426 124.278	19 593 18.595	23 635	22 094	16 630	11 332	6 079	5 03 1	5 697	4 348	9 9 1 5	36 000
.0	124.276	10.095	20 4 1 1	19.310	16.578	18 501	6 085	5 124	5 609	4 432	10 560	28 658
11	66 216	17.235	18 880	16.692	18 470	13 284	6.107	6 200	5 5 1 6	4 189	10 025	38 582
12 13	53.542 78.251	16.745 16.114	17 215 16 165	18 461	21,774	11 760	6 426	4.931	5 706	4 178	9 335	38 609
14	66.531	15.700	15 032	16 189 16.779	23 447 24.532	10 833 10 337	6 274 6 275	5.148 4.841	5 513 5 247	4.603 4.667	10 754 14.433	67 891 47 855
15	66.867	14 903	15 5 1 7	63 801	29 365	10 142	6.266	4 605	5 2 1 6	4.365	19 031	71 712
16	47.335	14.413	15.845	56 958	21.760	10.006		4.040	4.000	4 407		
17	38.732	14 042	15.843	93 129	18.661	10 006 9 876	5.955 5.270	4.840 4.753	4 993 4 944	4.427 4.311	15 636 14.821	54.794 56 918
18	48 144	13 419	15 870	58 227	18 120	9.671	5 164	4 8 10	4 713	4.937	27 620	80 149
19	64 653	12.988	16.862	43.518	20.316	9 028	5 080	4.840	4 8 1 5	5.335	41.818	77 333
20	57 693	12.800	15 511	61.713	65 858	8 927	5.518	5 000	4 856	6 8 1 6	37 726	67.388
21	61 191	11.802	14 366	50 067	42.325	8 739	5 167	4 594	4 888	6.702	49 022	61 302
22 23	55 155	11,493	14 016	45.758	36.499	9 155	5.002	4 660	4 962	6 190	36 914	47.717
23	64 850 52 149	11.2 35 10.787	28 776 43 590	39 363 37 194	30 827 27.694	9 581 11 382	5 B77 6.354	4.633 4.381	4 767 4 699	8 474 8 804	48 979 44.834	39 870 33 749
25	36.202	10 497	31 900	32.768	25 356	9 688	5 753	17 265	4 536	12 462	57 857	34 864
26	30 290	10.190	36 095	29 759	24 02 1	8 790		55.005	4.030		7000	
27	32.930	9.999	42 664	28.306	21.910	7.957	5.506 5.050	55 996 18.938	4 670 4.667	13 277 11.605	70 486 46 124	32 429 32 846
28	38.043	9 908	38.120	26 938	17.755	7 4 1 4	6 130	12,464	4.574	10.115	37 199	34 307
29 30	48.727		39 066	25 235	14.667	7 158	6 325	9 735	4 435	8 623	32.291	38 913
31	69 670 58.611		38 625 37 458	23.282	13.703 13.811	7 158	7.207 6.424	8.775 8.061	4 390	8 870 8 883	28.928	103 97 1 98 332
										0 003		30 332
Average Lowest	47 090 16 244	20.390 9.908	25 240 9 558	34.630 16.189	22 550 13 703	10 620 7 158	6 049	8 08 1	5 467	6 303	26.250	45 670
Highest	124.278	59 096	64.657	93 129	65 858	18 501	5 002 7 207	4 38 1 55 996	4 390 7 9 10	4.178 13 277	9.335 70.486	18 075 103.971
0	170 506	62.560	30.044									
Peak flow Day of peak	10 506	62 568 2	70 244 5	108 889 1	100.121 20	21 835 10	8 786 30	80 094 26	10 524 26	19 904 25	103 075 25	123 806 30
Monthly total									••		2.5	50
(million cu m)	128.10	49.33	67 61	89 77	60 40	27 53	16 20	21.65	14 17	16.88	68 04	122.30
flunoff (mm)	120	47	64	85	57	26	15	21	13	16	65	116
Rainfall (mm)	188	37	98	107	102	48	48	121	13	111	129	200
Statistics o	f monthly o	lata for prev	vious reco	rd (Jan 1936	3 to Dec 19	985—inco	mplete or m	issing mont	hs total 0.5	years)		
Mean Avg.	29 420	28.970	22 570	17.590	12 860	10 230					21.020	20.170
flows: Low	9.751	8 086	9 1 10	7 677	6 284	4 806	8 801 4 211	9 213 3 648	10 640 3 957	13 630 4.156	21 920 4 302	26 170 8 480
(year)	1963	1963	1976	1976	1976	1976	1976	1976	1959	1959	1975	1975
High	67 000 1939	76.780	69 530	39.590	26 4 10	18.010	28 660	33.840	32 940	35 130	54 320	88 690
(year)	1939	1977	1947	1966	1967	1969	1958	1956	1946	1960	1940	1965
Runoff: Avg.	75	67	57	43	33	25	22	23	26	35	54	67
Lo w High	25 170	19 176	23 177	19 97	16 67	12 44	11 73	9 86	10 81	11	11	22
-			,	3.	0,	7-	73	00	81	89	134	225
Reinfall: Avg. Low	104 33	79 8	74 16	65 8	70	69	77	84	83	87	106	100
High	215	236	185	132	15 163	15 188	16 158	10 185	3 199	17 178	16 232	20 246
Summary s	****											- ;•
Summary s	Latistics						1986	Fact	ors affecti	ng tiow re	agime	
		For	1986		x record		As % of		servoir(s) ii			
Mean flow (m)) s =≐)	21.56	60	17 610	adıng 1986 1	p	re-1986 122		winfluence 1/or rechar		ndwater ab	straction
Lowest yearly	mean		,,,	9 625		1976					vater supp	lies
Highest yearly		- 40		25 200		1966		● Flo	w reduced	l by indust	rial and/or	
Lowest month Highest month		5 46 47 09				g 1976 c 1965			icultural ab		i. face water	and for
Lowest daily in		4.17				g 1952			undwater	11 11 0111 501	OCO Water	a NO/O
Highest daily n	nean	124.27				c 1965				n from effi	uent return	S.
Peak 10 % de		170 50 49 28		35 860	1		137	Cam	ment			
50 % de		14.75		11.970			123			s measure	d using the	e new
95 %ile		4.52	29	4 992	!		91	multi	-path ultras	sonic gaug	ing station	
Annual total (n Annual runoff		679.9 645	IO.	555 70 527)		122		Mary's Bri		eference:	
Annual rainfall		1202		998			122 120	43 (5	ik) 355 36	0		
[1941-70 rs	ogerava lelnic			1020]			-					

Station and catchment description

Long, curved broad-crested masonry weir in Derby - complex rating history, much reprocessing. Very insensitive. At high flows Derby may flood but bypassing small. Weir narrowed in 1971. Substantial flow modification owing to Derwent reservoirs, milling and PWS abstractions. Superseded by 28085 July '86. Large, predominantly upland catchment draining Millstone Grit and Carb. Lst. Lower reaches drain Coal Mossures on the lb and Triassic sandstones and marls on the rb. Peat moorland headwaters; forestry, pasture and some arable.

Witham at Claypole Mill 030001

1986

authority: AW/ 1959	4								Catchmen	0 597 0 797 0 8 0 589 0 615 0 7 0 581 0 615 0 7 0 581 0 611 0 7 0 549 0 614 0 7 0 575 0 590 0 8 0 595 0 594 0 7 0 586 0 816 0 9 0 597 0 605 0 9 0 536 0 602 1 1 0 536 0 602 1 2 0 554 0 604 2 6 0 550 0 918 2 2 0 613 0 582 1 7 0 634 1 .087 2 3 0 634 1 .087 2 3 0 637 1 162 2 3 1 065 1 403 1 .5 0 646 3 .178 1 .6 0 576 1 272 1 .2 0 576 1 275 1 .4 0 576 1 275 1 .4 0 576 1 275 1 .2 0 576 1 275			
ın gauged dis	icharges (cu	ubic metres p											
JAN 1 548	FEB	MAR	APR	MAY 3 503	JUN 2 229	JUL 1, 208	AUG 0.646	SEP O.613			DEC 0 851		
2.692	13.598	1.778	2.128	3 454	2.133	1.157	0 676	0.732			0 782		
3.190	10.138	1 821	2 001	3.417	2.220	1.148	0 841	0.799			0.777		
2 401 2.487	5.510 5.108	2 268 3 017	1876	3.318	1.944	1.163	0.696	0.753			0.793 0.879		
2.232	4.322	2 458	1.782	3.846	1.901	1 238	0 580	0 680			0 807		
1.974	3.885	2 048	2.119				0.579				0 770		
											0.931		
13.891	3.224	1 791	2 085	3 796	1.839	1.135	0 581	0 467			0 930		
7.623	3.107	1.738	1 937	3 586	1.697	1.061	1 592	0 590			1.126 1.467		
3.696	2.931	1 721	2 013	3.151	1 438	1 292	0 672	0 552			2.029		
3.369 2.911	2.899 2.812	1 669 1 579	2 187 7 5 16	3 567 7 277	1 425 1 446	1 308 1 166	0 599 0 536	0 712 0 538			1 821 2 221		
											2 485		
2.574	2 53 1	1.572	13 698	3 720	1 408	0 679	0.656	0 585	0.613	0 582	1.748		
2 572	2 463	1 647	9 147	3 372	1.425	0.611	0 681	0 551			2 131 2 348		
2.451	2.275	2 069	8.746	4 368	1.366	0.546	0.934	0 529			1.918		
2.560	2.238	1.836	6.916	5 344	1 307	0 485	0 668	0 597			1.622		
											1.492 1.440		
2.267	1.985	2.496	6 188	2 849	1.586	0 878	0 581	0 602			1 348		
1.990	1 937	2 290	5 699	2.702	1.304	0 826	1.224	0 509	0 599	1 037	1 44 1		
1.982	1.846	2 079	4 965	2 406	1,271	0 621	3.203	0 590	0 562	1 470	1 486		
											1 428 1.373		
4 381	_	2.094	3 800	2.257	1 208	0 804	0 869	0 4 1 3	0 562	0 966	1.418		
7.813 4.632		2 209 2.354	3 607	2.193 2.215	1.238	1.129	0.648	0 648	0 594	0.856	3.601 3.642		
3.369	3 617	1 989	4 546	3 672	1.576	0.954	0 862	0 600	0 594	0 961	1.550		
1 546 13 89 1	1.816 13.598	1 572 3.017	1 782 13 698	2.193 7.517	1.208 2.239	0.485 1.341	0 465 3 203	0 413 0 799	0 530 1 065	0 582 3 178	0 770 3 642		
15 494	15 193	3 244	14.697	9 749	2.620	1 904	4 672	1 105	1 944	4 056	5.132		
	2	5	17	7	3	30	25	9	20	21	30		
n) 9 02	8 75	5 33	11 78	9 84	4 09	2.56	2 3 1	1 55	1 59	2 49	4 15		
30	29	18	40	33	14	9	8	.5	5	В	14		
						50	98	11	37	61	69		
•	•												
g. 2.807	3.267	2 973	2 285	1.748	1 124						2 160 0 311		
ar) 1965	1976	1976	1976	1976	1976	1976	1976	1959	1959	1959	1964		
h 5.527 ar) 1961	10 690 1977	6 995 1979	5 748 1979	4.695 1983	3 141 1985	2,119 1968	2 376 1980	2 886 1968	3 906 1960	6 526 1960	7.879 1965		
	27	27	20	16	10	7	7	6	8	12	19		
~ 6	4	4	3	3	2	1	1	2	2	2	3 71		
											57		
ž 20	3	8	10	11	3	9	5	3	5	24	13		
jh 117	140	92	103	130	148	132					142		
statistics :						1986	Fact	ors affect	ing flow re	gime			
	Fo	or 1986					• At	straction	for public v	vater suppl	ies		
(m³s~¹)	2 0	112	1 742	!		115							
rly mean iny mean			2 807		1976								
nthly mean	0.5		0 062	? .	Jul 1976								
nthly mean	4 5 0 4		10 690 0 021		eb 1977 Jul 1976								
			31 600) 11 F	nb 1977								
y mean	138												
y mean	13 8 15 4	194 10 Jan	37 540 3.805		eb 1977	100							
y mean	13 8 15 4 3 8 1 4	i94 10 Jan i12 i79	3.805 1.026	5	(HD 1977	100							
y mean y mean	13 8 15 4 3 8 1 4 0 5	194 10 Jan 112 179 146	3.805 1.026 0.335	5 5	(HO 1977	144 163							
y mean	13 8 15 4 3 8 1 4	194 10 Jan 112 179 146 45 3	3.805 1.026	5 5	en 1977	144							
	JAN 1.546 2.692 3.190 2.401 2.487 2.232 1.974 2.056 13.891 7.623 4.611 3.696 3.369 2.911 2.720 2.574 2.574 2.572 2.601 2.451 2.560 2.587 2.605 2.267 1.990 1.982 2.010 2.791 4.381 7.813 4.832 3.369 1.7813 4.832 3.369 1.979 4.381 7.813 4.832	In gauged discharges (ct. JAN FEB 1.546 4.382 2.692 13.598 3.190 10.138 2.401 6.510 2.487 5.108 2.232 4.322 1.974 3.885 2.047 3.794 2.056 3.505 13.891 3.224 7.623 3.107 4.611 2.998 3.696 2.931 3.369 2.899 2.911 2.812 2.720 2.698 2.574 2.531 2.572 2.463 2.501 2.338 2.451 2.275 2.560 2.238 2.587 2.128 2.601 2.338 2.451 2.275 2.560 2.041 1.979 1.982 1.846 2.010 1.816 1.979 1.990 1.937 1.982 1.846 2.010 1.816 1.979 1.817 4.381 7.813 4.832 3.369 3.617 1.546 1.816 1.3 891 13.598 15.494 15.193 10 2.81 10	In gauged discharges (cubic metres properties) JAN FEB	In gauged discharges (cubic metres per second) JAN FEB MAR APR 1.546 4.382 1.790 2.289 2.692 13.598 1.778 2.128 2.001 2.401 6.510 2.268 1.876 2.487 5.108 3.017 1.849 2.497 4.3885 2.048 2.119 2.047 3.734 1.906 2.654 2.056 3.505 1.783 2.368 13.891 3.224 1.791 2.085 13.891 3.224 1.791 2.085 13.891 3.224 1.791 2.085 13.891 3.224 1.791 2.085 13.891 3.224 1.791 2.085 13.896 2.931 1.721 2.013 3.696 2.931 1.721 2.013 3.696 2.931 1.721 2.013 3.696 2.931 1.721 2.013 3.696 2.931 1.721 2.013 3.696 2.931 1.721 2.013 3.696 2.931 1.721 2.013 2.869 2.651 2.374 2.531 1.572 13.698 2.574 2.531 1.572 13.698 2.572 2.463 1.647 9.147 2.601 2.338 2.186 5.956 2.451 2.275 2.069 8.746 2.560 2.238 1.836 6.916 2.587 2.128 1.860 6.669 2.605 2.451 2.275 2.069 8.746 2.560 2.238 1.836 6.916 2.267 1.985 2.496 6.188 1.990 1.937 2.290 5.699 1.982 1.846 2.079 4.965 2.010 1.816 2.069 4.508 1.979 1.917 2.234 4.079 4.381 2.094 3.800 7.813 2.094 3.800 7.813 2.094 3.800 7.813 2.094 3.800 7.813 2.094 3.800 7.813 2.094 3.800 7.813 2.094 3.800 7.813 8.91 13.598 3.017 13.698 4.697 1.0 2.560 3.267 2.973 2.285 4.079 4.865 3.067 3.267 2.973 2.285 4.079 4.891 1.979	In gauged discharges (cubic metres per second) JAN FEB MAR APR 3593 1,546 4,382 1,790 2,289 3,593 2,592 13,598 1,778 2,128 3,454 3,190 10,138 1,821 2,001 3,417 2,401 6,510 2,268 1876 3,318 2,487 5,108 3,017 1849 3,520 2,232 4,322 2,458 1,762 3,846 1,974 3,885 2,048 2,119 7,517 2,047 3,734 1,906 2,654 4,818 2,056 3,505 1,783 2,368 4,196 1,3891 3,224 1,791 2,085 3,796 1,3891 3,224 1,791 2,085 3,796 1,611 2,998 1,735 2,061 3,397 3,696 2,931 1,721 2,013 3,151 3,369 2,999 1,669 2,187 3,567 2,911 2,812 1,579 7,516 7,277 2,720 2,898 1,671 8,628 4,615 2,574 2,531 1,572 1,3698 3,720 2,574 2,531 1,572 1,3698 3,720 2,574 2,531 1,572 1,3698 3,720 2,574 2,531 1,572 1,3698 3,720 2,574 2,531 1,572 1,3698 3,720 2,575 2,463 1,647 9,147 3,372 2,601 2,338 2,186 5,956 3,126 2,451 2,275 2,069 8,746 4,368 2,587 2,128 1,860 6,669 4,214 2,605 2,041 1,879 6,920 5,699 2,702 1,982 1,846 2,079 4,965 2,406 2,267 1,995 2,496 6,188 2,89 1,990 1,937 2,290 5,699 2,702 1,982 1,846 2,079 4,965 2,406 2,267 1,995 2,496 6,188 2,89 1,990 1,937 2,290 5,699 2,702 1,982 1,846 2,079 4,965 2,406 2,1979 1,817 2,234 4,079 2,320 4,381 13,598 3,017 13,698 7,517 15494 15193 3,244 14,697 9,749 10 2 5 17 7 15494 15193 3,244 14,697 9,749 10 2 5 17 7 15494 15193 3,244 14,697 9,749 10 2 5 17 7 15494 15193 3,244 14,697 9,749 10 2 5 17 7 15494 15193 3,244 14,697 9,749 10 2 5 17 7 15494 15193 3,244 14,697 9,749 10 2 5 17 7 15494 15193 3,244 14,697 9,749 10 2 5 17 7 15494 15193 3,244 14,697 9,749 10 2 5 17 7 15494 15193 3,244 14,697 9,749 10 2 5 17 7 15494 15193 3,244 14,697 9,749 10 2 5 17 7 15495 1976 1976 1976 1976 1976 1979 1983 1995 1976 1976 1976 1979 1983 1995 1996 19976 1979 1983 1990 1991 1977 1979 1979 1983 1990 1991 1977 1979 1979 1983 1991 1961 1977 1979 1979 1983 1992 2 5 27 27 20 16 2,677 1,986 2 4 4 3 3 3 3 2,99 5 6 4 4 3 3 3 3 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	In gauged discharges (cubic metres per second) JAN FEB MAR APR MAY JUN 1.546 4.382 1.790 2.289 3.593 2.239 2.692 13.598 1.778 2.128 3.454 2.133 3.190 10.138 1.821 2.001 3.417 2.220 2.487 5.108 3.017 1.849 3.500 1.944 2.2401 6.510 2.288 1.876 3.318 2.027 2.487 5.508 3.077 1.849 3.500 1.944 2.232 4.322 2.458 1.782 3.846 1.901 1.974 3.885 2.048 2.119 7.517 1.868 2.047 3.734 1.906 2.654 4.818 1.792 2.056 3.505 1.783 2.368 4.186 1.740 13.891 3.224 1.791 2.085 3.796 1.839 2.056 3.505 1.783 2.368 4.186 1.740 13.891 3.224 1.791 2.085 3.796 1.839 7.623 3.107 1.738 1.937 3.586 1.697 7.623 3.107 1.738 1.937 3.586 1.697 3.3696 2.931 1.721 2.013 3.151 4.438 3.369 2.999 1.669 2.187 3.557 1.425 2.911 2.812 1.579 7.516 7.277 1.446 2.574 2.551 1.572 1.3698 3.720 1.408 2.572 2.463 1.647 9.147 3.372 1.425 2.572 2.463 1.647 9.147 3.372 1.425 2.560 2.238 1.836 6.916 5.344 1.307 2.451 2.275 2.069 8.746 4.368 1.366 2.580 2.238 1.836 6.916 5.344 1.307 2.587 2.128 1.860 8.669 4.214 1.282 2.600 2.338 2.186 6.956 3.126 1.371 2.451 2.275 2.069 8.746 4.368 1.366 2.580 2.238 1.836 6.916 5.344 1.307 2.2587 2.128 1.860 8.669 4.214 1.282 2.600 2.338 2.186 6.956 3.126 1.371 2.451 2.275 2.069 8.746 4.368 1.366 2.580 2.238 1.836 6.916 5.344 1.307 2.2587 2.128 1.860 8.669 4.214 1.282 2.600 2.041 1.879 6.920 3.300 1.377 2.461 1.990 1.937 2.200 5.699 2.702 1.304 1.992 1.846 2.079 4.965 2.406 1.271 2.910 1.816 2.069 4.508 2.392 1.205 1.979 1.817 2.234 4.079 2.330 1.241 4.381 2.094 3.800 2.257 1.208 1.990 1.937 2.200 5.699 2.702 1.304 1.982 1.846 2.079 4.965 2.406 1.271 2.010 1.816 2.069 4.508 2.392 1.205 1.990 1.937 2.200 5.699 2.702 1.304 1.990 1.937 2.200 5.699 2.702 1.304 1.990 1.937 2.200 5.699 2.702 1.304 1.990 1.937 2.200 5.699 2.702 1.304 1.990 1.937 2.200 5.699 2.702 1.304 1.990 1.937 2.200 5.699 2.702 1.304 1.990 1.937 2.200 3.000 1.300 1.408 1.990 1.937 2.200 3.000 1.300 1.408 1.990 1.937 3.200 3.000 1.300 1.408 1.990 1.937 3.200 3.000 1.300 1.408 1.990 1.937 3.200 3.000 1.300 1.408 1.990 1.990 3.990 3.000 3.000 3.000 3.000 3.000 3.000 3.0	In gauged discharges (cubic metres per second) JAN FEB MAR APR MAY JUN JUN 1.208 1.546 4.382 1.790 2.893 3.593 2.739 1.208 2.692 13.598 1.778 2.128 3.454 2.133 1.157 2.692 13.598 1.778 2.128 3.454 2.133 1.157 2.2401 6.510 2.2681 18.76 3.318 2.027 1.163 2.2407 5.108 3.017 1.849 3.520 1.944 1.224 2.232 4.322 2.458 1.792 3.846 1.901 1.238 1.974 3.855 2.048 2.119 7.517 1.686 1.212 2.056 3.505 1.783 2.368 4.196 1.740 1.181 1.3891 3.224 1.791 2.085 3.796 1.639 1.135 1.3891 3.224 1.791 2.085 3.796 1.639 1.135 1.3891 3.234 1.791 2.085 3.796 1.639 1.135 3.369 2.931 1.721 2.013 3.151 1.438 1.232 2.911 2.998 1.725 2.061 3.397 1.499 1.341 3.366 2.931 1.721 2.013 3.151 1.438 1.232 2.911 2.812 3.369 2.899 1.669 2.187 3.567 1.425 1.308 2.2911 2.812 3.777 3.151 1.464 1.010 2.574 2.531 1.572 13.698 3.720 1.408 0.679 2.574 2.531 1.572 13.698 3.720 1.408 0.679 2.574 2.531 1.647 9.147 3.372 1.425 0.611 2.584 2.255 2.698 8.746 4.168 1.366 0.593 2.257 2.261 2.338 2.186 5.956 3.126 1.371 0.545 2.261 2.338 2.186 5.956 3.126 1.371 0.546 2.267 1.985 2.496 6.188 2.499 1.566 0.959 2.267 1.985 2.496 6.188 2.499 1.566 0.878 2.267 1.985 2.496 6.188 2.499 1.566 0.878 1.990 1.937 2.290 5.699 2.702 1.304 0.826 1.991 1.991 1.917 1.999 1.937 1.999 1.937 1.999 1.937 1.999 1.937 1.208 0.804 1.990 1.937 1.999 1.937 1.208 0.804 1.990 1.937 1.999 1.937 1.208 0.804 1.990 1.937 1.999 1.931 1.208 0.804 1.990 1.937 1.990 1.937 1.999 1.933 1.208 0.804 1.990 1.937 1.990 1.937 1.999 1.983 1.208 0.804 1.990 1.937 1.990 1.937 1.999 1.983 1.985 1.996 1.996 1.996 1.996	In gauged discharges (cubic metres per second) 1546	in gauged discharges (cubic mettres per second) AN F(B MAR APR APR 3593 2739 1208 0.646 0.613 2.692 13.598 1.776 2.128 3.454 2.133 1.157 0.676 0.732 3.190 10.138 1.821 2.001 3.417 2.220 1.148 0.841 0.799 2.401 6.510 2.569 1.876 3.318 2.027 1.148 0.841 0.799 2.407 5.108 3.017 1.849 3.520 1.944 1.224 0.696 0.700 1.974 3.885 2.048 2.119 7.517 1.686 1.212 0.579 0.651 2.047 3.734 1.905 2.654 4.818 1.792 1.202 0.499 0.609 2.056 3.505 1.783 2.368 4.196 1.740 1.181 0.465 0.653 2.056 3.505 1.783 2.368 4.196 1.740 1.181 0.465 0.653 2.087 3.734 1.905 2.654 4.818 1.792 1.005 0.651 3.891 3.224 1.791 2.085 3.786 1.839 1.135 0.561 0.465 4.611 2.998 1.735 2.061 3.397 1.499 1.341 0.922 0.524 3.696 2.931 1.721 2.013 3.151 1.438 1.292 0.672 0.590 4.611 2.998 1.669 2.187 3.565 1.857 1.061 1.592 0.590 2.911 2.812 1.579 7.516 7.277 1.446 1.166 0.536 0.538 2.272 2.698 1.667 3.168 3.372 1.425 0.681 0.681 2.572 2.463 1.647 9.146 3.372 1.425 0.681 0.699 0.712 2.574 2.531 1.572 3.698 3.372 1.425 0.681 0.699 0.712 2.574 2.531 1.572 3.698 3.372 1.425 0.681 0.699 0.712 2.587 2.128 1.836 6.916 3.372 1.425 0.691 0.698 0.599 2.580 2.238 1.836 6.916 3.372 1.425 0.691 0.698 0.599 2.580 2.238 1.836 6.916 3.848 1.566 0.593 0.665 0.585 2.587 2.128 1.836 6.916 3.580 1.597 0.061 0.618 0.593 3.698 2.718 1.572 1.3698 3.772 1.426 0.694 0.699 0.650 2.580 2.241 1.879 6.920 0.712 0.695 0.656 0.585 2.587 2.128 1.860 0.669 0.716 0.716 0.698 0.699 0.712 2.580 2.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.228 0.	in gauged discharges (cubic metres per second) JAN ft8 MAR APR MAY Z89 3593 2739 1.708 AUG 51P OCT 5293	Inspace Comparison Compar		

Station and catchment description

An old weir at three levels with a total width of 24.99m converted into a standard Lea designed broad-crested weir. It is rated theoretically and there is no bypassing or drowning. Low flows in summer are moderately influenced by transfer of water from Rutland Water and abstractions for public supply at Seltersford. The catchment is clay (50%) with limestone (40%) and gravel, and is largely rural.

032001 Nene at Orton

1986

Measu	iring aut	hority. AW	A		G	irid referenc	n: 52 (TL)	166 972			Carchman	t area (sq k	m): 1674.2
First y	eor: 193	39				Level str	m (m OD):				Cattingii		n OD): 224
	mean (gauged dis	scharges (cubic metres	per second	1)							
DAY		JAN 14 702	FEB 19 665	MAR	APR	MAY	JUN	ж	AUG	SEP	ОСТ	NOV	DEC
ż		31.504	39.316	7 445 7.192	28.688 21.463	11 359 12 706	9.252 8.761	2.269 2.223	4 831 3 699	3.185 4.032	4 373 5 108	5 5 1 3 7 1 1 8	9.190 10.196
3		38.401	51.201	7 076	14 095	11 688	8 690	2 775	-3.434	3 605	5 042	7 768	10 068
4		31.744	47 535	7 701	14 247	11.445	8 788	3 790	4.608	4 257	3 754	7 06 1	9.642
5		24.258	36.788	17 638	10 705	11 150	8 546	2 4 19	5.330	4 020	4 369	6.411	9 256
6		32.261	27.795	23 455	12 387	10.551	7 167	2 327	3.607	3 707	4.382	5 939	8.593
7		21.583	17.755	13 662	15.115	13 432	7.650	4 244	2.311	3 638	4 217	5 974	8 546
8 9		21 766 18.907	15.702 13.069	12 364 10 663	33.960 30 357	11.919 11.126	6.815	4.904	2.994	3.361	4 157	5.936	8 633
10		53 059	12.975	10 343	20.965	11.192	6 6 10 5.020	3 958 2.356	4.153 4.329	4 045 3 850	4.358 4.360	6.301 6.147	9.645 10.631
									020	5 550	4.500	V 1-7	10 03 1
11 12		54 429 57 85 1	14 706 13 06 1	6.081 9.297	12.125 14.537	9 184 10 43 i	7 379	1 999	7 874	4 128	4.168	6 231	10 9 19
13		55 914	13.472	8316	13.812	10 228	4 885 4.932	2 466 2 547	9 842 4.946	4 221 5 923	4.134 4.139	6 759 6 910	15 189 18.763
14		48.240	13 459	6 487	11.756	10 093	7.588	2 396	3.155	7 734	3.920	7 827	22.187
15		35 05 1	12.972	7 327	16.551	24 501	4.198	2.574	3.292	7.633	3 665	12 548	22.222
16		15.153	12.100	6 447	33.068	22 057	4.183	3 721	3.212	3 637	3 669	15.597	31 045
17		19.678	11,772	4 292	38.643	13 466	4.718	4.054	3 632	3.625	3 809	10 092	28.813
18 19		17 44 1 18.24 1	11 625 11 617	6.975	38 194	11 345	4.559	3 93 1	4.185	3 839	3 881	10 849	22 445
20		18 801	11 195	9 889 19.651	37.513 34.464	10 877 29 717	4.064 3.852	3 606 3 704	4 413 4.377	3 894 3 897	3 987 6 060	17 988 28 592	24 249 15 106
						20 7	0.002	3.04	4.577	3 037	0 000	20 992	15 100
21		19.232	10 504	10.720	42 983	57 928	5 371	3 826	3.730	3.822	6.941	32 081	14.553
22 23		17.148 21.001	10 529 10 009	9 472 9 475	41 012 40.162	44 838 17 412	6.052 5.798	3.645 3.799	3.797 3.922	4.536 4.475	6 944	35 119	12.284
24		27.434	8.727	11.429	41.839	17 987	3.881	3.898	3.522	4 304	6.432 5.739	30 879 16 476	13.243 11.594
25		12.833	4.356	17 399	29.396	12 439	4.439	4 068	4 359	4 138	5.653	18 919	11.395
26		11 187	9.290	12 854	23 249	12.160	4 2 1 5	4 004	21.631	4 368	5.358	15 940	12 408
27		12.425	5.780	12 455	19 501	11.012	3.037	4 017	18.585	4 257	5 221	19 562	12 408
28 29		13.243 13.765	7 596	17 340	15 628	10 403	2.903	3 451	7.546	4 205	5 394	17 584	10.683
30		23.097		29.499 24.991	16.709 11.648	10 57B 9 769	2.548 2.345	2 664 3.551	7 028 5 700	4 391 4 315	5 150 5 258	10 023 12 890	9.970
31		23.356		28.074		9 000		4 462	4.170	~ 313	5.207	12 030	22.061 37.970
Averag		26.510	16.950	12 450	24.490	15.550	5.608	3.343	5 559	4 201	4.000		
Lowest		11 187	4 356	4 292	10.705	9 000	2.345	1 999	2.311	4 301 3 185	4.802 3.665	13.230 5.513	15.290 8.546
Highest		57.851	51 201	29 499	42.983	57 928	9 252	4.904	21 631	7.734	6.944	35 119	37.970
Poak fic) W	59 016	55.721	41 277	46.990	62.447	11 025	5 2 1 9	30 537	10 463	8 033	40.663	41.050
Day of		13	3	29	21	21	14	7	26	16	2	40 652 20	41.850 31
Monthly (million		71.00	41 00	22.25	CD 40								
(111211011	CO 111,	7100	4100	33 35	63.48	4164	14 54	8 95	14 89	11 15	12.86	34 30	40.95
Runoff		43	25	20	39	25	9	5	9	7	8	21	25
Rainfall	(mm)	69	25	58	69	77	18	44	122	26	51	71	71
Statis	tics of	monthly d	ata for pre	vious reco	rd (Jan 193	19 to Dec 15	9 85 —inco	mplete or m	issing mont	ths total 1 3	years)		
Mean	Avg.	16 980	18 210	16.360	10 170	7 350	5.108	3 736	3.690	2 214	4 433	0.046	
flows	Low	2 020	1.608	1 440	1 299	0 9 1 5	0.536	0 842	0.482	3 214 0 738	4 423 1.013	9 246 1 141	12 990 1 64 1
	(yeer)	1939	1939	1939	1939	1939	1944	1943	1944	1943	1947	1947	1947
	High (ygar)	48.170 1959	49.750 1977	79 640 1947	35 040 1979	27 690 1983	13 010 1977	20 060 1968	20 470 1980	20 090 1968	22.120 1960	40 560	42 550
.										1300	1300	1960	1954
Rungii:	Low	28 3	27 2	27 2	16 2	12 2	8 1	6 1	6	5	7	15	21
	High	79	74	:31	56	45	21	33	1 34	1 32	2 36	2 64	3 70
· Rainfall:													. •
(1940-		55 20	41 3	48 5	42 8	54 10	55 5	51 6	63 3	53 3	51 5	61	56
1985)	High	109	111	132	91	117	156	123	110	127	130	10 155	13 124
Summ	ary sta	tistics							Enne				
	,							1986	Fact	OLR SUISCU	ing flow re	igime	
			Fo	ж 19 8 6		or record		As % of			n catchmer		
Mean ()	a ^e m) wo	- 1 ₎	12.3	10	9 24	ceding 1986 B	p	re-1986 133	● Flo	straction i	or public w I by industi	vater suppli	105.
	Applify to				2 77		1944				stractions		
	monthly		3.3	L.	16 17 0 48	-	1979		• Ai	igmentatio	n from effly	uent return:	S
	monthly		26.5				g 1944 ∎r 1947						
	daily mo		1.9	199 11 Jul	0.08	5 29 J	ul 1948						
Highest Peak	daily mo	an	57 9 62.4				m 1947 ⊶ 1947						
10 % ile			28.5		382.30 24.38		Br 1947	117					
50 % to			9.1	41	4.60	0		199					
95 % de Annus	total imi	lion cu m)	3 1 388		1.07 291 8			288					
	runolf (r		238		179	•		133 133					
	ra nfall (n		701		630			111					
[194	1-/U fair	rfall average	(mm)		624)								

Station and catchment description
Series of sluicas, weirs and a lock. Ratings revised and historical data altered in 1975 and 1983. Ultrasonic gauge tested in 1976 but abandoned. Flows above 17 currecs measured at Wansford (32010) 12km upstream and corrected for smaller area. Wansford is a rated section, and ratings and data were revised in 1981. Water abstracted at Wansford and sent to Rutland Water, with significant effect on low flows. Lowest gauging point on Nane. Mostly clay (72%) and rural, but includes some towns and several small reservoirs.

Bedford Ouse at Bedford 033002

1986

	ring auth sar: 193	nority: AWA 3			G	rid reference Level stn.	e: 52 (TL) . (m OD): 2				Catchment	area (sq kr Max alt (m	
Daily	mean g	auged dis	charges (c	ubic metres	per second)							
DAY		JAN	FEB	MAR	APR	MAY	JUN	ж	AUG	SEP	OCT	NOV	DEC
1		19.400	28 800	6 200	31 000	12 600	7 200	3 200	3 000	3.700	2 400	5 800	9 900
2 3		31.300 50 600	43 500 51.800	6.000 6.200	24.100 38.000	9.400 10.600	7.400 7.100	3 000 3 000	2 900 3.100	3 500 3 600	2 500 2.500	10 500 10 800	9 600 8 800
4		47.000	45.800	8.100	43 500	10.200	7.100	3.200	4 800	3 400	2 900	7 700	8 500
5		38.000	32 000	34.800	28 300	10 100	6 800	3 400	4 800	3 100	2.600	6 300	8 500
8		40.200	25.700	34 900	21.900	11 000	6.000	6 000	4 200	2.900	2 500	5 600	9 000
7		29.200	21.900	21.200	19.800	11 000	5 700	5 400	3 600	3 000	2 500	5 600	9.500
8		29.200 39.100	19.500 16.300	13.600 13.000	26.100 27.800	10 600 10 600	5.700 5.400	4 100 3.700	3 000 2.900	3 000 2.500	2 500 2 500	5 200 5 400	9 300 9 300
9 10		58.200	14.400	12.100	20 900	10.000	5 400	3.700	3 400	2.500	2.500	6 000	9 300
11 12		66.200 80 700	13.400 12.600	11 200 10 600	16.000 14.300	9 600 9 200	5 600 5.600	3 500 3.900	4 300 7 100	2.300 2.300	2.500 2.500	6 800 9 900	9 100 13 800
13		67.500	11.900	9 800	13 900	8 900	5.100	4 800	5.300	3 000	2 500	10 500	18 800
14		33.900	11.600	8.500	16 000	8.900	4.400	4 500	3 900	5 500	2.500	11 500	27.500
15		25.700	11,000	7 500	25 000	13 300	5.100	3.900	3 300	7 600	2 500	15 400	26 100
16		24 100	10 000	7.600	38 600	16 600	4 900	3.500	3 000	4.900	2.500	20.900	34 900
17 18		19 400 16,900	9 800 8 500	7.400 7.600	40 200 39 100	12.900 11.400	4.100 4.300	3.200 3.000	2.700 3.100	3.700 3.300	2.600 2.600	15 200 12 800	41 300 31 000
19		17.200	8 500	10.200	37.000	10 600	4 200	2.800	3 500	2 600	2 700	16 200	29.200
20		16.800	8.100	14.200	33.900	32 200	3.900	2.500	5 100	2.700	3 300	25 200	21 900
21		14.900	7.800	13.000	50.600	47.000	3 000	2 800	4 300	2.500	6 500	25 800	16 600
22		17.900	7.600	11,100	43.500	45.800	3.600	2 800	3 500	2 500	8 900	33.800	14 900
23		27 600	7 200	9 900	37 000	24 400	4.000	2.700	3 400	2 500	8 700	27.300	13 600
24 25		22.600 16.200	6.500 6.900	11.400 13.800	32 900 28.300	14 700 11,100	4 900 4.900	2 600 2.600	3 300 3 800	2 500 2 400	6 500 5 200	21.800 18.400	11 700 12.700
26 27		12.700 12.800	5.800 5.400	11.700 13.000	24 100 20.500	9 500 8.700	3 900 3.500	2 600 2 700	7 400 14 100	2 400 2 400	4 800 4 800	16 800 20 900	21.200 23.900
28		14 800	6 000	24.300	14.400	7.800	3 600	3.200	10 700	2 240	4.900	19 300	17 800
29		16.100		38 600	13 800	6.900	3 400	2 900	5.900	2 240	5 100	14 200	15 600
30 31		26.700 31.100		34 900 39.100	12 300	6 800 5.900	3 300	2 150 2 600	4.900 3.900	2 300	5 300 5 400	12 300	25 200 48 200
J.		31.700											
Averag		31 100	16 370 5 400	15.210 6.000	27.760 12.300	13 820 5 900	4 970 3 000	3 344 2 150	4 587 2 700	3 103 2 240	3 797 2 400	14 130 5 200	18.280 8.500
Lowest		12.700 80.700	51 800	39 100	50 600	47.000	7.400	6 000	14.100	7 600	8 900	33 800	48 200
-													
Peak fk Day of		86 400 12	53 100 3	44 700 6	55 600 21	53 100 22	8.500 2	6.900 6	14.700 27	8 400 14	9 300 22		
Monthh	y total												
(Wigion	Cu m)	83 29	39 60	40.74	71 95	37 00	12 88	8 95	12 29	8 04	10 17	36 62	48 96
Runoff		57	27	28	49	25	9	6	8	6	7	25	34
Rainfall	(mm)	75	21	60	68	69	21	45	106	27	63	75	74
Statis	itics of	monthly d	ata for pre	evious reco	rd (Jan 19:	33 to Dec 1	985)						
Mean	Αvg	19.280	20 240	17 250	10 770	7 147	4 474	3 111	2 741	2 767	5 100	11 050	15 400
Pows	Low	2 606	2.233	2 409	1.994	1.412	0 484	0 098	0 038	0 270	0 452	1 149	1 532
	(yoar)	1934	1965	1944	1976	1934	1934	1934	1934	1934	1934	1934	1964
	High (year)	55.190 1939	53.300 1977	62 020 1947	31 460 1951	28 290 1983	14 280 1985	19 080 1968	14.400 1980	18 000 1968	26 4 10 1966	43 790 1960	40 400 1960
		1333	1377	1541									
Runoff:	: Avg. Low	35 5	34 4	32 4	19 4	13 3	8	6 0	5 0	5 0	9 1	20 2	28 3
	High	101	88	114	56	52	25	35	26	32	48	78	14
04-1			4.3	40				53	61		50		60
Rainfall (1934-		58 15	42 3	49 5	44 3	56 10	53 8	52 5	61 3	54 3	58 4	64 10	60 13
1985)		124	111	140	96	113	119	120	138	110	137	178	128
Sumn	nary at	atistics							Fact	ors affect	ing flow re	eaime	
• • • • • • • • • • • • • • • • • • • •	,		_			_		1986			_	_	
			F	or 1986		For record iceding 1986		As % of pre-1986			in catchme ed by groui		straction
Mean f	low (m³s	, - 1 ₁	13 (020	9 8		,	132		d/or recha			
	t yearly r				2.40		1934 1937				for public v		
	t yearly r t monthly		3	103 Sep	18.89		ug 1934				d by indust bstractions		
	t monthle		31	100 Jar		20 M	ler 1947				on from effl		ıs
	t daily m			150 30 Ju			ug 1934 İsr 1947						
Highes: Peak	1 đàily m	mai1	80.1 86 -	700 12 Jer 400 12 Jer		J-V 15 ₩	ugr 13 ⁴⁴ /						
10 %ik			32.	130	26 10			123					
50 %ile 95 %ile				541 540	4 4: 0 9:			193 281					
		illion cu m)		60	312.			131					
Annual	I runoff (r	mm)	28	1	214			131					
	l roinfa‡ (41-70 rai	imm) ınfall average	70 (mm)	4	65 1 650			108					
1.3.			·		0.50	1							

Station and catchment description

3 broad-crested weirs, 30m, 20m and 12m wide supplemented by 3 vertical sluice gates which are either fully open or shut. High flow rating confirmed by current meter measurements. Records before 1959 based on daily gauge board readings and gate openings. In 1972, station built at Roxton (d/s) - to achieve a better record. Significant surface water and groundwater abstractions in catchment for PWS. Geology predominantly clay. Land use - agricultural with substantial urban development over last 15 years (inc. Milton Keynes).

034006 Waveney at Needham Mill

1986

	ring aut ear: 196	hority: AW/	A		Grid	l reference Level stn. (A) 229 B11 : 16.50			Catchmai		km): 370.0 (m OD) 65
Daily	mean (gauged dis	icharges (cu	bic metres p	per second)								
DAY		JAN	FEB	MAR	APR	MAY	JUN	ж	AUG	SEP	OCT	NOV	DEC
1		2.545	1 940	0 759	1.912	1 103	0.764		0 405	0 447	0 372	2.085	1.417
2 3		7 9 10 6.957	3 923 6.587	0.781 0.808	2 293 5.220	1 147 1 169	0719		0 388	0 456	0 376	1 996	1 301
4		4 640	4 438	1.323	3 914	. 039	0 773		0 469 0 773	0 469 0 479	0 372 0 364	1 368 1.215	1.201 1.043
5		7.005	3.382	2 474	2.869	0 966	0 987		0 764	0 447	0 349	1 103	1.176
6		5 866	2 619	2 295	2.360	: 049	0.010	1 300	0.611	0.405	0.245	0.000	
ž		4.821	2 100	1.718	4 446	1 825	0.810		0 611 0 540	0 405 0 384	0 345 0 365	0.966 0.838	1,417 1,354
8		6.368	1.861	1 406	7 055	1 320	0.616		0 461	0 372	0 372	0 966	1.354
9		9.268	1 706	1.361	4 857	1 226	0 590		0 430	0 372	0 368	1.192	1 258
10		10 892	1,477	1 351	3 116	1 203	0 569	0 600	0 401	0 372	0 368	1 081	1.043
11		10 650	1.243	1.815	2 34 1	1.049	0 605		0.426	0 372	0 361	1 060	1 006
12 13		5 764 4 719	1.297 1.317	1.617 1.477	2.183	0 987	0 693		0 585	0.372	0 342	0.997	1 046
14		4 015	1.378	1.228	1.745 2.059	0.956 0.867	0.569		0.540 0.456	0 405 0 555	0 349 0 405	0 987 0.987	2 280 2 884
15		3 000	1.312	1.108	2 075	0 976	0 474		0.421	0 600	0.711	1.581	3 767
16		2 3 1 4	1.185	1.102	1 973	0 936	0 465	0 443	0.202	0511	0.746	2 140	
17		2 037	1.156	1.081	2 324	0.782	0 474		0.392 0.349	0 511 0 465	0 746 0 545	2 146 2 055	5 117 3 842
18		2 878	1 109	1 064	3 259	0 764	0 456		0 327	0 426	0 492	2 542	6 525
19		5 952	1 052	1 736	2 378	0.702	0 430		0.338	0 409	0 469	4 545	5 479
20		5 206	1.009	2.179	4.881	0 711	0 421	0.405	0 345	0 401	0 997	3 59 6	3 486
21		5 121	1 018	1 901	5 967	0.801	0 4 1 7	0 409	0 345	0 384	1 380	7 616	2 65 1
22		5 438	0 961	1 9 1 5	4 1 18	0 737	0 405		0.388	0 372	2 460	5 254	2 112
23 24		5.536 3.574	0 885 0 846	2 477 7 030	2.884 2.501	0 728 0 702	0.535		0 447	0 376	1 634	3.523	2.132
25		2.426	0.831	7 012	2 002	0 605	0.555		0.520 0.516	0 376 0 372	0.946 0.782	3.164 3.252	2 380 9 274
26		2.022	0.740	2.004	•								
26 27		2.032 2.084	0 749 0 710	3 864 4,167	1.656 1.777	0 585 0 545	0.430		1 504 1.296	0 372 0 368	0 685	2.900	10 831
28		2 043	0.712	3 804	1.536	0 555	0 392		0.782	0 349	0.685 0.857	2 222 1 853	5 440 3 908
29		1.978		3,211	1.329	0.545	0 361		0.611	0 338	0 997	1.674	3 349
30 31		1.913		2.719	1 188	0 530	0 345		0 545	0 342	0 926	1.568	11867
31		1 770		2 586		0.564		0 439	0 474		0 896		14 873
Averng		4 733	1.743	2.238	2 94 1	0 893	0 571		0 543	0 4 1 2	0 688	2 211	3.768
Lowest Highest		1 770 10 892	0 7 10 6 58 7	0 75 9 7.030	1.188 7.055	0 530 1 825	0 345		0 327	0 338	0 342	0.838	1 006
		.0 032	0 30,	7.030	7 033	1 023	1 136	1.300	1 504	0 600	2 460	7 6 1 6	14 873
Poak flo		13,191	7 296	9.215	8.323	2 100	1 192		2 055	0 65 1	2 953	8.791	16 245
Day of Monthle		10	3	24	8	7	4	5	26	14	22	21	31
(Willion		12 68	4 22	5 99	7 62	2 39	1 48	1 35	1 46	1 0 7	1 84	5.73	10 09
Rung!!	(mm)	34	11	16	21	6	4	4	4	,	-		2.7
Rainfall		64	16	55	56	52	31	65	88	3 28	5 82	15 57	27. 74
Statis	tics of	monthly d	ata for prev	ious recor	d (Dec 1983	l to Dec 19	95)						
				1000 10001	D (Dec 1303	I TO DEC 13	a 3)						
Moon	Avg.	3 8 16	3.544	2.561	1.986	1 191	0 801		0 496	0 886	0.848	1 821	2.922
flows:	Low (year)	0 609 1973	0 722 1965	0 59 1 1973	0 487 1974	0 369 1974	0 285		0 282	0 261	0 352	0.397	0 492
	High	7 132	10 670	7 666	5.646	3 255	4 302		1973 1 250	1964 9 754	1964 2.912	1964 8.852	1964 8 380
	(yoar)	1969	1979	1981	1983	1969	1985	1985	1968	1968	1974	1974	1965
Runoff:	Ava	28	23	19	14	9	6	4	4	6	6	13	21
••	Low	4	5	4	3	3	2	2	2	2	3	3	4
	H.gh	52	70	55	40	24	30	7	9	68	21	62	61
Paintel	: Ava.	51	38	43	43	48	52	44	47	55	49	64	55
	Low	16	10	10	9	10	10	11	7	2	4	25	18
	High	90	72	96	86	97	132	92	10:	161	116	150	-100
Sumn	nary sta	etistics							Fact	ors affecti	ng flow re	aime	
			F	1000				1986			•	-	
			FOF	1986		r record ding 1986		As % of pre-1986			l by industr ostractions	isl and/or	
	low (m³s		1.77	3	1 773			100			n from surf	ace water	and/or
	Agailt u				0.537		1973		gro	zündwater.			
_	: yearly n : monthly		0 4 1	2 Sep	2.730 0.261		1969 1964						
	monthly		4 73		10 670		1979						
Lowest	daily me	ban	0 32		0 189	23 Aug							
	daily m	gan .	14.87		89 760	16 Sep	1968						
Ponk 10 %ilo			16.24 4.42		113.300		1968	107					
50 %ile			1 00		4 130 0.772			107 130					
95 % ila	1		0 35		0.323			111					
		llion cu m)	55 9	1	55 95			100					
	runoif (n		151		151			100					
	rainfol (i 1-70 rax	mm) Afall average	(mm)		589 603			113					

Station and catchment description

A compound Crump weir 8.5 m wide in the main channel with a single crested Crump in the mill bypass. Sluice action at a mill 2.4 km upstream is infrequent but is evident in flow records. Surface water abstractions, and the use of river gravels as an aquifer, influence flows but the overall impact is minimal. Predominantly a Boulder Clay catchment with largely rural land use.

589 603]

Stour at Langham 036006

1986

	ring auth ear: 196.	iority: AWA 2	A		Grid	i raference: Level stri					Catchmer	nt area (sq i Max alt. (n	(m) 578.0 n OD): 128
Daily	mean g	auged dis	charges (c	ubic metres p	er second)								
DAY		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1		2.921	4.788	1 498	4.884	2 335	1 643	0 521	0 736	0 877	1 269	1 528	2 161
2 3		7 272 12,492	7.616 11.299	1 643 1.596	4.729 3.684	2.510 2.581	1 556 1 605	0.674 0.971	0.514 0.964	0 990 0 890	1.168 0.984	3 737 1 413	1.959 1.947
4		6.743	7.437	2.991	4.057	2.333	1 562	1.006	1.230	0 905	0.896	1.958	1.810
5		4.777	5.118	3.717	3 387	2 2 1 7	1 354	2 71B	1 124	0 94 1	0 980	1 607	1917
6		5.501	4.381	4 650	3 208	2 405	1 240	3 105	0 831	0 877	1 036	1 549	3.297
7		4 074	3.483	2.924	3.307	2.495	1 126	1.415	0 685	0 828	0.921	1 468	3.141
8		6 481	2 457	2 408	4 704	2 700	1 055	1 152	0 729	0 806	0.975	1 374	2 990
9		11.853	2.858	1 754	4.584	2.305	1 001	1 032	0.711	0 774	0.992	1 948	2 391
10		10.797	2.315	2 231	4.022	2.161	0 928	1 056	0 667	1 062	0 975	2.286	2 226
11		12 212	2 456	1.934	2 770	2.160	1 117	1 :61	1 112	0.885	0 947	1.888	1 804
12 13		6 547 4 938	2 049 2 274	1 883 1.875	2 785 2 689	1 864 1.797	1 173 1 151	1.325 1.335	0 846 0 892	0 841 1 026	0 850 0 882	1 619 1 517	1 906 2 423
14		4 067	1.534	1.675	2.924	1.843	1 144	1.289	0 767	1 472	1.186	1 577	3 761
15		3,118	2 491	1 617	3 907	1 819	1 038	1 200	0 649	1 456	1 5 1 9	3.545	3 602
16		2.812	1.752	1.706	6.154	1 840	0 768	1.175	0.700	1.250	1.492	4 832	7.070
17		2.281	2 098	1 648	8 035	1 690	0 680	1,100	0.700	1.119	1.031	3 232	4 405
18		2.589	1.925	1.873	8.822	1 635	0 824	1.050	0.663	0915	1.041	2 422	7 992
19		3.179	1.895	1 978	5 599	1 460	0 8 16	1 045	0 697	0 955	1.176	7.729	7 207
20		4.537	1.645	2.321	8.303	1.591	0 790	1 113	Q.724	0 946	2,115	6 924	4.586
21		3.986	1 669	2 129	14 242	1 521	0.821	1 062	0.751	0 9 1 2	3 363	10 797	2 724
22		6.001	1.652	2.080	10.272	1.378	0.841	1.322	0.821	0 897	4.970	11892	2.928
23 24		8 000 5.455	1 653 1.618	2 288 4 416	6 761 4.583	1 420 1 456	1 000 0 738	1 357 1 428	0 803 0 820	1 005 1 132	3 349 1 941	6 880 8 995	2 135 2 240
25		3 113	1 532	5 0 1 3	3 533	1 444	0 9 1 3	1 429	1 048	0 931	1 734	4 999	7 866
						. 222	0.000						46.000
26 27		2.203 2.730	1.425 1.447	2.981 3.128	6.917 5.504	1.330 1.439	0 868 0 833	1,211 1,152	2 875 1 944	1.027 1.011	1.215 1.253	4.123 3.225	16.328 7.591
28		2 912	1 525	4 580	3.737	1 022	0.781	0 979	1 374	1 046	0 963	1 916	4 721
29		2.910		4 478	3 152	1 038	0.767	1 026	0 696	1 034	1.233	2 673	4 364
30 31		8.996 5.990		3 842 4 831	2.739	1.138 1.356	0 697	1.025 1.037	0 906 0 867	0 924	1 425 1.372	2.168	13 54 1 21 530
31		3.330		4 03 1		1 330		1037	0 007		1.372		21 550
Averag		5.532	3.014	2 701	5.133	1.816	1 028	1.241	0 930	0 991	1 460	3 727	4 986
Lowest Highest		2.203 12.492	1.425 11.299	1 498 5 013	2.689 14.242	1.022 2.700	0 680 1 643	0 52 1 3 105	0.514 2.875	0 774 1 472	0.850 4.970	1 374 11 892	1 804 21 530
	•												1.550
Ponk (k		17 627	12,544	8 5 10	16 607	2.849	1 740	5 <u>9</u> 08	3 589	2 100	6.081	15 778	23 310
Day of Monthly	-	2	3	25	21	8	2	5	26	14	22	22	31
(mallion		14.82	7.29	7 23	13 31	4 86	2.66	3 32	2 49	2 57	3.91	9 66	13 35
Runoff	;	26	13	13	23	8	5	6	4	4	7	17	23
Rainfall		59	15	50	57	47	19	63	84	27	8 5	61	69
0													
Statis	tics of	monthly d	ata for pre	vious recor	d (Oct 1962	to Dec 19	185)						
Mean	Avg	5 309	5 094	4 788	3.509	2.494	1 487	0 989	0 968	1 067	1 559	2 721	4.100
flows.	Low	1 398	0 884	1 597	1 218	0 757	0 453	0 190	0 209	0 395	0 509	0 578	0 693
	(year)	1965 9.262	1965 12.980	1976 9 774 .	1974 9.335	1974 7 253	1965 3 017	1976 1.672	1976 2 108	1964 4 944	1970 6 237	1964 11 340	1964 10 550
	High (year)	1971	1979	1981	1983	1983	1985	1985	1968	1968	1982	1974	1965
•							-	_		_	_		
Aunoff:	. Avg. Lo₩	25 6	22 4	22 7	16 5	12 4	7	5 1	4 1	5 2	7 2	12 3	19 3
	High	43	54	45	42	34	14	ė	10	22	29	51	49
0		40	25	45		**		43	40		4.7	٠.	
Romfall	Low	48 15	35 13	46 12	44 11	49 12	52 10	43 8	49 11	52 1	47 3	61 20	53 13
	High	85	63	93	99	100	116	87	105	118	128	155	107
C									Esce	ors affecti	na flore	. aima	
Julilli	nary sta	ristics						1986	raci	013 011000	IIN IIOM IC	Airing	
			Fo	r 1986		y record		As % of		w reduced			
Mano fi	low (m³s	- 1,	2 7	11	2.830	iding 1986 1	p	re-1986 96		ricultural at igmentation			and/or
	L Agouth u		• .	• •	1.428		1973	30		undwater.		.oca wate.	0.1070
	t yearly n				4 077		1979		ΦĀu	gmentatio	n from effl	uent return	S
	monthly		09		0 190 12.980		ы 1976 Б 1979						
	t monthly t daily me		5.5 0.5		0.094		d 1976						
	t daily mo		21.5		42.940		c 1981						
Poak			23.3		91.000		p 1968	0.5					
10 %ik 50 %ile			5.9 1.7		6.210 1.604			96 106					
95 %ile			0.7		0 505			149					
Annusi	total (mr	llion cu m)	85.	49	89.31			96					
	runoff (n		148		155			96					
	i rainfall (r 11-70 raii	mm) rtali average	636 (mm)	,	579 601			0'1					
(. 5 .		2 2.0.0160			VV - [

Station and catchment description
Twin-trapszoidal flume with throat tapping. Spillway channel with weir constructed Dac.85 takes some flow above 1.45m. Bypassing also occurs over opposite bank above 1.85m. Additional bypassing possible from 0.5km u/s during extreme events. Naturalised flows up to Sept.76. Flow augmented by intermittent pumping from Ely/Ouse Transfer Scheme and occasional SAGS borehole pumping. Predominantly rural catchment underlain by Chalk - outcropping in N, London Clay in S, all covered by semi-pervious Boulder Clay.

Mimram at Panshanger Park 038003

1986

Measur First ye		ority: TWA 2			(Grid reference Level str	:e. 52 (TL) : i. (m OO): 4				Catchmer	nt area (sq.) Max alt. (m	
Daily r	nean g	auged dis	charges (d	ubic metre	per secon	d)							
DAY		MAL	FEB	PAM	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1		0 5 1 0	0.505	0.436	0 44 1	0.509	0.649	0 425	0 387	0 448	0 327	0 456	0418
2		0 488	0.513	0 433	0 564	0 584	0 570	0 425	0.382	0 455	0 326	0 364	0 433
3		0 424	0 474	0 430	0.460	0 560	0 583	0 4 1 7	0 632	0 448	0 326	0 4 1 3	0 4 1 7
4		0 455	0 464	0.500	0 442	0 54 1	0.544	0 522	0 494	0 421	0 321	0 362	0413
5		0 4 1 2	0 477	0 463	0.469	0 559	0 536	0 788	0 423	0 407	0.317	0 355	0 509
6		0 406	0 481	0.453	0 473	0.547	0.539	0 520	0 394	0 399	0 311	0 342	0 426
7		0 462	0 465	0 439	0 576	0 566	0 554	0 463	0 387	0 375	0.304	0 349	0 427
8		0 550	0 461	0 433	0 493	0.586	0.547	0 573	0.376	0 35 1	0 296	0 422	0 440
9		0 444	0 453	0.435	0.477	0 5 7 9	0.550	0 463	0 370	0 348	0 296	0 350	0.431
10		0 532	0 448	0 435	0.483	0 560	0 550	0 486	0 440	0 348	0.298	0 396	0418
11		0 447	0 449	0 427	0.482	0 556	0 589	0 502	0 398	0 349	0 296	0 373	0 481
12		0 432	0 446	0.428	0.531	0.532	0.551	O 556	0 397	0 344	0 302	0 347	0 470
13		0 443	0 449	0 426	0.522	0 5 1 6	0 536	0.487	0.383	0 569	0.302	0 396	0 505
14		0 423	0 448	0 422	0 535	0.554	0.506	0.460	0.383	0 453	0 554	0 522	0 436
15		0 428	0 446	0 4 1 7	0 560	0.532	0 507	0 442	0 372	0411	0 397	0 4 1 5	0 623
16		0 4 1 3	0 438	0 4 1 4	0.552	0 5 1 5	0 492	0 428	0 378	0 371	0 329	0.391	0 474
17		0 424	0 443	0.406	0.550	0.550	0.482	0.426	0 390	0 365	0 330	0 420	0 578
18		0 429	0 445	0 5 1 2	0 5 1 6	0.520	0 464	0.425	0 476	0 353	0 350	0 563	0 491
19		0 455	0 44 1	0.473	0.553	0.509	0 460	0.421	0 423	0 352	0 406	0 5 1 0	0 465
20		0 4 18	0 439	0 445	0 598	1.510	0 464	0.430	0.397	0 362	0 685	0 609	0 457
21		0 453	0 438	0.416	0.622	0 758	0 458	0 423	0 4 1 4	0 355	0 638	0 503	0 456
22		0.511	0 437	0 447	0.547	0 624	0.483	0 4 19	0.699	0 340	0 439	0 453	0 45 1
23		0 439	0 438	0.495	0.595	0 62 1	0 495	0 430	0 478	0 336	0 382	0 465	0 446
24		0 420	0 439	0 487	0 620	0 608	0 469	0 4 1 7	0 440	0 333	0 382	0 465	0 460
25		0 412	0 431	0 439	0 559	0 609	0.457	0 425	1 020	0 332	0 359	0 450	0 600
26		0 4 10	0 427	0.463	0.551	0 601	0 454	0 430	0 644	0 332	0 345	0 433	0 4 7 6
27		0513	0 427	0.508	0.557	0 588	0 446	0 4 1 9	0 505	0 333	0 380	0 421	0 467
28		0 459	0 429	0 474	0.549	0 605	0 437	0 4 10	0 468	0 332	0 376	0 4 1 8	0 466
29		0 504		0 4 7 9	0.531	0 603	0 431	0 397	0 458	0 326	0 337	0 420	0 586
30		0 482		0.512	0517	0 593	0 427	0 389	0.463	0 328	0 342	0 420	0 623
31		0 447		0 464		0 684		0.390	0 454		0 406		0 5 7 5
Average	•	0 453	0 452	0.452	0.531	0 606	0 508	0 458	0 462	0 376	0 370	0 427	0 481
Lowest		0 406	0 427	0.406	0 44 1	0 509	0 427	0 389	0 370	0 326	0 296	0 342	0 4 1 3
Highest		0 550	0 5 1 3	0 512	0 622	1 5 10	0.649	0.788	1.020	0 569	0 685	0 609	0 623
Peak flo		0917	0 586	0.830	0 975	3 060	0 8 10	1 390	2 170	O B23	1 800	1 080	1 040
Day of p Monthly		1	2	23	23	20	17	5	25	13	20	20	31
(million		121	1 09	1 21	1 38	1.62	1 32	1.23	1 24	097	0 99	1 11	1 29
Runoff ((תוש	9	8	9	10	12	10	9	9	7	,	8	10
Rainfall	(mm)	77	19	55	76	65	14	57	87	34	82	72	67
Statist	ics of	monthly d	ata for pre	evious reco	ord (Dec 19	952 to Dec 1	1985)						
Mosn	Avg.	0 583	0 645	0 672	0 658	0 620	0 563	0 488	0 450	0 423	0 4 1 2	0 448	0 505
flows.	Low	0 244	0 289	O 258	0 260	0 2 1 6	0 186	0 163	0 144	0 195	0.175	0 176	0 189
	(year)	1974	1973	1973	1973	1976	1976	1976	1976	1973	1973	1973	1973
	High	1 '02	167	1 119	1 050	1 084	0 97*	0 803	0 764	0 632	0 638	0 739	1 005
	(year)	1961	1961	1961	1979	1979	1979	1979	1979	1968	1968	1960	1960
Runoff:		12	12	13	13	12	11	10	9	В	8	9	10
	l.ow	5	5	5	5	4	4	3	3	4	4	3	4
	High	22	21	22	20	22	19	16	15	12	13	14	20
Rainfall		55	42	49	44	52	60	53	57	56	58	62	63
	Low	17	3	3	5	15		5	7	5	5	20	13
	High	102	96	116	105	115	122	123	127	121	142	151	119

Summary	statistics

1986 For record precoding 1986 0.538 0.231 0.767 0.144 Aug 1.167 Fet 0.135 21 Aug 1.810 15 Seg 3.541 30 Mar 0.792 0.513 0.238 16.99 127 651 641] For 1986 For record As % of pre-1986 Mean flow (m3s-1) 0.465 86 1973 Lowest yearly mean 1961 Aug 1976 Feb 1961 21 Aug 1976 15 Sep 1968 30 May 1979 Highest yearly mean Lowest monthly mean Oct May 8 Oct 20 May 20 May 0 370 0.606 0.296 1.510 3.060 0.574 0.449 Highest monthly mean Lowest daily mean Highest daily mean rignost daily moan Peak 10 %ile 50 %ile 95 %ile Annual total (milion cu m) 72 88 140 86 86 108 0.449 0.332 14.65 109 705 Annual runoff (mm) Annual rainfall (mm) [1941-70 rainfall average (mm)

Factors affecting flow regime

- Flow influenced by groundwater abstraction
- Invalidation by groundwater ab and/or recharge.
 Flow reduced by industrial and/or agricultural abstractions.

Station and catchment description
Critical-depth flume; 5m overall width. Theoretical calibration confirmed by gaugings. All flows contained. Slight diminution of flows due to groundwater abstraction. Very high baseflow component. A predominantly permeable catchment (Upper Chalk - overlain by glacial deposits near headwaters); mainly rural but some urbanisation in the lower valley.

039001 Thames at Kingston

1986

Measuring authority: TV First year: 1883	/A		nce. 51 (TQ) 177 698 stn. (m OD): 4 70		Catchment area Max	(sq.km): 9948.0 alt. (m 00): 330
Daily mean gauged d	ischarges (cubic metre	s per second)				
DAY JAN 1 147,000 2 237,000 3 337,000 4 316,000 5 237,000	FEB MAR 193 000 49 800 186 000 51.800 189 000 44 400 179 000 60.900 156 000 94.200	APR MAY 110 000 68.700 79 500 65 800 76.900 63.700 83.300 61 200 78.600 57.100	53.100 15.800 52.400 15.800 51.600 10.500	AUG SEP 10 600 24 200 10 200 19:900 22 300 21 700 31 100 24 500 9 780 35 500	OC1 NC 14.200 33 3 15.500 55 10.100 42 8 8.200 37 3 10.200 23 3	800 70 500 300 75.900 900 70 300 500 56.200
6 221 000 7 195 000 8 221 000 9 245 000 10 218 000	139 000 113 000 109 000 68 300 108 000 57 800 104 000 52 400 87 000 57 300	66 800 64 700 70 600 60 900 89 300 62 200 91 800 65 300 93 200 61 400	31 500 17 200 31 400 17 000 31 000 32 300	13 700 28.600 11 700 17 800 10 600 9.230 8 950 12 200 9 030 9 810	12 000 25 3	400 65 200 100 75 100
11 237 000 12 210 000 13 205 000 14 158 000 15 131.000	90.900 54.200 85.700 51.600 83.800 50.000 78.200 48.500 80.300 47.300	76 000 59.200 78.600 57 200 76 900 52 600 85.700 37 700 127.000 70 800	40 800 13 200 33 400 12 100 30 400 12 300	16 800 15 400 23 500 17 300 21 500 27 000 17 500 59 600 10 600 45 000	16 100 52. 15 800 66 13 500 57. 17 900 85 30 400 144 6	500 85 900 200 145 000 800 145 000
16 118.000 17 98.800 18 105.000 19 106.000 20 105.000	77 300 38 200 78 200 46 000 69 600 47 200 69 100 58 100 66 100 58 200	161.000 71 800 169 000 49 900 145.000 52 700 126 000 57.200 147.000 79 500	25 900 9 530 22 100 11 200 22 900 10 900	11 000 40.300 12 500 21 400 14 200 25 600 16 400 22 600 15 500 16 500	24 200 128 12.100 104 18 190 121 14 500 197 136 500 231 1	000 179 000 000 194 000 000 166 000
21 109.000 22 135.000 23 183.000 24 157.000 25 115.000	64.300 59.800 58.600 54.500 61.500 52.200 59.700 89.700 48.400 113.000	182.000 117 000 178 000 112 000 158 000 81 300 149.000 55.900 123 000 59 400	19.700 10.700 22.100 9.380 24.300 11.900	16 700 18 900 14 900 20 600 17 700 18 600 21 200 17 100 28 700 16 100	43 100 216 60 900 214 646 200 180 639 300 167 633 900 141 6	000 96 900 000 95 800 000 81,500
26 97.600 27 98.800 28 124.000 29 209.000 30 267.000 31 217.000	58.300 89.500 56.200 62.200 50.100 89.300 122.000 153.000 1:8.000	114 000 44 400 96 900 42 900 92 000 43 900 72 300 46 400 79 500 50 100 51 600	15 800 11 000 13 200 11 500 10 500 12 600 9 470 10 200	84 200 15 200 69 700 14 900 51 000 14 600 27 100 11 600 36 500 13 800 21 700	26 300 132 (35 800 120 (39 700 106 (32 500 81 . 35 300 74 .)	000 128.000 000 110.000 200 99.900
Average :79 300 Lowest 97 600 Highest 337 000	95.940 69.430 48.400 38.200 193.000 153.000	109 200 62 080 66 800 37,700 182 000 117,000	30 120 15 070 9 470 9 380 53 100 35 900	22 140 21 850 8 950 9 230 84 200 59 600	23 960 97. 8 190 16 6 60 900 231 (400 55 300
Peak flow 370 000 Day of peak 3 Monthly total (million cu m) 480.20	211 000 180 000 1 30 232.10 186 00	202 000 142,000 21 21 283,10 166 30	2 5	115 000 75 600 27 14 59 30 56 64	72 300 248 (22 20 64 17 252) 16
Runoff (mm) 48	23 19	28 17	8 4	6 6	6 25	
Reinfell (mm) 100	15 60	66 71	22 44	105 32	76 99	
Statistics of monthly	data for previous rec	ord (Jan 1883 to Dec	: 1985)			
Maan Avg. 127.000 flows: Low 18.570 (year) 1976 High 325.300 (year) 1915	124 100 105,400 12,310 9,434 1976 1976 342 000 359,500 1904 1947	74.790 54.080 8.981 4.393 1976 1976 188.800 171.700 1916 1932	37 600 23 730 3 301 2 080 1976 1921 171 600 72 280 1903 1968	22 230 23 /10 1 894 0 691 1976 1976 79 330 123 900 1931 1927	1934 19 179 800 334 (484 10 210 921 1933
Runoff: Avg. 34 Low 5 High 88	30 28 3 3 86 97	19 15 2 1 49 46	10 6 1 1 45 19	6 6 1 0 21 32	10 19 1 2 48 87	2 3
Reinfell: Avg. 64 Low 18 High 137	49 52 3 3 127 142	48 55 3 8 104 137	52 58 3 8 137 130	64 58 3 3 147 157	72 72 5 8 188 • 188	13
Summary statistics			1986	Factors affec	ting flow regime	
Masn flow (m³s=") Lowest yearly mean Highest yearly mean Lowest monthly mean Highest monthly mean Lowest daily mean Highest daily mean Peak	For 1986 69 550 15 070 J 179:300 Ja 8.190 18 00 337 000 3 Ja 370:000 3 Ja	ct 0.010 11 in 1059.000 18	As % of	Flow influen and/or rech Abstraction Flow reduce agricultural a Augmentati groundwate	i för public water : ed by industrial an abstractions, on from surface w	supplies. d/or vater and/or
10 %-lo 50 %-lo 95 %-lo Annual total (milkon cu m) Annual runoff (mm) Annual runofa (mm) [1941-70 runifall averag	157,900 53 680 10 540 2193 00 220 777	162 000 42,170 9,170 2111 00 212 717 723	97 127 115 104 104 108	operational be 18/1/86. Ove	gauging station vistween 26/12/85 or this period flow the Teddington V	and s were

Station and catchment description

Ultrasonic gauging station commissioned in 1974; multi-path operation from 1986. Full range. Pre-1974 flows derived from Teddington weir complex (70m wide); significant structural improvements have been made since 1883. US data led to revision of 1951-74 flows (in 1981). Substantial baseflow - sustained from the Chalk and the Oolites. Duily naturalised flows available for POR - allowance is made for major PWS abstractions only. Diverse topography, geology and land use which has undergone important historical changes.

Blackwater at Swallowfield 039007

1986

	ring aut aar. 195	hority: TWA			c	ind reference Level stn					Catchmer	ntarea (sq k Maxalt (m	
Daily	mean (gauged disc	harges (c	ubic metre	s per secon	d)							
DAY		JAN	FEB	MAR	APH	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC .
-		6 090	6 040	2 620	3 800	2 830	2 6 10	1 480	1 370	1 750	1.550	2 850	2 920
2		15 700	7.250	2 670	4 350	2 910	2 360	1 490	1 360	1 710	1 550	2 460	2 720
3		22 200	6.920	2 650	4 320	2 640	2 490	1 490	3 100	1 760	1 510		
4												2 390	2 710
		10 700	5 300	5 890	3 670	2 630	2 380	1 500	3 180	1 590	1 490	2 390	2 690
5		9 600	4 780	5 900	3 500	2 710	2 190	2 870	2 050	1 620	1 430	2 220	4 850
6		6 370	4 850	4 440	3 640	2 6 1 0	2 140	2 170	1 660	1 560	1 480	2 160	4 300
7		6 770	4 6 1 0	3 880	4 6 10	2 560	2 080	1 790	1 580	1 570	1 420	2.170	3 760
8		11 600	4 330	3 580	5 620	2 890	2 0 1 0	1 890	1 520	1 640	1 470	2 940	4 130
9		6 780	3 880	3 370	4 250	2 630	2 030	2 000	1 490	1 540	1 490	2 350	3 680
10		7 900	3 600	3 380	3 560	2 600	2 150	1 810	1 550	1 4/0	1 480	3 540	3 280
11		6 630	3 490	3 210	3 2 1 0	2 500	3 020	2 160	1 710	1 5 10	1 470	5 240	4 300
12		5 440	3 490	3 000	3 450	2 640	2 240	1 900	1 930	1 440	1 460 `	3 130	4 080
13		4 610	3 4 1 0	2 860	3 460	2 440	2 030	1 830	1 570	2 080	1 500	3 680	7 500
14		4 160	3 270	3 620	4 760	2 460	· 960	1 760	1 5 10	2 6 10	2 370	6 340	4 780
15		3 810	3 200	3 770	7 840	2 740	1 900	1 710	1 470	2 330	4 350	6 440	8 730
16		3 500	3 210	3 780	8 180	2 380	880	1 630	1 430	2.110	1 990	4 710	5 930
17		3 580	3 150	3 550	7 870	2 740	1 850	1 570	1 410	1 820	1 860	4 880	6 060
18		3 700	3 010	4 1 10	6 120	2 750	1 780	1 5 10	1 560	1 670	1 950	10 700	6 2 10
19		3 9 10	2 950	4.760	5 330	2 440	750	460	1 710	1 640	2 080	14.300	4 670
20		3.550	2 910	4 560	7 920	8 550	1 680	1 490	1 590	1 590	3 110	9 450	3 900
21		5 110	2 840	3 300	7 240	6 030	1 670	1 520	: 530	1 550	3 290	9 290	3.050
22		B 120	2 760	3.310	5 940	4 170	1 750	1 470	: 730	1 550	5 040	6 280	3 850 3.440
23		6 730	2 730	3 4 10	5 220	3 610	1 880	1 640	1 840	1 550	2 730	5 730	
24		4 700	2 680	6 180	4 580	3 080	2 0 7 0	1 960	.1 700	1 530	2 610	4 490	3 290 3 190
25		3 830	2 580	3.990	4 050	2 770	1 820	1 640	3 400	1 500	3 240	4.230	6 700
		A . bo											
26		3.470	2 520	3 770	3 820	2 620	1 680	1 530	6 380 2 840	1 490	2 350	4 250	4 9 10
27		5 3 1 0	2 540	3 650	3 520	2 470	1 600	1 470		: 530	3 080	3 590	3 980
28		6 840	2 530	4 420	3 320	2 430	1 580	1 480	2 240	1 520	2 930	3 290	3 690
29		17 900		4.510	3 100	2 330	1 530	1 570	1 920	1 520	2 800	3 180	3 5 7 0
30		9 540		4.730	2 890	2 220	1 520	1 490	1 870	1 530	2 500	2 990	6 8 10
31		6.650		4 490		2 340		1 4 10	1 820		2 390		6 460
Averag		7 252	3 744	3 9 15	4 77 1	2 99 1	1 988	1 700	2 001	1 676	2 257	4 729	4.551
Lowest		3 470	2 520	2 620	2 890	2 220	1 520	1 4 10	1 360	1 440	1 420	2 160	2 690
H ghos	ı	22.200	7 250	6 180	8 180	8 550	3 020	2 870	6 380	2 610	5 040	14 300	8 730
Pook fle		25 600	8 090	8 740	10 100	1:000	3 660	3 800	8 2 1 0	3 340	7 740	17 500	12 700
Day of	peak	3	2	24	16	20	11	5	26	14	15	18	15
Month		19 42	9 06	10 49	12 37	8 ()1	5 15	4 5 5	E 20	4.74	C 04	12.20	12.12
(milion	CO mij	19 42	300	10 49	12 37	801	5 13	4 55	5 36	4 34	6 04	12 26	12 19
Runoff		55	26	30	35	23	15	13	15	12	17	35	34
Rainfall	(mm)	122	20	52	69	60	23	46	92	25	77	102	84
Statis	tics of	monthly da	ta for pre	vious rec	ord (Oct 19	52 to Dec 19	85)						
Mean	Avg	4 646	4 102	3 84 1	3 039	2 575	2 023	1 459	1 503	1 815	2 488	3 336	4 056
flows	Low	1 758	1 687	1 323	1 521	1 08 1	0 766	0 711	0 723	0 638	0 907	1 262	1 298
	(year)	1954	1965	1953	1976	1956	1953	1953	1953	1959	1959	1964	1953
	High	8 000	7 292	6 898	5 600	5 946	6 472	236	2 622	6 609	7 613	8 019	7 022
	(yoar)	1975	1966	1979	1966	978	1971	1968	1977	1968	1960	1960	1960
					.000	0.0		.500		. 300	.500	.500	1300
Runoff		35	28	29	22	19	15	11	1:	13	19	24	31
	Low High	13 60	12 50	10 52	11 41	€ 45	6 47	5 17	5 20	5 48	7 57	9 59	10 53
	g				₹.			.,		-0	57	33	55
Rainfail		66	44	54	44	57	53	54	59	6/	69	73	74
	Low	15	5	3	3	8	5	18	17	3	6	18	18
	High	124	108	125	106	128	144	104	117	167	208	179	167
Sumn	nary st	atistics							Fact	ors affecti	ing flow re	gime	
			e.	× 1986		for record		1986 As%of	A A	omaniatio	a from affi	unnt entire-	
			r	J 1300	00	eceding 1986		re-1986	₹ A0	ginentatio	om em	uent return	3
64aaa 4	low im?e	,	3.	164	2 9		P	119					

2 902 1 466 3 777 0 638 8 019 Mean flow (m3s-1) 3 464 119 1953 1982 Lowest yearly mean Highest yearly mean 1 676 7 252 1 360 22 200 25 600 6 279 2 821 1 483 Sep 1959 Nov 1960 18 Aug 1953 16 Sep 1968 Lowest monthly mean Highest monthly mean Jan 2 Aug 3 Jan 3 Jan 0 464 39 200 41 000 5 497 2 126 0 869 Lowest daily mean Highest daily mean Peak 10 %ile 50 %ile 95 %ile 133 Annual total (million cu m) Annual runoff (mm) Annual rainfa'l (mm) [1941-70 rainfall average (mm) 9: 58 258 714 710] 109 20 308 119

Station and catchment description
Two Crump weirs (main 4 6m, side 2 7m wide) superseded original flume, plus side-spilling weir, in 1970. Minor bypassing of the side weir in flood conditions: overflows more frequent pre-1970. Some net import of water - sewage effluent augments flows. Exact delineation of the hydrological catchment is difficult. Chalk in the headwaters, clay, sands and alluvium in the valley. Substantial and expanding urban development in the catchment but large rural tracts remain; significant areas of heath and woodland.

039020 Coln at Bibury

1986

	ring auth ear: 1963	arity. TWA 3				t reference Level stn. (Catchmer	it area (sq k Max alt (m	
Daily	maan g	auged disc	charges (c	ubic metres p	er second)								
DAY 1 2 3 4 5		JAN 2 810 2 840 2 740 2 820 2 860	FEB 2.880 3.010 3.070 3.080 3.100	MAR 1.920 1.890 1.840 1.900 1.870	APR 1.790 1.830 1.860 1.880 1.890	MAY 2 010 1.980 1.930 1 920 1.900	JUN 1 720 1 680 1 650 1 610 1 560	JUL 1 050 1 030 1 030 1 020 1 040	AUG 0.764 0.748 0.767 0.769 0.735	SEP 0 751 0 740 0 730 0 711 0 706	OCT 0.613 0.614 0.623 0.615 0.623	NOV 0 688 0 699 0 712 0 711 0 737	DEC 2 470 2 410 2 320 2 250 2 210
6 7 8 9		2 860 2 940 3 000 2 970 3 040	3 080 3.020 3 000 2.950 2 890	1.800 1.760 1.750 1.730 1.670	1.910 1.930 2.020 1.950 1.890	1.860 1.840 1.820 1.780 1.750	1.510 1.500 1.460 1.470 1.470	1 050 1 010 0.980 0 945 0.928	0 720 0 715 0 723 0 714 0 762	0 700 0 703 0 707 0 689 0.678	0 617 0 610 0 607 0 606 0 603	0 729 0 719 0 733 0 809 0 879	2 150 2 100 2 210 2 130 2 040
11 12 13 14 15		3 040 3 070 3.090 3.120 3 070	2.860 2.810 2.740 2.670 2.660	1.680 1.620 1.600 1.590 1.560	1 870 1 860 1 860 1 850 1 820	1.700 1.700 1.650 1.740 1.830	1 430 1.380 1.360 1 330 1.310	0 924 0.932 0 905 0 898 0.908	0 843 0 790 0 749 0 751 0.724	0.677 0.667 0.702 0.717 0.697	0 602 0 603 0 602 0 593 0 568	0 881 0 860 0 898 1 050 1 150	2 200 2 260 2 410 2 470 2 820
16 17 18 19 20		3 020 2.940 2 890 2.850 2.760	2.610 2.510 2.450 2.390 2.330	1.550 1.530 1.520 1.500 1.480	1.810 1.740 1.790 1.820 1.930	1.700 1.710 1.680 1.630 1.780	1 290 1.300 1.280 1.260 1.230	0 860 0.854 0 850 0.842 0 838	0 727 0.721 0 726 0 704 0 694	0.674 0.668 0.667 0.662 0.657	0.559 0.564 0.575 0.595 0.632	1 210 1 350 1 520 1 680 1 800	2 810 3 020 3 150 3 180 3 200
21 22 23 24 25		2 680 2.680 2.570 2.460 2.420	2 250 2.230 2.180 2.130 2.100	1 450 1.450 1 480 1.650 1 510	1 940 2 030 2 050 2 090 2 090	1,770 1,730 1,710 1,730 1,740	1,220 1,220 1,200 1,190 1,140	0.804 0.800 0.804 0.798 0.786	0 695 0 696 0 694 0 685 0 824	0 658 0 659 0 645 0 640 0 644	0 667 0 684 0 606 0 667 0 670	2 080 2 270 2 400 2 510 2 640	3 180 3 050 2 990 2 910 2 880
26 27 28 29 30 31		2.410 2.430 2.500 2.690 2.660 2.730	2 090 2.060 2 040	1.490 1.530 1.730 1.760 1.790 1.810	2.110 2 100 2 100 2 090 2 070	1.760 1.780 1.810 1.780 1.740 1.730	1 090 1.080 1 070 1 050 1.040	0 777 0.773 0 782 0 783 0.791 0 784	0 904 0 865 0 811 0 796 0 782 0 766	0 640 0 645 0 638 0 644 0 624	0 663 0 660 0 658 0 651 0 663 0 681	2 690 2 650 2 610 2 540 2 520	2 780 2 680 2 600 2 560 2 640 2 570
Averag Lowest Highest		2 805 2 410 3 120	2 614 2 040 3.100	1 658 1 450 1.920	1 932 1 740 2 110	1 780 1 630 2 010	1.337 1.040 1.720	0 889 0 773 1 050	0 754 0 685 0 904	0 678 0 624 0 751	0 622 0 559 0 684	1 491 0 688 2 690	2 602 2 040 3 200
Peak fig Day of Monthly (million	peak y total	3.240 9 7.51	3.130 4 6.32	2.000 1 4.44	2.140 28 5.01	2 080 1 4 77	1 750 1 3 46	1 110 6 2 38	0 924 25 2.02	0 775 2 1 76	0 756 25 1 67	3 040 23 3 86	3 330 21 6 97
Runoff Rainfall	(mm)	70 110	59 13	42 73	47 82	45 100	32 21	22 48	19 131	16 20	16 72	36 115	65 110
				vious recor				-0	131	20	,,	115	710
Mean flows	Avg Low (your) High (your)	2.030 0.374 1976 3.196 1982	2.333 0.380 1976 3.616 1977	2 180 0 383 1976 3 385 1977	1 747 0.371 1976 3 415 1979	1 329 0.334 1976 2 599 1983	1 139 0 290 1976 2 290 1979	0 867 0 243 1976 1 397 1985	0 688 0 207 1976 1 085 1985	0 596 0 202 1976 0 908 1968	0 660 0 259 1976 1 299 1968	1 001 0 344 1973 2 714 1967	1 582 0 375 1975 3 016 1965
Runoff	Avg. Low High	51 9 80	53 9 82	55 10 85	42 9 83	33 8 65	28 7 56	22 6 35	17 5 27	14 5 22	17 7 33	24 8 66	40 9 76
Reinfell	Avg Low High	73 18 126	59 8 159	68 19 143	49 5 109	71 23 161	62 9 158	57 15 120	68 23 149	72 17 149	61 8 171	75 34 163	87 25 159
Sumn	nary sta	tistics							Facto	ors affecti	ng flow re	gime	
Lowest Highest	i yearly m Yearly m	iean Iean	1 5	or 1986 591	prece 1 34 1 0 399 1,771		1976 1966	1986 As % of re-1986 119		w influence d/or rechai	ad by groun ge.	dwater ab:	straction
Highest Lowest Highest Poak 10 %ild 50 %ild 95 %ild Annual Annual	total (mil runoff (m reinfell (n	mean an ian leon cu m) em)	2 6 0 5 3 2 3.3 2.8 1.6 50 470 899		0.202 3.616 0.190 4.870 5.000 2.610 1.094 0.384 42.32 397 802 823	Fei 23 Au 22 De 22 De	0 1976 b 1977 g 1976 c 1965 c 1965	108 148 161 119 119					

Station and catchment description
Crump weir (9.1m broad). Modular throughout the range. Some overspill onto floodplain before design capacity reached. Very limited impact of artificial influences on river flows. Baseflow dominated flow regime. Pervious (Oolitic Limestone) catchment on the dip-slope of the Cotswolds, predominantly rural.

Medway at Teston 040003

1986

Moasur First yo		hority; SWA 56			Grid		e: 51 (TQ) n (m OD).				Catchmen	nt area (sq.ki Max alt. (r	m) 1256.1 n OD): 267 _e
Daily r	maan (gauged dis	charges (d	cubic metres (per second)								
DAY		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1 2		22.720 102.100	30 281 38 123	4.841 5.234	19 4 19 13 97 1	8.200 8.347	6 775 4.357	2.309 2.455	1.896 1.763	2 149 2.167	1 862 1.999	6 624 6 771	6.922 6.043
3		127.116	22.354	4.824	10 802	7.310	4.337	3.566	3.449	2.107	1.928	3 170	5.716
4		86 320	21.786	15 505	9 090	6 659	4.302	2.941	4 459	2 014	1.803	5 923	5 788
5		70 960	17.566	34.429	8 844	6.972	3 969	3.184	2.437	1.937	1 694	2 549	10 726
6		40 130	15.000	23.420	8 620	7.904	3 106	3.861	1.813	1.795	1 705	3 636	21.503
ÿ		28.350	12.969	13 504	15 700	7.819	3.413	3.801	2 026	1.793	1.785 2.629	2 625 3 504	21 597 12 660
8		56 300	11,742	10.470	21.675	6 942	3 142	2 705	1.891	1.793	2 550	4 758	10 837
9		41 070	10 494	9 504	14 257	6 620	3.192	2 734	1 756	1 895	2.104	5 467	8 908
10		55 240	8 907	10.898	11.407	6 864	3 9 19	2 6 1 7	1.799	1.787	1617	4 9 1 5	7 455
11		30 360	8 663	7.946	8 628	6 775	6.032	2 837	2 2 1 2	1 795	1 783	7 723	8 704
12		20 310	8 348	7 298	B 777	6 046	3 632	2 788	1.599	1.708	1 885	5 684	9 123
13 14		16.480	8.204 8.320	6.166	9 421	6 481	3 064	2.343	2.403	2 447	2 034	6 589	36 664
15		13.530 11.480	7.582	5 767 4 635	10 620 16 588	5 870 5 822	3.982 2.843	2 381 2 238	1 790 1 452	4 268 5.060	3 485 8 443	10 111 19 933	20 406 43 612
16		10 170	7.156	5.012	18 671	5 151	2 843	2.103	1.690	5 526	2 675	13.368	35 937
17 18		9 862 10 140	7 088 6 750	4 503 4 452	23 176 23 709	5 246 4 834	2.915 2.866	1.906 1.887	1 734 1 830	2 472 2.247	2 186 2 479	20 780 32 720	26 459 39 047
19		11 550	6.34	8.051	15 092	4 796	2 883	1 821	2.040	1 981	2 826	84 222	22 038
20		10 640	5.982	6 906	41 948	5 156	2.898	1.873	1 834	1 893	5 6 1 5	86 953	14 457
21		11 870	5.746	7 112	26 407	E 061	2 76 1	1.045	2.002	1.000	£ 003		
22		23.110	5.746	7 849	26 497 38 479	5 961 5 640	2.761 2.934	1 B45 2 560	2 063 1.950	1 989 1.906	5 987 11 837	121 086 87 425	11 288 9.400
23		24 090	5.482	11.152	27 220	6719	3 274	1 530	2.307	1 9 19	7 276	34 9 18	8 632
24		13 670	5.362	42 268	22 704	5 849	3 0 1 3	2 365	2 450	1.920	4 066	23 0 15	7 863
25		9.737	5.089	17.250	15 290	4 435	3 024	1.680	6.854	1 9 1 4	9 368	16.871	25 762
26		8.905	4 590	11,336	14 040	4 135	2 850	1.996	10.295	1 874	5 365	14,919	25.484
27		12.950	4.411	11 364	22 963	3 863	2 684	1 962	4 200	1.678	3 370	11 158	15 4 14
28		22.320	4.793	18 382	16 07 1	3.936	3 003	2 291	2 300	1.639	5 544	9 488	11960
29 30		71.720 88.520		16 777 26.693	10 468	4 354 4 286	2 176 2 796	1 944 2.403	2.347	1.781	11 960	8 396	10 990
31		43.240		31 499	9 097	4 689	2 /90	1 635	2 139 2.084	1 865	5 38 1 3 450	7 542	17 187 21 301
						- 000		. 555	2.00-		5 450		50 .
Average	•	35 640	10.870	12.740	17,110	5.925	3 450	2.383	2.608	2 244	4 096	22.310	16 720
Lowest Highest		8.905 127,116	4,411 38,123	4.452 42.266	8 620 41.948	3 863 8 347	2 176 6.775	1.530 3.861	1.452 10.295	1 639 5.526	1 6 1 7 1 1 960	2.549 121 086	5 716 43 612
Peak flo Day of p Monthly	ocak r total	ar .a	00.00										
(million	cu mj	95 47	26.29	34 13	44 34	15 87	8 94	6 38	6.99	5 82	10.97	57 82	44 79
Runoff (Rainfall		76 120	21 20	27 64	35 69	13 49	7 19	5 39	6 74	5 39	9 90	46 116	36 84
Statist	tics of	monthly d	ata for pre	evious recor	rd (Oct 1956	i to Dec 1	985—inco	emplete or m	issing moni	he total 1.5	years)		
Mean flows:	Low	22.370 4.910	19 290 5.296	14 930 3.381	10 500 2 326	7 140 1 749	4 891 1 139	2 870 1 116	3.387 0.577	5 098 1 066	7 477 1 402	15 570	19 940
	lyear)	1973	1981	1976	1976	1976	1976	1976	1976	1959	1972	2 34 1 1978	4 361 1971
	High	45.360	49 150	31 600	23 470	20 820	21 690	7 550	9 877	30 080	37 860	66 830	37 330
	(year)	1975	1957	1975	1983	1978	1964	1980	1985	1968	1960	1960	1965
Runoff:	Ava	48	37	32	22	15	10	6	7	11	16	32	43
	Low	10	10	7	5	4	2	2	1	2	3	5	9
	High	97	95	67	48	44	45	16	21	62	81	138	80
Rainta#:	Ava.	72	50	57	48	55	55	52	59	72	73	82	84
	Low	13	3	3	7	21	8	20	10	5	5	14	23
	High	135	123	113	108	112	127	103	122	183	185	169	168
Summ	ary st	atistics							Fact	ors affect	ina flow c	eaime	
•	,							1986	7 8 0 1	OF B 0110C(ing now i	aAiiia	
			F	or 1 986		or record		As % of		servoir(s)			
Moon file	ow (m³e	. = 11	11.5	350	preco 11 080	eding 1986 V	ŗ	re-1986 102				ndwater ab	straction
Lowest				350	7.584		1962	102		d/or recha estraction i		water suppl	ies
Highest					19.330		1960		- / "		o poome	локо. зорр	
Lowest				244 Sen			ug 1976						
Highest Lowest			35 6	540 Jan 452 15 Aug			ov 1960 ep 1973						
Highest			127.				ov 1960						
Peak					294 500	4 N	ov 1960						
10 % de			24 9		25.150			99					
50 %ile 95 %ile				336 783	5.121 1.453			114 123					
		illion cu m) ,	357		349.70			102					
Annual	runoff (r	mm)	28	5	278			102					
Annual :		mm) nfall average	78.	3	759 758)			103					
[134		a a sarada	, = ,		758)								

Station and catchment description
Crump weir plus a sharp-crested weir (the top of a flood gate) - superseded an insensitive broad-crested weir. Flows in excess of about 27 cumes are measured at a well calibrated velocity-area section 2km d/s (East Farleigh). The Teston calibration makes an allowance for lock spills. Some monthly naturalised flows available (1956-68, accounting for the operation of Weir Wood reservoir). A predominately impervious (Hastings Beds) catchment; very responsive to rainfall. Mixed land use with significant areas of woodland and orchard.

041016 **Cuckmere at Cowbeech**

	ring auth ear: 193!	ority. SWA 9			Gric	i reference. Level stn					Catchme	ent area (sq Max alt. (m	
Daily	mean g	auged dis	charges (co	ubic metres p	er second)								
DAY		JAN	FEB	MAH	APR	MAY	JUN	ж	AUG	SEP	120	NOV	DEC
1 2		1 747 5.461	0 446 0 584	0 115 0 105	0 548 0 391	0 218 0 209	0.08	0 040 0 039	0 027 0 025	0 027 0 027	0 029 0 024	0 210 0 100	0 162 0 157
3		2 670	0 450	0 101	0 372	0 200	0 104	0 035	0 040	0.026	0 024	0 070	0 139
4 5		1.467 4.454	0 364 0 330	0 9 8	0 358 0 345	0 190 0 181	0 090 0 079	0 036 0 044	0 031 0 028	0 024 0 023	0 024 0 026	0 068 0 055	0 129 0 257
6 7		0.755 1.428	0 303 0 284	0 435 0 293	0 332 0 320	0 172 0 156	0 075 0 073	0 041 0 038	0 027 0 030	0 023 0 023	0 024 0 024	0 050 0 042	0 272 0 221
8		1.738	0 270	0.251	0 308	0 139	0 0 / 1	0 037	0 027	0 022	0 024	0 079	0 193
9 10		0.769 1.389	0 228 0 218	0 243 0 219	0 297 0 285	0 143 0 149	0 070 0 068	0 035 0 041	0 026 0 025	0 027 0 023	0 024 0 024	0 066 0 059	0 201 0 199
11 12		0.671 0.516	0 216 0 208	0 196 0 193	0 2/5 0 265	0 135 0 154	0 102 0 074	0 042 0 038	0 026 0 026	0 022 0 022	0 024 0 025	0 09 1 0 068	0 220 0 269
.3		0 471	0 195	0 196	0 256	0 138	0 068	0 036	0 026	0 034	0.024	0 107	1 171
14 15		0.381 0.303	0 197 0 176	0 178 () 166	0 248 0 240	0 128 0 136	0 060 0 057	0 034 0 033	0 026 0 025	0 032 0 074	0 088 0 073	0 136 0 204	0 772 2.071
16		0.272	0 174	0 175	0 228	0 1 18	0 055	0 031	0 025	0.041			
7		0.272	0 175	0.170	0 200	0 117	0 056	0 030	0 025	0 041 0 035	0 034 0 030	0 155 0 270	0 630 0 856
18 19		0 252 0 485	0 164 0 146	0 183	0 196	0 113 0 107	0.050	0 030	0 026	0 032	0 027	1 231	0 721
20		0 319	0 149	0 191 0 220	0 832 0 845	0 117	0 048 0 045	0 030 0 031	0 026 0 024	0 028 0 027	0 026 0 099	3 077 3 989	0 423 0 310
21		0.748	0 125	0 181	0 576	0 112	0 044	0 031	0 025	0 027	0 092	1 032	0.274
22		0 953	0 137	0 345	0 459	0 103	0 049	0 031	0 025	0 027	0 126	0 390	0.27
23 24		0 583 0 358	0 133 0 122	0 627 1 223	0 326 0 301	0 1 39 0 107	0 052 0 047	0 033 0 030	0 027 0 026	0 027 0 025	0 049 0 045	0 421 0 378	0 202 0 179
25		0.294	0 111	0 403	0 286	0 099	0.043	0 032	0 090	0 024	0 089	0 366	0 804
26		0 270	0 102	0 271	0 272	0 095	0 04 1	0 033	0 063	0.025	0 045	0 283	0 376
27		0 325	0 111	0 428	0.260	0 091	0.038	0.032	0.037	0 025	0 067	0 220	0 260
28 29		0.358 1.788	0 110	0 669 0 564	0 249 0 238	0 129 0 100	0 038 0 038	0 031 0 030	0 034 0 031	0 026 0 029	0 159 0 105	0 196 0 183	0 236 0 218
30		0 906		1 474	0 228	0 090	0 038	0 028	0.030	0 030	0.080	0 163	1 236
31		0 436		1 460		0 097		0.028	0 028		0 088		1 072
Averag		1.059 0.252	0 222	0 424 0 101	0.344	0 135	0 063	0 034	0 031	0 029	0.053	0 459	0 467
Lowest Highest		5 461	0 102 0 584	1 474	0 196 0 845	0 090 0 218	0.038 0.108	0 028 0 044	0 024 0 090	0 022 0 074	0 024 0 159	0 042 3 989	0 129 2 07 1
Poak fic	nw.	15.530	0 698	4 024	2 332	0 223	0 142	0 059	0 195	0 132	0 341	18 769	5 299
Day of	peak	5	2	23	19	1	11	10	25	15	28	20	15
Monthly Imition		2 84	0 54	1.14	0 89	0.36	0 16	0.09	0.08	0 07	0 14	1 19	1 25
Runoti	(mm)	152	29	61	48	19	9	5	4	4	8	64	67
Reinfall		168	23	98	64	51	18	24	64	41	120	156	117
Statis	tics of	monthly d	ata for pre	vious recor	d (Jan 1968	to Dec 19	85—incor	mplete or mi	issina monti	ns total 0.2	vears)		
Mean		0.425	0.348	0 266						•		0.370	0.242
flows:	Avg Low	0.425	0.346	0 053	0 159 0 027	0 110 0 018	0 074 0 009	0 048 0 013	0 044 0 009	0 066 0 013	0 149 0 0 14	0 279 0 013	0 342 0 031
	(year)	1973	1981 0.755	1973	1976	1976	1976	1976	1976	1978	1978	1973	1971
	High (year)	0 803 1984	1974	0 574 1981	0 363 1983	0 286 1983	0 393 1971	0 322 1980	0 230 1985	0 394 1974	0 500 1982	0 854 1974	O 695 1984
Runoff	Ava	61	45	38	22	16	10	7	6	9	21	39	49
	Low	13	9	В	4	3	1	2	Ĭ	2	2	2	4
	High	1 15	98	82	50	41	54	46	33	55	72	118	100
Ra nfall		90 25	61 26	68 22	48 3	60 21	65 12	54	65 7	85	83	101	94
	Low High	. 168	155	137	109	114	155	16 119	144	9 222	5 195	19 199	21 184
Sumn	nary sta	tistics							Facto	ors affecti	ng flow re	aime	
•	,		_		_			1986			_	•	
			Fo	: 1986		or record ading 1986		\s%of re-1986		w influence I/or rechar		dwater abs	traction
	low (m ³ s: : yearly m		0 2	78	0 197		1973	145	● Ab	straction f	or public w	rater suppli	es
	yearly m				0 050 0 278		1973						
	monthly		0.0		0 009		1976						
	: monthly I daily me		1.0 0.0		0 854 0 003		/ 1974 1 1976						
	I daily me	an	5.4	61 2 Jan	6 658	i 14 Jar	1968						
Polak 10 % i'o)		19 7 0 6		17 790 0 442		19/9	143					
50 %#c			0.1	18	0 08 1			146					
95 % de Annuel		lion cu m)	0.0. 8	25 76	0 0 1 2 6 0 5			206 145					
Annual	runoff (m	im)	468		324			145					
	rainfall (n Na 11-70	nm) ifall av e rage	944 (mm)		874 821]			108					
•		J.:			,								

Station and catchment description

Asymmetrical compound Crump weir (crests: 2.13m and 2.97m broad) with crest tapping - not currently used. Structure capacity exceeded in large floods. Early data (1939-67) is of poorer quality and relates to low flows only. Catchment is substantially natural but flows are diminished by water supply offtake upstream of the gauging station. A rural catchment developed on mixed geology (Hastings Beds predominate)

Itchen at Highbridge+Allbrook 042010

1986

				•	•							
Measuring aut First year: 19!		L		Grii	i reference Level sin					Catchme	ntarea (sq.) Max alt. (m	
Daily mean	gauged dis	charges (co	ubic metres (per second)								
DAY	JAN	FEB	MAR	APR	MAY	NUL	JUI	AUG	SEP	OCT	NOV	DEC
1 2	6.479	8 124	6 951 6 914	6.414	5 / 10	5 6 1 4	4 160	4 070	4 037	3 328	3 686	5 114
3	7.779 7.562	8 137 7 998	6 790	6 24 7 6 303	5 622 5 795	5 432 5 393	4 089 4 067	4 096 4 639	3 974 3 937	3 356 3 343	3 599 3 582	5 325 5 280
4	7.092	7 833	7 073	6.206	5 9 1 8	5 373	4 067	4 5 1 9	3 846	3 305	3 574	5 277
5	7.248	7 775	7 244	6 146	6011	5 206	4 849	4 280	3 803	3 312	3 534	5 534
6	7 006	7 806	6 940	6 175	6 0 1 3	5 182	5 0 1 8	4 125	3 795	3 275	3 437	5 594
7	7 2 1 8	7 870	6 831	6 159	5 837	5 167	4 476	4 333	3 775	3 2 1 9	3 4 7 9	5 550
8	7 836	7 802	6 795	6 242	5 905	5 142	4 602	4 121	3 704	3 2 / 6	3 5 7 8	5.839
9 10	7 398 8 398	7 66 1 7 569	6 777 6 693	6 127 6 039	5 902 5 879	5 111 5 130	4 511 4 490	3 975 4 042	3 713 3 618	3 307 3 318	3 587	5 B24
	0 000	. 503	0 000	0 033	5 075	3 130	4 430	4 042	2010	3 3 10	4 16:	5.691
1 1 12	8 042	7 453	6 644	5 905	5 877	5 231	4 464	3 899	3 661	3 245	4 355	6 188
13	7 833 7 636	7 473 7 5 14	6 531 6 455	5 961 6 015	5 876 5.831	5 140 5 014	4 488 4 430	3 864 3 798	3 681 3 876	3 329 3 313	4 090 4 466	6 136 6 723
14	7 669	7 570	6 329	6 274	5.790	4 839	4 4 1 2	3 772	3 944	3 536	4 636	6 245
15	7 660	7 550	6 265	6 339	6.004	4 696	4 276	3 690	4 125	3 9 1 5	4 627	7 4 1 9
16	7 704	7.536	6 272	6 3 1 2	5 672	4 587	4 340	3 637	3 864	3 508	4 563	6 989
17	7.748	7 5 18	6 261	6 182	5 871	4 546	4.026	3 628	3 67 1	3 400	4 606	6 976
18	7 769	7 487	6 295	6 080	5 868	4 636	4 081	3 679	3 474	3 4 1 2	5 464	7 165
19 20	7 772 7.789	7.354 7.262	6 459 6 523	6 058 6 536	5 626 6 585	4 577 4 469	3 992	3 757	3 529	3 498	6 723	6 806
	7.703	, 101	0 323	0 550	0 303	4 403	4 09 1	3 721	3 544	3 472	6 137	6 700
21	8.017	7 273	6 402	6.679	6 449	4 58 1	4 110	3 686	3 531	4 186	6 239	6 769
22 23	8.841 8.676	7 266 7 200	6 373 6 52 ۱	6 502 6 461	6 130 6 038	4 669 4 834	4 019 4 053	3 714 3 958	3 576	3 974	5 793	6 746
24	8 197	7.123	6 995	6 265	5 839	4 926	4 251	4 024	3 654 3 554	3 774 3 834	5 699 5 608	6 875 6 807
25	7.907	7.087	6 632	6 116	5 795	4 785	4 118	5 27 1	3 347	4 001	5 672	7 437
26	7.753	7 019	6 305	5 965	5 757	4 499	4 026	5.718	3 434	3 75 1	5 604	7 228
27	7 739	6 929	6 383	5 894	5 582	4 346	4 024	4 648	3 407	3 856	5 448	6 952
28	8 042	6 808	6 491	5 843	5 5 7 5	4 257	4 106	4 433	3 435	3 670	5 355	6 8 7 8
29 30	8 966 8 643		6 527 6.689	5 824 5 815	5 547 5 446	4 237 4 134	4 070 4 216	4 285 4 090	3 362	3 607	5 366	7 070
31	8 213		6 497	3 6 1 3	5 548	4 134	4 154	4 056	3 337	3 622 3 619	5 340	7 522 7 777
•	3.007	3.503										
Average Lowest	7 827 6 479	7 503 6 888	6 608 6 26 1	6 169 5 8 1 5	5 848 5 446	4 858 4 134	4 261 3 992	4 114 3 628	3 674 3 337	3 534 3 219	4 734 3 437	6 466 5 114
Highes:	8 966	8 137	7 244	6 6 7 9	6 585	5 614	5 018	5 7 18	4 125	4 186	6 723	7 777
Peak flow												
Day of peak												
Monthly total												
(milkon cu m)	20 96	18 15	17 70	15 99	15 66	12 59	1141	11 02	9 52	9 47	12 27	17.32
Runoff (mm)	58	50	49	44	44	35	32	31	26	26	34	48
Ra nfall (mm)	133	12	66	70	77	23	50	108	25	89	143	121
Statistics of	monthly d	ata for pres	vious recor	d (Oct 1958	to Dec 19	R51						
					500 .5							
Mean Avg Fows Low	6 574 4 208	7 213 4 162	7 054	6 539	5 752	4 B93	4 169	3 874	3 743	4.163	4 865	5 752
flows Low (year)	1976	1964	3 644 1976	3 203 1976	3 093 1976	2 582 1976	2 474 1976	2 331 1976	2 669 1973	2 702 1959	2 840 1973	3 136 1973
High	10 520	10 850	9 923	8 521	7 312	6 550	5 2 1 9	5 245	5 128	7 867	9 857	10 860
(year)	1969	1969	1977	1969	1966	1979	1979	1979	1968	1960	1960	1960
Runoff: Avg	49	49	52	47	43	35	31	29	27	31	35	43
Low	31	29	27	23	23	19	18	17	19	20	20	23
High	78	73	74	61	54	47	39	39	37	- 59	71	81
Rainfok: Avg.	92	56	83	43	72	63	55	58	86	72	80	91
(1971- Low	39	19	24	2	19	10	22	18	19	30	31	25
1985) High	159	137	172	97	131	113	87	120	195	177	197	153
Summary st	atistics							Facto	ors affecti	na flow re	aime	
		_		_			1986			-	-	
		FO	1986		r record ding 1986		ts% of e 1986		w influence I/or rechar		dwater abs	straction
Mean flow (m³s		5 4	56	5 3 / 3	,		102				ater suppli	es
Lowest yearly r				3 708		1973				from surf	ace water	and/or
History constitue		3 53	34 Oct	6 594 2 331	Aug	1960 1976		gro	undwater			
				10 860		1960						
Lowest monthly Highest monthly	у глевп	7 87			24 800	1976						
Lowest monthly Highest monthly Lowest daily m	y mean	3.2		2 167								
Lowest monthly Highest monthly Lowest daily mi Highast daily m	y mean			12 800	29 Jan							
Lowest monthly Highest monthly Lowest daily m Highast daily m Peak	y mean	3.2	56 29 Jan				97					
Lowest monthly Highest monthly Lowest daily m Highast daily m Peak 10 %) e 50 %) e	y mean	3 2 8 96 7 5 5 5	36 29 Jan 72 56	12 800 7 778 4 940			112					
Lowest monthly Highest monthly Lowest daily m Highlast daily m Peak 10 %i e 50 %i e 95 %i e	y mesen Dan Gan	3 2 8 96 7 5 5 55 3 33	36 29 Jan 72 56 36	12 800 7 778 4 940 3.097			1 12 1 10					
Lowest monthly Highest monthly Lowest duily m Highiest daily m Peak 10 %ile 50 %ile 95 %ile Annual total (m	y meun pan ean ill.on cu m}	3 2 8 96 7 5 5 5	29 Jan 72 56 96	12 800 7 778 4 940			112					
Highest yearly r Lowest monthly Highest monthly Lowest delly m Highest delly m Peak 10 %i e 50 %i e 95 %i e Annual total (m Annual runoff (r Annual runoff)	y mean ean ean ill.on cu m) nm)	3 2 8 96 7 5, 5 55 3 33 172 478 917	36 29 Jan 72 56 36	12 800 7 778 4 940 3.097 169 60			112 110 101					

Station and catchment description

Crump weir (crest 7.75m broad) installed in 1971 (superseded a velocity-area station which suffered severely from weedgrowth) plus a rectangular thin-plate weir at Allbrook Peak flows not derived. Local bypassing occurs at Allbrook during exceptional discharges. The groundwater catchment substantially exceeds the topographical catchment area. Artificial influences have a minor impact on flows, small net export of water. Very permeable catchment (90% Chalk). Land use is mainly arable with scattered urban settlements.

Avon at Amesbury 043005

Measuring aut First year: 196		A		Gric	d reference Level stn.					Catchmer	nt area (sq k Max alt. (m	
Daily mean	gauged dis	charges (c	ubic metres p	per second)								
DAY	MAL	FEB	MAR	APR	MAY	JUN	м	AUG	SEP	OCT	NOV	DEC
1 2	5 382 8.831	7.877 7.662	4 891 4 824	4 485 4 405	3 9 19 3 9 9 7	3.783 3.714	2.518 2.479	1.855 1.774	1.795 1.773	1 504 1 465	1 692 1 778	3 559 3 566
á	5.930	7.633	4.736	4 448	4 077	3.714	2.446	1.968	1.762	1.465	1 721	3 565
4	5.590	7 348	4 806	4.312	4 270	3 691	2.534	2 053	1.710	1 467	1 643	3 555
5	6.635	7 222	4 863	4 161	4 479	3 657	2.743	1 929	1.686	1 440	1 626	3.631
6	5.893	7.170	4 787	4 147	4 466	3 623	2.678	1.914	1.696	1 426	1 619	3 837
7	5 684	7 083	4 686	4 220	4 5 1 3	3 556	2.581	1 879	1.649	1 387	1 589	3 853
8	5.987	6.981	4 6 1 8	4 247	4 529	3 522	2.548	1.820	1.719	1 4 1 6	1 602	4 634
9 10	5.826 6.710	6.871 6.766	4 672 4 696	4.109 4.000	4 396 3 911	3 489 3 562	2 504 2 484	1 793 1.835	1 636 1,574	1 400 1,424	1 694 1 845	5 223 4.581
											. 040	50
11	6.832	6 665	4 582	3 890	3 663	3 63 1	2 486	1 831	1 587	1 401	2 280	5 287
12 13	6.427 8.288	6.627 6.566	4 515 4.457	3 911 3 951	3 643 3 603	3 549 3 465	2.501 2.450	1.875 1.858	1.554 1.780	1 408 1 406	2 279 2 296	5.875 6.150
14	6.230	6.454	4.395	4 151	3 726	3.331	2.404	1.822	2.007	1 452	2 928	5 780
15	6.048	6 327	4.377	4 760	4 396	3 245	2 341	1 769	2 107	1 446	4 238	6 758
16	8 053	6 223	4.354	4 736	3.938	3.131	2.262	1 744	1 9 10	1 420	3 203	8 304
17	6 093	6 098	4 269	4 617	3 944	3 107	2 088	1 713	1 774	1 407	2 860	7 079
18	6 129	5 924	4.245	4 559	4 269	3 061	2 172	1.770	1.626	1 423	3 182	7 267
19 20	6.129 5.931	5.789 5.721	4 282 4.276	4 452 4 831	4 076 5 156	3 057 3 025	2 095 2 083	1 729 1 662	1 595 1 572	1 471 1 590	4 173 4 217	7 027 6 819
		J. 7 L .	4.270	- 05 .	3 .50	3 023	2 003	. 002	1372	1 330	~ 217	0 0 13
21	6 168	5 633	4,165	4 865	5 327	2 975	2 09 1	1 680	1 559	1 65 1	5 076	6 739
22 23	6 859 7 356	5 477 5 416	4.210 4.365	4 758 4 570	4 800 4 390	2 975 3 002	1.998 2 086	1 700 1 8 1 2	1 559 1.559	1 944 2 022	4 41/ 4 249	6 659 6 564
24	6 700	5 269	5 274	4 429	4 190	2 981	2 044	1 784	1 566	1 830	4 236	6 56 1
25	6 2 1 7	5 09 1	4.642	4 321	4 059	2 996	2 063	2 224	1.515	1.738	3 890	7 4 1 5
26	5.970	5 027	4 5 1 1	4 194	3.976	2 9 1 4	2 038	2.780	1.513	1 680	4 399	7 620
27	6.144	4.934	4 493	4 065	3 888	2 656	1.997	2.591	1,492	1 550	4.176	7 050
28	6 492	4 933	4 596	3 990	3 808	2 861	2 001	2.240	1 492	1.698	3 839	6 853
29 30	9 406 10 289		4.596 4.758	3.936 3.807	3 745 3 707	2 693 2 539	1 863 1 861	2.117 1.973	1 482 1.504	1 687 1 674	3.731 3.633	6.796 7.279
31	9 025		4 728	5.007	3 743	2 000	1.854	1.890		1 659	3 000	7 338
A	6.557	6.314	4.570	4 3 1 1	4 149	3.250	2.268	1.916	1.658	1 547	3 004	5.910
Average Lowest	5.382	4.933	4.165	3 807	3 603	2.539	1.854	1.662	1.482	1 387	1.589	3 555
Highest	10.289	7.877	5.274	4.865	5.327	3.783	2.743	2.780	2.107	2 022	5 076	8.304
Peak flow	12 095	8 241	5 976	5 358	5 794	3 794	4.561	3 405	2.204	2 147	5 575	9 575
Day of peak	30	1	24	15	20	1	29	26	15	23	21	16
Monthly total	13.56	15.33	12.24			0.40	6.03		. 20		3.30	
(million cu m)	17.56	15 27	12.24	11,17	11 11	8 42	6 07	5.13	4 30	4 14	7.79	15 83
Runoff (mm)	54	47	38	35	34	26	19	16	13	13	24	49
Rainfall (mm)	114	9	63	64	89	21	47	107	41	74	118	114
Statistics of	i monthly d	lata for pre	vious recor	d (Feb 1965	to Dec 19	85)						
Moon Avg.	5 287	5 955	5 605	4 525	3 482	2 703	2 014	1 709	1 606	1 9 10	2 577	3 941
flows: Low	1 199	1 187	1 158	1 039	0 834	0 626	0 475	0 372	0 644	1 149	1 090	1 385
(year)	1976	1976	1976	1976	1976	1976	1976	1976	1976	1970	1973	1975
High (year)	8 555 1982	9 686 1977	8 352 1972	7 587 1979	5 146 1979	4 260 1979	3 02 1 197 1	2 362 1979	2 528 1974	3 52 1 1966	6 440 1974	7 260 1982
Runnif: Avg Low	44 10	45 9	46 10	36 8	29 7	22 5	17 4	14 3	13 5	16 10	21 9	33 11
High	7:	72	69	61	43	34	25	20	20	29	52	60
Devetell Ave	78	54	68	44	62	58	49	62	71	66	75	88
Re∙nfall, Avg. Lo w	18	6	14	1	24	3	15	22	11	4	75 31	26
High	134	134	150	100	121	143	113	152	179	161	185	160
Summary st	tatistics							Facti	ors affecti	ng flow re	aime	
•		_		_			1986			•	•	
		Fo	r 1986		or record eding 1986		ls % of re-1986	● Nat	ural to with	nin 1096 au	95 percent	ile flow
Mean flow (m ³	s ^ 1)	3.7	75	3 430		P.	110				Jo porcont	
Lowest yearly				1 431		1976						
Highest yearly Lowest month!		1.5	47 Oct	4 476 0 372		1977 g 1976						
Highest month		6.5				1977						
Lowest daily m	neen	1.3		0 175		g 1976						
Highest daily if Posk	neen	10 2		15 540		1977						
Posk 10 %do		12.0 6.6		17 330 6 609		1982	100					
50 %≠e		3.7	69	2 823	1		134					
95 %#e	ll-=- c>	14		1 153			128					
Annual total (m Annual runoff (119. 368		108 20 334	,		1 10 1 10					
Annual rainfall	(mm)	861		775			111					
[1941-70 ra	anta'i averege	{mm}		764)								

Station and catchment description
Compound structure; Grump crest (9.14m broad) flanked by broad-crested weirs. Small bypass channel approx. 2m upstream of weir - included in rating. Full range station. Bankfull - 1,37m. During the summer flows are naturally augmented from groundwater draining from the northern half of the River Bourne catchment. Topographical and groundwater catchment areas do not coincide. Predominantly permeable (Chalk) catchment with a small inlier of Upper Greensand and Gault. Land use - rural.

045001 Exe at Thorverton

1986

Measur First ye		hority: SWV 56	WA		Gri	d reference Level stn					Catchme		km): 600 9 m OD): 519
Daily	mean	gauged dis	scharges (d	cubic metres	per second)								
DAY		NAL	FEB	MAR	APR	MAY	JUN	ж	AUG	SŁP	OCT	NOV	DEC
1 2		38.812	19 770	4.077	29 05 1	11.337	7 065	4 403	3.838	11 067	3 438	38 575	24.090
3		35 589 30 533	18 295 16 835	3.712 3.853	25 143 20 866	10 420 9 945	6 453 6 151	3 974 3 720	4 230 3 531	10 150 10 468	3 284 3 150	30.918 28 008	20 5 1 4 17 10 6
4		37 731	14 968	1 932	17 275	12 792	5 756	4 148	3 701	8 184	3 082	22.502	15 393
5		34 622	13 878	7.068	14.990	9 847	5 380	5 657	4 303	7 381	3 024	20.331	15 260
6		32 676	12 840	8 844	13.981	8 683	5 071	4 232	4 018	6 907	2 955	17,654	13.620
7		60 424	11.731	7.490	15 531	8 401	4 896	3 672	6 334	6 270	2 9 1 9	16.953	17 003
8		52.578	10.563	6.876	20 300	9 0 1 5	4 650	3.558	5 261	5 794	2 858	17 370	41 547
9 10		42 653 84 496	9 665 9 073	9 046 7.997	17.409 15.908	8 249 B 432	10 330 24 999	3 307	4 610	5 311	2 900	22.233	33 504
		04 430	30/3	7.557	19.500	6 432	24 333	3 271	17 146	4 990	3.338	25 145	30 549
11		65 263	8 459	7 171	14.720	7 872	25 326	3 448	21 876	4 757	3.145	23.643	50 894
12 13		51 206 47 297	8 142 7.910	6.753 6.398	14.076 14.178	8 460 8.285	17.918 15.457	3.431 3.166	9 653 7.918	4 482 11 035	3 008 2.993	20 527 31.847	41,784
14		43.925	7.045	6.209	20.666	26 342	13 446	2.977	7.916	10 58 1	3.020	98.274	53.728 41.236
15		37 747	6.663	6 034	29.534	27 655	11 723	2 840	5 922	7.451	2 865	52 052	73.401
18		33.485	6.439	6 714	24.768	23.695	10 334	2 672	5 279	6.338	2 8 1 0	41,671	58.480
17		29.678	6 018	6.300	23 814	28 874	9 047	2.554	4 975	5 598	2 8 7 7	38.538	58 956
18		33 286	5.594	6 564	20 423	22.783	7 994	2 476	12 942	5 114	3 026	80 457	55 318
19 20		31.661 27.712	5 349 5.205	6 629 8 223	21 395 32 939	19 530 18.968	7 374 6 718	2.540	8 783	4 8 1 2	4 438	135.298	59 774
20		27.712	5.205	6 2 2 3	32 939	10.900	0 / 18	2 548	6 652	4 6 1 1	18 369	92 187	51 584
21		34.862	4.899	7 066	42 132	18 114	7 902	2 538	6.564	4 476	31 528	68 137	41.063
22 23		56 968 67 825	4 71 <u>3</u> 4.527	8 634 18 212	40 739 39.187	14 9 1 7 13 188	7 405 6 444	2.464	9 405	4 300	43 773	57.080	33 239
24		51.793	4.262	37,401	33.847	12 040	6 452	2 338 2 396	9 242 8.995	4 2 10 4 050	37 343 32.582	60 072 58.037	27.556 23 112
25		40 803	4 202	27.302	28.730	10 962	5 778	2.654	37 078	3 866	41.621	66 420	36 417
26		34.008	3.740	26 328	23 907	10 187	5 092	2 825	35.856	3 764	33.766	67.738	26 109
27		30.593	3.784	28 379	20 100	9 329	4 603	2.643	26.103	3 686	50 036	51.878	22 807
28		31.313	3 902	34.333	17.401	8 676	4 354	3.056	21 548	3 620	60 254	41,167	22 9 12
29 30		28.887 23.486		34.823 40.234	14.826 12 705	7.768 7.412	5 291 5 269	3.626 4.516	17 103 14 100	3 5 1 3 3 4 3 8	45.335 39.814	33.285 27.150	24 718 52 011
31		20.784		34 696	12 703	8 302	3 203	5 115	12.108	3 430	35 191	27.150	59 090
A	_	41.050	0 5 1 7	14 200	22.500	12.240		2 2 4 5					
Average Lowest		41 050 20.784	8.517 3.740	14.360 3.712	22.680 12.705	13 240 7 4 12	8 823 4 354	3.315 2.338	11.170 3.531	6 007 3 438	17 060 2 8 10	46.170 16.953	36 860 13 620
Highast		84.496	19 770	40 234	42.132	28 874	25 326	5.657	37 078	11 067	60.254	135.298	73 401
Peak flo		136.334	20 460	61 997	50.809	62.622	53 099	6 68 1	94.936	21 567	83 688	101 100	
Day of		10	1	24	20	15	10	31	11	14	28	191,199 19	115 909 15
Monthly													
(million	cum)	110 00	20 60	38 47	58 80	35 47	22 87	8 88	29 91	15 57	45 68	119.70	98 74
Runoff		183	34	64	98	59	38	15	50	26	76	199	164
Rainfoll	(mm)	191	7	124	113	105	93	62	141	40	160	207	212
Statis	tics of	monthly d	lata for pre	evious recor	d (May 195	6 to Dec 1	985)						
	A	20.120	36.060	10.000		0.005							
Mean flows:	Avg. Low	29.130 5.438	26 060 6 45 1	18.690 6.376	12.770 4.340	8.855 2.593	5 606 1.989	4.568 1.153	6 538 0.695	9 275 1 699	16 470 1 561	21 840 5.297	30 850 12 460
• •	(year)	1963	1965	1962	1974	1976	1975	1976	1976	1972	1978	1978	1963
	High	57 190	47 220	49.630	28 800	29 380	15 870	19 770	20 550	35 830	59.830	44 000	68.440
	(year)	1984	1957	1981	1966	1983	1958	1968	1985	1974	1960	1970	1965
Runoff.		130	106	83	55	39	24	20	29	40	73	94	138
	Law High	24 255	26 190	28 221	19 124	12 131	9	5	3	7	7	23	56
		255	130	221	124	131	68	88	92	155	267	190	305
Re nfall:		145	102	102	72	79	72	80	98	1:3	121	130	155
	Low High	30 297	8 196	18 222	7 163	25 175	9 160	19 174	31 181	13 254	13 300	48	51
_	-		.50		103	.,,	100	174	101	234	300	239	321
Summ	ary st	atistics						.005	Fact	ors affect	ing flow r	egime	
			F	or 1986	f	pr record		1986 As % of	● Flo	w influenc	ed by arou	ndwater ab	straction
	_	_			prec	eding 1986		ore-1986	ลก	d/or recha	rge.		
Moan fil Lowest			19	170	15.850 9.696		1964	121				water supp	
Highest					22.600		1960			ncultural a		trial and/or	
Lowest		•		315 J⊍I	0.699	5 Au	g 1976					bent returr	ıs.
Highost			46.		68 440		c 1965						
Lowest			135	338 23 Jul 298 19 Nov	0 440 282 200		g 1976 c 1960						
Poak			191	199 19 Nov	492 600		c 1960						
10 %ile			42.0		37 510			114					
50 %ile 95 %ile			11	100 910	9 632 1 87			115 156					
		illion cu m)	604		500 20			121					
Annual			100		832			121					
Annual 194		(mm) Infall average	(mm)	5	1269 1326)			115					
		aroimha	,,		1320								

Station and catchment description
Volocity-area station with cableway. Flat V Crump weir constructed in 1973 due to unstable bad condition. Minor culvert flow through mill u/s of station included in rating. Significant abstractions for PWS. Control point for Wimbleball Reservoir operational releases. Headwaters drain Exmoor. Geology predominantly Devonian sandstones and Carboniferous Culm Measures, with subordinate Permian sandstones in the east. Moorland, forestry and a range of agriculture.

047001 Tamar at Gunnislake

1986

Measuring aut First year: 19:		V A		Gri		e 20 (SX) i (m OD) 8				Catchment area (sq.km) 916 Max alt. (m.OD) 58			
Daily mean	gauged dis	charges (d	ubic metres	per second)									
DAY 1 2 3 4	74 498 72 377 46 829 49 547	FEB 25 168 22 610 20 624 18 279	MAH 5 289 5.104 4 894 6 644	APR 28 670 25 346 21 626 18 488	MAY 15 004 14 141 13 281 16 701	JUN 9 646 8 765 8 351 7 936	7 154 6 190 5 782 5 914	AUG 6 958 7 564 5 685 5 814	SEP 24 903 21 871 22 008 16 858	OCT 5 502 5 412 5 199 4 958	NOV 39 944 28 188 26 737 23 745	DEC 27 244 26 445 21 922 19 654	
5	44 403	16 699	15 595	16 519	14 359	7 445	16 676	7 526	15 005	4 825	22 778	23 150	
6	34 971	15 441	9 310	15 093	12 439	6 957	11 475	9 967	13 570	4 674	23 716	20 824	
7	56 320	14 184	7.364	16 221	16 986	6 732	7 773	9 072	12 330	4 598	21 295	35 975	
8	43 148	12 850	6 648	20 050	19 348	6 550	7 358	7 499	11 436	4 526	32 343	126 878	
9	35 814	11 793	7.956	15 °40	14 580	11 934	6 8 10	7 03 1	10 542	4.509	62 625	58 225	
10	99 604		7.507	13 160	14 950	24 187	6 2 16	9 5 9 7	9 734	4.930	58 896	49 795	
11	57 513	10 755	6 668	11 823	13 470	22 367	6 128	9 353	9 135	4 629	41 918	140 245	
12	46 800	10 502	6.415	11 655	14 461	11 988	5 974	7 745	8 596	4 291	33 436	100 283	
13	39 837	10 296	6 127	11 785	13 429	9 718	5 650	7 372	14 598	4 251	59 888	121 490	
14	37 272	9 646	5.971	26 195	68 943	8 785	5 417	7 138	18 934	4 210	130,436	82 334	
15	31 684	8 975	5 843	31 751	40 442	8 122	5 230	6 564	12 119	4 066	57 289	149 000	
16	31 467	8 761	6 648	27 104	27 043	7 609	4 809	6 178	10 842	3 892	55 194	99 230	
17	37 990	8 293	6.716	20 623	49 908	7 070	4 557	5 970	9 501	3 788	57,780	88 230	
18	30 046	7 722	6 611	17 808	35 060	6 666	4 314	12 316	8 735	4 030	154 737	84 427	
19	32 963	7 270	7 301	18 472	28 637	6 368	4 143	10 398	8 193	4 949	254 204	67 873	
20	27 482	7 104	8 717	53 209	24 507	6 825	4 142	7 533	7 946	15 775	136 033	54 969	
21	51 383	6 946	7 599	43 02 1	23 582	8 545	4 249	8 054	7 728	29 300	106 594	46 400	
22	87 658	6 499	7 925	44 568	19 029	10 525	4 049	33 317	7 508	53 338	79 048	37 249	
23	86 874	6 498	14 541	55 75 1	16 931	12 756	3 818	50 172	7 196	31 002	65 817	33 087	
24	53 039	5 915	42 468	41 05 1	14 965	12 020	3 718	47 143	6 939	25 854	64 550	30 094	
25	40 580	5 816	22 570	33 008	13 819	9 393	3 853	144 025	6 594	32 106	81 940	98 418	
26 27 28 29 30 31	35 563 35 532 38 648 45 748 33 096 28 233	5 387 5 079 5 321	20 250 24 481 36 400 26 669 43 844 36 441	27 851 24 219 21 380 18 786 16 428	12 846 11 814 11 087 10 151 9 604 11 220	7 828 7 028 6 713 7 110 8 578	4 354 4 114 5 605 6 324 6 723 7 841	97 369 58 241 89 834 49 219 36 672 29 216	6 365 6 147 5 953 5 764 5 563	24 053 43 533 60 480 41 311 36 438 31 554	79 770 51 404 41 235 33 985 28 821	49 530 37.923 39.804 35 930 85 405 81.478	
Averaga	47 320	10 920	13 760	24 890	20 090	9 484	6 012	25 820	11 090	16 520	65 140	63 660	
Lowest	27 482	5 079	4 894	11 655	9 604	6 368	3 718	5 685	5 563	3 788	21 295	19 654	
Highest	99 604	25 168	43 844	55 751	68 943	24 187	16 676	144 025	24 903	60 480	254 204	149 000	
Peak flow Day of peak Monthly total (million culm)	163 121 10 126.70	27 800 1 26 41	82 754 24 36 85	93 870 20 64 52	154 478 15 53 80	46 016 10 24 58	23 017 5 16 10	238 049 26 69 17	31 200 14 28 74	88 886 22 44 24	363 991 19 168 90	234 505 11 170 50	
Runoff (mm)	138	29	40	70	59	27	:8	75	31	48	184	186	
Hainfoll (mm)	154		103	97	112	94	73	177	35	128	204	231	
Statistics of	monthly o	lata for pre	vious recor	d (Jul 1956	i to Dec 19	(85)							
Mean Avg.	46 130	37 020	25 930	16 400	11 640	6 942	6 072	8 326	12 270	21 970	34 220	45.770	
flows: Low	8 476	9.161	11 250	6 420	3 488	1 995	1 181	0 757	1 118	1 540	4 213	18.350	
(year)	1964	1965	1961	1974	1976	1976	1976	1976	1959	1978	1978	1963	
High	89 410	84 270	65 520	35 200	32.370	20 630	28 730	42 100	59 840	65 080	/8 760	91.690	
(year)	1974	1974	1981	1985	1983	1972	1968	1958	1974	1981	1959	1959	
Runoff, Avg.	135	98	76	46	34	20	18	24	35	64	97	134	
Low	25	24	33	18	10	6	3	2	3	5	12	54	
High	261	222	191	100	95	58	84	123	169	190	223	268	
Rainfal : Avg.	146	98	98	67	74	70	81	93	108	119	136	146	
Low	23	3	14	7	25	: 1	13	18	10	12	58	41	
High	301	206	219	151	149	167	160	179	251	258	274	266	
Summary \$1	atistics						1986	Fact	ors affecti	ing flow r	egime		
Lowest yearly in Highest yearly Lowest menthly Highest menth Lowest daily m	For 19 floen flow (m³s-1) 26 330 owest yearly mean lighest yearly mean owest monthly mean owest monthly mean owest dery mean 3 718 lighest dery meen 254 204 eak 363 991		012 Jul 140 Nov 718 24 Jul 204 19 Nov 991 19 Nov	princ 22 680 12 520 34 890 0 757 91 690 0 580 482 300 714 600	0 0 7 Au 0 Da 0 23 Au 0 27 Da 0 28 Da		ks % of re-1986 116	● Flo and ● At ● Flo ag ● Au gre	d/or rechainstraction for reduced incultural aliquents incultural alique	ed by grou rge or public s I by indus ostractions in from sui	ndwater ab water supp trial and/or	lies and/or	
50 %ile 95 %ile Annual total (m Annual runoff (Annual rainfall	mm)	830 90 141	30 317 30 6	55 370 12 410 1 805 715 80 781 1236 1230]) 9		106 117 250 116 116 114						

Station and catchment description
Velocity-area station, wide, shallow channel. Cableway span 46.9m. Low flows measured at another, narrower, site. High flow gaugings difficult owing to standing waves. Some gaps in the record. Moderate influence from PWS and diversions. Rural catchment of moderate relief, draining very disturbed lower Carboniferous slates, shales, grits and volcanics. Significant alluvial flats in middle reaches, Devonian slates low down Fairly responsive. A range of agriculture, grazing and forestry as land use.

050001 Taw at Umberleigh

1986

	ring aut ear. 19!	hority: SW1 58	WA		Gri	d reference Luvel stn					Catchmi		km) 826 2 m OD). 604
Daity	теал	gauged die	scharges (cubic metres	per second)								
DAY		JAN	FEB	MAR	APR	MAY	JUN	ж	AUG	SEP	ост	NOV	DEC
1		45.922	16.995	3 44 1	31.022	11 699	6 458	4 707	3 768	15.832	3 336	42 287	24.618
2 3		45.671 33.091	15 5 10 14 188	3.541 3.499	26 433 21 680	10 648 9 470	5.673 5.371	3.970	3.945	13 766	3.249	31.469	22 266
4		37 836	12.495	9 708	18 030	12 338	5.018	3 6 1 7 4 5 4 4	3.033 9.236	13 607 10 3 14	3 018 2.861	28 826 23 480	18 010 16 196
5		33.758	11.366	21.279	15.390	10 182	4 621	8 672	5.398	9.181	2 784	22 010	21.573
6		28.560	10 4 1 7	10 379	13 834	8 294	4 282	E 403	C 222	0.412	0.300		40.530
ž		62 257	9 347	8 387	14 586	8 795	4 127	5 403 4 203	5 377 7 406	8 4 1 2 7 6 9 3	2.708 2.657	19 850 19 707	18 573 24 982
8		47 415	8.383	7.546	19 408	8.632	3 935	4 538	5.801	7 056	2 578	23 696	68 161
9 10		33.912	7 508	10 3 15	14 122	8 156	12 460	3.770	4 976	6 326	2.552	29 678	47 764
10		70 537	7 249	9 5 1 5	11.702	B 123	36.598	3 4 1 4	12.831	5.789	2 663	37.135	37 830
11		59 483	6 796	7.739	10 3 16	7 324	37.555	3 788	45 093	5.434	2.570	31.705	69.360
12 13		51.120 44.068	6.554 6.389	7 043 6.513	10 111 11.176	7 486 7.135	20 524 16.077	3 544 3 184	14.651	5 058	2 405	25 056	49 886
14		40 020	5.735	6 0 18	21 978	44 508	13 286	2 978	11 316 9 582	17 067 21,159	2 403 2 423	40 84 1 127 383	68 780 50 837
15		36.337	5.361	5 758	31.328	37 785	11 171	2 812	7.743	11 432	2.325	57 152	89 636
18		32.206	5.179	6 368	25.399	25 283	9.558	2 468	6 5 1 3	0.663	2 1 4 7	47 407	35 435
17		31.718	4 861	5 9 15	22 478	27 619	8 339	2 272	5 821	9 663 7 866	2 147 2 037	47.402 48 472	75.175 66 340
18		36.256	4 4 1 4	6 608	9.092	21 358	7.399	2 158	21 257	6 809	2 156	109.704	60 550
19 20		38.588 32.951	4 223 4 099	7.124 7.807	23 908	17.116	6 633	2 062	13 4 15	6 159	3 303	176 727	63 493
20		32.551	4 033	7.607	43.695	16.262	5.986	2 131	9,174	5 758	19 324	104.940	60 592
21		52.741	3 944	6.475	50.704	15 449	7.548	2.236	8.659	5 431	29 031	80.859	48 165
22 23		74.491 89 088	3 726 3.903	7.247 14 096	44 683 47 316	12.802 11.208	8.406 6.503	2.109 1.941	20.983	5 104	55.352	66.497	36 562
24		80 162	3.503	37.112	41 624	10 076	7 160	1 861	20 255 20 968	4 871 4 563	45.550 34.370	68 009 63.318	29.2 93 25 077
25		44.132	4.131	23.093	34 778	9.168	5 670	1 992	70.828	4 244	45 962	71 424	67 277
26		34 84 1	4 976	22 505	27 679	8 483	4 666	2 253	57 460	4.032	34 072	75 556	43 610
27		30 785	4 649	29 560	22 322	7 809	4 137	2 141	44.335	3 899	56 152	56.160	37 013
28		30 342	4 296	45 032	18 8 19	7 208	3 957	2 764	38.560	3 790	77 885	43.063	34 930
29 30		26 791 21.077		42 048 49 238	15 700 13 274	6.561 6.330	6.086	3 030 3 301	29.169 22.5 8 7	3 607 3 408	60 458 47 819	33 020 26 239	32 123 70 37 3
31		18.521		39 862	.5 2. 4	8 266	0.000	4 837	18 122	3 408	37 569	20.233	79 128
Averag		42.730	7.155	15.190	24 090	13.200	0.540	2 2 4 2	12.010	7.4			
Lowest		18.521	3.641	3 441	10 111	13 280 6 330	9 540 3.935	3 313 1 861	18.010 3.033	7.911 3.408	19 150 2 037	54.320 19.707	47 040 16.196
Highest	ι	89.088	16.995	49 238	50.704	44 508	37.555	8 672	70 828	21 159	77 885	176.727	89 636
Poak flo	ow.	108.526	18 283	60 897	65 314	99 689	79.066	10 853	124 530	41 049	97.651	251.996	123 938
Day of		10	1	24	21	15	10	5	11	14	28	19	123 936
Month		11450		40.63									
(million	cu mj	114.50	17 31	40.67	62 43	35 56	24.73	8 87	48 23	20 5 1	51.30	140.80	126 00
Runoff		139	21	49	76	43	30	11	58	25	62	170	152
Rainfall	(mm)	148	3	106	97	93	97	65	151	39	138	183	196
Statis	tics of	monthly d	lata for pre	ovious reco	d (Oct 1958	8 to Dec 19	85)						
Mean	Avg.	35.970	28 910	20 5 10	13 710	9 688	6 212	4 620	E 676	7 776	10.720	20.202	07.000
flows:	Low	6 657	3 244	7 449	3 889	2 073	5 2 1 3 1 3 2 9	4 628 0 793	5 676 0 423	0861	18 720 1 043	28.260 3.653	37 230 13 210
	(year)	1963	1959	1984	1974	1976	1984	1984	1976	1959	1978	1978	1963
	High (year)	62 100 1984	54 760 1970	52 140 1981	32 800 1966	37 000 1983	16 630 1972	23 390 1968	19 130	47 670	77.360	58 500	73 670
			.5.0	.50.	. 300	1303	1372	1500	1985	1974	1960	1963	1965
Runoff.		117 22	85 10	67	43	31	16	15	18	24	61	89	121
	Low High	201	160	24 169	12 103	7 120	4 52	3 76	1 62	3 150	3 251	11 184	43 239
	•											107	233
Rainfall	. Avg. Low	132 28	86 5	90 18	69 8	72 28	66 10	71 23	87 24	95	112	128	140
	High	242	173	183	145	146	164	152	160	14 247	14 278	56 239	41 271
Suma		atistics							F	44			_
5 u	1017 61	01131105						1986	raci	ors affect	ing now r	egime	
			F	or 1986		or record		As % of		servoir(s) i			
Moso fi	low (m³	ı = 1 ₁	219	10	preci 17.990	eding 1986 1	1	pre-1986 122				water supp	
	yearly r		• • •		11 310		1964	122	• ^(ginentado	ii iroin en	luant return	15.
	yearty r				27.590		1960						
	monthh monthh		54 S	313 Jul 320 Nov	0 423 77 360		g 1976 :t 1960						
	dady m			361 24 Jul			g 1976						
	daily m	ean	176	727 19 Nov	363 800) 4 De	c 1960						
Peak 10 %ilo	,		251 S 53 7		644 900 46 690		c 1 9 60	115					
50 %ile			114		9 29 1			123					
95 %ılı	1		2 4	172	1 174	ı		211					
	total (m runoff (r	illion cu m) mm)	691 83		567.70 687)		122					
	rainfall (131		1148			122 115					
		nfall avorage			1183]			_					

Station and catchment description
Volocity-area station, main channel 34m wide, cableway span 54.9m. Rock step d/s forms the control. Bypassing begins at about 3.7m on the rb, but a good rating accommodates this. Significant modification to flows owing to PWS abstraction. Some naturalised flow data available. Large rural catchment - drains both Dartmoor (granite) to the south and Devonian shales and sandstones of Exmoor to the north. Central area is underlain mainly by Culm shales and sandstones (Carboniferous). Agriculture is conditioned by the grade 3 and 4 soils.

Tone at Bishops Hull 052005

1986

Moasur First ye		hority: WW 31	A		Grie	d reference: Level stn. (Catchment area (sq.km) 202.0 Max str. (m.OD), 409				
Daily r	mean g	gauged dis	charges (c	ubic metres p	per second)									
DAY		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	
1		9 292	4 644	1.465	3 645	2 870	1 834		0 908	0 899	0 846	3 261	4 130	
2 3		7 863 6 049	4.372 4.200	1.438 1.431	3 331 3 005	2 700 2 787	1.610		0 870 0 887	0 908 0 932	0.820 0.827	2.439 2.288	3 792 3 495	
4		7.875	3 793	1,749	2.733	3 333	1 503		0 905	0 843	0.798	2.132	3 2 1 6	
5		7.124	3.580	2.184	2.555	2.940	1.474	1.517	0 846	0 847	0.789	2 0 1 1	3 198	
6		6 487	3 325	1.672	2.568	2 674	1.397	1.077	0 899	0.849	0.830	1.868	2 996	
7		23 799	3 076	1.546	3 9 1 1	2.930	1 376		0 847	0.830	0.030	1.831	3.421	
8		12.191	2.880	1.515	6 097	2917	1.363		0 847	0 808	0 803	1 8 10	9 47 1	
9		8 348	2.735	1.682	3 584	2.639	1 733		0 847	0 776	0 797	1 943	4 838	
10		21 482	2.612	1.598	2 948	2 4 1 2	2.987	0 924	0 847	0 788	0 868	2.625	4.190	
11		12 053	2 491	1.512	2 834	2.242	2 596		0 871	0.787	0818	2 742	10 983	
12		9.461	2.466	1 439	2.933	2.181	1 675		0 837	0.781	0.820	2 220	7 109	
13 14		8 157 7 510	2.414 2.300	1 417 1 389	3 041 4 093	1 934 6 821	1 495		0 809 0 775	2.500 2.234	0 836 0 860	3 729 9 075	9 493 6 280	
15		6.262	2.142	1 38 1	4.952	4.378	1.375		0 707	1.392	0.788	4 192	12 424	
		5 43.	2 224		4.504	2 222		0.070	0.701		0.770	4.05.4	0.012	
16 17		5 471 5,126	2.084 2.024	1 539 1 461	4 891 4.688	2 B97 4.344	1 304		0 7() 1 0 72 1	1 144 1 025	0.778 0.753	4 054 4 345	9 9 1 3 9 7 4 4	
18		4 880	1.906	1.456	3.998	3 356	1 269		1 545	0 967	0.782	18 462	8 596	
19		4,614	1.855	1 409	3813	3 054	1 213		0 997	0 94 1	0.976	18 349	9 999	
20		4.040	1.838	1.591	4 878	3.253	1.207	0 823	0 835	0 934	2.415	12 675	8 329	
21		5 7 15	1 760	1 408	6 838	3 241	1 356	0816	0 9 10	0 908	2 284	9411	7 003	
22		10 898	1,734	1,531	6.228	2.729	1.369	0.773	1.751	0.866	3.063	7.689	5.966	
23		9811	1 678	2 477	6 305	2 491	1 266		1 265	0.881	2 323	9 750	5 270	
24 25		7 4 1 6 6 3 4 9	1.624 1.568	5.647 2.697	6 263 5.289	2 371 2 244	1.282 1.193		1 205 3 374	0 869 0 836	2.120 2.909	7 083 7 238	4 729 5 096	
26 27		5 771 5 433	1.452 1.460	2.596	4 608 4 086	2.142 2.070	1.081		1 972 1 237	0.841	2 199	7.790	4.488	
28		10 126	1.506	3 009 4 165	3 698	1.984	1 067		1 069	0 830 0 819	2.633 2.912	6 499 5 69 1	3 942 3 809	
29		8.152		4.093	3.370	1.861	1 309		0.971	0 836	2 536	5.011	3 875	
30		5.680		5.840	3 102	1 902	1 151		0 913	0 834	2 643	4 490	8 279	
31		4.949		4.366		2 038		0 971	0 895		2.623		9 190	
Average	a	8 335	2 483	2 2 1 6	4 143	2 830	1 469	0 940	1 067	0 990	1 492	5.757	6 363	
Lowest		4 040	1 452	1 381	2 555	1 86 1	1 067		0 701	0 776	0 753	1810	2 996	
Highest		23 799	4 644	5.840	6.838	6.821	2.987	1.517	3 374	2 500	3.063	18 462	12 424	
Poak flo	w	47.770	4.733	11.733	8.214	16 5 16	5 043	2 457	6 623	4.364	4 931	47 103	22 673	
Day of (7	1	24	8	14	10	5	25	13	21	18	31	
Monthly (million		22.32	6 0 1	5 94	10 74	7.58	381	2 52	2.86	2.57	4 00	14.92	17 04	
•												-		
Runoff (111 154	30 -7	29 81	53 87	38 87	19 59	1 <u>2</u> 45	14 100	13 43	20 100	74 139	84 149	
**********	(1.w)		•	•	0,	0,	•		100		.00	.55	3	
Statis	tics of	monthly d	lata for pre	evious recor	d (Feb 1961	1 to Dec 19	85)							
Maen	Avg.	6 084	6 193	4 452	2.907	2 156	1 431	1 200	0 968	1 239	2 0 1 8	3 282	5 223	
flows:	Low	1.246	1.746	1.552	1 177	0 735	0 456		0 265	0.501	0 580	0 651	1.821	
	(year)	1976	1965	1962	1976	1976	1976		1976	1964	1978	1978	1975	
	High (year)	14 560 1984	14 000 1978	9 259 1981	6 655 1966	6 562 1983	2.770 1972		1 686 1965	4 892 1974	9 872 1976	7 611 1982	11 280 1965	
	(900)	1504	1370	.55.	1300	1303	1372	1300	1303	1974	1370	1302	1303	
Runoff:		81	75	59	37	29	18	16	13	16	27	42	69	
	Low High	17 193	21 168	21 123	15 85	10 87	6 36	4 75	4 22	6 63	8 131	8 98	24 150	
			.00		05	•	30	,,		0.5		50	.30	
Rainfall:		114	83	85	60	69	59	57	70	84	87	98	115	
	Low High	25 250	6 170	5 170	6 150	25 137	8 147	16 144	19 126	8 202	8 249	41 192	40 205	
_	•		· -			= .								
Summ	nary st	atistics						1986	Fact	ors affect	ing flow re	agime		
			F	or 1986	F	or record		As % of	● Re	servoir(s) i	n catchme	nt.		
						eding 1986		pre-1986						
	yearly r 1 ylaey		3.	180	3 082 1 6 00		1964	103						
	yearly r				4 084		1974							
	month			940 Jul	0 265	5 A ug	1976							
	month			335 Jan			1984							
	daily m daily m		0 : 23.:	701 16 Aug 799 7 Jan	0 179 84 200		1976							
Pook	. a gary m		47.		112 730		1968							
10 %ilo			7	160	6 6 7 8	3		107						
50 % do				119	1 799			118						
95 %ila		villion cu m)	0.1 100	795 . 30	0 64 97 26			124 103						
	runoff (49		481	-		103						
Annual	rainfall ((mm)	105	1	981			107						
1194	1-70 ra	infall average	imm)		9931									

Annual runoff (mm)
Annual rainfall (mm)
[1941-70 rainfall average (mm)

Station and catchment description
Crump weir (breedth 12.2m) with crest tapping. Full range station. Pre-March 1968: velocity-area station; flows inaccurate below 1.42 cumecs
Clatworthy and smaller Luxhay Reservoir in headwaters. Compensation flow maintains low flows. Reservoirs not large enough to influence fairly rapid response to rainfall. Minor surface water and groundwater abstractions. Catchment geology - predominantly sandstones and mark. Land use - rural.

993]

053006 Frome(Bristol) at Frenchay

1986

Day of peak 28	
Day of peak 28	ter abstraction
Day of peak 28	
Day of peak 28 1 24 22 14 10 30 25 13 20 2	6 88 5 25
Day of peak 28 1 24 22 14 10 30 25 13 20 2 Monthly total (million cu m) 13.74 3.44 4.49 5.37 5.49 1.34 0.97 1.68 0.95 1.85 1. Runoff (mm) 92 23 30 36 37 9 6 11 6 12 8 Reinfal (mm) 115 7 63 65 88 26 54 100 29 81 12 Statistics of monthly data for previous record (Sep 1961 to Dec 1985) Mean Avg 3.379 2.857 2.379 1.351 1.226 0.829 0.635 0.568 0.767 1.184 2 flows: Low 0.670 0.613 0.636 0.476 0.290 0.220 0.122 0.139 0.208 0.162 0 (year) 1.976 1.976 1.976 1.976 1.978 1 1.998 <td< td=""><td>7 58 4 15</td></td<>	7 58 4 15
Day of peak 28 1 24 22 14 10 30 25 13 20 2 Monthly total (million cu m) 13.74 3.44 4.49 5.37 5.49 1.34 0.97 1.68 0.95 1.85 1. Runoff (mm) 92 23 30 36 37 9 6 11 6 12 8 Rainfa'l (mm) 115 7 63 65 88 26 54 100 29 81 12	106 3 2 10 2 11 0 8 2 0 9 7 8 19 7 3 4 3 4 9 . 8 0 7 9 6 3 19 6 5
Day of peak 28 1 24 22 14 10 30 25 13 20 2 Monthly total (million cu m) 13.74 3.44 4.49 5.37 5.49 1.34 0.97 1.68 0.95 1.85 1. Runoff (mm) 92 23 30 36 37 9 6 11 6 12 8	2 106
Day of peak 28 1 24 22 14 10 30 25 13 20 2 Monthly total	
Peak flow 35 055 5.278 9.355 6.651 15.962 2.379 3.000 5.957 4.707 4.200 22	947 15 496 0 31 3 13 10 26
Lowest 1.524 0.511 0.505 1.001 0.751 0.288 0.210 0.230 0.227 0.172	067 3 832 602 1 369 995 10 955
27 3.331 0 589 3.444 1 746 0.962 0 307 0 250 1 037 0 263 0 970 4 28 13.662 0 594 8 026 1.413 0 917 0 292 0 460 0 714 0 234 1 640 3 29 19.772 4 495 1.215 0 797 0.288 0 390 0.547 0 227 1 510 2	.669 1 897 730 1 582 240 1 396 474 2 368 043 9 415 6 661
22 9.676 0.647 1.067 4.923 2.485 0.377 0.220 1.438 0.273 2.540 1.4 23 4.734 0.606 2.475 4.379 1.765 0.354 0.230 0.772 0.282 1.170 1.4 24 2.677 0.628 5.480 3.765 1.398 0.353 0.210 0.531 0.280 0.930 6	816 1 968 995 1 647 613 1 427 915 1 369 004 2 252
17 1.524 0.828 0.574 2.463 3.620 0.415 0.250 0.232 0.339 0.177 3 18 1.545 0.812 1.070 2.033 2.669 0.394 0.230 0.485 0.294 0.380 11 19 2.134 0.749 1.259 1.776 3.503 0.390 0.230 0.434 0.280 0.702 13	.344 6 289 684 5.473 .065 4 701 513 2 997 524 2 307
12 3.551 1 094 0 598 1.001 0 841 0 597 0.540 0 430 0 273 0 178 1 13 2.781 0 963 0.592 1.179 0 863 0.519 0 330 0 345 1 606 0 188 4 2.250 0 959 0.558 1 862 7.463 0.486 0 500 0 299 0 851 0 206 5	.320 7.512 360 5.337 731 8.294 .322 4.052 .210 10.955
7 3 005 1.633 0.771 1.772 1.319 0.528 0.310 0.430 0.303 0.206 0 8 4.827 1.394 0.723 2.408 1.075 0.489 0.420 0.260 0.289 0.228 0 9 3 3 5 4 1.265 0.767 1.607 0.969 0.777 0.320 0.230 0.279 0.202 1	629 2 139 602 2 876 651 6 911 339 3 584 272 2.430
DAY JAN FEB MAR APR MAY JUN JUL AUG SEP OCT N 1 7.629 4.972 0.535 1.902 1.042 0.788 0.313 0.380 0.403 0.229 2 2 8.145 4.567 0.505 1.682 1.010 0.685 0.290 0.320 0.391 0.229 1 3 4.894 3.882 0.543 1.440 1.050 0.675 0.290 0.430 0.421 0.228 1 4 4.493 2.843 0.702 1.198 1.153 0.603 0.370 0.350 0.325 0.201 0	OV DEC 882 2 445 446 2 452 .031 1 955 840 1 665 734 2 427
	a (sq km): 148.9 alt. (m OD): 193

Station and catchment description
Trapozoidal critical depth flume. Full range station. Flume designed on basis of pre-urbanisation flow estimates - site swamped in storms of 1965 and 1968. Extra retaining walls have been installed. Flows affected by mill operation upstream. Minor groundwater abstractions and effluent returns. Impermeable catchment - predominantly Coal Measures on eastern side of catchment and Lias on western side. Substantial urbanisation in catchment.

Severn at Bewdley 054001

1986

Measuring au First year, 19		/A		C	Grid referenc Level str	te: 32 (SO) n. (m OD): 1				Catchman	t area (sq.ki Max alt. (r	m): 4325.0 n OD): 827
Daily mean	gauged dis	scharges (cubic metres	per secon	d)							
DAY	JAN	FEB	MAR	APR	MAY	JUN	ж	AUG	SEP	OCT	NOV	DEC
1 2	86 810 112 532	147 550 113 717	20 680 20.500	117 129 99 080	44 132 40 553	32 664 32.537	13 173 12.968	27 933 24 457	40 027 34 062	13 084 13 092	71 459 107 427	110 552 95.538
3	139 559	120 500	18 110	82 260	37 014	32 272	13 481	26 637	30 417	13 139	79 616	86 098
4	118.282	111.279	20.370	70 760	36 981	29 246	14 249	23 467	34 923	12 067	63.339	84.835
5	95.250	92 530	111 377	66 770	36 09 1	27.828	14 195	18 657	33.152	11 928	55 167	121 912
6	97 760	81 940	146 055	63 150	37 283	26.047	15.058	19 687	25 877	12 392	50 469	126 743
7 8	89 330 79 990	71.310 61.950	77.370 54 680	57 970 69 120	36 200 33 449	23 083 22.370	15 522 15,172	22 391 28 576	23.804 21.502	12.762 12.958	54.128 47.434	112 197 110 504
9	78 250	58.980	46.550	75 590	32 967	23 675	15.172	30 243	20.685	13.075	55.492	196.732
10	200 828	53 0 6 0	47.180	63.470	33 299	34 624	14 783	25 9 6 5	19 748	14 045	69 549	199 654
11	278.548	48.410	44 850	52 830	44 899	40.224	14 346	23 991	19.104	14,484	105 788	154 618
12	314.500	43 600	39 0 10	46 610	45 638	51 858	13 279	20 278	18 363	14.317	80.173	160 785
13 14	238.700 190 164	42 350 39 560	35.550 32.860	48 010 50 420	53 543 48.762	34 405 25 379	14 828 14 778	19 460 18 7 16	17 778 16 466	14 831 14 925	69 388 110 070	157 994 193 101
15	173 168	35.480	31.380	67 920	44 772	23.133	13 856	19.936	15.665	14 436	144 406	160 992
16	142 000	34 020	30 420	93 470	51 311	23 060	13 547	16 867	15 342	14 484	123 495	216 010
17	116 380	34 360	29 670	158 100	40 364	22 514	12 702	16 266	14 634	13.622	118.703	206 660
18	99 210	32 740	30.620 31.890	164 500 118 660	38 373 44 922	25 514 21,124	11 20B 10 680	16 015 14 559	14 417 14 223	11.589 14.068	160 089 229 94 1	194.481 231 475
19 20	152 137 215.500	30.770 29.480	36.630	107 081	46.925	19 717	10 719	13 823	12.703	21.589	252.149	214.733
	212.442	22.020	24 720	100 607	50.461	10 5 70	12.020	14 202	12.250	20.247	200 202	176 176
21 22	218.419 235.216	27.870 24.350	34.720 34.100	139 637 130.825	50 461 53 220	19 576 18 020	12 029 12 998	14 202 16 302	12 250 12 567	39.347 50.052	280 203 265 812	176 125 148 142
23	240 864	24 712	34 940	125 956	50 158	18.253	11.738	16 653	12.615	62.014	229 983	115 200
24 25	240.626 190.753	24.650 23.900	82.760 114.200	110.842 102 100	40 218 38 159	21 683 21 282	12 8 15 13.470	22 927 31 583	12 104 12.625	59.794 46.506	240 759 268 012	95 792 87 602
26 27	147 700 123.300	23.600 21.620	94.950 99.380	86.910 73.800	50.942 51.287	18.126 16.615	12 65 1 13 074	92 367 197 868	13 682 13.307	99.508 91.839	279 049 276.252	105 311 91.161
28	118 700	20 190	140 753	62 160	42 723	13.771	14.981	126 819	13 361	69.321	242.370	89 024
29 30	117 800		136 348 138 7 19	55 100 49 240	34.990 30.917	13.686 13.358	15.218 19.855	82 171 60 234	13 437 12 718	92.966 72.554	176 402 138 251	86 999 151 110
31	156 085 183 371		124.574	49 240	30 325	13 336	24 414	48 080	12 / 10	66 839	130 251	258 746
•	161 000	E 2 E 0 0	62.620	86 980	41.060	24 850	14 090	25 500	19 050	22.150	149 200	146 500
Average Lowest	161 000 78 250	52.590 20 190	62 620 18.110	46 610	41 96 0 30 325	13.358	10.680	36 680 13 823	12.104	33.150 11.588	148 200 47 434	84 835
Highest	314.500	147 550	146.055	164 500	53 543	51.858	24 4 14	197 868	40 027	99.508	280 203	258 746
Peak flow	322.194	171,951	179,117	177 482	59 987	57.969	27 320	208 977	44.676	126 295	284 795	291 195
Day of peak	12	1	6	18	13	12	31	21	1	26	21	31
Monthly total (million cu m)	431 30	127.20	167.70	225 50	112 40	64 42	37 74	98 25	49 38	88 79	384 10	392 30
Runoff (mm)	100	29	39	52	26	15	9	23	11	21	89	91
Rainfall (mm)	141	11	83	82	70	40	49	110	'-	85	143	153
Statistics o	f monthly i	data for no	evious rec	red (Are 19	21 to Dec	1985)						
Statistics o			41003 160	ore the it	, , , , , , , , , , , , , , , , , , , ,							
Meen Avg	113 800	102.900	73.800	52 050	39.410 10 220	29.950	23 160	28 360	37 070 7 676	54 130 10.500	90 260 21 740	101 400 17.840
flows: Low (year)	22 090 1963	21.200 1934	23.200 1943	15 890 1938	1938	9 81 1 1976	9 592 1976	7 460 1976	1949	1947	1942	1933
High	250 600	232 300	261 900	112 400	131 600	117 400	91.220	92 360	126 700	140.700	238.300	297 400
(year)	:939	1946	1947	1947	1969	1931	1968	1927	1946	1967	1940	1965
Runoff: Avg	70	58	46	31	24	18	14	18	22	34	54	63
Low High	14 155	12 130	14 162	10 67	6 81	6 70	6 56	5 57	5 76	7 87	13 143	11 184
_	••		00		70		30	70	70		0.7	05
Rainfall: Avg Low	92 23	68 8	62 3	60 5	70 18	61 5	72 10	78 13	79 5	84 13	97 13	95 10
High	226	170	175	128	186	136	193	160	209	174	244	294
Summary s	tatistics							Fac	tors affect	ting flow r	egime	
			For 1986		For record		1986 As % of	▲ R4	senvoirle)	in catchme	ant.	
				р	eceding 198		же-1986	● Flo	ow influence	ed by grou	indwater at	straction
Mean flow (m		69	.100	61 9 36 4		1964	111		id/or recha		water supp	diac
Lowest yearly Highest yearly				94		1960					trial and/or	
Lowest month						Aug 1976				bstraction.		and Inc
Highest month Lowest daily r			000 Ja 680 19 J			Dec 1965 Sep 1976			oundwate		rface water	8110701
Highest daily r		314	500 12 Ja	n 637.		Mar 1947					luent retur	ns.
Paak 10 %ila			.194 - 12 Je .300	in 147 !	500		109					
50 %ile		41	440	37 8	360		109					
95 %ile Annual total tr	ndloc o: -t		810 9.00	11 (1956			113 111					
Annual total tr			9.00	45			111					
Annual rainfall			74	91	-		106					
[1341-10]	gereve Retnie	e (mm)		95	41							

Station and catchment description
Velocity-area station with rock control. Stage monitoring site relocated in 1950 and 1970; lowest flows not reliable in earlier record. US gauge undergoing calibration. Sig exports for PWS and CEGB, minimum flow maintained by Clywedog releases. Naturalised flow series accommodates major usages. Diverse catchment; wet western 50% from impermeable Palaeozoic rocks and river gravels; drier northern 50% from Drift covered Carboniferous to Liassic sandstones and maris. Moorland, forestry, mixed farming.

054002 Avon at Evesham

1986

	ring aut sar: 19:	thority: STV 36	/A		Gri		ce: 42 (SP) n. (m OD) 1							
Daily	mean	gauged dis	charges (cubic metres	per second)									
DAY		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	D+C	
1		33.840	46.695	9.754	36 494	13 901	11 335	6.419	7.360	8 625	6.279	14.686	17 934	
2		65.796	56.967	8.711	30 047	13 824	11.163	6 256	6 482	7 835	6 044	16 562	15.118	
3 4		54.376 38.547	64.694	7.721	25 959	13 335	11 837	6.107	6 823	7.936	5 972	12.900	14.120	
5		43.703	51.888 37.119	14.339 22.458	19.931 17.342	12.860 12.860	11.029 9 383	6.107	7.914	7,547	5 889	9 871	13 579	
•		43.703	37.1.3	22.430	17 342	12 300	3 363	6.284	6 983	7.056	5 853	8 833	15 006	
6		35.954	30.184	21 205	17.891	12.506	8 726	6.345	6 147	6.519	5 931	8 131	15.772	
7		30 022	25 239	16.354	25 430	14 54 1	8 475	6 264	5 829	6 221	5.961	8.187	14 728	
8 9		53 014 52.512	22.030 19.546	14 173 12.900	40.632 33 470	18 465 17 412	8 046	6 161	5 749	6 496	5 965	10 35 1	28 494	
10		118.389	17.336	13 180	24.219	14 356	8 861 13 308	5 978 5 853	5.580 8 174	6 380 6 413	5 902 6 012	11 044 13 182	32 501 23 432	
							.5 500	3.000	0 174	0 - 10	0012	13 102	23 432	
11		113 345	15 877	13 988	18 695	12 765	11630	5.935	27 778	6 258	5 960	15 372	32 710	
12 13		80.328 41.877	15.622 14 544	13 028 12.288	16 976 16 929	12 887 12 605	8 866 7 899	6.529	17 308	6 29 1	5 899	14 009	42 216	
14		32.612	13 948	11.422	17 689	16 8 16	7 5 1 6	6 896 6 329	10 932 8.504	8 429 15 502	5 961 6 141	14 853 26 156	53 377 45 815	
15		25 506	13.594	10 497	39 341	44 673	6 9 1 9	6 193	7 374	11.059	5 779	42 463	60 831	
16		20 892	12,610	10.010	50 500		2.24							
17		18 595	12.010	10.616 11.199	50 500 52 522	28 838 20 326	7 172 7 262	5 949 5.792	6.657 6.272	8 471 7 298	5 817 5 837	32 465 23 292	74 739 51 010	
18		17.810	11 673	11 721	42 906	20 608	6 998	5.448	6 649	6.796	5 87 1	34 778	42 652	
19		18.832	11.246	18.183	31 178	17 093	6 7 1 2	5 398	8.897	6 329	6 339	52 187	40 454	
20		19 287	10 796	20.741	54 198	44 256	6 626	5.356	8.125	6.194	11 395	47 867	33 998	
21		18.621	10.356	15.961	56 297	44 111	6 3 1 3	5.429	8.011	6.134	13.865	85 758	29 959	
22		20 618	10.219	13 857	54.686	30 146	6 423	5.296	12 720	6 201	18 026	65.487	29 959 30 380	
23		24.331	9 644	13.977	50 350	21 108	10 291	5 337	20.557	6 180	11.071	42.136	25 461	
24		21.650	9.259	22 229	44.989	16 245	14 859	5.517	10 840	6 023	8 257	32 484	21 689	
25		17.538	9 2 1 0	23.535	30 241	13 608	10 366	5 663	21 970	6 009	7 853	30 892	27 530	
26		14.567	8.248	20.757	24.352	12 894	8 133	5 721	66 500	6 025	7 052	60 808	31 441	
27		18.641	7.523	22.517	20 680	12 144	7 386	5 343	37.653	5.953	9 947	48 943	26 025	
28		27.977	11,431	36.734	18 315	11 931	6 877	5.928	24.295	5.921	11 119	31 490	22 568	
29 30		90.978 102.605		43 299 46.004	16.618 14.738	11 837 10 6 16	6 385	6 848	15.618	5.963	8 955	24 109	20.788	
31		58.897		44 911	14 /36	10.907	6 169	8 337 9 646	11.363 9.332	6 040	8 023 7.466	20 113	55 302 71 7 3 7	
								00.0	5 554		7.400		,,,,,,	
Average		42.960	20 700	18.650	31.450	18 400	8 765	6 150	13 370	7 137	7.627	28 650	33.270	
Lowest		14.567 118 389	7.523 64.694	7,721 46 004	14 738 56 297	10 6 16 44 6 7 3	6.169 14.859	5.296 9.646	5.580 66.500	5 921 15.502	5.779	8 131	13.579	
			04.054	40 004	30 237	44 0/3	14 035	3 040	66.500	15.502	18 026	85 758	74 739	
Pook (le		145 447	66.194	50 224	62.336	59 805	17.539	11 303	77.769	18 392	20 795	93.744	87 776	
Day of		10	3	30	20	20	24	31	26	14	22	21	15	
Monthly (million		115.10	50.08	49 96	81.53	49 29	22 72	16.47	35 80	18 50	20 43	74.25	89.11	
									33 👯	.0 30	20 45	74.25	33.11	
Runoff Reinfall		52 79	23 12	23 58	37 62	22 71	10	7	16	8	9	34	40	
	,,	/3	, 2	36	02	,,	35	39	123	22	61	81	81	
Statis	tics of	monthly d	lata for pro	evious recor	d (Dec 193	6 to Dec 1	1985)							
Mean	Avg.	27.680	27.800	22 550	14 360	11 500	8 490	6 4 7 6	6 633	6.731	9 154	17 180	22 570	
flows:	Low	5.140	4.869	2 261	3 240	2 220	1 935	2 253	2.038	1 970	2 484	2 677	3 548	
	(yaar)	1950	1944	1944	1938	1944	1944	1976	1943	1959	1959	1943	1943	
	High	73.520	77.930	75.600	35 160	37 680	27 380	42 220	16 100	24 210	45 410	55 920	65 160	
	(A oo 4)	1939	1977	1947	1966	1983	1977	1968	1969	*960	1960	1960	1965	
Runoff:	Avg	34	31	27	17	14	10	8	8	8	11	20	27	
	Low	6	6	3	4	3	2	3	2	2	3	3	4	
	High	8 9	85	92	41	46	32	51	20	28	55	66	79	
Rainfall.	Avg.	60	43	48	42	56	53	56	70	56	57	64	61	
(1937-		13	3	5	5	15	10	8	5	3	6	8	15	
1985)	High	127	122	140	94	130	115	122	130	127	150	163	121	
Summ	ary st	atistics							Fact	ors affecti	ing flow re	aime		
			_					1986	_		_	•		
			F	or 1986		or record		As % of				idwater ab	straction	
Mean fi	ow (m³s	s = 1)	19	760	15 030	eding 1986)	o pi	re-1986 131		d/or rechai		vater suppl	100	
	yearly n				6 895		1944				by industi		145.	
	yearly r				25 030		1960				ostractions			
	monthly			150 Jul	1 939		lun 1944		● Aī	gmentatio	n from effli	vent return	S	
	monthly daily ma		42.9 5.2	960 Jan 296 22 Jul	77.930 1.274		eb 1977 Oct 1959							
Highast	doily m		1183		277 082		Jul 1968							
Posk	•		145 4	147 10 Jan	371 000) 1 1,	Jul 1968							
10 %ile			44 6		33 460			134						
50 %ile 95 %ile			13 ()40 354	7.998 2.524			163						
		illion cu m)	623		474 30			232 131						
Annual	runoff (r	nm)	28:		215			131						
	rainfall (72	4	666			109						
194	1-70 rai	nfa'l avorage	(mm)		672]									
C	` .													

Station and catchment description
Volocity-area station. Recording site, control and gauging site are widely separated; recording at a site where all flows contained. Gauge site can measure out-of-bank flows. Extensive modification to flow regime from abstractions and returns. Large catchment of low relief, draining argillaceous rocks almost exclusively. Contains many large towns, but chief land use is agriculture.

Measuring authority: WELS

055026 Wye at Ddol Farm

1986

Catchment area (sq km): 174 0

irst year: 190	inority: WEL: 69	•		Grid	Level stn.	(m OD): 1	192 80				ntaréa (sq. l Maxalt (n	
-		charges (d	ubic metres (·	
AY	JAN	FEB	MAR	APR	MAY	JUN	ж	AUG	SEP	ост	NOV	DEC
1	8.168	4.787	0 699	8 301	2 8 1 2	2.658	0 433	4 889	3.957	0 337	12 125	5 04
2	11.769	4.730	0 655	6 905	2.605	2.363	0 373	3.714	4.717	0 3 1 9	7.990	4 40
3	8.351	4.180	0.949	6 150	2.523	2 803	0 355	2 608	7 003	0 289	7 92 1	6 72
4	9.921	3.750	53 1 94	5 501	3.039	2 556	1 131	2 198	3 832	0 335	5 880	12 45
5	9 104	3 338	21.924	4 673	3.167	2 141	0 935	2 577	3 0 1 8	0 440	13 006	14 21
6	6 883	2.917	9 425	4 194	2.541	1 924	0 697	2 260	2612	0 359	7 908	8 73
7	5.723	2 711	6.340	4 101	2 40 1	1 791	0 754	6 342	2 209	0.314	7 757	888
8	4 792	2 488	4 9 1 7	4.710	3 096	1.643	0 790	4 437	1.958	0 332	9 485	29 49
9 0	14.610 39.982	2.384 1.951	4 412 3.797	3 804 3 120	3 973 5 5 1 9	1 846 6 963	0 67 1 2 323	3 047 2 457	1 767 1 604	0 374 0.955	12 200 11 117	17 09
1	15.848	2 098	3 251	2.865	4.982	5 321	2 186	2 305	1.459	0 778	9 723	15 04
2	10.335	1.733	2 871	2.003	5 829	3 282	1 510	1.972	1 330	0 534	7.514	16 73
3	12 203	1 677	2 6 1 5	3.303	5 034	2.633	1 186	2 238	1 243	0 455	16 68 1	18 43
4	10.205	1.693	2.529	3.684	7 359	2 226	1 166	2 040	1.159	0.414	17.605	12.12
5	14.234	1 695	2 463	5.178	6.308	1.892	0 949	1 653	1 087	0 366	11 469	25 70
8	9.828	1.458	2 333	5 959	4.933	1 903	0 7 1 6	1,419	0.957	0 322	11.915	17.37
7	13.421	1 3 1 9	2 055	7.395	6.700	1.755	0 6 1 6	1 244	0 884	0 300	16 535	22 11
8	50.104	1 323	2,417	5.469	5 323	1 530	0 539	1 199	0.808	0.344	74 749	26.16
9	38.124	1 290	2 405	9 907	4 401	1 334	0 471	1,113	0.725	1 862	32.178	17 83
0	23 500	1 108	2.537	16.809	5 427	1 243	0 548	0 926	0 668	10 476	17.517	14 28
1	23.355	1.353	2 077	15.392	6 809	1.139	0 467	0.925	0 6 1 3	18 934	13.860	11 08
2	34 833	1 149	4 224	15.504	4.789	1.103	0 369	2 5 1 7	0 557	13 524	23 734	8 19
3 4	23 922	1 038	6.252	10.585	4 096	1 099	0 373	2 150	0 521	10 982	51.522	6 6
4 5	13.424 9.124	1 024 0 969	11 130 9 2 18	10 064 7.379	3 769 4 581	1 081 0 971	0 383 1 740	1 544 25 460	0.496 0.465	9 06 1 35 659	33 223 40 373	10 6 22 8
n	7.257	0.803	14 02 1	5.679		0 788	1.750					
0 7	7.660	0.603	16 800	4.665	4 797 3 786	0 660	1 350 0 991	17.481 9.073	0.438 0.411	14 271 17 664	26 176 14 209	10 9 8 5
, 8	6 448	0 775	14 838	4.564	3.196	0 574	2 070	6 083	0 407	18 302	9 587	17.4
9	5.800		15 48 1	3.914	2 808	0 5 1 2	4 983	4 796	0 395	11 423	7 103	573
0	6.272		13 033	3 275	2 809	0 480	5 973	3 9 7 9	0.356	11 652	5 577	74 6
1	5.370		11 146		3.388		1 113	3 207		10 827		23 0
verego	14.860	2 0 1 5	8 065	6.532	4.284	1 940	1 443	4.124	1 589	6 200	17.890	17.9
owes:	4 792	0 690	0 655	2.865	2.401	0 480	0 355	0 925	0 356	0 289	5.577	4.4
ghost	50.104	4.787	53.194	16.809	7 359	6.963	7 773	25 460	7 003	35.659	74 749	74 60
eak flow	80 709	5 052	76.781	38.764	10.104	9 742	11881	56 838	12.136	63 456	177 5 9 0	172 3
ay of peak	10	1	4	20	21	10	31	25	2	25	18	29
ionthly total nullion cu m)	39.79	4 88	21 60	16 93	11 47	5.03	3 86	11 05	4 12	1661	46 37	48
unoff (mm)	229	28	124	97	66	29	22	63	24	95	266	276
anfall (mm)	269	10	181	120	120	38	100	136	19	192	266 302	354
itatistics of	monthly d	ata for pre	vious recor	d (Oct 1965	to Dec 1:	985)						
Mean Avg.	11 510	9 898	7 9 97	5 226	3.176	2.690	2 141	3.132	4.727	7 530	11 420	11.7
ows: Low	4,819	5 248	2 753	1 014	0 485	0.497	0316	0 177	0 948	0 683	4 598	4 9
(year)	1985	1975	1984	1974	1980	1975	1984	1976	1972	1972	1985	19
High	18 780	16 880	19 6 10	12 460	8.773	8 867	5 543	9 934	12 340	18 840	19 8 10	17.8
(year)	1983	1970	1981	1972	1979	1985	1974	1985	1974	1981	1970	19
inoff: Avg.	177	139	123	78	49	40	33	48	70	116	170	181
	74	73	42	15	7		5	3	14	11 290	68	77
Low			302	196						250	295	275
H.gh	289	235	302	186	135	132	85	153	184			
H.gh iinfall: Avg	289 190	235 147	137	93	86	92	74	109	140	141	194 97	
H.gh	289	235									194 97 293	95
High sinfall: Avg Low High	289 190 77 322	235 147 49	137 60	93 11	86 25	92 21	74 14	109 13 201	140 44 260	141 39 269	97 293	188 95 314
High sinfall: Avg Low High	289 190 77 322	235 147 49 260	137 60 284	93 11 206	86 25 191	92 21	74 14 150	109 13 201 Fact	140 44 260 ors affect	141 39 269 ing flow re	97 293 egime	95 314
High ainfall: Avg Low High ummary st	289 190 77 322 tatistics	235 147 49 260	137 60 284 or 1986	93 11 206 Fc	86 25 191 or record eding 1986	92 21 202	74 14 150 1986 As % of pre-1986	109 13 201 Fact	140 44 260 ors affect	141 39 269 ing flow re	97 293	95 314
High sinfall: Avg Low High ummary s1	289 190 77 322 tatistics	235 147 49 260	137 60 284	93 11 206 Fo precc 6 751	86 25 191 or record eding 1986	92 21 202	74 14 150 1986 As % of	109 13 201 Fact	140 44 260 ors affect	141 39 269 ing flow re	97 293 egime	95 314
High sinfall: Avg Low High ummary st lean flow (m ³	289 190 77 322 tatistics s-1) moon	235 147 49 260	137 60 284 or 1986	93 11 206 Fc prec 6 751 4.304	86 25 191 or record eding 1986	92 21 202	74 14 150 1986 As % of pre-1986	109 13 201 Fact	140 44 260 ors affect	141 39 269 ing flow re	97 293 egime	95 314
High sinfall: Avg Low High ummary st lean flow (m ³ owest yearly ghost yearly	289 190 77 322 tatistics s-1; moon	235 147 49 260	137 60 284 or 1986	93 11 206 Fc precc 6 751 4.304 8.231	86 25 191 or record eding 1986	92 21 202 1976 1974	74 14 150 1986 As % of pre-1986	109 13 201 Fact	140 44 260 ors affect	141 39 269 ing flow re	97 293 egime	95 314
High Low High	289 190 77 322 tatistics s^1) moan moan ly moan	235 147 49 260	137 60 284 or 1986 284	93 11 206 Fo precc 6 751 4.304 8.231 0.177	86 25 191 or record eding 1986	92 21 202 1976 1974 49 1976	74 14 150 1986 As % of pre-1986	109 13 201 Fact	140 44 260 ors affect	141 39 269 ing flow re	97 293 egime	95 314
High aintall: Avg Low High ummary st lean flow (m² owast yearly ghost yearly ghost roonthi ghost monthi	289 190 77 322 tatistics s-1; moon moon ly moon	235 147 49 260 F6 7 3	137 60 284 or 1986 284 443 Jul 330 Dec	93 11 206 F6 prec 6 751 4.304 8.231 0.177 19 810	86 25 191 or record ading 1986	92 21 202 1976 1974 1976 ov 1970	74 14 150 1986 As % of pre-1986	109 13 201 Fact	140 44 260 ors affect	141 39 269 ing flow re	97 293 egime	95 314
High sinfall: Avg Low High ummary st sean flow (m² owost yearly ighost monthl owest doily m	289 190 77 322 tatistics s-1; moon moon ly moon ly moon	235 147 49 250 7 2 17 9 0 2	137 60 284 or 1986 284 284 330 Dec 289 3 Oct	93 11 206 Fc prec 6 751 4.304 8.231 0.177 19 810 0 083	86 25 191 or record eding 1986 At No.	92 21 202 1976 1974 1976 1976 1970 1983	74 14 150 1986 As % of pre-1986	109 13 201 Fact	140 44 260 ors affect	141 39 269 ing flow re	97 293 egime	95 314
High ainfall: Avg Low High ummary st isan flow (m ³ west yearly pwast monthl ghast monthl ghast daily m ghoat daily m	289 190 77 322 tatistics s-1; moon moon ly moon ly moon	235 147 49 260 F6 7 3	137 60 284 or 1986 284 443 Jul 330 Dec 289 3 Oct	93 11 206 F6 prec 6 751 4.304 8.231 0.177 19 810	86 25 191 or record eding 1986 Ai No.	92 21 202 1976 1974 1976 ov 1970	74 14 150 1986 As % of pre-1986	109 13 201 Fact	140 44 260 ors affect	141 39 269 ing flow re	97 293 egime	95 314
High sinfall: Avg Low High summary s1 swest yearly owest yearly owest yearly owest month owest daily m gheat daily m sok	289 190 77 322 tatistics s-1; moon moon ly moon ly moon	235 147 49 260 7 1 17 9 0 2 7 4	137 60 284 or 1986 284 443 Jul 930 Dec 289 3 Oct 749 18 Nov	93 11 206 Fc prect 6 751 4 304 8 231 0 177 19 810 0 083 76.690	86 25 191 or record ording 1986 Ai No. 15 Ai 1 21 Fe	92 21 202 1976 1974 1976 1976 59 1976 59 1983 56 1970	74 14 150 1986 As % of pre-1986	109 13 201 Fact	140 44 260 ors affect	141 39 269 ing flow re	97 293 egime	95 314
High sinfall: Avg Low High ummary st lean flow (m³ owest yearly owest monthl ghest monthl ghest monthl ghest daily m owest daily m ook 0 %ile 0 %ile	289 190 77 322 tatistics s-1; moon moon ly moon ly moon	235 147 49 260 7 2 17 9 0 2 74 1 177 9 177 9 177 9	137 60 284 or 1986 284 443 Jul 330 Dec 749 18 Nov 190 18 Nov 140	93 11 206 F6 precc 6 751 4.304 8.231 0.177 19 810 0.083 76.690 252.200	86 25 191 or record or record 1986 Air No. 15 Air 21 Fr	92 21 202 1976 1974 1976 1976 59 1976 59 1983 56 1970	74 14 150 1986 As % of pre-1986 108	109 13 201 Fact	140 44 260 ors affect	141 39 269 ing flow re	97 293 egime	95 314
High ainfall: Avg Low High summary st lean flow (m³ owest yearly ighest roonth) owest daily mighest daily mighest daily mighest do. 0 %ila 0 %ila 0 %ila 5 %ila	289 190 77 322 tatistics s^1) moan mean ly mean ly mean nean	235 147 49 260 7 17 0 74: 177: 177: 177: 0 0	137 60 284 or 1986 284 443 Jul 330 Dec 289 3 Oct 49 18 Nov 590 18 Nov 440 1997	93 11 206 Fc precc 6 751 4.304 8.231 0.177 19 810 0.083 76.690 252.200 16 450 3 774 0.430	96 25 191 or record ading 1986 Ai No. 15 Ai	92 21 202 1976 1974 1976 1976 59 1976 59 1983 56 1970	74 14 150 1986 As % of pre-1986 108	109 13 201 Fact	140 44 260 ors affect	141 39 269 ing flow re	97 293 egime	95 314
High ainfall: Avg Low High furnmary st fean flow (m² owest yearly ighest yearly ighest monthl owest daily m ighest daily m on Silio Silio Silio Silio	289 190 77 322 tatistics s-1) moan moan ly moan ly moan loon noan	235 147 49 250 7 2 17 17 17 17 17 17 17 17 17 22 229	137 60 284 or 1986 284 284 443 Juli 330 Dec 289 3 Oct 49 18 Nov 590 18 Nov 140 197 70	93 11 206 Fc precc 6 751 4 304 8 231 0 177 19 810 0 083 76.690 252.200 16 450 3 774 0 430 213 00	96 25 191 or record ading 1986 Ai No. 15 Ai	92 21 202 1976 1974 1976 1976 59 1976 59 1983 56 1970	74 14 150 1986 As % of pre-1986 108	109 13 201 Fact	140 44 260 ors affect	141 39 269 ing flow re	97 293 egime	95 314
High ainfall: Avg Low High summary st lean flow (m³ owest yearly ighest roonth) owest daily mighest daily mighest daily mighest do. 0 %ila 0 %ila 0 %ila 5 %ila	289 190 77 322 tatistics s-1 moan moan ly moan ly moan nean	235 147 49 260 7 17 0 74: 177: 177: 177: 0 0	137 60 284 or 1986 284 443 Jul 330 Dec 289 3 Oct 749 18 Nov 990 18 Nov 997 1993 70	93 11 206 Fc precc 6 751 4.304 8.231 0.177 19 810 0.083 76.690 252.200 16 450 3 774 0.430	96 25 191 or record ading 1986 Ai No. 15 Ai	92 21 202 1976 1974 1976 1976 59 1976 59 1983 56 1970	74 14 150 1986 As % of pre-1986 108	109 13 201 Fact	140 44 260 ors affect	141 39 269 ing flow re	97 293 egime	95 314

Grid reference 22 (SN) 976 676

Station and catchment description
Initially, gauged nearby at Rhayader (055005-1937-69); resited as a velocity-area station with a rock bar as control. Informal Flat V control installed 1972. Bankfull width approx-30m. Cableway span 54m. All but exceptional floods contained. Lowest extent of natural gauging on the Wye. Wet, upland catchment draining impermeable, metamorphosed Silurian sediments. High relief, headwaters reach over 600m, and feature stoop sided and high gradient streams. Moorland and forestry.

056001 Usk at Chain Bridge

1986

	ring aut ear: 19!	thority: WEI	.\$		C	Grid referenc Level stn	e 32 (SO . (m OD)				Catchment area (sq km): 911 Max alt. (m OD), 88				
Daily	mean	gauged di	scharges	cubic metres	per secon	dì									
DAY		JAN	FEB	MAR	APR	MAY	JUN	JUI	AUG	SEP	ост	NOV	DEC		
1		105 044	35.056	9 320	29 243	19 924	17 746	7 043	9 344	13.349	4 988	40 627	40 043		
2 3		118.099 74.090	33 993 31 880	8 935 8 748	30 097	18 668	16 408	6 683	11.393	12 987	4 926	36 655	35.985		
4		62.168	29 002	58 940	27 635 25.827	18 078 22 397	15 204 14,441	6.361 6.267	8 4 10 7 028	13 835 10 170	4 833 4 664	32 760 62 695	32 243 63 053		
5		59 435	26 737	59.412	23 407	25 454	13 416	6 370	6 3 1 7	9611	4 574	63 265	62 784		
6		50 898	24 912	29.800	22 399	21 356	12 668	6 2 1 5	6 139	9 027	4 638	21 727	48 076		
7		47 680	23 084	22 911	22 750	19 374	12 140	6 037	11 457	8 358	4 536	20 695	51 327		
8 9		51 602	21 850	19.281 20.121	27 058	24 46	11 603	5 806	9 328	8 358	4 360	33 863	160 240		
10		57 193 200 533	20 120 19 138	19 211	24 761 21 529	22 577 40 123	17 300 51 160	5 581 5 598	7 096 9 9 1 8	7 864 7 445	4 322 4.334	98 600 121 34B	91 516 65 928		
		00.500	43.304												
1: 12		83 532 61 515	17 784 17 404	17 164 15 795	19 512 19 402	38 474 52 927	32 888 21 599	6 253 6 136	15 2 18 9 906	7 132 6 854	4 3 10 4 285	72 345 49 728	131 255 107 658		
13		57 265	16.596	14 331	19 797	35 226	17 676	5 668	8 772	7 992	4 235	86 129	171 248		
14 15		59 626	15 623	13 736	31 243	3/972	15 365	5 4 1 4	9 332	10 908	4 236	136 518	80 430		
13		50.718	14 957	14 256	48 736	46 004	13 907	5 165	8 029	8 102	4 064	77 806	155 063		
16		44.425	14 429	14 312	37 061	31 151	12 947	4 886	7 043	7 264	3 980	82 028	83 370		
17 18		40 669 44 B4 1	13.810 13.170	14 4 10 13 572	34 404 29 140	49 215 47 166	12 237 11 558	4 68 : 4 557	6 465 6 754	6 7 16	3 980	82 174	88 6 / 8		
19		72.980	12 609	15 230	26 689	32 883	10 824	4 468	7 261	5 923 5 620	4 107 4 656	232 089 221 923	87 554 66 096		
20		54 011	12 321	18 973	60 214	40 407	10 263	4 362	6 33 1	5 465	17 950	128.082	58 394		
21		99 643	11 797	16 492	57 070	63 641	9 920	4 295	5 958	5 3 10	39 304	112 818	52 154		
22		135.623	11 389	17 001	91 144	41 537	9.838	4 176	7 193	5 137	38 5 1 5	86 789	42 988		
23 24		98 014 65 006	11 115 10 315	29 745	64 249	32 615	9 663	4 060	10 383	4 927	25 557	101 216	37 507		
25		50 489	10 313	57.501 34 999	50 224 39 181	29 301 31 387	9 634 9 54 1	3 988 3 948	8 307 72 22 1	5 065 5 034	28 232 50 604	75 430 144 988	34 772 49 610		
20				20.000											
26 27		44 501 47 277	9 358 8 711	29 320 33 125	33 525 29 201	30 694 25 758	8 517 7 943	3 940 3 905	89 88 1 37 7 19	4 929 4 802	33 287 35 901	122 736	38 489		
28		46 554	9 075	39 706	26 815	21 741	7 607	4 500	26 409	4 726	50 475	72 672 57 363	34 697 36 201		
29		48 026		49 850	25 :86	19 5 14	7 349	6 425	20 755	4 979	36 722	47 870	41 730		
30 31		42 06 1 37 886		43 548 36 461	22 204	17 967 20 236	7 223	7 06 1 13 3 1 2	17 652 14 985	5 025	61 780 38 536	41 994	199 191 83 202		
									14 363		36 330		63 2(/2		
Avereg Lowest		68 110 37 886	17.730 8.711	25 680 8 748	33 990 19 402	31 560 17 967	14.290 7.223	5 586 3 905	15 580	7 430	17 450	85 500	75 210		
Highesi		200.533	35 056	59 412	91 144	63 641	51 '60	13 3 12	5 958 89 88 1	4 /26 13 835	3 980 61 780	20 695 232 089	32 243 199 191		
Dook fle		335.114	26 224	100 700		750									
Peak flo		10	36 334	109 762 4	121 929 22	112 752 21	62 583 10	19 203 31	197 828 25	16 292 3	100 902 30	480 271 19	322 44 <i>1</i> 30		
Month															
טפונוש)	cu mj	182 40	42 90	69 79	88 10	84 52	37 03	14 96	41 73	19 26	46 73	221 60	201 40		
Runot		200	47	75	97	93	41	16	46	21	51	243	221		
Rainfall	(נשובו)	196	10	116	117	140	52	65	154	24	153	265	251		
Statis	tics of	monthly o	late for pr	evious raco	rd (Mar 19	57 to Dec 1	985)								
Mean	Avg.	50 860	41 940	34 240	23 180	17 4 10	11 070	0.025	10.630	10.000	20.040	00 444			
flows	Low	10 850	12 690	10 0:0	8 122	6 124	4 274	8 025 3 390	10 620 2 699	16 820 2 94 1	28 910 4 303	39 090 16 030	50 440 20 380		
	(year)	1964	1963	1962	1974	1984	1957	1976	1976	1959	1978	1975	1963		
	High (year)	88 650 1974	95 710 1958	100 700 1981	49 330 1985	46 590 1983	26 740 1972	27 490 1968	38 540 1985	45 680 1974	86 350	99 840	112 700		
				.50	1303	1.000	1372	300	1969	1974	1967	1960	1959		
Runoff	Avg. Low	149 32	112 34	101 29	66 23	51 18	31 12	24	31	48	85	111	148		
	High	260	254	296	140	137	76	10 81	1.3 8	8 130	13 254	46 284	60 331		
On afall	•	150													
Rainfall	Low	158 28	112 11	113 15	84 8	92 31	77 17	76 21	98 25	129 8	133 19	149 74	168 46		
	High	331	223	303	175	221	:44	137	210	259	325	323	351		
Sumn	arv st	atistics							Eact	ore allect	ing flow r				
								1986			•	- 2			
			· F	or 1986		For record loading 1986		As% of pre-1986	• Re	servoir(s)	in catchme	ent			
Mean f	ow (m³;	s - ')	33	280	27 6		,	120							
	yearly r				14 8		1973								
	monthly r		5	586 Ju	44 0: 1 2 6:		1960 1976 -								
Highest	monthl	y mean	85	500 Nov	/ 112.70	DO DO	ic 1959								
	daily m daily m		3. 232	905 27 Ju 089 18 Nov			ig 1976								
Peak	CIONY IN	9011	232 480				nc 1979 rc 1979								
10 %i'd			75	360	63 5	20		119							
50 % iki 95 % iki				640 376	16 69 4 33			124 101							
Arnual	total (m	ilion cu m)	1050		873			120							
Annual	runoff (r	mm)	115		958			120							

115: 1543

Annual runoff (mm) Annual reinfell (mm) [1941-70 reinfell average (mm)

Station and catchment description

Velocity-area station; permanent cableway. Low flows measured at complementary station downstream (056010 - Trostrey weir). There is a partial impact on flows resulting from three large existing public water supply reservoirs in upper catchment. Intake to canal upstream of gauge. Some naturalised flows available. Geology - mainly Old Red Sandstone. Hill farming in upper areas, with dairy or livestock farming below; forest 3%. Peaty soils in uplands, seasonally wet.

958 1389

Teifi at Glan Teifi 062001

1986

Measur First ye		hority: WEL	s		Grid		n. (m OD).				Catchme	ont area (sq Max alt (r	km) 893.6 n OD) 595
Daily r	mean (gauged dis	charges (cubic metres (per second)								
DAY		JAN	FEB	MAR	АРЯ	MAY	NUL	JUL	AUG	SEP	OCT	NOV	DEC
1		101.572	38 389	6 440		21 579	15 3 13	6 223	11 471	31.438	4 706	48.415	40 895
2 3		103.040 73.478	33.361 28.983	6 220	25.952	19.527	14.591 14.110	5.800	12.906 9.820	30.617	4.565 4.363	40.718	37 278
4		65.662	25.384	6.128 29.613	25 697 21.687	18 814 25 600	14.254	5 550 5.553	8.750	30 344 25 865	4.242	39 029 35.111	36 582 49.478
5		60 864	22 928	44 351		23 487	12 573	5 455	7 886	21 614	4 206	32.068	52 854
		70.000	20.500	20.300	17.020	20.000			10.740	10.000	4 200	27.100	47 995
6 7		78 906 77 582	20 588 18 5 15	30 789 17 530	17 936 17.006	20 088 18 363	11 575 11 069	5 365 5 192	10 74 8 14.658	18 960 17 029	4 206 4 178	37 109 37 141	55 224
В		65 463	17 093	15 184	16.930	17.893	10 638	5 0 1 0	13 333	15 484	3 870	54 644	163 645
9		61.740	15 720	17 943	15 424	19 025	14.110	4 9 1 2	10 962	14 252	4 096	102 428	129 300
10		107.276	14.742	16 333	14 045	26 366	26.587	5 04 1	9 823	13 237	5 123	126.401	92 490
11		82.345	13 697	14.857	13 059	24 409	24,191	6 229	9.213	12 354	4 979	81 202	144 140
12		62.488	13 066	13 873	12.725	34 379	17.245	6 7 16	8 526	11.548	4 4 3 9	59.799	129 4 18
13 14		48.217 41.634	12 008 10.943	13 094 12 903		27.942 34 195	14 491 13.219	5 7 15 5 3 1 7	8 493 8.930	10 953 10 405	4.064 3.956	91 252 143 864	173 379 112 365
15		38 424	10 630	13 445		33 225	12 04 1	5 041	8 077	9 900	3.839	111.022	150.780
		20.500	10.004		10 005	20.050		4.000	2 224		2.00.	100.643	
16 17		38.590 35.098	10 684 10 112	13.682 12.863		26 959 41 577	11 685 11 058	4 938 4 639	7 274 6 767	9 486 9 049	3 691 3.589	100 647 85.602	97 427 85.263
18		38 874	9 782	12.488	17 955	38 915	10 254	4 476	6 599	8 737	3 67 1	161 207	80 171
19		50.332	9 393	13 462	20 736	31 598	9 668	4 376	6 448	8 490	4 185	183 237	67.529
20,		49.153	9.104	17.382	39.662	27 863	9.130	4 305	6.185	8 079	11 897	151,140	56 799
21		60.612	8.647	15.302	59 072	33.543	8 767	4 117	5 991	7 85 1	22 886	107.552	54 487
22		80 297	8 3 1 9	16 562	89 747	27.113	8.464	4 0 1 6	12.752	7 639	31.341	79 65 1	46 667
23 24		73 897 62.403	8.068	20.822 41.904	79 247	23.519	8.297	3 569	16.491	7 477	23 570	82 345	42 235
25		48.885	7 5 19 7 358	36.084	69 297 54.112	21.398 20.567	8 139 7 535	3 528 3 502	11 704 98 396	7 263 6 972	21 673 30 25 1	71.927 113 544	39.980 68 965
26 27		41 222 53.574	6 77B 7.447	33.216 33.050	43 554 36.810	20 100 18 422	6.999 6.465	3 502 3 565	145.124 70 277	6.777 6.623	27 345 40 747	125.257 92.787	60 309 50 060
28		58.477	7.447	32 477	33 198	16 746	6 225	5 5 1 5	64 130	6 504	41 233	65 012	47 577
29		55.880		33.778	28 746	15 520	7 584	7 206	51.891	6 375	39 428	50 631	65 470
30		48.377		35.225	24.350	14 936	7 237	9 932	42 200	6 168	45 122	43 251	168 264
31		43.796		32 639		15 750		10.928	34 026		43.390		158 632
Average		61,420	14 520	21.280	30 400	24 500	11,780	5 330	23 870	12 920	14.800	85.130	84 050
Lowest		35 098	6 778	6.128	12.725	14 936	6.225	3 502	5.991	6 168	3.589	32 068	36 582
Highest		107.278	38.389	44.351	89.747	41.577	26.587	10 928	145.124	31 438	45 122	183 237	173 379
Pook flo		119 682	41 206	49 784	92 690	54 085	32 386	11 776	181.963	33 746	52 339	220 343	203 421
Day of (10	1	4	22	17	10	31	25	1	31	18	8
Monthly (Tillion		164.50	35.12	56 99	78.80	65 61	30 54	14 28	63 92	33 48	39 64	220 70	225 10
Runoff (Rainfall		184 190	39 2	64 120	88 112	73 120	34 63	16 78	72 172	37 13	44 129	247 260	252 288
Statis	tics of	monthly d	lata for pr	evious recor	'd (Jul 1959	to Dec 1	985—inco	emplete or m	issing mont	ha total 0.3	years)		
Mean	Avg.	46 780	38 870	30.360	21.910	18 5 10	11.510	8 136	11.940	17 040	35.210	45.040	53 640
flows	Low	7 086	11 140	8.281	7 481	4 227	2 975	1818	1 128	1 072	3 887	16 060	17 820
	(year)	1963	1965	1962	1974	1984	1984	1984	1976	1959	1972	1983	1963
	High (year)	106 000 1974	81 100 1974	96.730 1981	41 800 1985	36 780 1979	41.700 1972	24 930 1968	39 210 1985	48 680 1974	102 000 1981	78 080 1977	· 93 960 1965
Runoff.	Avg Low	140 21	106 30	91 25	64 22	55 13	33 9	24 5	36 3	49 3	106 12	131 47	161 53
	High	318	220	290	121	110	121	75	118	141	306	226	282
	_										=		
Rainfell:	Avg. Low	145 28	95 12	101 25	84 10	80 29	80 17	78 25	98 16	122 10	147 40	154 76	160 28
	High	326	213	312	163	168	148	140	180	242	293	279	315
C		neineina							Enn				
Summ	ום עומו	atistics						1986	rac	tors affect	ing now r	eğime	
			F	or 1986		or record		As % of		servoir(s)			
Mean fi	ow (m²	11	32	620	preci 28 210	eding 198 Y	6	pre-1986 116	● A	bstraction	for public	water supp	lies.
Lowest			31	020	18.860		1964						
Highest	yearly i	méan			38.230)	1974						
Lowest				330 Jul			Sep 1959						
Highesi Lowesi				130 Nov 502 25 Jul			Jan 1974 Lug 1976						
Highest			183.				Dec 1979						
Peak			220				Dec 1979						
10 % ite 50 % ite				370 400	63 090			127 97					
95 %ilo				400 244	18 980			140					
Annual	total (m	illion cu m)	1029	9 00	890 30			116					
	runoff (115		996			116					
	rainfall (1-20 ra	(mm) infall average	154 (mm)	• •	1344 1333]			115,					
1.34		- ses exerele	4-1-4-14		1333]								

Station and catchment description

Velocity-area station. Straight reach (width: 35m), natural control. Flood flows spill over right bank. Public water supply impounding reservoirs in upland area where there is mostly hill farming. 10 sq.km Tregaron bog has partial effect on flows; sensibly natural regime. Geology - mainly Ordovician and Silurian deposits. Dairy farming predominates in southern area. Forest: 5%. Peaty soils on hills, seasonally wet. Apart from Tregaron bog, most of the lower areas have soils with permeable substrate.

Glaslyn at Beddgelert 065001

1986

Manage		14/F1			-		82 (2)	500 470					
	ar: 196	hority: WEL i1	5		Gr		a: 23 (SH) . (m OD): 3						q km): 68.6 i OD) 1085
Daily	mean g	jauged dis	icharges (c	ubic metres	per second)								
DAY		JAN	FEB	MAR	APR	MAY	JUN	м	AUG	SEP	001	NOV	DEC
1 2		6 597 5 465	3 253 3 293	0.527 \ 0.462	8 093 6 013	3.313 2.632	3 055 2 598	0 592 0.623	10 263 11 934	6 483 6 058	0 668 0 725	12 584 7 9 10	3 263 3 823
3		4:62	2.853	2.419	4 389	2 396	3 361	0.010	5 689	6.843	0 731	12.331	20 390
4 5		9 972 7 024	2 353 1 996	38 066	3 4 1 7	2 373	3 085	2.267	4 149	3 987	0 667	5 798	21.130
3		7 024	1 330	10.902	2 892	2 779	2 671	1 683	3 457	2.945	0 603	16 809	18.984
6		5 320	1 706	4.834	2.538	2 270	2.279	1.232	7 655	2.414	0 569	7 5 1 8	7,197
7 8		4 070 3 460	1.487 1.303	3.304 2.883	2 318 2 117	2.183 2.606	1.798 1.505	1 070 0 9 9 5	9 942 5 178	1.989 1.847	1,193 1,445	20 761 14 158	8 013 29 006
9		16 673	1,124	3.992	1.900	10 738	16 161	1 429	3.621	2.189	15.109	25 637	13.933
10		28.501	0 995	3.531	1 686	16 356	9 975	2.664	2 8 1 3	2.339	8.044	13.701	7.624
11		6.900	0.983	3 129	1 562	22 301	6 100	2.531	2 396	2.304	3.392	12.190	13 194
12 13		4.221 3.265	0 955 0.927	2.824 2.340	1 580 1 949	19 940 7 043	4.228	1 893	2 221	2 180	2 120	6 471	9 096
14		2.811	0.871	2 69 1	3.888	6 365	4 304 3 190	1 788 2.534	2 700 2 773	1.840 1.291	1.629 1.7 3 0	7 801 15 307	9.948 6.802
15		3.595	0 801	3.107	5.422	5 0 1 7	2.172	1917	3 114	0 941	1 546	8 963	15 223
18		3.125	0.714	3.437	3.818	3 836	1.861	1.575	2 406	0 791	1 333	15 852	7 562
17		5.777	0 642	2 636	4 9 1 7	6 511	1.871	1.338	1 784	1 052	1 212	7 744	18 650
18 19		17 921 23.754	0.569 0.547	5 306	4,100	6 063	1 685	1 128	1 4 1 9	1 308	5.811	36 296	18 328
20		18 586	0.597	4.334 5.039	23.255 19.625	4 110 4 162	1.512 1.248	1 646 3 105	1.255 1.151	1 180 0 919	5.295 9.230	16 274 15 233	8 32 1 5 552
			0.530										
21 22		15.279 28 562	0 579 0.483	7.311 21 665	8 422 6 121	9 801 5 025	1.058 0.880	1.852 1.494	1.151 1.548	0.701 0.584	7.884 6.998	11.238 8.581	4 563 3 766
23		9 388	0 494	12.619	4 807	3.741	0.809	1.446	1.330	0.582	4 861	10 163	3 437
24 25		5 957 4.274	0 462 0 426	13 504 8.808	5 100 4 218	10 197 20 352	0 96 5 1.080	4 007	1 088	0 601	11.025	18 456	12 913
		4.274	0 420	0.000	4 2 10	20 352	1.000	6.114	20 5 7 6	0.563	16 973	46 909	17 460
26 27		4 397	0.551	14 877	3 256	14 828	0 967	3.547	23.977	0511	9.773	12 974	6 083
28		9.782 8 166	0.512 0.444	10.961 7.718	2.675 8 145	6 635 4 439	0 96 1 0 89 7	2 283 24.585	8 082 4.561	0 5 10 0 557	31.907 30.003	5.669 4.930	4 111 4 748
29		6 020	-	7 033	4 718	3 329	0 7 10	14 890	3 446	0 559	11 932	3 776	33 299
30 31		5 413 4 321		8.266 9.212	4 117	3 422 4 206	0 605	23 121 12 035	5 151 4 062	0.604	19 807 15 648	2 930	52 839
								12 033	4 002		13 046		14 224
Lowest	n	9 12 1 2 8 1 1	1 139 0 426	7.346 0.462	5 235 1 562	7 064 2 183	2 786 0 605	4 139 0 592	5 190 1 088	1.889	7 415	13 530	13.020
Highest		28 562	3 293	38.066	23 255	22 301	16 161	24 585	23 977	0.510 6.843	0 569 31.907	2 930 46.909	3.263 52.839
Poak flo		75 211	3.687	52.251	62.206	50 648	25.164	42 611	20 612	0.000	54.050		
Day of I		9	1	4	19	11	25.104	42 611 28	36 612 25	9.069 2	54 850 28	74.342 18	107 618 30
Monthly		24 43	2.76	19 68	17 67	10.03	7.22						
(million		24 43	2.70	13 08	13.57	18 92	7 22	11 08	13 90	4 90	19.86	35 08	34 86
Runoff (356 359	40 20	287	198	276	105	162	203	71	290	511	508
				377	194	324	118	285	280	35	379	525	607
Statis	tics of	monthly d	lata for pre	vious recor	d (Dec 196	1 to Dec 1	985—inco	mplete or m	nissing mon	ths total 1.1	B years)		
Mean	Avg.	7.686	5 629	5 603	3 715	3 381	3.287	3 428	4 861	6 2 1 5	7 326	8 464	8 8 1 5
flows:	Low	1.535	1.369	1 734	0.814	0 325	1,173	0 495	0 305	3 301	3 526	3 399	1 793
	(year) High	1963 13 630	1965 13 040	1984 15 600	1974 8 228	1980 6 790	1984 7.429	1984	1976	1969	1978	1983	1963
	(Year)	1983	1977	1981	1975	1979	1971	7 1 <u>32</u> 1978	12 860 1985	11 830 1974	13.370 1980	14 460 198()	16 400 1965
Runoff:	A	300	200	710				454					
NUNOII.	Low	60	48	219 68	140 31	132 13	124 44	134 19	1 9 0 12	235 125	286 138	320 128	344 70
	High	532	460	609	311	265	281	278	502	447	522	546	640
Rainfall;	Ava	313	200	235	182	178	201	201	262	294	317	362	344
	Low	28	41	69	20	39	78	66	16	62	136	130	74
	High	563	475	638	482	334	358	380	563	508	726	564	700
Summ	ary sta	tistics							Fact	ors affect	ing flow re	gime	
			Fo	r 1986		or record		1986 As %of	● Ro	gulation fo	, HED		
						eding 1986		rn-1986	- ne	guiation to	ir riger.		
	yaariy m Waariy w		6.5	40	5.70		1066	115					
	yearly in				4 18! 6 94:		1968 1980						
	monthly		1.1		0 30		ig 1976						
	monthly daily me		13.5 0.4		16 400 0 031		ec 1965 Iul 1973						
Highest	daily me		52.8	39 30 Dec	85 854	0 270	ct 1980						
Peak 10 %ile			107.6 16.3		130 200 12 910		lul 1973	127					
50 %ile			3.7		3 17			127 119					
95 %ile		IL	0.5		0 529	9		109					
	runoif (mi	lleon cum) nm)	206 3006		180 00 2624	U		115 11 5					
Annual	roinfa i (n	nm)	3503		3089			113					
194	1+70 cor	nfall everege	(mm)		3030								

Station and catchment description
A 20m wide river section rated by current meter and, in the past, by dilution gauging. Rating tends to be insensitive at low flows due to subtle movements in the natural bed control downstream. High flow gauging restricted to peaks and troughs because of rapid water level changes. Station bypassed at high flows. Lekes (Dinas and Gwynant) and HEP discharge from the higher Llyn Llydaw marginally affect records. Catchment drains the southern flanks of Snowdonia with much bare rock exposure (impermeable Ordovician volcanics).

Dee at Manley Hall 067015

1986

Measur First ye		hority: WEI 37	.s		Gr	id reference Level stn.			5 Catchment area (sq km) 1019.3 Max att (m OD) 884				
Daily i	mean	gauged di:	scharges (cubic metres	per second)	ı							
DAY		JAN	FEB	MAR	APR	MAY	JUN	ж	AUG	SEP	OC1	NOV	DFC
1		51.547	38.781	10 488	50 047	21 629	18 952	11 419	15 262	25 295	11 159	47 981	35 846
2 3		56 545 50 682	36 582 34 043	10 431 10 508	44 052 39 016	20 079 18.936	18 942 18 117	11 048 10 787	15 505 12 790	22 452 25 235	10 335 9 576	36 714 31 883	33 257 34 042
4		44 155	32 353	45 640	33 9 19	18 805	17 639	11 119	10 815	22 524	9 140	26 985	59 368
5		43 729	29 984	62 335	3. OBO	20 505	17 032	11 042	10 4 1 5	21 423	9.216	25 042	70 257
6		39 481	27 207	48 781	26 647	17 622	15 97 1	10 947	10 354	21 740	9,418	25 684	66 241
ž		35.548	25 109	34 512	27 668	16 105	13 611	10 771	19 642	20 379	9 664	26 387	62 151
8		33 523	22 948	26 886	28 972	18 424	12 512	10 9 14	18 799	18 325	9 735	36.896	10: 964
9 10		42 665 159 400	20 154 18 786	23 869 21 479	26 141 23 013	16 757 25 092	11 964 18 286	10 713 10 606	15 666 11 752	15 019 12 213	10 046 10 060	48 04() 69 252	97 046 88 594
10		133 400	10 700	214/5	23 013	23 032	10 200	10 000	11732	12 2 1.3	10 000	09 232	00 354
1.1		106 077	18 627	18.901	20 976	31 290	22 576	10 576	10 630	9 843	9 948	68 170	98 005
12 13		83 944 87.805	17 499 16 315	17 39 9 16.031	19 780 18 231	38 754 39 082	26 729 18 755	10 342 10 299	10.589 11.222	9 299 11 365	9 848 9 837	58 683 71 673	105 339 132 890
14		77.275	15.293	14 565	19 369	31 803	16 401	10 661	11 674	12 580	9 888	78 965	104 449
15		65.727	14 764	12 472	30 591	24 395	14 462	12 038	10.402	15 948	10 254	68 197	121 199
. c		55.097	13 074	11 205	44 000	22.000	16 //06	12 477	1/1 212	12.040	0.613	61.041	04 5 20
16 17		48 454	12 020	10 5 16	44 898 92 991	22 088 24 855	15 095 15 992	12 477 13 858	10 312	12.849 10.860	9.613 9.681	61 941 58 499	94 579 83 748
18		63 686	12 107	10 788	80 989	29 929	14 652	13 591	9 808	10 547	9 843	107 194	87 084
19		122 450	12 09 1	12 230	69 590	31 171	14 153	11889	9 656	10 291	10 230	133 369	84 695
20		114 929	11 710	13 928	87 159	29 741	13 698	11 587	9 644	10 225	1/217	122 006	72 895
2:		122 010	10 171	12 396	86 306	30 307	13 234	11 176	9 623	10 089	17 478	103 136	64 536
22		123 405	10 329	13 185	73 274	28 759	13 068	11 901	10 630	9811	19 959	88 738	52 693
23		113 011	9 302	29 850	56 065	22 307	13 467	12 64 1	11 027	10 254	19 300	99 479	45 393
24 25		69 094 68 025	9 137 10 010	40 562 40 902	49 706 44,541	21 157 27 180	14 795 11 464	12 694 12 9 60	10 147 52 429	10 368 10 372	20 284 45 919	89 397 103 577	41 015 45 698
26		56.598	B 575	45 304	37 507	33 882	10 755	12 482	114 244	10 126	41 66 7	102 379	42 825
27 28		59 530 51 862	9 400 11 007	52 587 54 790	31 094 28 129	33 798 28 47 1	11 932 11 851	11 943 12 950	83 181 73 62 1	10 09 1 9 5 1 3	37 351 40 089	98 459 70 858	39 187 36 662
29		47.915	11.007	53 548	25 748	21 232	11 637	12 814	49 249	9 334	43 161	51 703	42 077
30		48 982		48 64 1	23 759	:8 254	11 590	12 033	41 363	10 454	41 901	40 038	119 903
3,		44.658		52 238		19 358		14 476	29 778		34.256		130 602
Average	9	71.220	18.120	28 610	42 440	25 220	15 310	11 770	23 560	13 960	18 260	68 380	74 010
Lownst		33 523	8.575	10 431	18 23	16.105	10 /55	10 299	9 623	9 299	9 140	25 042	33 257
Highest		159 400	38 78	62 587	92 99:	39 082	26 729	14 476	114 244	25 295	45 919	133 369	132 890
Ponk fic	o₩	208 273	43 176	74 270	118 '77	43 176	31 498	16 276	141 030	26 681	54 670	178 326	174 904
Day of		10	1	27	17	12	12	31	25	1	25	18	13
Monthly		10/100	42.04	36.63	110 00	67 54	20.60	21.51	62.10	26.10	40.01	1.17.20	100.30
(m-llion	CO III	190 80	43 84	76 63	110 00	07.54	39 69	3151	63 10	36 19	48 91	177 20	198 20
Runaff		187	43	75	108	66	39	3.	62	36	48	174	194
Rainfa'i	(חירד)	217	14	135	120	129	53	78	163	13	129	227	277
Statis	tics of	monthly	data for pr	evious reco	rd (Oct 193	17 to Dec 19	B5)						
Mean	Avg	51 530	45 200	32 620	23 920	17 640	13 780	13.050	17 300	23 740	33 360	47 170	52 260
flows	Low	13 460	7 858	8 129	7 84 1	4 274	3 740	3.113	3 288	3 052	4 217	11 580	18 610
	(year)	1964	1963	1943	1938	1938	1961	1949	1955	1949	1947	1937	1963
	High	109 300	106 700	103 700	61 030	41 950	31 240	40 270	59 400	69 470	92 470	103 000	105 200
	(yoar)	1948	1946	1947	1970	1969	1972	1957	1957	1950	1967	1960	1965
Runoff	Avg	135	108	86	6'	46	35	34	45	60	88	120	137
	LOW	35	19	21	20	11	10	8	. 9		11	29	49
	Нірп	287	253	273	155	110	79	106	156	177	243	262	277
Ra nfall	Avg	154	106	121	79	82	83	75	101	131	132	173	154
(1969-		60	37	54	10	39	16	27	. 9	45	41	66	46
1985)	High	287	236	233	182	151	150	144	184	306	221	249	314
Summ	nary st	atistics							Fact	lors affect	ing flow r	egim e	
				or 1986		o, record		1986 As % o'	♣ D.	neurourie)	in catchme		
			,	0- 1980		ceding 1986		pre-1986				water supp	lies
Mean fi	kow (m³:	s = `)	34	360	30 90	ю -		111				trial and/or	
Lowest					20 46	-	1964				bstractions		
Highest Lowest			11	770 Jul	44 60 3 05		1954 p 1949			ugmentatio oundwater		rface water	and/or
Highest				010 Dec			n 1948		gr		•		
Lowes:	daily m	ean	8	575 26 Feb	1 92	6 30 Ju	il 1949						
Highest	daily m	nean	159				c 1964						
Ponk 10 %ila			208 R4	273 10 Jan 010	665 40 70 50		c 1964	:19					
50 %ila				370	19 45			:10					
95 %ile			9	724	4 93	13		197					
		ullion cu m)	1084		975 1	0		111					
	runolf (rainfall		106 155		957 1391			111 112					
		(MM)		,,	1391			112					

[1941-70 raintal average (mm)

Station and catchment description
Asymmetrical compound Crump weir, checked by current meter. Drowns at flows in excess of 200 cumes. Low flows maintained by releases from major river regulating reservoirs (Celyn and Brenig). Data prior to February 1970 is of poorer quality - based on the d/s Erbistock (67002, area: 1040.0 sq km) flow record. Geology is 75% shales, slates, mudstones and palaeozoic grits, 25% extrusive igneous and Carboniferous rocks. 80% grazed open moorland, 12% forestry, remainder arable, urban negligible.

1403]

068001 Weaver at Ashbrook

1986

Measuring authority: NV First year: 1937	VWA			l ruference Level stn.					Catchment area (sq km), 622 Max alt. (m OD): 2				
Daily mean gauged o	lischarges (cu	ubic metres (per second)										
DAY JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	200		
1 5.712		2 301	10 270	4 383	2.385	1 590	2 221	2 471	1.414	7 647	DEC 4.738		
2 11.580		2 160	8.394	4 094	2 299	1 571	2.042	2 243	1.453	4 793	3 970		
3 8.683		2 287	8.054	3 9 1 0	3.265	1 549	1 853	2 992	1 444	3 208	3.964		
4 6.196 5 9.109		6 120	5 6 1 2	3 736	2.831	1 769	2012	2.344	1 4 10	2 788	5.277		
5 9.109	3.470	5 874	6.094	3 590	2 5 1 5	1 664	2.207	2 067	1.399	2 55 1	5 854		
6 9.413	4.770	4 257	5.032	3 420	2 387	1.648	2.031	1 943	1 407	2 3 1 3	4 688		
7 6.493	4 263	3.650	4 480	4 830	2.322	1 601	2 1 10	1.861	1 498	2 359	4.546		
8 6.910		3 377	5.230	4 679	2 281	1.563	2.074	1.796	1.488	5 850	17 880		
9 12.250		3.436	5.580	4 019	2.468	1 505	1 9 19	1 788	1.734	4 5 1 2	19.550		
10 29 450	3 645	3 565	4 383	3 880	5 24 1	1 596	1.758	1 737	1 850	3 877	12 000		
11 21,110	3 405	3.378	3 757	3 672	3.652	1 563	1.769	1 780	1 637	3 097	13 070		
12 13 040		3 113	3.650	3 542	2 697	1.722	1 793	1 740	1 444	2 666	12.310		
13 12 520		2.993	4 856	3 176	2.433	1 645	1 860	1 649	1.503	3 363	21.700		
14 9 8 48 15 8 073		2 843	8.829	2.874	2 3 1 3	1 628	1.747	1 610	1.536	4 887	14 360		
15 80/3	3 003	2.750	26.170	3 058	2.265	1 700	1 726	1 627	1.475	5 8 10	19.890		
16 6 409	2.911	3 287	32 070	2 627	2 200	1 666	1.638	1 593	1.373	4 072	17 910		
17 5 867		3.591	42.250	2 858	2 108	1 572	1 573	1 606	1.387	3 463	11 640		
18 12 380		3 826	24 540	2.753	1.997	1 444	1 567	1 586	1 576	11 300	18 740		
19 19.610 20 15.080		5 074 4 073	14 660 18 260	2 481 3 936	1 9 1 4 1 8 4 5	1 428 1 736	1.583	1 535	1.841	16 8 10	26 560		
15 000	20.5	4073	10 200	3 330	1040	1730	1 547	1 513	4 317	10 960	27 310		
21 16.760	2.581	3 334	14.710	3 782	1 752	1 602	1 466	1.503	3.106	15 890	19 400		
22 14.720		3.566	14.620	3 024	1.809	1 557	1 623	1 576	2.318	11.220	13 580		
23 15.300 24 10.330		5 182	14.700	2 492	3.112	3 057	1.764	1 567	2 311	13 210	9.247		
24 10 330 25 7.478		14 640 12 560	20 490 15 050	2.334	4 459 2.642	2 604 3.523	1.808 5.378	1.568 1.503	2 624 3.534	9 640 12.930	7.880 14.500		
	2	. 2.555	.5000		1.0-1	3.323	3.374	1.505	3.334	12.530	14.500		
28 5.716		9 346	9 3 1 5	2 166	2.140	2 297	14 220	1 528	2 7 19	20.830	12 060		
27 6.909		8 2 1 4	6 897	2 104	1.912	1 894	6.946	1 5 10	2.975	10 570	10 220		
28 9.468 29 14.470	2 458	6 137 5 655	6 369 5 420	2 222 2.152	1 814 1 678	1.927 2.184	6 269	1 462	2 703	6 933	8 451		
30 24 920		5 484	4.987	2.120	1 612	2 546	3.851 4.005	1 525 1.729	2 263 2.179	5 61 1 5 063	12 620 41 450		
31 18.480		9.339		2 483		2 288	2.944		2 498	5 000	27.970		
					_								
Average 12.040 Lowest 5.712	3.940 2.153	5 013	11.760	3 181	2 478	1 859	2 8 1 6	1.765	2 0 1 3	7.274	14.300		
Highest 29 450		2.160 14.640	3.650 42.250	2 104 4 830	1 612 5 241	1 428 3.523	1 466 14 220	1 462 2.992	1 373 4.317	2 3 1 3 20 8 3 0	3.964		
25 450		.4040	-2:200	- 030	3 24.	3.323	14 220	2.332	4.317	20 830	41 450		
Peak flow 32.380	14 110	16 220	46.790	7 165	7 743	4 6 1 6	16 550	3 3 7 5	5 171	24 300	43.660		
Day of peak 10	1	24	16	7	23	25	26	3	20	26	30		
Monthly total (million cu m) 32.25	9.53	13.43	30 48	8 52	6.42	4 98	7.54	4 57	5.39	10.05	20.20		
(3.33	.5.45	30 40	0 32	0.42	4 30	7.54	4 37	5.38	18 85	38 30		
Runoff (mm) 52	15	22	49	14	10	8	12	7	9	30	62		
Rainfall (mm) 84	2	62	86	5 5	48	54	92	8	70	77	113		
Statistics of monthly	data for prev	vious recor	d (Oct 1937	to Dec 19	85—inco	molete or m	issina monti	he total 1 R	veerel				
			- 1	10 000 10					144.41				
Mean Avg. 10 340		6 599	4 720	3 856	2 773	2 782	2 995	3 340	4 439	7 753	9.369		
flows. Low 1 965 (year) 1964	2 376 1965	2 183 1938	1 490	0 903	1 125	0.736	0.641	0 9 1 9	1 184	1 303	2.429		
High 21.950	19.860	18 580	1938 10 360 - 2	1946 22.720	1962 6.995	1976 12 750	197 6 8 404	1964 16 980	1947 15.970	1942 22 540	1947 22.250		
(year) 1939	1980	1947	1983	1969	1954	1968	1971	1957	1954	1954	1965		
04 4 4-		•-											
Runoff: Avg. 45 Low 8	37 9	28 9	20	17	12	12	13	14	19	32	40		
High 95	80	80	6 43	98	5 29	3 55	3 36	4 71	5 69	5 94	10 96		
_							•	• •	-	5-	30		
Rainfall Avg. 68	5:	50	48	60	58	68	7.	68	68	77	69		
Low 18 High 145	8 145	18 127	2 98	18 194	13 142	16	6	5	15	13	10		
riigii 143	143	127	30	134	142	168	175	169	137	170	140		
Summary statistics							Facto	ors affecti	ng flow re	gime			
	r	1986	-			1986							
	70	1300		record ding 1986		As % of re-1986		w influence I/or rechar		dwater ab	straction		
Mean flow (m ³ s ⁻¹)	5.71	17	5 676	o	•	101				ater suppl	ies		
Lowest yearly mean			2 752		1964					Jent return			
Highest yearly mean Lowest monthly mean	1.7€	e e-	9 209		1954								
Highest monthly mean	14.30		0 641 22.720		1976 7 1969								
Lowest daily mean	1.37		0 394		1976								
Highest daily mean	42.25	60 17 Apr	84.950	9 Fei	1946								
Peak :	48.79		212 400	8 Fel	1946								
10 %ilo 50 %ile	14,44 3.11		12 380 3 236			117 96							
95 %ila	1.50		1.122			134							
Annual total (million cu m)	180.3	30	179.10			101							
Annual runoff (mm)	290		288			101							
Annual rainfall (mm) [1941-70 rainfall average	75.1 ne (mm)		756 754)			99							
			1										

Station and catchment description

Natural river section. Accuracy of early rating curves not known and gaugings lost. However, calibration came under suspicion in 1972 and previous records, particularly low flows, deemed to be of little value. Low flow rating then changed several times before station moved 400m downstream and shallow see bed control constructed in August 1978. High flow rating (above 40 cumecs) has yet to be defined. Flat catchment includes western half of Crewe. Post glacial deposits over (mostly) Keuper Marl.

Measuring authority: NWWA

Ribble at Samlesbury 071001

1986

Catchment area (sq km): 1145.0

10 11	70 020 40.960		42.230 57 090	11 990	10.530 10.680	4 000	18 730 20 870	15 920 12.060	5 826	96 040 69.430	23 300	268 200 130 700
Average .owest lighest	82 520 13.270 214.900	10 680 5 09 1 29.830	40 400 3.935 147,100	33 730 9 02 1 14 1 900	26 710 10 300 84 590	16 530 4 000 99 880	8 207 3.983 23 880	21 200 6 679 178.900	12 390 5 481 82.800	47 620 5 020 208.500	68.760 23.300 193.200	98 100 24 940 268 200
Peak flow Day of peak	339.700 10	36.240 1	311.900 3 22	302 000 15	155 300 25	145.700 10	31 510 29	336 600 26	149 000 3	338.700 25	302 900 25	477.500 3
Aonthly total	221.00	25 83	108 20	87 43	71 55	42 85	21.98	56.78	32 11	127 60	178 20	262.70
lunoff (mm) lainfall (mm)	193 187	23 9	94 148	76 99	62 124	3 <i>1</i> 61	19 70	50 126	28 28	111 208	156 179	229 284
			evious recor						40	240	.,,	
vlean Avg.	50 480	37.090	33 560	26 200	18 650	14 020	15 620	24 070	31.030	41 170	53 070	55 460
lows: Low (year) High (year)	10 610 1963 80 040 1983	9 565 1965 80.890 1966	11 790 1975 104 700 1981	5.601 1974 54 820 1970	4 048 1980 46 460 1967	5 031 1975 33 520 1966	2 638 1984 40 220 1960	2 958 1976 68 920 1967	5 782 1972 65 820 1968	5 716 1972 118 400 1967	20 770 1983 88 610 1963	15 190 1971 120 200 1965
	118	79	79	59	44	32	37	56	70	96	120	130
Runoff, Avg Low High	25 187	20 171	28 245	13 124	9	11 76	6 94	7 161	13 149	13 277	47 201	36 281
High Reinfall Avg	133	84	103	81	84	90	88	117	140	135	145	146
1961- Low 1985) High	18 224	17 189	43 280	3 171	16 178	27 166	21 158	20 205	48 277	50 304	53 221	43 384
_		189	280	171	178	100	156					364
Summary s	Tatistics						1986	_		ting flow r	-	
		F	or 1986		For record sceding 198	36	As % of pre-1986			in catchme on from aff		ns.
Mean flow (m	3s-1)	39	200	33.30	60		118	• ~	nAmentan	on nom en	inent teturi	113.
owest yearly				22 O		1971						
dighest yearly dinom teewo.		8.	.207 Jul	45 0: 2.6		1967 Jul 1984						
dighest month	nly mean	98.	.100 Dec	120 20	00 1	Dec 1965						
owest doly			.935 3 Mar			Jul 1984						
Highest doily i	neen		200 30 Dec			Oct 1980						
Poak			.500 3 Dec			Dec 1964	174					
10 %ilo			.200	814			134					
			.530	16 4			101					
50 % ile			225	4 4			119					
50 %ile 95 %ilo	milion cu mi			1052	00		117					
50 %ile 95 %ile Annual total (i		1230	6 00	1053			117					
50 %ile 95 %ilo			6 00	1053 (919			117 117					
50 %ile 95 %ile Annual total (i		1230	6 00									
		16.	.530	16 4	10							

Grid reference 34 (SD) 589 304

Station and catchment description

Natural section with gravel shoel control affected by accretion of silt and weeds in summer. Just u/s of tidal limit. To overcome poor low flow calibration, large compound Flat V weir built (1970) 1 km u/s. Intermittent record from weir due to extreme vandalism - finally closing in 1982. Well rated at main site for high flows, Geology - Carboniferous Limestone and Millstone Grit; Boulder Clay over Coal Measures and Millstone Grit (Pennines). Lower Ribble adds little industry or population, being mostly agricultural.

Leven at Newby Bridge 073010

1986

Measuring a First year: 1	outhority: NW ¹ 939	WA		Gr	id referenci Level stn.	a: 34 (SD) . (m OD): 3				Catchme	nt area (sq Max alt. (r	km): 247.0 n OD): 873
Daily mea	n gauged di:	scharges (d	ubic metres	per second)								
DAY 1 2 3 4 5	JAN 15.330 15.870 14.340 13.090 11.850	FEB 12,720 10,540 8,956 8,080 7,319	MAR 1 479 1 042 1 039 7 164 17 640	APR 21.140 18.440 16.050 13.810 12.050	MAY 15 550 15.000 14 160 13.720 13 420	JUN 13 360 11 260 9.804 8 258 7.234	JUL 1 906 1.624 1 256 1.334 1 243	AUG 16.220 17.630 18.420 16.190 14.140	SEP 5 909 6 133 8 212 8 175 7 419	OCT 1 463 1 462 1 475 1 376 1 132	NOV 47 530 40 250 38 820 34 770 33 720	DEC 25 880 22.320 28.200 44.500 56.370
6 7 8 9	10.470 9.318 8.144 7.650 22.530	5.640 5.944 5.157 4.654 4.231	17.990 15.640 13.210 13.640 13.260	10 400 9 406 8 181 7 603 5.556	13 190 14 590 15 280 15 230 18 110	6.063 4.916 4.044 9.156 17.430	1 106 0 959 1 003 1 264 1.221	15 030 24 440 25 370 22 350 18.860	6 762 5 951 5 421 4 473 3 887	1.079 2.019 2.323 4.535 8.762	31.720 30 390 29 810 33 310 41 930	50 730 42 920 43 520 43 460 37.860
11 12 13 14 15	29.190 28.240 34.900 39.510 35.590	3.894 3.720 3.573 3.145 2.759	12 130 10 610 9 145 8.025 7.529	4.372 4.058 4.247 5.271 5.825	21 050 24 220 24 650 22 700 20 070	20 180 18 210 18 180 18 030 16 050	1 09 1 1 02 7 0 9 2 0 0 8 4 4 0 8 4 3	15.510 12.940 12.800 12.600 12.580	3 670 3 104 2 714 2 475 2 243	8 251 6 806 5 492 4 285 3 366	38 840 33.050 29 320 28.290 26.270	41.280 40.890 41.810 37.580 39.760
16 17 18 19 20	30 260 24 030 25 410 35 520 39 530	2.981 2.832 1.975 1.903 1.801	7.708 7.623 7.571 7.200 8.593	6 895 6 581 5 855 6 009 9 841	17.530 15.680 17.470 17.460 16.030	13 600 11 410 10 010 8 953 7 600	0 764 0.774 0 740 0.727 0.729	12 840 12 330 11 060 9 583 8 310	1 900 1 844 1 552 1 272 1 093	2 671 2 088 2 417 4 091 6 718	26 620 27.080 28 940 32.140 30 600	39 270 39 180 42 420 40 870 37 250
21 22 23 24 25	43.870 48.720 50.010 42.600 35.090	1 764 1 815 1.740 1 650 1.745	10 310 27 480 49 850 46.610 40 510	11 620 10 950 10 180 9 786 9 188	18 680 19 170 17.390 16 420 23 630	6.289 5.185 4.492 3.962 3.953	0 725 0.720 0 747 0 757 0 932	7 479 6 667 5 716 4 976 6 122	1.153 1.176 1.278 1.291 1.152	11 440 16 470 19 330 20 400 35 730	27 000 25 390 33.250 43.930 61 200	32.510 27.450 20.860 18.930 26.470
28 27 28 29 30 31	29.240 24.980 21.600 16.530 14.940 13.460	1 701 1.654 1.600	36.260 36.090 34.200 32.700 27.720 24.460	8 348 7.399 7 593 7 427 12.160	30 490 29.780 24 470 20 850 17 500 15.440	3 762 3 476 3 006 2.646 2 080	0 975 0 957 3.169 7 866 10.830 16.200	8.516 8.907 8.772 8.078 7.219 6.084	1 084 0 994 1 619 1 763 1 623	35 830 44 970 52 440 48.430 54 570 51 340	63.880 56 780 47 670 39.590 31.390	25 920 23.990 23.920 26 360 35 470 47 560
Average Lowest Highest	25 540 7 650 50.010	4.160 1.600 12.720	17 880 1 039 49 850	9 208 4 058 21 140	18 680 13 190 30.490	9 087 2 080 20 180	2 105 0 720 18.200	12.510 4.976 25.370	3 245 0 994 8 212	14 930 1.079 54 570	36 450 25.390 63.880	35.660 18 930 56 370
Paak flow Day of peak Monthly total (million culm)		14.710 1 10.06	51.540 23 47.90	22 850 1 23 87	31 990 26 50 02	20.990 11 23.55	16 950 31 5 64	26.560 7	10 720 11	56.780 30	66 160 25	57 450 5
Runoff (mm) Rainfall (mm)	277 275	41	194 276	97 126	203 228	95 107	23	33 50 136	8 4 1 34	39 98 162	94 48 383	95.52 387
_	of monthly d						132	162	32	339	364	450
Mean Avg flows: Low lyear High (year	19 560 1.935 1 1963 38 020	16 580 0 974 1963 31.030 1945	13 010 3 699 1962 29 970 1981	11 140 1 796 1974 21 640 1949	7 575 0.641 1980 16 940 1964	6 442 0 545 1978 18 730 1972	7 406 0 775 1941 16 990 1953	10 550 0 652 1984 31 070 1985	14 670 0 560 1959 33 930 1946	17 330 1.438 1972 50 170 1967	20 280 6.873 1983 36 350 1954	21.090 8 208 1963 40 110 1954
Runoff; Avg. Low High	212 21 412	164 10 304	141 40 325	117 19 227	82 7 184	68 6 197	80 8 184	114 7 337	154 6 356	188 16 544	213 72 381	229 89 435
Rainfall: Avg Low High	228 26 439	149 20 295	154 32 341	119 12 243	117 22 241	126 17 269	147 40 287	184 7 428	222 29 427	219 30 557	236 17 428	234 90 431
Summary :	statistics							Fact	ors affecti	ng flow re	gime	
Mean flow (m Lowast yearly Highest yearly Lowest mont	y mean y mean h'y mean	15 9 2 1	ان 05	prec 13 790 9 234 21 840 0 541	4 0 5 Մա	1973 1954 n 1978	1986 As % of re-1986 115	• Ab	straction f		nt vater suppli uent return:	
Highest mont Lowest daily Highest daily Peak 10 %ile 50 %ile 95 %ile Annual total (Annual runoff Annual runoff 11941-70	mean mean million cu m) (mm)	36 4 0 7 63 8 66 1 39 2 11 3 1 0 501 2030 2498	20 22 Jul 80 26 Nov 60 25 Nov 40 00 31 40	50 170 0 108 115 900 135 800 30 460 10 120 1,215 435 20 1762 2135 2189]	3 7 00 0 2 De 0 2 De 0	n 1967 n 1972 c 1954 c 1954	129 112 85 115 115					

Station and catchment description
Level record since 1939 from four different sites at Newby Bridge. All flow records from 1939 to 1974 combined into a single sequence. Since 5/5/71 compound Crump weir - increased sensitivity at low flows. Full range. Just d/s of Lake Windermere - highly regulated, compensation flow. Major abstractions for PWS, sewage effluent from Ambleside. Predominantly impervious, Borrowdale Volcanics in north and Silurian states in south. Boulder Clay along river valleys. Mainly grassland, very wooded in lower reaches.

076007 Eden at Sheepmount

1986

Maasuring First yaar.	authority: NWV 1967	V A		G	irid referenc Level st	e. 35 (NY) n. (m OD):				Catchmen	tarea (sq.kı Məx əlt. (r	m): 2286.5 n OD): 950
Daily mea	an gauged dis	icharges (subic metres :	per seconi	d }							
DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1	68 370	59.130	15 430	56.760	38 170	38 690	12 950	29 960	33 270	11 750	192.900	57 760
2 3	68.800 57.400	50 200 49.020	15 020 15 130	51 110 46 360	30 190 27 200	34 050 30 910	12 670 12 510	31 090 26 960	38 060 112 000	11 500 11 280	93 430 102 700	90 690 175 600
4	57 490 44 5 60	44.380	112.600	42 260	25 580	27.670	12 440	23 040	45 910	11.170	71 910	222 000
5	40 980	39 090	152 400	39 140	26 010	24 810	12 370	20 730	32 740	11.350	85 130	354 500
•	20 220	26.220	62.200	75.000	29.840	22 650	12.220	34 520	29 010	11 200	63.240	142 300
6 7	36 230 32.280	35.220 32.510	62.200 45.980	35 060 32 340	137.200	21 240	12.220	77 340	25.610	12.580	78 730	121 400
ė	30 560	30.730	40 340	33 290	73.330	20.160	12.240	50 760	21 860	13 350	119 000	255.800
9	35 840	29.030	39.540	33.360	50 000	24 710	11.820	35 130	19 730	13 620	124 900	184 200
10	228.700	27.000	39 610	31 420	52.330	129 100	11,710	27 050	18.430	19.210	140 100	107 600
13	109,100	23 950	37.120	26.750	55 190	70 000	11 310	22 660	17.290	16 340	117 200	173 600
12	93.140	23.130	33.670	27 330	63 220	44.180	11 040	20 450	16.520	13.690	84 440 94 170	136 800
13 14	164 000 130 900	22.270 21.340	30 110 27 230	29.460 33.730	63 970 50.000	37.740 35.840	11 020 10 970	20 980 24 200	15.900 15.390	12 670 12.220	109 800	221 800 116 300
15	84 180	21.100		147 900	49 340	29.690	11 000	35 210	14 830	11 800	97 750	208 000
	61.740	20 440	25 500	99 000	42 890	25 440	10.840	34 660	14 310	11 540	84 590	144 600
16 17	61 740 53 760	19 970	35.600 33 B10	59 950	37 050	24.200	10.840	26 980	13.850	11 270	80 670	157 900
18	80 610	19 560	28.940	46 210	50 440	26 040	10.270	23 330	13 570	12 970	116 900	152 500
19	245 100	19 200	30.500	39 150	43 490	22 210	10 400	33 020	13.270	22 420	141 200	125 000
20	221.600	18.410	41.830	95 820	42 880	19 690	10 530	30 080	13 000	29 680	80 040	95.540
21	240.700	18.250	44 030	61 840	89 130	18 230	10 130	24 030	12.950	57.470	64 550	76 940
22	306 100	17.460	139 400	45.180	65 290	17.330	10.150	26 840	12.830	53 450 46,170	103 000 212 500	64 310
23 24	166 200 98.540	17 860 15,760	182.300 92.410	37.910 37.210	48 090 47 500	17 120 17.820	11.240 11.050	25 160 20 370	12.670 12.390	47.010	190 500	55 030 62 680
25	71 670	16.960	87.000	40 260	151 300	17 570	10 920	19 030	12 110	194.500	361 800	128 000
26	59 720	15.890	77.990	35 790	106 500	16 100	10 600	206 500	11.910	80 390	202 500	67 620
27	58 640	15.290	101.300	30 880	68 210	15.050	10 450	87 040	11.870	93.570	129 500	65 710
28	53.500	16 080	88.320	28 010	64 880	14.460	21.620	53 300	11 870	125 600	94 540	67 690
29 30	52 120 66 310		99.350 71.190	27 610 36 780	57.210 44.730	13.820 13.230	41 510 29 370	37 250 30 050	11 760 1 1 8 70	86 690 175 500	75 960 63 880	135.000 247.500
31	68 180		62.080	30 780	41 730	13 230	47 140	26 180	11070	112.200	03 000	221 500
		25.440	61.020	46.000	£7.100	28 990	14 360	38 190	21 560	43 680	119 300	143 100
Avarage Lowest	101.000 30.560	26.440 15.2 9 0	61 820 15 020	46 260 26 750	57 190 25 580	13.230	14 360 10 130	19 030	11 760	11 170	63 240	55 030
Highost	306 100	59.130		147 900	151 300	129 100	47 140	206 500	112.000	194.500	361 800	354 500
Pank flow	422 700	66 840	339.400	282.400	227 900	222 800	68.290	306 400	166 700	279 900	443 200	449 900
Day of pea		1	23	15	25	10	31	26	3	25	25	5
Monthly to						35.15	20.40	.02.20			200.10	202 20
(million cu	m) 270 40	63.96	165 60	119.90	153 20	75.15	38.46	102 30	55 88	117 00	309 10	383 30
Runoff (mm		28	72	52	67	33	17	45	24	51	135	168
Rainfall (mr	n) 150	13	109	76	133	56	71	129	25	160	173	235
Statistics	s of monthly (data for pr	evious reco	rd (Oct 19	167 to Dec	1985—inc	omplete or n	nissing mon	ths total 3.	O years)		
Mean Av	n. 84 780	59 710	53 600	39 700	28 150	22 630	20 890	24 690	39 810	64 400	74 850	73 730
flows. Lo	•	29.200	24 360	13 070	11 050	10 420	8.375	7 026	9 2 1 8	7 965	30 420	32 480
	nar) 1985	1985	1975	1974	1974	1973	1984	1976	1972	1972	1973	1971
Hig	gh 151200 par) 1975	100 000 1974	119.700 1968	63.960 1970	68 940 1983	50 380 1972	39 380 1985	92 390 1985	105.500 1985	225 000 1967	126 400 1984	139 200 1974
Runoff, Av Lo	•	64 31	63 29	45 15	33 13	26 12	24 10	29 8	45 10	75 9	95 34	86 38
Hi		106	140	73	81	57	46	108	120	264	143	163
Garadall A.	va 130	69	94	65	71	75	82	89	122	125	130	120
Rainfall, Av Lo	•	17	43	8	25	37	38	19	26	31	54	43
He	gh 232	129	179	111	123	126	142	211	231	307	208	371
Summar	y statistics							Fac	tors affec	ting flow r	egime	
					For record		1986 As % of	• D		in catchme		
			For 1986	D	rar recora receding 198	36	pre-1986			for public		dies
Mean flow	(m³s = 1)	58	.790	48 8	380 ⁻		120			•	• •	
Lowest yes				28.		1973						
Highest year	oniy mean Solitiy mean	14	360 Ju	60 : 7 (1982 Aug 1976						
Highest mo	onthly mean	143	100 Dec	225 (000	Oct 1967						
Lowest do			.130 21 Ju			Sep 1976						
Highest de Peak	ay mean		.800 25 Nov 900 5 Dec			Mar 1968 Mar 1968						
10 % de			300	103	100		133					
SO %ile			460	30 !			119					
95 %ile Annual tot	al (million cu m)		.270 4.00	9 ! 1 54 3	523 : 00		118 120					
Annual run			4.00 11	67			120					
Annual rain	nfall (mm)	13:		117			113					
[1941-7	O rainfall averag	e (mm)		124	uj							

Station and catchment description
Velocity-area station, Permanent cableway. Full range. Most floods contained in immediate channel. Pre-1970 (when floodbanks constructed) bypassed via Caldew floodplain. Highly influenced by Ullswater, Haweswater and Wet Sleddale especially at low flows. Rural except for Carlisle, Panrith and Appleby. Headwaters in Carboniferous Limestone of Pennines to E. impervious Lower Palaeozoics of Lake District massif to W; moorland, Extensive Boulder Clay covered Permo-Triassic sandstones in Vale of Eden. Arable and grazing.

Nith at Drumlanrig 079006

1986

	ring aut par: 196	thority: SRP(67	9		Gric		ce: 25 (NX n. (m OD)				Catchme		km) 471.0 m OD) 725
Daily	mean	gauged dis	scharges (cubic metres	per second)								
DAY		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1 2		19.997 16.318	11 205 9.067	2.155 2.370	10.105 12.359	12 464 9 04 1	14 227 11 286	2.137 1.983	13 478 48 59 1	3 728 4.554	1 831 1 822	19.162 15.807	14 073 68 425
3		10.128	8 165	3 484		11 461	10 849	1,971	13.497	11 760	1 772	24 432	72 567
4		8.255	7.134	91.208	8 5 1 1	12 981	8 639	1 951	13 655	5 00 1	1.662	26 4 18	59 663
5		7.919	6.278	31 037	7.436	35 403	7 028	1.938	12.025	4 133	1 632	82 308	60 860
6		8.534	5.596	12 716	6.500	16 573	6 188	1 908	56.457	7 186	1 64 1	28 588	41 708
7		6.119	5 240	9 660		78 034	5 589	1.866	35.464	4 666	2.560	76 236	124 396
8 9		5.784 48 775	5.230 4.788	20.156 29.320		28 983	6 09 1 3 1 7 5 9	1 815	18 044	3 687	2 526	50 755	63 723
10		95.880	4.453	15 462		22 866 48 211	52.246	1.836 1.799	10.713 7.860	3 353 3 206	2 5 1 5 2 3 4 9	106 754 38 300	34 599 48 295
		46.530	2.056										
11 12		46.572 61.125	3.956 4.245	11 101 9 238		27 901 44 462	17 298 21 042	1 666 1.547	6.237 5.280	3 129 2 963	1 942 1 786	27 509 21 922	81 963 89 126
13		89.902	4.152	7 645		32 064	14 454	1 487	10 790	2 920	1 715	31.996	70 5 19
14		101.964	3.896	9 585		19 821	9 753	1 530	27 168	2 838	1 722	73 302	34 587
15		41.513	3.711	11 213	5 391	14 281	7.409	1.675	60 092	2 667	1.632	50 102	76 810
16		21.354	3 457	26 472		10 935	6 123	1 686	23 403	2 532	1 533	92 398	46 547
17 18		22 104 45 070	3.259 3.077	12.533 18 785		38 377 31 263	7.240	1.654	13 117	2 330	1.454	37 949	97 768
19		56 047	2 931	16.376		14 717	6 B87 5 423	1 546 1 657	9 754 8 035	2 266 2 159	1 808 16.552	29 705 22 794	47 334 33 182
20		66.052	2.710	89 006		12 339	4 543	1 820	6 5 1 7	2 075	35 5 15	26 280	24 171
21		34.716	2.586	47 745	9.246	50 997	4 066	1 672	5.859	1.932	50 308	24 014	17 359
22		76.758	2.392	104.059		20 523	3 780	1 499	5 508	2 224	68 927	66 947	13 213
23		42.203	2.232	60 744		17 306	3 5 1 7	1 497	4.804	3 110	50 078	72 692	11 514
24 25		25 642 16 148	2.068 1.916	24.781 26 022		24 903 41 330	3 324 3 131	1.508 1.635	4 169 4 322	2.258 1.950	87 321 66 264	89 120 84 179	45 552 32 649
20													
26 27		13.518 22.429	1.834 2.200	21 458 21 931		33 122 70 068	2.957 2.787	1.658 1.862	7.545 4.734	1.844 1.806	26 718 64 121	41 417 32.787	25.906 34.610
28		15.687	2.288	16 488		28 975	2.592	6.292	3 998	1.804	52 616	21 035	84 864
29 30		12.586		20 086		17 357	2.473	15.561	3.782	1.934	45 640	18.952	106 902
31		13.505 15.210		13.606 12.136		13 990 14 028	2.263	18,442 14,193	3.671 3.574	2 028	75.644 36.137	14 44 1	88 922 59 205
Augano	_	24 270	4 200	25 760			0.400			2 200			
Average Lowest		34.320 5.784	4.288 1.834	25 760 2 155	8 725 3.979	27 570 9 041	9 499 2 263	3.267 1.487	14.590 3.574	3.268 1.804	22 890 1,454	44 940 14 44 1	55.190 11 514
Highest		101.984	11.205	104 059		78 034	52.246	18 442	60 092	11.760	87 321	106 754	124 396
Posk flo	w	293.921	13 114	156 657	70.855 1	32 616	100 352	45 4 1 4	135 620	18.764	154 255	229.032	267 045
Day of		10	1	21	30	8	11	31	15	3	30	10	8
Monthly (million		91,91	10.37	69 00	22 61	73 85	24 62	8 75	39.06	8.47	61 32	116 50	147.80
Runoff Reinfall		195 223	22 10	146 184	48 88	157 230	52 76	19 92	83 148	18 30	130 217	247 279	314 345
Statio			lata for an						•				0.0
3(2(18	tics of	monthly c	rata ioi pii	evious recor	a (han 1967	to Dec	1983)						
Moon	Avg.	28.110	. 20 140	17 540	9 079	7 398	5 038	5 087	7 078	14.550	23 230	26 620	24 220
flows:	(Aunt)	9.037 1 98 5	7.630 1985	4 428 1969	2 457 1974	1 389 1980	1 488 1984	0 869 1984	0 84 1 1984	1 261 1972	2 745 1972	5 268	12 770
	High	61.220	38 900	33.190	24 190	16 060	14 660	13 620	38 280	39.000	39 200	1983 49 350	1971 41 980
	(vaor)	1974	1984	1978	1972	1983	1972	1985	1985	1985	1967	1982	1974
Ruroff	Ava.	160	105	100	50	42	28	29	40	80	132	147	138
	Low	51	39	25	14	8	8	5	5	7	16	29	73
	High	348	207	189	133	91	81	77	218	215	223	272	239
Roinfall:		180	109	124	69	94	85	92	98	159	179	176	156
	Low High	67 398	27 170	34 217	11 175	19 213	52 163	41 165	23 302	20 247	66 301	35	69
_	-			•		2.5	103	.03	302	247	3(/1	285	282
Summ	iary st	atistics						1986	Fact	ors affect	ing flow r	egime	
			F	or 1986	Fo	record		As % of	● Re	servoir(s)	in catchme	ent.	
Mana il	ow (m³s	1,	21 :	300	prece 15 660	dung 198	16	pre-1986 137	● At	ostraction	for public i	water supp	lies.
	Agaigh i		21,	,,,,	10.720		1971	137					
	yearty r				21 700		1982						
	monthly		3.2 55.	267 Jul 190 Dec	0 84 1 61 220		lug 1984						
	daily m			154 17 Oct	0 606		Jan 1974 Rug 1984						
	daily m	ean	124	396 7 Dec	231 700	19 0	Dec 1982						
Pepk 10 %ila			293.9		538 355		Oct 1982	166					
50 %ilo			62 6 10 8		40 430 7 857			155 138					
95 %ila			1.6	378	1 305			129					
	total (m runoff (i	illion cu m) mm)	674 143		494.20 1049			136					
Annual	rainfall ((mm)	192		1521			136 126					
194	1-70 ra	nfall average			1584)								

Station and catchment description
Volocity-area station on long straight reach at particularly well confined site. Cableway, Gravel and rock bed, Natural channel control. Sensibly natural flow regime. Aften Reservoir has small influence.

Measuring authority: CRPB

Clyde at Blairston 084005

1986

Catchment area (sq km) 1704 2

	ring aut bar: 19!	inority: CRP 58	R		(n (m.OD):				Catchmen	ntarea (sq. k Məxəlt. (m) 1704 m OD): 73
Daily a	mean	gavged di	scharges i	cubic metres	per seconi	d)							
DAY		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DŧC
1		43.749	53.465	9.632	29.724	39 393	37 938	9617	25.617	12.224	9.215	54 753	53 172
2		35.883	40.367	8.991	26 387	26 203	32 876	9.762	37.851	17 55 1	9.390	43 914	201 972
3		29.751	37.377	14 885	25 240	25.791	29 380	9.799	32 806	37.747	9 040	59 734	224 927
4		24.601	33.554	194.906	22.914	25 170	25 095	9 879	24.315	21.235	8.524	51 236	161 942
5		24.031	28.787	142.470	20 84 1	24 217	21 116	10.297	27 099	21 675	8 831	149 969	202.660
6		19.843	25 806	61.794	19 617	29 450	19 268	9.791	114.588	32.827	8 544	72 05 1	106 259
7		19.224	23 468	43.753	18 835	162 321	18 323	9.593	117.519	20.160	8.974	161 987	143 470
8		20.345	21.955	36 281	17 84 1	90 377	18 004	9.193	53.961	15 000	10 038	178.927	171 27
9 10		64.598 182.360	20 852 19,192	40.808 37.613	16 671 15 440	64 078 118 956	29 729 130 588	9 101 8 835	33.979 26.849	13 068 12,144	11.587 10.364	164 095 126 294	114 74: 77 18:
				20.210									
11 12		149,648 115,715	15.745 14. 6 04	32.716 26 474	14 708 14 205	73 552 69 120	72 332 55 320	8 809 8 743	22.511 20.011	11 343 10 908	9 306 8 770	75 585 61 181	130 046
13		176.766	14 679	23.195	14 134	89 024	52 554	8 659	21 713	10 607	8 47 1	65 757	132 66
14		221 047	15 567	22 640	15 669	56 415	32 689	8 852	31 553	10 509	8 525	107 331	77.16
15		123 054	15 277	23.256	22 616	47 724	25 65 1	9 202	70 827	9.775	8 338	117 900	116 77
16		71.987	14 206	27 083	55 728	37 894	21 801	8 999	69 424	10 339	8.154	155 482	107 23
17		64.365	14 04 1	30.456	46 728	32 975	27 443	8 28 1	41 604	9 728	B 123	116 927	207.16
18		123.588	13 634	25 5 19	39 300	44 770	29 161	8 142	32 860	9 287	10 225	120 064	151 62
19		139 08 1	13 411	28.469	38 409	32 937	22 074	8 179	29.495	9 092	35 179	78 616	102 63
20		155.787	12.781	118 307	78 839	28 452	18 006	8 265	29 634	9.217	73 155	71 373	77 17
21		113.655	12 386	83 317	40 263	51 380	16.099	8 600	26 426	9 552	152.621	59 014	60 58
22		156.128	10 485	228 721	31 318	48 955	14 800	8 098	25 437	10 633	177.477	109 310	50 05
23		118.498	10 939	182.187	39 629	37 5 16	13 683	7 734	21 883	10 016	107 220	128 564	44.49
24		78.901	11.935	104.589	37 975	35 623	14 224	7 706	19.746	9 162	67 712	220 071	107 01
25		56.315	11.824	84 422	27 587	61.579	13 776	7 747	18 696	8 448	123.797	240 140	131 51
28		49.896	9 822	68 484	22 856	79 853	12 821	8 136	19.618	9.412	62 526	123 105	76 38
27		58.642	10.367	67.580	20 464	107 084	11 937	9 028	19.180	8.792	143 245	92 982	84.64
28 29		49.820 42.436	10 866	49 627 47.276	22 236 28 347	72.541 49.900	11 365 10,744	30 509 49.185	15.640 14 102	9.321 10 161	118 827	66.920	188 89
30		49 037		43 072	75 744	40 232	10.318	33 568	13 202	9.761	104.178 140.587	56 999 49 667	232 02 305 93
31		70.174		35.568	, 5 , 44	39.543	10.310	37.186	12.461	3.701	83 861	45 007	194 13
Avarag	0	85.380	19.190	62 710	30 010	56 230	28.300	12 560	34.540	13 320	50.150	106 000	133 40
Lowest		19.224	9 822	8 99 1	14 134	24 217	10.318	7.706	12 461	8 448	8 123	43 914	44 49
Highest		221 047	53 465	228.721	78 839	162 321	130 588	49 185	117,519	37.747	177 477	240.140	305 93
Peak flo		235,118	68.774	293.802	99.228	214 931	180 402	78 877	161,577	43.748	183 983	340.527	375 886
Day of I Monthly		15	1	5	30	8	11	29	7	4	23	25	31
സ്വരം	Cu m)	228.70	46.43	168 00	77 78	150.60	73 36	33 65	92 50	34.53	134 30	274.70	357 4
Runoff i		134	27	99	46	88	43	20	54	20	79	161	210
Rainfall	(mm)	147	18	119	76	150	61	79	116	34	154	188	231
Statis	tics of	monthly (data for pr	evious recoi	rd (Oct 19	58 to Dec	1985)						
Мавп	Avg.	63 530	50.320	44 260	29 500	23 040	16 970	15 750	24 140	37 690	51 220	64 900	63 67
llows.	Low	11.920	8 855	14.810	10 430	8 93 1	B 127	6 700	6.185	7 627	8 246	16 400	26 09
	(year)	1963	1963	1969	1974	1980	1961	1984	1984	1972	1972	1983	1963
	High (year)	134 300 1975	101,100 1984	88.940 1979	58 700 1972	51 980 1967	41,190 1972	50 580 1985	86.140 1985	132 400 1985	114 600 1967	131 300 1982	115.10 197
Runoff;	Avg. Low	100 19	72 13	70 23	45 16	36 14	26 12	25 11	38 10	57 12	80 13	99 25	100 41
	High	211	149	140	89	82	63	79	135	201	180	200	181
Rainfall		113	72	00									
regii ii gii	Low	25	23	88 28	64 9	72 18	73 43	80 32	96 24	120 16	121 33	127 24	114 38
	High	237	127	163	125	127	157	166	206	230	231	221	209
Sumn	nary st	atistics							Fac	tors affect	ting flow r	egime	
				or 1986		for record		1986 As % of					
						eceding 198	36	pre-1986					
	ow (m ₃		53.	020	40 3			131					
	AgostA i				27 0		1973						
	month!	mean y mean	12	560 Jul	54 1 6 1		1982 Aug 1984						
		ly mgan	133.				Jan 1975						
	daily m			706 24 Jul			Oct 1959						
lighesi	daily m		305.	932 30 Dec	585 9	00 215	Sep 1985						
Pank			375.			89 22 9	Sep 1985						
10 % 40			133		93.9			142					
O Milo				160	23 1			130					
95 %ilo				652	9.0			107					
	runoff (nillion cu m)		2 00	1274			131					
	runott (rainfall		98 137		748 1138			131 121					
		iiuj ak aksuda i		-	115								
,													

Grid reference: 26 (NS) 704 579

[1941-70 rainfalt average (mm)

Station and catchment description

Recorder moved to present position in Nov. 1974 from opposite bank. Section is natural with steep grass and tree covered banks. Velocity profile slightly uneven due to upstream bend. Control - piers of redundant rail bridge, 300m d/s. Section rated by current meter to 3.44m, just below max, recorded stage. Some naturalised flows available. Very mixed geology with the older formations (Ordivician/Silurian) to the south. Hill pasture and moorland predominates but some mixed farming and urban development is found in the lower valley.

085003 Falloch at Glen Falloch

1986

	ring aut oor: 197	hority: CRPE 70	3		Gri		e ⁻ 27 (NN) i (m OD). :				Catchin		q km): 80.3 i OD): 1130
Daily	mean	gauged dis	charges (cubic metres	per second)								
DAY		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	D€C
1		1.293	0 94 1	0.196	1 562	4.883	2.191	0 165	10 553	0 855	5 5 1 1	1 797	7.827
2		1 342	0.822	0 278	1 369	2.558	1 421	0 157	19 404	2 494	1 844	3 909	40.734
3		1,423 0.821	0 884 0.792	2 884 51.829	1,174 1 137	3 429 3.389	1.265 0.947	0 271 0 968	3.263	1.188	1.279	3.782	19 504
5		0.559	0 727	9 126	0 995	8.362	0.686	1 472	2 249 4 493	1 618 2 420	1 075 4 64 1	33 683 12 250	25.978 10.694
6		0.441	0 643	5.311	0 843	5 546	0 563	0 750	17,941	1 252	9 36 1	13.871	17 617
7		0.550	0 634	6.301	0 652	14.869	0 485	0.564	4.280	1 053	5 835	24 786	22.822
8 9		0.518 38 78 1	0 574 0 529	17 499	0 592	4.013	4 821	0.370	1 634	0 724	8 190	15 771	8.668
10		17 341	0 497	13 35 1 5.337	0 833 0 620	14 018 40 429	6 898 5.441	0.505 0.476	1 105 0.805	0 553 0 468	4 630 2 895	48 507 14 602	4 552 30 996
11		13 4 15	0.458	4 795	0 786	9 089	1,468	0 335	0 622	0 511	1 730	7 635	
12		34 120	0 438	4 805	0 927	25 575	5 166	0 271	0.505	0 469	1 125	7 896	10 470 35 939
13		30 040	0 472	7 3 1 0	0.701	19.206	1 825	0.250	34 987	0 393	1 010	17 698	7.138
14 15		20 576 3 156	0.401 0.402	22 492 34 540	0 6 1 3 0 5 2 1	5 710 2 614	1.165 0.810	0.557 0.578	6 530 16 042	0 362 0 343	3 426 1 466	15.739 29.375	5.979 4.899
18 17		1.522 8.010	0.400 0.499	15 711 4 948	0 494 0 485	1 643 23 282	0 672 2.440	3.535 4.982	5 213 1.683	0 318 0 311	2 6 1 0 3 4 7 6	15 076 9 055	7 553 28.203
18		9.063	0.449	5 775	0 495	21.725	1 106	1 107	1 123	0 290	9 376	5 279	6 390
19		5.847	0 372	5.452	3 00 1	3 593	0.739	3 082	2.999	0.481	10 647	4 832	3.500
20		34.603	0.356	15 666	3.920	8 738	0.546	1,944	1 359	0 677	16 525	2.755	2 380
21		7.182	0.333	33 528	1.373	13 003	0 423	1.267	0.986	5.129	10 158	5.349	1 858
22 23		8.019 3.610	0 371 0 291	56.887 5.514	1.177 2 213	6 281 9 889	0 314 0 294	0.892 0.623	0.720 0.617	6 5 1 1 1 8 9 5	5.793	31 259	1.431
24		1.581	0.351	3 687	1,434	21 148	0.500	1.265	0.522	1 014	34 538 10.359	17 778 38.163	1.5 83 39.062
25		1.165	0 273	3.827	1.298	22.052	0 973	1,477	0.446	0 709	7.116	14 003	6 149
26		2.808	0.248	4 370	1.810	17 973	0.508	11.784	0 381	0.937	7.754	8.288	5 668
27 28		2.331	0 297	7.532	2.579	16 940	0 353	12 376	0 396	4 356	11.358	8.820	19.616
29		1,344 1,192	0 242	3 595 6 254	5.110 10.970	3 734 1.952	0 289 0 240	4 637 2.510	0 381 0 340	19 548 4 662	13 032 36 094	6.418 7.673	87.550 5.916
30		1.654		3 376	24 476	2.690	0 196	10.584	0 3 10	1 569	17 469	14.121	12.341
31		1.220		1.985		2 050		5.835	0 735		3 759		4 892
Average	8	8.242	0 489	11.750	2 472	10.980	1 491	2 438	4.601	2.104	8.196	14 670	15.740
Lowest		0.441 38.781	0 242 0.941	0 196 56 887	0 485 24.476	1.643 40 429	0 196 6.898	0.157 12.376	0.310 34 987	0 290 19:548	1.010 36 094	1.797 48.507	1 431 87 550
Peak flo Day of p		172.885 10	1 105 1	141 229 · · 23	59 258 30	80 482 11	20.321 9	49 055 27	213.123 14	45.723 29	120 267 30	1 87 15 8 10	182.216 29
Monthly	total												
(million	cu mj	22 08	1 18	31.46	6 4 1	29.41	3 87	6 53	12.32	5 45	21.95	38 03	42.16
Runoff (Rainfall		275 378	15 11	392 475	80 109	366 439	48	81	153	68	273	474	525
							85	158	215	127	403	614	631
Statis	tics of	monthly d	ata for pre	evious recor	'd (Oct 1970	to Dec 19	985 inc o	mplete or n	nissing mont	hs total 0 :	3 years)		
Mean	Avg.	8.649	5.261	5.643	2.939	2.551	2 436	2.528	3.340	6.755	7 236	8 852	8 072
flows	Low	1.926 1985	1 840 1975	0.853	0 408	0 133	0 328	0 634	0 339	0 751	1 362	3.326	1 4 16
	(year) High	19 630	8.387	1975 11 360	1974 6 325	1980 6 422	1977 5 609	1984 7.152	1983 10.510	1972 11 210	1974 16.050	1983 13 830	1981 15.650
	(year)	1974	1982	1979	1977	1976	1973	1985	1985	1981	1983	1978	1974
Runoff:	Avg.	289	160	188	95	85	79	84	111	218	241	286	269
	Low	64	55 252	28	13	4	11	21	11	24	45	107	47
	High	655	253	379	204	214	181	239	351	362	535	446	522
Rainfall;	Avg. Low	357 93	199 79	233	123	131	146	162	181	310	310	366	341
	High	715	310	100 388	15 261	19 288	67 249	66 329	42 507	40 468	100 645	117 557	111 637
Summ	no et	ntistics							_				
5 0,,,,,,	,	51151165						1986	Fact	ors arrect	ing flow re	agime	
			F	or 1986		or record eding 1986		As % of re-1986					
Mean fi	ow (m³s	·~ ')	7 (003	5 357		μ.	131					
Lowest					4 440		1972						
Highest	monthly		0.4	489 Feb	6 474 0 133		1982 ly 1980						
	monthly			740 Dec	19 630		n 1974						
	daily me			157 2 Jul	0 032		ul 1977						
Highest Peak	daily m	oan	87 5 213		113 422 226 684		ar 1979 :1 1971						
10 %ile			19 (14 930		:1 1971	131					
50 %ile			2 €	517	2 044			128					
95 %ile	inial im-	lion cu m)		310	0 207			150					
	runoff (n		220 275		169.10 2105	•		131 131					
	rainfall (i		364		2859			127					
[194	i - /U raii	nfoll overage	(mm)		2732]								

Station and catchment description

Valocity-area station with artificial low flow control (long broad-crested weir with rectangular low flow notch) - installed 1975. Damage to part of the high flow crest results in a small discharge bypassing the central notch. All but very high flows contained. No significant abstractions or discharges. Very responsive flow regime. A very well mountainous catchment developed on ancient metamorphic formations - some Drift cover.

Carron at New Kelso 093001

1986

	ring autl sar: 197	hority: HRPB '9			Gra	d reference Level stn	: 18 (NG) . (m OD)					nt area (sq Max alt (m	
Daily (mean g	auged disc	charges (cubic metres (per second)								
DAY		JAN	FEB	MAR	APR	MAY	JUN	JU	AUG	SEP	OCT	NOV	DEC
1		5.154	3.025	0 696	4 442	16 711	8 9 1 5	0814	6.908	6.999	13 893	8 258	35 258
2 3		6.365 4.265	2 697 2 475	0 692 1.817	3 994 3.753	6 48 1 4 47 1	6 429 7 391	0 803 0 862	13 268 10 321	4.661 3.281	7 959 5 382	5 727 8 967	62 367 54 840
4		2.929	2.265	67 192	3.365	4 093	7 204	2.910	7.053	5.240	3 994	36 787	25 209
5		2.458	2 06 1	33.022	2.929	3 583	5 004	5 072	6 853	5 820	4 291	51 903	22 890
6		1.917	1 822	16.364	2.624	3 207	3 587	3 365	4 748	3 568	15 079	13 871	16.347
7		1.669	1 672	12 947	2.337	6.966	2 860	4.409	3.939	2.835	22.486	29 276	42.961
8		1.631	1.586	12.601	2.201	12 810	3 151	3.278	3 298	2 660	10 527	16 6 18	13 203
9 10		17.776	1.508	18 780	2.196	13.935	9 4 1 1	2.594	2.662	2.657	10 974	41 165	7 706
10		29.659	1.427	14.988	1.957	34 527	6 855	2 520	2 221	2 742	14 506	49 698	7 978
11		17.250	1.368	9.011	3 427	28.724	5.791	2 076	1.929	2.625	8 608	17 708	16 269
12 13		37.497 52 595	1.269 1.121	8.962 5.526	4 087 3 344	13 687 18 666	4 479 4 048	1 691 1.511	1 806	2 733	4 827	8.240	14.336
14		50.511	1.185	10 239	2 933	10 569	3.242	1.761	3.844 8.792	2.458 3.400	3 492 5 097	5 393 7 761	14 509 6 755
15		17.304	1.096	12 828	2 427	5 770	2 731	2 998	8 393	6 117	6 665	16 485	9 983
16		8.584	1 085	12.354	2 083	5 436	2 447	5 044	10.457	4 790	12 213	29 560	10 080
17		17.520	0.984	8 765	1.884	4 212	2 429	20 533	5 895	4 465	11 318	14 571	45 993
18		20.829	0.968	8 057	18:7	26 764	2 167	6 994	4 193	3 185	28 018	12 507	18 533
19		9 704	0 942	5 382	2 705	16 192	1 898	5.403	3.567	3.335	21 411	11 894	10 014
20		56.733	0.952	16 385	7.888	10 603	1 696	5.245	3 213	7 739	14 178	10 096	13 064
21		18 062	0.907	33 928	5.160	12 631	1 475	4 879	2.610	19 766	14 235	7 027	13 902
22		13.288	0.890	103 091	3 479	22 456	1 308	B 400	2 122	32 247	15 462	41 884	7 324
23 24		14.959 7.260	0.857 0.871	19 478 10 940	3 547 3.532	20 385 24 156	1 184 1 120	8.035 9 157	1.851 1.660	12.630 6.018	15.195 14.666	43 69 1 50 00 1	9 313 87 668
25		4.586	0 807	12 835	3 540	23 5 14	1 092	12.116	1 537	4.100	23 987	59 981	27 352
28		10.297	0.742	11 893	8 389	19 422	1 073	9 070	1 362	3.794	19 467	25 830	11 466
27		12.870	0.775	23 466	6 098	19 744	1017	19.531	1 4 1 6	8 434	41.795	25 217	23 427
28		8.685	0 762	16 185	7 64 1	13 540	0.937	7.308	2.222	19 633	19 219	23 801	82 047
29 30		4.489		11 690	6.618	10 306 12 810	0 895	4 228	2.965	16.758	32 443	16 208	18.169 10.911
31		4.465 3.616		8 057 5 217	33 313	11 301	0 827	3.330 6.006	2.685 9.748	7.884	59.961 19.438	49 842	7 009
Averag- Lowest		14 930 1.631	1 361 0 742	17.210 0.692	4 790 1 817	14.120 3 207	3.422 0.827	5.547 0.803	4.630 1.362	7.086 2.458	16 150 3 492	24 670 5 393	24 090 6.755
Highest		58.733	3.025	103 09 1	33 313	34 527	9 4 1 1	20 533	13 268	32.247	59 961	59 98 1	87.668
		04 300	2 252	101.633	42.422			20.450	25.100			. 20 500	
Poak fic Day of		86.798 21	3 252 1	181 637 23	42 432 30	62 314	16 392 10	30 158 18	25.103 16	44.353 23	91 946 31	129 599 5	153.780 25
Monthh												•	
(milbon	cu m)	40.00	3 29	46 08	12 42	37 81	8 87	14 86	12 40	18 37	43 27	63 93	64 53
Runoff	(mm)	290	24	334	90	274	64	108	90	133	314	464	468
Rainfes	(mm)	377	6	372	97	295	56	167	133	150	330	523	546
Statis	tics of	monthly de	ata for pr	evious recor	d (Jan 1979	to Dec 19	985)						
		12.010				2045	4.635					. 7 000	
Mean flows:	Avg. Low	13.940 6.148	8 872 5 368	11 000 4,104	7 333 2 863	3.945 0.698	4 635 0 921	5 855 2 426	7.911 2 703	15.280 10.700	14 090 6 332	17.280 8.851	18 910 5 646
	(your)	1985	1983	1980	1980	1980	1982	1984	1984	1984	1979	1985	1981
	High	28.470	13 610	18 250	13 440	8 894	8.623	10.530	15.070	19.100	24 070	31 120	30 710
	(yoar)	1983	1981	1983	1984	1979	1980	1985	1985	1980	1983	1981	1983
Runoff:	•	271	157	214	138	77	87	114	154	287	274	325	368
	Low	120 5 53	94 239	80 355	54 253	14	17 162	47 205	53 293	201 259	123	166	110
	High	533	239	355	253	173	162	205	293	359	468	585	597
Rainfall		296	149	238	135	96	142	150	187	343	333	358	371
	Low High	125 553	96 225	95 397	70 217	36 1 8 9	28 275	96 248	85 321	259 425	182 532	133 629	124 517
_	-			55.	- ''	.03	2.3	4-40					5.,
Sumn	nary st	atistics						1986	Fact	ors affect	ing flow r	egime	
			F	or 1986	Fo	or record		As % of					
		-1.				oding 1986	ŗ	ore-1986	● Na	itural to wit	hin 10% at	t 95 percen	tile flow.
	low (m³s : yearty n		11	600	10 760 9,152		1984	108					
	yearty n				12.770		1983						
	monthly			361 Feb			y 1980						
	t monthly daily ma			670 Nov 692 2 Mar			ov 1981 in 1982						
	daily m		103.				tc 1983						
Posk			181.		295 541	31 De	ic 1983						
10 %40				880	26 760			100					
50 % do				890 971	5 283 0 981			130 99					
Annual	total (m	illion cu m)	369	5 80	339 60			108					
	runoff (r		265		2464			108					
	rainfa# (I 1-70 re:	mm) ntali average:	305 (mm)	12	2798]			109					
,					,								

Station and catchment description

40m wide river section with floodbank on right bank. Any bypassing in extreme floods will be over 30m wide floodplain on left bank. Unstable gravel control requires regular calibration of low flow range. Adequately gauged to bankfull. Computed flows are 100% natural 70% of catchment drains through Loch Dughaill with little additional surface storage. Typical mix of rough grazing and moorland. One of the wetter Highland catchments currently gauged.

Blackwater at Maydown Bridge 203010

1986

Measuring aut First year 19		N		G		ce 23 (IH) n (m 00)				Catchme	int area (sq Max alt. (r	km): 951 4 n OD): 362
Daily mean	gauged di	scharges (cubic metres	per second)							,
DAY 1 2 3 4 5	JAN 27.180 39.689 29.393 30.393 39.100	FEB 17 929 15.094 13 429 12 225 11 468	MAR 2 550 2 340 2 439 6 661 16 566	APR 22 589 18 735 14 850 12 141 10 565	MAY 15 702 10 699 13 472 22 435 21 552	JUN 20 507 15 493 12 090 10 048 B 492	JUL 3 093 3 169 2 408 2 498 2 460	AUG 6.924 20 663 11 368 10 625 18 431	SEP 9 100 7 615 7 170 6 320 5 478	OCT 1 549 1 397 1.347 1 351 1 369	NOV 62 836 44 508 28.963 21 096 18 659	DEC 14 273 14 016 22 641 33 135 52 459
6 7 8 9	31 941 29 367 34 041 35 657 39 378	10 416 9 716 9 228 8 878 8 460	11 656 8 741 7 085 7 374 7 563	9 261 8 866 8 240 7 545 6 734	15 961 11 598 9 866 8 950 11 173	6 947 6 287 5 981 6 871 6 600	2 401 2 252 1 685 1 527 1 648	58 229 52 625 34 020 16 117 10 516	4 929 4 493 4 014 3 466 3.300	1 389 1 386 1 381 1 381 1 373	17 418 28 052 51 379 41 979 38 845	35 132 45 646 47.588 42 184 37.945
11 12 13 14	41.191 45.257 48.611 54.806 56.467	7.695 7 280 6.854 6 392 5 945	7 345 13.328 10 830 8 326 8 599	6 157 6 056 6.386 13 747 88 016	11 902 18.191 16 148 21 504 18 283	5 784 5 011 4.663 4 337 3.981	2 366 2 661 3 074 2 859 2 866	8 320 6 590 19 154 32 255 28.046	3 069 2 736 2 670 2 600 2 395	1 353 1 347 1 347 1 291 1 242	24 808 18 256 18 215 18 736 33 293	65 391 53 848 52 687 38 973 63 843
16 17 18 19 20	47.750 47.468 51.358 79.902 78.105	5 533 5 337 4 717 4 357 4 170	21 675 14 629 10 546 9.405 22 441	100 476 93 784 63 264 59 170 57 264	12 432 12 271 15 444 11 541 9 247	3 152 3 298 3 306 3 205 2 697	3 521 2 981 2 555 2 161 2 055	18 385 12 799 9 710 7 682 6 653	2.135 2.062 1.995 1.816 1.755	1 275 1 342 1 501 5 639 15 026	73 602 61 915 51 815 52 426 36 631	59 742 66 394 68 957 69 446 62 766
21 22 23 24 25	64 167 57 693 61 936 52 467 41 758	3 685 3 544 3.474 3 313 3 210	27 238 33 361 58 762 56 611 52 202	144 965 32 639 23 069 16 812 13 447	10 615 12 590 11 696 13 049 31 984	2 446 2 442 2 414 2 430 2 729	1 914 1 632 1 530 1 514 1 508	6 187 10 608 9 539 6 967 24 014	1 736 1 754 1 709 1 668 1 649	19.420 23.609 28.710 21.461 50.897	28 095 47 490 61 038 52 822 64 923	49 148 34 597 26 626 24 270 27 095
26 27 28 29 30 31	38 394 42 723 36 877 27 912 23 198 21 800	3 308 2 709 2 841	47 694 47 005 37 642 29 933 23.880 20 883	11 942 11 561 10 981 10 195 16 134	43 968 35 740 28 701 20 657 20 621 29 344	2 645 2 659 3 900 3 194 2 942	1 494 1 439 1 979 4 605 5 295 7 649	72 809 52 765 31 865 18 988 13 515 10 598	1 639 1 632 1 615 1 587 1 652	36 707 32 618 32 435 29 643 22 780 32 746	56 297 40 471 27 323 20 096 16 529	21 411 19 642 20 761 29 166 51 998 48 784
Average Lowes: Highest	43 680 21 800 79.902	7 186 2.709 17 929	20 490 2 340 58 762	26 850 6 056 100 476	17 660 8 950 43 968	5 552 2 4 14 20 507	2 606 1 439 7 649	20 870 6 187 72 809	3 192 1 587 9 100	12 140 1 242 50 897	38 620 16 529 73 602	41 950 14 016 69 446
Peak flow Day of peak Monthly total (million ou m)	82 450 19 117 00	19.836 17.38	60 °30 23 54 89	112 092 15 69 60	47 076 26 47 29	24 429 1 14 39	9 524 31	80 054 26	9 651	60 018 31	76 411 16	70 929 18
Runoff (mm)	123	18	58	73	50	15	6 98	55 90 59	8 27 9	32.51 34	100 10	112 40 118
Rainfall (mm)	133	4	107	122	117	43	61	138	-	131	114	143
Statistics of	32 550											
Mean Avg flows: Low (year) High (year)	18 050 1971 56 780 1984	26 260 12 970 1979 52.240 1977	21 130 8 770 1973 43 250 1981	11 000 3 439 1974 26 730 1972	8 138 1 368 1984 19 810 1983	5 548 0 921 1975 17 540 1981	3 728 0 860 1984 12 700 1985	6 768 0 565 1975 32 480 1985	10 640 1 920 1972 30 110 1985	16 810 2 163 1972 31 470 1980	26 520 8 857 1983 51 680 1970	30 200 10 570 1971 50 390 1978
Runoff: Avg Low High	92 51 160	67 33 133	59 25 122	30 9 73	23 4 56	15 3 48	10 2 36	19 2 91	29 5 82	47 6 89	72 24 141	85 30 142
Rainfall: Avg. Low High	110 64 185	77 28 158	82 33 142	50 14 84	62 19 124	59 19 111	64 17 115	73 15 160	93 9 153	89 43 168	101 38 146	96 30 164
Summary st	atistics							_	ors affecti			
Maan flow (m²s Lowest yaarly n Highest yaarly n Lowest monthly	nean nean y mean	20 1 2 6	i06 Ju	prec 16 570 9 709 19 720 0 569)) 5 Aı	1975 1982 1975	1986 As % of re 1986 122				95 percent	ile flow
Highest monthly Lowest daily mi Highest daily mi Peak 10 %ile 50 %ile 50 %ile Annual total (mi Annual runoff (r	ean can illion cu m) mm) mm)	100 4 112 0 52 3 11 9 1 4 636 669 1120	142 15 Oct 176 16 Apr 192 15 Apr 130 190 198 70	0 026 100 913	5 5 Si 3 5 Ji 7 26 J 1	an 1984 up 1976 an 1982 Jul 1985	121 125 170 122 122 117					

Station and catchment description
Valocity-area station with cableway and natural control. A substantial portion of the catchment area is in the Irish Republic where some groundwater may be abstracted but its hydrological significance is uncertain. Geology: Carboniferous Limestone and Millstone Grit with sandstones overlain by substantial amounts of till. A predominantly rural catchment with limited afforestation. Monaghan Town (pop. 5,000) - in the Irish Republic - is the only significant urban centre.

Ravernet at Ravernet 205005

1986

Measuring aut First year: 197		N		Gr	id reference Level stn. (Catchme	ent area (sq Max alt. (m	
Daily mean	gauged dis	charges (c	ubic metres ;	per second)								
DAY 1 2 3 4 5	JAN 5 788 6 070 3 364 4 166 4 686	FEB 1 626 1 379 1 247 1 105 1 001	MAR O 178 O 185 O 262 O 485 O 469	APR 1 575 1 517 1 294 1 121 1 011	MAY 0 759 0 564 0 550 0 668 0 728	JUN 0 476 0 440 0 378 0 346 0 308	JUL 0 080 0 069 0 061 0 062 0 172	AUG 0 407 0 604 0 262 0 188 1 172	SEP 1 255 1 065 0 923 0 812 0 673	OCT 0 078 0 068 0 063 0 063 0 060	NOV 0 941 0 602 0 522 0 466 0 441	DEC 0 861 0 814 0 851 1 511 1 804
6 7 8 9	4.163 8.007 8.042 6.359 5.063	0 877 0 800 0 753 0.716 0 636	0 347 0 307 0.290 0 282 0 278	0 906 0 807 0 749 0 669 0 519	0 689 0 565 0 499 0 489 0 516	0 278 0 255 0 252 0 279 0 281	0 140 0 108 0 102 0 099 0 096	3 438 1 694 1 027 0 820 0 723	0 532 0 463 0 415 0 383 0 369	0 061 0 062 0 060 0 048 0 049	0 381 0 716 1 061 0 851 0 621	1 376 2 089 3 706 2 379 2 771
11 12 13 14 15	3 981 3 461 3 385 4 363 4 708	0 529 0 472 0.445 0 432 0.412	0 283 0 281 0 233 0 229 0 253	0 476 0 475 0.460 2 651 30.870	0 478 0 510 0 513 0 653 0 753	0 290 0 258 0.215 0 204 0.193	0 091 0 088 0 086 0 073 0 069	0 600 0 495 0.560 0 720 0 715	0 367 0 338 0 310 0 279 0 240	0 046 0 041 0 039 0 039 0 039	0 546 0 522 0 517 7 517 3 843	4 098 3 721 3 475 3 158 5 085
16 17 18 19 20	4.052 4.617 6.082 9.488 4.755	0.380 0.344 0.325 0.308 0.254	0 513 0 539 0 544 0 596 1 062	17.304 8 779 5 895 5.871 5 207	0 589 0 727 0 804 0.734 0 688	0.238 0.549 0.288 0.217 0.179	0.063 0.067 0.065 0.053 0.050	0 683 0 519 0 456 0 428 0 391	0 235 0 217 0 201 0 198 0 192	0 039 0 040 0 043 0 044 0 049	3 877 2 661 3 742 3 155 2 201	3 57 1 4 184 3 044 3 494 3 117
21 22 23 24 25	3 404 3 038 2 767 2 398 2 129	0 23: 0 249 0 217 0 223 0 '95	1 234 1 565 2 489 2 658 2 311	3 874 2 930 2 154 0 834 0 806	0 598 0 499 0 462 0 438 0 466	0 163 0 152 0 138 0 138 0 128	0 048 0 045 0 041 0 041 0 041	0 391 0 624 0 524 0 441 8 400	0 175 0 159 0 140 0 126 0 103	0 074 0 081 0 076 0 107 0 251	2 425 2 926 2 948 2 284 2 119	2 537 2 001 1 723 1 572 1 400
26 27 28 29 30 31	2 345 2 941 2 180 1 708 2 379 2 003	0 176 0 224 0 203	2 118 2 007 1 947 2 040 1 837 1 635	0 801 0 801 0 801 0 801 0 801	0 499 0 457 0 451 0 429 0 433 0 476	0 126 0 122 0 104 0 098 0 097	0 041 0 040 0 064 0 167 0 106 0 085	18 207 5 284 2 901 2 202 1 759 1 470	0 100 0 098 0 094 0 089 0 083	0 187 0 180 0 251 0 272 0 220 0 609	1 738 1 522 1 232 1 097 0 974	1 215 1 054 1 012 1 357 2 552 2 268
Average Lowest Highesi	4.255 1.709 9.488	0 563 0 176 1 626	0 950 0 178 2.658	3 425 0 460 30 870	0 570 0 429 0 804	0 240 0 097 0 549	0 078 0 040 0 172	1 874 0 189 18 207	0 354 0 083 1 255	0 108 0 039 0 609	1 815 0 381 7 517	2 381 0 814 5 085
Peak flow Day of peak Monthly total	15 856 18	1 826 1	2 967 24	42 564 15	0 837 18	0 923	0 306	36 141 26	1 399	1 614 31	15 014 14	6 85: 14
(million cu m) Runoff (mm) Rainfall (mm)	11.40 164 140	1 36 20 9	2 54 37 92	8 88 128 117	1 53 22 96	0 62 9 45	0 21 3 54	5 02 72 158	0 92 13 5	0 29 4 71	4 70 68 90	6 38 92 115
Statistics of		iata for pre					_					
Mean Avg. flows: Low (year) High (year)	2 589 1 494 1 983 4 045 1974	2 095 1 000 1975 5.670 1984	1 436 0 313 1973 2 543 1981	0 778 0 199 1982 2 427 1985	0 667 0 055 1984 2 282 1981	0 428 0 040 1975 1 593 1981	0 210 0 006 1984 1 185 1985	0 362 0 008 1976 3 385 1985	0 710 0 013 1977 3 355 1985	1 520 0 066 1972 4 361 1976	1 644 0 285 1983 4 093 1982	2 570 0 573 1975 9 416 1978
Runoff, Avg. Low High	100 58 156	74 35 204	55 12 98	29 7 91	26 2 88	16 2 59	8 0 46	14 0 130	26 0 125	59 3 168	61 11 153	99 22 363
Rainfall: Avg Low High	100 57 154	61 21 108	73 21 114	42 11 97	66 18 '56	61 22 127	54 13 91	69 14 144	96 9 160	89 31 207	83 36 149	98 22 268
Summary st	tatistics							Fact	ors affecti	ng flow re	gime	
•		Fr	or 1986	r	or record		1986 As % of	• Fin	w reduced	I by indust	rial and/or	
Mean flow Im ³ : Lowest yearly Highest yearly Lowest month! Highest month! Lowest doily m Highest daily m Paak. 10 %:iia	mean mean ly mean ly mean lean	1 3 0 0 4 2 0 0 30 8 42 8 3 6	390 255 Jan 255 Jan 239 *3 Oct 370 15 Apr 364 15 Apr	prec 1 24 0 72 2 19 0 00 9 41 0 00 42 38 52 07 2 99	Peding 1986 8 4 6 6 Jul 6 Dec 0 4 Sep 3 28 Dec 0		pre-1986 :11		ricultural ab			
50 %ila 95 %ila Annual tota' (m	ullion cu m)	0.0	525 049 83	0 71 0 02 39.3	2		74 220 111					

Annual total (million culm) Annual runoff (mm)

Annue reinfall (mm) [1941-70 rainfall average (mm)

39.39 567

892 935;

43 83 63:

992

Station and catchment description
Flat V weir installed autumn 1977, width 8 64m. Height of wing walls 2.1m. Theoretical rating applies up to bankfull; exceedence very unlikely. Previous to weir installation rating based on current meterings. Natural flow regime, significant storage in several loughs in the headwaters - their influence on the flow regime is partly counterbalanced by the minimal soil cover in many areas. Geology, quartitie overlain with 'till and rock' Pradominantly a grassland catchment, some limited arable use.

Thames at Kingston 039001

1986

Measuring au First year 18		Α		Gr		e 51 (TQ) n (m OD).				Catchmen		m) 9948 ()
Daily mean		d dischard	365 (cubic m	etres per sec		(00)	7.0				IAISY SII (m OD). 330
DAY	JAN	FEB	MAR	APR	MAY	NUL	ж	AUG	SEP	ocr	NOV	DEC
1	169 000	212 000	71 100	135 000	87 600	70 000	32 700	30 800	42 BOO	31 500	54 300	96.100
2 3	263.000 359.000	204 000 208 000	73 500 72 600	105 000	84 900 82 800	70 700 69 900	33 200 38 200	32 400 46 600	37.100 38.300	31 300	75 500	98 100
4	339 000	199 000	94 500	.06 000	80 200	69 200	33 200	58 700	38 100	34 400 29 100	68 200 63 600	97 300 88 600
5	259 000	177 000	126 000	99 300	75 000	58 000	59 000	35 900	37 700	29 400	50 200	87 500
6	242 000	16: 000	144 000	88 000	79 800	61 100	47 700	40 400	34 000	29 600	50 000	106 000
7	220 000	135 000	101 000	92 100	74 900	54 300	44 000	35 300	34 400	33 000	46 400	98 600
8 9	247 000 272 000	133 000 129 000	90 800 84 500	111 000	75 500	55 600	43 000	34 800	30 200	29 700	50 600	108 000
10	245 000	110 000	88 900	113 000 111 000	78 200 73 700	55 500 57 000	42 700 41 900	32 600 33 100	33 300 32 300	29 500 29 200	55 400 54 800	103 000 105 000
	222.222											
11 12	263.000 235.000	113 000 107 000	86 100 79 600	87 400 87 600	71 800 72 600	64 000 62 600	40 700 40 500	39 000 41 900	32 000 31 500	29 400 27 800	79 500 93 800	98 000 117 000
13	231.000	107 000	78 200	86 400	66 600	58 800	39 600	39 300	38 600	27 200	84 500	176 000
14 15	185 000	101 000	73 000	95 800	61 700	52 000	41 000	41 500	73.800	34 100	111 000	178 000
13	157 000	101.000	72 100	136.000	95 400	51 000	41 300	33 900	58 900	46 800	167 000	184 000
16	142.000	97.900	64 300	170 000	96 500	45 100	40 400	30 900	53 900	40 900	145 000	241 000
17 18	121 000 125 000	97 000 90 700	69 500 71 900	183 000 167 000	74 400 76 900	45 600 45 100	41 200 33 800	33 000	38 400	33 600	121 000	208 000
19	126.000	91 300	84.900	149 000	81 400	46 500	30 400	35 300 37 200	43 600 39 300	29 700 35 400	138 000 218 000	221 000 193 000
20	124 000	89 200	85 500		105 000	46 400	33 500	36 300	33 400	53 300	248 000	151 000
21	126 000	B4 000	87 200	196 000	143 000	43 100	35 000	32 300	36 000	60 600	233 000	141 000
22	156 000	78 800	84 800		136 000	42 700	33 600	39 200	36 300	82 300	231 000	120 000
23 24	200 000 173 000	81 300 81 300	79.600		107 000	44 900	33 200	42 100	35 600	64 300	198 000	118 000
25	132 000	68 900	110 000 135 000	161 000 135 000	80 800 84 300	46 800 54 700	34 100 33 800	46 000 53 800	33 800 34 100	56 800 55 600	193 000 168 000	102 000 136 000
26		35.000										
26 27	114 000 116 000	75.800 73.700	108 000 79 000	126 000 109 000	68 300 68 000	43 300 41 300	32 700 31 600	105 000 88 200	31 800 32 600	48 500 50 000	161 000 147 000	167 000 147 000
28	145.000	69 700	115 000	104 000	69 400	39 400	32 700	69 600	31 900	55 800	137 000	129 000
29 30	228 000 285 000		150 000 177 000	83 500	68 400	35 200	34.300	45 900	28 100	51 900	110 000	114 000
31	235.000		143 000	96 200	67 500 68 500	34 500	30 900 31 600	55 400 40 700	30 700	56 000 47 600	106 000	125 000 179 000
A	201.100		00.450 -									
Average Lowest	201 100 114 000	117.000 68.900	96 150 ° 64 300	125.500 83.500	82 450 61 700	52 140 34 500	37 470 30 400	44 100 30 800	37 750 28 100	41 750 27 200	122 000 46 400	136 600 87 500
Highost	359.000	212 000	177 000	196 000	43 000	70 700	59 000	105 000	73 800	82 300	248 000	241 000
Monthly total												
(m La noilem)	538 60	283 10	257 50	325 20	220 80	135 20	100 40	118 10	97 85	111.80	316 10	365 70
Nat sed										,		
runoff (mm) Rainfal (mm)	54 100	28 •5	26 60	33 66	22	14	10	12	10	11	32	37
					71	22		105	32		99	87
Statistics of	f monthly	data for pr	revious reco	ord (Jan 188	3 to Dec 1	985)						
Moan Avg.	137 500	134 700	116 100	85 510	65 110	48 760	35 040	32 550	34 350	49 440	83 160	112 800
natised low	32 200	25 080	27 340	26 520	18 200	13 470	10 770	11 030	11 250	15 120	17 730	22 470
flows (year) High	1905 332 900	1905 348 100	1944 370 900	1976 199 800	1944 181 300	1944 178 700	1921 88 840	1976 88 770	1898 139 400	1934	1921	1921 343 900
(yos')	1915	1904	1947	1951	1932	1903	1968	1931	1968	185 300 1903	339 600 1894	1929
nati-sed avg	37	33	31	22	18	13	9	q	•			
runoff: Low	9	6	, ,	7	5	4	3	3	9 3	13 4	22 5	30 6
High	90	88	100	52	49	47	24	24	36	50	88	93
Reinfall Avg	64	49	52	48	55	52	58	64	58	72	72	73
Low	18	3	3	3	8	3	8	3	3	5	8	13
High	137	127	142	104	137	137	130	147	157	188	188	185
Summary s								Fact	ors affect	ing flow r	egime	
(naturalised flo	ws)		or 1986		or record	,	1986 As%sof	♣ Da	comoute)	n catchme		
_				pred	eding 1986		re-1986			ed by grou		straction
Mean flow (m ³		91	020	77 650	_		117	อก	d/or recha	rge.		
Lowest yearly Highest yearly				30 940 131 800		1934 1951		● At	ostraction .	for public v d by indust	vater supp rial and/or	lies
Lowest month		_	470 Ju	10 770 ار	ο.	Ju 1921		ag	ricultural a	bstractions	3 .	
Highest month Lowest daily m		201 27	100 Jai 200 13 Oc			lar 1947 Jul 1934			igmentatio oundwater	n from sur	face water	and/or
Highest daily n		359				ov 1894				in from effl	uent return	is.
10 %ile		178	500	172 600	n		103		•			
50 %ile			500	53 220			103 140		i ment ultrasonic	gauging st	ation was i	not
95 %ile	allina co set		330	18 216			172	oper	ational bet	ween 26/1	12/85 and	
Annus runoff (2870 28		2450 00 246	J		117 117			this period he Tedding		re
Annus reinfall	(mm)	77		717			108	reco			, ++•••	
194 1-70 /8	aintol average	(mm)		723]								
	_											

Station and catchment description

Ultrasonic gauging station commissioned in 1974; multi-path operation from 1986. Full range. Pre-1974 flows derived from Teddington weir complex (70m wide); significant structural improvements have been made since 1883. US data led to revision of 1951-74 flows (in 1981). Substantial basellow - sustained from the Chalk and the Oolites. Daily naturalised flows available for POR - allowance is made for major PWS abstractions only. Diverse topography, geology and land use which has undergone important historical changes.

Part (ii) - The monthly flow data

The introductory information (measuring authority etc.) is as described in Part (i).

Hydrometric statistics for the year

The monthly average, peak flow, runoff and rainfall figures are equivalent to the summary information following the daily mean gauged discharges in Part (i). Because of the rounding of monthly runoff values, the runoff for the year may differ slightly from the sum of the individual monthly totals.

Monthly and yearly statistics for previous record

Monthly mean flows (Average, Low and High) and the monthly rainfall and runoff figures are equivalent to those presented in Part (i). Again, due to the rounding of monthly runoff values, the average runoff for the year derived from the previous record may differ slightly from the sum of the individual monthly totals. The peak flow is the highest discharge, in cubic metres per second, for each month. For many stations the archived series of monthly instantaneous maximum flows, from which the preceding record peak is abstracted, is incomplete, particularly for the earlier years, and certain of the peak flows are known to be of limited accuracy. An examination of the quality of the peak flow figures is underway and significant revision may be expected as this review proceeds. The figures are published primarily to provide a guide to the range of river flows experienced throughout the year at the featured gauging stations.

Factors affecting flow regime

Code letters are used as described in Part (i)

Station type

The station type is coded by the list of abbreviations given below – two abbreviations may be applied to each station relating to the measurement of lower or higher flows.

- B Broad-crested weir
- C Crump (triangular profile) single crest weir
- CB Compound broad-crested weir. The compounding may include a mixture of types such as rectangular profiles, flumes and Flat-Vs and with or without divide walls
- CC Compound Crump weir
- EM Electromagnetic gauging station
- EW Essex weir (simple Crump weir modified with angled, sloping, triangular profile flanking crests) in trapezoidal channel
- FL Flume
- FV Flat-V triangular profile weir
- MIS Miscellaneous method
- TP Rectangular thin-plate weir
- US Ultrasonic gauging station
- VA Velocity-area gauging station
- VN Triangular (V notch) thin-plate weir

Factors affecting flow regime. H. Station type: VA

003003 Oykel at Easter Turnaig

1986

1986 runoff is 108% of previous mean rainfall 125%

003003	O	ykel	at E	aste	r Tu	rna	ig					1	1986
Measuring author First year: 1977	ity HRPB			,		nce 29 (N .tn (m 00));		(area (sq k Max alt (m	
Hydrometric st	atistics fo	or 1986											
Flows Avg (m ⁷ s) Peak Runoff (mm) Rainfal (mm) Monthly and ye	JAN 28.630 181.92 232 255	FEB 2 376 5 43 17 21	MAR 26 490 266 61 215 232	APR 5 991 23 65 47 73	MAY 12 440 66 19 101 167	JUN 4 255 49 08 33 46	JU: 6 709 55 75 54 133	AUG 9 432 71 39 76 126	SEP *4 540 66 44 114 146	OC1 20 390 211 26 165 223	NOV 29 770 196 48 233 276	DEC 34 300 309 95 278 339	Year 16.277 309.95 1566 2037
Meen Avg flows Low (m³s=') High Peak flow (m³s=') Runoff (mm) Hantel (mm)	26 540 13.550 43 980 510 66 215 242	16 460 9 324 25 370 466 46 122	19 500 6 649 40 740 470 84 158 180	10 540 5 445 17 710 208 27 83 94	5.771 1 067 14 380 129 64 47 72	6 583 0 751 14 140 169 90 52 106	7 648 2 853 15 690 191 07 62 102	10 040 2 332 22 590 196 76 8: 132	23 460 17 680 31.870 423 38 184 240	26 770 7 328 41 100 847 50 217 255	28 980 14 420 49 380 407 70 22 / 276	24 020 8 245 38 210 394 15 195 220	17.196 14.287 20.249 847.50 1641 2019
Factors affecting Station type: VA		-e 1V							_		ainfail 10	5% of prev 1%	ious mea
004001	C	onon	at 1	Moy	Brid	lge						1	1986
Measuring author First year 1953	ity: HRPB			•		nce 28 (N .tn (m ()D)		17		(area (sq k ax alt (m	
Hydrometric st			****										
Flows Avg -{m³s=") Peak Burioff (mm) Bainta I (mm)	JAN 94 830 249 23 264 294	FEB 36 940 131.65 93 10	MAR 69 120 248 72 192 242	APR 32 000 77 35 86 67	MAY 52 920 83 90 147 186	JUN 37 460 83 63 101 40	JJL 11 150 53 89 31 106	AUG 33 150 59 88 92 111	5EP 32 990 80 90 89 92	OCT 49 110 229 76 137 217	80V 90 760 185 12 245 296	DEC 110 300 265 01 307 355	Year 54 227 265 01 1785 2018
Monthly and y∈ Youn Avg	65 860	57 810	54 790	40.740	t 1947 to 31 550	Dec 1985- 21 310	incompl 20 220	ete or mis: 26 640	sing montl 40.350	18 total 5 1 53 740	7 years) 62 920	72 010	45 617
flows Low {m³s="} High Peak flow (m³s=") Runoff (mm) Raintall (mm)*	31 690 138 300 694 00 183 189	25 810 121 000 467 20 147 127	18 670 '27 900 362 90 '53 '52	13 940 75 730 203 90 110 108	10 940 53 050 232 20 88 105	8 861 47 560 165 20 57 98	2 959 36 690 247 41 56 :07	8 162 45 140 254 90 74 126	12 510 94 870 223 72 109 170	23 090 94 030 324 80 150 217	24 090 121 700 411 85 170 206	27 970 165 100 1076 00 201 224	29.991 59.238
*(1953-1985) Factors affecting Station type: VA	flow regim	ie H									noff is 119 infall - 110	9% of prev	ious mea
007002	ri	ndh	G## /	at Fa		••••••••••••••••••••••••••••••••••••••			_				 1986
Measuring author			<i>.</i>	_	Grid refere	nce 38 (N		:3		(area (sq k	m)_781
First year: 1958 Hydrometric st	atistics fo	or 1986			Level	stn (m OD	טיסיניוי				1	Max alt (m	100) 94
Flows Avg (m³s=1) Poak Runoff (mm) Rainfall (mm)	JAN 27 140 155.79 93 183	FEB 6 300 9 89 19 26	MAR 30 060 173 09 103 109	APR 17 280 82 27 57 59	MAY 25 370 86 08 87 93	JUN 14 210 126 97 47 65	5 562 150 95 19 70	AUG 19 660 127 26 67 124	SEP 9 469 29 96 31 46	OCT 14 '80 185 24 49 102	NOV 20 950 154 17 69 99	DEC 33 510 228 12 115 181	Year 18.641 228 12 757 1157
Monthly and ye	arly stati	stics for p	previous I	record (Oc					_				
Mean Avg flows Low (m³s=") High Peak flow (m³s=") Runoff (mm) Reinfall (mm)	24 340 9 429 51 190 361 11 83 102	20 000 5 259 44 700 537 70 62 62	22 310 8 615 54 320 410 00 76 82	21.290 5 560 54 170 173 47 71 64	15 490 3 836 41 990 294 32 53 73	9 892 3 321 41 900 430 20 33 77	9 665 2 744 24 650 469 14 33 85	13 610 2 478 58 840 24 10 00 47 104	15 /00 2 863 37 870 861 10 52 104	21 120 3 547 49 540 512 03 72 111	23 880 9 300 39 710 465 20 79 119	25 260 8 332 6* 550 616 90 87 106	18.545 11 994 25 482 2410 00 748 1089
Factors affecting Station type, VA	flow regim	ne N									noff is 101 infall 106	1% of prev 5%	ious mea
008007	' Sı	ey a	ıt In	vert	ruin	1						1	1986
Measuring author First year 1952	ity NERPB	-		ı		nce 27 (N .n. (m OD)		52		(area (sq k Max alt (m	
Hydrometric st	atistics fo	or 1986				·							
Flows Avg. {m²s=1} Peak Runoff (mm) Reinfall (mm)	JAN 10 *50 77 82 68 277	FFB 2 204 3 77 13 13	MAR 11 280 128 70 75 213	APR 2 942 9 91 19 53	MAY 4 400 20 23 29 180	JUN 2 728 9 79 18 51	JUI 1 4 18 7 73 9 75	AUG 3 167 18 77 21 108	SEP 1 7:() 2 89 11 38	OCT 6 696 76 10 45 186	NOV 9.843 52 60 64 274	DEC 16-330 114-80 109 327	Year 6.072 128.70 482 1795
Monthly and ye Meen Avg flows Low (m³a~') High	9.801 3.314 23.280	6 509 1 953 21 020	6 332 2 722 20 600	ecord (Oc 4 223 2 075 7 126	3 664 1 413 6 210	Dec 1 985) 2 993 1 123 6 269	2 876 1 042 5 021	3 392 0 852 7 545	4 837 1 454 14 650	6 908 1 638 14 830	7 735 3 235 15 960	9 658 3 518 24 970	5.662 4.211 8.037
Peak flow (m ³ s ⁻¹) Runoff (mm) Rainfall (mm) Factors affecting	153 70 59 154	198.20 40 101	274 50 42 114	60 85 27 74	43 92 25 88	45 93 19 77	72 83 19 86	75 00 23 102	108 00 31 137	106 90 46 166	170 60 50 164	259 50 65 176	274.50 446 1439

009002 Deveron at Muiresk

1986

Measuring First year		ty: NERPB			(Grid referei Level s	nce 38 (N. tn (m OD)		8		C	archment N	area (sq.k Aax alt. (m	
Hydrome	tric sta	tistics fo	r 1986											
		JAN	168	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DFC	Year
F-ows	Avg.	35 620	12.660	24.840	18.280	10 870	11 080	4 6 1 1	13 850	8 934	5 8 7 1	7 724	18 330	14.389
{m³s~1}	Peak	130.40	19 27	124 70	65 93	20 66	162 60	16 29	128 50	18 51	14 12	21 25	72 32	162.60
nm) Nonuf	1)	100	32	70	50	30	30	13	39	24	16	21	51	477
nm) katnisf	n)	98	41	29	B4	68	58	66	131	57	42	38	110	822
Monthly	and ye	arly statis	stics for p	revious r	ecord (Oc	t 1960 to	Dec 1985)							
Mean	Avg	25 830	20 6 10	20 130	17 420	13 900	8 728	8 023	11 200	11 070	17 540	22 680	24 590	16 803
ows	Low	5 726	5 376	6 735	7 456	5.373	3 935	2 738	2 578	2 907	2 706	6 322	5 184	8 890
(m ² s)	High	45 260	38 820	37 190	37 990	46 250	21 770	18 950	36 380	36 540	49 480	56 410	46 390	23.048
eak flow ((m s)	214 50	135 20	187 10	131 30	506 60	254 40	222 50	422 90	322 60	332 10	305 60	244 20	506.60
tunali (mm	1)	72	53	56	47	39	24	23	31	30	49	62	69	555
Rainfall (mn	r)	85	54	70	62	69	63	75	89	84	92	101	88	932
Factors of Station typ		llow regimi	e [.] N									inoff is 86 ainfall 88		ious meai

010002 Ugie at Inverugie

1986

Measuring authority: NERPB First year: 1971					C	Grid reference: 48 (NK) 101 485 Level stn. (m OD): 8 50						Catchment area (sq km) 325 0 Max alt (m OD) 234				
-		atistics fo	r 1986										•	-		
Flows (m³s=1) Runoff (m Rainfall (m	m)	JAN 11 630 45 26 96 73	FEB 4 997 8 64 37 3	MAR 5 357 24 42 44 22	APR 3 876 11 48 31 60	MAY 2 B44 5 21 23 55	JUN 2 635 13.00 21 45	JUI 1 508 5 24 12 67	AUG 2 770 14 18 23 95	SEP 1 724 2 83 14 44	OCT 1 978 7 18 16 45	NOV 2 750 9 06 22 39	DFC 8 541 33 14 70 116	Year 4.217 45.26 410 692		
Monthly	y and ye	orly statis	stics for p	revious r	ecord (Fet	1971 to (Dec 1985)									
Mear flows (m²s=") Peak flow Runoff (m Rainfall (m	r (m ³ s ^{= -}) im)	8.357 2 285 13.270 61 04 69 85	6 498 1 999 14 320 83 56 49 44	5 250 1 593 9 291 36 61 43 67	3.976 1 246 7 464 30 50 32 49	3 159 * 542 6 197 31 64 26 51	2 161 0 913 4 372 12 70 17 54	1 833 0 904 4 487 23 79 15 57	2 013 0 764 6 404 20 75 17 60	2 446 0 791 7 092 38 80 20 87	4 358 0 869 8 075 87 72 36 82	6 980 1 942 18 350 106 10 56 99	8 014 : 473 13 280 95 52 66 84	4.580 3.003 6.445 106.10 445 819		
Factors a Station to		flow regim	9 N									inoff is 92 ainfall 84		ious mean		

011001 Don at Parkhill

1986

													_		
Measuring authority NERPB First year 1969					Grid reference: 38 (NJ) 887-141 Level stn. (m OD): 32-40						Catchment area (sq.km): 1273.0 Max alt. (m.OD): 872				
Hydrometric statistics for 1986															
Fiows Avg {m³s=1}: Peak Runoff (mm) Rainfall (mm)	JAN 40 390 93 82 85 106	FEB 19 070 30 19 36 46	MAR 32 310 68 85 68 30	APR 25 590 46 74 52 86	MAY 19 620 31 99 41 72	JUN 13 380 57 86 27 54	JJ. 6 747 10 92 14 52	AUG 12 050 51 03 25 112	5f P 7 721 12 41 16 30	OCT 6 450 9 52 14 35	NOV 8 297 25 38 17 44	DEC 17 750 59 56 37 120	Year 17 448 93.82 433 787		
Monthly and yearly statistics for previous record (Dec 1969 to Dec 1985—incomplete or missing months total 0.1									years)						
Mean Avg flows Low (m³s=") High Peak flow (m³s=") Runoff (mm) Rainfall (mm)	31 760 9 453 49 160 185 90 67 101	29 870 6 846 52 550 165 10 57 56	27 990 6 587 49 590 159 80 59 75	25 400 9 317 47 220 132 30 52 61	17 470 9 553 35 460 110 70 37 65	12 790 6 773 29 050 101 60 26 60	11 430 4 335 29 270 119 30 24 69	12 720 3 346 42 320 251 20 27 /3	12 380 4 194 38 380 121 20 25 82	20 970 3 631 60 580 347 20 44 85	24 760 6 542 86 420 215 90 50 94	30 080 7 951 57 440 198 30 63 84	21 432 10.623 30.410 347.20 531 905		
Factors affecting flow regime: N Station type: VA									1986 runoff is 81% of previous mean rainfall 87%						

013007 North Esk at Logie Mill

1986

Measuring authority: TRP8 First year 1976					Grid reference, 37 (NO) 699 640 Level stn. (m.OD) 10 60						Catchment area (sq km) 730 0 Max alt (m OD) 939			
Hydrometric sta	stistics fo	r 1986												
Flows Avg (m³s~'): Peak Runoff (mm) Reinfell (mm) Monthly and ye	JAN 27 220 127 84 100 135 arly statis	FEB 11 100 19 22 37 50 stics for a	MAR 32 370 125 91 119 81	APR 22 850 109 99 81 102 secord (Jai	MAY 36 420 167 52 134 152	JUN 13 460 119 91 48 54 Dec 1985-	JUL 4.5 19 9 62 17 46 —incomple	AUG 9 291 50 72 34 103	SFP 3 622 6 51 13 12 sing month	OCT 4 098 48 85 15 56	NOV 15 120 121 31 54 105	DEC 30 410 195 30 112 183	Year 17 540 195.30 762 1079	
Moan Avg flows Low (m³s*') High Pask flow (m³s*') Runoff (mm) Raintal (mm)	24 210 13 770 48 590 240 80 89 119	27 530 9 795 45 670 88 31 92 83	31 010 16 450 42 750 169 10 114 117	22 950 9 071 34 750 111 40 82 55	:5 270 6 179 32 840 180 80 56 79	9 405 3 684 24 300 271 90 33 67	6 602 2 993 18 060 133 00 24 73	10 670 2 548 35 810 199 20 39 81	12 370 4 748 30 540 196 00 44 120	30 740 5 691 80 410 97 64 113 140	28 170 5 281 91 170 462 10 100 119	33 300 20 790 59 860 398 10 122 134	21 000 15 314 24.926 482.10 908 1187	
Factors affacting to Station type: VA	llow regime	e.SPI									inoff is 84 ainfall 91		ous mean	

01300	3 Sa	uth	Esk	at B	rech	iin						1	986
Measuring author First year: 1983	rity; TRPB			•	Grid referer Level s	nce: 37 (NO tn (m OD).		6		c	atchment N	area (sq k Aaxalt (m	
Hydrometric s	tatistics fo	r 1986											
Flows Avg. (m³s=1): Paak Runoff (mm) Rainfall (mm)	JAN 18 120 76.24 99 144	FEB 7 000 13 13 35 55	MAR 18.920 58 41 103 86	APR 11.710 52 98 62 92	MAY 26 390 103 75 144 167	JUN 8 972 43.45 47 57	JUL 2.876 7.89 16 46	AUG 6 093 23 50 33 100	SEP 2 402 4 44 13 12	OCT 3 487 26 60 19 71	NOV 11 760 49.48 62 120	DEC 20 400 104 22 112 193	Year 11.511 104.22 745 1143
Monthly and y	early stati	stics for	previous r	ecord (Jai	n 1983 to I	Dec 1985)							
Mean Avg. flows Low (m³s=") High Peak flow (m³s=") Runoff (mm) Rainfoll (mm)	16.300 10.160 22.320 67.60 89 148	14 830 9 230 21 550 72 40 74 62	17.170 9.358 25.730 98.91 94 112	16 200 11.510 20 690 56 51 86 62	12 810 6 529 24 340 59 07 70 83	8 780 3.577 11 860 86.79 46 83	4 648 1 712 8 909 32 82 25 63	9.548 1.403 25.140 127.90 52 89	9.562 3.597 21.290 89.54 51 126	10 440 8 922 12 840 41 64 57 98	20 100 3.911 48 150 172 00 106 152	20.030 17.730 23.240 181.10 110 140	13.353 11.397 14.702 181:10 861 1218
Factors affecting	flow racim											& of o.s	
Station type: VA		e : 1									inoff is 87 ainfall 94		oos mear
			ıt Ke	mba	ack							%	
O14002 Measuring author First year: 1967	L Ed	len (ıt Ke		Grid referer	nce 37 (NC stn. (m OD)		8		r	ainfall 94	*	.986 m): 307 4
O1400: Measuring author First year: 1967 Hydrometric s	L Ed	len <i>d</i>		(Grid referer			8		r	ainfall 94	% area (sq k	.986 m): 307 4
O14002 Measuring author First year: 1967	L Ed	len (MAR 5 033 19 33 44 49		Grid referer			AUG 1 829 2 62 1 6 55	SEP 1 416 2 67 12 28	r	ainfall 94	% area (sq k	.986 m): 307 4
Measuring author First year: 1967 Hydrometric s Flows Avg. (m³s-¹): Peak Runoff (mm)	L Ed onty: TRP8 tatistics for JAN 9.655 33.80 84 97	r 1986 FE8 4 922 10 78 39 32	MAR 5 033 19 33 44 49	APR 4 015 13.58 34 68	Grid referer Lovel s MAY 5 323 22.89 46 108	JUN 3 164 11.22 27 59	JUL 1711 4 15 15	AUG 1 829 2 62 16	1 4 16 2 67 12	OCT 1 301 2 53	NOV 2.559 10.45 22	% area (sq k flax alt (m DEC 7.746 25.89 67	(986 m): 307 4 OD) 522 Year 4.056 33.80

015011 Lyon at Comrie Bridge

1986

Measuring authori First year: 1958	ty: TRPB			(Grid refere Level s	nce: 27 (N tn. (m OD)		6		c			m) 391.1 DD) 1215
Hydrometric sta	itistics fo	r 1986											
Flows Avg. (m³s=1) Paak Runoff (mm) Rainfall (mm)	JAN 15.940 125.51 109 306	FEB 3 660 5 98 23 19	MAR 21.380 157.00 146 306	APR 7.030 48 18 47 72	MAY 24 520 124 86 168 310	JUN 7 147 34.33 47 61	JUL 3 750 39 04 26 90	AUG 8.038 110 69 55 142	SEP 2 843 9 08 19 51	OCT 10 390 122 92 71 243	NOV 25 630 153 26 170 418	DEC 32.020 189.57 219 445	Year 13.529 189 57 1100 2483
Monthly and ye	arly stati	stics for p	previous r	ecord (Jai	n 1 958 to	Dec 1985)							
Moan Avg. flows Low (m³s-¹) High Peak flow (m³s-¹) Runoff (mm) Re-nfall (mm)* *(1971-1985)	17.100 3.596 43.920 271 20 117 259	13 440 3 198 28 580 149.10 84' 127	13 430 4 219 37,440 254,70 92 180	10 130 4 002 17,100 62 02 67 82	9 443 3.537 16 560 104 40 65 103	6 600 3.514 18 870 56.93 44 93	6 120 3 062 20 800 84.85 42 99	7.450 2 221 28.940 128.70 51 113	10.580 2.868 28 120 131 40 70 193	14 950 3 662 29 930 160 90 102 210	14 680 5 320 30 550 270 40 97 247	15.530 6.182 32.780 198 00 106 233	11.620 8.330 19.870 271.20 938 1939

Factors affecting flow regime: H Station type: VA

Factors affecting flow regime: S GEI Station type, VA

1986 runoff is 117% of previous mean rainfall 127%

1986 runoff is 106% of previous mean rainfall 104%

016003 Ruchill	Water at	Cui	ltybraggan
----------------	----------	-----	------------

Measuring authori First year: 1970	ty: TRPB			(nce 27 (Ni tn. (m OD)		4					km) 99.5 OO) 985
Hydrometric ste	atistics fo	1986											
Flows Avg. {m³s='}: Peak. Runoff (mm) Reinfall (mm) Monthly and ye	JAN 8 461 213 53 228 296	FEB 1 049 2.36 26 21	MAR 9.796 115.66 264 278	APR 2 474 37 27 64 95	MAY 10 120 56 88 273 330	JUN 2 495 34 73 65 86	JUL 1 204 69 85 32 109	AUG 3 413 50 43 92 132	SEP 0.621 4.58 16 49	OCT 5 133 105.26 138 246	NOV 14 370 164.71 374 433	DEC 12.160 174.50 327 406	Year 5.941 213.53 1899 2481
									-				
Mean Avg. flows Low	7.599 2.263	5 951 2.389	6 052 1 802	2 940 0 758	2 588 0 304	1.850 0.402	1 679 O 239	2 288 0 164	5 033 . 0 345	6 131 0 789	7.673 2.306	7 697 1 630	4.786 3.281
(m³s=') High Poak flow (m³s=') Runoff (mm)	15.240 250 40 205	9 995 130 20 146	11 100 165 30 163	5 156 61 27 77	7 075 165.00 70	4.562 221 30 48	4 812 160 00 45	9 246 143 00 62	10 260 227 30 131	12 130 136 60 165	16.550 183.30 200	12 350 160 70 207	6 586 250.40 1518
Rainfall (mm)	230	152	166	85	115	97	112	127	211	204	241	230	1970
Factors affecting t Station type: VA	low regime): N									off is 125 nfall 126		ious mean

016004	Ea	ırn a	t Fo	rtev	iot I	Brid	ge					1	986
Measuring authori First year: 1972	ity: TRPB			(Grid referei Level :	nce 37 (Ni stn (m OD		4		C	Catchment N	area (sq k fax alt (m	
Hydrometric st	atistics fo	r 1986											
Flows Avg (m³s=1): Peak Runotf (mm) Rainfell (mm)	JAN 56 350 240 71 193 197	16.990 37.86 53 24	MAR 47 370 166 11 162 177	APR 19 740 55 17 65 61	MAY 47 200 120 17 162 219	JUN 13 820 51 01 46 69	JUL 7 591 57 64 26 77	AUG 19 260 71 77 66 102	SEP 6 546 12 55 22 35	0C1 18 700 150 59 64 158	NOV 67 940 249 15 225 267	DFC 79 160 238 69 271 278	Year 33.389 249.15 1354 1664
Monthly and ye	arly stati	stics for p	revious r	ecord (Oc	t 1972 to	Dec 1985-	—incompk	ete or mis:	sing month	s total 0.3	3 years)		
Mean Avg. flows Low (m³s=') High Peak flow (m³s=') Runoff (mm) Reinfall (mm)	44 810 19 630 85 510 277 50 153 162	36.940 16.070 58.640 214.60 115 100	35 110 12 310 58 620 194 10 120 133	19 590 8 389 33 790 106 00 65 54	13 5 0 4 906 33 520 155 20 46 81	9 608 4 095 20 070 114 90 32 70	7 648 2 658 18 350 142 30 26 81	10 310 2 456 46 660 169 70 35 96	20 190 5 302 55 680 271 80 67 168	31 100 5 984 59.340 241 20 106 145	42 230 15 120 89 750 328 60 140 173	44 790 15 060 70 090 219 90 153 165	26.277 15.508 31.138 328 60 1060 1428
Factors affecting Station type: VA	flow regim	e PH									noff is 128 infall 117		юus mea
017001	Ca	irro	n at	Head	dsw	ood						1	986
Measuring author First year 1969	ity: FRPB			(Grid referei Lavel s	nce 26 (N to (m OD)		0		(Catchment N	area (sq k Aax alt (m	
Hydrometric st	atistics fo	or 1986											•
Frows Avg (m³s=" Peak Runoff (mm) Rainfatl (mm)	JAN 7 476 74 81 164 221	FEB 1 017 2 44 20 27	MAR 6 770 92 83 148 209	APR 1 879 33 68 40 111	MAY 5 724 50 23 125 237	JUN 1 949 31 82 41 86	JJI 0 759 4 06 17 79	AUG 1 411 25 84 31 119	SEP 0 587 8 3* 12 59	OCT 4 127 83 47 90 215	NOV 9 628 91 74 204 297	DEC 8 492 77 07 186 221	Year 4.152 92.83 1079 1881
Monthly and ye	arly stati	stics for p	previous r	ecord (Au	g 1969 to	Dec 1985)			•			
Moon Avg. flows Low (m³s=") High Peak flow (m³s=")	5 474 1.943 10 890 130.30	3.794 1.177 7.576 63.20 76	3 299 1 232 7 463 69 84	1 881 0 807 3 165 43 62	1 363 0 590 3 63* 51 35	1 159 0 580 2 834 25 47	1 101 0 549 4 650 65 38	1 465 0 557 8 092 61 72	3 197 0 467 16 720 124 30 68	3 825 0 424 10 270 124 80	5 653 1 412 9 759 105 80	5 4 13 1 084 10 470 147 90	3.132 2.108 4.575 147.90

1 363 0 590 3 63* 51 35 30 3 299 1 232 7 463 69 84 72 125 5 653 1 412 9 759 105 80 120 189 3 825 0 424 10 270 124 80 1 101 0 549 4 650 65 38 24 87 0 580 2 834 25 47 25 85 0 557 8 092 61 72 32 03 3 197 0 467 16 720 124 30 68 162 1 177 7 576 0 807 3 165 43 62 40 (m³s=') High Peak (low (m³s=') 84 156 Runoff (mm) 120 Rainfe I (mm) 166 169

Factors affecting flow regime: S.E. Station type: VA

1986 runoff is 133% of previous mean rainfall 126%

017002 Leven at Leven

1986

808

1496

	Avg 17 000 8 975 8 17 (mm) 107 51 124 31 14thy and yearly statistics for previous 10 14 17 18 18 18 18 18 18 18 18 18 18 18 18 18				(Grid referen Level s	ice: 37 (N0 itn (m OD)		6		(m) 424 0 OD) 522
Hydrome	etric st	atistics fo	r 1986											
Flows (m³s='): Runoff (mi Rainfall (m	: Peak m)	:7 000 38 37 107	8 975 15 76 51	MAR 8 584 19 08 54 75	APR 7 188 21 35 44 82	MAY 12 050 44 54 76 132	JUN 7 044 19 73 43 69	JUI 2 575 6 02 16 71	AUG 4 396 9 30 28 68	SEP 2 101 4 88 13 36	001 2 370 7 05 15 78	NOV 8 102 20 49 50 114	DEC 18 290 44 68 116 170	Year 8.223 44 68 613 1050
Monthly	and ye	arly stati:	stics for p	previous r	ecord (Au	g 1969 to	Dec 1985)							
Mean flows (m3s**) Peak flow Runoff (mi Rainfall (m	Low High (m ³ s ^{- 1}) m)	4 786 20 700	2 882 22 660 128 00	6 942 1 543 11 240 39 19 44 74	4 579 1 413 9 712 26 41 28 46	3 181 2 012 6 612 13 67 20 61	2 712 1 166 6 527 26 93 17 62	1 725 0 902 5 300 28 83 1' 62	2 908 0 820 11 840 25 69 18 69	3 813 0 970 21 040 84 25 23 96	5 895 0 795 13 170 40 67 137 84	8 6 10 0 9 7 2 26 5 10 56 7 6 53 10 1	10 650 3 462 19 200 62 69 67 94	5.924 2.269 9.294 128.00 441 899
Factors a Station ty		flow regim	e SR £I									noff is 139 infall 117		ous mean

Teith at Bridge of Teith 018003

Measuring authori First year, 1957	ty FAPB			1	Grid refere Level s	nce 27 (N in (m OD)		1		C		area (sq k ax alt (m (.m) 518.0 OD) 1165
Hydrometric sta	etistics fo	r 1986											
Flows Avg. {m³s=1} Peak Runoff (mm) Rainfall (mm)	JAN 46 390 170 35 240 309	FEB 7 233 14 93 34 14	MAR 45 970 217 38 238 327	APR 11 340 52 83 57 90	MAY 55 000 118 65 284 327	JUN 1: 600 39 69 58 71	JUL 5 550 34 34 29 98	AUG 15-740 52-62 81 150	SEP 4 953 9 14 25 62	OCT 23 640 116 84 122 266	NOV 70 650 168 16 354 437	DEC 72 370 202 12 374 450	Year 30.870 217 38 1895 2601
Monthly and ye	arly stati	stics for p	previous r	ecord (Ja	n 1957 to	Dec 1985-	—incompl	ete or miss	sing month	s total 0.1	years)		
Mean Avg flows Low (m³s=1) High Peak flow (m²s=1) Runnfil (mm)* *(1963-1985)	33 690 9 608 72 430 303 90 174 223	27 360 5 743 54 340 207 40 129 138	25 280 6 589 60 190 176 00 131 160	15 650 5 612 30 040 89.2* 78 90	14,170 4 017 33 160 158 00 73 119	9 477 3 953 21 520 161 70 47 107	9 418 3 781 26 390 118 30 49 106	12 690 3 135 54 210 174 40 66 123	20 060 3 635 45 020 184 10 100 207	27 430 5 897 66 410 242 60 142 214	30 870 9 842 59 330 245 10 154 224	34 060 11 790 63 980 241 10 176 210	21.667 15.094 27.795 303.90 1320 1921
Factors affecting Station type: VA	flow regim	e \$P									off is 144 infall 135		ious mean

RIVER FLOW DATA Allan Water at Bridge of Allan 018005 1986 Measuring authority: FRPB First year: 1971 Grid reference: 26 (NS) 786 980 Lével stn. (m OD), 11 20 Catchment area (sq km) 210 0 Max alt. (m OD): 633 Hydrometric statistics for 1986 JAN 13.210 69.63 168 APR 7 717 36.28 SEP 1 449 6 72 AUG 3 074 25 00 DFC 3.631 8 94 42 18 170 83 43 1.022 18.51 23 78 6 802 72 24 87 Ava 15 430 71 08 4.325 33.29 15 540 76 55 17 140 86 95 9.026 86.95 (m³a='): Peak Runoff (mm) 232 164 95 71 197 53 69 39 87 192 240 219 237 1365 1544 18 Rainfall (mm) 182 26 199 Monthly and yearly statistics for previous record (Jul 1971 to Dec 1985) 2 480 0 945 5 423 55 39 1.900 0 726 6 309 66 37 7 049 0 971 12.420 111 00 Mean Avg Low 10 530 8.363 7.901 4.212 3 286 2.799 0.648 5.203 0.907 9 321 10 080 6.086 1 654 7.267 52 05 52 58 3 286 1.189 7.435 72 11 42 77 4.751 18.550 98.20 4.793 16.610 67.84 3 152 4.269 7.462 112.60 915 3 642 17 760 97.89 3 709 16.790 112 60 (m³s⁻¹) High Peak flow (m³s⁻¹) 13 310 70 98 12 390 67 48 14 600 105 60 101 Runoff (mm) Rainfall (mm) 98 87 31 70 24 76 64 138 134 141 86 128 143 1259 145 Factors affecting flow regime: I Station type: VA 1986 runoff is 149% of previous mean rainfall 123%

020	001	Ty	ne a	it Ea	st L	into	n						1	986
Measuring First year:		ity: FRPB			(Grid referen Level st	nce: 36 (N' In (m OD).		8		C	Catchment .		m): 307.0 OD): 528
Hydrome	otric st	stistics fo	r 1986											
flows (m³s='); Runoff (mn Raintall (mr	n)	JAN 7 325 38.53 64 97	FEB 3 405 10 58 27 39	MAR 4.842 47 67 42 35	APR 7 824 50 88 66 115	MAY 3 145 22.61 27 74	JUN 1.608 5.53 14 55	JUL 0.987 3 46 9 64	AUG 1 837 13.73 16 103	SEP 1.768 26 89 15 31	OC1 1 041 2 67 9 51	NOV 1 562 4 62 13 45	DEC 4 161 26 32 36 99	Year 3.292 50.88 338 808
Monthly	and ye	arly statis	itics for p	revious r	ecord (Jai	n 1961 to E	Dec 1985)							***
Mean flows (m³s=1) Posk flow Runoff (mn Rainfalt (mr	n)	4.556 1.032 11.540 93.02 40 63	3 853 0 783 8 624 39 39 31 40	4.010 0.531 8.789 66.17 35 59	2 666 0 644 6.158 33.39 23 44	2.501 0.926 11.600 119.70 22 60	1.506 0.586 6.142 59.12 13 53	1.290 0.500 4.393 70.18 11 60	1 640 0 468 9 855 112.70 14 75	1.872 0.461 8.490 90.84 16 71	2 227 0 450 7 000 82 71 19 67	3.787 0.523 11.210 127.50 32 75	3 754 0 582 8 405 52 02 33 60	2.801 0.709 4.146 127.50 288 727
Factors of Station ty		flow regime	e: El									off is 1179 nfall 1119		ious mean

021006	Tı	veed	l at l	Bole:	side							1	1986
Measuring authori First year: 1961	ty TWRP			(nce 36 (N' tn. (m OD)		4		Ca			n) 1500 0 n OD) 839
Hydrometric sta	stistics fo	r 1986											
Flows Avg. (m³s-¹): Peak Runoff (mm) Rainfall (mm)	JAN 64 460 267,47 115 158	FEB 19.550 46 69 32 28	MAR 57 140 285 38 102 126	APH 33 650 92 29 58 89	MAY 60 040 137.62 107 189	JUN 26.460 117.72 46 75	JUL 10.270 55 78 18 67	AUG 28 570 109 08 51 147	SEP 14-700 57-98 25 30	OCT 28 580 160 07 51 149	NOV 81 380 289 04 141 198	DEC 100 400 309 21 179 248	Year 43.767 309 21 926 1504
Monthly and ye	arly stati:	stics for p	revious i	record (Oc	t 1981 to	Dec 1985)							
Mean Avg. flows Low (m³s=1) H-gh Peak flow (m³s=1) Runoff (mm) Roinfall (mm)	53 660 14 300 110 700 678 60 96 121	44.100 10.480 81.860 483.90 72 80	43 020 14.930 101 000 470.10 77 99	29 270 9 896 57.330 248.90 51 68	24 000 7 605 64 330 182.80 43 85	15.870 7.413 32 820 126 00 27 78	14.360 6.362 40.970 342.60 26 85	21 350 5 0*2 81 400 444.30 38 103	30 860 4 572 95 510 496 30 53 124	40 940 4,435 96 720 1019 00 73 121	50 640 11 570 119 800 486 30 88 126	51 680 22 450 86 540 571 90 92 115	34.946 18 577 44.323 1019.00 735 1205
Factors affecting f Station type: VA	low regimi	e: S P									noff is 126 infall 125		nous mean

021012	Te	viot	at I	lawi	ck							1	986
Measuring authori First year: 1963	ty: TWRP			(nce. 36 (N tn. (m. OD)		9		C			m) 323 0 OD) 608
Hydrometric sta	stistics fo	r 1986											
Flows Avg (m³s**): Posk Runoff (mm) Reinfoll (mm)	JAN 17,230 141,64 143 155	FEB 4.282 11.81 32 31	MAR 13.570 102.84 113 114	APR 7 700 32.79 62 84	MAY 15.520 117.79 129 184	JUN 6 689 89.40 54 74	JUL 2.357 29.06 20 80	AUG 7.360 75 29 61 141	SEP 2 763 14 20 22 24	OCT 7 179 103 07 60 138	NOV 20 070 130 61 161 185	DEC 25 450 147.73 211 239	Year 10.847 147.73 1066 1449
Monthly and ye	arly stati:	stics for p	revious r	ecord (Oc	t 1963 to	Dec 1985)							
Meen Avg. flows Low (m²s-¹) High Peak flow (m³s-¹) Runoff (mm) Rainfall (mm)	13.200 6 981 28.560 185 90 109 114	10 470 4.234 18.510 228 60 79 74	9.561 2.991 20.250 142.00 79 99	5.910 2.189 13.030 86.03 47 63	5 444 1 296 17.340 98 31 45 88	3 980 1 099 10.500 81 84 32 79	3 141 0 751 11 020 148.30 26 83	4 398 0.734 19.120 178.60 36 97	6 430 0 915 18 960 185 60 52 112	10 010 0 816 25.690 273 40 83 116	12 640 2.555 29 930 188 60 101 125	13 180 4 522 23 280 210 70 109 119	8.190 4.183 10.959 273.40 800 1169
Factors affecting f Station type: VA	ilow ragim	o; N									off is 133 nfall 124		ious mean

021018 Lyne Water at Lyne Station

1986

Measuring authoriti First year: 1968	y: IVVRP			(ind referen Level str	ice 36 (Ni n (m OD)				C	atchment a M	area (sq ki la≭alt {m	
Hydrometric sta	tistics fo	1986											
	JAN	FEB	MAH	APH	MAY	JUN	ж	AUG	SEP	ост	NOV	DEC	Year
Flows Avg	6 290	2 454	3 769	3 980	3 433	2 110	1 075	1 884	1 654	2 245	5 5 1 5	7 575	3 499
(m³s='). Poak	18.42	5 53	20 18	14 41	16 94	13 14	1 98	5 6 1	1156	8 79	20 48	24 54	24.54
Runoff (mm)	96	34	58	59	53	31	16	29	24	34	82	116	632
Rainfall (mm)	130	23	80	95	117	64	67	114	42	118	130	175	1155
Monthly and yea	rly statis	tics for p	revious r	scord (Oct	1968 to 0	Pec 1985)							
Mean Avg	4 711	4 157	3 585	2 538	1 735	1 362	1 156	1 301	2 009	2 8 1 8	4 355	4 272	2.826
flows Low	1 682	2.158	1.357	1 127	0 882	0.787	0.713	0 605	0 59 1	0 597	0 977	1618	1 428
(m³s 1) High	8 774	8 698	7 325	5 028	4 104	2.653	3 884	5 364	10 440	5 684	8 611	8 374	3.704
Peak flow (m3s=1)	47 50	4155	27 65	2146	17 36	16 46	31.72	20.77	58 74	40 49	53 60	37.98	58.74
Runott (mm)	72	58	55	38	27	20	18	20	30	43	65	65	510
Rainfall (mm)	88	57	80	50	62	62	67	71	99	93	103	86	918

021022 Whiteadder Water at Hutton Castle

1986

Measuring a First year: 1		ly TWRP			(Grid referen Level st	ice 36 (N1 in (m OD))		C			m): 503 0 OD) 533
Hydromet	ric sta	tistics fo	r 1986											
		JAN	FEB	MAR	APH	MAY	JUN	JUL	AUG	SEP	100	NOV	DEC	Year
Flows	Avg	13.970	7 084	10 970	15 700	7 308	3 854	2 0 10	6 309	4 299	2 159	3 456	7 621	7 062
(m³s=');	Peak	73 55	19 52	130 00	88 04	48 13	14 03	4 45	86 71	42 41	5.57	9 49	57.33	130.00
Runoff (mm)		74	34	58	8.	39	20	11	34	22	12	18	41	443
Ru-nfall (mm)	ŀ	103	48	33	122	87	49	52	151	25	47	49	88	854
Monthly a	nd ye	arly statis	stics for p	revious r	ecord (Se	p 1 96 9 to l	Dec 1985-	-incomple	ete or miss	sing month	s total 0.1	years)		
Mean	Avg.	11 110	10 780	9 774	6 775	5.474	3 453	2 2 1 3	2.602	3 081	4 890	8.106	8.845	6.404
flows	Low	2 143	1 557	1 108	1 325	2 113	1 403	1 315	1 162	0 990	1 001	1 100	1 347	4.540
(m ³ s ⁻¹)	High	25 990	27.300	19 220	14 980	24 050	8 835	6 626	8 184	16 360	16 670	27 680	20.660	8.847
								84 85		105 80		279 80		279.80
Rainfall (mm)		81	52	77	47	66	58	57	63	72	70	77	72	792
Peak flow (mm)	n ⁰ s ⁼¹)) ecting f	265.90 59 81	160 90 52 52	133.90 52	76 65 35	226 20 29	64 98 18	84 85 12	79 00 14	105 80 16	190 00 26 70 1986 run	279 80 42	108 10 47 72 % of prev	279.80 402 792

022006 Blyth at Hartford Bridge

1986

y NWA			C)		C			
tistics for	1986											
JAN 5 309 24 71 53 88	FEB 2.386 15.15 21 43	MAR 3 322 49 24 33 40	APR 6 281 80 31 60 100	MAY 2 148 31 38 21 68	JUN 0 383 1 39 4 29	JUI 0 165 0 76 2 31	AUG 2 963 61 09 29 168	SEP 1 658 24 64 16 26	OCT 0 312 0 66 3 41	NOV 0 786 2 94 8 38	DFC 2 853 29 31 28 74	Year 2.380 80.31 279 746
arly statis	tics for p	revious r	ecord (Oci	1966 to [Dec 1985-	-incomple	te or miss	ing month	s total 0.4	years)		
4 635 0 587 10.150 146 60 46 66	3 791 0 398 7 997 59 52 34 44	3 787 0 245 11 090 150.20 38 65	1 991 0 359 4 527 33 00 19 42	1 467 0 212 4 948 38 86 15 58	0 664 0 177 1 895 31 54 6 53	0 371 0 096 1 242 7 60 4 55	0 534 0 067 2 543 39 61 5 65	0 724 0 107 2 695 30 02 7 67	1 624 0 111 9 680 56.84 16 60	2 499 0 162 5 735 69 20 24 67	3 717 0 274 12.500 122 30 37 65	2.145 0.537 3.410 150.20 251 707
	JAN 5 309 24 71 53 88 arly statis 4 635 0 587 10.150 146 60 46	tistics for 1986 JAN FEB 5 309 2.386 24 71 15 15 53 21 88 43 arly statistics for p 4 635 3 791 0 587 0 398 10.150 7 997 146 60 59 52 46 34	Tistics for 1986 JAN FLB MAR 5 309 2.386 3 322 24 71 15 15 49 24 53 21 33 88 43 40 arly statistics for previous re 4 635 3 791 3 787 0 587 0 398 0 245 10.150 7 997 11 090 146 60 59 52 150.20 46 34 38	Tistics for 1986 JAN FLB MAR APR 5 309 2.386 3 322 6 281 24 71 15 15 49 24 80 31 53 21 33 60 88 43 40 100 arly statistics for previous record {Oct 4 635 3 791 3 787 1 991 0 587 0 398 0 245 0 359 10.150 7 997 11 090 4 527 146 60 59 52 150.20 33 00 46 34 38 19	Level st tistics for 1986 JAN FLB MAR APR MAY 5 309 2.386 3 322 6 281 2 148 24 71 15 15 49 24 80 31 31 38 53 21 33 60 21 88 43 40 100 68 arly statistics for previous record (Oct 1966 to 1 4 635 3 791 3 787 1 991 1 467 0 587 0 398 0 245 0 359 0 212 10.150 7 997 11 090 4 527 4 948 146 60 59 52 150.20 33 00 38 86 46 34 38 19 15	Level stn. (m OD) tistics for 1986 JAN FEB MAR APR MAY JJK 5 309 2.386 3 322 6 281 2 148 0 383 24 71 15 15 49 24 80 31 31 38 1 39 53 21 33 60 21 4 88 43 40 100 68 29 arly statistics for previous record (Oct 1966 to Dec 1985— 4 635 3 79: 3 787 1 991 1 467 0 664 0 587 0 398 0 245 0 359 0 212 0 177 10.150 7 997 11 090 4 527 4 948 1 895 146 60 59 52 150.20 33 00 38 86 31 54 46 34 38 19 15 6	Level stn. (m OD) 24 60 tistics for 1986 JAN FEB MAR APR MAY J.R. JUL 5 309 2.386 3 322 6 281 2 148 0 383 0 165 24 71 15 15 49 24 80 31 31 38 1 39 0 76 53 21 33 60 21 4 2 88 43 40 100 68 29 31 arly statistics for previous record (Oct 1966 to Dec 1985—incomple 4 635 3 79: 3 787 1 991 1 467 0 664 0 371 0 587 0 398 0 245 0 359 0 212 0 177 0 096 10.150 7 997 11 090 4 527 4 948 1 895 1 242 146 60 59 52 150.20 33 00 38 86 31 54 7 60 46 34 38 19 15 6 4	Level stn (m OD) 24 60 tistics for 1986 JAN FEB MAR APR MAY JUN JUN AUG 5 309 2.386 3 322 6 281 2 148 0 383 0 165 2 963 24 71 15 15 49 24 80 31 31 38 1 39 0 76 61 09 53 21 33 60 21 4 2 29 88 43 40 100 68 29 31 168 arly statistics for previous record (Oct 1966 to Dec 1985—incomplete or miss 4 635 3 79: 3 787 1 991 1 467 0 664 0 371 0 534 0 587 0 398 0 245 0 359 0 212 0 177 0 096 0 067 10.150 7 997 11 090 4 527 4 948 1 895 1 247 2 543 146 60 59 52 150.20 33 00 38 86 31 54 7 60 39 61 46 34 38 19 15 6 4 5	Level stn. (m OD): 24 60 tistics for 1986 JAN FEB MAR APR MAY JUN JUN AUG SEP 5 309 2.386 3 322 6 281 2 148 0 383 0 165 2 963 1 658 24 71 15 15 49 24 80 31 31 38 1 39 0 76 61 09 24 64 53 21 33 60 21 4 2 29 16 88 43 40 100 68 29 31 168 26 arly statistics for previous record {Oct 1966 to Dec 1985—incomplete or missing month: 4 635 3 79: 3 787 1 991 1 467 0 664 0 371 0 534 0 724 0 587 0 398 0 245 0 359 0 212 0 177 0 096 0 067 0 107 10.150 7 997 11 090 4 527 4 948 1 895 1 242 2 543 2 695 146 60 59 52 150.20 33 00 38 86 31 54 7 60 39 61 30 02 46 34 38 19 15 6 4 5 7	Level stri. (m OD): 24 60 tistics for 1986 JAN FEB MAR APR MAY JUN JUN AIXI SEP OCT 5 309 2.386 3 322 6 281 2 148 0 383 0 165 2 963 1 658 0 312 24 71 15 15 49 24 80 31 31 38 1 39 0 76 61 09 24 64 0 66 53 21 33 60 21 4 2 29 16 3 88 43 40 100 68 29 31 168 26 41 arly statistics for previous record {Oct 1966 to Dec 1985—incomplete or missing months total 0.4 4 635 3 79: 3 787 1 991 1 467 0 664 0 371 0 534 0 724 1 624 0 587 0 398 0 245 0 359 0 212 0 177 0 096 0 067 0 107 0 111 10.150 7 997 11 090 4 527 4 948 1 895 1 242 2 543 2 695 9 680 146 60 59 52 150.20 33 00 38 86 31 54 7 60 39 61 30 02 56.84 46 34 38 19 15 6 4 5 7 16	Level stri. (m OD). 24 60 N **Tistics for 1986** **JAN FEB MAR APR MAY JUN JUN AUK SEP OCT NOV 5 309 2.386 3 322 6 281 2 148 0 383 0 165 2 963 1 658 0 312 0 786 24 71 15 15 49 24 80 31 31 38 1 39 0 76 61 09 24 64 0 66 2 94 53 21 33 60 21 4 2 29 16 3 8 88 43 40 100 68 29 31 168 26 41 38 **Refly statistics for previous record (Oct 1966 to Dec 1985—incomplete or missing months total 0.4 years) 4 635 3 79	Level stn. (m OD) 24 60 Max alt. (m OD) 24 6

Factors affecting flow regime. E. Station type: FV

1986 runoff is 111% of previous mean rainfall 106%

023001 Tyne at Bywell

1986

Measuring autho First year: 1956				(Grid referei Level s	nce 45 (N tn (m OD		7		Ca			n): 2175 6 n OO): 893
Hydrometric s	tatistics fo	or 1986											
Flows Avg. {m ³ s ⁻¹ } Peak Runoff (mm) Rainfull (mm)	JAN 102 700 761 10 126 148	FEB 34 590 83.33 38 36	MAR 72 200 849.91 89 91	APR 65 220 905 60 78 100	MAY 44 990 422 60 55 117	JUN 19 580 176 10 23 49	JUL 10 210 53 36 13 68	AUG 54 220 1561 48 67 151	SEP 23 670 350 40 28 28	OCT 36 000 283 84 44 117	NOV 64 150 610 58 . 76 122	DEC 110 900 594 33 137 182	Year 53.202 1561 48 775 1209
Monthly and y	early stati	stics for	previous i	ecord (Oc	t 1956 to	Dec 1985	—incompl	ete or mis	sing mont	hs total 0.2	2 years)		
Mean Avg flows Low (m³s=") High Peak flow (m³s=") Runotf (mm) Rainfall (mm)	72 300 19.220 150 800 1525 00 89 102	57 210 14 360 98 140 922 10 64 69	55 310 20 150 150 900 1472 00 68 84	37 560 8.461 75 620 852 30 45 62	25 470 7 246 60 650 476 30 31 69	18 190 4 910 50 010 440 30 22 70	18 410 5 199 46 230 758 90 23 80	29 010 3 403 77 360 1282 00 36 96	35 840 4 155 106 600 1243 00 43 94	46 460 4 727 147 200 1586 00 57 92	63 260 18 090 147 000 1382 00 75 105	68 000 23 080 112 000 1317 00 84 103	43.874 25.849 63.834 1586.00 636 1026
Factors affecting Station type: VA		o· S									noff is 122 infall 118		rious mean

023007 Derwent at Rowlands Gill

1986

Hydrometric statistics	FEB 2.497 8 90 25	MAR 3.397 29.08 38	APR 7 760 70 25	MAY 2 663	JUN 1.193	JUL 0.939	AUG	SEP	ост	NOV	DEC	Year
Flows Avg. 3.838 (m³s=1): Paak 19.76 Runoff (mm) 42	2.497 8 90 25	3.397 29.08	7 760	2 663				SEP	ост	NOV	DEC	Year
	57	63	83 122	26 89 29 83	3.09 13 33	1 35 10 34	2.387 55 15 26 177	1 526 13.81 16 24	1 014 2 44 11 66	1 438 3 87 15 69	2 964 18 45 33 119	2.635 70.25 343 961
Monthly and yearly sta	tistics for p	previous r	ecord (No	v 1962 to 0	Dec 1985-	-incomple	te or miss	ing month	s total 0.1	years)	•	
Mean Avg. 3 63-1104 flows Low 1,144-114 (m³s-¹) High 7,320-114 Peak flow (m³s-¹) 54.9 Runoff (mm) 40 Reinfall (mm) 81	3 784 0.911 10.490	4,717 0,749 13,570 93,73 52 76	3.141 1.149 6.561 53.73 34 58	2 392 0.973 7.851 36.88 26 65	1.652 0.844 4.222 45.91, 18 62	1.336 0.796 4.087 19.10 15 59	1.581 0 656 4 667 60 69 17 80	1.696 0.626 7.264 36.41 18 75	2 037 0 791 8 971 58.87 23 66	3 109 0.903 11 780 97 98 33 89	3.184 0.882 7.826 63.02 35 77	2.684 1.119 5.573 97.98 350 847

024001 Wear at Sunderland Bridge

1986

Measuring First year:		ity: NWA			(nce: 45 (Ni tn. (m OD)		6		C			m): 657.8 OD): 747
Hydrome	tric st	ntistics fo	ı 1986											
Flows (m³s=1): Runoff (mm Rainfall (mm	٦)	JAN 24.990 173.43 102 127	FEB 7 970 27.47 29 53	MAR 23 020 222:30 94 76	APR 28.100 259.30 111 124	MAY 12 560 129 40 51 101	JUN 4 523 30 61 18 32	JUL 2.415 3.98 10 36	AUG 15 870 457 72 65 171	SEP 5 980 77 82 24 25	OCT 4 866 38 20 20 83	NOV 17.170 80 88 68 92	DEC 25 490 134 42 104 150	Year 14.413 457.72 694 1070
Monthly	and ye	arly stati:	stics for p	previous I	ecord (Oc	t 1957 to	Dec 1985-	-incomple	ete or miss	ing month	rs total 0.3	years)		
Mean flows (m ³ s ⁻¹) Peak flow (Runoff (mr Rainfall (mr	1)	20.450 4.359 53.820 362.40 83 98	16 750 4 035 37 750 282:20 62 69	16.550 3 812 53 210 336 50 67 80	11.420 3.512 25.940 269 80 45 64	7 692 2.790 21:220 158.60 31 69	4.830 2 119 10 840 163 20 19 64	3.779 1 835 9 635 14 1.10 15 66	4 990 1 267 14 060 307, 10 20 79	5.638 1.211 15.810 360.30 22 81	10 350 1 820 38.610 397.10 42 82	14 460 3 195 32 550 576 70 57 98	16 870 3 993 38 850 417.60 69 96	11.128 6.125 18.410 576.70 534 946
Factors aff Station typ		flow regime	e: S E									off is 130 nfall 113		ious mean

1986 runoff is 130% of previous mean rainfall 113%

024004 Bedburn Beck at Bedburn

1986

Measuring authorit First year: 1959	y NWA			ċ	Grid referer Level sti	nce: 45 (Na n. (m OD)		2			Catchment N	tarea (sq.l la×alt (m	
Hydrometric sta	tistics fo	r 1986											
Flows Avg (m³s='): Peak Runoff (mm) Rainfall (mm)	JAN 2.602 16.08 93 116	FEB 0 95B 2.87 31 49	MAR 2 370 22 37 85 70	APR 2 986 34 17 103 115	MAY 1 323 17,74 47 88	JUN 0.416 1.40 1.4 27	JUL . 0 206 0 40 7 29	AUG 1 366 46.19 49 166	SEP 0 586 7 51 20 24	OC: 0 370 7 77 13 82	90V 1 927 6.95 67 77	DEC 2.251 10.08 81 128	Year 1.447 46 19 611 971
Monthly and yes	orly statis	ities for p	revious r	ecord (Oci	1959 to [Dec 1985-	-incomple	te or miss	ing month	s total 0.2	years)		
Mean Avg flows Low (m²s⁻¹) High Peak flow (m³s⁻¹) Runoff (mm) Rainfail (mm)	2.078 0.515 4.341 34.67 74 90	1.780 0.471 4.011 39.18 58 63	1 831 0 436 5.128 38.51 65 74	1.281 0.440 2.750 35.09 44 57	0 922 0.270 2 231 24 06 33 65	0 554 0 196 1 524 21 66 19 59	0 412 0 152 1 056 21.92 15 62	0 543 0 120 1 465 22 99 19 77	0.589 0.157 1.790 32.30 20 74	1 144 0 146 4 346 38 06 41 77	1 520 0 244 3.722 34 26 53 91	1 779 0 444 4 488 42 93 64 86	1.201 0.667 1.633 42.93 506 875
Factors affecting fl Station type: CC	ow regime	i::N								1986 run	off is 1219 ifall 1119	% of previ	

025006 Greta at Rutherford Bridge

Measuring au First year: 19		: NWA			C		nce: 45 (N2 n (m OD):		2					km): 86.1 OD): 596
Hydrometric	c stat	istics for	1986											
	vg. oak d vezi	JAN 5 009 62.66 156 185	FEB 0 609 1.53 17 48	MAR 5,170 71 70 161 103	APR 4 091 70 36 123 124	MAY 2.145 27.23 67 124	JUN 0.487 14 34 15 33	JUL 0 111 0 17 3 31	AUG 3 824 210.40 119 188	SEP 0 5 10 9 69 15 21	OCT 1 609 43 67 .50 118	NOV 4 655 31 95 140 128	OFC 6 115 45 85 190 221	Year 2.861 210.40 1056 1324
	vg.	3.717	2 689	3.199	2.091	1 355	0.880	0.639	1 310	1.570	2 400	2 224	2.550	
	ow.	0 291	0 280	0 842	0.375	0.148	0.130	0.033	0.098	1 570 0 146	2 480 0 195	3 374 0.951	3.552 0.944	2.238 1.447
(m ³ s ⁻¹) Hi Pask flow (m ³ t	igh 1	7.155 118.00	6.881 88 63	8.926 79.00	4.682 62.01	3.951 56.35	2.502 51.74	2.013 52.83	4.107 110.40	4 067 109 00	6 665 93 85	6 878 68 81	6 406 73 77	2.926 118.00
Runoff (mm)	•	116	76	100	63	42	26	20	41	47	77	102	111	820
Rainfall (mm)		118	81	99	74	78	72	70	97	98	101	116	118	1122
Factors affect Station type:		w regime	r.									off is 129° rifall 118°		ious mean

025019 Leven at Easby

1986

Measuring buth First year: 197				(Srid referer Level str	nce. 45 (N2 n. (m. OD).		7			Catchment M	t area (sq.) lax alt. (m	
Hydrometric	statistics fo	r 1986											
Flows Av _i (m³s ⁻¹): Pea Runoff (mm) Rainfall (mm)		FEB 0 299 3.02 49 67	MAR 0 412 5.68 75 54	APR 0 77 1 9 36 135 161	MAY 0 262 1 98 47 83	JUN 0.153 0.55 27 46	JUL 0 080 0.12 15 36	AUG 0 177 3.98 32 158	SEP 0 163 3.91 29 33	OCT 0 077 0 73 14 60	NOV 0 135 0 76 24 57	DEC 0 349 2 78 63 136	Year 0.267 9.36 567 990
Monthly and						-		.50	33	•	3,	.50	330
MONTHIN BIID	YOUTHY STATE	stics for p	Leations L	ECOTO (MIE	y 1971 to	Dec 1383)	.1						
Mean Av	0.323	0 30 1	0.294	0.224	0 186	0 132	0 108	0 116	0.122	0 173	0 204	0 273	0.204
flows Lov	0.115	0 100	0 076	0 085	0 0 / 2	0 075	0.044	0 039	0 059	0 063	0 092	0 132	0.143
(m³s"') Hig	0.630	0.729	0.821	0 402	0 544	0 239	0 188	0 364	0 532	0 556	0 507	0 543	0.305
Peak flow (m a	3.14	4.38	4 90	4.34	7 56	1 99	3 14	3.88	12.83	3.08	4 0 1	7 66	12.83
Runaff (mm)	58	50	53	39	34	23	20	21	21	31	36	49	436
Rainfall (mm)	82	47	74	53	62	60	61	70	78	75	77	77	816
Factors affection Station type: F		o: N									off is 130° nfall 121°		ous mea

025020 Skerne at Preston le Skerne

1986

Measuring First year:		y: NWA					nce: 45 (N2 th (m OD)		8		С	atchment : M	area (sq kr lax alt -{m	
Hydrome	tric sta	tistics fo	1986											
Flows (m³s=1). Runoff (mri Rainfall (mr		JAN 1 522 10.74 28 67	FEB 1 22 1 9 22 20 41	MAR 1.573 13 01 29 45	APR 2.734 18.51 48 103	MAY 0 945 11 93 17 69	JUN 0 371 2 47 7 38	JUL 0.243 0.82 4 26	AUG 0 943 13 69 17 141	SEP 0.571 8 23 10 25	OCT 0 228 1 68 4 45	NOV 0 595 2 76 10 42	DEC 1 130 8 00 21 69	Year 1.006 18.51 215 711
Monthly	and yes	arly statis	itics for p	revious r	ecord (Dec	1972 to	Dec 1985-	-incomple	ste or miss	ing month	s total 0.3	years)		
Mean flows (m³s*1) Peak flow I Runoff (mn Rainfall (mr	n)	1.608 0.486 3.376 20.08 29 61	1.266 0.481 2.731 12.93 21 36	1 395 0.293 4 824 26 58 25 58	0 885 0 247 2 245 19 20 16 41	0 733 0 199 2 106 10 92 13 54	0 468 0 112 1 004 16 54 8 54	0 350 0 121 0 760 9 23 6 45	0 367 0 086 0 732 7.95 7 60	0 329 0 082 0 745 9 33 6 64	0 818 0 099 4.290 21.71 15 55	0 827 0 204 1 962 17,40 15 58	1 456 0 553 4 658 24 82 27 61	0.875 0.558 1.510 26.58 188 647
Factors of Station ty		low regime	o: E									off is 115° nfall 110°		ous mean

026003 Foston Beck at Foston Mill

1986

Measuring authorit First year: 1959	y: YWA			c	irid referen Level s	tn (m OD)		3			Catchment N	tarea (sq.) lax alt. (m	
Hydrometric sta	tistics fo	r 1986											
Flows Avg. {m3s-1} Paak Runoff (mm) Reinfall (mm) Monthly and yea	JAN 0.986 1 26 46 65 arly statis	FEB 1 217 1.60 51 54 stics for p	MAR 1 072 1.27 50 51 brevious re	APH 1 083 1 65 49 101 ecord (Oct	MAY 1 343 1 95 63 82 2 1959 to 0	.a.N 1 027 1 27 47 30 Dec 1985-	JUL 0 695 0.85 33 32 incomple	AJG 0 579 0 79 27 90	SEP 0 459 0 65 21 25 ing month	OCT 0.367 0.54 17 49 s total 0.6	NOV 0.329 0.43 15 52	DEC 0.397 1.03 19 118	Year 0.796 1.95 437 749
Mean Avg. flows Low (m²s-1) High Peak flow (m³s-1) Runoff (mm) Rainfall (mm) Factors affecting fl Station type: TP	0 894 0 199 2.224 2.89 42 73	1.179 0 183 2 332 3 31 50 49	1 098 0 174 2.242 2 69 51 57	0.976 0.150 2.070 2.70 44 51	0 831 0 174 1 708 1 92 39 55	0 654 0 110 1 231 2 01 30 52	0 517 0 112 0 882 1.47 24 55	0 406 0 105 0 675 0 99 19 65	0.338 0.101 0.567 0.80 15 60		0 434 0 148 1 845 2.49 20 77 off is 1161		0 686 0 155 1 282 3.31 379 736 ous mean

026005 Gypsey Race at Boynton

Measuring author First year: 1981	ity: YWA			c	irid referen Level st	ice 54 (T/ in (m OD)		7		С	atchment . M	area (sq ki lax alt (m	
Hydrometric st	atistics fo	r 1986											
Flows Avg. -{m³s=1} Poak Runoff (mm) Rainfall (mm)	JAN 0.400 0.52 4 70	FEB 0 557 0 61 6 51	MAH 0 465 0 55 5 52	APH 0 579 0 83 6 92	MAY 0 909 1 08 10 83	JUN 0 623 0 83 7 29	JUL 0.351 0.45 4 29	AUG 0.184 0.26 2 93	SEP 0.079 0.23 1 28	OCT 0 016 0 04 0 49	NOV 0 014 0 03 0 51	DFC 0 033 0 10 0 111	Year 0.351 1.08 46 738
Monthly and ye	arly statis	stics for p	revious r	ecord (Fet	1981 to (Dec 1985)							
Moon Avg. flows Low (m³s=") High Peak flow (m³s=") Runoff (mm) Rainfall (mm)	0 271 0.071 0.475 0 72 3 85	0 480 0 120 0 887 1 00 5 35	0 467 0 116 0.872 1 86 5 91	0 615 0 118 1 585 1.87 7 54	0 558 0 225 1 217 1 58 6 58	0 338 0 '32 0 597 0 86 4 38	0 197 0 104 0 347 0 60 2 58	0 092 0 026 0 :83 0 28 1 65	0 047 0 014 0 098 0 29	0 023 0 004 0 055 0 14 0 59	0 020 0 009 0 033 0 08 0	0 053 0 020 0 082 0 27 1 58	0 262 0.143 0.273 1.87 34 781
Factors affecting Station type: FV	flow regime	a:GI									off is 133° nfall = 94°		

027007 Ure at Westwick Lock

1986

Measuring author First year: 1958	ity. YWA			,	Grid refere Level s	nce 44 (S in (m OD)		1		c			m) 914 6 OD) 713
Hydrometric st	atistics fo	r 1986											
Flows Avg (m ³ s=1). Peak Runoff (mm) Rainfall (mm)	JAN 48 440 238 10 142 178	7EB 12 650 30 64 33 28	MAR 38 590 246 50 113 111	APR 40 200 272 50 114 129	MAY 25 320 149 20 74 117	JUN 8 046 87 95 23 43	JUL 3 185 5 81 9 34	AUG 16 140 271 90 47 144	5EP 5 646 42 72 16 18	OCT 16 350 112 50 48 132	NOV 44 570 171 90 126 151	DEC 56 360 177 10 165 212	Year 26.291 271.90 911 1297
Monthly and ye	arly stati	stics for p	previous r	ecord (Oc	t 1958 to	Dec 1985-	—incompk	ete or miss	ing month	is total 0.5	years)		
Moon Avg flows Low (m³s=1) High Peak flow (m³s=1) Runoff (mm) Rainfall (mm)	33 130 4.009 59 590 537 90 97 119	28 670 3 886 84 770 307 30 77 80	26 670 10 250 60 330 413 10 78 95	19 690 5 674 40 980 263 30 56 77	13 020 3 831 29 500 170 80 38 75	8 780 3 024 21 400 161 50 25 72	7 775 2 202 16 180 144 50 23 75	11.810 1 287 31 600 260 20 35 90	14 100 1 450 33 030 296 20 40 100	21 630 5 856 68 480 266 50 63 103	28 850 7 078 65 010 288 80 82 122	32 200 11 330 57 370 304 10 94 123	20.495 12.946 27.066 537.90 707 1131
Factors affecting Station type: B V		e SP									off is 129 nfall 115		ious mean

027025 Rother at Woodhouse Mill

1986

Measuring author First year 1961	ty: YWA			(nce 43 (SI In (m OD)		7		С			m) 352 2 OD) 367
Hydrometric st	atistics fo	r 1986											
Flows Avg. (m³s-¹ Peak Runoff (mm) Rainfell (mm)	JAN 13 000 60 30 99 138	FEB 7 O89 33 67 49 36	MAR 5 447 27 31 41 63	APR 9 245 43 59 68 96	MAY 6 828 55 73 52 95	JUN 2 712 13 15 20 47	JUL 1658 3 96 13 28	AUG 2 851 29 55 22 103	SEP 1 642 3 76 12 8	OC1 1 864 8 93 14 63	NOV 6 375 49 54 47 90	DEC 10 390 33 74 79 132	Year 5.758 60 30 515 899
Monthly and ye	arly stati	stics for p	revious r	ecord (Oc	t 1961 to	Dec 1985-	-incomple	ite or miss	ing month	s total 2.5	years)		
Mean Avg. flows Low (m³s-1) High Peak flow (m³s-1) Runoff (mm) Rainfall (mm)	6 531 1 287 12 020 58.26 50 68	6 902 1 424 22 440 78 80 48 60	6 457 1 830 14 330 53 21 49 67	4 956 1 400 13 160 78 14 36 61	3 825 1 569 10 1 10 61 40 29 65	2 904 1 166 10 840 105 40 21 63	1 938 0 934 4 907 45 63 15 54	1 995 0 760 3 323 33.55 15 63	2 194 0 712 7 786 45 59 16 66	2 696 0 693 6 596 40 80 21 60	4 633 1 023 8 200 50 55 34 76	6 156 2 393 18 140 91 46 47 74	4 252 2 540 6 364 105 40 381 777
Factors affecting Station type: VA	flow regim	e S PGEI									off is 135 ifall 116		ous mean

027030 Dearne at Adwick

1986

Measuring authorit First year 1963	y YWA			C		nce 44 (SE in (m OD))		С		area (sq kr Aax alt. (m	
Hydrometric sta	tistics fo	r 1986											
Flows Avg (m³s='). Peak Runoff (mm) Runfall (mm) Monthly and yea	JAN 7 233 28 62 62 128 irly statis	FEB 5.205 21.45 41 32 stics for p	MAR 3 742 12 77 32 50 orevious re	APR 8 527 43 90 7 1 117 ecord (No	MAY 4 456 23 48 38 82 v 1963 to 1	JUN 2 289 8 01 19 42 Dec 1985-	JUI 1 586 3 44 14 26 —incomple	AUG 2 7 15 27 40 23 111 ete or miss	SEP 1 626 3 38 14 8 sing month	OCT 1 795 13 96 15 76 ns total 0.7	NOV 4 401 18 36 37 73	DEC 6 449 28 68 56 118	Year 4 169 43.90 422 863
Mean Avg flows Low (m3s-1) High Peak flow (m3s-1) Runoff (mm) Rentall (mm) Factors affecting fl Station type: C VA		5 417 1 648 14 340 56 32 43 54	4 871 1 433 10 750 41 85 42 60	3 975 1 223 8 866 58 42 33 53	3 106 1 303 7 380 43 97 27 60	2 642 1 106 7 299 55 58 22 56	: 875 0 806 3 699 31 94 16 48	1 887 0 765 3 054 18 07 *6 63	1 917 0 873 5 658 28 97 16 62		3 566 1 029 7 632 51 52 30 74 off is 123	4 339 1 245 10 980 56 65 37 67 % of preva	3.390 2.104 5.264 58.42 344 713 ous mean

027042 Dove at Kirkby Mills

1986

Measuring author First year 1972	rity YWA			(nce 44 (SE in (m OD)	E) 705 8 55 35 60	5			Catchment N		km), 59 2 OD): 429
Hydrometric s	atistics fo	r 1986											
Flows Avg	JAN 1 793	FEB 1 310	MAR 2 022	APR 2 9 15	MAY 1 625	JUN 0.749	JUL 0 345	AUG 0.784	SEP 0.665	OCT 0.341	NOV 1 012	DEC 2 119	Year 1.307
(m³s-1). Peas	7.81	8 3 1	1787	27 63	30 01	3 31	0 67	12 37	9 98	3 /6	6 93	14 83	30.01
Runoff (mm)	81	54	91	128	74	33	16	35	29	٠5	44	96	696
Rainfall (mm)	119	51	66	162	100	39	40	144	34	77	71	151	1054
Monthly and y	early statis	itics for p	revious r	ecord (Fet	1972 to [Dec 1985)							
Mean Avg	1 755	656	1 636	1 124	0.826	0 629	0 499	0 537	0 665	1 045	1 194	1 659	1.100
flows Low	0 698	0 54 1	0 347	0.376	0.368	0 279	0 2 1 1	0 161	0.245	0.251	0 543	0.853	0.640
(m³s⁻¹) Hgh	2.861	3 180	4 701	1 968	1 702	1 099	0 922	1 397	2 743	2 683	2 032	3 237	1.554
Poak flow (m3s 1)	37.45	36 68	40 93	2166	15 44	/ 43	19 33	32 36	56 38	24 71	23 85	53 38	56.38
Runoff (mm)	79	69	74	49	37	28	23	24	29	47	52	75	587
Rainfall (mm)	101	59	88	57	68	64	67	71	91	90	89	98	943
Fectors affecting Station type: FV	flow regime	N									off is 119° nfall 112°		ous mean

027043 Wharfe at Addingham

1986

Measuring authori First year: 1974	ty: YWA			•	Grid referei Level s	nce: 44 (SI tr. (m OD)		4		C	atchment A		m): 427.0 OD): 704
Hydrometric sta	Avg. 25.680 17.020 20 Avg. 25.680 17.020 20 Avg. 25.680 17.020 20 Avg. 25.680 17.020 20 Light High 32.590 28.410 52 w (m³s -¹) 509.00 342.00 55												
	30.740 209.70 193	5.158 13.56 29	MAR 25 470 262 60 160 148	APR 21 970 153 00 133 153	MAY 15.180 100 90 95 142	JUN 5 033 56.16 31 49	JUL 2.164 9.38 14 57	AUG 10.190 214 30 64 152	SEP 3.798 37.30 23 25	OCT 15 390 132.30 97 198	NOV 28 980 164 80 176 190	DEC 39 960 155 20 251 278	Year 17.003 262.60 1265 1644
Monthly and ye	arly statis	stics for p	orevious r	ecord (Jai	n 1974 to l	Dec 1985-	—incomple	ete or miss	sing month	s total 0.3	years)		
flows Low	11.760 32.590	7.627 28.410	20 870 6.391 52 490 552.60 131 131	9.258 2.453 18.410 205.10 56 66	7 334 1 623 16.100 89 87 46 78	5 206 1,740 9 551 114 70 32 84	4 366 1.245 9 543 163.80 27 73	8 654 1.143 26.270 273 80 54 112	13 750 7.978 23.450 244 90 83 144	18 380 6.422 37 310 370 00 115 137	23 000 8 263 32 450 400 00 140 153	24 310 5 972 44.680 320 30 152 169	14.823 10.487 19.543 552 60 1096 1395
Factors affecting f Station type: C V		e:SP									off is 115 nfall 118		ous mean

027059 Laver at Ripon

1986

Measuring auth First year: 197				(and referer Level s	nce 44 (SI In (m OD))					km) 87 5 OD) 406
Hydrometric	statistics fo	or 1986											
Flows Av. {m3s=1}: Pos Runoff (mm) Rainfall (mm) Monthly and	ik 16.92 70 138	FEB 0 981 3.76 27 26	MAR 1 645 14 37 50 85	APR 3 063 36 95 91 139	MAY 1 122 6 91 34 83	JUN 0 410 1 86 12 38	JUI 0 182 0.27 6 29	AUG 0 537 11 10 16 124	SEP 0 224 1.23 7 17	0CT 0.262 9.05 8 94	NOV 1 546 10 53 46 95	DEC 2 255 16 59 69 137	Year 1.211 36.95 437 1005
Moan Av, flows Lov (m³s*1) Hig Peak flow (m³s* Runoff (mm) Rainfall (mm)* *(1978-1985)	2.125 v 1.376 h 3.265	1.670 0.659 3.090 16.85 47 59	1.992 0.721 3.850 22.65 61 108	1 095 0 453 1 843 15 17 32 55	0 819 0 2/2 1 881 13 32 25 67	0 590 0 247 1 264 16 75 17 67	0 257 0 098 0 480 6 29 8 44	0 415 0 096 0 952 11.48 13 84	0.306 0.229 0.462 10.21 9	0 693 0 167 1.506 13 64 21 86	1 292 0 419 2 400 15 01 38 103	2 080 0 848 3 786 39 14 64 129	1 110 0.837 1.139 39.14 400 991

Factors affecting flow regime: S.P. Station type: C.

1986 runoff is 109% of previous mean rainfall 101%

027071 Swale at Crakehill

1986

Maasuring authori First year: 1980	ity: YWA			•		nce 44 (\$i itn (m OD)		4		Ca			i) 1363 0 (OD) 713
Hydrometric st	atistics fo	r 1986											
Flows Avg (m³s="): Poak Bunoff (mm) Bainfa# (mm)	JAN 41.320 162.10 81 171	FEB 17 690 57 45 31 31	MAH 32 270 168 80 63 69	APR 46 690 183 30 89 120	MAY 25 390 94 62 50 95	JUN 9 344 51 27 18 38	JUL 4,187 5 04 8 34	AUG 16 650 199 80 33 130	SEP 7 217 36 97 14 17	0CT 9 088 51 30 18 80	NOV 30.500 106.50 58 89	DEC 41 050 104 30 81 132	Year 23.450 199.80 544 946
Monthly and ye	orly stati:	stics for p	previous r	ecord (Ju	n 1980 to	Dec 1985)							
Meun Avg. flows Low (m³s=1) High Peak flow (m³s=1) Runoff (mm) Rainfall (mm)* *(1983-1985)	37 010 25.210 56.800 230 70 73 106	23 900 16 050 44 450 187 90 43 36	30 920 15.520 60 040 188 30 61 71	20.730 7 819 34 770 140 70 39 72	14 770 5.557 32 370 90 61 29 74	11 840 6 121 17 180 107 60 23 44	6.992 2.712 12 230 103 50 14 42	10 240 3 684 24 220 124.80 20 77	10 830 6 442 16 090 114 50 21 84	20 500 10 320 35 430 184 50 40 72	27 240 7 541 44 280 161 40 52 90	31 020 17.470 40 580 183.70 61 96	20 503 18 599 21 427 230 70 475 864
Factors affecting Station type: C	flow regime	e: N									off is 114 nfall 109		ious mean

028012 Trent at Yoxall

Measuring authori First year: 1959	ty: STWA			(Grid referei Level s	nce: 43 (S tn: (m OD)		7		Ca) 1229.0 OD). 318
Hydrometric sta	atistics fo	r 1986											
Flows Avg. {m³s=1}: Peak Runoff (mm) Rainfall (mm)	JAN 31 670 93.20 69 104	FEB 18.940 71.40 37 6	MAR 16 200 30 70 35 70	APR 24 360 64.60 51 76	MAY 13.480 27.00 29 60	JUN 11 010 29 60 23 50	JUL 8 682 14.50 19 55	AUG 13 290 49.40 29 109	SEP 9 758 15 70 21 8	001 10 450 19 60 23 77	NOV 24 080 54.50 51 95	DEC 28.200 75.00 61 110	Year 17.510 93 20 449 820
Monthly and ye	arly stati:	stics for p	previous r	ecord (Oc	t 1 959 to 1	Dec 1985-	-incomple	ete or mist	ing month	s total 0.2	(years)		
Mean Avg. flows Low (m³s=") High Peak flow (m³s=") Runoff (mm) Rainfall (mm)	17.960 6 268 33.150 118.10 39 70	17.710 5.886 48.650 112.70 35 53	14 010 6 640 33.900 79 18 31 57	11 890 4 950 24 530 72 32 25 55	10 450 5 258 25 480 75 20 23 66	8 720 4 827 12 910 47 60 18 61	8 660 3 611 15 520 52 25 19 57	9 446 2.482 20 230 115 25 21 70	10.290 4.874 22.650 77.02 22 72	10 870 5 621 25.890 66 26 24 63	13 110 5 898 34 800 83 25 28 75	17 390 6.424 50 320 126 60 38 75	12.520 7.404 18.198 126.60 322 774
Factors offacting f Station type: VA	flow regim	o: SRPGEI									off is 140 nfall 106		ous mean

Dove at Marston on Dove 028018

1986

Measuring First year:		ty: STWA			•	Grid referei Level s	nce: 43 (\$) tn. (m OD).		8		C	atchment N	area (sq k Aax ali (m	
Hydrome	tric sta	itistics fo	r 1986											
		NAL	FEB	MAR	APR	MAY	JUN	ж	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	32.880	14.260	18 180	24.550	14 490	8.291	5 527	8 068	5.190	7.113	24 150	34 100	16 400
(m³a=1):	Poak	191.36	41.50	78.97	87 65	50 62	20 33	7.30	75.75	8 23	23 65	117,61	174 43	191.36
Runoff (mm	1)	100	39	55	72	44	24	17	24	15	22	71	103	587
Romiali (mo	n)	144	12	88	99	81	47	61	110	9	100	123	176	1050
Monthly -	and ye	arly stati:	stics for p	revious r	ecord (Oc	t 1961 to l	Dec 1985-	incomple	ite or miss	ing month	s total 0.1	years)		
Mean	Avg.	22 050	20.300	16 940	14 030	12 110	8 991	7 483	7 632	8.576	10.820	16 440	21 410	13.870
lows	Low	7 822	4.615	8.943	6 195	4 831	3 452	2.430	1 9 1 3	2 821	3.495	5.684	7 907	7.723
(m³s = 1)	High	31 880	55.910	36 570	24 440	22.480	14 700	15.530	14.630	29.350	22 830	31 070	56 460	19.411
Peak flow (187.56	194.62	129 73	121 00	121 42	69 70	77.10	101.86	113 87	132 10	130 80	202.80	202 80
Runoff (mm	1)	67	56	51	41	37	26	23	23	25	33	48	65	496
Rainfall (mn	n)	91	69	74	66	77	74	65	80	84	78	96	94	948
Factors all Station typ		law regimi	n. SRPG									off is 118 nfall 111		ious meai

Manifold at Ilam 028031

1986

Messuring authori First year: 1968	ty: STWA			C		nce. 43 (SI n. (m OD)		7		С			m) 148 5 OD) 513
Hydrometric sta	ntistics fo	r 1986											
Flows Avg. (m³s=¹). Paak Runoff (mm) Rainfall (mm)	JAN 8 088 65 98 146 171	FEB 2 826 7,14 46 15	MAR 6 119 66.72 110 107	APR 6 200 36 98 108 110	MAY 3 /88 34 92 68 93	JUN 1 553 4 94 27 49	JUL 1 009 1 38 18 72	AUG 2.190 41.14 40 117	SEP 1,164 1 99 20 8	OCT 2 091 14.75 38 116	NOV 7 398 68 69 129 145	DEC 9 996 61 03 180 217	Year 4.368 68.69 931 1220
Monthly and ye	arly stati:	stics for p	revious r	ecord (Ma	y 1968 to	Dec 1985	—incompl	ete or miss	sing month	is total 0.1	years)		
Moon Avg. flows Low (m³s-¹) High Peak flow (m³s-¹) Runoff (mm) Roinfall (mm)* *(1969-1985)	6.271 3.657 8.522 80.13 113 124	5 409 2.489 12.710 74 53 89 88	4 668 2.528 9 455 49 89 84 92	3.601 1.277 5.985 47.36 63 72	2 502 0 812 5 713 52 40 45 77	1 840 0 745 3 443 39 58 32 77	1,471 0,493 3,481 37,29 27 69	1 820 0 386 4 560 137 00 33 77	1 826 0 535 4 147 45 69 32 91	2.928 0.716 6.697 75.78 53 90	5 005 1.555 8 198 91.61 87 123	5 266 2.135 8 741 66 25 95 109	3.542 2.241 4.806 137.00 753 1089

Factors affecting flow regime: P E Station type, C

1986 runoff is 124% of previous mean rainfall 112%

028039 Rea at Calthorpe Park

1986

Measuring authorit First year, 1967	y: STWA			C		nce: 42 (Sf n (m OD):		7			Catchment <i>N</i>	area (sq l lax alt (m	
Hydrometric sta	tistics fo	r 1986											
Flows Avg (m³a=1), Poak Runoff (mm) Rainfall (mm)	JAN 1.547 26.42 56 105	FEB 0 567 2.35 19 12	MAR 0 779 5 12 28 69	APR 1 036 9 18 36 74	MAY 0 769 14.52 28 69	JUN 0 590 8 98 2 1 47	JUI. 0.498 5.10 18 45	AUG 1 238 29.44 45 132	SEP 0.371 4 70 13 13	OCT 0 598 11 01 22 76	NOV 1 257 15 34 44 97	DEC 1 256 8.95 45 100	Year 0.875 29 44 374 839
Monthly and yea	orly statis	itics for p	revious r	ecord (Ma	y 1967 to	Dec 1985	-incompt	ete or mis	sing mont	he total 1.1	years)		
Mean Avg flows Low (m³s=') High Peak flow (mm's=') Runoff (mm) Rainfell (mm)' '(1968-1985)	1.173 0.601 1.634 24.64 42 76	1 099 0 549 2 810 27 44 36 63	1 081 0 483 2 101 28 64 39 68	0.762 0.316 1.489 25.15 27 54	0 783 0 355 1 780 30 37 28 71	0 669 0 287 1 324 37 44 23 64	0 512 0 257 0 890 46 86 19 53	0.627 0.367 1.366 41.25 23 71	0 663 0 295 1.423 40 85 23 75	0 645 0.320 1.408 23 28 23 56	0.861 0.493 1.753 24.97 30 73	1 118 0 530 1 934 54 02 40 79	0.832 0.602 1.058 54.02 355 803
Factors affecting fl Station type: C	low regime	E									off is 1069 offall 1049		ous mean

Tame at Lea Marston Lakes 028080

Measuring authori First year: 1957	ty: STWA			(Grid referei Level s	nce: 42 (\$ tn. (m.OD)		7		C			m): 799.0 OD): 267
Hydrometric sta	ntistics fo	т 1986											
Flows Avg. -{m³s-¹}: Peak Bunoff (mm) Bainfall (mm)	JAN 23.900 115.82 80 99	FEB 13.730 32.44 42 11	MAR 13.360 30.61 45 58	APR 17 420 58 27 57 65	MAY 13 840 70.27 46 68	JUN 10.940 50.70 35 42	JUL 9 430 37.57 32 43	AUG 16 450 142 20 55 124	SEP 9 024 27.64 29 14	OCT 10.900 51.24 37 72	NOV 19 160 57 26 62 87	0EC 21 000 56 76 70 98	Yeur 14.929 142.20 590 781
Monthly and ye	arly stati:	stics for p	previous r	ecord (Oc	t 1957 to	Dec 1985-	-incomple	ete ar misc	ing month	s total 0.3	years)		
Mean Avg. Nows Low (m³s=1) High Peak flow (m³s=1) Runoff (mm) Reinfall (mm)	17 360 8 994 24 130 67 90 58 65	17 130 8.855 35 140 66.01 52 51	15.610 8.797 26.590 86.27 52 55	13 480 7 259 22 000 90 46 44 52	12 660 7 321 24 690 80 09 42 61	11 300 6 655 16 540 75 20 37 58	10 220 6.369 17 210 94 78 34 55	10 810 6 978 16 970 94 43 36 70	11 300 6 655 19 440 72 02 37 66	11 950 7 852 25.600 72 02 40 57	14.210 7.876 27.880 127.60 46 66	16 600 9 057 32 880 219 20 56 72	13 537 9.699 17.355 219.20 535 728
Factors affecting to Station type: C	low regim	e: El									off is 110 nfall 107		ious mean

028082 Soar at Littlethorpe

1986

Measuring authorit First year: 1971	ıy: STWA			C	irid referen Level st	nce 42 (Sf (n (m 0D)		3		С	atchment a M	area (sq kr lax alt (m	
Hydrometric sta	itistics fo	r 1986											
	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	D€C	Year
Flows Avg	3 258	1 834	1 423	1 903	1 456	0 65 1	0 422	0 767	0 491	0 62 1	2 090	2 937	1 488
(m³s='): Poak	16.78	7.80	3 53	6 10	6 76	1 60	1 03	4 90	1 38	2 07	8 6 1	9 55	16.78
Runoff (mm)	47	24	21	27	21	9	6	11	7	9	29	43	255
Rainfall (mm)	70	18	51	51	74	29	38	107	20	61	75	85	679
Monthly and year	arly statis	tics for p	revious re	ecord (Au	g 1971 to	Dec 1985-	—incompk	ete or miss	ing montl	s total 0.2	(years)		
Moan Avg	2 663	2 829	2 465	1 471	1 115	0 975	0 535	0 698	0 562	0.878	1 236	2 384	1.479
fows Low	0.713	0 568	0 424	0 346	0 350	0.245	0 164	0 224	0 307	0 338	0.398	0 643	0.844
(m³s=') High	4 66 1	6 868	5 031	3 105	2 654	2 346	1 447	2 242	1 608	2 921	2 7 1 4	5 101	2.133
Poak flow (m3s)	17 74	24.47	20 78	21 18	21 08	15 78	13 71	20 4 1	15 94	1981	16 59	22 46	24.47
Runoff (mm)	39	38 '	36	2 1	16	14	8	10	8	13	17	35	254
Reinfall (mm)* *(1972-1985)	53	48	52	39	56	64	39	59	58	48	51	63	630
Factors affecting f Station type: EM	low regime). E									off is 1009		ous mear

029003 Lud at Louth

1986

Meesuring First year		y AWA			(Grid referer Level st	nce 53 (Tf (n (m OD)		9				tarea (sq i lax alt (m	
Hydrom	etric sta	tistics fo	r 1986											
Flows (m³s='): Runoff (mi Ra:nfall (m	m)	JAN 0 885 2 17 43 74	FFB 0 868 1 84 38 44	MAR 0 673 1 32 33 68	APH 0 782 1 28 37 72	MAY 0 764 2 32 37 103	JUN 0 6:2 1 68 29 38	JUJI 0 473 0 79 23 48	AUG 0 365 1 14 18 81	SEP 0 272 0 69 13 20	0CT 0 203 0 80 10 59	NOV 0 312 1 80 15 80	DEC 0 515 2 80 25 94	Year 0.560 2.80 319 781
	•				ecord (Au			-	٠.	••	33		34	,,,
Mean flows (m³s^') Peak flow Runotf (m Rainfall (m	Avg. Low High (m ³ s) m)	0 614 0 139 1 279 3 70 30 67	0 813 0 157 1 428 3.81 36 47	0 775 0 162 1 338 3 58 38 63	0 700 0 150 1 289 5 06 33 52	0 578 0 156 1 177 3 51 28 55	0 440 0 131 0 687 3 27 21 57	0 338 0 112 0 507 3 40 16 50	0 284 0 102 0 414 3 10 14 61	0 243 0 112 0 625 3 30 11 55	0 242 0 130 0 719 2 96 12 54	0 311 0 132 1 158 6 77 15 69	0 409 0 125 0 911 3 10 20 67	0.477 0.178 0.703 6.77 273 697
Factors a Station ty		low ragime	•									offis 117 nfall 112	% of previ %	ous mean

030004 Partney Lymn at Partney Mill

1986

Measuring authorit First year 1962	y. AWA			C	Srict referer Level st	nce: 53 (TF in (m OD)		6			Catchmen N	Larea (sq.) lax alt. (m	
Hydrometric sta	tistics fo	r 1986											
Flows Avg. (m³s¬¹) Peak Runoff (mm) Rainfa1 (mm)	JAN 0 962 6 12 42 68	FEB 0.782 5.46 31 38	MAR 0 659 2 34 29 71	APR 0 848 3 38 36 69	MAY 0 886 11 30 39 126	JUN 0 379 0 96 16 36	Jul 0 257 0 69 11 54	AUG 0 288 1 89 13 80	SEP 0 276 0 71 12 19	OCT 0.266 0.81 12 54	NOV 0 690 4 87 29 76	DEC O 966 7 61 42 99	Year 0.605 11 30 309 790
Monthly and year	erly statis	stics for p	revious r	ecord (Jur	1962 to I	Dec 1985-	-incomple	te or miss	ing month	s total 0 3	years)		
Moan Avg. flows Low (m³s¬¹) High Paax flow (m³s¬¹) Runoff (mm) Rainfall (mm)	0 820 0 351 1 475 10 01 36 60	0 786 0 300 1 838 12 59 31 48	0 715 0 276 1 538 7 71 31 60	0 614 0 228 1 518 13 34 26 54	0 457 0 200 0 807 8 56 20 57	0 327 0 116 0 691 8 13 14 58	0 274 0 088 0 862 13 38 12 51	0 286 0 107 0 593 7 06 12 64	0 283 0 151 0 917 6 64 12 55	0 379 0 190 1 144 8 07 16 51	0 550 0 193 1 112 10 17 23 71	0 733 0 210 1 804 8 48 32 64	0 518 0 292 0.754 13.38 265 693
Factors affecting f Station type: C	low regime	e G I									off is 117 nfall 114		ous mean

031002 Glen at Kates Brdg and King St Brdg

Measuring First year		ıy. AWA			(Grid referer Level s	nce 53 (TF stn (m 00)		•		С	atchment : M	area (sq ki lax alt (m	
Hydrome	otric sta	itistics fo	r 1986											
Flows (m³s=1).	Avg Peak	JAN 2 851	FEB 2 622	MAR 1 532	APR 3 691	MAY 2 719	JUN 1 108	JUL 0 441	AUG 0 333	SEP 0 210	001 0 134	NOV 0 240	DEC 0 672	Year 1.380
Runoff (mr Rainfall (m	(ام	22 67	19 30	12 44	28 82	21 91	8	3 53	3 100	2 17	1 37	2 56	5 65	126 660
Monthly	and ye	arly statis	stics for p	revious r	ecord (Oc	t 1960 to (Dec 1985)							
Mosn flows (m ³ s ⁻¹) Posk flow		1 965 0 093 6 351	2 471 0 048 10 110	2 397 0 033 6 317	1 820 0 0 8 4 903	1 457 0 008 5 060	0 796 0 004 2 182	0 444 0 000 1 465	0 381 0 001 1 615	0 331 0 008 1 873	0 477 0 024 2 267	0 867 0 020 5 552	1 480 0 078 7 868	1 234 0 154 2 333
Runoff (mr Rainfall (m	m)	15 52	18 41	19 49	14 51	11 52	6 54	3 46	3 61	3 53	4 49	7 57	12 57	114 622
Factors at Station ty		low regim	e G									off is 1111		ous mean

031007 Welland at Barrowden

1986

Measuring authorit First year: 1968	y AWA			(Grid referer Level si	nce. 42 (Sf in (m OD):		•		С			m): 411.6 OD): 228
Hydrometric sta	tistics fo	r 1986											
Flows Avg. {m³s-¹}; Poak Runoff (mm) Rainfa'l (mm)	JAN 6 672 39 99 43 67	FEB 4.505 23.14 26 26	MAR 2.976 7.19 19 56	APR 5 774 22.94 36 70	MAY 2.338 11.62 15 68	JUN 0 728 1 94 5 19	JUL 0 467 1 05 3 42	AUG 1 369 11.87 9 138	SEP 0.669 2.20 4 25	OCT 0 617 1 41 4 58	NOV 4,295 21,16 27 71	DEC 5 5 10 20 75 36 78	Year 2.993 39.99 228 718
Monthly and year	arly stati	stics for p	revious r	ecord (Fet	1968 to (Dec 1985-	-incomple	te or miss	ing month	s total 0.2	years)		
Moan Avg. flows Low (m³s-1) High Peak flow (m³s-1) Runoff (mm) Reinfall (mm)	4 665 0.516 8 885 36.93 30 57	5.163 0 425 17.030 74.42 31 44	4.430 0.352 9.701 107.80 29 53	2.726 0.257 7.700 79.43 17 45	1.780 0.232 7.310 46.95 12 57	1,164 0 159 3 093 27 44 7 59	0 825 0.092 4.477 38 23 5 49	0 816 0 154 4 500 39 91 5 63	0 684 0.271 4 322 12.55 4 52	1 213 0 226 5 150 22.87 8 47	1 885 0.318 6.436 50.37 12 58	3.597 0.410 7.509 40.13 23 60	2 400 1.034 3.667 107.80 184 844
Factors affecting (Station type: C	low regimi	e. S E								1986 run		% of prev	ious mean

032003 Harpers Brook at Old Mill Bridge

1986

Measurii First yea	ng authorii ir: 1938	y: AWA			(nce: 42 (SI in (m OD)		9				tarea (sq. l lax alt. (m	
Hydron	netric sta	tistics fo	r 1986											
Flows (m³s=1 Runoff (m Rainfall (r	nm)	JAN 1,193 14 78 43 69	FEB 0.818 6.59 27 27	MAR 0 613 1.87 22 55	APR 1.259 7.16 44 71	MAY 0 620 8 38 22 72	JUN 0 180 0 31 6 12	JUL 0.128 0.41 5 41	AUG 0 223 4 31 8 127	SEP 0.131 0.78 5 27	OCT 0 116 0 50 4 52	NOV 0.664 11 04 23 67	DFC 0 790 4 86 28 70	Year 0.561 14,78 237 690
Month	y and yea	arly statis	tics for p	revious r	ecord (De	c 1938 to	Dec 1985-	incomple	ete or mise	ing month	s total 0 5	years)		
Mean flows (m³s=' Peak flow Runoff (m Rainfall (m	Avg Low) High v (m ³ s ⁻¹) vm)	0 787 0 097 2.766 16 06 28 58	0 816 0 080 2 485 18 58 27 42	0.716 0.076 2.363 17.01 26 48	0 462 0 066 1 334 22:00 16 43	0 309 0 056 1 246 18 65 11 52	0.200 0.049 0.606 10.54 7 52	0 146 0 052 0.685 12 49 5	0 154 0 048 0 791 20 50 6	0 144 0 049 1,147 6 80 5	0 201 0 057 0.979 7.73 7 52	0 423 0.069 1 688 11.74 15 61	0 586 0 077 1 762 17 90 21 57	0.410 0.159 0.676 22.00 174 628
Factors	offecting f	low regime	,								1986 run	off is 1369	% of provi	nie mean

Factors affecting flow regime Station type: CC

1986 runoff is 136% of previous mean rainfall 110%

032004 Ise Brook at Harrowden Old Mill

1986

Measuring authorit First year: 1943	y: AWA			(Grid referen Level si	nce 42 (SI In. (m OD).		5		С	stchment . W	area (sq ki lax alt. (m	
. Hydrometric sta	tistics fo	r 1986											
Flows Avg. (m³s-1): Peak Runoff (mm) Rainfall (mm)	JAN 3 464 12.78 48 70	FEB 2.300 9.61 29 26	MAR 1 745 4 64 24 59	APH 3 155 9 27 42 72	MAY 1 656 7 74 23 72	JUN 0 655 1 53 9 15	JUL 0 405 1.49 6 42	AUG 0 823 5 06 11 139	SEP 0 522 2.62 7 27	OCT 0 473 2 80 7 54	NOV 2.198 9.11 29 73	DEC 2 520 7 57 35 73	Year 1.660 12.78 269 722
Monthly and yea	orly statis	tics for p	revious r	ecord (Dec	: 1943 to I	Dec 1985-	—incomple	ete or miss	ing month	ns total 0.8	years)		
Mean Avg flows Low (m ³ s ⁻¹) High Peak flow (m ² s ⁻¹) Runoff (mm) Rainfall (mm)	2.469 0.458 6.441 17.10 34 54	2 664 0 324 6 949 17.51 33 43	2.292 0.219 7.984 28.39 32 48	· 484 0 329 3 834 20 77 20 44	1 129 0 143 3 606 17 73 16 54	0 759 0 128 2 421 24.04 10 55	0 569 0 166 3 018 19 54 8 50	0 541 0 110 2 655 25 10 7 64	0 513 0 128 2.315 7 79 7 54	0 727 0 185 4 384 13 08 10 51	1 362 0 176 5 331 16.00 18 59	1 945 0 219 5 827 16 99 27 59	1.365 0.422 2.337 28.39 222 635
Factors affecting II Station type: FV	ow regime	: S E									offis 1219 nfall 1149		Dus mean

033003 Cam at Bottisham

Measurin First year		ty: AWA			(Grid referei Level s	nce: 52 (Ti itn. (m OD		7		C		. area (sq ki Max alt. (m	
Hydrom	etric st	stistics fo	r 1986											
Flows	Avg.	JAN 4 247	FEB 3.965	MAR	APR 5 331	MAY 3 838	JUN 2.521	J.L 2 019	AUG 1 85 1	56º 1 770	OCT 2 094	MOV 3 661	DEC 4 340	Year
Runoff (m Rainfall (m	m)	14 56	12 17	50	17 62	13 61	8 15	7 55	6 84	6 30	7 82	12 61	14 59	632
Monthly	and ye	arly statis	stics for p	orevious r	ecord (Oc	t 1936 to I	Dec 1985-	—incomple	ite or miss	ing mont)	s total 1.1	years)		
Mean flows (m ³ s ⁻¹)		5 939 1 058 19 210	6.244 1.202 16.410	5 893 1 142 19 610	4 579 1 159 18 430	3.376 0.944 8.775	2 440 0 750 5 400	1.917 0.621 6.419	1 768 0.603 5 47 1	1 695 0 784 6 698	2.107 0.803 6.503	3 427 0 880 12.120	4 198 0 995 12 070	3.619 1.082 8.279
Peak flow Runoff (m Reinfall (m	m)	20 51	19 36	20 42	15 39	; 1 4B	8 49	6 52	6 56	5 51	7 52	1 1 59	14 51	142 586
Factors a Station ty		flow regime	e: GEI								1986 rur rai	off is nfall 108	% of previ	ous mean

033012 Kym at Meagre Farm

1986

(m ³ s ⁻¹): Peak 16.80 Runoff (mm) 30	FEB O BO9 7.27 14	MAR 0 935 5.20 18	APR 2.107 9.25	MAY 0.785	JUN 0 057	JUL	AUG	SEP	ост	NOV	D€C	Year
Flows Avg. 1.550 -{m³s=1}: Peak 16.80 Runoff (mm) 30	0 809 7,27 14	0 935 5.20	2.107	0 785				SEP	ост	NOV	DEC	Year
	21	53	40 71	15 27 15 76	0.18 1 12	0 024 0 07 0 45	0 086 0 86 2 105	0 043 0 23 1 24	0 050 0 16 1 53	0.664 10 60 13 63	0 853 7 95 17 56	0.664 16.80 152 639
Monthly and yearly sta	tistics for p	previous re	ecord (Ma	y 1960 to	Dec 1985-		ate or mis	sing month	s total 0.1	years)		
Mean Avg. 1.35 flows Low 0.074 (m²s⁻¹) High 3.290 Peak flow (m³s⁻¹) 25.2 Runoff (mm) 26 Rainfall (mm) 50		1.175 0.044 3.474 30.24 23 46	0.712 0.041 2.055 30.75 13 46	0.365 0.024 1.469 20.61 7 53	0 243 0 009 1 489 24 10 5 59	0 142 0 001 2 438 16 68 3 48	0.106 0.004 1.096 23.42 2 55	0.051 0.017 0.158 1.34 1	0.326 0.015 2.200 25.91 6 50	0.616 0.022 3.718 34.71 12 54	1.010 0.050 3.328 33.98 20 57	0.626 0.103 1.048 34.71 144 506

033013 Sapiston at Rectory Bridge

1986

Measuring authorit First year, 1949	y: AWA			(nce. 52 (Ti in. (m OD):		1		C	atchment	erea (so, kr Max alt (n	
Hydrometric sta	tistics fo	r 1986											
Flows Avg. (m ³ s ⁻¹): Peak Runoff (mm) Rainfa I (mm)	JAN 1 348 3.53 18 81	FEB 0 760 2 07 9 15	MAR 0 B17 2.17 11 54	APR 0 968 2 05 12 55	MAY 0 5 18 0 62 7 46	JUN 0 379 0.62 5 21	JUL 0 288 4 64	AUG 0 288 0 98 4 89	SEP 0 237 0 39 3 27	OCT O 284 O 89 4 84	NOV 0 627 2.12 8 58	DEC 1 049 3.88 14 72	Year 0.630 96 646
Monthly and yea	orly statis	stics for p	revious r	ecord (Jan	1949 to I	Dec 1985-	-incomple	ite or miss	ing month	s total 2.8	years]		
Meen Avg. flows Low (m³s=") High Peak flow (m³s=") Runoff (mm) Rainfall (mm) *(1960-1985)	1.175 0.226 2.417 9.93 15 51	1 249 0 221 3 295 10 90 15 36	1 036 0 150 2,491 10.85 13 44	0 788 0 079 1 947 8 76 10 43	0 613 0 193 1 802 7 31 8 48	0 464 0 133 1 744 5 20 6 52	0 315 0 015 0 651 2 39 4 49	0 269 0 045 0 734 2 93 4 49	0 285 0 051 1 682 8 95 4 56	0 341 0 066 1 008 6 26 4 53	0 609 0 087 2 404 6 97 8 63	0 856 0.139 2 396 10 45 11 56	0.664 0.219 1.071 10.90 102 600

Fectors affecting flow regime: GEI Station type: TP

1986 runoff is 95% of previous mean rainfall 108%

033014 Lark at Temple

1986

Measuring First year		y. AWA			(Grid referei Level s	nce: 52 (Ti stn. (m OD))		С		erea (sq kr lax alt. (m	n): 272.0 OD): 125
Hydrom	etric sta	tistics fo	r 1986											
Flows	Avg. Poak	JAN 1 730 5.41	FEB 1 283 3 14	MAR 1 277 1.92	APR 1,787 6 65	MAY 1 134 2.70	JUN 0 874 1 54	JUI 0 777 2 44	AUG 0 779 2.08	SEP 0 695 1,31	OCT 0 700 2 55	NOV 1.145 4.57	DEC 1 620 7 27	Year 1.150 7.27
Runoff (mi	•	17 61	11 15	13 54	17 60	11 46	8 20	66 66	8 88	7 27	7 85	11 63	16 71	133 656
Monthly	and yes	orly statis	stics for p	revious r	ecord (No	v 1960 to	Dec 1985)							
Moan flows (m³s ⁻¹) Peak flow Runoff (me Rainfell (m	(m. ³ 8 ¹)	1 808 0 728 3 062 11 08 18 51	1 871 0 645 3.562 12 05 17 36	1 808 0 675 3 614 12 12 18 45	1 600 0 691 2 999 10 31 15 44	1 398 0 641 3 476 11 83 14 51	1.079 0 548 1 878 5 46 10 53	0 885 0 409 1 422 3 31 9 49	0 802 0 385 1 267 5.24 8 50	0 823 0 440 2 893 22 06 8 55	0 852 0 493 1 847 8.25 8 54	1 164 0 509 2 677 10 12 11 63	1 482 0 600 2 662 11 22 15 57	1.295 0.620 2.014 22.06 150 608
Factors a Station ty		low ragime	GEI									noff is 89 sinfall 108	% of previ %	ous mean

033024 Cam at Dernford

1986

Measuring authori First year: 1949	ıy. AWA			C	Grad referen Level si	nce. 52 (Ti tn. (m OD)		3		С	atchment i M	area (sq kr lax alt. (m	
Hydrometric sta	tistics fo	r 1986											
Flows Avg. (m³s=1): Peak Runoff (mm) Rainfall (mm)	JAN 1 082 3 29 15 61	FEB 0 939 2 67 11 19	MAR 0 893 1 92 12 51	APR 1 265 3 37 17 63	MAY 1 041 1 59 14 56	JUN 0 736 1 01 10 19	JUL 0 580 1 96 8 1 62	AUG 0.619 1.99 8 91	SEP 0 522 0.74 7 29	OCT 0 612 1.81 8 85	NOV 1 020 3 73 13 68	DEC 1 324 4 83 18 63	Year 0.886 4.83 141 667
Monthly and ye	arly statis	stics for p	revious r	ecord (Ma	r 1949 to	Dec 1985	-incomple	ste or mis:	sing month	s total 1.3	years)		
Mean Avg. flows Low (m³s-") High Peak flow (m³s-") Runoff (mm) Re n'all (mm)* *(1950-1985)	1.427 0.449 2.845 10.38 19 49	1 499 0 400 2 703 14 09 18 39	1 359 0.562 2.608 10 22 18 42	1.187 0.465 2.431 9.94 16 40	0 989 0 408 2 144 13 63 13	0.779 0.318 1.338 6 94 10 49	0.622 0.184 1.608 3.60 8 52	0.581 0.248 1.457 4.79 8 58	0 559 0 155 1.965 10 99 7 54	0 708 0 313 2 088 9 10 10 51	0.933 0.361 2.790 12.50 12 59	1.179 0.356 3.492 12.06 16 55	0.983 0.418 1.508 14.09 157 595
Factors affecting	low regime	: GEI								1986 ru	naff is 90°	% of previ	ous mean

Station type: TP

rainfall 112%

034001 Yare at Colney

1986

					-									
Measurin First year		ty: AWA			(irid referer Level s	nce: 63 (Ti stn. (m OD		2		С	atchment .	orea (sq.kr Maxalt (n	
Hydrom	etric sta	tistics fo	r 1986											
Flows (m ³ s ⁻¹) Runoff (m Rainfall (m	m)	JAN 3 199 5 29 37 63	FEB 1 558 3 90 16 17	MAR 1 439 3 18 17 60	APR 2 336 3 72 26 61	MAY 1 164 2 14 13 49	JUN 0 629 1 16 7 31	JUL 0 431 1 29 5 51	AUG 0 498 1 58 6 82	SEP 0 461 0 89 5 26	001 0 531 0 93 6 68	NOV 1 111 2 83 12 62	DFC 2 002 5 29 23 84	Year 1,280 5,29 174 654
Monthly	and yea	arly statis	stics for p	revious r	ecord (Oct	t 1959 to [Dec 1985)							
Maan 'lows (m³s=') Paak flow Runo'f (m Rainfal (m	(m ³ s¯-') m)	2 609 0 779 5,181 18 97 30 59	2 633 0 947 4.931 18 63 28 42	2 043 0 842 4.783 16 90 24 46	1.739 0.623 3.442 20.51 19 48	1 135 0 462 2 487 10 10 13 48	0 746 0 285 2 069 4 01 8 52	0 588 0 189 1 043 4 54 7 54	0 562 0 200 1 607 6 34 6 56	0 683 0 272 3 420 21 61 8 56	0 895 0 381 2.898 7 48 10 58	1 481 0 440 3 971 11.20 17 70	2 211 0 714 5 904 21 15 26 65	1.438 0.770 2.230 21.61 196 654
Factors a Station ty		low regime	e: G I									noff is 89°		ous mean

034002 Tas at Shotesham

1986

Measuring authority First year: 1957	y: AWA			G	irid referen Level s	ce 62 (Th tn (m OD)		4		С		area (sq kı Max alı (r	
Hydrometric stat	istics fo	r 1986											
Flows Avg (m³s=1) Peak Bunoff (mm) Painfall (mm) Monthly and yea	JAN 1 530 3 58 28 63 rly statis	FEB 0 534 1 99 9 16 stics for p	MAR 0 736 2 04 13 58 I revious r	APR 0 656 1 55 12 57 ecord (No	MAY 0 223 0 55 4 49 v 1957 to 1	JUN 0 180 0 75 3 28 Dec 1985-	JUL 0 110 0 60 2 48 —incomple	AUG 0 155 1 06 3 83	SEP 0 256 1 00 5 27 sing month	0C1 0 318 0 82 6 74	NOV 0 544 1 29 10 53	DEC 1.082 4.44 20 77	Year 0.527 4.44 114 633
Mean Avg flows Low (m³s-1) High: Peak flow (m³s-1) Runoff (mm) Rantall (mm) Factors affecting Ik Station type: FV	1 475 0 287 3 107 14.16 27 55 ow regime	1 358 O 368 3 709 13 58 23 39	0 986 0 275 2 435 11 53 18 41	0 766 0 309 1 666 5 69 14 45	0 536 0 219 1 539 6 65 10 47	0 4 19 0 175 1 5 15 6 80 7 49	0 351 0 120 0 962 6 51 6	0 302 0 126 0 764 3 57 6 53	0 414 0 158 3 425 62 30 7 53		0 788 0 229 2 946 11 31 14 64 noff is 70°	1 175 0 300 3 239 13 31 21 61 % of previ	0.750 0.280 1.299 62 30 161 611 ous mean

035002 Deben at Naunton Hall

1986

Measuring author- First year: 1964	ıy. AWA			C	ind referen Level s	ice 62 (TN itn. (m OD)		4		С	atchment .	orea (sq.kı Max alt. (n	
Hydrometric sta	tistics fo	r 1986											
Flows Avg. (m²s=') Peak Runoff (mm) Rainfall (mm) Monthly and ye.	JAN 2 476 8 05 41 67 arly statis	FEB 0 697 6 03 10 18 stics for p	MAR 0.901 5.00 15 52 previous re	APR 1 185 6 40 19 56 BCORD (Au	MAY 0 331 0 75 5 55 1964 to	JUN 0 209 0 37 3 31 Dec 1985-	JUL 0 145 0 55 2 72 —incomple	AUG 0 182 0 72 3 91 ate or miss	SEP 0 170 0 27 3 31 sing montl	OCT 0 397 2 65 7 91	NOV 1.260 9.02 20 59	DEC 2 100 11 72 34 75	Year 0.838 11 72 163 698
Muan Avg flows Low (m³s⁻¹) High Peak flow (m³s⁻¹) Runoff (mm) Runoff (mm) Factors affecting f	1 741 0 259 2 894 17 78 29 54	1 485 0 247 4 252 16 71 22 38	1.074 0 228 3 366 14 80 18 44	0 786 0 176 2 162 16 10 12 42	0 422 0 107 1 148 12 80 / 46	0 248 0 052 1 174 7 54 4	0 166 0 044 0 405 3 39 3 46	0 168 0 054 0 483 2 61 3 44	0 322 0 076 2 825 29 45 5	0 385 0 139 1 222 8 24 6 49	0 862 0 173 3 113 16 86 14 64	1 322 0 192 3 585 17 86 22 57	0.745 0.204 1.060 29.45 144 588
Station type CC	iow regime	, KGI									offis 1131 nfall 1191		nus mean

037001 Roding at Redbridge

Measuring authori First year: 1950	ity: TWA			(Grid referen Level s	nce 51 (TO stri (m OD)		4		C	Catchment M	area (sq kr lax alt (m	
Hydrometric st	atistics fo	r 1986											
Flows Avg (m³s**) Peak Runoff (mm) Rainfail (mm)	JAN 6 342 24.70 56 80	FEB 2 280 10 65 18 17	MAH 2 129 6 78 19 47	APR 3 708 9 62 32 60	MAY 0.878 2.95 8 50	JUN 0 431 1 25 4 15	JUL 0 506 4 01 4 58	AUG 0 776 10 30 7 90	SEP 0 368 2 00 3 27	OCT 0 794 7 22 7 70	NOV 3 000 12 70 26 73	DEC 3 02 1 8 30 27 59	Year 2 019 24.70 210 646
Monthly and ye	arly stati:	stics for p	revious r	ecord (Fet	5 1950 to I	Dec 1985)							
Mean Avg flows Low (m³s-') High Peak flow (m³s-') Runoff (mm) Rainfall (mm)	3 658 0 675 7 282 34 74 32 51	3 516 0 608 10 670 30 80 28 42	2 759 0 537 6 858 38.08 24 46	1 847 0 482 6.768 27 72 16 42	1 267 0 323 4 045 32 70 11 50	0 852 0 226 2 953 21 70 7 52	0 604 0 280 1 975 24 50 5	0 600 0 224 1 315 19 8 5 5	0 870 0 197 4 012 25 62 7 59	1 284 0 283 6 834 35 60 11 55	2 151 0 412 10 340 62 41 18 63	3 018 0 412 9 454 36 40 27 58	1 861 0 801 2 809 62 41 194 625
Factors affecting Station type: EW	flow regim	e: S El									off is 108		ous mean

037005 Colne at Lexden

1986

Measuring autho First year: 1959	rity: AVVA			(3rid referer Level s	nce 52 (TI in (m OD)		1		C	tchment : M	area (sq ki lax alt (m	
Hydrometric s	atistics fo	r 1986											
Flows Avg -{m³s=1} Peak Runoff (mm) Reinfall (mm)	JAN 1 945 5 67 22 61	FEB 1.098 3.94 11 16	MAR 1 007 2 26 11 47	APR 1 346 3 71 15 50	MAY 0 657 1 08 7 46	JUN 0 396 0 91 4 22	JUI 0 349 _1 40 _4 _63	AUG 0 347 1 25 4 79	SEP 0.319 0.70 3 28	OC1 0 499 2 04 6 75	NOV 1 215 5 00 13 58	DEC 1 694 6 94 19 65	Year 0.908 6.94 120 610
Monthly and y	early statis	itics for p	revious r	ecord (Oc	1959 to [Dec 1985)							
Masn Avg flows Low {m³s=1} High Peak flow (m³s=1) Runoff (mm) Rainfall (mm)	1 973 0 460 3 737	1 812 0 346 4 684 22 65 19 34	1 672 0 380 3 556 20 68 19 44	1 199 0 358 3 344 13.34 13	0 818 0 229 2 353 12.56 9 46	0 466 0 '46 1 011 6 26 5 46	0 346 0 100 0 687 6 4* 4	0 321 0 088 0 554 2 38 4 48	0 377 0 179 1 099 10 50 4 53	0 639 0.188 3 930 18 55 7 51	1 141 0 288 5 521 21 29 12 60	1 549 0 352 4 200 20 58 17 55	1.023 0.362 1.732 22.65 135 570
Factors affecting Station type: FL	flow regime	: R EI									noff is 889 iinfall 1079		ous mea

037010 Blackwater at Appleford Bridge

1986

Measuring auth First year, 196				(Grid referei Level si	nce: 52 (Ti tn: (m:OD)		3		С		area (sq kr lax alt (m	
Hydrometric	statistics fo	r 1986											
Flows Av (m ³ s ⁻¹) Pea Runoff (mm) Rainfa I (mm) Monthly and	9 62 26 64	FEB 1 270 5 15 12 15 stics for p	MAR 1 088 2 21 12 47 previous r	APR 1 867 5 49 20 54 ecord (Oc	MAY 0 789 1 50 9 49	JUN 0 540 0 95 6 20 Dec 1985)	.JLT. 0 532 1 25 6 61	AUG 0 648 1 71 <i>)</i> 82	SEP 0 416 0 80 4 27	0C1 0 575 2 00 6 73	NOV 1 368 5 30 14 59	DEC 1 6 19 6 18 18 61	Year 1.096 9 62 140 612
Meen Ave flows Lov (m³s-") Hig Peak flow (m³s- Runoff (mm) Rainfal' (mm)	0 532 1 3 916	: 974 0 460 4 889 21 60 19 34	1 947 0 479 3 583 20 00 21 47	1 451 0 479 3 843 12 31 15 43	1 048 0 341 2 860 17 80 11 49	0 730 0 356 1 583 7 76 8 52	0 515 0 182 1 007 2 92 6 43	0 460 0 161 0 837 3 28 5 48	0 517 0 215 1 651 15 25 5	0 680 0 288 1 955 10 00 7 47	1 142 0 325 4 676 20 20 12 60	1 682 0 379 4 307 21.60 18 52	1 176 0 822 1 642 21 60 150 573
Fectors affecting Station type: F		r: R GEI									noff is 93° iinfall 107°		ous mean

038001 Lee at Feildes Weir

1986

_													_	•
Measuring First year		ty TWA naturalised	flows from	n 1883)		Gnd refere: Level s	nce: 52 (Ti tn (m OD)		2		Са		rea (sq.km flax alt. (m	
Hydrom	etric st	atistics fo	r 1986											
Fows (m³s-1) Runoff (mi Rainfall (m	m)	JAN 7 628 26 80 20 74	FEB 4 975 15 40 12 19	MAR 4 243 11 20 11 54	APH 7 429 29 90 19 71	MAY 4 147 10 60 11 60	JUN 2 372 5 34 6 17	JUI 1 978 8 39 5 61	AUG 2 205 13 90 6 96	SEP 1 748 7 20 4 30	OCT 1 798 8 24 5 80	NOV 5 396 45 00 14 71	DEC 5 921 30 00 15 64	Year 4 153 45.00 126 697
Monthly	and ye	arly stati:	stics for p	previous r	ecord (Oc	t 1936 to (Dec 1985-	—incomple	te or miss	ing month	s total 1.9	years)		
Mean flows (m ³ s**) Peak flow	Avg l,ow High	6.676 1.052 17.200	6 716 0 959 17 800	6 239 0 460 29 430	4 480 0 484 12 000	3 650 0 302 12 260	2 577 0 224 7 6 18	1 764 0 081 4.994	1 629 0 085 3 841	1 735 0 132 7 063	2 405 0 302 10 420	4 124 0 416 13 880	5 186 1 099 13 210	3 918 0 866 7 182
Runoff (mi	m.)	17 57	16 42	16 47	11 43	9 51	6 50	5 54	4 57	4 55	6 59	10 66	13 58	119 639
Fectors a Station ty		llow regim	e PGEI									off is 106 nfall 109	% of previ	ous mean

038007 Canons Brook at Elizabeth Way

Measuring authori First year: 1965	ty TWA			(Grid referer Level sa	nce 52 (Ti in (m OD)		1		ı		tarea (sq.) lax alt. (m	
Hydrometric sta	itistics fo	r 1986											
Flows Avg (m³s=1): Peak Runoff (mm) Raufell (mm)	AN 0 394 4 47 49 79	FEB 0 156 0 75 18 17	MAR 0 231 1 83 29 50	APR 0 320 3.77 39 68	MAY 0 143 2 42 18 49	JUN 0 091 1 88 11 14	JUL 0 124 4 26 16 60	AUG 0 174 7 07 22 93	SEP 0 087 1 63 10 27	OCT 0 154 5 06 19 79	NOV 0 279 2 43 34 71	DEC 0 258 2 49 32 61	Year 0.201 7.07 297 668
Monthly and ye	arly statis	stics for p	revious r	ecord (Oc	1 1965 to (Dec 1985-	-incomple	te or miss	ing month	s total 0.4	years)		
Mean Avg flows Low (m³s-1) High Peak flow (m³s-1) Runoff (mm) Rainfall (mm)	0 305 0 059 0 470 8.25 38 51	0.292 0.062 0.883 11.50 33 37	0 260 0 054 0 468 6 56 33 48	0 '98 0 074 0 520 10 31 24 41	0 188 0 073 0 415 12 20 23 55	0 135 0 067 0 253 10 10 16 54	0 108 0 056 0 210 10 97 13 47	0 116 0 034 0 193 10 61 14 52	0 123 0.056 0 294 9 00 15 57	0 153 0 043 0 468 10.60 19 52	0 219 0 058 0 794 9 85 27 60	0 267 0 092 0 507 9 36 33 58	0.197 0.095 0.253 12.20 290 612
Factors effecting f Station type: FL	low regime	9									off is 1029 ofall 1099	% of previ	ous mean

Measuring authorit First year: 1971	y: TWA			G	Grid referen Lavel st	ce: 51 (TC n. (m OD):		5			Catchment M	area (sq l ax alt (m	
Hydrometric sta	tistics fo	r 1986											
Flows Avg. (m³s=1), Peak Runoff (mm) Rainfall (mm)	JAN O 694 5.67 44 95	FEB 0 181 1,19 10 16	MAR 0 255 2.03 16 55	APR 0 504 1.59 31 75	MAY 0 075 0 67 5 58	JUN 0 025 0.16 2 14	JUL 0 050 1.80 3 53	AUG 0 099 2.45 6 105	SEP 0 033 0 40 2 29	OC1 0.182 2 09 12 86	NOV 0.483 2.87 30 77	DEC 0 406 2 88 26 71	Year 0.249 5.67 186 734
Monthly and yes	rly statis	itics for p	revious r	ecord (Se	1971 to (Dec 1985)							
Moan Avg. flows Low (m³s=1) High Poak flow (m³s=1) Runoff (mm) Rainfall (mm)	0 402 0 037 0.760 10.50 26 58	0 365 0 042 0 988 11.00 21 44	0 358 0 024 0 811 5.14 23 60	0.197 0.020 0.626 7.72 12 43	0 199 0 014 0 626 20 69 13 62	0 099 0 021 0 240 15 30 6 56	0 040 0 013 0 087 2 38 3 41	0.051 0.008 0.171 2.76 3	0.064 0.012 0.228 7.55 4 66	0 137 0 016 0 524 8 14 9 56	0 241 0 019 1.158 12 75 15 63	0 345 0 086 0 704 10 50 22 65	0.208 0.057 0.339 20.69 155 663

039	002	: Ti	ham	es at	Day	s W	eir						1	1986
Measuring First year		ity. TWA			,	Grid refere Level s	nce. 41 (S tn. (m OD)		5		C			n) 3444 7 n OD) 330
Hydrom	atric st	atistics fo	or 1986											
Flows	Avg.	JAN 77.750	FEB 42.130	MAR 30.540	APR 46.640	MAY 28 430	JUN 14.470	JUL 7.110	AUG 11 360	SEP 8 341	OCT 8 396	NOV 48 190	DFC 58 620	Year 31.831
(m³s=1): Runoff (mr		60	30	24	35	22	11	6	9	6	7	36	46	291
Rainfall (m	•	85	12	63	67	76	26	44	116	28	69	95	84	765
Monthly	and y	sarfy stati	istics for	previous (record (Oc	t 1938 to	Dec 1985)	1						
Mean flows (m ² s ⁻¹) Pask flow	Avg Low High	55.270 8.250 133 600	57 040 5.554 120 800	46 550 5 620 163 200	30 4 10 4.253 85 070	21 030 2.855 61 140	14.880 1.502 41 560	8.675 0.399 48.820	7.361 0 296 18 690	8 859 1 741 38 630	15 170 2 778 74 570	31 320 4 040 128 100	45 410 5 312 128 700	28.361 10.095 51.292
Runoff (mi	m)	43 66	40 47	36 54	23 46	16 60	11 55	7 53	6 6 8	7 62	12 63	24 71	35 73	260 718

Factors affecting flow regime: P EI
Station type: MIS

1986 runoff is 112% of previous mean rainfall 107%

039005 Beverley Brook at Wimbledon Common 1986

Measuring authorit First year: 1935	y TWA			G	irid referen Level si	ice: 51 (TC in (m OD):		7		•		area (sq.) ax alt. (m	
Hydrometric sta	tistics fo	r 1986											
Flows Avg	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
(m³s='): Peak	1.090	0 573	0 574	0 726	0 484	0 429	0 456	0 545	() 399	0 535	0 770	0 641	0.602
Runoff (mm)	10 10	2.87	3.04	3 42	4.08	3 71	6 72	9.75	3.24	4 95	5 11	4 10	10.10
Rainfali (mm)	67	32	35	43	30	26	28	33	24	33	46	39	436
Monthly and yea	106	18	46	62	46	20	48	79	26	69	87	62	669
Moon Avy. flows Low (m³s=') High Peak flow (m³s=') Runoff (mm) Roinfoll (mm)	0 699	0 598	0 565	0.536	0 483	0.476	0.425	0.441	0 506	0 494	0 583	0 649	0.538
	0.280	0 244	0 290	0.257	0 214	0.157	0.211	0 189	0 224	0 160	0 274	0 247	0 291
	1.112	1 196	1 023	1.538	1 092	0.956	0.920	0 970	1 340	0 926	1 415	1 057	0 695
	10 90	9.04	7.51	22.40	14.80	12.90	16.51	17 30	16 50	13 40	10 90	14 00	22 40
	43	33	35	32	30	28	26	27	30	30	35	40	389
	57	38	46	41	53	55	48	56	60	59	64	65	642

Factors affecting flow regime: GE 1986 runoff is 112% of previous mean Station type: FL rainfall 104%

039014 Ver at Hansteads

Measuring auti First year: 195				(nce: 52 (Ti tn. (m QD)		6		С		area (sq ki lax alt. (m	
Hydrometric	statistics fe	or 1986											
Flows Av (m³s=1); Per Runoff (mm) Rainfell (mm)		FEB 0 322 0.53 6 22	MAR 0 307 0.79 6 59	APR 0.398 1.03 8 85	MAY 0.388 1.29 8 65	JUN 0 261 0 58 5 16	JUL 0 205 0.73 4 50	AUG 0.208 0.80 4 98	SEP 0 171 0.44 3 35	OCT 0 176 0 52 4 86	NOV 0 276 0.61 5 84	DFC 0 328 0 70 7 79	Year 0.281 1.29 67 764
Monthly and	yearly stati	istics for p	previous r	ecord (Oc	t 1956 to l	Dec 1985)							
Mean Av flows Lo- (m²s-1) Hig Peak flow (m²s Runoff (mm) Reinfell (mm)	w 0.126 h 0.981	0.547 0.190 1.336 1.91 10 47	0.582 0.138 1.312 1.88 12 57	0.558 0.114 1.254 1.90 11 50	0.494 0.069 1.028 2.07 10 56	0 432 0 045 0 857 1 65 8 61	0.362 0.028 0.651 1.44 7 52	0 320 0.016 0 564 1 13 7 57	0.287 0.025 0.660 2.34 6	0 301 0 057 0 668 1 35 6 64	0 357 0 039 0 791 2 31 7 68	0 415 0 048 0 977 2 64 8 74	0.427 0.095 0.752 2.64 102 712
Factors affecti Station type: 0		ie. G									noff is 66	% af previ %	ous mean

039016 Kennet at Theale

1986

Measuring aut First year: 196				•		nce. 41 (SI in (m OD)	U) 649 708 : 43.40	В		Са	tchment a N	rea (sq km Aax alt. (m	
Hydrometric	statistics fo	or 1986											
Flows Av (m³s=1): Pe Runoff (mm) Rainfall (mm)		FEB 15.090 19 10 35 11	MAR 12.590 20.30 33 66	APR 11 290 14 30 28 60	MAY 10 950 19 00 28 85	JUN 8 924 10 80 22 23	JUL 7 011 9 99 18 42	AUG 7 4 16 20 50 19	SEP 6 333 13 10 16 43	OCT 6 OO1 10 60 16 76	NOV 11.580 29.70 29 117	DEC 14 240 30 70 37 105	Year 10.788 30.70 329 845
Monthly and	yearly stati	stics for p	pravious r	ecord (Oc	t 1961 to	Dec 1985)				-			
Maan Av flows Lo (m³s=1) Hig Peak Bow (m³s Runoff (mm) Rainfall (mm)	v 4 144 h 22.680	14,470 4 401 22,720 44 80 34 50	14 840 4 190 22.010 44 30 38 70	12 750 3 429 19 790 31 70 32 50	10 470 2 739 15.430 30 10 27 65	8 693 2.041 18 600 70 80 22 62	6 5 10 1.620 11 120 19 00 17 47	5 768 1.377 9 542 19 40 15 67	5 4 10 2 787 10 000 33.40 14 70	6 091 3 897 13 970 29 40 16 65	7.861 3.943 17.710 43.50 20 76	10.270 5 159 18.240 47 30 27 83	9.648 4.056 12.882 70.80 295 779
Factors affecti Station type: (ie: R G I									off is 112 nfall 108		ious mea

039019 Lambourn at Shaw

1986

Measuring First year		y ⁻ TWA			C	Grid referen Level st	ice. 41 (St in. (m OD):		2		С	atchment : M	area (sq kr lax alt. (m	
Hydrome	etric sta	tistics fo	r 1986											
Flows (m³a=1): Runoff (mr Rainfall (m	m)	JAN 2.350 2.96 27 93	FEB 2.709 2.89 28 12	MAR 2 721 3 06 31 63	APR 2.210 2.56 24 61	MAY 2 101 2 87 24 83	JUN 1 891 2.17 21 24	JUL 1 618 1.86 19 38	AUG 1,395 1,86 16 111	SEP 1.221 1.64 14 40	OCT 1 051 1 38 12 73	NOV 1.231 1.63 14 108	DEC 1.649 2.34 19 95	Year 1.846 3.06 248 801
Monthly	and ye	arly statis	tics for p	revious r	ecord (Oc	1962 to 0	Dec 1985)							
Mean flows (m3s~1) Peak flow Runoff (min Rainfall (min	n)	1 721 0.826 3 410 3 93 20 66	2.172 0.796 3.618 4.20 23 48	2 471 0 743 3.583 4.39 28 66	2.445 0.695 3.550 4.08 27 48	2 161 0 639 2.979 3 76 25 63	1 869 0 573 2 764 4 34 21 60	1.540 0.538 2.359 3.06 18 49	1 316 0 485 2 048 3 54 15 62	1 188 0 681 1 699 3 75 13 66	1 165 0 683 1 921 3 17 13 60	1.239 0.757 2.392 5.02 14 74	1.414 0.855 2.551 3.72 16 78	1.722 0.739 2.151 5.02 232 740
Fectors at		low regime	r: R G									off is 1079		ous mean

039023 Wye at Hedsor

1986

Measuring authorit First year: 1964	ıy: TWA			(Grid referen Level si	nce: 41 (St		7		C		area (sq.kr fax alt. (m	
Hydrometric sta	tistics fo	r 1986									!		
Flows Avg (m³a=1): Pook Runoff (mm) Re-nfall (mm)	JAN 1 131 2 46 22 108	F£B 1.099 1.37 19 1B	MAR 1.173 2.19 23 60	APR 1.194 1.72 23 68	MAY 1 177 2.32 23 75	JUN 1 099 1 69 21 17	JUL 1 022 1 88 20 39	AUG 1 019 2.29 20 105	SEP 0 914 1.91 17 34	OCT 0 847 2 02 17 92	NOV 0.905 1.71 17 96	DEC 0 962 2 00 19 98	Year 1 045 2.46 240 810
Monthly and yes	orly statis	stics for p	revious r	ecord (De	c 1964 to	Dec 1985)							
Moon Avg. flows Low (m³s=1; High Peak flow (m³s=1; Runoff (mm) Reinfall (mm)	0 945 0 419 1 506 3 49 18 70	1 04 1 0.483 1 675 2.76 18 50	1 146 0.488 1 800 3 21 22 62	1 187 0 470 1 891 3.26 22 52	1.167 0.432 1.842 3.98 23 67	1 128 0 380 1 582 3 51 21 65	1 022 0 370 1 434 2 94 20 55	0 973 0.314 1 317 4 17 19 65	0.878 0.381 1.182 4.43 17 70	0 831 0 395 1 180 3 14 16 63	0.825 0.375 1.329 2.79 16 71	0.870 0.340 1.373 2.85 17 80	1.001 0.442 1.365 4.43 230 770
Factors affecting f Station type: C	low regime	a: G I									off is 104 Infall 105	% of previ	

039026 Cherwell at Banbury

1986

Measuring First year		y TWA			(nce 42 (SI In (m OD)		1		С	atchment : M	area (sq ki lax alt (m	
Hydrom	etric sta	tistics fo	r 1986											
		JAN	FEB	MAR	APR	MAY	JUV	JUL	AUG	SEP	ост	NOV	DEC	Year
Flows	Avg.	3 104	1 380	: 357	2 049	0 627	0:99	0 075	0 3 1 4	0 065	0 099	1 540	2 589	1.117
(m3s - ').	Peak	26 50	5 88	7 05	7 99	2 11	071	0.98	3 65	0 37	0 42	7.60	8 44	26.50
Runott (mr	m)	42	17	18	27	8	3	1	4	1	1	20	35	176
Rainfall (m	im)	72	16	59	59	63	28	47	121	22	56	83	84	710
Monthly	and yes	rly statis	itics for p	revious r	ecord (De	1966 to	Dec 1985)							
Moon	Avg.	2 394	2 342	2.102	0 972	0 853	0516	0 237	0.350	0 231	0 440	0 807	1.872	1.089
flows	Low	0 074	0 049	0 031	0 0 1 2	0 0 1 0	0 008	0.004	0 009	0 0 1 6	0 0 1 3	0 0 1 8	0.056	0.259
(m³s - 1)	High	5 0 1 8	5.320	4.780	2.076	2 6 / 6	1 709	1 869	1 343	1 532	1715	2 828	3.967	1.672
Posk flow	(m³s - 1)	23.60	45.90	46.40	12 00	12.60	16 90	27.20	17.20	7.25	9 00	18 20	54,10	54,10
Runott (mr	m)	32	29	28	13	11	7	3	5	3	6	10	25	172
Rainfall (m	ım)	63	47	58	41	64	61	54	69	58	52	58	68	693
Factors a		ow regime): P									off is 102		ous mean

rainfall 102% Station type: CC

039029 Tillingbourne at Shalford

1986

Measuring First year:		y TWA			G		nce: 51 (T0 In. (m OD):		3			Catchment M	area (sq. i lax alt. (m	
Hydrome	tric sta	tistics fo	r 19 8 6											
Flows (m³s=1)- Runoff (mm Rainfall (mm	n)	JAN 0.774 1.60 35 140	FEB 0 585 0 84 24 23	MAR 0 607 0 96 28 71	APR 0.644 0.98 28 75	MAY 0.573 0.91 26 64	JUN 0 494 0 63 22 19	JUL 0.455 0.74 21 44	AUG 0.465 1.02 21 89	SEP 0 434 0 59 19 31	OCT 0.469 0.96 21 86	NOV 0.620 1.37 27 132	DEC 0.588 0.93 27 97	Year 0.559 1.60 299 871
Monthly	and yes	arly statis	itics for p	revious r	ecord (Jur	1968 to I	Dec 1985)							
Mean flows (m ³ s ⁻¹) Peak flow (Runolf (mr Rainfall (mr	n)	0.665 0.457 0.965 2.70 30 83	0 638 0 423 0.857 2 26 26 49	0.641 0.398 0.900 3.23 29 71	0 606 0 398 0 897 3 00 27 51	0 575 0 376 0 819 1 91 26 66	0.523 0.353 0.830 2.79 23 60	0 471 0 340 0.599 1 65 21 49	0 469 0 326 0 619 2 36 21 62	0 492 0 357 0.885 6 09 22 80	0.512 0.362 0.701 2.10 23 73	0 567 0 354 0 883 3 65 25 83	0 624 0 392 0 840 3 25 28 85	0 565 0.389 0.686 6.09 302 812
Factors of Station type		low regime	s: G l									noff is 99' infall 107'		ous mean

039049 Silk Stream at Colindeep Lane

1986

Measuring First year:		y: TWA			G	irkt referen Level st	ice. 51 (T0 in. (m OD):		5		•			km) 29 0 OD) 146
Hydroma	tric sta	tistics fo	r 1986											
Flows (m³a*¹): Runoff (mm Rainfall (mm	•	JAN 0 592 7.54 55 103	FEB 0 188 1.18 16 20	MAR 0 285 2.45 26 53	APR 0 422 3.35 38 74	MAY 0 275 12.40 25 75	JUN 0 06 1 1 .7 1 5 12	JUL 0 143 7.40 13 67	AUG 0 216 10.40 20 105	SEP 0 087 2.06 8 28	OCT 0 239 7.70 22 90	NOV 0 420 3 15 38 83	DEC 0 391 3 05 36 77	Year 0 276 12 40 302 787
Monthly	and yea	arly statis	itics for p	revious r	ecord (Dec	: 1973 to	Dec 1985-	-incomple	ste or miss	ing manth	s total 4.4	years)		
Mean flows (m ³ s ⁻¹) Peak flow (Runoff (mm Ranfall (mn	1)	0 349 0 204 0 564 9 00 32 57	0.283 0 102 0.472 6 20 24 38	0.362 0 151 0.676 8 89 33 64	0 253 0 030 0 574 10.26 23 45	0 276 0 035 0 602 39.80 25 72	0.238 0 105 0.643 32.80 21 64	0.124 0.047 0.213 16.50 11 41	0 120 0 053 0 199 30 50 11 46	0 148 0 057 0 363 27 90 13 75	0 289 0 062 0 507 40 50 27 66	0 368 0 109 1 086 24 30 33 64	0 347 0 143 0 659 36 31 32 64	0.263 0.178 0.314 40.50 286 696

Factors affecting flow regime Station type: FV

1986 runoff is 105% of previous mean rainfall 113%

039069 Mole at Kinnersley Manor

1986

Measuring authorit First year, 1972	y TWA			c	ind referen Level st	ica: 51 (TC in (m OD):		2		c	atchment : M	area (sq kr lax alt (m	
Hydrometric sta	tistics fo	1986											
Flows Avg. (m³a='); Peak Runoff (mm) Rainfall (mm) Monthly and yea	JAN 6 268 41.00 118 130	FE8 1.477 4.31 25 18	MAR 2.618 13.20 49 72	APR 2 781 14 10 50 64	MAY 1.094 3.43 21 60	JUN 0.616 3.07 11 21 Dec 1985-	JUL 0.543 4.78 10 39	AUG 0 953 14 30 18 86	SEP 0 598 6 15 11 36	OCT 0.984 6 19 19 84	NOV 4.691 42.60 86 127	0EC 3.792 24.40 72 95	Year 2.200 42.60 490 832
Mosn Avg. flows Low (m³s=1) High Peak flow (m³s=1) Runoff (mm) Reinfall (mm)	3 429 1 364 5 576 41.30 65 74	2.879 0.829 5.883 46.50 49 54	2.637 0.833 4.668 22.30 50 69	1.660 0.388 3.666 47.00 30 43	1.597 0.305 3.552 32.90 30 65	1 000 0 221 1 874 23 30 18 62	0 570 0 296 1 709 14 90 11 43	0.829 0.169 2.864 29.80 16 60	1 055 0 281 5 419 40 70 19 74	1 710 0 207 6 062 45 90 32 85	2 209 0 260 5 668 56 10 40 81	3 851 1 100 5 474 68 50 73 101	1.950 0.950 2.313 68.50 433 811
Factors affecting fi Station type, MIS	low regime):									off is 113° nfall 103°		ous mean

040004 Rother at Udiam

Measuring authorist year: 1962				G	Grid referen Level s	ice, 51 (T0 itn. (m OD)		5		C	atchment V	erea (sq kr lax alt (m	
Hydrometric s	tatistics fo	r 1986											
Flows Avg (m ³ s ⁻¹). Peak Runoff (mm) Rainfall (mm)	JAN 9,397 41,57 122 160	FEB 2.242 6.91 26 25	MAR 3.652 17.09 47 89	APR 3 627 13.12 46 68	MAY 1,263 2,32 16 49	JUN 0 649 1,17 8 16	JUL 0 543 0 79 7 26	AUG 0.543 3.93 7 67	SEP 0 392 1 12 5 41	OCT 0 554 3 71 7 110	NOV 5 843 47 79 74 146	DEC 4 814 24 76 63 107	Year 2.793 47.79 429 904
Monthly and y	early stati	stics for p	revious r	ecord (Oct	t 1982 to I	Dec 1985-	-incomple	te or miss	ing month	s total 1.6	years)		
Mean Avg flows Low (m³s-¹) High Peak flow (m³s-¹ Runoff (mm) Rainfall (mm)		3 419 0.792 10 370 44.74 40 61	3.142 0.657 6.927 49.84 41 72	2.226 0.343 4.533 25.43 28 55	1.430 0.338 2.817 24.09 19 60	1 026 0.268 4 157 23.08 13 64	0 599 0.231 2.790 21.64 8 51	0 699 0 182 2 682 14 36 9 64	0.888 0.245 3.952 33.98 11 80	1 550 0.179 5.708 29 17 20 84	3 082 0 184 12 360 50 43 39 101	3 658 0 427 9 547 51 82 48 93	2.103 0.756 3.322 51 82 322 867
Factors affecting Station type V		e: S GE									off is 1339 nfall 1049		ous mean

040009 Teise at Stone Bridge

1986

Measuring autho First year: 1961	nty: SWA			C	Srid referen Level st	ice: 51 (T(in (m OD)		9		С	atchment (M	area (sq.kr lax alt. (m	
Hydrometric s	atistics fo	1986											
Flows Avg. {m³s=1}: Peak Runoff (mm) Rainfall (mm)	JAN 3.344 19.75 66 135	FEB 1,109 3,51 20 24	MAR 1 482 10 65 29 72	APR 1.783 6.94 34 72	MAY 0 811 1 27 16 48	JUN 0 727 1,42 14 16	JUL 0.718 1.13 14 35	AUG 0.718 0.92 14 70	SEP 0 605 1.14 12 42	0CT 0 722 2 06 14 101	NOV 2.246 17.78 43 129	DEC 1 724 12 88 34 94	Year 1.332 19.75 309 838
Monthly and y	oorly statis	itics for p	revious r	scord (Oc	1961 to C	Dec 1985)							
Maan Avg. flows Low (m³s=1) High Paak flow (m³s=1) Runoff (mm) Rainfall (mm)	2 447 0 553 5.757 41.63 48 75	2 094 0.522 6.241 48 27 37 53	1.893 0.413 3.928 34.43 37 67	1 405 0 323 2 781 24 78 27 51	1 107 0 238 2 306 38 95 22 60	0 787 0.130 2 628 29 22 15 58	0.526 0.231 0.977 13.87 10 48	0.528 0 100 1 021 10 61 10 60	0 682 0 170 2 359 23.88 13 75	0.964 0.128 3.173 29.17 19 76	1.748 0.276 6.344 47.12 33 90	2.0/2 0.471 5.334 48.29 41 87	1.351 0.559 2.101 48.29 313 800
Factors affacting Station typa: B V		: PGE									noff is 999 infall 1059		ous mean

040011 Great Stour at Horton

1986

Measuring First year:		y. SWA			(årid referer Level st	nce 61 (TF in (m OD)		4		С	atchment V	area (sq kı lax alt (m	
Hydrome	ntric sta	tistics fo	1986											
Flows (m³s='): Runoff (mr Rainfall (m.	n)	JAN 7.746 24 93 60 110	FEB 3.388 6.96 24 27	MAR 4 244 10 32 33 66	APR 5 039 11 93 38 77	MAY 2 938 3 97 23 44	JUN 1 937 2 69 15 24	JUL 1 609 3 42 12 46	AUG 1.574 4.97 12 68	SEP 1 634 3.97 12 47	OCT 2 003 7.12 16 93	NOV 4.897 24 03 37 108	DEC 4 089 10 01 32 80	Year 3.425 24.93 313 790
Monthly	and yea	erly statis	itics for p	revious r	ecord (Oct	1964 to 0	Dec 1985-	-incomple	te or miss	ing month	s total 0.3	years)		
Mean flows (m ² s ⁻¹) Peak flow Runoff (mr Rainfall (m	n)	5.151 2.293 8.455 27.41 40 71	4.832 2.366 7.377 27.89 34 50	4 435 1.812 9 086 24.19 34 59	3 495 1 654 7 144 38 29 26 47	2 860 1 324 5 811 25 05 22 54	2 086 1 079 3 221 10 87 16 52	1.789 0.965 3.229 8.60 14 56	1 749 0 877 2 802 11 57 14 57	1 913 1,119 3 626 29 38 14 74	2.558 1.085 8.045 27.18 20 73	3 600 1 328 8 195 28.85 27 84	4 695 1 687 9 089 30 44 36 78	3.257 1.808 4.717 38 29 298 755
Factors at	faction f	low regime	· CE								1000	-44 - 105		

Factors affecting flow regime: GE Station type: B VA

1986 runoff is 105% of previous mean rainfall 105%

040012 Darent at Hawley

1986

Measurin First yea	ng authori r: 1963	ıy: TWA			C	ind referen Level s	nce: 51 (T0 tn (m OD)		В		C	atchment N	area (sq ki lax alt (m	
Hydrom	etric sta	tistics fo	r 1986											
Flows (m³s=1) Runoff (m Rainfall (n	m)	JAN 1 212 2.75 17 112	FEB 0.867 2 90 11 25	MAR 0 641 1.27 9 58	APR 0.801 1.48 11 70	MAY 0 322 0 6! 5 57	JUN 0 182 0.50 2 19	JUI. 0 177 0 43 2 47	AUG 0 217 0 72 3 86	SEP 0 162 0.41 2 37	OCT 0 147 0 46 2 79	90V 0.710 2.47 10 110	DEC 0 718 1 55 10 72	Year 0.513 2 90 84 772
Monthly	y and yea	arly statis	stics for p	revious r	ecord (De	19 63 to	Dec 1985)				_	_		
Mean flows (m ³ s**) Peak flow Runoff (m Rainfall (m	(m ³ 8 ⁻¹)	0 979 0 194 1.817 3.88 14 66	0.996 0.219 1.718 3.23 13 47	0 943 0 124 1 804 4.05 13	0 828 0 174 1 515 3 09 11 52	0 664 0 076 1 509 13 10 9 60	0 497 0 041 0 982 3 06 7 57	0 330 0 000 0 617 2 35 5 5	0.306 0.000 0.690 2.27 4 57	0 333 0.000 1.817 10 05 5 73	0 387 0 000 1 516 2 97 5 62	0 550 0 000 1 448 4 91 7 74	0 820 0 011 1 674 4 36 11 76	0.634 0.101 1.067 13.10 105 737
Factors 8	ffecting f	low regime) :								1986 ru	noff is 80	% of previ	ous mean

Factors affecting flow regime Station type: C

1985 runoff is 80% of previous mean rainfall 105%

041001 Nunningham Stream at Tilley Bridge

Measuring authorit First year: 1950	ty: SWA			C	irid referen Level s	ce. 51 (T0 tn. (m OD)		9			Catchmen M	tarea (so l lax alt. (m	
Hydrometric sta	itistics fo	r 1986											
Flows Avg. {m³a=¹}: Peak Runoff (rnm) Rainfall (rnm)	JAN 0 888 8.26 141 159	FEB 0.152 0.51 22 , 19	MAR 0 222 2.40 35 91	APR 0 107 0 84 16 60	MAY 0 039 0 08 6 44	JUN 0 017 0 04 3 16	JUL 0 010 0 02 2 21	AUG 0 009 0.05 1 60	SEP 0 009 0 04 1 41	OCT 0 014 0 07 2 107	NOV 0 171 6 17 26 147	DEC 0 441 7 33 70 111	Year 0 173 8.26 326 876
Monthly and yea	arly statis	stics for p	revious r	ecord (Ap	1950 to [Dec 1985-	-incomple	te or miss	ing month	s total () 1	years)		
Mean Avg flows Low (m³s=1) High Pask flow (m³s=1) Runoff (mm) Rainfall (mm)	0 411 0 076 1.105 8.84 65 81	0 341 0 094 0 958 8 60 49 60	0 244 0 054 0 577 8.49 39 59	0 148 0 034 0 390 5 94 23 49	0 082 0 023 0 195 6 20 13 55	0 055 0 012 0 319 7 92 8 57	0 033 0 011 0 210 1 89 5 56	0 040 0 008 0 125 9 32 6 72	0 055 0.009 0.359 8 92 8	0 125 0 013 0 576 8 82 20 87	0 302 0 019 1 017 11 90 46 99	0 375 0 033 1 082 8 84 59 97	0.184 0.053 0.306 11.90 343 849
Factors affecting f Station type: MIS	low regime	N									noff is 95° sinfall 103°		ous mean

041005 Ouse at Gold Bridge

1986

Measuring authorist year: 1960				C		nce: 51 (T0 tn: (m: OD)		4 .		C	atchment . M	area (sq. kr lax alt. (m	
Hydromatric :	statistics fo	r 1986											
Flows Avg (m³s-1). Peal Runoff (mm) Ramfall (mm)		FEB 2 877 5.85 38 16	MAH 3 185 8 89 47 84	APH 3 525 10 58 51 68	MAY 1 736 2 19 26 56	JUN 0 955 2 *6 *4 26	JUI: 0 744 1 10 1 1 38	AUG 0 595 3 86 9 81	SEP 0 467 1 90 7 36	OCT 0 745 2 70 11 93	NOV 4 072 30 73 58 136	DEC 4 284 20 29 63 111	Year 2.494 30 73 435 888
Monthly and	early statis	stics for p	revious r	ecord (Ma	r 1960 to	Dec 1985-	—incomple	ate or miss	sing mont	hs total 0 :	3 years)		
Mean Avg flows Low (m³s=!) High Peak flow (m³s= Runoff (mm) Rainfall (mm)	1 142 7 762	3 526 1 240 8 214 71 85 48 56	3 07 1 0 793 6 888 29 86 45 68	2 314 0 61: 4 318 31 57 33 58	1 749 0 450 3 657 26 35 26 63	1 067 0 283 3 829 27 91 15 63	0 638 0 282 1 903 16 52 9 51	0 752 0 157 2 458 33 15 11 67	1 077 0 230 4 296 49.01 15 84	1 678 0 275 6 602 47 59 25 86	3 282 0 384 12 030 86 92 47 102	3 639 0 846 7 657 81 06 54 93	2.241 0.934 3.261 86.92 391 876
Factors affectin		• SRPGE									off is 111'		ous mean

041006 Uck at Isfield

1986

Measuring authorit First year: 1964	y SWA			G	ond referen Level st	ice 51 (TC in (m OD))			Catchment <i>N</i>	area (sq l lax alt (m	
Hydrometric sta	tistics fo	r 1986											
Flows Avg (m³s-¹) Peak Runoff (mm) Rainfall (mm)	JAN 5-307 48-22 162 150	FEB 0 997 2 84 27 18	MA9 1.803 23.77 55 89	APR 1 559 15 47 46 60	MAY 0.692 0.88 21 50	JUN 0 4 17 1 22 12 19	0 251 0 251 0 41 8 27	AUG 0 249 1 99 8 73	SEP 0 222 0 94 7 34	OCT 0 457 2 25 14 111	NOV 3 286 58 81 97 137	DEC 2 193 39 88 67 107	Year 1 453 58.81 524 875
Monthly and year	rfy statis	itics for p	revious r	cord (Dec	1964 to	Dec 1985)							
Mean Avg flows Low (m²s=1) High Pask flow (m²s=1) Runoff (mm) Rainta# (mm)	2 117 0.579 4 154 52 09 65 81	1 820 0 627 4 195 75 63 51 60	1 386 0 413 3 317 39 12 42 64	1 066 0 324 2 183 23.74 31 49	0 785 0 252 1 854 28 97 24 59	0 531 0 170 1 657 29 59 16 65	0 339 0 142 1 489 46 63 10 50	0 365 0 106 1 506 33 74 11 64	0 555 0 170 2 868 36 40 16 78	0 862 0 160 2 527 37 31 26 79	1 655 0 211 6 536 64 43 49 93	2 094 0 342 4 033 55 58 64 92	1 128 0.480 1.945 75.63 405 834
Factors affecting fl Station type: C	ow regime	, E									off is 129° nfall 105°		ous mean

041019 Arun at Alfoldean

1986

Measuring authori First year 1970	ity SWA			Ċ	irid referen Level si	nce 51 (f0 tn (m OD)		1		C	atchment N	area (sq kr lax alt (m	
Hydrometric sta	atistics fo	r 1986											
Flows Avg (m³s='): Peak Runoff (mm) Rainfall (mm)	JAN 6.712 68.63 129 129	7E8 1.205 3.60 2.1 1.7	MAR 2 301 11 95 44 72	APR 2 374 12 86 44 62	MAY 0 738 1 32 14 60	JUN 0 399 1 25 7 19	JUL 0 239 1 03 5 39	AUG 0 4 1 2 4 6 7 8 9 4	SEP 0 255 1 77 5 34	OC1 0 697 3 88 13 90	NOV 5.352 65.57 100 129	DFC 3 423 36 31 66 100	Year 2.009 68 63 457 845
Monthly and ye	arly statis	itics for p	revious r	ecord (Ma	y 1970 to	Dec 1985	-incompl	ate or mis	sing mont	ns total O	1 years)		
Moan Avg "ows Low (m³a-") High Peak flow (m³s-") Runoff (mm) Reinfall (mm)	3.454 0.664 6.927 63.05 67 83	2.528 0.689 6.708 67.53 44 51	2 362 0 469 4 413 54 45 46 71	1 576 0 277 3 829 76 97 29 48	1 204 0 223 3 313 47 48 23 62	0 757 0 131 3 055 46 54 • 4 59	0 293 0 138 1 116 7 27 6 43	0 406 0 078 1 618 23 86 8 59	0 716 0 161 5 443 56 14 13 75	1.338 0 150 6 614 68 58 26 78	2 426 0 167 10 030 69 14 45 88	3 215 0 492 6 152 77 65 62 90	1.687 0.589 2.845 77.65 383 807
Factors affection	flow regime	- F								1986	off 119	at or or or	out mean

Factors affecting flow regime: E Station type: CC

1986 runoff is 119% of previous mean rainfall 105%

041027 Rother at Princes Marsh

1986

Measuring authori First year: 1972	y SWA			C	Grid referer Level si	ce. 41 (St n. (m OD))			Catchment <i>N</i>		km) 37.2 OD). 252
Hydrometric sta	itistics fo	r 1986											
Flows Avg (m³a⁻¹): Peak Runoff (mm) Rainfelt (mm)	JAN 1.276 12.39 92 157	FEB 0 483 0 87 31 14	MAR 0 485 2 90 35 75	APH 0 619 2 65 43 76	MAY 0 411 2 24 30 78	JUN 0 240 0 36 17 21	JUL 0 191 0 59 14 50	AUG 0 245 2 91 18 118	SEP 0 177 0 40 12 29	OCT 0 247 0 82 18 98	NOV 0 971 13 35 68 160	DEC 0 909 7 76 65 130	Year 0 521 13.35 442 1006
Monthly and ye	arly statis	itics for p	revious r	acord (No	v 1972 to l	Dec 1985-	-incomple	ete ar mise	ing month	s total 0.3	years)		
Mann Avg flows Low (m²s=') High Pask flow (m²s=') Runoff (mm) Rainfall (mm)	0.841 0.273 1.485 15.63 61 93	0 704 0 320 1 409 13.72 46 58	0 689 0 237 1 220 10 71 50 83	0 481 0 194 0 684 6 83 34 41	0 402 0 158 0 641 7 20 29 68	0 294 0 121 0 471 4 68 20 56	0 221 0 120 0 300 2 17 16 52	0 235 0 106 0 493 4 55 17 60	0 295 0 168 0 949 12 97 21 88	0 478 0 165 1 011 68 03 34 84	0 581 0 167 1 855 16 60 40 85	0 832 0 348 1 299 22 19 60 112	0 504 0 288 0 696 68 03 427 880
Factors affecting f Station type C	low regime	• GE									off is 1049 nfall 1149		ous mean

042003 Lymington at Brockenhurst Park

1986

Moasuring First year		y: SWA			(Grid referer Level s	ice: 41 (St itn (m OD		3			Catchment M	: area (sq i la× alt (m	
Hydromi	etric sta	tistics fo	r 1986											
Flows {m³s=1}.	Avg.	JAN 2.307	FEB 0 570	MAR 1 167	APR 1 462	MAY 1.085	JUN 0 253	JUL 0.171	AUG 0 331	SEP 0 210	OC1 0 575	NOV 2 229	DEC 2.159	Year 1.050
Runoff (mr	71)	65	14	32	38	29	7	5	9	5	16	58	58	336
Reinfall (m	m)	130	11	67	71	90	21	55	104	32	89	135	126	931
Monthly	and yea	arly statis	tics for p	revious r	ecord (Oc	1960 to I	Dec 1985-	-incomple	te or miss	ing month	s total () 2	years)		
Moon	Avg	1.817	1.687	1,447	0 99 1	O B28	0 471	0 237	0 277	0 464	1.021	1 367	1.608	1 015
flows	Low	0 330	0.439	0 327	0 168	0 128	0 042	0.013	0.014	0.084	0 128	0 198	0 54 1	0.407
(m ³ s ⁻¹)	High	3.723	3 459	3.089	2.169	1.569	1 247	1 603	0 847	2 308	4.841	5 283	3 294	1.340
Peak flow	(m³s ^{~-1})													
Runoff (mr	n)	49	42	39	26	22	12	6	7	12	28	36	44	324
Rainfall (m	m)	87	59	69	50	64	58	43	62	78	84	93	93	840
Factors at Station ty		low regime), N									off is 1049 offall 1119		ous mear

042006 Meon at Mislingford

1986

Measuring authors First year: 1958	ty: SWA			C	Grid referer Level s	nce: 41 (St in. (m OD)		1			Catchment M	area (sq.) lax alt (m	
Hydrometric sta	tistics fo	1986											
Flows Avg. (m³s-¹): Peak Runolf (mm) Rainfall (mm)	JAN 2.226 3.00 82 148	FEB 1.842 2.30 61 10	MAR 1.328 1.93 49 82	APR 1,227 1,60 44 74	MAY 1,132 1,32 42 82	JUN 0 821 1.43 29 24	JUL 0.552 1.23 20 46	AUG 0.436 1 00 16 1 19	SEP 0 330 0 40 12 27	OCT 0 276 0 37 10 91	NOV 0 663 1 61 24 153	DEC 1 461 2 31 54 130	Year 1.024 3.00 442 986
Monthly and ye	arly static	stics for p	ravious r	ecord (Oc	1958 to (Dec 1985)					•		
Mean Avg. flows Low {m³s-1} High Peak flow (m³s-1) flunoff (mm) Rainfall (mm)	1.530 0.463 3.470 3.51 56 98	1.783 0.480 3.300 4.02 60 60	1 665 0 427 2.820 3.26 61 76	1,377 0,335 1,988 2,83 49 56	1.031 0.164 1.738 2.06 38 68	0 752 0 120 1.220 1 50 27 59	0 538 0 079 0 827 1 18 20 53	0 405 0 068 0 657 1 07 15 71	0 361 0 102 0 882 0 96 13 85	0 533 0 110 2 309 1 50 20 89	0 830 0 124 4.126 2 83 30 101	1 132 0 186 3 917 3 77 42 105	0.991 0.334 1.815 4 02 429 921
Factors affecting t Station type: FL	low regime	o: G									off is 1039 Infall 1079		ous mean

042008 Cheriton Stream at Sewards Bridge

1986

Measuring authorit First year: 1970	y. \$WA			C	irid referen Level si	ncer 41 (St in (m OD)		3		1	Catchment M	i area (sq î lax alt. (m	
Hydrometric sta	tistics fo	r 1986											
Flows Avg. (m³s=1) Paak Runoff (mm) Rainfa I (mm)	JAN 1 077 1 33 38 146	FEB 1 004 1.14 32 12	MAR 0 813 0 92 29 77	APR 0 768 0 88 27 75	MAY 0 728 0.89 26 81	JUN 0 585 0 73 20 23	JUL 0 457 0 63 16 48	AUG 0 401 0 68 14 117	SEP 0 375 0 58 13 25	0C1 0 351 0 60 13 95	90V 0 562 0 88 19 158	DEC 0 836 1 09 30 129	Year 0.663 1.33 278 986
Monthly and yea	erly statis	itics for p	revious r	ecord (Jul	1970 to D	ec 1985)							
Moan Avg flows Low (m³s=1) High Peak flow (m²s=1) Runoff (mm) Rainfall (mm)	0 813 0 521 1 293 1.69 29	0 936 0.495 1.443 1 83 30 62	0 91: 0 409 1 410 1 68 32 80	0 833 0 320 1 065 1 39 29 45	0 677 0 271 0 857 1 26 24 65	0 571 0 218 0.959 2 02 20 61	0.474 0.183 0.797 1.25 17 54	0 411 0 165 0 708 1 28 15 63	0 383 0 207 0 560 0 77 13 81	0 428 0 279 0 672 0 91 15 79	0 517 0 278 0 980 1 23 18 98	0 699 0 320 1 278 1 85 25 106	0.636 0.408 0.768 2.02 267 891
Factors affecting fl Station type, C	low regime	: N									off is 1049 ofall 1119		ous mean

042012 Anton at Fullerton

Moasurin First year		ty: SWA			(Grid rafarer Level s	nce: 41 (St tn. (m.OD)		3		С			m) 185.0 OD): 253
Hydrom	etric sta	itistics fo	r 1986											
Flows (m³s-1)	Avg. Peak	JAN 2 470	FEB 2.478	MAR 2.160	APH 2 135	MAY 2.214	JUN 1.900	JUL 1. 554	AUG 1,413	SEP 1.350	OCT 1 316	NOV 1 713	0EC 2 240	Year 1.912
Runoff (m Rainfall (m	•	36 114	32 9	31 62	30 62	32 90	27 25	22 48	20 106	19 38	19 76	24 121	32 122	325 873
Monthly	and yes	arly statis	stics for p	revious r	ecord (Jar	1975 to (Dec 1985)							
Mean flows (m ³ s ⁻¹) Peak flow		2,234 1 301 3 132	2 497 1.215 3 691	2.559 1.047 3.373	2.483 0.948 3.123	2.135 0.830 2.842	1.857 0 691 2 817	1 520 0 626 2 196	1.373 0 548 1.784	1 296 0 688 1 536	1 388 1.015 1 889	1 506 1 003 2 116	1 832 1,417 2 855	1.887 1 010 2 242
Runoff (m Rainfall (m	m)	32 77	33 50	37 83	35 39	31 64	26 51	22 39	20 60	18 68	20 71	21 67	27 105	322 -774
Factors a Station to		low regime	9: N									off is 101 nfall 113		ous mean

	<i>э</i> w	AIA									·		
043006	Na	ıdde	r at	Wil	ton l	Park						1	986
Measuring authority First year, 1966	· WWA			Ó		nce 41 (St tn (m OD).		9		C	Catchment N	area (sq. k Max alt (m	
Hydrometric stat	istics fo	r 1986										*	
Flows Avg (m³5-¹) Peak Runoff Immj Ranfall (mm)	JAN 6 772 13 52 82 139	FFB 4 617 6 94 51 8	MAR 3 105 4 85 38 60	APR 3 334 6 24 39 78	MAY 2 905 5 93 35 93	JUN 2 148 2 44 25 22	JUI 1 662 20 63	AUG 1 468 18 123	SEP 1 133 2.27 13 38	OCT 1 378 3 93 17 94	NOV 4 010 12 17 47 145	DEC 6 629 14 8B 80 133	Year 3 263 468 996
Monthly and yea	rly statis	stics for p	revious I	ecord (Jai	1966 to f	Dec 1985)				-	-		
Mean Avg flows Low (m1s-1) High Peak flow (m3s-1) Runoff (mm) Ruinfall (mm)	4 694 1 011 6.521 22 71 57 96	5 187 1 263 8.196 17 57 57 73	4 499 1 358 6 732 18 80 55 81	3 201 1 048 5 272 14 27 38 50	2.472 0.993 4.044 28.13 30 71	1 982 0 839 3 283 8 83 23 64	1 516 0 684 2 234 13 39 18 51	1 360 0 595 2 040 6 61 17 71	1 379 0 823 3 093 16 68 16 81	1 820 0 829 3 537 10 99 22 81	2 545 0 905 6 413 22 90 30 89	3 855 1 219 7 030 47 88 47 106	2 865 1.535 3 821 47.88 410 914
Factors affecting flo Station type: C	ow regime	9. N									noff is 114 nfa'l 109		ous mear
043007	St	our	at T	hrod	р М	ill						1	986
Measuring authority First year: 1973	WWA			(nce 40 (Sa stn (m OD)		3		Ca	itchment a N	rea (sq km Max alt -{m	
Hydrometric stat	istics fo	r 1986											
Flows Avg (m³s='): Peak Runoff (mm) Rainfall (mm)	JAN 38 730 112 69 97 143	FEB 17 470 39 40 39 6	MAR 12 060 26 33 30 60	APR 15-730 39-72 38 73	MAY 13 520 49 77 34 91	JUN 7 338 9 38 18 25	JUL 5 556 7 98 14 58	AUG 5 652 30 35 14 117	SEP 4 776 6 78 12 35	OCT 6 788 18 55 17 84	NOV 26 540 66 68 64 142	DEC 36 660 83 74 92 140	Year 15 902 112.69 468 974
Monthly and yea	rly statis	stics for p	revious r	ecord (Jai	1 1973 to I	Dec 1985)							
Mean Avg flows Low (m³s-') High Pack flow (m³s-') Runoff (mm) Ruinfall (mm)	23 660 4.319 35 150 116 60 59 87	25 020 6 826 42 200 131 50 57 68	21 360 7 548 32 620 110 24 53 81	13 560 4 483 22 660 61 56 33 38	9 608 3 157 18 900 150 00 24 63	6 789 2 231 16 940 180 00 :6 59	4 535 1 614 7 932 47 60 11 49	4 398 1 358 8 998 32 41 11 62	5 361 2 413 20 340 90 33 13 84	9 285 2 716 29 770 101 90 23 79	12 950 2 823 36 730 133 40 31 79	22 890 6 386 40 270 280 00 57 112	13 236 6 138 17.377 280.00 389 861

044002 Piddle at Baggs Mill

Factors affecting flow regime 1 Station type: CC

1986

1986 runoff is 120% of previous mean rainfall 113%

Measuring autho First year 1963	rity WWA			(Grid referen Level s	nce 30 (St		6		С			m) 183 1 OD) 275
Hydrometric s	tatistics fo	r 1986											
Flows Avg. (m³s*¹) Peak Bunoff (mm) Painfa'l (mm) Monthly and y	JAN 5.879 7.82 86 166	FEB 3 865 4 9 ' 51 8	MAR 2 467 3 44 36 70	APR 2 186 3 17 31 76	MAY 2 173 3 55 32 108	JUN 1 826 2 27 26 28	.н.н 1 298 1 73 19 49	AUG 1 186 3 32 17 120	SEP 1 087 1 50 15 37	OC1 1 174 1 68 17 102	NOV 2 791 6 89 40 184	DEC 5 653 8 62 83 163	Year 2.632 8.62 453 1111
	•	•											
Moan Avg.	3 590	4 38 1	3 992	2 982	2 193	1 679	: 246	1 099	1 117	1 460	2 126	2 882	2.385
flows Low	1 045	1 020	1 093	0 945	0 757	0.571	0 483	0 433	0 604	ი 805	0 721	0 853	1.328
(m³s=1) H:gh	5 959	6 6 1 6	6 202	4 782	3 3 7 6	2 907	1 /55	1 526	2 300	3 106	5 047	5 504	3.233
Peak flow (m3s-1)	11.87	9 '8	9 3 7	6 48	8 1 1	9 23	4 79	4 50	8.8	9 29	9 20	8 44	11.87
Runoff (mm)	53	58	58	42	32	24	18	16	16	2 '	30	42	411
Rainfa'l (mm)	.08	81	86	49	70	60	49	63	89	90	106	115	966
Factors affecting Station type FL	flow regime	g: I									off is 110°		ous mean

045003 Culm at Wood Mill

1986

Measuring authori First year: 1962	ty: SWWA	•		C		nce 31 (S in (m OD)	T) 021 058 44 00	3		C	atchment N		m) 226 1 OD) 293
Hydrometric sta	tistics fo	r 1986											
Flows Avg (m³s-¹): Peak Runoff (mm) Ra nfall (mm)	JAN 9 743 55 34 115 153	FEB 2 705 4 94 29 7	MAR 3 482 17 92 41 80	APR 4 927 16 18 56 92	MAY 3 239 25 47 38 88	JUN 1 959 8 70 22 63	JUI 1 5 : 9 4 99 1 B 50	AUG 2 08 1 23 2 1 25 107	SEP 1 479 6 54 17 37	OCT 2 304 8 68 27 89	NOV 7 572 40 53 87 132	DEC 8 618 29 01 102 149	Year 4.136 55.34 579 1047
Monthly and ye	arly statis	stics for p	revious r	ecord (Oct	1962 to E	Dec 1985)							
Mean Avg flows Low (m³s^1) High Peak flow (m³s^1) Runoff (mm) Rainfall (mm)	6.631 1 930 12 870 110 70 79 111	6 450 2 251 11 820 100.10 70 83	5 135 2 392 9 184 50 11 61 87	3 276 1 318 6 649 41 63 38 56	2 876 1 085 6 337 33 82 34 71	2 045 0 803 4 449 30 58 23 63	1 779 0 650 5 200 202 20 21 58	1 640 0 569 2 787 58 62 19 67	· 947 0 971 / 328 94 16 22 81	2 904 0 971 11 430 45 87 34 84	4 335 1 287 8 191 134 50 50 98	6 100 2 479 11 880 142 80 72 113	3 749 2.277 4.840 202.20 523 972
Factors affecting I Station type: VA	low regime	e PGEI									off is 111 nfall 108		ous mean

rainfall 108%

045004 Axe at Whitford

1986

(m ³ s ⁻¹), Peak 97. Runoff (mm) 13:	N FEB 60 3.598 76 6.99 5 30	MAR 4.489 22 33 42	APR 5.628 17.01 51	MAY 6 370 44 04	JUN 2 409 7.96	JUL 1 769	AUG 4.940	SEP 2.163	OCT 3 016	H NOV 11 030	D€C	Year
Flows Avg 14.5 (m ³ s ⁻¹), Peak 97. Runoff (mm) 13:	60 3.598 76 6.99 5 30	4.489 22.33 42	5.628 17.01	6 3 7 0	2 409	1 769						
		79	80	59 115	22 46	4,84 16 53	127.97 46 149	6.49 19 36	11.31 28 82	52 34 99 162	11.750 73.45 109 170	5.977 127.97 656 1161
Monthly and yearly s	tatistics for p	previous r	ecord (Oc	t 1964 to 0	Dec 1985)							
Mean Avg. 9.2 flows Low 1.8 (m³g=¹) High 15.7 Peak flow (m³s=¹) 110. Runoff (mm) 8. Rainfall (mm) 12.	191 2 448 140 15.860 160 113.20 6 71	6.601 2.551 11.690 93.02 61 82	4 075 1 567 8.346 57 17 37 53	3 663 1.176 7 274 1/3 40 34 74	2 559 0 817 4.678 75 04 23 65	2 001 0 626 5.312 228 80 19 60	2 082 0.554 3.698 70 79 19 70	2.581 1.242 9 909 88 95 23 85	4 183 1,243 16 440 99,72 39 91	5 642 1.714 11 980 116 90 51 96	8 482 3.166 14 440 244 00 79 121	4.951 2.669 6.409 244.00 542 1007

046002 Teign at Preston

1986

Measuring authori First year: 1956	ty. SWWA			(Grid referen Level s	ice 20 (S) in (m OD)		6		C			m) 380 0 OD) 604
Hydrometric sta	stistics fo	r 1986											
Flows Avg. (m³s~'): Peak Runoff (mm) Rainfall (mm)	JAN 24.120 101.10 170 174	FEB 6.493 14.13 41 9	MAR 5.194 27.81 37 90	APR 9 122 23 50 62 98	MAY 8 981 48 87 63 105	JUN 4 809 21 50 33 97	JUL 2 642 5 42 19 51	AUG 5.993 96.61 42 157	SEP 4 314 13 31 29 44	OCT 5.218 36.69 37 110	NOV 24 980 169.99 170 215	DEC 24 040 95 25 169 203	Year 10 492 169.99 873 1353
Monthly and ye	arly statis	stics for p	revious r	ecord (Ma	y 1956 to	Dec 1985	—incompl	ete or mis	sing mont	hs total O.	1 years)		
Mean Avg. flows Low (m³s-1) High Peak flow (m³s-1) Runoff (mm) Rainfall (mm)	19 470 3.341 36 080 172.70 137 160	18.490 5.534 38.750 198.20 119 117	13.260 4 878 29 940 146 60 93 112	8 382 3.514 21 960 122 50 57 73	5 642 1 827 17 270 86 08 40 83	3 612 1 114 9 522 81 35 25 66	2 402 0 731 7.334 98 87 17 68	2 452 0 472 5.549 72.64 17 86	3.539 0.752 14.080 312.80 24 ,103	7 663 0 916 41.570 190.00 54 119	10 820 1 976 28 960 153 60 74 132	16 970 4 954 37 820 248 40 120 160	9.354 5.212 15.681 312.80 777 1279
Factors affecting t Station type: VA	flow regime	e: SRPGEI							•		off is 112 infall _106		ious mean

046003 Dart at Austins Bridge

1986

Measuring authori First year: 1958	iy: SWWA	4		•	Grid referei Level s	nce 20 (S tn (m OD)		9		C			m). 247.6 OD). 604
Hydrometric str	atistics fo	r 1986											
Flows Avg. (m ³ s ⁻¹) Poak Runoff (mm) Rainfall (mm) Monthly and ye	JAN 24 760 120.75 268 268 arly stati	FEB 5 797 12 55 57 11 stics for p	MAR 8 532 79 15 92 164 previous r	APH 11 120 48 63 116 127 ecord (Oc	MAY 11 340 85 60 123 158 t 1958 to	JUN 6 5 13 90 24 68 133 Dec 1985)	JUT 3 896 31 71 42 90	AUG 10 220 222 16 111 207	5EP 5 098 12 20 53 51	OCT 9 426 86 38 102 212	NOV 33 410 261 09 350 350	DEC 26 190 181 39 283 317	Year 13.025 261.09 1665 2088
Mean Avg flows Low (m³s=") High Peak flow (m²s=") Runoff (mm) Rainfall (mm) Factors affecting Station typo: VA	19 940 5.435 36.680 284 00 216 232 flow regim	17.290 4 270 37.760 309 40 170 180 e: SRPGEI	14 100 5 731 33 520 218 30 152 165	9 881 3 566 22 720 187 40 103 112	7 361 2 220 14 530 98 88 80 109	4 945 1 456 14 260 253 00 52 91	3 742 0 996 10 930 206.50 40 91	4 639 0 713 12.590 190 30 50 120	5 932 0 905 26.290 327 60 62 139		14 560 5 048 32 960 317 80 152 199 noff is il 18		11.031 7.304 15.592 549.70 1406 1824 ious mean

047007 Yealm at Puslinch

Measuring First year:		y. SWWA			C	ind referen Level s	ice: 20 (S) tn. (m OD)		1			Catchment M		km) 54.9 OD) 492
Hydrome	tric sta	tistics fo	1986											
Flows (m³e='):	Avg Popk	JAN 4,107	FEB 1 015	MAR 1.615	APR 1 818	MAY 1 292	JUN 1 113	JUL 0 712	AUG 1.549	SEP 0 769	OCT 1 319	NOV 4 881	3 999 DEC	Year 2.016
Runoff (mn Rainfall (mi		200 228	45 21	79 160	86 95	63 112	53 14 1	35 87	76 1 69	36 37	64 171	230 248	195 239	1182 1708
Monthly	and yea	orly statis	tics for p	revious r	ecord (Oct	1 963 to [Dec 1985-	-incomple	te or miss	ing month	s total 0.2	years)		
Mean flows (m3s1) Peak flow	Avg Low High	3 002 0 563 4 814	2.883 1.318 5.806	2 136 0 659 5 290	1 320 0 572 3 646	1 012 0 327 1 997	0 794 0 171 2 377	0 565 0 095 1 863	0 646 0 057 1 957	0 822 0 183 3 630	1 396 0.121 3 808	2 138 0.373 4 872	2.918 1 171 6 108	1.631 1.052 2.210
Runoff (mr Ra nfall (mr	n)	146 169	128 129	104 128	62 76	49 97	37 88	28 81	32 101	39 117	68 127	101 158	142 173	937 1444
Factors of Station ty		ow ragime	PGEI									off is 1249 nfall 1189		ous mean

Factors affecting flow regime SRPGEI Station type: CC

047008 Thrushel at Tinhay

1986

iy SWWA			(6		C			
itistics fo	r 1986			LOVELSI	.ii (m OU)	<i>ა</i>				N	waxa⊪ (m	OU) 37
JAN 5.366 23.96 128 133	FEB 0 951 2 51 20 4	MAR 1 750 13 *2 42 92	APR 3 303 16 52 76 101	MAY 2 464 38 72 59 106	JUN 1 219 17 29 28 98	JUE 0 702 6 38 17 73	AUG 2 915 33 64 69 160	SEP 0 959 4 80 22 33	OCT 2 152 14 65 51 117	NOV 7 032 42 40 162 178	DEC 7 275 40 40 173 209	Year 3 007 42.40 846 1304
5 277 1 317 9 701 53 32 125 152	4 165 1 879 8 826 61,78 90	3 202 1 428 7 477 61 46 76 103	1 5 17 0 481 4 038 27 72 35 56	v 1969 to 1 1 119 0 237 4 209 19 16 27 69	Dec 1985) 0 717 0 110 2 491 57 13 16 72	0 359 0 028 1 095 9 89 9	0 648 0 019 2 809 27 33 15 86	1.050 0 116 6 671 75 12 24 99	2 268 0 069 6 878 55 86 54 106	3 671 0 442 7 195 57 07 84 133	4 894 2 405 8 122 124 40 116 143	2 401 1.640 3 750 124.40 672 1183
low regime): GE											ious mea
W	arlo	ddas	e at '	Tuan	doff	 Bo						986
ty. SWWA		66 * **		Grid referer	nce 20 (S)	() 159 674	4				t area (sq	km) 25
itistics fo	r 1986				(007.	70 3.7				••	io cart (iii	00, 50
JAN 1 648 3 60 175 206	FEB 0 839 1 44 80 8	MAR 0 605 1 61 64 134	APH 0 757 1 61 78 88	MAY 0 829 2 46 88 127	JUN 0 700 3 64 72 152	JUL 0 543 1 27 57 89	AUG 0 950 6 63 101 216	SEP 0 730 1 57 75 30	OCT 0 555 1 74 59 142	NOV 1 672 5 54 171 235	DFC 1 798 5 64 190 251	Year 0 969 6.63 1209 1678
1 479 0 744 2 584 14,31 157 190	1 439 0 751 2 906 14 85 139 122	1 050 0 585 1 588 5 27 111 130	0.708 0.403 1.234 4.59 73 67	0 512 0 288 0 978 3 19 54 B1	0 409 0 409 0 208 0 904 5 96 42 84	-incomple 0 315 0 151 0 688 4 35 33 84	0 349 0 118 0 760 8 60 37 102	ing month 0 448 0 177 1 677 14 85 46 132	0 659 0 659 0 208 1 557 7 86 70 135	0 974 0 233 1 775 15 38 100 166	1 374 0 907 1 949 11 25 146 181	0 807 0.624 1 228 15.38 1006 1474
low regime	3 G											ous mea
	nwı	on at	Tre	tro		-						98
ty: SWWA	_			rid referen			0				t area (sq	km): 19.
JAN 1 019 4 74 143 187	FEB 0 435 1 17 55 17	MAR 0 246 2 12 34 100	APR 0 326 0 56 44 66	MAY 0 228 1 06 32 77	JUN 0 178 1 43 24 1 19	.iui 0 128 0 27 18 51	AUG 0 179 1 76 25 117	SEP 0 171 0 44 23 31	OCT 0 147 0 59 21 96	NOV 0 867 3 61 118 179	DEC 0 987 5 31 138 189	Year 0.409 5.31 876 1229
0 283 1 322 5 88 114 148	0 333 1.536 7 19 102 106	0 565 0 228 0 91 <i>7</i> 5 74 79 98	0 315 0 162 0 613 2 93 43 53	0 198 0 124 0 4 8 1 41 28 67	0 141 0 070 0 358 3 71 19 62	0 088 0 043 0 162 2 79 12 54	0 086 0 026 0 125 2 29 12 74	0 113 0 037 0 564 4 10 15 92	0 034 0 633 5 94 35 104	0 046 1 093 9 74 61 129	0 436 1 ()91 13 35 104 144	0.378 0.264 0.544 13.35 625 1131
low regime	, G											ous mea
Fo	wey	at F	lesta	orme	e I			_		-	1	986
y. SWWA			C				4		C			
tistics for	r 1986											• -
JAN 10 430 23 94 165 214	FEB 3 680 8.67 53 9	MAR 2 880 9 28 46 143	4 066 B 15 62 86	MAY 4 275 13 57 68 128	JUN 3 400 21 98 52 150	JUL 2 130 4 69 34 87	AUG 6 044 48 51 96 223	SEP 3.361 8.87 52 33	OCT 2 647 9 08 42 144	NOV 12 810 49 91 196 250	DEC 13 000 44 34 206 259	Year 5 727 49.91 1071 1726
arly statis	tics for p	revious re	ocord (Oct	: 1961 to [3 081	Dec 1985)							
	### 15.366 23.96 128 133 ### 133 ### 1317 9.701 53.32 125 152 ### 152 ### 152 ### 152 ### 152 ### 152 ### 153 ### 154 ### 157 ### 158 ### 144 2.584 ### 143 1.57 ### 157 ### 158 #### #### ### 158 #### #### #### ##### ##### #### ####	5.366 0.951 23.96 251 128 20 133 4 arly statistics for p 5.277 4.165 1.317 1879 9.701 8.826 5.3.32 61.78 125 90 152 100 low regime: GE Warle (y. SWWA Attistics for 1986 1.44 175 80 206 80 207 144 175 80 206 14.31 14.85 157 139 190 122 low regime: G Kenw3 (y. SWWA Attistics for 1986 1.479 1.439 1.526 1.479 1.439 1.536 1.471 1.43 1.55 1.57 1.39 1.90 1.22 low regime: G Kenw3 (y. SWWA Attistics for 1986 1.481 1.78 1.78 1.78 1.78 1.78 1.78 1.78 1.78	### STANDARD CONTRIBUTION OF THE PROPERTY OF T	Actistics for 1986 JAN FEB MAR APR 5.366 0 951 1 750 3303 23 96 2 51 13 2 16 52 128 20 42 76 133 4 92 101 arriv statistics for previous record (Norsell 1987) 5.277 4 165 3 202 1 517 1.317 1879 1 428 0 481 9.701 8.826 7 477 4 038 53 32 61.78 61 46 27 72 125 90 76 35 152 100 103 56 Iow regime GE Warleggan at Actistics for 1986 JAN FEB MAR APR 1648 0.839 0.605 0.757 3.60 1.44 1.61 1.61 175 80 64 78 206 8 134 88 arriv statistics for previous record (Oct 1.479 1.439 1.050 0.708 0.744 0.75: 0.585 0.403 2.584 2.906 1.588 1.234 1.4.31 14.85 5.27 4.59 157 139 111 73 190 122 130 67 Iow regime G Kenuyn at Tru Actistics for 1986 JAN FEB MAR APR 1.019 0.435 0.246 0.326 4.74 1.17 2.12 0.56 1.757 139 111 73 190 122 130 67 Iow regime G Kenuyn at Tru Actistics for 1986 JAN FEB MAR APR 1.019 0.435 0.246 0.326 4.74 1.17 2.12 0.56 1.757 139 111 73 190 122 130 67 Iow regime G Fouey at Rest Actistics for 1986 JAN FEB MAR APR 1.019 0.435 0.246 0.326 4.74 1.17 2.12 0.56 1.32 1.536 0.917 0.613 5.88 7.19 5.74 2.93 1.14 102 79 43 1.14 102 79 43 1.14 102 79 43 1.14 106 98 53 1.14 106 98 53 1.14 106 98 53 1.15 106 5.3 46 62 2.3 94 8.67 9.28 8.15 1.65 5.3 46 62 2.3 94 8.67 9.28 8.15 1.65 5.3 46 62 2.3 94 8.67 9.28 8.15 1.65 5.3 46 62 2.3 94 8.67 9.28 8.15 1.65 5.3 46 62 2.3 94 8.67 9.28 8.15 1.65 5.3 46 62 2.3 94 8.67 9.28 8.15 1.65 5.3 46 62 2.3 94 8.67 9.28 8.15 1.65 5.3 46 62 2.3 94 8.67 9.28 8.15 1.65 5.3 46 62 2.3 94 8.67 9.28 8.15 1.65 5.3 46 62 2.3 94 8.67 9.28 8.15 1.65 5.3 46 62 2.3 94 8.67 9.28 8.15 1.65 5.3 46 62 2.3 94 8.67 9.28 8.15 1.65 5.3 46 62 2.3 94 8.67 9.28 8.15 1.65 5.3 46 62 2.3 94 8.67 9.28 8.15 1.65 5.3 46 62 2.3 94 8.67 9.28 8.15 1.65 5.3 46 62 2.3 94 8.67 9.28 8.15 1.65 5.3 46 62 2.3 94 8.67 9.28 8.15 1.65 5.3 46 62 2.3 94 8.67 9.28 8.15 1.65 5.3 46 62 2.3 94 8.67 9.28 8.15 1.65 2.3 46 8.20 1.3 22 1.3 86	Attistics for 1986 JAN FEB MAR APR APR 13 12 16 52 38 72 128 20 42 76 59 101 106 106 113 4 101 106 113 12 16 52 38 72 128 20 42 76 59 101 106 113 12 16 52 38 72 128 20 42 76 59 101 106 113 13 17 18 79 1428 0481 0237 9701 8826 7477 4038 4209 5332 61.78 61 46 27 72 19 16 125 90 76 35 27 152 100 103 56 69 103 56 69 103 56 69 103 56 69 103 56 69 103 60 144 161 161 246 175 80 64 78 88 127 126 126 126 126 126 126 126 126 126 126	Attistics for 1986 JAN FEB MAR APR MAY JUN 1975 1970 1970 1970 1980 JAN FEB MAR APR MAY JUN 1975 1970	Content Cont	Intistics for 1986 JAN FEB MAR ARR MAY JUN JUL AUG 5 366 0 951 1 7500 3303 2 464 1219 0 702 2915 128 20 42 76 59 28 17 69 133 4 92 101 106 98 73 160 133 4 92 101 106 98 73 160 133 4 92 101 106 98 73 160 133 4 92 101 106 98 73 160 133 7 1879 1428 0 481 1 237 0 110 0028 0 109 1317 1879 1428 0 481 0 237 0 110 0028 0 109 1317 1879 1428 0 481 0 237 0 110 0028 0 109 1317 1879 1428 0 481 0 237 0 110 0028 0 109 1317 1879 1428 0 481 0 237 0 110 0028 0 109 1317 1879 1428 0 481 0 237 0 110 0028 0 109 1325 100 103 56 89 72 64 86 Iow ragime GE Warleggan at Trengoffe In reference 20 (SXI) 159 6/4 Level stin (m 00) 70 30 Ristics for 1986 JAN FEB MAR APH MAY JUN JAN AUG 1749 1 439 1 050 0 078 0 512 0 409 0 315 0 328 1479 1 439 1 050 0 708 0 512 0 409 0 315 0 348 1479 1 439 1 050 0 708 0 512 0 409 0 315 0 348 1479 1 439 1 050 0 708 0 512 0 409 0 315 0 348 1479 1 439 1 050 0 708 0 512 0 409 0 315 0 348 1479 1 439 1 050 0 708 0 512 0 409 0 315 0 348 1479 1 489 1 527 4 599 3 19 596 4 3 8 60 143 1 48 5 57 1 459 1 198 0 1985—incomplete or miss 1479 1 439 1 105 0 0 708 0 512 0 409 0 315 0 348 1431 1 48 5 5 7 4 59 3 19 596 4 3 8 80 157 139 111 73 54 42 33 37 100 122 130 67 81 88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Lovel stn (m OD) \$55 50	Lovel snn (m OD) 55 50	Lavel str. (m OD) 55 50	Level stri (m OD) 55 50

1986 runoff is 115% of previous mean rainfall 114%

049001 Camel at Denby

1986

Measuring a First year: 1		ty. SWWA	`		C	ind referen Level s	ce. 20 (S) tn. (m.00)		2		C	archment N	area (sq k Aax alt (m	
Hydrometr	ric sta	tistics fo	r 1986											
		JAN	FFB	MAR	APR	MAY	JUN	JUL	AUG	SEP	120	NOV	DEC	Year
	Avg.	13 750	5.215	3.650	5 530	5 454	4 884	3 63 1	/ 858	4 739	3 9 1 4	17 800	16 140	7 714
	Peak	44 34	11 29	9 22	1166	16 95	45 32	8 43	63 98	10.88	13 29	94 75	56 37	94.75
Runoff (mm)		176	60	47	69	70	61	47	101	59	50	221	207	1167
Rəmfəll (mm)		195	6	121	88	115	144	87	197	34	140	234	241	1602
Monthly a	nd ye	arly stati:	stics for p	revious re	ecord (Se	1964 to I	Dec 1985)							
Mean .	Avg	11 280	9 797	7 087	4 358	3 276	2.333	2 145	2 295	2 897	5 169	7 357	11 100	5.744
llows	Low	4 833	4.249	2 835	2 08 1	0 960	0 888	0 582	0 421	0 798	0 882	1 371	6 552	4 081
(m³s=1)	High	19.600	20 940	16.420	9 395	8 491	5 463	7 322	5 947	11 920	16 640	17 990	19 110	B 165
Peak flow (m	135 - 1 ₁	67.71	80 21	94 75	35 42	23 98	40 02	40 59	45 14	125 80	92 14	79 29	227.90	227.90
Runoff (mm)	- ,	145	115	91	54	42	29	28	29	36	66	91	142	868
Ramfall (mm)		172	110	118	71	85	85	91	99	122	130	152	168	1403
Factors affer Station type		low regimi	e PGE									off is 134 nfall 114		ious m e an

049002 Hayle at St Erth

1986

Measuring authorit First year 1957	ıy: SWWA			G	rid referen Level s	ce: 10 (SV tn (m OD)		2		1			km) 48 9 OD) 238
Hydrometric sta	itistics fo	r 1986											
Flows Avg (m³s*¹) Peak Runoff (mm) Rainfall (mm)	JAN 2 529 4 31 139 166	FEB 1 520 2 32 75 17	MAR 0 950 1 86 52 117	APR 1 306 1 74 69 70	MAY 0 906 1 25 50 71	JUN 0 626 0 98 33 85	.KX 0 442 0 57 24 59	AUG 0 410 0 73 22 100	SEP 0 371 0 43 20 24	OCT 0 365 0 50 20 97	NOV 1 478 3 47 78 169	DEC 2 584 3 85 142 180	Year 1.124 4.31 724 1155
Monthly and year	arly statis	stics for p	revious r	ecord (Oc	t 1957 to [Dec 1985-	-incomple	te or miss	ing month	s total 9 3	years)		
Moan Avg flows Low (m³s=") High Pask flow (m³s=") Runoff (mm) Rainfall (mm)	1 916 0.746 2 849 6 20 105 138	2 072 0 863 3 426 6 73 103 111	1 620 0 810 2 582 5 83 89 102	1.037 0.573 1.641 3.07 55 52	0 668 0 445 1 464 2.36 37 66	0 502 0 335 0 859 : 72 21 67	0 400 0 237 1 063 1 99 22 58	0 344 0 167 0 743 2 27 19 76	0 360 0 193 1 067 1 88 19 97	0 468 0 179 1 140 2 02 26 100	0 874 0 181 2 297 3 81 46 122	1 527 0.503 2 515 6 31 84 138	0 977 0.653 1 258 6 73 631 1127
Factors affecting f Station type: CC	low regime	o G									off is 115°		ious mean

050002 Torridge at Torrington

1986

Measurin First year		ity: SWWA	A		1	Grid refero Level s	nce 21 (S in (m OD)		5		(m) 663 0 OD) 621
Hydrom	etric st	atistics fo	r 1986											
Flows (m³s=1) Runoff (m Rainfall (m	m)	JAN 38 560 194 13 156 148	FEB 5 608 16 31 20 2	MAR 12.590 98 80 51 103	APR 20 660 117 49 81 104	MAY 11 170 182 44 45 95	JUN 6 172 61 38 24 93	JUL 3 087 19 59 12 69	AUG 13 920 157 32 56 140	SEP 5 960 42 67 23 37	OCT 16 270 143 72 66 131	NOV 55 730 370 40 218 197	DEC 47 690 197 45 193 210	Year 19.785 370.40 945 1329
Monthly	and ye	arly stati:	stics for p	revious 1	record (Oc	t 1962 to	Dec 1985)							
Mean flows (m ³ s ⁻¹) Peak flow Runoff Im Renfall (m	m) {m ³ 8 ⁻¹ }	29 960 5 018 57 510 391.10 121 129	24 570 4.695 47 590 294 40 90 89	18 320 5 792 51 280 535 60 74 97	10 500 3 082 28 120 164 40 41 64	8 461 1 594 31 290 205 70 34 76	4 855 1 092 14 960 181 30 19 73	4 410 0 443 21 540 310 60 18 72	4 974 0 252 19 690 228 50 20 84	7 092 0 954 45 910 415 00 28 99	14 640 0 668 49 230 225 00 59 107	25 430 3 798 52 970 313 20 99 134	31 490 10 270 64 530 730 00 127 131	15.360 8.968 21.036 730.00 731 1155
Factors a Station to		flow regim	o: SRPGEI									noff is 129		юus mean

052006 Yeo at Pen Mill

1986

Measuring authorit First year: 1963	iy: WWA			(Grid referer Level st	nce 31 (S1 tn (m 00)		2		C	atchment N		m) 213 1 (OD) 265
Hydrometric sta	tistics fo	ır 1986											
Flows Avg	JAN 7 108	FEB 1 791	MAR 1 765	APR 3 248	MAY 2.912	JUN 0 978	JU: 0 626	AUG : 408	SFP 0.681	OCT 0 994	NOV 7 054	DEC 6 745	Year 2 94 2
(m³s) Peak	35 91	4.63	11 99	18 19	28.40	4 78	5 5 1	2753	2 35	7.05	36 76	36 70	36.76
Runoff (mm)	89	20	22	40	37	12	8	18	8	12	86	85	437
Rainfall (mm)	140	5	63	76	.05	38	59	123	38	74	45	150	1013
Monthly and yea	erly stati:	stics for p	revious r	ecord (No	v 1963 to	Dec 1985)							
Mean Avg	5.255	4 581	3 /32	1 895	1 604	1 094	0 652	0 677	0.955	2 065	3 367	4 571	2.530
flows Low	0 485	1 168	0.909	0 532	0.356	0.229	0 193	0 *65	0 3 1 6	0 372	0 455	1 079	1.093
(m³s=') High	B 612	10 060	7 060	4 223	4 5 1 0	2 498	1 909	: 607	5 174	9 808	12 780	9 099	3 594
Peak flow (m3s11)	99 93	119 30	57 33	21 80	130 00	39 38	35 74	21 95	27 64	54 94	11 52	138 90	138.90
Aunoil (mm)	66	52	47	23	20	:3	8	9	12	26	41	57	375
Rainfa1 (mm)	97	71	79	46	70	61	54	66	78	78	90	102	892
Factors affecting f Station type: C VA		e S									off is 117 nfall - 114		ious mean

052007 Parrett at Chiselborough

1986

Measuring authority First year 1966	, WWA			G		nce. 31 (S1 tn. (m OD):		1		ı	Catchment M	l area (sq lax alt (m	
Hydrometric stat	istics fo	1986											
_	JAN	FEB	MAR	АРП	MAY	JUN	J.I.	AUG	SEP	ост	NOV	DEC	Year
Flows Avg (m³s-1): Peak	3 601 27 36	0 757 1 69	0 775 3 74	1 158 4 78	1 250 11 75	0 439 0 99	0 322 0 86	0 988 23 88	0 424	0 498 2 07	3 544 17 98	3 683 25 39	1.453 27.36
Runoff (mm)	129	25	28	40	45	15	12	35	15	18	123	132	615
Rainfall (mm)	141	5	65	73	99	46	52	132	39	69	148	160	1029
Monthly and yea	rly statis	tics for p	revious re	cord (Aug	1986 to	Dec 1985)							
Meen Avg	2 406	1 947	1 606	0.786	0 746	0 5 1 8	0 359	0 337	0 443	1 038	1 240	2 103	1 125
flows Low	0.258	0 593	0 523	0 285	0 206	0 130	0 106	0 090	0 145	0 186	0.218	0 523	0.564
(m³s=1) High	4.914	3 865	3 055	1 581	2 048	1 053	0 921	0 591	2 2 2 5	4819	3 789	3 9 1 7	1.534
Peak flow (m3s11)	36 38	27 14	27 46	12 34	57 21	12 81	16 14	7.92	15 29	27 22	29 12	44 94	57.21
Runoff (mm)	86	64	58	27	2)	18	13	12	15	37	43	75	475
Rainfel (nyn)	107	75	83	42	74	65	53	67	79	86	86	107	924

Factors affecting flow regime. N Station type. C

1986 runoff is 130% of previous mean rainfall 111%

052010 Brue at Lovington

1986

Measuring autho First year 1964				C		nce 31 (S) tn (m OD)		3		С		area (sq kr lax alt. (m	
Hydrometric s	tatistics fo	r 1986											
Flows Avg. (m³5-¹). Peak Runoff (mm) Rainfall (mm)	MAR 1 419 7 72 28 72	APH 2 455 14 55 47 76	MAY 2 017 25 71 40 95	JUN 0 714 1 21 14 24	.K.N O 403 O 95 8 60	AUG 0 807 21 11 16 122	SEP 0.515 3.50 10 36	OCT 1 294 6 28 26 96	NOV 4 210 26 17 81 114	DEC 4 519 27 66 90 125	Year 2.067 44 02 483 946		
Monthly and y	early stati:	stics for p	revious r	ecord (Oct	t 1964 to I	Dec 1985)							
Muen Avg. flows Low (m³s=1) High Peak flow (m³s=1) Runoff (mm) Rainfall (mm)	3 562 O 743 5 752 47 28 71 88	3 327 0 910 6 872 47 07 60 68	2 641 0 844 5 263 43 49 52 75	1 481 0.526 3 352 27 19 28 49	1 254 0 313 3 554 95 48 25 70	0 848 0 217 2 203 35 46 16 69	0 868 0 150 4 081 83 00 17 69	0 836 0 130 2 449 48 42 17 73	0 823 0 247 4 873 69 42 16 80	1 340 0 190 4 380 44 05 27 70	2 217 0 407 4 883 74 62 43 88	3 582 1 034 6 158 57 76 71 96	1.894 1.153 2.427 95.48 442 895
Factors allection	How woom	n N								1006	att .= 100	¥	

Factors affecting flow regime. N Station type: C VA

1986 runoff is 109% of previous mean rainfall 106%

053004 Chew at Compton Dando

1986

Measuring authorit First year 1958	y: WWA			G		nce 31 (S1 tn (m OD)		7		С			m) 129 5 OD), 305
Hydrometric sta	tistics fo	r 1986											
Flows Avg (m³s ⁻¹). Peak Runoff (mm) Rainfall (mm)	JAN 3 098 39 43 64 :51	FEB 1 365 4 37 26 6	MAR 0 767 2 83 16 81	APR 1 211 3 01 24 84	MAY 1 371 18 87 28 1*2	JUN 0 652 0.95 13 32	JUT 0 497 0 70 10 63	AUG 0 520 2 29 11 110	SFP 0 486 1 71 10 41	0C1 0 750 2 41 16 1 18	NOV 2 730 31 29 55 159	DEC 2 692 14 21 56 160	Year 1.345 39.43 328 1117
Monthly and yes	arly statis	stics for p	revious r	ecord (Ma	r 1958 to	Dec 1985-	— ілсот р іс	ete or miss	sing month	s total 1.0	years)		
Mean Avg flows Low (m³s-1) High Peak flow (m³s-1) Runoff (mm) Ramfall (mm)	1 864 0 444 3 935 32 54 39 100	1.716 0.557 4.166 48.99 32 70	1 390 0 410 4 210 50 00 29 80	0 970 0 469 2 185 14 19 19 60	0 828 0 333 2 493 67 50 17 73	0 611 0 287 1 211 13 00 12 71	0 463 0 243 0 811 6 23 10 70	0 459 0 195 1 245 6 09 10 86	0 577 0 232 2 135 59 26 12 96	0 808 0 300 3 251 49 56 17 88	1 191 0 264 3 898 38 83 24 103	1 771 0 622 5 017 63 78 37 116	1.051 0.540 1.766 67.50 256 1013
Factors affecting fl Station type: FL	low regime	s: S PG (off is 1289 Itali 1109		ous mean

053007 Frome (Somerset) at Tellisford

Measuring author First year: 1961	ity WWA			(nce 31 (S (n (m OD)	T) 805 564 . 35 10	4		(m). 261.6 OD) 305
Hydrometric st	atistics fo	r 1986											
Flows Avg (m³s='), Pesk Runoff (mm) Rainfall (mm)	JAN 11 660 72 14 119 151	FEB 3 646 9 5 1 34 7	MAH 3 601 16 54 37 78	APR 5 386 19 10 53 82	MAY 4.465 21.96 46 109	JUN 1 694 2 91 17 23	JUL 0 91 <i>7</i> 1 80 9 61	AUG 1 547 19 12 16 124	SEP 1 307 7 73 13 41	OCT 2 957 13 50 30 115	NOV 10 080 37 80 100 152	DEC 9 546 40 35 98 152	Year 4.734 72.14 572 1095
Monthly and ye	arly statis	stics for p	previous r	ecord (Se	1961 to l	Dec 1985)	ı						
Mean Avg. flows Low (m³s=1) High Peak flow (m³s=1) Runoff (mm) Rainfa# (mm)	6 749 1 684 12 340 77 99 69 95	6 350 2 072 2 460 64 75 59 69	5 596 1.938 12 690 68 83 57 86	3 587 1 510 8 314 57 51 36 59	2.771 0.843 6.317 98.80 28 77	1 904 0 518 4 812 3/ 52 19 67	1 445 0 329 4 931 108 11 15 63	1 514 0 291 4 6 05 82 49 15 80	1 761 0 649 7 459 71 03 17 90	2 658 0 612 8 841 40 24 27 78	4 446 0 962 10 730 84 58 44 95	6 551 2 795 14 860 83 64 67 105	3 768 2.334 4 872 108.11 454 964
Factors affecting Station type FL	flow regimi	e PG I									off is 126 nfall 114		ious mean

053018 Avon at Bathford

Monthly and yearly statistics for previous record (Oct 1960 to Dec 1985)

40 53 28

7.140

3.557 2.320

6 710

2 917 22 390

10 530

4 002 22 280

45.98 30 47

Avg. Low

Factors affecting flow regime: G Station type, FV

flows Low
{m³s-¹} High
Pank flow (m³s-¹)
Runoff (mm)
Rainfall (mm)

Mean

10 920

4 018 20 320

1986

7.092 3.757 10.266 55.82 263 709

		_									_			
Measuring First year: 	1969				(Srid referen Level st	ice: 31 (S1 n. (m OD).		1		Са		rea (sq.km Nax att. (m	
Hydrome	tric sta	itistics fo												
Flows	Avg	JAN 47 760	FEB 21 020	MAR 15 700	APR 21 880	MAY 18 650	JUN 7 394	JUL 4 079	AUG 5 558	SEP 4 931	OCT 7 372	NOV 39 810	DEC 39 140	Year 19 441
(m³s *):		191 85	82.20	53.44	43 86	61 37	11.89	7.03	31 55	19 59	20.20	117.71	111.27	191.8
mm) Nonuf nm) Ketnief	-	82 130	33 7	27 70	37 70	32 94	12 20	7 50	10 117	9 38	13 86	66 128	68 121	395 931
					record (De			•		00	•	.20		50.
Vison	Avg	32.310	32 100	26 680	16.410	12.710	10 300	6 046	6 145	6 842	10 820	18.170	29.500	17.27
lows	Low	9 225	11 370	10 080	7 718	5 047	3 898	2 4 1 1	1 715	3 748	3.117	4 407	12.120	10.36
(m³s=')	High	51.280	64.730	54 220	22.690	31 020	30.110	9 955	13 830	25 450	28.180	35 060	48 270	22.163
Peak flow (Runolf (mm		166.87 56	226.4 8 50	193.35 46	119 65 27	227.04 22	165 60 17	54.93 10	64.71 11	191 85 11	88.98 19	163.09 30	300 50 51	300.50 351
Rainfall (mn	n)*	87	61	78	46	63	68	52	66	81	67	81	93	843
(1970-198														•
Factors all Station typ		low regimi	e: R G									off is 112 nfall 110	% of previ %	ous mea
0540	006	St	our	at K	idde	rmii	ıste	r					1	980
Maasuring		ıy STWA			(Grid referer			В		c		area (sq k	
First year: Hydrome		itistics fo	r 1986			Level st	(n. (m OD):	30.50				٨	/lax alt (m	OD) 3
,		MAL	rrB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	Year
Flows	Avg.	5 076	3.174	2.658	3 659	2.807	2.707	3 0 1 6	4 057	2 349	2 455	3 808	3 991	3.313
(m³s=1): Runoff (mm		17 08 42	10 34 24	6.29 22	11 28 29	11 88 23	12 89 22	9 27 25	21 63 34	4 12 19	8 85 20	12.46 30	10.27 33	21.6: 323
nm) liaineR		97	8	53	68	63	52	43	122	10	58	79	83	736
Monthly	and yea	arly stati:	stics for p	previous (record (Oc	t 1953 to (Dec 1985)							
Maan	Avg	3 629	3 447	3 347	2 765	2 620	2 335	2 124	2 293	2 366	2 454	2 996	3 4 15	2.81
flows (m³s=1)	Low	1 703	1.527	1 762 6 244	1 344 4 844	: 424 6 468	1,127 3 438	1 049	0 895	1 367	1.335	1.576	1 537	1.86
(m.8)	High	7 409	6 5 3 7					4 404	3 80 1	4 057	5 7 1 3	6 386	7 062	4.13
Pook flow ((m3s 1)	67.96	20 96	81.55	16 90	20 94	18 52	19 20	34.50	19.40	22 96	16 44	45 46	81.5
Runaff (mm	n)	30	26	81.55 28	16 90 22	20 94 22	18 52 19	19 20 18	34.50 19	19	20	24	28	274
Runoff (mm Rainfoll (mm	n) n)	30 62	26 48	81.55	16 90	20 94	18 52	19 20	34.50		20 57	24 65	28 68	274 714
Peak flow (Runoff (mm Rainfall (mm Factors off Station typ	n) n) fecting f	30 62	26 48	81.55 28	16 90 22	20 94 22	18 52 19	19 20 18	34.50 19	19	20 57 1986 run	24 65	28 68 % of previ	274 714
Runoff (mm Rainfall (mm Factors of Station typ	n) n) fecting f pe: VA	30 62 low regime	26 48 e. GEI	81.55 28 54	16 90 22	20 94 22 62	18 52 19	19 20 18	34.50 19	19	20 57 1986 run	24 65 off is 118	28 68 % of previ %	274 714 ous mea
Runoff (mm Reinfel (mm Fectors of Stellon typ 054(Maasuring	n) fecting f pe: VA DOB	30 62 low regime	26 48 e. GEI	81.55 28 54	16 90 22 48 enbi	20 94 22 62 ETY Grid referer	18.52 19 56	19 20 :8 58	34.50 19 69	19	20 57 1986 run rai	24 65 off is .1.18 infall 103	28 68 % af previ %	714 ous mea
Runolf (rnm Rainfall (mr Factors afl Station tys O54(Maasuring First yoar:	pe: VA DOS authorit 1956	30 62 low regime Te	26 48 e. GEI	81.55 28 54	16 90 22 48 enbi	20 94 22 62 ETY Grid referer	18 52 19 56	19 20 :8 58	34.50 19 69	19	20 57 1986 run rai	24 65 off is .1.18 infall 103	28 68 % at previ	274 714 ous mea
Runolf (rnm Rainfall (mr Factors afl Station tys O54(Maasuring First yoar:	pe: VA DOS authorit 1956	30 62 low regime	26 48 e. GEI	81.55 28 54	16 90 22 48	20 94 22 62 ETY Grid referer Level s:	18 52 19 56 56 nce: 32 (S(19 20 18 58 58 D) 597 68:	34.50 19 69	19 67	20 57 1986 run rei	24 65 off is .118 nfall 103	28 68 % of previ % Irea (sq km Aax alt. (m	274 714 lous mai (98(a): 1134 OD): 54
Runolf (mm Rainfall (mm Factors off Station typ 0540 Maasuring First yoar: Hydrome	n) flecting f pe: VA DOS j suthorn 1956 stric sta	30 62 low regime	26 48 e. GEI 2111 C or 1986 FEB :8 970	81.55 28 54 at T	16 90 22 48 enbu	20 94 22 62 ETS Grid referer Level s	18 52 19 56 56 ance: 32 (S4 in: (m OD)	19 20 18 58 58 0) 597 68 48.00	34.50 19 69 5	19 67 SEP 3 072	20 57 1986 run rei Ca	24 65 foff is .118 nfall 103 tchment a NOV 27 740	28 68 % of previ %	274 714 ious mea (98(ii): 1134 (00): 54
Runoff (mm Rainfa1 (mm Factors aff Station tys 0540 Maasuring First year: Hydrome	n) flecting f pe: VA DOS j authorit 1956 atric sta	30 62 low regime ty: STWA atistics for JAN 43 250 160 01	26 48 e. GEI 2111 & e	81.55 28 54 at T MAR 15 470 42 63	16 90 22 48 enb t 28 050 74 87	20 94 22 62 62 Fry Grid referer Level s MAY 13 490 23 63	18 52 19 56 56 10. (a) (SK (a) (b) (D) JUN 6 016 15 72	19 20 18 58 58 0) 597 68 48.00	34.50 19 69 5 AUG 4 735 32 07	19 67	20 57 1986 run rai	24 65 118 nofall 103 tchment a NOV 27 740 97,51	28 68 % of previ %	274 714 ious med (98(a): 1134 OD): 54 Year 16.82: 150.0
Runoff (mm Rainfat (mm Factors off Station typ O 5 4 (Maasuring First year: Hydrome (m²a=1): Runoff (mm	n) n) fecting f pe: VA DOS g authorit 1956 stric sta Avg Peak n)	30 62 low regime	26 48 e. GEI 2111 C or 1986 FEB :8 970	81.55 28 54 at T	16 90 22 48 enbu	20 94 22 62 ETS Grid referer Level s	18 52 19 56 56 ance: 32 (S4 in: (m OD)	19 20 18 58 58 0) 597 68 48.00	34.50 19 69 5	19 67 SEP 3 072	20 57 1986 run rei Ca	24 65 foff is .118 nfall 103 tchment a NOV 27 740	28 68 % of previ %	274 714 ious med (98(i): 1134 (00): 54
Runolf (mm Rainfal (mm Rainfal (mm) Factors off Station typ O 5 4 (Maasuring First yoor: Hydrome (m2a 1): Runolf (mm Rainfall (mm	n) n) flecting f pe: VA DOS authorn 1956 ptric sta Avg Peak p)	30 62 low regime ty: STWA attistics for JAN 43 250 160 01 102 127	26 48 e. GEI 2111 & FEB 18 970 54 03 40 14	81.55 28 54 at T MAR 15 470 42 63 37 63	16 90 22 48 enbt APR 28 050 74 87 64	20 94 22 62 62 IPY Grid referer Level s: MAY 13 490 23 63 32 70	18 52 19 56 56 56 56 50 50 50 10 10 10 10 10 11 14 38	19 20 18 58 58 59 597 68 48.00 JUL 2 995 3 85 7	34.50 19 69 5 5 AUG 4.735 32.07 11	19 67 Str 3 072 5 80 7	20 57 1986 run rai Ca OCT 3 047 6 41 7	24 65 soff is .118 nfall 103 tchment a h NOV 27 740 97.51 63	28 68 % of previ % Trea (sq km Aax alt. (m OCC 35 110 76 69 83	274 714 ous med (984 a): 1134 OD): 54 Year 16.82: 150.0 468
Runolf (mm Rainfa1 (mm Rainfa1 (mm Factors off Station typ	n) n) flecting f pe: VA DOS authorn 1956 ptric sta Avg Peak p)	30 62 low regime ty: STWA attistics for JAN 43 250 160 01 102 127	26 48 e. GEI 2111 & FEB 18 970 54 03 40 14	81.55 28 54 at T MAR 15 470 42 63 37 63	APR 28 050 74 87 64 90	20 94 22 62 62 IPY Grid referer Level s: MAY 13 490 23 63 32 70	18 52 19 56 56 56 56 50 50 50 10 10 10 10 10 11 14 38	19 20 18 58 58 59 597 68 48.00 JUL 2 995 3 85 7	34.50 19 69 5 5 AUG 4.735 32.07 11	19 67 Str 3 072 5 80 7	20 57 1986 run rai Ca OCT 3 047 6 41 7	24 65 soff is .118 Infell 103 tchment a NOV 27 740 97.51 63 123	28 68 % of previ % Trea (sq km Aax alt. (m OCC 35 110 76 69 83	274 714 ious me. (984 i): 1134 OD): 54 Year 16.82 150.0 468 874
Runoff (mm Rainfa1 (mm Rainfa1 (mm Factors aff Station typ	n) n) fecting f fecting f pe: VA DOS J authorif 1956 stric sta Avg Peak n) n) and year Low	30 62 low regime ty: STWA stistics for 120 120 122 127 arrly statis	26 48 e. GEI 2111 & e 2111 & e	81.55 28 54 at T MAR 15 470 42 63 37 63 previous 1 21.780 7 433	APR 28 050 74 87 64 90 record (Oc 4 692	20 94 22 62 62 62 67 67 67 67 67 67 67 67 67 67 67 67 67	18 52 19 56 56 100: 32 (St 100: (m OD) JUN 6 016 15 72 14 38 Oec 1985) 6 357 1 558	19 20 18 58 58 0) 597 68 48.00 JUL 2 995 3 85 7 35	34.50 19 69 5 4.735 32.07 11 109 4.197 0.745	Stp 3 072 5 80 7 8	20 57 1986 run rei Ca OC1 3 047 6 41 7 73	24 66650 3085	28 68 % of previ %	274 714 ous me. (98(a): 1134 OD): 54 Year 16.82 160.0 468 874
Runoff (mm Rainfal (mm Rainfal (mm) Factors off Station typ O 5 4 Maasuring First yoor: Hydrome (m²a='): Runoff (mm Rainfall (mm Monthly Mean (m²a='):	n) n) flecting f pe: VA DOS authorii 1956 ptric sta Avg Peak p) n) and ye Avg Low High	30 62 low regime ty: STWA attistics for JAN 43 250 160 01 102 127 arty stati: 27 880 6 281 5 1.630	26 48 e. GEI 2111 C or 1986 FEB :8 970 54 03 40 14 stics for p	81.55 28 54 at T MAR 15 470 42 63 37 63 previous 1 21.780 7 433 51 940	APR 28 050 74 87 64 90 record (Oc. 14 180	20 94 22 62 62 62 62 67 67 67 67 67 67 67 67 67 67 67 67 67	18 52 19 56 56 100: 32 (Sd in: (m OD) JUN 6 016 15 72 14 38 Oec 1985) 6 357	19 20 18 58 58 0) 597 68 48.00 JUL 2 995 3 85 7 35	34.50 19 69 5 4.735 32.07 11 109	19 67 Str 3 072 5 80 7 8	20 57 1986 run rei Ca CC1 3047 641 7 73 11510 1 347 43 130	24 650 off is .118 nfall 103 tchment a NOV 27 740 97.51 63 123 	28 68 96 of previ % 100 previ % 100 previ 100	274 714 ious me. (984 i): 1134 OD): 56 Year 16.82 150.0 468 874 14.49 7.27 23.48
Runoff (mm Rainfal (mm Rainfal (mm Factors aff Station type) O 5 4 (Maasuring First yoar: Hydrome Flows (m³a=1); Runoff (mm Rainfal (mm Monthly) Mean (lows (m³a=1)) Peak flow (manoff (mm Rainfal (mm Monthly)) Runoff (mm Rainfal (mm Monthly))	n) n) fecting f fecting f pe: VA DOS J authorif 1956 stric sta Avg Peak p) n) and yea Low High (m³s-") n)	30 62 low regime ty: STWA atistics fo JAN 43 250 160 01 102 127 arly stati: 27 880 6 281 51.630 256 60 66	26 48 e. GEI 2111 C or 1986 FEB 18 970 54 03 40 14 stics for g 25.230 8 009 56 000 191 80	81.55 28 54 MAR 15 470 42 63 37 63 previous 1 21.780 7 433 51 940 165 40 51	APR 28 050 74 87 64 90 record (Oc 14 180 4 692 28 630 121 50 32	20 94 22 62 62 62 Grid referer Level s' 13 490 23 63 32 70 t 1956 to (10 10 10 10 10 10 10 10 10 10 10 10 10 1	18 52 19 56 56 32 (St in. (m OD) JUN 6 016 15 72 14 38 Dec 1985) 6 357 1 558 14 160 79 52 15	19 20 18 58 58 0) 597 68 48.00 2 995 3 85 7 35 4 180 1 008 2 1 920 114.10	34.50 19 69 5 AUG 4.735 32.07 11 109 4.197 0.745 16.670 158.00	SEP 3 072 5 80 7 8 6 396 1 085 29 650 196 20	20 57 1986 run rei Ca OC1 3 047 6 41 7 73 11 510 1 347 43 130 232.80 27	24 66 soff is .118 nfall 103 tchment a NOV 27 740 97.51 63 123 16 650 3 085 50 140 168 30 3 8	28 68 68 of previous formation of the control of th	274 714 ous me. (98(a): 1134 OD): 54 160.0 468 874 14.49 7.27 23.48 266 5 403
Runoff (mm Rainfal (mm Rainfal (mm) Factors aff Station typ	n) n) fecting f fecting f pe: VA DOS J authorif 1956 stric sta Avg Peak p) n) and yea Low High (m³s=") n)	30 62 low regime ty: STWA atistics fo JAN 43 250 160 01 102 127 arly stati 27 880 6 281 51.630 256 60 66 85	26 48 e. GEI 2111 C or 1986 FEB 18 970 54 03 40 14 stics for g 25.230 8 009 56 000 191 80 154 64	81.55 28 54 At T MAR 15 470 42 63 37 63 previous 1 21.780 7 433 51 940 165 40	APR 28 050 74 87 64 90 record (Oc 4 692 28 630 121 50	20 94 22 62 62 62 Grid referer Level's MAY 13 490 23 63 32 70 1 1956 to 1 11 030 2 571 35 380 200 30	18 52 19 56 56 100: 32 (SG 101: (m OD) JUN 6 016 15 72 14 38 Oec 1985) 6 357 1 558 14 160 79.52	19 20 18 58 58 01 597 68 48.00 JUL 2 995 3 85 7 35 4 180 1 008 2 1 920 2 1 920	34.50 19 69 5 4 735 32.07 11 109 4 197 0 745 16 670 158 00	19 67 Str 3 072 5 80 7 8 6 396 1 085 29 650 196 20	20 57 1986 run rei Ca OCT 3 047 6 41 7 73 11 510 1 347 43 130 232,80 27 72	24 60 ff is .118 Infall 103 103 104 107 108 108 108 108 108 108 108 108	28 68 % of previ %	274 714 ous me. (98(a): 1134 OD): 54 16.82 160.0 468 874 14.49 17.27 23.48 266 5 403 863
Runoff (mm Rainfa1 (mm Rainfa1 (mm Factors aff Station typ	DOS J authorit 1956 stric sta Avg Peak Plan Avg Low High (m²s-¹) n) fecting f	30 62 low regime ty: STWA atistics fo JAN 43 250 160 01 102 127 arly stati 27 880 6 281 51.630 256 60 66 85	26 48 e. GEI 2111 C or 1986 FEB 18 970 54 03 40 14 stics for g 25.230 8 009 56 000 191 80 154 64	81.55 28 54 MAR 15 470 42 63 37 63 previous 1 21.780 7 433 51 940 165 40 51	APR 28 050 74 87 64 90 record (Oc 14 180 4 692 28 630 121 50 32	20 94 22 62 62 62 Grid referer Level s' 13 490 23 63 32 70 t 1956 to (10 10 10 10 10 10 10 10 10 10 10 10 10 1	18 52 19 56 56 32 (St in. (m OD) JUN 6 016 15 72 14 38 Dec 1985) 6 357 1 558 14 160 79 52 15	19 20 18 58 58 0) 597 68 48.00 2 995 3 85 7 35 4 180 1 008 2 1 920 114.10	34.50 19 69 5 AUG 4.735 32.07 11 109 4.197 0.745 16.670 158.00	SEP 3 072 5 80 7 8 6 396 1 085 29 650 196 20	20 57 1986 run rei Ca Ca OC1 3047 641 7 73 11510 1 347 43 130 232.80 27 72	24 60 ff is .118 Infall 103 103 104 107 108 108 108 108 108 108 108 108	28 68 68 of previ% 5	274 714 ous mea (984 a): 1134 OD): 54 Year 16.82: 160.0 468 874 14.49: 2.7: 23.48: 266 3
Runoff (mm Ranifal (mm Ranifal (mm Ranifal (mm Factors aff Station type) O 5 4 (Maasuring First yoar: Hydrome Flows (m³a=1): Runoff (mm Ranifal (mm Monthly Mean Rows (m³a=1): Peak flow (m Ranifal (mm Ra	n) n) fecting f pe: VA DOS authoric 1956 stric sta Avg Peak p) n) and yea Low High (m³s-1) n) fecting f pe: VA	30 62 low regime ty: STWA atistics fo JAN 43 250 160 01 102 127 arly stati 27 880 6 281 51.630 256 60 85	26 48 e. GEI 2111 C r 1986 FEB :8 970 54 03 40 14 stics for g 25.230 8 009 56 000 191 809 56 464 e: N	MAR 15 470 42 63 37 63 previous 1 21.780 7 433 51 940 165 40 51 70	APR 28 050 74 87 64 90 record (Oc 14 180 4 692 28 630 121 50 32 58	20 94 22 62 62 Grid referer Level's MAY 13 490 23 63 32 70 t 1956 to 0 2 571 35 380 200 30 26 66	18 52 19 56 56 32 (St in. (m OD) JUN 6 016 15 72 14 38 Dec 1985) 6 357 1 558 14 160 79 52 15	19 20 18 58 58 0) 597 68 48.00 2 995 3 85 7 35 4 180 1 008 2 1 920 114.10	34.50 19 69 5 AUG 4.735 32.07 11 109 4.197 0.745 16.670 158.00	SEP 3 072 5 80 7 8 6 396 1 085 29 650 196 20	20 57 1986 run rei Ca Ca OC1 3047 641 7 73 11510 1 347 43 130 232.80 27 72	24 65 soff is .118 Infall 103 103 103 104 107 107 107 107 107 107 107 107	28 68 68 68 of previous formula (m. 1966) 83 124 25 080 5 565 57 290 266 59 92 92 92 95 66 previous formula (m. 1966) 83 124 125 080 126 126 126 126 126 126 126 126 126 126	274 714 OUS med (984 A): 1134 OD): 54 Year 16.82: 150.0 468 874 14.49 7.27: 23.48: 256: 54 403 863 sous med
Manager (mm Ranifal (mm Ranifal (mm Factors aff Station type) O 5 4 (massuring First year: Hydrome (m²a²); Runoff (mm Monthly Mean flows (m²a²) (m²a²); Runoff (mm Ranifal (mm Ranifal (mm Factors af Station type)	n) n) fecting f pe: VA DOS authorit 1956 stric sta Avg Peak Plan N and yei (m²s-1) n) fecting f pe: VA	30 62 llow regime Te ty: STWA atistics fo 150 01 102 127 ariy stati; 27 880 6 281 5 1.630 256 60 85	26 48 e. GEI 2112 2112 2112 2112 2112 2112 2112 21	MAR 15 470 42 63 37 63 previous 1 21.780 7 433 51 940 165 40 51 70	APR 28 050 74 87 64 90 record (Oc 14 180 4 692 28 630 121 50 32 58	20 94 22 62 62 62 62 63 63 32 70 11 030 2 571 35 380 200 30 26 66	18 52 19 56 56 56 56 56 57 15 72 14 15 8 14 150 79.52 15 59	19 20 18 58 58 20 597 686 48.00 2 995 3 85 7 35 4 180 1 008 2 1 920 114,10 10 57	34.50 19 69 69 4.735 32.07 11 109 4.197 0.745 16.670 158.00 10 73	SEP 3 072 5 80 7 8 6 396 1 085 29 650 196 20	20 57 1986 run rei Ca OC1 3 047 6 41 7 7 3 11 510 1 347 43 130 232.80 27 72 1986 run rai	24 60 off is .118 Infall 103 103 104 105 106 107 107 107 107 107 107 107 107 107 107	28 68 % of previous frea (sq. km flax alt. (m) DEC 35 110 76 69 83 124 25 080 5 565 57 290 266 50 59 92 92 % of previous	274 714 OUS M6. (98) 1134 OD) 50 160.0 468 874 14.49 7.27 23.48 256 5 403 863 ous me
Runoff (mm Rainfal (mm Rainfal (mm Factors of Station type) O 5 41 Measuring First year: Hydrome Flows (m³a=¹): Runoff (mm Rainfall (mm Monthly) Mean (m³a=¹) Peak flow (m³a=¹) Runoff (mm Rainfall (n) n) fecting f pe: VA DOS authorif 1956 stric sta Avg Peak Peak Plan Avg Peak Peak Peak Peak Peak Peak Peak Peak	30 62 low regime Te ty: STWA atistics fo JAN 43 250 160 01 102 127 arly stati: 51.630 256 60 85 flow regime ty: STWA	26 48 e. GEI 2111 C or 1986 FEB :8 970 54 03 40 14 stics for g 25.230 8 009 56 000 191 80 64 e: N	MAR 15 470 42 63 37 63 previous 1 21.780 7 433 51 940 165 40 51 70	APR 28 050 74 87 64 90 record (Oc 14 180 4 692 28 630 121 50 32 58	20 94 22 62 62 62 62 63 64 64 64 65 66 66	18 52 19 56 56 56 56 56 57 15 72 14 15 8 14 150 79.52 15 59	19 20 18 58 58 2) 597 68 4 48.00 JUL 2 995 3 85 7 35 1 008 21 920 114.10 10 57	34.50 19 69 69 4.735 32.07 11 109 4.197 0.745 16.670 158.00 10 73	SEP 3 072 5 80 7 8 6 396 1 085 29 650 196 20	20 57 1986 run rei Ca OC1 3 047 6 41 7 7 3 11 510 1 347 43 130 232.80 27 72 1986 run rai	24 off is .118 nfall 103 tchment a NOV 27 740 97.51 63 123 16 650 3 085 50 140 168 30 83 83 soff is 116 nfall 101	28 68 68 68 of previous formula (m. 1966) 83 124 25 080 5 565 57 290 266 59 92 92 92 95 66 previous formula (m. 1966) 83 124 125 080 126 126 126 126 126 126 126 126 126 126	274 714 ious mei (98(a): 1134 OD): 54 Year 16.82: 160.0 468 874 14.49 17.27: 23.48: 256.5 403 863 ious mei
Runoff (mm Rainfal (mm Rainfal (mm Factors aff Station typ	n) n) fecting f pe: VA DOS authorif 1956 stric sta Avg Peak Peak Plan Avg Peak Peak Peak Peak Peak Peak Peak Peak	30 62 low regime Te ty: STWA atistics fo JAN 43 250 160 01 102 127 arly stati: 51.630 256 60 85 flow regime ty: STWA	26 48 e. GEI 2111 C or 1986 FEB :8 970 54 03 40 14 stics for g 25.230 8 009 56 000 191 80 64 e: N	MAR 15 470 42 63 37 63 previous 1 21.780 7 433 51 940 165 40 51 70	APR 28 050 74 87 64 90 record (Oc 14 180 4 692 28 630 121 50 32 58	20 94 22 62 62 62 62 63 64 64 64 65 66 66	18 52 19 56 56 10 (m OD) JUN 6 016 15 72 14 38 Dec 1985) 6 357 1 558 14 160 79.52 15 59	19 20 18 58 58 2) 597 68 4 48.00 JUL 2 995 3 85 7 35 1 008 21 920 114.10 10 57	34.50 19 69 69 4.735 32.07 11 109 4.197 0.745 16.670 158.00 10 73	SEP 3 072 5 80 7 8 6 396 1 085 29 650 196 20	20 57 1986 run rei Ca OC1 3 047 6 41 7 7 3 11 510 1 347 43 130 232.80 27 72 1986 run rai	24 off is .118 nfall 103 tchment a NOV 27 740 97.51 63 123 16 650 3 085 50 140 168 30 83 83 soff is 116 nfall 101	28 68 68 68 of previous free (sq. km dax alt. (m) 0EC 35 110 76 69 83 124 25 080 5 565 57 290 266 50 59 92 % of previous free (sq. km dax alt. (m) 124 25 080 65 57 290 266 50 59 92 124 25 080 65 57 290 124 25 080 65 124 25 080	274 714 ious med (98(a): 1134 OD): 54 Year 16.82: 160.0 468 874 14.49: 23.48: 256 56 403 863 ious med
Runolf (mm Rainfa) (mm Factors of Station tys O 5 4 (mm) First year: Hydrome Flows (mm)	n) n) fecting f pe: VA DOS j authorit 1956 Peak Peak n) and yei Avg Low Hugh fecting f fecting f pe: VA	30 62 low regime ty: STWA atistics fo 150 0: 102 127 arty stati: 27 880 6 281 51.630 256 60 56 85 llow regime ty: STWA	26 48 e. GEI 2111 C or 1986 FEB 18 970 54 03 40 14 stics for p 25.230 8 009 56 000 191 80 54 64 e: N	81.55 28 54 MAR 15 470 42 63 37 63 Previous 1 21.780 7 433 51 940 165 40 51 70	APR 28 050 74 87 64 90 record (Oc 14 180 4 692 28 630 121 50 32 58	20 94 22 62 62 62 63 64 64 65 65 66 66 66 66 66 66 66 66 66 66 66	18 52 19 56 56 56 56 56 57 15 72 14 160 79.52 15 59 59 59	19 20 18 58 58 58 58 58 58 648.00 1008 21 920 114.10 10 57 57 57 57 57 57 57 57 57 57	34.50 19 69 5 5 AUG 4 735 32.07 11 109 4 197 0 745 16 670 158.00 10 73	SEP 3 072 5 80 7 8 6 396 1 085 29 650 195 84	20 57 1986 run rei Ca OCT 3.047 6.41 7 73 11.510 1.347 43.130 2.32.80 27 72 1986 run rai	24 650 off is .118 nfall 103 1tchment a NOV 27 740 97.51 63 123 16 650 3 085 50 140 188 30 38 83 30 off is 116 nfall 101	28 68 68 68 68 68 68 68 68 68 68 68 68 68	274 714 OUS med (98(a): 1134 OD): 54 Year 16.82: 160.0 468 874 14.49: 7.27: 23.48: 256: 55 403 863 ous med
Runoff (mm Rainfal (mm Rainfal (mm Factors aff Station type) O 5 41 Maasuring First yoar: Hydrome Flows (m²s-1): Runoff (mm Rainfall (mm Monthly Mean Rainfall (mm Rainfall	n) n) fecting f pe: VA DOS authorit 1956 stric sta Avg Peak Pin) n) and yei fecting f pe: VA D12 authorit 1960 stric sta Avg Peak Avg Peak Avg Peak Avg Peak	30 62 low regime Tellow regime ty: STWA atistics for 102 127 arty statii 51.630 256.60 85 llow regime ty: STWA	26 48 e. GEI 2112 or 1986 FEB :B 970 54 03 40 14 stics for g 25.230 8 009 56 000 191 80 64 e: N	81.55 28 54 MAR 15 470 42 63 37 63 previous 1 21.780 7 433 51 940 165 40 51 70	APR 28 050 74 87 64 90 record (Oc 14 180 4692 28 630 121 50 32 58	20 94 22 62 62 62 63 64 64 64 65 66 66 66 66 66 66 66 66 66 66 66 66	18 52 19 56 56 32 (Skin. (m OD) JUN 6 016 15 72 14 38 Oec 1985) 6 357 1 59 14 160 79.52 15 59	19 20 18 58 58 58 59 64 64 64 60 100 100 100 100 100 100 100	34.50 19 69 5 AUG 4.735 32.07 11 109 4.197 0.745 16.670 158.00 10 73	SEP 3 072 5 80 7 8 6 396 1 085 29 650 196 20 15 84	20 57 1986 run rei Ca OCT 3 047 6 41 7 73 11 510 1 347 43 130 232.80 27 72 1986 run rei	24 off is .118 infall 103 atchment a NOV 27 740 97.51 63 123 : 16 650 3 085 50 140 188 30 38 83 noff is 116 niall 101	28 68 68 68 of previous free (sq km dax alt. (m) DEC 35 110 76 69 83 124 25 080 5 565 57 290 266 50 59 92 (% of previous dax alt. (m) DEC DEC	274 714 ious med (98(a): 1134 OD): 54 Year 16.82: 150.0 468 874 14.49: 23.48: 256 5i 403 863 ious med (98(

4.675 2.199 9.069 27.00

56

3.947 1.393 14.060

48 71

3.844 1.171 6.655

59

8.053 2.538 21.830

44.54 24 71

10 820

1986 runoff is 97% of previous mean rainfall-100%

054019 Avon at Stareton

1986

Measuring author First year: 1962	ity: STWA			(Grid referen Level st	nce 42 (SI tn (m OD):		5		С		area (sq kr fax alt (m	
Hydrometric st	atistics fo	r 1986											
Flows Avg. (m³s-1). Peak Runoff (mm) Rainfell (mm)	JAN 5.927 31.42 46 69	FEB 3 400 14,90 24 18	MAR 3 381 9 69 26 60	APH 4,644 14 22 35 57	MAY 2 368 7 23 18 7:	JUN 0 918 2 32 7 29	JUL 0 538 1 66 4 39	AUG 1 467 7 06 11 123	SEP 0 786 2 73 6 25	OCT 0 938 2.88 7 64	NOV 5 455 19 94 41 86	DEC 5 680 17 93 44 83	Year 2.959 31.42 269 724
Monthly and ye	arly stati:	stics for p	revious r	ecord (Oct	t 1982 to (Dec 1985)							
Mean Avg. flows Low (m³s=') High Peak flow (m³s=') Runoff (mm) Rainfall (mm)	4 317 0 798 8 143 38.23 33 54	4 535 0 777 12.890 59 60 32 46	4 242 0 545 8 577 55 89 33 55	2.621 0.485 5.558 42.67 20 47	2 229 0 474 6 149 39 05 17 60	1 318 0 368 3 202 2/ 34 10 58	1 011 0 247 5 379 71 36 8 54	1 065 0 356 3 332 26 08 8 68	1 037 0 442 2 858 16 59 8 56	1 493 0 507 5 274 32 89 12 50	2 203 0 549 5 311 34 11 16 58	3 985 0 667 10 400 56 28 31 63	2.497 1.094 3.588 71.36 227 669
Factors affecting Station type: C	flow regimi	e: S El									off is 118 ofall 108	% of previ	ous mean

054020 Perry at Yeaton

1986

Measurin First year		ty STWA			(Grid referei Level s	nce: 33 (\$. tn. (m OD)		2		С		area (sq kr lax alt. (m	
Hydrom	etric sta	itistics fo	r 1986											
Flows (m³s-1) Runoff (m Rainfatl (m	m)	JAN 3 709 14 23 55 105	FEB 1 673 3 62 22 8	MAR 1 397 3 67 21 54	APR 2 5 13 7 34 36 83	MAY 1 227 1 64 18 56	JUN 0 749 1 10 11 34	JUL 0 502 0 76 7 37	AUG 0 669 2 64 10 94	SEP 0 541 0 97 8 3	OC1 0 507 0 83 B 55	NOV 1 662 5 81 24 101	DEC 2 888 7 52 43 114	Year 1.503 14.23 262 744
Monthly	and yea	arly statis	itics for p	revious r	ecord (Oc	t 1963 to (Dec 1985)							
Mean flows (m³s=1) Peak flow Runoff (m Rainfall (m	(LD) 2 . ,}	2 846 0 901 4,777 11 50 42 67	2 776 0 859 6 507 11 29 37 55	2 406 1 257 4 265 11 12 36 62	1 669 0 742 3 041 8 57 24 46	1 476 0 583 4 232 10 41 22 66	0 984 0 379 2 046 8 49 -4 58	0 749 0 271 2 735 7 87 11 57	0 729 0 208 1 416 5 49 11 62	0 743 0 350 1 785 7 32 11 70	1 136 0 412 3 308 7 25 17 64	1 807 0 427 3 103 10 02 26 80	2 670 0 848 6 244 12 57 40 79	1.682 0.809 2.335 12.57 290 766
Factors a		low regime	NG									noff is 90	% of previ	

054022 Severn at Plynlimon flume

1986

Measuring authori First year: 1953	ty: IH			(nce 22 (St n (m OD)		2				nt area (se lax alt. (m	q km) 8 7 OD) 740
Hydrometric sta	stistics fo	r 1986											
Flows Avg (m³s='): Peak Hunoff (mm) Rainfall (mm)	JAN 1 122 14 49 346 410	FEB 0.189 0.29 53 15	MAR 0 768 10 24 236 275	APR 0 496 5 24 148 157	MAY 0 321 1 57 99 161	JUN 0 203 1 00 61 55	JUL 0 211 2 25 65 169	AUG 0 490 5 89 151 189	SEP 0 178 2 28 53 33	OCT 0 572 5 62 176 272	NOV 1 434 15 08 427 468	DEC 1 328 13 33 409 538	Year 0 609 15 08 2223 2742
Monthly and ye	orly statis	stics for p	revious r	ecord (Oc	t 1953 to 0	Dec 1985-	-incomple	ite or miss	ing month	s total 10	B years)		
Moon Avg flows Low (m³s="} High Peak flow (m³s=") Runoff (mm) Rainfa'l (mm)	0.745 0.363 1.571 12.19 229 283	0 580 0 136 1 104 14 00 162 182	0 572 0 171 1 567 14 53 176 202	0 326 0 046 0 878 11 64 97 128	0 244 0 048 0 818 9 86 75 134	0 221 0 045 0 638 10 66 66 139	0 282 0 054 0 754 8 84 87 149	0 394 0 037 0 935 24 99 121 183	0 521 0 073 1 092 12 91 155 233	0 606 0 059 1 463 17 22 187 238	0 772 0 268 1 307 17 76 230 281	0 751 0 174 1 304 17 11 231 273	0.501 0.334 0.646 24.99 1817 2425
Factors affecting f Station type: FL	low regime	∌· N									off is 122° nfall 113°		ous mean

054038 Tanat at Llanyblodwel

1986

Messuring authori First year: 1973	ty STWA			(Grid referer Level si	nce 33 (S. in (m OD)		5		c		area (sq k Nax alt (m	m) 229 0 OD) 827
Hydrometric sta	atistics fo	r 1986											
Flows Avg (m³s=1). Peak Runoff (mm) Reinfall (mm)	JAN 14.610 90.52 171 206	FEB 3 143 8 99 33	MAR 6 172 27 07 72 121	APR 8 039 23 59 91 102	MAY , 4 694 13 31 55 119	JUN 2 109 14 30 24 43	JUI 0 638 2 59 7 60	AUG 4 894 54 50 57 161	SEP 1 683 5 54 19 7	OCT 2 185 17 72 26 113	NOV 16 360 73 38 185 208	DEC 15 560 54 06 182 243	Year 6.674 90.52 923 1400
Monthly and ye	arly stati:	stics for p	previous r	ecord (Jui	n 1973 to (Dec 1985-	-incomple	ete or miss	ing month	s total 0.4	years)		
Mean Avg. flows Low (m³s=1) High Peak flow (m³s=1) Runoff (mm) Rainfall (mm)	11 250 5 203 15 860 91 77 132 128	9 817 5 911 19 900 64 77 105 91	8 717 2 693 17 800 85 77 102 107	4 857 1 392 9 686 39 85 55 60	3 480 0 867 10 250 31 27 41 76	2 386 0 728 4 660 56 8/ 27 71	1 257 0 348 1 930 15 68 15	2 440 0 190 7 609 118 20 29 86	3 564 1 199 9 885 69 56 40 120	7 150 1 701 15 020 59 64 84 115	9 614 2 895 16 920 64 64 109 136	1, 960 6 595 21 410 87 99 140 146	6 362 4 185 7.510 118 20 877 1193
Factors affecting I Station type: VA	low regime	aΝ									off is 105 nfall 117		ous mean

055008 Wye at Cejn Brwyn

1986

Massuring authorit First year: 1951	y; IH			Ġ	Fried referen Level str	ice: 22 (54 n. (m OD):		3		+	Catchment M	area (sq. ax alt. (m	
Hydrometric sta	tistics fo	r 1986											
	MAL	FEB	MAR	APR	MAY	JUN	JUL.	AUG	SEP	ОСТ	NOV	DEC	Your
Flows Avg.	1 383	0.146	1013	0 649	0.416	0 278	0.377	0 636	0 255	O B41	1 823	1.805	0.802
(m³a=¹); Poak	18 97	0.31	23 18	8 59	1 80	2 42	4 00	6 08	3.96	9 4 1	19.57	20 72	23.18
Runoff (mm)	351	33	257	160	106	68	96	162	63	214	448	458	2415
Raintell (mm)	409	14	276	162	157	62	192	199	36	261	489	577	2834
Monthly and yea	arly statis	itics for p	revious r	acord (Au	1951 to l	Dec 1985-	-incomple	te or miss	ing month	s total 2.5	years)		
Maan Avg	0.947	0.754	0 645	0.521	0 400	0.353	0 436	0 571	0 682	0 794	1 023	1 107	0.686
	0.947 0.492	0.754 0.158	0 645 0 206	0.521 0.064	0 400 0 054	0.353 0.074	0 436 0 053	0 571 0 036	0 682 0.050	0 794 0 092	1 023 0 376		0.686
												0 198	0.447
lows Low (m³s=') High	0.492	0 158	0 206	0 064	0 054	0 074	0 053	0 036	0.050	0 092 2 031	0 376 1 600	0 198 2 655	0.447 0.994
llows Low	0.492 1.870	0 158 1 486	0 206 1.735	0 064 1 312	0 054 1 144	0 074 0.954	0 053 1.264	0 036 1.478	0.050 1.478	0 092	0 376	0 198	0.447

055013 Arrow at Titley Mill

1986

Maasurini First yaar		ty: WELS			C	Grid referen Level sti	ice 32 (S0 n. (m OD):		5		С	atchment (m): 126 4 OD): 542
Hydrom	drometric statistics for 1986 JAN FEB ws Avg. 6.972 1.912													
Flows	Avg.			MAH 2 109	APR 3 868	MAY 2.218	JUN 1.025	JUL 0 395	AUG 1,246	SFP 0 691	OC7 0 697	NOV 6 625	DEC 6 157	Year 2.826
{m³s=1}:	Peak	101.12	4.92	6 43	7 86	4.77	3.11	061	24.79	1 55	4 34	27.66	17 38	101.12
Runoff (mi	m)	148	37	45	79	47	21	8	26	14	15	136	130	706
Reinfell (m	vm)	144	10	67	97	89	39	45	135	14	101	153	155	1049
Monthly	and ya	arly statis	tics for p	revious r	ecord (Oct	1966 to 0	Dec 1985)							
Mgan	Avg.	4.748	4 235	3 629	2 099	1.852	1 177	0.758	0 631	0 908	2 025	3 022	4 304	2 443
flows	Low	1.886	1 936	1 629	0 962	0 526	0.332	0.210	0.154	0 277	0 294	0 662	1 694	1.309
(m²a = 1)	High	9.003	7 677	8.933	4.176	5 00 1	2.559	3 842	1 546	2 459	6 9 1 6	6.261	7 566	3.418
Peak flow	(m'a'')	63.98	39.94	57 85	19 41	32 49	13 09	30 68	9 59	18 85	36 45	28 98	63 34	63.98
Runoff (m:	m)	101	82	77	43	39	24	16	13	19	43	62	91	610
Rainfall (m	ım)	109	82	88	55	77	68	51	76	97	90	99	111	1001
Factors a	ffacting f	llow regime	ı. P								1986 run	off is 1169	% of prev	ious mean

Station type: VA

rainfall 105%

055014 Lugg at Byton

1986

Measuring authori First year: 1966	ity: WELS			C	irid referen Level str	nce 32 (S0 n (m QD)		7		С			rn) 203.3 OD) 660
Hydrometric sta	ntistics fo	r 1986											
Flows Avg. [m²s='): Peak Runoff (mm) Rainfall (mm)	JAN 10.160 35.30 134 151	FEB 4.184 8.80 50 9	MAR 3 784 7 84 50 74	APR 6 198 12 25 79 101	MAY 3 885 5.36 51 87	JUN 1 855 3.50 24 40	JUL 0.995 -1.27 13 42	AUG 1,551 13,32 20 136	1.122 1.71 1.4 1.1	OCT 1 018 2 52 13 94	NOV 8 398 25 89 107 156	DEC 10 330 23.43 136 154	Year 4.457 35.30 692 1055
Monthly and ye	arly statis	stics for p	revious r	acord (Oct	1966 to 0	Dec 1985)							
Meen Avg flows Low (m²s-') High Peak flow (m²s-') Runoff (mm) Rainfall (mm)	7.393 2.991 11.940 54.27 97 116	7.014 2.630 12.870 37.53 84 85	5.991 2.947 13.980 33.24 79 91	3 902 2 016 7 106 18 82 50 61	3 284 1 186 7 994 45.56 43 82	2 118 0 772 4 113 14 18 27 66	1 433 0.557 5 253 26.16 19 54	1 161 0 414 1 997 9.52 15 75	1.351 0.678 3.079 12.46 17 97	2.803 0.657 7.962 28.51 37 88	4 393 1 219 8 774 27.22 56 100	6 443 2.978 10 350 37 49 85 113	3.928 2.321 4.954 54.27 610 1028
Factors affecting Station type: FVV		9 :									off is 113 nfall 103		ous mean

055018 Frome at Yarkhill

1986

Maasuring First yaar:		y: WELS			C	ind referen Level s	nce. 32 (S0 tn. (m OD)		8		С		erea (şq kı tax eti. (m	
Hydrome	stric sta	tistics fo	r 1986											
Flows (m³a=¹); Runoff (mr Rainfall (mr	n}	JAN 3.537 19.54 68 101	FEB 1 819 10 98 31 7	MAR 0 749 2 60 14 48	APR 1.939 5.46 35 70	MAY 1 409 14 48 26 70	JUN 0.701 4.70 13 45	JUL 0.357 0.76 7 44	AUG 0.759 9.61 14 128	SEP 0 322 0 75 6 17	OCT 0 269 0 74 5 56	NOV 2.131 14.84 38 98	DEC 2.721 9.47 51 88	Year 1,393 19,54 305 772
Monthly	and yea	arty statis	stics for p	revious r	ecord (Oc	1968 to 0	Dec 1985-	incomple	te or miss	ing month	s total 0.1	years)		
Mean flows (m ³ s ⁻¹) Peak flow Runoff (mr Rainfall (mr	n}	2.643 0.214 4.668 23.84 49 73	2.605 0.389 5.456 24.99 44 53	2 332 0.560 5 176 24.28 43 65	1.189 0.359 2.298 14.74 21 43	1.143 0 274 3 972 25 89 21 64	0.662 0.146 1.349 16.99 12 58	0.362 0.091 0.630 5.96 7 44	0.325 0.063 0.538 6.04 6	0 331 0 174 0 970 15 68 6 6	0 503 0 155 2 405 10 34 9 53	0 947 0 171 2 266 18 51 17 64	2.014 0.210 3.594 25.14 37 73	1.250 0.672 1.628 25.89 274 723
Factors of	fection f	low regime	• F								1986 nin	off is 111	% of pravi	ous mean

Factors affecting flow regime: E Station type: VA

FEB

4 6 19 23 83

197

MAR

2.395 16.15

APR

2 298 11 39

055023	, ,,	ye a	i Ne	ubri	UK							4	1986
Measuring author First year: 1936	rity: WELS					nce. 32 (Si stn. (m OD		0		С			n). 4010.0 n OD) - 752
Hydrometric st	tatistics f	or 1986											
	JAN	FEB	MAR	APH	MAY	JUN	ж	AUG	SEP	OCT	NOV	DEC	Year
Flows Avg	2'7 100	74 660	80 810	114.100	77 420	33 710	13 880	42 070	23 050	39.510	202 000	218 900	94.767
(m³s='): Peak Runoff (mm)	477 66 145	227 69 45	281 43 54	260 23 74	140.81 52	78 94 22	26 50 9	347 80 28	48 43 15	170 31 26	539 38 131	492.27 146	539.38 747
Rainfall (mm)	159	9	84	93	91	42	49	127	17	101	172	176	1120
Monthly and y	early stat	istics for	previous	record (O	t 1936 to	Dec 1985)							
Moan Avg	128 600	121 400	90 980	62.500	44.540	34 430	24 230	27 840	40 240	59.340	100 300	122.900	71.201
lows Low	25 050	30 760	22.110	17 930	12 340	10 970	7 426	5.180	7.271	9 582	31 730	46 890	39 916
(m s) High	241.900	234 000	325 400	133 100	125 000	131 600	95 830	83 680	174 000	174 700	252.400	246 000	113.382
eak flow (m³s=')			905 40	365 30	387.90	467 20	368 30	258 50	531 70	472 90	600.30	812 70	905.40
Runoff (mm) Rainfolf (mm)	86 110	74 78	61 76	40 62	30 75	22 63	16 67	19 84	26 89	40 93	65 112	82 114	560 1023
Factors affecting Station type: VA		ne: SPE					-	-			noff is 133 iinfall 109		rious mear
056013	3 Y:	scir (at Pe	onta	rysc	ir						1	1986
Measuring autho	rity: WELS					nce: 32 (Si		14				nt area (sq Max elt (n	km), 62.1
Hydrometric st	tatistics f	or 1986				·						•	•
,													

0 998 2.23 38 10 Runoff (mm) Rainfall (mm) 102 138 95 110 29 42 49 144 218 265 210 143 69 164 Monthly and yearly statistics for previous record (May 1972 to Dec 1985 incomplete or missing months total 0.2 years)

1 850 6 93

0 702 0 104 2.964 28 81 30 0 711 0 214 1 788 74 33 29 73 0 446 0 150 1 117 11 06 19 71 1 203 0 283 3 947 21 44 50 Avg 3.352 2.736 1.767 2 5 1 3 1 335 1 023 2 087 3.011 3.606 1.891 0 269 3 041 14 B1 44 flows Low (m³s-1) High Peak flow (m³s-1) 1 146 5.795 36.98 0 431 3 211 13 54 1.286 2.465 85.01 950 0.852 0 214 4 182 1.475 4 924 2 196 6 324 4 959 31.78 6 303 85 01 89 30 35 124 59.93 154 106 107 55 66 Runoff (mm) 143 107 Rainfall (mm)* 162 134 85 101 148 138 159 184 1428 *(1973-1985)

0 693 3 33

AUG

1 160 30 69

0 509

Factors affecting flow regime, N Station type: C

Flows Avg (m³s-¹): Peak

1986 runoff is 117% of previous mean rainfell 111%

270

Year 2.207 34.02 1114 1587

057008 Rhymney at Llanedeyrn

1986

Moasuring First year:		ty: WELS			C	and referen Lavel si	nce 31 (\$1 in (m OD):		1		C			.m): 178.7 (OD): 617
Hydrome	etric st	stistics fo	r 1986											
£1aa		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	Year
Flows (m ² s ⁻¹).	Avg. Peak	13.870 108.25	3 204 6 26	4 379 37.56	5 861 22,18	6 440 31 31	3 764 54 30	1 539 7.17	5 2 1 5 8 1 . 6 6	2 093	4 923 43 46	16.560 113.46	14 750	8.883
Runott (mr		208	43	66	85	97	55	23	78	6.06 30	74	240	89.94 221	113.46 1220
Rainfall (m		218	5	123	116	150	70	78	177	26	190	254	272	1679
Monthly	and ye	arly statis	stics for p	previous r	ecord (Jan	1973 to (Dec 1985)							
Mean	Avg	9.063	7 893	7 119	3.932	2.923	1 957	1 419	2 450	3 809	6.013	7.625	9 375	5.289
flows	Low	3 3 1 3	3.199	2 889	1 754	1 276	0 873	0 602	0 571	0.913	0.748	2 355	3 2 1 8	2.903
(m³s=1)	High	17 200	15.620	20 960	9 695	8 340	4 604	2 371	10 450	11 500	13 700	15 430	15 730	7.153
Peak flow	(m ³ s ⁻¹)	100 10	72.22	105 80	4155	26 05	32 92	27.39	87.41	101 60	118 50	106 50	147.30	147.30
Runoff (mr	m)	136	108	107	57	44	28	21	37	55	90	111	141	934
Rainfull (m	m)	159	111	126	61	83	67	63	101	154	136	148	169	1378
Factors at Station ty		A (Iow regime	: PGE									off is 131 nfall 122		iou s mean

058006 Mellte at Pontneddjechan

Measuring authorit First year: 1971	y: WELS			C	Grid referen Level si	oce: 22 (St		2			Catchmen N		km): 65.8 OD): 734
Hydrometric sta	tistics fo	r 1986											
Flows Avg (m³s-¹). Peak Punoff (mm) Rainfall (mm)	JAN 5 95 1 70 15 242 296	FEB 0.913 2 02 34 12	MAR 3.717 23.04 151 200	APR 3.174 30 08 125 168	MAY 4.283 20.85 174 264	JUN 1 592 15 69 63 77	JUL 0 716 13.18 29 118	AUG 2 441 40 82 99 197	5FP 0 789 2.65 31 36	OCT 4 178 34.19 170 303	NOV 9.471 106.85 373 428	DEC 7 526 64 49 306 414	Year 3.729 106.85 1798 2513
Monthly and yea	arly statis	stics for p	previous r	ecord (Oct	1971 to (Dec 1985-	-incomple	te or miss	ing month	s total 0.3	years)		
Mean Avg flows Low (m³s-1) High Peak flow (m³s-1) Runoff (mm) Rainfall (mm)	4.883 1.932 8.274 82.30 199 247	3.742 2.073 7.231 66.12 139 155	3 655 .1 378 10 670 72 93 149 187	2 014 0 497 5 095 39 02 79 97	1.563 0.383 3.233 21.45 64 116	1.133 0.322 3.559 32.54 45 107	0.941 0.242 2.608 39.14 38 93	1 682 O 207 6.802 58 52 68 152	2 558 0 562 6.876 81 01 101 189	3.336 0.548 6.305 96.78 136 198	4 637 2 063 7.875 79 82 183 236	5.218 2.641 8.739 127.60 212 254	2.945 1.985 3.814 127.60 1412 2031
Factors affecting fi Station type: FVV		s. S P									off is 127 nfall 124		ious mean

059001 Tawe at Yynstanglws

1986

Maasuring a First year: 1:		y: WELS			(Grid referer Level s	ice: 21 (S) itn. (m OD		8		C	atchment N	area (sq.k Aax alt. (m	
Hydrometr	ic sta	itistics fo	r 1986											
		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg	28.620	5 892	17,140	14 B30	17 670	7.755	5 727	15 120	5.099	17.270	38 260	34 330	17.309
(m ³ e) l	Peak	219.92	12.86	89.07	122.91	100 00	52 94	109 99	204 52	20 68	114 41	236 15	220 60	236 15
Runoff (mm)		337	63	202	169	208	88	67	178	58	203	435	404	2411
Rainfell (mm)		261	3	198	151	220	73	132	208	34	278	404	396	2358
Monthly ar	id ye	arly statis	itics for p	revious r	ecord (Oc	t 1957 to l	Dec 1985-	-incomple	ete or miss	ing month	s total 0.7	years)		
Mean .	Avg.	18.740	13.730	11 330	8 520	7 260	5 095	4 932	7 487	10.250	13 820	16 710	18 500	11.360
lows l	.ow	1 479	2 445	3.175	2.145	1 603	1.354	1 032	1 280	0 574	2 587	8 358	3,931	7.613
(m ³ s ⁻¹) i	High	36.580	29 040	41.630	17.020	17 980	15 960	9 480	27 090	26.290	43.430	33 320	43 650	15.158
Peak flow (m	's '	275 10	322 BO	270.20	188 60	147 50	214.10	131.90	261 80	286 00	314 30	290 60	461 30	461.30
Runoff (mm)		220	147	133	97	85	58	58	88	117	163	190	218	1574
Rainfall (mm)		205	135	139	110	115	109	110	143	175	193	205	221	1860
Factors affer Station type		low regime	s: GEI									ioff is 153 กรลปี 127		ious meai

060002 Cothi at Felin Mynachdy

1986

Moasuring First year:		ity: WELS			(Grid referei Level s	nce 22 (Si tn (m OD)		5		C			m). 297 8 OD) 484
Hydroma	tric st	stistics fo	r 1986											
Flows (m ² s='). Runoff (mm Rainfall (mn	1)	JAN 24.030 96.58 216 246	FEB 4 401 13 98 36 1	MAH 9.920 47.45 89 159	APR 11.910 54.43 104 131	MAY 12 850 59 92 116 172	JUN 5.240 28.18 46 68	JUL 1 793 11.71 16 100	AUG 12.500 162.85 112 194	SEP 4.160 15.35 36 19	OCT 9 177 54 86 83 195	NOV 36 270 153 85 316 331	DEC 29.750 116.81 268 332	Year 13.500 162.85 1437 1948
Monthly	and ye	arly statis	stics for p	revious r	ecord (Oc	t 1961 to	Dec 1985-	incomple	ete or miss	sing month	s total 1.9	years)		
Mean flows (m ³ a=1) Peak flow (Runoff (mm Rainfall (mn	1)	17.700 2.990 37.580 141.60 159 171	14 160 3.708 31 100 181 20 116 116	12.550 2.821 40.710 220.90 113 129	8 546 1 444 20 380 85.88 74 93	6.715 0.835 14.820 87.22 60 102	4 271 0 824 13.070 90 33 37 96	3 452 0.418 11.810 144 40 31 96	6 205 0 362 23 350 171 00 56 123	8 311 1,500 23 920 129 70 72 154	15 380 1.610 37 940 188 60 138 178	17 710 8 903 33 360 175 80 154 175	20.370 6 723 41 140 274.70 183 187	11.277 7.174 14.950 274.70 1195 1620
Factors aff Station typ		flow regimi	o: P E									off is 120 nfall 120		ious mean

Gwaun at Cilrhedyn Bridge 061003

1986

Measuring authorit First year: 1969	WELS			C	Grid referer Level si	nce: 22 (S/ tn. (m OD)		e			Catchinent M		km) 31 3 OD) 468
Hydrometric sta	tistics fo	1986											
Flows Avg. (m³s-¹). Paak Runoff (mm) Ramfall (mm)	JAN 2 279 11 36 195 194	FEB 0 691 1 53 53 4	MAR 1 493 3 62 128 139	APR 1.259 4.81 104 127	MAY 0 829 2 53 71 132	JUN 0 529 3.79 44 91	JUL 0 367 2.58 31 89	AUG 1 095 16 41 94 189	SEP 0.553 1.39 46 14	OCT 0 665 3 99 57 161	NOV 2 493 15 21 206 270	DEC 2 596 13.17 222 334	Year 1.237 16 41 1252 1744
Monthly and yea	orly statis	stics for p	revious r	ecord (Ap	1969 to (Dec 1985-	-incomple	te or miss	ing month	s total Q 1	years)		
Moon Avg. flows Low (m³s-¹) High Peak flow (mm) Runoff (mm) *(1970-1985)	1 887 0 859 3 898 22.52 161 172	1 658 0 751 4 108 21 10 129 116	1367 0576 3668 1670 117	0 837 0 352 2.247 13.51 69 81	0 575 0 231 1 248 7 23 49 80	0 493 0 178 1 600 18 35 41 83	0 309 0 108 0 712 7 02 26 77	0 562 0 073 1 972 23 48 48 113	0 612 0 288 1 630 15.64 51	1,357 0 271 3 462 16.13 116 170	1 738 0 605 3 080 20 03 144 175	2 061 1.487 2.851 20 59 176 183	1.119 0.802 1.392 23.48 1129 1523
Factors affecting fi Station type: VA	low regime	D :									off is 1119 nfall 1159		ous mean

Ystwyth at Pont Llolwyn 063001

1986

Measuring author First year: 1963	rity: WELS			•		nce. 22 (St tn. (m OD).		4		C			m): 169.6 OD): 611
Hydrometric st	atistics fo	r 1986											
Flows Avg (m³a=1) Paak Runoff (mm) Rainfall (mm)	JAN 12:210 53:84 193 220	FEB 2 571 6 01 37 5	MAR 6 470 63 99 102 145	APR 5 125 27 25 78 107	MAY 2 742 6 05 43 92	JUN 1 583 8 61 24 48	JUI, 1 952 13.97 31 134	AUG 3 789 25 21 60 139	SEP 2 814 18.50 43 22	OCT 4 168 29.50 66 159	NOV 14 190 107 65 217 262	DEC 17 100 133 01 270 314	Year 6 226 133.01 1164 1647
Monthly and ye	early stati	stics for p	previous r	ecord (Oc	t 1963 to 1	Dec 1985-	-incomple	ete ar miss	sing month	e total 0.3	3 years)		
Mean Avg flows Low (m²s¬¹) High Peak flow (m²s¬¹) Runoff (mm) Rainfall (mm)	9 297 2 268 15 330 105.60 147 151	7.214 2.283 15.200 88 63 104 103	5 999 2 816 18 470 126.70 95 114	4.247 0.960 10.080 90.32 65 83	3 419 0 577 10 100 105 10 54 93	2.611 0.625 7.571 129.70 40 93	2 475 0 422 5 461 68 24 39 93	3.340 0.180 8.556 174.30 53 110	4 480 0 882 10 670 7 1.02 68 135	7 124 0 558 19 800 129.90 113 146	9 281 3 959 18 320 128.10 142 167	10.950 2.219 22.600 210.40 173 179	5.868 3.783 7.774 210.40 1092 1467
Factors affecting Station type: VA	flow ragim	0.									off is 107		ious mean

064001 Dyfi at Dyfi Bridge

1986

Measuring authori First year: 1962	ty WELS					nce 23 (Sh stri (m OD		9		C			m), 471.3 OD) 905
Hydrometric sta	itistics fo	r 1986											
Flows Avg (m³s-'): Peak Runoff (mm) Rainfall (mm)	JAN 47 130 280 77 268 293	+EB 6 905 22 20 35 11	MAR 29 910 208 23 170 231	APR 19 950 100 16 110 117	MAY 16 160 48 86 92 148	JUN 7 55 ° 34 08 42 53	JUL 6 690 51 05 38 154	AUG 21 040 140 33 120 169	SEP 5 966 29 12 33 21	0C1 20 740 135 35 118 219	NOV 70 470 357 54 388 345	DEC 63 770 384 93 362 420	Year 26:357 384 93 1775 2181
Monthly and ye	•	•				Dec 1985-	—іпсотри	ite or miss	ung montr	is total 9.8	years)		
Muan Avg flows Low (m³s=) High Peak flow (m³s=1)	33 540 6 245 68 810 350.20	23.110 5 174 46 060 340 00	25 710 5 789 75 790 360 70	17 180 2 626 42 490 271 30	12 160 1.295 23 600 337 20	11 150 1 618 21 770 402 10	8 377 0 822 16 680 162 00	12 960 1 819 40 440 210 00	19 000 6 595 34 110 254 90	30 640 10 770 76 960 344 00	33 600 14 530 62 790 375 50	42 480 7 501 88 280 580 50	22.514 18.343 25.700 580.50
Runoff (mm) Reinfell (mm)	191 199	119 126	146 154	94 111	69 113	61 114	48 105	74 146	105 182	174 199	185 206	241 242	1507 1897
Factors affecting f Station type: VA	llow regimi	n N									noff is 118 nfatt 115		ous mean

064002 Dysynni at Pont-y-garth

1986

Measurin First year		ity: WELS			C	irid referer Level s	ice 23 (\$F th. (m 00)		5					km) 75 1 OD) 892
Hydrom	etric st	atistics fo	r 1986											
		MAL	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Year
Flows	Avg.	7 755	1 548	5 '70	4 559	3 745	2 253	2 955	4 674	2 096	4 000	12 680	12 580	5.335
(m3s-1	l. Peak	35 08	3 62	40 84	36 85	13 89	8 39	15 57	27 04	1188	29 64	46 20	8: 29	81.29
flunoff (m	im)	277	50	:84	157	134	78	105	167	72	143	438	449	2253
Romfall (m	nm)	277	7	256	142	159	79	217	191	38	234	369	484	2453
Monthly	y and ye	arly statis	tics for p	previous r	ecord (Jan	1966 to (Dec 1985-	-incomple	te or miss	ing month	s total 1 6	years)		
Moon	Avg.	5 755	4 853	4 479	3 381	2 509	2 3 1 5	2 493	3 061	4 139	5 648	6 597	6 810	4.335
flows	Low	3 371	2 622	0 986	0 457	0 298	0 427	0 2 / 8	0 289	1 926	0 556	3 0 1 1	2 770	3.612
(m³s = 1	High	11 040	8 809	14 780	7 209	7 602	5 921	5 407	8 899	7 285	12 350	10 750	10 750	5.416
Peak flow	/ (m ³ s = ')	61.40	41 34	98.71	33 40	76 32	48 42	53 35	5162	70 14	107.70	12:30	84 70	121.30
Runoff (m	ורח)	205	158	160	117	89	80	89	.09	143	201	228	243	1822
Hainfo'l (n	nm)	222	149	: 74	125	:31	145	139	165	211	246	251	243	2201
Enclose s	Macuna	flow more	. NI								1096	odf .e. 124	94 of prov	

Factors affecting flow regime, N Stetion type: VA

1986 runoff is 124% of previous mean rainfall 111%

065005 Erch at Pencaenewydd

1986

Measuring authori First year: 1973	ty. WELS			C		ce 23 (St in (m OD)		1		•	Catchment M		km) 18 1 ()D) 564
Hydrometric sta	atistics fo	r 1986											
Flows Avg (m³s-1): Peak Runoff (mm) Rainfall (mm)	JAN 1,294 10,41 191 205	FEB 0 365 0 71 49 3	MAR 0 695 6 14 103 185	APR 0.771 6.56 110 124	MAY 0 461 3 44 68 129	JUN 0 390 4 15 56 77	JUL 0 349 5 52 52 148	AUG 0 558 6 89 83 158	SEP 0 300 1 22 43 17	OCT 0 415 4 01 61 141	NOV 1 472 9 22 211 233	DEC 1 764 15 49 261 313	Year 0.736 15.49 1288 1733
Monthly and ye	arly statis	itics for p	revious r	ecord (Jan	1973 to 0	Dec 1985)							
Mean Avg flows Low (m³s=') High Peak flow (m³s=') Runoff (mm) Rainfe'l (mm)	0 956 0 629 1 396 10 25 142 141	0 857 0 414 1 869 15 45 116 97	0 719 0 311 1 804 19.78 106 116	0 43° 0 177 0 892 11 00 62 66	0 334 0 120 0 728 4 68 49 79	0 202 0 089 0 539 6 99 29 68	0 161 0 081 0 427 5 40 24 72	0 274 0 061 1 113 9 22 41 111	0 417 0 167 0 919 7 42 60 145	0 794 0 236 1 736 11 84 117 155	1 020 0 264 1 816 16 91 146 161	1 084 0 600 1 616 10 45 160 157	0.603 0.430 0.734 19.78 1052 1368
Englace offection (low toolog	s: NI								1006	122	V a4	

Factors affacting flow regime: N Station type: C

1986 runoff is 122% of previous mean rainfall 127%

066006 Elwy at Pont-y-gwyddel

1986

Measurin First year		ty. WELS			(nce 23 (St tn (m OD)		3 .		C	atchment N		m) 1940 OD) 518
Hydrom	etric st	stistics fo	r 1986											
flows (m³s=1) Runoff (m Rainfall (m	im)	JAN 9 122 42.22 126 155	FEB 2 649 8 69 33 14	MAH 3 520 15 25 49 106	APR 6 939 42 30 93 96	MAY 2 730 12 10 38 100	.KJN 1 043 2 58 14 45	JUI 0 526 1 16 7 67	AUG 3 013 38 13 42 142	SEP 1 446 6 02 19 14	OCT 1 361 15 93 19 113	NOV 10 370 41 76 139 171	DEC 11 270 44 64 156 218	Year 4 499 44 64 733 1241
Monthly	and ye	arly stati	stics for p	previous r	ecord (De	c 1973 to	Dec 1985)							
Mean flows (m³s=1) Peak flow Runoff (m Rainfall (n	r (m³s ²⁻¹ } im)	7 982 3 115 11 430 82 42 110 '31	6 259 3 208 12 050 50 82 79 87	5.336 1.539 11.950 76.59 74 101	2 641 0 823 5 761 50 76 35 57	1 887 0 479 5 9 8 21 66 26 76	1 31° 0 359 3 300 18 00 18 74	0 694 0 278 1 402 27 05 10 64	1 093 0 242 4 351 35 15 15 87	2 643 0 629 7 450 58 57 35 136	5 507 1 733 11 530 143 00 76 127	7 542 2 263 11 850 101 60 101 153	7 880 4 879 14 450 75 42 109 139	4 224 2.908 5.094 143 00 687 1232
Factors 8	affecting	flow regim	o: SRP								1986 run	off is 107	% of prev	ious mean

Factors affecting flow regime: SRP Station type: VA

986 runoff is 107% of previous mean rainfall 101% ...

067008 Alyn at Pont-y-capel

1986

Measuring authorit First year: 1965	y: WELS			(Grid referer Level st	nce: 33 (S. n. (m.OD).		1		С	atchment . M	area (sq kr lax alt. (m	
Hydrometric sta	tistics fo	r 1986											
Flows Avg. (m³s=¹): Poak	JAN 6 029 21.62	FEB 1.959 5.00	MAR 1 448 5.05	APR 6 474 25 28	MAY 1.689 3.28	JUN 0 981 4 51	JUL 0 643 1 10	AUG 2.456 20.81	SEP 1 103 4 69	OCT 0.674 1.87	NOV 2 978 10 29	DEC 5.040 13,24	Year 2.623 25.28
Runoff (mm) Rainfall (mm)	71 123	21 5	17 64	74 138	20 64	11 53	8 50	29 172	13 9	8 69	34 99	59 134	365 980
Monthly and yea	orty statis	itics for p	revious r	ecord (Jun	19 6 5 to 0	Dec 1985)							
Mean Avg. flows Low (m²s+') High Peak flow (m³s+') Runoff (mm) Rainfall (mm)	4,360 1,753 7,219 27,53 51 86	4 095 2 088 9 085 28.52 44 68	3.310 1.465 8.027 26.11 39 75	2 400 1 023 5 573 21 09 27 57	1.885 0.712 5.657 26.86 22 74	1 183 0 438 2 873 18 34 13 64	0 890 0 331 2 098 23.23 10 59	0.844 0.287 2.244 18.07 10 68	1 002 0 474 3 906 59.11 11 86	1.956 0.452 6.896 21.90 23 82	3 127 0 614 6 168 28 21 36 109	4 384 1.246 9 480 35.92 52 97	2.446 1.266 3.027 59.11 340 925
Factors affecting fi Station type: CC	law regime	e: El									off is 1079 Infall 1069		ous mean

068003 Dane at Rudheath

1986

Measuring authori First year: 1949	ity: NWWA	λ.		(Grid referei Level si	nce 33 (S. tn. (m OD):		8		C		area (sq k Aax alt (m	
Hydrometric st	stistics fo	r 1986											
Flows Avg (m³s**). Peak Runoff (mm) Rainfall (mm)	JAN 9 714 49.49 64 102	FEB 3 55 1 10 22 21 5	MAR 5.672 23.76 37 80	APH 10 290 68.32 66 95	MAY 3 961 9.51 26 69	JUN 2 447 15 66 16 51	JUL 1.337 3.84 9 58	AUG 2 586 42 34 17 90	SEP 1 363 4 87 9 9	OCT 2 177 11 83 14 89	NOV 7 489 73 36 48 92	OEC 14-140 193.60 93 145	Year 5.394 193.60 419 685
Monthly and ye	arly statis	stics for p	previous r	ecord (No	v 1949 to l	Dec 1985-	—incomp1	ete or mis	sing montl	ns total 5.5	years)		
Meen Avg. flows Low (m³s=1) High Peak flow (m³s=1) Runoff (mm) Rainfell (mm)	7 288 2.183 15.330 134.50 48 76	5.878 1 545 12 760 80 81 35 54	4.656 1.277 17.210 134.00 31 59	3.987 0.988 9.111 63.17 25 60	3 000 0 720 7 335 63 60 20 65	2 476 0 746 6.864 41 96 16 67	2 633 0 734 8.012 82.83 17 78	3 4 13 0 654 14 360 67 96 22 88	3 664 0 633 11 920 84 20 23 84	4 384 0.877 14 350 66 26 29 75	6 544 1 396 16 290 103 90 42 90	7.580 1 803 22 920 92 78 50 84	4.621 2.333 8.662 134.50 358 880
Factors affecting Station type, VA	flow regimi	s PGE1									off is 117 nfall 101		ious mean

069002 Irwell at Adelphi Weir

1986

Measuring a First year: 1		ty, NWWA	A		(Grid referei Level s	nca: 33 (S tn. (m OD)		7		C			m). 559 4 OD) 473
Hydromet	ric sta	itistics fo	r 1986											
		JAN 34.770 163.90 167 169	FEB 10 100 22 43 44 11	MAR 18 830 62 80 90 130	APR 19 780 97 57 92 94	MAY 12 940 33 19 62 93	JUN 9 340 39 64 43 58	JUA 7.187 19.68 34 66	AUG 13 470 39 64 64 134	SEP B 010 67 05 37 29	OCT 17.430 162.90 83 180	NOV 30.150 249.80 140 152	DEC 46.330 268.80 222 260	Year 19.028 268.80 1078 1376
Monthly a	nd ye	arly statis	stics for p	pravious r	ecord (Oc	t 1949 to I	Dec 1985-	—incomple	ete or miss	ing month	ıs total 2.0	years)		
flows		24.950 3.705 40.260 430.40 119 118	22.120 4.787 67.230 400.30 96 84	17 140 7.803 48 030 295 60 82 90	14 110 5 408 27 070 184 20 65 76	11.970 4.348 21.530 141.60 57 82	10 180 2 750 18 900 238 00 47 86	11.180 4 031 26 150 385 60 54 98	15.900 3 676 56 000 395.70 76 124	16 900 2.991 43 480 390.80 78 122	20 490 4 990 52.510 485 10 98 123	25 150 7 534 51 100 334 90 117 134	29 560 7 469 84.660 419 50 142 138	18.293 10.469 30.469 485.10 1032 1275
Factors affe Station type		low regime	e: S PGEI									off is ,104 nfail 108		ious mean

069006 Bollin at Dunham Massey

Moasurin First year		ty: NWWA	4		·	Grid referer Level si	nce 33 (S. In (m OD)		5		С		area (sq kı Aax alt. (m	
Hydrom	etric sta	itistics fo	r 1986											
		JAN	FEB	MAH	APA	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	Year
Flows	Avg	7 460	3 020	4 485	6 928	4 461	2 440	2 114	3 1 1 7	2 084	3.196	7 659	11.200	4.847
(m²s)	: Posk	20 3 1	6 73	14.78	24 98	18.28	1181	4 06	25.67	4 28	13.89	38.83	46.33	46.33
Runoff (m.	m)	78	29	47	70	47	25	22	33	21	33	78	117	599
Rainfell (m	nm)	95	6	80	87	78	45	52	89	11	96	99	163	901
Monthly	and ye	arly stati:	stics for p	previous r	ecord (Oct	1955 to (Dec 1985-	-incompk	ete or miss	ing month	s total 1.1	years)		
Moan	Avg.	6.257	5.452	4.298	3 508	2.903	2 298	2.220	2 789	3 128	3 912	5 300	6 244	4.020
flows	Low	1 639	1 686	1 694	1 742	1 286	0 707	0 875	0 464	0 65 1	1.300	1 804	2 296	2.728
(m³s=')	High	10 280	12 880	11 470	8 732	5 781	5 953	5 626	11.410	8.963	11.340	9 4 2 5	14 5 10	6.307
Peak flow	(m)s 1	43.95	39.29	36.91	60.43	63 02	34 19	41.50	4147	35 05	41 18	44 35	46 19	63 02
Runoff (m	m)	65	52	45	36	30	23	23	29	32	41	54	65	496
Rainfall (m	nm)	80	56	61	55	66	69	76	89	87	80	85	87	891
Factors a Station ty		low regimi	e. S PGEI									off is 121 nfall [101	% of previ %	ous mean
												!		

069015 Etherow at Compstall

1986

Measuring authorit First year, 1977	y NWWA	\			Grid referer Level si	nce 33 (S. (n (m OD)		3		С			m) 156 0 OD) 628
Hydrometric sta	tistics fo	r 1986											
Flows Avg (m³s=1). Peak Runoff (mm) Ruinfall (mm)	JAN 8.077 42 63 139 234	FEB 2 230 7 97 35 40	MAR 5 065 20 09 87 131	APR 5 791 30 81 96 131	MAY 2 334 9 21 40 107	JUN 1 282 6 92 21 63	JUL 0 926 1 98 16 74	AUG 1 575 22 07 27 136	SEP 1 259 9 07 21 29	- OCT 2 082 26 92 36 183	NOV 6 598 40 15 110 166	DEC 9 287 53 96 159 275	Year 3.875 53.96 786 1589
Monthly and year	orly statis	itics for p	previous re	ecord (Jai	n 1977 to [Dec 1985-	-incomple	te or miss	ing month	s total 0.3	years)		
Mean Avg flows Low (m²s²) High Peax flow (m²s²) Runoff (mm) Reinfali (mm)	5 747 3.445 8.964 42 12 99 151	4 714 2 141 8 539 44 46 74 94	5 012 1 365 10 080 46 03 86 146	3 090 1 070 6 325 32 66 51 82	2:59 0:539 4:870 18:79 37 76	1 503 0 835 2 997 24 95 25 105	1 '61 0 718 1 993 15 22 20 65	1 606 0 691 3 572 24 43 28 123	1.883 1 178 2 692 37 45 31 131	3 407 1 264 9 424 42 12 58 132	5 028 2 276 7 471 35 83 84 156	5 083 2 767 8 741 62 95 87 153	3 361 2.440 4.169 62 95 680 1414
Factors affecting f Station type: C	low regime	i. S PGEI									off is 116 nfall 111		ious mean

070004 Yarrow at Croston Mill

1986

Measuring First year		y NWWA			(Grid referer Level s	ice 34 (St tn (m 00)		ס					km) 74.4 OD) 456
Hydrome	tric sta	tistics fo	r 1986											
Flows (m³s='). Runoff (mn Rainfall (mr	r) m)	JAN 3 980 18 43 143 121	FEB 0 846 1 78 28 4	MAR 1 646 11 11 59 103	APR 2 456 15 96 86 95	MAY 1 217 5 05 44 81	JUN 0 968 12 42 34 63	JU! 0 626 2 36 23 65	AUG 1 363 25 12 49 124	SEP 0 840 10 94 29 26	OCT 1 942 22 07 70 138	NOV 3 469 33 83 121 121	DEC 6 531 76 57 235 203	Year 2 157 76.57 920 1144
Monthly	and yea	arfy stati:	stics for p	revious r	ecord (Jar	1976 to [Dec 1985)							
Mean flows (m ³ s ⁻¹) Peak flow i Runoff (m ³ Rainfall (m ³	ר)	3.258 1.491 4.917 33.44 117 106	2 352 1 108 4 917 20 17 78 61	2 636 1 104 7 574 93 13 95 98	1 239 0 586 2 504 31 18 43 50	1 149 0 508 2 577 27 79 41 69	0 873 0 405 1 240 30 15 30 78	0 661 0 494 0 971 11 69 24 50	0 915 0 379 1 372 15 84 33 89	1 249 0 628 2 062 28 57 44 1 10	2 578 0 854 6 360 89 38 93	2 812 1 349 4 699 34 23 98 112	3 283 1 756 5 012 107 60 118 114	1.918 1.251 2.830 107.60 814 1056

Factors affecting flow regime S PGEI Station type: MIS

1986 runoff is 113% of previous mean rainfall 108%

071004 Calder at Whalley Weir

1986

Measuring authori First year: 1963	ity NWWA	L		C		nce 34 (Si tn (m OD)		0		C			m) 316 0 OD): 558
Hydrometric st	stistics fo	r 1986											
Flows Avg (m³s-¹) Peak Runoff (mm) Rainfalf (mm)	JAN 19 720 93 15 159 175	FEB 4 592 12 10 35 11	MAR 10 100 69 00 86 129	APR 11 270 94 45 92 112	MAY 5 507 22 67 47 99	JUN 3 771 24 86 31 60	JUL 2 596 10 06 22 66	AUG 7 108 171 60 60 138	SEP 3 897 47 59 32 27	OCT 10 620 97 71 90 184	NOV 16 250 123 20 133 155	DEC 23 430 124 50 199 255	Year 9.822 171.60 986 1411
Monthly and ye	arly statis	stics for p	previous r	ecord (Oct	1963 to l	Dec 1985-	-incomple	te or miss	ing month	s total 2.6	years)		
Mean Avg flows Low (m³s=") High Peak flow (m³s=") Runoff (mm) Raintall (mm)	13.070 5.766 20.590 183.20 11.1 123	9 641 3 320 17 170 146 10 74 77	8 903 3 989 25 320 185.20 75 100	6 4 10 2.272 13 010 108 40 53 70	5 365 2 053 9 916 91 66 45 80	4 256 1 888 7 372 135 50 35 85	3 649 1 773 9 059 230 60 31 78	5 799 1 564 16 280 141 90 49 107	7 713 2 065 18 620 206 00 63 127	11 000 2 397 23 910 229 50 93 127	13 150 5 625 21 990 148 60 108 134	13 540 4 886 25 610 194 30 115 127	8 540 6 225 11 485 230.60 853 1235
Factors affecting Station type: FV	flow regime	e El									noff is 116 infall 114		ous mean

071010 Pendle Water at Barden Lane

1986

Measuring authorit First year 1971	y NWWA	.		(irid referen Level st	ice 34 (\$0 in (m 0D).		1		С			m) 108 0 OD) 557
Hydrometric sta	tistics fo	r 1986											
Flows Avg (m³s^*): Poak Runoff (mm) * Rainfall (mm)	JAN 7.502 52 54 186 185	FFB 1 649 5 78 37 15	MAR 4 204 52 21 104 128	APR 4 736 67 21 114 122	MAY 1 940 11 55 48 10:	JUN 1 162 8 80 28 58	JRJ: 0 763 3 54 19 63	AUG 2 993 96 31 74 143	SEP 1 246 23 56 30 25	OCT 3 779 46 46 94 178	NOV 5 715 49 18 137 157	DEC 8 531 63 13 212 249	Year 3.685 96 31 1082 1424
Monthly and yea	arly statis	itics for p	revious r	ecord (No	v 1971 to l	Dec 1985-	-incomple	ete or miss	ung month	s total 2.5	years)		
Mean Avg flows Low (m³s-1) High Peax flow (m³s-1) Runoff (mm) Raintal (mm)* *(1977-1985)	4.7:7 2.234 6.900 64.81 117	2 986 1 657 4 817 79 00 68 71	2 973 1 198 8 577 83 69 74 127	2 094 0 730 3 881 62 38 50 73	1 461 0 652 3 008 14 00 36 68	1 443 0 606 2 813 62 26 35 98	1 224 0 676 2 490 16 00 30 50	1 439 0 738 3 364 37 95 36 109	2 269 0 838 3 872 67 37 54 131	2 879 0 712 6 610 81 61 71 126	3 790 1 750 6 124 78 54 91 141	4 075 1 353 6 296 101 40 101 138	2.612 1.809 3.643 101.40 763 1268

Factors affecting flow regime. S El Station type: FV

1986 runoff is 142% of previous mean rainfall 112%

072002 Wyre at St Michaels

1986

Moasuring First yoar:		ty: NWWA	•		•	Grid roferer Level s	ice: 34 (SL itn (m OD)		1		Ļ	atchment N	area (sq k fax alt (m	
Hydrome	tric sta	itistics fo	r 1986											
Flows	Avg.	JAN 14.140	FEB 1.960	MAR 8.214	APR 6 917	MAY 5.048	JUN 3 054	JUL 1 657	AUG 3 622	SEP 2 208	OCT 9.816	NOV 15 110	0EC 26 530	Үөэг 8.190
(m³s=1).		89.58	5.57	59 20	64 09	32 53	59 92	12 07	5185	38 66	108 80	106 00	167 10	167.10
Runoff (mm		138	17	80	65	49	29	16	35	21	96	142	258	947
Rainfall (mr		140	3	139	88	116	70	79	109	24	188	162	271	1389
Monthly	and ye	orly statis	stics for p	revious r	ecord (Oc	t 1963 to l	Dec 1985-	-incompk	ete or miss	ing month	s total 0.2	years)		
Mean	Avg	9.792	7 055	6.900	4.687	3.33B	2 832	2 792	4 557	6 847	9 167	10 4 10	10 680	6.589
lows	Low	3 983	1 746	2 270	0.774	0.732	0 444	0.431	0.248	0.902	0617	4 859	2 58 1	3.186
(m³s ')	High	17.820	16 030	25.920	12 090	10 450	7 096	5.690	16 240	13 290	25 500	18.510	19 400	10.329
Paak flow ((m³s¯¹)	156 50	145 60	168 90	123 00	128.20	146 60	96 89	162.10	176 50	180 40	163 10	190 50	190 50
Runoff (mn	n)	95	63	67	44	33	27	27	44	65	89	98	104	756
Rainfall (mr	m)	121	72	96	70	79	91	87	112	139	135	140	126	1268
	facting f	low regime	s: S PG							30	1986 run	off is 125 nfall 110	% of previ	

073005 Kent at Sedgwick

1986

Measuring author First year, 1968	ity: NWWA	\		(nce: 34 (Si tn. (m OD)		4		C		area (sq k Aax alt (m	m) 209 0 OD): 817
Hydrometric st	atistics fo	r 1986											
Flows Avg (m³s=¹): Peak Runoff (mm) Rawfall (mm)	JAN 14 690 89.03 188 214	FEB 3 093 6 87 36 B	MAR 12.290 92.00 157 217	APR 6.127 41.75 76 104	MAY 11.580 53.44 148 187	JUN 4 883 30 54 61 73	JUL 2 002 26 24 26 88	AUG 5 305 30 11 68 128	SEP 2 326 9 64 29 26	OCT 10 830 81.32 139 254	NOV 20 140 76 21 250 268	DEC 23 200 81 77 297 357	Year 9.705 92.00 1475 1924
Monthly and ye	arly statis	stics for p	previous r	ecord (No	v 1968 to	Dec 1985	i				'		
Mean Avg. flows Low (m³s=1) High Peak flow (m³s=1) Runoff (mm) Rainfall (mm)	12 610 5 998 20 820 197.70 162 194	9.586 4 529 16.800 114 00 112 106	8 995 3 348 22.750 166.10 115 145	6 377 2 038 12.620 111.10 79 88	4 007 1.222 9.612 39 62 51 87	3 7 16 0 872 13 010 72 86 46 102	3.569 0.658 10.550 94.65 46 107	5.595 0.740 18.790 88.68 72 130	8 329 1 753 15 630 120 70 103 184	10 380 1 396 17 940 123.50 133 176	13 850 5.484 21 410 175.00 172 214	12.940 5 466 22 360 231 40 166 187	8 322 5 995 10.316 231.40 1257 1720
Factors affecting	flow regim-	e N								1986 rur	naff is 117	% of prev	ous mean

Factors affecting flow regime. N Station type, CBVA

386 runoff is 117% of previous mean rainfall 112%

074002 Irt at Galesyke

1986

Measuring authorit First year: 1967	y. NWWA			C	Grid referen Level st	ce 35 (N) (n. (m OD)		9			Catchment M		km) 44 2 OD) 978
Hydrometric sta	tistics fo	r 1986											
Flows Avg. (m³s="). Peak Runoff (mm) Rainfali (mm)	JAN 4,195 10 34 254 301	FEB 0 736 2 09 40 5	MAR 3 201 9 82 194 303	APR 2.369 4.97 139 157	MAY 3 901 6 84 236 254	JUN 2 444 5 95 143 137	JUL 1 270 7 67 77 200	AUG 2 815 7 07 171 174	SEP 1 361 4 54 80 62	OCT 4.842 18.46 293 382	NC)V 6.997 16.82 4.10 363	DEC 6 845 20 02 415 516	Year 3.415 20.02 2453 2854
Monthly and yes	orly statis	stics for p	revious r	ecord (De	: 1967 to I	Dec 1985-	-incomple	ste or miss	ing month	s total 0 1	years)		
Mean Avg flows Low (m³s=1) High Peak flow (m³s=1) Runoff (mm) Rainfall (mm)	4 447 1.321 8.242 31.73 269 322	3 018 0 943 5 117 18 67 167 184	2.927 0.737 6.575 16.74 177 232	2.680 0.430 5.947 34.04 157 150	1 402 0.257 2.572 6.19 85 125	1.774 0.638 5.216 10.27 104 167	2.224 0.467 4.667 27.26 135 184	2 556 0 286 6.757 18 46 155 216	3 792 0 400 7 630 17 89 222 294	4 566 0 554 8.174 27 29 277 310	4 882 1.885 7 094 21 85 286 338	4 205 1 802 7 645 20 33 255 299	3.207 2.440 3.950 34.04 2290 2821
Factors affecting fi Station type, VA	low regime	SPI										% of previ	ous mean

074005 Ehen at Braystones

Measuring auth First year: 197		4		c		nce: 35 (N) In. (m OD)		1		C			m): 125 5 OD): 899
Hydrometric	statistics fo	× 1986											
Flows Av. (m³s-1): Pas Runoff (mm) Rainfall (mm)		FEB 1.858 6.16 36 4	MAR 5.845 41.12 125 211	APR 3.857 22 33 80 105	MAY 6.877 24 58 147 177	JUN 4,176 38 25 86 111	JAN. 1 609 11 16 34 129	AUG 3 494 24 53 75 129	SEP 1 836 9 21 38 36	OCT 8 467 80 20 181 297	NOV 12 300 36.66 254 269	DEC 13-230 46-57 282 343	Year 5 957 80.20 1507 2008
Monthly and	yearly stati	stics for p	pravious r	ecord (Jer	1974 to I	Dec 1985)					•		
Moon Avi flows Lov (m³s-1) Hig Peak flow (m³s- Runoff (mm) Rainfall (mm)	v 2.220 h 16.030	5.960 2.011 15.890 79.36 116 115	5.328 2.225 10.220 69.47 114 166	3.081 0.993 7.046 81.07 64 81	1 804 0 771 4 805 46 97 38 78	1.685 0.779 4.371 30.96 35 94	1.875 0.789 5.444 53.72 40 118	3.774 0.661 12.260 73.04 81 146	5 762 1.694 12 840 76 40 119 214	7 971 3 640 14 080 115 90 170 222	8 323 3.121 12 470 64 49 172 215	7 955 3 136 13.380 91 47 170 203	5.114 3.963 6.328 115.90 1286 1861
Factors affection Station type: V		e SP									off is 117 nfalt 108		ious mean

075004 Cocker at Southwaite Bridge

1986

Measuring a First year: 1		ty NWWA			G	Grid referen Level st	nce: 35 (N) tn: (m: OD)		1		C	atchment A		m) 116 6 OD) 838
Hydromet	ric sta	tistics for	r 1986											
		JAN 8 390 34 87 193 246	FEB 1 313 3 92 27 4	MAR 5.865 32 56 135 231	APR 3 076 6 59 68 110	MAY 7 109 23 66 163 214	JUN 3 599 22 54 80 108	JUL 0 9 15 4 69 2 1 1 3 0	AUG 3 662 11 34 84 152	SEP 2 009 7 76 45 41	OCT 7 879 28 89 181 3*5	NOV 14 710 41 55 327 350	DEC 14 830 41 21 341 454	Year 6 113 41.55 1865 2355
Monthly a	nd ye	arly statis	tics for p	previous r	ecord (Dec	c 1967 to I	Dec 1985)							
flows		7.583 1.823 17.190 81.21 174 217	5 188 1 685 9 483 48 58 109 113	4 716 1 270 10 010 46.91 108 151	3 713 0 677 9 001 45 62 83 99	2 052 0 528 4 773 23 38 47 99	2 039 0 633 9 122 43 37 45 114	2 237 0 672 4 966 28 20 51 126	3 336 0 738 11 880 44 89 77 154	5 491 0 718 11 920 36 33 122 213	7 106 0 668 13 960 93 20 163 227	8 680 2 957 12 910 61 61 193 228	7 642 3 031 12 750 52 49 176 205	4.980 3.134 5.821 93.20 1348 1946
Factors affe Station type		Jow andiwe	SP									off is 124 nfall 121	% of prev	

078003 Annan at Brydekirk

1986

Measuring author First year: 1967	ity: SAPB			(Grid referei Level s	nce: 35 (N th. (m OD)		4		C			m) 925 0 OD) 821
Hydromatric st	atistics fo	r 1986											
Flows Avg (m³s='): Peak Runoff (mm) Rainfall (mm)	JAN 52 020 216 68 151 166	FEB 12 830 41 25 34 10	MAR 40 050 222 11 116 143	APR 20 610 86 28 58 81	MAY 53 160 172 51 154 212	JUN 22 590 158 48 63 78	.KX 7 813 79 76 23 95	AUG 27 930 148 22 81 145	SLP 6 657 21 66 19 23	OCT 27 290 178 09 79 163	NOV 76 200 264 73 214 230	DEC 87 020 237 41 252 282	Year 36.181 264.73 1242 1628
Monthly and ye	arly stati:	stics for p	previous r	ecord (Oc	t 1967 to	Dec 1985)							
Mean Avg. flows Low (m³s-1) High Peak flow (m²s-1) Runoff (mm) Rainta I (mm)	44,160 17,080 83,440 405,37 128 141	34 110 12 930 55 440 291 30 90 91	29 570 8 402 53 770 235 95 86 112	19 170 6 124 40 600 182 50 54 65	14 290 3 519 30 590 168 50 41 85	10 930 2 937 32 150 171 26 31 83	9 800 1 944 34 050 217 59 28 89	15 110 2 007 74 950 254 51 44 99	25 650 3 362 75 830 471 90 72 141	37 280 3 592 86 820 499 10 108 145	42 060 11 490 77 930 325 04 118 139	42 420 19 530 68 170 355 40 123 134	27 022 16.402 35.426 499.10 922 1324
Factors affecting Station type: VA	flow reg.m	e									noff is 135 nfall 123		ious mean

078004 Kinnel Water at Redhall

1986

Measuring authoris First year: 1963	y SRPB			C	irid referen Levet st	nca 35 (N° In (m OD)		8					km) 76 1 OD) 697
Hydrometric sta	tistics fo	r 1986											
Flows Avg (m³s⁻¹): Peek Runoff (mm) Rainfall (mm)	JAN 5.435 67.67 191 184	FEB 0.747 3.16 24 9	MAR 4 078 48 16 144 155	APR 1 567 21 37 53 90	MAY 5 496 37 00 193 215	JUN 1 625 29 78 55 76	JUI 0 578 23 07 20 92	AUG 2 562 31 77 90 156	SEP 0 312 1 11 11 24	OCT 3 541 48 31 125 174	NOV 7 407 79 21 252 245	DEC 8 490 67 93 299 286	Year 3.486 79.21 1458 1706
Monthly and yea	orly statis	itics for p	revious r	ecord (Oc	1963 to 0	Dec 1985-	-incomple	te or miss	ing montf	ıs total 1 Q	years)		
Moon Avg flows Low (m³s-') High Peak flow (m³s-') Runoff (mm) Runofa I (mm)	4 019 1.296 8.456 79 34 141 146	2 953 0 590 5 362 77 68 95 96	2.690 0.552 5.124 59.19 91 119	1 586 0 251 4 161 42 46 54 75	1 486 0 122 3 715 51 79 52 98	1 0 / 3 0 1 1 2 3 2 8 2 3 6 0 9 3 7 9 1	0 932 0 048 3 435 60 14 33 90	1 464 0 049 7 513 58 54 52 108	2 803 0 099 6 689 91 37 95 156	3 610 0 207 7 288 1 10 90 127 154	3 974 0 740 7 535 86 69 135 152	3 928 1 081 7 009 103 65 138 150	2.534 1.507 3.482 110.90 1051 1435
Factors affecting fi Station type: VA	low regime	•									off is 139 nfall 119		ous mean

080001 Urr at Dalbeattie

Measuring author First year: 1963	ity SRPB			(Grid referen Level s	ice 25 (N) tn (m OD)		0		C			(n) 199 0 OD) 432
Hydrometric st	ntistics fo	r 1986											
Flows Avg {m³s=1} Peak Runoff (mm) Rainfall (mm)	JAN 11 780 103 55 159 167	FEB 1 863 6 40 23 5	MAR 6 677 45 21 90 149	APR 4 091 27 82 53 91	MAY 10 880 38 80 146 195	JUN 3 579 35 74 47 68	JUL 0 8*6 13 83 11 84	AUG 3 362 20 46 45 116	SEP 0 836 2 48 11 16	OCT 5 587 45 92 75 170	NOV 15 970 65 24 208 213	DEC 18 590 61 08 250 270	Year 7.003 103.55 1118 1544
Monthly and ye	arly statis	stics for p	pravious r	ecord (No	v 1963 to l	Dec 1985)							
Mean Avg flows Low (m³s-1) High Peak flow (m³s-1) Runoff (mm) Rainfall (mm)	9 449 3 534 19 080 133 72 127 132	7.687 1.419 13.750 91.45 94 90	5 991 2 094 11 780 95 03 81 106	3 459 0 753 7 485 61.69 45 65	2 934 0 308 8 229 65 95 39 81	2 057 0 246 6 833 59 18 27 80	1 335 0 140 5 081 68 42 18 75	2 459 0 149 13 310 73 50 33 94	5 384 0 319 17 160 14 06 70 140	8 203 0 522 19 400 162 16 110 143	9 533 1 711 19 420 129 74 124 145	9 705 3 369 15 720 164 30 131 136	5.674 3.109 8.358 164 30 900 1287
Factors affecting Station type: VA	flow regimi	O .									off is 124 nfall 120		ous mean

081003 Luce at Airyhemming

1986

Measuring author First year: 1967	.,y. J B				ind referen Level st	n (m OD)		•			atchment : N	Aaxalt (m	
Hydrometric st	atistics fo	r 1986											
	JAN	FEB	MAR	APR	MAY	JUN	JUIL	AUG	SEP	ост	NOV	DEC	Year
Flows Avg.	11,270	0 789	8.286	4 003	7.597	2.261	1.505	4.710	0 459	4 526	12 200	17 090	6 225
(m²s='). Peak	68 66	2.73	49.88	66 96	57 32	16 78	29 96	70 88	2 94	50 58	128.33	193 82	193.82
Runoff (mm)	176	11	130	61	119	34	24	74	. 7	71	185	268	1159
Reinfall (mm)	184	3	178	102	176	66	105	136	22	140	215	308	1635
Monthly and yo	early stati:	stics for p	previous r	ecord (Jan	1967 to 0	Dec 1985)							
Mean Avg.	10.400	7 037	5.767	3 3 1 6	2 450	1 816	1 999	2 86 1	6 536	8 874	10 040	8.785	5.818
llows Low	4 540	3 943	1 359	0 454	0.260	0 225	0 191	0.277	0 365	1 689	3.857	2 445	3.691
(m¹s) High	15.600	12 110	1 300	8.289	7 232	4 587	6 436	14 230	17 590	16 750	15 940	13.440	7.625
Paak flow (m³a -)	177.10	146 10	197 30	197 60	63 64	64 10	131 50	171 80	192.40	231 80	168 40	204 04	231.80
Runoff (mm)	163	101	90	50	38	28	31	45	99	139	152	138	1074
Rainfall (mm)	169	98	110	71	76	82	89	102	158	160	166	142	1423
Reinfall (mm) Factors affecting Station type: VA			110	71	76	82	89	102	158	1986 run	166 off is 108 nfall 115	% of prev	

082001 Girvan at Robstone

1986

Measuring authori First year, 1963	ty: CRPB			G	irid referen Level s	ce: 25 (N) itn. (m OD)		7		c			m) 245 5 OD) 659
Hydrometric sta	atistics fo	r 1986											
Flows Avg. (m ³ s=') Peak Runoff (mm) Ranfall (mm)	JAN 14.400 88.18 157 182	FEB 1.736 6.09 17 6	MAR 8 736 57 96 95 161	APR 3 395 45 90 36 81	MAY 8 583 61 87 94 175	JUN 3.163 18 23 33 66	JUL 1 050 16 19 11 89	AUG 3 031 24 73 33 107	SEP 0.915 6.45 10 38	OCT 8 179 59 19 89 180	NOV 18 860 90 82 199 241	DEC 24 350 85 83 266 314	Year 8 033 90.82 1041 1640
Monthly and ye	arly statis	stics for p	revious r	ecord (Oct	1963 to (Dec 1985-	-incompk	ete ar miss	sing month	is total 0.1	Aeste)		
Mean Avg. flows Low (m³s-1) High Peak flow (m³s-1) Runoff (mm) Rainfall (mm)	10 340 3.846 19 370 100.96 113 138	7 39 1 2 805 13 240 84 94 74 80	6.125 1.595 11.520 63.02 67 106	3 742 0 923 11 330 65 23 40 65	2 773 0 521 8 256 55 75 30 78	1 907 0 370 5.682 52.91 20 79	2 204 0 487 6.751 97 92 24 92	3 230 0 301 12.930 92 54 35 99	6.532 0.546 21.830 157.60 69 150	9 501 1 191 17 380 147 17 104 158	11.230 2.755 20.230 88.07 119 166	10 180 2 893 19 450 182.98 111 138	6.260 4.222 7.859 182.98 805 1349
Factors affecting Station type: VA	flow regimi	e S									off is 129 nfall 122		ious mean

083003 Ayr at Catrine

1986

Measuring authority: CRP8 First year: 1970					Grid reference: 26 (NS) 525-259 Level stn. (m OD): 89.90						Catchment area (sq km), 166,3 Max alt. (m OD) 548				
Hydrometric statistics for 1986															
Fiows Av (m³s^1) Per Runoff (mm) Re:nfall (mm)		FEB 1 534 6 62 22 11	MAR 6 709 57 00 108 128	APR 2 730 30 62 43 74	MAY 5 7 14 5 1 40 92 168	JUN 2 868 44.34 45 69	JUL 1 709 29 21 28 93	AUG 2 983 25.59 48 93	SEP 1 603 21 85 25 45	OCT 9 019 68 46 145 196	90v 11 450 78 43 178 228	DEC 14 490 109 15 233 281	Year 5 867 109.15 1122 1549		
Monthly and	yearly stati	stics for p	oravious r	ecord (Se	1970 to	Dec 1985)									
Mean Avilous Los (m²s-¹) Hig Peak flow (m²s-¹ Runoff (mm) Runfall (mm)	v 3.182 h 14.120	5 426 2 961 11 280 96 54 80 80	5.267 1.480 10.780 92.30 85 103	2.702 0.733 7.056 67.02 42 63	1.893 0.593 4.703 75.55 30 66	1.889 0.658 4.179 60.69 29 83	1.999 0 417 7 720 70 77 32 85	2.734 0.410 9.970 72.00 44 89	5.508 0.597 14.680 157.42 86 137	6 560 0 631 10 900 162 59 106 144	8.462 2.147 13.630 105.57 132 158	7,123 3 312 13,230 119 15 115 127	4.858 3.613 5.928 178.53 922 1278		
Factors affection Station type: V		в Н									noff is 122 nfall 121		ious mean		

084012 White Cart Water at Hawkhead

1986

Measuring authority: CRPB First year: 1963					(Grid reference, 26 (NS) 499 629 Level stn. (m.OD) 4,10						Catchment area (sq.km): 227-2 Max alt. (m.OD), 375				
Hydrom	etric sta	stistics fo	r 1986													
Flows (m ³ s * 1): Runoff (mr Rainfall (m	m)	JAN 14.070 96.45 166 158	FEB 2 480 8.20 26 16	MAR 11 160 90 03 132 152	APR 3.356 51.59 38 72	MAY 10 330 80 43 122 173	JUN 3 675 27.55 42 55	JUL 2 289 41.93 27 95	AUG 4 119 28 38 49 98	SEP 1 752 21 44 20 52	OCT 10 370 90 00 122 180	NOV 20 470 104.10 234 242	DEC 20 850 105.36 246 256	Year 8.743 105.36 1223 1549		
Monthly	ey bna	arty statis	stics for p	revious r	ecord (Oc	t 1963 to 0	Dec 1985)									
Mean flows (m ³ s ⁻¹) Peak flow Runoff (mi Rainfall (m	m)	10.660 5.142 21.190 187.40 126 121	7 565 2 646 14 260 139 25 81 76	6 784 1.676 15.630 117 02 80 99	3.936 1.112 8.523 82.46 45 61	3 298 0 973 7 651 115 13 39 78	2.525 0.998 6.542 65.13 29 74	2 400 0 824 8 806 93 51 28 76	3 791 0 885 14 220 111.27 45 95	7 553 1 141 24 360 132.91 86 141	10 970 1 212 46 570 134 42 129 139	11.640 3.259 20.730 134.05 133 148	10 480 3 211 19 610 187 10 124 127	6.800 4.419 10.946 187.40 944 1235		
Factors a	ffecting f	flow regimi	n. S								1986 rur	off is 129	% of nrevi	ous mean		

Factors affecting flow regime. S 1986 runoff is 129% of previous mean Station type: VA 1986 runoff is 129% of previous mean rainfall 125%

Factors affecting flow regime N Station type: VA

Measuring authorities type: 1969 Hydrometric states and states are states ar	JAN 1.811 10 63 143 144	FEB 0.455 1.19 33 22 stics for p 0 996 0 395 1 944		APR 0 706 6 73 54		nce: 26 (N tn (m OD)	S) 739 72	_					
Flows Avg (m"s=") Peak Runoff (mm) Runoff (mm) Monthly and ye. Moon Avg. flows Low (m"s=") High Peak flow (m"s=") High Paunoff (mm) Runoff (mm) Factors affecting f	JAN 1.811 10 63 143 144 arly statis 1 464 0 646 3.312 38.90 116	FEB 0.455 1.19 33 22 stics for p 0 996 0 395 1 944	1 158 8 66 91 116 previous I	0 706 6 73				5			Catchmen N	t area (sq fax alt (m	km): 33 9 OD): 107
(m*s-')- Peak Runoff (mm) Reinfall (mm) Monthly and yei Moan Avg. flows Low (m*s-')- High Peak flow (m*s-')- Runoff (mm) Reinfall (mm) Factors affecting f	10 63 143 144 arly statis 1 464 0 646 3.312 38.90 116	0.455 1.19 33 22 stics for p 0.996 0.395 1.944	8 66 91 116 previous I	6 73	MAY	NUL	JUK.	AUG	SEP	ост	NOV	DŁC	Year
Moon Avg. flows Low (m³s=") High Peak flow (m³s=") Runoff (mm) Reinfell (mm) Factors affecting f	1 464 0 646 3.312 38.90 116	0 996 0 395 1 944		73	0 911 12 59 72 142	0 477 6 05 36 57	0 221 1 38 17 71	0 656 15 32 52 100	0 295 5 04 23 50	1 08 1 8 89 85 143	1 996 19.79 153 166	2 642 39 55 209 208	1.034 39 55 968 1292
flows Low (m³s=") High Peak flow (m³s=") Runoff (mm) Rainfall (mm) Factors affecting f	0 646 3.312 38.90 116	0 395 1 94 4	ስ ስላላ										
	-	22 89 72 66	0 906 0 370 1 591 35 65 72 84	0 532 0.274 1 030 8 86 41 47	0 413 0 166 1 199 13 28 33 64	0 299 0 146 0 673 5 55 23 66	0 313 0 148 1 816 34 19 25 72	0.435 0.123 1.499 20.88 34 80	0 860 0 125 3 624 42.27 66 119	1 058 0 129 2 148 42.44 84 110	1,403 0,356 2,255 30,68 107 128	1 315 0.652 2 230 37 41 104 106	0.832 0.539 1.107 42.44 775 1052
	xow regime	o:									off is 125 nfall 123		ous mear
085001	Le	ven	at L	innt.	ran	e				_		1	986
Measuring authorit First year: 1963	ty: CAPB			C	and refered Level:	nce: 26 (N stn. (m OD		3		c	atchment Ma	area (sq k ix alt. (m (
Hydrometric sta	itistics fo	r 1986											
Flows Avg. (m ³ s ⁻¹): Peak Runoff (mm)	JAN 78 240 100 76 267	FEB 24 430 68.24 75	MAR 59 890 97 67 205	APR 29 790 75 25 98	MAY 73 060 91 20 250	JUN 33 950 78 32 1 12	JUL 10 210 15.39 35	AUG 36.740 56.85 125	SEP 10.220 14.59 34	96 68	140 91	DEC 122 400 143 49	Year 51.938 143.49
Roinfall (mm)	296	13	316	101	306	72	116	166	76	108 278	372 421	418 432	2100 2593
Monthly and year Mean Avg	arly statis 60 620	stics for p 53 280	17 evious 43 670	r ecord പ്ര ധ 31.680	1963 to 0	•	10 210	22.410	25 620	r. 210			** ***
flows Low	27 860 119 100	18.610 102.100	16 630 98 410	10 540	10.620	20 560 9 7 16	19 2 10 6 706	3 974	35 620 8.194	55 310 10 830	59.800 24.540	62 150 36 270	40.695 30.712
Peak flow (m ³ s*1) Runoff (mm)	150.48 207	140 83 166	122 21	51.390 83.14 105	51.100 71.90 84	51 860 66 58 68	44.640 85.61 66	85 140 113 02 77	90 470 118 82 118	90.150 138.54 189	96 320 129 95 198	94 750 131 00 212	49.874 150.48 1637
Reinfall (mm) Factors affecting fl Station type: VA	231 low regime	141 9 S	166	100	118	118	121	140	221	226 1986 run	234 off is 128 nfall 128	217 % of previ	2033
094001	Eu	ve at	Po	- olew	e							1	986
Messuring authorit	y. HRPB			(Srid referer			3		c	atchment	area (sq k	m): 441.1
Hydrometric sta	tistics fo	r 1986			Luven 3	itn. (m QD	1. 4.00				rvų.	ıx alt. (m (ינטני ינטני
Staa A =	JAN	FEB	MAR	APR	MAY	JUN	ш	AUG	SEP	ост	NOV	DEC	Year
Flows Avg. (m³s=1): Peak Runoff (mm) Rainfall (mm)	48.340 89 24 294 366	10.660 29 96 58 8	39 950 83 02 243 324	16 940 42 37 100 89	36 280 62.22 220 276	19 250 47 52 113 60	9.992 23.55 61 148	16 000 27.92 97 127	15 330 24 25 90 144	29.910 82.05 182 275	78 300 116 63 460 481	75.150 129.95 456 474	33.008 129.95 2373 2772
Monthly and yea Mean Avg	erly statis 40 470	itics for p 29 250	revious r 26 310	ecord (No 23 070	v 1970 to I 14 700	•	14.310	15 770	22.050	20.000	47.070	47.000	
flows Low (m³s=1) High Peak flow (m³s=1)	13 820 81.130 177 08	12.980 46.880 104.96	8 842 54 440 117.00	4.537 38 270 73.59	3 862 27 730 65.63	13 380 4.675 27.180 64 43	7 884 26 180 45.08	15 770 6 240 33 070 85 46	32 050 8 046 57 270 109 22	36 060 13 160 66 220 119 00	47 030 22.680 77.600 136 10	47 080 16 500 81 840 179 82	28.277 19.389 35.549 179.82
Runoff (mm)	246 261	162 162 1 N	160 191	136 134	89 107	79 128	87 138	96 151	188 255	219 294	276 334 off is 117	286 304	2023 2459
	low regime										nfall 113		003 176811
Factors affecting fl	low regime												
Factors affecting fl Station type: VA			at Li	ittle	Ass	ynt						1	986
Factors affecting fl Station type: VA 095001 Measuring authorit	In		at Li		Grid referen			0		С	atchment N		m): 137.5
Factors affecting fill Station type: VA 095001 Measuring authorit First year: 1977	In:	ver (at Li		Grid referen	ice: 29 (Ni		0		С		area (sq ki	m): 137.5
Rainfell (mm) Factors affecting fl Station type: VA O95001 Measuring authorit First year: 1977 Hydrometric sta Flows Avg (m³s-¹): Peak Runoff (mm) Rainfell (mm)	In:	ver (MAR 7.929 18 61 154 223		Grid referen	ice: 29 (Ni		AUG 6 687 15 22 130 118	SEP 8.547 14.23 161 180	OC1 10 820 22 89 211 227		area (sq ki	m): 137.5
Factors affecting fl Station type: VA O95001 Measuring authorit First year: 1977 Hydrometric sta Flows Avg (m³s-¹): Peak Runoff (mm)	y: HRPB tistics for 10 760 20 96 210 229	7 1986 FEB 2 397 6 03 42 19	MAR 7.929 18 61 154 223	APR 4 561 10 96 86 71	MAY 5.582 20 92 109	JUN 5 636 16,79 106 49	JUL 4 684 12.13 91 132	AUG 6 687 15 22 130	8.547 14.23 161	OC1 10 820 22 89 211	NOV 17.310 35.03 326	area (sq ki lax alt. (m DEC 15 870 28.72 309	m): 137.5 OD): 988 Year 8.399 35.03 1936

1986 runoff is 100% of previous mean rainfall 93%

096001 Halladale at Halladale

1986

Maasuring First year:		ty. HAPB			(nce: 29 (N0 In. (m OD)	3) 891 56° 23.20	1		c			m). 204.6 OD) 580
Hydrome	tric sta	atistics fo	r 1986											
		MAL	FEB	MAR	APR	MAY	NUL	ж	AUG	SEP	ост	NOV	DEC	Year
Flows	Avg.	11 480	1 650	7 347	2 486	1 449	4 166	0 828	5 167	5 433	4 531	6 3 7 3	9 806	5.060
{m³s - '}	Poak	50 19	5 92	92.84	6 76	20 16	140 81	13.41	38.54	26 44	38.54	35.28	64 42	140.81
Burroff (mr	ๆ)	150	20	96	31	19	53	11	68	69	59	81	128	785
Aamfall (mr	m)	158	28	BO	67	74	72	73	11:	98	95	98	163	1117
Monthly	and ye	arly statis	stics for p	revious r	ecord (Jar	1976 to I	Dec 1985)							
Moon	Avg.	9.106	6 433	5 557	3 052	2 377	1,602	1 546	2.180	4 941	7 385	9 592	8 439	5.179
llows	Low	5 333	1 624	2 907	0 624	0 279	0 27 1	0.215	0 186	2 181	1 44 1	2 5 1 0	3 004	3.420
(m^3s^{-1})	High	11 900	10 940	9 753	6 442	5 434	3 528	4.943	9 192	7 886	16 560	14 730	12.390	6.418
Peak flow		98.96	68.52	106.96	69 28	108 00	49 26	129.10	76 64	189 13	125.96	163.22	161.96	189.13
Runali (mr		119	77	73	39	31	20	20	29	63	97	122	110	799
Rainfall (mr	-	145	66	109	67	61	65	62	75	129	136	158	131	1204
Factors of Station typ		llo w regimi	7. N									inoff is 98 ainfall _, 93		ious mean

101002 Medina at Upper Shide

1986

Measuring First year:		y: SWA			(Srid referer Level si	nce 40 (\$2 (n (m 00))		4			Catchmeni M	i area (sq i lax alt (m	
Hydrome	tric sta	tistics fo	r 1986											
Flows (m³s=¹): Runotf (mm Rainfall (mm	n)	JAN 0 688 6 47 62 143	FEB 0 213 0 34 17 24	MAR 0 274 1.67 25 74	APR 0 310 1.89 27 68	MAY 0 194 0 61 17 67	JUN 0 121 0 60 10 33	JUL 0 096 0 31 9 45	AUG 0 104 0 80 9 98	SEP 0 101 0 40 9 41	OCT 0.193 0.88 17 112	NOV 0.610 6.41 53 136	DEC 0.533 4 82 48 113	Year 0.286 6.47 304 954
Monthly	and yea	arly statis	itics for p	revious r	ecord (Oct	t 1965 to (Dec 1985-	-incomple	te or miss	ing month	s total 6.8	Years)		
Mean flows (m ³ s ⁻¹) Peak flow (Runoff (mm Rainfall (mm *(1968-198	1) Ti)*	0.421 0.150 0.623 5.86 38 86	0.413 0.160 0.760 6.00 34 73	0.330 0.121 0.903 7.28 30 97	0 253 0 104 0 522 5 44 22 41	0 210 0 094 0 356 7 00 19 70	0 145 0 069 0 212 1 79 13 54	0 129 0 073 0 199 3.72 12 51	0 121 0 044 0 180 1 74 1: 60	0 165 0 080 0 365 3 74 14 65	0 222 0 110 0 413 4.73 20 96	0 320 0 088 0 769 8.64 28 78	0 393 0 116 0 663 6 30 35 116	0.260 0.122 0.335 8.64 275 887

Factors affecting flow regime: N I Station type: FL

1986 runoff is 110% of previous mean rainfall 108%

201005 Camowen at Camowen Terrace

1986

Measuring First year		ty: DOEN			(Grid referei Level st	nce. <i>23</i> (IH in. (m OD):)		C		: area (sq k Max alt. (m	
Hydromi	etric sta	tistics fo	r 1986											
Flows Im ³ s ⁻¹) Runoff (mr Rainfall (m	m)	JAN 13 080 7 46 98 128 164	FEB 4	MAR 7 271 31 82 71 137	APR 8 687 69.92 82 1 18	MAY 7 946 27 07 78 145	JUN 2,733 7,44 26 44	JUL 1 944 7.08 19 72	AUG 7 799 81.99 76 139	SEP 1 686 3.55 16 14	OCT 5 402 44 84 53 142	NOV 13 480 70 20 127 152	0EC 14 650 84 26 143 183	Year 1314
Monthly	and ye	arly statis	tics for p	revious r	ecord (Ma	y 1972 to	Dec 1985	i						
Mean flows (m³s=1) Peak flow Runoff (mr Re:nfall (m	(m³s ⁻¹) m)	11.600 7 011 16.170 91.15 113 127	8.619 4.240 17.200 91.35 77 81	7.344 2.242 12.340 82.76 72 101	4 036 1 701 6.712 36 50 38 54	3 470 0 993 7 394 47 73 34 75	2 545 0 911 4 955 35 02 24 70	2.152 0.879 5.114 73.00 21 71	3 083 0 846 11 310 75 05 30 86	5 027 0 873 12.730 101 01 47 113	6.607 1 154 11.260 83 36 64 104	8.506 3.422 15.270 90.76 80 112	10.730 5 062 17 330 128 42 105 123	6.136 4.102 7.648 128.42 705 1117
Factors at Station ty		flow regime	e: P E								1986 rur r	noff is ainfall [1 1]	% of prev 8%	ious mean

201007 Burn Dennet at Burndennet Bridge

1986

Measuring author First year: 1975	ity DOEN				Grid refere Level s	nce: 24 (IC stn. (m OD		,		С			m): 145.3 OD) 539
Hydrometric st	atistics fo	r 1986											
Flows Avg (m³s=¹): Peak Runoff (mm) Reinfall (mm)	JAN 8 298 30 17 153 189	FEB 2.567 4.43 43 3	MAR 4.781 17.84 88 152	APR 5 003 25 39 89 98	MAY 5 024 18 68 93 147	JUN 2.391 4.98 43 39	JUL 2 066 17 09 38 106	AUG 3.479 30.40 64 118	SEP 1 436 2 15 26 13	OCT 3.370 18.55 62 130	NOV 7.351 31.86 131 165	DFC 7 226 50 79 133 186	Year 4.416 50 79 963 1346
Monthly and ye	arly statis	stics for p	revious r	ecord (Jur	1975 to I	Dec 1985-	-incomple	te or miss	ing month	s total 0.1	years)		
Mean Avg flows Low (m³s=1) High Peak flow (m³s=1) Runoff (mm) Rainfall (mm)	5 070 3 410 8 198 50 49 112 129	4 655 2.244 7.480 31 99 78 69	4 272 2 441 6 992 30 87 79 102	2 559 1 674 3 486 13 24 46 54	2.232 0.914 4.668 25.51 41 69	1 751 0 843 3.649 18 84 31 72	1 789 0 832 3.990 50 79 33 82	2 100 0 579 7 213 49 50 39 79	3 433 0 664 8 151 50 54 61 120	4 375 2 596 7.874 43.67 81 121	4.770 2.205 7.212 64.52 85 111	5 563 3 208 8 156 59.53 103 112	3.628 2.634 5.012 64.52 788 1120
Factors affecting Station type: VA	flow regime	e. E									off is 122 nfall 120		ious mean

THE SURFACE WATER DATA RETRIEVAL SERVICE

The surface water archive comprises some 23,000 station-years of daily river flows and incorporates data from over 1200 gauging stations throughout the United Kingdom. In addition to gauged flow data, naturalised data have been derived from the records of a small number of gauging stations. Catchment areal rainfall and the highest instantaneous flow, when available, are also archived on a monthly basis.

In order that the contents of the archive may be readily accessible, a suite of programs has been developed to provide a selection of retrieval options. Descriptions of these options are listed below, and examples of the computer output are given on pages 139 to 146. The data retrieval programs have been designed to allow flexibility in the presentation of the options, particularly those producing graphical output. Before finalising a data request it is recommended that the Concise Register of Gauging Stations on pages 147 to 152, and the Summary of Archived Data on pages 153 to 161, be consulted to check the availability of suitable data sets.

To enable the suitability of individual flow records for particular applications to be assessed more effectively all retrievals are accompanied by the relevant gauging station and catchment details (where available).

In response to user requirements the data retrieval facilities are being continually extended. A wide range of specialist analyses and presentations is now available. Individuals having data requirements not catered for in the standard retrieval suite are invited to discuss their particular needs - address opposite.

Retrievals are normally available on line-printer listings or magnetic tape, or as hydrograph plots.

Cost of Service

To cover the computing and handling costs, a moderate charge will be made depending on the output options selected. Estimates of these charges may be obtained on request; the right to amend or waive charges is reserved.

Requests for retrieval options

Requests for retrieval options should include: the name and address to which output should be directed, the gauging stations for which data are required together with the period of record of interest and the title of the required options. Where possible, a daytime telephone number should be

Requests should be addressed to:

Surface Water Archive Office Institute of Hydrology Maclean Building Crowmarsh Gifford WALLINGFORD **OXFORDSHIRE OX10 8BB**

Telephone: Wallingford (0491) 38800

Hydrological Data at the Institute of Hydrology

The Surface Water Archive is one of several major sources of hydrological data held at Wallingford. Others include an archive of flood peaks from over 600 catchments and a flood event archive comprising rainfall and river flows at short time intervals for over 3000 individual events. Data may be retrieved from these sources in a variety of formats. Enquiries concerning the availability and use of such data should be directed to the above address.

LIST OF SURFACE WATER RETRIEVAL OPTIONS

OPTION TITLE NUMBER

1

Table of daily mean gauged discharges

Table of daily mean naturalised discharges

Yearbook data tabulation (daily)

Table of monthly mean gauged discharges

NOTES

Includes monthly and annual summary statistics. Flows in cubic metres per second.

Includes monthly and annual summary statistics. Flows in cubic metres per second.

River flow and catchment rainfall data for a specified year with basic gauging station and catchment details and flow statistics derived from the historical record. Naturalised flows (where available) - and the corresponding runoff - may also be tabulated.

Includes monthly and annual summary statistics. Flows in cubic metres per second.

Table of monthly mean naturalised discharges

Yearbook data tabulation (monthly)

Includes summary statistics. Flows in cubic metres per second.

Monthly river flow and catchment rainfall data for a specified year together with comparative statistics derived from the historical record. Naturalised flows (when available) – and the corresponding runoff – may also be tabulated.

The lowest and highest daily mean flows, together with the highest instantaneous flow and date of occurrence (when available). Flows in cubic metres per second. Includes summary statistics.

Rainfall totals in millimetres and as a percentage of the 1941-70 catchment average. Includes summary statistics.

Runoff is normally derived from the monthly mean gauged flow. An additional listing is provided for catchments with naturalised flow records. A monthly summary is provided and all rainfall and runoff totals are in millimetres.

Choices of scale, units, truncation level and overlay grid pattern are available. The period of record maximum and minimum flows, or the mean flow, may be included. The plots may be based on single or n-day means, or on n-day running mean flows.

Choices of scale, unit and overlay grid pattern are available. The period of record maximum, minimum and mean flows may be included.

Tabulation of the 1-99 percentile flows with optional plot of the flow duration curve. The percentiles may be derived from daily flows or n-day averages and the analysis may be restricted to nominated periods within the year e.g. April-September only. Choices of scales, grid marking and units are available and the percentiles may be expressed as a percentage of the average flow or of a nominated flow.

Tabulation of selected gauging station details and catchment characteristics for nominated gauging stations.

Provides a comparison between summary statistics for a selected year, or a group of years, and the corresponding statistics for a nominated period of record.

A brief summary of the gauging station, its history and major influences on the flow regime, together with catchment details

Three plots on one sheet:

a) daily mean flow hydrograph for a selected year.

b) monthly mean flow hydrograph for the selected year together with the maximum and minimum monthly flows plus the 30-day running mean for the preceding period of record.

c) flow duration curves for the selected year and for the period of record.

Table of catchment monthly rainfall

Table of monthly extreme flows

Table of catchment monthly areal rainfall and runoff

10 Hydrographs of daily mean flows

Hydrographs of monthly mean flows

Flow duration statistics

Table of gauging station reference information

Table of hydrometric statistics

Gauging station and catchment description

River flow pattern plots

OPTION 1 TABLE OF DAILY MEAN GAUGED DISCHARGES

A CONTRACTOR OF STATE

0001	TAW AT UN	PERTICA				3.	ALLY MUSES	CALCALO UIS	CHARGES 1	N CLSIC NET	THES MEN S	LUDNE
• • • • • •			• • • • • • • • • • • • • • • • • • • •			198:				· · · · · · · · · · · · · · · · · · ·		<u>.</u>
UAT	MAL	3 EM	MAK	A PIK	MAT	JUS	JUL	ALG	SLP	oc .	NOV	nt.C
1	19.190	:0.920*	37.200	13.900	8.427	16.710	1.008	1.249	1.272	39,133	44.220	33.4
2	19.140	11.980	40.7:0	12.020	13.210	29.010	3.125	2.2-2	305	63.775	35.000	27.2
)	23.450	43,450	2H.7QU	10.850	15.663	15.472	3.740	1,5;9	1.235	105.200	29,010	43.1
4	17.580	20.340	23.290	9.823	18.300	15.690	3.109	1.857	1.157	7a.200	24.830	23.4
3	15.950	22,470	21.020	8.415	17.550	13.8%	3.043	7.091	1.104	58.040	20.235	.7.0
6	15.520	19.193	21.440	B. 200	19,040	.2.160	3.231	#.5e1	1.076	44.150	1.230	18.0
1	11.#)0	:7.750	33.640	7.679	.7.735	11,390	2.6e2	4.332	1.079	33.60C	15.170	31.0
8	12.670	16.930	37.610	1.318	15.715	.0.672	4.441	3.172	1.106	10.360	13.200	ev.
y	16.190	20. ■3∪	4.3.400	7.043	13.773	9.451	2.203	2.787	1.096	35.360	.1.53	41
10	14,200	16.423	173.550	6.644	29.543	0.760	4.174	2.405	1.225	11.090	10.560	40.4
1;	:1.690	15.290	: 35.900	7.144	17.620	17.5m0	2.037	2.26	1.635	30.730	10.360	67.
12	14,250	15.010	:07.300	5.962	14,220	10.980	.2.0#4	2.037	2.238	29.440	9.072	41.4
13	15.650	13.253	15.670	5.422	12.900	9.7ee	2.115	1.910	1.268	23.360	ø.Jb÷	1.04.
14	8C. 200	l I . 9∔0	64.940	5.040	12.020	9.036	2.013		2.416	21.270	7.645	.36.
15	59.900	11.250	47.040	4.826	18.640	8.)88	1.993	1.810	4.G32	34.210	7.235	74.9
16	59.230	10.400	16, 300	4.563	6.690	7.624	:. 497	1.086	2.511	21.060	7.329	48.
17	59.013	9.55	28.140	4.267	33.340	7.013	1.939	. 56	4.231	28.340	e.770	15.1
1.9	61.550	8.436	23.000	4.017	26.820	6.398	1.8.	1.518	21.150	25.000	31.520	26.
13.	51.260	8.265	19.492	3.548	21.590	5. 7 ye	1.918	1.597	42.060	32.680	45.490	22.3
2 C	5:.260	7.799	16.950	7.e7I	24.980	5.55:	1.862	2.931	34.500	75,023	>>-950	81.
21	57.170	13.540	54.130	3.520	16.270	4.922	2.531	2.170	23.510	57,400	41.600	40.4
22	44.360	14.3:0	57.040	1.454	:6.660	4.532	8.875	1.647	17.760	-2.990	32.145	27.
23	36.600	31.930	44.340	3.320	18.975	4.120	5.221	1.727	14.530	12.743	27.840	23.
24	32.140	16.960	39.990	3.738	23.800	4.180	3.528	1.605	20.276	79.240	22.910	10.1
25	25.910	14.590	36.443	4.100	31,200	3.412	2.786	1.512	(6.820	.no.000	19.190	16.
26	21.520	13.620	49.640	10,110	25.570	3.759	2.607	1.422	15,610	63.680	19.630	18.
27	18.5+0	24.225	32.86.	24.990	24.870	3.541	2.319	1.355	15.740	49.61d	35.840	42
2.0	16.460	22.710	16.900	15.750	20.850	3.1-6	2, 151	1.)10	0	-0.030	36.720	65.
29	14.910		22.310	14.70G	18.340	3.155	2.000	1.279	12.950	38.140	35.400	7:
30	13.190		14.360	10.390	16.400	1.015	1.892	1.2-0	18.150	BC. 955	44.110	88.1
31	11.850		15.590		15.370		2,713	1.224		52.660		\$3.0
166764	DAYS U			c					_	_	_	
EAN	29.527	0 16.857	52.144	1.17e	19.332	9.114	2.749	7.200	3.496	47.732	24.713	÷0
16	1:.690	7.799	15.890	3.320	6.922	1.015	1.814	1.224	1.078	21.270	7.435	16.
W.T	60.200	43.450	223.400	24,990	33.340	29.014	W. 675	8.56;	42.185	155,200	55.81.	130.1
CHTHLY	TOTALS (CL											
	924.64	471.99	16:5.45	233.29	606.12	273.42	65.23	68.44	29e.d7	1479.08	726.39	14 le .

OPTION 2 TABLE OF DAILY MEAN NATURALISED DISCHARGES

• • • • • •					· • • • • • • • • • • • • • • • • • • •	1961						
DAY	JAN	FZB	w.e	APR	MAY	JUA	JUL	AJU	NE7	0.7	×uV	NEC
ı	73.100	67.000	83.100	228.0.0	104.000	99.200	52.60G	72 ZO	31.700	113.000	85.400	22.00
2	71.700	66.200	159.000	227.000	80.20G	192,000	50.700	5800	11.000	104.000	84-000	72.4
3	67.600	58, 100	212.000	192.000	87.300	209.000	50.700	52.200	31.700	#0.3.0	76.600	60.0
•	65.700	79.100	196.000	115.200	96.700	142.000	44.700	÷2.500	10.500	77.600	63.600	67.1
,	65.200	81.150	139.000	132.000	93,400	166.00.	46.9	40.600	29.000	72.150	68.100	ts.8
•	66.500	63.000	127.000	117.500	84.500	102.000	45.600	170.000	29.200	93.3.0	6:.130	69.4
7	69.100	60.20C	126.000	115.000	e1.400	91.100	45.500	125,500	29.600	111.000	61.800	72.4
8	74.300	62.700	189.000	109.000	78.200	93.+00	46.600	79,100	30.300	75.400	61.00u	116.0
9	74.000	63.200	216.000	96.500	77.655	89.100	45.100	67.600	29.700	79.150	60.500	.27.0
10	15.700	65,700	242.000	105.000	92,80G	B2.1.0C	43.55	64.400	28, 300	79.100	\$7.100	164.0
1)	82.300	67.80C	267.000	101,000	97,100	90.300	39.80G	60,600	J:.300	78.70	57.600	98.9
12	80.300	67.300	277.00C	97.900	89.900	87.10C	44.900	3e.500	39.100	78.600	57.500	10.7 17. j
ii	76.700	61.500	473.000	96.30C	74,000	76.100	42.800	40.100	37.700	63.500	57.200	95.1
14	76.800	61.00C	289.000	120.600	71.40G	73.200	41.200	41.300	38.300	67.200	55.400	230.0
13	99.400	56.700	274.50G	114,500	77,700	70.100	43.2.0	40.600	48,600	67.800	53.100	314.6
',	37.400	30.700	274.500	114,000	,,,,,,,	70.100	43.420	40.00	*0.000	67.800	33.100	314.6
16	107.000	59.900	253.000	64.900	92.350	69. JOG	45.60C	38.600	41,300	66.700	56.600	279.0
17	111.000	55.500	218.000	85.100	91.200	67,600	41.600	37.000	36.300	69.600	73.700	225.0
18	121.000	55.300	160.000	80.900	93.100	65.400	42.000	37.750	39.900	65.700	6.800	145.0
19	112.000	54,500	139,500	74.Z0C	92.200	66. JOÜ	41.550	37.600	49.600	NI - 300	97.600	(16.6
20	109.000	56.100	127.000	76.500	100,500	64.400	41,400	17.400	104.000	136-006	121.000	110.0
21	109.000	51,100	117,300	75.100	i 22. 656	54,200	40.300	36,200	67,300	179.000	146.000	136.5
22	113.000	31.400	173.650	75.300	102.000	34.800	35.70	36.400	61.400	147.000	131.000	162.0
23	111.000	55.10C	208.000	73.100	90.400	61.000	55.400	ie.100	40.100	11.2.0.G	47.9.40	132.0
24	95.600	60.100	204.000	72,400	111,000	61.700	55.300	35.100	42,700	92.600	90.400	101.0
25	86.100	59.200	204.000	79.30C	177,000	61.700	48.000	34.900	31.900	94.100	12.000	102.5
26	78.800	6:.000	203.000	120.000	266.UOC	57.100	47,4UC	32.800	: 31.000	107.000	75.606	44.3
27	77.500	61.000	161.000	183.000	267.000	57.700	39.500	24.300	152.000	90.900	74.800	94.8
28	72.500	64.800	131.600	194.000	212.006	57.400	37.800	32.700	98.300	85.500	100.000	131.0
29	71.800		135.000	17000	171.000	54.200	39.400	J2.40U	73.600	80.100	85.500	218.0
30	71.700		145.000	140.000	122.000	50.700	37,500	32.200	131.000	61.400	a7.700	275.0
	67.500		204.000		(68. 00 0		44.500	30, 333		82.100		254.0
	DAYS 0	V	0	0	0	0	0		0	0		
L	85.003	62.336	189.455	119.373	113.203	H4.113	45.090	48.245	51.247	91.045	79.030	136.1
IN	65.200	53.150	83.100	72.400	71.400	50.70G	37.500	30.30C	28.300	e3.a00	\$3,100	66.6
AX.	121.000	81.150	289.000	228.00G	267.000	209,000	55,700	123.300	162.500	179.00U	145.000	314.0
JATHLY	TOTALS (C											
					1509. 33	2523.40	1397.80					
	· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • •			MMAKY:	MA 314.	000 UN 15	JIL				
						919 28.	CL AC OUE.					

0 3 0 0 0 1

OPTION 3 YEARBOOK DATA TABULATION (DAILY)

Taw at Unberleigh

Measuring authority: SWMA Grid reference: 21 ISSI 608 237 Catchment area isq kml: \$26,2 Level stn. (m 03): 14.1 First year: 1958 Max alt. to DDI: 604

DAILY MEAN	CAUGE	DISCHAR	ES (cub)	etres :	er second	11							
047		Jan	feb	441	Apr	Hay	Jun	Jul	Aug	Sep	Oct	400	0+c
1		45.922	16.995	5.441	31.022	11.599	6.455	4.767	3.765	15.852	1.555	42.267	74.018
2		45.671	15.510	5.541	24.435	10.668	5.673	3.970	3.945	13.766	1.749	11.469	22.266
3		\$3.09:	1 8 6	3.499	21.680	9.470	5.571	3.017	3.033	13.507	5.018	28.826	14.010
4		37.836	12.495	9.708	18.030	12.538	5.015	6.544	9.236	13.314	2.961	23.480	16.196
,		33.756	11.366	21.279	15.390 '	13.187	4.621	5.677	5.309	9.151	2.784	27.610	21.573
5 7		26.360 52.237	10.417	10.379	15.834	5.294	4.282	5.403 4.203	5.577 7.496	4.412 7.593	2.738 2.657	19.550	14.575
á		47.415	6.383	7.566	17.438	4.632	3.935	4.538	>.501	7.056	2.575	25.696	68.151
ě		33.912	7.508	10.315	14.122	4.156	17.460	1.773	4.976	6.326	2.552	29.678	47.754
13		70.537	7.249	9.515	11.702	8.123	36.595	5.414	17.831	5.789	2.653	37-133	37.830
11		19.443	6.796	7.739	10.316	7.324	37.555	3.798	45.093	5.454	2.570	31.705	64.563
17		11.150	5.554	7.043	10.111	7.456	20.524	3,544	16.551	5.058	2.405	25.056	49.830
13		66.058	5.359	0.513	11.176	7.135	10.077	3.184	11.316	17.057	2.403	40.561	65.743
14 15		40.020	5.735 5.361	6.018	21.978 31.528	64.508 37.785	11.171	2.9/H 2.8:2	9.587 7.743	21.159 11.432	2.423	127.383	50.837 39.636
16		32.736	5.179	5.353	25.399	25.283	7.555	2.464	4.513	9.565	2.147	47.402	75.175
17		31.713	4.861	5.915	22.478 19.392	27.619	7.349	2.272	5.821	7-866	2.037	48.472	66.340
18		36.236 39.388	4.223	6.608	25.908	21.356	5.635	2.158 2.062	21.257	5.809 6.159	2.156 3.303	109.704	63.550
50		32.951	4.399	7.407	43.695	16.267	5.986	2.131	9.174	5.758	19.324	104.940	60.597
2:		52.741	3. 944	6.475	50.704	15.469	7.548	2.236	8.659	5.431	29.231	50.359	48.165
2.2		74.691	5.726	7.747	44.683	12.502	8.406	2.109	20.985	5.134	55.352	56.497	36.562
23		69.088	3.903	14.096	47.316	11.204	6.503	1.941	20.255	4.871	45.550	55.009	29.295
24		63.162	3.641	37.112	41.624	10.076	7.160	1.661	20.968	4.553	34.370	55.318	25.077
25		44.132	4.131	21.095	34.778	9.161	5.670	1.992	70.828	4.244	45.962	11.424	67.277
50		34.861	4.976	22.505	27.679	5.483	4.666	2.253	>7.460	4.032	34.077	75.556	43.613
21		30.745	4.644	23.560	22.322	7.809	4.157	2 • 1 4 1	64.335	5.599	56.152	56.160	37.015
28		30.342	6.296	45.032	15.819	7.205	5.957 6.985	2.764 3.030	38.560	3.790	77.585	43.063	36.930
24		26.791 21.077		67.238	15.700	6.551 5.550	5.096	3.301	29.169 22.587	5.607 3.408	60.458 47.319	11.020	32.125 70.375
31		13.521		39.862	.,	3.710	3.016	+.837	18.122	7.434	37.569	20.234	79.171
• • • • • • • • • • • • • • • • • • • •						*****					3.474		.,,,,,
Avera je		42.750	7. 55	:5.190	26.090	13.250	9.540	3.313	15.01C	7.911	19.150	54.520	47.040
Lowest		18.52:	3.641	3.441	10.1:1	6.330	3.935	1.861	3.035	3.408	2.037	19.707	16.196
Highest		89.08#	16.995	49.238	50.704	64.508	37.555	8.572	70.578	21-159	77.835	170.727	82.556
Prak flow		103.525	:8.235	60.897	65.314	99.639	79.065	10.553	174.550	41.349	97.651	251.995	123.934
Day of pea		10	1	76	21	15	10	3	11	14	78	19	15
imillian		114.50	17.51	40.67	62.43	35.56	24.75	8.82	48.73	20.51	51.30	146.50	176.00
Runaff (139	21	49	76	4.3	30	1.1	5.5	25	, , ;		
Rainfal: [165	3	106	97	93	97	65	151	10	62 ' 136	170 183	157 196
51AT:571C5	of Hu	STHLY DATE	t for pre	VIOUS REC	ngo luct	1958 to	Dec 1985)						
Rean	Avg.	33.970	26.910	50.510	13.710	9.658	5.213	4.028	3+676	7.776	15.770	.3.760	37.233
flows:	Low	6.557	3.244	7.449	3.959	7.0/3 1976	1.329	0.793 1984	0.425	0.861 1959	1.043	3.553	13.713
	High	67.100	54.760	>2.143	32.400	3/.000	15.030	23.390	19.133	47.670	1978 77.360	1978 58.500	1963 73.670
	Lyear		1 970	1981	1966	1783	1972	1768	1785	1474	1960	1963	1965
Aunoff:	Avg.	117	35	67	43	51	16	15	19	24	61	39	171
		22	10	24	12	?	4	_ 3	. 1	3	3	11	4.3
	High	201	150	169	105	:20	52	76	67	: >0	251	184	524
Rainfall:	Avy.	152	86	90	64	15	68	71	87	95	117 ;	178	140
	Low	28		18		2.5	10	2.5	24	14	14	56	4.1
	High	545	17 1	183	145	140	164	152	160	247	278	259	271

				•
SUMMARY STATISFICS				FACIORS AFFECTING FLOW REGIME
			1986	
	fOR 1986	FOR RECORD	AS & 31	• Reservoiris) in catcheent.
		PRICEDING 1986	PRL-1956	* Abstraction for public water supplies.
Mean flow (m3/s)	21.9:0	17.990	122	* Augmentation from effluent returns.
Lowest yearly mean		11.310 1964		-
Highest yearly mean		27.590 1960		
Lowest monthly mean	3.313 Jul	0.423 Aug 1976		
Highest monthly mean	34.320 Hov	77.360 Oct 1960		
Lowest dally mean	1.861 74 Jul	C.2CO 25 Aug 1975		
Highest daily mean	176.727 19 Nov	363.830 4 Dec 1963		
Peak	251.496 19 Nov	644.900 4 Dec 1950		
10 3114	53.770	46.693	115	
50 \$11e	11.450	9.291	123	
95 \$11+	2.47?	1.174	211	
Annual total (million cu mi	691.00	567.70	122	
Annual runoff [mm]	836	687	122	
Annual rainfall (est	1316	1143	115	
(1961-70 rainfall ave	rage (ee)	1183}		

STATION AND CATCHMENT DESCRIPTION

Velocity-area station, main channel 34m wide, capleway span 54.9m. Rock step d/s forms the control. Bypassing begins at about 3.7m on the rb, but a good rating accomplates this. Significant modification to flows owing to PMS abstraction. Some naturalised flow data available.

Large rural catchment - drains both Dartmoor (granite) to the South and Devonian shales and sandstones of Exmoor to the north. Central area is underlain mainly by Culm shales and sandstones (Carboniferous). Agriculture is conditioned by the grade 3 and 4 volls.

OPTION 4 TABLE OF MONTHLY MEAN GAUGED DISCHARGES

C 50001	TAM AT U	GESTFICE				M:	MINIT MEAN	CANCED DI	SCHARGES	IN CUBIC NE	TRES PER S	E CO ICO
YEAR	JAN	7Eb		APR	MAY.	jus	JUL	AUG	SEF	UCT	MOV.	uzc
1929	30.918	12.955	44,410	13.654	12.831	1.679	1.956	11.910	5.314	9.371	30.082	51.477
1980	28.179	43.419	27.454	14.487	2.415	9.840	8.785	5.630	11.427	40.530	28.949	33.352
. 1981	14.626	16.837	52.143	1.777	19.551	9.113	2.748	2.209	9.897	47.732	24.212	40.347
. 1982	40.863	16.538	42.17:	6.043	2.462	2.722	8.563	2.585	4.27b	24,258	52.833	35.430
. 1983	48.920	19.180	14.436	17.895	36.994	4.472	1.650	C. # 16	3.245	14.976	11.134	46.906
. 1984	P3.101	16.469	7.449	5.457	2.255	1.329	0.793	0.832	3.589	20.636	49.390	37.3au
					•							
•												
, PEAH	40.134	27.961	31.344	11.218	12.747	5.693	4.C83	3.995	6.292	26.231	33.767	45.152
. MIM	28.179		1.444	5.457	2.255	1.329	U.793	0.832	3.245	9,371	11.134	33.352
. MAX	62.101	+3.8:9	52.143	17.895	36.998	9.840	8.768	:1.910	11.427	47.732	12.813	55.450

OPTION 5 TABLE OF MONTHLY MEAN NATURALISED DISCHARGES

39001	THAMES A	T EINCSTON				HONTSU	Y NEAK HATI	EALISED DI	SOURCES	IN CUBIC N	ETRES PLA	SE CON II
YEAR	JAN	788	MAK	APR	HAY	JUN	JUL	AUG	SLP	oct	NOY	DEC
1979	125.200	168.700	203.200	185,700	135 .90 0	108.600	45.960	42.090	30.640	36.450	40.670	145.600
1980	145.100	162.200	137.600	106,700	49.646	45.830	40.200	37,400	18.010	75.420	75.540	90.620
1981	88.970	60.530	199.30C	123.900	118.400	84,173	43.660	44.610	51.900	95.81C	78.220	142.200
1982	198,100	123.700	:87.000	90.960	55.630	46.920	38.69C	31.290	31.940	89.34J	129.600	177.100
1983	126.500	110.930	84.870	128.400	37.400	82.66G	43.670	34,580	33.280	38.280	39.100	78.590
1984	144.600	129.200	105.000	67.860	61.000	44.490	26.700	26.100	31.600	40.130	104.900	126.100
		• • • •		• • • • •		- • • · ·			• - • .			
MEAN	130.074	:25.872	152.828	117.233	92.998	68.778	39.313	36.012	36.362	62.572	79.005	17- 101
MIN	88.970	60.533	84.87C	67.860	49.660	44.490	26.700	26.100	30.640	16.450		126.702
NAX	198.100	168,700	203.200	165.720	137.400	08.600	45.960	44.610	51.900	95.810	129.600	78.590

OPTION 6 YEARBOOK DATA TABULATION (MONTHLY)

1						V . b	• c l •	£ & h					1987
Presurio	ug suther:	ty: Sulu	ı	Cı	rid refai	rence: 1	S6G873/		G	tchment	4100 (04	ke):	8 26.2
First 70	ar: 1930			ia	vel etn.	(6 00):	14.14				Maz alt.	(6 00):	604
IC STATIS	TICS FOR	1982											
	Jan	feb	Mar	Anr	Hav	Jun	Jul		***	0		۸	
AVE.	40.840	15.340	42.170										700r
Peak	127.60	55, 38	143.90										241.1
(=)	132	54	137	19									833
()	106	28	143	24	37	116	6,7	8,7	ı i	129	192	179	1239
PD TEARLY	STATISTI	CS FOR F	REVIOUS	RE COAD	(Get 192	8 to Dec	1981)						
Avg.	34.490	29.840	20.620	13.730	9,454	5.488	4.762	5.648	8.226	18.950	27.980	14.080	17.89
LOV	6.657	3.244	7.918	3.689	2.073	1.434	0.796	0.423	168.0	1.043	3.653	13.210	11.31
High	50.890	54.763	32.140	32.600	22.140	16.633	23.39G	14.440	47.470	27.360	50.500	73.670	27.50
	380.60	278.40	339.90	149.40	91.74	140.15	206.00	183.50	112.10	422.10	249.70	644.90	444.9
(a)/a)						: 1	16	1.6	26	• 1	64	117	
(a1/a) (as) (as)	112	91	67 89	43 76	30 72	.,			4.0	• 1	••	117	683
	Persourie First ye IC STATIS Avg. Fesh (mm) ED TEARLY Avg. Lov	Pirat year: 1938 IC STATISTICS FOR Avg. 40.880 (mm) 137 (mm) 106 AD MEALT STATISTI Avg. 34.490 Low 6.657	Personning authority: SMMM First year: 1938 IC STATISTICS FOR 1982 Jan Feb. Avg. 40.880 18,380 (mm) 132 5a (mm) 106 78 AVD WEARLY STATISTICS FOR F Avg. 34,490 29,840 Lov 6,657 3,244	Personal State	Description	Parameting authority: SMMA	Parauring authority: SMMA	Description Page Page	Peasuring authority: SMMA	Persouring suthority: SNMA	Description Property Proper	Personal Research Programme Continue Co	Personning sutherity: SNUMA

OPTION 7 TABLE OF MONTHLY EXTREME FLOWS

TAN AT UNBERLEICH 030001

TABLE OF HONTHLY INSTANTANEOUS PEAR DISCHARGES AND BIGHEST AND LOWEST GAILY NEAR GALGED DISCHARGES IN CLBIC METRES PER SECOND

TAR		JAN	PEA	NAT.	APR	MAT	JUH	JUL	AUC	SEP	007	MOV	DEC
978	M L	192.600	216.700	97.510	53.100	70.040	3.504	9.965	26.430	1.737	1.380	21.980	94.70
	ĸ	116.900	184.000	87.000	46.030	37.000	3.037	5.039	11.110	1.699	1.314	12.040	71.94
	μĐ	15.560	6.162	13.490	5.923	2.732	1.342	1.656	1.709	1.035	9.669	0.881	3.92
979	N I	95.310	150.800	104.700	30.700	55.430	20.550	5.994	69.190	18.710	61.830	83.940	354.10
	æ	66.420	121.900	92.120	26.330	31.630	14.630	4.143	37.570	10.640	33.450	67.010	208.40
	Lυ	12.430	10.040	11.390	8.787	6.746	3.249	1.201	1,541	2.799	3.894	12.730	13.71
180	* :	113.400	170.200	127.300	130.000	5.565	\$4.430	32.830	20.430	68,730	160.400	173.000	106.30
	ш	85.420	123.600	87.090	94.790	4.795	52.430	19.623	12.230	41.480	119.300	114.600	82.79
	u	10.630	13.900	10.330	3.365	1.505	1.303	4.902	3.15%	4.311	7.634	6.078	10.2
981	н	149.700	80.990	339.900	32.500	50.810	34.120	14.000	11.550	93.070	123.900	90. JAD	256.00
	w	80.100	43.450	223.400	24.990	33.340	29.010	8.875	8.361	42.080	105.200	35.820	136.10
	Ü	11.690	7.799	15.890	3.320	8.927	3.035	i.014	1.224	1.078	21.270	7.235	16.1
982	H1	127.600	55.360	143.900	23.890	5.536	12.480	162.200	7.727	25.400	32.350	215.200	241.10
	ж	111.600	38.260	101.000	17.120	4.265	9.491	77.330	5.925	14.970	36.460	124.300	170.00
	ĻΦ	16.590	11.330	9.077	3.074	1.477	1.165	2.000	1.693	1.546	9.246	11.200	12.1
						•							
w.X	1 H	192.600	216.700	339.900	136.600	70.040	84.430	162.200	69.190	95.070	160.400	215.200	354.10
	HР	114.900	184.000	223.400	94.790	37.000	52.430	77.330	37.370	42.080	119.300	124.300	208.40
ŭ M	Œ	10.630	6.162	9.077	3.074	1.477	1.163	1.201	1.224	1.035	0.889	0.881	3.92

- HI HICHEST INSTANTANEOUS DISCHARGE HD HICHEST BAILY MEAN CAUCED DISCHARGE LD LOWEST BAILY MEAN CAUCED DISCHARGE

OPTION 8 TABLE OF CATCHMENT MONTHLY RAINFALL

TAN AT UNBERLEICH 050001

ARRAL AVERAGE RAINFALL EXPRESSED IN HON & AS A PERCENTAGE OF LONG TERM HEAM

YEAR	KAL	7 24	MAR	APR	MAY	JUN	1AT	AUC	SEP	OCT	MOV	DE C
1978 BALHTALL (HO)	160	146	114	51	49	•1	93	42	39	14	• 8	174
\$ 1941-20 PEAN	124	159	144	71	•0	100	116	41	34	12	51	1.28
1979 RAINFALL (101)	110	72	164	68	102	52	45	126	49	100	122	192
1 1941-70 HEAR	87	7.6	208	74	139	85	55	124	47	88	91	141
1980 BAINFALL (HR)	99	130	131	24	43	164	65	67	101	173	107	115
1 1941-70 MEAN	7.8	141	166	33	33	269	29	64	97	155	80	83
1981 BALIFALL (191)	90	76	103	47	126	42	78	35	153	200	85	173
1 1941-70 HEAR	71	83	232	45	156	• 5	95	34	147	177	• 3	127
1982 KALISTALL (101)	106	78	143	24	37	116	67	87	81	129	192	179
2 1941-70 HEAR	83	•3	181	31	46	190	82	43	7.0	114	143	132
RAINTALL (HOI)	113	100	147		71		10	• • •	••	194		
HEAH HEAH	90	100 22	147 114	43 24	37	87 42	70 45	72 35	85 39	124 14	115 68	167 115
MPY VTH	160	146	183	68	126	164	95	126	133	200	192	192

OPTION 9 TABLE OF CATCHMENT MONTHLY AREAL RAINFALL AND RUNOFF

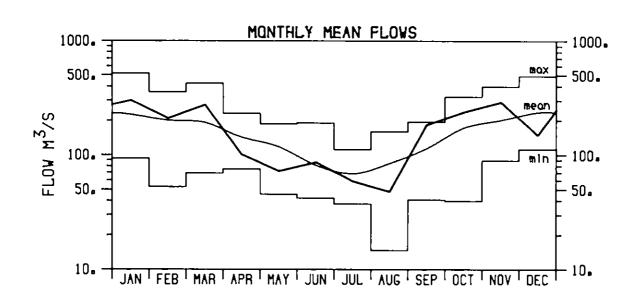
050001 TAW AT UNMERLEICH

HUNTHLY RAINGALL AND BUNGFF (DERIVED FRUM GAUGED FLAMS) EAPRESSED IN NM OVER THE CATCHMENT


TAR		JAH	FEL	HAR	APR	MAT	JUN	10r	AUG	SEP	oct	MOA !	DFC
1978 1	LAINTALL	160	144	114	51	49	61	95	42	39	14	64	174
- 1	RUMOFF	133	143	103	40	33	7	10	13	4	3	11	97
	IATHTALL	110	72	194	68	102	52	45	126	49	100	122	192
,	LUHOFF	100	16	144	49	42	23	•	39	17	10	113	167
	LAIRTALL	99	130	131	24	43	164	65	69	101	175	107	115
'	ELIMOF F	91	133	89	45	8	31	28	18	36	131	91	108
	LA INTALL	90	74	183	4.7	126	42	78	35	153	200		173
-	LUNOFF	9.7	49	169	24	63	29	9	,	31	155	76	150
	MAINTALL	104	7 W	143	24	37	110	67	87	B1	129	192	179
1	LUMOFF	132	34	137	19	•	•	28	•	13	79	166	100
_:. <u>-</u> :	• • • •											٠.٠	
BAINT!		113	100	147	+3	71	87	70	72	- 45	124	113	107
HEN	-	90	72	114	24	37	42	45	15	31	114	•	113
PAZ		100	146	183	68	126	104	95	26	153	200	192	192
EUMOF I	,			•••	•••			••	••	•,,,	200	174	. 72
HEAL		311	93	129	35	31	20	14	17	20	#Q	91	140
MIN.		91	49	89	19		,	•	7	4	3	11	97
MAX		133	143	169	49	63	31	28	39	34	155	166	180
1 1UM	* * * * * * * * * * * * * * * * * * *												
HEAL	•	98	93	84	81	44	23	23	24	24	+3	79 .	84
HZ.W		83	64	••	21	19		11	•	10	21	16	36
HAZ		>100	>100	74	>100	67	19	43	21	34	78	93	>100

OPTION 10 HYDROGRAPH OF DAILY MEAN FLOWS

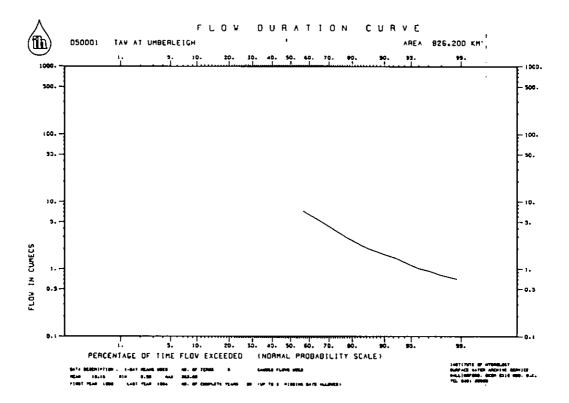
050001 TAW AT UMBERLEIGH 1981


Previous record 1958-1980

Catchment area 826.2 km

OPTION 11 HYDROGRAPH OF MONTHLY MEAN FLOWS

15006 TAY AT BALLATHIE 1981
Previous record 1953-1980 Catchment area 4587.1km²



OPTION 12 FLOW DURATION STATISTICS

PLOW DUBATION TABLE

050001	TAV	AT UNBERLEI	CH						GAUGED F	LOWS USED
	I DAT	REAM FLOW E	XCEEDED STA	TED AMOUNT	IN CUMEÇS I	OR CIVEN PE	RCENTAGE O	7 TIME		
	0		2	3	4	3	•			•
•		112.407	80.953	78.112	70.827	64.442	59.554	56.125	33.098	50.148
10	47,474	44.176	41.967	39.864	37.968	36.202	34.206	32.813	31.533	30.169
20	28.078	27.620	26.430	25.300	24.302	23.328	22.350	21.282	20.533	19.756
30	19.052	18.294	17.592	16.975	16.450	15.836	15.263	14.737	14.189	13.691
40	13.254	12.847	12.340	11.914	11.529	11.129	10.407	10.436	10.0am	9.725
30	9.366	9.020	8.678	8.390	8.073	1.001	7.535	7.219	6.943	6.673
♦ D	6.428	4.187	5.971	3.755	5.522	5.313	3.090	4.900	4.691	4.492
70	4.292	4.101	3.916	3.738	3.364	3.398	3.239	3.055	2.915	2.783
•0	2.659	2.534	2.418	2.287	2.170	2.071	1.976	1.890	1.822	1.734
90	1.647	1.367	1.493	1.391	1.268	1.141	1.019	0.941	0.800	0.685
HAX FL	ow- 36)	A1H 008.	FLOW- 0	. 200 M	EAK FLOW-	18,160		CATCHRENT A	BEA 826.2	SQ.KH
HUHBER	OF ZERO	s- 0	KUNBER OF	VALUES USE	0- 9497					
FIRST HUMBER	TEAR USE OF TEAR		LAST YEAR U	SED- 1984						

ONLY YEARS CONTAINING NOT MORE THAN 5 MISSING DAYS USED

OPTION 13 TABLE OF GAUGING STATION REFERENCE INFORMATION

NUMBER	MIVER	STATION	UNID KEF	UPLEATOR	REDUK	w	5.5	BASIN	LENEL	: 43	ABSTRAC-	F W
					157	LAST	TYP),	ARLA	2:3	ALT	Tiuks 6	
					TLAK	TL AK		SU KM	HUU	HCD	RETURNS	
C48001	FOREY	THENELVESTERS	51227698		1969						_	
		·					CC	36.5	167.85	420	SAPG	
548003	FAL	TRECONT	500921447		1 7 7 7		FLVA	67.U	0.55	226	UE:	
C4#004	WARLELCAN	TRENCOFFE	5.51576.74	SWA	1969		L C	25.3	70.25	306	L	
348005	KLMCTN	TRUNO	5982045.2	SWA	1958		CL.	9.	76	152	L	
\$4800¢	COSER	HELSTON	S=654273	SWMA	1468		VA.	40.1	4.69	25;	PG :	
34H0Q7	KENNALL	PONSANUCTA	S=7c2377	SVVA	1968		۲,	ъ.,	13.56	251	SKPL I	
348069	ST NEUT	CKA1GSHILL MGDD	5X:84662	SWVA	1971		CC	22.7	70.53	119	ŲL	
648010	SLATON	THESHOWSBALDGE	52299596	2504	197.		cc	38.3	25.60	16.9	4.1	
046011	F UNLY	RESTURBEL THU	52098624	SWMA	1972		i.C	169.1	9.24	420	SKPLLL	

OPTION 14 TABLE OF HYDROMETRIC STATISTICS

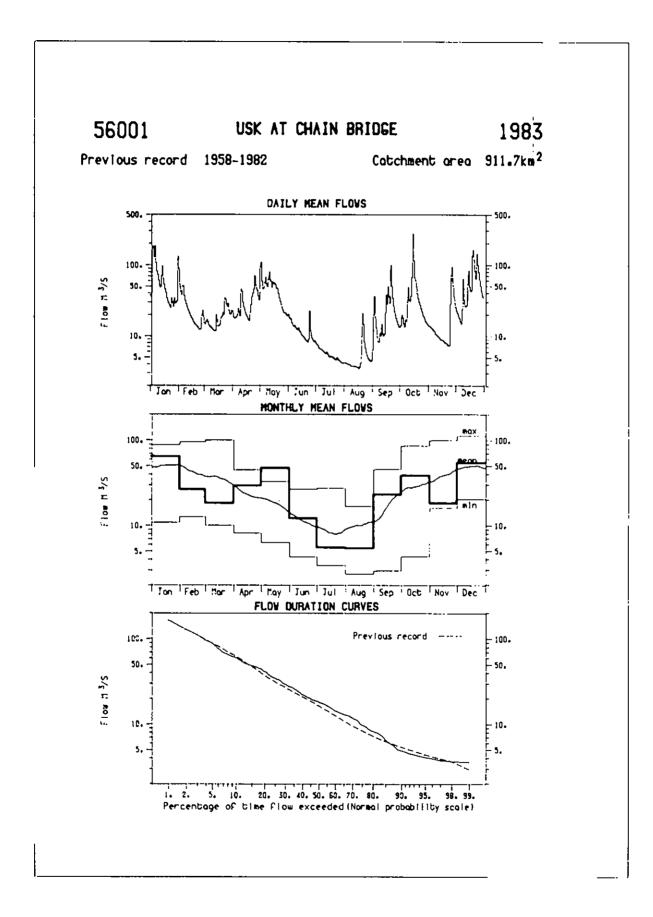
STATION NUMBER	TLEN	AR2 1941 1970	AMEAL KALN FALL	ANSUAL GAUGEU RUMOFF	MEAN GAULES FLUE	NG. YKS R£J	TOUR MEAN FLOW	BIGHEST DATES MEAN	DATE	DATEST DATES REAN	LA Ł	10 \$102	SU ALLE	#177 #177
		MM	AS	HH	CJ H/S			CU 5/5		OL 1875		JL 4/	s a. M/s	CU M/S
021005	PUK	1320	1250	676	7.99	15		185.50	30/01/74	1.19	U2/19/72	le.20	5.39	1.97
	1977		: 436	429	9.60		123	92.38	31/10	1.39	22708	226	7.03	1.65
	1978		: 317	757	4.95		112	15.14	15/1.	1.75	14/06	20.23	0.03	2.25
	1979		:367	913	15.80		135	82.15	25/11	2.23	23/07	24.29	5.77	2.60
	1960		:286	147	9.38		137	49.29	24/1:	2.C:	0:706	14.40	7.00	2.19
\$21006	PUK	1227	1140	694	52.99	13		393.40	30/01/74	J. is	67/10/72	ьв.79	24.22	63
	1977		: 277	843	43.20		122	555.30	3:710	4.13	10/05	84.42	29.40	5
	1978		1244	731	34.77		105	120. 3	15711	5.62	20736	757	22.20	7.01
	1979		1230	êd:	41.90		127	262.70	25/11	7.2.	23/62	¥3.82	27.64	8.51
	980		:167	740	35.48		108	171.60	20711	6.37	14/63	78.53	. 4.91	7.40
21007	POR	1413	i 32.	878	13.89	15		209.80	30/01/7•	0.57	07/09/76	31.59	8.50	1.71
	1977		. 524	1158	17.54		ı Ze	206.32	31/10	2.67	Id/Cb	-1.40	10.84	1.1:
	1978		1346	886	14.D2		:01	210.80	13/11	0.92	19702	32.6Ú	6.24	1.2.
	1979		: 4 ZU	LiSS	17.48		125	120.90	25/1:	1.42	24/07	+1.36	IU.as	1.81
	1980		1356	44.4	14.97		:07	90,17	267	1.18	14/02	15.27	9 0	1.55
021008	PUR	1006	949	504	17.74	ie		10m. 65	J6/03/63		22/08/?b	28.44	1:.05	2-89
	1977		10.9	6 C4	2:.25		: 20	167.70	31/10		17/05		14.3.	2.75
	1974		TOUR	541	15.03		107	177.90	15711	2.64	20/07	+ 5 . 34	11.09	2.53
	1979		1:205	673	24.40		: 38	473.10	25/03	2.22	05/08	33.64	15.31	1.07
	1950		982	See	-0.e2		.16	122.00	207.1	1,15	03/06		14.1.	4.14

MCTE: This example illustrates only a limited amount of the statistical information that may be output.

OPTION 15 GAUGING STATION DESCRIPTION

48003

Fal at Tregony
Originally a velocity-area station in a formalised trapezoidal channel; augmented by a low flow; side contracted flume 2.8m wide in August 1967. Site not ideal for high flows. Data available from June 1978. Earlier data unreliable due to silting of inlet pipes. Moderate modification to flows owing to industrial abstractions


Moderate to low relief catchment draining Devonian slates, shales and grits. Upper reaches plateau-like aliuvial flats. Traverses the kaolinised St Austell Granite. Low grade agriculture and grazing.

45004 Warleggan at Trengoffe

Three-bay compound Crump profile weir, crest lengths 1.52m and 8.53m (total). Wing walls at 1.67m. Flood banks contain flows up to wing wall height. Overtopped at the highest flows. The only gauged natural catchment on Bodeln Roor. The upper 70% drains the kaolinismd granite of Bodein Noor. The relief is moderate to steep. The lower 30% traverses metamorphosed Devonian slates. Baseflow high for an upland catchment owing to storage in the granite.

Three-bay compound Crump profile weir, crest lengths 1.22m and 3.05 (total). Pland wing well height 1.98m. Contains all flows; potential for non-modularity at the highest flows. Variable shouling affects low flow precision. Substantially natural catchment. Migh baseflow, low percentage runoff catchment for the relief Catchment of moderate reliefy with wooded, incised valleys. Geology is Davonian grits and shales.

OPTION 16 RIVER FLOW PATTERN PLOTS

Concise Register of Gauging Stations

Station	River	Grid reference	Measuring authority	Area (sq km)	Station number	River name	Grid reference	Measuring authority	Area (sq km)
00200:	Heknadala	29 (NC) 997 181	HAPB	551 4	018011	Forth	26 (NS) 775 955	FREE	1036 Q
003001	* Sn:n	29 (NC) 581 062	NSHE	494 6	018012 018013	Ardoch Burn Black Davon	27 (NN) 729 008 26 (NS) 914 924	FRPB FRPB	48 0 67 0
003002	Carron	28 (NH) 490 921	HANB	241.1	018014	Bannockburn	26 (NS) 812 908	FRPB	23 7
003003 003004	Oykel Cossley	29 (NC) 403 001 29 (NC) 472 022	HAPB HAPB	330 7 187 5	018015 018016	Eas Gobhain Kelty Water	27 (NN) 602 070 26 (NS) 468 968	FRPB	202 () 2 8
003005	Shin	28 (NH) 574 974	HAPB	575 0	018017 018018	Monachyle Burn Kirkton Burn	27 (NN) 475 230 27 (NN) 532 219	IH	7 7
004001	Conon	28 (NH) 482 547	HAPB	9618	018019	Corner Burn	27 (NN) 386 043	IH FRPB	6 9 0 9
004003 004004	Ainess Backwater	28 (NH) 654 695 28 (NH) 455 563	HAPB HAPB	201 0 336 7	019001	A mond	36 (NT) 165 752	FAPB	369 0
004005	Meg	28 (NH) 286 528	HHPB	120 5	019002 019003	A mond * Breich Water	36 (NT) 004 652	FRPB FHPB	43 8
005001		28 (NH) 426 405	NSHE	849 5	019004	North Esk	36 (NT) 014 639 36 (NT) 252 616	FRPB	51 B 81 6
005002	Factor	28 (NH) 390 405	HAPB	3113	019005 019006	A mond Water of Leith	36 (NT) 086 686 36 (NT) 228 732	FRPB	229 O 107 O
006003	* Ness * Morston	28 (NH) 639 410 28 (NH) 416 169	NSHE RER	1792 3 391 0	019007 019008	Esk South Esk	36 (N1) 339 723	FRPB	330 0
006006	* Al't Bhlaraidh	28 (NH) 377 168	NSHE	27 5	019009	Bog Burn	36 (NT) 026 591	FRPB FRPB	112 O 8 5
006007	Ness Enrick	28 (NH) 645 427 28 (NH) 450 300	нарв Нярв	1839 1 105 9	019010 019011	Braid Burn North Esk	36 (NT) 273 707 36 (NT) 333 678	FRPB FRPB	16 2 137 0
00700			нягв		019012	Water of Leith	36 (NT) 212 688	FHPB	72 0
007002	Findhorn Findhorn	28 (NH) 826 337 38 (NJ) 018 583	ннев	415 6 781 9	019014 019017	Brax Burn Gogar Burn	36 (NT) 114 732 36 (NT) 161 733	FRPB FRPB	34 1 38 8
007003 007004	Lossie Nam	38 (NJ) 194 626 28 (NH) 882 551	NERPB HAPB	216 0 313 0	020001	Tyne	36 (NT) 591 768	FRPB	3010
007005	D.vie	38 (NJ) 005 480	HRPB	165 0	020002	West Peffer Burn	36 (NT) 489 811	FAPB	26 2
007006	Lossie	38 (NJ) 135 489	NERPB	:72	020003 020004	Tyne East Peller Born	36 (NT) 456 689 36 (NT) 610 824	FRPB FRPB	161 0 31 1
008003	* Spey	38 (NJ) 278 439 28 (NH) 881 082	NERPB NERPB	2654 7 1011 7	020005 020006	Birns Water	36 (NT) 457 688	FRPB	93 0
008003	Spey Spey	27 (NN) 759 996	VERPB	533 8	020007	Biel Water Gifford Water	36 (NT) 645 788 36 (NT) 511 717	FRPB	51 8 64 0
008004 008005	Ayon Spay	38 (NJ) 186 352 28 (NH) 946 191	NERPB NERPB	542 8 1267 B	020008	Brox Burn	36 (NT) 697 776	FRPB	19.7
008006	Spay	38 (NJ) 318518	NERPB	2861 2	02.00	* Fruid Water	36 (NT) 088 205	LRWD	23 7
008007 008008	Spey Trom-e	27 (NN) 687 962 27 (NN) 789 995	NERPB NERPB	400 4 130 3	021002 021003	* Whiteadder Water Twend	36 (NT) 663 633 36 (NT) 257 400	LRWD TWRP	45.6 694.0
008009 008010	Dulhain Sp ay	28 (NH) 977 247 38 (NJ) 033 268	NERPB NERPB	272 2 1748 8	021004 021005	* Watch Water Tweed	36 (NT) 664 566 36 (NT) 206 397	BRWD TWRP	10 7 3/3 0
00801	Livet	38 (NJ) 201 291	NERPB	104 0	021006	Tweed	36 (N1) 498 334	TWRP	1500 0
009001	Deveron	38 (NJ) 532 464	NERPB	441.6	02 100 7 02 100 8	Ettrick Water Teviot	36 (NT) 486 315 36 (NT) 702 280	T WHP T WHP	499 0 1110 0
009002	Deveron Isla	38 (NJ) 705 498	NERPB NERPB	954 9	021009	Tweed	36 (NT) 898 477	TWHP	43900
009004	Bag.e	38 (NJ) 494 506 38 (NJ) 519 373	VERPB	1/6 1 179 D	021011	* Tweed Yarrow Water	36 (N1) 588 320 36 (NT) 439 277	T WAP TWAP	2080 0 231 0
0.0003	Ug•a	48 (NK: 101 485	NERPB	325 0	021012	Teviot Gala Water	36 (NT) 522 159 36 (NT) 479 374	T WHP TWRP	323 0 207 0
010003	Ythun	38 (NJ) 947 303	NERPB	523 0	021014	Tweed	36 (NT) 109 285	TWRP	139 0
011001	Don	38 (NJ) 887 141	N ERPB	12730	02 10 15 02 10 16	Leader Water Eye Water	36 (N1) 565 388 36 (NT) 942 635	TWRP TWRP	239 0 119 0
011002	Don Don	38 (NJ) 756 201 38 (NJ) 566 170	NERPB NERPB	787 () 499 ()	021017 021018	Eitrick Water Lyne Water	36 (N1) 234 132 36 (N1) 209 401	TWRP	375
					021019	Manor Water	36 (NT) 217 369	TWRP	175 O 61 G
012001	Des Des	37 (NO) 635 956 37 (NO) 798 983	NERPB NERPB	1370 0 1844 0	02 1020 02 102 1	Yarrow Water Tweed	36 (NT) 309 247 36 (NT) 752 354	TWRP	155 O 3330 O
012003	Dee	37 (NO) 344 965	NERPB	690 0	021022	Whiteadder Water	36 (NT) 891 550	TWRP	503.0
012005	Girnock Burn Muick	37 (NO) 324 956 37 (NO) 364 947	NERPB NERPB	30 3 1 10 0	021023 021024	Leet Water Jed Water	36 (NT) 839 396 36 (NT) 655 214	TWRP TWRP	113 O 139 O
012006 012007	Gairn Dae	37 (NO) 353 971 37 (NO) 098 895	NERPB NERPB	150 0 289 0	02 1025 02 1026	Ale Water Tima Water	36 (NT) 634 244 36 (NT) 278 138	TWHP	174 0 31 0
012008	Feugh	37 (NO) 687 928	NERPB	229 0	021027	Blackadder Water	36 (NT) 826 530	TWRP	159 0
013001	Barvis	37 (NO) 826 /33	NERPB	123 0	02 1030 02 103 1	Magget Water * Tili	36 (NT) 231 232 36 (NT) 927 396	TWRP NWA	56 2 648 0
013002	Luther Water * South Esk	37 (NO) 660 668 37 (NO) 583 593	TRP8 TRP8	138 0 487 0	02 1032 02 1034	* Glen Yarrow Water	36 (NT) 919 310 36 (NT) 288 244	NWA TWRP	198 9 116 0
013004	Prosen Water	37 (NO) 396 586	THPB	104.0					
013005 013007	cunan Water North Esk	37 (NO) 655 494 37 (NO) 699 640	TRPB TRPB	124 0 730 0	022001 022002	Coquet * Coquet	46 (NU) 234 044 36 (NT) 870 083	NWA NWA	569 8 59 5
013008 013009	South Esk West Water	37 (NO) 600 596 37 (NC) 592 680	TRP8 TRP8	490 0 127 2	022003	* Usway Burn	36 (NT) 886 077	NWA NWA	21 4 205 0
					022006	Blytr	45 (NZ) 243 800	NWA	269 4
014001 014002	Eden Dighty Water	37 (NC) 415 158 37 (NO) 477 324	TRP8 TRP8	307 4 126 9	022007 022008	Wansbeck * A win	45 (NZ) 175.858 36 (NT) 925.063	NWA NWA	287 3 27 7
014005	Motray Water	37 (NO) 441 224	*RP0	52 0	022009	Coquet	46 (NU) 067 016	NWA	346 0
015001		37 (NO) 187 647	TRWS	70 7	023001	Tyne	45 (NZ) 038 617	NWA	2:75 6
015002	* Newton Burn Tay	37 (NO) 230 605 37 (NO) 082 395	TRWS TRPB	15 4 32 1 0	023002 023003	Derwent North Tyne	45 (NZ) 041 508 35 (NY) 906 732	NWA NWA	118 O 1007 5
	* Inzon * Malgan	37 (NO) 280 559 37 (NO) 275 558	TRWS	24 / 40 9	023004 023005	South Tynu North Tyne	35 (NY) 856 647 35 (NY) 776 861	NWA	7511
015008	Tey	37 (NO) 147 367	TRPB	4587 1	023006	South Tyne	35 (NY) 672 811	NWA NWA	284 9 321 9
015007	Tay Dean Water	27 (NN) 924 534 37 (NO) 340 479	Trp8 Trp8	1149 4 177 1	02300 <i>1</i> 023008	Darwert Rede	45 (NZ) 168 581 35 (NY) 868 832	NWA NWA	242 1 343 B
015010 015011	واؤا	37 (NO) 295 466	TRPB	366 5	023009	* South Tyne	35 (NY) 716 465	NWA	1:85
015012	Lyon Tummal	27 (NN) 786 486 27 (NN) 940 577	TRPB TRPB	391 1 1649 0	023011	* Tarset Burn Kielder Burn	35 (NY) 789 879 35 (NY) 644 946	NWA NWA	96 O 58 8
015013 015015	Almond Almond	37 (NC) 067 258 27 (NN) 888 316	*RP8 *RP8	174 B 84 O	023012	* Eust Allen * West Allen	35 (NY) 802 583 35 (NY) 791 583	NWA NWA	88 O 75 1
015016	Tey	27 INN) 782 467	TRPB	600 9	023014	* North Tyne	35 (NY) 631 931	NWA	27 0
015017 015018	* Braen * Lyon	27 INN) 979 406 27 INN) 534 448	THPB NSHE	197 () 161 4	023015	* North Tyre	35 (NY) 924 721	NGWC	1043 8
015021 015023	Lunan Burn Braan	37 (NO) 182 400 37 (NO) 014 422	TAPB	94 0 2 0 0	024001 024002	Wear * Gauciass	45 (NZ) 264 376 45 (NZ) 215 306	NWA NWA	657 8
015024	Dochart	27 (NN) 567 320	TAPB	239 0	024003	* Gaucless Wear	45 (NZ) 215 306 35 (NY) 984 391	NWA NWA	93 O 171 9
015025	Erich:	37 INC: 174 472	THPB	432.0	024004 024005	Bedburn Beck Browney	45 (NZ) 118 322 45 (NZ) 259 387	NWA NWA	74 9 178 5
016001 016002	Earn	27 (NN) 933 167	TAPB	590 5	024006	* Rooktrope Burn	35 (NY) 952 390	NWA	36 5
016003	* Earn Ruchill Water	27 (NN) 754 216 27 (NN) 764 204	TRPB	176 9 99 5	024007 024008	* Browney Wear	45 (NZ) 165 462 45 (NZ) 174 309	NWA NWA	44 6 455 0
016004	Earn	37 (NO) 043 184	TAPE	782 2	024009	Maa.	45 (NZ) 283 512	NWA	1008.3
017001	Carron	26 (NS) 832 820	FRP8	122 3	025001	Tegs	45 (NZ) 259 137	NWA	8184
017003	Loven Bonny Water	37 (NC) 369 006 26 (NS) 824 804	F4P8 F4P8	424 O 50 5	025002 025003	* Tees * Trout Beck	35 (NY) 932 260 35 (NY) 759 336	NWA NWA	217.3 11.4
017004 017005	Ore Avon	36 INTL 330 997 26 INSL 952 797	FAPB FAPB	162 O 195 3	025004 025005	Skerne	45 (NZ) 284 129	NWA	250
0170:2	Red Burn	26 (NS) 788 780	FAPB	22 O	025006	Leven Greta	45 (NZ) 445 122 45 (NZ) 034 122	NWA NWA	196 3 .86 1
017014	* ceven North Queich	36 (NT) 172 993 37 (NO) 114 042	FAPB FAPB	158 O 23 1	025007 025008	* Claw Beck * Teas	45 (NZ) 282 101 45 (NZ) 047 166	NWA NWA	78 2 509 2
017016 017017	Lachty Burn	36 INTI 221 987	FAPB	14 0	025009	Tens	45 (NZ) 364 105	NWA	1264 0
	Greens Burn	37 (NO) 150 053	FAPE	7.9	025010 025011	* Baydale Beck * Langdon Beck	45 (N7) 260 156 35 (NY) 852 309	NWA NWA	31 1 13 0
018001 018002	Allan Water Devon	27 (NN) 792 053 26 (NS) 858 960	FAP8 FAP8	161 O 181 O	025012	Harwood Beck * Billingham Beck	35 (NY) 849 309 45 (NZ) 408 237	NWA	25 1
0.8003	Teith	27 (NN) 725 011	FHPB	5180	025014	* Mordan Stell	45 (NZ) 323 274	NWA NWA	61 4 2 5
018005 018007	Allan Water Devon	26 (NS) 786 980 37 (NO) 011 018	FRPB FRPB	210 O 69 5	025015 025018	* Woodham Burn Tees	45 (NZ) 285 263 35 (NY) 950 250	NWA NWA	29 1 242 1
018008	Lany Forth	27 (NN) 585 096 26 (NS) 714 953	FAPB	190 0 397 0	025019 025020	Leven	45 (NZI 585 087	NWA	14 8
- 50.0		atr (40) 714 333		3310	023020	Skerne	45 (NZ) 292 238	NWA	470

Station	River	Grid	Measuring authority	Area	Station	River	Grid	Measuring	Area
number	name	reference		(eq km)	number	neme	reference	authority	(sq km)
025021	Skerne	45 (NZ) 318 285	NWA	70 1	028033	1 Dove	43 (SK) 063 668	STWA	8 O
025022	* Belder	35 (NY) 931 182	NWA	20 4	028036	1 Poulter	43 (SK) 700 752	STWA	128 2
025023	* Tees	35 (NY) 813 288	AWA	58 2	028037	1 Durwent	43 (SK) 205 825	STWA	203 0
025024	* Chapel Back	45 (NZ) 599 163	AWA	13 4	028038	1 Manifold	43 (SK) 106 595	STWA	46 0
026001	* West Back	54 (TA) 064 560	YWA	192 0	028039 028040	Rea Trent	42 (SP) 07:847 33 (SJ) 892 467	STWA STWA	74 0 53 2
026002	Hull	54 (TA) 080 498	YWA	378 °	028041	* Hamps	43 (SK) 082 502	STWA	35 1
026003	Faston Back	54 (TA) 093 548	YWA	57 2	028043	Derwent	43 (SK), 261 683	STWA	335 0
028004	* Gypsey Race	54 (TA) 165 675	YWA	253 B	028044	* Poulter	43 (SK) 563 714	STWA	65 0
026005	Gypsey Race	54 (TA) 137 677		240 O	028045	* Meden	43 (SK) 681 732	STWA	106 2
026006	Elmswell Beck * Catchwater	54 (TA) 009 575 54 (TA) 171 403	YWA	136 O 15 5	028046 028047	Dove * Oldcoates Dyke	43 (SK) 146 509 43 (SK) 615 876	STWA	83 O 85 2
027001		44 (SE) 428 530	YWA	484 3	028048 028049	Amber Ryton	43 (SK) 376 520 43 (SK) 575 794	STWA STWA	139 0 77 0
027002	Wharte	44 (SE) 422 473	YWA	758 9	028050	* Torne	44 (SE) 646 012	STWA	135 5
	Ava	44 (SE) 534 255	YWA	1932 1	028052	Sow	33 (SJ) 883 270	STWA	163 0
027004	* Calder	44 (SE) 365 220	YWA	899 0	028053	* Penk	33 (SJ) 923 144	STWA	272 O
027005	Nidd	44 (SE) 141 683	YWA	113 7	028054	* Sence	42 (SP) 566 985		133 O
027006	Don	43 (SK) 390 910	YWA	373 0	028055	* Ecclesbourne	43 (SK) 320 447	STWA	50 4
027007	Ure	44 (SE) 356 671	YWA	914 6	028056	Rothley Brook	43 (SK) 580 121	STWA	94 0
027008	' Swale	44 (SE) 415 748	YWA	1345 6	028058	* Henmore Brook	43 (SK) 176 463	SIWA	42 O
027009	Ouse	44 (SE) 568 554	YWA	3315 0	028059	* Maun	43 (SK) 548 623		28 B
027010	1 Hodge Beck	44 (SE) 527 944	YWA	18 9	028060	Dover Beck	43 (SK) 653 479	STWA	69 0
027012	1 Hebden Water	34 (SD) 973 309	YWA	36 0	028061	Churnet	33 (SJ) 983 520		139 0
027013	* Ewden Beck	43 (SK) 289 957	ÝWA	26 4	028062	Trent	43 (SK) 815 715	STWA	8433 0
027014	* Rye	44 (SE) 743 771	ÝWA	679 0	028065	Trent	43 (SK) 827 780	STWA	8547 0
027015	* Derwent	44 (SE) 714 557	YWA	1634 3	028066	Cole	42 (SP) 183 874	STWA	130 0
027018	* Little Don	43 (SK) 253 992	YWA	38 6	028067	Derwent	43 (SK) 438 316	STWA	1177.5
027017 027018	* Losley * Ryburn	43 (SK) 286 906 44 (SE) 025 187	YWA YWA	43 5 10 7	028070	* Burhage Brook * Greet	43 (SK) 259 804 43 (SK) 711 541	STWA	9 1
027019	* Booth Dean Clough * Scout D-ke Stream	44 (SE) 033 166 44 (SE) 236 047	YWA YWA	15 9 15 2	028073 028075	* Ashop	43 (SK) 171 896 43 (SK) 169 951	STWA STWA	42 O 17 O
027021	Don	44 (SE) 569 040	YWA	1256 2	028079	Meece	33 (SJ) 874 291	STWA	86 3
	* Don	43 (SK) 427 928	YWA	826 O	028080	Tame	42 (SP) 207 937	STWA	799 0
027023	Dearns * Swale	44 (SE) 350 073 45 (NZ) 146 006	YWA	118 9 381 0	028082 028083	Soar Trens	42 (SP) 542 973 33 (SJ) 885 355	SIWA SIWA	183 9
027025	Rother	43 (SX) 432 857	YWA	352.2	028085	Derwent	43 (SK) 355 368	STWA	195 2 1054 0
027026	Rother * Wharfe	43 (SK) 394 744 44 (SE) 112 481	YWA	165 0 443 0	028086 028091	Sence Ryton	42 (SP) 588 977 43 (SK) 631 871	STWA	113 0 231 0
027028	Aire Calder	44 (SE) 281 340 44 (SE) 124 219	YWA	691.5 341.9	028093 028094 028095	Soar Blythe	43 (SK) 565 182 42 (SP) 213 888	STWA	1108 4
027030	Dearne Coine	44 (SE) 477 020 44 (SE) 174 199	YWA	310 B 245 O		Tame	43 (SK) 182 052	STWA	14717
027032	Hebden Beck	44 (SE) 025 643	YWA	22 2	029001	Waithe Beck	54 (TA) 253 016	AWA	10B 3
027033	Sea Cut	54 (TA) 028 908	YWA	33 2	029002	Great Eau	53 (TF) 416 793		77 4
027034	Ure Are	44 (SE) 190 860 44 (SE) 013 457	YWA	510 2 282 3	029003 029004	Lud Ancholme	53 (TF) 337 879 53 (TF) 032 911	AWA	55 2 54 7
027036	* Derwent	44 (SE) 789 715	YWA	1421 0 '	029005	Rase	53 (TF) 032 912	AWA	66 6
027038	Costa Beck	44 (SE) 774 836	YWA	7 8	029009	Ancholme	53 (TF) 033 877	AWA	27 2
027039 027040	1 Holme Don Lea	44 (SE) 112 069 43 (SK) 443 748	YWA	9 1 67 9	030001	Witham	43 (SK) 842 480	AWA	797 9
027041	Derwent Dove	44 (SE) 731 587 44 (SE) 705 855	YWA YWA	1586 0 59 2	030002 030003	Barkings Eau Bain	53 (TF) 066 766 53 (TF) 241 611	AWA	210 1 197 1
027043	Wharfs	44 (SE) 092 494	YWA	427 0	030004	Partney Lymn	53 (TF) 402 676	AWA	61 6
027044	Blackfoss Back	44 (SE) 725 475	YWA	47 0	030005	Witham	43 (SK) 927 335		126 1
027047 027048	Snaizeholme Bock Derwent	34 (SD) 833 883 44 (SE) 990 853	YWA	10 2 127 0	030006	Sies Bain	53 (TF) 088 485 53 (TF) 246 795	AWA	48 4 62 5
027049 027050 027051	Rye Esk	44 (SE) 696 791 45 (NZ) 865 081 44 (SE) 284 519	YWA YWA YWA	238 7 308 0 8	030012 030013 030014	Stainfield Beck Heighington Beck Pointon Lode	53 (TF) 127 739 53 (TF) 042 696 53 (TF) 128 313	AWA AWA	37 4 21 2 11 9
027052	Crimpie Whitting Nicd	43 (SK) 376 747 44 (SE) 230 603	YWA	50 2 217 6	030015	Cringle Brook Witham	43 (SK) 925 297 43 (SK) 929 246	AWA AWA	50 5 51 3
027054	Hodge Beck Rye	44 (SE) 652 902 44 (SE) 560 883	YWA	37.1 131.7	031001	Eye Brook	42 (SP) 853 941	CDWC	60 1
027056	Pickering Back	44 (SE) 791 819	YWA	68.6	031005	Welland	42 (SP) 970 997	AWA	417 0
027057	Sevan	44 (SE) 736 821	YWA	121.6	031006	Gwash	53 (TF) 038 097	AWA	150 0
027058	Riccal Laver	44 (SE) 661 810 44 (SE) 301 710	YWA	57.6 87.5	03 1007 03 1008	Welland East Glan	42 (SP) 948 999 53 (TF) 068 160	AWA AWA	411 6 136 2
027060	Ky's Cons	44 (SE) 509 602 44 (SE) 136 161	YWA	167 6 72 3	031009 031010	West Glen Chater	53 (TF) 074 113 43 (SK) 961 030	AWA AWA	173 0
027062	Nidd	44 ISEI 482 56:	YWA	516 0	031011	West Glen	43 (SK) 987 261	AWA	31 6
027063	Oibb	44 ISEI 057 639	YWA	25 5		Them	53 (TF) 016 179	AWA	24 9
027084	Went	44 ISEI 551 163	YWA	83 7	031013	East Glen	53 (TF) 038 273	AWA	71 5
027065	Holma	44 ISEI 142 157	YWA	97 4	031014	Grimsthorpe Brook	53 (TF) 046 203	AWA	21 0
027068	Blackburn Brook	43 (SK) 393 914	YWA	42 B	031015	Chater	43 ISK: 848 037	AWA	18 5
027067	Sheaf	43 (SK) 357 863	YWA	49 1		North Brook	43 ISK: 957 089	AWA	36 5
027068	Ryburn	44 (SE) 035 188	YWA	33 0	031017	Stonton Brook	42 (SP) 759 918	AWA	42 7
027069	Wiska	44 (SE) 375 844	YWA	215.5	031018	Langton Brook	42 (SP) 755 908	AWA	55 1
027070	Eler Beck Swale	14 (SB) 984 502 44 (SE) 425 734	YWA YWA	35 3 1363 0	031019	Medbourne Brook Morcott Brook	42 (SP) 798 939 43 (SK) 939 018	AWA AWA	27 g 19 6
027072	Worth	44 (SE) 064 408	YWA	71 7	03102	Wellerid	42 (SP) 819 915	AWA	250 /
027073	Brompton Back	44 (SE) 936 794	YWA	12 9		Jordan	42 (SP) 740 867	AWA	20 8
027074	Spon Bock	44 (SE) 225 210	YWA	46 3	031023	West Glen	43 (SK) 965 258	AWA	4 4
027075	Bodale Beck	44 (SE) 308 902	YWA	160 3	031024	Holywell Brook	53 (TF) 026 148		22 3
027076	Bielby Beck	44 (SE) 760 444	YWA	103.1	031025	Gwash South Arm	43 (SK) 875 051	AWA	24 5
027077	Bredford Beck	44 (SE) 151 375		58.0	031026	Egleton Brook	43 (SK) 878 073	AWA	2 5
027080	Aire	44 (SE) 381 285	YWA	865 O	031027 031028	Bourne Eau Gwash	53 (TF) 107 199 43 (SK) 951 082	AWA AWA	10 6 76 5
028001 028002	Derwent * Bishe	43 (SK) 198 851 43 (SK) 109 192	STWA STWA	126 O 1 63 O	032001	Nene	52 (TL) 166 972	AWA	1634.3
028003 028004	* Tame	42 ISPI 169 915 42 ISPI 206 935	STWA STWA	408 0 795 0	032002 032003	Willow Brook Harpers Brook	52 (TL) 067 933 42 (SP) 983 799	AWA	89 6 74 3
028005	* Tame	43 (SK) 173 105	STWA	1475 0	032004	Ise Brook	42 (SP) 898 715	AWA	194 0
028006	* Trent	33 (SJ) 994 231	STWA	325 0	032006	Nene/Kislingbury	42 (SP) 721 592	AWA	223 0
028007	Trent	43 (SK) 448 299	STWA	4400 0	032007	Nene Brampton	42 (SP) 747 617	AWA	232 8
028008	Dove	43 (SK) 112 397	STWA	399 0	032008	Nene/Kislingbury	42 (SP) 627 607	AWA	107 0
028009	Trent	43 (SK) 620 399	STWA	7486 0	032012	Wootton Brook	42 (SP) 736 571	AWA	53 3
028010	Derwent	43 (SK) 356 363	STWA	1054 0	032015	Willow 8k Central	42 (SP) 898 892	AWA	7 1
028011	Derwent	43 (SK) 296 588	STWA	690 0	032016	Willow Brook Sth	42 (SP) 901 886	AWA	7 6
028012	Trent	43 (SK) 131 177	STWA	1229 0	032018		42 (SP) 861 831	AWA	62 4
028013	Soar	43 (SK) 498 240	STWA	1289 B	032019	Slade Brook	42 (SP) 873 763	AWA	58 3
028014		33 (SJ) 975 215	STWA	591 O	032020	Wittering Brook	52 (TL) 089 995	AWA	46 9
028015	idle	43 (SK) 690 895	STWA	529 0	032023	Grendon Brook	42 (SP) 883 633	AWA	47.5
028016	* Ryton	43 (SK) 641 897	STWA	231 0		Southwick Brook	52 (TL) 025 921	AWA	20.5
028017	* Devon Dove	43 (SK) 787 488 43 (SK) 235 288	STWA STWA	284 0 883 2	032024 032025 032026	Nene/Whitton Nene/Brampton	42 (SP) 620 658 42 (SP) 736 707	AWA AWA	63 4 58 0
028018 028019 028020	Trent * Churnet	43 (SK) 239 204 43 (SK) 103 389	STWA	3072 0 236 0	032027 032029	Billing Brook Flore	52 (TL) 117 949 42 (SP) 660 610	AWA	24 3 7 0
028021	* Derwent	43 (SK) 443 327	STWA	1175 O	032030	Coton Mill Stream	42 (SP) 669 714	AWA	8 5
028022	Trent	43 (SK) 801 601	STWA	8231 O	032031	Wootton Brook	42 (SP) 726 577		73 9
028023 028024	Wresko	43 (SK) 182 696 43 (SK) 615 124	STWA STWA	154 0 413.8	033001	Bedford Ouse	52 (TL) 369 727	AWA	3030 0
028025 028028	Anker	42 (SP) 321 996 43 (SK) 263 034	STWA STWA	169 4 368 0	033002	Bedford Ouse Cam	52 (TL) 055 495 52 (TL) 506 657	AWA	1460 0 803 0
028027	* Kingston Brook	43 (SK) 482 364	STWA	182 2	033004	Lark	52 (TL) 648 760	AWA	466 2
028029		43 (SK) 503 277	STWA	57 0	033005	Bedford Ouse	42 (SP) 738 353	AWA	388 5
028030 028031	Manifold	43 (SK) 466 171 43 (SK) 140 507	STWA	8 4 148 5	033008	Wissey Nor	52 (fu) 771 965 53 (TF) 723 119	AWA AWA	274 5 153 3
028032	* Meden	43 (SK) 558 680	STWA	62 8	033008	* Little Ouse	52 (TL) 860 832	AWA	699 0

Station number	River name	Grid reference	Measuring authority	Area (sg km)	Station number	River name	Grid reference	Measuring authority	Area (sq km)
033009	Bedford Ouse Little Ouse	42 (SP) 951 565 52 (TL) 892 801	AWA	1320 0 128 7	037028 1 037029 1	* Bentley Brook * St Osyth Brook	62 (TM) 109 193 62 (TM) 134 159	AWA AWA	12 1 8 0
033012	Kym	52 (TL) 155 631 52 (TL) 896 791	AWA	· 37 5 205 9	037030	* Holland Brook	62 (TM) 171 217	AWA	48 6
033014	Sepiston Lank	52 (TL) 758 730	AWA	272 0	037031 037033	Crouch Eastwood Brook	51 (TQ) 748 934 51 (TQ) 859 888	AWA AWA	/18 104
033016	. Čaw Onsel	42 (SP) 882 408 52 (TL) 450 593	AWA AWA	277 ° 761 5	037034 037036	Mardyke Ely Ouse Ourfall	51 (TQ) 596 806 52 (TL) 646 351	AWA	90.7
033018 033019	Tave Thei	42 (SP) 714 488 52 (TL) 880 830	AWA AWA	3160	037037 037038	Toppestield Broak * Wid	52 (TL) 675 377 52 (TL) 672 000	AWA	98 6
033020	Alconbury Brook Rhea	52 (TL) 208 717 52 (TL) 415 523	AWA AWA	201 5 - 303 0	037039	Blackwate [*]	52 (Tt) 835 090	AWA	337 0
033022 033023	lvoi Lea Brook	52 (TL) 153 509 52 (TL) 662 733	AWA AWA	5413 1018	03800° 03800°	Lee Ash	52 (TL) 390 092 52 (TL) 393 148	1WA TWA	1036 0 78 7
033024 033025	Cem * Babingly	52 (TL) 466 506 53 (TF) 696 256	AWA AWA	198 O 39 G	038003 038004	M.mram R.b	52 (TL) 282 133 52 (TL) 360 174	TWA TWA	133 9 136 5
033026	Bedford Ouse Rhee	52 (TL) 216 669 52 (TL) 333 485	AWA AWA	2570 0 1:9 1	038005 1 038006 1	*Ash *Rb	52 (TL) 380 138 52 (TL) 335 158	TWA	85.2 148 :
033028 033029	Flit Stringside	52 (TL) 143 393 53 (TF) 716 006	AWA AWA	1'96 988	038007	Canons Brook Mimram	52 (TL) 431 104 52 (TL) 225 169	TWA TWA	21 4 98 7
03303.	* Clipstone Brook Broughton Brook	42 (SP) 933 255 42 (SP) 889 408	AWA AWA	40 2 66 6	038012 038013	Stevenage Brook Upper Lee	52 (TL) 274 211 52 (TL) 118 185	TWA	36 0 70 7
033032	Heecharr H (53 (TF) 685 375 52 (TL) 190 379	AWA AWA	59 0 108 0	038014 038015	Salmon Brook Intercepting dr	51 (TQ) 343 937 51 (TQ) 355 932	TWA	20 5 7 4
033034 033035	Litt's Ouse Ely Ouse	52 (TL) 851 844 53 (TF) 588 010	AWA AWA	699 3 3430 0	038016 038017	Stanstead Springs Mimran	52 (TL) 500 246 52 (TL) 184 212	TWA	20 5 39 1
033037 033039	Bedford Ouse Bedford Ouse	42 (SP) 877 443 52 (TL) 160 535	AWA AWA	800 0 1660 0	038018 038020	Upper Lee Cobbins Brook	52 (TL) 299 099 51 (TQ) 387 999	TWA	150 O 38 4
033040 033044	Rhee Thet	52 (TL) 267 401 52 (TL) 957 855	AWA AWA	277 8	038021 038022	Turkey Brook Pymmes Brook	51 (TO) 359 985 51 (TO) 340 925	TWA	42 2 42 6
033045 033046	Witte Thet	62 (TM) 027 878	AWA	28.3	038023	Lee flood relief	51 (TQ) 356 880	TWA	1243 0
033048	Larring Brook	52 (TL) 928 907	AWA AWA	145 3 21 4	038024 038026	Smal River Lee Pincey Brook	51 (TO) 370 988 52 (TL) 495 126	TWA TWA	415 546
033049 033050	* Stanford Water Snail	52 (TL) 834 953 52 (TL) 631 703	AWA	43 5 60 6	038027 038028	Stort Stansled Brook	52 (TL) 393 093 52 (TL) 506 241	TWA TWA	280 2 25 9
033051 033052	Cam Swalfham Loda	52 (TL) 505 426 52 (TL) 553 628	AWA AWA	141 O 36 4	038029 038030	Oun Beare	52 (TL) 392 248 52 (TL) 325 131	TWA TWA	50 4 175 1
033053 033054	Grante Bebingley	52 (TL) 471 515 53 (TF) 680 252	AWA AWA	114 () 47 7	039001	Thames	51 (TO) 177 698	TWA	9948 0
033055 033056	Granta Ouy Water	52 (TL) 510 504 52 (TL) 531 627	AWA AWA	98 / 76 4	039002 039003	Thames Warkfie	41 (SUI 568 935 51 (TQ) 265 705	TWA TWA	3444 <i>7</i> 176 1
033057 033058	Ouzei Ouzei	42 (SP) 917 241 42 (SP) 883 322	AWA AWA	1190 2150	039004 039005	Wandle Beverley Brook	51 (TQ) 296 655 51 (TQ) 216 717	TWA TWA	122 O 43 6
033059 033060	Cut-off Channel Kings Dike	52 (TL) 729 757 52 (TL) 208 973	AWA AWA		039006 039007	Windrush Blackwater	42 (SP) 402 019 41 (SUI 731 648	TWA	362 6 354 8
033062 033063	Guilden Brook Little Ouse	52 (TL) 403 457 52 (TL) 955 807	AWA	101 0	039008 039010	Thames Coine	47 (SP) 445 087 51 (TQ) 052 864	TWA	1616 2 743 0
033064 033065	Whaddon Brook	52 (TL) 359 466 52 (TL) 185 290	AWA	16 O 6 8	039011 039012	Wey Hogsmill	41 (SUI 874 433 51 (TQ) 182 688	TWA	396 3 69 1
033066 033067	Granta Now River	52 (TL) 570 464 52 (TL) 608 696	AWA	59 B 19 6	039013 039014	Coins Ver	51 (TO) 123 982 52 (TL) 151 016	TWA	352 2 132 0
033068	Chaney Water	52 (TL) 296 411	AWA	50	039016 039017	Kennet Ray	41 (SU) 649 708 42 (SP) 680 211	TWA TWA	'033 4
034001 034002	Yarn Tas	63 (TG) 182 082 62 (TM) 226 994	AWA AWA	231 8	039019	Lambourn	41 (SU) 470 682	TWA	18 6 234 1
034003	Bure	63 iTG) 192 296	AWA	146 5 164 7	039020 039021	Coin Cherwell	42 (SP) 122 062 42 (SP) 482 183	IWA	106 7 551 7
034004 034005 034006	Wensum Tud	63 (TG) 177 128 63 (TG) 170 113	AWA	536 1 73 2	039022 039023	Loddon Wyn	41 (SU) 720 652 41 (SU) 896 867	TWA TWA	164.5 137.3
034007	Waveney Dove	62 (TM) 229 811 62 (TM) 174 772	AWA	370 0 133 9	039025 039026	Enbourne Cherwell	41 (SU) 568 648 42 (SP) 458 411	TWA	1476 1994
034008 034010	Ant Waveney	63 (TG) 331 270 62 (TM) 168 782	AWA AWA	49 3 149 4	039027 039028	Pang Dun	41 (SU) 634 766 41 (SU) 321 685	TWA	1/0 9
034011 034012	Wensum Burn	53 (TF) 919 294 53 (TF) 842 428	AWA	127 1 80 0	039029 039030	Trikngbourne Gade	51 (TG) 000 478 51 (TG) 082 952	TWA	59 0 184 0
034013 034014	Waveney Wensum	62 (TM) 364 917 63 (TG) 020 184	AWA AWA	670 0 363 0	039031 039032	' Lambourn ' Lambourn	41 (SU) 411 731 41 (SU) 390 745	TWA	176 O 154 O
034018 034019	Stifkey Bure	53 (TF) 944 414 63 (TG) 267 194	AWA AWA	77 1 313 0	039033 039034	Winterbourne St Evenlode	41 (SU) 453 694 42 (SP) 448 099	TWA	49 2 430 0
035001	Gepping	62 (TM) 154 441	AWA	3108	039035 039036	Churn Law Brook	41 (SU) 076 963 51 (TC) 045 468	TWA	124 3 16 0
035002 035003	Detxen Alde	62 (TM) 322 534 62 (TM) 360 601	AWA	163 1 63 9	03903 <i>1</i> 039038	Kenne: Thame	41 (SU) 187 686 42 (SP) 670 055	TWA	142 () 443 ()
035004 035008	Ore Gipping	62 (TM) 359 583 62 (TM) 058 578	AWA AWA	54 9 128 9	039040 039042	Thurres Leach	41 (SU) 094 942 41 (SU) 227 994	TWA	185 O 76 9
035010 035013	Gipping Biyth	62 (TM) 127 465 62 (TM) 406 769	AWA AWA	298 O 92 9	039043 039044	Kennet Bart	41 (SU) 295 710 41 (SU) 755 593	TWA	295 0 84 0
036001	Stour	62 (TM) 042 340	EWC	844.3	039046 039049	Thames Six Stream	41 (SU) 516 946 51 (TQ) 217 895	TWA TWA	3414 0 29 0
036002 036003	Glem Bax	52 (TL) 846 472 52 (TL) 985 378	AWA	873 539	039051 039052	Sar Brook The Cut	42 (SP) 475 346 41 (SU) 853 713	TWA	106 4 50 2
036004 036005	Chad Brook Brett	52 (TL) 868 459 62 (TM) 025 429	AWA AWA	47 4 156 0	039053 039054	Male Male	51 (TQL 271 434 51 (TQL 260 399	TWA TWA	89 9 31 B
036006 036007	Stour Belchamp Brock	62 (TM) 020 344 52 (TL) 848 421	AWA AWA	578 () 58 ()	039055 039056	Yeading Bk West Ravensbourne	51 (TQI 083 846 51 (TQI 372 732	TWA TWA	17 6 67 6
036008	Stour Bratt	52 (TL) 827 463 52 (TL) 914 525	AWA AWA	224 5 75 7	03905 <i>7</i> 0 39058	Crane Pool	51 (ΤΩ) 103 778 51 (ΤΩ) 371 725	TWA TWA	61 / 38 3
036010	Bumpstead Brook Stour Brook	52 (TL) 689 418 52 (TL) 696 441	AWA AWA	28 3 34 5	039061 039065	Letcombe Brook Ewelme Brook	41 (SU) 375 853 41 (SU) 642 916	TWA	2 7 13 4
036012 036013	Stour Brett	52 (TL) 708 450 62 (TM) (32 354	AWA AWA	76 2 195 0	039068 039069	Mole Mole	51 (TQ) 179 502 51 (TQ) 262 462	TWA	316 () 142 ()
036015 036016	Stour Ramsey	52 (TL) 897 358 62 (TM) 206 288	AWA AWA	480 7 13 9	039071 039072	Thames Thames	41 (SU) 007 973 41 (SU) 982 773	TWA	63 7 7046 0
036017		52 (TL) 681 559	AWA	• •	039073 039074	Chure Ampney Brook	42 (SP) 020 028 41 (SU) 105 950	TWA	84 O 74 4
037001 037002	Roding Chelmer	51 (TQ) 415 884 52 (TL) 794 090	TWA AWA	303 3 533 9	039075 039076	Marston Meysey Bk Windrush	41 (SU) 128 964 42 (SP) 299 107	TWA	25 0 296 0
037003 037005	Ter	52 iTL) 786 107	AWA	778	039077	Og	41 (SU) 194 697	TWA	59 2
037006 037007	Coine Cen	52 (TL) 962 261 52 (TL) 690 072	AWA	238 2 228 4	039078 039079	Wey(north)	41 (SU) 838 465 51 (TQI 068 641	TWA	191 1 1008 0
037008	Wid Che mer	52 (TL) 686 060 52 (TL) 713 071	AWA AWA	136.3 190.3	039081 039085	Ock Wandle	41 (SU) 481 966 51 (TO) 266 703	TWA	234 0 176 1
037009	Brain Blackwater	52 (TL) 818 147 52 (TL) 845 158	AWA AWA	60 7 247 3	039086 039087	Gatwick Stream Ray	51 (TQ) 285 417 41 (SU) 121 935	TWA	33 6 84 1
037011	Chelmor Coine	52 (TL) 629 233 52 (TL) 771 364	AWA AWA	72 6 65 1	039088 039089	Chess Gade	51 (TQ) 066 947 52 (TL) 053 077	TWA	105 0 48 2
037013	Sandon Brook Roding	52 (TL) 755 055 52 (TL) 56: 040	AWA TWA	60 6 95 1	039090	Cole Misbourne	41 (SU) 208 970 41 (SU) 975 963	TWA TWA	140 0 66 3
037015 037016	Cripsey Brook Pant	52 (TL) 548 ()35 52 (TL) 668 313	AWA	62 2 62 5	039092 039093	Dollis Brook Brent	51 (TQ) 240 895 51 (TQ) 202 850	TWA	25 1 117 6
037017 037018	Blackwater Ingrebourne	52 (1) 793 243 51 (TQ) 553 862	AWA TWA	139.2 47.9	039094 039095	Crane Quaggy	51 (TQ) 154 734 51 (TQ) 394 748	TWA TWA	810
037019 037020	Beem Cheimer	51 (1G) 515 853 52 (Tu) 670 193	AWA	49 7 132	039096 039097	Wealdstone Brook Thames	51 (TQ) 192 862 41 (SU) 230 981	TWA	21 7 997 0
037021 037022	Roman Holland Brook	52 (TL) 985 205 62 (TM) 179 212	AWA	52 6 54 9	039098	Pinn Ampney Brook	51 (TQ) 062 826 42 (SP) 076 013	TWA TWA	33 3 45 3
037023 037024	* Roding Coine	51 (TG) 442 955 52 (Tc) 855 298	TWA AWA	269 0 154 2	039100 039101	Swill Brook Aldbourne	31 (ST) 997 927 41 (SU) 288 717	TWA TWA	53 3 53 1
037025 037028	* Bourne Brook * Tenpenny Brook	52 (TL) 822 276 62 (TM) ()79 207	AWA AWA	32 1 29 0	039102	Misbourne	51 (TQI 046 866	TWA	136 ()
037027	* Siapenny Brook	62 (TM) 054 214	AWA	5 '	040001	* Medway	51 (TO) 407 353	SWA	26 9

Station number	River name	Grid reference	Measuring authority	Area (sq km)	Station number	River name	Grid reference	Measuring authority	Area (sq km)
040002 1 040003 040004	* Darwel- Medway 901he-	51 (TQ) 722 213 51 (TQ) 708 530 51 (TQ) 773 245	SWA SWA SWA	9 6 1256 1 206 0	047008 047009 047010	Thrushel Tiddy	20 (SX) 398 856 - 20 (SX) 343 595	SWWA SWWA	1127 372
040005	Beult	51 (TQ) 758 478	SWA	277 1	047011	Tamar Pym	20 (SX) 290 991 20 (SX) 522 613	SWWA SWWA	76 / 79 2
040006 040007	Bourne Medway	51 (TO) 632 497 51 (TO) 517 405	SWA SWA	50 3 255.1	0470:3 0470:4	Withey Brook Walkham	20 (SX) 244 763 20 (SX) 513 699	SWWA SWWA	16 2 43 2
040008 040009	Great Stour Trise	61 (TR) 049 470 51 (TQ) 718 399	SWA SWA	230 0 136 2	047015 047016	Tavy Lumbur"	20 (SX) 476 68: 20 (SX) 459 731.	SWWA SWWA	1973 205
040010 040011	Eden Great Stour	51 (TO) 520 437 61 (TR) 16 554	SWA SWA	224 3 345 0	047017	Wolf	20 (SX) 419 898	SWWA	31 '
040012 040013	Darent Darent	51 (TO) 551 718 51 (TO) 525 584	TWA	191 4 100 5	048001 048002	Fowey Fowey	20 (SX) 227 698 20 (SX) 108 613	SWWA SWWA	36 0 1/1 2
040014	* Wingham White Orain	61 (TR) 276 576 61 (TR) 055 606 51 (TQ) 511 746	SWA SWA	37 7 31 8	048003 048004	Fal Warleggan	10 (SW) 921 447 20 (SX) 159 674	SWWA SWWA	87 0 25 3
040016	Crey Dudwell	51 (TO) 679 240	TWA SWA	19 7 27 5	048005	Kenwyn Cober	10 (SW) 820 450 10 (SW) 654 273	SWWA SWWA	19 1 40 1
040018 040020 040021	Darent Er ogs Streem * Hexden Channel	51 (TQ) 530 643 51 (TQ) 522 367 51 (TQ) 813 290	TWA SWA SWA	118 4 53 7 32 4	048007 048009 048010	Kennall ' St Neot	10 (SW) 762 377 20 (SX) 184 662	SWWA SWWA	26 6 22 7
040022	Great Stour	51 (TQ) 973 423 61 (TR) 015 407	SWA SWA	72 5 58 8	048011	Seaton Fowey	20 (SX) 299 596 20 (SX) 098 624	SWWA SWWA	38 1 169 1
040024		51 (TQ) 633 357	SWA	25 1	049001 049002	Camel Hay é	20 (SX) 017 682 10 (SW) 549 342	SWWA SWWA	208 8 48 9
04 100 1 04 100 2	Nunningham Stream Ash Bourne	51 (TQ) 662 129 51 (TQ) 684 141	SWA SWA	16 9 18 4	049003	De Lenk Gamei	20 (SX) 132 765 10 (SW) 829 593	SWWA SWWA	21 7 41 0
04 1003 04 1004	Cuckmere Ouse	51 (TO) 533 051 51 (TO) 433 148	SWA SWA	134 7 395 7	050001	Taw	21 ISSI 608 237	SWWA	826.2
04 1005 04 1006	Ousn Uck	51 (TQ) 429 214 51 (TQ) 459 190	SWA SWA	'80 9 87 8	050002 050004	Torridge * Hole Water	21 ISSI 500 185 21 ISSI 705 373	SWWA SWWA	663 O 5 4
041009	Rother Adur W Branch	51 (TQ) 034 178 51 (TQ) 178 197	SWA SWA	345 B	050005 050006	West Okement Mole	20 (SX) 557 903 21 (SS) 660 211	SWWA SWWA	13 3 327 5
04 10 1 1 04 10 12	Rother Adur E Branch	41 (SU) 852 229 51 (TQ) 219 190	SWA SWA	154 O 93 3	050007	law	21 (SS) 673 068	SWWA	71.4
041013 041014	Huggletts Stream Aran	51 (TQ) 671 138 51 (TQ) 047 229	SWA SWA	14 2 379 0	051001 051002	Don ford Stream * Horner Weter	31 (ST) 088 428 21 (SS) 898 458	WWA WWA	75 8 20 8
04 10 15 04 10 16	Ems Cuckmers	41 (SU) 755 074 51 (TQ) 611 150	SWA SWA	58 3 18 7	05.003	Washford	31 (ST) 040 395	WWA	36 3
041017 041018	Combahaven Kird	51 (TQ) 765 102 51 (TQ) 044 256	SWA SWA	30 5 66 8	052001 052002	* Azu * Yeo	31 (ST) 527 458 31 (ST) 556 116	WWA WWA	18 2 30 3
041019 041020	Arun Bevern Stream	51 (TQ) 117 331 51 (TQ) 423 161	SWA SWA	139 0 34 6	052003 052004	Haise Water Islo	31 (ST) 206 253. 31 (ST) 361 188	WWA WWA	87 8 90 1
04 102 1 04 102 2	Clayhili Stream Lod	51 (TQ) 448 153 41 (SU) 931 223	SWA SWA	7 1 52 0	052005 052006	Tone Yeo	31 (ST) 206 250 31 (ST) 573 162:	WWA WWA	202 0 213 1
04 1023 04 1024	Lavant Shell Brook	41 (SU) 871 064 51 (TO) 335 286	SWA	87 2 22 6	052007 052008	Parrett * Tone	31 (ST) 461 144 31 (ST) 044 313	WWA WWA	74 8 18 1
04 1025 04 1026	Loswood Stream Cookha se Brook	51 (TO) 060 309 51 (TO) 376 262	SWA SWA	91 6 36 1	052009 052010	Sheppey Brue	31 (ST) 498 439 31 (ST) 590 318:	WWA	59 6 135 2
04 1027 04 1028	Rother Chess Stream	41 (SU) 772 270 51 (TQ) 217 173	SWA SWA	37 2 24 0	052011 052014	Cary Tone	31 (ST) 498 291 31 (ST) 078 202	WWA WWA	82 4 57 2
04 1029 04 1030	Bull Ouse	51 (TQ) 575 131 51 (TQ) 333 283	SWA SWA	40 8 37 2	052015 052016	* Land Yeo Currypoo Stream	31 (ST) 483 716 31 (ST) 221 382	WWA WWA	23 3 15 7
042001 042003	Walkington Lymington	41 (SU) 587 075 41 (SU) 318 019	SWA SWA	1:10	052017 052020	* Congresbury Yeo * Galica Stream	31 (ST) 452 63: 31 (ST) 571 100	WWA WWA	66 6 16 4
042004 042005	fest Wallop Brook	41 (SU) 354 188 41 (SU) 311 330	SWA SWA	98 9 1040 0 53 6	053001 053002	* Avon	31 (ST) 903 64° 31 (ST) 907 605	WWA WWA	665 6
042006 042007	Mean Aire	41 (SU) 589 141 41 (SU) 574 326	SWA SWA	72 8 57 0	053002 053003 053004	Semington Brook * Avon Chew	31 (ST) 907 605 31 (ST) 753 645 31 (ST) 648 647	WWA WWA	157 7 1595 0
042008 042009	Cher ton Stream Candover Stream	41 (SU) 5/4 323 41 (SU) 568 323	SWA SWA	75 1 71 2	053005 053006	Midford Brook FrometBristoll	31 (ST) 763 611 31 (ST) 637 772	WWA WWA	129 5 147 4 148 9
042010 042011	Itchen Hamble	41 (SU) 467 2°3 41 (SU) 523 149	SWA SWA	360 Ó 56 6	053007 053008	Frome(Somerset) Avon	31 (ST) 805 564. 31 (ST) 966 832	WWA WWA	261 6 303 0
042012 042014	Anton Blackweter	41 (SU) 379 393 41 (SU) 328 174	SWA SWA	185 0 104 7	053009 053013	Wellow Brook Marden	31 (ST) 741 58° 31 (ST) 955 729	WWA WWA	72.6 99.2
042016	Itchen Branch of Test	41 (SU) 512 325 41 (SU) 355 159	SWA SWA	236 8 1050 0	053017 053018	Boyd Avon	31 (ST) 681 698, 31 (ST) 786 671	WWA WWA	48 O 1552 O
04300* *	* Avon	41 (SU) 142 054	WWA	1649 8	053019 053020	Woodbridge Brook Gauze Brook	3' (ST) 949 866' 3' (ST) 937 840	WWA WWA	46 6 28 2
043003 043004	Avon Bourne	41 (SU) 158 154 41 (SU) 157 304	WWA WWA	1477 8 163 6	053022 053023	* Avon Sherston Avon	31 (ST) 738 651 31 (ST) 891 870	WWA WWA	1605 O 89 7
043005 043006	Ayon Nedd er	41 (SU) 151 413 41 (SU) 098 308	WWA WWA	323 7 220 6	053024 053025	Tetbury Avon Meds	31 (ST) 914 893. 31 (ST) 757 491	WWA WWA	73 6 119 0
043007 043008	Stour Wylye	40 (SZ) 113 958 41 (SU) 086 343	WWA WWA	1073 0 445 4	053026 053028	Frome(Bristol) By Brook	31 (ST) 667 822 31 (ST) 815 688	WWA WWA	78 5 102 0
043009	Stour Allen	31 (ST; 820 147 41 (SJ) 006 085	WWA WWA	523 1 94 0	053029	Biss	'	WWA	
043011 1 043012 043013 1	Wy.ye	41 (SU) 162 263 31 (ST) 909 428 40 (SZ) 184 936	WWA WWA	109 0 1'2 4	054001 054002 054004	Severn Avon	37 (SO) 782 762 42 (SP) 040 438	STWA	4325 0 2210 0
043014 043015	East Avon	41 ISU) 133 559 31 IST) 868 413	WWA WWA WWA	12 4 86 2 69 0	054005 054006	Sowe Severn Stour	42 (SP) 332 731 33 (SJ) 412 144 32 (SO) 829 768	STWA STWA STWA	262 0 2025 0 324 0
043017 043018	West Avor	41 ISU) 133 559 41 ISUI 008 007	WWA WWA	76 0 176 5	054007 054008	Araw Teme	47 (SPI 086 536 32 (SO) 597 686	STWA STWA	319 0 1134 4
043019 043021	Shreen Water Avon	31 (ST) 807 278 40 (SZ) 155 943	WWA WWA	29 1706 0	054010 054011	* Stour	42 (SP) 208 507 32 (SO) 868 618	STWA	319 0 184 0
044001	Frome	30 (SY) 866 867	WWA	414.4	054012 054013	Tern	33 (SJ) 592 123 22 (SN) 944 855	STWA STWA	852 0 57 0
044002 044003	Piddle * Asser	30 (SY) 913 876 30 (SY) 470 928	WWA WWA	193 1 49	054014 054015	Severn Bow Brook	32 (SO) 164 958 32 (SO) 927 463	STWA	580 () 156 ()
044004 044006	Frome Syding Water	30 ISY) 708 903 30 ISY) 632 997	WWA WWA	206 0 12 4	054016 054017	Roden	33 (SJ) 589 141 32 (SO) 777 234.	STWA	259 0 293 0
044008 ° 044009	* Sth Winterbourne Way	30 (SY) 629 897 30 (SY) 666 839	WWA WWA	19 9 7 0	054018 054019	Rea Brook Avon	33 (SJ) 466 092 42 (SP) 333 715	STWA STWA	178 0 347 0
045001	E+0	21 ISSI 936 016	SWWA	600.9	054020 054022	Perry Severn	33 (SJ) 434 192 22 (SN) 853 872	STWA IH	180 B 8 7
045002 045003	Exe Culm	21 ISSI 943 178 31 IST) 021 058	SWWA	421 7 226 1	054023 054024	* Badsey Brook Worfe	42 (SPI 063 449 32 (SO) 747 953	STWA	95 B 258 O
045004 045005 045006	Otter	30 (SY) 262 953 30 (SY) 087 885 21 (SS) 919 356	SWWA	288 5 202 5	054025 054026	Duras * Chelt	22 (SN) 950 824 32 (SO) 892 264	STWA STWA	- 52 7 34 5
045008 045009	' Quermo Otter	30 (SY) 115 986 21 (SS) 935 260	SWWA	20 4 104 2 147 6	054027 054028	* Frome Vyrnwy Tomo	32 (SO) 831 047 33 (SJ) 252 195	STWA	198 0 778 0
045010 1 045011 1	Exe 'Heddeo 'Bar-e	21 (SS) 935 260 21 (SS) 952 294 21 (SS) 927 258	SWWA SWWA	50 0 128 0	054029 054032 054034	Teme Severn Dowles Brook	32 (SO) 735 557 32 (SO) 863 390 32 (SO) 768 764	STWA STWA STWA	1480 0 6850 0 40 8
0450 2	Crowdy	20 (SX) 901 967	SWWA	261 6	054036 054038	* Isbourns Tanat	42 (SP) 023 408 33 (SJ) 252 225;	STWA STWA	90 / 229 0
046002 046003	Teign Dørt	20 (SX) 856 746 20 (SX) 751 659	SWWA SWWA	380 0 247 6	054040 054041	Meese Tern	33 (SJ) 680 205 33 (SJ) 649 230	STWA STWA	167.8 192.0
046005 046006	East Dert Erme	20 (SX) 657 775 20 (SX) 642 532	SWWA SWWA	21 5 43 5	054042 054043	* C'ywedog * Severn	22 (SNI 914 867 37 (SO) 863 399	STWA	49 0 6850 0
046007 046008	* West Dart * Avon	20 (SX) 643 742 20 (SX) 719 476	SWWA SWWA	47 9 102 3	054044 054045	Tern * Perry	33 (SJ) 629 316 33 (SJ) 347 303	STWA STWA	92 6 49 1
047001	Tema [,]	20 (SX) 426 725	SWWA	9169	054046 054047	* Worle * Perry	33 (SJ) 781 046, 33 (SJ) 403 223	STWA	54 9 155 0
047003 ° 047004	'Tevy Lynher	20 (SX) 474 650 20 (SX) 368 624	SWWA SWWA	205 9 135 5	054048 054052	* Dene Sailuy Brook	47 (SPI 273 556 33 (SJ) 629 316	STWA STWA	102 0 34 4
047005 1 047006 1	* Ottory * Lym	20 (SX) 336 866 20 (SX) 388 842	SWWA SWWA	120 7 218 1	054054 054055	* Onny * Rea	32 (SO) 455 789 32 (SO) 664 724	STWA	235 0 129 0
047007	Yealm	20 (SX) 574 511	SWWA	54 9	054056	* Clun	32 (\$0) 393 /86	S*WA	195 0

Station Riv number na	ver ime	Grid reference	Measuring authority	Aree (sq km)	Station number	River name	Grid reference	Measuring authority	Area (sq km)
054058 * Sto	ivern oke Park Brook	32 (SO) 844 279 33 (SJ) 644 260	STWA STWA	9895 O 14 3	061003 061004	Gwaun Western C'eddau	22 ISNI 005 349 12 ISMI 942 184	WELS WELS	313 1976
054060 1 Po	lford Brook Itford Brook Inthet Brook	33 (SJ) 654 223 33 (SJ) 634 220 33 (SJ) 628 288	STWA STWA STWA	10 2 25 0 5 1	062001 062002	Terfi 'Terfi ⇔es	22 (SN) 244 416 22 (SN) 433 406	WFLS WELS	893 6 510 0
054062 1 Std 054063 1 Std	oke Brook our	33 (S.) 637 280 32 (SO) 865 858	STWA '	13 7 89 9	063001	Ystwyth	22 (SN) 591 774	WELS	169.6
054066 1 Pla	oden itt Brook Pestaw Broak	33 (SJ) 565 241 33 (SJ) 628 229 32 (SO) 861 906	STWA STWA STWA	210 Q 15 7 81 3	063002 1 063003 1 063004	Rheidol Wyre	22 (SN) 601 804 22 (SN) 542 698	WELS WELS	'82 1 40 6
054068 1 Te 054069 1 Sp	itchill Brook xings Brook	33 (SJ) 379 288 33 (SJ) 387 297	STWA STWA	7 2 10 4	064001	Ystwyth Dyfi	22 (SN) 791 737 23 (SH) 745 019	WELS	4713
054080 * Se	er Brook Ivern ywedog	33 (SJ) 432 198 22 (SN) 996 851 22 (SN) 913 868	STWA STWA STWA	22 5 187 0 49 0	064002 064006	Dysynni Len	23 (SH) 632 066 22 (SN) 635 882	WELS WELS	75 i 47 2
054083 * Cro 054084 * Car	ow Brook Innap Brook	33 (SJ) 678 141 32 (SO) 616 075	STWA STWA	16 7 31 5	065001 065002	Glastyn Dwyryd	23 (SH) 592 478 23 (SH) 670 415	WELS WELS	68 6 78 2
054086 Co	rinop Brook ownwy Diversion Hord Brook	32 (SO) 609 115 23 (SH) 999 179 33 (SJ) 667 228	STWA	10 4 13 2 4 7	065004 065005	Gwyrfa Lrch	23 (SH) 484 599 23 (SH) 400 404	WELS WELS	47 9 18 1
054088 Lit:	tle Avon nEwyth	3' (STI 683 988 22 (SN) 844 876	STWA WWA IH	134 0 0 9	065006 065007	Seiorit Dwyfawr	23 (SHI 493 623 23 (SHI 499 429	WELS WELS	74 4 52 4
054092 * Ho		22 (SN) 843 878 22 (SN) 846 873	IH IH	3 G 3 2	066001 * 066002 *	Flwy	33 (SJ) 069 709 33 (SJ) 021 704	WELS	404 0 270 0
	rein rue	33 (SJ) 640 175 33 (SJ) 644 044	STWA STWA	134 0 371 / O	066003 066004 066005	Aled 'Wheeler 'Clwyd	23 (SH) 957 703 33 (SJ) 105 714 33 (SJ) 122 592	WELS WELS WELS	70 0 62 9 95 3
055002 Wy 055003 Lug	99	32 (SO) 485 388 32 (SO) 548 405	WELS WELS	1895 9 885 B	066006 066008	Elwy Aled	23 (SH) 952 718 23 (SH) 915 598	WELS WELS	194 0 11 6
055004 * kfd 055005 * Wy 055006 * Ela	ya	22 (SNI 892 460 22 (SNI 969 676 22 (SNI 926 645	WELS WELS STWA	72 8 166 B 184 O	066011	Conwy	23 (SH) 802 581 23 (SH) 942 357	WELS WELS	344 5 261 6
055007 Wy 055008 Wy	Αφ. Αφ.	32 ISO) 076 445 22 ISNI 829 838	WELS IH	1282 1 10 6	067002 * 067003	Des Breng	33 (Su) 357 413 23 (SH) 974 539	WELS WELS	1040 0
055009 * Mo 055010 * Wy 055011 * the		32 (SO) 419 251 22 (SN) 843 825 32 (SO) 105 683	WELS WELS WELS	357 4 27 2 111 4	067005 * 067006	Ceiriog Alwen	33 (SJ) 295 373 33 (SJ) 042 436	WELS WELS	:13 7 :84 7
055012 life		22 (SN) 995 507 32 (SC) 328 585	WELS WELS	244 2 126 4	067008 067009 067010 *	Alyn Alyn ' Gelyn	33 (SJ) 336 541 33 (SJ) 206 667 23 (SM) 843 420	WELS WELS WELS	227 1 77 8 13 1
	ndd.	32 (SO) 364 647 32 (SO) 277 294	WELS	203 3 25 1	067011	Vani Aberderfel Tryweryn	23 (SH) 851 392 23 (SH) 838 398	WELS WELS	37 212
	on Iwafru oma	32 (SO) 024 578 22 (SN) 998 531 32 (SOI 615 428	WELS WELS	358 0 29 0 144 0	067013 * 067015 067016 *	' Hirnant - Dee ' Warthenbury Brook	23 (SH) 946 349 33 (SJ) 348 415 33 (SJ) 418 464	WELS WELS WELS	33 9 1019 3 142 1
055021 Lv.	99 othy	32 (SO) 502 589 32 (SO) 503 112	WELS WELS	3710 142()	067017 067018	Tryweryn Den	23 (SH) 880 399 23 (SH) 874 308	WELS WELS	59 9 53 9
055023 Wy 055025 Uy 055028 Wy	ent .	32 (SO) 528 110 32 (SO) 166 373 22 (SN) 976 676	WELS WELS WELS	4010 0 137 0 174 0	067025 * 067026 * 067028 *	' Clywedog ' Dee ' Ceidiog	33 (SJ) 396 483 -33 (SJ) 415 612 33 (SJ) 034 371	WELS WELS WELS	98 6 18 6 8 36 5
055027 * Ruc 055028 Fro	dhall Brook ome	32 (SO) 641 257 32 (SO) 667 489	WELS WFLS	13 2 77 7	067029	Trystion	33 (SJ) 066 405	WELS	.5 3
055030 ° Cla	onnow ierwen izor Brook	32 (SO) 415 249 22 (SN) 910 620 32 (SO) 492 415	WELS WELS WELS	354 0 95 3 42 3	068001 068002 068003	Weaver Gowy Dane	33 (SJ) 670 633 33 (SJ) 443 714 33 (SJ) 668 718	WWA WWA	622 U 156 2
055032 Elai 055033 W ₁	in ye	22 (SN) 934 653 22 (SN) 824 853	WELS	184 O 3 9	068004 068(X)5	Wistaston Brook Weaver	33 (SJ) 668 718 33 (SJ) 674 552 33 (SJ) 653 431	NWWA NWWA	407 1 92 7 207 0
055034 * Cyl 055035 * lag		22 ISN) 824 842 22 ISN) 826 854	IH IH	3 1 1 1	068006 * 068007 * 068010 *	Dane Wincham Brook Fender	33 (SJ) 845 644 33 (SJ) 697 757	NWWA NWWA	150 0 148 0
056001 Usi 056002 Ebb	bw	32 (SO) 345 056 31 (ST) 259 889	WELS WELS	911 7 216 5	068015 068018 *	Gowy Dane	33 (SJ) 281 880 33 (SJ) 497 624 33 (SJ) 861 632	NWWA NWWA	18 4 49 0 145 0
056003 * Hoi 056004 * Usi 056005 - Lw		32 (SO) 051 297 32 (SC) 127 203 31 (ST) 330 924	WELS WELS	62 1 543 9 98 1	068019 068020	Weaver Gowy	33 (SJ) 574 762 33 (SJ) 448 711	NWWA NWWA	1370 0 156 0
056006 * Usi 056007 Ser	k nn-	22 (SN) 947 295 22 (SN) 928 255	WELS WELS	183 8 19 9	069001 069002	Mersey Invest	33 (SJ) 728 936 33 (SJ) 824 987	NWWA NWWA	679 O 559 4
056010 ° Usi	onks Dijch k howy	31 (ST) 372 885 32 (SO) 358 042 31 (ST) 206 912	WELS	15 4 927 2	069003 069004 *	Etherow Constitution	33 (SJ) 841 992 43 (SK) 023 971	NWWA NWWA	72.5 78.2
056012 * Grv 056013 Ysc	wyne cir	31 (ST) 206 912 32 (SO) 241 176 32 (SO) 003 304	WELS WELS	76 1 82 2 62 8	069005 * 069006 069007	Glaze Brook Borth Mersey	33 (SJ) 685 939 33 (SJ) 727 875 33 (SJ) 772 936	NWWA NWWA	152 Q 256 Q 660 Q
056014 * Uşi 056015 * Olv 056016 Cae	way Brook	22 (SNI 840 290 32 (SO) 384 010	WELS WELS	17 0 105 1	069008 069011	Dean Micker Brook	33 (SJ) 846 830 33 (SJ) 855 889	NWWA NWWA	51 8 67 3
057001 * Ta	erfenel outfal Fechan	32 (SO) 104 206 32 (SO) 060 117	WELS	32 4 33 7	069012 069013 069015	Bolkn Sinderland Brook Etherow	33 (SJ) 850 815 33 (SJ) 726 905 33 (SJ) 962 908	NWWA NWWA	72 5 44 B 156 0
057003 * Tef		32 (SO) 012 111 31 (ST) 132 818 31 (ST) 079 956	WELS WELS	43 O 486 9	069017 069018 *	Goyt Newton Broak	33 (SJI 964 898 33 (SJI 585 933	NWWA NWWA	183 O 32 B
057005 Taf	non ff ondda	31 (ST) 079 897 31 (ST) 054 909	WELS WELS WELS	106 0 454 8 100 5	069019 * 069020 069023	Worsley Brook Med ock Roch	33 (SJI 753 980 33 (SJI 849 975 34 (SD) 807 077	NWWA NWWA	24 9 57 5 186 0
	ymney ,	31 (ST) 089 951 31 (ST) 225 821	WELS WELS	194 5 178 7	069024 069027	Croel Tame	34 (SD) 743 068 33 (SJ) 906 918	NWWA NWWA	145 0 150 0
057009 Ey 057010 Ey 057011 Blai		31 (ST) 121 770 31 (ST) 034 827 22 (SN) 987 193	WELS WELS WELS	145 O 39 4 5 1	069030 069031 069032	Sankey Brook Ditton Brook Alt	33 (SJ) 588 922 33 (SJ) 457 865 33 (SJ) 392 983	NWWA NWWA	154 0 47 9 90 1
057012 * Gar 057015 Tef	"[22 (SN) 987 193 32 (SO) 004 129 32 (SO) 043 068	WELS WELS	43 1 104 1	069034 °	Musbury Brook Irwell	34 (SD) 775 213 34 (SD) 797 109	NWWA NWWA	3 1 155 0
		32 (SO) 060 115 21 (SS) 904 794	WELS	33 8 158 0	069037 069040 *	Mersey Irwell	33 (SJ) 617 877 34 (SD) 793 :88	NWWA NWWA	2030 0 105 0
		22 (SN) 815 017 21 (SS) 914 780	WELS WELS	190 9 62 9	070002 070003	Douglas Douglas	34 (SD) 476 126 34 (SD) 587 061	NWWA NWWA	198 0 55 3
	H I m	21 (SS) 9()4 844 22 (SN: 915 082 21 (SS) 89* 855	WELS WELS	74 3 65 8 50 2	070004 070005	Yarrow Lostock	34 (SD) 498 180 34 (SD) 497 197	NWWA NWWA	74 4 56 0
	la s enny	22 ISNI 778 008 21 ISS: 920 782	WFLS WELS	43 O 62 5	071001 071003	Ribble Croasdale	34 (SD) 589 304 34 (SD) 706 546	NWWA NWWA	1145 0 1() 4
058010 * Hep 058011 The 058012 Ata	8w	22 (SN) 969 134 31 (ST) 017 716 21 (SS) 771 910	WELS WELS	11 0 49 2 87 8	071004 071005 071006	Calder Bottoms Beck Ribble	34 (SD) 729 380 34 (SD) 745 565 34 (SO) 722 392	NWWA NWWA NWWA	316 0 10 6 456 0
059001 Tav	we.	21 ISSI 685 998	WELS	227 7	071007 ° 071008	Ribble Hadder	34 (SD) 709 379 34 (SD) 704 399	NWWA NWWA	720 0 261 0
059002 Lou 080002 Coi		22 ISN) 623 127 22 ISN) 508 275	WELS	46 4 297 8	071009 071010 071011	Ribble Pendle Water Ribble	34 (SD) 702 376 34 (SD) 837 351 34 (SD) 839 556	NWWA NWWA	1053 0 108 () 204 0
060003 Tu* 060004 * Des	r wifawr	22 ISN) 238 160 22 ISN) 290 175	WELS WELS	217 3 40 1	071013 1 071014	Darwen Darwen	34 (SD) 677 762 34 (SD) 565 278	NWWA NWWA	39 5 28 0
060005 Bra 060006 Gw 060007 Tyv	<i>t</i> I	22 (SN) 771 343 22 (SN) 431 220 22 (SN) 762 362	WELS WELS WELS	66 8 129 5 231 8	072001 * 072002	Lune Wyre	34 (SD) 503 647 34 (SD) 463 411	NWWA NWWA	994 6
060008 Tyy	widde wdde	22 (SN) 786 472 22 (SN) 712 266	WELS WELS	89 8 8 1	072004 072005	Lune Lune	34 ISDI 529 653 34 ISDI 622 907	NWWA NWWA	275 0 983 0 219 0
060010 Tyv 060012 Tw 060013 Cos	rich	22 (SN) 485 206 22 (SN) 650 440 22 (SN) 537 301	WELS WELS WELS	1090 4 20 7 261 6	072006 072007 072008	Lune Brock	34 (SD) 615 778 34 (SD) 512 405	NWWA NWWA	507 ° 32 0
061001 * Wa	ssiarn Cladeau	12 (SM) 954 177	WELS	197 6	072009 072011	Wyre Wenning Rewithey	34 (SD) 488 447 34 (SD) 615 701 34 (SD) 639 911	NWWA NWWA NWWA	114 0 142 0 200 0
061002 Eas	stern Cleddau	22 (SN: 072 153	WELS	183 1	0720'5	Lune	35 INY) 612 029	NWWA	1415

Station number	River name	Grid reference	Measuring authority	Area (sq km)	Station number	River name	Grid reference	Measuring authority	Area (sq km)
072016	Wyre	34 (SDI 501 500	NWWA	88 8	084006	* Kelvin	26 (NS) 672 749	CAPB	63 7
073001	* Leven	34 (SD) 371 863	NWWA	2410	084007 084008	South Calder Wtr Rotten Calder Wtr	26 (NS) 751 585 26 (NS) 679 604	CRPB CRPB	93 O 51 3
073002	Crake	34 (SD) 294 882	NWWA	73 0	084009	* Nethan	26 (NS) 809 429	CRPB	66 0
073003 073005	Kent Kent	34 (SO) 507 956 34 (SO) 509 874	NWWA NWWA	73 6 209 0	084011 084012	Gryfe White Cart Water	26 (NS) 415 664 28 (NS) 499 629	CRPB CRPB	71 O 227.2
073008	Bola	34 (SD) 496 806	NWWA	1310	084013	Clyde	26 (NS) 672 616	CRPB	1903
073009	Sprint	34 (\$D) 514 961	NWWA	34 6	084014	Avon Water	26 (NS) 755 518	CRPB	265 5
073010 073011	Leven Mint	34 (SD) 387 883 34 (SD) 524 944	NWWA NWWA	247 O 65 B	084015 084016	Kelvan Luggia Water	26 (NS) 638 739 26 (NS) 739 725	CRP8 CRP8	235 4 33 9
073013	Rathey	35 (NY) 371 042	NWWA	64 0	084017	Black Cart Water	26 (NS) 411 620	CRPB	103 1
073014	Brathay	35 (NY) 360 034	WWA	57 4	084018 084019	Clyde North Calder Wir	26 (NS) 89 404 26 (NS) 68 625	CRPB CRPB	932 6 129 8
074001	Duddon	34 (SD) 198 896	NWWA	85 7	084020	Gazert Water	26 (NS) 656 763	CRPB	519
074002 074003	Irt Ehen	35 (NY) 136 038 35 (NY) 084 154	NWWA NWWA	44 2 44 2	084021 084022	* White Cert Water Duneaton	26 (NS) 587 597 26 (NS) 929 259	CRPB CRPB	916 1103
074005	Ehen	35 (NY) 009 061	NWWA	125 5	084023	Bothko Burn	26 (NS) 680 717	CRPB	35 7
074006 074007	Calder Esk	35 (NY) 035 045 34 (SD) 131 978	NWWA NWWA	44 8 70 2	084024 084025	North Calder Wtr Lugge Water	26 (NS) 828 678 26 (NS) 668 734	CRPB CRPB	199 877
074008	Duddon	34 (SD) 209 947	NWWA	47 9	084026	Affander Water	26 (NS) 558 738	CRPB	32 8
075001	S: Johns Beck	35 (NY) 313 195	NWWA	42 1	084027 084028	* North Calder Wtr Monkland Canal	26 (NS) 765 624 26 (NS) 765 626	CRPB CRPB	60 6 60 6
075002	Derwent	35 (NY) 038 305	NWWA	663 0	084029	Cander Water	26 (NS) 765 471	CRP8	24 5
075003 075004	Darwent Cocker	35 (NY) 199 321 35 (NY) 131 281	NWWA NWWA	363 O 116 6	084030	White Cart Water	26 (NS) 587 598	CRPB	111 B
075005	Darwant	35 (NY) 251 239	NWWA	235 0	085001	Leven	26 (NS) 394 BO3	CRPB	784 3
075006	Newlands Beck	35 (NY) 240 239	NWWA	33 9	085002	Endrick Water	26 (NS) 485 866	CRPB	2199
075007 075009	* Glenderameckin Grete	35 (NY) 323 248 35 (NY) 286 242	NWWA NWWA	64.5 145.6	085003 085004	Falloch Luss Water	27 (NN) 321 197 26 (NS) 356 929	CRP8 CRP8	80 3 35 3
075016	Cocker	35 (NY) 149 214	NWWA	64 0			20 440 440 004		20.0
075017	Ellen Haweswater Bock	35 (NY) 096 384 35 (NY) 508 159	NWWA	96 O 33 O	085001 085002	Little Eachaig Eachaig	26 (NS) 143 821 26 (NS) 140 843	CRPB CRPB	30 B 139 9
078002	Eden	35 (NY) 470 567	NWWA	1366 7	090002	* Creran	27 (NN) 019 468	CAPB	66 1
076003 076004	Eamont Lowther	35 INY) 578 306 35 INY: 527 287	NWWA NWWA	396 2 158 5	090003	Nevis	27 (NN) 116 742	HPPB	76 B
076005	Eden	35 INY: 605 283	NWWA	616 4	091002	Lachy	27 (NN) 145 805	нчгв	1252 0
075007 075008	Eden Irthing	35 (NY) 390 571 35 (NY) 488 581	NWWA NWWA	2286 5 334 6	093001	Carron	18 (NG) 942 429	нярв	1378
076009	Caldew	35 INYI 378 469	NWWA	147 2				_	
076010 076011	Petteril * Coal Burn	35 (NY) 412 545 35 (NY) 693 777	NWWA M	160 0 1 5	094001	Ewa	18 (NG) 859 803	нарв	4411
076014	Eden	35 (NY) 773 097	NWWA	69 4	095001	Inver	29 (NC) 147 250	HRPB	137 5
076015	Eamont	35 (NY) 472 249	NWWA	145 0	095002	Broom	28 (NH) 184 842	HRP8	1414
077001	Esk	35 (NY) 390 718	NWWA	8417	096001	Halladale	29 (NC) 891 561	HRP8 HRP8	204 6
077002 077003	Esk Liddel Water	35 (NY) 397 751 35 (NY) 415 759	Srpb Srpb	495.0 319.0	096002 096003	Naver Strathy	29 (NC) 713 568 29 (NC) 836 652	нки	477 Q 111 B
077004	Kirtle Woter	35 (NY) 285 893	SAPU	72.0			20 00 00 102		
077005	l, yna	35 (NY) 412 662	NWWA	'910	097001 097002	Calder Burn Thurse	39 (ND) 085 596 39 (ND) 131 595	HRCW HRPB	24 5 412 8
078001	* Annon	35 (NY) 125 755	SAPB	730 3					
078002 078003	* As Annan	35 (NY) 068 852 35 (NY) 191 704	SAPB SRPB	143 2 925 O	101001 101002	* Eastern Yar Med:na	40 (SZ) 577 85 <i>7</i> 40 (SZ) 503 874	SWA SWA	5/5 298
078004	Kinnel Water	35 (NY) 077 868	SRPB	76 1	101003	Lukely Brook	40 (SZ) 491 886	SWA	16 2
078005 078006	Kinnol Water Annan	35 (NY) 091 845 36 (NT) 099 010	SRPB SRPB	229 O 217 O	101004	Eastern Yar Eastern Yar	40 (SZ) 583 853 40 (SZ) 531 835	SWA SWA	59 6 22 5
					101006	Wrosall Stream	40 (SZ) 536 839	SWA	15 8
079001 079002	* Afton Water Nath	26 (NS) 631 050 25 (NX) 923 851	Sripe Sripe	8 5 799 0	101007	Scotchells Brook	40 (SZ) 583 852	SWA	9 2
079003	Nith	26 (NS) 684 129	SRPB	155 0	201002	* Farry Water	23 (IH) 406 758	DOEN	161 2
079004 079005	Scar Water Cluden Water	25 (NX) 845 940 25 (NX) 928 795	SRPB SRPB	142 () 238 ()	201005 201006	Carrowan * Drumragh	23 (IH) 460 730 23 (IH) 458 722	DOEN DOEN	274.6 324.6
079006	Nith	25 (NX) 858 994	SRPB	4710	201007	Burn Denner	24 (IC) 372 047	DOEN	145.3
080001	Urr	25 (NX) 822 610	SRPB	199 0	201008 201010	* Derg Mourne	23 (PH) 265 842 23 (PH) 347 960	DOEN DOEN	337 3 1844 5
080002	Dee	25 (NX) 733 641	SRPB	809 0					
080003 080004	White Leggan Burn Blackwater	25 (NX) 468 781 25 (NX) 478 797	Srpb Srpb	5 7 15 6	203010	Blackwater * Main	23 (H) 820 519 34 (ID) 052 086	DOEN DOEN	9514 2288
080005	Dergati Lane	25, (NX) 451 787	SRPB	2 1	203012	Ballinderry	23 (IH) 926 799	DOEN	4195
080006	Green Burn	25 (NX) 481 791	SAPB	26	203013 203017	Wain Upper Bann	33 (U) 092 973 33 (U) 043 509	DOEN	646 8 335 6
	* Panwhirn Burn	25 (NX) 128 694	DGRW	18 2	203018	Six Mile Water	33 (IJ) 146 867	DOEN	2773
081002 081003	Cren Luce	25 (NX) 412 653 25 (NX) 180 599	SAPB SAPB	368 0 171 0	203019 203020	Claudy Moyola	24 IIC) 962 037 23 (IH) 955 905	DOEN	130 1 306 5
081004	Bladnoch	25 (NX) 382 545	SRPB	334 0	203021	Kolls Water	33 (IJ) 106 971	DOEN	127 0
081005	Piltenton Burn	25 (NX) 107 564	SAPB	34 2	203024 203025	Cusher Callan	33 (IJ) 048 471 23 (IH) 893 524	DOEN	176 7 164 1
082001	Girvan	25 (NX) 217 997	CRPB	245 5	203026	Glenavy	<i>33</i> (LJ) 149 725	DOEN	44 6
082002 082003	Doon Stinchar	26 (NS) 338 160 25 (NX) 108 832	CRPB CRPB	323 8 341 0	203027 203028	Braid Agivey	34 (ID) 097 014 24 (IC) 883 193	DOEN DOEN	177 2 98 9
					203029	Six Mile Water	33 (L) 282 902	DOEN	58 4
083001 083002	* Caal Water * Garnock	26 (NS) 245 514 26 (NS) 293 488	SACW CRPB	6 O 88 8	203033 203042	Upper Bann Crumlin	33 (U) 233 341 33 (U) 135 765	DOEN	100 9 54 1
083003	Ayr	26 (NS) 525 259	CRPB	166 3					
083004 083005	Luger Irvine	26 INS) 508 217 26 INS) 345 369	CRPB CRPB	181 0 380 7	204001	* Bush	24 (IC) 942 362	DOEN	306 1
083006	Ayr	26 (NS) 361 216	CRPB	574 O	205003	* Lagen	33 (IJ) 299 679	DOEN	444 7
083007 083009	Lugton Water Gernock	26 INS) 315 420 26 INS) 307 424	CRPB CRPB	54 6 183 8	205004 205005	* Legan Ravernet	33 (U) 329 693 33 (U) 267 613	DOEN DOEN	490 4 69 5
083010	irvine	26 (NS) 532 372	CRPB	72 8	205006	* Lagan	33 (U) 259 62B	DOEN	3159
084001	Kelvin	26 (NS) 558 705	CRPB	335.1	205008 205010	* Legan Legan	33 (U) 236 525 33 (U) 123 540	DOEN DOEN	85 2 189 8
084002	* Calder	26 (NS) 309 63B	SRCW	12 4		-	•		
084003 084004	Clyde Clyde	26 (NS) 835 452 26 (NS) 927 424	CRPB CRPB	1092 9 741 B		* Clarrye * Jerretspass	33 (L) 086 309 33 (L) 064 332	DOEN DOEN	132 7 32 4
084005	Chyde	26 (NS) 704 579	CRPB	1704.2					'

^{* =} closed, or no data for post 1984 have been received.

Refer to page 192 for key to measuring authorities

Gauged daily flows, monthly peaks and monthly rainfall

KFY

KEY:					•	-								
					Complete	,	Incomplete o	4						
	Com	plete daily and	d con	nplete peaks	rainfall A		missing rainfa a	all						
	Com	plete daily and	d par	tial peaks	В		Ď					S	umm	ary is presented
		plete daily and co			C		c d					in	deca	de blocks
		ial daily and p			Ę		e							
		ial daily and re low data	o pea	ks	F		f							
	IN DAI	ow data			t		-							
Stn	Geu	ged daily flows.			Sin	Geu	ged daily flows.			Stn	Gau	ged darly flows,		
number	mon	thly peaks and rai	nfall		number		thly peaks and rain	rfell		number		thly peaks and rail	nfall	
002001	701		80s		D13007 D13008		CCCC	805	CCCDAAA	019008		-I''BAAAAA	706	
003001		BAAA	60%		013009		IC			019009	60s		705	********
003002	70.	6434#3	80s 80s	I	014001	604	11111:-EAA	701	***	019010		AAAAA 5	706	****
003003		[AAAAAAA Ahaaaaa	014002		AAAAAA - '111:''1}		******	019011	80s	AAAAEBa		
003005		- =82#A##	401			804	ACCECAC	701	AAAAAAAAAA		802	- CCCCCCC	70%	CCC: CC 4854
004001	40=	'c'	501	LCCDAFAAFA	014005	804				019012 019014		:"ma		
		BABABAAAA AAAAAA	704	E:11::AAAA	015001	504	**		WAAAAAAAFI TITTITE	019017		I-Aa		
004003	70s		801	*****	015002	50#		601	AAAAAAFF.	020001		- AAAAAAAA	706	****
004004 004005		- 083#A#8 			015003				UUTUU CBAAAAAAAA	020002		AAAAAAA -11:**EAAA	704	****
005001	50s		50.	AAF - ! * * 111			AAAAAAAAAA ABCFCAc	701	*****	020003		4888888 111*88888		****
	70s	1***	0.7		015004	206	ccc		CCCCCCBA+-		BOs	AAAAAEs		
005002						60s	11** AAAAAAAFF1		FFILLATION	020004		-111**1AAA AAAAAEoo	70*	*****
006001		E1'EAAAAA	40± 60±		015005		11:1111 CCC	304	CCCCCCBA+-	020005		- 111°CCCCC AAAAAAEa	/Os	CCCCCCA A a a
006003	70%					404		504	FF1FFF11*F	020006	70%	ccAAAD		AAAAAA
000003	401	ccccct	50a				AEAAAAAET	/Us	111111	020007		II	70%	THICCGAAAA
		1	701		015006	50s 70s	- 8444444 44444444		BAAAAAA Baaaaa	020008	80s	I:Ab		
006006	50%		60s	6A	015007	501	#AA	60%	AAAAAAAAA	021001				AAAALLAALI
006007	J()s	AAAAAAA	80s	ABABABA	015008	50%		60%	AACCCAc AAAAAAAAAA	021002	50%	11 •		aBCBAAAAF1
008008	701	f	801	******	015010	70s	<aaaaaaa< td=""><td></td><td>BAFCCAc AFCFCAC</td><td>021003</td><td></td><td></td><td>80s</td><td>:</td></aaaaaaa<>		BAFCCAc AFCFCAC	021003			80s	:
007001		#AAAAAAAA AAAAAA	70s	AAAAAAAAA	015011	50%	LUBAAAAAA	60s	: rc; rc; cc;		7Cs	********	801	ABBCCAAa
007002	50s	= A	60s	*****	015012	70%	- BAAAssa	80-	ACCCCAC	021004 021005	60s	-AAA Haaaaaaa		1:·
007003	70s 60s		80s 70s	AAAAAAAa	015013		AAAAABOOO		AABCCAC	021006	80s 60s	AABCCAAs EAAAAAAA	701	****
007004		AAAAAACI	BOs.	JAAAAA	015015 015016	80s	: : : : : : : : : : : : : : : : : :		AACCCAs	021007	804	AAAAAA.		
007005 007006	70 •	17	BO.		015017	70%			A*t r		8Os	AABCCAA ₄		****
					01501B 015021		:(021008	60s	AAAAAAAAA AABCCAA	701	******
100800		IC	40s 60s	"ICCCCCCCC	015023 015024	80s	ccAC ccrDC			021009	60s 80s	- "[AAAAAA	701	******
008002		AAAAA:" -#AAABAAAA	£0-	AAAAAAAA	015025		1Ac			021010	601	F-EAAAAAA	70%	AAAAAABAAA
	70.	AAABAAAAA	80s	AAAAAAA	016001		C¢		CHAAM:AAAA	021011	80s 60s	- " [AAAA AA	70%	*****
008003			50s	****			BOFCCAC	70s	*****	021012	80s 60s	**EAAAAAA	/Os	****
008004		FAAAAAAA AAAAAAAAA		AAAAAAAAAA AAAAFAAS	015002		+ AAAA	60s	*****	021013	90± 60±	**154444		
008005	50 e	-mBAAAAAAA	60	AAAAAAAAA	015003	60%	:111::111	70s	AAAAABAACE		80s	AACCCAA#	/01	*****
008005		+4444444	BOs GOs	AAAAAAAAA	016004		AAAAAA	801	AAAAGCA	021014		-EAAAAAAAA AABCCAA#	704	*****
008007		+	80s 60s	AAAAAAAAAA	017001	60.		701	BAAAAAAAA	021015		-TTITEAAA AACCCAAa	70s	****
008008	70.	4888888	801			801	AAAAAA			021016	60s	- **111" + AA	70s	****
	701	BAAAAAAA	801	AAAAAAac	017002	80s	AAAAAA		******	021017		AACCCAAb -***IFAAAA	70%	*****
008009		EALDABBA		AAAAAAAAAAAA AAAACAAc	017003 017004		I		AAAAAA±	021018	80s 60s	AABCCAA#	70-	****
008010		+ AAAAAA AAAAAAAAA	601	AAAAAAAAA AAAACAA	017005 017012	70s	EAAAAAAAB		LIAAAAAA	021019	80s	AAAAAAA !!!!!!!A		
008011		:			017014	BOs.						AA**1AAJ		*****
009001	50a		601	****	017015 017016		!a - 00			021020	60s 80s	TTTTTEBA AABCCAA#	70%	*****
009002		******	80s	AAAAAAA: Aaaabaaaaa	017017	80s	e c			021021	605	AABCCAA	705	****
	BOs	AAAAAA -II:::II:E	20		018001	50%	LAA		*****	071022	60s	-::::::::	70\$	AAAAACAAA
009003	BC1	AAAA!AAc	/ Uta	*****	018002	50%	b	60s	AAAAAAA Abaaaaaa	021023	604	-11111111	20%	FAAAAAAAA
009004	BO ₁	наявся Ап			018003		BbbAAAAAA		AAAAAAA cccbaaaaa	021024	80s 60s	AABCCAAs TTTTTTTT	70=	:[4444444
010002		-	70s	AAAAAGAA3t	018005	70%	84F44A444	80s	BAAAAA		108	AACCCAA.		
010003		wd A A c			018007	805	1'58		AAAAAA	021025	80s	AACCCAA		-:[^ A A A A A A
011001		-1**:111*F	70s	AAAAAACAA	018008 018010	70s 80s	*******	80 ₁	****	021026		AACCCAA#	70%	**1EAAAAA
011002		AAAAAAA -!''!!!''F	704	CBAAAAAAA	018011 018012	80s 80s	-trAAAAa Itaa			021027	60s	AACCCAAa	70s	**1EAAAAAA
011003	803	AAAACAAc		TI"EAAAAA	018013	805	I fa:			021030	604	::::::EA	703	AAAAAAAAB
011003		AAAACAAc	701	II-EARAAA	018014 018015		- 11aa 			021031	501	AABCCAA# #AAB	6Cs	AEAAAAAAA
012001	20s		301	BBBBBBAAAA	018016 018017	80s 80s	As bbbC:			021032	70s 60s	AAAAAAAAAF -aaaa		0: AAAAAAAFAA
		BARBAABCCC CCCCBAAAA	504	BUBAAAAAA	018018	804	566C				BUs.	AAAE1		
	#Os	AAAAAAA			018019					021034		AAACCAda	/0%	CCCCCAAAA
012002	70s	=AAAAAAA		AAAAAAA AAAAAA	019001		AAA		AAAAAAAA AAAAAAAb	022001	60s	115AAA	70+	AAAAAAAA
012004	60%	bCCCCAA:		Bassathu-18	019002	601	14444444		AAACAAAAA		60%	AAAAAHan		
012005	70s			#AAAAAAc	019003	601	-GAAAAAAA	70s	****	022002		8 AA AAAAAAAA	801	LAFAAAAAAA
012006 012007			801	#AAAAAAc	019004		AAAAAAAAA	704	AAACAAAAAA	022003				BAFAAAAAA •
012008		dac			019005	804	AAAAAAA =AAAAAAA		AAAAAAAAA	022004	60s			3444444
013001			80s	BAAAAAA		804	SAAAAAA			022008	50s	e DAA	705	CAAAAAAAA
013002 013003	70%	cccAC c	80s	cc=1	019008	801	-:IAAAAAAA Aaaaaaa		****	022007	50€	BAAAAAA;= - 1[A	/01	*****
013004 013005		AL -srccA()			019007		AAAAAAAA BAAAAAA	10%	*****		603	AAAAAAA		

	tn umber		ged daily flows, thly peaks and rain	fo O		Stn		ged daily flows. thly peaks and rain	of pill		Stn number		ged daily flows. thly peaks and rain	to II	
0	22008			70s	AAAAAABAA	027012			60s	*****	028014		bBABSC1EAA	70s	AAAAAAAET"
0	22009	80s 70s	EDAAAAA	800	AAAAAA	027013	501	AAAE111111 		888888AAA	028015	801		70s	EEETTTTTE
0	23001			60s	AAAAEAAAAA	027014	70s 50s	AAABBBCBEE #A	604	BIIIII AAAAAAAAA	028016	60s	AEEAs 	70s	AAAAAAAAF:
0	23002	50s	tcccb	60s	AAAAAAAA	027015	60s	-BAAAAAAA		AAAAAFIIII	028017	60s		70s	MAFAAEAE:
0	23003	50a	********	BOs BOs	AAAAAAAADA	027016	80s 50s	1111 888	60s		028018	60	111111 -•AAAAAAAA	704	****
0	23004	70s 60s		80s 70s	EAEAAABAA	027017	70s 50s	AEBBEBCLLL · +BBB	80s 60s	8:1111 888888AAAA	028019	60s	************	70s	***
0	23005	60s	AAAAAAAaa BAAADAD	70s	*****	027018	70s 50s	AEBBBBCEBE BAAB	80s 60s	11111 BAA888AB8	028020		AAAAAAA ICFCFC	60s	BAAAAAAEee
0	23008	60s		70s	AAAAAAEEA	027019	70s 50s	BB000117		111 AAEBAAAAFE	028021		1E A A E A		AAETIT FEEEAAAATT
0	23007	60a	0AAAAAA	70=	***	027020	70s	EAAAn1:1 -88 8	6Os	111 888888ABAB	028022	60s	1!11	70s	*****
0	23008	60s	BAAAAAAae 	7Qs	****	027021	70s 50s	B388EBCEEE	80s 60s	BITTIT eEEAAAAAA	028023		AAAAETTe eeses	70s	esAAAAAE11
0:	23009	80s 60s	AEAAAAA	70s	AAADDAAAEI	027022	70s 60s	AAAAAAE:11		*1Assess EE*11TF*11	028024		11-1111	70=	
0	23010	60s	EAAE11*	70s	EAAAAAAAA	027023	80s 80s	'11 •AAAAAAAA	70s	****	028025		ALEALLE =	70s	
0	23011	50 e	e11-'	70s	EDAAAABAA	027024	80s 60s	AAAAAAAA -gaaaaaaa	70s	***	028026	60s	AAAAFI: ,	70s	MAAAFAAAA
	23012	70e	FBAAAAAAA		e11-*	027025	80s 80s	E:-!!!"	70s	AAAEIIAAAA	028027		AAAAFII:	70s	AAAAAAF**1
	23013 23014	80.	TEAAAAAAA Tecceccecc		CBAEET: 11	027028	60s	* ******	70s	AAAAAAAAF	028029		16 Aan - 1 	20s	RAFAAAEAA
0:	23015		- 111111111	50s	EACAEFBBB=	027027	80s 60s		70s	AAAAAE**11	028030		AAAAF11 #EF	70s	AEEAAAAAAA
0	24001		100	60s	CCCCCBAAA	027028	80s	:	70s	AAAAAAAEA	028031	80s 60s	AAAAETT	70s	A&AAAAAAA
0	24002	70s 50s		80e 60e	EAAAAAA	027029	80s 60s	AAAAADas -#AAAAAAAE	701	*EAAAAAAA	028032		AAAAAA a EAAAA	70s	AAAAAFAAA
0:	24003	70s 50s	* A	80a 60a	AAAAAAAEAA	027030	80s 60s	AAFAAAns gAAAAA		AAAAEEAAEA	028033	80	AFAAF1		AAAAAAA
	24004	60s	******	80s 60s	AAAAAAAAA	027031	80s 60s	AADAAAA AAAAA		AAAAAEAEA	028036	80s	AAE**11		mAEAETT:
a:	24005	70s 50s	AAAAAAAAEA meEAAA	80s 50s	AAAAAAAEAA	027032	60s 60s	AAAAAAA TEEAA	70s	AAAALEAAA	028037	80s	III 11- 111EA		aa AEtt
0:	24006		AAAAAAEEA	80s 80s	AAAAAAAAAA	027033	80s 60s	AFAAAAA		CCCCCBEAAA	028038	501	AAEIIII		MAFAAEAAA
0:	24007	70s 80s	AAAAAAAAA	90s 70s	#1 AAAAAAAAA	027034	60s	AAAAAAa 		BAAAAAAAA	028039	50s	AAAAAAA	/Os	A.E.A.E.A.A.A.A
	24008		AAAEIII		AAEAAAAaa	027035	80s 60s	AAAAAA		AAAABAEAAA	028040	60s	AAAAAAA	/Os	*****
	24009				AAAAAADee	027036	80s	EAAAAAA		EEmmin	028041	604	AAETTI	70s	AAAAAAA
0	25001		****	60s 80s	AAAAAAADAA	027038 027039	70s	BAAAAAAAA	801	EAADADAs BBAETT:::T	028043	50s	111EA	70s	****
0	25002			50s 50s	*AAAAAAAB	027040	801	III		AAAAAAa	028044	60:	AAAAF1	70s	••
0	25003	50.	AAAAA		AAAEAAAAA •1	027041 027042	70s	IFAAAAAA	80s	AAAAAA	028045	60s		70s	am A A A D A A A A
Q:	25004	50s	AAAAAAAAAD	80s	AAAAAAAAA AAEADODaa	027043 027044	70.	AAAAA - 11EAAAAA	80:	EAAAAAa AAAADAA	028046	60s	AAAAAAA	703	****
0	25005	504	AAAABAAEAA	60 s	AAAAAAAA	027047	70s	TRAAAAAA TEAAAEEAA	60s	ALADALDO AAAAAaa	02 804 7 02 8048	70a	**************************************		AAFEFT
0	25008	60s			AAABAABAAA	027049	704	eAAAAA	80s	SAAAAAA	028049	70s	massasaAAA -eesAAAEAA	804	AAAALII
0	25007	60s	-@AAAAAAA E1'	70s	****	027051		WAREAAR	BOs BOs	AADAAAAa	028050	7 Da	- eDEAAAAA	804	AAAAETI
0	25008		'EAAA	709	AJAAARAAŁA	027053			809	*****	028053	70s		801	AAAAFT
0	26009	60s 80s	AAAAAaan	70s	ABAL! AAAAA	027055	704	ICCFAF	804	AADAAAA	028055 028056	70a		80s	AAAAL''
	25010	60s	EAA		AEAAEIIII? AAAAAAAAAA	027056	704		80s	AAAAAA AAAAAA	02 8058 02 8059	601			AAAAE:: #BAAAAAAA
	25011	80s	WWEL			02705B 027059	70s	'CCEAE #AF	80s	EAAAAAA	028060	7(7)	AAALE:		AAAFFII
	25012	80e	AAAAAA		BAAAAAAAA	027060 027061		··•A	80s	AAAAAA.	028081 028082	704	!*-AAAAA **111	80 s	AAAAEII# !''111
0	25013 25014	60e	[70s	AEETT"	027067 027063	801	endnDAad		AFAAAAA	028065 028066	70a	*:!!! 	80 s	AAABAFA
0.	28016		TEEAAAAAA	70s 80s	AFFAAAAaa	027064 027065				edaeAAAe	028067 028070	6Os	=AAAAAA		AAAAAA
0	25019	70s	EAAAAAAA	80s 80s	AAAAAAA	027068 027067	80:				025072	70s	AAEII'I .		AAAFET:
0:	25021 25022	70s	TITEBAAAA	80a	AAAAADAss sII	027068 027069					028073 028075	70s			33300 3300
	25023 25024		-EAELAAEAA	BO1	AAEETTI	027070	8Os				028079 028080	50:	- sesse Ae		rccrccccc
0:	26001		eAAA888		888888888	027072	80s	AAAa 			028082	70s	- ***		CBAAAAA AAAEAA
0	26002	60s	AEABEI*111 -eAAAEEBBE BICCCEee		'ITI EAAAAALBE	027074	80s	AAAa 48			028083 028085	30s	easeEe IFFCC		cccrccccc
0	26003	50s	BICCCFec		AAAAAAAAAB	027076	80s	45			0350	70s	CCCCBAAAA		222222222
	26004	/Os	AAAAEEEAAA IEEIBEFEBA		BAAAAA	027080	801				028086 028091	80s	ooeAe ooAv		
02	26006 26006		-DesAAAs sess			028001	30s 50s	cccbaaa	40s 60s	BCCCCCCCB	028093 028094		Ee		
0:	26007		1ecc	70s	tecettecce	028002	70s	AAAAAABAAA	80s 40s	AAAAAAA	028095	801	:		
0	27001	300	aAAE1	40s	:EBAABCCF1		70s	AAAAAAAAA AAAA]AAAA		AAAAADTIEE AAAAETT	029001		BAAAAAAB	70s	AAAAAAAAF
			II'EAAAAAA AAAAAAAAA		AAAAAAAAA AE11111	058003	501	•AAAA AA[AAAAAA	60a	AAAAAAAAA AAEIIT	029002	6Os	«AAAAABA	7Os	,AAAADAAAA
0:	27002		TT'11EAAAA		AAAAABAAA	028004	50s	AAAAAAAAAA	50s	FAAEAAAAAA AAE:11	029003	60s	AAAAAAA	706	****
0:	27003	70a	*********	80e	AAAAAAA EEAAAAAAA	028005	50a	'LCDA	60s	AAAAAAAAA	029004	60s	EA	706	****
	27004	70a	AAAAABBAEE	80e	AAAAAAaa TIEAAAETTI	028006	50s	mA	60s	AAAAETT**1	029005	70s	-FAAAAAAA		AAAAAA
	27005	30e	ABCCCCCCCB	40s	PARABILL	028007	50s	4AA	60 e	AAAAAE*11	029009		#AAAA		*****
۸.	3300-	70s	AABBCCCCCC	60a	C:CFCFrc	028008	50s	GAAAAA	60.	******	030001	70s	E	803	AAAAAAA AAAAA
	27006	80a	AAAAAAA		******	028009	501	•A	60s	AAAAAAAAB	030002	803	EEEEVEV		AAAAAAAF'
	27007	70s	EBDAAAAGE	80s	AAAAAAA	028010	301	AAAAAAAAA IFFCC	40»	CCCFCCCCCC	030003	804	#AAAAABE AAAAABE		***
	21008	70s	AAAAAEEEAE	BOs	AAAAAAAAA	****	704	CCCCHAAAAA	BOs	200000000	030004	80.	eEABAAAB AAAAAAa		3
	27009	80s	ADAAAAA	70s	DAAAJCBAAA	028011	701	EEAAAAAAA	BOs.	LLBAAAAAA A aa aaa	030005	90s	SCCL*		crececce
Q:	27010	504	cffbAAAAA	60s	IIIIIIIII BAAEAAAAA	028012	70s	AAAAAAAAA	80s	AAAAAAA	030008 030011	70s	EBBBAA '	804	AFFAAAE#
		706	ABAAAAEEAE	BOs	1	028013	705	:111	80s	111	030012 030013		-		DEBABBE# AAAAAAA

Stn		ged daily flows. Ithly peaks and rain	nfell		Stn number		ged daily flows, thly peaks and rain	rfæti		Stn	Gauged daily flows, monthly peaks and reinfall	
030014	70s	eCAABAAA	801	BAAAAAA	033018	60%	FAAAAFFA	70s	****	036001		1FCCCCCCCC
030015 030017		AAA		SEARARA SEARARA	033019	80s	BAAABBA		TIBAAAAAAFA ^{*]. :}		40% GCCCCCCCC 50%	CCCCCCRAAA
						704	RAAAAAABA	80.	AAAAAABa		60s BBBAABAAAA 70s 80s CCCCCCF	
031001		1CF 1888888		CCCCCI SBBBBBAAEA	033020	50s 70s	LUBBBAAAAA		*1-eAFBBEE AABAABA	036002	60s HAABAAAABA 70s	*****
031005		AABAAAAEAB	B0 s	BAAAAAaa	033021		#AAAAAEB BAABABba		BBBAAAAAA	036003	60s BAAAAAAA 70s	*****
031006	60%	EAA	70s	BAAAAAAAA	033022	50%		60%	ntineaBAAAB	036004	BOS AAAAAAA BOS GAAA 70s	****
031007		AAAAAA. EE	70s	BBCCCBCBAA	033023				AAAAAAB5 AABAAAAAA	036005	80s AAAAAAA 50s #8AAAAAA 70s	AAAAAAA A
031008	80s 60s	AAAAAAA II	70-	•EFFEFFCFF	033024		AAAAABb		FEBCCCFCCC		BOs AAAHAAA	
	80:	AEEEL + n=			033024	601	CCCGAAAAAA		ABAAAAAA	036006	80- AAAAAAA	*****
031009 031010	70 p	DA		FFFFFew ABAASAAAA	033025		IEAAAA	704	AAFABCF*11	036007	60s CCFBDABAA 70s 80s AAAAABta	****
031011		AAAAAB.	704	11111111111	033026 033027		IcCOCCCCCC AABE		CCCCCF BBAAAAAAAA	036008		****
031012	80:	[[[weste			033028	804	ABBAAAA			036009	60sEA 70s	****
		i i i mamé		EFFFFFFEE			ABAAAABa	70%	ABAAAAAAA	036010	80s AAAAAAA 60s EA 70s	****
031013	60s 80s	E	70%	ACBBBBBBBBB	033029		nAAFA AAAABAB∎	701	ABCAAAAHAA	036011	80s AAAAAAa 60s EA 70s	*****
031014	60s	ttEces	104	EEEBECCCCC	033030		fcc dababasasa		ccc!mass	036012	SOS AAAAAAA	
031015	60s	1	70%	333333390	033031	704	- AAABAABAA	80%	AAAAA		80s AAAAAAa	*****
031016	60:	E	701	ABAAAAAAA	033032		FAAAA AAAAAAb	701	AAAABAAA	036013	60s ::::::::::::::::::::::::::::::::::::	1666665566
031017		AAAAAAA ESBEEBEEEE	804	EELmon'	033033 033034		FAAAAAA		AAAAAAA AAAAAAAA	036015 036016	70s LAAAAAAA 80s 70s ereeraa	AAABAAA#
031018		PEECELLEF	801	EEEooo		BO ₄	AAAAAAA C			036017		bae
031020	70s		801	EEEses.	033035	70s	0000000111	601	CCCCCCCCC	037001		****
031021 031022	70s 60s	#EAEEBBEAA		AFFFFFA ECCEOBCCLE	033037		AAAAABBb	701	ABAAAAAAA	037002		AAAAAAA BBABABABAA
031023		Effests LBAUBBAB	801	AAAAAAa	033039 033040		EAAADBAA		AASBABAC CBAAAAAAA		50s 8338888E88 60s	BERRARRAA
031024	704		801	ВВАлелла		80s	AAAABBab			037003	30s FCCCCCCC 40s	CCCCCCCCCC
031025 031026	70s	-"" ""FA		FAAAAAAb Aaaaaaaa	033044	801	ABAAAABb	7() h	AAAABBASss			CCCRAAAAA AAAAABAu
031027 031028	80s	⇒eddeeEs ==fbesAs			033045		BABAAASb	704	CCCAAAAAA	037005		AAAABAAAB Aaaaaa
032001	304	f	404	*BAAAAAAA	033046	60s	BAAAABBa	70#	CCCAABAAAA	037006	60s BAAAAAA 70s	******
	50s	ABAAAAAAB	601	BAAABAABCC	033048	60s		704	CCCAAAAAA	037007	BOS AAAAAAA BOS -wBAAAA 70s	*****
032002	70s	#A	801 401	AAAAAAA Aaaaaaaaa	033049		BBBAAAAA lcc	704	CC- Seesees	037008	BOS AAABAAA 70s	****
	50a 70a	BABABBAAAA Baaaaaaaa	60s	AAAAAAA	033050	80s	mittinec	70s	·+00000	037009	BOS AAAAAAA 60swaaaaaa 70s	****
032003	30s 50s	A	40s 60s	BAAABAAAB	033051	BOs.	BCCBaraa fCCCCC		CAAABAAAA		BOS AAAAAAA	
	70%	ACAAAAAA	801	AAAAAAA ;.		804	AAAAAL			037010	BO's AAAAAAA	*****
032004	40s 60s	WAABAAA BBBAEEAAAB	50s 70s	AAAAAAFAAA	033052		-1 cc cc AAABAA#	70.	о рия ААААЭА	037011	60s FAAAAAA 70s 80s AAAAAAA	AAAAAAAA
032006	30s	AAAAAAti	401	BAAABAABAA	033053	40s 60s	sectetibes		Hecoccocc accarrates	037012	BOS AAAABAAA 7US	AAAAAAAA
	50s 70s		60s 80s	BBBBAAAAA GccccCa	033054	80s 70s	cobsebse			037013	60s GAAAAA 70s	*****
032007	3C+	n	404	AAAAABAABA	033054 033055	604	'CAA Icccl		AABAABaa 	037014		****
	50s 70s	ARAABABAAA LECLECCCCC	60s	BBAAAABAAb BcccccCo	033056	408 409	AAAAAA## 	705	: *: *HCCCB	03/015	80s AAAAAAAaa 70s e1E BUs	LLAAAAA
032008	40±	AAAB BBBBALABA	50s	AAAAAAAAAA	033057		BAAAAA Faa	HO.	AAAAAa	037016		AAAAAAAAA
032012	B0 •	AAAAAAA IL	20-	LCEEEFFFFF	033058	704	1 IE A	80.	AAAAAAA	037017	60s L 70s	*****
	60,	ttt			033059	BCs	C1 CC 84		ocic#occcc	037016		AAAAAAA
032016		B EEEnnoEn		EEBBELLELL	033060	60s	coccuet	70%	CCC: CCCCC	037019	BOS AAAAAAA	AAADAABFFA
032016 032018		- [[[[[[[[FFEorese Teittittt	033062		coccb8e	70	tc	037020	60s 1 70s 80s AAAABAAs	[4444444
032019		FFF1 PTEEELECE		FEEnnaEn	033063 033064	801	eAAabAAt: easabae			037021		EAAAAAAAA
032020 032023	701	EAAAABABAB IFBEREEEEE	80	ABALALI	033065	801	ICCcaAL			03/022	501 1 70s	LAAAAAAAAR
032024	7Cs	- [[[[[[[80s	EE!-om'	033066 033067	BO:	-BBacks- 3Aecs			037023	80s AAAABBBs 70s -FAAAAAAAA 80s	AALTII
032025 032026		-EEEEEEEEE !############################		ttimen FEEeroee	033068	601	': tiša			037024 037025		AAABBBA4
032027 032029	704	333333333		ttt=ng"	034001		• AAAAAAAAA		AAAAAAAAA		BOs!:	
032030	70 •	t	801	EEE II	034002	501	•AA	60s	AAAAAAAAA	037026 037027	60s (renantika) 70s	242 AARRA 24
032031	80:	ementa			034003		*		AFBAAAAA AAAAAAAAA	03/028 037029		Basanen Dasane
033001		FFCCCCCCCC		CCFTTITTT	034004		BAAAAAAAA AAAAAAA	801	AABAAAAAAB	037030	60s EELBBAAB 70s 80s -*	
033002	70.	tanilla.i	801	'		BOs	ABAAAAA			037031	70seRAA 80s	AAABAAAn
033002	501	cCCcCBB cccccccccB	60:	BBBBBCCCCC	034005	BOs	-eaaaaaaa Abaaaaa		BAAAAAAAA	037033 037034	70sIenau 80s	AAAAFea mandassa
033003		BAAAAAAAA 'CCC		BAABAABa CCFCFCCCCC	034006		@AAADAA	70s	****	037036 037037	70s -bbssassu 80s 80s -erbbeEs	844 8840
	50a	BAEARRARCC BCCCCCCCCC	601		034007	604	HAAB	705	*****	037038	50s eacerea 60s	besetabbab
033004	301		40 -	CCCCCCFFCC	034008	6Us	FABA	706	AAAELAAAA	037039		FEEEEE
	709	CCCCBARCC		CFCCCFF	034010	604	FCFDBBB+	705	****	038001	70%ICCC 40%	accaccece
033005		-cbCCCCCCC BCBBBBBBBB		BAAAABBCCU BBBBBBFn	034011		FABAAEAa AAA	70≤	ABAABAABEL		50s 0000000000 60s	CCCCCAAAA AAAAAAaa
033006	501	=BCC ABAABAABAB	50s		034012	801	ABAAAAa maaa			038002	80s назаваря	
033007	501	-8 00000	604	CCCCCBBBAB		801	MAAAAAA	/01	AAAAABACAA	038003		AAAAAAAAA Aaaaaaaa
033008		RAAAAASAAA	80s 60s	AASBAAAş cbassbbbf=	034013 034014		ftfAFADB		ADECDE!	038004 038005		AAAAAAA
033009	701 501	#ABCC	804 60a			80%	a of the to Car				501 11111 601	EAAAABABAA
	701	BABBAAAAA	BO1	BAFAAAAABA BAAABAE	034018 034019	70s	FECCADOF -EAAAAA		AAAAAAA Aaaaaaa	038006	50s1000 60s	ETTTT CHAAAAAAAA
033011	40s 60s			I'ffclccfl BAAAAAAAAA	035001	60s	- 111988111	701	THEFFEE	D38007		LEL AAAAAAEAAA
033012		BAAAAAAA Baaaaaa				801	belababb				BUs AAAAAAAa	
	803	****		ВАААААА	035002	805	AAAAAAAA		AAAABAEAAB	038011	70s BABBBBBAAA ROS	CCCCCBBBBB AAAAE1
033013	60s			'II'uggu'i Aaaaaaaaa	035003		- MAAAAAAAA	704	ABAAAAAAA	038012	50s 60s	TTTTTTTTT
033014	801	AAAAAAAA		ABAAAAAAA	035004	604	ABBAAAA	701	BAAAAAAAA	038013	30s1**!! 40s	111.1111
	801	BAAAAAA			035008	6Cs	1E AAA	704	*****		70s asasabasa 80s	A A A A A Bass
033015		AAAAAAAA Daaaaafu		8888888	035010	601	ABBAAAA	701	AAAAAAAA	038014		EAAAAAA
033016	50s 70s	BCCCCCCCC		DAAEEEFEAB	035013		ABBAAAss		EAAAAAAAB	038015		AAAABAAAA
							ARAAAAA					

140 150	Stn number		ped daily flows, tNy peaks and rain	fell		Stn number		ged daily flows. thly peaks and rain	ıfan		Stn. number	Gauged daily flows," monthly peaks and rail	nfell	
1889 10	038016			70s	CCBBBCCCBA						042005			
1800 10 1404 10 10 10 10 10	038017			HDs.	AAAAAdaa	039081			704	AAAAAAAA	042006			
Section Sect						039065					042002			
1800 1800	03#021	701		#Os	AAAAAA		70s	nAAAA	80s	AAABAA	042008	JON FORCEBAAAA	8Ds	LAAAAAA
1982 75				80%	AAAAAAAbe									
1982 180 180									80%	888888130	042011			
Section Color	038027	8 0•	da=			039091	701		80%	88469n :	042012	7041*8988C	804	CCCCCCCC
1980 10											042014		70	II": IIEDAA
STOCK STOC	038030	70e		803	AAAAAA	039094			804	Desarresan				
1985 CONTICOTION 1985 CONTICOTION 1985	039001					039096	BCs.	80980						
0.00000000000000000000000000000000000														
1990 10 10 10 10 10 10 1					222222222								704	****
100 100		804	BBAAAA4=			039101	804	0435Ano				BO4 BEFFFRFam		
1900 10 10 10 10 10 10 1	039002					039102	801	udad=			043005		701	*****
1909 190	039001					040001					043006		701	****
10.00000 10.000000 10.000000 10.000000 10.000000 10.000000 10.000000 10.000000 10.000000 10.000000 10.0000000 10.0000000 10.0000000 10.0000000 10.0000000 10.0000000 10.0000000 10.0000000 10.0000000 10.00000000 10.00000000 10.00000000 10.00000000 10.00000000 10.000000000 10.00000000 10.000000000 10.000000000 10.000000000 10.000000000 10.0000000000		80s	AABAAAsse			040002	504	- AAA	60s	AAAAAAAEA		70s: AAAAAAA		
1990 10	039004					040003					043008		704	AABAAAAAA
150	039005										043009)() _k	***
1990 100 AAAAAAAA 000 AAAAAAAA 000	033003	50s	111"FFAAAA	BOs	FEAHEFHEF		80x	AAAAADAa			043010	60.	70s	EAAAAABAA
1980 100 16	039006					040005					043011		801	1
1909 190						040006						60s :*11	704	1EAAAABAA
20010 70 AAAAAAAAA 70 AAAAAAAA		70s	AAAAAAAAA	801	DEARARA	040007	601	*AAAAAEEEA			043013	60s1	70s	IEBABBBAAA
0.5001 0.50		70s	0000000000	801	CCCCCCCt	040008	601	ef a a a aba	705	AAAAREAAEE	043014	606111	704	ILAAAAAAA
03901 50,						040009			701	AAAAAABAAA			70s	166666611.
1990 190	039011	500		6C1	****		80:	AAAAAA				601111 ;		
1999 190	039012	504	EAAA	601	****		BOs	000000004				701BAAAA		
1909 190	039013				AAAAAAAAA				70%	AAAAABASAA				
03901 80						040012			70%	*****	044001	60s cccC	70s	CCCCCCccc
03901 50	039014			GOs	AAAAAAAAA	040013	60s	15	704	******		BOs ccccCC1 '		
0.3901 0.00	039016	60	-BAAAAAAA				701	- = "ELLE ALL				BOs AAAAAAAbe,		
0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00	039017		• ABA ABBC	70s	ccccccccc		BC:	FD116**#				BOS #=t '	701	AAAAASSAAA
805 AAAAAAA 706 AAAAAAAA 706 AAAAAAAAA 706 AAAAAAAAA 707 AAAAAAAAA 707 AAAAAAAAA 708 AAAAAAAA 708 AAAAAAAAA 708 AAAAAAAAA 708 AAAAAAAAA 708 AAAAAAAAA 708 AAAAAAAAA 708 AAAAAAAAA 708 AAAAAAAA 708 AAAAAAAAA 708 AAAAAAAAA	039019			70s	****	040018			704	*****				
809 AAAAAA 109 AAAAAAAAA 109 AAAAAAAAAA 109 AAAAAAAAA 109 AAAAAAAAA 109 AAAAAAAAA 109 AAAAAAAAA 109 AAAAAA			AAAAAAA				701	- BEALEBBO:				KIRAAAAA KIR		
803 AAAAAAAA 705 AAAAAAAAA 040021 705 EEEA 805 020EET 045001 505		80	AAAAAAA				80s	AAAmaAap						
803 AAAAAAAA 70			AAAAAAA	70%	*****	040021	701	EEEAE			045001		60%	****
0.3902 60	039022			70s	****				805	ADDAFFD:1	045002			
0.39026 60	039023	601	@AAAAA	70s	****							BOL AAAAAAAC		
039027 03903 039	039025	601	AA	70s	****	041001						BOL AAAAAAA		
0.39027 60	039028	601	nAAA	704	****	041002			501	AAAAAAAA		BOL AAAAAAA '	70%	*****
039023 050	039027			70.	****	041003					045005	•••	70%	****
3903 300 AAAAAAAAA 300 AAAAAAAAA 300 AAAAAAAAA 300 AAAAAAAA 300 AAAAAAAAA 300 AAAAAAAAAA	039028			20a	****	041004								
80s AAAAAAsa 80s AAAAAAsa 80s AAAAAAasa 80s AAAAAAaasa 80s AAAAAAasa 80s AAAAAAaasa 80s AAAAAAaaa 80s AAAAAAaasa 80s AAAAAAaasa 80s AAAAAAaasa 80s AAAAAAaasa 80s AAAAAAaasa 80s AAAAAAaasa 80s AAAAAAaaa 80s AAAAAAaasa 80s AAAAAAaaa 80s AAAAAAaasa 80s AAAAAAaaa 80s AAAAAAaaaa 80s AAAAAaaaa 80s AAAAAaaaa 80s AAAAAaaaa 80s AA		801	AAAAAAA				701	ABBUAAAAAL	80*	IF CCFFCs	045009	80s - AAassAc		
1939-13 66		8Ds	AAAAAA				804	AADDAAA				60sci,		
039013 60						041006			703	*****	045012		704	scceccece
80. AAAF****	039032		AAAF**1	70.	****	041009	50s		601	ccccccccc		80s acceccAe		
80		80:	AAAF**1			041010	60s	- eE AEADO AA	701	AOCOCOCASA	046002			
30303 60		801	BERRARAR			041011	60s	EAAA	7Cs	A AA AAAAA	046003	501A	601	AAAAAAAAA
1993 80 AAAAAAA 80 AAAAAAAA 80 AAAAAAAA 80 AAAAAAAA 80 AAAAAAA 80 AAAA		COs.	1F			041012	601	EAD	701	AAAAAADAA	046005			
1980 AAAAAAA 1980 AAAAAAAA 208 AAAAAAAA 208				70+	****		80%	DCAADDAs				BOs AAAAAAAc .		
03904 03904 03 04 04 04 04 04 04		80.	AAAAALDae				70%	AAAAAAAAA	80+	DOAFDODa	046007	70s - GAAAAAAA	80s	AF1
0.39042 705 FAAAAAAA 805 AAAAAAAAB 705 AAAAAAAAA 706 AAAAAAAAB 807 AAAAAAAAA 707 AAAAAAAAA 708 AAAAAAAAA 708 AAAAAAAAAA 708 AAAAAAAAAA 708 AAAAAAAAAA 708 AAAAAAAAAA 708 AAAAAAAAA 708 AAAAAAAAA 708 AAAAAAAAA 709 AAAAAAAAA 709 AAAAAAAAAA 709 AAAAAAAAAA 709 AAAAAAAAA 709 AAAAAAAAAA 709 AAAAAAAAAA 709 AAAAAAAAAA 709 AAAAAAAAA 709 AAAAAAAAA 709 AAAAAAAAA 709 AAAAAAAAAA 709 AAAAAAAAA 709 AAAAAAAAAA 709 AAAAAAAAA 709 AAAAAAAAAA 709 AAAAAAAAAA 709 AAAAAAAAAA 709 AAAAAAAAA 709 AAAAAAAAAA 709 AAAAAAAAAA 709 AAAAAAAAAA 709 AAAAAAAAA 709 AAAAAAAAA 709 AAAAAAAAAA 709 AAAAAAAAA 709 AAAAAAAAAA 709 AAAAAAAAA 709 AAAAAAAAAA 709 AAAAAAAAAA 709 AAAAAAAAAA 709 AAAAAAAAAA 709 AAAAAAAAAA 709 AAAAAAAAAAAAA 709 AAAAAAAAAA 709 AAAAAAAAAA 709 AAAAAAAAAA 709 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA		801	AA				604	FAC						
039042 701EAAAAAAA	039040			801	AAAAAAA	041016		DDAAAAA r	401	IEEEEEEEE	047001			
BUS AAAAAAAA BUS AAAAAAAA BUS AAAAAAAA BUS AAAAAAAA BUS AAAAAAAAA BUS AAAAAAAA BUS AAAAAAAAA BUS AAAAAAAA BUS AAAAAAAAA BUS AAAAAAAA BUS AAAAAAAAA BUS AAAAAAAAA BUS AAAAAAAAA BUS AAAAAAAAA BUS AAAAAAAAA BUS AAAAAAAAA BUS AAAAAAAA BUS AAAAAAAAA BUS AAAAAAAA BUS AAAAAAAA BUS AAAAAAAA BUS AAAAAAAA BUS	039042	70	EAAAAAA	80:	AAAAAAA		501		60s	+FFFFFFFAA	047003	5O ₃ eBE	60s	11:-1:1:-1
039046 70s		80	PERRARARA			041017	60×				047004	601 #AAFAFA		
039052 005 0	039046	70s	eAEEEEA	80s	E111EDade	041018	60s		704	ACABAABAA	047005	60smAAAAAA	70%	AFFTITTEA
039052 039054 039055 0						041019			804	AAADAAA	047006		70%	11-11FAAAF
703 ABABABAB 703 AAAAAAA 704 AAAAAAAA 705 AAAAAAAA 705 AAAAAAAAA 705 AAAAAAAA 705 AAAAAAAAA 705 AAAAAAAA 705 AAAAAAAAA 705 AAAAAAAA 705 AAAAAAAAA 705 AAAAAAAA 705 AAAAAAAA 705 AAAAAAAAA 705 AAAAAAAAAA 705 AAAAAAAAA 705 AAAAAAAAA 705 AAAAAAAAA 705		80a	AALAAAA				60-					80s AF 1		
BOS AAAAAAB BOS AAAAAAB BOS AAAAAAB BOS AAAAAAAB BOS AAAAAAAB BOS AAAAAAAB BOS AAAAAAAB BOS AAAAAAAAB BOS AAAAAAAB BOS AAAAAAB BOS AAAAAAAB BOS AAAAAAB BOS AAAAAAAB BOS		70a	******	8 0s	AAAAAAA	041021	60*		70%	CHRBARBER		80s AAAAAAAc .		
039054 05		80	AAAAAAA				70s	OCOGAAAA				SOS AAAAAAA	704	
039055 709	039054			703	****						047009		70%	BAAAAAAA
039056 70s		7O •				041025	701	-EAAAADODA	80%	DAAAADA		70s IFAAAAAAA	801	AAAAETA
039061 70s -sassasan 80s ssinstDam 041029 80s	039057	7Qe		801	dasanesan	041027	701	GGAAAA	801	DAAAAAa	047013	70sIDAAAAAA		
039065 70s -asassan						041028			70s	CAAAAAAA				
039059 705	039065	70e	******	804	Abeebb Ase		801	miaAa			047016	70steef '		
039072 70s	039069	709	eAETEAAA			OH 1030	6 Us				047017	runsfec	803	. CIECICA
039073 705						042001					048001			
039075 80s masseaAde	039073	701				042002	501	1	604	111	048002	GOL FEDALABBA		
039076 70s 6008 80s 880008488 80s CAAAAAA 0048004 60s 70s AAAAAAAAAF 039077 80s 60s 60s 60s 60s 60s 60s 60s 60s 60s 6						042003					048003	EAABAA- dB		
039078 706 80 809 ################################				80s	849664	042004			60+	Fococcecer	048004		70%	AAAAAAAA
				801	######################################									

Stn number		ged delly flows, thly peaks and rain	102		Stn number		ged daily flows, thly peaks and raid	nfail		Stn number		ged daily flows, thly peaks end rain	1all	
048005			704	*****	054010				****	055016	60s	9A	70s	EAEAAAAAA
048006	60:	********	70s	*****	054011	70s 60s	BCbAAAAADD -#AAAAAAAB		AADE:11 CCBABBABAB	055017	60s	AAAAAA: 	70s	BAAEEAAAA
048007		AAAAABA.	70s	****	054012	80s 60s	MAAAAAAAAB		AAARHAAABA	055018	80%	AF- 1		AAAAAAAA
048009		AAAAAAA 'EAAAAAAA		Arrill	054013	801	AAAAAA.		AAAAAAAABA		80s	AAAAAAA		
048010	501		60%	!		701	AARARBAAE	801	1**1:	055021	806	31"	/01	*****
048011	60.	cCBAAAAAA -FcbAAABBA		*********	054014	60s 80s	AAAAAA	701	BAAAAAAAA	055022	60s 80s	1- a 1661*11	704	AAAABAAAE
	BO 9	****			054015	60s		701	ELI LLI AAAA	055023	30s 50s	IBAA AAAAAAAAA		AABAAAAAAA Aaaaaaaaa
049001		WAAAAA Aaaaaaaa	705	*****	054016	60s 80s	- 8 AAAAAAAA Aaaaaaaa	701	BAAAAAAAA	055025	70%	0000000000	80s	CAAAAAA:
049002	50s	EET		HILLITEA	054017	60s	#AAAAAAA	704	BRAAAAAAA		80%	AAAAAAA		[44444444
049003	501	EB		AAAAAAAC CBFFFAAADA	054018	60s		70s	AAAAAAALA	055026	501			********
049004	50s	AAAAAAA t	7G1	*****	054019	80s 60s	AAAAEtin maaaaaaa	70:	*****	055027		- #AAAAAAAA - #AAAAAAA		AAAAAAAc 11
	BO ₃	AAAAABDa			054020	60s	AAAAAAA -gaaaaa	20-	****	055028 055029	70s	3AAAAAA		ADAAAACc AAAAAAAAA
050001				AAAAAAAA AAAAAA:	054022	80%	AAAAAAAA eAEAAEI		111:":11[3	055025	601	AAAEAAAAA		AAAAAAAA
050002	60s	@AAAAAAA		BAAAAAAAA		70%	AAJACAAAA	80	AAAAAA	055030	201	FAAAADAc Icrc		coccoccate
050004	604	AAAAAAA 	70	*************	054023	408	AAAA**1	70%	BBAE-1BAAA		40s 60s			117
050005			BOs	CCCCCCAK	054024	60s 80s	TITTTITE AAAAAAan	70s	*****	055031 055032	70s 00s	- TEAAAAA CC		AAAAAAA CCCCCCCCC
050006		dasaa sassaat		*********	054025	€Q±	E	70.	ABAAAAAA			CCCCCCCCCC	30 s	CCCCCBAAAA
050007		fccccc	80s	eccts eCt	054026	604		701	'EAAEAAAA		50s	AAAAAAAAA		AAAAAAAAAAAAAA
051001			70=	****	054027	604		70%	*****	055033	60s	CAAAAA*	706	edaadau
051002		AAAEeaAaa maaaaa	80	A4=	054028		AAAAFI"	705	FBBAAAAAA	055034		abase-1 - 0008088	RO.	na_an-1
051003	60s	febb 6eesAss		bbbbasb'ee	054029		AAAAAA		AAABAAA	055035		nad-334		8230-
013001			••		054032	701	AAAAAAAA	801	AAAAAA	055001		LAA		*****
052001	709	''11!''		annanDAAET	054034 054036	70s 70s	-EAAAAAAA -'EAAAAAAA		AAAAITTE AAAAEII	056002	504	AAAAAA9AAA 		AAAAAAAAAE
052002			604	88888AA+-	054038 054040	701	ILABAAAA FABABAA		AAAAAAA BEAAAAAA	056003		AAAAAE1:AA 8AAAAA		AAAAAAA AAAAABAAAA
052003		- mBAAAAAA AEAAAAam	701	****	054041 054042	70s	FCCCAAAA TEAEAAEETT		ABAAAAA	056004	804	AA' 1		*********
052004	80s		701	*****	054043	50s			eccetecece		80%	Ett •		
052005	60a	-LAAAAAAAA	7G1	****	054044	701	*EAAAAAA		AAAAAAA	056005		AAAAAAA	70%	*****
052006	80s	AAAAAA4 •AAAAAA	701	****	054045 054046	70s	IAAAAAF '#388	801	#AAAF1	056008	60s	AAAAAA- III!IAA	705	AAAAAAAA
052007	80s 60s	AAAAAA 	701	AAAAABAAAA	054047 054048	70s	IDBR- - AAA	B() 1	- ''111 AAAAF11	056007	605	TEAE	70%	LAAAAAAAA
052008	80s 60s	AAAAAAA #8888AALT		*****	054052 054054		'bDAAAAAA	BO ₄	AAAATITe	056008	70>	ntsa A A E E * 11		'1'
052009	60s			****	054055	70s	stren	801	1	056010	804			********
052010	80s	ABBAA!!au	701	****	054056 054057	70%	EEEEE -fcc: bbasa	80.	Saasaa An	056011 056012		- AAAAAAAA - BBAAAAA		AA1! AA1 -
062011	80s 60s	^^^^^	709	AABAAAAAA	054058 054059	70s 70s	esabbee esabbli!	BOs.	. r	056013 056014	70s	•AAAAAA		AAAAAA1 mexti
052014	80s 60s	AAAADADaa	704	BAAAEEEE:	054080 054061	70s	40496496 40496496	80%	fcf* 1e	056015 056016	70 6	3AAA3:*1	BOs	AA111
052015	80s 70s	TELBOSEBO -FARARARE			054062	70s	EAEEBEAE	804	AAAA*:1					101001111
052016	701	TEAAAAAAA	B()=	AAAA48A34	054063 054065	/D ₂	natiabann EAABEAE	804 804	1	057001		eel B eeaahaaa	601	ABBBBBAAEA
052017 052020		EEE111:1		1*#FEAAAA*	054066 054067	70s 70s	ERBBAAA bobse	80s	AAAA**1	057002		AAA:::!!' 		**11 AAAAAEAAAA
	8D3	1			054068 054069		600					AADDAABAAA ARAATT:*11		AAAAAAAAA
053001		8444444	60s 80s	AAAAAAAAA	054070 054080	704	exbbba		4841 43891	057003	60%			AAAITTIII
053002	50s		60.	AAAAAAAA	054081	704	EBA	804	AAAABA	057004	50s	+AA		AEEAAAAAA
053003	30 e		40.	AAAaaaAaa fuubbbbo-b	054083 054084	701			8388	057005	70s	**********		AAAAAAA Aaaaaaa
	70s	I''III''II		AAAAAAAAF	054085 054086			80s	4333 ·* Deapee	057008 057007	70s	# AAA AAAAA IEAAAAA		EIIFAAAr AAAAAAac
053004				AAAAAAAAFF	054087 054088	70s	BAEE		anes 1 saaanaAng	057008 057009	70s	1444444 4444	80s	AAAAAA .
053005	60s	-EAAAAAAAA		AAAAAAAA	054090 054091	70×	edacdae	B0s	ABAR-1	057010	70s		804	[AAAAAAc
053006	60a	-#AAAAAAA	701	*****	054092	704	CAAAAA		AAAe-1	057011 057012	70s		80s 80s	
053007	60s		701	****	054094 054095	BOs				057015 057018	70s	6A		ABACCCIIC AAAAAA
053008	60a	AAAAAA	701	****	055002		#E÷AA	401	******	058001	60s	AAAAA	705	****
053009	80s 50s	AAAAAAAa AAAA	701	*****		50%	CCCBAAAAA	60s	AAACCCA:	058002		AAAAAAA AAEEB		LAADAAAc
053013	80s 70s	AAAAAAAA		AAAAAAA	055003	305	•	402		058003	604	#AAF*11!		.111111.
053017 053016	70 60	FAAAAA	80 •	*EAAAAAA	055000	705	AAAABAAAA	80s	ALI	058005	70%			AAADFADa
	801	AAAAAAA		******	055004	50%	#AA AAAAAAAAA	60.		058006 058007		FAAAAAAAA maaaaaaa	801	EAAAAAAc Eaaaaaac
053019		AAAAssaa		********	055005		08 A		FFF**11 AAAAAAAAAA	058008 058009		- FAAAAAAA - EAAAAAAA		EDADADA: AAADAADc
053020	60s	AAAaaaaa	70.	*********				601	AAA£AAAAAA I	058010 058011	701		804	eFtt- :
053022	704	AAA		AAAAE:I	055006	004	·cc	10%	0000000000	058012		1	601	AAAAAAA
053023 053024		ADL		AAAAAAAau			CCCCCCCCC	30s		059001	501		601	AAABAAAAA
053025 053026	80s 70s	AA	AD.	44444A4		60s	AAAAAAAAA cCCFC1	701	AAAAAABCC		701	AEAEEAAAAA	BOs	DAAAAAc
053028	80s	sensAno			055007	30s	nAA		*****	059002		AAAAAAA	7.11	AABBBBAAAA
053029	801						CCCCCCCCC		AAAEAAAAA CAACCO#c	060002	601	-wAAAAAE1	705	BAAAAAAALL
054001		-FCCCCCCCCC		0000000000	055008		- #AAAAFF#A AAAAAAAAA		AAAAAAA	060003	BCs	FAADAAAI		AEEAAAAAA
	BOs	CCCCCCCCCC		CCAAAABAAA	055009	401	A	501	*****		BO ₄	AAAAAADc		
054002	304	IbAA		AAAAAAABC		804	AAAFAAAAA		AAEIII''11	060004	80s	I:F		FFAAAAAAA
		BCBABABAAA		^^^^	055010		#AAAA AAAAAAFAA	801	AAAFAAAAAA Liftiii	060005		AAAAAAA	70s	BADAAAAAA
054004	50e	CBAAAAA BEEEBAAAAE		AAAAAAAA AAAABAA	055011	50s	AAAAAAAAA	601	AAAAAAAAA OBF::::	060006	60s	AAAAAAAG	70s	AAAABABBB
054005	501	ICBAAAA	60s	AAAAAAAA	055012	60s	+ AAA		AAAAAAEEA	060007	60%	- · 'A	70%	*****
054008	501	ABBAAABAAA	601	*******	055013	60s	AAAAAAA paaa	701	***	060008	408 408	AAAAAAAc 'aaal		
054007		BCHAAARRAR BAA		AAAAAAA AAAAAAAA	055014	60s	AAAAAAA -≱AAA		*****	060009 060010	70s 50s	FCCCCFF111		TITTII AAAAAAAAAA
054008		BCEFBBBAAA	80s	BRAAAAAAA		BOx	AAAAAAA				70%	AAAAAaaa.	80s	nasaasal
		CCAAAAAAA	80s	AAAAAA	055015		FADIT"	764	BAAAAAAEE	060012 060013		-EBCCCFIII		11:
														

Stn number		ged daily flows, thly peaks and rain	la¶		Sin		ged daily flows, thly peaks and rein	itali		Stn		ged daily flows. thly peaks and rain	fø ll	
051001		aA£A£		EAAL**1111	069004		18888		68888888AA					
	UO:	1111111			003004		AAAAAAAAH1		88CCCCCCCC	076001		==1EABAETT ETFT1E1EA		EAABAAAAA Ahaaaaa
061002		AAAAAFAI	7Os	AAFADAAAA	069005	80s 50s	CC11	60.	AAAAAAAEAA	076002		ABAAAAA	704	AABABBCAAF
081003	6D:		70s	AEAAAAAAA		70e	AAAFAA!!FA	804	FAAEIT	076003	60s	AAAAAAEA	70-	***
061004		AAAAAAA' BAEAE	70a	EAssasses	069006	50s	AAAA		AAAAAAA	078004		ABBAAABB uAAAADAA	10.	AFAFAAATAA
	80%	1Aloese			069007	70	-1111:1111		:AAAAAA:		801	TAAAAAA 1		
062001	50a	E	60s	****	069008 069011	80±	**************************************			076005		GAA888	701	AAAA888AAA
062002		EAAAAAAAA -ossaaaeae		AAAAAAAc EE11	069012 069013	80s	eAs e-est			076007	601		70s	*******
					069015	70e	A££		AAAAAA	078008	60s	6 AA	701	EAAAAEE1A1
063001		BAAAAA EAAAAAa	70.	****	069017 069018		AA:		:AAAAAA ::::::::	076009		TAAAAAa -t	70-	BAAAAAETT:
063002	60s	aAŁAA	70a	AAAAAAAEE		80a	711				80s	1BBAAAA		
063003		AAAADI *****AEAAE	804	111	069019		tee1	7Os	essesectib	075010		TAAAAAA	70	EAAAAEI
063004	80a	t			069020	70a			AAAAAA	076011	60s	ccc	701	ecflectect
064001	60s	EAAAAEAA	70a	AEITETTIII	069023 069024	70s 80s	EA	80%	*AAAAA	076014		ECEC: -FAAAAAAIT	80.	TAAABAAa
064002		*DAAAAAc IAEEA	/Da	AAAGCGGGBB	069027 069030		10		******	078015	70s	EAABAABAAA	803	AAAAADAa
	80)	AAAAAAC			069031	80a	- 8000=A			077001		DAELAL	70s	EEEBAAAAAT
064008		AAAAAAA	7Qs	CBABAAAAA	069032 069034		A	80s	AAAAA	077002		TAAAAAA .	70s	****
					069035	70	ALA	801	:AAAD1		804	AAAAAAa		
065001	6C+	-BAABAABAE	/06	LEEFAAAAAD	069037 069040		(Cc)			077003 077004		DAAAAAA		
065002 065004		•{{EAAAAA		SEEFEIEFIT AAAAAAAC	070002	RO.	BAABAAA			077005				easAs
065005	70a	AAAAAAA	801	AAAAAAA	070003	70a				078001				AL:11
065008 065007	70s 70s	BAAA	80s 80s	AAAAAAA AAAAAAA	070004 070005				AAAAAA - 8888 3	078002		::::::==== =AF:::::		1711117
											801	1		
056001		AAAAAACCF		CITTIT	071001	80s	ICCCDAAAAA AAAAAAAn	706	BCBBBAAAA	078003		-11111DAA AAAAAAAa	701	*****
068002	60 e 80 e	-HABAAAAAC		BAAAE	071003	501			******	078004	601	-11EBEEAAA	70:	****
068003	60.	AE'EAT	70s	*****	071004	601	#BAAAAA		AETTAEAAAB	078005	70%	AAAAAAA# A	801	AAAAAAA
068004	80s 70s	AADITTac aAAAAAAIT*	80s	111:	071005	80s 60s	*****	704	AABbt (-111	078006	801	084 A 80		
068005 068008	70s	-EAEAAA111		TI:		801	: FC			079001		-111:E89EF	70a	FFCCCFCCcc
068008	704			DDaseCAC	071006	60s	DAAAAA	/04	CFCCAAFAAA	079002	50s	/AA	60s	*****
068011	60s 80s	ellla AAAAAAA	70s	AAEAAAAAA	071007 071008	80s 70s	:111 AE1	80s	IAAAAATa	079003		*******		AAAAAAAAAA
043001			40.		071009	80s	Assess				70s	AAAAAAAAA	801	MAAAAAA
067001	704	ABAAAAAAA		AAAAAAAAA AAACCCac	071010 071011	70s 60s	-'cccc!AAt		CCFF111EAE	079004		- 11FCBAAAA	704	****
067002			40s 60s		071013	80s	EVVVA.VA			079005		- ITEAAAAAA AAAAAAa	704	*****
	70s	A111**-111			071014	70%		801	- 30340	079006	60%	- HITTHEAA	70%	ĀĀĀĀĀĀĀĀĀĀ
067003		6 444444		*****	072001	50:	c	60s	*CCCCCCBCC		801	AAAAAAaa		
		AAABBAAAAA AAAIFAAc	70s	AABAABCAAA	072002		CAAAAAB111	803	AAABCCAAAF	080001		-11FAAAAAA AAAAAAAau	70.	*****
067005	50 e	ITTEAAA		****		BO#	AAAAAA			080002	704	dAA	804	AAAAAA
067008		*****		BAAAAAAAAA	072004		CCCCCCCI:1		- 88AAAA	080003 080004		daseae* iccc1		
067008		AAAAAAAc FRAAA	704	AAAAAAAA	D72005	60s	1AAAAADa	704	CCCCCFAAI	080005 080006 -		tcct tcc		
	801	AAAAAAc			072006	60a	:1	70s	11117111177					
067009	80s	8:0000al	705	8888888888	072007	80a	11171 #1			081001 081002		68e- -11FAAAAA		111 AAAAAAAAAA
067010		EAAA 11'	70s	AAAAATTT	072008		1'F	70s	EABCCCAAAA	081003		AAAAAAA - TI'IIIAA	204	****
067011	6Ds		70s	coffccett	072009	70a	11111111111		1AAAAAa		801	BEAAAAAA		
067012	6Ds	!! (E:		1:::11-::1	072011	80a	'DAFFAE	704	'EEA	081004 081005		dAA	BO ₁	AAAAAAA
067013	60s	EDE	70s	AAAAAaa*11	072015 072016		OUm			082001	604	· 11644444	70.	AAAAAAADAA
067015	301	AA		*****							BUs	AAAAAA :		
	50s	******		AAAAAAAA AAAAAAA	073001 073002		rcccc"		BBBCAAAAA	082002 082003		'EAAAA AAAEAA		AAAAAA AAAAAA
067018	50s 80s	EAE	7Qs	111.61111.	073003	80a 80a	AAAAAAa -ssaafa			083001	60.	!!!!	70-	-161616111
067017	60s	18	70s	****	073005	60a	Ł8	70s	BBABAACAAA		90s	H		
067018	60s	AAAAAAbc tE	70s	****	073008	60s	AAAAAAa L	70s	AAEIAAAIII	083002 083003	60s	#AAAAa -:::::::::::::::::::::::::::::::::		**********
067025	80s 70s	AAAAAAc		#AAAFTT	073009	80s 70s	1AAAAAA 1111111111		1888888	083004	80s	AAAAAA -1EAAAAAA		
067028	70a	cccccc	80s	¢11*11	073010	30e	C	401	ccccccccc	083005	7Os	EAAAAAA	80s	*****
067028 067029	70 e		80s 80s	ee eeddidd		50e 70e	CCCCRCCCCC		22222222222 AAAAAAA	083005 083007		edaty		888888 A 888888 A
088001		B		AABCBBARRR	073011 073013	70 e 80 e	FCCCCC*Att		1AAAAEE#	083009 083010	/Os	NAMPANA		338333A
	50	AAAAAAAA	fiOs	3AAAAAAEAE	073014	80	1:111							
068002	401			[AAAAAAAA	074001	50 e	FC	7Qs	CCBCCCBAAA	084001				EEE888333
	60s	**************************************		AAAAAEIIT	074002	80a 60a	AAAAAAa 88		AAAAABAAA	084002	BOs.	AAAAAA +41EAEEE		AAFFAEFFFC
068003	40s			****		BOs					701	AAEEEEE111	8Os	1177117
	80s	IDAAAAA	70s	AAAAAETTII	074003 074005	70s 70s	#ADAAA		******	084003		>6 0A		AAAAAAA AAAAAA
058004	50:			AAAAADADAA	074008	60:	MCCFCC		CCF1888AAA	084004	504		60s	****
068005	70s 50s		60s	TAAAAAA AAAABAAFAA	074007	80s 70s	AABAAAA :AAAA	80s	***	084005				AAAAAAA
068006	70s 50s	BAAAAF		AAAAAA	074008				- babeasa		70%	***	BOs.	***
	701	AAAAAEE***	80.	AAAAAAAEEA 1EEAA!!	075001		-111'EAE11		'III'EAAAA	084006		-11EAAAAAA AAAEtii	/On	AAAAAAEAA
068007		eBAAAAAA AAFEAT	70s	AAAAAFAAEA		50s	AAAAAAAAA F**AAAFAAA	60s	AAABAAAAFF	084007	60s	{AAA	70=	ABBAAAAAA
068010	701	'!!!!''1	80s	tr'	075002	80.	fcBCBBBBBA		*****	084008		AAAAA# #AAA	704	****
068015 068018	80s 70s	- uso se A			075003	80s 60s	AAAAAAta)	BAABAABAA	084009		AAAAAA		****
068019	80e					80	MAAAAA				801	AAAETT		
068020	BOs	- AAAAA			075004	60s 80s	'BA AAAAAAA	/Os	BBABAACAAA	084011	50s 80s	-	704	
069001		etieb68		BBBBBBBBBB	075005	70	AAABCAAA		AAABAAA.	084012	60	-: TEAAAAA	701	****
	50s	AAAAAAAABA AAABABAAAI		BAAAAABLA 1444-a	075006		A a 1	701	*****	084013			70s	****
069002	40s 80s	AAAAAAA	50s	AAAAAAAAA AAEFA:AAAA	075007	50a		704	*****	084014	80s	AAAAAA I		
	BQ=	****			075009	70a	AAABRAAs-		ABAAAAA		BOs.			*******
069003		E1		TTTTTTTE AAAAAAAAAA	075018 075017		000 aAAAA	ND.	AAABAAas	084015		eritiEaaaa Aaaaaaa	70s	*****
		AAALETALAL		AAAAAA			-			084016	605	- 11111111 A	701	AAAABBAAA
											an.	***		

Stn number		ged daily flows. Ithly peaks and raid	nfall		Stn number		ged daily flows, ithly peaks and ra-	nfall		Stn number		ged daily flows, thly peaks and rail	nfall	
084017			70s	*****	090003	801	ozzaka		r:	201007		"III"EAEAA	80%	AAAAAA
		BAAAAA								201008	705		80%	1AA ene
084018		A	70=	****	091002	801	*AAAAA			201010	804	484 JM		
		AAAAAA												
084019		AAAAAAA	706	***	093001	70s	A	BOs.	AAAAAAA	203010	60s	-111'':11'1	70%	FAAAAAAAAA
		AAAAAA									80s	AAAAAA		
084020			706	AAAAACAFAF	094001		-**111:**1	70:	LAAAAAAA	203011	70s	433333338	80*	o 11:
		AAAAAA				80s				203012	70s	*******	90s	ana A A A a
084021		E		AAFFFITT						203013	701	0303043488	801	*****
084022			701	[[[AALAA+A	095001			80s	CAAAAAA	203017	704	AAAAAAAA	BOs.	AAAAAAA
		BAAAAA			095002	801				203018	70s	THABUASA A A	60s	SAAAAA
084023		EAAAAEA		AAAAAA						203019	70s		801	*****
084024	70•		801	AAEAAA	096001	704		801	AAAAAA	203020	70s	- ********	801	dad A A A a
084025	70s	I'AAAAL	80%	AAAAAA	096002	70s	BAA	801	AAAAAA	203021	70s	- 48438383	80.	MAAAA
084026	70s	enshee	80:	#34#3#A	096003	804			_	203024		- 736044343		*****
084027	70s	EDITDEI	BOs.							203025		- 04-24-122		MAAAA
084028	701		BO ₃	nthanan	097001	501	1	60s	- ::::	203025		- 909141480		***
084029	70s	eased	BOs.	A دوجوه		701	-:1111''	804	11-111	203027		- IFAAAAAAA		AAAAAA
084030	80a	- 000440			097002	601	*********	701	AAAAAAA11	203028		- IEAAAAAA		ΑΑΑΑΑΑ
						BOs	CAAAAAA			203029				34344
085001	60 e		70%	AAAAAAAAA						203033				aAaAAt
	80.	AAAAAA			101001	60s	- Iciff ciff	70s	FcCClcC:11	203042		- 53443		
085002	801	-11EAAAAAA	70%	AAAAAAAAA		BOs.	121111							
	80 s	AAAAALA			101002	60a	mp#m*	704	eesbben!!!	204001	80.	FF1		
085003	60.	- '111''111	701	LAAAAFAAEE		BOs.	FREABAAd							
	80s	AAAAAA		•	101003	80.	f==esidDe			205003	704	cheassas	RO.	45345
085004	209		801	1880- QA	101004	80s	#445A4			205004		034363		азаАА1
					101005		- 0303/43			205005	701	-EAAAAAA		AAAAAAA
086001	601	A	701	BBBBAAAAA	101006	80%	1			205006		6343333	80:	
	80s	AAAAA			101007	803	eesdAs			205008		n43433		ALBAAT
086002	€06	-:"!!!"66	70s	AAAABBAAA						205010	70%	- 00000		243240
	80%	AAAAAA			201002	70s		80s	asaAA1			- 4000 00	18/3	0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-
					201005		- TEAAAAAAA		AAAAAAE	206001	70s		80s	
090002	70s		80s	**	201006		naa-13AAA		IAAAAA	206002	705		801	

Produced 24th October 1988. New summaries available on request

Naturalised daily and monthly flows

KEY:

Complete daily and complete monthly Partial daily and complete monthly Partial daily and partial monthly Partial daily and no monthly No daily and complete monthly No daily and complete monthly No naturalised flow data

Summary is presented in decade blocks

Stn.	Naturalised daily		Stn	Naturalised daily		Sin	Naturalised daily	
number 006007	and monthly flows 70sEEEEEEF		number 023015	and monthly flows 40sFFFFFFF	50s FEFEFFEEEF	number 032026	end monthly flows	
007003	60sFEEEE 80s F	700 EEEEEEEEE	024001 024003	60sCA	70s AC 60s EEEEEBACAA	033001 033002	50s -FEFFFFF 60sFEEBAAAA	70
00@001	30e	40s FFEEEELEE	V14003	70s AC-CC	OS ELLEBACAA	033003 033004	504 FF-FEEEF 409FFEE	70s AAAAAA bos fefffeer
008005	50s EEEEEEEEE 70s -F-E	80 FEEEEF	025001	50sFEFF 70s ACCAAAC	60s EEEEEBAAAA	033005	501 FEEEEEEE 701 AC	601 EEEEEEBBAA
012002	70s ff	90e F	025002 025004	70x FFFF 50xEF	BUS ELEFFBAACC	033006 033007	50sFEEEE 50sFEEEEE	60s EEEFECCCF
012004	70sttk	BOs F	025008	70s C 60sCAAB	701 BBFF	033011	70s EF BOs -FFEF	vor the tect.
013007	70stitE	BO. FEEEEE	026002	60s FFEEF	701 FFFF	033026 033035	70s - CAAAAC 50sCA	60s AAAAHAAAAA
014001 014002	70sE 70sE		027001		40s -FEEF		70s AAAAAC	
015003	70sEEFEELL	BOs EEEEEE		50s FEEEEEF 70s F	601 EEEEEEF-F	036001	30s CAAAAAAA 50s AAAAAAAAA	40s AAAAAAAAA 60s AAAAAAAAA
015008	BOs EFFEFF	700 FEEEEEEE	027002		BO: EFFFFFFFF	036002	70s AAAAAAC 60s CAAAAAAAAA	70s AAAAAC
015007 015008	70sEEEEEEE 70sEEEEEEE	BOs EEEEEE BOs EEEEEE	027003 027004	60s FEEEEEEF	70. EF	036003 036004	60s -CAAAAAAA 60sCAAAA	70s AAAAAAC 70s AAAAAAC
015010 015011	70sEEEEEEE 70sEEEEEEE	BOS ELLELE	027005	40sFFFF 60s EEEEEEEEE	50s FFFFFFFEFF 70s FF	036005 036008	60s CAAAAAA 60s CAAAAAAA	70s AAAAAAC 70s AAAAAAC
015012 015013	70s EEEEEEE. 70s EEEEEEE	BOs EEEEEE BOs EEEEEE	027005 027007	60sFEEEE 50sFE	701 EF 606 EEEEEEEEE	036007 036008	60sCAAAA	70s AAAAAAC 70s AAAAAAC
015018	70eEEEEEE	80s EEEEEE		70s EF		036009	60sCC	70s AAAAAAC
015017 015024	70sF 80sEEEE		027009 027012	50sFEEEEE	70s EF 60s EEEEEEEEE	036010 036011	60sCA 60sCA	70s AAAAAAC 70s AAAAAAC
016001	60sPEEEFEE	70s EELEEEEEE	027013	70s EF 50s ··FEEEEE	60s EEEEEEEEFE	036012 036015	50sCA 70sCAAAC	70s AAAAAAC
016004	80e EEEEEE 70eEEEEE	80s E	027015	70s EF 50s CAAC		037001	50s CAAAAAAAA	60s AAAAAAAAC-
017001	50e	70s EFE	027016	50sFEEE 70s EF	60s teeffiffit	037002	70s -CAAC 30sCAAAAAA	40s ACCAAAAAA
017002	60aF	70s EFE	027017	50sFEEE	60s EEEEEEEFE	037002	50s AAAAAAAAA	60s AAAAAAAAA
017003 017004	70sE 70sE		027018	70s EFEF 50sFEEE	11111111111 #09	037003		40s AAAAAAAAA
017005	70sE		027019	70s EEU 50s - FEEE	60s EEFEEEEFF		50s AAAAAAAA 70s AAAAAAC	60s ACCAAAAA
018001 018002	70s	70s FE	027020	70s - FEF 50s FFFF	60s FFEEEEEEFE	037005	50sC 70s AAAAAAC	60s AAAAAAAAA
018003 018005	50sFEEEEE 70sE	70s LFE	027021	70% FEEF BOS FFFEEEFEEE	70a EF	037006 037007	60s CAAAAAA 60s CAAAAA	70s AAAAAC 70s AAAAAAC
018008	70eE		027022 027023	60sFEFFE	70s FF 70s EF	037008 037009	60sCAAAA 60sCAAAAAA	70s AAAAAAC 70s AAAAAAC
018001	50sEEE	433333333 #09	027024	60s -FFFFF		037010	60s CAAAAAA	70s AAACCAC
018002	70s EEEEEEE 80sEEEEEEE	70s EEE-EEE	027025 027026	601 - FEEEEEEE 601 - FEEEEEF	70s Ef	037011	60sCAAAAA 60sCAAAAA	70s AAAAACC 70s AAAAAAC
019003	60s -FEEEEEEE	70s EFFEFF	027027	60s - FEEFFELFE	70s EEEF	037013	50sCAAAAAA	70s AAAAAAC
018004 019005	60. EEEEEEEEE 60+FFFFEFF	70s EEE-EEE 70s EFEEEEE	027028 027029	60s EFFEFEEEE	70s Ef	037014 037016	60sCAAAAA 60sCAAAA	70s AAAAAC 70s AAAACAC
019006 019007	60e EEEEEEE 60e FEFFFFFE	70s EEEEEEE 70s EEEEEEE	027030 027031	60sFEEEEE 60sEEEEFF	70s EF 70s EF	037017 037018	60sC 70s CAAAC	70s AAAACAC
019008	60s FEEELE 60s EFEEEE	70s EEFFEEE 70s EEFFEEE	027032 027039	60sFEF		037019 037020	60sCAAAC 70s CAAAAAC	70s AAAAC
019010	60eE	70s tittiti			70s EF	037021	70s CAAAAAC	
019011	70•F		028001	30sFEE 50s FFEFFFEFEE	40s FF 60s EEELEBAAAA	037022 037023	70s - CAAC	
020001	80 EE	70s EEEEEEE 70s EEELLL	028002	70s AAAAACAA 40s FFEEE	50s EEEEEEEEE	037024	70s -CAAAAC	
020003	60eEFEFF 60eEEE	70s EEFEEEE 70s EEEEEEE		60. EEEELBAACC	70s CCCC	038001	80sDAAAAAA	90s AAAAAAAAAA 10s AAAAAAAAA
020005 020008	70sE 70sE		030003	60sFF			20s AAAAAAAAA	30s AAAAAAAAA
020007	70eE		031001		50s FEEEEEF		40s AAAAAAAAAA	50s AAAAAAAC CA
021001	50eF	604 EEEEFFEEF		601 ELFEEBAACA BOL CF	70s ARFEFFFFF		BOS AAAAAAA	
021002	50s	60s FFFFFEFFF 60s EEEEEEEEE	031008 031007	70: FEEEEF 60:FF	70s FFFF	039001	80s AAAAAAA 00s AAAAAAAAA	90s AAAAAAAAAA
021004	70s EEEEEEEEE 60sFEEF	BOs EFEF	031009	70s FFFF 70s FEEEF			20s AAAAAAAAA 40s AAAAAAAAA	30s AAAAAAAAA 50s AAAAAAAAA
021005	60s -FEEEEEEEE	70s EFFFEEEEF	031011	70s FFF			50s AAAAAAAAA	70s AAAAAAAAA
021006	80s EFEE 60s -FEEEEEEE	70s FEFFFFFFF	031012	70sFFF 70sFFF		039002		405
021007	80s FFE 80sEE		031015 031016	70s = FFFFF 70s = FEEEF			50s AAAAAAAAA 70s AAAAAAAAA	BOS AAAAAAAAA BOS AAAAAAA
D21009	80sFEEEEEEE 80s FEE	70e EEEFEEEEEE	031017 031018	70sFFF 70sFFF		039008	50s - CAAAAAAAA 70s AAAAAAAAA	60s AAAAAAAA Bos AaaaaaaD
021010	50sFEEEEEE 80s E	70s EF-FF-EE	031019 031020	70s FFF 70s -FFFFF		040001	50s FEELEF-	60s - FEEFEEF
021011 021014	80s[[60s -f[[[[[[[70s EFFEFFFFF	031021	70s - FFFFF 70s - FFF		040003	50s	60s FFFFFFFF
021016	80s FEE		031022			040004	60s FELELF	60s EEEEEEFF
	60s	70m fffffffff	032001	40s FEEEEEEEEE	50s ELECTION FEEF	040005 040006	60sFEF 60sFEF	
021019	60s	70s ffffEfffff	032002	30sFF 50s EEEEEF	40s LLLLLLLLL 60s -FEEELEELE	040007 040008	60s FEFFFFF 60sFEE	
021020 021021	fiDsF	70a EEEEEEEEFEE	032003	70s EEEEEF 70s FEEEE		040009 040010	60sFEE	
021022	80s FEE 60s	700 CEECCCCECE	032004	40s - FEFEEEE 60s EELLFFEELF	50s EEEEEEEEE 70s FEEEEF	040011	60sFEEF	
021025	80s FEE 70s!!!!!!	80s FEF	032006	30s	40s EEEEEEEEE 60s EEEEEEEE	043005	60eFEEEF	70s EF
021030	80sE	200 : 101 · LI	032007	30sF	40s EEFFEEEEEE	045003	601 TEEEEE	10. 6
021034	80sEL	60. 41.615	032008	50s ECCCCCCC 40s	50s EFFFFFFFF	045004 045005	60sCA 60sFFFFFCA	70s C 70s C
023001	50sFEEE 70s CC	60s EEEEFEACAA	032012	60s FFFFFF 70s FFFFF	706 EEEEEF	046002	60s FFEEFEEF	
023002 023003	60sCAAAA 50sF	70s AC 60s EEEEEBAAAA	032018 032019	70s FFF 70sf#f		046003 046005	60sCA 70sAAAAAA	705 C 805 AAAAAAA
023007	70s AAAC 60sCAAAA	70s BCAC	032020 032023	70s FEEEFF 70s =F-FFF		047004	GOsFBCEFF	
023008	70sCC	ive bunc	032025	70s FFFFF		047005	60sC	
							<u> </u>	

Stn		raised daily monthly flows			Sin		irelised daily monthly flows			Stn		uralised daily monthly flows		
		,												
047015			60s	AAAAAAAAA	056004	60s		70s	FFFEEEF	078003	60s	-feeef		
	70e	***	804	AAAAA	056006		FEEEEEE	70s	FFEEEEF	076004	60s	FFFF		
	_				056011		FEEEEEFF							
048001		FBACCC			056012	70s	FEFEEF			077002	60s	FEE	70s	Er
048002		FFC				• •								
048006 048007		cc			057001		FEEEEEEE		CCCCCCCBC	078004	70s			
048007	DUE				057002		FFF LLLL1FLF-		EEEEEFEFFE -FLELEBAAA	079002		F	40.	EFFFFEEEE
049003	80-	ccc				70s		003		0/3002	70		ous	***************************************
	•••				057003	60s	· · · · CAAAC			079003		F	60.	EEEEEEEEE
050001	504	DA	60s	****	057004			60s	EFFEEBAAAC	0.2003		FEF		
		AAAAAAAAA		AAAAAAAD					• • • • • • • • • • • • • • • • • • • •	079006		fit	70%	65
050002	604	FEE 88E BA	70s	С	058001	604	FEF C	70s	C					
050006	60s	DAAAA	70s	****	058003	60s	FEEF			081003	60s	FE	706	F F
	80s	AAAAAAAD												
					059001	501	FE	60s	EEEEBACC	082001	60s	/ [[[[[[[[70%	£ F
051002	7 0 e	+ 6 6 6 6 4												
					081002	601	FEEEEBCC			084001		16641	_	
062002		FEEE		EEEEBEEF			_			084002		f{		ELFFF
052005		- FEEFBEEEF		******	062001	503	-	601	EEEEEEF	084003		FEEEE		EEEEF
052006		FEEEEEE	700	EEEEEEF						084004		FFF	601	EEEEEEEEE
052008		+EEEEBFEF +EŁ			064001	60s	FF					LLEEL		
052014	606		/00	+666+++	066002	80-	- "[[[[[[70.	FFE	084005		CCCCCF	608	ECCCCCCCC
053004	50-		en.	*****	086003			705	772	084008		FEEEF		
03300=		FEEEEEEAAA	80		066011		CA	70.	AC.	084007			10-	FEFEF
	,00	receitann	60.	^	000011	001		701		084008		FEE		recer
054001	20a	-CAAAAAAA	30.	*****	087001	504	ree	60.	LILLLELLL	084009				FFFFF
		AAAAAAAAA		*****			FFFF			084011		"EEEEE		EEEEF
	806	AAAAAAAAA	70€	AAAAAA	067002	50s	!!!!!!!	601	EEEEEEFFEF	084012	6Ds	FEEEEEE	10%	FEFFF
054005	5 0 3	fEEE	60.	EEEEEBAAC	067003	601	FE	70s	EEEE	084013	60s	FEE	70s	EEEEF
	70s	AA			067006	605	FEEFFFFFF			084014	6Ds	FEEEEF	70s	EEEEF
054010		CC			067015		FFEE			084015		FEEEF		
054013		ÇAÇA		ÇAA	087017	601	F	706	EE	084016		recer		
054014		CAA	70e	CAA					_	084017		FFF		EEFEF
054017	60a	CC			068001				[084018				FEEEE
058000	30-				068003	401	F		ecceccic .	084019		FE	704	CELM
058002		FEF		666666666 666666666	068004	604	FEFEF FFFEELLEF		FE FE	084020		FEEEF		
		AAAAAAAAA		AAD	068005		-FEEEEEFEF		fE	084021 084022		FF		
058006		FillE		CELLECTE	068006		- FEEFFEFF		E	084023		FF		
		EEEEEEEEEE		EEEEEEEEE	00000	•••			•	084024				
		EEEEEEEF	•••		069004	401	- · FEEEE	504	EEEEEEEEEE	084027		FF		
055007		FE	40a	ECTCTCCEEF		60s	ELLLEFFEF				-			
	50s	EEEEEEEEE	60s	EEEFFEEEFE						085001	60s	feeeee	70s	EFFFF
	70s	****	BOs	ADA	071001	50s	CC			085002	60s	FEF	706	EEEEF
056023		F	70s	****						085003	70s	FEEEF		
	80s	AAA			072001	50s	FEEEEEEE	70s	FFEF					
										086001		FEEFF		
056001		f{E	50s	EEEEEEEEE	075001		rer			086002	701	FEELF		
054005		FEEEEEFF			075002	5Os	-166656			007055				
056002		f{E	906	EEEEEEEF	A1400-			*0		097002	708	666661		
056003					076001	701	FEEEF	OUL	FFEFEEEEEF					
120001	OUT					/01	•							

Produced 24th October 1988. New summaries available on request

GROUNDWATER LEVEL MEASUREMENT

Background

Groundwater may be obtained from almost any stratum in the sedimentary succession in the British Isles, as well as from igneous and metamorphic rocks. In many, such as clays and shales, volcanics and metamorphics, the permeable zone may well be limited to the depth to which weathering may reach which is unlikely to be more than some 50 metres beneath the ground surface. In those strata which are not generally recognised to be aquifers, well-yields tend to be small (of the order of only a few cubic metres per day), uncertain as a continuous source (tending to fail in prolonged droughts), with an indifferent groundwater quality, and with the sources vulnerable to pollution.

The more generally recognised aquifers are listed in Table 7, with the Chalk and Upper Greensand, the Lincolnshire Limestone and the Permo-Triassic sandstones as the most important from the viewpoint of public supply. From such aquifers as these, yields of 3000 to 4500 cubic metres a day are not unusual. For the next category, including the Lower Greensand and the Magnesian Limestone, yields to individual wells of 1500 to 3000 cubic metres a day can generally be expected. In the other aquifers, while occasional sources sufficient for large supplies may be developed, they tend to be important only locally.

The groundwater resources of an aquifer are naturally replenished from rainfall. During the summer months, when the potential evapotranspiration is high and soil moisture deficits are appreciable, little infiltration takes place. There is a notable exception to this rule in the Eden valley of Cumbria where, enclosed between the massifs of Cross Fell and the Lake District, sufficiently heavy and continuous summer rainfall occurs to maintain infiltration through part, at least, of most summers. The normal recharge of an aquifer takes place during the winter months when the potential evapotranspiration is low and soil moisture deficits are negligible.

There are few artificial reservoirs in the United Kingdom which are sufficiently large to support demands through the driest summers, assuming that they were full at the start of the summer, without some continuous contributions from river intakes. Prolonged dry spells lead in many rivers to reduced flow, particularly where the natural groundwater contribution (baseflow) is limited. Consequently, while surface water droughts may be in part due to the failure of runoff from winter rainfall to fill the reservoirs, they are more frequently caused by a decrease in the summer flows of streams and rivers. Surface water droughts do, however, lead to increased consumption of groundwater (where available). By way of contrast, a groundwater drought is caused by a lack of winter rainfall. Potentially, the most serious droughts occur when, as in 1975/6, a dry summer succeeds a notably dry winter.

The Observation Borehole Network

Groundwater level observation wells (in this context, a well includes both shafts – constructed by hand digging – and boreholes – constructed by machinery) are generally used for one of two purposes, either to monitor levels regionally and thus to estimate groundwater resource fluctuations, or to monitor the effects locally of groundwater abstractions. The number of observation wells required in different areas varies widely. Over the last two decades, a target density was sought of one well to 25–35 km². During the last few years, it has become apparent in some districts that satisfactory information can be obtained with fewer wells, while in others the densities had to be substantially increased.

The observation well network was reviewed in 1981 by the British Geological Survey (then the Institute of Geological Sciences) with the aim of selecting 200 to 300 sites from the National Groundwater Archive (then maintained by the Water Data Unit) to be used for periodical assessments of the national groundwater situation. The selection was based upon the hydrogeological units identified in an investigation of the groundwater resources of the United Kingdom¹; one site was chosen for each aquifer present within each unit. For Scotland and for Northern Ireland this was not possible due to the very limited number of observation wells available. In England and Wales, the total number finally selected was 175².

Details of the wells in this national network are given in the Register of Selected Groundwater Observation Wells (see below).

Measurement and Recording of Groundwater Levels

The majority of observation wells are measured manually either weekly or monthly. The usual instrument is an electric probe suspended upon a graduated cable or tape, contact being made by the water to complete a circuit which gives either an audible or visual signal at the surface. Measurements are normally made to the nearest 10 millimetres.

Some observation wells are equipped with continuous water level recorders, almost invariably activated by a float on the water surface. These recorders may be driven by clockwork or by electric battery power, and are capable of running unattended for periods of one to six months. Levels are usually recorded on paper charts or on punched paper tapes, and experiments have been made recording directly onto magnetic tapes. Water levels are generally recorded to the nearest 10 millimetres, although instruments may be accurate to 1 millimetre.

Pressure transducers have also been considered for water level measurement. However, available

TABLE 7 GENERALISED LIST OF AQUIFERS IN THE UNITED KINGDOM

Ere	System	Subsystem	Aquifer	Importance
	Quaternary	Holocene	Superficial deposits	•
	-	Pleistocene	Upper and Middle Pleistocene Crag	
ב ב	Tertiary	Pliocene	Coralline Crag	**
CAINOZOIC		Oligocene		
3		Eocene	Bagshot Beds	
			Lower London Tertiaries Blackheath & Oldhaven Beds Woolwich & Reading Beds Thanet Beds	•
	Cretaceous	Upper Cretaceous	Chalk and Upper Greensand	****
		Lower Cretaceous	Lower Greensand	
			Hastings Beds	••
ပ	Jurassic	Upper Jurassic	Portland & Purbeck Beds	•
MESULUIC			(with Spilsby Sandstone)	(**)
Z E			Corallian	·•
•		Middle Jurassic	Great & Inferior Oolitic limestones (with Lincolnshire Limestone)	· (****)
		Lower Jurassic	Bridport & Yeovil Sands	**
			Marlstone Rock	•
	Triassic	Keuper		
		Bunter		
	Permian	sandstones	Permo-Triassic sandstones	***
			Magnesian Limestone	***
X Z	Carboniferous	Upper Carboniferous	Coal Measures	\$ **
UPPER PALAEUZO			Millstone Grit	
-		Lower Carboniferous	Carboniferous Limestone	**
	Devonian		Old Red Sandstone	•

- Key to aquifer importance:
 * aquifer of minor importance only
 - ** aquifer producing small, but useful, local supplies
 - aquifer of local importance, often providing public supplies
 - **** aquifer of major importance

transducers will measure accurately over only a narrow range of fluctuation (up to 2 to 3 metres), or much less accurately over a wider range. They are not yet in general use.

Observation Well Hydrographs 1983-6

The main aquifers in the United Kingdom are the Chalk (with the Upper Greensand), the Magnesian Limestone and the limestones of the middle Jurassic (principally the Lincolnshire Limestone). Outcrop areas of the major aquifers are shown in Figure 17; throughout Wales, Scotland and Northern Ireland, aquifers are less extensively developed and tend to be only of relatively local importance.

Well hydrographs for eighteen observation sites are shown in Figure 18. Except for the Killyglen borehole in Northern Ireland which has only recently been incorporated in the network of featured sites, the 1983 to 1986 groundwater levels are illustrated. For comparison the average and the extreme monthly levels are shown where sufficient historical data are available. Four-year plots have been used because the volume of groundwater stored in aquifers can reflect not only the infiltration taking place during the winter months of 1985-86, but also that occurring in previous years. A break in the well hydrograph trace indicates a recording interval of greater than eight weeks. When comparing the hydrographs for a number of sites, account should be taken of the differing scales used to illustrate the water table fluctuations.

The behaviour of several wells is influenced by local, or regional, pumping for water supply or other purposes. For instance, the Westonbirt borehole provides water for Westonbirt School, and groundwater levels at Rusheyford now stand substantially higher than a decade ago, due partly to a rundown of the coal industry and the consequent cessation of continuous pumping for mine dewatering.

Register of Selected Groundwater Observation Wells

The listed sites were selected so as to give a reasonably representative cover for aquifers throughout England and Wales. The wells are grouped according to the aquifer to which the water level variations in the wells are attributed. A generalised list of aquifers is given opposite. While the aquifers are tabulated in stratigraphical order, most of the local names for individual strata are omitted and the intervening aquicludes are not shown.

Network Changes

Since the original selection of boreholes for incorporation in the national network a number of changes

have been made to the list of wells included in the Register. At some locations, observations could no longer be continued, and new sites have been added from time to time. Replacements are being sought for discarded sites. In the Coal Measures and the Millstone Grit, certain sites have not been monitored for some years due to the presence of methane in the wells; these sites have been discarded until either they have been made safe or have been replaced. The following sites, listed in the Register in the 1985 Yearbook, are no longer in use for the observation of groundwater levels:

Chalk and Upper Greensand

SU76/46	Riseley Mill
TQ86/55	Stockbury Valley
TR05/6	Step Cottage
TR14/42	Kingsmill Down
TR15/58	Cotterell Court

Lower Greensand

SU72/47	Westmark Farm
TQ75/86	Kiln Barn Farm
TR23/32	Morehall Depot

Hastings Beds

TQ43/16	Garde Wych Cross
TQ62/89	Rose Lodge

Middle Jurassic

ST77/8 Tormartin

Permo-Triassic sandstones

 Healaugh Pumping Station
Bowater 6
Kenyon Lane
Crossley Hill Wood

Magnesian Limestone

SE ₅₁	1/2	Westfield Far	m
ارناد	/ 4	westiteta rai	

Coal Measures

SD62/35	Lion Brewery
SJ98/6	Chadkirk Marple

Millstone Grit

SD55/5	Abbeystead
SD75/6	Hersley Farm
SD83/111	Red Scar Mill

Carboniferous Limestone

ST64/36 Waterlip Quarry

The two new sites listed below have been added to the list of selected wells. Further sites in Scotland and in Northern Ireland will be added in future years. The number of selected observation sites is now 150.

Middle Jurassic

ST88/62A Didmarton 1

Carboniferous Limestone

ST64/33 Oakhill l

The Register - data items

The five columns of the register are:

Well Number

The well numbering system is based on the National Grid. Each 100 kilometre square is designated by prefix characters, e.g. SE, and is divided into 100 squares of 10 kilometre sides designated by numbers 00 (in the south-west corner to 99 (in the north-east corner). Thus, the site SE93/4, is located in the 10 kilometre square SE93, while the number after the solidus denotes that the site is the fourth accessed in this square into the National Well Record collection. A suffix such as A, B, etc., defines the particular well when there are several at the same site. For Northern Ireland, which is on the Irish Grid, the first of the prefix characters is always 'I'.

Two asterisks following the well number indicates a well or borehole for which hydrographs are shown on pages 168 to 173; the locations of these wells are shown on Figure 17.

Grid Reference

The six or eight-figure references given in the register relate to the 100 kilometre National (or Irish) Grid square designated by the preceding two-figure code (shown in italics when referring to the

Irish Grid); the corresponding two-letter code appears as the prefix characters in the Well Number.

Site

The name by which the well or borehole is normally referenced. The locations of all the sites listed in the Register are shown on Figure 17.

Water Authority

An abbreviation referencing the water authority, or other body, responsible for groundwater level measurement. A full list of codes, together with the corresponding names and addresses appears on pages 192 and 193.

Records Commence

The first year for which records are held on the Groundwater Archive.

Indicated % Annual Recharge

The difference between the level measured at the end of the summer recession and that measured at the beginning of the summer recession in the following year; expressed as a percentage of the mean fluctuation. Details of the method of calculation are given in the Hydrometric Register and Statistics 1981-5 (see page 195).

References

- Monkhouse, R.A., and Richards, H.J. 1983. Groundwater resources of the United Kingdom. Commission of the European Communities, pub. Th. Schaeffer Druckerei GmbH, Hannover, 252 pages.
- Monkhouse, R.A., and Murti, P.K. 1981. The rationalisation of groundwater observation well networks in England and Wales. Institute of Geological Sciences, Report No WD/81/1, 18 pages.

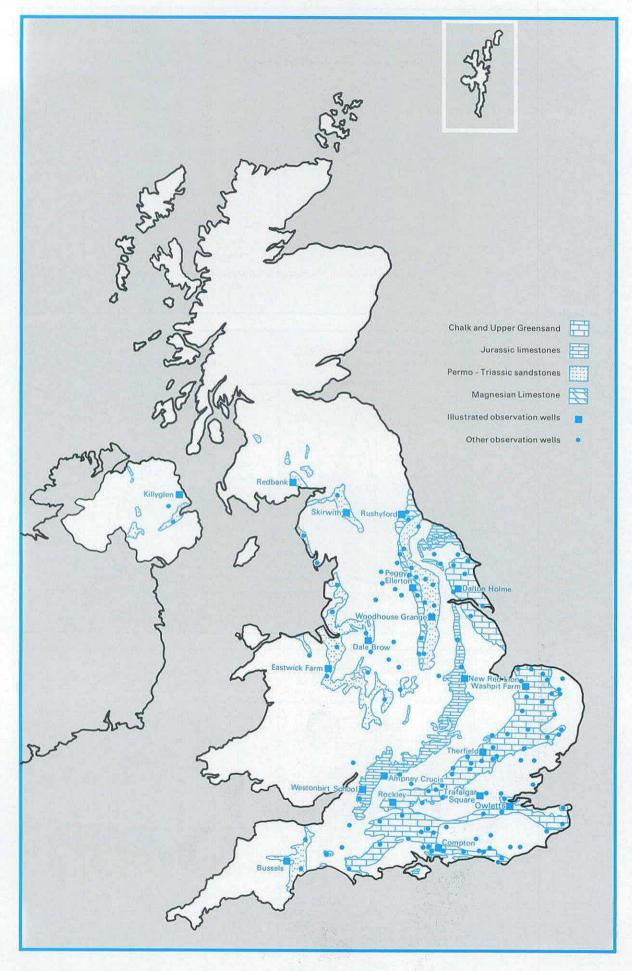
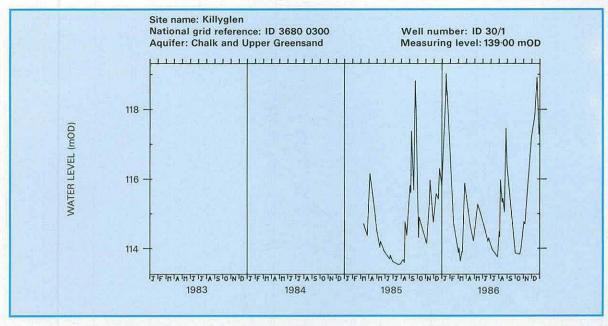
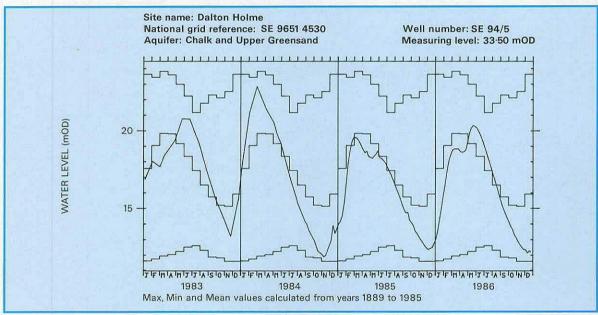




Figure 17. Principal aquifers and representative borehole locations.

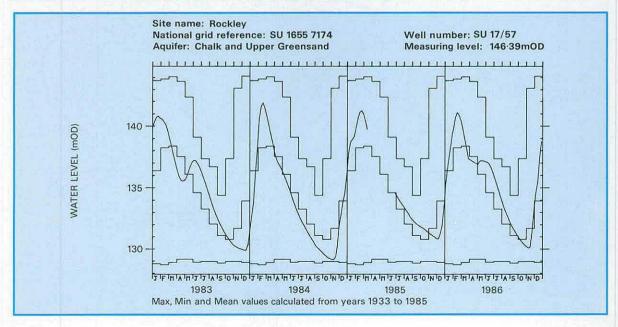
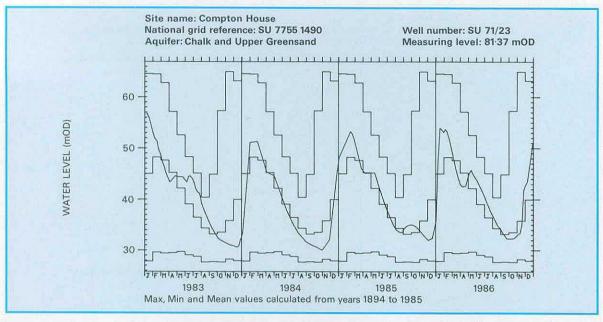
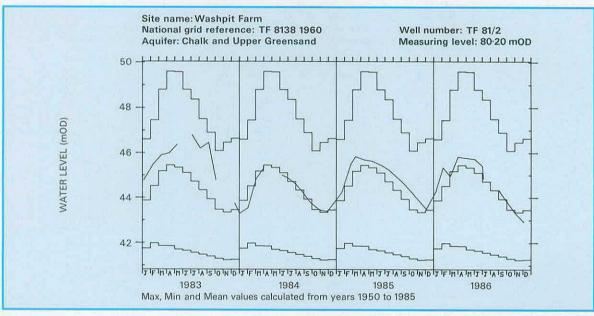




Figure 18. Hydrographs of groundwater level fluctuations 1983-6.

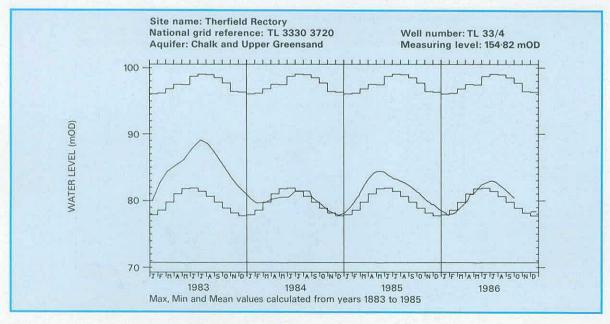
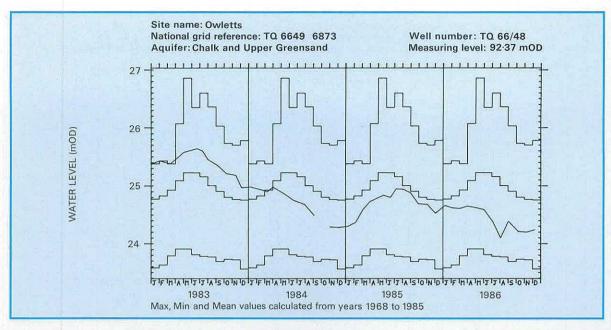
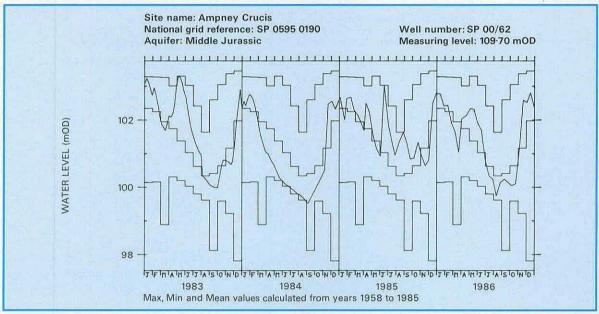




Figure 18 - (continued)

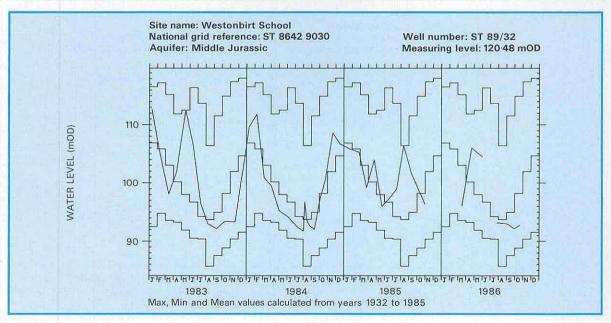
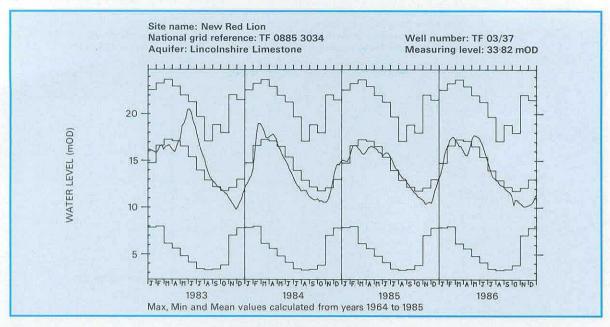
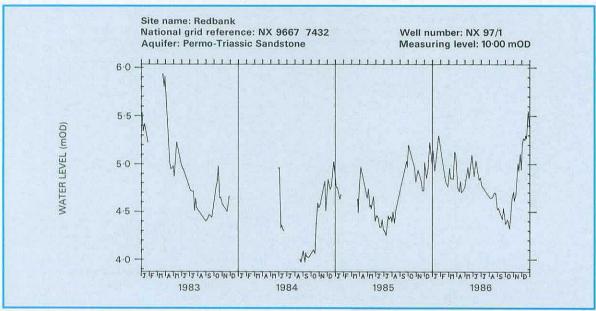




Figure 18 - (continued)

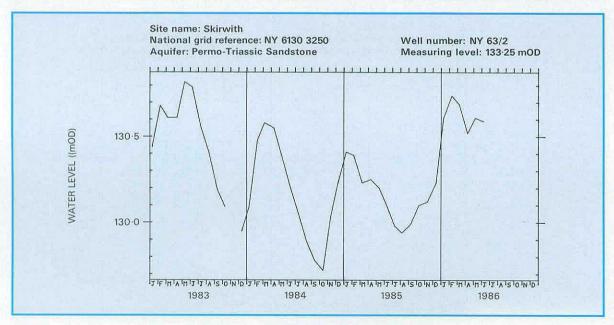
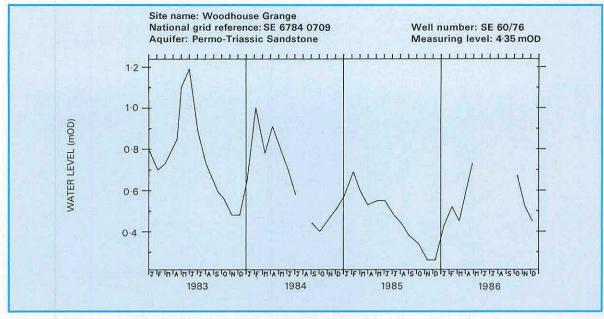
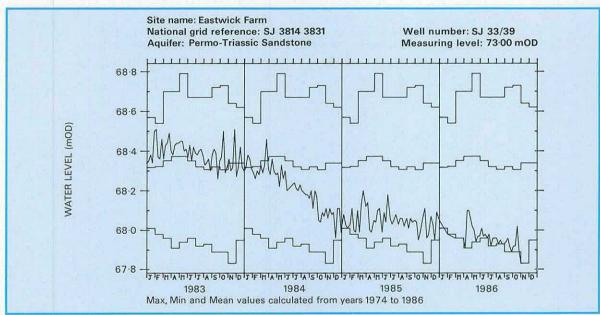




Figure 18 - (continued)

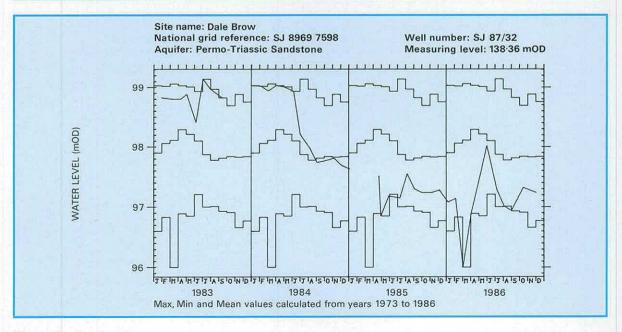
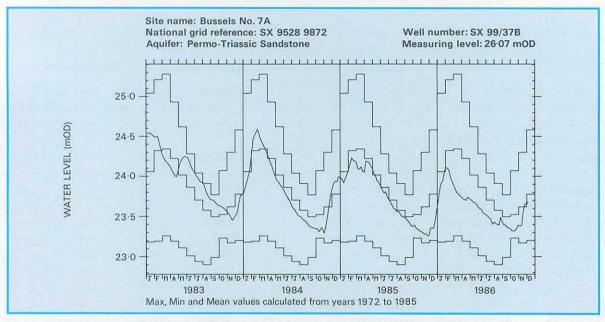
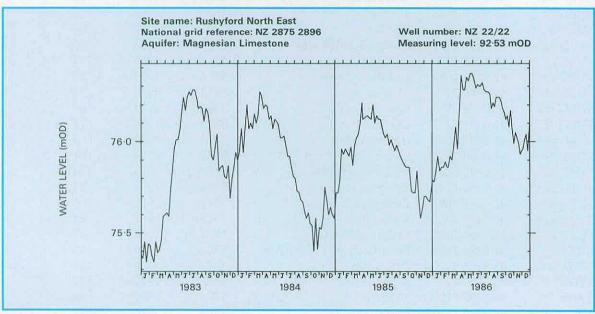




Figure 18 - (continued)

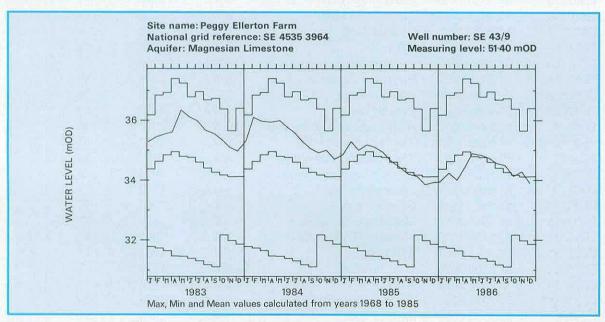


Figure 18 - (continued)

	<u> </u>				
Well Number	Grid Reference	Site	Water Authority	Records Commence	Indicated % Annual Recharge
			· •		
Aquiter: Sup 1J28/1	erficial Deposit	ts Dunadry	GSNI	1985	
		——————————————————————————————————————		1907	
	lk and Upper (
ID30/1**	<i>33</i> 368 030	Killyglen	GSNI	1985	
SE93/4	44 9212 3634	Dale Plantation	YWA	1970	110
SE94/5**	44 9651 4530	Dalton Holme	YWA	1889	112
SE97/31	44 9345 7079	Green Lane	YWA	1972	109
SP90/26	42 9470 0875	Champneys	TWA	1962	83
SP91/59	42 9380 1570	Pitstone Green Farm	AWA	1970	100
ST30/7	31 3763 0667	Lime Kiln Way	SWWA	1969	59
SU01/5B	41 0160 1946	Woodyates	WWA	1942	105
SU04/2	41 0310 4883	Tilshead	WWA	1966	103
SU17/57**	41 1655 7174	Rockley	TWA	1933	94
SU32/3	41 3816 2745	Bailey's Down Farm	SWA	1963	80
SU35/14	41 3318 5647	Woodside	SWA	1963	124
SU51/10	41 5877 1654	Hill Place Farm	SWA	1965	87
SU53/94	41 5589 3497	Abbotstone	SWA	1976	43
SU57/159	41 5628 7530	Calversleys Farm	TWA	1973	69
SU61/32	41 6575 1775	Chidden Farm	SWA	1958	71
SU61/46	41 6892 1524	Hinton Manor	SWA	1953	
SU64/28	41 6360 4048	Lower Wield Farm	SWA	1961	101
SU68/49	41 6442 8525	Well Place Farm	TWA	1976	134
SU71/23**	41 7755 1490	Compton House	SWA	1893	83
SU73/8	41 7048 3491	Faringdon Station	TWA	1961	106
SU78/45A	41 7419 8924	Stonor Park	TWA	1961	84
SU81/1	41 8356 1440	Chilgrove House	SWA	1836	83
SU87/1	41 8336 7885	Farm Cottage, Coldharbour	TWA		
SU89/7	41 8103 9417	Piddington		1950	97
SY68/34	30 662 881	Ashton Farm	TWA	1966	114
TA06/16	54 0490 6120	Nafferton	WWA	1977	101
TA07/28			YWA	1964	86
	54 0940 7740	Hunmanby Hall	YWA	1976	97
TA10/40	54 1375 0885	Little Brocklesby	AWA	1926	114
TA21/14	54 2670 1890	Church Farm	YWA	1971	116
TF72/11	53 7710 2330	Off Farm	AWA	1971	96
TF74/1A	53 7541 4087	Choseley Farm	A₩A	1950	74
TF80/33	53 8738 0526	Houghton Common	AWA	1971	56
TF81/2A**	53 8138 1960	Washpit Farm	AWA	1950	79
TF94/1	53 9160 4135	Cuckoo Lodge	AWA	1952	100
TG00/92	63 0440 0020	High Elm Farm, Deopham	AWA	1971	108
TG03/25B	63 0382 3583	The Hall, Brinton	AWA	1952	85
TG11/5	63 1691 1101	The Spinney, Costessey	AWA	1952	54
TG12/7	63 1126 2722	Heydon Pumping Station	AWA	1974	70
TG21/9	63 2400 1657	Frettenham Depot	AWA	1952	
TG21/10	63 2699 1140	Grange Farm	AWA	1952	50
TG23/21	63 2932 3101	Melbourne House	AWA	1974	67
TL11/4	52 1560 1555	Mackerye End House	TWA	1960	96
TL11/9	52 1692 1965	The Holt	TWA	1964	74
TL13/24	52 1200 3026	West Hitchin	AWA	1970 ·	77
TL22/10	52 2978 2433	Box Hall	TWA	1964	
TL33/4**	52 3330 3720	Therfield Rectory	TWA	1883	76
TL42/6		· ·			
1 L42/ U	52 4536 2676	Hixham Hall	TWA	1964	87

Well	Grid	Site	Water	Records	Indicated %
Number	Reference	·•.	Authority	Commence	Annual Recharge
TL44/12	52 4522 4182	Redlands Hall	TWA	1964	64
TL66/2	52 6191 6013	Hall Farm	AWA	1964	49
TL72/54	52 7982 2516	Rectory Road	AWA	1968	
TL84/6	52 8465 4106	Smeetham Cottages, Bulmer	AWA	1963	
TL86/110	52 8850 6470	Cattishall Farm	AWA	1969	
TL89/37	52 8131 9001	Grimes Graves	AWA	1971	54
TL92/1	52 9657 2562	Lexden Pumping Station	AWA	1961	
TM15/112	62 1201 5618	Dial Farm	AWA	1968	61
TM18/2	62 1983 8600	Pulham Market	AWA	1952	60
TM26/46	62 2461 6109	Fairfields	AWA	1974	
TM26/95	62 2786 6397	Strawberry Hill	AWA	1974	112
TQ01/133	51 0850 1170	Chantry Post, Sullington	SWA	1977	65
TQ21/11	51 2850 1289	Old Rectory, Pyecombe	SWA	1958	146
TQ28/119B	51 2996 8051	Trafalgar Square	TWA	1845	
TQ31/50	51 3220 1180	North Bottom	SWA	1979	85
TQ35/5	51 3363 5924	Rose & Crown	TWA	1876	71
TQ38/9A	51 3509 8536	Hackney Public Baths	TWA	1953	77
TQ50/7	51 5592 0380	Old Rectory, Folkington	SWA	1965	129
TQ56/19	51 5648 6124	West Kingsdown	ΤWA	1961	76
TQ57/118	51 5880 7943	Thurrock A13	AWA	1979	135
TQ58/2B	51 5622 8408	Bush Pit Farm	TWA	1967	62
TQ66/48**	51 6649 6873	Owlets	S₩A	1968	
TQ99/11	51 947 971	Burnham	AWA	1975	
TR34/81	61 3173 4725	Church Farm	SWA	1971	
TR36/62	61 3208 6634	Alland Grange	SWA	1969	77
TV59/7C	50 5290 9920	Westdean 3	SWA	1904	103
Aquifer: Lov	ver Greensand				
SU84/8A	41 8716 4087	Tilford Pumping Station	TWA	1971	107
TL45/19	52 4110 5204	River Farm	AWA	1973	114
TQ41/82	51 4370 1320	Lower Barn Cottages	SWA	1975	135
TR13/21	61 1132 3881	Ashley House	SWA	1972	
Aquifer: Has	stings Beds				_
TQ22/1	51 2348 2770	The Bungalow	SWA	1964	80
TQ32/19	51 3760 2890	Horsted Keynes	SWA	1968	92
TQ61/44	51 6658 1803	Dallington Herrings	SWA	1964	49
TQ71/123	51 7969 1659	Red House	SWA	1974	
Aquifer: Upp	er Jurassic				
SE68/16	44 6890 8590	Kirkbymoorside	YWA	1973	83
SE77/76	44 7690 7300	Broughton	YWA	1975	63
SE98/8	44 9910 8540	Seavegate Farm	YWA	1971	107
SU49/40B	41 4117 9307	East Hanney	T₩A	1978	74
Aquifer: Mic	ldle Jurassic				
SP00/62**	42 0595 0190	Ampney Crucis	TWA	1958	64
SP20/113	42 2721 0634	Alvescot Road	TWA	1975	98
ST51/57	31 591 169	Over Compton -	WWA	1971	99
ST88/62A	31 8275 8743	Didmarton 1	WWA	1977	
ST89/32**	31 8642 9030	Westonbirt School	WWA	1932	49
Aquifer: Lin	colnshire Limes	stone			
0.550 = 40 =	43 9800 7817	Grange de Lings	AWA	1975	94
SK97/25					
SK97/25 TF03/37**	53 0885 3034	New Red Lion	AWA	1964	80

Well Number	Grid Reference	Site	Water Authority	Records Commence	Indicated % Annual Recharge
				- Commence	
Aquifer: Per	mo-Triassic sa	ndstones			
I J 26/1	33 291 694	Dunmurry	GSNI	1985	
NX97/1**	25 9667 7432	Redbank	SRPB	1981	50
NY00/328	35 0511 0247	Brownbank Layby	NWWA	1974	131
NY45/16	35 4947 5667	Corby Hill	NWWA	1977	
NY63/2**	35 6130 3250	Skirwith	NWWA	1978	90
NZ41/34	45 4861 1835	Northern Dairies	NWA	1974	73
SD27/8	43 2172 7171	Furness Abbey	NWWA	1972	83
SD41/32	43 4400 1164	Yew Tree Farm	NWWA	1971	
SD44/15	43 4396 4928	Moss Edge Farm	NWWA	1961	111
SE36/47	44 3945 6575	Kelly's Cafe	YWA	1977	86
SE39/20B	44 3004 9244	Scruton Village	YWA	1969	100
SE45/3	44 4470 5580	Cattal Maltings	YWA	1969	88
SE52/4	44 5473 2363	Southfield Lane	YWA	1955	90
SE55/4	44 5829 5383	Clifton Hospital	YWA	1967	43
SE60/76**	44 6784 0709	Woodhouse Grange	STWA	1980	98
SE64/1	44 6751 4463	Wheldrake Station	YWA	1971	
SE72/3B	44 7047 2149	Rawcliffe Bridge	YWA.	1971	95
SJ15/15	33 1374 5556	Oaklands Bridge	WELSH	1972	109
SJ33/38	33 3809 3112	Hordley Wharf	STWA	1975	
SJ33/39**	33 3814 3831	Eastwick Farm	WELSH	1974	71
SJ56/45E	33 5042 6953	Ashton 4	NWWA	1969	
SJ83/1A	33 8969 3474	Stone	STWA	1974	97
SJ87/32**	33 8969 7598	Dale Brow	NWWA	1973	147
SJ88/93	33 8611 8645	Bruntwood Hall	NWWA	1972	
SJ96/41	33 9310 6301	Rushton Spencer 1	NWWA	1969	
SK00/41	43 067 012	Nuttal's Farm	STWA	1974	112
SK21/111	43 2731 1419	Grange Wood	STWA	1967	96
SK24/22	43 2539 4431	Burtonshuts Farm	STWA	1972	132
SK56/53	43 5632 6440	Peafield Lane	STWA	1969	
SK73/50	43 7693 3228	Woodland Farm	STWA	1980	
SO71/18	32 7170 1970	Stores Cottage			67
SO87/28	32 8160 7970	Hillfields	STWA	1973	
			STWA	1961	75 50
ST12/48 SX99/37B**	31 108 267	Milverton Bypass	WWA	1972	50
	20 9528 9872	Bussels 7A	SWWA	1972	73
SY09/21A	30 0666 9235	Heathlands	SWWA	1951 ————	96
Aquifer: Mag	nesian Limesto	one			
NZ22/22**	45 2875 2896	Rusheyford NE	NWA	1967	110
NZ32/19	45 3575 2650	Heley House	NWA	1969	104
NZ33/20	45 3349 3501	Garmondsway	NWA	1974	116
SE28/28	44 2460 8520	Bedale	YWA	1972	110
SE35/4	44 3830 5830	Castle Farm	YWA	1970	72
SE43/9**	44 4535 3964	Peggy Ellerton Farm	YWA	1968	74
SE43/14	44 4660 3550	Coldhill Farm 35	YWA	1971	87
SK46/71	43 4800 6030	Stanton Hill	STWA	1973	112
SK58/43	43 5248 8018	Southeads Lane	STWA	1973	62
Aquifer : Coa	1 Magentee				
SE23/4	44 2850 3414	Silver Blades Ice Rink	YWA	1971	65

Well	Grid	Site	Water	Records	Indicated %
Number	Reference		Authority	Commence	Annual Recharge
Aquifer: M	illstone Grit				
SD92/8	34 9833 2660	Horsehold Farm	YWA	1971	83
SE04/7	44 0295 4792	Lower Heights Farm	YWA	1971	
SE24/2B	44 2067 4053	Green Lane Dyeworks	YWA	1971	148
SE27/8	44 2120 7380	Kirkby Moor Farm	YWA	1971	
Aquifer: Ca	rboniferous Lim	estone			
NT95/21	36 9695 5055	Middle Ord	NWA	1974	182
SE06/1	44 0241 6183	Jerry Laithe Farm	YWA	1971	67
SK15/16	43 1292 5547	Alstonfield	STWA	1974	85
SK17/13	43 1778 7762	Hucklow South	STWA	1969	70
ST64/33	31 6560 4790	Oakhill 1	WWA	1977	158

Sites marked "**" are indicator wells; well hydrographs are shown in Figure 18. Where the annual percentage recharge cannot be estimated, the entry "---" is substituted.

THE GROUNDWATER DATA RETRIEVAL SERVICE

A suite of retrieval programs has been written in order to facilitate data usage. At the present time, retrievals using the options described below are available for most of the sites listed in the Register of Selected Groundwater Observation Wells, although not all the data contained within this archive have been validated.

Five options are available for retrieving data. A description of each option is given below and examples of the computer listings and graphical output are given on pages 180 to 183. Options 1 to 4 give details of the well site, the period of record available, and maximum and minimum recorded levels in addition to the output specific to each option. Data may be retrieved for a specific well or for groups of wells by well reference numbers, by area (using National Grid References), by aquifer, by hydrometric area, by water authority, or by any combination of these parameters.

Cost of Service

To cover the computing and handling costs, a moderate charge will be made depending on the output options selected. Estimates of these charges may be obtained on request; the right to amend or waive charges is reserved.

Requests for retrieval options:

Requests for retrieval options should include: the name and address to which the output should be directed, the sites, or areas, for which data are required together with the period of record of interest (where appropriate) and the title of the required option. Where possible, a daytime telephone number should be given.

Requests should be addressed to:

The British Geological Survey Hydrogeology Research Group Maclean Building Crowmarsh Gifford WALLINGFORD OXFORDSHIRE OX10 8BB

Telephone (0491) 38800

LIST OF GROUNDWATER DATA RETRIEVAL OPTIONS

OPTION TITLE

1 Table of groundwater levels

Table of annual maximum and minimum groundwater levels

Table of monthly maximum, minimum and mean groundwater levels

Hydrographs of groundwater levels

NOTES

All recorded observations of groundwater level in metres above Ordnance Datum, with dates of observation and maximum and minimum levels for each year. Specific years, or ranges of years, may be requested, otherwise the full period of record is given.

Annual maximum and minimum groundwater levels in metres above Ordnance Datum with dates of occurrence. Specific years, or ranges of years, may be requested, otherwise the full period of record is given.

Monthly maximum, minimum and mean groundwater levels in metres above Ordnance Datum, together with the number of years contributing values to the calculation of each monthly mean. A specific period of years may be nominated, otherwise the full period of record is given.

Provides a well hydrograph for a number of specified years. Castellated annual plots of monthly maximum and mean groundwater levels calculated from a nominated period of years are superimposed upon the hydrograph, provided that the nominated periods exceeds 10 years. Tabulations of the monthly maximum, minimum and mean values are also listed,

together with the number of years of record used in the calculations, and the number of observations used for each month.

Site details

The output comprises the well reference number of the British Geological Survey, the original (Water Data Unit) station number (where applicable), the hydrometric area, the aquifer name and code, the site name and location, the National Grid Reference, the depth of the well, the datum points (from which measurements are made), the altitude of the ground surface, the period of record and the water authority area in which the well or borehole is located.

OPTION 1 TABLE OF GROUNDWATER LEVELS

Station number

Station name NEW RED LION, ASLACKBY (CONTINUES OLD RED LION)

3.29

TFO3/37

Grid Reference TF 0885 3034

Water Authority AWA Hydrometric Area 30

Aquifer Lincolnshire Limestone

 Aquifer Code
 13

 EEC Unit
 ANO3

 Surface Level (MOD)
 33.82

 Datum Point (MOD)
 33.45

 Well Depth (M)
 50.00

 Max. Expected (MOD)
 33.45

 Min. Expected (MOD)
 5.00

 Period of records in Archive: 1964 to 1985

Maximum GW Level for period of records 23.69

Number of Maxima 1

Number of Maxima
Date(s):-

14 03 1977

Minimum GW Level for period of records

Number of Minima

Date(s):-24 08 1976

(Note: The above reference information is also provided with the output from options 2-4)

TF03/37
1975
Level (MOD)
17.29
16.68
17.85
20.31
20.12
20.13
18.58
17.34
15.77

01 Aug	14.44
29 Aug	13.24
26 Sep	12.11
10 Oct	11.57
07 Nov	10.42
21 Nov	9.85
19 Dec	8.98
Maximum GW level for year	20.31
Number of maxima 1	
Dates 04 Apr	
Minimum GW Level for year	8.98
Number of minima 1	
Dates 19 Dec	

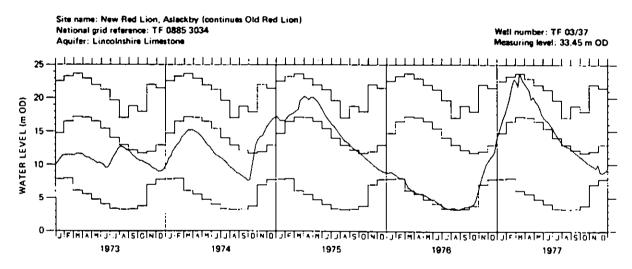
OPTION 2 TABLE OF ANNUAL MAXIMUM AND MINIMUM GROUNDWATER LEVELS

Year	Max/Min	Level(MOD)	Date(s)	No. of occasions
1965	Max	21.50	26 Dec	1
	Min	7.85	24 Jan	
1966	Max	23.51	06 Mar	1
	Min	14.43	09 Oct-16 Oct	1 Period
1967	Max	19.79	04 Jun	
	Min	12.69	29 Oct	
1968	Max	22.06	17 Nov	
	Min	14.08	07 Jul	
1969	Max	23.17	30 Mar	
	Min	11.83	16 Nov	
1970	Max	20.21	26 Apr	
	Min	10.76	15 Nov	1

OPTION 3 TABLE OF MONTHLY MAXIMUM, MINIMUM AND MEAN GROUNDWATER LEVELS

Period maximum, minimum and mean groundwater levels for years 1964 to 1985

	Maximum	Minimum	Mean	No of years
Jan	22.58	7.85	14.75	21
Feb	23.29	7.97	16.50	21
Mar	23.69	6.14	17.27	21
Apr	22.97	5.61	17.17	22
May	22.00	4.80	16.52	21
Jun	21.28	4.11	15.40	21
Jul	19.69	3.42	14.03	21
Aug	17.08	3.29	12.97	21
Sep	18.84	3.37	12.23	21
Oct	17.98	3.82	11.78	21
Nov	22.06	7.03	12.08	21
Dec	21.51	7.81	13.04	21


OPTION 4 HYDROGRAPHS OF GROUNDWATER LEVELS

Hydrograph of monthly maximums, minimums and means calculated from years 1964 to 1982

Therefore maximum number of years from which monthly maxs, mins and means may be calculated is 19

	Meximum	Minimum	Mean	No. of Years
				contributing values to mean calculations
Jan	22.58	7.85	14.77	
Feb	23.29	7.97	16.47	18
Mar	23.69	6.14	17.34	18
Apr	22.97	5.61	17.23	19
May	22.00	4.80	16.42	19
Ĵun	21.28	4.11	15.23	19
Jul	19.69	3.42	13.97	19
Aug	17.08	3.29	12.98	19
Sep	18.84	3.37	12.28	19
Oct	17.98	3.82	11.85	19
Nov	22.06	7.03	12.20	19
Dec	21.51	7.81	13.09	19

Hydrograph(s) plotted for year ranges:- 1973 to 1977

Max, Min and Mean values calculated from years 1964 to 1982

OPTION 5 SITE DETAILS

BGS NUMBER	COMPUTER NUMBER	IIA	AQ	NAME—LOCATION REC—PERIOD—WA AQUIFER	GRID REF	DEPTH (M)	DATUM POINT	SURFACE LEVEL
NZ22/22	25624	25	17	RUSHYFORD NORTH EAST, GREAT CHILTON 1957-1985 NWA MAGNESIAN LIMESTONE	NZ 2875 2896	62.50	92.65	92.53
SE94/5	26352	26	6	DALTON ESTATE, DALTON HOLME 1889-1985 YWA CHALK AND UPPER GREENSAN	SE 9651 4530	28.50	34.57	33.50
SE43/9	27360	27	17	PEGGY ELLERTON FARM, HAZLEWOOD 1968-1985 YWA MAGNESIAN LIMESTONE	SE 4535 3964	55.42	51.40	51.40
TF03/37	30229	30	13	NEW RED LION, ASLACKBY (CONTINUES OLD RED LION) 1964-1985 AWA LINCOLNSHIRE LIMESTONE	TF 0885 3034	50.00	33.45	33.82
TF81/2	33343	33	6	WASHPIT FARM 1950-1985 AWA CHALK AND UPPER GREENSAN	TF 8138 1960	40.40	80.21	80.69
TL33/4	38511	38	6	THERFIELD RECTORY, THERFIELD 1883-1984 TWA CHALK AND UPPER GREENSAN	TL 3330 3720	84.10	154.82	154.82
SU17/57	39350	39	6	ROCKLEY, OGBOURNE ST. ANDREW 1933-1985 TWA CHALK AND UPPER GREENSAN	SU 1655 7174	17.60	146.57	146.39
SU71/23	41426	41	6	COMPTON HOUSE, COMPTON 1894-1985 SWA CHALK AND UPPER GREENSAN	SU 7755 1490 D	53.80	81.37	81.37
SJ87/32	68476	68	16	DALE BROW, MACCLESFIELD 1973-1984 NWWA PERMO-TRIASSIC, SANDSTON	SJ 8969 7598 NES	152.40	138.66	138.36

SURFACE WATER QUALITY DATA

Background

A national archive of water quality data is maintained by Her Majesty's Inspectorate of Pollution (Department of the Environment) to provide information concerning the quality of rivers throughout the United Kingdom and to satisfy certain international obligations – mostly concerned with the exchange of information. Data for this archive are collected as part of the Harmonised Monitoring programme which provides for the sampling and analysis of water quality on a national basis.

The Harmonised Monitoring Scheme was established, for England and Wales, in 1974; a similar scheme was instituted for Scotland, under the aegis of the Scottish Development Department, in July 1975. Responsibility for the collection and analysis of the samples rests with the 10 Water Authorities in England and Wales and the 7 River Purification Boards in Scotland.

Measuring authorities send analytical results of routinely collected samples of river water from approximately 220 monitoring stations; sampling frequencies vary substantially but are, typically, in the range 6 to 52 per year. Most of the monitoring stations are located on major rivers at, or near, the tidal limit.

The monitoring programme can embrace a large number - over 80 - of physical and chemical attributes of river water (termed determinands) but typically only 25 are measured. A number are measured as standard but a larger proportion are monitored only where it is considered necessary to do so.

The measuring authorities maintain major programmes of chemical and biological sampling of rivers for their own purposes. From the 31st July 1985 Water Authorities and River Purification Boards have been required, under the Control of Pollution Act, to maintain registers of the results of all samples of water and effluent taken for pollution control purposes together with details of all consented discharges. These registers are open for inspection by the public – free of charge – at the offices of the Water Authorities. Persons wishing to consult the registers are advised to first contact the individual authorities; a list of addresses is given on pages 192 to 193.

Data Retrieval

A comprehensive range of retrieval options has been developed by Her Majesty's Inspectorate of Pollution to make available the water quality data held on the Harmonised Monitoring Archive and to provide statistical summaries based on that data. Requests

for data, and guidance concerning its availability, should be addressed to:

Department of the Environment HMIP Room A4.26 Romney House 43 Marsham Street London SW1P 3PY

Telephone: 01 276 8245

Scope of the Water Quality Data Tabulations

River water quality data are presented for 16 monitoring sites on rivers throughout the United Kingdom. The location of each monitoring site is given on Figure 19. For each site data are given for 1986 and for the preceding record. The range of determinands featured may differ between monitoring sites reflecting the character of the rivers themselves and differences in the sampling regimes between monitoring stations.

The following notes are provided to assist in the interpretation of particular data items.

Harmonised Monitoring Station Code

A five-digit reference number which serves as the primary identifier of the station on the Harmonised Monitoring Archive. The first two digits refer to the measuring authority, the remainder refer to individual sites within each measuring authority.

Measuring Authority

An abbreviation referencing the organisation responsible for the operation of the monitoring site. See page 192 for a full list of the codes together with the corresponding authority names and addresses.

Grid Reference

The initial two-letter and two-figure codes each designate the relevant 100 kilometre National Grid square; the standard six-figure map reference follows.

Associated Flow Measurement Station

The reference number, name, catchment area and grid reference of the gauging station whose flow record is used to determine the discharge data stored

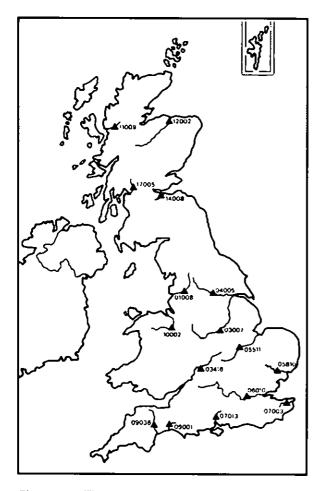


Figure 19. Water quality monitoring station location map.

on the Harmonised Monitoring Archive. For most sites the flow corresponding to the time the quality sample was taken is archived; at other locations the corresponding daily mean flow is utilised. Where the gauging station and water quality monitoring site are not coincident some method of flow adjustment may have been employed to allow for the differing catchment areas.

1986 flow data for all but one of the relevant gauging stations may be found in the River Flow Data section. The shortness of the flow record for the Fleet Weir gauging station on the River Aire precludes its incorporation in the River Flow Data section; summary river flow data for 1986 are, however, included at the head of the water quality listing.

Determinands

The featured list of determinands varies slightly from station to station reflecting the availability of suitable data. Inadequate or unrepresentative sampling frequencies, or the presence of substantial number of samples with concentrations recorded at or below the limit of detection, will normally result in the omission of a particular determinand.

Notes:

- i. Conductivity results are standardised to 20°C.
- ii. The biochemical oxygen demand data normally relate to the inhibited analytical results BOD(atu)
- iii. Nitrate concentrations are normally derived by subtracting the nitrite concentration from the reported Total Oxidised Nitrogen (TON) concentration; if the nitrite determination is below the limit of detection, nitrate is recorded as equivalent to TON.

Units

The standard units used to record and report each determinand. The precision with which individual data values, for each determinand, are presented corresponds to the way the data are stored on the Harmonised Monitoring Archive and reflects the uncertainty associated with the relevant analytical procedures.

1986 Data

Samples

The number of samples taken for each determinand during 1986. Where a proportion of analytical results were below the limit of detection, the number of samples in this category is given in parentheses.

Mean

The average* of all the sample values for each determinand in 1986. Where concentrations below the limit of detection are held on the Harmonised Monitoring archive, the threshold value itself is used to compute the mean.

Maximum / Date

The maximum determinand value recorded during 1986 together with its date of occurrence. Where the maximum value recurs, the date refers to the initial occurrence.

Minimum / Date

The minimum determinand value together with its date of occurrence. Where the minimum value recurs, the date refers to the initial occurrence. A '<' symbol indicates a value below the limit of detection.

Period of Recorded Data

Generally, the pre-1986 summary statistics are presented for the decade beginning in 1976; where individual stations were not incorporated into the Harmonised Monitoring network until after 1976,

the appropriate first complete year of data is given. For certain stations the sampling frequency varies significantly from year to year and data for a few determinands may not extend over the full period of record.

Where the pre-1986 data series includes values below the limit of detection, the threshold value has been used in the computation of the summary statistics.

For a number of the featured monitoring stations, a considerable amount of pre-1976 data, at least for certain determinands, may be stored on local, or regional, archives maintained by the measuring authorities. Also, for the period 1976-85, such archives may hold analytical results for substantially more samples than are represented on the Harmonised Monitoring Archive. Hence full equivalence between statistical summaries derived from national and regional databases cannot be expected for all monitoring sites.

Mean

The average* value of all the sample values for each determinand.

Percentiles

The 5, 50 and 95 percentile values for each determinand based on all the samples taken over the 1976-85 period.

Quarterly Averages

The mean quarterly average* for each of the three-monthly periods: January to March, April to June, July to September and October to December.

* In all cases this refers to the temporal mean rather than the flow-weighted average.

Ribble at Samlesbury

1986

Harmonised monitoring code: 01 008 Measuring authority: Grid reference :

34 (SD) 590 305

Flow measurement station 071001 - Samlesbury Catchment area (sq km) : Grid reference :

1145.0

34 (SD) 589 304

				196						renod o	record.	976 - 19	85		
Determinand	Units	Samples	Mean	Mex.	Dete	Min.	Date	Mean		Percent			Querter	ly avera	903
									5%	50%	95%	J-M	A-J	J.S	0.0
Temperatura	•c	49	88	180	03/07	0.0	27/02	9 3	0.9	9 5	17 B	3.8	113	14.8	7.3
pH	pH units	50	80	9.2	24/07	7.1	03/07	77	7.0	77	8.5	7.4	7 B	7.9	7.6
Conductivity	iiS/cm	50	366	733	27/02	154	04/12	432	235	423	658	432	462	454	376
Suspended salids	mg/l	50(2)	18 7	136 0	04/12	<20	31/07	19 7	30	9.0	65 Q	20 9	15.5	14.6	29 1
Dissolved oxygen	mg/LO	48	10 5 1	15 40	13/02	6 90	09/10	10 3	79	10.3	130	118	9.7	8 9	10 9
B-ochemical daygen demand	mg/I O	49(1)	27	7.0	23/10	0.8	02/10	3 0	1 2	2.6	6.5	29	3 3	28	3 0
Chemical oxygen demand	mg/I O	50	236	610	22/05	70	24/04	24 2	100	22 0	48 0	216	24.3	25 4	25 8
Ammonacal nitrogen	mg/l N	50(16)	0 320	2 150	27/02	< 0.050	29/05	0.28	0.05	0 19	0.90	0 53	0 20	0 15	0.25
Nitrite	mg/I N	50(4)	0 600	0 180	03/07	< 0 020	14/08	0.08	0.03	0.07	0.20	0.06	0 12	0.09	0.06
N.trate	mg/I N	50	3.55	9 55	17/07	0 45	31/07	4 3	13	36	100	3.5	5.5	5.2	3.0
Chloride	mg/I CI	50	310	1010	30/01	10 0	04/12	33 B	15 0	30 0	61.6	40.7	34 3	336	26 2
Total ahalmity	mg/I CeCO ₃	50	1165	167 0	03/07	20 0	13/03	1119	65 0	1150	146 0	105 6	1187	116.5	
Fluoride	mg/LF	31	0 14	0 95	20/11	0 08	23/01	0 13	0.01	0 11	0.20	011	0.16	0.14	0 11
Orthophosphate	mg/LP	50	0 470	1 550	03/07	0 050	24/04	0 36	0 10	0 27	091	0 22	041	0 56	0 25

1006

1986

Trent at Nottingham

1986

Harmonised monitoring code 03 007 Measuring authority

Grid reference:

43 (SK) 581 383

Flow measurement station: 028009 - Colwick Catchment area (sq km) Grid reference :

7486.0 43 (SK) 620 399

Samples 23 23	Mean 11.6	Max.	Date	Min.	Date	Mean					 Quarter	y avera	903
	116								A-J	J.S	0.D		
22		19 0	16/06	3 5	28/11	136	60	13.5	22.0	8 1	15 6	195	116
	7.7	83	29/05	6.8	10/12	77	7.3	7.7	8 1	7.6	77	7.8	7.6
23	871	1197	10/12										891
23	218	710	21/11	6.0									30 1
22	10 35	12 70	28/01	8 40			7.6						9 7
23	3.1	70	24/07	1.8			: 6						3 2
23	0 460	1 350	26/02	0 0 10	29/05								0.36
23	8 72	1140	10/10	6 10	28/08	86	6.1		11.3				8.8
23	917	1470	10/10	48 0	28/08	10: 1	56 0	99 6	150 0				99.5
, 22	162 3	3150	04/11	93 0	28/08	160 1	120 0	165 0	188 4				153 6
10	0.38	0 66	29/07	0.30	13/08	0.36	0.20	0.37	0.52	0.31		0.41	0.35
23	1 620	3 200	10/10	0 060	04/11	1 50	0 49	1 49	2.70	0 92	1.52	2 07	1 55
	23 22 23 23 23 23 23 23 23 21	23 21 8 22 10 35 23 3.1 23 0 460 23 8 72 23 91 7 03 22 162 3 10 0 38	23 21 8 7 10 22 10 35 12 70 23 3.1 7 0 23 0 460 1 350 23 8 72 11 40 23 91 7 14 70 03 22 152 3 315 0 10 0 38 0 66	23 218 710 2171 22 10.35 12.70 28/01 23 3.1 7.0 24/07 23 0.460 1.360 26/02 23 872 11.40 10/10 23 91.7 14/0 10/10 23 91.7 14/0 01/10 23 91.8 72 10/10 10/10 23 91.8 72 10/10 10/10 23 91.7 14/0 10/10 24 162 3.3150 04/11 25 162 3.3150 04/11	23 21 8 710 2111 60 22 1035 1270 28/01 840 23 3.1 70 24/07 18 23 0460 1350 26/02 0.010 23 872 11 40 10/10 610 23 917 14/0 10/10 480 03 22 162 3 3150 04/11 930 10 038 066 29/07 0.30	23 871 1197 10712 546 28708 23 21 8 71 0 21/11 60 23709 22 10.35 12.70 28/01 8 40 13/08 23 3.1 7.0 24/07 18 10/10 23 0.460 1.350 26/02 0.010 29/05 23 8.72 11.40 10/10 6.10 28/08 23 91.7 14.70 10/10 48.0 28/08 03 22 162.3 315.0 04/11 93.0 28/08 10 0.38 0.66 29/07 0.30 13/08	23 871 1197 10/12 546 28/08 902 23 218 710 21/11 60 23/09 257 22 10.35 12.70 28/01 8.40 13/08 9.6 23 3.1 7.0 24/07 1.8 10/10 3.6 23 0460 1360 26/02 0.010 29/05 0.37 23 8.72 11.40 10/10 6.10 28/08 8.6 23 91.7 1470 10/10 48.0 28/08 10:1 03 22 162 3 315 0 04/11 93.0 28/08 160 1 10 038 0.66 29/07 0.30 13/08 0.36	23 871 1197 10/12 546 28/08 902 647 23 218 710 21/11 60 23/09 257 8.0 22 10.35 12.70 28/01 8.40 13/08 96 7.6 23 3.1 7.0 24/07 1.8 10/10 3.6 1.6 23 0.460 1.360 26/02 0.010 29/05 0.37 0.01 23 872 11.40 10/10 6.10 28/08 8.6 6.1 23 91.7 14/0 10/10 48.0 28/08 10:1 56.0 23 91.7 14/0 10/10 48.0 28/08 10:1 56.0 23 91.7 14/0 10/10 48.0 28/08 10:1 56.0 23 91.7 14/0 10/10 93.0 28/08 160.1 120.0 24 162.3 315.0 04/11 93.0 28/08 160.1 120.0	23 871 1197 10/12 546 28/08 902 647 920 23 218 710 21/11 60 23/09 257 80 170 22 10.35 12.70 28/01 840 13/08 96 76 96 23 3.1 7.0 24/07 18 10/10 3.6 1.6 3.5 23 0460 1.360 26/07 0.010 29/05 0.37 0.01 0.30 23 872 11.40 10/10 610 28/08 86 61 87 23 91.7 1470 10/10 480 28/08 10:1 560 996 03 22 1623 315.0 04/11 93.0 28/08 10:1 560 996 10 038 0.66 29/07 0.30 13/08 0.36 0.20 0.37	23 871 1197 10/12 546 28/08 902 647 920 1144 23 218 710 21/11 60 23/09 257 80 170 760 22 10.35 12.70 28/01 8 40 13/08 96 76 96 11.7 23 3.1 70 24/07 18 10/10 3.6 1.6 3.5 61 23 0460 1360 26/02 0010 29/05 0.37 0.01 0.30 0.98 23 8.72 11.40 10/10 6.10 28/08 8 6 61 8.7 11.3 91.7 14/0 10/10 48 0.28/08 10:1 560 99.6 150.0 0.3 12 162 3 315 0.04/11 93.0 28/08 160.1 12.00 165.0 188.4 10 0.38 0.66 29/07 0.30 13/08 0.36 0.20 0.37 0.52	23 871 1197 10/12 546 28/08 902 647 920 1144 802 23 21 8 71 0 21/11 6 0 23/09 25 7 8 0 170 76 0 31 2 22 10.35 12 70 28/01 8 40 13/08 96 76 96 11.7 10.6 23 3.1 7.0 24/07 18 10/10 3.6 1.6 3.5 6.1 3.3 23 0.460 1.360 26/07 0.010 29/05 0.37 0.01 0.30 0.98 0.64 23 872 11.40 10/10 6.10 28/08 8.6 6.1 8 7 11.3 8.3 9.1 7 14/0 10/10 480 28/08 10:1 560 99.6 15.00 85.1 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	23 871 1197 10/12 546 28/08 902 647 920 1144 802 918 22 2 2 10.35 12.70 28/01 6.40 13/08 9.6 7.6 9.6 11.7 10.6 9.5 23 3.1 7.0 24/07 1.8 10/10 3.6 1.6 3.5 6.1 3.3 4.0 2.9 23 8.72 11.40 10/10 6.10 28/08 8.6 6.1 8.7 11.3 8.3 8.6 3.3 9.7 11.40 10/10 6.10 28/08 8.6 6.1 8.7 11.3 8.3 8.6 3.3 9.7 11.40 10/10 6.10 28/08 8.6 6.1 8.7 11.3 8.3 8.6 3.3 9.7 11.40 10/10 48.0 28/08 10.1 5.50 99.6 150.0 85.1 98.3 9.7 11.20 10.2	23 871 1197 10/12 546 28/08 902 647 920 1144 802 918 1007 23 218 710 21/11 60 23/09 257 80 170 760 312 222 183 22 1035 1270 28/01 8 40 13/08 96 76 96 11.7 106 95 87 23 3.1 70 24/07 1.8 10/10 3.6 1.6 3.5 6.1 3.3 4.0 3.8 23 0460 1360 26/02 0010 29/05 0.37 0.01 0.30 0.98 0.64 0.29 0.22 23 872 11.40 10/10 610 28/08 86 61 87 11.3 8.3 8.6 8.7 23 91.7 14/0 10/10 480 28/08 10:1 560 996 150 0 851 98 3 123 1 0 10 0.38 0.66 29/07 0.30 28/08 160 1 120 0 165 0 188 4 156 2 163.8 167 4 10 0.38 0.66 29/07 0.30 13/08 0.36 0.20 0.37 0.52 0.31 0.37 0.41

Avon at Evesham Road Bridge

1986

Harmonised monitoring code: 03 416 Measuring authority Grid reference:

STWA

42 (SP) 034 431

Flow measurement station Catchment area (sq km) Grid reference :

054002 - Evesham 22100 42 (SP) 040 438

				198	36					Period o	f record:	1976 · 19	85		
Determinand	Units	Samples	Mean	Max	Date	Min	Date	Mean	5%	Percent 50%	iles 95%	J·M	Querteri A-J	ly evera J.S	0.0
Tomperature	*C	24	9.5	20 0	16/06	0.5	10/02	11.1	2 9	110	20 5	5 1	12 9	17.3	8 7
ρH	pH units	26	80	8.8	16/06	7 2	31/12	80	7.6	7.9	8 7	79	8 2	8 1	7 B
Conductivity	µS/cm	26	907	1184		430		974	614	930	1188	824	893	1030	951
Suspended solids	mg/l	26	30 4	163 0		70	17/10	27.9	60	18 0	89 2	36.3	21 1	17.0	315
Dissolved allygen	mg/I O	24	11.31	14.40	27/02	9 20	30/07	10.4	7.6	10.2	13 2	10.6	9.5	B 7	9.7
Biochemical oxygen demand	mg/I O	23	35	8.5	16/06	10	28/01	3.1	1.1	2.7	6.5	2 9	4.3	29	23
Ammoniacal nitrogen	mg/I N	26(1)	0 400	1 550	27/02	<0.010	06/05	0 24	0 0 1	0 15	0.73	0.47	0 14	0 10	0.25
Mitrate	mg/I N	26	10 92	13 60	16/01	6 60	11/03	10 4	7.5	10 1	14.2	113	9 4	9.8	11 1
Chloride	mg/l CI	26	76 4	1120		48 0	18/04	73 5	36 7	725	105 7	63 B	64 3	88 3	78 4
Total elitalimity	mg/l CaCO ₃	26	204 0	255 O		145 0	27/11	193 7	144 ?	1970	230 0	186 6	1978	194 8	195 3
Fluoride	mg/LF	14	0 39	0.52	30/07	0 27	09/04	0.37	0 20	0.35	0.51	0 30	0 34	0.49	0.35
Orthophosphate	mg/IP	26	1 780	3 880	17/10	0 540	11/03	1 65	0.40	1 40	3 40	0.98	1 34	2 40	1 90

Aire at Fleet Weir

1986

Harmonised monitoring code 04 005 Measuring authority : Grid reference :

YWA

44 (SE) 381 285

Flow measurement station Catchment area (sq km) : Grid reference

027080 - Fleet Weir 44 (SE) 381 285

				198	6			_	1	Period o	f record:	1976 - 19	85		
Determinand	Units	Samples	Mean	Mex	Date	Min.	Date	Mean	5%	Percenti 50%	iles 95%	J-M	Quarter Quarter	— ly avera J.S	
	٠.				_			_						_••	• •
Flow	m³/s	365	20 98	144 5	15/04	4 540	11/10								
Temperature	•C	51	10 7	200	02/07	20	08/01	12 6	43	120	210	7.0	146	18 1	106
pH	pH units	53	7.5	79	03/11	7.2	19/06	7.5	7 1	7.5	7.8	7.6	7.5	7.4	7.5
Conductivity	µS/cm	53	715	956	24/02	393	26/11	696	388	660	1181	674	695	795	617
Suspended solids	mg/l	53	26.5	147 0	16/04	6.0	12/08	28 0	9 2	17.6	85.5	318	29 5	17.7	33 2
Dissolved oxygen	mg/I O	53	7.76	11.70	02/01	0.30	25/07	7.9	3 8	8 1	11.5	10.3	7 1	5.6	
Brochemical oxygen demand	mg/I O	53	8 9	15 4	22/10	3 B	22/12	7.6	3 8	6.6	14.5	7.4	8.5	73	7.1
Ammon acal nitragen	rrg/IN	53	2 050	6 090	10/10	0 ' 10	14/01	2 30	0 47	1 80	5 80	2 20	2 45	2.6	1 92
Nitrite	∞g/ : N	53	0 340	1 030	14/07	0.050	16/04	0.35	0.07	0.30	0.84	0.17	0.42	0.53	0.26
Nitrate	mg/+N	53	4.24	7 25	22/09	1 79	26/11	5 1	2 7	5.0	7.9	4 4	5 3	5.9	4.7
Chlaride	mg/l Cl	53	73.7	165 0	06/02	26.3	22/10	84 4	31.0	75 B	168 O	B3.1	85 4	974	714
Total elkahnity	mg/I CaCOs	25	114.7	1570	16/09	66 4	16/04	120.3	75.0	123 0	159.5	114.0	123 0	128 3	
Fluoride	mg/IF	26	0 17	0 32	22/05	0 11	28/10	0 17	0 1 1	0 17	0.26	0 13	0.18	0.21	0.16
Orthophosphate	mg/LP	53 (2)	1 340	5 360	02/07	<0.100	14/01	1.47	0 20	1 19	3 69	0.89	1 54	2 22	1 21

Nene at Wansford

1986

Harmonised monitoring code 05 511 Measuring authority:

Grid reference

52 (TL) 082 996

Flow measurement station: 032001 - Orton Catchment area (sq km)

Grid reference :

52 (TL) 166 972

Period	of	record.	1976	1985

Determinand	Units	Samples	Mean	Mex.	Date	Min.	Date	Mean		Percenti			Quarter	ty averag	204
					-				5%	50%	95%	J-M	A J	J-\$	0.D
Temperature	*C	57	10 9	22 0	02/07	10	11/02	11.6	30	110	210	5.3	13 7	18 0	8 4
pH	pH units	56	80	8 6	14/05	76	01/12	8 1	77	80	89	79	B 3	B 2	79
Conductivity	μS/cm	56	967	1162	15/09	612	14/01	920	706	895	1289	893	887	946	955
Suspended solids	mg/l	56	24 4	172 0	31/12	10	15/09	200	40	13 4	515	28 4	20 2	14.1	18.5
Dissolved oxygen	mg/I O	57	10 46	13 30	26/02	7.15	15/07	10 7	79	10.8	13 2	12 0	10 9	9 2	10.8
Biochemical divigen demand	mg/I O	57	3.5	9 4	20/05	10	18/08	3 8	1.4	30	90	3 2	5 7	3.5	2.5
Ammoniacal nitrogen	mg/LN	57 (7)	0 320	1 800	05/03	< 0 020	07/05	0.37	0.05	0 19	1 38	0.76	0 18	0 12	0.53
Nitrite	mg/I N	56 (5)	0 120	0 400	23/06	< 0 0 1 0	23/09	0 11	0 03	0 10	0.20	0.09	0 12	0.08	0 13
Nitrate	mg/LN	57	1131	17 27	04/02	5 10	30/07	94	53	90	14 B	12 0	9 1	67	10.3
Chloride	mg/I CI	55	73 5	105 0	11/02	39 0	01/04	733	40 1	690	120 7	65 4	66 4	83 1	778
Total elkeknity	mg/I CaCO ₃	55	200 6	24B O	23/08	150 0	07/01	209 7	170 0	2100	240 0	209 9	209 9	211.1	207.5
Orthophosphate	mg/LP	54	1.280	2 520	20/10	0 360	14/01	1 07	0 24	0 98	2 21	0 68	0 84	1 42	1.40

1998

1986

Stour at Langham

1986

Harmonised monitoring code: 05 810

Measuring authority: Grid reference :

62 (TM) 026 345

Flow measurement station: Catchment area (sq km) Grid reference

036006 - Langham 5780

62 (TM) 020 344

Determinand	Units	Semples	Mean	Max.	Date	Min.	Date
Temperature	•c	36	11.7	23 0	17/07	10	03/03
pΗ	pH units	47	82	8 8	08/05	7 2	27/02
Conductivity	μS/cm	47	926	1300	09/06	760	18/08
Suspended solids	mg/l	47	10 8	45 0	20/11	20	06/11
Dissolved oxygen	ma/I O	45	10 B6	13.90	27/05	6 00	06/11
Biochemical olygen demand	ma/LO	45(1)	3 0	9 4	27/05	<10	17/07
Ammoniacal nitrogen	mg/LN	47(20)	0 120	0.730	24/04	0 020	18/03
Ninte	mg/LN	13	0 090	0 210	19/08	< 0.020	31/07
Nitrate	mg/IN	47	9 4 7	21.00	24/04	3 10	03/07
Chloride	mg/l Cl	47	66.0	85.0	08/07	44 0	24/04
Total elkalinity	mg/I CaCO	24	242 9	270 0	27/02	2100	24/04
Orthophosphate	mg/LP	48	0 870	1 400	08/07	0 320	30/12

Mean		Percent	iles		Quarter	ly avera	pes
	5%	50%	95%	J-M	A-J	J-S	0.D
11,1	20	110	20 0	48	135	17 1	8.2
8 2	78	8 1	89	80	8 4	8 2	80
911	740	920	1100	925	873	894	957
165	30	100	47 9	20 5	20 2	114	14.4
:08	7.5	10.8	14 0	12 1	116	89	10 5
3 1	10	23	97	23	5 5	28	2 2
0 13	0 02	0.08	0.40	0 22	0.08	0 08	0 15
0 08	0 02	0 0 7	0 16	0.07	0 10	0.05	0.09
8 5	23	79	160	113	8 1	4.2	9.0
674	39 0	66 0	99 1	54 8	60 5	779	75 i
242 2	190 0	2500	2800	237 8	238 6	247.3	245 1
0.63	0.12	0.50	1.40	0.40	0.46	0.36	0.01

Period of record: 1976 - 1985

Thames at Teddington Weir

1986

Harmonised monitoring code 06 010

Measuring authority Grid reference

51 (TQ) 171 714

Flow measurement station: 039001 - Kingston Catchment area (sq km) Grid reference

9948.0

51 (TQ) 177 698

				190			
Determinand	Units	Samples	Mean	Max.	Date	Min	Date
Temperatura	•c	24	117	20 0	10/07	20	20/02
ĎН	pH unite	28	8.0	8 7	22/04	76	30/0:
Conductivity	µS/cm	23	653	745	:7/03	548	19/11
Suspended spikts	mg/l	22	28 3	940	18/12	48	08/10
Dissorved oxygen	mg/' O	15	:0 B7	13.20	13/05	7 80	13/08
Biochemica oxygen demand	mg/I O	28(1)	36	86	24/06	<10	11/09
Ammoniscal nitrogen	~g/IN	27(5)	0 280	1.300	05/03	0.040	22/04
Nitrate	mg/FN	27	6 85	8 90	22/04	4 80	10/07
Chloride	mg/I CI	27	43.4	610	17/04	27 0	19/11
Total efteknity	mg/I CaCO ₃	22	189 4	216 0	12/05	1100	19/11
Orthophosphate	mg/IP	27	1.310	2 700	08/10	0 520	09/01

Mean		Percenti	iles		Quarter	ly avera	ges
	5%	50%	95%	J-M	A-J	J.S	0.0
115	35	110	20 5	5 9	136	183	9 3
8.1	7 7	80	B 7	8.0	8.3	8.0	79
573	480	578	660	571	554	594	572
223	48	14 1	78 0	23 0	78	5 9	16.5
10.1	7 1	10	13 :	114	.06	8 8	9.8
29	10	23	6.5	2 1	4 1	3 1	2.2
0 33	0.01	0.22	1 00	0.29	0 22	0 42	0.38
7.5	5.5	7.2	106	8.5	6.6	6.8	7 9
411	300	40 0	58 0	38 8	37.5	45 2	42 9
185 7	14B O	189 0	2130	184 9	1916	190 5	175 7
1 30	0 39	1.08	2 94	0.77	105	2 03	1.41

Period of record, 1976 - 1985

Great Stour at Bretts Bailey Bridge

1986

Harmonised monitoring code: 07 003 Measuring authority Grid reference

SWA 61 (TR) 187 603

Flow measurement station: Catchment area (sq km) Grid reference

040011 - Horton 345.0 61 (TR) 116 554

				198	16					Period o	i record.	1976 - 19	85		
Determinend	Units	Samples	Mean	Max.	Date	Min	Date	Mean		Percent			Quarter		
									5%	50%	95%	J-M	A J	J.S	0.0
Temperature	•c	23	110	210	30/08	3 5	30/01	11,6	4.5	11.9	18 0	6.8	13 0	16 4	10.3
pH	pH units	25	7.9	8 4	13/05	7.4	30/01	78	73	78	83	77	79	7.9	77
Conductivity	µS/cm	23	857	801	24/03	540	26/08	689	570	698	785	683	675	689	712
Suspended solids	mg/l	25	13 4	44 0	24/11	1.7	30/06	130	20	6 9	52 0	23 0	7.8	5 9	16.5
Dissolved oxygen	mg/1 ()	19	9 26	11 30	03/11	6 00	26/08	110	77	109	150	116	117	10 1	10.4
Biochemical daygen demand	mg/I O	25	2.6	4.1	19/02	1,1	14/10	2.8	1 2	26	5.4	3 1	3 1	2 4	2.5
Ammoniacal nitrogen	mg/I N	25(1)	0 290	0 820	19/02	< 0 020	22/07	0 35	0.01	0 15	1 35	0 52	0 39	0 11	0.37
Nitrite	mg/I N	25	0.100	0.200	19/02	0 040	22/09	0 11	0 03	0 08	0 33	0 10	0 13	0 1 1	0 12
Nitrate	mg/I N	25	6 2 1	8 80	29/04	3 50	02/07	5 7	3 B	5 5	8.5	6 7	5 2	48	6.3
Chloride	mg/I CI	25	57.1	910	11/03	40 0	26/08	48 5	360	47.0	64 5	488	45 5	4/9	52.2
Total strainty	mg/I CaCO ₃	22	207 0	250 O	14/10	165 0	22/10	214 1	1486	224 0	243 0	198 5	2199	228 Q	209 5
Orthophosphate	mg/IP	25	1 010	1.700	14/10	0 1 10	16/01	0 89	031	0.83	1 64	0 62	0 86	1.10	1 02

Itchen at Gatersmill

1986

Harmonisad monitoring code `07 013 Measuring authority: Grid reference :

41 (SU) 434 156

Flow measurement station Catchment area (sq km) : Grid reference :

042010 - Highbridge

360.0

41 (SU) 467 213

				198	6				1	Period of	record:	1976 - 19	5		
Determinand	Units	Samples	Mean	Max.	Date	Min	Date	Mean		Percenti	les		Quarter	y averaç	203
									5%	50%	95%	, J·M	A-J	J.S	0.0
Temperature	• C	31	110	18 0	03/07	40	26/02	10.7	40	100	18 3	6 9	13.0	16.3	97
pH	pH units	32	8 1	8 6	06/08	7.8	02/01	8.1	78	8 1	84	8 1	8 1	B 2	80
Conductivity	μ\$/cm	31	519	605	06/08	415	02/01	489	431	490	558	493	477	4/8	503
Suspended solids	mo/l	23	108	75 0	24/03	24	04/09	13 2	25	86	38 2	23 2	10 5	4 B	139
Biochemical oxygen demand	mg/1 0	28	2 2	38	07/05	09	04/09	2 1	10	2 1	3 5	22	24	1.5	2.2
Ammoniscal nitrogen	mg/IN	32(4)	0 150	0 374	24/03	< 0.050	20/06	0 10	0.01	0.09	0 23	0 15	0.05	0.05	0 10
Nitrite	mg/I N	32	0 050	0 1 10	03/12	0.280	12/08	0 05	0 03	0.04	0.09	0.04	0.04	0.05	0 06
Nitrate	mg/IN	31	531	6 36	26/02	3 77	04/09	5.2	4 1	5 2	60	5 6	5 1	4.6	5 0
Chloride	mg/1 C1	32	22 4	28 8	09/10	15.5	12/08	20.6	17.4	20 0	24 6	20 6	19 5	20 1	219
Fluoride	mg/IF	23	0.08	011	06/08	0 03	10/04	0 07	0.04	0 07	0 10	0 07	001	001	007
Orthophosphate	mg/iP	32	0 390	0.830	09/10	0 049	07/05	0 36	0 18	0.35	0 66	0 29	0 35	0.43	0 46

Axe at Whitford Road Bridge

1986

Harmonised monitoring code 09 001 Measuring authority Grid reference

30 (SY) 262 953

Flow measurement station Catchment area (sq km):

045004 - Whitford 288.5

Grid reference

30 (SY) 262 953

				198	6				1	Period o	f record:	1 <u>9</u> 76 - 19	1985									
Determinend	Units	Samples	Mean	Max	Date	Min	Date	Mean		Percent	les		Quarter	ly avera	908							
									5%	50%	95%	J-M	A-J	J.S	0.0							
Temperature	*C	17	10 6	19 0	15/07	0.5	26/02	110	4.0	10.3	19 0	6 2	12 3	16.5	8 /							
рH	pH units	17	7 9	8.3		7.4		7.9	7.4	7 9	8.5	Žã	8 1	80	7.7							
Conductivity	μS/cm	17	373	450	28/07	250	08/12	386	295	390	460	360	386	420	3/5							
Suspended solids	mg/l	17	194	165 0	08/12	20	01/09	13 6	20	5 2	51.7	18 7	10 7	5 9	198							
Dissolved oxygen	mg/I O	17	1101	14 40	26/02	8 40	28/07	10 9	83	109	13 7	119	112	99	10 7							
Biochemical paygen demand	mg/I O	17	24	8 4	OB/12	0.6	29/09	2.1	08	17	4 5	2 2	2.3	19	19							
Ammoniacal nitrogen	mg/I N	17	0 160	0510	08/12	0 020	05/08	0 10	0.01	0.06	0.30	0 16	0 08	0.06	0.11							
Nitrite	mg/l N	17	0.060	0 134	11/06	0 026	12/02	0.05	0.01	0.04	0 10	0 04	0.06	0 03	0.05							
Nitrata	mg/I N	17	4 08	5 30	26/02	3 40	11/06	36	2.1	33	5 7	39	30	2.8	4.7							
Chloride	mg/I CI	17	216	29 0	28/07	189	01/09	23.2	190	220	29 0	23 7	210	23 1	25 0							
Total alkalinity	mg/I CaCO ₃	17	135 5	1710	28/07	810	21/11	135 8	88 9	139 0	168.1	117.1	1415	155 1	128 2							
Orthophosphate	mg/I P	17	0 270	0 440	OB/12	0 180	14/01	0 24	0 12	0 22	0 44	0 18	0 23	0 30	0 22							

Exe at Thorverton Road Bridge

1986

Harmonised monitoring code 09 036 Measuring authority: Grid reference :

21 (SS) 936 016

Flow measurement station: 045001 - Thorverton Catchment area (sq km) Grid reference

600 9

21 (SS) 936 016

				198	6			Period of record: 1976 - 1985							
Determinand	Units	Samples	Mean	Мах.	Date	Min.	Date	Mean		Percenti			Quarter		
÷									5%	50%	95%	J-M	A-J	J.S	0.0
Tamparetura	•c	15	112	18 0	21/07	50	06/01	11.4	4.1	10.5	19.0	6 4	13 0	16 B	9.5
pH	pH units	15	76	8:	27/05	73	30/01	7.5	68	7.5	8 2	7.3	77	7.5	7.3
Conductivity	μS/cm	15	177	244	22/07	126	27/11	171	121	162	245	154	178	195	158
Suspended solids	mg/l	15	·05	35 0	08/04	20	29/09	11.4	20	60	417	14.5	10 1	7.0	140
Dissolved oxygen	mg/I O	15	1149	13 90	14/03	8 60	21/07	110	88	11.2	13.3	12 2	110	96	113
Biochemical oxygen demand	mg/I O	15	18	3 8	08/04	0.7	24/11	1 7	0.8	16	3 1	16	2 2	1.5	15
Ammoniacal nitrogen	mg/I N	15	0 0 7 0	0 320	08/04	0.010	29/09	0.07	0.01	0.05	0 16	0.07	0.08	0.06	0.06
Nitrite	mg/I N	15	0 030	0.087	30/06	0 006	30/01	0.02	0.01	0 02	0.06	0.02	0.04	0.03	0.02
N.trote	mg/I N	15	2 76	3 50	30/01	2 10	05/08	2.4	1.4	23	38	29	2.3	19	2 4
Chloride	mg/l Cl	15	15 1	20 3	22/07	12 1	27/05	18 1	13.2	170	275	173	17 B	20.4	167
Total alkahnity	mg/I CaCO ₁	15	43 0	65 0	21/07	270	24/10	40 6	23 4	370	67.6	32 7	44 6	49 3	35 /
Orthophosphate	mg/I P	15(1)	0 110	0 250	22/07	<0.010	24/10	0.12	0 03	0.08	0 32	0.06	0 12	0 2 1	0.08

Dee at Overton

1986

Harmonised monitoring code 10 002 Measuring authority: Grid reference.

WELS 33 (SJ) 354 427 Flow measurement station Catchment area (sq km) Grid reference :

067015 - Manley Hall 1019.3 33 (SJ) 348 415

				198	16			Period of record: 1976 - 1985							
Determinand	Unite	Samples	Mean	Мак.	Date	Min.	Date	Mean		Percenti			Quarter		
									5%	50%	95%	J-M	A-J	J.S	0.0
Temperature	• C	27	9:	16.2	07/07	0.2	27/02	10 0	30	96	180	4 9	11.7	:54	7 9
pH	pH units	27	73	7.8	11/06	6.8	14/11	72	6.5	7.2	78	7 1	72	72	7.1
Conductivity	μS/cm	27	166	287	27/02	74	28/08	172	98	163	263	160	209	178	138
Suspended solids	mg/I	27	126	99 0	18/04	10	14/02	83	10	30	33 2	118	4.6	5 4	12 0
Dissolved oxygen	mg/I O	25	1:44	15.12	27/02	9 2 1	04/08	11.1	9.	112	13 2	12 5	108	9.7	11.7
Biochemical oxygen demand	ma/LO	27(5)	10	2.1	21/10	<05	19/01	1 2	0.5	1.1	2.6	1.2	15	1 2	1 '
Ammoniacal nitrogen	mg/I N	27(3)	0.070	0.220	27/11	< 0.020	14/02	0.04	0.01	0.03	0 12	0.06	0.04	0 03	0.05
Nitr 10	mg/I N	26(7)	0 020	0.090	06/10	<0.010	19/01	0.02	0.01	0 0 1	0.04	0 02	0 02	0.02	0.02
Nitrate	mg/IN	26(1)	1 17	2.05	18/04	-:010	06/01	1.1	0.4	10	2.1	15	1 2	08	1.1
Chloride	mg/l Cl	27	20 4	35 3	27/02	12 1	27/11	19.1	100	176	32 O	18 7	22 2	20 1	15 4
Orthophosphate	mg/LP	26(B)	0 090	0.280	19/01	0 040	06/01	0 04	0.01	0.03	0.13	0 04	0 05	0.06	0.05

Carron at A890 Road Bridge

1986

Harmonised monitoring code 11 009 * Measuring authority

HRPB

18 (NG) 938 425 Grid reference

Flow measurement station Catchment area (sq km) Grid reference

093001 - New Kelso

137.8 18 (NG) 942 429

				198	16					eriod of	record	1976 - 19	85		
Determinend	Units	Samples	Meun	Mex.	Date	Min.	Date	Mean	1	Percenti	les		Quarterl	y averaç	208
									5%	50%	95%	J-M	A-J	J-S	0·D
Tomperatura	⁺C	12	77	13 1	09/07	24	12/02	8.6	2.0	87	15.2	36	116	129	7.2
pH	pH ⊾nits	12	64	7.1	09/07	5 4	29/01	6.7	59	6.7	75	69	68	6.7	66
Conductivity	µS/cm	' 2	47	75	29/0:	30	27/10	46	27	47	65	51	50	44	41
Suspanded solids	mg/l	• 2	14	44	27/10	0.6	29/01	15	02	0.9	49	2.0	14	1.4	15
Disso ved oxygen	mg/I O	٠2	1159	'3 67	12/02	10 06	06/08	113	98	113	13 2	12 7	110	101	11.4
Biochemical oxygen demand	mg/ O	12	0.7	1 2	22/05	0.2	06/08	0.8	0.2	0.8	1 4	0.9	0.7	0.8	O 9
Ammoniscal hitrogen	~g/ N	12	0.010	0.016	22/05	0.003	26/11	0.01	0 00	0.01	0 03	0.01	0.01	0.01	0.01
Nitrate	mg/LN	1.	0.06	0 10	12/02	0 03	27/10	0 1	0.0	0.1	0 1	0.1	0.1	0.1	0 1
Chlorida	mg/I CI	12	13 1	25 5	29/01	80	27/10	109	57	10 0	18 2	14.3	114	8 2	98
otal eftaknity	mg/LCaCO ₃	12	3 3	80	12/02	0.8	27/10	75	2 5	50	15.0	7.2	8.0	80	70

Spey at Fochabers

1986

Harmonised monitoring code Measuring authority Grid reference

NERPB

38 (NJ) 341 596

Flow measurement station Catchment area (sq km) Grid reference

008006 - Boat o Brig

28612 38 (NJ) 318 518

	1986							Period of record 1976 - 1985								
Determinand	Units	Samples	Mean	Max.	Date	Min	Date	Mean	1	Percenti			Quarter	y avera;	305	
									5%	50 %	95%	J·M	A-J	J·S	O · D	
Temperature	•c	11	9 4	19.0	16/07	30	24/04	9 1	1.7	90	√. ₈₇	3 2	10 0	15.2	6 4	
рн	pH units	12	7 2	78	16/07	6.5	03/12	7.2	6.2	12	79	6 9	72	75	7.0	
Conductivity	#S/c≠	12	14	103	17/07		03/12	11	50	- 77	110	82	7.1	84	70	
Suspended solids	mg/l	12	27	9.0	19/08			4 0	0.0	20	166	3 1	45	37	4 4	
Biochemical oxygen demand	mg/LO	12	09	1.0	24/04	07	16/09	0.9	04	09	1 0	0.8	1.1	09	09	
Ammoniacal nitrogen	mg/LN	12	0.050	0.280	19/08	0.006	13/02	0.04	0.00	0.03	0.12	0.03	0.05	0.04	0.04	
North	mg/LN	12	0 0 1 0	00.9		0 002	21/10	0.01	0 00	0.01	0 0 1	0 0 1	0 0 1	0.01	0 0 1	
Nitrate	mg/I N	12	0.26	0.55	19/08	0.12	01/07	0.4	0.2	0.3	0.7	05	03	0.3	03	
Ch'orkfe	mg/LCI	٠2	10 B	26 0	19/08	60	21/05	1, 0	7.0	110	160	.5 8	'07	112	9 B	
Total a kalinity	mg/I CaCO ₃	:2	26 1	35 O	16/07	20 0	13/02	27 ()	:53	25 O	40 0	23 7	25 5	3:3	26 3	
Orthophosphate	mg/LP	. 5	0 033	0 178	17/07	0 002	13/02	0 03	0 00	00.	0 11	0 02	0 02	0 04	0 02	

Almond at Craigiehall

1986

Harmonised monitoring code 14 008 Measuring authority

FRPR

Grid reference :

36 (NT) 165 752

Flow measurement station Catchment area (sq km) Grid reference

019001 - Craigiehall

369.0 36 (NT) 165 752

1986								Period of record 1976 - 1985								
Determinand	Units	Samples	Meen	Max.	Date	Min.	Date	Mean		Percenti	les		Quarter	y avera	985	
									5%	50%	95%	J·M	<u>A</u> -J	J-S	0.0	
Temperature	' C	:7	9 1	20 0	26/06	10	08/01	98	22	.00	180	4 3	119	14 8	12	
pH	ρΗ units	.8	7.6	78	26/06	69	05/03	7.5	7 1	75	80	74	7.7	7 5	7.5	
Conductivity	μS/cm	٠6	585	990	14/07	205	25/:1	605	32'	585	878	512	684	680	521	
Suspended solids	mg/l	. 2	38 2	186.0	05/03	4.0	23/07	195	3.0	12.0	62.5	23.0	115	17 7	26 O	
Dissolved oxygen	mg/LO	11	9 50	12.00	05/02	6 70	24/09	93	5.2	96	12.2	114	94	6.9	99	
Blochemical oxygen demand	mg/LO	٠0	32	4 2	23/07	1.7	20/08	34	: 5	28	13	3 4	38	3 2	32	
Ammoniacal nitrogen	mg/LN	• 1	1 230	3 100	08/01	0.210	25/11	1 20	0.22	0.95	3 05	1 19	1 49	1 27	0.83	
N tote	mg/LN	:0	0 160	0 940	23/07	0.040	25/1:	0.25	0.04	0 '5	0.82	0.06	0.33	0.46	0.12	
N trate	mg/l N	10	3 /3	6 60	24/09	2 2 1	25/1:	38	2 1	3 /	5.5	3 /	40	3 /	3 /	
Chlorida	~a/' CI	10	62.6	137 0	08/01	2.0	25/11	64 0	29.2	62.0	:03.0	57.7	73 0	72 4	51 1	
Total elicenty	mg/ CaCO ₃	14	120 7	225 0	23/07	45 0	25/11	122 3	55.8	122.5	190 0	101 2	14'9	137 4	105.2	
Orthophosphate	rg/⊢P	11	0 620	2 040	23/07	0 110	05/02	0.74	0 09	0 43	2 09	0 23	081	1 34	031	

Leven at Renton Foot Bridge

1986

Harmonised monitoring code Measuring authority Grid reference

17 005 CRPB 26 (NS) 389 783 Flow measurement station Catchment area (sq km) Grid reference

085001 - Linnbrane 784 3 26 (NS) 394 803

	1986						Period of record 1976 - 1985								
Determinand	Units	Samples	Mean	Max	Date	Min	Date	Mean		Percenti	les		Quarteri	y averaç	206
									5%	50%	95%	J·M	A-J	J.S `	0.0
Temperatura	*C	12	90	170	16/07	20	11/02	93	22	90	178	37	10.8	15.3	78
pH	pH units	12	72	75	6/04	6 B	1'/1'	7 1	67	7 '	16	70	7.1	7.1	69
Conductivity	ııS/c·••	12	73	88	09/10	65	1 702	73	60	70	97	73	75	71	74
Suspended solids	mu/l	12(1)	33	60	16/04	<10	11/08	5 2	10	40	130	7.4	44	4 4	48
Disso ved oxygen	ma/LO	12	1 ' 24	12 90	13/03	9 20	16/07	.09	9.2	10 9	127	12 4	113	9.6	10.7
Biochemica oxygen demand	ma/LO	12	18	3 4	12/05	0.8	16/07	1.7	0.6	16	28	23	18	1.2	. 4
Nitrato	mg/LN	12	0.33	0.45	16/04	0.20	11/08	0.3	0.1	0.3	0.5	0.4	0.3	U 2	0.3
Chlorida	ma/I CI	12	8 7	110	16/04	70	04/12	10.4	6.0	100	20.5	113	10.8	10 4	9.3
Total shaknity	mg/I CaCO ₃	12	12.4	16.0	16/04	8.0	13/03	17 G	12.0	18 0	23 8	16 7	179	18 2	17.7

DIRECTORY OF MEASURING AUTHORITIES

Water Authorities*	Address	Code
Anglian Water	Ambury Road, Huntingdon PE18 6NZ	AWA
Northumbrian Water	PO Box 4, Regent Centre, Gosforth, Newcastle-upon-Tyne, NE3 3PX	NWA
North West Water	Dawson House, Great Sankey, Warrington, WA5 3LW	NWWA
Severn-Trent Water	Abelson House, 2297 Coventry Road, Sheldon, Birmingham, B26 3PU	STWA
Southern Water	Guildbourne House, Worthing, W. Sussex BN11 1LD	SWA
South West Water	Peninsula House, Rydon Lane, Exeter EX2 7HR	SWWA
Thames Water	Nugent House, Vastern Road, Reading RG1 8DB	TWA
Welsh Water	Plas-y-ffynnon, Cambrian Way, Brecon, Powys LD3 7HP	WELS (WELSH)
Wessex Water	Wessex House, Passage Street, Bristol BS2 0JQ	WW A
Yorkshire Water	West Riding House, 67 Albion Street, Leeds LS1 5AA	YWA

^{*} The Government's current legislative programme provides for the creation of water utility plcs to take over the Water Authorities' responsibilities for water supply and sewerage and for the setting up of a new body, the National Rivers Authority, to operate their regulatory and river management functions. Responsibility for most hydrometric activities will pass to the NRA. As part of the necessary restructuring prior to this major water industry reorganisation, regional NRA units are being established in each Water Authority. The addresses of these units will be given in the 1987 Yearbook.

River Purification Boards

Clyde River Purification Board	Rivers House, Murray Road, East Kilbride, Glasgow G75 OLA	CRRP
Forth River Purification Board	Colinton Dell House, West Mill Road, Colinton, Edinburgh, EH13 0PH	FRPB
Highland River Purification Board	Strathpeffer Road, Dingwall IV15 9QY	HRPB
North East River Purification Board	Woodside House, Persley, Aberdeen AB2 2UQ	NERPB
Solway River Purification Board	Rivers House, Irongray Road, Dumfries DG2 0JE	SRPB
Tay River Purification Board	1, South Street, Perth PH2 8NJ	TRPB
Tweed River Purification Board	Burnbrae, Mossilee Road, Galashiels TD1 1NF	TWRP

Other measuring authorities

Borders Regional Council (Directorate of Water and Drainage Services)	West Grove, Waverley Road, Melrose TD6 9SJ	BRWD
Corby (Northants) and District Water Company	Geddington Road, Corby, Northants NN18 8ES	CDWC
Department of the Environment for Northern Ireland	Water Service 3 Federick Street Belfast BT1 2NS	DOEN
Dumfries and Galloway Regional Council (Water and Sewerage Department)	70 Terregles Street, Dumfries DG2 9BB	DGRW
Essex Water Company	Hall Street, Chelmsford, Essex CM2 OHH	EWC
Geological Survey of Northern Ireland	20 College Gardens, Belfast BT9 6BS	GSNI
Grampian Regional Council (Water Services Department)	Woodhill House, Ashgrove Road West, Aberdeen AB9 2LU	GRWD
Highland Regional Council (Water Department)	Regional Buildings, Glenurquhart Road, Inverness IV3 5NX	HRCW
Institute of Hydrology	Maclean Building, Crowmarsh Gifford, Wallingford, OX10 8BB	IH
Lothian Regional Council (Department of Water and Drainage)	8 Cockburn Street, Edinburgh EH1 1NZ	LRWD
Newcastle and Gateshead Water Company	P O Box 10, Allendale Road, Newcastle-upon-Tyne NE6 2SW	NGWC
North of Scotland Hydro-Electric Board	16 Rothesay Terrace, Edinburgh EH3 7SE	NSHE
Strathclyde Regional Council (Water Department)	419 Balmore Road, Glasgow G22 6NU	SRC₩
Tayside Regional Council (Water Services Department)	Bullion House, Invergowrie, Dundee DD2 5BB	TRWS

PUBLICATIONS - in the Hydrological data UK series

Title	Published	Price (inclusi	ve of					
		second class	postage					
		within the UK)						
Yearbooks:		Loose Leaf	Bound					
Yearbook 1981	1985	£10	£12					
Yearbook 1982	1985	£10	£12					
Yearbook 1983	1986	£12	£15					
Yearbook 1984	1986	£12	£15					
Yearbook 1985	1987	£12	£15					
Yearbook 1986	1988	£12	£15					
Reports:								
Hydrometric Register and Statistics 1981-5	1988	£12	£15					
The 1984 Drought'	1985		£12					

The Yearbooks are available as bound volumes or as sets of pre-punched sheets for insertion in a ring binder designed to hold the five yearbooks in each publication cycle together with the five-yearly catalogue of summary statistics. The ring binder for 1981-5 may be purchased for £40 to include the

1981, 1982, 1983, 1984 and 1985 Yearbooks and the statistical volume. The ringbinder to hold the Yearbooks for 1986-90 may be purchased for £5.

Organisations and individuals purchasing the ring binder will be entitled to receive free updates of the data sheets for individual Yearbooks when a significant revision to the published data is made.

All the Hydrological data UK publications and the ring binder may be obtained from:-

Institute of Hydrology Maclean Building Crowmarsh Gifford WALLINGFORD OXFORDSHIRE OX10 8BB

Telephone: Wallingford (0491) 38800

Enquiries or comments regarding the series, or individual publications are welcomed and should be directed to the Surface Water Archive Office at the above address.

Hydrometric Register and Statistics 1981-5

This reference volume includes maps, tables and statistics for over 800 river basins and 150 representative observation boreholes throughout the United Kingdom. The principal objective of the publication is to assist data users in the selection of monitoring sites for particular investigations and to allow more effective interpretation of analyses based upon the raw data. To this end, concise gauging station and catchment descriptions are given for the featured flow measurement stations – particular emphasis is placed on hydrometric performance, especially in the high and low flow ranges, and on the net effect of artificial influences on the natural flow regime.

Summary hydrometric statistics, for each of the years 1981-5, are provided alongside the corresponding long term averages, or extremes, to allow the recent variability in surface and groundwater resources to be considered in a suitable historical context.

The 1984 Drought

This, the first, occasional report in the Hydrological data UK series concerns the 1984 drought. The report documents the drought in a water resources framework and its development, duration and severity are examined with particular reference to regional variations in intensity. Assessments are made of the likely frequency of occurrence of the drought and its magnitude is considered both in the perspective provided by historical records of rainfall and runoff, and in the context of the recent somewhat erratic climatic behaviour.

ABBREVIATIONS

Note: The following abbreviations do not purport to represent any standardised usage; they have been developed for use in the Hydrological data UK series of publications only. Where space constraints have required alternative forms of these abbreviations to be used, the meaning should be evident from the context.

AOD	Above Ordnance Datum
Bk	Beck
Blk	Black
Br	Bridge
Brk or B	Brook
Brn	Burn
Ch	Channel
C/m	Current meter(ing)
Com	Common
Dk	Dike
Dr or D	Drain
D/s	Downstream
E	East
Frm	Farm
G/s	Gauging station
Gw	Groundwater
HEP	Hydro-electric power
Ho	House
Hosp	Hospital
L	Loch or lake
Lb	Left hand river bank
	(looking downstream)
Ln	Lane
Lst	Limestone
Ltl	Little
MAF	Mean annual flood
Mkt	Market
Ml/d	Megalitres per day
Mnr	Manor
N	North
NSHEB	North of Scotland Hydro-Electricity
	Board

ORS	Old Red Sandstone
Pk	Park
Pop	Population
POR	Period of record
PS	Pumping station
Pt	Pont
PWS	Public water supply
Rb	Right hand river bank
	(looking downstream)
R/c	Racecourse
RCS	Regional communications system
Rd	Road
Res	Reservoir
Rh	Right hand
S	South
SAGS	Stour Augmentation Groundwater
	Scheme
Sch	School
S-D	Stage-discharge relation
SDD	Scottish Development Department
SE	South East
Sl	Sluice
Sp	Spring
St	Stream
STW	Sewage Treatment Works
SW	South West
TS	Transfer scheme
US	Ultrasonic gauging station
U/s	Upstream
W	West
W'course	Watercourse
₩d	Wood
Wht	White
Wr	Weir
WRW	Water reclamation works
Wtr	Water
WTW	Water treatment works

Ntch

NW

O/f

Notch

North West

Outfall or outflow

			1

