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SUMMARY 

1. Soil samples (0-10 cm) were collected at 4-week interval4 for 56 weeks 
from 48 woods in and around the English Lake District, , lo s- 
orignition, moisture content, oxygen uptake, and k $ s e  1.d 
phosphatase activities were measured. 

I 

between soil samples. I 

1 2. Expressing results on a loss-on-ignition basis was more infomat ve 
than on an oven-dry basis, because of differences in 104s-on-ignition 

3. In a principal component analysis of each property over 
the b4 samplings, the first component values represent "smoothed" betwe n- 

plot differences, other components pick out plots which behave 
differently from the majority at certain times. Thefe was lit le 
within-plot variation in pH and loss-on-ignition. r 

4. On a loss-on-ignition basis, the only significant correl lx tions betw h en 
first component values, and between plot means, were sphatase with 
oxygen uptake and cellulase with pH. 
significantly correlated with any of the other P" ' 

I 

5. None of the principal component analyses showed any edidence of he 
existence of distinct clusters of plots; the plots formed a continu us 

studied. 

k 
series, with some outliers, with respect to all t e propert es I 

6 .  - A priori groups, based on (i) pH ~3.8, (ii) pH 3.8-5.0, kiii) pH 
showed no significant difference in moisture content on a 
ignition basis. However, oxygen uptake was significa tly lower in 
(i) than in (ii). Cellulase activity was significan ly greater in 7 
(iii) than in (i) and (ii). Phosphatase activitiy was significan ly 

to 5.0. 

t 
lower in (i) than in (ii), and there appeared to be a peak at pH 3.8 

I I 
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1. INTRODUCTION 

Soil biologists often wish to make comparisons both within and between 

different soil-vegetation types. Such comparisons may be made for a 

variety of purposes, but the soils are usually regarded as systems which 

differ biologically, physiologically, and chemically. One problem in such 

studies has been the comparison of soils with respect to processes or 

variables which show marked fluctuations in amplitude with time. This 

paper describes work on a range of woodland soils in north-west England, 

and shows how such data may be handled. 

2. METHODS 

2.1 Description of the area and sampling methods 

The English Lake District proper is composed of rocks of the Ordovician 

(Borrowdale Volcanics, Skiddaw Slates, Coniston Limestone) and Silurian 

(flags, slates, grits, shales) systems of the Lower Palaeozoic group. 

Around them is a roughly circular girdle of newer strata, partly of 

Carboniferous age (Basement Conglomerate and Carboniferous Limestone) and 

partly belonging to still newer deposits of the Permian and Triassic 

systems. The area is covered by a variable thickness of drift of local 

origin, which on the plots sampled (Figure 1) rarely exceeded 1 m depth, 

and was mostly much less. Apart from those on the limestones, the soils 

are mostly acidic, but less so if they are locally influenced by the 

presence of calcite (Borrowdale Volcanics) or calcareous bands (Silurian). 

In the central Lake District, the annual rainfall exceeds 3810 mm (150 

in), falling to about 1143 mm (45 in) at the periphery (Pearsall and 

Pennington 1973). 

Forty-eight woods in and around the Lake District were selected, one from 

each of forty-seven groups resulting from an association analysis of two 

hundred woods in the area (Bunce 1969) plus Heathop Wood IBP site. These 

woods thus represent the range of diversity of semi-natural (in the sense 

of Westhoff 1970) woodland vegetation in the area. Six of the woods were 

on limestone. Each of the woods was visited once every four weeks, ie 

twelve woods were sampled each week. Samples were collected for fourteen 

of these four-weekly periods (see Appendix 1 to 3). 



Within each wood, a plot was selected at random and a permanedt marker 

placed to locate a 1.6 m x 1.6 m sampling grid. At each sampling, a 

'numbered sampling square (20 cm x 20 cm) was selected rando41y, the sa* 

number being used for each wood. Samples were collected froq the L, LIF. 

and H layers, and from the 0 to 5 cm depth in the A horizon;i the organic 
layers did not occur in all profiles. Tubes of buffered suc ose solution 

'for estimation of mean soil reaperature (Bocock u, lWf, 1977) weje 

placed on and below the L or L/F layer and at 5 cm depth in The A horizon 

in a permanent square. These tubes were changed at each sampiing. 1 

2.2 Laboratory methods 1 1 

In the laboratory, litter and L/F material was shredded andl the soil wbs 

passed, in the fresh moist state, through a 4 mm sieve. Su samples were 

used for the following measurements: t' i 

pH was measured with a glass electrode, adding the minimud quantity bf 

distilled water to the material. With soil, this meant addihg sufficient 

water to make a thick paste. 1 

Loss-on-ignition (LOI) of the oven dry material was determ ned at 5501"~ 

and expressed as percent OD. 

i 
I 
I I 

Hoisture content was determined by oven drying for 40 hours qt 105O~ (OD) 

I I 
Oxygen uptake was measured in a Gilson respirometer (Umbrei et 1964) 
using specially-designed flasks (Howard 1968) with a bath t 1 mperature of 
15°C. This temperature was chosen because it is approximatePy the summer 

mean soil surface temperature, and because we found it to A e the low e. st 
practicable temperature for cellulase measurements. i 

Cellulase was determined by the method of Benefield (1971). The soil was 

buffered at its own pH, and the buffer solution contained a dual1 quantdty 

of penicillin to inhibit microbial growth during the 48 

at 15°C. Three samples of each soil were incubated, 

blank, and the mean of the adjusted test values was taken. i 
I I 

Phosphatase: A slightly modified version of the method of qffman (1967) 

was used. The soil was incubated for three hours at 13"C Lith disodilum 

phenylorthophosphate reagent, buffer (at the soil pH), and Foluene. The 

phenol released from the reagent by phosphatase was determided 

calorimetrically by complexing with dibromoquinonechlorimide. 

I 



Dehydrogenase was determined by a method similar to that of Lenhard 

(1956), but examination of the results, and further detailed studies, 

threw doubt on the validity of the method (Benefield et a1 1977). These 

results will not be considered further. 

2.3 Statistical methods 

PC.4 is a method of displaying relationships among multivariate data (Rao 

1964; Hope 1963; Seal 1968). Initially, the objects are referred to a set 

of axes which represent the original variables. By a linear 

transformation each object is referred to a new set of axes, or 

components, which are orthogonal (uncorrelated). The first component is 

the axis of maximum variability and successive components are axes of 

diminishing variability. In effecting this transformation, the 

eigenvalues (latent roots) and eigenvectors (latent vectors) of the 

correlation matrix are calculated. It can be shown that the sum of the 

variances of the original variates is retained in the sum of the 

eigenvalues, and each eigenvalue gives the proportion of the total 

variance accounted for by the corresponding component. Since the sum of 

the eigenvalues also equals the trace of the matrix, which for a 

correlation matrix equals the number of variables, the percentage of the 

total variability accounted for by each component is given by expressing 

its eigenvalue as a percentage of the number of variables. 

Associated with each eigenvalue is an eigenvector. These vectors may be 

represented in various forms (Hope 1968). In our case they are normalized 

so that the sum of squares of the elements of each e,igenvector is unity. 

Each eigenvector element corresponds to one of the original variables. By 

squaring the appropriate element, we can obtain the proportion of a 

component's variance which is accounted for by a particular variable. The 

component value for each individual is calculated by multiplying the 

appropriate column eigenvector by the row vector of the standardized data, 

obtained by subtracting the variable mean from each value and dividing by 

its standard deviation. 

It is necessary to decide on the number of components which have any 

practical importance. Jeffers (1967) found that, in practice, only those 

components with eigenvalues of unity or greater are likely to have any 



practical importance, but it should be noted that this ie only ani 

approximate guide and the next one or two components should also be 

examined. A detailed consideration of the information condeyed by a 

component is needed to establish its practical value. We ,,have used 

i 
Je'ffers' rule of thumb in the present study. ~nterpretatdon of the 1 
eigenvector weightings may then be attempted fairly simply by vnsidering 

those variables whose absolute weightings are greater than 0.75 times that 1 
of the largest (absolute) eigenvector element, although this: arbitrary 

value should not be overstressed (Jeffers 1967). If both pdsitive and1 

negative weightings are 'significant' in an eigenvector, this 

cdntrast between the corresponding variables. In the interpre 

PCA, it can be useful to have a printout of the standardized da a. T I I 
Principal component analysis of a covariance or correlat on t rdquires the original data to be on interval or ratio scales. Disordered 

multistate data, such as are obtained by allocating 

observations such as absent, rare, common, abundant 

1980) are not suitable. If all the data are binary, 

and cross-products matrix should be analyzed. Here 

measured on ratio scales. I ! 
Single-linkage cluster analysis (Gower & Ross 1969) was used to explore 

the relationships aung the points in the space of the first fe? principal' 

components. This clustering method was chosen because, unlike 

t h o d s  it does not tend to impose a structure on the 

therefore a useful method for exploratory work. It will 

distinct groups of points if they exist. 

I 
I I 

The correlation coefficients between component values and between plot 

means of the different data groups were calculated. I I 

A two-way analysis of variance was carried out on the data for each 

variable, the two factors being plots (48 levels) and sampling times (14 

levels). Bartlett's test for homogeneity of variances was appljed, but it 1 
is known to be sensitive to non-normality, so Scheffe's test, which is 

relatively insensitive to departure from normality, was also cakried out. 1 
Where necessary, variance-stabilizing transformations werg sought. 

However, two-way Anova is fairly robust to heterogeneity of 1 variances 1 
provided that there are no missing values. 

i I 



One-way analysis of variance and Tukey's Honestly Significant Difference 

(of pairs of means) were also used to test a priori divisions of the - 
observations (Section 3.8). 

3. RESULTS 

L, L/F, and H layers were not present in all samplings, so the data were 

analysed separately. This paper presents the results for the 0 to 5 cm 

depth mineral soil samples. 

A preliminary examination was made of the nature of the variation 

expressed in the data. The purposes of this were: 

(a) to determine the dimensionality of the data; 

(b) to explore the interrelationships between the dimensions; 

(c) to eliminate the variables which contribute little or nothing to 

the study (cf Fourt et a1 1971). 

The first step was a principal component analysis (PCA) of the data for 

pH, LOI, moisture content, oxygen uptake, and cellulase and phosphatase 

activities, separately, with the 14 sampling periods treated as variables. 

If the elements of the first eigenvector are all equal and of the same 

sign, then each element will have the value 0.2673. This is so because 

the sum of the squared eigenvector elements is unity and there are 14 of 

them. Each element will be the square root of 1/14. The component values 

are obtained by multiplying each standardized data value by the 

corresponding eigenvector element and summing over all 14 sampling 

periods. If all the first eigenvector elements are equal and of the same 

sign, all samplings contribute equally to the first component values, and 

the latter will be proportional to the means of the 14 samplings. In 

other words, the first component values will represent the order of the 

woods with respect to the property concerned taken over the 14 samplings. 

If the first eigenvector elements are of the same sign, but some are 

smaller than 0.2673 and some are larger, the relative contributions of the 

samplings will be different, and the first component value will no longer 

be directly proportional to the simple mean value, but to a weighted 

mean. The components are orthogonal partitions of the total variance. 

The square of an element of an orthonormal eigenvector gives the 

proportion of the variance in a component accounted for by the 

corresponding variable, in this case the sampling. If some eigenvector 



elements are smaller than 0.2673, the corresponding samplin s will ha e f 
less of their variance expressed in the first component land more n 1 
others. Conversely, if some elements are larger than 0.2 f 73, more f 

their variance will be expressed in the first component and less n 

others. 

'I 
I I 

3.1 Individual PCA's of pH, loss-on-ignition, moist9 c0ntenf9 
oxygen uptake, cellulase and phosphatase data. 

pH: There is little variation either within or between sqmplings, the 

coefficients of variation within samplings ranging from 16 iercent to lo 
percent and the mean pH ranging from 4.19 to 4.33. Thq correlation 

coefficients between samplings are all greater than 0.75, and many a e 

greater than 0.9 (p <O.OOl). 
F 

Only the first component is of practical importance, accoqnting for 92 
I 

percent of the total variance. The eigenvector elements aAe all of the 

same sign and have very similar values, showing that the fourteen 

samplings contribute almost equally to the variance expressed] in the fir/st 

component. The first component values (Figure 2)  represent the relative 

positions of the plots with respect to pH, the greatest positlive componebt 

value representing the plot with the greatest pH, and vicd-versa. The 
I 

other possible source of variation is time of sampling, whihh includes a 

small amount of spatial variation within the sampling qpadrat. The 

absence of other components of practical importance slggests t&t 

either - 

(a) there is no variation of the property with time, or I 
I 
I I 

(b) there is variation with time, but all the plots var in the sape 

way, so that the plots do not show variation with tim relative to 

each other. 

'I 
I I 

We expected (a) to be true, as Frankland et a1 (1963) found 

monthly differences in pH, loss-on-ignition, and certain che 

could not be detected against the spatial variability. Insp ction of 'Tr data showed very little variation of pH values within plotat) and two-uay 

analysis of variance showed that 91 per cent of the varianc 

plots and less than one per cent was between samplings. 



Loss-on-ignition: The coefficients of variation within samplings range 

from 40 percent to 59 percent and the mean loss-on-ignition between 

samplings from 26 percent to 32 percent. Correlation coefficients between 

samplings range from 0.57 to 0.89 (p < 0.001). Only the first component 

is of practical importance, accounting for 77 percent of the total 

variance. The eigenvector elements all have very similar positive values, 

showing that the 14 samplings contribute almost equally to the variance 

expressed in the first component. Here, too, we expected that we would 

not detect any significant variation in loss-on-ignition between 

samplings. 

Xoisture content: The coefficients of variation within samplings for 

moisture content (OD basis) range from 47 percent (sampling 6) to 70 

percent (sampling 2) and the mean moisture contents between samplings from 

106 percent to 139 percent. Correlation coefficients between samplings 

range from 0.54 to 0.89 (p < 0.001). 

On an OD basis, the first two components, accounting for 82 percent of the 

total variance, are of practical importance. The eigenvector elements for 

the first component (which accounts for 75 percent of the total variance) 

all have similar values with the same sign, and the first component values 

(Figure 3) represent the relative moisture contents of the plots. The 

eigenvector for the second component contrasts samplings 2 and 3 with 

sampling 11, showing that this component has discriminating power based on 

those samplings. Examination of the component plot (Figure 3) shows that 

plots 28 and 24 had the greatest positive and negative second component 

values respectively. The original and standardized data show that the 

moisture contents of these plots exhibited linear trends, plot 28 

decreasing, and plot 24 increasing, with time. In samplings 2 and 3, the 

difference between the plots was maximum, whereas at sampling 11 there was 

little difference. 

The two wettest plots (24 and 27), which were usually so wet that the 

soils could be poured from the polythene bags, did not have the greatest 

moisture contents on OD basis. This was attributed to their low organic 

matter contents. The moisture contents were therefore divided by the 

loss-on-ignition values to give what Crump (1913) called the coefficient 

of humidity. The coefficients of variation within samplings for the 

coefficient of humidity range from 27 percent to 37 percent (sampling 3) 

and the mean coefficient of humidity between samplings from 3.5 to 5.0. 



J Correlation coefficients between samplings range from 0. 6 to 0.9 Q 
(p < 0.001), the weakest correlations occurring between the( first fiv$ 

samplings. 
1 I 

For the coefficient of humidity, two eigenvalues are of practical 

importance, accounting for 85 percent of the variance. 14 the firsk 
eigenvector (accounting for 78 percent of the variance), all f he element ? 
have the same sign, but those corresponding to the first two sqmplings are 

less than 0.75 times the largest element. This suggests that, although 

the first component values represent the relative wetness o the plots, 4 the first two samplings contribute less to the between-plot va iation tha h 
do the remaining 12 samplings. The first component values (Filure 4 )  sho r 
that the two very wet plots (24 and 27) have the greatest positive 

component values, while plot 28, which had the greatest firsit 

component value on OD basis, had a relatively lower value whqn corrected 

for loss-on-ignition. Apart from the two outliers, the form a morL 

compact group when moisture content is corrected for loss-on-i nition tha 

when it is expressed on an OD basis (Figure 3). 
i" I" 
I i 

The eigenvector for the second component (on LO1 basis) shows three lare 

positive elements (samplings 2, 3, and 5). Only plot 24 has Ln unusual15 

large (negative) second component value, and this plot had its lowest 

value for both original and standardized data on those samplings. TI? 

data for this plot follow the Linear trend noted in the moiskure contedt 

on OD basis, but the data for plot 28 do not show such an obvipus trend on 

LO1 basis as on OD basis. 1 

I 
Oxygen uptake: The coefficients of variation within sampling$ for oxygan 

uptake (OD basis) range from 45 percent to 67 percent (sampli* 2) and th/e 

mean oxygen uptakes between samplings range from 5.6 to 7.8 pl/g 

ODlhour. Correlation coefficients between samplings range fr m 0.19 (NS~) k 
to 0.78 (p < 0.001) and it is noticeable that data for Sam 
14 are least intercorrelated with those of other samplings. 

I I 
On an OD basis, three eigenvalues are of practical importance,, accounting 

for a total of 72 percent of the variance. In the eigenvedtor for tde 

first component (which accounts for 56 percent of the var ance), on&y t samplings 12 and 14 have elements which are less than 0.7 times tde 

largest (absolute) element. For the remaining samplingst the first 

component values represent the relative oxygen uptakes of the plots. 



However, samplings 12 and 14 have large (negative) weightings in the 

eigenvector for the second component which accounts for a further 

9 percent of the variance. The three greatest (absolute) second component 

values were for plots 25 (-3.48), 13 (3.27), and 4 (-2.96). Plots 25 and 

4 had their greatest oxygen uptakes at samplings 12 and 14, and these 

uptakes were the greatest for all plots on those samplings, on the basis 

of both original and standardized data. These large oxygen uptakes 

coincided with the greatest moisture contents of the two plots, but these 

were not the greatest moisture contents of all plots on those samplings. 

Plot 13 had low rates of oxygen uptake on samplings 12 and 14, that on 

sampling 14 being the lowest for this plot (original and standardized 

data), although these values did not coincide with notably small moisture 

contents. Thus, the second component has identified certain plots, which, 

for various reasons, behaved differently from the rest on samplings 12 and 

14. The first component values represent the relative oxygen uptakes of 

the plots, with low weightings for samplings 12 and 14. 

The eigenvector of the third component has large negative elements for 

samplings 9 and 2. The two largest (absolute) third component values are 

for plots 28 (-3.24) and 35 (2.88). Plot 28 had its greatest oxygen 

uptake on sampling 2, which coincided with the greatest moisture content 

for this plot. Plot 28 had its greatest standardized oxygen uptake at 

sampling 9, and this was the greatest value for all plots on that 

sampling. It coincides with the second largest moisture content on this 

plot, which was also the greatest value for all plots at that sampling. 

On both samplings 2 and 9, the oxygen uptake of plot 35 was small. 

The coefficients of variation within samplings for oxygen uptake (LO1 

basis) range from 27 percent to 37 percent, and the mean oxygen uptake 

between samplings from 19 to 25 ul/g LoI/hour. Correlation coefficients 

between samplings range from 0.08 (NS) to 0.71 (p < O.OOl), data for 

samplings 10 and 12 having noticeably low intercorrelations vith those for 

the other samplings. 

Four eigenvalues, accounting for a total of 72 percent of the variance, 

are of practical importance. In the first component, accounting for 44 

percent of the variance, only the eigenvector elements corresponding to 

samplings 10 and 12 are less than 0.75 times the greatest (absolute) 

value. Those samplings are also the only ones which have elements greater 

than 0.75 times the greatest (absolute) value in the second eigenvector. 



This is rather similar to the results obtained on OD basis, but with tqe 

emphasis on different samplings. The first component values 4 epresent t e 't 
relative oxygen uptakes on a LO1 basis, with low weightings flor samplings 

10 and 12. The plot of the first and second component values (Figure !) 

is different from that for the data on OD basis, because of djfferences qn 

loss-on-ignition between sampling squares on certain plots. I I 

The second component accounts for a further 12 percent of thelvariance add 

the greatest (absolute) second component values are for ploqs 24 (4.64 , 
1 1 

17(-3.27) and 27(2.87). On sampling 10, plot 24 had its smdllest oxygen 

uptake (the second smallest value for all plots on that s 4 mpling), ahd 

greatest coefficient of humidity (greatest for all p14ts on that 

sampling). Plot 24 had its next smallest oxygen uptake (for 0th original 

and standardized data) on sampling 12, and this also corres 1 onded with a 
large coefficient of humidity (the second largest on that sambling). 1 

i 
Plot 27 had small (but not its smallest) oxygen uptakes on theee 

samplings, and these correspond to large values of coefficient of humidiky 

(the largest on sampling 12, the second largest on sampling lp). It seeps 

fairly clear that at these large values for coefficient of hyidity (9.59 

to 11.40) the soils are waterlogged and oxygen uptake is deprLssed. 1 
I I 

Plot 17 had its greatest oxygen uptake (original and standard zed data) on 1 
sampling LO, and this was the greatest oxygen uptake for all plots on that 

sampling. That plot had its slecond greatest oxygen uptake (&ing origi&l 

data, or third greatest for standardized data) on sampling 12. On bolth 

samplings, this plot had small (but not the smallest) values for relative 

humidity (3.99 and 5.08). I 1 
I I 

In the third eigenvector, the largest elements correspond t T 
and 14. Plot 47 has the largest (absolute) third co4ponent vadue 

(-3.191, and this plot had fairly large oxygen uptakes on saLplings 4 $nd 

14. This component accounts for a further 8 percent f the to a1 

variance. f' 9 
1 I 

In the fourth eigenvector, there is a contrast between samplqngs 12 and 14 

(positive) and sampling 7 (negative). The greatest (abs lute) fourth t component values are for plots 25 (2.85) and 7 (-2.54). P1 t 25 had dts 

maximum oxygen uptake on samplings 12 and 14, whereas plbt 7 had 4ts 

maximum on sampling 7 and its smallest values on samplings 1 
I 



Cellulase: On an OD basis some samplings, notably 1 and 4, show 

considerable variability, with coefficients of variation of 102 percent 

and 99 percent respectively. Sampling 10 has the smallest coefficient of 

variation, 60 percent. Mean cellulase activity ranges from 0.02 to 0.05 

mg glucose/g OD148 hours. Correlation coefficients between samplings 

range from -0.002 (NS) to 0.91 (p < O.OOl), samplings 1 to 3 showing low 

correlations with other samplings. Data for many of the samplings are 

highly correlated with only a few preceding or succeeding samplings. 

On an OD basis, three eigenvalues are of practical importance, accounting 

for a total of 73 percent of the variability. The first component 

accounts for 38 percent of the total variance. In the first eigenvector, 

all the elements are positive, but only those for samplings 4 to 12 are 

greater than 0.75 times the largest element. Together those elements 

account for 86 percent of the variability in the first component, as 

against 64 percent if all the vector elements were equal. The first 

component values represent the relative cellulase activities of the woods 

with low weightings for samplings 1 to 3, 13 and 14. 

The second component accounts for a further 24 percent of the total 

variance. In the eigenvector for the second component, there is a 

contrast between samplings 1, 4, and 5 on the one hand, and 11 to 14 on 

the other. The greatest positive second component value is for plot 37, 

and the greatest negative value is for plot 43. The data show that plot 

37 had high cellulase activities on samplings 1, 4, and 5 and low 

activities on samplings 11 to 14, while the reverse was true for plot 43. 

In the third component, which accounts for 10 percent of the variation, 

there is a contrast between samplings 2 and 3. Plot 6 has the greatest 

negative third component value, and plot 13 the greatest positive value. 

Plot 6 had low cellulase activity at sampling 2, and plot 13 had a high 

activity. At sampling 3 the positions were reversed. 

On a LO1 basis, samplings 13 and 14 show the greatest variability with 

coefficients of variation of 105 percent and 100 percent respectively. 

Sampling 6 has the smallest coefficient of variation, 62 percent. Mean 

cellulase activity ranges from 0.09 to 0.19 mg glucosefg LO1148 hours. 

Correlation coefficients between samplings range from -0.01 (NS) to 0.93 



(p C 0.001). As for the data on an OD basis, samplings 1 do 3 show 1Qw 

correlations with other samplings and there are groups of s+IIpling~ 

large correlations. 
wiFh 

I I 

Three, possibly four, eigenvalues are of practical im~ortancje, the firkt 

three together accounting for 76 percent of the total va iance. F 'E' 
pattern of large eigenvector elements is different from that abtained fr m 

the data on OD basis. In the first component, which acdounts for is1 

percent of the total variance, samplings 5 to 14 have eigenve tor eleme ts F 4 
greater than 0.75 times the largest element. These sampling$ account for 

6! 92 percent of the variance in the first component, as againkt 71 perc nt 

I if the eigenvector elements were all equal. On both OD and I@I basis, qhe 

smallest elements of the first eigenvector are those corres nding to he 4" 
first three samplings. As with moisture content, the relat'ive positi 1 ns 
of the plots with respect to cellulase activity, as given bk their fidst 

component values, is different on OD basis and on LO1 basis. , I 

The second component accounts for a further 17 percent bf the todal 

variance. In the eigenvector for the second component, the largqst 

elements correspond to samplings 4, 5, and 7. Plot 43 has the great st 
I 

negative (and absolute) second component value (Figure 6), and that p ! ot 

had low values for cellulase activity (LO1 basis) on thbse samplidgs 

(Figure 6). Conversely, plot 26, with the next greatest (abgolute) sec nd 9 
component value (and greatest positive value) had laqge cellulase 

activities on those samplings. I 1 
I 

I I 
In the third component, accounting for 8 percent of the v riance, 7 
positive eigenvector elements corresponding to samplings 1 and 2 la[" 

associated with high Levels of cellulase activity on ckrtain 

notably 24 and 9 in sampling 2, and 17 and 42 in sampliqg 1. 

I 

In rhe fourth component, accounting for nearly 7 percent of the varfance, a large 

negative eigenvector element for sampling 3 corresponds to a1 high level of 

cellulase activity at plots 48 and 27 on that sampling. 1 I 
I 
1 Phosphatase: The coefficients of variation within samplings Lor 

phosphatase (OD basis) range from 44 percent (sampling 6) 1to 82 percbnt 

(sampling 1) and the mean phosphatase activity is between 7 1 and 1222 ug P 
phenol/3 hoursfg OD. Correlation coefficients between samplings range 

from 0.14 (NS) to 0.84 (p < 0.001). 1 1 



The first three eigenvalues are of practical importance, together they 

account for 77 percent of the total variance. In the first component, 

which accounts for 59 percent of the variance, the eigenvector elements 

are all of the same sign, and only those corresponding to the first and 

last samplings are less than 0.75 times the greatest value. That is, the 

first component values represent the relative phosphatase activities of 

the plots, with low weightings for samplings 1 and 14. The greatest (both 

absolute and positive) first component values are for plots 13 and 28. 

The largest negative values are for plots 19 and 22. Plot 28 also has one 

of the two greatest (~ositive) first component values for loss-on- 

ignition, moisture contenr, respiration (OD basis), and cellulase activity 

(OD basis), while for each of those properties, plot 22 has one of the two 

lowest (i.e. most negative) first component values. 

The second component, which accounts for a further 10 percent of the total 

variance, has large eigenvector elements for samplings 1 and 4. The 

scatterplot of the component values shows that pLot 46 has an unusually 

large second component value, and this plot had large phosphatase 

activities (and also large loss-on-ignition and moisture content), on 

samplings 1 and 4. 

Component three, accounting for 8 percent of the variation, shows a 

contrast between samplings 1, 10,12, and 14 on the one hand, and 6, 7, 8, 

and 9 on the other. Plots 11 and 37 have fairly high phosphatase 

activities on samplings 10, 12, and 14, while plot 30 has low phosphatase 

activity on those samplings and high activity on samplings 6 to 9. 

On a LO1 basis, the coefficients of variation within samplings range from 

28 percent to 35 percent (sampling 3) and the mean phosphatase activity 

ranges from 2134 to 4862 IJ g phenol13 hours/ g LOI. Correlation 

coefficients between samplings range from 0.23 (NS) to 0.82 (p < 0.001). 

As with the data on an OD basis, three components are of practical 

importance, and together they account for 75 percent of the variance. In 

the first component, which accounts for 58 percent of the total variance, 

low weighting is again given to the first sampling, but in this case the 

other low weighting is for sampling 4. The first component values (Figure 

7) represent the relative phosphatase activities of the plots, with low 

weightings for samplings 1 and 4 (Figure 7). In the second component, 

which accounts for a further 9 percent of the total variance, there is a 



contrast between samplings 4 and 12. As on an OD basis, pl0 yc 46 has t?e 
largest second component value, and had high phosphatase activity dn 

sampling 4 and low activity on sampling 12. Plot 49 shbwed similqr 

behaviour, while plot 17 showed the reverse. In the third cgmponent, the 

only eigenvector element greater than 0.75 times the largedt (absolute) 

element was that corresponding to the first sampling. On qhat sampling 

some plots (e.g. 46) had high phosphatase activities, whilst others (e.k. 

42 and 47) had low activities. I I 

3.2 Correlations between the component values of the b ~ ,  loss-ofl- 

ignition, moisture content, oxygen uptake, cellulase and phosphatase data. 

The signs of component values are arbitrary, and so +e signs of 

coefficients of correlation between them are also arbitrary. ' In the caLe 

of our first component values, the signs are meaningful beca se the firat t' 
component values are in a similar order to the mean values fbr the plot L . 
Coefficients of correlation between the first component values will1 

therefore be of the same sign as those between the mean values. 

I I 
The significant linear correlations between the component yalues of the 

data on an OD basis (Table 12), are shown diagrammatically in ~ i ~ u r e  8 

with the signs omitted. i I 
The first components of loss-on-ignition, moisture conpent, oxy en 

gi 
uptake, cellulase, and phosphatase are significantly intercobrelated. 1t 

is interesting that of these, only the first component of cedlulase is dot 

significantly correlated with the first component of pH (r a -0.07). 

Cellulase component 2 is positively correlated with the firkt cornponeits 

of loss-on-ignition (r = 0.44), phosphatase (r = 0.56), xygen uptake 

(r = 0.49), and moisture content (r = 0.35). The first comp d nent of pH is 
negatively correlated with the first components of lo s on ignit'on 

- -  1 (r = -0.6L), phosphatase (r = -0.42), oxygen uptake (r -0.50), and 

moisture content (r = -0.46), and with cellulase components 2 (r = -0. 

and 4 (r = -0.29). 
qO) 

I i 
A subsidiary group of component correlations (Figure i 8) contains 

phosphatase components 2, 3 and 4, oxygen uptake componedts 2 and 3 ,  

cellulase component 3, and moisture content component 2. TFere are some 

significant intercorrelations in this group, and it is linkeh to the m a in 
group by a negative correlation between cellulase component 1 and oxy 

uptake component 3 (r - -0.43). 



On a LO1 basis, the correlations are rather different (Table 14 & Figure 

9), and the components fall into two distinct groups. The first 

phosphatase component is significantly correlated only with the first 

oxygen uptake component (r = 0.61). The second component of the 

coefficient of humidity is negatively correlated with the first components 

of respiration (r = -0.32) and pH (r = -0.45), and the third component of 

cellulase activity (r = -0.48). The first pH component is positively 

correlated with the first (r = 0.44), and negatively with the second 

(r = -0.32) and fourth (r = -0.29) components of cellulase activity. 

It is interesting that the first component of the coefficient of humidity 

is not significantly correlated with any of the other first components. 

It is positively correlated with the second (r - 0.64) and fourth 

(r = 0.31) components of oxygen uptake and negatively correlated with the 

fifth (r = -0.31). Oxygen uptake component 2 is positively correlated with 

phosphatase commponent 2 (r = 0.45) and negatively correlated with 

phosphatase component 4 (r = -0.30). Oxygen uptake component 3 is 

negatively correlated with phosphatase components 2 (r = -0.30) and 

4 (r = -0.43). 

3.3 Correlations between mean values (over 14 samplings) and first 

component values, and correlations among mean values, for pH, 

loss-on-ignition, moisture content, oxygen uptake, cellulase and 

phosphatase data. 

Correlations between means and first component values. 

The mean values on both OD basis and LO1 basis are given in Tables 1 to 

10. It is interesting to compare the means with the first component 

values in order to compare the ordering of the plots with respect to the 

properties measured (Table 11). All of the correlation coefficients are 

large (r > 0.950), and apart from cellulase on both OD and LO1 basis, all 

the correlation coefficients are equal to, or greater than, 0.995. For pH 

and loss-on-ignition, r = 1.000. 

Comparison of the tables of mean values and first component values shows 

that for pH the orders of the plots are the same. For loss-orignition, 9 

plots are in different positions. In the case of moisture content (OD 

basis) and coefficient of humidity, there are also a few plots which do 

not occupy the same positions in the tables of first component values and 



I I 
means of 14 samplings, but these involve only plots being tnterchanged 

within small blocks, no plot differs by more than a few places in thie 
comparison of the tables. With oxygen uptake (OD and MI basis) we find 

several plots in different positions, but also not displaped by maqy 

positions in the tables. These comparisons show that, except for pH and 

loss-on-ignition, large correlation coefficients do not guara tee that t e 'I 
values and means of 14 samplings. The differences in thq orders 

9 orders of the plots will be the same on the basis of first compone t 

"1' greater for cellulase, and are related to the percentage if the tot 1 

variance accounted for by the first component (Table ll), whi h is only 8 P 
basis), and 51 percent for cellulase (LO1 basis). 

I percent for cellulase (OD basis), 44 percent for oxygen uptake (L I 

i I 

Correlations among the means 
I 

The correlations among the means (OD basis) are shown in 

are very similar to the correlations among the first 

(Figure 8). On a loss-on-ignition basis, only two corrplations are 

significant, oxygen uptake and phosphatase (r = 0.626, < 0.001) ahd 

cellulase and pH (r = 0.457, p < 0.01). This agrees with the correlations 

among the component values (Figure 9). I 1 

Tests for non-linearity were also carried out. In some case4 a quadratic 

equation gave a better fit but with little incre+se in r2. 

I I 
3.4 Principal component analysis of the pooled pH, losston-ignition, 

moisture content, oxygen uptake, cellulase and phosphatase fitst compone t 

values. 
P 

1 I 
If the first component values for the individual properties tepresent the 

order of the soils with respect to the overall levels of thos propertie , t 
and exclude the effects of those samplings on which some soils show lar e I 
deviations from the overall mean for the sampling, then a princip 

component analysis of these component values should provide i formation I 
the relative positions of the plots with respect to all t 

taken together, and they should do this more effectively 

values which are affected by sampling variation. 

I I 
OD basis: As was reported in Section 3.2, the first cbmponents of 

loss-on-ignition, moisture content, oxygen uptake, cedlulase, abd 

phosphatase are significantly positively intercorrelated, aqd all except 
I 



the first component of cellulase are significantly negatively correiated 

with the first component of pH (Table 12 h Figure 8). 

Only the first two eigenvalues are of practical importance, together they 

account for 83 percent of the total variance (Table 13). The first 

component, accounting for 68 percent of the total varaiance, is due 

chiefly to loss-on-ignition, oxygen uptake, phosphatase, and moisture 

content. The second component, which accounts for a further 16 percent of 

the total variance, is dominated by cellulase and pH, which together 

account for 99 percent of the variance in that component. The first and 

second components are plotted in Figure 11. 

The single linkage dendrogram showed that a single large group rapidly 

formed at low levels of distance, and grew to absorb all the points. This 

seems to be an example of "expanding balloon" type of clustering. There 

are no clear discontinuities. 

LO1 basis: As was reported in section 3.2, the only significant 

correlations between the first component values are between pH and 

cellulase (r = 0.439, p < 0.01) and between oxygen uptake and phosphatase 

(r 0.616, p < 0.001). (Table 14). 

The first three eigenvalues are of practical importance, together they 

account for 81 percent of the total variance (Table 15). The first 

component, accounting for 41 percent of the total variance, is essentially 

a combination of all the variables except coefficient of humidity. The 

second component, accounting for 22 percent of the total variance, 

contrasts oxygen uptake and phosphatase with coefficient of humidity, pH 

and cellulase. The third component, which accounts for a further 18 

percent of the total variance, is due chiefly to coefficient of humidity, 

which accounts for 70 percent of the variance in that component. The 

first and second components are plotted in Figure 12, the first and third 

in Figure 13. 

In the single linkage dendrogram, a large group soon formed and joined 

with a separate group of 5 plots (26, 43, 45, 44, 47) and then with the 

remaining points. This seems to be simply an example of the "expanding 

balloon" type of clustering, and there appear to be no important 

discontinuities. 



3.5 Principal component analysis of pH, loss-on-ignitionj moisture 

content, oxygen uptake, cellulase and phosphatase mean valves of 14 

samplings for each plot. 
I 
I 

If the mean values over 14 samplings approximately represent the relative 

positions of the plots, then a principal component analysis of ithese mean 

values should provide information on the relative positions of1 the plots 

with respect to all the properties considered together. 

I I 
OD basis: pH shows least variation, with a coefficient of variqtion of 17 

percent. The remaining variables all have very similar coefdicients of 1 
variation (41 percent to 48 percent). The lower half matrix 1 Of I 
correlation coefficients shows very highly significant (p < 0.001) 

positive intercorrelations between all variables except PH,( which is( 

negatively correlated with oxygen uptake, loss-on-ignition, a?d moisture 

content (p < 0.001), and phosphatase (p < 0.01)- pH shows a ldw negative1 

correlation coefficient with cellulase, which is not sign ficant at 

p<0.05 (cf Figure 10). 
t 
I I 

Only the first two components, accounting for 85 percent of the total 

variance, are of practical importance. The first componbnt, which 

accounts for 70 percent of the total variance, is do inated "t by I 
loss-on-ignition, oxygen uptake, phosphatase, and moisture cowtent. The 

second component, accounting for 15 percent of the total vdriance, is1 

dominated by pH and cellulase, which together account for 97 percent of 

the variance in that component. A plot of the first and secon I component1 
values was very similar to that obtained in Section 3.4 (Figule ll), and1 

is not given. 

I I 
LO1 basis: The lower half-matrix of correlation coefficients shows that 

I 
the only significant correlations are between oxygen jptake and' 

phosphatase (r = 0.626, p < O.OOl), and between pH and cellulase~ 

(r = 0.457, p<O.Ol). 

I I 
The first three components, accounting for 82 percent of the total 

variance, may be considered to be of practical importance. The first 

component, which accounts for 42 percent of the total valiance, 
is1 

essentially a combination of all the variables except coefficient of 

I i 



humidity, which has a low weighting. The second component, accounting for 

22 percent of the total variance, is mainly a contrast between coefficient 

of humidity and oxygen uptake, these two variables account for 56 percent 

of the variance in that component. The third component, accounting for 18 

percent of the total variance, is dominated by coefficient of humidity, 

which accounts for 64 percent of the variance in that component. Again 

plots of the component values were very similar to those obtained in 

section 3.4 (Figures 12 & 13), are not given. 

3.6 Principal component analysis of the pooled moisture content, oxygen 

uptake, cellulase and phosphatase first component values. 

OD basis: In section 3.4 the results are given for the physiological 

properties plus pH and loss-on-ignition. Here, we leave out pH and 

loss-on-ignition as they are soil factors which may influence the other 

properties and obscure relationships. The first component values of 

moisture content, oxygen uptake, cellulase, and phosphatase are all highly 

significantly positively intercorrelated. Only the first component has an 

eigenvalue greater than unity. It accounts for 72 percent of the total 

variance and is due chiefly to oxygen uptake, phosphatase, and moisture 

content. The second component accounts for 17 percent of the total 

variance (the first and second account for nearly 90 percent of the total 

variance), and is dominated by cellulase which accounts for 85 percent of 

the variance in that component. 

The single linkage dendrogram showed that at a low level of distance, 

three groups were formed consisting of 13, 14, and 14 plots, with 7 single 

outlying plots. These groups did not appear when the data were expressed 

on a LO1 basis. Comparison of the PCB output with the first components 

from which the correlation matrix was calculated suggested a strong 

relationship to moisture content. 

An analysis of variance and Tukey's Honestly Significant Difference test 

were carried out on these three groups for the first component values from 

this analysis (output), the individual first component values used to 

calculate the correlation half-matrix (inputs), and for comparison the 

first component values for pH and loss-on-ignition. The results were as 

follows: 



Groups ' 

1-2 1-3 12-3 

First component values (output) *** *** 
Moisture content first component values ** *** 
Oxygen uptake *** *** 
Cellulase NS NS 

Phosphatase " * *** 
PH NS NS 

LO1 ** *** 

I 
significant difference at p < 0.05 *, P < 0-01 **, P < O-Ool **lfS 

Within the groups, the ranges of values were: 

1 

First component values (output) 2.06 

0.98 

Moisture content lsc component values -0.40 

-3.93 

Oxygen uptake 1st component values -0.90 

-3.87 

Cellulase 1st component values 3.32 

-2.98 
Phosphatase 1st component values -1.38 

-4.02 

pB 1st component values 7.17 

-1.82 
LO1 1st component values -1.27 

-4.51 

Group 

2 3 

0.69 
rO-l4 

0.16 -1.40 

4.84 5.01 

-2.98 -2.55 

0.86 ' 3.99 
-4.03 -0.51 

4.81 2.26 

-2.56 -2.08 

0.63 3.64 

-3.10 -1.44 

10.75 I 7.21 
-4.06 !-4.30 

I 
1.76 6.27 

-2.57 



Although the ranges of the output component values do not overlap, the 

ranges of the input values, and the first component values of pH and 

loss-on-ignition, overlap to varying extents. Notably, the values for pH 

and cellulase show considerable overlaps, suggesting that they did not 

contribute much to the groupings of the output component values. The 

correlations between the output first component values and the inputs, and 

those of pH and loss-on-ignition, confirm this: 

Correlation between r 

Outpuc first component value and pH 0.450** 

" LO1 -0.901*** 

" Moisture input -0.872*** 

" 02 uptake input -0.927*** 

" Cellulase input -0.639*** 

" Phosphatase input -0.927*** 

The main contributors to the grouping of the first component values are 

phosphatase, oxygen uptake, and moisture content, which we have shown are 

themselves highly intercorrelated. 

LO1 basis: Only oxygen uptake and phosphatase are significantly correlated 

(r = 0.616, p < 0.001). The first three eigenvalues are of practical 

importance, together they account for 91 percent of the total variance. 

The first component, accounting for 44 percent of the total variance, is 

due mainly to phosphatase and oxygen uptake, which together account for 81 

percent of the variance in that component. The second component, 

accounting for 25 percent of the total variance, is due chiefly to the 

coefficient of humidity, which accounts for 81 percent of the variance in 

that component. The third component, accounting for a further 21 percent 

of the total variance, is dominated by cellulase, which accounts for 76 

percent of the variance in that component. 

The single linkage dendrogram showed that at an early stage a large group 

formed which gradually absorbed the remaining points at increasing levels 

of distance. This is another example of the "expanding balloon" type of 

clustering, and shows that there are no discontinuities. 



3.7 Analysis of variance of the p ~ ,  loss-on-ignition, moistJre content4 

oxygen uptake, cellulase and phosphatase data. I I 

The first component values of the variables (Section 3.1) give rankings oh 

the plots for the variables. Subsequent components illustra e different 7 
aspects of the between-sampling differences. Because the components arh 

orthogonal, the first component gives an overall ranking of plots with 
sampling differences removed, i.e. they represent "smoothed" between-plot 

differences. However, the PCA does not tell us if the between-plot 

differences illustrated by the first component values are sibnificant or 

not. I I 

A two-way analysis of variance was carried out on each set bf data, tye 

two factors being plots (48 levels) and sampling times 

Bartlett's test was highly significant between plots for all data excedt 

phosphatase. It was thought that this might be due, at leasb partly, qo 

non-normality. However,  chef f ;' s test for homogeneity o variances, 

.J which is relatively insensitive to departure from n~-lity,~also show d 

highly significant differences between plots. For most setb of data It 

was not possible to find a transformation which would fully stabilize the 

variances. However, two-way Anova is fairly robust to het d rogeneity df 
variances provided that there are no missing values. I I 

For each variable there were very highly significant differ a nces betwekn 
plots, and the differences between samplings were very highlj significa t f 
for all variables except pH, for which the differences wer significant 

only at the 5 percent level. 1 

I I 
The between-plots differences will be discussed in Sectqon 3.8, the 

between-sampling differences in Section 3.9. 1 1 

I I 
3.8 Differences between plots. 

I I 
The most obvious a priori difference is whether the plots areion limesto e P 
or acidic rocks. As the first component values represent the relatibe 

order of the plots with respect to the different variables hith samplibg 

differences removed, Table 16 gives the results of a one-way Anova of the 

first component values of limestone and norlimestone plot.. There are 

significant differences for loss-on-ignition and moisture Qontent on PD 

basis, but the difference for moisture content disappears wh 
I 



are expressed on a LO1 basis. However, on a LO1 basis there is a 

significant difference for cellulase. 

The meaning of these differences is difficult to interpret on the first 

component values, but it is easier if the analysis is performed on the 

means of the 14 samplings for each plot, which can be used as a first 

approximation to the first component values. This analysis (Table 17) 

shows that on an OD basis soils from plots on limestone have significantly 

lower loss-on-ignition and moisture content than those from the 

non-limestone plots. On a LO1 basis the only difference is that cellulase 

activity is greater on the limestone plots. 

However, the division into limestone and non-limestone plots is not very 

satisfactory, firstly because there are only 6 limestone plots and 42 

non-limestone plots and secondly (and ecologically more importantly) 

because these soils are developed on drift. Where the drift overlies 

limestone the surface soil properties depend on the depth to limestone, or 

whether or not the plot receives drainage from limestone. Five of the six 

limestone soils sampled have mean pH in the range 5.3 to 6.4, and two 

non-limestone soils have mean pH values in this range. One soil on 

limestone had a mean pH of only 4.4. A division on the basis of pH would 

appear to be more meaningful than one on the basis of underlying rock. 

Mainly on the basis of studies in northern England, Pearsall (1938, 1952) 

recognized the occurrence of ground flora communities which corresponded, 

in a general way, with soil biology and humus type: 

(1) Mull, on the more nearly base-saturated, often calcareous, soils with 

pH greater than 4.8 to 5.0. 

(2) Mor, on base-deficient ('hydrogen') soils with pH less than about 3-8  

to 4.0. 

( 3 )  Transitional soils within those limits. 

This suggests a basis for an initial division into acidic (pH < 3.8), 

intermediate (pH 3.8 to 5.0), and base-rich (pH > 5.0) soils. Tine means 

of the data grouped in this way are plotted in Figures 14 to 22. 

Table 18 gives the resulcs of a oneway Anova followed by Tukey's HSD 



of the first component values divided into groups on the basis df those pH 1 
values. On OD basis, loss-on-ignition, moisture content, 4nd oxygen 1 

uptake are similar in that the acidic soils are different frob those in 1 

either of the other groups, and those of the intermediate groyp are not 

different from those of the base-rich group. This appears to be due to 
I 

the relationship between oxygen uptake, moisture con ent, and 

loss-on-ignition, because on a LO1 basis there are no 1 ignificant' 
differences between the groups. Also, on a LO1 basis, for cedlulase the1 

acidic group is different from the base-rich group and Lo is the1 

intermediate group, but the acidic and intermediate groupb are not1 

significantly different. This result is nearly the same as tve divisionl 

into limestone and non-limestone soils. For phosphatase, the a idic group f I 

is significantly different from the intermediate group. However, the mean 

value of the basic group lies between those of the other two groups and is' 
1 not significantly different from either. Thus, there is a peak of' 

phosphatase activity in the range pH 3.8 to 5.0. 1 1 

I I 
A similar analysis on the means of the 14 samplings for each blot (Table1 

19) shows similar results except that on a LO1 basis for oxygel uptake th 7 
lowest mean is for the acidic group and the other two groups re similar P 
(Figure 18). For cellulase the greatest mean is for the base rich group r 

l 
and the other two groups are similar (Figure 2 0 ) ,  and for pho&hatase the 

largest mean is for the intermediate group (Figure 22) ,  againi there is 

peak of phosphatase activity in the range pH 3.8 to 5.0. 1 I 
1 I 

3.9 Differences between samplings. I I 

I I 
Differences between samplings were very highly significa t 4 for 
variables except pH, for which the differences were significant only at 

the 5 percent level. Although there is a significant differdnce betweei 

samplings for pH, the range of variation is generally small (Table 1)1 

The coefficients of variation for the plots between samplings tange from 2 
to 13 percent. i I 

I I 
There were very highly significant differences between sa plings fo r' f 
loss-on-ignition, the greatest mean values occurring in the cidic group 7 in the first 5 samplings, i.e. May to September (Figure 14). ThL 

coefficients of variation were greater than for p ~ ,  ranging drom 7 to 4b 

I I 

I I 

I I 



percent (Table 2). There is little suggestion of any increase in 

Loss-on-ignition after litterfall (samplings 6, 7, and 8), and at sampling 

14 (Xay-June) the mean loss-on-ignition was lower than a year previously. 

The implication of the initial decrease in the acidic group is that 

different site conditions favoured decomposition of previously-accumulated 

organic matter. 

Moisture content (OD basis): Soils of the acidic group had their greatest 

moisture contents during the first two samplings. Soils of the other two 

groups showed a slight tendency for moisture content to increase with time 

(Figure 15). Coefficients of variation for the plots ranged from 8 

percent to 52 percent (Table 3). 

The coefficient of humidity (moisture content on a LO1 basis) of the 

acidic and intermediate groups showed similar variation in time, whereas 

that of the base-rich group showed a marked increase after sampling 5 

(Figure 16). Coefficients of variation of the plots ranged from 5 percent 

to 39 percent (Table 4 ) .  

Oxygen uptake (OD basis): Although there is some suggetion of a 

relationship with moisture content in samplings L to 6 (Kay to October) 

for the acidic group, there is little evidence of any relationship 

thereafter, except for the peak at sampling 12 (Warch to April, Figure 

17). Coefficients of variation for the plots ranged from 17 percent to 71 

percent (Table 5). 

Oxygen uptake (LO1 basis) varied markedly with time (Figure 18) and did 

not seem to be strongly related to coefficient of humidity. The 

coefficients of variation for the plots ranged from 13 percent to 68 

percent (Table 6). 

Cellulase (OD basis) showed considerable variation with time (Figure 19) 

that did not appear to be much related to moisture content. Coefficients 

of variation for the plots ranged from 28 percent to 98 percent (Table 7). 

Cellulase (LO1 basis) showed marked variation with time (Figure 20) which 

did not seem to be strongly related to coefficient of humidity. The 

coefficients of variation for the plots ranged from 28 percent to 92 

percent (Table 8). 



Phosphatase (OD basis) also showed considerable variation with tild 

(Figure 21). Harrison and Pearce (1979) found that whej the meaq 

phosphatase activities of the 48 plots at the 14 sampling times were 

plotted there were peaks at samplings 2, 4 and 5, 8 and 9. 1 Figure 2/ 

shows that the peak at sampling 2 was due to the acidic group/. The pea LF 
at sampling 4 was strongly influenced by the acidic group, nd that at 

sampling 5 by the intermediate group. All groups contributed I o the peak4 
at samplings 8 and 9, soils of the acidic group showing t e stronges '1 F 
peak. Coefficients of variation of the plots ranged from 20 percent to 76 

I 
percent (Table 9). 1 

I I 
Phosphatase (LO1 basis) showed less variation with time (Figure 22) than 

on OD basis. The peaks at samplings 2, 4, 8 and 9 in the dcidic groub 

(Figure 21) are much reduced, as is the peak at s a p i  5 in 

intermediate group. The coefficients of variation of the Plots range 

from 16 percent to 45 percent (Table 10). 1 1 

4. DISCUSSION 1 1 

This study has shown that the problem of comparing soils with respect do 

variables which show marked fluctuations in amplitude with time can 

overcome using principal component analysis. 
v= 

The firet component 

represents "smoothed" between-plot differences, the remainink componends 

pick out plots which behave differently from the majorityl at certa n 4 
times. This use of the lower components is interesting, as it poses 

questions concerning the reasons for this differential behavidur. I 

If there is relatively little seasonal variation in the prdperties, tde 

order of the mean values of the plots over the 14 samplings will not te 

substantially different from the first component values. The coefficien s 

of correlation between the means and first component values ( 1 able 11) a I e 
all large, the smallest being cellulase activity (r = 0.955). Perhaps t+e 

main advantage of principal component analysis is thy additional 

information it provides about variation in time. I 1 
I I 

~ I 

I I 



Principal component analysis and analysis of variance showed that there 

was little within-plot variation in pH and loss-on-ignition over the 14 

samplings. Our coefficients of variation are slightly larger than those 

of Ball and Williams (1968), who found that seasonal variation in pH and 

loss-on-ignition in two Welsh Brown Earths was small within the main 

growing season. 

An interesting result is the lack of clear clusters in any of the 

component scatterplots. The soil plots sampled formed a continuous series 

with respect to all the properties studied, and combinations of them, 

except for the two outling plots with respect to coefficient of humidity 

(Figure 4). This agrees with the results of Bauzon et a1 (1974), who 

applied correspondence analysis to C02 evolution, chemical properties, and 

enzyme activities of surface horizon samples from 5 French.forest soils. 

Their ordination chart showed that only calcic mull samples formed a 

distinct group, e~tro~hic'mull, mull-moder, and mor formed a continuous 

series. 

On an oven dry basis, the first components of loss-on-ignition, moisture 

content, oxygen uptake, cellulase and phosphatase are significantly 

intercorrelated. The pattern of correlations among the means is 

essentially the same as that among the first component values (Figures 8 

and 10). As the soil water-holding capacity is due chiefly to organic 

matter, and as soil organic matter is a substrate for soil organisms, it 

seems reasonable to suppose that these intercorrelations are strongly 

influenced by relationships of the individual properties to 

loss-on-ignition, and that these properties are better expressed on a LO1 

basis when soils of different loss-on-ignition are being compared. When 

this is done, the first phosphatase component is significantly correlated 

only with the first component of oxygen uptake. The first cellulase 

component is significantly correlated only with the first component of pH, 

and the first component of moisture content (coefficient of humidity) is 

not significantly correlated with any of the other first components 

(Figure 9). The correlations between the means of the 14 samplings agree 

with this. 

Coefficient of humidity appears to be a better measure of the relative 

wetness of soils than is moisture content on OD basis. The coefficient 

used here differs from that of Crump (1913) in that he used air dry soil 

rather than oven dry, but the principle is the same. The lack of 



28 I 
I 

I 

I I 

significant correlation between phosphatase activity (LO1 basis) and pH is1 

dae to the non-linear nature of the relationships between 1 these two( 

variables, phosphatase having its greatest activity in thd range pH1 

3.8-5.0 (Table 19). Oxygen uptake shows some increase above pH 3.8 but1 

the spread of values  roba ably accounts for the lack of a isignificantl 

correlation. It is interesting that coefficient of humidity does not vary1 

significantly linearly with pH. There are significant differekes with pd 

on OD basis (Table 19), but this turns out to be due to th& differend 

otganic matter contents. The lack of significant correlatibns betweed 

coefficient of humidity and phoophatase activity, and between coef ficiend 

of humidity and oxygen uptake, is also interesting and is brolught out id 

the PCA of the means of the 14 samplings for the plots. Only coefficiend 

of humidity had a low weighting on the first component (~ablL 15). ~ o d  

dxygen uptake, the explanation seems to be that as long as the coefficient! 

of humidity is above some minimum threshold value and below alevel whicd 

would cause anaerobiosis, oxygen uptake is largely independent !of re~ativd 

ietnesss. Not much seems to be known about the factor4 affectink 

phosphatase activity. 
I 

I I 

I I 
As the coefficient of humidity was not widely adopted as a method for 

I 
expressing soil moisture content, nothing is known about its r 1ationshipL I I 
with other properties. Pyatetskiy (1976) gave a table of wilt ng moisture 

contents and ash contents of a range of peat soils. Coeifficients 
Of 

humidity calculated from those data are: eutrophic peafs 1.2-1.5 r 
mesotrophic peats 1.1-1.5, oligotrophic peats 1.3-2.5. Our lowest mea 

coefficient of humidity is 2.9 (Table 4), and this plot (17) Pid not hav 
P 
e 

the lowest oxygen uptake (LO1 basis). It seems unlikely lthat oxygep 

uptake in these soils was generally inhibited by too little moisturel, 

although seasonally it may have been inhibited by too much. 
I 

I I 
The PCA of the mean valules of the plots over the 14 samplings for all tqe 

properties (section 3.5) was not much different from tpat of tiy 

corresponding first component values (section 3.4), except (that in tqe 

second component the signs of the second and third eigenvecFor elemenqs 

were reversed. On a LO1 basis the PCA's were similar. For qome purposqs 

PCA is more useful because of the first component valuds represeqt 

"smoothed" between-plot differences which are independedt of larqe 

variations at particular sampLing times. The latter appear1 as separaqe 

components and are themselves of interest. However, for sobe purposeq, 

such as the partitioning of the sites into the three pH groubs, the me4n 

values are more appropriate. 1 I 
I I 

I I 



Interest in the role of micro-organisms in soil processes has led some 

workers to search for a method which will provide an "index" of 

"biological activity". Given the wide range of biochemical processes 

carried out by micro-organisms, differences in the capacities of 

micro-organisms to carry out those processes, and the number of factors 

influencing both, the idea that one single measurement would adequately 

represent the diversity of biochemical processes in soils would appear to 

be extraordinarily naive. 

On a LO1 basis, both first components and means of 14 smaplings for each 

plot show no significant correlations between phosphatase activity and 

cellulase activity. Phosphatase is significanatly correlated with oxygen 

uptake but cellulase is not. This means that any one of these activities 

cannot be taken as representative of the others. This conclusion is 

supported by the work of other authors. Studying enzymes extracted from 

coniferous leaf litter, Spalding (1977, 1980) found that cellulase 

activity was strongly correlated with mannase activity (r = 0.93), but 

less so with invertase (r = 0.33), 6 -glucosidase (r = 0.37) and 

polyphenoloxidase (r = 0.29). 

Frankenberger and Dick (1983) found that none of 11 enzyme activities 

D studied in A1 horizon samples was significantly correlated with C02 

evolution, but 10 of the enzyme activities were significantly correlated 

with oxygen uptake. None of the enzyme activities, or C02 evolution or 

oxygen uptake, was significantly correlated with soil pH, although several 

D were significantly correlated with soil C, and 4 were significantly 

correlated with total N. Only one enzyme (urease) was significantly 

correlated with CEC and none was significantly correlated with clay 

content. In soils collected under mixed broadleaves, Voets - et a1 (1975) 

found that phosphatase activity was not significantly correlated with 

saccharase, 8 - glucosidase, or urease activities. Some pairwise 

correlations of the other enzymes were significant, others were not. 

However, statistical significance of a correlation coefficient means only 

that it is not zero. A statistically significant correlation coefficient 

may be associated with only a weak relationship. Thus, in the work of 

Spalding cited above, r = 0.29 was significant, but r2 = 0.084 means that 

the bivariate relationship accounted for only a little over 8 percent of 

the variance, nothing to get excited about. 

Other papers with similar results are Hankin (1974) and Ladd and 

b Butler (1972). 



I 

I 

I I 

In controlled experiments on the growth of bacteria and fungi on a soil I 

with added glucose-sodium nitrate, Nannipieri et (1979) conduded that I 

no single measurement (C02 production, urease, phosphatase, ok protease I 

activities, amounts of amino acids and amino sugars) could de said to I 

represent "bioactivity". Peak CO2 evolution preceded those of1 the other 1 

criteria. Urease and phosphatase activities were significantlycorrelated~ 

with bacterial but not with fungal biomass. The other criterda were not1 

correlated with biomass. The authors concluded that for1 a better1 

understanding of the soil system, the use of only one or two driteria is1 

too simplistic (see also Nannipieri et a1 1978). 
I I - 

I 

Furthermore, correlations between activities observed in one yAar may not' 

be found in another (Hersman & Temple 1979). 
I 

I 

None of the properties individually showed any tendency for the plots to 

fall into distinct groups. PCA's of the plot mean values, 04 the firs! 
component values, of all the properties taken together alsd failed td 

produce clear groups. However, using a priori groups based od - 
I I 

(1) pH < 3 .8 ,  (2) pH 3.8-5.0, (3) pH >5.0, significant differlences 

means could be demonstrated. On a LO1 basis oxygen uptake, c~llulase and 

phosphatase activities were all distributed differently among the groups 

(Table 191, emphasizing the futility of trying to use any one measure a 
I 

an "index of biological activity". 
4 

I I 

I I 

Variaton of the properties with sampling time can be lookeq at in twy 

ways. The graphs of the mean values of the soils divided qnto acidicl 

intermediate, and base-rich groups (Figures 14-22) shpw variou 'f 
interesting features. Soils of the acidic group were wetter (coefficieny 

of humidity) than those of the other two groups after sampling 5, i.et 
from September to the following May. Oxygen uptake, ceplulase an+ 

phosphatase activities were not obviously related to relatqve wetness1 

Cellulase (LO1 basis) showed a peak at samplings 2 (June) and 6 to 8 
(October to January). It is reasonable to suppose that the later peab 

follows litter-fall and also, possibly, death of roots as( the mainlgr 

deciduous trees become dormant. Samplings 5 to 14 have largel elements oh 

the first eigenveccor, and account for 92 percent of the variance in thp 

first component, as against 71 percent if the eigenvector eiements werp 

all equal. Figure 20 shows a low cellulase activity at samplkng 12, thep 

an increase. The peak in June is difficult to explain. I I 

I I 

I I 

I I 



The marked seasonal variation shown by phosphatase activity on OD basis 

becomes, on a LO1 basis, a slow increase to a maximum in January (Figure 

22). For soils with pH less than 3.8 there is also a peak at sampling 4 

(August ) . 
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Table 1.  pH, uean and coefflcieat of variation of 14 samplings ldr each plot.
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3 l
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1 0
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1 t
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t l
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Low Wood, Elterwager
Arnside Knott
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Slde End
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Duddon Bridge
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Intake, Skelwith
I{igh Bowkerstead
Stonethhraite Fell
Town End
El leray
High Wood
81der Copplce
Lolr Eows
Bitks Brorr
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6
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(L) on Carbonlferous LinesEone



Loss-on- igni  c  ion (Z 00) ,
sampl ings for  each o lot .

mean and coefficlent of variation of 1.4
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Table 3.
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Intake, Skehrlth
SEang Ends
t{all Wood, Kentnere
Low Ilovs
t{igh Wood
Throughton ltall
Bo\rers Wood
Town End
Barton Park
Nibrhwal te
Tower Wood
Undercrag
Church St i le
Addyfield
Iloneybee Wood
lllgh Bowkerstead
N of  Seat le
Low Wood,  I lar tsop
Torver Connon
Durhao Bri.dge
Slde End
Lamb tlo.re
El leray
Elder  Copplce
Low Wood, llaverth\rai le

34
I
6

10
9

24
z8
1 l
8

l -+

8

l9
I

l o

10
l0
8

t4
t2
l8
t5
L4
L2
14
l6
16
1 . ,

29
I

L7

18
15
25
r6
20

19
zo

25
13
39

( L )

(L)

( L )
(L)

( L )
(r)

LiEestone



Table 5.  Oxygen uptake (u I /e oo/h),
sanpliogs for each plot.

nean and coefficient of var{attoo or tl

PLot
N o .

z8
37
30
35

6
39
l t

8
4

I4
34

46
! )
? q

J J

29
40
t2
zo
24
45

o
1 8
16
7

J O

Z I
48
31
10
.,

43
3Z

t
49
44
47
4Z
z )
26
38
l9
27
22

( L )

38
36
r-8
40
4 )

24
)4

28
54
40
4Z
43
27
29
59
3 t
58

38
5 J

26
32
31
34
44
28
27
44
37
43
LJ

L L

J Z

47
28
39
J 4

29
2a
39
18
43
4L
.1r+

7 l
27

Wood name. Mean
oxygen
uptake

l l . 6
t I . 1
l o .  7
10.0
C I A

q 2

o 1

8 .6
8 .1
7 .8
7 .8
1 . 6

7 .7
7 .4
7 .4
7 .1

7 .L
6 .8
6 .6
6 .6
6 .6
A I

6 .0
5 .9
5 .9

) . q

q l

5 .  t

4 .9
4 .4
4 .4

4 .0

3 .6
1 l

3 .0
3 .0
' t o

2 7

t 7

2 .6
2 .4

Tower Wood
Tarn Hows
Low Hows
Elder Coppice
Sconethnalte Fell
Torver Conmon
Crag Ilouses
Eigh Wood
Nibthwaite
Side End
ThroughEon HalI
N of  Sear le
Thwaite Head
Undererag
Low l.lood, llaverthwaite
Birks Brort
'rletsleddaLe

Totrn End
lligh Bowkerstead
Scales I'lood
Elleray
Addyfield
Routing GIU
Nichols Wood
Church St i le
Durhar Brldge
Lamb Eo(,re
Low Eskholne
Overslde
Barton Park
Meathop Wood
Great Knott
Stang Ends
Wall End
Low Fel l
Roudsea Hood
Intake, Skelldrh
Duddon Bridge
l{a 1l Wood, Kenroere
Eaves Wood
Roeburndale Forest
Arnside Knott
LorJ Wood, llartsop
Bowers Wood
Caslle llead
Ilooeybee Wood
Lov l{ood, El Eerwater
Mattindale

( L )

( L )

( L )

( L )

(L) on Carbonlferous LimesEone



O

Table 6.

p l o t
No.

24
1 8

9
3
e

48
44
2 l

3 6
45
4 7
? o

29
4

20
t3
30

l6
37
34
25

!2
7

26
31
43
49
I9

I
l 5
32
z2
L7
40
28
46
11
23
38
42
LO
L4
z

Mean
oxygen
uptake

? q  
"

30 .0
? R  O

28 .7
27  . 6
27 .L
26  . 3
26.3
26 .L
25.6
t q  a
, <  a

24  . 9
24.8
24.6

24 . l

t a  r

4 ) .  L

a ) .  L

22 .9

22 .5
zz.4

20.4
zo.3
20.2
l Q  o

1 0  7

L 9  . 5
19.z
t o  r

18 .  6
L t . h

t / . . f

1 7  . 4
1 6 . 4
1 6 . 0
l q  o

1 4 . 9
I J . d

13 .  I

Oxygen uprake (  u f /g  LOI/h) ,
sanpl ings for  each p lot .

Wood naEe

nean and coefficieot of vatiatlon of 14

Rout lng Ci l l
Durham Bridge
Church St i le
Ni.bthwaire
J lde  End

MeaEhop Wood
Eaves Wood
Barton Park
Town End
overs ide
Nichols Wood
Roeburndale Forest
Crag Houses
High Bolrkers tead
Throughton llall
Addyf ie ld
To\rer Wood
Elder  Coppice
Stonethnalte Fell
Lamb Howe
Low llows
Thwalte Head
lJets leddale
Undercrag
El"leray
Low Eskholne
Bowers Wood
Grea! Knott
Roudsea l{ood
Hall l,Iood, Kentrlere
I{oneybee Wood
Torver Connon
Duddon Bridge
Birks Bros
lntake, Skel\rirh
Martlndale
rJow ! el l

Scales I lood
Tarn Eows
Low Wood, I{averthwalte
tiigh Wood
Lord l.Iood, Ilart sop
Cast le  Eead
Arnslde Knott
S Eang Ends
N of  Seat le
Wall End
Low Wood,  El terwater

( L )
( L )

( L )

( L )

28
28
24
1 R

t 9
2L
29
l8
26
27
27
29
22

26
14
t 1

20
r3
19
43
L6
ZL
)J

28
L3
L4

Lt+

24
31
13
z5
2 2

1 5
z4
2 3
t 7
30

l 8
20
29
26
68

( L )

(L)  on Carbonl ferous L inestone



lable 7. Cellulase activiEy (ng glucose/g 0D/48h), mean and
var lat lon of  14 ssnpl lngs for  each p lo! .

Wood name Meao
glucose

ng

0. 07 68
0 .066 r
0 .0637
0 .0604
0 .0549
0 .0546
0.0544
0 .0528
0.0500
0 .0458
0 .o455
o.0432
o .0429
0 .041 r
0.0407
0 .0391
0 .0387
0 .0385
0 .0370
0 .0363
0 .0362
o .0341
0 .0340
0 .0328
0 .0307
0.0302
0 .0299
o.0296
0.0258
o.0249
0.0243
o.0242
0.0240
0 .0239
0 .0234
0.0232
o.o22l
0 .0215
0.0208
0 .0202
o.0200
0 .  019  7
0 .0192
0 .0186
0.0r.68
0 .0 t63
0 .0140
0 .0103

f lc ient  of

60

64
86
49
57
54
44
66
44
54
44
67
88
72
37
35
98
55
77
73
40

38
60
91
90
66

70
42
63
63
64
91
58

o l

55
4 2
84
49
56
J.l

86
28
82
36

P l d r
No.

'r't

3 7
L J

6
J U

48
2

19
46
26
39
l8
34
43
24
4

40
l )

29
L. l

45
47

q

l )

z7
38

7
J )

25
23
4Z
l1
L2
f o

10
I
t

3 t
L7
32
2L
36
20
44

zz

( L '

Tarn Eons
Low llows
Tower Wood
Torver CoEmon
Elder Copplce
MeaEhop Wood
l.lall End
lloneybee Wood
Low l,lood, EaverthwaLte
Bowers l{ood
Crag Eouseg
DurhaE Brldge
Thwaite i{ead
Loudsea l{ood
Rout ing Gl lL
Throughton t{all
Scales Wood
Stonethwalte Fell
Undercrag
Ni.bthnalLe
High Bowkerstead
N of Seatle
NLchols Wood
Roeburndale Forest
Church S tlle
Birks Brow
Low Wood, Elterwater
Castle llead
Low Eskholne
Town End
Wetsleddale
Low Wood, llartsop
Arnside Knott
Itlgh tlood
Elleray
Laub Bowe
Stang Ends
Side End
Duddou Brldge
Greac Knott
Low Fel l
In take,  Skelwl th

(L)

(L)

Bar ton Park
0verslde
Addyfield
Eaves Wood (L)
Itall Wood, Kentmere
Mattindale

(L) on Carbonlferous Llmesrone



a

O

o

a

a

a

t a D l e  o .

P lor
N o .

1 9
z6
48
47
18
24
43
38

q

z
45
23
29
37

1

77
39
34
6

30
42
4

4 0

l 3
2a
44

7
40

I
2 l
35
32
t6
36
31
L I

33
49
25
22
8

t2
t0
15
I4
20
I I

Honeybee Wood
Bolrers l{ood
Meathop llood

0 .3857
0 .  3671
0 .299 4
0 .2803
o.2402
o. zz7 0
o .2067
0 .1786
0 .  17  59
0 .  1589
0 .1502
0 ,  1468
0. 1409
0. 1389
0. r368
0 .1352
0 .  1318
0. r .313
0. t -305
0 .130 r
o.L295
0 .1293
o .  Lz78
0 .  1263
0 .  t 216
0  .  1210
0 .1175
0 .  r 160
u .  t r 1 4
0 .  1 0 5 2
0 .  1019
0. 099 r
o .097  4
0 ,0963
0 .0959
0 .0898
0 .  0874
o.087 2
0. 0858
0 .  085  7
0 .  0819
0 .0802
0 .0793
0 .077  5
0 .0759
0 .0593
0 .064 r
0 .047 L

Cellulase act.tvtty (rag glucose/g LOI/48h), raean
var iat lon of  14 sanpl i r rgs for  each p lot .

l{ood naroe Mean
glucose

ng

and coef f ic ient of

cvz

42

> t
36
43
87

64
85
.)U

48

74
t )

79
73
q ?

o /
al
38
59
J O

65
57
53
, g

63
85
34
52
67
70
4L
53
44
43
83
60

44
39
62
80
80
O L

76
56

( L )

(r)
Roeburndale Fores t.
Durhan Br ldge (L)
Rout ing Gi l l
Roudsea I^lood
Cast le  Head
Church S Elle
warl '  Enct

N i cho l s  Wood  (L )
Low Wood, tlartsop
Iligh Bowkerstead
Lon llows
Nibthwair.e
Lon Wood, Elterwaler
Crag l{ouses
Thwaile llead
Torver Co$mon
El,der Coppice
Arnside Knott (L)
Throughton Hall
Low llood, Ilaverthwat Ce
Tower l,Iood
Tarn llows
Eaves Wood
Undercrag
Low Eskholne
Scales l,Jood
Duddon Brldge
Barton Park
Stonethwalre Fel l
Inrake,  Skelwi th
Lanb Eowe
Overs ide
Great Knoct
Low Fel I
Town End
HaII Wood, Kentuere
Wets leddaLe
Martindale
Slde End
El leray
Stang Ends
Birks Brort
N of  Seat le
Addyf le ld
Hlgh l.lood

(L) on Carboniferous Ll$estone



Table 9.

P10r
N o .

L 5

2a
37
6

46

35
l l
30
1E
8

34
15
40
4

39
25
29

Phospharase acr iv l ry  (  pg phenol  l lberated/g
coef f ic lenr  of  var lar lon of  14 sampl ings fo i

0 D / 3 h ) ,
each plo

(r)

33
9
7

I O

45
20
LZ
10
49
24
1 4
? 1

43
27

31
2 '

42
23
36
? R

48
44

t
2

26
47
22
19

Wood nane

Low Wood,  Har tsop
Overs ide
Castle llead
Meathop Wood
Eaves Wood
Duddon Br idge
Wall End
Bowers Wood
Roeburndale Forest
Martindale
I{oneybee Wood

(L)  on Carbonl ferous

Tower Wood
Tarn llorrs
Low Hows
Torver Connon
Low Wood, Haverthwaite
Nlbthwai te
Stonethwal te Fel l
tl igh Wood
Elder Coppl.ce
Durhan Bridge (L)
Side End
Thwaite l{ead
Birks Brow
Scales l.lood
Throughton Eall
Crag Houses
Wets leddale
High Bowkerstead
To\dn End
Church Stile
Low Eskholme
Undercrag
Lanb tlowe
Nichols Wood (L)
Addyfield
E l- le ray
S Eang Ends
I{aIl Wood, Kencoere
Routlng cill
N of  Seat le
Barton Park
Roudsea Wood
Low Wood,  El ternater
Low FeIl
Creat Knott
Intake, Skelwith
Arnslde Knott (t)

l,leao
phenol

. J J  L

2 1 8  0
t a t J )

t667
L O Z L

L458
t436
t J 6 4

1303
LZ36
L Z J O

L233
1182
LL76
r  111
1088
1048
1008
1006
997
949
918
916
860
834
814
8L  l
E l  t
804
794
782
781
765
t > t
t > L
680
649
637
5r6
b t-)

590
582
559
) ) o
542
4 2 4
402

58
30
5 J

20

J U

39
z6
4 l

50
32

35

31
3 l
28
z4
31
29
28
4 t

. ' t -

56
22
' 11(r)

LLnestone



o

o

a

o

o

o

( L )a

Table 10. Phosphatase acElvity ( ug phenot liberated/g Loll3h), rnean
coefficient of variation of 14 sanpllngs for each p1ot.

P lo t
N o .

r8
1

t

49
13
47

8
44
26
?4

7

) t

29
43
4 5
1 6
4

23
42
35
32
38
25
27
34
33
46

z8
40
48
l 5
2 Z

3r
20
36
30
39
L9

I
LZ
11
l0
2

L q

I'lood naue i,lean
phenol

ug

7 239
5405
5257
4813
47  6L
4523
4507
4390
4337
427 L
4L54
397 6
3967
3967
3936
387 6
3847
3814
3806
37 49
. t t  5 0

37  22
37 L2
3694
3634
3624
3505
3585
35 31
3506
3483
3404
3394
3334
3327
3294
) z o t

315  0
J L 5 I

3L22
297 5
2949
2947
2844
?770
27  23
1614
156 5

Durhan Brldge
Nibthwaire
Church St i le
llal l Wood, Kentdere
Tower Wood
Roeburadale Forest
si.de End
Eaves Wood
Bolrers Wood
Routing Gill
Lor,/ Eskholne
Earton Park
l,ow Eolrs
Iiigh Bonkerstead
Rosdsea l.Iood
Nichols Wood
tanb Howe
Throughton llall
Low 'r{ood, llartsop
Araslde Kqot.t
StoneEhnalte FelI
Incake, Skelwi.th
Castle Eead
wets leddale
Low Wood, Elterwater
Thwaite Head
Town End
Low l"lood, l{averthwalte
Torver Comon
Taro l{ows
Scales Wood
Meathop Wood
Birks Brow
Martindale
Low Fel l
Great Knott
Addyfield
0vers ide
Elder  Copplce
Crag Houses
Iloneybee Wood
Undercrag
Duddon Bridge
Elleray
High Wood
Stang Ends
Wall End
N of  Seat le

( L )

( L )

( L )

24
22
20
27
16
42
29
29
32
27
27
zz
29
7L
t9
zt+

t 9
32

35
16
36
1 5

zo
18
l9
38
43
37

23
38
35
75
45
25

20
JU

35

25
29

39
36
33

( L )o

(L)  on Carbonl ferous L lnestone



r a D t e  r r . Corre la t ions  be tween mean
couponent values for the

values of 14
48 p lors.

pH
LOI

Varieble

basis

Molsture content
Oxygen uptake
Cel lu lase
Phosphataae

LOI basis

Coef f .  o f  humidi ty
Oxygen uptake
CeLlulase
PhosphaEase

Correlatlon
coef f ic lent

1 ,000
I .000 7 7 . 4

0 .999
n  o o q

0 . 9 9 5

1 .O00
0 .997
0 .  986
n ctoo

75 .3
55 .  8
38 .  4
59 .3

7 7 . 7
44.3
5 0 . 6
) 1 . 6

a

o

o

o

o

o

o

o

o



a

a

o

o

a

I a D l e  l z . correlation half-matrlx for
los s-on-ignit ioo ' Eoislure
and phosphatase, OD basl-s.

the first cooPonent values of PI{'
content, oxygen uptake ' cellulase

Ptt

LOI

i"lol sture cootent

oxygeo uptake

Cel lu lase

PhosphaEase

pll

I

- .6L2***

- .463***

- . 4 9 7  * * *

- . 0 7 0

- .42Lx*

LOI Itoisture OZ UPtake Cellulase

I

. a l u i ' l r

. 865* * *

.466*r.*

.7 94**) .

I

.  7  33***

.4521 *

.729***

t

.436**

.998* * *

I

. 4 4 0 * *

I A D I E  I J . Eigenvalues and
the  cor re la l ion

1O

Elgenvalues

Percentage of variance

Cuuulative percentage

Eigenvectors
?

pH

Loss-on- igni Eion

i"toisEure content
a

Oxygen upCake

CeLlulase

Phosphatase
o

*E i8envec tor  e lemen l  g rea le r

elerDenr.

eigenvectors for Ehe
mat r ix  in  Tab le  12 .

first two conponents of

Conpone0t

o

1

4 .  05

67 .6

67  . 6

0 .  30

-0. 48*

-0 .44*

-0.  45*

-a.27

-0 .45*

L

0 . 9 4

1 5 . 6

c? ')

-0 .  67  *

0 .08

-0 .03

0 .01

-0 .74*

-0.  06

Ehan 0.75 t lnes Ehe largest  (absolute)



Table 14.

PE

ItuEidlty

oxygen uptake

CeI Iu lase

PhosphaEase

pH

1

0 . 1 6 8

.  L ' U

.439**

.259

I

.zol

. 6116 ***

Correlation half-oatrlx for the first component values of pll,
noisture conlent (coefflcient of hunidiry), oxygen upcake,
cellulase and phosphatase, LOI basis.

uunidlry 02 uprake cellulase

1

.042

. r t )

I

.249

Table 15.

1 . 1 0

, r  o

62.9

0 .92

18 .  4

p1 .3

o.27

+0.84*

+0 .  11

0 .43

-0 .  17

0 .43

0 .49 *

-0.  50*

0.4t-

-o,40

Eigenvalues and elgenvectors for the flrst three cbnoonents oF
the correlation uatrix ln Table 14.

Component
L 2 3

Elgenvalues

Percencage of variaoce

Cumulative percentage

Eigenvectors

PH

tluoidity

Oxygen uptake

Cel lu lase

Phosphatase

*Ei.genvector elemenE greater
e lenent .

z.05

4 I . 0

4 1 . 0

-0 .46*

-0.  20

-0 .  51*

-0.44*

-0.54*

than 0.7 5 t ines the largest  (absoluEe )



a

o

a

o

o

o

o

Table 16. Analysis of varlance of the flrst conponent values of plt, LOI,
rDoisture cootent, oxygen uptake, cellulase and Phosphatase (OD and
Lol  basis)  for  l i rnestone and non- l lnestone p lots .

Pt{

0D basis

L0t

Moisture conteot

oxygen upEake

Cel lu lase

Phosphatase

LOI basis

Coeff. of hunidlty

Oxygen uptake

Cellulase

PhosphaEase

First couponent values
val-ues greater or less

Linestone + Non-Linestone

Linestone + Non-llmestoue

Lloestone f Non-Iloestone

Not  s lgni f lcant

Not  s lgn i f icant

Not  s lgn i f icant

Not  s lgn i f lcant

Not slgnlflcant

Llnestone -ts Non-linesEone

Not  s igni f lcant

p  <  0 .00 I

P <

p <

0 .  05

0 .  001

p < 0.0O1

have
than

arbltrary sLg,ns, so whether llmeslone sites
those of non-linesrone sites has no neaning.



Tabl-e l-7. Analysls of varlance of, the plot nean values for pH,
conEent ,  oxygen uptake,  eel lu laee,  and phosphatase (
basis)  for  l imestone and non- l ime; ton.  p lot i .

I ,  no is
and LOI

e

Mean for
I Non-

Linestone I Urestone
Differen<

Pt{

OD basis

LOI

l{oisture content

Oxygen uptake

Cellulase

Phosphatase

LOI basis

Coeff. of hunidity

Oxygen uptake

Cel lu lase

Phosphatase

18

63

4 .4

0 .037

75L

3 .6

25

o.22L

427 2

4 . 1

29

l3 l

6 .6

0 .034

LO42

4 .5

22

0 .125

J O J J

1

1 l  t  5

68+24

2 .2  +  L . l

0.003 + 0.0q7

291 r  185

0 .9  r  0 .5  ,

3 !2

0 .09  t  0 .029

639 t  387

L > N***

L < N *

t < N * *

NS

NS

NS

NS

NS

NS

.-.1
NS Not signi f lcant

0 .  0 5
0 .  0 1
0 . 0 0 t

L
N

Llmestoae plo
Non-llnestone plots



O

a

a

o

a

a

Table 18.  Analys ls  of  var iance of
conten!, oxygen uptake,
basis) ,  P l ,o ts  d iv ided
14 saopl lngs.

the first eonponenE values
cellulase, and phosphatase

lnto 3 groups on lhe basls

of LOI, noisture
(0D and LOI

of oean pl{ over

Signs are arbitrary for coEponent values, so < or > ls not appropriate.

N o  o f  s i t e s  l n NS
I
B

Not  s lgni f lcant
p  <  0 . 0 5
p  <  0 . 0 1
p  <  0 , 0 0 1

lst conponent values
o f

Mean
pI{ < 3.8

(A )

falues in range
3 .8 -5 .0  |  p l r>S

( r )  |  (B)

Slgnl f lcant
d l f ference

(Tukey's IISD )

0utput

Inpur (OD bas is )

LOI

lfoisture content

oxygen uptake

CelLulase

Phosphatase

lnput (LOI bas j.s )

Coef f .  o f  hunid i ty

oxygen uptake

Cel-lulase

Phosphatase

- 1 . 3 4

3,46

3 .  r1

r  o ?

I  l q

1 . 5 0

-0 .06

-1 .00

-2 .  LZ

0 .45

-1 .11

-L  .26

-o.44

-o.73

-o.23

-0. 49

0 .  53

-0 . t 3

1 .06

0 t o

- L 66

- t . 35

-2 .L7

0 .  51

-2. 12

2 .  00

0 .  61

2 .49

0 .  14

e{t**; t*st t

a+T *** ' a-ARrclr*

t+T*** .  A=AR/r *

A+t* i A*B**

$r*

At'tt

NS

NS

A+B*; 1+B*



Table 19. Analysis of variance of
concent ,  oxygen uptake,
basis  ) .  p lo ts  d lv ided
14 sarnplings.

the plot rnean values for LOI,
cellulase, and phosphatase (0

lnto 3 groups on the basis of

o is ture
and LOI
an pll o

Variables
Mean values Ln

p H  <  3 . 8  |  3 . 8  -  5 . 0
(A)  |  ( r )

range

I  p l t  >5 .0
|  (B )

Signiflcant
(Tukey I s

difference
ITSD )

0D basis

Los s-on-lgni E ion

Moisture content

Oxygen uptake

Cellul.ase

Phosphatase

LOI basis

C o e f f .

Oxygea

of hunldity

uptake

Cellulase

PhosphaEase

4 0 .  8

180

8 . 1

0 . 0 4 3

t250

4 .4

19 .9

0 .106

3048

23.9

o o "

5 .9

0 .030

962

4 .2

23  .8

0 .136

4047

18 .  3

96 .4

. l - - '

U.  UJO

685

5 l

23.6

o.207

37 57

A > I**r.; A

O t 1*rr*1 A

A >  r *  ;  A

A >  I *

A >  B *

NS

A <  I *

A < B** .

A <  I * X

> B***

> B**

> B**

B*

No.  of  s i res in  A = 14
L  =  L T

I

NS Not slgnlficant
*  P '  o .o5

* r r  p  <  0 . 0 1
* * *  P  <  0 . 0 0 1
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I'igure 1. Map shor-ing the

OSites on acid.ic rocks

of the 4B sa:npling sites.
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Iigure 2. First and second. component values of pH.
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Figure 3. First and. second conponent values of moisture content (Op tasis).



Figure I+. First and second. component value s of coefficient of

(noisture content,/g LOI).
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Figure 5. First and. second component vaLues of oxygen uptake (LOI basis).
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Correlations a:nong

M noisture content,

P phosphatase.

the means of the 1l+

R orygen uptahe, C

s  ig  n i f  i ca  n t
cor re la t ion

s ign i f  i can t
cor re la t ion

s"'n!li4gs (op tasis ) .

celIulase,

nega t  iv  e
'p<o '05

pos it ive
I  p 'o 'os

! lgure au.
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Appendi.x 1.

P lo t
N o .

I
2
,l

4

6
7
8

10
l l
L2

l -4

l 5
I 6

r8
I9
zo
2L
22
2 3
24
z5
26

28
29
30
3I
3Z

34

. ) O

37
38
39
40
42
43
44
q )

4 6

48

There were
sanpl ing.

L is t  o f  r roods

Wood name

Duddon Bridge
Wall End
Nibthwaite
Tbroughton Hall
Undercrag
Torver Coumon
Low Eskholme
Side End
Church S rile
Stang Ends
High Wood
El leray
Toser Wood
North of  Seat le
Birks Brow
Lamb l{owe
Low Fell
Durhan Bridge
Iloneybee Wood
Addyfield
Barton Park
Martindale
LoI^r Wood, I{artsop
Routing cill
Wets leddale
Bowers Wood
LoI' Wood, Elterwater
Tarn Eows
l{igh Bowkerstead
Elder  Copplce
Great Knott
Intake, Skelwlth
To$n End
Thwaite llead
Stonethr^raite Fell
Overside
Lou l{ons
Castle Head
Crag Eouses
Scales Wood
Arnside Koott
Roudsea Wood
Eaves Wood
Nichols Wood
Low Wood, Ilaverchwalte
Roeburndale Forest
Meathop Ilood
I{all Wood, Kentmere

( L )

Sallpling

Group
Nat.
Grld
Ref.

L94884
22087 5
297 880
2549L6
27 5940
298946
L23968
065095
L28042
120035
122046
412992
370870
382838
410919
419  9  13
420908
446898
482906
403900
470228
440170
401132
405250
540112
505028
33805 r
3 r5995
353906
350968
3359r8
345047
360983
352904
266L38
250220
250160
27 4229
L7 tt7 2
L65L65
4 4 > t  t >
330422
4 tu t6u
435825
349838
o  r )o ) )
+ J )  r  t )
452014

NY
SD
SD
SD
SD

SD
NY
NY
NY
NY
SD
SD
SD
SD

SD
SD
SD
NY
NY
NY
NY
NY
NY
NY
SD
SD
SD
SD
NY
SD
SD
NY
NY
NY
NY
NY
NY
SD
SD
SD
SD
SD

(r)

( L )
( L  )

SD
SD
NY

(L)  on Carbonl ferous L lmesrone

o r i g i n a l l y  4 9 but  wood 4I  had ro be on i t ted  f rom the



Appendix 2. Sanpling periods.

N o .

I

t

4

6

7

8

CI

10

l l

L2

l3

T4

Dates

24 May

ZL June

19 July

16 August

13 Septenber-

11 october -

8 Noverober -

6 Decenber -

3 January -

31 January -

28 February -

27 March

24 Apr i l

22 l,lay

r97r

L97Z

13 JuIy

10 Aucult

7 sertfnber

5 0ctoler

2 Novedber

f5 June

30 Novetber

28 Decedber

25 Janudry

22 Febrrlary

21 Marcti

18 Apri

16 I,Iay

13 June



a

o

o

l ,  7 ,  8 ,  9 ,  10 ,  l r

15 ,  16 ,  17 ,  18 ,  19 ,  20
o

40

28

, s

?4 ,

4

7

a

44 ,  46 ,

30, 32,

Appendix 3. Sequerce for sanpling the P l o r s .

Date Sarupling
Group

I'londay May 24Eh L97 L

Tuesday May 25 rh

I4onday May 3lst

Tuesday June lst

Monday June 7th

Tuesday June 8th

Monday June l4th

Tuesday June 15th

This sanpling pattern was reDeated fo r  aech

Plot  No.

2L ,  22 ,  23 ,  24 ,

13 ,  14 ,  29 ,  3L ,

35 ,  36 ,  37 ,  38 ,  39 ,

2 ,  3 ,  4 ,  5 ,  6 ,

26

t l t  t q

47

33 ,  48

sanpling periods.

o

4 t ,  43 ,

L2 ,  27 ,

of  the  14



Merlesood Research and Developnent papers
are produced for the dlssenination of
infornatiou within the Instltute of

O Terrestrial Ecology. They shouJ.d not be
quoted wlthout prelinlnary reference to the
author. A1l opinions expressed in
Merlewood Research and Developoent papers
are those of the euthor, and aust not be
Eaken as the offlcial opLnlon of the
Inst i tu te of  Terrest r la l  Ecology.

o

a

o

o

o

o

o

o

o

a

o




