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2 

 

27 Abstract 
 
28 Evidence for effects of saprophytic fungi on buried seed demography is usually obtained from 

 
29 studies involving the simultaneous burial of fungicide-treated seeds and of untreated seeds. 

 
30 However, any potential influence of fungicide treatment on seed dormancy levels is generally 

 
31 ignored in these studies. Also, some studies assume that a combination of several fungicidal 

 
32 compounds provides better protection against a broader range of fungi, ignoring chemical 

 
33 interactions that may potentially occur between different compounds. To investigate these 

 
34 issues, we carried out a six-month burial experiment using seeds of Anthriscus sylvestris (L.) 

 
35 Hoffm., Centaurea nigra L., and Daucus carota L., and three substrates differing in organic 

 
36 matter content. Three fungicidal compounds, captan, iprodione, and mancozeb, were applied 

 
37 alone and in combination, including an untreated control. All fungicidal compounds and 

 
38 combinations thereof provided protection against fungal-induced seed mortality, and except 

 
39 for a low efficacy of iprodione in protecting seeds of Anthriscus, there were no pronounced 

 
40 differences in seed mortality between different fungicide treatments. Captan temporarily 

 
41 inhibited germination in Centaurea, whereas a similar inhibition in Daucus seeds caused by 

 
42 mancozeb was more long-lasting, suggesting an induction of secondary dormancy. Organic 

 
43 matter content only had a negligible influence on these results. Our results suggest that the 

 
44 basic conclusions from most seed burial studies are robust with respect to their choice of 

 
45 fungicide. We conclude by discussing further implications of our findings for the design and 

 
46 interpretation of seed burial studies. 

 
47 

 
48 
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50 dormancy, fungal attack, fungicide treatment, mortality, seed burial experiments, seed 

 
51 longevity, soil organic matter content 
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53 Introduction 
 
54 The effects of saprophytic soil fungi on the longevity of buried seeds have been investigated 

 
55 for many different plant species from a wide range of different ecosystems with experiments 

 
56 involving the simultaneous burial of untreated seeds and of seeds treated with fungicides 

 
57 (Fellows and Roeth, 1992; Lonsdale, 1993; Dalling et al., 1998; Leishman et al., 2000; 

 
58 Gallandt et al., 2004) The results underline that fungal-induced seed mortality can greatly 

 
59 affect seed demography. 

 
60 However, methodological aspects are usually given little consideration in such seed 

 
61 burial studies. One notable exception is the study by Van Mourik et al. (2005) which 

 
62 demonstrated that the density of seeds buried in seed bags can markedly affect rates of fungal- 

 
63 induced seed mortality. However, there are at least three other methodological aspects that 

 
64 would in our opinion also merit methodological consideration. First, it is known that 

 
65 fungicides can directly affect live plants even in the absence of the targeted fungi (Paul et al., 

 
66 1989; Laird and Addicott 2008), and as outlined further below, the same may also apply to the 

 
67 seed stage of plants. Second, fungicide efficacy can crucially depend on soil characteristics 

 
68 such as soil organic matter content (Goring, 1967), although individual fungicides will be 

 
69 affected differently by such characteristics (Lopes et al., 2002; Andrades et al., 2004). 

 
70 Finally, different fungicides, due to their different modes of action, tend to have specific 

 
71 effects on particular fungal taxonomic groups (Paul et al., 1989), and are therefore often 

 
72 combined to protect live plants against a wider range of fungal pathogens (Gisi, 1996). Such a 

 
73 combination of fungicides can sometimes also result in unexpected synergistic or antagonistic 

 
74 effects on fungal pathogens (Scardavi, 1966; Gisi, 1996), and there is also the possibility of 

 
75 unexpected changes in phytotoxicity (Backman, 1978). This third aspect may also deserve 

 
76 more consideration in the context of seed burial studies. Several fungal phyla contain 

 
77 saprophytic genera with the potential to harm seeds (Schafer and Kotanen, 2004), and this 

 
78 provides a motivation for combining several of these fungicides to achieve protection of seeds 
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against a wider range of fungi (Leishman et al., 2000). This assumption of a combination of 

fungicides providing a more comprehensive protection against fungal-induced seed decay has 

however not yet been experimentally verified. On the contrary, it also seems possible that 

different fungicides used together in a mixture may chemically interact with each other in a 

way that could negatively affect their efficacy as seed protectants. Combining different 

fungicides may even result in toxic effects on seeds similar to those observed for particular 

fungicide-insecticide combinations (Gange et al., 1992). 

Similar to the above stated known direct effects on live plants, fungicides can also 

have direct effects on seeds. It is known from in vitro experiments using crop seeds that 

fungicide treatment can affect germination rates, either by inhibiting or by promoting seed 

germination (Clark and Scott, 1982; Simmen and Gisi, 1995; Hartz and Caprile, 1995). The 

same mechanisms can also affect the timing of crop seedling emergence in the field (Smiley 

et al., 1996). 

To explore these various methodological aspects in a full factorial randomized block 

experiment, we treated the seeds of three grassland plant species with up to three different 

fungicidal compounds alone and in combination, and buried them in three different substrates 

representing a gradient in soil organic matter content. The following three main questions were 

addressed: (1) Do treatments that combine more than one fungicide result in a greater 

reduction in seed mortality, compared to treatments that use just one fungicidal compound? 

(2) Do fungicides, alone or in combination with each other, have an influence on the readiness 

of seeds to germinate when exposed to conditions that are favourable to germination, i.e. are 

dormancy levels influenced by the fungicide treatments? (3) Do these fungicide effects on 

readiness to germinate and on seed mortality depend on soil organic matter content? 

 
 
 
Material and Methods 
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Field site 
 
The burial experiment was carried out in unmanaged ruderal grassland adjacent to the Centre 

for Environmental Research and Technology (UFT) of University of Bremen, Germany (53° 

05' N, 8° 48' E). The topsoil at this site consists of almost pure sand, with an average pH of 
 
5.2 and an organic matter content of 1.1 % (Mitschunas et al., 2008). Mean annual mean 

temperature and total precipitation, based on the period 1991-2005, are 9.5°C and 713 mm 

(Deutscher Wetterdienst, 2008). 

 
 
 
Materials 
 
We used seeds of Anthriscus sylvestris (L.) Hoffm., Centaurea nigra L., and Daucus carota 

L., (nomenclature follows Jäger and Werner, 2002), three grassland species characterised by 

short-term seed bank persistence between one and five years (Thompson et al., 1997). 

We used three different fungicidal compounds in our experiment. Two of these 

compounds, captan and iprodione, have been used previously in ecological seed burial 

experiments, with captan being very regularly employed in such experiments (Wagner and 

Mitschunas, 2008). The third compound, mancozeb, has been recommended for seed 

treatment (Sinha et al., 1988), although it has not been used previously in the context of 

ecological seed burial studies. Both captan and iprodione are dicarboximide fungicides, 

whereas mancozeb is a dithiocarbamate fungicide. Captan is considered very effective against 

seed-rotting fungi (Neergaard 1979), and in an agricultural context it is mainly used against 

pathogens from the phylum Ascomycota (Whitehead 1998). By contrast, both iprodione and 

mancozeb are more widely used not only against Ascomycota but also against a wide range of 

pathogenic Basidiomycota and Oomycetes (Whitehead 1998), the latter group now being 

recognized as being taxonomically distinct from the true fungi (Deacon, 2006). 

As in many previous studies (e.g. Blaney and Kotanen, 2001; O’Hanlon-Manners and 
 
Kotanen 2004a; Orrock and Damschen, 2005; Van Mourik et al., 2005), seed bags filled with 
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a mixture of soil and seeds were buried. Our seed bags were made of 7 cm × 7 cm pieces cut 

from nylon stockings. To establish a gradient of soil organic matter content in the seed 

environment, we used the local topsoil and a green waste compost (pH 5.7) from a local 

supplier (Kübel-und Pflanzerde; Kompostierung Nord GmbH, Bremen, Germany) as base 

materials to create three different substrates. These were pure topsoil, pure green waste 

compost, and a 1:1 volume-ratio mixture of both materials. 

 
 
 
Experimental set-up 
 
Prior to the experiment, all three substrates were passed through a sieve of 5.0 mm mesh 

width. To control for known effects of soil fauna on fungal-induced seed mortality, a sub- 

sample of each substrate, used for filling the seed bags, was subsequently passed through a 

1.0 mm sieve and then defaunated by 24 h freezing at -20 °C, followed by 24 h at room 

temperature and another 48 h at -20 °C (Mitschunas et al., 2006). 

Each seed bag was filled with 4 ml of respective defaunated substrate and a total of 75 

seeds (= 25 seeds per species), and then tied up with sewing thread. To ensure recognition of 

individual treatments at the end of the experiment, each bag was marked using colour-coded 

pieces of cord. Prior to burial at the field site, the mesh bags from the fungicide treatments 

were immersed in fungicide solutions prepared from three different fungicidal compounds on 

their own or in combination. 

These fungicide solutions were prepared on 20 December 2006 by dissolving specific 

quantities of each fungicide at 20°C in 1000 cm³ of distilled water. We used 10g of Merpan 

80 WDG (active compound: captan 80% w/w; Feinchemie Schwebda GmbH, Eschwege, 

Germany) for the captan solution, 0.8 g of Rovral 75WG (ac tive compound: iprodione 75% 

w/w; BASF AG, Ludwigshafen, Germany) for the iprodione solution, and 2 g of Dithane 

NeoTec (active compound: mancozeb 75% w/w; Spiess-Urania Chemicals GmbH, Hamburg, 

Germany) for the mancozeb solution. For iprodione and mancozeb, these concentrations 
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corresponded with the recommendations made by the manufacturers for soil application. The 

concentration of captan was the same as in previous seed burial experiments (Blaney and 

Kotanen, 2001; O’Hanlon-Manners and Kotanen, 2004a; Kotanen 2007). 

We did not reduce the concentrations of individual fungicidal compounds when 

preparing the mixtures, as there was no indication for such a course of action from previous 

seed burial experiments employing mixtures of different fungicides. Instead, we dissolved the 

same quantity of each individual fungicide compound when preparing 1000 cm³ of mixture 

solutions as was used for preparing single-compound solutions. We also included a control 

treatment in which mesh bags were immersed in water prior to burial, and thus had all eight 

possible different fungicide combinations, ranging from no fungicide at all to the combination 

of all three fungicides. In combination with the three levels of soil organic matter content, this 

resulted in 24 different treatments. We immersed six replicate seed bags per treatment, i.e. a 

total of 144 seed bags in the respective solutions on the same day as the fungicide solutions 

were prepared. Bags were immersed for fifteen minutes to ensure complete saturation. After 

immersion, the bags were stored over night in plastic trays at 13 °C in the dark, still separated 

by fungicide treatment. The following day, on 21 December 2006, we established three 

experimental blocks at our grassland site for seed burial. These blocks were placed in the 

corners of an equiangular triangle with a side length of ca. 7 m between blocks. Per block, we 

excavated 48 cylindrical holes of 7 cm diameter and 6 cm depth in a regular grid of 6 × 8 

across an area of 0.6 m × 0.8 m, allowing for two replicate seed bags of each treatment to be 

buried in the same block. Individual replicates were assigned at random to positions within 

the grid. Prior to placing each seed bag in its hole, we filled half of the hole with the same 

substrate that was used to fill the bag, but passed through a 5.0 mm sieve only and not 

defaunated. After placement of the seed bags, the holes were filled to surface level with the 

same substrate, thus ensuring that the substrate around the bags was of the same composition 
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as the substrate in the bags. After six months, the seed bags were recovered from the field on 
 
20 June 2007. 
 
 
 
 
Seed viability testing 
 
Immediately after recovery, the contents of the seed bags were surface-sterilized by soaking 

the bags in 70% ethanol for 2 min, followed by soaking in 1.25% sodium hypochlorite solution 

for 4 min. Finally, each seed bag was rinsed twice for a two-minute period with distilled water. 

After that, each seed bag was opened and germinated seedlings were counted and removed. 

Across the whole experiment, a total of four Centaurea seeds and five Daucus seeds had 

germinated during burial, and their occurrence was seemingly unrelated to experimental 

treatments. More regularly, we found germinated Anthriscus seeds, but the fraction of 

germinated seeds of this species never exceeded 12% (= 3 seeds) in a single seed bag, and a 

three-factorial analysis of variance on arcsine-transformed data, using fungicide combination 

and substrate as fixed factors and block identity as random factor (results not shown) did not 

provide any evidence for an influence by the experimental factors. The soil containing the 

remaining seeds was transferred into 9-cm Petri dishes containing a double layer of filter paper 

(Whatman No. 1, Whatman International Ltd., Maidstone, England) moistened with 5 cm³ of 

distilled water. The Petri dishes were sealed with Parafilm ‘M’ (Pechiney Plastic Packaging, 

Chicago, Illinois, USA) and placed in a climate chamber (Sanyo MLR-350H), at constant 

humidity of 80% and exposed to a diurnal cycle (16 h of light at 

25°C, 8 h of darkness at 15 °C) known to promote germination (Thompson and Grime, 1983). 

Every other day, the Petri dishes were randomized. Seeds showing a visible protrusion of the 

radicle from the seed coat were considered to have germinated (Kitajima and Fenner, 2000), 

and counted and removed at weekly intervals. Between counts, the Petri dishes were re- sealed. 

This germination test was run for a total of three weeks. During this period, only about 

2% of Anthriscus seeds germinated. By contrast, ca. 98% of the Centaurea seeds and ca. 27% 
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of the Daucus seeds had germinated by that time, most of them in weeks 1 and 2. To establish 

the exact status of seeds still ungerminated after three weeks, these were checked for viability 

under a microscope. Soft seeds were considered dead, as well as seeds containing blackened 

embryo when dissected. The remaining seeds were stained after dissection with a 0.1% 

solution of 2,3,5-triphenyl tetrazolium chloride (Cottrell, 1947). After 12 h in an incubator at 

30 °C, seeds were classified into dead or viable on the basis of embryo and endosperm 

coloration. 

 
 
 
Data analysis 
 
We carried out factorial analyses of variance based on Type III sums of squares using SPSS 
 
14.0 (SPSS Inc., Chicago, IL, USA). Prior to statistical analyses, all data were arcsine- 

transformed to meet distributional requirements (Sokal and Rohlf, 1995). 

To allow investigation of treatment effects on seed mortality, we calculated for each 

species in each seed bag the overall proportion of ungerminated dead seeds at the end of the 

burial period by summarising the proportions of seed determined as dead by visual inspection 

and of seeds determined dead as a result of tetrazolium testing. 

To allow testing of treatment effects on the readiness of seeds to germinate, we also 

calculated for each seed bag the proportion of Centaurea and Daucus seeds that germinated 

up to a specific point in time, based on the overall number of seeds that were still viable and 

ungerminated after the burial period (i.e. seeds germinated in the Petri dishes over the whole 

three-week period plus seeds that remained ungerminated but viable according to the 

tetrazolium test). Being interested in both the short-term effects and the longer-term effects on 

the germinability of viable seeds, we calculated this ratio both based on germination in the 

first week of the Petri dish trial, and also based on the germination occurring throughout the 

three-week trial. No similar data analyses were performed for ratios based on an intermediate 

germination period of two weeks, as these were virtually identical to ratios based on the 
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whole three-week period. Neither did we analyse Anthriscus seed germination, as germination 

was very low across all treatments, averaging only about 2% of seeds during the whole three- 

week germination period. 

Initial analyses included both substrate type and fungicide combination as fixed 

factors and block identity as random factor. As the experiment included within-block 

replication of individual treatments, we were able to follow the recommendation by Quinn 

and Keough (2002) to also test for treatment x block interactions. Results from these initial 

analyses indicated that the influence of substrate type on both mortality and readiness of seeds 

to germinate was negligible and mostly not significant. Therefore, we re-analysed the data for 

the three soil types combined, dropping the factor substrate type from the analysis. Here, we 

only report the results of this latter set of analyses. 

In the case of significant fungicide treatment effects, we carried out post-hoc 

comparisons between treatments. For post-hoc comparisons related to seed mortality, we used 

the Tukey HSD procedure that evaluates any differences in means among all possible pairs of 

treatments. For post-hoc comparisons related to the readiness of seeds to germinate we used a 

two-sided Dunnett test procedure instead of the Tukey HSD procedure, as we were only 

interested in which fungicide combinations significantly affected the readiness of seeds to 

germinate compared to the untreated control treatment. This procedure is more powerful 

because pairwise comparisons are restricted to comparing the control treatment with the other 

treatments, whereas no comparisons are made among the latter (Quinn and Keough, 2002). 

 
 
 
Results 
 
 
 
 
Effects on seed mortality 
 
A. sylvestris was characterised by a particularly high proportion of dead seeds at the end of 

the six-month burial period, with dead seeds making up between 31% and 48% in the 
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different fungicide treatments, and 66% in the untreated control (Figure 1A). By contrast, in C. 

nigra the proportion of dead seeds never exceeded 20% even in the untreated control (Figure 

1B), and D. carota was characterised by intermediate proportions of dead seeds (Figure 1C). 

As indicated by ANOVA, there were highly significant (P < 0.001) fungicide effects on seed 

mortality both in Anthriscus and in Daucus, whereas there were no such effects in Centaurea 

(Table 1). As indicated by Tukey HSD tests, seed mortality in Anthriscus was significantly 

lowered by all fungicide treatments compared to the untreated control, but was significantly 

higher in the iprodione only treatment than in the other six fungicide treatments (Figure 1A). 

Similarly, all fungicide treatments significantly reduced seed 

mortality in Daucus, but in this species there were no significant differences among individual 

fungicide treatments (Figure 1C). 

 
 
 
Effects on dormancy levels 
 
Almost none of the A. sylvestris seeds that remained ungerminated viable throughout the 6 

month burial period germinated in the Petri dish trial. For this reason, data analyses on the 

influence of fungicide treatments on readiness of seeds to germinate were carried out only for 

the other two species, C. nigra and D. carota. As indicated by ANOVA, the use of different 

fungicides had a significant impact on the proportion of viable seeds germinating within one 

week in both species (Table 2A). In each of these two species, particular fungicide 

combinations were associated with a reduction of the proportion of viable seeds germinating in 

the first week after seed bag recovery. In C. nigra, this effect was highly significant in all 

treatments involving captan (Dunnett test: P < 0.001 in all cases), irrespective of whether this 

compound was used on its own or in combination with iprodione and / or mancozeb (Figure 

2A). A two-way combination of iprodione and mancozeb also resulted in a reduced readiness 

of Centaurea seeds to germinate immediately (Dunnett test: P = 0.002). However, at the end 

of the three-week germination test, germination was close to 100% across treatments (Figure 
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3B). Although the overall ANOVA test based on this data indicated a significant fungicide 

effect (Table 2B), according to the Dunnett test procedure, this was not due to any significant 

pairwise differences between fungicide treatments and the untreated control (Dunnett test 

P > 0.44 for all pairwise comparisons with the untreated control apart from the combination 

of iprodione and mancozeb, for which P = 0.054). 

In Daucus, a significant reduction of the proportion of viable seeds germinating within 

one week after seed recovery was found in all treatments combining mancozeb with one or 

both of the other two fungicides (Table 2, Figure 3A; Dunnett test: P < 0.02 in all cases). At the 

end of the three-week Petri dish trial, only about 27% of all viable Daucus seeds, as averaged 

across treatments, had germinated, and ca. 97% of these had done so in the first two weeks, 

indicating that in spite of favourable conditions for germination, most of the remaining seeds 

would likely have not germinated in following weeks, if the Petri dish trial would have been 

continued for a longer period. Final counts after three weeks indicated that the fungicide effects 

in Daucus observed after one week had persisted throughout the whole three-week period, with 

final proportions of germinated viable seeds still being significantly lower in two of the 

treatments involving mancozeb (Table 2B, Figure 3B), both on its own (Dunnett test: 

P = 0.042) and in combination with iprodione (Dunnett test: P = 0.005). 
 
 
 
 
Discussion 
 
The combination of several fungicidal compounds generally did not result in any clear further 

reduction of seed mortality compared to using just one fungicide at its recommended dosage. 

On the other hand, we could show that individual fungicides can affect the proportion of viable 

seeds germinating under conditions known to promote germination, and that such 

effects can be prolonged. However, we found no clear evidence for soil organic matter effects. 
 

Treatment of seeds with fungicides generally increased the survival of buried seeds, 

although in one of the three test species, C. nigra, overall mortality over the six-month burial 
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period was too low to allow any accumulation of significant differences between the untreated 

control and the fungicide treatments. With the exception of the iprodione only treatment in 

Anthriscus being slightly less effective than the other fungicide combinations, there were no 

significant differences among individual fungicide treatments. The visual inspection of the 

results seems to suggest that in the case of Daucus, the combination of two fungicidal 

compounds may tend to provide a slightly better protection against fungal decay than the use of 

a single compound only, although the observed differences are too small to be significant when 

comparing individual fungicide treatments pairwise. 

Individual compounds did in some instances markedly affect the readiness of viable 

seeds to germinate after retrieval from the field. In Centaurea, in the first week of the Petri 

dish trial an average of 65% of viable seeds germinated from the control treatment. By 

contrast, this percentage was only 14-23% in the four fungicide treatments containing captan. 

After three weeks, Centaurea seed germination was close to 100% in all treatments, indicating 

that captan did not induce any longer-lasting dormancy. Similar short-term effects of captan 

on seed germination were previously observed in wheat seeds (Clark and Scott, 

1982). 
 

Fungicide effects on germination were also found in Daucus seeds, where an already 

low readiness of seeds to germinate after retrieval was particularly low in fungicide 

combinations involving mancozeb. However, in this case, observed fungicide effects were 

more persistent: After three weeks, when germination of Daucus seeds had largely ceased, 

significant differences still existed between two of the treatments involving mancozeb and the 

untreated control. This may be interpreted as a more persistent induction of secondary 

dormancy in Daucus seeds by mancozeb. A similarly persistent but opposite effect on 

dormancy levels of seeds has been previously documented for wheat seeds stimulated to 

germinate by the systemic fungicide benomyl (Clark and Scott, 1982). Our results extend the 

findings of previous studies from crops seeds that tend to germinate readily (Baskin and 
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Baskin, 1998) to non-crop species. Extent and duration of effects on dormancy were both 

fungicide-specific and species-specific in our study. 

As outlined in the Materials and Methods section, substrate organic matter content, 

manipulated by using different substrates based on local topsoil and / or green waste compost, 

did only marginally influence our results. 

 
 
 
Conclusions 
 
 
 
 
Several conclusions can be drawn from our study with respect to ecological seed burial 

studies. Our results suggest that, compared to using a single compound at the recommended 

dosage, a combination of two different fungicidal compounds may often only provide a 

marginally better protection of seeds from fungal-induced seed mortality, but that such a 

combination may nevertheless serve as an insurance against unintentionally using a single 

compound at a dosage too low to provide full protection, as may have been the case in our 

study for the seeds of Anthriscus when treated with iprodione. The benefits of combining a 

very large number of fungicidal compounds as advocated by Leishman et al. (2000) may thus 

be negligible and may not justify the additional effort involved. While we also did not find any 

evidence for negative effects resulting from the combination of different fungicidal 

compounds, our results do not preclude the potential occurrence of such effects when 

fungicidal compounds other than the ones tested in our study are involved. In the absence of 

further research on this subject, it may thus be safest to use individual compounds at a 

sufficiently high dosage or tried and tested combinations of two fungicides that are known to 

not chemically interact with each other. 

There were pronounced effects of individual fungicidal compounds on seed dormancy. 

Mancozeb had a lasting effect on seed dormancy in Daucus, and captan initially repressed 

seed germination in Centaurea, although this latter effect was only transient. Captan was the 
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sole fungicidal compound used in many published studies, but in the absence of proof of more 

persistent effects, it seems likely that the results of these studies have not been compromised by 

unexpected side effects on seed dormancy. Nevertheless, given the evidence for a widespread 

existence of species-specific seasonal germination windows (e.g. Milberg and Andersson, 

1997; Vleeshouwers and Bouwmeester, 2001; Schütz, 2002; Baskin and Baskin, 

2006), increased levels of seed dormancy as observed in our study for Daucus seeds treated 

with mancozeb have the potential to prevent a sizeable proportion of seeds from germinating 

in a particular year. This may be an important consideration when planning a study that 

attempts to assess the effects of fungal exclusion on the in situ emergence of seedlings. Such 

studies are however rare, and in the only study of that kind we know of (Blaney and Kotanen, 

2002), captan was used, for which we only found evidence for short-term effects on seed 

dormancy. 

Overall, our results do thus underline the validity of previous seed burial studies using only 

a single fungicidal compound. Moreover, in our study the differences in mortality between 

different fungicide treatments were generally only small. It thus seems likely that the basic 

conclusions from most seed burial studies are unaffected by their choice of fungicide 

and that reliable conclusions can be drawn from these studies regarding the relative amount of 

buried seed mortality attributed to fungal attack as opposed to mortality that can be attributed 

to other causes. However, as the rate of fungal-induced seed mortality in such experiments 

seems to crucially depend on the density of buried seeds (Van Mourik et al., 2005), we advise 

for caution when using data generated from such studies in seed demographic models. 
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Table captions 
 
 
 
 
Table 1. Effects of fungicide combination (=fixed factor) and of experimental block identity 

(=random factor) on the proportion of ungerminated dead seeds of Anthriscus sylvestris, 

Centaurea nigra, and Daucus carota at the end of a 6-month burial period. Analyses are 

based on arcsine-transformed data. Significant effects (P < 0.05) in bold. 

 
 
 
Table 2. Effects fungicide combination (=fixed factor) and of experimental block identity 

(=random factor) on the proportion of viable seeds of Centaurea nigra and Daucus carota 

readily germinating within one week (A) and three weeks (B) after retrieval from the field. 

Analyses are based on arcsine-transformed data. Significant effects (P < 0.05) in bold. Due to 

insufficient germination, Anthriscus sylvestris was not analysed. 
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(Table 1) 

 
Effect A. sylvestris C. nigra D. carota 

 
 d.f. F P F P F P 

Fungicide combination 7 66.86 < 0.001 1.56 0.225 12.70 <0.001 
 

Block 
 

2 
 

10.48 
 

0.002 
 

0.81 
 

0.465 
 

1.22 
 

0.324 
 

Fungicide combination × Block 
 

14 
 

0.46 
 

0.950 
 

1.24 
 

0.258 
 

1.13 
 

0.339 
 

Error 
 

120       
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(Table 2) 
 
 
 
 
Effect C. nigra D. carota 
 

d.f. F P F P 
 

A) Germination after one week 
 

Fungicide combination 7 10.85 < 0.001 5.34 0.004 
 

Block 
 

2 
 

1.20 
 

0.329 
 

0.50 
 

0.618 
 

Fungicide combination × Block 
 

14 
 

2.18 
 

0.012 
 

1.49 
 

0.124 
 

Error 
 

120     

 
 

B) Germination after three weeks 
 

Fungicide combination 7 5.78 0.003 4.12 0.012 
 

Block 2 2.62 0.108 6.34 0.011 
 

Fungicide combination × Block 14 0.34 0.988 1.28 0.231 
 

Error 120 
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Figure captions 
 
Figure 1. Percentage of seeds that were dead at the end of a six-month burial period, in 

relation to particular combinations of captan, mancozeb, and iprodione used alone or 

in combination: A) Anthriscus sylvestris; B) Centaurea nigra; C) Daucus carota. 

Fungicide treatments: control = untreated control; C = captan; I = iprodione; 

M = mancozeb. Bars and error bars indicate back-transformed mean values and 95% 

confidence intervals. In case of ANOVA significance (P < 0.05), differences between 

different compound combinations are indicated by lower-case characters. 

 
 
 
Figure 2. Percentage of viable Centaurea nigra seeds that germinated in the Petri dish test 

following the six-month burial period, depending on particular combinations of captan, 

mancozeb, and iprodione alone or in combination: A) after one week; B) after three 

weeks. Fungicide treatments: control = untreated control; C = captan; 

I = iprodione; M = mancozeb. Bars and error bars indicate back-transformed mean 

values and 95% confidence intervals. Particular fungicide combinations that differ 

significantly from the untreated control as indicated by two-sided Dunnett tests are 

indicated by asterisks (*** P<0.001; ** P<0.01; * = P<0.05). 

 
 
 
Figure 3. Percentage of viable Daucus carota seeds that germinated in the Petri dish test 

following the six-month burial period, depending on particular combinations of captan, 

mancozeb, and iprodione alone or in combination: A) after one week; B) after three 

weeks. Fungicide treatments: control = untreated control; C = captan; 

I = iprodione; M = mancozeb. Bars and error bars indicate back-transformed mean 

values and 95% confidence intervals. Particular fungicide combinations that differ 

significantly from the untreated control as indicated by two-sided Dunnett tests are 

indicated by asterisks (*** P<0.001; ** P<0.01; * = P<0.05). 
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