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1 INTRODUCTION AND BACEGROUND TO THE PROBLEM

The front wave of the most recent European rables epizcotic has been
spreading westwards at about 30 km/year since the 1940's, despite many
attempts to halt, or eradicate, the disease. The data concerning this
spread are subject to a large number of recording biases, and the few
facts in which one can place confidence would seem to be: the rate of
gspread of the primary wave varies in Aifferent regions (30 to 60 km/year);
the diseass appears not to occur if the density of its maln vector and
victim, the Red fox (Vulpes vulpes) is below 0.2 foxes/kmZ; the time
betwaen the passage of the front wave and the recurrence of secondary
waves varies; case incidences appear to cluster spatially; the path

of the eplzootic is deflected by topographic features such as rivers
and mountaln ranges.

Simple temporal models of rabies in fox populations (Anderson et al.1981;
Bacon & Macdonald 1980) show that the density of the host population
is impoxrtant in determining the time course of an epizootic. Heterogeneity
in the spatial denslty of foxes implies that the spatial path will also be
affected by the density of the vector, Thus, in order properly to determine
the spatial dynamics of fox rabies, it is essential to know, at a minimum,
. the initial spatial density of foxes, ie. before the density is affected
by the disease. The Red fox is extremely difficult to study in the field,
and it is obviously not feasible to undertake a complete field survey c?
the whole of continental Eurcpe, or even a large part of it, in order o
determine fox population densities directly. However, fox population
densities depend on characteristics of the habitat supporting them. 1If
these characteristics could be identified hy detailed local studies,
and the relationship between habitat characteristics and fox populaticn
densities could be established, it should then be possible to estimate
population densities in other habitats by recording the important
characteristics.

Historically, it bas been shown that there are differences in fox
populations, and in patterns and rates of rabies spread, in widely

- differing habitats. However, the use of non-standard and subjective
agsessments of habitat type has precluded comparisons between results
obtained in different areas or countries, or by different researchers.
This limitation was rccognized at 2 recent WHO symposium (WHO 1981). It
has been suggested that numerical methods, eg. classification of fox
habitats, could be helpful.

The purpose of this paper is to discuss theoretical and practical
aspects of numerical classification procedures in relation to the

gtudy of rabies spread, and, in particular, to the problem of predicting
fox (or other animal) population depsities from environmental variables.
Some other numerical methods which may prove useful are also mentiocned.
The aim is to suggest possibilities and to point out possible pitfalls.
As our present understanding is not good enough for a prescription to be
offered, some practical tests are necessary to compare the usefulness

of the methods suggested here {(see section 7).

We might usefully ask why is 1t thought that habitat classification can
be of velue in studying rabies spreed? To answer that, we need to think
about what we mean by classification, and what properties it is desirable
for a classification teo have 1n this context. Broadly speaking,




classification involves the recogrition of similarities between, and
the grouping of, objects or organisms. Clessification is useful to
describe the relationships of objects toc each other, and toc simplify

those relastionships so that general statements can be made about
classes of objects.

An important distinction is between monothetic end polythetic classi-~
fications. The classes of a monothetic clessification differ by at
leaat one property which is uniform among the members of each class,

80 that possession of a unique set of features is both sufficient and
necessary for membership of a clazss. A serious disadvantage of
monothetic classifications for most ecological purposes is that they
carry the risk of serious misclassification, since an object aberrant
in the attribute used to make a division will be placed in a class

away from objects which it otherwise resembles. Monothetic classi-
fications are useful for certain special purposes, eg. in setting up
taxonomic keys and in certain types of reference and filing systems.

In polythetic classificationa, on the other hand, groups of individueals
or oblects share a large proportion of their properties, but do not
necessarily agree in any one property. Once a polythetic classification
has been made, fewer properties are generally necessary to allocate
objects to the classes than were necessary to establish the classes.
Hence, classification of a data set results in a reduction of the
amount of information that is necessary to describe the data set, but,
if the classification is efficient, there is little or no reduction in
the amount of information contained in the data.

For a fuller discussion of these general aspects, see Jardine and

Sibson (1971), Sneath and Sokal (1973}, Sokal (1974), Clifford and
Stephenson (1875). From a statistical point of view, Kendall and Stuart
(1968, p3l14) defined classification as the proceszss of dividing a sample

of objects, or an entire population, into groups which should be as

distinct as possible. The groups should be ‘'natural' in the sense that
members of any group should closely resemble each other and should differ
considerably from those of another group. In practice, these criteria

are usually interpreted by searching for discontinuities in the distribution,
in multivariate space, of points representing the objects, or at least for
regicns of that space which are occupied by fewer points representing the
tails of overlapping distributions and/or 'noise' dats (see eg. Marriott 1974).
By contrast, dissection implies the division of a sample or population into
groups regardless of whether the boundaries are natural or not, the aim is
simply to find the most convenient way of dividing the individuals into
groups. Nevertheless, the groups formed by a dissection should have some
definable logical structure.

All collections of cbjects can be digsected, not all can be classified,
Classilication may be & technique for generating hypotheses, but dissection
is pot, as the data are forced into a strait-jacket which restricts the .
domain of possible hypotheses and suggests that some will be generated by
the process of digsection, rather than by the data (Cormack 1971).

As the objective is to predict population densities, it is reasonable to
ask 1f regression methods might be more suitable. There have been few
studies in which attempts have been made to predict animal population
densities from environmental variables. Emanuelsson (1978, 1880) found
that because many environmental varisbles are correlated, it was necessary
to do a preliminary ordination by principal component analysis, The




resulting components were then used in regressions on known densities

of particular bird species., Good predictions were obtained for a given
area, but the regression for one area could not be used in a different
geographicel region. This suggests that a preliminary stratification

of an area into more homogeneous regions is necessary, an approach which
is discussed below.

When using numerical methods, it is important for the researcher to
remember that the nature of the data has an important bearing on the
numerical methods which can be used. It is important to think about
this before the data are collected, and therefore this subject is also
discussed in some detail,

NUMERICAL METHODS WHICH.CAN BE USEFUL IN HABITAT CLASSIFICATION

In data analysis, two principles raiged by Tukey (1954) should be borne
in mind: (1) Different ends require different means and different
logical structures; (2) While techniques are important ... knowing when
to use them and why to use them iz more important.

Two types of method which are useful in classification and dissection
are ordination and cluster analysis.

Ordination

Ordination procedures aim to arrange points, representing objects, along

new axes so as to preserve as much of the original information as possible,
ie. to preserve the relationships between the objects as closely as possible.
There are, ideally, fewer new axes than originel variables. Ordination
makes the data easier to handle mathematically in that: (i) it makes
graphical representaticn easier; (i1i) it removes difficulties which might
erise from variables which ere linearly related, or nearly so; (iii) the

new axes may lend themselves to reification, ie. the interpretation ol the
mathematics in terms of the original problem, and sc may give a useful
ingight into the structure of the data. If there are 'matursl' groups,

ie. groups which are separated by discontinuities in multivariate space

or by regions of the space containing few points which represent the tails
of overlapping distributions and/or 'noise' data, this fact should be apparent
in the results of the ordination., If there are no such groups, ordination
may still help to clarify the relationships hetween objects. Ordination

may a2lso be used to show 1f a clustering method has beer applied to data

for which it is not suited.

Possibly the best-known and most widely used ordination technique is
principal component analysis (Anderson 1958; Morrison 1967; Seal 1968;
Blackwith & Reyment 1971). This begins with a covariance matrix, or,
more commonly, & correlation matrix, and the resulting components are
expressed in terms of linear combinations of the ortginal variables.
Geometrically, the axes representing the variables are rotated to new
positions (component axes) such that the first axis accounts for the
maximum variance, the second axis accounts for the maximum possible
variance in a direction orthogonal to the first, and so on. The
rotations are orthogonal, ie, they preserve distances and aengles, so that.
1f the original variable-space is Euclidean, the component space will
alsc be Euclidean. The most likely way in which the Euclidean properties
of the variable-space will be lost will be that there are missing values
in the data matrix.




Models in Euclidean space have at least three advantages (Williams &
Dale 1965): (i) many simple, robust and powerful methods are available
for Jealing with Euclidean systems that are not available for non-
Euclidean systems; (i1) they satisfy the requirement for hierarchical
classification that each level in 2 dendrogram 1s essociated with some
measure which shall decrease as the hierarchy descends; (iii) it is
easier to gain intuitive perception 0f Euclidean systems and to grasp
their properties, and to predict those properties in extreme.cases.
Another useful property of Euclidean space 1s that the distance

between any two points is unaltered by orthogonal rotation of the
co~ordinate axes.

The positions of the objects can be plotted on pairs of rectangular
Cartesian component axes. Such plots will show discontinuities if they
exist in the data (eg. Blackith & Reyment 18971), but it must be
remembered that any such two-dimensional representation is distorted in
that other dimensions are not taken into account in the representation
of inter-object distances. Gower and Ross (1969) showed how such
distortion can be illustrated by superimposing the minimum spanning
tree of points in the total number of dimensions on to their
representation in the reduced epace. There has been much discussion
about the use of principal component analysis in plant ecology, where
problems arise due to the patterns of distribution of plant species along
environmental gradients (see eg. Noy-Meir & Austin 197Q).

If the relationships among the objects are represented by an inter-
object similarity matrix (different types of gimilarity measure are
discussed by Sneath.& .Sokal 1973) then -ordimation by prineipal co-
ordingtes analysis (Gower 1966) can be used. Prinecipal cco-ordinates
analysis is particularly usefyl when there mre missing values or missing
variates. In such cases, a correlation type of similarity measure is
reasonably robust and reliable, whereas replacing the missing values
by estimates or guesses is not very satisfactory (Marriott 1574). An
important feature of this method is that, as long as the similarity
matrix has certain properties (see Gower 1966), the space defined by
the principal co-ordinates axes is gtrictly Euclidean.

Allied to the above methods are two other multivariate techniques which
investigate relationships in multi-dimensional space, but which operate

on data which are already grouped either on the basis of objects

{(canonical variate analysis) or wvariables (canonlcal correlation analysis).
In canonical variate analysis, the relationships of the groups to each
other in multi-dimensional space are investigated. As with the above
procedures, the canonical variate-space usually has fewer dimensions

than the original variable-space. In canonical correlation analysis,

the aim is to select pairs of maximally-correlated linear functions

Irom two batteries of variables. Again, the dimensionality is reduced.

Cluster analysis

This term is applied to a wide .range of techniques which seek to separate

a collection of objects into groups or categories, there being iittle or

no prior knowledge about the category structure of the data used in the
analysis. To a greater or lesser extent, the different techniques

involve the imposition of a structure on the data, as well as revealing

any structure that may actually pre-exigt. As a result, the groups that

are identified reflect the degree to which the data conform to the
structural forms inherent in the clustering algorithm (Anderberg 1973).
Cluster analysis methods which have only a weak tendency to impose

structure on the data, eg. single-linkage cluster analysis, are particularly




useful in exploratory data analysis,

A full discussion of clustering methods is outside the scope of this paper,
see reviews by Cormack (1971) and Howard (1977). Clustering strategies
have several important characteristics; they may be hierarchical or non-
hierarchical, agglomerative or divisive, polythetic or monothetic.
Hierarchical strategies find an optimum pathway between the objects of -
which a sample is composed, to a single group, consisting of the entire
‘sample, via intermediate groupings. This pathway is found by a series of
fusions (agglomerative) or, in the reverse direction, by a series of
fissions (divisive), the groups produced being non-overlapping. The
groups through which the process passes are not necessarily optimal in
themselves, and the best pathway may be cbtained at the expense of asome
slight reducticn in homogeneity of the individual groups.

In non-hierarchical strateglies, the structure of individual groups is
optimized, and no pathway is defined between groups and their conatituent
individuals, or between groups and the complete sample. Marriott (1974)
pointed out that a hierarchical strategy can have disadvantages 1£f there
is no special reason for requiring the nested structure of such a strategy.
For example, if the aim 1s to decide whether a division into 2 groups
gives a better representation of the data than a division into 3 groups,
it i8 necessary to ccmpare the best division into 2 groups with the best
division into 3 groups, and a hierarchical strategy will not necessarily
give both, Meny of the most widely-used clustering algorithms employ
agglomerative hierarchical strategies based on some sort of inter-object
similarity or distance measure. Because the measure is based on several
properties, such methods are polythetic. Agglomerative hierarchical
strategies are inherently prone to a small amount of misclassification

at the lowest, inter-object, level, where the possibility of error is
greatest., On the other hand, with divisive techniques, there is a

greater danger of inappropriate allocation of some objects that cannot
later be corrected unless some special terminal reallocation procedure

is used. Inappropriate allocation is particularly likely with monothetic
techniques, because each division is based on 2 states of a single character,
and any cbject which 1s aberrant in that character will be misclassified.
Another broblem with divisive techniques is that each group is made to
divide into 2 at each level, an arbitrary restriction that may not reflect
the inherent properties of the objects,

In searching for inter-object relationships which may be reflected in the
data, the different possible patterns should be berne in mind. With most
types of clustering algorithm, it is easy to identify the pattern in which
distinet groups are separated by discontipuities in multivariate space, but
this type of structure is by no means common. If the group centres are
distinet, but the tails of the frequency distributions overlap, single-
linkage cluster analysis will be unable to effect a clear division iato
clusters, although 1t can serve to indicate where the cluster centres might
lie. Subsequently, other methods could be used to dissect the objects

into groups, but, because the tails of the distributions overlap, a
criterion is needed for the allocation of points in regions of overlap.

Where polnts representing the objects are more or less uniformly distributed
in multivariate space and form a continuum, so that there ig no clear
structure in the data, classification in the strict sense 1s impossible;
instead, the problem is overcome by dissection using criteria defined by the
objectives of the analyst,




The shapes of clusters produced by cluster analysis alogorithms may also
pose problems. In many clustering methods, some form of constraint is
imposed on the spread of the clusters. Wishart (1969) discussed the
properties of 13 such methods, and included them in the general category
of 'minimum variance' methods. Some of the methods used by plant ecologists
impose 'minimum variance' consatraints. The minimum variance constraint
makes these methods unhelpful, and even misleading, if the aim is to find
the structure which actually exists in the data, unless it is known in
advance that the structure is of a type for which the comstraint is
appropriate. However, methods which have this characteristic can be
useful in dissectior. On the other hand, single-linkage cluster

analysis can identify clusters which are not only elongated but also

of complex shapes, 11 they are distinct.

In applying a hierarchical agglomerative clustering atrategy, the user
has a choice of simllarity or distance measure and of clustering procedure,
The choice needs to be made with some care. Similarity coefficients are
normally appropriate to binary data and distance measures to .continuous
data, althougi some distance measures do have binary equivalents. Gower's
(16871) general similarity coefficient can be used with mixed data types.
The properties of the various measures are discussed in detail by Sneath
and Sokal (1973) and Clifford end Stephenson (1975). Many of the commonly-
used hierarchical clustering procedures have properties which, in at
least some applications, are undesirable (Fisher & van Ness 1971; Jardine &
Sibson 1971; Sneath & Sokal 1973).

This brief survey of numerical methods which can be useful in habitat
classification suggests that a first step should be an ordination of the
data. When the points representing the sampling locations are plotted on
the ordination axes, relationships among the points can be examined, It
should become clear whether or not classification sensu strictu is possible,
or if a dissection 1s indicated. The researcher may chcose to perform a
cluster analysis on the ordination scores. Even if that is not done, the
ordination charts are informative and useful, Which ordination procedure
should be used depends upon the nature of the data. If all of the
attributes are continuous, or if all of the attributes are binary with

no more than, say, 30 attributes, and the data are not entirely of plant
species presence or absence, then principal component analysis is
appropriate. If the data are of mixed types, then principal co-ordinates
analysis using Gower's general similarity coefficient should be used.

The question of different types of data will be discussed in a later
section. In the next section, the application of classification and
dissection techniques will be discussed in more detail.

POSSIBLE APPLICATIONS OF CLASSIFICATION AND DISSECTION TECHNIQUES

There are two main ways in which classification or dissection could be
useful: (1) as a stratification for future sampling, and (2) to enmsble
properties to be predicted for new objecta. We must then consider what
properties a classification or dissection should have for these two
purposes, so that we can choose an appropriate cluster analysis method.

Stratifieation

Stratification yields more efficient, and therefore more precise,
estimators where the varlables under consideration are homogeneous




within the strata produced but are heterogeneous in the overall
population. The theoretical justification for stratification is in

the reduction of sampling variances compared with simple random

sappling., The more homogeneous the strata resulting from the
stratification process, the larger will be the between-strata

variance and the smaller the within-strata variance and sampling

variance (Golder & Yeomans 1973}, These criteria can be satisfied.

by the use of a k-means clustering algorithm. EK-means clustering
‘(Hartigan 1975) is a non-hierarchical method for produciig a specified
number of disjoint clusters such that the within-cluster sum of squares
is minimized. No k-means algorithm produces a 'global optimum’ solution
unless N (the number of objects) is very small and there are only two
groups. 1Instead, the aim i1s to produce a 'local optimum’, ie. a sclution
for a given value of k (number of groups) such that no movement of an
object from one cluster to another will reduce the within-cluster gum of
squares. The algorithm given by Hartigan and Wong (1979) is very efficient.
Such algorithms are called transfer (or iterative relocation) algorithms.
In practice, it is often preferable to apply the k-means algorithm to
component values after principal component analysis, The reason for this
is that the method is strictly Euclidean; by using component values,
problems of scaling of the variables and correlations among variables are
overcone.

Some workers in I.T.E. have used indicator species analysis (ISA) as a
method for stratification (Bunce ef gl. 1975). This method will not be
discussed in detail here, as it has been discussed in detall in two otler
papers (Howard & Howard 1980, 1981). Ball and Williams used ISA on
atiributes from continuous data read from maps, for 436 10km x 1l0km National
Grid squares with 'upland' characteristics. They chose 8 ISA classes for
further study (I.T.E. 1878), Howard and Howard (1881) used principal
component analysis and k-means clustering on the original continucus data.
The k-means 8 groups obtained from the first 16 components of the product-
moment correlation matrix and an overall sum of gquares of 7334, that of
the ISA 8-class partition was 9135, It was clear that ISA did not satisfy
the minimum variance requirements for statistical stratification, and many
of the ISA groups tended to be heterogeneous.

Principal component analysis cannot be used on disordered multistate or
mixed-node data., Ordered multistate data may not contain useful distance
information. Gower's {(1971) general similarity coefficient was designed

for use with such data. Provided that there are no missing values, the
resulting similarity matrix is positive semi-definite, which means that

the similarities can be converted to distances with Euclidean properties.
Application of principal co-ordinates analysis to the similarity matrix
"gives scatterplots of the points in a Euclidean space, and k~means clustering
could be applied to those as for principal component analysis. An,
alternative, or perhaps a complementary, approach (eg. see Altchiaon 1978)
would be to apply to the distance matrix a clustering technique with minimum
variance properties (Wishart 1969).

While k-means clustering, based on data which are random variables, gives
groups which have statistically desirable properties for stratification,
groups so produced tell us nothing directly about the members of the groups,
except that they should have similar properties. The within-group variation
makes it impossible to make a precise prediction of the properties of =
member of the group (unlike Gower's maximal predictive classification
discussed below). However, a k-means stratification can be used as a

basis for sampling, and the data collected in the sampling can then be




treated in a way which yields good predictions, eg. regression analysis.
If we let d be the animal population denaity at a given location, then
the value of d will be determined by some set of environmental factors.

We could write

daf(el, 92, 'looo-)
where ej, ez; and s0 on represent environmental factors, and the
relationship might be expected to vary with time,

This approach is illustrated by the work of Hirgt (1975). In studying
ungulate-habitat relationships in a south African woodland/savanna ecosysten,
Hirst (1975) commented: "A natural community or group of communities can

be regarded as a multivariate complex with the distribution of any specific
organism therein being a function of the distribution of one or more biotic
or physical community factors. Animals which exhibit a heterogeneous
distribution over a given area are responding qualitetively and quantitatively
to habitat factors which relate directly or indirectly to their well-being
and survival. Certain of these factors may be so important that a
relationship between them and the animal's distribution obviously exists.
Africen woodland savanna is floristically, edsphicelly, and structurally
complex, and animal-habitat relationships may not be easily discernible,
Multiple regression using a digital computer offers a possible means of
measuring the relative importance of a large number of habitat factors

in collectively and individually determining the distribution of’ ungulates
over B heterogeneous aresa'.

Using a 300m x 300m grid marked on 1:20 000 scale aerial photographs, Hirst
recorded the vegetation and used association analysis (Williams & Lambert
195¢) to delineate 14 vegetational types or hahitats. It 18 noteworthy that
association analysis, now hardly used by plant ecologists, produces groups
such that the distance between group centroids is maximal, ie. the groups
tend to have minimum variance properties. A habitat map was prepared, and
within each habitat the following features were recorded: Woody species -
tree and shrub density, density of favoured browse species, shade cover,
degree of clumping of woody plents; Herbaceous species - Herbaceous basal
cover, grass and forb height, abundance parameters of favoured grasses and
forbs, above-ground standing crop and production of herbaceous forage;.
Soils ~ physical composition, water infiltration into unsaturated soil

in tle wet season; Water-availability in pools. These features were recorded
as 23 hebitat characteristics,

The distribution of the various vegetational components was found to be
largely determined by the same topoedaphic features, so that many of the
vegetational characteristics measured were strongly correlated. A principal
component analysis of the 25 habitat characteristics was carried out, and

10 components (accounting for 98% of the total variance) could be usefully
identified in terms of ecological gradienta. By sampling along transects,
estimates of densities of each of 7 ungulate species were obtained. The
estimated density within each habitat at any one time of sampling was taken
as one observation of the dependent variable. There was thus a total of
{no. of transects) x (nc. of habitats) observations for each species. The
independent variables in each case were the 10 principal compchents.
Multiple regression, using second-degree polynomials where the relationships
were non-linear, showed that each ungulate species had a unique combination
of characteristics to which it responded in a positive or negative, linear
or curvilinear, fashion.




Maximal predictive classification

As was noted above, while k-means clustering, based on data which are
random variables, gives groups which have statistically desirable properties
for stratification, groups so produced tell us nothing directly about the
members of the groups, except that they should have similar properties. 12,
on the other hand, we had a number of groups whose attributes are
preponderantly constant, then, because of high constancy and mutual
interrelationships of attributes, such a grouping would carry & high
predictive value for a new object assigned to it (Sneath & Sokal 1973

pl88). When the sample objects are not subject to random variation,

ie. when there is no variation of the selected attributes within groups,

but the attributes change from group to group, the members of each group
are completely identical, and any one member characterises the group.
Repeated sampling will reproduce exactly the same sets of values. With

k groups, a sample of objects will give us only k different sets of

values however large the sample, the only information obtained by

repeated sampling relates to the relative abundance of the different

groups (Gower, 1870},

This situation arises naturally in the taxonomy of organisms, and leads to
Gower's (1974) maximal predictive classification. If we have a matrix of v
binary attributes for all the members of class C, then a binary row vector
mn of length v can be constructed which lists the properties that one would
predict for an object on being informed that it belonged to that class. For
the ith class, summed over all class members, there will be Wi correct
predictions, and for all k classes there are W = £ Wi correct predictions.
i=1

The maximal predictive criterion selects that partition of n objects irto
k classes which maximises Wk, The average number Bk of properties
correctly predicted for members of each class, using the class prediciors
of the other k-1 classes, measures the separation between classes. The
best choice of k is related to maximising Wk - Bk. In practice, maximal
predictive classification is implemented by using a transfer algorithm of
the type used in k-means clustering, but using deviations from class
predictors instead of from class means (Gower 1974).

In maximal predictive classes, all members of the 1th class have more
properties in common with their own class predictor mi than with the
predictor of any other class. Therefore, an individual can be identified
(ie. assignmed tc its correct class) by comparing it with the k class
predictors. The sample belongs to the class giving most matches. Finzally,
it can be compared with members of that class until a perfect match is
found.

With populations of inanimate objects, appropriate attributes may be easy
to find. If suitable binary attributes cannot be found, multi-level
qualitative data can be used (Gower 1974).

Gower's maximal predictive classification does not appear to have been much

used in ecology. Curran and Swithinbank (1981) used it on a presence-absence
data matrix for 110 quadrats and 110 plant species. The values for Wk-Bk
suggested that the optimum number of classes was 7, and these classes represented
developmental phases associated with management practices., Of the 110 plant

species, 26 were used as class predictors, 11 of them appearing in more than
one class.
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It should be self-evident that classifications (or dissections) which
are produced for the study of fox (or other animal) population densities
are special classifications and require problem-specific information,

A major problem for researchers is likely to be the selection of
eppropriate attributes. Because data can be recorded in different

wayg, and the type of data greatly influences the numerical methods
which can be used, types of data are discussed in detail in the next
section.

TYPES OF DATA

The fact that, in polythetic classifications, groups of objects share

a large proportion of their properties but do not necessarily sgree in

any one property, has some important consequences. Firstly, it introduces
the concept of similarity (or difference, or distance) among objects. In
practice, this may be expressed in a variety of ways, some of which will
be mentioned below. It alao ralses the problem ¢f how many properties

to use, and which properties to select.

As there is no theoretical Husis on which to choose the number of
properties used, the choice is likely to be made on practical grounds,
and much depends on the objectives of the user. In ecological investi-
gations, there is usually a finite but extremely large set of properties
whick could be recorded, but most of these are not recognized by the
ecclcogist because they have no obvious practical relation to the topic
being investigated. Thus, there is inevitably some degree of selection
in any choice of properties to be examined.

Practical considerations are likely to limit the number of properties
used., Apart from the fact that a large number of properties will result
in more computer time, and storage space, being required in the analysis
of the data, mathematical and statistical properties of the data metrix
must be considered. The larger the number of properties chosen, the more
likely it will be that many of the properties will be highly correlated,
and will thus contribute no useful information, although they will
contribute to the 'noise'. In some numerical methods, it is necegsary

to find the eigenvaslues and eigenvectors of a matrix., In principal
component analysis and factor analysis, the matrix has the order of the
number of attributes. The larger the matrix, the less stable are the
eigenvalues (eigenvalues and eigenvectors are important matrix properties,
and are defined in basic matrix algebra text books such as Searle 1966).
I1f there are too many binary attributes, values of similarity coefficients
will depend on accidental matches or 'neoise’.

Although it iz important not to include too many attributes in a numerical
analysis, the ecologist will be concerned that he msy use too few, and

thus omit an important attribute. An empirical approach to assist the user
in deciding whether or not to add additional properties would be to perform
an analysis on the original set of properties, add more, and repeat the
analysis. If the results are similar, the classsification is stable and

the additional properties are not required.




A better approach would be to make a preliminary study of the praposed
variables by principal component or factor analysis. In ecology, observed
variables are often manifestations of a smaller number of factors of which
the observer may be unaware. The variables which the investigator thinks
are important may be informative, but they may not be the ones which are
correlated with real structure {(eg. see Muir 1962). Principal component
or factor analysis can assist in the finding of important variables in
the underlying factors.

Broadly speaking, a classification based on a large number of properties,
chosen only because they are available or are easy to obtain, will be a
general classification. It will serve a variety of purpeses, but is
unlikely to be optimum for any specific purpose. An example of a general
classification is the group of plants that gardeners call "alpines", which
share numerous growth and physiological characteristics reflecting their
adaptation to alpine conditions (Sneath & Sokal 1973). On the other hand,
if a classification is being constructed for some specific purpose, then there
is a need for problem-specific information, and a clessification based on
selected properties is more likely to be optimal with reapect to those
properties, but might not be of general use.

The way in which the data are collected can have an important bhearing on
subsequent statistical and numerical analysis. Data consist of attribute
scores, Conventionally, in statistics, the term ‘attribute’ is used for
qualities possessed or not possessed, by an individual. The term 'varisble'
is usually used for quantities which may vary continuously. However, ic
pattern analysis the term 'attribute' has come to be used in a wider sernse,
This is convenient, since we do not need to differentiate between continuvcus
and discrete dats in general discussion where the nature of the data is

not in question. There are many different kinds of attributes, see for
example Sneath and Sokal (1973); Clifford and Stephenson (1975); Willia=s
{1976), The most common kinds of attributes are: (i) Binary, eg. presence -
absence; (ii) Disordered multistate (also called nominal attributes), such
as colour or rock type; (iii) Ordered multistate (also called ordinal
attributes), eg. rare, common, asbundant; (iv) Meristic (discrete integer
numbers), eg. number of petals; (v) Continuous, ie. meagures on a

continuous scale (also called quantitative or numeric attributes).

The scale on which the attributes are scored or measured will have an
important influence on the subsequent data analysis. Presence-gsbsence
and disordered multistate data are on a nominal s#cale. With disordered

. multistate data, a given individual can be referred to only one state,
The states may be numbered for computational convenience, but no meaning
can be attached to the order in which the states are taken. An ordinal
scale is used when various levels can be established for an attribute,
but the scale values establish only the order of the observations, they
do not contain any information on relative distancea. With ordered
multistate data, for example, rare, common, abundant, could be coded

as 1, 2, 3, but these scores would not represent the relative abundances,
ie the distances between the states are undefined. With interval and ratio
scales, there is a concept of distance. On an interval ascule, both the
order and megnitude of an attribute state can be found relative to some
arbitrary zero value, as in temperature scales. A ratlo scale is used
when the order and magnitude of an attribute state can be referred to
some natural origin, as in measurement of length or weight. On such a
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scale, the ratios between scale values are meaningful, as are the sumg
and diiferences. Drobably few biologists have much formal background

in t¥pes of measurement and scales, Torgerson’s (1958) book is useful
for tais.

In numerical taxonomy, as in ordinary statistics, there is a greater
choice of algorithms for dealing with continuous attributes than with
binary attributes. Ordered and disordered multistate data can be a
nuisance to handle, for many purposes there is no entirely satisfactory
way ©f treating such data numerically. Meristic attributes, which can
take only integral values, can also be a nuisance. In many cases, they
cannct gsensibly be treated as continucous; consider a case of counts

of floral parts in a sample which contains some plants with two petals
and some with four. As Williams (1976) pointed out, finding that the
mean 1s three implies thet dicotyledons have become monocotyledons,

In such a case, the attribute could be coded as disordered multistate.
On the other hand, in some cases the mean value 13 interpretable, and
the data could be treated as continucus for practical purposes.

Continuous attributes are rarely continuous in the strict sense, since
measurements are always made with limited accuracy, and there is always
some degree of rounding off. In practice, the difference between continuous
and discrete attributes depends on the chance that different observations
take the same value. For practical purposes, counts that follow a

Poizson distribution with a large mean can be regarded as continuous,

s5iice only a small proportion of the observations will take eny one vglue,
Orn the other hand, a continuous attribute grouped so coarsely that only a
few values actually occur must, for at least some types of analysis, be
treated differently. If an attribute tockes a wide range of values, but has
a2 concentration at one value, usually zero (eg. counts of parasites on a
host), it mey be better to score it as ordered multistate, eg. zero, low,
medium, high (Marriott 1974).

Data mey he coarsely grouped, either because measurements have been made
with limited accuracy, or are replaced by rough assessments such as low,
medium, ‘high., For many purposes, such grouping is not important. The
assessment can be replaced by suitable scores, giving whatever weight is
considered appropriate to the differences hetween the groups. In many of
the classical multivariate methods, the central limit theorem then justifies
treating them as if they were jointly normally distributed. However, in
sore applications care is needed. This is especially true in cluster
analysis, If the aim is to find a useful or meaningful grouping of the
daza, a coarsely-grouped attribute may exert a digproportionate influence
on tae result (Marriott 1874).

One way of dealing with disordered multistate data is to replace them by
duzmy binary attributes. Thus, the colours red, white, and blue could be
coded as two binary attributes, ome taking the value 1 for red and 0 for
blue and white, the other taking the value 1 for white and 0 for red and
blue. However, this method becomes rather cumbersome if there are many
digordered multistate attributes, or many disordered states. This method
can also be misleading 1if it is used in conjunction with an analysis that
does not take into account the fact that the resulting binary attributes
are correlated (eg. some forms of cluster analysis). With many observations
of this type it is preferable to base a cluster analysis on some sort of
similarity or dissimilarity measure (Marriott 1974). However, the comments
of Rubin (1967), given below, should be taken into account,
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Just as in univariate applications the standard error of a proportion can

be used for significance tests and confidence intervals as if the proportion
were normally distributed, %0 in the multivariate case the central limit
theorem eften justifies treating binary data as approximately multivariate
normal., However, if all the data are of this type, other models are
available, and scme special methods have been evolved (Marriott 1974).

Differences of opinion exist on the value of binary data in ecological

work, but the consensus of opinion seems to be that other data are
preferable (Clifford & Stephenson 1975, p30). In a botanical context,
Greig-Smith (1964, pl60) stated: "We are, in fact, dealing with a population
of individuals (if staends may be so regarded) which differ from one another
in terms of continuous variables of which presence and absence are only =a
¢rude expression”. In plant and animal ecology, the tendency is to regard
dominance or abundance (by some measure) as important (see eg. the papers

in Section III of Ord et al. 1979). Results of snalyses using data with
nunerical values are more informative than those using binary data. For
example, Williams et al. (1973) found that while plant species presence-
absence was adequate in a simple study involving only eight sites, for ten
sites there was "some advantage™ in using numbers, while for B0 sites
quantitative data were distinctly preferable. Barkham (1968) found
quantitative data to be more informative than presence-absence data in a
study of the vegetation of Cotswold beechwoods, Presence-~ahsence data
appear to work well when there are major differences in species distribution
between sites, but they are not very useful for detailed studies of pattein
if there are relatively few species with less clear-cut differences between
sites. The use of binary data in ecology can only be justified if it is
difficult to obtain anything eolse, or if there is a declared lack of interest

in the information which is lost by using binary data instead of, say,
continuous data.

These attribute categories are not disfinect, they depend to some extent on
the sampling and coding procedure, and data in one form can be converted

to another. 1In general, the conversion of continucus attributes (or
discrete attributes that can be treated as continuous) to binary attributes
is usually unsatisfactory. If a normally distributed variate is divided
into two sections along the mean, all entities on either side of the mean
would have identicel binary scores, however far from the mean., Rubin (19€7)
drew attention to a difficulty which arises when a continuous attribute is
chopped into a set of intervals each of which is scored as a separate
attribute-state. He used the example of age, which couldbe changed to a
discrete attribute of 8 states thus:

(1) 0-9 {5) 40 - 45
(2) 10 - 19 (8) 50 - 59
(3 20 ~ 29 (7) 60 - 69
(4} 30 - 39 (8) over 69

The obvious difficulty when using this approach is that two persons aged
29 and 30 will be regarded as dissimilar, whereas two persons of 30 and 39
will be regarded as similar. He suggeated that in the calculetion of
similarities, the problem could be overcome by having the ugser specify
two different criteria: (a) an interval, expressed in the units of a
variate, such that two objects which have a difference on that variate
smaller than the chosen interval will be considered to match (s0 that a
one will be added to the number of matches when computing the similarity
coefficient); (b) a second interval, expressed in the units af a variate,
such that two objects which have a difference on this vaeriate larger than
the given interval will be considered not to match (and a zero will be
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added to the number of matches). For differences which lie between
these two specified values he suggests using linear interpolation.

This method has the advantage of avoiding sharp discontinuities in a
similarity coefficient when changes in the data are siight, and the
burden on the user to provide values for the two intervals is no greater
than that of breaking a continuous variate into arbitrary intervals.

A similar method could be used for ordered multistate data.

Also, in the calculation of similarity coefficients, there can he
pro2lems with mixed attributes. Rubin (1867) drew attention to
difficulties which occur when different attributes have different
nuniters of states. If we give equal weight to a binary attribute

and to an attribute with four states, then, on average, the binary
attribute will contribute matches more often to a similarity coefficient
than will the four-state attribute. Furthermore, if we fragment tae
statss of an attribute sufficiently, a match between two.objects will
become more and more rare, and the attribute will bhecome useless in the
analysis. Weighting attributes on the number of states is not the
solution, since then an cccasional match might completely dominate the
gimilarity coefficient, The problem really lies in the original choice
of states for each attribute. If there is too much variation in the
nurber of states from attribute to attribute, then the many-state
attributes will not play as important a part in. a classification
procedure as will the few~state ettributes,.

On the other hand, if one chooses states so that most objects assume

only one or two of the states chosen, then one has thrown away information
which could have increased our knowledge of the structure -of the data set.
Rubin suggested that the ideal solution might be tc have an equal number
of atates for each attribute,- and approximately equal frequencies for each
state. This problem is not peculiar to the calculation of similarity
coefficients. Once an attribute has been fragmented into too many states,
or lumped into too few, information has been lost and is unrecoverable, no
matter what the type of analysis. The particular problem for classification
ig that a randomly-chosen binery attribute may be more important in
determining structure than seversl many-state attributes, even if the
latter exhibit a high degree of structure when considered by themselves,

DATA ACQUISITION

Related to the above problems is the practical problem of how to acquire

the data. This is really a subject which needs separate, detailed, treatment,
and only some main aspects will be discussed here. In any land classificaticn,
data acquisition is complicated by problems of sample area. If data are
obtained from maps, the acale of the map used is also important. The problem
of the sample area is familiar to botanists in the problem of quadrat size.
For example, if two species respond similarly to. a controlling factor which
has a defined pattern of values, they will show positive association up to.
the size of quadrat corresponding to the scale of heterogeneity of the
controlling factor, Above that quadrat size, the indications of

association will disappear {see eg. Grelg-Smith 1984; Pielou 19869).

The problem of map scale is rather different. A map is onliy a pictorial
representation of a portion of the earth's surface. With physical features,
as represented on Ordnance Survey maps, the limitations of map scale make
it necessary to simplifyithe representation of many surface features,




whilst other features, such as roads, may be exaggerated deliberately.

In the production of maps, it i3 necessary to strike a balance between
detail and clarity, and inevitably, some information is lost or distorted,
according to the map scale (see Harley 1975).

Vegetation often plays a major part in land classifications. Dammon
{1979) discussed vegetation properties which are useful in detecting
and mapping vegetation patterns at various scales. Hisg discussion of
size of mapping unit for various map scales is worth reading by anyone
interested in this topic.

Some information may be more accurately and easily obtained from air
photographs, for example general slope angle and altitude. A single
simple value expressing the altitude of a sample ares could be obtained
by taking the mean of N points located in the area. The problem

with doing this on a map is that most of the points are likely toc fall
between contour lines, and it would be necessary to use non-linear
interpolation to find the altitude of each point, which ia not really
practicable without complex equipment., On the other hand, it could

be done easily using air photographs. Eall and Williama, in the study
mentioned later, measured the proportion of land in different altitude
bands irn 10km x 10km National Grid squares on Ordnance Survey maps.
There are twe problems with this approach, firstly it is fregmenting

a continuous property into intervals, as discussed above, and secondly,
it requires several attributes to express one property. This means that
the property, altitude, is effectively weighted, and could dominate

an analysis irrespective of its ecological importance.

The estimation of slope angle from topographic maps by hand is tize-
consuning, and is liable to a considerable degree of subjectivity and
approximation. Clerici (1980) described a method for the automatic
drawing of slope maps from contour maps. His method is based on the
determination of the slope (defined as the inclination of the plane
which is tamgential to the surface) at regularly- spaced points on a
mathematical model of the topographic surface., First of all, altitudes
and x-y co-ordinates of points on a topographic contour map are recorded
using a digitizer. A computer is then used to superimpose a square grid
on the set of data points and fit a polynomial trend surface to the
area around each grid intersection. A denser grid is then superimposed
on the computed trend surface, and the slope is calculated at each
intersection. Finally, a map is produced by tracing the isolines obtained
- by interpolation of the slope points. The method can be developed to get
further information such as the concavity or convexity of the surface
and its aspect. '

Yet another problem concerns the acquisition of data from 'factor maps',
ie. maps of the distribution of special features or properties. MacDougall
{(1975) discussed sources of, and magnitudes of, error in factor maps.
With soil maps, it must be noted that a soill mapping unit is a single
expression of a multivariate system with a vector of means and a variance
covariance matrix. If a property is deduced from a soil map, for any
particular point, it is unlikely that any estimate of the likely accuracy
of such a sample could be obtained. In the traditional approach to soil
mapping, soils are identified in pits and the boundaries of mapping units
are drawn by interpolation from auger borings using known relationships
with landscape facets, geology, and vegetation. The mapping units are
defined and described in terms of the s0il series they contain. In most
cases, one series dominates the mepping unit which then bears that series
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name; more complex units carry the names of co-dominant series. In
either case, the units contain lesser areas of other profile classes.
The profile classes (soll series, variants, and phases) included in
the xapping urit may be listed, and their frequency of occurrence
assessed (eg. Clayden & Evans 1974). Various authors have discussed
the concept of 'purity' of soil mapping units (eg. Bascomb & Jarvis
1576; Beckett & Bie 1975, 1976) as well as soil map accuracy (Legros
1973). The scale of mapping and the nature of the country impose
what variation must be accepted (Ball 1964).

SOME PUBLISHED NUMERICAL CLASSIFICATIONS (AND DISSECTIONS) OF HABITATS

It i3 instructive to look at some published classifications (in this
discugsion it is convenient to include dissections and to use the term
classification in its widest sense), to see what can be learnt from

them, Thilenius (1972) investigated deer hebitats in the Ponderosa pine
forest of the Black Hills, South Dakota. In the published paper, his
main effort was in the classification of the hsbitats, and little was
done to relate the classes obtained to deer populations or activities,
There ie always a danger that classification may become an end in itself
and, interesting though the subject may be, a classification or dissection
should be shown to serve some useful end. Thilenius sampled the pine
forest at 100 locations, each location being a "macro-plot" 60ft x 100ft.
A total of 39 properties, giving 334 coded attributes, was recorded:
Vegetation (3 properties) ~ frequency of overstorey trees, frequency of
large shrubs, frequency of small shrubs, grasses, sedges and forbs, all
in percent; Soils had 27 properties (recorded as mixed data types,
continuous, meristic, disordered multistate and ordered multistate) as
required by the standards of the U.S. Soil Survey; Site was represented
by 9 properties of mixed data types.

The choice of properties 1s interesting. The vegetation types seem highly
relevant to the problem. For some purposes, the physicel structure of the
vegetation cover may be more important than its species composition, for
exaxple in providing cover from predators and shelter fromwesther, The

use of so many soil properties seems excessive. The choice of the standards
of the U.S. Soil Survey suggests beaurocretic, rather than scientific,
reascns for using so many properties, many of which would be unlikely

to have much influence on deer populations. As with the vegetation cover,
choice of s0il properties should be relevant to the aims of the study. For
some purposes, eg. in studying foxes, soil depth, stoniness, presence

of indurated or compacted horizons, might be as important as soil chemical

properties, since the physical properties are relevant to the comstruction
of dens.

Thilenius standardized his diverse attributes by setting the maximum value
for each attribute to 100, An inter-location similarity matrix was then
calculated using a quantitative modification of Jaccard's coefficient
(see Bray & Curtis 1957). It should be noted that in cluster analysis,
the cholce of a similarity measure needs careful thought, as different
measures have different properties (see e.g. Sneath & Sokal 1973;
Clifford & Stephenson 1975), Thilenius's similarity matrix was subjected
t0 c¢luster analysis by the weighted pair-group centroid method (see
Jardine & Sibson 1971; Sneath % Sokal 1973). This i3 an agglomerative
hierarchical procedure which is now congidered obsolete by many workers,
ag it has been shown to have some undesirable properties (Fisher & van
Nesg 1971; Jardine % Sibson 1971).




At the 0.54 similarity level, three clusters were obtalned which, although
they could be related in a general manner to the gross ecological and
geographical features of the area, were highly variable with respect to
other attributes and in the locations of which they were composed. At the
0.60 similarity level, 13 clusters were defined, and these produced a
general ordering of the locations from the most xeric to the most mesic,
The only attempt which Thilenius (1972) made to relate his habitat
classification to deer populations and activities was to give a table

of mean pellet group densities for the 13 clusters. A statistical test

of these means suggested that the 13 clusters fell into 3 groups of
"habitat units" which had similar mean pellet group densities. It is
interesting that habitat units having similar pellet group densitlies
belonged to more than one of the three clusters obtained at the 0.54
similarity level, which suggests that the numerical procedures used had
not produced groups with good properties for defining the habitats with
respect to deer use.

Redloff and Betters (1978} performed & somewhat similar classificatlon of
forest sites and for no stated purpose. They collected information on 147
square sites, each 2.4ha in area, located in a stratifled random design
within the Pike National Forest, Colorade. Six physical properiies were
recorded for each site from topographic maps: aspect (coded 1 for 85W to

14 for NNE); percent slope; altitude; terrain form {(ridge top, spur ridge,
level, swale - an old English word for & hollow or depression, valley
bottom); local terrasinrelief (stralght, undulating, dissected); and position
on slope (lower, middle, upper). Five soil characteristics were obtained
from soil maps: minimum and maximum depths of the solum; structure; surface
soil permeability; moisture capacity. Since the study has no particular -

aim, there is no basis on which to assess the value of their choice of
properties.

Because of the mixzed nature of the attributes, Radloff and Betters computed
an inter-site similarity metrix using Gower's (1971) general similarity
coefficient. This coefficient has two main advantages. First, it can be
used with mixtures of binary, ordered or discrdered multistate, or
continuous attributes. Second, the similarity matrix is positive semi-~
definite unless there are missing values. This means that the N objects
can be represented as points in Euclidean space (Gower 1966). The measure

also gives the user the option of counting or not counting joint absences,
ie. double zero matches.

Like Thilenius, Radloff and Betters used 2 centroid clustering procedure,
which gave 13 clusters at the 0.8 similarity level. Canonical variates

{multiple discriminant) analysis was then used to display the relationship
among individuals and classes,

This study provides some interesting lessons. Radloff and Betters pointed
out that their initial clustering gave groups which corresponded exactly
with the scil series classification. The use of 5 correlated s0il properties
essentlally resulted in soils~related information having a 5-~fold weighting.
To counteract this, each of the non-soil attributes was weighted 5-fold.
Canonical variates ordination has been used by various workers tc diaplay
the results of a clustering (eg. Grigal & Ohmann 1975). It can also be
used to allocate new objects to existing groups. The method has the
theoretical requirement that the groups should have homogeneous variance-
covariance matrices, although there i3 a hody of emphirical evidence
available which suggests that the method may be moderately robust to
departures from homogeneity. An alternative ordination would be by
principal co-ordinates analysis (Gower 1966), using the Gower simllarity
coefficient. In practice, computing problems may be encountered with a
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large number of objects, but Gower (1968) has shown how this can be
overccme to some extent.

Omi e al.(1979) tackled the problem of combining similar land units
within the Angeles National Forest, southern California, for the purpose
of fire management plenning, by & combination of three multivariate
methods: (1) principal component analysia (to reduce the number of .
dimensions and provide orthogonal component values; (2) cluster analysis
by an unweighted pair-group method using arithmetic averages (operating

on Euclidean distances calculated from the component values); and

(3) exemination of, and reforming of, these initiel groups by discriminant
furction analysis. The basic units (objects) of the analysis were major
drainage basins which had been delineated as fire damage appraisal units
in a2 previous study. The attributes used were those assumed to affect

the long-term fire damage potential of a drainage basin, and they were
chosen after a literature review and discussions with watershed scientiste
and managers in forestry, flood, and geological services. The data were

collected from maps and reports, 10 characteristics were expressed in 15
variables. ‘

Principal component anelysis, followed by varimax (orthogonal) rotation,
showed that the first 5 components accounted for 70% of the varlation in the
original 15 variables, and those components were used to calculate a
Euclidean (presumably Pythagorean) inter-object distance matrix. No reason
was Liven for preferring a hierarchical clustering procedure, or for <the
particular procedure chosen. One is often led to suspect that the choice
of method is largely what happens to be in the availebie package. The
clustering method used in this case has been criticised on mathematiceal
greends (Jardine and Sibson 1971), but in the context of the work of

Oci ot @l. the method has the advantage of having minimum variance
characteristics (Wishart 1969). A disadvantage is thet the number cf
groups used has to be decided subjectively and Omi ¢t al. selected 10
clusters. Discriminant function analysis reduced the number of clusters

to 4. It would be very interesting to compare this result with the result
of a k-means clustering.

Thonpson ¢t al. (1980) examined broad vegetation patterns of a land area
of approximately 90 000km? in the Canadian Northweat Territories to determine
the relative importance of areas of vegetation as Caribou habitats. The
ares was divided into 54 gampling units on the basis of LANDSAT data, and
an aerial reconnaissance was made of sampling unit boundaries to ensure
that sampling units which had the same theme pattern on the LANDSAT images
appeaered to have the same vegetation. The preportions of 8 previously-
reccsnlsed vegetation cover types were found from sample transects in 43
of the 54 sampling units. Using the transect data, the 43 sampling units
were submitted to cluster analysis using Ward's (1963) agglomerative
hierarchical method, an iterative relocation procedure, and Wishart's
(1969) mode ansalysis. Ward's method minimises the within~group sum of
squares at each partition, and has minimum-variance characteristics
(Wishart 1968). The three procedures were found to give similar resuits.
Thompson et al. found, by discriminant function analysis, that 6 of the 8
vegetation cover types were significant in discriminating among the
complexes. Analysis of pellet-group counts by cover types showed definite
trends 1n seasonal use by Carlbou,

On the North American continent, LANDSAT data are being increasingly used
for mepping vegetation. Hathout (1980) described a technique, involving
the use of a film density slicer with image enhancement, for using black
and white LANDSAT transparencies to provide a vegetation map of Riding
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Mountain National Park, Manitoba, Canada. 7This enhsncement technique

is said to be particularly useful in land use studies hecause the low
resolution of space photographs does not lend itself to the direct
extraction of relevant information. Enhanced images produced by this
technique were found to provide reasonably asccurate data for mapping

the land cover of the Natlonal Park. Nine land cover classes were
recognized, and were compared with a 1967 vegetation map of the area,

as well as with field observations. The accuracy of the map produced by
image enhancement was as follows:

Cover Class Interpretation accuracy %
1, Lakes or swampland 92
2. Deciduous tree dominpation 84
3. Coniferous tree domination 87
4. Pure deciduous forest 73
5. Pure coniferous forest 87
6. Grassland or open forest 71
7. Very open areas (shrubland)} 67
8. Burnt forest and marshland 86
9. Very dry areas (hilltops) 73

Hathout suggested that enhanced LANDSAT imagery might be used as & primery
source for vegetation mapping, with very little assistance from ground

survey of suspected areas of changes. It remains to be seen if this method
is useful in Britain, where many changes occur in a relatively small disctance.

CONCLUSIONS AND FUTURE POSSIBILITIES

There are clearly many problems which must be overcome 1f numerical methods,
and particularly habitat classification, are to be used to predict fox
population densities. The discussions in this paper suggest two broad
approaches, using established numericsl methods. In the first approach,

a habitat classification {(in the widest sense) is used as a basis for
detailed sampling. From the dats obtalned in this sampling, the
relationships between population density and environmental variables

could be found by regression methods. In the second approach, fox

population density is obtained directly from a maximal predictive
classification.

1. The first approach requires an ordination of the data, the ordination
space having Euclidean properties. With continuous envircnmental data,

or with less than about 30 binary variables, the ordination could be by
principal component analysis as long as the requirement for linear relation-
ships among the variables is satisfied. With multistate, or mixed data
types, ordination could be by principal co-ordinates analysis using

Gower's general similarity coefficient. Both types of ordinaticn give
co-ordinates for the points, representing the sampling units, in Euclidean
space (provided that there are no missing values).

Statistically, a stratification is required to have minimum within-strata
variance and maximum between-strata veriance. If ordination shows that there
are clear discontinuities between groups of points, then & simple clustering
procedure such as single linkage cluster analysis might be suitable, More
usually, there will not be clear groupings and k-means clustering will be
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necessary. A complementary exercise for mixed data would be to apply
& minimum-variance hierarchical clustering technique to the similarity
{(or corresponding distance) matrix.

2. 1If the data are all binary, all multistate, or mixed types, it is
possible to proceed directly to Gower's maximal predictive classification,
Using this method, quantitative variables (eg population density) have to be
treated as gualitative and the implicit ordering information has to be
ignored. The way in which this is done will clearly affect the accuracy

of the predicted fox population demsity.

Comparative tests of the possible approaches discussed above will be
necessary before a researcher can be sure that a given method will

satisiy the objectives of the study. The criteria in such teats will

be the accuracy and precision of the predictions of fox population densities
in relation to the cost and effort involved. Accuracy is defined as the
clogseness of predictions to the exact, true values, Precisgion refers to

the dispersion of predictions from repeated observations about some centre,
irrespective of whether or not the latter approximates to the true mean.

The real problem may well be to gather sufficlent gquantities of good data
with which to establish the relationship between envircnmental factors
and fox population density. In particular, problems of size of sample
area need to be solved, The consequences of recording the data in
different ways are discussed in detail in this paper, and the nesd for
problem-specific information is emphagized. As yet, there seems to be no
general consensus 0f copinion among fox ecologists as to what habitat
factors are likely to be important., Indeed, there is evidence that in
different types of habitat, different factors become important. More
work is needed on these fundamental problems before good predictiorns

can be made. A recent paper by Capen (1981) may be of some assistance

in habitat response studies.

One practical problem in cluster analysis is what to do when the number
0of objects to be classified is unmanageably large. A solutlion suggested
by Sneath (1964) is to run a random sample of the objects with the program,
and from each well-~defined cluster pick three objects as reference points
for that cluster. Run a second sample including these reference objects,
and repeat until all the objects have been processed. Many objects will .
belong to clusters previocusly recognised. The remaining ‘'solitary'
objects should be re-run together with the reference objects to see if
smaller clusters are formed. Using three reference objects per cluster
also provides an internal check on the procedure, since they should
always cluster closely together.
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