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Classification involves the recognition of similarities between, and 
the grouping of, objects and organisms. As a mental activity, th i s  i s  
probably considerably older than the writings of the ancient Greeks, 
the source of the science of classification. Indeed, i n  the form of 
pattern recognition, it may be fundamental t o  the way in  which human 
beings and living organisms perceive the world around them. 

I n  a l l  sciences, as data accumulate, the necessity for simplification 
becomes apparent. A classification may have more than one purpose, 
but the paramount purpose is t o  describe the relationships of objects 
to each other, and to simplify the relationships so that genkral state- 
ments can be made about classes of objects. An inrportant distinction 
is between monothetic and polythetic classifications. Monothetic c l b -  
sifications are those i n  which the classes established differ  by a t  
leas t  one property which is uniform among the members of each class. 
In polythetic classifications, taxa are groups of individuals or ob- 
jects that  &ate a large proportion of their  pfoperties, but do not 
necessarily agree i n  any one property. A corollary of polythetic 
classification i s  the requirement that  many properties be use8 to 
classify objects. However, once a classification has been establishad, 
few characters are generally necessary to allocate objecta t o  the 
proper taxa. Classifications based on many properties w i l l  be general, 
they are unlikely to be optimal for any single purpose, but might be 
useful for a great variety of purposes. By contrast, a classification 
based on few properties might be optimal with respect to those pmper- 
t i es ,  but would be unlikely to be of general use (Sokal, 1974). 

Hence, classification of a data s e t  results i n  a reduction of the mount 
of information that  is necessary to describe the data, but, i f  the C l M -  
s if icat ion is efficient,  there is l i t t l e  or no reduction in  the mount 
of information contained in the data. Furthermore, classifications that  
describe relationships among objects i n  nature should generate hypotheses, 
possibly the main scientif ic  justification for the axercise. 

Much classificatory work in  various branches of science has aimed to de6- 
cribe what is knawn as the 'natural system'. This  is a diff icult  and 
controversial concept involving a variety of philosophical consideratiom 
which w i l l  not be pursued here (see e.g. Jardine and Sibson, 19711 Sneath 
and Sokal, 1973; Sokal, 1974). 

Attempts t o  find satisfactory breaks i n  contirluous data have led to 
similar principles and procedures being developed independently i n  various 
fields, and a b d y  of general classification theory and methodology has 
been rapidly developing. Sokal (1974) stated that,  i n  classffication, 
theory has frequently followed methodology, and has been an attempt to 
formalize and justify the classificatory activity. In  other instances, 
classificatory systems have been s e t  up on a priori  logical or philo- 
sophical grounds, and the methodology has been tailored subsequently 
t o  f i t  the principles. Both approaches have thei r  advantages and draw- 
backs; modern work tends t o  reflect  an interactive phase i n  which f i r s t  
one and then the other approach is used, but neither principles nor 
methodology necessarily dominates. 



It is easy to perceive structure i n  data when the structure and dis- 
continuities are obvious, but such a situation is not typical. Much 
of what we observe in nature changes continuously i n  one property or 
another, but not necessarily with equally steep gradients for each 
property. It is such cases which give the t a x o n d s t  (or ecological 
classif ier)  the greatest problems in deciding where or har to draw 
boundaries, or even whether boundaries should be drawn a t  a l l .  

The development of numerical methods in  taxonomy has had several 
effects. What used to be an intuitive a r t  has been formalized i n t o  
a quantitative science. The increasing availability of d igi ta l  
computers means that it has become practicable t o  explore the use of 
a wide range of numerical techniques, and this has attracted the 
attention of stat ist icians and mathematicians, with the consequent 
development of a wide variety of methods and thei r  application to a 
variety of problems in  different fields. This has not been an unmixed 
blessing, as there now exists a bewildefing variety of numerical 
techniques, the properties of many being not ful ly known. Numerical 
methods can help the taxoncmist investigate the structure of h i s  
data, but the results of the analyses still need t o  be interpreted. 
It is perhaps worth bearing i n  mind the thme questions: Why do i t ?  
How do you do i t ?  then you have done it, what does it mean? 
(Dr. A. J. Wilmott, pers. comm.). 

The aim of th is  paper is to  clarify sane of the issues involved in  the 
use of numerical methods i n  classification, particularly w i t h  regard 
t o  the search for structure i n  ecological data. A theoretical approach 
is W e n  because it is necessary to understand the theory of the methods 
i n  order t o  understand how they should be used and what their  limitations 
are. Indeed, the same is true for multivartate methods in  general. 
It is assumed that the reader is familiar with some multivariate theory, 
a t  least  f ~ r  the more widely used drdination techniques. Ecological 
classification is much less well-developed than i s  the taxonomy of 
organisms. This is due partly t o  the dfversity of interests of ~ ~ ~ l o g f s t s ,  
and partly to the nature of ecological data, which do not lend themselves 
t o  easy classification. Furthemore, the appropriate methods i n  
taxonomy of organisms are not necessarily the most appropriate fdr 
ecglogical use (Clifford and Stephenson, 1975). 



2. THE NATURE OF lZIE DATA 

2.1 Types of data 

Data consis t  of a t t r i bu te  scores, and there  a re  many d i f fe ren t  kinds of 
at t r ibutes .  These are discussed by, e.g. CLifford and Stephenson (1975). 
The most ccmnmn kinds of a t t r ibu tes  are: (i) Binary, e.g. presence- 
absence8 (ii) Disordered multistate,  e.g. colour; (iii) Ordered multistate,  
e.g. rare, camon, abundant8 ( iv)  Meristic, e.g. number of petals8 
(v) Continuous, i.e. measures on a continuous scale. 

These a t t r i bu te  categories a re  not d i s t i nc t ,  they depend t o  some extent on 
the sampling procedure, and data  i n  one form can be converted to  another. 
Differences of opinion e x i s t  on the  value of binary data  i n  ecological work, 
but the consensus of opinion seems to be t h a t  other data  a re  preferable 
(Clifford and Stephenson, 1975, p. 39). I n  most branches of ecology, the  
tendency is to regard dominance (by sane measure) as  important. Results of 
analyses using data w i t h  numerical values a re  more informative than those 
using binary data. For example, W i l l i a m s  e t  al (1973) found t h a t  while 
plant species presence-absence was adequate i n  a simple study involving 
only eight  sites, for ten sites there  was "sme advantage" i n  using numbers, 
while for  80 s i t e s ,  quant i ta t ive data w e r e  d i s t i nc t ly  preferable. Barkham 
(1968) found quant i ta t ive da ta  to be more informative than presence-absence 
data i n  a study of the  vegetation of Cotswold beechwoods. 

The use of binary data  in ecology can only be just i f ied if it is d i f f i c u l t  
t o  obtain anything else ,  o r  i f  there is a declared lack of i n t e re s t  i n  the  
information which is l o s t  by using binary data instead of ,  say, continuous 
data. Similarly, the conversion of meris t ic  or continuous da ta  to binary 
data is usually unsatisfactory. Thinking of this i n  terms of a mXmai 
dis t r ibu t ion  being a rb i t r a r i l y  divided in to  two sections, division along 
the mean leads to  a l l  e n t i t i e s  on e i the r  s ide having ident ical  binary 
scores. However, there  may be instances when continuous data  have 
properties which make conversion to another form logical. One example 
i s  i f  a variable can take a wide range of values, bu t  has a concentration 
a t  one value (usually zero) ,  a s  i n  counts of paras i tes  on a host. I t  is 
usually be t t e r  t o  regard such a variable as discrete ,  and to score it as i f  
it were a few groups, such a s  zero, low,  medium, high. It should be noted 
t h a t  i f  the aim of the analysis is to find a useful o r  meaningful grouping 
of the data, a coarsely-grouped variable may exert  a disproportionate in- 
fluence on the r e su l t  (Marriott, 19741. 

2.2 Selection of a t t r i bu te s  

In  ecological studies,  there may o r  may not be a p r i o r i  grounds fo r  
se lec t ing  a t t r ibu tes ,  and some a t t r ibu te s  may be selected intui t ively.  
There is l ike ly  t o  be some l imitat ion on the types of a t t r i b u t e  which 
can be used, due to prac t ica l  d i f f i c u l t i e s  i n  t h e i r  measurement. 

However the a t t r ibu tes  are  chosen, it is necessary t o  recognize t h a t  
cer ta in  kinds of a t t r i bu te s  are regarded a s  inadmissible in a numerical 
stucly (Jardine and Sibson, 19713 Sneath and Sokal, 1973). The different  
kinds of correlated a t t r i bu te s  a re  par t icular ly  important i n  this respect. 
It is thus necessary to make some s o r t  of i n i t i a l  check on the data. 



Maxriott (1974) discussed the problems of binary variables i n  c lus t e r  
analysis. He noted t h a t  the selection of variables,  important i n  any 
multivariate procedure, is paramount i n  the  case of binary variables. 
If there is any inherent s t ructure  i n  the data, it should reveal i t s e l f  
i n  the dependencies between the variates. As a corollary, any var ia tes  
t h a t  are non-independent for  reasons not connected w i t h  an underlying 
grouping should be excluded from the analysis. For binary variables, 
the problem of deciding i f  there  is more than one group, and if so hcw 
many and how they should be divided, is not easy. The jus t i f ica t ion  
for multimodality as a c r i t e r ion  is l e s s  c lear  i n  the case of binary 
var ia tes  than in t h a t  of continuous variates. I n  general, multimodality 
depends in a com l i ca ted  way on the probabi l i t ies  associated with each 
dichotomy i n  a 2! contingency tab le  for  p binary variates.  

2.3 Weighting of the a t t r i bu te s  

The question of whether, o r  how, to weight data  i s  an important problem 
in taxonomy, and spec ia l i s t s  in d i f f e ren t  groups of organisms w i l l  have 
their own ideas about the importance of different  a t t r ibutes .  One 
solution to this problem is to s t a t e  the basis  of weighting, so  t h a t  the 
reader may judge the merits o f  the  case (Clifford and Stephenson, 5975). 
Sneath and sokal (1973) considered t h a t  equal weighting is desirablej  
it can be defended on several  independent grounds, and i s  probably the 
only prac t ica l  solution. 

Jardine and Sibson (1971) concluded t h a t  cer ta in  kinds of weighting which 
I taxonomists use in tu i t ive ly  are ,  i n  fac t ,  incorporated i n  the calculation 

of K-dissimilarity, while cer ta in  of the other  kinds of weighting and cor- 
re la t ion  which taxonomists have discussed were shown to be relevant to the 
select ion of a t t r ibu tes ,  ra ther  than to  the  calculation of diss imilar i ty  
and analysis of diss imilar i ty  coefficients once a t t r i bu te s  have been 
selected. 

2.4 Possible s t ructure  i n  the data  

A s  the  underlying theme i n  numerical c lass i f ica t ion  is the search fo r  
discontinuities i n  the data, it is important to think about what types 
of s t ructure  may be present i n  the data. 

The f i r s t  poss ib i l i ty  is that there  is only one group and a l l  the in- 
dividuals belong to it (e.9. Fig. 1). W e  may or may not knw the nature 
of the dis t r ibut ion,  bu t  we cannot assume t h a t  it is normal. The da ta  
may contain more than one group. I E  there are real discontinuities,  the 
groups w i l l  be separate and d is t inc t .  This s i tua t ion  presents no 
problems, the problems occur i f  the tails of the frequency d is t r ibu t ions  
overlap (e.g. Fig. 2 ) .  Examples with a greater  degree of overlap can 
be visualized, w i t h  the  centres of the d is t r ibu t ions  mwing cleser 
together. In the extreme, this leads to a complex d is t r ibu t ion  which 
may appear to be mimodal. 

This type of s t ructure  is visualized by p lan t  ecologists. S4rensen 
(1948) suggested t h a t  the various types of vegetation are  often so in- 
sensibly merged es t o  form a s l id ing  scale,  bu t  t h a t  in a limited area 
under investigation it can be considered t o  be homogeneous with as much 
approximation to t h a t  mathematical concept as can be found i n  nature. 
Whittaker (1970, 1972) developed the continuum theory and shared that one 
might expect each species to find a d i f fe ren t  niche on an environmental 
gradient (e.9. Fig. 3).  If the d is t r ibu t ion  pat terns  of species are 
completely continuous, it becomes impossible to del ineate  communities o r  



Figure 1 . There i s  only one group, and a l l  the OTU's belong t o  it. 
A is  the  graph of the  continuous frequency (probabili ty 
density) function f (x) of the  data. This function is 
zero outside sone f i n i t e  in te rva l  (a, b ) .  For con- 
venience, it is shown a s  univariate and synmetrical. 
B represents a s l i c e  through a bivar ia te  version of A, 
a t  r i g h t  angles t o  the paper, t o  show the density gradient. 



Figure -2. A bimodal sanple with the  t a i l s  of the  -frequency (probabi l i ty  
density) d i s t r ibu t ions  s l i g h t l y  overlapping. 





associations, and most d i f f i c u l t  for the human brain to comprehend 
the data  i n  to t a l i t y .  Where gradients are  involved, ordination may 
be the best  way of handling the data, although tha t ,  too, has its 
problems. The concept of such a unimodal continuum is not unique to  
ecology, examples can be found i n  other sciences (Clifford and 
Stephenson, 1975). The poss ib i l i ty  t ha t  such a continuum may be 
divided i n t o  groups on the basis  of so-called homogeneous areas led  
t o  the development of a variety of methods for t h i s  purpose, usually 
based on some s o r t  of variance constraint .  These methods, and the 
problems associated with them, w i l l  be discussed l a t e r .  

2.5 Scaling, standardisation, and transformation of the data  

In  ecological studies,  the  raw data may not be uniform, because 
some species are  more abundant than others for example, o r  because 
a t t r i bu te s  measured on d i f fe ren t  scales d i f f e r  in  both range and 
var iabi l i ty .  The importance of such differences i n  the analysis of 
the da ta  needs thinking about, par t icular ly  i n  re la t ion  to the objectives 
of the  investigator. In one context, it may be useful t o  exclude rare 
species (cf. Barkham, 1968). For some purposes, it may be judged t h a t  
a t t r ibu tes  should contribute equally regardless of t h e i r  variation. 
On the other hand, the investigator may consider the  variation i t s e l f  
to be an important feature t o  be retained. 

tie can recognize three ways in which the data may be modified: (1) Scaling* 
(2) Standardization; (3) Transformation. Scaling may be done i n  a variety 
of ways, the simplest being t o  add or subtract  a constant from a l l  values 
of a given at t r ibute .  Another method is to multiply o r  divide by a constant. 
Standardization means t h a t  the value of each a t t r i b u t e  for  each individual 
is expressed as a deviation from the mean of t h a t  a t t r i bu te  and divided by 
the standard deviation. This has the e f fec t  of reducing a l l  a t t r i bu te s  to 
u n i t  standard deviation, and of reducing the  magnitude of each a t t r ibu te .  
Other mthods are  ranging (Gower, 1971) and ranki ts  (Sokal and Rohlf, 1969). 
There appears t o  have been no employment so  f a r  i n  numerical taxonany Of 

standardizations t h a t  equalize the var iab i l i ty  while leaving gross s i ee  un- 
changed (Sneath and Sokal, 1973). 

The term 'transformation' i s  used of methods which seek to change the 
shape of the frequency dis t r ibut ion of the data, usually i n  the hope of 
obtaining an approximately normal dis t r ibut ion.  In  univariate statistics, 
for example, transformations may be used t o  s a t i s f y  the theoret ical  
requirements of the analysis of variance. Classical  multivariate theory has 
been based largely on the  multivariate normal dis t r ibut ion,  and although i n  
some multivariate methods multivariate normality is not essent ia l  except for  
the sampling theory (e.g. i n  canonical correlation),  not much is known about 
the  robustness of the  methods and the e f fec ts  of large departures from 
normality. Some methods are  sensi t ive t o  non-normality, for  example 
cluster methods based on the  assumption of a mixture of multivariate normal 
distributions.  In  numerical c lass i f ica t ion ,  diss imilar i ty  measures may be 
sensi t ive to cer ta in  t y p s  of data. Thus, Euclidean distance types of 
measures, including variance measures, a re  par t icular ly  sensi t ive to data  
i n  which there are  occasional very large values (Clifford and Stephenson, 
1975). 

Various types of transformation have been used (Sneath and Sokal, 1973; 
Clifford and Stephenson, 1975). Andrews e t  a1 (1971) discussed the problem 
of transformations i n  which the transformed variables are  functions of the  
or iginal  variables col lect ively rather  than separately, and suggested sane 
techniques which might be useful. Clifford and Stephenson (1975) s t a t ed  



t ha t  it remains uncertain whether the  transformation required t o  produce 
normality of data is also the transformation which w i l l  produce optimal 
ecological 'sense',  and t h a t  optimal ecological c lass i f icatory 'sense' 
is generally obtained by using a weaker transformation than t h a t  required 
t o  transform data t o  normality In  any multivariate analysis, careful 
thought needs t o  be given t o  the nature of the data and how t h i s  re la tes  
t o  the methods t o  be used. 

3. NUIENCAL METHODS 

3.1 General 

Two types of method have been found useful t o  describe the object-space; 
these a r e  ordination and c lus te r  analysis. There has been some discussion 
on the re la t ive  merits of these two types of method, as  i f  they represented 
al ternat ive ways of exanining the data whereas they are ,  i n  fac t ,  complement- 
ary. I f  there are  natural  groups, t h i s  should be apparent i n  the r e su l t s  
of the ordination. If there are  no such grobps, ordination may still throw 
some l i g h t  on the relationships between the  individuals, and it is part icular ly  
useful i f  the individuals are  dis t r ibuted along gradients. Furthermore, 
ordination may show t h a t  a clustering method has been used for  data t o  which 
it is not suited. 

Many methods of c lus te r  analysis break down fo r  par t icu lar  types of c lus t e r  
t h a t  are ,  nevertheless, obvious to the eye. For example, elongated c lus te rs  
are  not well suited t o  Wishart's modal analysis, nor t o  methods t h a t  minimize 
W-I (see below); c lus te rs  with different  dispersion matrices and ou t l i e r s  
a re  not su i ted  t o  methods which assume, expl ic i t ly  or implici t ly ,  hanogeneity 
of within-group dispersions. Many methods tend t o  give c lus te rs  of approxi- 
mately equal s ize ,  and f a i lu re  t o  detect  and eliminate an ou t l i e r  can d i s t o r t  
the procedure (Marriott, 1974). 

Cluster analysis may involve searching for discontinuities i n  the object- 
space, o r ,  more usually perhaps, the  groupings are  l ike ly  to  be based or. 
multimodality (Ioarriott, 1974). A t o t a l l y  d i f fe ren t  problem occurs i f  the  
data a r e  unimodal; then the question is what is the best  way of dividing the 
individuals i n t o  a given number of groups. This was cal led 'dissection' by 
Kendall and Stuar t  (1968, p. 314). It  i s  important not t o  confuse this pro- 
cess w i t h  c lass i f ica t ion ;  there is no implication t h a t  the resul t ing groups 
represent i n  any sense a 'natural '  division of the data, they a re  merely a 
matter of convenience and the only r ea l  c r i t e r ion  is  the i r  u t i l i t y .  

In  both taxonomic and ecological c lass i f ica t ions ,  it 'is possible to  c lass i fy  
the e n t i t i e s  by the a t t r ibu tes  (previously called Q c lass i f icat ions,  now 
cal led normal c lass i f ica t ions)  o r  the a t t r ibu tes  by the e n t i t i e s  (formerly 
cal led R c lass i f icat ions,  now called inverse c lass i f ica t ions) .  It is i m -  
portant t h a t  the models and principles on which the mathematics a re  based 
should be biologically well-founded and the conclusions reached tes ted 
against fur ther  experience. In  the majority of cases, there  are  no 
absolute c r i t e r i a  against which t o  t e s t  the s t ruc ture  of a c lass i f ica t ion ,  
and so  it is important t o  be c lear  about the steps taken i n  its derivation. 

3.2 Ordination 

I n i t i a l l y ,  the positions of the  e n t i t i e s  i n  a multi-dimensional object- 
space are  defined by the i r  properties o r  some measure of t h e i r  dissimilari ty.  
Ordination procedures aim t o  preserve the relationships between the e n t i t i e s  
as accurately as  possible and i n  a few dimensions. The reduction i n  
dimensionality makes the data eas ie r  t o  handle mathematically: (1) it makes 
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graphical representation eas i e r j  (2) it removes d i f f i c u l t i e s  which might 
a r i s e  from variables which are  l inear ly  related,  o r  nearly So; (3)  the  
variables result ing from the reduction may lend themselves to re i f ica t ion  
(i.e. the  interpretat ion of the mathematics i n  terms of the or iginal  problem) 
and give a useful insight  i n to  the s t ructure  of the  data (Hanio t t ,  1974). 

PrincipaZ component cmalysis 

Possibly the best-known and most widely used ordination technique is principal 
c o m n e n t  analysis (Anderson, 1958; Morrison, 1967; Seal, 19681 Blackith 
and Reyment, 1971).  his involves a l inear  transformation of the a t t r i bu te  
scores; the principal components are expressed i n  terms of l inear  combinations 
of the or iginal  variates.  

The positionp of the individuals can be plot ted on pa i r s  of r i gh t  Cartesian 
component axes. Such plots  w & l L  show discont inui t ies  i f  they e x i s t  i n  the 
data  (e.g. Blackith and Repent ,  1971), bu t  it must be remembered t h a t  any 
such two-dimensional representation is dis tor ted i n  t h a t  other  dimensions 
are  not taken in to  account. Gower and Ross (1969) showed how such dis tor t ions 
can be i l l u s t r a t ed  by superimposing the  minimum spanning t r e e  (see below) of th 
points i n  the  t o t a l  dimensionality a n  to the i r  representation i n  the  reduced 
space. 

Holland (1969) pointed out t h a t  the vectors of the principal components 
a re  not the only ones capable of defining a space, and it is only a matter 
of geanetrical  manipukation t o  determine the extent t o  which the vectors 
of other cmponents corresponding to biological hypotheses, o r  derived 
from other bcdies of data,  l i e  within such a spa,ce. Hence, it is possible 
t o  carry out the i n i t i a l  process a stage further and t o  transform principal 
components i n t o  other components which a re  e i ther  consistent with other 
r e su l t s  o r  more meaningful i n  the  biological sense, giving a more general 
approach. 

There has been much discussion about the use of pr incipal  component analysis 
and other ordination techniques i n  plant ecology* too many papers have been 
writ ten for  detai led discussion here. See, fo r  example, Bray and C u r t i s  
(1957), Austin and Orloci (1966), Beals (1973), Noy-Meir (19731, Whittaker 
(1973), Orloci (1975). 

PrincipaZ co-ordinate analysis 

Principal component analysis is a special  case of principal co-ordinate 
analysis, which operates on a matrix of sane form of coeff ic ient  of as- 
sociation between a l l  pa i r s  of individuals (Blackith and Reyment, 1971). 
I n  principal component analysis, it is necessary to standardize the data  
unless a l l  the variables a re  measured on the same scale. Hence, a l l  
a t t r ibu tes  contribute equally to the t o t a l  variance. The a b i l i t y  t o  
ordinate a s e t  of e n t i t i e s  given only the i r  d i ss imi la r i t i es  can be use- 
f u l  i n  ecological s tudies ,  and ther* are sane circumstances i n  which a 
par t icular  diss imilar i ty  measure might be preferred. For example, 
one might wish to emphasize dominance and thus use the Bray-Curtis 
measure, or,  perhaps, be more concerned with r e l a t ive  properties and 
so  use the Canberra metric (Clifford and Stephenson, 1975). 

Principal co-ordinate analysis is par t icu lar ly  useful when there a re  
missing values o r  missing variates. I n  such a case, a correlation type 
of s imi la r i ty  measure is reasonably cobust and re l iab le ,  whereas re- 
placing the missing values by estimates o r  guesses i s  not very sa t i s -  
factory (Marriott, 1974). 



Factor analysis 

Blackith and Reyment (1971) s ta ted  t h a t  it is very hard t o  discuss 
factor analysis without generating more heat than l igh t ;  it is the 
most controversial of tha multivariate methods. ractor  analysis was 
proposed or iginal ly  as a model for a well-defined problem i n  educational 
psychology, but it acquired a bad reputation among mathematicians and 
was largely ignored outside the f i e l d  of psychology, where it still  
finds most of i ts  applications. The nethod and cr i t ic isms were dis-  
cussed by Ca t t e l l  (19651, Blackith and Reyment (1971) and 1.Iarriott 
(1974), and a book was writ ten by Lawley and Maxwell (1971). 

Factor axes may be rotated t o  c?eterminable posit ions i n  which they 
are  not necessarily, o r  even generally, orthogonal. Sneath and 
Sokal (1973) considered t h a t  this maJ.es s c i e n t i f i c  sense i n  t h a t  the factors 
underlying the covariation pattern of the characters i n  nature a re  themselves 
undoubtedly correlated,  but they pointed out  t h a t  there are  problems. Clifford 
and Stephenson (1975) went so f a r  as  to s t a t e  "It is  l ikely t h a t  i n  the  future 
factor analysis w i l l  play an increasingly inportant ro le  i n  ecological studies". 
On the other hand, Gower (196733) considered it doubtful i f  factor analysis 
r ea l ly  i s  a helpful vay of viewing biological data, and Blackith and Reyment 
(1971) asked: "Could it not be t h a t  factor analysis has persisted precisely 
because, t o  a considerable extent,  it allows the experimenter t o  impose h i s  
preconceived ideas on the raw data?" 

Canonical d a t e s  and canonical correlation 

Allied t o  the above methods a re  two other multivariate techniques which 
investigate lrelationships i n  multi-dimensional space, but which operate on 
data which are already grouped e i the r  on the basis  of individuals (canonical 
var ia te  analysis) o r  variables (canonical correlation analysis) .  In canonical 
var ia te  analysis,  the  relationships of the groups t o  each other i n  multi- 
dimensional space are  investigated. A s  with the above procedures, the 
canonical var ia te  space usually has a lower dimensionality than the or iginal  
object-space. In  canonical correlation analysis,  the  aim is t o  se l ec t  pa i r s  
of maximally correlated l inear  functions from the two ba t t e r i e s  of variables. 
Again, t h i s  reduces the dimensionality. 

3.3 Cluster analysis 

In c lus te r  analysis, l i t t l e  or nothing is  known about the category s t ructure ,  
a l l  t h a t  is available is a collection of observations whose category 
memberships are  unknown. T%e operational objective, tlherefore, is t o  discover 
a category s t ructure  which f i t s  the obsenrations. The par t i t ions  of the 
category s t ructure  should have various desirable properties (Jardine and 
Sibson, 1971; Anderberg, 1973; Sneath and Sokal, 1973; Clifford and 
Stephenson, 19751. In seeking s t ructure  i n  the data, two poss ib i l i t i e s  
should be borne i n  mind: (a) the data  may contain no c lus te rs ,  i .e.  the 
points a re  uniformly dis t r ibuted i n  the measurement space and lack cohesion; 
(b) the data may contain only one c lus te r ,  i .e. there is a high mutual 
association among a l l  points. Clearly, these two poss ib i l i t i e s  a re  ex- 
tremes, w i t h  a l l  other poss ib i l i t i e s  f a l l i ng  between them. Again, i n  
searching for  s t ructure  in  the data, i t  should be borne in  mind t h a t  any 
given s e t  of data  may admit of several  d i f fe ren t  but meaningful c lass i f i -  
cations,  each of which may per ta in  t o  a different  aspect of the  data. 
Furthemore, c lus te r  analysis is a method for generating hy-wtheses. There 
is, a s  ye t ,  no sat isfactory def ini t ion of a c lus te r ,  and a c lass i f ica t ion  
obtained from a c lus te r  analysis procedure has no inherent val idi ty ,  i ts  
worth and i ts  underlying explanatory s t ructure  i s  t o  be jus t i f ied  by its 
consistency w i t h  known facts.  Cluster analysis methods involve a mixture 



of imposing a s t ructure  on We data  and revealing tha t  s t ructure  which 
actually ex i s t s  i n  the data. To a considerable extent,  a s e t  of c lus te rs  
r e f l ec t s  the degree t o  which the data s e t  conforms t o  the s t ruc tura l  forms 
embedded i n  the clustering algorithm (Anderberg, 1973). 

Jardine and Sibson (1971) pointed out t h a t  it has gradually been realized, 
i n  the l a s t  few years, t ha t  sane of the  variety of c luster ing algorithms 
which have been proposed, despite superf ic ia l  differences, implenent the 
same method, and tha t  different  rqethods d i f f e r  very- widely i n  the i r  
properties and results.  They a l so  s ta ted  t h a t  the development 02 a general 
theory of c lus te r  analysis has been hindered by two widespread confusions. 
The first of these confusions is between algorithms and the methods which 
they implement. Thus, Lance and rlilliams (1967) have suggested as  a general 
theory of hierarchic clustering what is, i n  fac t ,  a generalized agglomerative 
algorithm, for  the dis t inct ion is c o r r e c ~ l y  applihd t o  algorithms rather  than 
methods. The second confusiqn concerns the ro le  of models i n  data simplifi- 
cation. The term 'model' may be used i n  two qu i t e  d i f fe ren t  ways. One 
use covers the mathematical framework within which it is possible to 
analyse the properties of the methods of data simplification. The other  
use covers descriptions of algorithms i n  topns of t h e i r  applications t o  
some interpretations of the data. The l a t t e r  may be called 'analogue 
models'. 

nuo kinds of analogue model have been widely used i n  c lus te r  analysis. 
F i r s t ,  there  are  models which t r e a t  the objects as  points o r  un i t  mas- 
ses  i n  Euclidean space (e.g, Govrer, 1967aj Wishart, 1969a). Secondly, 
there a re  models which t r e a t  the objects as  ver t ices  of a graph, and 
values of the dlss imilar i ty  coeff ic ient  l e s s  than o r  equal t o  some threshold 
as edges (e.g. Estabroolc, 19661 Jardine and sibsan, 1968a). Geometrical 
models can be applied only if the data are  metric. Even when the data 
are naturally metric, a plausible geometrical interpretat ion for  an 
algorithm does not necessarily provide any jus t i f ica t ion  for the  method 
which it implements. Thus, the various average-link and centroid 
algorithms which have simple geometrical interpretat ions suf fer  from 
very serious defects (Jardine and Sibson, 1971). The graph-theoretic models 
a re  more generally applicable, since any diss imilar i ty  coefficient and any 
s t r a t i f i e d  clustering can be characterized by a sequence of graphs. 

Before going on t o  consider i n  de-cail some of the more ccnunon cluster ing 
methods, we need to define sane terms. A taxon is a taxonanic group of - 
any nature or rank. Operational Taxonomic Units ( O T U ' s )  a re  the lowest 
ranking taxa employed i n  a given study; they m y  be individuals, averages 
representing species, exemplars of genera. For hierarchic c lus te r  methods, 
the end-point of the process is a dendrogram, pr tree-diagram i n  which 
numerical levels  are  associated w i t h  the  branch points. The c lus te rs  
specified a t  a par t icular  leve l  i n  a dendrogram have the property t h a t  
they are pairwise d i s jo in t ,  i.e. d i s t i n c t  c lus te rs  do not meet, and 
every OTU belongs to some c lus te r ,  possibly consisting of t h a t  OTU alone. 
A dendrogram is numerically s t r a t i f i e d ,  i.e. it f u l f i l s  cer ta in  con- 
di t ions (Jardine and Sibson, 1971). Non-hierarchic c lus te r  methods may 
produce c lus te rs  which overlap, and the  l a t t e r  may be numerically 
s t r a t i f i ed .  

In  ta lking of groups o r  c lus te rs ,  we have the concept of nearness 
(s imilar i ty)  of e n t i t i e s  within a c luster ,  and of distance (dissimilari ty) 
between e n t i t i e s  in d i f fe ren t  clusters.  ilost c lus te r  analysis nethods start 
with some kind of s imi la r i ty  o r  diss imilar i ty  measure, and a wide variety of 



measures has been proposed (Jardine and Sibson, 197 1 ; Sneath and Sokal, 
1973; Clifford and Stephenson, 1975). Some re f l ec t  the need t o  accommodate 
par t icular  forms of data, as, for example, those res t r ic ted  t o  binary 
data. Others allow for unevenness i n  the frequencies of a t t r i bu te s ,  and 
minimize the influence of large o r  small values. Yet others  a r e  based 
on p r io r  ideas concerning the  s t a t i s t i c a l  distrib*tionq.ofi the properties 
measured. For a wide range of data, most of the ind ide6 .ax :pno ton ic  with 

' 

respect t o  one another, but not a l l  indices are  interchangeable. Ilany of 
the indices have become neglect& because they a r e  mere variants of others,  

. . o r  because they 'have undesirable ' properties. 
.. . . 

A diss imilar i ty  measure i s  regarded as  a 'metric' i f  it possesses four 
properties : (1) synmetry; (2 )  tr iangular ln&quality;  (3) distinguish- 
a b i l i t y  of non-identicals; ( 4 )  indis t ing&shabi l i ty  of identicals.  These 
properties are  c l ea r lyuse fu l ,  and measures which f a i l  t o  s a t i s f y  any of 
these Cr i t e r i a  should be regarded with caution. For example, Euclidean 
distance D is fu l ly  metirLc, but U* is not. It i s  worth noting t h a t  measures 
which a re  f u l l y m e t r i c  for  comnlete datamay bec'ome' nonmetric i f  there a r e  

, . 
missing data. 

The choice of a d i s t a n c e  measure may be dictated by the nature of the 
data  o r  by the special  i n t e re s t s  of the user. For the  highly-slcetved 
binary data obtained from presence/absence records of plant species, it 
would be usual t o  use,'- information s t a t i s t i c ;  the standardized Euclidean 
measure is- un8uly .sensit ive t o  the presence of Fare species o r  the absence 
of common ones. On the other hand, for  data with ho strong: ou t l i e r s  and 
no extreme skeG~ness, Euclidean distance would be preferred. I f  the  da ta  were 
everywhere non-negative, w i t 3  few zeros, but with occasional extrene out l ie rs  
which the c l a s s i f i e r  does not wish to dominate the analysis, the Canberra 
ihetric i s  indicated ( T i i l l i a m s ,  1971). 

Ps Euclidean distance depends'on the scale of the variables,  it i s  un- 
l ike ly  t o  have much meaning i f  some variables have a much greater range 
of values than others. Hence, it is  jenerally used onlywhen a l l t h e  
measurements are  of the same type or yhen they rave been standardized i n  
some way (Marriott, 1974). Detailed disaissiohs of the a i f f e ren t  measures 
can be found i n  Jardine and Silison (1971: , 'Sn$aW and ~ o k a l  (1973) , and 
Clifford and Stephenson (1975). . .~ 

. , . . 

S t r a t i f i e d  hiemrchic cZuster methods 

Most availmable s t r a t i f i e d  c lus te r  methods are  of hierarchic type, and the 
end p o i n t o f  the  process is a dendrogram. Jardine and Sibson (1971) 
defined a dendrogram ass function involving a distance coefficient and 
sat isfying cer ta in  conditions. Oae of the c r i t e r i a  for  a distance co- 
e f f i c i en t  t o  be a metric was the tr iangular inequality. I f  . this: ' .criterion , .  

i s  relaxed so  that :  ... ...... 
... 

d (A, C) ::!:::, max d (A, B ) ,  d (B, C) 1 
.. . .... . . 

t h i s  condition ikknown as the ultrametric inequality,  and distance 
coefflcieh'ts ' sa t isfying it are cal led ultrametric. ' The ultrametric 
inequality insures t h a t  the pair-function implied by the dendrogram 
is rbfiotonic. Lack of monotohicity is a serious defect.  

In s t r a t i f i e d  hierarchic c lus te r  methods, the smallest distance between 
d i s t i n c t  groups is found, and taken as the current level ;  a l l p a i r s  between 

i which this distance occurs are  l i s ted .  The r e su i t an t  grape, wi&groups 
as  ver t ices  and smallest distances corresponding t o  l inks,  i s  divided 
i n t o  its connected components, an;! groups lying i n  the s b e  connected 
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component are  united t o  form a smaller number of larger  groups. New inter-  

group d iss imi la r i t i es  a re  calculated i n  some way, and the process is 
repeated. The methods d i f f e r  i n  the way i n  whicil the intergroup dissimi- 
larities are  calculated. Tlle methods nost commonly used are:  (1) single 
l ink (nearest neighbour) ; (2 )  complete l ink ( fa r thes t  neighbour) ; (3) un- 
weighted pair-group using arithmetic averages, called by Lance and 
williams (1967) the group-average method; (4) weighted pair-group using 
arithmeixc averages; (5)  unweighted pair-group centroid method, cal led 
by Lance and W i l l i a m s  (1967) the centroid technique; (6) weighted pair- 
group centroid method, called by Lance and W i l l i a m s  (1967) the median 
method. In  pair-group methods, only one oTU or  c lus te r  may be admitted 
for  membership a t  one t ine.  This constraint  may be relaxed to give variable- 
group wthods. 

In  the single-link (nearest neighbour) method, new inter-group diss imilar i t ie :  
are  not calculated. Instead, the or ig ina l  d i ss imi la r i t i es  a r e  retained, and 
clustering is based on the smallest distance £ran a point outside the group t~ 
a point inside the group. As a c lus te r  expands, i ts  outside members a re  near4 
t o  the outside members of other c lus te rs ,  and are  thus more l ike ly  t o  l ink w i i  
them. Lance and W i l l i a m s  (1967) described this method as  'space contracting 
and it is this property t h a t  is responsible for  the well-known defect known ar 
'chaining', f.e, O T U ' s  connected by intermediate OTU's are  clustered together 
However, it may well be tha t  the chaining is simply an indication of the lack 
of any r ea l  discontinuities i n  the data. Certainly, the single-link method 
is conceptually and mmputationally very simple, and it has a large number of 
sat isfactory mathematical properties. In par t icular ,  it does not suf fe r  from 
discontinuity;  Sardine and Sibson (1971) c r i t i c i zed  al ternat ive hierarchic  
methods (below) for  t h e i r  lack of continuity, which was regarded a s  being a 
f a r  more severe defect than chaining i n  many applications. Jardine and sibso! 
(1971) proposed an axiomatic framework for c lus t e r  methods within which the 
single-link method i s  uniquely acceptable, and i n  t h a t  context i ts  defects 
mus t  be viewed as those of hierarchic c lassi f icat ion i t s e l f .  Sibson (1973) 
s ta ted  t h a t  since the defects of the single-link method are  well-enough under- 
stood and of such a nature as t o  cause it t o  be misleading only rather  rarely,  
the method i t s e l f  should generally be acceptable. 

Complete-link ( fa r thes t  neighbour) clustering i s  the d i rec t  ant i thesis  of 
the single-link technique. When two clusters  join, t he i r  s i i r i l a r i ty  is t h a t  
exis t ing between the fa r thes t  pa i r  of members, one i n  each cluster.  The 
method generally leads t o  t i g h t ,  spheroidal, d i scre te  c lus te rs  t h a t  join 
others only w i t h  d i f f i cu l ty  and a t  re la t ive ly  low overal l  s imilar i ty  
values. Lance and W i l l i a m s  (1967) called this method 'space-dilating', 
Sneath and Sokal (1973) l i s t e d  it as monotonic, but Jardine and Sibson 
(1971) pointed out t h a t  i n  this method the output diss imilar i ty  coefficients 
are  not continuous functions of the inputs. The e f fec ts  of t h i s  discontinuity 
are  not predictable i n  practice,  and can lead t o  completely misleading resul ts  

To avoid the extremes of chaining on the one hand, and, on the other,  small, 
t i gh t ,  compact c lusters  t h a t  leave out many of the l e s s  easi ly  a f f i l i a t e d  
OTU's, other clustering methods were developed. The average-linkage methods 
m y  be divided in to  the arithmetic average and the centroid methods. 

Arithmetic average clustering computes the arithmetic average of the 
diss imilar i ty  coefficients between an OTU candidate for admission and 
members of an extant c lus te r ,  o r  between the members of two c lus te rs  about 
t o  fuse- The arithmetic average may be unweighted, as  i n  UPGm (unweighted 
pair-group method using arithmetic averages) a l so  called the unweighted 
average-link method o r  the unweighted pair-group ~ e t h o d ,  i n  which each OTU 
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Figure 4. Centroid pair-group c l u s t e r i n g .  B and C a r e  cen t ro ids  

of groups having n  and m members r e spec t ive ly  (n> m) . 
BC is l e s s  than AB o r  AC. When B and C jo in ,  t h e  cen t ro id  
of  t h e  new group is D. I n  UPGKC, the r a t i o  BD:DC is as 
m:n. I n  IPGMC, BD=DC. I n  e i t h e r  case, t h e  p o i n t  now 
represent ing  B is nea re r  t o  A than was t h e  o r i g i n a l  p o i n t ,  
and t h e  p o i n t  represent ing  C i s  f a r t h e r  away. The magnitude 
o f  t h i s  e f f e c t  depends upon t h e  r e l a t i v e  p o s i t i o n s  cf  tv 
p o i n t s ,  it is more pronounced i f  A is i n  t h e  p o s i t i o n  A . 



i n  a c lus te r  is weighted equally. O r  it may be weighted, as  i n  the WPGMA 
(weighted pair-group method using arithmetic averages), a lso called the 
weighted average-linkmethod o r  the weighted pair-group method. This 
d i f fe rs  from UPGMA by weighting the member most recently admitted t o  a c lust  
equal w i t h  a l l  previous members, and distorts the overal l  taxonmic relation 
ships i n  favour of the most recent a r r iva l .  Details  of these methods are  
given by Gaver (1967a), Sneath and Sokal (1973), and Jardine and Sibson 
(1971). The general taxonomic s t ructure  produced by UPGIi.1 i s  similar to 
complete linkage analysis, but there are  some f ine distinctions.  WGMA 
shares the properties of UPGllA but d i s t o r t s  the overal l  taxonomic relation- 
ships i n  favour of the nost recent a r r iva l  i n  a cluster.  Sneath and Sokal 
(1973) l i s t e d  both of these methods as  monotonic, but Jardine and Sibson 
(1971) pointed out t h a t  the output diss imilar i ty  coeff ic ients  a re  not 
continuous functions of the inputs. 

Centroid clustering finds the centroid of the OTU's forming an extant 
c lus te r ,  and measures the d iss imi la r i ty  (usually Euclidean distance) 
of any candidate OTU or  c lus te r  from this point. Centroid clustering 
has a simple geometrical interpretat ion,  but no s i m i l a r  geometrical 
interpretat ion can be found for  arithmetic average clustering. UPGMC 
(unweighted pair-group centroid method) weights each (YN i n  a c lus te r  
equally. Laen two c lus te rs  join, the resul t ing centroid is  nearer t o  
the centroid of the larger  of the parent c lus te rs  (Fig. 4 ) .  Lance 
and Williams (1967) considered this method t o  be space conserving, 
but the ultrametric inequality requirement is not met and the out- 
puts a re  not monotonic. The V P G K  (weighted pair-group centroid 
method) has been called the median method by Lance and W i l l i a m s  (1967) 
from its l inear  ccinbinatorial formula f i r s t  developed by Gwer (1967a). 
This method weights the most recently admitted GTU i n  a c lus te r  
equally t o  the previous aembers. !,lhen two c lus te rs  join, the resul t ing 
centroid is midway between the centroids of the parent groups. This 
method shares the properties of UPGtK, including a lack of monotonicity. 
There are some differences i n  the  resul t ing taxonanic s t ructure  caused 
by the heavier weight accorded t o  the l a t e  joiners of c lus te rs  (Sneath 
and Sokal, 1973). 

Because of the lack of monotonicity, and consequent reversals i n  the 
dendograms, the centroid methods have been largely avoided, and the 
s t ra tegy may be regarded as obsolete (Clifford and Stephenson, 1975). 
There is a s l i g h t  confusion i n  the l i t e r a t u r e  over the use of the terms 
'weighted' and 'unweighted'. The usage of Sokal and ilichener (1958), 
used i n  this section, tends t o  be following i n  s p i t e  of the f ac t  t h a t  
it is the reverse of what might normally be used. This is because they 
fixed at tent ion on the or iginal  individuals and not on the c lus t e r s  which 
may have been derived from them (Gower, 1967a). 

Non-hiemckic c lus ter  method3 

Non-hierarchic c lass i f ica t ions  a re  those t h a t  do not exhibi t  ranks i n  
which subsidiary taxa become members of larger ,  more inclusive, taxa. 
The re la t ive  merits of hierarchic versus non-hierarchic c lass i f ica t ions  
are  d i f f i c u l t  t o  evaluate. For t rad i t iona l  biological taxonomy, hierarchic 
c lass i f ica t ions  are required, and even i n  re la ted f i e lds  it seems desirable 
to have higher ranking taxa t h a t  summarize common information about the 
majority of the members of the (polythetic) taxa. Non-hierarchic 
=presentation nay be preferred when emphasis is placed on a fa i thfu l  
representation of the relationships among the O T U ' s  ra ther  than on a 
summarization of those relationships. 

Jardine and Sibson (1971) discussed c lus te r  methods which, by generalizing 
t o  allow s t r a t i f i e d  systems of overlapping clusters, succeed i n  avoiding 
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the defects of the methods outlined i n  the previous section, and a l so  
recover more information than does the  single-link method, although t h i s  
is achieved a t  the cost  of greater  complexity i n  the resul t ing c lass i f i -  
cation. They proposed two sequences of non-hierarchic s t r a t i f i e d  c lus te r  
methods, Bk and Cu, which were shown t o  be sat isfactory within Jardine and 
Sibson's axiomatic framework. Bk operates by r e s t r i c t ion  on the s i ze  of 
the  permitted overlap between c lus te rs ,  Cu operates by a r e s t r i c t ion  on 
the diameter of the permitted overlap between clusters ,  which is proportional 
t o  the level  of the cluster .  Bk is l ikely,  i n  cer ta in  circumstances, t o  be 
more unstable under extension of range than is Cu. Whenever there  a re  well- 
marked groups w i t h  intermediates, Cu is l ikely t o  produce clusterings which 
are more s tab le  as the range is extended, because it i s  l e s s  vulnerable to 
a l te ra t ion  i n  the number of mu's intermediate between clusters.  Cu pays 
for  this greater  s t a b i l i t v  by requiring stronger assumptions about the  signi- 
ficance of the underlying d i s s i n i l a r i t y  coeff ic ient  than does Bk. 

Other c h t e r i n g  methods 

A variety of clustering methods has been proposed. t 4 0 s t  have not been 
widely taken up because they a re  mere variants of already established 
methcds, because they have undesirable properties, o r  because they are  
impracticable i n  programming terms. These methods may be found i n  the 
text-books already cited.  

Lance and Williams (1967) proposed a f lex ib le  clustering strategy, the 
character is t ics  of which could be changed by a l te r ing  the value of a 
parameter. However, there is some danger i n  adjusting parameters u n t i l  
one abtains a r e s u l t  which is pleasing (but see below). 

Edwards and Cavalli-Sforza (1965) suggested dividing the points i n to  
s e t s  such t h a t  the sum of squares of distances between s e t s  is a maximum. 
This defines what they laean by a c luster .  Gower (1967a) drew at tent ion 
t o  the col lossal  computational labour involved i n  the d i r e c t  examination 
of a l l  the possible par t i t ions  of N points. On a computer with 5 p sec 
access time, it would take 100 hours fo r  N = 21 an4 54 000 years for  
r1 = 41. Orloci (1967) devised a c r i te r ion  for overcoming t h i s  heavy 
computational load, but this i s  not monotonic, and reversals i n  i ts  
value can occur (Sneath aqd Sokal, 1373). 

It has been pointed out  by several  workers (see Wishart, 196933) tha t  
methods of this kind may divide dense clusters  i n  an unacceptable manner. 
Gmer (1967a) raised the question of whether the method should UIEXimiZe 
intergroup sums of squares of the distances between group centroids. 
The sum of squares method takes i n t o  account the sample s i ze  of each 
c lus te r ,  and since some samples of equal importance i n  the overal l  clas- 
s i f i ca t ion  i n  cer ta in  cases w i l l  be based on great ly  unequal numbers 
of OTU's, the method based on maximizing distances between centroids 
may be preferable. However, the centroid method has the disadvantage 
t h a t  there may be points i n  one c lus t e r  which are  nearer t o  the centroid 
of another c luster .  W i t h  well-separated clusters ,  the maximum sums of 
squares and maximum distance between centroid methods w i l l  y ie ld  the 
same resu l t s ,  but so w i l l  most other methods. The r ea l  t e s t  of a method 
l i e s  i n  its a b i l i t y  t o  deal w i t h  more challenging cases (Sneath and 
Sokal, 1973). 

Various methods have been proposed which seek t o  minimize some function 
of the root mean square pairwise diss imilar i ty  within elements of the  
pa r t i t i on  and maximize the root mean square pairwise d iss imi la r i ty  between 
members of different  elements of the par t i t ion.  They are sometimes cal led 
sum of squares o r  variance methods (Jardine and Sibson, 1971, Sneath and 
sokal, 1973, Clifford and Stephenson, 1975). The properties of these 
methods are  not well known, but Jarliine and sibson (1971) noted t h a t  there 
is not,  in  general, a unique pa r t i t i on  on which the measure i s  optimized. 



One example of such a method i s  that of Beale (1969), for  which an algorithm 
was given by Sparks (1973). In  this method, the user specif ies  the number 
of c lusters  required and the i n i t i a l  c lu s t e r  centres. I n i t i a l l y ,  each 
observation i s  allocated t o  its olosest  c lus t e r  centre. The means of the  
clusters  are  then calculated and are taken t o  be the new c lus te r  centres. 
The observations are then checked i n  turn to see i f  a move t o  a d i f fe ren t  
c lus te r  resu l t s  i n  a decrease i n  the total sum of squares. Beale (1969) 
pointed out  t h a t  t h i s  method may not find the best  grouping (global 
optimum) but it does find one t h a t  muld not be improved by moving any 
s ingle  observation t o  another c lus te r  ( local optisurn). Sparks (1973) 
drew at tent ion t o  the importance of the choice of i n i t i a l  c lus te r  
centres, although it is not c lear  how t h i s  choice is t o  be made. He 
also pointed out t h a t  the  r e su l t s  obtained with d i f fe ren t  numbers of c lus te rs  
are  not necessarily hierarchic. 

Friedman and Rubin (1967) proposed a method based on minimizing the 
generalized variance within the groups (i .e.  the  determinant of the pooled 
within-groups sums of squares and products matrix). This idea seems 
a t t rac t ive  a t  f i r s t  s ight ,  because it is equivalent t o  minimizing 
Wilks' cr i ter ion.  However, it was c r i t i c i zed  by t larr iot t  (1974), who 
pointed out t h a t  i f  the data consis t  of samples from a mixture of unimodal 
dis t r ibut ions,  the groups defined by t h i s  procedure w i l l  be the truncated 
centres of these dispersions mixed w i t h  the t a i l s  of other distributions.  
The dispersion matrix estimated within groups w i l l  not be an estimate of 

I the  dispersion matrix of the underlying dis t r ibut ions even i f  these a re  
ident ical ,  and there is no reason t o  expect t h a t  it w i l l  be the same within 
the a r t i f i c i a l  groups found by the clustering process. 

i 
I 
I Marriott (1971) attempted to overcome the d i f f i c u l t i e s  experienced by 

other workers using the generalized variance approach by assuming a uni- 

~ form dis t r ibut ion as a nul l  hypothesis. I f  the  nu l l  hypothesis is t rue,  
the e f fec t  of an optimum subdivision on the generalized variance can be 
predicted. I f  subdivision of data in to  g groups reduces the generalized 
variance by much more than t h a t  predicted, it is reasonable t o  suppose 
t h a t  it corresponds t o  an inherent grouping i n  the data. The method 
appears t o  work reasonably well, although when the modes are  near to- 

I gether and the dis t r ibut ions overlap considerably, separation may be 
I impossible even for very large samples. On the other hand, sane 

peculiar unimodal dis t r ibut ions of an extremely leptokurtic type may 
be subdivided. It is necessary to t e s t  each p a i r  of groups i n  i so la t ion  
t o  see whether they should be r e c m i n e d .  Advantages of t h i s  method are: 
(1) great f l ex ib i l i t y  i n  the data  tha t  can be handled and i n  the use of concon 
itant observations; (2) independence of scale  and of l inear  transformations. 
Its disadvantages are: (1) the mathematical basis  is not altogether sol id ,  
i n  par t icu lar  the c r i te r ion  for  subdivision i s  rather  arbi t rary;  (2) a signi- 
ficance t e s t ,  though theoret ical ly  possible, does not ye t  exis t ;  (3) the  
computational load is heavy (t larriott ,  1974). 

Some c lus te r  methods assume t h a t  the individuals i n  the groups a re  multi- 
var ia te  normally dis t r ibuted,  and the problfm is  then one of separating 
mixtures of normal dis t r ibut ions.  Beale (1969) noted t h a t  attempting t o  
minimize the sum of squares of the deviations of the observations from 
the i r  respective c lus te r  centres is equivalent t o  maximum likelihood if 
a l l  c lusters  are  assumed to be (spheroidally) normally distributed w i t h  a 
common variance. Two methods based on a maximum-likelihood approach have 
been suggested. 

I b r r i o t t  (1974) considered the method of Day (19G9) t o  be almost the 
only classi f icat ion technique t h a t  is en t i re ly  sat isfactory from the 
mathematical point of view. I t  assumes a well-defined mathematical 
model ( tha t  the underlying dis t r ibut ions a re  multivariate normal with 



equal diswersion matrices), investigates it by well-established s t a t i s t i c a l  
techniques, and provides a t e s t  of significance of the resul ts .  The f ac t  
t h a t  it is  d i f f i c u l t  t o  a.pplv, and i n  many s i tuat ions is unrea l i s t ic ,  
re f lec ts  the complexit:y of the question t h a t  c lus te r  analysis is t rying 
t o  answer. 

. . . .  

The other maximu&likelihood method is t h a t  of Scott  and Symons (.1971). 
Their a.pcroach vias t o  make maximum-likelillood estimates of the means, 
variances and covariances, and the identifying parameters t ha t  assigned 
the sample points t o  the groups. The result ing estimates indicated., 
t h a t  the identifying parameters siould be chosen tp..mini+ze the , , 
generalized variance. Plarriott (1974) considered t h e i r  conclusions 
t o  be misleading, and coulZ not jus t i fv  the method of minimizing the 
generalized variance used i n  t h i s  way. Plowever, h e  also .minted out 
Vlarriott,  1975) t h a t  the assumption of underlying normal dis t r ibut ions 

with equal dispersion matrices i s  seldom s t r i c t l y  t rue  i n  practice,  and 
i n  many pract ical  s i tuat ions,  when the proportions i n  the underlying 
dis t r ihut ions are  approximately equal, minimizing the generalized 
variance gives a sensible and reasonably robust clusterinq procedure, 
aithough it is  be t t e r  regarded a s  a heur i s t ic  approach rather  than .an 
estimation process apulied t o  a .particular model. 

! larriott  (1971) noted t h a t  the smallest increase i n  the generalized 
variance occurs when an inctividual is added t o  the groug for  vrhich 
Xahalanol?is'. generalized d is tanceof  the individual from the gr0u.n 
mean is minimum. This suggests t ha t  once the cores of the groups 
are  ~nov~n, .a l loca t ion  by m u l t i ~ l e  discriminant o r  sanonical var ia te  
analysis,  could he used t o  the s m e  e f f e c t ?  provided t * a t  the theo- : 
r e t i c a i  requirements of these methods a re  sa t i s f ied .  

Ot!!er.cluster methods not involving a diss imilar i ty  measure include 
association analysis and related methods. These methods were devised 
primarily f o r  the  classi f icat ion of individuals described DY binary 
discrete-s ta te  a t t r ibu tes .  Williams and Lambert's ?!ell-known mno- 
t h e t i c  techniaue of association analysis (see e.g. Sneath and Sokal, 
1973) divides a s e t  of CTU's i n t o  tbro subgroups based on the tvlo s ta tes ,  
of a single character ch.osen t o  maxirrize chi-square. The sul?Sets are  
similarly divided and th'e,process en& when a predetermined number of 
groups is reached o r  >hen the measure of homogeneity as  expressed by 
chi-square. has fa l len  h e l m  a c r i t i c a l  level. Other authors (e.g. 
see Jardine and Sibson, 1971) determine th,e fit of each p a r t i t i o n ,  , 

i n  terms of the  information lo s s  induced bv the  par t i t ion.  Lance 
v?illiams (1968) have adapted the association analysis method t o  

the information s t a t i s t i c  21. So-called polythetic analyses see]: 
t h a t  bisection wb.ich minimizes the information loss  o r  some other 
re la ted function regardless of vrhetller bisection corresponds t o  the 
range of the s t a t e s  of any of the selected binary a t t r i bu te s  (Jardine 
and Sibson, 1971) , see, fo r  e x q n l e ,  F?acMauc~l~ton-Smit!! e t  a 1  (1964) ; ,.  ,* 
and r.?ac!l'augbton-Snith ( 1965) . 
rlethbds of monothetic. association analysis have been used i n  ecology, ..."' 

but Jardino and Sibson (1971) s ta ted  t h a t  the  available methods are  
unsatisfactory i n  several respects: (1) they are  i l l-defined, d a t a .  . 

can.he readily constructed fo r  which no bisection induces a unique 
min imum information loss ,  (2) pa r t i t i on  i n t o  two suksets a t  each stage 
i s  an arbi t rary choice; (3 )  t h e i r  application i n  taxonomy is res t r ic ted  
t o  discrete-s ta te  a t t r i bu te s  ~!l?ich do not 'vary within populations. 
They further noted t h a t  t h e  use of these methods appears t o  r e s t  upon 
a confusion between c lass i f ica t ion  and diagnosis. ilonothetic association 
analvsis produces a hierarchic c lass i f ica t ion  by choosing a diagnostic 



key based on the available a t t r ibu tes  which is i n  a precise sense optimal, 
but the production of optimal diagnostic keys is not the  primary putpose 
of c lass i f ica t ion  i n  ecology or taxonomy. 

Adaptive methods . ... 
. . 

. . 
. . .  

rbst clustering methods are  'non-adaptive, t h a t  is, the algorithm proceeds 
toward a solution by means of a fixed clustering method which may, 
t o  a greater o r  lesser  extent, impose a s t ructure  on the data. However, 
an ideal  clusteringmethod would be adaptive. It would makean i n i t i a l  
exploration of the data  t o  f ind  the types 'of clusters t h a t  a i e  probably ." 

present;and would then modify t+e cluster ing algorithm to s u i t  whatever. , 

st ructure  is. -considered - to  b e  m0.s.t  l ikely.  Some methods which attempt 
t h i s  were d i s . c ~ $ e d  by Snea.th and Sokal ,(1973) . , , ,  Tvg i n  particul,? w i l l  

~ . , 
be noted here,. both based on the single-link metl>@..' . . . . 

, ~ ,  

A number af c luster ing methods possess variance constraints,  Wishart . , 

(1969h) -discussed thirteen. Implicit  i n  the iuinirmun,~imce.approach" . .  . 

is th6:aoncept t ha t  clusters.should have no s igni f icant  o v e r 4 1  variance . , ' 

or  spread, :and this -1i:es 'that .in the case.  of a 'unimod+" swam the . , 
dist r ibut ion shou3d be s p l i t  i n to  an arb i t ra ry  number o f " c o ~ a c t  :se~tioris'. 
Forgey (196Q, 1965) q g u e d .  t ha t~ . c lus t e r s  should c o r r e s ~ n d  dafa modes, 
and there can only..be as;,Bany classes a s  there are  d i s t i n c t  modes.,' No 
variance constraint  i s  impli@, o r  should be induced, for  when. a, niodeis" 
elongated rather  than spherical ,  the  d is t r ibu t ion  merely r e f l ec t s  some 
internal  f a c t o r  of.. var$.ation ..for :the corresponding class.. Forgey: inter-  
preted a datamode as - a  cont.inuow dense swam. of points separated from 
other modes by e i ther  empty space. o r  a sca t te r ing .  o f ,  'noise', , data,. The 
'noise* data  may resu l t  from sampling e r rors  o r  they may bein tefpre ted  
as those natural  associated with the intersect ing t a i l s  of d i s jo in t  
continuous dis t r ibut ions.  The c lus te r  analysis problem is therefore to 
i so la t e  the dense centres i r respect ive of.. the  interference (Vl,ishart, , .. . . ;. 
1969a, b ) .  

. . 

Wishart (1969a, b) took the single-link method as a basis  for  h i s  'mode 
analysis' .  m e  sat isfactory mathmatical  properties qf t h i s  method! have. 
already been outlined. llishartl s solution to the cluster ing ~ r ~ b l &  was 
to remove the 'noise' data, t o  c lus t e r  the remaining dense ' s w a b s '  by 
s ingle  linkage, and then t o  re-allocate each qoise datum according t o  . , 

a similarity- cr i ter ion.  This w a s .  achieved by select ing a distance 
, . 

thresh61d r and a density l imi t  k. :,From each WJ, the  method t e s t s  , ,  
whether k or  more O T U 1 s  l i e  withln r, if so,  the  m, is  considwed 

.. , . 
'dense' ( t h i s  corresponds t o  counting t h e  number of l i nks  ts the  CTU 
i n  a single-Iink cluster ing) .  The 'dense1 .&e then cluster& . ' 

by a single-link method. a t  the threshold r, and the resul tant  c lus te rs  
delimit  the dense cLuster nuclei. Each 'non-dense' point  is then a&- 
cated to a c l u s t e r  by sane cr i ter ion.  - By f ixing k and "arying r a hier- 
archical c lass i f ica t ion  is produced. Asevere decision demand is  placed 
on the user i n  select ing r and k. 

. . 
i i a r r io t t  (1971. 1974) concluded t h a t  the method of v?ishart.w& the 
best  available for  detecting and ident i fying '= natural  grouping, and 
it is unlikely t o  produce a meaningless o r  misleading answer. However, 
he a l so  pointed out t ha t  it is insensi t ive i n  detecting elongated modes, .. 

and the choice Of the  value of kmay a f f ec t  the conclusions.. He (1971) 
made the following points: (1) The search f;or..modes by dense points can 
lead t o  misleading resu l t s  when continuous d is t r ibu t ions  a re  involved . . 
unless Samples a re  v e q .  large; (2) The dense points a r e  d e f i n e d i n  terms 
of a 'spherical '  scanning device., "r'his ha8 cer ta in  advantages': dis-  
crete  dis t r ibut ions can be included,.and there  is no problem of un-. 

' . 
wanted ~Lass i f i ca t ion  on the basis  04 ,a s ing le  variate.  on' the  other 
Kana; the method is scale-dependent, :is rather  sensitiveve. t o  the inclusion 

. . ,  
. . " .  , : . .  



of highly-correlated var ia tes ,  and the existence of genuine multimodality 
can be masked by the illrlusion of i r re levant  var ia tes ,  especially i f  the 
modes are  e i l ipso ida l  ra ther  than spherical. 

A s i m i l a r  s t ra tegy was proposed by Shepherd and Willmott (1968). In 
t h i s  strategy, the data a re  clustered i n  two stages. The purpose of stage 
one is t o  determine which OTU's are  most l ike ly  t o  be a t  o r  near the 
centres of gsoups. In  t h i s  stage,  a single-link method is used, followed 
by a process of discarding peripheral OTU's u n t i l  only compact nuclei 
remain. The severity of t h i s  reduction process is determined by a 
group reduction cr i ter ion.  This resu l t s  i n  a se r i e s  of c lus te r  nuclei 
which are  fed to stage two, i n  which the c lus te r  nuclei  a re  expanded 
using a modified pair-group average linkage nethod. A re-admission 
c r i te r ion  d e t e d n e s  how easy re-admission in to  a group should be. 

These approaches retain the desirable properties of single-link clustering 
and overcome the problems caused by chaining, and ecologists a re  currently 
looking i n t o  t h e i r  poss ib i l i t i es .  

The adnbsibitity c r i te r ia  of Fisher and wm Ness 

Fisher and van Ness (1971) approached the problem of selecting, a. 'best! . .  

clustering proaedure via  decision theory, which t e l l s  us t o  r e s t r i c t ,  , .  

our a t tent ion t o  admissible decision rules. 'They l i s t ed  nine admis- 
s i b i l i t y  conditions, and specified which of these were sa t i s f i ed  by the 
following f ive  clustering methods (the number given with the method in- 
dicates the number of conditions it fa i led  t o  sa t i s fy) :  (a) nearest 
neighbour, 1; (b) fur thes t  neighbour, 2;. (c) qinimum leas t  squares - k 
fixed, 4 with one condition not applicable; (d) -hffl  climb l e a s t  squares - 
k fixed, 5 with two not applicable; (e) centroia, 5. 

... .. 

Here again, it i s c l e a r  t ha t  the two s ingle  l ink methods sa t i s fy  the 
greater  number of conditions. Fislterand van ~ e s s d i d  not  f a i l  these 
methods on monotonicity (cf Jardine and sibsod, 1971, fa i led  the  fur thest  
neighbour method on t h i s  count), these methods fa i led  only on the convex 
ameissibil i ty,  which Fisher and van N e s s  admitted does not seem 
universal since i t e l i m i n a t e s  many reasonable clusterings. 

Fisher and van Ness (1971) a l so  noted t h a t ,  i f  two admissible clustering 
schemes give d i f fe ren t  dendrograms, one might wonder whether the data  
were sui table  for a t r e e  structure.  i his would seem t o  be a legit imate 
use of the f lexible  clustering strategy of Lance and W i l l i a m s  (1967). 
Thoughtful use of the properties of d i f fe ren t  clustering methods can 
reveal cer ta in  properties of the data. For example, the nearest- 
neighbour method maximizes the minimum in te rc lus te r  distance a t  each 
step.  The fur thest  neighbour method minimizes the maximum c lus te r  
diameter a t  each step. If d i f fe ren t  dendrograms r e s u l t  from the use 
of the two methods, then both of the above objectives cannot be attained 
a t  the same time. A comparison of the  two t rees  would be revealing. 
Since, a t  present, there is l i t t l e  knowledge of hyr to choose between 
many different  metheds of calculating s imi la r i ty  c o e f f i c i e ~ t s  and 
hierarchical clustering algorithms, presentation of the da ta  under various 
methods would give s w e ,  admittedly non-quantitative, information on 
r e l i a b i l i t y  of any dendrogram obtained. A more concise method of 
presentation would be to run several  methods and give the diameter of 
the s e t  of dendrograms obtained. This would help avoid the computation t h  
objection t o  Bartigan's (1967) approach, but not the need fo r  a metric. 



4. GRAPHS AND TREES 
.,. . 

I n  the graph theoretical sense, a graph is a se t  of points (vertices) an.i 
of relationsbetween pairs of vertices indicated by lines called edges. A 

se t '  of ent i t ies .  and thei r  dissimilarities my be represented by a graph, 
with the ent&ties s $ ~ g * , a s  vertices and the dissimilarity relationships 
between ,them sh&n a$ edges. In graph theory, the edges are not directly 
associated ,.with.. a -  real. value such as a dissin$xarity or distance. a&- 
ever, it ispossible  to associate a real nrimber with anedge, and this  
can be call@ its length. It is easy to see @at with ent i t ies  as Gr- , . 

t ices, the 'lengths can be dissimil&ity mekures. Relationship is indi- 
ca t+  b y  w e  presence (or lack of relationship by the absence) of &I , e%e. . . :  

beqeen, .,hrd'verti&s. Hence, by breaking the graph a t  va&ous s e i d  
levels based on 6 ierigtks of the adges, one can 'form clusters of 
vertices. The edges connecting a cluster of ent i t ies  indicate the ,se t  
of those ent i t ies  that are more similar to.each other than an arbitrary . , 

criterion. 
, . 

. .  . 

The u t i l i t y  of the graph theorqt'ical &ppr&ch'in this context is three- 
fold. F i r s t ,  graphs serve as i l lustrat ive dev&s.. that enable many 
investigators to understand a variety of prablems connected withcluster  
analysis. Second, the graph theoretical approach enables us to derive 
certain properties of clusters from well-established theorqq of graph 
theory alid a lso  to empJoy graph-theoretical tools a s  solutions tn 
specific prablems . ??hi+, they provide ' extra information when super& . . . ,  , 
posed on ordidations (Sneath and ~ o k a l ,  .~ 1973). . . . - . . , . 

This leads us t o  certain basic ~6ncepts in;graph theory. A graph is 
said to be connected i f  every pair of dist inct  vertices is joined-by a t  
leas t  one chain. , A minimally connected graph cont- only one ;iirect . '  " ,  

or indirect path. beween every 'pair of vertices. ~imoval o f  one edge ' ' : . ,  

from such a graph-di&nhects it into: twd subgraph? Ghich are also roax:.~ 
ma1 connected subgraphs :pecause they have no prbper supergraph which is 
conhected. A graph i s  said to b e a '  tree i f  it is connected m d h &  no - 
circuits. The remOVal.:.of .any one edge of a t r e e  yields a dis&nnected 
graph, since the edge removed constituted the unique chain joining two 
vertices:., Hhce,, ,a tree is amihimal connect& graph. 1f a l l  vertices 
of graph 'G' are 'included in  t r e e  T, then T is said t o  G. minimm 
spanning tree has the smallest pdsaible sum of the lengths of the 

. , . .  , . vertices.. 
. . , .  . 

A special family of graphs is the family of directed graphs (also known' . 
as networks), which iuip'ly d i rec t ion in  the edges. A"directed tree has 
edges withdirec'tton &d a unique path fraa'one vertex; 6alled the root. 
of the tree, to  a l l  other irert ices.  , . A mn&ntional dendrogram is an ex- 

, :  ample of 'such a graph. 
. .. .. ' .. . . .  , . . 

Minimum; spaMi&J - trees have been found useful is an addiihonal pek&&tive 
of taxonomic relationships i n  an ordination '(e.8. G o w e r  and ROSS, 1969: ~lol;:. 
1970; Schnell, 1970) .. Some, cluster 'analyses leave inuarlant ,the dis- 
similarities between certain ,pairs of: objects.' ' The set of elements l e f t  , '  

invariant %. .the single-linkage clustering method '&k&po&s t o  the, . '  

edges of the minimum spanning t r ee .  (&If, 1974a) . Gowet: a& Ross (19a9)' 
dr& attention t o t h e  value of the mi- spanning t ree  i n  $ingle- 
linkage cluster analysis. 



N i r t h  e t  a1 (1966) presented a computer method for c luster  analysis based 
on graph theory (cf Estabrook, 1966). The method, essent ia l ly  a form of 
single-linlcage c lus te r  analysis,  i s  based on the pa r t i t i on  of the collection 
of specimens (OTU's) i n t o  equivalence classes (c lusters)  which a re  maximal 
connected subgraphs. In  using t h i s  method, Wirth e t  a1 gave to  the ver t ices  
the values of the s i n i l a r i t y  coefficients between the pa i r s  of OTU1s. 
Clusters were described by the value of s imi la r i ty  associated w i t h  them, 
and the numerical expression of the isolat ion of a c lus te r  (called i t s  
'moat') was the value of the s imi la r i ty  coeff ic ient  a t  which the c lus te r  
would join W i t h  another c lus te r  o r  OTU. The moat could be thought of as  
a measure of the empty space around a c luster .  When this method was 
applied t o  31 menbers of t h e  Oncidiinae (Orchidaceae), the  r e su l t s  were 
interest ing,  and the hierarchy shaved good separation of c lusters .  The 
resu l t s  were considered to be more sat isfactory khan those for  other 
c lus te r  methods with the same data. In some cases, c lus te rs  were linked 
by 'ar t iculat ion points ' ,  i.e. specimens intermediate between two clusters .  
The graph-theory model provided a theoret ical  frameworl: within which the 
nature of the relationships could be examined. 



5. GENERAL CONCLUSIONS 

It  seems clear  from what has been writ ten s o  f a r  t h a t  it is advisable t o  
have a clrarly-defined strategy for  the application of numerical techniques 
to  an ecological problem, i n  order t o  make it c lear  why the various s teps  
have been talcpa, and t o  avoid the numerous p i t f a l l s  with which the subject 
is l i t t e r ed .  Applying a par t icular  technique t o  a s e t  of data  without a 
good reason may give misleading resu l t s ,  especially i f  the data  do not 
happen to s u i t  the rrrethod. Again, sane methods imply t h a t  a par t icular  
s t ructure  ex i s t s  i n  the data and, if it does not, the r e su l t s  can be mis- 
leading. For example, the user may think he has a r e a l i s t i c  c lass i f i -  
cation when i n  f ac t  he may have an arbi t rary dissection. 

It is important t o  consider the nature of the da ta  required. I t  seems 
clear  t h a t  binary data are  unsatisfactory and should be used only i n  
cer ta in  r e s t r i c t ed  circumstances. There is a l so  the poss ib i l i ty  t h a t  
the data may need scaling o r  transforming i n  some way. Unless the 
ecologist  has a c lear  understanding of l ike ly  s t ructure  in  the data,  
the next s tep w i l l  be an examination of the data  t o  ge t  some idea of 
its inherent s t ructure  ancl to look for  discont inui t ies  i n  multivariate 
spaqe. Ordination techniques are  useful fo r  t h i s  purpose, and a l so  
reduce the dimensionality. 

I f  d i s c ~ n t i n u i t i e s  do occur, they should be obvious i n  t h i s  preliminary 
examination, and may provide a basis  for  c lass i f ica t ion  (e.g. Blackith 
and Repent ,  1971). I f  c lear  discont inui t ies  do not occur, this may be 
for  one of two reasons: (1) there i s  only one c lus te r  and a l l  the e n t i t i e s  
belong t o  it; (2) c lus te rs  e x i s t  but 'moats' a re  obscured by 'noise' 
data  o r  the  f ac t  t h a t  the frequency dis t r ibut ions of the c lus t e r s  have 
overlapping t a i l s .  Here, the problem i s  t o  search fo r  the presence of 
mdes about which c lus te rs  can be formed. For this purpose, a simple 
s ingle  linkage c lus te r  analysis appears t o  be sui table ,  and has the 
advantage t h a t  it can be used i n  conjunction with the minimum spanning 
t r ee ,  which provides a useful visual aid. We are  currently tes t ing  
this approach on two prac t ica l  problems, and are also investigating 
the problem of allocating points t o  t i e  c lus te r  nuclei. 

A hierarchical  strategy optimizes a route between the individuals of 
which the sample is composed, via  intermediate groupings, to a single 
group consisting of the  en t i r e  sample. The groups througl~ which the 
process passes are  not necessarily optimal i n  themselves, the best  route 
may be obtained a t  the expense of some s l i g h t  reduction i n  homogeneity 
of individual groups. With non-hierarchical s t ra teg ies ,  the s t ructure  
of the individual groups is optimized, and the  groups a r e  made as 
holnogeneous as possible. However, no route is defined between groups 
and t h e i r  consti tuent individuals, o r  between groups and the  complete 
sanple (Williams, 1971). 

Marriott (1974) s ta ted t h a t  a s  a method of  c lus te r  analysis,  i f  there  
i s  no special  reason for  imposing the  nested s t ruc ture  of the  dendogram, 
the s t r i c t l y  hierarchical methods have serious disadvantages. For 
example, to decide whether a division i n t o  two o r  three groups gives 
a be t t e r  representation of the data, it is necessary to compare the 
best  division in to  two w i t h  the  best  division in to  three,  and hierarchical 
methods w i l l  not usually give both. Blackith and Reyment (1971, p. 277) 
s t a t ed  t h a t  it seems l ike ly  t h a t  hierarchical techniques a re  almost always 
undesirable in  theory, but the consequences of using hierarchical tech- 
niques when the s t ructure  of the  experiment renders such a pract ice  dubious, 
seem not to be very serious. 



I f  discont inui t ies  do not occur, o r  i f  they do not divide the data  i n  
a way which the researcher considers t o  be useful, then the problem is 
one of dissection, not c lass i f icat ion.  If dissection is t o  be carried 
out,  the basis  of the dissection must be clear ly  defined. For example, 
an ecologist  may regard the vegetation as  essent ia l ly  continuously 
changing, but changing more rapidly i n  some regions than others. He 
w i l l  therefore wish t o  t r e a t  these zones of maximum gradient a s  i f  
they were discont inui t ies ,  and t o  sharpen them by an appropriate 
technique ( W i l l i a m s ,  1971). Some c lus t e r  methods have properties which 
make them useful for different  types of dissection, for  example the 
various minimum-variance methods and methods of the association analysis 
type. The f lexible  clustering s t ra teqy of Lance and C J i l l i a m s  (1967) may 
a lso  be useful for  t h i s  purpose. 

I am grateful  t o  llr. J. id. R. J e f f e r s  for  commenting on a d r a f t  of t h i s  paper, 
and t o  tlrs. D. 1.1. Howard for drawing the figures. 
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