Hydrological Summary for the United Kingdom

General

The UK rainfall total for February was close to the long term average but regional contrasts were exceptional: much of western Scotland was very wet whilst most of southern Britain was notably dry, and very sunny. Rainfall patterns have been erratic through the winter but with the a few exceptions (e.g. Stithians in Cornwall) reservoir stocks are modestly above the early March average, and around 3\% above average for England \& Wales as a whole. In Scotland, rivers were in spate early and late in the month. To the south however, flows were in recession for much of February and runoff totals were generally below average. Over longer timespans accumulated runoff totals are generally above average. Soil moisture deficits began to develop in parts of the English Lowlands in February and groundwater replenishment was very limited in most major aquifers. Nonetheless, groundwater levels in a clear majority of index wells and boreholes remain in, or above, the normal seasonal range. Entering the spring, the overall water resources outlook is good. Rainfall in early March will be particularly influential in determining the seasonal cessation of the 2007/08 groundwater recharge season.

Rainfall

Synoptic patterns across southern Britain during February were dominated by anticyclonic conditions; most rainbearing frontal systems followed relatively northerly tracks bringing damaging gales and substantial precipitation to western Scotland in particular. Correspondingly, there was a marked exaggeration in the NW/SE rainfall gradient across the country in February. Daily rainfalls exceeding 50 mm were common in western Scotland, particularly late in the month (Kinlochewe reported $76 \mathrm{~mm}, 68 \mathrm{~mm}$ and 58 mm on the $21^{\text {st }}, 23^{\text {rd }}$, and $26^{\text {th }}$ respectively); significant snow accumulations were reported on high ground. By contrast, parts of southern and eastern England experienced some lengthy dry spells; parts of central southern England reported 18 or more days with no more than a trace of rain from the $6^{\text {th }}$. Correspondingly, February rainfall totals were below 50% of average over wide areas whilst some upland catchments in western Britain reported over 130% with totals exceeding 200% in parts of the western Highlands. Winter (Dec-Feb) precipitation totals were modestly below average in some southern regions but Scotland added a further very wet winter to an exceptional recent cluster (7 of the wettest 8 in a series from 1914 have occurred in the last 20 years). Long term accumulated rainfall totals are also outstanding: provisional data suggest that the Sept 2006 - Feb 2008 period is the wettest 18 -month sequence on record for Scotland.

River Flows

Following the notable late-January high flows, recessions became established in most UK rivers, particularly after the first week. These continued through the month in some eastern catchments (e.g. the Lud) and end-of-February flows were notably depressed in a number of, mostly small, responsive catchments (e.g. the Kenwyn and the Medway). At the same time, high spates characterised many rivers in northern Britain; previous late-February maximum daily flows were exceeded in a few Highland rivers (e.g. the

Ness and Nevis). These notable flows contributed to well above average February runoff totals - the $4^{\text {th }}$ highest in a $38-\mathrm{yr}$ record for the Ness - throughout most of Scotland. In southern Britain, high baseflows (reflecting the lagged response to the heavy January rainfall) maintained healthy flows in many rivers draining permeable catchments but, generally, runoff totals across England \& Wales were below average; notably so in parts of Cornwall. Winter runoff totals were within, or above, the normal range across most of the country, and substantially above average in many Scottish catchments - the Tweed (at Norham) exceeded its previous Dec-Feb maximum in a series from 1960.

Groundwater

February rainfall totals were well below average across almost all major aquifer outcrop areas and, with modest soil moisture deficits beginning to build in the English Lowlands, infiltration was generally meagre for the month as a whole (less than 30% of average across parts of the Thames basin). Many groundwater level hydrographs testify to the remarkably volatile recharge patterns over the last 12 months - with very wide departures from the seasonal norm. However, the net effect of the erratic replenishment patterns (and the benefit of heavy January infiltration) has been to leave groundwater levels in most index wells and boreholes within, or above, the late winter average. Chalk levels remain seasonally high in many northern and western outcrops and relatively close to the late winter average in the South. The dry February is reflected in the recent brisk recessions in some responsive aquifers (e.g. the Cotswolds and in the Chalk in Northern Ireland) but levels remain typical for the late winter. Apart from Bussels in the South-West, near-average levels also characterise many Permo-Triassic sandstones outcrops and late-winter levels in some of the very-slow responding boreholes in the Midlands (e.g. Weeford Flats) are above average entering the spring for the first time since 2003.

Rainfall accumulations and return period estimates

Area	Rainfall	Feb 2008	$\text { Dec } 07$	$\begin{gathered} \text { - Feb } 08 \\ R P \end{gathered}$	$\text { Aug } 0$	$\begin{gathered} - \text { Feb } 08 \\ R P \end{gathered}$	Mar 0	$\begin{gathered} \text { 7- Feb } 08 \\ R P \end{gathered}$	Sep	$\begin{array}{r} -\mathrm{Feb} 08 \\ R P \end{array}$
England \& Wales	$\operatorname{mm}_{\%}^{\text {mm }}$	$\begin{aligned} & 44 \\ & 68 \end{aligned}$	$\begin{aligned} & 292 \\ & 117 \end{aligned}$	2-5	$\begin{array}{r} 522 \\ 90 \end{array}$	2-5	$\begin{aligned} & 992 \\ & 110 \end{aligned}$	2-5	$\begin{array}{r} 1636 \\ 116 \end{array}$	10-20
North West	$\underset{\%}{\mathrm{~mm}}$	$\begin{aligned} & 77 \\ & 98 \end{aligned}$	$\begin{aligned} & 480 \\ & 148 \end{aligned}$	15-25	$\begin{aligned} & 816 \\ & 101 \end{aligned}$	2-5	$\begin{gathered} 1352 \\ 111 \end{gathered}$	5-10	$\begin{array}{r} 2245 \\ 117 \end{array}$	30-50
Northumbrian	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 42 \\ & 71 \end{aligned}$	$\begin{aligned} & 291 \\ & 129 \end{aligned}$	$5-10$	$\begin{array}{r} 493 \\ 90 \end{array}$	2-5	$\begin{aligned} & 891 \\ & 103 \end{aligned}$	2-5	$\begin{array}{r} 1441 \\ 108 \end{array}$	2-5
Severn Trent	$\underset{\%}{\mathrm{~mm}}$	$\begin{aligned} & 37 \\ & 67 \end{aligned}$	$\begin{aligned} & 237 \\ & 116 \end{aligned}$	2-5	$\begin{array}{r} 410 \\ 86 \end{array}$	$5-10$	$\begin{aligned} & 918 \\ & 120 \end{aligned}$	$5-15$	$\begin{array}{r} 1441 \\ 123 \end{array}$	20-30
Yorkshire	$\underset{\%}{\mathrm{~mm}}$	$\begin{aligned} & 45 \\ & 78 \end{aligned}$	$\begin{aligned} & 306 \\ & 139 \end{aligned}$	$5-10$	$\begin{array}{r} 499 \\ 96 \end{array}$	2-5	$\begin{aligned} & 962 \\ & 115 \end{aligned}$	$5-10$	$\begin{array}{r} 1517 \\ 118 \end{array}$	10-20
Anglian	$\underset{\%}{\mathrm{~mm}}$	$\begin{aligned} & 21 \\ & 54 \end{aligned}$	$\begin{aligned} & 146 \\ & 101 \end{aligned}$	2-5	$\begin{array}{r} 320 \\ 89 \end{array}$	2-5	$\begin{aligned} & 691 \\ & 114 \end{aligned}$	$5-10$	$\begin{array}{r} 1059 \\ 117 \end{array}$	5-10
Thames	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 23 \\ & 49 \end{aligned}$	$\begin{array}{r} 181 \\ 99 \end{array}$	2-5	$\begin{array}{r} 387 \\ 90 \end{array}$	2-5	$\begin{aligned} & 779 \\ & 111 \end{aligned}$	2-5	$\begin{array}{r} 1309 \\ 122 \end{array}$	5-15
Southern	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 26 \\ & 48 \end{aligned}$	$\begin{array}{r} 197 \\ 90 \end{array}$	2-5	$\begin{array}{r} 415 \\ 81 \end{array}$	$5-10$	$\begin{aligned} & 783 \\ & 100 \end{aligned}$	<2	$\begin{array}{r} 1350 \\ 109 \end{array}$	2-5
Wessex	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 36 \\ & 54 \end{aligned}$	$\begin{aligned} & 256 \\ & 102 \end{aligned}$	2-5	$\begin{array}{r} 496 \\ 89 \end{array}$	2-5	$\begin{aligned} & 930 \\ & 109 \end{aligned}$	2-5	$\begin{array}{r} 1574 \\ 117 \end{array}$	5-10
South West	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 50 \\ & 49 \end{aligned}$	$\begin{array}{r} 336 \\ 88 \end{array}$	2-5	$\begin{array}{r} 613 \\ 76 \end{array}$	10-20	$\begin{array}{r} 1175 \\ 99 \end{array}$	2-5	$\begin{array}{r} 2065 \\ 108 \end{array}$	2-5
Welsh	$\underset{\%}{\mathrm{~mm}}$	$\begin{aligned} & 77 \\ & 77 \end{aligned}$	$\begin{aligned} & 506 \\ & 126 \end{aligned}$	2-5	$\begin{array}{r} 822 \\ 91 \end{array}$	2-5	$\begin{array}{r} 1444 \\ 107 \end{array}$	2-5	$\begin{array}{r} 2470 \\ 115 \end{array}$	5-10
Scotland	$\mathrm{mm}_{\%}^{\mathrm{mm}}$	$\begin{aligned} & 167 \\ & 158 \end{aligned}$	$\begin{aligned} & 598 \\ & 144 \end{aligned}$	20-30	$\begin{array}{r} 1090 \\ 110 \end{array}$	5-10	$\begin{array}{r} 1656 \\ 113 \end{array}$	10-20	$\begin{array}{r} 2876 \\ 122 \end{array}$	>200
Highland	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 258 \\ & 204 \end{aligned}$	$\begin{aligned} & 780 \\ & 156 \end{aligned}$	20-30	$\begin{array}{r} 1434 \\ 121 \end{array}$	10-20	$\begin{array}{r} 2103 \\ 121 \end{array}$	20-35	$\begin{array}{r} 3617 \\ 129 \end{array}$	>200
North East	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{array}{r} 74 \\ 107 \end{array}$	$\begin{array}{r} 337 \\ 125 \end{array}$	$5-10$	$\begin{aligned} & 694 \\ & 105 \end{aligned}$	2-5	$\begin{array}{r} 1165 \\ 113 \end{array}$	$5-15$	$\begin{array}{r} 1855 \\ 116 \end{array}$	35-50
Tay	mm	$\begin{aligned} & 131 \\ & 133 \end{aligned}$	$\begin{aligned} & 550 \\ & 145 \end{aligned}$	10-20	$\begin{aligned} & 899 \\ & 104 \end{aligned}$	2-5	$\begin{array}{r} 1437 \\ 11 \mid \end{array}$	5-10	$\begin{array}{r} 2587 \\ 126 \end{array}$	>200
Forth	$\underset{\%}{\mathrm{~mm}}$	$\begin{aligned} & 104 \\ & 127 \end{aligned}$	$\begin{aligned} & 472 \\ & 150 \end{aligned}$	15-25	$\begin{aligned} & 824 \\ & 108 \end{aligned}$	2-5	$\begin{array}{r} 1281 \\ 112 \end{array}$	5-10	$\begin{array}{r} 2306 \\ 128 \end{array}$	>200
Tweed	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 65 \\ & 93 \end{aligned}$	$\begin{aligned} & 371 \\ & 138 \end{aligned}$	10-20	$\begin{aligned} & 643 \\ & 100 \end{aligned}$	<2	$\begin{array}{r} 1109 \\ 11 \end{array}$	$5-10$	$\begin{array}{r} 1857 \\ 119 \end{array}$	60-90
Solway	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 115 \\ & 113 \end{aligned}$	$\begin{aligned} & 555 \\ & 137 \end{aligned}$	10-20	$\begin{aligned} & 970 \\ & 100 \end{aligned}$	<2	$\begin{array}{r} 1503 \\ 105 \end{array}$	2-5	$\begin{array}{r} 2655 \\ 116 \end{array}$	35-50
Clyde	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 194 \\ & 157 \end{aligned}$	$\begin{aligned} & 706 \\ & 142 \end{aligned}$	10-20	$\begin{array}{r} 1259 \\ 105 \end{array}$	2-5	$\begin{array}{r} 1869 \\ 107 \end{array}$	2-5	$\begin{array}{r} 3375 \\ 120 \end{array}$	80-I20
Northern Ireland	$\mathrm{mm}_{\%}$	$\begin{aligned} & 60 \\ & 74 \end{aligned}$	$\begin{aligned} & 371 \\ & 121 \end{aligned}$	5-10	$\begin{array}{r} 682 \\ 94 \end{array}$	2-5	$\begin{array}{r} 1143 \\ 104 \end{array}$	2-5	$\begin{array}{r} 1889 \\ 109 \end{array}$	5-15

\% = percentage of 196|-90 average
$R P=$ Return period
Important note: Figures in the above table may be quoted provided their source is acknowledged (see page 12). Where appropriate, specific mention must be made of the uncertainties associated with the return period estimates. The RP estimates are based on data provided by the Met Office and derived following the method described in: Tabony, R. C. 1977, The variability of long duration rainfall over Great Britain. Met Office Scientific Paper no. 37. The estimates reflect climatic variability since 1913 and assume a stable climate. The timespans featured do not purport to represent the critical periods for any particular water resource management zone. For hydrological or water resources assessments of drought severity, river flows and/or groundwater levels normally provide a better guide than return periods based on regional rainfall totals. All monthly rainfall totals since September 2007 are provisional.

Rainfall... Rainfall...

Rainfall

December 2007 - February 2008

Rainfall
August 2007- February 2008

Rainfall

September 2006 - February 2008

Met Office

Spring 2008 forecast

Forecast issued 26 February 2008

Temperature

Mean temperatures for the season as a whole are more likely to be either average or above average over much of the European region, including the UK. Spells of below-average temperatures are likely, particularly in the early part of spring in north-west Europe and, for the UK, spring is likely to be cooler than last year.

Precipitation

For much of north-west Europe, including the UK, precipitation is more likely to be either average or below average than above average.

An update to the spring forecast will be issued at 10 a.m. on 27 March 2008. The first outlook to summer will be issued on 3 April 2008.
For further details please visit:
$\underline{\text { http://www.metoffice.gov.uk/weather/seasonal/spring2008/index.html }}$

River flow . . . River flow

River flows

*Comparisons based on percentage flows alone can be misleading. A given percentage flow can represent extreme drought conditions in permeable catchments where flow patterns are relatively stable but be well within the normal range in impermeable catchments where the natural variation in flows is much greater. Note: the period of record on which these percentages are based varies from station to station. Percentages may be omitted where flows are under review.

River flow . . . River flow

River flow hydrographs

The river flow hydrographs show the daily mean flows together with the maximum and minimum daily flows prior to March 2007 (shown by the shaded areas). Daily flows falling outside the maximum/minimum range are indicated where the bold trace enters the shaded areas.

River flow . . . River flow

Notable runoff accumulations (a) December 2007 - February 2008, (b) March 2007 - February 2008

River	\%lta	Rank
Dee (Park)	130	$35 / 36$
Tyne (Spilmersford)	160	$41 / 43$
Tweed (Norham)	139	$48 / 48$
Whiteadder	136	$36 / 39$
Wharfe	156	$50 / 53$
Kenwyn	54	$4 / 40$
Ribble	149	$45 / 48$
Lune	147	$43 / 46$

Groundwater . . . Groundwater

Groundwater levels normally rise and fall with the seasons, reaching a peak in the spring following replenishment through the winter (when evaporation losses are low and soil moist). They decline through the summer and early autumn. This seasonal variation is much reduced when the aquifer is confined below overlying impermeable strata. The monthly mean and the highest and lowest levels recorded for each month are displayed in a similar style to the river flow hydrographs. Note that most groundwater levels are not measured continuously - the latest recorded levels are listed overleaf.

Groundwater... Groundwater

Groundwater levels February / March 2008

Borehole

 Dalton Holme Washpit Farm Stonor Park Dial Farm RockleyWell House Inn West Woodyates

Level	Date	Mar. av.
22.60	$19 / 02$	18.66
47.09	$04 / 03$	44.38
81.12	$03 / 03$	75.41
25.31	$07 / 02$	25.49
141.52	$03 / 03$	138.29
98.20	$03 / 03$	96.26
91.93	$29 / 02$	93.14

Borehole
Chilgrove House
Killyglen
New Red Lion
Ampney Crucis
Newbridge
Skirwith
Swan House

Level Date Mar. av. 55.04 28/02 57.56 $114.31-29 / 02-115.61$ 115.61 $16.27 \quad 28 / 02 \quad 16.40$ $101.64 \quad 03 / 03 \quad 102.21$ $10.92 \quad 01 / 03 \quad 10.94$ $131.24 \quad 21 / 02 \quad 130.63$ $85.40 \quad 19 / 02 \quad 85.47$

Borehole	Level	Date	Mar. av.
Brick House Farm	15.25	$21 / 02$	13.18
Llanfair DC	80.29	$01 / 02$	80.05
Heathlanes	62.39	$26 / 02$	61.98
Weeford Flats	90.03	$06 / 02$	89.65
Bussels No.7a	23.95	$19 / 02$	24.31
Alstonfield	206.83	$11 / 02$	198.65
Levels in metres above Ordnance Datum			

Groundwater . . Groundwater

Groundwater levels - February 2008

The rankings are based on a comparison between the average level in the featured month (but often only single readings are available) and the average level in each corresponding month on record. They need to be interpreted with caution especially when groundwater levels are changing rapidly or when comparing wells with very different periods of record. Rankings may be omitted where they are considered misleading.
Notes: i. The outcrop areas are coloured according to British Geological Survey conventions.
ii. Recent levels for Houndean Bottom are under review.

Guide to the variation in overall reservoir stocks for England and Wales

Comparison between overall reservoir stocks for England and Wales in recent years

These plots are based on the England and Wales figures listed below.
Percentage live capacity of selected reservoirs at start of month

Area	Reservoir	Capacity (MI)			Mar	Mar Anom	Min. Mar	Year* of min.	$\begin{gathered} 2007 \\ \text { Mar } \end{gathered}$	$\begin{gathered} \text { Diff } \\ 08-07 \end{gathered}$
			Jan	Feb						
North West	N Command Zone	- 124929	87	100	96	3	78	1996	98	-2
	Vyrnwy	55146	99	100	100	6	59	1996	100	0
Northumbrian	Teesdale	- 87936	100	97	91	0	72	1996	97	-6
	Kielder	(199175)	(73)	(97)	(92)	-I	(81)	1993	(94)	-2
Severn Trent	Clywedog	44922	85	88	92	2	77	1996	96	-4
	Derwent Valley	- 39525	94	100	98	3	46	1996	100	-2
Yorkshire	Washburn	- 22035	89	98	98	6	53	1996	98	0
	Bradford supply	- 41407	99	100	100	6	53	1996	100	0
Anglian	Grafham	(55490)	(95)	(92)	(88)	0	(72)	1997	(95)	-7
	Rutland	(116580)	(89)	(95)	(95)	7	(71)	1992	(96)	-I
Thames	London	- 202406	89	90	97	5	83	1988	96	1
	Farmoor	- I3822	81	83	100	7	64	1991	97	3
Southern	Bewl	28170	74	89	91	6	50	2006	100	-9
	Ardingly	4685	92	100	100	3	77	2006	100	0
Wessex	Clatworthy	5364	100	100	99	2	82	1992	100	-I
	BristolWW	- (38666)	(94)	(99)	(98)	7	(65)	1992	(98)	0
South West	Colliford	28540	78	83	85	I	57	1997	75	10
	Roadford	34500	88	92	91	8	35	1996	88	3
	Wimbleball	21320	98	100	99	5	72	1996	100	-1
	Stithians	5205	56	76	82	-10	45	1992	100	-18
Welsh	Celyn and Brenig	- 131155	97	99	100	3	69	1996	100	0
	Brianne	62140	100	100	99		92	2004	97	2
	Big Five	- 69762	92	95	97	1	85	1988	99	-2
	Elan Valley	- 99106	99	99	99	1	88	1993	100	-I
Scotland(E)	Edinburgh/Mid Lothian	- 97639	85	100	100	6	73	1999	100	0
	East Lothian	- 10206	100	100	100	1	91	1990	100	0
Scotland(W)	Loch Katrine	- 111363	75	98	99	4	86	2005	100	-I
	Daer	22412	100	100	99	0	94	2004	98	1
	Loch Thom	- 11840	80	96	96	-3	90	2004	98	-2
Northern	Total ${ }^{+}$	- 67270	82	94	90	19	81	2004	90	0
Ireland	Silent Valley	- 20634	83	99	93	10	57	2002	97	-4

Details of the individual reservoirs in each of the groupings listed above are available on request. The percentages given in the Average and Minimum storage columns relate to the 1988-2006 period except for West of Scotland and Northern Ireland where data commence in the mid1990's. In some gravity-fed reservoirs (e.g. Clywedog) stocks are kept below capacity during the winter to provide scope for flood attenuation purposes.

Location map . . . Location map

National Hydrological Monitoring Programme

The National Hydrological Monitoring Programme (NHMP) was instigated in 1988 and is undertaken jointly by the Centre for Ecology and Hydrology Wallingford (formerly the Institute of Hydrology - IH) and the British Geological Survey (BGS). Financial support for the production of the monthly Hydrological Summaries is provided by the Department for Environment, Food and Rural Affairs (Defra), the Environment Agency (EA), the Scottish Environment Protection Agency (SEPA), the Rivers Agency (RA) in Northern Ireland, and the Office of Water Services (OFWAT).

Data Sources

River flow and groundwater level data are provided by the Environment Agency, the Environment Agency Wales, the Scottish Environment Protection Agency and, for Northern Ireland, the Rivers Agency and the Department of the Environment (NI). In all cases the data are subject to revision following validation (flood and drought data in particular may be subject to significant revision).
Reservoir level information is provided by the Water Service Companies, the EA, Scottish Water and the Northern Ireland Water Service.

The National River Flow Archive (maintained by CEH Wallingford) and the National Groundwater Level Archive (maintained by BGS) provide the historical perspective within which to examine contemporary hydrological conditions.

Rainfall

Most rainfall data are provided by the Met Office (see opposite). To allow better spatial differentiation the rainfall data for Britain are presented for the regional divisions of the precursor organisations of the EA and SEPA. Following the discontinuation of the Met Office's CARP system in July 1998, the areal rainfall figures have been derived using several procedures, including initial estimates based on MORECS*. Recent figures have been produced by the Met Office, National Climate Information Centre (NCIC), using a technique similar to CARP. A significant number of additional monthly raingauge totals are provided by the EA and SEPA to help derive the contemporary regional rainfalls. Revised monthly national and regional rainfall totals for the post-1960 period (together with revised 1961-90 averages) were made available by the Met Office in 2004; these have been adopted by the NHMP. As with all regional figures based on limited raingauge networks the monthly tables and accumulations (and the return periods associated with them) should be regarded as a guide only.

The monthly rainfall figures are provided by the Met Office (National Climate Information Centre) and are Crown Copyright and may not be passed on to, or published by, any unauthorised person or organisation.
*MORECS is the generic name for the Met Office services involving the routine calculation of evaporation and soil moisture throughout Great Britain.
The Met Office
FitzRoy Road
Exeter
Devon
EX1 3PB

Tel.: 08709000100
Fax: 08709005050
E-mail: enquiries@metoffice.com

The National Hydrological Monitoring Programme depends on the active cooperation of many data suppliers. This cooperation is gratefully acknowledged.

Subscription

Subscription to the Hydrological Summaries costs $£ 48$ per year. Orders should be addressed to:

Hydrological Summaries
National Water Archive
CEH Wallingford
Maclean Building
Crowmarsh Gifford
Wallingford
Oxfordshire
OX10 8BB

Tel.: 01491838800
Fax: 01491692424
E-mail: nwamail@ceh.ac.uk

Selected text and maps are available on the WWW at http://www.nerc-wallingford.ac.uk/ih/nrfa/index.htm Navigate via Water Watch

Some of the features displayed in the maps contained in this report are based on the Ordnance Survey BaseData GB and 1:50,000 digital data (Licence no. GD03012G/ $01 / 97$) and are included with the permission of Her Majesty's Stationery Office. © Crown Copyright.

Rainfall data supplied by the Met Office are also Crown Copyright. Unauthorised reproduction infringes Crown Copyright and may lead to prosecution.
© This document is copyright and may not be reproduced without the prior permission of the Natural Environment Research Council.

