

# INSTITUTE of HYDROLOGY

# Low flow estimation in Scotland



Report No 101

Report No. 101

1

-----

# Low flow estimation in Scotland

A. Gustard, D.C.W. Marshall and M.F. Sutcliffe

**1987** 

Institute of Hydrology

Crowmarsh Gifford Wallingford Oxfordshire OX10 8BB United Kingdom

## © Institute of Hydrology 1987

Published by the Institute of Hydrology Crowmarsh Gifford Wallingford Oxfordshire OX10 8BB United Kingdom

.

Tel 01491 838800 Fax 01491 692424 Internet http://www.nwl.ac.uk/ih

reprinted 1998

.

## Abstract

This report describes the results of a low flow study of Scotland commissioned by the Scottish Development Department and carried out by the Institute of Hydrology. The main objective of the study was to improve techniques for low flow estimation at the ungauged site. The study was based on mean daily discharge data for 232 stations held on the UK surface water archive. The authors would like to acknowledge the assistance of the River Purification Boards of Scotland not only for collecting and processing the data used in the study, but also for their contribution to the production of a Base Flow Index map of Scotland. This report is part of a series of Low Flow Study Reports the first of which was published by the Institute of Hydrology in 1980.

## Contents

| 1. | Background to the study                             | 1  |
|----|-----------------------------------------------------|----|
| 2. | Flow estimation at the ungauged site                | 5  |
| 3. | Base Flow Index estimation                          | 8  |
| 4. | Summary of Q95(10) and MAM(10) estimation procedure |    |
|    | References                                          | 21 |
|    | Appendix 1 Flow data used in study                  | 22 |
|    | 2 The Base Flow Index                               | 27 |

Page

## Illustrations

## Figures

- Figure 1 Location of the stations used in the study
- Figure 2 Histogram of length of record for each grade of station
- Figure 3 Low flow measures for Endrick Water
- Figure 4 Number of grade A stations having a given fraction of their catchment area covered by lake
- Figure 5 Coefficient of variation of annual BFI values

## **Tables**

- Table 1 Correlation matrix for square root transformation applied to all variables.Table 2 Estimated BFI for 100% coverage of given WRAP class
- Table 3
   Base Flow Index along river stretches

## Symbols and abbreviations

| ADF       | average flow in cumecs                                           |
|-----------|------------------------------------------------------------------|
| AE        | actual evaporation in mm                                         |
| AREA      | catchment area in km <sup>2</sup>                                |
| BFI ·     | base flow index                                                  |
| FALAKE    | proportion of catchment covered by a lake or reservoir           |
| PE        | potential evaporation in mm                                      |
| MAM(10)   | mean annual 10 day minimum                                       |
| Q95(10) ´ | 10 day average flow exceeded by 95% of 10 day average discharges |
| r         | ratio between potential and actual evaporation                   |
| SAAR      | standard period (1941-70) annual average rainfall                |

## 1. Background to the study

#### 1.1 Introduction

Reports 2.1 and 2.2 of the 1980 Low Flow Studies Report (Institute of Hydrology 1980) present methods for calculating the flow duration and low flow frequency curves from flow data and at ungauged sites in the UK. The method used for ungauged sites is based on relating low flow statistics derived from recorded flow data to the geological and climate characteristics of their catchment areas. The Base Flow Index (BFI) was found to be a key variable in the estimation procedures and Report No.3 describes methods for estimating BFI at the ungauged site. This report presents revised equations for Scotland for estimating Q95(10) the 95 percentile discharge of 10 day flows and MAM(10) the mean annual 10 day minimum. These equations were derived from a data set of 155 stations - which included a further 10 years of mean daily flow data available for each station and 68 more stations than the original study. The revised equations enable the influence of lakes in a catchment to be incorporated in the estimation procedure. A further development has been the production of a river network map of BFI at a scale of 1:625 000 for Scotland, which considerably simplifies the task of estimating BFI at an ungauged site.

#### 1.2 Summary of Report

The selection and grading of the 232 flow records which were used in the study is given in the next paragraph and this is followed by a summary of each of the low flow measures which were used to analyse the discharge data. Section 2 of this report describes the estimation of Q95(10) and MAM(10) at the ungauged site using the characteristics of the upstream catchment area. Section 3 outlines how a map of BFI for Scotland enables one of these characteristics to be estimated. The final section summarizes the revised recommendations to assist in the calculation of low flows.

#### 1.3 Catchment selection

Mean daily discharge data for 232 gauging stations held on the UK Surface Water Archive were used in the study (Figure 1). The number and name of each station together with the period of record used are shown in Appendix 1. Following discussion with the relevant hydrometric organisation, each flow record was graded using the following criteria:-

#### Grade A

Accurate low flow measurement, natural catchments with net artificial influences less than approximately 5% of the average flow (155 stations).

#### Grade B

All other stations <u>except</u> those with poor accuracy of flow measurement and/or artificial influences on low flows greater than 10% of the average flow (25 stations).

#### Grade C

Stations with low accuracy of flow measurement and/or artificial influences greater than 10% of the average flow (52 stations).



Figure 1 Location of the stations used in the study

Figure 2 shows the length of record for stations in each grade. Grade A stations were used for relating low flow statistics to the Base Flow Index. Both grade A and B stations were used for developing a method for estimating BFI at the ungauged site. Grade C stations were excluded from the analysis although their BFI is shown with an asterisk on the BFI map. Although they are influenced by artificial controls or are of poor accuracy, they may provide useful information on the flow regime for a number of rivers in Scotland.





#### 1.4 Analysis of Flow Data

Figure 3 illustrates each low flow measure used in the study for the Endrick Water from which three summary statistics were calculated. All 232 flow records were analysed in this way and the results are summarised in Appendix 1. The following Low Flow Study Reports (LFSR) describe in detail the calculation of each low flow measure from mean daily discharge data and how single number indices can be calculated for each diagram:-

\* Q95(10) - the 95 percentile 10 day discharge: Report 2.1 Flow duration curve estimation manual.

\* MAM(10) - the mean annual 10 day minimum: Report 2.2 Flow frequency curve estimation manual.

\* BFI - the Base Flow Index: Report 3 Catchment characteristic estimation manual.

There are no major revisions to the published procedures for estimating these low flow measures although Appendix 2 summarises a number of important aspects concerning the Base Flow Index.



Figure 3 Low flow measures for Endrick Water

## 2. Flow estimation at the ungauged site

In the LFSR the British Isles were divided into five regions of which Scotland occupied the whole of one region and part of another. Regression equations were derived for each of these regions for estimating Q95(10) and MAM(10) from the Base Flow Index (BFI) and Standard Annual Average Rainfall (SAAR). These variables and the methods that should be employed to compute them are described in detail in LFSR 3, Catchment characteristic estimation manual. The most suitable transformation for the data prior to deriving the regression equations, was found to be the square root transform, both the dependent and independent variables were transformed in this way.

The LFSR analysis as outlined above was followed in this study using the 155 grade A stations. Table 1 shows the correlation matrix between the square roots of the variables.

#### Table 1 Correlation matrix for square root transformation applied to all variables (155 stations)

|         | Q95(10) | MAM (10) | BFI    | SAAR   | FALAKE |
|---------|---------|----------|--------|--------|--------|
| Q95(10) | 1.000   | 0.954    | 0.805  | -0.420 | -0.140 |
| MAM(10) | 0.954   | 1.000    | 0.859  | -0.556 | -0.201 |
| BFI     | 0.805   | 0.859    | 1.000  | -0.578 | -0.041 |
| SAAR    | -0.420  | -0.556   | -0.578 | 1.000  | 0.369  |
| FALAKE  | -0.140  | -0.201   | -0.041 | 0.369  | 1.000  |

After exploring a number of combinations of independent variables the following equations were derived for estimating Q95(10) and MAM(10) from BFI and other catchment characteristics.

$$\sqrt{0.95(10)} = 8.81 \sqrt{BFI} + 0.0248 \sqrt{SAAR} - 2.40 \sqrt{FALAKE} - 2.66$$
  
 $R^2 = 0.665 \text{ se} = 0.57$   
 $\sqrt{MAM(10)} = 9.44 \sqrt{BFI} - 2.80 \sqrt{FALAKE} - 2.27$   
 $R^2 = 0.761 \text{ se} = 0.54$ 

All variables were significant at the 99% confidence level in both equations. An examination of the residuals (difference between the observed and predicted dependent variable) indicated that there was no tendency for positive or

negative residuals to cluster in particular areas of Scotland. It was therefore decided to use one equation for the whole of Scotland.

The main revision to the LFSR equations is the addition of the variable FALAKE, the proportion of the catchment which is covered by a lake or This was not a significant variable in the original LFSR reservoir (Figure 4). but the enhanced data set has now made it possible to incorporate the effects of lakes on low flows. The negative regression coefficient of FALAKE does not imply that catchments with lakes have lower low flows than those without. This apparent paradox is resolved by recalling that the attenuating effect of a lake on the downstream hydrograph will greatly increase the BFI. This results in higher BFIs in laked catchments for a given Q95(10) than in lake free catchments and this increased BFI is compensated in the equation by a negative so This same phenomenon occurs in the MAM(10) coefficient of FALAKE. The other feature of the equations is that SAAR is a useful equation. explanatory variable for Q95(10) but not for MAM(10). This confirms the LFSR results which consistently showed that Q95(10) was higher in wet than in dry areas having the same BFI but that MAM(10) was independent of rainfall in most regions.



Figure 4 Number of grade A stations having a given fraction of their catchment area covered by lake

Examination of the revised equations indicates that they predict 10 and 30 percent lower than the LFSR region 1 equation for catchments with a BFI of 0.7 and 0.3 respectively. This is due to the increased number of stations used in the current study and to the reduction in magnitude of flow statistics by about 10 percent with the extension of the older records which now include some notable droughts in the period 1974 to 1984. This lowering of Q95(10)

and MAM(10) compares with a reduction of less than 2% for the mean BFI value.

A revision of the full duration and frequency relationship of Reports 2.1 and 2.2 was beyond the scope of this study. It is recommended that the revised equations for Q95(10) and MAM(10) are used and that the LFSR is followed if flow statistics of different durations or frequencies are required.

The final stage in the estimation procedure is to calculate the average discharge (ADF) at the ungauged site in order to convert low flows expressed as a %ADF to absolute values in cumecs. The recommendations given in LFSR 3 were reviewed in this study by carrying out a water balance of 43 catchments using concurrent flow and rainfall data. The results from this investigation supported the LFSR procedure which should be used for calculating ADF.

## **3. Base Flow Index estimation**

#### 3.1 Introduction

The LFSR illustrated how relationships could be developed between the Base Flow Index and catchment geology using data from gauged catchments, and how these relationships can be used to estimate BFI at ungauged sites. One of the main objectives of this study was to improve the ease with which BFI estimates could be made by producing a river network map of BFI for Scotland. The map was based on an analysis of 232 gauged values of BFI.

To develop links between observed values of BFI and the factors thought to control the availability of storage in the catchment, the mainland of Scotland was divided into the following regions:-

**The Scottish Highlands** - delineated to the south by the Highland Boundary Fault. This is an area of rugged hills including the Cairngorm Mountains, rising to Ben Nevis at 1343m. Metamorphic rocks outcrop over much of the region, with Devonian sandstone sediments around the Moray Firth and Torridonian sandstone and grit in the west. Igneous rocks of various ages are found throughout the area.

The Midland Valley of Scotland - bounded by the Highland Boundary Fault in the north and the Southern Upland Fault in the south. The area is a fault guided valley stretching from the Firths of Forth and Tay to the Firth of Clyde. The floor of the valley consists of a complex of Palaeozoic sediments with Devonian sandstones and Carboniferous grits, limestones and coal measures predominating. There are also extensive volcanic outcrops. It is a broad undulating lowland, with the higher parts reaching altitudes of over 600m in the Lennox and Ochill hills.

**The Southern Uplands** - between the Southern Upland Fault and the English Borders. This is an undulating dissected plateau with the greater part of the region being occupied by highly folded Silurian and Ordovician rocks. Intrusions in the form of dykes and sills abound and large granite masses occur to the west.

The solid geology of each region is overlain by considerable thicknesses of superficial deposits which significantly influence the importance of the underlying geology on the catchment response. Drift deposits range from impermeable boulder clays to fluvio-glacial sands and gravel which sustain base flows in dry weather. Much of the upland areas are covered by very variable thicknesses of peat deposits. The thickness of superficial deposits ranges from a few metres to more than 30 metres. (A full description of the solid and drift geology of Scotland can be found in the British Regional Geology series published by the Natural Environment Research Council).

#### 3.2 Relationship with soil and geology

Catchment boundaries were drawn for the 232 catchments on a 1:250 000 scale topographic map and transferred to a 1:625 000 map. This scale was chosen for the convenience of map size and also because it permitted easy comparison with

reference maps which could be related to the Base Flow Index. The topography, geology and soils of each catchment were evaluated using the following maps at 1:625 000:-

- 1. Physical Map of Great Britain, Sheet 1. OS 1957.
- 2. Geological Map of United Kingdom, North. Solid. 3rd Edition, OS 1979.
- 3. Quaternary Map of the United Kingdom, North. 1st Edition, OS 1977.
- 4. Winter Rain Acceptance Potential NERC. FSR supplement No.7. Apl 1978.

For each catchment the solid and drift geology and the proportion of the five Flood Studies soil classes (NERC 1975, Farquharson et al 1978) were calculated. Regression equations were derived using gauged values of BFI to estimate the BFI from catchment geology and soil class. The solid geology was generally of less significance than the superficial geology or soil indices although the equations provided some useful guidance on the BFI of particular lithologies, for example the relatively low values of BFI on the Ordovician rocks of the Southern Uplands and the igneous rocks of the Midland valley. The analysis using the five class WRAP (Winter Rain Acceptance Potential) map indicated relatively high BFI values from WRAP classes 1 and 2 and low values from class 5. Regressions carried out between BFI and soil class resulted in different coefficients in each of the three regions (Table 2). Classes 1 and 2 were combined in the Highland region but were not included in the other regions because of the very small proportion of these classes in gauged catchments. Within each region some inconsistencies between BFI and WRAP class were apparent - for example a very wide range of BFI from 0.2 to 0.6 on WRAP class 5 soils in the Highland region. However the soil class does provide a useful variable for estimating BFI at ungauged sites in Scotland.

#### Table 2 Estimated BFI for 100% coverage of given WRAP class

|                  | Class 1/2 | Class 3 | Class 4 | Class 5 |
|------------------|-----------|---------|---------|---------|
| Highlands        | .66       | .50     | .35     | .40     |
| Midland Valley   | +         | .60     | . 38    | . 30    |
| Southern Uplands | 5 +       | .53     | .44     | .30     |

† insufficient class 1 & 2 soils

Inspection of BFIs from small headwater catchments indicated that BFIs were approximately 0.05 lower in first and second order streams than at points lower down the catchment. Examination of the BFI below lochs showed the effect of increased storage raising the BFI to approximately 0.6 downstream of large lochs in excess of 5 km<sup>2</sup> and to 0.4 downstream of small lochs.

The analysis of BFI on gauged catchments provided a basis for estimating BFI at ungauged sites in each of the three mainland regions and in the Scottish Islands and also provided guidance on transferring local gauged BFIs to adjacent ungauged rivers.

#### 3.3 BFI map

A Base Flow Index map of Scotland (Gustard et al, 1986) at a scale of 1:625 000 depicts BFI along river stretches. The network displayed is that shown on the O.S. Physical Map of Great Britain Sheet 1, augmented to show additional rivers on which there are gauging stations. The BFIs on the map lie between 0.18 (85003) and 0.81 (85001), and each river stretch is shown in one of twelve classes (Table 3).

| Class 1 | 0.00 - 0.24 |
|---------|-------------|
| 2       | 0.25 - 0.29 |
| 3       | 0.30 - 0.34 |
| 4       | 0.35 - 0.39 |
| 5       | 0.40 - 0.44 |
| 6       | 0.45 - 0.49 |
| 7       | 0.50 - 0.54 |
| 8       | 0.55 - 0.59 |
| 9       | 0.60 - 0.64 |
| 10      | 0.65 - 0.69 |
| 11      | 0.70 - 0.74 |
| 12      | ≥0.75       |
|         |             |

| Table 3  | Base | Flow | Index | along | river | stretches |
|----------|------|------|-------|-------|-------|-----------|
| - 4010 0 | 2000 |      |       |       |       | 0100000   |

The river network was divided into river links between confluences or further subdivided where necessary into stretches typically four kilometres in length. A BFI was assigned according to data availability by using one or more of the following procedures (listed in order of reducing accuracy and preference).

- 1. Assigning BFI calculated from a grade A, B or C station.
- 2. Interpolation between gauged BFIs or extrapolation of values upstream or downstream.
- 3. Transference of gauged BFIs from nearby catchments with similar geology, soils and topography.
- 4. Estimation of BFI from regional regression equations based on flow records from grade A and B stations.
- 5. Estimation of BFI downstream of lochs and in small headwater streams.

A draft map with the BFI marked against each river stretch was sent to each River Purification Board and their suggestions, based on more detailed local knowledge, were incorporated.

#### 3.4 Using the BFI map

The BFI value at an ungauged site on a river shown on the map can be easily read using the colour coded river network. The following recommendations may be helpful when using the map:-

- Approximately one third of the rivers shown at a scale of 1:250 000 are marked on the 1:625 000 map. In estimating BFI for a minor stream not shown on the map, comparisons should be made with adjacent catchments on the BFI map having similar geology, soils and topography.
- Values of BFI have been adjusted to allow for upstream lochs shown only on the 1:625 000 map. Where inspection of the 1:50 000 map reveals a significant number of small lochs, it may be appropriate to substitute a BFI value two classes higher than that shown on the published map.
- The mid point of each class interval should be used in the regression equations. For the lowest and highest intervals it is suggested that in the absence of additional information that values of 0.2 and 0.8 are used.
- The rivers are classified as though the BFI is based on a natural flow regime, except downstream of gauged sites known to be artificially influenced. Low flow estimates should be based on the mapped BFI and adjustments made for artificial influences upstream of the site.
- It is recommended that the calculated values of Q95(10) or MAM(10) shown in Appendix 1 be used immediately up or downstream of gauging stations. Inspection of the BFI map will provide information to assess how far from the gauging station, estimates can be transferred with confidence. For stations influenced by artificial controls (marked with an asterisk on the map) the flow statistics tabulated in Appendix 1 will include the artificial influences.
- Where durations and frequencies other than Q95(10) or MAM(10) are required for locations near gauged records, it is recommended that a full analysis of the mean daily flow data is carried out. (LFSR 2.1 and 2.2).

#### 4. Summary of Q95(10) and MAM(10) estimation procedure

The following left hand pages in italic type are available for carrying out the estimation procedure.

#### 4.1 Catchment characteristics

#### Catchment area (AREA)

Select a practice catchment and follow the steps illustrated on the page opposite. This catchment may be the Falloch at Glen Falloch in which case a description will be found in LFSR 3, p2.

# 4. Summary of Q95(10) and MAM(10) estimation procedure

The user is referred to LFSR 2.1, p11 for recommendations on the most appropriate method to use to calculate Q95(10) for a given length of record and to p35 of the same report for information on incorporating local data. Similarly, LFSR 2.2, p11 suggests guidelines calculating for MAM(10), instructions on the use of local data will be found on p33. LFSR 3.0 contains the methodology in detail for calculating the catchment characteristics below.

The following summary of Q95(10) and MAM(10) estimation at an ungauged site should only be followed when there are no local data available. Section 4 of LFSR 2.1 and 2.2 describe methods of incorporating local data into the estimation procedure.

To help summarise the calculation steps a worked example for the Endrick Water at Gaidrew, Hydrometric area 85, grid ref NS 485866, is given on the right hand pages. The left hand page is provided for practice and is set in italic type.

#### 4.1 Catchment characteristics

#### Catchment area (AREA) in sq km

Calculate topographic catchment area in sq km from 1:50 000 or 1:25 000 scale O.S. maps.

For the Endrick Water at Gaidrew the topographical catchment AREA was found from 1:25 000 scale maps to be 219.9 sq km.

#### Lake area (FALAKE)

Determine the sum total area of any lake(s) or reservoir(s) within the catchment in sq km. FALAKE is the fraction obtained by dividing the area covered by lake, by the topographic catchment area.

Lake area = 1.98 sq km.

$$FALAKE = \frac{1.98 \text{ sq km}}{219.9 \text{ sq km}} = 0.009$$

 Standard annual average rainfall (SAAR)

 From 1941 - 1970 Standard Annual Average Rainfall map

 SAAR = \_\_\_\_\_ mm

 Potential and actual evaporation (PE & AE)

 SAAR = \_\_\_\_\_ mm

 From the table opposite, r = \_\_\_\_\_

 From The Met Office PE map, PE = \_\_\_\_ mm

 AE = \_\_\_\_\_ mm

Base Flow Index

#### Standard Annual average rainfall (SAAR)

Calculate SAAR from the 1941-1970, 1:625 000 Meteorological Office map of annual average rainfall. For the Endrick Water SAAR = 1478mm

#### Potential and actual evaporation (PE & AE)

Potential evaporation may be estimated from the 1:2 000 000 Meteorological Office map of annual average potential evaporation.

PE for the Endrick Water is 450 mm

Actual evaporation is calculated by multiplying potential evaporation by a factor which is dependent upon SAAR.

AE = PE x r where r derives from the following table;

| SAAR | 500  | 600  | 700  | 800  | 900 <sup>·</sup> | 1000 | >1000 |
|------|------|------|------|------|------------------|------|-------|
| r    | 0.88 | 0.90 | 0.92 | 0.94 | 0.96             | 0.98 | 1.00  |

For the Endrick Water r = 1.0 (SAAR=1478)

 $AE = PE \times 1.0 = 450 \text{ mm}$ 

#### Base flow index

The BFI class interval is read from the BFI map and the mid point of this interval used in the regression equation. For the lowest and highest class interval it is suggested that in the absence of additional information, values of 0.20 and 0.80 are used. (In Scotland, the lowest observed BFI is 0.18 and the highest 0.81).

BFI class = 0.30 - 0.34

mid point BFI = 0.32

Note that there is a flow record at this site but the data are not being used in this demonstration example. For short records with one or two years of data, BFI calculated from the flow record should be used; for longer records, values of Q95(10) and MAM(10) are preferred (Appendix 1). If the point of interest is sited on a river which does not appear on the map, interpolate a value using data from nearby rivers having a similar soil type, geology and topography.

#### 4.2 Estimating low flow measures

÷

Flow duration curve

#### 4.2 Estimating low flow measures

Flow duration curve

$$\sqrt{Q95(10)} = 8.81\sqrt{BFI} + 0.0248\sqrt{SAAR} - 2.40\sqrt{FALAKE} - 2.66$$

Substituting the values of the independent variables determined above;

$$\sqrt{Q95(10)} = 8.81 \sqrt{0.32} + 0.0248 \sqrt{1478} - 2.40 \sqrt{0.009} + 2.66$$

 $\therefore$  Q95(10) = 9.24%ADF

This equation supercedes that shown in LFSR 2.1, Table 3.1, Eqn 1 & Eqn 2 (within Scotland).

Having determined Q95(10), percentiles of other durations and frequencies e.g. Q95(1) or Q80(10) etc. may be established using methods described in LFSR 2.1 pp29-33.

#### Flow frequency curve

$$\sqrt{MAM(10)} = 9.44 \sqrt{BFI} - 2.80 \sqrt{FALAKE} - 2.27$$

 $\int MAM(10) = 9.44 \int 0.32^{\circ} - 2.80 \int 0.009 - 2.27$ 

 $\therefore$  MAM(10) = 7.84%ADF

This equation supercedes that shown in LFSR 2.2, Table 3.1, Eqn 1 & Eqn 2 (within Scotland).

Having determined MAM(10), annual minima of different durations and return periods e.g. MAM(1) or AMP(10) etc. may be established using methods described in LFSR 2.2, pp27-31.

## 4.3 Converting to absolute units

r i

Ę.

.

:

1

,

ł

.

י ז

i.

• • • • • • • • •

ł

÷

$$MAM(10) = ----- % ADF x cumecs = cumecs$$

18

#### 4.3 Converting to absolute units

The equations above result in estimates for Q95(10) and MAM(10) expressed in %ADF terms. To convert these figures to cumecs, first compute the annual runoff expressed in mm from rainfall and actual evaporation, over the catchment area.

Annual runoff = SAAR - AE = 1478 - 450 = 1028 mm

The conversion from mm to cumecs is made by multiplying the mm figure by 0.00003171 x AREA.

For the Endrick, ADF = 0.00003171 x AREA x Annual runoff

= 0.00003171 x 219.9 x 1028

= 7.168 curnecs

Thus Q95(10) = 9.24 % ADF x 7.168 = 0.662 cumecs

MAM(10) = 7.84%ADF x 7.168 = 0.562 cumecs

## References

.

- Farquharson, F.A.K., Mackney, D., Newson, M.D., and Thomasson, A.J., 1978. Estimation of Runoff Potential of River Catchments from Soil Surveys. Soil Surv. Spec. Surv. No.11.
- Gustard, A., Jones, P. and Sutcliffe, M.F., 1986. Base Flow Index map of Scotland, Institute of Hydrology.
- Institute of Hydrology, 1980. Low Flow Studies, Institute of Hydrology, Wallingford.
- NERC, 1975. Flood Studies Report. 5 vols Natural Environment Research Council, London.

# Appendix 1 Flow data used in study

| GRADE | NO    | STATION NAME                  | PERIOD OF<br>RECORD | BFI   | Q95(10)<br>%ADF | MAM(10)<br>%ADF |
|-------|-------|-------------------------------|---------------------|-------|-----------------|-----------------|
| A     | 2001  | HELMSDALE AT KILPHEDIR        | 1975-1984           | 0.48  | 24.04           | 21.50           |
| A     | 3001  | SHIN AT LAIRG                 | 1954-1957           | 0.59  | 14.46           | 13.62           |
| С     | 3002  | CARRON AT SGODACHAIL          | 1974-1984           | 0.31* | 11.33           | 9.41            |
| A     | 3003  | OYKEL AT EASTER TURNAIG       | 1977-1984           | 0.25  | 7.31            | 6.55            |
| С     | 3004  | CASSLEY AT ROSEHALL           | 1979-1984           | 0.22* | 8.96            | 5.91            |
| С     | 3005  | SHIN AT INVERAN               | 1982-1984           | 0.54* | 36.23           | 33.87           |
| A     | 3803  | TIRRY AT RHIAN BRIDGE         | 1949-1956           | 0.27  | 11.80           | 9.74            |
| С     | 4001  | CONON AT MOY BRIDGE           | 1976-1984           | 0.68* | 24.83           | 26.17           |
| С     | 4002  | GLASS AT REDBURN              | 1953-1962           | 0.42* | 39.30           | 33.75           |
| В     | 4003  | ALNESS AT ALNESS              | 1974-1984           | 0.45  | 11.82           | 10.33           |
| C     | 4004  | BLACKWATER AT CONTIN          | 1982-1984           | 0.41* | 23.79           | 25.47           |
| С     | 5001  | BEAULY AT ERCHLESS            | 1953 <b>-19</b> 62  | 0.50* | 39.30           | 33.75           |
| A     | 5802  | FARRAR AT LOCH BEANNACHRAN    | 1952 <b>-195</b> 7  | 0.33  | 17.16           | 13.23           |
| С     | 6001  | NESS AT NESS CASTLE FARM      | 1935 <b>-196</b> 3  | 0.54* | 17.70           | 21.64           |
| Α     | 6003  | MORISTON AT INVERMORISTON     | 1929-1945           | 0.28  | 11.00           | 7.15            |
| Α     | 6004  | GARRY AT INVERGARRY           | 1936-1944           | 0.41  | 11.25           | 5.08            |
| Α     | 6006  | ALLT BHLARAIDH INVERMORISTON  | 1954-1962           | 0.29  | 8.19            | 6.87            |
| С     | 6007  | NESS AT NESS SIDE             | 1973-1984           | 0.60* | 23.20           | 20.84           |
| Α     | 6008  | ENRICK AT MILL OF TORE        | 1979-1984           | 0.38  | 1.58            | 1.54            |
| Α     | 7001  | FINDHORN AT SHENACHIE         | 1960-1984           | 0.37  | 18.70           | 16.30           |
| Α     | 7002  | FINDHORN AT FORRES            | 1958-1983           | 0.41  | 19.36           | 17.97           |
| Α     | 7004  | NAIRN AT FIRHALL              | 1979-1984           | 0.45  | 13.64           | 12.98           |
| Α     | 7005  | DIVIE AT DUNPHAIL             | 1983-1984           | 0.47  | 18.48           | 16.52           |
| Α     | 7003  | LOSSIE AT SHERIFFMILLS        | 1963-1984           | 0.52  | 28.55           | 28.54           |
| A     | 8001  | SPEY AT ABERLOUR              | 1938 <b>-</b> 1974  | 0.58  | 31.78           | 30.62           |
| Α     | 8002  | SPEY AT KINRARA               | 1951-1984           | 0.57  | 30.05           | 27.37           |
| С     | 8003  | SPEY AT RUTHVEN BRIDGE        | 1951-1973           | 0.50* | 31.62           | 27.55           |
| Α     | 8004  | AVON AT DALNASHAUGH           | 1952-1984           | 0.55  | 29.35           | 29.60           |
| В     | 8005  | SPEY AT BOAT OF GARTEN        | 1951-1984           | 0.61  | 34.01           | 33.52           |
| A     | 8006  | SPEY AT BOAT OF BRIG          | 1952-1984           | 0.60  | 31.17           | 30.68           |
| С     | 8007  | SPEY AT INVERTRUIM            | 1952-1984           | 0.53* | 29.45           | 27.46           |
| С     | 8008  | TROMIE AT TROMIE BRIDGE       | 1952 <b>-</b> 1984  | 0.64* | 50.83           | 48.02           |
| A     | 8009  | DULNAIN AT BALNAAN BRIDGE     | 1952-1984           | 0.47  | 20.74           | 21.99           |
| A     | 8010  | SPEY AT GRANTOWN              | 1953-1984           | 0.60  | 31.11           | 29.62           |
| В     | 8011  | LIVET AT MINMORE              | 1981-1984           | 0.63  | X               |                 |
| С     | 8807  | SPEY AT LAGGAN BRIDGE         | 1938-1974           | 0.58* | 31.80           | 30.62           |
| A     | 9001  | DEVERON AT AVOCHIE            | 1959-1984           | 0.59  | 27.49           | 28.84           |
| A     | 9002  | DEVERON AT MUIRESK            | 1960-1984           | 0.58  | 23.28           | 24.94           |
| A     | 9003  | ISLA AT GRANGE                | 1969-1984           | 0.54  | 22.94           | 23.86           |
| Α     | 9004  | BOGIE AT REDCRAIG             | 1980-1984           | 0.70  | 32.05           | 29.32           |
| Α     | 9801  | ALLT DEVERON AT KINGSFORD BR. | 1949-1981           | 0.50  | 31.00           | 32.14           |
| A     | 10001 | YTHAN AT ARDLETHEN            | 1965-1983           | 0.71  | 24.53           | 31.65           |
| A     | 10002 | UGIE AT INVERUGIE             | 1971-1984           | 0.61  | 22.48           | 25.19           |
| В     | 10003 | YTHAN AT ELLON                | 1983-1984           | 0.68  | 17.43           | 9.74            |
| A     | 11001 | DON AT PARKHILL               | 1969-1984           | 0.68  | 27.11           | 32.24           |
| A     | 11002 | DON AT HAUGHTON               | 1969-1984           | 0.67  | 29.58           | 31.53           |
| Α     | 11003 | DON AT BRIDGE OF ALFORD       | 1973-1984           | 0.68  | 30.96           | 31.23           |
| Α     | 11801 | URIE AT URIESIDE              | 1969-1981           | 0.72  | 21.77           | 31.87           |
| A     | 12001 | DEE AT WOODEND                | 1929 <b>-</b> 1984  | 0.53  | 25.41           | 23.61           |

| GRADE    | NO     | STATION NAME                                 | PERIOD OF<br>RECORD | BFI   | Q95(10)<br>%ADF | MAM(10)<br>%ADF |
|----------|--------|----------------------------------------------|---------------------|-------|-----------------|-----------------|
| A        | 12002  | DEE AT PARK                                  | 1972-1984           | 0.54  | 19.47           | 17.67           |
| Α        | 12003  | DEE AT POLHOLLICK                            | 1975-1984           | 0.52  | 20.96           | 18.95           |
| A        | 12004  | GIRNOCK AT LITTLEMILL                        | 1970-1984           | 0.40  | 9.66            | 7.65            |
| A        | 12005  | MUICK AT INVERMUICK                          | 1976-1984           | 0.53  | 18.17           | 18.84           |
| A        | 12006  | GAIRN AT INVERGAIRN                          | 1978-1984           | 0.57  | 20.15           | 19.40           |
| Α        | 12007  | DEE AT MAR BRIDGE                            | 1983-1984           | 0.49  | 11.67           | Z               |
| Α        | 12801  | GLEN DYE AT BRIDGE OF DYE                    | 1969-1981           | 0.42  | 20.43           | 17.32           |
| Α        | 13001  | BERVIE AT INVERBERVIE                        | 1979-1984           | 0.54  | 16.06           | 18.03           |
| Α        | 13002  | LUTHER WATER AT LUTHER BRIDGE                | 1982-1983           | 0.57  | 16.92           | 14.95           |
| Α        | 13003  | SOUTH ESK AT STANNOCHY BR                    | 1979-1983           | 0.53  | 17.82           | 16.72           |
| A        | 13005  | LUNAN WATER AT KIRKTON MILL                  | 1981-1983           | 0.52  | 12.20           | 11.07           |
| A        | 13007  | NORTH ESK AT LOGIE MILL                      | 1976-1983           | 0.52  | 17.45           | 16.30           |
| Α        | 14001  | EDEN AT KEMBACK                              | 1967-1983           | 0.61  | 25.76           | 27.64           |
| A        | 14002  | DIGHTY WATER AT BALMOSSIE MILL               | 1969-1983           | 0.59  | 17.15           | 17.88           |
| A        | 15001  | ISLA AT FORTER                               | 1953-1968           | 0.56  | 30.50           | 30.54           |
| A        | 15002  | NEWTON BURN AT NEWTON                        | 1959-1968           | 0.58  | 30.77           | 26.27           |
| C        | 15003  | TAY AT CAPUTH                                | 1947-1983           | 0.62* | 28.87           | 26.84           |
| Ā        | 15004  | INZION AT LOCH OF LINTRATHEN                 | 1927-1968           | 0.62  | 24.91           | 23.68           |
| C        | 15005  | MELGAM AT LOCH OF LINTRATHEN                 | 1927-1968           | 0.56* | 23.61           | 21.27           |
| č        | 15006  | TAY AT BALLATHIE                             | 1952-1983           | 0.64* | 29.07           | 27.01           |
| Č        | 15007  | TAY AT PITNACREE                             | 1957-1983           | 0.64* | 26.53.          | 24.37           |
| č        | 15008  | DEAN WATER AT COOKSTON                       | 1958-1983           | 0.58* | 25.25           | 25.08           |
| B        | 15010  | ISLA AT WESTER CARDEAN                       | 1972-1983           | 0.54  | 21.67           | 19.76           |
| č        | 15011  | LYON AT COMPLE BRIDGE                        | 1972-1983           | 0.46* | 28.01           | 23.91           |
| č        | 15012  | TUMMEL AT PORT-NA-CRAIG                      | 1978-1983           | 0.65* | 25.91           | 25.62           |
| Ă        | 15012  | ALMOND AT ALMONDBANK                         | 1972-1983           | 0.44  | 14 13           | 12.01           |
| ĉ        | 15016  | TAY AT KENMORE                               | 1974-1983           | 0 66* | 13 31           | 13 35           |
| Δ        | 15017  | RRAAN AT RALLINLOAN                          | 1975-1980           | 0.00  | 7 41            | 5 73            |
| Ĉ        | 15018  |                                              | 1953-1958           | 0.22* | 10.05           | 7 26            |
| ٨        | 15023  | BDAAN AT HEPMITAGE                           | 1983-1983           | 0.20  | 6 01            | 5 73            |
| Δ        | 15025  | DOCHART AT KILLIN                            | 1982-1983           | 0.42  | 4 81            | 3 37            |
| R        | 15809  | MUCKLE BURN AT FASTMILL                      | 1949-1956           | 0.51  | 22 35           | 26 25           |
| B        | 16001  | FARN AT KINKELL BRIDGE                       | 1947-1958           | 0.55  | 16 74           | 15 35           |
| č        | 16002  | FARN AT AREPUCHTLL                           | 1955-1977           | 0.46* | 14 35           | 13 60           |
| ٨        | 16002  | RUCHILL AT CULTYRRAGGAN                      | 1971-1983           | 0.31  | 7 81            | 6 36            |
| Ĉ        | 16006  | FADN AT FORTEVIOT BRIDGE                     | 1072-1083           | 0.51  | 15 30           | 13 72           |
| C<br>C   | 17001  | CAPPON AT HEADSWOOD                          | 1060-1084           | 0.36* | 19 00           | 16 71           |
| Č        | 17001  | TEVEN AT TEVEN                               | 1060-1084           | 0.50* | 18 20           | 16 84           |
| C<br>C   | 17002  | DEVEN AT DEVEN<br>BONNY WATED AT BONNYDDIDCE | 1071-1086           | 0.00* | 22 56           | 20 22           |
|          | 1700.5 | ODE AT DATEON MAINS                          | 1072-108/           | 0.45  | 10 78           | 18 37           |
| 12       | 17004  | AVON AT DOLMONTULL                           | 1972-1904           | 0.54  | 17 37           | 15.76           |
| A D      | 12001  |                                              | 1057-1086           | 0.41  | 17.57           | 17 61           |
| л<br>С   | 18002  | DEVON AT CIENOCUII                           | 1950-1982           | 0.45  | 26 70           | 26 12           |
|          | 10002  | TETTU AT DEIDCE OF TEITU                     | 1939-1903           | 0.55" | 10 76           | 19 7/           |
| A        | 10005  | ATTAN WATER AT BROT ATTAN                    | 1903-1904           | 0.44  | 17.24           | 10.24           |
| л<br>    | 10005  | ALLAN WALER AL DR UF ALLAN                   | 1971-1904           | 0.40  | 14.JZ           | 13.41           |
| A        | 10000  | LENI AL ANIL<br>Forti at craiceortu          | 1973-1964           | 0.39  | 11 52           | 4.37            |
| n<br>C   | 10011  | ALMOND AT ODATOTENAL                         | 1901-1902           | 0.40  | 17 51           | 15 49           |
|          | 10000  | ALMOND AT ALMOND GETP                        | 1069-1004           | 0.30" | 10 53           | 13.02           |
| A        | 19002  | ALTIOND AT ALTIOND WELK                      | 1902-1984           | 0.34  | 10.33           | 10.00           |
| A        | 19003  | BREIGH WATER AT BREICH WEIR                  | 1972-1978           | 0.30  | 13.06           | 12.34           |
| A        | 19004  | NURTH ESK AT DALMORE WEIR                    | 1960-1984           | 0.53  | 25.18           | 24.85           |
| <u>c</u> | 19005  | ALMOND AT ALMONDELL                          | 1962-1984           | 0.35* | 15.10           | 14.19           |
| В        | 19006  | WATER OF LEITH AT MURRAYFIELD                | 1963-1984           | 0.46  | 26.58           | 25.11           |
| В        | 19007  | ESK AT MUSSELBURGH                           | 1962-1984           | 0.51  | 26.09           | 25.15           |
| Β.       | 19008  | SOUTH ESK AT PRESTONHOLM                     | 1964-1984 -         | 0.53  | 26.61           | 30.70           |
| С        | 19009  | BOG BURN AT COBBINSHAW                       | 1963-1984           | 0.63* | 17.03           | 14.18           |

ł

| GRADE | NO    | STATION NAME                   | PERIOD OF          | BFI   | Q95(10)        | MAM(10) |
|-------|-------|--------------------------------|--------------------|-------|----------------|---------|
|       |       |                                | RECORD             |       | 6AUF           | 6ADF    |
| A     | 19010 | BRAID BURN AT LIBERTON         | 1969-1984          | 0.62  | 25.58          | 23.08   |
| A     | 19011 | N ESK AT DALKEITH PALACE       | 1976-1984          | 0.53  | 27.76          | 25.29   |
| A     | 19805 | SPITTAL BURN AT NINEMILEBURN   | 1966-1975          | 0.68  | 22.22          | 21.05   |
| Ā     | 20001 | TYNE AT EAST LINTON            | 1961-1984          | 0.52  | 20.25          | 22.67   |
| Č     | 20002 | W PEFFER BURN AT LUFFNESS      | 1966-1984          | 0.47* | 7.03           | 11.91   |
| Ā     | 20003 | TYNE AT SPILMERSFORD           | 1965-1984          | 0.49  | 20.56          | 25.06   |
| C     | 20004 | E PEFFER BURN AT LOCHHOUSES    | 1967-1984          | 0.37* | 6.44           | 10.40   |
| Ā     | 20005 | BIRNSWATER AT SALTOUN HALL     | 197 <b>6-1</b> 984 | 0.46  | 19.06          | 18.58   |
| Ā     | 20006 | BIEL WATER AT BELTON HOUSE     | 1976-1984          | 0.61  | 31.78          | 30.37   |
| A     | 20007 | GIFFORD WATER AT LENNOXLOVE    | 1976-1984          | 0.57  | 23.34          | 23.79   |
| Ā     | 20008 | BROX BURN AT BROXMOUTH         | 1967-1975          | 0.50  | 11.66          | 14.26   |
| A     | 20804 | THORNTON BURN AT THORNTON MILL | 1967-1975          | 0.64  | 20.00          | 35.71   |
| В     | 20806 | HEDDERWICK BURN AT N BELTON    | 1969-1973          | 0.26  | Y              |         |
| Ā     | 20807 | WOODHALL BURN AT WOODHALL      | 1969-1975          | 0.68  | 16.22          | 32.00   |
| В     | 20808 | COGTAIL BURN AT ATHELSTANEFORD | 1966-1975          | 0.50  | Y              |         |
| В     | 20809 | SALTERS BURN AT CRICHTON DENE  | 1967-1975          | 0.32  | Y              |         |
| Ā     | 21001 | FRUID WATER AT FRUID           | 1959-1968          | 0.31  | 19.40          | 18.25   |
| A     | 21002 | WHITE ADDER W AT HUNGRY SNOUT  | 1959-1968          | 0.50  | 14.86          | 16.16   |
| Α     | 21003 | TWEED AT PEEBLES               | 1959 <b>-</b> 1982 | 0.55  | 23.25          | 23.37   |
| С     | 21004 | WATCH WATER AT WATCHWATER RES  | 1965-1968          | 0.40* | 19.57          | 68.62   |
| Α     | 21005 | TWEED AT LYNE FORD             | 1961-1982          | 0.56  | 25.11          | 24.18   |
| Α     | 21006 | TWEED AT BOLESIDE              | 1961-1982          | 0.50  | 20.71          | 18.27   |
| A     | 21007 | ETTRICK WATER AT LINDEAN       | 1961-1982          | 0.39  | 12.93          | 10.69   |
| Α     | 21008 | TEVIOT AT ORMISTON MILL        | 1960-1982          | 0.45  | 16.81          | 16.67   |
| A     | 21009 | TWEED AT NORHAM                | 1962-1984          | 0.52  | 19.36          | 18.56   |
| Α     | 21010 | TWEED AT DRYBURGH              | 1963-1980          | 0.51  | 20.25          | 18.76   |
| Α     | 21011 | YARROW WATER AT PHILIPHAUGH    | 1963-1982          | 0.44  | 14.77          | 11.93   |
| Α     | 21012 | TEVIOT AT HAWICK               | 1963-1982          | 0.43  | 14.44          | 13.33   |
| Α     | 21013 | GALA WATER AT GALASHIELS       | 1964-1981          | 0.52  | 16.63          | 16.75   |
| В     | 21014 | TWEED AT KINGLEDORES           | 1961-1982          | 0.44  | 25.75          | 23.26   |
| A     | 21015 | LEADER WATER AT EARLSTON       | 1966-1981          | 0.48  | 14.02          | 14.17   |
| Α     | 21016 | EYE WATER AT EYEMOUTH MILL     | 1967-1981          | 0.44  | 1 <b>0</b> .70 | 14.05   |
| A     | 21017 | ETTRICK WATER AT BROCKHOPERIG  | 1965-1982          | 0.34  | 13.15          | 10.56   |
| A     | 21018 | LYNE WATER AT LYNE STATION     | 1968-1982          | 0.59  | 25.09          | 24.52   |
| Α     | 21019 | MANOR WATER AT CADEMUIR        | 1968-1982          | 0.59  | 21.74          | 20.37   |
| A     | 21020 | YARROW WATER AT GORDON ARMS    | 1967-1982          | 0.44  | 13.57          | 11.02   |
| Α     | 21021 | TWEED AT SPROUSTON             | 1969-1982          | 0.50  | 18.27          | 16.66   |
| Α     | 21022 | WHITEADDER WATER HUTTON CASTLE | 1969-1982          | 0.53  | 19.45          | 20.26   |
| A     | 21023 | LEET WATER AT COLDSTREAM       | 1970-1982          | 0.33  | 2.94           | 3.94    |
| A     | 21024 | JED WATER AT JEDBURGH          | 1971-1981          | 0.43  | 19.50          | 19.70   |
| Α     | 21025 | ALE WATER AT ANCRUM            | 1972-1981          | 0.44  | 10.46          | 9.72    |
| A     | 21026 | TIMA WATER AT DEEPHOPE         | 1973-1981          | 0.26  | 7.47           | 5.20    |
| A     | 21027 | BLACKADDER WATER MOUTH BRIDGE  | 1973-1981          | 0.50  | 16.79          | 17.53   |
| A     | 21028 | MENZION BURN AT MENZION FARM   | 1948-1952          | 0.43  | 16.43          | 15.34   |
| A     | 21030 | MEGGET WATER AT HENDERLAND     | 1968-1982          | 0.39  | 14.61          | 12.42   |
| В     | 21031 | TILL AT ETAL (NWA)             | 1956-1980          | 0.57  | 18.90          | 22.53   |
| В     | 21032 | GLEN AT KIRKNEWTON (NWA)       | 1966-1980          | 0.50  | 16.04          | 16.13   |
| С     | 21033 | BADDINGSGILL BURN AT INTAKE    | 1963-1975          | 0.66* | 45.94          | 54.42   |
| С     | 21034 | YARROW WATER AT CRAIG DOUGLAS  | 1975-1982          | 0.42* | 11.5/          | 9.37    |
| Α     | 21805 | WHITE ADDER AT BLANERNE        | 1960-1975          | 0.48  | 16.42          | 18.26   |
| A     | 77001 | ESK AT NETHERBY (NWWA)         | 1963-1978          | 0.36  | 15.36          | 13.08   |
| ۸     | 77002 | ESK AT CANONBIE                | 1962-1983          | 0.38  | 14.49          | 12.40   |
| Α     | 77003 | LIDDEL WATER AT ROWANBURNFOOT  | 1973-1983          | 0.33  | 11.78          | 9.11    |
| A     | 77004 | KIRTLE WATER AT MOSSKNOWE      | 19/9-1983          | 0.28  | 8.50           | 7 00    |
| A     | 77005 | LYNE AT CLIFF BRIDGE (NWWA)    | 19//-1983          | 0.27  | 9.43           | 1/.09   |
| B     | 78001 | ANNAN AT ST MUNGOS MANSE       | 1920-1901          | 0.42  | 14.75          | 14.00   |

ŧ

1

ł

| GRADE  | NO             | STATION NAME                    | PERIOD OF<br>RECORD | BFI   | Q95(10)<br>%ADF | MAM(10)<br>%ADF |  |
|--------|----------------|---------------------------------|---------------------|-------|-----------------|-----------------|--|
| В      | 78002          | WATER OF AE AT ELSHIESHIELDS    | 1963-1965           | 0.34  | 27.65           | 21.84           |  |
| Α      | 78003          | ANNAN AT BRYDEKIRK              | 1967-1983           | 0.43  | 13.92           | 11.67           |  |
| A      | 78004          | KINNEL WATER AT REDHALL         | 1963-1983           | 0.27  | 6.11            | 4.71            |  |
| A      | 78005          | KINNEL WATER AT BRIDGEMUIR      | 1979-1984           | 0.35  | 9.95            | 7.94            |  |
| С      | 79001          | AFTON WATER AT AFTON RES        | 1969-1981           | 0.10* | 4.00            | 6.80            |  |
| A      | 79002          | NITH AT FRIARS CARSE            | 1957-1984           | 0.38  | 11.21           | 10.71           |  |
| В      | 79003          | NITH AT HALL BRIDGE             | 1959-1984           | 0.27  | 7.32            | 6.67            |  |
| A      | 79004          | SCAR WATER AT CAPENOCH          | 1963-1983           | 0.31  | 7.32            | 6.20            |  |
| A      | 79005          | CLUDEN WATER AT FIDDLERS FORD   | 1963-1983           | 0.37  | 7.57            | 7.38            |  |
| A      | 79006          | NITH AT DRUMLANRIG              | 1967-1984           | 0.34  | 9.75            | 8.27            |  |
| A      | 80001          | URR AT DALBEATTIE               | 1963-1984           | 0.35  | 5.21            | 4.73            |  |
| С      | 80002          | DEE AT GLENLOCHAR               | 1977-1984           | 0.40* | 7.96            | 8.07            |  |
| Α      | 80303          | WHITE LAGGAN BURN AT LOCH DEE   | 1980-1984           | 0.19  | 5.59            | 2.93            |  |
| С      | 81001          | PENWHIRN BURN AT PENWHIRN RES   | 1965-1968           | 0.22* | 18.24           | 14.34           |  |
| Α      | 81002          | CREE AT NEWTON STEWART          | 1963-1984           | 0.28  | 8.63            | 6.03            |  |
| Α      | 81003          | LUCE AT AIRYHEMMING             | 1967-1983           | 0.23  | 5.85            | 4.66            |  |
| Α      | 81004          | BLADNOCH AT LOW MALZIE          | 1977-1984           | 0.33  | 4.40            | 3.02            |  |
| Α      | 82001          | GIRVAN AT ROBSTONE              | 1963-1984           | 0.34  | 9.10            | 8.68            |  |
| С      | 82002          | DOON AT AUCHENDRANE             | 1974-1984           | 0.60* | 39.05           | 40.25           |  |
| A      | 82003          | STINCHAR AT BALNOWLART          | 1973-1984           | 0.30  | 4.22            | 3.38            |  |
| С      | 83001          | CAAF WATER AT KNOCKENDON RES    | 1971-1981           | 0.43* | 23.30           | 10.85           |  |
| В      | 83002          | GARNOCK AT DALTRY               | 1963-1977           | 0.22  | 6.98            | 5.35            |  |
| Α      | 83003          | AYR AT CATRINE                  | 1970-1984           | 0.27  | 9.87            | 10.21           |  |
| Α      | 83004          | LUGAR AT LANGHOLM               | 1972-1984           | 0.24  | 5.78            | 4.80            |  |
| Α      | 83005          | IRVINE AT SHEWALTON             | 1972-1984           | 0.27  | 7.20            | 5.08            |  |
| A      | 83006          | AYR AT MAINHOLM                 | 1976-1981           | 0.30  | 11.62           | 9.71            |  |
| A      | 83007          | LUGTON WATER AT EGLINTON        | 1980-1981           | 0.25  | 6.49            | Z               |  |
| Α      | 83009          | GARNOCK AT KILWINNING           | 1978-1981           | 0.24  | 2.75            | 4.26            |  |
| Ā      | 83010          | IRVINE AT NEWMILNS              | 1979-1981           | 0.25  | 8.16            | Z               |  |
| С      | 84001          | KELVIN AT KILLERMONT            | 1948-1984           | 0.43* | 22.73           | 19.53           |  |
| С      | 84002          | CALDER AT MUIRSHIEL             | 1952-1976           | 0.42* | 2.75            | 6.10            |  |
| Ă      | 84003          | CLYDE AT HAZELBANK              | 1956-1984           | 0.50  | 22.12           | 20.71           |  |
| A      | 84004          | CLYDE AT SILLS                  | 1957-1984           | 0.51  | 21.00           | 20.13           |  |
| Ā      | 84005          | CLYDE AT BLAIRSTON              | 1954-1984           | 0.44  | 21.57           | 19.87           |  |
| Ā      | 84006          | KELVIN AT BRIDGEND              | 1963-1983           | 0.44  | 17.69           | 17.28           |  |
| С      | 84007          | SOUTH CALDER WATER AT FORGEWOOD | 1966-1984           | 0.61* | 40.17           | 43.00           |  |
| B      | 84008          | ROTTEN CALDER WATER AT REDLEES  | 1966-1984           | 0.32  | 12.52           | 10.66           |  |
| Ā      | 84009          | NETHAN AT KIRKMUIRHILL          | 1966-1983           | 0.34  | 11.89           | 9.94            |  |
| Ă      | 84011          | GRYFE AT CRAIGEND               | 1963-1984           | 0.29  | 8.25            | 7.82            |  |
| Ā      | 84012          | WHITE CART WATER AT HAWKHEAD    | 1963-1984           | 0.36  | 15.83           | 14.80           |  |
| B      | 84013          | CLYDE AT DALDOWIE               | 1963-1984           | 0.45  | 23.28           | 21.14           |  |
| Ã      | 84014          | AVON WATER AT FAIRHOLM          | 1964-1984           | 0.26  | 7.07            | 6.39            |  |
| Ā      | 84015          | KELVIN AT DRYFIELD              | 1960-1984           | 0.43  | 19.44           | 18.44           |  |
| Ă      | 84016          | LUGGIE WATER AT CONDORRAT       | 1966-1984           | 0.33  | 11.11           | 9.27            |  |
| ĉ      | 84017          | BLACK CART WATER MILLIKEN PARK  | 1967-1984           | 0.38* | 9.33            | 8.56            |  |
| Ă      | 84018          | CLYDE AT TULLIFORD MILL         | 1969-1984           | 0.51  | 16.30           | 15.16           |  |
| c<br>C | 84019          | NORTH CALDER WATER CALDERPARK   | 1963-1984           | 0.47* | 26.63           | 26.13           |  |
| Ă      | 84020          | GLAZERT WATER MILTON CAMPSIE    | 1968-1984           | 0.31  | 9.56            | 8,69            |  |
| Ċ      | 84021          | WHITE CART WATER AT NETHERLEF   | 1969-1972           | 0.51* | 32.84           | 22.34           |  |
| Ă      | 84022          | DUNEATON AT MAIDENCOTS          | 1966-1984           | 0.44  | 15.75           | 13.33           |  |
| Ā      | 84022          | BOTHLIN BURN AT AUCHENCEICH     | 1973-1984           | 0 30  | 13 13           | 12 50           |  |
| ĉ      | 84025          | NORTH CALDER WATER HILLEND      | 1972-1984           | 0.59  | 30 55           | 30 33           |  |
| N<br>N | 87024<br>87UJE | ΙΙΩΩΤΕ ΜΑΤΈΡ ΑΤ ΟΥΩΣΝΩ          | 1075-109/           | 0.00  | 16 22           | 19 79           |  |
| n<br>A | 86025          | ALLANDER WATER AT MILNCAVIE     | 1074-1081           | 0.44  | 8 08            | 8 13            |  |
| Ċ      | 84020          | N CALDER WATER AT CALDERANK     | 1072-1074           | 0.57* | 23 80           | 7.              |  |
| Ā      | 84029          | CANDER WATER AT CANDERMILL.     | 1975-1981           | 0.25  | 7.65            | 6.49            |  |
| 0      | 07047          |                                 | 1777 IZUI           | 0,20  | /               | · · · ·         |  |

| GRADE | NO    | STATION NAME                   | PERIOD OF<br>RECORD | BFI   | Q95(10)<br>%ADF | MAM(10)<br>%ADF |
|-------|-------|--------------------------------|---------------------|-------|-----------------|-----------------|
| С     | 85001 | LEVEN AT LINNBRANE             | 1963-1972           | 0.81* | 33.33           | 33.64           |
| Α     | 85002 | ENDRICK WATER AT GAIDREW       | 1963-1984           | 0.31  | 9.36            | 9.10            |
| Α     | 85003 | FALLOCH AT GLEN FALLOCH        | 1970-1984           | 0.18  | 5.17            | 3.17            |
| Α     | 85004 | LUSS WATER AT LUSS             | 1977-1981           | 0.27  | 6.74            | 5.30            |
| С     | 86001 | LITTLE EACHAIG AT DALINLONGART | 1968-1984           | 0.22* | 5.67            | 4.27            |
| Α     | 86002 | EACHAIG AT ECKFORD             | 1968-1980           | 0.35  | 8.47            | 7.91            |
| Α     | 87801 | ALLT UAINE AT INTAKE           | 1950-1975           | 0.15  | 9.62            | 6.15            |
| В     | 90003 | NEVIS AT CLAGGAN               | 1983-1984           | 0.30  | 10.92           | 5.55            |
| С     | 91002 | LOCHY AT CAMISKY               | 1981-1984           | 0.42* | 8.69            | 6.82            |
| Α     | 93001 | CARRON AT NEW KELSO            | 1979-1984           | 0.27  | 10.30           | 6.47            |
| Α     | 94001 | EWE AT POOLEWE                 | 1970-1984           | 0.66  | 21.21           | 16.37           |
| Α     | 95001 | INVER AT LITTLE ASSYNT         | 1977-1984           | 0.62  | 25.04           | 19.35           |
| Α     | 96001 | HALLADALE AT HALLADALE         | 1963-1984           | 0.26  | 4.77            | 5.07            |
| Α     | 96002 | NAVER AT APIGILL               | 1977-1984           | 0.41  | 6.29            | 7.16            |
| В     | 97002 | THURSO AT HALKIRK              | 1972-1984           | 0.46  | 5.65            | 7.17            |

行きの相当

MAP SHOWS THESE STATIONS WHERE ARTIFICIAL INFLUENCE MAY AFFECT BFI
 X BFI SUPPLIED BY RPB
 Y RIVER DRIES UP
 Z MAM(10) NOT AVAILABLE BECAUSE RECORD IS SHORT

A STATIONS USED IN REGRESSION ANALYSIS

B STATIONS WHERE ARTIFICIAL INFLUENCE IS SMALL

C STATIONS WHERE ARTIFICIAL INFLUENCE OR POOR HYDROMETRY MAY AFFECT LOW FLOW INDICES

## **Appendix 2** The Base Flow Index

#### Base Flow separation procedure

The Base Flow Index (BFI) can be thought of as measuring the proportion of the river's runoff that derives from stored sources. The computer program applies smoothing and separation rules to the recorded flow hydrographs from which the index is calculated as the ratio of the flow under the separated hydrograph to the flow under the total hydrograph (Figure 3). The program calculates the minima of five day non-overlapping periods and subsequently searches for turning points in this sequence of minima. The turning points are then connected to obtain the separated hydrograph. The published separation procedure (LFSR 3.0 Jan 1980, pp 13-19) can result in the baseflow line crossing and being higher than the recorded hydrograph. This rarely occurs for more than one percent of the days in the record, although for some overseas catchments it has led to calculated BFIs in excess of 1.0. The BFI program was modified to remedy this problem by constraining the base flow line to the observed hydrograph ordinate on any day when the separated hydrograph exceeds the observed.

#### Baseflow line start and finish points

Baseflow separation cannot start on the first day of the data record and similarly will not finish on the last day of record. It is important therefore to recognise that when the <u>dates</u> of the beginning and end of the baseflow line have...been established, then these same dates must be used in calculating the total volume of flow beneath the hydrograph as well as in calculating the volume of flow beneath the baseflow line.

#### Calculation of annual BFI

There are two alternative methods for calculating annual BFIs. The first is to compute the separation for the entire record and then estimate BFI for each year. The second is to run the separation program on year 1 and then on year 2 etc., starting each year as an entirely new record. In the latter case a few days in early January and late December will be eliminated from the calculation for every year of record. The two approaches differ slightly and for calculating annual values the first procedure is preferred.

#### Calculation of period of record BFI

A mean value of BFI can be calculated from a series of annual BFIs but this will be different from a single value calculated from the period of record. The LFSR defines BFI as the ratio  $V_b/V_a$  where  $V_b$  represents the average flow beneath the baseflow separation line and  $V_a$  represents the average flow beneath the hydrograph.

Ten years of record will provide ten annual values of BFI. However, the average of these ten values will not in general equate to the single value obtained from the entire ten years of record. This can easily be seen by the following example, showing three years of artificial data in which one of the years is of a very different character.

|                                      | Year 1 | Year 2 | Year 3 | Total |
|--------------------------------------|--------|--------|--------|-------|
| v <sub>b</sub>                       | 9.0    | 40.0   | 40.0   | 89.0  |
| ٧ <sub>a</sub>                       | 10.0   | 100.0  | 100.0  | 210.0 |
| BFI = V <sub>b</sub> /V <sub>a</sub> | 0.9    | 0.4    | 0.4    | 0.424 |

Here the average of the three annual BFI values is 0.567 while the overall value is 0.424. The recommended procedure is to calculate one value of BFI based on a separation of the entire record.

#### **BFI** variability

Earlier studies of BFI variability found that annual values of BFI were more stable than other low flow variables. For example the coefficient of variation of annual Base Flow Index values was found to be one-third of that for Q95(10) values. Furthermore, there was no evidence that, for example, years with high runoff experienced BFI values higher or lower than the average. This finding that values estimated from short records could be used with confidence supported the use of BFI as a key variable in the estimation procedure. A more detailed study of BFI variability in Scotland was carried out on 135 of the grade A and B stations which had more than 9 years of record.

The annual BFIs were calculated using the procedure described in this Appendix. The coefficient of variation (Figure 5) and the standard deviation



Figure 5 Coefficient of variation of annual BFI values

(s.d.) of annual BFIs were calculated for each of the 135 stations and the mean s.d. found to be 0.054. Variation in s.d. across Scotland was generally low although some stations in the Tweed and Forth areas showed a high annual variability while those in Solway were generally lower.

A linear regression was performed for each station between annual BFI and annual runoff to test whether wet or dry years had a tendency to give rise to low or high BFI values. Over 100 of the 135 records had values of explained variance less than 30% indicating a weak relationship between annual BFI and annual runoff. Only twenty stations had explained variances in excess of 50% and these were located mainly in the Forth and Tweed areas. Further investigation revealed that 75% of stations in the Tweed RPB area had their highest annual BFI in the drought years of 1973 and 1976. These results suggest that although extreme years may produce higher than average BFIs, most annual BFIs are close to the long term value. Provided extreme years are avoided BFI can be estimated with confidence from a short record with an error of 0.05 being typical for estimates derived from a single year of mean daily flow data.