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Summary 13 

 14 

A grid-based flow routing and runoff-production model, configured to employ as input either observed 15 

or Regional Climate Model (RCM) estimates of precipitation and potential evaporation (PE), has 16 

previously been used to assess how climate change may impact river flows across the UK. The slope-17 

based Grid-to-Grid (G2G) model adequately simulated observed river flows under current climate 18 

conditions for high relief catchments, but was less successful when applied to lower-relief and/or 19 

groundwater-dominated areas. The model has now been enhanced to employ a soil dataset to configure 20 

the probability-distributed store controlling soil-moisture and runoff generation within each grid-cell. A 21 

comparison is made of the ability of both models to simulate gauged river flows across a range of 22 

British catchments using observations of rainfall and PE as input. Superior performance from the 23 

enhanced G2G formulation incorporating the soil dataset is demonstrated. 24 

 25 

Following the model assessment, the observed precipitation and PE data used as input to both 26 

hydrological models were replaced by RCM estimates on a 25 km grid for a Current (1961 to 1990) 27 

and a Future (2071 to 2100) time-slice. Flood frequency curves derived from the flow simulations for 28 

the two time-slices are used to estimate, for the first time, maps of changes in flood magnitude for all 29 
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river points on a 1 km grid across the UK. A high degree of spatial variability is seen in the estimated 1 

change in river flows, reflecting both projected climate change and the influences of landscape and 2 

climate variability. These maps also highlight large differences between the climate impact projections 3 

arising from the two models. The improved structure and performance of the soil-based G2G model 4 

adds confidence to its projections of flow changes being realistic consequences of the climate change 5 

scenario applied. A resampling method is used to identify regions where these projections may be 6 

considered robust. However, with the climate change scenario used representing only one plausible 7 

evolution of the future climate, no clear message can be drawn here about projected river flow changes. 8 

 9 

 10 
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 13 

Introduction 14 

 15 

An analysis of precipitation records over the period 1961 to 2000 (Osborn and Hulme, 16 

2002) indicates that UK precipitation has tended to become more intense in winter 17 

and less intense in summer. The impact of such changes in rainfall on river flows will 18 

depend on both the nature of the rainfall and the physical characteristics of the 19 

catchment. For fast-responding catchments, such as those in impermeable or high 20 

relief areas, the features of the specific rainfall event are critical. Such catchments 21 

tend not to have the deep soils or permeable geology that lead to the long-term 22 

hydrological “memory” often exhibited by larger lowland rivers. Many drainage areas 23 

in Southeast England, including the Thames Basin, are typical of lowland catchments 24 

where the long-term balance between rainfall and evaporation can have an important 25 

influence on flood response to storm rainfall. 26 

 27 
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Over the past thirty to forty years there has been some evidence of a positive trend in 1 

high river flow indicators in the maritime–influenced upland areas of North and West 2 

Britain (Hannaford and Marsh, 2008). Such trends are generally thought to be linked 3 

to changes in winter precipitation arising from changes in atmospheric circulation 4 

patterns. However “little compelling evidence” was found for a trend towards higher 5 

flows in lowland areas of South and East Britain. Analyses of much longer flow 6 

records spanning the 20
th

 century (Black, 1996; Robson, 2002; Hannaford and Marsh, 7 

2008) have so far detected no apparent long-term trend in UK flood magnitude. 8 

Hannaford and Marsh (2008) note that over the last century the increasing 9 

temperatures observed in the UK are likely to have directly influenced key processes 10 

affecting floods: notably a decrease in snowmelt-induced floods and occurrence of 11 

frozen ground since the 1960s, and temperature-induced changes in evaporation 12 

(which can affect soil moisture deficits and flood generation). 13 

 14 

Current UK guidance on how to consider the potential impacts of climate change on 15 

flood flows when planning flood defence schemes states that “The limited number of 16 

catchments researched to date supports applicability of a 20% allowance to the 2080s 17 

for peak river flow” (Defra, 2006). Most research investigations into the effects of 18 

climate change on UK river flows, including that which led to the Defra (2006) 19 

guidance for flood defences, have used catchment hydrological models to provide 20 

estimates of changes in flow for a single location, or a small set of locations: 21 

examples are Kay et al. (2009), New et al. (2007), Fowler and Kilsby (2007), Wilby 22 

and Harris (2006), Wilby et al. (2006), Nawaz and Adeloye (2006), Cameron (2006), 23 

Kay et al. (2006), Arnell (2003) and Reynard et al. (2004). Generally, the 24 

hydrological model is calibrated to catchment conditions, using model parameters to 25 
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adjust the modelled catchment response to rainfall, in order to allow for the spatial 1 

heterogeneity of soil, geology, topography and land-cover. The model parameters can 2 

also be adjusted to take into account artificial influences on flows, such as water 3 

abstraction.  4 

 5 

Here we use a single, grid-based model (Grid-to-Grid, or G2G) and a single set of 6 

parameters for the whole of the UK to simulate the different responses of catchments 7 

to rainfall and evaporation, using digital datasets of landscape properties to provide 8 

the spatial differentiation. In order to determine the effect of hydrological model 9 

structural quality on river flows, estimates from an enhanced G2G model, which 10 

includes the effect of soil properties on runoff production, are compared to those from 11 

the slope-dependent G2G model used in previous assessments of changing flood risk 12 

(Bell et al., 2007a,b). These two model variants are distinguished here using the 13 

names ‘Soil-G2G’ and ‘Slope-G2G’ respectively. Estimates of river flows from both 14 

model variants are compared to observed flows for a large set of catchments using 15 

historical observations of rainfall and potential evaporation (PE) as model input. 16 

Model performance for different sizes and types of catchment across Britain is 17 

assessed. Bell et al. (2007a) found that the Slope-G2G provided reasonably good flow 18 

estimates for high relief catchments, but was less effective in areas of lower relief or 19 

where groundwater processes have a significant influence on river flows. The 20 

enhanced G2G model formulation presented here attempts to overcome these 21 

deficiencies, and contains further developments to the prototype Soil-G2G 22 

formulation previously trialled in some Upper Thames catchments (Moore et al., 23 

2007, 2006a,b).  24 

 25 
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Use of a grid-based hydrological model in conjunction with high-resolution climate 1 

model output has made it possible here, for the first time, to estimate the spatial 2 

effects of climate change on peak river flows across the UK. Observations of rainfall 3 

and PE used to calibrate and assess both hydrological models are replaced by 4 

Regional Climate Model (RCM) estimates on a 25 km grid and at hourly intervals 5 

(daily for PE) for a Current (1961 to 1990) and a Future (2071 to 2100) time-slice. 6 

Flood frequency curves derived from the flow simulations for both time-slices are 7 

used to produce maps of changes in flood magnitude for river points on a continuous 8 

1 km grid across the UK. These maps indicate a high degree of spatial variability in 9 

the sensitivity of UK rivers to future changes in climate. The resilience, or 10 

“robustness”, of the modelled changes in flood magnitude is investigated using a 11 

resampling method. Areas of the UK are identified for which confidence in the 12 

projected changes under this regional climate model scenario is greatest.  13 

 14 

 15 

The hydrological models 16 

 17 

Two hydrological model formulations are compared, one for which runoff production 18 

is parameterised in terms of slope (Slope-G2G), and one which introduces the effects 19 

of soil/geology on runoff production and catchment response (Soil-G2G). The models 20 

can be configured for use at (almost) any spatial resolution, with the temporal 21 

resolution determined by numerical stability criteria. They are run here at a 1 km 22 

resolution and for a 15 minute time-step over a UK model domain. The models 23 

employ Digital Terrain Model (DTM) data to support their configuration and 24 

parameterisation. A modular formulation allows model revisions and extensions to be 25 
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made. In order to represent spatial heterogeneity within each 1 km grid-cell, and to 1 

ensure that each cell generates realistic quantities of saturation-excess runoff even 2 

when it is not fully saturated, the probability-distributed soil moisture store 3 

formulation of Moore (1985, 2007) has been invoked in both models. Runoff from a 4 

cell soil column is considered to consist of the saturation-excess surface flow and the 5 

groundwater sub-surface flow. These runoffs from each cell form the lateral inflows 6 

to the G2G flow routing scheme. The scheme as presented in Bell et al. (2007a) 7 

consists of a kinematic wave formulation for routing both surface and sub-surface 8 

gridded runoffs. This scheme has been further enhanced to include dependence on 9 

river width and slope when used to represent river channel flow processes. 10 

 11 

The G2G can be used in two ways: first as an area-wide model providing flow 12 

estimates over a large region, and secondly as a catchment model which may be 13 

calibrated to obtain the best possible agreement between modelled and observed 14 

flows. As an area-wide model, the G2G can be less accurate for a particular catchment 15 

than a model specifically calibrated to the catchment, but is well suited to support 16 

river flow simulation at any set of locations within a region. As a consequence, the 17 

models are able to be calibrated to groups of gauged locations within a region and 18 

river flow simulations extracted for any ungauged location within the same area. 19 

 20 

The structure and performance of the two formulations of the G2G model, with area-21 

wide calibrations, is assessed here with reference to observed flow records for 22 

catchments across Britain. Model performance will impact on the quality of the flood 23 

frequency curves derived from the river flow simulations and on the reliability of the 24 

assessment of change in flood frequency under a future climate. 25 
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 1 

A description of each G2G model formulation follows. The Slope-G2G has already 2 

been presented in detail (Bell et al., 2007a), so only a brief description is provided 3 

here for comparison with the Soil-G2G. 4 

 5 

The Soil-G2G: a distributed grid-based model incorporating soil information 6 

 7 

Consider a sloping soil column of depth L  and slope 0s  subject to precipitation 8 

falling at a rate p  and with an evaporation rate Ea as shown in Figure 1. Some of the 9 

rainwater entering the soil column can drain laterally to adjacent grid-squares, while 10 

saturation-excess flow contributes to surface runoff. Water also moves downwards via 11 

percolation and drainage which eventually contributes to groundwater (sub-surface) 12 

flow.  13 

 14 

Soil-moisture and surface runoff-production in the Soil-G2G  15 

 16 

The actual, maximum ‘available’ and residual water storages (water depth per unit 17 

area) in the soil column are given by  18 

 19 

 LS r )( θθ −=  (1) 20 

 21 

 LS rs )(max θθ −= , (2) 22 

 23 

 LS rr θ=′  (3) 24 

 25 
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where θ , sθ  and rθ  are the actual, saturation and residual water contents (water 1 

volume per unit volume of soil). The total water stored is denoted rSSS ′+=′ , which 2 

can take a maximum value of rSSS ′+=′
maxmax . The residual water rS ′  held under 3 

tension forces is not available for drainage but can contribute to evaporation.  4 

 5 

Let SxV
2∆=  denote the volume of available water stored in the unsaturated layer of 6 

the soil column of a given grid-square cell of side length x∆ . From continuity, the 7 

rate of change in water volume is given by 8 

 9 

 spLia qqqqxEp
dt

dV
−−−+∆−= 2)( , (4) 10 

 11 

where iq  is the rate of inflow to the cell from contributing upstream cells, Lq  is the 12 

lateral drainage rate from the cell, pq is the downward percolation (drainage) rate to 13 

the saturated zone and sq  is saturation-excess surface runoff. This equation of 14 

continuity is also used in the Slope-G2G formulation, but with 0=Lq . 15 

 16 

The lateral drainage rate, Lq , is given by 17 

 18 

 αα

α
xSCV

x

xC
qL ∆=

∆

∆
=

2
. (5) 19 

 20 

The conveyance term C is given by α
max0 / SsLkC

L

s= , where 0s  is the local slope 21 

(derived from digital elevation data) and L

sk  is the lateral saturated hydraulic 22 



9 

conductivity. A similar equation can be derived by integrating the Brooks-Corey 1 

(1964) relation for hydraulic conductivity over the depth of soil column (Todini, 2 

1995; Benning, 1995) with parameter α  the pore-size distribution factor (here, taken 3 

to be unity). 4 

 5 

Percolation (a vertical downward flow from the soil column), pq , is represented as a 6 

simple power law function of the available soil water volume V , expressed as a 7 

fraction of the saturated water volume maxV , 8 

 9 
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 11 

where v

sk  is the vertical saturated hydraulic conductivity of the soil and pα  is the 12 

exponent of the percolation function. Clapp and Hornberger (1978) indicate, on the 13 

basis of soil experiments, that pα  can vary from circa 11 for sand to 25 for clay. 14 

Following tests, a constant value for pα  of 15 is assumed here (in the absence of a 15 

suitable spatial dataset). 16 

 17 

The dependence of evaporation loss on total soil moisture content is introduced by 18 

assuming the following simple function between the ratio of actual to potential 19 

evaporation, EEa / , and soil moisture deficit, SS −max : 20 

 21 
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 1 

Note that evaporation can occur from water held under soil tension. This formulation 2 

was used within the PDM (Moore, 1985, 2007) where a value of be=2.5 is often 3 

recommended to obtain realistic variation in evaporation between seasons; this value 4 

has been used here. 5 

 6 

In order to ensure that a grid-square generates realistic quantities of saturation-excess 7 

surface runoff sq  even when it is not fully saturated, the probability-distributed soil 8 

moisture store formulation of Moore (1985, 2007) has been invoked within each grid-9 

square. This probability-distributed approach also forms the basis of the Xinanjiang 10 

model (Zhao et al., 1980), the Arno model (Todini, 1996) and the VIC land-surface 11 

model (Wood et al., 1992); an historical perspective citing earlier works is given by 12 

Moore (1985). The conceptualisation represents the spatial variation in water 13 

absorption capacity with soil, geology, land-cover and topography across the grid-14 

square by assuming the grid-square contains a distribution of store depths, c , with the 15 

depths dependent upon saturation and residual soil moisture. The distribution is 16 

assumed to be of Pareto form with distribution function b
cccF )/1(1)( max−−=  17 

defined by two parameters: maxc  the maximum store depth and b  the spatial 18 

distribution (shape) parameter controlling the nature of the variation of store depth 19 

between 0 and maxc .  20 

 21 

Total soil moisture, rSStS ′+≡′ )( , and surface runoff, )(tqqs ≡ , are evaluated at 22 

each time-step. The maximum total storage rSSS ′+≡′
maxmax  is estimated from soil 23 

data on local saturation and the depth of the soil column. The variable )(** tCC ≡  is 24 
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the critical capacity below which all stores are full at some time t. The proportion of 1 

the grid-square containing stores of capacity less than or equal to *
C  is 2 

( ) ( ) ( ) =∫==≤ dccf CFCc C

o

**
*

prob .cC
b)/1(1 max

*−−  This is the proportion of the 3 

grid-square from which the surface runoff qs is generated when net rainfall is positive. 4 

 5 

The PDM rainfall-runoff catchment model assumes a single distribution of stores 6 

across a catchment, with the values of b and cmax determined through calibration with 7 

reference to observed river flows. In contrast, the Slope-G2G exploits a relation 8 

between store capacity and terrain slope to estimate the values of b and cmax from 9 

DTM-derived slope data for each model grid-square (see section on Slope-G2G). For 10 

the Soil-G2G, a method to estimate b directly from soil properties, rather than through 11 

terrain slope, was sought. Parameter values obtained by calibration of the standard 12 

PDM lumped catchment model across a range of catchments, indicate that those with 13 

larger store capacity (large maxS ′ ) do tend to have smaller values of b, whereas those 14 

with shallow soils tend to have larger values of b. Results are shown in Fig. 2 for 37 15 

catchments across the UK and simple curve fitting indicates that the inverse square-16 

root relationship  17 

 18 

 max/2.5 Sb ′= ,  (8) 19 

 20 

provides a reasonable approximation (coefficient of determination of 0.66). Soil data 21 

were used to provide an estimate of the total water stored maxS ′  from which b is then 22 

calculated using Eq. (8); this is done for each grid-square over the model domain. 23 

Trials indicated that the relationship of Eq. (8) performed well except in areas with 24 
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permeable geology such as chalk downland. For these areas where stores are 1 

particularly deep ( 1>L  m), setting 0=b  had the effect of removing rapid 2 

fluctuations in surface runoff and resulted in more realistically modelled river flows. 3 

For this case, all stores in a grid-square have the same capacity, cmax. 4 

 5 

Estimates for the four soil properties sθ , rθ , L and sk  (the saturated hydraulic 6 

conductivity) are available from soil datasets for the UK at a 1 km resolution (details 7 

are provided in a later section). The vertical component of the saturated hydraulic 8 

conductivity v

sk  is assumed to be linearly related to sk , through the relation s

v

s kk λ= , 9 

where λ  is treated as a spatially invariant model parameter referred to as the drainage 10 

conductivity multiplier. This additional parameter is required to take into account the 11 

vertical variation in hydraulic conductivity not encompassed by values taken from the 12 

UK datasets. The lateral saturated hydraulic conductivity, L

sk , is unknown but 13 

following initial trials of the G2G, it is assumed to be related to sk  via the relation 14 

s

L

s kk 50= : this produces a moderate improvement in the timing of flow peaks in 15 

groundwater-dominated catchments. However, more extensive calibration has proved 16 

impossible, in part because most of the groundwater-dominated catchments in this 17 

study are subject to abstraction and/or uncertainty about the extent of the sub-surface 18 

catchment.
 

19 

 
20 

The facility exists to include a reduction of soil depth L from those provided by 21 

national datasets, for grid-cells containing significant urban and suburban areas, 22 

through use of the LCM2000 spatial dataset of land-cover (Fuller et al., 2002). The 23 

soil depth is multiplied by the factor su φφ 3.07.01 −−  where uφ  and sφ  are the 24 
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fractions of urban and suburban area within each grid cell. This reduction in soil 1 

storage will have the effect of increasing runoff, particularly surface runoff, in urban 2 

areas leading to a faster response to rainfall. This responsiveness has been further 3 

enhanced through the use of an increased routing speed in urban areas (see Section 4 

Estimation of river flows by surface and channel flow routing models). 5 

 6 

Sub-surface runoff-production in the Soil-G2G  7 

 8 

It is assumed that percolation freely drains as recharge to the groundwater saturated 9 

zone (for the cell), so that the recharge rate pr qq ≡ . Let gV  denote the groundwater 10 

volume stored in the cell and bs  the slope of the underlying bedrock in the flow 11 

direction. Continuity for the groundwater volume is 12 

 13 

 gp

g
qq

dt

dV
−=  (9) 14 

where gq  is the lateral groundwater flow from the cell. Darcy’s law gives the lateral 15 

groundwater flow out of the cell to a reasonable approximation by the linear relation 16 

 17 

 g

bg

g V
x

sk
q

∆
=  (10) 18 

 19 

where gk  is the horizontal hydraulic conductivity of the aquifer. This is appropriate 20 

for a confined aquifer. However, suitable values for bedrock slope, bs , and 21 

conductivity, gk , are not straightforward to obtain. One approach is to assume that 22 

bedrock slope mirrors the surface topographic slope which can be estimated from 23 
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digital terrain data. Conductivity information may be obtained from geology datasets 1 

but obtaining meaningful values for the present scale of application may present 2 

difficulties. Geological datasets have not been used for the present model application. 3 

Instead, a nonlinear storage function relating groundwater flow to volume has been 4 

invoked, such that 5 

 6 

 
m

ggg Vq κ= , 0>gκ , 0>m , (11) 7 

 8 

where gκ  is a rate constant and m  is the nonlinear power. For this application, a cubic 9 

storage function has been assumed ( m =3), and gκ  is treated as a spatially invariant 10 

parameter for estimation. 11 

 12 

 13 

Estimation of river flows by surface, subsurface and channel flow routing models 14 

 15 

Runoff from the soil column is considered to consist of the saturation-excess flow, sq , 16 

and groundwater flow, gq . These runoffs from each cell form the lateral inflows to 17 

the Grid-to-Grid flow routing scheme comprising of two parallel coupled equations 18 

representing the surface and subsurface flow pathways respectively. The scheme (Bell 19 

et al., 2007a,b) employs a kinematic wave equations in 1-dimension of the form: 20 

 21 

 )( Ruc
x

q
c

t

q
+=

∂

∂
+

∂

∂
 (12) 22 

 23 



15 

where q  is either surface or subsurface flow, R  denotes return flow per unit path 1 

length (water transfer between subsurface and surface pathways), and u  represents 2 

lateral inflows per unit path length, which include runoff generated by the runoff-3 

production scheme. The wave speed c can vary with the pathway (surface or 4 

subsurface) and surface-type (land or river) combination. 5 

 6 

Invoking forward difference approximations to the derivatives in (12) gives the 7 

discrete formulation 8 

 9 

 ( ) ( )n

k

n

k

n

k

n

k

n

k Ruqqq +++−= −
−−

1

111 ϑϑ  (13) 10 

 11 

where k and n denote positions in discrete time and space respectively, the 12 

dimensionless wave speed xtc ∆∆= / ϑ  and 10 << ϑ . This is a simple, explicit 13 

numerical formulation for the kinematic wave equation with n

ku  and n

kR  now the 14 

lateral inflow and return flow over the path length. This numerical scheme has the 15 

advantage of introducing diffusion (albeit numerically) and so more closely represents 16 

the propagation of actual flow through the landscape. Figure 3 summarises the key 17 

features of the coupled runoff-production and routing scheme.  18 

 19 

This finite-difference scheme forms the basis of the routing component of both the 20 

Soil- and Slope-G2G. In each case, the routing is implemented in terms of an 21 

equivalent depth of water in the surface or sub-surface store over the grid square, ,n

kS  22 

with n

k

n

k Sq κ=  and where xc ∆= /κ  is a rate constant with units of inverse time and 23 

x∆ is the grid-cell size. The inflow and return flow are also re-expressed in terms of 24 



16 

water depth for calculation purposes. In the Soil-G2G, return flow from the sub-1 

surface to the surface is estimated as tSrSrR
n

iki

n

bkb

n

k ∆+= /)( , which includes a 2 

contribution directly from the soil column, while for the Slope-G2G return flow is a 3 

proportion of the sub-surface flow only, i.e. tSrR
n

bkb

n

k ∆= / . In both cases, n

bkS  is the 4 

depth of water in the sub-surface routing store, br  is the return flow fraction and for 5 

the Soil-G2G, ir  is the return flow fraction from the soil store and n

ikS  is the depth of 6 

water in the soil column. For diagonal flow-paths the distance travelled across the 7 

grid-cell is increased by a factor of 2 . 8 

 9 

In the Soil-G2G, routing along surface pathways of river channel type employs the 10 

Horton–Izzard nonlinear storage approach (Dooge, 1973; Moore and Bell, 2001) 11 

applied to a varying width channel network (Ciarapica and Todini, 2002; Moore et al., 12 

2007) and exploits geomorphological relations developed by Bell and Moore (2004). 13 

In this case the momentum equation is given by the Manning equation mCSq = , 14 

where S  is the water depth, the conveyance nsC /0=  where 0s  is the channel bed 15 

slope and n is Manning’s roughness coefficient, and 3/5=m . Without change of 16 

notation, to simplify presentation, this routing scheme is developed below for a river 17 

grid cell within the modelled domain. 18 

 19 

Assuming a network structure of channel reaches with wide rectangular cross-sections 20 

of width, w , increasing downstream, then the kinematic wave routing scheme for a 21 

reach is 22 

 23 
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 c

m

m
qqV

xw

Cw
q

dt

dV
−=

∆
−=

)(
. (14) 1 

 2 

Here, V  is the volume stored in the reach, qc is the outflow, and the inflow q  is made 3 

up of two components: the surface runoff sq , which includes return-flows from the 4 

soil and groundwater store, and the channel inflow from upstream 
u

cq . The channel 5 

bed slope, 0s , is here assumed equal to the mean slope of the grid-cell. Standard 6 

tables of Manning’s n  can be used to assign values to each cell if information on the 7 

type of channel is available. Alternatively, a channel ordering system, such as that due 8 

to Strahler, could be invoked with the support of a digital terrain model and used to 9 

allow roughness to decrease with increasing stream order. Here, a constant roughness 10 

has been assumed within and across all cells for simplicity. In practice, the kinematic 11 

wave routing scheme with varying cross-sectional width used here is 12 

 13 

20

*

V
w

sc
q

dt

dV r−= , (15) 14 

where *

rc  is a routing parameter with units of s
-1

m-5/2
. 15 

 16 

To estimate channel width w, the approach of Bell and Moore (2004) has been 17 

followed. They obtained the following relationship for bankfull width using 18 

observations of bankfull river dimensions published by Nixon (1959) for 27 19 

catchments across the UK ranging in size from 157 to 9948 km
2
: 20 

 21 

 ,
1000

9134.0

139.1

5121.0








= SAAR

b

R
Aw  (16) 22 
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 1 

where A is the area drained (km
2
) and RSAAR is the Standard Average Annual Rainfall 2 

(mm) over this area. This has been applied to each cell containing a river channel to 3 

obtain estimates of w. 4 

 5 

The kinematic wave routing scheme for channel flow given by equation (14) takes the 6 

general nonlinear reservoir (Horton-Izzard) form 7 

 8 

 
m

kVu
dt

dV
−=  (17) 9 

 10 

where V  is the volume of water in the channel and the quantities u  and k  are 11 

constants within a time-step. An integral solution of this equation is available for 12 

calculation purposes based on an approximation suggested by Smith (1977) for the 13 

general case, or analytical expressions for specific cases: see Moore and Bell (2002) 14 

and Moore et al. (2007) for further details. For the present application, involving 15 

specifically Eq. (15), the analytical solution for the quadratic case (m=2) is used.  16 

 17 

For the Soil-G2G the responsiveness of the catchment to rainfall in urban areas has 18 

been further enhanced by increasing the routing parameter, k , by a factor of 2 for 19 

grid-cells where the fraction of urban area, 25.0>uφ .  20 

 21 

The slope-dependent Grid-to-Grid Model  22 

 23 
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A full description of the slope-dependent G2G model structure and its configuration 1 

to the UK is presented in Bell et al. (2007a). A simple runoff production scheme 2 

based on terrain slope is used following methodology developed for the CEH Grid 3 

Model (Bell and Moore, 1998a,b) to derive surface and sub-surface runoffs from 4 

gridded rainfall and potential evaporation inputs. The Slope-G2G formulation 5 

assumes that grid-cells with less steep slopes have deeper soil stores, and are less 6 

immediately responsive to rainfall than steeper areas.  7 

 8 

At a point it is assumed that the moisture storage capacity, c , is related to the local 9 

topographic slope, 0s , such that 10 

 11 

 maxmax

0

01 c
s

s
c 








−= , (18) 12 

 13 

where max

0s  and maxc  are regional maximum values of slope and capacity respectively. 14 

Further, it is assumed within a grid-square that the variation in slope has a distribution 15 

function of power form such that b
sssF )/()( max

000 = , max

000 ss ≤≤ . It follows from 16 

derived-distribution theory that capacity c  has the Pareto distribution 17 

b
cccF )/1(1)( max−−=  with spatial distribution (shape) parameter, b , related to the 18 

mean slope, 0s , through the expression.  19 

 20 
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 = b
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0

−
. (19) 21 
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Standard PDM theory (Moore, 1985, 2007) can then be used to obtain the fraction of 1 

a grid-square that is saturated and generating runoff. Analytical expressions are 2 

available for calculating for every model time-step the volume of surface runoff and 3 

total water storage, )(tS ′ , for each grid-square. The latter has a maximum value 4 

)1/(maxmax +=′ bcS . DTM data (here, available on a 50 m grid) are used to estimate 0s  5 

for each grid-square and max

0s , with maxc  treated as a regional parameter to be 6 

optimised. Values for b  and maxS ′  can be calculated from these for all grid-squares. 7 

No data on soil properties are required with the Slope-G2G model variant as terrain 8 

slope is used as a surrogate for the water holding capacity of the soil. The water 9 

balance calculations for the Slope-G2G take account of losses via evaporation and 10 

drainage in a similar way to that outlined for the Soil-G2G, but using a storage-11 

dependent drainage function incorporating a soil tension threshold. 12 

 13 

The routing component employed by the Slope-G2G has previously been outlined in 14 

the context of the Soil-G2G model variant. It essentially employs a kinematic wave 15 

formulation that is equivalent in conceptualisation to a network cascade of linear 16 

reservoirs. Surface and subsurface runoffs are routed via parallel fast and slow 17 

response pathways linked by a return flow component representing stream-soil-18 

aquifer interactions. The terrain-following flow paths are configured using a DTM. 19 

 20 

 21 

Model Configuration from digital datasets 22 

 23 

The routing component of both the Slope- and Soil-G2G models requires two DTM-24 

derived datasets: 25 
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 1 

(i) flow directions (each grid-cell can drain in only one of 8 directions), 2 

(ii) area draining to each 1 km grid-cell 3 

 4 

Here, the G2G model formulation is configured spatially using river networks and 5 

terrain information derived from a 50m hydrologically corrected UK DTM, the 6 

IHDTM (Morris and Flavin, 1990). The IHDTM is derived using Ordnance Survey 7 

(OS) 1:50000 digitised contours and spot heights, and digitised river networks; it has 8 

a 0.1m vertical resolution. Although the IHDTM provides an accurate 50m grid of 9 

flow-directions, the G2G routing scheme operates on a coarser 1km grid and is unable 10 

to use these fine-scale flow-directions directly. This is a common issue in broad-scale 11 

distributed modelling, and has motivated the development of a range of methods to 12 

extract low-resolution flow direction networks from high-resolution base datasets. In 13 

a recent assessment, Davies and Bell (2009) found that two derivation methods - the 14 

Network Tracing Method (NTM, Fekete et al., 2001), and the COTAT+ method (Paz 15 

et al., 2006) - produced river networks that most closely resembled the base fine-scale 16 

(50m) river networks. The COTAT+ raster-based scheme was considered slightly 17 

better at estimating catchment areas. The accuracy of the COTAT+ river network 18 

derivation method over the UK does not seem to depend greatly on the nature of the 19 

topography it is applied to. Indeed, Davies and Bell (2009) found that it performed 20 

reasonably accurately across the whole of mainland Britain. Generally the percentage 21 

error in catchment area arising from the delineation of a catchment boundary using 22 

1km-resolution flow-directions is less than 5%, although a few catchments have larger 23 

errors.  24 

 25 
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The runoff-production schemes for both G2G formulations require gridded estimates 1 

of average terrain slope in each grid-cell. The slope of each 1 km grid-cell is 2 

determined from the mean of the 50m grid-cell slopes contained in the 1 km grid-cell, 3 

These are estimated from the elevations of the 3×3 cell neighbourhood surrounding 4 

each cell using an average maximum technique (Burrough, 1986) as implemented in 5 

ESRI ArcGIS software. Note that this measure of cell mean slope will not necessarily 6 

represent the slope of the river. 7 

 8 

Additional data on soil properties is required by the Soil-G2G runoff-production 9 

scheme. Here, a derived quantity called the HOST (Hydrology of Soil Types) class 10 

has been used to infer estimates of soil hydraulic properties across the UK. The HOST 11 

dataset has a 1 km resolution and consists of 29 classes, encompassing soil type, 12 

hydrological response and substrate hydrogeology (Boorman et al., 1995). Although 13 

this classification only provides an integer identifier for 29 different soil types, a 14 

database of derived soil attributes supports the derivation of these classes and consists 15 

of properties such as air capacity, parent material, depth to gleying and depth to 16 

slowly permeable layer. Highly derived soil properties have been extracted from a soil 17 

properties database called SEISMIC (Hallett et al., 1995), available from the National 18 

Soil Resources Institute. In SEISMIC, soil series are analysed down to a depth of 1.5 19 

m. By comparing information from SEISMIC with the HOST dataset, Ragab together 20 

with colleagues at CEH (pers. comm.) associated values of soil properties with each 21 

of the 29 HOST classes. Relevant properties are as follows: 22 

 23 

hydraulic conductivity at saturation : sk  (cm d
-1

), 24 

soil depth to “C” and “R” horizons (cm), 25 
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water content at field capacity, fcθ : fractional volume at 5KPa, 1 

residual water content, rθ : half the fractional volume at 1500KPa 2 

 3 

The soil depths to “C” and “R” horizons consist of two values. The SEISMIC User 4 

Manual defines the C-layer as “mineral substrate, relatively unweathered ‘soft’ 5 

unconsolidated material, gravel or rock rubble”, and the R-layer as “relatively 6 

unweathered, coherent rock”. The depth to the R-layer has been used here as a 7 

surrogate for soil depth. Where a value for depth to the R-layer is not available, the 8 

depth to the C-layer is used instead. In many cases (but not all), depth to the R-layer 9 

for each soil type is greater than the depth to the C-layer.  10 

 11 

The residual soil water content, rθ , and the saturated hydraulic conductivity, sk , are 12 

used directly in the Soil-G2G runoff production scheme. The water content at field 13 

capacity, fcθ , represents the water content below which drainage becomes negligible. 14 

As a rule of thumb (Or and Wraith, 2002), fcs θθ 2= , where sθ  is the water content at 15 

saturation, an estimate of which is required for the Soil-G2G runoff-production 16 

scheme. However, values for fcθ  associated with HOST classes from SEISMIC data 17 

range from 0.25 to 0.49 and seem rather large compared to literature values which 18 

range from 0.1 for fine sand to 0.39 for clay (Dunne and Leopold, 1978). For the 19 

present purposes it is assumed that fcs θθ 25.1= , which results in values of sθ  ranging 20 

from 0.31 to 0.61.  21 

 22 

 23 

Hydrological and climate data 24 
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 1 

Observation-based data for model calibration and assessment 2 

 3 

Both variants of the G2G model are assessed here with respect to observed flows at 4 

river gauging station sites across the UK and using gridded time-series of 5 

precipitation and potential evaporation as model input. The precipitation data were 6 

daily values on a 5km grid derived from raingauge totals by the Met Office for the 7 

period 1958 to 2002. In the present application, the G2G model runs at a 15-minute 8 

time-step, so the daily rainfall estimates are equally spread throughout the day. 9 

Potential evaporation data were monthly values on a 40 km grid obtained from the 10 

“Met Office Rainfall and Evaporation Calculation System”, MORECS (Thompson et 11 

al. 1981, Hough and Jones, 1997). Monthly total PE estimates are spread equally 12 

throughout the month. This method is sufficient for PE input to rainfall–runoff 13 

models, since its effect on runoff production is as a cumulative control on soil water 14 

storage. 15 

 16 

The Slope-G2G model had previously been assessed using observed (raingauge) and 17 

modelled (from an RCM driven by quasi-observed boundary conditions) rainfall data 18 

as input (Bell et al., 2007a). The DTM-derived river-flow routing datasets used here 19 

differ slightly to those described by Bell et al. (2007a,b), as derivation-methods for 20 

flow paths and catchment boundaries have since been improved. This has required 21 

minor adjustments to be made to the Slope-G2G model parameters. 22 

 23 

Daily flow records from 42 river gauging stations across Britain have been used in the 24 

G2G model assessment. A map showing catchment boundaries and outlet locations is 25 
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presented in Fig. 4. The station names and identifiers (IDs) are listed in Table 1 1 

together with catchment area and baseflow index (bfi). The baseflow index (Institute 2 

of Hydrology, 1980) is a dimensionless measure (range 0 to 1) expressing the fraction 3 

of river flow that derives from stored sources, such as groundwater. The catchments 4 

were chosen to represent a wide range of river regime, ranging from fast-responding 5 

upland catchments (e.g. Taw, Dee) to baseflow-dominated river basins (e.g. Mimram, 6 

Lambourn). It is important to remember that artificial controls on flow, such as 7 

reservoirs and abstractions for water supply, are not yet accounted for in the G2G 8 

model. Neglecting the effect of groundwater abstractions on river flows will result in 9 

apparent overestimation of flows in affected areas, particularly during summer 10 

months. Daily mean flow data for the catchments in Table 1, originating from the 11 

Environment Agency, were obtained from the National River Flow Archive at CEH 12 

Wallingford.  13 

 14 

The observed data record was divided into two separate periods for model calibration 15 

and assessment. The calibration period was from 28 November 1980 to 18 December 16 

1982 following a six-month period used for model initialisation; the period used for 17 

model assessment ran from 1 January 1985 to 31 December 1993, again preceded by a 18 

six-month initialisation period.  19 

 20 

 21 

Regional Climate Model data for climate change assessment 22 

 23 

The RCM used is HadRM3H, here configured at a 25km resolution; a 50km version 24 

was previously employed to produce the UKCIP02 scenarios (Hulme et al., 2002). 25 
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RCM-derived hourly precipitation and daily estimates of potential evaporation have 1 

been used as input to the G2G. The data are available for two time-slices:  2 

• Current scenario from 1960 to 1990; 3 

• Future scenario (SRES-A2; IPCC, 2000) from 2070 to 2100. 4 

The first 9 months of each was used to initialise the hydrological model, so each time-5 

slice contains 30 whole water years (1 October to 30 September). It should be noted 6 

that an RCM ‘year’ consists of just 360 days (12 months each with exactly 30 days). 7 

 8 

HadRM3H is described in Buonomo et al. (2007), which compares the RCM 9 

simulations of precipitation with observations from a raingauge network over Great 10 

Britain. The comparison indicates that HadRM3H realistically simulates extreme 11 

precipitation over time-scales of one to thirty days and return periods of two to twenty 12 

years. In particular, errors are generally no larger and sometimes smaller than those in 13 

seasonal mean precipitation. Similarly, a study of extreme rainfall comparing 14 

HadRM3H output and daily raingauge records from 204 sites across the UK by 15 

Fowler et al. (2005) found that the RCM provided a good representation of extreme 16 

rainfall for return periods up to 50 years. The experimental run used here is a rerun at 17 

a higher resolution (25km) of one of the experiments used for UKCIP02. As RCM 18 

rainfall is representative of average rainfall over a grid-box then rainfall events at 19 

smaller spatial scales, for example localised heavy convective precipitation, will not 20 

be captured in the models. This also means that changes in events of this nature will 21 

not be represented in the future climate scenario. However, as RCM summer rainfall 22 

compares well with observations when they have been aggregated onto the model 23 

grid, then clearly the RCM is able to capture the area-averaged effect of convective 24 

rainfall. 25 
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 1 

The 25 km RCM precipitation has been downscaled to the 1 km UK National Grid 2 

using the procedure followed by Bell et al. (2007b). Higher spatial rainfall resolution 3 

is provided by the standard average annual rainfall (SAAR) 1 km dataset for the 4 

period 1961–1990. For each time-step, the rainfall for each RCM grid-square is 5 

multiplied by the ratio of RCM grid-square SAAR to the 1 km grid-square SAAR to 6 

provide rainfall on a 1 km grid. This determines whether some areas generally receive 7 

more or less rainfall than others, for instance as a consequence of topography. 8 

Potential evaporation (PE) has been estimated from RCM outputs in a way that is as 9 

consistent as possible with the Penman–Monteith equation (Monteith, 1965) as 10 

implemented in MORECS (Hough and Jones, 1997), but using RCM outputs instead 11 

of synoptic station measurements. The hourly rainfall (daily PE) estimates are equally 12 

spread throughout the hour (day), in line with the approach used for the model runs 13 

driven by observations.  14 

 15 

 16 

G2G model calibration and assessment 17 

 18 

The G2G model has been designed for area-wide application, providing estimates of 19 

river flows throughout a region, irrespective of catchment boundaries. Where 20 

possible, the model is configured to a region, in this case the UK, using gridded 21 

datasets to represent spatial heterogeneity of hydrological response across grid-cells. 22 

With the use of greater process representation and ever-more detailed datasets one 23 

might expect that less calibration would be required to achieve an accurate 24 

representation of surface and sub-surface hydrology. However, many aspects of 25 
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surface-groundwater interactions are complex, scale-dependent and still not fully 1 

understood or measurable. Thus model calibration is still required to achieve better 2 

agreement between modelled and observed river flows, particularly for groundwater-3 

dominated regions. 4 

 5 

As the G2G model is designed for area-wide use, care has been taken not to over-6 

calibrate the model to individual catchments for which flow observations are 7 

available. Instead, flow measurements for catchments with a predominant soil-type 8 

have been used to determine whether the hydraulic properties associated with the soil-9 

type provide realistic estimates of the relative volumes of surface and sub-surface 10 

runoff. Manual adjustment of soil hydraulic properties (usually effective soil depths) 11 

is applied recursively to different catchments and sub-catchments until a good 12 

estimate of downstream surface- and subsurface-flow volumes across a range of soil-13 

types is achieved. The baseflow storage rate-constant parameter, gκ , and drainage 14 

conductivity multiplier, λ , are adjusted as part of this runoff-calibration process, 15 

although their effects are sometimes indistinguishable from the routing time-constant 16 

parameters. Generally, adjustment of soil properties has been required for soils 17 

overlying permeable geology, such as chalk, where the baseflow component of river 18 

flow is dependent on the volume of water stored in both the soil and the bedrock. 19 

With the current absence of data to support estimates of groundwater hydraulic 20 

properties, storage in these areas has been augmented by increasing the effective soil 21 

depth and assuming that the soil hydraulic properties apply at all depths. This 22 

effectively introduces a deeper unsaturated zone below the soil layer in some areas 23 

associated with chalk and Oolite formations. In time, greater availability of soil and 24 
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geological data should provide additional information to underpin model constructs of 1 

this kind. 2 

 3 

Parameters governing the temporal development of flow peaks are determined by 4 

manual calibration to observed flows at a number of locations. These consist of time-5 

constants for both the surface and sub-surface routing pathways, together with the 6 

return-flow fractions, ir  and br , which determine the proportion of sub-surface water 7 

that passes into the river at each time-step. 8 

 9 

The same calibration/assessment procedure was followed for both the Slope-G2G and 10 

the Soil-G2G model variants. The results obtained for the nine-year assessment period 11 

are shown in Fig. 5. Here, differences between observed and modelled daily mean flows 12 

for each catchment in Table 1 are expressed in terms of the R
2
 statistic, also referred to as 13 

the “Nash-Sutcliffe Efficiency” (Nash and Sutcliffe, 1970) or simply “Model 14 

Efficiency”. This is defined as  15 

( )
( )∑

∑ −
−

2

2

1
Q - Q

qQ
  = R

t

tt2 , (20) 16 

where Qt is the observed flow at time t, qt is the simulated flow and Q  is the mean of 17 

the observed flows over the n values involved in the summations. The R
2
 statistic 18 

provides a dimensionless performance measure which expresses the proportion of 19 

variability in observed flows accounted for by the model simulation. A value of 1 20 

indicates a perfect fit whilst a value of 0 indicates that the model is only as good as 21 

using the mean flow for model simulation. Note that R
2
 can be negative if the model 22 

simulations are worse than that provided by the mean flow (assumed unknown when 23 
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doing the model simulation). In the bar-charts of Fig. 5, negative R
2
 values are 1 

indicated with a token value of -0.05 for clarity. In all but three of the catchments, use 2 

of the Soil-G2G leads to a more accurate simulation of observed river flows, even in 3 

high relief areas where the Slope-G2G can be particularly effective. In the figure, the 4 

catchments are displayed in ascending order of their bfi: this serves to highlight the 5 

better performance of the Soil-G2G in catchments where a larger proportion of the 6 

river flow derives from stored sources such as groundwater (i.e. where bfi is higher).  7 

 8 

Figure 6 presents hydrographs highlighting the improved performance of the Soil-9 

G2G in two very different catchments; the Beult at Stile Bridge (bfi = 0.24) and the 10 

Lambourn at Shaw (bfi = 0.97). The enhanced simulation performance in the 11 

Lambourn is evident: however there is still room for improvement in groundwater-12 

dominated areas. For example, neither model variant is able to simulate flows 13 

adequately in the Mimram at Panshanger Park. This is probably because groundwater 14 

abstraction in the headwaters of the Mimram reduces observed flows below what 15 

would be expected naturally, leading to an apparent overestimate in the model 16 

simulations. For another low relief catchment in South East England affected by 17 

abstractions, the Thames to Kingston, naturalised observed flows are available in 18 

addition to gauged flows. Here, a comparison between naturalised and Soil-G2G 19 

modelled flows indicates that the representation of natural processes by the Soil-G2G 20 

model in groundwater-affected areas is reasonably good (Bell et al., 2008). 21 

 22 

Overall, the Soil-G2G model, which is supported by a range of digital datasets and 23 

has just one set of calibrated model parameters for the whole of the UK, simulates 24 

river flows reasonably well for a wide range of catchments. It performs very well for 25 
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many catchments having a natural flow regime and for which the flow record is 1 

believed to be accurate. The Slope-G2G performs well for catchments where runoff-2 

generation is controlled by topography and where terrain slope serves as a good 3 

surrogate for soil depth (absorption capacity). However, it is less effective in lowland 4 

areas where soil/geology controls can dominate the hydrological response. Model 5 

simulations (for both formulations) are less accurate in catchments where the flow 6 

regime is influenced by artificial abstractions and discharges, and where the sub-7 

surface hydrology is unusually complex (and not well understood). A rainfall-runoff 8 

model calibrated to individual catchments can sometimes be adjusted to take such 9 

artificial influences into account, but this is not an option for an area-wide model 10 

constrained to use one set of model parameters for all locations. Future model 11 

development might include a scheme to incorporate losses due to groundwater 12 

abstraction, such as the groundwater model component developed for the PDM by 13 

Moore and Bell (2002).  14 

 15 

 16 

Impact of hydrological model formulation on projected flow changes 17 

 18 

Following the assessment of G2G model performance across the UK for a wide 19 

variety of catchments, the Slope-G2G and Soil-G2G are used next to investigate the 20 

impact of RCM-estimated climate change on flood magnitude across the UK. This 21 

allows an assessment to be made of the sensitivity of the estimated impacts to 22 

hydrological model structure. Estimates of spatial changes in peak flow, for different 23 

return periods, for river points on a 1km grid across the UK form the final output of 24 

this investigation into changing flood risk. 25 
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 1 

In order to be able to estimate flood frequency for each river point modelled by the 2 

G2G, annual maximum (AM) flows are stored for each point by UK water-year (1 3 

October to 30 September). The AM are then ordered and their Gringorten (1963) 4 

plotting positions (estimates of the non-exceedence probability for each AM) 5 

determined. A generalised logistic distribution, recommended for UK catchments by 6 

Robson and Reed (1999), is then fitted to the AM at each point using L-moments. 7 

This method assumes stationarity over the data period and the fitted curve should not 8 

be used for extrapolation much beyond the data period length (in this case 30 years). 9 

 10 

Fig. 7 maps the spatial changes in flood magnitude over the UK with river points 11 

colour-coded according to the percentage change in peak flow at 2, 10 and 20 year 12 

return periods. The maps in the first and second rows are derived using the Slope-13 

G2G and Soil-G2G respectively. Red and orange colours indicate a decrease in peak 14 

flows under future climate conditions, blue and purple an increase, and yellow/green 15 

small decreases/increases. Overall, the maps of changes in peak flows from both G2G 16 

model variants are visually similar, particularly in high relief areas of North and West 17 

Britain. For South East England and the Midlands there is more spatial and inter-18 

model variation in the estimated impact of climate change on river flows. These 19 

regions tend to have lower relief and spatially variable soil/geology and include areas 20 

where groundwater is a significant component of river flow. A large variation in 21 

percentage change in peak flows is apparent in individual river reaches (e.g. Thames, 22 

Severn), reflecting the differing response of subcatchments draining to them. Note 23 

that although the colour scale of Fig. 7 indicates projected decreases of over 60% and 24 

increases as high as 200% or more, there are very few of these areas in the Slope-G2G 25 
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simulations and even fewer for the Soil-G2G. Most of the areas of high projected 1 

increases are located in Scotland or Northern England where the lack of an explicit 2 

snowmelt model may have led to some underestimation of Current flow peaks. This 3 

may have exaggerated the potential change in future flows as snowmelt events are 4 

expected to be less influential in a future warmer climate. 5 

 6 

Maps of differences in percentage change between the two model variants (Soil-G2G 7 

– Slope-G2G), shown in the third row of Fig. 7, highlight that the largest areas of 8 

difference are in regions where slopes are lower and soils are particularly deep or 9 

shallow. Upland areas tend to be shaded in green which indicates very little difference 10 

between the models. Purple shading highlights areas where the Slope-G2G predicts a 11 

larger increase (or very occasionally a smaller decrease) than the Soil-G2G, and can 12 

coincide for example with regions of chalk or limestone geology. Orange areas are 13 

only apparent at higher return periods and tend to correspond to shallow soils in 14 

lowland regions for which the Soil-G2G predicts larger increases (or smaller 15 

decreases) than the Slope-G2G.  16 

 17 

The G2G model assessment against river flow observations indicates that the Soil-18 

G2G generally provides a more reliable flow simulation over low relief areas than the 19 

Slope-G2G, and also performs well over upland areas. The climate change impact 20 

results from this model might therefore be examined with greater confidence than 21 

those of the Slope-G2G. It is apparent from the maps in Fig. 7 obtained using the Soil-22 

G2G model that the percentage change in future peak flows can vary between -60% 23 

and 100%. This is a very large range and it is worth considering some of the factors 24 

that are likely to be contributing to this degree of variability.  25 
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 1 

The maps of modelled changes in flood magnitude indicate decreases in some parts of 2 

South East England and the Midlands, particularly in areas overlying deeper soils and 3 

chalk bedrock. Clay soils can be relatively deep (although a shallow gleyed layer is 4 

often present), and while chalk soils are often quite thin, storage in areas underlain by 5 

chalk has been augmented in the Soil-G2G by increasing the soil depth. Conceptually 6 

this has the effect of introducing a deep unsaturated storage zone beneath the soil 7 

layer. A water balance analysis indicates that while the volumes of actual evaporation 8 

and total runoff are very similar for grid-cells in chalk and clay areas, the main 9 

difference between the two types of grid-cell is the time of release and partitioning of 10 

runoff between surface and sub-surface stores. In the G2G, areas with deeper stores 11 

respond more slowly to rainfall and evaporation than those with shallower ones such 12 

as clay because the release of water from the soil/unsaturated zone is determined by 13 

the relative saturation of the whole soil column. Areas with a deep soil/unsaturated 14 

layer (up to 3 m) seldom become completely saturated, resulting in slow release of 15 

water over several months. Under a future climate scenario of warmer drier summers 16 

and wetter winters, slowly-responding areas, such as chalk, are likely to “remember” 17 

the effects of a warm dry summer for many months as sub-surface storage and release 18 

is reduced. Chalk areas tend not to respond immediately to intense autumn/winter 19 

rainfall with high flows, but will instead replenish their stores. Projected increases in 20 

future evaporation may well extend the length of the autumn/winter period during 21 

which deep stores are replenished to field capacity. Catchments with shallower soils, 22 

such as upland, urban and clay areas, tend to respond immediately to high 23 

autumn/winter rainfall with high river flows, resulting in projected increases in future 24 

flow peaks. The ability of the Soil-G2G to reproduce these process-based mechanisms 25 



35 

using historical observations gives greater weight to the model’s projections of future 1 

change. The poorer performance of the Slope-G2G in simulating the timing and 2 

release of runoff in low-relief areas accounts for the difference in the two models’ 3 

projections of peak flows in these areas. However, in higher-relief areas such as North 4 

and West Britain, both models can realistically simulate the hydrological response of 5 

catchments to rainfall, resulting in more-accurate simulation of observed flows and 6 

reasonable agreement on the likely effect of a future climate scenario on peak flows.  7 

 8 

One of the most important factors influencing high river flows is rainfall. In the 9 

HadRM3H climate projections there are increases in rainfall across the UK in 10 

autumn/winter rainfall (which most influences peak flows in Britain (Bayliss and 11 

Jones, 1993)) of up to 30% across with significant regional differences. For England 12 

there are projected increases of up to 30% in winter rainfall, in Wales and Cornwall 13 

the projected increase is 10 to 20% and Northwest Scotland less than 10%. Fig. 7 14 

indicates that the response to this projected climate change in Wales and Cornwall is 15 

an increase in peak flows, particularly at lower return periods, whilst in Western 16 

Scotland it is a decrease of up to 30%. This decrease is most likely to have arisen 17 

through a combination of a projected increase in future summer PE of up to 30%, and 18 

a decrease of up to 20% in future autumn rainfall with only a small increase in winter 19 

rainfall. 20 

 21 

It is worth noting that saturation-excess runoff in soils is not the only mechanism 22 

leading to high river flows in the UK, although it is a key factor. Infiltration-capacity 23 

excess runoff occurs when intense rainfall exceeds the infiltration-capacity of the soil 24 

and can result in peak flows any time of the year, but particularly in summer months 25 



36 

during localised convective storms. Infiltration-excess runoff is not included in the 1 

G2G formulations presented here, but further work might consider the effect of 2 

extremely intense rainfall on different types of soil and terrain. Extreme rainfall 3 

events caused by localised convection are not simulated by the 25 km resolution RCM 4 

and thus their effect on projected peak flows across the UK is uncertain. 5 

 6 

It is important to note that some of the spatial variation in hydrological response could 7 

arise from “noise” in the RCM estimates of precipitation and PE used as input to the 8 

G2G hydrological model. When Bell et al. (2007b) used the same RCM to estimate 9 

the impact of climate change on flows in 25 catchments across the UK they noted that 10 

the rainfall simulated by the RCM over the first half of the Current period was 11 

affected by an unusually heavy rainfall event over southern England. The effect of 12 

one extreme rainfall event in the Current precipitation series was to raise the estimated 13 

peak flows for some catchments for high return periods. As the Future flow series did 14 

not contain a comparable flow peak, this significantly affected comparison of the 15 

flood frequency curves derived from the Current and Future flow simulations; 16 

removing the highest peak from the flood frequency analysis even resulted in changes 17 

of the opposite sign in some catchments. In order to investigate the robustness of the 18 

modelled changes in flood frequency here, particularly given the extreme rainfall 19 

event in the Current period for some areas, the resampling method followed by Bell et 20 

al. (2007b) was applied, on a point-by-point basis. That is, for each river point the 21 

AM series were resampled for both Current and Future periods with new flood 22 

frequency curves fitted to each resample. Specifically, the resampling at each location 23 

was undertaken 100,000 times with replacement, so that any one resampled series 24 

could contain some repeated AM and some absent. Percentage changes were then 25 
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calculated between the new pairs of Current and Future curves at several return 1 

periods, and counts made of the number of pairs with changes of the same sign as the 2 

original. 3 

 4 

The results are summarised in the set of maps in Fig. 8, which highlight areas for 5 

which most of the resamples keep the same direction of change in the future (increase 6 

or decrease in peak flows). More specifically, dark blue areas indicate areas for which 7 

more than 90% of the resampled AM series continue to show an increase in peak 8 

flows; dark red areas indicate areas where more than 90% show a decrease, and green 9 

and orange are the same as for blue and red respectively, but with only between 70% 10 

and 90% of the resamples in agreement. The maps indicate that, for both model 11 

formulations, changes at higher return periods are, unsurprisingly, generally less 12 

robust than those at lower return periods. However, this is particularly true for the 13 

Slope-G2G and over regions of south and east England, which were especially 14 

affected by the extreme rainfall event in the Current Period. For both G2G model 15 

variants, areas of change that are most robust are the wetter parts of the UK such as 16 

the north and west, perhaps because the AM are less variable in the wettest pasts of 17 

the country. Overall, the Soil-G2G is slightly more robust than the Slope-G2G, but the 18 

main differences between them lie in lowland areas such a South East England, for 19 

which the Soil-G2G is more realistic. In particular, at the 2-year return period the 20 

Slope-G2G indicates robust increases in many parts of South East England, but using 21 

the Soil-G2G some of these areas (such as those over chalk) instead show robust 22 

decreases. This highlights an important point that a “robust” model is not necessarily 23 

“correct”, as robustness here tests only the homogeneity of the modelled flows, not 24 

the skill of the model to reproduce physical processes. 25 
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 1 

The robustness analysis has been repeated following removal of the highest peak from 2 

each AM series. The results shown in Fig. 9 indicate that, following removal of the 3 

highest peak, the sign of the percentage change in flood magnitude is robust for a 4 

larger area of the UK than shown in Fig. 8, with a particular difference for higher 5 

return periods and over South East England – the area affected by the extreme event 6 

in the Current period. These results highlight the importance of not giving too much 7 

weight to results obtained from just one Current and Future RCM scenario. 8 

 9 

In terms of the modelled percentage changes in flood peaks between the Current and 10 

Future period, removal of the highest flow peak from the AM series and a subsequent 11 

recalculation of the flood frequency curves has a lesser effect on the Soil-G2G than 12 

the Slope-G2G, where it led to lower estimates of future decreases in flood magnitude 13 

in South East England. Performance of the Slope-G2G in low relief areas (such as the 14 

South East) is generally poorer than in upland areas and there is less confidence in 15 

projected change in this region. 16 

 17 

 18 

Summary and discussion 19 

 20 

A Grid-to-Grid (G2G) model has been calibrated to, and evaluated against, historical 21 

river flow data for catchments across Britain in order to obtain optimal model 22 

performance at a spatial resolution of 1km and a temporal resolution of one day (or 23 

less). Two formulations of the G2G are assessed using observations of rainfall, 24 

potential evaporation and daily mean river flow. Both model formulations are 25 
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constrained to employ just one set of calibrated parameters for the whole of the UK 1 

and rely on digital datasets to provide spatially variable information on hydrological 2 

response. The Slope-G2G formulation performs well for catchments where runoff-3 

generation is controlled by slope/topography, but is less effective where soil/geology 4 

is the dominant influence. The Soil-G2G model benefits from additional hydrological 5 

information contained in soil datasets and consequently simulates river flows 6 

reasonably well for a wide range of catchments, and very well for many catchments 7 

having a natural flow regime and for which the flow record is believed to be accurate.  8 

 9 

Use of the grid-based methodology in conjunction with high resolution climate model 10 

output has made it possible here, for the first time, to estimate the spatial effects of 11 

climate change on peak river flows across the UK. The observations of rainfall and 12 

potential evaporation used to calibrate and assess both hydrological models were 13 

replaced by RCM estimates on a 25 km grid and at hourly intervals for a Current 14 

(1960 to 1990) and a Future (2070 to 2100) time-slice. Flood frequency curves were 15 

derived from the flow simulations obtained using the Current and Future precipitation 16 

estimates, and maps of estimated changes in flood magnitude for river points on a 1 17 

km grid across the UK presented. These maps suggest a high degree of spatial 18 

variability in the sensitivity of UK rivers to future changes in climate, with the 19 

modelled percentage changes in future peak flows varying between -60% and 100% 20 

(sometimes outside of this range for the Slope-G2G). Climate change is only one 21 

factor responsible for these patterns of differences, with both landscape and internal 22 

climate variability being important factors. The very large range needs careful 23 

interpretation before clear messages about impacts of climate change on peak river 24 

flows can be drawn. It is important to recognise that in undertaking a hydrological 25 
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impact analysis such as the one presented here, we assume that a model tested for 1 

current weather conditions will also apply under conditions associated with projected 2 

climate change. This reservation applies to almost any model used for climate change 3 

impact assessments, and we feel is most likely to be overcome with a process-based 4 

model, such as the Soil-G2G, tested over as wide a range of conditions as possible. 5 

This approach is also likely to lead to fewer problems related to over-calibration to 6 

current conditions and extrapolation than a catchment model which might only have 7 

been assessed on a small number of catchments. 8 

 9 

The use of two different G2G model formulations allows us to assess the sensitivity of 10 

a climate impact flood risk assessment to hydrological model structure. Similarities 11 

between the results from both models are apparent, particularly in high relief areas 12 

such as the North and West of Britain. In South East England and the Midlands there 13 

is more spatial and inter-model variation in the estimated impact of climate change on 14 

river flows. These regions tend to have lower relief and spatially variable soil/geology 15 

and include areas where groundwater is a significant component of river flow. 16 

Analysis of the results in different regions highlights how the impact of climate 17 

change on river flows is likely to arise from a subtle combination of both local factors 18 

such as soil and relief, and a larger-scale fine balance between future seasonal change 19 

in rainfall and evaporation. Potential evaporation has been calculated here using a 20 

procedure as consistent as possible with a Penman-Monteith estimate. However, other 21 

methods of estimating PE are available and use of these could lead to different climate 22 

change impacts. Kay and Davies (2008), for example, obtain results that suggest a 23 

simple temperature-based estimator of PE may have benefit when calculated from 24 

climate model predicted variables. This may reflect the higher relative skill of climate 25 
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models to predict temperature than other variables involved in the calculation of 1 

Penman-Monteith PE. Johnson and Sharma (2009) present climate model prediction 2 

results that ranks surface air temperature as second highest only to pressure in skill. 3 

Rain rate is ranked least skilful of the eight climate variables assessed. This 4 

uncertainty presents a well known challenge for climate modellers that is being 5 

addressed here through the use of a high-resolution RCM, and through ensembles in 6 

other work. Maps of percentage change in HadRM3H Penman-Monteith PE (not 7 

shown) indicate a future increase across the whole of the UK, with the greatest 8 

increase occurring in the South. However, any future increase in carbon dioxide might 9 

instead lead to a decrease in plant transpiration and a greater propensity for high river 10 

flows (Gedney et al., 2006), a factor which has not been included in the analysis 11 

presented here. 12 

 13 

An analysis of the robustness of the sign of the changes in flood magnitude indicated 14 

that, for both G2G model formulations, areas of change that are most robust are the 15 

wetter parts of the UK such as the north and west, perhaps because the annual maxima 16 

are less variable here. Also, larger areas of robust peak flow changes are seen using 17 

the Soil-G2G with the main differences between the two models occurring in lowland 18 

areas such as South East England. Here the simulation-performance of the Soil-G2G 19 

is more realistic and thus these results are likely to be more reliable.  20 

 21 

Results in the South East were also skewed by the presence of an extreme rainfall 22 

event in the Current period, highlighting the importance of not giving too much 23 

weight to results obtained from a single 30-year sample of a Current and Future 24 

climate period. Ideally using an ensemble approach to fully sample the climatologies 25 
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of the two periods (Kendon et al, 2008) would be applied. Possible alternatives when 1 

modelling individual catchments could be to apply a weather generator (e.g. Kilsby et 2 

al., 2007) or to resample the available rainfall inputs a large number of times (e.g. 3 

Kay et al., 2009), but the need here for spatially-consistent rainfall across the UK 4 

currently precludes the use of the former, and the fact that the G2G currently takes 3 5 

weeks to run for a 30-year time-slice on a 1km grid across the UK precludes the latter. 6 

 7 

The use of two different model variants employing the same climate model estimates 8 

of precipitation and PE as input has highlighted the importance of using the most 9 

accurate, physically representative model as possible for climate impact assessments. 10 

Different hydrological models can respond in unexpected ways to subtle changes in 11 

the climate model estimates used as input. The results presented here indicate that the 12 

effect of projected climate change on UK catchments is sensitive not only to changes 13 

in the precipitation and PE data used as input, but to the model representations used to 14 

capture “traditional” hydrological responses. Future research will therefore aim to 15 

improve process-representation in the G2G model in order to increase confidence in 16 

simulated projected changes in peak river flows. Snowmelt, for example, is an 17 

important influence on river flows which is not currently included in the G2G, and the 18 

lack of a snowmelt representation is likely to have led to an exaggeration in the 19 

estimated impact of climate change on river flows in upland areas. Similarly, 20 

processes such as flood-plain storage and attenuation which influence the occurrence 21 

of flood inundation are not currently included. Flood-plain storage has the effect of 22 

reducing the intensity of high river flows, and large percentage changes in estimated 23 

future peak flows would in practice be reduced if current levels of available storage 24 

are maintained. The maps of changing flood risk presented here reveal the spatial 25 
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complexity of the response of UK catchments to one particular projected climate 1 

change. However, to support flood management and policy decisions concerning key 2 

catchments, a more comprehensive analysis is needed taking into account relevant 3 

hydrological processes and embracing consideration of catchment conditions, multiple 4 

climate scenarios and climate model structure at different scales.  5 

 6 
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FIGURES AND TABLES 1 

 2 

Figure 1. Conceptual diagram showing runoff production and lateral drainage in a 1-D 3 

soil column. 4 

 5 

Figure 2. Relationship between PDM distribution parameter, b , and the catchment 6 

maximum store capacity, maxS′ , for a range of UK catchments. 7 

 8 

Figure 3. Key features of the coupled runoff-production and routing scheme. 9 

 10 

Figure 4. Location of the UK catchments used for G2G model assessment (labelled by 11 

station ID – see Table 1). 12 

 13 

Figure 5. Comparison of R
2
 model performance, ordered in terms of increasing bfi, 14 

using two G2G formulations to model daily river flow for 42 catchments across the 15 

UK: 1 January 1985 to 31 December 1993. Negative R
2
 values are indicated with a 16 

nominal value of -0.05 for clarity. 17 

 18 

Figure 6. Flow hydrographs comparing model performance from the Slope-G2G and 19 

Soil-G2G: 1 January 1985 to 31 December 1986. 20 

 21 

Figure 7. Percentage change in flood magnitude, for three return periods, across the 22 

UK. 23 

 24 
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Figure 8. Robustness of the estimated changes in flood magnitude, for three return 1 

periods, for the Slope-G2G and the Soil-G2G model variants. 2 

 3 

Figure 9. Robustness of the estimated changes in flood magnitude, for three return 4 

periods, for the Slope-G2G and the Soil-G2G, following removal of the highest peak 5 

from each AM series. 6 

 7 

 8 

Table 1. UK catchments used for model assessment. 9 
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Figure 2 16 

 

max'S  (mm) 



59 

Figure3 1 
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Figure 4 1 
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