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Abstract 

 

In Europe there is a renewed focus on relationships between chemical determinands and 

ecological impact as a result of the Water Framework Directive.  In this paper we use 

regression analysis to examine the relationship of growing season mean chlorophyll a 

concentration with total phosphorus and total nitrogen using summary data from over 1000 

European lakes.  For analysis, lakes were grouped into types with three categories of mean 

depth, alkalinity and humic content.  The lakes were also divided into broad geographic 

regions covering Atlantic, Northern, Central/Baltic and for some types the Mediterranean 

areas of Europe.  Chlorophyll a was found to be significantly related to both total phosphorus 

and total nitrogen, although total phosphorus was almost always found to be the best predictor 

of chlorophyll.  Different nutrient chlorophyll relationships were found for lakes according to 

mean depth and alkalinity, although no significant effect of geographic region or humic 

content was found for the majority of lake types.  We identified three groups of lakes with 

significantly different responses.  Deep lakes had the lowest yield of chlorophyll per unit of 

nutrient, low and moderate alkalinity shallow lakes the highest and high alkalinity lakes were 

intermediate.  We recommend that the regression models provided for these three lake groups 

should be used for lake management in Europe and discuss the limitations of such models. 
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Introduction 

 

The introduction of the Water Framework Directive (2000/60/EC) in Europe has focused the 

attention of many lake managers and scientists on relationships between ecological status and 

anthropogenic pressures.  For lakes, nutrients remain one of the key pressures influencing 

European lakes and one of the most obvious and well known effects that need to be quantified 

is the impact that elevated nutrients have on phytoplankton biomass. 

 

Chlorophyll a concentration is a widely used measure of phytoplankton biomass and since the 

founding papers of Sakamoto (1966) and Dillon & Rigler (1974) there have been many 

studies showing strong empirical links between chlorophyll and nutrients, particularly 

phosphorus (cf. Prairie et al., 1989).  The most widely known relationships are those from the 

OECD study (Vollenweider & Kerekes, 1980) and these are often used to underpin decisions 

about lake management (Ryding & Rast, 1989).  Reynolds (1980) has highlighted the 

limitations of such models for individual lake predictions, but their value to lake managers, 

who need to make decisions with limited data, is undeniable. 

 

One problem with the published relationships is the substantial variability of the parameters 

generated from different regression analyses.  These differences are due to the many 

influences on the nutrient chlorophyll relationship.  Regressions drawn from specific lake 

districts are particularly appropriate for making predictions about lakes within those districts, 

but they may be of less use for lakes in other areas.  Conversely, large data sets will be 

influenced by many and various factors, all of which will appear as increased variation.  In 

this paper we present the results of the analysis of a large data set drawn from a wide variety 
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of national European data archives.  In particular we explore the variation of nutrient 

chlorophyll relationships in different lake types with a view to providing a set of regression 

equations that can be used to underpin lake nutrient management decisions for European 

lakes. 

 

Materials and Methods 

 

Data for this study were gathered from national data archives from individual European 

countries, as a basis for studying relationships between biological and chemical elements in 

European lakes as part of the EU project REBECCA (Moe et al., this issue ).  As part of the 

WFD Common Implementation Strategy (Van de Bund et al., 2004) lakes have been divided 

into 6 geographic regions. Individual sample data were available from 16 countries, spanning 

a period from 1988 to 2004.  Five of the six regions were represented, although relatively few 

data were available from the Mediterranean region, and the data set was dominated by data 

from countries in northern, and to a lesser extent central Europe.  

 

Chlorophyll a (Chl), total phosphorus (TP) and total nitrogen (TN) data were summarised for 

each lake as a single mean value for a common “growing season” of April – September. In a 

large data set drawn from many different sources, different sampling frequencies could 

influence summary statistics.  To minimise noise, only lakes with more than three sampling 

occasions during this growing season were selected, and data were summarised by site year 

and month and the above three determinands matched prior to calculation of a single mean for 

each lake.  This ensured that only matched summary data for Chl, TP and TN contributed to 

the final mean value.  Data for all available years and sites within a lake contributed to a final 
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single lake average value for each of Chl, TP and TN, thereby obtaining only one single value 

per lake for each parameter in the regression analyses. 

 

This resulted in a data set of 1138 lakes, substantially larger than any other reported in the 

literature that we are aware of (cited in table 2).  As pointed out by Praire et al. (1989) this 

brings with it additional uncertainties, caused by different geographical regions, climate and 

sampling strategies.  We will examine the effect of region and lake types, and thus assigned 

each lake into one of 9 core types based on alkalinity and mean depth and 3 sub-types based 

on colour (Table 1).  Data for alkalinity, depth and colour were taken from national data 

archives, collated by Moe et al. (2008, this issue). These types were identified by a range of 

European experts during the WFD intercalibration process and represent the best available 

agreed typology that is likely to minimise natural biological variation in European lakes. 

 

Chlorophyll nutrient relationships , denoted as Chl = f(TP), Chl = f(TN) and Chl = f(TP,TN), 

were derived using linear least squares regression.  Prior to analysis all data were 

logarithmically transformed (base 10) to ensure their homogeneity of variance, as is common 

practice for data of this type.  We investigated the effects of categorical variables lake type, 

geographic region and humic content on these relationships using univariate General Linear 

Modelling (GLM).  The model was run with Chl as dependent variable, TP as covariate and 

each of the above categorical variables as fixed factors.  Analysis of Variance (ANOVA) was 

used to test the significance of the factor on the slope, intercept and their interactions.  Type 

III sums of squares were used to test significance, which had the advantage that they are not 

dependent on the frequency of observations in each group (Field, 2005).   
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Having identified which type factors significantly influenced the regression, we compared the 

resulting regression equations to identify which types had similar regression coefficients.  

Lake types with similar coefficients were then re-grouped and the general linear model 

(GLM) repeated to check that the type factor was no longer significantly influencing the 

regression relationship.  Thus, we were able to identify the key factors influencing the nutrient 

Chl relationship and identify appropriate groups of lake types.   

 

Prior to analysis, we investigated the general shape of the relationships between variables 

using LOWESS techniques (Cleveland, 1979).  This enabled us to restrict regression to a 

range of nutrient concentrations where the data were linearly related.  For Chl = f(TP) we 

therefore restricted regression to data where TP < 100 μg l-1 and for Chl = f(TN) where TN < 

1700 μg l-1.  For Chl = f(TP,TN) no restrictions were made as our purpose was to identify if 

the use of both nutrients provided an effective model for the whole data range.  We tested the 

significance of including a second predictor variable using ANOVA. As TP and TN might be 

correlated, we tested for the variance inflation factor (VIF), which is a good indicator of 

whether one predictor has a strong linear relationship with other predictors.  Where the VIF 

was <10 we concluded that predictor variables were not strongly related (Myers 1990).   

 

We investigated the relative power of TP and TN in predicting Chl for different lake types 

using stepwise multiple regression, comparing regression coefficients as values standardised 

by standard deviation units (β coefficients) to make them independent of scale.  Prior to 

analysis, the data were screened by removing samples with reported values of Chl or TP of 

<1.0 µg l-1 as we considered these were likely to be errors in the source data.  We also 

excluded results where the Chl: TP ratio was >1.0, which was the 99th percentile of the whole 

data set.  
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To explore the effect of TN:TP ratios, proposed by several studies as important factors 

influencing the relationship between nutrients and chlorophyll (Nűrnberg & Shaw, 1999), we 

grouped data into 5 TN:TP categories (≤10, >10≤17, >17≤25, >25≤50, >50).  We chose the 

first two categories as they are widely reported values at which nitrogen limitation of 

phytoplankton  biomass may occur (Forsberg & Ryding 1980); the others are convenient 

categorical divisions.  Analysis was carried out using SPSS v14.  

 

 

Results 

 

After data screening > 1000 typed pairs of data were available for analysis (1129 TP vs. Chl; 

1138 TN vs. Chl and 1077 TN & TP vs. Chl).  Chlorophyll, phosphorus and nitrogen 

concentrations ranged over 2 orders of magnitude, increasing markedly as lakes get shallower 

and to a lesser extent as alkalinity increases (Fig 1a-c).  In low and moderate alkalinity lakes 

there was also a marked effect of humic content with the highest concentrations of all of these 

parameters in polyhumic lakes and the lowest in clear water lakes. In high alkalinity lakes, 

however, the effect of humic content was either non-existent or even reversed in high 

alkalinity very shallow lakes. The ratio of TN:TP ranged from <2 to >100, with different 

ranges characteristic of each lake type (Fig 1d).  TN:TP was highest in low and moderate 

alkalinity, deep lakes and became progressively lower as depth decreased and alkalinity 

increased. Polyhumic and humic lakes nearly always had lower TN:TP ratios than clear water 

lakes, and a substantial proportion of lakes in the coloured, very shallow lake categories had 

values below 17 and a minority of lakes below 10.  The effect of colour on the TN:TP ratio 

was confirmed by 2 way ANOVA, which showed significant effects of both lake type (F = 
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12.1 p <0.001) and humic type (F=9.7 p<0.001) with post hoc Bonferroni tests showing 

significant differences in mean N:P ratios for all comparisons of humic categories.  

 

Regression relationships 

Scatter plots for the relationships Chl = f(TP) and Chl = f(TN) are shown in figure 2.  The 

LOESS fitted line shows non-linearity in both relationships.  There is slight indication of a 

sigmoidal response, but the most marked non-linearity is the reduction in slope at high 

nutrient levels.  This is most marked for TN, but also occurs for TP.  The upper point of 

inflection for Chl = f(TP) occurs at ca. TP = 100 μg l-1 and for Chl = f(TN) at TN =1700 μg l-

1. Asymptotic behaviour of Chl=f(TP) is widely reported, occurring typically at around this 

TP concentration (Prarie et al., 1989; Canfield, 1983), although in our case the LOESS fits do 

not give as clear an indication of a plateau in chlorophyll as do those of others.  However, 

because of this we restricted the range of TP and TN concentrations in our least square 

regressions to concentrations of <100 μg l-1 (TP) and <1700 μg l-1 (TN) (Fig 3).  

 

The regressions of all lakes taken together regardless of type were the following:   

 

1. Log10 Chl = -0.455(±0.020)+1.026(±0.016) Log10TP R2 = 0.78 (TP <100 μg  l-1) 

2. Log10 Chl = -2.828(±0.093)+1.355(±0.035) Log10TN R2 = 0.58 (TN <1700 μg l-1) 

3. Log10 Chl = -1.028(±0.083) + 0.792(±0.027) Log10TP + 0.324(±0.039) Log10TN  

R2 = 0.77 

 

All regressions were significant (p<0.001) and the coefficients of determination (R2) were 

similar to those reported in other published studies (Table 2).  Scatter plots with the 

regressions are shown in Fig 4.  Within the linear range of these functions, TP was a better 
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predictor than TN, although over the full data range the combined Chl – f(TN,TP) model gave 

almost as good a prediction.   

 

We also tested the use of a Chl = f(TN,TP) model restricted to the linear portion of both the 

TP and TN relationships.   

 

4. Log10 Chl = -1.135(±(0.026) + 0.896(±0.026) Log10 TP + 0.322(±0.039) Log10 TN  

R2 = 0.80 (TP <100 μg l-1, TN < 1700 μg l-1) 

 

In both models collinearity was found to be low (VIF 2.6 model 3 and 2.5 model 4). For both 

models 3 & 4 the addition of TN provided a small, but significant (F = 68.2 p<0.001 model 3 

and 67.4 p<0.001 model 4) increase in predictive power.  The standardised β regression 

coefficients for TP were however much higher than those for TN (βTP = 0.71 βTN = 0.20 

model 3; βTP = 0.75 βTN = 0.18 model 4) indicating that TP was the more influential 

variable. 

 

There is a significant degree of scatter in these data and we now explore whether dividing 

lakes into types can account for this variation and thus provide more useful regression 

models.  The general linear model (GLM) demonstrated that while geographic region did not 

influence the regressions, lake type was a significant factor in the regression models, so we 

repeated the regression analysis on lakes split by type (Table 3).  Few of the resulting R2 were 

higher than those obtained for the whole data set, but significantly different regression 

parameters were found.  We give particular attention to the differences in slope (Fig 4).  For a 

log-log relationship this characterises the relative rate of increase of two variables and thus 

the highest slopes indicate lake types where there is the greatest positive response to TP or 
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TN.  Our all lake relationships had slopes for TP close to 1, slightly higher for TN, but in 

several cases the type-specific slopes were significantly different.  Differences were greatest 

for Chl = f(TN), but for both Chl = f(TP) and Chl = f(TN), deep lakes had significantly lower 

slopes.  In general the chlorophyll response to nutrients increases significantly as depth 

decreases and for shallow and very shallow lakes it decreases with alkalinity.   These results 

suggest that predictions made without reference to type may significantly over or under 

estimate chlorophyll concentrations.  Type specific relationships seem to offer the best 

approach for TN, but for TP we have divided lakes into 3 groups: 1) deep lakes, 2) moderate 

and low alkalinity shallow and very shallow lakes, and 3) high alkalinity shallow and very 

shallow lakes.  Within these groups the GLM confirmed that lake type did not significantly 

influence the regression and the following equations (all significant p<0.001) represent what 

we consider are appropriate models for these lake groups. 

 

5. Low and moderate alkalinity (<1mekv l-1), shallow (3-15 m mean depth ) and very 

shallow (< 3m mean depth) lakes: 

Log10 Chl = -0.528(±0.03) + 1.108(±0.02) Log10 TP  R2 = 0.81 

6. High alkalinity (>1 mekv l-1), shallow (3-15 m mean depth ) and very shallow (< 3m mean 

depth) lakes: Log10 Chl = -0.306(±0.10) + 0.868(±0.07) Log10 TP  R2 = 0.52 

7. All deep lakes (>15 m mean depth):  

Log10 Chl = -0.286(±0.04) +0.776(±0.041) Log10 TP  R2 = 0.65 

 

Colour from humic compounds is another factor which has been reported to influence the 

Chlorophyll nutrient relationship (Havens and Nűrnberg, 2004).  In our data we found that  

TP, TN and Chl were higher in humic lakes, but GLM showed no significant effect of colour 

on Chl = f(TN) in any lake types. For Chl = f(TP) only one lake type (low alkalinity deep 
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lakes) showed a humic type effect with a significantly higher slope and intercept in the humic 

lakes than in the clear water lakes (Fig 5). The regression equations were both significant 

(p<0.001) and are given below: 

 

8. LAD Humic:   Log10 Chl = -0.733(±0.14) + 1.261(±0.15) Log10 TP  R2 = 0.75 

9. LAD Clear:  Log10 Chl = -0.208(±0.05) + 0.639(±0.07) Log10 TP  R2 = 0.42 

 

 

Effect of TN:TP ratio on regression 

Lakes were also grouped in categories based on TN:TP ratio to investigate the effects of this 

on the regression relationships.  This ratio should indicate the potential for nitrogen or 

phosphorus limitation, at least at the seasonal scale, and we thus might expect that where 

TN:TP is low, nitrogen may limit algal growth and thus TN would provide a better prediction 

of chlorophyll.  Conversely when TN:TP is high, phosphorus is more likely to limit growth 

and TP would be the better predictor.  To an extent we found these predictions were true.  

Where TN:TP is <10, TN provided a better prediction of Chl with a higher R2 and regression 

slope (Fig 6). As TN:TP increased this difference is rapidly reduced, with similar R2 and 

regressions slopes for either TN or TP. The highest category (TN:TP >50) Chl = f(TP) 

provides a better fit and has a higher slope than Chl = f(TN), indicating the clear dominance 

of phosphorus limitation.  

 

Finally, using stepwise multiple regression, we investigate the relative predictive power of TP 

and TN if lakes were split into alkalinity, depth and humic categories.  Table 4 shows the 

resulting values for R2 together with the standardised β regression coefficients (in standard 

deviation units), which can be used to compare the relative importance of each predictor 
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variable independent of scale.  Stepwise regression selected Chl = f(TP) for the majority of 

lake types, but for those lake types with the lowest TN:TP ratios (humic HAVS and 

polyhumic MAVS) Chl = f(TN) was the preferred model.  In 7 of the 19 types, Chl = 

f(TP,TN) was selected and for three of these (polyhumic LAS, polyhumic LAVS & humic 

LAVS) the β coefficients were very similar indicating that both TP and TN had equal 

predictive power.  All of these lake types had relatively low TN:TP ratios where it might be 

expected that nitrogen limitation would occur.  The remaining types either had TP as the 

single predictor variable, or if both TP and TN were selected, the β coefficients suggested that 

TN played a minor role in the model. 

 

 

Discussion 

 

There is a relatively wide range of parameter values available in the literature relating to 

regression models which can be used to estimate chlorophyll a concentration from phosphorus 

(Table 2).  Several studies (Prairie et al., 1989; White, 1983) report values that generally 

predict lower chlorophyll values than those we found when we grouped all lakes together. 

These include the widely used equations from the OECD study (cited in Vollenweider & 

Kerekes, 1980).  Other studies (Dillon & Rigler, 1974; Jones & Bachmann, 1976) report 

models yielding higher predictions of chlorophyll and these matched our all lake results more 

closely.  Both of these studies reported  slopes significantly > 1, which on a log log plot 

produces an increasing yield of chlorophyll as TP increases, in contrast our all lakes model 

had a slope close to 1, showing that the relationship was close to linear.  There are less 

reported models for total nitrogen, but those of Nürnberg (1996) and Prairie et al. (1989) are 

 12



REBECCA MS no.03 

very similar to our all lakes combined model.  However, our type-specific nutrient models 

produced values that correspond to the full range of those reported.   

 

For Chl=f(TP) our deep lakes model predicted the lowest chlorophyll concentrations, that are 

only slightly higher than those from the OECD equations.  Our high-alkalinity lake model 

predicted higher values while the models for the other lake types, (low and moderate 

alkalinity shallow and very shallow lakes),  predict chlorophyll values that are similar to the 

highest reported values.  For Chl = f(TN) our deep-lake equations provide lower predicticted 

values than those in the literature, while the low and moderate alkalinity very shallow lakes 

are significantly  higher.  These discrepancies highlight some of the issues of log log 

regression relationships: they hide within them a relatively wide range of values.  Reynolds 

(1980) identified this when he pointed out that regression models can only describe the 

general behaviour of lake populations, and that in reality any particular lake will have a 

chlorophyll yield that is influenced by a number of factors other than nutrients.  None the less, 

these models are in many cases the only method for lake managers to determine the 

relationship between a nutrients, a factor they can potentially control, and algal biomass.  

What is important, is that managers should use an equation that is derived using data from a 

lake type that matches as closely as possible the lake they are concerned with. 

 

Our data show that lake depth is a key factor, with deep lakes generally less responsive to 

nutrient enrichment.  Stauffer (1991) pointed out the importance of self-shading and suggests 

this is responsible for the levelling of Chl at the highest TP concentrations.  We might expect 

this in deep lakes if they are light limited with a euphotic depth less than the mixing depth, 

however as we do not have data on these parameters we were unable to explore these 

relationships further.  Shallow lakes, in particular very shallow lakes, are less likely to be light 
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limited, particularly when chlorophyll values are low, as we found for low and moderate 

alkalinity lakes, and it is not surprising that in these lakes chlorophyll yield per unit of 

nutrient was generally higher.   

 

We found the weakest relationships for Chl = f(TP) in high alkalinity shallow lakes.  

Håkanson et al. (2005) also reported that the predictive power of Chl TP models increased 

markedly if hardwater lakes were omitted from their model and concluded that this was linked 

to bio-availability of particulate phosphorus.  Calcium may have a role to play in precipitating 

phosphorus, making it less bioavailable.  High alkalinity lakes also generally have the highest 

levels of phosphorus which will have two effects that could influence the relationships:  

Firstly, chlorophyll will also be high, and even in shallow lakes could result in light 

inhibition, particularly for mixed or weakly stratified lakes.  Secondly, at high TP the TN:TP 

ratio can be very low leading to nitrogen, rather than phosphorus limitation and thus a poor 

Chl=f(TP) relationship.  Prairie et al. (1989) concluded that variability in published 

relationships between Chl and nutrients can be accounted for by TN:TP ratios.  We found 

similar results, but only for lakes where TN:TP was <10.  In these lakes, contrary to the 

findings of Prairie, we found that TN provided a better predictor of Chl than TP.  A TN:TP 

ratio <10 is generally interpreted as evidence of nitrogen limitation (Downing & McCauley, 

1992, Smith 1982) so this observation is not surprising and may account for at least some of 

the scatter in the Chl=f(TP) relationship in high alkalinity lakes.   

 

For very shallow lakes, interactions with macrophytes are also likely to be important (Phillips, 

2003), and in lakes dominated by macrophytes, top-down control mediated through 

zooplankton grazing is also likely to play a key role in reducing chlorophyll concentrations 

below that predicted by their nutrient status (Scheffer, 1990 ).  We do not have sufficient 
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information in our database to identify lakes likely to be influenced by top-down controls, but 

grazing by zooplankton is likely to introduce additional variability into the nutrient 

chlorophyll relationship and could be particularly strong in high alkalinity lakes where TP is 

within the range where top-down effects are strongest (Jeppesen et al 2000).  It is thus not 

surprising that we find the greatest variability in Chl=f(TP) and we suggest that a combination 

of top-down influences, light inhibition and nitrogen limitation all contribute to limiting Chl 

in high alkalinity lakes. 

 

Humic substances have also been shown to influence the nutrient chlorophyll relationships in 

lakes.  Edmundson & Carlson (1998) and Havens (2003) both reported lower yields of 

chlorophyll concentration per unit of TP.  This may result from lower availability of light, due 

to increased water colour (Havens, 2003) or to lower bioavailability of phosphorus (Jones 

1998)  In our study we found that low and moderate alkalinity humic lakes had higher Chl 

concentrations. This was accompanied by higher TN and TP concentrations, but we could 

find no evidence of a reduced yield of chlorophyll. Nürnberg & Shaw (1999) also reported 

elevated nutrients in humic lakes, but in this case a small but significant positive effect on the 

Chl=f(TP) relationship.  We only found this for low alkalinity deep humic lakes, despite the 

fact that TN:TP ratios in humic low and moderate alkalinity lakes is lower than those in clear 

waters.  Havens & Nürnberg (2004) pointed out the interactions between humic substances 

and mixing regime, demonstrating that the Chl concentration in mixed humic lakes is 

marginally reduced.  They propose that in stratified lakes phytoplankton is able to adjust to 

reduced light availability by migration, resulting in elevated Chl level in surface layers. We 

can only speculate as to the explanation of the positive effect on the Chl = f(TP) relationship 

we found in deep low alkalinity humic lakes, as we have insufficient information to identify 

stratified and mixed lakes.  However, it is reasonable to assume that this lake type is very 
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likely to be stratified, and the higher yield we observed may be a result of vertical migration 

of phytoplankton, an effect not seen in shallow mixed lakes. Also light-adaptation in humic 

lakes yielding higher Chla:biomass ratios may contribute to explaining why deep low-

alkalinity humic lakes have steeper Chla=f(TP) slope than the comparable clearwater lakes. 

 

We found a clearer effect of TN:TP ratios on Chl = f(TP), particularly when combined with 

humic content.  TN:TP was low in humic lakes and a substantial proportion of the very 

shallow humic lakes had values low enough to suggest TN rather than TP limitation.  This is 

in contrast to Nürnberg & Shaw (1999), who found no evidence of changes to TN:TP ratios in 

humic lakes.  In our data set stepwise multiple regression demonstrated that TN rather than 

TP provided the best predictor of Chl in humic high alkalinity and polyhumic moderate 

alkalinity very shallow lakes and it seems likely that these lakes are more likely to be limited 

by nitrogen rather than phosphorus.  We also conclude from our data that there is no 

significant effect of geographic region on our regression models, despite the relatively wide 

area from which our data were drawn.  A similar conclusion was reached by Seip et al. 

(2000), who concluded that trophic level, mediated via the TN:TP ratio is more important in 

influencing the Chl = f(TP) relationship than geographic region.  

 

Use for Lake Management 

 

Regression models relating TP and TN to Chl are useful tools for lake managers as they 

enable management decisions to be made.  For example, standards for nutrients can be 

established and actions taken within the catchment to achieve them.  This is particularly 

important in the context of the Water Framework Directive where nutrient conditions capable 
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of supporting good ecological status need to be defined.  However, it is important to recognise 

the limitations of such models and consider the most appropriate way to use them. 

 

Firstly, a linear model is only an approximation to what is more likely a curvilinear or 

sigmoidal relationship.  The effects of this can be minimised by using type-specific regression 

relationships and restricting the regression to the linear regions of the response.  In most cases 

Chl = f(TP) provided the best model, but where TN:TP ratios are low (≤10) Chl = f(TN) may 

be more reliable. 

 

Secondly, it is important to be aware of the relative high degree of scatter hidden in log log 

relationships.  Many factors can influence this as we have discussed above and lake managers 

need to know how to deal with this uncertainty.  For example, they may often need to assess 

permissible levels of nutrients necessary to prevent deterioration in ecological quality.  A 

typical situation is the need to establish a target TP which would maintain a currently 

acceptable Chl concentration.  By using an appropriate type specific regression equation it 

would be possible to determine a TP concentration that would correspond to the desired Chl.  

However, there is significant uncertainty associated with this decision.  It should be noted that 

Prairie (1996) cautions that regressions with R2 < 0.65 should not be used for predictions, as 

they have limited predictive power.  Our combined lake model has an R2 which exceeds this 

value, but has the disadvantage that it does not distinguish the significantly different 

responses that lakes of different types have.  Although some of our type-specific models have 

R2 values >0.65 we suggest that it is more appropriate to use the models derived from 

grouped lake types where the effect of type on the regression equations within the group was 

not significant.  Two of these models have R2 values >0.65, but the high alkalinity lake model 

should be used with more caution. 
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While a prediction from a regression model provides the most likely outcome, for any 

particular lake, the outcome is uncertain with a chance that 50% of cases would yield higher 

or lower Chl concentrations than that predicted.  In situations where it is important to reduce 

the risk of exceeding a given level of Chl, a target TP value could be determined using the 

upper confidence limit of the regression (e.g. 90th percent confidence of individual points).  If 

TP targets were based on this relationship then on average only 10% of sites might exceed the 

desired Chl concentration, a more precautionary approach.  In contrast, faced with setting a 

restoration target and justifying significant financial expenditure this might be interpreted as a 

too precautionary value.   In this case, the regression line might be a more appropriate choice, 

as 50% of lakes are likely to achieve the desired Chl at the TP value predicted. To assist in 

this application to management, we provide figures containing both regression lines and 

confidence limits for our three type specific models on a linear scale in appendix 1, together 

with equations to predict both the regression line and values similar to the 90% confidence 

intervals based on the 5th and 95th percentiles of the residuals of the regression (appendix 2). 

 

 

Conclusion 

 

In conclusion we propose that chlorophyll nutrient regression models can provide useful tools 

for lake management, provided the uncertainty associated with them is clearly recognised.  

Total phosphorus and total nitrogen can be used to predict chlorophyll a concentration, 

although phosphorus is the better predictor for all types, with the exception of humic lakes.    
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We show that except for deep lakes, the widely used OECD models predict much lower 

concentrations of chlorophyll than what is predicted with our regressions, which are based on 

a large European data set.  We thus present 3 models for a) deep lakes, b) low and moderate 

alkalinity shallow and very shallow lakes and c) high alkalinity shallow and very shallow 

lakes, which we suggest are the most appropriate for lake management in Europe, where more 

detailed regional models are not available. 
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Legends 

 

Figure 1a & 1b. Box plots showing type specific ranges of seasonal (April – September) mean 

values for a) chlorophyll a (μg l-1), b) total phosphorus (μg l-1), Lakes split into 3 alkalinity 

classes (low L, moderate M and high H) and 3 depth classes (deep D, shallow S,  

very shallow VS). Boxes represent polyhumic (dotted), humic (striped) and clear water (clear) 

lakes and show median, interquartile range and outliers.   

 

Figure 1c & 1d Box plots showing type specific ranges of seasonal (April – September) mean 

values for c) total nitrogen (μg l-1) d) total nitrogen to total phosphorus ratio in lakes of 

different humic class.  Lakes split into 3 alkalinity classes (low L, moderate M and high H) 

and 3 depth classes (deep D, shallow S, very shallow VS).  Boxes represent polyhumic 

(dotted), humic (striped) and clear water (clear) lakes and show median, interquartile range 

and outliers.  Horizontal lines in figure 1d represent ratios of 10 and 17 marking probable 

region of N limitation and NP co-limitation respectively. 

 

Figure 2. Relationship between growing season chlorophyll a concentration (μg l-1) and a) 

total phosphorus concentration (μg l-1),  b) total nitrogen concentration (μg l-1). Solid line is 

the LOESS fitted curve. 

 

Figure 3.  Relationship between growing season chlorophyll a concentration (μg l-1) and (a) 

total phosphorus concentration (μg l-1) (b) total nitrogen concentration (μg l-1).  Lines are best 

fit regression and 95% confidence limits. 
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Figure 4.  Change in regression slope for Chl = f(TP) and Chl = f(TN) relationships in lakes 

of different types. 

 

Figure 5.  Scatter plot and regression lines (± 95% confidence intervals) for Chl = f(TP) for 

lakes of different humic content in a)low and moderate alkalinity shallow and very shallow 

lakes (solid line all humic types), b)low alkalinity deep lakes (solid line clear water (L), 

dotted line humic (H) types).  

 

Figure 6. Changes in a) the coefficient of determination (R2) and b) the slope of Chl = f(TP) 

and Chl = f(TN) for lakes grouped by total nitrogen to total phosphorus ratios (TN:TP).
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Table 1  Details of lake types used to categorise lakes. 

 

Type Abbreviation Determinand 

Alkalinity types 

High  HA alkalinity        >1.0 mEq l-1  

Moderate  MA alkalinity     0.2 – 1.0 mEq l-1  

Low  LA alkalinity        <0.2 mEq l-1  

Depth types 

Deep D mean depth     >15.0 m 

Shallow S mean depth  3.0-15.0 m 

Very Shallow VS mean depth     <3.0 m 

Colour types 

Polyhumic VH colour             >90 mgPt l-1  

Humic H colour             30-90 mgPt l-1 

Clear L colour            <30 mgPt l-1  
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Table 2. Regression equations from this study (in italics) compared to those taken from the 

literature for log10 chlorophyll a concentration as a function of total phosphorus (TP) and total 

nitrogen (TN). To facilitate comparison of non-linear functions the predicted chlorophyll 

concentration (μg l-1) is given when TP = 35μg l-1 and TN = 875ug l-1 (N:P ratio of 25). 

 

Slope Reference Constant 

Log 

TP 

Log 

TN 

R2 Comment Predicted 

Chlorophyll 

 Chlorophyll a f(TP) 

OECD 1982 -0.432 0.79  0.77  5.4 

Classen 1980 (OECD shallow 

lakes and reservoirs) 

-0.268 0.720  0.76  6.3 

White 1983 -0.638 0.940  0.45  6.5 

This study (deep lakes) -0.286 0.776  0.65  8.2 

Rast & Lee 1978 -0.260 0.760  0.59  8.2 

Prairie et.al. 1989 -0.390 0.874  0.69  9.1 

Vollenweider 1976 -0.432 0.910  0.76  9.4 

Havens & Nűrnberg 2004 -0.156 0.738  0.60 Humic 9.6 

Nűrnberg 1996 -0.250 0.799  0.64  9.6 

Havens & Nurnberg 2004 -0.240 0.813  0.59 Clear 10.4 

This study (High alkalinity 

shallow & very shallow lakes) 

-0.306 0.868  0.52  10.8 

Dillon & Rigler 1974 -1.136 1.449  0.92  12.6 

This study (all lakes) -0.455 1.026  0.78  13.5 

Jones & Bachmann 1976 -1.090 1.460    14.8 

This study (Low & moderate 

alkalinity shallow & very 

shallow lakes) 

-0.528 1.108  0.81  15.2 

Seip et.al. 2000 -0.443 1.123  0.93  19.5 

 Chlorophyll a f(TN) 

Nűrnberg 1996 -2.180  1.114 0.38  12.5 

Prairie et.al. 1989 -3.131  1.445 0.69  13.2 

Prairie et.al. 1989 -2.888  1.371  N:P 20-30 14.0 
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This study (all lakes) -2.828  1.355 0.58  14.4 

This study (lakes N:P 10-17) -1.761  1.034 0.53 N:P <10 19.1 

White 1983 -2.699  1.410 0.74 N:P < 17 28.1 

Prairie et.al. 1989 -1.627  1.072  N:P <10 33.6 

 Chlorophyll a f(TP,TN) 

Smith 1982 -1.517 0.653 0.548 0.76  12.7 

Prairie et.al. 1989 -2.213 0.517 0.838 0.81  11.2 

This study (all lakes) -1.135 0.896 0.322 0.80  15.7 
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Table 3.  Regression equations for relationship between mean growing season chlorophyll a 

(μg l-1) and total phosphorus (μg l-1) and total nitrogen (μg l-1) for different European lake 

types  (*** p<0.001, * p<0.05). 

 

Type Equation R2 n 

High alk 

Deep 

not significant  

too few data 

0.334 

0.75* 

10 

7 

High alk 

Shallow 

Log10 Chl = -0.216(±0.13) + 0.806(±0.09) Log10 TP 

Log10 Chl = -2.177(±0.35) + 1.096(±0.12) Log10 TN 

0.42*** 

0.51*** 

115 

78 

High alk 

Very 

Shallow 

Log10 Chl = -0.521(±0.15) + 1.000(±0.09) Log10 TP 

Log10 Chl = -2.575(±0.87) + 1.205(±0.30) Log10 TN 

0.71*** 

0.37*** 

48 

29 

Mod alk 

Deep 

Log10 Chl = -0.243(±0.05) + 0.822(±0.05) Log10 TP 

Log10 Chl = -1.609(±0.31) + 0.813(±0.12) Log10 TN 

0.86*** 

0.53*** 

41 

42 

Mod alk 

Shallow 

Log10 Chl = -0.434(±0.05) + 1.062(±0.04) Log10 TP 

Log10 Chl = -2.158(±0.19) +1.091(±0.07) Log10 TN 

0.77*** 

0.54*** 

201 

194 

Mod alk 

Very 

Shallow 

Log10 Chl = -0.501(±0.15) + 1.081(±0.09) Log10 TP 

Log10 Chl = -3.189(±0.40) + 1.538(±0.14) Log10 TN 

0.57*** 

0.53*** 

 

109 

115 

Low alk 

Deep 

Log10 Chl = -0.283(±0.05) + 0.745(±0.06) Log10 TP 

Log10 Chl = -0.783(±0.20) + 0.448(±0.08) Log10 TN 

0.50*** 

0.18*** 

146 

146 

Low alk 

Shallow 

Log10 Chl = -0.561(±0.04) + 1.125(±0.03) Log10 TP 

Log10 Chl = -2.866(±0.19) + 1.361(±0.07) Log10 TN 

0.77*** 

0.49*** 

344 

363 

Low alk 

Very 

Shallow 

Log10 Chl = -0.596(±0.10) + 1.149(±0.06) Log10 TP 

Log10 Chl = -3.904(±0.36) + 1.812(±0.13) Log10 TN 

0.74*** 

0.61*** 

114 

123 
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Table 4.  Coefficient of determination (R2) and standardised regression (β) coefficients for 

stepwise multiple regression model for total phosphorus and total nitrogen with chlorophyll in 

lakes split by alkalinity, depth and humic substances. 

 

 

Type 

Clear Humic Polyhumic 

  Standardised 

coefficients 

 Standardised 

coefficients 

 Standardised 

coefficients 

 R2 TP TN R2 TP TN R2 TP TN 

HS 0.46 0.47 0.28 0.34 0.59 -    

HVS 0.43 - 0.64 0.53 - 0.73    

MD 0.81 0.90 - 0.88 0.94 -    

MS 0.84 0.92 - 0.67 0.70 0.19    

MVS 0.81 0.90 - 0.73 0.63 0.28 0.63 - 0.80 

LD 0.43 0.66 - 0.46 0.68 -    

LS 0.62 0.69 0.15 0.60 0.77 - 0.55 0.44 0.41 

LVS 0.87 0.94 - 0.73 0.57 0.37 0.45 0.33 0.41 
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Appendix 1.  Relationship between summer mean total phosphorus (μg l-1) and chlorophyll a 

(μg l-1) in lakes grouped by alkalinity and mean depth. Solid lines show modelled regressions, 

upper and lower 90% confidence intervals. Dotted lines show modelled regressions ± 95th 

percentile of regression residuals. 

 

Appendix 2.  Equations to calculate expected chlorophyll a from total phosphorus.  The upper 

and lower boundary values are very similar to the 90% confidence limit of the regression and 

are determined by adding the 95th and 5th percentiles of the regression residuals.  For any 

particular TP value approximately 90% of lakes will have a chlorophyll concentration below 

the upper boundary and above the lower boundary. 

 

Model 5 Low and moderate alkalinity, shallow and very shallow lakes 

Upper boundary  Log10[Chl] = -0.528 + 1.108 Log10[TP] + 0.278 

Regression  Log10[Chl] = -0.528 + 1.108 Log10[TP 

Lower boundary Log10[Chl] = -0.528 + 1.108 Log10[TP] - 0.346 

 

Model 6 High alkalinity shallow and very shallow lakes 

Upper boundary  Log10[Chl] = -0.306 + 0.868 Log10[TP] + 0.352 

Regression   Log10[Chl] = -0.306 + 0.868 Log10[TP 

Lower boundary  Log10[Chl] = -0.306 + 0.868 Log10[TP] + -0.500 

 

Model 7 All deep lakes 

Upper boundary  Log10[Chl] = -0.286 + 0.776 Log10[TP] + 0.306 

Regression   Log10[Chl] = -0.286 + 0.776 Log10[TP]  

Lower boundary  Log10[Chl] = -0.286 + 0.776 Log10[TP] + 0.305 
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Figure 1a & b. Box plots showing type specific ranges of seasonal (April – September) mean 
values for a) chlorophyll a (μg l-1), b) total phosphorus (μg l-1), Lakes split into 3 alkalinity 
classes (low L, moderate M and high H) and 3 depth classes (deep D, shallow S,  
very shallow VS). Boxes represent polyhumic (dotted), humic (striped) and clear water (clear) 
lakes and show median, interquartile range and outliers
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Figure 1c & d Box plots showing type specific ranges of seasonal (April – September) mean 
values for c) total nitrogen (μg l-1) d) total nitrogen to total phosphorus ratio in lakes of 
different humic class.  Lakes split into 3 alkalinity classes (low L, moderate M and high H) 
and 3 depth classes (deep D, shallow S, very shallow VS).  Boxes represent polyhumic 
(dotted), humic (striped) and clear water (clear) lakes and show median, interquartile range 



REBECCA MS no.03 
and outliers  Horizontal lines in figure 1d represent ratios of 10 and 17 marking probable 
region of N limitation and NP co-limitation respectively. 
 
 
 

 

d  
Fig 2. Relationship between growing season chlorophyll a concentration (μg l-1) and a) total 
phosphorus concentration (μg l-1) . b) total nitrogen concentration (μg l-1). Solid line is the 
LOESS fitted curve
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Figure 3.  Relationship between growing season chlorophyll a concentration (μg l-1) and (a) 
total phosphorus concentration (μg l-1) (b) total nitrogen concentration (μg l-1).  Lines are 
best fit regression and 95% confidence limits. 
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Figure 4.  Change in regression slope for Chl = f(TP) and Chl = f(TN) relationships in lakes 
of different types. 
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Figure 5.  Scatter plot and regression lines (± 95% confidence intervals) for Chl = f(TP) for 
lakes of different humic content in a)low and moderate alkalinity shallow and very shallow 
lakes (solid line all humic types); b)low alkalinity deep lakes (solid line clear water (L), 
dotted line humic (H) types).   
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Figure 6 Changes in a) the coefficient of determination (r2) and b) the slope of Chl = f(TP) 
and Chl = f(TN) for lakes grouped by total nitrogen to total phosphorus ratios (TN:TP). 
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