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Abstract

Background: Sequencing the expressed genetic information of an ecosystem (metatranscriptome) can provide information
about the response of organisms to varying environmental conditions. Until recently, metatranscriptomics has been limited
to microarray technology and random cloning methodologies. The application of high-throughput sequencing technology
is now enabling access to both known and previously unknown transcripts in natural communities.

Methodology/Principal Findings: We present a study of a complex marine metatranscriptome obtained from random
whole-community mRNA using the GS-FLX Pyrosequencing technology. Eight samples, four DNA and four mRNA, were
processed from two time points in a controlled coastal ocean mesocosm study (Bergen, Norway) involving an induced
phytoplankton bloom producing a total of 323,161,989 base pairs. Our study confirms the finding of the first published
metatranscriptomic studies of marine and soil environments that metatranscriptomics targets highly expressed sequences
which are frequently novel. Our alternative methodology increases the range of experimental options available for
conducting such studies and is characterized by an exceptional enrichment of mRNA (99.92%) versus ribosomal RNA.
Analysis of corresponding metagenomes confirms much higher levels of assembly in the metatranscriptomic samples and a
far higher yield of large gene families with .100 members, ,91% of which were novel.

Conclusions/Significance: This study provides further evidence that metatranscriptomic studies of natural microbial
communities are not only feasible, but when paired with metagenomic data sets, offer an unprecedented opportunity to
explore both structure and function of microbial communities – if we can overcome the challenges of elucidating the
functions of so many never-seen-before gene families.
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Introduction

DNA sequence based metagenomics has become a standard

tool for the analysis of natural microbial communities in marine

environments [1,2,3]. It involves the sequencing of random

community DNA from environmental samples and subsequent

determination of taxonomic and protein-encoding gene diversity.

However, questions of how natural bacterial assemblages respond

to perturbations in environmental conditions, are better answered

by analysis of community mRNA than genomic DNA [4].

Historically, metatranscriptomic studies have involved either the

use of microarrays [5] or mRNA-derived cDNA clone libraries

[6]. These approaches have produced significant insight into the

metatranscriptome of different communities but have limitations

when exploring the diversity of natural communities. Firstly, a

microarray only gives information about those sequences for

which it was designed and it is usual to screen for gene sequences

that are already known (e.g. from a gene-library or metagenomic

sources). Secondly, although transcript cloning avoids this problem

through the random amplification and sequestering of environ-

mental mRNA fragments, it introduces other biases; e.g. any

cloned transcripts that encode toxic products or titrates host DNA-

binding factors will skew the relative abundance of sequences.

More recently, the first metatranscriptomic studies using high-

throughput sequencing technology (pyrosequencing) have been

published [7,8,9]. Two studies of soil communities have sequenced

total RNA for the purpose of exploring both community structure,

through the analysis of ribosomal RNA (rRNA), and community
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function, through the study of mRNA [7,8]. The first study of a

marine microbial community metatranscriptome focused on mRNA

analysis and achieved an enrichment of ,50% mRNA [9].

Ideally, if the study of mRNA is the prime purpose of a

metatranscriptomic study, further enrichment is desirable. Here

we present a study of a complex marine microbial metatran-

scriptome enriched to 99.92% mRNA [10]. Metatranscriptomes

were generated from 4 samples taken at two time points in a

replicated mesocosm (11,000 liters) study involving an induced

phytoplankton bloom [10]. Pyrosequencing technology (GS-FLX

pyrosequencer) was used to generate four metatranscriptomes and

four corresponding metagenomes with an average sequence length

of 215 bp from the middle and end time point in the

phytoplankton blooms. This experiment provided an opportunity

to obtain replicate samples to explore the use of this approach for

detecting changes in the expression of genes over time. The

primary focus of the mesocosm experiment was to study the

response of marine microbes to the increase in ocean acidification

that is resulting from dissolution of anthropogenic CO2 [10] and

these results will be described in detail elsewhere. The immediate

purpose of this study was to 1) demonstrate the feasibility of

obtaining highly enriched samples of mRNA (.90%) from these

communities, 2) determine whether differences in expression could

be identified between time points of this controlled experiment

[10], and finally 3) to determine what proportion of the most

highly expressed genes using such a methodology might be novel.

Methods

Sampling, cDNA synthesis and sequencing
Water samples were obtained from a replicated mesocosm study

(two treatments, each in triplicate) established in coastal waters of a

fjord close to Bergen, Norway (60.27uN: 5.22uE). Each mesocosm

contained 11,000 L of coastal water and two of the six mesocosms

were sampled for this study. To induce the phytoplankton bloom,

nitrate and phosphate were added. Water samples were taken at

the peak and immediately following the collapse of the

phytoplankton bloom from both a high CO2 and control

mesocosm.

The nucleic acid extraction methodologies are briefly outlined

in Gilbert et al. [10] but are fully described here. To isolate DNA

and RNA, 15 L of water from each sample was filtered through a

140 mm diameter, 1.6 mm GF/A filter (Whatman), to reduce

eukaryotic cell abundance and maximize the proportion of

prokaryotic cells. This filtration took only 3 minutes and the

filtrate was applied directly to a 0.22 mm Sterivex filter (Millipore)

to allow rapid filtration of samples (,15 minutes per sample) to

limited mRNA degradation. Following filtration, each Sterivex

was pumped dry, frozen in liquid nitrogen and stored at 280uC
until extraction. Total nucleic acid extraction was performed on

each Sterivex using the method of Neufeld et al. [12]. Throughout

the protocol nuclease-free plastic consumables and DEPC-treated

water and reagents were used to limited degradation of mRNA.

Following extraction, total nucleic acids were eluted in 200 ml of

nuclease-free water.

For metagenomic analysis, 100 ml of the total nucleic acid

extraction was purified for DNA by treatment with RiboShred-

derTM RNase (Epicenter) following manufacturer’s instructions.

Purified metagenomic DNA was quantified by nano-litre spectro-

photometry, diluted with nuclease-free water to 500 ng ml21 and

then stored at 280uC until pyrosequencing.

For metatranscriptomic analysis, 100 ml of the total RNA was

purified using the RNA MinEluteTM clean-up kit (Qiagen); b-

mercaptoethanol was added to the RLT buffer. Approximate

RNA concentration was determined by nano-litre spectrophotom-

etry and checked for rRNA integrity using an Agilent bioanalyser

(RNA nano6000 chip). Average RNA concentration was

2.4 mg ml21. The integrity of rRNA was demonstrated by highly

defined, discrete rRNA peaks, with the 23S rRNA peak being 1.5–

2 times higher than the 16S rRNA peak. Fully intact rRNA is

essential for subtractive hybridization because degraded rRNA

molecules will not be fully subtracted from the total RNA pool.

DNA contamination was removed from total RNA samples by

treating with the Turbo DNA-free enzyme (Ambion). 75 mg of

purified total RNA was applied to the subtractive hybridization

method (Microbe Express Kit, Ambion) to remove rRNA from the

mRNA. Purified mRNA was eluted in 25 ml of TE buffer (10 mM

Tris-HCl pH 8.0, 1 mM EDTA) and was further purified with the

MEGAclearTM kit (Ambion) to remove small RNAs and small

contaminants. Purified mRNA was eluted in 10 ml of nuclease free

water and stored at 280uC until further analysis. 0.5 ml of the

purified mRNA was then checked using the Agilent bioanalyser

for removal of genomic DNA and ribosomal RNAs. The mRNA

concentration was estimated using the Agilent bioanalyser

software to average 450 ng ml21.

mRNA was estimated to be approximately 8% of total RNA

isolated. 9.5 ml of the purified mRNA was then applied to a

reverse transcription reaction using the SuperScriptH III enzyme

(Invitrogen) with random hexamer primers (Promega). The cDNA

was treated with RiboShredderTM RNase Blend (Epicentre) to

remove trace RNA contaminants. To improve the yield of cDNA,

1 ml of each sample was subjected to random amplification using

the GenomiPHITM V2 method (GE Healthcare) yielding approx-

imately 4 mg of cDNA. GenomiPHI technology produces

branched DNA molecules that are recalcitrant to the pyrosequen-

cing methodology. Therefore amplified samples were treated with

S1 nuclease using the method of Zhang et al. [13]. DNA and

cDNA were nebulized to produce an average size of 500 bp, then

cleaned with AMPure beads (Agencourt) and sequenced using the

454 Corporation’s GS-FLX instrument at the NERC-funded

Advanced Genomics Facility at the University of Liverpool

(http://www.liv.ac.uk/agf/). Extraneous sequences resulting from

.1 template molecule per picotitre well were removed from the

datasets (Table 1) as they include exact duplicates and failed

sequences that are replete with uncharacterized nucleotides.

Metatranscriptomic and metagenomic data sets were deposited

in NCBIs Gene Expression Omnibus (GEO, http://www.ncbi.

nlm.nih.gov/geo/) and are accessible through GEO Series

accession number GSE10119. All data is also deposited with the

Short Reads Archive (NCBI) under accession number

SRA000266. These datasets are also available with richer

annotates in ISATAB format [14] compliant with the ‘‘Minimum

Information about a (Meta) Genome Sequence’’ (MIGS) specifi-

cation [15].

Clustering of DNA and mRNA and prediction of partial
ORFs (pORFs)

Clustering analysis was performed on the raw reads and

translated peptide sequences (see below) using the CD-HIT

package [16]. The reads from all eight samples were clustered

together with CD-HIT-EST program. Sequences were clustered if

the identity was $95% (++ or +2 strand) and the length of the

alignment was $40 bp and $80% length of the shorter sequence.

The clustering results show the internal structure of the combined

dataset including number of non-redundant sequences, distribu-

tion of clustering, number of singletons, etc. The same analysis was

applied to each individual sample by counting only the sequences

from that sample. Results are shown in rows 5–11 in Table 1.

Novel Marine Metatranscripts
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ORFs (including pORFs) were then predicted. Since genes

cannot be reliably predicted from such short reads, we applied the

methodology used in the Global Ocean Survey (GOS) study [2,3],

calling pORFs from all six reading frames. As the current study

had overall shorter reads than the GOS study (average of 215 bp

instead of 822 bp) pORFs had to contain at least 30 amino acids.

In total 3,026,200 pORFs were detected. The approach of six

reading frame translation can result in many non coding (shadow)

pORFs, or spurious pORFs. However, this is less likely with short

sequence data because the translations from non-coding frames

are usually too short (due to random occurrence of stop codons) to

rank as pORFs using our selected cut-off threshold.

The protein gene coding density, according to the most recent

NCBI RefSeq database for microbial organisms (ftp://ftp.ncbi.nih.

gov/refseq/release/release-statistics/RefSeq-release27.01062008.

stats.txt), is about 0.25 million amino acid per 1 million base pairs

(bp). This study, which obtained 162 million amino acids from

323 million bp of sequence, shows only 50% of these pORFs were

spurious. Clustering of pORFs can further help to exclude spurious

pORFs which are more likely to remain singletons.

The pORFs were clustered with two-step CD-HIT runs. At the

first step, pORFs were clustered at 95% identity over 80% of

sequence length in order to identify non-redundant sequences.

The non-redundant sequences were further clustered at 60%

identity, over 80% of sequence coverage, to find clusters of

homologous pORFs or protein families (see row d, e, f in Table 1).

Here, we only use the non-redundant sequences to count the size

of each cluster so that the large clusters reported in row g in

Table 1 contain diverse sequences. The same clustering

techniques were also applied to the data from the metatranscrip-

tomic study of Frias-Lopez and colleagues [9] (Table S1).

Dividing pORFs into ‘predicted, ‘spurious’ and ‘putative’
The clusters of pORFs were annotated by comparison to the

PFAM database (http://PFAM.sanger.ac.uk/) by Hmmer, TIGR-

fam database (http://www.tigr.org/TIGRFAMs/) by Hmmer and

the COG database (http://www.ncbi.nlm.nih.gov/COG/) by

RPS-BLAST (reversed PSI-BLAST). All analyses were annotated

with an expect value cut-off of 0.001. Hmmer analysis was

performed in fragmental mode, and each hit also had to pass the

TC score. The pORFs with significant matches to these reference

databases were confirmed as genes, while the pORFs that

overlapped with them from a different reading frame (the shadow

pORFs) were deemed spurious pORFs. From this final analysis of

the 3,026,200 pORFs, 494,253 could be confirmed as predicted

proteins, 459,150 excluded as spurious pORFs, and the remainder

(2,072,797) marked as ‘‘putative proteins’’. The combined

predicted and putative proteins were used for subsequent analysis.

PCR detection of dominant orphan gene clusters in
environmental DNA and mRNA

To validate the presence of highly expressed orphaned sequence

clusters in the environment we randomly selected 27 of the most

highly expressed nucleotide clusters. It was necessary to establish

the presence of these sequences in both original DNA samples and

cDNA samples to show they were not artefacts of cDNA

amplification by GenomiPHI. To further cluster the 609 dominant

nucleotide clusters (.100 sequences per cluster) for the purpose of

designing PCR primers, all clusters were re-clustered at 95%

identity over at least 40 base pairs. This allowed sequences with

small 59 or 39 overlaps to be clustered together and increased the

probability that the sequences assayed represented different

transcripts. This reduced the number of dominant clusters from

609 to 85 (Table S2) and resulted in a significant increase in the

number of clusters with more than 5,000 reads each. The

maximum number of sequences in the largest cluster was 31,642

and 15 clusters now contained more than 5,000 reads. This

provided a smaller pool of sequences for analysis and reduced the

likelihood of amplifying similar sequences.

Primers were designed to screen 27 of these potential transcripts

using the batch Primer3 online interface (http://probes.pw.usda.

gov/cgi-bin/batchprimer3/batchprimer3.cgi), with the following

conservative rules. First, we targeted the ‘representative’ sequence

of each cluster (as opposed to the consensus sequence) to maximize

the length of the query DNA sequence and avoid use of chimeric

sequence that could have resulting from false assembly of the

original 609 clusters. Second, we iteratively explored a range of

parameters to find a rule that allows us to automatically create

primers (no manual inspection required) for all 85 loci using a

single set of optimality criteria that were as stringent as possible. In

the end, we took the default parameters of the interface and

optimized the following parameters: annealing temp (55uC),

overall length of product (100 bp), primer size (20 bp), G+C

content (50%) and minimum ‘‘maximum self-complementary’’.

Exact optimality criteria used for the selection of each batch of

primers is available from the authors.

Individual transcript sequences were amplified by PCR from the

environmental DNA used for the metagenomic analyses (co-

extracted with the mRNA used for the metatranscriptomic

approach), purified mRNA prior to RT-PCR and cDNA prior

to GenomiPHI amplification. Each of the 54 primers (http://

nebc.nox.ac.uk/nebcfs/public/Joint/metatranscript_primers.xls)

were diluted to a working concentration of 10 pmol ml21.

Approximately 10 ng of environmental DNA, cDNA or mRNA

was added to a 25 ml PCR reaction with final concentrations of

16PCR buffer (Promega), 2.5 mM MgCl2, 0.2 mM deoxynucleo-

side triphosphates (Invitrogen), 0.4 pmol of each primer, and 1

unit of Taq DNA polymerase (Promega). Negative controls used

were Escherichia coli K12 genomic DNA and sterile water.

Reactions were cycled with a PTC 1000 thermal cycler (MJ

Research) using the following conditions; 94uC for 2 minutes, 30

cycles of 94uC for 1 minute, 55uC for 1 minute, 72uC for

2 minutes, and a final extension of 72uC for 10 minutes. Products

were visualised by agarose gel electrophoresis (1.8%).

Results and Discussion

We demonstrate the feasibility of conducting metatranscrip-

tomic studies on RNA samples highly enriched for mRNA from

natural microbial communities. This is the first time such a high

level of enrichment has been achieved in a metatranscriptomic

study (Table 2). Eight samples, four DNA and four mRNA,

were processed producing a total of 323,161,989 bp (117.4 Mbp

of mRNA and 205.7 Mbp of DNA). This exceeds previously

published metatranscriptomic studies because of the inclusion of

replicated samples. By further contrast, this is equivalent to 5.1%

of the total bp sequenced, and 19% of the number of reads of the

recent Global Ocean Survey (GOS) sequencing effort [2]. Here

we present an analysis of these data that confirms the high level

of enrichment for mRNA and the high levels of assembly of

mRNA sequences compared to the DNA of the metagenomes;

we also speculate on the potential coverage of the natural

metatranscriptome sampled and discuss potential biases intro-

duced by this methodology and provide evidence against the

large-scale generation of mosaics and artefacts by the use of

GenomiPHI amplification. We then discuss the proportion of

these mRNAs that match protein databases, discuss the most

abundant ‘known’ clusters, and compare the metatranscriptome
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with the metagenome and with the first published study of a

marine metatranscriptome [9].

Determining the proportion of ribosomal RNA remaining
in mRNA metatranscriptomic samples

Both DNA and mRNA sequences were analyzed using the

publicly-available SEED MG-RAST (Metagenome Rapid Anno-

tation using Subsystem Technology, http://metagenomics.the-

seed.org [17,18]), which compares inputted sequences against a

database of metabolic systems from selected organisms. Taxo-

nomic information for the metagenomes within SEED was

obtained by comparison against three 16S rDNA databases (the

Ribosomal Database Project II (RDP), Greengenes, and the

European Ribosomal Database). Although rRNA comprises

approximately 80–90% of total RNA in a typical bacterium

[19], it averaged only 0.08% of the total number of sequences in

the four combined cDNA libraries (Table 1). The purification was

far more efficient than would be predicted for the methodology

and capture-probe range of the Microbe Express kit (Ambion)

used for the subtractive hybridisation of rRNA. This could be

because the 16S rRNA probes used in the subtractive hybridisa-

tion technique may hybridise to a more significant proportion of

the community than previously considered. While this might lead

to a more substantial removal, it cannot explain the near-complete

removal seen in this study. A second more likely possibility is that

the multiple displacement amplification approach (GenomiPHI)

used to amplify the available mRNA, inefficiently amplified rRNA

due to its inherent secondary structure that could have inhibited

the reaction (GE Healthcare technical services communication).

Both of these options should be further tested.

Comparisons of homology between datasets
To determine the similarity of each dataset to each other, total

nucleic acids between each database and total partial ORFs

(pORFs) between each database were compared to provide an

indication of the number of homologous sequences shared

between each pair of datasets (Table S3). This demonstrated

that each DNA dataset shared approximately 10% to 25% of the

nucleic acid sequences and 20% to 33% of the pORF sequences.

This suggests that the majority of sequences within each group

were unique (singletons) to each dataset; a similar result was seen

in the Global Ocean Survey when the metagenomes of different

regions were compared [2]. The comparison between mRNA

datasets showed a clear delineation between mid-bloom and post-

bloom, with mid-bloom mRNA sharing ,50% of their nucleic

acid transcripts and post-bloom sharing .95% of their nucleic

acid transcripts. This result was consistent when the datasets were

compared between time points, with ,50% of mid-bloom

transcripts being homologous with ,90% of post-bloom tran-

scripts (Table S3). We postulate below that this difference could

be due to an over-abundance of viral transcripts in the post-bloom

environment causing the metatranscriptomes to become more

homogenous.

It was expected that the metatranscriptome from the post-

bloom environment would be more similar to the metagenome

from the post-bloom environment than the mid-bloom samples.

The comparison clearly demonstrates this (Table S3). The mid-

bloom metagenomes also had greater homology to the mid-bloom

metatranscriptomes than the post-bloom metatranscriptomes.

Clustering of DNA and mRNA sequences confirms higher
levels of assembly of mRNAs and differences between
time points

To determine the possible level of assembly of sequence clusters,

total DNA and mRNA sequences were analyzed using a

metagenomic sequence analysis pipeline developed at CAMERA

(Community Cyberinfrastructure for Advanced Marine Microbial

Ecology Research and Analysis [20]) (access to this pipeline can be

arranged by contacting the corresponding author). The number of

unique sequences was calculated by clustering un-assembled

sequence reads as described in the Materials and Methods [16].

As shown in Table 1 an average of 79% of the DNA-derived

metagenome sequences from both mid- and post-bloom samples

were unique (singletons). This confirms the low level of coverage of

the genomes in this sample and the high diversity. In contrast, the

mRNA-derived sequences showed much higher levels of cluster-

ing, with an average of 45% of the sequences from the mid-bloom

(time point 1) and only 9.5% of the post-bloom sequences (time

point 2) being unique (Table 1) (calculated by dividing the total

number of unique sequence clusters by the total number of

Table 2. Comparison of methods described by current manuscript with the three most recent methods for analysing microbial
metatranscriptomes.

Leininger et al [7]; Urich et al [8] Frias-Lopez et al. [9] Gilbert et al [10] (and this study)

Habitat Soil (Nutrient-poor, sandy-soil) Marine (oligotrophic ocean) Marine (eutrophic coastal waters)

Total biological samples 1 (1 metatranscriptome) 1 (1 metatranscriptome, 1 metagenome) 4 (4 metatranscriptomes, 4 metagenomes)

Total DNA/RNA (Millions bp) ,25.32 ,60.1 ,323.2

RNA purification methodology Griffiths et al [11] method from
6 g of soil.

mirVana RNA isolation kit (Ambion)
from 1 L of sea water

Neufeld et al, [12] method and MinElute RNA
cleanup (Qiagen) from 15 L of seawater

mRNA isolation and
amplification methodology

N/A * mRNA amplification using MEssageAmp
II-Bacterial kit (Ambion)

MicrobeExpress and Megaclear kit (Ambion).
GenomiPHI amplification (GE Healthcare)

RNA sequencing GS20-pyrosequencing GS-20 pyrosequencing GS-flx pyrosequencing

Average length 98 bp 112 bp 215 bp

Yield of mRNA sequences 8.2% 47.1% 99.9%

Yield of orphaned sequences 22% (60% of mRNA assigned tags)1 89.5%2 87%2

1based on hits to nucleotide sequences using the MG-RAST Seed database.
2based on hits to potential open reading frames using the PFAM, TIGRfam and COG protein databases.
*Not performed, rRNA and mRNA expressly sequenced together to examine both community structure and function.
doi:10.1371/journal.pone.0003042.t002
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sequence reads). Strikingly, only five of the 609 largest nucleotide-

level mRNA clusters (those with $100 sequences) had an observed

match in any of the DNA metagenomes. This low level of

homology between mRNA sequences and the community DNA

metagenome was previously noted [9] and is expected given the

sparse sequence coverage for the much larger metagenome.

Alternatively, this could be an overestimate of the lack of

homology as it is possible for any of the RNA clusters to actually

come from the same transcript. For example, an mRNA cluster

from the first 25% of a given gene (average gene length ,950 bp

[21]) would appear to have no match even if the DNA library

captured the other 75% of the gene. Unfortunately, there is no

way to resolve this issue given the small size of sequences currently

generated with pyrosequencing methodology.

To directly compare the level of assembly (diversity) in the eight

samples, individual rarefaction was used to normalize the number

of clusters to an equivalent sampling effort (i.e. that of the smallest

sample) (Table 1). The number of clusters in all four DNA

samples was surprisingly uniform and was double the number of

clusters from the mid-bloom and nine times from the post-bloom

mRNA samples. These results show that the metatranscriptome is

smaller than the metagenome, assembles better, and that the

expression of genes is different for mid-bloom and post-bloom

communities. Of these an average of 0.23% of mid-bloom and

2.3% of post-bloom transcript clusters included more than 100

sequences. In other words, the transcription profile became more

homogenous in the post-bloom situation.

Based on this clustering, we compared the total number of clusters

found to the total number expected within a given water sample. To

generate a rough estimate of potential metatranscriptome coverage,

we used the approach of Poretsky et al. [6] to estimate that each water

sample contained ca. 80,000 unique transcripts. This estimate is based

on the observed number of dominant taxa and bacterial abundance

(data not shown). This is the same order of magnitude as the number

of unique mRNA sequences identified (Table 1) suggesting that this

study may have achieved a reasonable coverage of the community

metatranscriptome (in comparison, the metagenomes were vastly

under-sampled). This is clearly an upper estimate, and given that the

top 609 nucleotide clusters could be collapsed with less conservative

clustering criteria into 85 larger clusters (see Materials and Methods),

the actual number of transcripts could be 7-fold or more lower. Indeed

the real value could be even lower, since one functional transcript may

be coded for by more than one cluster (Table 3). We have previously

shown this for another gene, phnA, that encodes phosphonoacetate

hydrolase; the phnA from one organism had twelve hits within the

metagenomic data, which were spread out over the gene [10]. Using

the clustering methodology outlined here, this method would have

identified this one gene as belonging to six different clusters due to

overlap between the 12 sequences.

Evidence against potential biases in detecting naturally
occurring mRNA clusters introduced by GenomiPHI

There are two key biases that might be introduced using the

methodology presented here. Firstly, the time required to

concentrate the community by filtration is longer than the half-

life of mRNA, but this is true of most methods used to analyze the

metatranscriptome of aquatic samples [6]. Recent studies

however, have used smaller volumes (e.g. ,1 L [9]), and the

current methodology would still be effective using these smaller

volumes. However, in the current study this methodology was run

concomitantly with other analyses that required a significant

amount of DNA, e.g. fosmid library production [10].

Secondly, amplification of cDNA using GenomiPHI could

introduce artefactual sequences (although evidence of such a bias

for transcriptome amplification does not exist [22]). Such artefacts

could include mosaic or artefactual sequences that could explain

the large number of orphan transcripts found in this study. We

therefore performed four types of subsequent analyses to attempt

to validate these clusters.

Firstly, to generate empirical evidence of the presence of these

clusters in the original water samples and to test for chimeras, a

PCR analysis was performed that targeted 27 of the most highly

expressed orphan clusters. PCR reactions were performed on 1)

the original environmental DNA preparations, 2) unamplified

cDNA and 3) mRNA (this was a negative control, since it is DNA-

free). Amplification products were detected for all 27 selected

target sequences in at least one of the environmental DNA samples

(Table S2). None of the sequences could be detected in any of the

4 mRNA samples (negative controls) confirming an absence of

contamination of DNA. All 27 transcripts were found in all four

cDNA samples. For the mid-bloom time points, 12 and 11 of the

transcripts respectively were identified in the high CO2 and

control environmental DNA samples (Table S2). Some, but not

all, of these transcripts were of lower abundance when normalized

to sequencing effort (data not shown).

Secondly, this is the first published metatranscriptomic study to

include biological replicates (Table 2) making it possible to

compare observed transcripts generated from independent

samples using the same methodology. Of the four metatranscrip-

tomes analyzed, transcript clusters showed similar abundance in

both peak bloom samples and both post bloom samples (Table 1,
Table S2). Since all four metatranscriptomes were generated

using the same mRNA enrichment methodology, this level of

observed similarity of abundant transcripts would not be expected

by chance and provides strong evidence that the difference seen

between time points in both the treatment and control samples are

due to biological differences in the composition of the community

within the bloom (Table S2).

Thirdly, we compared the functional profiles of the metagen-

omes and metatranscriptomes (Fig. 1). All eight data sets were

annotated using similarity matching against SEED subsystems

[17]. While this approach only validates transcripts with

observable homology to genes in known subsystems, it still shows

that the metatranscriptome functional profile does not significantly

differ from that of the metagenome (one-way Anosim R = 0.271,

p = .0.05). For this analysis, the number of sequences with

significant identity to each metabolic gene in a functional category

in the SEED subsystem database were normalised to the

sequencing effort for each sample (Fig. 1) and sequences which

could not be annotated in this way were not included.

Fourthly, we compared the level of assembly and novelty between

our four mRNA and DNA samples and that of the only previously

published metatranscriptomic study of a marine microbial commu-

nity [9]. All samples were translated in all six reading frames into

contiguous peptides of at least 30 amino acids without a stop codon,

spurious pORFs were removed, leaving 2,567,050 predicted or

putative pORFs (See Materials and Methods, Table 1). These

pORFs were clustered to assess the diversity of function from each

sample, and were compared against known databases to provide

basic annotation of known proteins and potential identification of

novel pORFs. As shown in Table 1, the majority of the highly

clustered ($10 non-redundant sequences per cluster) transcripts

(,94% mid-bloom and ,87% post-bloom) were novel clusters that

may represent uncharacterized proteins.

The mRNA samples from the current study yielded 1,2 orders

of magnitude more novel protein clusters than their corresponding

DNA samples when normalized to size (Table 1). Surprisingly,

this high level of diversity was actually exceeded by the previously
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published Frias-Lopez study [9]. Clustering of that data according

to the same criteria showed that ,98% of metatranscriptomic

sequences were unique (Table S1). To directly compare the

annotation of pORFs for this study with that of the Frias-Lopez

study [9], we applied the same clustering techniques for the

translated proteins to their raw data (Table S1). A total of 1,826

pORF clusters containing .10 non-redundant sequences were

found (DNA, rRNA and mRNA) and 865 pORF clusters

remained after all rRNA clusters were removed. If the values for

novel protein clusters are normalised to sequencing effort, we see

that the Frias-Lopez study identified 1.86 the number of novel

protein sequences per sequencing effort when compared to the

current study. This phenomenon can be partially explained by the

differences in read lengths between the studies (Table 2), as longer

read lengths are more likely to be positively annotated than shorter

read lengths [23,24].

Differences between sequence abundances in
metatranscriptomes and metagenomes

The benefits of applying both metatranscriptomic and metage-

nomic analysis to the same biological samples include the potential

to detect differential expression of mRNAs (function) between

communities under different environmental conditions, while the

metagenome (DNA) can also provide a frame-of-reference for the

total potential of the community metatranscriptome. Using the

proportion of DNA and mRNA sequences that had homology to

known proteins, we were able to make phylum-level taxonomic

assignments using annotations from the SEED databases [18]

(Fig. 2). Comparison of the 4 DNA and 4 mRNA samples shows

them to be significantly different in taxonomic composition (by

one-way Anosim analysis, R = 0.385, p,0.03). Despite this,

comparisons of all subsets of the data failed to reveal any

significant differences (perhaps due to small sample sizes – data not

shown). This suggests that changes seem in mid- and post-bloom

time points are due more to changes in particular genes within

taxa, than large-scale changes in the abundances of phyla-level

taxonomic groups. Some potential qualitative changes can be seen

within these patterns that may contribute to this significant

difference between DNA and mRNAs including an increased

number of transcripts from the Bacteroidetes phylum (an important

group in macromolecule degradation) during the mid-bloom

sample compared to its proportion of the same sample of DNA

(Bacteroidetes was only the 4th most abundant metagenomic group

but had the 3rd highest transcriptional activity) (Fig. 2).

The most abundant ‘known’ transcripts found in the
metatranscriptome and metagenome

The most abundant ‘known’ pORF clusters included a large

number of housekeeping genes. All pORF clusters with .10 non

redundant sequences were annotated by comparison to the

PFAM, TIGRfam and COG databases (Table 3). Whilst the

PFAM annotations yielded significant numbers of viral proteins,

viral sequences were absent from both the TIGRfam and COG

annotations (viral annotations discussed in next section).

Figure 1. Relative abundance of sequence types identified for each sample. Number of sequences per metabolism subsystem were
normalised to sequencing effort for each sample and then relative abundance for each was calculated as a percentage.
doi:10.1371/journal.pone.0003042.g001
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Among the most abundant sequences with annotations are

stress-induced chaperonin proteins (Table 3), which are poten-

tially expressed in response to the low pH or high CO2

concentration stress found in the ocean acidification mesocosm

samples. This is corroborated by the distribution of sequences with

,60% (1.46increase) of the chaperonin transcript sequences

coming from the high CO2 mesocosms. This is mirrored by the

metagenomic data in which ,55% (1.26increase) of the

chaperonin gene sequences are found in the high CO2

environment. However, it is possible that these proteins are

induced when the bacteria are being filtered, and hence this could

be an artefact caused by the sampling procedure; using smaller

starting volumes should alleviate this. Neither of these proteins

were identified as being abundant in the dominant pORF clusters

(.10 non-redundant sequences) from study by Frias-Lopez et al.

[9] which utilised only 1 L sampling volumes and may have

reduced stress on the bacteria by reducing the filtration time.

A range of proteins considered to be ubiquitous in cellular

processes also ranked among the most abundant sequences that

could be annotated. These included ribonucleotide reductase

proteins (COG0209, TIGR02505, TIGR02506, PF02867), which

were matched in all 3 reference databases (Table 3), as were

proteins involved in ABC transporters, ATPase activity and AMP-

binding (COG5265, TIGR00630, PF00004, PF00005, PF00006,

PF00501). RNA polymerases (COG0085, COG0086,

TIGR02013) were only assigned by the COG and TIGRfam

Figure 2. Percentage taxonomic affiliation of sequences identified in each dataset by BLAST against the SEED database. A –
community at peak of the phytoplankton bloom (61 SD). B - community after the phytoplankton bloom (61 SD). Standard deviations are calculated
from comparison of the different treatments. Data shown are for the high CO2 treatment.
doi:10.1371/journal.pone.0003042.g002
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annotations. Other abundant pORF clusters (.10 non-redundant

sequences) encoded catalases/peroxidises (COG0376), carbamoyl-

phosphate syntheases (COG0458, TIGR01369), excinucleases

(COG0178), S-adenosylhomocysteine hydrolase (COG0499,

TIGR00936), acetate-CoA ligases (TIGR02188), 26S proteasome

subunit P45 family protein (TIGR01242), and elongation factor

Tu GTP binding domain (PF00009) (Table 3).

Abundant viral sequences in the post-bloom time point
samples may contribute to the large number of orphan
transcript clusters found

At the end of any phytoplankton bloom, a substantial increase is

expected in the number of expressed viral transcripts. This was

observed in our post-bloom mRNA samples, in which transcripts

with viral homologues were on average 24.5 times more abundant

than viral DNA sequences (Fig. 2). While free viruses particles would

pass through the 0.22 mm filters used, and would therefore have low

sequence abundance in the post-bloom samples, infected cells would

be expected to have overwhelming viral gene expression during lytic

growth (Fig. 2). The large increase in viral transcription occurred

immediately after a substantial increase in bacterial abundance

following the phytoplankton bloom (data not shown).

The high expected abundance of viruses in the post-bloom

environment suggests that many of the unknown predicted

proteins maybe of viral origin [3]. This is supported by the

annotation of the dominant pORF clusters (with .10 non-

redundant sequences, Table 3) and Fig. 2. The most abundant

sequence that could be annotated was PF02407, Putative Viral

Replication Protein, and the second most abundant was PF00910,

RNA helicase, which is thought to be involved in viral infection

(Table 3). These sequences comprise 7.7% and 5% respectively of

the dominant clusters that can be annotated by comparison to the

PFAM database (12.7% in total).

Furthermore, these two proteins are more abundant in the post-

bloom environment, with ,86% of these transcripts being found

only in the post-bloom samples. Interestingly, only a single

homologue for PF02407 was found in the post-bloom metagenomes.

This not only confirms the results seen in Fig. 2, but also

underscores a clear case of the biological significance of observed

differences in the ratios of transcripts and their DNA sequences.

Further validation of metatranscriptomes and
metagenomes by direct comparison to an oligotrophic
ocean metatranscriptome

Both the validity and nature of mRNA transcripts from this

experiment were explored by direct comparison with the Frias-

Lopez data set (Table 2) [9]. There was some overlap of

sequences, including both house-keeping genes and a few of the

most highly expressed novel orphan clusters. But the analysis also

highlights the extensive diversity between these samples which,

while both taken from the marine environment, came from two

distinct marine habitats (Table 2).

Specifically, comparisons were generated using BLASTN

(Table 4) for 3 versions of the two data sets: 1) total sequences,

2) representative ntDNA sequences from each nucleotide cluster

and 3) representative sequences from each pORF cluster. Both

mRNA and DNA sequences were compared separately. Values for

the Frias-Lopez cDNA following removal of the rRNA sequences

were also used for comparison. The most abundant clusters of the

current study were also compared to the Frias-Lopez full mRNA

and DNA datasets (Table 5).

About 10% of the sequences in the two metagenomes are

shared, but the shared proportion of DNA pORFs is higher (15%)

for the Frias-Lopez study and considerably lower (3.7%) for the

current study. Interestingly, this trend is confirmed by the DNA-

mRNA comparisons in which the total proportion of DNA

matches is always far lower than the proportion of mRNA

(Table 4). At the highest level of assembly, comparisons of pORF

clusters reveal that 9% and 7.5% of the mRNAs are shared with

the relevant metagenome. Smaller proportions of the pORF

mRNAs of each study (5.0% and 0.7%) showed similarities to each

other suggesting that different subsets of the ‘‘potential metatran-

scriptome’’ of the two communities are expressed in the two

habitats.

Table 4. BLASTN comparison of total nucleic acids, representative sequences from nucleic acid clusters and representative
sequences from pORF clusters from this study and the Frias-Lopez study [9].

Gilbert et al [10] and current study

DNA, DNA nuc-clusters, DNA pORF clusters mRNA, mRNA nuc-clusters, mRNA pORF clusters

Frias-Lopez et al [9] DNA 44261(10.7) 102637 (10.3) 19359 (4.67) 56835 (11.2)

DNA nuc-clusters 35575 (10.6, 8.6) 59918 (9.5, 6) 15564 (4.65, 3.75) 11698 (8.8, 2.3)

DNA-pORF clusters 59774 (15, 14.4) 40002 (3.7, 4) 21302 (5.5, 5.1) 17672 (7.5, 3.5)

mRNA 64609 (52.4) 18602 (1.9) 58123 (45) 2680 (0.53)

mRNA (rRNA removed) 15179 (24.1, 11.8) 15598 (1.57, 1.6) 13121 (20.8, 10.2) 2162 (0.43, 0.42)

mRNA nuc-clusters 27094 (38.7, 21.1) 10689 (1.7, 1.07) 22289 (31.9, 17.4) 1942 (1.45, 0.38)

mRNA nuc-clusters (rRNA removed) 8338 (19, 6.5) 9631 (1.5, 1) 6171 (14, 5) 1624 (1.2, 0.3)

mRNA-pORF clusters 4330 (9, 3.4) 5484 (0.5, 0.55) 2372 (5, 1.8) 1736 (0.7, 0.34)

For each comparison two values are given, the first value is the percentage of Frias-Lopez data which is homologous to data from the current study; the second is the
percentage of data from the current study which is homologous to the Frias-Lopez data. Comparisons were performed using BLASTN with the current studies dataset as
reference database, and the Frias-Lopez dataset as the query. The (-b –v) parameter in BLASTN was set to 40,000. For every query sequence, every similar sequence in
the reference dataset is identified. Sequences from both datasets that meet the criteria of an E-value ,0.001 were included. Percentage values in parentheses are
calculated by dividing each value by the total number of sequences/representative sequences for each dataset. For the Frias-Lopez data: Total DNA – 414,323, Total
DNA nuc-clusters – 334,940, Total DNA pORF clusters – 390,599, Total mRNA – 128,234, Total mRNA (rRNA removed) - 63,111, Total mRNA nuc-clusters – 69,948, Total
mRNA nuc-clusters (rRNA removed) - 43,948, Total mRNA-pORF clusters – 46,703. For the Gilbert data: Total DNA – 992,224, Total DNA nuc-clusters – 630,159, Total DNA
pORF clusters – 1,083,644, Total mRNA – 506,353, Total mRNA nuc-clusters – 133,447, Total mRNA pORF clusters – 238,655. Percentage values in bold are normalised by
divided each value through the Total DNA or Total RNA for the relevant study. Nuc-cluster refers to nucleotide clusters.
doi:10.1371/journal.pone.0003042.t004
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Shared sequences are expected to include housekeeping genes,

as suggested by the homology between many of the largest

identifiable clusters found in both studies (Table 4 and Table 6).

Similarities among the mostly highly expressed abundant clusters

are still very rare (Table 5). This could be a result of niche-specific

genes (or post-bloom specific genes in this study) and/or the heavy

viral load associated with the collapsing algal bloom conditions for

the current study. This viral load hypothesis is potentially

confirmed by an observed anomaly seen in Table 4. The relative

percentage of total nucleic acid comparisons is higher than the

comparison between nucleic acid clusters (nuc-clusters) for each

analysis except when comparing our mRNA nucleotide clusters

(mRNA nuc-clusters). The relative percentage increases from

0.53% to 1.45%, and is seen again when comparing against the

Frias-Lopez mRNA following removal of the rRNA, whereby the

values are 0.43% increasing to 1.2% (Table 4). We hypothesise

that this anomaly is caused by the majority of the Frias-Lopez

mRNA homolog’s being singletons in our mRNA data, hence on

clustering, their contribution to the percentage calculation is more

significant. This highlights the fact that the abundant sequences in

our mRNA data are not abundantly expressed in the Frias-Lopez

data, which is to be expected if they are viral sequences.

The number of protein sequences that can be annotated

through comparison to PFAM, TIGRfam or COG was approx-

imately 2.5% prior to removal of rRNA sequences and 4.3%

following removal. This is far lower than the 36.5% from our study

which could be annotated (8.5 fold more) (Tables 2 and Table
S1). When comparing the annotation of the top 10 most abundant

pORF clusters (.10 non-redundant sequences) found in the Frias-

Lopez studies (Table 6) 6 (by PFAM), 7 (by TIGRfam) and 5 (by

COG) clusters are found in both studies as abundant clusters

(.100 sequences per pORF cluster). For example, the 1st and 2nd

most abundant PFAM annotation for the Frias-Lopez study

(PF00004) are the 4th and 10th most abundant PFAM annotation

for the current study (Table 3 & 6).

Summary
The ability to assess natural metatranscriptomes of complex

microbial communities under different environmental conditions

represents a significant advance in our ability to link community

structure with function and DNA genotypes (sequences) with

corresponding phenotypes. The approach presented here expands

the available methodologies for assaying metatranscriptomes with

.99% enrichment from total RNA (by removal of ribosomal

RNA) and demonstrates that changes in expression of transcripts

can be observed between time points. The outputs of this study

include a large number of novel, highly expressed sequence

clusters and confirmation that the majority of these clusters are

orphaned and therefore further prove the utility of this approach

for use in discovering novel genetic capacity [9]. The computa-

tional analyses produced in this study also demonstrates the critical

importance of access to public portals, namely CAMERA [20] and

SEED [17,18], for the processing of such vast quantities of

complex data.

Supporting Information

Table S1 Comparison of DNA and mRNA from samples

collected by Frias-Lopez et al [9].

Found at: doi:10.1371/journal.pone.0003042.s001 (0.04 MB

RTF)

Table S2 Information about the 85 most abundant nucleotide

clusters. Including size, number of sequences in cluster, distribu-

tion of abundance of mRNA and DNA sequences within each

cluster and the presence or absence of those clusters for which

PCR amplification from environmental DNA was performed.

T1B1 refers to high CO2 from the mid-bloom; T1B6 refers to

present day CO2 from the mid-bloom; T2B1 refers to high CO2

from the post-bloom; T2B6 refers to present day CO2 from the

post-bloom.

Found at: doi:10.1371/journal.pone.0003042.s002 (0.27 MB

RTF)

Table S3 Number of (A) nucleotide sequence and (C) partial

ORF sequence homologues found between the eight datasets from

the current study. Percentage of (B) nucleotide sequence and (D)

partial ORF sequence homologues found between the eight

datasets from the current study. T1B1 = Mid-Bloom, High CO2.

T1B6 = Mid-Bloom, Present Day. T2B1 = Post-Bloom, High

CO2. T2B6 = Post-Bloom, Present Day. pORF percentages are

based on total pORFs, denoted d in Table 2.

Found at: doi:10.1371/journal.pone.0003042.s003 (0.10 MB

RTF)
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Table 5. BLASTN comparison of the reference sequences of the abundant nucleic acid clusters (.10 and .100 sequences per
cluster) from the current study to the total combined mRNA and DNA sequences from the Frias-Lopez et al [9] study.

Frias-Lopez et al [9] study

mRNA homologues (%) DNA homologues (%)

Current Study 3639 nucleotide clusters (10–99 sequences) 107 (2.9%) 326 (9%)

85 nucleotide clusters (.100 sequences) 1 (1.2%) 4 (4.7%)

The 3649 clusters have .10 sequences and the 85 clusters are ‘contigs’ of all 609 clusters with .100 sequences (as described in the Materials and Methods).
doi:10.1371/journal.pone.0003042.t005
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